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Preface

There are a number of excellent texts on fluid mechanics which focus on external flow, flows typified
by those around aircraft, ships, and automobiles. For many fluid devices of engineering importance,
however, the motion is appropriately characterized as an internal flow. Examples include jet engines
or other propulsion systems, fluid machinery such as compressors, turbines, and pumps, and duct
flows, including nozzles, diffusers, and combustors. These provide the focus for the present book.

Internal flow exhibits a rich array of fluid dynamic behavior not encountered in external flow.
Further, much of the information about internal flow is dispersed in the technical literature and does
not appear in a connected treatment that is accessible to students as well as to professional engineers.
Our aim in writing this book is to provide such a treatment.

A theme of the book is that one can learn a great deal about the behavior of fluid components and
systems through rigorous use of basic principles (the concepts). A direct way to make this point is
to present illustrations of technologically important flows in which it is true (the applications). This
link between the two is shown in a range of internal flow examples, many of which appear for the
first time in a textbook.

The experience of the authors spans dealing with internal flow in an industrial environment,
teaching the topic to engineers in industry and government, and teaching it to students at MIT. The
perspective and selection of material reflects (and addresses) this span. The book is also written with
the view that computational procedures for three-dimensional steady and unsteady flow are now
common tools in the study of fluid motion. Our observation is that the concepts presented enable
increased insight into the large amount of information given by computational simulations, and hence
allow their more effective utilization.

The structure of the book is as follows. The first two chapters provide basic material, namely
a description of the laws that determine the motion (Chapter 1) and the introduction of a number
of useful concepts (Chapter 2). Among the latter are qualitative features of pressure fields and
fluid accelerations, fundamentals of compressible channel flow, introduction to boundary layers,
and applications of the integral forms of the conservation laws. Chapter 3 presents, and applies, the
concepts of vorticity and circulation. These provide both a compact framework for describing the
three-dimensional and unsteady fluid motions that characterize fluid devices and a route to increased
physical insight concerning these motions. Chapter 4 discusses boundary layers and shear layers in
the context of analysis of viscous effects on fluid component performance. Chapter 5 then gives an
in-depth treatment of loss sources and loss accounting as a basis for the rigorous assessment of fluid
component and system performance.

The remaining chapters are organized in terms of different phenomena that affect internal flow
behavior. Chapter 6 deals with unsteadiness, including waves, oscillations, and criteria for instability
in fluid systems. Chapter 7 treats flow in rotating passages and ducts, such as those in a turbomachine.
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Swirling flow, including the increased potential for upstream influence, the behavior of vortex cores,
boundary layers and jets in swirling flow, and vortex breakdown, is described in Chapter 8.
Chapter 9 discusses the three-dimensional motions associated with embedded streamwise vorticity.
Examples are ‘secondary flows’, which are inherent in non-uniform flow in curved passages, and
the effects of streamwise vorticity on mixing. Chapter 10 addresses compressible flow including
streams with mass, momentum, and energy (both work and heat) addition, with swirl, and with
spatially varying stagnation conditions, all of which are encountered in fluid machinery operation.
Effects of heat addition on fluid motions, described in Chapter 11, include an introduction to ramjet
and scramjet propulsion systems and the interaction between swirl and heat addition. The final
chapter (12) provides a broad view of non-uniform flow in fluid components such as contractions,
screens, diffusers, and compressors, as well as the resulting interactions between the components.
These chapters address different topics, but a shared paradigm is the creation of a rotational flow by
non-uniform energy addition, external forces, or viscous forces and the consequent response to the
pressure field (the dominant influence for the flows of interest) and wall shear stress associated with
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Conventions and nomenclature

Conventions

1. Vector quantities are shown in bold (u).
2. The task of integrating nomenclature from different fields has been a daunting one; not only is

the terminology often not consistent, it is sometimes directly opposed. Our strategy has been,
where possible, to keep to nomenclature in widespread use rather than inventing new symbols.
This means that some symbols are used for two (or more!) quantities, for example h for the heat
transfer coefficient and specific enthalpy, θ for momentum thickness, diffuser half-angle, and the
circumferential coordinate, and W for work and for channel and diffuser width.

3. Several conventions have been used for station numbers. These are generally numerical: 0, 1, 2,
3, etc. Situations in which there is reference to inlet and exit conditions are denoted by i and e;
these are noted where used. The subscripts i and o are used to denote inner and outer radii, and,
again, the specific notation is defined where needed. The subscript E denotes the part of the stream
which is outside (“external to”) the viscous layer (boundary layer) adjacent to a solid surface.

Far upstream and far downstream stations are denoted by −∞ and ∞ respectively. In some
cases two or more streams exist and these are denoted by 1, 2, etc. In situations in which there
are two or more streams at different stations the convention used is that the first subscript denotes
the stream and the second the station. As an example u1i denotes stream 1 at the inlet station.

4. In two dimensions the Cartesian coordinate system is defined such that x is along the mainstream
direction and y is normal to it. Generally this implies that x is parallel to a boundary surface and y
is normal to the boundary; for example yE is the distance to just outside the edge of the boundary
layer. For three dimensions, x and y maintain these conventions and z is defined as the third axis
in a right-handed coordinate system.

For axisymmetric geometries the x-coordinate direction is used as the axis of symmetry because
the overall (bulk) flow motion is aligned with the axis of the machine in many devices.

For rotating coordinate systems (Chapters 3 and 7) the z-axis is used as axis of rotation so the
x-direction maintains the convention of being the main flow direction for a rotating passage.

Nomenclature

Letters

a (1) Speed of sound
(2) Vortex core radius

A Area or surface
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Aport Area of ports (inlet and outlet) of a control volume
AR Diffuser or nozzle area ratio (exit area/inlet area)
Bi Components of a vector
B Vector
cp Specific heat at constant pressure
cv Specific heat at constant volume
Cc Contraction coefficient (Eq. (2.10.3))
Cf Skin friction parameter (τw/(ρu2

E/2))
Cp Pressure rise coefficient ((p2 − p1)/(ρu2

1/2))
Cd Dissipation coefficient (Eq. (5.4.10))
CD Drag coefficient
d Diameter
d( ) Differential quantity
dH Hydraulic diameter (4A/perimeter)
D(M) Compressible flow function (Eq. (2.5.3))
Ḋ Rate of mechanical energy dissipation per unit area in the

boundary layer (Eq. (4.3.11))
d Small amount of work or heat
D/Dt Convective derivative
e Internal energy per unit mass
et Stagnation energy per unit mass (e + u2 / 2)
er, eθ , ex Unit vectors in r-, θ -, x-directions
E Internal energy
Et Total energy of a thermodynamic system
Fext, Fvisc External force, viscous force per unit mass
FD Drag force in addition to wall shear stress (Eq. (10.3.4))
F i, F x, F y Component of force
h (1) Enthalpy per unit mass

(2) Heat transfer coefficient
(3) Separation parameter ((H − 1)/H)

ht Stagnation enthalpy per unit mass (h + u2/2)
H (1) Boundary layer or wake shape factor (δ*/θ )

(2) Non-dimensional enthalpy, (cpT/cpTti )
(3) Height of annular diffuser

I Fluid impulse
I Fluid impulse per unit mass
IR, IRS Inertia parameter for rotors (R), rotors plus stators (RS)
J Jet momentum flux
k (1) Number of Fourier component

(2) Thermal conductivity
K (1) Acceleration parameter (Section 4.5)

(2) Circulation/2π in an axisymmetric flow (ruθ )
(3) Non-dimensional kinetic energy (u2/2cpTti )

K Screen pressure drop coefficient [(�P/(ρu2/2)]screen)
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l Streamwise coordinate
l Unit vector in streamwise direction
d	 line element magnitude
d� line element vector
	mix Mixing length in turbulent boundary layer (Eq. (4.6.12))
L (1) Characteristic length scale

(2) Duct length
m Meridional coordinate
ṁ Mass flow rate
M (1) Mach number (u/a)

(2) Molecular weight
M
 Rotational Mach number (
r/a)
ME Free-stream Mach number
Mc Convective Mach number (Eq. (4.8.18))
n Coordinate normal to streamline
ni Component of normal
n Outward pointing normal unit vector
N (1) Diffuser length

(2) Flow non-uniformity parameter (Eq. (5.6.17))
p Pressure
p′ Perturbation (or disturbance) pressure
pB Back pressure in compressible channel flow
pt Stagnation (or “total”) pressure
Pr Prandtl number (µcp/k)
q Heat addition per unit mass
qi Component of heat flux vector
qx, qy Heat flux in x-, y-direction
qw Wall heat flux
q Heat flux vector
Q Heat addition
Q̇ Rate of heat addition per unit mass
(r, θ , x) Cylindrical coordinates
r Radius
rc Radius of curvature
rm Mean radius
r Position vector
�r Annulus height (ro − rI)
R Universal gas constant
R Gas constant = R/M
Re Reynolds number
Rex, Reθ , Reδ∗ Reynolds numbers based on x-distance, momentum thickness,

displacement thickness
s Entropy per unit mass
S Entropy
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St Stanton number (Section 11.1)
t Time
T Temperature
Tt Stagnation (or “total”) temperature (T + u2/2cp)
u Velocity magnitude
ui Velocity component
u Mean or background velocity
uτ Friction velocity (

√
τw/ρ)

u+ Non-dimensional velocity (u/uτ )
uE External, or free-stream, velocity
u Mean or background velocity
u vector velocity
(ux , uy, uz), Velocity components in Cartesian corrdinates
(ur , uθ , ux ) Velocity components in cylindrical corrdinates
U Reference velocity or characteristic velocity
v Specific volume (volume per unit mass)
V (1) Volume

(2) Axial velocity ratio, external flow to vortex core
w Work per unit mass
wloss Lost work per unit mass (Eq. (5.2.10))
wshaft Shaft work per unit mass
w Relative velocity
W (1) Channel, diffuser width; blade, vortex pair spacing

(2) Work
Weff Effective width of channel
Wnon-p Work over and above flow work done by inlet and exit

pressures
Wshaft Shaft work
(x, y, z) (i, j, k) Cartesian coordinates and unit vectors
x Coordinate vector
Xi Components of body forces
X Body force per unit mass
yE y-value at edge of boundary layer
y+ Non-dimensional boundary layer coordinate (yuτ /ν)

Symbols

� Impulse function (pA + ρu2A)
α Flow angle measured from reference direction
β (1) Reduced frequency (ωL/U)

(2) Shock angle
γ (1) Specific heat ratio (γ = cp/cv)

(2) Circulation per unit length
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� Circulation
�rel Relative circulation
δ Boundary layer thickness
δij Kronecker delta
δ* Boundary layer or wake displacement thickness
� Difference or change, e.g. �p, �h
ε (1) Strain rate

(2) Non-dimensional compressor tip clearance
(3) Fraction of free-stream velocity

η (1) Screen refraction coefficient (Eq. (12.2.17))
(2) Amplitude of perturbation in vortex sheet position

θ (1) Boundary layer or wake momentum thickness
(2) Circumferential coordinate
(3) Angle of flow deflection in bend
(4) Planar diffuser half-angle

λ Wavelength
µ Viscosity
ν Kinematic viscosity
ρ Density
σ (1) Normal stress

(2) Fractional area of one stream in multiple stream flow
� Compressor or pump pressure rise coefficient
ψ (1) Stream function

(2) Force potential
(3) Perturbation in compressor or pump pressure rise
coefficient

τ , τ ij Shear stress
� (1) Dissipation function (Section 1.10)

(2) Axial velocity coefficient in compressor or pump
(3) Non-dimensional impulse function (Eq. (11.4.2))

φ Perturbation in axial velocity coefficient
ϕ Velocity potential (u = ∇ϕ)
ω (1) Radian frequency (2π f )

(2) Vorticity magnitude
ωn Normal vorticity component
ωs Streamwise vorticity component
ω Vorticity
Ω Angular velocity (rotating coordinate system, fluid)

 Magnitude of angular velocity (|Ω|)

Subscripts

av Average
body Body (as in body force)
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B Back (as in back pressure)
c (1) Core

(2) Contraction
CV From control volume analysis
d Flow field downstream of component
D (1) Drag (as in drag force)

(2) Duct (as in duct area)
E External to boundary layer, edge of boundary layer
e Exit station
eff Effective
far Denotes value in far field
i (1) Inlet station

(2) Inner radius station (as ri)
inj Properties of injected flow
irrev Denotes an irreversible process
k Fourier component number
m (1) Mean

(2) Meridional component
max Maximum value
n Normal coordinate, direction, or component
o (1) Outer radius

(2) Denotes uniform value of vorticity in vortex tube
p Primary stream in ejector
port Relating to the inlet and outlet ports of a control volume
r Radial component
ref Reference condition
rel Relative frame
rev Denotes a reversible process
s (1) Streamwise component

(2) Denotes process at constant entropy
(3) Secondary stream in ejector

shaft Due to rotating machinery or deforming control volume
syst For a system
surf For a surface
tan Tangential to shock
T Translation
TH Station at channel or duct throat
turb Denotes value due to turbulence
u Denotes flow field upstream of component
visc Denotes force from viscous (or turbulent) shear stress
vm Vector mean
w Evaluated at wall (bounding solid surface)
x, y, z Components in x, y, z directions
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θ Component in circumferential direction
0 Reference station
0, 1, 2, etc. (1) Station numbers

(2) Numbers denoting different (e.g. initial, final) states
(3) Component numbers
(4) Numbers denoting different streams in multiple stream flow

∞ (1) Far downstream
(2) Far away from wall or axis of rotation

−∞ Far upstream

Superscripts and overbar symbols

∼ (e.g. ũ) Non-dimensional quantity
∧ (e.g. û) Non-dimensional quantity
−− (e.g. u) Mean or background flow variable
( )* Sonic condition (or critical swirl condition in Chapter 8)
( )′ Perturbation quantity
+ Pertains to normalized value in BL



1 Equations of motion

1.1 Introduction

This is a book about the fluid motions which set the performance of devices such as propulsion
systems and their components, fluid machinery, ducts, and channels. The flows addressed can be
broadly characterized as follows:

(1) There is often work or heat transfer. Further, this energy addition can vary between streamlines,
with the result that there is no “uniform free stream”. Stagnation conditions therefore have a
spatial (and sometimes a temporal) variation which must be captured in descriptions of the
component behavior.

(2) There are often large changes in direction and in velocity. For example, deflections of over 90◦

are common in fluid machinery, with no one obvious reference direction or velocity. Concepts
of lift and drag, which are central to external aerodynamics, are thus much less useful than
ideas of loss and flow deflection in describing internal flow component performance. Deflection
of the non-uniform flows mentioned in (1) also creates (three-dimensional) motions normal
to the mean flow direction which transport mass, momentum, and energy across ducts and
channels.

(3) There is often strong swirl, with consequent phenomena that are different than for flow without
swirl. For example, static pressure rise can be associated almost entirely with the circumferential
(swirl) velocity component and thus essentially independent of whether the flow is forward
(radially outward) or separated (radially inward). In addition the upstream influence of a fluid
component, and hence the interaction between fluid components in a given system, can be
qualitatively different than that in a flow with no swirl.

(4) The motions are often unsteady. Unsteadiness is necessary for work exchange in turbomachines.
Waves, oscillations, and self-excited unsteadiness (instability) not only affect system behavior,
but can sometimes be a limiting factor on operational regimes.

(5) A rotating reference frame is a natural vantage point from which to examine flow in rotating
machinery. Such a reference frame, however, is a non-inertial coordinate system in which effects
of Coriolis and centrifugal accelerations have a major role in determining the fluid motions.

(6) Perhaps the most important features of internal flows, however, are the constraints imposed
because the flow is bounded within a duct or channel. This influence is felt in all flow regimes,
but it is especially marked when compressibility is involved, as in many practical applications.
If the effects of wall friction, losses in the duct, or energy addition or extraction are not assessed
correctly, serious adverse effects on mass flow capacity and performance can result.



2 Equations of motion

In the succeeding chapters we will see when these different effects are important, why they are
important, and how to define and analyze the magnitude of their influence on a given fluid motion.

In this chapter we present a summary of the basic equations and boundary conditions needed to
describe the motion of a fluid. The discussion given is self-contained, although it is deliberately brief
because there are many excellent sources, with extended discussions of the topics covered; these are
referred to where appropriate.

1.2 Properties of a fluid and the continuum assumption

For the applications in this book, we define a fluid as an isotropic substance which continues to
deform in any way which leaves the volume unchanged as long as stresses are applied (Batchelor,
1967). In most engineering devices, except those that work at pressures several orders of magnitude
below standard atmosphere or are of very small scale, the characteristic length scale of the motion
in a gas will be many times the size of the mean free path (the mean distance between collisions
for a molecule). This is not a very restrictive condition since the mean free path in a gas at standard
temperature and pressure is approximately 10−7 m. In such situations we can ignore the detailed
molecular structure and discuss the properties “at a point” as if the fluid were a continuous substance
or continuum. In this context, we will use the term fluid particle, which can be defined as the smallest
element of material having sufficient molecules to allow the continuum interpretation. For a liquid the
corresponding condition is that the particle be much larger than the molecular size, which is of order
10−9 m for water (Lighthill, 1986a), again this is most typically the case.1 In summary, at pressures,
temperatures, and device dimensions commonly encountered, variations due to fluctuations on the
molecular scale can be ignored and the fluid treated as a continuum.

1.3 Dynamic and thermodynamic principles

The principles that define the motion of a fluid may be expressed in a number of ways, but can
be stated as follows: conservation of mass, conservation of momentum (Newton’s second law of
motion), and the first and second laws of thermodynamics. These must also be supplemented by the
equation of state of the fluid, a relation between the thermodynamic properties, generally derived
from observation. These conservation and thermodynamic laws are statements about systems, or
control masses, which are defined here as collections of material of fixed identity. For example,
conservation of mass is a statement that the mass of a fluid particle remains constant no matter how
it is deformed. Newton’s second law, force equals rate of change of momentum, also applies to a
particle or to a given collection of particles.

In general, however, interest is not in fixed mass systems but rather in what happens in a fixed
volume or at a particular position in space. For this reason, we wish to cast the equations for a system
into a form which applies to a control volume, V, of arbitrary shape, bounded by a control surface, A,

1 As an example, in a cube of air which is 10−3 mm (1 �m) on a side there are roughly 3 × 107 molecules at standard
conditions. For water in a cube of these dimensions there are roughly 1010 molecules.



3 1.3 Dynamic and thermodynamic principles

i.e. to transform the system (control mass) laws into control volume laws.2 We will carry out these
transformations in several steps. The concept of differentiation following a fluid particle, or sum
of particles, is first introduced. This is then employed to express the conservation laws explicitly
in a form tied to volumes and surfaces moving with the fluid. We then derive the relation between
changes that occur in a volume moving with the fluid and changes in a volume fixed in an arbitrary
coordinate system. This leads to expressions for the equations of motion in integral (control volume)
as well as differential form.

1.3.1 The rate of change of quantities following a fluid particle

To describe what happens at a fixed volume or point in space we must inquire how the time rate of
change for a particle can be described in a fixed coordinate system. For definiteness we take Cartesian
coordinates x, y, z, and fluid velocity components ux, uy, and uz. Suppose that c is some property of
the fluid and we visualize a field of values of c continuously distributed throughout space. For small
arbitrary and independent increments dx, dy, dz, and time, dt, the change in property c is

dc = ∂c

∂x
dx + ∂c

∂y
dy + ∂c

∂z
dz + ∂c

∂t
dt. (1.3.1)

For a given particle, the increments dx, dy, and dz are related to the local instantaneous velocity
components and the time increment, dt, by:

dx = ux dt, dy = uydt, dz = uzdt, (1.3.2)

where ux, uy, and uz are velocity components in the three spatial directions. Dividing each term by
dt, the rate of change of c following a fluid particle can be written as

rate of change of c following a fluid particle = Dc

Dt
= ux

∂c

∂x
+ uy

∂c

∂y
+ uz

∂c

∂z
+ ∂c

∂t
. (1.3.3)

In (1.3.3), the notation D( )/Dt has been used to indicate a derivative defined following the fluid
particle. This notation is conventional, and the quantity D( )/Dt, which occurs throughout the de-
scription of fluid motion, is known variously as the substantial derivative, the material derivative, or
the convective derivative. Noting that in Cartesian coordinates the first three terms of the derivative
are formally equivalent to u · ∇c, the substantial derivative can be written more compactly as

Dc

Dt
= ∂c

∂t
+ (u · ∇) c = ∂c

∂t
+ ui

∂c

∂xi
. (1.3.4)

In (1.3.4), and throughout the book, we use the convention that a repeated subscript implies summation
over the appropriate indices. In (1.3.4),

ui
∂c

∂xi
= u1

∂c

∂x1
+ u2

∂c

∂x2
+ u3

∂c

∂x3
.

In this notation the derivative of the velocity following a fluid particle, which is the acceleration,
is (for the i th component): Dui/Dt = ∂ui/∂t + u j (∂ui/∂x j ). In vector notation the acceleration is
Du/Dt = ∂u/∂t + (u · ∇)u.

2 The terms system (or control mass) and control volume are used here in describing the two different viewpoints; these
concepts are also referred to as closed system and open system respectively.
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1.3.2 Mass and momentum conservation for a fluid system

We can use the derivative following a fluid particle to obtain expressions for the conservation laws,
starting with the simplest, conservation of mass. If dm is the mass of a fluid particle, conservation of
mass is obtained by taking c to be dm; i.e.

D

Dt
(dm) = 0. (1.3.5)

To obtain an expression valid for an assemblage of particles, i.e. a fluid system, we sum over the
different particles in the system. In the continuum limit this can be represented by an integral over
the masses:

D

Dt

∫
dm = 0. (1.3.6)

In interpreting (1.3.6), it is important to keep in mind that the integral is taken over a fixed mass,
which implies a volume fixed to fluid particles and moving with them.

Newton’s second law can also be written for an assemblage of fluid particles as∑
F ext = D

Dt

∫
u dm. (1.3.7)

In (1.3.7) F ext represents the external forces acting on the particles and the summation includes all
the forces that act on this mass. The forces can be body forces, which act throughout the mass, or can
be surface forces exerted at the boundary of the system. Coriolis, gravity, and centrifugal forces are
examples of the first of these; pressure and shear forces, which are exerted by the fluid or by bodies
that bound the system, are examples of the second.

1.3.3 Thermodynamic states and state change processes for a fluid system

To describe the thermodynamics of fluid systems, we need to introduce the idea of a system state
and define two classes of state change processes. The thermodynamic state of a system is defined by
specifying the values of a small set of measured properties, such as pressure and temperature, which
are sufficient to determine all other properties. In flow situations it is useful to express properties
such as volume, V, or internal energy, E, which depend on the mass of the system, as a quantity per
unit mass. The properties on this unit mass basis are referred to as specific properties and denoted
here by lower case letters (v, e, for specific volume and specific internal energy respectively).

The state of a system in which properties have definite (unchanged) values as long as external
conditions are unchanged is called an equilibrium state. Properties describe states only when the
system is in equilibrium. For thermodynamic equilibrium of a system there needs to be: (i) mechanical
equilibrium (no unbalanced forces), (ii) chemical equilibrium (no tendency to undergo a chemical
reaction or a transfer of matter from one part of the system to another), and (iii) thermal equilibrium
(all parts of the system at the same temperature, which is the same as that of the surroundings).

Fluid devices typically have quantities such as pressure which vary throughout, so that there is
no single value that characterizes all the material within the device. If so the conditions for the
three types of equilibrium to hold on a global basis (e.g. the absence of finite pressure differences
or unbalanced forces) are not satisfied when we view the complete region of interest as a whole.
To deal with this situation we can (conceptually) divide the flow field into a large number of small
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(differential) mass elements, over which the pressure, temperature, etc. have negligible variation,
and consider each of these elements a different system with its own local properties.3 In defining
the behavior of the different systems the working assumption is that the local instantaneous relation
between the thermodynamic properties of each element is the same as for a uniform system in
equilibrium.4

Processes that change the state of a system can be classed as reversible or irreversible. Fluid
process that are irreversible (also referred to as natural processes) include motions with friction,
unrestrained expansion, heat transfer across a finite temperature difference, spontaneous chemical
reaction, and mixing of matter of different composition or state. These processes have the common
characteristic that they all take place spontaneously in nature. A further aspect is that “a cycle of
changes A→B→A on a particular process, where A→B is a natural process, cannot be completed
without leaving a change in some other part of the universe” (Denbigh, 1981).

A central role in thermodynamic analysis is played by reversible processes, defined as a process
“whose direction can be reversed without leaving more than a vanishingly small change in any
other system” (Denbigh, 1981). This means that the departures from thermodynamic equilibrium at
any state in the process are also vanishingly small. In the case of forces, for instance, the internal
forces exerted by the system must differ only infinitesimally from the external forces acting on the
system. Similarly, for reversible heat transfer between surroundings and system, there can only be
infinitesimal temperature differences between the two. A reversible process must also be quasi-static,
i.e. slow enough that the time for the fluid to come to equilibrium when subjected to a change in
conditions is much shorter than any time scale for the process, again so that the system essentially
passes through a series of equilibrium states during the process. As with the continuum approximation
this is not restrictive for the situations of interest: for example, equilibration times for air at room
conditions are on the order of 10−9 seconds (Thompson, 1984).5 All real fluid processes are in some
measure irreversible although, as we will see, many processes can be analyzed to a high degree of
accuracy assuming they are reversible.

Recognition of the irreversibility in a real process is vital in fluids engineering. A perspective on its
effect is that “Irreversibility, or departure from the ideal condition of reversibility, reflects an increase
in the amount of disorganized energy at the expense of organized energy” (Reynolds and Perkins,
1977). Organized energy is illustrated by a raised weight. Disorganized energy is represented by the
random motions of the molecules in a gas (the internal energy of the gas). The importance of the
distinction is that all the organized energy can, in principle, produce work, whereas a consequence of
the second law of thermodynamics (Section 1.3.4) is that only a fraction of the disorganized energy
is available to produce work. The transition from organized to disorganized energy brought about by
irreversibility thus corresponds to a loss in opportunity to produce work (and hence power or propul-
sion) from a fluid device. In this connection Section 1.3.4 introduces the thermodynamic property

3 A consequence is that the state definition requires specification of several functions rather than several variables. In addition,
although we refer to the temperature and pressure at a point, the division into differential elements is made with the caveat
expressed in Section 1.2.

4 From a macroscopic point of view this assumption must be assessed by experience, which shows that its appropriateness
is extremely well borne out for the flows of interest. The approximation made, referred to as the principle of local state, is
discussed further by Kestin (1979) and Thompson (1984).

5 For more complex molecules or temperatures much higher than room temperature, the equilibration time can be several
orders of magnitude larger (times of 10−5 seconds are given by Thompson (1984) for gases at 3000 K). If so, the relaxation
of the gas to the equilibrium state may need to be included. We do not examine these regimes.
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entropy, which provides a quantitative measure of irreversibility; Section 1.10 discusses entropy
generation in a flowing fluid; and Sections 5.1 and 5.2 examine the relation between irreversibility
and the loss in capability for work production.

1.3.4 First and second laws of thermodynamics for a fluid system

The first law of thermodynamics can be expressed for a system as

�Et = Q − W (1.3.8)

where �Et is the change in the total energy of the system, Q is the heat received, and W is the work
done by the system on the environment. In differential form (1.3.8) is

d Et = –d Q − –dW. (1.3.9)

The notations d( ) and –d( ) denote conceptual and physical differences between the terms in (1.3.9).
The total energy, Et, is a property. Changes in Et (dEt or its integral �Et) represent state changes
which do not depend on the path taken to achieve the change. Work and heat are not state variables and
are only defined in terms of interactions with the system. For a specified change of state (specified
initial and final states) �Et is given, but the individual amounts of heat and work transfer to the
system can vary, depending on the path by which the change is accomplished.6 To emphasize the
difference between the two types of quantities, we use d( ) for small changes in properties and –d( )
for the small amounts of heat and work transfer that bring these changes about.

For the systems we are concerned with, the total energy can be written as an integral, over the
system mass, of the sum of the internal energy, e, per unit mass, and the kinetic energy, u2/2, per
unit mass. For flow situations the items of interest are generally the rates at which quantities change
so it is useful to cast the first law as a rate equation:

DEt

Dt
= D

Dt

∫ [
e + u2

2

]
dm = –d Q

dt
− –dW

dt
. (1.3.10)

In (1.3.10) –dQ/dt is the rate of heat transfer to the system and –dW/dt is the rate of work done by the
system.

The second law of thermodynamics can be expressed in two parts.7 The first part is a definition
of the thermodynamic property entropy of the system, denoted as S. If –dQrev is the heat transferred
to the system during a reversible incremental state transformation, and T is the temperature of the
system,

d S = –d Qrev

T
. (1.3.11)

For a finite change from state 1 to state 2,

S2 − S1 =
2∫

1

–d Qrev

T
. (1.3.12)

6 Discussion of this point is given in many texts. See, for example, Denbigh (1981), Kestin (1979), Reynolds and Perkins
(1977) and Sonntag, Borgnakke, and Van Wylen (1998).

7 See, for example, Abbott and Van Ness (1989), Denbigh (1981), and Kestin (1979) for additional discussion.
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The second part of the second law states that for any process the change in entropy for the system
is

d S ≥ –d Q

T
. (1.3.13)

The equality occurs only for a reversible process. A consequence of (1.3.13) for a system to which
there is no heat transfer is

d S ≥ 0 (for a system with –dQ = 0). (1.3.14)

Equation (1.3.13) can also be written as a rate equation in terms of the heat transfer rate and tem-
perature of the fluid particles which comprise the system. With s the specific entropy or entropy per
unit mass,

DS

Dt
= D

Dt

∫
sdm ≥

∑ 1

T

–d Q

dt
. (1.3.15)

In (1.3.15), the summation is taken over all locations at which heat enters or leaves the system.
Equation (1.3.15) will be developed in terms of fluid motions and temperature fields later in this
chapter.

The fluids considered in this book are those described as simple compressible substances. The
thermodynamic state of such fluids is specified when two independent intensive thermodynamic
properties (pressure and temperature, for example) are given and the only reversible work mode is
that associated with volume change (Reynolds and Perkins, 1977).

For incremental reversible processes in a simple compressible substance, the heat addition to the
fluid is

–dQ = TdS. (1.3.16a)

If kinetic energy changes can be neglected (the change is in thermal energy only) the work done
is

–dW = pdV. (1.3.16b)

Although the association of work with pdV and heat addition with TdS is only true for a reversible pro-
cess, the sum of these, as expressed by the first law, is a relation between thermodynamic properties.
For negligible kinetic energy changes, this relation is

de = Tds − pdv, (1.3.17)

where s and v are the entropy and volume per unit mass. Equation (1.3.17), known as the Gibbs
equation, can be regarded as a combined form of the first and second laws. It is a relation between
thermodynamic properties and is not restricted to reversible processes.

A thermodynamic property which will be seen to occur naturally in flow processes is the enthalpy,
denoted by h and defined as

h = e + p/ρ. (1.3.18)



8 Equations of motion

0

0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 2.0 3.0 4.0 5.0

Reduced Pressure, pr

Tr = 1.0

Tr = 5.0

1.1

1.2
1.3

0.95
0.9

0.8

1.8 2.0 2.5

1.6

C
om

pr
es

si
bi

lit
y 

Fa
ct

or
, Z

6.0 7.0 8.0 9.0 10.0

2.5 2.5

Figure 1.1: Compressibility factor Z = p/ρRT, at low pressures; reduced temperature Tr = T/Tc, values of
critical temperature. Tc, given in Table 1.1 (Lee and Sears, 1963).

A form of the Gibbs equation useful for flow processes can be written in terms of enthalpy changes,
using the definition v = 1/ρ, as

dh = T ds + 1

ρ
dp. (1.3.19)

As with (1.3.17), (1.3.19) is not restricted to reversible processes.

1.4 Behavior of the working fluid

1.4.1 Equations of state

The equations relating the intensive thermodynamic variables of a substance are called the equations
of state. The flows examined in this book are very well represented using one of two equations of
state. The first is for a perfect gas,

p = ρRT, (1.4.1)

where R =R/M, with R the universal gas constant (R= 8.3145 kJ/(kmol K))8 and M the molecular
weight of the gas. Equation (1.4.1) holds for air and other gases over a wide range of temperatures
and pressures.

The ratio p/ρRT is called the compressibility factor, and its variation from unity gives a good
measure of the applicability of (1.4.1). This quantity is plotted in Figure 1.1. The curves are av-
eraged from experimental data on a number of monotonic and diatomic gases, plus hydrocarbons
(Lee and Sears, 1963). The compressibility factor is given as a function of the reduced pressure,

8 A kmol is a mass equal to the molecular weight of the gas in kilograms.
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Table 1.1 Critical pressures and temperatures for different gases
(Lee and Sears, 1963)

Substance pc (MPa) Tc(K)

He 0.23 5.3
H2 1.30 33.6
Air 3.77 132.7
O2 5.04 154.5
CO2 7.39 304.3
H2O 22.1 647.4

defined as pressure/critical pressure9 (p/pc) for different reduced temperatures, Tr , defined as tem-
perature/critical temperature (T/Tc). For reference, several values of pc and Tc are listed in Table 1.1.
For reduced temperatures between 1.6 and 5.0 and reduced pressures of less than approximately 3,
the perfect gas approximation is valid to within 5%. For example, air at a pressure of 30 atmospheres
and a temperature of 1650 K (conditions representative of the exit of the combustor in a gas turbine)
corresponds to p/pc = 0.8 and T/Tc = 12.5. Even at these conditions, the compressibility factor
would be approximately 1.03.

The second equation of state that will be used is for an incompressible fluid, i.e. a fluid in which
the volume of a given fluid mass (density) is constant. This is suitable for liquids. It is also a very
good approximation for gases at low speeds. In Chapter 2 this statement is made more precise but, to
give a numerical appreciation for the approximation, in air at standard temperatures the assumption
of constant density holds within 3% for speeds of 100 m/s or less. Incompressible denotes that the
volume of a fluid particle remains constant; it does not necessarily mean uniform density throughout
the fluid.

1.4.2 Specific heats

Two important thermodynamic properties are the specific heat at constant volume and the specific
heat at constant pressure. These quantities, denoted by cv and cp respectively for the values per
unit mass, have a basic definition as derivatives of the internal energy and enthalpy. For a simple
compressible substance, the energy difference between two states separated by small temperature
and specific volume differences, dT and dv, can be expressed as

de =
(
∂e

∂T

)
v

dT +
(
∂e

∂v

)
T

dv. (1.4.2)

The derivative (∂e/∂T)v is cv. It is a function of state, and hence a thermodynamic property.
The name specific heat is somewhat of a misnomer because only in special circumstances is the

derivative (∂e/∂T)v related to energy transfer as heat. For a constant volume reversible process, no
work is done. Any energy increase is thus due only to energy transfer as heat, and cv represents the

9 The critical pressure and temperature correspond to p and T at the critical point, the highest pressure and temperature at
which distinct liquid and gas phases of the fluid can coexist.
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energy increase per unit of temperature and per unit of mass. In general, however, it is more useful
to think of cv in terms of the definition as a partial derivative, which is a thermodynamic property,
rather than a quantity related to energy transfer as heat.

Just as cv is related to a derivative of internal energy, cp is related to a derivative of enthalpy.
Writing the enthalpy as a function of T and p,

dh =
(
∂h

∂T

)
p

dT +
(
∂h

∂p

)
T

dp. (1.4.3)

The derivative (∂h/∂T)p is called the specific heat at constant pressure and denoted by cp. For
reversible constant pressure heat addition, the amount of heat input per unit mass is given by –dq =
cpdT.

Values of cv and cp are needed often enough that they have been determined for a large number of
simple compressible substances. Numerical values of cp for several gases are shown in Figure 1.2
(Sonntag, Borgnakke and Van Wylen, 1998).

For a perfect gas, the internal energy and enthalpy are defined to depend only upon temperature.
Thus

de = cv(T )dT, (1.4.4a)

dh = cp(T )dT, (1.4.4b)

where cv and cp can depend on T. Further, dh = de + d(pv) = cv dT + RdT. Hence, for a perfect gas
(sometimes also referred to as an ideal gas (Reynolds and Perkins, 1977)),

cv = cp − R. (1.4.5)

For other substances, e and h depend on pressure as well as temperature and, in this respect, the
perfect gas is a special model.

Depending on the application, the variation in specific heat with temperature may be able to be
neglected so that cp and cv can be treated as constant at an appropriate mean value. If so

e2 − e1 = cv(T2 − T1), (1.4.6a)

h2 − h1 = cp(T2 − T1). (1.4.6b)

Equations (1.4.6) hold only for a perfect gas with constant specific heats as do the relations that have
been derived between changes in energy (or enthalpy) and temperature in (1.4.4).

For an incompressible fluid, the volume of a given fluid particle is constant and the internal energy
is a function of a single thermodynamic variable, the temperature. The specific heat at constant
volume is thus also a function of temperature but the change in internal energy of an incompressible
fluid undergoing a temperature variation is

e2 − e1 =
T2∫

T1

cv(T )dT . (1.4.7)

From the definition of enthalpy, h = e + p/ρ, the enthalpy change of an incompressible fluid for
a specified pressure and temperature change is

h2 − h1 = e2 − e1 + 1

ρ
(p2 − p1) . (1.4.8)
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Figure 1.2: Constant-pressure specific heats for gases at zero pressure (Sonntag, Borgnakke, and Van Wylen,
1998).

Enthalpy changes for an incompressible fluid contain both thermodynamic (e) and mechanical (p)
properties. From (1.4.7) and (1.4.8) and the definition of specific heat at constant pressure, we also
have the relation

cp = cv = c (1.4.9)

for an incompressible fluid.

1.5 Relation between changes in material and fixed volumes: Reynolds’s
Transport Theorem

The conservation statements in Section 1.3 are written in terms of material volumes, in other words
volumes that move with the fluid particles. We wish to transform these statements to expressions
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Figure 1.3: Relation between system volumes and surfaces and fixed control volumes and surfaces.

written in terms of volumes and surfaces which are fixed in space. This will provide an extremely
useful way to view problems in fluid machinery. To start this transformation, consider the quantity
c, which is a property per unit mass. For a finite mass:

C =
∫

cdm

=
∫

Vsys (t)

cρ dV. (1.5.1)

In (1.5.1) Vsys(t), the system volume over which the integration is carried out, moves with the fluid.
Let us examine the volume Vsys, which is bounded by the surface Asys(t), at two times, t and

t + dt, where dt is a small time increment. The volume is shown in Figure 1.3. The surface is a
material surface (meaning that it is always made up of the same fluid particles) which moves and
deforms with the fluid. At time, t, the material surface Asys(t) is taken to coincide with a fixed surface,
A, which encloses the fixed volume, V, so the system is wholly inside the control surface. At the
time, t + dt, the system has deformed to a volume Vsys(t + dt), enclosed by the surface, Asys(t + dt),
as indicated in Figure 1.3. With reference to the figure, the volumes at the two times are related by

Vsys(t + dt) = Vsys(t) + dV Isys + dVIIsys ,

where dVIsys and dVIIsys are defined in Figure 1.3. The change of the property C in time dt is thus

dt
DC

Dt
=

∫
Vsys(t+dt)

ρcdV +
∫

dVIIs
at t+dt

ρcdV +
∫

dV Isys
at t+dt

ρcdV −
∫

Vsys(t)

ρcdV. (1.5.2)

Referring to Figure 1.3, the sum of the volumes dVIsys and dVIIsys is the volume swept out by the
material surface as it deforms during the time, dt. Letting dt → 0 and working to first order in dt, the
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volume swept out is dt
∫

Asys
ui ni , where ui and ni represent the ith components of the velocity vector

and the outward pointing normal respectively.10

The sum of dVIsys and dVIIsys is a surface layer of local “thickness” (the word is in quotes since the
value of the thickness can be negative) uinidt. Hence

dt
DC

Dt
=

∫
Vsys(t+dt)

ρcdV −
∫

Vsys(t)

ρcdV +

∫

A

ρcui ni dA


 dt. (1.5.3)

To first order in dt the first two terms on the right-hand side of (1.5.3) combine to give
 ∫

Vsys(t)

∂

∂t
(ρc)dV


 dt.

The control volume V and the material volume Vsys(t) are initially coincident (at time t) so

DC

Dt
=
∫
V

∂

∂t
(ρ)cdV +

∫
A

(ρc)ui ni dA, (1.5.4)

(fixed (fixed
volume) surface)

or, from the definition of C,

D

Dt

∫
cdm = D

Dt

∫
Vsys(t)

ρcdV =
∫
V

∂

∂t
(ρc)dV +

∫
A

ρc(ui ni ) dA. (1.5.5)

Equation (1.5.4) (or (1.5.5)) is a form of Reynolds’s Transport Theorem (Aris, 1962). It relates
the changes that occur in a system (mass of fixed identity) and in a fixed control volume bounded
by a fixed control surface. The control volume formulation brings an additional term of the form∫

A ρcui ni dA, interpreted as a mass flux of property c in and/or out of the control volume, V, through
its bounding surface, A.

1.6 Conservation laws for a fixed region (control volume)

Using the results of Section 1.5, the integral equations that describe the different conservation laws
can be written for a fixed control volume by giving c various identities. If c is set equal to 1, we
obtain the equation for conservation of mass:∫
V

∂ρ

∂t
dV +

∫
A

ρui ni dA = 0. (1.6.1)

10 As mentioned previously, in the expression uini, and in what follows, the use of a repeated subscript implies that the index
is summed over all values. The quantity uini thus represents u1n1 + u2n2 + u3n3 = u · n, the scalar product of u and n.
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The common name for this equation is the continuity equation, not the conservation of mass, although
we have used the latter principle to derive it. The issue here is physical continuity; the fluid stays as
a continuum with no holes or gaps.

If c is taken as the specific volume, v, the statement

D

Dt

∫
cdm = 0 (1.6.2)

becomes a statement that the specific volume of a fluid particle, in other words the density of the fluid
particle, remains constant. This is the condition for an incompressible fluid. Use of (1.5.5) shows
that the control volume form of the continuity equation for an incompressible fluid is∫
A

(ui ni ) dA = 0. (1.6.3)

If c is taken as the ith velocity component, ui, the equation for conservation of momentum in the
ith-direction becomes∫
V

∂

∂t
(ρui ) dV +

∫
A

ρui (u j n j )dA =
∑

Fexti . (1.6.4)

The term
∑F exti represents the ith component of the sum of all external forces acting on the fluid

within the volume. Evaluation of this term generally involves surface or volume integrals.
In axisymmetric geometries such as turbomachines where there is a well-defined axis of rotation,

it is often useful to consider changes in angular momentum. For a system, the rate of change of
angular momentum is given by

D

Dt

∫
A

(u × r)i dm =
∑

(F ext × r)i , (1.6.5)

where r is a position vector and where the notation ( )i denotes the ith component of the cross-product.
Setting c equal to (u × r)i, an expression for the rate of change of angular momentum within a fixed
control volume is obtained as∫
V

∂

∂t
(ρu × r)i dV +

∫
A

(ρu × r)i u j n j dA =
∑

(F ext × r)i . (1.6.6)

Again, actual evaluation of the sum of the moments due to external forces generally involves inte-
gration over the volume V or the surface A.

To obtain the control volume form for the first law of thermodynamics, c is set equal to the energy
per unit mass, e + u2/2:∫
V

∂

∂t

[
ρ

(
e + u2

2

)]
dV +

∫
A

ρ

(
e + u2

2

)
ui ni dA = –d Q

dt
− –dW

dt
. (1.6.7)
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In (1.6.7), –dQ/dt and –dW/dt are the rate of heat transfer to, and the work, done by, the fluid in the
volume. It is useful to separate work into a part due to the action of pressure forces at the inflow
and outflow boundaries of the volume, and a part representing other work exchange. We discuss the
reasons for this in detail later, but one basis on which to justify the separation is that the latter is the
appropriate measure of energy added to a flowing stream by fluid machines and by external body
forces.

The work done by pressure forces in time dt on a small element of surface dA is given by the
product of the pressure force, pdA, which acts normal to the surface, times the displacement of the
surface in the normal direction, uinidt. Integrating over the entire control surface yields the rate of
work done by pressure forces on the surroundings external to the control volume:

rate of work done by pressure forces =
∫
A

p ui ni dA. (1.6.8)

If –dWnon-p/dt is defined as the rate of work done by the fluid in the control volume, over and above
that associated with pressure work at the inflow and outflow boundaries, (1.6.7) becomes∫
V

∂

∂t

[
ρ

(
e + u2

2

)]
dV +

∫
A

ρ

(
e + p

ρ
+ u2

2

)
ui ni dA = –d Q

dt
− –dWnon-p

dt
. (1.6.9)

The quantity e + (p/ρ) appears often in flow processes and is therefore defined as a separate specific
property called enthalpy and denoted as h. Using this definition (1.6.9) is written more compactly
as∫
V

∂

∂t

[
ρ

(
e + u2

2

)]
dV +

∫
A

ρ

(
h + u2

2

)
ui ni dA = –d Q

dt
− –dWnon-p

dt
. (1.6.10)

1.7 Description of stress within a fluid

Equations (1.6.4), (1.6.6), and (1.6.10) are not yet in forms which can be directly applied in general
because the force, work, and heat transfer terms are not linked to the other flow variables. In this
section, expressions for these quantities are developed, starting with a description of the forces that
can be exerted on the fluid within a control volume (see, e.g., Batchelor (1967), Landau and Lifschitz
(1987)).

As mentioned in Section 1.3.2, forces on a fluid particle are of two types, body forces, which are
forces per unit mass, and surface forces, which come about as the result of surface stresses exerted on
a fluid particle either by other fluid particles or by adjacent solid surfaces. It is necessary to examine
the state of stress in a fluid to describe these surface forces. To do this, we need to represent the
force on a surface which is at an arbitrary angle to the coordinate axes, or more precisely, a surface
defined by a normal at some arbitrary angle. As indicated in Figure 1.4, we consider the forces on a
small, tetrahedron-shaped, fluid element with dimension dx1, dx2, dx3 whose slant face has normal
vector n. The inertia and body forces acting on this tetrahedron are proportional to the volume, in



16 Equations of motion

x2

x3

x1

n

Face 1

Face 2

Face 3

dx3

dx2

dx1

Figure 1.4: Tetrahedron-shaped fluid volume for examination of fluid stresses.

other words to dx3, where dx is the characteristic dimension of the tetrahedron. The surface forces
are proportional to the surface area and hence to dx2. For equilibrium, as dx → 0 the surface force
on the slant face must balance the surface forces on the three sides which are perpendicular to
the coordinate axes. This condition gives the relation needed to describe the force on the slanted
surface.

The area of the slant face is denoted by dA. The areas of the other faces are dA1, dA2, dA3, where
the subscripts refer to the axis to which the face is perpendicular. On the face perpendicular to the
x1-axis, the tensile force per unit area in the x1-direction is denoted by�11. The shear force per unit
area (or shear stress) on this surface acting in the x2-direction is �12, and that in the x3-direction is
�13, with similar notation for the other faces. Calling the force per unit area on the slant surface F,
with components Fi, a force balance gives

F1 = �11
dA1

dA
+�21

dA2

dA
+�31

dA3

dA
(1.7.1)

with similar equations for the x2- and x3-directions. The ratios of the face areas, dA1/dA, dA2/dA,
dA3/dA, however, are just the three components of the direction cosines of the normal to the slant
side. The expression for the surface forces per unit area (i.e. the surface stresses) on the element dA
is thus:

F1 = �11n1 +�21n2 +�31n3, (1.7.2a)

F2 = �12n1 +�22n2 +�32n3, (1.7.2b)

F3 = �13n1 +�23n2 +�33n3. (1.7.2c)

In general, to specify the surface stress nine numbers, �ij, would be needed because there are
different components for different orientations of the plane. The nine quantities, however, are not all
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Figure 1.5: Stresses on fluid cube.

independent, as can be shown from examining the moment equilibrium of the small cube of Figure 1.5
about any axis, say, the x3-axis. Moments due to shear stresses have contributions proportional to the
third power of the dimension. (The shear force is proportional to the second power, and the moment
arm to the first power.) Moments due to the body forces have contributions proportional to the fourth
power of the dimension. (The body force is proportional to the third power, and the moment arm is
proportional to the first power.) For equilibrium, the contributions proportional to dx3 must therefore
sum to zero which implies

�12 = �21, �23 = �32, �13 = �31. (1.7.3)

Only six stresses are thus independent. These form the components of a symmetric second order
tensor,11 the stress tensor, which is

stress tensor =

�11 �21 �31

�21 �22 �32

�31 �32 �33


 . (1.7.4)

To better understand the relation of stress and force, and as a precursor of what is to come in the
derivation of the differential forms of the equation of motion, it is helpful to examine the relationship
between surface stresses and net forces on a fluid particle. To do this, consider the small cube of
fluid of Figure 1.5 with sides parallel to the x1-, x2-, and x3-axes. For clarity, not all the stresses are
drawn, but there are three stress components acting on each of the six faces.

11 The quantities �ij are “tensor components” because of the way the values of these quantities transform as we change
reference from one coordinate system to another. Equations (1.7.2a)–(1.7.2c) state that when a coordinate change is made,
the three sums �ijni must transform as components of the vector F. A set of nine quantities �ij which transform in this
way is by definition a tensor of second rank. A tensor of first rank is a vector, whose three components transform so that
the magnitude and direction remain invariant; a tensor of zeroth rank is a scalar (Aris, 1962; Goldstein, 1980).
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The stresses vary throughout the fluid, and it is this variation that is responsible for the net
surface forces on a fluid particle. This can be seen by summing up the stresses that act in one of the
coordinate directions, for example the x1-direction, working to lowest order in the cube dimension.
The x1-direction force is

[
−�11 +

(
�11 + ∂�11

∂x1
dx1

)]
dx2dx3 +

[
−�21 +

(
�21 + ∂�21

∂x2
dx2

)]
dx1dx3

+
[
−�31 +

(
�31 + ∂�31

∂x3
dx3

)]
dx1dx2

=
(
∂�11

∂x1
+ ∂�21

∂x2
+ ∂�31

∂x3

)
dx1dx2dx3

= ∂� j1

∂x j
dx1dx2dx3. (1.7.5)

The first term comes from the stress on the two faces perpendicular to the x1-direction, the second
from the faces perpendicular to the x2-direction, and the third from the faces perpendicular to the
x3-direction. The net force resulting from the stresses is proportional to the volume of the elementary
cube; this must be the case if the surface forces are to balance the body and inertia forces.

Once surface forces are expressed in terms of stress tensor components, we are in a position to
write the equations of motion in terms of surface stresses, which can then be related to various
derivatives of the velocity. Before doing this, however, we make one change in notation, since it is
customary (and helpful) to make a division into stresses due to fluid pressure (normal forces) and
stresses due to viscous or shear forces, the stress tensor is written as

�ij = −pδij + τij. (1.7.6)

In (1.7.6) τ ij is the symmetric viscous stress tensor, and δij is the Kronecker delta

δij =
{

0 i �= j
1 i = j

.

The quantity pM is defined as

pM = − 1
3 (�11 +�22 +�33) = − 1

3�ii, (1.7.7)

which is the measurable mechanical pressure. For a compressible fluid at rest, the mechanical pres-
sure, pM, is equivalent to the thermodynamic pressure, p = p(ρ,T). On the assumption that there is
local thermodynamic equilibrium even when the fluid is in motion, plus the general conditions on
fluid viscosity described in Section 1.13, this equivalence may be applied for a moving fluid. If the
fluid is incompressible, the thermodynamic pressure is not defined and pressure must be taken as
one of the fundamental dynamical variables. Based on (1.7.7), we define an inviscid fluid as one for
which τ ij is identically zero and only pressure forces are present.
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1.8 Integral forms of the equations of motion

The expressions developed for surface forces and stresses can be applied to provide explicit forms of
the control volume equations describing momentum and energy transfer to a flowing fluid (Liepmann
and Roshko, 1957). Denoting the components of the body forces per unit mass by Xi, the momentum
equation is∫
V

∂

∂t
(ρui )dV +

∫
A

ρui (u j n j )d A =
∫
V

ρXi dV −
∫
A

pδi j n j d A +
∫
A

τi j n j d A. (1.8.1)

The equation for angular moment (moment of momentum) is∫
V

∂

∂t
(ρei jku jrk)dV +

∫
A

ρei jku jrkulnld A

=
∫
V

ρei jk X jrkdV −
∫
A

ei jk pδl j nlrkd A +
∫
A

ei jkτ jlnlrkd A. (1.8.2)

In (1.8.2) the quantity eijk has been introduced to represent the vector product: eijk takes the value 1
if the subscripts are in cyclic order (i.e. e123 = 1), −1 if the subscripts are in anti-cyclic order
(e213 = −1), and zero if any subscripts of e are repeated.

For the energy equation, the different effects that contribute to heat and work transfer need to be
identified. Heat addition within the volume can take place due to internal heat sources with a rate
of heat addition Q̇ per unit mass. Heat can also be transferred via conduction, across the bounding
surface. For an elementary area, dA, the net heat flux across the control surface is qinidA where qi is
the ith component of the heat flux vector q. The rate of work done within the volume by body forces
is ρXiui per unit volume. The rate done by the surface forces acting on the control surface, over and
above the pressure work, is τ ijnjui per unit of surface area. Combining all these terms, the integral
form of the energy equation becomes∫
V

∂

∂t

[
ρ

(
e + u2

2

)]
dV +

∫
A

ρ

(
h + u2

2

)
ui ni d A

=
∫
V

ρ Q̇dV −
∫
A

qi ni d A +
∫
V

ρXi ui dV +
∫
A

τi j n j ui d A. (1.8.3)

1.8.1 Force, torque, and energy exchange in fluid devices

An important application of the control volume equations arises in evaluating the performance of a
device from the conditions of the fluid that enters and leaves, for example calculating the work put
into a flowing stream by turbomachine blading and the force on a nozzle. To perform this type of
analysis it is useful to choose a control surface that is coincident over some of its extent with the
bounding surface(s) of the device. For the turbomachine this might be, depending on application,
the hub and the casing of the annulus or the surface of the blading. For the nozzle the control surface
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would coincide with the nozzle wall. Use of such control surfaces aids in facilitating the analysis
since there is typically no mass flux through these surfaces.

1.8.1.1 Force on a fluid in a control volume

The force exerted on the fluid is given by the integral of the surface forces over the device surface.
In what follows we denote by Aport those parts of the control surface which do not coincide with
the device surfaces; these are the ports for flow entering or leaving the control volume. If F i are the
components of the force exerted by the device on the fluid, from (1.8.1) the momentum equation is∫
V

∂

∂t
(ρui )dV +

∫
A

ρui (u j n j )d A −
∫
V

ρXi dV

+
∫

Aport

pδijn j d A −
∫

Aport

τijn j dA = Fi . (1.8.4)

Circumstances under which (1.8.4) is applied are often those of steady flow with negligible
contributions from the shear forces at the inlet and exit stations. A common example is the inlet
and outlet stations of a nozzle, with the exit and outlet control surfaces perpendicular to the flow. In
this situation the components of the force exerted on the fluid are given by∫
A

ρui u j n j dA −
∫
V

ρXi dV +
∫

Aport

pδijn j dA =Fi . (1.8.5)

In (1.8.5) the integral of the momentum flux is taken over the whole surface A. If there is no flow
through the part of the surface A − Aport which coincides with the device surface, and no body forces,
we can write (1.8.5) in terms of an integral over only the parts of the control surface at which fluid
enters and exits (the inlet and exit stations),∫
Aport

(ρui u j + pδij)n j dA = Fi . (1.8.6)

For unidirectional flow and uniform velocity and pressure at inlet and exit stations (or, as discussed
in Chapter 5, if an appropriate average at these stations is defined) the magnitude of the force on the
fluid between any two stations 1 and 2 with inflow and outflow areas A1 and A2 is given by12

[(ρu2 + p)A]2 − [(ρu2 + p)A]1 = F . (1.8.7)

1.8.1.2 Torque on a fluid in a control volume

Analyses similar to those for momentum can be carried out for the moment of momentum. We list
here only the result for steady axisymmetric flow, negligible contributions of the shear stresses on

12 It is hoped that the station notation subscripts will not be mixed with those used to indicate components in the velocity
vector and stress tensor.
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the surfaces Aport, and no body forces. (There is no contribution from the pressure because of the
axisymmetry.)∫
Aport

ρruθui ni dA = torque exerted on fluid. (1.8.8)

Equation (1.8.8) states that the torque exerted on the fluid by the device, about the axis of symmetry
is the difference between the inlet and exit values of the mass-weighted integral of the angular
momentum per unit mass, ruθ .

1.8.1.3 Work and heat exchange with a fluid in a control volume

The total work exchange within the control volume consists of work done by the body forces and
work done by surface forces. The latter, which is due to moving surfaces and encompasses the work
associated with the presence of rotating turbomachinery blading, is commonly referred to as shaft
work, denoted by Wshaft. We divide the rate of non-pressure work within the volume, –dWnon-p/dt ,
into three parts to facilitate subsequent discussion of the role of fluid machinery shaft work:

–dWnon-p

dt
= –dWshaft

dt
−
∫
V

ρui Xi dV −
∫

Aport

τijui n j dA. (1.8.9)

Using the definition in (1.8.9), (1.6.10) becomes∫
V

∂

∂t

[
ρ

(
e + u2

2

)]
dV +

∫
A

ρ

(
h + u2

2

)
ui ni dA

−
∫
V

ρXi ui dV −
∫

Aport

τijn j ui dA = –d Q

dt
− –dWshaft

dt
. (1.8.10)

Comparing (1.8.3) with (1.8.10), we see that the term –dQ/dt in (1.8.9) represents both heat flux
across the control surface and heat generation within the volume.

1.8.1.4 The steady flow energy equation and the role of stagnation enthalpy

For steady flow with no body forces, no flow through the surface A − Aport, and negligible shear
stress work on the surface Aport, (1.8.10) reduces to the “steady-flow energy equation” form of the
first law for a control volume∫
Aport

ρui ni

[
h + u2

2

]
dA = –d Q

dt
− –dWshaft

dt
. (1.8.11)

The integration is over the surface Aport, representing the locations of fluid entry and exit from the
device so the fluid quantities evaluated are those at inlet and exit only.

The quantity h + u2/2 in (1.8.10) and (1.8.11) occurs often in fluid flow problems. Consider
the steady flow in a streamtube, defined as a tube of small cross-sectional area whose boundary is
composed of streamlines so there is no flow across the streamtube boundary. With no body forces,
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if the net rate of work and heat transfer is zero across the boundary, (1.8.11) states that the quantity
h + u2/2 is invariant along the streamtube. We thus define a reference enthalpy corresponding to the
stagnation state (u = 0) as the stagnation enthalpy (sometimes referred to as total enthalpy) denoted
by ht. Referring back to (1.8.11) and noting that ρuinidA is the mass flow rate dṁ through the element
of surface area, dA, we obtain∫
Aport

ht dṁ = –d Q

dt
− –dWshaft

dt
. (1.8.12)

Steady flow through a control volume with heat and work transfer is a situation of such impor-
tance for fluid power and propulsion systems that it is worth obtaining the form of the first law
for this case, (1.8.11), in an alternative (and simpler) manner. We thus examine the steady flow
through the device of fixed volume in Figure 1.6, with a single stream at inlet and at outlet. Shaft
work can be exchanged with the flow, for example by a turbomachine as depicted notionally in the
figure, and heat added or extracted. The velocity and thermodynamic variables at inlet and exit are
taken to be steady and to be uniform across the inlet and exit ports. The flow inside the control
volume can be locally unsteady at a given point, but the overall quantities (defined as the integral
over all the mass inside the control volume) do not change with time. We develop the appropriate
form of the continuity equation first and then use this in the statement of the steady flow energy
equation.

We examine the evolution of a system which initially consists of the fluid within the dashed lines.
At time t a small mass, dmI, which is part of the system, is outside the control volume boundaries
in region I. The rest of the system is within the control volume. A short time dt later, the system has
moved such that the small mass dmI is inside the control volume and the small mass dmII, which
has different properties than dmI, has emerged from the control volume into region II.

Denoting the mass between the stations 1′ and 2 by mIII (see Figure 1.6), the system mass at times
t and t + dt can be written as

[m(t)]sys = dmI + m(t)III, (1.8.13a)

[m(t + dt)]sys = dmII + m(t + dt)III. (1.8.13b)

No time argument is indicated for dmI and dmII because these quantities are not changing with time.
The mass of the system, msys, is constant. The mass mIII (the mass between stations 1′ and 2) is also
constant in time. From (1.8.13), dmI = dmII.

The masses dmI and dmII can be expressed in terms of stream properties at the inlet and exit
stations as

dmI = ρ1A1u1dt ; dmII = ρ2A2u2dt. (1.8.14)

The quantity ρuA is the mass flow. Continuity thus implies that inlet and exit mass flows are the
same:

ρ1A1u1 = ṁ1 = ρ2A2u2 = ṁ2 = ṁ. (1.8.15)

The first law, (1.3.8), states that the change in total energy of a system, Et (Et is the the thermal
and the kinetic energy summed over all the mass in the system) is equal to the heat received by the
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Figure 1.6: Steady flow through a fluid device (fixed control volume) with shaft work and heat transfer. Region
I is between stations 1 and 1′, region II is between stations 2 and 2′, and region III between stations 1′ and 2.

system minus the work done by the system. For small changes the first law can be written as (with
–dQ and –dW the transfers of heat and work)

[dEt ]sys = –dQ − –dW. (1.8.16)

For the fluid device in Figure 1.6 two types of work exist. One is the shaft work, denoted by –dWshaft.
The second is the work done by the fluid within the system on the external environment, in other
words on the fluid outside of the system. This is indicated by the quantities –dW1 and –dW2 in the
figure. During the time interval dt the net work done on the fluid external to the system is given by
–dW2 − –dW1. At each station the force is pA and the distance moved is udt, so this quantity is

net work on the fluid external to the system = (p2A2)u2dt − (p1A1)u1dt. (1.8.17)

The total energy change of the system during dt is

d [Et ]sys = [Et (t + dt)]sys − [Et (t)]sys

= EtIII (t + dt) − EtIII (t) −
(

e1 + u2
1

2

)
mI +

(
e2 + u2

2

2

)
mII

= EtIII (t + dt) − EtIII (t) −
(

e1 + u2
1

2

)
ρ1 A1u1dt

+
(

e2 + u2
2

2

)
ρ2 A2u2dt. (1.8.18)
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Combining (1.8.16), (1.8.17), and (1.8.18), and using the fact that Et III does not change with time,
(1.8.18) becomes(

e2 + u2
2

2
+ p2

ρ2

)
ρ2 A2u2 −

(
e1 + u2

1

2
+ p1

ρ1

)
ρ1 A1u1 = –d Q

dt
− –dWshaft

dt
. (1.8.19)

The terms –dQ/dt and –dWshaft/dt represent the rates of heat transfer to, and shaft work done by, the
stream between control stations 1 and 2. Making use of the mass flow rate defined in (1.8.15) and
the definition of stagnation enthalpy (ht = e + p/ρ + u2/2 = h + u2/2), (1.8.19) can be written
compactly as a relation between change in stagnation enthalpy, mass flow and rates of heat and work
exchange:

ṁ
[
ht2 − ht1

] = –d Q

dt
− –dWshaft

dt
. (1.8.20)

Equation (1.8.20) can also be expressed in terms of heat transfer and shaft work per unit mass, q and
wshaft:

(ht2 − ht1 ) = q − wshaft. (1.8.21)

Equations (1.8.20) and (1.8.21) show the key role of stagnation enthalpy as a measure of energy
interactions in aerothermal devices.

1.9 Differential forms of the equations of motion

To develop the differential forms of the equations of motion, we begin with the integral forms and
make use of the Divergence Theorem,∫
V

∂Bi

∂xi
dV =

∫
A

Bi ni dA, (1.9.1)

where Bi are the components of any vector B and the repeated subscript denotes summation over
the indices. The Divergence Theorem is used to transform surface integrals into volume integrals so
that all the terms in the various equations have the same domain of integration, a necessary step in
obtaining the differential forms.

1.9.1 Conservation of mass

To illustrate the procedure to be followed, the Divergence Theorem is applied to the surface integral
in the equation for mass conservation, (1.6.1), which becomes∫
V

[
∂ρ

∂t
+ ∂

∂xi
(ρui )

]
dV = 0. (1.9.2)

The volume V is arbitrary. For (1.9.2) to hold, therefore, the integrand must be zero everywhere, so

∂ρ

∂t
+ ∂

∂xi
(ρui ) = 0

(
∂ρ

∂t
+ ∇ · (ρu) = 0, in vector notation

)
. (1.9.3)
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Equation (1.9.3) is the differential form of the mass conservation, or continuity, equation. It can also
be expressed in terms of the substantial derivative of the density as

1

ρ

Dρ

Dt
+ ∂ui

∂xi
= 0

(
1

ρ

Dρ

Dt
+ ∇ · u = 0, in vector notation

)
. (1.9.4)

The continuity equation for an incompressible fluid can be written as an explicit statement that the
density of a fluid particle remains constant:

Dρ

Dt
= 0. (1.9.5)

Equation (1.9.5) implies that for an incompressible flow

∂ui

∂xi
= 0 (or ∇· u = 0). (1.9.6)

As mentioned in Section 1.6, this is a condition on the rate of change of fluid volume, as can be seen
from the Divergence Theorem:∫
V

∂ui

∂xi
dV =

∫
A

(ui ni ) d A = 0. (1.9.7)

The term
∫

A(ui ni )d A is the volume flux out of a closed surface (see (1.6.3)), and must be zero for
an incompressible flow.

1.9.2 Conservation of momentum

The Divergence Theorem can be applied to each component of the momentum equation, (1.8.1), to
obtain the differential statement of conservation of momentum. For example, transformation of the
xi component of the momentum flux term gives∫
A

ρui u j n j d A =
∫
V

∂

∂x j
(ρui u j )dV . (1.9.8)

Application of the Divergence Theorem to (1.8.1) gives, with some rearrangement,

∂

∂t
(ρui ) + ∂

∂x j
(ρui u j ) = − ∂p

∂xi
+ ρXi + ∂τij

∂x j
. (1.9.9)

Equation (1.9.9) is often referred to as the “conservation form” of the momentum equation. Expanding
the derivatives in the first two terms and using the continuity equation yields the more commonly
encountered form

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ Xi + 1

ρ

∂τij

∂x j
. (1.9.10)

The shear forces now appear as derivatives of the surface stresses in the last term on the right-hand
side of (1.9.10).
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1.9.3 Conservation of energy

Using the same procedure as previously on (1.8.3), the energy equation in differential form is found
as

∂

∂t

[
ρ

(
e + u2

2

)]
+ ∂

∂xi

[
ρ

(
h + u2

2

)
ui

]

= ρ Q̇ − ∂qi

∂xi
+ ρXi ui + ∂

∂x j
(τijui ). (1.9.11)

By expanding the derivatives and using the equation of continuity, (1.9.11) can be written in terms
of substantial derivatives of stagnation energy or stagnation enthalpy

D

Dt

(
e + u2

2

)
= Q̇ + ui Xi − 1

ρ

∂

∂xi
(pui ) − 1

ρ

∂qi

∂xi
+ 1

ρ

∂

∂x j
(τijui ) (1.9.12)

or

D

Dt

(
h + u2

2

)
= Q̇ + ui Xi + 1

ρ

∂p

∂t
− 1

ρ

∂qi

∂xi
+ 1

ρ

∂

∂x j
(τijui ). (1.9.13)

Because of the convenient and natural role of the stagnation enthalpy in flow processes (1.9.13) is
a form in which the energy equation is frequently used in internal flows. For inviscid flow, with no
shear stresses and no heat transfer, (1.9.13) becomes

D

Dt

(
h + u2

2

)
= Q̇ + ui Xi + 1

ρ

∂p

∂t
. (1.9.14)

In such a flow the stagnation enthalpy of a fluid particle can be changed only by heat sources within
the flow, the action of body forces, or unsteadiness, as reflected in the term (1/ρ)∂/∂t . We will see
considerable application of this last term in Chapter 6.

1.10 Splitting the energy equation: entropy changes in a fluid

The equation given as (1.9.12) describes changes in thermal and mechanical energy together. It is
instructive to look at each of these separately (Liepmann and Roshko, 1957), because this allows a
direct connection with the second law of thermodynamics and the entropy production in the fluid. To
begin, we multiply each ith component of the momentum equation by the corresponding ith velocity
component and sum the resulting equations to obtain

D

Dt

(
u2

2

)
= ui Xi − 1

ρ
ui
∂p

∂xi
+ 1

ρ
ui
∂τij

∂x j
. (1.10.1)

Equation (1.10.1), which describes the changes in kinetic energy per unit mass for a fluid particle,
can be subtracted from (1.9.12) or (1.9.13) to obtain an equation for the rate of change of the
thermodynamic quantities’ thermal energy or enthalpy:

De

Dt
= Q̇ − p

ρ

∂ui

∂xi
− 1

ρ

∂qi

∂xi
+ 1

ρ
τij
∂ui

∂x j
, (1.10.2)
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or

Dh

Dt
= Q̇ + 1

ρ

Dp

Dt
− 1

ρ

∂qi

∂xi
+ 1

ρ
τij
∂ui

∂x j
. (1.10.3)

The enthalpy form of the Gibbs equation, (1.3.19), dh = Tds + (1/ρ)∂p, holds for all small changes.
It can thus be written to express the entropy changes experienced by a fluid particle:

T
Ds

Dt
= Dh

Dt
− 1

ρ

Dp

Dt
. (1.10.4)

Combining (1.10.4) with (1.10.3) gives an expression for the rate of change of entropy per unit mass:

T
Ds

Dt
= Q̇ − 1

ρ

∂qi

∂xi
+ 1

ρ
τij
∂ui

∂x j
. (1.10.5)

The entropy of a fluid particle can be changed by heat addition, either from heat sources or heat flux
(qi), or by shear forces. Pressure forces and body forces have no effect. The product τ ij(∂ui/∂xj)
represents the heat generated per unit volume and time by the dissipation of mechanical energy; it is
conventionally denoted as � and referred to as the dissipation function.

1.10.1 Heat transfer and entropy generation sources

Further insight into the content of (1.10.5) can be obtained if we use the relation between conduction
heat flux and temperature distribution. Experiments show that the conduction heat flux is given by
the same expression as that for heat transfer in solids, namely

qi = −k
∂T

∂xi
, i = 1, 2, 3, (1.10.6)

where k is the thermal conductivity. The thermal conductivity is often approximated as a constant
but it can have a variation with fluid properties, most notably temperature.

We suppose that internal heat sources, Q̇, can be neglected. Employing (1.10.6), dividing (1.10.5)
by T, and integrating throughout the interior volume, Vsys(t), of a closed surface, Asys(t), moving with
the fluid, we obtain∫
Vsys

ρ
Ds

Dt
dV =

∫
Vsys

�

T
dV +

∫
Vsys

1

T

∂

∂xi

(
k
∂T

∂xi

)
dV.

Integration by parts yields∫
Vsys

ρ
Ds

Dt
dV =

∫
Vsys

�

T
dV +

∫
Vsys

k

T 2

(
∂T

∂xi

)2

dV +
∫

Asys

k

T

∂T

∂xi
ni dA. (1.10.7)

The first two integrals on the right-hand side of (1.10.7) are positive definite. The third term represents
heat transfer in and out of the volume and can be positive or negative. The entropy of a fluid particle
can thus decrease only if there is heat conducted out of the particle. If the boundary is insulated so
there is no heat transfer across it, the entropy can only increase.

The second and third terms, on the right-hand side of (1.10.7) connect entropy changes to tem-
perature gradients. The third term, associated with heat transfer across the surface that bounds the
fluid volume, represents the entropy change due to heat inflow or outflow. It can be either positive
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Figure 1.7: Entropy production in a solid bar; heat is flowing from left to right at constant rate qx per unit area.

or negative. The second term, which is quadratic and always positive, is different in nature. It repre-
sents entropy production due to internal irreversibility. Its role can be understood by analogy with
one-dimensional steady flow of heat in a solid bar of unit area, as shown in Figure 1.7. There is no
heat transfer from the top or bottom, so the heat flux qx = −k(dT/dx) is uniform in the bar and has
only an x-component. The small element, dx, gains entropy at a rate qx/T, at its left-hand side. The
entropy that flows out of the element at the right-hand side is

qx(
T + dT

dx
dx

) ∼= qx

T

(
1 − 1

T

dT

dx
dx

)
.

Since dT/dx must be negative for heat to flow in the direction indicated, the entropy outflow is greater
than the entropy inflow to the element. The net rate of entropy production in the element per unit
volume is

entropy production per unit volume = k

T 2

(
dT

dx

)2

. (1.10.8)

The expression for entropy production in (1.10.8) has the same form as the quadratic temperature
gradient term in (1.10.7). Both represent entropy production due to an irreversible process, heat flow
across a finite temperature difference.

Equation (1.10.7) can now be interpreted as a statement that entropy changes are due to two causes,
irreversibilities and heat transfer. For a unit mass, therefore,

ds = dsirrev + –dq

T
. (1.10.9)

The first term on the right-hand side of (1.10.9) represents the effect of irreversibility. As discussed
in more depth in Chapter 5, understanding of the entropy change caused by irreversible processes
plays a key role in addressing improvements in the efficiency of fluid devices.

1.11 Initial and boundary conditions

The solution to the general time-dependent equations for a particular flow situation requires the spec-
ification of an initial condition and boundary conditions. The flow field at any instant is determined
by its initial state and the boundary conditions which may vary in time or be time-independent. If
the boundary conditions are time-independent, the solution will often approach a time-independent
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asymptotic state. There are, however, situations in which, even for time-independent boundary con-
ditions, self-excited fluid motions (instabilities) can occur. We will examine some examples of these
in Chapters 6 and 12.

From a system perspective, the boundary conditions can be viewed as the forcing to which the
flow must respond. The response is captured in the equations of motion. In the next two subsections,
we discuss the imposition of boundary conditions on solid surfaces, boundary conditions on the far
field, and the use of inflow and outflow boundary conditions as approximations to far field boundary
conditions.

1.11.1 Boundary conditions at solid surfaces

At any point on a boundary formed by a solid impermeable surface, continuity requires that the
velocity component normal to the surface be the same for the fluid and for the surface. This boundary
condition is purely kinematic. If the solid boundary is stationary so the surface position is not changing
with time and if we define n as the local normal to the surface, then u · n = 0 on the surface. Two
important cases in which the solid body is not stationary are uniform translation with velocity vT

(where we have used v to denote a velocity other than a fluid velocity) for which the boundary
condition becomes

u · n = vT · n (1.11.1)

and rotation with angular velocity Ω, for which the condition takes the form

u · n = (Ω × r) · n, (1.11.2)

where r is a position vector from the axis of rotation.
A more complicated situation is encountered when a body is changing shape (deforming) with

time, such as might be the case for flow about vibrating surfaces. Suppose the equation of the surface
is G(x, t) = 0. The components of the unit normal to the surface are given by

n = ∇G

|∇G| . (1.11.3)

If vsurf is the velocity of a point x on the surface at time t, the equation for the surface at a small time
later t + dt is

G(x + vsurf dt, t + dt) = 0. (1.11.4)

Equation (1.11.4) is equivalent to

vsurf · ∇G + ∂G

∂t
= 0. (1.11.5)

The component of vsurf along the normal is vsurf · n. The gradient of G, ∇G, is also along the normal
so that

vsurf · n =
−
(
∂G

∂t

)
|∇G| . (1.11.6)
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However, the fluid velocity at the surface along the normal is equal to the instantaneous velocity of
the surface in this direction:

u · n = vsurf · n. (1.11.7)

The boundary condition on the fluid velocity at the deforming surface is therefore

u · n =
−
(
∂G

∂t

)
|∇G| . (1.11.8)

Using (1.11.3), we can write (1.11.8) in terms of the substantial derivative of G

∂G

∂t
+ u · ∇G = DG

Dt
= 0. (1.11.9)

Equation (1.11.9) is called the kinematic surface condition. Its physical description is the statement
that particles on the surface stay on the surface, because the velocity of a particle on the surface with
respect to the surface is purely tangential or zero (Goldstein, 1960).

Situations also exist for which the solid surfaces are permeable, for example suction into, or
blowing from, a surface. If the normal component of the suction velocity is known, then u · n is also
known. In other cases, such as flow through a porous plate with a given pressure differential (which
is actually a dynamic, rather than wholly kinematic, boundary condition), the normal velocity at
the surface will not be known a priori, and will be part of the solution. In such cases there will be
matching conditions on the normal velocity which need to be specified. Chapter 12 presents examples
of this latter situation.

The boundary conditions described so far are kinematic and do not depend on the nature of the
fluid. For a real, i.e. viscous, fluid, no matter how small the viscosity, there is an additional condition
on the tangential velocity. For fluids at the pressures that are of interest here (essentially all situations
excluding rarefied gases), the surface boundary condition for a viscous fluid is that there is no
tangential velocity relative to the surface, i.e. no slip, at a solid boundary.

1.11.2 Inlet and outlet boundary conditions

In addition to surface conditions there are generally other boundary conditions that are needed in the
description of a flow. For flow about an object in a duct, such as in Figure 1.8, conditions are needed
on the object, on the duct walls, and also at the locations in the duct at which we wish to terminate
the calculation domain, the “inlet” and “outlet”. A condition often applied at the upstream location
is that the static pressure is uniform, i.e. that the upstream influence of the disturbance due to the
flow round the body is not felt at this station. As we will see in Chapter 2, this puts constraints on
the location of the inlet and outlet stations with respect to the body position.

At the downstream station the situation is less straightforward because the flow conditions may
be part of the solution, and thus unable to be precisely specified in advance. An assumption about
the decay of pressure disturbances is often also made for the downstream station, and in many
cases this is adequate. One way in which this can be implemented in a computation is to put a
condition on derivatives in the streamwise directions. A constant static pressure boundary condition
will be specified in many of the applications examined, but there are situations in which this must
be modified. These will be discussed in Chapters 6 and 12.
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Figure 1.8: Flow about an obstacle in a duct.
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Figure 1.9: Shear stresses and velocities for unidirectional flow with velocity component u1 = u1(x2).

1.12 The rate of strain tensor and the form of the dissipation function

Various products of shear stresses and velocity derivatives have appeared in the different forms of
the energy equation. In this section we introduce these terms from another viewpoint to give insight
into the physical processes they represent.

To start, consider a fluid motion in which the only component of velocity is in the x1-direction,
with this component being a function of x2 only. The situation is shown in Figure 1.9 which depicts
flow in an infinite two-dimensional channel. The fluid motion is caused by the movement of the
upper wall, with velocity uw in the x1-direction relative to a lower wall (at x2 = 0) with zero velocity.
There are no variations in the x1- and x3-directions and it is only the shear stresses on the top and
bottom of a fluid element that have dynamical consequences. The net force on the element per unit
depth into the page is (dτ 12/dx2)dx1dx2 or dτ 12/dx2 per unit area in the plane.
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Net work is done on the element by the shear stresses. The rate of work per unit depth into the page
on the bottom surface is u1τ12dx1. The rate of work on the top surface is [u1 + (du1/dx2)dx2][τ12 +
(dτ12/dx2)dx2]dx1. To order dx1dx2, the net rate of work is

net rate of work on element dx1dx2 =
(
τ12

du1

dx2
+ u1

dτ12

dx2

)
dx1dx2

=
[

d

dx2
(u1τ12)

]
dx1dx2. (1.12.1)

Equation (1.12.1) is a special case of the expression for shear work that appears on the right-hand
side of the energy equation, (1.9.12) or (1.9.13).

The term u1(dτ 12/dx2), which has the form of a velocity times a force, appears in the equation
for the rate of change of kinetic energy, (1.10.1). Its contribution is to the mechanical energy of the
fluid element. The term τ 12(du1/dx2), which has the form of a shear stress times a velocity gradient,
appears in the entropy production equation, (1.10.5). For the specific flow we are describing, the
entropy production can be evaluated directly. The only terms in the momentum equation are due to
shear forces so that (1.9.10) reduces to

∂τij

∂x j
= 0,

or τ 12 = constant. The rate of entropy production, (1.10.5), is

rate of entropy production per unit volume = 1

T
τ12

du1

dx2
. (1.12.2a)

Neglecting changes in temperature and integrating (1.12.2a) from x2 = 0 to the upper wall yields

rate of entropy production/unit length = 1

T
τ12uw. (1.12.2b)

The rate of work done on the fluid per unit length of the wall is τ 12uw. From these arguments it
can be seen that the quantity (1/T )τi j (∂ui/∂x j ) can be regarded as an entropy source term which
represents the dissipation of mechanical energy per unit volume.

Another basic situation is that of flow in the direction of the x1-axis with variation in this direction
only, as shown in Figure 1.10. Consider a streamtube of unit cross-section. The rate of work done
on the left-hand side of the fluid element by shear stresses is τ 11u1. The rate of work per unit area
on the right-hand face is τ 11u1 + [d(τ 11u1)/dx1]dx1, so the net rate of work done is u1(dτ 11/dx1) +
τ 11(du1/dx1) per unit volume. The work associated with shear stress can again be broken into two
parts, one with the form of a velocity times a force, which contributes to changes in mechanical
energy, and one with the form of the product of shear stress and velocity gradient, which contributes
to entropy production.

For a general three-dimensional flow, additional terms appear in the expression for the net work
done on an element. In the two examples just discussed, the velocity gradients were the fluid strain
rates, and it thus seems reasonable to inquire whether this is also true for the three-dimensional
situation. To answer this, we need to develop expressions for the rates of strain in three dimensions.
The tensor ∂ui/∂xj, which expresses the rate of deformation of a fluid element, is first broken into a
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Figure 1.10: Shear stresses and velocities in a one-dimensional flow, u1 = u1(x1).

symmetric and an anti-symmetric part as follows:
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(1.12.3)

The splitting of the deformation tensor in this manner has physical significance, which can be seen
by examining one of the three components of the anti-symmetric part, for example 1

2 (∂u2/∂x1 −
∂u1/∂x2), with respect to the two perpendicular fluid lines OA and OB depicted in Figure 1.11. At
time t these lines are parallel to the x1- and x2-axes. At a slightly later time, t + dt, the points A
and B have moved (relative to point O) to A′ and B′. The distances AA′ and BB′ are (∂u1/∂x2)dx2dt
and (∂u2/∂x1)dx1dt respectively. The angles through which OA and OB have rotated in the coun-
terclockwise direction are therefore −(∂u1/∂x2)dt and (∂u2/∂x1)dt and the average rate of rotation
of the two perpendicular fluid lines about the x3-axis is 1

2 [(∂u2/∂x1) − (∂u1/∂x2)]. A corresponding
statement can be made about the other two components. These arguments show that the terms
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Figure 1.11: Rates of rotation of two perpendicular fluid lines.

which appear in the anti-symmetric part of the deformation tensor are the rates of angular rotation of
the fluid element about axes through its center and parallel to the three coordinate axes. The angular
velocity is a vector and the vector which is twice the angular velocity of a fluid element is known
as the vorticity. Examination of the vorticity field provides considerable insight into fluid motion as
discussed in Chapter 3.

Angular rotations do not strain the fluid element. For example, a rigid body rotation would be an
extreme case for which no work at all is done by the shear stresses. All the strain must therefore
be expressed by the symmetrical part of the deformation tensor. The quantities ∂u1/∂x1, ∂u2/∂x2,
∂u3/∂x3 are tensile strain rates, as can be seen by considering the deformation in the coordinate
directions of elements aligned with the three axes. The remaining quantities ( 1

2 (∂u1/∂x2 + ∂u2/∂x1),
etc.), are the rate of shear strain. With reference to Figure 1.11, they represent the average rate at
which the two originally perpendicular elements depart from a right angle orientation. If one writes
out all the individual parts of the term τ ij(∂ui/∂xj), it is seen that only the symmetric part of the
deformation tensor contributes to this term.

1.13 Relationship between stress and rate of strain

The momentum equation for a fluid was given in Section 1.9 as

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ Xi + 1

ρ

∂τij

∂x j
, (1.9.10)

since

�i j = −pδi j + τ ij. (1.7.6)
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In this section, we develop expressions for τ ij (called the deviatoric stress tensor) in terms of the
velocity gradients which represent the fluid strain rates.

In Section 1.12 the velocity gradient tensor was decomposed into symmetric and anti-symmetric
parts, where

∂ui

∂x j
= 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
︸ ︷︷ ︸

symmetric

+ 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
︸ ︷︷ ︸

anti-symmetric

. (1.12.3)

The anti-symmetric terms describe angular rotations of a fluid element which do not contribute to
element deformation. Stresses in the fluid must therefore be generated by the remaining rate of strain
terms, known as the strain rate tensor,

eij = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (1.13.1)

To relate the strain rate tensor to the deviatoric stress tensor, several properties of the stress and strain
rate tensors will be used. The first is that, in accord with experimental findings, stress in a fluid is
linearly proportional to strain rate. Based on this we can propose a relation between τ ij and eij as

τij = ki jmnemn, (1.13.2)

where kijmn is a fourth order tensor with 81 components (Batchelor, 1967). This relationship is
conceptually similar to Hooke’s law from solid mechanics which assumes proportionality between
stress and strain.

The second property we invoke is that the fluid of interest is an isotropic medium, i.e. the fluid has
no preferred directional behavior. All gases are statistically isotropic as are most simple fluids. A
consequence is that the stress–strain rate relationship for these substances is independent of rotation
of the governing coordinate system. This invariance is only possible when kijmn is an isotropic tensor.
Further, it is known that any isotropic tensor of even order can be expressed in terms of products of
δij (Aris, 1962). A fourth order isotropic tensor can be written as

ki jmn = λδijδmn + µδimδ jn + ζ δinδ jm, (1.13.3)

where λ, µ, and ζ are scalars that are a function of the local thermodynamic state.
The third property invoked is that only the symmetric portion of the strain rate tensor imparts

stress. This implies that the stress tensor must be symmetric. If τ ij is a symmetric tensor, kijmn must
also be a symmetric tensor and this is only true if (1.13.3) has

ζ = µ. (1.13.4)

Combining (1.13.2), (1.13.3), and (1.13.4) gives an expression for the relationship between the
deviatoric stress tensor and the strain rate tensor:

τij = (λδijδmn + µδimδjn + ζ δinδjm) emn

= λeijδij + 2µeij. (1.13.5)

The complete stress tensor (1.7.6) can now be written as

�ij = −pδij + λeijδij + 2µeij. (1.13.6)
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In (1.13.6)

eijδij = ∇ · u = ∂ui

∂xi
. (1.13.7)

The two scalars µ and λ can be further related by setting i = j and summing over the repeated
index. From (1.13.6)

�ii = −3p + (2µ+ 3λ) eii

= −3p + (2µ+ 3λ)
∂ui

∂xi
. (1.13.8)

This allows the thermodynamic pressure to be defined as

p = −1

3
�ii +

(
2

3
µ+ λ

)
∂ui

∂xi
. (1.13.9)

where the mechanical pressure was given in Section 1.7 as

pM = −1

3
�ii. (1.7.7)

The difference between the mechanical and thermodynamic pressures is thus

p − pM =
(

2

3
µ+ λ

)
∂ui

∂xi
. (1.13.10)

For an incompressible fluid, the mechanical and thermodynamic pressures are the same since ∂ui/∂xi

is equal to zero. As seen from (1.13.10), λ plays no role in an incompressible flow. For a compressible
fluid there are two different definitions of pressure. The assumption that the thermodynamic and
mechanical pressures are equal is often referred to as Stokes’s assumption (White, 1991) and implies

λ = −2

3
µ. (1.13.11)

Equation (1.13.11) is supported by kinetic theory for a monatomic gas, although not for other fluids
(Sherman, 1990). We adopt its use here, noting this proviso, but also noting that the impact of this
assumption has been found to be small in flows in engineering applications.13

Combining the above results, the complete stress tensor for a compressible fluid can be obtained.
Substitution of (1.13.7) and (1.13.11) into (1.13.6) gives

�ij = −pδij − 2

3
µ
∂uk

∂xk
δij + 2µ eij. (1.13.12)

This linear relationship between stress and strain rate is consistent with the definition of the viscosity
coefficient for parallel flows given by Newton, in which case (1.13.12) reduces toµ(∂u1/∂x2). Hence,
fluids which obey this constitutive relationship and the underlying assumptions are called Newtonian.
For the special case of an incompressible Newtonian fluid, (1.13.12) reduces to

�ij= −pδij + 2µeij, (1.13.13)

where p is interpreted as the mean mechanical pressure.

13 For additional discussion of this point, see Thompson (1984), Schlichting (1979), Sherman (1990), and White (1991).
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Figure 1.12: Density and kinematic viscosity for (a) water and (b) air at 1 atmosphere (Eckert and Drake, 1972).

1.14 The Navier–Stokes equations

The governing equation of motion for a Newtonian fluid can now be obtained by substituting the
constitutive relationship for τ ij, (1.13.12), into the momentum equation, (1.9.10), to yield

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ Xi + 1

ρ

∂

∂x j

(
2µeij − 2

3
µ
∂uk

∂xk
δij

)
. (1.14.1)

This is known as the general form of the Navier–Stokes equation, the momentum equation for a
compressible Newtonian fluid. The kinematic viscosity ν=µ/ρ and the density for water and air at
1 atmosphere pressure as a function of temperature are shown in Figures 1.12(a) and 1.12(b). These
are representative of the temperature dependence for other gases and liquids. Although viscosity is
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a function of thermodynamic state, there are many situations in which µ can be assumed constant.
If so, the Navier–Stokes equations can be simplified to

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ Xi + µ

ρ

[
∂

∂x j

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3

∂

∂xi

(
∂ui

∂xi

)]

= − 1

ρ

∂p

∂xi
+ Xi + µ

ρ

[
∂2ui

∂x j∂x j
+ 1

3

∂

∂xi

(
∂ui

∂xi

)]
. (1.14.2)

For an incompressible flow with constant kinematic viscosity, ν, (1.14.2) further reduces to

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ Xi + ν ∂2ui

∂x j∂x j
(1.14.3)

or, in vector notation,

Du
Dt

= − 1

ρ
∇p + Xi + ν∇2u. (1.14.4)

This is the Navier–Stokes equation for an incompressible flow.
For reference, the components of the momentum equation and the continuity equation are given

below for two coordinate systems that are used often in this book: Cartesian coordinates and cylin-
drical coordinates.

1.14.1 Cartesian coordinates

ρ

[
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

]

= −∂p

∂x
+ Xx + ∂

∂x

[
µ

(
2
∂ux

∂x
− 2

3
∇ · u

)]

+ ∂

∂y

[
µ

(
∂ux

∂y
+ ∂uy

∂x

)]
+ ∂

∂z

[
µ

(
∂uz

∂x
+ ∂ux

∂z

)]
, (1.14.5a)

ρ

[
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

]

= −∂p

∂y
+ X y + ∂

∂y

[
µ

(
2
∂uy

∂y
− 2

3
∇ · u

)]

+ ∂

∂z

[
µ

(
∂uy

∂z
+ ∂uz

∂y

)]
+ ∂

∂x

[
µ

(
∂ux

∂y
+ ∂uy

∂x

)]
, (1.14.5b)

ρ

[
∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

]

= −∂p

∂z
+ Xz + ∂

∂z

[
µ

(
2
∂uz

∂z
− 2

3
∇ · u

)]

+ ∂

∂x

[
µ

(
∂uz

∂x
+ ∂ux

∂z

)]
+ ∂

∂y

[
µ

(
∂uy

∂z
+ ∂uz

∂y

)]
. (1.14.5c)
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The continuity equation is

∂ρ

∂t
+ ∂

∂x
(ρux ) + ∂

∂y
(ρuy) + ∂

∂z
(ρuz) = 0. (1.14.6)

For incompressible flow with constant viscosity, (1.14.5) and (1.14.6) simplify to

ρ

[
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

]

= −∂p

∂x
+ Xx + µ

(
∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2

)
, (1.14.7a)

ρ

[
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

]

= −∂p

∂y
+ X y + µ

(
∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2

)
, (1.14.7b)

ρ

[
∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

]

= −∂p

∂z
+ Xz + µ

(
∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2

)
, (1.14.7c)

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0. (1.14.8)

1.14.2 Cylindrical coordinates (x, axial; θ , circumferential; r, radial)

We list only the incompressible form of the equations for cylindrical coordinates:

ρ

[
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
− u2

θ

r
+ ux

∂ur

∂x

]

= −∂p

∂r
+ Xr + µ

(
∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2
+ 1

r2

∂2ur

∂θ2
− 2

r2

∂uθ
∂θ

+ ∂2ur

∂x2

)
, (1.14.9a)

ρ

[
∂uθ
∂t

+ ur
∂uθ
∂r

+ uθ
r

∂uθ
∂θ

+ ur uθ
r

+ ux
∂uθ
∂x

]

= −1

r

∂p

∂θ
+ Xθ + µ

(
∂2uθ
∂r2

+ 1

r

∂uθ
∂r

+ 1

r2

∂2uθ
∂θ2

+ ∂2uθ
∂x2

+ 2

r2

∂ur

∂θ
− uθ

r2

)
, (1.14.9b)

ρ

[
∂ux

∂t
+ ur

∂ux

∂r
+ uθ

r

∂ux

∂θ
+ ux

∂ux

∂x

]

= −∂p

∂x
+ Xx + µ

(
∂2ux

∂r2
+ 1

r

∂ux

∂r
+ 1

r2

∂2ux

∂θ2
+ ∂2ux

∂x2

)
. (1.14.9c)

The continuity equation is

∂ur

∂r
+ 1

r
ur + 1

r

∂uθ
∂θ

+ ∂ux

∂x
= 0. (1.14.10)
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Figure 1.13: Control volume fixed to a propagating small disturbance in a compressible fluid.

1.15 Disturbance propagation in a compressible fluid: the speed of sound

A quantity which plays a major role in a number of the flows to be discussed is the speed at which
small amplitude pressure disturbances propagate in a compressible medium. To find this we consider
a disturbance propagating in a frictionless, non-heat-conducting, perfect gas in a channel of uniform
area. As shown in Figure 1.13, we choose a control volume moving with the disturbance at a velocity,
a, so that flow relative to the control volume is steady. The pressure at the left-hand side of the control
volume where the disturbance has not yet arrived is p, the velocity is a, and the density is ρ. At the
right-hand side of the control volume the pressure is p + dp, the velocity is a + du, and the density
is ρ + dρ. For small disturbances, the ratios of the disturbance quantities to the background flow
variables (e.g. du/a, dp/p) will be much less than 1 so that products of these quantities can be
neglected.

The continuity equation applied across the control volume in Figure 1.13 is

ρa = (ρ + dρ)(a + du),

or, to first order in the small disturbance terms,

adρ + ρdu = 0. (1.15.1)

Application of the control volume form of the momentum equation in a similar manner plus use of
(1.15.1) gives a relation between pressure and velocity changes across the control volume,

dp

ρ
= −adu. (1.15.2)

Combining (1.15.1) and (1.15.2) yields an expression for the disturbance speed, a, in terms of the
ratio of changes in pressure and density:

a2 = dp

dρ
. (1.15.3)
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To define the ratio given in (1.15.3) explicitly, we apply the energy equation to the control volume
to provide a relation between enthalpy and velocity changes:

dh = −adu. (1.15.4)

Comparison with (1.15.2) shows that, for the disturbances considered,

dh − dp/ρ = T ds = 0. (1.15.5)

The relation between changes in density and pressure in (1.15.3) is therefore that existing in an
isentropic process, p/ργ = constant, and the speed of the small amplitude disturbances can be
written as

a =
√(

∂p

∂ρ

)
s

(1.15.6)

or, for a perfect gas with p = ρRT,

a =
√
γ RT =

√
γ p

ρ
. (1.15.7)

Sound waves are small amplitude disturbances of this type, and the speed, a, is therefore referred to
as the speed of sound. For air at room temperature and pressure a is roughly 340 m/s.

1.16 Stagnation and static quantities

The performance of internal flow devices is generally characterized by two attributes: the energy
transfer and the losses (or efficiency) that are associated with the flow processes. This characterization
is most naturally expressed in terms of changes in stagnation pressure and stagnation enthalpy,
conditions associated with a zero velocity state, rather than the static temperature and pressure
which are the state conditions associated with the local velocity.

The stagnation enthalpy has already been introduced as the enthalpy which would be attained by
a fluid element brought to rest in a steady manner with no net heat and work transfer. If so, to recap
the result from (1.8.11), all along a streamline

ht = h + u2

2
= constant. (1.16.1)

For a perfect gas with constant specific heats, (1.16.1) provides a relation between the static temper-
ature, T, and the stagnation temperature, Tt:

Tt = T + u2

2cp
. (1.16.2)

In contrast to stagnation temperature, the conditions that define the stagnation pressure are more
restrictive in that the deceleration must also be reversible and hence isentropic. For a perfect gas with
constant specific heats, stagnation pressure can be related to static pressure, static temperature, and
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stagnation temperature through the isentropic relation

pt

p
=
(

Tt

T

) γ

γ−1

. (1.16.3)

Other stagnation quantities can also be defined but temperature, pressure, and entropy (which is the
same as the static entropy) are those most frequently encountered.

Entropy changes between thermodynamic states can also be given in terms of stagnation quantities
using (1.3.19):

Tt ds = dht − 1

ρt
dpt . (1.16.4)

For steady adiabatic flow with no shaft work the stagnation enthalpy is constant along a streamline,
whether or not the flow is reversible. For a perfect gas, the entropy at two locations along a streamtube
is therefore given by the integral of (1.16.4) with dht = 0:

s2 − s1 = −R ln
pt2

pt1

, (1.16.5)

where pt1 and pt2 refer to the stagnation pressure at locations (1) and (2) respectively. For adiabatic
flows one can view the change in stagnation pressure as a measure of the change in entropy, and
hence the irreversibility, between two stations. We will discuss the utility and application of (1.16.5)
in Chapter 5.

Two points can be noted concerning stagnation pressure and temperature. First, stagnation (rather
than static) quantities are generally most convenient to measure in internal flow devices, with the
interpretation of changes in these quantities directly connected to experimental results. Second, the
process by which the fluid is brought to the stagnation state need not be one that occurs in the actual
flow. Even in situations with unsteadiness, heat transfer, or losses, therefore, one can still refer to local
stagnation properties although there are a number of situations in which one or both of the stagnation
temperature and pressure quantities remains constant along a streamline, so these quantities often
furnish a useful reference level.

1.16.1 Relation of stagnation and static quantities in terms of Mach number

The ratio of the local velocity magnitude to the speed of sound, u/a, is a non-dimensional parameter
known as the Mach number and denoted by M: M = u/a. For a perfect gas with constant specific
heats, the ratio of the stagnation and static quantities can be presented in terms of Mach number,
using (1.16.2) and (1.16.3), and the relations between cp and R as

Tt

T
= 1 + γ − 1

2
M2 (1.16.6)

and

pt

p
=
(

1 + γ − 1

2
M2

)γ /γ−1

. (1.16.7)
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1.17 Kinematic and dynamic flow field similarity

An important concept in fluid mechanics is similarity between flow fields. The specific question
is under what conditions can information about one flow field be applied to another with different
parameters. This issue is examined below, first for incompressible flow and then for the compressible
flow regime.

1.17.1 Incompressible flow

An initial step in determining similarity is to cast the equations in a non-dimensional form where the
parameters necessary for similarity are explicitly defined. The fluid motion considered has a constant
density ρ, a coefficient of viscosity µ, a geometry with characteristic dimension L, a characteristic
velocity U and a reference pressure14 pref. If the flow is unsteady, a characteristic time over which
there are appreciable changes can be defined as 1/ω, where ω is the radian frequency corresponding
to the unsteadiness of interest. With no body forces, Xi = 0, the equations describing the flow become:

∂ui

∂xi
= 0, (1.9.6)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ ν ∂2ui

∂x j∂x j
. (1.14.3)

These equations can be put into a non-dimensional form by dividing length by L, velocities by U,
pressure differences by ρU2, and time by 1/ω. This amounts to adopting new measurement scales
in which length is measured in units of L, velocity in units of U, pressure differences in units of
ρU2 and time in units of 1/ω. The variables measured in terms of these units will be denoted by a
tilde (∼)

x̃i = xi

L
, t̃ = tω, ũi = ui

U
, p̃ = p − pref

ρU 2
. (1.17.1)

In incompressible flow, the absolute pressure level plays no role in determining the fluid motion.
The non-dimensional pressure in (1.17.1) is therefore defined using the difference between local and
reference pressures.

Equations (1.9.6) and (1.14.4) can be written in non-dimensional form

∂ ũi

∂ x̃i
= 0, (1.17.2)

ωL

U

∂ ũi

∂ t̃
+ ũ j

∂ ũi

∂ x̃ j
= − ∂ p̃

∂ x̃i
+ ν

UL

∂2ũi

∂ x̃ j∂ x̃ j
. (1.17.3)

Equations (1.17.2) and (1.17.3) show the flow field depends on two non-dimensional parameters,
UL/ν and ωL /U, and the variables x̃ and t̃ .

14 The length, L, could represent the length or width of a duct, channel or blade passage, and the velocity, U, could represent
the inlet velocity, the mean velocity across a duct, or the velocity at some other station. Similarly the reference pressure,
pref, (as well as other reference quantities to be introduced later) could represent the pressure at inlet. The central point is
that an appropriate quantity is one that figures prominently in characterizing (describing scales and features of) the motion.
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1.17.2 Kinematic similarity

In defining two flows as similar, two sets of conditions must be met. The first is similarity in geometry.
To scale the flow in a turbomachine to a smaller or larger machine, geometrical parameters such
as blade profile, blade stagger angle, blade spacing/chord ratio, and hub/tip radius ratio must be
kept the same. The normal velocity boundary conditions, which are set by the geometry, must also
be the same. If one configuration has a condition of zero normal velocity, for example, the scaled
configuration must also have this condition; it cannot have flow through the wall.

This set of conditions defines kinematic similarity. Kinematic similarity is necessary but not
sufficient for full similarity, although for some applications kinematic similarity can be all that is
needed to compare flow fields.

A class of motions for which kinematic similarity is all that is necessary is incompressible irrota-
tional flow, which is described by a velocity potential whose gradient is the velocity

ui = ∂ϕ

∂xi
. (1.17.4)

The above form of the velocity plus the continuity equation for incompressible flow leads to a single
equation (Laplace’s equation) for the velocity potential:

∂ui

∂xi
= ∂2ϕ

∂xi∂xi
= 0. (1.17.5)

This equation plus the kinematic boundary conditions on normal velocity determine the velocity
field. For this type of flow the momentum equation can be regarded as an auxiliary relation for
determining the pressure.

An example is the static pressure difference from inlet to exit for steady incompressible flow in a
converging channel. If the value of UL/ν is large enough, as we will see in Chapter 2, any viscous
effects will be confined to thin layers near the walls and the flow over almost all of the channel
will be described by (1.17.5). In this situation the pressure change will be determined essentially
by kinematic considerations; all nozzles having the same shape will have the same non-dimensional
pressure difference to within several percent.

1.17.3 Dynamic similarity

More generally, dynamic similarity is also needed. For a steady flow, dynamic similarity for geo-
metrically similar bodies of different sizes requires the values of the free-stream velocity and the
constitution of the fluid (ρ and µ or both) to be such that the value of the non-dimensional quantity
UL/ν is the same for the two flows. For kinematically similar steady flows, the behavior thus depends
only on this single parameter, Re = UL/ν, known as the Reynolds number.

For unsteady flows, there is an additional non-dimensional parameter,ωL/U, known as the reduced
frequency, β = ωL/U. Both reduced frequency and Reynolds number Re must have the same value
in two flows for them to be dynamically similar.

It is generally desirable to process the results of measurements or computations using dimension-
less parameters so the information can be applied to other situations with different ρ, U, ω, L, and
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µ. Further, if it is shown that the influence of a non-dimensional parameter is small, the similarity
can be applied over a range of conditions and not just at the exact comparison point.

1.17.4 Compressible flow

For compressible flow, variations in fluid properties (viscosity, thermal conductivity) due to temper-
ature differences often need to be taken into account. In contrast to incompressible flow, the pressure
enters both as a dynamical variable in the momentum equation ((1.9.10), (1.14.2)) and also as a ther-
modynamic variable in the energy equation ((1.9.13) or (1.10.3)) and the equation of state (1.4.1)
(Lagerstrom, 1996). The implication is that when making the momentum equation dimensionless, a
pressure difference referenced to ρrefU2 should be used, while in the equation of state and the energy
equation the normalizing variable is the reference pressure, pref. For a compressible flow, there are
additional non-dimensional variables to those defined in Section 1.17.1:

p̂ = p

pref
, ρ̂ = ρ

ρref
, ĥ = T̂ = T

Tref
,

(1.17.6)

τ̃ij = τijL

µref U
, µ̃ = µ

µref
.

(For convenience we use the shear stress here rather than writing out all the velocity derivatives.)
In (1.17.6) the notation (ˆ) has been used to denote that the dimensionless quantity enters as a
thermodynamic variable. The non-dimensional pressures are related by p̂ = γM2 p̃ + 1. For a perfect
gas with constant specific heats (cp and cv), no internal heat generation, and constant Prandtl number
(Pr = µcp/k), the equations of motion are:

β
∂ρ̂

∂ t̃
+ ũ j

∂ρ̂

∂ x̃ j
+ ρ̂ ∂ ũ j

∂ x̃ j
= 0, (1.17.7)

β
∂ ũi

∂ t̃
+ ũ j

∂ ũi

∂ x̃ j
+ 1

ρ̂

∂ p̃

∂ x̃i
= 1

Reρ̂

∂τ̃ij

∂ x̃ j
, (1.17.8)

β
∂ ĥ

∂ t̃
+ ũ j

∂ ĥ

∂ x̃ j
−
(
γ − 1

γ

)
1

ρ̂

[
β
∂ p̂

∂ t̃
+ ũ j

∂ p̂

∂ x̃ j

]

= 1

RePr

1

ρ̂

∂

∂ x̃i

(
µ̃
∂ ĥ

∂ x̃ j

)
+ (γ − 1) M2

Reρ̂
τ̃ij
∂ ũi

∂ x̃ j
, (1.17.9)

p̂ = ρ̂T̂ = ρ̂ĥ. (1.17.10)

In (1.17.8) and (1.17.9), the Reynolds number and the Mach number are defined based on the
reference conditions.

For similarity, the non-dimensional surface heat flux q̃w [= qwL/(cpTrefU)] must be the same for
two flows implying similarity in the non-dimensional surface temperature. This condition may be
stated more conveniently as similarity in Stanton number, St, defined as

St(x̃w , t̃) = qw

ρref cpU (Tw − Tref )
(1.17.11a)
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or Nusselt number, Nu, defined as

Nu(x̃w , t̃) = qwL

kref (Tw − Tref )
. (1.17.11b)

Complete dynamical similarity of compressible flows requires identical values of β, Re, Pr, M,
γ , and also Nu or St for situations involving heat transfer. It also requires the same dependence of
µ̃ on temperature variation. There are thus many more non-dimensional parameters characterizing
compressible flows than incompressible flows, although (fortunately!) often not all of these are
important in a given problem.

1.17.5 Limiting forms for low Mach number

The distinction in the roles of pressure in the momentum equation and in the energy and state
equations can be seen when examining the limiting form of the compressible equations for low
Mach number. In terms of p̃, the equation of state (1.17.10) is

p̂ = ρ̂T̂ = 1 + γM2 p̃. (1.17.12)

Pressure enters the momentum equation as a dynamic variable. In the limit of M → 0, as shown by
(1.17.12), it has no other effect and should be made dimensionless with respect to ρrefU 2. Replacing p̂
in (1.17.9) with 1 + γM2 p̃ as M → 0, (1.17.7) and (1.17.8) are unchanged but (1.17.9) and (1.17.10)
are altered in form and the compressible flow equations now become:

β
∂ρ̂

∂ t̃
+ ũ j

∂ρ̂

∂ x̃ j
+ ρ̂ ∂ ũ j

∂ x̃ j
= 0, (1.17.7)

β
∂ ũi

∂ t̃
+ ũ j

∂ ũi

∂ x̃ j
+ 1

ρ̂

∂ p̃

∂ x̃i
= 1

Reρ̂

∂τ̃ij

∂ x̃ j
, (1.17.8)

β
∂ T̂

∂ t̃
+ ũ j

∂ T̂

∂ x̃ j
= 1

RePr

1

ρ̂

∂

∂ x̃i

(
µ̃
∂ T̂

∂ x̃ j

)
, (1.17.13)

ρ̂T̂ = 1. (1.17.14)

For p̂ = 1, the equations of incompressible flow are recovered.
The low Mach number limit of (1.17.12) is used in Chapters 2 and 11 in describing flows with heat

addition. It can be stated in a more physical manner starting from an estimate for the size of the static
pressure variations in a steady flow. With U and�U the characteristic velocity and velocity variation
of the motion, and L the characteristic length scale, the accelerations have magnitude U�U/L and
the pressure variations along the stream,�p, have magnitude ρU�U. The velocity variation will be
the same size as the velocity, or less (�U ≤ U), so a (crude but conservative) estimate for the bound
on the ratio of pressure variations to the ambient pressure level is

�p

p
≈ U 2

(p/ρ)
≈ U 2

a2
= M2. (1.17.15)

For Mach numbers much less than unity, pressure variations are much less than ambient pressure.
Variations in temperature, however, which can be driven by combustion processes, are not necessarily
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small compared to ambient temperatures. For Mach numbers much smaller than unity the equation
of state is

p = pref [1 + O(M2)] = ρT . (1.17.16)

In such situations large changes in temperature must be closely balanced by large changes in density,
and the equation of state can be approximated as (to order M2)

ρT = ρref Tref = constant. (1.17.17)

Incompressible flow (ρ = ρref = constant) is included as a condition described by this equation of
state.



2 Some useful basic ideas

2.1 Introduction

This chapter introduces a variety of basic ideas encountered in analysis of internal flow problems.
These concepts are not only useful in their own right but they also underpin material which appears
later in the book.

The chapter starts with a discussion of conditions under which a given flow can be regarded as
incompressible. If these conditions are met, the thermodynamics have no effect on the dynamics and
significant simplifications occur in the description of the motion.

The nature and magnitude of upstream influence, i.e. the upstream effect of a downstream com-
ponent in a fluid system, is next examined. A simple analysis is developed to determine the spatial
extent of such influence and hence the conditions under which components in an internal flow system
are strongly coupled.

Many flows of interest cannot be regarded as incompressible so that effects associated with com-
pressibility must be addressed. We therefore introduce several compressible flow phenomena in-
cluding one-dimensional channel flow, mass flow restriction (“choking”) at a geometric throat, and
shock waves. The last of these topics is developed first from a control volume perspective and then
through a more detailed analysis of the internal shock structure to show how entropy creation occurs
within the control volume.

The integral forms of the equations of motion, utilized in a control volume formulation, provide a
powerful tool for obtaining an overall description of many internal flow configurations. A number of
situations are analyzed to show their application. These examples also serve as modules for building
descriptions of more complex devices.

The last sections of the chapter introduce two related topics which lead into more detailed dis-
cussions in later chapters. The first is the role of viscous effects, as manifested in the creation of
wall boundary layers, and their effect on flow regimes in channels and ducts. The second is the
irreversibility of real (i.e. viscous) fluid motions, namely the fore and aft asymmetry of flow over
bodies and through ducts, a key concept in understanding the behavior of flow devices.

2.2 The assumption of incompressible flow

Simplification in the analysis of fluid motions occurs when one can consider the density of a fluid
particle to be invariant. If so, the continuity equation reduces to ∇ · u = 0 so the velocity field is
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solenoidal. Flows with this character are referred to as incompressible. The motion is defined by u and
p and is independent of the thermodynamics. We examine under what conditions this approximation
is valid, first for steady flow and then for unsteady flow.

2.2.1 Steady flow

The starting point in the assessment of whether a flow can be considered incompressible is the
continuity equation (1.9.4):

∇ · u = − 1

ρ

Dρ

Dt
. (1.9.4)

If velocity changes in the flow are of magnitude �U and occur over a length L, the sizes of the
individual terms on the left-hand side of (1.9.4) are�U/L. The term on the right-hand side will be of
order (U/L)(�ρ/ρ), where U and ρ are representative magnitudes of the velocity and density. The
task is to assess under what situations the term on the right-hand side will be much smaller than the
individual terms on the left, i.e. when the ratio (�ρ/ρ)/(�U/U) is much less than unity.

The equation of state for a perfect gas implies that small changes in density scale approximately
as

�ρ

ρ
∼ �p

p
− �T

T
. (2.2.1)

Density changes can occur due to variations in pressure or temperature. In general, there are three
sources of pressure differences for a flowing fluid: (i) fluid accelerations (inertial forces), (ii) body
forces, represented here by centrifugal force, and (iii) fluid friction. Heat addition or extraction can
change temperature. These four effects, and their impact on density changes, are now discussed in
turn.

(i) For a steady flow with characteristic velocity magnitude U and velocity change�U, the pressure
differences along the stream have magnitude �p ∼ ρU�U (Section 1.17). Thus

�U

U
∼ �p

ρU 2
. (2.2.2)

For situations without externally imposed temperature differences, the quantities (�ρ/ρ) and (�p/p)
in (2.2.1) have similar magnitudes. The ratio (�ρ/ρ)/(�U/U ) can thus be estimated as[
�ρ

ρ

]/[
�U

U

]
∼ ρU 2

p
∼ U 2

a2
∼ M2. (2.2.3)

The criterion for a flow to be viewed as incompressible is thus M2 � 1. If this criterion is met, the
expression for the stagnation pressure, (1.16.7), can be expanded as a power series in M2, the first
two terms of which yield

pt = p + 1

2
ρu2. (2.2.4)

Equation (2.2.4) is the definition of stagnation pressure used for incompressible flow. It can also
serve as one guide to when flow can be regarded as incompressible through examining the ratio
1
2ρu2/(pt − p) for a compressible flow. This ratio differs from unity by about 2% at M = 0.3 and
by less than 5% for M < 0.4 so that, depending on the accuracy required, the incompressible flow
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assumption can be used even up to these values. A somewhat more conservative guide is to ensure
that the density ratio �ρ/ρ t is much less than unity, say less than 5%. This implies that the Mach
number is limited to roughly 0.3. The two results are quoted because a point to note is that the
applicability of the approximation depends on the specific usage in mind.

(ii) In a rotating environment such as a turbomachinery impeller, pressure changes can occur due
to centrifugal forces. Consider the balance between pressure difference and centrifugal force for fluid
at rest in a radial channel rotating about an axis with rotation speed
. Over a small length�r in the
radial direction

�p ∼ ρ
2r2�r

r
. (2.2.5)

As in (i), we set the condition under which we can neglect effects of compressibility as
�ρ/ρ(∼ �p/p) � 1. Applying this to (2.2.5) and defining a rotational Mach number M
 = 
r/a,
we find the condition as

M2



�r

r
� 1. (2.2.6)

The quantities�r and r are often not greatly different and thus M2

 � 1 gives a conservative criterion.

(iii) Departures from incompressible flow can also arise due to viscous effects. An example is
furnished by fully-developed flow in a constant area duct of length L. For this situation, the pressure
drop can be represented in terms of the skin friction coefficient, Cf (= wall shear stress/1

2ρu2, where
u denotes the mean velocity in the duct) and the ratio, L/dH, length to hydraulic diameter (4 times
the cross-sectional area divided by the wetted perimeter)1 as

�p = 1

2
ρu2 · (4C f )

L

dH
. (2.2.7)

Departure from incompressible flow occurs when the ratio�u/u, (hence�ρ/ρ) becomes appre-
ciable compared to unity. Friction-dominated flow can be regarded as incompressible when�p/p is
much less than unity or when C f M2 (L/dH) � 1, with M = u/a.

(iv) Even with the Mach number much less than unity, departures from incompressible behavior can
occur when external heating or cooling is imposed or when internal heat sources, such as combustion,
are present. In this situation, the pressure changes due to dynamical effects will be (as described just
above) of order M2 compared to ambient pressure. Changes in density can thus be expressed as

�ρ

ρ
∼ �Timposed

Tref
+ O(M2), (2.2.8)

where �Timposed is a representative imposed temperature difference (for example, between the wall
and free stream or between the inlet and exit of a combustor) and Tref is a reference temperature
(e.g. ambient temperature or combustor inlet temperature). For example, temperature changes can be
of the same (or larger) magnitude as the ambient temperature in combustion or in mixing of streams
of non-uniform temperature. If so, density changes can have magnitudes comparable to the initial
density whatever the Mach number. Thus, �Timposed/Tref must be much less than unity for density
changes to be neglected.

1 The concept of hydraulic diameter is often used as a means to correlate friction factor data for turbulent flow in pipes of
different cross-section. Discussion of the hydraulic diameter, as well as data for pipes of non-circular cross-section, can be
found in the work by Schlichting (1979).
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2.2.2 Unsteady flow

Departures from incompressible behavior can also be caused by flow unsteadiness. Following
Lighthill (1963), to assess such departures we compare the sizes of terms on the left-hand and
right-hand sides of the continuity equation for a situation where the flow is periodic with radian
frequency, ω, the application of most interest in fluid machinery. The magnitude of the density
fluctuations is

1

ρ

Dρ

Dt
∼ ω

�ρ

ρ
∼ ω

�p

p
, (2.2.9)

where �ρ and �p are the perturbations in density and pressure associated with fluctuations at the
frequency ω, and ρ and p are the mean or ambient levels of these quantities. If�U is the magnitude
of a typical fluctuation in velocity and L is the relevant length of the device, balancing the local
(unsteady) fluid accelerations with pressure differences in the momentum equation leads to

�p ∼ ρωL�U. (2.2.10)

There may also be terms of order ρU�U contributing to�p, but if M2 � 1, these will not invalidate
the conditions under which the flow can be regarded as incompressible.

The above estimate of the pressure fluctuations shows the term (1/ρ) (Dρ/Dt) in the continu-
ity equation (1.9.4), is of magnitude ω2L�U/a2, whereas the magnitude of the individual terms
in ∇ · u are �U/L. The criterion for the flow to be regarded as incompressible is therefore
ω2L2/a2 � 1. An interpretation of this criterion is that L must be small compared to the “radian
wavelength”, a/ω, of a sound wave of frequency ω. This condition can also be expressed in terms
of the reduced frequency β (= ωL/U), which was defined in Chapter 1, as β2M2 � 1.

To summarize, a flow can be considered incompressible under the following circumstances:

(a) The square of the Mach number is small compared to unity (M2 � 1).
(b) In a rotating environment(


r

a

)2
�r

r
= M2




�r

r
� 1.

(c) In a duct flow involving friction, CfM2 (L/dH) � 1.
(d) In flows involving imposed heat addition from external or internal sources, �Timposed/Tref � 1.
(e) For unsteady flow, (ωL/a)2 � 1 or, equivalently (βM)2 � 1.

2.3 Upstream influence

A question often encountered with fluid machinery is when components should be considered aero-
dynamically coupled, in the sense that there is significant interaction between them. One aspect of this
concerns the spacing needed for mixing of wakes from upstream components before the flow enters
the downstream component. Another, and very different, consideration, however, is that of upstream
influence. By this is meant the axial extent of the upstream non-uniformity in pressure and velocity
which is created by a downstream component or geometrical feature such as a bend or row of struts.
This impacts not only upstream component behavior but also the choice of measurement locations
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Static pressure
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defined at x = 0 

Uniform flow
far upstream

(x → -∞)

Background
(mean) velocity

Components due
to non-uniformity

u′y

u′x

y (Circumferential direction)

W (Blade spacing)

x
u

Figure 2.1: Flow domain used in the estimation of the upstream influence region for a periodic array (turbine
blade row); the region of interest is x < 0.

to obtain accurate performance representations as well as selection of boundaries for computational
domains. Upstream influence is examined in several contexts in the book. In this introduction to
the topic we concentrate on the development of basic scaling rules which allow estimates of the
magnitude of the effect in many situations.

2.3.1 Upstream influence of a circumferentially periodic non-uniformity

We proceed by example, starting with the upstream effect of a circumferentially periodic flow non-
uniformity, such as that presented by a turbomachinery blade row. A two-dimensional representation
of this is sketched in Figure 2.1, which shows a row of turbine airfoils with spacing W; the figure
can be taken as representative of a blade row in an annular region of high hub/tip radius ratio. The
x-coordinate represents axial distance and the y-coordinate represents distance in the circumferential
direction around the turbomachine annulus. The aerodynamic loading on the blading causes the static
pressure to vary circumferentially, with period W, upstream of the blade row, and the specific issue
is how this static pressure variation attenuates with upstream axial distance.

The length scale in the problem which characterizes the non-uniformity in the y-direction is the
spacing, W. If this is the relevant length scale over which the flow quantities vary upstream of
the blades, for high Reynolds number flow an order of magnitude analysis shows viscous forces
are much smaller than inertial forces2 in this upstream region and an inviscid description of the

2 If the characteristic velocity has magnitude U the inertial and viscous forces have magnitudes ρU2/W and µU/W2,
respectively, in the upstream region. The ratio of the two is ν/UW or 1/(Reynolds number).
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pressure field will suffice. Further, while the ratio of the non-uniformities in pressure or velocity (for
example, the variation in static pressure about the mean compared to the dynamic pressure based
on average axial velocity) near the blades may be of order unity, the question of interest concerns
the upstream decay of these variations. Over much of the region of interest flow non-uniformities
will be small, in a non-dimensional sense, with the implication being that a linearized description is
appropriate. The problem can thus be posed as determining the upstream pressure variations about a
uniform inviscid flow due to the presence of the blade row shown in Figure 2.1. The treatment below
is for steady incompressible flow, but comments on the extension to the compressible case will be
given.

As implied by the figure, the background flow, which can be thought of as that existing in the
absence of the blading, is axial. The velocity components and pressure field for this mean or back-
ground flow are: ux = u = constant; uy = 0; p = p = constant, where p is the static pressure far
upstream of the blades. The flow field can be represented as

ux = u + u′
x , uy = u′

y , p = p + p′, (2.3.1)

where (u′
x/u), (u′

y/u), and (p′/( 1
2ρu2)) are all taken to be much less than unity.

Substituting (2.3.1) into the continuity and momentum equations and (based on the assumption
of small non-uniformities) neglecting terms which are products of the disturbance velocities yields
a set of linearized equations for the two velocity components and the pressure:

u
∂u′

x

∂x
= − 1

ρ

∂p′

∂x
, (2.3.2a)

u
∂u′

y

∂x
= − 1

ρ

∂p′

∂y
, (2.3.2b)

∂u′
x

∂x
+ ∂u′

y

∂y
= 0. (2.3.2c)

Differentiation of (2.3.2a) with respect to x and (2.3.2b) with respect to y and use of (2.3.2c), gives
Laplace’s equation for the disturbance pressure field p′ (= p − p):

∇2 p′ = ∂2 p′

∂x2
+ ∂2 p′

∂y2
= 0. (2.3.3)

An immediate conclusion about upstream influence can be drawn from the structure of (2.3.3).
Laplace’s equation has no intrinsic length scale. If a length scale, W, is specified in the y-direction,
as is the case for a blade row of spacing W, the length scale in the x-direction, which is essentially
the extent of the upstream influence, must also be W. This idea is basic in understanding upstream
influence in the situations addressed, and we now proceed to make it more quantitative.

Regardless of the loading on the blades, any periodic pressure distribution at x = 0 can be repre-
sented as a Fourier series in y:

p′|x=0 =
∞∑

k=−∞
k �=0

bke(2π iky/W ). (2.3.4)
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To match this boundary condition, the solution for p′ must also be of this form:

p′ =
∞∑

k=−∞
k �=0

fk(x) bke(2π iky/W ). (2.3.5)

Substituting (2.3.5) into (2.3.3) yields a form for fk(x) which has exponentials e2πkx/W and e−2πkx/W.
The solutions of physical interest decay with upstream distance and must be bounded at x = −∞,
so the form for p′ is

p′ =
∞∑

k=−∞
k �=0

bke(2π |k|x/W )e(2π iky/W ). (2.3.6)

Equation (2.3.6) exhibits several generic features of the upstream pressure field. First, the upstream
decay distance, say the distance at which the non-uniformity is reduced to some given percentage of
its value at x = 0, is proportional to the y-direction length scale. For a disturbance with wavelength W
in the y-direction (the longest wavelength disturbances in this situation) at a location a distance W/2
upstream of the blade row the non-uniformity is 4% of the value at x = 0. Second, the lowest Fourier
component (|k|= 1) has the greatest upstream influence. Higher spatial harmonic components have an
upstream influence with an axial extent smaller by a factor of 1/|k|, where k is the harmonic number.
Unless the pressure profile is skewed strongly to higher harmonics, the first Fourier component is
the most important in setting the upstream influence. Third, although nonlinearities will alter the
quantitative rate of decay near the blades, we are dealing with non-uniformities which are small
over most of the region of interest, and nonlinear effects will not appreciably affect either the extent
or which harmonic components are most important. Fourth, although the example shown is for a
non-uniformity with a length scale equal to the blade spacing, it is applicable to any periodic non-
uniformity. For instance, the non-uniformity associated with an inlet distortion in a compressor can
have a y-direction length scale of the circumference of the machine, implying a correspondingly large
extent of upstream influence. Finally, for computations, the upstream boundary of the domain should
be far enough away so that the flow at this location is unaffected by downstream non-uniformities. The
specific requirement thus depends on the circumferential length scale in the problem of interest, and
this is also true for the question of when components can be considered aerodynamically coupled.

2.3.2 Upstream influence of a radial non-uniformity in an annulus

A second example concerns the radially non-uniform flow in an annular region. Figure 2.2 shows
an annulus with inner radius, ri, and outer radius ro. At an axial location x = 0, there is a non-
uniform pressure or velocity field, as would occur with a downstream geometry such as a blade row
or duct curvature. The question again is how far upstream will the influence of the non-uniformity
extend. Following the discussion in Section 2.3.1, it suffices to develop a linearized, inviscid, steady
description of the variations in static pressure and velocity about a uniform axial background flow.

The interest here is in radial variations so the non-uniformities about the background state of
ux = u = constant and p = p = constant are taken as axisymmetric, i.e. ∂/∂θ = 0, with uθ = 0.
Using cylindrical coordinates, the linearized equations which describe the non-uniformities u′

r , u′
x ,

and p′ are the r- and x-components of the inviscid momentum equation and the incompressible flow
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Figure 2.2: Annular flow geometry used in the estimation of the upstream influence region for axisymmetric
flow; the region of interest is x < 0.

form of the continuity equation (see Section 1.14)

u
∂u′

x

∂x
= − 1

ρ

∂p′

∂x
, (2.3.7a)

u
∂u′

r

∂x
= − 1

ρ

∂p′

∂r
, (2.3.7b)

∂u′
r

∂r
+ u′

r

r
+ ∂u′

x

∂x
= 0. (2.3.7c)

Differentiating (2.3.7a) with respect to x and (2.3.7b) with respect to r, and invoking the continuity
equation leads to Laplace’s equation for p′ in cylindrical coordinates:

∇2 p′ = ∂2 p′

∂r2
+ 1

r

∂p′

∂r
+ ∂2 p′

∂x2
= 0. (2.3.8)

Further simplification of (2.3.8) is possible for annular regions of high hub/tip radius ratio. The
non-uniformities of interest have a radial variation with length scale�r = ro − ri (or less). The ratio
of the second term in (2.3.8) to the first is of order (�r/rm), where rm is the annulus mean radius. For
annuli of high hub/tip radius ratio, where (�r/rm) is much less than unity, this term can be neglected,
and (2.3.8) becomes

∂2 p′

∂r2
+ ∂2 p′

∂x2
= 0. (2.3.9)

This is the same equation that was derived in Section 2.3.1, although the two coordinates are here x
and r (axial and radial), compared with x and y (axial and circumferential) in Section 2.3.1.

The boundary conditions for solution of (2.3.9) are different than for a periodic geometry. Appro-
priate conditions are the specification of the radial static pressure non-uniformity at x = 0 and the
imposition of no normal velocity at the inner and outer radii, ur = 0 at r = ri and r = ro, for any
value of x. From (2.3.7b), this is equivalent to the condition that the radial derivative of the static
pressure non-uniformity is zero at the inner and outer radii: ∂p′/∂r = 0 at r = ri and r = ro.
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Solutions to (2.3.9) can again be written as a Fourier series. From Section 2.3.1, however, we
know that the first Fourier component, which has the largest length scale, sets the maximum extent
of upstream influence. We thus need to consider only this component. Using similar arguments as
those in Section 2.3.1, the solution for p′ can be written as

p′ = b1e(πx/�r ) cos

[
π (r − ri )

�r

]
. (2.3.10)

The upstream radial static pressure field in the annulus has exponential decay similar to the periodic
disturbance, although the quantitative features are different. The previous comments concerning
upstream influence thus capture the basic scaling and also apply to this second example.

The discussion up to now has addressed incompressible flow. To extend the ideas to compressible
flow for moderate subsonic Mach numbers (Mx < 0.6, say, where Mx is the axial Mach number
associated with the mean flow) one can use the Prandtl–Glauert transformation (Liepmann and
Roshko, 1957; Sabersky et al., 1989) to convert the incompressible solutions to compressible form.
For a subsonic compressible flow the first Fourier component of the radial non-uniformity in the
upstream pressure field has the form

p′ = b1eπx/(�r
√

1−M2
x ) cos

[
π (r − ri )

�r

]
. (2.3.11)

The axial extent of the upstream influence is thus reduced as the axial Mach number increases.

2.4 Pressure fields and streamline curvature: equations of motion
in natural coordinates

2.4.1 Normal and streamwise accelerations and pressure gradients

The momentum equation for inviscid steady flow is

(u · ∇) u = −∇p/ρ (2.4.1)

for incompressible and compressible fluids. With u as the magnitude of the velocity, l as the distance
along a streamline,3 l as a unit vector tangent to the streamline, n as the outward distance along the
principal normal to the streamline, and n as an outward-pointing unit vector normal to the streamline,
(2.4.1) can be written in terms of changes along and normal to the streamlines as

u
∂(ul)
∂l

= lu
∂u

∂l
+ u2 ∂l

∂l
= − 1

ρ

(
l
∂p

∂l
+ n

∂p

∂n

)
. (2.4.2)

There is a component of fluid acceleration along the streamlines and a component normal to the
streamlines. The former is a consequence of changes in the velocity magnitude and is related to the

3 Some notes on nomenclature and conventions: The definition of the unit normal vector, n, as pointing in the direction
outward from the center of curvature of a streamline is opposite to the usual convention for the principal normal in the
description of a space curve. It is adopted, however, to be consistent both with the definition of the “n-direction” for natural
coordinates and with the use of a positive outward pointing normal in the description of control volumes. The variable, l,
is used for streamwise distance instead of the perhaps more mnemonic s to avoid use of s for both entropy and streamwise
distance. (We would otherwise encounter the quantity ∂s/∂s later in the chapter!) To help reinforce this convention, l is
used to denote the unit vector in the streamwise direction.
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Figure 2.3: Normal and streamwise coordinates and rate of change of unit vector, l, in streamwise direction.

component of the pressure gradient in the streamwise direction:

u
∂u

∂l
= − 1

ρ

∂p

∂l
. (2.4.3)

The second is a consequence of changes in the direction of the velocity. The unit vector l cannot have
changes in magnitude, so its changes must be in the normal direction. As indicated in Figure 2.3 the
change in l is given by ndα, where dα is the change in angle of the streamline over a distance l. With
rc denoting the local radius of curvature of the streamline

∂l
∂l

= − n
rc
. (2.4.4)

The minus sign means that the acceleration is in the direction towards the local center of curvature.
The component of the pressure gradient normal to the streamline is therefore

ρ
u2

rc
= ∂p

∂n
. (2.4.5)

The quantity u2/rc is the centripetal acceleration familiar from particle dynamics. Equation (2.4.5)
states that, in a steady flow, streamline curvature is associated with a component of the pressure
gradient force normal to the streamlines and pointing toward the local center of curvature.

2.4.2 Other expressions for streamline curvature

Equation (2.4.5) can be derived in another manner which further illustrates the l, n coordinate system.
Consider the steady, inviscid, two-dimensional flow through the control surface of Figure 2.4. The
upper and lower parts of the control surface (AB and DC) are along streamlines and the left and right
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Figure 2.4: Natural coordinates: u, α are functions of l and n.

hand parts (DA and BC) are normal to the streamlines. The streamlines and their normals define
a natural coordinate system (l, n) with n measured normal to streamlines and l the distance along
the streamline. The local radius of curvature of the streamline is rc and α is the local angle of the
streamline with respect to a reference direction.

The flux of momentum in the n-direction out of the control volume is equal to the net force on
the control surface. The only forces are pressure forces. The net momentum flux in the n-direction is
−ρu2dαdn (the difference between the momentum flux out and the momentum flux in), plus higher
order terms in the quantities dn and dα. The net pressure force in the n-direction, along the radius of
curvature, is (−∂p/∂n)dndl, plus higher order terms. Equating the net momentum flux to the force
on the element, using the relation between changes in streamline angle, dα, the distance along the
streamline, and the local radius of curvature (dα = dl/rc,), and taking the limit as dn and dl become
vanishingly small, yields (2.4.5).

The l- and n-directions are referred to as natural, or intrinsic, coordinates. In addition to l and
n components of the momentum equation ((2.4.3) and (2.4.5)) the other necessary equations for a
two-dimensional inviscid, adiabatic flow are:

Continuity: ρudn = constant (2.4.6)

Energy (constant entropy along a streamline):
∂s

∂l
= 0. (2.4.7)

These plus the equation of state and the boundary conditions describe the flow field. (For a three-
dimensional flow there would be a third direction, perpendicular to both the streamline and the
normal (Tsien, 1958).)

It is often helpful to cast these natural coordinates in terms of the angle, α, which the streamlines
make with a reference direction, as indicated in Figure 2.4 (Liepmann and Roshko, 1957). This allows
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Figure 2.5: Streamlines and wall static pressure distributions for two-dimensional contractions (Shapiro, 1972).

another interpretation of the normal equation of motion. The local radius of curvature is related to
the flow angle by 1/rc = ∂α/∂l so that (2.4.5) can be written in terms of the flow angle as

∂p

∂n
= ρu2 ∂α

∂l
. (2.4.8)

Equation (2.4.8) states that a normal component of the pressure gradient exists if the velocity vector
changes direction along a streamline.

Streamline curvature is a feature of essentially all flows of technological interest, although (depend-
ing on the magnitude of the curvature) the pressure difference normal to the streamline may or may
not have substantial impact on the effect being studied. A flow which is uni-directional in an overall
sense, but in which streamline curvature can be important, is a contraction in a two-dimensional
asymmetric channel, as shown in Figure 2.5. The streamlines (taken from flow visualization pic-
tures) and the measured pressure distributions on each of the walls of the channel are indicated
(Shapiro, 1972). The sense of the normal component of the pressure gradient is also sketched. The
streamline curvature has one sign in the upstream part of the contraction and another sign at the
downstream part, because the radius of curvature points one way near the start of the contraction
and the other way towards the end. The quasi-one-dimensional pressure distribution, based on the
local flow through area, is also indicated. For this particular geometry the differences in pressure are
a substantial fraction of the dynamic pressure. Depending on the objective, inclusion of the pressure
differences in the normal direction in the problem description could be important.

The ideas concerning streamline curvature and normal components of the pressure gradient can
be related to the results of Section 2.3, where linearized forms of the momentum equation were
used to derive upstream static pressure variations. Within the approximation made, the x-direction
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was the streamwise direction and the y-direction the normal direction in the first example, while the
r-direction was the normal direction in the second. If the departures from uniform flow (ux = u =
constant) are small such that products of terms representing the non-uniformity can be neglected,
the angle the flow makes with the x-axis, α, is given by (for the example in Section 2.3.1)

tanα ≈ α ≈ u′
y

u
. (2.4.9a)

For the axisymmetric situation of Section 2.3.2 the corresponding expression is

tanα ≈ α ≈ u′
r

u
. (2.4.9b)

For small departures from uniformity (so that x ≈ l and u2 ≈ u2) (2.4.8) becomes (using a prime
to denote the perturbation from uniform flow)

∂p′

∂y
= −ρu2 ∂α

′

∂x
. (2.4.10)

Using (2.4.9a),

∂p′

∂y
= −ρu

∂u′
y

∂x
, (2.4.11a)

which is the expression given for a two-dimensional flow in Section 2.3.1. The corresponding term
for the axisymmetric flow of Section 2.3.2 is

∂p′

∂r
= −ρu

∂u′
r

∂x
. (2.4.11b)

Equations (2.4.11a) and (2.4.11b) can be interpreted as linearized forms of the expression relating
streamline curvature and the normal component of pressure gradient.

To summarize Sections 2.3 and 2.4, in many of the flows to be examined there are regions in which
the motion can be viewed in terms of a balance between pressure and inertial forces. The connection
between streamline curvature, fluid accelerations, and pressure fields, shown compactly in (2.4.5)
and (2.4.8) is an important key in understanding such flows.

2.5 Quasi-one-dimensional steady compressible flow

When the conditions given in Section 2.2 are not met, the motion cannot be considered incompress-
ible and the coupling of thermodynamics and dynamics which occurs in a compressible flow must
be addressed. In this section we describe an approach for analyzing compressible flow which is
particularly helpful in internal flow configurations. Geometries encountered in fluid machinery and
propulsion systems can often be viewed as duct- or channel-like because the length which char-
acterizes changes in the geometry along the flow direction is much larger than the channel width.
Under such conditions, perhaps to a surprising degree when these conditions are only partially met,
a quasi-one-dimensional description of the flow has considerable utility and, as a result, has found
wide application for analysis of fluid devices. Nozzles are a prime example of such geometries, but
turbomachinery blading can also be approached in this manner. The phrase “quasi-one-dimensional”
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means here that flow properties are functions of one variable only, for example the distance along
the channel or, for isentropic flow, the local channel area.

The quasi-one-dimensional approach assumes: (i) the channels have small divergence (or conver-
gence), (ii) curved channels have a large radius of curvature compared to their width, and (iii) the
velocity and temperature are uniform across the channel. A consequence of (i) is that the velocity
components at a given station along the channel are nearly parallel. If so, the velocity components
normal to the mean direction of the channel are small compared to the velocity components along
the mean direction and the transverse accelerations thus also small compared to some measure of
streamwise accelerations (say, the dynamic pressure). The consequence of (ii) is that the static pres-
sure difference across the channel due to streamline curvature is small. As developed in Section 2.4,
the pressure difference across (normal to) the channel, �pn, is roughly

�pn ≈ ∂p

∂n
W = ρu2 W

rc
,

where rc is a representative value of the radius of curvature of the channel. Taking the pressure
difference along the channel, �pl, to be some appreciable fraction of the dynamic pressure ρu2/2,
as in many cases of interest, the ratio of the normal pressure difference to the pressure difference
along the channel thus scales as (dropping the numerical factors)

�pn

�pl
∝ W

rc
.

The inference is that, if both (i) and (ii) hold, static pressure differences across the channel can be
neglected and the pressure regarded as a function of the streamwise coordinate only. Further, the
velocities need not be distinguished from the components along the mean direction of the channel.
The above arguments also imply that the quasi-one-dimensional treatment applies locally to the
behavior of a given slender streamtube even if large cross-stream variations in static pressure exist.

For inviscid flows the assumption of velocity uniformity (iii) can be quite a good approximation,
but this cannot hold across the whole channel for a viscous fluid, which has zero velocity at the
wall. Effects of viscosity and heat conduction, however, can be taken into account in an approximate
manner within the one-dimensional approach. Further, within the framework of the theory effects of
velocity and temperature non-uniformities can be accounted for by using appropriate average values.
We present only a summary of the methodology; detailed exposition can be found in a number of
texts, for example Shapiro (1953), Crocco (1958), Anderson (1990), and Hill and Peterson (1992).

2.5.1 Corrected flow per unit area

On a one-dimensional basis, if ρ and u are the density and velocity at a given station, the mass flow
through the area, A, at that station can be written as

ṁ = ρuA. (2.5.1)

We wish to cast this in terms of stagnation quantities pt and Tt, which serve as useful references. The
first step is to use the perfect gas equation of state to give

ṁ = p

pt

Tt

T

pt

RTt
u A. (2.5.2)
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Figure 2.6: Corrected flow function, D(M) versus M; γ = 1.4.

Introducing the relations between stagnation and static quantities in terms of Mach number ((1.16.6)
and (1.16.7), Tt/T = 1 + (γ − 1)M2/2, pt/p = [1 + (γ − 1)M2/2]γ /γ−1) and writing the velocity
in terms of the Mach number and the speed of sound provides a relation for the non-dimensional
variable sometimes referred to as corrected flow per unit area. For a given gas (given value of R and
specific heat, γ ), the corrected flow per unit area (the quantity on the left-hand side of (2.5.3)) is a
function of Mach number only:

ṁ
√

RTt

Apt
√
γ

= M(
1 + γ − 1

2
M2

) 1
2

(
γ+1
γ−1

) = D(M). (2.5.3)

The corrected flow function, D(M), is plotted in Figure 2.6 for γ = 1.4.
Examination of (2.5.3) and Figure 2.6 shows several important features. For a given Mach number,

the physical mass flow per unit area (ṁ/A, in kg/(s m2)) is proportional to the stagnation pressure and
inversely proportional to the square root of the stagnation temperature, with the stagnation pressure
and temperature interpreted as local values. Figure 2.6 shows that corrected flow per unit area rises
as the Mach number increases for M < 1, falls as the Mach number increases for M > 1, and has a
maximum at M = 1. The value of the maximum depends on γ and is 0.579 for γ = 1.4. For air
at room conditions (20 ◦C, 0.1013 MPa), the dimensional maximum flow per unit area, ṁ/A, is
239 kg/(s m2). In terms of fluid component and system performance, similarity of operating regimes
implies similar Mach numbers and thus similar corrected flows per unit area.

The corrected flow function, D(M), can also be viewed in a complementary fashion. For steady
isentropic flow in a channel, stagnation quantities and mass flow are constant, so that the product DA
is also. Denoting sonic conditions (M = 1) by ( )∗,

D∗

D(M)
= A(M)

A∗ . (2.5.4)

The sonic condition occurs with D a maximum at D(1) = D∗ and the area, A, a minimum at A∗. The
quantity A/A∗ provides a useful measure of how much area margin one has to allow to pass a desired
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Figure 2.7: Elementary control volume for analysis of quasi-one-dimensional channel flow.

flow. The value of A/A∗ is 1.09 for M = 0.7 and drops to 1.009 at M = 0.9 so devices that operate
with Mach numbers near unity can exhibit substantial changes in Mach number for small changes
in area.

The use of corrected flow allows direct interpretation of the effects of friction and heat transfer.
Equation (2.5.3) and the form of Figure 2.6 show that processes which either increase the stagnation
temperature of a steady flow (for example, heat addition) or decrease the stagnation pressure (friction)
increase D. When such processes are present, in both subsonic and supersonic regimes, the Mach
number is pushed closer to unity from a given initial state. Further, suppose changes in stagnation
temperature or pressure exist between stations 1 and 2. The relation between the sonic areas at the
two locations is

A∗
2

A∗
1

= pt1

pt2

√
Tt2

Tt1
. (2.5.5)

Equation (2.5.5) shows that processes which increase the stagnation temperature or decrease the
stagnation pressure increase the area needed to pass a given physical mass flow.

2.5.2 Differential relations between area and flow variables for steady isentropic
one-dimensional flow4

The one-dimensional approach allows a simple derivation of the relation between changes in flow
variables along a channel or streamtube and variations in geometry. We confine attention here to
frictionless steady flow with no heat transfer and no body forces. Using the control volume shown
in Figure 2.7, which is bounded by the channel walls and the control surfaces at x and x + dx a small
distance away, the quasi-one-dimensional forms of the continuity and momentum equations are

du

u
+ dρ

ρ
+ d A

A
= 0, (2.5.6)

udu + dp

ρ
= 0. (2.5.7)

4 This term one-dimensional is the one in general use, and we will employ it from now on, rather than the more cumbersome
“quasi-one-dimensional flow”.
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The energy equation can be expressed as s = constant or, equivalently for this situation,

cpdT + udu = 0. (2.5.8)

Equations (2.5.6)–(2.5.8) can be combined with the definition of the speed of sound to relate
variations in local flow properties and variations in channel area. As an illustration, the expression
for velocity is:

du

u
=

−d A

A
1 − M2

. (2.5.9)

Equation (2.5.9) shows several important features of compressible channel flow:

(1) For Mach numbers less than unity an increase in area gives a decrease in velocity. The behavior
in this regime is qualitatively similar to the behavior for incompressible (M = 0) flow.

(2) For Mach numbers greater than unity, an increase in area gives an increase in velocity. At
supersonic conditions the density decreases more rapidly than the velocity decreases, and an
increase in area is necessary to maintain conservation of mass.

(3) At the condition M = 1, the area variation is zero, and the area is a minimum, as seen in
the discussion of corrected flow. The existence of a minimum area at M = 1 means that to
isentropically accelerate a flow from subsonic to supersonic a converging–diverging nozzle must
be used. The conditions at the throat are that the Mach number is equal to unity.

The transition to sonic flow, which occurs at a throat, is known as choking. This phenomenon plays
a key role in compressible channel flow. To gain further insight into the conditions associated with
flow at a throat, we use the isentropic relation between density and pressure to write the momentum
equation (2.5.7) in the form (Coles, 1972)

dρ

ρ
+ M2 du

u
= 0. (2.5.10)

At a throat the area has a minimum, dA = 0. The continuity (2.5.6) thus becomes

dρ

ρ
+ du

u
= 0. (2.5.11)

Equations (2.5.10) and (2.5.11) are two homogeneous algebraic equations for the quantities dρ/ρ
and du/u at the throat. If the Mach number at the throat is not equal to 1, the two equations can be
satisfied only if dρ/ρ and du/u are zero. This means that changes in the density and velocity (and
consequently pressure) have either a maximum or minimum at the throat with the flow having local
symmetry about the throat conditions.

If the Mach number at the throat is equal to unity, however, (2.5.10) and (2.5.11) become identical.
If so, dρ/ρ and du/u cannot both be determined from a single equation and there is no longer
a requirement for them to be zero. The velocity, density, and pressure can increase or decrease
continuously through a sonic throat and the flow does not need to be symmetric about the throat
conditions.

The equations for the differential changes in flow variables can be numerically integrated to find
the properties corresponding to any area, but useful information can often be obtained from the
values of the coefficient differentials themselves. For example, (2.5.9) shows that in both subsonic
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and supersonic flows, the effect of a small change in area on the velocity becomes much more
significant as Mach numbers approach unity. In addition, although the relation between area and
velocity changes sign at M = 1, (2.5.7) shows that increases in velocity always correspond to
decreases in static pressure.

2.5.3 Steady isentropic one-dimensional channel flow

For isentropic flow the relation between the Mach number, the stagnation pressure, and the static
pressure ((1.16.7), see also Section 2.5.1) can be written as an expression for the Mach number as a
function of the ratio of stagnation to static pressure, pt/p:

M =
√√√√( 2

γ − 1

)[(
pt

p

)(γ−1)/γ

− 1

]
. (2.5.12)

Equation (2.5.12) applies to non-isentropic flow as well as isentropic flow provided the stagnation
pressure is interpreted as pt(x), the value that actually exists at the location of interest.

For steady isentropic flow the stagnation pressure is constant along the channel and equal to the
inlet value, pti . The Mach number at any location x along the channel, M(x), is therefore defined by
the local ratio of static to inlet stagnation pressure, p(x)/pti :

M(x) =
√√√√( 2

γ − 1

)[(
pti

p(x)

)(γ−1)/γ

− 1

]
. (2.5.13)

For a given value of pti /p(x) the Mach number is determined as is the value of A (x)/A∗. In fact
any one of Tti /T, pti /p, A/A∗, or M, together with the inlet stagnation pressure and temperature, is
enough to determine the velocity and the thermodynamic states at any station in the channel.

In steady isentropic flow the ratio of exit pressure to inlet stagnation pressure, pexit/pti , determines
the channel exit Mach number and hence the corrected flow per unit area. Because we know the inlet
stagnation states, quantities such as the physical flow rate per unit area, the static temperature and
density, and the exit velocity can be determined. For situations in which the flow can be approximated
as isentropic the capability to obtain flow properties from knowledge of only inlet stagnation condi-
tions and exit static pressure is extremely useful. We return to the general topic of one-dimensional
channel flow in Chapter 10.

2.6 Shock waves

Flow compressibility is associated with the existence of propagating disturbances or waves such as
the small amplitude motions examined in Section 1.15. The behavior of finite amplitude disturbances,
or “shock waves”, is also of interest because they can have a large effect on performance of fluid
components.

We work with a control volume moving with the disturbance and consider the one-dimensional
situation. For finite amplitude disturbances, in contrast to the discussion of Section 1.15, terms which
arise from products of the disturbance quantities cannot be neglected. With reference to stations 1
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Figure 2.8: Control volume fixed to shockwave.

and 2 of the control volume shown in Figure 2.8, the equations for conservation of mass, momentum
and energy across a shock wave normal to the flow are:

ρ1u1 = ρ2u2 = ṁ, (2.6.1)

p1 + ρ2u2
1 = p2 + ρ2u2

2, (2.6.2)

h1 + u2
1

2
= h2 + u2

2

2
= ht . (2.6.3)

In (2.6.1) ṁ denotes the mass flow per unit area.
The numerical solution of (2.6.1) and (2.6.3) can be expressed non-dimensionally as functions of

the upstream Mach number, M1 as in Figure 2.9 in which the ratios of stagnation pressure (pt2/pt1),
static pressure (p2/p1), Mach number (M2/M1), and entropy rise T (s2 − s1)/u2

1 across the shock
wave are presented. The solutions are for compressive disturbances. There is also a trivial solution,
with no change in the flow variables, and a solution in which the flow undergoes a finite amplitude
rarefaction from subsonic to supersonic. As seen in Figure 2.9, entropy increases in the compression.
It would decrease in the rarefaction which, for this adiabatic flow, is a violation of the second law.
Only the compression is thus physically possible. The non-dimensional entropy increase across a
shock wave is small for Mach numbers up to roughly 1.25, after which it rises rapidly. Shock waves
at Mach numbers below this are efficient ways to diffuse the flow, and the presence of weak shock
waves can be a desirable feature in devices where one wishes to diffuse in a short distance.

2.6.1 The entropy rise across a normal shock

We can understand the way in which the increase of entropy across a shock scales with Mach number
by using the conservation equations to derive an expression for the change in stagnation pressure
(Liepmann and Roshko, 1957). In this, it is useful to work in terms of the ratio (p2 − p1)/p1 =
�p/p1, where�p is the pressure rise across the shock and p1 is the upstream pressure;�p/p1 gives
a measure of shock strength. From (2.6.2) the pressure difference can be written as

�p

p1
= p2

p1
− 1 = γM2

1

(
1 − u2

u1

)
. (2.6.4)
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We can find the ratio u2/u1 in terms of Mach number as follows. Equation (2.6.3) implies, with a∗

denoting the speed of sound at sonic conditions and M∗ = u/a∗,

u2

2
+ a2

γ − 1
= 1

2

(
γ + 1

γ − 1

)
a∗2 (2.6.5a)

or

M∗2 = (γ + 1)M2

2 + (γ − 1)M2
. (2.6.5b)

Use of the relation a2 = γ p/ρ to eliminate p and ρ from (2.6.1) and (2.6.2) results in

a2
1

γ u1
+ u1 = a2

2

γ u2
+ u2. (2.6.6)

Equation (2.6.6) can be combined with (2.6.5a) to obtain an expression for u1, u2, and a∗2 through
elimination of a2

1 and a2
2 . Upon simplifying the expression, we obtain

M∗
1 M∗

2 = u1

a∗
u2

a∗ = 1, (2.6.7)

where the subscript on a∗ has been omitted since a∗
1 = a∗

2 . Equation (2.6.7) allows the ratio u2/u1 to
be expressed as

u2

u1
= u1u2

u2
1

= 1

M∗2
1

. (2.6.8)

Equations (2.6.5b) and (2.6.8) can now be used to rewrite (2.6.4) in terms of M1 as

�p

p1
= p2

p1
− 1 = 2γ

γ + 1

(
M2

1 − 1
)
. (2.6.9)

The shock strength thus scales as M2
1 − 1.
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Use of (2.6.5b) and (2.6.7) also gives M2 in terms of M1 as

M2
2 = 2 + (γ − 1) M2

1

2γM2
1 − (γ − 1)

, (2.6.10)

which allows the stagnation pressure ratio across the shock to be expressed in terms of M1 as

pt2

pt1

=
(

p2

p1

) ( pt2

p2

)
(

pt1

p1

) =

[
(γ + 1) M2

1

2 + (γ − 1) M2
1

]γ /γ−1

[
1 + 2γ

γ + 1

(
M2

1 − 1
)]1/γ−1

. (2.6.11)

Substituting the shock strength�p/p1 for the Mach number in (2.6.11) and expanding the resulting
expression in a Taylor series about zero shock strength (M1 = 1), it is found that the terms that are
linear and quadratic in �p/p1 are both zero. For moderate shock strengths, therefore the change in
stagnation pressure scales as the third power of the shock strength:

1 − pt2

pt1

= (γ + 1)

12γ 2

(
�p

p1

)3

+ 0

[(
�p

p1

)4
]

or

�pt

pt1

∼= − 2γ

3(γ + 1)2

(
M2

1 − 1
)3 = − (γ + 1)

12γ 2

(
�p

p1

)3

+ · · · . (2.6.12)

There is no change in stagnation temperature across the shock wave and the entropy change is thus

(s2 − s1)

R
∼= (γ + 1)

12γ 2

(
�p

p1

)3

= 2

3

γ

(γ + 1)2

(
M2

1 − 1
)3

(2.6.13)

plus terms which are higher order in�p/p1. Equations (2.6.12) and (2.6.13) show the scaling of the
entropy change in terms of shock strength.

2.6.2 Shock structure and entropy generation processes

The approach to shock waves in the preceding section is global, in that the shock is treated as a control
volume and the details of flow within the shock are not dealt with. For insight into the mechanisms
by which the entropy change is produced, we need to look into the structure of the flow within the
shock, i.e. within the control volume that contains the shock. This procedure is carried out below for
a purely one-dimensional flow with a normal planar shock wave, but the analysis is a useful model
problem for more complex configurations because the shock radius of curvature is almost always
(unless the pressure is very low or the device length scale is small) much larger than the length scales
within the shock which characterize the viscous and heat transfer processes.

For one-dimensional flow, the variables depend only on a single coordinate (x). The total entropy
rise is a function of the end states only and is independent of the viscous stresses and heat transfer
occurring within the shock. As seen, the total entropy rise can be derived using control volume
arguments, but we wish here to examine entropy generation within the shock. The discussion that
follows is based largely on that given in Liepmann and Roshko (1957).
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For one-dimensional flow through a steady shock wave, the continuity, momentum, and energy
equations are (where in this one-dimensional flow we again omit the subscript on the velocity)

d

dx
(ρu) = 0, (2.6.14)

dρu2

dx
= −dp

dx
+ dτxx

dx
, (2.6.15)

dρuht

dx
= d

dx
(τxx u − qx ). (2.6.16)

In (2.6.15) and (2.6.16), the viscous stress τ xx is τ 11 in terms of the equations in Chapter 1. The rate
of heat transfer in the x-direction per unit area is denoted by qx. Equations (2.6.14)–(2.6.16) can be
integrated to yield5

ρu = ṁ = constant, (2.6.17)

ρu2 + p − τxx = ρ1u2
1 + p1, (2.6.18)

ρuht − τxx u + qx = ṁht1 . (2.6.19)

The subscript 1 denotes the conditions upstream of the shock, where shear stress and heat transfer
vanish. If the integration is carried to a far downstream station where the stress (τ xx ) and heat
transfer rate (qx ) also vanish, the jump conditions at a normal shock given previously in this section
are obtained:

ρ1u1 = ρ2u2, (2.6.1)

p1 + ρ1u2
1 = p2 + ρ2u2

2, (2.6.2)

ht1= ht2 . (2.6.3)

The heat flux and stresses do not influence the downstream state but they are directly linked to the
rate of entropy rise. The latter can be evaluated using the combined first and second law ((1.10.4)),
in the form

T
Ds

Dt
= Dh

Dt
− 1

ρ

Dp

Dt
. (2.6.20)

From (2.6.15), (2.6.16), and (2.6.17) the local rate of change of entropy is

ṁ
ds

dx
= τxx

T

du

dx
− 1

T

dqx

dx
. (2.6.21)

Integrating from station 1 (upstream of the shock) to a given location x′,

ṁ(s − s1) =
x ′∫

1

τxx

T

du

dx
dx −

x ′∫
1

1

T

dqx

dx
dx . (2.6.22)

5 Again, in this section ṁ denotes the mass flow per unit area.
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Figure 2.10: Normalized entropy distribution across a shock; M1 = 1.5, upstream entropy taken as 0, downstream
value = 1.0 (Teeple, 1995).

As discussed in Sections 1.7 and 1.13, the stress and heat flux are related to derivatives of the velocity
and temperature:

τxx = (2µ+ λ)
du

dx
, qx = −k

dT

dx
, (2.6.23)

where λ is the second coefficient of viscosity. The overall entropy change from upstream to down-
stream of the shock is

ṁ(s2 − s1) =
2∫

1

(2µ+ λ)

(
du

dx

)2

dx +
2∫

1

1

T

d

dx

(
k

dT

dx

)
dx . (2.6.24)

The second integral can be integrated by parts to yield

ṁ(s2 − s1) =
2∫

1

(2µ+ λ)

(
du

dx

)2

dx +
2∫

1

k

T 2

(
dT

dx

)2

dx . (2.6.25)

The two terms in (2.6.25), respectively, represent dissipation (irreversible conversion of mechanical
energy to internal energy due to viscous stress) and production of entropy due to heat transfer across a
temperature difference, as illustrated in Section 1.10. The quantities (2µ+ λ) and k are both positive
as are both integrals. The stagnation enthalpy is the same far upstream and far downstream but it
is not uniform throughout the region in which viscous stresses and heat transfer are non-zero. The
non-uniformity, however, has no effect on the flow field external to this region.

The results of a numerical integration of the one-dimensional equations are shown in Figure 2.10
(Teeple, 1995). The temperature dependence of viscosity is modeled using Stokes’s assumption of
λ= −2/3µ plus the behaviorµ/µo = (T/To)0.77 (based on measurements in air), the Prandtl number
is 0.71, and the upstream Mach number (M1) is 1.5. The abscissa in Figure 2.10 is the shock thickness
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Figure 2.11: Relative sources of entropy production across a shock wave, γ = 1.4, Pr = 0.71 (Teeple, 1995).

in terms of the mean free path corresponding to upstream conditions and the ordinate is the entropy
rise normalized by the total entropy rise from far upstream to far downstream. For the parameters
shown the entropy rise is monotonic and occurs over roughly five mean free paths, i.e. over a distance
of order 10−6 m at standard conditions, so the shock is indeed thin in comparison to representative
dimensions of fluids engineering devices.

Figure 2.10 shows that at M = 1.5, the contribution of viscous dissipation to the entropy rise is more
important than the effect of heat transfer. This proportion drops as the Mach number increases, as
shown in Figure 2.11, which gives the ratio of the overall entropy increase due to viscous dissipation
to that due to transfer of heat across the temperature difference. The two are roughly equal at an
upstream Mach number of 3, with the heat transfer dominating at higher Mach numbers than this.

2.7 Effect of exit conditions on steady, isentropic, one-dimensional
compressible channel flow

The material in Sections 2.5 and 2.6 provides the basis for a general description of the effect of exit
conditions on flow regimes in compressible channel flow. The ratio of static pressure to stagnation
pressure at any location determines the local Mach number. For isentropic (i.e. frictionless, adiabatic)
flow, if the Mach number is known at one location in a channel of specified area variation, the
conditions everywhere in the channel are defined. It is often the case that the static pressure at the
exit of a nozzle, diffuser, or turbomachine is a known and controlled variable. An important issue,
therefore, is the behavior of the flow in a channel as the ratio of the exit static to stagnation pressure
is altered. We examine this first for a converging nozzle and then for a converging–diverging nozzle,
following Shapiro (1953).
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Figure 2.12: Operation of a converging nozzle at different back pressures.

2.7.1 Flow regimes for a converging nozzle

The discussion can be given in terms of the configuration in Figure 2.12 which shows a converging
nozzle fed from a large reservoir (e.g. the atmosphere) at constant stagnation pressure and temper-
ature, pt and Tt. The nozzle discharges into a chamber, whose pressure can be controlled through
the combination of an exhauster and a valve, as sketched in the top part of the figure. The chamber
pressure, denoted by pB, is commonly referred to as the back pressure and we adopt this nomenclature
here. The flow is isentropic from the inlet to the nozzle exit. We address the behavior of the mass
flow and nozzle exit pressure as the ratio of back pressure to stagnation pressure, pB/pt, is reduced
from an initial value of unity.6

At pB/pt = 1 there is no flow in the channel, as indicated by curve (i) in the lower part of Figure 2.12.
If pB/pt is reduced to a value slightly below unity, the flow in the nozzle will be subsonic everywhere,
with a pressure that decreases along the channel as indicated by curve (ii). In the subsonic regime
the pressure at the nozzle exit, pe, is essentially equal to the back pressure, pB. The argument for this
can be seen if we suppose the exit pressure, pe, to be substantially different from pB, say higher. If
so, there would be streamline curvature with the stream expanding laterally on leaving the nozzle
(see Section 2.4). However, this would cause the stream pressure downstream to be even higher than
at the nozzle exit. Since the back pressure is the pressure which the stream must eventually attain in
the exhaust chamber, this situation cannot occur and the exit pressure cannot be higher than the back
pressure. A similar argument can be made to rule out an exit pressure lower than the back pressure.

6 The ratio between stagnation and static pressure is reported in the literature both as p/pt, as in this section, and as pt/p,
often referred to as the expansion ratio, as in Section 2.3 and Chapter 10. We will make use of both conventions in this text,
depending on context.
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For subsonic flow the conclusion is thus that the exit pressure and the back pressure are the same,
pe = pB. Curve (ii) in the figure is thus extended at a constant level from the nozzle exit into the
chamber.

If the back pressure is reduced further, to a value representing curve (iii) the Mach number
everywhere in the channel increases. The highest value is still at the exit, with this value less than
unity and the flow subsonic everywhere. There is no qualitative change in behavior from that seen
along curve (ii).

