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Preface

This book is based on lectures given in quantum theory over the years at
various levels culminating into graduate level courses given to the students
in physics. It is a modern self-contained textbook and covers most aspects of
the theory and important recent developments with fairly detailed presenta-
tions. In addition to traditional or so-called standard topics, it emphasizes on
modern ones and on theoretical techniques which have become indispensable
in the theory. I have included topics which I believe every serious graduate
student in physics should know. This volume is also a useful source of infor-
mation and provides background for research in this discipline and related
ones as well. As such, the book should be valuable to the graduate student,
the instructor, the researcher and to all those concerned with the intricacies
of this subject. To make this work accessible to a wider audience, some of
the technical details occurring in the presentations have been relegated to
appendices. A glance at the Contents will reveal that although the book is
fairly advanced, it develops the entire formalism afresh. As for prerequisites,
a familiarity with general concepts and methods of quantum physics as well
as with basic mathematical techniques which most students entering grad-
uate school seem to have is, however, required. The evident interest of my
students in my quantum theory courses has led me quite often to expand and
refine my notes that eventually became the book. I often witness many of my
earlier students, who have already taken my courses, coming back to sit in
my lectures and continue to do so. Some of these learners are A-students. In
developing the formalism, at the very early stages, and of the rules for com-
putations, I have followed a method based on Schwinger’s (1970, 1991, 2001)
elegant and incisive approach of direct analyses of selective measurements,
rather than of the historical one, as well as in the introduction of quantum
generators and the development of transformation theory. The selective mea-
surement approach has its roots in Dirac’s abstract presentation in terms of
projection operators and provides tremendous insight into the physics behind
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the formalism. Other authors who have also shown interest in this approach
include Kaempffer (1965), Gottfried (1989) and Sakurai (1994).

Some of the highlights of the book are: 1) Selective measurements. Direct
analyses of such measurements and extensions thereof lead to the develop-
ment of the underlying rules of the theory in the most natural and elegant
way. 2) Wigner’s Theorem on symmetry transformations. This theorem is of
central importance in quantum theory and provides the nature of symmetry
transformations and is the starting point on how to implement them. 3) Con-
tinuous transformations as well as supersymmetry and discrete transforma-
tions. 4) Hilbert space concepts and self-adjoint operators. 5) General study
of the spectra of Hamiltonians. 6) Localizability, uncertainties and stability
of quantum systems, such as of the H-atom, and their relations to bound-
edness of the corresponding Hamiltonians from below. 7) Decay of quantum
systems and the Paley-Wiener Theorem. 8) Harmonic oscillators at finite tem-
peratures, with external sources and coherent states. Bose-Fermi oscillators.
9) Hyperfine splitting of the H-atom for arbitrary angular momentum states.
10) The non-relativistic Lamb shift. 11) The anomalous magnetic moment of
the electron. 12) Measurement, interference and the role of the environment.
13) Schrödinger’s cat and quantum decoherence. 14) Bell’s test. 15) Quan-
tum teleportation and quantum cryptography. 16) Geometric phases under
non-adiabatic and non-cyclic conditions. The AB effect. Rotation of a spinor
by 2π radians. Neutron interferometry. 17) Analytical quantum dynamical
treatment of the Stern-Gerlach effect. 18) Ramsey oscillatory fields method
and applications. 19) Green functions, and how they provide information on
different aspects of the theory in a unified manner. 20) Path integrals and
constrained dynamics. 21) The quantum dynamical principle as a powerful,
simple and most elegant way of doing quantum physics. This approach has
not yet been sufficiently stressed in the literature and it is expected to play
a very special role in the near future not only as a practical way for compu-
tations but also as a technically rigorous method. 22) The stability of matter
in this monumental theory. This problem is undoubtedly one of the most im-
portant and serious problems that quantum physics has resolved. The Pauli
exclusion principle is not only sufficient for stability but it is also necessary.
23) The intriguing problem of “bosonic matter” and the collapse of matter if
the Pauli exclusion principle were abolished with the energy released upon
the collapse of two such macroscopic objects in contact being comparable to
that of an atomic bomb. 24) Systematics of quantum scattering including a
detailed treatment of the Coulomb problem. Emphasis is also put on the con-
nection between configuration and momentum spaces in a scattering process.
25) Spinors, quantum description of relativistic particles, helicity and rela-
tivistic equations for any mass and any spin. As the energy and momentum
of a particle become large enough, the Schrödinger equation, with a non-
relativistic kinetic energy, becomes inapplicable. One is then confronted with
the development of a formalism to describe quantum particles in the relativis-
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tic regime. The chapter in question emerging from this endeavor provides the
precursor of relativistic quantum theory of fields. 26) Spin & Statistics, as
probably one of the most important results not only in physics but in all of
the sciences, in general. The spin and statistics connection is responsible for
the stability of matter, without it the universe would collapse. 27) Detailed
mathematical appendices, with proofs, tailored to our needs which may be
otherwise not easy to read in the mathematics literature.