Similar conditions apply until the back pressure reaches the critical pressure p∗ (pB/pt = p∗/pt)
indicated by curve (iv). At this condition the Mach number at the exit of the channel, Me, is equal to
unity and the corrected flow through the nozzle has its maximum possible value. Further reduction of
the back pressure cannot increase the corrected flow and thus cannot alter any of the flow quantities
upstream of the exit. At any value of pB/pt lower than the critical value, represented by curve (v), the
pressure distribution within the channel, the value of pe/pt, and the flow rate are all identical with
the corresponding quantities for condition (iv). The pressure distribution outside the channel cannot
be described within a one-dimensional framework and is indicated only notionally by a wavy line.
The critical pressure ratio, p∗/pt, can be regarded as the boundary between Regime I (unchoked) and
Regime II (choked) depicted in Figure 2.12.

The behavior of the nozzle corrected flow per unit exit area (ṁ
√

Tt/Ae pt ) and the ratio of nozzle
exit static pressure to stagnation pressure (pe/pt) are shown in Figures 2.13(a) and 2.13(b) as functions
of the back pressure ratio (pB/pt). Exit conditions corresponding to curves (i)–(v) are indicated in
both plots, which can be described with reference to two regimes separated by the critical pressure
ratio pB/pt = p∗/pt.

In Regime I the exit corrected flow per unit area increases as the back pressure decreases. It reaches
a maximum, with the exit Mach number equal to unity, when the back pressure ratio drops to p∗/pt.
Further decreases in back pressure which occur in Regime II have no effect on exit corrected flow or
nozzle exit Mach number. The exit pressure is equal to the back pressure in Regime I until the latter
drops to p∗/pt, after which, in Regime II, it remains constant.
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Figure 2.14: Effect of back pressure on flow in converging-diverging nozzle (p∗/pt = 0.528 for γ = 1.4), TH
denotes nozzle throat location (Liepmann and Roshko, 1957).

2.7.2 Flow regimes for a converging–diverging nozzle

There is no supersonic region within a converging nozzle, whatever the back pressure ratio. We thus
now examine converging–diverging nozzles, in which supersonic regions exist at low back pressures.
A plot of the static pressure along a converging–diverging nozzle discharging into a chamber is given
in Figure 2.14 for different back pressures, pB. For back pressures such as p1 and p2, which are above
the value corresponding to M = 1 at the throat, the static pressure first decreases along the channel
and then increases, with a corresponding increase and decrease in velocity. For frictionless adiabatic
flow, solutions for this regime of operation are subsonic, continuous, and isentropic, and exhibit the
local symmetry about the throat mentioned in Section 2.5.

As the back pressure is decreased to a value p3, the Mach number reaches unity at the throat.
For all back pressures below this, the conditions at the throat also correspond to M = 1. The flow
upstream of the throat is subsonic, but its conditions are fixed because M = 1 at the throat and
pressure information from downstream of this location cannot travel upstream.

With the throat Mach number equal to unity, two continuous solutions are possible. In one the exit
flow is subsonic, with back pressure corresponding to pB = p3. In the other the flow downstream of
the throat is supersonic with back pressure pB = p8. These correspond to the two points at which a
horizontal line intersects the curve of D(M) versus M in Figure 2.6 with one intersection for M < 1
and the other for M > 1.
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The two solution curves in Figure 2.14 corresponding to p3 and p8 are the only possibilities for
isentropic, one-dimensional steady flow. To describe the behavior at other levels of back pressure,
the constraint of isentropic flow must be relaxed. In the range of back pressures (more precisely back
pressure ratios) between p3 and p8 the pressure and velocity in the nozzle are discontinuous. Between
p3 and p5 there is a region of supersonic flow downstream of the throat, followed by a normal shock
and then a region of subsonic flow. Because the exit flow is subsonic the exit pressure is equal to the
back pressure. This condition sets the strength of the shock. Lowering the back pressure means the
shock strength increases (see Figure 2.9) and the shock occurs at a higher value of Mach number
which corresponds to a location further downstream in the diverging section of the nozzle.

At a back pressure level of p5, the normal shock stands at the nozzle exit and the flow is supersonic
from the throat to the nozzle exit. No additional change inside the nozzle can occur as the pressure
is lowered from this point. Adjustment between the nozzle exit and downstream for back pressures
between p5 and p8 does not take place in a one-dimensional manner but rather through a series of
oblique shock waves as sketched. For back pressures between p5 and p8, the flow is referred to as
overexpanded.

Decreasing the back pressure beyond p8 means the flow at the exit is at a higher pressure than the
surroundings. Adjustment to a final state with a pressure equal to the back pressure then occurs through
a series of expansion waves. For back pressures lower than p8, the flow is said to be underexpanded.

The behavior can also be portrayed in terms of the relation of: (a) the corrected mass flow per unit
area at the throat (ṁ

√
Tt/AT H pt ), (b) the non-dimensional exit-plane pressure, (pe/pt), and (c) throat

pressure (pTH/pt), to the back pressure ratio (pB/pt). These are depicted in Figure 2.15, where the
numbers correspond to the flow fields of Figure 2.14. (Figures 2.15(a) and 2.15(b) can be compared
with Figure 2.13 for the converging nozzle.) Four regimes can be identified (in Figure 2.15 for clarity
not all the conditions in Figure 2.14 are marked). Regime I has entirely subsonic flow, with the
corrected flow sensitive to the level of back pressure. The dividing line between Regimes I and II
occurs at pB = p3 with the Mach number unity at the throat and the throat pressure, pTH = p∗. Regime II
has a shock standing in the diverging section of the channel, with subsonic deceleration after the
shock. In this regime exit pressure and back pressure are essentially the same, but the corrected flow
per unit area in the channel is not affected by back pressure level.
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Figure 2.16: Sudden expansion in a pipe.

In Regime III, corresponding to back pressures between p5 and p8 the exit-plane pressure is lower
than the back pressure. Compression from pe to pB occurs, as indicated in Figure 2.14, through
oblique shock waves (see Section 2.8.7) outside the channel. At condition 8, the boundary between
Regimes III and IV, the exit plane pressure is equal to the back pressure; at this condition the nozzle
is referred to as ideally expanded. In Regime IV the expansion from exit-plane pressure to back
pressure occurs outside the nozzle through oblique expansion waves. In Regimes III and IV the flow
pattern within the entire nozzle is independent of back pressure and corresponds to the flow pattern
at the “design condition” for which the exit pressure is equal to the back pressure.

2.8 Applications of the integral forms of the equations of motion

The integral forms of the equations of motion developed in Chapter 1 provide powerful tools for
analysis of flow problems in which the details of the motion within a control volume are not needed.
This use is illustrated in this section, starting with a constant density, unidirectional flow situation, and
working up to more complex configurations. To show the applications with a minimum of algebraic
complexity, the flows examined have inlet and exit states which are characterized by a single value
of velocity, pressure, or temperature, but it is emphasized that this approximation is not necessary to
apply control volume approaches.

2.8.1 Pressure rise and mixing loss at a sudden expansion

The first example is the pressure rise and mixing loss at a sudden expansion as indicated in Fig-
ure 2.16, where the steady flow from a duct of area A1 exits into a larger duct of area A2. The
stream emerging from the smaller pipe at station 1 mixes with the surrounding fluid and, at some
further downstream location, 2, becomes essentially uniform with velocity, u2. For simplicity the
flow is taken here as incompressible, but the approach is generalized to include compressibility in
Chapter 5.

The integral forms of the continuity and momentum equations applied to the control surface shown
as a dashed line in Figure 2.16 provide the means to calculate conditions at station 2 without reference
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to flow details inside the surface. In the figure, the jet is indicated as entering the large area duct
with the area and velocity it had in the smaller duct, in other words, the flow separates from the
bounding surface geometry at the exit corner of the smaller duct. In Section 2.10, we discuss this
behavior in more detail, and for now we state as an experimental observation that fluid motions in
configurations with a sharp edge (such as a sudden expansion or a nozzle exit) are observed not to
follow the geometry, but rather occur as roughly parallel jets having area and velocity equal to that
just upstream of the duct or nozzle exit.

In the fluid surrounding the jet, near the start of the expansion in the large pipe, the velocities are
low, and the static pressure is thus nearly uniform and equal to that in the jet. The pressure at station 1
can therefore be taken as if it were uniform across the duct, with the pressure on the left-hand wall
approximated as equal to that in the entering jet.7 The continuity equation gives

A2u2 = A1u1 (2.8.1)

in this one-dimensional treatment. Neglecting any contribution from friction forces on the walls of
the pipe, the momentum equation in the flow direction is

A2(p2 − p1) = ρA1u2
1 − ρA2u2

2. (2.8.2)

Combining (2.8.1) and (2.8.2), the static pressure rise in the mixing process can be expressed in
terms of the dynamic pressure of the incoming stream and the expansion area ratio AR = A2/A1 as
a pressure rise coefficient, Cp,

Cpsudden
expansion

= p2 − p1
1
2ρu2

1

= 2

AR

(
1 − 1

AR

)
. (2.8.3)

The non-dimensional loss in stagnation pressure as a result of the mixing is

pt1 − pt2
1
2ρu2

1

=
(

1 − 1

AR

)2

. (2.8.4)

The static pressure rise and the stagnation pressure loss given by (2.8.3) and (2.8.4) are shown
in Figure 2.17. As the area ratio of the expansion is increased from unity, the static pressure rise
increases to a maximum (0.5 × 1

2ρu2
1) at AR = 2. It then drops to zero at high values of area ratio as the

loss in stagnation pressure dominates the static pressure increase associated with fluid deceleration.
If the expansion were lossless the stagnation pressure would be constant along a streamline. From
the definition of stagnation pressure in an incompressible flow ((2.2.4)) this means

p + 1
2ρu2 = pt = constant along a streamline. (2.8.5)

The statement that p + 1
2ρu2 is constant along a streamline is known as Bernoulli’s equation. It

can be combined with the continuity equation to give an expression for the static pressure rise for
incompressible flow in a reversible (or lossless) expansion (no change in stagnation pressure),

C prev = p2 − p1
1
2ρu2

1

= 1 − 1

AR2
, (2.8.6)

7 This is an analogous argument to that given in Section 2.7 for the nozzle exit pressure in subsonic flow.
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Figure 2.17: Static pressure rise and stagnation pressure loss for sudden expansion and static pressure rise for
reversible (lossless) expansion.

shown by the dashed line in Figure 2.17. For the reversible expansion the static pressure coefficient
increases monotonically to unity as AR → ∞.

The control volume analysis of the static pressure rise coefficient at a sudden expansion is compared
with experiment in Figure 2.18, where the ratios of measured to calculated static pressure rise versus
distance downstream of an expansion in a circular duct are shown for a range of values of A2/A1. The
measured maximum pressure rise coefficient agrees to within roughly 5% with the control volume
analysis, showing that neglect of skin friction in the mixing region is a good approximation. In terms
of the static pressure rise, mixing is effectively complete by roughly five diameters downstream of
the expansion, and even a crude estimate (see Section 2.9) shows that frictional effects over this short
distance are small compared to the pressure and momentum flux terms in the overall momentum
balance expressed in (2.8.2).

2.8.2 Ejector performance

The sudden expansion analysis serves as part of the description of ejectors, or mixing tubes, which
are used to pump fluid. A representative configuration, shown in Figure 2.19, has a high pressure
primary stream of stagnation pressure ptp exiting into a constant area mixing tube at station 1. The
initial area of the high pressure stream is a fraction, σ , of the mixing tube area, A. The secondary
stream enters the tube with a lower stagnation pressure, for example from the atmosphere as pictured.
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The mixing tube is long enough such that the exit flow can be taken as fully mixed with uniform
velocity, u2. The discharge is to atmosphere. We wish to determine the total amount of fluid pumped
by the ejector, regarding the process as incompressible and constant density.

The results of Section 2.8.1 can be used here with the area ratio equal to 1/σ and the velocity u1

replaced by the difference between primary and secondary velocities (u p1 − us1 ). Thus,

p2 − p1 = ρ [(u p1 − us1 )2] σ (1 − σ ). (2.8.7)

The velocity in the primary stream at station 1, u p1 , is related to the reservoir stagnation pressure ptp

by

ptp − p1 = 1
2ρ u2

p1
. (2.8.8)

Two other statements about the flow are needed. First, the secondary stream from ambient condi-
tions (zero velocity, pressure = p0) to the start of the mixing plane is assumed lossless:

p0 = p1 + 1
2ρ u2

s1
. (2.8.9)

Second, the flow at station 2 exits the tube as a jet with the static pressure constant across the exit jet
and equal to the ambient pressure outside the jet:

p0 = p2. (2.8.10)

Equations (2.8.7)–(2.8.10) can be combined into a quadratic equation for ṁs/ṁp, the ratio of mass
flow pumped by the ejector to mass flow through the primary stream:(

ṁs

ṁ p

)2
[(

σ

1 − σ
)2

+ 1

]
+ 4

ṁs

ṁ p
− 2

(
1 − σ
σ

)
= 0. (2.8.11)

The only parameter that enters into (2.8.11) is the fractional area occupied by the primary stream,
σ . The level of stagnation pressure in the reservoir has no effect on the ratio ṁs/ṁp (or the ratio
us1/u p1 ). As with the sudden expansion, kinematic similarity is all that is needed for similarity in
ṁs/ṁp because any dependence on Reynolds number has been neglected. However, the stagnation
pressure (or rather ptp − p0, the driving pressure difference for the flow) does determine the physical
quantity of fluid pumped; all the velocities in the problem scale with

√
(ptp − p0)/ρ .

2.8.3 Fluid force on turbomachinery blading

The control volume formulation also enables derivation of the force on a row of turbomachine airfoils,
or blades, in steady flow. Figure 2.20 shows the blade row and defines a coordinate system fixed to
the blades. The flow is treated as incompressible and inviscid.

At the stations far enough in front of, and behind, the blades, the velocity is uniform. If W is the
spacing between the blades, the continuity equation is

ux1 W = ux2 W = ux W, or ux1
= ux2= ux , (2.8.12)

where ux is the axial velocity component far away from the blades.
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From the condition of constant stagnation pressure along a streamline the static pressure difference
across the blades is related to the velocities by

p2 − p1 = ρ

2

(
u2

x1
+ u2

y1
− u2

x2
− u2

y2

)
. (2.8.13)

Because the axial velocity is the same at locations 1 and 2

p2 − p1 = ρ

2

(
u2

y1
− u2

y2

)
. (2.8.14)

To apply the momentum theorem, we use the control volume indicated by the dashed lines in
Figure 2.20. The bounding surfaces are two streamlines a distance apart equal to the blade spacing,
W, and two vertical lines parallel to the plane of the blade row which are far upstream and far
downstream respectively. The depth of all faces of the control surface can be taken as unity.

There is no flow through the two streamline surfaces. Further, because conditions are the same in
each blade passage, the sum of the net force on these two surfaces is zero. The momentum flux and
pressure force contributions from the upstream and downstream vertical surfaces are thus all that
need to be found. The axial (x) velocity is the same at the upstream and downstream locations, so
there is no net flux of axial momentum out of the control volume and the axial component of the
force on the blade is given by

Fx= W(p1 − p2). (2.8.15)

There is no component of pressure force in the y-direction, but there is a net flux of y-momentum
out of the control volume. Equating this to the force on the blade yields

Fy = ρux W(uy1 − uy2 ). (2.8.16)

The quantity (W(uy2 − uy1 )) is referred to as the circulation and denoted by �. As will be seen in
Chapter 3, this quantity is of considerable interest; for now it is simply noted as a property of the
flow field through the blades.

Using (2.8.14), the x-component of the force on the blade is given by

Fx= ρ�(uy1 + uy2 )/2. (2.8.17)

Using (2.8.16), the y-component is

Fy = ρ�ux . (2.8.18)

The ratio F x/Fy is (uy1 + uy2 )/2ux . The resultant of F x and F y is therefore at right angles to the
resultant velocity formed from the axial velocity ux and the mean of the upstream and downstream
y-velocities, (uy1 + uy2 )/2. Denoting the magnitude of this resultant force by F , and defining a
vector mean velocity uvm, with components ux and (uy1 + uy2 )/2, leads to an expression relating the
magnitudes of the resultant force, the circulation, and the vector mean velocity:

F = ρ|�|uvm. (2.8.19)

Equation (2.8.19) has a form similar to the Kutta–Jukowski relation for the lift of an isolated airfoil.
The limiting case of large blade spacing is the isolated airfoil. Increasing W, the distance between

neighboring blades, while holding the circulation around a blade constant, means the difference
(uy1 − uy2 ) shrinks inversely with the spacing. As W approaches infinity, the velocity difference



83 2.8 Applications of integral forms of the equations of motion

Casing

Hub

Flow

Rotor

Axisymmetric
stream surfaces

CL

2

1

Figure 2.21: Axisymmetric stream surfaces used for an annular control volume.

approaches zero, and the velocities in front of and behind the one blade left at a finite position
approach one another, provided the distance from the blade is large enough. The vector mean velocity
can thus be represented by the velocity far from the blade row, u∞, which is the same on either side.
In this limiting case, the Kutta–Jukowski result for the magnitude of the force on an isolated airfoil
is recovered:

F = ρ|�|u∞. (2.8.20)

2.8.4 The Euler turbine equation

Equation (1.8.8) provides a relation between the torque (the moment of the forces) exerted within
a control volume and the net outflux of angular momentum. Figure 2.21 shows a control volume
consisting of the region between two axisymmetric stream surfaces in a turbomachine. The flow
enters at radius r1 with a circumferential velocity uθ1 and leaves at radius r2 with circumferential
velocity uθ2 . The mass flow between the stream surfaces is given by

dṁ = 2πρ1r1ux1 dr1 = 2πρ2r2ux2 dr2, (2.8.21)

where dr is the radial distance between stream surfaces. The difference in angular momentum flux
between stations 1 and 2 for the axisymmetric streamtube has magnitude dṁ(r2uθ2 − r1uθ1 ) and is
equal to the torque exerted by the blades over the region bounded by the two stream surfaces.

Integrating over the total mass flow gives the total torque exerted by the blade row on the fluid as

torque = [(∫ ruθdṁ
)

2 − (∫ ruθdṁ
)

1

]
. (2.8.22)

An average value of the angular momentum per unit mass, ruθ , at each axial station can be defined
as

(ruθ )av =
∫

ruθ dṁ∫
dṁ

=
∫

ruθ dṁ

ṁ
. (2.8.23)

The total torque can now be written in terms of the conditions at the inlet and exit as

torque exerted by the blade row = ṁ[(r2uθ2 )av − (r1uθ1 )av] (2.8.24)
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For a rotating blade row, or rotor, with angular velocity 
, the power needed by the blade row is
related to the torque by

power needed = −
× torque. (2.8.25)

The kinematic quantities (velocities) can now be related to the thermodynamic states at the inlet
and exit. The steady-flow energy equation (1.8.10) states that for an adiabatic flow the power output
is equal to the rate of stagnation enthalpy decrease of the fluid:

(ht1 − ht2 )ṁ = −
× torque. (2.8.26)

In (2.8.26) the convention for torque is defined as in (2.8.24). Using (2.8.24) and taking the flow to
be uniform at stations 1 and 2,

ht2 − ht1 = 
(r2uθ2 − r1uθ1 ). (2.8.27)

Equation (2.8.27) is known as the Euler turbine equation and applies to both compressible and
incompressible flow.

For constant density, adiabatic, and lossless flow (ds = 0), dh = (1/ρ)dp, and the Euler turbine
equation becomes

�

(
pt

ρ

)
= 
�(ruθ ). (2.8.28)

2.8.5 Thrust force on an inlet

Two other examples of the use of control volumes are related to the axial force on an inlet (which can
be a large fraction of the net thrust of a propulsion system) and the production of thrust through heat
addition. The streamline pattern for an inlet varies as a function of the ratio of the velocity in the inlet to
the onset, or ambient, velocity, as shown schematically in Figure 2.22 for subsonic flow. Figure 2.22(a)
represents near static (take-off) conditions for a jet engine and Figure 2.22(b) represents cruise-type
conditions (Küchemann, 1978). A control volume approach allows computation of the axial force
exerted on the inlet without detailed reference to the streamline pattern. The control volume used,
shown in Figure 2.23, is axisymmetric. The inlet is approximated as being a constant section from
some given distance behind the lip and the discussion here is restricted to incompressible, constant
density flow.

The axial (x-direction) velocity at a station 0 far upstream is denoted by u0 and the pressure by p0.
Quantities at the station inside the inlet control volume are denoted by 1. The integral momentum
equation applied to the control volume in the figure is

ρu2
0 A0 + p0 A0 − ρu2

x1
A1 − p1 A1 −

( ∫
AN

pd AN

)
− p0(A0 − A1 − AN ) − (ρu0 A0 − ρux1 A1)u0 = 0. (2.8.29)

As described by Küchemann and Weber (1953) the first two terms in (2.8.29) represent the flux of
x-momentum of the mass flow, ρu0A0, through the forward surface A0 of the control volume and the
pressure force which acts on that surface. The two terms following are the corresponding quantities
for the flow through the internal duct. The fifth term is the integral of the static pressure p over the
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u0 = 0

u1
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Aerodynamic
force

(b)

(a)

Figure 2.22: Streamline patterns upstream of a subsonic inlet: (a) u1/u0 much larger than unity (near take-off
conditions); (b) u1/u0 less than unity (cruise-type conditions).

surface of the intake, with dAN a surface element normal to the mean flow (x) direction. The next
term is the force on the base of the control surface outside the intake, with the streamlines assumed
to be straight and the pressure thus equal to the far upstream value. The last term is the momentum
of the flow through the base of the control volume and the curved (cylindrical) part of the control
surface, with the control cylinder large enough so the axial velocity at the control surface can be
taken as u0 in evaluating this term.

Cancelling terms in (2.8.29) allows the equation to be simplified to

∫
AN

(p − p0) d AN = ρux1 A1(u0 − ux1 ) − (p1 − p0) A1. (2.8.30)
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Figure 2.23: Control surface round inlet lip for the application of the momentum theorem.
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Figure 2.24: Tube with heating or cooling (idealized ramjet).

Applying Bernoulli’s equation (p0 + 1
2ρu2

0 = p1 + 1
2ρu2

1) in (2.8.30) between far upstream and the
station inside the inlet yields a relation for the upstream pointing force on the inlet, FI , in terms of
the inlet area and the velocities at stations 0 and 1:

FI
1
2ρu2

x1
A1

=

∫
AN

(p0 − p) dAN

1
2ρu2

x1
A1

=
(

u0

ux1

− 1

)2

. (2.8.31)

The force F I represents the difference between the pressure force on the curved part of the inlet (the
lip) and the force due to a pressure p0 acting on the cross-sectional area of the straight section of the
inlet, i.e. the force is referenced to a condition with p0 acting on the rear of the inlet cross-section,
AN. The force on the inlet, as thus defined, is positive (in other words is a thrust) for all mass flow
conditions except ux1 = u0, independent of the outer shape and cross-section of the inlet.

2.8.6 Thrust of a cylindrical tube with heating or cooling (idealized ramjet)

The inlet thrust result can be used in an analysis of a basic “stovepipe” ramjet consisting of a hollow
thin tube of uniform cross-section, with a region of frictionless heat addition or extraction, as shown
in Figure 2.24. The ideas can be illustrated with reference to low Mach number flow. For M2 � 1,
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the equation of state can be approximated as (see Section 1.17)

ρT = constant. (1.17.17)

The increase in temperature between stations 1 and 2 means a decrease in density and hence, from
continuity, an increase in velocity between the stations. There is consequently a pressure drop across
the region of heat addition:

p1 − p2 = ρ2u2
2 − ρ1u2

1. (2.8.32)

Ahead of the region of heat addition, the density can be taken as constant and the stagnation
pressure is uniform. We can therefore set ρ1 equal to ρ0 in (2.8.32) and use Bernoulli’s equation to
relate p0 and p1:

p0 − p1 = 1
2

(
ρ0u2

1 − ρ0u2
0

)
. (2.8.33)

The streamlines at the trailing edge (station 2) exit tangentially to the tube wall (i.e. axially) and the
pressure at this station is equal to the ambient pressure, p0:

p2 = p0. (2.8.34)

Equations (2.8.32)–(2.8.34) describe the flow from upstream to the ramjet exit. They can be combined
to yield an expression for the velocity in the tube upstream of the region of heat transfer,

u1

u0
=
[

1

2 (ρ0/ρ2) − 1

]1/2
=
[

1

2 (T2/T1) − 1

]1/2
. (2.8.35)

For the idealized ramjet, all the surfaces other than the inlet lip have zero projection in the axial
direction. The thrust can therefore only be due to the flow round the inlet lip.8 The expression for inlet
thrust given previously, which did not depend on the details of the lip geometry, can be applied here.
Values of u0/u1 and u0/u2 are plotted in Figure 2.25 as functions of the density ratio (or temperature
ratio) across the heat transfer zone along with streamline patterns for ρ2 <ρ1 and ρ2 >ρ1. The thrust
is zero only for a density ratio of unity; at any other condition, either heating or cooling, thrust is
generated.

2.8.7 Oblique shock waves

In the description of shock waves presented in Section 2.6 the shocks were normal to the flow. In
general, however, we need to consider configurations in which shock waves are not normal but rather
oblique to the incoming velocity. The last example of control volume analysis is thus a derivation of
the relation between the upstream and downstream quantities for such an oblique shock wave.

Figure 2.26 shows a typical geometry in which oblique shock waves would be encountered, a
so-called compression ramp which creates an oblique shock at an angle β to the incoming flow.
The figure also indicates the control volume for developing the relations between upstream and
downstream conditions across the shock.

8 If the tube is infinitely thin the thrust must be developed by an infinite negative pressure at the leading edge, similar to the
infinite negative pressure at the leading edge of an infinitely thin wing, since nowhere else can thrust be sustained.
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Figure 2.25: Flow through a stovepipe ramjet: (a) with heat addition; (b) with cooling; (c) the effect of the
density ratio (Hawthorne, 1957).
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Figure 2.26: Flow through an oblique shock wave (Liepmann and Roshko, 1957).

We resolve the incoming Mach number into components normal and tangential to the shock,
M1n and M1tan . The mass flow per unit area into and out of the control volume is the same and is
equal to the product of upstream density and upstream component of velocity normal to the shock.
Consider the flux of tangential momentum in and out of the control volume. There is no net force
in the tangential direction so the tangential velocity component must be the same upstream and
downstream of the shock. In consequence the changes in pressure, stagnation pressure, and in fact
in all the flow quantities, must be set by the upstream normal Mach number. Another way to argue
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this is to view the flow through a normal shock from a coordinate system traveling with a constant
velocity u1tan along the shock. In such a frame of reference, the perceived velocity is oblique to the
shock. Since no flow processes are altered by adoption of this constant velocity, the shock properties
must depend on the normal component of the upstream Mach number only.

Oblique shock properties can be found using the three conservation laws given as (2.6.1)–(2.6.3)
applied to the normal Mach number, plus the condition of unchanged tangential velocity across
the shock. The results are described in detail in many texts (e.g. Liepmann and Roshko (1957),
Kerrebrock (1992), Sabersky, Acosta, and Hauptmann (1989) and Hill and Peterson (1992)) and we
mention here only three further aspects. First, because the tangential velocity remains the same but
the normal velocity decreases, the flow angle will change, i.e. the flow will be deflected through
the shock as indicated in Figure 2.26. Second, for a given upstream Mach number, solution of the
equations yields two solutions, a weak oblique shock, with supersonic flow downstream of the shock,
and a strong oblique shock. The solution that occurs depends on the conditions downstream of the
shock. Third, the minimum angle for an oblique shock occurs when the normal Mach number drops
to unity. At this condition, the shock becomes an oblique compression wave, called a Mach wave or,
more appropriately, a Mach line,9 analogous to the small disturbance examined in Section 1.15. The
flow angle at which this occurs is related to the upstream Mach number by

sin (βM ) = a1

u1
= 1

M1
. (2.8.36)

The angle βM referred to as the Mach angle, is shown in Figure 2.26.10

2.9 Boundary layers

A useful tactic in the analysis of fluid motions is the partitioning, at least conceptually, of the flow
into zones in which different effects play a major role. This provides help in the definition of relevant
mechanisms. An illustration of this approach is seen in the treatment of the viscous layers which occur
adjacent to solid surfaces and which are referred to as boundary layers. In these thin layers the velocity
rises from zero at the wall, because of the zero velocity condition at the solid surface, to the free-stream
value and viscous effects are important. The part of the flow external to the viscous layers, which is
referred to by such (roughly equivalent) terms as inviscid core, external flow, and free-stream flow
can often be treated as if it behaves inviscidly. There is a well-developed methodology for calculating
the properties of boundary layers which is discussed in some depth in Chapter 4. The purpose in
this chapter is to introduce the concept, to show the behavior in a qualitative way, and to point
out some of the links between boundary layer behavior and the overall performance of fluid devices.

2.9.1 Features of boundary layers in ducts

Some features of the way in which the boundary layers and the core flow interact can be seen in Figure
2.27, which is a sketch of the flow through an inlet bellmouth into a constant width two-dimensional

9 At any point in a two-dimensional flow there are two families of Mach lines intersecting the streamline at the angle θM.
They are also referred to as the characteristics.

10 The well-accepted notation for shock angle is β; it should not be confused with the use of β to denote reduced frequency,
also another well-accepted notation!
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Figure 2.27: Effects of viscous forces on flow regimes in a channel (Johnston, 1978, 1986).

duct. Four regions are indicated and described below in sequence for incompressible flow (Johnston,
1978, 1986).

In Region I, almost all of the duct is occupied by flow that behaves in an inviscid manner, except
for the thin boundary layers near the wall, denoted by BL in Figure 2.27. We can estimate the
thickness of the boundary layers in order to assess their influence in representative situations. If
viscous effects are significant, they must be of the same magnitude as inertial forces. If the length
scale in the direction of flow is L, the inertial forces, represented by terms such as ρux(∂ux/∂x) in the
momentum equation, will be of order ρU2/L, where U is a characteristic velocity, say the average
velocity. The largest gradients in velocity occur normal to the surface. For laminar flow, the viscous
forces represented by terms such asµ(∂2u/∂y2) will thus be of orderµU/δ2, where δ is the thickness
of the boundary layer. These two forces will be of the same magnitude if

δ

L
∼
√
ν

U L
= 1√

ReL
, (2.9.1)

where ReL is the Reynolds number based on length. The balance between viscous and inertial forces
thus leads to the estimate of boundary layer thickness, δ, given in (2.9.1).

Reynolds numbers for many industrial internal flow devices (turbomachines, diffusers, nozzles)
are 105 or higher,11 so that boundary layers are much smaller than channel heights in many cases
of interest. If the streamwise length scale and the channel height, W, are roughly the same, as in
Region I, (2.9.1) shows that the boundary layer thickness is two orders of magnitude smaller than the
channel height for a Reynolds number of 105. Under these conditions a description of the inviscid core
flow based on geometry and inviscid flow analysis provides a good estimate of the static pressure
distribution. Note that there is no sharp transition between boundary layer and core flow and the
quantity δ is generally specified as a location at which the velocity has come to some specified
fraction of the core velocity, say 0.99.

It is of interest to examine the relationship of the velocity components along the wall (x-direction)
and normal to the wall (y-direction), and the pressure difference across the boundary layer. The

11 The length Reynolds number for an air flow with a velocity of 100 m/s is 6 × 106 per meter.
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continuity equation for two-dimensional incompressible flow provides a scaling for the first of
these:

∂ux

∂x
+ ∂uy

∂y
= 0. (2.9.2)

The y-distance in which the velocity normal to the wall reaches the value outside the boundary layer
is the boundary layer thickness, δ, and an estimate for ∂uy/∂y is uy/δ. This must be of the same
magnitude as the rate of change in x-velocity along the direction of the stream, ∂ux/∂x which is U/L.
The magnitude of the ratio uy/ux is therefore δ/L, or 1/

√
ReL ; for high Reynolds numbers, velocities

normal to the wall are much smaller than velocities along the wall.
Using this scaling in the y-momentum equation allows estimation of the pressure difference across

the boundary layer. The y-momentum equation is given as (2.9.3), with the magnitude of the different
terms shown below it:

ux
∂uy

∂x
+ uy

∂uy

∂y
= − 1

ρ

∂p

∂y
+ ν
(
∂2uy

∂x2
+ ∂2uy

∂y2

)
. (2.9.3)

ux uy

L

u2
y

δ

�py

ρδ
ν
( uy

L2

uy

δ2

)
In (2.9.3) �py denotes the magnitude of the change in pressure across the boundary layer. The two
terms on the left-hand side and the last term on the right-hand side are of the same magnitude, from
the arguments presented above. The term ∂2uy/∂x2 is (δ/L)2 smaller than these. The change in
pressure across the boundary layer is thus �py ∼ ρu2

y ∼ ρu2
x (δ/L)2 = ρu2

x (1/ReL ). For the
Reynolds numbers that characterize fluid machinery, unless there are large curvature effects (see
Chapter 4), the pressure can be regarded as uniform across the boundary layer and equal to the
pressure outside the boundary layer.

2.9.2 The influence of boundary layers on the flow outside the viscous region

Equation (2.9.1) shows that the thickness of the viscous layer grows with the square root of the length
scale in the streamwise direction, in this case the streamwise distance from the start of the channel.
At some location, denoted by the start of Region II, the boundary layers have grown enough so their
influence on the inviscid region can no longer be neglected. The effect on the velocity in the inviscid
region, uE, can be described with reference to a two-dimensional control volume bounded by the
wall, a surface a distance yCV from the wall, and two surfaces, 1 and 2, perpendicular to the wall, as
in Figure 2.28. At the upstream face of the control volume (station 1) we suppose the boundary layer
thickness to be much less than yCV, so the volume flow through the face is approximately uE1 yCV ,
where uE1 is the velocity external to the boundary layers at station 1. At the downstream face, the
boundary layer has grown so δ is larger than yCV. The volume flow is consequently less than uE1 yCV

and the streamlines diverge from the wall, with a corresponding convergence of streamlines in the
core. The effect is similar to that which would occur if the flow were inviscid and the geometric area
decreased in the direction of flow. We can thus view the presence of the boundary layer as creating
an effective channel area which is smaller than the geometric area.

This idea can be made more quantitative as follows, where, for simplicity, we consider a symmetric
channel. We introduce the effective height, Weff, as the height that would be needed to carry the channel
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Figure 2.28: Convergence of streamlines in the inviscid (core) region due to boundary layer growth (not to
scale).

volume flow if it were all at the inviscid region axial velocity, uE:

uE Weff =
W∫

0

ux dy

= W uE −
W∫

0

(uE − ux ) dy. (2.9.4)

Dividing both sides by uE provides an expression for Weff in terms of a boundary layer parameter,
δ

∗
, referred to as the displacement thickness. For a situation in which the boundary layers on the two

walls are the same, the displacement thickness is given by

Weff = W − 2

W/2∫
0

(
1 − u

uE

)
dy = W − 2δ∗. (2.9.5)

In the integral in (2.9.5), the velocity is equal to the velocity in the free stream for values of y greater
than δ and the integrand is zero in this range. When the profiles of u/uE are similar along the channel,
the displacement thickness δ

∗
and the boundary layer thickness δ are proportional; for a constant

pressure laminar boundary layer the proportionality is approximately δ
∗ ∼ δ/3.

The name displacement thickness derives from external flow applications, for which one inter-
pretation of δ

∗
is the amount by which a streamline outside the boundary layer is displaced in the

direction normal to the boundary. For internal flow applications, the most important characteristic
is the effect of the displacement thickness on the core flow, which can be regarded as the flow
“blockage” illustrated in Figure 2.29. The representation on the right has the same core velocity and
volume flow but occurs in a channel of reduced height, Weff, compared to the actual geometry. The
displacement thickness is equal to the blocked height for the lower part of the channel shown.

A relation between changes in blockage and changes in static pressure can be derived from the
incompressible form of the incompressible channel flow equations applied to the core flow. For the
two-dimensional channel with the boundary layers the same on both walls, the continuity equation is

duE

uE
= −dWeff

Weff
= −d(W − 2δ∗)

W − 2δ∗
. (2.9.6)
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Figure 2.29: Interpretation of displacement thickness in terms of flow blockage.

Substituting this into the momentum equation for the core gives

dp

ρu2
E

= dW − 2dδ∗

W − 2δ∗
. (2.9.7)

Static pressure changes due to boundary layer growth alone (constant channel width) are thus

(
dp

ρu2
E

)
boundary
layer growth

= − 2dδ∗

W − 2δ∗
(2.9.8)

or, for δ
∗
/W � 1,

(
dp

ρu2
E

)
boundary
layer growth

≈ −2d

(
δ∗

W

)
. (2.9.9)

A further implication of (2.9.7) is that if the displacement thickness grows rapidly enough so
2dδ∗ > dW, increases in geometrical area result in decreases in static pressure.

Because of the connection between displacement thickness and static pressure, a critical part
of the problem of finding pressure distribution in a channel or passage often hinges on accurate
assessment of the boundary layer displacement thickness. In Chapter 4 we describe techniques for
the quantitative prediction of boundary layers focusing on this aspect.

In Region III the boundary layers start to overlap and there is no streamline for which the stagnation
pressure is equal to the initial value. For sufficiently long ducts, Region IV can be reached in which
the flow obtains a fully developed state so the velocity profiles no longer change with streamwise
coordinate. In this region, for incompressible flow, the static and stagnation pressure decrease linearly
with x.
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2.9.3 Turbulent boundary layers

In fluid machinery, Reynolds numbers can often be high enough that the flow is turbulent rather than
laminar. In turbulent flow, the velocity components and pressure can be viewed as composed of an
average or mean part plus a fluctuating part. Turbulent boundary layers are examined in Chapter 4,
and for now we only mention some properties which differentiate them from laminar boundary
layers. The fluctuating velocities in turbulent flow greatly increase the transfer of momentum and
energy. Because of this, turbulent shear stresses are much higher than those due to viscous effects
alone. For example, for a zero pressure gradient boundary layer at a Reynolds number of 106,
the skin friction coefficient, C f = [τw/( 1

2ρu2
E )], where τw is the wall shear stress and uE is the

velocity external to the boundary layer, is approximately seven times higher for a turbulent boundary
layer than for a laminar one (0.0047 versus 0.00067). The region of retarded flow produced by
the increased shear stresses is also larger so turbulent boundary layers are thicker than laminar
boundary layers. For a 0.3 meter long duct at a velocity of 50 m/s (Reynolds number of 106), the
thicknesses of the laminar and turbulent boundary layers are approximately 1.5 mm and 7 mm,
respectively.

Even with the differences between laminar and turbulent flow, the classification of flow regimes is
still applicable. Rough guidelines for turbulent boundary layers might be x/W ∼ 15–25 to the start
of Region III and x/W> 40 for Region IV although these depend on factors such as turbulence level,
Reynolds numbers, and surface roughness. Internal flow devices tend to be designed to be compact
so values of x/W are such that operation is often in Region I or II.

One final point concerns operation in the region where the boundary layers have merged. If the flow
changes that take place occur in a length short compared to the length needed to merge the boundary
layers, the flow can often be treated as inviscid but non-uniform. In other words, for changes that
occur over length scales short compared with those required for viscous effects to penetrate to the
midst of the channel the influence of viscous forces can be small. In the succeeding chapters we
will see a number of situations in which viscous effects, acting over a long distance, have created a
non-uniform flow which then undergoes some alteration in a comparatively short distance. In this
situation, an inviscid description can be of great use.

2.10 Inflow and outflow in fluid devices: separation and the asymmetry of
real fluid motions

2.10.1 Qualitative considerations concerning flow separation from solid surfaces

The inlet and exit flows for the geometries in Section 2.8 have been represented as having a fun-
damental front-to-rear asymmetry. In Figure 2.22(a) streamlines which enter the inlet are shown
originating from essentially all directions of the flow domain. In contrast, flow which exits the ejec-
tor (Figure 2.19) or the ramjet (Figure 2.25) is described as a parallel jet with velocity in the direction
of the exit nozzle. To emphasize the point Figure 2.30 is a sketch of flow into and out of a pipe in a
quiescent fluid. For inflow to the pipe (Figure 2.30(a)) the streamlines have approximately spherical
symmetry and the pipe entrance appears from afar as a “point sink”. For outflow from the pipe
(Figure 2.30(b)) the fluid leaves as a jet, similar to the situation at the ramjet and ejector exits. This
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Figure 2.30: Flow into (a) and out of (b) a pipe in a quiescent fluid; u = 0, p = p∞ far away.
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Figure 2.31: Velocity profiles in a boundary layer subjected to a pressure rise: (a) start of pressure rise; (b) after
small pressure rise; (c) after separation.

asymmetry, which is a feature of all real (i.e. viscous) flows, is implicit in the control volume analysis
of these devices and it is thus worthwhile to examine the rationale behind its use.

The reason for the asymmetry is associated with the no-slip condition at a solid surface in a
viscous fluid and the consequent presence of a boundary layer adjacent to the surface, which has
lower velocity than the free stream (Section 2.9). For high Reynolds numbers and thin boundary
layers the pressure field is set by the flow outside the boundary layer which behaves in an inviscid
manner. If uE is the free-stream (or “external”) velocity the maximum pressure rise which can be
achieved by the free stream is 1

2ρu2
E . Fluid in the boundary layer, however, has been retarded by

viscous forces and has a lower velocity than the free stream. As a result, the pressure rise at which
the velocity of boundary layer fluid particles falls to zero is less than 1

2ρu2
E , in other words less than

that which the free stream could attain.
The evolution of a boundary layer subjected to a pressure rise is sketched notionally in Figure 2.31.

Figure 2.31(a) shows the boundary layer at the start of the pressure rise and Figure 2.31(b) shows the
situation after some increase in static pressure. For larger (or more sudden) increases in pressure the
result can be reversed flow and a breaking away, or separation, of the wall streamline from the solid
surface as illustrated in Figure 2.31(c). Quantitative definitions of “larger” and “more sudden” will
be given in Chapter 4; for now we combine these qualitative considerations concerning separation
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Figure 2.32: Flow separation from a surface: (a) a smooth body; (b) a salient edge (after Batchelor, 1967).

with a description of the static pressure field near the entrance of the pipe to provide a conceptual
picture of the observed asymmetry.

There is one further aspect of separation that needs to be introduced, namely the difference between
separation from a smooth body and separation from a body with a salient edge. The difference is
indicated in Figure 2.32 from Batchelor (1967). For the smooth body (Figure 2.32(a)), the streamlines
leaving the surface are tangential to the body. If this were not the case, and a non-zero angle existed
between the separation streamline and the body (i.e. a non-zero angle 123 where 1, 2, and 3 are points
on the separation streamline) the inviscid flow outside the boundary layer would have a stagnation
point at location 2. The fluid in the boundary layer would not be able to negotiate such a pressure
rise, and separation would occur upstream of point 2.

For a salient edge with discontinuity in slope (Figure 2.32(b)), inviscid streamlines that followed
the geometry would have infinite curvature (zero radius of curvature) and an infinitely low pressure
at the discontinuity (point 2). Although engineering devices do not have slope discontinuities when
viewed at close range, the point is that, as suggested by the inviscid flow arguments, high curvatures
lead to large decreases in pressure and hence severe adverse pressure gradients downstream of the
region of high curvature. A viscous fluid will thus separate from a salient edge, as indicated in
Figure 2.32(b) with the streamlines leaving tangential to the upstream part of the body. In such cases
(e.g. at the pipe exit in Figure 2.30) the velocity of the flow outside the boundary layer does not
decrease as the separation point is approached.

2.10.2 The contrast between flow in and out of a pipe

With Section 2.10.1 as background, we can now describe flow in and out of the pipe. Inflow stream-
lines in the vicinity of the entrance are sketched in Figure 2.33 for a high Reynolds number flow
with thin boundary layers. From 1 to 2 there is a favorable pressure gradient with acceleration of
the fluid in the boundary layer and thus no tendency for separation. From Section 2.4, location 2
at the entrance lip would be expected to be at low pressure because of the sharp curvature of the
streamlines around the lip. The static pressure along the streamline rises from 2 to 3, where the flow
outside the boundary layers becomes uniform across the pipe. From 2 to 3 there is some overall
streamline convergence (the area normal to the streamlines at 2 is larger than that at 3) which lessens
the severity of the adverse pressure gradient. Further, the entrance lip can be shaped to minimize the
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Figure 2.33: Inflow from a quiescent fluid into a pipe: flow near the pipe entrance.

pressure rise, or rather to make it mild enough so that separation does not occur; this is one of the
requirements for good inlet design. For high Reynolds numbers the streamlines entering the pipe
will thus follow the geometry and look generally similar to those for inviscid flow.

If we ask whether the outflow from the pipe will have a streamline configuration that looks like
that of the inlet, however, the answer is no. For this to occur the exiting fluid would have to flow
round the pipe entrance and negotiate a pressure rise to stagnation conditions; there is a pressure
rise associated not only with the streamline curvature round the lip, but also with the increase in
overall streamtube area. Fluid in the boundary layer on the pipe wall cannot do this because of its
low velocity (compared to the free stream) and separation will occur.

There is a further difference between outflow and inflow. The function of the exit nozzle is to
ensure the flow leaves in a certain direction, rather than flowing round the nozzle lip. This can readily
be achieved in practice since it is essentially the case of separation at a sharp edge (in fact it is hard
not to have happen). With flow that exits the pipe, therefore, the direction of the velocity is along the
line of the pipe, the static pressure and velocity are not altered as the fluid approaches the lip, and
the exit configuration is a parallel jet along the axis of the pipe. The static pressure in the exit jet is
the same as that of the surrounding environment for a subsonic flow, as argued in Section 2.5.

The asymmetry in streamline configurations which has been described occurs due to the presence
of viscosity. Viscous motions are not thermodynamically reversible and generally not kinematically
reversible (i.e. changing the direction of the flow does not mean that the streamlines will retain
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Figure 2.34: Flow round a thin airfoil at an angle of attack.

their form).12 A well-known example of this is the flow round a thin wing sketched in Figure 2.34.
Classical thin airfoil theory describes a flow which curves round the leading edge (with a locally
infinite velocity for a thin flat plate), and leaves the trailing edge tangential to the airfoil, as simulated
in the Kutta–Jukowski condition. There is a direct analogy with the flow entering and exiting the
ramjet. Describing the flow leaving a straight nozzle as a jet parallel to the nozzle axis is similar to the
Kutta–Jukowski condition for the airfoil in that it is an assumption that allows us to capture features
of the viscous flow with an inviscid description. This assumption can also be used to describe the
flow leaving a cascade of closely spaced turbine or compressor blades, where the idealization is also
a sharp trailing edge. In that situation the leaving angle of the flow depends little on the angle at
which the flow enters the cascade and can be regarded as constant over a range of inlet conditions.

2.10.3 Flow through a bent tube as an illustration of the principles

An example that incorporates many of the above ideas is given by the constant density flow through
a bent tube of uniform area A, as in Figure 2.35. We examine two situations, first flow exiting the
tube through the two areas at the ends of the tube (e and e′) and second flow entering the tube through
these areas. In the former situation the fluid enters at the center at O and exits through the two bent
parts of the tube at stations e and e′. With the tube free to rotate around O and the velocity through
the tube u1, we wish to know the rate of rotation. This can be found by considering the angular
momentum flux through a cylindrical control surface centered on O with a radius greater than the
tube radius. The fluid enters at the center of rotation with very small radius and thus no angular
momentum about O. With the tube free to rotate, no torque is applied and the fluid also leaves with
no angular momentum. The angular momentum flux across the outer control surface is zero, and this
can only occur if the tangential velocity is zero. For this to occur the velocity at which the fluid exits
the bent tube, relative to the tube, must therefore be equal and opposite to the tangential velocity of
the tube end so their sum is zero. The rate of rotation, 
, is thus given by the condition 
rtube = u1,
or 
 = u1/rtube. This result can also be derived viewed from a coordinate system rotating with the
tube by balancing the Coriolis forces on the radial part of the tube with the pressure forces in the
bend that turn the flow into the tangential direction.

From another perspective if the tube is held stationary, the exit flux of angular momentum around
O is ρu1A
rtube, so there must be a torque about point O. A stationary tube which is not restrained
will (in the absence of friction) therefore increase its rotation rate,
, until it attains the value u1/rtube.

12 At Reynolds numbers (UL/ν) much less than unity, when inertial forces are much less than viscous forces, fluid motions
do exhibit kinematic reversibility (Taylor, 1972).
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Figure 2.35: Freely rotating bent tube. Outflow or inflow at tube ends e and e′; velocity through the tube is u1.
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Figure 2.36: Forces on bent tube with inflow; u = 0, p = p∞ far from tube.

Suppose now, as recounted in graphic terms by Feynman (1985), the direction in which the fluid
is pumped is reversed, so that fluid is sucked into the tube at e and e′, and exits at O. What is the rate
of rotation in this situation? If the surrounding fluid is without rotation, as it would be if the tube
were fed from a still atmosphere, the flux of angular momentum across the outer cylindrical control
surface is zero. The flux of angular momentum out at O is also essentially zero. These two statements
imply no torque on the tube. If the tube is at rest, it will remain at rest, contrary to the first case.

It is helpful to see why this occurs from a different viewpoint through examination of the tangential
forces that act on the tube. These are indicated in Figure 2.36 for the condition in which the tube is
stationary. The discussions in Section 2.8 imply there is a “lip suction” force of magnitude 1

2ρu2
1 A

pointing forward. (We assume the section of the tube perpendicular to the radius is short enough so it
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1

Figure 2.37: Calculated inviscid steady flow through a two-dimensional slit to a uniform pressure region
(Batchelor, 1967).

can be taken as pointing in the tangential direction.) The force due to the pressure difference between
the inside and outside of the bent tube is (p∞ − p1)A, where p1 is the static pressure at station 1 inside
the tube and p∞ is the pressure of the still fluid far from the tube. From the Bernoulli equation this
force is equal to 1

2ρu2
1 A and points in the same direction as the lip suction force. Finally, the force

associated with the change in direction of the velocity (i.e. with the momentum change) as the fluid
is turned in the bend has magnitude ρu2

1 A and points in the direction opposite to the other two. As
shown in the figure, therefore, the sum of the three contributions is zero.

2.10.4 Flow through a sharp edged orifice

Separation at a sharp edge or corner must be accounted for in descriptions of the flow through
orifices and grids such as perforated plates (e.g. plates with sharp edged circular holes). The basic
behavior can be seen in the model problem of inviscid, constant density, steady flow through a
two-dimensional slit in a wall between a reservoir at a pressure p1 and an ambient pressure, p∞, as
shown in Figure 2.37. If the inviscid flow is to capture the basic features of the actual (viscous fluid)
situation the stream that emerges from the reservoir should separate at the termination of the solid
wall, with the velocity at the edge of the resulting jet tangent to the wall at the separation location.
Far downstream the jet velocity is uniform, parallel, and perpendicular to the plate. Although the
term “far downstream” is used here to denote the asymptotic form of the jet, the considerations of
length scales in Section 2.3 imply that the distance in which this condition is achieved is roughly
one slit width.

The downstream jet width is less than the width of the slit, W, and this contraction between initial
and asymptotic jet areas is common to flow through sharp edge orifices. The general features and
streamline pattern in such configurations are essentially unchanged for values of Reynolds numbers
(based on an appropriate length scale of the orifice) above roughly a thousand.

In Figure 2.37 the “free streamline” that bounds the jet once it leaves the solid wall is subjected
to ambient pressure p∞ all along its length. (We use the subscript ∞ for consistency with, and in the
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Figure 2.38: Separated flow from a reservoir through a reentrant channel (Borda’s mouthpiece).

same sense as, the term far downstream.) The velocity on this free streamline is thus constant. In the
vicinity of the plane of the slit, there is streamline curvature in the jet associated with the pressure
gradient force; there is a higher pressure at the jet centerline than at the edge of the jet.

From the Bernoulli equation, with p1 the stagnation pressure, the far downstream jet velocity is

u∞ =
√

2 (p1 − p∞)

ρ
. (2.10.1)

The ratio of the actual jet flow to a reference flow rate based on the velocity u∞ and the slit width
is often referred to as the discharge coefficient. For the two-dimensional problem the discharge
coefficient is given from the free streamline analysis as W∞/W = π/(π + 2) = 0.611 (Batchelor,
1967), a result which is close to the experimental value.

The above arguments imply that to increase the discharge coefficient the exit should be shaped
so the stream leaves the solid surface with a velocity parallel to the far downstream direction. For a
well-designed nozzle, for example, discharge coefficients are close to unity. In contrast a reentrant
geometry such as in Figure 2.38, in which the direction of the velocity at separation is opposite to the
far downstream jet direction, would be expected to have a discharge coefficient lower than that for
a slit or orifice in a plane wall. Discharge coefficients for a number of two- and three-dimensional
geometries are given by Miller (1990) and Ward-Smith (1980), but the discharge coefficient for the
configuration in Figure 2.38 can be found using control volume concepts.

The flow round the sharp edge of the reentrant channel separates from the channel wall as drawn
in Figure 2.38. If the channel is short enough so the flow does not reattach to the channel wall (from
Section 2.8 this means the length must be less than four or five channel widths) the pressure on
the free streamline at the edge of the jet is ambient throughout its length. For the control surface in
Figure 2.38 the force exerted on the fluid in the control volume is (p1 − p∞)A, where A is the channel
area. Equating this force to the outflow of momentum at the far downstream station, where the jet
has achieved its final area and velocity, yields

(p1 − p∞) A = ρu2
∞ A∞. (2.10.2)

Substituting the expression for the far downstream velocity, u∞, from (2.10.1) into (2.10.2) we
obtain the ratio of areas as A∞/A = 1/2, a result that applies whether the channel is two- or three-
dimensional.
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Figure 2.39: Flow through a sharp edged orifice in a duct: jet and reattachment; the jet edge turbulent region is
the mixing layer (not to scale); free-streamline theory applies from station 2 to station 3, station 3 is location of
minimum jet area.

If the channel is long enough that the jet flow through the orifice or slit reattaches to the channel
wall, as shown in Figure 2.39, there is a pressure rise associated with the mixing and reattachment
process. The pressure to which the jet discharges is therefore lower than ambient and the mass
flow is increased. This situation can be analyzed by combining the results for the sudden expansion
(Section 2.8) with the ideas introduced concerning the flow downstream of sharp edged orifices, as
done by Ward-Smith (1980) for a circular orifice in a cylindrical duct.

The stations used in the analysis are given in Figure 2.39. At stations 1 and 4 the velocity and
static pressure are taken as uniform. At station 3 the jet area has reached its minimum value and the
jet velocity is denoted by u J3 . Denoting the contraction coefficient between the jet minimum area
and orifice (or slit) area, A3/A2, as Cc the equations that describe the flow are:

u1 = Cc
A2

A1
u J3 = u4, (2.10.3)

p1 + ρ

2
u2

1 = p3 + ρ

2
(u J3 )2, (2.10.4)

p3 + ρCc
A2

A1
(u J3 )2 = p4 + ρu2

4. (2.10.5)

Equations (2.10.3)–(2.10.5) can be combined to give a relation for the stagnation pressure (or,
equivalently, static pressure) drop between stations 1 and 4 in terms of the orifice area to duct area
ratio, A2/A1, and the contraction coefficient as

pt1 − pt4

ρu2
1

/
2

= p1 − p4

ρu2
1

/
2

=
[(

A1

A2

)(
1

Cc

)
− 1

]2

. (2.10.6)

Measurements of pressure drop then allow one to find the relation between contraction coefficient
and the ratio of orifice area to duct area, A2/A1, as plotted in Figure 2.40. This information can also
be applied to the behavior of perforated plates (see also Cornell (1958)).

In the flows illustrated in Figures 2.37–2.39 a common phenomenon is that the jet downstream
of the obstacle or plate has a smaller area, and therefore a larger velocity, than that inferred based
on the open area in the channel (the total area minus the geometric blocked area). The resulting
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Figure 2.40: Variation of contraction coefficient, Cc, as a function of orifice area/duct area (see Figure 2.39) for
orifice plates with square edges, constant density flow in a circular pipe (Ward-Smith, 1980).

static, and stagnation, pressure drop for flow past sharp edged geometries is thus typically several
times (or more) larger than that based on purely one-dimensional geometric area versus velocity
considerations. Information on the numerical values for pressure drop in a variety of internal flow
configurations involving separations from sharp edges or corners (as well as in configurations with
no sharp edges) are given by Ward-Smith (1980), Fried and Idelchik (1989), and Miller (1990).

Finally, it is worth noting that an analogous situation concerning separation occurs for external
flow past bluff bodies with salient edges (e.g. a thin flat plate normal to a stream) in which the wake
width is considerably larger than the lateral dimension of the body. Roshko (1993b, 1993c) presents
insightful discussions of such configurations.



3 Vorticity and circulation

3.1 Introduction

In many internal flows there are only limited regions in which the velocity can be considered irrota-
tional; i.e. in which the motion is such that particles travel without local rotation. In an irrotational,
or potential, flow the velocity can be expressed as the gradient of a scalar function. This condition
allows great simplification and, where it can be employed, is of enormous utility. Although we have
given examples of its use, potential flow theory has a narrower scope in internal flow than in external
flow and the description and analysis of non-potential, or rotational, motions plays a larger role
in the former than in the latter. One reason for this difference is the greater presence of bounding
solid surfaces and the accompanying greater opportunity for viscous shear forces to act. Even in
those internal flow configurations in which the flow can be considered inviscid, however, different
streamtubes can receive different amounts of energy (from fluid machinery, for example), resulting in
velocity distributions which do not generally correspond to potential flows. Because of this, we now
examine two key fluid dynamic concepts associated with rotational flows: vorticity, which has to do
with the local rate of rotation of a fluid particle, and circulation, a related, but more global, quantity.

Before formally introducing these concepts, it is appropriate to give some discussion concerning
the motivation for working with them, rather than velocity and pressure fields only. The equations of
motion for a fluid contain expressions of forces and acceleration, derived from Newton’s laws. On
one level there is no need to introduce concepts relating to the angular rotation rate of a fluid particle
explicitly. The idea of introducing local fluid rotation can be motivated, however, by analogy with
rigid body dynamics. There, in addition to dealing with forces and linear velocity and momentum,
use of the concepts of moment of force (torque), angular velocity, and angular momentum gives rise
to additional, very effective, tools for examining problems involving rotation.

Ideas of vorticity and circulation are introduced in a similar context; it is not the necessity of
describing fluid mechanics in terms of these concepts that gives rise to their wide application, but
rather the demonstrated utility. A goal of this chapter, therefore, is to demonstrate that focus on these
concepts provides a useful framework for the physical interpretation and qualitative understanding
of fluid phenomena, particularly where three-dimensional or unsteady effects are concerned.

The plan and scope of the material to be covered stem from our observation that, although the
algebraic manipulations needed to derive the equations describing the evolution of vorticity and
circulation present little difficulty, there is often uneasiness about the physical content, the ques-
tion of why one considers vorticity, and the point of recasting the equations of motion in this
form. We thus illustrate with physical examples how one can use these concepts in situations of
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practical interest, as well as make connections between this material and more familiar areas of
dynamics.

Discussions of vorticity and circulation are presented along parallel paths, so that the relation
between changes in the two quantities can be seen and overall ideas concerning fluid rotation re-
inforced. Both concepts are developed in stages, starting with constant density, inviscid flow and
then incorporating the complicating factors of viscosity and compressibility one at a time, so that
the role of each is apparent. The initial discussion addresses changes of vorticity and circulation and
what this implies about the evolution of the flow features. The last part of the chapter describes the
relationship between a general distribution of vorticity and the velocity field, and shows how this
relation can be exploited in computing fluid motions.

3.2 Vorticity kinematics

The vorticity, ω, is formally defined as

ω = ∇ × u. (3.2.1)

To tie this to a specific example, consider a plane flow in which there is a small cylinder of fluid
rotating with local angular velocity Ω within this flow. The magnitude of the average vorticity over
the area, A, of the cylinder is then given by

ωav = 1

A

∫∫
∇ × u · n d A, (3.2.2)

where the unit vector n is normal to the planar area A. If the cylinder is small enough in cross-section
for the angular velocity to be considered constant over the area of the cylinder, ωav becomes the local
value, ω. Using Stokes’s Theorem, the above expression can be written as an integral over the line
elements d� of a contour C that bounds the cylinder area. As the area shrinks to zero, this becomes
an expression for the magnitude of the vorticity

ω = 1

A

∮
C

u · d�, as A → 0. (3.2.3)

Another way to define the vorticity is thus as the line integral round the contour that bounds the small
area. For a circular cylinder of radius r rotating with angular velocity Ω, as shown in Figure 3.1, the
value of the integral is 2πruθ = 2πr2
 and the magnitude of the vorticity is

ω = 2
. (3.2.4)

As defined in (3.2.1), the sense of the vorticity is positive if the rotation is anti-clockwise as
seen from above and negative if clockwise. The fluid element in Figure 3.1 therefore has positive
vorticity.

In the planar configuration just examined the magnitude of the vorticity was shown to be twice
the local rate of fluid rotation. However, the flow does not have to be planar for this result to hold.
For a fluid particle small enough that the rotation rate can be regarded as constant over the area of
integration, we can carry out similar operations with reference to the three component directions.



106 Vorticity and circulation

r

uθ

Ω

Figure 3.1: Circumferential velocity (uθ ) and angular velocity (
) for a small cylindrical fluid element;
uθ = 
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Figure 3.2: Rotation of fluid element in a uni-directional shear flow.

The vorticity vector, ω, is therefore related to the local angular velocity of the fluid, Ω, by

ω = 2Ω. (3.2.5)

A physical interpretation of (3.2.5) is that if a small sphere of fluid were instantaneously solidified
with no change in angular momentum, the local vorticity would be twice the local angular velocity
of the sphere. The rotation convention is such that there is a “right-hand rule” between velocity and
vorticity directions.

As with angular velocity, vorticity is a vector. On a component by component basis, the components
of the vorticity vector are the sum of the rotation rate of two mutually perpendicular fluid lines. For
example consider the planar uni-directional flow shown in Figure 3.2. The velocity u is given by
ux(y)i (with i the unit vector in the x-direction) and the streamlines are parallel. Examination of the
components of ∇ × u shows that ωx = ωy = 0, but the z-component of ω is non-zero:

ωz = −dux

dy
. (3.2.6)

The quantity (−dux/dy) is the clockwise rotation rate of the fluid line initially parallel to the y-axis.
Because the fluid line parallel to the x-axis does not rotate, the average rotation rate is 1/2(dux/dy)
and the vorticity is as given in (3.2.6).

The general planar case is depicted in Figure 3.3, which shows the rotations of the lines OP and
OQ about point O, the center of a fluid particle. The two lines, of lengths dx and dy respectively,
are initially perpendicular. After a short time, dt, they have moved to positions OP′ and OQ′with
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Figure 3.3: Rotation of two initially perpendicular fluid lines, OP and OQ, during a short time dt; ux and uy are
velocity components at point O.

reference to point O, as shown by the dashed lines. If ux and uy are the velocity components at
point O, the rate of counterclockwise rotation of OP is (∂uy/∂x) and that of OQ (−∂ux/∂y). The
average rate of rotation is one-half the sum of these two quantities so the vorticity is [(∂uy/∂x) −
(∂ux/∂y)]. For the x–y planar flow illustrated, this would be the magnitude of the z-component of
vorticity. For a three-dimensional velocity field, the two other (y–z and z–x) components of the
vorticity vector could be obtained by carrying out these operations for their respective planes. Note
that in Figure 3.3, the orientation of the x–y coordinate system was arbitrary with respect to the flow
field; the mean angular rotation at a given location, and thus the vorticity, has the same value
independent of coordinate orientation.

3.2.1 Vortex lines and vortex tubes

Applications of vorticity concepts are often connected to an overall, rather than just local, description
of flow fields. To link the local definition given in (3.2.1) and the overall field, we introduce the idea
of vortex lines, which are lines in the fluid tangent to the local vorticity vector. A general result for
all vector fields is that the divergence of a curl is identically zero, so that for a vector B

∇ · [∇ × B] = 0. (3.2.7)

Thus, since ω = ∇ × u,

∇ · ω = 0. (3.2.8)

Equation (3.2.8) is purely kinematic and holds for any flow. A vector whose divergence is zero is
referred to as solenoidal and (3.2.8) is often referred to as stating that the vorticity field is solenoidal.
This is a strong constraint about the behavior of vortex lines, as described in the next several para-
graphs.

Applying the Divergence Theorem to (3.2.8), we obtain a statement about the vortex lines that
thread through a closed surface as∫∫
©ω · n d A = 0. (3.2.9)
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ω

Figure 3.4: Individual vortex lines and a vortex tube.

Equation (3.2.9) states that the integral of the normal component of vorticity is zero over any closed
surface. The vortex lines that enter the surface must therefore also leave it (else the integral would
not be zero) so that vortex lines cannot end in a fluid. The vorticity field obeys the same continuity
equation as an incompressible velocity field (∇· u = 0), for which: (1) streamlines (lines tangent
to the local velocity vector) cannot end in the fluid, and (2) concentrations of the streamlines occur
where the velocity is high. Similarly, vortex lines are closely spaced in regions of high vorticity and
sparse where the vorticity is small.

The analogy can be taken a step further by introducing the concept of a vortex tube as a tube with
boundaries formed by vortex lines which intersect a closed curve, as in Figure 3.4. The vorticity,
which is everywhere parallel to the vortex lines only penetrates surfaces which cut the tube such as
those bounded by the curves C and C ′. Equation (3.2.9) shows that the total (integrated) vorticity,∫∫
©ω · n dA, threading through both of these two surfaces, or through any other two surfaces which
completely cut the vortex tube, will be the same. The flux of vorticity (

∫∫
ω · n dA) is analogous to

the volume flow along a stream tube (a tube composed of streamlines through a closed curve) in an
incompressible fluid. A streamline is a curve locally tangent to the velocity, so that no fluid leaves the
stream tube through its sides. The volume flow

∫∫
u · n dA must be the same at any location along the

streamtube and, when the streamtube area decreases, the velocity increases. Similarly, the quantity∫∫
ω · n dA, which is often referred to as the strength of the vortex tube, is constant along the length

of the vortex tube. When the vortex tube area decreases, the local vorticity magnitude increases. In
addition, since the individual vortex lines within the vortex tube cannot end in the fluid, vortex tubes
also cannot end in the fluid.

The concept of a vortex tube is especially applicable when there are regions of concentrated vor-
ticity, and in situations of this type it is possible to deduce features of the velocity field from vorticity
considerations. A basic example is an infinite, straight vortex tube of radius a in an unbounded flow
which is irrotational outside the tube,1 such as is shown in Figure 3.5. The tube is specified to have
vorticity of uniform magnitude ωo, with no vorticity outside. The strength of vorticity, which is the
strength of the vortex tube, is πa2ωo. This is also the total (integrated) vorticity through any circular
area of radius r> a centered on the tube axis and normal to it. The total vorticity that threads through
an area, however, can also be expressed as a line integral round the contour that bounds the region,

1 See Convention 3 in the Nomenclature section concerning the use of the same variable for two different quantities.
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Figure 3.5: Velocity field associated with a straight vortex tube.

as discussed previously, and is given by∫
u · dl = πa2ωo. (3.2.10)

The scalar quantity defined by ∫ u · dl, which represents an integral property of the vortex tube, is
called the circulation and will be discussed at length in Section 3.8.

From symmetry, in the region outside of the vortex tube the only component of velocity is axi-
symmetric in the circumferential (θ ) direction. The circulation around the vortex tube is constant for
r > a and so the θ -component of velocity is given by

uθ = a2ωo

2r
, r > a. (3.2.11)

In the irrotational region outside the vortex tube, the θ -component of velocity varies inversely with
radius. For radii less than a, the flux of vorticity depends on radius and at any radius, r ≤ a,

uθ = ωor

2
, r ≤ a. (3.2.12)

At r = a, the two velocity distributions are continuous. The corresponding θ-velocity distribution is
also sketched in Figure 3.5.

The infinite straight vortex tube is not in any strict sense a representation of flows of engineering
interest, but it does give qualitative guidelines about the velocity field in more complex configurations,
for example, the curved vortex tube in Figure 3.6. If the tube has a diameter small compared to the
radius of curvature of the tube axis, then the predominant motion will locally resemble that of the
infinite tube, i.e. a swirl round the tube, with the resulting velocity as sketched: downwards on
the outside of the loop and upwards on the inside. We will explore the connection between the
velocity and vorticity field in greater depth later in this chapter as a means for not only qualitative,
but quantitative, flow descriptions.
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Figure 3.6: Velocity field associated with a curved vortex tube.
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Figure 3.7: Behavior of vortex lines at a solid surface; vorticity must be tangential except for isolated vortex
lines (with zero circulation).

3.2.2 Behavior of vortex lines at a solid surface

We conclude this section with a description of the behavior of vortex lines at a solid surface. For
a stationary boundary, the no-slip condition requires that the velocity of the fluid at the surface be
zero. The circulation round any contour drawn in the solid surface is therefore also zero. This means
that there are no vortex lines threading through such a contour and hence no normal component
of vorticity. At stationary solid surfaces, the vortex lines must be tangential, except possibly for
isolated vortex lines (with zero circulation) similar to dividing streamlines. In contrast, for a rotating
surface, there is a normal component of vorticity at the surface, with a magnitude twice the surface
angular velocity. Thus vortex lines can terminate on rotating surfaces. This implies that for a flow
with stationary boundaries, vortex lines must either form closed loops or “go to infinity”; except
for isolated instances they cannot end on the solid boundary. A sketch of such a configuration is
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given in Figure 3.7, which shows vortex lines associated with a swirling flow over a stationary solid
surface.

3.3 Vorticity dynamics

The foregoing has been purely kinematic, and the results are applicable to viscous and inviscid,
compressible as well as incompressible, flows. To make real use of the vorticity as an aid in developing
physical understanding, it is necessary to consider the dynamical aspects, in particular, to address
how the vorticity distribution evolves in a general flow field.

The starting point for this is the momentum equation, (1.9.10), written in the form

Du
Dt

= ∂u
∂t

+ u · ∇u = − 1

ρ
∇p + X + Fvisc. (3.3.1)

The forces acting on the fluid are represented as three types: pressure forces per unit mass (∇p/ρ),
body forces per unit mass (X), and viscous forces per unit mass (Fvisc), allowing the effect of each
to be examined separately. Using the vector identity

(u · ∇) u ≡ ∇
(

u2

2

)
− u × (∇ × u) = ∇

(
u2

2

)
− u × ω, (3.3.2)

(3.3.1) can be written

∂u
∂t

+ ∇
(

u2

2

)
− u ×ω = − 1

ρ
∇p + X + Fvisc. (3.3.3)

An equation for the rate of change of vorticity is obtained by taking the curl of (3.3.3):2

Dω

Dt
= (ω · ∇) u − ω(∇ · u) − ∇ ×

(
1

ρ
∇p

)
+ ∇ × X + ∇ × Fvisc. (3.3.4)

Equation (3.3.4) describes changes in vorticity for a fluid particle. Rather than examine the general
form immediately, it is helpful to build up the different effects from several simpler situations. We
thus examine the following classes of fluid motions:

(1) incompressible (∇ · u = 0), uniform density, inviscid (Fvisc = 0) flow with conservative body
forces (∇ × X = 0);

(2) incompressible, non-uniform density, inviscid flow with conservative body forces;
(3) uniform density, viscous flow with conservative body forces;
(4) compressible, inviscid flow with conservative body forces.

For the phenomena considered in this book, the most important non-conservative body force is
the Coriolis force, which is encountered when describing flows in rotating machinery. The effects of
Coriolis forces will be examined in depth in Chapter 7.

2 Vector identities used in obtaining (3.3.4) are ∇ × (u × ω) ≡ (ω · ∇)u − (u · ∇)ω − ω(∇ · u) and ∇ × ∇(u2/2) ≡ 0.
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Figure 3.8: Change in length and orientation of vortex line element PQ during a short time interval, dt.

3.4 Vorticity changes in an incompressible, uniform density, inviscid flow
with conservative body force

For an incompressible uniform density flow with conservative body forces, the terms ∇ · u, (1/ρ∇p),
and ∇ × X are all equal to zero. Equation (3.3.4) thus becomes

Dω

Dt
= (ω · ∇) u. (3.4.1)

The term on the right-hand side of (3.4.1) is the magnitude of the vorticity times the rate of change of
the velocity with respect to distance along the vortex line. Its meaning can be interpreted with regard
to Figure 3.8, where P and Q are points a short distance d� apart on a vortex line. The rate of change
of velocity along the direction of the vortex line is ∂u/∂	, where ∂/∂	 denotes differentiation in the
direction of d�. The term (ω · ∇)u in (3.4.1) can thus be represented by ω(∂u/∂	):

Dω

Dt
= ω

(
∂u
∂	

)
. (3.4.2)

The physical content of (3.4.2) can be seen by examining the change in the element d�, which moves
with the fluid during a short time interval dt. At time t, this line element extends from point P to
point Q so that d�(t) = r(Q) − r(P), where r denotes the distance of a point from the origin. At time
dt later, the ends of the line element have moved to P′ and Q′ so that d�(t + dt) = r(Q′) − r(P′).
During this interval, the velocity of point P is u [r(P)] and the velocity of point Q is u [r(Q)] = u
[r(P) + d�], or u + (d� · ∇u) = u + (∂u/∂	)d	 for small d�. The velocity of point Q with respect
to point P, du, is thus given by (∂u/∂	)d	. Likewise, the change in the vector d� in the time interval
dt is given by

d�(t + dt) − d�(t) = [r(Q′) − r(Q)] − [r(P ′) − r(P)]

= (u + du) dt − udt

=
[(
∂u
∂	

)
d	

]
dt. (3.4.3)
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In the small time interval, dt, then, the fractional rate of change in the element d� is

1

d	

D(d�)

Dt
=
(
∂u
∂	

)
. (3.4.4)

The notation D/Dt is appropriate because the change is evaluated following the same fluid particles.
Comparing (3.4.2) and (3.4.4), we have

1

d	

D(d�)

Dt
= 1

ω

(
Dω

Dt

)
. (3.4.5)

The relation between vorticity and the length of a vortex line element satisfying (3.4.5) is a direct
proportionality:

ω = C d�, (3.4.6)

where C is a constant. The magnitudes of ω and d� are thus related by

|ω|
d	

= constant. (3.4.7)

Equations (3.4.5) and (3.4.7) show that the behavior of vortex lines and of material lines (lines
composed of the same fluid particles at all times) is identical. In an inviscid, uniform density fluid,
tilting or stretching of the material lines to alter orientation or length affects vortex lines in precisely
the same manner. Another way to state this is that the vortex lines move with the fluid, or equivalently,
that vortex lines can be regarded as “locked” to the fluid particles; fluid once possessing vorticity
will do so forever. In a three-dimensional flow, where different parts of a vortex line move with the
local fluid particles at different convection rates, the vorticity vector will change in both orientation
and magnitude. Equation (3.4.2) expresses this change as a function of the vorticity and the velocity
derivatives.

Because phenomena associated with the alteration of the components of vorticity due to the
stretching and tipping of vortex lines are so important, it is worthwhile to examine the consequences
of (3.4.1) on a component by component basis. We do this with reference to Figure 3.9, which shows
a flow in which the x-component of velocity, ux, varies with y, and in which, at some given position,
there is a component of vorticity in the y-direction. The x-component of (3.4.1) is

Dωx

Dt
= ωx

∂ux

∂x
+ ωy

∂ux

∂y
+ ωz

∂ux

∂z
. (3.4.8)

The term ωy(∂ux/∂y) is non-zero so there will be a change in ωx as the flow evolves. For the velocity
field shown, the term (∂ux/∂y) is positive and a positive x-component of vorticity will be created.
Figure 3.9 shows that as the vorticity initially in the y-direction moves with the fluid it is tipped into
the x-direction.

We can also note the implication of (3.4.1) for a planar two-dimensional flow (velocity components
which depend on two coordinates, say x and y, and uz = 0). In this situation, the vorticity has only
a component in the z-direction, and (ω · ∇)u is identically zero. For a two-dimensional, constant
density, inviscid incompressible flow, (3.4.1) reduces to the statement that the magnitude, ω, of the
z-component of vorticity is invariant:

Dω

Dt
= 0; planar, two-dimensional, inviscid, uniform density, incompressible flow. (3.4.9)
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Figure 3.9: Creation of the x-component of vorticity by tipping of the element of the vortex line initially in the
y-direction into the x-direction due to differential convection.

A

B

A′

B′

ωn
ωs

Vortex line
at exit

Boundary
layer region

Top View
of Passage

Velocity

Vortex line
at inlet

Inlet Streamwise
Velocity

ID OD

Secondary Streamlines
at Passage Exit

Figure 3.10: Generation of streamwise vorticity (and secondary flow) from the convection of vortex lines through
a bend.

3.4.1 Examples: Secondary flow in a bend, horseshoe vortices upstream of struts

An example showing the creation of vorticity components due to the non-uniform convection rate of
different parts of a vortex line is the so-called secondary flow that occurs in flow round a bend or in
a turbomachinery passage. The topic will be addressed further in Chapter 9 but Figure 3.10, which
shows flow in a channel, illustrates the basic situation. At the inlet, suppose there is a boundary
layer on the floor of the passage and that the free-stream velocity can be considered approximately
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uniform in a direction across the passage. The vortex lines run across the channel normal to the
inlet velocity, as indicated by the arrow AB and are located near the channel floor where the flow
has non-uniform velocity. We can view this situation approximately as a distribution of vortex
lines which are convected by an irrotational background or “primary” flow. The evolution of the
vorticity distribution produced then leads to a “secondary” motion normal to the primary flow stream-
lines.

As the flow proceeds round the bend, the fluid near the inner wall will have a higher velocity than
that near the outer wall. Particles on the outside wall also have farther to travel. The net result is that
a line of particles AB, initially normal to the mean flow, ends up oriented as A′B′, at the passage exit.
Because vortex lines and material lines behave the same way, the vortex lines at the exit will also
be “tipped” and stretched into the streamwise direction. The result is a component of streamwise
vorticity at the exit giving a secondary circulation as indicated in the channel cross-section shown
in Figure 3.10. This secondary flow generates an inward motion of fluid in the floor boundary layer.

It was stated in Section 3.1 that characterization of flow patterns in terms of vorticity forms a
complement to the use of pressure and fluid accelerations, but that the two viewpoints embody the
same dynamical concepts. Which view is more attractive in terms of furnishing insight depends on
the specific problem to be attacked; for example, the illustration given above of the secondary flow
in a bend can also be described in terms of the pressure field. As discussed in Section 2.4, in the free
stream above the boundary layer on the floor of the bend, there is a pressure gradient normal to the
streamlines (∂p/∂n) which balances the normal acceleration of the fluid particles moving round the
bend with velocity uE and streamline radius of curvature rc:

∂p

∂n
= ρ

u2
E

rc
. (3.4.10)

The fluid in the boundary layer on the floor of the channel also experiences the same pressure
gradient, but has a lower velocity. The boundary layer streamlines must therefore have a smaller
radius of curvature than the free stream, so the boundary layer fluid is swept towards the inner radius
of the bend.

Another aspect of the behavior of the vorticity field is the possibility of amplification due to
stretching of vortex lines. As given explicitly in (3.4.7), if a material line is stretched, the component
of vorticity along that line is stretched in the same proportions. This can intensify weak swirling
motions into concentrated vortices with high swirl velocities.

A frequently encountered example of such intensification occurs in the flow of a boundary layer
round a strut or other obstacle that protrudes through it, as sketched in Figure 3.11. Far upstream,
vortex lines in the boundary layer are straight and normal to the velocity vectors (line AA′). As they
approach the obstacle, vortex lines are bent round the obstacle (line BB′), because fluid particles
on the plane of symmetry are slowed down (approaching the stagnation point), whereas those away
from this plane speed up. Further, particles in the plane of symmetry must remain at the front of the
obstacle, whereas those that are off this plane eventually move downstream (line CC′). As a result,
the material lines and hence the vortex lines are stretched and the vorticity increases. The strongest
stretching occurs on the plane of symmetry, with the vorticity and the associated swirl velocity being
greatest there. Portions of different vortex lines near the plane of symmetry will rotate about each
other faster than those which are off to the sides, so they twist round one another like the strands
of a rope and a strong vortex can be formed on the upstream side of an obstacle. Figure 3.12 is a
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Figure 3.11: Boundary layer vortex lines wrapping round an obstacle.

Figure 3.12: Smoke flow: a visualization of a horseshoe vortex upstream of a 60◦ wedge in a channel; vortex
on the bottom floor of channel, view from top of channel (Schwind, 1962).

visualization of such a vortex, located upstream of a 60◦ wedge in a channel (Schwind, 1962), where
smoke flow streaklines have been used to indicate the nature of the flow. The view is from the top,
looking down parallel to the sides of the wedge. The increase of the swirl velocities is more naturally
described here in terms of the intensification of vorticity; arguments in terms of the pressure field
are more difficult to apply, and this appears to be generally true for flows in which there is strong
swirl.

In a real (viscous) flow beneath a highly swirling structure such as that shown in Figure 3.12,
the shear stress and heat transfer can be an order of magnitude larger than far upstream. A natural
manifestation of this effect is shown in Figure 3.13, which is a photograph of steady flow round a log.
The scouring of the snow in front of, and on the sides of, the log can be plainly seen; these regions
mark the trace of the vortex. The schematic in Figure 3.13 shows a cross-section of the flow process.
Vortices generated by an obstacle in a flow are often referred to as horseshoe vortices because of the
general U-shaped configuration they form, and are widespread in fluid engineering situations.
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Figure 3.13: Erosion caused by a high scouring rate due to a horseshoe vortex; flow round a log.

3.4.2 Vorticity changes and angular momentum changes

Upon encountering vorticity dynamics for the first time, there is a natural tendency to try to link the
concepts with material encountered previously concerning three-dimensional dynamics. In doing this,
there can be confusion in the interpretation of precisely what (3.4.1) describes (Dω/Dt = (ω · ∇)u).
This equation is a statement about the way in which the local angular velocity of a fluid particle
changes, not a statement about angular momentum. To see this, consider the changes in vorticity in a
small incompressible fluid sphere of radius r undergoing a pure straining motion, or a motion without
shear, as shown in Figure 3.14(a). The strain rate is ∂uy/∂y = ε in the y-direction and ∂ux/∂x =
∂uz/∂z = −ε/2 in the x- and z-directions. The sum of the strain rates is zero because the fluid is
incompressible.

Suppose the vorticity vector at time t has magnitude ω0 and is in the plane of the paper pointing
at 45◦ to the x-axis so ωx = ωy = ω0/

√
2, ωz = 0. After a short interval dt, the spherical particle

will have the form of an ellipsoid of revolution, as indicated in Figure 3.14(b). The y-axis of the
ellipsoid has a length that is (1 + εdt) of the initial length, and the x-component of vorticity will
be increased in just this proportion as expressed in (3.4.5) or (3.4.7). Similarly, the x-dimension of
the ellipsoid will be (1 − (ε/2)dt) of the original length with the y-component of vorticity decreased
by this factor. The vorticity vector will thus undergo a net increase in magnitude and a reorientation
into the y-direction, as shown by the heavy arrow in the right-hand side of the figure.
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Figure 3.14: Spherical fluid particle with radius r and vorticity vector ω:
(a) at time, t : ∂uy/∂y = ε; ∂ux/∂x = ∂uz/∂z = −ε/2;
(b) at time, t + dt: particle deformed and vorticity vector rotated and stretched.

Now consider the angular momentum of the fluid particle during the time dt. The rate of change
of angular momentum about the center of mass of the spherical particle is proportional to the net
torque about this center. The only forces acting on the particle, however, are pressure forces, which
act normal to the spherical surface and do not exert a torque. The angular momentum of the particle
is thus unchanged during the interval, even though the vorticity varies.

Examining the differences between changes in vorticity and angular momentum using the tools
of three-dimensional dynamics also gives a different perspective from which to view the differences
between fluid and rigid body dynamics. Let us calculate the angular momentum of the particle about
its center at initial and final times separated by the interval dt. The initial angular momentum of the
sphere, H(t), can be written in terms of the inertia tensor and the vorticity components (recalling that
the vorticity is twice the angular velocity) as

H(t) = Ixx

(ωx

2

)
i + Iyy

(ωy

2

)
j = Ixx

(
ω0

2
√

2

)
i + Iyy

(
ω0

2
√

2

)
j. (3.4.11)

The terms Ixx and Iyy are the elements of the inertia tensor for the fluid sphere and have the values
Ixx = Iyy = I0 = 2

5 mr2, where m is the mass of the fluid particle and r is the radius.
At time dt later, the particle is an ellipsoid of revolution with semi-major axis [r(1 + εdt)] and

semi-minor axis [r(1 − (ε/2)dt)]. Moments of inertia about the x- and y-axes for an ellipsoid of
revolution with semi-major and semi-minor axes a and b are

Iyy = 2

5
mb2 and Ixx = 1

5
m(a2 + b2). (3.4.12)

To first order in dt, the moments of inertia of the fluid particle at time t + dt are thus

Iyy(t + dt) = I0(1 − εdt) and Ixx = I0

(
1 + ε

2
dt
)
. (3.4.13)
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The two components of angular momentum at t + dt are:

Hx (t + dt) = I0

(
1 + ε

2
dt
) ω0

2
√

2

(
1 − ε

2
dt
) ∼= I0ω0

2
√

2
, (3.4.14a)

Hy(t + dt) = I0(1 − εdt)
ω0

2
√

2
(1 + εdt) ∼= I0ω0

2
√

2
. (3.4.14b)

The moments of inertia have altered so the angular momentum about the center of mass of the
particle remains constant, even though the vorticity (the angular velocity) has changed. This example
demonstrates the central message of this section: vorticity is a measure of local angular velocity not
angular momentum, and (3.4.1) describes the evolution of this angular velocity.

3.5 Vorticity changes in an incompressible, non-uniform density, inviscid flow

We next examine inviscid flows in which the density is non-uniform but still incompressible, because
changes in pressure are insufficient to produce a significant variation of the density of a given fluid
particle. The density field is therefore described by

Dρ

Dt
= 0 (3.5.1)

and the velocity field is solenoidal (∇ · u = 0). One situation of this type is a thermally stratified
flow at low Mach number. For this case, (3.3.4) becomes (again with conservative body forces)

Dω

Dt
= (ω · ∇) u − ∇ ×

(
1

ρ
∇p

)
(3.5.2)

or, since ∇ × ∇p ≡ 0,

Dω

Dt
= (ω · ∇) u + 1

ρ2
(∇ρ × ∇p) . (3.5.3)

The second term on the right-hand side of (3.5.3) shows that changes in vorticity occur whenever
the surfaces of constant density and constant pressure are not aligned so ∇ρ × ∇p is non-zero. This
is illustrated in the sketch of a cylindrical fluid particle of radius r0 with a non-uniform density in
Figure 3.15. The lines of constant density are shown dashed, and the density distribution is such that
ρ3 > ρ2 > ρ1. The center of mass of the particle is at C, which does not coincide with the center (O)
but is displaced from it by ηc. If there are no body forces, the only force that acts in an inviscid fluid
is pressure. The variation in magnitude of this force around the cylinder is indicated by the arrows.
The resultant of the pressure force will act through the geometric center (O) so that there will be a
net torque about the center of mass, and a consequent angular acceleration.

The creation of vorticity in a fluid with non-uniform density can also be derived from classical
dynamics arguments by analyzing the behavior of the small cylinder of fluid in Figure 3.15. For
purposes of the argument, it is sufficient to consider two-dimensional flow, for which the first term
on the right-hand side of (3.5.3) is zero and the only agency for changing the vorticity is the interaction
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Figure 3.15: Generation of vorticity due to the interaction of pressure and density gradients: pressure force
torque about the center of mass of a cylindrical fluid particle of radius r0 with a non-uniform density and center
of mass at C.

of pressure and density gradients. The rate of change of angular velocity of the cylinder is

d


dt
= d(ω/2)

dt
= torque about the center of mass

moment of inertia about the center of mass
. (3.5.4)

The pressure forces are of magnitude |∇p| per unit volume and act through the geometric center of
the cylinder. The torque (per unit depth) about the center of mass is

torque = ηc ×(−∇p)
(
πr2

0

)
(3.5.5)

where the vector ηc is the distance from the geometric center, O, to the center of mass, C, and r0 is
the radius of the cylinder. For a linear variation of density, ηc is

ηc = −∇ρ
4ρ0

r2
0 . (3.5.6)

The moment of inertia of the cylinder about its center of mass is

I = ρ0 π
r4

0

2

[
1 − 1

ρ2
0

(
dρ

dη

)2 r2
0

8

]
, (3.5.7)

where dρ/dη denotes the derivative of density in the direction of ηc. If the cylinder radius is small
compared to the characteristic length over which density changes, then (r0/ρ)(dρ/dη) �1, and the
inertia can be approximated as

I = ρ0 π
r4

0

2
(3.5.8)

and ∇p can be taken as uniform over the cylinder. Substituting (3.5.5) and (3.5.8) into (3.5.4) yields
an expression for rate of change of angular velocity of the cylinder:

1

ρ2
0

∇ρ × ∇p = dω

dt
, (3.5.9)

which is the two-dimensional form of (3.5.3).
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Figure 3.16: Generation of streamwise vorticity (and secondary flow) due to the interaction of the pressure and
density gradients.

3.5.1 Examples of vorticity creation due to density non-uniformity

An example of vorticity creation associated with a density non-uniformity occurs in flow round a
bend. The geometry is similar to that in Section 3.4.1, but the fluid now has uniform velocity upstream
(so ω = 0), and non-uniform density. Assuming y is the coordinate perpendicular to the channel
floor, the inlet conditions are shown on the left of Figure 3.16. We can view this as a layer of cool
fluid, in which the density is larger toward the lower part of the channel, so the density gradient
(dρ/dy) is negative (i.e. pointing toward the bottom of the channel). The pressure gradient in the
bend is approximately normal to the free-stream streamlines and points radially outward. The product
(1/ρ2)∇ρ × ∇ρ is thus in the streamwise direction and at the bend exit there will be a component
of streamwise vorticity and a secondary circulation as shown.

This secondary flow can also be described in terms of pressure forces. The argument is similar to
that in Section 3.4.1 except that the fluid in the layer near the wall now has a value of ρu2 higher
than the free stream because of its increased density. The pressure gradient, however, is still set up
by the free-stream flow. The radius of curvature for the streamlines containing the higher density,
larger inertia fluid particles is thus larger than that of the free-stream flow, resulting in these particles
moving outwards as they pass through the bend.

Another instance in which vorticity is created by the interaction of pressure and density gradients
is in the flow of a stratified fluid from a reservoir through a nozzle or from a duct of large area through
a contraction, as illustrated in Figure 3.17. In the reservoir or large area part of the channel, the lines
of constant density are horizontal, the pressure (at station i, say) is approximately uniform, and the
velocity variation is small. At the exit of the contraction, station e, the pressure is again uniform
across the duct but the velocity is non-uniform so that vorticity has been produced. The physical
argument associated with the generation of vorticity is that the two streams (high and low density)
have the same pressure difference acting on them; the acceleration and hence the velocity at exit will
be larger for the lower density fluid. Flows such as this occur in turbine vanes in gas turbine engines
because the combustor exit typically has a non-uniform temperature and density distribution.

The velocity variation at the channel exit can be found using Bernoulli’s equation. Assuming that
the area at station i is large enough so we can neglect the dynamic pressure there, the duct exit
velocity field is given by

pi − pe = 1
2ρ(y)[ux (y)]2

e .
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Figure 3.17: Vorticity production in a fluid of non-uniform density; two-dimensional nozzle.

For the streamline at the exit with the mean exit density ρm

pi − pe = 1
2ρm[ux (ym)]2

e ,

where ym refers to the level at which this streamline exits. The velocity at any location y, with density
ρ(y), is thus[

ux (y)

ux (ym)

]
e

=
√
ρm

ρ(y)
. (3.5.10)

Figure 3.17 shows a sharp change in density to illustrate the concepts but suppose, as is closer to
the case in practice, that the exit density distribution can be approximated as linear across the exit
channel width, W,

ρ(y)

ρm
= 1 + 1

ρm

(
dρ

dy

)
y. (3.5.11)

If the quantity (W/ρm)(dρ/dy) is much less than unity, we can expand the square root in (3.5.10) to
yield the approximate form[

ux (y)

ux (ym)

]
e

∼= 1 − 1

2ρm

(
dρ

dy

)
y. (3.5.12)

The sense of rotation associated with the vorticity is as shown in Figure 3.17.

3.6 Vorticity changes in a uniform density, viscous flow
with conservative body forces

For an incompressible, constant property, viscous flow with conservative body forces, the general
form of the equation for changes in vorticity can be obtained from (3.3.4) as

Dω

Dt
= (ω · ∇) u + ∇ × Fvisc. (3.6.1)
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u(y,t)y~3√νt

Figure 3.18: Generation of vorticity due to the action of viscous forces; impulsively started plate: u(0, t) = 0,
t < 0; u(0, t) = uw, t ≥ 0; u/uw ∼ 0.01 at y = 3

√
νt .

Because the flow is incompressible, the viscous force per unit mass, Fvisc, is (Section 1.14)

Fvisc = ν(∇2u). (1.14.4)

Applying the vector identity

∇2B = ∇(∇ · B) − ∇ × (∇ × B) (3.6.2)

and using the continuity equation allows representation of the viscous force per unit mass in terms
of the curl of the vorticity:

Fvisc = −ν[∇ × ω]. (3.6.3)

Equation (3.6.1) can thus be recast as:

Dω

Dt
= (ω · ∇) u − ∇ × [ν(∇ × ω)]

= (ω · ∇) u + ν∇2ω. (3.6.4)

The term −∇ × ν(∇ × ω) (= ν∇2ω), which is discussed in this section, represents the effect of
viscosity in spreading, or diffusing, vorticity.

To gain familiarity with this effect, we begin by considering the two-dimensional flow adjacent
to an infinite plate, which is impulsively given a velocity, uw, in its own plane at time t = 0. The
domain of interest is the semi-infinite region shown in Figure 3.18.

The boundary conditions and geometry are independent of the distance along the plate (x), so
∂ux/∂x = 0 and from the continuity equation ∂uy/∂y = 0 everywhere. The condition of zero normal
velocity at y = 0 means that the y-component of velocity is zero throughout the flow field. The only
non-trivial component of the momentum equation is the x-component, which reduces to

∂ux

∂t
= ν

∂2ux

∂y2
. (3.6.5)

The boundary conditions are ux (0, t) = uw, ux (∞, t) = 0, ux (y, 0) = 0; y > 0. Equation (3.6.5) is
the one-dimensional diffusion equation, which has the solution

ux

uw
= 1 − 2√

π

y/2
√
νt∫

0

e−ξ 2
dξ . (3.6.6)
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Equation (3.6.6), which is an exact solution of the Navier–Stokes equations, shows that ux/uw is only
a function of the non-dimensional distance from the wall, y/2

√
νt .

The equation for the rate of change of vorticity is obtained by taking ∂/∂y of (3.6.5) to give

∂ω

∂t
= ν

∂2ω

∂y2
, (3.6.7)

where ω (= −∂ux/∂y) is the z-component of vorticity. Equation (3.6.7) has solution

ω
√
νt

uw
= 1√

π
e−y2/4νt . (3.6.8)

Since (3.6.5) and (3.6.7) are of the same form as that governing the time-dependent heat diffusion
in a solid body, an analogy is often drawn between heat conduction and the diffusion of vorticity.
This is helpful in understanding how changes in vorticity are produced by viscous effects, but the
analogy is only strictly appropriate for two-dimensional flows, as there is no counterpart in the energy
equation to the term (ω · ∇)u which occurs in three-dimensional flow.

Several features are shown by the solution (3.6.8) of (3.6.7). If we integrate the vorticity in y
through the viscous layer to get the total vorticity per unit length at the plate, what is obtained is just
the velocity difference

u(∞, t) − u(0, t) = uw.

Anticipating the results of Section 3.8, this is the circulation per unit length along the plate
∞∫

0

ωdy =
∞∫

0

[
−
(
∂u

∂y

)
dy

]
= u(∞, t) − u(0, t).

All the vorticity in the flow was created at time t = 0 by the motion of the wall and no additional
vorticity is introduced as long as uw is held constant.

From (3.6.8) the characteristic magnitude of the maximum vorticity can be shown to be uw/
√
νt .

The distance over which the vorticity has diffused, or the thickness of the viscous layer in which the
vorticity is appreciably different from zero, is thus of order

√
νt , with the rate of vorticity diffusion

also scaling as
√
νt . The concept of a characteristic time for diffusion of vorticity can be applied

not only in unsteady flows but wherever one can form a time scale from a characteristic length and
velocity. For example, in a steady flow with characteristic length, L, and velocity, U, the time scale
is L/U. The thickness of the layer in which diffusion is able to spread appreciable vorticity is thus√
νL/U . In this context, the thickness of a laminar boundary layer can be interpreted as being set

by the diffusion of vorticity for a (convection) time equal to L/U.

3.6.1 Vorticity changes and viscous torques

Changes in vorticity from viscous effects can also be developed by examining the balance of torque
and changes in angular momentum if one chooses a situation in which angular momentum and
angular velocity are aligned. As an example, consider a square element of fluid with dx = dy, in a
two-dimensional flow, as in Figure 3.19 (Hornung, 1988; Sherman, 1990). The stress components
on the different faces are illustrated; τ is the shear stress, σ x and σ y are the normal stresses. Only
variations in σ x are shown, but the other stress components are also functions of x and y. Expanding
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Figure 3.19: Viscous stresses and torques on a square fluid element; dx = dy, τ = τ xy.

the stresses in a Taylor series in x and y about the center of the square and integrating to get the total
contribution, the torque about the center of the square is

magnitude of clockwise torque = (dx)4

12

[
∂2σx

∂x∂y
− ∂2σy

∂x∂y
+ ∂2τ

∂y2
− ∂2τ

∂x2

]
. (3.6.9)

The moment of inertia of the square fluid element per unit depth normal to the page is (dx)4/6.
The angular velocity of the element is equal to half the vorticity, ω = 2
, so the equation for the
rate of vorticity is

(dx)4

12
· dω

dt
= torque. (3.6.10)

With reference to (3.3.4), the term in square brackets on the right-hand side of (3.6.9) can be seen to
be the two-dimensional version of (∇ × Fvisc) so (3.6.9) and (3.6.10) are equivalent to the expression
for the rate of change of vorticity due to viscous forces given in (3.3.4) derived in a quite different
manner.

3.6.2 Diffusion and intensification of vorticity in a viscous vortex

The examples so far have dealt with one effect at a time, and it is instructive to examine a flow
in which viscous forces, which tend to reduce vorticity magnitude through diffusion, and vortex
stretching, which increases the vorticity, are both present. The specific configuration is the steady
state of a straight axisymmetric vortex, which is stretched along its axis at constant strain rate, ε,
where ∂ux/∂x = ε everywhere (Batchelor, 1967). This allows an exact solution of the Navier–Stokes
equations as well as furnishing insight into the balance between vortex stretching and diffusion,
which sets the radius of vortex cores in many flows.

We adopt a cylindrical coordinate system, with the x-axis aligned with the axis of the vortex, r the
distance normal to the x-axis, and θ the circumferential coordinate. For strain rate ε, with ux(0, r) = 0,
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the axial velocity is ux = εx. The continuity equation is

∂ux

∂x
+ 1

r

∂

∂r
(rur ) = 0, (3.6.11)

which, with the condition that ur = 0 at r = 0, requires that the radial velocity be given by

ur = −εr
2
. (3.6.12)

Because strain rate, ε, is invariant with x, the radial and circumferential velocities must also be
independent of x. Furthermore, the only component of vorticity is parallel to the vortex axis (x-axis)
and is obtained from the x-component of the cylindrical coordinate form of (3.6.4),

ur
∂ωx

∂r
= ωx

∂ux

∂x
+ ν
[

1

r

∂

∂r

(
r
∂ωx

∂r

)]
. (3.6.13)

The three terms in (3.6.13) represent, respectively, convection of vorticity inward by the radial
velocity, production of vorticity due to vortex stretching, and diffusion of vorticity by viscous stresses.

The expressions for ∂ux/∂x(= ε) and ur(= −εr/2) can be substituted in (3.6.13) to yield an
ordinary differential equation for ωx:

−ε
2

d

dr
(ωxr2) = ν

d

dr

(
r
∂ωx

∂r

)
. (3.6.14)

Integrating once:

−ε
2
ωxr2 = νr

dωx

dr
+ constant. (3.6.15)

If ωx is finite at r = 0, the constant term must be zero, and (3.6.15) can be integrated again to give
the radial distribution of axial vorticity:

ωx (r ) = �

π
e−εr2/(4v). (3.6.16)

The constant �/π is determined by the conditions that existed prior to the steady state.
In this flow, the region in which vorticity is appreciable (say greater than 1% of the value on

the axis) is confined to radii less than approximately 4
√
ν/ε. The vortex core radius is set by the

strain rate, ε, i.e. the rate of stretching; the higher this rate, the thinner the vortex core. The three-
way balance between convection, production, and diffusion of vorticity, represented by (3.6.13), is
illustrative of the processes that occur in more complex flows.

The circumferential velocity can now be found from the definition of the x-component of vorticity
in an axisymmetric flow:

ωx = 1

r

d

dr
(ruθ ) , (3.6.17)

leading to

uθ = �

2πr

[
1 − e−εr2/(4ν)

]
. (3.6.18)

The term e−εr2/(4ν) is less than 0.01 for r > 4.5
√
ν/ε. For values of r larger than this, the second

term in the brackets is negligible compared to unity and the circumferential velocity has the 1/r



127 3.6 Vorticity changes in a uniform density viscous flow

dependence derived in Section 3.2 for the infinite vortex tube of constant vorticity. In other words,
for radii far outside the vortex the internal structure within the vortex has no effect.

Finally, because the flow is axisymmetric and the angular momentum and angular velocity have
the same orientation and axis, we can use statements about the conservation of angular momentum
to describe this flow in terms familiar from dynamics. A cylindrical fluid element will have a radius
that is contracting because of the axial strain. If no torque were exerted, the angular velocity would
increase as the radius fell because the angular momentum is constant. Viscous stresses, however,
exert a torque in a direction to decrease the angular momentum and hence limit the angular velocity.

3.6.3 Changes of vorticity in a fixed volume

The discussion so far has been of the changes of vorticity of a fluid element, but it is sometimes
useful to examine the changes of vorticity that occur in a volume of fixed identity. The starting point
is obtained from (3.6.4), written as (for uniform density and conservative body forces)

∂ω

∂t
= −(u · ∇)ω +(ω · ∇) u − ν∇ ×(∇ × ω) . (3.6.19)

This is integrated over a fixed volume V, bounded by a surface A, making use of the vector identity∫
V

∇ × B dV =
∫
A

n × B dA, (3.6.20)

where B is any vector and n is the unit normal to the surface A. The expression for the vector triple
product is also used to write several of the terms in the resulting equation as integrals over a surface:

∂

∂t

∫
V

ω dV =
∫
V

(ω · ∇) u dV −
∫
A

(n · u)ω dA − ν
∫
A

n ×(∇ × ω) dA. (3.6.21)

(i) (ii) (iii)

The rate of change of vorticity inside the volume can be regarded as due to three different effects.
Term (i) represents the production of vorticity within the volume from vortex stretching. Term (ii)
arises because the volume considered is fixed in space rather than moving with the fluid, representing
the convection of vorticity through the bounding surface. Lastly, term (iii) represents the component
of the viscous forces exerted tangential to the bounding surface.

The application of (3.6.21) can be illustrated with reference to the steady-state vortex stretched
along its axis as described in Section 3.6.2. Figure 3.20 shows a cylindrical control volume whose
radius is taken at a location where viscous stresses are negligible, say r > 10

√
ν/ε. At this location

the vorticity is also negligible (see (3.6.16)). The integrals of n × (∇ × ω) over the top and bottom
of the cylinder sum to zero so (3.6.21) reduces to∫
V

(ω · ∇) u dV =
∫
A

(n · u)ω d A. (3.6.22)

This is an explicit balance between vorticity production within the volume due to vortex stretching,
and the net flux of vorticity out of the control volume through the top and bottom surfaces of the
cylindrical volume.
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ω

Figure 3.20: Vortex core and cylindrical control volume.

3.6.4 Summary of vorticity evolution in an incompressible flow

To recap, for incompressible flow the equation for the rate of change of vorticity of a fluid particle
is

Dω

Dt
= (ω · ∇) u + ∇ρ × ∇p

ρ2
+ ∇ × X + ∇ × Fvisc. (3.6.23)

(i) (ii) (iii) (iv)

Terms (i)–(iv) represent the effects of: (i) reorientation or stretching of vortex filaments (Section
3.4); (ii) creation of vorticity when density and pressure gradients are not aligned (Section 3.5); (iii)
torques due to non-conservative body forces (to be addressed in Chapter 7); and (iv) diffusion of
vorticity associated with viscous torque (Section 3.6).

3.7 Vorticity changes in a compressible inviscid flow

For compressible flows, the roles of viscous and body forces are similar to those in incompressible
flow, although the expression for the viscous forces is more complicated. We thus consider only
inviscid compressible flows with conservative body forces. The starting point is again (3.3.4). From
continuity we can substitute (−1/ρ) (Dρ/Dt) for ∇ · u in the term ω(∇ · u) so that (3.3.4) can be
written as

D

Dt

(
ω

ρ

)
=
(
ω

ρ
· ∇
)

u − 1

ρ
∇ ×

(
1

ρ
∇p

)
. (3.7.1)

Comparison of (3.7.1) with (3.5.2) shows that the quantity ω/ρ in a compressible flow behaves
similarly to ω for incompressible flow.
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Figure 3.21: Density and pressure gradients in a high speed boundary layer with an adiabatic wall and an adverse
pressure gradient.

An alternative form of (3.7.1) involving gradients of temperature and entropy, which is often
useful, can be obtained as follows. The Gibbs equation (1.3.19) can be written in terms of gradients
in the thermodynamic quantities as

T ∇s = ∇h − 1

ρ
∇p, (3.7.2)

allowing (3.7.1) to be expressed as

D

Dt

(
ω

ρ

)
=
(
ω

ρ
· ∇
)

u + 1

ρ
∇T × ∇s. (3.7.3)

For a compressible fluid, ω/ρ can be changed whenever the density, ρ, is not a function of pressure
only (ρ �= ρ(p)) or, equivalently, the entropy is not only a function of temperature. Such conditions
occur, for example, at the exit of a gas turbine combustor, where the flow has approximately constant
pressure but non-uniform temperature. They also occur behind turbomachines which typically have
radial variations in stagnation temperature due to radially non-uniform work input.

Flows in which the density depends on pressure only are called barotropic, while those in which
the density is not only a function of pressure are called baroclinic. The production of vorticity through
the interaction of pressure and density fields is thus often referred to as the production of vorticity
through baroclinic torque.

Even if both terms on the right of (3.7.1) or (3.7.3) are zero, the vorticity of a fluid particle can
change in a compressible flow if density changes. For example, in a two-dimensional isentropic flow
with incoming vorticity in an accelerating passage such as a nozzle, the exit density is lower than at
the inlet, and the vorticity is therefore also lower, since (ω/ρ) remains constant.

An example of vorticity generation due to the density gradient–pressure gradient interaction
represented by the second term in (3.7.1) occurs in a high speed boundary layer subjected to a pressure
gradient along the bounding wall. If the boundary is adiabatic, the static temperature increases
towards the wall and the density decreases. The density gradient will have components both normal
and parallel to the wall, although only the former is effective in producing vorticity. For an adverse
pressure gradient, the relation of ∇p and ∇ρ is as shown in Figure 3.21. The vorticity produced by
this effect points into the paper and has a clockwise sense. Production of vorticity of this sign means
that the boundary layer velocity at a given y location will be reduced due to the ∇ρ × ∇p term and
the boundary layer consequently thickened.
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3.8 Circulation

A quantity closely linked to the vorticity is the circulation, which is defined as the integral of the
velocity around a closed contour, C:

� =
∫
C

u · d�. (3.8.1)

The relation between circulation and vorticity can be seen by applying Stokes’s Theorem to this
definition resulting in

� =
∫∫

A

ω · n d A, (3.8.2)

where A is a surface bounded by the contour C and n is the normal to that surface. The circulation
is a scalar measure of the strength of all the vortex tubes threading through the area enclosed by C
or, equivalently, the net flux of vorticity through the surface A, enclosed by contour C.

3.8.1 Kelvin’s Theorem

The description of changes in circulation can provide considerable insight into fluid motions. We
begin by examining the evolution of the circulation around a closed fluid contour of fixed identity,
or a curve that consists always of the same fluid particles.

The rate of change of circulation, �, for C is given by

D�

Dt
= D

Dt

∮
C

u · d�. (3.8.3)

The convective operator can be taken inside the integral because we are examining a group of fluid
particles of fixed identity.3

D�

Dt
=
∮
C

Du
Dt

· d�+
∮
C

u · D

Dt
d�. (3.8.4)

Interpretation of the second term on the right can be made by referring to Figure 3.22, which shows
an element d� of the fluid (or material) contour, C. At time t, the ends of the element are at P and Q.
A short time, dt, later, point P has been displaced by u dt to P′, point Q by an additional (∂u/∂	) d	 dt

3 Another way to think of this is to consider the term D�/Dt as the sum over many small fluid line elements that comprise
the curve C:

D�

Dt
= D

Dt

∑
j

u j d� j .

The operation D/Dt is carried out for fixed fluid elements, so

D�

Dt
= D

Dt

∑
j

u j · d� =
∑

j

D

Dt
(u j · d�) =

∑
j

Du j

Dt
· d� + u j · Dd� j

Dt
.

Taking the limiting case of infinitesimal elements gives the integral form, (3.8.4).
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(a) (b)

Figure 3.22: Change in length and orientation of an element d� (b) of fluid contour, C (a).

to Q′, and the line element is now the vector d� + (∂u/∂	) d	 dt. As discussed in Section 3.4, the
rate of change of the fluid contour element d� is given by

Dd�

Dt
= ∂u
∂	

d� = du. (3.8.5)

The second term on the right-hand side of (3.8.4) now becomes∮
C

u · Dd�

Dt
=
∮
C

u · du =
∮
C

d

(
u2

2

)
= 0, (3.8.6)

because it is an exact differential integrated around a closed contour. The expression for the rate of
change of circulation round a fluid contour is therefore

D�

Dt
=
∮
C

Du
Dt

· d�, (3.8.7)

or, using the momentum equation,

D�

Dt
=
∮
C

(
− 1

ρ
∇p + X + Fvisc

)
· d�. (3.8.8)

Equation (3.8.8) shows several mechanisms for changing circulation.
For the case of inviscid flow and conservative body forces (for which

∮
C X · d� = 0, since X is

the gradient of a potential), (3.8.8) takes the form

D�

Dt
= −

∮
C

∇p

ρ
· d�. (3.8.9)

Equation (3.8.9) is an important result known as Kelvin’s Theorem. We now examine the consequences
of (3.8.8) and (3.8.9) in different types of flows.
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Figure 3.23: Relative velocity distribution in a rotating straight channel.

3.9 Circulation behavior in an incompressible flow

3.9.1 Uniform density inviscid flow with conservative body forces

Under the above conditions, the third term on the right-hand side of (3.8.8) is zero. The pressure
gradient term is also zero since it is an exact differential:

1

ρ

∮
C

∇p · d� = 1

ρ

∮
C

dp = 0. (3.9.1)

Since a conservative force can be expressed as the gradient of a potential, the second term integrates
to zero round a closed contour. Equation (3.8.8) reduces to

D�

Dt
= 0. (3.9.2)

Equation (3.9.2) is for inviscid, incompressible, uniform density flow with conservative body
forces and finds wide applicability in a number of areas. An important special case is a flow without
circulation at some given time. The circulation about any arbitrary contour will remain zero, and the
flow will have zero vorticity. An example is a flow started from rest or from a very large reservoir
with u ≈ 0, so that � is initially zero. The resulting velocity field will have ∇ × u = 0 throughout
so that u can be expressed as the gradient of a potential, greatly simplifying analysis. Methods based
on potential flow have been applied in many areas of fluids engineering for which inviscid analysis
is an appropriate approximation.

Another example occurs in a rotating passage, such as the outer part of a centrifugal compressor
impeller. A simplified geometry is shown in Figure 3.23, where the z-axis is the axis of rotation
and the x-axis is in the direction of flow. Fluid machinery is often fed from a reservoir where the
velocity, and hence the circulation, are essentially zero. Provided viscous effects are negligible in the
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absolute (stationary) coordinate system, the circulation will remain zero as the fluid flows through
the passage. With � and u denoting the circulation and velocity in the absolute coordinate system,
therefore,

� =
∮
C

u · d� = 0. (3.9.3)

The absolute velocity is related to the relative velocity w by

u = w + Ω × r, (3.9.4)

where w is the velocity seen by an observer at r rotating with the channel at angular velocity Ω.
Defining

�rel =
∮
C

w · d�, (3.9.5)

it follows, since D�/Dt = 0 and � = 0, that

�rel = −
∮
C

(Ω × r) · d�. (3.9.6)

Applying Stokes’s Theorem,

�rel = −
∫∫
Ac

2Ω · nd Ac, (3.9.7)

where dAc is an element of area enclosed by C and n is the normal to this area. For the contour C
shown in Figure 3.23, the relative circulation is thus

�rel = −2
Ac, (3.9.8)

where Ac is the area enclosed by the contour. Equation (3.9.8) shows that the magnitude of the relative
vorticity is

(ωz)rel = −2
. (3.9.9)

If the channel geometry is such that changes in the y-direction are small, then the relative vorticity
can be approximated as

(ωz)rel = −dwx

dy
. (3.9.10)

The velocity profile is as sketched in Figure 3.23, with the inviscid flow in the rotating channel pos-
sessing a non-uniform velocity and relative vorticity. The phenomenon of relative vorticity generated
in this manner is often referred to as the “relative eddy” and is seen to be a kinematic consequence
of Kelvin’s Theorem. We will examine this in more depth in Chapter 7.

Kelvin’s Theorem also provides an explanation for the observation of “prewhirl”, or the axisym-
metric swirling of flow in the direction of rotor rotation sometimes seen upstream of a turbomachine.
Such swirling motions can be encountered upstream of a pump or compressor at conditions of high
aerodynamic loading, and they can occupy a significant fraction of the annulus. A circular fluid
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contour in the swirling region, centered on the machine axis of rotation, would have a net circulation
given by � = 2πrVθ . Far upstream, however, the circulation is typically zero because the flow is
usually drawn from a large chamber or still atmosphere. From Kelvin’s Theorem (or more precisely,
(3.8.8)), finite circulation can only arise because of viscous forces, which are associated with fluid
that has passed through the rotor and then undergone reversed flow. One can thus state that the
prewhirl (when the rotor is the first airfoil row to be encountered) must be associated with local flow
reversal in the turbomachine; indications of upstream swirl are therefore identical to indications of
reverse flow in some portion of the turbomachine.

3.9.2 Incompressible, non-uniform density, inviscid flow with conservative body forces

When the density is non-uniform, the term ∇p/ρ is no longer generally an exact differential and the
circulation of a fluid contour can change with time. The rate of change of circulation for an inviscid
flow is given from (3.8.9) as

D�

Dt
= −

∮
C

∇p

ρ
· d�. (3.8.9)

This can be put into a more familiar form by using Stokes’s Theorem to yield an integral over the
surface, A, bounded by the curve, C:

D�

Dt
=
∫∫

A

∇ρ × ∇p

ρ2
· n d A. (3.9.11)

Like vorticity, circulation is produced when density gradients are not aligned with the pressure
gradients. This mechanism was introduced in Section 3.5 in the context of vorticity production, and
is applied here in a more global fashion.

Such circulation production occurs when fluids of different densities are taken through converging
or diverging channels as shown in Figure 3.17, which we now examine with regard to changes in
circulation. The density at the inlet varies as indicated while the inlet velocity is uniform.

Consider the contour C which straddles the density difference. Since the flow is in a converging
passage, the pressure gradient will point upstream. Across the density interface, the pressure remains
continuous and the term ∇p will have essentially the same values on both horizontal legs of contour
C. The term

∮
(∇p/ρ) · d� in (3.8.9) can thus be approximated as

−
∮
C

∇p

ρ
· d� ∼=

(
1

ρ2
− 1

ρ1

) b∫
a

∇p · d�, (3.9.12)

where the integral is taken from one end of the contour to the other along the horizontal direction.
The rate of change of circulation for the contour becomes

D�

Dt
∼=
(

1

ρ2
− 1

ρ1

)
�p, (3.9.13)

where�p is the change in pressure from one end of the contour to the other. When ρ1< ρ2, this term
has a negative value and circulation of a clockwise sense is produced around the contour C, leading
to the exit velocity profile indicated in Figure 3.17.
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3.9.3 Uniform density viscous flow with conservative body forces

For this situation, (3.8.8) takes the form

D�

Dt
=
∮
C

Fvisc · d� = −ν
∮
C

∇ × ω · d�, (3.9.14)

which shows that changes in circulation can also result from the action of viscous forces along the
contour.

3.10 Circulation behavior in a compressible inviscid flow

In the derivation of the expression for the rate of change of circulation for a fluid contour, (3.8.9),
there was no restriction to incompressible flow. For an inviscid compressible flow, Kelvin’s Theorem
has the same form as that for incompressible flow

D�

Dt
= −

∮
C

∇p

ρ
· d� (3.8.9)

or

D�

Dt
=
∫∫ ∇ρ × ∇p

ρ2
· n d A. (3.10.1)

Using the relation ∇p/ρ = ∇h − T ∇s, and noting that
∮ ∇h = 0, (3.10.1) can be put into a form

involving gradients in entropy and temperature,

D�

Dt
=
∫∫

∇T × ∇s · n d A. (3.10.2)

If the flow is such that the density, ρ, is only a function of pressure, p, (as it would be, for example,
if the entropy were constant) or the entropy, s, is only a function of temperature, T, then the circulation
round a closed fluid contour is constant.

An example in which this occurs is compressible isentropic flow, where p/ργ = constant. In this
situation, ∇p/ρ takes the form ∇p/ρ(p), which yields an exact differential. Thus, the conclusions
derived for incompressible flow, for example the persistence of irrotational flow, the relative eddy,
and the origin of prewhirl, carry over directly into the compressible regime provided that the flow is
isentropic.

3.10.1 Circulation generation due to shock motion in a non-homogeneous medium

An example of circulation generation in compressible flow occurs in the passage of a shock wave
through a non-homogeneous fluid, a phenomenon with application to mixing augmentation at high
speed. A configuration of interest is the two-dimensional unsteady flow in Figure 3.24, where a
cylinder of low density gas sits in a heavier medium through which a shock is passing. The density
gradient is radially outward from the center of the cylinder and the pressure gradient is normal to
the shock wave. Around the periphery of the cylinder, except at the front and rear, the two gradients
are not parallel. Equation (3.10.1) applied to a thin contour which sits on both sides of the density
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Figure 3.24: Schematic of a two-dimensional unsteady shock-induced vortical flow: (a) before interaction,
(b) vorticity distribution immediately after interaction, (c) roll up, (d) steady-state vortex pair (Yang, Kubota,
and Zukoski, 1994).

discontinuity gives an appreciation for the flow evolution. When pressure and density gradients are
not aligned, the cross-product has a finite value (i.e. ∇ρ × ∇p �= 0) and circulation is generated;
the rate of generation is maximum when the two gradients are perpendicular. The angle between the
two gradient vectors increases from zero at (1) (Figure 3.24) to a maximum of 90◦ at (2), and the
rate of generation thus varies from zero at (1) and (3) to a maximum at (2). After the passage of
the shock the pressure gradient is removed, but the circulation on the interface remains and leads to
a deformation of the interface, as shown in Figure 3.24.

The circulation generation occurs over a time interval of order d/us, where d is the diameter of the
cylinder of light gas and us is the mean propagation velocity of the shock across the region. Equation
(3.10.1) can be integrated to give the circulation for a half-plane of the flow field as

� =
∫∫
©
C

dxdy


 ∞∫

0

dt(∇ρ × ∇p)

ρ2


, (3.10.3)

where C is a contour that encloses all the vorticity in the half-plane of the flow field. Assuming the
shock is weak enough so that, while it passes through the cylinder, the interface does not deform
appreciably, an estimate for the circulation is (with δ( ) denoting the Dirac delta function)

� =
π∫

0

sin θ dθ �p �

(
1

ρ

)


∞∫
0

rδ

(
r − d

2

)
dr






∞∫
0

δ(x − ust) dt


 . (3.10.4)

Thus

� ∝ d

us
�p �

(
1

ρ

)
, (3.10.5)

where p2 − p1 = �p is the static pressure rise across the shock, and �ρ is the density difference
between the heavy medium and the light cylinder gas. In (3.10.4), the two Dirac delta functions
denote the interface at r = d/2 and the shock location at time t so that ∇p and ∇(1/ρ) can be written
as�pδ(x − ust) and�(1/ρ) δ(r − d/2) respectively, with�( ) denoting the change in flow variable
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Figure 3.25: Computed density contour plots at t̃ = ta/d = 0, 10, 20, 40, 50, 70, Ms = 1.1, density ratio (light
gas/heavy gas) = 0.14 (Yang et al. 1994).

across the shock. The approximation embodied in (3.10.4) and (3.10.5) is valid for flow situations
where the shock can be considered weak and �ρ/ρ � 1; in this case, ρ can be taken to be ρ2.

Calculations demonstrating the evolution of the cylinder of low density gas are shown in
Figure 3.25 at different non-dimensional times, t̃ = ta/d, where a is the speed of sound. The initially
cylindrical shape is deformed into a vortex pair-like structure. This can also be seen in the flow
visualization, from experiments carried out with a cylinder of helium in air, in Figure 3.26.

3.11 Rate of change of circulation for a fixed contour

The expressions derived have been for the rate of change of circulation round a contour moving with
the fluid. A complement to this is the rate of change of circulation for a contour fixed in space. This
finds most application for two-dimensional flows. The development below is for a uniform density
fluid with conservative body forces, but extensions to other cases follow along similar lines.

The scalar product of the momentum equation (3.3.1) with a line element d� integrated along a
curve AB, yields an equation for the time rate of change of circulation on the curve AB:

∂�AB

∂t
= ptA − ptB

ρ
+

B∫
A

u × ω · d� +
B∫

A

X · d� +
B∫

A

Fvisc · d�. (3.11.1)

Substituting the form of Fvisc for an incompressible constant viscosity fluid and noting that only the
component of velocity normal to the contour, un, contributes to the second term, we obtain

∂�AB

∂t
= ptA − ptB

ρ
−

B∫
A

ωund	+
B∫

A

X · d� + ν
B∫

A

∂ω

∂n
d	. (3.11.2)
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Figure 3.26: Flow visualization showing the evolution of light gas following shock passage, Ms = 1.1, density
ratio (light gas/heavy gas) = 0.14 (Jacobs, 1992).

In (3.11.2), ∂ω/∂n is the derivative of the vorticity in the direction of the outward pointing normal
to the contour. For a closed contour, the first and third terms on the right-hand side of (3.11.2) are
zero, so

∂�

∂t
= −

∮
ωund	+ ν

∮
∂ω

∂n
d	. (3.11.3)

Equation (3.11.3) expresses the change in circulation around a contour fixed in space as due to the
difference between the net convection and diffusion of vorticity across the contour. For a steady flow
(circulation round the fixed contour constant), the rate of convection of vorticity into the contour is
equal to the rate at which vorticity is diffused across it. For the vortex stretching example given in
Section 3.6.2, if we examine a circular contour within the core, the radial velocity convects axial
vorticity inwards at a rate that balances the outwards diffusion across the contour with the circulation
constant.

3.12 Rotational flow descriptions in terms of vorticity and circulation

In many situations, a useful approximation is to regard the flow as inviscid, with density a function
of pressure ρ = ρ(p). With no non-conservative body forces acting, the circulation round a given
fluid contour remains invariant. This type of flow, which occurs in many engineering problems, is a
good arena to illustrate the concepts.
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C1

C2

Vortex
tube

Figure 3.27: Vortex tube showing contour C1, which encloses all vortex lines in the tube, and contour C2, which
has zero circulation.

For this class of flows, the laws of vortex motion can be brought together and summarized as:

(1) Vortex lines never end in the fluid. The circulation is the same for every contour enclosing the
vortex line. (This result is purely kinematic and always true.)

(2) Vortex lines are fluid or material lines; a fluid or material line which at any one time coincides
with a vortex line will coincide with it forever.

(3) For a vortex tube of fixed identity, ω/ρd	 = constant, where d	 is a small length element along
the vortex tube. If the vortex tube is stretched, the vorticity increases.

3.12.1 Behavior of vortex tubes when D�/Dt = 0

The behavior of vortex tubes furnishes an introductory application of Kelvin’s Theorem to obtain
(3) above. Figure 3.27 shows two fluid contours on a vortex tube, one which encloses all the vortex
lines in the vortex tube, and is denoted as C1, and another which lies on the surface of the vortex
tube, denoted as C2. As the vortex tube moves, the circulation around these contours is constant;
all the vortex lines will remain enclosed by C1, and C2 will stay on the surface of the vortex tube
maintaining zero circulation. Because the vortex tube can be made arbitrarily small, this is another
view of the statement that vortex lines move with the fluid. If D�/Dt = 0, a fluid, or material, line,
which is a vortex line at some time, is always a vortex line.

Conservation of mass for an element of the vortex tube, as shown in Figure 3.28, can be written
as

ρ dA d	 = constant for a fluid element. (3.12.1)

If we take the vortex tube small enough for the vorticity to be considered uniform over the area then

ω dA = constant. (3.12.2)

Combining (3.12.1) and (3.12.2) yields

ω

ρd	
= constant for a fluid element. (3.12.3)
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Figure 3.28: Fluid element in a vortex tube; mass = ρ dA d	.

If the density is uniform throughout the flow, this reduces to

ω

d	
= constant. (3.12.4)

Equations (3.12.3) and (3.12.4) again show the relation between vortex stretching and changes in
vorticity seen in Sections 3.4 and 3.7, as well as the correspondence betweenω in incompressible flow
and ω/ρ in compressible flow. Equation (3.12.4) is a statement involving only kinematic quantities,
because the force relationships are contained within the derivation of Kelvin’s Theorem.

3.12.2 Evolution of a non-uniform flow through a diffuser or nozzle

Equation (3.12.3), or for simplicity its incompressible form (3.12.4), can be applied to describe the
evolution of a flow non-uniformity through a diffuser or a nozzle, as illustrated in Figures 3.29(a)
and 3.29(b). Figure 3.29(a) shows flow through a nozzle, with a component of vorticity in the
streamwise direction. In Figure 3.29(b) the vorticity is in the transverse direction. In discussing these
examples, we make the approximation (as has been done several times before) that the vortex lines
can be considered to be carried along by a mean flow which is known, in other words, that the
three-dimensional flow associated with the vorticity field is weak enough to be approximated as a
superposition on a known background or primary flow.

In Figure 3.29(a), the streamwise component of vorticity implies velocity components in directions
normal to the primary stream. Along a streamline from the inlet (station i) to the exit (station e) the
mean velocity increases. From continuity, the length of an incompressible fluid element increases
in proportion to velocity and fluid elements at the inlet and exit are sketched in the figure showing
this relationship. The ratio of the streamwise vorticity at the nozzle inlet and the exit of the nozzle
is thus

ωxe

ωxi

= uxe

uxi

, (3.12.5)

where uxi and uxe are the background velocities at the inlet and exit. The streamwise vorticity and
the maximum swirl velocity are therefore both increased.
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Figure 3.29: Non-uniform rotational flow in a nozzle. (a) streamwise vorticity,ωi ∼ωx i; (b) normal or transverse
vorticity, ωi ∼ ωz k (i, k are unit vectors in the x-, z-directions).

Often, what is of most interest is the relative uniformity of a flow. A better measure of this than
swirl velocity alone is swirl angle, α, given by

tan α ∼ swirl velocity

axial velocity
. (3.12.6)

For a circular vortex tube of radius r, the upstream swirl angle can be approximated as

αi ∼ ωxi ri

2uxi

. (3.12.7)

A vortex tube in this flow is approximately a streamtube and the relation between the streamtube
radius and the velocity can be taken as r2ux = constant. The inlet and exit swirl angles are thus
related by

αe

αi
∼ re

ri
∼

√
area ratio. (3.12.8)

Equation (3.12.8) shows that nozzles tend to increase the uniformity of the flow with regard to swirl
angularity, while diffusers tend to worsen it.

In Figure 3.29(b), the vorticity is in the z-direction (ωz = −∂ux/∂y) and is associated with a non-
uniformity in streamwise (x) velocity, ux. In the constant area straight sections at the inlet and exit,
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the streamlines will be parallel and the y- and z-components of velocity zero. Thus

ωzi = duxi

dy
= ωze . (3.12.9)

The local velocity gradient remains the same, but as the channel width decreases the level of velocity
non-uniformity across the channel, �ux, decreases in the ratio

�uxe

�uxi

= area ratio. (3.12.10)

As before, what is generally of most interest are the normalized quantities, in this case the fractional
velocity non-uniformity, �ux/ux, which is given by

�uxe

/
uxe

�uxi

/
uxi

= (area ratio)2 . (3.12.11)

As a third example, consider the same geometry as in Figures 3.29(a) and 3.29(b) but an inlet
velocity distribution having vorticity in the y-direction only. Vortex filaments in the y-direction will
be compressed in length in proportion to the decrease in channel width, so the vorticity will decrease
in proportion to the area ratio. The velocity non-uniformity across the channel height is reduced
as before, in this case because of a reduced velocity gradient over a constant height, and the same
decrease in �ux is obtained as with the vorticity in the z-direction.

3.12.3 Trailing vorticity and trailing vortices

The requirement that vortex lines do not end in the flow has implications for flow downstream of
bodies with circulation, such as turbomachine blades. The no-slip conditions at solid surfaces mean
that in a viscous fluid all the vorticity that comprises what we view as the circulation round a body
is actually contained in the boundary layers on the body. To expand on this point we can make a
comparison with classical inviscid analysis of the flow round an airfoil. For this example the airfoil is
modeled as a flat plate at an angle of attack with “bound vorticity”, γ b(	), as shown in Figure 3.30(a).
To extend to three-dimensional motions, we must connect this model more directly with real fluid
behavior by assessing the situation from the perspective of the viscous boundary layers and their
vorticity, as shown in Figure 3.30(b). Doing so leads from arguments concerning the kinematics of
vorticity in Section 3.2 to the concept of trailing vorticity discussed below.

The situation of interest is that of a three-dimensional body, for example a turbomachine blade
with a tip clearance between the blade tip and the outer casing. At the end of the blade the vortex
lines, which thread through the boundary layer on the blade surface and are roughly radial, cannot
end in the fluid. The no-slip condition on the velocity means there is zero circulation in any contour
on the casing over the tip. Vortex lines therefore cannot end on the casing but must leave the blade
surface and trail downstream.

Figures 3.31(a) and 3.31(b) show this situation for a rotor blade with tip clearance. The net
circulation round the blade row has the sense of the vorticity in the boundary layer on the suction
surface of the blade. Vorticity from the pressure and suction sides of the blade leaves at or near the
tip as shown in Figure 3.31(b). The net effect is a vortex layer (or shear layer) with circulation of the
same sense as that in the suction surface boundary layer.
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(a) (b)

Figure 3.30: (a) Inviscid analysis of flow past a flat plate airfoil using bound vorticity,
γb (	);� = ∫ chord

0 γb(	)d	. (b) View of airfoil circulation as contained in boundary layer vorticity. Circulation
evaluated around a contour just outside the boundary layers and perpendicular to wake.
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Figure 3.31: Sketch of vortex lines in a turbomachinery tip clearance: (a) view looking normal to blade;
(b) view looking upstream at blade edge.

Trailing circulation also occurs at the ends of a blade when there is no tip clearance, for example at
the hub of a rotor. The circulation around the blade, evaluated on the hub surface, is zero, so there is
a change in circulation round the blade with radius. The vortex lines associated with the circulation
round the blade away from the hub must turn tangentially to the hub and trail off in the downstream
direction.

In summary, trailing vorticity occurs whenever there is a non-uniform distribution of circulation
round a body. The occurrence of trailing vorticity is a kinematic result associated with the fact that
the vorticity distribution is solenoidal (∇ · ω = 0) and applies to all flow regimes.

An often seen consequence of trailing vorticity is a downstream region containing discrete vortices
which are compact in scale. A qualitative rationale for this can be given with respect to Figure 3.32,
analogous to the situation found behind a finite wing.

Figure 3.32 shows an idealized view of the vortex layer shed from the blade tip at a given axial
location. The direction of the vorticity is into the page. As indicated, we can consider the vortex
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Figure 3.32: Tip clearance shear layer modeled as an array of elementary vortex tubes all with circulation in
the sense shown. The velocity at A is the sum of contributions all of one sign. The velocity at B is sum of
contributions of opposite sign. (a) Sketch of the initial configuration showing downward velocity near the edge;
(b) roll-up of the shear layer.

layer to be made of elementary vortex tubes. Although all of the tubes do not necessarily have the
same strength, they have the same sense of circulation. Let us examine the velocity field associated
with the shed vorticity at two locations on the sheet, say a station A near the edge and B far from
the edge. If we regard the velocity associated with each elementary vortex tube as roughly that of a
straight vortex with the local strength, we see that the velocity at the edge of the sheet is that due to
the summation of a number of small contributions, weighted with respect to the local strength and
distance from the various tubes (falling off as 1/distance), but all with the same sign. If we consider
the situation at B the behavior is different. At B there are both positive and negative contributions
(both upward and downward velocities). The downward velocity of A in the plane of the page is thus
greater than that at B and the layer will have a tendency to roll up into a discrete vortical structure.
This behavior, which we have only qualitatively described, implies that flow downstream of devices
with a non-uniform circulation distribution along the body (wings, turbomachinery blading, forced
mixer lobes) can often contain embedded discrete vortical structures. Quantitative results illustrating
this phenomenon are presented in Section 3.15.

Even without roll up and formation of vortices, the presence of trailing vorticity means that the flow
downstream of the device will be rotational. Depending on the scale of the information one wishes
to extract and the strength and distribution of the trailing vorticity, there are situations in which it is
appropriate to view the entire downstream region as filled with trailing vorticity. Examples are the
axisymmetric representation of flow in a turbomachine annulus, in which the downstream vorticity
field is essentially a “smeared out” representation of the trailing vorticity which originates on the
solid surfaces that make up the individual blades and the hub and casing, and the secondary flow
type of representation shown in Figure 3.10 and described in Chapter 9.

3.13 Generation of vorticity at solid surfaces

We have not yet considered in any depth the question of how vorticity and circulation are introduced
into a flow at solid surfaces. Answering this is necessary because the equations that have been
developed contain no mechanism for the production of circulation in a fluid of uniform density
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or in which ρ= ρ(p). While vortex filaments can be turned and stretched, creating changes in
vorticity magnitude and direction, this is basically processing of existing vorticity in a manner to
conserve circulation. The viscous forces within the flow modify this processing, but they serve only
to redistribute the existing vorticity. In contrast we address here the generation of vorticity, in other
words the addition of “local positive or negative circulation to the flow” (Fric and Roshko, 1994),
which occurs at solid surfaces.

3.13.1 Generation of vorticity in a two-dimensional flow

We describe the generation of vorticity at a stationary solid surface in a constant density fluid, first
for two-dimensional flow and then for three dimensions. A starting point is the momentum equation
evaluated at the solid surface. Because the velocity is zero, this reduces to(

1

ρ
∇p = ν

∂2u
∂n2

)
surface

, (3.13.1)

where n is the normal to the surface. For two-dimensional flow with the surface as the plane y = 0,
use of the continuity equation and the zero velocity condition allows us to write (3.13.1) in terms of
the derivative of the vorticity as(

1

ρ

dp

dx
= ν

∂2ux

∂y2
= −ν ∂ω

∂y

)
y=0

. (3.13.2)

Equation (3.13.2) shows that whenever a pressure gradient exists along a solid boundary, there is a
gradient of tangential vorticity at the surface in the wall-normal direction and hence a diffusion of
vorticity into the fluid. This is interpreted as a flux of vorticity from the solid surface at a rate of
ν times the gradient of the vorticity along the normal to the surface (Lighthill, 1963). The entering
vorticity can be of either sense depending on the sign of the pressure gradient. For cases in which the
pressure increases in the flow direction (dp/dx > 0), positive, or counterclockwise, vorticity enters
the flow.

For a boundary layer, where the pressure gradient is determined by the inviscid flow in the free
stream,4 (3.13.2) can be cast in terms of the spatial and temporal variations in free-stream or “external”
velocity, uE:

∂uE

∂t
+ uE

∂uE

∂x
= ν

(
∂ω

∂y

)
y=0

. (3.13.3)

These arguments can be given from another viewpoint by computing the circulation round the
rectangular contour, ABCD, in Figure 3.33, which encloses a section of a boundary layer on a solid
surface. The bottom of the contour is on the solid surface, while the upper edge is just outside the
boundary layer in the free stream, and the two vertical legs are perpendicular to the solid surface.
The velocity on the upper edge has the free-stream value, uE, and if the contour is of length dx,
the counterclockwise circulation is (−uE)dx plus the contributions due to the two vertical legs.
With the boundary layer of thickness δ, the net contribution of these vertical legs is approximately

4 We use this term to denote the flow external to the boundary layer.
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Figure 3.33: Contour used for evaluation of circulation in boundary layer; �ABCD = −uE .

(d/dx)/(uyδ)dx and the ratio of this contribution to that of the upper surface is

d

dx
(uyδ)

uE
∼ uyδ

uE L
, (3.13.4)

where L is a representative length scale in the streamwise direction. As described in Section 2.9, the
ratio of velocity components is uy/uE ∼ δ/L, so the net contribution of the vertical legs compared
to that of the upper leg is of order (δ/L)2, much smaller than unity for both laminar and turbulent
boundary layers. To a very good approximation, the counterclockwise circulation round the contour
per unit length, or the net strength of all the vortex tubes threading through the contour, is thus
given by

circulation per unit length = −uE = −[free-stream velocity]. (3.13.5)

We now apply these ideas to a steady boundary layer in a region where the velocity is increasing
in the flow direction, such as in a contraction. The free-stream velocity and the circulation per unit
length in the boundary layer increase in the downstream direction. This can only occur if vorticity
diffuses into the flow from the solid wall. Equation (3.13.3) shows that this is the case, because there
is diffusion of clockwise vorticity (the same sign as the existing vorticity) into the fluid. A surface
over which the free-stream velocity is increasing (and the pressure decreasing) can thus be regarded
as being covered with sources of vorticity of clockwise sense, whereas if the free-stream velocity
decreases (and the pressure increases), the sources will be of opposite sign. The strength of these
sources is given by (3.13.2) or (3.13.3).

A further aspect concerning vorticity diffusion is illustrated in Figures 3.34(a) and 3.34(b), which
are drawn from experimental measurements in a 2:1 contraction (Abernathy, 1972). The streamline
distance from the surface is h. Figure 3.34(b) indicates that the boundary layer at station 2 is thinner
than that at station 1, not only because of the decrease in channel height, but also because of a decrease
in the ratio of boundary layer thickness, δ, to the distance to the streamline in the free stream, h.
This can be understood in terms of vorticity diffusion. There is additional vorticity added between
stations 1 and 2, and this vorticity has less time to diffuse away from the wall than the vorticity
which was already present at station 1. At station 2, a larger percentage of the total vorticity in the
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Figure 3.34: Flow in a 2:1 contraction; h is the distance to a streamline outside the boundary layer: (a) overall
velocity profiles; (b) blowup of (a) at stations 1 and 2. Tracing of hydrogen bubble flow visualization (Abernathy,
1972).

boundary layer is near the wall than at station 1, so the velocity at a given fraction of the boundary
layer thickness will be higher at 2 than at 1.

As before, an alternative explanation can be given in terms of forces and fluid accelerations. The
low velocity fluid within the boundary layer will experience a larger velocity change for a given
drop in static pressure than the fluid in the free stream. This can be seen from the one-dimensional
form of the inviscid momentum equation du = −dp/ρu, where the lower the velocity the larger the
velocity increment for a given dp. The boundary layer will therefore be made thinner relative to the
free stream as shown in Figure 3.34.

Diffusion of vorticity can also be described in reference to the horseshoe vortex, mentioned in
Section 3.4.1, which forms upstream of a strut or obstacle. In Figure 3.35, a contour ABCD is shown
on the plane of symmetry of a strut, which protrudes through a boundary layer. Vortex lines from far
upstream (with clockwise sense) are continually convected downstream and swept into the left-hand
leg (DA) of the contour, and then wrap around the strut. Because the vortex lines cannot be cut,
and thus cannot leave the contour, it might seem that the net vorticity inside the contour would
continually increase and a steady state would never be obtained. This clearly contradicts experience,
so we know that vorticity of the opposite sign must also be entering the contour, and this is provided
by the vorticity sources which exist on side AB of the contour. If the free-stream pressure distribution
can be regarded as being impressed on the wall, the wall static pressure on the symmetry plane will
increase from far upstream to the strut as a result of its upstream influence. An adverse pressure
gradient at the wall means that counterclockwise vorticity (opposite sign to that convected in) will
be diffused into the contour. The steady state can be viewed as a balance between the two processes,
convection and diffusion.
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Figure 3.35: Convection and diffusion of vorticity into contour ABCD on the plane of symmetry upstream of a
strut.

Referring back to Figure 3.33, we now examine the situation for unsteady flow. If the free-stream
velocity changes with time, (3.13.3) implies that the circulation around a contour such as that in
Figure 3.33 also changes with time because of the gradient of vorticity at the wall. If the contour
were at a station where the free-stream flow was not varying with x, the free-stream momentum
equation would be

∂uE

∂t
= − 1

ρ

dp

dx
= ν

(
∂ω

∂y

)
y=0

. (3.13.6)

Integrating (3.13.6) over a time interval during which the free-stream velocity changes by �uE,

�uE =
tfinal∫

tinitial

ν

(
∂ω

∂y

)
y=0

dt. (3.13.7)

The total vorticity diffused into the contour during the interval is equal to the change in circulation
round the contour (which is�uE per unit length along the surface). Equation (3.13.7) gives an explicit
statement of the link between changes in circulation and vorticity generation at the solid boundary.

The foregoing considerations lead to an interesting interpretation of vorticity generation in a
constant pressure boundary layer on a flat plate. The circulation per unit length is constant all along
the plate since uE is constant. The gradient of tangential vorticity at the surface is also zero. All the
vorticity in the boundary layer is put into the flow at the leading edge of the plate.

Finally, we look at generation of vorticity in situations in which the surfaces are moving. A
situation described previously is the infinite flat plate given an impulsive velocity, uw, at time t = 0,
with this velocity subsequently maintained constant. For this flow, all the vorticity is introduced at
time t = 0, when the plate is accelerated. Once the acceleration is completed, the circulation per unit
length remains constant at uw, and no further vorticity enters, although there is a redistribution of the
existing vorticity through diffusion to greater distances from the plate.
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3.13.2 Vorticity flux in thin shear layers (boundary layers and free shear layers)

Vorticity generated at solid surfaces is subsequently convected away and the resulting vorticity flux
past a given station becomes important in considerations of unsteady flow round objects and in
the discussion of conditions at trailing edges. For a two-dimensional thin shear layer in which the
velocity in the x-direction (which is roughly aligned with the streamwise direction) is much larger
than that in the y-direction, the counterclockwise vorticity can be represented by ω ∼= −(∂ux/∂y).
The expression for the flux of vorticity past a streamwise station is then

flux of vorticity past a given station =
yU∫

yL

uxω dy

=
yU∫

yL

−
(

ux
∂ux

∂y

)
dy

= −u2(yU ) + u2(yL )

2
. (3.13.8)

The integral is carried from yL to yU, where yU and yL denote the upper and lower boundaries of the
shear or boundary layer. For a boundary layer on a stationary surface, yL coincides with the surface,
ux(yL) = 0, and ux(yU) = uE, the free-stream velocity. The vorticity flux is thus u2

E/2.
The mean convection velocity for the vorticity is defined as the net vorticity flux divided by the

net amount of vorticity in a unit length of the layer:

mean convection velocity of vorticity =

yU∫
yL

uxω dy

yU∫
yL

ω dy

= ux (yU ) + ux (yL )

2
. (3.13.9)

For either a laminar or a turbulent boundary layer, the local mean convective velocity of vorticity is
therefore half the free-stream velocity.

For the contour in Figure 3.33, the difference in the flux of vorticity across the left and right vertical
surfaces is (d/dx)(u2

E/2) or (uE duE/dx). From (3.13.3) this is the rate of diffusion of vorticity across
the lower surface of the contour (AB) in steady flow. This again shows the direct connection between
changes in the flux of vorticity in the streamwise direction and vorticity diffusion into the flow from
the solid wall.

The ideas about vorticity flux can also be used to make a statement about conditions at the trailing
edge of a body in a viscous flow following Thwaites (1960). Figure 3.36 shows a fixed contour round
a two-dimensional body with flow separation occurring at locations SU and SL. Part UAL of the
contour is outside the rotational part of the flow, parts USU and LSL are perpendicular to the local
velocity in the boundary layer, and SUTSL is on the surface downstream of the separation locations.
The vorticity is thus zero along UAL, and there is no convection of vorticity across SUTSL. The
convection of vorticity across SLL and SUU is given by (3.13.8). In the separated part of the flow,
the velocity gradients can be taken to be small adjacent to the body, so diffusion of vorticity can be
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Figure 3.36: Contour used for computation of circulation and vorticity flux for a body with separation (after
Thwaites, (1960)).

neglected on SUTSL. Diffusion of vorticity in the streamwise direction across SLL and SUU is also
neglected compared with convection.

In steady flow, the circulation round the body on the contour does not change with time. The net
vorticity flux from the body into the wake must be zero, because there is no diffusion across the
contour. Vorticity leaves the body in two layers, one from the point of separation of the flow on the
upper side of the body and one from the point of separation on the lower part with vorticity fluxes of
u2

U/2 and u2
L/2, respectively, where uU and uL are the free-stream velocities at the separation points.

Because the net vorticity flux is zero, the free-stream velocities and hence the static pressures must
be equal at these points. The static pressure between SU and SL will be essentially uniform because the
fluid velocities are low in the separated region.5 The condition of no net vorticity flux can therefore
be regarded as determining the location of the separation points and the overall circulation round the
body.

For unsteady flow, it is no longer necessary that there be zero net vorticity flux into the wake,
because the circulation around the body can change. If the location of the separation points is fixed,
as it might be if there were a sharp corner or salient edge on the body, the net flux of vorticity into
the wake at any given time is u2

U/2 − u2
L/2 which is equal to the net rate of change of circulation

round the body. Evaluating the circulation round a fixed contour from SL to SU, from (3.11.2)

∂�LU

∂t
+ u2

U

2
− u2

L

2
+ pU − pL

ρ
= 0. (3.13.10)

If diffusion of vorticity in the separated region is negligible, the sum of the first three terms must be
zero. In an unsteady flow, the static pressure is thus also approximately uniform at the rear of the
body between SU and SL.

The difference in velocities at the two separation points, (u2
U − u2

L )/2, can be written in a manner
that directly exhibits the net vorticity flux into the downstream wake. The flux of vorticity into the
wake is given by uγ , where the average velocity u is given by u = (uU + uL)/2 and γ = uU − uL,

5 As discussed in Chapter 5, however, the static pressure in this base region is generally not equal to (and lower than) the
free-stream value.
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the circulation per unit length of the wake. If the flow leaves the body at the trailing edge, (3.13.10)
becomes

∂�

∂t
= −{uγ }trailing edge. (3.13.11)

3.13.3 Vorticity generation at a plane surface in a three-dimensional flow

In three dimensions we again examine the gradient of vorticity at the solid surface to develop an
expression for the vorticity flux. The gradient of a vector, B, is defined in Cartesian coordinates by

∇B = i
∂B
∂x

+ j
∂B
∂y

+ k
∂B
∂z
, (3.13.12)

where i, j, k, are unit vectors in the x-, y-, z-directions respectively (Morse and Feshbach, 1953;
Gibbs, 1901). We are interested in the gradient in the wall-normal direction, here the y-direction.6

The term of interest here corresponds to j∂ω/∂y, which is a vector with three components:
(∂ωx/∂y), (∂ωy/∂y), (∂ωz/∂y). Writing out the vorticity components in terms of velocity com-
ponents, and using the continuity equation to infer that both ∂2uy/∂x∂y and ∂2uy/∂z∂y are zero at
the surface (y = 0) yields:(
ν
∂ωx

∂y
= ν

∂2uz

∂y2
= 1

ρ

∂p

∂z

)∣∣∣∣
y=0

, (3.13.13a)

(
ν
∂ωz

∂y
= −ν ∂

2ux

∂y2
= − 1

ρ

∂p

∂x

)∣∣∣∣
y=0

. (3.13.13b)

The derivative ∂ωy/∂y can be written, using the condition of zero velocity at the solid surface, as(
ν
∂ωy

∂y
= 1

ρ

[
∂τxy

∂z
− ∂τzy

∂x

])∣∣∣∣
y=0

. (3.13.13c)

Equations (3.13.13) are the three components of the vorticity flux in the wall-normal direction at a
plane solid surface:

vorticity flux in the wall-normal (y) direction = −j × (∇p)|y=0 − j[j · (∇ × τw)]. (3.13.14)

In (3.13.14) the term (∇p)|y=0 is the pressure gradient term evaluated at the wall and τw is the vector
with components equal to the wall shear stresses.

The first term on the right-hand side of (3.13.14) is the vorticity source term due to a wall pressure
gradient, analogous to the description in Section 3.13.1 for a two-dimensional flow. The flux of
vorticity produced by this is tangent to the wall. The second term, which has a torque-like quality,
accounts for the gradient of wall-normal vorticity. The vorticity at the wall must be tangential, so
the normal component at the wall is zero. However, there can be a flux of normal vorticity and,
immediately above the wall, a component of normal vorticity can exist.

6 As described by Fric and Roshko (1994) the vorticity flux out of the wall can be interpreted as n · J0, where J0 = −ν(∇ω)|w
is the vorticity flux tensor at the solid surface and n is the wall-normal unit vector. See also Panton (1984) for a useful
discussion of this topic.
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For attached viscous flows (more specifically, for flows in which the viscous layer thickness is
much smaller than the x or z length scales) the pressure gradient term is dominant and the shear
stress contribution can be neglected. (The latter is zero for two-dimensional flow.) For example, the
vorticity flux in three-dimensional attached boundary layers is well described as a flux of tangential
vorticity only. For those three-dimensional separations, however, where the length scales in the x-
and z-directions (along the wall) become comparable to the relevant length scales normal to the wall,
the flux of wall-normal vorticity associated with the ∇ × τw term can be important. As pointed out
by Fric and Roshko (1994), one situation of this type occurs on a solid surface underneath the spiral
flow in a “tornado-like” motion.

3.14 Relation between kinematic and thermodynamic properties in an inviscid,
non-heat-conducting fluid: Crocco’s Theorem

The equations of motion can be written in several forms which involve the vorticity and relate the
kinematic and thermodynamic properties of the flow. These are especially useful when effects of
viscosity and thermal conductivity can be neglected and so the development is presented for this
situation only. To begin, we substitute the Gibbs equation (1.3.19) into the inviscid momentum
equation ((3.3.3) with viscous forces set equal to zero). The momentum equation becomes

−∂u
∂t

+ (u × ω) = ∇h − T ∇s + 1

2
∇(u2) − X. (3.14.1)

If the body force is conservative, it can be represented by a potential function: X = −∇ψ . Therefore

−∂u
∂t

−(u × ω) = ∇
(

h + 1

2
u2 + ψ

)
− T ∇s

or, in terms of the stagnation enthalpy,

−∂u
∂t

+(u × ω) = ∇(ht + ψ) − T ∇s. (3.14.2)

For steady flow, (3.14.2) reduces to

u × ω = ∇(ht + ψ) − T ∇s. (3.14.3)

Equations (3.14.2) and (3.14.3) imply:

(1) In a steady irrotational flow (ω = 0), either (i) the entropy or temperature must be uniform
because all the other terms in (3.14.3) are pure gradients, or (ii) the variations in ht , ψ , and s are
such that the gradients exactly cancel (Smith, 2001); this can occur in a parallel flow only.

(2) In a steady flow, if the entropy and the quantity (ht + ψ) are uniform throughout, the velo-
city field is either irrotational or the velocity and vorticity are parallel. If u and ω are parallel,
u × ω = 0: this is known as a Beltrami flow.

(3) In steady flow with no body forces, the relation between variations in the thermodynamic prop-
erties and the kinematic quantities (vorticity and velocity) is

(u × ω) = ∇ht − T ∇s. (3.14.4)

Equation (3.14.4) is known as Crocco’s Theorem.
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Figure 3.37: Trailing vorticity downstream of an inlet guide vane.

(4) For an irrotational flow with no body forces, the stagnation enthalpy can only vary if the flow is
unsteady.

An important subset of the above flows is those with no body forces and in which the fluid can
be regarded as incompressible and uniform density. The relation corresponding to (3.14.4) for that
situation is

−∂u
∂t

+(u × ω) = ∇pt

ρ
. (3.14.5)

For steady flow this becomes

u × ω = ∇pt

ρ
. (3.14.6)

Under these conditions, if the stagnation pressure is constant, either the flow is irrotational or the
vorticity is parallel to the velocity. Further, for an irrotational flow the stagnation pressure can only
change if the flow is unsteady.

3.14.1 Applications of Crocco’s Theorem

Crocco’s Theorem provides a useful description for a number of types of rotational flows encountered
in practice. We present three illustrations.

3.14.1.1 Flow downstream of an inlet guide vane (stationary blade row) in a turbomachine

Even in ideal or lossless turbomachines, the flow is not necessarily irrotational. As an example, we
examine the inlet guide vane row (or IGV) shown in Figure 3.37. This is typically the first row of
blades in a turbomachine and is used to direct the flow, considered here as entering from a large
reservoir at uniform stagnation conditions. For a steady reversible flow, the entropy and the stagnation
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enthalpy downstream of the vane row will be uniform and equal to the upstream values, and the right-
hand side of (3.14.4) will be zero. Crocco’s Theorem therefore tells us that the vorticity must be
parallel to the velocity vector.

Suppose the guide vane row is designed to create a radially non-uniform deflection of the flow or, as
has sometimes been the case, to produce swirl in one direction at one radius and in another direction
at another radius. At any spanwise location, the circulation around the vane will be the product of the
difference in the inlet and exit circumferential velocities and the blade-to-blade spacing. The vortex
lines associated with circulation round the IGV cannot end in the fluid and since the circulation varies
with radius, the vortex lines must trail off the vane as sketched on the left-hand side of Figure 3.37.
The vortex lines are parallel to the velocity vectors, like the trailing vorticity behind a finite wing.
For an invsicid steady flow all the downstream vortex lines are contained in discrete vortex sheets,
which leave the trailing edge of each vane. The circumferentially averaged effect of these sheets is
an axisymmetric swirling flow such as that sketched on the right-hand side of Figure 3.37.

3.14.1.2 Flow downstream of a rotor (moving blade row) in a turbomachine

The radial distribution of blade circulation is also generally non-uniform for the rotating blades in
a turbomachine. The stagnation enthalpy change across the moving blade row is given by the Euler
turbine equation (2.8.27):

ht2 − ht1 = 
(r2uθ2 − r1uθ1 ), (2.8.27)

where 
 is the rotational speed and where 1 and 2 denote stations at the inlet and exit of the blade
row. If fluid particles enter and exit the blade row at the same radius,

ht2 − ht1 = 
r (uθ2 − uθ1 ). (3.14.7)

The velocity difference (uθ2 − uθ1 ) is not generally proportional to 1/r so there is a radial variation
of stagnation enthalpy. Similar to the IGV discussed above, the circulation around the blade at a
particular radius is given by (uθ2 − uθ1 )W, where W is the blade spacing. Equation (3.14.7) can
therefore be written in terms of the blade circulation �blade(r) as

ht2 − ht1 = 
r�blade

W
. (3.14.8)

Since stagnation enthalpy gradients typically exist downstream of the rotor blade rows, the exit flow
field will generally have non-zero vorticity.

3.14.1.3 Flow downstream of a non-uniform strength shock wave

Across a shock wave, stagnation enthalpy is conserved and entropy increases. If a shock is curved,
or if the Mach number upstream of the shock varies, the shock strength and the entropy rise will vary
along the shock and, in accord with (3.14.4), the flow downstream of the shock will be rotational. An
illustration of this occurs in the supersonic flow round the leading edge of an airfoil or bluff body. As
discussed in Chapter 2, the entropy rise across a shock is small for Mach numbers of 1.3 or less (the
non-dimensional change in entropy, T2(s2 − s1)/u2

1 = 0.012 for M1 = 1.3), so the influence of shock
curvature on vorticity creation does not become appreciable until higher Mach numbers. To illustrate
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Figure 3.38: Rotational flow downstream of a curved shock, upstream Mach number = 2.0, t is plate thickness:
(a) geometry and shock configuration; (b) static pressure rise and stagnation pressure decrease across shock,
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1, versus vertical distance from plate center; (c) axial velocity profiles ux/u1 for different
levels of downstream static pressure, p/pt1 .

the effect, Figures 3.38(a), (b), and (c) present computational results for the two-dimensional inviscid
flow past a cascade of flat plates, at a Mach number of 2.0. The airfoils have a 10% thickness to
chord ratio and elliptical leading edges. The blade spacing to thickness ratio is 30 so that there is
only a small effect of the neighboring blade, and the local flow behavior is close to what it would be
with an isolated airfoil.

Figure 3.38(a) shows the computed configuration of the shock and Figure 3.38(b) indicates the
static pressure rise across the shock and the stagnation pressure decrease downstream of the shock
normalized by the upstream dynamic pressure as a function of the vertical distance from the center of
the plate in units of blade thickness. As described in Chapter 2, the decrease in stagnation pressure is
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directly reflected in the entropy rise ((s2 − s1)/R = ln(pt1/pt2 )). On the line of symmetry the shock
is normal to the upstream flow, and the stagnation pressure change corresponds to the value for a
normal shock at a Mach number of 2.0 (Figure 2.9). Away from the airfoil the shock is inclined to
the flow. As discussed in Section 2.8, the stagnation pressure change is associated with the Mach
number normal to the shock. For streamlines in which the shock is more inclined to the upstream
flow, the magnitudes of the stagnation pressure drop and the entropy rise are decreased and an entropy
gradient exists downstream of the shock.

Because of the non-uniform entropy (or stagnation pressure), the flow downstream of a curved
shock is rotational. This can also be seen by considering the region far downstream of the shock
where the flow is parallel. The discussion of Section 2.3 implies that the only velocity component is
in the x-direction. Equation (3.14.4) can therefore be written as an explicit relation between vorticity
and the gradient of stagnation pressure normal to the flow:

ω = T

ux

∂s

∂y
= − 1

ρux

∂pt

∂y
. (3.14.9)

Figure 3.38(c) depicts a consequence of the non-uniformity associated with rotationality. The figure
shows the velocity profiles (assuming parallel flow in the x-direction) corresponding to different levels
of downstream static pressure. These would represent a situation where the flow downstream of the
shock is subject to further pressure change. The profiles are plotted for overall pressure levels from
p/pt1 = 0.2 to p/pt1 = 0.72 which is close to the limit at which the flow at the plate will reverse. The
scale is extended twice as far as in (a) or (b) to indicate the changes in profile. As a reference, the
level of pressure just downstream of a normal shock at M1 = 2.0 is 0.575pt1 . In terms of pressures
and fluid accelerations, particles with the lowest stagnation pressure downstream of the shock also
have the lowest velocity and density and are thus decelerated the most for a given pressure rise.
This effect results in the observed thickening of the low stagnation pressure region with increased
pressure rise.

Finally, the evolution of the vorticity distribution over and above what might occur in a uniform
density situation can also be commented on using the arguments given in Section 3.7. First, as the
pressure rises the density of a fluid particle increases so that the vorticity also increases. Second,
the static temperature, and hence the density, in the downstream flow is non-uniform. For a pressure
distribution which increases in the direction of flow, the torque associated with the ∇p × ∇ρ effect
creates additional clockwise vorticity. Both of these effects enhance the velocity defect and drive the
flow towards reversal.

3.15 The velocity field associated with a vorticity distribution

We have used the concepts of vorticity and circulation to provide physical insight into a number of
different situations. Another role these ideas can play in dealing with fluid motions is to provide a
route to quantitative descriptions as applied in various types of “vortex methods” (see Section 3.15.5).
To illustrate this aspect, we now address the question of defining the velocity field associated with a
given distribution of vorticity.

The starting point for the process is a general result from vector analysis known as Helmholtz’s
Decomposition Theorem, which we apply to the velocity vector u. The theorem states that any vector,
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here represented by the velocity u, can be defined as the sum of two simpler vectors, u1 and u2. The
vector u1 is solenoidal, ∇ · u1 = 0, and the vector u2 is the gradient of a potential, u2 = ∇ϕ. From
the vector identity ∇ × ∇ϕ ≡ 0, we infer that ∇ × u2 ≡ 0, so u2 must be irrotational. Derivation of
the theorem is given in a number of texts, for example Aris (1962), Sommerfeld (1964), or Plonsey
and Collin (1961).

From what has been said so far concerning u1 and u2, the representation is not unique, because we
could choose any potential field and subtract it from u to get the same u2. A unique decomposition
can, however, be made by choosing u1 and u2 to be the velocity fields associated with the distribution
of vorticity, ∇ × u, and the distribution of ∇ · u throughout the flow field, as described below. The
former term is the vorticity, ω, while the latter term represents the departure from a solenoidal
velocity distribution due to compressibility or volume addition for example from heat addition or
phase change.

For a velocity field which is defined everywhere in space and vanishes at infinity, u1 and u2 are
given by volume and surface integrals of the vorticity and source distributions:

u(x) = 1

4π

∫
V

ω(x′) × r
r3

dV ′ + 1

4π

∫
V

∇′ · u(x′) r
r3

dV ′. (3.15.1)

In (3.15.1) r = (x − x′) and is the radius vector from the source or element of vorticity (x′) to the
location of interest (x). The notation ∇′ signifies that the operator is defined with respect to x′, and
the notation V′ that the integration is carried out over x′.

For an incompressible fluid with ∇ · u = 0 the velocity field is related directly to the vorticity
distribution by

u(x) =
∫
V

ω (x′) × r
4πr3

dV ′, (3.15.2)

where, again, (3.15.2) implies that u is defined everywhere in space and vanishes at infinity. Equation
(3.15.2) is known as the Biot–Savart law.

In general, the velocity is not defined everywhere in space because of bounding surfaces (exterior
boundaries) or solid bodies (interior boundaries). Equation (3.15.2) must therefore be supplemented
with suitable boundary conditions. This can be accomplished by extending the Decomposition The-
orem to include surface distributions of vorticity and surface sources. A physical example of the
former is a thin boundary layer (a region of concentrated vorticity) on the surface of a body and an
example of the latter is suction or blowing normal to a solid surface. With this extension a relation
between the vorticity and the velocity known as the Representation Theorem is obtained,

u(x) =
∫
V

ω(x′) × r
4πr3

dV ′ +
∫
A

[u (x′) × n] × r
4πr3

d A′

+
∫
V

∇′ · u(x′) r
4πr3

dV ′ +
∫
A

[u (x′) · n] r
4πr3

d A′. (3.15.3)

Equation (3.15.3) is a kinematic result which is valid for steady and unsteady flow.
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For incompressible flow with no surface sources a general relation for the velocity field is

u(x) =
∫
V

ω(x′) × r
4πr3

dV ′ +
∫
A

[u (x′) × n] × r
4πr3

d A′. (3.15.4)

Equation (3.15.4) provides a complete description of the velocity field for incompressible flow. We
show below that the surface integral in this equation describes the vorticity on the surface of a body.
The physical interpretation of (3.15.4) can be summed up in the statement by Saffman (1981) that
“all the problems of such flows can be posed as questions about the strength and location of the
vorticity”.

3.15.1 Application of the velocity representation to vortex tubes

There are many situations in which the only vorticity present is confined to tubes of small cross-
sectional area. If so, and the tube radius is small compared to r, the variation of r/4πr3 in (3.15.1)
over the tube can be neglected and the volume integration performed by first integrating over the
cross-sectional area, and then along the length of the tube:

u(x) =
∫
V

ω × r
4πr3

dV ′ =
∫

tube
length


∫

A

ωd A


 × r

4πr3
d	. (3.15.5)

The integral of ω over the cross-sectional area of the tube is constant along its length and equal
numerically to the circulation around the tube:∫
A

ω dA = �m,

where m is a unit vector along the tube. Equation (3.15.5) then becomes

u(x) = �

∫
d�(x′) × r

4πr3
. (3.15.6)

As shown in Section 3.2 using Stokes’s Theorem and symmetry, the velocity field outside a straight
vortex tube is in the θ -direction and is inversely proportional to r. This result also comes directly
from (3.15.6).

In this case, x = rer + xex and the expression for u given in (3.15.6) becomes

u = �

∞∫
x ′=−∞

dx ′ex × (rer + xex − x ′ex )

4π (r2 + (x − x ′)2)3/2

= �reθ
4π

∞∫
x ′=−∞

dx ′

[r2 +(x − x ′)2]3/2

= �reθ
4π

[
x ′ − x

r2(r2 +(x ′ − x)2)1/2

]∞

−∞
= �eθ

2πr
, (3.15.7)

in agreement with that in the earlier section.
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ω

Figure 3.39: Vortex layer and curve C used for deriving vortex sheet jump conditions.

3.15.2 Application to two-dimensional flow

For two-dimensional flow, the Representation Theorem and the general ideas about the relationship
between the velocity and vorticity field can be simplified. Two of the three components of the vorticity
vanish identically, with the remaining non-zero component being perpendicular to the plane in which
motion takes place. All boundaries and vortex lines are independent of the coordinate perpendicular
to the plane of the motion and the volume and surface integrals in the Representation Theorem of
(3.15.3) can be integrated in this direction to give surface integrals over the region occupied by fluid
and line integrals around boundaries. The result is

u(x) =
∫
A

ω (x ′) × r
2πr2

d A′ +
∫
A

[∇′ · u (x ′)]r
2πr2

d A′

+
∮
C

[u (x ′) × n] × r
2πr2

d	′ +
∮
C

[u (x ′) · n] r
2πr2

d	′. (3.15.8)

3.15.3 Surface distributions of vorticity

To understand the surface integral in (3.15.4) we apply it to describing the flow associated with thin
sheets of vorticity, for example boundary layers on solid surfaces. Consider the curve, C, shown in
Figure 3.39 which passes either side of such a thin vortex layer. The application of Stokes’s Theorem
to this curve and to the surface A it encloses gives∮
C

u · d� =
∮
A

ω · m dA, (3.15.9)

where m is a unit vector out of the page. The contributions to the line integral from the portions of
the curve which cross the sheet, BC and DA, can be made vanishingly small by letting the lengths
BC and DA tend to zero. On AB and CD, d� can be written |d�|n × m and – |d�|n × m respectively.
The integrand on the left-hand side of (3.15.9) can be written as

u · d� = u+ · n × m d	− u− · n × m d	

= m ·[u] × n d	, (3.15.10)

with [u] denoting the change in u across the sheet.
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Figure 3.40: Boundary layer and curve C used to derive
∫ δ

0 ωdn = uE × n.

Taking the limit, AB = CD= d	 and BC and DA tending to zero, the right-hand side of (3.15.9)
becomes∫
A

ω · m dA =
∫

γ · m d	, (3.15.11)

where γ is defined as the strength of the sheet and the integral on the right is carried out along the
surface.

Equating the expressions in (3.15.10) and (3.15.11) implies that m · γ = m · [u] × n. Because the
curve C can be reoriented such that m takes an arbitrary direction within the sheet, the difference in
velocity across the sheet must satisfy

γ = [u] × n. (3.15.12)

Further, the difference in velocity must in fact be a difference in the tangential components only,
because a jump in the normal component is not consistent with satisfying continuity. This result can
be put in context for viscous flow by considering a boundary layer on a surface. If we take a curve
similar to that shown in Figure 3.40, but now with segment AB lying on the surface of the body and
segment CD just outside the boundary layer, to the level of approximation used in boundary layer
theory, (3.15.12) becomes

γ =
δ∫

0

ω dn = uE × n, (3.15.13)

where uE is the free-stream velocity. The integral of the vorticity in the boundary layer, per unit
length, has the value of the free-stream velocity and is the vorticity needed to bring the flow to rest
at the surface. This is the strength of the surface vortex sheet that would be needed to approximate
the boundary layer in an equivalent inviscid flow.

In summary, for a viscous fluid vortex lines cannot end in the fluid or at non-rotating boundaries,
but must turn tangentially to the surface as the boundary is approached. In an inviscid fluid, if we
imagine that the velocity field is extended (as zero) into the interior of the solid boundary, the vortex
lines turn into the surface and are viewed as part of the equivalent surface vorticity distribution.

3.15.4 Some specific velocity fields associated with vortex structures

The velocity–vorticity relation enables considerable insight into fluid motions, particularly the overall
structures of flows with concentrated vorticity. An illustration seen in Section 3.4 is the horseshoe
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Figure 3.41: Vortex pair with circulation � and spacing W; the velocity of the vortex pair is equal to the velocity
uv.

vortex, but there are other generic structures whose velocity field can be readily inferred from the
vorticity distribution.

One example is the motion of a two-dimensional vortex pair, with vortices of equal strength,�, and
opposite sign, such as occurs in the starting flow through a slot or past a symmetric bluff body. The
configuration to be analyzed is shown in Figure 3.41. The fluid is taken as inviscid and of uniform
density. The velocity field associated with the presence of the upper vortex, evaluated at the location
of the lower vortex, and the corresponding velocity associated with the lower vortex, evaluated at
the location of the upper vortex, are indicated. The two velocities are equal so that the two vortices
move on parallel trajectories, and with uniform velocity, to the right. The speed of the motion can
be found from application of the expression for the velocity field associated with a straight vortex.
If the magnitude of the circulation around each vortex is � and the spacing between them is W, the
velocity of the pair is (refer to Figure 3.41)

uν = uvortex pair = �

2πW
. (3.15.14)

Equation (3.15.14) is strictly applicable only to the behavior of two line vortices (radius = 0), since
elements of vorticity in each vortex tube of finite radius a have different contributions to the motion
of the other vortex tube. However, the velocity field is found to deviate from (3.15.14) to order (a/W)
and, if the vortex tube radius is much less than the distance apart, this expression will provide a good
description.

An extension of this application is to the motion of two vortices of the same sign. In this situation,
the tendency will be for the vortices to spiral around their vortex “center of gravity”, which is
determined by the strength of the two elements. For two elements of equal strength and distance
W apart, their motion will be circular around the midpoint of the line between them with angular
velocity �/(πW2).

A second example is the motion of a vortex ring, such as that formed in the starting flow out of a
tube or through an orifice, as well as in the coherent vortex structures in the shear layers that surround
an axisymmetric jet. Consider the sense of the velocity of a given element of the ring in a direction
parallel to the ring axis of symmetry. At any location on the ring all the vorticity elements in the
remainder of the ring are associated with an induced velocity along this axis. (The velocity–vorticity
relationship is linear so that the contributions of different vortex elements are additive.) If Figure 3.41
is taken as a cut through the ring, a ring which has vorticity with the sense of that shown would move
to the right. The distinct structure associated with vortex ring motion has been described strikingly
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Figure 3.42: Kinematic equality between the vortex and the infinite plane surface and a vortex pair (original
vortex plus image vortex).

by Lighthill (1963) as the reason why one can blow out a candle (through creation of a vortex ring,
and of a consequent large fluid velocity at the candle, when one blows through one’s lips) but cannot
suck one out (inhaling creates a sink, which ingests fluid from all directions so that the velocities at
the candle will be much lower; see Section 2.10).

Some further comments can also be made concerning vortex rings. For the same vortex tube
thickness and circulation, the larger the ring diameter the lower the ring-induced velocity. Consider
two rings having the same axis of symmetry, which start out with the same diameter. The induced
velocity field of the two rings is such that the rear one will shrink in diameter and the forward
one increase. The rear ring can thus catch up and move through the initially forward ring, with the
two rings interchanging roles and the process then starting again. References to the experimental
demonstration of this so-called “leapfrogging” process are given by Saffman (1992).

Two final examples are provided by the behavior of a vortex, or vortices near a surface. First,
consider a two-dimensional vortex at a given distance, say W/2, from an infinite solid surface. If an
inviscid description is appropriate for the situation of interest, the necessary boundary condition is
the purely kinematic one of zero flow normal to the wall. This can be achieved if we imagine the wall
removed and a fictitious image vortex placed an equivalent distance below the surface, as indicated
schematically in Figure 3.42. The velocity field is that associated with the original vortex plus that
associated with the image, and on the symmetry plane there is no normal velocity. The velocity field
at values of y greater than 0 in Figure 3.42 is therefore kinematically the same as that for the vortex
and the infinite wall. As inferred from (3.15.14) a vortex of strength � a distance W from a plane
surface moves parallel to the surface with a velocity equal to �/4πW.

These considerations can also be used to explain the behavior of vortex pairs or rings approaching
a plane surface, as shown in Figure 3.43, which gives the actual configuration and the kinematically
similar image representation. The discussion above implies that the motion of the vortex pair (or
ring) will be towards the surface. To obtain the symmetry condition of no normal velocity at the
surface, an image vortex pair is needed. As the vortex pair (or ring) approaches the wall, the velocity
field associated with the image vortex pair leads to trajectories of the type shown in Figure 3.43. The
vortices which originally make up the vortex pair move in opposite directions along the wall with
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Figure 3.43: Kinematic equality between a vortex pair approaching an infinite plane surface and a vortex pair
plus image pair. The trajectory of vortices is shown as a dashed line.

the magnitude of their asymptotic velocity equal to the far upstream velocity with which the pair
originally approached the wall.

3.15.5 Numerical methods based on the distribution of vorticity

A number of numerical methods have been developed which are based on the representation of
the velocity field in terms of vorticity and/or source distributions. These include the large class
of numerical calculation procedures for inviscid flow referred to as “panel methods”, which make
use of distributions of surface singularities (either vortex elements or, equivalently, distributions of
dipoles) which are discretized on surface panels. Panel methods have been effective in describing
flows over complex geometries, such as aircraft. The overall procedure is to solve for the distribution
of discrete vortex elements which produce, for an inviscid flow, the desired normal velocity (generally
zero) at a point on each panel. For a two-dimensional geometry, if these methods can be applied,
the problem is reduced to the one-dimensional problem of specifying the elements around a curve.
Similarly for a three-dimensional geometry the problem becomes a two-dimensional one involving,
for incompressible flow, only values of the elements on one or more surfaces. The gridding and
computational requirements are thus generally much less than for methods in which the entire
domain must be analyzed. Surface vorticity and panel methods are described in detail by Kerwin
et al. (1987), Lewis (1991), and Katz and Plotkin (2001).

Vortex methods have also been used to examine unsteady flows, in which one must account for
the effect of vorticity shed into the region downstream of the body, so that the location of the wake
vorticity and its strength can be found. This is typically done by tracking the shed vortex elements
and thus, in addition to the kinematic statements, there must be a description of the motion of these
elements once they leave the body. An advantage, however, is that the computation need only deal
with the sections of the flow in which there is appreciable vorticity, such as on the surface of a body
or in a wake (Sarpkaya, 1988, 1994; Leonard, 1985).

An example of a vortex method computation is given in Figures 3.44–3.46, which show the
unsteady exit flow from a tube. In this situation, the cylindrical vortex sheet, which leaves at the
exit of the tube, rolls up to form a vortex ring. In the computation, elements of vorticity are released
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Figure 3.44: Schematic diagram of the experiment showing piston, tube wall, and free shear layer (Nitsche and
Krasny, 1994).

Figure 3.45: Vortex method computation showing vortex-ring formation; numbers refer to non-dimensional
times, t̃ = t × piston/tube length (Nitsche and Krasny, 1994).

at the end of the tube and are convected by the resulting flow. Kelvin’s Theorem implies that the
position of the vortices, which is known at any time, can be updated by tracking the fluid particles to
which the vortex lines are locked. The kinematic vorticity–velocity relationship in (3.15.1) can then
be used at any time step to find the velocity, which is then used for the next convection step.

Figure 3.44 shows the basic experimental configuration. In Figure 3.45 computations of a marked
line of particles are shown at several different times, depicting the different stages of the roll up
process in some detail. Figure 3.46 shows the corresponding experimental flow visualization. The
vortex method captures the features of the experiment well, although it is to be noted that there are
a number of computational subtleties which need to be taken into account and which we have by
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Figure 3.46: Flow visualization showing vortex-ring formation; times correspond to Figure 3.45 (Didden, 1979,
as given by Nitsche and Krasny, 1994).

no means addressed. These methods are, again, most effective when the vorticity is concentrated on
thin sheets or surfaces.

Vortex method computations have also been used in flows where the location at which vorticity
leaves the body surface is not known a priori. In this situation, there needs to be some description,
such as a boundary layer computation (see Chapter 4), of the processes that set the separation point.
With this proviso, however, vortex methods have been applied to bluff body flows and also to the
stalled flow around airfoils. For a description of these applications see Lewis (1991). In summary, a
number of methods exist for computing flows based on the velocity–vorticity relationship given in
Section 3.15, many of which have application to the geometries of interest for internal flows.



4 Boundary layers and free shear layers

4.1 Introduction

In this chapter, we discuss the types of thin shear layers that occur in flows in which the Reynolds
number is large. The first of these is the boundary layer, or region near a solid boundary where viscous
effects have reduced the velocity below the free-stream value. The reduced velocity in the boundary
layer implies, as mentioned in Chapter 2, a decrease in the capacity of a channel or duct to carry flow
and one effect of the boundary layer is that it acts as a blockage in the channel. Calculation of the
magnitude of this blockage and the influence on the flow external to the boundary layer is one issue
addressed in this chapter. Boundary layer flows are also associated with a dissipation of mechanical
energy which manifests itself as a loss or inefficiency of the fluid process. Estimation of these losses is
a focus of Chapter 5. The role of boundary layer blockage and loss in fluid machinery performance is
critical; for a compressor or pump, for example, blockage is directly related to pressure rise capability
and boundary layer losses are a determinant of peak efficiency that can be obtained.

Another type of shear layer is the free shear layer or mixing layer, which forms the transition
region between two streams of differing velocity. Examples are jet or nozzle exhausts, mixing ducts
in a jet engine, sudden expansions, and ejectors. In such applications the streams are often parallel
so the static pressure can be regarded as uniform, but the velocity varies in the direction normal to
the stream. For mixing layers a central problem is to assess the rate at which the two streams transfer
momentum and energy, because this can affect how downstream components are designed to achieve
the desired performance. Wakes and jets are another type of free shear layer where it is of interest to
determine how rapidly mixing occurs, and, in the case of the wake, what the effect of the blockage
on the free-stream flow is.

Boundary layers and free shear layers are subjects in which there has been an enormous amount
of research. The objectives of this chapter are to give an introduction to these aspects of particular
interest in internal flows, to provide tools for estimating the principal effects in engineering situations,
and to guide further exploration into the extensive literature in this area.

Several main ideas thread through the chapter. First, as mentioned in Section 2.9, a high Reynolds
number flow can be conceptually and usefully partitioned into regions in which viscous effects are
important and regions in which they can be neglected and the flow behaves as if it were inviscid.
Second, the regions in which viscous effects must be addressed are thin, in the sense that the
characteristic length scale for velocity variations in a direction normal to the stream is much less
than in the streamwise direction. Third, this difference in scale allows the development of a reduced
form of the Navier–Stokes equations, referred to as boundary layer or thin shear layer equations,
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Figure 4.1: Nomenclature for a two-dimensional straight channel diffuser; area ratio, AR = W2/W1.

which describe the flow in these shear layers very well and are much simpler to solve. Finally, the
effect of the viscous regions on the inviscid-like flow outside these regions can be captured through
coupling the former, through the behavior of a small number of overall, or integral, boundary layer
parameters, with the latter. This coupling allows a consistent description of both regions and hence
of the flow as a whole.

In Section 4.1.1 we use the performance of a basic internal flow device, the diffuser, to illustrate
one role of boundary layer behavior and its linkage with the flow outside the viscous region. The
boundary layer form of the equations of motion is then developed, first for laminar flow and then
for turbulent flow (which is the more common occurrence in fluid machinery applications), along
with descriptions of solution procedures and the circumstances in which “transition” occurs from
the laminar to the turbulent state. Definitions of the relevant integral quantities used to couple the
boundary layer behavior to the flow outside the boundary layer are also given. These concepts
are then used together to examine diffuser behavior in more depth as a vehicle for the discussion
of interactions between the boundary layer and the inviscid-like region. The last several sections
describe free shear layers including rates of mixing and behavior in pressure gradients.

4.1.1 Boundary layer behavior and device performance

The role that boundary layers play in determining fluid component performance can be made more
definite by examining the behavior of a two-dimensional straight channel diffuser. This simple
geometry incorporates many of the issues addressed in Chapter 4 and the description of its behavior
illustrates the aspects of shear layers which typically need to be captured by predictive techniques.
Diffusers are used as the central application of the chapter to focus the discussion on specific items
of interest in the context of fluid machinery.

A two-dimensional straight diffuser is shown in Figure 4.1. The functions of a diffuser are to
change a major fraction of the kinetic energy of the entering flow into static pressure and to decrease
the velocity magnitude. From Figure 4.1 the diffuser area ratio, AR is W2/W1, the non-dimensional
length is N/W1, and the diffuser opening angle θ is given by tan θ = (AR − 1)/[2(N/W1)]. For an
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Figure 4.2: Relation of Cp to diffuser flow regimes (after Kline and Johnston (1986)).

ideal flow, from the one-dimensional form of the continuity equation and Bernoulli’s equation, the
pressure rise coefficient, Cp, is given in terms of area ratio by

C p = p2 − p1
1
2ρu2

1

= 1 − 1

AR2
. (4.1.1)

Figure 4.2 shows a sketch of measured diffuser pressure rise versus area ratio, AR, for diffusers
of high enough aspect ratio to be considered two-dimensional. The pressure rise coefficient for ideal
one-dimensional flow is denoted by Cpi . For a range of area ratios the measured Cp generally follows
the ideal curve, although at a lower value, but it peaks and then decreases for larger area ratios while
the ideal curve monotonically increases. The labels in the figure describe flow regimes encountered
as the area ratio is increased. Only for area ratios below the line AA can the flow be said to follow
the geometry in that the streamlines diverge and the velocity drops, in qualitative accord with the
ideal one-dimensional picture. At area ratios above AA, the streamline pattern does not reflect the
divergence of the boundaries and the flow does not look even qualitatively like the ideal case. As the
area ratio increases still further the pressure rise coefficient decreases.

Sketches of streamlines in the different regimes (no appreciable stall, transitory stall, fully devel-
oped stall, and jet flow) taken from measurement and flow visualization, are also included in Figure
4.2. In the region of “no appreciable stall”, the boundary layers are thin and the effective area of the
channel and the geometrical area both grow similarly. “Transitory stall” defines a regime in which
there are large amplitude fluctuations, with a repeated build up and wash out of regions of reversed
velocity along the walls of the diffuser. In “fully developed stall” there is a region of back flow
(generally on one wall) and a free shear layer penetrates substantially into the interior of the channel.
In the “jet flow” regime both boundary layers have separated from the wall, there is a large region of
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Figure 4.3: Two-dimensional diffuser flow regime as established by Reneau, Johnston, and Kline (1967). Solid
symbols and shaded area are geometries whose performance is described in Section 4.7.

back flow on each side, and the effective area for the core flow is not much larger than the diffuser
inlet area.

Figure 4.3 shows a measured diffuser flow regime map expressed in terms of area ratio, AR,
and aspect ratio, N/W1, with included angles referenced. For a given area ratio, changing the non-
dimensional length moves the operation through different flow regimes. For example, changing the
length from 3 to 10, at an area ratio of 2.5, results in moving from a stalled to an unstalled regime
and, although not shown in the figure, an increase in pressure rise.

Viewing this overall behavior in terms of a boundary layer parameter, the displacement thickness
(defined in Section 2.9 and interpreted there as a flow blockage) provides a perspective on those
items we wish to evaluate. The relation of the displacement thickness to the effective flow area for
the diffuser is shown in Figure 4.4. For equal boundary layer displacement thicknesses on the two
walls, the effective channel height for the inviscid-like core flow is W − 2δ∗.

To illustrate the way in which the displacement thickness affects the pressure rise as the diffuser
area ratio changes we substitute the effective area ratio into (4.1.1) and differentiate the pressure
rise coefficient with respect to geometric area ratio, AR. The behavior of interest is associated with
displacement thickness growth at station 2. As such we assume the displacement thickness at the
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Figure 4.4: View of displacement thickness as a boundary layer blockage (Kline and Johnston, 1986).

inlet (station 1) is small enough so it, and its changes, can be neglected and the inlet area taken as the
geometric area. Under these conditions the rate of change of the diffuser pressure rise coefficient is

dC p

d(AR)
= 2(1 − C p)

AR

{
1 + [d(1 − 2δ∗2/W2)]/(1 − 2δ∗2/W2)

d(AR)/AR

}
. (4.1.2)

The quantity W2 − 2δ∗2 represents the effective width of the channel at the exit and the term 1 −
2δ∗2/W2 in (4.1.2) is therefore the fractional effective width. Equation (4.1.2) indicates that the rate
of change of the pressure rise coefficient with the geometric area ratio can be positive or negative
depending on the rate of variation of this effective fraction, and hence of the exit blockage (2δ∗2/W2).

The variation in the diffuser flow regime versus length in Figure 4.3 shows a different feature of the
phenomena of interest, the rate dependence of the relevant processes. There is a competition between
pressure forces, which decelerate the slow moving wall layers more than the free-stream fluid, and
mixing processes which can transfer momentum to the lowest velocity parts of the boundary layer
and inhibit separation. The effect of the latter depends on the length over which they are able to act.

This chapter will provide tools for estimating, and understanding, the manner in which the geometry
of internal flow devices affects displacement thickness and hence pressure change and mass flow
capacity. Another important issue is the viscous loss associated with dissipation of mechanical energy
in the boundary layers. As discussed in Section 4.3, there is a different boundary layer thickness
parameter which reflects this loss and which the methods described will enable us to find.

4.2 The boundary layer equations for plane and curved surfaces

4.2.1 Plane surfaces

As described in Section 4.1, the central approximation of boundary layer theory is that rates of change
at high Reynolds number of the velocity components and their derivatives, or the temperature and its
derivatives, in the direction normal to the bounding surface are much larger than the corresponding
rates of change along the surface, allowing simplification of the expressions for viscous forces and
heat transfer rates. The equations that describe the behavior of boundary layers were introduced in
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Section 2.9. We now examine them in more depth to enable their use in a wider range of situations.
For a compressible fluid, there are not only velocity boundary layers, but also thermal boundary
layers, in which the temperature changes from that of the boundary to that of the free-stream outside.
For values of the Prandtl number (µcp/k) of order unity, the thicknesses of the viscous and thermal
boundary layers are comparable.

For the purposes here a two-dimensional treatment of the steady-flow situation with no body forces
is sufficient; extensions to three dimensions and the inclusion of body forces can be found in the texts
by White (1991), Cebeci and Bradshaw (1977), and Schlichting (1979) and discussion of aspects
due to flow unsteadiness are given in Chapter 6. The boundary layer approximation implies that δu

and δT, the thicknesses of the velocity and temperature boundary layers, and thus the characteristic
scales in the direction normal to the main flow, are small compared with the length scale along the
channel or body. In the viscous boundary layer the velocity increases from zero at the wall to the
free-stream value uE, and in the thermal boundary layer the temperature changes from the value Tw

at the wall to the value TE in the free-stream.
We begin by examining the momentum equation for two-dimensional steady flow (1.9.10) in

component form, where the coordinate normal to the surface is y and that along the surface is x.

ρ

(
ux
∂ux

∂x
+ uy

∂ux

∂y

)
= −∂p

∂x
+
(
∂τxx

∂x
+ ∂τxy

∂y

)
, (4.2.1a)

ρ

(
ux
∂uy

∂x
+ uy

∂uy

∂y

)
= −∂p

∂y
+
(
∂τxy

∂x
+ ∂τyy

∂y

)
. (4.2.1b)

The continuity equation (1.9.4) written out is

∂

∂x
(ρux ) + ∂

∂y
(ρuy) = 0. (4.2.2)

The basic arguments for reducing (4.2.1) to boundary layer form are as follows:1

(a) From the continuity equation (4.2.2) the velocity components in the layer scale as

∂ux

∂x
∼ ux

L

∂uy

∂y
∼ uy

δ
,

where L is a characteristic length scale in the x (streamwise) direction and δ is the boundary layer
thickness. Therefore,

uy

ux
∼ δ

L
.

(b) From (a) and the constitutive relations between the shear stress and the rate of strain given in
Section 1.13, the ratio of viscous forces in (4.2.1a) is(
∂τxx

∂x

)
(
∂τxy

∂y

) ∼
µ

(
∂2ux

∂x2

)

µ

(
∂2ux

∂y2

) ∼
(
δ

L

)2

,

so that ∂τ xx/∂x can be neglected in (4.2.1a).

1 See also Section 2.9.
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(c) In the boundary layer, there is a balance between fluid accelerations and viscous forces (and
possibly pressure forces) so that the first two quantities are of the same magnitude.

From (a) and (b) the magnitude of the terms on the left-hand side of (4.2.1a) is ρU2/L, where U is a
representative velocity magnitude. Dividing by this quantity to normalize and non-dimensionalize all
the terms, the magnitudes of the pressure gradient and the viscous force are unity and (L2/δ2)(1/Re),
where Re is the Reynolds number UL/ν. For (c) to be valid, δ/L must scale as 1/

√
Re, which is

small for the devices of interest; a gas turbine compressor airfoil with a chord of 0.03 m and blade
speed 300 m/s has a Reynolds number of 6 × 105.

Using the information on the magnitude of δ/L we can estimate the magnitude of the pressure
difference across the boundary layer, �pn, from (4.2.1b):

�pn ∼ ρU 2(δ/L)2.

The estimate shows that the pressure difference across the boundary layer can be neglected and the
pressure through the boundary layer taken as equal to the free-stream value, pE. The momentum
equation in the direction along the surface thus becomes

ρ

(
ux
∂ux

∂x
+ uy

∂ux

∂y

)
= −dpE

dx
+ ∂τ

∂y
. (4.2.3)

In (4.2.3) pE is a function of the distance along the surface and we have dropped the subscript on τ xy

because this is the only viscous stress that is retained.
Using similar arguments the energy equation (1.10.3) takes the form

ρ

(
ux
∂cpT

∂x
+ uy

∂cpT

∂y

)
= ux

dpE

dx
− ∂qy

∂y
+ τ ∂ux

∂y
. (4.2.4)

Equations (4.2.2), (4.2.3), and (4.2.4) are known as boundary layer or thin shear layer equations.
Comparing the magnitudes of the various terms shows that the ratio of the thermal and viscous
boundary layer thicknesses, δu and δT, is

δu

δT

∼=
√
µcp

k
=

√
Pr . (4.2.5)

The assumption that the two thicknesses are of the same order is thus equivalent to the assumption
that the Prandtl number is of order unity. For air the Prandtl number is roughly 0.7 and varies by
approximately 5% over temperatures from 200 to 2000 K, so this assumption is well borne out, as it
is for a number of other gases. For liquids the Prandtl number varies over a much larger range, from
103 for engine oils at room temperature to 10−2–10−3 for liquid metals, and the assumption is not
justified. For information concerning these latter situations see, for example, Incropera and De Witt
(1996) or Schlichting (1979).

An alternative form of the boundary layer energy equation, in terms of the stagnation enthalpy,
can be obtained by multiplying the momentum equation (4.2.3) by ux and adding it to (4.2.4) or by
applying the boundary layer approximations to (1.9.13) for the rate of change of ht. Carrying out
either yields

ρux
∂ht

∂x
+ ρuy

∂ht

∂y
= −dqy

dy
+ ∂

∂y
(uxτ ) . (4.2.6)
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The first term on the right-hand side is the heat transfer to a given streamtube and the second is the
net work done by shear stresses on the streamtube.

Equations (4.2.2)–(4.2.4), or (4.2.6), describe the velocity and temperature field within the bound-
ary layer only. As such, the boundary conditions differ from those for the Navier–Stokes equations.
Conditions at the surface are the same as those given in Chapter 1, namely that for an impermeable
surface both components of the velocity are zero and either the wall temperature or the heat flux (or
some combination) is specified. At the outer edge of the boundary layer, however, what is required
is that the boundary layer velocity and temperature match the distribution (u = uE, T = TE) in the
flow outside the boundary layer. Because of the smooth transition, defining the “edge” or thickness
of the boundary layer, δ, is somewhat arbitrary, although one convention is to locate it2 at u/uE =
0.99.

4.2.2 Extension to curved surfaces

The equations for two-dimensional boundary layers on surfaces with radius of curvature, rc, can be
inferred from (1.14.9) for flow in cylindrical coordinates. In particular, for situations in which δ/rc

is small, the normal or radial momentum gradient becomes (neglecting terms of first order or higher
in δ/rc)

∂p

∂r
= ρu2

rc
, (4.2.7)

with the pressure gradient normal to the wall balancing the centrifugal force. There is a pressure
difference across the boundary layer, �pn of order ρu2(δ/rc) which can be neglected if δ/rc � 1.
(Since we take δu/δT ∼ 0(1) the subscript on δ has been dropped.) For flow along curved surfaces,
examination of the different terms in (1.14.9) shows that to order δ/rc the form of the momentum
and energy equation is unmodified from that for a plane surface so that, to this order, the boundary
layer equations remain the same as for a plane surface.

4.3 Boundary layer integral quantities and the equations that describe them

4.3.1 Boundary layer integral thicknesses

Three definitions of boundary layer thickness based on integral properties have found useful ap-
plication in describing the overall effect of the layer on the external flow. The first of these is the
displacement thickness, δ∗, defined as

δ∗ =
yE∫

0

(
1 − ρux

ρE uE

)
dy. (4.3.1)

The incompressible form of this quantity was introduced in Section 2.9. The integration is taken to
a value of y slightly larger than the “edge” of the boundary layer; the precise value does not matter
because the contribution to the integral is essentially zero outside y = δ.

2 For a constant pressure laminar boundary layer the value of [(δ/x)
√

Re] based on this is roughly 5.
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Figure 4.5: Interpretation of boundary layer integral thicknesses (Drela, 2000; see also Drela, 1998).

A physical interpretation of the displacement thickness is given by considering the mass flow rate
that would occur in an inviscid fluid which has velocity uE and density ρE, and comparing this to the
actual, viscous, situation. This is shown schematically in Figure 4.5(a), where ρEuEδ

∗ is the defect
in mass flow due to the flow retardation in the boundary layer. The effect on the flow outside the
boundary layer is therefore equivalent to displacing the surface outwards, in the normal direction, a
distance δ∗. For a two-dimensional channel aligned in the x-direction, with boundary layers on upper
and lower surfaces, the mass flow is

ṁ =

upper
surface∫

lower
surface

ρux dy = ρE uE [W − (δ∗lower + δ∗upper )].

For a given ρEuE, the effective width of a two-dimensional channel is thus reduced by the sum of
δ∗upper and δ∗lower.
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For incompressible flow, the definition of displacement thickness can also be given an interpretation
in terms of the total vorticity in the boundary layer (Lighthill, 1958). The displacement thickness in
an incompressible flow is

δ∗ =
yE∫

0

(
1 − ux

uE

)
dy. (4.3.2)

The expression for the average distance at which the boundary layer vorticity resides is

average distance of vorticity = 1

uE

yE∫
0

y
∂ux

∂y
dy, (4.3.3)

where the small term ∂uy/∂x has been neglected consistent with the boundary layer approximation.
Integrating (4.3.3) by parts,

average distance =
yE∫

0

(
1 − ux

uE

)
dy = δ∗.

In this view the displacement thickness is the distance from the wall at which a vortex sheet, having
local circulation per unit length equal to that of the boundary layer, would be located. Within the
layer of thickness δ∗ there is zero flow, consistent with the displacement thickness representing an
equivalent blockage next to the boundary.

The momentum thickness, θ , is defined as

θ =
yE∫

0

(
1 − ux

uE

)
ρux

ρE uE
dy. (4.3.4)

Referring to Figure 4.5(b) the quantity ρE u2
Eθ represents the defect in streamwise momentum flux

between the actual flow and a uniform flow having the densityρE and velocity uE outside the boundary
layer. It can be regarded as being produced by extraction of flow momentum and is thus related to
drag.

The third quantity is the kinetic energy thickness, θ∗, which measures the defect between the flux
of kinetic energy (or mechanical power) in the actual flow and that in a uniform flow with uE and ρE

the same as outside the boundary layer. The kinetic energy thickness, portrayed in Figure 4.5(c), is
defined as

θ∗ =
yE∫

0

(
1 − u2

x

u2
E

)
ρux

ρE uE
dy. (4.3.5)

This defect can be regarded as being produced by the extraction of kinetic energy. The power extracted
is linked to device losses, and the kinetic energy thickness is a key quantity in characterizing losses
in internal flow devices.

In summary, the parameters δ∗, θ , and θ∗ provide measures of the defects in mass, momentum, and
kinetic energy attributable to the boundary layer. They can be computed for any flow, whether com-
pressible or incompressible, laminar or turbulent. Further, since the transverse direction variations
have been integrated out, the thickness parameters are only functions of the primary flow direction.
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4.3.2 Integral forms of the boundary layer equations

The integral boundary layer thicknesses “wash out” the details of the flow within the boundary layer,
and it is consistent to examine their evolution using a set of equations which have this same level
of information. Such an approach is provided by the integral forms of the boundary layer equations.
To derive these, we integrate the boundary layer equations in y from the wall to yE, the edge of the
boundary layer. Doing so transforms the partial differential boundary layer equations (in x and y)
into ordinary differential equations (in x) for the different thicknesses. The two integral forms derived
below are for momentum and kinetic energy thicknesses. There is not a separate equation expressing
continuity because this condition enters through its application in the derivation of the integral
forms.

To obtain the two-dimensional steady flow integral momentum equation we begin here3 by mul-
tiplying the continuity equation by (uE − ux) and adding it to the momentum equation, also making
use of the free-stream relation

uE
duE

dx
= − 1

ρE

dpE

dx
.

Performing these operations yields

∂

∂x
[(uE − ux )ρux ] + ∂

∂y
[(uE − ux )ρuy] = −(ρE uE − ρux )

duE

dx
− ∂τ

∂y
. (4.3.6)

Integrating (4.3.6) term by term, and invoking the definition of the displacement and momentum
thicknesses, we obtain, with τw denoting the wall shear stress,

d

dx

(
ρE u2

Eθ
)+ ρE uEδ

∗ duE

dx
= τw. (4.3.7)

In non-dimensional form, (4.3.7) becomes

dθ

dx
+ (H + 2 − M2

E

) θ
uE

duE

dx
= C f

2
, (4.3.8)

where C f (= τw/( 1
2ρu2

E )) is the skin friction coefficient and H (= δ∗/θ ) is the boundary layer shape
parameter.

For incompressible flow, (4.3.8) reduces to

dθ

dx
+ (H + 2)

θ

uE

duE

dx
= C f

2
. (4.3.9)

In the above discussion, as well as in the derivations of the integral equations for the kinetic energy
deficit and the stagnation enthalpy below, the forms of the wall shear stress, τw, and wall heat flux,
qw, have not been explicitly specified. The equations obtained are thus applicable to the time mean
quantities in turbulent flow as well as to laminar flow, as described further in Section 4.6.

To obtain the equation for the kinetic energy thickness, we multiply the continuity equation by
(u2

x − u2
E ) and add it to the product of 2ux multiplied by the momentum equation. After integrating,

3 The integral momentum equation can also be obtained by setting up the overall momentum balance for an element, dx, of
the boundary layer (see Young (1989) and Schlichting (1979)).
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the result is (Young, 1989; White, 1991; Schlichting, 1979):

d

dx

(
ρE u3

Eθ
∗) = −

yE∫
0

2ux
dτ

dy
dy = −2uxτ

∣∣∣∣yE

0

+ 2

yE∫
0

τ
∂ux

∂y
dy. (4.3.10)

The term uxτ is zero at both y = yE and y = 0, while the term
∫ yE

0 τ (∂ux/∂y)dy, henceforth denoted
by Ḋ, represents the rate of dissipation of mechanical energy in the boundary layer, per unit surface
area.

The non-dimensional form of the kinetic energy equation is

dθ∗

dx
+ (3 − M2

E

) θ∗

uE

duE

dx
= 2Ḋ

ρE u3
E

= 2Cd , (4.3.11)

where Cd is referred to as the dissipation coefficient. For incompressible flow this reduces to

ρ
d

dx

(
θ∗u3

E

) = 2Ḋ. (4.3.12)

Equations (4.3.11) and (4.3.12) find considerable application in the estimation of losses described
in Chapter 5.

A third integral equation which relates to the thermal energy in the flow is that for the stagnation
enthalpy. It is obtained by integrating (4.2.6) in y and using the continuity equation

d

dx


 yE∫

0

ρux (ht − htE )dy


 = −qw. (4.3.13)

Equation (4.3.13) equates the rate of change of the flux of stagnation enthalpy difference between
the boundary layer and the free stream to the rate of heat transfer to the fluid at the surface. For
an adiabatic surface this is zero. There is no work term because no work is done by the stationary
surface at y = 0 and there is no shear stress at y = yE.

4.4 Laminar boundary layers

4.4.1 Laminar boundary layer behavior in favorable and adverse pressure gradients

Procedures for computations of laminar boundary layers are well described in depth elsewhere (e.g.
Schlichting (1979), Sherman (1990), and White (1991)), and we thus present a short description
only of boundary layer behavior in response to different types of pressure gradient. The simplest
(and historically the most prominent) situation, the constant pressure laminar boundary layer, is not
addressed as a separate topic, but is rather recovered as a special case of the boundary layer with a
pressure gradient.

To exhibit the generic features of laminar boundary layers in adverse and favorable pressure
gradients we examine a family of self-similar boundary layer solutions (Cebeci and Bradshaw,
1977). Non-similar solutions can also readily be computed, but the qualitative features do not differ
from those shown, and similarity allows compact display of the overall results. The solutions are the
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Falkner–Skan velocity profiles for incompressible flow which apply to free-stream velocities of the
form

uE = cxm, (4.4.1)

where c is a constant. The solution family represents boundary layers in both adverse (m < 0) and
favorable (m > 0) pressure gradients.

The existence of the similarity variables can be made plausible by noting that if the streamwise
length scale is x, a normal length scale, δn, of the same form as that for the constant pressure boundary
layer discussed in Section 2.9 is given by δn/x = 1/

√
uE x/ν, or δn = √

νx/uE . An appropriate non-
dimensional boundary layer coordinate is thus

η = y

δn
= y

√
uE

xν
. (4.4.2)

For two-dimensional flow a stream function, ψ , can be defined so that

ux = ∂ψ

∂y
, uy = −∂ψ

∂x
. (4.4.3)

The stream functionψ automatically satisfies the continuity equation. A natural scaling for the stream
function is uEδn, so that a non-dimensional form of the stream function can be taken as

F(η) = ψ√
uEνx

. (4.4.4)

Using (4.4.2) and (4.4.4) in (4.2.3) yields a non-linear ordinary differential equation for the function
F(η). With the prime denoting differentiation with respect to η:

F ′′′ + (m + 1)

2
F F ′′ + m[1 − (F ′)2] = 0. (4.4.5)

The solutions of (4.4.5) are independent of x if the boundary conditions are also. Suitable boundary
conditions for describing this class of flows are

η = 0: F = constant, F ′ = 0,

corresponding to ux = uy = 0 on the boundary, and

η → ∞: F′ = 1

corresponding to ux = uE as η → ∞.
Numerical solutions of (4.4.5) (known as the Falkner–Skan equation) giving the velocity u/uE as

a function of η are shown in Figure 4.6 for different values of m. Profiles corresponding to favorable
pressure gradients, m > 0, are fuller than for adverse pressure gradients, m < 0. The profiles for
m < 0 become S-shaped and the skin friction coefficient at the wall falls as m decreases. The
condition at which the wall shear stress = 0 and separation occurs is m = −0.0904. The condition
m = 0 corresponds to the Blasius constant pressure boundary layer solution for which (4.4.5) takes
the form

F ′′′ + F F ′′

2
= 0.
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Table 4.1 Behavior of Falkner–Skan-type boundary Layers;
free stream has uE = cxm (Cebeci and Bradshaw, 1977)

m C f Re1/2
x (δ∗/x) Re1/2

x H = δ∗/θ

dpE

dx
< 0 1 2.465 0.648 2.216

1/3 1.515 0.985 2.297
0.1 0.903 1.348 2.422

dpE

dx
= 0 0 0.664 1.721 2.591

dpE

dx
> 0 −0.01 0.632 1.780 2.622

−0.05 0.427 2.117 2.818
−0.0904 0 3.428 3.949

0
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Figure 4.6: Boundary layer velocity profiles in favorable and adverse pressure gradients – solutions of the
Falkner–Skan equations with free-stream flow uE = cxm (Cebeci and Bradshaw, 1977).

Results for non-dimensional wall shear stress and boundary layer integral parameters are given
in Table 4.1. As the pressure gradient is made more adverse, the skin friction falls and the shape
parameter increases.

4.4.2 Laminar boundary layer separation

The pressure rise that the boundary layer can withstand without separating from a surface is a quantity
of great interest. A simple and useful estimate of this pressure rise for laminar boundary layers is
given by a method due to Thwaites (White, 1991). This starts with the momentum integral equation
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for incompressible flow multiplied by uEθ/ν and written in the form

τwθ

µuE
= uEθ

ν

dθ

dx
+ θ2

ν

duE

dx
(2 + H ) . (4.4.6)

It was observed from examination of boundary layer solutions that the shape parameter, H, and the
skin friction coefficient, τwθ/µuE, can both be regarded to good approximation as functions of a
single parameter, λ = (θ2/ν)(duE/dx), so that

τwθ

µuE
≈ S(λ), (4.4.7b)

H = δ∗

θ
≈ H (λ). (4.4.7c)

Equation (4.4.6) can then be expressed as

uE
d

dx

[
λ

/(
duE

dx

)]
≈ 2[S(λ) − λ(2 + H )] = F(λ). (4.4.8)

Thwaites noted that the known analytic and experimental results were well fitted by the function

F(λ) = 0.45 − 6λ. (4.4.9)

If we substitute (4.4.9) into (4.4.8) and multiply the resulting equation by u5
E we obtain an exact

differential which then allows a closed form solution of (4.4.6):

1

ν

d

dx

(
θ2u6

E

) = 0.45u5
E . (4.4.10)

Integrating (4.4.10) from an initial location (0) to x gives

θ2u6
E

ν
= 0.45

x∫
0

u5
E dx ′ +

(
θ2u6

E

ν

)
0

. (4.4.11)

Equation (4.4.11) allows the momentum thickness to be found for any distribution uE(x). With
this established, the parameter λ can be found and thus the skin friction and displacement thick-
ness from Figure 4.7, or from the tabulated values of H(λ) and S(λ) given by White (1991), who
presents an example of the application of Thwaites’s method to a linearly decelerating flow, uE(x) =
uE0 (1− x/L). Figure 4.8 shows the results and a comparison with a finite difference solution. Figure
4.8 also implies that the pressure rise which can be tolerated by a laminar boundary layer is roughly
20% of the initial free-stream dynamic pressure.4 As we will see, turbulent boundary layers can
withstand several times this value.

One consequence of a laminar separation is the formation of a laminar free shear layer which can
become unstable, evolve to a turbulent shear layer, and reattach as a turbulent boundary layer. Even
without separation, however, if the Reynolds number is high enough, laminar layers will naturally
undergo transition to turbulence. As a prelude to discussion of turbulent boundary layers which are
much more common in fluid machinery than laminar boundary layers, in the next section we describe
some features of transition from laminar to turbulent flow.

4 While this gives a general guideline, the specifics of the conclusion depend strongly on the shape of the uE(x) distribution.
As discussed in the preceding section, a similarity boundary layer can be decelerated to uE ≈ 0. Rapid deceleration after a
long constant pressure flow, however, will cause separation with only a small percentage decrease in uE.
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Figure 4.7: Laminar boundary layer correlation functions suggested by White (1991).
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4.5 Laminar–turbulent boundary layer transition

Transition from laminar to turbulent flow can have several stages and generally take place over a
three-dimensional space. The mechanisms for transition can be classified into natural transition, in
which the first stage of the process is the growth of small amplitude disturbances in the boundary
layer, and bypass transition, in which the level of free-stream turbulence is high enough to bypass
the initial stages of the natural process and cause the onset of turbulent flow. This is typically the
mode observed in multistage turbomachinery, for example, where wakes from the upstream blading
impinge on the boundary layer.

In this discussion we present information to allow estimates of the conditions under which transition
occurs. Figure 4.9 ((Mayle, 1991) from whom much of the discussion of transition given here is taken)
shows the topology of the different modes of transition plotted in a momentum thickness Reynolds
number (Reθ ) versus acceleration parameter K (= (ν/u2

E )(duE/dx)) format, with both parameters
evaluated at the beginning of transition. Lines of constant turbulence level represent the value of the
momentum thickness Reynolds number at which transition begins for that value of turbulence level
and acceleration parameter. The line marked “stability criterion” is the line above which boundary
layer instability, the self-excited amplification of small disturbances within the boundary layer, is
possible. The line marked “separation criterion” is the calculated laminar boundary layer separation
limit, defined by Thwaites (1960) as Re2

θK = −0.082.
Figure 4.9 illustrates the large effect of the free-stream pressure gradient (manifested through

changes in the value of boundary layer shape parameter, H) on the start of transition. Favorable
pressure gradients require much higher values of Reθ for transition than adverse gradients. Strong
favorable pressure gradients, such as occur in nozzles of large contraction, or turbines, can even
cause turbulent boundary layers to re-laminarize. For strong adverse pressure gradients, on the other
hand, the momentum thickness Reynolds numbers for transition are much reduced from the value
for zero pressure gradients.

Natural transition involves several stages: (1) at a critical value of the momentum thickness
Reynolds number the laminar boundary layer becomes unstable to small disturbances; (2) the insta-
bility amplifies to a point where three-dimensional disturbances grow and develop into loop-shaped
vortices; (3) the fluctuating portions of the flow develop into turbulent spots, localized regions of
turbulent flow, which grow as they convect downstream, until they coalesce into a turbulent boundary
layer. These stages occur over a finite length and it is appropriate to describe transition as a process
rather than an event occurring at a point (White, 1991; Sherman, 1990; Schlichting, 1979).

A special type of natural transition occurs when a laminar boundary layer separates. If this occurs,
the growth of instability is much more rapid in the resulting free shear layer, promoting transition
to turbulence and reattachment as a turbulent boundary layer. A laminar separation/turbulent reat-
tachment “bubble” thus exists on the surface. The bubble length depends on the transition process
within the free shear layer and can involve all of the stages listed above. The process is depicted
schematically in Figure 4.10, which indicates an upstream region of nearly constant pressure and a
downstream region with pressure recovery.

Bypass transition occurs when there is a high level of free-stream turbulence. The first two stages of
the natural transition process can be completely bypassed so that turbulent spots are produced directly.
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Figure 4.10: Flow around a separation bubble and the corresponding pressure distribution (Mayle, 1991).

In this case the linear instability mechanism associated with natural transition is not appropriate, and
in fact Figure 4.9 shows that for high levels of turbulence and a favorable pressure gradient, transition
can occur before the stability criterion is reached.

Detailed coverage of transition is beyond the scope of this text, but Figure 4.11 is presented to
make quantitative some of the points that have been discussed. The figure gives momentum thickness
Reynolds number at the start and the end of transition for a constant pressure boundary layer as
a function of the free-stream turbulence level. As the turbulence level increases, the momentum
thickness Reynolds number at which transition can start decreases but there is a minimum value
(given in Abu-Ghannam and Shaw (1980) as 163) below which transition cannot occur. Although
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Figure 4.11: Momentum thickness Reynolds number at the start and end of transition for zero pressure gradient
(Abu-Ghannam and Shaw, 1980).

the length of the transition region is not shown explicitly, the figure implies, and measurements show,
the finite spatial extent.

4.6 Turbulent boundary layers

4.6.1 The time mean equations for turbulent boundary layers

Turbulent flow is characterized by flow property fluctuations about the time mean values. Associated
with these fluctuations is a greatly increased transfer rate of mass, momentum, and energy compared
to laminar flow. To introduce ideas concerning turbulent boundary layers we resolve variables into
time mean quantities and fluctuations about the mean. For example the time mean velocity is

u(x) = 1

tint

tint∫
0

u(x, t)dt, (4.6.1)

where the integration time tint is large compared to the fluctuation period. Denoting the fluctuat-
ing quantities by the curved overbar (e.g.

�

u), for a two-dimensional boundary layer the velocity
components and the pressure are

ux = ux + �

ux , (4.6.2a)

uy = uy + �

uy, (4.6.2b)

p = p + �

p. (4.6.2c)
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y

Figure 4.12: Shear stress in a turbulent boundary layer as a function of the non-dimensional distance from the
wall; y+ = yuτ /ν, and friction velocity uτ = √

(τw/ρ) (Johnston, 1986).

The discussion here is confined to the incompressible case. For compressible flows there would also
be fluctuations in temperature and density.

We now apply the averaging procedure defined by (4.6.1) to the boundary layer equations to
develop equations for turbulent flow. The continuity equation is linear in the velocity components,
so that time averaging does not change the form from that in the laminar case, hence:

time mean:
∂ux

∂x
+ ∂uy

∂y
= 0, (4.6.3a)

fluctuations:
∂
�

ux

∂x
+ ∂

�

uy

∂y
= 0. (4.6.3b)

A different situation occurs for the momentum equation, which is quadratic in the velocity com-
ponents. Expressing the velocity and pressure as in (4.6.2), substituting into the x-component of the
momentum equation, and taking the time average yields

ux
∂ux

∂x
+ uy

∂ux

∂y
= − 1

ρ

d p

dx
+ ν
(
∂2ux

∂y2

)
− ∂

∂x

(
�

ux
�

ux
)− ∂

∂y

(
�

ux
�

uy
)
. (4.6.4)

There are now additional terms in the time mean momentum equation compared with laminar flow.
These terms involve products of the turbulent fluctuations. The product terms are not known a priori
and we cannot find them from the time mean equations, because information has been lost through
the averaging process. Equations additional to continuity and momentum are thus needed to close
the problem.

The quadratic fluctuation terms in (4.6.4) function as additional stresses. This can be seen by
considering the flux of x-momentum across a control plane at a constant value of y. If the fluctuations
in ŭx and ŭy are correlated so that the product (

�

ux
�

uy) is positive, there is transport of fluid particles
with positive x-momentum upwards across the plane and transport of fluid particles having negative
x-momentum downwards. The result is a net upwards transfer of x-momentum, of magnitude ρ

�

ux
�

uy

per unit area and unit time. Terms of this type are known as Reynolds stresses, and the total stress
in a time mean turbulent flow is the sum of the viscous and Reynolds stresses. Figure 4.12 shows



186 Boundary layers and free shear layers

a sketch of the stresses in a turbulent boundary layer, plotted versus the non-dimensional distance
from the wall. Over most of the turbulent boundary layer, except near the wall, the Reynolds stresses
are much larger than the viscous stresses.

Modeling of the stress terms (or of similar terms in equations which define the evolution of the
stresses) is the central problem in turbulent flow. We do not address techniques for doing this in any
detail and rather present basic approaches for calculating the overall properties of the time mean
flow. These are more appropriately regarded as scaling arguments concerning mean flow behavior
(Roshko, 1993a) rather than theories of turbulent shear flow, but they have proved useful in helping
organize the large amount of empirical information about this complex subject.

The arguments used in deriving the laminar boundary layer equations must be modified for turbu-
lent flow. As before, the situations to be considered for the time mean flow are those for which the
characteristic length scale normal to the bounding surface (the boundary layer thickness) is much less
than the length scale along the surface. We cannot, however, state that this is true for the fluctuating
velocities. Experiments show that the instantaneous x- and y-velocity fluctuations are comparable as
are the x- and y-length scales associated with the fluctuations. The approximation made is thus that
derivatives of the time mean quantities vary much less in the streamwise direction than in the normal
direction. In what follows, the overbars will be dropped so that ux, for example, will represent the
time mean x-velocity component. The x-momentum equation is approximated as

ux
∂ux

∂x
+ uy

∂ux

∂y
= − 1

ρ

dp

dx
+ ν
(
∂2ux

∂y2

)
+ ∂

∂y
(−�

ux
�

uy)

= − 1

ρ

∂p

∂x
+ ∂τviscous

∂y
+ ∂τturbulence

∂y
. (4.6.5)

(As for the discussion of laminar boundary layers τ denotes τ xy.) The dominant forces due to Reynolds
stresses in a two-dimensional turbulent boundary layer arise from the y-derivative of the (

�

ux
�

uy) term,
and this is the only one we consider.

Using the above arguments, the y-momentum equation becomes

1

ρ

∂ p

∂y
= ∂

∂y

(
�

u
2

y

)
. (4.6.6)

Equation (4.6.6) can be integrated across the boundary layer to give the normal pressure difference
as

�pn = ρ
(
�

u
2

y

)
. (4.6.7)

The variation of pressure across a turbulent shear layer is from one to several percent of the dy-
namic pressure based on the free-stream velocity. The lower value is for a boundary layer, the
higher value for a jet, based on the maximum jet velocity. This pressure difference can generally
be neglected in computations of turbulent boundary layer behavior. In summary, the equations that
describe two-dimensional turbulent boundary layers in incompressible flow are (4.6.3) and (4.6.5)
plus specification of the pressure gradient imposed on the layer. For compressible flow there are
additional terms due to the correlations between fluctuating density and velocity: for these equations
see White (1991) or Cebeci and Bradshaw (1977).
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Figure 4.13: Regions of a turbulent boundary layer. Outer-layer profile shown is for uE = constant (Cebeci and
Bradshaw, 1977).

4.6.2 The composite nature of a turbulent boundary layer

An important feature of a turbulent boundary layer is the difference in the behavior of the region
near the surface (the inner region) and the rest of the boundary layer (the outer region). This is
illustrated by examining a constant pressure flow. As we have seen, for a laminar boundary layer a
dimensionless normal coordinate can be defined which represents the velocity profile at any x-station.
For a turbulent boundary layer, however, this is not the case. The reason is that the velocity profile
in the inner region of the boundary layer is dependent on viscosity, while that in the outer region
depends on the Reynolds stresses. The scaling of the two regions is thus quite different.

In the inner region the relevant quantities are wall shear stress, density, kinematic viscosity, and dis-
tance from the wall, y. It is helpful to make use of the friction velocity defined as uτ = √

τw/ρ, where
τw is the wall shear stress. From dimensional analysis an appropriate non-dimensional grouping for
the velocity dependence is

ux

uτ
= f
( yuτ
ν

)
. (4.6.8)

The conventional notation is to define u+ = ux/uτ and y+ = yuτ /ν so (4.6.8) can be written

u+= f (y+). (4.6.9)

Figure 4.13 is a plot of non-dimensional velocity u+ versus y+; the logarithmic scale should be
noted. The region up to roughly y+ = 10, where viscous stresses dominate, is known as the linear
sublayer. Further away from the wall, say y+ ≈ 50, the stress is still close to τw but the stress and rate
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Figure 4.14: Comparison of the shapes of laminar and turbulent boundary layers (Clauser, 1956).

of strain no longer depend on viscosity. If so, the only dimensionally correct relationship is (Cebeci
and Bradshaw, 1977),

∂ux

∂y
= uτ
κy
. (4.6.10)

The non-dimensional constant κ has been found experimentally to be 0.41. Equation (4.6.10) can
be integrated to give the form of the velocity profile outside the linear sublayer, but still in the inner
region, as

u+ = 1

κ
lny+ + C, (4.6.11)

where C is found experimentally to be 5.0. Equation (4.6.11) is known as the “law of the wall”.
Figure 4.13 illustrates the regions of the turbulent boundary layer. The inner region can be plotted

as a single curve using u+ and y+ for all Reynolds numbers. In the outer region whose extent depends
on the Reynolds number, velocity profiles for different Reynolds numbers will not collapse in this
manner, even for a constant pressure flow. The inner region typically occupies 10–20% of the overall
boundary layer thickness, δ. In the outer region the velocity profile does not depend directly on
the viscosity, and an appropriate choice of variables is to scale the velocity defect with the friction
velocity.

A general view of time–mean turbulent boundary layer velocity profiles is provided by Figures 4.14
(Clauser, 1956) and 4.15 (White, 1991). The first shows the velocity distribution (ux/uE) as a function
of (y/δ) for constant pressure laminar and turbulent boundary layers. The latter has much steeper
velocity gradients near the wall than the former, even allowing for the fact that the boundary layer
thickness is larger for the turbulent boundary layer at the same Reynolds number. The difference
in transport mechanisms in the inner and outer regions also implies a difference in characteristic
length scales between these regions. This is seen in the turbulent velocity profile, which shows (see
Figure 4.14) large differences in the local slope across the layer. For the laminar boundary layer,
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the differences in local slope are much less, consistent with the existence of a single characteristic
length.

The steep velocity gradient near the wall of a turbulent boundary layer can be viewed as associated
with the behavior of the effective turbulent viscosity as one moves away from the wall (see Section
4.6.3). In the outer layer the effective viscosity can be two or more orders of magnitude larger than
the actual viscosity, resulting in a much higher velocity gradient near the wall than in the outer region.
This provides the near wall flow an enhanced capability (compared to that of a laminar boundary
layer) to resist separation in adverse pressure gradients because of the increased momentum transfer
from faster moving fluid.

Figure 4.15 presents time mean turbulent velocity distributions for a range of favorable and adverse
pressure gradients, also in terms of (ux/uE) versus (y/δ), which show similar features to the constant
pressure situation.

4.6.3 Introductory discussion of turbulent shear stress

To close the problem of analyzing turbulent boundary layers a relation is needed to link the turbulent
(or Reynolds) stress and the rate of strain. Approaches for supplying this via the definition of a
turbulent momentum diffusivity, or eddy diffusivity, range from dimensional analysis coupled with
experiment, to computational procedures in which the eddy diffusivity is calculated from other
turbulent quantities (Bradshaw, 1996). The difficulty is that the transport coefficient is not a property
of the fluid, as for laminar flow, but rather a property of the flow field itself.

Over the past century or more, a number of approaches have been pursued to address this closure.
Initial attempts were aimed at connecting the eddy diffusivity to features of the time mean flow
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field. These have been reasonably successful in providing estimates of turbulent boundary layer
development, although they must be used with caution in cases far from previous experience. A
basic proposal concerning turbulent shear stress (due to Prandtl (White, 1991)) is that the fluctuating
velocity is related to a mixing length scale and the velocity gradient. If so, the Reynolds stress is
given by

(
�

ux
�

uy
) ∝
[
	mix

(
∂ux

∂y

)]2

, (4.6.12)

where 	mix, the mixing length, is to be defined. From (4.6.12) an eddy diffusivity can be defined such
that

νturb
∂ux

∂y
= −(�ux

�

uy
) = (	mix)2

∣∣∣∣∂ux

∂y

∣∣∣∣2 . (4.6.13)

To make (4.6.13) useful, we need a way to connect the length scale to the flow conditions. Because
of the composite nature of the turbulent boundary layer, this needs to be done in two parts (White,
1991). For the inner region the necessary relation is provided by the empirical expression

(	mix)inner region ≈ κy
[
1 − e−y+/Y ]. (4.6.14)

The quantity in the square bracket is a damping factor that accounts for the decrease in turbulent
transport properties very near the wall. For a flat plate boundary layer the non-dimensional parameter
Y is approximately 26 and at a value of y+ = 60, the exponential quantity is only 0.1. Over most of
the logarithmic region therefore, the mixing length can be taken to be proportional to the distance
from the wall, y. In the outer region, measurements imply the mixing length scales with boundary
layer thickness:

(	mix)outer region ∼ 0.09δ. (4.6.15)

Relations such as the above do not reveal any fundamental information concerning the turbulent
flow, and they are perhaps best viewed as correlations of data which, coupled with the appropriate
forms of the time mean equations of motion, allow estimates of the time mean velocity and pressure
fields. The eddy viscosity, µturb varies across the turbulent boundary layer, but it is roughly constant
in the outer region and can be scaled as

µturb ∝ ρuEδ
∗

or
µturb

µ
≈ 0.016Reδ∗ . (4.6.16)

Figure 4.16 shows computations of eddy viscosity across a turbulent boundary layer for three different
values of Reδ∗ . The straight lines, which go from the origin to the constant values, represent the
behavior in the inner layer. The dashed lines are modifications to the estimation based on the fact
that the outer portion of the boundary layer contains fluid which is not turbulent (i.e. patches of
irrotational fluid from the free stream). The fraction of the time a probe might see turbulent fluid
varies from near unity at y/δ≈ 0.5 to close to zero at y/δ≈ 1, with a consequent fall off in magnitude
of the turbulent transport properties.
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Figure 4.16: Eddy viscosity distribution in a turbulent boundary layer computed from the inner law and outer
law (White, 1991).

As a closing note to this section, it may be worthwhile to comment on the current state of turbulent
flow computations. It is now common that standard computational procedures employ turbulence
models with two auxiliary equations for the evolution of the turbulent kinetic energy and for
dissipation of turbulence energy. The local eddy viscosity is scaled with the square of the for-
mer divided by the latter, with the proportionality factor for the scaling obtained from experiment.
For such models there are also other proportionality factors which must be supplied, and it has been
found that the values of these are not universal for all flows. There is considerable research on large
eddy simulations, in which the larger eddies are computed and only the smaller ones represented by
empirical expressions, and on direct simulation of the Navier–Stokes equations, although these are
not yet standard industry tools (Moin, 2002; Moin and Mahesh, 1998).

4.6.4 Boundary layer thickness and wall shear stress in laminar and turbulent flow

It is useful to compare some of the overall properties of laminar and turbulent boundary layers. We
examine two aspects, the wall shear stress and the boundary layer thickness for a constant pressure
incompressible flow. For the laminar boundary layer, the boundary layer thickness obtained, δ, is
calculated to be

δ

x
≈ 5√

uE x

ν

≈ 5√
Rex

. (4.6.17)

The wall shear stress is

τw (x)
1
2ρu2

E

= C f = 0.664√
Rex

. (4.6.18)



192 Boundary layers and free shear layers

Integrating (4.6.18) from x = 0 to x = L, the total frictional force per unit width, Fw, on a plate of
length L is

Fw
1
2ρLu2

E

= 1.33√
ReL

. (4.6.19)

For the turbulent boundary layer we make use of the integral momentum equation (4.3.9) in the
form

τw = ρu2
E

dθ

dx
. (4.6.20a)

This can be integrated to give

Fw =
x∫

0

τw(x ′)dx ′ = ρu2
E

x∫
0

dθ

dx
dx = ρu2

Eθ. (4.6.20b)

The local wall shear stress is related to the derivative of the momentum thickness and the non-
dimensional force is just the value of momentum thickness at the exit station.

To proceed further, we need a link between the wall shear stress and the boundary layer parameters.
A simple relation of this type is provided by the empirical expression (Schlichting, 1979)

τw
1
2ρu2

E

= 0.045

(
ν

uEδ

)1/4

. (4.6.21)

To relate momentum thickness to boundary layer thickness, we also need a suitable velocity profile
which can be used in the definition of the former, (4.3.4). An appropriate representation for this
purpose, valid for Reynolds numbers from 105 to 107, has been found to be5

ux

uE
=
( y

δ

)1/7
. (4.6.22)

Substituting (4.6.22) in the definition of momentum and displacement thickness, (4.3.4) and (4.3.2),
yields

θ = 7

72
δ, δ∗ = δ

8
. (4.6.23)

Using (4.6.21) and (4.6.23) in (4.6.20a) yields an expression for the growth of the boundary layer
in x:

0.023

(
ν

uEδ

) 1
4

= 7

72

dδ

dx
. (4.6.24)

Finally, integrating (4.6.24) from the starting conditions (taken here as δ = 0 at x = 0) gives an
expression for the boundary layer thickness, δ, as a function of x:

δ(x) = 0.37x

(Rex )1/5 . (4.6.25)

5 The distribution in (4.6.22) gives good representation of the overall shape of the turbulent boundary layer velocity profile
in Figure 4.14, although it cannot be valid in the near-wall region because the derivative is unbounded at the wall. However,
local details of the velocity field such as this (which are not captured) are unimportant for the estimation of integral properties.
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Figure 4.17: Resistance formulas for a smooth flat plate, theory and measurement: curve 1 for a laminar layer
(4.6.18); curve 2 is based on (4.6.26); curve 3 is the data fit C f = 0.455/(log Re)2.58; curve 4 represents the
laminar–turbulent transition regime (Schlichting, 1979).

The momentum thickness is proportional to δ(x) and is

θ (x) = 0.036x

(Rex )1/5 . (4.6.26)

The boundary layer thickness is found to increase as x4/5 in turbulent flow compared with (4.6.17),
which shows a thickness growth as x1/2 in laminar flow. For a length Reynolds number of 106

the boundary layer thicknesses are δ/x = 0.005 and δ/x = 0.023 for laminar and turbulent flow
respectively. From (4.6.25) the rate of growth of a turbulent layer at a Reynolds number of 106 is
approximately 1 in 50. These numbers emphasize the relative thinness of constant pressure boundary
layers.

Figure 4.17 shows a plot of the wall shear stress on a smooth flat plate versus length Reynolds
numbers. The curve marked 1 is for a laminar layer and is (4.6.18). The curve marked 2 is based on
(4.6.26). Data for flat plate turbulent boundary layers are also shown, and it is seen that use of (4.6.26)
gives a reasonable estimate for Reynolds numbers of 105–107. Schlichting (1979) and White (1991)
describe other approaches for estimating skin friction which give improved agreement at higher Re.
The curve marked 3 is an empirical fit to the data, Cf = 0.455/(log RL)2.58. The curve marked 4
represents the regime of laminar to turbulent transition.

4.6.5 Vorticity and velocity fluctuations in turbulent flow

Several features of turbulent flows can be connected in an instructive way with the concepts con-
cerning vorticity that were developed in Chapter 3. One property of turbulence is an overall transfer
of kinetic energy from larger to smaller length scales across a broad spectrum of motions. At one
end of the spectrum are motions with length scales on order of the boundary layer thickness. At the
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Figure 4.18: Inertial transfer in turbulent flow by the interaction of a strain-rate field and vorticity; kinetic energy
per unit mass u2/2 (Lumley, 1967).

other are motions with the smallest length scales in the flow, namely those for which length scale
Reynolds numbers are small enough so that viscous effects dominate. Although we have described
turbulent flow in a two-dimensional manner, if we look in more depth, vortex stretching, which is
an inherently three-dimensional phenomenon, is at the heart of this evolution from larger to smaller
scale motions.

A view of this “energy cascade” process is shown schematically in Figure 4.18. The figure depicts
two vortex elements in a strain-rate field. As the vortex elements are strained, the lengthened vortex
gains more energy than the shortened one loses. With kinetic energy per unit mass, u2/2, for a strain
dr/r there is a change d(u2/2)/(u2/2), as given in the figure, with energy being removed from the
large scale strain-rate field and put into the smaller scale vortex motion.

A second three-dimensional aspect concerns the Reynolds stresses. A general flow field consists
of a time mean flow field plus a fluctuation:

u = u + �

u. (4.6.27)

The time mean momentum equation can be written for an incompressible flow as

u × ω = ∇
[

pt

ρ
− (

�

u
2
)

]
− �

ω × �

u − ν∇2u. (4.6.28)
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1
2

Figure 4.19: The vorticity–velocity cross-product generates effective body forces (per unit mass) X1 and X2

(Tennekes and Lumley, 1972).

The terms in the square brackets are normal stress terms. The contribution of the turbulence to

these normal stresses is not significant because
�

u
2 � u2 (Tennekes and Lumley, 1972). To show the

effect of the other terms, consider a two-dimensional time mean flow and apply the boundary layer
approximations. The equation for ux can be written as

ux
∂ux

∂x
+ uy

∂ux
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. (4.6.29)

Comparison with (4.6.5) shows that the vortex terms represent the cross-stream derivative of the

Reynolds stress −(
�

ux
�

uy):

∂
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uy) = (
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uy
�
ωz − �

uz
�
ωy). (4.6.30)

The Reynolds stress term may be given an interpretation as shown in Figure 4.19. The vorticity–
velocity cross-product generates an effective body force per unit mass, which can be regarded as a
generalization of the result for lift due to the flow past an airfoil with vorticity aligned along its span
(Lighthill, 1962).

4.7 Applications of boundary layer analysis: viscous–inviscid
interaction in a diffuser

Chapter 2 introduced the idea that the presence of a boundary layer creates flow blockage and makes
the effective flow area of a channel or duct less than the geometric area, decreasing the mass flow for a
given total-to-static pressure ratio. To calculate this effect in a general situation requires addressing the
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interaction of the inviscid-like flow outside the boundary layer and the viscous layer.6 Historically,
the method initially developed to deal with this problem was one of successive approximations
in which the flow external to the boundary layer was first calculated neglecting the presence of
the boundary layer with the resulting pressure distribution used in a boundary layer calculation.
Computing the displacement thickness and using it to modify the body shape, one could recalculate
the external flow, obtain an improved pressure distribution and then recompute the boundary layer.
This procedure works well if the boundary layers are thin (in an appropriate non-dimensional sense)
but the inherently uni-directional passing of information does not capture situations in which there are
substantial viscous–inviscid interactions and it fails in regions of flow separation. For these flows in
which there is strong coupling between boundary layers and the inviscid region, a different approach
is needed. A method for attacking the problem which is well suited to many internal flow situations
is that of interactive boundary layer theory in which the boundary layer and the flow external to it
are essentially computed simultaneously. This method also provides insight into the effects which
drive the behavior of interest.

We illustrate the procedure here for a quasi-one-dimensional channel flow. Extensions to more
general situations are described by Drela and Giles (1987), Strawn, Ferziger, and Kline (1984), and
Tannehill, Anderson, and Pletcher (1997). As stated earlier in the chapter, it is the overall effect
of the boundary layer (for example the displacement thickness) which is often of most interest,
so that the analysis is given in terms of an integral boundary layer computation. This is also the
simplest viscous–inviscid approach to implement, although there is no fundamental limit to posing
the problem in terms of a differential computation for the boundary layer.

The specific configuration to be investigated is similar to that sketched in Figure 4.4, a symmetrical
diffusing duct of length-to-width ratio such that a quasi-one-dimensional description of the inviscid-
like core flow, which has velocity uE, can be used. The core is bounded by viscous layers on the top
and bottom walls.

The evolution of the momentum thickness is given by the integral form of the momentum equation,
(4.3.9). Interaction between the core and the boundary layer is captured by the global continuity
equation for the channel which is of local width, W:

uE [W − 2δ∗] = constant, (4.7.1a)

or

duE

dx
[W − 2δ∗] +

(
dW

dx
− 2dδ∗

dx

)
uE = 0. (4.7.1b)

In (4.3.9) and (4.7.1) there are five unknowns: (i) core velocity, uE, (ii) displacement thickness,
δ∗, (iii) momentum thickness, θ , (iv) wall friction coefficient, Cf, and (v) boundary layer shape
parameter, H. The integral momentum equation, the continuity equation (4.7.1), and the defi-
nition of H (= δ∗/θ ) provide three relations connecting these quantities, so that two additional
relations are necessary to close the problem. The selection of conditions for closure for general two-
dimensional boundary layers is discussed further in Section 4.7.2. In the next section we present a sim-
ple illustration of features of the flow to be expected using an idealized model of the boundary layer.

6 The term “inviscid flow” or sometimes core flow is often used to describe the region outside the boundary layer. This does
not mean that the fluid is inviscid, but rather that the velocity gradients are small enough so that shear stresses can be
neglected and the flow treated as if it were inviscid.
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Figure 4.20: Effect of the initial boundary layer thickness, shape parameter H1 = 1/ε, and area ratio on the
diffuser pressure rise; station 1 is inlet, station 2 exit.

4.7.1 Qualitative description of viscous–inviscid interaction

To qualitatively illustrate the features of viscous–inviscid interactions we take the boundary layer
to be represented by an inviscid stream with uniform velocity ε times the local free-stream value
(ubl = εuE, ε < 1). The displacement and momentum thicknesses are then given by δ∗/δ = (1 − ε)
and θ/δ= [ε(1 − ε)] respectively, with shape parameter, H = 1/ε. The momentum integral equation,
the continuity equation for the channel, and the continuity equation for the core flow furnish three
coupled differential equations for the core flow velocity, uE (or, non-dimensionally, the ratio of core
flow velocity at a given station x to the core flow velocity at the initial station, uE/uE1 ), the parameter
ε, and the local boundary layer thickness, δ.

For this idealized example the integration of the equations can be carried out explicitly. The
conditions of constant stagnation pressure in the core flow and in the boundary layer, continuity for
the core and boundary layer, and the condition that the core and boundary layer stream heights add up
to the channel height generate four coupled algebraic equations for the velocities and stream heights
of the core and boundary layers at the inlet (station 1) and exit (station 2) locations. Solution of these
shows that the effects of the boundary layer shape parameter and boundary layer blockage influence
the overall pressure rise differently. The core velocity corresponding to the maximum pressure rise
for a given boundary layer velocity parameter ε1 occurs when ubl = 0 or

ε2
1 = 1 −

(
uE2

uE1

)2

= �pmax
1
2ρu2

E1

= C pmax . (4.7.2)

The initial boundary layer thickness does not affect the maximum pressure rise that can be obtained
as the area ratio is varied but it does determine, for a given geometry, the maximum pressure rise.

Figure 4.20 shows the effect of the initial boundary layer blockage, δ∗1/W1, and the boundary
layer shape parameter, H1, on the pressure rise coefficient as a function of diffuser area ratio. (For
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Figure 4.21: Relative growth of the low velocity region due to pressure rise (p2 > p1).

reference, shape parameters for constant pressure laminar and turbulent boundary layers are roughly
2.5 and 1.4 respectively, corresponding to ε1 of 0.4 and 0.7.) The area ratio is taken only to a value
of 1.5 because this simple representation of the boundary layer cannot capture the actual separation
process, but the figure shows features seen in experiment such as the reduced pressure rise as either
the inlet blockage or inlet boundary layer shape parameter increases.

The decrease in pressure rise compared to the ideal behavior based on geometry occurs because
of the growth of the low velocity region, as shown in Figure 4.21. Along any streamline, the relative
change in velocity magnitude is

du

u
= − dp

ρu2
.

Boundary layer and core experience the same pressure rise so that the former, which has lower
velocity, has a larger relative deceleration. As indicated in Figure 4.21, the effective area ratio for
the core flow is less than the geometrical area ratio. Although the arguments are strictly correct for
inviscid flow only, the general trend applies to boundary and free shear layers.

4.7.2 Quantitative description of viscous–inviscid interaction

As mentioned, in addition to the momentum integral equation, the equation expressing global con-
tinuity across the channel, and the definition of the boundary layer shape parameter, two remaining
relations are needed. There is no unique approach to such closure for turbulent boundary layers and
a number of approaches exist in the literature. Examples are the use of an equation describing the
rate at which free-stream fluid is brought, or entrained, into the boundary layer and an equation for
the rate of change of kinetic energy defect. Because of the averaging process the latter has a different
content than the momentum equation and can be used as a separate piece of information. We describe
one approach below as representative, but we emphasize that a number of methods exist, consisting
of a set of ordinary differential equations which can be integrated along the channel or duct, plus
supplementary empirical algebraic relations between parameters which close the problem (Drela and
Giles, 1987; Strawn et al., 1984; White, 1991; Johnston, 1997).
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Figure 4.22: Diffuser pressure rise coefficient. Solid lines are integral boundary layer calculations, symbols are
data (Lyrio et al., 1981, based on data of Carlson and Johnston, 1965).

In the method of Drela and Giles (1987) the differential equations employed are: (i) the momentum
integral equation, (ii) an expression for the variation in shape parameter, H, derived from the kinetic
energy equation, and (iii) overall mass conservation for boundary layers and the core flow. These
are

dθ

dx
= f1(θ, H, uE ), (4.7.3a)

d H

dx
= f2(θ, H, uE ), (4.7.3b)

duE

dx
= f3(θ, H, uE ), (4.7.3c)

where the displacement thicknesses on both surfaces have been taken to be the same.
Equations (4.7.3) need to be supplemented by empirical relations linking H∗ (H∗ = kinetic energy

thickness/momentum thickness, θ∗/θ ), Cf (the skin friction coefficient, τw/
1
2ρE u2

E ) and Cd (the
dissipation coefficient, dissipation per unit length/ρE u3

E ) to the variables θ , H, and uE. Equations
(4.7.3) provide information about the evolution of a characteristic length scale, boundary layer shape
parameter, and velocity. Integrating them along the channel with a given W(x) yields a solution in
which uE(x) is computed (rather than specified), supplying the desired interaction between core flow
and the boundary layer. Because the computation includes this interaction, procedures of this type
are suitable for attached, separating, and reattaching flows.

To illustrate the results of an integral boundary layer approach to viscous–inviscid interaction, as
well as to show some quantitative features of internal flows in adverse pressure gradients, we return
to the theme of computing diffuser pressure rise behavior. Figure 4.22 shows integral boundary layer
calculations and measurements for two channel diffusers, N/W1 = 3 and 6, at area ratios from 1.4 to
3.1 (Lyrio, Ferziger, and Kline, 1981). The data span regimes from operation with no appreciable
stall, through the peak value of Cp, to well into transitory stall (see Figure 4.2). The inlet ratio of
displacement thickness to width (δ∗/W1) is 0.03.
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boundary layer computation; symbols are data from Reneau et al. (1967).

The static pressure coefficient along the diffuser is given in Figure 4.23 for the N/W1 = 6 case,
for area ratios both less and greater than that corresponding to the peak pressure rise. In the regime
with no appreciable stall the pressure rises smoothly along the entire diffuser, although the rate of
rise decreases with distance. For area ratios larger than 2.1, however, the diffuser is operating in
transitory stall and the pressure distribution shows a marked flattening.

A third feature is captured in Figure 4.24, which shows the effect of the initial displacement
thickness on pressure rise for a family of diffusers of constant non-dimensional length, N/W1 =
10. The flow regimes extend from unstalled to fully stalled. As implied by the flow regime map in
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Figure 4.3, the onset of the different regimes is little affected by inlet blockage but the pressure rise
at any set of geometric parameters does depend on this parameter.

4.7.3 Extensions of interactive boundary layer theory to other situations

4.7.3.1 Non-one-dimensional flow

Although the geometries addressed so far were those in which the inviscid flow could be consid-
ered quasi-one-dimensional, the approaches described are also applicable to situations with strong
streamline curvature. In such a case the normal component of the inviscid momentum equation shows
(see Section 2.4) that the boundary layers on the two walls of the passage are subjected to different
pressure gradients. Normal pressure gradients in the channel must thus be obtained as part of the
solution procedure with the core described by a suitable inviscid model. (For an incompressible
irrotational core, for example, Laplace’s equation is appropriate.) Viscous–inviscid approaches are
able to capture the strong interaction of boundary layer and free stream in cases that include this
effect, compressibility, and flow rotationality outside the boundary layer as described in the above
references. Even with symmetric geometries, regions of separation and back flow often occur asym-
metrically so that the streamline curvature is produced not by the physical geometry but by the need
for the flow to detour around large regions of nearly stagnant or reverse flow. The inviscid portion
of the flow field must also be treated in a two-dimensional manner in these situations.

4.7.3.2 Boundary layers on rough walls

Discussion in this chapter has been for boundary layers on smooth walls, but considerable data and
methodology exist to allow one to estimate the behavior of boundary layers on rough walls. This
includes guidelines for the characterization of the roughness, data on the increase in skin friction
with roughness, and methods to include the effects of roughness in boundary layer calculations. For
discussion see White (1991) or Schlichting (1979).

4.7.4 Turbulent boundary layer separation

The reader can by now infer that a critical issue concerning boundary layer behavior in adverse
pressure gradients is when and where the boundary layer will separate from the surface. Historically,
the approach used for estimating this in fluid machines has been through correlations that connect the
limits of pressure capability to appropriate overall geometric parameters for the device of interest.
This method works well for a range of geometries of similar type and has been used with success
for diffusers (e.g. the flow regime map of Figure 4.3) including two-dimensional straight channel,
curved, conical and annular geometries (Kline and Johnston, 1986; Sovran and Klomp, 1967). It has
also been widely used for estimates of separation limits in turbomachinery (Cumpsty, 1989; Casey,
1994; Kerrebrock, 1992).

At a less empirical level, the conditions at which separation occurs can be linked to local boundary
layer integral properties. Turbulent separation or “detachment” (as many workers refer to it) is more
realistically viewed as a process rather than as a discontinuous change. This process can be described
in terms of a parameter, ξ , the percentage of instantaneous forward flow in the viscous sublayer
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Figure 4.25: Schematic of two-dimensional detachment (not to scale) (Kline et al., 1983).

(Kline, Bardina, and Strawn, 1983; Simpson, 1996). For a two-dimensional laminar boundary layer
the behavior of ξ would be (at least conceptually) a step function, with a sudden shift from 100%
to 0% forward flow. For a turbulent boundary layer, measurements show that as one goes from a
location at which the flow is fully attached to one where it is fully detached, the flow near the wall
fluctuates, with the percentage of the time the velocity is in the upstream direction increasing with
streamwise distance. The parameter ξ is thus one metric for the degree of detachment. As sketched in
Figure 4.25 at station A measurable backflows near the wall are first observed with ξ > 0.5%. In zone
B, appreciable backflow occurs with ξ between 5 and 50% and this region is denoted as incipient
detachment. Point C is the location of full detachment, where ξ = 50% and τw = 0. The detachment
process occurs over a length which can be several boundary layer heights, with the boundary layer
shape parameter changing from a value associated with attached flow to one reflecting detached flow.

The conditions that characterize separation are portrayed in Figure 4.26 in a plane based on the
non-dimensional parameters h and χ , where

h = δ∗ − θ
δ∗

= H − 1

H
and χ = δ∗

δ
. (4.7.4)

Use of the parameters h and χ has several advantages. First, the relation between h and χ is ap-
proximately linear for turbulent boundary layers near separation and depends only weakly on the
Reynolds number. Two fits to experimental data are shown in the figure, one for Reδ∗ = 103 and
one for Reδ∗ = 106, and it is seen that the differences are small. For high Reynolds numbers, a good
approximation, which is essentially the trajectory of the boundary layer state as conditions near
detachment, is h = 1.5χ . Experiments show that the conditions for intermittent detachment occur at
h = 0.63 and full detachment at h = 0.75 (χ = 0.5) (indicated in Figure 4.26).

4.8 Free turbulent flows

4.8.1 Similarity solutions for incompressible uniform density free shear layers

In this section we describe some basic features of constant density, incompressible, free shear layers:
mixing layers, jets, and wakes. The discussion is restricted to situations in which the flows have
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self-similarity, i.e. the region of interest is far enough downstream so that velocity and shear stress
are functions of a similarity parameter. For these important cases, useful scaling information can be
obtained without solving the equations of motion. Consider first a constant pressure, two-dimensional
or plane turbulent jet.7 The equations for the time mean velocity are

ux
∂ux

∂x
+ uy

∂uy

∂y
= 1

ρ

∂τxy

∂y
, (4.8.1a)

∂ux

∂x
+ ∂uy

∂y
= 0, (4.8.1b)

where τ xy is the turbulent stress. Because the jet spreads in a constant pressure environment, the jet
momentum, J, remains invariant with axial distance and at any axial station,

∞∫
−∞

u2
x dy = J

ρ
= constant. (4.8.2)

7 In free shear layers transition to turbulence occurs at much lower Reynolds numbers than in boundary layers (see Chapter
6). We thus consider only the turbulent case.
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With b the local width of the jet, and ucl the local centerline velocity, if the time mean velocity field
is similar at different axial locations, then

ux

ucl
= f1

( y

b

)
, (4.8.3a)

τ

ρu2
cl

= f2

( y

b

)
. (4.8.3b)

In (4.8.3), b is a characteristic jet width, say the width for the location where the mean velocity is
half the centerline value. In (4.8.3), f1 and f2 are functions whose form can remain unknown. If we
look for similarity of the form b ∼ xp and ucl = x−q respectively, the terms in the equation of motion
have the behavior

ux
∂ux

∂x
∼ x−2q−1; uy

∂ux

∂y
∼ x−2q−p;

∂τ

∂y
∼ x−2q−p. (4.8.4)

To have the equation independent of x, in other words to have the profiles exhibit similarity, requires
that

2q + 1 = 2q + p or p = 1.

The invariance of momentum flux expressed in (4.8.2) implies that x−2q+p must be constant so that
q = 1/2. The plane jet thus spreads linearly with x and the centerline velocity, ucl, decreases as 11

√
x .

A similar analysis can be applied to the circular jet, which has equations

ux
∂ux

∂x
+ ur

∂ux

∂r
= 1

ρr

∂

∂r
(rτr x ) , (4.8.5)

∂

∂x
(rux ) + ∂

∂r
(rur ) = 0. (4.8.6)

Jet momentum invariance is given by

2π

∞∫
−∞

u2
xrdr = J

ρ
= constant. (4.8.7)

The results are a jet width which increases linearly with x and a centerline velocity which decreases
as 1/x.

Like arguments can also be made for wakes. The conditions for similarity to apply are that the
locations are far enough downstream so the velocity variation in the wake, �u, obeys �u = uE −
ux � uE. In this case, the momentum equation for a plane wake can be approximated as that for a
uni-directional flow:

uE
∂�u

∂x
= 1

ρ

∂τxy

∂y
. (4.8.8)

Consistent with this approximation conservation of momentum is

uE

∞∫
−∞

�udy = J

ρ
= constant. (4.8.9)
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Table 4.2 Power laws for the increase in width and decrease in centerline velocity
in terms of distance x for free turbulent shear layers (Schlichting, 1979)

Centerline velocity ucl

Width, b or velocity defect �ucl

Mixing layer (free jet x x0

boundary)
Two-dimensional jet x x−1/2

Circular jet x x−1

Two-dimensional wake x1/2 x−1/2

Circular wake x1/3 x−2/3

uE1

uE2

Figure 4.27: Schematic of a mixing layer between parallel streams of differing velocity.

The results for the wake width and wake velocity defect are: wake half-width, b ∝ x1/2, centerline
velocity defect, �ucl ∝ 1/

√
x .

Table 4.2 summarizes the similarity scaling for width and centerline velocity for different free
shear layers.

To determine the time mean velocity profile in these flows, we can use the similarity to infer the
behavior of the eddy viscosity. With the shear stress given by τ xy =µturb ∂ux/∂y, the eddy viscosity,
µturb, scales as xp−q. From Table 4.2, µturb is constant for the round jet and the plane wake, implying
that the spreading behavior should be similar to a laminar flow with a much higher viscosity than
the actual value.

4.8.2 The mixing layer between two streams

An often encountered situation is the smoothing out of a velocity discontinuity between two streams
at uE1 and uE2 as sketched in Figure 4.27. For this mixing layer flow the similarity considerations show
that the eddy viscosity scales as x. Since the width of the mixing layer also scales with x, the eddy
viscosity is proportional to the shear layer width, b (this is also consistent with the approximation
of a uniform eddy viscosity in the outer part of a boundary layer). The characteristic velocity is the
velocity difference between the two streams so the eddy viscosity is given by

µturb = constant · ρx(uE1 − uE2 ). (4.8.10)
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The equations describing incompressible constant pressure mixing layer evolution are thus

ux
∂ux

∂x
+ uy

∂ux

∂y
= kx

∂2ux

∂y2
, (4.8.11)

where k is a constant, and

∂ux

∂x
+ ∂uy

∂y
= 0. (4.8.12)

If the approximation is made that (uE1 − uE2 )/(uE1+ uE2 ) is much less than unity, the equations
allow an analytical solution (Schlichting, 1979). Using a similarity variable η of the form η= σ (y/x),
where σ is a constant, a stream function can be defined as ψ = x(uE1+ uE2 ) F(η), with the axial
velocity given as

ux =
(

uE1 + uE2

2

)
σ F ′(η). (4.8.13)

Substituting into the momentum equation (4.8.11) leads to an ordinary differential equation for F:

F ′′′ + 2ηF ′′ = 0, (4.8.14)

with boundary conditions F′(η) = ±1 at η = ±∞. The solution is

F ′(η) = erf(η) = 2√
π

η∫
0

e−z2
dz (4.8.15)

or

ux = uE1 + uE2

2

[
1 +
(

uE1 − uE2

uE1 + uE2

)
erf(η)

]
. (4.8.16)
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A comparison of (4.8.16) with data is given in Figure 4.28. The parameter σ , which must be found
from experiment, has been determined to be 13.5. The rate of spreading of the edge of a shear layer
with uE2 = 0 is thus roughly 1/10; this can be compared with the 1/50 rate of growth of a turbulent
boundary layer. The calculated eddy viscosity is µturb = 0.014ρu1, independent of the Reynolds
number.

The scaling implied by (4.8.16) can also be compared against experimental results for different
values of the velocity ratio parameter (uE1 − uE2 )/(uE1+ uE2 ) in Figure 4.29 (Roshko, 1993a; see
also Brown and Roshko, 1974). The growth rate used in the figure is the derivative of the vorticity
thickness, δω, defined as

δω = 1

|ω|max

∞∫
−∞

|ω|dy,

where ω = −∂ux/∂y. The vorticity thickness is appropriate, because modern theories of turbulent
shear layers view their growth as “basically the kinematic problem of the unstable motion induced
by the vorticity” (Brown and Roshko, 1974). The shear layer grows linearly with x and the derivative
of the vorticity thickness is given by

dδω
dx

= δω

x − xvo
, (4.8.17)

where xνo is the virtual origin of the mixing layer. The derivative of the vorticity thickness can be
related to the spreading parameter σ , when the profile is fitted by an error function, as σdδω/dx =√
π . The best-fit line for the data has the equation dδω/dx = 0.18(uE1 − uE2 )/(uE1 + uE2 ). Also

included in the figure are the results of computations by Morris et al. (1990), based on a model of
the vortical structure in the shear layer, which have no empirical constants.

Schlichting (1979) shows a number of examples using approximate analyses such as that described
above. Figure 4.30 also taken from that reference shows the velocity profile in the wake behind a
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Figure 4.30: Velocity distribution in a two-dimensional wake of half-width b behind a circular cylinder of
diameter d. Comparison between theory and measurement after Schlichting (1979).

two-dimensional cylinder as a function of the similarity variable η = y/
√

xCDd, where d is the
cylinder diameter and CD is the drag coefficient. The theoretical expression is the solid curve and the
symbols show measurements. The scaling with downstream distance is shown in Figure 4.31. The
wake width measured to the half-velocity points, b1/2, is given by b1/2 = 1

4 (xCDd)1/2.

4.8.3 The effects of compressibility on free shear layer mixing

The analysis and experiments presented have all been for incompressible flow. It is well documented
that the spreading rate of a two-dimensional shear layer decreases as the flow Mach number in-
creases. It has been suggested (Papamoschou and Roshko, 1988) that to a large extent the effects of
compressibility can be viewed as a function of the convective Mach numbers of the large scale vor-
tical structures which are found in shear layers. The convective Mach numbers measure the relative
free-stream Mach numbers as seen from a frame of reference translating with these structures. For
streams of velocities uE1 and uE2 , speeds of sound a1 and a2 respectively, and a velocity of the large
scale structures equal to uc, the convective Mach numbers, Mc, of the two streams are

Mc1 = uE1 − uc

a1
, Mc2 = uc − uE2

a2
. (4.8.18)

A connection with the theory of shear layer instability has also been made in that, as described by
Roshko (1993a), the strong effect of compressibility in decreasing growth rate correlates with the
corresponding effect on the amplification rate of small disturbances within the shear layer. Figure 4.32
shows both these points. In the figure the derivative of the shear layer vorticity thickness dδω/dx
and the disturbance growth rate, both normalized by their respective values at Mach number = 0,
are plotted versus the convective Mach number. There is a decrease in both of roughly a factor of 5
in going from a convective Mach number of zero to unity. Discussion of this effect, including the
development of the arguments for the use of convective Mach number are given in Papamoschou
and Roshko (1988), Dimotakis (1991), and Coles (1985).
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4.8.4 Appropriateness of the similarity solutions

We will not explore non-similar free shear layers in any depth, but it is worthwhile to describe the
conditions over which the similarity holds. We do this in the context of a round jet, which we can
consider as the flow exiting from a nozzle into a still atmosphere. At the exit, the shear layers which
separate the jet from the surroundings are thin compared to the jet diameter, and the jet is composed
of a potential core with an axisymmetric shear layer bounding it. For a constant pressure jet, the
centerline velocity in this potential core does not vary with axial distance. As one moves further
downstream, the shear layers thicken, with the potential core disappearing when they merge. Figure
4.33 (Lau (1981); see also Schetz (1980)) shows the length of the potential core region measured on
the centerline, in units of initial jet diameter, d0, versus jet Mach number. There is an increase in this
length as the Mach number increases, consistent with the decreased growth of the shear layers shown
in Figure 4.32. The conditions for similarity are not reached until sometime after the disappearance
of the potential core, say x/d ≈ 6−8, which can be taken as a rough guideline for the situation with
zero free-stream velocity.

There is a large body of work on organized structures in turbulent free shear layers. On a time-
resolved basis, the shear layer has been found to consist of discrete vortical structures as in the flow
visualization results of Figure 4.34 (Roshko, 1976). The increasing length scale of the vortices, and
the consequent growth of the shear layer with downstream distance, can be noted. Time-resolved data
show that growth of the shear layer is associated with vortex pairing. Dimotakis (1986) has used this
idea to develop a model for shear layer growth which does not rely on the eddy viscosity concept, and
which contains the basic processes shown by the experiments. Papamoschou and Roshko (1988) have
extended the analysis to compressible mixing layers using a similar approach. Direct computational
simulations of the mixing layer are also being carried out which are able to capture the overall
structure as well as provide additional details of the mixing layer (see, for example, Sandham and
Reynolds (1990)).
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Figure 4.34: Mixing layer between helium and nitrogen u2/u1 = 0.38; ρ2/ρ1 = 7; u1L/µ1 = 1.2, 0.6, and
0.3 × 105, respectively, from top to bottom (L is the width of the picture) (Brown and Roshko, 1974).

4.9 Turbulent entrainment

Shear layers entrain fluid from the free stream, so there is a net flow into the layer. This entrainment
is connected with the shear layer’s ability to reattach and is also a key feature in the performance of
devices such as ejectors. Turbulent entrainment can be illustrated by the behavior of a high Reynolds
number circular jet issuing from a nozzle of diameter d into a still atmosphere. As described in
Section 4.8, the momentum flux of the jet is constant with downstream distance. For locations far
enough downstream so the similarity description applies, the jet width grows with x (see Table 4.2)
and the centerline velocity decays as 1/x, so the jet mass flux grows with x. Dimensional analysis
for a jet with momentum flux J, issuing into a still atmosphere with density ρ1, shows that mass flow
in the jet, ṁ, scales as8

ṁ

x J 1/2ρ
1/2
1

= C, (4.9.1)

8 The relevant parameters are jet mass flow and momentum flux, ambient density, and downstream distance. Thus f (ṁ, J,
ρ1, x) = 0. The non-dimensional parameter that can be made from these four quantities is that given in (4.9.1).
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Figure 4.35: Entrainment rate for isothermal jets of density ρ0 discharging into a still fluid of density ρ1; ṁ0 is
the mass flow at the jet nozzle exit, d0 is the nozzle diameter (Ricou and Spalding, 1961).

where C is a constant. The momentum flux, J, can be evaluated at the location where the jet issues
(station 0). If the velocity is uniform at the nozzle exit with diameter d0,

J = J0 = π

4
d2

0ρ0u2
0. (4.9.2)

The mass flux at the initial station is

ṁ0 = π

4
d2

0ρ0u0. (4.9.3)

Equations (4.9.2) and (4.9.3) can be combined to yield an expression for the local mass flux of a jet
of density ρ0 discharging into another gas of density ρ1:

ṁ

ṁ0
= 0.32

x

d0

(
ρ1

ρ0

)1/2

. (4.9.4)

The constant (0.32) in (4.9.4) has been determined from data the (Ricou and Spalding, 1961; see also
Sforza and Mons, 1978) shown in Figure 4.35. The data represent a range of injected jet densities
of over a factor of 20. In the case shown, nearly all the mass flux in the jet is from the surroundings,
but all the momentum flux is put in through the initial jet fluid. Additional information concerning
shear layer entrainment is given by Dimotakis (1986) and Turner (1986).

4.10 Jets and wakes in pressure gradients

There are many configurations in which jets and wakes are subjected to streamwise pressure gradients.
Examination of this situation is not only of interest for these applications but it also provides an
instructive view of the competition between (turbulent) shear forces and pressure fields which is
inherent in the behavior of viscous layers in pressure gradients. The central issue is indicated by
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Figure 4.37: Two-dimensional jet wake width, b, and normalized centerline velocity defect,�ũ = (uE − ucl)/uE,
as a function of downstream distance at constant pressure; �ũ0 = 0.4 (Hill et al., 1963).

Figures 4.36(a)–(c) (Hill, Schaub, and Senoo, 1963) which show measured velocity profiles of the
wake of a two-dimensional plate at different downstream locations for three different streamwise
pressure gradients. Figure 4.36(a) is essentially constant static pressure, Figure 4.36(b) an adverse
gradient, and Figure 4.36(c) a stronger adverse gradient. The wake defect decays less rapidly in
the presence of an adverse gradient. If the pressure rise is large and rapid enough, the wake can
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distance in adverse pressure gradient; �ũ0 = 0.4 (Hill et al., 1963).

stagnate or reverse in direction because of the proportionally larger deceleration than in the free
stream. The increase in wake width is due to the response of the low stagnation pressure region to
the static pressure field and is basically an inviscid effect. This mechanism, described in Section 4.7,
underpins many phenomena that occur in flows with non-uniform stagnation pressure.

There are two competing effects in the wake. Turbulent shear forces tend to accelerate the wake
fluid while pressure forces decelerate it. The general trend is that situations in which a given pressure
rise occurs over a longer distance provide more opportunity for the shear forces to act. If the pressure
rise occurs over a short distance, the role of the shear forces is diminished and the pressure forces
thus have a greater relative effect.

The wake response can be analyzed using the momentum integral equation. The integration is
across the whole wake and the shear stress is zero at both wake edges so the momentum integral
takes the form

1

θ

dθ

dx
+ (2 + H )

1

uE

duE

dx
= 0. (4.10.1)
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Figure 4.39: Effect of the streamwise length scale/wake thickness on the two-dimensional jet wake width and
centerline velocity defect as a function of the downstream velocity level, uE (Hill et al., 1963).

For the profiles depicted in Figure 4.36 the boundary layer shape parameter, H, is approximately
constant and near unity. If H is taken to be 1 + ζ , where ζ is a small positive constant, (4.10.1) can be
integrated to yield an expression relating the momentum thickness between two levels of free-stream
velocity:

θ2

θ1
=
(

uE1

uE2

)3+ζ
. (4.10.2)

Schlichting (1979) suggests that if (4.10.2) is used starting from an airfoil trailing edge an appropriate
value for ζ is 0.2. For far downstream conditions where the wakes have uE/uE0 � 1, H → 1 and
ζ → 0, so the momentum thickness growth is proportional to the cube of the free-stream velocity
ratio.

Figures 4.37 (for constant pressure) and 4.38 (for an adverse pressure gradient) show wake behavior
as a function of the non-dimensional parameter �ũ2

0x/θ0, where �ũ is the normalized centerline
velocity defect, �ũ = (uE − ucl)/uE. Station 0 denotes the initial station for the measurements. The
solid curves are the result of an integral boundary layer calculation (Hill et al., 1963). The figures
show the wake half-width divided by the initial half-width, and the velocity defect parameter, as
a function of the non-dimensional parameter �ũ2

0x/θ0. For reference the behavior of an inviscid
stream with the initial velocity defect is also indicated in Figure 4.38. This reaches zero velocity at a
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value of uE/uE0 = 0.8 for the conditions indicated, showing the role of the shear stresses in enabling
the actual wake to negotiate the pressure rise.

Figure 4.39 presents a different view of the effect of streamwise distance in enabling a wake to
undergo an adverse pressure gradient. The wake width and the velocity defect parameter are given
as functions of pressure rise (as reflected by the free-stream velocity ratio) for different values of
the parameter �ũ2

0x/θ0. For a given level of uE/uE0 and initial wake defect �ũ0, the longer the
non-dimensional distance over which the pressure rise occurs (x/θ ), the lower the resultant wake
velocity defect.



5 Loss sources and loss accounting

5.1 Introduction

Efficiency can be the most important parameter for many fluid machines and characterizing the
losses which determine the efficiency is a critical aspect in the analysis of these devices. This chapter
describes basic mechanisms for loss creation in fluid flows, defines the different measures developed
for assessing loss, and examines their applicability in various situations.

In external aerodynamics, drag on an aircraft or vehicle is most frequently the measure of perfor-
mance loss. The product of drag and forward velocity represents the power that has to be supplied
to drive the vehicle. Defining drag, however, requires defining the direction in which it acts and
determining the power expended requires specification of an appropriate velocity. The choice of
direction is clear for most external flows but it is less evident in internal flows. Within gas turbine
engines, for example, there are situations in which viscous forces can be nearly perpendicular to
the mean stream direction or in which the mean stream direction changes by as much as 180◦, as
in a reverse flow combustor. There is also some ambiguity in the choice of an appropriate reference
velocity for power input, even in simple internal flow configurations such as nozzles or diffusers
where the velocity changes from inlet to outlet.

Because of this, the most useful indicator of performance loss and inefficiency in internal flows is
the entropy generated due to irreversibility. The arguments that underpin this statement are presented
in the first part of the chapter to illustrate quantitatively the connection between entropy rise and work
lost through an irreversible process. Different entropy generation phenomena in internal flow devices
are then addressed to define ways to characterize the losses and levels of efficiency in situations of
interest.

Fluid flows within real devices are generally non-uniform. A basic question thus concerns the
representation of the thermodynamic state, and hence loss, by a single number, i.e. the approxima-
tion of a non-uniform flow by a uniform flow with suitable average values of fluid dynamic and
thermodynamic variables. This concept is discussed in some depth along with methods for arriv-
ing at an appropriate loss metric. The conditions under which one can notionally construct such
averages, for example letting the flow fully mix at constant area or at constant pressure, however,
are often not met. A consequence, as will be seen, is that the overall level of loss depends on
the processes downstream of loss generating components as well as the flow through the com-
ponent.
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Figure 5.1: Flow through a uniform screen.

T

s

s1 s2

21

pt1

Tt1 = Tt2

pt2

Figure 5.2: Thermodynamic states for flow through a screen.

5.2 Losses and entropy change

5.2.1 Losses in a spatially uniform flow through a screen or porous plate

We introduce the ideas through analysis of a model problem, the steady flow of a perfect gas through
a uniform screen or porous plate, as sketched in Figure 5.1 (Taylor, 1971). This is a representation
of a generic adiabatic throttling process. The upstream flow is uniform in space. The downstream
station is taken far enough from the screen so that velocity non-uniformities arising in connection
with the local details of the flow through the screen have decayed and the flow can again be considered
uniform. In the irreversible state transition from upstream to downstream of the screen no shaft work
is done and no heat is exchanged.

The steady flow energy equation for a flow with no work due to body forces (1.8.21) relates the
stagnation enthalpy change per unit mass to the difference between heat addition and shaft work,
both per unit mass,(
ht2 − ht1

) = q − wshaft. (1.8.21)

If there is no shaft work or heat exchange, the stagnation enthalpy and, for constant specific heat,
the stagnation temperature, is the same at stations 1 and 2. Viscous processes, associated with flow
through the screen and downstream mixing before the flow comes to a uniform state at station 2,
cause an increase in entropy. The states at stations 1 and 2 can be represented as in Figure 5.2 with
Tt the stagnation temperature and pt the stagnation pressure. With a constant stagnation temperature
the entropy rise in this adiabatic process is characterized only by the change in stagnation pressure.
The relation between loss and entropy change can be seen by defining an ideal reversible process
to restore the medium at the downstream stagnation state 2 to the initial stagnation state 1. For a
perfect gas, the internal energy per unit mass, e, is a function of temperature only, and the internal
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energy corresponding to stagnation states 1 and 2 is the same, et1 = et2 . For any process between
these states, the first law ((1.3.8)) reduces to

q = w, (5.2.1)

with q the heat received, and w the work done, per unit mass of fluid.
For a reversible process, the heat received per unit mass is related to the change in entropy per

unit mass, s, as1

–dqrev = Tds. (5.2.2)

The heat received, and therefore the work done, is in general path-dependent because it is a function
of the temperature at which any reversible heat exchanges occur. For flow through a screen, the
stagnation temperature is constant and provides a useful reference. Equation (5.2.2) can thus be
integrated to give

qrev = Tt1 (s2 − s1) = Tt1�s. (5.2.3)

From (5.2.1), therefore, the reversible work per unit mass to restore the fluid to the initial state is
directly proportional to the entropy change:

wrev = Tt1�s. (5.2.4)

This representation of entropy changes as the amount of work that would have to be supplied to
restore the fluid to the initial state provides one view of what entropy changes represent. It also
makes it plausible that the quantity Tds, where T is an appropriate temperature characterizing the
process, is a basic metric for loss. The question of what temperature to use for a more general process,
when the stagnation temperature is not constant, still remains to be resolved. In Section 5.2.3 we
return to this topic to address this issue for the general situation.

As given in Section 1.16, in terms of stagnation states the entropy change for a perfect gas with
constant specific heats is

ds = cpdTt

Tt
− dpt

ρt Tt
. (5.2.5)

For a process with constant stagnation temperature (dTt = 0), integration of (5.2.5) yields

s1 − s2 = −R ln
pt2

pt1

. (1.16.5)

Substituting this in (5.2.4) we find the work per unit mass of fluid needed to restore the medium to
its initial state as

wrev = −RTt1 ln

(
pt2

pt1

)
. (5.2.6)

Equation (5.2.6) connects the work to restore the fluid to the original condition to the decrease in
stagnation pressure due to passage through the screen.

1 As described in Chapter 1 the notation –d indicates that –dq is not the differential of a property but rather represents a small
amount of heat.
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If (pt1 − pt2 )/pt1 � 1, the logarithm in (5.2.6) can be approximated by the first term in its power
series expansion to give

wrev
∼= RTt1

pt1

(
pt1 − pt2

)

=
(

pt1 − pt2

)
ρt1

. (5.2.7)

5.2.2 Irreversibility, entropy generation, and lost work

The connections between the entropy rise, the lack of reversibility, and the development of appropriate
measures of loss can be given more applicability by examining a general process which takes a system
of unit mass from state a to state b (Kestin, 1979). Consider two processes, one ideal, or reversible,
and the other irreversible. In both cases the system is allowed to exchange heat with a reservoir. For
the reversible process the first law (for unit mass) states

det = –dqrev − –dwrev. (5.2.8)

For the irreversible process the actual heat and work transfers are related by

det = –dq − –dw. (5.2.9)

The energy, et, is a state variable. Because both processes are defined to be between the same end
states, the state change, det, is the same in the two cases. A comparison of (5.2.8) and (5.2.9) thus
yields

–dwrev − –dw = –dqrev − –dq = –dwloss. (5.2.10)

The difference in the work done for the two processes, –dwrev − –dw, can be regarded as work “lost”,
“dissipated”, or “made unavailable”, owing to the irreversibility. The difference represents work
which could have been obtained ideally, but which has been lost to us. This lost work, which will be
related to entropy changes in the following, is a rigorous measure of “loss”.

Because the reversible and irreversible processes have the same initial and final states the change
in entropy is the same for both. The entropy change of the system can be written for the reversible
process as

reversible process: ds = –dqrev

T
. (5.2.11)

Using (5.2.11) in (5.2.10) gives, for the irreversible process,

irreversible process: ds = –dwrev

T
− –dw

T
+ –dq

T
= –dwloss

T
+ –dq

T
. (5.2.12)

The second law (Section 1.3.3) enables us to make a statement about the sign of the lost work.
Assume for simplicity that the reservoir is at temperature T, the system temperature, in both reversible
and irreversible processes.2 The second law states that the total entropy change, system plus reservoir,

2 This must be the case for the reversible process, although not for the irreversible process, but the arguments can be generalized
to account for this situation (Kestin, 1979).
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is either zero (for the reversible process) or positive. The total entropy change is given by the right-
hand side of (5.2.12) plus the entropy change –dqreservoir/T. The heat lost (or gained) by the reservoir
is equal and opposite to the heat gained (or lost) by the system, so the total entropy change is

dstotal = –dwloss

T
≥ 0. (5.2.13)

The quantity

dsirrev = –dwloss

T
(5.2.14)

is the entropy produced or generated by the irreversible process. Equations (5.2.14) and (5.2.10)
taken together show that the reversible process is the “best we can do” in terms of maximizing work
received (or minimizing work input) for the specified system state change.

Equations (5.2.12) and (5.2.13) show that system entropy changes can be grouped into two types:
changes associated with heat transfer –dq and changes due to irreversibility. The entropy change due
to heat transfer (–dq/T) can be positive or negative. The entropy change represented by –dwloss/T =
dsirrev is equal to or greater than zero: zero for a reversible process and positive if the process is
irreversible.

Equation (5.2.12) can also be written as a rate equation

ds

dt
= 1

T

–dq

dt
+ 1

T

–dwloss

dt

= 1

T

–dq

dt
+ dsirrev

dt
. (5.2.15)

Equation (5.2.15) gives the rate of entropy change for a system as due to a flow of entropy per unit
mass into or out of the system from heat transfer, (–dq/dt)/T, plus an additional entropy generation
associated with irreversibility.

For an adiabatic process, (5.2.15) reduces to

ds

dt
= 1

T

–dwloss

dt
. (5.2.16)

In this situation the rate of entropy production in a system is only associated with irreversibility. One
such example is the flow through the screen in Section 5.2.1. Another is the flow through a turbine,
shown by the thermodynamic representation in Figure 5.3. The abscissa and the ordinate are the
entropy (s) and enthalpy (h) per unit mass, respectively. If the change in kinetic energy from the inlet
and the outlet is negligible the shaft work per unit mass produced by the turbine as the fluid passes
from an inlet pressure p1 to an exit pressure p2 is equal to the change in enthalpy. For an isentropic
(adiabatic, reversible) process the shaft work per unit mass is h1 − h2rev . For the actual process, in
which the fluid exits at the same pressure as in the ideal situation but at a higher entropy, the work is
h1 – h2. If the difference in work done per unit mass between the reversible and the actual processes
is much smaller than the actual work done (as is generally the case), the difference between the work
in the actual and reversible processes can be approximated as

(
h2 − h2rev

) =
(
∂h

∂s

)
p2

(
s2 − s2rev

)
. (5.2.17)
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Figure 5.3: Turbine expansion process on an h–s diagram; the slope of the p2 isobar ≈ T2 because [(h2 −
h2rev)/�h1−2] � 1.

Since the slope (∂h/∂s)p2
= T2, the difference between the actual and reversible turbine work,

�h2−2rev , is

�h2−2rev = T2
(
s2−s2rev

)
. (5.2.18)

The turbine component efficiency (generally referred to as adiabatic efficiency) is the ratio of actual
to ideal work,3 or

turbine component efficiency = h1 − h2

h1 − h2rev

≈ 1 − T2
(
s2 − s2rev

)
h1 − h2

. (5.2.19)

The preceding discussion has served to connect entropy, loss, irreversibility, and the component
efficiency. On a fundamental level, local irreversibility in a fluid flow can always be represented by
the two quadratic terms in the integrals in (1.10.7). It is useful, however, to categorize the important
sources of irreversibility in a more operational manner in terms of flow processes as:

(a) viscous dissipation;
(b) mixing of mass, momentum, and energy;
(c) heat transfer across a finite temperature difference;
(d) shocks (Section 2.6 showed that this is really a combination of (a) and (c)).

5.2.3 Lost work accounting in fluid components and systems

There are two issues connected with loss accounting which we now need to resolve. The first concerns
the relation between the entropy change due to irreversibility and the lost work. Three examples have
been presented in which expressions for lost work were developed: adiabatic flow through a screen,
an incremental general process in which heat was exchanged with a reservoir at temperature, T, and

3 Ideal here means work that would be received in a reversible process. This is the maximum work the turbine could produce.
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adiabatic flow through a turbine. In all of these the lost work was represented by the product of the
change in entropy due to irreversibility and a temperature. Three different temperatures, however,
were used in the different examples. The link between lost work and entropy change thus needs to
be further defined.

The second issue concerns different perspectives for loss measurement that can be adopted. The
discussion so far has been on losses as seen in the context of assessing fluid component performance.
Such components typically operate as a part of a more complex fluid system, for example an engine.
An important question is the relation between the (local) loss measures for components and loss
measures based on global system (i.e. thermodynamic cycle) considerations.

These two issues can be addressed employing the concept of flow availability. Flow availability is
a property whose change measures the maximum useful work (i.e. work over and above flow work
done on the surroundings) obtained for a given state change. The concept is developed in depth by,
for example, Bejan (1988, 1996), Horlock (1992), Sonntag et al. (1998), and we present only an
introduction here.

Consider a steady-flow device, which can exchange heat and shaft work with the surroundings.
The first law for a control volume, (1.8.11), states that the shaft work per unit mass obtained from a
stream which passes from an initial state 1 to a subsequent state 2 is

wshaft = q + (ht1 − ht2

)
. (1.8.11)

The convention is that q, the heat addition per unit mass, is positive for heat addition to the stream.
For given initial and final states the change in stagnation enthalpy is specified. The first law gives
no information concerning the magnitude of the heat addition, q, and (1.8.11) shows that the larger
the heat addition the larger the shaft work. The second law, however, puts a bound on the maximum
heat addition and thus the maximum work that can be obtained for a given state change.

This upper limit can be determined by examining a situation in which the stream exchanges heat
only with a reservoir at temperature T0. For purposes of illustration the reservoir is regarded as the
atmosphere, since that is the environment in which most fluid systems operate and to which heat is
eventually rejected, but it is to be emphasized that this is not necessarily the case for the arguments
that follow.4 For a unit mass of the stream that undergoes the given state change the entropy change
of the reservoir is �s = −q/T0. From the second law the entropy change of the stream between
inlet and exit must be such as to make the total entropy changes occurring in the device plus the
environment equal to or greater than zero. Any difference from zero represents the departure from
reversibility. The second law, applied to a unit mass of fluid which passes from state 1 to state 2, is

(s2 − s1) − q

T0
= �sirrev ≥ 0. (5.2.20)

The quantity �sirrev is the entropy generated per unit mass as a result of irreversible processes.
Combining (1.8.11) and (5.2.20),

wshaft = (ht1 − T0s1
)− (ht2 − T0s2

)− T0�sirrev. (5.2.21)

4 The results can also be extended to situations in which heat is interchanged with any number of reservoirs (in addition to
the atmosphere) at different temperatures (Bejan, 1988; Horlock, 1992; Sonntag et al. 1998).
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The entropy change�sirrev is equal to zero or positive. The maximum shaft work that can be obtained
for a state change from 1 to 2 is therefore the difference in the quantity (ht – T0s),

[wshaft]maximum = (ht1 − T0s1
)− (ht2 − T0s2

)
. (5.2.22)

Comparison of (5.2.21) and (5.2.22) shows that for the given state change the difference between
the maximum shaft work and the shaft work actually obtained is T0�sirrev which is the lost work for
the process.

The quantity (ht – T0s) is known as the steady-flow availability function (Horlock, 1992) or, more
simply, the flow availability (Bejan, 1988). It is a composite property which depends on both the state
of the fluid and the temperature of the environment. By tracing work received and availability changes
one can determine the locations in a system which provide the largest potential for improvements in
overall performance.

With this background the difference between the three situations can be described. In the example
of flow through the screen the temperature at which heat is seen as being exchanged between system
and surroundings is the stagnation temperature, so the quantity T0 in (5.2.21) and (5.2.22) in the
evaluation of (ht − T0s) would be replaced by Tt. The difference in this quantity between states 1 and
2 is thus Tt�sirrev and, because there is no shaft work, this is also the lost work per unit mass. For the
second process (the incremental state change) the system is in equilibrium with the heat reservoir and
the temperature at which heat is exchanged with the surroundings is the local system temperature, T.
The lost work is thus computed from analysis of the changes in (h − Ts) as T�sirrev, consistent with
the direct evaluation of this quantity in (5.2.14). Finally for the turbine, the “reservoir temperature”
which the example corresponds to is the turbine exit temperature, T2.

Expressions for lost work in terms of �sirrev are seen to be, just as is the availability, composite
quantities which depend on the properties of both the system and the temperature of the surrounding
medium with which heat is exchanged. The point is succinctly expressed by Cravalho and Smith
(1981) who state “the irreversibility cannot be related to the loss of useful work until a specification
is given for the final location (specifically the temperature) of the entropy which has been generated.”

The different expressions for lost work have a fundamental connection with each other which can
be seen through a comparison of the metrics for fluid device loss considered as an isolated component
and as a part of an overall system which exchanges heat with the atmosphere at Tatm. We illustrate
the point using the adiabatic throttling process across the screen; the analysis also applies directly to
an adiabatic duct or blade row.

From the component perspective (considering the flow across the screen by itself) the lost work per
unit mass for a given state change was given as Tt�sirrev in Section 5.2.1. Considering the screen or
duct as a part of a more complex system which exchanges heat with the atmosphere, (5.2.21) shows
that the lost work for the same state changes is Tatm�sirrev. The difference between the two, (Tt −
Tatm)�sirrev, is equal to the work per unit mass, wC, that could be obtained by a Carnot cycle, operating
between Tt and Tatm with an entropy change �sirrev. The quantity wC represents an opportunity for
doing useful work. However, if none of the work represented by the hypothetical Carnot cycle is
realized, Tt�sirrev is also the lost work for the system. Both situations are found in practice. For
example blade row inefficiencies in multistage turbines mean that the work output of the succeeding
blade rows is higher than if the upstream rows were isentropic. For an exhaust nozzle, in contrast,
there is no chance to recover additional work from a stream that emerges at a temperature greater
than Tatm. The difference between these processes arises because “useful work can be realized during
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Figure 5.4: Flat plate cascade and downstream velocity distribution.

the series of processes that transfer the generated entropy from the high temperature to the entropy
sink at ambient temperature” (Cravalho and Smith, 1981).

Local loss measures for fluid components (e.g. boundary layers, compressor blade rows) do not
explicitly account for the possibility that some fraction (1 − Tatm/Tt) of the energy dissipated by
irreversible processes might be converted to useful work because of the difference between the
stagnation temperature and the temperature of the environment. Whether this occurs or not depends
on the configuration of the specific system in which the component is embedded. One can relate the
two measures of loss (component and system) using the ideas just described. In the rest of the chapter
we therefore focus on the component metrics, which are the basic building blocks for developing a
description of complex system performance.

5.3 Loss accounting and mixing in spatially non-uniform flows

We now consider a more general situation in which the velocity and static temperature downstream
of a device vary spatially. Specifically, let the screen used in the previous section be replaced by
an array of plates parallel to the stream as in Figure 5.4, which can be regarded as a model of a
turbomachinery cascade. Station 2 represents a location at which the velocity defects due to the plate
boundary layers have not yet mixed out. To develop an expression for the loss at this station, we
compute the increase in entropy flux through stations 1, at which the flow is uniform, and 2, at which
it is not,

�
[
specific entropy flux

] =

∫
ṁ

(s2 − s1) dṁ∫
dṁ

. (5.3.1)

In (5.3.1) the integral is taken over a passage.
We wish to proceed as in the previous section. On an overall basis, no work is done and no heat is

transferred so the quantity
∫

ṁ cpTt dṁ remains invariant. Although we cannot say the local stagnation
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enthalpy is uniform, this is a very good approximation in adiabatic steady flows of this type, not only
on a global basis but along a streamline. (Invariance of the stagnation temperature along a streamline
is equivalent to the statement that the non-pressure work done by a given streamtube on the flow
external to the streamtube and the heat transfer to the streamtube are in balance.)

The power expended to restore the flow of station 2 to its original state, per passage, is, with A2

the area occupied by the flow from a single passage at station 2,

power = Tt1

∫
ṁ

(s2 − s1)dṁ = Tt1

∫
A2

(s2 − s1)ρ2ux2 d A2. (5.3.2)

Equation (5.3.2) can be written in terms of the mass flow rate, ṁ, for a single passage as

power = Tt1 ṁ
(
s M

2 − s1
)
. (5.3.3)

Equations (5.3.2) and (5.3.3) introduce the mass average specific entropy, sM , defined as

sM =

∫
ṁ

sdṁ

ṁ
. (5.3.4)

The power needed to restore the flow to its original state can also be related to the stagnation
pressure distribution at station 2 by making use of (1.16.5),

power = −RTt1

∫
ṁ

ln
pt2

pt1

dṁ (5.3.5)

If (pt1 − pt2 )/pt1 � 1, (5.3.5) can be approximated as

power = ṁ

ρt1

(
pt1 − pM

t2

)
, (5.3.6)

where pM
t2 is the mass average total pressure. Equation (5.3.6), which is a relevant description5 of

many flow processes, finds wide use as a measure of loss.
The location of station 2 has not been specified except to say it was downstream of the cascade. Mix-

ing occurs continuously from the trailing edge of the plates with the entropy flux increasing to a final
value at the far downstream, fully mixed state. In general, one cannot say that (sfar downstream − s2) �
(s2 − s1) because the mixing losses depend on both the nature of the loss creating device and the
nature of the downstream flow. As described below, a downstream pressure increase (such as in flow
through a diffuser) increases mixing loss whereas a downstream static pressure decrease (as in flow
through a nozzle) decreases it.

The preceding discussion highlights several issues in developing a procedure for assessing loss.
One is the development of the means to estimate rates of entropy production in order to determine loss
generation within a component or fluid element. A second is the characterization of flows downstream
of the component, particularly where the device length is not sufficient to allow complete mixing
to occur. In this situation the flow will be non-uniform, and an appropriate methodology is needed
to describe the state of the flow. A third is that mixing does not always occur at constant area and
we need to be able to account for the effect of downstream flow processes on the overall loss levels.
These issues are addressed in this chapter.

5 The limitations on the use of stagnation pressure as a measure of loss are given in Section 5.5.
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Figure 5.5: Notation for a two-dimensional boundary layer.

5.4 Boundary layer losses

5.4.1 Entropy generation in boundary layers on adiabatic walls

A major source of loss is entropy generation in boundary layers on solid surfaces (Denton, 1993). To
exhibit this process, we derive an expression for entropy production in the steady two-dimensional
boundary layer sketched in Figure 5.5. The starting point is (1.10.5), which gives the rate of change
of entropy for a fluid particle:

T
Ds

Dt
= Q̇ − 1

ρ

∂qi

∂xi
+ 1

ρ
τi j
∂ui

∂x j
. (1.10.5)

For the situation shown the mainstream flow is in the x-direction. As discussed in Chapter 4, to
describe the boundary layer we retain only the shear stress term τ xy and the derivative of the heat
flux in the y-direction. For a flow without heat sources (Q̇ = 0) the boundary layer form of (1.10.5)
is

ρT

(
ux
∂�s

∂x
+ uy

∂�s

∂y

)
= −∂qy

∂y
+ τxy

∂ux

∂y
. (5.4.1)

In (5.4.1)�s is the specific entropy difference between the local value and that outside of the boundary
layer, with the latter taken as uniform in the y-direction.

A case of interest is that of an adiabatic wall with qy(y = 0) = 0. In this situation variations in
static temperature and density through the boundary layer are of order M2

E compared to the absolute
temperature, where ME is the Mach number at the edge of the boundary layer. For low Mach number
flows the temperature and density can thus be taken as constant in application of (5.4.1).6

With no heat transfer from the wall to the fluid, the change in entropy flux between two stations
at different x-locations results only from entropy generation associated with irreversibility. The rate

6 The rationale for this approximation is as follows. Variations in entropy, temperature, and density all scale as u2
E , but the

three quantities appear in (1.10.5) and (5.4.1) in different ways. For low Mach number, the temperature and density enter
as a quantity, say TE, which has fractional variations of order M2

E , which can be neglected. For the entropy, however, it
is the variations alone that are of interest. Put another way, the effects that are captured scale as M2

E (i.e. �s/cp ∝ M2
E ).

Inclusion of the variations in temperature and density would have an effect on this quantity of order M4
E . The temperature

and density anywhere in the flow field therefore can be chosen as the reference value.
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of change of entropy flux along the surface, per unit depth, is found by integrating from y = 0 to yE,
the edge of the boundary layer, as

Ṡirrev = d

dx

yE∫
0

ρux (s − sE ) dy

= dδ

dx
[ρux (s − sE )]

∣∣∣∣
y=yE

+
yE∫

0

{
∂

∂x
[ρux (s − sE )]

}
dy, (5.4.2)

using differentiation under the integral sign. We denote the rate of change of entropy flux per unit
depth by Ṡ, which is also interpreted as the entropy production in the boundary layer per unit area
of surface. The first term on the right-hand side of (5.4.2) is zero because the entropy at the edge of
the boundary layer is just the free-stream entropy, s(x, yE) = sE. The second term can be written as

yE∫
0

{
∂

∂x
[ρux (s − sE )]

}
dy =

yE∫
0

{
(s − sE )

∂

∂x
(ρux )

}
dy +

yE∫
0

{
ρux

∂

∂x
(s − sE )

}
dy. (5.4.3)

Using the continuity equation to replace [∂/∂x (ρux)] in the first term on the right-hand side of
(5.4.3), integrating by parts, and rearranging gives

Ṡirrev = d

dx

yE∫
0

ρux (s − sE ) dy

=
yE∫

0

{
ρux

∂

∂x
(s − sE ) + ρuy

∂

∂y
(s − sE )

}
dy. (5.4.4)

Comparing the integrand in (5.4.4) with (5.4.1), the expression for the rate of change of entropy flux
along the surface is

T Ṡirrev = d

dx

yE∫
0

ρux [T (s − sE )] dy =
yE∫

0

(
τxy
∂ux

∂y

)
dy, (5.4.5)

where the conditions of an adiabatic wall and no heat flux at the edge of the boundary layer mean
that the integral of the heat transfer term ∂qy/∂y is zero. Equation (5.4.5) is an expression for the
rate of entropy production, from conversion into heat of work done by viscous shear stresses, per
unit length along the wall and unit depth (i.e. into the page in Figure 5.5).

Comparison with (4.3.10) and the discussion just thereafter shows that the quantity TṠ is the
dissipation term labeled as Ḋ in Section 4.3. For incompressible flow the total dissipation per unit
depth can be linked to the kinetic energy thickness parameter, θ∗, using (5.4.5) as

ρ
d

dx

(
u3

Eθ
∗) = 2Ḋ = 2T Ṡ. (5.4.6)
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Figure 5.6: Sketch of shear stress (τ xy) versus velocity (ux) in different boundary layer regimes: T Ṡirrev =∫ uE
0 τxydux (Denton, 1993).

Integration of (5.4.6) along the length of the surface from an initial location at x = 0 to an arbitrary
station, x, yields

(
ρu3

Eθ
∗)∣∣x

0 = 2

x∫
0

TṠdx ′. (5.4.7)

If the kinetic energy thickness is negligible at x = 0, (5.4.7) reduces to

θ∗ = 2

ρu3
E

x∫
0

TṠdx ′, (5.4.8)

where the free-stream velocity, uE, is evaluated at the station x. The kinetic energy thickness at this
location is thus proportional to the cumulative rate of dissipation per unit depth in the boundary layer,
up to that station.

For laminar boundary layers the entropy production can be computed directly from the equations
of motion with no additional hypotheses (White, 1991; Sherman, 1990; Bejan, 1996). In contrast,
for turbulent boundary layers which are more often encountered in practice, this is not the case. We
thus focus on the latter.

Equation (5.4.5) can be given a graphical interpretation if we express the entropy production term,∫ yE

0 τxy∂ux/∂ydy as an integral over the velocity,
∫ uE

0 τxydux (Denton, 1993),

T Ṡirrev = d

dx

yE∫
0

ρux [T (s − sE )]dy =
uE∫

0

τxydux . (5.4.9)

Representative curves of shear stress as a function of velocity are sketched in Figure 5.6 for different
types of boundary layers, ranging from accelerating flow to a situation with a region of reversed
flow near the wall. The shear stress integral in (5.4.9) gives the area under the curve. For turbulent
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Figure 5.7: Variation of shear stress with velocity through boundary layers with Reθ = 1000 (Denton, 1993).

flow, the velocity in the boundary layer changes most rapidly near the surface, and most of the
entropy generation occurs in this region rather than in the outer parts of the boundary layer. The
figure is a sketch only but, as it suggests, for a given external velocity the overall dissipation in a
turbulent boundary layer is found to depend only weakly on the state of the boundary layer (Denton,
1993). This result will be seen to allow a simple and useful estimate to be made for overall entropy
production. Calculations of the variation of shear stress with velocity through turbulent boundary
layers are given in Figure 5.7, with values of the non-dimensional boundary layer inner region variable
y+ indicated on the figure. The outer part of the boundary layer (y+ > 250) is most affected by the
streamwise pressure gradient, but in this region there is little shear stress and, as a result, little entropy
generation.

5.4.2 The boundary layer dissipation coefficient

To explore the applicability of the ideas in the previous section, it is useful to turn the entropy
production rate into a dimensionless boundary layer dissipation coefficient defined by

Cd = T Ṡirrev

ρu3
E

, (5.4.10)

where uE is the velocity at the edge of the boundary layer. For turbulent flow, the value of the
dissipation coefficient cannot yet be calculated from first principles and we need to have recourse to
experimental findings. Figure 5.8 shows values of the dissipation coefficient, Cd, and the skin friction
coefficient, Cf , for momentum thickness Reynolds numbers from 103 to 105. Information is given for
a range of shape factors from 1.2 to 2.0 for Cd and from 1.2 to 2.4 for Cf . A striking result is that the
dissipation coefficient is much less dependent on the shape factor than the more familiar skin friction
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Figure 5.8: Turbulent boundary layer properties (Schlichting, 1968).

coefficient. Although the turbulent skin friction coefficient decreases by a factor of roughly 3 as the
shape factor increases from 1.2 to 2.0, the dissipation coefficient varies by less than 10% over this
range. Further, the dependence on Reθ is weak. Based on the data in Figure 5.8, Schlichting (1979)
suggests a curve fit for Cd as

Cd = 0.0056 (Reθ )
−1/6. (5.4.11)

For laminar boundary layers the dissipation coefficient depends more strongly on Reθ , with an
(Reθ )−1 dependence (see Schlichting (1979)) as described by Truckenbrodt (1952). Even for lami-
nar boundary layers, however, calculations carried out by Denton (1993) suggest little dependence
on the state of the boundary layer. The variation of the dissipation coefficient with Reθ is shown
in Figure 5.9 for a range in which both laminar and turbulent boundary layers could exist, say
300< Reθ < 1000. The dissipation coefficient for the laminar boundary layer is lower by a factor of
between 2 and 3 than for the turbulent boundary layer at the same momentum thickness Reynolds
number.

The above results are based on, and apply strictly to, low Mach number flow. There are few data
for the effect of Mach number on dissipation coefficient. However, since there is only a 20% decrease
in the skin friction coefficient over the range, 0<ME < 2, it may be reasonable to use the low speed
results as a useful approximation. The temperature can no longer be considered constant if M2 is
not small compared to unity but, because the majority of the entropy production takes place near the
surface, a suitable modification might be to use the recovery or adiabatic wall temperature, Trf, as
the appropriate parameter in defining Cd. An approximation for the recovery temperature is given
by

Tr f

TE
= 1 + r

(γ − 1)

2
M2

E , (5.4.12)
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Figure 5.9: Dissipation coefficients for laminar and turbulent boundary layers (Truckenbrodt (1952) as reported
in Denton (1993)).

where r = √
Pr for laminar flow and 3

√
Pr in turbulent flow, where Pr is the Prandtl number

(Schlichting, 1979). This is the surface temperature in a boundary layer along an insulated wall.
For the estimation of entropy production, the weak variation of the dissipation coefficient with

Reθ implies that a useful approximation is to take the dissipation coefficient, Cd, as constant at some
representative value of Reθ , say Cd = 0.002 for turbomachinery blading (Denton, 1993). For flow
through a two-dimensional passage, the total rate of boundary layer entropy generation per unit depth
can then be estimated by integrating the expression (5.4.10) for Ṡirrev over the length of the solid
surface:

T Ṡtotal = Cd

∑
all

surfaces

ρLU 3

xfinal∫
0

(uE

U

)3
d
( x

L

)
. (5.4.13)

In (5.4.13), L is a reference length (say airfoil chord or duct axial length), x is the distance measured
along the solid surface, U is a reference velocity, and Ṡtotal is the rate of entropy production per unit
depth in the boundary layer from the initial (x = 0) to the final station. The dissipation scales as
the cube of the free-stream velocity, so that regions of locally high free-stream velocity contribute
strongly to entropy generation.

The entropy generation in the blade passages can also be related to commonly used loss coefficients
for fluid machinery. The mass-averaged entropy change per unit depth at a given downstream station
is related to Ṡtotal by

ṁ(sM − s1) = Ṡtotal. (5.4.14)

For low Mach number adiabatic flows,

ṁ
�p

M
t

ρ
= T Ṡtotal. (5.4.15)
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From (5.4.15), a non-dimensionalized mass-averaged loss coefficient (�p
M
t /(

1
2ρU 2)) can be related

to the entropy production by

�p
M
t

1
2ρU 2

= T Ṡtotal
1
2 ṁU 2

. (5.4.16)

If U is taken as the average velocity at the inlet, as it might be for a diffuser or a compressor blade
row, and W is the height of the passage at the inlet station, the loss coefficient in (5.4.16) can be
calculated from

�p
M
t

1
2ρu2

1

= 2Cd
L

W

∑
all

surfaces

xfinal∫
0

(
uE

u1

)3

d
( x

L

)
. (5.4.17)

5.4.3 Estimation of turbomachinery blade profile losses

To illustrate the way in which (5.4.17) enables insight into features of fluid machinery performance we
give an example drawn from axial turbine behavior. If the turbine blade surface velocity distribution
and variation of the dissipation coefficient Cd are known, (5.4.17) allows estimation of the blade
boundary layer or “profile loss” coefficient. The difference in values of Cd for laminar and turbulent
flows implies that the boundary layers should be kept laminar as long as practical, although at the
high values of turbulence intensity in turbomachines transition is likely to occur in the range Reθ ≈
200–500. Because of the weak variation of the dissipation coefficient in a turbulent flow, we can take
it to be constant, with a value of 0.002, over the range of momentum thickness Reynolds numbers
representative of those encountered in gas turbine blading. While such an approximation cannot give
precise quantitative results, it does allow the development of systematic trends for variation in loss
with turbine blade characteristics.

One aspect to be addressed is the existence of an optimum value of the blade space/chord ratio
(Denton, 1993). Consider an idealized rectangular velocity distribution around the blade, with high
velocity on the suction surface and low velocity on the pressure surface, as sketched in Figure 5.10.
Using now the velocity at the exit (station 2) for the reference velocity, as is conventional for turbines,
the integral in (5.4.17) can be evaluated as (see Figure 5.10 for notation)

loss coefficient = �p
M
t

1
2ρu2

2

= 2Cd
blade length

spacing

[
2

(
u

u2

)3

+ 6

(
u

u2

)(
�u

u2

)2
]
. (5.4.18)

The circulation round the blade is the product of the length along the blade (approximated here by
the chord) and the average velocity difference between suction and pressure sides of the blade. As
shown in Section 2.8, the circulation is also the product of the difference between inlet and exit
circumferential velocities and the blade-to-blade spacing, with the circumferential (uy) and axial (ux)
velocities related by the flow angle α: uy = uxtan α. Combining these statements the loss coefficient
based on mean velocity u is

loss coefficient = Cd

(
2u

�u
+ 6

�u

u

)
(tanα2 − tanα1) . (5.4.19)
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Figure 5.11: Generic surface velocity distributions for turbine blades (Denton, 1990).

This has a minimum value corresponding to the optimum value of blade space/chord when (�u/u) =
(1/

√
3). With Cd = 0.002, representative blade profile losses can be found using this method.

Denton (1993) has employed this idea, with the (more realistic) family of generic turbine velocity
distributions shown in Figure 5.11, to generate optimum blade space/chord ratios and blade loss
coefficients for turbine blade rows over a range of inlet and exit angles. Figure 5.12 shows profile
loss coefficients as a function of the inlet and exit flow angles for blade rows which have the calculated
optimum space/chord ratio; the loss estimates generated agree fairly well with measurements.

5.5 Mixing losses

5.5.1 Mixing of two streams with non-uniform stagnation pressure and/or temperature

A common situation in fluid machinery and propulsion systems is the mixing of two coflowing
streams with different stagnation conditions. A model of such a configuration is the constant area
mixing of two streams of different stagnation temperatures and pressures as in Figure 5.13. The
mixing process can be analyzed using a control volume approach so that details of the mixing need
not be addressed. The stagnation pressure and temperature at the inlet of the mixing region, station
“i”, and the initial area of each stream are specified, as is the static pressure at this location. (The
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Figure 5.13: Mixing of two streams in a constant area duct.

latter can be thought of as being controlled by opening or closing a throttle at the exit of a chamber
into which the mixing duct discharges.) As described in Section 2.8 wall shear stresses are neglected
and the walls are taken as adiabatic. The mixing proceeds from the specified inlet state to a uniform
(fully mixed out) state at the exit of the control volume.

The calculation of mixed out conditions follows from application of conservation of mass, mo-
mentum, and energy, plus the equation of state. For a specified pressure pi at the inlet station, the
ratios (pt1i

/pi ) and (pt2i
/pi ), and hence the inlet Mach numbers of streams 1 and 2 are known (see

Section 2.5). Mass flows and velocities in each stream can thus be found. Mass conservation between
the inlet and the exit of the control volume is

ṁe = ṁ1i + ṁ2i , (5.5.1)
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where the subscript “e” denotes the fully mixed out location. Making use of the impulse function,
�, defined as � = p A + ρAu2

x = p A + ṁux, the equation for conservation of momentum in the
constant area duct is

�e = �1i +�2i . (5.5.2)

For a perfect gas with constant specific heats the steady flow energy equation gives

Tte = ṁ1i Tt1i
+ ṁ2i Tt2i(

ṁ1i + ṁ2i

) . (5.5.3)

A non-dimensional form of the impulse function can be defined as

�̃e = �e(
ṁ1i + ṁ2i

)√
cpTte

. (5.5.4)

The impulse function at mixed out conditions is a function of Mach number and γ , given by

�̃e =
(√

γ − 1

γMe

) 1 + γM2
e√

1 + 1
2 (γ − 1)M2

e


 . (5.5.5)

Equation (5.5.5) is an implicit expression for the exit (mixed out) Mach number. With given Mach
number, stagnation temperature, and duct area, all other mixed out flow properties can be found. There
are two possible values of Mach number which satisfy (5.5.5), one subsonic and one supersonic. If
both entering flows are subsonic, only the subsonic solution is compatible with an increase in entropy
flux. If one or both of the entering streams are supersonic, both subsonic and supersonic solutions
are possible.

Figure 5.14 presents contours of an entropy rise coefficient, defined as (with si the inlet mass
average entropy)

entropy rise coefficient = T t (se − si )
1
2 u2

i

(5.5.6)

for the constant area mixing of two streams with equal areas at the start of mixing. The inlet stagnation
pressure of one stream is pt +�pt and that of the other is pt –�pt. The stagnation temperatures are
similarly specified as Tt = T t ±�Tt. The inlet static pressure has a value which would produce a Mach
number of 0.5 if the inlet stagnation pressures and temperatures were uniform; this is representative
of conditions in aeropropulsion components at which a number of mixing processes occur.

The calculated loss coefficients shown in Figure 5.14 are roughly symmetric about both axes
indicating that, although the entropy increase depends on both the stagnation temperature and pres-
sure differences, the increase of entropy due to an initial stagnation pressure difference is almost
independent of the initial difference in stagnation temperature, and vice-versa.7 The entropy changes
are due to heat transfer across a finite temperature difference (primarily associated with the stagna-
tion temperature difference) and the dissipation of mechanical energy (mainly associated with the
stagnation pressure difference).

7 If the contours were, for example, ellipses symmetric about the horizontal and vertical axes, each would be described by
1 = [(Pt1 − Pt2 )i/A�S]2 + [(Tt1 − Tt2 )/B�S]2, where A�s and B�s are (dimensional) quantities representing the semi-
major and semi-minor axes of an ellipse corresponding to a given entropy rise. The greater the entropy rise, the larger A�s
and B�s . From the form of the equation it can be seen that the entropy change in mixing associated with an initial stagnation
pressure difference is not affected by the initial stagnation temperature difference, and vice-versa.
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Figure 5.14: Entropy rise coefficient (defined in (5.5.6)) for the constant area mixing of two equal area streams
at different stagnation pressures and temperatures; pti = pt ±�pt , Tti = T t ±�Tt (Denton, 1993).

The non-dimensionalization for the stagnation pressure and temperature is not the same. The
denominator for the former is the quantity (pt − pi ). This reduces to the inlet dynamic pressure,
1/2ρu2, as M → 0. The quantity (pt − p) is more appropriate for compressible flow because it
represents the pressure rise achievable from reversible adiabatic deceleration to the stagnation state.
The denominator for the latter is the mean stagnation temperature. The reason for the different
treatment of stagnation pressure and temperature is the topic of much of the next two subsections.

5.5.2 The limiting case of low Mach number M2 � 1 mixing

Numerical results for mixed out quantities can readily be generated for arbitrary Mach number but
it is useful to examine the case of low Mach number for several reasons. First, for mixing of streams
with non-uniform stagnation temperature the connection between changes in stagnation pressure
and component (or system) loss is different than for adiabatic flow. At low Mach numbers the
analytic solution which exists can be used to demonstrate explicitly the role and behavior of changes
in stagnation pressure and entropy as loss metrics. Discussion of this limit also reinforces, from
a different perspective than in Section 2.2, what is meant by stating that a flow is incompressible.
Finally, the resulting expressions, although strictly applicable only for M2 �1, give useful guidelines8

concerning the behavior to be expected for Mach numbers up to 0.5−0.6.
For low Mach number flow the equation of state can be (see Section 1.17) approximated as

ρT = constant + O(M2), i.e. the effect on density or temperature due to pressure changes (which

8 The limits of the approximation can be seen in Greitzer et al. (1985).
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are of order Mach number squared) can be neglected. Differences between the stagnation and static
temperature also have an impact of order Mach number squared and can be neglected. The relations
appropriate to low Mach number mixing are thus (5.5.1), (5.5.2), plus the low Mach number form
of (5.5.3)

Te = ṁ1i T1i + ṁ2i T2i(
ṁ1i + ṁ2i

) , (5.5.7)

and the equation of state: ρ1i T1i = ρ2i T2i = ρeTe.
The inlet non-uniformities in stagnation pressure and temperature can be characterized as the

stream-to-stream temperature ratio, TR = T2i /T1i , and the stream-to-stream stagnation pressure
difference, χ = (pt1 − pt2i

)/( 1
2ρ1i u

2
1i

). The geometry is specified by the ratio of stream 1 area at inlet
to total area, σ = A1i /A.

From dimensional considerations the stagnation pressure difference (between the inlet value in
stream 1 or 2 and the mixed out value) scales with a representative inlet dynamic pressure and is a
function of the quantities TR, χ , and σ , independent of Mach number, i.e.

pt1i
− pte

1
2ρ1i u

2
1i

= function (TR, χ, σ ). (5.5.8)

As an example, for two streams with equal areas (σ = 1
2 ) and equal stagnation pressures at inlet

(χ = 0), neglecting wall shear stress and heat transfer, the expression for stagnation pressure change
from inlet to mixed out conditions is9

pti − pte
1
2ρ1i u

2
1i

=
[√

TR + 1√
TR

− 2

]
. (5.5.9)

The mixed out quantities of most interest are an entropy rise coefficient (analogous to that defined
above) and the stagnation pressure difference, from inlet to mixed out conditions. For simplicity in
dealing with the latter we define the reference state to be stream 1 at the inlet.

For compressible two-stream mixing with a uniform stagnation pressure at the inlet the entropy
rise is given by

(se − si )

cp
=
[(

ṁ1i

ṁe

)
ln

(
Tte

Tt1i

)
+
(

ṁ2i

ṁe

)
ln

(
Tte

Tt2i

)]
− (γ − 1)

γ
ln

(
pte

pti

)
. (5.5.10)

For M2 � 1, the entropy rise coefficient, normalized by the inlet velocity in stream 1, can be expressed
as

T t (se − si )

u2
1i

=
[

1

(γ − 1) M2
1i

][(
ṁ1i

ṁe

)
ln

(
Tte

Tt1i

)
+
(

ṁ2i

ṁe

)
ln

(
Tte

Tt2i

)]
+
(

pti − pte

)
ρu2

1

. (5.5.11)

9 The explicit form of the function is not needed in the arguments that follow, although it can readily be found by application
of the low Mach number form of the conservation laws for the control volume (see Section 11.7). Equation (5.5.7) yields
the exit temperature and thus density. Conservation of mass then gives the mixed out velocity. Conservation of momentum
gives the mixed out static pressure thus allowing calculation of the stagnation pressure.
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In (5.5.11) T t is the average stagnation temperature as defined in Section 5.5.1. Although the first
term in (5.5.11) appears to become unbounded as Mach number decreases, this is an artifact of the
normalization. From the low Mach number form of (5.5.10) (or multiplying (5.5.11) by M2

1i
), we

recover

(se − si )

cp
=
[(

ṁ1i

ṁe

)
ln

(
Te

T1i

)
+
(

ṁ2i

ṁe

)
ln

(
Te

T2i

)]
+ (γ − 1) M2

1i

[(
pti − pte

)
ρu2

1

]
. (5.5.12)

The effect of temperature equilibration on the entropy change does not depend on the inlet Mach
number. At low Mach number, therefore, the specific entropy rise associated with a non-uniform
inlet stagnation temperature approaches a constant value which depends on temperature and inlet
area ratios. The contribution of the stagnation pressure decrease to the entropy change scales with
the dynamic pressure and is proportional to M2.

5.5.3 Comments on loss metrics for flows with non-uniform temperatures

Equation (5.5.12) shows the qualitative difference in the behavior of entropy and stagnation pressure
in flows with non-uniform stagnation temperatures. In the low Mach number limit the change in pt

is linked to the change in mechanical energy per unit volume (as discussed later in this section). The
change in entropy measures not only this effect but also the lost work associated with the thermal
mixing of the two streams. If there is thermal mixing, the physical effects connected with entropy
change and stagnation pressure change do not correspond as they did in flows with uniform stagnation
temperature. As far as changes in stagnation pressure are concerned, the mixing process could have
been regarded as a purely mechanical event with two streams of densities ρ1 and ρ2, both at the same
temperature. In that case the same equations would be used to describe the process except T would
be replaced by (constant/ρ) in (5.5.7) and the result interpreted as conservation of volume flow for
incompressible mixing.

Two implications can be drawn from the above. First, for steady flow with M2 � 1 the thermody-
namics do not affect the dynamics. This is another statement of what constitutes the incompressible
flow approximation. Second, the loss metric depends on whether one is interested only in the degra-
dation of the mechanical energy within a fluid component or in the overall system losses. In the latter
case the entropy change associated with heat transfer across a finite temperature difference must be
accounted for: someone has paid to have one fluid heated or cooled, and a comprehensive system
accounting must include this.

5.5.4 Mixing losses from fluid injection into a stream

In many applications two or more streams initially at an angle to one another are brought together to
mix. A sketch of a typical configuration in which one stream is injected into a primary flow is given
in Figure 5.15. The situation can be analyzed in a simple manner for arbitrary Mach number when
the flow rate of the injected stream is small compared to the mainstream flow. If so, the differential
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α

Figure 5.15: Mixing of injected flow with a mainstream flow at a different velocity, temperature, angle; injected
flow quantities dṁ, uinj, Tinj, etc.

expressions for mass, momentum, and energy conservation across the control volume can be written
to first order in dṁ/ṁ, the ratio of injected to mainstream flow as (Shapiro, 1953)

dρ

ρ
+ dux

ux
= dṁ

ṁ
, (5.5.13)

dp

p
+ γM2 dux

ux
= dṁ

ṁ

[
γM2

(
uxinj

ux
− 1

)]
, (5.5.14)

dTt

Tt
= dṁ

ṁ

(
Ttinj

Tt
− 1

)
. (5.5.15)

The subscript “inj” denotes properties of the injected fluid, with the other variables denoting the
mainstream quantities. All mainstream velocities in this section are in the x-direction. Equations
(5.5.13), (5.5.14), and (5.5.15) must be supplemented by the differential forms of the perfect gas
equation of state (5.5.16), the definitions of stagnation enthalpy (5.5.17) and stagnation pressure
(5.5.18), and the Gibbs equation for entropy changes (1.3.19) in a form appropriate for a perfect gas
with constant specific heats (referred to below as (1.3.19a)):

dp

p
− dρ

ρ
− dT

T
= 0, (5.5.16)

dTt

Tt
− 1(

1 + γ − 1

2
M2

) dT

T
− (γ − 1) M2(

1 + γ − 1

2
M2

) dux

ux
= 0, (5.5.17)

dpt

pt
− γ

γ − 1

(
dTt

Tt
− ds

cp

)
= 0, (5.5.18)

ds

cp
− dT

T
+ γ − 1

γ

dp

p
= 0. (1.3.19a)

In (5.5.13)–(5.5.18) and (1.3.19a), the known quantities that drive the changes, namely the non-
dimensional mass, x-momentum, and energy added to the mainstream, appear on the right-hand
side, and the seven unknowns: dux/ux, dρ/ρ, dT/T, dp/p, ds/cp, dTt/Tt, and dpt/pt on the left. These
equations can be combined to yield expressions for changes in two quantities of interest concerning
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loss, specific entropy, and stagnation pressure:

ds

cp
= dṁ

ṁ

[(
1 + γ − 1

2
M2

) (
Ttinj

Tt
− 1

)
+ (γ − 1) M2

(
1 − uxinj

ux

)]
, (5.5.19)

dpt

pt
= dṁ

ṁ

[
−γM2

2

(
Ttinj

Tt
− 1

)
− γ M2

(
1 − uxinj

ux

)]
. (5.5.20)

For M2 � 1 (5.5.19) and (5.5.20) reduce to

Tds

u2
x

= dṁ

ṁ

[
1

M2 (γ − 1)

(
Tinj

T
− 1

)
+
(

1 − uxinj

ux

)]
, (5.5.21)

dpt

ρu2
x

= dṁ

ṁ

[
−1

2

(
Tinj

T
− 1

)
−
(

1 − uxinj

ux

)]
. (5.5.22)

These are changes in the mainstream quantities and do not include the entropy change of the injected
flow (Denton, 1993). As described in Section 5.5.2, the relation between entropy and stagnation
pressure changes in flows with non-uniform stagnation temperatures is qualitatively different from
the correspondence between the two that occurs with uniform stagnation temperature.

For low Mach number flow, changes in stagnation pressure can be interpreted in terms of mechan-
ical energy as follows. The equation of state in differential form is

dρ

ρ
+ dT

T
= 0. (5.5.23)

For M2 � 1 the conservation equations are

dρ

ρ
+ dux

ux
= dṁ

ṁ
, (5.5.24)

dp

ρu2
x

+ dux

ux
= dṁ

ṁ

(
uxinj

ux
− 1

)
, (5.5.25)

dρ

ρ
= dṁ

ṁ

(
1 − ρ

ρinj

)
. (5.5.26)

Equations (5.5.24)−(5.5.26) describe the mixing of streams of non-uniform density at constant
temperature which is a purely mechanical process. From these

dpt

ρu2
x

= dṁ

ṁ

[
−1

2

(
ρ

ρinj
− 1

)
−
(

1 − uxinj

ux

)]
, (5.5.27)

which is equivalent to (5.5.22) for mixing of different temperature fluids.

5.5.5 Irreversibility in mixing

The previous two subsections have described the differences between the behavior of stagnation
pressure changes and entropy changes.10 As discussed in Section 5.2, a direct measure of loss is the

10 This topic is addressed further, for flows with heat addition, in Section 11.3.
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entropy creation due to irreversible processes. It is therefore important to develop a framework for
understanding entropy creation in mixing processes. In this we follow the illuminating discussion of
Young and Wilcock (2001), based on the example of the fluid injection into a stream.

The entropy created within a control volume such as that in Figure 5.15 is the difference between
the leaving and entering entropy flux. The entropy flux leaving the control volume is (ṁ + dṁ)
(s + ds), where s is the entropy in the main stream at the inlet station of the control volume. The
entering entropy flux is the mainstream entropy flux plus the entropy flux from the injected fluid, or
ṁs + dṁsinj. The difference between the two represents entropy created because of irreversibilities.
In terms of the entropy creation per unit mass this is (to first order in the small changes across the
control volume)

dsirrev = ds − (sinj − s)
dṁ

ṁ
. (5.5.28)

The entropy change ds is given by (5.5.19). The difference (sinj − s) can be written (because the
injected flow enters the control volume at the mainstream static pressure) as

(sinj − s) = cp

Tinj∫
T

dT̂

T̂
, (5.5.29)

where T̂ denotes here a dummy variable of integration. Using (5.5.19) and (5.5.28) in (5.5.29),
and writing the stagnation temperatures in terms of static temperatures and velocities (Tt = T +
u2

x/2cp; Ttinj = Tinj + ((uxinj )
2 + (uyinj )

2)/2cp), the entropy creation per unit mass within the control
volume is found to be

dsirrev

cp
= dṁ

ṁ



[(

ux − uxinj

)2 + (uyinj

)2
2cpT

]
+




Tinj∫
T

(
1

T
− 1

T̂

)
dT̂




 . (5.5.30)

Equation (5.5.30) gives considerable insight into entropy creation during mixing. The first square
bracket represents the entropy change from mixing of two streams at different velocities, i.e. the
dissipation of bulk kinetic energy as mainstream and injection velocities mix to a uniform state. The
first quadratic term in the bracket refers to velocity equilibration in the mainstream (x) direction.
The second shows that in the mixing process all kinetic energy associated with injection normal to
the mainstream also appears in the entropy rise. The second square bracket is the entropy change
associated with thermal mixing of the injected flow and the mainstream to a uniform temperature.
This term, multiplied by ṁcpT, is the power that could theoretically be obtained from a Carnot
engine coupled between the mainstream flow at constant temperature T and the injected flow as the
temperature of the latter changes from Tinj to T (Young and Wilcock, 2001).

5.5.6 A caveat: smoothing out of a flow non-uniformity does not always imply loss

Although a number of illustrations of losses caused by mixing out of flow non-uniformities have
been presented, it should not be assumed that the presence of a non-uniformity always implies an
increase in entropy (or decrease in stagnation pressure) as the flow comes to a final uniform state. A
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counterexample is furnished by the steady, two-dimensional, frictionless irrotational flow down-
stream of a obstacle or row of obstacles, for example a row of turbomachine blades.

Far downstream of the blade row, the flow is uniform and parallel with velocity components ux∞
and uy∞ in the x- and y-directions respectively. Near the blade row, the velocity field is non-uniform
and can be described using a disturbance velocity potential, ϕ, whose gradients are the disturbance
velocity components denoted by u′

x and u′
y. For Mach numbers low enough that the flow can be

considered incompressible, the equation satisfied by ϕ is Laplace’s equation, ∇2ϕ = 0. The velocity
components are:

ux = ux∞ + ∂ϕ

∂x
= ux∞ + u′

x , (5.5.31a)

uy = uy∞ + ∂ϕ

∂y
= uy∞ + u′

y . (5.5.31b)

Similar to the description in Section 2.3, in the region downstream of the blades the solution for
ϕ is periodic with the blade spacing W and decays with distance from the blade row. The form of ϕ
which meets these conditions, as can be verified by direct substitution in Laplace’s equation, is

ϕ =
∞∑

k=1

[(
Ak sin

2πky

W
+ Bk cos

2πky

W

)
e−2πkx/W

]
. (5.5.32)

If either the axial or the tangential velocity distribution is specified at a given x-location, which we
can take as x = 0, the coefficients Ak and Bk can be found.

Because the flow is irrotational and steady, the stagnation pressure is everywhere constant through-
out the downstream region, whatever the velocity variation at x = 0. It is of interest to examine the
use of a control volume analysis with the objective of showing why the presence of the axial ve-
locity non-uniformity here does not lead to a decrease in stagnation pressure. The reason is seen by
considering the static pressure,

p = pt − 1
2ρ
(
u2

x + u2
y

)
= pt − 1

2ρ
(
u2

x∞ + u2
y∞

)− 1
2ρ
[
2ux∞u′

x + 2uy∞u′
y + (u′

x )2 + (u′
y)2
]
. (5.5.33)

The underlined group of terms is a constant equal to p∞, the static pressure far downstream. Equation
(5.5.33) can therefore be written as

C p = p − p∞
1
2ρu2

x∞

=
[

2
u′

x

ux∞
+ 2

uy∞

ux∞

u′
y

ux∞
+ (u′

x )2

u2
x∞

+ (u′
y)2

u2
x∞

]
. (5.5.34)

Equation (5.5.34) shows that the static pressure along the control surface at x = 0 is not uniform in y,
in contrast to the other cases we have examined so far. The variation in pressure implies streamline
curvature at station 1 and consequently streamtube convergence and divergence downstream of this
station. The average static pressure at x = 0 is lower than at x → ∞ because the axial momentum
flux is higher at x = 0, but the change in momentum is brought about solely by pressure forces.
The forms of the velocity components given above can be used in the x-momentum control volume
equation to see the consistency between constant stagnation pressure and the attenuation of the axial
velocity non-uniformity.
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Figure 5.16: Velocity components and static pressure in a periodic irrotational flow. Mean exit flow angle =
tan−1(uy∞/ux∞ ) = 30◦ (subscript ∞ denotes conditions far downstream).

Figure 5.16 shows the x- and y-velocity components and the static pressure for a single sinusoidal
component of the disturbance velocity potential,

ϕ = A1sin
2πy

W
e−2πx/W . (5.5.35)

The axial velocity variation is 0.20ux∞ at x = 0 and the exit angle from the blade row, based on
ux∞ and uy∞ , is 30◦ from axial. The convergence of the streamlines will be such as to increase the
velocity from location A to the downstream location and to decrease the velocity from point B to
downstream.

The point to note is that there are situations in which static pressure variations over the inlet (or
outlet) stations of a control volume must be addressed. The assumption that the static pressure is
uniform is just that – an assumption – and is not always appropriate.

5.6 Averaging in non-uniform flows: the average stagnation pressure

5.6.1 Representation of a non-uniform flow by equivalent average quantities

Loss generation processes typically create a non-uniform flow, with subsequent mixing downstream.
Measurement stations must often be placed at locations in which mixing is not complete, for example
in multistage turbomachinery where the performance of one blade row is desired but the presence of
downstream blading means the instrumentation is at a location with incomplete mixing. A specific
issue we need to address in more depth, therefore, is how one accounts for losses in a flow in which
the properties have a spatial variation, i.e. how one defines an appropriate average value for a flow
property in a non-uniform stream.
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Figure 5.17: System and control volume used for mixing analysis; inlet station i: non-uniform velocity; exit
station e: uniform (“mixed out”) velocity.

This is only one aspect of a much broader question concerning the representation of a non-uniform
flow with an “equivalent” average uniform flow, namely what general procedure is appropriate for
capturing the behavior of a non-uniform flow using average values of the flow variables? Unfortu-
nately, there is no unique answer to the question as posed. More precisely, as stated in Pianko and
Wazelt (1983): “No uniform flow exists which simultaneously matches all the significant stream
fluxes, aerothermodynamic and geometric parameters of a non-uniform flow.” A main purpose of
Section 5.6 is thus to sensitize the reader to the choices to be made, and methodology to be used, in
developing useful approaches to averaging. In this context we develop several basic procedures and
show their parametric behavior, first for constant density fluid motions and then for compressible
flow. Quantitative information is also presented about the differences that exist between various av-
erages. The final subsection takes up the specific question of how one chooses an appropriate method
for obtaining an average value in a particular situation. Discussion and examples are given to show
the way in which this depends on the application for which the average is to be used.