The above are some of the topics covered in addition to the more standard
ones. I have made much effort in providing a pedagogical approach to some
of the more difficult ones just mentioned. These relatively involved topics are
treated in a more simplified manner than that in a technical journal with-
out, however, sacrificing rigor, thus making them more accessible to a wider
audience and not only to the mathematically inclined reader. The problems
given at the end of each chapter form an integral part of the book and should
be attempted by every serious reader. Some of these problems are research
oriented. With the rapid progress in quantum physics, I hope that this work
will fill a gap, which I feel does exist, and will be useful, and also provides a
challenge, to all those concerned with our quantum world.

July, 2005 E. B. M.
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1

Fundamentals

This chapter begins with the development of the formalism of quantum
theory being sought. The first three sections deal with the early stages of the
formalism, with setting up the language and the preliminary rules of compu-
tations. The procedure follows a method based on Schwinger’s elegant and
incisive manner of direct analyses of selective measurements and extensions
thereof, and has its roots in Dirac’s abstract presentation in terms of pro-
jection operators. Several examples of selective measurements will be given.
The method developed provides tremendous insight into the physics behind
the formalism and it leads naturally to the notion of probability associated
with observations, to the generation of states, of wavefunctions in different
descriptions and to various basic operations occurring in quantum mechanics,
as well as to the emergence of Hermitian operators and inner-product spaces
(§1.4). Preparation of pure ensembles of systems and mixtures is the subject
matter of §1.5. In §1.6, the transmission of photons with given polarizations
through polarizers is used to provide an illustration of rules developed earlier.
The physical spaces in which computations are carried out are, in general,
the Hilbert space, as an extension of the (finite) inner-product spaces en-
countered before, and the Rigged Hilbert space which are introduced in §1.7.
Self-adjoint operators, representing observables, and their associated spectra
are studied in §1.8. We will see that symmetry operations are implemented
by either so-called unitary or anti-unitary operators and is the content of a
famous theorem due E. P. Wigner (Wigner’s Theorem on symmetry trans-
formations) which is proved in §1.9. This theorem is of central importance
and a key one in quantum physics and deserves the special attention given
here. The concept of probability and measurement with detailed illustrations
are given in §1.10, emphasizing, in the process, the physical significance of
a conditional probability associated with a measurement. This section also
deals with non-ideal apparatuses that may disturb the physical system under
consideration. Additional pertinent material related to this section will be
given in §8.7–§8.9.
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1.1 Selective Measurements

From the possible values that a physical quantity, under consideration,
may take on, one may select, through a filtering process, a special range of
its values or select some of its particular values for further investigations
by a process referred to as a selective measurement. Some examples of se-
lective measurements are given in Figure 1.1. Such selective measurements
may be considered, for example, as a preparatory stage for a system before
undergoing a subsequent analysis. By a selective measurement, for example,
one may prepare the momentum of a particle within a given range before
it participates in a collision process with other particles. As a final selective
measurement, in a typical experiment, one may be interested in counting
the number of particles with spin emerging, in turn, from a given physical
process, with the component of spin, along some, specified direction.

We consider first physical quantities which may take on only a finite
number of discrete values. An example of such a physical quantity is the
component of spin of a particle of spin s, along a given axis, which may take
on (2s + 1) values. Generalizations to physical quantities which may take on
an infinite number of possible discrete values and/or may take on values from
a continuous set of values will be dealt with later.

Suppose that the measurement of a physical quantity A (also called an
observable), as a physical attribute of a system, can lead to a certain fi-
nite set of discrete real values {a, a′, a′′, . . .}. In general, the measurement of
another physical quantity B may destroy the assigned value in a previous
measurement of the physical quantity A, and both quantities cannot be mea-
sured simultaneously. In such a case A and B are said to be incompatible.
Otherwise they are said to be compatible observables.

To obtain the optimum information about a system one needs to intro-
duce a complete set of compatible observables, say, {A1, . . . , Ak}. By this
it is meant that any observable not belonging to this set and which is not
a function of these observables is incompatible with at least one of them.
To simplify the notation, we will denote such a complete set {A1, . . . , Ak}
of compatible observables simply by A. Each of the values in {a, a′, a′′, . . .}
given above will then, in general, stand for k-tuplet of real numbers.

Through a filtering process, as in a Stern-Gerlach experiment (see Fig-
ure 1.1 (d)), an ensemble of identical systems each having a definite value,
say a, for A may be prepared. Each one of such prepared systems is said to
be in the state a. If these prepared systems are fed, in turn, into another
filtering machine which selects and transmits systems having only the value
a′ for A, then 100% of these systems will be transmitted if a′ = a and none
will be transmitted if a′ �= a.