5.6.2 Averaging procedures in an incompressible uniform density flow

We turn first to the basic features of the averaging process in connection with the question of defining
an average stagnation pressure. Three definitions of average stagnation pressure in common use are
examined: area average, mass average, and mixed out average. To illustrate the behavior we work
through the implications of each for incompressible uniform density flow (Sections 5.6.2 and 5.6.3)
and then for compressible flow (Section 5.6.4).

The incompressible analysis both serves as an introduction and provides a framework to view
results for compressible flow. The formulation is general, but it is helpful to cast the discussion in
terms of a specific situation, steady flow in a two-dimensional channel of width W with a linearly
varying velocity, as shown in Figure 5.17. The velocity at inlet station i has an x-component only
with distribution

uxi (y) = u
(

1 +� y

W

)
, (5.6.1)

where u is the mean velocity (u = (umax + umin)/2). The maximum velocity non-uniformity is thus
|�ux|max = �u. The average stagnation pressure at station 1 will be found using each of the three
averaging procedures.
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5.6.2.1 Area average (pA
t )

The area average stagnation pressure is defined as

pA
t = 1

A

∫
A

pt d A (5.6.2)

at any station in the duct. The static pressure is constant across the duct for a parallel flow so

pA
ti − pi = ρ

2W

W/2∫
−W/2

u2
x (y) dy. (5.6.3)

Using the velocity distribution of (5.6.1),

pA
ti − pi = 1

2
ρu2

(
1 + �2

12

)
. (5.6.4)

The area average is presented first because of its simplicity, but this is essentially its only merit.
In contrast to the other stagnation pressure averages to be introduced, the area average stagnation
pressure is not associated with application of any conservation law and there is no fundamental
reason for its use.

5.6.2.2 Mass average (pM
t )

To obtain the mass average for any quantity the area elements are weighted by the mass flow per
unit area, with the integral taken over the channel mass flow. The mass average stagnation pressure
is defined as

pM
t = 1

ṁ

∫
ṁ

pt dṁ

=

W/2∫
−W/2

(
p + 1

2ρu2
x

)
ρu dy

W/2∫
−W/2

ρux dy

. (5.6.5)

For the velocity distribution of (5.6.1),

pM
ti − pi = 1

2
ρu2

(
1 + �2

4

)
. (5.6.6)

The mass average was previously encountered during the discussion of entropy flux in Section 5.3.
It was shown there that, for uniform stagnation enthalpy and changes in stagnation pressure small
compared to the (upstream) reference value, the mass average stagnation pressure at a given location
represents the entropy flux at that station.
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5.6.2.3 Mixed out average (pX
t )

The mixed out average stagnation pressure11 is defined as the stagnation pressure that would exist
after full mixing at constant area. To find this value we apply conservation of mass and momentum
to the non-uniform profile, using the constant area control volume in Figure 5.17 and neglecting
frictional forces on the top and bottom walls of the channel.

The flow is uniform at the exit station, e (uxe = ū), and the continuity equation is

W/2∫
−W/2

uxi dy = uW. (5.6.7)

The momentum equation is

W/2∫
−W/2

(
pi + ρu2

xi

)
dy = (pe + ρu2

xe

)
W = (pe + ρu2)W . (5.6.8)

Using (5.6.1) in (5.6.8) gives the static pressure rise associated with mixing:

pe − pi = ρu2

(
�2

12

)
. (5.6.9)

The mixed out average stagnation pressure at the exit station is

pX
t = pe + ρ u2

2
. (5.6.10)

Combining (5.6.9) and (5.6.10) yields

pX
t − pi = 1

2
ρu2

(
1 + �2

6

)
. (5.6.11)

For averaging processes that make use of a mixing analysis, the manner in which the mixing
occurs must be specified. For example, instead of constant area the mixing process might occur at
constant pressure. In this case the exit area at station e would not be the same as that at station i.
For the linear inlet velocity distribution of (5.6.1), conservation of mass and momentum applied to
mixing within a control volume with uniform pressure, pi, on the bounding surfaces gives

uxe We =
Wi/2∫

−Wi/2

uxi dy and u2
xe

We =
Wi/2∫

−Wi/2

u2
xi

dy. (5.6.12)

The ratio of stream areas for constant pressure mixing is

We

Wi
= Ae

Ai
= 1(

1 + �2

12

) . (5.6.13)

11 This term and nomenclature were suggested by Smith (2001).
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The mixed out stagnation pressure for constant pressure mixing is

pX
t

∣∣
constant
pressure

− pi = 1

2
ρu2

(
1 + �2

12

)2

. (5.6.14)

Constant pressure mixing is less commonly used as a model than is constant area mixing, but it is
also a consistent way to look at mixing and may be the most pertinent in some situations. While
general mixing processes tend to be neither precisely constant area nor constant pressure, these two
situations furnish useful reference cases from which to view overall mixing behavior.

Several inferences can be drawn from the results of the three averaging processes. One is that there
are different plausible ways to define an average flow quantity in a non-uniform flow. The example
here is stagnation pressure but the comment applies to other variables as well.

The relative placement of the levels of the three average quantities is a general result for constant
density flow. The mass average value is the highest of the three, because the higher stagnation pressure
part of the stream is more heavily weighted. The area average is the lowest since it weights all parts
equally. As mentioned the mass average stagnation pressure is directly related to the loss generated
up to the averaging plane. Mixing generates further losses and the mass average stagnation pressure
falls. The mixed out average, which can be regarded as a mass average at the final uniform state, is
thus lower than the mass average but higher than the area average at the upstream station i.

The losses due to non-uniform flow are quadratic in the non-uniformity in that all three average
total pressures involve �2. We can connect this to the discussion in Section 2.8 by adopting a
coordinate system moving with the lowest velocity in the flow. The loss due to mixing is unaltered,
since the entropy rise is invariant with a change of reference frame. In the moving coordinate system,
however, some part of the flow has zero velocity so the situation is similar to mixing in a sudden
expansion where the stagnation pressure loss, and indeed all pressure changes, scale as the square
of the velocity.

5.6.3 Effect of velocity distribution on average stagnation pressure
(incompressible uniform density flow)

The linear variation in velocity is only one type of non-uniformity encountered, and the range of
velocity distributions seen in practice includes boundary layers, wakes, and step-type profiles. It is
thus relevant to assess the effect of velocity profile on average stagnation pressure. To address this
we compare results for the linear profile with those derived for a very different velocity distribution,
the step-type profile shown in the inset of Figure 5.18, which has two parallel streams with velocities
uE and εuE. Denoting the fractional area occupied by the low velocity stream as σ , the average
velocity is

u = [σε + (1 − σ )]uE . (5.6.15)

For constant density flow the stagnation pressure averages are formed as defined in the preceding
section. For example the mass average stagnation pressure, normalized by the dynamic pressure
based on the average velocity, is

pM
t − p

ρu2/2
= [σε3 + (1 − σ )]

[σε + (1 − σ )]3 . (5.6.16)
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Figure 5.18: Difference between mass average and area average stagnation pressure as a function of non-
uniformity parameter, N (5.6.17), for step-type (see inset) profiles and for linear velocity distribution; constant
density flow.

The differences between the three averages for stagnation pressure depend on both the velocity
non-uniformity parameter, ε, and the proportion of the duct occupied by the low and high speed
flows, σ . For a given value of σ the differences increase as ε decreases from 1 to 0. The behavior
with ε is more complicated: for a given value of ε the difference between averages increases as σ
increases from 0 to 0.5 but can either increase or decrease for values of σ above this.

A simple quadratic measure of non-uniformity that captures the dependence on both parameters
is the ratio of the average of the square of the velocity to the square of the average velocity, which
we incorporate in a non-uniformity parameter, N, as

N =
∫

u2
x d(y/W )[∫

ux d(y/W )
]2 − 1 = σε2 + (1 − σ )

[σε + (1 − σ )]2 − 1. (5.6.17)

The parameter N goes to 0 when σ goes to 0 and 1 and when ε goes to 1. From (5.6.4) N is �2/12
for the two-dimensional linear velocity distribution of (5.6.1).

The upper bound on differences between the stagnation pressure averages is that between mass
average and area average. Presenting this upper bound as a function of N enables a general view of
the trends in its magnitude, not only for different values of σ and ε but also for different velocity
profiles. Figure 5.18 thus shows the difference between mass average and area average stagnation
pressures, normalized by the dynamic pressure based on average velocity, as a function of non-
uniformity parameter. (This normalization convention has been adopted to allow direct comparison
with the results of Section 5.6.2.) Results are given for velocity non-uniformity (ε) from 0.5 to
0 for three values of σ (0.1, 0.25, 0.5) as well as for the linear velocity distribution in (5.6.1).
Traversing a curve of constantσ in the direction of increasing N corresponds to increasing the velocity
non-uniformity (decreasing ε) while holding the fractional area of low and high velocity streams
constant. Contours of constant ε are also indicated: the curves for the different values of σ terminate
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at ε = 0, the condition of zero velocity in the low velocity stream. For the linear velocity distribution
the difference between mass average and area average stagnation pressure12 is 2N (i.e.�2/6) which
coincides with the line corresponding to σ = 0.5.

The principal trend in Figure 5.18 is a monotonic increase in the difference between mass average
and area average stagnation pressure as N is increased. Although the differences between averages
do not collapse to a single curve as a function of N, the parameter provides a guide to when effects
of non-uniformities are likely to be important in loss or performance accounting. A 1% change in N
implies (again, for σ ≤ 0.5) a maximum difference between the stagnation pressure averages of 2%
of the dynamic pressure based on the average velocity and thus a difference between mass average
and mixed out average of 1% or less.

5.6.4 Averaging procedures in a compressible flow

In extending the averaging procedures to compressible flow the definition of an area average remains
unchanged. The mass average, however, now includes the density variation

pM
t =

∫
A

pt dṁ∫
A

dṁ
=

∫
A

ptρux d A∫
A
ρux d A

. (5.6.18)

The definition of the mixed out average is based on a mixing process that implies the use of the
conservation equations. For compressible flow an additional equation describing energy conservation
is needed. If we specify no mass, momentum, heat, or work transfer to the stream from the duct walls,
the three conservation equations defining the mixed out state in the duct are:

conservation of mass:

(∫
A
ρux d A

)∣∣∣∣
at (i)

= ρeuxe A = ṁ, (5.6.19)

conservation of momentum: pe A − pi A =
(∫

A
ρu2

x d A

)∣∣∣∣
at (i)

− ṁuxe , (5.6.20)

conservation of energy:
1

ṁ

(∫
A
ρux ht d A

)∣∣∣∣
at (i)

= hte = h
M
t . (5.6.21a)

12 For values of σ greater than 0.5 and ε near 0, differences in the non-dimensional average stagnation pressure as defined
above (and used in the figure) increase rapidly. For values of σ near unity the flow is essentially a narrow high speed jet
in a much wider slowly moving stream and the non-dimensionalization used is not appropriate. The basic issue is one of
choosing the relevant dynamic pressure for the context of the problem. For a constant density flow in which the mean
velocity is not greatly different than the maximum, it can be argued that the dynamic pressure based on mean velocity is
a, if not the, relevant form. In contrast, for a flow which has a narrow region with a velocity much greater than the mean, it
is generally more useful to base the dynamic pressure on the velocity in the high speed stream. An example is the sudden
expansion in Section 2.8, where the reference dynamic pressure is that of the stream entering into the larger duct. (If the
difference in velocities, (1−ε)uE, is substituted for the inlet velocity in a sudden expansion of area ratio 1/(1−σ ), the
results for static pressure rise and stagnation pressure decrease due to mixing can be applied directly.)

Neither of the choices for non-dimensionalization is incorrect and it is rather a question of which is more helpful as a
measure of the behavior of interest; the objective here is to make a comparison of two profile families in a consistent and
general way. Had we used a dynamic pressure based on the high speed flow we would find a difference in non-dimensional
average stagnation pressures which varied between 0 and 1 for all σ and ε.
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Figure 5.19: Stagnation pressure decrease across a sudden expansion in a pipe (experimental data from Hall
and Orme (1955)).

For a perfect gas with constant specific heats, which is the case treated here, cpTt can be substituted
for ht in (5.6.21a),

1

ṁ

(∫
A
ρux Tt d A

)∣∣∣∣
at (i)

= Tte = T
M
t . (5.6.21b)

The effect of the Mach number level on mixed out stagnation pressure in a sudden expansion from
Ai to Ae is shown in Figure 5.19 which gives the stagnation pressure decrease across the expansion
as a function of the inlet Mach number. The different curves, which are derived from a compressible
control volume analysis, correspond to different area ratios. The stagnation pressure decrease is
non-dimensionalized by the difference between the inlet stagnation and static pressure, (pti – pi).

There is a gradual rise in non-dimensional stagnation pressure drop as the upstream Mach number
increases. Values of the stagnation pressure decrease for Mi = 1 are roughly 50% above those for
Mi = 0 for the lower area ratios but as the area ratio of the expansion increases, this effect reduces. The
control volume mixing analysis is seen to give a good estimate for the stagnation pressure changes.

5.6.4.1 Effects of inlet entropy and/or stagnation temperature non-uniformity

In defining averages for a compressible flow an inlet property additional to those specified for constant
density flow must be given. Two choices for this, which model conditions found in practice, are
uniform stagnation temperature and uniform entropy. The processes represented are quite different.
The former corresponds to a non-uniformity created by losses whose magnitudes vary across the
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flow, for example stationary obstacles (fences, screens) that block part of the channel. The latter
might represent the conditions downstream of a compressor stage designed for non-uniform work
input where the entropy change does not vary along the blade height.

For inlet conditions of uniform stagnation temperature, over the range of parameters shown there
is no qualitative change relative to the constant density situation, and results for this case are therefore
not shown. There is a quantitative change in that the non-dimensional difference between the averages
increases from the constant density results as Mach number increases, in a manner roughly similar
to that in Figure 5.19.

For uniform entropy at the inlet there is a qualitative change in the behavior of the average stagnation
pressure compared to the constant density situation. Figure 5.20 shows this information for a two-
dimensional straight channel. The figure presents the differences between: (i) mass average and mixed
out stagnation pressures and (ii) mass average and area average stagnation pressures, normalized by
pM

t − p. The initial velocity is the linear variation of (5.6.1): ux = u (1 + �y/W). The differences
in stagnation pressure13 are given as a function of channel midheight Mach number, Mm, for three
values of the velocity variation parameter �.

For�= 0.5 and 1.0 the value of (pM
t − pX

t ) (the solid curves) is larger than the value of (pM
t − pA

t )
(the dashed curves) for Mach numbers Mm near unity, which means that the mixed out stagnation
pressure is lower than the area average stagnation pressure. This effect is not directly dependent on
compressibility in that similar behavior occurs at low Mach number in a flow with uniform inlet
stagnation pressure but non-uniform stagnation temperature. In that situation the mass average and

13 The choice of which reference stagnation pressure should be used in these comparisons is not without some arbitrariness.
The mass average stagnation pressure, however, is familiar, is defined using only inlet quantities, and is linked (with the
qualifications expressed above) to the entropy flux. Its use also allows us to present the comparisons in Figure 5.21 in terms
of the two stagnation pressures and the static pressure, without the necessity for the definition of an additional quantity.
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the area average stagnation pressures are equal, with the mixed out stagnation pressure lower than
both (Greitzer, Paterson, and Tan, 1985). Mixed out stagnation pressures can therefore be lower than
area averages in a compressible flow and a non-constant density incompressible flow.

Figure 5.20 also indicates that for small values of� there is little difference in the three averages,
and this is also true with uniform stagnation temperature at inlet. For the Mach number range in the
figure, at a value of � = 0.25, the maximum differences are roughly 1% of (pM

t − p).
For compressible flow (or incompressible flow with non-uniform density) the behavior of the

averages is parametrically complex and Figure 5.20 should be interpreted as indicating trends only
over the range of Mach number and non-uniformity shown. For example the mass average stagnation
pressure is larger than the area average stagnation pressure for both uniform inlet stagnation temper-
ature and uniform inlet entropy over the range of parameters in Figure 5.20, but this is not true under
all circumstances. If the density variation in the flow is large enough, the portion of the stream with
higher stagnation pressure can be weighted less by mass averaging than by area averaging, resulting
in a mass average stagnation pressure which is lower than the area average value.

5.6.5 Appropriate average values for stagnation quantities in a non-uniform flow

We are now equipped to address the question posed at the beginning of the section, namely which
procedure is most appropriate to represent “the” average quantities in a given non-uniform compress-
ible flow (bearing in mind the overall caveat concerning representation of a non-uniform flow by
an average uniform flow). A starting premise is that the mass and stagnation enthalpy fluxes, which
together define the heat and shaft work exchanges with a fluid system, are quantities that should be
the same in the average and the actual non-uniform flow. From the steady-flow energy equation the
natural representation of the stagnation enthalpy flux is the mass average stagnation enthalpy.

To define other quantities such as the average stagnation pressure, however, additional considera-
tions are needed. It is worthwhile to state explicitly what is desired of the average quantity because
there are a number of ways to proceed. A useful approach is through the idea that for any given sit-
uation we wish to define average values corresponding to a uniform flow which retains the “essence
of the action of the machine” (Smith, 2001) when compared to the actual flow in the situation of
interest. One procedure for achieving this is to enforce the condition that fluxes of mass, linear mo-
mentum, stagnation enthalpy, and entropy are to be the same in the actual and the averaged flows.
This provides a route to the definition of an average stagnation pressure.14

5.6.5.1 Definition and application of the entropy flux average (availability average)
stagnation pressure

The entropy flux and the mass average entropy are related by∫
A

(
s − sref

)
ρux d A = ∫

ṁ

(
s − sref

)
dṁ = (s M − sref )ṁ. (5.6.22)

14 If the discussion is extended to annular swirling flow, there is an additional variable, the circumferential velocity component
that needs to be averaged. It is appropriate to use the mass average, because it is the difference in mass flux of angular
momentum which is equal to the torque exerted on the fluid.
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In (5.6.22) the subscript “ref” denotes an appropriate reference state, for example the region of the
stream outside boundary layers or wakes. From (5.2.5), for a perfect gas with constant specific heats,
the entropy change between any (stagnation) state and an initial reference state is

s − sref

cp
= ln

(
Tt

Tref

)
− γ − 1

γ
ln

(
pt

pref

)
. (5.6.23)

Equation (5.6.23) can be integrated over the mass flow to find the entropy flux. The requirement
for the averaged flow to have the same stagnation enthalpy flux as the actual flow yields the condition
for equality of entropy flux between the actual and the averaged flow as

sM − sref

cp
=
(

1

ṁ

)

∫
ṁ

ln

[(
Tt

Tref

)(
pref

pt

) γ−1
γ

]
dṁ




= ln

[(
T

M
t

Tref

)(
pref

pS
t

) γ−1
γ

]
. (5.6.24)

Equation (5.6.24) defines an average stagnation pressure, pS
t , based on equality of entropy flux

between actual and average flows, as

pS
t

pref
=
{

T
M
t

Tref

} γ

γ−1


exp


 γ

(γ − 1)

1

ṁ

∫
ṁ

ln

[(
Tref

Tt

)(
pt

pref

) γ−1
γ

]
dṁ




 . (5.6.25)

The definition maintains the same steady-flow availability function, ht − T0s (see Section 5.2), for
the actual and averaged flows, and the stagnation pressure derived in this manner is thus sometimes
referred to as the availability average stagnation pressure. An attribute of this definition is that we
correctly account not only for the total energy input between any two states, or locations (through
matching the mass flux of stagnation enthalpy) but also for the potential for shaft work resulting
from a transformation between the two states (through matching the flux of flow availability function)
(Cumpsty and Horlock, 1999).

Figure 5.21 shows the differences between the entropy flux average stagnation pressure, pS
t , and

the mass average stagnation pressure, pM
t , for a two-dimensional straight channel with uniform inlet

stagnation temperature and a velocity that varies linearly across the channel. As in Figure 5.20 the
abscissa is the Mach number at the channel midheight location, the stagnation pressure differences are
normalized by the quantity pM

t − p, and the curves are for different values of the velocity variation
parameter,�. In the limit of low Mach number, for uniform inlet stagnation temperature, pS

t reduces
to the mass averaged stagnation pressure, pM

t , as mentioned in Section 5.3. Further, over a substantial
parameter regime the availability average and mass average stagnation pressures are close and there
may be little difference in practice in which is employed.

For a uniform inlet stagnation temperature pM
t is larger than pS

t , although this is not always true
for a non-uniform stagnation temperature. The relation of the two stagnation pressures can be seen
using the example of a stream with step-type profiles in either stagnation pressure or temperature and
a uniform value of the other property. Applying (5.6.25) to a uniform stagnation temperature stream,
with the reference temperature corresponding to the uniform value and the reference pressure to the
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mass average value yields

pS
t

pM
t

= exp



(

1

ṁ

)∫
ṁ

ln

(
pt

pM
t

)
dṁ




 . (5.6.26)

For a two-stream step-type profile with mass flows and stagnation pressures ṁ1, ṁ2, pt1 , pt2 , the
integration gives

pS
t

pM
t

=
(

pt1

pM
t

)( ṁ1
ṁ1+ṁ2

) (
pt2

pM
t

)( ṁ2
ṁ1+ṁ2

)
. (5.6.27)

For ṁ1 = ṁ2 (5.6.27) simplifies to

pS
t

pM
t

= 2
√

pt1 pt2

pt1 + pt2

, (5.6.28)

a ratio which is always less than unity.
For a two-stream profile with uniform stagnation pressure, a non-uniform stagnation temperature,

and ṁ1 = ṁ2, a similar analysis gives the ratio of the entropy flux average stagnation pressure to
mass average stagnation pressure (which is also the actual uniform value) as

pS
t

pM
t

=
(

Tt1 + Tt2

2
√

Tt1 Tt2

) γ

γ−1

. (5.6.29)

The ratio in (5.6.29) is larger than unity so, in this case, the average stagnation pressure derived from
matching the entropy flux is larger than the actual (uniform) stagnation pressure.
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5.6.5.2 Some general principles concerning averaging of non-uniform flows

From the above discussion several general principles that relate to averaging of non-uniform flows
can be inferred. The first and most important follows from the statement at the start of this section
concerning the inability to represent all attributes of a non-uniform flow by an average flow; the
methodology and approach for defining an “equivalent” uniform flow must be developed within the
context of the problem of interest. For example, if averaging is carried out at the exit of a given
component, matching the entropy flux (in addition to the stagnation enthalpy and mass fluxes) debits
the upstream component with the loss produced only up to the averaging station. Use of a mixed
out average, in contrast, includes additional loss due to mixing that occurs downstream. Which
is preferred, or even whether some other definition should be used, is the basic question faced in
choosing an averaging scheme.

The nature of the application must be considered in addressing this question, as described by Smith
(2001), who gives several examples that point to different choices for averaging. With reference to
the propelling nozzle performance, for instance, it is suggested that thrust is the relevant metric and
an appropriate average stagnation pressure might be based on matching the thrust of the actual flow
to that of a uniform stream with the same mass flow.

Smith (2001) also mentions the different considerations that arise in defining average inlet prop-
erties for components when the stagnation pressure is uniform but the stagnation temperatures are
non-uniform, a circumstance representative of turbine entry conditions in a gas turbine engine. The
averaging constraints encountered in such situations, can be illustrated by examination of the ques-
tion of defining a suitable average for non-uniform one-dimensional flow through a choked nozzle.
We take the non-uniformity to be a step-type (two-stream) profile with uniform stagnation pressure
and non-uniform stagnation temperature. The attribute we desire for the average is that the mass flow
is well represented.

For a choked nozzle of given area we compare the mass flows based on two sets of average pro-
perties with the actual mass flow. The mass flows based on average conditions are: (i) ṁM, based on
the mass average stagnation temperature and mass average stagnation pressure, and (ii) ṁS, based
on the mass average stagnation temperature and entropy flux average stagnation pressure. If we
require the behaviors of the average and the actual flow to be similar, the mass flows through the
nozzle obey the choked flow relation (see Section 2.5),

ṁS

√
T

M
t

pS
t

= ṁM

√
T

M
t

pM
t

=
(

ṁref
√

Ttref

ptref

)
= constant. (5.6.30)

In (5.6.30) the subscript “ref” denotes reference values of the quantities in a uniform one-dimensional
choked flow.

Two questions can be asked about the mass flows based on average properties. First, for all average
flows with the same mass average stagnation temperature as the actual flow (in other words for a
mass average stagnation temperature equal to Ttref ), what is the ratio of actual mass flow to mass
flow based on the average stagnation pressures? Second, what is the mass flow ratio for arbitrary
variations in stagnation temperature of the two streams, in other words for arbitrary variation in the
ratio of the mass average stagnation temperature to Ttref ?

Figure 5.22 provides answers to these questions. The figure shows the ratios of actual nozzle mass
flow, ṁactual, to calculated mass flow based on average properties. The latter is derived using (5.6.30),
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Figure 5.22: Ratio of actual mass flow in a choked nozzle to mass flows ṁS and ṁM defined using entropy flux
average and mass average stagnation pressures respectively. Two-stream step-type profile with equal stream
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an average stagnation pressure, and the mass average stagnation temperature. The mass flow ratios
are shown as a function of the ratio of the stagnation temperature in the higher temperature stream,
Tt1 , to the reference (uniform flow) stagnation temperature. The different curves correspond to dif-
ferent ratios of stagnation temperature in the lower stagnation temperature stream to the reference
temperature. The locus of constant mass average stagnation temperature, T M

t /Ttref = 1 (mass aver-
age stagnation temperature equal to stagnation temperature in the reference uniform flow), is also
indicated.

For any Tt1 and Tt2 different than Ttref the nozzle mass flow based on either average stagnation
pressure is different from the actual flow. Use of the mass average stagnation pressure, however,
provides a much better estimate for nozzle flow than use of the entropy flux average, with almost
an order of magnitude difference for many conditions. Equation (5.6.29) shows the entropy flux
average stagnation pressure is considerably higher than the actual pressure for large stream-to-
stream stagnation temperature differences, leading to the poor estimate of mass flow in these condi-
tions.

Figure 5.22 also illustrates a second aspect of flow averaging, namely that the attempt to represent
a non-uniform flow by an “equivalent” average flow means that some properties will have different
values than those in the actual flow. For the choked nozzle if we wish the mass flow to be well
represented (defined here as having the averaged flow obey the one-dimensional choked nozzle
relationship), the entropy flux must be different from the value in the actual flow. Another example
is provided in comparing two channel flows, one uniform and one non-uniform, which have the
same mass flux, stagnation enthalpy flux, entropy flux, and linear momentum; the calculated static
pressure is different in these two flows. Discussion of this point, as well as of some other aspects of
averaging procedures, is given by Pianko and Wazelt (1983).
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Figure 5.23: Stations used in analysis of flow losses.

The third, and final, aspect is that although the focus of Section 5.6 has been on stagnation pressure
the ideas pertain more generally to the issue of averaging the equations of motion to give a reduced
dimensionality (e.g. axisymmetric or one-dimensional) set of equations. Averaging the equations of
motion in a formal manner leads to the appearance of Reynolds stress-like terms which are spatial
averages of the products of various non-uniformities.15 Discussions of the forms of these terms, their
magnitudes, and some methodologies for including them, are given for non-uniform flow in ducts
by Crocco (1958), Livesey and Hugh (1966), Livesey (1972), and Pianko and Wazelt (1983) and for
turbomachinery flows by Smith (1966a), Köppel et al. (1999), and Adamczyk (2000).

5.7 Streamwise evolution of losses in fluid devices

We now return to the relation between loss produced inside a device and loss which occurs down-
stream. The topic is discussed in the context of incompressible constant density flow through the
cascade of thin flat plate airfoils shown in Figure 5.23. We show how the different measures of
average stagnation pressure at the exit of the cascade are linked to integral boundary layer properties
and how they relate to the far downstream mixed out state (Mayle, 1973).

5.7.1 Stagnation pressure averages and integral boundary layer parameters

The mass average stagnation pressure at station 2, the trailing edge of the cascade, is given by

pt0 − pM
t2 =

W/2∫
−W/2

ρu0 pt0 dy −
[

W/2∫
−W/2

ρux pt dy

]
station 2

ρu0W
. (5.7.1)

15 Such terms always occur in a non-uniform flow because of the quadratic nature of the momentum flux. A simple example
is the mixing out of a non-uniform constant density flow in a straight duct discussed in Section 5.6.1. As given in (5.6.9),
the difference between the static pressure at the inlet and exit of the duct is the average of a term which is quadratic in the
velocity non-uniformity.



259 5.7 Streamwise evolution of losses in fluid devices

In (5.7.1) the uniform far upstream velocity is denoted by u0. Viscous effects are confined to thin
boundary layers at the exit of the cascade, and the static pressure, p2, is approximated as independent
of y. The stagnation pressure in the free-stream region between the boundary layers, with cascade
exit velocity, uE2 , is equal to the upstream stagnation pressure:

p0 + 1

2
ρu2

0 = pE2 + 1

2
ρu2

E2
. (5.7.2)

Carrying out the integration in (5.7.1) and using mass conservation, the change in mass average
stagnation pressure between upstream and the cascade exit can be written in terms of the cascade
exit velocity distribution as

pt0 − pM
t2 = ρ

u3
E2

2W u0




W/2∫
−W/2

ux

uE2

(
1 − u2

x

u2
E2

)
dy




station 2

. (5.7.3)

The integral on the right-hand side of (5.7.3) is the kinetic energy thickness, θ∗ (Sections 4.3 and
5.4), referenced to the local free-stream conditions.

To non-dimensionalize the stagnation pressure change by the far upstream velocity, which is a
more convenient reference, we need to relate u0 to uE2 . From mass conservation for a passage,

u0

uE2

= 1 − 1

W

W/2∫
−W/2

(
1 − ux

uE2

)
dy = 1 − δ∗2

W
, (5.7.4)

where δ∗2 is the displacement thickness (Sections 2.9 and 4.3). The mass average stagnation pressure
loss coefficient can now be expressed in terms of the kinetic energy thickness and the displacement
thickness as

pt0 − pM
t2

1
2ρu2

0

= θ∗
2

W

1(
1 − δ∗2

W

)3 . (5.7.5)

For viscous regions which are thin compared to the spacing between the blades (δ
∗
/W � 1), (5.7.5)

can be approximated as

pt0 − pM
t2

1
2ρu2

0

∼= θ∗
2

W
. (5.7.6)

If the flow at the cascade exit were taken to a fully mixed state at constant area, the mixed out
average stagnation pressure, pX

t = pte , would be obtained. This quantity can be found by applying
the integral form of the mass and momentum conservation equations to a rectangular control volume
with the upstream side at station 2, the downstream side at station e, and the top and bottom at
y = ±W/2. Doing this and forming the downstream stagnation pressure yields

pt0 − pX
t2

1
2ρu2

0

= pt0 − pte
1
2ρu2

0

=

(
δ∗2
W

)2

+ 2θ2

W(
1 − δ∗2

W

)2 . (5.7.7)
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In (5.7.7) θ2 is the momentum thickness at cascade exit. For δ∗/W � 1, an approximate form of
(5.7.7) is

pt0 − pte
1
2ρu2

0

∼= 2θ2

W
. (5.7.8)

The magnitude and direction of the far upstream and downstream velocities are equal so (pt0 − pte ) =
(p0 − pe). Equation (5.7.8) therefore provides an expression for the drag of the cascade.

The area average stagnation pressure is given by

pt0 − pA
t2

1
2ρu2

0

=
δ∗2
W

+ θ2

W(
1 − δ∗2

W

)2 . (5.7.9)

For δ∗2/W � 1,

pt0 − pA
t2

1
2ρu2

0

∼= δ∗2
W

+ θ2

W
. (5.7.10)

The area average and mixed out average stagnation pressure loss coefficients can be compared
using the boundary layer shape parameter, H = δ∗/θ . The range of H is from 1.0 for a wake with
a small fractional velocity defect to roughly 1.4 for a constant pressure turbulent boundary layer,
to 2.5–3 for turbulent boundary layers near separation. The area average stagnation pressure loss
coefficient for the cascade is, using (5.7.8) and (5.7.10),

pt0 − pA
t2

1
2ρu2

0

=
(

1 + H2

2

) (
pt0 − pte

1
2ρu2

0

)
. (5.7.11)

Equation (5.7.11) shows that the area average stagnation pressure at the cascade exit is lower than
the mixed out average.

To give some reference for the magnitudes of the quantities defined above, the area average, mass
average, and mixed out average stagnation pressure loss coefficients at the trailing edge for a single
boundary layer with δ = 10% of the passage and profile (ux2/uE2 ) = (y/δ)1/7 (H = 1.29) are
0.023, 0.018, and 0.020 respectively. For a triangular exit velocity profile (H = 3), representative of
the exit of a highly loaded compressor blade row, and the same δ, the three values are 0.074, 0.029,
and 0.040.

The ratio of stagnation pressure loss between upstream (station 0) and the cascade exit (station 2)
to that between upstream and the far downstream (station e) can also be put in terms of boundary
layer parameters as

loss in cascade

overall loss
= pt0 − pM

t2

pt0 − pte

=

(
θ∗

2

W

)
(
δ∗2
W

)(
2

H2
+ δ∗2

W

)(
1 − δ∗2

W

)

∼= H2θ
∗
2

2δ∗2
= θ∗

2

2θ2
. (5.7.12)



261 5.7 Streamwise evolution of losses in fluid devices

Figure 5.24: System and control volume for analysis of boundary layer and mixing loss for flow through an
array of struts.

5.7.2 Comparison of losses within a device to losses from downstream mixing

As summarized by (5.7.12), the extent to which the loss can be regarded as occurring within the device
depends on the form of the exit velocity profile. The examples above had most of the loss occurring
within the device, but this is not always the case. More specifically the applications described so far
have been mainly boundary layers on thin flat plates. Mixing situations also include wakes from bluff
bodies and bodies with trailing edges thick compared to the boundary layer. In such cases losses
generated from downstream mixing are important and even dominant. A case in point is the loss at
the sudden expansion, discussed in Section 2.8, where the contribution of the losses in the boundary
layers in the smaller diameter pipe could be neglected. When this approximation is appropriate, the
mass flux of entropy (relative to an upstream station) at the beginning of the large diameter pipe is
zero, and it is only downstream mixing that is responsible for the entropy generation.

The split between losses created within a component and losses due to mixing downstream of
the component is illustrated by considering the flow past a periodic array of symmetric struts of
non-zero thickness.16 The control volume used to analyze the mixing process is given in Figure 5.24.
The struts have a blunt trailing edge from which the flow separates. The static pressure is taken as
uniform across the channel at the trailing edge, station 2.

Figure 5.25 shows the ratio of the loss occurring between station 0 and station 2 (from far upstream
to trailing edge) to the overall loss, from station 0 to far downstream (station e), for three arrays of
struts having thicknesses 0, 5, and 10% of chord. The chord/spacing ratio for the array is unity. The
boundary layer loss was computed with an interactive boundary layer analysis (Drela and Giles,
1987) assuming fully turbulent flow. For the zero thickness strut, roughly 90% of the loss is incurred
by the trailing edge location. For the 10% thick strut, the ratio drops to approximately 45% even
though the boundary layer loss slightly increases.

16 The periodic configuration is equivalent to a single strut in a constant area straight channel with width equal to the strut
spacing.



262 Loss sources and loss accounting

0 5

t /L (%)

L
os

s 
to

 tr
ai

lin
g 

ed
ge

 (
0 

to
 2

)
O

ve
ra

ll 
lo

ss
 (

0 
to

 e
)

(%
)

10
0

10

20

30

40

50

60

70

80

90

100

t/L = 0

t/L = 0.05

t/L = 0.10

Figure 5.25: Ratio of losses for a cascade of symmetric struts, L/W = 1.0 (station numbers refer to those in
Figure 5.24).

5.8 Effect of base pressure on mixing losses

The flow behind a bluff body or airfoil with a finite thickness trailing edge contains another feature
affecting loss, referred to as the base pressure defect. Experiments show that the static pressure at the
rear of such bodies is lower than the free-stream value. An example is given in Figure 5.26, which
shows the pressure near the rear of a flat plate with a blunt trailing edge (Paterson and Weingold,
1985). The phenomena that determine base pressure are outside the scope of this discussion except to
mention that unsteady flow associated with vortex shedding at the trailing edge is an important part
of the process for subsonic flow.17 For present purposes, it suffices to note that rough magnitudes of
the base pressure coefficient, defined here as C pB = (pB − pE )/ 1

2ρu2
E , are from −0.1 to −0.2 for

trailing edges which are thick compared to the surface boundary layers (Denton, 1993).18

We can carry out an approximate analysis to estimate the effect of base pressure on loss generation
for the array of struts examined earlier. With reference again to Figure 5.24, the assumption about
uniformity of pressure at station 2 is now dropped and a pressure pB, different than the free-stream
pressure, is taken to exist on the trailing edge of the body. This cannot be strictly correct because

17 Suppressing vortex shedding through use of a trailing edge splitter plate reduces the magnitude of the base pressure
coefficient by nearly a factor of 2 (Roshko, 1954). Conversely if vortex shedding is enhanced, the magnitude of the base
pressure coefficient increases (by approximately 30% in the experiments of Kurosaka et al. (1987)).

18 Base pressure coefficients quoted for bluff bodies in an external flow, such as cylinders or wedges of large included
angle, are defined as (pB − p0)/ 1

2ρu2
0. The values are roughly 4–6 times the values shown in Figure 5.26. Aside from the

difference in reference pressure, a large part of this disparity lies in the dynamic pressure used in defining the coefficient.
For bluff bodies, the far upstream dynamic pressure is used, while for the trailing edge the local free-stream dynamic
pressure is employed, and the free-stream dynamic pressure at separation for a bluff body is from 2 to 3 times the far
upstream value. This does not completely resolve the difference, but it does give substantial reconciliation between the
two values (Paterson and Weingold, 1982).
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Figure 5.26: Static pressure coefficient for blunt trailing edge, δ∗/t = 0.18, uEt/ν = 56 × 103 (Paterson and
Weingold, 1985).

the static pressure is not discontinuous in a subsonic flow, but the approach allows a useful param-
eterization of losses due to base pressure (Denton, 1993). The continuity and momentum equations
applied to the control volume in Figure 5.24 are:

ṁ = ρuE2 (W − t − δ∗2 ) = ρuxe W, (5.8.1)

(W − t) p2 + tpB + ṁuE2 − ρu2
E2
θ2 = W p2 + ṁux2 . (5.8.2)

In (5.8.1) the notation uE2 denotes the free-stream velocity at station 2. The resulting expression for
the stagnation pressure decrease between far upstream and far downstream is

pt0 − pte
1
2ρu2

E2

= − C pB

(
t

W

)
+ 2θ2

W
+
(
δ∗2 + t

W

)2

. (5.8.3)

Equation (5.8.3) reduces to the expressions given in Section 5.7 (see (5.7.8)) when both CpB and t/W
are 0. If δ∗2/W and t/W � 1, (5.8.3) becomes

pt0 − pte
1
2ρu2

E2

= − C pB

(
t

W

)
+ 2θ2

W
. (5.8.4)

To illustrate the effect of base pressure on loss level, as well as to provide comparison with more
detailed methods for the assessment of this point, Figure 5.27 presents the local loss coefficient, based
on the mass average stagnation pressure, (pt0 − pM

t (x))/( 1
2ρu2

0), and the mixed out loss coefficient
(from upstream to far downstream) for a 10% thickness periodic strut array, with a chord/spacing
ratio of unity. The results are from an interactive boundary layer computation using a semi-empirical
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Figure 5.27: Loss generated within and downstream of a cascade of symmetric airfoils for different back pressure
coefficients, t/L = 0.10, L/W = 1.0.

wake closure model for the base region (Drela, 1989). Values of the mixed out loss coefficient from
the control volume analysis (5.8.3) are indicated for different values of the base pressure coefficient,
CpB. The mixing losses given by the computations correspond to a C pB of roughly −0.06; the wake
closure model assumes boundary layers are thick relative to trailing edges and thus does not fully
capture blunt trailing edge behavior.

Figure 5.28 shows results from a compressible control volume analysis for the entropy rise coeffi-
cient of a cascade of finite thickness flat plates as a function of Mach number. The conditions of the
calculations are that there is no boundary layer and the trailing edge thickness is 10% of the spacing.
The different curves correspond to the specified values of the base pressure coefficient. There is a
substantial increase with Mach number, in accord with the experimental finding that trailing edge
losses increase rapidly as the downstream Mach number approaches unity (Denton, 1993).

Measurements of the evolution of loss in the wake of an airfoil are given in Figure 5.29. The airfoil
had a trailing edge thickness 2% of chord and was subjected to a representative turbine blade pressure
distribution through contouring the bounding passage walls. Mach numbers were much less than
unity and the boundary layers at the trailing edge were turbulent. Two types of loss coefficient are
shown which are slightly different in definition, but analogous, to those described above. The first,
shown by the symbols, is an overall loss coefficient based on a constant area mixing process using
the measured velocity and stagnation pressure profiles as the upstream conditions for the control
volume. It is defined as

overall loss coefficient =

∫
δ

(pe − p) dy

1
2ρu2

Ee

(
uEe

uE

)
t

+

∫
δ

ux

uE

(
1 − ux

uE

)
dy

1
2

(
uEe

uE

)2

t

. (5.8.5)
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Denton, 1996).

In (5.8.5) the integration is carried out across the boundary layer or wake, depending on the station
examined. The reference velocity used is the free-stream velocity at the exit station of the channel,
UEe . Overall loss coefficients associated with the suction surface boundary layer are plotted from
the 0.3 chord station and data including both surfaces are given from 0.7 chord.

If static pressure variations are negligible over the integration domain, and the free-stream velocity
does not change between the local station and the exit station, (5.8.5) reduces to twice the momentum
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thickness divided by the trailing edge thickness, 2θ/t. Multiplying this limiting value by the ratio of
thickness to passage spacing, t/W, yields the mixed out loss coefficient defined previously in (5.7.8).

The second loss coefficient is based on the entropy created up to the station indicated, which, for
M2 � 1, is equal to the mass average stagnation pressure defect at that location. The definition is

local loss coefficient =

∫
δ

ux (pte − pt )dy

1
2ρ(uEe )

3t
. (5.8.6)

The behavior of the local loss coefficient is given by the dashed line in Figure 5.29. For the limiting
conditions of uniform static pressure at the station of integration and no change in external velocity
to the exit station, (5.8.6) reduces to the kinetic energy thickness divided by the thickness, θ∗/t. For
a passage this corresponds to the mass average loss coefficient defined in (5.7.6).

The non-dimensionalizations in (5.8.5) and (5.8.6) are in terms of trailing edge thickness because
interest is in loss per trailing edge. As mentioned, to connect with previous results in terms of passage
width the loss coefficients in Figure 5.29 (and Figure 5.30) should be multiplied by the trailing edge
thickness ratio (t/W); for comparison with the 10% thick symmetric airfoil results in Figure 5.27
this means division of loss numbers by 5.

An evident feature in Figure 5.29 is the rapid increase in loss within 0.05 chord length (2.5 trailing
edge thicknesses) downstream of the trailing edge. A substantial portion of the total loss is seen
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to be associated with processes that take place downstream of the trailing edge.19 In this context
a distinction can be made between all the processes which occur downstream of the trailing edge
and those which may be more properly defined as wake loss. The argument is that “if the boundary
layers mix out at the local flow area, the associated loss is independent of the nature of the wake
flowfield and should not be included in the definition of wake loss.” (Roberts and Denton, 1996).
Wake loss is thus defined as the difference in overall loss coefficients evaluated at the downstream
and upstream stations. On this basis there is a distinction between the wake loss and the difference
between overall and entropy flux loss coefficients. The two quantities were measured to be 33% and
41% of the downstream overall loss respectively.

The measurements can also be related to the approximate expression for overall loss given by
(5.8.3). Using the measured momentum thickness, displacement thickness, and base pressure coef-
ficients, the calculated overall loss is approximately 10% below the actual value. The three terms in
(5.8.3), 2θ2/t,CP B, and (δ∗2 + t)2/(tW) (where the evaluation is done at the 0.96 chord station), had
values of 66%, 18%, and 15% of the total respectively.

Figure 5.30 shows the overall loss coefficient (5.8.5) at 0.96 chord and at the farthest downstream
station (1.4 chord), the fractional wake loss, and the base pressure coefficient, all as functions of
suction surface momentum thickness θ2/t. The increase in magnitude of the base pressure coefficient
as the momentum thickness decreases is associated with an observed increase in vortex shedding
intensity (i.e. an increase in rms velocity fluctuation) of roughly 50%.

Figures 5.27, 5.29, and 5.30 provide quantitative information about the ratio of loss produced in
a device compared to that produced far downstream. In accord with trends mentioned earlier, an
increase in the ratio of trailing edge thickness to boundary layer thickness is associated with an
increase in the fraction of overall loss that occurs downstream of the device.

5.9 Effect of pressure level on average properties and mixing losses

In many configurations static pressure increases or decreases occur downstream of fluid components.
Such changes in pressure level impact mixing loss. To give insight into this behavior three examples
are presented for a constant density incompressible flow: an introductory discussion of the effect of
pressure level on two-stream mixing losses; an extension of the analysis of Section 5.6 for linear
velocity variation to include the effect of pressure level; and a description of pressure level effects
on wake mixing loss.

5.9.1 Two-stream mixing

Consider two streams of constant density fluid in adjacent ducts, as sketched in Figure 5.31. Stream 1
comes from a reservoir at stagnation pressure pt1 and stream 2 from a reservoir at pt2 . The combined
mass flow of the two streams is ṁ, with fraction f in stream 1, so ṁ1 = fṁ and ṁ2 = (1 − f )ṁ. These
mass flow fractions will be held fixed in the analysis to follow. In addition, because we are assessing

19 The slight fall in the measured overall loss gives an indication that there is some error in the measurements, but this is
small enough that it does not affect the conclusions.
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Figure 5.31: Two-stream constant pressure mixing.

the effect of pressure level, the mixing is taken to occur at constant pressure. The conclusions do not
depend on this assumption but it allows for a more straightforward interpretation (Taylor, 1971).

For the constant pressure control surface in Figure 5.31, the one-dimensional form of the momen-
tum equation is

fux1 + (1 − f ) ux2 = uxe . (5.9.1)

In (5.9.1) the subscripts 1 and 2 denote the two streams and the subscript “e” denotes the fully mixed
state at the exit of the control volume.

Suppose the static pressure of the reservoir into which the streams are discharged is altered by dp,
but f and the reservoir stagnation pressures are held constant. (To keep f constant, the ratio of exit
flow areas would need to be changed.) From the definition of stagnation pressure the change in pte

that results is

dpte= dp + ρuxe
duxe . (5.9.2)

From (5.9.1) the velocity changes associated with the static pressure change are related by

fdux1
+ (1 − f )dux2= duxe . (5.9.3)

The reservoir pressures pt1 and pt2 are fixed so that dux1 and dux2 are related only to the change in
pressure, dp, (dp = −ρuxj duxj for j = 1, 2), as is duxe through (5.9.3). Substitution in (5.9.2) yields
an expression for the dependence of the mixed out stagnation pressure on the static pressure level:(
∂pte

∂p

)
f

= [( f − 1) f ]

[
ux1

ux2

+ ux2

ux1

− 2

]
. (5.9.4)

The second square bracket in (5.9.4) can be rewritten as (
√

ux1/ux2 −√ux2/ux1 )2, which is positive
whatever the values of ux1/ux2 . Since f < 1, the right-hand side of (5.9.4) is negative and(
∂pte

∂p

)
f

< 0. (5.9.5)

The interpretation of (5.9.5) is that increasing the level of static pressure at which mixing occurs
decreases the mixed out stagnation pressure, while decreasing the static pressure increases the mixed
out stagnation pressure. This is due to the effect of pressure level on the velocity differences between
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the streams; as discussed previously, the mixing losses scale with the square of this difference. For
a small change in static pressure, the ratio of the velocity change in stream 2 to that in stream 1 is

dux2

dux1

= ux1

ux2

. (5.9.6)

If ux1 is larger than ux2 , stream 2 experiences a larger velocity change than stream 1. If the static
pressure drops, the velocities ux1 and ux2 will draw closer together; if it rises, they become farther
apart.

These conclusions can be extended to finite changes in the static pressure level. The decrease in
mass average total pressure during mixing is

pM
t − pte = f pt1 + (1 − f ) pt2 − pte . (5.9.7)

Because mixing occurs at constant pressure, (5.9.7) can be written as

pM
t − pte = ρ

2

[
f u2

x1
+ (1 − f ) u2

x2
− u2

xe

]
. (5.9.8)

Eliminating the downstream mixed out velocity, uxe , by using (5.9.1) yields

pM
t − pte = ρ

2
f (1 − f )(ux1 − ux2 )2. (5.9.9)

For a fixed value of f, the mixing loss is proportional to the square of the velocity difference between
the two streams which, in turn, is set by the level of static pressure at which the mixing takes place.
Defining �pt (= pt2 − pt1 ) as the difference in stagnation pressure between the two streams, the
non-dimensional velocity difference prior to mixing is

ux1 − ux2√
2�pt

ρ

=
√

pt1 − p

�pt
−
√

pt1 − p

�pt
− 1. (5.9.10)

Figure 5.32 shows the effects of the pressure level on velocity difference and stagnation pressure
decrease in constant pressure two-stream mixing. The abscissa is the static pressure level, referenced
to the stagnation pressure of the high velocity stream, non-dimensionalized by the stagnation pres-
sure difference between the two streams. The ordinates are the non-dimensional velocity difference
between the streams at the start of mixing (the solid line corresponding to the scale on the left) and
the stagnation pressure decrease due to mixing (the dashed lines corresponding to the scale on the
right). The non-dimensional velocity difference is independent of f but (pM

t − pte )/�pt depends on
f as well as the static pressure level. The highest static pressure on the abscissa corresponds to a value
of the pressure coefficient (pt1 − p)/�pt of 1.0; at this value, the low stagnation pressure stream has
zero velocity. As (pt1 − p)/�pt is increased, the static pressure drops, the velocity difference at the
start of mixing decreases, and the overall mixing losses reduce.

5.9.2 Mixing of a linear shear flow in a diffuser or nozzle

Another example of the effects of pressure level on both mixing loss and average values of stagnation
pressure is provided by the constant density linear velocity variation of Section 5.6 taken through
a diffuser or a nozzle with no mixing and then mixed or averaged as shown in Figure 5.33. Three
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Figure 5.33: Diffuser (or nozzle) with non-uniform inlet flow.

stations are shown in the figure: (i), at which the profile is defined; (2), after the diffuser (or nozzle);
and (e), after constant area mixing from (2). The height ratio or area ratio for a two-dimensional
flow, from station i to 2, W2/Wi, is denoted by AR and there is no mixing between i and 2.

The velocity field at 2 can be found from the equation describing the vorticity in the region between
i and 2:

Dω

Dt
= 0. (5.9.11)
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With a straight section at i or 2, so the streamlines are parallel and uy = 0, the vorticity is related to
the x-component of velocity only:

ω = −dux

dy
. (5.9.12)

From (5.9.11), (5.9.12) and the definition of the velocity profile given in (5.6.1),

ω2 = ωi = −� u

Wi
. (5.9.13)

The vorticity is uniform across the duct at both stations.
Substituting (5.9.12) into (5.9.13), we can integrate to find ux2 :

ux2 =
∫
�

u

Wi
dy2 + C . (5.9.14)

In (5.9.14) C is a constant of integration, obtained from continuity, giving the result

ux2 = u

(
1

AR
+�AR

y2

W2

)
. (5.9.15)

The velocity gradient at station 2 is the same as that at station i, but the duct width is different (WiAR
versus Wi). Velocity differences at station 2 are greater than at station i for a diffuser (AR > 1) and
less than station i for a nozzle (AR < 1).

The results for diffusers are confined to the situation in which there is forward flow at all locations
so that the connection between the vorticity at stations i and 2 can be made. If reverse flow were to
occur, we would have to know the vorticity of particles coming from downstream. Explicitly, the
constraint is that ux2 ≥ 0 at the bottom wall, y2 = −AR(W/2); particles with the lowest stagnation
pressure are initially at yi = −W/2 and these move along the bottom wall. From the form of ux2 given
in (5.9.15), this implies that the area ratio for which the description is applicable is 0 ≤ AR ≤ √

2/�.
We now compute the three average stagnation pressures defined in Section 5.6 beginning with the

area average. Integration of (5.6.2) over the area at station 2 yields

pA
t2 − p2

1
2ρu2 = 1

AR2
+ �2(AR)2

12
. (5.9.16)

This stagnation pressure is referred to p2, rather than pi. To make a comparison with the reference
quantities at station i, the difference p2 − pi must be found. The static pressure difference is the same
along any streamline, and those at the top or bottom of the channel, where the properties are known,
can be used to find the static pressure difference p2 − pi. From Bernoulli’s equation and continuity,

p2 − pi
1
2ρu2 =

(
1 − 1

AR2

)
−
[
�2

4
(AR2 − 1)

]
. (5.9.17)

The term in the first parentheses, (1 − 1/AR2), is the result obtained for a uniform flow; the rest
of the expression represents the decrease in static pressure rise associated with the non-uniformity.
From (5.9.16) and (5.9.17) pA

t2 − pi is

pA
t2 − pi

1
2ρu2 = 1 + �2

12
[3 − 2(AR)2]. (5.9.18)
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Figure 5.34: Effect of pressure level on velocity non-uniformity, uxi = u[1 + 2
3 (yi/W )] (profiles drawn to scale):

(a) diffuser: AR = 3/2, ux2 = (2ū/3)(1 + yz/W ); (b) nozzle: AR = 2/3, ux2 = (3ū/2)[1 + 1
2 (y1/W )].

Comparing the right-hand side of (5.9.18) with (5.6.4) (which is for AR = 1) shows that the area
average stagnation pressure is lowered in a diffusing flow (AR> 1) and raised in a nozzle (AR< 1).

The difference in area average stagnation pressure is due to the inviscid distortion of the velocity
profile as it is subjected to a pressure increase or decrease before mixing. Figure 5.34 gives velocity
profiles for two cases: (a) a diffuser of area ratio 3/2 and (b) a nozzle of area ratio 2/3, both of which
have initially linear profiles

uxi = u

(
1 + 2

3

y

W

)
. (5.9.19)

The velocity non-uniformity is increased in the diffuser and decreased in the nozzle.
To see the results in another way, Figure 5.35 presents normalized duct velocity profiles. The

abscissa is velocity divided by mean velocity at that station, and the ordinate is percentage of the
local channel height. All the profiles intersect at 50% height with ux/ū = 1.0. Increasing pressure
level shows up as an increase in the normalized velocity distortion. The creation of the increased
velocity non-uniformity can be understood from the arguments in Section 4.7 relating to growth of
a low stagnation pressure region in an adverse pressure gradient.

Mass average and mixed out average stagnation pressures referenced to pi are also of interest.
Using (5.6.5), the mass average stagnation pressure at station 2 is

pM
t2 − pi

1
2ρu2 = 1 + �2

4
. (5.9.20)
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This is the same result as for the constant area, constant pressure situation; the mass average stagnation
pressure is not changed by pressure level. This conclusion applies to any inviscid adiabatic steady flow.
For any streamtube the mass flow and stagnation pressure do not change between stations i and 2.

The mixed out average stagnation pressure obtained by mixing the flow to a uniform condition is
given by

pX
t2 − pi

1
2ρu2 = 1 + �2

12
(3 − AR2). (5.9.21)

This result lies between the mass average and area average values.
The three averages are shown in Figure 5.36 for the initial velocity distribution of Figure 5.34. The

abscissa is (AR − 1) and the ordinate is the non-dimensional average stagnation pressure. The curves
are drawn from (AR − 1) → −1, which represents a nozzle with a very large contraction ratio, up to
the forward flow limit for the parameters used. The three averages converge as the contraction ratio
increases (and the velocity difference in the duct decreases) and diverge as the pressure rise increases.

5.9.3 Wake mixing

A third example of the effect of pressure level on mixing losses is the loss due to wake mixing
(Denton, 1993). Figures 5.37 and 5.38 show, respectively, a schematic of the geometry and the
results for a square wake with an initial wake velocity defect�ui, which is taken through a change in
free-stream velocity with no mixing and then allowed to mix. Application of Bernoulli’s equation to
the free-stream and the wake provides the change in wake velocity for a given free-stream velocity
ratio, u2 /ui. Acceleration before mixing reduces the stagnation pressure loss, because the free-stream
and wake velocities are brought closer together, whereas deceleration increases mixing losses.
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5.10 Losses in turbomachinery cascades

The ideas developed thus far can be extended to more general situations. An example is mixing
downstream of a two-dimensional cascade of turbomachine blades, as shown in Figure 5.39. At exit,
station 2, the velocity and static pressure distributions are specified and we wish to find the quantities
at the mixed out conditions denoted by station e.

The flow is taken to be constant density and steady. As in the initial analysis of wakes and
boundary layers, at any x-location downstream of the cascade the static pressure is assumed uniform
in y, ∂p/∂y = 0. For the thin wakes characteristic of cascades operating near design, a reasonable
approximation is also to take the flow angle at the trailing edge, α2, as constant across the passage.
Denoting the magnitude of the velocity at the exit as u2, conservation of mass and the x- and
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Figure 5.39: Mixing out of wakes downstream of a cascade of turbomachine blades.

y-momentum equations provide the relations needed to obtain ue, αe, and pe − p2:

continuity:

W/2∫
−W/2

u2cosα2dy = W uecosαe; (5.10.1)

y-momentum:

W/2∫
−W/2

u2
2cosα2sinα2dy = W u2

esinαecosαe; (5.10.2)

x-momentum: W (pe − p2) = ρ

W/2∫
−W/2

u2
2cos2α2dy − ρW u2

ecos2αe. (5.10.3)
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In writing (5.10.2) and (5.10.3), periodicity of the cascade has been invoked so that there are no net
forces on sides a and b of the control surface shown in Figure 5.39.

Carrying out the integrations and making use of the integral boundary layer parameters yields:(
1 − δ∗2

W

)
u2cosα2 = uecosαe, (5.10.4)

(pe − p2) = −ρu2
2

[
θ2

W
−
(

1 − δ∗2
W

)]
cos2 α2 − ρu2

ecos2 αe, (5.10.5)

u2
2

[(
1 − δ∗2

W

)
− θ2

W

]
cosα2sinα2 = u2

ecosαesinαe. (5.10.6)

Solution of (5.10.4)–(5.10.6) provides the mixed-out conditions ue, pe, and αe. The stagnation
pressure loss from far upstream to far downstream can then be obtained by relating the conditions at
the cascade exit to those far upstream:

pt0 − pte
1
2ρu2

0x

=

(
δ∗2
W

)2

+ 2θ2

W
− 1(

1 − δ∗2
W

)2 + 1(
1 − δ∗2

W

)2

cos2 α2

−

(
1 − δ∗2

W
− θ2

W

)2

(
1 − δ∗2

W

)4 tan2 α2. (5.10.7)

For δ∗2/W � 1, (5.10.7) can be approximated as

pt0 − pte
1
2ρu2

0x

=
(

2θ2

W
− 1

)
+ 1

cos2 α2
−
(

1 − θ2

W

)2

tan2 α2. (5.10.8)

Forα2 = 0 these results reduce to those given for the flat plate cascade, (5.7.7) and (5.7.8) respectively.
Figure 5.40 shows the calculated loss after mixing for an idealized wake of width δ with represen-

tative compressor exit conditions. The dashed line indicates a typical magnitude of profile loss with
fully attached boundary layers. The wake needs to extend over roughly an eighth of the passage width
before the mixing loss becomes larger than the boundary layer losses in the cascade, but the mixing
loss rises rapidly as the wake thickness becomes larger than this value. The ratio of the tangent of
the far downstream angle to that of the exit angle is

tan αe

tan α2
=

1 − δ∗2
W

− θ2

W(
1 − δ∗2

W

)2 . (5.10.9)

For well-designed cascades at or near design operation, the quantities δ∗2/W and θ2/W will be much
less than unity and (5.10.9) can be expanded to yield the approximate form

αe − α2 =
[
δ∗2
W

− θ2

W

]
sinα2cos α2 (5.10.10)
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or

�α =
[
δ∗2

2W

(
H2 − 1

H2

)]
sin (2α2) . (5.10.11)

Equation (5.10.11) shows that�α > 0, and that the flow is generally turned towards tangential due
to wake mixing. Using the conventions customarily adopted for blade rows, compressor cascades
thus lose turning because the far downstream flow angles will be larger than the exit flow angles,
whereas turbines gain turning. This effect is typically less than a degree unless the wake thickness
is larger than 10% of the passage width.

5.11 Summary concerning loss generation and characterization

There have been a number of concepts introduced in Chapter 5 concerning loss generation and
characterization. These are summarized below:

(1) The appropriate metric for loss is the change in entropy due to irreversibility. This measures the
“lost work”, i.e. the loss of the opportunity to obtain work.
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(2) For steady flows with a uniform stagnation temperature the entropy rise, and thus the losses, can
be related to changes in the stagnation pressure. For a non-uniform stagnation temperature this
correspondence is not valid.

(3) A useful way in which to characterize losses associated with boundary layers is through the
rate of dissipation per unit area of surface. The dissipation scales with the cube of the local
free-stream velocity so local regions of high velocity contribute strongly to entropy production.

(4) The ratio of loss measured at a given location to the overall loss from far upstream to fully mixed
out conditions depends on the configuration. In general, bodies with a trailing edge geometric
thickness much larger than the trailing edge boundary layer thickness (and hence a wake thickness
much larger than the trailing edge boundary layer thickness) have a substantial fraction of the
entropy rise generated downstream of the body whereas bodies with trailing edges thin compared
to boundary layers have most of the losses generated upstream of the trailing edge.

(5) Principles that underpin the averaging of flow quantities in a non-uniform flow, or characterizing
a non-uniform flow by an equivalent (uniform) average flow, have been developed. No uniform
flow can simultaneously match all significant stream fluxes and properties of a non-uniform flow.
There is thus no unique average, in other words no representation of the latter by an equivalent
average, which is suitable in all situations. As such, the choice of which averaging procedure is
most appropriate depends on the application of interest. The concepts presented in this chapter
enable the user to make this choice in an informed manner.

(6) Different definitions for average stagnation pressure have been given that capture such features
as the irreversibility creation up to the plane at which averaging is carried out and the downstream
losses associated with the evolution to fully mixed conditions. The material presented also gives
a background from which to guide the decision on which of these, or other, averaging procedures
is to be used in a given situation.

(7) The magnitude of the overall loss for a given fluid dynamic device depends not only on the
process within the device, but also on the downstream flow process, and in particular, on the
level of pressure at which mixing occurs. An increase in static pressure level, such as would be
obtained in a diffuser, increases the velocity non-uniformity. Mixing losses scale quadratically
with the magnitude of the non-uniformity and are thus increased. Flow through a nozzle, which
has a decrease in static pressure, creates a more uniform velocity profile and a decrease in mixing
loss.

(8) Non-uniform velocity does not necessarily lead to loss. Velocity uniformity can be achieved
reversibly through pressure forces, as well as irreversibly through mixing.

(9) The concepts introduced, which have been for geometrically simple configurations, can be ex-
tended to assess losses in more complex configurations as well as to include other phenomena
such as swirl, non-two-dimensional behavior, and wake mixing in flow machinery that is pre-
dominantly radial rather than axial.



6 Unsteady flow

6.1 Introduction

Unsteady flow phenomena are important in fluid systems for several reasons. First is the capability for
changes in the stagnation pressure and temperature of a fluid particle; the primary work interaction in
a turbomachine is due to the presence of unsteady pressure fluctuations associated with the moving
blades. A second reason for interest is associated with wave-like or oscillatory behavior, which enables
a greatly increased influence of upstream interaction and component coupling through propagation
of disturbances. The amplitude of these oscillations, which is set by the unsteady response of the
fluid system to imposed disturbances, can be a limiting factor in defining operational regimes for
many devices. A final reason is the potential for fluid instability, or self-excited oscillatory motion,
either on a local (component) or global (fluid system) scale. Investigation of the conditions for which
instability can occur is inherently an unsteady flow problem.

Unsteady flows have features quite different than those encountered in steady fluid motions. To
address them Chapter 6 develops concepts and tools for unsteady flow problems.

6.2 The inherent unsteadiness of fluid machinery

To introduce the role unsteadiness plays in fluid machinery, consider flow through an adiabatic,
frictionless turbomachine, as shown in Figure 6.1 (Dean, 1959). At the inlet and outlet of the device,
and at the location where the work is transferred (by means of a shaft, say), conditions are such that
the flow can be regarded as steady. We also restrict discussion to situations in which the average state
of the fluid within the control volume is not changing with time. Under these conditions, the energy
equation for steady flow, (1.8.11), states that the relation between the inlet and outlet stagnation
enthalpies (ht) and the work done per unit mass is

hti − hte = work done by turbomachine
per unit mass

.

Suppose now that we analyze the internal workings of this device using the steady form of the
momentum equation. Along a representative streamline through the machine (shown dashed in the
figure) the pressure, velocity and density are related by

− 1

ρ
dp = udu. (2.5.7)
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Figure 6.1: Flow through a frictionless, adiabatic turbomachine.

For small changes in state

dh = Tds + 1

ρ
dp. (1.3.19)

Since the turbomachine is adiabatic and frictionless, the entropy change along a streamline is zero.
Combining (2.5.7) and (1.3.19) we obtain

dh = −udu. (6.2.1)

Equation (6.2.1) can be integrated to yield

h + 1
2 u2 = ht = constant along a streamline.

Hence, from inlet to exit hte = hti and the turbomachine does no work.
This conclusion, which is contrary to intuition and experience, motivates the question of where

the source of the apparent inconsistency lies. A step on the way to the conclusion was use of the
steady-flow form of the momentum equation through the machine. In fact, the flow inside the device
is unsteady, and we are not justified in neglecting the effects of this unsteadiness. We now thus
reexamine the problem including the unsteady terms. For inviscid flow with no body forces the
momentum equation is (3.3.3) with Fvisc = X = 0,

∂u
∂t

− u × ω + ∇
(

u2

2

)
= − 1

ρ
∇p

= −∇h + T ∇s. (6.2.2)

Taking the scalar product of u with (6.2.2) and making use of the fact that entropy is constant for a
fluid particle yields

∂

∂t

(
u2

2

)
+ u · ∇

(
u2

2

)
= −u · ∇h − T

∂s

∂t

= −u · ∇h − ∂h

∂t
+ 1

ρ

∂p

∂t
.

Combining terms into the stagnation enthalpy, ht, allows a compact statement concerning the rate of
change of stagnation enthalpy for a fluid particle:
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Dht

Dt
= 1

ρ

∂p

∂t
. (6.2.3)

Equation (6.2.3) is not restricted to situations with constant entropy throughout the flow. It refers
to the broader class of isentropic flows where the entropy of a given fluid particle is constant, but the
entropy can vary from fluid particle to particle. In these situations, (6.2.3) shows that the stagnation
enthalpy of a fluid particle can change only if the flow is unsteady.

An illustration of this point is furnished by the axial compressor rotor with radius r sketched
in Figure 6.2(a). The pressure field of the blades, which has pressure increasing from the suction
surface (S) to the pressure surface (P), moves with the blades. An observer sitting at the fixed point
(×) on the casing would measure a pressure variation with time as in Figure 6.2(b). Particles passing
through the rotor see positive ∂p/∂t and hence experience positive values of Dht/Dt. For a turbine
the variations in pressure are opposite and the change in stagnation enthalpy of a particle is negative.
Unsteady effects are therefore essential for the changes in stagnation enthalpy and pressure achieved
by fluid machinery.

For situations in which the density can be regarded as constant and the stagnation pressure given
by pt = p + 1

2ρu2, (6.2.3) reduces to

Dpt

Dt
= ∂p

∂t
(6.2.4)

for inviscid, adiabatic flow.

6.3 The reduced frequency

The non-dimensional parameter that characterizes the importance of unsteadiness in a given situation
is known as the reduced frequency. It was introduced in Section 1.17. To develop this parameter in a
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more specific context, consider a fluid device (an airfoil, a diffuser, a turbomachine blade passage,
etc.) which experiences a time varying flow of the form eiωt. The time scale associated with the
unsteadiness is 1/ω, with significant changes occurring in a time of the order of 1/ω.

There is another time scale in the problem, the time for fluid particle transport through the device.
If the length of the device is L and a characteristic throughflow velocity is U, this time is L/U. The
change in local flow quantities during the passage of the particle depends on the ratio of the two times,
or ωL/U, which is the reduced frequency, β. Small values of β imply that fluid particles experience
little change due to unsteadiness, while large values imply a substantial variation during the transit
time. The magnitude of the reduced frequency is therefore a measure of the relative importance of
unsteady effects:

β � 1 unsteady effects small – quasi-steady flow;
β � 1 unsteady effects dominate;
β ∼ 1 both unsteady and quasi-steady effects important.

Many fluid machinery situations are characterized by values of β of order unity.

6.3.1 An example of the role of reduced frequency: unsteady flow in a channel

The manner in which the reduced frequency can enter into the description of an unsteady flow
is illustrated by analysis of one-dimensional, inviscid, uniform density, incompressible flow in a
channel subjected to a time varying inlet stagnation pressure. This can be considered an elementary
model of a turbomachine rotor blade passage moving through a spatially non-uniform stagnation
pressure.

The configuration of interest is shown in Figure 6.3, where the channel is drawn as a diffuser.
Station i corresponds to the inlet and station e to the exit. The coordinate x measures distance along
the diffuser and L is the diffuser length. The inlet perturbation in stagnation pressure is taken to be of
the form eiωt. At the exit the static pressure is constant, as would be the case if the diffuser discharged
into a large volume.
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All flow quantities will be expressed as a time mean value plus an unsteady perturbation which
has small enough amplitude that a linearized description can be adopted. Denoting the time mean
quantities by overbars (−−) and the perturbations by primes ( ′), the inlet stagnation pressure, for
example, can be written as

pti = pti + p′
ti = pti + ε eiωt ,

where ε is the amplitude of the perturbation.
The one-dimensional form of the momentum equation is

∂u

∂t
+ u

∂u

∂x
= − 1

ρ

∂p

∂x
. (6.3.1)

Integrating (6.3.1) from inlet to exit yields

e∫
i

∂u

∂t
dx = −

(
p

ρ
+ u2

2

)∣∣∣∣e
i

= pti

ρ
− pte

ρ
. (6.3.2)

Equation (6.3.2) shows that differences in stagnation pressure along the diffuser are created only
through unsteadiness.

The one-dimensional continuity equation for the passage is

uA = constant = ui Ai , (6.3.3)

where A, the local area, is a function of distance along the passage and Ai is the area at the inlet.
Using (6.3.3), the time derivative in (6.3.2) can be written as

e∫
i

∂u

∂t
dx = dui

dt

e∫
i

Ai

A
dx

= Ldui

dt
. (6.3.4)

Equation (6.3.4) defines the quantity L, an “effective length” of the diffuser, which is a function of
diffuser geometry only. An example is a linear area variation with length A = Ai + (Ae – Ai) (x/L)
which gives, upon substitution into (6.3.4),

L =
ln

Ae

Ai(
Ae

Ai
− 1

) . (6.3.5)

With the definition of L, the integral of the momentum equation in (6.3.2) takes the form

Ldui

dt
= pti

ρ
− pte

ρ
. (6.3.6)

We now use the idea that the unsteady perturbations have small amplitude compared to the
mean flow quantities and linearize, neglecting products of perturbation quantities. Equation (6.3.6)
becomes
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ti
∝ eiωt .

Ldu′
i

dt
= pti + p′

ti − (pe + p′
e)

ρ
− u2

e

2
− ueu′

e. (6.3.7)

In (6.3.7), the stagnation pressure at the exit is separated into static and dynamic pressures because
the boundary condition involves the exit static pressure, pe. For the time mean flow the stagnation
pressure is the same at the inlet and the exit. This, plus the prescribed condition of constant static
pressure at the exit, p′

e = 0, allows the equation for the perturbation quantities to be written as

Ldu′
i

dt
= p′

ti

ρ
− ueu′

e. (6.3.8)

The inlet velocity perturbation, u′
i , is the quantity sought. The continuity equation (6.3.3) can be

used to eliminate the exit velocity, and the resultant expression solved to obtain u′
i in terms of the

imposed inlet stagnation pressure non-uniformity, p′
ti . Defining the reduced frequency, β, as ωL/ui,

this is

u′
i

(p′
ti /ρui )

=
1

(Ae/Ai )2
− iβ

1

(Ae/Ai )4
+ β2

. (6.3.9)

Equation (6.3.9) is plotted in Figure 6.4, which shows the real and imaginary parts of u′
i/(p′

ti /ρui )
as a function of reduced frequency, β, for different values of Ae/Ai, the exit/inlet area ratio. The
values range from Ae/Ai = √

2, representative of an axial compressor, to 1.0 for a straight channel,
to 1/

√
2 and 1/2 which are representative of a turbine. For any value of β, a vector drawn from the

origin to the curve represents the quantity u′
i/(p′

ti /ρui ) in magnitude and phase. All the plots are
semi-circles and can be collapsed into a single curve if one plots {[u′

i (Ai/Ae)2]/(p′
ti /ρui )}2 versus

β(Ae/Ai)2; this has not been done in order to exhibit both the role of the reduced frequency and the
effect of the area ratio.
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Several general features are shown in Figure 6.4:

(1) At low reduced frequency (β � 1), the non-dimensional velocity perturbation is close to the
steady-state values (2.0 for the diffuser, 1.0 for the straight channel, 0.5 and 0.25 for the nozzle)
and there is little difference in phase between velocity and stagnation pressure perturbations.

(2) At high reduced frequency (β � 1), there is a phase difference of close to π/2 between ve-
locity and stagnation pressure perturbations and a greatly reduced amplitude of the velocity
non-uniformity. In this situation, the local accelerations dominate the convective acceleration
terms.

(3) Diffusing passages respond more strongly to perturbations than do nozzles.

For rotating machinery, periodic disturbances are often associated with a spatially non-uniform
flow through which the moving blade rows pass. Common occurrences are wakes of an upstream
stationary blade row, inlet separation or flow distortions produced by upstream ducting, or down-
stream obstacles such as struts. In this situation, a radian frequency, ω, for the unsteadiness seen by
the rotor can be related to a characteristic wavelength, λ, of the stationary non-uniformity by

ω = 2π
rm

λ
,

where rm is the mean radius of the blade row and 
 is the rotational velocity. With U and L the
characteristic through-flow velocity and length respectively, a reduced frequency can thus be defined
as

β = 2π
rm · L

λU
. (6.3.10)

For many fluid devices,
rm and U are roughly comparable. If so, the reduced frequency scales as

β ∝ 2π
L

λ

with the proportionality constant of order unity. This is an interpretation of reduced frequency in
terms of the ratio of the wavelength of the imposed flow non-uniformity to the characteristic length of
the device, L. For disturbance wavelengths which are long compared to L the device can be considered
to be embedded in a slowly varying flow, with a response close to quasi-steady. For disturbances
with wavelength of order L or shorter, the reduced frequency will be roughly 2π or higher and
unsteadiness will be important. In rotating machinery, λ is an integer fraction of the circumference.
If so, λ= 2πrm/n, where n is the number of “lobes” of the disturbance, and the reduced frequency
is given by

β ∝ n
L

rm
.

A third view of reduced frequency is provided by direct examination of (6.3.1). Suppose the
temporal and spatial variations of the velocity have the same magnitude,�U. With L the characteristic
length and ω the radian frequency, the relative magnitudes of the two acceleration terms on the left-
hand side of (6.3.1) are ωL/U and unity. In this context the reduced frequency can be regarded as a
measure of the contribution of unsteadiness to the static pressure changes in the flow.
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6.4 Examples of unsteady flows

6.4.1 Stagnation pressure changes in an irrotational incompressible flow

The relation between flow unsteadiness and stagnation pressure takes a compact and useful form in
a constant density, inviscid, irrotational flow. For this condition the momentum equation is

∂u
∂t

+ ∇
(

u2

2
+ p

ρ

)
= 0. (6.4.1)

Because the flow is irrotational, u can be defined as the gradient of a velocity potential ϕ, u = ∇ϕ
and (∂u/∂t) = (∂/∂t)∇ϕ. The operations ∂/∂t and ∇ commute and (6.4.1) can be integrated to
yield

∂ϕ

∂t
+ pt

ρ
= f (t). (6.4.2)

The term on the right of (6.4.2) is purely a function of time which is determined if its value at any
location in the flow field is known. Consider a situation where the unsteadiness is caused by an object
moving through the flow, so that regions at large distances from the object are undisturbed by its
movement. Then f(t) is constant and (6.4.2) becomes

∂ϕ

∂t
+ pt

ρ
= P0

ρ
= constant. (6.4.3)

The value of the constant has no effect on the flow pattern and can be absorbed into the definition1

of ϕ. Equation (6.4.3) will be made much use of in what follows.

6.4.2 The starting transient for incompressible flow exiting a tank

An example which shows a number of features of interest is furnished by the flow of an inviscid,
incompressible fluid from a pressurized tank (Preston, 1961). Figure 6.5 shows a large tank containing
an incompressible fluid, which can exit through a pipe of length L and diameter d, with L/d � 1. A
closed valve on the end of the pipe is opened at time t = 0 and the liquid starts to leave the tank. The
pressure difference between the tank and the exit is maintained constant at �p0. The question to be
addressed is how the velocity and stagnation pressure evolve in time during the approach to steady
state.

We make use of (6.4.3), which holds throughout the flow domain. The velocity in the tank is much
less than in the pipe so that P0 is equal to�p0. In the pipe, the velocity is uniform in x so the velocity
potential has the form

ϕ = U(t)x. (6.4.4)

1 Even if f(t) were not constant, it could still be absorbed into the definition of ϕ by defining a new velocity potential, ϕI, as

ϕI = ϕ +
t∫

−∞
f (ξ )dξ.

This would make no difference to the velocity field which is determined only by the spatial derivatives of ϕ.
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Figure 6.5: (a) Transient flow from a tank: geometry and nomenclature; (b) exit flow from a tank: velocity and
stagnation pressure variation with time (Preston, 1961).

This velocity potential is defined with ϕ = 0 at station i just inside the pipe. Application of (6.4.3)
and (6.4.4) between stations 1 and 2, plus continuity in the form ui = ue = U, yields

pi − pe = ρL
dU

dt
. (6.4.5)

Between station i and the surface of the incompressible fluid, the velocity varies with position, but
we can employ a simplified flow description in this region because the tank area is much larger than
the pipe area. From continuity, the velocity magnitude in the region of the tank near the pipe inlet
will be similar to that of a “sink” so that

u ≈ U
(d/2)2

r2
, (6.4.6)
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where r is the distance from the virtual location of the sink (roughly a radius into the pipe). The
velocity potential in the tank thus has the form

ϕ ≈ −U
(d/2)2

r
. (6.4.7)

From (6.4.7) the difference in the value of ∂ϕ/∂t from station i to the upper surface is of order
Ud/�t, where �t is the characteristic time scale over which the transient occurs. Comparison with
(6.4.5) shows that if L/d � 1, the contribution to the variation in stagnation pressure from motion
in the tank is much less than the contribution from the unsteady flow in the pipe and the former can
be neglected. Another way of stating this is that the reduced frequency associated with the entrance
region flow into the pipe is small and the inlet region behavior can be considered quasi-steady. The
reduced frequency of the flow in the pipe (inlet to exit), however, is such that unsteady effects must
be taken into account. The concept of treating some regions of a flow field as quasi-steady, while
accounting for unsteadiness in other regions, as we do here, is a significant simplifying feature for a
number of applications.

From the arguments in the preceding paragraph we can connect conditions at the pipe entry and
the surface by

pi + 1
2ρU 2 = �p0. (6.4.8)

Combining (6.4.8) with (6.4.5) gives

�p0 − 1
2ρU 2 = ρL

dU

dt
,

or

dt = 2L
dU

2�p0

ρ
− U 2

. (6.4.9)

Using the initial condition of U = 0 at time t = 0, (6.4.9) can be integrated as

U√
2�p0/ρ

= tanh

(
t
√

2�p0/ρ

2L

)
. (6.4.10)

This solution is shown in Figure 6.5(b).
The stagnation pressure is found from (6.4.8) as

pti − pte

�p0
= 1 − U 2

2
�p0

ρ

= sech2

(
t
√

2�p0/ρ

2L

)
, (6.4.11)

and this is also shown in Figure 6.5(b). At time t = 0 the available pressure difference�p0 is all used
to accelerate the fluid in the pipe. At times large compared with 2L/

√
2�p0/ρ there is no stagnation

pressure difference and �p0 is manifest as the dynamic pressure at the exit of the pipe.

6.4.3 Stagnation pressure variations due to the motion of an isolated airfoil

A source of unsteadiness in fluid machinery is the presence of moving airfoils. We examine the
resulting flow in the stationary system which is set up by airfoil motion, starting with a basic model
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Figure 6.6: Uniform motion of vortex past a fixed point; change of stagnation pressure with time (Preston,
1961).

for a single airfoil, or blade, moving past a fixed observer and then developing the concepts for a
row of moving blades (Preston, 1961).

The model for the blade is a bound vortex of circulation �, representing the circulation round the
airfoil as sketched in Figure 6.6. The flow is assumed two-dimensional, constant density, inviscid,
and irrotational. Because the velocity can be derived from a velocity potential, ϕ, application of the
continuity equation, ∇ · u = 0, means the potential satisfies Laplace’s equation

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0. (6.4.12)

There are well-known solutions of this equation for configurations such as fluid sources, vortices,
doublets, etc. and we make use of the solution for a stationary vortex. The velocity potential associated
with a vortex at the origin is

ϕ = �

2π
θ, (6.4.13a)

where

θ = tan−1
( y

x

)
(6.4.13b)

and y and x are the vertical and horizontal coordinates shown in Figure 6.6. Equations (6.4.13) apply
everywhere outside the origin.

The velocity components are obtained from differentiation of (6.4.13):

ux = − �

2π

(
y

x2 + y2

)
, (6.4.14a)

uy = �

2π

(
x

x2 + y2

)
. (6.4.14b)

Equations (6.4.14) describe a circular flow about the origin with velocity magnitude
�/(2π

√
x2 + y2).
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If the vortex is in steady motion with negative (downward) velocity uv parallel to the y-axis, as
indicated in Figure 6.6, the coordinates of a fixed point, A, relative to the vortex, are y = uvt and x.
As seen by an observer at point A,

∂ϕ

∂t

∣∣∣∣ as seen in
stationary
frame

= uv
∂ϕ

∂y

∣∣∣∣ as seen in
moving
frame

= uvuy | as seen in
moving
frame

. (6.4.15)

In (6.4.15) ∂ϕ/∂y and uy are evaluated in the coordinate system fixed to the moving vortex. Choosing
the time origin so point A has its y-coordinate equal to zero at time t = 0, the velocity components
at point A seen by an observer in the vortex (moving) system at time t are:

ux = − �

2π

uvt

(uvt)2 + x2
, (6.4.16a)

uy = �

2π

x

(uvt)2 + x2
. (6.4.16b)

From (6.4.3), the variation in stagnation pressure seen by the stationary observer at any x-location
is

pt − P0

ρ
= uv�

2π

x

(uvt)2 + x2
(6.4.17)

or, non-dimensionally,

2πx

(
pt − P0

ρuv�

)
= 1

1 +
(

uvt

x

)2 . (6.4.18)

The stagnation pressure variation with time for a moving vortex is shown in Figure 6.6. Appreciable
fluctuations in stagnation pressure occur when the vortex is “near” the observer, say, for times |t| <
2x/uv.

6.4.4 Moving blade row (moving row of bound vortices)

The above ideas can be extended to situations more representative of those in fluid machinery by
considering the flow due to a moving row of bound vortices, a model for a rotor blade row moving
relative to a stationary observer.2 The configuration is illustrated in Figure 6.7, which shows a row of
bound vortices representing the circulation around the blades of a turbomachine rotor. The vortices
have a circulation of � in the counterclockwise direction, a spacing W, and move in the negative
y-direction (downward) with velocity uv.

The velocity potential, obtained by summing up the potentials for an infinite row of vortices, is
(Lamb, 1945):

φ = �

2π
tan−1

[
tan
(πy

W

)
coth
(πx

W

)]
. (6.4.19)

2 As will be seen subsequently, this model is also of help in understanding features of the unsteady behavior of wakes.
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Figure 6.7: Moving row of vortices and fixed observation point A (Preston, 1961).

In (6.4.19) x and y are in a coordinate system attached to the moving row. The velocity components
in the moving system are:

ux = − �

2W

[
sin(2πy/W )

cosh(2πx/W ) − cos(2πy/W )

]
, (6.4.20a)

uy = �

2W

[
sinh(2πx/W )

cosh(2πx/W ) − cos(2πy/W )

]
. (6.4.20b)

The transformation from spatial derivatives in the moving system to time derivatives in the sta-
tionary system is as described in the previous section. Substituting the expressions for the velocity
components (6.4.20) into Eq. (6.4.3) yields

pt − P0

ρuv�/W
= sinh(2πx/W )

cosh(2πx/W ) − cos(2πuvt/W )
. (6.4.21)

Equation (6.4.21) is an expression for the instantaneous stagnation pressure as measured by a sta-
tionary observer at point A who has coordinates x, y = (uvt) in the moving system.

Several features are to be noted concerning the form of (6.4.21). First, at x = −∞ (far upstream)
and +∞ (far downstream) respectively, the stagnation pressures are:

pt−∞ = P0 − ρ uv�

2W
, (6.4.22a)

pt+∞ = P0 + ρ uv�

2W
. (6.4.22b)
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The change in stagnation pressure from far upstream to far downstream is

�pt = ρ
uv�

W
. (6.4.23)

The change in “tangential” velocity (y-velocity) from −∞ to + ∞ is �/W, so (6.4.23) expresses
the change in pt given by the Euler turbine equation (see Section 2.8) applied to this incompressible
inviscid flow.

We also examine the average stagnation pressure over a “cycle”, the passage of one vortex, 0 <
uvt/W < 1.0. The time mean stagnation pressure (denoted by an overbar) is:

−(pt − P0) = ρ
∂ϕ

∂t

= ρ
( uv

W

)W/uv∫
0

∂ϕ

∂t
dt. (6.4.24)

Therefore,

−( pt − P0
) = ρ

uv

W
(ϕ|t=W/uv

− ϕ|t=0). (6.4.25)

Referring to the expression for ϕ in (6.4.19), we find that for any positive value of x (downstream),
pt = P0 + ρuv�/(2W), whereas for any negative value (upstream) pt = P0 − ρuv�/(2W). The
time mean stagnation pressure is independent of x on either side of the vortex row and changes
discontinuously across the row by ρ�uv/W.

The variations in stagnation pressure seen in the stationary frame are shown in two different ways
in Figures 6.8 and 6.9. In Figure 6.8, the variations have been plotted versus the horizontal location
of point A in units of x/W, for different times during the passage of the row of vortices. The time
taken for the row to move one vortex spacing is W/uv and this has been used to make the time
non-dimensional.

The unsteady stagnation pressure variations near the vortex row are a substantial fraction of the
time mean stagnation pressure change across the row. As one moves away from the blade row to a
distance of x/W = 0.5, however, the fluctuations decrease to roughly 10% of the stagnation pressure
change across the row and at x/W = 1.0 they are less than 1%. A pressure probe would see appreciable
fluctuations in stagnation pressure if placed in close enough proximity to this row, but the fluctuations
would be negligible if it were a blade spacing away.

Figure 6.9 is a cross-plot of Figure 6.8 showing instantaneous stagnation pressure versus time.
The different curves, which correspond to different positions of the observer, again in terms of x/W,
give another picture of the rate of decay of the unsteady variations.

6.4.5 Unsteady wake structure and energy separation

The analysis of the flow associated with a moving row of vortices can be extended qualitatively
to describe compressible flows. If the flow is irrotational, the inviscid momentum equation can be
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Figure 6.8: Instantaneous stagnation pressure versus time for a moving row of vortices (Preston, 1961).

written as

∂u
∂t

+ ∇
(

h + u2

2

)
= 0, (6.4.26)

or, integrating,

∂ϕ

∂t
+ ht = f (t). (6.4.27)

In compressible flow the link is between unsteadiness in the velocity potential and stagnation enthalpy,
rather than the stagnation pressure as in the incompressible case. Because of the coupling between
density and velocity, the velocity field due to a row of vortices in a compressible flow is not the same
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Figure 6.9: Instantaneous stagnation pressure versus time for a moving row of vortices (Preston, 1961).

as in incompressible flow. For flows in which all velocities are subsonic, however, the behavior will
be qualitatively similar, and the ideas of Section 6.4.5 can be used to examine the phenomenon of
energy separation in wakes.

Discussions of wakes (including the earlier sections of this text) generally portray them as steady
constant pressure regions with a lower velocity than the free stream and a roughly equal uniform
stagnation temperature. As mentioned in Chapter 4, the shear layers that form the wakes have an
unsteady vortical structure. An observer in the stationary (fixed) system downstream of a body sees
an unsteady flow with two rows of vortices of opposite sign convecting past. The wake structure
actually evolves spatially, but we can approximate the situation as two infinite rows of counterro-
tating vortices and apply the ideas developed in the previous section for the single row of moving
vortices.
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in vortex fixed system (dashed) and pathline in a stationary system; (b) behavior of static pressure; and (c)
behavior of stagnation enthalpy (Kurosaka et al., 1987).

The result of principal interest, namely that the stagnation temperature is lower in the wake than in
the free stream, can be motivated using the following argument (Kurosaka et al., 1987). Close to any
one of the vortices in the moving rows the streamlines in the vortex fixed system are approximately
circular. This is sketched in Figure 6.10, which shows these circular streamlines (as seen in the vortex
fixed system) around a vortex moving to the right with velocity uv. On the circular streamlines, the
velocity magnitude and the static pressure will be approximately constant with the static pressure
decreasing toward the vortex center.

Let us now examine the points indicated by the small solid symbols in Figure 6.10(a) from the per-
spective of observers in the stationary system. The observers located in the first half of the cycle
all see a negative value of ∂p/∂t (and hence Dht/Dt), whereas observers at the points in the second
half of the cycle see positive values. All the observers, however, correspond to points on particle
paths (as seen in the stationary system) which are indicated by the solid line in Figure 6.10(a).
Fluid particles thus have their stagnation temperature (and stagnation pressure) decreased in the
first part of the cycle and increased in the second half, as illustrated in parts (b) and (c) of the
figure.

A kinematic argument can also be made for this result. Fluid particles on the circular streamlines
have approximately constant static temperature. For a stationary observer, fluid on the outside of the
wake (above the moving row) has a higher velocity than that below because the velocity associated
with the vortex adds to the convection velocity for the former and subtracts for the latter. Particles
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outside the moving rows therefore have a higher stagnation temperature than those inside. The terms
“turbine” and “compressor” given in Figure 6.10 are appropriate because kinematically the vortices
act as turbines for the passage of fluid across the row from the upper side and as compressors for the
passage from below to above the row.

The analogy between the moving vortices and turbomachine blading can now be applied to the
two vortex rows which bound a wake as shown in Figure 6.11. From free stream to wake, the effect
is analogous to that across a turbine blade row, a drop in stagnation temperature (consider the cir-
culation of the vortices shown in Figure 6.10). The drop in stagnation temperature seen in the
stationary system is roughly uv�/W, where uv is the vortex velocity, � is the circulation, and W the
vortex spacing.

Computations of this effect have been carried out with the vortices modeled as having finite cores
of uniform vorticity, rather than as point vortices (Kurosaka et al., 1987). Results are given in Fig-
ure 6.11, which is based on parameters representative of the wake of an axial compressor blade.
Figure 6.11(a) shows velocity vectors as seen in the coordinate system moving with the vortices,
Figure 6.11(b) the instantaneous stagnation temperature field, and Figure 6.11(c) the time mean
stagnation temperature. With a finite core there is no discontinuity in stagnation quantities across the
vortex row.

The arguments concerning the stagnation temperature non-uniformity take no account of viscosity
and heat transfer effects, which decrease the effects that we have been discussing. Energy separation
in a wake should therefore be most evident when the wake width is large compared to regions
directly affected by viscous forces, as occurs in bluff body flows. Figure 6.12 shows an example,
the stagnation temperature distribution in the wake of a cylinder. The shape and magnitude of the
distribution are similar to those in Figure 6.11.
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Figure 6.12: Measured stagnation temperature distribution through a cylinder wake; Tt0 and u0 are the temper-
ature and velocity far upstream of the cylinder (data of Ryan (1951) as cited in Eckert (1987)).

From the considerations given, the stagnation temperature difference can be estimated as

cp(Tt − Tt0 )
1
2 u2

0

=

(
uv�

W

)
1
2 u2

0

= 2�

u0W

(
uv

u0

)
. (6.4.28)

The quantities T0 and u0 in (6.4.28) represent the temperature and velocity at a location far upstream
of the cylinder.

The velocity field in the wake of a cylinder has been extensively investigated, and the mea-
sured values of �/(u0W) ≈ 0.55, uv/u0 ≈ 0.75 can be used in (6.4.28). Substituting these gives
cp(Tt − Tt0 )/( 1

2 u2
0) = 0.84, in rough agreement with the experimental value of 0.74 and nearly an

order of magnitude larger than the stagnation temperature difference across a boundary layer on an
adiabatic wall (see Eckert (1984), Schlichting (1979)). In the boundary layer, non-uniformities in
stagnation temperature are due to imbalances between heat transfer and viscous work for a given
streamtube; these have a net impact much less than that due to the basically inviscid unsteady effects
in the bluff body wake.

6.5 Shear layer instability

The stability of fluid motions can be an important criterion for fluid device performance. Illustrations
of the qualitative changes associated with instability already encountered in Chapter 4 were transition
to turbulence and the genesis of large scale vortex structure in free shear layers.

Stability can be operationally defined as “the quality of being immune to small disturbances”
(Betchov and Criminale, 1967). The issue is whether a given system, which is operating in some
equilibrium state and which is given a small disturbance, will change by a proportionally small amount
or whether the disturbance will be amplified and the state undergo evolution to a new equilibrium
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Figure 6.13: Kelvin–Helmholtz instability of a vortex sheet.

quite different from the initial one. A number of different self-excited fluid motions exist, many of
which are described in the texts by Drazin and Reid (1981), Betchov and Criminale (1967), and
Tritton (1988). In this section we address instability phenomena associated with parallel shear flow
with application to boundary and free shear layer behavior.

6.5.1 Instability of a vortex sheet (Kelvin–Helmholtz instability)

As an introduction to the topic of shear layer instability consider the instability of a two-dimensional
plane vortex sheet in an incompressible, inviscid, constant density fluid. This is known as Kelvin–
Helmholtz instability. The geometry is presented in Figure 6.13. The time mean flow is a parallel
shear flow with a vortex sheet of zero thickness at y = 0, separating streams of velocities u1 and
u2 with u1 > u2. Adopting a coordinate system moving with average velocity (u1 + u2)/2, the flow
looks as drawn in the figure, with the magnitude of the velocity U given by U = (u1 − u2)/2.
To determine stability, we inquire into the transient behavior when the interface between the two
streams is subjected to a small displacement, η(x, t) as in Figure 6.13. Any such small displacement
can be analyzed as a sum of Fourier components with the displacement taken to be of the form
η(x, t) = η0ei(kx−ωt), where k is the wave number (k = 2π/disturbance wavelength) and ω = 2π ×
frequency. The disturbance is a propagating wave with phase velocity c = ω/k.

From Kelvin’s Theorem (Sections 3.8 and 3.9) disturbing the interface will not change the cir-
culation around any contour outside the vortex sheet, and the flow remains irrotational everywhere
except within the sheet. We cast the problem in terms of two disturbance velocity potentials, ϕ1

and ϕ2, with the former applying to the region above the sheet and the latter to the region below.
Using appropriate matching conditions across the interface, the two disturbance potentials can be
connected to give a description of the motion which is valid throughout.

To analyze the unsteady small amplitude behavior, a linearized flow field description, which
includes only quantities that are first order in the small disturbances, is appropriate. Since the sheet
displacement η is proportional to ei(kx−ω t), all the disturbance quantities will have this form, where
the real part of the complex quantity is implied. For the disturbance potentials we seek a solution
to Laplace’s equation with a spatial periodicity of the disturbance wavelength. Such a solution has
already been derived in the context of the periodic pressure field analyzed in Section 2.3. With that
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development as reference, and the requirement that the velocities are bounded at y = ±∞, the forms
for ϕ1 and ϕ2 are given by

ϕ1 = Ae−ky+i(kx−ωt) and ϕ2 = Be+ky+i(kx−ωt). (6.5.1)

The two necessary matching conditions across the vortex sheet are that pressure and displacement
are continuous across the sheet. The pressure can be evaluated using the linearized form of the x-
momentum equation. Writing the velocity as a time mean, denoted by U plus a small disturbance,
denoted by a prime ( ′), the linearized form of the x-momentum equation in the region above the
sheet is

∂u′
1x

∂t
+ U

∂u′
1x

∂x
= − 1

ρ

∂p′
1

∂x
. (6.5.2)

Equation (6.5.2) can be written in terms of the velocity potential as

(ω − kU ) iϕ1 = p′
1

ρ
. (6.5.3)

A corresponding relation holds for Region 2. Continuity of pressure across the vortex sheet implies[(ω
k

− U
)
ϕ1 =

(ω
k

+ U
)
ϕ2

]
y=0
. (6.5.4)

To implement the second matching condition we make use of the kinematic boundary condition
developed in Section 1.11 to relate the y-component of velocity and the sheet displacement. The
linearized form of the kinematic surface condition for the upper region is

u1y(x, 0, t) = ∂η

∂t
+ U

∂η

∂x
. (6.5.5a)

Similarly, for the lower region,

u2y(x, 0, t) = ∂η

∂t
− U

∂η

∂x
. (6.5.5b)

Substituting uy = ∂ϕ/∂y and combining (6.5.5a) and (6.5.5b) gives a second relation between the
velocity potentials in the upper and lower regions:[(ω

k
+ U
)
ϕ1 =

(
−ω

k
+ U
)
ϕ2

]
y=0
. (6.5.6)

Equations (6.5.4) and (6.5.6) are two homogeneous equations linking the two unknown constants
A and B defined in (6.5.1). For these to have a non-trivial solution, the coefficient determinant for
the two-equation system must be zero. Imposition of this condition provides an equation for the
frequency ω, the imaginary part of which is the growth rate of the disturbance:

ω

k
= ±iU = ± i

2
(u1 − u2). (6.5.7)

All wavelengths are unstable and the growth rate (ω) is linear with wave number, k.
This linearized analysis only describes the initial stages of the vortex sheet instability, but nonlinear

numerical computations using vortex methods (Krasny, 1986) can be used to track the evolution to
the final state. Figure 6.14 shows the growth of sinusoidal disturbances and the formation of discrete
vortices, similar to the flow visualization of a shear layer in Section 4.8.
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Figure 6.14: Nonlinear rollup of a vortex sheet (Krasny, 1986).

6.5.2 General features of parallel shear layer instability

While vortex sheet evolution demonstrates features of shear layer instability, the vortex sheet is
a special example and we need to explore a broader class of instability problems. Of particular
interest are questions such as what types of velocity profiles are most sensitive to instability and
what differences exist between wall bounded and free shear flows. To address these we derive a set
of linear equations that describe the behavior of small disturbances in a general inviscid, constant
density parallel shear flow. The two-dimensional continuity and momentum equations, linearized to
first order in the disturbance quantities, yield the required set of equations, where u = (ux + u′

x , u′
y)

and p = p + p′:

∂u′
x

∂x
+ ∂u′

y

∂y
= 0, (6.5.8a)

∂u′
x

∂t
+ ux

∂u′
x

∂x
+ u′

y

(
dux

dy

)
= − 1

ρ

∂p′

∂x
, (6.5.8b)

∂u′
y

∂t
+ ux

∂u′
y

∂x
= − 1

ρ

∂p′

∂y
. (6.5.8c)

We again take the disturbances to be of the form ei(kx−ω t), where k is real, and consider a single
component of a Fourier series in x. For a general shear flow we cannot make use of a velocity potential
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because the flow is not irrotational. We can, however, introduce a disturbance stream function which
identically satisfies continuity:

ψ(x, y, t) = f (y)ei(kx−ωt) and u′
x = ∂ψ

∂y
, u′

y = −∂ψ
∂x
. (6.5.9)

Substituting (6.5.9) into (6.5.8b) and (6.5.8c) and cross-differentiating to eliminate the pressure
yields a second order equation for the function f (y), known as Rayleigh’s equation:

(u − c)

(
d2 f

dy2
− k2 f

)
−
(

d2u

dy2

)
f = 0. (6.5.10)

In (6.5.10) the quantity c = ω/k is the phase velocity of the disturbance. The boundary conditions
that are appropriate vary depending on the specific geometry investigated, but if the flow is bounded
by walls at upper and lower locations yU and yL, where u′

y= 0, then f (yU) = f (yL) = 0.
Using (6.5.10) we can make a strong statement about the conditions on the type of time mean

profiles that lead to instability (Betchov and Criminale, 1967; Sherman, 1990). To see this we multiply
the equation by f

∗
, the complex conjugate of f, divide by (u − c) and integrate the result between

the limits yU and yL. This yields, after some rearrangement of terms,

yU∫
yL

[
d

dy

(
f ∗ d f

dy

)
−
(

d f ∗

dy

d f

dy

)
− k2 f ∗ f

]
dy =

yU∫
yL

[(
d2u

dy2

) (
f ∗ f

u − c

)]
dy. (6.5.11)

The first term on the left of (6.5.11) can be integrated as

yU∫
yL

d

dy

(
f ∗ d f

dy

)
dy =

[
f ∗ d f

dy

]yU

yL

. (6.5.12)

The boundary condition on f means that both real and imaginary parts of f vanish at the limits so the
integral in (6.5.12) is zero. The two other terms in the integral on the left in (6.5.11) both have the
form ()

∗
() (a quantity times its conjugate) so they are positive definite. The value of the integral is

thus equal to −ϒ2, where ϒ is a constant. This means that (6.5.11) can be written as

−ϒ2 =
yU∫

yL

[(
d2u

dy2

) (
f ∗ f

u − c

)]
dy. (6.5.13)

The phase speed, c, is now expressed in terms of real and imaginary parts:

c = cR + icI . (6.5.14)

Substituting (6.5.14) into (6.5.13) and examining the imaginary part of the result we obtain

cI


 yU∫

yL

[
(d2u/dy2)( f ∗ f )

(u − cR)2 + c2
I

]
dy


 = 0. (6.5.15)

Equation (6.5.15) means that either cI is zero, in which case the disturbance wave is not growing or
decaying and the flow is neutrally stable, or the integral vanishes. If the disturbances are to grow, the
integral must be zero, but every term in the integrand is positive except possibly the second derivative
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of the time mean velocity profile. Further, the integral can only be zero if the second derivative is
positive over some part of the interval in y and negative over the rest of the interval, implying that
(d2u/dy2) passes through 0 at one or more values of y. A necessary condition for disturbances in the
shear layer to grow, therefore, is that the time mean velocity profile must possess a point of inflection
(d2u/dy2 = 0). This theorem was first proved by Rayleigh over a hundred years ago. Since then
others have extended it to show that a growing wave can only exist in a parallel shear flow if the time
mean vorticity, (−du/dy), has a maximum (see Sherman (1990)).

Rayleigh’s Theorem provides an important qualitative distinction between flows with an inflection
point in the velocity profile, such as jets and free shear layers, and flows without an inflection point,
such as the constant pressure boundary layer and Poiseuille flow in a channel. The instability mecha-
nism in the former type of shear layer is much more powerful. Shear layers with an inflection point3

are unstable in the inviscid limit and can be stabilized by viscosity at low enough Reynolds number
but the values needed are on the order of 10–100. For profiles without an inflection point, instability
occurs only at much higher Reynolds numbers when viscosity has the “remarkable destabilizing
influence” described by Betchov and Criminale (1967).

Further, from the conditions at a solid surface developed in Section 3.13, we see that boundary
layers with an adverse pressure gradient have an inflection point in the velocity (and a maximum value
of the vorticity) away from the wall. (The constant pressure boundary layer has its second derivative
equal to 0 at the wall: (∂2u/∂y2) = 0 at y = 0.) This provides insight into why, as mentioned in
the discussion of natural transition in Section 4.5, instability of boundary layers in adverse pressure
gradients occurs at much lower Reynolds numbers than with favorable pressure gradients. Adverse
pressure gradients increase the boundary layer shape parameter, H, and, as shown in Figure 6.15
(White, 1991), the critical Reynolds number, Reδ∗ , at which disturbance waves will grow decreases
sharply with H.

Other features of shear layer instability can be seen from the numerical solution of (6.5.10) for
the shear layer profile u(y) = Utanh(y/W), where W is the half-width of the shear layer in Figure
6.16 (Betchov and Criminale, 1967; see also Lucas et al., 1997). The abscissa is the non-dimensional
wave number, kW. Two quantities are shown on the ordinate, cI/U, the disturbance growth rate, and
ωIW/U. The value of ωIW/U for the Kelvin–Helmholtz results is also indicated. For disturbances
with wavelengths large compared to the shear layer thickness (kW � 1), the finite thickness shear
layer behavior is similar to that of a vortex sheet. As the wave number increases, the growth rate for
the finite thickness layer peaks and falls to 0 at a disturbance wavelength of 2πW. For very short
wavelengths, the behavior can be viewed as similar to disturbance waves in a uniform shear, a flow
which does not have a point of inflection.

Figure 6.17 shows the growth rates for an unbounded shear layer and for a shear layer with a
wall 3W from the zero of velocity. Long wavelength disturbances (say, wavelengths larger than
the distance of the point of inflection to the wall) “feel” the effect of the wall and are stabilized.
Shorter wavelength disturbances do not and exhibit a behavior similar to that in the unbounded shear
layer.

To summarize this section, three aspects of shear layer instability have been discussed. The first
is the role of an inflection point in the velocity profile as a qualitative indicator of the tendency for

3 If we think of the vortex sheet as the limiting case of a continuous velocity distribution across a symmetric shear layer,
there is an inflection point at the midpoint of the layer.
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(after Wazzan et al., as presented by White (1991)).

shear layer instability. The second is the different disturbance behavior depending on the ratio of
wavelength to shear layer thickness. The third is the increased stability associated with the presence
of a wall. An example in which these factors conspire to promote an accelerated growth of disturbance
waves is the separated shear layer, with the result being a rapid transition to turbulence in the shear
layer.

6.6 Waves and oscillations in fluid systems: system instabilities

Another important class of instabilities arise in the context of overall system unsteadiness. This,
as well as the response of systems to external forcing, belongs to the general topic of waves and
oscillations in flow systems (Lighthill, 1978). The features of this type of self-excited motion,
particularly the dynamic coupling between the components in a fluid system, will be addressed from
the perspective of unsteady one-dimensional small disturbances to an inviscid compressible fluid.

We begin with the linearized one-dimensional continuity and momentum equations:

∂ρ ′

∂t
+ u

∂ρ ′

∂x
+ ρ ∂u′

∂x
= 0, (6.6.1a)
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∂u′

∂t
+ u

∂u′

∂x
+
(

1

ρ

)
∂p′

∂x
= 0. (6.6.1b)

For the motions considered the relation between small changes in density and pressure is isentropic:

p′

p
= γρ ′

ρ
. (6.6.2)
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In (6.6.1) the subscript x has been dropped because the only velocity component is in the x-direction.
Combining (6.6.1) and (6.6.2) yields equations for the disturbance pressure, p′(x, t), and the velocity
u′(x, t):(

1

a

∂

∂t
+ M

∂

∂x

)2 [ u′

p′

]
− ∂2

∂x2

[
u′

p′

]
= 0. (6.6.3)

In (6.6.3) the matrix notation implies that the same operators apply to both pressure and velocity
disturbances. The variable a is the speed of sound (Section 1.15), which is equal to

√
γ p/ρ.

If we confine the discussion to periodic disturbances of the form eiωt, the solutions to (6.6.3) can
be seen by substitution to have the form

u′ = Aei(ωt−k+x) + Bei(ωt+k−x), (6.6.4a)

p′ = Aρ aei(ωt−k+x) − Bρ aei(ωt+k−x). (6.6.4b)

In (6.6.4) A and B are constants determined by the boundary conditions. The wave numbers k+ and
k− are given by

k+ =
(ω

a

) 1

1 + M
, k− =

(ω
a

) 1

1 − M
. (6.6.5)

The two wave numbers represent waves traveling downstream and upstream respectively, at the speed
of sound relative to the mean flow.

In situations where the mean Mach number is much less than unity (M
2 � 1) (6.6.3) reduce to the

acoustic wave equations:

1

a2

∂2

∂t2

[
u′

p′

]
− ∂2

∂x2

[
u′

p′

]
= 0. (6.6.6)

An application of (6.6.6) is to determine the form of the acoustic disturbance (the “acoustic mode”)
in a duct of length L which, for example, is open at one end, x = 0, and closed at the other, x = L.
At the open end the pressure is constant, so p(0, t) = 0. At the closed end the velocity must be 0, so
that u(L, t) = 0. For periodic disturbances of the forms eiωt the pressure and velocity therefore have
the forms

u′(x, t) = −Acos
(πx

2L

)
eiωt , (6.6.7a)

p′(x, t) = −Aρ asin
(πx

2L

)
eiωt . (6.6.7b)

Velocity fluctuations are maximum at x = 0 and pressure fluctuations are maximum at x = L.

6.6.1 Transfer matrices (transmission matrices) for fluid components

It is of considerable interest to be able to couple different fluid elements to describe unsteady
disturbances in general fluid systems. For simple systems the most direct approach is to work from
the conservation equations for each of the components. As the number of components increases,
however, it is helpful to have a more formal procedure to build up the system model. Transfer
matrices (also referred to as transmission matrices) provide such a methodology for dynamically
coupling fluid components (Brennen, 1994; Lucas et al., 1997; Munjal, 1987). The idea is that
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(in a one-dimensional sense) for any component the pressure and velocity at the inlet can be written
in terms of the pressure and velocity at the exit as follows:[

p′

ρ au′

]
i

=
[

2 × 2 transfer matrix
for the element

] [
p′

ρ au′

]
e

. (6.6.8)

In (6.6.8) the quantity ρ a has been introduced as a multiplier for the disturbance velocity u′ so the
matrix elements are non-dimensional.

6.6.1.1 The transfer matrix for a duct

We develop the transfer matrices for some common fluid system components, starting with the
constant area duct. Using the forms of pressure and velocity given in (6.6.4) and substituting the
values at x = −L (inlet) and x = 0 (exit), the transfer matrix for a constant area duct of length L can
be represented as

[
p′

ρ au′

]
x=−L

=
[

1
2

(
eik+ L + e−ik− L

)
1
2

(
eik+ L − e−ik− L

)
1
2

(
eik+ L − e−ik− L

)
1
2

(
eik+ L + e−ik− L

)
] [

p′

ρ au′

]
x=0

. (6.6.9)

For situations in which the Mach numbers are small enough so the effect of the mean velocity can
be neglected, (6.6.9) takes the form[

p′

ρ au′

]
x=−L

=
[

cos kL isin kL
isin kL cos kL

] [
p′

ρ au′

]
x=0

(6.6.10)

with k = 2π/disturbance wavelength = ω/a.
An important simplification of the duct transfer matrix occurs when the duct length and disturbance

wavelength are such that (kL)2 = (ωL/a)2 � 1. If so (see Section 2.2.2), the flow in the duct can be
considered incompressible, and, for a constant area duct, the inlet and exit velocities are the same.
There can, however, be a difference between the (inlet and exit) pressure perturbations across the
duct. As seen below in connection with fluid system behavior, this pressure difference needs to be
included in describing the phenomena of interest.

When (ωL/a)2 � 1 the transfer matrix for a duct can be derived using the incompressible form
of the one-dimensional continuity equation and the one-dimensional momentum equation, applied
to periodic disturbances. For a constant area duct these are:

u′
e = u′

i = u′,

p′
e − p′

i = −ρL
∂u′

∂t
= −iωρLu′.

The transfer matrix for incompressible flow in a constant area duct thus has the form[
p′

ρ au′

]
i

=
[

1 (i Lω/a)
0 1

] [
p′

ρ au′

]
e

. (6.6.11)

Under these conditions the duct has only inertance and no mass storage capability.
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6.6.1.2 The transfer matrix for a plenum (chamber of large cross-section)

Another useful component model is a plenum or chamber of large cross-sectional area such that
velocities inside are small compared to the values in the inlet and outlet ports. The only attribute of
this type of element is the mass storage capability, or capacitance. The pressures at the chamber inlet
and exit are the same, but the velocity at the exit can differ from that at the inlet because of transient
mass storage. The transfer matrix for a capacitance has the form[

p′

ρ au′

]
i

=
[

1 0
(iωV/(a A)) 1

] [
p′

ρ au′

]
e

, (6.6.12)

where V is the chamber volume and A is the inlet and exit port area.

6.6.1.3 The transfer matrix for a contraction or expansion

Contractions or expansions, such as those that occur in nozzles and diffusers, can also be handled
through a transfer matrix approach. If the element is such that (ωL/a)2 � 1, where L is the relevant
length scale, there is no mass storage and the volume flow is the same at the inlet and exit. In
addition, if the reduced frequency is low enough that convective accelerations dominate over local
accelerations, the Bernoulli equation (or the momentum equation in the case of the sudden expansion)
can be used in a quasi-steady manner to link the velocities and pressures at the inlet and outlet of
the device. To derive the transfer matrices for contractions or expansions at low mean Mach number,
we linearize the steady-state relation between pressure change and flow velocity about the operating
condition of interest. For a nozzle with AR = Ae/Ai the transfer matrix is
 1

Mi

AR
(1 − AR2)

0 AR


 . (6.6.13a)

For a sudden expansion the result is[
1 2Mi (1 − AR)
0 AR

]
. (6.6.13b)

6.6.1.4 The transfer matrix for a screen, perforated plate, or throttle

For low Mach number flows through screens or perforated plates, the pressure drop across the screen
is found to be related to velocity by

�p = K 1
2ρu2. (6.6.14)

In (6.6.14) K is a constant whose value depends on screen solidity, or blocked area.4 Viewed on the
scale of the screen mesh elements, the screen is a contraction (through the area between the individual
screen wires) followed by sudden expansion and mixing out. The pressure changes in both of these
processes scale with the dynamic pressure of the entering flow. Unless one is in a regime in which

4 The value of K for a round wire screen of 50% solidity is roughly 2. For other values of solidity, K can be estimated as
K = 0.8s/(1 − s)2, where s is the solidity (Cornell, 1958).
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Figure 6.18: Linearized relation between screen pressure drop and velocity.

there are strong effects of Reynolds number (wire diameter Reynolds number much less than 103),
the scaling for pressure drop versus flow rate is quadratic.

For small disturbances about a time mean velocity, the screen pressure drop can be linearized
about the time mean, as shown in Figure 6.18. The transfer matrix relating the disturbance quantities
is[

p′

ρ au′

]
i

=
[

1 !

0 1

] [
p′

ρ au′

]
e

, (6.6.15)

where ! is the non-dimensional slope of the screen pressure drop versus screen mass flow per unit
area curve, given by

! = KM.

This quantity is also known as the “acoustic throttle slope”. In deriving (6.6.15) the screen pressure
drop is taken as small compared to the ambient pressure level so density, and hence velocity, is the
same on both sides of the screen. There is an entropy increase across the screen and in the regions
of wake mixing (which occurs in roughly ten mesh spacings or less), but this can be lumped into the
description of screen loss and the flow is well approximated using the isentropic equations outside
the screen.

Fluid elements such as junctions or throttles can also be treated by transfer matrix methods. At
a junction the sum of all the volume flows is the same upstream and downstream of the junction.
Throttles are essentially resistances and are treated in a similar fashion to a screen, although their
mean operating point, and hence equivalent value of K, is a function of system operating point rather
than fixed by geometry as with a screen.
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6.6.1.5 The transfer matrix for a compressor or pump

Compressors or pumps are elements of many fluid systems. These devices differ in kind from the
components described so far because they are active, in the sense of being able to add mechanical
energy into the system. Steady-state performance of a compressor or pump is often presented as
pressure rise versus mass flow or axial velocity for a constant rotational speed, 
rm, where rm

is the mean radius of the rotating blade row. In non-dimensional terms we define the pressure rise
coefficient,� =�p/[ρ(
rm)2], as a function of the axial velocity parameter,�= u/
rm (essentially
a non-dimensional mass flow): � = �(�). For low reduced frequency the compressor operating
point can be viewed as tracking quasi-steadily along the steady-state (�, �) curve, or “compressor
characteristic”. For small disturbances, the excursions can be approximated as linear about the time
mean operating condition. The quasi-steady linear approximation to the pressure rise versus flow
relation is ψ ′ = (d�/d�)φ′, as shown in Figure 6.19, where ψ ′ and φ′ are the departures from the
time mean condition and (d�/d�) is evaluated at this time mean condition.

From the above the transfer matrix for a compressor or pump with pressure rise small compared
to the ambient level is[

p
ρ au

]
i

=
[

1 −�
0 1

] [
p
ρ au

]
e

. (6.6.16)

In (6.6.16) � is the “acoustic compressor slope” (Gysling, 1993), defined as

� = 
rm

2a

∂�t/t

∂�
, (6.6.17)

where � t/t is the stagnation pressure rise characteristic for the machine. Equation (6.6.16) is based
on treatment of the pump or compressor as an element with (ωL/a)2 � 1, so the flow within the
element is taken as incompressible.

A compressor or pump in a fluid system is often followed by a plenum in which there is essentially
no static pressure rise. Under these conditions the stagnation pressure rise from inlet to plenum
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pressure is actually the inlet stagnation pressure to exit static pressure rise, � t/s, and the appropriate
slope is ∂�t/s/∂�. The quantity � t/s will be used as the relevant compressor pressure rise (denoted
by �C) in what follows. Although not dealt with here, it can be mentioned that more complicated
pumping devices can be modeled using this type of approach, for example cavitating turbopumps,
in which there can also be mass flow storage (Ng and Brennen, 1978; Greitzer, 1981).

6.6.2 Examples of unsteady behavior in fluid systems

Transfer matrices have been employed in the description of many complex fluid systems, particularly
with respect to the acoustics of these devices (Munjal, 1987; Poinsot et al., 1987; Lucas et al., 1997).
The discussion here is confined to several examples which show both how the methodology is used
and illustrate features of the dynamic behavior of fluid machinery.

6.6.2.1 The Helmholtz resonator

The Helmholtz resonator is a compliance plus an inertance in series, with the compliance closed at
the downstream side (Dowling and Ffowcs Williams, 1983). The properties of this system can be
worked out by multiplying the matrices from (6.6.11) and (6.6.12)[

p′

ρ au′

]
i

=
[

1 (i Lω/a)
0 1

] [
1 0

(iVω/(a A)) 1

] [
p′

ρ au′

]
e

. (6.6.18)

The two boundary conditions that apply are a pressure fluctuation equal to 0 at the inlet and a velocity
fluctuation equal to 0 at the exit. Carrying out the matrix multiplication and imposing the boundary
conditions leads to an equation for the frequency of the oscillation, ω, which is an eigenvalue of the
system

ω = a

√
A

VL
. (6.6.19)

6.6.2.2 A model for gas turbine engine system instability

A slightly more complex example is shown in Figure 6.20, which models a gas turbine engine
system. There are four elements: (i) a duct, (ii) a compressor, (iii) a plenum or chamber (typically
the combustion chamber), and (iv) a throttle (or turbine nozzle). The transmission matrices for this
arrangement are (with the assumption that both M2 and (ωL/a)2 � 1)[

p′

ρ au′

]
i

=
[

1 i Lω/a
0 1

] [
1 −�
0 1

] [
1 0

iVω/(a A) 1

] [
1 !

0 1

] [
p′

ρ au′

]
e

. (6.6.20)

The boundary conditions are no pressure fluctuations at the inlet of the duct or the exit of the throttle.
Carrying out the matrix multiplications leads to an eigenvalue equation for the frequency:

ω2 + ia

(
�

L
− A

V!

)
ω + a2 A

V LT
(�−!) = 0. (6.6.21)
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Equation (6.6.21) has complex roots in general:

ω = −i
a

2

(
�

L
− A

V!

)
± i

a

2

√(
�

L
− A

V!

)2

+ 4A

V L!
(�−!). (6.6.22)

6.6.2.3 Static and dynamic instability

The imaginary part of the roots in (6.6.22) define the growth or decay of oscillations and hence the
stability or instability of the system to small disturbances. There are two criteria corresponding to
static and dynamic stability respectively:5

!−� < 0 or � > !, static instability, (6.6.23)

and

A

V!
− �

L
< 0 or �! >

L A

V
, dynamic instability. (6.6.24)

5 The terms dynamic and static instability can be made more quantitative in the context of a second order system described
by the equation

d2x

dt2
+ 2α

dx

dt
+ βx = 0,

where α and β are constants. The transient response to an initial perturbation is given by

x = A exp

[
(−α +

√
a2 − β)t

]
+ B exp

[
(−α +

√
a2 − β)t

]
,

where A and B are determined by the initial conditions. If β > α2, the condition for instability is simply α < 0, which
corresponds to oscillations of exponentially growing amplitude. Instability will also occur if β < 0, independent of the
value of α; however, in this case the exponential growth is non-oscillatory. It is usual to denote these two types of instability
as dynamic and static respectively. Static stability (β > 0) is a necessary but not sufficient condition for dynamic stability.
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Figure 6.21: Static and dynamic compression system instability.

In terms of the compressor and throttle characteristic curves, �C and �T, the criteria are:

∂�C

∂�
>
∂�T

∂�
, static instability (6.6.25)

and

∂�C

∂�
· ∂�T

∂�
>

1

B2
, dynamic instability. (6.6.26)

In (6.6.26) the parameter B is defined as

B = 
rm

2a

√
V

AL
.

The throttle characteristic, �T, is given by �T = �pthrottle/[
1
2ρ(
rm)2] = χ�2.

The static stability criterion in (6.6.25) indicates the system is unstable if the slope of the com-
pressor pumping characteristic is steeper than the slope of the throttle pressure drop curve. Static
stability can be assessed from the steady-state attributes of a system, which in this case are the slopes
of the compressor and throttle characteristics. For a mass-spring-damper system, static instability
corresponds to a “negative spring constant”, with a pure exponential divergence from the initial
equilibrium position (Greitzer, 1981).

The left-hand side of Figure 6.21 shows a sketch of a pressure rise versus mass flow compressor
characteristic as well as two throttle lines (pressure drop versus mass flow for the throttle) to illustrate
the situation for static stability. The steady-state operating point of the compressor is at a condition
where the compressor and throttle flows are equal and the pressure rise across the compressor is the
same as the pressure drop across the throttle. This occurs at the intersection of the compressor and
throttle curves. Points A, B, and C are three such points. Inspection of the pressure changes that occur
in the throttle and the compressor in response to a small mass flow decrease from the steady-state
operating point shows that A and C are statically stable, because a pressure imbalance will be set
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Figure 6.22: Physical mechanism for compression system dynamic instability. Point 0 on the compressor char-
acteristic is the mean operating condition and the two short vertical lines denote a nominal oscillation amplitude.

up to return the system to the initial operating point. For point B, however, at which the throttle line
is tangent to the compressor characteristic, the pressure imbalances move the operating point away
from the initial value. The system is therefore statically unstable.

It is the dynamic stability criterion, represented by (6.6.26), which is most important in practice.
Dynamic instability can occur even if the system is statically stable. Criteria for dynamic instability
depend on the unsteady behavior of the system and thus cannot be found from knowledge of steady-
state attributes. In terms of the analogy between the compression system and the mass-spring-damper
system of Figure 6.20, dynamic instability corresponds to “negative damping”.

6.6.2.4 Mechanism for dynamic compression system instability

The mechanism of dynamic instability for the compression system is associated with operation on the
positively sloped part of the compressor characteristic. For this condition fluctuations in compressor
mass flow have the effect of providing negative mechanical damping. This can be seen in Figure 6.22,
which presents sketches of compressor characteristics, instantaneous disturbances in mass flow and
pressure rise, and their product; the product is the instantaneous flux of mechanical energy out of
the compressor over and above the steady-state value. For operation on the positively sloped part
of the compressor curve, high mass flow and high pressure rise occur together, giving rise to a net
flux of disturbance mechanical energy. For operation on the negatively sloped part of the compressor
curve, high mass flow occurs at the same time as the low pressure rise and the net effect is to
extract energy from the oscillations. Whether instability occurs in a specific system depends on the
balance between mechanical energy fed into the oscillations by the compressor and that extracted
by the throttle (in which dissipation occurs) but the above description shows how the compressor
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Figure 6.23: One-dimensional model of compression system with distributed inertance and capacitance.

is able to feed mechanical energy to grow the oscillation amplitude. For situations in which the
downstream volume is large in a non-dimensional sense (more precisely, if the non-dimensional
parameter B = (
rm/2a)

√
V/AL is large (Greitzer, 1981)) the criterion for the onset of dynamic

instability becomes a statement that instability occurs when the compressor operating point passes
the peak of the pressure rise curve. We return to this point in Section 6.6.3.

6.6.2.5 Instability in distributed (non-lumped parameter) fluid systems

The above examples are all in the context of lumped parameter descriptions of a fluid system, but there
are many situations in which disturbance spatial structure influences both frequency response and
stability. Figure 6.23 illustrates a compressor/throttle combination, in which these two components sit
at different stations in a constant area duct. In this situation, as indicated schematically in Figure 6.24,
closing the throttle changes the behavior of the system from one similar to an open-duct mode to
one that is nearly a closed/open mode.

Analysis of this system can be carried out with four transfer matrices: in the latter there is distributed
capacitance and inertance. The representation in terms of transfer matrices is[

p′

ρ au′

]
x=−L

=
[

Z1 Z2

Z2 Z1

] [
1 −�
0 1

] [
Z3 Z4

Z4 Z3

] [
1 !

0 1

] [
p′

ρ au′

]
x=ζ L

. (6.6.27)

The matrix elements Zi in the two duct transfer matrices in (6.6.27) correspond to the terms for
constant area ducts given in (6.6.9). Applying boundary conditions of no pressure disturbances
downstream of the throttle and at the upstream end of the inlet duct leads to an eigenvalue equation:

! [Z1 Z3 + Z4(Z2 − Z1�)] + Z1 Z4 + Z3(Z2 − Z1�) = 0. (6.6.28)

Solutions of (6.6.28) for the damping ratio and frequency as functions of acoustic throttle slope are
shown in Figure 6.25. The upper part of the figure gives the critical damping ratio (damping/value of
damping for which oscillatory motion does not occur) as a function of acoustic throttle slope for three
compressor operating points, one on the negatively sloped part of the characteristic, one at the peak
pressure rise (zero slope) and one having a positive slope of pressure rise versus flow characteristic.
The increase in throttle slope causes a stable operating system to become unstable. The bottom part
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of the figure indicates a decrease in frequency of close to a factor of 2, corresponding to the modal
behavior evolving from open duct to closed/open.

6.6.3 Nonlinear oscillations in fluid systems

In addition to the identification of conditions for the onset of system instability, behavior subsequent
to the onset, such as the amplitude and eventual form of the disturbance, is also of interest. This
question is beyond the scope of linear analysis. To answer it we need to address nonlinear oscillations
in these non-conservative systems. For nonlinear oscillations the behavior depends on conditions in
a possibly large region surrounding the initial operating point, rather than just at the initial operating
point as in Section 6.6.2, so the motions have a global, rather than local, character.

The basic compression system model of Section 6.6.2 consisting of the compressor duct, the
representation of the compressor by its pumping characteristic, the plenum or collector, and the
throttle can again be employed. Now, however, the compressor pressure rise is not linearized about
an initial operating point but rather is specified as a nonlinear function of compressor mass flow,�C =
�C(�). The throttle mass flow and plenum pressure are related by�T =�T(�), also nonlinear. The
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Figure 6.25: One-dimensional modes of a compression system as a function of acoustic throttle slope; results
for compressor slopes of −10, 0, 10 (Gysling, 1993).

quantities �C(�) and �T(�), the steady-state curves of compressor pressure rise as a function
of mass flow and throttle mass flow as a function of plenum pressure, are both applied here in a
quasi-steady manner.

Because we are interested in the time domain behavior (rather than the eigenvalues as in Section
6.6.2) it is useful to express the system response in terms of the evolution of appropriate state vari-
ables. Using the Helmholtz resonator model of the system described in Section 6.6.26 and applying
conservation of momentum to the fluid in the compressor duct and conservation of mass to the
plenum, the representation of the compression system dynamics in non-dimensional form is:

dφ

dt̃
= B[�C (φ) − ψ], momentum equation for the compressor duct, (6.6.29)

dψ

dt
= 1

B
[φ −�T (ψ)] , conservation of mass in plenum. (6.6.30)

6 This implies that the system pressure rise is much less than the ambient level so that in the plenum p′ = (γ p/ρ)ρ′, with p
and ρ the mean values, is still a good approximation.
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The two system state variables are instantaneous (non-dimensional) compressor mass flow, φ, and
plenum pressure,ψ . The non-dimensional time variable in (6.6.29) and (6.6.30) is t̃ =ωHt, whereωH

is the Helmholtz resonator frequency. The other quantities are defined in Section 6.6.2. (There should
be no confusion with the velocity potential ϕ used in Sections 6.3 and 6.4 or the streamfunction ψ
of Section 6.5.)

6.6.3.1 Limit cycle oscillations

Numerical solutions of (6.6.29) and (6.6.30) are available elsewhere (Cumpsty, 1989; Fink, Cumpsty
and Greitzer, 1992) and we concentrate here on the qualitative features of the oscillation which can be
discussed with reference to the mechanical energy input over different parts of the cycle. The dynamic
system represented by (6.6.29) and (6.6.30) exhibits a widely encountered behavior known as limit
cycle oscillations. Limit cycles are an inherently nonlinear motion of non-conservative systems in
which energy is fed into the oscillation over part of the cycle and extracted over the rest, with the
amplitude of the resulting motion determined by the balance between energy input and dissipation
(Ogata, 1997; Strogatz, 1994). To derive conditions under which periodic motions exist we thus
examine a quadratic quantity analogous to mechanical energy7 and determine under what conditions
periodic motion (rather than growth or decay) will occur.

In the discussion it is convenient to transform the state equations to a coordinate system in which
the origin is at the system initial operating point (φ0, ψ0). This is the intersection of the steady-state
throttle and compressor characteristics and is an equilibrium point for the system. The transformation
is implemented through the substitutions:

φ̂ = φ − φ0, (6.6.31a)

ψ̂ = ψ − ψ0, (6.6.31b)

�̂ = �C (φ̂ + φ0) −�C (φ0), (6.6.31c)

�̂T = �T (ψ̂ + ψ0) −�T (ψ0). (6.6.31d)

The resulting representation of the transformed origin is shown in Figure 6.26, where the compressor
and throttle curves are also indicated. The operating point shown is on the positively sloped part of
the compressor characteristic, where, from the arguments in Section 6.6.2, linear instability might
be expected.

The solution behavior can be given in terms of φ and ψ as functions of time, but it is often more
useful to plot the solution trajectory in the φ–ψ plane with time as a parameter. A sketch of such a

7 The concept can be readily illustrated for a second order differential equation corresponding to a mass-spring damping
system with a nonlinear frictional force of the form ε(x2 − 1)ẋ , where ẋ denotes dx/dt. The non-dimensional differential
equation for the system is ẍ + ε(x2 − 1)ẋ + x = 0, known as the Van der Pol oscillator (Stoker, 1950; Morse and Ingard,
1968; Strogatz, 1994). Multiplying the differential equation by ẋ and integrating over a cycle leads to an expression for
the change in mechanical energy �(ẋ2 + x2)/2 over the cycle. This increases, decreases, or remains constant depending
on whether the integral

∫
(1 − x2)ẋ2dt is positive, negative, or zero. For small amplitude oscillations (amplitude < 1) the

integral, which represents the mechanical power input associated with the damping force, is positive. For larger amplitudes
(amplitude >1), however, the power input is negative. The eventual amplitude of the motion is set when the oscillation
grows to a level at which the integral is zero and the power input over one part of a cycle is balanced by the dissipation over
the rest of the cycle.
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(φ0, ψ0).

trajectory is shown as the dashed line in the figure. We employ this description of the motion in the
discussion that follows.

6.6.3.2 Liapunov function description of nonlinear fluid system oscillations

A general approach for determining the overall behavior of nonlinear oscillations in a given system
is to examine an energy-like function, or “Liapunov function” (Ogata, 1997; Strogatz, 1994), and
establish under what conditions the energy-like quantity grows or decays. Although this method
does not provide details of the trajectory, it allows assessment of stability and information about the
existence and qualitative character of limit cycles. The choice of Liapunov function, denoted here by
V, is not unique, but an appropriate candidate for the compression system is (Simon and Valavani,
1991)

V (φ̂, ψ̂) = 1

2

(
1

B
φ̂2 + Bψ̂2

)
. (6.6.32)

The first term on the right-hand side of (6.6.32) can be viewed as representing the incremental
kinetic energy of the gas in the compressor duct and the second the incremental potential energy
stored through compression of the gas in the plenum. Curves of constant V are nested ellipses
around the origin of the new coordinates, with increasing V corresponding to increasing energy in
the motion. The shapes of the ellipses are dependent on the B-parameter with larger values of B
leading to elongation of the ellipses in the horizontal direction (larger mass flow fluctuations).
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Differentiating (6.6.32) with respect to time, and substituting the system equations in the resulting
expression (this amounts to taking the derivative along a trajectory) gives

dV

dt̃
= φ̂ · �̂C (φ̂) − φ̂T (ψ̂) · ψ̂. (6.6.33a)

If (6.6.33a) is integrated over a time interval �t = tfinal − tinitial, the change in V is found as

�V |final
initial =

∫
[φ̂ · �̂C (φ̂) − φ̂T (ψ̂) · ψ̂]dt . (6.6.33b)

The change in the energy-like quantity, V, thus depends on the instantaneous mass flow and pressure
rise and the shape of the resistive-like elements (the curves of compressor and throttle pressure
change versus mass flow). For a limit cycle �V over a period of the cycle must be 0.

The two terms on the right-hand side of (6.6.33) are products of pressure and mass flow and thus
power-like. The first, which can be interpreted as incremental mechanical power production due to
the oscillating flow through the compressor, is positive or negative depending on the operating point
and amplitude. The second can be interpreted as incremental mechanical power dissipation in the
throttle due to the oscillations and is always a positive quantity.

For small amplitude motions around operating points on the positively sloped part of the compres-
sor characteristic the power production term is positive, as discussed in Section 6.6.2. This situation
is sketched in Figure 6.26, where the shaded rectangles represent the values of the two terms in the
quantity dV/dt̃ at one particular point on a cycle. For large enough amplitude oscillations it can be
seen that there are times during the cycle, when the flow is either large and positive or large and
negative, that the compressor acts to dissipate the mechanical energy associated with the oscillation.
At such conditions the product φ̂ · �̂C (φ̂), which represents an energy source, is negative. The ampli-
tude of the limit cycle (although the term “amplitude” is used, oscillations associated with nonlinear
systems are non-sinusoidal) is set by the balance between power production and dissipation in both
compressor and throttle.

The B-parameter does not occur explicitly in (6.6.33) but it has a role through the dynamic
equations in determining the relation between the compressor and throttle mass flow excursions and
thus the relative sizes of the power production and dissipation terms. Larger values of B mean larger
compressor mass flow variations for a given throttle mass flow fluctuation, and hence a trend towards
more vigorous oscillatory motion.

An example of a limit cycle oscillation is given in Figure 6.27 which shows the measured and
computed transient behavior of a compression system with a centrifugal turbocharger (Hansen,
Jorgensen, and Larsen, 1981). The axes are non-dimensional mass flow and pressure rise. The solid
lines are the measured compressor pressure rise curve and the throttle line, which have similar shapes
to those sketched in Figure 6.26. The solid points are the measurements, and the dashed line is the
computed trajectory given by a model which is a slightly extended version of that described by
(6.6.29) and (6.6.30). In line with the arguments presented, the compressor characteristic is such
as to make dV/dt̃ positive for the region near the initial operating point, and negative at values
of mass flow away from this region (i.e. at large positive, or negative, flows). The measurements
of mass flow, made with a hot wire, have some scatter especially in the reverse flow region, but
the limit cycle nature of the oscillation, which is known as compressor surge, is evident. Further



320 Unsteady flow

1.6

1.4

1.2

1.0

0.8

0.6
- 0.2 0 0.2 0.4

 φ

 ψ
Throttle line 

Compressor
pressure rise 

Limit cycle

Model
Experiment

C

T

Ψ, Ψ  (Φ)

Φ (Ψ)

Φ,

Figure 6.27: Surge limit cycle in a centrifugal compression system, B = 0.55 (Hansen et al., 1981).

discussion of surge is given by Cumpsty (1989), Stetson (1984), Greitzer (1981), and Fink et al.
(1992).

6.6.3.3 An energy approach to instability onset

Finally, we can connect the approach based on energy considerations to the discussions of instability
onset in Section 6.6.2.2. For assessment of instability onset it is sufficient to consider small pertur-
bations in mass flow and plenum pressure, φ′ and ψ ′. Equations (6.6.29) and (6.6.30) thus take the
linearized form (again with t̃ = ωHt)

dφ′

dt̃
= B

[
d�C

d�
φ′ − ψ ′

]
, (6.6.34)

dψ ′

dt̃
= 1

B

[
φ′ −

(
d�T

d�

)
ψ ′
]

= 1

B


φ′ − ψ ′(

d�T

d�

)

 . (6.6.35)

In (6.6.34) and (6.6.35) the derivatives of the pressure versus mass flow characteristics are evaluated
at the equilibrium point. Equations (6.6.34) and (6.6.35) can be combined into a single equation for
φ′ or ψ ′, which is (6.6.21) in another guise:

∂2ψ ′

∂ t̃2
+


 1

B

(
d�T

d�

) − B

(
d�C

d�

) ∂ψ ′

∂ t̃
+


1 −

(
d�C

d�

)
(

d�T

d�

)

ψ ′ = 0. (6.6.36)

From (6.6.36) the requirement for stability to small disturbances (i.e. the requirement that all pertur-
bations of the form est̃ have a negative real part) is that both quantities in square brackets are positive.
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The first of these is a resistance-like term. The condition (1 − B2(d�C/d�)(d�T /d�) = 0) marks
the point at which system damping goes from positive to negative. Larger values of B, more positive
compressor slopes, and steeper throttle lines all promote instability. From the form of the term it can
be seen that for either very steep throttle lines, (d�T /d�) → ∞, or very large B, instability occurs
at the peak of the compressor characteristic, (d�C/d�) = 0.

Examination from an energy perspective using the Liapunov function gives further insight into
this behavior. For the linearized system the quantity dV/dt is

dV

dt̃
=
(

d�C

d�
φ′
)
φ′ −


 ψ ′

d�T

d�


ψ ′ =

(
d�C

d�

)
(φ′)2 − (ψ ′)2(

d�T

d�

) . (6.6.37)

Integrating (6.6.37) over a cycle yields

�Vcycle = d�C

d�
〈(φ′)2〉 − 〈(ψ ′)2〉

d�T

d�

. (6.6.38)

The quantities 〈(φ′)2〉 and 〈(ψ ′)2〉 are the mean square values of perturbations in compressor mass
flow and plenum pressure over the cycle and are positive definite. The value of �Vcycle depends
on the ratios of these quantities and the slopes of the compressor and throttle characteristic curves.
Equation (6.6.38) is analogous to a net mechanical energy input to the oscillations and extends the
qualitative arguments of Section 6.6.2 to include dissipation in the throttle.

Substituting the values of 〈(φ′)2〉 and 〈(ψ ′)2〉 from solution of (6.6.34) and (6.6.35) and the
condition B2(d�C/d�)(d�T /d�) = 1 (which holds at the stability boundary) into (6.6.38) reveals
that the condition �Vcycle = 0 corresponds to instability onset. For a given compressor operating
condition, (6.6.38) implies that as the throttle line is steepened the dissipation in the system associated
with the perturbations decreases relative to the energy production, and the tendency towards instability
is increased. For the infinitely steep (vertical) throttle line, there is no dissipation in the throttle
(because the mass flow perturbations in the throttle are zero) so any positive slope of the compressor
characteristic is enough to cause instability. Because throttle slopes are generally steep, operation on
the positive slope is to be avoided for compressors and pumps. Equation (6.6.36) and the subsequent
discussion also highlight the point that dynamic instability associated with negative damping, rather
than static instability, is the more severe problem in practice.

6.7 Multi-dimensional unsteady disturbances in a compressible inviscid flow

We now describe the general unsteady small disturbances which can exist in an inviscid compressible
flow. The velocity and thermodynamic quantities are once again decomposed into a steady, uniform
part, denoted by u, p, ρ, etc, and a small disturbance denoted by u′, p′, ρ ′. The latter have amplitudes
such that terms involving products of disturbance quantities can be neglected and a linearized version
of the equations of motion serves to describe the behavior of the disturbances. The disturbance
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equations are thus:

∂ρ ′

∂t
+ u · ∇ρ ′ + ρ∇ · u′ = 0, (6.7.1a)

∂u′

∂t
+ u · ∇u′ + 1

ρ
∇ p′ = 0, (6.7.1b)

∂s ′

∂t
+ u · ∇s ′ = 0. (6.7.1c)

Equations (6.7.1) are supplemented by the linearized form of the equation of state for a perfect gas
with constant specific heats.

Because (6.7.1) are linear, a general solution can be constructed by superposition of particular
solutions. We exploit this fact, choosing solutions which each emphasize one particular aspect of the
properties of the general solutions.

We start by taking the curl of (6.7.1b) to obtain, using D( )/Dt = (∂/∂t + u · ∇)( ),

Dω′

Dt
= 0. (6.7.2)

Equation (6.7.2) states that vorticity disturbances are convected without alteration by the uniform
background flow. We can thus consider solutions to (6.7.2) which have constant density and which
have the velocity field associated with ω′ also convected unchanged by the background flow. No
acceleration of a fluid particle is associated with these rotational disturbances, and there are corre-
spondingly no pressure perturbations.

Equation (6.7.1c) describes the behavior of entropy variations. Solutions to (6.7.1c) have variations
in density but no associated variations in pressure and satisfy

Ds ′

Dt
= Dρ ′

ent

Dt
= 0, (6.7.3)

where ρ ′
ent are the density fluctuations associated with entropy non-uniformities. The entropic density

disturbances, like the vorticity disturbances, are convected unchanged by the background flow, and
there are no variations in velocity associated with ρ ′

ent.
The two types of perturbation discussed satisfy requirements for small disturbances of vorticity

and entropy. To obtain a complete solution to (6.7.1), we now seek disturbances which are irrotational
and which have uniform entropy so that

u′
irrot = ∇ϕ and s ′

irrot = 0, (6.7.4)

where the subscript “irrot” signifies that these disturbances are irrotational. For these disturbances
(6.7.1a) and (6.7.1b) can be written as

1

ρ

Dρ ′
irrot

Dt
+ ∇2ϕ = 0 (6.7.5a)

and

D

Dt
∇ϕ + 1

ρ
∇p′

irrot = 0. (6.7.5b)
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Eliminating ρ ′ and ρ ′ from (6.7.5) yields an equation for the disturbance velocity potential (or,
equivalently, for the static pressure disturbances) as

∇2ϕ − 1

a2

D2ϕ

Dt2
= 0. (6.7.6)

Disturbances in velocity potential are propagated at the local speed of sound relative to the background
flow. These irrotational (or acoustic) disturbances have an associated static pressure variation which
also propagates at the local speed of sound relative to the background flow.

To review, there are three types of small amplitude disturbances which can be superposed on a
uniform, steady, compressible background flow: an irrotational velocity perturbation, which carries
the static pressure information, a vorticity perturbation (or equivalently a rotational velocity per-
turbation), and an entropy perturbation. Any solution to (6.7.1) can be written as a combination of
these as

u′ = u′
rot + ∇ϕ, (6.7.7a)

s ′ = −cp
ρ ′

ent

ρ
, (6.7.7b)

which have the three independent disturbances. Other disturbance quantities such as

ρ ′ = ρ ′
irrot + ρ ′

ent, (6.7.8a)

p′ = p′
irrot, (6.7.8b)

can then be derived from (6.7.7).
With a uniform background flow, the three types of disturbance do not interact. The irrotational

velocity disturbances propagate at the speed of sound relative to the background flow, while the
rotational velocity disturbance and the entropy disturbance are convected without change at the
velocity of the background flow. Coupling between disturbances arises, as shown below, either
through boundary conditions or when the background flow is non-uniform.

If compressibility effects are negligible, a simpler form of the equations is obtained. In this case,
all the variation in density must come from the entropy perturbations (from local heating or cooling).
The form of (6.7.7) for situations in which compressibility is not important is

Dρ ′

Dt
= 0. (6.7.9)

The equation for the velocity potential under these conditions is Laplace’s equation:

∇2φ = 0. (6.7.10)

Equations (6.7.9) and (6.7.10), plus (6.7.2) which is unaltered, describe the behavior of small distur-
bances to a uniform flow in an incompressible, non-uniform density, fluid. If the density is constant,
only (6.7.10) and (6.7.2) are needed.
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6.8 Examples of fluid component response to unsteady disturbances

The flow disturbances described are independent if the background flow is uniform8 which, for an
internal flow, can only occur in a uniform duct. Disturbance interaction (or coupling) is therefore
associated with boundary conditions including variations in geometry along the flow direction or the
presence of a screen or device such as a turbomachine. Convection of a vorticity perturbation into a
screen or turbomachine, for instance, generally results in the modification of the original disturbance,
the creation of pressure disturbances (both upstream and downstream), and the creation of entropy
disturbances on the downstream side of the device.

In the following sections we present examples of the behavior of unsteady small amplitude distur-
bances in a compressible flow. Two main aspects are illustrated. First is the coupling of disturbances,
shown for a nozzle and a turbomachine blade row. Second is the change in component behavior, in
other words the dynamic response of the device, as the reduced frequency varies. This topic was
introduced in Section 6.3 and the present section builds on the concepts developed there.

6.8.1 Interaction of entropy and pressure disturbances

6.8.1.1 Density waves in an incompressible flow

We begin with one-dimensional flows in which the only disturbances are entropy and pressure. The
results to be expected can be motivated in a qualitative manner through the model problem of constant
velocity convection of an incompressible, non-uniform density fluid through a nozzle. As sketched
in Figure 6.28 the density variation we impose has a wavelength in the flow direction which is long
compared to the nozzle length. The reduced frequency of the unsteady flow in the nozzle is therefore
much less than unity and the nozzle response quasi-steady. The pressure difference across the nozzle
is thus given by pi − pe = 1

2ρu2[(1/AR2) − 1], where pi and pe are the values just upstream and
downstream of the nozzle and ρ = ρ + [ρ ′(x − ut)]. If pe is constant, as would be the case if the
nozzle discharged to a large reservoir, there is a pressure fluctuation upstream of the nozzle:

p′
i = 1

2 (ρ ′) u2

(
1

AR2
− 1

)
. (6.8.1)

Equation (6.8.1) illustrates density and pressure disturbance coupling. Pressure disturbances from
this mechanism are important for density wave generation in two-phase flow (Greitzer, 1981).

6.8.1.2 Passage of an entropy disturbance through a choked nozzle

A compressible flow example concerns the pressure disturbances due to the passage of an entropy
variation through a choked nozzle with supersonic exit flow. The geometry is similar to that shown in
Figure 6.28, but the flow in the duct now has a non-zero Mach number. We describe first the behavior

8 This is not the case with a non-uniform background flow on which the disturbances are superposed, even for small amplitude
perturbations. An example of this is the parallel shear flow discussed in Section 6.5, another is the presence of mean swirl
addressed in Chapter 12.
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Figure 6.28: Pressure fluctuations at a nozzle inlet due to the passage of a convected density wave through the
nozzle; constant upstream velocity u, ρ = ρ + [ρ ′(x − ut)].

when the nozzle is short enough that the response is quasi-steady and then consider the effect of
finite reduced frequency.

If the nozzle length is such that (ωL/u)2 � 1, the flow within the nozzle can be modeled as
quasi-steady, with no mass storage within the nozzle and stagnation enthalpy the same at the inlet
and exit. The nozzle geometry is represented by inlet–outlet matching conditions derived from the
steady-flow performance of the device. The corrected flow per unit area (see Section 2.5) into the
nozzle is a function of the inlet Mach number Mi, denoted as D(Mi)

ṁ
√

RTt

Apt
√
γ

= D(Mi ) . (2.5.3)

Using ṁ/A = ρu and the condition that for a choked nozzle D(Mi) is constant, we obtain

ρ ′

ρ
+ u′

u
+ T ′

2T
− p′

p
= 0. (6.8.2)

All the quantities in (6.8.2) can be separated into irrotational (or acoustic) and entropic disturbances.
For perturbations with frequency ω, the former are of the form

ρ ′
irrot

ρ
,

T ′
irrot

T
,

p′

p
,

u′

u
∝ eiω[t−x/(u±a)]. (6.8.3)

The latter are

ρ ′
ent

ρ
,

T ′
ent

T
∝ eiω[t−x/u]. (6.8.4)

From the momentum equation, the relation between the velocity and pressure disturbances is

u′

u
= − 1

γ M

p′
irrot

p
. (6.8.5)

For the entropy disturbances,

s ′

cp
= T ′

ent

T
(since p′

ent ≡ 0). (6.8.6)
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Substituting these expressions for disturbances into (6.8.2) shows that a convected entropy dis-
turbance into a choked nozzle results in upstream propagating pressure waves from the nozzle with
strength

p′

p
=




−γ Mi

2
1 + 1

2 (γ − 1) Mi




s ′

cp
, upstream waves. (6.8.7)

The entropy disturbance also causes pressure waves at the nozzle exit. In a coordinate system moving
with the flow these disturbances propagate upstream and downstream with the speed of sound, a,
but in the absolute (nozzle fixed) reference frame the disturbances move downstream (since
u > a) and have the form

p′
+
p

= Aeiω[t−x/(u+a)], (6.8.8a)

p′
−
p

= Beiω[t−x/(u−a)]. (6.8.8b)

where A and B are constants.
The velocity disturbance waves can be directly related to the pressure disturbances in the two

directions since each wave is independent. In other words, to have matching spatial and temporal
behavior, the upstream moving pressure disturbances must be linked to upstream moving velocity
disturbances only and similarly for the downstream waves. Substitution in the momentum equation
yields the form of the velocity disturbances downstream of the nozzle:

u′
+

u
= A

1

γ M
eiω[t−x/(u+a)], (6.8.9a)

u′
−

u
= −B

1

γ M
eiω[t−x/(u−a)]. (6.8.9b)

The result in (6.8.9) can be used to derive expressions for the nozzle exit pressure perturbations
generated by an entropy perturbation convected into the nozzle inlet:

p′
+
p

= γ (Me − Mi )

4




s ′

cp

1 + (γ − 1)

2
Mi


 , (6.8.10a)

p′
−
p

= −γ (Me + Mi )

4




s ′

cp

1 + (γ − 1)

2
Mi


 . (6.8.10b)

All the preceding results refer to the situation in which the nozzle length is very short compared
to disturbance wavelength, i.e. to the low reduced frequency limit. We now wish to assess the effect
of reduced frequency on unsteady nozzle response. The nozzle geometry must be specified to carry
out the calculations, and the example chosen has a linearly varying velocity with the Mach number
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Figure 6.29: Dependence of the nozzle exit pressure amplitude on reduced frequency for entropy perturbations
in the nozzle; nozzle inlet Mach number = 0.29 (u

∗
is the sonic velocity at the throat, L

∗
is the distance from

the nozzle inlet to the throat) (Marble and Candel, 1977).

subsonic at the inlet and supersonic at exit. The reference velocity used in the definition of reduced
frequency is the sonic speed at the throat, u∗. The reference length is the distance from the nozzle
inlet to the throat, L∗: β = ωL∗/u∗.

Figure 6.29 shows the normalized amplitude of the pressure disturbance at the nozzle exit as
a function of reduced frequency. The curves are for an upstream Mach number of 0.29 and three
exit Mach numbers. The short nozzle (or long wavelength) limiting case results correspond to zero
reduced frequency and are independent of exit Mach number.

The magnitude of the pressure amplitude at the nozzle exit exhibits an initial rise with reduced
frequency then a fall-off. Examination of the amplitude and phase relationships of the p′

+ and p′
−

pressure waves shows that this behavior is associated with the phasing of these two waves. At low
reduced frequency the magnitude of each individual wave is large, but the waves are 180◦ out of
phase at the nozzle exit and their combination has a small resultant. As the reduced frequency
increases, the magnitude of the exit pressure waves decreases, but the angle between them shifts
so their resultant is larger than for zero reduced frequency. Figure 6.30 gives a phase diagram of
the composition of the exit pressure fluctuation at an exit Mach number Me = 3 to illustrate this
relationship.
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Figure 6.30: Phase diagrams showing the composition of p′
+e

and p′
−e

waves to form pressure fluctuation p′
e at

the nozzle exit; Mi = 0.29, Me = 3.0; reduced frequencies of 0, 1, 2, 3 (Marble and Candel, 1977).

6.8.2 Interaction of vorticity and pressure disturbances

Although situations with three different types of disturbances can readily be addressed, the features
of disturbance coupling are seen more clearly when only two types interact. The next example thus
concerns coupling of vorticity and pressure disturbances. Two problems are discussed related to
small amplitude disturbances incident on a two-dimensional cascade (blade row) of flat plate airfoils
in a subsonic flow. The first is a vorticity (rotational velocity) disturbance and the second is a pressure
disturbance from downstream which propagates upstream into the cascade.

6.8.2.1 A vorticity disturbance entering a blade row in an incompressible flow

The geometry for this example is shown in Figure 6.31. There is no time mean aerodynamic loading,
hence no time mean change of flow direction across the flat plate cascade. The velocity field associated
with the rotational disturbance, which is convected from far upstream to the cascade, has the form

u′
xrot

= 0 , u′
yrot

= u′
y0

eiω[t−(x/ux )], (6.8.11)

where ux is the x-component of the background velocity. No pressure disturbances are associated
with this incoming velocity field which is a pure shear disturbance. To restrict discussion to pressure
and vorticity disturbances the flow through the blades is taken as lossless and the entropy uniform
throughout.

To show the overall features of the disturbance field in a simple manner we initially take the blade
chord length, b, such that the reduced frequency, ωb/u, is much less than unity, returning later to
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Figure 6.31: Vorticity disturbance incident on a two-dimensional cascade of flat plate airfoils.

examine the effect of reduced frequency on cascade response. For ωb/u much less than unity the
cascade can be described as quasi-steadily responding to the local instantaneous conditions. This
approximation for blade row response is known as the actuator disk representation. We also assume
the blades are closely spaced (small circumferential spacing/blade chord) so the exit flow is well
guided and the angle at the exit of the cascade, αe, is constant and equal to the stagger angle (the
angle between the chord-line and the axial direction). This is the time mean flow angle throughout
(αi = αe = α).

Before looking at specific numerical results, some features can be extracted from consideration
of the incompressible flow case. From the continuity equation, the form of the imposed velocity
disturbance, and the fact that any irrotational velocity disturbance must have the same argument, one
can infer that

∂u′
x

∂x
= 0. (6.8.12)

From (6.8.11) the axial velocity disturbance is thus zero throughout the flow field.
The incoming vorticity disturbance corresponds to a cascade airfoil angle of incidence fluctuation

of α′
i = (cos2 α)u′

yrot
/ux and a variation of ρuyu′

yrot
in the incident dynamic pressure. The pressure

difference across the cascade is obtained from the linearized form of the quasi-steady Bernoulli
equation as

(pe − pi )
′ = ρuyu′

yrot
. (6.8.13)

The pressure difference across the cascade is related to the lift fluctuation on the blade. If we
consider the contour C shown in Figure 6.31, the cascade circulation per unit length in the y-
direction is the difference in the y-velocity component on the two vertical sides of the contour.
The condition of constant leaving angle plus the fact that there are no axial velocity perturbations
mean that downstream of the cascade there are no y-velocity perturbations. Hence the circulation
per unit length along the cascade is just the incoming rotational perturbation, u′

yrot
, evaluated at the

leading edge of the cascade. With u (=
√

u2
x + u2

y) the magnitude of the time mean velocity and
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�′ the perturbation in cascade circulation per unit length in the y-direction, the lift fluctuation per
unit length is given by the steady-state Kutta–Joukowski expression (see Section 2.8.3):

lift per unit length of the cascade = ρu�′. (6.8.14)

Noting that �′ = u′
yrot

, the pressure difference can be seen to be the x-component of the lift, as derived
in Section 2.8.3 for steady flow.

Because there is no downstream y-component of perturbation velocity there is no vorticity in the
flow downstream of the cascade. For a two-dimensional, inviscid, incompressible flow, vorticity is
convected with fluid particles. The vorticity flux into the upstream side of the cascade must therefore
be cancelled by vorticity shed by the blade. Applying the concepts developed in Section 3.11,
concerning vorticity changes associated with a fixed contour, to curve C in Figure 6.31, the rate of
change in cascade circulation per unit length in the y-direction is

∂�′
unit length

∂t
= ∂u′

yrot
(0, y, t)

∂t
= iωu′

y0
eiω(t−x/ux ). (6.8.15)

Associated with this change is the vorticity shed by the blades which is equal and opposite to that
convected through the cascade, creating zero velocity disturbance in the downstream region. The
production of shed vorticity in this inviscid flow is connected with the imposition of a constant
leaving angle, a constraint which is analogous to the application of the Kutta condition at the trailing
edge of an airfoil. Both of these are inviscid models for the viscous (boundary layer) processes that
cause the actual flow to leave the trailing edge smoothly. The change in circulation of the blades
arises from the ability of the leaving angle condition to capture (to a good approximation) the effect
of viscous processes on the flow external to the blade boundary layer and wake.

6.8.2.2 Vorticity and pressure disturbances entering a blade row in a compressible
subsonic flow

The approach for the compressible problem is similar to that for unsteady flow through the nozzle
and still in the low reduced frequency (actuator disk) limit. We develop equations for the disturbances
upstream and downstream of the cascade using the control volume shown in Figure 6.31 and match
them across the cascade to obtain a solution which is applicable for the whole domain (Horlock,
1978). The matching conditions are:

conservation of mass: ρi uxi = ρeuxe (6.8.16a)

constant exit angle: tanαe = tanα = uye (0, y, t)

uxe (0, y, t)
= constant (6.8.16b)

conservation of energy (stagnation enthalpy constant across the cascade):

cpTi + u2
xi

+ u2
yi

= cpTe + u2
xe

+ u2
ye
. (6.8.16c)

These, plus the condition of no entropy change across the cascade, are the required matching relations.
In (6.8.16), the subscript i denotes the conditions on the upstream side of the cascade and e the
conditions on the downstream side, with both quantities being evaluated at x = 0.
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Linearizing (6.8.16) we obtain,

ρ ′
i

ρ
+ u′

xi

ux
= ρ ′

e

ρ
+ u′

xe

ux
, (6.8.17a)

u′
xe

tanα = u′
ye
, (6.8.17b)

cpT ′
i + ux u′

xi
+ uyu′

yi
= cpT ′

e + ux u′
xe

+ uyu′
ye
. (6.8.17c)

Subscripts on the time mean quantities have been omitted because there is no change through the
cascade. Equations (6.8.17) and the linearized forms of the governing field equations can be solved
in terms of the incident rotational velocity u′

y0 to give the upstream and downstream disturbance
fields. For example, the propagating pressure disturbances and the downstream convecting vorticity
disturbance are:

p′
−i

ρ uu′
y0

= −
(

1 + M cosα

1 − M cosα

)
sinα

[2 + M cosα(2 + tan2 α)]
eiω[t−x/(ux −a)],

upstream pressure, (6.8.18a)

p′
+e

ρ uu′
y0

= sinα

[2 + M cosα(2 + tan2α)]
eiω[t−x/(ux +a)], downstream pressure; (6.8.18b)

u′
yrote

u′
y0

= M sinα tanα

[2 + M cosα(2 + tan2 α)]
eiω[t−x/ux ], downstream vorticity disturbance. (6.8.18c)

Figure 6.32 shows the amplitudes of the upstream and downstream pressure disturbances and the
axial velocity disturbance, due to a vortical perturbation incident on the cascade, as a function of the
cascade stagger angle, α, for several time-mean Mach numbers, M . The pressure disturbances are
zero at zero stagger angle because there is no component of blade force normal to the cascade plane.
They again approach zero at 90◦ because the incidence fluctuations approach zero. The response at
Mach number of 0.01 is similar to that in incompressible flow where the axial velocity disturbances
are zero, but as the Mach number increases, the axial velocity becomes non-zero and the pressure
response alters.

Figure 6.33 presents upstream and downstream pressure disturbances and downstream rotational
velocity disturbance for Mach number M = 0.5, as a function of blade stagger angle. Results are
given for a convecting vortical disturbance (Figure 6.33(a)) and for a pressure wave from downstream
(Figure 6.33(b)). In the latter situation the magnitudes of the upstream and downstream pressure
disturbances are the acoustic reflection and transmission coefficients.9 The behavior changes from

9 The reflection and transmission coefficients for the cascade are:

reflection coefficient =
∣∣∣∣∣ p′+e

p′−e

∣∣∣∣∣ = M sinα tanα

[2 + M cosα(2 + tan2 α)]

transmission coefficient =
∣∣∣∣∣ p′−i

p′−e

∣∣∣∣∣
= 2(1 − M

2
)

(1 − M cosα)[2 + M cosα(2 + tan2 α]
.
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Figure 6.32: Disturbance amplitudes for a flat plate cascade as a function of blade stagger angle for incident
vortical disturbance at different Mach numbers, reduced frequency, β =ωb/u �1: (a) upstream pressure distur-
bance, |p′

−t
/ρ uu′

y0
|; (b) downstream pressure disturbance, |p′

+e
/ρ uu′

y0
|; (c) upstream axial velocity disturbance,

|u′
xi
/u′

y0
|.

zero reflection for zero stagger (the blades are parallel to the direction of wave propagation and
the transmission is 100%) to zero transmission for 90◦ stagger when the blades are normal to the
direction of wave propagation. For both the vortical and pressure incident disturbances the response
is not only modification of the incoming disturbance by the cascade but creation of the other type of
disturbance; pressure disturbances fed into the cascade cause the generation of vorticity disturbances
and vorticity disturbances generate pressure disturbances.

It is worthwhile to note that these results are for cascades with semi-infinite upstream and down-
stream domains. With different upstream and downstream geometry the upstream and downstream
pressure and velocity disturbances, although not the relations between incident conditions and
changes across the cascade, will be different. A simple illustration showing this is a cascade in
incompressible flow with the exit boundary condition of p′

e = 0 (as would be the case if the cascade
discharged into a large chamber). In this situation (analogous to the nozzle example in the previous
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Figure 6.33: Disturbance amplitudes for flat plate cascades as a function of blade stagger angle at M = 0.5,
β = ωb/u � 1: (a) incident vortical disturbance; (b) pressure wave from downstream.

section) all pressure disturbances occur upstream of the cascade. The point is that components such as
cascades are generally part of a fluid system; one needs to consider the coupling to other components
to completely define the overall disturbance response.

The above results are based on a low reduced frequency approximation and, as in the nozzle
example, it is of interest to see when the quasi-steady approach is valid. Figure 6.34 thus shows
the magnitude and phase of the unsteady lift fluctuation for a cascade of flat plate airfoils of 60◦

stagger angle as a function of reduced frequency, at a Mach number of 0.5 (Khalak, 2000). The zero
reduced frequency result is essentially that for the actuator disk (without the restriction to constant
leaving angle) and the value from the actuator disk analysis is indicated on the figure. As the reduced
frequency is increased, the magnitude of the lift decreases. At the highest reduced frequency shown
more than a wavelength of the disturbance is within the blade passage, and the lift has decayed to
roughly a third of the quasi-steady value. The phase between the lift fluctuation and the incident
disturbance at the cascade leading edge is also shown in the figure. This is zero at the low reduced
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Figure 6.34: Lift response of a cascade of flat plate airfoils: stagger angle = 60◦, space/chord ratio = 0.8,
M = 0.5.

frequency (actuator disk) limit but increases to close to π/2 at a reduced frequency of 10. We will see
in Section 6.9 that stronger departures from quasi-steady behavior can occur for unsteady viscous
flows.

6.8.3 Disturbance interaction caused by shock waves

Shock-wave/disturbance interaction also couples flow disturbances and, in general, passage of any
one type of disturbance across a shock will create the other two. A problem examined by a number
of authors (see e.g. Mahesh, Lele, and Moin (1997) and Andreopoulis, Agui, and Briassulis (2000))
concerns pressure perturbations generated by vorticity disturbances that convect through the shock.
This is of interest in connection with noise generation by high speed machinery and aircraft. For
details regarding matching conditions and numerical results the above references can be consulted.

6.8.4 Irrotational disturbances and upstream influence in a compressible flow

In this section, we examine the effect of compressibility on upstream influence, specifically the
upstream effect of a moving two-dimensional periodic array as a model for a turbomachinery blade
row. For the situation in which the background velocity is in the x-direction the equation for the
disturbance velocity potential, (6.7.6), takes the form

1

a2

(
∂

∂t
+ ux

∂

∂x

)2

ϕ −
(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
= 0. (6.8.19)

Equation (6.8.19) describes a disturbance which propagates at speed a with reference to a coordi-
nate system traveling in the x-direction at background velocity ux. In a compressible flow we expect
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there is a possibility for waves, rather than only upstream decaying solutions as were seen in Section
6.4 for incompressible flow.

The disturbance is caused by, and moves with, the airfoils, at velocity 
rm (rm can be interpreted
as representing conditions at a mean radius in this two-dimensional treatment) in the negative y-
direction. The disturbance must also have a wavelength equal to the blade spacing, W. The axial
velocity perturbation at an axial location which we may take as x = 0 is therefore of the form (for
the first Fourier harmonic)

ux = u0 exp

[
2π i

(
y

W
+ 
rmt

W

)]
. (6.8.20)

Equation (6.8.19) is a linear differential equation with constant coefficients and its solution must
have the same dependence on y and t as the impressed disturbance. The velocity perturbation, ϕ, is
therefore

ϕ = f (x)exp

[
2π i

(
y

W
+ 
rmt

W

)]
. (6.8.21)

Defining the axial and blade Mach numbers as Mx = ux/a and MB = 
rm/a, and substituting
(6.8.21) into (6.8.19) yields a second order differential equation for f(x)

(
1 − M2

x

) d2 f

dx2
− 4π i

W
Mx MB

d f

dx
+
(

2π

W

)2 (
M2

B − 1
) = 0. (6.8.22)

There are two solutions

f (x) = C±exp

{
2πx

W

[
± (1 − M2

x − M2
B

)1/2 + i Mx MB(
1 − M2

x

)
]}

(6.8.23)

The constants C+ and C− are set by the specific boundary conditions, but the most important aspect
is the form of the exponential term. For M2

x + M2
B < 1, the exponent has a real part, implying either

growth or decay with x. The former is not acceptable on physical grounds so C− = 0. For M2
x + M2

B

≥ 1, the exponent is purely imaginary, implying wave-like solutions (i.e. solutions for ϕ of the form
exp[i(kx x + ky y − ωt)], where kx and ky are wave numbers in the x- and y-directions). In this
situation, the boundary condition far upstream is that the waves are outgoing, or radiating from the
moving blades.

To explore the rate at which disturbances die away with upstream distance, we examine the behavior
of the exponent in (6.8.23) as the blade Mach number MB increases from zero, holding the ratio of
Mx to MB constant at Mx/MB = 0.5, a value roughly representative of aeroengine axial compressors.
Increasing MB thus implies increasing blade speed while keeping the relative flow angle constant.
Holding Mx/MB constant is also equivalent to keeping the reduced frequency, based on a length W

and the mean relative velocity,
√

u2
x + (
rm)2, constant. Although the reduced frequency is invariant

with blade speed, the product of reduced frequency and Mach number, βM, which is a descriptor of
the impact of compressibility (see Section 2.2), scales with Mach number.

The decay of the axial velocity disturbance amplitude is illustrated in Figure 6.35 for several values
of MB. The vertical axis is the amplitude of the axial velocity non-uniformity, normalized by the
value at x = 0, and the horizontal axis is the upstream position, non-dimensionalized by the blade
spacing, W, which is the disturbance wavelength.
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Figure 6.35: Upstream decay of axial velocity perturbation due to a rotor (Mx = 0.5 MB).

For low Mach numbers (MB ≤ 0.5), the extent of the upstream influence is similar to incompressible
flow (see Figure 6.8). However, as blade Mach numbers increase past roughly 0.8, the extent of
upstream influence rapidly increases. For high enough blade Mach numbers (MB ≥ 2/

√
5 = 0.894

in this case), there is no decay of the upstream velocity and pressure perturbations with distance,
and disturbances propagate upstream. This occurs when the quantity in the square root in (6.8.23)
becomes negative. It marks the condition at which waves are no longer “cut off” but can propagate
upstream, with the implication that acoustic pressure disturbances will propagate rather than being
attenuated.

Viewed in another way, the condition at which propagating waves occur is that at which
the relative Mach number seen by an observer traveling with the disturbance is unity, i.e.
Mrelative =

√
M2

B + M2
x = 1. In a coordinate system traveling with the rotor the flow is steady, the

relative velocity has x- and y-components, ux and
rm respectively, and the equation for ϕ becomes,

(
1 − M2

x

) ∂2ϕ

∂x2
+ (1 − M2

y

) ∂2ϕ

∂y2
+ 2Mx My

∂2ϕ

∂x∂y
= 0. (6.8.24)

In (6.8.24) My = 
rm/a is the y-component of the Mach number seen by an observer moving with
the rotor. For Mx = 0, (6.8.24) reduces to the result for flow along a wavy wall (Liepmann and
Roshko, 1957), where the condition for propagating disturbances is that the Mach number of the
flow along the wall is supersonic.

6.8.5 Summary concerning small amplitude unsteady disturbances

We conclude the discussion of small disturbances in a compressible flow with some remarks concern-
ing the overall applicability of the results. The description of the different types of disturbances has
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been developed under the idealization that the background flow is uniform. This is a useful approx-
imation in many circumstances, and even when not quantitatively correct often provides qualitative
insight into overall flow features.

For disturbances of amplitudes large enough such that nonlinear effects need to be accounted for,
the independence of the different disturbances described here does not hold. An example is a vortex
in an infinite stationary fluid, where the associated static pressure field has a magnitude proportional
to the square of the circulation. Another example is pressure disturbances in an incompressible,
uniform density, inviscid flow. Taking the divergence of the momentum equation and invoking the
continuity equation gives, to first order in the disturbance strength, an equation for the pressure, p′,
as ∇2p′ = 0. If second order terms are included, the equation for pressure is

∇2 p = ρ
(

1
2ω

2 − e2
)
, (6.8.25)

where ω2 is the square of the magnitude of the vorticity vector and e2 (= eijeij, where eij is the strain
rate tensor, see (1.13.1)) is the sum of the squares of the principal rates of strain associated with the
disturbance flow. In summary, nonlinear effects couple disturbances so that pressure disturbances
depend on vorticity and velocity perturbations (Bradshaw and Koh, 1981).

Finally, although we have divided the different types of disturbances into irrotational velocity
perturbations, vorticity or rotational velocity perturbations, and entropy perturbations, it should be
noted that there are other equivalent sets of independent flow disturbances that can be employed
(Goldstein, 1978).

6.9 Some features of unsteady viscous flows

We now turn to features of unsteady viscous flows. Two exact solutions of the Navier–Stokes equa-
tions for an incompressible fluid are of interest as a means of illustrating some of the important
concepts: the flow due to an oscillating plane boundary and the flow in a channel with a periodic
pressure gradient. Unsteady boundary layer behavior is also discussed.

6.9.1 Flow due to an oscillating boundary

We first examine the viscous flow due to an oscillating infinite plane boundary in a semi-infinite fluid
region, referred to as Stokes’s second problem. The x- and y-coordinates are parallel and perpendicular
to the boundary motion. There is no variation of any flow variable in the x-direction and the continuity
equation plus the condition of zero x-velocity at the plate requires that the y-component of velocity
be zero throughout the flow. The momentum equation thus reduces to

∂ux

∂t
= ν

∂2ux

∂y2
. (3.6.5)

The x-velocity boundary condition at the wall, y = 0, is that ux must match the boundary velocity. If
the latter is harmonic with amplitude uw and frequency ω,

ux (x, 0, t) = uweiωt . (6.9.1)

The final boundary condition is that ux goes to zero as y →∞.
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Figure 6.36: Velocity profiles for a flat plate oscillating in a viscous fluid at rest at y → ∞. Oscillation is of the
form ux(x, 0, t) = uweiωt . Profiles are at intervals of ωt = π/4 for 0 ≤ ωt ≤ 2π .

For the linear equation (3.6.5), with the boundary condition (6.9.1), ux must be of the form
f(y) eiω t. Substituting this form into the momentum equation and solving yields

ux

uw
= exp

{
−i

(
y√

2ν/ω
− ωt

)
− y√

2ν/ω

}
. (6.9.2)

Equation (6.9.2) is a harmonic oscillation which is damped in the y-direction. The amplitude of the
velocity variation, ux/uw, at any value of y is e−y/

√
2ν/ω. In addition there is a phase lag between

different values of y. Figure 6.36 gives velocity profiles, ux/uw, at different times in the period of
oscillation, 2π/ω. Analogous to the impulsively started plate (Section 3.6) where the effective depth
of penetration of the velocity was of order

√
νt, the velocity penetration depth here is of order

√
ν/ω.

We can view the unsteady flow as due to the diffusion of vorticity from the wall, with
√
ν/ω the

effective diffusion distance. This result carries over qualitatively to unsteady boundary layers where
effects of unsteadiness are “felt” to a depth of order

√
νt or

√
ν/ω.

6.9.2 Oscillating channel flow

Another example illustrating the concept of penetration depth is the flow due to an oscillating pressure
gradient in a two-dimensional channel of width W. The pressure gradient is uniform with x and varies
with t as

− 1

ρ

dp

dx
= Ceiωt , (6.9.3)
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where C is a constant. With this pressure gradient the velocity is a function of y and t only and there
is only one velocity component, ux. The x-momentum equation is

∂ux

∂t
= − 1

ρ

dp

dx
+ ν ∂

2ux

∂y2
. (6.9.4)

The boundary conditions are

ux

(
x,

−W

2
, t

)
= ux

(
x,

W

2
, t

)
= 0.

Substituting the form of the pressure gradient in (6.9.4) and noting that the velocity must also be
of the form eiω t, we obtain

ux = −i
Ceiωt

ω


1 −

cosh

(√
iω

ν

W

2

)
2y

W

cosh

(√
iω

ν

W

2

)

 . (6.9.5)

The non-dimensional parameter that characterizes the behavior of the solution in (6.9.5) is√
ω/ν(W/2), which can be regarded as the ratio of the channel half-height to the penetration depth

of the vorticity generated at the wall. For values of this parameter large compared to unity, viscous
effects are confined to a thin layer of thickness

√
ν/ω near the walls, frequently referred to as a

Stokes layer. For values of
√
ω/ν(W/2) much smaller than unity, viscous effects are felt throughout

the channel.
The limiting forms of the solutions for high and low values of the parameter

√
ω/ν(W/2) show

this behavior explicitly. For low frequency,
√
ω/ν(W/2) � 1, (6.9.5) becomes

ux = − 1

2µ

dp

dx

W 2

4

(
1 − 4y2

W 2

)
. (6.9.6)

Equation (6.9.6) describes quasi-steady Poiseulle flow, with the velocity field and the pressure gra-
dient in phase. The velocity distribution is the same as that for fully developed laminar flow at the
instantaneous value of the pressure gradient.

For high frequency,
√
ω/ν(W/2) � 1, we use the approximation that cosh ζ → eζ/2 for ζ � 1

and find

ux = −iC

ω
eiωt

{
1 − exp

[
(1 + i)

√
ω

2ν

W

2

(
2y

W
− 1

)]
(I) (II)

− exp

[
−(1 + i)

√
ω

2ν

W

2

(
2y

W
+ 1

)]}
(6.9.7)

(III)

The form of the velocity distribution, which is quite different from the quasi-steady case, is usefully
viewed as the sum of three different parts. The first term (I) is the unsteady response associated with
the inertia of the fluid in the channel and resulting from the inviscid effects described in the unsteady
diffuser example of Section 6.3, with Ae/Ai → 1. The velocity associated with I is constant across
the channel and has a phase of −π/2 with respect to the driving pressure force per unit mass.
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Terms II and III represent viscous layers near the two walls at y = ±W/2. (Term II gives the
behavior near y = W/2 and term III corresponds to y = −W/2.) The thickness of these viscous
layers is of order

√
ν/ω. The velocity field described by terms II and III has similarities with that for

the previous section, with a phase difference in velocity across the layer. The wall shear stress lags
the pressure force per unit mass (−1/ρ)(dp/dx) by π/4. The phase difference between the velocity
in the inviscid-like region between the two viscous layers and the wall shear stress is thus π/4 (a
phase lead of the shear stress). We will find this same behavior in the unsteady response of laminar
boundary layers at high frequencies described in the next section.

6.9.3 Unsteady boundary layers

The ideas of the previous section are helpful in extending the discussion to unsteady boundary layers,
although only a short introduction to this general topic can be given. We wish to define the regimes
in which boundary layer unsteadiness is important, and describe some features of these unsteady
motions. Situations where unsteady boundary layers occur include the generation of flows on solid
surfaces starting from rest, effects due to unsteadiness in the free-stream velocity or pressure, and
unsteady flow associated with motion or deformation of a body. Periodic motions are most common
in fluid machines and we thus focus on these.

To develop a framework for characterizing the flow regimes consider an unsteady laminar boundary
layer having a characteristic frequencyω, in which the unsteadiness can be regarded as a perturbation
to the steady flow. An analogy can be drawn between the boundary layer thickness, δ, and the channel
height in the oscillating flow in Section 6.9.2, although this is meant more to motivate what follows
than to be an exact comparison. To describe “how unsteady” the boundary layer flow is, an appropriate
non-dimensional parameter is δ

√
ω/v, the ratio of steady-state boundary layer thickness at a given

location to the penetration depth of the unsteady viscous layer. The steady-state thickness scales as
δ ∝ √

νx/uE, where uE characterizes the time-mean free-stream velocity, so the ratio is

δ

√
ω

ν
∝
√
ωx

uE
. (6.9.8)

The parameter
√
ωx/uE , or ωx/uE as generally written, gives a measure of the spatial influence of

unsteadiness in a boundary layer with an impressed periodic disturbance. Small values imply close
to quasi-steady response. Large values mean the unsteady viscous effects occupy a small fraction of
the boundary layer and can be regarded as a secondary boundary layer (Stokes layer) located next to
the wall. For large values of ωx/uE the inertial forces are dominated by local rather than convective
accelerations and the oscillations are essentially independent of the mean flow.

We can also develop the parameter in (6.9.8) from consideration of the physical processes as-
sociated with the development of viscous flow over a solid surface (Stuart, 1963). There are three
processes of interest: (1) the rate of vorticity convection by uE over a length scale x, (2) the rate of
vorticity diffusion through a distance δ (normal to the surface), and (3) the rate of vorticity diffusion
through a distance that scales with frequency as

√
ν/ω. In steady flow the boundary layer thickness

δ is set by the balance between the convection of vorticity over a distance x in the flow direction
(process 1) and diffusion of vorticity through a distance δ normal to the surface (process 2), giving
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the laminar flow result δ ∝ √
νx/uE (Section 2.9). In an unsteady flow the rate of vorticity diffusion

is ω and the ratio of this to the rate of vorticity convection by uE over distance x (uE/x) is ωx/uE.
Although the discussion has been based on laminar flow, ωx/uE is used to characterize turbulent
unsteady boundary layers, and results of calculations and experiments on unsteady boundary layers
are often presented with ωx/uE as the independent variable.

The unsteady boundary layer equations can be developed using the arguments presented in Chapter
4, with the local acceleration terms now included. For incompressible flow the continuity equation
remains the same and the x-component of the momentum equation becomes

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= − 1

ρ

∂p

∂x
+ ∂τ

∂y
. (6.9.9)

The relation between the free-stream velocity and the pressure gradient also now includes an unsteady
term:

∂uE

∂t
+ uE

∂uE

∂x
= − 1

ρ

∂p

∂x
. (6.9.10)

We can write (6.9.9) and (6.9.10) in non-dimensional forms using x, uE, and 1/ω as the character-
istic length, velocity and time scale. Following the procedure used in Section 1.17 the corresponding
non-dimensional form of the equations with the dimensionless parameters (ωx/uE) and (uEx/ν)
appearing explicitly can be written as:(
ωx

uE

)
∂ ũx

∂t
+ ũx

∂ ũx

∂x
+ ũ y

∂ ũx

∂ y
= −∂ p̃

∂x
+
(

v

uE x

)
∂2ũx

∂ y2 (6.9.11)

and

−∂ p̃

∂ x̃
=
(
ωx

uE

)
∂ ũE

∂ t̃
+ ũE

∂ ũE

∂ x̃
, (6.9.12)

where (˜) denotes a dimensionless variable.
Equation (6.9.11) along with the continuity equation can be solved numerically for any value of

ωx/ūE but it is instructive to describe the limiting cases ofωx/uE � 1 (low frequency) andωx/uE � 1
(high frequency). In the former situation, as shown by Lighthill (see Rosenhead, (1963), Chapter VII),
for small amplitude unsteady fluctuations the magnitude of the departure from quasi-steady behavior
can be expressed as a quantity which is linear in the reduced frequency. In the latter case, for
large values of ωx/uE, convective accelerations can be neglected and the boundary layer equation
reduced to(
ωx

uE

)
∂ ũx

∂ t̃
= −∂ p̃

∂ x̃
+
(
ν

uE x

)
∂2ũx

∂ ỹ2
. (6.9.13)

The free-stream momentum equation in this case is(
ωx

uE

)
∂ ũE

∂ t̃
= −∂ p̃

∂x
. (6.9.14)

In the high frequency limit the equations are similar to those for the oscillating channel flow of
Section 6.9.2 and the unsteady boundary layer is independent of the time mean velocity profile.
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Figure 6.37: Unsteady boundary layer skin friction phase angle with respect to free-stream velocity, φτ , as a
function of frequency. (a) Oscillating free stream, uE = uE + uunst cos ωt, the solid line is the laminar boundary
layer calculation by Telionis and Romaniuk (1978), the dashed lines are high and low frequency analyses by
Lighthill (1954), the turbulent results are as given in Lyrio and Ferziger (1983), φτ , denotes phase lead. (b)
Travelling wave imposed on a laminar boundary layer uE = uE + uunst cos ω[t − (x/uwave)] with uwave = 0.77
uE (Patel, 1975), symbols are experimental results, solid lines are high and low frequency analyses.

Figure 6.37(a) shows the phase of the skin friction fluctuation compared to the free-stream velocity
perturbation, as a function ofωx/uE for an unsteady boundary layer. For a developing boundary layer
on a device, at small x there can be regions in which the response is quasi-steady whereas further
back on the device, at large x, there can be large departures from quasi-steady behavior.

The dashed curves labeled low frequency and high frequency in Figure 6.37(a) are from analyses
by Lighthill (1954) based on approximations for these regimes. The numerical result of Telionis
and Romaniuk (1978), shown as the solid line, indicates the transition from low frequency to high
frequency regimes. In the high frequency limit (6.9.13) shows that the boundary layer response is
a balance between pressure gradient, viscous force, and local accelerations. There is a phase shift
between the free-stream velocity fluctuation and a skin friction of π/4 (phase lead of the shear
stress), similar to that for the oscillating channel flow in the high frequency limit. The figure also
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Figure 6.38: Amplitude of displacement thickness for an unsteady boundary layer; uE = uE(1 + 0.125 sin ωt),
δ

∗ = δ
∗ + 0.125δ∗

unst sin(ωt + π + �t ). Laminar boundary layer calculations from McCroskey and Philippe
(1975); turbulent boundary layer calculations, and data for turbulent boundary layers are as given in Lyrio and
Ferziger (1983).

gives information on the phase of the skin friction from computations of turbulent boundary layers.
There is a range of values, depending on the particular turbulence model used, but the skin friction
phase shift is much less than with laminar flow.

Figure 6.37(b) shows the response to an impressed unsteadiness of the form cos ω[t − (x/uwave)],
a traveling disturbance with velocity uwave, a situation more representative of turbomachines. The
value of uwave used is 0.77 uE. The high frequency limit here is not the same as that for Figure 6.37(a)
because for a constant phase speed the wave number of the unsteady disturbance increases with
frequency and convective accelerations remain important.

Figure 6.38 gives the computed magnitude of the displacement thickness variation for an unsteady
turbulent boundary layer, along with experimental data. The change in response asωx/uE is increased
is more marked with the turbulent layer than with the laminar layer; in the latter it also depends on
Reynolds number.

For unsteady laminar boundary layers, numerical methods exist that well capture the observed
behavior (McCroskey, 1977; Telionis, 1979). With unsteady turbulent flow, the bands shown in the
figures, representing a range of several results given in the literature, reflect different approaches to
closure of the turbulent boundary layer equations (Section 4.6).

6.9.4 Dynamic stall

Dynamic stall is a phenomenon in which large effects of unsteadiness occur even at relatively low
values of reduced frequency. On an oscillating airfoil whose incidence is increasing rapidly, the onset
of stall can be delayed to incidence angles considerably in excess of the angle at which stall occurs
under steady-state conditions. Associated with this delay are values of lift which can be up to 30%
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Figure 6.39: Unsteady normal force for the NACA 0012 airfoil oscillated in pitch about the quarter-chord; α =
12◦ + 6◦ sin ωt, and Mach number = 0.3 (Carta, 1967).

greater than the peak steady-state value and which have a finite hysteresis as the angle of incidence is
varied. Figure 6.39 shows the measured unsteady lift (shown as the normal force coefficient) for an
airfoil pitching about an axis at the quarter-chord, for two values of reduced frequency (Carta, 1967).
The time-dependent behavior in the dynamic stall regime is characterized by the shedding of a large
scale vortical disturbance from the leading edge region (McCroskey and Pucci, 1982; Ekaterinaris
and Platzer, 1997). Local low pressures from the passage of this vortex over the upper surface of the
airfoil are associated with the observed increase in lift. Dynamic stall is a striking example of the
differences between steady-state and unsteady behavior.

6.9.5 Turbomachinery wake behavior in an unsteady environment

The discussions of wake response to pressure fields in Chapters 4 and 5 refer to steady flow. Wake
passage through a pressure rise was seen to result in wake growth (as measured by momentum
thickness, for example) and an increase in mixing losses. In an unsteady environment the wake
behavior can be qualitatively different and wake passage through a pressure rise can result in a
decrease in wake size.
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Figure 6.40: Passage of stator wake through a rotor (after Smith (1966b, 1993)).

This effect is present in turbomachines which have multiple closely spaced blade rows so that
wakes are not fully mixed when they enter the succeeding row. Experiments in multistage axial
compressors have shown efficiency increases of up to several percent as the axial spacing between
the rows is decreased (Smith, 1970). An explanation for one contribution to this effect, based on
wake behavior in an unsteady flow, is sketched in Figure 6.40 (Smith, 1966b, 1993). The figure is
a two-dimensional representation of a stationary blade row (stator) wake being transported through
a rotating blade row (rotor). The physical mechanism can be introduced by viewing the wake as
an inviscid velocity defect. For a constant density inviscid fluid Kelvin’s Theorem states that the
circulation around contour C is constant as the wake moves through the rotor. Because of: (i) the
streamtube divergence in the rotor and (ii) the difference in convection time for particles on the
suction and pressure surfaces (due to the circulation around the blades), the wake length increases
from rotor inlet to exit, with a commensurate increase in the length of contour C. Since the circulation
round the contour is equal to the product of the velocity difference (between the free stream and the
wake) and the contour length, the velocity difference decreases if the wake length increases. The
loss due to mixing is thus lower than if the wake had fully mixed before entering the rotor.

The process can also be viewed through examination of stagnation pressure changes for particles
in the free stream and in the wake as they move through the downstream row. The stagnation pressure
change for an inviscid constant density fluid is given by

Dpt

Dt
= ∂p

∂t
. (6.2.4)

Particles in the wake have a lower axial velocity than particles in the free stream, a longer residence
time in the rotor passage, and hence, from (6.2.4), a larger increase in stagnation pressure than those
in the free stream. The difference in stagnation pressure, and hence velocity magnitude, between the
wake and the free stream is therefore lessened.

The figure and the arguments refer to the passage of a stator wake through a rotor, but the same
mechanism applies to attenuation of rotor wakes passing through stators. Figure 6.41 shows analyses
and measurements of the evolution of axial compressor rotor wake depth in a downstream stator.
for two operating conditions: peak efficiency and peak pressure rise. The solid and dashed lines are
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Figure 6.41: Evolution of a compressor rotor wake through a stator passage; lines refer to analysis, symbols to
data (Van Zante et al., 2002).

results from approximate analyses of the decrease in wake depth (Van Zante et al., 2002). The three
curves for each condition indicate the effects of viscous decay alone (based on a steady wake at
constant pressure), from wake stretching alone, and from the two in combination. The symbols are
laser anemometer measurement results. At the peak pressure rise condition there is an increase in
wake stretching associated with the higher aerodynamic loading. Two-dimensional unsteady Navier–
Stokes computations of wake evolution bear out the ideas and show that the magnitudes of the effect
are in overall agreement with the approximate analyses (Valkov and Tan, 1999).



7 Flow in rotating passages

7.1 Introduction

In the analysis of fluid machinery behavior, it is often advantageous to view the flow from a coordinate
system fixed to the rotating parts. Adopting such a coordinate system allows one to work with fluid
motions which are steady, but there is a price to be paid because the rotating system is not inertial.
In an inertial coordinate system, Newton’s laws are applicable and the acceleration on a particle
of mass m is directly related to the vector sum of forces through F = ma. In a rotating coordinate
system, the perceived accelerations also include the Coriolis and centrifugal accelerations which
must be accounted for if we wish to write Newton’s second law with reference to the rotating
system.

In this chapter we examine flows in rotating passages (ducts, pipes, diffusers, and nozzles). These
typically operate in a regime where rotation has an effect on device performance but does not dominate
the behavior to the extent found in the geophysical applications which are considered in much of
the literature (e.g. Greenspan (1968)). The objectives are to develop criteria for when phenomena
associated with rotation are likely to be important and to illustrate the influence of rotation on overall
flow patterns. A derivation of the equations of motion in a rotating frame of reference is first presented
to show the origin of the Coriolis and centrifugal accelerations, with illustrations provided of the
differences between flow as seen in fixed (often called absolute) and rotating (often called relative)
systems. Quantities that are conserved in a steady rotating flow are then discussed, because these
find frequent use in fluid machinery. A brief description of fluid motion when the effects of rotation
dominate is also given, because phenomena exist which are strikingly different from those situations
without rotation. The last four sections focus on specific attributes of inviscid and viscous flows in
rotating passages.

7.1.1 Equations of motion in a rotating coordinate system

The relation between the relative velocity, w, seen in the rotating coordinate system and the absolute
velocity, u, seen in the stationary, or inertial, coordinate system, is

u = w + (Ω × r), (7.1.1)

where Ω is the angular velocity of the rotating system and r is a position vector from the origin
of rotation to the point of interest. Equation (7.1.1) is an illustration of the general transformation
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between derivatives of vectors in rotating and stationary systems: for any vector B(
dB
dt

)
stationary

=
(

dB
dt

)
rotating

+ Ω × B. (7.1.2)

The term on the left is the derivative as observed in the stationary system and the first term on the
right is the derivative as observed in the rotating system. If B is set equal to the position vector r of
a fluid particle, (7.1.1) is recovered. For application to fluid flows the differentiation is interpreted
as the rate of change experienced by a fluid particle, or substantial derivative (Section 1.3.1), and
(7.1.2) assumes the form(

DB
Dt

)
stationary

=
(

DB
Dt

)
rotating

+ Ω × B (7.1.3)

for the transformation between derivatives as observed in the rotating and stationary systems.
For scalar quantities such as density or entropy, the substantial derivative is the same in the rotating

and the stationary systems:(
D[scalar]

Dt

)
stationary

=
(

D[scalar]

Dt

)
rotating

. (7.1.4)

Spatial derivatives, which are taken at fixed time, are also the same in rotating and stationary
systems:

∇stationary = ∇rotating. (7.1.5)

The equations describing fluid motion in the absolute frame can be transformed to the rotating
frame by using (7.1.3), (7.1.4), and (7.1.5). From (1.9.4) the continuity equation can be written as(

Dρ

Dt

)
stationary

+ ρ∇ · u =
(

Dρ

Dt

)
rotating

+ ρ∇ · w + ρ∇ · (Ω × r) = 0.

The term ∇ · (Ω × r) is zero since it represents a rigid body rotation with no change of volume.
The continuity equation therefore has the same form in the rotating and stationary systems:

1

ρ

(
Dρ

Dt

)
rotating

+ ∇ · w = 0. (7.1.6)

This is also seen by considering mass conservation for a control volume fixed in the rotating frame.
To relate the acceleration as seen in the stationary system to the acceleration in the rotating system,

we apply (7.1.3) to the velocity u given by (7.1.1):(
Du
Dt

)
stationary

=
(

D[w + Ω × r]

Dt

)
rotating

+ Ω × [w + Ω × r] . (7.1.7)

In (7.1.7) the velocity observed in the stationary system is denoted by u, the velocity observed in
the rotating system by w, and the subscripts indicate to which coordinate system the derivatives
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are referred. Carrying out the differentiations and restricting the development to constant angular
velocity, the situation of most interest, leads to(

Du
Dt

)
stationary

=
(

Dw
Dt

)
rotating

+ Ω × (Ω × r) + 2Ω × w. (7.1.8)

The angular velocity Ω of the rotating system is also taken to be constant in the rest of the
chapter.

The momentum equation can be written in terms of relative (rotating) frame accelerations as
(neglecting external body forces)(

Dw
Dt

)
rotating

= ∂w
∂t

+ (w · ∇) w = − 1

ρ
∇p + Fvisc − Ω × (Ω × r) − 2Ω × w. (7.1.9)

The interpretation of (7.1.9) is that the real forces felt in the inertial system must be modified by the
presence of reaction terms, or “fictitious forces”, which are a consequence of observing the motion
from an accelerated reference frame.

Using (7.1.1) in the expression for viscous stresses given in Section 1.13 shows that Fvisc takes
the same form as in a stationary system with w replacing u and with the spatial derivatives evaluated
in the rotating frame. This is because a rigid body rotation leads to no local strain and hence no
stress.

The momentum equation is changed because of the presence of the last two terms in (7.1.9),
known as centrifugal and Coriolis accelerations respectively. Regarding these terms as fictitious
forces per unit mass allows the momentum equation in the rotating system to have a similar form
to that in the stationary system. It should be kept in mind, however, that these two terms do not
represent actual forces but are rather kinematic consequences of viewing the motion from a rotating
coordinate system.

7.1.2 Rotating coordinate systems and Coriolis accelerations

The expressions for Coriolis accelerations were developed in a formal manner, and it is useful to
derive the result from another perspective which brings out the physical significance more directly
(Den Hartog, 1948). We begin by considering one-dimensional incompressible flow in a constant
area channel rotating with angular velocity, Ω, around an axis at 0, as drawn in Figure 7.1. The
particles in the channel move radially outwards with a constant radial velocity, wr.

The absolute1 acceleration of a fluid particle can be calculated by examining the absolute velocity
at two instants a short time, dt, apart, when the particle is at positions 1 and 2′. In the absolute
system, the path of the particle is a spiral. The absolute velocity at point 1, at radius r, is the vector
sum of the radial velocity, wr, and the circumferential velocity of the channel at that point, 
r. The
vector addition is similar for point 2′ at r + dr, but the channel velocity at r + dr is 
(r + dr) =

(r + wrdt). The absolute acceleration is the difference between the two absolute velocities divided
by the time interval, dt. The components used in calculating the velocity difference are referred to
the directions parallel to, and perpendicular to, the line 0–1–2. For the small time interval the terms

1 The terms “absolute” and “relative” are in common use in the fluid machinery community to denote the velocities and
accelerations in the stationary (inertial) and rotating frames of reference. We adopt this usage from here on. The substantial
derivative in the rotating system is thus denoted as [D/Dt]rel.
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Figure 7.1: Fluid particle motion in a rotating straight channel as seen in the stationary system; wr (radial
velocity) = constant.

sin
 dt and cos
 dt which appear in writing the two components can be approximated by Ωdt and
1 respectively. In the direction parallel to 0–1–2, therefore, working to first order in dt,

du = [wr −
 (r + wr dt)
dt] − wr = −
2rdt,

or

absolute acceleration in the radial direction =
[

du

dt

]
radial

= −
2r. (7.1.10)

In the direction perpendicular to 0–1–2, the velocity change is

du = [
 (r + wr dt) + wr
dt] −
r = 2
wr dt,

or

absolute acceleration in the circumferential direction =
[

du

dt

]
circumferential

= 2
wr . (7.1.11)

The absolute acceleration consists of two components, one radial, −
2r, and one circumferential
and to the left, 2
wr. The former can be referred to as the rotating frame acceleration (the accelera-
tion of the channel at the particular location of interest). The latter is the Coriolis acceleration. This
nomenclature provides a useful statement of the different “pieces” that make up the absolute accel-
eration, which can be described as the vector sum of three components: the relative acceleration, the
rotating frame acceleration, and the Coriolis acceleration. The Coriolis acceleration is perpendicular
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Figure 7.2: Particle motion on a concentric circular channel in a rotating frame.

to the relative velocity and to the angular velocity vector and has the magnitude 2
w⊥, where w⊥ is
the component of the relative velocity perpendicular to the axis of rotation. This statement is seen to
be true for the radial velocity, and we show below its application in general.

A second demonstration of the statement is steady motion, with relative velocity wθ in the circum-
ferential direction, in a thin circular channel rotating around the axis of symmetry, as in Figure 7.2.
The absolute velocity of the fluid is wθ + 
r and its path is a circle of radius r, so the acceleration
in the inertial frame is in the radial direction with magnitude given by

magnitude of
acceleration
in inertial frame

∇ = (wθ +
r )2

r
=w2

θ

r
+ 2
wθ +
2r.

(a) (b) (c)

As before, the absolute acceleration can be separated into three parts: (a) the relative acceleration,
which is the acceleration seen in the rotating coordinate system; (b) the Coriolis acceleration; and
(c) the rotating frame or centripetal acceleration. All are radially inward and there is a corresponding
radial pressure gradient:

dp

dr
= ρ

(
w2
θ

r
+ 2
wθ +
2r

)
. (7.1.12)

In terms of an observer in the rotating system, the perception is that Coriolis and centrifugal forces
act to oppose this pressure gradient so the only acceleration seen is w2

θ /r . For the relative frame
(7.1.12) would therefore be rearranged as

w2
θ

r
= 1

ρ

dp

dr
− 2
wθ −
2r. (7.1.13)

Equation (7.1.13) demonstrates how Coriolis and centripetal accelerations enter the momentum
equation as apparent forces per unit mass.

The last case considered is the relative velocity parallel to the axis of rotation, as in Figure 7.3.
The absolute velocity of the particle in space has a component parallel to the axis of rotation and a
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Figure 7.3: Particle motion with relative velocity parallel to the axis of rotation.
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Figure 7.4: Relative velocities and Coriolis accelerations.

circumferential component
r. The absolute acceleration is equal to the rotating frame acceleration
and there is no Coriolis acceleration.

We now extend the above three special cases to particle motion with all three velocity components
(axial, radial, and circumferential). As just described, the axial component does not contribute to
the Coriolis acceleration. The other two components lie in the plane of rotation so the resulting
Coriolis acceleration is also in that plane. Figure 7.4 shows relative velocities, indicated by the solid
lines, and Coriolis accelerations, indicated by dashed lines. The resultant Coriolis acceleration is
perpendicular to the resultant relative velocity vector and proportional to it, in accordance with the
general statement.
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7.1.3 Centrifugal accelerations in a uniform density fluid: the reduced static pressure

The term Ω × (Ω × r), which occurs in the momentum equation, (7.1.9), can be written as −∇(
2

r2/2), where r represents, the distance from the axis of rotation.2 For a fluid of uniform density, this
term, which is identified with the centrifugal force, can be combined with the static pressure to form
the reduced static pressure, p − 1

2ρ

2r2. Working in terms of the reduced static pressure is similar to

the procedure of subtracting out the hydrostatic pressure to eliminate the (non-dynamical) effects of
gravitational forces in a uniform fluid; as seen from (7.1.9), it is gradients in reduced static pressure
that cause accelerations in the relative system. An illustration is a fluid in solid-body rotation, i.e.
no relative motion. For this case, the pressure field is p − paxis = 1

2ρ

2r2, the pressure gradient is

∇p = ρ
2r, and the reduced static pressure is constant throughout the fluid. For a uniform density
fluid, provided none of the boundary conditions involve static pressure, it is useful to work in terms
of reduced static pressure.

The reduced static pressure can also be interpreted in terms of a measurement in rotating machinery
(Moore, 1973a). Suppose that static pressure taps are located on the blades of a turbomachine at a
radial location r, but the pressure is recorded by a transducer located on the axis. The fluid in the
tubing connecting the axis to the pressure tap at r is in hydrostatic equilibrium (due to the pressure
gradient dp/dr and the centrifugal force ρ
2r) so the pressure difference between the tap and the axis
is ρ
2r2/2. The reduced static pressure can therefore be viewed as the pressure one would obtain
from a measuring device located on the axis of rotation.

7.2 Illustrations of Coriolis and centrifugal forces in a rotating
coordinate system

The role played by Coriolis and centrifugal forces is sometimes difficult to see clearly in flows
that are geometrically complex. To demonstrate the origin of these forces, we present a situation
in which the flow can be simply examined in both stationary and rotating frames of reference. The
specific configuration addressed is inviscid, constant density, two-dimensional flow due to a combined
source and vortex at the origin. The velocity field is axisymmetric, and the velocity components in
the stationary system are

ur = QV

2πr
, (7.2.1a)

where QV is the volume flow rate per unit height, and

uθ = �

2πr
, (7.2.1b)

2 Although r was introduced as a position vector from the origin, the component parallel to the axis has zero contribution to
(Ω × r). We can thus interpret r in the term Ω × (Ω × r) as marking distance from the axis of rotation. Using the vector
identity A × (B × C) = B (A · C) − C(A · B), the quantity Ω × (Ω × r) = −r
2er, where er is the unit vector in the
r-direction. The gradient of a scalar in cylindrical coordinates is

∇ = ∂

∂r
er + 1

r

∂

∂θ
eθ + ∂

∂z
ez and ∇(−
2r2/2) = −r
2er

which is equal to Ω × (Ω × r).
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Figure 7.5: Source flow viewed from stationary and rotating coordinate systems: (a) stationary system;
(b) rotating system.

where � is the circulation. In the rotating coordinate system, the radial velocity is the same but the
circumferential velocity is given by

wθ = �

2πr
−
r. (7.2.1c)

Consider first the case � = 0. Streamlines and velocity vectors in the stationary system are given
in Figure 7.5(a). The solid lines illustrate streamlines with the length of the arrows proportional to the
magnitude of the velocity vectors. In the stationary system, the streamlines extend radially outward
from the axis at 0.

The flow seen in the rotating system is shown in Figure 7.5(b). The streamlines are now spirals
curving to the right as the flow moves radially outward. The relative velocity vectors (each of which
represents the velocity at the midpoint of the arrow) increase in magnitude with radius. The relative
streamlines are strongly curved; from the viewpoint of an observer in the rotating system, it is the
Coriolis forces that cause the streamline curvature.

As the radius increases, the relative velocity inclines more and more towards the circumferential
direction. Equations (7.2.1) show that at large radii (r � ur/
) the absolute velocity is small compared
to the relative velocity, implying that the static pressure gradient is small compared to the Coriolis
and centrifugal forces and the streamlines in the relative frame are nearly concentric circles. In
these regions the normal momentum equation in the relative system is essentially a balance between
accelerations due to streamline curvature, ρw2

θ /r , centrifugal forces, ρ
2r, and Coriolis forces,
2ρ
wθ , with magnitudes and directions as indicated by Figure 7.5(b). The figure emphasizes again
that the centrifugal force and the Coriolis force arise as kinematic consequences of describing the
motion in a rotating system.

An example closer to a practical flow geometry is shown in the stationary and rotating system
velocity fields of Figures 7.6(a) and (b). The flow in the stationary system now has a substantial
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(a) (b)

Figure 7.6: Swirling flow (combined vortex/source with �/QV = 5) viewed from stationary and rotating coor-
dinate systems: (a) stationary system; (b) rotating system.

swirl velocity, �/QV = 5, or uθ /ur = 5, as might be representative of the flow leaving a radial
impeller.

In the stationary system, the streamlines are spirals having constant angle with the radial direction.
(Both ur and uθ are inversely proportional to the radius so their ratio is invariant with radius.) In the
relative system, the curvature of the streamlines is initially concave to the left in the region close to
the inner radius of the picture, because the radial pressure gradient, which is the only “actual” force,
is important. As the radius increases, the influence of the pressure gradient decreases, while that of
the Coriolis and centrifugal forces increases. The curvature of the streamlines therefore becomes
concave to the right and the direction of motion of the particle changes. At large radius, the balance
is between relative frame streamline curvature and Coriolis and centrifugal forces, as in the previous
example.

7.3 Conserved quantities in a steady rotating flow

For steady adiabatic flow in a stationary system, with no work transfer between streamlines, the
stagnation enthalpy is constant along a streamline (Section 1.8). If the flow can be considered
frictionless, the stagnation pressure is also constant along the streamline. Analogous conserved flow
quantities exist in a steady rotating flow and serve as useful constraints in analyzing fluid motions
in rotating systems.

To derive the conserved quantities we take the scalar product of the momentum equation (7.1.9)
with w to yield an equation for the change in mechanical energy of a fluid particle seen in the rotating
(relative) frame:

ρ

(
D

Dt

w2

2

)
rel

= −w · ∇p + ρw · ∇
(

2r2

2

)
+ wi

∂τij

∂x j
. (7.3.1)
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As mentioned previously (D/Dt)rel means the substantial derivative following a particle in the relative
(rotating) frame. The Coriolis force acts perpendicularly to w and makes no contribution to the change
of mechanical energy of a fluid particle.

The internal energy equation, (1.10.2), can be written in the rotating system as

ρ

(
De

Dt

)
rel

= −p∇ · w − ∂qi

∂xi
+ τij

∂wi

∂x j
+ Q̇. (7.3.2)

Combining (7.3.1) and (7.3.2) gives

ρ

[
D

Dt

(
e + w2

2
− 
2r2

2

)]
rel

= −∇ · pw − ∂qi

∂xi
+ ∂(wiτij)

∂x j
+ Q̇. (7.3.3)

Use of the continuity equation allows (7.3.3) to be rewritten in terms of the quantity we seek:

ρ

[
D

Dt

(
e + p

ρ
+ w2

2
− 
2r2

2

)]
rel

=

ρ

(
DIt

Dt

)
rel

= ∂p

∂t
− ∂qi

∂xi
+ ∂(wiτij)

∂x j
+ Q̇. (7.3.4)

The quantity It is termed rothalpy. It appears often in problems involving rotating machinery and is
defined as

It = h + w2

2
− 
2r2

2
= (ht )rel − 
2r2

2
. (7.3.5)

In (7.3.5) (ht)rel is the stagnation enthalpy (h + 1
2 w2) as measured in the rotating system. Equation

(7.3.4) implies that a change in rothalpy for a fluid particle can result from flow unsteadiness, heat
transfer, work done by viscous stresses (or real body forces, which are not considered here), or
internal heat sources.

For an adiabatic steady rotating flow with no work transfer, or for the less restrictive situation in
which the sum of shear work on, and the heat transfer to, a given streamline is zero, (7.3.4) reduces
to

w · ∇It = 0. (7.3.6)

Equation (7.3.6) is a statement that rothalpy is conserved along a relative streamline. This is true as
long as there is no net energy transfer between the streamtube and its surroundings, even if the flow
is irreversible. If the flow on the streamline of interest can be considered frictionless with no heat
transfer, entropy is also conserved along a relative streamline. Rothalpy in a rotating system thus
plays an analogous role to stagnation enthalpy in a stationary system.

One can use conservation of rothalpy to derive the Euler turbine equation ((2.8.27), ht2 − ht1 =

(r2uθ2 − r1uθ1 )) from a different point of view than given in Section 2.8. The steps in the procedure
are to set the inlet and exit rothalpy equal, split the rothalpy into enthalpy and kinematic quantities,
and then write out the velocity components and use the relation between relative and absolute
circumferential velocity (uθ = wθ +
r) to relate the change in stagnation enthalpy of a fluid particle
to the change in the tangential component of the absolute velocity. This gives a complementary view
of the approximations made (steady relative flow, no net energy transfer to the relative streamtube)
in applying the Euler turbine equation.
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For incompressible flow, the analogous quantity is the reduced stagnation pressure3 ptred :

ptred = (pt )rel − ρ
2r2

2
= pt − ρu · (Ω × r) , (7.3.7)

where (pt)rel is the stagnation pressure, p + 1
2ρw2, as measured in the rotating system. For inviscid

flow ptred is conserved along a relative streamline and the Euler turbine equation becomes (2.8.28),
pt2 − pt1 = ρ
(r2uθ2 − r1uθ1 ).

7.4 Phenomena in flows where rotation dominates

7.4.1 Non-dimensional parameters: the Rossby and Ekman numbers

When effects of rotation become dominant, fluid motions exhibit properties quite different from
those with no rotation. To define this regime it is necessary to develop a measure of the importance
of rotation in a given situation. For a uniform density fluid the momentum equation can be written in
terms of reduced pressure so the centrifugal force does not explicitly appear. For steady flow (7.1.9)
is thus

(w · ∇) w = − 1

ρ
∇pred − 2Ω × w + ν∇2w. (7.4.1)

If wref and L are representative velocity and length scales for the flow of interest, (7.4.1) can be put
in non-dimensional form as[wref


L

]
(w̃ · ∇) w̃ = −∇ p̃red − 2k × w̃ +

[ ν


L2

]
∇2w̃, (7.4.2)

where the tilde (∼) denotes non-dimensional variables and where k is the unit vector in the direction
of the axis of rotation. The two terms in the square brackets are non-dimensional parameters which
characterize the importance of rotation and of viscous effects respectively.

The parameter wref/(
L) gives a measure of the ratio of relative flow accelerations to Coriolis
accelerations (or, equivalently, relative frame inertia forces to Coriolis forces). It is known as the
Rossby number, Ro. Flows in which rotation dominates have Rossby numbers much less than unity.
In flows with Rossby numbers much larger than unity effects of rotation are not likely to be signifi-
cant. Turbomachinery tends to have Rossby numbers of order unity (generally the relative velocity
has comparable magnitude to the wheel speed) so both Coriolis and relative accelerations can be
important.

One application in which low Rossby number phenomena are important is meteorological flows
in which the length scales are hundreds or thousands of kilometers and, even with the small value of
the Earth’s rotation, the Rossby number can still be much less than unity. For example, if the relative
fluid velocity is 20 m/s (which is a strong wind) and the length scale is 103 km, at a latitude of 45◦

the Rossby number is less than 0.4. Effects of rotation are important for this choice of parameters.
For larger scale weather patterns or lower wind speeds they dominate the flow pattern.

The term ν/(
L2), referred to as the Ekman number, Ek, represents a ratio between viscous and
Coriolis forces. For a small Ekman number we expect thin viscous layers, whereas for a large Ekman

3 In some treatments this is referred to as the rotary stagnation pressure.
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number viscous effects are felt throughout the flow domain. The Reynolds number (Re = wref L/ν) is
related to the Rossby and Ekman numbers by (Re = Ro/Ek) so that any two of the three parameters
Ro, Re, and Ek (plus the geometry and boundary conditions) characterize the flow.

7.4.2 Inviscid flow at low Rossby number: the Taylor–Proudman Theorem

For steady flow at low Rossby number, the term (w · ∇)w in (7.4.1) is negligible compared to the
Coriolis and pressure gradient terms. With the z-axis as the axis of rotation the components of the
inviscid (Ek = 0) momentum equation are:

−2
wx = 1

ρ

∂pred

∂y
, (7.4.3a)

2
wy = 1

ρ

∂pred

∂x
, (7.4.3b)

0 = 1

ρ

∂p

∂z
. (7.4.3c)

Taking the x-derivative of (7.4.3a) and the y-derivative of (7.4.3b) yields

∂wx

∂x
+ ∂wy

∂y
= 0. (7.4.4)

Comparing (7.4.4) with the continuity equation for an incompressible flow,

∂wx

∂x
+ ∂wy

∂y
+ ∂wz

∂z
= 0, (1.9.6)

leads to the result

∂wz

∂z
= 0. (7.4.5)

For low Rossby number flows, the physical interpretation of (7.4.3) and (7.4.5) is that wx, wy, and
wz are functions of x and y only and the velocity and pressure fields are the same at any station along
the z-direction (the axis of rotation). Further, if the boundary condition is that wz is zero on any plane
perpendicular to the axis of rotation, it is zero throughout the flow field. These remarkable results,
which are known as the Taylor–Proudman Theorem, are often expressed in the statement that slow
steady inviscid motion of a rotating incompressible fluid must be two-dimensional (Batchelor, 1967;
Tritton, 1988).

From (7.4.3) a further consequence of a low Rossby number can be inferred namely that the relative
velocity, w, is perpendicular to the gradient of reduced static pressure, ∇pred, i.e. the relative velocity
is parallel to lines of constant reduced static pressure. As illustration, Figure 7.7 shows sketches of
streamlines and isobars (lines of constant static pressure) for a two-dimensional channel. The pictures
on the left correspond to stationary (Ro → ∞) inviscid motion and those on the right to low Rossby
number inviscid motion in a rotating system. The streamline pattern, shown in the upper two figures,
is sketched as roughly similar in both cases, but the contours of constant static pressure (for stationary
flow) and constant reduced pressure (for rotating flow), and hence the pressure gradients, are quite
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Figure 7.7: Streamlines and isobars in a converging channel with no rotation and with strong rotation (low
Rossby number).

different. In the stationary case the isobars are perpendicular to the streamlines. At low Rossby
number in the rotating flow the isobars of reduced pressure are aligned with the streamlines. For the
stationary channel, the direction of the pressure gradient is independent of the direction of flow but
for the rotating channel if the direction of flow is reversed so is the sense of the reduced pressure
gradient.

7.4.3 Viscous flow at low Rossby number: Ekman layers

For steady viscous flow at low Rossby numbers, (7.4.1) takes the form

0 = − 1

ρ
∇pred − 2Ω × w + ν∇2w. (7.4.6)

Equation (7.4.6) is linear, with components

−2
wy = − 1

ρ

∂pred

∂x
+ v

∂2wx

∂z2
, (7.4.7a)

2
wx = − 1

ρ

∂pred

∂y
+ v

∂2wy

∂z2
, (7.4.7b)

0 = ∂pred

∂z
. (7.4.7c)
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For a uniform free-stream over a plane surface (which we set at z = 0) perpendicular to the axis
of rotation an analytic solution to the low Rossby number equations exists. The x-axis is taken to
be aligned with the free-stream flow. Away from the region where viscosity is important the flow is
therefore uniform in the x-direction, of magnitude wEx, and

∂pred

∂z
= ∂pred

∂x
= 0, (7.4.8a)

∂pred

∂y
= −2ρ
wEx . (7.4.8b)

Using (7.4.8b), (7.4.7b) may be put in the form

2
(wx − wEx ) = v
∂2wy

∂z2
. (7.4.9)

Equations (7.4.9) and (7.4.7a) (with ∂pred/∂x = 0) are two coupled equations for wx and wy. The
boundary conditions on the velocity components are

wx = wy = 0 at z = 0, (7.4.10a){
wx → wEx

wy → 0

}
as z → ∞. (7.4.10b)

Eliminating wy from (7.4.7a) and (7.4.9) yields a fourth order linear equation for wx:

∂4

∂z4
(wx − wEx ) + 4
2

v2
(wx − wEx ) = 0. (7.4.11)

Defining� = √
v/
 as a viscous length scale for this problem, solutions of (7.4.11) (or the coupled

(7.4.7a) and (7.4.9)) which satisfy the boundary conditions are:

wx = wEx

[
1 − e−z/�cos

( z

�

)]
, (7.4.12a)

wy = wEx

[
e−z/�sin

( z

�

)]
. (7.4.12b)

The velocity distribution of (7.4.12) is referred to as an Ekman layer. It is independent of both x
and y. Using the continuity equation for incompressible flow, which has the form ∂wz/∂z = 0, and
the normal velocity boundary condition (wz = 0) at the wall it is seen that wz is zero throughout the
flow.

The Ekman layer profile is depicted in Figure 7.8, which shows theoretical and measured velocities
and flow angles at a Rossby number of 0.125. Features of this viscous layer which differ from the
non-rotating situation are: flow angle variation through the layer, from 0◦ at the edge (i.e. aligned
with the main stream) to 45◦ at the wall; invariance of layer thickness with x and y position; and a
velocity magnitude within the layer which is higher than in the free stream. In a non-rotating flow, for
example a zero pressure gradient boundary layer, shear forces continually decrease the momentum of
the flow and the boundary layer thickness grows with downstream distance. In the Ekman layer, there
is a component of the Coriolis force opposite to the viscous forces in both the x- and y-directions,
which is sufficient to maintain the thickness at a constant level.
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Figure 7.8: Velocity profiles for a laminar Ekman layer; Rossby number = 0.125; � = √
v/
 (data of Tatro

and Mollo-Christensen (1967)).

The length scale,
√

v/
, which characterizes the thickness of the region in which viscous effects
are significant can also be obtained from estimates of viscous and Coriolis forces. If the viscous
layer is influenced by Coriolis forces, the two are the same order of magnitude. The Ekman num-
ber based on the boundary layer thickness is thus of order unity, and if δ is the thickness of the
layer:

δ ≈
√
ν



. (7.4.13)

Another solution of (7.4.7), which is more relevant for discussion of internal flows, is the rotating
system analog of plane Poiseuille flow. This is flow between two parallel walls a distance H apart in
a system rotating at velocity 
, under the influence of a constant reduced pressure gradient (Bark,
1996),

∂pred

∂x
= constant. (7.4.14)
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Figure 7.9: Velocity profiles in a rotation-modified plane Poiseuille flow: (a) Ek = 1, (b) Ek = 0.1,
(c) Ek = 0.01 (Bark, 1996).

The walls are perpendicular to the axis of rotation and the boundary conditions are that the velocity
is zero on the walls, w = 0 at z = ±H/2. The solution to (7.4.7) is given compactly as

wx − iwy(
− 1

ρ


∂pred

∂x

) = i

2


1 −

cosh

[
(1 − i)√

Ek

(
2z

H

)]

cosh

[
(1 − i)√

Ek

]

 , (7.4.15a)

wz = 0. (7.4.15b)

The character of the solution is indicated in Figure 7.9, which shows plots of wx and wy for three
values of the Ekman number (ν/(
H2)). For large Ekman number the solution resembles that for
the non-rotating situation, with the balance being basically between pressure gradient and viscous
forces. For small values of the Ekman number, Ek, the solution has the asymptotic form

wx − iwy(
− 1

ρ


∂pred

∂x

) ≈ i

2
; 1 ±

(
2z

H

)
= O(1), (7.4.16a)

wx − iwy(
− 1

ρ


∂pred

∂x

) ≈ i

2

{
1 − exp

[
(i − 1)√

Ek

(
1 ± 2z

H

)]}
; 1 ± 2z

H
= O
(√

Ek
)
. (7.4.16b)

The form of (7.4.16) is similar to that described in Section 6.9.2 for the high frequency limit of
unsteady Poiseuille flow, with an inviscid core and two thin viscous layers near the walls, except
here the thin layers are Ekman layers rather than Stokes layers. The free stream is a region in
which Coriolis and pressure forces balance, and the velocity is perpendicular to the reduced pressure
gradient.
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7.5 Changes in vorticity and circulation in a rotating flow

As underpinning for discussion of three-dimensional flows in rotating systems it is useful to have
reference to expressions for vorticity and circulation changes in a rotating flow. The relevant devel-
opment is outlined below for uniform density incompressible flow. Taking the curl of the relation
between absolute and relative velocities, (7.1.1), yields a relationship between the absolute vorticity
(ω = ∇ × u) and the vorticity observed in a rotating frame (ωrel = ∇ × w):

ω = ωrel + 2Ω. (7.5.1)

(Equation (7.5.1) should be no surprise if one recalls that vorticity is twice the local fluid angular
velocity.)

To derive the equation for changes in ωrel we take the curl (∇ × [ ]) of the momentum equation,
(7.1.9). The curl of the centrifugal acceleration term is zero since it is the curl of the gradient of a
scalar. The curl of the Coriolis acceleration term is

∇ × (2Ω × w) = − (2Ω · ∇) w. (7.5.2)

The rate of change of relative vorticity for a uniform density incompressible fluid is thus4

Dωrel

Dt
= (ωrel · ∇) w + (2Ω · ∇)w + v∇2ωrel. (7.5.3)

The term (2Ω · ∇)w in (7.5.3) does not appear for a stationary coordinate system. The consequence
of its appearance is that in an inviscid rotating flow, relative vortex lines do not move with the fluid
and the relative circulation about a material curve need not remain constant.

Reexamination of the Taylor–Proudman Theorem introduced in Section 7.4.2 provides an appli-
cation of the concepts of relative vorticity and relative circulation and illustrates the behavior of these
quantities in a flow with strong rotation (Tritton, 1988). We interpret this theorem from two different
perspectives, first using the vorticity equation and then using the expression for the rate of change
of circulation.

For inviscid flow (7.5.3) reduces to

Dωrel

Dt
− (ωrel · ∇)w = −2Ω

∂w
∂z

(7.5.4)

with the axis of rotation along the z-direction. The two terms on the left-hand side of (7.5.4) represent
the variations in the relative vorticity. The term on the right-hand side describes the change in
magnitude and direction of the background vorticity (2Ω) associated with variations of the relative
velocity field along the direction of the axis of rotation. If L is the length scale for the flow variation

4 Equation (7.5.3) should be compared with the general expression for the rate of change of vorticity in a constant density
fluid, (3.6.23) with ∇ρ = 0. Writing this in a rotating coordinate system with X representing external body forces,

Dωrel

dt
= (ωrel · ∇)w + ∇ × X + v∇2ωref .

The term involving the Coriolis acceleration in (7.5.3) appears as a (non-conservative) body force whose effect on the rate
of relative vorticity production is equal to ∇ × X.
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along the axis of rotation and wref is a characteristic velocity magnitude, the term on the right-hand
side has magnitude 
wref/L. The two terms on the left-hand side have magnitudes

(ωrel · ∇w), (w · ∇ωrel) ≈ w2
ref

L2
.

The Rossby number can thus be interpreted as

Ro = wref


L
≈ |w · ∇ωrel|

2

∂w
∂z

≈ |ωrel|



. (7.5.5)

For Rossby numbers small compared to unity no “slow convection of small relative vorticity”
(Lighthill, 1966) can balance the change in the large background vorticity associated with a variation
in the velocity in the direction of the axis of rotation. More directly, at low Rossby numbers the
inviscid vorticity equation reduces to

2

∂w
∂z

≈ 0. (7.5.6)

The relative velocity field cannot vary in the direction of the rotation axis and the flow is two-
dimensional in planes perpendicular to the rotation axis. The (absolute) vortex tubes tend to remain
parallel to the axis of rotation and resist bending, shrinking, or stretching.

The absolute circulation can be written in terms of the relative velocity and the angular velocity
of rotation, Ω, as,

� =
∮
C

w · d� +
∮
C

(Ω × r) · d�. (7.5.7)

Using Stokes’s Theorem, (7.5.7) becomes

� = �rel + 2

∫∫

d An, (7.5.8)

where �rel is the circulation seen in the relative frame, and An is the projection of the area enclosed
by the contour onto a plane normal to the axis of rotation. For a constant density inviscid fluid with
no external body force, D�/Dt = 0 (Sections 3.8 and 3.9) so

D�rel

Dt
= −2


D An

Dt
. (7.5.9)

Equation (7.5.9) states that circulation round a fluid contour, as measured in the rotating system,
alters when the area enclosed by the contour changes. An illustration of this concept is the radially
outward flow described in Section 7.2. The absolute circulation round any contour of radius r in the
stationary system is zero and the relative circulation at any radius is �rel = −2πr2
. The agent for
the change in relative circulation as particles move outward is the non-conservative Coriolis force.

Equation (7.5.9) provides a further look at the Taylor–Proudman Theorem. Over a given time
interval, the magnitude of changes in area and in circulation are related by

��rel

2An

≈ �An

An
. (7.5.10)
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Changes in relative circulation will be of order Lwref (or less). The left-hand side of (7.5.10) thus
represents the ratio between the magnitude of the relative vorticity, wref /L , and the angular velocity
of rotation, 
, which is the Rossby number:

wref


L
≈ �An

An
.

For small Rossby number, fractional changes in the area enclosed by any contour on a plane normal to
the axis of rotation will be small and the area enclosed essentially constant. Applying this constraint
to contours both with and without projections on planes normal to the axis of rotation leads to the
conclusion that flows in which the projected areas remain constant must be two-dimensional.

7.6 Flow in two-dimensional rotating straight channels

7.6.1 Inviscid flow

Inviscid uniform density flow in a two-dimensional straight channel illustrates a number of features
relevant to fluid machinery components. The channel has width W, and rotates around the z-axis
with angular velocity of magnitude 
, as shown in Figure 7.10 (Prandtl, 1952). The supply to the
channel is from a reservoir in which the fluid is irrotational in the absolute (stationary) system. Such
a configuration represents an approximation to flow in the radial section of a centrifugal impeller,
into which irrotational flow is drawn from the atmosphere. The length/width ratio of the channel is
taken as large enough that variations along the channel can be neglected compared to those across
the channel. This carries with it the assumption that we are an appropriate distance from the inlet or

x

z

y

W

wx (y)

Ω

Figure 7.10: Two-dimensional inviscid flow in a rotating channel (x and y denote coordinates fixed in the rotating
system); flow is irrotational in the absolute system.
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exit of the channel, as described in more detail in Section 7.8. In terms of the relative frame x–y–z
coordinate system sketched in Figure 7.10, the approximation made is that ∂/∂x = 0.

The two-dimensional form of the continuity equation, plus the condition ∂/∂x = 0, means that
∂wy/∂y is zero. Because the y-component of velocity is zero at the channel wall, it is zero everywhere,
and the only velocity component is wx.

From Kelvin’s Theorem the absolute flow remains irrotational. The relative vorticity, ωrel, is given
by

ωrel = ∇ × w = −2Ω. (7.6.1)

The relative vorticity is in the z-direction, along the axis of rotation, with the value

(ωz)rel = −dwx

dy
= −2
. (7.6.2)

If the flow rate per unit depth of the channel is wx W , the solution of (7.6.2) for wx is

wx = 2
y + wx . (7.6.3)

In (7.6.3) the channel spans from y = −W/2 to y = +W/2. The relative velocity field is composed
of a uniform throughflow with velocity wx , plus a uniform shear of 2
. This shear, which is equal
and opposite to the angular rotation, is often referred to as (one manifestation of) the relative eddy.

We now discuss the pressure field. There are no fluid accelerations seen by an observer in the
relative system (Dw/Dt = 0), and the momentum equation represents a balance between the reduced
static pressure gradient and the Coriolis force. The components of the momentum equation can be
written in terms of the reduced pressure as

∂pred

∂x
= 0, (7.6.4a)

∂pred

∂y
= −2ρwx
 = −2ρ
wx − 4ρ
2 y. (7.6.4b)

From (7.6.4a) and (7.6.4b), the form of the reduced pressure is

pred = −2ρ
wx y − 2ρ
2 y2 + constant. (7.6.5)

The absolute level of static pressure has no effect in an incompressible flow and the constant can
be taken as equal to zero. (This amounts to choosing the y-location at which pred = 0.) There is
a pressure difference across the channel �pred = 2ρ
wx W, although the relative flow streamlines
are straight; in a rotating flow, curvature of the relative streamlines is not necessary to have normal
pressure gradients. As the fluid moves radially along the channel, its absolute angular momentum
about the axis is changing, and the torque necessary for the change is associated with the gradient
of reduced pressure.

The actual (as opposed to reduced) static pressure can be found by substituting the value of the
radius,

√
x2 + y2, into the definition of pred:

p = constant + ρ

2

2(x2 + y2) − 2ρ
wx y − 2ρ
2 y2. (7.6.6)



367 7.6 Flow in two-dimensional rotating straight channels

2ρ wy

2ρ wx2dy

(a) (b)

y1

y2

wy

wx2

wx1

2ρ wy
2ρ wx2

2ρ w′x1

dy

y1

y2

wy

wx2

wx1

2ρ w′x1

Ω Ω

Ω

Ω
Ω

Ω

ΩΩ

Figure 7.11: Coriolis forces on particles in a rotating flow: (a) relative vorticity and background rotation with
opposite senses; Coriolis forces are destabilizing if the shear is large enough; (b) relative vorticity and background
rotation with same sense; Coriolis forces are stabilizing (Tritton and Davies, 1981).

Taking the gradient of the difference between the actual and the reduced static pressure gives

∂

∂x
(p − pred) = ρ
2x, (7.6.7a)

∂

∂y
(p − pred) = ρ
2 y. (7.6.7b)

Equations (7.6.7a) and (7.6.7b) denote the x- and y-components of the centrifugal force. These play
no role in creating fluid accelerations in the relative system.

7.6.2 Coriolis effects on boundary layer mixing and stability

Viscous flows in two-dimensional channels exhibit substantial alterations in behavior as a function of
rotation. The mixing processes in turbulent boundary and shear layers are modified due to rotation,
as are the stability and transition characteristics of laminar boundary layers.

The mechanism that leads to this alteration in behavior can be described following Tritton and
Davies (1981) by examining the forces on particles that are displaced from their initial position in
a rotating two-dimensional parallel shear flow. The Coriolis force associated with the velocity com-
ponent in the x-direction (velocity along the channel) is normal to the channel walls. Figure 7.11(a)
shows the Coriolis force 2ρ
wx2 acting on an undisplaced particle at y2 (= y1 + dy) and the force
2ρ
w′

x1
acting on a particle displaced a distance dy from its initial position y1 where its velocity was

wx1 . The same reduced pressure gradient in the y-direction is acting on both of these particles, and
the displaced particle will be further displaced (a condition of static instability) if w′

x1
< wx2 .

The velocity w′
x1

is different from the original velocity of the particle, wx1 , because Coriolis forces
have acted during its displacement. The change in velocity is

w′
x1

− wx1 = 2
wydt = 2
dy. (7.6.8)
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This velocity difference must be compared with the difference in the undisturbed velocities at y1

and y2:

wx2 − wx1 =
(

dwx

dy

)
dy. (7.6.9)

Hence w′
x1
< wx2 only if dwx/dy > 2
.

Two general cases can be defined, as shown in Figure 7.11. In case (a) the relative vorticity and
the background rotation have opposite senses and Coriolis effects are destabilizing if the shear is
large enough. In case (b), the relative vorticity and the background rotation have the same sense
and Coriolis effects are stabilizing. Destabilization i.e. enhancement of the initial displacement) can
thus occur when the absolute vorticity (2
 − dwx/dy) has the opposite sign than the background
vorticity, 2
. For a given shear dwx/dy (taken positive), rotation is destabilizing if 2
 lies in the range
0 < 2
 < dwx/dy and stabilizing otherwise. From consideration of velocity profiles in the viscous
two-dimensional channel flow, case (a) corresponds to conditions on the high pressure (“pressure”)
side of the channel while case (b) corresponds to the low pressure (“suction”) side.

A non-dimensional parameter which captures the above arguments has been introduced by
Bradshaw (1969) as

rotating flow stability parameter = − 2
(dwx/dy − 2
)

(dwx/dy)2
. (7.6.10)

Small values of this parameter imply little change in stability compared to a non-rotating flow.
Negative values indicate the tendency towards destabilization.

A qualitative analogy exists between the effect just described and the centrifugal instability that
occurs on concave surfaces in a stationary frame of reference. In the latter case the balance is be-
tween pressure gradients normal to the surface and centrifugal forces. The arguments concerning the
enhancement or suppression of particle motions on the inner and outer walls of a curved passage,
however, are similar to those given for the rotating channel, as sketched in Figure 7.12 (Johnston,
1978). Further, for laminar boundary layers instability in a rotating channel takes the form of stream-
wise vortices, analogous to the Gortler vortices (see e.g. Schlichting (1979) for a description of these)
seen in flow over a concave surface (Lezius and Johnston, 1976; Yang and Kim, 1991). The presence
of these vortices enhances momentum transfer and shear stress along the surface.

For turbulent boundary layers, the mechanism described can be regarded as either damping or
encouraging motions that already exist in a direction normal to the wall. Momentum transfer, for
example, is increased on the high pressure side of the channel and decreased on the low pressure side.
Because of this there is an asymmetry to the rotating channel boundary layer behavior and velocity
profile. A sketch of a channel flow geometry is shown in Figure 7.13 with the regions of stability
and instability indicated.

Figure 7.14 shows velocity profiles across a rotating two-dimensional channel derived from direct
simulations of the Navier–Stokes equations for fully developed turbulent flow (Kristofferson and
Andersson, 1993). Time mean velocity profiles are given for different values of Rossby number
based on the average velocity, w/
W. As the Rossby number decreases, the asymmetry in wall
layer behavior becomes increasingly evident, with the flow away from the walls tending towards
the inviscid description given in Section 7.6.1. Figure 7.15 shows the velocity near the wall in wall
layer coordinates (Section 4.6) for the conditions of Figure 7.14. As the Rossby number decreases the
velocity profiles depart further and further from the law of the wall relationship obtained in stationary
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Figure 7.12: Schematic of the effects of rotation and wall curvature on local instability in boundary layers:
(a) effects of system rotation, (b) effects of wall curvature (after Johnston (1978)).

flows which is indicated by the dashed line. The simulations, and the experiments of Johnston et al.
(1972), show a cellular structure in the unstable regions of the channel.

The mechanism described has implications for boundary layer behavior in adverse pressure gra-
dients. As mentioned, destabilization means that momentum interchange is increased (compared to
the situation with no rotation) and this increases the resistance of the boundary layer to separation.
Stabilization, with an associated decrease in momentum interchange, has the opposite effect. For a
rotating passage with adverse reduced pressure gradients, boundary layers in the destabilized region
will thus be more resistant to separation than those in the stabilized region. We will see evidence of
this trend in Section 7.8.

7.7 Three-dimensional flow in rotating paassages

7.7.1 Generation of cross-plane circulation in a rotating passage

We discuss three-dimensional flows in rotating passages in several steps, starting with a description
of the overall concepts in order to provide a framework for viewing the phenomena. Numerical



370 Flow in rotating passages

w

dwx
dy

x

y

W

B > 0

B < 0

Stable

CL

Unstable

     

2 wx2 wy

– 2  = 0

Ω
Ω

Ω

Ω

Figure 7.13: Sketch of time average velocity and regions of stability in fully-developed two-dimensional rotating
channel flow (Johnston, Halleen, and Lezius. 1972).

-0.5
0

0

0

0

0

0

0

5

10

15

20

100

20

10

6 2/3

5

2

Ro = ∞

0

y /W

Suction
side

Pressure
side

wx

0.5

Figure 7.14: Time mean turbulent velocity profiles across a rotating two-dimensional channel for different
Rossby numbers. The coordinate system is the same orientation as in Figure 7.13. The straight lines have slope
2
. Direct numerical solution of Kristoffersen and Andersson (1993) at Reynolds number of 2900 based on
mean velocity and channel width.



371 7.7 Three-dimensional flow in rotating paassages

1
0

5

10

15

20

25

30

10

Suction side

Pressure side

y+ =

= y+

= 2.5 ln y+  + 5.5

ywτ
ν

100

( )

w+ =
wx
wτ( )x

w+
x

w+
x

Figure 7.15: Rotating two-dimensional channel time mean near wall velocity profiles for the conditions of
Figure 7.14. Direct numerical solution of Kristoffersen and Andersson (1993).

Figure 7.16: Generation of three-dimensional motion in a rotating square passage. The end view looking up-
stream (velocity out of page) shows the direction of secondary circulation.

and experimental results are then presented for laminar and turbulent flows in rotating passages to
illustrate specific features and parametric dependence.

Non-conservative Coriolis forces which can change the relative circulation around a fluid contour
are a source for generation of three-dimensional motions in rotating channels. Figure 7.16 depicts
a straight square channel of side W, rotating about the z-axis. Suppose at a given station along the
channel there is a two-dimensional inviscid shear flow which has a velocity component only in the
x-direction, is uniform in y, and has a velocity that increases with z. A basic question is whether
such a two-dimensional shear flow can persist (as it would in a stationary system) or whether a
three-dimensional motion, with streamwise vorticity, will arise.
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To answer the question we examine a contour C, indicated by the dashed line in the end view of the
channel in Figure 7.16. For an inviscid uniform density fluid the rate of change of relative circulation
for this contour is obtained from (3.8.8) as

D�rel

Dt
=
∮

FCoriolis · d�.

The Coriolis force is

FCoriolis = −2
wx j, (7.7.1)

with j a unit vector in the y-direction. If the velocity varies linearly from wxmax at the top of the
channel to wxmin at the bottom of the channel,

D�rel

Dt
=
∮

FCoriolis · d� = 2(wxmax − wxmin )
W. (7.7.2)

Equation (7.7.2) indicates that a circulatory motion with spiral streamlines will be generated in the
y–z plane, with the sense of rotation indicated in Figure 7.16.

A rough estimate for the initial rate of generation of the cross-plane velocity (valid for streamwise
locations such that the x-velocity variation is not appreciably affected by the three-dimensional flow)
can be obtained from (7.7.2). We approximate the relative circulation in the cross-plane (y–z plane)
as �cross ≈ 4Wwcross, where wcross is an average value of the cross-plane velocity along the dashed
contour. The rate of change of circulation, D�cross /Dt, is estimated as wx (d�cross/dx), where wx is
the mean velocity along the channel. Substituting into (7.7.2) yields

dwcross

dx
≈ �wx


2wx
, (7.7.3)

with�wx = wxmax − wxmin . With no cross-plane flow at an initial station x = xi, integration of (7.7.3)
yields

wcross

wx
≈
(
�wx

2wx

)(

W

wx

)
(x − xi )

W
. (7.7.4)

The initial generation of cross-plane circulation thus scales with three factors: the velocity differ-
ence along the direction of the axis of rotation (which determines the imbalance in Coriolis forces),
the inverse of the Rossby number (which measures the importance of rotation), and the distance over
which the Coriolis forces act. The example is based on a shear profile occupying the whole channel,
but similar arguments apply to shear regions of more limited extent such as boundary layers on the
top or bottom walls of a rotating passage (MacFarlane, Joubert, and Nickels, 1998).

We can also interpret the generation of cross-plane circulation from the perspective of an inertial
coordinate system. Even in rectilinear relative motion, fluid particles undergo an absolute acceleration
as they move along the passage. The magnitude of the acceleration is greater for fluid with a larger
x-velocity. The cross-plane circulation can be viewed as a consequence of the fluid in the upper part
of the duct, which has a larger value of wx, having larger resistance to taking a curved path than the
fluid in the lower part. We return to the topic of streamwise vorticity generation in rotating passages
in Chapter 9.
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Figure 7.17: Fully developed flow in a rotating straight passage (Kheshgi and Scriven, 1985).

7.7.2 Fully developed viscous flow in a rotating square duct

Fully developed, pressure-driven, laminar viscous flow in a rotating square passage provides a useful
vehicle for introducing the features and parametric behavior of three-dimensional viscous motion in
rotating systems. In contrast to the situation in a stationary system, fully developed flow in a rotating
straight passage is not rectilinear. One type of flow pattern that exists is sketched in Figure 7.17.
(This, and the next several figures, are from Kheshgi and Scriven (1985).) Figure 7.17 depicts the
direction of the overall driving pressure force (with reduced pressure gradient ∂pred/∂x = constant)
and the cross-plane circulatory motion produced by Coriolis forces, in which the higher velocity
fluid moves towards the high reduced pressure side (“pressure side”) of the passage.

Fully developed viscous flow in a rotating passage is characterized by the two non-dimensional
quantities introduced in Section 7.4: the Ekman number (Ek) and the Rossby number (Ro). For
the fully developed case there is no dependence on x, and the axial and cross-plane velocities are
functions of y and z only. Even with this simplification, the parametric behavior is complex because
different force balances can occur depending on the values of Ro and Ek.

At zero Rossby number (the rapidly rotating passage limit) the balance is between Coriolis, pres-
sure, and viscous forces. Figure 7.18 shows the computed cross-plane velocities and the axial profile
at Ro = 0 and Ek = 0.01. As pictured in Figure 7.17, the cross-plane motion consists of two cells.
The axial velocity is symmetric across the passage about y/W = 0.5. The cross-plane flow near the
top and bottom walls at Ro = 0 exhibits behavior like that of an Ekman layer with an overshoot in
the axial velocity. This can be seen in more detail in Figure 7.19 which shows the axial velocity,
normalized with the pressure gradient and angular velocity of rotation ((ρ
wx/|∂pred/∂x |)√Ek) at
a location midway across the passage (y/W = 0.5) versus the Ekman layer coordinate (z/(

√
EkW )).

The curves correspond to Ekman numbers of 0.01 and 0.001 and to an asymptotic solution repre-
senting the limit of low Ekman number. In this limit the flow in the interior of the passage (away
from the walls) is uniform with a non-dimensional velocity of (1/(2

√
Ek)) and represents a balance

between pressure and Coriolis forces. Flows that exhibit such a balance are known as geostrophic
and appear often in meteorological applications. The Ekman-like layers on the top and bottom
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Figure 7.18: Fully developed flow in a rotating straight passage; cross-plane velocity vectors (top) and axial
velocity distribution (bottom); Ro = 0, Ek = 0.01; computations of Kheshgi and Scriven (1985).

walls (as well as the more complex “double layer” viscous regions on the side walls whose ex-
tents scale as Ek1/4; see e.g. (Bark 1996)) represent a balance between these two and the viscous
forces.

Figure 7.20 shows the dependence of the non-dimensional volume flow rate on Ekman number,
for zero Rossby number. The volume flow rate is defined as

non-dimensional volume flow rate, V̇ ≡ − ρ
Ek

(∂pred/∂x)

1∫
0

1∫
0

wx d
( y

W

)
d
( z

W

)
. (7.7.5)

For large Ekman numbers (viscous forces important throughout the passage) the flow is similar to that
in a stationary channel and the motion is rectilinear. For small Ekman numbers, the viscous effects
are confined to thin regions, the velocity away from the walls is uniform, and the non-dimensional
volume flow rate approaches a limiting form given by

V̇ →
√

Ek

2
as Ek → 0. (7.7.6)

For non-zero Rossby numbers inertial forces play a role in the force balance. At low Ekman
numbers the flow in the interior of the passage, away from the thin viscous layers on the walls is
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Figure 7.21: Fully developed flow in a rotating straight passage; cross-plane velocity vectors (top) and axial
velocity distribution (bottom); Ro = 1.5, Ek = 0.01; computations of Kheshgi and Scriven (1985).

primarily a balance between inertia, Coriolis, and pressure forces. Figure 7.21 shows the cross-plane
flows and the overall form of the axial velocity for an Ekman number of 0.01 (the same value of Ek
as in Figure 7.18) but a Rossby number of 1.5. The axial velocity varies approximately linearly with
y across the interior of the passage. In addition for this three-dimensional motion the variation is in
the opposite sense to the inviscid, two-dimensional flow pictured in Figure 7.14, with the highest
axial velocity now nearer to the high reduced pressure side of the passage.

The origin of this feature is the cross-plane fluid transport associated with the Coriolis forces. A
qualitative argument for the shape of the velocity profile can be given as follows. For no rotation
(infinite Rossby number) the flow in the duct is rectilinear with the largest velocity in the center
of the passage. For purposes of illustration consider the three-dimensional motion at finite Rossby
number as a perturbation on this rectilinear flow. Based on the x-component velocity field for no
rotation, larger y-components of Coriolis forces (which depend on the local velocity) exist in the
central region of the duct than near the walls. The differential between the y-component of Coriolis
forces at different z-coordinate locations is equivalent to a torque whose sense is to cause the type
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Figure 7.22: Fully developed flow in a rotating straight passage; non-dimensional axial velocity at midheight
(z/W = 0.5); computations of Khesghi and Scriven (1985).

of cross-plane motion sketched. The consequence of high x-velocity flow convected towards the
high pressure surface and low x-velocity flow moved towards the low pressure surface is a shift
in the region of highest streamwise velocity from the center of the duct towards the high pressure
surface.5

The axial velocity across the passage at the midheight station is presented in more detail in
Figure 7.22 for an Ekman number of 0.01 and three values of Rossby number: 0, 0.75, and 1.5. The
figure shows the change in profile shape with Rossby number, as well as the extent of the nearly
linear velocity distribution at the two higher values of Ro.

For larger values of Rossby number the two-cell structure is unstable. One result is that other pairs
of vortices appear on the pressure side of the channel, as indicated in Figure 7.23; this behavior is
also seen in computations of fully developed turbulent flow, as described below.

The fully-developed flow examined is a square passage, because this geometry is similar to that
in turbomachinery, but computations in other geometries such as circular pipes show many of the
same features; see for example Lei and Hsu (1990) and Lei et al. (1994). Additional information
concerning fully developed flow in rotating passages can be found in Morris (1981).

5 There is an analogy between this situation and that of fully developed flow in a curved duct. For inviscid, irrotational,
two-dimensional flow in a curved passage the highest velocity is near the inner wall. For fully developed flow in a curved
pipe, however, (see for example Berger, Talbot, and Yao (1983)) the region of highest velocity is between the center
of the pipe and the outer wall. The position of the high velocity region is associated with the local imbalance between
centrifugal forces and pressure differences across the pipe, which cause the high velocity fluid to move outwards and the
low velocity fluid near the walls to move inwards. Detailed computational results concerning the analogy between fully
developed rotating flow in a straight circular pipe and in a curved stationary circular pipe are given by Ishigaki (1994,
1996).
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Figure 7.23: Rotating square passage looking upstream: sketch of cross-plane flow patterns for two-vortex and
four-vortex configurations in laminar fully developed flow (Kheshgi and Scriven, 1985).

7.7.3 Comments on viscous flow development in rotating passages

The previous description of fully developed rotating passage flow provides a basis for discussing
situations in which the flow is evolving in the streamwise direction. An illustration is furnished by
the computations of the developing turbulent flow in a rotating square passage, (Bo, Iacovides, and
Launder, 1995) from which Figure 7.24 is taken. Cross-plane velocity vectors and contours of axial
velocity magnitude are shown at two streamwise locations, x/W = 3 and x/W = 9. The conditions
of the computation are given in the figure. Migration of the high velocity fluid to the pressure
side, under the influence of the Coriolis force, can be seen, similar to the laminar computations. The
downstream station velocity vectors show a four- vortex configuration, with an additional developing
pair of vortices near the pressure surface.

Another example of a developing flow is shown schematically in Figure 7.25, based on measure-
ments of the cross-plane streamline pattern for developing turbulent boundary layers in a rotating
passage (MacFarlane et al., 1998). Measurements corresponding to this situation are given in Figure
7.26. Features of the cross-plane structure seen in the fully developed flow are also represented in
the developing flow, with two major cells driven by Coriolis forces and a weaker pair of vortices near
the pressure surface. There is a strong cross-passage motion in the boundary layers with a return
flow taking place over most of the rest of the channel height.

Two other points concerning the development of boundary layers in rotating passages can be noted.
The first concerns the pressure rise that can be achieved in a rotating passage. It is the gradient of
reduced static pressure, pred = p − ρ(
2r2/2), which affects the boundary layer behavior, rather
than the gradient of the actual static pressure. This means that it is possible to achieve a large static
pressure rise in a radially outward flow with little adverse effect on the boundary layers.

The second point concerns a difference between the Ekman layer type of behavior described earlier
in the chapter and the boundary layers on the top and bottom of passages in which the flow external
to the boundary layers is irrotational in the absolute coordinate system (Moore, 1973b). This would
occur for example in fluid components which are short enough such that direct effects of viscosity
do not have time to spread throughout the duct.
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Figure 7.24: Developing turbulent flow in a rotating square passage; contours of velocity and cross-plane ve-
locity vectors, Rossby number wx/(
W ) = 4.2, Ek = 1.7 × 10−4 (Re = wx W/v = 25, 000). Fully developed
stationary flow velocity distribution applied as the inlet condition. Computations of Bo et al. (1995).

We motivate the difference as follows. For thin boundary layers in a constant-area rotating channel,
the reduced pressure gradient in the streamwise (x-direction) can be neglected and the component
of the momentum equation that describes the evolution of the axial velocity, wx, is

wx
∂wx

∂x
+ wy

∂wx

∂y
+ wz

∂wx

∂z
= 2
wy + (Fvisc)x . (7.7.7)

As described in Section 7.6.1 the axial velocity external to the boundary layer, wEx , obeys

dwEx

dy
= 2
. (7.7.8)

Combining (7.7.8) with (7.7.7) gives

wx
∂wx

∂x
+ wy

[
∂

∂y

(
wx − wEx

)]+ wz
∂wx

∂z
= (Fvisc)x . (7.7.9)

The terms wx and wEx can be comparable over much of the boundary layer. If so, and the term in
square brackets in (7.7.9) is small, the statement concerning the evolution of wx is approximately

wx
∂wx

∂x
+ wz

∂wx

∂z
≈ (Fvisc)x . (7.7.10)

Equation (7.7.10) implies that (away from the side walls) the top and bottom wall boundary layers in
a rotating passage with irrotational absolute flow exhibit streamwise evolution which is qualitatively
more akin to the boundary layer in a stationary passage than to an Ekman layer.
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Figure 7.25: Rotating rectangular passage: schematic diagram of the cross-stream flow pattern for a developing
turbulent flow in a rotating rectangular passage looking upstream (MacFarlane et al., 1998).
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Figure 7.26: Turbulent flow in a rotating straight passage: cross-plane velocities and streamlines, Ro = wx/(
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= 10.6, Ek = 1 × 10−4 (Re = wx W/v = 1 × 105); measurements of MacFarlane et al. (1998).

7.8 Two-dimensional flow in rotating diffusing passages

7.8.1 Quasi-one-dimensional approximation: irrotational absolute flow

We now turn our attention to rotating diffusing passages and introduce the overall behavior using the
channel flow solution given in Section 7.6. A radial diffusing passage is sketched in Figure 7.27. The
appropriate (relative frame) coordinate system is polar coordinates, r and θ , with velocity components
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wr and wθ . If the passage is slender enough that wθ /wr � 1, an approximation for the relative vorticity
is (Moore, 1973a)

1

r

∂wr

∂θ
= 2
. (7.8.1)

The radial velocity is obtained by integrating (7.8.1). Denoting the average radial velocity across the
passage at a given radius by wr and the passage width by W,

wr
∼= 2
θr + wr W

2θwr
. (7.8.2)

In (7.8.2) the angle θ is measured from the midpoint of the channel and θw is the half-angle of the
channel.

To assess the utility of this description of the velocity field, we examine the effect of circumferential
velocity on the pressure difference across the channel and compare it with that due to radial velocity
(through Coriolis forces) alone. The continuity equation allows an estimate of wθ to be made:

1

r

∂

∂r
(rwr ) + 1

r

∂wθ
∂θ

= 0. (7.8.3)

Introducing the radial velocity from (7.8.2) and applying the boundary condition that wθ must vanish
on the channel walls at θ = ±θw yields

wθ = 2
r (θ2
w − θ2). (7.8.4)

The pressure difference associated with wθ is found from the θ -component of the momentum equation
to be of order wr wθ /r (the average value of wθ across the channel is 4

3
rθ2
w). The pressure difference

due to the radial velocity is approximately 2
wr so their ratio is

wr wθ /r

2
wr
= wθ

2
r
≈ θ2

w. (7.8.5)
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Figure 7.28: Velocity field at midpassage height in a rotating diffusing passage, ratio of passage height/width at
inlet (station 1) = 1.0: (a) (wr1/(
W1)) = 21; (b) (wr1/(
W1)) = 10; (c) (wr1/(
W1)) = 5.3 (Moore, 1973a).

For a representative geometry, say a centrifugal impeller with twelve blades, θw = 15◦, the magnitude
of the ratio is roughly 0.05, and the channel flow treatment is appropriate.

Equation (7.8.2) also shows that, for a given volume flow rate, the velocity on the pressure side
decreases as the radius increases, becoming zero at a radius

√
wr W/
/2θw, with the implication that

there is a region of backflow at larger radii. As the volume flow rate is lowered, this zero velocity point
occurs at a smaller radius. To illustrate this effect, Figure 7.28 shows the measured radial velocity
in a rotating diffusing passage at three different flow rates. Away from the walls (7.8.2) gives a
description which captures the general features, although viscous effects, in particular blockage due
to the wall boundary layers, become important in the outer parts of the passage.

7.8.2 Two-dimensional inviscid flow in a rotating diffusing blade passage

The description in the previous section applies within the passage, but we also need to examine the
behavior near the passage inlet and outlet where the channel flow approximation does not apply.
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Figure 7.29: Two-dimensional inviscid flow streamlines in a radial blade diffusing rotating passage; streamlines
of equal increments, wr/(
W1) = 1.3, r1/r2 = 0.5.

Suppose the passage is formed by two radial blades in an impeller (rotor) of a centrifugal compressor
as shown in Figure 7.29. At the outer end of the blade there is no pressure difference between
the suction and pressure surfaces of the blade. An adjustment must thus take place near the end to
decrease the pressure difference across the channel. Because of the decreased pressure difference, the
Coriolis forces in this region drive the flow towards the pressure side resulting in a relative velocity
with a direction opposite to the rotation.

The adjustment process can be analyzed in terms of a two-dimensional inviscid flow in the channel.
We define a stream function, ψ , for the relative velocity field as

wr = 1

r

∂ψ

∂θ
, (7.8.6a)

wθ = −∂ψ
∂r
. (7.8.6b)

With this definition, the continuity equation is satisfied identically. If the absolute flow is irrotational,
the relative vorticity satisfies (7.6.1),

−1

r

∂wr

∂θ
+ 1

r

∂

∂r
(rwθ ) = −2
. (7.8.7)

Combining (7.8.6) and (7.8.7) yields a Poisson equation for ψ :

∇2ψ = ∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂θ2
= 2
. (7.8.8)

Equation (7.8.8) has boundary conditions of zero normal relative velocity at the blades (θ -
component), which extend from a non-dimensional radius r/r2 = 0.5 to r/r2 = 1.0. The additional
boundary conditions imposed here are that at the outer radius (r/r2 � 1) the flow is axisymmetric,
at the inner radius the radial velocity of Section 7.8.1 is prescribed, and periodicity is imposed on
radial lines that are extensions of the blades to the outer boundary.

Computed streamlines from (7.8.8) plotted in Figure 7.29 show flow adjustment from radial
outward to axisymmetric occurring in a radial distance on the scale of the passage width. This is
also seen in the accompanying Figure 7.30, which gives contours of relative velocity magnitude. In
the channel, up to a radius of roughly 0.9r2, the flow is similar to that described by (7.8.2), while



384 Flow in rotating passages

Adjustment
"starts"

Adjustment
essentially
complete

0.25 0.5 0.75 1.0 1.25

Radial distance, r/r2

Direction
of rotation

Figure 7.30: Contours of relative velocity magnitude in a two-dimensional diffusing rotating passage (inviscid
flow) showing the adjustment zone; wr/(
W1) = 1.3, r1/r2 = 0.5, wmax/
r2 = 0.8, contours are 0.03 
r2.

from approximately r/r2 = 0.8 to r/r2 = 1.1, a transition occurs to axisymmetric swirling flow. As
in other irrotational flows we have examined, the two length scales in the problem, the passage width
and the radial length scale for flow adjustment, are linked by the condition of irrotationality.

7.8.3 Effects of rotation on diffuser performance

In the description of boundary layers in rotating systems in Section 7.6.2 it was stated that the ability
of a turbulent boundary layer to negotiate a given pressure rise is decreased on the suction side of a
rotating channel, because of the suppression of mixing and shear stress, and increased on the pressure
side, because of the mixing enhancement. The performance of a rotating diffuser will therefore be
adversely affected by rotation. Experiments addressing this point have been carried out by Rothe
and Johnston (1976).

The flow patterns relating to stall (see Section 4.1 for a description of diffuser flow regimes) were
altered in several ways by system rotation. Stall appeared only on the suction side of the rotating
diffuser, in contrast to the bi-stable stall regime encountered in stationary diffusers. In addition, the
separated flow patterns were more two-dimensional, and more steady, than for stationary diffusers,
with no regime of large transitory stall. Rothe and Johnston point out the connection of this two-
dimensionality with the Taylor–Proudman Theorem, applied to the nearly stagnant (and hence nearly
solid-body rotation) fluid in the stalled region.

Figure 7.31 shows a flow regime map for a rotating two-dimensional diffuser. The abscissa is 1/Ro
(or 
W1/w1, which is often referred to as the “rotation number”) and the ordinate is the diffuser
area ratio. As the area ratio is increased at constant Rossby number, stall is first encountered in the
suction corners of the diffuser. Further increase leads to the build up of a two-dimensional region of
low speed reverse flow on the suction side of the passage. Flow separation occurs at a wall position
which depends on the area ratio and Rossby number. An additional area ratio increase, or Rossby
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Figure 7.31: Comparison of pressure recovery data with a stall regime map in a rotating diffuser, length/width
ratio N/W1 = 6; w1 is mean velocity at the inlet, inlet flow is fully developed. Symbols represent the area ratio
at which peak pressure recovery occurred at fixed Rossby number (Rothe and Johnston, 1976).

number decrease, moves the separation line upstream; the condition at which the separation line is
two inlet widths from the throat is referred to as full stall. The onset of first appreciable stall for this
geometry in a stationary diffuser is denoted by the solid circle on the vertical axis. Also shown in
the figure are the area ratios at which peak pressure recovery occurred for a given value of Rossby
number.

The effect of rotation on the peak diffuser pressure rise coefficient, Cp (based on the reduced static
pressure), is shown in Figure 7.32. There is a roughly 30% decrease in this quantity at the highest
rotation speed (which is several times smaller than the non-dimensional rotational speed typically
encountered in centrifugal turbomachinery).

7.9 Features of the relative flow in axial turbomachine passages

The relative eddy mentioned in Section 7.6 in connection with irrotational absolute flow in a rotating
frame is seen in several ways in axial turbomachines. (Axial turbomachines have the predominant
direction of flow along the axis of rotation rather than perpendicular to it as with centrifugal machines.)
To introduce the topic in a basic manner, consider a rotating passage in a constant density inviscid
flow, in which the blades are radial and axial so the trace of the blade remains at the same θ location
for any axial station.6 If the blade passage is sufficiently long, the flow away from the ends will have
∂/∂x = 0 and a stream function for the tangential and radial velocities can be defined which obeys
the two-dimensional Poisson equation in r and θ similar to (7.8.8).

6 Such blades are referred to as having zero stagger angle, the stagger angle being defined as the angle between the blade
chord and the axial direction.
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Figure 7.32: Pressure recovery peak in a rotating diffuser, length/width ratio N/W1 = 6; w1 is the mean velocity
at inlet, inlet flow is fully developed (area ratio varied at fixed Rossby number) (Rothe and Johnston, 1976).
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Figure 7.33: Streamlines of a relative eddy in an axial turbomachinery passage with zero stagger blades; contours
of equal increments in relative streamfunction ψ .
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Figure 7.34: Streamlines for axial turbomachine with 60◦ blade stagger; contours of equal increments in ψ .

Computed streamlines for this flow are shown in Figure 7.33. The blade passage has an inner/outer
(hub/tip) radius ratio of 0.7, and the annulus height is equal to the midspan passage width. A relative
rotation of the flow, with sense opposite to that of the passage rotation, is evident.

Comparing Figure 7.33 with Figures 7.5 or 7.6 we can infer that the circulatory motion is due to
the presence of the radial walls. The stream function solution for this two-dimensional flow consists
of a complementary and a homogeneous solution, ψ = ψC + ψH. The former obeys the Poisson
equation ∇2ψC = −2
 and is associated with a solid-body flow of vorticity −2
 with stream-
lines that are concentric circles centered on the axis of rotation. This part of the solution obeys the
boundary conditions of zero normal velocity on inner and outer radii but has a non-zero normal (θ)
relative velocity at the location of the radial blades. To obtain zero normal velocity at the blades,
the homogeneous solution is needed. The homogeneous solution is irrotational in the relative frame,
since ∇2ψH = 0. Although numerical solution is carried out for the combined stream function, the
conceptual breakup into homogeneous and complementary solutions helps illustrate that the irrota-
tional relative flow, associated with the presence of non-circular boundaries, carries the information
about non-axisymmetric variations in velocity and pressure.

The streamline pattern is quite different for blades with a non-zero stagger angle. Instead of
the blades being axial suppose now the blades are inclined to the axial direction by 60◦ (blade
stagger angle 60◦). Relative flow streamlines for such a blade passage in an r–θ plane are shown
in Figure 7.34. The axial component of relative vorticity is the same as in the previous example.
The streamlines do not show an obvious relative eddy because a large relative tangential velocity is
superposed on the circulatory flow. For non-zero stagger wθ is not equal to zero at the blade surface
because the boundary condition is wθ /wx = tan γ at the blade surface where γ is the stagger angle.
The relative eddy seen in Figure 7.33 thus has a mean circumferential velocity superposed on it
which overwhelms the circulatory pattern. Subtracting an appropriate wθ from the overall velocity
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field would, however, allow us to extract the circulating flow. The observance of streamline features
thus depends on the background velocity field, or coordinate system, from which the observations are
made.

An additional feature concerning the relative eddy has been pointed out by Smith (2001). The
existence of a relative eddy is connected with a jump in radial (spanwise) velocity across the blade.
For blading designed for free vortex flow (uθ ∝ 1/r), i.e. absolute circulation constant with radius,
no vortex lines can thread downstream from the blade, there will hence be no such jump, and thus
no relative eddy.



8 Swirling flow

8.1 Introduction

Many fluid machinery applications involve swirling flow. Devices in which swirl phenomena have
a strong influence include combustion chambers, turbomachines and their associated ducting, and
cyclone separators. In this chapter, we examine five aspects of swirling flows: (i) an introductory
description of pressure and velocity fields in these types of motion; (ii) the increased capability for
downstream conditions to affect upstream flow; (iii) instabilities and propagating waves on vortex
cores; (iv) the behavior of vortex cores in pressure gradients; and (v) viscous swirling flow, specifically
the influence of swirl on boundary layers, jets, mixing, and recirculation. The behavior of vortex
cores ((iii) and (iv)) is described in some depth because this type of embedded structure features in a
number of fluid devices. Further, much of the focus is on inviscid flow because the dominant effects
of swirl are inertial in nature.

In the discussion it is necessary to modify some of the concepts developed for non-swirling flow.
For example, there can be a large variation in static pressure through a vortex core at the center
of a swirling flow, in contrast to the essentially uniform static pressure across a thin shear layer or
boundary layer in a flow with no swirl. This pressure variation affects the vortex core evolution. The
length scales which characterize the upstream influence of a fluid component are also altered when
swirl exists.

Different parameters exist in the literature for representing the swirl level in a given flow. These
have been developed to enable the definition of flow regimes and behavior. To characterize overall
swirl level, we will use the circumferential velocity divided by the axial velocity, uθ /ux, denoted by
S and referred to as the swirl parameter. This can be evaluated in several ways, for example based
on the peak uθ for a vortex core, the conditions at the mean radius, or some average condition; the
specific usage will be defined where necessary. The swirl parameter has the advantage that it appears
explicitly in the equations describing many of the different phenomena to be examined, facilitating
insight into parametric dependence. We note, however, that it is not only the swirl level that is
important but also the swirl distribution or, equivalently, the distributions of stagnation pressure and
vorticity. Therefore, although a single parameter serves to define different regimes for one specific
type of swirling flow (for example solid-body rotation) no one parameter by itself suffices across all
different types of swirl distribution. This point is discussed further in Section 8.4.

Chapter 8 deals with uniform density incompressible swirling fluid only. Chapters 10 and 11
address: (i) compressible swirling flow and (ii) the effect of swirl in flows with density variation due
to heat addition.
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8.2 Incompressible, uniform density, inviscid swirling flows in simple
radial equilibrium

The simplest class of swirling flows can be referred to as cylindrical, or simple radial equilibrium,
flows. The latter term is in common usage and will be adopted here. A simple radial equilibrium flow
is defined as one which: (a) is steady; (b) is axisymmetric; (c) has radial velocity, ur, zero everywhere;
and (d), as a consequence of (a), (b), and (c), has axial and circumferential velocity components, ux

and uθ , and pressure, p, which are only functions of the radius r.
With this set of conditions the continuity and axial and circumferential momentum equations are

automatically satisfied. The only non-trivial component of the momentum equation is the radial
component, which expresses a balance between radial and centripetal acceleration:

1

ρ

dp

dr
= u2

θ

r
= K 2

r3
. (8.2.1)

In (8.2.1), the quantity K, which can be a function of r, is defined as K = ruθ , the circulation round a
circular contour at radius r, divided by 2π . In defining a simple radial equilibrium flow we are free
to specify the radial distribution of ux and any one of the variables p, uθ , or K. The circumferential
and axial vorticity components are given by1

ωx = 1

r

d

dr
(ruθ ) = 1

r

dK

dr
, (8.2.2a)

ωθ = −dux

dr
. (8.2.2b)

For a uniform density flow, if the circulation distribution is specified, (8.2.1) can be integrated to
find the static pressure distribution. With rref a reference radius at which a reference pressure, pref,
is specified,

p − pref

ρ
=

r∫
rref

K 2

r ′3 dr ′. (8.2.3)

The stagnation pressure is then

pt − pref

ρ
= 1

2

(
u2

x + u2
θ

)+ r∫
rref

K 2

r ′3 dr ′, (8.2.4)

or, since uθ = K/r,

pt − pref

ρ
= 1

2
u2

x + 1

2
u2
θref

+
r∫

rref

K

r ′2
dK

dr ′ dr ′. (8.2.5)

1 In this chapter the axis of symmetry is denoted by x whereas the axis of rotation in Chapter 7 was denoted by z. The
coordinate choice (which it is hoped will cause no confusion!) has been made based on the convention that the overall flow
direction has been identified throughout with the x-direction. Chapter 7 described passage flows in the rotating system, with
the x-coordinate along the passage. In contrast, Chapter 8 addresses mainly swirling flows with the throughflow direction
parallel to the axis of symmetry.
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It is generally more relevant to define the flow as having a given pt and flow angle, α (tan α =
uθ /ux), distributions, since these are quantities one can set, rather than p and ux. Equation (8.2.4)
can thus be regarded as a prescription for the variation in velocity magnitude compatible with the
requirements for given pt, flow angle, and the condition of simple radial equilibrium. Equations (8.2.3)
and (8.2.4) are alternative statements for radial equilibrium; if one is satisfied, so is the other.

8.2.1 Examples of simple radial equilibrium flows

Several simple radial equilibrium flows represent most of the range of practical interest. We shall
see that an important feature of a swirling flow is whether it contains axial vorticity. The first flow to
be examined is therefore the irrotational swirling motion referred to as free vortex flow. It has ux and
K constant, say ux0 and K0, and the circumferential velocity is given by uθ = K0/r. Equation (8.2.5)
shows that pt is constant and that

p − pref

ρ
= K 2

0

2

(
1

r2
ref

− 1

r2

)
. (8.2.6)

Free vortex flow is irrotational everywhere except at r = 0.
A simple rotational swirling flow is solid-body rotation, also known as forced vortex flow (we

use the latter term to include the general situation with ux a function of r). This is often, but not
necessarily, specified as having a constant axial velocity, ux = ux0 = constant. The circumferential
velocity is proportional to r (as if the fluid were a “solid body”):

uθ = 
r; 
 = constant, (8.2.7)

so that K = 
r2. Taking conditions on the axis as the reference, the static and stagnation pressures
for uniform axial velocity are:

p − p(0)

ρ
= 
2r2

2
, (8.2.8a)

pt − p(0)

ρ
= 1

2
u2

x0
+
2r2. (8.2.8b)

Forced vortex flow has an axial component of vorticity given by ωx = 2
. If the axial velocity is
non-uniform there is also a circumferential component of vorticity ωθ = −dux/dr.

A third elementary swirl flow, also rotational, is constant circumferential velocity, uθ = uθ0 , and
constant axial velocity, ux0 . For this flow, the stagnation pressure distribution is

pt − pref

ρ
= 1

2
u2

x0
+ u2

θ0
ln

(
r

rref

)
+ u2

θ0

2
. (8.2.9)

Constant circumferential velocity flow has an axial component of vorticity:

ωx = uθ0

r
. (8.2.10)

As with the forced vortex, there could also be a circumferential component of vorticity.
Circumferential velocity and stagnation pressure distributions are shown in Figure 8.1 for these

three flows in an annulus of inner/outer radius ratio, ri/ro = 0.5. The normalized circumferential
velocity is set to be the same for the three flows at r/ro = 0.75.
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Figure 8.1: Circumferential velocity and stagnation pressure distributions for free vortex, forced vortex, and
constant swirl velocity annular flow; inner/outer radius ratio ri/ro = 0.5, uθ matched at r/ro = 0.75: (a) cir-
cumferential velocity; (b) stagnation pressure based on uniform axial velocity.

Another simple radial equilibrium flow of interest arises in turbomachinery applications where
fluid is drawn from a large reservoir into a row of swirl vanes. The fluid entering the vanes has
uniform stagnation pressure. If the vanes are designed so that loss variations are small along the span
of the vanes, the swirling flow at the vane exit can also be regarded as having uniform stagnation
pressure. Differentiating (8.2.5) then gives a constraint on the axial velocity distribution as

d

dr

(
u2

x

) = − 1

r2

d

dr
(K 2). (8.2.11)

Equation (8.2.11) can also be obtained by substituting the expressions for the vorticity components
into Crocco’s equation for an incompressible, uniform density fluid, (3.14.6). For the case of uniform
stagnation pressure this becomes

u × ω = 0. (8.2.12)
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Except for the free vortex the axial velocity is not constant in a uniform stagnation pressure swirling
flow because the variation in axial velocity is linked to the variation in circulation (or circumferential
velocity) distribution. For example, with forced vortex swirl, K = 
r2, the equation for the axial
velocity is

d

dr

(
u2

x

) = −4
2r. (8.2.13)

If the axial velocity is uxa at a radius r = a, the axial velocity distribution is

ux (r )

uxa

=
√

1 + 2
2a2

u2
xa

(
1 − r2

a2

)
. (8.2.14)

8.2.2 Rankine vortex flow

The free vortex furnishes a useful description in an annular region, but the velocity becomes infinite
as the radius, r, approaches zero. In reality viscous effects limit the velocity gradients. A description
which reflects this behavior and can be used in a cylindrical duct is a combination of two of the above
velocity fields, a core of solid-body rotation embedded in a free vortex flow. Denoting the radius of
the core by r = a, the configuration, often termed a Rankine vortex, has the velocity distribution

uθ = 
r, ux = ux (r) r ≤ a, (8.2.15a)

uθ = 
a2/r, ux = ux0 r ≥ a. (8.2.15b)

The axial velocity for r ≤ a is left as a function of radius in (8.2.15b) because there can be a velocity
variation within vortex cores.

The static pressure variation in the Rankine vortex is

p − p(0)

ρ
= 
2r2

2
r ≤ a, (8.2.16a)

p − p(0)

ρ
= 
2a2 − 
2a4

2r2
r ≥ a. (8.2.16b)

Half the overall pressure drop from a station at large radius (r → ∞) to the axis occurs in the
irrotational region and half occurs within the solid-body core from r = a to r = 0, independent of
core radius. The magnitude of the overall static pressure variation, however, is dependent upon the
core radius:

�poverall

ρ
= 
2a2. (8.2.17)

The axial and circumferential components of vorticity within the core (r ≤ a) are 2
 and −dux/dr.
The vorticity is zero outside the core. The stagnation pressure distribution is

pt − p(0)

ρ
= [ux (r )]2

2
+
2r2; r ≤ a, (8.2.18a)

pt − p(0)

ρ
= u2

x0

2
+
a2 = constant; r > a. (8.2.18b)
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The relation between K and 
 is

K = 
r2; r ≤ a, (8.2.19a)

K = 
a2; r > 0. (8.2.19b)

8.3 Upstream influence in a swirling flow

Flows with swirl exhibit a much enhanced potential for upstream influence, defined here as the
ability to cause a change in the structure of the upstream velocity profile or streamline distribution,
compared to non-swirling flow. An example is seen in Figure 8.2, which shows experimentally
visualized streamlines in a cylindrical duct downstream of a simulated combustor geometry. Figures
8.2(a) and 8.2(b) correspond to a lower swirl parameter than Figures 8.2(c) and 8.2(d). For these
lower swirl conditions, placing a contraction on the downstream end of the duct has little effect on
the streamline pattern (compare Figures 8.2(a) and 8.2(b)). With the higher swirl in Figures 8.2(c)
and 8.2(d) a substantial change in the streamlines is seen, and the effect of the exit contraction is felt
more than three diameters upstream of the duct exit. This behavior is different from the upstream
influence with no swirl in which (as will be seen in the next section) pressure disturbances have
upstream exponential decay over a length scale of roughly a duct radius.

The increased upstream influence means that, for swirling flow, the guidelines for assuming no
coupling between fluid components or for the selection of the type of boundary conditions needed in
computational studies are different than for non-swirling flow. Upstream influence will be addressed
on several levels. An approximate analysis is given in this section to introduce the topic and provide
some general guidelines concerning the impact of swirl. In the following section the topic is explored
in more depth to determine parametric dependencies.

We emphasize again it is not swirl level alone which is relevant. If the flow is irrotational (free
vortex), no matter what the swirl magnitude the upstream axial and radial velocities are derivable
from a potential that (for incompressible flow) obeys Laplace’s equation and is independent of the
swirl. Upstream influence in an incompressible flow is not altered by free vortex swirl.

(a) (b)

(c) (d)

Figure 8.2: Influence of an exit contraction on measured streamlines in a swirling flow in a combustor geometry,
Re = 10, 600: (a) no exit contraction; S = 5.2; (b) with exit contraction; S = 5.2 (54.5% diameter reduction);
(c) no exit contraction; S = 22.4; (d) with exit contraction; S = 22.4 (Escudier, 1987).
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The presence of rotationality in the swirl distribution, particularly the presence of axial vorticity,
is the key to the change in upstream influence and is the focus of the present section. The basic
phenomena are brought out by examining the behavior of steady axisymmetric disturbances, or
perturbations, superposed on a background flow composed of a forced vortex with angular velocity

 and a uniform axial velocity ux . The perturbed motion has velocity components (ux + u′

x , 
r +
u′
θ , u′

r ). The equations that describe this axisymmetric flow are (Section 1.14):

∂(u′
x )

∂x
+ 1

r

∂

∂r
(ru′

r ) = 0, (8.3.1a)

D

Dt
(ux + u′

x ) = − 1

ρ

∂(p + p′)
∂x

, (8.3.1b)

D

Dt
(
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θ ) + u′
r
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r + u′

θ

)
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= 0, (8.3.1c)

Du′
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Dt
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r + u′

θ
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= − 1

ρ

∂(p + p′)
∂r

, (8.3.1d)

where, for steady flow,

D

Dt
= (ux + u′

x )
∂

∂x
+ u′

r

∂

∂r
. (8.3.2)

For small amplitude disturbances squares and products of the perturbation terms can be neglected,
resulting in linearized momentum equations for the perturbations:

ux
∂u′

x

∂x
= − 1

ρ

∂ p′

∂x
, (8.3.3a)

ux
∂u′

θ

∂x
+ 2
u′

r = 0, (8.3.3b)
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∂u′

r

∂x
− 2
u′

θ = − 1

ρ

∂ p′

∂r
. (8.3.3c)

Eliminating the pressure between (8.3.3a) and (8.3.3c) gives

ux
∂

∂x

(
∂u′

r

∂x
− ∂u′

x

∂r

)
− 2


∂u′
θ

∂x
= 0. (8.3.4)

To obtain a solution of these equations, a perturbation stream function, ψ , can be introduced which
satisfies the continuity equation identically:

u′
x = 1

r

∂ψ

∂r
, u′

r = −1

r

∂ψ

∂x
. (8.3.5)

Substituting (8.3.5) into (8.3.4), and eliminating u′
θ using (8.3.3b), yields an equation for the

disturbance stream function, ψ :

∂

∂x

[
∂2ψ

∂x2
+ ∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
(

2


ux

)2

ψ

]
= 0. (8.3.6)

To demonstrate in a simple manner the effect of swirl on upstream influence, we confine attention
(for now) to annular regions of high inner/outer radius ratio, i.e. ri/ro near unity. In this situation order
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Figure 8.3: Geometry for the analysis of upstream influence in an annular swirling flow; the domain is the
annular region upstream of x = 0.

of magnitude arguments can be used to eliminate a term in (8.3.6). The length scale for variations
in ψ in the radial direction is of order �ro/ i , where �ro/ i is the annulus height, ro − ri. The ratio
of the two r-derivative terms, (1/r)(∂ψ/∂r) and (∂2ψ/∂r2), is thus roughly �ro/ i/rm , where rm is
the mean radius. For high inner/outer radius ratio (�ro/ i/rm � 1) the first r-derivative term can be
neglected compared to the second and (8.3.6) reduced to

∂

∂x

[
∂2ψ

∂x2
+ ∂2ψ

∂r2
+
(

2


ux

)2

ψ

]
= 0. (8.3.7)

Equation (8.3.7) describes the steady axisymmetric disturbance flow field in a high hub/tip radius
ratio annulus.

To close the problem specification we take the flow to have an axial velocity distribution that
varies with radius at the station x = 0 (see Figure 8.3) and ask how far upstream the influence of this
non-uniformity will be felt. For definiteness the axial velocity perturbation at x = 0 is given by

u′
x (0, r ) = εux sin

π (r − rm)

�ro/ i
. (8.3.8)

The disturbance stream function must give an axial velocity consistent with the boundary condition
at x = 0 and obey the condition of no normal velocity along the inner and outer walls of the annulus
or “hub” and “tip” (r = rm ±�ro/ i/2). Therefore,

1

r

∂ψ

∂r
(0, r ) = u′

x (0, r ), (8.3.9)

∂ψ

∂x

(
x, rm + �ro/ i

2

)
= ∂ψ

∂x

(
x, rm − �ro/ i

2

)
= 0. (8.3.10)

The disturbance must also be bounded far upstream.
As can be verified by direct substitution, a suitable form of ψ satisfying the boundary conditions

given in (8.3.9) and (8.3.10) is2

ψ = −εuxrm�ro/ i

π
f (x) cos

π (r − rm)

�ro/ i
, (8.3.11)

2 In (8.3.11) we have replaced r by rm in the coefficient of the stream function, consistent with the approximation made
previously in dropping the term (1/r) (∂ψ/∂r).
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where f(x), which describes the axial variation, is to be determined. Substituting (8.3.11) into (8.3.7)
yields an equation for f(x):

d

dx

{
d2 f

dx2 +
[(

2


ux

)2

− π2

(�ro/ i )2

]
f

}
= 0. (8.3.12)

The solution of (8.3.12) which decays upstream (x < 0) has the form

f (x) ∝ e(πx/�ro/ i )
√

1−[
rm/ux ]2[2�ro/ i/(πrm )]2

.

The term inside the square root has been written in terms of the swirl parameter at the mean radius,

rm/ux , and a term 2�ro/ i/πrm representing the inner/outer radius ratio of the annulus. The form
of the disturbance stream function, ψ , is

ψ = −εuxrm�ro/ i

π
cos
π (r − rm)

�ro/ i
e(πx/�ro/ i )

√
1−[
rm/ux ]2[2�ro/ i/(πrm )]2

. (8.3.13)

The exponential decay sets the extent of upstream influence. Without swirl the exponent would
be πx/�ro/ i (Section 2.3). As the swirl parameter 
rm/ux is increased, the decay with upstream
distance decreases. At swirl parameters equal to, or greater than, πrm/(2�ro/ i ), the exponent is zero
or imaginary and disturbances do not decay upstream. The solutions then have a wave-like, rather
than decaying, structure and different boundary conditions need to be applied that take this into
account.

The lengthened upstream distance over which a disturbance can be felt in a swirling flow compared
to the no-swirl situation is sometimes referred to as the stiffening effect of vortex lines. It is essentially
the same phenomenon we encountered in rotating flows (Section 7.4), namely that for large values
of background axial vorticity, 
rm/ux , the flow exhibits strong tendencies towards motions which
do not vary along the axis of rotation.

8.4 Effects of circulation and stagnation pressure distributions
on upstream influence

The previous section introduced qualitative features of upstream influence in a swirling flow. We
now make the conclusions more quantitative and demonstrate how radial distributions of circulation
(swirl) and stagnation pressure affect the extent over which a downstream non-uniformity impacts
the upstream motion. The approach is to derive an equation relating the stream function to the radial
distributions of circulation and stagnation pressure. Solution of this equation defines the upstream
decay rate of a velocity variation with radius specified at a given axial station.

The effects of interest are described in the context of steady, axisymmetric, inviscid flow. For
this situation circulation and stagnation pressure are conserved along streamlines so that K =
�/2π = K(ψ) and pt = pt (ψ). From the definition of the axisymmetric stream function, (8.3.5), the
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circumferential component of vorticity, ωθ , is

ωθ = ∂ur

∂x
− ∂ux

∂r
= −1

r

(
∂2ψ

∂x2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂r2

)
. (8.4.1)

The x-component of the Crocco form of the momentum equation allows us to link ωθ to K and pt.
The Crocco equation is

u × ω = ∇pt

ρ
. (3.14.6)

The x-component is

urωθ − uθωr = 1

ρ

∂pt

∂x
. (8.4.2)

To write (8.4.2) in terms of ψ , K and pt note that the radial component of vorticity, ωr, is given by

ωr = −∂uθ
∂x

= − ∂

∂x

(
K

r

)
. (8.4.3)

Because K is a function of ψ only,

∂

∂x
K (ψ) = r

∂uθ
∂x

= dK

dψ

∂ψ

∂x
,

yielding the radial component of vorticity as

ωr = ur
dK

dψ
. (8.4.4)

The axial variation of the stagnation pressure can also be written in terms of the stream function
as

∂pt

∂x
= dpt

dψ

∂ψ

∂x
. (8.4.5)

Substituting (8.4.3)–(8.4.5) into (8.4.2) produces the desired equation for the stream function in
terms of derivatives of stagnation pressure and circulation:

∂2ψ

∂x2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂r2
= r2 d(pt/ρ)

dψ
− K

dK

dψ
. (8.4.6)

Equation (8.4.6), which is due to Bragg and Hawthorne (1950) (see also Batchelor (1967), Leibovich
and Kribus (1990)), explicitly links the stagnation pressure and circulation distributions to the stream
function behavior.

As a first example of the use of (8.4.6), we reexamine in more depth the problem considered in
Section 8.3, upstream influence in an annulus with far upstream forced vortex swirl and uniform
axial velocity. At the far upstream location3

ux (−∞, r ) = 1

r

(
∂ψ

∂r

)∣∣∣∣
x=−∞

= ux (8.4.7a)

3 We use the notation (−∞) to emphasize that the station is distant enough not to see any upstream influence as well as to
distinguish from the subscript that denotes conditions at the outer radius (e.g. ro, po).
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or

ψ |x=−∞ = ux
r2

2
, (8.4.7b)

pt (−∞, r ) = pt (−∞, ri ) + ρ(r2
2 − r2
i 


2
) = −ρr2

i 

2 + 2ρ


2ψ

ux
, (8.4.7c)

K = 
r2 = 2
ψ

ux
. (8.4.7d)

Because K and pt are functions of ψ only, the derivatives with respect to ψ have the same value at
any axial station and (8.4.6) takes the form

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂x2
= 2
2r2

ux
− 4
2ψ

u2
x

. (8.4.8)

The stream function ψ can be defined in two parts as

ψ = 1

2
uxr2 + ψup. (8.4.9)

The first term represents a forced vortex, uniform axial velocity flow, undisturbed by any downstream
boundary conditions. The second term, ψup, which expresses the departure from the far upstream
forced vortex flow, defines the upstream influence. Substituting (8.4.9) into (8.4.8) provides the
equation for ψup:

∂2ψup

∂r2
− 1

r

∂ψup

∂r
+ ∂2ψup

∂x2
+
(

2


ux

)2

ψup = 0. (8.4.10)

To assess the upstream influence, as in Section 8.3, we examine the upstream decay of a velocity
non-uniformity at a specified axial location. To do this it is not necessary to define the solution to
(8.4.10) in detail. If we separate variables and write the stream function as

ψup= R(r)X(x) (8.4.11)

the x-dependence is found to be of the form X = eλx/�ro/ i . The non-dimensional quantity in the
exponent, λ, is determined by solving (8.4.10), imposing the boundary conditions of no normal (or
radial) velocity at r = ro and r = ri. The value of 1/λ gives an indication of the upstream distance
over which downstream disturbances attenuate and hence of the extent of upstream influence.

Figure 8.4 shows λ versus the non-dimensional parameter
�ro/ i/ux , for four different values of
inner/outer radius ratio, ri/ro. The dashed line is the approximate solution of Section 8.3,4 for which
λ is equal to π at 
�ro/ i/ux = 0 (the upstream influence result from Section 2.3) and falls to zero
at 
�ro/ i/ux = π/2. For forced vortex flow the effect of swirl on the upstream extent over which
disturbances are felt can be seen by the fact that all the curves drop to 0 as 
�ro/ i/ux increases to
between π/2 and 1.9. For values of
�ro/ i/ux in excess of those for which λ is 0, there is no decay
with upstream distance.

Although the initial consideration of upstream influence was focused on the forced vortex velocity
distribution because it provides a clear example of the effects of interest, the ideas are readily extended

4 Note that ux in Section 8.3 has been replaced by ux−∞ in the more general treatment in Section 8.4.
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Figure 8.4: Upstream decay exponent for a forced vortex flow (uθ = 
r , where 
 is a constant) in an annulus
with ro = outer radius, ri = inner radius, �ro/ i = ro − ri ; upstream disturbance velocity decay ∝ eλx/�ro/ i .

to more general swirl and axial velocity distributions. The problem can be posed as in the previous
section. At a given axial station, x = 0, there is a radially non-uniform axial velocity, ux (r, 0). This
could result from duct geometry (e.g. a radius increase in an annular duct or the presence of a nozzle)
or the influence of turbomachinery. For a given far upstream distribution of swirl (K) and stagnation
pressure (pt) we wish to determine the upstream distance over which there is an appreciable effect
of this imposed downstream axial velocity distribution.

To proceed further specific statements must be made about the configuration to be studied. Two
geometries are considered, an annular region with an inner/outer radius ratio of 0.5 and a cylindrical
duct. The former primarily illustrates the effect of the circulation distribution, the latter the effect of
the stagnation pressure distribution. At x = 0 the axial velocity is taken to have the form (with the
far upstream axial velocity, ux−∞ , no longer restricted to be uniform)

ux (0, r ) =
[

1 + ε sin
π (r − ri )

�ro/ i

]
ux−∞ . (8.4.12)

One further approximation will be made to simplify (8.4.6). For ε small compared with unity the
disturbances considered (for example the disturbance in axial velocity) are small compared to the
mean values of these quantities over much of the region of interest, and in many situations over all of
this region. We can take advantage of this and solve a linearized form of (8.4.6) without affecting the
overall conclusions concerning the extent of the upstream influence. The linearization is that local
quantities on the right-hand side of (8.4.6) are replaced by their value at the far upstream condition,
denoted by the subscript “−∞”. A physical statement of this approximation is that stagnation pressure
and circulation are regarded as convected along the undisturbed streamlines, which are helices of
constant radius, rather than along the actual streamlines, which have a radius change. If�ux/ux−∞ is
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Figure 8.5: Upstream influence for different swirl distributions; annular flow, ri/ro = 0.5 (subscript “rm” denotes
conditions at radius rm = 0.75ro).

everywhere small compared to unity, the linearized solution will be a good quantitative descriptor but,
even if �ux/ux−∞ is not small compared to unity, as long as there is no reverse flow the description
will be qualitatively useful.

With the above proviso, the equation for the disturbance stream function, ψup, associated with the
departure from far upstream conditions, is

∂2ψup

∂r2
− 1

r

∂ψup

∂r
+ ∂2ψup

∂x2
=
{

r2

[
d(pt/ρ)

dψ

]
x=−∞

−
[

K

(
dK

dψ

)]
x=−∞

}
ψup. (8.4.13)

In (8.4.13) the square-bracketed terms are functions of radius.
Assigning a numerical value to the extent of upstream influence has some degree of arbitrariness,

but a metric which illustrates the point is the axial distance at which the magnitude of the axial velocity
non-uniformity has decreased to 10% of the value at the downstream boundary where the non-
uniformity is imposed. Figure 8.5 shows this “upstream influence distance”, normalized by the mean
radius of the duct, rm, as a function of the far upstream swirl parameter [uθ−∞/ux−∞ = K/(rux−∞ )]
evaluated at the mean radius. Results from solution of (8.4.13) are presented for three different
circulation distributions: free vortex (K = ruθ = constant), constant circumferential velocity, and
forced vortex (K proportional to r2). Results from the approximate solution of Section 8.3 are
also indicated. For all these the far upstream axial velocity is uniform. The far upstream values
of axial vorticity at the mean radius for the three cases are ωx−∞rm/ux−∞ = 0, (uθ−∞/ux−∞ )rm , and
2(uθ−∞/ux−∞ )rm for the free vortex, uniform uθ , and forced vortex flows respectively.
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For irrotational steady flow, K and pt are uniform and (8.4.6) and (8.4.13) reduce to an equation
in which the swirl level does not appear:

∂2ψup

∂r2
− 1

r

∂ψup

∂r
+ ∂2ψup

∂x2
= 0. (8.4.14)

For irrotational flow upstream influence does not depend on uθ−∞
/

ux−∞ .
For uniform uθ and forced vortex distributions, the behavior is different. Figure 8.5 indicates that

the region of upstream influence increases as the parameter (uθ−∞/ux−∞ )rm is increased. Further, as
described in Section 8.3, there is a value of swirl parameter above which axial velocity disturbances
do not decay.

The discussion so far has been in terms of differences in circulation distribution. The stagnation
pressure distribution is also different for the two rotational flows and this affects upstream influence.
To exhibit the trends with the stagnation pressure profile, we examine a Rankine vortex swirling flow
in a cylindrical duct in which the far upstream flow has a forced vortex distribution over the inner
part of the duct, from r = 0 to r = 0.5ro, and constant circulation at radii greater than r = 0.5ro.
Calculations have been carried out using (8.4.13) for three families of far upstream axial velocity
profiles: (1) axial velocity (ux−∞ ) uniform with radius, (2) axial velocity having a linear decrease or
increase with radius in the inner part of the duct (denoted by ID), and (3) axial velocity having a
linear decrease or increase with radius in the outer part of the duct (denoted by OD). The downstream
boundary condition for the disturbance flow in all cases is

1

r

∂ψup

∂r
(0, r ) = ux (0, r ) − ux−∞ (0) = ε(ux−∞ )rm sin(πr/ro). (8.4.15)

Figure 8.6 shows the results. Because of the interacting parameters, a range of cases has been
included. Figure 8.6(a) illustrates the circumferential velocity distribution far upstream while Figures
8.6(b) and 8.6(c) show the far upstream axial velocity distributions. Figures 8.6(d)–(g) portray
the upstream stagnation pressure distributions (referenced to the static pressure on the centerline,
pcl ( = p(−∞, 0))) corresponding to Figures 8.6(b) and 8.6(c), for two levels of swirl parameter.
Figures 8.6(d) and 8.6(f) correspond to the axial velocity profiles in Figure 8.6(b), while Figures
8.6(e) and 8.6(g) correspond to the axial velocity profiles in Figure 8.6(c). The curves in Figures
8.6(d) and 8.6(e) correspond to uθ−∞/ux−∞ = 0.5 at the mean radius, rm, and those in Figures 8.6(f)
and 8.6(g) to uθ−∞/ux−∞ = 1.0 at the mean radius. The nomenclature for the axial velocity is that
I-1, I-2, and so on correspond to profiles 1, 2, etc. with axial velocity variation in the inner region
of the duct, and O-1, O-2, etc. correspond to profiles with axial velocity variation in the outer
part.

The results of the calculations are summarized in Figure 8.7, which shows the extent of upstream
influence versus the far upstream swirl parameter evaluated at the mean radius, (uθ−∞/ux−∞ )rm . The
figure illustrates that the form of the stagnation pressure distribution has a major impact on upstream
influence. In particular a decrease in stagnation pressure in the inner part of the duct (where the
stagnation pressure is low even with uniform axial velocity) has a stronger effect than a decrease
in the outer part of the duct. The spread in the values of the swirl parameter at which the upstream
influence increases rapidly is more than a factor of 10 larger for the I-1 to I-5 profiles than for the
O-1 to O-5 profiles. Figure 8.7 shows it is not only the axial velocity distribution that is important,
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Figure 8.6: Far upstream circumferential and axial velocities and stagnation pressure distributions used to
illustrate the parametric behavior of upstream influence for swirling flow in a cylindrical duct. ID and OD
denote axial velocity variation in the inner and outer parts of the duct, respectively. Far upstream velocities:
uθ−∞ = 
r, r ≤ 0.5 ro, uθ−∞ = 0.25 
r 2

o/r, r > 0.5 ro, ux−∞ as shown in (b) and (c); subscript “rm” denotes
value at r = 0.5 ro (duct mean radius); pt = pt (−∞, r ), pcl = p(−∞, 0): (a) Far upstream swirl distribution;
(b) axial velocity for ID velocity variations; (c) axial velocity for OD velocity variations; (d) stagnation pres-
sure distribution corresponding to (b), (uθ−∞/ux−∞ )rm = 0.5; (e) stagnation pressure distribution corresponding
to (c), (uθ−∞/ux−∞ )rm = 0.5; (f) stagnation pressure distribution corresponding to (b), (uθ−∞/ux−∞ )rm = 1.0;
(g) stagnation pressure distribution corresponding to (c), (uθ−∞/ux−∞ )rm = 1.0.
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Figure 8.7: Upstream influence for different stagnation pressure distributions, flow in a cylindrical duct; see
Figure 8.6 for the key to axial velocity and stagnation pressure distributions.

since flows with the same axial velocity but different stagnation pressures (as in Figures 8.6(d) and
8.6(f) for example) exhibit very different behaviors with regard to upstream influence.

8.5 Instability in swirling flow

Flows with swirl exhibit a variety of unsteady phenomena. In this section a basic instability associated
with swirl is described. In Section 8.6 two additional aspects of unsteady behavior are addressed, wave
propagation on vortex cores and the stabilizing effect of swirl on shear layer (Kelvin–Helmholtz)
instability.

The instability associated with the presence of swirl means that some circumferential velocity
distributions consistent with simple radial equilibrium are unstable and not achievable in prac-
tice. To assess stability (as described in Chapter 6) one subjects a steady flow to a small am-
plitude unsteady perturbation and determines the subsequent dynamic behavior of such pertur-
bations, in particular whether they grow or decay. For axisymmetric disturbances in an inviscid,
uniform density, incompressible fluid, this question can be settled without formally solving the
equations using an argument originally given by Rayleigh (see, for example, Howard (1963), Tritton
(1988)).
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One form of this argument is as follows (Howard, 1963). From Section 1.14 the equations of
inviscid axisymmetric flow in cylindrical coordinates are:

1

r

∂

∂x
(rur ) + ∂ux

∂x
= 0, (8.5.1a)

∂ur

∂t
+ ur

∂ur

∂r
+ ux

∂ur

∂x
= − 1

ρ

∂p

∂r
+ (ruθ )2

r3
, (8.5.1b)

∂ux

∂t
+ ur

∂ux

∂r
+ ux

∂ux

∂x
= − 1

ρ

∂p

∂x
, (8.5.1c)

∂

∂t
(ruθ ) + ur

∂

∂r
(ruθ ) + ux

∂

∂x
(ruθ ) = 0. (8.5.1d)

Equation (8.5.1d) implies that the quantity ruθ is constant following a fluid particle. Equations
(8.5.1a)–(8.5.1c) show that the motion described is as if the only velocity components were ux and
ur but the fluid were subjected to a body force (ruθ )2/r3 in the outward radial direction. This can
be viewed as the force due to an equivalent radial gravitational field of strength 1/r3 acting on a
density distribution proportional to (ruθ )2. The interpretation of (ruθ )2 as a density is appropriate
because (ruθ )2 is constant following a particle. An analogy can therefore be drawn between an
axisymmetric swirling flow of a uniform density fluid and the axisymmetric, non-swirling flow of a
non-homogeneous incompressible fluid with density proportional to (ruθ )2 in a radial gravitational
field of strength 1/r3.

The condition for stability of a steady simple radial equilibrium flow with ux = ur = 0, uθ =
uθ (r) follows from this analogy. The flow will be stable if (ruθ )2 increases outwards and unstable if
(ruθ )2 decreases; the analogy is stability when denser fluid is outside less dense fluid. In summary,
Rayleigh’s criterion is that a swirling flow is stable to axisymmetric perturbations if the square of
the circulation increases with radius.

Free vortex flow, with ruθ constant, defines the neutral stability condition. Swirling flows in which
the circumferential velocity drops off more rapidly with radius than a free vortex are unstable. Forced
vortex swirl, with (ruθ )2 =
2r4 which is increasing outwards, and constant circumferential velocity
swirl, are examples of stable swirling flows.

Rayleigh’s criterion can also be derived by considering two thin rings of fluid, one at r1 and one
at r2, where r1 < r2. Suppose the rings are interchanged. Initially each was in equilibrium such
that

1

ρ

∂p

∂r
= u2

θ

r
= (ruθ )2

r3
. (8.5.2)

During the displacement, both rings keep their initial value of ruθ . When r = r2, for the ring initially
at r1

u2
θ2

r2
= (r1uθ1)2

r3
2

. (8.5.3)

The radial pressure gradient is set by the conditions outside the ring and is equal to (r2uθ2)2/r3
2 at

r = r2. If the pressure gradient is greater than the centripetal acceleration, a radial motion will be
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created to return the ring to its initial radius. This requires (r2uθ 2)2 > (r1uθ 1)2, in other words, that
the circulation increases outwards, as was derived above. The arguments developed are for the case
ux = 0, but they apply to ux = constant also, because this is just equivalent to changing the frame of
reference of the observer.

8.6 Waves on vortex cores

Vortex cores are a feature of many flows. Examples are the clearance vortices found in turbomachines,
the vortices on the centerline of swirl flow chambers, and the vortices that form at the inlet to gas
turbine engines. The geometry in which these vortex cores are created is often non-axisymmetric,
but if the core thickness is small compared to the characteristic scale of the region in which they are
embedded the vortex structure can be approximated as axisymmetric, as in the treatment here.

In this section we examine the characteristics of axisymmetric wave motions in vortex cores.
The discussion in Section 8.5 implies that swirl distributions in which the circumferential velocity
decreases more slowly than 1/r exhibit a restoring force to return fluid particles to their original
positions when radially displaced. This situation is one in which wave motions would be expected.
We will see in Section 8.7 that the wave propagation speed obtained from the analysis is also helpful
as a guide to the flow regimes expected for steady vortex cores in pressure gradients. In particular, this
speed will be seen to play a role analogous to the speed of sound in one-dimensional compressible
flow.

8.6.1 Control volume equations for a vortex core

We use the Rankine vortex model of Section 8.2 consisting of a forced vortex with core of radius
a, surrounded by an irrotational swirling flow. The core center is aligned with the x-axis. The core
radius and axial velocity, ux (taken here as uniform across the core), are both functions of the axial
coordinate, x, and the time, t, as indicated in Figure 8.8. The circulation of the core, denoted by Kc,

x

Core radius

x

x+dx

a(x,t)
dx

p = pa

r

Figure 8.8: Schematic of a quasi-one-dimensional model showing a vortex core of radius a(x,t) with control
volume. The pressure force at x is

∫ a
o 2πprdr = pa A − (ρπK 2

c /4); Kc = auθmax .
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is a constant of the motion.5 At any axial location there is a Rankine distribution of circumferential
velocity:

uθ (r, x, t) =




Kcr

a2
, r ≤ a(x, t)

Kc

r
, r > a(x, t)

,Kc = constant. (8.6.1)

The maximum swirl velocity uθ = Kc/a occurs at the core edge r = a. The swirl parameter for the
vortex core, Sc, is defined in terms of the core velocity components and radius as

Sc = uθmax

ux
= Kc

aux
. (8.6.2)

With the approximation that radial velocities are negligible, the radial momentum equation reduces
to simple radial equilibrium, applied locally in x,

∂p

∂r
= ρ

u2
θ

r
. (8.6.3)

Equations (8.6.1) and (8.6.3), along with the assumption that the flow outside the vortex core is
irrotational, imply the axial velocity outside the core is uniform in r, although its value need not be
the same as in the core.

An expression for the static pressure is obtained by integrating (8.6.3) with the specified circum-
ferential velocity distribution of (8.6.1). Using the notation pa for the core edge pressure, p(a, x, t),
this is

p(r, x, t) − pa(x, t) =




−1

2
ρ

(
Kc

a

)2 [
1 −
( r

a

)2
]
, r ≤ a

1

2
ρ

(
Kc

a

)2 [
1 −
(a

r

)2
]
, r > a.

(8.6.4)

With reference to the control volume of Figure 8.8 we assume the core boundary is a streamline.
This plus integration of (8.6.4) across the core to find the pressure force enables derivation of the
conservation equations for the core. Denoting the local core area, πa2, as A, these are:

conservation of mass:
∂

∂t
(A) + ∂

∂x
(Aux ) = 0, (8.6.5)

conservation of momentum:
∂

∂t
(Aux ) + ∂

∂x

(
Au2

x

) = − A

ρ

∂pa

∂x
. (8.6.6)

Equations (8.6.5) and (8.6.6) are two equations for three unknowns, A, ux, and pa. To close the
problem the variation in core edge pressure must be either specified through imposition of the far
field pressure (in the case of an unconfined vortex flow) or linked to A and ux through a description
of the bounding geometry in a confined flow.

5 As previously, Kc is used rather than the actual core circulation, �c, to avoid having to bookkeep the factor of 2π in the
equation.
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For an unconfined geometry the expression for pressure in (8.6.4) can be used to cast (8.6.6) in
terms of changes in the far field (r � a) pressure, pfar, as

∂

∂t
(Aux ) + ∂

∂x

(
Au2

x + πK 2
c

2
lnA

)
= − A

ρ

dpfar

dx
. (8.6.7)

For vortex cores in confined geometries the duct shape is given in terms of a specified area AD(x)
= π [rD(x)]2. The core occupies the region r = 0 to r = a(x, t) with irrotational flow between r =
a(x, t) and r = rD(x). Conservation of mass and momentum in the outer region close the problem.
With Ux the axial velocity in the outer flow, the two statements are:

conservation of mass:

∂

∂t
(AD − A) + ∂

∂x
[(AD − A) Ux ] = 0, (8.6.8)

conservation of momentum:

∂

∂t
[(AD − A) Ux ] + ∂

∂x

[
(AD − A) U 2

x

]
= −
(

AD − A

ρ

)
∂pa

∂x
+ πK 2

c

2

(
AD

A
− 1

)
1

A

∂A

∂x
. (8.6.9)

Equations (8.6.5), (8.6.6), (8.6.8), and (8.6.9) describe the evolution of A, ux, Ux, and pa for confined
vortex cores.

8.6.2 Wave propagation in unconfined geometries

To examine small amplitude wave propagation along the core we linearize the conservation equations
by taking the velocity, core area, and pressure to be composed of a mean state, uniform in x and
denoted by an overbar, plus a small perturbation denoted by a prime. The simplest configuration
exhibiting wave propagation is a vortex core in an unconfined geometry with far field pressure, pfar,
uniform in x, for which the motion is described by the appropriate linearized forms of (8.6.5) and
(8.6.7). Making use of (8.6.5) in (8.6.7) the wave equations for the vortex core are:

∂A′

∂t
+ ux

∂A′

∂x
+ A

∂u′
x

∂x
= 0, (8.6.10a)

∂u′
x

∂t
+ ux

∂u′
x

∂x
+
(
πK 2

c

2A
2

)
∂A′

∂x
= 0. (8.6.10b)

Equations (8.6.10) provide a “long wavelength” (i.e. a wavelength long compared to the core
diameter) approximate description of wave propagation on the vortex core. The waves are taken to
be of the form ei(kx−ωt), where k is the wave number in the x-direction and ω is the radian frequency:[

u′
x

A′

]
=
[

ux0

A0

]
ei(kx−ωt). (8.6.11)

In (8.6.11) u0 and A0 are (possibly complex) constants relating the amplitude and relative phase of
the velocity and area perturbations.
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Substituting (8.6.11) into (8.6.10) leads to two algebraic equations for u0 and A0. For these to have
a non-trivial solution, the determination of the coefficient matrix must be zero, giving an eigenvalue
relation for the wave phase speed, ω/k:

ω

k
= ux ± Kc√

2a
= ux ± 
a√

2
. (8.6.12)

Equation (8.6.12) shows that waves on the core propagate upstream and downstream with a velocity
of Kc/(

√
2a) relative to the core fluid.

An analogy exists between these waves and waves in a compressible fluid. From Section 6.6
the equations that describe the propagation of one-dimensional isentropic small disturbances in a
uniform compressible fluid are:

∂ρ ′

∂t
+ ux

∂ρ ′

∂x
+ ρ ∂u′

x

∂x
= 0, (8.6.13a)

∂u′
x

∂t
+ ux

∂u′
x

∂x
+ 1

ρ

(
γ p

ρ

)
∂ρ ′

∂x
= 0. (8.6.13b)

There is a direct correspondence between (8.6.13) and (8.6.10) with the core area playing the role
of fluid density and Kc/(

√
2a) corresponding to the speed of sound,

√
γ p/ρ. The waves described

by (8.6.13) depend on fluid compressibility as the restoring force or “elasticity” responsible for the
ability to support waves. In a vortex core the increase in circulation with radius means that if a ring of
particles in the core is displaced the resulting pressure imbalance creates a restoring force to return
the ring to the initial position.

We can build on the analogy further. Similar to the way the Mach number appears in a compressible
flow, it is useful to work in terms of the ratio of the axial velocity ux to the speed of propagation
of small amplitude waves, Kc/(

√
2a), to characterize the state of the vortex core. We thus define a

dimensionless criticality parameter, D, which depends on the mean core properties, as

D =
√

2a ux

Kc
. (8.6.14)

The parameter D is related to the reciprocal of the core swirl parameter (8.6.2) by D = √
2/Sc.

Situations in which D > 1, so that the core velocity is larger than the wave propagation velocity
and waves do not travel upstream, are called supercritical. Flows in which D < 1 are referred to as
subcritical. The condition D = 1 corresponds to a core swirl parameter equal to

√
2, i.e. to a velocity

ratio (uθ /ux ) at the vortex core edge equal to
√

2. In Section 8.8 we will see that passage through
this value is associated with large core expansion.

A number of assumptions have been made in developing the approximate description. As one
assessment of their impact the result for the critical swirl parameter (Sccrit = √

2) from the quasi-
one-dimensional analysis can be compared with the value of roughly 1.2 obtained from solutions
of the exact inviscid small disturbance equations (Maxworthy, 1988; Marshall, 1993) for a Rankine
vortex. The quasi-one-dimensional model provides a useful estimate for the critical swirl parameter.
In the following it will be seen to enable insight into other trends in vortex core behavior.
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8.6.3 Wave propagation and flow regimes in confined geometries: swirl stabilization
of Kelvin–Helmholtz instability

A similar analysis to that in Section 8.6.2 can be carried out for waves on a vortex core in a confined
geometry by linearizing (8.6.5), (8.6.6), (8.6.8), and (8.6.9). This leads to the following set of
equations:

∂A′

∂t
+ ux

∂A′

∂x
+ A

∂u′
x

∂x
= 0, (8.6.15a)

∂u′
x

∂t
+ ux

∂u′
x

∂x
+ 1

ρ

∂p′
a

∂x
= 0, (8.6.15b)

∂A′

∂t
+ U x

∂A′

∂x
− (AD − A)

∂U ′
x

∂x
= 0, (8.6.15c)

∂U ′
x

∂t
+ U x

∂U ′
x

∂x
+ 1

ρ

∂ p′
a

∂x
−
(
πK 2

c

2A
2

)
∂A′

∂x
= 0. (8.6.15d)

Substituting the disturbance form ei(kx-ωt) into (8.6.15) and evaluating the determinant of the coef-
ficient matrix of the resulting algebraic equations gives an eigenvalue equation for the wave speed.
With c = Kc/(

√
2a) this is

ω

k
= (AD − A)ux + AU x

AD
±
√√√√(1 − A

AD

)[
c2 − A

AD
(U x − ux )2

]
. (8.6.16)

If we define effective convective and wave speeds as

uxeff = (AD − A)ux + A U x

AD
, (8.6.17a)

c2
eff =

(
1 − A

AD

)[
c2 − A

AD
(U x − ux )2

]
, (8.6.17b)

the eigenvalues can be written as λ± = uxeff ± ceff.
For a confined flow the eigenvalues can be complex, corresponding to a long wavelength Kelvin–

Helmholtz type instability (Section 6.5) of the cylindrical vortex sheet between the core and the
external flow. For stability the eigenvalues must be real so that c2

eff is equal to or greater than 0, or,

πK 2
c

2A
≥ A

AD
(U x − ux )2 for stability. (8.6.18)

Equation (8.6.18) explicitly shows the stabilizing effect of swirl. The larger the difference in axial
velocity between the core and outer regions, the greater the swirl needed for stability. An analogy
that applies is that between the stability of an axisymmetric swirling flow and that of a stratified
shear layer in a gravitational field. The connection can be inferred from the similarity of equations
for the two situations (see for example Section 232 in Lamb (1945)). For the stratified shear layer,
stabilization arises from the difference in fluid density.

For a confined vortex core it is helpful to define an effective criticality parameter as

Deff = uxeff

ceff
, (8.6.19)
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with values of Deff > 1 indicating supercritical behavior. For given A/AD and ux/U x the core swirl
parameter for which Deff = 1 is

Sccrit =
√√√√2

[
1 +

(
U x/ux

)2
AD/A − 1

]
. (8.6.20)

The parameter Sccrit marks the division between subcritical and supercritical flows. It will also be
seen to be useful as an indicator of conditions at which rapid expansion can occur for vortex cores
in confined geometries.

8.7 Features of steady vortex core flows

8.7.1 Pressure gradients along a vortex core centerline

Although the static pressure within a boundary layer can be taken to be the same as in the free stream
just outside of the layer, this is not true for a vortex core. The pressure variation within the core has
important effects on the velocity at the core centerlines. Assuming that the rate of velocity variation
along the core is much less than the rate of variation across the core, we apply the simple radial
equilibrium equation to give an estimate of these effects (Hall, 1972). With the core edge taken to
be a streamline, and the axial variation along this core edge streamline denoted by (dpa/dx), the
difference between the axial pressure gradients along the core outer radius, a, and the centerline is

dpa

dx
− ∂p

∂x

∣∣∣∣
r=0

= d

dx


 a∫

0

ρu2
θ

r
dr


 . (8.7.1)

For a forced vortex core with circulation Kc and circumferential velocity uθ = Kcr/a2

dpa

dx
− ∂p

∂x

∣∣∣∣
r=0

= d

dx

(
ρ

K 2
c

2a2

)
. (8.7.2)

The core circulation is constant and the term on the right-hand side of (8.7.2) is non-zero only because
of changes in core radius. Carrying out the differentiation yields an expression for the difference in
rates of change of pressure with x in terms of da/dx, the half-angle of the core streamtube divergence:

∂p

∂x

∣∣∣∣
r=0

− dpa

dx
= ρK 2

c

a3

(
da

dx

)
. (8.7.3)

Equation (8.7.3), while strictly applicable only to forced vortex rotation, provides a useful guide
for the general case. It shows that when the core area increases, the pressure gradient along the axis is
larger than that along the core outer radius by an amount proportional to the square of the circulation.
Changes in axial velocity on the axis are thus more pronounced than outside the core. This is seen
in Figure 8.9, which shows calculated axial velocity and pressure variations at the core radius and at
the centerline for inviscid flow in a cylindrical duct with the initial radial distributions of swirl and
axial velocity shown in the inset. The amplification of pressure and velocity differences on the axis
compared to those on the outer radius is evident.
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Figure 8.9: Calculated variations of pressure p and axial velocity ux along the axis (r = 0) and along the outer
radius (r = ro) for inviscid swirling flow in a cylindrical duct with the initial velocity distribution shown in inset
(Hall, 1972).

The evolution of the centerline velocity can be expressed even more simply for a situation with
large swirl. The pressure gradient on the axis is much greater than that at r = a. For small changes
in core radius, therefore,

�p|r=0 ≈ ρ
K 2

c

a2

�a

a
. (8.7.4)

From the x-component of the inviscid momentum equation, the corresponding change in ux on the
axis is

�ux

ux

∣∣∣∣
r=0

≈ −
(

K 2
c

u2
x a2

)
�a

a
. (8.7.5)

Small changes in vortex core area can lead to large changes in centerline axial velocity.
Figure 8.10 gives the centerline velocity (computed using the full axisymmetric inviscid equations)

as a function of initial swirl parameter for a vortex core taken from initial radius ai at axial station,
xi, to radius ai(1 + E). For small swirl parameters, the relation between velocity and area changes
for one-dimensional flow in a circular streamtube (dux/ux ≈ −2dr/r) is recovered, but for initial
swirl parameters which are not small compared to unity the effect of area change on axial velocity
is strongly amplified.

The core centerline axial velocity behavior can be interpreted in terms of vorticity kinematics.
Suppose the core and free stream have equal axial velocity far upstream and there is only an axial
component of vorticity, ωx, so the vortex lines are parallel to the x-axis. The fluid particles along
the vortex lines spiral about the axis of symmetry. If the core undergoes a radius increase at some
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Figure 8.11: Downstream evolution of an axial vortex line in a vortex core: creation of circumferential vorticity
(after Batchelor (1967)). Stations i (initial), 1, 2 denote regions of differing behavior.

downstream location, the angular velocity of a particle about the axis decreases. Because the vortex
lines are continuous they must therefore tip into the circumferential direction, creating a θ-component
of vorticity, ωθ , as sketched in Figure 8.11 (Batchelor, 1967; see also Brown and Lopez, 1990).

This creation of ωθ can also be seen from the vorticity equation. For small area change,

Dωθ
Dt

= (ω · ∇) uθ ∼= ωx
∂uθ
∂x
. (8.7.6)
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For an increase in radius and hence a decrease in uθ with x, circumferential vorticity, ωθ , is created,
with the sense indicated in Figure 8.11. If ur � ux, ωθ can be written as

ωθ ∼= −∂ux

∂r
. (8.7.7)

Equations (8.7.6) and (8.7.7) show that core growth is linked to generation of circumferential vorticity
and that there is a greater reduction in axial velocity near the axis than in the outer parts of the core.
The initial axial vorticity is critical to this process; without it the creation of circumferential vorticity
does not occur.

8.7.2 Axial and circumferential velocity distributions in vortex cores

The variation in static pressure in a vortex core means that the axial velocity distribution is typically
different from that in a boundary layer (Batchelor, 1964). For example consider a trailing vortex
downstream of a wing. All streamlines in the vortex core originate (far upstream) in a region of
uniform static pressure, p−∞, and uniform velocity with components (ux−∞ , 0, 0). In the core at a
given downstream station,

p

ρ
+ 1

2

(
u2

x + u2
θ + u2

r

) = p−∞
ρ

+ u2
x−∞

2
−�pt , (8.7.8)

where �pt is the change in stagnation pressure between far upstream and the given station. Appli-
cation of simple radial equilibrium for the pressure in the core then yields

u2
x = u2

x−∞ +
∞∫

r

1

r2

d
[
(ruθ )2

]
dr

dr − 2�pt

ρ
, (8.7.9)

where the pressure at r → ∞ has been taken equal to p−∞.
For a core tangential velocity distribution with uθ =
r and a stagnation pressure loss coefficient,

C pt (= �pt/
1
2ρu2

x−∞ ), the axial velocity in the core is given by

ux

ux−∞
=
[

1 − C pt + 2
2a2

u2
x−∞

(
1 − r2

a2

)]1/2

. (8.7.10)

Equation (8.7.10) is plotted in Figure 8.12 for different swirl parameters 
a/ux−∞ and a loss coeffi-
cient distribution of the form C pt = [1 − (r/a)2]. As the swirl parameter increases, the axial velocity
in the vortex core changes from wake-like to jet-like behavior, and the axial velocity on the centerline
exceeds that of the free stream for swirl parameters greater than 0.707 = 1/

√
2. Other distributions

of C pt give different quantitative results, but the main point is that the axial velocity in a vortex core
can be appreciably larger than that outside the core. This is typically the case for isolated wing tip
vortices (Green, 1995) with the converse (a velocity defect) generally existing for compressor blade
tip clearance vortices (e.g., Khalid et al. (1999)).

8.7.3 Applicability of the Rankine vortex model

In a number of examples in this chapter the vortex core circumferential velocity distribution has
been represented by a Rankine vortex, and it is worthwhile to address how this approximation
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characterizes an actual flow. A circumferential velocity profile which represents experimental data
well is the Burger vortex (or q-vortex) (Delery, 1994), with the form

uθ = Kc

r

{
1 − exp

[
−1.26

( r

a

)2
]}
. (8.7.11)

In (8.7.11) Kc is interpreted as (circulation/2π ) at locations far away from the axis and a is in-
terpreted as the location at which the circumferential velocity is the maximum. Figure 8.13 shows
circumferential velocity and K/Kc as functions of r/a, for a Rankine vortex and for (8.7.11). For the
same circulation the Rankine vortex has a larger maximum swirl velocity than the Burger vortex.
The pressure difference between the core edge and the axis is thus somewhat larger, as is (for a given
initial axial velocity distribution) the response of streamtubes on the axis to changes in the external
flow. The Rankine approximation, however, captures the observed parametric trends and we make
further use of it below to describe vortex core behavior.

8.8 Vortex core response to external conditions

8.8.1 Unconfined geometries (steady vortex cores with specified external
pressure variation)

Conditions under which a large growth in vortex core area occurs are perhaps the most important
technological issue associated with vortex core flows. In this section we use the Rankine vortex
model to describe the response of a steady vortex core to external conditions in unconfined and
confined geometries.

The mass average core stagnation pressure plays an important role in phenomena associated with
vortex core growth. The behavior of the mass average core stagnation pressure is seen by combining
the steady-state form of (8.6.5) and (8.6.6) to give (noting that ux is modeled as uniform across the
core at any axial station)

∂

∂x

(
pa + 1

2
ρu2

x

)
= 0. (8.8.1)

The quantity pa + 1
2ρu2

x is the core mass average stagnation pressure, denoted by pM
tc and defined as

pM
tc ≡ 2π

Aux

a∫
0

[
p + 1

2
ρ
(
u2
θ + u2

x

)]
uxrdr = pa + 1

2
ρu2

x . (8.8.2)

Equation (8.8.1), which states that the mass average core stagnation pressure is constant along the
core, can be regarded as a quasi-Bernoulli relation between core edge pressure and core velocity.
Invoking continuity, it can be written in a form that connects changes in core area and core edge
static pressure from an initial station i as

pa − pai

1
2ρu2

xi

= �pa
1
2ρu2

xi

= 1 −
(

Ai

A

)2

. (8.8.3)
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Figure 8.14: Vortex core expansion A/Ai versus core edge pressure rise�pa/( 1
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xi
). Data for inlet core swirl

parameters Sci = 0.19, 0.43 and 0.57 (Cho, 1995).

In (8.8.3) Ai and uxi are the initial core area and axial velocity and �pa (= pa – pai ) is the
core edge pressure rise from the initial to the current location. Equation (8.8.3) applies to both
confined and unconfined geometries. Measurements of core area variation as a function of core edge
pressure rise, �pa, given in Figure 8.14, show that (8.8.3) provides a guide to the value of �pa at
which large core growth occurs, although the one-dimensional theory cannot accurately describe the
core area variation in these situations because the radial velocities become comparable to the axial
velocities.

For an unconfined vortex core, the effect of external conditions is expressed by the far field
pressure distribution, pfar(x), the pressure at large radius, r/a � 1. The far field pressure is
related to the core stagnation pressure, core radius, core circulation, and criticality parameter,
D (= √

2/Sc = √
2aux/Kc), by

pM
tc − pfar

1
2ρ

(
K 2

c

2a2ux

)2 = D2(D2 − 2). (8.8.4)

For steady continuous flow, [K 2
c /(2a2ux )] and pM

tc are invariant. Equation (8.8.4) thus provides the
relation between far field pressure and the criticality parameter illustrated in Figure 8.15. Increases
in far field pressure drive D towards unity for any initial value of D. The difference between the
mass average stagnation pressure and the far field pressure reaches a minimum when D = 1. At this



418 Swirling flow

0 0.2 0.4 0.6 0.8 1.0

D

1.2 1.4 1.6 1.8 2.0
-2

-1

0

1

2

3

4

5

6
Subcritical Supercritical

7

8

ρ
2 2

1
2

ptc-pfar

Kc
2a2ux

M

(       )

Figure 8.15: Relationship of the stagnation pressure, pM
tc

, and the far field pressure, pfar, for a steady flow.

condition, denoted by ( )∗, the far field pressure is given by

pM
tc − p∗

far = (pM
tc − pfar

)∣∣
D=1

= −1

2
ρ

(
K 2

c

2a2ux

)2

. (8.8.5)

If the far field pressure is greater than p∗
f ar , the core cannot remain isentropic. Time-resolved com-

putations of vortex flows show that a discontinuity (analogous to a shock in compressible flow)
develops and propagates upstream (Darmofal et al., 2001).

Another view of critical conditions (D = 1 or equivalently Sc = √
2) is seen by combining the

steady form of (8.6.5), (8.6.6), plus (8.6.2) to yield an expression for differential change in core area:

d A

A
=
(

1

1 − S2
c

/
2

)(
dpfar

ρu2
x

)
=
(

D2

D2 − 1

)(
dpfar

ρu2
x

)
. (8.8.6)

Equation (8.8.6) implies that critical conditions correspond to a maximum of pfar .
Experiments reported by Pagan (1989) and Delery (1994), shown in Figure 8.16, support the

idea of a maximum pressure rise. The flow regimes are mapped in terms of swirl parameter versus
pressure rise and the figure indicates a limiting curve above which rapid core expansion (or vortex
breakdown) occurs. For low swirl the behavior is similar to that of a wake in a pressure gradient
(Section 4.10) but as Sc increases the effects of swirl play a dominant role in the dynamics. The
quasi-one-dimensional description shows trends similar to the data with the maximum pressure rise
increasing as the swirl decreases, although breakdown occurs in the experiments at a swirl parameter
approximately 25% below the critical conditions given by the Rankine vortex model.

The dependence of core area behavior on the initial swirl parameter Sci and the far field pressure
rise �pfar (= pfar − pfari

) can be brought out from the quasi-Bernoulli equation (8.8.1). Using this
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Figure 8.16: Initial core swirl parameter Sci (= uθmax/ux )i versus far field pressure rise �pfar/( 1
2ρu2

xi
) showing

the limiting curve and vortex breakdown data (Darmofal et al., 2001).

together with the continuity equation for the core gives an expression for the ratio of core area to
inlet core area:

S2
ci

A/Ai
−
(

1

A/Ai

)2

− �pfar
1
2ρu2

xi

= S2
ci

− 1. (8.8.7)

Figure 8.17 shows the variation of A/Ai with far field pressure difference, for initial core swirl
parameter Sci from 0 to 2.5. The variation of core area with respect to far field pressure changes sign
when the flow switches from subcritical to supercritical. For supercritical vortices increases in far
field pressure create decreases in the core axial velocity and increases in core area, so dA/dpfar >

0, qualitatively similar to behavior in non-swirling flows. Similarly, decreases in far field pressure
produce decreases in core area. For subcritical vortices the situation is reversed and increases in far
field pressure are associated with decreases in core area, so dA/dpfar < 0. The relationship between
changes in pa and area, however, is independent of flow regime; it is the relation between changes
in pa and pfar which switches sign at critical conditions.