With a filtering process, we introduce the symbol

Λ(a) = |a〉〈a| (1.1.1)
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Fig. 1.1. Some examples of idealized selective measurements. (a) Selection
of a frequency range ∆ν for light. (b) Selection of linearly polarized light.
(c) Selection of a momentum range ∆p = q∆rB/c for a charged particle of
charge q initially in a uniform magnetic field B. (d) Selection of a particular
component of spin by blocking systems with other orientations through a
filtered beam by a Stern-Gerlach apparatus . A particle of magnetic moment
µ experiences, classically, a force F = ∇(µ · B) in a non-uniform magnetic
field B.

to denote the operation which selects and transmits only those systems in
state a. From the description given in the previous paragraph, we may con-
sider the successive operations to be defined through (see Figure 1.2 for an
example):

Λ(a′)Λ(a) = Λ(a′) 〈a′ |a〉 (1.1.2)

where 〈a′ |a〉 = δ(a′, a) is the numerical factor

δ(a′, a) =
{

1, for a′ = a
0, for a′ �= a

(1.1.3)

with Λ(a) 0 = 0 standing for the operation which accepts no system what-
soever. For a′ = a, the second selective measurement, symbolized by Λ(a′),
simply accepts and transmits 100%

(
δ(a′, a) = 1

)
of the systems prepared by
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zzz

+z
++

BEAM

(a) (b)

Fig. 1.2. (a) Schematic representation of the Stern-Gerlach apparatus of
Figure 1.1 (d) with ∂B/∂z �= 0, showing the splitting of a beam of spin s
particles into (2s + 1) components. (b) Spin 1/2 particles initially prepared
with component of spin in the +z direction. In an obvious notation here,
δ(+z, +z) = 1 and δ(−z, +z) = 0 for the corresponding numerical factors.

the first selective measurement, symbolized by Λ(a). One is naturally led to
introduce the identity operation

1 =
∑

a

|a〉〈a| (1.1.4)

which simply accepts and transmits all systems with no discrimination in any
of the states a corresponding to all the values taken by the physical quality
A (i.e., by the complete set of compatible observables {A1, . . . , Ak}.)

If A and B are incompatible, we may still consider the selective mea-
surement Λ(a) = |a〉〈a| followed by the selective measurement Λ(b) = |b〉〈b|:
Λ(b)Λ(a). This is a |b〉〈a|-type of an operation which initially prepares sys-
tems in state a and then, through another filtering process, transmits a sub-
ensemble of systems in state b. Since only a fraction of the systems in state
a are expected to be finally transmitted through the B-filter, the operation
Λ(b)Λ(a), in analogy to (1.1.2), may be defined (see Figure 1.3, for an exam-
ple) through:

Λ(b)Λ(a) = |b〉〈a|
(
〈b |a〉

)
(1.1.5)

reflecting the fact that it is a |b〉〈a|-type selective operation and also providing
a numerical factor 〈b |a〉 as a measure of the fraction of the systems initially
prepared, by the A-filter, in state a, to be finally transmitted through the
B-filter and found in state b.
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Fig. 1.3. Spin 1/2 particles initially prepared with the component of spin in
the +z axis direction. This experimental set up is represented, in an obvious
notation, by |+1/2, z〉 〈+1/2, z| (〈+1/2, z |+1/2, z〉) with 〈+1/2, z |+1/2, z〉
being a numerical factor providing a measure of the fraction of particles go-
ing through the middle apparatus with the −z component of spin blocked
(as shown by the appearance of the hand). The rules for the computation
of numerical factors such as 〈+1/2, z |+1/2, z〉 will emerge naturally later.
Here for the numericals m, m in 〈m, z |m, z〉 we have, m = +1/2, m = +1/2,
for example, corresponding to spin components along the +z, +z directions,
respectively.

Clearly more elaborate successive selective measurements (see, for exam-
ple, Figure 1.4) may be considered and one may establish, in the process, the
following associative law of the measurement symbols:

Λ(c)
[
Λ(b)Λ(a)

]
= Λ(c) |b〉〈a|

(
〈b |a〉

)

= |c〉〈a|
(
〈c |b〉 〈b |a〉

)

=
[
Λ(c)Λ(b)

]
Λ(a). (1.1.6)

At this stage, it is worth re-examining the role of incompatible observables.
Corresponding to an observable A, we note first from (1.1.2) that

Λ(a′)Λ(a) = 0, a′ �= a. (1.1.7)

We recall that what the latter means is that the first filtering operation,
via Λ(a), has prepared systems in the state a, and for a �= a′, the second
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Fig. 1.4. Spin 1 (massive) particles prepared with the component of spin in
the +z direction. This experimental set up is represented, in an obvious no-
tation, by successive measurement symbols