The maximum pressure rise for each value of inlet swirl parameter, Sci , in Figure 8.17 coincides
with the vortex becoming locally critical (local swirl ratio of

√
2). At this condition, as can be found

by differentiating (8.8.7), the local core area A/Ai is 2/S2
ci

. The maximum pressure rise that can be
achieved (which occurs at the critical conditions) is a function of the initial swirl parameter

(
�pfar
1
2ρu2

xi

)∗
= 1 − S2

ci
+ S4

ci

4
. (8.8.8)
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Figure 8.17: Dependence of A/Ai on far field pressure rise for steady continuous flows. Initial swirl parameter,
Sci = 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5. Solid lines represent supercritical flows, dashed lines subcritical flows.
Steady continuous solutions which change isentropically from supercritical to subcritical flow are unstable
(Darmofal et al., 2001).

8.8.2 Confined geometries (steady vortex cores in ducts with specified area variation)

For a confined flow, the quantities needed to define the behavior are the duct area variation and
three non-dimensional parameters that characterize the inlet state. One choice of these is the inlet
axial velocity ratio, Vi = Uxi /uxi , the inlet core/duct area ratio, σi = Ai/ADi , and the inlet core
swirl parameter, Sci = uθmaxi /uxi . Application of continuity and pM

tc invariance in the core and outer
flow leads to an equation for the core area in terms of the initial conditions and the duct area
ratio as

S2
ci

A/Ai
−
(

1

A/Ai

)2

+
[

Vi (1 − σi )

AD/ADi − σi A/Ai

]2

= S2
ci

− 1 + V 2
i . (8.8.9)

The relation between local changes in core and duct areas is found by differentiating (8.8.9) as

d A

A
= 2

[
(Ux/ux )2(

S2
ccrit

− S2
c

)
(1 − A/AD)

]
d AD

AD
. (8.8.10)

In (8.8.10) Sccrit is the critical swirl number for confined flows defined in (8.6.20). Equations
(8.8.10) and (8.8.6) show the critical swirl condition has similar roles in unconfined and confined
flows. Equation (8.8.10) also implies that continuous behavior, with a finite value of dA/A at the
critical swirl ratio, can only exist if there is a geometric throat. For geometries in which a throat does
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Figure 8.18: Vortex core area ratio and streamlines for inlet core swirl parameter Sci = 0.56: (a) core area
variation for confined vortex flow in a converging–diverging pipe, Vi = 1.09 (wake) and σ i = 0.30; (b) stream
surfaces for confined vortex flow in a converging–diverging pipe, Vi = 1.09 (wake) and σ i = 0.30 (Darmofal
et al., 2001).

not exist, for example a monotonic increase in area from one value to another, the transition between
supercritical and subcritical conditions will be discontinuous.6

Figures 8.18 and 8.19 show area ratios (a) and streamline plots (b) for two different swirl con-
ditions from the quasi-one-dimensional description and from axisymmetric laminar Navier–Stokes
computations. At the lower initial core swirl, Sci = 0.56, the flow is nearly columnar with no reversed
flow, whereas at Sci = 0.78, a large recirculation bubble forms. The ratio of final to initial area is
captured by the one-dimensional analysis although the existence of the reverse flow region is not.

Confined vortex flow is parametrically complex, and a relevant question is which choice of non-
dimensional parameters yields the most direct insight into the trends. It is emphasized that no one
parameter can capture all of the behavior variation. The calculations reported by Darmofal et al.
(2001), however, show that use of the core mass average stagnation pressure defect and the swirl
parameter (rather than the axial velocity and the swirl parameter, for example) does allow some
aspects to be viewed in terms of a dominant dependence of one parameter. The three parameters,
Sci , Vi , and the core stagnation defect coefficient, Cpt,c (the difference between core and outer stream
stagnation pressure), are related by:

C pt,c ≡ pM
tc − ptouter

1
2ρ
(

u2
θmaxi

+ U 2
xi

) = 1

S2
ci

+ V 2
i

− 1. (8.8.11)

6 Calculations by Darmofal (2002) suggest such flows are unstable. Although steady solutions can be constructed which
go from supercritical to subcritical at a throat, in practice a steady continuous decrease through the critical value of D
will not be observed; an analogy exists with the unstable transition from supersonic to subsonic conditions at a throat in a
compressible flow (see Section 10.5).
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Figure 8.19: Vortex core area ratio and streamlines for inlet core swirl parameter Sci = 0.78: (a) core area
variation for confined vortex flow in a converging–diverging pipe, Vi = 1.09 (wake) and σ i = 0.30; (b) stream
surfaces for confined vortex flow in a converging–diverging pipe, Vi = 1.09 (wake) and σ i = 0.30 (Darmofal
et al., 2001).

For Cpt,c < 0, the core has a mass average stagnation pressure deficit relative to the outer stream.
For the range of conditions investigated by Darmofal et al. (2001) two general trends were found:
(i) proportionally small increases in core area occur as the duct area increases for vortex cores with
low stagnation pressure defect (Cpt,c much less than unity) and large increases in core area occur if
Cpt,c is an appreciable fraction of unity; (ii) these results are weakly affected by the swirl parameter
up to values of the latter of unity. Again, however, these should be regarded as rough guidelines only;
no single parameter can completely characterize the behavior.

8.8.3 Discontinuous vortex core behavior

The conservation equations derived in Section 8.6 admit both continuous (smooth) and discontinuous
(jump) solutions depending on the boundary conditions. The discontinuous jump solutions do not
have a constant flux of stagnation pressure in the core and hence can be considered as “non-isentropic”,
in analogy with shocks in compressible flow.7

We can analyze such motions without the need to describe the flow within the region of stagnation
pressure loss by considering the states that must exist on the two sides of a stationary discontinuity in
stagnation pressure, velocity, or area. The relationships satisfied by these two end states are described
below, with the initial and final states denoted by the subscripts 1 and 2, respectively. The core jump

7 The analogy does not hold for all aspects; the axial length over which the transition takes place is generally one or more
core diameters compared to the very thin transition region for a shock.
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conditions are expressed in terms of the jump brackets, [[f]] = f2 − f1. In the vortex core, conservation
of mass across the jump is

[[Aux ]] = 0. (8.8.12)

Conservation of momentum is[[
Au2

x + 1

ρ
pa A + πK 2

c

2
lnA

]]
−
(

1

ρ
pa1 + πK 2

c

2A1

)
[[A]] = 0. (8.8.13)

For unconfined vortex cores, substitution of (8.6.4) into (8.8.13) and solution of the resulting
nonlinear system of equations yields an implicit relationship for the right (downstream) value of D
(D2) in terms of the upstream value (D1) (Landahl and Widnall, 1971; Marshall, 1991) as

D2
1 = 2ln (D2/D1)

(D2/D1)2 − 1
. (8.8.14)

Equation (8.8.14) admits “shocks” which increase as well as decrease D, but only the latter are
allowed because the mass average core stagnation pressure must decrease through a jump. From
(8.8.4), (8.8.13) and (8.8.14), the jump in pM

tc ([[pM
tc ]] = pM

tc2
− pM

tc1
) across a steady discontinuity can

be expressed in terms of the ratio Dr/Dl as

�pM
tc

1
2ρu2

x1

≡
[[

pM
tc

]]
1
2ρu2

x1

= 2

D2
1

{[(
D2

D1

)2

+ 1

]
ln

D2

D1
−
(

D2

D1

)2

+ 1

}
. (8.8.15)

For values of D1 near unity, the change in pM
tc can be approximated as

�pM
tc

1
2ρu2

x1

≈ −32

3
(D1 − 1)3 . (8.8.16)

The decrease in stagnation pressure across a discontinuous vortex jump thus scales with (D1 − 1)3,
analogous to the dependence of entropy rise across a shock with upstream Mach number (Section
2.6).

The change in core edge pressure across the jump (�pa) is given as

�pa
1
2ρu2

x1

= 2

(
D2

1 − D2
2

D4
1

)
. (8.8.17)

The core area ratio (or equivalently the axial velocity ratio) across the jump is

A1

A2
= ux2

ux1

=
(

D2

D1

)2

. (8.8.18)

Equations (8.8.14)–(8.8.18) show that the properties of the discontinuous vortex core solution are
set by the criticality parameter D1. We thus now examine the dependence of ux2/ux1 , edge pressure
jump �pa, and mass average core stagnation pressure decrease �pM

tc , on this parameter.
Figure 8.20 shows four quantities: D2, A1/A2, the edge pressure jump, and the mass average

stagnation pressure decrease, as functions of D1, the upstream value of D. The core edge pressure
rise across a jump has a maximum near D1 = 1.3. This behavior can be motivated by the following
physical considerations. From (8.8.2), the pressure jump is

�pa = �pM
tc −�( 1

2ρu2
x

)
.
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For weak discontinuities the change in core stagnation pressure can be neglected (for D1 < 1.3,
�pM

tc /
1
2ρu2

x1
< 0.1), and the pressure rise approximated as

�pa
1
2ρu2

x1

≈ 1 −
(

ux2

ux1

)2

. (8.8.19)

For strong discontinuities, the right state is near stagnation, and the pressure rise can be approximated
as

�pa
1
2ρu2

x1

≈ �pM
tc

1
2ρu2

x1

+ 1. (8.8.20)

The maximum core edge pressure rise marks a transition between nearly lossless discontinuities,
in which the core edge pressure rise increases with upstream D, and discontinuities with large losses,
in which the pressure rise decreases with upstream D. Figure 8.21 shows the weak and strong
discontinuity approximations for edge pressure rise compared to the computed value. The value of
A1/A2 drops sharply with upstream D, and for jumps with D1 larger than 1.6 there is more than a
ten-fold increase in vortex core area through the jump.

The jump conditions may also be superimposed on Figure 8.15 as connections between supercrit-
ical and subcritical states. This is done in Figure 8.22, which shows the admissible jump states as the
end points of the dashed lines. The arrows indicate that jumps can only occur from supercritical to
subcritical states. Figure 8.22 is the key to the construction of continuous and discontinuous steady
vortex flow solutions. If the flow is continuous, D varies along the solid line in accordance with
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changes in the far field pressure. At a discontinuous transition, the vortex jumps from a supercritical
state with large D1 and small area to a subcritical state with small D2 and large area, which are the
end points of the dashed lines in Figure 8.22. The stagnation pressure loss across the jump is the
difference in the value of the ordinate between the two states.

8.9 Swirling flow boundary layers

8.9.1 Swirling flow boundary layers on stationary surfaces and separation
in swirling flow

Swirling flow boundary layers exhibit different features than the two-dimensional motions described
in Chapter 4. Cross-flows can occur with velocity components at right angles to the local free-stream
direction. The mechanism of separation is also different than for a two-dimensional boundary layer.

The contrasts between separation in two-dimensional flows, as discussed in Chapter 4, and in
swirling flows (or general three-dimensional flows) have been described by Lighthill (1963) in terms
of the behavior of the vorticity at the wall. (See also Tobak and Peake (1982) or Delery (2001).)
Lighthill posed the issue in terms of asking under what conditions does the thickness of a steady
boundary layer remain small. For a two-dimensional boundary layer at a small distance from the
surface the velocity has velocity components ωwy parallel to the surface and −(dωw/dl)y2/2 normal
to the surface, where ωw is the vorticity evaluated at the wall and where the derivative with respect
to l denotes differentiation along the surface. Streamlines close to the surface remain so unless ωw

goes to zero. For volume flow V̇ per unit depth, ωw y2/2 = V̇ , and the distance of the streamline from
the surface varies like (ωw)−1/2. Points on the surface where ωw = 0 (and shear stress consequently
zero) and dωw/dl < 0, so there is a normal velocity component away from the surface, are separation
points.

For a swirling (or three-dimensional) boundary layer the situation is different. To see this take
Cartesian coordinates x, y, z, with x and z parallel to the wall and y again perpendicular to it. A small
distance from the surface, the velocity is approximately u = βwy, where βw = ωw × n = τw/µ,
with n the outward normal to the surface and τw/µ the skin friction vector. Streamlines very near
the surface, which are often referred to as limiting streamlines, are essentially along skin friction
lines (curves to which βw and thus τw/µ are everywhere tangential). With V̇ the volume flow along
a streamtube of rectangular section the base of which is the portion of the surface �zw between two
limiting streamlines (skin friction lines), the height of the streamtube, y, is given by

ωwy2�zw/2 = V̇ . (8.9.1)

The distance of the limiting streamlines from the surface therefore varies as (ωw�zw)−1/2. Streamlines
can greatly increase their distance from the surface not only when the vorticity at the wall, ωw, goes
to zero, as in the two-dimensional situation, but also when �zw does, in other words where limiting
streamlines at the surface converge. This latter mechanism of separation is seen with swirling flow
boundary layers.

As in Chapter 4 the boundary layer behavior is introduced in the context of a fluid device. The
swirl flow analog of the straight channel diffuser of Chapter 4 is a radial vaneless diffuser. A vaneless
diffuser is shown in two views in Figure 8.23. Figure 8.23(b) indicates the inviscid region and
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Figure 8.23: Vaneless diffuser geometry; (a) axial view (r–θ plane); (b) view on r–x plane.

the wall boundary layers. With the boundary layers on both walls assumed the same, the effective
width of the diffuser at any radial location is Weff = W − 2δ∗.

The equations describing incompressible, steady, axisymmetric flow in the inviscid region are
(using the subscript “E” to denote conditions external to the boundary layers):

∂uEr

∂r
+ uEr

r
+ uEr

Weff

dWeff

dr
= 0, (8.9.2a)

uEr

∂uEr

∂r
− u2

Eθ

r
= − 1

ρ

dp

dr
, (8.9.2b)

uEr

∂(ruEθ )

∂r
= 0. (8.9.2c)

The boundary layer equations are:

∂ur

∂r
+ ur

r
+ ∂ux

∂x
= 0, (8.9.3a)

ur
∂ur

∂r
− u2

θ

r
+ ux

∂ur

∂x
= − 1

ρ

dp

dr
+ 1

ρ

∂τr x

∂x
, (8.9.3b)

ur
∂uθ
∂r

+ ux
∂uθ
∂x

+ ur uθ
r

= 1

ρ

∂τθx

∂x
. (8.9.3c)

Two shear stress components are now included in the boundary layer description.
Computation of viscous swirling flow can be carried out by procedures similar to those for the

two-dimensional situation and both boundary layer and Navier–Stokes techniques are in use. We
thus address the qualitative illustration of the features mentioned in the first paragraph of the section
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with reference to the difficulty of maintaining radial outflow in a boundary layer with high values of
swirl.

The problem can be framed with reference to Figure 8.23(a), which shows streamlines in a swirling
flow boundary layer. Consider a vortex line in the boundary layer which we can view as convected
with a local velocity proportional to that in the free stream. The circumferential velocity in the
free stream is larger at smaller radius, and the vortex line will thus be increasingly tipped into the
circumferential direction as it moves outward. This implies cross-flow generation in the boundary
layer and a tendency for inward flow. The mechanism for cross-flow generation can also be described
in terms of pressure fields (see also Section 3.4). The radial pressure gradient is set by the free stream.
Because the fluid in the boundary layer has a lower velocity, the radius of curvature of boundary
layer streamlines must be smaller than that for the free stream, resulting in streamline trajectories
such as sketched in Figure 8.23(a). For high swirl angles (large values of uθ /ur ) the streamlines are
close to tangential and it takes little deviation of the boundary layer to produce inward flow. For a
flow with a purely circumferential free stream the boundary layer profiles would be as sketched in
Figure 8.24.

We can amplify these arguments using an approach similar to that in Section 4.7, with the boundary
layer regarded as an inviscid one-dimensional layer with a velocity magnitude ε times the free-stream
value (ε < 1). The local flow angle, α, with respect to the radial direction is given by tanα = uθ /ur .
We wish to determine changes in the angle between free-stream and boundary layer streamlines as
the fluid undergoes a small change in radius. For such changes,

d(tanα) =
[

duθ
uθ

− dur

ur

]
tanα. (8.9.4)

Applying (8.9.4) and the inviscid form of (8.9.3) to changes in ur and uθ in the boundary layer and
the free stream (the circumferential velocity obeys ruθ = constant in this approximation), and taking
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the initial flow angles in the boundary layer and free stream to be the same yields

d(α − αE ) =
(

1 − 1

ε2

)(
duEr

uEr

− tan2 α
dr

r

)(
sin 2α

2

)
. (8.9.5)

Combining (8.9.5) and (8.9.2a) provides an expression for the difference between boundary layer
and free-stream flow angles in terms of effective area and radius change as

d(α − αE ) =
(

1

ε2
− 1

)[
tanα

dr

r
+
(

sin 2α

2

)
dWeff

Weff

]
. (8.9.6)

If there is negligible variation in the effective width of the diffuser, (8.9.6) becomes

d(α − αe) =
(

1

ε2
− 1

)
tanα

(
dr

r

)
. (8.9.7)

For large swirl angles (α → 90◦) (8.9.7) shows that substantial angle changes can be produced
between the boundary layer and free stream, causing inward flow (regions of reversed radial velocity
flow) and consequent large blockage in the passage.

Figure 8.25 shows measurements and calculations of the difference between the angles at the wall
and at the free stream, as a function of radius, in a vaneless diffuser with parallel walls (Dou and
Mizuki, 1998). As the radius increases, the limiting streamlines (the streamlines at the walls) become
increasingly circumferential and more closely spaced. At a non-dimensional radius of 1.7, for this
diffuser, the angle at the wall is such that wall flow is circumferential, the limiting wall streamlines
converge as sketched in Figure 8.26 and the flow separates. The flow angle data in Figure 8.25
indicate that the region of separation closes at larger radius.
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1977).

Another view of the behavior of boundary layers in a vaneless diffuser is given in Figure 8.27,
which shows the variation of radial and circumferential velocities as a function of x/W in a vaneless
diffuser with an inlet average swirl angle of 82◦. Data are presented for two radial stations, r/ri =
1.014 and 1.10, where ri is the inlet radius. There is a large change in the radial velocity (and flow
angle) between the two stations, with inward flow seen at r/ri = 1.10. This can be contrasted with
the small differences in the circumferential velocity profile between the two stations.

In terms of vaneless diffuser performance, separation in a swirling flow has generally less severe
consequences than separation in two dimensions. There is increased blockage and higher loss due to
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Figure 8.28: Boundary layer on a wall beneath a forced vortex flow: (a) velocity distribution in the boundary
layer; (b) vector representation of the horizontal velocity component (Schlichting, 1979).

the separation, but the overall pressure rise may not be much affected because at high swirl angles
pressure rise is mainly associated with the circumferential velocity component and the value, or even
the direction, of the radial velocity has little influence.

Although we have focused on the problems associated with diffusing a highly swirling flow,
similar considerations about cross-flow and inward motion apply to other swirling boundary layers.
For example, Figure 8.28(a) shows radial, circumferential, and axial velocity components for a
laminar boundary layer under a forced vortex rotating body of fluid and Figure 8.28(b) shows the
corresponding angle variation through the boundary layer. In accord with the above arguments there
is inward flow in the boundary layer and a substantial difference between free-steam and near wall
angles.

8.9.2 Swirling flow boundary layers on rotating surfaces

The converse of the situation in which the swirling boundary layers are driven inwards by the radial
pressure gradient is the outward motion of the boundary layer fluid on a rotating surface. The behavior
of such flows is described in depth by Owen and Rogers (1989) and we present only the scaling for
the behavior of laminar and turbulent boundary layers.

The arguments are illustrated using the specific configuration of a circular disk of radius ro, rotating
with velocity 
, in an unbounded region of fluid with zero velocity far from the disk. As the disk
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rotates a layer of fluid close to the disk is set in circular motion and begins to flow outwards due to
its inertia. While this occurs new fluid is brought towards the disk and in turn is pumped outwards.
The resulting motion can involve considerable resistance to the disk rotation.

Following Prandtl (1952) we can develop the form of this resistance for laminar flow and then for
the turbulent case. The flow across the disk, assumed parallel to the shear stress τw, is at an angle α to
the radial direction. The velocity difference between the disk and the fluid far away from it scales as

r so the circumferential component of the shear stress can be represented as τw sin α ∝ (µ
r/δ).
The radial component of the shear stress balances the centrifugal force of the fluid carried along
with the disk so that τw cos α ∝ ρr
2δ, where δ is a representative boundary layer thickness. If α
is taken independent of radius (as in the solution of Figure 8.28), the shear stress can be eliminated
from these two relations to give a statement about the boundary layer thickness, namely δ ∝ √

ν/
,
independent of radius. The shear stress is then

τw ∝ (ρr

√
ν
). (8.9.8)

The total frictional torque on a disk of radius ro is given by the product of shear stress, area, and
moment arm:

frictional torque in laminar flow ∝ (ρr4
o


√
ν

)
. (8.9.9)

The numerical value of the constant of proportionality for a disk of radius ro in an infinite fluid wetted
on both sides has been determined as (Schlichting, 1979; Owen and Rogers, 1989)

CM = 2 × torque
1
2ρ


2r5
o

= 3.87√

r2

o/ν
. (8.9.10)

The quantity 
r2
o/ν is the disk Reynolds number.

An analogous scaling argument can be constructed for the turbulent case using the empirical
relation between wall shear stress, free-stream velocity, kinematic viscosity, and boundary layer
thickness introduced in Section 4.6:

τw
1
2ρu2

E

= 0.045

(
ν

uEδ

)1/4

. (4.6.21)

With the substitution of 
r for the free-stream velocity, uE, the wall shear stress in the turbulent
boundary layer on the rotating disk is expressed as

τw ∝ [ρ(
r )7/4 (ν/δ)1/4
]
. (8.9.11)

Using the balance between the radial component of the shear stress and the centrifugal force of the
fluid in the boundary layer as for the laminar boundary layer, and again making the assumption that
the shear angle is constant with radius, the dependence of the turbulent boundary layer thickness is

δ ∝ [r3/5(ν/
)1/5
]
. (8.9.12)

The frictional torque on the disk scales as

frictional torque in turbulent flow ∝ [r3
oρ(
ro)2

(
ν/
r2

o

)1/5]
. (8.9.13)
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The numerical value of the torque coefficient is (Owen and Rogers, 1989)

CM = 2 × torque
1
2ρ


2r5
o

= 0.146(

r2

o

/
ν
)1/5 . (8.9.14)

8.9.3 The enclosed rotating disk

It is often the case that rotating disks are enclosed in a housing, with the disk surrounded by cylindrical
and axial boundaries, as sketched in Figure 8.29. In such a configuration there is outward motion
in the fluid next to the rotating disk and inward flow near the stationary boundaries. If the housing
spacing is appreciably larger than the boundary layer thickness, there is a region of fluid between the
two boundary layers which rotates at close to one-half the disk angular velocity. The mass of fluid
set in motion by the disk loses some, but not all, of its circulation from the influence of the stationary
surface, with the result that the torque is diminished by the presence of the housing.

Four behavior regimes of this configuration have been identified by Daily and Nece (1960) (see
also Owen and Rogers (1989)). These are defined using coordinates of the disk Reynolds number,
ReD(ReD = 
r2

o/ν) and the spacing/radius ratio, G (G = g/ro), as shown in Figure 8.30. The
regimes are characterized as: (I) laminar closely spaced with no “core” between the rotating disk
and the stationary housing boundary layers, (II) laminar with a core between the boundary layers,
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Figure 8.30: Flow regimes for a rotating disk in a housing; G = g/ro, ReD = 
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o/v (Daily and Nece, 1960).

(III) turbulent closely spaced, and (IV) turbulent with a core between the disk boundary layer and
that on the stationary housing. Daily and Nece (1960) developed empirical expressions for the disk
frictional torque in each regime as:

Regime I: CM = 2πG−1 Re−1
D ; (8.9.15a)

Regime II: CM = 3.70 × G−1/10 Re−1/2
D ; (8.9.15b)

Regime III: CM = 0.08 × G−1/6 Re−1/4
D ; (8.9.15c)

Regime IV: CM = 0.102 × G−1/10 Re−1/5
D . (8.9.15d)

Regime I is based on Couette flow, and Regime III on turbulent pipe flow. The moment coefficients
in Regimes II and IV are those of the disk in an infinite fluid, modified by a dependence on the
spacing/radius ratio, G.

Figure 8.31 presents a comparison of (8.9.15) with measured moment coefficients for rotating
disks in a stationary housing as a function of disk Reynolds number, ReD . The spacing/radius ratio,
G, is 0.0255. Figure 8.32 presents computational results in Owen and Rogers (1989) and gives the
radial and circumferential velocity profiles as a function of axial distance for turbulent flow in Regime
IV. The overall behavior is close to the assumed two boundary layers and a core with a velocity
midway between the disk speed and zero, although the core rotation rate was found to lie between 30
and 50% of the disk speed depending on Reynolds number and relative surface roughness. Further
information about the parametric dependence, as well as the behavior with net flow through the
chamber, can be found in Owen and Rogers (1989).

8.9.4 Internal flow in gas turbine engine rotating disk cavities

Situations exist in which several rotating disks are “stacked” together, as in the gas turbine engine
axial compressor drum sketched in Figure 8.33. A problem of interest concerns the behavior of disk
cooling air, which is often injected at the outer edge of the disks and enters with an initial swirl.
Knowledge of the pressure drop and velocity distribution of the injected flow is critical because the
velocity relative to the disk determines the heat transfer coefficient which impacts disk life.
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Three distributions of circumferential velocity versus radius are sketched in Figure 8.34. The
curve labeled “free vortex” is the idealized case of circumferential velocity increasing inversely with
radius. The actual velocity depends on Reynolds number and coolant flow ratio, but might be as
indicated by the curve labeled “representative”. The curve labeled “forced vortex” would apply if
the flow were guided inward by tubes, as is the case in some designs and as shown on the right-hand
side of Figure 8.33. In the first two of these situations, there is an increasing difference between the



436 Swirling flow

CL

Configuration 1 Configuration 2

Bleed flowBleed flow

Forced
vortex

Radial
bleed tube

Compressor
disks Shaft

Free
vortex
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velocity of the disk and of the bulk fluid as radius decreases. From the perspective of an observer
in a coordinate system rotating with the disks, Coriolis forces (see Sections 7.1 and 7.2) cause this
change in relative circumferential velocity.

There are different pressure drops from outer radius to inner radius for the three regimes. For
tube-fed flow, or for low injection rates, where shear forces from the disks have a larger opportunity
to affect the incoming flow, the pressure drop is close to the value for the forced vortex, whereas for
high injection rates it is more like that for a free vortex.

Measurements of the non-dimensional pressure drop in a disk cavity are given in Figure 8.35
(Johnson et al., 1990). The different curves correspond to different values of a coolant flow parameter,
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η, defined as η = Reṁ/(ReD)0.8 with Reṁ = ṁcoolant/(2πµro) and ReD = 
r2
o/ν, and with fluid

properties evaluated at the outer radius. This parameter can be written in terms of a bulk radial
velocity averaged over the cavity width, ur,bulk , as

η =
[

ur,bulk


ro

] [
W

ro

]
[ReD]0.2 . (8.9.16)

The experiments were carried out at constant ReD and geometry, so an increase in η corresponds to
an increase in the ratio of inflow to disk velocity and a decrease in the (non-dimensional) time over
which shear forces can act. Figure 8.35 shows that as η increases the pressure distribution moves
from that associated with a forced vortex towards that for free vortex swirl.

8.10 Swirling jets

Swirl can substantially increase jet mixing and entrainment and is an important design variable in
devices such as combustors which depend on proper mixing to function.8 The effects of swirl on

8 There is a difference between swirling jets, the topic of this section, and the vortex cores discussed in previous sections. The
former is a flow with no far field circulation, i.e. a jet with a circumferential velocity component injected into a stagnant
fluid. The latter is a viscous vortical region embedded in a swirling freestream flow that has finite circulation far from the
axis.
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free jet behavior have been reported by Chigier and Chervinsky (1967) (see also Beer and Chigier
(1972)). To characterize the swirl level those authors define a swirl number, Sw, which is the ratio
of axial flux of angular momentum to ro times the axial momentum flux, where ro is the radius of
the orifice of the swirl-producing device (and the initial radius of the jet) and pfar is the (ambient)
pressure far away from the jet

Sw =

ro∫
0

r2uθux dr

ro

ro∫
0

r

[
u2

x +
(

p − pfar

ρ

)]
dr

. (8.10.1)

For a given experimental apparatus (implying a given distribution of flow angle and stagnation
pressure coefficient) the value of Sw is sufficient to define the behavior regimes. For reference, in
a jet with forced vortex rotation and uniform axial velocity, the simple radial equilibrium equation
(8.2.1) may be combined with the axial momentum equation to express Sw as:

Sw = uθmax/2ux

1 − (uθmax/2ux )2 , forced vortex jet with uniform axial velocity.

Measured axial velocity profiles in jets with values of Sw of 0.07, 0.23, and 0.6 are shown in
Figure 8.36. The abscissa is the jet similarity parameter ξ = r/(x + xvo), where xvo is the virtual ori-
gin of the jet. The data cover downstream distances, x/di (di is the initial jet diameter), from 2 to 15.

The spreading rate and shape of the jet depend on Sw. At the highest swirl shown, there is a
region of low velocity on the axis at the downstream locations and the similarity scaling no longer
describes the velocity profile at all axial locations. Two different effects contribute to the increase
in spreading rate. With reference to the stability discussion of Section 8.5, the circulation decreases
from a maximum in the jet to zero outside the jet and the resulting instability promotes higher levels
of mixing. A more important driver for the decrease in axial velocity and growth in width is the axial
pressure gradient. At the initial station, where the jet issues, the static pressure on the axis is below
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the value at the edge, which is at ambient conditions. Far downstream, however, the static pressure
is uniform. The consequent axial pressure gradient decelerates the low stagnation pressure flow on
the axis resulting in a lowered axial velocity at the center of the jet.

Figures 8.37 and 8.38 present additional features of swirling jets. Figure 8.37 shows the decay of
the maximum axial velocity with downstream distance for different swirl numbers. The solid curves
in the figure are derived from an integral method using similarity profiles (Chigier and Chervinsky,



440 Swirling flow

1967) of the sort described in Chapter 4; this yields an expression of the maximum axial velocity in
the jet as

umax(x)

umaxi

= C1

(
di

x + xvo

)
. (8.10.2)

An empirical expression relating C1 and Sw is given as C1
∼= 1/(0.15 + Sw2) (Chigier and Chervin-

sky, 1967; Beer and Chigier, 1972).
The increase in jet entrainment due to swirl is illustrated in Figure 8.38, which gives the ratio

of the local jet mass flux to the initial mass flux, ṁi . The straight line represents the equation
ṁ/ṁi = (x/di ) (0.32 + 0.8Sw). Entrainment increases roughly linearly with Sw from the value given
in Section 4.9 for a non-swirling jet.

8.11 Recirculation in axisymmetric swirling flow and vortex breakdown

The presence of swirl in a diverging passage promotes the existence of stagnation or reverse flow
near the axis of symmetry. Gas turbine combustor flow fields often include this type of recirculation
region to enhance flame stability by providing a large enough flow residence time for fuel to mix
and burn. The measured streamline patterns of Figure 8.39, derived from a simulated combustor
geometry, illustrate a toroidal recirculation behind a bluff body (Beer and Chigier, 1972).

Figure 8.39: Streamlines of a recirculation eddy in a swirling jet, Sw = 1.57 (Beer and Chigier, 1972).
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Additional measurements of the reverse flow zone in a combustor configuration are shown for
different values of the parameter Sw in Figure 8.40. These illustrate the dependence of the reverse
flow extent on swirl level (Beer and Chigier, 1972; see also Gupta, Lilley, and Syred, 1984).

A generic configuration exhibiting stagnation and recirculation is a sudden expansion in a circular
duct (discussed in Section 2.8 for flow without swirl). Without inlet swirl, reverse flow exists in the
outer part of the duct. As the inlet swirl is increased, however, the axial velocity on the centerline
decreases and reverses at high enough swirl levels.

Qualitative arguments for the deceleration on the axis can be given analogous to those presented
for swirling jets in Section 8.9, although stated here in a slightly different manner. Consider a
swirling flow (say, a forced vortex with angular velocity 
i at the inlet) which evolves, through
mixing in a sudden expansion, to a downstream state with lower angular velocity and larger radius.
If we approximate the swirl distribution in the throughflow as remaining a forced vortex, application
of simple radial equilibrium provides an estimate for the difference between the pressure on the
outer streamline of the throughflow which has a radius denoted by ro(x), and the pressure on the
centerline:

p(ro, x) − p(0, x) = ρ
2r2
o

/
2. (8.11.1)

If angular momentum is conserved for the throughflow, 
r2
o is the same at the inlet and exit. The

pressure rise on the centerline is therefore larger than that on the outer edge of the throughflow
region, promoting greater axial velocity decrease on the centerline than in the outer part of the flow.

The effect of swirl on the flow in a sudden expansion is illustrated in Figure 8.41. The figure shows
measurements of the axial velocity at different distances downstream of an expansion of radius ratio
1.5 (Favaloro, Nejad and Ahmed, 1991). The three plots correspond to average swirl parameter,
S, based on average values of circumferential and axial velocity, of 0, 0.3, and 0.5. The top plot
in Figure 8.41 is for no swirl and shows reverse flow in the outer part of the expansion. As the
swirl is increased the axial velocity at the axis decreases. At the highest average swirl parameter,
S = 0.5, there is a region of reversed flow on the axis, approximately a diameter in length. At this high
swirl level, in spite of the initially reversed flow on the axis, there is a more uniform axial velocity
profile at the downstream station than with low swirl, presumably because of increased momentum
transport in the radial direction.
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Figure 8.41: Effect of swirl on axial velocity downstream of a sudden expansion of radius ratio 1.5; S is a swirl
parameter based on average circumferential and axial velocities (Favaloro et al., 1991).
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The scenario for onset of recirculation in an axisymmetric swirling flow is different than without
swirl. A smooth transition does not occur from a streamline pattern having no reversed flow to one
in which an embedded recirculation region exists. This is in contrast to the no swirl situation, for
example a wake in a diffuser (Section 4.10). In the latter if one increases the wake depth at the
inlet, the wake velocity at the diffuser exit decreases to zero, with reverse flow and recirculation then
encountered. With swirl, however, the transition to conditions in which stagnation and reversed flow
exist (often termed vortex breakdown) is not gradual.9

The scenario for transition to stagnation and recirculation in a swirling flow can be introduced via
the diagram of the minimum x-component of velocity on the axis versus the inlet swirl parameter in
Figure 8.42. The figure is based on results of axisymmetric Navier–Stokes computations of vortex
core behavior (Beran and Culick, 1992; Cary and Darmofal, 2001). As the inlet swirl parameter is
increased from a value near zero to SA, the minimum axial velocity on the axis decreases to point
A, but the vortex core remains columnar with no stagnation point or region of reverse flow. Because
SA is a limit point in the solution space, however, a small increase in swirl from state A results in
a jump to low or negative axial velocity at state B, which can represent a recirculation region with
an axial length several times the vortex core diameter. Further increases in inlet swirl number result
in quantitative changes but no further discontinuity in the qualitative form of the streamlines. A
similar jump occurs when the swirl is decreased from a high value, say SC. The recirculation region
decreases in size until S reaches the limiting value SD, when a slight decrease in swirl causes a jump
back to the columnar state at E.

For axisymmetric flows the criticality of the flow can be determined using standing wave anal-
ysis (Wang and Rusak, 1997; Cary and Darmofal, 2001). The limit point at state A is signaled by
the behavior of the eigenvalues associated with small amplitude disturbances, of the form ψ ′ =
[exp λ(x/a)]f(r/a). Specifically, the condition at which any eigenvalue goes to zero (λ → 0) so
that disturbances no longer die away in the upstream direction corresponds to the occurrence of the
limiting value of the inlet swirl number on the columnar solution branch. Figures 8.43 and 8.44

9 Vortex breakdown also occurs in a non-axisymmetric fashion, although description of this phenomenon is beyond the scope
of this text. See for example the surveys by Leibovich (1983), Escudier (1988), or Delery (1994).
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give results from axisymmetric Navier–Stokes computations of vortex flow in a variable-area pipe
for a range of inlet swirl numbers to demonstrate this point. The inlet velocity distribution in the
calculations is the Burger vortex, introduced in slightly different form in (8.7.11), which is based
on a number of measurements (Delery, 1994).10

The numerical simulations show a transition from columnar flow to a state with stagnation and a
toroidal recirculation region. This is portrayed from several perspectives in Figures 8.43 and 8.44.
Figure 8.43 shows axisymmetric stream surfaces for swirling flow in the diverging region of a
circular duct. Results for three inlet swirl parameters, Sci (defined as the maximum uθ /ux at the
inlet), are presented, one at a relatively low value (Sci = 0.56) and the other two at the two sides of
the columnar limit point (Sci =1.68 and Sci = 1.69). Little change occurs until the critical value of
inlet swirl is reached, but at this value the columnar streamline pattern changes to one with a finite
length recirculation region.11

Figure 8.44 shows plots of: (a) minimum eigenvalue, (b) axial velocity at r = 0, and (c) local
swirl parameter, as a function of distance along the duct for the flows in Figure 8.43. The inlet swirl
parameter varies over only a small range, from 1.66 to 1.69, in increments of 0.01, but this suffices to
show the changes of interest. Figure 8.44(a) shows the calculated eigenvalues versus axial distance.12

10 The specific form of the Burger vortex (q-vortex) initial conditions is:

ux (r/ai , 0) = uxi = constant,

ruθ (r/ai , 0) = ruθi = Sci auxi {1 − exp[−1.26(r/ai )
2]},

ur (r/ai , 0) = uri = 0.

The quantity ai is the initial vortex core radius, defined as the location of maximum uθ /ux.
11 The swirl parameters have different values than in the original paper because of the different definition used here.
12 The eigenvalue analysis described is a local approximation rather than an exact description as given by Wang and Rusak

(1997). As such there is an assumption that the length scale for variation of the core is long compared to the wavelength
of the disturbance (Cary and Darmofal, 2001).
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Figure 8.44: (a) Minimum eigenvalueλ2(x/a), (b) axial velocity at r = 0, ux (x/a, 0)/uxi , and (c) swirl parameter
S(x/a) distributions in vortex core flow, initial conditions, Sci = 1.66, 1.67, 1.68, and 1.69; other conditions as
in Figure 8.43 (Cary and Darmofal).

The minimum eigenvalue passes through zero as the inlet swirl parameter, Sci , increases from 1.68
to 1.69. Figure 8.44(b) shows the axial velocity on the core centerline. The axial velocity decreases
as Sci increases, but is not near stagnation for Sci below the limiting inlet value. Even close to critical
conditions, at Sci = 1.68, the velocity on the axis is far from zero. Increasing Sci to 1.69, however,
gives rise to stagnation conditions and the formation of a toroidal recirculation region. Figure 8.44(c)
shows the axial variation of the swirl number with, again, a large change as the value of Sci increases
from 1.68 to 1.69.

In summary, transition to stagnation on the axis in an axisymmetric swirling flow is qualitatively
different from flows without swirl. The former is associated with a solution limit point and occurs
in a discontinuous manner as the flow parameters are altered, whereas the latter is an essentially
smooth process. The distinction between the two phenomena has been stated succinctly: “. . . vortex
breakdown is not simply a stagnation process, . . . rather . . . stagnation is a consequence of vortex
breakdown” (Cary and Darmofal, 2001).



9 Generation of streamwise vorticity and
three-dimensional flow

9.1 Introduction

In this chapter we address three-dimensional flows in which streamwise vorticity is a prominent
feature. Three main topics are discussed. The first, and principal, subject falls under the general
label of secondary flows, cross-flow plane (secondary) circulations which occur in flows that were
parallel at some upstream station. The second is the enhancement of mixing by embedded streamwise
vorticity and the accompanying motions normal to the bulk flow direction (see for example Bushnell
(1992)). The third is the connection between vorticity generation and fluid impulse.

The different topics are linked in at least three ways. First, the class of fluid motions described
are truly three-dimensional. Second, focus on the vortex structure in these flows is a way to increase
physical insight. The perspective of the chapter is that the flows of interest are rotational and three-
dimensional, and the appropriate tools for capturing their quantitative behavior are three-dimensional
numerical simulations (e.g. Launder (1995)). Results from such computations, as well as from
experiments, are used to illustrate the overall features. To complement detailed simulations and
experiments, however, it is often helpful to have a simplified description of the motion which can
guide the interrogation and scope of the computations, enable understanding of why different effects
are seen, and suggest scaling for different mechanisms. The ideas about vorticity evolution and vortex
structure, introduced in Chapter 3, provide a skeleton for this type of description.

9.2 A basic illustration of secondary flow: a boundary layer in a bend

9.2.1 Qualitative description

When a flow that is parallel but non-uniform in velocity or density is made to follow a curved
path, the result is a three-dimensional motion with velocity components normal to the overall flow
direction. Cross-flow of this type is associated with the generation of a streamwise component of
vorticity and commonly referred to as secondary flow. The name derives from the view that one
can, in many instances, identify a primary flow direction along a passage or bend and hence also
specify the departures from this primary direction. Although the term secondary is in common use,
it can be a misnomer because the cross-flow velocities are often a substantial fraction of the primary
velocity.
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Figure 9.1: Contour ABCD for the evaluation of vorticity in a flow with curved streamlines; the circulation
around contour = (∂u/∂n + u/rc) dnrcdθ ; the area of contour = dnrcdθ ; the component of vorticity perpen-
dicular to the page, ω⊥ = ∂u/∂n + uc/rc.

The flow in a boundary layer on the bottom of a curved passage such as a rectangular bend furnishes
an illustration of the type of motions to be addressed. Generation of secondary flow can be viewed
in terms of the differential convection of boundary layer vorticity through the bend (Section 3.4).
Consider the flow external to the boundary layer as a two-dimensional irrotational stream. Figure 9.1
shows an elementary contour formed by two streamlines and two normals between the streamlines
in a two-dimensional flow. From evaluation of the circulation around this contour, the component of
vorticity perpendicular to the page, ω⊥, can be written in terms of the rate of variation of velocity in
the normal (n) direction and the local streamline radius of curvature, rc, as

ω⊥ = ∂u

∂n
+ u

rc
. (9.2.1)

For a flow which is irrotational outside of the boundary layer, ω⊥ = 0, (9.2.1) states that particles
on the outside of a bend have a lower velocity than particles on the inside. Particles on the outside
of the bend also travel a longer distance than those on the inside. If boundary layer vortex lines are
convected with a velocity proportional to the local free-stream velocity, vortex lines initially normal
to the flow will be tipped into the streamwise direction as they traverse the bend, as was depicted in
Figure 3.10, with a resulting cross-flow as in Figure 9.2. In a plane perpendicular to the free stream
(referred to as a cross-flow plane), one sees boundary layer fluid migrate toward the inside of the
bend.1

1 As described in Section 3.4, an alternative explanation of secondary flow can be given in terms of pressure fields and fluid
accelerations. The two views of secondary flow, in terms of pressure or vorticity, are complementary and which one one
adopts is a matter of choice. As should be evident by now, the authors’ view is that the ability to describe fluid motions in
terms of vorticity (“the sinews and muscles of fluid mechanics” (Küchemann, 1965)) provides a powerful tool for insight
into internal flows.
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Figure 9.2: Velocity profile, streamlines, and secondary velocities in a channel. (See also Figure 3.10.)

9.2.2 A simple estimate for streamwise vorticity generation and cross-flow plane
velocity components

A simple estimate for streamwise vorticity generation in a bend can be developed under the following
assumptions: (i) vortex lines are convected by a background (or primary) flow which is unaffected
by the secondary flow; (ii) the primary flow is irrotational and the streamlines in the bend are circular
arcs; (iii) the vorticity at the inlet is normal to the free stream and parallel to the bend floor; (iv)
viscous effects within the bend can be neglected.

Consider an element of a vortex line initially normal to the streamlines as it is convected through
a small angle dθ in the bend.2 A fluid cross formed from an element of a vortex line, aa, and an
element of a streamline, bb, is shown in Figure 9.3 at an initial location and at a subsequent location
rmdθ further along the streamline, where rm is the mean bend radius. The leg of the cross that is
part of the streamline rotates an amount dθ = dl/rm in the clockwise direction, where dl is the
streamwise distance traveled. Since there is no net vertical vorticity, the other leg of the fluid cross,
which coincides with the vortex line, must rotate an equal angle dθ in the opposite direction. If
this situation is assumed to be the same all along the bend, the angle between the elements of the
streamline and the vortex line thus changes from π/2 at the bend inlet to (π/2 − 2�θ), where
�θ is the bend angle. As indicated on the right-hand side of Figure 9.3, if ωi is the bend inlet
vorticity which is purely normal, at the bend exit there is a streamwise component of vorticity
given by

ωs ≈ −2�θωi . (9.2.2)

Within the approximations made, the streamwise vorticity generated is proportional to the product of
the inlet normal vorticity and the free-stream turning angle. Equation (9.2.2), known as the Squire and
Winter (1951) approximation (see e.g. Horlock (1966)), has found wide application in the estimation
of streamwise vorticity generation.

2 In Chapter 9 the local streamline angle is denoted by θ , rather than α, as previously, for two reasons. Primary is that the
initial context is flow around a bend and θ is the natural variable for marking different circumferential stations, but another
reason is that θ is the convention in secondary flow literature.
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Figure 9.3: Deformation of a fluid cross moving through an incremental angle dθ : leg bb aligned with the
streamline, leg aa initially normal to the streamline.

Knowing the streamwise vorticity we can now find the secondary velocity field. Within the sec-
ondary flow approximation, the primary streamlines are straight downstream of the bend, the vorticity
distribution is unaltered once the flow leaves the curved portion of the duct, and changes in the flow
field with distance along the duct in this region can be neglected. Denoting the coordinate along the
duct as x, the coordinate perpendicular to the bottom of the duct as y, and z as the third member of
the right-handed coordinate system, with ∂/∂x ∼= 0, the continuity equation is

∂uy

∂y
+ ∂uz

∂z
∼= 0. (9.2.3)

Equation (9.2.3) is a statement that the flow is (regarded as) locally two-dimensional at any x-
station. This implies a relation between the streamwise vorticity and the cross-flow (y, z) velocity
field in which a stream function, ψ , that satisfies (9.2.3) identically can be defined as

uy = ∂ψ

∂z
, uz = −∂ψ

∂y
. (9.2.4)

From the definition of the vorticity, the streamwise vorticity, ωx, is related to the stream function by
the Poisson equation:

∂2ψ

∂y2
+ ∂2ψ

∂z2
= ∇2ψ = −ωx (y, z) . (9.2.5)

The streamwise vorticity in (9.2.5) is obtained from (9.2.2). If the normal vorticity in the bottom
boundary layer at the bend inlet, ωzi , is uniform in y across the passage, (9.2.5) becomes

∂2ψ

∂y2
+ ∂2ψ

∂z2
= 2�θ × [ωzi (y)]. (9.2.6)

In (9.2.6) ωzi (= −∂ux/∂y), the normal vorticity in the boundary layer entering the bend, is a known
quantity. The boundary conditions for (9.2.6) are no normal velocity on the walls of the duct or,
equivalently, that the walls of the duct are stream surfaces (surfaces of constant ψ).



450 Generation of streamwise vorticity

0 1.0 -2.0 0 2.0
-0.5

0

0.5

uxE

uxE

uxE

ux(y)

δ δ

Inlet
velocity

Inlet
velocity,

Inlet
vorticity,

Inlet
vorticity

y
W

ωnδ

(a) (b)

ri ro

∆
∆
∆

∆

Figure 9.4: Secondary flow in a square channel of side W; linear analysis: (a) inlet velocity and vorticity
distribution: velocity ux = u0 + �ux(y), free-stream velocity uxE = u0 + �uxE , u0 = constant, vorticity non-
dimensionalized by �xE /δ; (b) streamlines in the cross-flow plane, streamline contour intervals 0.1�θ�uxE δ.

Figure 9.4 shows the inlet velocity and vorticity and the cross-flow plane streamlines for flow in
a square bend. Figure 9.4(a) shows a linearly varying vorticity over the upper and lower 15% of the
passage at the inlet with accompanying parabolic velocity profile (this is roughly representative of a
thick inlet boundary layer). The streamline pattern is given in Figure 9.4(b), with ri and ro denoting
the inner and outer radius locations. Within the approximate treatment the streamline pattern is
independent of the turning angle, �θ , and the magnitude of the streamwise vorticity and secondary
velocity at the bend exit are both linearly proportional to �θ .

The model described is idealized, but it shows several relevant features of three-dimensional
passage flows. One is the increase in strength of the cross-flow with turning. Another is the presence
of inward flow in the boundary layer and a return flow in the free stream, taking fluid from the inner
radius to the outer radius. From the analysis the cross-flow plane velocity levels in the boundary layer
and free stream scale roughly as the inverse of the ratio of boundary layer and free-stream heights.

There are several processes at work in the flows addressed and it is useful to comment on the
effects which are taken into account by the theory. For a uniform density fluid, viscous effects at
solid surfaces generate the vorticity, as described in Section 3.13. At the high Reynolds numbers that
characterize industrial fluid devices, however, for the effects of viscosity to penetrate substantially
into the stream (to have a boundary layer whose thickness is a substantial fraction of the duct
dimension) requires a streamwise development length which can be from several to tens of duct
dimensions. For example, at a length Reynolds number of 106, it takes roughly four passage heights
for the edge of a turbulent boundary layer in a two-dimensional channel to grow to 10% of the
channel width. Processes within fluid machines thus often occur over a length scale which is short
compared to boundary layer development length, so many features can be viewed as inviscid but
rotational. This difference in length scales underpins the use of secondary flow theory, which can
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be described as the creation of three-dimensional motions by the “processing” of inlet vorticity in a
manner which is predominantly inviscid.

9.2.3 A quantitative look at secondary flow in a bend: measurements and
three-dimensional computations

The sections on secondary flow have dual objectives. One is to introduce the basic ideas along with the
approximations inherent in the approach. No less important, however, is to show, from computations
and experiments, the connection to real three-dimensional flow situations including not only aspects
which are well captured, but also limitations of the theory.

A more quantitative look at three-dimensional flow in a bend is thus given by Figures 9.5 and
9.6 which show data and viscous three-dimensional computations for laminar (9.5) and turbulent
(9.6) flow in a square duct with 90◦ of turning (Humphrey, Taylor, and Whitelaw, 1977; Humphrey,
Whitelaw, and Yee, 1981). The plots are contours of velocity along the bend, uθ , in different cross-
flow planes, with the specific stations through the bend given in the figures. The measurements are
the upper half of the plots and the numerical computations the lower half. Comparison of the laminar
and turbulent cases shows, as implied by the discussion of length scales in Section 9.2, a number of
similarities in overall flow structure. While inward motion of the boundary layer, and the consequent
return flow towards the outer radius in the midplane, seen in both figures, are in qualitative accord
with the Squire–Winter result, aspects such as the vertical motions near the center of the passage are
not captured by the linear analysis.

As well as indicating the ability of the computations to describe the flows under study the
experiment–computation comparison helps point out where secondary flow analyses fit in. For flow
round a bend the Squire–Winter analysis gives a motivation for overall trends and this carries over
to other (more complex) situations later in the chapter. Comparison of Figure 9.4 with Figures 9.5
and 9.6 shows, however, that we need to go beyond the basic description to address the quantitative
behavior and even to capture some qualitative features of the motions.

9.3 Additional examples of secondary flow

9.3.1 Outflow of swirling fluid from a container

We give several examples to illustrate the way in which secondary flow behavior can be determined
based on the approximation of a known primary flow. The first is outflow of swirling fluid through a
hole in the bottom of a circular container. Suppose the flow enters the container tangentially so that
away from the boundaries (or the axis) the circumferential velocity can be approximated by uθE = K/r.
Fluid near the bottom of the container has a lower velocity than this free-stream value because of vis-
cous stresses. The resulting flow can be described by stating that the slower moving fluid in the bound-
ary layer near the bottom is driven inward by the radial pressure gradient established by the swirling
free stream. To cast the arguments in terms of streamwise (θ ) vorticity generation, however, we
examine the evolution of a primary flow with free vortex swirl velocity and vortex lines in the bottom
boundary layer that are initially radial. If these radial vortex lines are convected by the primary flow,
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Figure 9.5: Measured and computed velocity (uθ /u) contours in a rectangular bend, laminar flow; u is the
mean velocity, (ro − ri)/ri = 0.56: (a) 0◦ calculated; (b) 30◦ calculated; (c) 60◦ measured (top) and calculated
(bottom); (d) 90◦ measured (top) and calculated (bottom) (Humphrey et al., 1977).
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the situation is as indicated in Figure 9.7. The drawing shows an initially radial vortex line tipped
into the circumferential direction, generating a θ -component of vorticity and a consequent inward
radial flow.3

An estimate for the θ -vorticity generation can be given using secondary flow approximations. The
circumferential velocity, uθ , at any vertical (x) station is taken to be free vortex, uθ = K(x)/r, with
the value of K varying along the axis of rotation (x-axis) (Horlock, 1975). The velocity components
of the “primary flow” are then

ux = ur = 0; uθ = K (x)/r. (9.3.1)

The vorticity components of the primary flow are

ωx = ωθ = 0; ωr = −∂uθ
∂x

= −1

r

dK

dx
. (9.3.2)

Using the expression for the rate of change of vorticity in an inviscid constant density fluid ((3.4.1),
u · ∇ω = ω · ∇u) the linearized expression for the generation of secondary vorticity (ωθ ) is

uθ
r

∂ωθ

∂θ
= ωr

(
∂uθ
∂r

− uθ
r

)
. (9.3.3)

Because the primary velocity distribution obeys (∂uθ /∂r ) + (uθ /r ) = 0, (9.3.3) becomes

∂ωθ

∂θ
= −2ωr . (9.3.4)

Integrating (9.3.4) between two values of θ yields

ωθ2 − ωθ1 = −2ωr (θ2 − θ1)

analogous to (9.2.2).

3 The arguments here are similar to those in Section 8.9.
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Figure 9.8: Secondary flow on the endwall of a circular container with swirling flow: (a) dye trace showing
radially inward secondary flow near bottom of container; (b) dye trace of circular streamlines of the primary
flow away from bottom (Taylor, 1972).
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Figure 9.9: S-shaped duct (aircraft engine inlet) (Bansod and Bradshaw, 1971).

Figures 9.8(a) and 9.8(b) show the trajectory of dye injected into a swirling flow in a cylindrical
container, in the boundary layer (Figure 9.8(a)) and at a location far away from the boundary (Figure
9.8(b)). There is a strong inward flow in the former, with virtually all the flow through the drain hole
appearing to come from the boundary layer (Taylor, 1972).

9.3.2 Secondary flow in an S-shaped duct

Flow in an S-shaped duct, as in an aircraft engine inlet, is represented by the geometry of Figure 9.9
(Bansod and Bradshaw, 1971). Viscous effects produce the inlet vorticity essential to the existence of
secondary flow, but the generation and downstream evolution of the phenomena can be predominantly
inviscid. Application of (9.2.2) to the boundary layer on the duct sidewalls implies a generation of
streamwise vorticity pointing in the upstream direction in the first part of the duct and hence a
secondary flow in the boundary layer towards the φ = 180◦ location. The thickness of the region of
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low stagnation pressure atφ= 180◦ increases substantially as shown by the contour plot of stagnation
pressure in Figure 9.10.

Measurements indicate a pair of concentrated counterrotating vortices associated with the motion
of the low stagnation pressure fluid away from the duct wall into the middle of the duct. The qualitative
sense of these streamwise vortices can be understood from the secondary flow considerations, but a
feature often present in actual situations is that streamwise vorticity does not remain in a layer near
the wall but rather rolls up into discrete vortical structures. This concentration of vorticity results
in more localized, and stronger, cross-flow plane velocities than would be the case if the vorticity
remained spread along the wall.

9.3.3 Streamwise vorticity and secondary flow in a two-dimensional contraction

A third example is the secondary flow in two-dimensional contractions, such as are used in wind
tunnels (Bansod and Bradshaw, 1971). Boundary layer streamlines are sketched in Figure 9.11,
showing streamwise vorticity generated in the converging passage. The thickness of the boundary
layer may not be greatly reduced in the contraction because the lateral convergence of the flow and
the presence of the streamwise vortices lead to a thickening of boundary layer fluid. A mitigating
effect is that if the contraction ratio is large the momentum integral equation shows that the momen-
tum thickness decreases appreciably in the downstream direction, whatever the behavior of the
boundary layer thickness.
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Figure 9.11: Secondary flow in a contraction: (a) top view; (b) cross-flow plane at contraction exit (Bansod and
Bradshaw, 1971).

9.3.4 Three-dimensional flow in turbine passages

Three-dimensional flows play an important role in turbomachinery component performance. In a
turbine blade row, for example, in addition to turning the flow, as in the bent duct, there is the
formation of a horseshoe vortex round the leading edge of the airfoils (Section 3.4). Figure 9.12,
from Langston (1980) is a pictorial representation of the swirling motion in a turbine vane passage.
The dominant structure is the passage vortex, but also indicated is another vortex embedded near
the junction of the suction surface and the endwall, smaller in area than the passage vortex, which
represents the continuation of vortex filaments that thread through the passage and the horseshoe
vortex structure. The formation of the passage vortex in a turbine cascade is shown in Figure 9.13
using smoke visualization (Gostelow, 1984).

Strong circulatory motions such as pictured in Figure 9.13 are associated with vortex roll up, which
is inherently a non-linear process, and thus differ qualitatively from the Squire–Winter results. The
area and strength of the vortex are both of interest, because they affect the overall loss as well as
the flow past to the succeeding row; the vortex radial position can be important for this latter aspect.
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Figure 9.12: Pictorial representation of the cross-flow structure in a turbine passage (Langston, 1980).

Figure 9.13: Visualization of secondary flow near the endwall of a turbine blade cascade (Gostelow, 1984).
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Figure 9.14: Secondary flow in a turbine cascade with aspect ratio 1.0: (a) stagnation pressure contours at
midchord (contour intervals approximately 0.02 1

2ρu2
e, ue is mean exit velocity); (b) stagnation pressure contours

at the trailing edge; (c) cross-flow plane velocity vectors at the trailing edge; inviscid computation of Denton
(2000).
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Figure 9.15: Secondary flow in a turbine cascade with aspect ratio 1.0: (a) stagnation pressure contours at
midchord (contour intervals approximately 0.02 1

2ρu2
e, ue is mean exit velocity); (b) stagnation pressure contours

at the trailing edge; (c) cross-flow plane velocity vectors at the trailing edge; viscous computation of Denton
(2000).
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Figures 9.14(a)–(c) and 9.15(a)–(c) show results from three-dimensional computations of flow
through a turbine blade row with geometry (aspect ratio of 1.0 and turning angle of 110◦) roughly
similar to that in Figure 9.13 (Denton, 2000). The inlet boundary layer thickness is 15% of the half-
height. Stagnation pressure contours are presented for stations at 0.5 axial chord and at the trailing
edge. Cross-flow plane velocity vectors at the trailing edge are also shown. The results in Figure
9.14 are from an inviscid computation and those in Figure 9.15 from a viscous computation. The
overall features, stagnation pressure defect and cross-flow plane velocity pattern, for example, are
roughly similar in the two cases, although the viscous solution shows an increased region of low
stagnation pressure near midspan on the suction side. The inference therefore is that much of the
exit flow field structure is associated with the distortion of the inlet vorticity through the passage in
a predominantly inviscid manner. Detailed comparisons of computations and measurements for this
type of flow are given by Denton (1993) and Harrison (1990).

9.4 Expressions for the growth of secondary circulation in an inviscid flow

9.4.1 Incompressible uniform density fluid

A metric for the importance of secondary flow is the secondary circulation, the circulation in a plane
normal to the velocity, about a small streamtube. If the volume flux through the streamtube is udA,
where u is the magnitude of the velocity and dA is the elementary area of the tube, the secondary
circulation is given by ωsdA, where ωs is the streamwise component of the vorticity, and the ratio
ωs/u (=(ω · u)/u2) is a measure of the strength of the secondary motions. This quantity, made
dimensionless with an appropriate reference length, identifies regions with strong secondary flow. In
the following we develop expressions for the rate of change of ωs/u along a streamline in a uniform
density inviscid flow (Hawthorne, 1951; Horlock and Lakshminarayana, 1973a).

We split the vorticity into components parallel (ωs) and normal (ωn) to the velocity, respectively,

ω = ωs + ωn =
(ω · u

u2

)
u + (u × ω) × u

u2
. (9.4.1)

The vorticity field is solenoidal (i.e. ∇ · ω = 0), so

∇ ·
(ωs

u

)
u − ∇ ·

(
u × (u × ω)

u2

)
= 0. (9.4.2)

Expanding (9.4.2),

(ωs

u

)
∇ · u + u · ∇

(ωs

u

)
− u × (u × ω) · ∇

(
1

u2

)

−
(

1

u2

)
∇ · [u × (u × ω)] = 0. (9.4.3)

A vector identity which allows simplification of the last term in (9.4.3) is

∇ · [u × (u × ω)] ≡ (u × ω) · ∇ × u − u · ∇ × (u × ω) . (9.4.4)
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The first term on the right-hand side of (9.4.4) contains two identical vectors, ω and ∇ × u, and so
is zero. The second term contains the expression ∇ × (u × ω). The Crocco form of the momentum
equation is (3.14.6)

u × ω = ∇pt

ρ
. (3.14.6)

Hence

∇ × (u × ω) = ∇ × ∇pt

ρ
≡ 0. (9.4.5)

The entire right-hand side of (9.4.4) is therefore equal to zero.
For a constant density fluid, ∇ · u = 0, and the first and last terms in (9.4.3) are zero, leaving

u · ∇
(ωs

u

)
= −u × (u × ω) · ∇(u2)

u4
. (9.4.6)

Another vector identity we now make use of is

∇(u2) ≡ 2 (u · ∇) u + 2u × (∇ × u) . (9.4.7)

Substituting (9.4.7) in (9.4.6) yields

u · ∇
(ωs

u

)
= −u × (u × ω) · 2 (u · ∇) u

u4
. (9.4.8)

Equation (9.4.8) is an expression for the rate of change of the secondary circulation along a stream-
line.4 The expression on the right-hand side is proportional to the product of the velocity, the vector
(u × ω) which is normal to the surfaces containing the streamlines and the vortex lines (known as
Bernoulli surfaces), and the acceleration, (u · ∇)u.

The interpretation of this triple product is more easily visualized using natural coordinates, l, n, b,
which refer to the direction of the streamline, the outward direction of its principal normal, and the
bi-normal. Figure 9.16 shows a portion of a streamline with unit vectors l, n, b. The distance along
the streamline is l, distance n is measured outwards along the direction of the principal normal, and
distance b is measured in the bi-normal direction. The streamline lies locally in the plane defined
by l and n, and the vector representing the particle acceleration thus also lies in this plane. The
acceleration can be resolved into two components, one along the streamline, with value u(∂u/∂l),
and the other normal to it (in the n-direction) with the value (−u2/rc), where rc is the local radius of
curvature of the streamline.

Employing the l, n, b coordinate system, and making use of (3.14.6), (9.4.8) is written compactly
as

∂

∂l

(ωs

u

)
= − 2

ρu2rc

∂pt

∂b
. (9.4.9)

4 A form of (9.4.8) that relates streamwise vorticity generation to gradients in the velocity magnitude along the existing
vortex lines is u · ∇ (ω · u) = ω · ∇(u2).
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Figure 9.16: Natural coordinates for a primary flow streamline; l, n, b are vectors in the streamwise, normal,
and bi-normal directions, b is out of page; n × b = l.

Equation (9.4.9) can be integrated along the streamline to give an expression for the change in
secondary circulation between two locations as

(ωs

u

)
2
−
(ωs

u

)
1

= −
2∫

1

2

ρu2

∂pt

∂b
dθ. (9.4.10)

In (9.4.10) the integral is taken along a streamline with dθ (= dl/rc) the angle between tangents to
the streamline at points arc length dl apart.

9.4.2 Incompressible non-uniform density fluid

Equations (9.4.8) and (9.4.9) have been derived for uniform density flow, but similar procedures
can be carried out for an inviscid, incompressible, non-uniform density fluid, as well as (in the next
section) a perfect gas (Hawthorne, 1974). In the absence of external body forces the expression for
the rate of change of secondary circulation in an incompressible, non-uniform density flow is the
same as for uniform density. However, stagnation pressure gradients in the bi-normal direction, which
lead to production of streamwise vorticity, can now arise from gradients in density as well as velocity.

For uniform density flow the component of the stagnation pressure gradient in the binormal
direction ∂pt/∂b is

∂pt

∂b
= ∂p

∂b
+ ρu

∂u

∂b
= ρu

∂u

∂b
. (9.4.11)

There is no gradient of static pressure in the bi-normal direction because there is no acceleration in
that direction. For an incompressible, non-uniform density flow the stagnation pressure gradient in
the bi-normal direction is

∂pt

∂b
= u2

2

∂ρ

∂b
+ ρu

∂u

∂b
. (9.4.12)
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Equation (9.4.12) shows that the effects of velocity and density non-uniformities can cancel or
reinforce in creating secondary flow. Comparison of (9.4.11) and (9.4.12) also shows it is the gradient
of ρu2 in the bi-normal direction that gives rise to secondary circulation. Flows with the same
distribution of ρu2 have the same secondary circulation, and (as will be described in Chapter 10) the
same streamline pattern.

The interplay between generation of secondary vorticity by differential convection of existing
vorticity and production of vorticity by the pressure torque exerted on particles of non-uniform density
(Section 3.5) is exhibited in a flow with constant stagnation pressure but non-constant density, i.e. inlet
velocity varying such that ρu2 is constant. For this situation, (9.4.12) implies no streamwise vorticity
generation. Although there is normal vorticity at the inlet and initially normal vortex filaments are
tipped into the streamwise direction, there is equal and opposite production of streamwise vorticity
due to the ∇p × ∇ρ term and no net streamwise vorticity is produced. Further, whatever the
distribution of ρ and u2, if the value of ρu2 is the same on corresponding streamlines for two flow
fields, the same pressure distribution will maintain the two streamline patterns.

One flow corresponding to uniform ρu2 at the inlet is a uniform density, uniform inlet velocity,
irrotational flow. All flow fields with uniform ρu2 at the inlet must therefore have no streamwise
vorticity whatever the value of ρ or u because if this were not so the streamlines would not be the
same. This cannot be said about the normal vorticity because there are an infinity of shear flows
with constant stagnation pressure, the same streamlines, and varying density and normal vorticity
distributions. In summary, for an inviscid incompressible stratified flow with no body forces, the
streamline pattern is invariant with respect to the density distribution for a given inlet stagnation
pressure distribution and given geometry.

9.4.3 Perfect gas with constant specific heats

For a perfect gas the expression for the rate of change of secondary circulation is (Hawthorne, 1974;
Horlock and Lakshminarayana, 1973a)

∂

∂l

(
ωs

ρu

)
= − 2

ρρt u2rc

∂pt

∂b
. (9.4.13)

Integration along a streamline yields

(
ωs

ρu

)
2

−
(
ωs

ρu

)
1

= −
2∫

1

2

ρρt u2

∂pt

∂b
dθ. (9.4.14)

Equation (9.4.14) shows that the growth of streamwise circulation does not depend on the stagnation
temperature distribution because only the gradient of stagnation pressure appears. Flows with only
stagnation temperature gradients do not give rise to streamwise vorticity, whatever the distribution
of normal vorticity. As with incompressible stratified flow this is a case of the cancellation of two
equal and opposite processes for producing streamwise vorticity.

A circumstance in which this can occur is the flow of a thermally stratified fluid from a combus-
tion chamber, say through a nozzle or a row of turbine nozzle guide vanes. Suppose the stagnation
temperature is non-uniform but the stagnation pressure is approximately constant in the bi-normal
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direction. Equation (9.4.13) shows that no streamwise component of vorticity and no secondary cir-
culation are generated under these conditions. There is, however, normal vorticity whose magnitude
can be found from Crocco’s Theorem:

(u × ω) = ∇ht − T ∇s. (3.14.4)

For constant stagnation pressure the entropy gradient is related to the stagnation enthalpy gradient
by

Tt∇s = ∇ht . (9.4.15)

For constant stagnation pressure (3.14.4) thus takes the form

u × ω = u2

2

∇Tt

Tt
. (9.4.16)

Since the vorticity is normal to the velocity, the magnitude of the vorticity is

ω = u

2

∣∣∣∣∇Tt

Tt

∣∣∣∣ . (9.4.17)

In Chapter 10 we will see that the conclusion concerning the lack of dependence of secondary
circulation on the stagnation temperature field is a special case of a more general principle concerning
flow field invariance under changes in the stagnation temperature distribution.

9.5 Applications of secondary flow analyses

9.5.1 Approximations based on convection of vorticity by a primary flow

For a uniform density inviscid fluid, the growth of secondary circulation is described by (9.4.9):

∂

∂l

(ωs

u

)
= − 2

ρu2rc

∂pt

∂b
. (9.4.9)

This equation is nonlinear because the velocity field (which includes the directions in which the
intrinsic coordinates l, n, and b are defined) and the stagnation pressure distribution are not known a
priori. We can, however, make some assumptions about the behavior of the terms on the right-hand
side which allow us to derive useful information from (9.4.9). In the first application we examine flow
in a bend and take the vorticity associated with the secondary flow as convected along the streamlines
of a background irrotational, or primary, flow. This approximation amounts to viewing the distortion
of the (presumed weak) “secondary” vorticity field (and stagnation pressure non-uniformity) by a
known primary flow and considering only the effects of the latter on the former.

A further approximation can be made if the bend has a radius large compared to the width so that
the quantities rc and u vary little in the bend. If so, we may take u and rc as equal to the mean velocity
across the bend (u) and the mid radius (rm) respectively and integrate (9.4.9) to give

ωs − ωsi = − 2�l

ρurm

∂pt

∂b
, (9.5.1)
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where the streamwise distance, l, is measured from the inlet station. Since �l/rm is the total angle
of turning of the streamline, �θ ,

ωs − ωsi = −2�θ

ρu

∂pt

∂b
. (9.5.2)

The normal component of vorticity at the inlet is related to the stagnation pressure derivative by
the incompressible form of Crocco’s Theorem (3.14.6), which can be written in terms of l, n, b
coordinates as

ρuωn = ∂pt

∂b
. (9.5.3)

Using (9.5.3) and taking the velocity as u, the expression for the streamwise vorticity generated
within a bend of turning angle �θ reduces to the Squire–Winter result, now extended to include an
inlet component of streamwise vorticity ωsi :

ωs − ωsi = −2�θωni . (9.5.4)

With only normal vorticity at the inlet, (9.5.4) takes the form given previously as (9.2.2):

ωs = −2�θωni . (9.2.2)

Flow in a bend illustrates the steps involved in the use of secondary flow approximations. The
approach can be used for other geometries, with the secondary vorticity obtained by numerically
integrating along known primary flow streamlines. A more complex application occurs in the “inlet-
vortex” phenomenon (the generation of an intense vortex when an inlet, such as on an aeroengine,
is run in proximity to the ground), where the primary flow is three-dimensional (De Siervi et al.,
1982). In that example the secondary flow approach enabled identification of a mechanism for vortex
formation. This approximation is also used effectively in the rapid distortion theory of turbulence
(i.e. Hunt (1987)).

9.5.2 Flow with large distortion of the stream surfaces

In many instances the distortion of the primary stream surfaces associated with streamwise vorticity
cannot be neglected. To obtain insights into these types of flows we apply (9.4.9) with a different set
of approximations. Flow in a bent pipe with a circular cross-section is examined first, because this
allows views of a striking set of phenomena.

The pipe diameter is denoted by d, and the mean bend radius of curvature by rm. The stagnation
pressure at the inlet is specified as varying linearly across the pipe, so the magnitude of the stagnation
pressure gradient is �pt/d. This magnitude is assumed to remain constant and the flow to rotate as
a solid body about the pipe centerline, a major difference from the assumptions of Section 9.5.1.
Figure 9.17 shows the bend and flow geometry and the nomenclature used. The angle, φ, which the
stagnation pressure gradient makes with the bi-normal to the pipe centerline varies with the angular
distance round the bend, θ . The component of the stagnation pressure gradient in the bi-normal
direction is

∂pt

∂b
= �pt

d
cosφ. (9.5.5)
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Figure 9.17: Geometry and nomenclature for flow in a curved circular pipe.

Under the assumptions described and with u denoting the mean velocity in the l-direction, (9.4.9)
becomes

∂

∂l

(ωs

u

) ∼= −2
�pt

d

1

ρu2

cosφ

rm
. (9.5.6)

To integrate (9.5.6), we relate the streamwise vorticity to the orientation angle, φ, of the lines of
constant stagnation pressure:

ωs = −2
dφ

dt
. (9.5.7)

The time increment, dt, is equal to dl/u, or, in terms of the angle of turn in the bend, θ ,

dt = rm
dθ

u
= dl

u
. (9.5.8)

Substituting (9.5.8) and (9.5.7) into (9.5.6) yields a second order ordinary differential equation for
the inclination of the surfaces of constant stagnation pressure (Bernoulli surfaces):

d2φ

dθ2
= �pt

ρu2

rm

d
cosφ. (9.5.9)

For values of φ near π/2, i.e. for orientations in which the highest stagnation pressure fluid is near
the outside of the bend, (9.5.9) reduces to the linearized form

d2φ

dθ2
+ �pt

ρu2

rm

d

(
φ − π

2

)
= 0. (9.5.10)
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Figure 9.18: Pendulum analogy for secondary flow in a bend (Johnson, 1978).

This is the equation for simple harmonic motion about φ = π/2 with period 2π
√

(ρu2/�pt )(d/rm).
The character of the solution to (9.5.9) can be seen by noting that this equation has the

same form as the equation for the oscillations of a pendulum of length, L, about an equilibrium
point:

L

g

d2φ

dt2 = cosφ.

The analogy is depicted in Figure 9.18. Having the highest stagnation pressure on the outside of the
bend is analogous to the pendulum hanging vertically downwards. If the flow is disturbed slightly
from this configuration it will oscillate. Having the highest stagnation pressure fluid on the inside
of the bend is like having the pendulum vertically above the point of suspension. Other orientations
of the highest stagnation pressure fluid at the inlet to the bend result in oscillations with ampli-
tude equal to the distance from the outside of the bend, with the period (in θ ) of the oscillations
2π
√

(ρu2/�pt )(d/rm). The kinetic energy of the secondary circulation, which is analogous to the
kinetic energy of the pendulum, oscillates with the same period, passing through zero after each
π
√

(ρu2/�pt )(d/rm) radians of turn.
Experimental results for flows in a 180◦ circular bend are given in Figure 9.19 (Hawthorne, 1951).

The flow enters the bend with φ equal to zero, so the gradient of stagnation pressure is vertical in
the plane of the paper. By the 60◦ location, the flow has overshot the equilibrium point and a reverse
rotation is set up. In terms of the development of the streamwise vorticity, the equilibrium point with
the highest stagnation pressure on the outside of the bend has zero value of ∂pt/∂b so that the sign
of the gradient, and thus the sign of the rate of change of streamwise vorticity generation, changes
as the angle θ moves past this point.
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Figure 9.19: Experimental measurements of station pressure in a 180◦ bent circular pipe (rm/d = 5): (a) stag-
nation pressure contours at 30◦ intervals around the bend (pressure measured in inches of water); (b) rotation
of the maximum stagnation pressure location (Hawthorne, 1951).

9.6 Three-dimensional boundary layers: further remarks on effects of viscosity
in secondary flow

Three-dimensional boundary layers can also be described within the general framework of secondary
flow theory, and doing so gives a view into how viscosity affects the motion. The discussion here
follows Lighthill (1963), and applies to a boundary layer which is not near separation, bounded by
an irrotational free stream. The velocity gradients normal to the surface are much larger than velocity
gradients along the surface. For a flat surface which coincides with the plane y = 0, the vorticity
vector in the boundary layer is, to a very good approximation,

ω = ∂uz

∂y
i − ∂ux

∂y
k, (9.6.1)
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(a) (b) 

0)(

Figure 9.20: Cross-flow in three-dimensional boundary layers: (a) external flow streamlines and equipotential
lines for flow outside of a three-dimensional boundary layer; (b) cross-flow in a three-dimensional boundary
layer (Lighthill, 1963).

where i and k are the unit vectors in the x- and z-directions respectively. Integrating (9.6.1) from the
solid surface, y = 0, to y = δ, the edge of the boundary layer, yields

δ∫
0

ωdy = −uE × j, (9.6.2)

where uE is the free-stream velocity just outside the boundary layers and j is the unit vector normal
to the surface (in the y-direction).

Equation (9.6.2) indicates that the mean vortex lines (the average across the layer) are perpendicular
to the streamlines just outside the boundary layer. In an irrotational flow, streamlines and lines of
constant velocity potential are orthogonal, so the mean vortex lines lie along the equipotentials of
the external flow just outside the boundary layer. Two streamlines of the external flow, separated by
a small distance dn, and two equipotentials, separated by streamwise distances dl1, dl3 of the same
(small) magnitude, are indicated in Figure 9.20. The radius of curvature of streamline 1 is denoted
as rc, and the free-stream velocities on the two streamlines as uE1 and uE2 . As drawn, the center of
curvature is to the left so that uE2 is smaller than uE1 . Because lines AA′ and BB′ are equipotentials,
the lengths AB (= dl1) and A′B′ (= dl3) are related by dl1uE1 = dl3uE2 . In addition, the flow outside
the boundary layer is irrotational and ω⊥ = 0. From (9.2.1) therefore

∂u

∂n
= − u

rc
. (9.6.3)
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To first order in dn/rc, the velocity magnitude on the two streamlines is related by

uE2 = uE1

(
1 − dn

rc

)
. (9.6.4)

Consider convection of vortex lines within the boundary layer. Suppose the mean vortex line ini-
tially coincides with the equipotential line AA′. As described in Section 3.13, the average convection
velocity of boundary layer vorticity is uE/2. If uE1 is the local free-stream velocity at point A and
uE2 the local free-stream velocity at point A′, after a time dt the mean vortex line will be at position
BC where the lengths dl1 (= AB) and dl2 (= A′C) are equal to uE1 dt/2 and uE2 dt/2 respectively.
The mean vortex line thus makes an angle α with the equipotential BB′, where α is given by (dl3 −
dl2)/dn. From the condition for AA′ and BB′ to be equipotentials, the relation between dl3 and dl1 is

dl3 = dl1

(
1 + dn

rc

)
. (9.6.5a)

The length dl2 is given by dl2 = dl1(uE2/uE1 ) and

dl2 = dl1

(
1 − dn

rc

)
. (9.6.5b)

The angle α in Figure 9.20 is thus found to be

α = 2dl1

rc
= uE1

rc
dt. (9.6.6)

This is the angle between the equipotential line BB′ and the mean vortex line BC. The total vorticity
in the boundary layer is uE , or uE1 to the order in which we have been working, so the stream-
wise vorticity at the exit, which has been produced in time dt over the elementary area dl1dn, is
(u2

E1
/rc)dl1dndt .

The amount of vorticity convected into this area in a time dt is (u2
E1
/2)dndt . The ratio of streamwise

vorticity produced to vorticity convected in, in other words the fraction of the vorticity tipped into
the streamwise direction, is just the ratio of these two quantities:

streamwise vorticity at exiting area

normal vorticity convected into area
= 2dl1

rc
. (9.6.7)

Since dl1/rc = dθ , the change in angle of the external flow streamlines, (9.6.7), which accounts for
the evolution of vortex lines due to inviscid effects, is another form of the Squire–Winter formula
for secondary flow (Section 9.2).

We can take these considerations further using the fact that the mean vortex lines (averaged across
the boundary layer) are perpendicular to the surface streamlines of the flow external to the boundary
layer.5 This means that during the time dt there must have been diffusion of streamwise vorticity into
the fluid, of magnitude u2

E1
/rc but opposite sign, in the elementary area shown. The new vorticity is

close to the surface since it has had relatively little time to diffuse. It has the orientation shown by
the dotted line BD in Figure 9.20 so the mean vorticity is lined up with the equipotentials and there
is no net streamwise vorticity. This can also be seen by noting that the circulation round a contour
perpendicular to the free stream with one leg on the surface and one leg outside the boundary layer

5 The mean vortex lines that lie along the surface equipotentials of the external irrotational flow (Lighthill, 1963).
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must be zero. Although there is no net streamwise vorticity, most of the fluid in the boundary layer
typically has streamwise vorticity of one sign, with the vorticity due to the diffusion from the wall
confined to a thin layer, as shown schematically in the right-hand side of Figure 9.20.

The vorticity production at the solid surface can be derived using the momentum equation evaluated
at the surface. In terms of streamwise and normal components (to the free-stream direction) the
relation between the pressure gradient on the wall and the derivative of the vorticity components is

1

ρ

∂p

∂l
= −uE1

∂uE1

∂l
= −v

(
∂ωn

∂y

)
at the surface

, (9.6.8a)

1

ρ

∂p

∂n
= +u2

E1

R
= v

(
∂ωs

∂y

)
at the surface

. (9.6.8b)

This is a generalization of the expression for two-dimensional flow in Chapter 3.
The condition of zero net streamwise vorticity does not hold for surfaces which have a velocity

in a direction normal to the free-stream velocity. For an axial free stream around a spinning body of
revolution, for example, the boundary layer does have a net streamwise vorticity with the integral∫ ri +δ

ri
ωsdr equal to 
ri, where 
 is the rotation rate and ri is the surface radius. In line with the

above discussion, however, the effect of the moving surface is often confined to a layer which is
much thinner than the overall region of rotational flow and the secondary flow features can be viewed
as primarily inviscid.

9.7 Secondary flow in a rotating reference frame

9.7.1 Absolute vorticity as a measure of secondary circulation

In a rotating frame, the most useful measure of secondary circulation is still the absolute vorticity.
One argument for this is as follows. The relative and absolute vorticity are related by (7.5.1):

ω = ωrel + 2Ω, (7.5.1)

where Ω is the angular velocity of the relative frame of reference. It is often the case that the rotating
flow is irrotational (or nearly so) in the absolute frame at the inlet. If no vorticity is generated in
a rotating passage, the relative flow will have a relative vorticity of −2Ω. In the rotating passage
with the axial to radial bend sketched in Figure 9.21 the streamwise component of ωrel at the inlet
is −2Ω, while the normal component is zero. At the exit, the streamwise component of ωrel is zero
and the normal component is −2Ω. The change in streamwise component of ωrel is caused solely
by turning of the relative velocity, w, out of the Ω-direction, not by generation of new vorticity.

This effect is present whether or not the motion is irrotational in the absolute frame, as seen from
the vorticity equation for a steady constant density inviscid flow (see Section 7.5)

w · ∇ωrel = ([ωrel + 2Ω] · ∇) w. (9.7.1)

A change in relative vorticity occurs whenever the alignment between w and Ω is changed. The
conceptual breakup into primary and secondary flow is helpful when the primary flow is simple
and the effect of secondary flow can be thought of as small or confined to a small region. The term
2(Ω · ∇)w in the relative vorticity equation satisfies none of these criteria and it is more appropriate
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Figure 9.21: Changes in streamwise relative vorticity due to turning of the primary velocity.

to include it in the description of the primary flow. For a flow that is steady in the rotating frame,
(9.7.1) can be rewritten in terms of absolute vorticity as

w · ∇ω = ω · ∇w, (9.7.2)

a statement that absolute vorticity is convected by the relative flow.

9.7.2 Generation of secondary circulation in a rotating reference frame

Before deriving the general equations for generation of secondary circulation in a rotating frame,
it is worth considering the consequences of the fact that the absolute vorticity is convected by the
relative flow. We again examine the geometry of Figure 9.2, but now the bend is rotating about an axis
perpendicular to the bend floor. The primary flow has relative streamlines which are approximately
two-dimensional circular arcs in the rotating bend, and the absolute vorticity at the bend inlet is taken
as normal to the relative velocity when the bend is in its initial position.

A small element of a vortex line (aa) initially normal to the streamlines, which is convected a
distance dl in the bend, is shown in Figure 9.22. As the fluid cross (aa, bb) moves, the element bb
rotates by an amount relative to the rotating frame dθ rel = dl/rm. In the absolute frame the element bb
rotates an amount dθabs = dθ rel + 
dt, where dt is the time interval. The other arm of the cross, aa,
which is formed by an element of a vortex line, must be rotated −dθabs since the absolute vorticity
perpendicular to the floor of the bend is zero. With the assumption that this situation is the same
throughout the bend, the Squire–Winter formula for the exit streamwise vorticity, (9.2.2), becomes

ωs = −2�θabsωn

= −2 (�θrel +
�t)ωn

= −2

(
�l

rm
+ 
�l

w

)
ωn. (9.7.3)
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Figure 9.22: Generation of secondary streamwise vorticity in a rotating bend illustrated by fluid cross moving
through incremental angle dθ : (a) relative frame; (b) absolute frame (Hynes, 1991).

The movement of the line element seen from the absolute frame is the quantity to examine because
it is absolute vorticity which is convected. Equation (9.7.3) indicates that generation of secondary
circulation can occur even if the relative streamlines are straight, as is shown by letting rm →∞
(see Chapter 7 for examples). The ratio of the two terms on the right-hand side of (9.7.3) is w/
rm ,
which can be regarded as a Rossby number based on the mean bend radius as length scale. We show
in the following section how (9.7.3) can be generalized.

9.7.3 Expressions for, and examples of, secondary circulation in rotating systems

The procedure to develop expressions for the change of absolute vorticity in the rotating coordinate
system is similar to that used for the stationary system in Section 9.4. The vorticity is again split into
two parts, one along the relative streamline and one normal to it:

ω = ωs + ωn =
(w · ω

w · w

)
w + (w × ω) × w

w · w
, (9.7.4)

and the divergence of the vorticity set to zero. Because we are working with a uniform density fluid,
the reduced stagnation pressure, ptred = p + ρw2/2 − ρ(
2r2)/2, is used rather than the relative
stagnation pressure. The Crocco form of the momentum equation for a rotating coordinate system
is written in terms of reduced stagnation pressure, relative velocity, and absolute vorticity as

w × ω = ∇ptred

ρ
. (9.7.5)

After some manipulation (Johnson, 1978; Hawthorne, 1974; Horlock and Lakshminarayana,
1973a) an equation for the rate of change of secondary circulation is obtained. This can be written
to highlight the principal effects using a combination of natural and cylindrical coordinates as

∂

∂l

(ωs

w

)
=
(

2

ρw2

) (
− 1

rc

∂ptred

∂b︸ ︷︷ ︸
curvature

term

+ 


w

∂ptred

∂x︸ ︷︷ ︸
rotation

term

)
. (9.7.6)
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In (9.7.6) the x-direction is along the axis of rotation consistent with the convention in Chapter 8.
Equation (9.7.6) shows that absolute streamwise vorticity is generated in a rotating system whenever
flow with reduced stagnation pressure varying in the bi-normal direction is taken round a bend or
whenever the reduced stagnation pressure varies along the direction of the rotation axis. Introducing
a Rossby number, Ro, as Ro = w/
rc, (9.7.6) shows the explicit dependence on Rossby number as

∂

∂l

(ωs

w

)
=
(

2

ρw2rc

) (
−∂ptred

∂b︸ ︷︷ ︸
curvature

term

+ 1

Ro

∂ptred

∂x︸ ︷︷ ︸
rotation

term

)
. (9.7.7)

9.7.3.1 Secondary flow in a rotating straight pipe

For a straight pipe rotating around an axis normal to its length the curvature term is zero. However,
gradients of reduced stagnation pressure with components normal to the axis of rotation generate
absolute vorticity in the relative streamwise direction. Equations (9.7.6) and (9.7.7) exhibit the
physical circumstances in which motions of this type arise.

If the pipe is long enough, the secondary flow may twist the surfaces of constant ptred until the
gradient ∂ptred/∂x changes sign and the flow becomes oscillatory as in the stationary bend. For a
linear variation in ptred across the pipe of�ptred , analysis similar to that leading to (9.5.10) shows the
equation for the angle φ, the angle between ∇ptred and the plane of rotation, is given by

d2 d2φ

dl2
+ 
d

w

�ptred

ρw2
sinφ = 0. (9.7.8)

For small φ (i.e. with ptred minimum on the suction side) (9.7.8) can be approximated by

d2 d2φ

dl2
+ 
d

w

�ptred

ρw2
φ = 0. (9.7.9)

The angle φ undergoes a complete oscillation about φ = 0 in a length of pipe Lc equal to

Lc

d
= 2π

√
w


d

ρw2

�ptred

. (9.7.10)

The approximate formula for the streamwise vorticity in a rotating pipe, analogous to the Squire–
Winter expression for the stationary bend, is obtained by setting φ= π/2 in (9.7.8). This corresponds
to the situation where ptred is minimum on the pressure side. With l the distance along the pipe, and
ωs taken to be zero at the inlet, the result is

ωs = 2

(

l

w

)
ωn. (9.7.11)

The relative contributions due to curvature and rotation depend on the orientation of the bend
with respect to the axis of rotation. When the pipe is bent in the plane of rotation and the bend is
away from the direction of rotation (Figure 9.22), the two terms in (9.7.6) are of opposite sign. (If
w/
rc = 1, they are equal and opposite, and there is no generation of secondary circulation.) In this
condition, the outside of the bend is also the suction side. Curvature results in the movement of high
ptred fluid towards the outside of the bend, and rotation produces Coriolis forces that move high ptred

fluid towards the pressure side.
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(a) (b)

(c) (d)

Figure 9.23: Growth of the wake through a centrifugal compressor impeller (shrouded); contours of entropy:
(a) about midpassage; (b) about 3/4 of the way through the passage; (c) just before the trailing edge; (d) just
after the trailing edge (Denton, 1993).

9.7.3.2 Secondary flow in a rotating axial to radial bend (impeller)

A more complex configuration is an axial to radial bend, as in a compressor impeller. Here the
curvature terms can be of the same size throughout, but the rotation terms increase as the flow turns
towards the radial. For this configuration impeller, three aspects of the generation of the streamwise
vorticity can be identified (Johnson, 1978):

(a) In the inducer bend, the flow is turned from inlet incidence towards the axial direction. For a
shrouded impeller, fluid with a low ptred on the shroud or hub tends to be convected towards the
suction surface.

(b) In the axial to radial bend, the low ptred on the pressure and suction surfaces tends to move toward
the shroud.

(c) In the rotating channel the rotation contribution increases as the flow turns to radial. Low ptred

fluid from the hub and shroud wall is moved toward the suction surface.

For many impellers Rossby numbers associated with the inducer bend are less than unity so the
effect of passage rotation is more important than the effect of inducer bend on the development of
secondary flow. For the axial to radial bend the Rossby number is closer to unity, and both curvature
and rotation are significant. The motion described can be seen from the contours of stagnation
pressure in a shrouded centrifugal impeller presented in Figure 9.23 at different locations along the
flow path (Denton, 1993).
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9.7.4 Non-uniform density flow in rotating passages

Although stagnation pressure gradients are necessary for the generation of secondary circulation
in a stationary passage, this is not true for a rotating system. The rate of generation of secondary
circulation in an incompressible stratified flow with no external body forces is given by (Hawthorne,
1974)

∂

∂l

(ωs

w

)
=
(

− 2

ρw2rc

){[
∂ptred

∂b
+
(

2r2

2

)
∂ρ

∂b

]}

+
(

2

ρw2rc

){(
1
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)[
∂ptred

∂x
+ 1

2
(w2 +
ruθ )

∂ρ

∂x
− 
ux

2

∂ρ

∂θ

]}
. (9.7.12)

For rotating systems even if the reduced stagnation pressure is uniform secondary circulation is
produced by density gradients. The same considerations apply to flows of a perfect gas. In a stationary
frame gradients in stagnation temperature produce no streamwise vorticity, but this is not true for a
rotating frame.

9.8 Secondary flow in rotating machinery

A principal application of secondary flow in rotating systems is to turbomachinery blade rows (Smith,
1955; Horlock and Lakshminarayana, 1973b). In addition to the generation of secondary flow within
the row, we need to consider changes in entry conditions arising from being in a rotating coordinate
system. An illustration is the boundary layer entering an axial or centrifugal compressor rotor from
an upstream flow with no swirl. The inlet velocity is axial and the vorticity in the boundary layer has
a circumferential component only, as shown in Figure 9.24. The vorticity presented to the rotor can
be resolved into inlet normal and streamwise components, both of which need to be accounted for
in evaluating secondary flow.

Another example is a constant stagnation pressure, density stratified, flow through an inlet guide
vane into a rotor. This might be associated with a variation in combustor exit stagnation tempera-
ture fed into a turbine or, in the low Mach number limit, with flow of an incompressible fluid of
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Figure 9.24: Inlet velocity and vorticity triangles for a compressor rotor with axial inlet flow; the exit streamwise
vorticity consists of two contributions, one associated with the streamwise component at the inlet and the other
from the processing of the normal component by the rotor.
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non-uniform density. In the vane passage no secondary circulation is produced (Section 9.4) and the
vorticity at the vane exit is normal to the flow.

In the rotating system, at rotor entry, part of this normal vorticity is seen as a component of
absolute vorticity in the relative streamwise direction. Differential convection of the absolute vorticity
along relative streamlines creates streamwise vorticity within the rotor. Density stratification, or
equivalently variations in stagnation temperature, can also lead to the generation of streamwise
vorticity in the rotating frame.

A third example is the flow downstream of a vane row with a circulation that varies radially.
Following the arguments given in Section 3.14, if there is a radial variation in circulation there will
be trailing vorticity from the vane row. For a steady, constant density, inviscid flow with uniform
stagnation pressure, the Crocco form of the momentum equation, (3.14.6), becomes

u × ω = 0. (9.8.1)

Equation (9.8.1) states that the trailing vortex lines downstream of the vane row are parallel to the
absolute streamlines. In the relative system, therefore, both normal and streamwise absolute vorticity
exist at rotor inlet.

To obtain qualitative features of the secondary circulation in an axial turbomachine we make
the approximation that gradients of flow properties in the x (axial) or θ (circumferential) directions
are small compared to those in the radial direction and the surfaces of constant ptred and entropy
remain on concentric cylinders. The binormal, b, is then in the radial direction. Using this approach
expressions for the generation of secondary circulation can be developed to show trends that are
explicitly linked to blading design parameters. We consider first constant density flow and then look
at the more complex case of a thermal stratification.

For constant density flow, (9.7.12) provides a basic expression relating to the generation of sec-
ondary circulation in an axial turbomachine rotor. Using the relation ptred = pt − ρ
ruθ (see Sec-
tion 7.3), with rc the radius of curvature of the relative streamlines on the cylindrical surface, we
find

∂

∂l

(ωs

w

)
= − 2

ρw2rc

[
∂pt1

∂r
− ρ
 ∂

∂r
(r1uθ1 )

]
. (9.8.2)

Equation (9.8.2) displays the circumstances that lead to the generation of secondary flow in a rotor
in terms of the circumferential velocity and stagnation pressure in the absolute coordinate frame.

With uniform inlet absolute stagnation pressure, (9.8.2) becomes

∂

∂l

(ωs

w

)
= 2


w2rc

∂

∂r
(ruθ ) . (9.8.3)

In this situation the absolute vorticity at the inlet is aligned with the absolute flow streamlines.

9.8.1 Radial migration of high temperature fluid in a turbine rotor

An example in which a number of the above effects interact occurs in an axial turbine rotor in which
(as is generally the case) there is a radially non-uniform stagnation temperature and the upstream
vane has a circulation that varies with radius. In this situation there will be streamwise vorticity
at the rotor inlet (vane exit) as well as production of streamwise vorticity within the rotor due to
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Figure 9.25: Turbine stage geometry and velocity triangle at the vane exit (Prasad and Hendricks, 2000).

both convection of normal vorticity and to density gradients. A problem associated with streamwise
circulation is management of the radial transport of hot fluid to keep it away from the blade tip region
which can be difficult to cool.

This problem has been analyzed using three-dimensional computations (Prasad and Hendricks,
2000), as well as secondary flow theory to display the features of the solution. The initial turbine
configuration had a substantial secondary circulation, in which there was radial transport of hot fluid
from the midspan location up the pressure side of the blades. A way to mitigate the radial transport
is to create streamwise vorticity of the opposite sign at the rotor inlet to decrease the secondary flow.
This can be done by altering the twist of the vane, changing the radial distribution of circulation and
hence the inlet vorticity to the turbine.

The analysis given by Prasad and Hendricks (2000) shows that for a vane exit flow with uniform
absolute stagnation pressure, starting from (9.7.12) an expression for secondary vorticity in the
turbine rotor can be developed in the form

w2rc

2


∂

∂l

(ωs

w

)
= (u sin α −
r )

r

2ρ

∂ρ

∂r
+ u cos3 α

∂

∂r
(r tanα) , (9.8.4)

where α is the flow angle. Equation (9.8.4) shows that generation of secondary vorticity in the rotor
passage arises from two effects. The first is the density gradient associated with the streak of hot fluid,
which occupies a specified radial extent at the turbine vane exit. The second is vane exit absolute
streamwise vorticity associated with the radial gradient of the vane exit angle. This is set by the blade
twist, which can be altered to affect the size and sense of the streamwise vorticity.

For the turbine under consideration the quantity (u sinα −
r ) in (9.8.4) is positive (see Figure
9.25 for a sketch of the geometry) and the first term on the right-hand side is of the same sign as the
gradient in density. For uniform vane exit flow angle, the second term is also positive, and the two
effects thus reinforce each other in the upper part of the hot streak (where ∂ρ/∂r > 0) and oppose
each other in the lower part of the streak where the density gradient is negative.

The quantity we seek is the radial velocity. To obtain this, we need to consider the kinematics
of the circulatory flow in the rotor associated with the relative eddy (Section 7.9), in addition to
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Figure 9.26: Schematic illustration of secondary flow in a turbine rotor passage due to a hot streak. The direction
of the primary flow is out of the plane. In the upper part of the blade passage, the radial velocity contribution
from the secondary flow (solid line) reinforces that from the relative eddy (broken line) near the pressure surface
(Prasad and Hendricks, 2000).
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Figure 9.27: Modification of turbine rotor secondary flow using stator twist; velocity vectors from secondary
flow analysis (Prasad, 1998).

the dynamical mechanisms just described. A sketch of the flow pattern in the rotor is given in
Figure 9.26. From the previous discussion, the velocity field is such that close to the pressure surface
the contributions to the radial velocity from the secondary flow and the relative eddy are both positive
in the upper portion of the passage, while they are in opposite directions in the lower part.
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Negative twist No twist Positive twist

Figure 9.28: Secondary flow streamlines near the pressure surface of a turbine rotor from three-dimensional
viscous computations (Prasad, 1998).

To reduce the radial transport, the radial gradient of the vane exit angle should be altered so that
trailing vorticity of the opposite sign is generated. To do this the exit angle α must decrease with
radius. The secondary flow velocity vectors resulting from three different blade twists are shown in
Figure 9.27.

The results of three-dimensional computations for streamlines outside the boundary layer near the
pressure side of the turbine rotor passage are shown in Figure 9.28. The region of high temperature
on the rotor is contained on the blade (where cooling is plentiful) and the hot fluid is kept from
washing over the tip using positive twist. While the secondary flow analyses are not able to capture
the details of the radial migration, their application is useful not only in extracting the central fluid
dynamic effects but also in indicating the pathway to solution.

9.9 Streamwise vorticity and mixing enhancement

Mixing of coflowing streams is necessary for the operation of devices such as combustors and
ejectors. A powerful agent for enhancing this mixing is the introduction of embedded streamwise
vortices. There are a variety of ways in which this concept has been implemented, but utilization of
large-scale cross-stream circulation to augment mixing by “stirring” is inherent in all of them. In
this section we describe and quantify the mechanisms contributing to the increased mixing, using
the flow in a lobed mixer as the context for the discussion. Arguments are presented to illustrate the
link between mixing augmentation and the strain field associated with the vortices; this strain field
increases both the area available for mixing between two streams and the local gradients in fluid
properties which provide the driving potential for mixing.

9.9.1 Lobed mixers and streamwise vorticity generation

A number of geometries have been used to create streamwise vortices for the purpose of increas-
ing mixing. Vortex generators, which are seen on aircraft wings and in diffusers, are one class
of configurations which can increase momentum transfer in boundary layers and prevent separation
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Figure 9.29: Lobed mixer; α1 and α2 are the top and bottom lobe penetration angles.

(see e.g., Schubauer and Spangenberg (1960), Pauley and Eaton (1988), Bushnell (1992), Lin (2002)).
Vortex generator jets (cross-flow jets inclined to the oncoming stream) (Johnston and Nishi, 1990)
have also been used in this application.

Another type of geometry is the lobed mixer. The geometry and a sketch of the downstream flow
regimes for a lobed mixer are given in Figure 9.29. Lobed mixers allow the controlled introduction
of streamwise vorticity along the interface between coflowing streams (Presz, Gousy, and Morin,
1986; Gutmark, Schadow and Yu, 1995; Waitz et al., 1997). Ejectors with these mixers have achieved
90% of the theoretical (complete mixing) pumping value in a distance of less than two duct widths,
compared to roughly five widths needed for mixing in a sudden expansion.

Figure 9.30 shows an ejector with a high pressure primary stream used to pump a secondary stream.
Two different primary stream nozzles are depicted: a conventional nozzle (circular for the configura-
tion examined) and a lobed mixer nozzle. Figure 9.31 shows pumping ratio (secondary/primary mass
flow ratio) data for these two nozzles as a function of the ratio of the secondary to primary stream area
at the start of the ejector mixing duct, for a supersonic ejector with a primary nozzle Mach number
of 1.5. The curve marked “Ideal” in the figure is from a control volume analysis, neglecting wall
friction and assuming full mixing. In the experiments the length/diameter (L/d) ratios of the mixing
duct were between 1.5 and 2.3, which is considerably less than the value (5–7) needed for complete
mixing with a conventional ejector. The conventional ejectors are all therefore operating far from
complete mixing. With the mixer lobe configuration there is essentially complete momentum mixing
in the shorter length for three of the configurations. We thus examine the lobed mixer configuration
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Figure 9.30: Schematic of an ejector showing nozzle configurations.
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Figure 9.31: Ejector pumping performance with lobed mixer nozzles and conventional nozzles. Nozzle exit
Mach number = 1.5, Ttp/Tts = 2.8. The curve marked “Ideal” corresponds to control volume analysis (Tillman
et al., 1992).

as a specific (and effective) application, to frame the discussion of effects of streamwise vorticity on
mixing.

In a lobed mixer there is a variation in aerodynamic loading (pressure difference across the solid
surface) in the direction transverse to the flow. The circulation per unit axial length along the mixer,
which is equal to the difference in the velocities outside the boundary layers on the two sides of
the surface, thus also varies along the transverse direction. Because vortex lines cannot end in the
fluid this implies the existence of streamwise vortex filaments, analogous to those which trail from a
finite wing or turbomachine blade of radially varying circulation (see Section 3.14). The continuous
distribution of streamwise vorticity discharged at the trailing edge evolves (“rolls up”) into an array
of discrete counterrotating vortices as sketched in Figure 9.29.

A useful estimate of the magnitude of the circulation just downstream of the trailing edge is
obtained by approximating the fluid to exit at the lobe angle (Skebe, Paterson, and Barber, 1988).
For the geometry of Figure 9.29 this yields a trailing edge circulation

�te ≈ uE1 H tanα1 + uE2 H tanα2, (9.9.1a)
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where uE1 and uE2 are free-stream velocities on either side of the lobe at the exit, H is the lobe
height, and α1 and α2 are the lobe penetration angles. For α1 = α2 = α (9.9.1a) becomes, with uE

the average free-stream velocity, (uE1 + uE2 )/2,

�te ≈ 2uE H tanα. (9.9.1b)

For mixers with vertical sidewalls and penetration angles, α, up to 20◦, the circulation given by
(9.9.1b) has been found to be within 10% of the experimental value. For larger angles, where
lobe boundary layers affect fluid exit angles appreciably, the concept can be extended using an
effective lobe penetration angle, αeff, and an effective lobe height, Heff, to account for the influence
of the boundary layers (O’Sullivan et al., 1996).

If the far upstream stagnation pressures on both sides of the mixer surface are the same, there is
no net transverse vorticity shed downstream. With unequal stagnation pressures, however, which is
the more typical case, there is a velocity difference at the trailing edge and hence a shear layer with
net transverse vorticity. The instability of the shear layer (see Section 6.5) results in vortices with
axes in the transverse directions as indicated in Figure 9.32. The scale of the transverse vortices is
set by the shear layer thickness. The counterrotating streamwise vortices have a larger length scale,
the half-wavelength of the lobe geometry.6 For lobed mixers in many industrial devices the shear
layer thickness is small compared to the half-wavelength, at least for the downstream region (roughly
5–10 lobe wavelengths) in which much of the mixing occurs.

The difference in length scale allows the description of the interaction between the two types of
vortical structures in an approximate manner in which transverse vorticity is viewed as associated with
turbulent transport, as in planar shear layer mixing. In terms of a conceptual analysis of the mixing
process, we consider computing the motions due to large scale cross-plane structures associated with
streamwise vortices while (consistent with the discussion in Section 4.8) modeling details of the
shear layers associated with transverse vorticity. Before doing this, however, we need to introduce
the manner in which these embedded streamwise vortices enhance mixing.

9.9.2 Vortex-enhanced mixing

When an interface between fluids of different properties (e.g. temperature, velocity, concentration)
is within the velocity field of a vortex, two related effects occur: an increase in the interfacial surface
area and an increase in the magnitude of gradients normal to the interface. Both augment mixing.

The elements of the mixing enhancement processes will be demonstrated in steps. The effect of
the strain rate on mixing is reviewed first, followed by an assessment of the further increase which
occurs in the velocity field of a two-dimensional vortex.

9.9.2.1 Effect of the strain rate on mixing

The effect of strain rate on mixing is illustrated by the two-dimensional model problem of diffusion
between two semi-infinite fluid regions separated by the x-axis, one containing fuel and one containing

6 Horseshoe vortices can also be formed around the front of the lobes, but for representative geometries these have a circulation
an order of magnitude less than either transverse or streamwise vortices and little impact on the mixing process (McCormick,
1992).
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Figure 9.32: Schematic of the vortical structure about a lobed mixer (after McCormick, 1992).

oxidizer (Marble, 1985; Karagozian and Marble, 1986; Waitz et al. 1997). The chemical kinetics are
taken as infinitely fast so that locally the reaction is diffusion controlled, the stoichiometry is taken
such that equal amounts of the reactants are consumed in an infinitely thin reaction zone, the density
is uniform, and effects of heat release are neglected.

The geometry is shown in Figure 9.33(a). With no strain, the mixing process is pure diffusion and
the concentration field, C(y, t), (the concentration of either reactant) is described by (e.g. Incropera
and DeWitt (1996))

∂C

∂t
= D

∂2C

∂y2
, (9.9.2)

where D is the binary diffusion constant. Note that diffusion is only one of many phenomena described
by an equation similar to (9.9.2) and its subsequent modification to include the effects of strain. A
range of physical problems can be modeled as diffusion processes including temporal mixing of a
shear layer (momentum mixing) and heat transfer, and the ideas presented are applicable to mixing
of other quantities.
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Figure 9.33: Effect of strain on mixing at an interface: (a) planar diffusion; (b) stretched interface; (c) vortex.

The solution for the concentration field of the fuel and oxidizer, Cf and Co, can be verified by
direct substitution to be

C f = erf
(
y
/√

4Dt
)
; y > 0,

(9.9.3)
Co = −erf

(|y|/√4Dt
)
; y < 0.

In (9.9.3) y is the coordinate normal to the interface and erf is the error function.7 From (9.9.3)
the thickness of the diffusion zone grows as

√
Dt . The reactant consumption rate, which is a direct

measure of molecular mixing, can be expressed as

ρD
∂C

∂y
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y=0

= ρ

√
D

π t
. (9.9.4)

For pure diffusion the mixing rate approaches zero as t → ∞.
Suppose a spatially uniform normal strain rate,8 ε = ∂ux/∂x = −∂uy/∂y, is applied as in Figure

9.33(b). The velocity normal to the interface is uy = −εy. The equation for the concentration field
becomes

∂C

∂t
− ε (t) y

∂C

∂y
= κ

∂2C

∂y2
. (9.9.5)

Equation (9.9.5) can be transformed into the form of (9.9.3) with the substitutions

ζ = y exp


 t∫

0

εdt1


 , τ =

t∫
0


exp


 t2∫

0

2εdt1




 dt2. (9.9.6)

7 The error function is defined as erf (x) = (2/
√
π )
∫ x

0 e−x̂2
dx̂ .

8 Shear does not affect the flow since there is no dependence on x.
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The solution for the concentration field is

C f = erf
(
ζ
/√

4Dτ
)
; y > 0

Co = −erf
(|ζ |/√4Dτ

)
; y < 0. (9.9.7)

The effect of the strain rate on mixing is seen most readily for constant strain rate. In that case
differentiation of (9.9.7) gives the reaction consumption rate as

ρD
∂C

∂y

∣∣∣∣
y=0

= ρ

√
2εD

π

(
e2εt

e2εt − 1

)1/2

. (9.9.8)

For times or strain rates such that tε � 1 (small times or low strain rates) the interface mixing rate
is similar to that for no strain. For tε� 1 (large strain rate or long times), however, the consumption
rate does not go to zero but approaches the value (2Dε/π )1/2.

9.9.2.2 Mixing enhancement for a two-dimensional laminar vortex

We now describe mixing augmentation in the velocity field of a two-dimensional vortex on the
interface between two reactants. There is only one non-zero component, uθ (r, t), which is defined by
(Section 1.14)

∂uθ
∂t

= ν
∂

∂r

[
1

r

∂ (ruθ )

∂r

]
. (9.9.9)

Equation (9.9.9) is satisfied by (Batchelor, 1967),

uθ = �

2πr

[
1 − exp

(−r2

4νt

)]
. (9.9.10)

Equation (9.9.10) represents a vortex with a far-field circulation � and a viscous core that grows
with time.

Suppose the reaction and the vortex are both initiated at time t = 0. With increasing time the
interface is deformed into a spiral, as shown in Figure 9.33(c). In the portion of the flow undergoing
solid-body rotation (the vortex core) the interface is not stretched. The increase in interfacial length
can therefore be obtained by examining only the region outside the viscous core. For a material
element of initial length d	i , the deformed length, d	, behaves as (Marble, 1985)

d	 =
[

1 +
(
�t

πr2

)2
]1/2

d	i . (9.9.11)

For large values of �t/(πr2) (9.9.11) can be approximated by

d	 =
(
�t

πr2

)
d	i . (9.9.12)

Equation (9.9.12) shows that at large �t/(πr2) the local interfacial length increases as the product of
time and vortex circulation. This interface stretching is the principal agent for mixing augmentation.
Further, the mixing region is larger than the vortex core and much of the mixing takes place outside
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Figure 9.34: Analogy between two-dimensional unsteady flow and three-dimensional steady flow viewed by an
observer traveling at ux .

the core. The behavior is thus roughly independent of the core growth rate and the ideas apply to
both turbulent and laminar flow.

As with the planar interface, the area of the fully mixed fluid gives a direct measure of mixing.
For the velocity field of (9.9.10), at values of �/D greater than roughly several hundred, the cross-
sectional area of the fully mixed core has been shown to scale as (Marble, 1985)

Amixed
∼= 2

(
2

3π2

)1/3 (
�2/3 D1/3t

)
. (9.9.13)

The rate of core area growth in (9.9.13) is larger by a factor of (�/D)2/3 than for radial diffusion
only, where the core area would grow at a rate proportional to Dt.

9.9.2.3 Mixing enhancement for a distribution of streamwise vorticity

To enable a simplified description of mixing downstream of a lobed mixer two extensions need to
be made to the analysis of mixing increase for a single vortex in a two-dimensional unsteady flow.
First we have to relate the two-dimensional unsteady process to the steady three-dimensional flow
in the actual geometry. Second we need to generalize the velocity field for the single vortex to that
appropriate to the vorticity distribution shed from mixer lobes.

The relation between the two-dimensional unsteady flow and the three-dimensional steady flow
is illustrated for the lobed mixer in Figure 9.34 (Marble et al., 1990). Three-dimensional spatial
development is represented by the evolution of a two-dimensional unsteady flow field. The changes
along the streamwise direction (x-direction) are viewed as the changes in time seen by an observer
traveling with an appropriate convection velocity, taken here as the average bulk x-velocity, ux; time
is related to streamwise distance by t = x/ux.
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There are several requirements which must be met in order to support this analogy between
unsteady two-dimensional and steady three-dimensional motions.9 The first is the ability to identify
an appropriate convection velocity. Others are the existence of a difference in scale between transverse
and streamwise motions (mentioned previously), the view of cross-stream velocities as smaller than
the bulk velocity, and the idea that the length scales of the motion in the cross-plane (y, z) are smaller
than the length scales over which the flow changes in the x-direction.

For a general initial distribution of vorticity specified at the lobe trailing edge, the downstream
evolution of the cross-plane velocity field [uy(y, z, t), uz(y, z, t)] can be found from solution of the two-
dimensional, unsteady, Navier–Stokes equations. With the velocity field known, the distribution of
any scalar quantity, φ (concentration, temperature), is given by (with D representing the appropriate
diffusion coefficient)

∂φ

∂t
+ uy

∂φ

∂y
+ uz

∂φ

∂z
= D

(
∂2φ

∂y2
+ ∂2φ

∂z2

)
. (9.9.14)

Figure 9.35 shows an example of mixing enhancement due to the streamwise vorticity shed
from a mixer lobe based on two-dimensional unsteady Navier–Stokes computations. The mixing
is of a scalar, initially specified at φ = −1 on one side of the lobe and φ = +1 on the other.
The different parts of the figure are for different non-dimensional times, t̃ (= �x/uxλ

2), denoting
different distances downstream from the mixer lobe.10 The features of embedded streamwise vorticity
which augment mixing, the increase in the length of the interface between the two regions and
the steepening of interfacial gradients, are apparent. There is a rapid growth in interface length
associated with the presence of streamwise vorticity; the interface length doubles in the first two
to three wavelengths downstream of the trailing edge, increasing roughly linearly with downstream
distance.

Computations of the flow downstream of mixer lobes show regimes with the different characteris-
tics depicted in Figure 9.29. A key finding, however, is that once the initial roll up of the distributed
vorticity into a discrete vortex is substantially complete, the mixing process follows closely the
scaling developed for the single vortex, with the increase in mixed area proportional to �2/3D1/3t or,
in physical coordinates, to (�2/3 D1/3x)/ux . For a detailed definition of the mixing in any specific
configuration, the relevant computations need to be carried out; however, it is worth noting that much
of the mixing occurs in the flow regime in which the vortex has already rolled up. Because of this, the
single vortex scaling gives useful guidance about vortex enhanced mixing even with more complex
geometries.

9.9.2.4 Estimation of mixing enhancement for a turbulent vortex

The analysis of vortex enhanced mixing in laminar flow can be extended to provide an estimate of
mixing produced by turbulent vortices. In line with the discussion of turbulent mixing in Chapter 4
we define a “turbulent transport property”, diffusivity, Dt, or kinematic viscosity, ν t.

9 Comparisons between this approximate approach and three-dimensional Reynolds-averaged, Navier–Stokes computations
are given by Waitz et al. (1997) in an assessment of the analogy.

10 The scaling for time comes from the use of the lobe wavelength λ as the distance unit and �/λ as the cross-plane velocity
unit (Waitz et al., 1997).
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Figure 9.35: Transport of a scalar downstream of a lobed mixer, t̃ [= �x/(uxλ
2)], λ is the mixer wavelength as

defined in Figure 9.32, � is the initial trailing edge circulation (Qiu, 1992; Waitz et al., 1997).

The θ -velocity field of a two-dimensional turbulent vortex satisfies

∂uθ
∂t

= νt (t)
∂

∂r

[
1

r

∂

∂r
(ruθ )

]
. (9.9.15)

The turbulent kinematic viscosity, ν t, varies with time as the length scale of the turbulent core in-
creases, and to proceed further, we need to specify the functional dependence for it and the diffusivity.
Interest here is in mixing which occurs between streams of different velocities. As described in a
number of texts (e.g. Schlichting (1979), White (1991); see also Section 4.8), a functional form
applicable to the temporal growth of a shear layer (of thickness δ(t)) between two streams is

νt (t) = Sct Dt ∝ [δ(t)](uE1 − uE2 ) = B

(
uE1 − uE2

uE1 + uE2

)2

(uE )2 t, (9.9.16)

where B is an empirical constant, Sct is the turbulent Schmidt number, the velocity difference is
between the two free-steam values, and uE is the mean of these two values (uE1 + uE2 )/2. For
temporal shear layer growth the turbulent transport coefficients grow linearly with time such that
ν t(t) = βt:

β = B

(
uE1 − uE2

uE1 + uE2

)2

(uE )2 . (9.9.17)
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Substituting for ν t in (9.9.15) the circumferential velocity is found as

uθ =
(
�

2πr

)[
1 − exp

( −r2

4βt2

)]
. (9.9.18)

Analysis of the vortex/diffusion flame problem using this velocity field reveals that the ratio of
mixing (growth of the mixed area) due to the vortex, compared to that due to diffusion only, has
the same form as in the laminar case, except that the laminar diffusion coefficient is replaced by the
turbulent version, Dt (Waitz et al., 1997). The ratio of the growth of the mixed region for a turbulent
vortex compared to that for “pure” diffusion is thus �2/3/Dt

2/3. Since the turbulent diffusion is a
function of the velocities on either side of the lobe (9.9.17), and the circulation is related to the lobe
geometry by (9.9.1), the ratio can readily be connected to overall (and readily known) flow quantities.

9.9.3 Additional aspects of mixing enhancement in lobed mixers

Part of the increase in mixing for a lobed mixer is from the increased trailing edge length compared
to a conventional mixing nozzle (basically a flat splitter plate between the streams). To differentiate
this effect from the increase associated with streamwise vorticity, we examine the two geometries
in Figure 9.36. One is a lobed mixer. The other, referred to as a convoluted plate, has the same
trailing edge geometry but a parallel extension of the trailing edge. The extension allows a return
towards parallel flow and hence a reduction in the magnitude of trailing streamwise vorticity. The
three-dimensional Navier–Stokes calculations show that the convoluted plate geometry pictured has
a trailing streamwise circulation almost an order of magnitude lower than the lobed mixer.

Figure 9.37 shows the measured (using a chemical reaction technique) molecular mixedness of
two coflowing streams as a function of axial distance downstream of the trailing edge for a lobed
mixer, a convoluted plate, and a flat splitter plate. In the region in which the shear layers from adjacent
lobes have not yet merged the ratio of mixing with the convoluted plate compared to that with the flat
splitter plate is very nearly the ratio of the geometric trailing edge lengths of the two. The mixer lobe
introduces streamwise vorticity and causes additional mixing for this geometry, roughly the same as
that for the increased trailing edge length.

The results of wind tunnel measurements of momentum interchange between two coflowing
streams are shown in Figure 9.38 for a lobed mixer, a convoluted plate, and a flat splitter plate. The
tunnel has constant area so the rise in static pressure is directly indicative of the change in momentum
flux and hence the momentum interchange between streams. The horizontal axis is the downstream
distance from the lobe exit, non-dimensionalized by the lobe wavelength. The vertical axis is the static
pressure rise to the tunnel exit at a given location, non-dimensionalized by the ideal static pressure
rise for two-stream constant area mixing. (Corrections for wall friction have been incorporated, but
these are less than 10% of the ideal pressure rise). There is essentially full mixing with the lobed
mixer and convoluted plate but not with the flat splitter plate. The impact of streamwise vorticity is
thus shown by the difference between the lobed mixer and the convoluted plate.

One way to characterize the mixing rate is in terms of the length it takes for mixing to occur. We
define a pressure rise length, Lp, as

L p

λ
=
∫
�pd(x/λ)

(�p)trailing edge
, (9.9.19)
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Figure 9.36: Streamwise circulation as a function of axial distance for a lobed mixer (α = 22◦, free-stream
velocity ratio uE2/uE1 = 0.6) and a convoluted plate (α = 22◦, uE2/uE1 = 0.53). Results of three-dimensional
Navier–Stokes computation (Waitz et al., 1997).

where �p is the pressure difference between a given station and the mixing duct exit. The data of
Figure 9.38, as well as other data at velocity ratios of 0.1 and 0.2 (Waitz et al., 1997), show the
pressure rise length is 5–6 lobe wavelengths for the convoluted plate and roughly half that for the
lobed mixer.

A final aspect of the discussion of lobed mixers concerns the extension of the ideas and scaling
estimates to compressible flow. Two main questions need to be answered. The first is the influence
of compressibility on the distribution of shed circulation in the downstream region. The second is
the effect on shear layer mixing, or, within the context of the above discussion, the dependence of
the diffusivity on Mach number.

For many mixer nozzle configurations the cross-stream Mach numbers are subsonic for axial
Mach numbers of 2 or less. For this regime the trends concerning the magnitude and evolution of
the streamwise circulation with velocity ratio do not appear to change greatly. Three-dimensional
computations carried out at Mach numbers of 0.5 and 2.0 (for a flow with uniform stagnation pressure
on both sides of the mixer) indicate only small changes in the growth of the mixing interface in the
cross-flow plane, which represents the effect of the vortical structure.
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Figure 9.37: Molecular mixedness for a lobed mixer, a convoluted plate, and a flat splitter plate; free-stream
velocity ratio uE2/uE1 = 0.67, measurements of Manning (1991).

0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

10

Flat plate
Lobed mixer
Convoluted plate

Lobe trailing
edge (te)

Mixing section
exit (e)

x / λ
20

pe -p
p ideal(∆ )

Figure 9.38: Comparison of normalized static pressure recovery downstream in a constant area tunnel for
lobed mixer, convoluted plate, and flat splitter plate. Free-stream velocity ratio uE2/uE1 = 0.31, α = 20◦,
height/wavelength = 2.0, Reλ = uxλ/ν = 105, (�p)ideal from control volume analysis (Waitz et al., 1997).
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Figure 9.39: Effect of the convective Mach number on temperature mixing in an ejector; the location of
measurements is shown in end view; free-stream stagnation temperature and velocity ratios at ejector inlet,
Tt2/Tt1 = 2.8, uE2/uE1= 0.23; solid lines from unsteady two-dimensional computations (Waitz et al., 1997).

As discussed in Section 4.8, however, shear layer mixing rates decrease by a factor of almost 5 as
the convective Mach number increases from the incompressible regime. The approximate analyses
that have been developed imply that the decrease in vortex mixing rate should scale with the decay
in diffusion coefficient to the one-third power. Figure 9.39 shows data for temperature mixing in an
ejector at primary stream Mach numbers of 0.5 and 1.5. The primary to secondary velocity ratios
were 4-to-1 at both of these conditions, corresponding to convective Mach numbers of 0.14 and 0.65.
For the sparse data that exist, the decrease in vortex mixing rate with convective Mach number is in
qualitative accord with this conceptual picture (Tillman, et al., 1992; Waitz et al., 1997).

9.10 Fluid impulse and vorticity generation

The concept of fluid impulse connects the vorticity field to the spatial distribution of external forces
which act on the flow. The fluid impulse, I , is defined (von Karman and Burgers, 1963) as the integral
over time of the external force, F ext, applied to the fluid:

I =
t2∫

t1

F extdt. (9.10.1)
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To develop the link between impulse and vorticity we consider a distribution of external forces
applied to an inviscid, incompressible, uniform density fluid during a short interval of time, dt. If
the changes in velocity during this interval are of the same order as the velocities that characterize
the motion, denoted as U, and the characteristic length scale of the motion is L, the ratio of local
accelerations (the ∂u/∂t term in the momentum equation) to convective accelerations (the (u · ∇)u
term) is L/(Udt). For forces which are applied over time intervals dt much smaller than L/U, the
convective accelerations can be neglected during the time the force acts. With Fext the external force
per unit mass acting on the fluid, the momentum equation thus becomes

∂u
∂t

= −∇p

ρ
+ Fext. (9.10.2)

Taking the curl of this equation (∇ × (9.10.2)) gives

∂ω

∂t
= ∇ × Fext. (9.10.3)

For a flow that is irrotational before the forces act, integration of (9.10.3) over dt yields an expression
for the vorticity in terms of the impulse per unit mass, I,

ω = ∇ ×
t+dt∫
t

Fext dt = ∇ × I. (9.10.4)

Three applications of fluid impulse are given below. The first, creation of a vortex ring by a
single impulse, gives an introductory illustration of the concept. The second, airfoil lift viewed as a
continuous distribution of impulses, provides a different perspective on a familiar situation in terms
of the impulse imparted to the flow. The third, the generation and evolution of streamwise vorticity
in a jet in cross-flow, presents a case where an explicit statement about impulse is used to develop a
description of jet behavior.

9.10.1 Creation of a vortex ring by a distribution of impulses

To examine the creation of a vortex ring consider the space between planes y = 0 and y = H, bounded
by a cylinder of radius a with the axis parallel to the y-axis, as in Figure 9.40. Outside of this space
no external forces act on the fluid. Inside of the space there are external forces directed downward (in
the negative y-direction). The intensity of the forces is uniform except near the radius r = a, where
they fall to zero in a distance small compared to a. The velocity field is irrotational before the forces
are applied.

The components of (9.10.4) for this configuration are:

ωx = −∂ Iy

∂z
, (9.10.5a)

ωy = 0, (9.10.5b)

ωz = ∂ Iy

∂x
. (9.10.5c)
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Figure 9.40: Vortex ring produced by distribution of external forces acting over a circular region of
√

x2 + z2 < a
height H, H � a.

Vorticity is generated only in the region where the force (and hence the impulse) has a spatial
variation. If the height H is small compared with the radius the vortex lines can be regarded as a
single vortex ring, which is the heavy line in Figure 9.40. The circulation is

� =
H∫

0


 a+H∫

a−H

ωzdx


dy =

H∫
0

Iydy. (9.10.6)

For an impulse which is independent of y over the small distance H

� = HIy . (9.10.7)

The quantity ρHIy is the y-component of the impulse per unit area for the area enclosed by the ring.
Denoting this quantity, referred to as the impulsive pressure, by � (� has dimensions of (force ×
time)/area),

� = �

ρ
. (9.10.8)

Equation (9.10.8) states that a uniform impulse applied over an area will generate a vortex ring
on the bounding contour around the area. This applies not only to circular planforms but also to
any area; we could break up a non-planar area into facets and consider the impulse on each of
these.

The relation between circulation and impulsive pressure is most useful when applied not to a
single impulse but to flows set up by the action of continuous forces, which can be viewed as
the limit of a series of small impulses following immediately after one another. As an example
which makes the effect of the impulse apparent, consider a flow with uniform velocity, say u0,
to which the impulse is applied, with the background motion much stronger than the motion associated
with the impulses (in other words the velocity created by the impulses is much less than u0). If
this condition is met, we can neglect the velocity field of the vortices in describing the vortex
generation process. While such a linearized view carries restrictions, it enhances interpretation of the
process.
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Figure 9.41: Rectangular vortex configuration for an airfoil; the airfoil occupies the shaded region.

Suppose the background velocity is along the y-axis, with the force distribution as given above.
The vortices generated are confined to a thin annulus of outer radius a, effectively on a cylindrical
vortex sheet of radius a. The circulation generated per unit distance along (in the y-direction) this
sheet is

circulation per unit distance = �

ρ
. (9.10.9)

In (9.10.9)� is the impulsive pressure corresponding to a pressure difference �p across the disk of
radius a over a time (unit distance/u0). This is an axisymmetric model for a propeller with uniform
aerodynamic loading across the propeller disk. The circulation per unit distance on the cylindrical
vortex sheet is the velocity difference, which we denote by �u, between particles that have passed
through the propeller disk and those on streamlines just outside of the disk. From (9.10.9) the pressure
difference across the disk and the circulation per unit distance along the vortex sheet are related by

�p = ρu0�u. (9.10.10)

9.10.2 Fluid impulse and lift on an airfoil

Consider now forces directed perpendicular to the velocity u0, as for the flow past an airfoil. Following
von Karman and Burgers (1963) the specific example is a rectangle of dimension c in the x-direction
and b in the z-direction (Figure 9.41). A series of impulses in the direction of the y-axis are given
to the rectangle at time intervals of c/u0, each with strength per unit area �. At any individual
application of the impulse a rectangular vortex is generated of circulation � = �/ρ. If the vortices
are convected by the background velocity field, in a time c/u0 they are displaced a distance c. Because
there are coinciding vortices of opposite sign which cancel each other, the complete vortex system
is equivalent to the single rectangular vortex shown as the heavy line in Figure 9.41.

We now pass to the limiting case in which c is small and the model is a continuous external force
on the fluid, of magnitude F ext, distributed uniformly along the z-axis in the region −b/2 ≤ z ≤ b/2
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and pointing in the negative y-direction. Over the short time interval c/u0 the integral of the force is
the impulse applied over the area bc or

Fextc

u0
= bc�. (9.10.11)

The magnitude of the force per unit length along the airfoil is

Fext

b
= �u0. (9.10.12)

If the total duration of time over which the impulse has been applied is Nc/u0, the rectangular vortex
ring will have breadth b, length Nc in the flow (x) direction, and circulation

� = Fext

bρu0
. (9.10.13)

The vortex configuration described represents the vortex system for the airfoil, including the
trailing vortices and the starting vortex, with F ext/b the magnitude of the airfoil lift per unit span.
Equation (9.10.12) is a (linearized) version of the Kutta–Joukowski theorem (lift/span =ρu0�)
relating the magnitude of the lift per unit span, the circulation, and the velocity.

An important relation is that between the fluid impulse and the moment of the vorticity distribution.
The total impulse given to the fluid during the time Nc/u0 is responsible for the creation of the
rectangular vortex system represented by the heavy line. The moment of a vorticity distribution, M,
is defined as

M =
∫

(x × ω) dV. (9.10.14)

Only the interior of a line vortex contributes to this integral. From evaluation of the integral for the
rectangular vortex in Figure 9.41, the product ρM is equal to (2ρ�bNc)j, where j is the unit vector
in the y-direction. For the rectangular vortex, referring to Figure 9.41, it can be seen that the total
impulse is related to the moment of the vorticity distribution by

I = ρ

2

∫
(x × ω) dV. (9.10.15)

The expression on the right-hand side of (9.10.15) “can be described in simple mechanical terms as
one-half of the momentum of a hypothetical force distribution with force per unit mass equal to the
vorticity” (Lighthill, 1986b). The relation has been developed here only for the rectangular vortex,
but it is a general result for any configuration (Lighthill, 1986a; Batchelor, 1967).11

Force is the time rate of change of impulse or, equivalently as we have just seen, the time rate of
change of one-half the moment of the vorticity distribution. For the airfoil in uniform motion with
velocity u0 this gives

ρ�bNc

Nc/u0
j = ρ�bu0j = lift force on the airfoil. (9.10.16)

11 Equation (9.10.15) also applies, with appropriate interpretation, to flow in which there are internal boundaries on which
there is a no-slip (viscous) boundary condition. In that case, as described by Lighthill (1986b), the vorticity in the integral
needs to be interpreted as the vorticity field minus “a distribution of vorticity attached to the boundary in the form of a
vortex sheet allowing exactly the tangential velocity (slip) associated with the potential flow” which satisfies the normal
boundary condition.
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Figure 9.42: Sketch of a jet in a cross-flow emerging from a circular opening of diameter d in the plane y = 0.
The distance along the jet is l, the coordinates in the plane normal to the jet trajectory are yv, zv.

Equation (9.10.16) relates the rate of change of the moment of a vorticity distribution to the force
exerted on the fluid. Again, although only a restricted case has been developed, the relation between
the force exerted on a fluid and the rate of change of impulse is a general one (Lighthill, 1986a).

9.10.3 Far field behavior of a jet in cross-flow

The third example in which the fluid impulse principle can be exploited is the development of an
approximate description of the far field behavior of a jet in cross-flow. The configuration is sketched
in Figure 9.42 in which a jet of diameter d enters the unbounded region above the plane y = 0
into an oncoming flow and bends into the streamwise direction (Margason, 1993). Some distance
downstream12 the time-mean jet cross-section takes the shape indicated in the figure. Central to
the discussion of this “far field” jet behavior is the cross-plane motion associated with a pair of
counterrotating vortices with axes at a small angle to the x-direction.13

We wish to illustrate several aspects of the behavior. First are general ideas concerning jet con-
figuration and kinematics, i.e. trajectory and jet dimension, including the parametric dependence of
these quantities. Second is the connection between the impulse given to fluid above the plane y = 0
and the streamwise vorticity in the vortex pair. The description to be given pertains to jet Reynolds
numbers (uj d/ν) greater than roughly 103 where the overall features have negligible dependence on
Reynolds numbers and viscosity does not enter explicitly into the considerations. It is also restricted
to incompressible flow with equal densities of the jet and the incoming flow. (For information con-
cerning unequal densities, see Margason (1993), Hasselbrink and Mungal (2001), and Karagozian
(2002).)

12 Several to ten jet diameters is a rough figure for this distance, it will be made quantitative in what follows.
13 There are other structures associated with a jet in a cross-flow, for example the horseshoe vortex associated with the

incoming boundary layer, which occurs at the upstream side of the jet, and wake vortices (Fric and Roshko, 1994; Haven
and Kurosaka, 1997). These are not discussed here.
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9.10.3.1 Features of velocity and vorticity fields for a jet in cross-flow

Under the above conditions dimensional analysis shows that the trajectory of the jet, as marked by
features such as either the (x–y) locus of maximum velocity in the jet or the x–y curve corresponding to
the centerline between the counterrotating vortices, is a function of the velocity ratio, uj/u0, between
the jet and the oncoming flow:

(x/d), (y/d) = f (u j/u0). (9.10.17)

To give a specific example of the parametric behavior, numerous measurements indicate that the rela-
tion between the vertical position of the maximum velocity at any cross-section and the downstream
distance from the center of the emerging jet can be approximated by an equation of the form

y

Rd
= A
( x

Rd

)B
, R = u j/u0. (9.10.18)

In (9.10.18) A and B are constants, with values roughly 1.6 and 1.3 (Hasselbrink and Mungal, 2001;
Karagozian, 2002).

The main attributes of the far field velocity distribution for a jet in cross-flow are shown in Figure
9.43, which presents velocity vectors in a plane normal to the jet trajectory. The senses of the
coordinates yv and zv in Figure 9.43, are indicated in the sketch in Figure 9.42. The origin of these yv,
zv coordinates is at the location determined by the position of maximum upwash between the vortex
pair, which is taken as the midpoint between the two vortices.14

The structure shown by the cross-plane velocity components corresponds to a counterrotating
vortex pair. The specific data in Figure 9.43 have the origin (the point yv = 0, zv = 0) downstream a
distance x/d = 8.3 from the centerline of the opening from which the jet emerged, but the qualitative
configuration is characteristic for several tens (or more) diameters downstream. The contours in the
figure give the ratio of the velocity along the jet trajectory to the maximum jet velocity at that plane.

The jet momentum provides the impulse responsible for the counterrotating vortex pair. The
momentum flux out of the opening in the y = 0 plane can be regarded as a force on the fluid above
the plane, analogous to that for the wing in the previous section. (The parallel being drawn may
perhaps be more easily envisioned if one considers the jets to emerge from an opening with the
geometry of Figure 9.41.)

Features of the vorticity field for a jet in cross-flow are depicted in Figure 9.44, which gives results
from a three-dimensional (Reynolds-averaged Navier–Stokes) computation. The figure shows a
perspective view of vortex lines in the region several diameters downstream of the jet entrance.15

The vortex loops mark the locations of high vorticity in the time-mean simulation. (They are not
material lines at different instants of time.)

The vortex loops in Figure 9.44 are much longer in the streamwise direction than the jet entrance
diameter, d, with z-components of vorticity at the ends of the loop only. These configurations thus
represent a combination of like-sign vorticity in some places and cancellation (by diffusion) of

14 The figure is different than that in the original reference (Fearn and Weston, 1974), which had measurements that covered
only 1> zv >−6. In Figure 9.43 the data for zv < 0 have been flipped and plotted for positive zv to convey, assuming that
left–right symmetry exists, a sense of the velocity field of the pair structure. See Smith and Mungal (1998) for comments
concerning the symmetry.

15 Detailed information concerning the generation of these counterrotating vortices in the region near the jet entrance is given
by Cortelezzi and Karagorian (2001).
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Figure 9.43: Velocity field in a plane normal to the jet trajectory; uj/u0 = 8, x/d = 8.3; numbers on contours
refer to u/umax in jet (adapted from Fearn and Weston (1974)).

opposite-sign vorticity in others. Put another way, the presence of the elongated configurations
implies vorticity cancellation between (roughly circular) vortex rings which entered the region y> 0
at different instants of time, in a manner similar to that seen for the flow past the rectangle in the
previous section. The velocity ratio used in the computations corresponds to that in the measurements
of Figure 9.43. The cross-plane for the measurement location is roughly the location x/d = 8 marked
in Figure 9.44, where x is measured from the center of the jet entrance. The vortex configuration is
consistent with the observed counterrotating vortex pair.

In the counterrotating vortex pair the two vortices are close enough that there is (turbulent) diffusion
of opposite-sign vorticity and the circulation of the individual vortices is not constant. For a two-
dimensional vortex pair, however, even if the vortex circulation changes with time, the impulse per
unit length is invariant. Application of this latter principle enables us to estimate the far field jet
trajectory and circulation variation for a jet in cross-flow (Broadwell and Breidenthal, 1984).

9.10.3.2 An approximate analysis for jet kinematics and vortex pair circulation

A starting point in the development is the assumption of the far downstream flow field as due to a pair
of two-dimensional counterrotating vortices nearly aligned with the x-axis. (The vortices are of finite
dimension and should not be thought of as simple line vortices of infinitesimal radius.) Denoting
yvc as the coordinate which marks the center of the vortex pair and W as the center-to-center vortex
spacing, the rate at which the vortex pair moves upward, dyvc/dt, scales as

dyvc

dt
∝ �

W
. (9.10.19)
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For reference (see Section 3.15), for a two-dimensional counterrotating pair of line vortices the
constant of proportionality is 1/2π .

The impulse of the vortex pair per unit length in the x-direction has magnitude

I ∝ ρ�W. (9.10.20)

For the two-dimensional line vortex pair, the associated impulsive pressure,�, is equal to I/W; from
(9.10.8), the constant of proportionality is then unity. Combining (9.10.19) and (9.19.20) yields

ρW 2 dyvc

dt
∝ I. (9.10.21)

Motivated by the experimental results (i.e. using the benefit of hindsight!) we seek a similarity
solution with the spacing between the counterrotating vortices proportional to their distance from
the plane (W ∝ yvc). Under this assumption (9.10.21) becomes

ρy2
vc

dyvc

dt
∝ I. (9.10.22)

Integrating (9.10.22) from time t = 0, and taking yvc = 0 at the initial time, gives

yvc ∝
(I
ρ

)1/3

t1/3 =
(I
ρ

)1/3 ( x

u0

)1/3

. (9.10.23)

In writing (9.10.23) the vortex pair is viewed as convecting downstream with the oncoming velocity,
u0, so that time corresponds to t = x/u0.

The postulated similarity is that vortex spacing, W, and vortex pair position, yvc, are proportional.
This statement, the expression for fluid impulse per unit length in (9.10.20), and invariance of the
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fluid impulse per unit length, combine to imply that the circulation for each vortex of the pair behaves
as

� ∝
(I
ρ

)2/3 ( x

u0

)−1/3

. (9.10.24)

For a two-dimensional vortex pair the impulse has magnitude ρ�Wx for a length x. Neglecting
the contribution of the pressure forces16 on the plane y = 0, the time integral of the force on the
fluid above the plane y = 0 can be estimated as the product of the force per unit time, ρu2

j d
2 and

the time duration over which the force is applied, t = x/u0. (The term πd2/4 multiplying ρu2
j d

2 has
been omitted, consistent with other approximations made in these arguments.) Use of the connection
between the impulse created and the product of force and duration of application yields an expression
for the impulse in terms of jet and free-stream parameters as

I
ρ

∝ u2
j d

2

u0
. (9.10.25)

Substitution of (9.10.25) in (9.10.23) yields the desired scaling for vortex pair position, yvc, and the
spacing between the vortices, W, as

yvc

Rd
,

W

Rd
∝
( x

Rd

)1/3
. (9.10.26)

Figure 9.45 shows measurements of the vortex pair trajectory, yvc/(Rd), for several different
values of R. The solid curve in the figure represents a best fit of the scaling implied by (9.10.25). The
trajectory of the maximum velocity has a similar scaling, but the quantitative value of the vertical
position of the maximum lies above (roughly 20–30% depending on R) that for the vortex pair center
(Fearn and Weston, 1978).

Figure 9.46 shows the measured variation in vortex circulation versus x/(Rd). The solid line in the
figure has the behavior

�

u0 Rd
= �

u j d
∝
( x

Rd

)−1/3
. (9.10.27)

As described by Hasselbrink and Mungal (2001), the measured ratio between the vortex spacing and
x has been used to provide a numerical estimate for the proportionality constant in the equation. This
is given in the figure.17 Although other aspects of the problem need to be addressed for a detailed
description, Figures 9.45 and 9.46 show that the basic scaling arguments provide insight into the
functional dependence for vortex position, spacing, and circulation.

For a jet in cross-flow, the vortex circulation decreases with time, but there are other vortex pair
configurations in which the rate of decrease in circulation is proportionally much smaller. For a
flow whose evolution can be modeled by the behavior of a two-dimensional vortex pair with vortex
circulation and fluid impulse invariant we can make an immediate statement about vortex behavior.

16 See Hasselbrink and Mungal (2001) for discussion of this assumption, which implies that R is much larger than unity.
17 Other data (Fearn and Weston, 1978) show more scatter (almost twice as much in some cases) in the circulation mea-

surements, although this may be because the values of x/Rd are smaller and the data not truly representative of far field
behavior. An estimate for the minimum at which x/Rd far field behavior is encountered is x/Rd> 0.2 R (Smith and Mungal,
1998).
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The flow past a finite wing, where the vortex separation is large, is one example. The tip clearance
flow in a turbomachine, which is characterized by a vortex which trails off the rear edge of the blade
and is nearly aligned with the streamwise direction, is another.

A tip clearance vortex in proximity to a casing is equivalent to a vortex pair consisting of the
vortex and its image (Section 3.15). For representative (blade-to-casing) clearances the vortex can
be far enough away from the wall that the rate of change in circulation with downstream distance is
small and the flow pattern in a cross-flow plane is approximated by that for a pair of two-dimensional
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vortices. Downstream of the blade the only forces in the direction normal to the line between the
vortex and its image are the wall shear stresses and if these can be neglected the impulse of the
vortex pair is constant. From (9.10.20), invariance of both vortex circulation and impulse implies
the distance between the vortex pair (more precisely between the centroids of vorticity) is also
invariant. For downstream distances over which these conditions are met, the distance of the vortex
from the endwall is thus constant (Chen et al., 1991).



10 Compressible internal flow

10.1 Introduction

Chapters 10 and 11 address flows in which substantial changes in density occur. The changes arise
from processes which are dynamical (e.g. density changes from pressure variations associated with
fluid accelerations) or thermodynamic (density changes primarily from bulk heat addition due to
chemical reaction or phase change) or a combination of the two. This chapter focuses primarily on
situations with density variations due to dynamical effects; as we saw in Section 2.2, this means
flows with Mach numbers significant compared to unity. Chapter 11 discusses flows with density
variations primarily due to heat addition.

Much of the material is based on quasi-one-dimensional gas dynamics. Characterization of quasi-
one-dimensional analysis as “the secret weapon of the internal fluid dynamicist” (Heiser, 1995) is an
apt aphorism indeed. This type of treatment enables useful engineering estimates in a wide variety
of situations and is a powerful tool for providing insight into the response of compressible flows
to alterations in area, addition of mass, momentum, and energy, swirl, and flow non-uniformity.
This is true not only for simple duct and channel flows but also for more complex problems, for
example those arising in the matching of gas turbine engine components (Kerrebrock, 1992; Cumpsty,
1998).

Many computational techniques now exist to address internal flows in complex geometries. As
such, we spend little time in discussion of approximations that were necessary in the past to attack
compressible flow problems. One-dimensional analysis, however, is still very much a part of modern
approaches to grappling with internal flow problems, even though its use as a detailed design tool
has been supplanted by more accurate computations. The analyses presented in this and the next
chapter, which draw strongly on the seminal work of Shapiro (1953) and its extensions by Heiser
and colleagues (e.g., Anderson, Heiser, and Jackson, 1970; Bernstein, Heiser, and Hevenor, 1967;
Heiser and Pratt, 1994; Curran, Heiser, and Pratt, 1996), can be viewed as a complement to, and
more importantly, an aid in interpretation of, numerical simulations in common use today.

10.2 Corrected flow per unit area

Appreciation for the overall response of a compressible flow to alterations in area, and addition of
mass, momentum, and energy can be gained through consideration of the corrected flow per unit
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area introduced in Section 2.5. For a perfect gas with constant specific heats it was shown that the
quantity ṁ

√
RTt/(Apt

√
γ ) is a function of Mach number only, denoted as D(M):

ṁ
√

RTt

Apt
√
γ

= D(M) = M[
1 +
(
γ − 1

2

)
M2

] (γ+1)
2(γ−1)

. (2.5.3)

The functional dependence is depicted in Figure 2.6, with D(M) increasing from zero at M = 0 to a
maximum at M = 1 and then decreasing at higher Mach numbers. For a specified fluid, with constant
values of R and γ , the Mach number in a channel is a function of ṁ

√
Tt/(Apt ), where Tt and pt are

the local values of the stagnation temperature and pressure.1

We describe compressible flow behavior in two steps: (i) computation of the change in corrected
flow per unit area, and hence Mach number, resulting from geometry variation and addition of mass,
momentum, and energy, and then (ii) linkage of the changes to specific physical processes. We thus
consider the corrected flow per unit area in a channel with Mach number, Mi, at an initial station i,
and determine the changes between this and a downstream station if the area, mass flow, stagnation
temperature, and stagnation pressure are altered from A, ṁ, Tt, pt to (A + dA), (ṁ + dṁ), (Tt + dTt),
(pt + dpt). For small fractional changes in these quantities (dA/A, dTt/Tt, etc. � 1) the change in
corrected flow per unit area between the two stations is given by

d[ṁ
√

Tt/(Apt )]

[ṁ
√

Tt/(Apt )]
=
(

dṁ

ṁ
+ dTt

2Tt
− dA

A
− dpt

pt

)
. (10.2.1)

Use of (10.2.1) in connection with Figure 2.6 shows several features of compressible channel
flow. For both subsonic and supersonic flow, increase in physical mass flow (mass addition to the
stream), increases in stagnation temperature, decreases in area, and decreases in stagnation pressure
all increase the corrected flow per unit area. For given initial conditions, all these drive the flow
towards a Mach number of unity. Further, the curve of D(M) versus M flattens in the neighborhood of
Mach number equal to 1 (it has zero slope at M = 1). A specified fractional change in corrected flow
per unit area therefore implies a larger change in Mach number as conditions become closer to M = 1.
Finally, there is a maximum value of corrected flow per unit area. A change to a value greater than this,
for example an increase in stagnation temperature that implied a corrected flow per unit area larger
than the maximum, is not possible. For fixed geometry such an increase in stagnation temperature
would be accompanied by an upstream readjustment of the flow, with a consequent decrease in the
Mach number at station i to accommodate the imposed stagnation temperature change. If such an
upstream readjustment were not desired, the area would need to be increased to have the corrected
flow per unit area not exceed the maximum allowed value.

An illustration of the last point is the operation of the variable exit nozzle on an afterburning jet
engine, as sketched in Figure 10.1. At almost all flight conditions the exit nozzle is choked, and the
corrected flow per unit area has its maximum value at the nozzle throat. With the afterburner unlit,
the nozzle geometry has the configuration depicted as “afterburner off”. When the afterburner is

1 The term “corrected flow” (rather than corrected flow per unit area) is attached to the quantity ṁ
√

RTt/(pt
√
γ ). This is

typically used to describe situations in which the Mach numbers are comparable but the areas and flows are different, for
example turbine engine gas generators, which are often characterized in terms of compressor inlet or exit corrected flow.
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Figure 10.1: Schematic of an axisymmetric variable area nozzle on an afterburning gas turbine engine (Jane’s,
1999).

lit, the stagnation temperature at the nozzle inlet can increase by a factor of 2. The workings of the
turbomachinery in the gas turbine engine, however, dictate that the physical mass flow and stagnation
pressure into the nozzle are roughly the same before and after the afterburner is lit. For this to be the
case the nozzle throat area must be increased in proportion to the square root of temperature and, in
afterburning operation, the nozzle is opened to the “afterburner on” configuration in the figure.

Changes in the flow state can also be connected to the physical processes of friction, heat addition,
and shaft work (such as in turbomachinery components). The effect of friction is to lower the
stagnation pressure. In both subsonic and supersonic flow, therefore, frictional effects downstream of a
specified initial state cause the flow to move towards a Mach number of unity. For a constant area flow,
increases in friction, as obtained for example by increases in duct length, can result in a condition in
which the maximum corrected flow per unit area is reached and the flow is choked at exit.

Heat addition has two effects. The stagnation temperature increases and (as developed in Chap-
ter 11) the stagnation pressure decreases. Both of these increase the corrected flow per unit area. As
with friction, for a given initial state heat addition causes the flow to move towards a Mach number
of unity in both subsonic and supersonic flow. A consequence is that if enough heat is added in a
constant area duct “thermal choking” occurs in which the maximum corrected flow per unit area is
reached, limiting the physical flow rate. Effects of both heat addition and friction are developed in
more depth in the next sections.

Addition or extraction of shaft work, without dissipation or heat transfer, is an idealization of the
process in a compressor or turbine. From the steady flow energy equation, (1.8.11), for a gas with
constant specific heats, the change in stagnation temperature for an incremental amount of shaft
work, dwshaft, done per unit mass is

cpdTt= −dwshaft. (10.2.2)

The Gibbs equation (Tds = dh − dp/ρ, (1.3.19)) with ds = 0 allows us to relate changes in stagnation
pressure for isentropic shaft work to changes in stagnation temperature as

dTt

Tt
= (γ − 1)

γ

dpt

pt
. (10.2.3)
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Equation (10.2.1) can thus be written for input or extraction of isentropic shaft work as

d[ṁ
√

Tt/(Apt )]

[ṁ
√

Tt/(Apt )]
=
(

dTt

2Tt
− dpt

pt

)
=




2γ

(γ − 1)

(
dwshaft

2cpTt

)
︸ ︷︷ ︸

From pt

change

+
(−dwshaft

2cpTt

)
︸ ︷︷ ︸

From Tt

change


 . (10.2.4)

Equation (10.2.4) shows that shaft work compression processes (increases in pt and Tt, dwshaft < 0)
decrease the corrected flow per unit area, and expansion processes increase the corrected flow per
unit area.2 In these, the change in stagnation pressure is dominant (by a factor of 7 for γ of 1.4)
compared to the change in stagnation temperature so the net effect is in the direction of the former.
The dominance of the stagnation pressure change is less in an actual device because the process is
not isentropic, but the overall trend is valid.

The discussion in this section has been mainly qualitative. Much of the rest of the chapter is aimed
at providing quantitative tools for analysis of compressible flows, with the operating regimes of inlets
and wind tunnels discussed as applications. The quasi-one-dimensional description is also extended
to two other important situations, compressible flow with swirl and non-uniform flow with mixed
subsonic–supersonic regions. The extensions maintain much of the simplicity of the one-dimensional
approach but allow examination of a much wider class of phenomena. In the last section of the chapter
a flow substitution principle is introduced which enables construction of a multiplicity of solutions
for different stagnation temperature distributions once a single solution has been found.

10.3 Generalized one-dimensional compressible flow analysis

One-dimensional analyses of compressible flow with mass, momentum, and energy addition can be
developed starting from the conservation equations for an elementary control volume in a duct or
channel shown in Figure 10.2. Within the control volume there is the possibility for mass addition,
frictional forces, body forces, shaft work, and heat exchange. The resulting differential equations can
be numerically integrated, but the form of the equations themselves gives much information about
the direction and nature of the solution path. In the development here we take both mainstream and
injected fluid to be perfect gases with constant specific heat; the derivation for varying specific heats
and the injection of liquid is given by Shapiro (1953). It is convenient (and simpler) to describe the
general case in two parts. Channel flows with no shaft work or work done by body forces (but all
other effects) are first dealt with, followed by examination of the effects of work production.

10.3.1 Differential equations for one-dimensional flow

Referring to the control volume in Figure 10.2, conservation of mass is expressed as

d (ρu A) = dṁ. (10.3.1)

2 Note that the processes referred to are those in which shaft work is done and the stagnation quantities change; flow though
a diffuser or nozzle is not this type of process.



510 Compressible internal flow

A + dA

m + dm

p + dp

u′

T + dT

ρ + dρ
u + du
M + dM

A
p
T

ρ
u
M

dQ dWshaft

uin

uin

⋅m⋅

⋅ ⋅

dm

dx

Control
surface

⋅

⋅

Figure 10.2: Control volume with addition of mass, momentum, and energy to a control volume.

In (10.3.1) dṁ represents the incremental change in mass flow across the control volume. Expanding
the differential, dividing through by ρuA and keeping terms which are first order in the quantities
du/u, dA/A, dρ/ρ, gives

dρ

ρ
+ du

u
= −dA

A
+ dṁ

ṁ
. (10.3.2)

The convention for which variables are viewed as independent (as on the right-hand side of (10.3.2))
and which as dependent is made based on application. Area, mass flow, velocity of the injected flow,
shaft work, external force, and heat addition are regarded as quantities over which the designer has
control and thus as independent variables.

Conservation of momentum for the control volume combined with (10.3.2) yields

(ρudu + dp) A = −τwdAw + dFD + uinjdṁ. (10.3.3)

In (10.3.3) τw is the shear stress at the wall due to friction, dAw is the wetted area around the
perimeter of the control volume, dFD represents drag forces on the fluid such as those associated
with the presence of struts or screens, for example, and uinj is the velocity of the injected mass in
the main stream direction. (In this equation, and in the subsequent development, to make the levels
of notation less complicated we drop the notation “–d( )” for quantities such as work, heat, friction
forces, which are not properties.) Dividing through by ρu2 and employing ρu2 = γ pM2,

du

u
+ dp

γM2 p
= − τw

γM2 p

dAw

A
+ dFD

γM2 p A
+ dṁ

ṁ

(uinj

u
− 1
)
. (10.3.4)

The wetted area can be related to the flow-through area using the hydraulic diameter, defined as
dH = 4A/(wetted perimeter). As described by Schlichting (1979) or White (1991) the use of the
hydraulic diameter allows estimation of wall shear stress for ducts of arbitrary cross-section in terms
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of the diameter of a corresponding circular duct, for which the behavior of the wall shear stress is
well documented. Writing the wall shear stress as τw = Cf(ρu2/2), where Cf is the skin friction
coefficient, (10.3.4) becomes

du

u
+ dp

γM2 p
= −2C f

dx

dH
+ dFD

γM2 p A
+ dṁ

ṁ

(uinj

u
− 1
)
. (10.3.5)

Application of conservation of energy for the control volume, plus use of dht = cp dTt, gives

cpdTt = dṁ

ṁ
cp(Ttinj − Tt ) + dq. (10.3.6)

In (10.3.6) Ttinj is the stagnation temperature of the injected gas and dq is the heat addition to the
stream per unit mass. In non-dimensional form

dTt

Tt
= dṁ

ṁ

(Ttinj

Tt
− 1

)
+ dq

cpTt
. (10.3.7)

The conservation equations must be supplemented by the equation of state and the definition of
stagnation temperature. In differential form these are:

dp

p
− dρ

ρ
− dT

T
= 0, (10.3.8)

dT

T


 1

1 + γ − 1

2
M2


+ du

u


 (γ − 1) M2

1 + γ − 1

2
M2


− dTt

Tt
= 0. (10.3.9)

Equations (10.3.2), (10.3.5), (10.3.7), (10.3.8), and (10.3.9) are five equations for the dependent
variables:3 du/u, dT/T, dp/p, dρ/ρ, dTt/Tt. The stagnation temperature variation, dTt/Tt is given in
terms of independent quantities in (10.3.7), so we use it directly as an independent variable to reduce
the number of dependent quantities to four: du/u, dT/T, dp/p, dρ/ρ. Once these are obtained, other
derived quantities such as entropy, stagnation pressure, or Mach number can be determined as:

ds

cp
= dT

T
− (γ − 1)

γ

dp

p
, (10.3.10)
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d M2

M2
= 2du

u
− dT

T
,

(
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d M

M
= du

u
− dT

2T

)
. (10.3.12)

As developed in Section 5.5, the entropy change ds in (10.3.10) is the change in stream entropy (per
unit mass) across the control volume. The irreversible entropy creation within the control volume is

3 The solution of the equations could of course proceed with other choices of independent and dependent variables, for
example use of the area ratio as a dependent variable to determine the area change needed to create a given pressure or
velocity increment.
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given by (5.5.28):

dsirrev = ds − (sinj − s)
dṁ

ṁ
. (5.5.28)

10.3.2 Influence coefficient matrix for one-dimensional flow

The solution for all the dependent quantities can be set up as a matrix of influence coefficients
(Shapiro, 1953), as in Table 10.1. The top row of the table lists the independent variables and the
column on the left the dependent variables. The groupings in the top row come from the conservation
equations and are presented in this fashion to show where the terms arise. To use Table 10.1, one
multiplies the influence coefficient in each column with the form of the dependent variable in the
row at the top of the columns. The change in Mach number, for example, is given by

d M2

M2
=




−2

(
1 + γ − 1

2
M2

)
1 − M2


 dA

A
+



(
1 + γM2

) (
1 + γ − 1

2
M2

)
1 − M2


 dTt

Tt

+



γM2

(
1 + γ − 1

2
M2

)
1 − M2



(

4C f
dx

dH
+ 2dFD

γ p AM2
− 2

uinj

u

dṁ

ṁ

)

+




2(1 + γM2)

(
1 + γ − 1

2
M2

)
1 − M2


 dṁ

ṁ
. (10.3.13)

All the terms in square brackets in (10.3.13) are the influence coefficients, which are the partial
derivatives of the variable in the left-hand column with respect to the variable in the top row. We
will use these influence coefficients in the next section to illustrate the influence of friction and heat
addition to a compressible flow.

10.3.3 Effects of shaft work and body forces

Shaft work and body forces are not included as independent variables in Table 10.1. We now assess
their effects, carrying out the analysis for the case of no mass addition only. To demonstrate the roles
of shaft work and body forces separately we split the total force on the fluid, over and above friction
and pressure forces, into three parts: body forces, drag forces, and forces associated with shaft work.
For the incremental control volume of area A and length dx the contribution of the body force per
unit mass, X, is ρAXdx. The drag force due to stationary objects in the stream, denoted by dFD, has
already been described. The force on the fluid within the control volume associated with the shaft
work per unit mass, dwshaft, is denoted as dF shaft. The relation between this force and the shaft work
per unit mass is

ṁdwshaft = udFshaft. (10.3.14)
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ṁ ṁ
.



514 Compressible internal flow

The control volume form of the momentum equation with these additional forces and no mass
addition (dṁ = 0) is

du

u
+ dp

γM2 p
= −2C f

dx

dH
+ Xdx

u2
+ dFD

γM2 p A
− dwshaft

u2
. (10.3.15)

The energy equation must be modified from the form given as (10.3.7) because stagnation tem-
perature changes now arise not only from heat addition, but also from shaft work and from work
done by body forces on the flow; the last of these has magnitude uX per unit mass. Application of
the steady-flow energy equation yields

ṁcpdTt = ṁcpdq − ṁdwshaft + ρuXAdx.

Dividing through by ṁcpTt,

dTt

Tt
= dq

cpTt
− dwshaft

cpTt
+ Xdx

cpTt
. (10.3.16)

To recap, the differential equations describing compressible channel flow with area change, friction,
shaft work, body forces, heat addition, and drag are: continuity ((10.3.2) with dṁ/ṁ equal to zero),
momentum (10.3.15), energy (10.3.16)), state (10.3.8), definition of stagnation temperature, (10.3.9),
and the equations for derived quantities such as entropy, stagnation pressure, and Mach number.

Table 10.2 shows the influence coefficient matrix for this situation, again for a perfect gas with
constant specific heats. A difference from the results in Table 10.1 is that the stagnation temperature is
now a dependent variable, which can be altered not only from heat addition, but also from shaft work
and the work of body forces. Further, these increases in stagnation temperature are not necessarily
accompanied by increases in entropy and decreases in stagnation pressure, as is the case for the flow
described by Table 10.1. For example if there is reversible work addition alone (adiabatic, frictionless
flow with shaft work), as discussed in Section 10.2, the stagnation temperature is increased, the
stagnation pressure is increased, and the entropy is unchanged. For this situation the influence
coefficients from Table 10.2, which describe an isentropic compression or expansion, are shown as
brackets in (10.3.17) below:

dTt

Tt
= [−1]

dwshaft

cpTt
, (10.3.17a)

dpt

pt
=
[
− γ

γ − 1

]
dwshaft

cpTt
, (10.3.17b)

ds

cp
= [0]. (10.3.17c)

An example of a fluid machinery situation with body forces is the flow in a rotating radial channel.
The centrifugal body force results in a variation in stagnation quantities (as measured in the rotating
channel reference frame) with radius. General results for body forces can be obtained from the
influence coefficient table, but for the special case of isentropic rotating channel flow the ideas can
be developed from a slightly different perspective to illustrate some overall features of the general
case.

The geometry is shown in Figure 10.3, with a control volume extending from location r to r + dr.
As developed in Section 7.3 (or as obtained from integration of the expression for the stagnation
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Table 10.2 Influence coefficients for compressible channel flow with body forces and shaft work (no
mass addition, constant specific heat and molecular weight) (Fitzgerald, 2002)

d A

A

dq

cpTt

dwshaft

cpTt
− Xdx

cpTt
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Figure 10.3: Flow in a rotating channel as an example of one-dimensional flow with body forces.
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Figure 10.4: Relative stagnation pressure ratio and static pressure ratio in a radially bladed, rotating passage as
a function of M
i = 
ri/

√
γ Ti ; inlet Mach number, Mreli ,= 0.5.

temperature change in Table 10.2) the rothalpy, It = h + w2/2 −
2r2/2, is constant along a relative
streamline. Constant rothalpy means the relative stagnation temperature, and hence the relative
stagnation pressure, increases in the outward direction. Figure 10.4 shows static pressure and relative
stagnation pressure ratios in a radially bladed passage for different values of exit/inlet radius ratio,
re/ri, as a function of the inlet rotational Mach number, M
i = 
ri/

√
γRTi . The relative inlet Mach

number, Mreli is equal to 0.5. For a stationary passage (M
 = 0) there is no change in stagnation
pressure, but the relative stagnation pressure ratio increases strongly with rotational Mach number.

A further feature of flows with body forces can be seen from the one-dimensional continuity and
momentum equations for a rotating channel:

dρ

ρ
+ dw

w
= −dA

A
, (10.3.18)

wdw + 1

ρ
dp = 
2rdr. (10.3.19)

For isentropic flow, changes in pressure and density are related by dp/dρ = a2, where a is the local
speed of sound (Section 1.15). Using this to eliminate dp in the momentum equation and substituting
the resulting expression for dρ/ρ in the continuity equation (as described in the introduction to
one-dimensional flow in Section 2.5) yields a relation between changes in velocity and changes in
area and radius:

dw

w
=

−dA

A
− M2




dr

r
1 − M2

. (10.3.20)

In (10.3.20), two Mach numbers appear: the flow-through relative Mach number, M = w/a, and the
rotational Mach number M
 (=
r/a). The independent variables are area and radius. As discussed
in Section 2.5, the condition for the velocity to smoothly increase through the sonic point (M = 1)
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necessitates that the numerator in (10.3.20) goes to zero. The flow does not become sonic at the
geometric throat (dA/dr = 0), but rather when (dA/A)/(dr/r) = −M2


. This would occur in the
converging part of the channel at a smaller radius than the throat, because pressure and density both
increase with radius. The movement of the sonic point from the throat is associated with the presence
of the centrifugal body force, ρ
2r per unit volume, aligned with the motion in the channel. The
idea that body forces have an effect on sonic point location is general, although the specifics (and
even the sign) of the sonic point displacement depend on the particular force.

10.4 Effects of friction and heat addition on compressible channel flow

We illustrate the methodology of Section 10.3 through comparison of the effects of friction and heat
addition on compressible flow in a constant area duct. (Isentropic flow in ducts of varying area is
discussed in Sections 2.5 and 2.7 and is thus not treated here.) Expressions for differential changes in
Mach number and stagnation pressure are presented using the influence coefficients to show several
physical effects. Numerical results are given for the two cases.

10.4.1 Constant area adiabatic flow with friction

For a constant area adiabatic flow with friction, combining the terms from Table 10.1 leads to an
expression relating Mach number and distance, dx, along the channel

d M2

M2
=
γM2

(
1 + γ − 1

2
M2

)
1 − M2

(
4C f dx

dH

)
. (10.4.1)

Equation (10.4.1) shows that dM2 > 0 for M < 1 and dM2< 0 for M > 1; for a given initial state
friction always drives the Mach number towards unity. If the friction coefficient, Cf, is constant,
(10.4.1) can be integrated between an initial Mach number, Mi, and M = 1 to provide an expression
for the channel length, L∗, that will cause the flow to choke

4C f L∗

dH
= 1 − M2

i

γM2
i

+ γ + 1

2γ
ln


 (γ + 1) M2

i

2

(
1 + γ − 1

2
M2

i

)

 . (10.4.2)

The differential expression for stagnation pressure change in constant area adiabatic flow with friction
is

dpt

pt
= −γM2

2
4C f

dx

dH
. (10.4.3)

For constant Cf (10.4.3) can be integrated to give the stagnation pressure ratio between an initial
station and the choking location:

pti

p∗
t

= 1

Mi

√√√√√[(2 + (γ − 1) M2
i

)
γ + 1

]( γ+1
γ−1

)
. (10.4.4)
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Figure 10.5: Maximum heat addition in a constant area duct in terms of initial Mach number, γ = 1.4.

10.4.2 Constant area frictionless flow with heat addition

Heat addition in a constant area channel is another important model process in the study of com-
pressible flow. From Table 10.1 the change in Mach number for constant area heat addition is

d M2

M2
=

(1 + γM2)

[
1 + (γ − 1)

2
M2

]
1 − M2

(
dTt

Tt

)
. (10.4.5)

Equation (10.4.5) states that, for any given initial flow state, heat addition drives the Mach number
towards unity.4 Further, the influence of a given fractional change in stagnation temperature increases
as the initial conditions become closer to M = 1.

The maximum amount of heat that can be added to a stream with initial Mach number Mi in
a constant area channel can be found by writing (10.4.5) as exact differentials for M2 and Tt and
integrating from the initial Mach number and stagnation temperature to M = 1:

T ∗
t − Tti

Tti

= �Ttmax

Tti

=
(
1 + γM2

i

)2
2 (γ + 1) M2

i

[
1 +
(
γ − 1

2

)
M2

i

] − 1. (10.4.6)

In (10.4.6) T ∗
t denotes the stagnation temperature at which the Mach number becomes unity. The

quantity �Ttmax/Tti is plotted in Figure 10.5 versus initial Mach number, Mi. The small amount
of heat that can be added as the Mach number nears unity is striking. To give numerical values,
the maximum percentage increase in stagnation temperature is 4% at an inlet Mach number of 0.8
(subsonic flow) or 1.25 (supersonic flow), and only 2% at Mach numbers of 0.85 and 1.17.

As shown by the influence coefficients, this sensitivity near M = 1 is also true for area changes. For
heat addition greater than the above values, the upstream conditions must alter. With the condition

4 Note that the changes in stagnation temperature described in this section are due to heat addition only rather than to the
effects of shaft work input which also include stagnation pressure changes.
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of M = 1 occurring at the highest stagnation temperature in the constant area channel, this means the
Mach number at the initial station will be moved further away from unity compared to the original
value Mi.

An interesting aspect of heat addition to a flowing fluid concerns changes in static temperature.
The relation from Table 10.1 to describe this is

dT

T
=
(
1 − γM2

) [
1 + (γ − 1)

2
M2

]
1 − M2

(
dTt

Tt

)
. (10.4.7)

For low subsonic Mach numbers (M2 � 1), dT and dTt have the same sign. For M between 1/
√
γ

and 1, however, (10.4.7) shows they have opposite sign. In this regime, heat addition reduces the
static temperature of the gas. For M >1, heat addition again corresponds to an increase in static
temperature.

Appreciation of this behavior is obtained by examining the portion of heat added which appears
as static enthalpy per unit mass (dh = cpdT) and that which appears as kinetic energy per unit mass.
From Table 10.1 the two effects can be separated as

dTt = (1 − γM2)

(1 − M2)︸ ︷︷ ︸
static enthalpy increase

dTt + (γ − 1)M2

(1 − M2)︸ ︷︷ ︸
kinetic energy increase

dTt . (10.4.8)

At subsonic speeds, the fraction of heat input associated with the kinetic energy change increases
with M. At M = 1/

√
γ all the heat added goes into increasing the kinetic energy and there is no

change in static temperature. If M is between 1/
√
γ and unity, the change in kinetic energy of the

flow is larger than the energy derived from heat addition and an additional amount must come from
the gas stream, with a consequent decrease in static temperature (Zukoski, 1985).

In supersonic flow the effect of heat addition is to decrease the gas velocity and hence the kinetic
energy. Heat addition thus causes an increase in static enthalpy in excess of the amount of heat added
and the static temperature increase in supersonic flow is greater than the stagnation temperature
increase.

Changes in flow properties with heat addition are conventionally shown using curves on a
temperature–entropy diagram, as in Figure 10.6. A useful way to view this curve is in paramet-
ric form, with Mach number as the parameter. The rate of entropy change with Mach number can
be found by eliminating dTt/Tt from the expression in Table 10.1 for entropy and Mach number,
yielding

ds/cp

d M2
= M2(1 − M2)

1 + γM2
. (10.4.9)

The entropy is a maximum at M = 1.

10.4.3 Results for area change, friction, and heat addition

Effects of area change, friction, and heat transfer are displayed to scale on a T–s diagram in Figures
10.7(a) and 10.7(b) (Hill and Peterson, 1992), in which paths from an initial Mach number to the
sonic condition are shown. The line corresponding to constant area flow with friction is known as the
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Figure 10.6: Rayleigh line for heat addition in a constant area channel.

Fanno line and that for frictionless constant area heat addition as the Rayleigh line. The upper figure
corresponds to subsonic initial conditions (Mi = 0.4) and the lower to supersonic initial conditions
(Mi = 1.9). Both Fanno and Rayleigh lines have M = 1 at the nose of the curve, the location of highest
entropy. The symbols s∗, f ∗, and h∗ (and the corresponding stagnation values s∗, f ∗

t , h∗
t ) indicate the

different Mach number unity states reached from the initial state by isentropic area change, constant
area flow with friction, and constant area heat addition, respectively. The subsonic states are above
the nose of the Fanno and Rayleigh lines and the supersonic states are below the nose. The heat
addition process as modeled is reversible, so travel in both directions along the Rayleigh line is
possible and cooling can move conditions away from M = 1. In contrast, the frictional process is
irreversible, the entropy must increase along the flow path, and travel is possible only in the direction
shown.

The incremental Mach number and stagnation pressure changes due to area change, friction, and
heat addition in combination are summarized below from Table 10.1:

d M2

M2
=

(
1 + γ − 1

2
M2

)
1 − M2

[−2dA

A
+ (1 + γM2)

dTt

Tt
+ 4γM2C f dx

dH

]
(10.4.10a)

dpt

pt
=
(

−γM2

2

)(
dTt

Tt
+ 4C f dx

dH

)
. (10.4.10b)

From (10.4.10a) we can connect the sonic condition with the local channel geometry. At the
condition M = 1, the quantity in square brackets must be zero for continuous variation of the Mach
number through the sonic point. If so, the area change must approach the following limit as the sonic
point is approached:

1

A

dA

dx
→ (1 + γ )

2

1

Tt

(
dTt

dx

)
+ 2γC f

dH
, M → 1. (10.4.11)
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Figure 10.7: Fanno and Rayleigh lines on a temperature–entropy plane showing the choking process: (a) subsonic
flow, Mi = 0.4; (b) supersonic flow, Mi = 1.9, γ = 1.4; i denotes the initial static state, it denotes the initial
stagnation state (Hill and Peterson, 1992).

Equation (10.4.11) shows that with friction and (or) heat addition, the sonic point does not occur at
the throat. Friction tends to move the sonic point downstream of the throat. For heat transfer, which
side of the throat the sonic location is on depends on the sign of the heat transfer term. For the
common situation with heat input from combustion, the heat addition term is large and positive and
the M = 1 location occurs in a section of the channel with a substantial divergence rate. At the sonic
conditions both the numerator and denominator of (10.4.10a) go to zero and, as described by Hill
and Peterson (1992), L’Hopital’s rule must be used to find the value of the derivative of the Mach
number to integrate the solution through this point.
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Figure 10.8: Starting of a supersonic wind tunnel diffuser (Shapiro, 1953): (a) most unfavorable starting condi-
tion; (b) best operating condition.

10.5 Starting and operation of supersonic diffusers and inlets

10.5.1 The problem of starting a supersonic flow

The relations developed for one-dimensional flow describe steady-state operation at given conditions,
but for actual devices (as well as for some computational procedures) it is often necessary to address
how one would attain the condition starting from an initial condition of no flow. Definition of
the path to the desired condition brings out a critical problem associated with supersonic devices
(Kerrebrock, 1992; Heiser and Pratt, 1994). To see this consider the supersonic wind tunnel in
Figure 10.8(a) which has a converging–diverging nozzle, a constant area test section, a converging–
diverging diffuser with a throat larger than the nozzle throat, and a downstream exhauster (often a
centrifugal or axial compressor). The tunnel is fed by a reservoir at a specified upstream pressure
and stagnation temperature, pt and Tt, and the exhauster can be thought of as creating a specified
static pressure at the exit.

At levels of exit static pressure close to the inlet stagnation pressure the flow throughout the tunnel
is subsonic. As described in Section 2.7, lowering the static pressure causes the flow to become sonic
at the nozzle throat, with a shock in the divergent part of the nozzle. In this mode of operation, the
throat passes the maximum mass flow for the upstream pt and Tt. Across the shock the mass flow,
area, and stagnation temperature are constant so that the areas at sonic conditions (A

∗
) corresponding

to the stagnation states upstream and downstream of the shock (denoted by 1 and 2, respectively; see
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Figure 10.8(a) for station numbering for this section) are related by

A∗
1

A∗
2

= pt2

pt1

. (10.5.1)

To pass the flow with a shock in the nozzle, the diffuser throat must be larger than the nozzle throat
by the ratio given in (10.5.1). As the exit pressure is lowered and the shock moves downstream in
the divergent section of the nozzle, the stagnation pressure ratio across the shock decreases, and the
diffuser area required to pass the flow becomes larger. The strongest shock, and the largest required
diffuser throat area, occur when the shock is in the test section as sketched in Figure 10.8(a). At this
condition the diffuser throat (Station 3) must have an area at least

A3

A∗
1

= A diffuser throat

A nozzle throat
= pt1

pt2

= F (M1) . (10.5.2)

At this condition, the flow in the test section downstream of the shock is subsonic and the flow at the
diffuser throat is sonic.

If the shock moves into the test section it can be at any location in the constant area channel.
Further, the shock will not stay in the test section. If the shock should undergo a momentary motion
into the converging section of the diffuser the shock Mach number will be lowered and the down-
stream stagnation pressure increased. This will increase the mass flow through the diffuser throat,
lowering the density and the static pressure downstream of the shock. To accommodate this, the
shock must move further down the converging section. From these arguments there is no location in
the converging section at which the shock will be stable so the shock will move through the throat. If
no adjustments are made in conditions downstream of the diffuser, the shock will move to a location
in the diverging section of the diffuser at an area corresponding to the test section area, where it
will then be stably positioned. This process is known as swallowing the shock. Once it occurs the
shock can be positioned by changing the operating conditions of the exhauster. To have the diffuser
in the most efficient operating condition (the lowest stagnation pressure loss across the shock) the
shock can be moved so it is at the lowest Mach number, which occurs with the shock positioned at
the diffuser throat at station 2′, as in Figure 10.8(b). At this condition the stagnation pressure loss is
less than that for starting. Figure 10.9 shows the stagnation pressure recovery (πd )max = pt ′

3
/pt ′

2
, the

diffuser throat Mach number, M ′
2, and the area ratio between test section and diffuser throat, A1/A′

2,
as functions of test section Mach number. The test section/diffuser throat area ratio A1/A3 which
would occur with isentropic flow is also indicated.

In practice the shock must be maintained somewhat downstream of the diffuser throat because
the shock is unstable in the converging part of the diffuser. If the shock moves upstream slightly, the
shock Mach number increases, increasing the stagnation pressure loss and decreasing the mass flow
capacity of the diffuser throat. Arguments similar to the above imply the shock would move further
upstream, through the test section, until it reached a condition in the diverging part of the nozzle
at which the stagnation pressure loss in the system matched the exhaust pressure of the system. In
practice also, because of boundary layer growth and non-one-dimensional effects, the throat area
needs to be slightly larger than the value given by (10.5.2) to ensure a supersonic diffuser of fixed
geometry will start.
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Figure 10.9: Characteristics of a fixed geometry diffuser (or internal compression inlet, see Figure 10.11),
including best pressure recovery (πd)max’ area ratios, and throat Mach number, M ′

2 (for diffuser) or MTH (for
inlet), γ = 1.4; nomenclature refers to Figures 10.8 and 10.11 (Kerrebrock, 1992).

10.5.2 The use of variable geometry to start the flow

The starting process can be facilitated using variable geometry, as illustrated in Figure 10.10 for
a system consisting of a converging–diverging nozzle, a constant area test section which we wish
to operate at supersonic conditions, and a downstream section designed to function as a subsonic
diffuser. Consider the process of coming to the test condition from no flow, through the operation of
a downstream exhauster, which changes the back pressure to which the diffuser discharges.

Suppose the nozzle and the diffuser initially have equal areas, as shown by the shaded contour
in Figure 10.10. A small (compared to the upstream stagnation pressure) decrease in diffuser exit
pressure results in a pressure distribution in the nozzle, test section, and diffuser as in curve 1 with
the flow everywhere subsonic. As the exit pressure is reduced further, curve 2 results, with sonic
conditions at both throats and subsonic flow in the test section. Dropping the exit pressure below
the value corresponding to that for curve 2 will cause supersonic flow downstream of the diffuser
throat and a shock wave in the diverging section of the diffuser, but will not affect the flow anywhere
upstream of the shock.

Suppose the area of the diffuser throat is now increased to that denoted by ab in the figure. Reducing
the exit pressure until the flow at area ab is sonic results in a lowered pressure in the test section
(curve 3) with the formation of a shock (denoted by the dash-dot line) and then subsonic deceleration
in the diverging section of the nozzle upstream of the test section. Opening the throat area to cd
(curve 4) and decreasing the exit pressure creates a stronger shock further down the nozzle. At some
level of opening, ef, corresponding to curve 5, the shock enters the test section (curve 5A). It can be
at any location in the test section, for example the downstream end (curve 5B). In this condition the
diffuser is still wholly subsonic.
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Figure 10.10: Starting sequence of a supersonic wind tunnel for various areas of the diffuser throat; dash-dot
(–·–·–·) lines denote static pressure jumps across shocks (after Crocco, 1958).

The arguments given for the fixed geometry diffuser, however, imply that the condition when the
shock is in the test section is unstable. If the shock moves slightly into the convergent passage, the
motion will continue until the shock settles at the end of the divergent passage in the diffuser where
the area is the same as the test section area (curve 5C). At this condition the shock strength and
the final stagnation pressure are the same as when the shock was in the test section and the shock
position is stable with respect to motion into the diffuser.

With area ef, therefore, the shock can be swallowed through the diffuser throat. Once this occurs,
adjustment of the downstream conditions (increases in the back pressure) can move the shock to a
location upstream in the diverging section of the diffuser where the Mach number is lower. (For area ef
this would correspond to curve 6, although for reasons mentioned earlier, the shock would actually
be positioned downstream.) In addition, with variable geometry the throat area can be reduced,
decreasing the diffuser throat Mach number and hence the Mach number at which the shock occurs.
In the ideal case this would allow sonic conditions at the diffuser throat although, again, for stability
the shock would be placed downstream of the throat.

10.5.3 Starting of supersonic inlets

The starting problem is also encountered in inlets and turbomachinery blading in which entry Mach
numbers are supersonic, because these devices must reach their design Mach numbers through
operation at lower speeds. Consider a fixed geometry inlet designed for shock-free operation at
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Figure 10.11: Schematics of the internal compression diffuser, showing: (a) ideal isentropic diffusion from M0

through unity to M < 1; (b) operation below the critical (starting) Mach number; (c) operation at the critical
M0c , but not started; and (d) operation at the critical M0c and started, with shock positioned at the throat, γ = 1.4
(Kerrebrock, 1992).

supersonic Mach number, say M0c , as sketched in Figure 10.11(a). At supersonic Mach numbers
below the design value the inlet cannot pass the flow in the upstream streamtube and the excess must
be diverted around the inlet. This cannot occur, however, if the flow is supersonic all the way to the
inlet. A shock therefore stands in front of the inlet, as in Figure 10.11(b). As the Mach number is
increased towards M0c the corrected flow per unit area of the incoming stream decreases, reducing
the flow that must be spilled round the inlet, and allowing the shock to move closer to the inlet.

At the design Mach number, the shock will sit on the inlet lip. In this position it is unstable, because
a small perturbation that moves it into the inlet causes a decrease in shock Mach number, an increase
in the mass flow that the throat can pass, and a transient reduction in density and pressure between
shock and throat. Following the arguments associated with shock swallowing in the diffuser, the
consequence of the transient is shock motion through the throat to a downstream position determined
by the variable nozzle. To achieve the best recovery, the nozzle is adjusted to position the shock at
the throat, as in Figure 10.11(d). Figure 10.9, which shows diffuser characteristics, also applies to
the internal compression inlet, with test section area A1 corresponding to upstream streamtube area
A0 and with A3 (or A′

2, as appropriate) corresponding to ATH. The figure gives the ideal contraction
ratio, the throat Mach number, and the inlet/throat area ratio, along with the area ratio for isentropic
flow as a function of inlet Mach number.

Off-design behavior of a fixed geometry inlet designed for operation at Mach number M0c = 3
is shown in Figure 10.12 (Kerrebrock, 1992). As the Mach number increases from unity, the inlet
pressure recovery corresponds to a normal shock until the shock is swallowed and the inlet is started
(at a Mach number of 3), with a consequent increase in inlet pressure recovery. Further increase in
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Figure 10.12: Off-design behavior (with Mach number) for the internal compression diffuser of Figure 10.9,
showing hysteresis connected with starting, γ = 1.4 (Kerrebrock, 1992).

Mach number means the throat Mach number increases and the pressure recovery drops. Hysteresis
behavior exists with a fixed geometry inlet in that once it is started the Mach number can be reduced
with the shock still able to be positioned at the throat by adjusting the downstream conditions. This
behavior continues until the throat Mach number reaches unity (at an inlet Mach number of 1.72 for
the inlet shown). At this condition the corrected flow per unit area at the throat starts to decrease
with Mach number so the throat can no longer pass the flow. A spill shock therefore forms upstream
of the inlet, with the decrease in pressure recovery shown in Figure 10.12.

Variable area inlets enable more control over the starting process. If a shock stands ahead of the
inlet, by increasing the throat area the shock is brought closer to the inlet and, when the shock
reaches the inlet lip, it can be swallowed. The throat area can then be reduced (in combination with
the adjustment of the exhaust pressure) so that, as with the wind tunnel, the inlet can (ideally!) be
run with a Mach number of unity at the throat in a condition free of shocks.

10.6 Characteristics of supersonic flow in passages and channels

It is useful to describe features of actual flows in ducts, channels, and other passages in which
shock waves play a key role. One example is turbomachinery blading. Three-dimensional viscous
computations are used in much of the design work for turbomachinery components, and the goal
here is not only to illustrate features of the flow but also to show the capability of computations to
capture flow structure.

10.6.1 Turbomachinery blade passages

Figure 10.13 shows the results of three different calculation procedures plus measurements for an
aeroengine fan rotor with supersonic relative flow. The calculations are shown for a constant radius
surface. The three-dimensional numerical simulations are, from left to right and in increasing order
of sophistication, an inviscid Euler calculation, a Euler calculation in which the blockage effect of the



528 Compressible internal flow

Figure 10.13: Mach number contours near the hub of an aeroengine fan rotor with supersonic relative inflow
(calculations by Denton, measurements from Chima and Strazisar (1983)) (Cumpsty, 1989).

boundary layer is included and, a viscous calculation.5 Noticeable (and important) is the similarity
of the viscous calculation and the inviscid calculation including blockage, not only with one another
but also with the measurements. The purely inviscid calculation predicts an entirely different flow,
in which a second strong shock occurs near the trailing edge. The inclusion of a realistic estimate
of blockage in a transonic calculation such as this is essential, a result that is not surprising in view
of the strong influence of area changes for flow with Mach numbers near unity noted in previous
sections.

Losses due to shock waves are an important part of accurate prediction methods for fan or com-
pressor blade performance. The problem is compounded by the shock–boundary layer interaction
on the suction surface which can involve a region of separated flow. Although sometimes more than
a single shock is involved and a system of shocks and expansions occurs, numerical procedures
based on the Reynolds averaged Navier–Stokes equations have been found to capture shock-related
loss well in these configurations. As remarked by Cumpsty (1992), the methods are implemented in
conservation form and can capture features such as shock losses, which are set by overall constraints
in basically a control volume fashion.

10.6.2 Shock wave patterns in ducts and shock train behavior

The flow field depicted for the fan in Figure 10.13 has a single shock, but in ducts which are much
longer (compared to their width) a normal, or near normal, shock wave is not generally the mechanism
of transition from supersonic to subsonic conditions. The observed configuration is more complicated,
with a gradual transition rather than the sharp discontinuity of a shock wave. More specifically, if
duct boundary layers are thin and the shock is weak a normal shock does extend over much of

5 A Reynolds averaged Navier–Stokes (RANS) computation, in which the turbulent transport process is modeled.
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Figure 10.14: Sketch of the flow pattern and static wall pressure distribution in normal and oblique shock trains
(a) normal shock train; (b) oblique shock train (Heiser and Pratt, 1994).

the stream, as sketched in Figure 10.14(a) (Heiser and Pratt, 1994; Shapiro, 1953). If the boundary
layers are thick and the shock is strong (higher Mach numbers) the boundary layers separate from
the walls of the duct with a series of oblique shocks and a pressure distribution as in Figure 10.14(b)
results.

A one-dimensional treatment disregards the non-uniformities deriving from the presence of the
boundary layers, replacing the non-uniform flow by a fictitious uniform mean flow. Suppose we have
a central core of uniform flow with boundary layers near the wall. A discontinuity separating two
regions with uniform values of pressure is possible in the core but is incompatible with the boundary
layers where the decreased Mach number does not allow the realization, through a shock, of the
same pressure ratio as in the core. Moreover, near the walls the velocities are subsonic and shocks
do not exist. A normal shock across the whole duct is therefore not compatible with the presence of
boundary layers.

Experiments show that if the boundary layers are removed by suction, a shock can be established
across almost all of the duct width and it is possible to obtain, by proper adjustment, a practically
normal shock (Shapiro, 1993), although the normal shock cannot be established right to the walls. If
the shock strength is small (shock pressure ratio near unity), however, the boundary layer can adjust
itself to this pressure increase in a sufficiently short length without undergoing separation so the
corresponding gradual process, made possible by viscous forces, occurs in a small fraction of the
duct width.

There is a limit to the possibilities for boundary layer adjustment without separation, and above a
pressure ratio of roughly 2 for turbulent boundary layers, separation occurs. A consequence is that
the foot of the normal shock present in the central part of the duct bifurcates near the wall and is
replaced by two more or less straight oblique shocks. In this situation the configuration of the shock
pattern is found to depend on the shape of the section.

In summary, only for low supersonic velocities and thin boundary layers is a quasi-normal shock
possible in a duct. Otherwise, a non-one-dimensional pattern is produced. The pattern contains
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oblique shocks crossing in the center of the duct and reflected back and forth in the central supersonic
region of flow, while the region adjacent to the wall adjusts gradually to the corresponding pressure
increase with, presumably, strong exchange of momentum due to the high turbulence level. The sub-
sonic regions spread into the supersonic region with downstream distance until the latter disappears
completely and the shock pattern terminates, with the subsequent process one of adjustment of the
subsonic velocity distribution without appreciable pressure increase.

Throughout the whole process frictional effects are small. For a constant area duct, if wall friction
can be neglected the relations between the initial (supersonic) and the final (subsonic) conditions
are the same as those across a normal shock. The pressure rise and overall entropy increase must
therefore also be closely similar to those in a normal shock. In this shock system or, as it is often
referred to, shock train, pictured in Figure 10.14, only a part of the entropy increase is produced
by the shock pattern, with the rest due to the dissipative processes present in the turbulent regions
adjacent to the walls.

The length of the region occupied by the shock train is a function of the flow characteristics.
Figure 10.15 (Shapiro, 1953) shows the measured wall static pressure for a constant area duct with
supersonic initial conditions and varying back pressure. The shock train occurs over several diameters
but, because the wall shear stress is small, the pressure rise is close to that of a normal shock at the
initial Mach number.

To illustrate this further, values of the ratio pf/pi between the pressure maximum pf (the “final”
pressure) and the initial pressure pi, versus Mach number Mi in the starting section, are shown in
Figure 10.16 for a constant area duct. The solid curve is the theoretical result for a normal shock,
and there is only a small difference between this and the measured shock train pressure ratios. The
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Figure 10.16: Measured and theoretical pressure ratios for a complete normal shock train in air as a function of
initial Mach number (Crocco, 1958; data of Neumann and Lustwerk, 1949).

lengths over which these shock systems exist are illustrated by Figure 10.17 as a function of the
initial Mach number Mi.

Shock trains can exist either in the “complete” form, illustrated by the data above, or in a trun-
cated fashion. Which occurs depends on back pressure as indicated by the computational results
of Figure 10.18. Figure 10.18(a) shows computed wall static pressure versus downstream distance
in a two-dimensional channel at an inlet Mach number of 3.0. The shock train consists of a series
of oblique shocks. The different curves correspond to different values of back pressure pB/pi. The
normal shock pressure ratio is also indicated. As the overall pressure ratio is lowered, less and less
of the shock train stays in the channel; the shock train can be said to slide along the channel to ac-
commodate the appropriate pressure rise. Figure 10.18(b) shows the data of Figure 10.18(a) with the
origins shifted so that the start points of the shock trains are at the same location. Other computations
in the paper demonstrate that the part of the shock train structure that remains within the channel is
little changed by exit conditions. A range of pressure ratios thus can be delivered by a shock train,
and this accommodation is useful in high speed propulsion systems such as dual mode scramjets.
Further analysis of these devices is given in Heiser and Pratt (1994) and experimental information
can be found in Waltrup and Billig (1973).
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10.7 Extensions of the one-dimensional concepts – I: Axisymmetric
compressible swirling flow

The swirling flows addressed in Chapter 8 had uniform density. There are many situations, however,
in which both strong swirl and Mach numbers near unity exist, and the flow can no longer be
considered incompressible. The combination of swirl and compressibility leads to features beyond
those encountered in the examination of either phenomenon separately. These can be illustrated
by extending the one-dimensional treatment of Section 10.3 to compressible swirling flows. As
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previously, we obtain expressions for the variation in properties associated with imposed changes in
geometry (which now includes radius) as well as mass, momentum, and energy input. Even without
integration the explicit form of these differential equations yields information about behavior of
interest (Anderson et al., 1970).

10.7.1 Development of equations for compressible swirling flow

The class of flows to be addressed are axisymmetric and steady. The fluid is a perfect gas with
constant specific heat. Property values normal to stream surfaces are neglected and property values
along the stream assumed continuous. To deal with friction forces, it is assumed that any friction
forces act directly opposite to the local stream direction.

As in Section 10.3, there is a choice of which variables are chosen as independent (specified)
and which are dependent. The perspective taken is analysis and design of fluid machinery. As such,
variables chosen as independent are: (1) streamtube area; (2) streamtube radial location; (3) drag
forces; (4) energy addition; (5) mass addition; and (6) wall friction. The first five can be regarded
as under the control of the designer. Drag forces and wall friction are not physically independent
variables, in the sense that one cannot freely vary them, but they are classified here as independent
in order that their effects can be readily assessed.

The procedure followed is similar in concept to that in Section 10.3, but the control volume
is annular. Further, there is an additional conservation equation (angular momentum) as well as
additional kinematic relations linking the velocity components. It is therefore useful to begin the
development afresh. The streamlines and streamsurfaces and the nomenclature are given in Figure
10.19 and Figure 10.20 gives a view of an elementary control volume. The meridional component
of velocity (i.e. the projection of the velocity on an r−x plane) is denoted by um, with the circum-
ferential (θ ) component labeled as uθ and the velocity magnitude as u. The streamtube area, A, is
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normal to the meridional direction (see Figure 10.20) and dm denotes distance along the meridional
direction.

The mass flow in an axisymmetric annular streamtube is given by

ṁ = ρum A. (10.7.1)

The change in mass flow across the control volume is given by

dṁ

ṁ
= dρ

ρ
+ dum

um
+ dA

A
.

Rearranging the independent (on the right) and dependent (on the left) variables,

dρ

ρ
+ dum

um
= dṁ

ṁ
− dA

A
. (10.7.2)

The net flux of angular momentum out of the control volume is equal to the sum of the torques on
the volume ((1.8.8) or see Section 2.8)∑

rdFtotalθ = (ṁruθ )out − (ṁruθ )in. (10.7.3)

In (10.7.3)
∑

rdFtotalθ includes all torques (drag forces and friction). We denote the force additional
to wall friction in the θ -direction by dFDθ , with the torque rdFDθ . The friction force can be expressed
as τdAw, where τ is the local wall shear stress and dAw is the wetted area, i.e. the surface area of the
control volume. The wall shear stress is again defined in terms of the friction coefficient Cf as

τ = C f
1
2ρu2.
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In analogy with the one-dimensional usage, a hydraulic diameter, dH, can be defined as

dH = 4A

dAw/dm
= 4 (flow through area)

perimeter
.

The frictional force is thus 2Cfρu2 Adm/dH, pointing in a direction opposite to the velocity. The
θ -component is this quantity times sin α, where α is the angle between the streamline and the
meridional direction (see Figure 10.19) so the frictional torque is 2Cfρu2r sin α Adm/dH.

The net angular momentum flux out of the control volume is evaluated as follows. The angular
momentum flux out of the volume is (ṁ + dṁ)(uθ + duθ )(r + dr ). The angular momentum flux in
is (ṁruθ + ruinjθdṁ), where uinjθ is the circumferential component of velocity at which the injected
fluid enters the control volume. (If dṁ is negative, uinjθ is equal to uθ , the local circumferential
velocity.) The net outflow of angular momentum from the control volume is thus, to first order
in small changes, ruθdṁ + ṁrduθ + ṁuθdr − ruinjθdṁ. Equating this quantity to the total torque
exerted on the fluid within the control volume, dividing by ṁruθ , and invoking the relationships
um = u cos α and uθ = u sin α and the definition of the Mach number, M2 = u2/(γ p/ρ), yields the
desired angular momentum relationship:

duθ
uθ

= −dr

r
−
(

1 − uinjθ

uθ

)
dṁ

ṁ
− 2

sin 2α

dFDθ

γ p AM2
− 2

cosα
C f

dm

dH
. (10.7.4)

To derive the expression for conservation of meridional momentum, we examine the control
volume in Figure 10.21 which occupies a circumferential angle, dθ . The forces that act on the fluid
within this elementary volume are pressure, friction, and drag forces, denoted by FDm . Summing up
the contributions, again working to first order in the small changes across the volume, the total force
is Adp + 2ACfρu2cos α (dm/dH) + dFDm , where A represents the normal area for the volume in
Figure 10.21(c).

These forces are balanced by the net flux of meridional momentum out of the control volume.
There is a momentum flux out of both the end faces and the side faces. Through the former (sides c
and d in Figure 10.21(b)), there is umṁ + uinjm dṁ in and [(um + dum)(ṁ + dṁ)] out, where uinjm is
the meridional component with which any injected mass enters.

The flow of meridional momentum through the sides of the element can be seen with reference to
Figures 10.21(c) and 10.21(d). The circumferential velocity, uθ , has a component in the meridional
direction given by −uθp sinφ, where uθp is the projection of uθ in the meridional direction and φ
is the angle between the axial and meridional directions. The velocity uθp is given by (see Figure
10.19(d))

uθp = uθ sin
dθ

2
≈ uθ

dθ

2

since dθ � 1. A flow of meridional momentum thus takes place into the control volume of
−ρ(uθ (dθ/2) sinφ) dm × uθdn. The flow of meridional momentum out of the volume has the
same magnitude but is opposite in sign, so that the net outflow of meridional momentum through
the side faces of the volume is ρu2

θ sinφdθdmdn. Noting that A, the area normal to the meridional
direction, is given by A = rdndθ , and using sinφ = dr/dm, the net meridional momentum flux
through the sides can be expressed as −ρu2

θ (dr/r) A, which is the familiar “centrifugal force” term.
The last steps in the development of the meridional momentum equation consist of equating the

sum of the forces in the meridional direction to the net outflow of meridional momentum and dividing
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Figure 10.21: Control volume for derivation of meridional momentum equation: (a) perspective view of element;
(b) projection of element; (c) meridional projection of element; (d) end-on view of element.

both sides of the equation by pA to give

dum

um
γM2cos2α + dp

p
= γM2sin2α

dr

r
− γM2cos2α

(
1 − uinjm

um

)
dṁ

ṁ

−dFDm

p A
− 2γM2cosαC f

dm

dH
. (10.7.5)

Energy exchange to the control volume is through heat addition and is specified through defining
changes in stagnation temperature, Tt. Variations in static temperature and velocity are related to
stagnation temperature variations through the definition of stagnation temperature:

Tt = T + u2

2cp
. (10.7.6)

Taking differentials of (10.7.6) and dividing by Tt,

dT

T
+ (γ − 1) M2 du

u
=
[

1 + (γ − 1) M2

2

]
dTt

Tt
. (10.7.7)

Six unknowns have been introduced: dum/um, dρ/ρ, dp/p, du/u, dT/T, and duθ /uθ , with four
equations, (10.7.2), (10.7.4), (10.7.5), and (10.7.7) to connect them. The two additional equations
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needed to close the system are the equation of state for a perfect gas in differential form:

dp

p
− dρ

ρ
− dT

T
= 0, (10.7.8)

and the relation between the velocity magnitude, u, and the two components:

u2 = u2
m + u2

θ . (10.7.9)

Differentiating (10.7.9) and dividing by u2

du

u
− cos2α

dum

um
− sin2α

duθ
uθ

= 0. (10.7.10)

Equations (10.7.7) and (10.7.10) can be used to eliminate dum and duθ from the remaining four
equations, although it is useful to maintain the grouping of the independent terms as they appear in
(10.7.2), (10.7.4), (10.7.5), and (10.6.7). The equations are linear so effects of independent variables
may be combined.

Other quantities of interest include the changes in: Mach number, M; meridional Mach number
(the meridional component of Mach number), Mm; flow angle, α; and stagnation pressure, pt. These
can be related to the six quantities listed:
Mach number

d M2

M2
= 2

du

u
− dT

T
; (10.7.11)

meridional Mach number

d M2
m

M2
m

= 2
dum

um
− dT

T
; (10.7.12)

flow angle

dα =
(

du

u
− dum

um

)
cotα; (10.7.13)

stagnation pressure

dpt

pt
= dp

p
+




γM2

2

1 + γ − 1

2
M2



(

d M2

M2

)
. (10.7.14)

10.7.2 Application of influence coefficients for axisymmetric compressible swirling flow

As in Section 10.3, the set of linear equations for the differential quantities can be displayed in a table
of influence coefficients (Table 10.3). The influence coefficients are now functions of two quantities,
Mach number, M, and swirl angle, α, but the principle is the same as for the channel flow situation.
The four columns in Table 10.3 are the groupings of the independent terms which arise naturally on
the right-hand sides of (10.7.2), (10.7.4), (10.7.5), (10.7.7). The term (1 − M2 cos2α) (= (1 − M2

m))
has been attached to the dependent variables to simplify the table and to emphasize that it is the
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meridional Mach number that plays the central role in determining the condition at which the flow
regime changes and at which choking can occur. Applications of the influence coefficients are given
in the next several sections.

10.7.2.1 Behavior of stagnation pressure

The first application concerns the variation in stagnation pressure:

dpt

pt
= −

γM2

2

1 + γ − 1

2
M2

[(
1 + γ − 1

2
M2

)
dTt

Tt

]

− γM2sin2α

[
dr

r
+
(

1 − uinjθ

uθ

)
dṁ

ṁ
+ 2

sin 2α

dFDθ

γ p AM2
+ 2C f

cosα

dm

dH

]

−
[
−γM2sin2α

dr

r
+ γM2

m

(
1 − uinjm

um

)
dṁ

ṁ
+ dFDm

p A
+ 2γM2cosα C f

dm

dH

]
. (10.7.15)

Rearranging the terms in (10.7.15), the change in stagnation pressure can be written

dpt

pt
= −γM2

[(
1 − uinj

u
cosχ

) dṁ

ṁ
+ dFD

γ p AM2 cosα
+ 2C f

dH

(
dm

cosα

)
+ dTt

2Tt

]
. (10.7.16)

Equation (10.7.16) shows that changes in r and A do not affect the stagnation pressure. The term dFD

in (10.7.16) is the drag force in the streamwise direction, defined by dFD = dFDm sinα + dFDθ cosα.
Only forces locally parallel to the stream affect the stagnation pressure. The angle χ is the angle
between the injected flow and the mainstream. The term cos α in the denominator reflects the effect
of extending the residence time within dm.

The behavior of the injection term uinj/u indicates that stagnation pressure is affected by the
components of momentum locally parallel to the stream. For a given injection velocity ratio, uinj/u,
stagnation pressure can best be preserved by injecting the flow so that χ = 0, i.e. so that injection
takes place in the direction of the mainstream.

The stagnation pressure change due to heat addition, reflected in the dTt/Tt term, is independent
of flow direction.

For the wall friction term, the quantity cosα appears in the denominator because dm/cosα is the
actual distance that the flow must cover for a given dm. As discussed in Section 8.9, vaneless diffusers
have highly swirling flows with values of α that are large, 75◦ or more under some conditions. If so,
the actual distance traveled can be a factor of 5 or more larger than the meridional distance with a
corresponding increase in frictional losses.

10.7.2.2 Planar isentropic swirling flow

A second application is planar isentropic compressible swirling flow, which can be considered an
idealization of the situation in a constant axial width vaneless diffuser or a radial inflow nozzle. In
this situation the meridional Mach number, Mm, becomes the radial Mach number, Mr, and the flow
angle, α, is the angle between the radial direction and the velocity. The only non-zero independent
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variables are dA/A and dr/r, with the relation between the two given by dA/A = dr/r. Under these
conditions the equations from the influence coefficient matrix for the variation in Mach number and
swirl angle are:

dM2

M2
= −2[1 + (γ − 1)M2/2]

[1 − (M2 cos2α)]

(
dr

r

)
= −2[1 + (γ − 1)M2/2][

1 − M2
r

] (
dr

r

)
(10.7.17a)

dα = −[(M2 sin 2α)/2]

[1 − (M2 cos2α)]

(
dr

r

)
= −[(M2 sin 2α)/2][

1 − M2
r

] (
dr

r

)
. (10.7.17b)

The implication from (10.7.17) is that, analogous to the situation in compressible channel flow where
M = 1 at the minimum area, the condition M2

r = 1 is associated with a minimum radius.
To bring out the features of this compressible swirling flow, we examine the solution of (10.7.17).

This can be done by integrating the differential equations, but for this simple case it is instructive to
work directly with the integral forms of the conservation statements.

The axisymmetric form of the continuity equation is

ρrur = Gρ t = constant, (10.7.18)

where G is a (dimensional) constant proportional to the mass flow per unit axial depth. The circum-
ferential velocity distribution is

ruθ = �

2π
= K . (10.7.19)

The energy equation plus the condition of isentropy yields

u2
r + u2

θ = u2
max

(
1 − T

Tt

)
= u2

max

[
1 −
(
ρ

ρt

)γ−1
]
. (10.7.20)

In (10.7.20) u2
max is a reference velocity corresponding to the condition of temperature (or density)

equal to zero. Combining (10.7.18)–(10.7.20) provides a relation between the non-dimensional
radius, r/(G/umax), and the static/stagnation density ratio as (Howarth, 1953)

r

(G/umax)
=
{

(K/G)2(ρ/ρt )2 + 1

(ρ/ρt )2[1 − (ρ/ρt )γ−1]

}1/2

. (10.7.21)

The denominator of the term on the right-hand side of (10.7.21) vanishes, corresponding to infinite
radius, when ρ = ρ t and ρ = 0. The former corresponds to the limit of Mach number of zero,
the latter to the limit of Mach number of infinity. At some intermediate Mach number and hence
density, therefore, a minimum radius exists. The minimum radius is obtained by differentiation of the
expression on the right-hand side of (10.7.21). It is found to occur when the radial component of the
velocity is equal to the local speed of sound, in other words when the radial Mach number is unity.
At these conditions the mass flow per unit circumferential area is a maximum. (As pointed out by
Howarth (1953), from considerations of how one might generate such a flow, the field of flow cannot
physically extend exactly to the minimum radius.) As implied by the influence coefficients in Table
10.3, transition of the total Mach number through unity no longer has the special significance it did
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Figure 10.22: Flow angle versus radius for planar, isentropic, axisymmetric compressible swirling flow; r∗ is
the radius at which the Mach number is unity, α∞ is the flow angle at radii r/r∗ � 1. Solid lines mark the
solution trajectory, dashed lines are loci of constant Mach number; γ = 1.4.

in one-dimensional channel flow; it is the radial Mach number (which corresponds to the meridional
Mach number in the general case) that plays the important role.

The parameter K/G is an invariant for the flow. It can be viewed as the tangent of the swirl angle
α when ρ ∼= ρ t, i.e. K/G → tanα in the regime where the Mach number is much less than unity. For
a subsonic entry radial inflow swirl nozzle this would be the swirl angle at large radius, denoted by
α∞. One could impose a specified value of α∞ for such a nozzle by setting the exit angle on a row
of guide vanes located at a radius several times greater than the minimum radius.

There are two possible solution regimes for (10.7.21). In one the density tends to ρ t at large
radius and the radial Mach number is everywhere less than (or equal to at a minimum radius) unity.
Where Mach numbers are low enough so the density is essentially constant, the ratio uθ /ur =tanα is
also constant and the streamlines are spirals with angles that are uniform with radius. For the other
solution, the density tends to zero at large radius, with the radial Mach number everywhere greater
than (or equal to, at the minimum radius) unity. One could (conceptually at least) pass from one
regime to the other using a radially subsonic inflow nozzle connected to a radially supersonic outflow
nozzle section by an axial section of constant radius, which had a throat at which the meridional
(axial) Mach number was unity.

Features of a planar, axisymmetric, isentropic, compressible swirling flow are illustrated in Figure
10.22. The curves show flow angle, α, versus radius, for different values of tanα∞ = K/G. The radius
is normalized by r∗, the radius at which the Mach number, M(=

√
M2
θ + M2

r ), is equal to unity. Lines
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of constant Mach number are also indicated. Zero swirl (α∗ = α = 0) is a line on the horizontal axis.
For zero swirl the minimum radius is r∗. As the swirl angle, α∞, increases, the radial Mach number
at which the Mach number is unity decreases and the minimum radius becomes a smaller fraction
of r∗. In the regime in which radial Mach numbers are larger than unity the radial velocity increases
with radius (similar to the velocity increase in supersonic flow in a diverging channel) while the
tangential velocity decreases with radius, with a consequent strong decrease in swirl angle.

10.7.2.3 Pressure distribution in a swirling flow

The static pressure distribution along the meridional path is of concern in connection with boundary
layer behavior. To examine the impact of swirl on pressure distribution consider the situation with
no friction, heating, drag forces, or mass addition, so only area and radius vary. Changes in static
pressure are then given by

dp

p
= γM2

m

1 − M2
m

dA

A
+ γM2

θ

1 − M2
m

dr

r
. (10.7.22)

An interpretation of (10.7.22) is that meridional velocity may be “exchanged” for pressure largely
through streamtube area variation, while circumferential velocity may be exchanged for pressure
largely through variation of streamline radial location (Anderson et al., 1970). Diffusers for axial
turbomachines generally make use of the former of these exchanges while diffusers for radial ma-
chines employ the latter. For radial machines, the swirl velocity is often dominant as a contributor to
pressure variation and virtually the same pressure rise is achieved whether the radial flow is in the
desired direction or is reversed.

A related application concerns the influence of width variation and wall friction on radial vaneless
diffuser pressure rise. The diffuser area at any radius is A = 2πrW, and the incremental area change
is dA/A = dW/W + dr/r. The meridional distance dm is dr, and the hydraulic diameter, dH, is 2W.
Substituting these in the influence coefficients of Table 10.3, the incremental pressure rise is given
by

dp

p
=
(
γM2

1 − M2
m

){
cos2α

dW

W
+ dr

r
− C f

r

W
cosα

[
1 + (γ − 1)M2

] dr

r

}
.

Non-dimensionalizing by the dynamic pressure, ρu2/2,

dp

ρu2/2
=
(

2

1 − M2
m

)(
cos2α

dW

W
+
{

1 − C f
r

W
cosα

[
1 + (γ − 1)M2

]} dr

r

)
. (10.7.23)

Equation (10.7.23) shows that at high values of swirl angle (cos2α� 1) wall divergence (or conver-
gence) has little effect on static pressure rise.

Equation (10.7.23) provides a rough estimate for the decrease in vaneless diffuser pressure rise
due to wall friction. Diffusers with small width/radius ratios (large r/W) suffer the greatest decrease.
Figure 10.23 shows the normalized rate of pressure rise, [2dp/(ρu2)/(dr/r )], in a parallel wall
vaneless diffuser as a function of skin friction coefficient, Cf, for different inlet swirl angles. The
upper value of friction coefficient, Cf = 0.025, is taken from the information in Japikse (1984). (See
also Cumpsty (1989) for information about vaneless diffuser performance.) For Cf = 0 the result
is that for isentropic swirling compressible flow. A lower impact of wall friction as Cf increases is
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Figure 10.23: Incremental rate of vaneless diffuser static pressure rise versus wall skin friction coefficient for
one-dimensional swirling flow, Mi = 1, ri/W = 20, γ = 1.4.

shown for high swirl angles. At these angles the pressure rise is due mainly to the ρu2
θ /r term, and

the frictional force is modeled as acting opposite to the direction of the velocity with a smaller radial
component for higher values of α.

The rate of change of ruθ (= K), the angular momentum per unit mass about the axis, is obtained
from Table 10.3 as

d(ruθ )

ruθ
= − r

W

C f

cosα

dr

r
. (10.7.24)

Equation (10.7.24), which can be derived directly from application of conservation of mass and
conservation of momentum to an axisymmetric control volume spanning the diffuser at radii r and
r + dr, shows that increases in wall friction, r/W, and swirl angle enhance the rate at which the angular
momentum decreases with radius. While the discussion in Section 8.9 shows that there are aspects
of the flow in a vaneless diffuser which cannot be captured by the one-dimensional description,
the approach enables extraction of qualitative (and often quantitative) parametric trends in a simple
manner.

10.7.2.4 Choking in a swirling flow

The condition at which choking occurs determines the mass flow capacity. The table of influence
coefficients (Table 10.3) indicates that in a swirling flow, unlike a purely axial flow, all quantities
pass without difficulty through M = 1. The critical condition is when the meridional Mach number
(Mm = M cosα) reaches unity. The meridional Mach number variation for a flow with only area and
radius change is

dM2
m

M2
m

= −
2

(
1 + γ − 1

2
M2

m

)
1 − M2

m

dA

A
− (γ + 1) M2

θ

1 − M2
m

dr

r
. (10.7.25)
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The analogy with (non-swirling) one-dimensional channel flow is that one does not expect the be-
havior to alter qualitatively as long as axisymmetric pulses, moving at the speed of sound, can
make themselves felt upstream. Conclusions from channel flow analysis concerning transition
through the choking point are essentially unaltered, but they must now be applied about the condition
of Mm, the meridional Mach number, equal to unity.

Equation (10.7.25) indicates that in an isentropic swirling flow it is possible to pass through the
choking condition by a combination of variations in area, A, and radius, r. For example, when only
r can vary, (10.7.25) becomes

dM2
m

M2
m

= − (γ + 1) M2
θ

1 − M2
m

dr

r
. (10.7.26)

For variations in radius to have an effect on flow state, (10.7.26) shows that swirl must be present.
For constant radius isentropic flow the flow per unit area normal to the flow direction (ṁ/(A cosα))

is maximum when M = 1. The area normal to the flow direction must therefore increase as M increases
beyond 1, even though the meridional streamtube area continues to decrease until the condition
Mm = 1. From Table 10.3, the expression describing this is

d(A cosα)

A cosα
= cos2α

(
1 − M2

1 − M2
m

)
dA

A
. (10.7.27)

In the regime where M > 1 but Mm < 1, the flow swings toward meridional rapidly enough to allow
the area normal to the flow to increase while the axisymmetric streamtube area continues to decrease.

Finally, the reduction in maximum flow rate per unit area due to swirl can be found by taking the
ratio of choking mass flow parameters for fixed γ , pt, Tt, r, and A

ṁα �=0◦

ṁα=0◦
=
[

(γ + 1) cos2α

γ + cos 2α

] γ−1
2(γ−1)

. (10.7.28)

With swirl and a given stagnation pressure and temperature, at any meridional velocity the density is
lower and the Mach number is higher than in axial flow. The mass flow per unit area is thus decreased
compared to the situation without swirl.

10.7.3 Behavior of corrected flow per unit area in a compressible swirling flow

Figure 10.24 shows corrected flow per unit area normal to the meridional direction as a function of
meridional Mach number, for different values of swirl velocity and constant radius (Millar, 1971).
Curves of constant Mach number and constant circumferential velocity, non-dimensionalized by the
speed of sound based on stagnation conditions (uθ /

√
γRTt ), are indicated in the figure. The curve

for uθ /
√
γRTt = 0 is the plot of corrected flow per unit area versus Mach number given previously

in Figure 2.6.
The lines of constant Mach number in Figure 10.24 are straight lines between the origin and the

corresponding points on the uθ /
√
γRTt = 0 curve. To see this, we write the corrected flow per unit

area as

ṁ
√

Tt R/γ

Apt
=
√

T

Tt

ρ

ρt

um√
γRT

= Mm f (M),
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Figure 10.24: Constant radius, axisymmetric, isentropic compressible swirling flow in an annulus: corrected
flow per unit annulus area as a function of meridional Mach number, Mm, for different values of total Mach
number, M, swirl angle, α (dashed lines), and swirl velocity, uθ /

√
γRTt , γ = 1.4 (Millar, 1971).

where f(M) denotes the ratio (ρ/ρt )
√

T/Tt . For constant Mach number, the corrected flow per unit
area is linearly proportional to the meridional Mach number.

Several other features in Figure 10.24 are of interest. For an inviscid duct flow with no radius
change, Kelvin’s Theorem implies that the swirl velocity is fixed. As area is changed, the flow must
follow a line of constant uθ /

√
γRTt , with the maximum flow per unit annulus area at a meridional

Mach number of unity. In accord with the discussion of (10.7.25), the maximum corrected flow per
unit annulus area decreases as the swirl velocity increases.

Figure 10.24 shows there can be two values of meridional Mach number associated with a given
value of corrected flow per unit annulus area at either a specified angle or a specified non-dimensional
circumferential velocity. The lines of constant flow angle have peaks along the line M = 1.0. For a
constant radius geometry a torque must be applied to the flow in the annulus (such as that created by
turbomachinery blading) to produce changes in angle. If the stream is subsonic, increases in Mach
number (accelerating flow) at constant annulus area result in a higher swirl angle, so the flow swings
away from the meridional direction. If the stream is supersonic, increases in Mach number result in
a decreased flow angle as the flow swings towards the meridional direction. Both these trends were
seen in Figure 10.22. The distance between the 60◦ line and the horizontal line ABC in Figure 10.25
(which shows a part of Figure 10.24) exhibits this behavior.

The vertical line DBE in Figure 10.25 shows a trajectory of constant meridional Mach number,
with the total Mach number going from roughly 0.5 to 1.4, a behavior qualitatively representative
of an axial turbine. To achieve this acceleration for isentropic flow, the area must increase so the
corrected flow per unit annulus area decreases. During the process, the flow angle increases from 0
to approximately 68◦.
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Figure 10.25: Turbine nozzle flow state trajectories for constant corrected flow per unit area (A→C) and constant
meridional Mach number (D→E), γ = 1.4.

10.8 Extensions of the one-dimensional concepts – II: Compound-compressible
channel flow

A configuration often encountered in fluid engineering is a duct or other flow system fed by two
or more streams of different stagnation pressure or temperature. In turbofan engines, for example,
core and fan streams with different stagnation temperatures and pressures can be ducted through a
common nozzle with some fraction of the stream supersonic and some fraction subsonic. Compu-
tational methods exist for analyzing such flows, but considerable insight can be obtained using an
extension of concepts developed for single stream quasi-one-dimensional flow to a multiple stream
framework. In this section, following the treatment given by Bernstein et al. (1967), we develop and
show applications of this idea for understanding the behavior of non-uniform compressible internal
flows.

10.8.1 Introduction to compound flow: two-stream low Mach number (incompressible)
flow in a converging nozzle

The principles that underpin compound-compressible nozzle flow analysis are familiar from one-
dimensional channel flow, but application to even two streams leads to situations that are paramet-
rically complex. It is thus helpful to present first some introduction to compound flow behavior. To
do this with minimum complexity, we examine the low Mach number (incompressible flow) limit of
an inviscid, two-stream, compound flow in a converging nozzle, noting that the important topic of
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Figure 10.26: Two-stream compound flow for a converging nozzle: Ai = A1i + A2i , Ae = A1e + A2e .

choking in a compound flow will be dealt with in subsequent sections. The nozzle is considered to
be fed by two reservoirs having specified stagnation conditions.

Figure 10.26 shows the nomenclature to be used. In the notation in this section the subscripts “1”
and “2” refer to the two streams. The quantities which need to be specified to determine the nozzle
flow are the difference between the stagnation pressure and the exit static pressure in both streams,
�pt1 = pt1 − pe and pt2 = pt2 − pe (or, equivalently, one of these differences and the stagnation
pressure difference between streams 1 and 2, �pt1−2 = pt1 − pt2 ), the density of each stream, ρ1

and ρ2, and a description of the nozzle geometry from inlet to exit. For one-dimensional flow the
geometry description is given by any two area ratios which enable definition of the ratio of the two
inlet areas (A2i /A1i ) and the overall nozzle contraction ratio (Ai/Ae).

Desired information about the nozzle performance is the mass flow ratio of the two streams:

mass flow ratio = ṁ2

ṁ1
= ρ2u2e A2e

ρ1u1e A1e

.

The difference between the stagnation and the exit static pressure is known for each stream so the
velocities u1e and u2e are known (from Bernoulli’s equation) as u1e = √2�pt1/ρ1 and a similar
equation for u2e . Since the density in each stream is constant, finding the mass flow ratio amounts to
determining the exit area ratio of the two streams, A2e/A1e .

The exit area ratio can be found as follows. There are four unknowns in the description of the flow
in the nozzle, the two velocities at the inlet and the two stream areas at the exit: u1i , u2i ,A1e ,A2e ,
respectively. Four relations between these quantities are required. The equation of continuity in the
two streams furnishes two of these:

u1i A1i = u1e A1e , (10.8.1a)

u2i A2i = u2e A2e . (10.8.1b)

Writing Bernoulli’s equation between the inlet and exit for each stream and using the fact that the
static pressure is uniform across the nozzle at a given axial station in this one-dimensional flow leads
to a third relation:

ρ2

ρ1

(
u2

2e
− u2

2i

) = (u2
1e

− u2
1i

)
. (10.8.2)
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The final relation is the statement that the sum of the exit areas of the two streams is the nozzle exit
area, expressed non-dimensionally as

Ae

Ai
= A1e

Ai
+ A2e

Ai
. (10.8.3)

Equations (10.8.1)–(10.8.3) can be combined into a quadratic equation for the exit area of stream
1 in terms of the variable A1e/A1i , from which the desired exit area ratio can be found

(
A1e

A1i

)2
[

1 − �pt2

�pt1

(
A1i

A2i

)2
]

+ 2

(
A1e

A1i

)[(
Ae

A1i

)
�pt2

�pt1

(
A1i

A2i

)2
]

−
{

1 +
(
�pt2

�pt1

)[(
A1i

A2i

)2 ( Ae

A1i

)2

− 1

]}
= 0 . (10.8.4)

Equation (10.8.4) states that the exit stream area ratio, and thus the stream mass flow ratio, depends
on three non-dimensional parameters. Two are associated with the nozzle geometry: the ratio of the
exit area to the inlet area of stream 1 (Ae/A1i ) and the ratio of the stream areas at the nozzle inlet,
(A2i /A1i ). The third parameter is the ratio of stagnation/static pressure differences in the two streams
(�pt2/�pt1 ).

The density ratio does not appear in (10.8.4). The exit area ratio is therefore independent of
the density ratio between the streams, although the velocities and mass flows are not. For given
stagnation pressure differences, the exit velocities in each stream, j, scale as uje ∝ 1/

√
ρ j . Altering

the density in a given stream causes the mass flow in the stream to change as
√
ρ j . The density ratio

is proportional to the inverse of the temperature ratio between the two streams (see Section 1.17),
and the above can also be interpreted as a statement about the independence of the streamline pattern
on the temperature distribution. This is in fact a special case of a general principle for any steady,
inviscid perfect gas with constant specific heats, namely that the streamline pattern is independent
of the stagnation temperature distribution. This idea will be developed in Section 10.10.

To facilitate interpretation of the compound-flow nozzle operation it is helpful to cast the two
geometry parameters in (10.8.4) into more conventional nozzle quantities. We thus present results
for the density-weighted mass flow ratio [(ṁ2/

√
ρ2)/(ṁ1/

√
ρ1)] in terms of the equivalent parameter

set: (i) nozzle contraction ratio Ai/Ae, and (ii) nozzle area ratio at inlet (A2i /A1i ).
Figure 10.27 shows the behavior of a nozzle with inlet area ratio A2i /A1i = 3.0 as a function of the

contraction ratio for several values of stagnation pressure difference ratio (�pt2/�pt1 ). The curves
for�pt2/�pt1 = 1 correspond to a uniform inlet flow, in which the mass flow ratio mirrors the inlet
area ratio. The difference between the mass flow ratio at a contraction ratio of unity (constant area
duct) and the mass flow ratio at other contraction ratios represents streamtube area adjustment within
the nozzle. Larger values of nozzle contraction ratio (smaller values of exit area/inlet area) mean
larger static pressure drops from the inlet to the exit. In the nozzle there is greater velocity change for
the low stagnation pressure stream (stream 2) than for the high stagnation pressure stream (stream 1).
The trend towards equalization of the velocity at the exit as nozzle pressure drop increases implies
a decrease (from inlet to exit) in the fractional area occupied by the low stagnation pressure stream,
and thus in the mass flow ratio, as the contraction ratio increases (see also Section 5.9). For higher
values of contraction ratios than shown the mass flow ratio goes to zero. This corresponds to the
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Figure 10.27: Density-weighted mass flow ratio for flow in a compound nozzle; incompressible flow, A2i /A1i =
3.0.

forward flow limit of stream 2, in other words the condition at which the static pressure at the nozzle
inlet rises to the value of the stagnation pressure pt2 .

There are two main points to be taken from the incompressible analysis. First is that flow behavior
is defined once the nozzle geometry and the ratio of the differences between reservoir stagnation
pressure and exit static pressure in the two streams are specified. Second is the independence of the
exit stream area on the density ratio, which implies the nozzle performance is independent of the
stagnation temperature ratio. These concepts carry over in a qualitative fashion to the compressible
case, examined next, which exhibits the additional phenomena of compound choking.

10.8.2 Qualitative considerations for multistream compressible flow

The treatment of multistream nozzle compound flow is similar to that presented for one-dimensional
flow in a single stream (Sections 2.7 and 10.3). The static pressure variation normal to the flow
direction is neglected, i.e. the static pressure at a given axial location is taken as uniform across
the channel. Each stream is considered as a steady, isentropic flow of a perfect gas with constant
specific heats. Mixing effects are thus excluded, although comments are given later on the influence
mixing is likely to have. The configuration referred to as a compound-compressible flow is shown
schematically for three streams in a converging–diverging nozzle in Figure 10.28.

An explicit difference from the approach used for single streams is that static pressure is used as
an independent variable because it varies only along the duct, whereas all other fluid properties can
vary from stream to stream across the duct.

Before quantitatively examining the flow, we give a qualitative description of flow regimes and
the behavior to be expected; this also aids in framing the questions to be addressed. Consider the two
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Figure 10.28: Schematic of a three-stream compound-compressible nozzle flow.
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Figure 10.29: Flow regimes in two-stream compressible flow.

coflowing streams referred to by the subscripts “1” and “2”, which are depicted in the temperature
versus specific entropy plot of Figure 10.29. Each stream has properties along its respective constant
entropy line as though the other stream were not present. In the example shown, stream 1 has a higher
stagnation pressure and lower entropy than stream 2.

Constant pressure lines are indicated in Figure 10.29, corresponding to the two stagnation pres-
sures, pt1 and pt2 , and to pressure levels representing local static pressure at different positions along
the channel. For a given static pressure, the Mach number in either stream, j, is

M2
j =
(

2

γ j − 1

)( pt j

p

) γ j −1

γ j − 1


 , (10.8.5)
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which depends only on the ratio of the stream stagnation pressure to the local static pressure.
At a static pressure equal to pt2 , the Mach number and velocity in stream 2 are zero, and only

stream 1 will flow. When the static pressure is pa, where pa is close to pt2 , the streams are at conditions
a1 and a2, with both streams subsonic and a large Mach number ratio between the streams. At lower
levels of static pressure, the Mach number ratios approach unity (qualitatively similar to the low
Mach number results of Section 10.8.1), although M1 is always larger than M2.

When the pressure level falls to a value, pb (= p∗
1), at which M1 = 1, the two streams are at

conditions represented by points b1 and b2, with stream 1 sonic and stream 2 subsonic. At a still
lower pressure, pc (= p∗

2), equal to the sonic value for stream 2, M2 = 1 and stream 1 is supersonic
and the two streams are at the conditions represented by c1 and c2 in Figure 10.29. At pressures
below pc, both streams are supersonic.

The above discussion implies there is a range of static pressures between pb and pc in which
one stream is subsonic and the other supersonic. Configurations with more streams of intermediate
stagnation pressures could also exist with several streams supersonic and several subsonic. A rel-
evant issue, therefore, is whether a generalization of the ideas concerning single stream subsonic
and supersonic channel flow exists which can be applied to compound-compressible flow. More
specifically, several questions arise directly from their importance for the single stream situation:

(a) How does one characterize the regimes in which the compound flow behaves as a supersonic
flow and as a subsonic flow?

(b) Is there an indicator whose value serves as a guide to whether the compound flow will act in a
supersonic or subsonic manner?

(c) Does a nozzle throat play the same role in compound-compressible flow as in single stream
compressible flow?

(d) What is the connection between the transition from subsonic to supersonic behavior, the veloc-
ities in the various streams, and the speed of propagation of small amplitude, one-dimensional
disturbances in the channel?

10.8.3 Compound-compressible channel flow theory

To address these issues, we turn to the description of an n-stream compound-compressible channel
flow developed by Bernstein et al. (1967). At any position in the channel, x, with A the total flow
area and Aj the area of the jth stream,

A =
n∑

j=1

A j , and
dA

dx
=

n∑
j=1

dA j

dx
. (10.8.6)

The differential forms of the continuity and momentum equations, and the isentropic relation for
each of the streams, j, follow directly from single stream analysis and are, respectively:

dA j

A j
+ dρ j

ρ j
+ du j

u j
= 0, (10.8.7)

u j du j = −dp

ρ j
, (10.8.8)

dp

dρ j
= γ p

ρ j
. (10.8.9)
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Combining (10.8.7), (10.8.8), (10.8.9), and dividing by dx, the area variation along the channel for
each stream is

dA j

dx
= A j

γ j

(
1

M2
j

− 1

)
1

p

dp

dx
. (10.8.10)

There is no subscript on the pressure because it is uniform across the channel. Summing (10.8.10)
over all streams and using (10.8.6) yields a relation between variations in the channel area and the
static pressure:

1

p

dp

dx
=

dA

dx
n∑

j=1

A j

γ j

(
1

M2
j

− 1

) = 1

β

dA

dx
. (10.8.11)

Equation (10.8.11) defines a variable β as

β =
n∑

j=1

A j

γ j

(
1

M2
j

− 1

)
. (10.8.12)

Examination of β will be seen to be useful in answering questions (a)–(d).
We now address the problem of computing the compound-compressible flow in a fixed geometry

nozzle. At the inlet, the areas occupied by different streams are known (since we know the geometry
of the ducts that supply the nozzle). The stagnation temperature, pressure, and gas properties of
each stream are also known, because the streams can be considered to be supplied from upstream
reservoirs. To close the problem, one other flow variable must be specified. One generally cannot
control the static pressure or mass flow at the inlet, and the back pressure, pB, to which the nozzle
discharges is the known variable (Section 2.7). It is conceptually more straightforward, however,
to describe the nozzle behavior assuming we do know the nozzle inlet static pressure. There is no
inconsistency in proceeding in this manner, and once the ideas concerning flow regimes are set forth
we can then address the procedure for computing the compound flow based on exit conditions.

With static pressure specified at the nozzle inlet, the Mach numbers and hence the corrected flow
per unit area in all the streams are known. Equation (10.8.11)6 could in principle be integrated from
inlet to exit to obtain the static pressure along the nozzle, and thus all other flow quantities. (We
would, in fact, be finding the back pressure which must be set so the nozzle could operate with the
prescribed inlet static pressure.) The result of doing this for different inlet static pressure levels is
shown schematically in Figure 10.30. The stagnation pressure level of the stream with the lowest pt

is indicated by the horizontal line as ptmin . Suppose the stream stagnation pressures are such that for
inlet static pressure pa, the quantities [(pt j − p)/pt j ] are everywhere small compared to unity. If so
the Mach numbers for all streams are much below unity, 1/M2

j is large, and β is positive. In this
situation (10.8.11) shows that static pressure and area changes have the same sign throughout the
nozzle. The static pressure has its smallest value, and the Mach numbers in all streams have their

6 Plus the relation between the Mach number and the static/stagnation pressure ratio

M2
j = 2

γ j − 1

[(
pt j

p

)(γ j −1)/γ j

− 1

]
.
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Figure 10.30: (a) Geometry, (b) static pressure, and (c) compound flow indicator, β, for compound-compressible
nozzle flow.

largest values, at the nozzle throat. The back pressure, pBa , corresponding to this condition is equal
to the nozzle exit pressure.

As the inlet static pressure is decreased, the inlet Mach numbers increase so that β decreases.
Differentiating β with respect to static pressure gives

dβ

dp
=

n∑
j=1

A j

pγ 2
j M4

j

[(
1 − M2

j

)2 + 2

(
1 + γ j + 1

2
M2

j

)]
. (10.8.13)

The quantity dβ/dp is always positive and changes in β and p are in the same direction for all values
of Mj. For inlet static pressures “a” and “b”, therefore, β has a minimum at the throat. This can also
be inferred from the fact that Mach numbers in all streams are maximum at this location.
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As the inlet pressure is decreased further, the value of β at the throat decreases to zero. At this
condition, (10.8.11) is indeterminate, but the static pressure gradient at the throat can be obtained
using L’Hopital’s rule (differentiating numerator and denominator) as

1

p

(
dp

dx

)
β=0

= ±




d2 A

dx2

n∑
j=1

A j

γ 2
j M4

j

[(
1 − M2

j

)2 + 2

(
1 + γ j + 1

2
M2

j

)]



1/2

. (10.8.14)

Equation (10.8.14) holds at the throat, where d2A/dx2 is positive. Just as for a single stream, there
are two isentropic solutions with inlet pressure, pc. The solution with the higher back pressure, pBc

(see Figure 10.30) is qualitatively similar to curves a and b. From knowledge of the single stream
behavior, however, we expect the flow regime downstream of the throat for the solution with lower
back static pressure, pBd , to be qualitatively different than a, b, or c. As in the single stream case,
there are no back pressures between pBc and pBd for which isentropic solutions exist. With a back
pressure of pBe , say, we would expect a “compound shock” in the diverging section of the nozzle.

Consider the behavior along the curve with exit pressure pBd . Because β and the static pressure
change in the same direction, dβ/dx is negative at the throat (where β = 0). The value of β therefore
changes from positive to negative through the throat and decreases further, along with the static
pressure, in the diverging part of the nozzle.

Figure 10.30 also shows the effect of back pressure pB, on inlet conditions. Back pressures higher
than pBc influence the inlet flow, but once the back pressure is lowered past this level further changes
have no effect on the region upstream of the throat. This condition, referred to as compound choking,
is now examined in more detail.

10.8.4 One-dimensional compound waves

For one-dimensional single stream channel flow, choking is associated with the condition at which
the fluid velocity becomes equal to the propagation rate of small disturbances and information
does not travel upstream. To determine whether a corresponding condition exists for compound-
compressible channel flow consider the propagation of one-dimensional small amplitude disturbances
on a compound stream, as in Figure 10.31. The upper part of the figure shows the behavior for one
individual streamtube, while the lower part shows the streamtubes in aggregate. For one-dimensional
disturbances to exist the static pressure must be uniform across the channel, implying the pressure
difference across the disturbance is the same in each stream.

Suppose the disturbance velocity in the upstream direction is vwave in a stationary coordinate
system. In a coordinate system fixed to the disturbance, the relative velocity, w, is u + vwave, as
on the top part of Figure 10.31. We can obtain an expression relating the changes in area of the
jth stream, dAj/Aj, and the pressure difference across the disturbance, dp/p, by combining the one-
dimensional continuity, momentum, and isentropic equations ((10.8.7), (10.8.8), (10.8.9)) written in
the disturbance fixed coordinate system as

dA j

A j
= dp

γ j p


 1(

w j

a j

)2 − 1


 . (10.8.15)
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Figure 10.31: One-dimensional compound small amplitude disturbance wave; (a) stream 1 disturbance viewed
in a relative coordinate system moving with disturbance velocity νwave; (b) all streams viewed in an absolute
system (Bernstein et al., 1967).

Transforming back to the stationary coordinate system, (10.8.15) becomes

dA j

A j
= dp

γ j p


 1(

vwave

a j
+ M j

)2 − 1


 . (10.8.16)

If the pressure difference occurs over a distance short compared to that over which there are appre-
ciable variations of area in the channel,

n∑
j=1

dA j = dA = 0. (10.8.17)

Combining (10.8.16) and (10.8.17) yields an equation for the compound disturbance wave velocity,
vwave:

n∑
j=1

A j

γ j


 1(

vwave

a j
+ M j

)2 − 1


 = 0. (10.8.18)

Positive values of vwave correspond to disturbance waves propagating upstream in the absolute system,
and negative values correspond to the disturbances being swept downstream by the flow. The former
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denotes compound subsonic flow, the latter compound supersonic flow, and the situation vwave = 0
corresponds to compound sonic flow.

Equation (10.8.18) may be used with the definition of β to yield an alternative expression for β
which illustrates a key feature of this variable,

β =
n∑

j=1

A j

γ j


 1

M2
j

− 1(
vwave

a j
+ M j

)2


 . (10.8.19)

Equation (10.8.19) shows that the velocity of the compound disturbance, vwave, and β always have the
same sign. Therefore, β > 0 corresponds to compound subsonic flow, β < 0 to compound supersonic
flow, and β = 0 to compound sonic flow. The variable β is thus an indicator of the compound flow
regime.

Before applying these results, we recap the conclusions reached so far concerning compound-
compressible flow regimes:

(1) Compound choking occurs at a nozzle throat if the compound flow indicator, β, equals zero. At
this condition, some of the streams have Mach numbers greater than unity and some less than
unity; the individual Mach numbers for the different streams are generally not equal to unity.
The different streams influence β in proportion to their areas.

(2) For compound subsonic flow not every stream must have Mj > 0. For compound supersonic flow
not every stream must have Mj > 0.

(3) The compound subsonic and compound supersonic flow regimes defined by β are analogous
to the corresponding flow regimes in single stream nozzles; the compound-compressible flow
results reduce to the single stream results when n = 1.

10.8.5 Results for two-stream compound-compressible flows

10.8.5.1 Conceptual solution procedure and non-dimensional parameter specification

The compound-compressible flow equations can be solved numerically for any number of streams,
but the important points concerning nozzle behavior are displayed using two streams with the same
gas properties (γ 1 = γ 2 = γ and R1 = R2 = R). The difference between compound-compressible and
single stream channel flows is brought out in the basic problem of flow through a converging nozzle
of specified geometry, fed by two reservoirs considered to be at fixed levels of pt1 , pt2 , Tt1 , Tt2 . We
examine the behavior as pB/pt1 is decreased, starting from the highest back pressure at which there
is forward flow in stream 2.

The unchoked regime is similar to the low Mach number situation of Section 10.8.1 in that
specifying the back pressure pB/pt1 (= pe/pt1 ) fixes the exit Mach numbers in each stream. The
nozzle geometry also needs to be specified, both the contraction ratio and the stream area ratio at
the inlet. Two quantities are necessary because the stream area variation from the inlet to the exit
(due to the unequal velocity change of the two streams) depends on both. For a given contraction
ratio there are an infinite number of solutions corresponding to different ratios of inlet stream areas.
Conversely, for a given inlet stream area ratio there are an infinite number of solutions corresponding
to different contraction ratios.
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The solution procedure is as follows. The relation between corrected flow per unit area in each
stream (ṁ j

√
Tt j /(A j pt j )) and the ratio of static to stagnation pressure p/pti is

ṁ j
√

Tt j

A j pt j

=
(

p

pt j

) 1
γ

{
2γ

R (γ − 1)

[
1 −
(

p

pt j

) γ−1
γ

]} 1
2

= f

(
p

pt j

)
. (10.8.20)

Summing the stream areas at the exit:

ṁ1
√

Tt1

pt1 f1e

+ ṁ2
√

Tt2

pt2 f2e

= Ae, (10.8.21)

where f denotes the function of p/pt j defined in (10.8.20).
The mass flows in the streams at the nozzle inlet are

ṁ1 = (A1i pt1 f1i )/
√

Tt1 , (10.8.22a)

ṁ2 = (A2i pt2 f2i )/
√

Tt2 . (10.8.22b)

Substitution of (10.8.22) in (10.8.21) yields a relation between the inlet and exit values of the function
f and the known nozzle area ratios:(

A1i

Ae

)
f1i

f1e

+
(

A2i

Ae

)
f2i

f2e

= 1. (10.8.23)

Because the stagnation pressure ratio, pt2/pt1 is known, (10.8.23), which contains both p/pt2 and
p/pt1 , is an implicit equation for pi/pt1 , the only unknown. Once pi/pt1 is found (10.8.22) provide
the temperature corrected mass flow ratio ṁ2

√
Tt2/ṁ1

√
Tt1 , at which the nozzle is operating. The

area ratio changes as pe is decreased until the choking condition is reached after which all quantities
remain fixed.

There are five non-dimensional quantities in the description of the nozzle flow (in addition to the
specific heat ratio, γ ): the stagnation pressure ratio pt2/pt1 , the temperature corrected mass flow ratio
ṁ2
√

Tt2/ṁ1
√

Tt1 , the nozzle pressure ratio pt1/pB , and the nozzle area ratios A1i /Ae and A2i /Ae.
These last two are equivalent to the inlet/exit nozzle contraction ratio and the inlet area ratio. Four
of the five may be specified. Which four are chosen depends on the way in which the nozzle is run
but a situation encountered in practice is a nozzle fed by two reservoirs with specified stagnation
pressures and temperatures and a controlled back pressure. In that case, (10.8.23) can be regarded as
an equation to determine the temperature corrected mass flow as a function of the ratio of the nozzle
stagnation pressure to the back pressure, pt1/pB , for given pt2/pt1 and nozzle geometry.

10.8.5.2 Converging nozzle

Figure 10.32 shows the behavior of a converging nozzle with an inlet area ratio of 3.0 (A2i /A1i = 3.0)
and a contraction ratio of 2.0 (this is the same geometry as in Figure 10.27). The temperature corrected
mass flow ratio is given as a function of pt1/pB for different stagnation pressure ratios. The mass
flow ratio goes to zero when the back pressure is such that the inlet static pressure is equal to the
stagnation pressure in stream 2, as mentioned in the incompressible example of Section 10.8.1.
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Figure 10.32: Temperature corrected mass flow ratio as a function of the nozzle pressure ratio for two-stream
compound-compressible flow in a converging nozzle. Inlet area ratio A2i /A1i = 3.0, nozzle convergence ratio
Ai/Ae = 2.0, γ = 1.4; solid circles indicate choke conditions.

The temperature corrected stream mass flow ratio7 initially increases with nozzle pressure ratio
but then, at a value which depends on the stagnation pressure ratio, ceases to change. The occurrence
of this maximum mass flow ratio marks the condition of compound choking, where the flow upstream
of the throat (the throat is at the nozzle exit) no longer responds to alterations in downstream
conditions. The locus of the compound choking condition is marked by the solid symbols in Figure
10.32. The figure portrays both non-choked and choked behavior and can thus represent compound-
compressible flow in the converging nozzle for any reservoir conditions and nozzle pressure ratio.

10.8.5.3 Converging–diverging nozzle

For a converging–diverging nozzle there is another geometric parameter, the nozzle area ratio from
the throat to the exit, Ae/ATH. For a given geometry and reservoir stagnation pressure ratio, as
the nozzle pressure ratio increases the pressure distributions correspond to a, b, c in Figure 10.30.
Once the nozzle pressure ratio reaches pt1/pB = pt1/pB , the condition at which the compound-
compressible flow parameter, β, is equal to zero at the throat, the mass flow ratio in the nozzle does
not change further.

At any location (x) in the nozzle the area, A, can be written as

ṁ1
√

Tt1

Ae pt1 f1 (x)
+ ṁ2

√
Tt2

Ae pt2 f2 (x)
= A

Ae
, (10.8.24)

7 This is often abbreviated to “mass flow ratio” below.
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Figure 10.33: Temperature corrected mass flow ratio as a function of the nozzle pressure ratio for two-stream
compound-compressible flow in a converging–diverging nozzle. Nozzle area ratios: A2i /A1i = 3.0, Ai/ATH =
2.0, Ae/ATH = 2.0 (ATH = throat area), γ = 1.4.

where fj(x) denotes the corrected flow per unit area at location x, (10.8.20). From (10.8.24) the
quantities p(x)/pt1 and p(x)/pt2 , and hence the Mach numbers, stream areas, and value of β, can
be found. For a specified nozzle geometry the nozzle pressure ratio corresponding to β = 0 can
therefore be determined. At this condition, the nozzle will be compound-choked and the mass flow
ratio will not change as the exit pressure is lowered further.

Figure 10.33 shows the temperature corrected mass flow ratio for a converging–diverging nozzle
as a function of the nozzle pressure ratio, pt1/pB. The geometry of the converging section is the
same as in Figure 10.32, the ratio of the exit to the throat area is 2, and the results are for the same
stagnation pressure ratios (pt2/pt1 ) as in Figure 10.32.

The nearly vertical sections of the solution curves denote the unchoked regime. These correspond
to temperature corrected stream mass flow ratios for the unchoked operation of a converging nozzle
with the same inlet and exit geometry as that of the specified converging–diverging nozzle. The
horizontal lines denote choked operation, which is encountered at conditions corresponding to those
depicted for back pressure level c (back pressure pBc ) in Figure 10.30.

The converging and the converging–diverging nozzles of Figures 10.32 and 10.33 have the same
ratios of inlet stream areas and inlet area to throat area. For choked flow at a given ratio of pt2/pt1 the
mass flow ratio in the converging–diverging nozzle is the same as that in the converging nozzle, as
seen from comparing the levels of the horizontal lines in the two figures. Further, at the points of slope
discontinuity in Figure 10.33 the ratio of the stagnation pressure in stream 1 to the static pressure at
the throat (pt1/pTH ) corresponds to that for the choke points (solid circles) in Figure 10.32.
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Figure 10.34: Choking behavior of a converging–diverging compound nozzle; pt2/pt1 = 0.8, A2i /A1i = 3.0,
Ai/ATH = Ae/ATH = 2.0, γ = 1.4.

For the converging–diverging nozzle the presence of the diverging section means there is a static
pressure rise downstream of the throat, so that pt1/pB is smaller than pt1/pTH. As is the case for a
single stream channel flow, therefore, the onset of choking occurs at a lower nozzle pressure ratio
for a converging–diverging nozzle than for a purely converging nozzle.

These concepts are illustrated in Figure 10.34, which corresponds to the results for a stagnation
pressure ratio (pt2/pt1 ) of 0.8 in Figure 10.33. (Only a portion of the range of Figure 10.33 is shown.)
The two curves in Figure 10.34 correspond to: (I) the temperature corrected stream mass flow ratio
versus the nozzle pressure ratio (pt1/pB) and (II) the temperature corrected stream mass flow ratio
versus the stagnation/throat pressure ratio (pt1/pTH). The mass flow ratio increases as the nozzle
pressure ratio increases along the unchoked portion of curve I. At any mass flow ratio pt1/pTH is
larger than pt1/pB. When pt1/pTH reaches the value for choking, the mass flow ratio is fixed and
exhibits no further change with increase in nozzle pressure ratio. The solution trajectory must thus
shift from moving along curve I to moving along a horizontal line at the level set by the choke point
in curve II.

Several aspects of the choking behavior of a compound-compressible flow can be noted. One is
the temperature corrected stream mass flow ratio which is shown in Figure 10.35 as a function of
reservoir stagnation pressure ratio for different values of the inlet area ratio. In the limiting value of
equal stagnation pressures the mass flow ratio and the inlet area ratio are the same.

A second aspect is the Mach number in the individual streams at the choking conditions. Figure
10.36 shows the nozzle inlet and throat Mach numbers as a function of the temperature corrected
stream mass flow ratio for compound choked two-stream flow. The Mach number is not equal to
unity in either stream, with M2 being less than unity and M1 greater than unity. This behavior is
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characteristic of compound choking. As the mass flow ratio approaches the nozzle inlet area ratio (3
for this geometry) the stagnation pressures in the two streams approach one another, resulting in the
trend towards equal Mach number that is seen as the mass flow ratio increases.

10.8.5.4 An alternative specification for compound-compressible nozzle operation

The discussion so far has assumed that reservoir conditions and inlet areas are prescribed, but there
are other ways to specify the nozzle operating conditions. One of these is to regard the corrected
mass flow per unit area at the inlet in one stream (say stream 1) as known. This was the case, for
example, in the experiments described below. It would be convenient to view the problem in this
manner, for example, if one of the streams that fed the nozzles was choked and delivered a constant
corrected flow. In such a situation it is useful to define a reference sonic area, A∗

1, for the choked
stream (stream 1) as

A∗
1 = ṁ1

√
Tt1

pt1

√√√√ R

γ

(
γ + 1

2

)[ γ+1
γ−1

]
= ṁ1

√
Tt1

pt1

C, (10.8.25)

where C is the known function of R, γ (constant for a given gas) defined in (10.8.25). This allows
a simpler solution for the nozzle behavior. Summing the two stream areas at the exit and using the
definition of A∗

1 leads to an explicit expression for the temperature corrected mass flow ratio:

ṁ2
√

Tt2

ṁ1
√

Tt1

= C Ae

A∗
1

pt2 f2e

pt1

− pt2 f2e

pt1 f1e

. (10.8.26)

All the quantities on the right-hand side of (10.8.26) are known and the mass flow ratio can
be found directly. This occurs because of the additional constraint from the imposition of known
corrected flow in stream 1. Specification of A∗

1 means that the nozzle inlet areas do not need to be,
indeed cannot be, prescribed.

10.8.5.5 Experimental results for compound-compressible nozzle flows

Bernstein et al. (1967) give a detailed development of the behavior of a compound-compressible
nozzle flow in terms of the reference sonic area, and we present results from their analysis as an aid in
interpreting the experimental results that are given below. The experiments were run with fixed values
of A∗

1/Ae and ṁ1
√

Tt1/ṁ2
√

Tt2 . To correspond with this, Figure 10.37 shows compound-compressible
nozzle behavior as a function of pt1/pB for different values of A∗

1/Ae and the exit area to throat area,
Ae/ATH. The dependent variable here is the stagnation pressure ratio, pt2/pt1 , and Figure 10.37 can
thus be viewed as giving the stagnation pressure ratio required to operate at a given nozzle pressure
ratio for specified area ratios and temperature corrected mass flow ratio.

The unchoked behavior, to the left of the dotted line in Figure 10.37, can be discussed with
reference to a given line of A∗

1/Ae, say 0.4. As the nozzle pressure ratio, pt1/pB, is increased holding
ṁ1
√

Tt1/ṁ2
√

Tt2 and A∗
1/Ae constant, the stagnation pressure ratio necessary to operate at these

conditions drops. The line of unchoked operation continues until the point at which the exit area
equals the throat area, Ae = ATH, at point B. Alternatively, for values of Ae>ATH, unchoked operation
can terminate at the intersection with a horizontal line corresponding to that value of Ae/ATH, as at
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point A for a ratio Ae/ATH = 1.25. For nozzle pressure ratios larger than this, operation upstream
of the throat is unaffected. The complete behavior of a compound nozzle with specified A∗

1/Ae and
A∗

1/ATH is thus given by (a part of) the relevant solid curve plus the appropriate horizontal line. As
in the previous discussion, there is a slope discontinuity in the operating point solution trajectory at
the choke conditions.

With this as background, we examine the comparison of compound-compressible analysis to
experiment in Figure 10.38. A sketch of the nozzle and a list of the nozzle parameters are given in the
figure. Data for four temperature corrected mass flow ratios are shown, with nozzle pressure ratios,
pt1/pB, from 2 to 10. The experiments were run with the primary (stream 1) independently choked
and slightly underexpanded at the inlet plane, but the conditions were close to isentropic flow. The
mass flow ratio was fixed for each series of experiments.

Choked and unchoked behavior are exhibited over differing portions of the nozzle pressure ratio
range. The nozzle had a straight centerline and the geometry was such that radial velocity components
were small and the quasi-one-dimensional approximation appropriate. The nozzle was also short
enough such that mixing, either of velocity or temperature, did not play a significant role.

In the compound choked flow regime in Figure 10.38 (the horizontal lines), the one-dimensional
theory shows good agreement with experiment. This should be expected because wall boundary
layers are thin because of favorable pressure gradients as are shear layers between the streams.
Also, and perhaps more importantly, mixing effects downstream of the nozzle throat cannot exert
any influence on the overall behavior, so the effective mixing length during choked operation is
the distance from the inlet plane to the throat. For unchoked operation, mixing downstream of the
nozzle throat can affect overall behavior, because the effective mixing length is the entire length of
the nozzle (although many nozzle applications do have a large portion of their length supersonic).
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Mixing has little effect at the higher mass flow ratios, but it exerts an increasing influence as mass
flow ratio decreases. The effect of mixing is to increase the stagnation pressure of stream 2, in effect
pumping the low velocity flow and reducing the required value of inlet pt2/pt1 .

Compound-compressible flow analysis has been generalized to deal with streams having a contin-
uous variation in properties (Decher, 1978; Lewis and Hastings, 1989). The latter reference presents
an application to hypersonic propulsion (particularly the role of the forebody boundary layer on the
flow inside the engine) and demonstrates the strong impact that a low-speed streamtube can have on
channel flow with high freestream Mach number. The analysis has also been extended to account, in
an approximate manner, for the effects of mixing in the context of a procedure for designing mixer
nozzle noise suppressors (Tew, Teeple, and Waitz 1998).

10.9 Flow angle, Mach number, and pressure changes
in isentropic supersonic flow

Much of this chapter has focused on flows which can be described within the quasi-one-dimensional
framework, neglecting pressure differences normal to the stream. In this section we address the effect
of normal pressure gradients on flow angle changes in a supersonic stream. The causal link between
pressure gradient and streamline deflection is unchanged from subsonic flow, in that the deflections
are in the direction of the low pressure, but the manner in which the flow angle change occurs is
different in supersonic and subsonic regimes.
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10.9.1 Differential relationships for small angle changes

The issue can be illustrated through examination of the relation between pressure and turning at
a bounding solid surface, confining the discussion to two dimensions. Consider the geometry in
Figure 10.39 with a flat wall and a “bump” made up of straight-line segments. If the angles the
segments make with the wall are small, the disturbances will also be small, the flow field will be
described by a linear analysis, and the flow pattern can be built up by a superposition of small
disturbances emanating from the boundary.

In Figure 10.39 a uniform parallel supersonic stream of velocity u strikes the first non-parallel
element of the surface, AB, whose inclination to the stream direction is dα1. Two effects occur: the
direction of the stream is changed by the angle dα1, and a pressure rise, dp1, is produced. We wish
to calculate the magnitude of dp1 if the Mach number and the deflection dα1 are known.

For a supersonic flow, as described in Section 2.8, the region of influence of a disturbance is felt
only behind the Mach lines, which are at an angle to the flow of βM = sin−1(1/M). (This can be
seen by consideration of the propagation velocity of sound waves compared with the fluid velocity;
sound waves are convected downstream as they propagate outwards from a disturbance.) The line
AA′ in Figure 10.39 denotes a Mach line with the pressure rise dp1 behind it. In a two-dimensional
flow every particle passing through AA′ suffers the same deflection, dα1, and is subjected to the same
pressure rise, dp1.

We now apply the momentum theorem to the dashed control volume which encloses part of
the Mach line AA′. There is no y-component of momentum flux entering the control volume. The
y-component of momentum flux leaving the control volume is, to first order in the disturbance
quantities, (ρuduy1 )�y, where non-subscripted quantities refer to undisturbed flow conditions and
�y is the control volume extent in the y-direction. The y-direction force on the fluid is (dp1)�x,
where �x is the extent of the control volume in the x-direction. Equating force to net outflow of
momentum yields

ρuduy1 = dp1

(
�x

�y

)
. (10.9.1)
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Two more substitutions are needed to achieve the desired relation. First, the flow angle, dα1,
downstream of the Mach wave is linked to the y-component of velocity by

tan (dα1) = duy1

u + dux1

.

For small deflections of the stream the angle can be approximated by udα1 = duy1 . Second, the
ratio �x/�y for the control volume is the cotangent of the Mach angle, βM ,�x/�y = cotβM =√

M2 − 1. Substituting the expressions for duy1 and�x/�y into (10.9.1) gives the relation between
the pressure change across the Mach wave and the flow deflection as

dp1 = ρu2dα1√
M2 − 1

. (10.9.2)

The calculation can be repeated at a point farther back along the bump. If the angle of inclination
of the succeeding element, BC, is dα2, the pressure change is dp2 = ρu2dα2/

√
M2 − 1. Since dα2

is smaller than dα1, dp2 is smaller than dp1. The stream is thus accelerated in passing through the
Mach line BB′, experiencing a decrease in pressure equal to

dp1 − dp2 = ρu2(dα1 − dα2)√
M2 − 1

. (10.9.3)

The pressure rise relative to the undisturbed flow decreases as we proceed downstream along the
different straight-line segments. It is proportional to the local angle of inclination of the surface
element and therefore remains positive until we reach the element whose inclination is zero. Past this
point the angle of inclination becomes negative and the pressure falls below the undisturbed pressure
level.

The above conclusions are not altered if the number of segments is increased indefinitely so the
boundary has a smooth surface. If α is the angle of inclination between the tangent at a point on the
surface and the undisturbed stream direction, and p denotes the undisturbed pressure, the pressure is
constant along a Mach line emanating from the point and has the value p + ρu2α/

√
M2 − 1. Hence

the pressure acting on the front part of the bump is higher than ambient, and the pressure acting on
the rear is lower than ambient. There is a net pressure force in the free-stream direction, i.e. a drag.
This mechanism for drag creation has no parallel in subsonic motion.

The distinction between subsonic and supersonic flow regimes is made explicitly in Figure 10.40,
which portrays velocity vectors at a plane control surface, surface pressure distributions, and forces
in the direction of the undisturbed velocity (thrust or drag) for isentropic flow past a slender bump on
a flat surface. Three flow regimes are depicted: incompressible, subsonic (M ∼= 0.7), and supersonic
(M ≈ 1.4). In the first two, the forces in the axial direction cancel and there is no net x-direction force.
The velocity vectors are sketched to indicate no net vertical flux of x-momentum across the control
surface (note the relation of the horizontal and vertical velocity components) in accord with this. For
supersonic flow, the surface pressure is different than in the free stream only over the bump, with
the pressures over the front and rear of the bump adding to give a drag. The velocity vectors at the
plane control surface imply a net flux of x-momentum across the dashed control surface, consistent
with the existence of this drag.

For low speed airfoil sections a blunt nose is often used; the main requirement is the sharp trailing
edge. For supersonic speeds the blunt nose is disadvantageous because of the large angle of inclination
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it involves. A sharp training edge does not help much because negative pressure at the rear portion
of the section cannot be avoided. The essential requirement for supersonic airfoil sections is a small
thickness ratio, i.e. a small ratio between the maximum thickness and the chord length.

10.9.2 Relationship for finite angle changes: Prandtl–Meyer flows

The foregoing considerations concerning streamline deflection and pressure distribution apply to
both compression and expansion waves. For the former, however, the Mach lines that define the
compression waves can converge so the compression can become stronger. Figure 10.41 taken from
Liepmann and Roshko (1957), shows the situation with compression waves converging into an
oblique shock wave. It is possible to have compression without a shock, as shown in Figure 10.41(c),
where a boundary has been introduced in the flow at a location at which the gradients are still small
enough so that the flow is isentropic. (The upper boundary needs to be closer than the location at
which Mach waves focus substantially.) For a turn in which the flow is deflected in the other direction
so there are expansions, the Mach waves diverge and shock formation does not arise.

For the expansion waves, and for isentropic compression processes, the relation between the static
pressure and the flow angle can be used to obtain an expression for the changes in Mach number
associated with finite flow deflection. The linearized momentum equation for inviscid flow is

du

u
= − dp

γM2 p
. (10.9.4)
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Figure 10.41: Illustrating Mach line convergence in a compression: (a) shock formation; (b) shock formation
shown on a smaller scale; (c) channel conforming to streamlines of a smooth compression (Liepmann and
Roshko, 1957).

Using the definition of Mach number (du/u = dM/M + dT/2T ) and invoking (10.9.2) we obtain

dα = −
√

M2 − 1 dM

M

(
1 + γ − 1

2
M2

) . (10.9.5)

Equation (10.9.5) can be integrated between two values of flow angle to find the initial (Mi) and
final (Mf) Mach numbers or, more conveniently, between two Mach numbers to find the deflection
between the initial and final flow angles αf − αi:

α f − αi = −
∫M f

Mi




√
M2 − 1 dM

M

(
1 + γ − 1

2
M2

)

 = ν(Mi ) − ν(M f ). (10.9.6)

In (10.9.6) v(M) is defined as:

ν(M) =
∫M

1




√
M2 − 1 dM

M

(
1 + γ − 1

2
M2

)



=
√
γ + 1

γ − 1
tan−1

[√
γ + 1

γ − 1
(M2 − 1)

]
− tan−1

√
M2 − 1. (10.9.7)

The quantity ν(M) is a unique function of Mach number known as the Prandtl–Meyer function which
is shown in Figure 10.42. The total deflection angle |αf − αi| between two Mach numbers is the
difference in Prandtl–Meyer function at those Mach numbers, as indicated in Figure 10.43.

This short discussion only touches the topic of non-one-dimensional effects in compressible
flows. Liepmann and Roshko (1957) give additional insights on ways in which oblique shocks and
expansions can be pieced together to describe more complex situations. Examples and applications
of compressible flow in turbomachinery and propulsion systems are described by Cumpsty (1989),
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Figure 10.42: The Prandtl–Meyer function as a function of the Mach number for γ = 1.4 (Sabersky et al. 1989).
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Figure 10.43: Relation of ν and α in isentropic turns (a) compression; (b) expansion (Liepmann and Roshko,
1957).

Kerrebrock (1992), Adamczyk (2000), and Heiser and Pratt (1994), and these can be consulted for
more information. In this context an AGARD publication (AGARD, 1994) has as its theme the use
of computational fluid mechanics for turbomachinery design in the compressible flow regime.

10.10 Flow field invariance to stagnation temperature distribution: the Munk and
Prim substitution principle

Substitution principles are scaling rules that allow use of a known flow field to construct a solution
for the flow in a different physical situation. In this section we demonstrate a substitution principle
that allows, from knowledge of a flow field with one stagnation temperature distribution, a direct
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Figure 10.44: Streamlines in natural coordinates.

scaling to produce the flow field corresponding to any other stagnation temperature distribution
(Munk and Prim, 1947; Tsien, 1958). We first illustrate the concepts for two-dimensional flow and
then present the general three-dimensional results. Although the flows considered are inviscid and
non-heat-conducting, we will see in Chapter 11 that the ideas extend, in an approximate manner, to
flows with mixing and heat transfer.

10.10.1 Two-dimensional flow

For two-dimensional flow, we frame the discussion in terms of the natural coordinates introduced in
Section 2.4. The coordinate normal to the streamlines is n, that along the streamlines is l, and the
radius of curvature of the streamlines is rc. The nomenclature is shown in Figure 10.44. In natural
coordinates the equations of frictionless, non-heat-conducting, compressible flow are:

continuity: ρudn = constant along a streamtube; (10.10.1)

streamwise momentum: ρu
∂u

∂l
= −∂p

∂l
; (10.10.2)

normal momentum: ρ
u2

rc
= ρu2 ∂α

∂l
= ∂p

∂n
; (10.10.3)

energy: Tt = T + u2/2cp = constant along a streamtube. (10.10.4)

These are supplemented by the perfect gas equation of state, p = ρRT , (1.4.1). In (10.10.3) the
variable α is the angle the streamline makes with a reference direction as shown in Figure 10.44.

There are five equations for the quantities, u, α, p, ρ, T. Suppose we know a solution of these
equations, i.e. we have a set of quantities u1, α1, p1, ρ1, T1 which are functions of n and l, and which
satisfy (10.10.1)–(10.10.4) and (1.4.1) for a certain boundary geometry. We ask whether there is
another set of quantities with different velocity, density, and temperature u2, α1, p1, ρ2, T2 which has
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the same streamline pattern and static pressure field as the first solution and is thus also a solution
of the above equations.

From (10.10.3) a requirement for this to occur is

ρ1u2
1 = ρ2u2

2, (10.10.5)

because rc, α (the streamline pattern), and ∂p/∂n (the static pressure field) have been defined to
be the same in the two cases. Using the equation of state in (10.10.5) gives the following relation
between velocity and temperature fields in the two flows:

u2
1

RT1
= u2

2

RT2
. (10.10.6a)

Equation (10.10.6a) is a statement that M1 = M2, in other words that local Mach numbers in both
flows are equal. The static pressure distributions are the same and hence the stagnation pressure
distributions must also be the same. Equation (10.10.6a) can be written in terms of stagnation, rather
than static, temperature as

u2
1

RTt1

= u2
2

RTt2

. (10.10.6b)

Equation (10.10.6b) is useful because the stagnation temperature is constant along a streamline.
The static pressure distribution and streamline configurations are the same for the two flows, so

that

ρ1u1
∂u1

∂l
= ρ2u2

∂u2

∂l
. (10.10.7)

The mass flow in a given streamtube is not the same for the two flows. The mass flow in a streamtube
is ρudn, dn is the same in both flows, and the ratio of local mass flows is

ṁ1

ṁ2
= ρ1u1

ρ2u2
=
√

Tt2

Tt1

. (10.10.8)

The preceding discussion can be summarized as follows. Two steady, inviscid flow fields will have
the same streamline shapes and static pressure distribution if the stagnation pressure distribution is
the same, irrespective of the stagnation temperature distribution. Because the stagnation pressure is
constant along streamlines, equality of the stagnation pressure distribution along a normal coordinate
line that spans the flow domain ensures the stagnation pressure distribution is the same throughout.
The velocities and the mass flows in a given streamtube for the two situations are different. The
local velocity ratio between the two flows scales as u2/u1 = √Tt2/Tt1 and the local mass flow in any
streamtube as ṁ2/ṁ1 = √Tt1/Tt2 .

The results of this section can be related to the behavior of compound-compressible flow. Exam-
ining the expressions developed in Section 10.8 we find that mass flow and stagnation temperature
occur everywhere only in the combination ṁ

√
Tt . A change in mass flow in any stream, coupled

with a corresponding change in the stream stagnation temperature to keep the product ṁ
√

Tt the
same, leaves the behavior of the compound flow (e.g. static pressure, streamtube area, and Mach
number distribution) unchanged. This can be regarded as a quasi-one-dimensional illustration of the
substitution principle.
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10.10.2 Three-dimensional flow

We now generalize the principle to three dimensions. As in Section 10.7 it is helpful to use the
reference maximum speed, umax,

u2
max = 2cpTt . (10.10.9)

The stagnation temperature, Tt, and reference speed, umax, can vary normal to streamlines, but they
are both constant along a streamline.

We work in terms of a non-dimensional “reduced velocity”, v, defined by

v = u
umax

. (10.10.10)

In terms of v, the energy equation is

T

Tt
=
(

1 − u2

u2
max

)
= (1 − ν2

)
. (10.10.11)

The continuity equation is

0 = ∇ · (ρu) = ∇ ·
[(
ρt

√
2cpTt

) ( ρ
ρt

)
v
]

or

0 = (ρt

√
2cpTt

)∇ ·
[(
ρ

ρt

)
v
]

+
(
ρ

ρt

)
v · ∇(ρt

√
2cpTt

)
. (10.10.12)

The derivatives of any stagnation properties along a streamline are zero. The second term in (10.10.12)
is therefore zero and the equation reduces to

0 = ∇ ·
[(
ρ

ρt

)
v
]
. (10.10.13)

Using the isentropic pressure–temperature relation in combination with (10.10.11) yields a form of
the continuity equation that involves only v:

∇ · [(1 − v2
)1/(γ−1)

v
] = 0. (10.10.14)

The momentum equation is written in terms of v as

(v · ∇) v + (γ − 1)

2γ

(
1 − v2

)∇p

p
= 0. (10.10.15)

In obtaining (10.10.15) the invariance of stagnation properties along a streamline has been used. The
Crocco form of the momentum equation ((3.14.4), u × ω = ∇ht − T ∇s) can be written compactly
as a relation between v and the stagnation pressure as

v × (∇ × v)

1 − v2
= (γ − 1)

2γ

(∇pt

pt

)
. (10.10.16)

Reference velocities other than umax can also be employed. If the velocity is divided by the local
speed of sound,

√
γ p/ρ, the Mach number vector, M, is obtained. In terms of M the continuity and
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momentum equations become

∇ ·
[

M
(

1 + γ − 1

2
M2

)− γ+1
2(γ−1)

]
= 0, (10.10.17)

(M · ∇) M − γ − 1

γ + 1
M (∇ · M) − 1

γ−1
∇
{

ln

[
1 + γ − 1

2
M2

]}
+∇pt

γ pt
= 0. (10.10.18)

Equations (10.10.14) and (10.10.16) (or (10.10.17) and (10.10.18)) are two equations for the
variables v and pt (or M and pt) in which the stagnation temperature does not appear. The reduced
velocity, v (or Mach number vector, M) is thus invariant to changes in the stagnation temperature dis-
tribution if the far upstream stagnation pressure variation across the flow domain and the geometry of
the boundaries are maintained the same. A single solution of (10.10.14) and (10.10.16) (or (10.10.17)
and (10.10.18)) corresponds to a family of solutions which have different assignments of stagnation
temperature to each streamline. This includes, for example, the case of uniform stagnation temper-
ature, uniform stagnation pressure, and irrotational flow. To this irrotational solution correspond an
infinite number of rotational solutions with different stagnation temperature distributions.

Changes in the stagnation temperature distribution from an original value Ttorignial to a new value
Tt result in transformation of the physical velocity and the mass flow in a specified streamtube to

u
uoriginal

=
√

Tt

Ttoriginal

, (10.10.19a)

ṁ

ṁoriginal
=
√

Ttoriginal

Tt
. (10.10.19b)

10.10.3 Flow from a reservoir with non-uniform stagnation temperature

An example of the use of the Munk and Prim substitution principle concerns a gas with varying
stagnation temperature but uniform stagnation pressure which passes from a large reservoir (with
negligible velocity) through a nozzle. With a uniform stagnation temperature the flow is irrotational
and the velocity is uniform at nozzle exit. If the stagnation temperature is not uniform the Crocco
equation shows that magnitude of the exit vorticity is

|ω| =
∣∣∣u
2

∣∣∣ · ∣∣∣∣∇Tt

Tt

∣∣∣∣ . (9.4.17)

This exit vorticity is normal to the streamlines.
Suppose this rotational flow is then taken through a bend which is in the plane of the exit vorticity.

The combined process of vorticity generation within the nozzle plus flow round the bend can be
regarded as an idealized model of the flow from a gas turbine combustor through a turbine vane. A
question of interest is whether secondary circulation will be generated in this situation. Even though
there is normal vorticity at the bend inlet, the substitution principle immediately tells us there is no
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secondary circulation because one substitution flow is the irrotational velocity field. As described
in Chapter 9, scrutiny of the situation shows that there is production of streamwise vorticity from
two sources, the tipping of normal vorticity into the streamwise direction and the baroclinic torque
(the term ∇T × ∇s in the vorticity evolution equation, (3.7.3)). These are equal and opposite in the
flow described and no net streamwise vorticity is created. Arguing from the perspective of pressure
gradients, even though the stagnation temperature is non-uniform, the quantity ρu2 is uniform on all
the streamlines and the inertial forces are the same at all levels in the bend in spite of the temperature
stratification. As emphasized in Section 9.4, gradients in stagnation temperature alone do not produce
secondary circulation in a stationary duct or passage; gradients in stagnation pressure are necessary
for secondary circulation to be generated.



11 Flow with heat addition

11.1 Introduction: sources of heat addition

In this chapter we examine flows in which heat addition has a major effect on the fluid motion. The
situations addressed have a fractional change in bulk flow temperature which is of order unity, and
we thus first inquire what circumstances lead to this occurrence.

Estimates for the magnitudes of temperature differences due to heat transfer from surfaces can be
made based on the Reynolds analogy between heat and momentum transfer from a solid surface to a
fluid. The physical content of this analogy, as described in a number of texts (e.g. Eckert and Drake,
1972; Kerrebrock, 1992; Schlichting, 1979; Pitts and Sissom, 1977), is that magnitude of the heat
flux, q, and the shear stress, τ , (the momentum transfer per unit area across a plane parallel to the
wall) arise from similar transport processes. If the two are viewed as changing in a similar manner
through the boundary layer, their ratio can be approximated as constant from the wall to the free
stream. Using the expressions for magnitudes of heat transfer and shear stresses in terms of gradients
of velocity and temperature this ratio can be written as

q

τ
≈
(

k∂T/∂y

µ∂u/∂y

)
≈ cp

Pr

dT

du
. (11.1.1)

In (11.1.1) the thermal conductivity, viscosity, and Prandtl number, Pr (= µcp/k), are interpreted as
applying to a laminar or turbulent situation as appropriate.

Equation (11.1.1) can be integrated through the boundary layer, from the wall (T = Tw, u = 0) to
the free stream (T = TE, u = uE), to yield an expression that relates wall shear stress, τw, and wall
heat transfer rate, qw. For a Prandtl number of unity this is

qw

cp(Tw − TE )
≈ τw

uE
. (11.1.2)

Defining qw as the product of a heat transfer coefficient, h, and a driving temperature, (Tw − TE),
and writing (11.1.2) in non-dimensional form we obtain

qw

ρE uE cp(Tw − TE )
= h

ρE uE cp
≈ τw

ρE u2
E

. (11.1.3)

The fraction on the left in (11.1.3) is the Stanton number, conventionally denoted by St, and the
quantity on the right is one-half the skin friction coefficient, Cf. A compact form of the Reynolds
analogy is therefore

St ≈ C f
/

2. (11.1.4)



576 Flow with heat addition

Equation (11.1.3) or (11.1.4) allows the estimation of the heat transfer coefficient if data or compu-
tations of the skin friction are available.

For flow through a duct with perimeter, P, and length, L, the bulk temperature rise can be found
using the estimate for heat input (= qwPL), provided by (11.1.3) in an enthalpy balance as

(�T )bulk

Tbulk
≈
(

C f

2

)(
Tw

TE
− 1

)
PL

A
. (11.1.5)

Levels for skin friction coefficients in turbulent flow on smooth surfaces are between 0.003 and
0.006 over the Reynolds number range of 5 × 105 to 107 (see Section 4.6) and the quantity involving
the temperature ratio is typically order unity or less. The geometric quantity PL/A depends on the
application, but for many situations (combustors, afterburners, turbine blade passages) has values of
order 10 or less. Upper values of the ratio (�T)bulk/Tbulk are thus 0.1, i.e. bulk temperature changes
associated with wall heat transfer are an order of magnitude smaller than the inlet temperature unless
the passages are long.

The temperature rise due to condensation is also roughly of this order. For example, the non-
dimensional stagnation temperature change�Tt/Tt from the condensation of all the moisture in the
air (an overestimate) at 30 ◦C and 100% humidity is approximately 0.2. A lower range (0.01–0.1)
for the temperature rise from condensation in fluid devices is cited by Zierep (1974).

Temperature rises of these magnitudes can certainly affect device behavior, for example through
thermal choking (see Sections 10.4 and 11.5), but the bulk temperature change is much less than
that provided by combustion. The adiabatic flame temperature of a mixture of fuel and air is given
to good approximation by

�Tt

Tti

= f hcombustion

cpTti

,

where f is the mass flow weighted fuel air ratio. (Since f�1, the heating of the mass of the fuel has been
neglected.) For a hydrocarbon fuel (heat of combustion 4.3 × 108 J/kg), at the stoichiometric fuel/air
ratio1 (0.067) and a combustor inlet temperature of 1000 K the ratio �Tt/Tti is approximately 2.8.
While typical overall fuel/air ratios are less than stoichiometric, there is still an order of magnitude
ratio between the bulk temperature changes through combustion and those associated with heat
transfer from solid surfaces or heat addition from condensation. Combustion processes can decrease
the density by an appreciable percentage of its inlet value, coupling the heating process into the
dynamics. A consequence is that the effects of heat addition are seen even at low Mach numbers
where thermal choking is not an issue. In summary, while heat transfer to or from solid surfaces or
phase change (condensation) do impact fluid motions, especially for near-sonic conditions, the most
powerful driver is heat addition from combustion.

Several phenomena associated with heat addition to a flowing fluid are addressed below. One is
the generation of vorticity in the bulk flow, through baroclinic torque (see Section 3.5). A flow with
uniform velocity passed through a region of non-uniform heat addition emerges as a rotational flow.
A second is the change in the stagnation pressure associated with heat addition. This was introduced
in Chapter 10, but we examine it here in more depth. In Section 11.4 a method is described for
the graphical portrayal of one-dimensional compressible channel flow with heat addition, using as
coordinates the kinetic energy and the static enthalpy of the fluid. The interaction between swirl and

1 The stoichiometric fuel/air ratio is the ratio at which there is no excess fuel or air.
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Figure 11.1: Creation of vorticity by heat addition; constant area duct with heat addition to a portion of the
stream (Broadbent, 1976).

heat addition is discussed in Section 11.6, where it is seen that not only the magnitude but also the sense
of the axial acceleration associated with heat addition depends on the swirl level. The final section
develops an approximate extension of the Munk and Prim substitution principle of Section 10.10 to
flow with heat transfer and viscous stresses, including applications of the approximate principle to
mixer nozzles, ejectors, and heated jets.

11.2 Heat addition and vorticity generation

Heat addition that is non-uniform in a direction normal to a flow creates vorticity. Consider two neigh-
boring fluid particles in an inviscid steady flow in the constant area channel sketched in Figure 11.1.
The flow is parallel and uniform far upstream of the region of heat addition. The two particles are
subjected to the same streamwise pressure gradient, but one receives heat and one does not. At any
location along either streamline the change in velocity is given by du = −dp/(ρu). If the two particles
initially have the same velocity and density, the one with heat addition has a lower density than the
one with no heat addition and thus develops a higher velocity. The flow downstream of the region of
heat addition is again parallel but it has non-uniform velocity and is hence rotational.

The generation of vorticity can be seen directly from Kelvin’s Theorem, (3.8.9), for the rate of
change of circulation (�) round a fluid contour:

D�

Dt
= −

∮ ∇p

ρ
· d� = −

∮
dp

ρ
. (3.8.9)

We apply this to the small dashed line contour in Figure 11.1. The streamwise pressure gradient
is essentially the same for the top and bottom legs of the contour so the presence of the density
difference between the top and bottom legs means that circulation is generated.

The effect of heat addition on vorticity generation can be defined more quantitatively using the
example of quasi-one-dimensional steady flow in a constant area channel (Broadbent, 1976). The
upstream flow is uniform in velocity and density, with conditions pi, ui, ρ i. The flow is inviscid with
no mixing, but a portion of the gas has a specified heat addition. The streamtube expansion in the
region of heat addition is restricted to be small enough so the quasi-one-dimensional approximation
applies and the pressure can be regarded as uniform across the duct. In addition, the Mach numbers
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are low enough such that density changes due to dynamic effects (which scale as �ρ/ρ ∝ M2) are
negligible, but density changes due to heat addition (which scale as�ρ/ρ ∝�T/T ≈ order unity) are
comparable with the ambient density level. (See Section 1.17 for a discussion of this approximation.)

If the heated stream occupies a fraction σ i of the duct at the inlet and expands to a fraction σ e

at the exit, downstream of the region of heat addition (Figure 11.1), the continuity equations in the
unheated and heated streams respectively are

ρi ui (1 − σi ) = ρi u1e (1 − σe), (11.2.1a)

ρi uiσi = ρ2e u2eσe. (11.2.1b)

Subscripts 1 and 2 denote exit (downstream) conditions in the unheated stream and heated stream
respectively. Because of the low Mach number the density changes can be neglected in the unheated
stream and we can set ρi = ρ1e .

Dividing (11.2.1) by ρ iui and denoting the non-dimensional properties as ũ, ρ̃, etc., the continuity
equations in the two streams become

(1 − σi ) = ũ1e (1 − σe), (11.2.2a)

σi = ρ̃2e ũ2eσe. (11.2.2b)

In these non-dimensional variables conservation of momentum for the duct is, noting that at the
downstream location p1e = p2e ,

�C p = pi − p1e(
ρi u2

i

/
2
) = 2ũ1e (1 − σe) + 2ρ̃2e ũ2eσe − 2. (11.2.3)

In the unheated stream, Bernoulli’s equation can be applied,

�C p = ũ2
1e

− 1. (11.2.4)

Equations (11.2.2), (11.2.3), and (11.2.4) constitute four equations for the five quantities,
σe, ρ̃2, ũ1e , ũ2e ,�C p, so that one of these must be specified. The most convenient way to solve
the set of equations is to suppose the heat addition creates a known increase in the velocity of the
unheated stream:

ũ1e = 1 +�ũ. (12.2.5)

If so the solution is

ũ2e = [(�ũ)2 + 2σi�ũ + 2σi ]/(2σi ), (11.2.6a)

�C p = �ũ(2 +�ũ), (11.2.6b)

ρ̃2e = 2σ 2
i (1 +�ũ)/{(�ũ + σi )[(�ũ)2 + 2σi�ũ + 2σi ]}, (11.2.6c)

σe = (�ũ + σi )/(1 +�ũ). (11.2.6d)

For positive heat addition (ρ̃2e = ρ2e/ρi = Ti/T2e < 1) �ũ is positive. The velocities of the heated
and unheated streams are related by

ũ2e = ũ1e + (�ũ)2/2σi . (11.2.7)
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Figure 11.2: Velocities and pressures in a constant area duct downstream of a region of inviscid heating over half
the duct area; u2e is the exit heated fluid velocity, u1e is the exit unheated fluid velocity, ui is the inlet (uniform)
velocity, M2 � 1.

Equation (11.2.7) shows that the heated stream always accelerates more than the unheated stream.
The change in stagnation pressure in the heated stream is

pti − pt2e

ρi u2
i /2

= −�ũ (1 +�ũ) (2 +�ũ)

2 (σi +�ũ)
. (11.2.8)

There is always a decrease in stagnation pressure due to heating.
Figure 11.2 shows the downstream velocity in the unheated stream, the velocity ratio between

heated and unheated streams, the downstream area occupied by the heated stream, and the stagnation
pressure decrease in the heated stream, all as functions of the temperature ratio in the heated stream.
Large velocity and stagnation pressure non-uniformities are produced when the fluid temperature
change is comparable with or greater than the inlet temperature.

11.3 Stagnation pressure decrease due to heat addition

The preceding example showed a decrease in stagnation pressure due to heat addition in a steady
inviscid flow. The stagnation pressure change can be interpreted from different perspectives. For
low Mach number (or incompressible) flow, stagnation pressure is a mechanical quantity. For steady
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Figure 11.3: Control volume with injection of a different density incompressible fluid into the mainstream.

inviscid flow with no body forces it is a measure of the kinetic energy of the fluid per unit volume,
ρu2/2, and the work per unit volume done by the pressure to accelerate the fluid in a given stream
tube.2

For incompressible flow, the internal energy has no dynamical significance. The impact of heat
transfer on the velocity and pressure fields, and thus on the stagnation pressure, is felt only through
changes in fluid density. The change in stagnation pressure resulting from small changes in pressure,
velocity, and density can be written as3

dpt = dp + ρudu + (u2/2)dρ. (11.3.1)

For inviscid flow the sum of the first two terms is zero along a streamline and the density change,
represented by the last term in (11.3.1) is the only contributor. The alteration in stagnation pressure
is related to the consequent change in kinetic energy per unit volume by

dpt = (u2/2)dρ. (11.3.2)

Equation (11.3.2) was introduced to describe a process in which heat addition causes a density
change, and hence a stagnation pressure change, but the expression has a wider application. Two
examples illustrate the point.

The first is the injection and mixing of two incompressible fluids of different densities in a constant
area duct shown in Figure 11.3. The mainstream has density ρ, velocity u, and area A. The injected
flow has density ρ inj, the same velocity u as the mainstream, and a volume flow rate dV̇inj such that
dV̇inj/(u A) � 1. The injected flow is also taken as entering in the same direction as the mainstream.
With reference to Figure 11.3 the conservation equations for this solely mechanical mixing process
are:

conservation of volume flow: du = dV̇inj/A; (11.3.3)

conservation of mass: dρ = (ρinj − ρ)(du/u); (11.3.4)

conservation of momentum: dp = (ρinju − 2ρu)du − u2dρ. (11.3.5)

Combining (11.3.3)–(11.3.5) yields the expression for the stagnation pressure change in (11.3.2).

2 “The direct effect of the pressure on the energy of the material element is the same as if the element moved in a body-force
field of potential energy p/ρ per unit mass” (Batchelor, 1967).

3 In writing (11.3.1), we have neglected terms which are of order M2 compared to those that have been retained.
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Figure 11.4: Stagnation pressure changes for a stagnation enthalpy change of dht and an entropy change of ds
(conceptual model for heat addition to a compressible flow).

The second example is a uniform velocity, parallel, stratified flow in which there is a density
variation normal to the stream direction. The kinetic energy per unit volume and stagnation pressure
thus also vary normal to the stream and the connection between these two quantities is given by
(11.3.2). In this situation the stagnation pressure variation can be seen to be solely mechanical in
nature.

For compressible flow there is interchange between thermal and mechanical energy and discussion
of stagnation pressure changes can no longer be made in terms of mechanical quantities alone. We
can, however, use the characterization of stagnation pressure changes as lost work for a constant
stagnation temperature process given in Chapter 5 to interpret the effect of heat transfer on stagnation
pressure. The starting point is the Gibbs equation ((1.3.19), Tds = dh − dp/ρ), written in terms of
stagnation quantities as

dpt

ρt
= dht − Tt ds. (11.3.6)

In a general heat addition process, changes in stagnation enthalpy and entropy occur concurrently.
For small increments, however, we can examine the impact of each separately to give insight into
why the stagnation pressure decreases, as well as to derive an expression for the magnitude of the
decrease.

The two processes ((I) – stagnation enthalpy increase at constant entropy, and then (II) – entropy
increase at constant stagnation enthalpy) are shown in Figure 11.4, along with three constant pressure
lines corresponding to pt, pt + dpt, and pt − dpt. Process I, indicated by the dashed line between
states a and b, is an isentropic compression resulting in a stagnation enthalpy increase dht and a
stagnation pressure increase dpt. Process II is at constant stagnation enthalpy. It could be achieved
in several ways, for example an adiabatic irreversible process, with lost work of magnitude Ttds,
or a reversible isothermal expansion in which work of magnitude Ttds is received by some external
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agency. The system change is the same in both, it is only the interactions with the surroundings that
are different. Process II is indicated by the dashed line between states b and c.

For the actual process (III) we need to combine I and II. The entropy change is ds = dq/T = dht/T.
Process II results in a change in stagnation pressure which is larger than, and of opposite sign to,
that in process I. The overall stagnation pressure change from state a to state c, due to heat addition,
is therefore negative.

Another way to motivate this result is to note that the combined process follows along a line
with slope T in the h–s plane, because dht = dq = Tds. To have no stagnation pressure change for
the specified entropy change ds, however, the change in stagnation enthalpy would need to be Ttds
(instead of Tds). From (11.3.6) the change in stagnation pressure resulting from processes I and II
can be written as

dpt

ρt
= T ds [1 − (Tt/T )] . (11.3.7)

This quantity will always be negative for heat addition (ds > 0).
Substituting the relations for Tt/T in terms of Mach number, and using the relations between ds,

dq, and dht given just above provides a direct path to the relation between changes in stagnation
pressure and stagnation temperature for steady frictionless flow with heat addition which appeared
in (10.4.10b):

dpt

pt
= −γM2

2

(
dTt

Tt

)
. (11.3.8)

For gases at low Mach number, as mentioned in Section 11.1, the equation of state can be approx-
imated as ρT ≈ constant. Using this approximation and taking the limiting values of the quantities
in (11.3.8) recovers (11.3.2), previously derived based on mechanical considerations.

11.4 Heat addition and flow state changes in propulsion devices

11.4.1 The H–K diagram

One reason to examine flows with heat addition is the potential for extracting thrust or power out
of a thermodynamic cycle. In this context it is useful to assess the behavior of such cycles in
terms of the fluid state changes that occur within cycle components. We approach this task within
a quasi-one-dimensional framework, restricting discussion to perfect gases with constant specific
heat.4 The relevant equations (as seen in Chapter 10) can be integrated without difficulty and we
seek a way to display these numerical results in a form which provides insight for a broad range
of situations. A method for doing this is through the use of an H–K diagram which has the non-
dimensional kinetic energy per unit mass [u2/(2cpTti ) = K ] as the abscissa and the dimensionless
static enthalpy (cpT/cpTti = H ) as the ordinate (Heiser and Pratt, 1994; Pratt and Heiser, 1993).
The inlet stagnation temperature, Tti , is taken as the reference in defining H. This formulation has
the advantage that several of the attributes of the flow are represented by straight lines, facilitating
interpretation of processes.

4 Comments on this aproximation are given in Heiser and Pratt (1994).
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Figure 11.5: The H–K diagram, depicting representative constant–property isolines. Key: Point 0 = free-stream
reference state. Point c = choked condition at constant impulse. Points u and d denote end states of normal
shock. Circled numbers denote isolines of constant property, as follows: (1) static enthalpy, static temperature;
(2) kinetic energy, velocity, pressure (for frictionless heating or cooling only); (3) total enthalpy, total temperature
(adiabat), τ = Tt/Tti = 1; (4) post-heat release adiabat, τ > 1; (5) non-dimensional impulse function (for
frictionless flow with heating or cooling only), � = �u = �d; (6) non-dimensional impulse function, � =
�0 > �u; (7) Mach number (the line labeled M = 1 is also constant Mach number) (Pratt and Heiser, 1993).

In the H–K diagram of Figure 11.5 the horizontal line (denoted by (1)) is constant static temperature
(static enthalpy) and the vertical line (denoted by (2)) is constant kinetic energy per unit mass, or
equivalently constant velocity. For frictionless heating or cooling, this is also a line of constant
pressure. The straight lines with a slope of −1 (denoted by (3) and (4)) are lines of constant stagnation
temperature (constant stagnation enthalpy). Along such lines u2 + cpT = cpTt, or, in normalized form,
H + K = Tt/Tti . These represent flow in ducts, nozzles, and diffusers, components with no shaft
work and no heat addition. Line (4) corresponds to a higher stagnation temperature than line (3).

The curves denoted by (5) and (6) represent the momentum equation. The axial force between any
two stations 1 and 2 in a channel is given by

Fx = (p2 A2 + ρ2u2
2 A2
)− (p1 A1 + ρ1u2

1 A1
)

= p2 A2
(
1 + γM2

2

)− p1 A1
(
1 + γM2

1

)
. (11.4.1)

The axial force is the difference between values of the quantity (p + ρu2)A, which is denoted by � and
referred to as the impulse function. Non-dimensionalizing the impulse function by ṁ

√
cpTti we obtain

� = �
ṁ
√

cpTti

=
√

1

2

(
2cpTti

u2

)[
2

(
u2

2cpTti

)
+ γ − 1

γ

(
cpT

cpTti

)]

=
√

K

2

(
2K + γ − 1

γ
H

)
. (11.4.2)
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The expression for � has been written so the quantities it contains are H and K. Curves for two
values of � are given in Figure 11.5. For a specified value of (p + ρu2)A the local state must be
somewhere on a curve of constant �. In H–K coordinates, the states for frictionless constant area
flow with heat addition (Rayleigh flow) would be traversed along such curves of constant � (i.e.
constant (p + ρu2)A) with the direction towards higher stagnation enthalpy.

Finally, lines of constant Mach number in H–K coordinates are lines on which the quantity u/
√
γRT

is constant. However, this is equivalent to the statement that H/K is constant, so lines of constant
Mach number are straight lines radiating from the origin as indicated by the line marked “M = 1”
and the line denoted by (7). The relation between H and K on a line of constant Mach number is
given by

line of constant Mach number: H = 2K

(γ − 1) M2
. (11.4.3)

At point c on the line for M = 1 in Figure 11.5 the constant � line would be tangent to a con-
stant stagnation enthalpy curve through c. This is the general condition for these two curves at
Mc = 1.

Depiction of a shock wave is as follows. The conditions across the shock wave are constant� and
H + K = 1. As such, once the upstream state (Mach number) is selected, say at point u in Figure 11.5,
the solution is given by translation along the constant stagnation enthalpy straight line until it again
intersects the constant � curve, at the downstream state indicated by point d.

The H–K diagram is used to portray different modes of heating in Figure 11.6. Frictionless
constant area heating means movement towards higher stagnation enthalpy along a constant �
curve, as indicated by the arrows. The largest possible heat addition (highest value of τ ) for the
specified value of � corresponds to the point of tangency at condition c at which the Mach number
is unity and the flow is thermally choked. Adding more heat necessitates a larger value of �, such
as would be obtained by lowering the mass flow and reducing the inlet Mach number.

Figure 11.6 also shows the regime described in Section 10.4 in which the static temperature
decreases as a result of heat addition. Increasing the stagnation temperature (moving to lines of higher
τ (= Tt/Tti ) in the figure) while remaining on the�= constant curve corresponds to Rayleigh flow,
heat addition at constant (p + ρu2)A. In the part of the constant � curve between M = 1/

√
γ =

0.845 (the peak) and M = 1, H decreases for increasing stagnation temperature.
Frictionless constant pressure heating (represented by the vertical line on Figure 11.5) and fric-

tionless constant area heating have different effects on flow quantities. For frictionless flow, the
momentum equation is udu = −dp/ρ, constant pressure means constant velocity and changes in
static and stagnation temperature are the same (dT = dTt). The relation between the change in Mach
number and the static temperature is

d M

M
= du

u
− dT

2T
. (10.3.12)

For constant velocity this becomes

d M

M
= −1

2

(
1 + γ − 1

2
M2

)
dTt

Tt
. (11.4.4)
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Figure 11.6: H–K diagram for frictionless, constant area heating; γ = 1.4, �i = 1.2, τ = Tt/Tti . The straight
lines emanating from the origin are lines of constant Mach number, increasing from left to right as indicated by
their labels (Heiser and Pratt, 1994).

Integrating (11.4.4) gives the ratio of the exit Mach number to the inlet Mach number in terms of the
inlet Mach number and the stagnation temperature ratio, τe = Tte/Tti , as

Me

Mi
=
[
τe

(
1 + γ − 1

2
M2

i

)
− γ − 1

2
M2

i

]− 1
2

. (11.4.5)

The exit Mach number for constant pressure heating in a channel is shown as a function of stagnation
temperature ratio in Figure 11.7(a) for four inlet Mach numbers. For supersonic inlet conditions the
flow passes without difficulty through the Mach number of unity and there is no limit to the amount
of heat that can be added (Heiser and Pratt, 1994).

Figure 11.7(b) shows two other aspects of constant pressure heating, the stagnation pressure
ratio, pte/pti , and the area ratio, Ae/Ai. The former is found directly from the definition of stag-
nation pressure. The latter is obtained from continuity, plus the condition of constant pressure and
velocity, as

Ae

Ai
=
(

Mi

Me

)2

. (11.4.6)
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Figure 11.7: Frictionless constant pressure heat addition: (a) exit Mach number, and (b) stagnation pressure
ratio and area ratio, as functions of stagnation temperature ratio τe and inlet Mach number Mi; γ = 1.4 (Heiser
and Pratt, 1994).

Combining (11.4.5) and (11.4.6) gives the area ratio dependence on inlet Mach number and stagnation
temperature ratio. For any inlet Mach number the area ratio is linear in the stagnation temperature
ratio, τ e. All these constant pressure flows occur in divergent passages.

11.4.2 Flow processes in ramjet and scramjet systems

Figures 11.8 and 11.9 give a view of the flow through a ramjet propulsion system. The overall system
is sketched in 11.8. There is an initial compression, here assumed isentropic, followed by a normal
shock to bring the flow to a subsonic condition. Figure 11.9 shows the process on an H–K diagram,
starting at state 0, the free stream, to u and then, via the normal shock wave, to d, with the transition
(from u to d) occurring at the same value of impulse function, �. Downstream of the shock there is
further diffusion, with an increase in impulse function, on the constant stagnation temperature path
from d to 1. The flow in the combustor is then (depending on design) somewhere between constant
pressure and constant area flow with heat addition. In Figure 11.9 these two processes are represented
by paths 1–2 or 1–3 respectively, both of which terminate on the constant stagnation enthalpy line
corresponding to a combustor exit temperature of Tt/Tti = 1.40. For this situation the flow in the
combustor is not thermally choked. The expansion through the nozzle is then along the constant
stagnation enthalpy line to point 4. At the exit condition the Mach number is lower than the inlet
value, but the velocity is higher than the inlet value (as necessary for positive thrust!).

Figures 11.10 and 11.11 show a view of the supersonic heat addition process in a scramjet, a
situation in which interaction between heat input and area variation is critical (Heiser and Pratt,
1994). A schematic of a scramjet combustion system is given in Figure 11.10 illustrating the inlet,
the (essentially constant area) “isolator”, the combustor, and the nozzle. The flow is decelerated in
the inlet. The isolator affords the possibility for the existence of a shock train (see Section 10.6) to
accommodate downstream pressure increases. The flow exits from the nozzle.
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Figure 11.8: Schematic of a ramjet showing the Mach number distribution (Pratt and Heiser, 1993).
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Figure 11.10: Schematic of a scramjet combustion system (Pratt and Heiser, 1993).
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Figure 11.11: Supersonic combustion process path in H–K coordinates; M3 = 1.5, linear area variation A4/A3

= 2.0 for path I, A4/A3 = 1.73 for path II, τ e = 1.4 (Curran et al., 1996).

Two design problems can be posed with reference to the influence coefficients of Table 10.1. For
frictionless supersonic flow with heat addition the incremental static pressure and Mach number
changes are given in that table as

dp

p
=
[
γM2

M2 − 1

] [−dA

A
+
(

1 + γ − 1

2
M2

)
dTt

Tt

]
, (11.4.7)

d M2

M2
=



(

1 + γ − 1

2
M2

)
M2 − 1



[

2dA

A
− (1 + γM2

) dTt

Tt

]
. (11.4.8)
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If there were no area change, heat addition (dTt > 0) would cause a static pressure rise. If the
pressure rise is too abrupt the boundary layer on the wall of the combustor will separate. Further, as
described in Section 10.4 and implied by (11.4.8), for given inlet conditions heat addition moves the
downstream Mach number towards unity, with a possibility for choking and mass flow limitation.
To alleviate these problems the combustor area must increase in the downstream direction. The
combination of the effects of area change and heat addition in a supersonic flow is the subject of this
example.

Figure 11.11 shows the combustion system in an H–K diagram. The point 0 (corresponding to
M = 3) denotes conditions upstream of the scramjet. The flow is decelerated to M = 1.5 at the inlet of
the combustor (station 3) for this example. The combustor exit stagnation condition (station 4) is at
a stagnation temperature ratio of 1.4. During the constant stagnation temperature deceleration from
0 to 3 the incremental change of K, the non-dimensional kinetic energy, is related to the pressure
changes by

d K

K
= 2du

u
= − 2

γM2

dp

p
. (11.4.9)

Two combustion processes are plotted in Figure 11.11, corresponding to two combustor exit area
ratios, A4/A3. The area ratio corresponding to path I is 2.0 and that for path II is 1.73. For both
paths the specified heat addition rate is largest in the entry region of the combustor and the combi-
nation of heat addition and area change provides nearly a constant pressure (and thus constant K)
process in the initial part of the burner. The rate of heat addition decreases in the rear part of the
combustor and the effect of area change thus becomes relatively stronger, increasing K and decreas-
ing pressure. As a result of the heat addition the Mach number in the combustor decreases from
the inlet value, going through a minimum for path I at point a, in this case M = 1.33. The axial
location of the minimum is referred to as the thermal throat, by analogy to the physical throat in a
converging–diverging nozzle. As with the physical throat, a thermal throat can exist without being
choked.

For the conditions of Figure 11.11 the larger combustor area ratio corresponding to path I causes
the combustor exit pressure and temperature to be lower than desired, decreasing the thermal effi-
ciency and also making the combustion less efficient. Solution path II corresponding to a decreased
combustor area ratio relieves the difficulty somewhat. For this path the minimum Mach number, at
point b, drops to 1.19. Reduction of the exit area could be taken further to increase the pressure
and temperature in the combustor. If the exit area is reduced enough, there will be thermal choking
at the thermal throat, with the consequence that the combustor inlet flow becomes subsonic and a
shock train forms in the isolator. In that situation the combustion system operates in a ramjet mode,
similar to that shown in Figure 11.9. Heiser and Pratt (1994) and Curran, Heiser, and Pratt (1996)
give further information on the behavior of scramjet combustion systems.

The H–K diagram allows the explicit display of many of the important quantities in propulsion
systems. It is especially instructive for high speed propulsion. Heiser and Pratt (1994) note that it is
not a thermodynamic state diagram, because only one axis is a thermodynamic property and there is
no necessary relation between a point on the diagram and other intensive thermodynamic properties
such as static pressure. They remark, however, that under many frequently encountered conditions
(for example one-dimensional flow with known ṁ, A, and Tti ) the H–K formulation does in fact give
state information.



590 Flow with heat addition

M = 0.2

8 m

Engine face
planeM = 0.8

M = 1.2

Figure 11.12: Geometry of a long aeroengine intake; contours show Mach number (Young, 1995).

11.5 An illustration of the effect of condensation on compressible flow behavior

Temperature rises due to condensation are less than those from combustion, but the former can
have appreciable impact when Mach numbers are near unity. For example, problems stemming
from condensation have occurred in sea level testing of gas turbine engines under conditions of
high relative humidity. A methodology for assessing whether condensation is an issue, using the
one-dimensional formulation, was put in place in Chapter 10; those ideas have been applied to
the analysis of conditions in a jet engine static test (Young, 1995; Cumpsty, 1992). The engine
had a long, straight inlet extending approximately 8 m from inlet lip to engine face. The Mach
number of the axial flow along the duct was close to 0.8 over most of the length, as indicated in
Figure 11.12 which shows calculated Mach number contours for dry air. Measurements during the test
showed a decrease in stagnation pressure along the inlet well away from the walls (and the boundary
layers).

The stagnation temperature change between two stations 1 and 2 due to the condensation of an
amount of liquid of mass flow ṁliquid, with heat of vaporization hfg per unit mass, is

ṁcp
(
Tt2 − Tt1

) = ṁliquidhfg. (11.5.1)

The mass fraction of water vapor in the air is proportional to the relative humidity, which is a function
of temperature. For a relative humidity of 70%, the mass fraction of water vapor is about 0.5% at
10 ◦C, rising to about 1.9% at 30 ◦C. As the air is accelerated into the inlet, the static temperature falls
and, for the conditions of sea level engine tests, typically drops below the saturation temperature.
Given adequate time to condense and a supply of condensation nucleation sites, the supersaturated
water vapor will condense, although this does not necessarily occur in (shorter) underwing inlets
because of the shorter residence time. The long inlet provides increased time for the condensation
process to occur and is thus more favorable to condensation.

The conditions at which choking occurs due to condensation are shown in Figure 11.13, based on
treating the air as a dry gas with heat addition. The figure gives the Mach number that will produce
thermal choking for a given inlet temperature, as a function of relative humidity, based on equilibrium
conditions. The dashed line is at M = 0.8, which was the dry air value over much of the duct. For
choking to occur with an incoming dry air Mach number of 0.8 and heat addition corresponding
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Table 11.1 Limiting conditions for thermal choking from condensation (Cumpsty, 1992)

Inlet stagnation conditions Ahead of condensation (1) After condensation (2) M2 = 1

T0 (◦C) Relative humidity M1 u2/u1 % Condensed

20.0 48 0.80 1.16 66
25.3 52 0.78 1.19 58
18.8 72 0.77 1.20 67

Out of equilibrium In equilibrium
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Figure 11.13: Upstream Mach number required to produce thermal choking if water vapor condensation takes
place to a new equilibrium condition, air at stagnation pressure of 1 atm, and stagnation temperature T0 (Young,
1995).

to condensation to equilibrium conditions an initial relative humidity of 40% would be needed at
30 ◦C, rising to 75% at 10 ◦C. Table 11.1 shows parameters at three test conditions at which engine
fan overspeeding was encountered. Assuming the Mach number, M2, after condensation is unity
there is a large increase in axial velocity (the axial velocity ratio, after vs before, is denoted by u2/u1)
which led to this overspeeding.

Whether condensation occurs depends on the degree of supercooling (the difference between
the temperature of the supersaturated gas and the saturation temperature), the time available for
condensation, and whether there are suitable dust particles to act as nucleation sites. Around the
lips of the intake, the Mach numbers are roughly 1.2 and at this condition cooling is large enough
for condensation to occur even without dust. For a Mach number of 0.8, dust of the correct size
must be present, but many engine test facilities are in industrial areas where dust is plentiful. The
paper by Young (1995) provides an instructive example of the use of one-dimensional analysis in
identifying the phenomena responsible for the observed behavior as well as defining the magnitude
of the effects.
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Figure 11.14: Quasi-one-dimensional model of a vortex core in a circular duct.

11.6 Swirling flow with heat addition

Many combusting flows have a strong swirl velocity. To illustrate the features and regimes en-
countered in such situations we extend the “simple radial equilibrium” treatment of vortex cores in
Chapter 8 to include effects of heat addition. The physical mechanisms that characterize the interac-
tions between swirl and heat addition are described, including the different influences on recirculation
zone formation at low and high values of swirl.

The overall context is combustor primary zones, in which a generic configuration is swirling flow
in a variable area duct with heat release. In the regimes of interest a toroidal recirculation zone exists
which promotes mixing and anchors the flame. Although the one-dimensional vortex core analysis
does not deal explicitly with recirculation, many features of the motion are illustrated by swirl flow
influence coefficients which enable the effects of swirl, heat release, mixing, and area change to be
quantified.

The vortex core analysis is an extension of that presented in Sections 8.6–8.8 to include heat
addition and density change in the core (inner) stream. Several observed aspects of the flows to
be addressed allow simplifications in the analysis. First, Mach numbers are low enough so we can
neglect changes in density due to pressure changes compared to those arising from heat addition
(temperature changes). As in Section 11.2, the state equation can be represented to order M2 by ρT
≈ constant. Second, kinetic energy changes are small compared to static enthalpy changes, so the
difference between static and stagnation temperature changes can be neglected (again to order M2).
Third, only heat addition in the core stream is considered here so the temperature and density of the
outer stream are constant. Finally, mixing and heat transfer between the vortex core and the outer
stream is neglected; as shown by Underwood, Waitz, and Greitzer (2000) these have a quantitative
influence, but do not change the results in any qualitative manner.

Application of conservation of mass, momentum, and energy, and the state equation, to the vortex
core and to the outer region in the duct (see Figure 11.14) yields a system of differential equations
which describe the flow evolution.5 Conservation of mass for stream 1 (core) is

dρ1

ρ1
+ dux1

ux1

+ dA1

A1
= 0. (11.6.1)

In stream 2 the density is constant. The area of stream 2 is related to the duct area and the area of
stream 1 by A2 = AD − A1. Conservation of mass for stream 2 is thus

5 The notation is different than in Chapter 8 because we need to be able to denote density and temperature differences between
the core and the outer stream.
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dux2

ux2

+ d (AD − A1)

(AD − A1)
= 0. (11.6.2)

Denoting pcl as the pressure on the centerline and Sc as the core swirl parameter, Sc = uθ /ux1 ,
evaluated at the core radius, conservation of axial momentum for stream 1 can be written as

dρ1

ρ1
+ dpcl

ρ1ux2
1

− 1

2
S2

c

dA1

A1
= 0. (11.6.3)

Conservation of axial momentum for the outer flow, stream 2, is

dux2

ux2

+ (ρ1/ρ2)

V 2

dpcl

ρ1ux2
1

− 1

2

[(
ρ1

ρ2

)
+ 1

]
S2

c

V 2

dA1

A1
+ 1

2

(
ρ1

ρ2

)
S2

c

V 2

(
1

1 − σ
)

dρ1

ρ1
= 0. (11.6.4)

In (11.6.4) there are three non-dimensional parameters in addition to Sc: the outer stream/vortex
core axial velocity ratio, V = ux2/ux1 , the ratio of core area to duct area, σ = A1/AD, and the
core/outer stream density ratio, ρ1/ρ2. The first two were introduced in connection with the constant
density vortex cores discussed in Chapter 8, but the last is new. The terms containing area and density
differentials in (11.6.3) and (11.6.4) are absent for a flow with no swirl. From continuity and Kelvin’s
Theorem the core swirl parameter at any location is related to the inlet value by

Sc

Sci

= ρ1

ρ1i

√
A1

A1i

. (11.6.5)

With dq1 the increment of heat addition per unit mass, the energy equation for the core is

dT1

T1
= dq1

cpT1
. (11.6.6)

The equation of state is

dρ1

ρ1
+ dT1

T1
= 0. (11.6.7)

The influence coefficients resulting from (11.6.1)–(11.6.7) are summarized in Table 11.2. They
reduce to the results of Shapiro (1953) and Anderson et al. (1970) (given in Tables 10.1 and 10.3) for
a single stream at the appropriate limits. The independent variables are taken here as the duct area,
AD, and heat release per unit mass in the core, dq1/(cpT1). Although the latter cannot actually be
specified, the view is rather that we are examining the effect of a chosen heat addition distribution
on the behavior of the swirling flow.

As an example of the use of the influence coefficients consider the change in core axial velocity
(dux1/ux1 ) with core heat addition. There are two reasons to focus on this aspect. First, acceleration
or deceleration of the vortex core is directly related to the potential for recirculation zone formation.
Second, this situation illustrates a result where the behavior changes qualitatively as the swirl level
is altered.

From Table 11.2 the relation between core axial velocity and heat addition is

dux1

ux1

=
1 − 1

2

S2
c

V 2

[(
(ρ1/ρ2) + 1

σ

)
− 1

]
Y

dq1

cpT1
. (11.6.8)
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Table 11.2 Influence coefficients for vortex core flow with heat addition: Sc = uθ /ux1 at core edge,
V = ux2/ux1 , σ = A1/AD, Y defined in (11.6.9) (Underwood et al., 2000)

Coefficient
d AD

AD

dq1

cpT1

dpcl

ρ1u2
x1

(
1 + S2

c

/
2
)

Yσ
−

1 −
(

S2
c

2σV 2

) [
(1 − σ ) + ρ1

ρ2

(
2 + S2

c
2 − σ

)]
Y

dux1

ux1

−1

Yσ

1 −
(

S2
c

2σV 2

) (
ρ1
ρ2

+ 1 − σ
)

Y

dux2

ux2

− (ρ1/ρ2) − (S2
c

/
2
)

YσV 2

(
ρ1/ρ2

Y V 2

)[
1 + S2

c

2 (1 − σ )

]

dT1

T1
0 1

dρ1

ρ1
0 −1

d A1

A1

1

Yσ

(
ρ1/ρ2

YσV 2

)(
1 − σ + S2

c

2

)

dpt1

ρ1u2
x1

0 −
(
1 + S2

c

)
2

The quantity Y is defined as

Y = 1 + (1 − σ )

σV 2

(
ρ1

ρ2
− S2

c

2

)
. (11.6.9)

Examining the denominator of the influence coefficient in (11.6.8), the critical swirl number that
yields Y = 0 is

Sccrit =
√

2

[
ρ1

ρ2
+ σV 2

(1 − σ )

]
. (11.6.10)

In the discussion only swirl parameters below this critical value are considered.
The swirl parameter at which the numerator of the influence coefficient in (11.6.8) is zero denotes

the condition at which the sign of the influence coefficient changes. The swirl parameter at which
this occurs marks the boundary between the two regimes, denoted as Sca in Table 11.3, is

Sca =
√

2σV 2

[(ρ1/ρ2) + 1] − σ . (11.6.11)

Passage through this value of Sc corresponds to a reversal in the effect of adding heat to the core. For
low swirl, adding heat accelerates the core, as inferred from the discussion (for zero swirl condition)
in Section 11.2. For high swirl, heat addition decelerates the core.

An explanation for the change in behavior with swirl level can be given by considering the cases
of no swirl and strong swirl (e.g. swirl parameter close to critical) for a constant area duct flow.
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Table 11.3 Local trends from influence coefficients
(Underwood et al. 2000)

Variable Duct area change (dAD > 0) Heat release in core

pcl ↑ ↓, Sc < Scb

↑, Sc > Scb

ux1 ↓ ↑, Sc < Sca

↓, Sc > Sca

ux2 ↓, Sc < Scc ↑
↑, Sc > Scc

A1 ↑ ↑
A2 ↑, Sc < Scc ↓

↓, Sc > Scc

pt1 No effect ↓

CL

Vortex
core

Q
(a) (b)

∇
∇p

∇p

CL

Vortex
core

Core accelerates Core decelerates

Q

ρ ρ

ρ

∇ρ2

1

Figure 11.15: Circulation generation due to baroclinic torque for (a) no (or low) swirl and (b) high swirl.

The core and outer region are taken to have the same axial velocity upstream of the region of heat
addition, although this is not a necessary part of the arguments.

With no swirl heat addition lowers the core density and causes the core to expand, as discussed
in Section 11.2 and shown in Figure 11.15(a). The streamtube area in the outer region contracts, the
axial velocity in the outer region increases, and the static pressure decreases. The static pressure is
uniform across the duct and there is acceleration in the core.

Now consider a high level of swirl so that axial velocity changes have a weak effect on static
pressure compared to the effect of the circumferential velocity (through simple radial equilibrium).
The core expands in the region of heat addition as indicated in Figure 11.15(b). At the outer radius of
the duct the circumferential velocity and the stagnation pressure do not vary along the duct. Simple
radial equilibrium implies that in the axial region in which core expansion (heat addition) occurs
the static pressure on the interface between the two streams increases with downstream distance.
There is a thus a net upstream pressure force on the fluid in the vortex core in this region and hence
a deceleration.

The change in behavior with swirl level can also be viewed in terms of vorticity dynamics. Changes
in the circumferential vorticity (vortex lines oriented in the θ -direction, ωθ ≈ −∂ux/∂r) at the edge
of the core are set by a balance between the production of (negative) circumferential vorticity from
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stretching of existing circumferential vortex lines and the production of circumferential vorticity
due to baroclinic torque and tipping of existing axial vorticity into the circumferential direction (see
Figure 8.11). Production of positive circumferential vorticity is associated with core acceleration
and production of negative circumferential vorticity with core deceleration. With no or low swirl the
pressure on the interface between the two streams decreases in the streamwise direction. With high
swirl the pressure increases in the streamwise direction (see Figures 11.15(a) and 11.15(b)). In the
latter situation, negative circumferential vorticity is produced on the interface from the baroclinic
torque. Negative circumferential vorticity is also produced from tipping of axial vorticity into the
circumferential direction within the core.

There are two additional swirl parameters at which influence coefficients change sign. These two,
denoted as Scb and Scc , define the boundaries between low swirl and high swirl behavior for the
centerline static pressure change due to core heat addition and for the outer region velocity change
due to duct area change respectively. The swirl parameters Scb and Scc are defined as

Scb =
√

F − [(1 − σ ) + (ρ1/ρ2)(2 − σ )]

(ρ1/ρ2)
, (11.6.12)

where F is

F =
√[

(1 − σ ) + ρ1

ρ2
(2 − σ )

]2

+ 4

(
ρ1

ρ2

)
σV 2

and

Scc =
√

2ρ1

ρ2
. (11.6.13)

Table 11.2 also shows (as seen in Section 8.8) that an increase in duct area causes a decrease in core
axial velocity and a tendency towards the formation of a recirculation zone. The local trends implied
by the influence coefficients are summarized in Table 11.3.

11.6.1 Results for vortex core behavior with heat addition

The local trends given by the influence coefficients can be viewed for the whole flow field by
integrating (11.6.1)–(11.6.7) and following the evolution of the swirl parameter compared to the
values of Sca , Scb , Scc , and Sccirt . Figure 11.16 shows an example result at a relatively high value
of inlet swirl (Underwood et al., 2000).6 The heat release profile and duct geometry are given in
Figure 11.17. Six regions are defined, labeled 1–6 in Figure 11.16. Their boundaries are the swirl
parameters Sca , Scb and Scc , at which the influence coefficients change sign, defined by (11.6.11)–
(11.6.13) and labeled in the figure. The other boundary on Figure 11.16 is the critical swirl ratio Sccirt

defined by (11.6.10).
Behavior at any axial location (x/rDi ) is determined by which region the solution (Sc) lies in

at that point. Region 1 is below all the boundaries, and the behavior of the flow is qualitatively

6 Figure 11.16 is based on calculations with a model which included additional effects, for example mixing between the core
and outer stream. There are thus some quantitative differences between the solution trajectories shown and those which
would be obtained from the use of (11.6.1)–(11.6.6). The discussion and conclusions concerning parametric behavior,
however, are directly applicable.
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Figure 11.16: Flow regime map for vortex cores with heat addition (Sci = 1.5), and high heat release (φ = 0.8);
rDi is the duct radius at the inlet station; heat release is dh = 0.8 dhmax; dhmax is based on a measured methane–air
reaction heat addition profile; φ is the equivalence ratio (Underwood et al., 2000).
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Figure 11.17: Heat release and duct radius profiles; dh = φdhmax; dhmax is based on a measured methane–air
reaction heat addition profile; φ is the equivalence ratio (Underwood et al., 2000)

similar to that for zero swirl. Region 2 is above the Scb line, the local core swirl parameter (Sc) is
greater than Scb , and, as shown in Table 11.2 (or 11.3), adding heat to the core increases the core
velocity. Region 3 lies above both the Sca and Scb lines. so adding heat to the core decelerates the
core.

In region 4, adding heat to the core accelerates the core and decreases the centerline static pressure
as in the zero swirl case. However, increasing the duct area increases the axial velocity of the outer
stream and decreases the area of the outer stream, counter to the zero swirl case. In region 5, adding
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Figure 11.18: Navier–Stokes computations of vortex core flow with low and high swirl and varying heat release:
(a) low heat release, law swirl; (b) high heat release, low swirl; (c) low heat release, high swirl; (d) high heat
release, high swirl (Underwood et al., 2000).

heat to the core increases the centerline static pressure, and increasing the duct area increases the
outer stream axial velocity and decreases the outer stream area. Finally, in region 6, adding heat to the
core increases the centerline static pressure and decreases the core axial velocity, whereas increasing
the duct area increases the outer stream axial velocity and decreases the outer stream area. These
effects are summarized in Table 11.3. Examination of the relation of the solution trajectory to the
boundaries for trend reversal is helpful in understanding the parametric dependence.

Several summary comments can be made about vortex core behavior with heat addition. First, the
initial core radius computation is one-half the initial duct radius and the likelihood of recirculation
zone formation is increased for smaller initial area ratios (Darmofal et al., 2001). In general for
low swirl, heat release in the core hinders recirculation zone formation, whereas for high swirl, heat
release in the core enhances recirculation zone formation. Mixing mitigates against recirculation
zone formation.

The applicability of the one-dimensional vortex core analysis in providing guidance concerning
the onset of recirculation can be seen by examination of results from an axisymmetric Navier–Stokes
code for reacting flows (Wake, Choi, and Hendricks, 1996) in Figure 11.18. Streamlines showing
the size and location of the recirculation zone for two different levels of heat release and two levels
of swirl are plotted.

A low swirl (Sci = 0.5) case with zero and high heat release is presented in Figures 11.18(a)
and 11.18(b), respectively and a high swirl (Sci = 0.8) case in Figures 11.18(c) and 11.18(d) for
the same non-dimensional heat addition. With low swirl, heat release causes acceleration on the
centerline, resulting in a weaker, further downstream, recirculation zone. With high swirl, heat
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release causes deceleration on the centerline, resulting in a stronger, further upstream, recirculation
zone, in qualitative accord with the trends from the influence coefficients.

11.7 An approximate substitution principle for viscous heat conducting flow

Section 10.10 described a substitution principle for steady isentropic (but not necessarily uniform
entropy) flow by which the behavior of a class of motions can be inferred from a single solution. This
is an exact statement for inviscid flow with no heat transfer. There is no equivalent exact statement
when heat transfer and momentum interchange through viscous stresses are present, but the idea of
a substitution principle can be extended in an approximate manner to situations in which mixing has
a strong role. (Greitzer, Paterson, and Tan, 1985).

The concept to be developed can be stated as follows. In flows with the same upstream stagnation
pressure distribution but different stagnation temperature distributions, the Mach number and stagna-
tion pressure distributions along given streamlines are approximately independent of the stagnation
temperature distribution even if substantial heat and work transfer between streamtubes exist. The
local streamtube area, however, is altered approximately in proportion to the square root of the local
temperature.

In the next sections we discuss features of flows with heat and work exchange between streamtubes
with reference to this approximate similarity. It is shown there is a relation between heat transfer and
viscous work which, if satisfied, would lead to the desired result. Several model problems relating
to the mixing of two streams are then defined to identify parameter regimes in which the relation
is satisfied and the approximation applies. Finally, data from mixer nozzles, jets, and ejectors are
presented to demonstrate concept application.

11.7.1 Equations for flow with heat addition and mixing

As a framework for the development of the ideas, we examine the equations for the steady flow of a
perfect gas with viscous stresses and heat transfer. For now discussion is restricted to Mach numbers
M2 � 1, for which the equations are, with Fvisc the viscous force per unit mass and q the heat flux
vector,

∇ · (ρu) = 0, (11.7.1a)

u × ω = 1

ρ
∇p + ∇( 1

2 u2
)− Fvisc, (11.7.1b)

ρcpu · ∇T =∇ · q. (11.7.1c)

For the situations of interest the Reynolds numbers are typically high enough that Fvisc and q primarily
result from turbulent rather than molecular diffusive processes. Equations (11.7.1) are supplemented
by the equation of state, which, in accord with the discussion of Section 11.2 can be written as ρT =
ρ iTi + 0(M2), with ρ i and Ti reference (taken here as initial) values of density and temperature. In
this form of the equations of motion the terms neglected compared to those retained are of order
M2; the neglected terms contribute to dynamical processes only to order M4. To this same order
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the static and stagnation temperatures are interchangeable. In the motions described the stagnation
temperature can vary along a streamline as well as from streamline to streamline.

Because we are looking at conditions under which there is Mach number similarity, it is useful to
cast (11.7.1) in terms of the Mach number vector, M = u/a, where a is the local sound speed:

∇·M = (M · ∇T)/2T, (11.7.2a)

M × ωM = ∇pt

ρi a2
i

+ M
(M · ∇T )

2T
− Fvisc

a2
, (11.7.2b)

M · ∇T = (∇ · q)

(ρacp)
. (11.7.2c)

The quantity ωM is defined as (Hicks 1948)

ωM = ∇ × M. (11.7.3)

Equations (11.7.2) contain terms with the appearance of ‘sources’, represented by the term
(M · ∇T)/2T in the continuity equation, and ‘body forces’, represented by the term M(M · ∇T)/2T
in the momentum equation. The body-force term can be regarded as the force needed to accelerate the
source mass flux, which appears at zero velocity, to the local velocity (Broadbent, 1976). Both source
and body force are directly proportional to the rate of change of temperature along the streamline.

Any vector field is specified by its curl, divergence, and the boundary conditions imposed by
geometry (e.g. Plonsey and Collin (1961), Batchelor (1967)). For the same boundary conditions,
(11.7.2) imply there cannot be complete Mach number field equivalence between isentropic flows
(which have ∇ · M = 0) and those with temperature variation along a streamline (for which, as
shown by (11.7.2a), ∇ · M is non-zero). In spite of this, for parameter regimes encountered in
fluid machinery and propulsion devices, there are aspects of mixing flows that remain substantially
independent of the stagnation temperature distribution.

Because many of the flows of interest have low stagnation pressure loss along streamlines it is
pertinent to inquire when the stagnation pressure is invariant along a streamline if heat transfer and
viscous forces exist. To see this, we make use of (11.7.2c) to write (11.7.2b) as

M × ωM = ∇pt

ρi a2
i

+ M(∇ · q)

2ρacpT
− Fvisc

a2
. (11.7.4)

The stagnation pressure does not change along a streamline if

u(∇ · q)

2ρcpT
= Fvisc. (11.7.5)

If (11.7.5) is satisfied, the equations that describe the motion7 are (11.7.2a), (11.7.2c), and

M × ωM = ∇pt

ρi a2
i

. (11.7.6)

7 Circulation round a fluid contour is not conserved for flows obeying these equations. However, a ‘reduced circulation’ (based
on the Mach number field) is conserved for contours composed of fluid particles that drift with a velocity proportional to
the local Mach number. A formal analogy exists between the reduced vorticity in isentropic and non-isentropic flows and
the actual vorticity in inviscid constant density and inviscid compressible flows respectively (Greitzer et al., 1985).
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The important implication of (11.7.5) is that there is a possible condition in which two competing
effects cancel; the stagnation pressure change from viscous effects is balanced by that resulting from
heat transfer. The point can be made specific using the example of two parallel coflowing streams in a
channel with the same inlet stagnation pressure. If the streams have the same stagnation temperature,
the velocities are equal and there is no heat transfer, viscous stress, or change in stagnation pressure
along the flow direction. Suppose, however, that one stream has a higher inlet stagnation temperature
than the other. Equality of inlet stagnation pressures means equality of the quantities ρu2 or, because
the static pressure is uniform in the parallel streams, u2/T. The hot stream thus has a higher velocity
than the cold stream. In the subsequent mixing that takes place (because of the unequal velocities
and temperatures) the stagnation pressure in the cold stream tends to decrease due to heat addition
(see Section 11.3) but tends to increase because of viscous work transfer from the higher speed hot
stream. In the hot stream the effects are the converse. Heat extraction causes a stagnation pressure
increase and the viscous stresses from the slower moving cold stream cause a decrease. We will see
that a close to complete balance between the two effects exists over a wide range of conditions. As a
consequence (over the defined range of conditions) stagnation pressure changes along streamlines in
a mixing flow are almost independent of alterations in the inlet stagnation temperature even if large
velocity and temperature gradients exist.