(∣∣+1, z
〉 〈

+1, z
∣∣) (|−1, z〉 〈−1, z|)

× (|+1, z〉 〈+1, z|) =
(∣∣+1, z

〉
〈+1, z|

) (〈
+1, z

∣∣−1, z
〉
〈−1, z |+1, z〉

)
. The nu-

merical factor
〈
+1, z

∣∣−1, z
〉
〈−1, z |+1, z〉 is a measure of the fraction of the

number of particles going through the five apparatuses. [The 0 in |0, z〉 cor-
responds to a spin component perpendicular to the z-axis.]

operation, via Λ(a′), rejects all such systems. That is, no systems appear in
the final stage after the application of the two filtering processes. What is
quite remarkable, is that if we insert a B-filter, via the application of Λ(b),
between the two successive operations in (1.1.7) we obtain

Λ(a′)Λ(b)Λ(a) = |a′ 〉〈a|
(
〈a′ |b〉 〈b |a〉

)
(1.1.8)

and for two incompatible observables A and B, 〈a′ |b〉 〈b |a〉 is not necessarily
equal to zero. In such cases

Λ(a′)Λ(b)Λ(a) �= 0. (1.1.9)

That is, by making the selective B-measurement, via Λ(b), after the selective
A-measurement, via Λ(a), followed finally by a selective A-measurement, via
Λ(a′), some systems may emerge in the state a′ even if a′ �= a (!), although
this would not happen if the B-filter were absent, thus increasing the fraction
of systems finally transmitted from zero to a possible non-zero value.

Re-iterating the above remarks, is that although the first selective mea-
surement via Λ(a) makes sure that no systems are transmitted through it in
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Fig. 1.5. (a) Experimental set up involving spin 1/2 particles showing
that no particles finally emerge with component of spin along the +z di-
rection. (b) Orientation of the z-axis relative to the z-axis. (c) The inser-
tion of the middle filtering (Stern-Gerlach) apparatus may allow some par-
ticles with component of spin along the +z direction to appear in the fi-
nal stage knowing that the first filter has rejected particles in such a state!
This is because 〈+1/2, z |+1/2, z〉 〈+1/2, z |−1/2, z〉 �= 0. This provides an
illustration of the fact that the observables associated with measuring of
components of spin along different orientations, as shown in (b), are in-
compatible. The rules for the computation of numerical factors such as
〈+1/2, z |+1/2, z〉 〈+1/2, z |−1/2, z〉 will be worked out later.

a state a′ �= a, the B-filter allows such systems in a state a′ �= a be finally
transmitted after the selective measurement, via Λ(a′), is carried out.

An example of the operations in (1.1.7) and (1.1.9) is given in Figure 1.5
illustrating the above remarks. Another example worked out in some details
dealing with polarization of light will be given in §1.6.

The filtering Stern-Gerlach devices considered above are ideal and allow
simple deductions to be made without going into the subtleties of their per-
formance. A fairly detailed account of the Stern-Gerlach effect will be given
in §8.14.
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1.2 A, B, C to Probabilities

We obtain a useful identity involving the numerical factors such as 〈c |b〉.
To this end we insert the identity operation in (1.1.4) as shown below

Λ(c)Λ(b) = Λ(c)1Λ(b)

= |c〉〈c|
(∑

a

|a〉〈a|
)(

|b〉〈b|
)

= |c〉〈b|
(
〈c |a〉 〈a |b〉 + 〈c |a′〉 〈a′ |b〉 + . . .

)

= |c〉〈b|
(∑

a

〈c |a〉 〈a |b〉
)

(1.2.1)

and infer from (1.1.5), in a corresponding notation, that

〈c |b〉 =
∑

a

〈c |a〉 〈a |b〉 . (1.2.2)

In particular, if C is chosen to be the observable B, with c replaced by,
say, b′, we have from (1.1.3) and (1.2.2)

∑
a

〈b′ |a〉 〈a |b〉 = δ(b′, b) (1.2.3)

and for b′ = b ∑
a

〈b |a〉 〈a |b〉 = 1. (1.2.4)

We note that under the arbitrary scale transformations:

|a〉〈b| −→ |a〉〈b|
(
λ(b)/λ(a)

)
(1.2.5)

and
〈a |b〉 −→ 〈a |b〉

(
λ(a)/λ(b)

)
(1.2.6)

all the equations involving the selective measurements and successive selective
measurements, (1.1.1)–(1.1.9), together with the identities (1.2.2)–(1.2.4) for
the numerical factors, remain invariant . Because of this arbitrariness under
such scale transformations, a numerical factor 〈a |b〉, although of physical
interest as discussed in §1.1, cannot have a physical meaning by itself. The
combination 〈a |b〉 〈b |a〉, however, from (1.2.6) remains invariant. For the
subsequent analysis, we introduce the notation

〈a |b〉 〈b |a〉 = pa(b). (1.2.7)

At this stage the following basic points should be noted which are relevant
to the numerical factor pa(b):
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(i)
pa(a) = 1. (1.2.8)

(ii) As mentioned above, pa(b) is invariant under the scale transformations
in (1.2.6).