11.7.2 Two-stream mixing as a model problem – I: Constant area, low Mach number,
uniform inlet stagnation pressure

To present the basic ideas and illustrate the degree to which the approximate scaling is valid we
examine the model problem of mixing of two low Mach number streams in a constant area duct.
The initial examples are for equal inlet stagnation pressures in the two streams, which is not only
the simplest situation but also gives upper bounds on the departure from exact similarity. For non-
uniform inlet stagnation pressures (the more usual case) the changes in stagnation pressure and Mach
number resulting from temperature field alterations are found to be smaller than for uniform inlet
stagnation pressures.

The inlet conditions are specified by two parameters, the temperature ratio (hot stream to cold
stream) and fractional area occupied by the cold stream (stream 1) at the inlet, σ , defined as

σ = A1i

A1i + A2i

= A1i

A
. (11.7.7)

As stated previously the difference between the stagnation and static temperature ratios is of order
Mach number squared, and hence negligible at low Mach number, i.e. the two ratios are interchange-
able in this regime. To avoid subscripts we therefore use the static temperature in the temperature
ratio. In Figure 11.19, subscript 1 refers to the initially cold stream, subscript 2 to the initially hot
stream, and the subscripts i and e denote inlet and exit stations. The exit condition is fully mixed.
Holding σ constant corresponds to varying the inlet temperature ratio, TR = T2i /T1i with geometry
constant, as would generally be the case in a mixer nozzle experiment. The mass flow ratio, ṁ1/ṁ2,
is related to σ and temperature ratio by

ṁ1

ṁ2
= σ

√
T R

(1 − σ )
. (11.7.8)
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Figure 11.19: Control volume for two-stream mixing; α = A1i /A.

The results for the mixed out states are obtained from the control volume statements.8 Conservation
of mass and energy serve to determine the mixed out velocity and temperature respectively. The
momentum equation then gives the static pressure difference, inlet to exit, from which the stagnation
pressure change can be obtained. The results for non-dimensional stagnation pressure change and
the exit/inlet Mach number ratio are:

stagnation pressure change:
pti − pte
1
2

(
ρ1u2

1

)
i

= σ (1 − σ )

(√
T R + 1√

T R
− 2

)
, (11.7.9)

exit Mach number/inlet Mach number:
Me

Mi
=
[

1 +
(

pti
− pte

)
1
2

(
ρ1u2

1

)
i

] 1
2

. (11.7.10)

Equation (11.7.9) shows that to first order in the non-dimensional inlet temperature difference,
(T2i − T1i )/T1i , the effects of viscous work and heat transfer are equal and opposite and the stag-
nation pressure change is zero. The cancellation is not exact for larger temperature differences, but
the numerical results indicate that it is a good approximation in the range of temperature ratios
considered.

Figure 11.20 presents changes in non-dimensional density, mass flow per unit area, and velocity
for the initially cold stream, as a function of the inlet temperature ratio, TR, for equal hot and cold
flow inlet areas (σ = 0.5). Substantial changes occur in velocity and density between the inlet and the
exit for the higher temperature ratios. Figure 11.21, however, indicates that the change in stagnation
pressure is a much smaller fraction of the inlet dynamic pressure (roughly 12% at a temperature ratio
of 4 and σ = 0.5).

For the situation considered the approximate similarity proposed is that constant Mach number
is also a good description of flow with non-uniform inlet temperature. The ratio of exit/inlet Mach
number (the inlet Mach numbers are the same for both streams) is shown in Figure 11.22 for σ =
0.5, the situation in which the largest difference from unity occurs. Even at an inlet temperature ratio
of 4 the departure from constant Mach number is only 6%.

8 The control volume calculations give overall results and do not provide information about the local balance between rates of
heat and momentum transfer. However, these have been examined (Greitzer et al., 1985) and the utility of the approximation
assessed on a local basis. This point will also be addressed by data to be shown subsequently.
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Figure 11.20: Mixing of hot and cold streams in a constant area duct. Mixed out conditions relative to the cold
stream inlet conditions (subscript 1) as a function of the inlet temperature ratio of the two streams, σ = A1i /A
= 0.5, pt1i = pt2i , M2 � 1 (Greitzer et al., 1985).
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Figure 11.21: Stagnation pressure change due to mixing of hot and cold streams in a constant area duct,
pt1i = pt2i , M2 � 1 (Greitzer et al., 1985).
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Figure 11.22: Mach number ratio for mixing of hot and cold streams in a constant area duct, pt1i = pt2i , σ =
A1i /A = 0.5, M2 � 1 (Greitzer et al., 1985).

11.7.3 Two-stream mixing as a model problem – II: Non-uniform inlet stagnation
pressures

In the more general situation in which the inlet streams have unequal stagnation pressures another
non-dimensional parameter, denoted here by χ , must be specified to characterize the stagnation
pressure non-uniformity at the inlet:

χ = pt1i − pt2i

1
2

(
ρ1u2

1

)
i

. (11.7.11)

The velocity ratio at the inlet, u2i /u1i can be written in terms of the temperature ratio and χ as

u2i

u1i

=
√

T R (1 − χ ). (11.7.12)

Applying the control volume analysis for constant area two-stream mixing, the non-dimensional
stagnation pressure change in the cold stream is found as

pt1i − pte
1
2

(
ρ1u2

1

)
i

= [{σ + (1 − σ )
√

(1 − χ )/TR}{σ + (1 − σ )
√

(1 − χ )TR} − 1 + 2χ − 2σχ ].

(11.7.13)

It is instructive to examine several limiting cases. For an inlet temperature ratio of unity (TR = 1)
and a small inlet stagnation pressure non-uniformity, χ � 1, (11.7.13) reduces to

pt1i − pte
1
2

(
ρ1u2

1

)
i

= (1 − σ )χ. (11.7.14)
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Figure 11.23: Effect of the inlet stagnation pressure and stagnation temperature differences on the stagnation
pressure and Mach number changes in constant area mixing; σ = A1i /A = 0.5, M2 � 1 (Presz and Greitzer,
1988).

Ifχ is negative pt2i − pt1i > 0, the stagnation pressure in stream 2 increases from inlet to exit, whereas
if χ is positive the stagnation pressure in stream 2 decreases. The cause is work transfer between
the two streams. At inlet temperature ratios near unity (TR = 1 +�T/T1i and �T/T1i � 1) the
stagnation pressure change from inlet to exit is unchanged to first order in �T/T1i from (11.7.14),
depending only on the inlet stagnation pressure difference.

Figure 11.23 shows results for the stagnation pressure change and Mach number ratio (exit to inlet)
in the cold stream as a function of the inlet stagnation pressure difference. The temperature ratios are
from 0.5 to 3.0. For a specified inlet temperature ratio, there is a strong effect of stagnation pressure
difference on Mach number ratio and stagnation pressure change. For a specified inlet stagnation
pressure difference, however, the temperature ratio has only a small effect on the Mach number ratio
and stagnation pressure change. The approximate scaling described amounts to the neglect of the
effect of temperature.

11.7.4 Effects of inlet Mach number level

We now consider the effect of the inlet Mach number on similarity in two-stream mixing in a
constant area duct. For an arbitrary (not small) Mach number, the exit conditions are functions of four
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Figure 11.24: Stagnation pressure change due to: (i) mixing of hot and cold streams with equal stagnation
pressure, (ii) frictionless constant area flow with heat addition (Rayleigh flow), and (iii) frictionless flow at
constant Mach number with heat addition; Mi = 0.5 (Greitzer et al., 1985).

parameters: the inlet area ratio of the two streams, the inlet stagnation temperature and stagnation
pressure ratios of the two streams, and the inlet Mach number of either stream (or equivalently
the ratio of stagnation to static pressure in either stream). The uniform stagnation pressure, σ =
0.5 case yields the largest departure from similarity and only results for that configuration are
presented.

Figure 11.24 shows the ratio of the exit stagnation pressure to the inlet stagnation pressure for
three situations: (i) constant area mixing of two streams at different inlet stagnation temperatures and
the same inlet stagnation pressure; (ii) constant area frictionless flow with heat addition (Rayleigh
flow) and (iii) constant Mach number flow with heat addition. The inlet conditions are Mi = 0.5 and,
for case (i), σ = 0.5. The abscissa is the ratio of exit/inlet stagnation temperatures; for two-stream
mixing it is the ratio of the mixed out exit stagnation temperature to the inlet cold stream stagnation
temperature, Tte/Tt1i . The stream-to-stream stagnation temperature ratio at the inlet corresponding to
this mixed out value is indicated on the scale at the top of the figure. For reference the inlet dynamic
pressure is shown on the right-hand side of the figure.

For the same exit/inlet temperature ratio the stagnation pressure decrease for constant area heat
addition to a single stream is more than an order of magnitude larger than for the cold stream during
two-stream mixing. The stagnation pressure decrease for heat addition at constant Mach number is
also much larger than in two-stream mixing, even though the heat addition in the mixing flow occurs
at locally higher Mach numbers. With the two-stream flow there must be an effect which acts to
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Figure 11.25: Effect of the inlet Mach number on similarity in two-stream mixing; σ = 0.5, uniform stagnation
pressure (Greitzer et al., 1985).

increase the stagnation pressure of the cold stream, and, as argued, this is the work transfer from
shear stress exerted by the faster hot stream.

The effect of the Mach number level on the exit/inlet Mach number ratio for two-stream constant
area mixing is shown in Figure 11.25. As the inlet Mach number approaches unity, the departure from
the proposed scaling increases (at Mi = 0.7 and TR = 2, the error is 6%). As discussed below, however,
constant area mixing is a severe test and the approximate scaling principle is more applicable than
implied by Figure 11.25.

11.8 Applications of the approximate principle

11.8.1 Lobed mixer nozzles

Applications of the approximate scaling are demonstrated below for turbofan lobed forced-mixer
nozzles, jets, and ejectors. The geometry for a lobed mixer nozzle (see Section 9.9 for a description
of the flow structure in these devices) is given in Figure 11.26. Figure 11.27 compares measured
Mach number profiles for uniform and non-uniform inlet stagnation temperature at the axial and
circumferential locations of Figure 11.26. There is close correspondence between Mach numbers
in the two situations even though the individual velocities and temperatures are quite different. The
Munk and Prim principle should apply at the duct inlet, where effects of mixing are confined to thin
shear layers emanating from the lobe surfaces. This, however, cannot be said for the conditions at
the intermediate plane and nozzle exit, where measurements show that the flow is well mixed.
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Figure 11.26: (a) Cross-section through a mixer nozzle showing axial measurement planes: mixing duct inlet
plane (lobe exit) and nozzle exit plane; (b) nozzle at the mixing duct inlet measurement plane (section A–A of)
(Paterson, 1982).
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trailing edge (Greitzer et al., 1985).
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vertical lines in (a) give radial position of lobe trailing edge (Greitzer et al., 1985).

Inlet and exit stagnation pressures in the nozzle are given in Figure 11.28. As for the Mach number
profiles the exit stagnation pressure distributions are similar for the two sets of experiments.

To put the approximate principle in context it is helpful to categorize the flows addressed according
to the processes that are important in setting the overall behavior. One limiting case is where pressure
forces dominate, there is then little mixing, and most of the flow can be regarded as essentially
isentropic. For this situation the basic Munk and Prim principle of Section 10.10 is a good descriptor.
Flows in which both pressure and viscous shear forces (with the accompanying heat transfer) are
important are another category, represented here by mixer nozzle flows. In these the conditions
for the Munk and Prim principle are not satisfied and there is mixing throughout the flow. The
approximate similarity principle, however, allows accurate scaling of isothermal results to non-
isothermal situations with considerable accuracy, within the limitations that have been shown. The
applicability of the proposed approximate scaling is better for a mixer nozzle than for a constant area
duct because pressure forces are more important.

11.8.2 Jets

Another limiting case is a flow in which the dominant forces are viscous, with small or no pressure
forces. The two-stream mixing flow and a jet issuing into a still fluid are motions of this type and
we thus now assess the similarity for the jet. Figure 11.29 gives jet centerline stagnation pressure
distributions (for one jet of a tandem jet configuration) at an exit Mach number of 0.6. Data are shown
for ratios of jet initial stagnation temperature to ambient temperature of 1.0 and 2.7. Over an axial
extent of 40 jet nozzle diameters, the cold and hot centerline stagnation pressures can be seen to be
in close agreement. Radial distributions, given in Figure 11.30 for two downstream positions, show
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Figure 11.29: Centerline stagnation pressure distribution in a tandem jet experiment with heated and unheated
jets; nozzle exit Mach number = 0.6, Tti /Tambient is the jet initial stagnation temperature/ambient temperature
ratio, d is jet nozzle diameter (Greitzer et al., 1985).

similar results. (It can be noted that the scaling is not valid for all aspects of the mixing. For example,
the length of the potential core does depend on the temperature ratio (Lau, 1981).) Lepicovsky (1990)
gives additional experimental information showing the application of the approximate substitution
principle for heated jets.

11.8.3 Ejectors

A schematic of an ejector nozzle is given in Figure 11.31, showing the inflow conditions, a constant
area mixing duct, and an exit diffuser.9 Station 1 is at the start of the mixing duct, station 2 is at
the end of the mixing duct, and station 3 is at the diffuser exit. Ap and As are the primary and
secondary stream areas at station 1. Secondary (or outside) fluid is brought into the nozzle, mixes
with a primary flow (for example in a jet engine) and is exhausted to ambient. Uses include plume
attenuation, thrust augmentation, and noise reduction. An ejector relies on mixing for operation and
its behavior provides another good test of the ideas presented concerning the independence of the
Mach number and stagnation pressure on the stagnation temperature distribution (Presz and Greitzer,
1988).

The low Mach number analysis is again helpful for displaying overall trends. Ejectors are designed
to have essentially complete mixing so the behavior is well described through a control volume
treatment. We thus extend the analysis of Section 2.8 to include non-uniform temperatures. With
reference to Figure 11.31 both primary and secondary streams are assumed isentropic from known
stagnation conditions to the start of the mixing duct, with each stream uniform at this station. Mixing

9 The notation used for the ejector is different than for the control volume, but it makes use of conventional ejector terminology
including the mnemonically attractive p and s for primary and secondary streams.
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Figure 11.31: Schematic of an ejector showing primary and secondary streams and the stations used in analysis.

is taken as complete between stations 1 and 2 so the flow into the diffuser is uniform. The diffuser
pressure rise performance is taken as isentropic. As previously, for M2 � 1 the equation of state used
is ρpTp = ρsTs, where the subscript p refers to the primary stream and the subscript s the secondary
stream.

The necessary equations are the control volume statements for conservation of mass, momentum,
and energy, plus the descriptions of lossless flow upstream and downstream of the control volume.
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These can be combined into a single equation for the temperature corrected ejector pumping ratio
(temperature corrected secondary/primary mass flow ratio), ṁs
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√
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= 0. (11.8.1)

In (11.8.1) to order M2 the stagnation and static temperature ratios are the same.
If we write Tp = Ts +�T, to first order in�T/Ts the sum of the temperature ratio and its inverse,

which appears in the middle term in (11.8.1) is√
Tp

Ts
+
√

Ts

Tp
= 2. (11.8.2)

Although this is true only for �T/Ts � 1, the numerical results show that use of the approxima-
tion
√

Tp/Ts +√Ts/Tp ≈ 2 has little effect on calculated ejector performance. Making use of this
approximation in (11.8.2) yields a quadratic equation for the temperature-corrected ejector pump-
ing ratio which is independent of primary/secondary temperature ratio and only depends on ejector
geometry:(
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= 0. (11.8.3)

Equation (11.8.3) is another example of the approximate similarity.
Figure 11.32 shows the pumping ratio for ejector primary/secondary temperature ratios of 0.5, 1,

and 2.0. The upper part of the figure shows individual curves based on the control volume equations
as in (11.7.14). The lower part of the figure shows the pumping parameter normalized by the square
root of the temperatures, as suggested by (11.8.3), with the results nearly collapsed into a single
curve.

Figure 11.33 presents data on ejector thrust augmentation (defined as the thrust of the ejector
divided by the thrust of the primary stream expanded to the exit static pressure) for different pri-
mary/secondary temperature ratios. Eight different ejector tests are represented, with nozzle pressure
ratios from 1.01 to 3.0. The abscissa is the stagnation temperature ratio of the primary/secondary
stream and the ordinate is the thrust augmentation10 normalized by the thrust augmentation for a
temperature ratio of unity. The approximate principle implies no change in thrust augmentation with
temperature ratio. There is a slight decrease in the thrust augmentation ratio with the temperature
ratio, but the scaling does provide a good estimate for the ejector performance with a heated primary
stream.

10 Thrust augmentation is the total divided by the thrust of the primary stream expanded isentropically to exit conditions.
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Figure 11.33: Ejector thrust augmentation ratio for different primary/secondary stagnation temperature ratios.
See reference for original data sources (Presz and Greitzer, 1988).

11.8.4 Mixing of streams with non-uniform densities

The approximate similarity principle depends for its operation on the balance between the competing
effects of heat transfer and shear stress work. There is an analogy between this balance and the
processes that occur in the mixing of two streams of the same temperature but different densities.
Consider for example coflowing streams of nitrogen and hydrogen, mixing in a constant area duct
and having the same inlet stagnation pressure and temperature. Both streams have the same dynamic
pressure so the hydrogen stream has a velocity which is (28/2)1/2 = 3.7 times larger than the
nitrogen stream. The viscous work transfer from the high speed stream increases the stagnation
pressure of the low speed nitrogen stream. However, the overall density of the stream which was
initially pure nitrogen decreases, with the effect of (as implied by the arguments in Section 11.3)
lowering the stagnation pressure. Control volume analysis for low Mach number flow constant area
mixing shows the correspondence between the behavior with non-uniform inlet temperature and
with non-uniform inlet density. The implication, namely that the approximate scaling ideas can be
applied to describe flows with uniform temperature, but non-uniform density or a combination of
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non-uniform temperature and density, is borne out by the data shown by Presz and Greitzer (1988)
for ejectors operating over a range of primary/secondary flow densities from 3.5 to less than 0.2.

11.8.5 Comments on the approximations

Several final points should be made concerning the application of these approximate scaling ideas.
The first is that there are other analogies that can be made between the types of mixing processes
which, for example, enable one to carry out experimental evaluation of a given process in a simpler
fashion than studying the original phenomenon. An illustration is the use of mass addition to simulate
the effect of heat addition to a supersonic flow. The degree to which the flow similarity for the two
processes (suitably interpreted) holds has been demonstrated for both constant area and non-constant
area ducts (Heiser et al., 1995, 1996).

Second, although the approximate substitution principle provides an avenue to obtain information
about device behavior with heated flow from knowledge of basically isothermal situations, it is
important to understand the limitations of the statements that are made about flow similarity. Most
evident are the limits on the temperature ratio range (or density ratio range) over which useful scaling
applies; the way in which the approximation loses validity as the temperature ratio increases has
been exhibited in a number of figures. Further even though there is approximate similarity in local
rates of momentum and energy transfer, applications which focus on global quantities such as those
for the mixer nozzles and ejectors, tend to be most appropriate. As commented on earlier, the details
of mixing layers or of heated jets (both steady and unsteady) do not follow the approximate scaling.
Finally, much of the information shown concerning limits of applicability has been for Mach numbers
in the low supersonic regime or below. Information relating to the behavior of the stagnation pressure
in shear layer mixing in a higher speed supersonic regime (convective Mach numbers up to 3.0) is
given by Papamoschou (1994).
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12.1 Introduction

In this chapter the discussion of fluid component and system response to disturbances, begun in
Chapter 6, is extended to a broader class of flow non-uniformities. Whereas Chapter 6 considered
primarily one-dimensional disturbances, that restriction is now dropped and we address more general
(two- and three-dimensional) non-uniformities with variations transverse to the bulk flow direction.
Examples of interest are turbomachines subjected to circumferentially varying inlet conditions and the
behavior of components with geometry generated non-uniformity, such as is caused by a contraction
or a bend in close proximity.

Three important issues relating to these situations can be identified. One is the effect of the
fluid component on the flow non-uniformity, or distortion: how are the non-uniformities altered by
passage through the component? A second is the effect of the non-uniformity on the component:
how does the distortion modify the component performance? The approaches needed to address
these two questions are fundamentally different. For the former, qualitative aspects, and even many
quantitative features, can be resolved within the framework of a linearized description. For the latter,
however, the problem is inherently nonlinear and a different level of analysis is needed. Beyond
component performance there is a third issue. Because fluid components typically occur as part of
an overall system, what changes in interactions with the rest of the system arise due to the non-
uniformity?

Several integrating themes thread through the different applications discussed. The first is that
fluid components do not passively accept non-uniform flow but play a major role in modifying the
velocity distribution. A second concerns the type of non-uniformities to be discussed. Inlet conditions
for internal flow components such as diffusers or nozzles are never actually uniform. Even with a
uniform velocity core there are boundary layers on the bounding solid surfaces. As discussed in
Chapter 4, there is a well-developed methodology for determining the effects of boundary layers
on the performance of many fluid devices. The non-uniformities addressed in this chapter, however,
have to do with variations more appropriately described as occurring outside the boundary layers.
The length scales associated with these variations are typically on the order of the duct dimension
(or the mean radius, for a device functioning in an annular region), and hence much larger than the
boundary layer thickness. As such, features of these rotational flows can often be captured to a good
approximation by an inviscid description, although we also examine situations in which this is not
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true and viscous effects must be considered throughout the flow domain.1 The third theme is that
because the distance over which the component’s upstream influence is felt is set by the disturbance
length scale (see Section 2.3), there can be strong coupling of fluid components in the presence of
these non-uniformities.

A final theme concerns the level of approach to the physical situations dealt with in this chapter.
In considering problems of non-uniform flow in fluid machinery, there is a large range of length and
time scales, and consequently an immense amount of detail. In this type of situation it is often useful
to develop simplified models which help focus on essential mechanisms.2 Such modeling offers an
effective approach to capturing features of engineering interest. Discussion in the chapter is thus
aimed at providing not only insight into modeling but, more broadly, a conceptual framework for
dealing with these problems including the rationale which underpins the relevant approximations.

We illustrate the above ideas with examples covering a range of fluid components: screens, dif-
fusers, nozzles, and turbomachines. The treatments are based on constant density, but the analyses
can be extended to the compressible regime.

12.2 An illustrative example of flow modeling: two-dimensional steady
non-uniform flow through a screen

The overall concepts are introduced in the context of defining the effect of a screen or perforated
plate on a steady, two-dimensional, velocity non-uniformity. This example is addressed in some
depth to provide a framework for discussion of more complex fluid components. From examination
of the flow through the screen one can see explicitly, and without lengthy description of specialized
detail, key model elements and assumptions. Further, while specifics differ for other components, the
approach carries through the range of applications so the features of the velocity and pressure fields
for the non-uniform flow through a screen have relevance in the discussion of other devices. Finally,
the problem allows assessment of the degree of fidelity of different levels of modeling including the
influence of nonlinear effects, a subject we return to later in discussing turbomachinery behavior in
non-uniform flow.

The first problem posed is to define desirable characteristics for a screen that is placed across
(and normal to) a duct to reduce a velocity non-uniformity generated at some far upstream location.
The geometry is depicted in Figure 12.1 in which the streamlines shown are plotted to scale for the
conditions given in the figure, as described below.

It can be seen that there is flow redistribution in y, from upstream to downstream, caused by the
interactions of the velocity non-uniformity and the screen. An argument for this redistribution can
be made using the information about screens given in Section 6.6, namely that the pressure drop

1 The viscous processes that are often responsible for the creation of a given non-uniformity involve a small force acting
over a large distance. In this context, as argued in Chapter 9, many fluid components are short. On the length scale of the
component in the flow direction, therefore, viscous effects have much less influence on the modification of the velocity field
than do effects that are basically inviscid in nature.

2 As stated by Anderson (1977): “Very often . . . a simplified model throws more light on the real workings of nature than
any number of “ab initio” calculations of individual situations, which even where correct often contain so much detail as to
conceal rather than reveal reality. It can be a disadvantage rather than an advantage to be able to compute or to measure too
accurately, since often what one measures or computes is irrelevant in terms of mechanism. After all, the perfect computation
simply reproduces Nature, does not explain her.”
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Figure 12.1: Non-uniform flow through a screen. Streamlines shown at equal values of ψ . Linearized analysis;
ux (−∞, y) = ux + A cos(πy/W ), A = 0.67, screen pressure drop coefficient K = 3.

through the screen scales with the dynamic pressure of the incoming flow. Locally high velocity
implies a higher pressure drop across the screen and thus a higher (than the mean) static pressure
at the screen upstream face. Similarly, lower static pressure exists at the screen upstream face in
locations of low inlet velocity. The resulting static pressure gradient normal to the duct centerline
causes the streamline curvature shown in Figure 12.1.

To quantitatively define the screen geometry desired, a relationship is needed between screen
properties and the reduction in the velocity non-uniformity. The approach to establish this is con-
ceptually: (i) divide the flow field into regions upstream and downstream of the screen, (ii) develop
descriptions of the velocity and pressure fields in each region, and (iii) apply “matching” conditions
at the screen to insure compatibility of the two regions consistent with the local screen performance.
In the initial examples we adopt a linearized description and restrict the discussion to incompressible
flow. Although both of these constraints are readily removed, their adoption here allows explicit
display of the generic flow features and resulting scaling laws.

12.2.1 Velocity and pressure field upstream of the screen

As in Figure 12.1 x- and y-coordinates denote distance along and normal to the duct respectively.
The velocity components are written as a uniform “background flow” plus a disturbance:

ux = ux + u′
x , (12.2.1a)

uy = u′
y . (12.2.1b)

In (12.2.1) ux is the x-component of velocity for the uniform background flow, u′
x and u′

y are the
disturbance velocities (the non-uniformity), and uy = 0. The linearization to be described is based
on (u′

x/ux ), (u′
y/ux ) � 1. This allows the neglect of terms in the equations of motion which involve
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products of the disturbance velocities. In accord with the discussion of Section 12.1, the flow in the
duct is taken as inviscid, with this assumption examined in Section 12.2.5.

The linearized equations of motion for the steady two-dimensional disturbance flow are:

∂u′
x

∂x
+ ∂u′

y

∂y
= 0, (12.2.2a)

ux
∂u′

x

∂x
= − 1

ρ

∂p′

∂x
, (12.2.2b)

ux

∂u′
y

∂x
= − 1

ρ

∂p′

∂y
. (12.2.2c)

The solution sought has a specified velocity distribution at the far upstream station:

ux (−∞, y) = ux + u′
x (−∞, y) = known. (12.2.3)

The far downstream boundary condition (to be examined in the next section) is that the flow is parallel.
From (12.2.2), which also hold in the downstream region, this means that the far downstream static
pressure is uniform. The remaining boundary condition is the constraint of zero normal velocity at
the upper and lower walls of the duct:

uy(x, 0) = uy(x,W ) = 0; −∞ < x < ∞. (12.2.4)

For this two-dimensional problem, it is convenient to define a disturbance stream function, ψu

(with the subscript u denoting the upstream region), as

u′
x = ∂ψu

∂y
,

(12.2.5)
u′

y = −∂ψu

∂x
.

The continuity equation is satisfied identically by this choice. There is only a z-component of vorticity,
given by

ω(x, y) = −∇2ψu . (12.2.6)

The equation for ψu can be found by substituting (12.2.5) into (12.2.2b) and (12.2.2c), differen-
tiating (12.2.2b) with respect to y and (12.2.2c) with respect to x, and subtracting the latter from the
former, or by using (12.2.6) directly in the linearized two-dimensional form of the equation for the
evolution of the vorticity. In either case we obtain,

ux
∂

∂x
(∇2ψu) = 0. (12.2.7)

Equation (12.2.7) has the immediate integral

∇2ψu = f (y). (12.2.8)

The physical content of (12.2.7) or (12.2.8) is that vorticity associated with the disturbance velocity
field is viewed as convected unchanged along the background (or “mean”) streamlines and as a func-
tion of y only. From Crocco’s Theorem the stagnation pressure non-uniformity is also approximated
as convected along the mean streamlines and as a function of y only.
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The form of (12.2.8) implies the disturbance stream function is composed of two parts, the par-
ticular and the complementary solutions to the differential equation. The former (denoted as ψu p )
represents a rotational velocity field invariant with x and the latter (denoted3 as ψuh ) represents an
irrotational velocity field which is a function of both x and y:

ψu = ψuh + ψu p . (12.2.9)

The two parts are governed by

∇2ψuh = 0, (12.2.10a)

∇2ψu p = f (y), (12.2.10b)

respectively, with their sum giving (12.2.8).
We now invoke the boundary condition. To minimize algebraic complexity, we choose a far

upstream velocity profile anti-symmetric about the duct midplane, y = W/2:

u′
x =

∞∑
k=1

Ak cos

(
kπy

W

)
. (12.2.11)

The description is linear and the behavior of each Fourier component can be examined separately.
For a given single (kth) harmonic, the rotational component of the stream function (which is the part
that is non-zero far upstream) derived from (12.2.11) and (12.2.5) is

ψu p = Ak W

kπ

[
sin

(
kπy

W

)]
. (12.2.12)

The velocity field represented by (12.2.11) and (12.2.12) is a parallel shear flow with no streamline
curvature and uniform static pressure, which satisfies the boundary conditions at the top and bottom
walls of the duct.

The irrotational component of the stream function must have a Fourier series form similar to the
rotational part for the two to interact. From Section 2.3, or from substitution of the form ψuh =∑

k Bk(x) sin(kπy/W ) in Laplace’s equation (12.2.10a), ψuh is found as

ψuh =
∞∑

k=1

(
Ckekπx/W + Dke−kπx/W

)
sin

(
kπy

W

)
,

where Ck and Dk are constants to be determined. The velocity associated with ψuh must be bounded
everywhere, so the constants Dk are all zero and the form of ψuh is

ψuh =
∞∑

k=1

Ckekπx/W

[
sin

(
kπy

W

)]
. (12.2.13)

The stream function ψuh describes the alteration of the velocity profile from far upstream to the
screen.

3 The subscript “h” is used because the complementary solution is that for the homogeneous equation.



620 Non-uniform flow in fluid components

12.2.2 Flow in the downstream region

A similar procedure can be carried out to find the form of the stream function, ψd (= ψdh + ψdp )
which describes the flow downstream of the screen. The boundary condition of uniform static pressure
far downstream can be transformed into a condition on velocity using (12.2.2). The result is that
u′

y(y, ∞) = 0. Applying the boundary condition we thus obtain

ψd =
∞∑

k=1

[(
Eke−kπx/W + Fk

)
sin

(
kπy

W

)]
. (12.2.14)

The term involving Ek is associated with the irrotational part of the downstream stream function
while Fk is associated with the rotational part.

12.2.3 Matching conditions across the screen

Obtaining a description of the overall flow field involves solving for the three sets of constants,
Ck, Ek, and Fk. To do this we need to develop the matching conditions that link the upstream and
downstream stream functions. Three matching conditions are needed for each value of k. The first is
mass conservation across the screen. For a uniform density flow this is the statement that the local
x-components of velocity just upstream and just downstream of the screen are equal. With u′

xu
and

u′
xd

denoting the x-components of velocity upstream and downstream of the screen:

u′
xu

(0, y) = u′
xd

(0, y). (12.2.15)

The argument (0, y) means that evaluation is carried out either just upstream or just downstream of
the screen as appropriate, as indicated by the subscript. In terms of stream functions (12.2.15) is:

∂ψu(0, y)

∂y
= ∂ψd (0, y)

∂y
. (12.2.16)

The background velocity, ux , satisfies the relationship automatically and does not enter this matching
condition.

The second matching relation is a statement about the screen characteristics which can be described
as a refraction condition. The screen exerts a y-component force on the fluid, altering the flow angle
as fluid moves through the screen. The local y-component of velocity at the screen exit is therefore
less than that at the inlet as given by

u′
yd

(0, y) = η[u′
yu

(0, y)]. (12.2.17)

In (12.2.17) η (< 1) is a property of the screen geometry and is independent of the disturbances. In
this regard it is analogous to the screen pressure drop coefficient, K, introduced in Section 6.6:

�p = K 1
2ρu2. (6.6.14)

There is considerable experimental information (see Laws and Livesy (1978)) which provides
relationships between screen refraction and the pressure drop coefficient and the latter can be derived
if the screen geometry is known. A relation between η and K for round wire screens suggested by
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Laws and Livesy (based on data from Gibbings (1973)) is:

η =
(√

K2

16
+ 1

)
− K

4
. (12.2.18)

In terms of disturbance stream functions the refraction matching condition is,

∂ψd (0, y)

∂x
= η

[
∂ψu(0, y)

∂x

]
. (12.2.19)

The two matching conditions developed so far are kinematic, but the third condition involves the
pressure field and is dynamic. The physical statement is that the local pressure drop across the screen
is proportional to the local upstream dynamic pressure. If K is the constant of proportionality (screen
pressure drop coefficient), (6.6.14) becomes

pu(0, y) − pd (0, y) = K { 1
2ρ[ux (0, y)]2

}
. (12.2.20)

The x-component of velocity is used in (12.2.20) because experiments show for inlet angles of up to
45◦ the pressure drop scales with inlet dynamic pressure based on the velocity component normal to
the screen (Schubauer, Spangenberg, and Klebanoff, 1950).

To put (12.2.20) in terms of disturbance stream functions we write the pressure as the sum of
the background value (independent of y and varying only across the screen) and the disturbance,4

p = p + p′(x, y), and expand the right-hand side of (12.2.20) in terms of ux = ux + u′
x . Doing this

and neglecting terms which are second order in the disturbance quantities yields an equation that
contains both the background pressure drop and the pressure drop associated with the disturbance.
The former represents the pressure drop for a uniform flow, which is unaltered whatever the dis-
turbance characteristics as long as linearity is maintained. The uniform flow pressure drop can thus
be subtracted from the linearized pressure drop condition to provide the required relation between
disturbance quantities only5 as

p′
u(0, y) − p′

d (0, y) = Kρux [u′
x (0, y)]. (12.2.21)

No subscript is needed on the disturbance x-velocity component because the values just upstream
and downstream of the screen are equal.

To complete the conversion to stream function form we differentiate (12.2.21) with respect to y.
This can be done because the expression holds at every point across the screen. Incorporating the
definition of the stream function in the y-component of the linearized momentum equation (12.2.2c)
written as (∂p′/∂y = ρux∂

2ψ/∂x2) gives the third matching condition as

∂2ψu(0, y)

∂x2
− ∂2ψd (0, y)

∂x2
= K

[
∂2ψu(0, y)

∂y2

]
. (12.2.22)

Equations (12.2.16), (12.2.19), and (12.2.22), plus the prescription of the screen properties K and
η, constitute the desired equations for the set of coefficients Ck, Ek, and Fk. Because the equations are
linear, the equation for any Fourier component is independent of all other components and (12.2.16),

4 In this incompressible flow, p is measured as the difference from a reference pressure, for example pu or pd.
5 This can also be argued by noting that in a linearized analysis the background flow, which is uniform in y, will not be

coupled with any of the disturbance quantities, which all vary with y.
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(12.2.19), and (12.2.22) are a set of three equations for each k. The solution is:

ψuk = Ak

(
W

kπ

) (
1 − K

1 + K + η ekπx/W

)
sin

(
kπy

W

)
, (12.2.23a)

ψdk = Ak

(
W

kπ

) (
1 + η − ηK
1 + K + η + ηK

1 + K + η e−kπx/W

)
sin

(
kπy

W

)
. (12.2.23b)

12.2.4 Overall features of the solution

The features exhibited by the solutions (12.2.23) are common to a variety of situations involving non-
uniform flow in fluid components. The upstream disturbance consists of a rotational non-uniformity,
convected unchanged by the mean velocity, plus an irrotational (or potential) disturbance which is
the reaction of the screen to this rotational flow. Substituting ψu into the momentum equation it is
seen that only the irrotational disturbance gives rise to deceleration, streamwise curvature, and static
pressure variation. There is a decrease in the velocity in the high velocity region and an increase
in velocity in the low velocity region, from far upstream to the screen, both of which are related
(through Bernoulli’s equation) to the pressure changes. The streamlines in Figure 12.1, which are
from calculations for K of 3.0, show the streamline curvature in both upstream and downstream
pressure fields, as well as the discontinuity in flow angle across the screen.6

The velocity at the screen for the kth Fourier component is given by

u′
xu

(0, y) = u′
xd

(0, y) = ∂ψu

∂y
(0, y) = Ak

(
1 + η

1 + η + K
)

(12.2.24)

and is composed of both rotational and irrotational disturbances.
The velocity far downstream is associated only with the rotational part of the downstream stream

function. The ratio of the velocity non-uniformity far downstream to that far upstream is

u′
xd

(∞, y)

u′
xu

(−∞, y)
= 1 + η − ηK

1 + η + K . (12.2.25)

Figure 12.2 shows the ratio of downstream/upstream non-uniformity (12.2.25) plotted as a function
of screen pressure drop, along with data from different sources. The data are for disturbances which
are not sinusoidal but, because all Fourier components behave the same way, non-uniformities are
unchanged in shape by the screen and the subscript k has been dropped. At a pressure drop coefficient
of roughly 2.8 there is zero downstream non-uniformity; above that value the region of upstream
velocity deficit has a velocity excess downstream.

The behavior is illustrated in more detail in Figures 12.3(a) and 12.3(b). In Figure 12.3(a), the
value of K is such that the velocity defect is reduced, while in Figure 12.3(b) K is larger than 2.8 so
that the far upstream velocity defect produces a far downstream velocity excess.

The reversal in profile shape is associated with downstream flow redistribution. Consider the
behavior with an upstream profile as in Figure 12.1 for values of K much higher than 2.8. In this
situation the axial velocity non-uniformity at the screen is small. This implies a substantial transverse
velocity component just upstream of the screen and, because η is non-zero, just downstream of the

6 A large disturbance amplitude (0.67) has been chosen to make the trends more apparent.
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Figure 12.2: Ratio of upstream and downstream velocity non-uniformity for flow through a screen; linearized
analysis.
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Figure 12.3: (a) Attenuation of velocity non-uniformity by screen; K = 0.88, η = 0.29: (b) reversal of velocity
non-uniformity by screen; K = 3.2, η = 0.34 (Davis, 1957).
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Figure 12.4: Region of influence of a screen; velocity at given y as a function of axial distance for cosinusoidal
velocity non-uniformity (u′

xk
(−∞, y) = Ak cos(kπW/y)) through a uniform screen for different screen pressure

drop coefficients K; linearized analysis.

screen as well. The consequent adjustment downstream to parallel flow results in a low x-velocity
region near the bottom wall and a high x-velocity region near the upper wall, relative to conditions
at the screen. Achieving a zero far downstream velocity implies a balance between the effects of x-
velocity attenuation upstream of the screen and the velocity adjustment that takes place downstream
of the screen.

For a screen with a honeycomb or other flow straightening device as its downstream part, the
refraction coefficient, η, is zero, and the behavior is different. There is no downstream redistribution
and the axial velocity at the screen is the same as that far downstream. In this situation the velocity
ratio between far downstream and far upstream decreases monotonically to zero with screen pressure
drop, K,

u′
xd

(+∞, y)

u′
xu

(−∞, y)
= 1

1 + K (for η = 0). (12.2.26)

The refraction coefficient, η, thus controls the proportion of flow readjustment upstream and down-
stream. If η= 0, there is no irrotational downstream flow disturbance, no downstream static pressure
variation, and no streamline curvature; all flow redistribution occurs upstream of the screen. This
result finds important application in analysis of non-uniform flow in compressors.

The axial extent over which the screen affects the flow is also of interest. From the form of the
solution (12.2.23), and as discussed in Section 2.3, for the kth Fourier component the region of
influence is roughly 2W/(πk). In this distance the irrotational disturbance amplitude drops to e−2 of
its value at x = 0. In many circumstances, the harmonic of most concern is the first so the region
of influence is |x| < W/(π/2). This is illustrated in Figure 12.4, which shows the magnitude of the
velocity non-uniformity versus axial distance for different values of screen pressure drop coefficient,
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K. The degree to which the velocity is altered from far upstream to downstream varies strongly with
K but the extent over which the flow field is affected by the screen is similar for the different values
of K.

The stagnation pressure non-uniformities upstream and downstream of the screen can be found
from the velocity information. Far upstream and downstream the static pressure is uniform and
the axial velocity non-uniformity corresponds directly to the stagnation pressure non-uniformity, as
given by the linearized expression

p′
t = ρux u′

x . (12.2.27)

Differences between far upstream and far downstream velocities reflect differences in stagnation
pressure variation associated with the non-uniform loss generated across the screen.

12.2.5 Nonlinear effects

To assess the applicability of the linearizations that have been made we now examine the influence of
nonlinearity. The two kinematic boundary conditions, no change in axial velocity across the screen
and u′

yd
(0, y) = ηu′

yu
(0, y), are not altered, but the dynamic boundary condition is changed. One

form of this boundary condition can be expressed as

�pacross screen = pu(0, y) − pd (0, y)

= K × upstream dynamic pressure (0, y). (12.2.28)

Including the quadratic terms in the dynamic pressure, which involve transverse velocity components,
means the static pressure drop and the stagnation pressure drop across the screen are no longer equal.
The nonlinear problem also raises an issue which did not exist in the linear analysis concerning the
appropriate measures of pressure drop and dynamic pressure to be employed. Relevant modeling
questions are whether the pressure drop should be interpreted as the difference in stagnation or static
pressure and whether the inlet dynamic pressure used to scale the pressure drop should include the
y-velocity component, uy(0, y).

The first of these choices is basically a matter of convenience. The second choice, whether to
include (u2

y) in the non-dimensionalizing parameter, is a different matter. This is an issue that goes
to the heart of what is the correct representation of the physical properties of the screen or, for that
matter, any device, because defining the matching conditions is crucial in the modeling process. For
a screen, the data of Schubauer et al. (1950) show the pressure drop scales with the dynamic pressure
based on the component of velocity normal to the screen, up to approach angles of 45◦ from normal.
This additional information underpins the adoption of [ 1

2 u2
x (0, y)] as the relevant dynamic pressure7

(with the proviso that the computed approach angles be examined to see whether they are in this
range).

One figure of merit for the assessment of the importance of nonlinearity is the overall static pressure
drop, from far upstream to far downstream, through the screen. In the linear approximation, the mean

7 Three matching conditions are sufficient in a two-dimensional incompressible flow. For three-dimensional flow, another
condition involving the third component of the velocity is needed. For compressible flow, a matching condition on a
thermodynamic variable (in addition to pressure) is also necessary. For a screen, an appropriate condition would be that
stagnation temperature is conserved across the screen.



626 Non-uniform flow in fluid components

0.0
0.0

0.2

0.4

p -∞  - p ∞
ρ  ux

2

0.6

0.8

1.0

0.2

 = 4.0

 = 2.0

 = 1.0

 = 0.5

 = 0.25

0.4
A

0.6 0.8 1.0

1
2

( ) ( )

( )

Figure 12.5: Effect of amplitude (A) on far upstream to far downstream static pressure drop [p (−∞) − p(∞)]
through a screen; two-dimensional channel with non-uniform flow; ux(−∞, y) = u x + Acos(πy/W).

static pressure at any axial location is just equal to the value for uniform flow and the static pressure
difference from far upstream to far downstream is

�p = [p(−∞) − p(∞)] = K( 1
2ρu2

x

)
. (12.2.29)

Nonlinearity increases the overall static pressure drop and the departure from the value given by
(12.2.29) provides a measure of nonlinear effects.

Figure 12.5 shows a plot of the normalized pressure drop [p(−∞) − p(+∞)]/( 1
2ρu2

xK) versus
the amplitude of the non-uniformity, A, for different values of K. This was obtained from numerical
solutions for the two-dimensional steady flow through a screen. The geometry is that of Figure 12.1.
A value of A = 1.0 implies a cosinusoidal upstream velocity distribution which goes from a minimum
value of ux/ux = 0 to a maximum of ux/ux = 2. Even for relatively large amplitudes (up to A = 0.4,
say), the departure from linear behavior in this problem is small.

12.2.6 Disturbance length scales and the assumption of inviscid flow

The velocity profile immediately downstream of the screen includes length scales that are associated
with flow through the individual screen mesh elements. The desired “far downstream” profile, how-
ever, often has a characteristic length scale many times the screen mesh. It is because of the difference
in length scales that we are able to simplify the level of flow description. The approximation that is
made is portrayed in Figure 12.6, which gives a sketch of the local behavior just downstream of a
round wire screen. Viewed in detail, the flow at the exit consists of high velocity jets plus wakes of
near-zero velocity, as in the sudden expansion example described in Section 2.8. In terms of static
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Wake

Screen

Upstream Downstream

Jet

Figure 12.6: Length scales for flow through a screen; upstream and downstream large length scale flow non-
uniformities and small length scale non-uniformities near the screen.

pressure the results of Section 2.8 imply that mixing is essentially complete in a distance roughly
five times the mesh centerline spacing. At much larger downstream distances, therefore, there should
be little trace of non-uniformity on the mesh length scale. More explicitly, if the screen mesh length
scale is much smaller than the length scale of the upstream non-uniformity only phenomena with
the latter scale need be computed. The details of the small scale jet mixing process can be modeled,
for example (as here) lumped into the overall pressure and flow angle changes across the screen.
Outside of the region in which the individual jets mix out, the details of the jet mixing process can be
ignored. In terms of Figure 12.6, these would be the velocity non-uniformities labeled “upstream”
and “downstream”.

This approach applies to a wide variety of internal flow devices operating in non-uniform flow.
It amounts to treating the flow through the device by smearing out small scale details with the
implication that the local performance of the screen can be regarded as equivalent to the performance
in a uniform flow at the local value of the inlet conditions. This, plus the concept that some flow
field properties change discontinuously across the device, is known as the actuator disk (or, for a
two-dimensional geometry, actuator strip) approximation. It has had wide application in the analysis
of the behavior of screens, diffusers, nozzles, and turbomachines (see Section 6.8).

Suppose the length scale characterizing the variation in upstream velocity is some appreciable
fraction of the duct width, W, say 0.1W. To use an actuator disk approach, this length scale must be
much larger than that associated with the screen mesh (or perforated plate hole spacing, or honeycomb
cell size, etc.). The latter thus sets the lower limit on the length scale of motions the actuator disk
approach can describe.

The assumption that viscous effects can be neglected in describing the long length scale non-
uniformities also needs to be examined. To do this we compare the ratio of viscous and/or turbulent
stresses to inertia forces. For industrial devices, laminar viscous forces are generally negligible
compared to turbulent stresses. If the velocity non-uniformity is�u and the transverse length scale of
velocity variation is Lv, the magnitude of turbulent stresses is νt (�u/L2

v), where vt is a representative
eddy viscosity. As discussed in Section 4.8 the eddy viscosity for a shear layer of velocity difference
�u and thickness Lv can be estimated as 0.014Lv�u (Schlichting, 1979), so the ratio of turbulent
stresses to inertia forces τturb/(ρu∂u/∂x) is 0.014 (W/Lv)(�u/u). For a velocity length scale of
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0.1W, this is roughly 0.1�u/u. If the quantity�u/u is less than unity, turbulent stresses are an order
of magnitude or more smaller than inertial forces and the approximation of regarding the flow outside
the screen as inviscid is valid.

12.3 Applications to creation of a velocity non-uniformity using screens

12.3.1 Flow through a uniform inclined screen

We can amplify the above ideas concerning non-uniform flow in fluid devices by examining two re-
lated applications. These are the creation of specified velocity or stagnation pressure non-uniformities
(as might be done to assess the impact of inlet separation on compressor performance or of a wake
or thick boundary layer on diffuser performance) and the suppression of diffuser separation by
screens.

Section 12.2 implies that one way to create a specified velocity profile is with a screen that has a
spatially varying pressure drop coefficient across the duct. Far upstream and far downstream of such
a screen, the static pressure is uniform across the duct, but the downstream stagnation pressure and
velocity are non-uniform. One configuration of this type is a screen that covers (or blocks) only part
of the duct; particles that pass through the blocked section suffer a loss in stagnation pressure while
those passing through the unblocked section suffer no loss. Another example is furnished by the flow
through a uniform inclined screen spanning a duct, as in Figure 12.7. The screen creates a diversion
of the flow in the upstream region, with the flow per unit screen area varying across the duct. Lower
velocity through the screen, and hence lower stagnation pressure loss, exists in the lower part of the
duct, with higher velocity and higher loss in the upper part. The resulting far downstream velocity
profile is as sketched on the right-hand side of the diagram.

A quantitative description of this flow can be obtained by viewing the screen as an actuator disk
and neglecting details of the flow on the length scale of individual meshes. The velocity field is again
taken to be a uniform flow, with the constant x-component ux , plus a perturbation with components

CL

Uniform
upstream
velocity

Inclined
uniform
screen

κ

Downstream
velocity

distribution

1

2

Figure 12.7: Flow field with an inclined screen in the duct; stations 1 and 2 refer to conditions just upstream
and just downstream of the screen.
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u′
x and u′

y respectively, which are small enough such that a linearized description can be adopted. The
quantity that is the cause of the velocity non-uniformity is the inclination of the screen. Consistent
with the sizes of the velocity non-uniformities, the angle of inclination of the screen, κ , can be
assumed small and (analogous to the approximation of thin airfoil theory) the boundary conditions
applied at x = 0.

The velocity components normal and tangential to the screen can be written in terms of x- and
y-components as

un = ux cos κ − uy sin κ, (12.3.1a)

ut = ux sin κ + uy cos κ, (12.3.1b)

where κ is the angle of screen inclination (see Figure 12.7). The linearized matching conditions
across the screen are

u′
nu

= u′
nd
, (12.3.2a)

ηu′
tu = u′

td , (12.3.2b)

p′
u − p′

d ≈ Kρunu′
n, (12.3.2c)

which can be expressed in terms of ux and the small quantities κ , u′
x , and u′

y These are applied at
x = 0.

The velocity and pressure field can be found by expanding as a Fourier series and solving term
by term numerically, or one can use an elegant solution due to Elder (1959). The velocity u′

x as a
function of y is plotted along with experimental data in Figure 12.8 for a range of screen inclinations
from 10◦ to 45◦. In qualitative accord with the remarks of Section 12.2, the agreement is excellent
even for screen inclination angles one would not think of as small.

12.3.2 Pressure drop and velocity field with partial duct blockage

A common configuration is a screen or other blockage which covers a fraction of a duct as indicated in
Figure 12.9 which shows a screen occupying half of a two-dimensional straight duct. The quantities
of interest are the downstream velocity profile and the overall pressure drop.

In comparison to the problems described up to now there is a new aspect in that the conditions at
the plane of the screen change discontinuously. For values of screen pressure drop, K, larger than
unity, and consequent large downstream non-uniformities, one would expect a linearized treatment
not to be adequate.

The central idea, however, is as before. Flow fields upstream and downstream are defined and then
matched across the plane at x = 0. The matching conditions are now explicitly functions of y; in the
lower half of the duct they are such as to locally represent the flow though a screen of the appropriate
porosity, while in the upper half of the duct pressures and velocities are continuous across x = 0. A
stream function approach can still be used although the equations need to be solved numerically.

Solutions obtained for a screen that blocks half the duct are shown in Figure 12.9, which gives the
velocity profile downstream of a screen of pressure drop K = 3.0. Experimental results of Koo and
James (1973) are also indicated. The solid line is a numerical computation employing the actuator
disk approximation and using the relation between K and η given in (12.2.18). The far downstream
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Figure 12.8: Velocity profile downstream of a uniform screen inclined to a uniform flow; K = 2.2, η = 0.78
(Elder, 1959).

velocity field is essentially two streams of different velocity magnitudes and to a good approximation
can be characterized by two quantities: (i) the ratio of far downstream velocity in the unblocked area
u∞ to the uniform far upstream velocity ux and (ii) the ratio of the velocity in the blocked area, ub∞ ,
to the far upstream velocity. The ratio of the duct area occupied by flow that has passed through the
screen to the screen geometrical area,�b = wake width/duct width, can be found from continuity as

�b
ub∞

ux
+ (1 −�b)

u∞
ux

= 1. (12.3.3)

The streamline curvature generated by the presence of the screen causes the screen wake to be larger
than the geometrical blockage; this can be important, for example, when considering placement of
measurement stations.

The static pressure drop between far upstream and far downstream can be obtained by applying
Bernoulli’s equation to the stream which has not passed through the screen:

p−∞ − p∞
1
2ρ(u−∞)2

=
(

u∞
ux

)2

− 1.

There is a drop in stagnation pressure for particles that pass through the screen, so Bernoulli’s
equation cannot be used across the screen. As discussed, the viscous processes are characterized
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Figure 12.9: Velocity profile downstream of a partial blockage screen; screen extent/duct height = 0.5, screen
pressure drop, K = 3.0; measurements of Koo and James (1973).

as occurring “within” the screen (i.e. very near in a non-dimensional sense), and are not explicitly
accounted for outside the screen.

Figure 12.10 shows computations and measurements of downstream velocities in the blocked and
unblocked regions as a function of the screen pressure drop, for the geometry of Figure 12.9. As in
the previous sections, the idea of an inviscid, rotational flow, coupled to an actuator disk model of
the screen, gives a good description of the velocity profile, even with local regions of high turbulent
stress (in the shear layer). As discussed in Section 12.2, the argument for this devolves on the issue
of length scale; turbulent processes are important in setting internal features of the shear layer but
the precise profile for the shear layer is not an important feature in this problem. Much further
downstream (i.e. tens of duct heights), however, shear layer spreading would be felt across most of
the duct and would need to be included in the description.

12.3.3 Enhancing flow uniformity in diffusing passages

Features of flow through screens lend themselves to application in enhancing velocity uniformity in
passages with rapid diffusion. The context is one of creating a near-uniform velocity in a diffusing
passage over a distance short enough that unseparated conditions cannot be maintained in the diffuser
by itself. This would occur if the area and length of the diffusing passage were in the fully stalled
regimes on the diffuser flow map of Figure 4.3 or in a sudden expansion.

The use of single or multiple screens in the diffuser can prevent or greatly suppress separation. The
means by which this occurs can be inferred from Figure 12.1, interpreting the low velocity region
as the boundary layer and the high velocity region as the free stream. The normal pressure gradient
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as a function of screen pressure drop, K. Symbols are the measurements of Koo and James (1973); the solid
line is a computation based on a nonlinear actuator disk analysis.

set up by the non-uniform flow through the screen causes streamline curvature and a convergence
of the boundary layer streamlines. The boundary layer momentum thickness is thus decreased, the
shear stress is increased, and the flow is enabled to remain attached even for diffusers that would
otherwise be fully stalled. The effect can even be obtained if there is separated flow upstream of the
screen. The suppression of separation does not come for free, because there is a stagnation pressure
loss associated with the flow through the screen, but there are situations in which it is attractive to
trade pressure drop for increased velocity uniformity.

Figures 12.11 and 12.12 show the results of experiments on a conical diffuser of area ratio 4 and
a half-angle of approximately 45◦ (Schubauer and Spangenberg, 1948). Figure 12.11 pertains to the
situation with no screen. Figure 12.11(a) shows the geometry, the measurement stations, and the
measured streamlines, and indicates the proportion of total flow enclosed at different radii. Figure
12.11(b) gives the measured dynamic pressure (u2/u2

ref for this low Mach number flow, with uref a
reference velocity) versus radius at the inlet station and at three locations within the diffuser. There
is little change in the dynamic pressure distribution through the diffuser.

Figure 12.12 shows data for the same diffuser geometry but with three screens having pressure drop
coefficients of 1.7, 1.9 and 0.9 respectively inserted in the diffuser normal to the mean flow direction
at the indicated locations. The streamlines in Figure 12.12(a) show that the flow at the diffuser



633 12.3 Applications to creation of a velocity non-uniformity

-0.2 -0.1 0

A B C

Region of
separated flow

D
0

0.1

0.2

0.3

0.4

0.5

0.1
x/de

r/de

0.2 0.3 0.4 0.5

1.0

0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

(a)

1.0

0.8

0.6

0.4

0.2

0

Positions of
A, B, C and D 
shown in (a)

A
B
C
Du2

uref

r /de

2

0 0.1 0.2 0.3 0.4 0.5-0.5 -0.4 -0.3 -0.2 -0.1

(b)

Figure 12.11: (a) Measured streamlines in a wide angle diffuser, area ratio = 4; numbers refer to the proportion
of the total flow, letters refer to the location of measurement stations; (b) measured dynamic pressure versus
radius in the diffuser (Schubauer and Spangenberg, 1948).

exit essentially fills the duct, and the plots of dynamic pressure versus radius in Figure 12.12(b)
indicate a correspondingly much more uniform velocity than without the screen. The static pressure
at the exit for the three-screen assemblage was roughly 0.2 inlet dynamic head below the diffuser
inlet pressure.

The reference by Schubauer and Spangenberg (1948) gives information about flow behavior as the
number of screens and the individual screen pressure drops are altered, as well as some comments on
the general properties of the screen–diffuser combination. One finding emphasized is that multiple
screens of low pressure drop give better results than a single screen of high pressure drop. Further
guidelines for use of screens in wide angle diffusers, including the use of other than plane screens,
have been developed by Mehta (1977), who presents a summary of design rules for their use.
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Figure 12.12: (a) Measured streamlines in a wide angle diffuser with a screen, area ratio = 4; numbers refer
to the proportion of the total flow, letters refer to the location of measurement stations; (b) measured dynamic
pressure versus radius in the wide angle diffuser–screen configuration of (a) (Schubauer and Spangenberg,
1948).

12.4 Upstream influence and component interaction

For incompressible flow without appreciable swirl, the upstream region of influence has been seen
(Sections 2.3 and 12.2) to scale with the largest transverse length scale of the non-uniformity (here
the duct height). The distance that components should be spaced so there is no upstream interaction is
set by this length scale. From the linearized analysis a pressure non-uniformity decays with upstream
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Figure 12.13: A uniform screen upstream of a two-dimensional contraction: W1 = 3W2.

distance as (p′ − p) ∝ e−π x/W. A spacing equal to duct width thus implies a factor of 20 decrease in
the static pressure non-uniformity.

The freedom to space components far enough apart so there is negligible interaction often does not
exist in fluid machinery and the magnitude and consequences of upstream influence when spacing
is limited are relevant issues. An example is the design of inlet ducts for wind or cascade tunnels.
Screens are used in the large area upstream sections to reduce the level of the test section velocity
non-uniformity and a typical geometry is a screen, or series of screens, followed by a contraction.
A two-dimensional configuration of this sort is shown in Figure 12.13, a duct with a screen in it
followed by a 3:1 contraction. A design question is how close can the screen and contraction be
placed without the occurrence of a substantial interaction.

At axial locations close to the contraction, the velocity near the top and bottom of the duct is
lower than the velocity near the centerline. If the screen is near enough to the contraction, there will
be a non-uniform normal velocity over its face and hence a non-uniform stagnation pressure drop.
Screen locations where there is low velocity will have a lower stagnation pressure drop than locations
with high velocity and the stagnation pressure in the downstream duct will be higher near the walls
than in the center. The non-uniformity will be most severe if the screen is placed right against the
contraction (as is essentially the case in some commercial air handling devices), and will decrease
as the distance between the contraction and the screen is increased.

We analyze this problem in two steps, first examining the upstream influence of the contraction
(because this is a geometry representative of a practical situation) and then determining the interaction
between the screen and contraction. The computed static pressure field upstream of the contraction
is shown in Figure 12.14, which gives the static pressure variation at different axial stations (the
locations indicated by the arrows) versus duct height, non-dimensionalized by the dynamic pressure
based on the mean axial velocity downstream of the contraction, ux2 .

The extent of appreciable variation is, as for the linearized analysis, roughly 2W/π . The form of
the static pressure distribution is less sinusoidal (more peaked) at axial locations near the contraction
than at locations far away. The reason can be seen if one recalls that the velocity potential in
the straight duct upstream of the contraction can be regarded as composed of different Fourier
components, each of which obeys Laplace’s equation, with the magnitude of the kth component given
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Figure 12.14: Static pressure non-uniformity upstream of a 3:1 contraction. The pressure distribution for the
locations indicated: x/W1 = 0, −0.125, −0.25, −0.5; p is the mean pressure at the indicated location.

by |φk | ∼ |Ake−kπ/W |. The higher harmonics present near the contraction decrease more rapidly with
distance and the influence seen farthest upstream is only the first harmonic. The pressure does not
obey Laplace’s equation for large amplitude variations, but the same qualitative considerations apply,
with the farther upstream pressure profiles tending to purely sinusoidal form.

To illustrate the interaction between the screen and the contraction nonlinear actuator disk com-
putations have been carried out for the screen–contraction configuration of Figure 12.14. The flow
is not irrotational downstream of the screen because the stagnation pressure, and hence the vorticity
(from Crocco’s Theorem) is non-zero. The matching conditions used at the screen were those in
(12.2.15), (12.2.17), and (12.2.28).

Figure 12.15 shows the velocity and stagnation pressure distribution in the “far downstream” uni-
form static pressure region of the downstream duct versus the distance across the duct for different
screen locations. The velocity is non-dimensionalized by the mean axial velocity in the downstream
duct, ux2 , and the stagnation pressure variation by the dynamic pressure based on this velocity. For
screen locations closest to the contraction there is a substantial departure from uniformity in ve-
locity and stagnation pressure with the non-uniformity decreasing to a small value as the screen
locations move toward W/2. The profile corresponding to the screen position at x = 0 is dis-
cernibly non-sinusoidal, because the non-uniformity represents the effects of more than a single
harmonic.
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12.5 Non-axisymmetric (asymmetric) flow in axial compressors

The concepts developed for the analysis of non-uniform flow through a screen can be extended to
deal with the problem of turbomachinery operation in steady circumferentially non-uniform flow.
If we restrict the geometries considered to a high enough hub/tip radius ratio so a two-dimensional
approach can be adopted, the flow domain is as sketched in Figure 12.16, which shows an “unrolled”
axial compressor and the upstream and downstream regions. As with the screen, descriptions of
the flow in the regions outside the compressor are developed, with appropriate relations across the
compressor to link the two descriptions and, unless specified, the flow regime has a low enough
Mach number so an incompressible description can be used.

In axial compressors, there are often many pairs of rotor–stator combinations, or stages. Figure
12.16 gives a roughly scaled representation of the axial extent occupied by a compressor of five
or so stages. Although the compressor is several times as wide as it is long, it is not obvious from
the figure that it can be regarded as an actuator disk in the same sense that flow through a screen
has been analyzed. Within the compressor, however, most of the axial length is taken up by blading
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Figure 12.16: An “unrolled” compressor showing the argument for uniform static pressure downstream of axial
compressor with a uniform exit flow angle. Note: only the downstream flow field is indicated.

which suppresses virtually all large-scale circumferential flow redistribution within the compressor
(Cumpsty, 1989; Longley and Greitzer, 1992). The shape of the velocity distribution, as a function
of θ , at the inlet of the compressor is therefore nearly the same as at the exit.8

Compressor response to a circumferentially non-uniform stagnation pressure is an important
problem. For a stagnation pressure distribution far upstream of the compressor we wish to know the
velocity field at the compressor face, because that velocity is what the blades actually experience.
From the discussion of flow through screens we expect upstream flow redistribution and an alteration
of the velocity field between far upstream and the compressor face, and the goal is to connect this
alteration to compressor performance parameters. In the following sections we examine the flow in
the upstream and downstream regions and develop appropriate matching conditions to do this.

12.5.1 Flow upstream of the compressor

Upstream of the compressor, the background flow is taken as axial, as is generally the case in practice.
Viscous effects are neglected outside the compressor blade rows. The non-uniformities are viewed,
for this initial discussion, as small enough that a linearized description can be adopted. There is
no computational bar to analyzing nonlinear problems, but the linear analysis suffices for many
situations and shows the general behavior simply. Discussion of nonlinear effects is given later in
the chapter.

8 To make this plausible, it may be helpful to think of the compressor blading as composed of a large number of passages,
with no axial gaps between the rows. The difference in spatial extent of an axial velocity defect of large circumferential
extent, say 90◦, can only be of order one passage width. If the passage width is much less than the mean radius of the
machine, the axial velocity distribution, ux(θ ), will be essentially the same at inlet and outlet.
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The upstream flow field is similar to that described in Section 12.2, but it is useful to take a slightly
different perspective and work directly in terms of the stagnation pressure non-uniformity which is a
variable of great interest in turbomachinery. The stagnation pressure is convected unchanged along
streamlines and enters naturally into the compressor boundary conditions.

The linearized equation that describes the behavior of the stagnation pressure non-uniformity,
denoted by p′

t , in the upstream flowfield is

Dp′
t

Dt
= ux

∂p′
t

∂x
= 0. (12.5.1)

Equation (12.5.1) states that stagnation pressure is convected unchanged along the background flow
streamlines from far upstream, so p′

t = p′
t (θ ). The variable θ is kept in these sections as a reminder

that the transverse coordinate represents the position around the circumference, with the distance
in the circumferential direction given by rmθ , where rm is the turbomachine mean radius. We leave
until later the further specification of the upstream flow field and turn now to the description of the
downstream flow.

12.5.2 Flow downstream of the compressor

Within the compressor, the flow can be regarded as well guided by the rows of airfoils, with the
relative angle at exit of each row varying little over a range of operating conditions. In particular, the
flow angle at exit of the machine is taken as uniform around the circumference. This condition (which
is analogous to the case of η = 0 for a screen) allows considerable simplification in the problem
description because it implies the downstream static pressure is uniform. This was discussed in
Section 12.2.4, but it is helpful to argue it afresh along lines similar to those for the subsonic nozzle
in Section 2.5.

Consider a flow at the compressor exit which has a non-uniform velocity but a uniform leaving
angle. Suppose the static pressure were non-uniform with a high pressure phigh over some part of
the circumference, as indicated in Figure 12.16. If so, the streamline curvature near the compressor
exit would be as sketched. Far downstream, however, there is nothing to cause streamline curva-
ture, the streamlines are parallel, and the static pressure uniform. This scenario, however, is not
self-consistent because to reach the supposed far downstream state the velocity would decrease from
A to A′ and increase from B to B′, resulting in a static pressure difference between B′ and A′ that
is larger than that between B and A, i.e. the far downstream static pressure non-uniformity would
be larger than at the compressor exit. The only way out of the dilemma is to withdraw the sup-
position concerning non-uniform static pressure at the compressor exit. The conclusion developed
is thus that the downstream static pressure is uniform if the flow angle leaving the compressor is
uniform.

The condition of uniform static pressure at the compressor exit is a substantial simplification for
the analysis and it is worthwhile to emphasize that it is applied to a steady two-dimensional flow
with a uniform angle at the “entrance” to the downstream region and a downstream duct which is
straight and has a constant area. We will see later in the chapter that asymmetric flow with a diffuser
or nozzle downstream of a compressor can lead to circumferentially non-uniform static pressure,
even with a uniform flow angle at the compressor exit.
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12.5.3 Matching conditions across the compressor

Because the downstream static pressure is uniform there is no irrotational downstream disturbance
and only two matching conditions are needed across the compressor. The first is that the background
axial velocity and the axial velocity non-uniformity are the same at the inlet and exit:

uxi = uxe , (12.5.2a)

u′
x (θ )i = u′

x (θ )e. (12.5.2b)

The second relation concerns the compressor pressure rise. Several levels of sophistication are
possible but the model used here (at least initially) is a compressor with a row of inlet guide vanes
of fixed leaving angle so the compressor pressure rise is a function of axial velocity only. The axial
velocity and the compressor pressure rise vary around the circumference. The approximation made
concerning compressor performance is similar to that for the screen, namely that the local pressure
rise of the compressor is the pressure rise corresponding to the local value of the axial velocity.9

As in Section 12.2, its application is appropriate for non-uniformities with transverse length scales
much larger than the scale of a blade passage.

The compressor pressure rise (�Pt/s) is represented as the difference between the exit static pressure
and the inlet stagnation pressure:

�Pt/s(θ ) = pe − pti . (12.5.3)

This representation is convenient because it makes explicit use of the uniformity in exit static pressure
(Stenning, 1980; Longley and Greitzer, 1992).

In a linearized description, the pressure rise across the compressor consists of a (circumferentially-
averaged) mean, denoted by (–), plus a perturbation. For a small amplitude non-uniformity in axial
flow, u′

x , the compressor pressure rise can be written as

�Pt/s(θ ) = �Pt/s +
(

d�Pt/s

dux

)
u′

x (0, θ ). (12.5.4)

In (12.5.4) (�Pt/s/dux ) is the slope of the curve of pressure rise versus axial velocity for a uniform
flow, evaluated at a given mean operating point, and u′

x (0, θ ) is the local axial velocity at the
compressor inlet face, x = 0. Equation (12.5.4) corresponds to a Taylor series expansion about the
mean conditions of pressure rise and axial velocity, �Pt/s and ux .

If we subtract the mean flow quantities, (12.5.3) and (12.5.4) can be combined into a compact and
useful relation between non-uniformities in the axial velocity at the compressor face, the exit static
pressure and the compressor inlet stagnation pressure:

p′
e − p′

ti =
(

d�Pt/s

dux

)
u′

x (0, θ ). (12.5.5)

9 This implies that the rotor blades respond quasi-steadily to the unsteady flow field they experience. This approximation will
be removed in Section 12.6.
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The exit static pressure non-uniformity is zero, however, so (12.5.5) gives the compressor face
velocity as

u′
xi

(θ ) = − p′
ti (θ )(

d�Pt/s

dux

) = − p′
t−∞ (θ )(

d�Pt/s

dux

) . (12.5.6)

Equation (12.5.6) can be put in non-dimensional form using as reference velocity the mean rotor
speed,10
rm. Defining the pressure rise coefficient� t/s =�Pt/s/[ρ(
rm)2] and mean and disturbance
flow coefficients � = ux/
rm and �� = φ′ = u′

x/
rm,

u′
x (0, θ )


rm
= −

[
p′

t−∞

/
ρ(
rm)2

][
d�Pt/s

/
ρ(
rm)2

dux/
rm

] (12.5.7a)

or

φ′(0, θ ) = −
[

p′
t−∞

/
ρ(
rm)2

](
d�t/s

d�

) . (12.5.7b)

Equation (12.5.7) gives the velocity non-uniformity at the compressor in terms of the upstream
stagnation pressure non-uniformity and the slope of the non-dimensional compressor pressure rise
characteristic, � t/s.

12.5.4 Behavior of the axial velocity and upstream static pressure

A graphical representation of the above solution for the compressor inlet velocity non-uniformity is
shown in Figure 12.17. The abscissa is the flow coefficient,�, and the ordinate is the non-dimensional
pressure rise, inlet stagnation pressure to exit static pressure. For a given far upstream stagnation
pressure non-uniformity, p′

t−∞ (θ ), the axial velocity at the compressor face is given by the horizontal
distance a–b. If the slope of the constant speed compressor pressure rise characteristic (known as a
“compressor speedline”) is steep, there is a smaller velocity non-uniformity at the compressor face
(C1) than if the pressure rise versus flow curve is flat (C2). For two compressors with the same pressure
rise but different slopes, the one with the steeper slope has the smaller velocity non-uniformity. For
a given compressor, the characteristic flattens out near stall, so as stall is approached there is also
less attenuation of the far upstream velocity non-uniformity.

As with non-uniform flow through a screen, the change in axial velocity from far upstream to the
compressor face is associated with an upstream static pressure variation. The compressor face static

10 Although 
rm is not explicitly in the problem as formulated, the non-dimensional parameters defined are in common use
in compressor aerodynamics.
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Figure 12.17: Velocity non-uniformity at the compressor for a specified (far upstream) stagnation pressure non-
uniformity p′

t−∞ . The increased slope of the compressor characteristic C1 versus C2 implies a decreased velocity
non-uniformity at compressor.

pressure is given by

p′(0, θ )

p′
t−∞

= 1 + �(
d�t/s

d�

) . (12.5.8)

There is an upstream circumferential velocity associated with the irrotational part of the flow. For a
stagnation pressure non-uniformity of the form p′

t−∞ (θ ) = Ak sin kθ the kth harmonic of the circum-
ferential velocity at the inlet can be obtained from the linearized θ -momentum equation as

u′
θ (0, θ ) = Ak cos kθ


1 + �(

d�t/s

d�

)

 . (12.5.9)

As in Section 12.2, the static pressure and the irrotational part of the velocity field obey Laplace’s
equation with exponential upstream decay.

Figure 12.18 presents measurements of the magnitude of the static pressure variation upstream
of a gas turbine engine subjected to a stagnation pressure non-uniformity created by a screen of
180◦ circumferential extent. There is good agreement between the measured decay in amplitude of
the static pressure variation and the exponential decay curve based on the first Fourier component
response of the simple analysis.

For incompressible flow the inlet and exit axial velocity distributions are the same. Since the
exit static pressure is uniform, the amplitude of the inlet axial velocity non-uniformity determines
the stagnation pressure non-uniformity at the compressor exit. Figure 12.19 shows theoretical and
experimental results for the magnitudes of stagnation and static pressure non-uniformities at the inlet,
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Figure 12.18: Variation of static pressure non-uniformity magnitude with the distance upstream of an axial
compressor; 180◦ inlet total pressure distortion (Soeder and Bobula, 1979).
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Figure 12.19: Variation of stagnation and static pressure magnitudes upstream and through a three-stage com-
pressor (Stenning, 1980).

the exit, and inside a three-stage compressor. The stagnation and static pressure non-uniformities
march in step through the compressor and essentially zero static pressure variation exists at the
compressor exit as argued earlier.

The ideas presented can be adapted to a simple one-dimensional analysis of the response of a
turbomachine to a stagnation pressure non-uniformity of arbitrary amplitude. Consider the behavior
of the compressor when operating with two streams of differing stagnation pressures, as could
be achieved using a screen that partially blocks the annulus (sketched on the left-hand side of
Figure 12.20). The right-hand side of the figure shows a graphical solution for the axial velocity
variation at the compressor inlet, with a specified mean flow, indicated by the solid circle, and a
specified magnitude of the stagnation pressure variation. The local representation we have been
using implies that the compressor can be viewed as operating at two different points, one at low flow
and one at high flow, indicated by the two open circles. The exit static pressure is uniform, so the
difference in the ordinate of the two operating points is equal to the difference in the inlet stagnation
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Figure 12.20: Parallel compressor model for the compressor response to circumferential stagnation pressure
distortion.

pressure. The region of the compressor with low inlet stagnation pressure provides a higher pressure
rise than the region with high stagnation pressure.

Figure 12.20 shows an aspect of compressor behavior with non-uniform flow which a linearized
analysis does not capture. Because of the curvature of the compressor pressure rise characteristic the
mean pressure rise is below that achieved with uniform flow at the mean flow rate. This is indicated in
the figure by the quantity�� which denotes the loss in pressure rise capability due to the distortion.
This one-dimensional approach, which views the compressor as two (or more) compressors which
exhaust to a uniform static pressure, is often referred to as the parallel compressor approximation.
The compressible flow extension of this model has been widely used to assess compressor response
to stagnation pressure distortion (Cumpsty, 1989; Longley and Greitzer, 1992).

12.5.5 Generation of non-uniform flow by circumferentially varying tip clearance

The local quasi-steady description of the compressor response just developed can be applied to other
problems of asymmetric flow in turbomachines. One of these is the effect of circumferentially non-
uniform tip clearance, as might occur from case ovalization or rotor non-concentricity. Tip clearance
has a strong effect on compressor performance. As an example, Figure 12.21 shows data from a
six-stage axial compressor at different values of rotor tip clearance (Cumpsty, 1989). The abscissa
is mass flow (axial Mach number) and the two variables on the ordinate are the overall pressure
ratio pte/pti and the adiabatic efficiency. At constant speed (say 100% of design) the peak stagnation
pressure rise delivered by the compressor, pte/pti , decreases by roughly 25% for an increase in rotor
tip clearance of 2.5% of the chord of the last rotor in the machine. There is also a substantial decrease
in efficiency. The magnitude of the decrease varies with the specific machine geometry, and can be
less than that shown, but values of 3–6% in peak pressure rise for each 1% increase in rotor clearance
to chord are quoted as representative (Wisler, 1998).

If the variation in compressor performance with a tip clearance in an axisymmetric situation is
known, we can use the approach for analyzing inlet distortion to predict compressor performance
with a tip clearance that varies around the circumference. Denoting the non-dimensional tip clearance
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Figure 12.21: Effect of tip clearance on the pressure ratio, the stall line and the efficiency of a six-stage, high
speed compressor; last stage rotor chord 32 mm, aspect ratio 1.0. Data of Freeman (1985) as quoted by Cumpsty
(1989).

(e.g. clearance/blade height) as ε (= ε + ε′(θ )), the compressor pressure rise (outlet static minus inlet
stagnation pressure) can be written as a function of tip clearance and compressor inlet axial velocity
as

(p′
e − p′

ti ) =
(
∂�Pt/s

∂ux

)
ε

u′
x (0, θ ) +

(
∂�Pt/s

∂ε

)
ux

ε′(θ ). (12.5.10)

In (12.5.10) the subscripts on the partial derivatives indicate the quantity held constant during the
differentiation. The second partial derivative on the right-hand side is the change in pressure rise
with tip clearance, evaluated in a circumferentially uniform flow.

Suppose the clearance varies sinusoidally around the circumference with the smallest clearance at
θ = 0 and the largest at θ = 180◦, as in Figure 12.22. From the quasi-steady arguments the pressure
rise of the compressor (which is the axial force exerted on the fluid) is greatest at θ = 0 and least
at θ = 180◦. The axial velocity in the compressor will thus vary around the circumference, and a
flow which is irrotational upstream of the compressor exits from the compressor with a non-uniform
stagnation pressure and a radial component of vorticity. A quantitative treatment of this problem is
given in Section 12.7.

12.6 Additional examples of upstream effects in turbomachinery flows

12.6.1 Turbine engine effects on inlet performance

The length scales for upstream influence (Sections 2.3, 12.2) with stagnation pressure distortion
imply that fluid components in a gas turbine engine are often closely coupled. If so the behavior
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Figure 12.23: Effect of the engine presence on the total pressure distribution in a short pitot inlet (Hodder, 1981).

of the overall system can differ from that predicted from examination of individual components
separately (Section 12.4 showed another illustration of this situation). An example of this is the
effect of a gas turbine engine on inlet behavior.

Aircraft inlets sometimes operate at high angles of attack, leading to separation and flow non-
uniformity into the engine. Civil aircraft inlet lengths are usually short compared to their diameter.
The arguments in this chapter imply that the engine can substantially affect the static pressure field
within the inlet and it is not necessarily correct to assess inlet performance without simulating the
presence of the engine. This is demonstrated in Figure 12.23 which shows the contours of stagnation
pressure in a cylindrical inlet at incidence, with and without engine influence (Hodder, 1981). In
the latter case, the inlet duct was followed by a constant area duct long enough so engine upstream
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influence was negligible at the measurement station. At 30◦ incidence a large region of low stagnation
pressure existed associated with separation. With an engine present, even at 35◦ incidence, the region
of low stagnation pressure is much smaller because the compressor acts to equalize the velocities and
suppress separation. Simulations (either theoretical or experimental) of internal flow devices need
to include such interaction (Hsiao et al., 2001); the ideas presented show that a screen can provide a
useful simulation of the desired effect.

12.6.2 Strut-vane row interaction: upstream influence with two different length scales

Another example of upstream influence concerns the response of turbomachine blade rows to down-
stream struts (Barber and Weingold, 1978; Chiang and Turner, 1996). There are often a number of
struts (say, eight) downstream of a compressor or fan. The compressor rotor which passes through
the upstream pressure field of such struts experiences an eight per revolution disturbance. This is a
forcing function for vibratory stresses and the magnitude of the velocity non-uniformity is of concern.
The strut–stator configuration presents a new aspect, the existence of two upstream length scales,
the spacing between the stator blades and the (much larger) spacing between the struts.

A representative configuration is portrayed in Figure 12.24, which shows a strut and the stator
blades ahead of it. There are six stator blades per strut gap. The upper part of the figure gives
measurements and analysis of the static pressure distribution at a location one-half stator chord
upstream of the stator row leading edge. The computations were carried out using a vortex method
of the type described in Section 3.15 and the dots show the location of the vortices used.
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Figure 12.24: Static pressure non-uniformity upstream of the stator–strut configuration (Barber and Weingold,
1978).
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The influence of the two length scales can be seen in the figure. The static pressure variation
associated with the stators has decayed to a low value at the axial station where the data were taken,
but the variation on the scale of the strut-to-strut spacing has not. If we looked at a station another
half-stator chord upstream, the small scale ripple on the static pressure profile would be absent,
whereas the magnitude of the larger scale variation would be little altered.

12.7 Unsteady compressor response to asymmetric flow

The quasi-steady model of compressor behavior in asymmetric flow has proved useful in a number
of problems, but quantitative application to a range of situations (including self-excited propagating
instabilities in compressors) is considerably increased if we extend the description to include effects of
unsteady flow in the blade rows. Unsteady blade passage flows occur when there is a circumferential
variation in velocity and also when the flow in the engine fixed coordinate system is unsteady.

We consider unsteady flow in stators first for simplicity. The passage is idealized as a channel
that is much less wide than it is long, with the flow treated in a one-dimensional manner. For the
moment, viscous effects are neglected. We wish to develop a relation between the stagnation pressure
difference along the blade channel and the velocity. The approach is analogous to that of Section
6.3, with the starting point the one-dimensional momentum equation cast as an expression for the
spatial rate of change of stagnation pressure. With u the velocity magnitude in the channel and l the
streamwise distance, this is

ρ
∂u

∂t
= −
[
∂(u2/2)

∂l
+ ∂p

∂l

]
= −∂pt

∂l
. (12.7.1)

Integrating (12.7.1) from channel inlet to exit:

(pt )i − (pt )e = ρ

exit∫
inlet

∂u

∂t
dl. (12.7.2)

For a constant area channel, ∂u/∂t is constant and (12.7.2) becomes

(pt )i − (pt )e = ρbstator
∂ui

∂t
, (12.7.3)

where bstator is the stator chord.11 There is a stagnation pressure change from the inlet to the exit
because of the local acceleration of the fluid in the blade channel.

The stagnation pressure difference in (12.7.3) is in addition to any difference associated with
viscous losses. The latter can be estimated using the quasi-steady analysis as implied by (12.5.4) so
the viscous losses have the form of a mean plus a variation of the form

quasi-steady loss variation =
(

d( loss )

d(inlet conditions)

)
(variation in inlet conditions) .

11 To account for non-constant area, an “effective chord” can be introduced following Section 6.3.
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Figure 12.25: Compressor rotor blades passing through a circumferentially non-uniform flow which is steady
in the stationary (absolute) frame see an unsteady flow field; ζ = stagger angle.

The overall difference in stagnation pressure between the blade row inlet and exit is thus viewed as
the sum of viscous losses and local acceleration effects. For a stator blade row,

(pt )i − (pt )e = ρbstator
∂ui

∂t
+ quasi-steady losses. (12.7.4)

For a rotor a similar statement about unsteadiness can be written in terms of the time rate of change
of the relative velocity (w) in the passage and the stagnation pressure, ptrel (= p + 1

2ρw2), measured
in the rotating coordinate system:

ρ
∂w

∂t
= −∂ptrel

∂l
. (12.7.5)

Time variations in the rotor arise in two ways: from unsteadiness in the absolute (engine fixed) system
and from blades passing through a steady, circumferentially varying, flow. The latter is shown in
Figure 12.25. The change in fluid properties in the rotor frame of reference is:

[
∂( )

∂t

]
rotor frame

=
[
∂( )

∂t
+
∂( )

∂θ

]
absolute frame

. (12.7.6)

The change in relative stagnation pressure from inlet to exit of the rotor passage is

(ptrel )i − (ptrel )e = ρbrotor

[
∂w

∂t
+
∂w

∂θ

]
absolute frame

. (12.7.7)

An expression similar to (12.7.4) can be developed for viscous losses through the rotor. Fur-
ther, within the one-dimensional description the direction of the flow in the blade passage is
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constrained by the blading. The relative and axial velocities are thus related by, for stator and
rotor respectively,

u = ux/ cos ζstator; w = ux/ cos ζrotor, (12.7.8)

where ζ is the stagger angle (the angle the chord of the blade makes with the x-axis) as indicated in
Figure 12.25).

In this one-dimensional description the two mechanisms (viscous losses and local accelerations)
of stagnation pressure change are viewed as operating in series. The blade channel can be thought
of as an impedance consisting of an actuator disk at the front of the passage (a resistance-like
element which provides quasi-steady loss variations in response to the varying inlet conditions)
and the unsteady flow in a constant area channel (an inertance). For this reason the combination is
sometimes referred to as a “semi-actuator disk” approximation. The modeling can also be carried
further to include a description of the unsteady viscous response (Haynes, Hendricks, and Epstein
1994; Longley, 1994; Hendricks, Sabnis, and Feulner, 1997), but the representation here is sufficient
to illustrate a number of aspects of the blade row unsteady response.

To use the expression for rotor stagnation pressure change in a description of the overall com-
pressor, the relative stagnation pressure change must be cast in terms of quantities in the absolute
coordinate system. From the definition of the relative stagnation pressure (ptrel = p + 1

2ρw2) and
the vector velocity triangles between absolute and relative velocity, and using the subscript “i/e” to
denote the change from inlet to exit,

(�ptrel )i/e = (�ptabs. )i/e − (
rm� [uθ ])i/e. (12.7.9)

Substituting (12.7.8) and (12.7.9) in the expressions for rotor and stator stagnation pressure changes
gives an expression for the change in absolute stagnation pressure across a complete compressor
stage (rotor plus stator) as

pte − pti = ρ
rm(uθe − uθi )rotor − Lossrotor − Lossstator︸ ︷︷ ︸
Quasi-steady stagnation pressure change due to inlet condition variations

− ρ
[
∂ux

∂t

(
bstator

cosζstator
+ brotor

cosζrotor

)
+
∂ux

∂θ

(
brotor

cosζrotor

)]
︸ ︷︷ ︸

Stagnation pressure change due to local accelerations in channel

.

(12.7.10)

The first set of quantities on the right-hand side of (12.7.10) is the quasi-steady response and includes
both axisymmetric and asymmetric terms. The second set is the change in stagnation pressure
associated with local accelerations. For a multistage compressor the effects in the different stages
can be added and, after some manipulation, the pressure rise written in terms of the difference
between exit static pressure and the inlet stagnation pressure non-uniformities as

(p′
e
− p′

ti )compressor =
(

d�Pt/s

dux

)
u′

x (0, θ, t)

− ρrm

(
IR


∂u′
x (0, θ, t)

∂θ
+ IRS

∂u′
x (0, θ, t)

∂t

)
. (12.7.11)
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In (12.7.11) IR and IRS are inertia parameters for the compressor (with j rotors and k stationary
blade rows; j stators plus an inlet guide vane, and possibly an outlet guide vane) defined as:

IRS =
All j+k rows∑

l

[bl/(rm cos ζl)], (12.7.12a)

IR =
j rotors∑

l

[bl/(rm cos ζl)]. (12.7.12b)

Non-dimensionalizing velocities by 
rm and pressures by ρ(
rm)2, (12.7.11) becomes(
p′

e
− p′

ti

ρ
2r2
m

)
=
(

d�t/s

d�

)
φ′(0, θ, t)

−
[(

IR
∂φ′(0, θ, t)

∂θ

)
+
(IRS




∂φ′(0, θ, t)

∂t

)]
. (12.7.13)

Equations (12.5.10) (the quasi-steady description of circumferentially non-uniform tip clearance) and
(12.7.13) are both linear and can be superposed to give an expression that accounts for unsteadiness
and asymmetric clearance as(

p′
e
− p′

ti

ρ
2r2
m

)
=
(
∂�t/s

∂�

)
ε

φ′(0, θ, t) +
(
∂�t/s

∂ε

)
�

ε′(θ )

−
[(

IR
∂φ′(0, θ, t)

∂θ

)
+
(IRS




∂φ′(0, θ, t)

∂t

)]
. (12.7.14)

We will apply (12.7.14) to three situations connected with asymmetric flow in compressors:
conditions for the onset of self-excited disturbances in axial compressors, generation of flow non-
uniformities due to circumferentially varying tip clearance, and response to unsteady inlet distortion.
In the remainder of Section 12.7 the treatment is in the context of linear analysis in order to introduce
a single one of the three effects of the behavior. In Section 12.8 a nonlinear version of the theory is
used to address situations in which the different effects interact.

12.7.1 Self-excited propagating disturbances in axial compressors and
compressor instability

Determining the conditions for compressor instability to propagating disturbances follows the ap-
proach laid out in Sections 6.5 and 6.6, namely examining the behavior of small disturbances to
a steady flow to see whether they grow or decay. The steady flow now is the specified mean axial
velocity parameter, �, which determines the compressor operating point and the slope of the char-
acteristic. Defining appropriate forms of the disturbance flow fields upstream and downstream of the
compressor and linking them through matching conditions leads to an equation for the eigenvalues
(complex frequencies) which define disturbance growth or decay.

Expressing the compressor characteristic as the exit static pressure minus the inlet stagnation
pressure is convenient here because both are directly related to axial velocity perturbations. For
self-excited disturbances the velocity field is irrotational ahead of the compressor, the perturbations
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decay upstream, and the conditions far upstream are steady and uniform. The disturbances of interest
propagate round the circumference and must be of the form exp[ik(θ −ωkt)], where k is the harmonic
number and ωk is the complex frequency. As in Section 6.8 this implies that the general solution for
the upstream disturbance velocity potential, ϕ, obeying Laplace’s equation is

ϕ =
∞∑

k = −∞,

k �= 0

Akek [(x/rm )+i(θ−ωk t)].

The relation between stagnation pressure variations and the disturbance velocity potential is given
by the first integral of the momentum equation for irrotational flow as derived in Section 6.4:

∂ϕ

∂t
+ pt

ρ
= f (t). (6.4.3)

The far upstream flow is uniform and steady and the function f(t) is thus a constant. Equation (6.4.3)
for the stagnation pressure variation (the stagnation pressure is a function of x, θ , and t) applied to
the stagnation pressure perturbation is

p′
t

ρ
= −∂ϕ

∂t
. (12.7.15)

Equation (12.7.15) shows the upstream stagnation pressure variation must have the same form as the
velocity potential, ϕ, so

p′
t

ρ
=

∞∑
k = −∞,

k �= 0

Bkek [(x/rm )+i(θ−ωk t)]. (12.7.16)

The flow at the compressor exit emerges from the last vane row at an essentially constant angle
and can be taken to be axial. The downstream static pressure, however, is not uniform, as would be
the case in a steady flow. The static pressure obeys Laplace’s equation (∇2p′ = 0) (see Section 2.3)12

and the downstream static pressure perturbation has the form

p′ =
∞∑

k = −∞,

k �= 0

Cke−k[(x/rm )+i(θ−ωk t)]. (12.7.17)

Using the continuity equation, the x-momentum equation can be written as (with uy = 0)

∂u′
x

∂t
+ ux

∂u′
x

∂x
= ∂u′

x

∂t
−
(

ux

rm

)
∂u′

θ

∂θ
= − 1

ρ

∂p′

∂x
. (12.7.18)

The condition on the compressor exit flow angle means that u′
θ is zero at the compressor exit. Equation

(12.7.18) evaluated at the compressor exit thus reduces to(
∂u′

x

∂t
= − 1

ρ

∂p′

∂x

)
compressor exit

. (12.7.19)

There is a static pressure non-uniformity at the compressor exit due to unsteadiness.

12 This can be seen by differentiating the x-component of the momentum equation with respect to x and the y-component of
the momentum equation with respect to y, adding them and making use of the continuity equation.
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Equations (12.7.13), (12.7.15), and (12.7.19), plus the mass conservation matching condition
across the compressor (u′

xi
(θ, t) = u′

xe
(θ, t)) and the functional forms of the velocity potential, up-

stream stagnation pressure, and downstream static pressure, can be combined into a single equation
for the complex frequency, ωk = ωkreal + iωkimaginary . In terms of real and imaginary parts for the kth

Fourier component this is

(ωkimaginary




)
k

= 1

ρux

(
d�Pt/s

dux

)
=
(

1

�

d�t/s

d�

)
, (12.7.20a)

(ωkreal




)
k

=
( IR

2/k + IRS

)
, k �= 0 (12.7.20b)

Equation (12.7.20a) states that propagating disturbances grow, and the flow through the com-
pressor becomes unstable, when the compressor operates with a positive slope of the total-to-static
pressure rise characteristic. The instability criterion is thus that the operating point has reached the
peak of this characteristic. This is useful as a guideline, although it has been found that there are
also compressors which exhibit propagating disturbances on the negatively sloped portion of the
compressor characteristic (Day 1993; Camp and Day, 1998). Such behavior appears to be linked to
a different, and nonlinear, mechanism (Gong et al., 1999).

Equation (12.7.20b) states that the disturbance will propagate round the circumference at a speed
that is a fraction of, and scales with, the rotor speed. For a first harmonic disturbance (k = 1) and a
compressor having rotors and stators with identical geometries, IRS is approximately twice IR and
the propagation speed is

ω1real ≈
( IR

1 + IR

)



2
. (12.7.21)

As the number of stages (and IR) increases, the propagation speed approaches
/2 for a many-stage
machine, in accord with multistage compressor data on rotating stall, which is the mature form of
the propagating instability (Cumpsty and Greitzer, 1982).

The mechanism that feeds energy into the disturbances can be described with reference to the slope
of the compressor characteristic, in a manner similar to that given in Section 6.6 for compression sys-
tem oscillations. On a local (in θ ) basis, the product of the perturbation velocity and the perturbation
in pressure rise, which is a quadratic energy-like quantity, is positive when the mean operating point
is in the positively sloped region, corresponding to energy fed into the disturbance flow field, and
negative for operation in the negatively sloped region. The basic ideas carry over from the instability
onset description in Section 6.6, although here the eigenmodes vary with θ as well as with x and t.
Further information on the link between the growth of small amplitude traveling waves and the onset
of compressor rotating stall, including the use of (wave behavior based) feedback control as a means
of enhancing the compressor stable flow range, is given by Paduano, Greitzer, and Epstein (2001).

12.7.2 A deeper look at the effects of circumferentially varying tip clearance

As mentioned in Section 12.5 asymmetric flow can be generated by circumferentially non-uniform
compressor tip clearance. In this situation, the flow is steady in the absolute system, with the com-
pressor inlet stagnation pressure and exit static pressure both uniform. Equation (12.7.14) therefore
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reduces to a non-homogeneous differential equation (in θ) for the axial velocity variation around the
compressor:(

IR
∂ϕ′(0, θ )

∂θ

)
−
(
∂�t/s

∂�

)
ε

ϕ′(0, θ ) =
(
∂�t/s

∂ε

)
�

ε′(θ ). (12.7.22)

The behavior can be illustrated using a non-dimensional sinusoidal clearance variation of the form
ε′ = εk sin kθ . The corresponding axial velocity variation at the compressor inlet is

φ′
k(0, θ ) =

(
∂�t/s

∂ε

)
�√√√√(∂�t/s

∂�

)2

ε

+ k2I2
R

{(εk) sin[k(θ +"k)]} . (12.7.23a)

The circumferential phase shift between the clearance minimum and the axial velocity maximum is
given by

tan k"k = kIR(
∂�t/s

∂�

)
ε

. (12.7.23b)

Equations (12.7.23) exhibit a dependence of the axial velocity disturbance on: (1) the harmonic
content of the clearance variation, k, (2) the rotor fluid inertia parameter, IR, (3) the sensitivity of
the compressor pressure rise to axisymmetric clearance changes, ∂�t/s/∂ε, and (4) the slope of the
compressor pressure rise characteristic, ∂�t/s/∂�. More negatively sloped compressor characteris-
tics, larger inertia parameters, a higher harmonic content of the clearance variation and a decreased
sensitivity to clearance all promote smaller variations in axial velocity. In addition, as the slope of
the compressor pressure rise characteristic decreases (for example as a given compressor is throttled
toward stall) the axial velocity variation increases in magnitude and shifts in phase with respect to
the clearance variation. At the peak of the compressor pressure rise characteristic (∂�t/s/∂� = 0)
the axial velocity and clearance variation are predicted to be in quadrature, with a 90◦ phase shift.

12.7.3 Axial compressor response to circumferentially propagating distortions

The third situation is the response of compressors to imposed propagating non-uniformities as
can occur in multishaft gas turbine aircraft engines in which a disturbance created in an upstream
compressor is fed to the downstream one. If the disturbance has an angular velocity f 
, where

 is the angular velocity of the rotor, the unsteady upstream and downstream disturbances given
previously are augmented by an unsteady stagnation pressure perturbation13 of the form

p′
t−∞ (x, θ, t)

ρ
2r2
m

=
∞∑

k = −∞,

k �= 0

Akeik(θ− f
t). (12.7.24)

13 The disturbances are not coupled in a uniform background flow, and the interaction is through the matching conditions
across the components.
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The stagnation pressure disturbance in (12.7.24) is associated with the rotational part of the velocity
field and does not obey Laplace’s equation (compare with the form in (12.7.16)). The pressure
matching condition across the compressor is again (12.7.14), with the compressor inlet stagnation
pressure, p′

ti , specified from (12.7.24). For a given (kth) harmonic component the velocity disturbance
at the compressor face is

φ′
k(0, θ, t) = Akeik(θ− f
t+"k )√

(d�/d�)2 + [kIR − f (kIRS + 2)]2
. (12.7.25)

The phase angle, "k, is given by

tan k"k = kIR − (kIRS + 2) f(
d�

d�

) . (12.7.26)

In (12.7.25) and (12.7.26) we again see the (by now familiar) dependence on the slope of the
compressor characteristic and the harmonic content of the non-uniformity. A new consideration is
that as the angular frequency of the imposed distortion passes through the natural frequency of
self-excited perturbations, the velocity disturbance in response to the forcing can become large. In
essence, (12.7.25) shows resonance behavior, where the analog of the damping coefficient is the
slope, d�/d�, of the compressor pressure rise characteristic curve. Near the peak of the pressure
rise characteristic where d�/d� is small, the axial velocity non-uniformity in the compressor will be
large when the forcing is near the natural disturbance propagation speed ( f = IR/[(2/k) + IRS]).

12.8 Nonlinear descriptions of compressor behavior in asymmetric flow

The foregoing descriptions of compressor behavior in asymmetric flow can be developed into a
nonlinear treatment which allows examination of the important effect of circumferential distortion
on compressor stability. The two problems, instability onset and the response to inlet distortion, have
been addressed up to now from a linear perspective, where they can be regarded independently as the
forced and free response of the compressor flowfield. To assess their interaction, a nonlinear analysis
is needed.

In contrast to the stability problem of Section 12.7, the background flow upon which the small
disturbances are now superposed is that associated with a finite amplitude stagnation pressure dis-
tortion and is non-uniform in θ . The eigenmodes are thus not sinusoidal and, if expressed as sums
of sines and cosines, exhibit a rich harmonic content. Further, the background flow is not simply
defined by the choice of mean flow. The θ -distribution of the axial velocity at the compressor face
must be solved for because the local compressor pressure rise is determined by the local slope of the
compressor characteristic and this varies around the circumference.

Discussion of the conceptual approach to solving this problem highlights the type of choice
between modeling and computation which is inherent in many fluids engineering problems. The
description of the flow domain can be separated into three parts: upstream, internal to the compressor,
and downstream. In the linearized problems solved previously all these are treated in terms of small
perturbations to a uniform flow. In addressing the nonlinear problem we can define aspects which
are essential to describe in a nonlinear manner as well as those which are well approximated by a
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linear treatment. The compressor, which has a pressure rise characteristic whose slope can vary from
strongly negative to positive as the axial velocity varies by ±10% of the mean, is the most important
nonlinearity. Not only the magnitude but also the sign of the slope can change. The behavior of
the upstream and downstream regions, however, is little affected by nonlinearities for the parameter
range of interest. Put another way, what is needed for problem closure is a relation between the
axial velocity and the pressure at the compressor inlet and exit, i.e. the impedance of the upstream
and downstream regions. These quantities are much less dependent on nonlinear effects than the
compressor response which provides the damping (either positive or negative) that drives or damps
the instability.14

The above arguments imply that the background flow can be usefully modeled with a linear
description of the upstream and downstream impedances coupled to a nonlinear description of the
compressor behavior. It cannot be emphasized too strongly that there is no computational barrier to
adding the upstream and downstream nonlinearities; the point is whether the gain in fidelity is worth
the complication. The decision of what to model and what to compute is especially important when
fluid components are part of a complex system or when there is an application (such as control or
optimization) where a description in terms of a relatively small number of states is desired.

With an asymmetric background flow the Fourier components are coupled and the system and
compressor responses can no longer be treated separately; a propagating sinusoidal disturbance on
a circumferentially non-uniform background flow causes a time varying annulus average flow.15

Because of this, the model must include all the other system components, as pictured in Figure 12.26
with reference to the problem of flow stability for non-uniform tip clearance. (For stagnation pressure
distortion there would be a distortion-generating screen or other component in the upstream flow
field.)

Figures 12.27 and 12.28 show two features of the compressor velocity field due to non-uniform
tip clearance, based on a nonlinear model applied to a four-stage axial compressor (Graf et al.,
1998). Figure 12.27 gives the compressor inlet axial velocity distribution as a function of θ for a
“one-lobed” clearance variation. As the compressor is throttled and the operating point approaches
the peak pressure rise, the axial velocity variation increases in magnitude and changes shape. The
phase also shifts towards being in quadrature with the clearance variation.

The effect of the disturbance Fourier component on flow coefficient variation is given in Figure
12.28, where behavior for a two-lobed clearance non-uniformity is compared to that for a one-lobed
clearance variation. There is a difference in magnitude with operating condition and also an effect
of harmonic number. The latter is basically an effect of increasing reduced frequency (consider the
unsteady flow seen by the rotor) in decreasing the compressor response to non-uniformity.

These two figures show only the behavior of the steady background flow field. Conditions for the
growth of self-excited small disturbances have also been assessed and the computations of instability
onset show results in good accord with experiments.

14 The argument can be presented with respect to the computation of the static pressure in a situation with a known velocity dis-
turbance and uniform stagnation pressure. The static pressure non-uniformity is p +�p = −ρ(u2/2 + u�u + (�u)2/2),
where the notation �p and �u has been used to emphasize that neither of these is small compared to the background
values. For a 10% (of the mean) velocity non-uniformity, nonlinear effects give rise to a 1% change in the static pressure
non-uniformity and the main contribution is the linear term which gives a 20% variation. However, a 10% change in
velocity can be enough to change the sign of the slope of the compressor characteristic.

15 Quadratic nonlinear interaction of two Fourier components that are of the form sin θ , will result in sum and difference
disturbances of the form sin 2θ as well as disturbances that are uniform in θ .
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Another application of the nonlinear analysis is to rotating (propagating) distortions. As implied by
(12.7.25) there is a strong response of the system at certain frequencies and there can be a substantial
effect on compressor stability. Figure 12.29(a) shows theoretical and experimental results for the
annulus average flow coefficient at instability onset as a function of the distortion rotation frequency.
The experiments were conducted with a rotating screen in front of a four-stage compressor. The
nominal design point of the compressor is at an axial velocity coefficient of approximately 0.62. The
instability point with a stationary inlet distortion occurs at roughly 0.51. The flow range is defined as
the increment between instability onset and the design point. The effect of the disturbance rotation
rate is to move the instability point to 0.60, decreasing the flow range by roughly a factor of 7. To
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give an idea of the range of flow accessed in practice compared to the change in stability point the
compressor characteristic curve with uniform flow is plotted in Figure 12.29(b).

The previous arguments concerning the mechanical energy input leading to instability onset can be
generalized to apply to the situation with inlet distortion. With non-uniform background flow the local
operating point of the compressor and the local slope of the compressor characteristic vary around
the circumference. Some circumferential locations have energy added to the disturbances, whereas
others have energy extracted. Figure 12.30 shows computations of background flow and disturbance
quantities for a three-stage compressor geometry subjected to a stationary inlet stagnation pressure
distortion. Figures 12.30(a) and 12.30(b) show the background axial velocity distribution and the
local slope of the compressor characteristic, at the instability point, as a function of θ . The extent of
the far upstream stagnation pressure defect is also indicated and it is seen that the axial velocity at
the compressor inlet and the far upstream stagnation pressure (and axial velocity defect) are roughly
in quadrature.

Figure 12.30(c) shows the net value (averaged over a period 2π/ω) of the product of the non-
dimensionalized local pressure rise ((d� t/s/d�)φ′), and local velocity perturbation, φ′. Although
the average (in θ ) slope of the compressor characteristic is negative, there is a positive net flux of
disturbance mechanical energy. For this to occur the square of the axial velocity perturbation must
be larger in the region of positive slope (roughly θ = π to θ = 2π ) than in the region of negative
slope. The square of the axial velocity perturbations is depicted in 12.28(d) and it is seen that this
is the case. Chue et al. (1989) give additional information on the interactions between axisymmetric
and non-axisymmetric harmonic components which lead to this situation.

12.9 Non-axisymmetric flow in annular diffusers and
compressor–component coupling

Examination of circumferentially asymmetric flow in annular diffusers brings into prominence the
effect of component length or, more precisely, the ratio of length to disturbance wavelength. As
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in the description of asymmetric flow in compressors, for the basic description here the annulus
hub/tip radius ratio is regarded as high enough that flow quantities can be represented by radially-
averaged conditions. The annulus is thus “unrolled” to give the flow domain on the right-hand side
of Figure 12.31 with all quantities periodic in θ .

For a constant area straight duct the compressor exit static pressure in a steady flow was shown
to be circumferentially uniform if the exit flow angle was uniform. We now wish to inquire whether
this is the case with a downstream diffuser or nozzle and, if not, what determines the static pressure
non-uniformity.
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12.9.1 Quasi-two-dimensional description of non-axisymmetric flow
in an annular diffuser

We analyze the problem in terms of small amplitude asymmetric disturbances superposed upon an
axisymmetric, axial, background flow, which varies in the x-direction. Looked at in detail, the flow
in the diffuser is three-dimensional with x-, θ -, and r-components. Diffusers for turbomachinery
applications, however, are often of small divergence angle to avoid separation, radial differences in
static pressure are small, and we can work in terms of radially-averaged quantities which are functions
of x and θ only (Greitzer and Griswold, 1976). The approach is analogous to the approximations in
one-dimensional channel flow and can be referred to as quasi-two-dimensional. The diffuser core
flow is treated as incompressible and inviscid, but boundary layer blockage can be accounted for
through use of an effective area ratio.

In the linearized treatment adopted, the background axisymmetric flow and the asymmetric per-
turbations can be addressed separately. For the background flow, which has only an x-velocity
component, the continuity and momentum equations can be written in terms of the radially averaged
axial velocity and static pressure, denoted by overbars, as

d

dx
(ux H ) = 0, (12.9.1)

ux
dux

dx
+ 1

ρ

d p

dx
= 0. (12.9.2)

The quantity H(x) is the local diffuser height. For an annular diffuser, it is the difference in radius
(�r) between the inner and outer walls.

To develop equations for the asymmetric velocity and pressure fields, the most direct approach
is to take the perturbations (denoted by primes) as invariant with radius and carry out mass and
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momentum balances on a control volume with the elementary area rdxdθ which spans the diffuser.16

The continuity, x-momentum, and θ -momentum (again using rmθ to represent distance around the
circumference) equations thus obtained are

∂u′
x

∂x
+ 1

rm

∂u′
θ

∂θ
+ u′

x

H

dH

dx
= 0, (12.9.3a)

ux
∂u′

x

∂x
+ u′

x

dux

dx
= − 1

ρ

∂p′

∂x
, (12.9.3b)

ux
∂u′

θ

∂x
= − 1

ρrm

∂p′

∂θ
. (12.9.3c)

A stream function, ψ , can be defined for the asymmetric velocity components as

u′
x = 1

Hrm

∂ψ

∂θ
, (12.9.4a)

u′
θ = − 1

H

∂ψ

∂x
. (12.9.4b)

Equations (12.9.4) satisfy the continuity equation identically.
The radial (z-component) vorticity, ωz, can be defined in terms of ψ as

∂2ψ

∂x2
−
(

1

H

dH

dx

)
∂ψ

∂x
+ 1

r2
m

∂2ψ

∂θ2
= −Hωz . (12.9.5)

An equation for the rate of change of the vorticity can be obtained by eliminating the pressure from
(12.9.3b) and (12.9.3c)17

∂ωz

∂x
=
(

1

H

dH

dx

)
ωz . (12.9.6)

Equation (12.9.6) has an immediate integral for the z-component of vorticity at any x location in
terms of the vorticity, ωz1 , at the diffuser inlet station (denoted by subscript 1), which corresponds
to x = x1:

ωz(x, θ )

H (x)
= ωz1 (θ )

H1
. (12.9.7)

Equation (12.9.7) is a quasi-two-dimensional form of Helmholtz’s Theorem stating that radial vortex
filaments are stretched as they are convected along the diffuser with a consequent increase in vorticity
for a given fluid particle.

Equations (12.9.5) and (12.9.7) can be combined into a single equation for ψ :

∂2ψ

∂x2
−
(

1

H

dH

dx

)
∂ψ

∂x
+ 1

r2
m

∂2ψ

∂θ2
= −

(
ωz1

H1

)
H 2. (12.9.8)

16 An alternative method is to formally average the three-dimensional equations from the inner to the outer radius, employing
the condition of flow tangency at the bounding surfaces.

17 This can also be obtained from the linearized form of the vorticity evolution equation: u∂ωz/∂x = −ωzdux/dx combined
with (12.9.1).
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To proceed further, specific boundary conditions and diffuser shapes are needed. In the context of
the problem described, a diffuser downstream of a compressor in a circumferentially non-uniform
flow, we prescribe the stagnation pressure distribution at the diffuser inlet (which is the compressor
exit) and take the flow angle at compressor exit to be circumferentially uniform and axial. As is often
the case in practice, the diffuser is taken as straight-walled (H increasing linearly with x). Finally, the
region downstream of the diffuser is regarded as a large volume, for example a combustion chamber
or collector. Conditions at the diffuser exit are thus similar to those at the discharge of a subsonic
duct into a large chamber described in Section 2.7, with the pressure at the diffuser exit equal to the
chamber pressure and circumferentially uniform.

The solution of (12.9.8) can be represented as a Fourier series in θ , with each Fourier component
independent. The equation for the kth harmonic is

∂2ψ

∂x2
− 1

x

∂ψ

∂x
− k2ψ

r2
m

= −
(
ωz1

H1

)
H 2. (12.9.9)

The three boundary conditions can be written in terms of the stream function and the vortic-
ity. Crocco’s Theorem gives a relation between the diffuser inlet stagnation pressure gradient and
vorticity:

ωz1 (θ ) = − 1

ρuxrm

∂p′
t (x1, θ )

∂θ
. (12.9.10)

The condition of axial velocity at the diffuser inlet (x = x1) is written in terms of the stream function
as(
∂ψ

∂x

)∣∣∣∣
x=x1

= 0. (12.9.11)

The circumferentially uniform static pressure at the diffuser exit (x = x2) is written in terms of the
stream function as(

1

x

∂ψ

∂x
− ∂2ψ

∂x2

)∣∣∣∣
x=x2

= 0. (12.9.12)

12.9.2 Features of the diffuser inlet static pressure field

Solution of (12.9.10) subject to the given boundary conditions can be expressed numerically or in
terms of Bessel functions. In the context of the questions initially posed, the most important quantity
is the static pressure variation at the diffuser inlet. With the stagnation pressure variation expressed
as p′

t (θ ) =∑ Ak cos kθ , the static pressure at the inlet is (Greitzer and Griswold, 1976)

p′(x1, θ ) =
∑

Ak

[
Fk

(
kx1

rm
,

kx2

rm

)]
cos kθ. (12.9.13)

In (12.9.13) the function Fk is a combination of modified Bessel functions of the first and second
kind which is always negative. For any harmonic, therefore, the static and total pressure distortions
at the diffuser inlet are out of phase. The magnitude of the static pressure variation decreases from
the value at the diffuser inlet to zero at the diffuser exit.
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t = ε cos θ ), N is the diffuser axial length, rm is the mean radius (Greitzer and Griswold, 1976).

Figure 12.32 shows the magnitude of the diffuser inlet static pressure asymmetry normalized with
respect to the magnitude of the inlet stagnation pressure asymmetry versus the diffuser effective area
ratio (AR = A2/A1) for several non-dimensional diffuser lengths, N/rm. There are two relevant length
scales. One is associated with the circumferential non-uniformity and is given by rm/k for the kth
harmonic. The other is the axial length of the diffuser, N. For a given area ratio, the shorter the diffuser
(in terms of kN/rm) the larger the static pressure non-uniformity. For a given non-dimensional length,
the larger the effective area ratio the larger the static pressure non-uniformity.

The uppermost curve, that for N/rm = 0, which corresponds to the limiting case of a very short
diffuser, provides a vehicle to discuss the relative phases of the static and stagnation pressures. At
the diffuser inlet, the circumferential velocity is zero. For a short diffuser it remains small because
there is not enough length for the streamlines to deflect appreciably. If the circumferential travel of a
fluid particle is negligible, the streamtube divergence from inlet to exit at any θ location is set by the
diffuser area ratio only. Any two circumferential locations in the annular diffuser can therefore be
viewed as two equal area ratio diffusers operating in parallel, as sketched in Figure 12.33, with the
local (in θ ) diffuser static pressure rise depending only on the local inlet dynamic pressure. Regions of
high velocity (high diffuser inlet stagnation pressure) are associated with high diffuser static pressure
rise, and regions of low velocity (low stagnation pressure) with low static pressure rise. Because the
diffuser exit static pressure is uniform, the former corresponds to low diffuser inlet static pressure
and the latter to high inlet static pressure. The diffuser inlet static and stagnation pressure variations
are therefore out of phase.

Figure 12.34 shows the decrease in static pressure non-uniformity with harmonic number for an
annular diffuser geometry typical of aeroengine compressor exit diffusers. The figure shows the ratio
of the magnitude of the inlet static pressure non-uniformity to the stagnation pressure non-uniformity
for three situations: an inlet distortion sector 180◦ in extent, two 90◦ sectors, and four 45◦ sectors.
The situations with the shortest distortion length scale have, as mentioned earlier, the lowest static
pressure non-uniformity.



665 12.9 Non-axisymmetric flow in annular diffusers

(p1)low

(p1)high

p2 = uniform

Exit (2)

Inlet (1)

One-Dimensional Ideal Flow

p p u
AR2 1 1

2
2

1
2

1
1

− = −



ρ

Figure 12.33: Diffusers in parallel (limiting case of short diffuser).

0
0

0.1

0.2

0.3

0.4

0.5

0.6

1 2

Theory
Data

Fundamental distortion harmonic
3 4

1

p′
 pt′

Figure 12.34: Effect of the harmonic number on the diffuser inlet static pressure non-uniformity (distortion
screen configurations as indicated in figure); diffuser area ratio = 1.5,�r/rm = 0.22, N/rm = 1.1 (Greitzer and
Griswold, 1976).

Arguments in terms of local area change provide a way to interpret these results. As the harmonic
number, k, increases, the diffuser becomes longer in terms of the disturbance length scale. The
circumferential velocity set up by the circumferential pressure gradient tends to increase streamtube
divergence in the high static pressure region and decrease it in the low static pressure region, compared
to the situation with the short diffuser. This streamtube area variation evens out the local static pressure
rise around the circumference, reducing the diffuser inlet static pressure non-uniformity.

As a consequence of the dependence of diffuser response on harmonic number, the diffuser acts
as a low pass filter. The “output”, which is the static pressure non-uniformity at the inlet, has a
distribution with less higher harmonics than the “input” stagnation pressure non-uniformity. This
can be seen in Figure 12.35, where the stagnation pressure profile is much less sinusoidal than the
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static pressure because higher harmonic components have smaller proportional inlet static pressure
non-uniformities. The stagnation pressure non-uniformity was created with a sharp edged screen and
honeycomb combination and has many harmonics. The diffuser inlet static pressure non-uniformity
is closer to a single sinusoid with the fundamental wavelength.

12.9.3 Compressor–component coupling

The description of diffuser behavior that has been developed provides a tool to assess the coupling
between a compressor and a downstream diffuser or nozzle. The overall behavior can be described
qualitatively using the short diffuser (or parallel diffuser) representation. Figure 12.36, which is a
more inclusive version of Figure 12.33, shows the situation. Static and stagnation pressure variations
at the diffuser inlet are out of phase. In the low stagnation pressure stream (denoted by subscript L),
there is a high static pressure at the diffuser inlet (compressor exit) and conversely. For a nozzle, on
the other hand, the diffuser inlet static and stagnation pressure non-uniformities are in phase.

The consequences on compressor performance are sketched in Figure 12.37, which compares
operation in asymmetric flow for a compressor with a constant area downstream annulus, with an
exit diffuser, and with an exit nozzle. For the same mean flow and inlet stagnation pressure distortion,
the local working points of the compressor are altered by the downstream component with the low
flow side pushed nearer to stall by the presence of the diffuser.
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A more quantitative view of this phenomenon is shown in Figure 12.38, which gives measurements
and calculations of the circumferential distribution of static pressure at the exit of a three-stage
compressor run with the three different geometries (Greitzer, Mazzaway, and Fulkerson, 1978).
The computations are based on a description of the whole compression system (upstream region,
compressor, and downstream component flow models) which included a nonlinear representation of
the compressor behavior and a linearized analysis for upstream and downstream flows. The mean
flow and inlet stagnation pressure distortion were the same for all three tests. As suggested by the
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Figure 12.38: Effect of downstream components on static pressure non-uniformity at the exit of a three-stage
compressor: (a) theory, (b) experiment;�pt is magnitude of stagnation pressure variation (Greitzer et al., 1978).

foregoing arguments, the static pressure non-uniformity at the compressor exit is in phase with the
stagnation pressure for the nozzle, out of phase for the diffuser, and virtually zero for the constant
area annulus.

12.10 Effects of flow non-uniformity on diffuser performance

In much of the discussion of viscous effects, the approximation has been made that they were confined
to thin regions (boundary layers, shear layers, or wakes). In this section, we give an introductory
discussion of flow fields in fluid devices which are long enough so viscous forces become important
in the core18 regions and there are no regions which can be considered effectively inviscid. The
context in which the discussion is set is the behavior of a diffuser with a non-uniform core velocity at
the inlet. Examination of this type of flow not only shows the interplay of viscous and pressure forces
in shaping the velocity profile, but also provides perspective on the relative roles the two forces play
in determining the pressure rise as a function of the geometric parameters.

Figure 12.39 shows velocity profiles (velocity/mean velocity versus distance across the chan-
nel/channel width) for two two-dimensional diffusers with the same area ratio, AR = 1.5, but different
non-dimensional lengths, N/W1 = 3 and 6, where N is the diffuser axial length and W1 is the inlet
width (Wolf and Johnston, 1969). The inlet profile consists of a uniform shear (linear variation in
velocity) over most of the channel plus thin boundary layers near each wall. The dashed line labeled
“calculated core slope at exit” represents an exit velocity profile with the same vorticity as at the
inlet; the apparent slope increase is because the exit channel width is 1.5 times the inlet channel
width. The regions occupied by retarded flow in the boundary layers at the exit are several times as
large as at the inlet, with the boundary layer growth particularly marked on the low velocity (left)
side of the channel. The velocity in the boundary layer of the shorter diffuser also falls below that
for the longer diffuser on the low velocity side.

18 In Section 12.10, the term “core” refers to the flow outside of the diffuser wall boundary layers.
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Figure 12.39: Inlet and exit velocity profiles for two two-dimensional diffusers with uniform shear flow in the
core; N is the diffuser length, W1 is the inlet width (Wolf and Johnston, 1969).

Figure 12.39 encapsulates a number of aspects of the behavior of a shear flow in a pressure gradient.
First, the response of the core to the pressure field is essentially inviscid, but the size of the core
is affected by viscous effects. Second, in an adverse pressure gradient, boundary layers associated
with low core velocity regions grow substantially more than those associated with regions of high
velocity. Third, viscous effects can improve aspects of performance through momentum transfer in
the boundary layer if the device is long enough. With the longer diffuser, the exit boundary layer
blockage is decreased, even though (as shown below) the pressure rise is higher than that in the
shorter diffuser.

Pressure rise coefficients, C p = [(p2 − p1)/( 1
2ρu2

1)], for two-dimensional diffusers operating
with the inlet uniform shear profile of Figure 12.39 are given in Figure 12.40 as a function of
diffuser area ratio. Data are included for two non-dimensional diffuser lengths, N/W1, 3 and 6. Also
included are a curve showing the measured pressure rise with uniform core flow and the same inlet
boundary layer blockage, and two ideal flow curves, one for uniform inviscid flow (Cp/uniform) and
one for inviscid uniform shear (Cp/shear). The small arrow indicates the area ratio at which the inviscid
forward flow limit occurs (see Section 5.9) for the shear profile; the Cp/shear curve has been extended
at this pressure rise for larger area ratios.

The difference between the two ideal curves is due to distortion of the core velocity profile as it
enters a region of higher static pressure. The actual pressure rises are less than the ideal, but the dif-
ference between the two ideal curves represents the major part of the difference between the uniform
core and shear flow results, especially for unstalled diffusers (area ratios of 1.8 or less in the figure).
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Figure 12.40: Static pressure rise coefficient for two-dimensional diffusers in shear flow, umax/umin = 1.73.
Symbols denote measured performance with the inlet shear profile of Figure 12.39, dashed lines denote the
measured performance with uniform core flow; boundary layer blockage at inlet = 0.017. Solid lines denote ideal
performance, with the arrow indicating the forward flow limit for shear flow at inlet (Wolf and Johnston, 1969).

For these diffusers profile effects in the core, rather than effects directly associated with boundary
layers, are responsible for the major part of the decreased pressure rise with uniform inlet shear flow.

These points are further illustrated through comparison of the behavior of diffusers that operate
with the two non-uniform inlet flows shown in Figure 12.41. The “jet” profile has a region of high
velocity in the center of the channel and low velocity near the walls, and the “wake” profile has the
opposite. Inlet boundary layer blockage for the two profiles is the same.

Measured pressure rise coefficients as a function of diffuser area ratio with jet and wake inlet
velocity profiles and with uniform core flow are shown in Figure 12.42 for non-dimensional lengths
of 3, 6, and 12. The longer diffusers have a higher pressure rise. The diffusers operating with the
wake profile have a higher performance than those with the jet profile, because the boundary layers
of the high velocity stream are more capable of negotiating a given pressure rise.

Figures 12.39–12.42 represent situations in which both viscous forces (or rather forces due to
gradients of turbulent stresses) and pressure forces need to be accounted for, because it is the
competition between the two which results in accentuation or attenuation of the non-uniformity in
velocity. This competition is exhibited by examination of differential changes in stagnation pressure,
static pressure and velocity along a streamline:

du

u
= 1

ρu2
(dpt − dp). (12.10.1)
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Figure 12.41: Jet and wake inlet velocity profiles for a two-dimensional diffuser (Wolf and Johnston, 1969).
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Figure 12.43: Inlet and exit velocity profiles in a two-dimensional diffuser; (a) N/W1 = 6, (b) N/W1 = 12 (Wolf
and Johnston, 1966).

For a diffuser, dp is positive. Depending on the streamline and amount of mixing, dpt can be negative,
zero, or positive. For a streamtube with a lower velocity than its neighbors, the effect of mixing is to
increase the stagnation pressure. In terms of the fractional velocity non-uniformity u/u (where u is
the mean velocity at a given axial station and uW = constant):

d
(u

u

)
=
(u

u

)(dpt − dp

ρu2
+ dW

W

)
. (12.10.2)

The content of (12.10.2) can be seen in the data of Figures 12.43 and 12.44, which give inlet
and exit velocity distributions for two-dimensional diffusers with a wake-type inlet velocity profile.
Figure 12.43(a) shows the behavior in diffusers with N/W1 equal to 6 and area ratios from 1.2 up to
2.7. At the lowest area ratio, the relative velocity non-uniformity is decreased through the diffuser
because of the proportionally large influence of viscous forces, with dpt larger than dp. (Because
the velocities are referred to the mean, and the mean velocity at the exit is less than at the inlet, the
actual, non-normalized, exit velocity non-uniformity is less than the numerical value in the figure.)

As the diffuser area ratio is increased, pressure forces become more important, resulting in a
decrease in normalized wake velocity and, at area ratios of 2.4 and 2.7, reverse flow in the central
portion of the wake region. Viscous forces have an effect, indicated by the rounding of the wake
profile, but cannot overcome the influence of pressure forces. In this situation it is reverse flow in
the center of the channel, rather than at the wall, which is responsible for the limits on pressure rise.

Lengthening the diffuser increases the influence of viscous forces (through increasing the op-
portunity for mixing) and Figure 12.43(b) shows results for diffusers with non-dimensional length
N/W1 = 12. For a given area ratio, the exit velocity non-uniformity is reduced compared to Fig-
ure 12.43(a). Even for the largest area ratio of 2.7, there is no flow reversal with the longer diffuser,
in spite of the fact that the static pressure rise is higher than that for the shorter diffuser by roughly
fifteen percent.
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Figure 12.44: Inlet and exit velocity profiles in a two-dimensional diffuser showing the effect of viscous forces
on the profile; area ratio = 2.1 (Wolf and Johnston, 1966).

Figure 12.44 gives another view of the data. The figure shows measured inlet and exit velocity
profiles for diffusers of area ratio, AR = 2.1, and different non-dimensional lengths, N/W1, 3, 6,
and 12. The exit velocity non-uniformity for the N/W1 = 6 diffuser is more severe than that for the
N/W1 = 3 diffuser, consistent with Figure 12.43, which shows a larger static pressure rise for the
longer diffuser. For these two diffusers the stagnation pressure rise in the middle of the wake was
found to be negligible, implying little impact of viscous forces. A different situation occurs when
comparing the N/W1 = 6 and N/W1 = 12 diffusers. Viscous forces in the latter result in a stagnation
pressure increase of 0.20 (1/2ρu2) at the exit compared to the exit of the N/W1 = 6 diffuser, with a
consequent decreased velocity non-uniformity.

Section 12.10 can be summarized as follows. The distorting effect of pressure forces on a core
velocity non-uniformity can be a major contributor to the decreased performance of fluid components
relative to the performance with uniform core flow. The location of the low velocity regions in the
core is also important; keeping these regions away from solid surfaces has a favorable effect. Finally,
the influence of viscous forces in transferring momentum to low velocity streams tends to mitigate
the effect of pressure forces and, if the device is long enough, can result in improved performance.

12.11 Introduction to non-axisymmetric swirling flows

The non-uniformities treated so far have been two-dimensional. In flows with swirl additional features
enter the problem which are inherently three-dimensional. Such conditions are found downstream of
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flow).

a turbomachinery blade row where wakes are superposed upon a flow with mean swirl. They are also
seen in turbomachines operating with circumferential inlet distortion; once the circumferentially
non-uniform flow passes through one or more blade rows, it generally has appreciable swirl. To
illustrate the phenomena associated with these situations we examine a simple generic problem
(incompressible, steady, asymmetric swirling flow in a constant area annulus) in which the salient
features are demonstrated explicitly.

With a mean swirl the different types of flow disturbances developed in Chapter 6 (pressure and
vorticity) are coupled. The mechanism for the coupling can be introduced through consideration of
the circumferentially non-uniform stagnation pressure flow behind a row of constant exit angle vanes
in an annulus. There is a circumferential region of stagnation pressure defect and corresponding low
velocity so the vane exit velocity at a given radius as sketched in Figure 12.45(a).

Without swirl, the shear (vortical) disturbances would be convected unchanged and the static
pressure would be uniform. This, however, is not the case if there is a mean swirl, as seen from the
following arguments. Suppose:

(1) the low velocity (L) region has θ-velocity component uθL , and the high velocity region (H) has
uθH ;

(2) the velocities at any θ -location are roughly the same at all radii;
(3) the streamlines are cylindrical, as they would be for purely convected disturbances.

Under these conditions, the radial pressure gradient can be approximated from simple radial
equilibrium as(

dp

dr

)
H

= ρ
u2
θH

r
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in the H (high velocity) region, and

(
dp

dr

)
L

= ρ
u2
θL

r

in the L (low velocity) region.
Since uθH > uθL , the radial variation in pressure is larger in the “H” region than in the “L” region

and at the outer radius of the annulus, the pressure is higher in the H region than in the L region. The
resulting circumferential pressure gradient causes flow from high velocity to low velocity regions.
Similar arguments apply at the inner radius, with the direction of motion from the low velocity
to the high velocity region. Figure 12.45(b) is a view of the annulus looking upstream, which
illustrates the situation. The plus and minus signs indicate relative static pressure levels, compared
to other circumferential locations at the same radius. The arrows show the direction of the motion
that arises because of the pressure gradients. Purely convected disturbances cannot occur because
circumferential velocities will be generated as well as (from continuity) outward radial velocities in
the H region and inward radial velocities in the L region.

12.11.1 A simple approach for long length scale non-uniformity

A basic quantitative description of steady circumferentially non-uniform swirling flow can be
developed to demonstrate some generic three-dimensional features (Greitzer and Strand, 1978).
The approximations are: (1) non-uniformities small enough so a linearized analysis is applicable,
(2) background flow with a free vortex velocity distribution and uniform axial velocity, (3) a char-
acteristic length scale of the disturbance much larger than the annulus height ((�r)/rm � 1), and
(4) inviscid, constant density flow.

The coordinate system and nomenclature used is given in Figure 12.46. The relevant equations are
derived by linearizing the cylindrical coordinate form of the continuity and momentum equations
(see Section 1.14). The background flow has uθ = K/r, ux = constant and ur = 0. The resulting

uθ

ux

xr

θ

Velocity
components

ro ri

ur

Figure 12.46: Coordinate system for an annular flow field.
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equation set is

1
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+ ∂u′

x
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∂θ
+ ux

∂u′
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∂x
= − 1

ρr

∂p′

∂x
. (12.11.1d)

In (12.11.1), u′
x , u′

θ , u′
r , and p′ are the x, θ , and r disturbance velocity components and the pressure,

and ux and uθ are the background (circumferentially uniform) components.
The central idea to be pursued can be expressed as follows. With no swirl, purely convected vorticity

perturbations exist with uniform static pressure. With swirl this is not the case. To highlight the
behavior differences we split the disturbance velocity components into purely convected perturbations
(denoted by subscript c) and a “secondary flow” representing the departure from purely convected
disturbances (denoted by subscript s). The former have u′

r = 0 and are invariant along the background
streamlines. For the latter u′

r is not necessarily zero. The velocity components are:

ur = u′
rs

r -component; (12.11.2a)

uθ = uθ + u′
θc

+ u′
θs

θ-component; (12.11.2b)

ux = ux + u′
xc

+ u′
xs

x-component. (12.11.2c)

The purely convected disturbances, u′
xc
, u′

θc
, satisfy

Lc

[
u′
θc

u′
xc

]
=
(

uθ
r

∂

∂r
+ ux

∂

∂x

)[
u′
θc

u′
xc

]
= 0. (12.11.3)

Lc is the background flow convective operator defined in (12.11.3). For an asymmetry with
θ -dependence of the form exp(inθ ), the velocity components u′

xc
, u′

θc
are:[

u′
θc

u′
xc

]
= Aux

[
tanα

1

]
exp
{

in
[
θ −
( x

r

)
tanα

]}
. (12.11.4)

In (12.11.4) A is a non-dimensional disturbance amplitude and α is the background flow angle,
tan α = uθ /ux .

To simplify (12.11.1) we examine the magnitudes of terms in the momentum equations for a
disturbance with a wavelength equal to the circumference (n = 1). The continuity equation implies
that velocity components scale as(

u′
θs

rm
,

u′
xs

rm

)
≈ u′

rs

�r/2
. (12.11.5)

Because �r/2rm is small,(
u′

rs

u′
θs

,
u′

rs

u′
xs

)
� 1. (12.11.6)
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If the secondary flow velocities are comparable to, or smaller than, the convected disturbances
(arguments addressing this are given below) the scaling in (12.11.6) means the term involving u′

r

in (12.11.1b) can be neglected and the equation written as an expression of local simple radial
equilibrium:

2
uθ
r

(
u′
θc

+ u′
θs

) = 1

ρ

∂p′

∂r
. (12.11.7)

For annuli of high hub/tip radius ratio (ri/ro → 1), (12.11.7) can be evaluated at the mean radius to
obtain an approximation for the pressure distribution as

p′(r, θ, x) − p′(rm, θ, x) = 2ρuθ (u′
θc

+ u′
θs

)
∣∣
r=rm

(
r − rm

rm

)
. (12.11.8)

Another simplification stems from the constraint that a vane row puts on the flow angle at the row
exit. At this location which we take as the upstream end of the domain (x = 0), there is no secondary
flow and u′

θs
and u′

xs
are zero. The earlier qualitative picture of secondary flow driven by the presence

of convected disturbances implies that u′
θs

increases from zero and for some distance downstream is
smaller than u′

θc
. If so the former can be neglected in (12.11.8), which becomes a statement linking

the three-dimensional pressure field to the convected velocity disturbance at the mean radius:

p′(r, θ, x) − p′(rm, θ, x) = 2ρuθ [u
′
θc

(rm, θ, x)]

(
r − rm

rm

)
. (12.11.9)

Circumferential and axial pressure gradients therefore exist at any radii away from the mean.

12.11.2 Explicit forms of the velocity disturbances

Using the form of the convected velocity components from (12.11.4) in (12.11.9), substituting in
(12.11.1c) and (12.11.1d), and applying (12.11.3) yields a pair of ordinary differential equations that
describe the growth of the secondary flow disturbances:

Lc

[
u′
θs

(r, θ, x)
u′

xs
(r, θ, x)

]
= −2

uθ (r − rm)

rm

[
(∂u′

θc
/r∂θ )

(∂u′
θc
/∂x)

]
r=rm

. (12.11.10)

Integration of (12.11.10) provides the secondary velocity components. With αm as the background
flow angle evaluated at the mean radius,[

u′
θs

u′
xs

]
= 2Aiux

[ −1
tanαm

]{(
r − rm

rm

)(
x

rm

)

(
tan2 αm

)
exp

(
i

[
θ −
(

x

rm

)
tanαm

])}
. (12.11.11)

12.11.3 Flow angle disturbances

The flow angle, α, is of interest in turbomachinery applications. Expanding the quantities in the
definition tan α = uθ /ux as mean values plus perturbations and keeping first order terms yields

α′ = cosαm sinαm

[(
u′
θc

uθ
− u′

xc

ux

)
+
(

u′
θs

uθ
− u′

xs

ux

)]
. (12.11.12)
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Because the purely convected disturbances represent parallel streamlines at the background flow
angle the first term in parenthesis is zero and

α′ = cosαm sinαm

(
u′
θs

uθ
− u′

xs

ux

)
. (12.11.13)

The flow angle perturbation is therefore associated with the departure from purely convected distur-
bances.

12.11.4 Relations between stagnation pressure, static pressure, and
flow angle disturbances

The static pressure and flow angle disturbances can be cast in terms of the stagnation pressure
non-uniformity, since this quantity is typically specified or known. For the convected disturbance,

p′
t/ρ = ux u′

xc
+ uθu

′
θc
. (12.11.14)

In terms of the amplitude, A, of the convected velocity disturbances (12.11.4), the magnitude of
the stagnation pressure non-uniformity is defined as �pt = Aρu2, with u2 = u2

x + u2
θ . The static

pressure and flow angle distributions can be written in terms of the amplitude of stagnation pressure
distortion,�pt, the background swirl angle, αm, (both evaluated at r = rm), and the radial position as

p′(r, θ, x)

�pt
= 2 sin2 ᾱm

(
r − rm

rm

)
exp

{
i

[
θ −
(

x

rm

)
tanαm

]}
, (12.11.15)

α′(r, θ, x)

�pt/ρu2 = −2i tan2αm
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r − rm

rm
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x

rm

)
exp

{
i

[
θ −
(

x

rm

)
tan ᾱm

]}
. (12.11.16)

12.11.5 Overall features of non-axisymmetric swirling flow

Features of the asymmetric swirling flow are illustrated below for a single lobed sinusoidal stagnation
pressure distortion (n = 1). Two non-dimensional parameters characterize a given configuration: αm

and the annulus hub/tip radius ratio, ri/ro. The dependence of static pressure and flow angle non-
uniformities on these is seen in (12.11.15) and (12.11.16): the radial coordinate, (r − rm)/rm, can
take on larger values as the hub/tip radius ratio decreases leading to larger values of p′ and α′ and
the strength of the radial pressure non-uniformity depends on the swirl angle as sin2αm.

Two additional features are of note. For the regime in which the analysis applies, the static pressure
distortion is in effect “locked in” to the stagnation pressure distortion; both are convected round the
annulus at the background flow angle, a phenomenon not seen in the absence of swirl. In addition, flow
angle perturbations increase linearly with downstream distance ((12.11.16)) because the deflection
of a given particle is proportional to the static pressure gradient it experiences and the length of time
(i.e. distance) over which the static pressure gradient is applied.

Figure 12.47 gives the (normalized) magnitude of static pressure variation as a function of back-
ground swirl angle, for three hub/tip radius ratios. The quantity shown corresponds to conditions at
the hub or tip, which is the maximum variation in static pressure round the annulus.

Figures 12.48–12.50 present a more detailed look at the three-dimensional asymmetric swirling
flow in an annulus with background swirl angle of 48◦ and hub/tip radius ratio 0.43. Features of the
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Figure 12.51: Generation of streamwise vorticity in an asymmetric swirling flow: (a) vortex filaments at the exit
of stator vanes (AB) and further downstream A′ B ′; (b) projection of vortex filaments on the θ–x plane.

static pressure and flow angle fields are illustrated one by one. Figure 12.48 highlights the local simple
radial equilibrium approximation. The static pressure variation is shown versus θ (circumferential
position) at a given axial location for five radii, two on each side of the mean radius and one near
the mean. The solid lines represent the approximate analysis, (12.11.15). In accord with simple
radial equilibrium the static pressure perturbations are approximately zero at the mean radius, with
their magnitude increasing linearly with distance from this mean. Further, at a given circumferential
location the perturbations have opposite signs depending on whether the radial location is inward or
outward of the mean radius.

The static pressure distribution at constant radius as a function of downstream distance is given in
Figure 12.49. The abscissa is circumferential position, the ordinate is non-dimensional static pressure
perturbation, and the solid curves again show the approximate analysis. To exhibit the trends more
clearly two cycles of data have been plotted side by side, with the vertical arrows indicating the
position of the predicted maximum in static pressure. The rotation of the static pressure disturbance
round the annulus is evident.

Finally, the flow angle variation with downstream distance is shown in Figure 12.50. The large
increase in the magnitude of the flow angle with downstream distance can be remarked.

Flow angles and secondary velocities are both predicted to increase linearly with distance, similar
to the secondary flow analyses in Chapter 9, but similar to the secondary flow results there are restric-
tions on the regime in which the theory applies. As the fluid moves downstream, particles initially
at the same circumferential location but different radial locations develop larger angular position
differences due to the differences in angular velocity at different radii. The condition of particles
at one circumferential location all having the same total pressure (or pure shear velocity perturba-
tion) thus becomes less valid as one moves further downstream. The radial pressure differences also
decrease as particles at the different radii shift in phase relative to one another, limiting the growth
of the secondary flow. The basic analysis thus cannot be used to give the behavior of the flow field
at far downstream locations or, most notably, for disturbances with length scales comparable with
(or smaller than) �r, i.e. large values of harmonic number, n.
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12.11.6 A secondary flow approach to non-axisymmetric swirling flow

The three-dimensional motions that arise out of the interaction of vortical disturbances with a back-
ground swirl have been referred to as secondary flow disturbances. Figure 12.45 shows these motions
are characterized by the existence of streamwise vorticity. We now make a link to the secondary flow
analyses for generation of streamwise vorticity, described in Chapter 9.

Consider steady flow with a circumferentially non-uniform stagnation pressure perturbation su-
perposed on a free vortex, constant axial velocity background velocity. Crocco’s Theorem tells us
there is an associated vorticity field. At x = 0 we specify the vortex lines to be purely radial, as
they might be at the exit of a vane row. The evolution of these vortex lines is shown schematically
in Figure 12.51(a), where the points A and B are fluid particles on the vortex line at x = 0, and the
points A′ and B′ represent the same fluid particles after the vortex line has moved some distance
downstream. In the context of secondary flow analysis the perturbation vorticity is convected with
the background flow and the axial velocity of the two particles is the same. However, the inner
particle has a higher angular velocity so that the vortex line becomes inclined to the radial direction,
providing a component of vorticity in the θ -direction. The projection of the vortex line A′B′ on an x,
θ surface (a cylindrical surface at constant radius), drawn in Figure 12.51(b), shows that the presence
of a θ -component of vorticity implies streamwise vorticity and hence secondary circulation.
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Küchemann, D., 1978, The Aerodynamic Design of Aircraft, Pergamon Press, Oxford, England.
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absolute coordinate system 347
acceleration

fluid particle 3
in natural coordinates 56
in stationary and rotating systems 348

acoustic equations (wave equation) 305, 322
acoustic speed (see speed of sound)
acoustic waves in ducts 305
actuator disk 627, 637

approximation for blade row 329, 330
angular momentum conservation

control volume form of 14
integral form of 19

approximate substitution principle 599
mixer nozzles, jets, ejectors 607–612
restrictions 614

asymmetric swirling flow 674
coupling of disturbance types 674
flow angle and static pressure variation 677

availability (flow availability) 223–225
averaging, appropriate methods for 244, 253, 256–258

(see stagnation pressure, average)
axisymmetric flow

compressible 532–545
upstream influence in 54, 395–404

baroclinic torque and vorticity generation 129, 576
base pressure, definition 262

effect on losses 263
magnitudes of 262

Bernoulli equation 77, 578–591, 630
Biot–Savart law 155
blockage in transonic turbomachinery 528
boundary conditions 28
boundary layer dissipation coefficient 230
boundary layer shape factor 176
boundary layer theory, description 170
boundary layer thickness

laminar 90, 172
thermal compared to viscous 171
turbulent 192

boundary layers
angle changes in swirling flow 429
effect of

pressure gradient (laminar) 177

pressure gradient (turbulent) 189
Reynolds number (laminar) 172
Reynolds number (turbulent) 188–193
duct static pressure 92

entropy generation in 227
form of

energy equation (laminar) 172
momentum equation (laminar) 172
momentum equation (turbulent) 185

laminar and turbulent, attributes 92, 94
limiting streamlines 426, 429
pressure difference across laminar 172
pressure difference across turbulent 186
radial vaneless diffuser 426
rotating disk 431
rough walls 201
separation in swirling flow 426
separation (laminar) 179, 180
separation (turbulent) 201
streamwise vorticity in three-dimensional 472
swirling flow 426

boundary layers in rotating systems 378
Bragg–Hawthorne equation 398
Burger vortex (q-vortex) 416

Carnot cycle (Carnot engine) 224, 242
cascade (turbomachinery blade row)

forces on 80
losses in 258
unsteady flow in 328–334

centrifugal force 349, 353
choking in compressible channel flow

conditions at a throat 64
effect of

friction on 517
heat addition 518
rotation on 517
swirl on 544

in compound channel flow 554, 556, 560
circulation, definition 104, 109, 130

changes
for a fixed contour 137
and Kelvin’s Theorem 130–137
in a rotating system 364

generation by shock in non-homogeneous fluid 135
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circulation, relation between relative and absolute 364
compound channel flow (incompressible) 546
compound-compressible flow, defined 549

back pressure, effect of 551, 552, 559
choking 554, 556, 560
converging nozzle 557
converging–diverging nozzle 558
corrected flow in a stream 562
indicator (β) 552
invariance with stagnation temperature ratio 548
mixing, effect on 564
waves in 554

compressible channel flow 60, 506, 509 (see also
one-dimensional flow)

conditions at a throat 64
effect of back pressure in a

converging nozzle 72–73
converging–diverging nozzle 74–76

Mach number-pressure ratio expression 65
compressor in asymmetric flow 637

inlet velocity non-uniformity 640
parallel compressor approximation 644

compressor instability
circumferential flow distortion, effect of 655
non-uniform tip clearance, effect of 656
onset criterion 653
reduced frequency, effect of 656, 657
rotating distortion, effect of 657

compressor, unsteady response to asymmetric
flow 648

nonlinear analysis 655
resonance behavior 655
unsteady flow in rotors/stators 644

condensation 590
choking due to 590

continuity equation (see conservation of mass)
continuum 2
control volume 2, 13, 14, 20, 78, 610
convective derivative (material derivative) 3
Coriolis force, Coriolis acceleration 349–352, 353, 438

generation of secondary circulation 372
stabilization of boundary layer 367

corrected flow per unit area 506
effect of

back pressure in converging channel 72
back pressure in converging–diverging channel 75
friction on 508
heat addition on 508
shaft work 508
swirl on maximum value 544

in swirling flow 544
Mach number dependence 62, 507
maximum value 507

coupling of fluid components 616
compressor and nozzle/diffuser 666
screen and contraction 635

Crocco’s Theorem 152, 466, 618, 663
axisymmetric swirling flow 398

derivatives, transformation between absolute and rotating
systems 348

diffuser 167
asymmetric flow 658
coupling with compressor 666
effect of non-uniform core flow 668
flow regimes 169
pressure distortion at inlet, effect of 663, 664
separation suppression 631
supersonic 522
vaneless 542

diffusion of vorticity 125, 146, 338
displacement thickness 92, 173

and flow blockage 169
as average distance of total vorticity 175

dissipation coefficient for boundary layer 230
distortion (flow non-uniformity) in axial compressors

637
drag, versus loss as performance metric 217
dynamic instability 311, 313
dynamic similarity 44

eddy diffusivity 189
eddy viscosity 190
efficiency, turbine 222
ejector

control volume formulation
uniform density 78
non-uniform density 610

pumping in 78, 611
Ekman layer 360
Ekman number 357
energy conservation (see first law of thermodynamics)

control volume form of 14
differential form of 26
integral form of 19

energy, total 6
enthalpy 7

change for an incompressible fluid 10
enthalpy–entropy (h–s) diagram 221
entrainment in turbulent shear layers 211
entropy

mass averaged 226
specific 7

entropy change and loss, relation 218
entropy changes in a fluid 21–27

due to
heat transfer 27, 221
irreversible process 28, 32, 217, 220, 242

of mixing 236 (see also mixing)
production in a boundary layer 227
rise across a shock wave 66–68
two types of 221
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entropy flux 225, 253
entropy generation and lost work 224
equilibrium 4
Euler turbine equation 84
exit conditions for subsonic flow 94

Falkner–Skan equation 178
Fanno line 520
first law of thermodynamics 6

differential form of 6–21, 24
flow availability (see availability)
flow non-uniformity 615

creation using screens 628
diffuser performance 668
length scale of variation 615

fluid particle 2
fluid, definition 2
force

body force 19, 111, 549, 551
conservative force 111
fictitious force 349
on fluid in a control volume 20
on an inlet 84, 99
on a row of blades (cascade) 80
surface force 16
viscous force 111

forced vortex flow 391
free shear layer (see also mixing layer) 166
free-vortex flow 391
friction velocity 187
friction, effect on Mach number in channel flow 508, 517

gas constant 8
geostrophic flow 373
Gibbs equation 7

heat addition
effect on Mach number in channel flow 508, 518
and vorticity creation 577
thrust due to 84

heated tube, thrust force on 87
Helmholtz resonator 310
H–K diagram, defined 582–589

area change and heat addition in supersonic flow 586
combustion 589
ramjet 586
scramjet 586
shock wave 584

honeycomb 624
horseshoe vortex in front of strut 115, 147
hydraulic diameter 510, 535

image vortex 162
impulse, definition 494

lift of an airfoil described in terms of 498
of a vortex pair 502

relation to
tip clearance vortex 505
vorticity field 495, 498

impulse function 239, 583
incompressible flow 48

conditions for 49–51
definition of stagnation pressure for 49

incompressible fluid 10
continuity equation for 14

inertial coordinate system 347
influence coefficients

one-dimensional flow 512
rotating radial channel 514
shaft work and body forces 512
swirling compressible flow 537
vortex core flows 578–591, 594, 595

influence of boundary layer on free stream
in channel flow 196
integral boundary layer approach for 199
viscous–inviscid interaction 195–201

initial conditions 28
injection into a stream 239
inlet distortion in compressors (see compressor in

asymmetric flow)
inlet, thrust force on 84, 99
instability 404

compressor (see compressor instability)
inflection point in velocity, role in 302
Kelvin–Helmholtz 298
Rayleigh criterion for, in swirling flow 404
shear layer 297–303
static and dynamic, definitions 311
turbomachine compression system 313, 321
suppression of Kelvin–Helmholtz instability by swirl 410

integral forms of boundary layer equations 176–177
internal energy

definition 6
variations in a moving fluid 14

irreversible process 220, 242
irrotational flow, definition 104
isentropic process 41

jet in crossflow
far field cross plane velocity field 500
overall behavior 500
relation to fluid impulse 451–500, 503
vorticity field of 449–451, 500

jet width and velocity evolution
circular jet 204
plane jet 203

jets, swirling
centerline velocity decay in 439
increased mixing in 438

Kelvin’s Theorem for change of circulation 131, 577
application in inviscid incompressible flow 132



703 Index

application to describe rotational flow 138–142
circulation changes in compressible flow

135
circulation changes in non-uniform density flow

134
Kelvin–Helmholtz instability 298
kinematic boundary condition 29
kinematic similarity 44
kinetic energy thickness 175
Kutta–Joukowski formula for airfoil lift 82

laminar–turbulent transition 182–184
Laplace’s equation (incompressible flow) for

static pressure field 53
velocity potential 44

law of the wall in a turbulent boundary layer 188–193
Liapunov function 318

analysis of compression system oscillations 318
limit cycle oscillations 317
line vortex

motion of a line vortex pair 161
velocity field of 289

linear sublayer 187
lobed mixer 482

compared to shear layer mixing 484–487, 491
losses in fluid devices (see also mixing, mixing losses)

losses within device versus downstream 261
streamwise evolution of 258, 264
turbomachinery cascade 274

lost work and entropy change 224
lost work, definition 220

Mach angle 89
Mach number 42
Mach wave 89
mass conservation

control volume form of 13
differential form of 25
integral form of 13, 76–89
for a system 4

material derivative (see convective derivative)
mixed out conditions defined 235
mixing

augmentation due to vortex 482
constant area versus constant pressure 248
effect of strain rate on 484–487
entropy rise due to 236
estimate for circulation downstream of 483
irreversibility in 242
of two co-flowing streams 234
streamwise vortices downstream of 483
thermal 239

mixing layer between two streams
effects of compressibility on spreading rate 208
rate of spreading 207
smoothing out of velocity discontinuity 205

mixing losses, effect of pressure level on 267
linear shear flow 269
two-stream mixing 267
wake losses 273

mixing of two streams
low Mach number 605, 613
Mach number effect 605
stagnation pressure change due to 602

moment of momentum (see angular momentum)
momentum conservation equation, integral form

76–89
momentum conservation

control volume form of 14
differential form of 25
for a system 4
integral form of 19

momentum equation for a rotating system 349
momentum thickness 175
Munk and Prim substitution principle 569

exit vorticity distribution 573
mass flow in stream tube 571
three-dimensional flow 572
two-dimensional flow 570

natural (or intrinsic) coordinates 58
acceleration in 56

Navier–Stokes equations 37–40
non-dimensional forms 43

negative damping (see also dynamic instability) 321
nonlinear oscillations 315
non-uniformity, does not always mean loss 242

relation to entropy production 229
nozzle

conditions at a throat 74
effect of back pressure in

converging nozzle 72–73
converging–diverging nozzle 74

unsteady flow in 324–327
Nusselt number 46

oblique shock wave 87
one-dimensional compressible flow 60, 506,

509
conditions at a throat 64
flow regimes in 72, 74
effect of

back pressure on 531
friction 508, 517
heat addition 508, 518

entropy creation in 511
Mach number–area ratio relation 62
Mach number–pressure ratio relation 65

orifice, flow through 100
contraction coefficient 102
free streamline downstream of 100
mixing downstream of 102
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oscillating plane boundary, flow due to 337
oscillation in

compression systems 318
fluid systems 303, 315

partially blocked duct, flow in 629
perfect gas 8

behavior of specific heats 9–11
equation of state 8
assessment of assumption 8

physical mass flow in channel 507–525
pipe, contrast between inlet and exit flow 94–96
planar compressible swirling flow 539

minimum radius 540
potential flow (see irrotational flow)
Prandtl–Meyer flows 567, 568
pressure

absolute, plays no role in incompressible flow 43
back 72, 75, 531
difference between mechanical and thermodynamic 36
mechanical 18
reduced 353, 378

pressure distribution in swirling flow 542
effect of wall friction on 542

pressure field in circumferentially periodic flow 54
exponential decay of 54
length scale for 54

pressure field in radially non-uniform flow 54
exponential decay of 56

pressure gradient and streamline curvature 59
prewhirl in turbomachines 133
process

irreversible 5
quasi-static 5
reversible 5

propagating disturbances in compressor 651

quasi-one-dimensional compressible flow, (see
one-dimensional compressible flow)

quasi-steady response 282, 285, 288, 325, 329

radial transport of hot fluid in turbine 479
radius of curvature of a streamline 57
ramjet, propulsion system states 586
Rankine vortex 393, 402, 406, 414, 416
rate of strain tensor 31
Rayleigh line 520
recirculation in swirling flow

differences from non-swirling flow 445
onset criterion 443

reduced frequency, defined 44, 281
effect on

blade row response 333
nozzle response 326

quasi-steady response at low values of 282, 285, 288,
325, 329

reduced stagnation pressure 357
reduced static pressure 353, 378
relative and absolute vorticity 363
relative coordinate system 347
relative eddy 133, 366, 385
reversible process 218
reversible work per unit mass 219
Reynolds analogy 575
Reynolds number 45, 172
Reynolds stresses 185
Reynolds’s Transport Theorem 13
Rossby number 357
rotating channel flow 514

conservation of rothalpy in 516
sonic condition not at geometric throat 517

rotating coordinate system
acceleration in 348
fictitious forces in 349
generation of streamwise vorticity in 472, 478
secondary flow behavior in 475, 476

rotating diffusing channels
approximate analysis 380
two-dimensional inviscid flow 383
diffuser performance 383–384

rotating disk 431
rotating passages, viscous flow in

boundary layer behavior in 378
Ekman layer 360
three-dimensional laminar flow 373
three-dimensional turbulent flow 378
two-dimensional laminar flow 361
two-dimensional turbulent flow 368

rotating reference frame
axial to radial bend, secondary flow in 476
non-uniform density, secondary flow due to 477
secondary flow in 472
straight pipe, secondary flow in 475

rotating stall, onset condition 653
rotating straight channel 365
rothalpy 356

conservation in rotating system 356

scaling of boundary layer thicknesses 188–193
scramjet, propulsion system states 586
screen, flow through

flow field features 622
flow non-uniformity, effect on 616
flow redistribution, effect on 616, 622
inclined 628
linearized description 618
nonlinear description 625
pressure drop coefficient 620
refraction coefficient 620, 624

second law of thermodynamics 6
secondary circulation 461

and radial transport in turbine 479
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in rotating reference frame 472, 475, 476
oscillatory behavior in bent pipe 468
rate of change in an inviscid flow 461

secondary flow approach to 682
secondary flow in a bend due to

convection of vorticity 114
vorticity creation from non-uniform density 121

secondary flow in rotating turbomachinery passages
478

secondary flow, described 446
approximation 449–451, 466–505
in a bend (laminar flow) 451
in a bend (turbulent flow) 451
in a turbine cascade 457
in rotating passages 472, 478
in S-shaped duct 455
in two-dimensional contraction 456
invariance with density distribution 464
invariance with temperature distribution 464
relation to stagnation pressure gradients 462, 464
stream function 449
swirling outflow from container 451
viscous effects in 450

separation 95
at a salient edge 96
diffuser behavior and 168
difference between two and three-dimensional

426
due to normal shock 529
suppression using screens 631

shaft work 21–27
maximum 224

shape factor, boundary layer 176
shock train 530

back pressure, effect of 531
shock waves 65–71

conditions across 66
entropy rise across 67–68
location in a nozzle 75
losses due to 528
normal shock in ducts 528
oblique 87, 529
structure of 69
thickness of 70

similarity
dynamic 44
kinematic 44
similarity solutions for

boundary layers 178
free shear flows 205, 207

substitution principle 569, 599
simple compressible substance 7
simple radial equilibrium 390
skin friction coefficient 176, 193
solid body rotation (see forced vortex) 391
specific entropy 7

specific heats 9–11
specific properties 4
speed of sound 40
stagnation enthalpy 22

changes in 24, 26
changes due to flow unsteadiness 280

stagnation pressure 41
variation in swirling compressible flow 539

stagnation pressure decrease 579
heat addition 580, 581
injection and mixing 580

stagnation pressure, average in non-uniform flow
area average stagnation pressure 246
averaging in compressible flow 250
choice of averaging procedures 253
differences between averages 249
effect of Mach number on 252
entropy flux average 253
mass average stagnation pressure 246
mixed out average 247

stagnation pressure, limitations as a metric for loss
237

stagnation temperature 41
stall

diffuser 168
dynamic 343
rotating 653

Stanton Number 45, 575
starting process

for a supersonic inlet 522, 525
state, definition 4

equation of 8
equation for low Mach number flow 47, 86, 237, 592,

599
steady flow energy equation 6–21, 24, 218
stream function 178, 383–384, 387, 395, 618, 662

in axisymmetric flow 395
irrotational component 619
rotational component 619

stress tensor 17
stress within a fluid 15
substitution principle (see approximate substitution

principle, Munk and Prim principle)
sudden expansion

conditions across 76
effect of swirl 441

supersonic diffusers/inlets 522
off-design behavior 526
shock swallowing 507–525
starting 522, 525
variable geometry for starting 524, 527

supersonic flow
drag due to 566
flow angle changes in 564
Mach wave and flow deflection 566
region of influence of disturbance 565
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surge
onset condition for 313, 321
nonlinear aspects 315

swirl
effect on mass flow capacity 544
effect on vortex core instability 410

swirl parameter 389
swirling compressible flow 532, 533

choking condition in 544
corrected flow per unit area 544
meridional Mach number 539, 543
stagnation pressure changes in 539

swirling flow
asymmetric swirling flow 674
Bragg–Hawthorne equation 398
recirculation onset in 443
with heat addition 593, 598

swirling flow boundary layers 426
swirling jets (see jets, swirling)
system (control mass) 2

Taylor–Proudman theorem 358, 363, 364
vortex line stiffening 364

temperature change due to
combustion 576
condensation 576

thermal choking 590
throat, conditions at in compressible channel flow

64
throttling process 218
tip clearance, compressor asymmetric 644, 651,

653
inlet, turbine engine effect on 646

torque and change of angular momentum 84
transfer matrices for fluid components 305–310

analysis of turbine engine instability 310
transition to turbulence 182–184
transmission matrices, see transfer matrices
tube, bent, flow in 98
turbomachine response to downstream struts 647
turbomachinery blade passage

relative eddy in 385
streamlines 383, 387

turbomachinery blading (see cascade)
response to unsteady disturbances 333
simple model for profile losses 233

turbomachinery blading, forces on 80
turbomachinery wake behavior in downstream blade row

345
turbomachinery, blade profile losses 233
turbulent boundary layer profiles 188
turbulent flow, description 184

unit vector
normal to streamline 56
tangent to streamline 56

unsteady boundary layers
characteristic parameters 340
equations for 341

unsteady disturbances in compressible flow 321–323
entropy and pressure disturbances in choked nozzle

324–327
pressure and vorticity disturbances in blade row

328–330
reduced frequency effects on blade row response 333

unsteady viscous flow
oscillating boundary 337
oscillating pressure gradient 338
viscous layer penetration 338, 340

upstream influence 51
effect of compressibility 334
fluid component 634

upstream influence in swirling flow 394
effect of

circulation distribution on 401
stagnation pressure distribution on 402
swirl on upstream decay 397

link to axial vorticity 395, 397

vaneless diffuser, effect of wall friction on 542
variable exit nozzle on jet engine 507
velocity potential 286, 289, 323, 635
velocity–vorticity relation 160
viscous–inviscid interaction 195–201
vortex

augmentation of mixing due to 487, 489
velocity components 289

vortex breakdown 440–445
vortex cores 406

analogy with
compressible channel flow 422
compressible flow 409

axial velocity in 414
critical swirl parameter 409, 411
criticality parameter 409, 417
difference between edge and axis pressures 411
maximum pressure rise along 419
stagnation pressure and swirl parameter roles 414
strong response of velocity on axis 411
subcritcal and supercritical regimes 411, 419, 424
waves on 408, 410

vortex cores with heat addition 592, 595
recirculation onset 598
swirl level, effects of 593
vortex cores with heat addition 578–591, 592, 594, 595

vortex layer 159
roll-up 143

vortex line 107
behavior at a solid surface 110
cannot end in a fluid 108
motion near a plane surface 162
relation to material line 113
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vortex line stiffening 364, 397
vortex ring 161

approaching a plane surface 162
vortex sheet 298

conditions across 299
roll-up 164, 299
stability of 298

vortex tube 108
strength of 108

vortices, row of
model for wake 294
unsteady stagnation pressure for moving row 292
velocity components 291

vorticity, definition 104
analogy between diffusion and heat transfer 124,

125
and rotation of perpendicular fluid lines 106
application to rotational flow description 138–142
changes due to viscous forces 122
changes in

a rotating system 363–387
compressible flow 128
fixed volume 127
non-uniform heat addition 577

creation in non-uniform density fluid 119, 121
diffusion in viscous fluid 125, 146
distribution and impulse 498
downstream of curved shock wave 154
generation at solid surfaces 145–148, 149, 151
intensification by vortex stretching 113, 115, 125

numerical methods based on 163
rate of change for a fluid particle 111
relation to

angular velocity changes 117–119
thermodynamic properties 152

relative and absolute in rotating system 133, 363
trailing 142
velocity field associated with a given distribution

156–158
vorticity, streamwise

connection with fluid impulse 449–451, 500
generation in a bend 446
in rotating passage 472, 478
Squire–Winter estimate for 448, 451–500, 503

wake evolution in pressure gradients 213
wake losses (see also mixing losses) 267
wake width and velocity evolution 204
wake, energy separation in 296
wall shear stress 193
waves

acoustic 40, 305
in compound-compressible channel flow 554
in fluid machinery 303, 318, 324–327, 328–334
Mach 566
on shear layers 298
on vortex cores 408, 410
shock (see shock waves)

work of shear stresses 32
work, shaft 21–27
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