(iii) As already noted in §1.1, the factor 〈b |a〉 in it, for example, is a measure
of the fraction of systems all in state a that will be found in state b after
the corresponding selective measurement.

(iv) pa(b) satisfies the normalization condition
∑

b

pa(b) = 1 (1.2.9)

as follows from (1.2.4).

Accordingly, pa(b) is qualified to represent the probability of observing a
system in state b knowing that it was in state a prior to the B-measurement.
A probability, however, has to be a real and non-negative number pa(b) � 0.
One may satisfy both of these conditions if one requires that

〈a |b〉 = 〈b |a〉∗ . (1.2.10)

Where ∗ denotes complex conjugation. The probability pa(b) will be then
given from (1.2.7) to be

pa(b) = |〈b |a〉|2 � 0, (1.2.11)

where all the initial systems prior to a B-measurement were in state a. The
numerical factor 〈b |a〉 which, in general, is a complex number is referred to
as the amplitude of obtaining the value b for a B-measurement on a system
initially known to be in a state a.

The scale factors λ(a), λ(b), in (1.2.5), (1.2.6) must then obey the rule(
λ(a)

)∗ = 1/λ(a). (1.2.12)

That is, they are necessarily phase factors:

λ(a) = eiφ(a) (1.2.13)

i.e., with φ(a) denoting a real number.
As an application, consider feeding systems, all prepared in the state a,

into a B-filtering apparatus via the application of the Λ(b)-operation, and
then into a C-filtering apparatus, via the application of the Λ(c)-operation.
This sequence of measurements, including the preparatory one, is represented
by

Λ(c)Λ(b)Λ(a) = |c〉〈a|
(
〈c |b〉 〈b |a〉

)
(1.2.14)

(see Figure 1.4, for an explicit situation). The probability of obtaining the
value b for a B-measurement, then the value c for a C-measurement, on a
system initially in the state a is given by
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Proba

[
b then c

]
=
∣∣〈c |b〉 〈b |a〉∣∣2

= |〈c |b〉|2 |〈b |a〉|2

= pb(c) pa(b). (1.2.15)

It is convenient to introduce the concept of the trace operation. For any
number α, we define

Tr
[
α |b〉〈a|

]
= α 〈a |b〉 . (1.2.16)

Hence pa(b) may be rewritten as

pa(b) = Tr
[
Λ(b)Λ(a)

]
. (1.2.17)

We observe from (1.2.11), that the probability of obtaining the value b of
a measurement of the observable B on a system in the state a is the same as
the probability of obtaining the value a of a measurement of the observable A
on a system in the state b. This suggests to consider the reversal of a sequence
of selective measurements, called the adjoint, defined as follows

(
|b〉〈a|

)† = |a〉〈b| (1.2.18)

((
|c〉〈d|

)
|b〉〈a|

)†
=
(
|a〉〈b|

)(
|d〉〈c|

)
. (1.2.19)

Upon expanding the left-hand and right-hand sides of (1.2.19) we may infer
from (1.2.10) that

〈d |b〉† = 〈d |b〉∗ . (1.2.20)

That is, the adjoint transformation introduces the complex conjugation of
numerical factors.

1.3 Expectation Values and Matrix Representations

1.3.1 Probabilities and Expectation Values

Consider systems all in the state a being fed into a B-filtering machine
(see, e.g., Figure 1.6) transmitting systems in states b, b′, . . .. The probability
that a transmitted system is found in state b is given by pa(b) in (1.2.11).
Accordingly, the expectation value of the observable B of systems in state a
is ∑

b

b pa(b) ≡ 〈B〉a (1.3.1)

which we have conveniently denoted by 〈B〉a. The latter may be rewritten as

〈B〉a =
∑

b

b Tr
[
Λ(b)Λ(a)

]
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=
∑

b

Tr
[
bΛ(b)Λ(a)

]
(1.3.2)

(see (1.2.16), (1.2.17). This suggests to introduce the object

B =
∑

b

b Λ(b) ≡
∑

b

b |b〉〈b| (1.3.3)

as a linear combination of B-selective measurement symbols which has far
reaching consequences. For simplicity of the notation, we have used the same
symbol B for this object as the physical quantity it represents. In particular
we may write

〈B〉a = Tr
[
BΛ(a)

]
. (1.3.4)

Fig. 1.6. A beam of spin 1/2 particles all with component of spin along
the +z direction is fed into a Stern-Gerlach apparatus and is split into two
beams with components of spin prepared along the +z and −z directions,
respectively. The initial beam is referred to as being completely polarized.

The expression in (1.3.3) in turn suggests to introduce more general ob-
jects like

M =
∑
b,b′

〈b |M |b′〉 |b〉〈b′| (1.3.5)

where 〈b |M |b′〉 are numerical factors. Immediate consequences of this defin-
ition are

M1M2 =
∑
b,b′

(∑
b′′

〈b |M1|b′′〉 〈b′′ |M2|b′〉
)
|b〉〈b′| (1.3.6)
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Tr
[
M
]

=
∑

b

〈b |M |b〉 (1.3.7)

M† =
∑
b,b′

〈b |M |b′〉∗
(
|b〉〈b′|

)†

or
M† =

∑
b,b′

〈b |M |b′〉∗ |b′ 〉〈b| . (1.3.8)

From (1.3.6)–(1.3.8), we may infer that the numerical factors 〈b |M |b′〉
may be interpreted as the matrix elements of a matrix labelled by the possible
values of the observable B. In particular, we note, according to the definition
(1.3.5) that

M1M2 =
∑
b,b′

〈b |M1M2|b′〉 |b〉〈b′| (1.3.9)

and upon comparison with (1.3.6) we obtain the expected result of matrix
multiplication definition that

∑
b′′

〈b |M1|b′′〉 〈b′′ |M2|b′〉 = 〈b |M1M2|b′〉 . (1.3.10)

One may rewrite the expression in (1.3.5) directly for the object M† and
compare it with (1.3.8) to conclude that

〈
b
∣∣M†∣∣b′〉 = 〈b′ |M |b〉∗ . (1.3.11)

Upon multiplying M in (1.3.5) by |b′′ 〉〈b| and taking the trace gives

Tr
[
M |b′′ 〉〈b|

]
= 〈b |M |b′′〉 . (1.3.12)

For the identity operation the latter gives

〈b |1|b′′〉 = Tr
[
1 |b′′ 〉〈b|

]
(1.3.13)

and from (1.1.4) and (1.2.3) that

〈b |1|b′′〉 = δ(b, b′′) (1.3.14)

which from (1.3.5) leads finally to

1 =
∑

b

|b〉〈b| (1.3.15)

emphasizing the fact that the identity operation accepts all systems, with-
out discrimination, whether it is written in the A-description or the B-
description.

M in (1.3.5) may be also rewritten in a mixed-description as
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M =
∑
a,b

〈b |M |a〉 |b〉〈a| . (1.3.16)

To show the equivalence of (1.3.16) and (1.3.5) we note from the former that

〈b |M |a〉 = Tr
[
M |a〉〈b|

]
. (1.3.17)

On the other hand, upon multiplying M in (1.3.5) by |a〉〈b| and taking the
trace yields

Tr
[
M |a〉〈b|

]
=
∑
b′

〈b |M |b′〉 〈b′ |a〉 . (1.3.18)

Finally upon multiplying M in (1.3.5) by the identity in the A-description
we have

M =
∑
a,b,b′

(
〈b |M |b′〉 〈b′ |a〉

)
|b〉〈a| . (1.3.19)

Upon comparison of (1.3.18)/(1.3.19) with (1.3.16)/(1.3.17) establishes the
equivalence. Another equivalent expression for M is

M =
∑
a,b

〈a |M |b〉 |a〉〈b| . (1.3.20)

The following rules then easily follow:

M1M2 =
∑
a,b,c

〈b |M1|a〉 〈a |M2|c〉 |b〉〈c| (1.3.21)

〈
a
∣∣M†∣∣b〉 = 〈b |M |a〉∗ . (1.3.22)

The equivalence of the descriptions of M given in (1.3.5), (1.3.16) and
(1.3.20) may be then summarized by multiplying M from the right and left by
the identity written in any description and noting, in particular, the identity∑

b

〈a |M |b〉 〈b |c〉 = 〈a |M |c〉 . (1.3.23)

1.3.2 Representations of Simple Machines

For a concrete example of an object of the form in (1.3.5), consider the
following machine (apparatus). It consists of two parts. The first part is
a Stern-Gerlach apparatus (a filter) which transmits a beam of spin 1/2
particles with their spin components prepared in the +z direction of the z-
axis, while the beam of particles with spin components in the −z direction is
blocked. The resulting beam is then fed into a Ramsey apparatus,1 consisting
of the second part of the machine. In its simplest description, this apparatus
consists of an oscillatory time-dependent magnetic field B(t) switched on for
some time τ , followed by a uniform time-independent magnetic field B0 for
some time T , and then finally the oscillatory magnetic field B(t) is switched
on again for an additional time τ .
1 Ramsey (1990) based on the 1989 Nobel Prize in Physics Lectures. The under-

lying theory will be discussed in some detail in §8.8.
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+

−

z

ττ T
B(t)B(t) B0

M
RAMSEY APPARATUS

Fig. 1.7. A machine (apparatus) M consisting of a Stern-Gerlach apparatus
(a filter) transmitting a beam of spin 1/2 particles with spin components
along the +z direction, with the beam then fed into a Ramsey apparatus as
described in the text. The machine M may be conveniently represented by
the expression in (1.3.24), (1.3.25) and is of the form in (1.3.5).

The above machine is depicted in Figure 1.7, and may be represented in
the form

M =
∑

m,m′=±1/2

|m, z〉 〈m, z |M |m′, z〉 〈m′, z| (1.3.24)

with
〈m, z |M |m′, z〉 = δ(m′,+1/2) 〈m, z |M |+1/2, z〉 (1.3.25)

where the Ramsey apparatus with an initial beam of particles with spin
component in the +z direction fed into it is represented by the quantity
〈m, z |M |+1/2, z〉.

Other examples of objects of the form in (1.3.5), (1.3.16), with increasing
complexity, are given in Figure 1.8.

From (1.3.5), (1.3.16), the machines M1, M2, M3, M4 in Figure 1.8 may
be then represented in the simple forms:

M1 = Λ(a) (1.3.26)

M2 =
∑

b

|b〉 〈b |a〉 〈a| (1.3.27)

M3 =
∑
b∈∆

|b〉 〈b |a〉 〈a| (1.3.28)

M4 =
∑
b,a′

|b〉 〈b |M4|a′〉 〈a′| (1.3.29)

with
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aaaaa bb
b ∈ ∆

{

M1 M2 M3 M4

Fig. 1.8. Examples of four machines which may be represented in the form
(1.3.5), (1.3.16). These machines select only systems for which a measurement
of a physical quantity A, characteristic of the systems, yields a given fixed
value a and reject all other systems. Machine M1 is the simplest one repre-
sented by the measurement symbol Λ(a) in (1.1.1). M3 is a filtering machine
which transmits only systems with given values of a physical quantity B,
characteristic of the systems, obtained through a filtering process, as in a S-G
apparatus, within some specified range ∆ of b values. M2 is identical to M3

except that it transmits all the systems with any b values without discrimi-
nation. M4 is a generalization of the machine M in Figure 1.7, where after
the selection of systems with a given a value, the systems may, in general,
go through complicated processes, such as the collisions of the underlying
particles, absorptions, and so on, and the machine, then through a filtering
process, transmits the emerging systems having b values of a physical quantity
B characteristic of the systems.

〈b |M4|a′〉 = δ(a′, a) 〈b |M4|a〉 (1.3.30)

and the 〈b |M4|a〉 are some complex quantities. [See also the representation
of the machine M of Figure 1.7 in (1.3.24), (1.3.25).]

The adjoint operation in (1.3.22) for a machine introduces, formally, to a
machine operating in reverse, and from (1.3.16),

M† =
∑
a,b

|a〉 〈b| 〈b |M |a〉∗ . (1.3.31)

The successive operations of two machines M2 followed by M1 is given in
(1.3.21). The significance of the trace operation in (1.3.18) will be considered
in (1.4.18).

1.4 Generation of States, Inner-Product Spaces,
Hermitian Operators and the Eigenvalue Problem

One may regard the significance of a selective measurement |b〉〈a|, after
the selection of all systems in a state specified by a value a of a physical
quantity A, characteristic of the systems, as a two-stage process. The first
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being the annihilation of the selected systems in state specified by a and
subsequently, as the second stage, the production of systems in a final state
specified by a value b of a physical quantity B, characteristic of the systems,
with the 〈a| and |b〉 symbols being associated with the two stages of the
process just discussed.

1.4.1 Generation of States and Vector Spaces

The symbols |b〉, for example, acquire a significance mathematically as
they may be represented as vectors which generate a vector space of di-
mensionality directly obtained from the associated observable B (see (1.3.3))
representing a complete set of compatible observables, say, B = {B1, . . . , Bk}
with b = {b1, . . . , bk}. The dimensionality of the generated vector space coin-
cides with the number of different vectors that one may define as b1, . . . , bk

take on consistently their allowed real physical values. It is often convenient,
but not always so, to use the notation |b〉 as well for the corresponding vector
representation. The 0 vector, in this vector space, is associated with the mea-
surement of producing no systems at all. The state of a system characterized
by a given fixed values taken by the k-tuplet {b1, . . . , bk} corresponding to
the complete set of observables {B1, . . . , Bk} is also often denotes by |b〉.

To see how such a vector space, as mentioned above, arises, consider, for
example, the function of machine M4 in Figure 1.8 which is represented in
the form (see (1.3.29), (1.3.30))

M4 =
∑

b

|b〉 〈b |M4|a〉 〈a| (1.4.1)

with the 〈b |M4|a〉 denoting some complex quantities. This machine may be
considered to operate, effectively, in two general stages. In the first stage, it
annihilates all the systems selected in state specified by a, and finally creates
systems in some new state |ψ〉 given by

|ψ〉 =
∑

b

|b〉 〈b |M4|a〉 (1.4.2)

for a priori given fixed value a of a physical quantity A characteristic of the
systems. From (1.4.1), the machine M4 may be then also represented in the
compact form

M4 = |ψ〉 〈a| (1.4.3)

for some fixed value a.
That is, starting from a system initially prepared in a state |a〉 and fed

into the machine M4, the latter produces a system in some final state which
may be also denoted by |ψ〉. From (1.1.3), this operation procedure of the
machine M4 may be then defined by

M4 |a〉 = |ψ〉 . (1.4.4)
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With 〈b |M4|a〉 as some complex quantities, the state |ψ〉 in (1.4.2) is
written as a linear combination of the states |b〉. This is very much as having
a vector space with the |b〉, corresponding to a complete set of observables
characteristic of the system into consideration, providing a basis for such
a vector space. To define a vector space, however, we have to consider the
addition of states such as |ψ〉 and also define a 0 vector in it. This is done
below.

To the above end, for each given fixed value c of some physical quan-
tity C, characteristic of the systems in consideration, consider the state |Φc〉
produced by a B-filtering machine

M0 =
∑
b∈∆

|b〉〈b| (1.4.5)

with a given fixed range ∆ of b values, from an initially prepared state |c〉:

|Φc〉 =
∑
b∈∆

|b〉 〈b |c〉 (1.4.6)

written as a linear combination of |b〉 states. On the other hand, for any given
fixed value a, we may produce a state |χ〉 from the successive operations of a
machine M ′

4 followed by that of machine M0 from an initially prepared state
|a〉, where

M ′
4 =

∑
c

|c〉 〈c |M ′
4|a〉 〈a| (1.4.7)

which is of the same form as M4 in Figure 1.8 with observable B replaced by
an observable C. That is,

|χ〉 =
∑
b∈∆

(∑
c

|b〉 〈b |c〉 〈c |M ′
4|a〉

)

=
∑

c

〈c |M ′
4|a〉

∑
b∈∆

|b〉 〈b |c〉

=
∑
b∈∆

|b〉
∑

c

〈b |c〉 〈c |M ′
4|a〉 (1.4.8)

again written as a linear combination of |b〉 states.
Upon comparison of the second equality in (1.4.8) with (1.4.6), we obtain

|χ〉 =
∑

c

|Φc〉 〈c |M ′
4|a〉 (1.4.9)

with, in general, 〈c |M ′
4|a〉 denoting complex quantities, the vectors |χ〉, |Φc〉

are written as linear combination of |b〉 states. Equation (1.4.9) provides a
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linear superposition of vectors |Φc〉 in the underlying vector space leading to
a vector |χ〉 also in the same vector space.

The 0 vector in the underlying vector space may be simply defined by
carrying out a selective measurement via the symbol Λ(b′) with b′ /∈ ∆, on
the state |Φc〉 in (1.4.6)

Λ(b′) |Φc〉 = 0. (1.4.10)

In analogy to (1.2.17), (1.1.5), we consider the successive measurement
symbols

Λ(b) |ψ 〉〈ψ| = |b〉〈ψ|
(
〈b |ψ〉

)
(1.4.11)

with 〈b |ψ〉 as a measure of the fraction of systems found in the state |b〉, and
from (1.2.17),

pψ(b) = |〈b |ψ〉|2 (1.4.12)

is interpreted as the probability that the physical quantity B, characteristic
of the system, takes the value b if the system is in the state |ψ〉, provided∑

b

|〈b |ψ〉|2 = 1 (1.4.13)

giving a normalization condition for the generally complex quantities 〈b |ψ〉.
Now we use the expression for |ψ〉 in (1.4.2), and consider the application

of the selective measurement provided by Λ(b) of a system in the state |ψ〉
giving

|b〉 〈b |M4|a〉 = |b〉 〈b |ψ〉 (1.4.14)

(see also (1.3.23)) leading to the identification

〈b |M4|a〉 = 〈b |ψ〉 ≡ ψ(b) (1.4.15)

where with 〈b |ψ〉, in general, a complex quantity, we have denoted it by ψ(b).
Thus we may rewrite (1.4.2) as

|ψ〉 =
∑

b

|b〉ψ(b). (1.4.16)

Conversely, with a a priori given and fixed, and 〈b |M4|a〉 denoting, in
general, some complex quantity which may be denoted, say, by ψ(b) in (1.4.1),
equations (1.4.2), (1.4.14) lead to the identification 〈b |ψ〉 = ψ(b). Finally note
that the application of the selective measurement, denoted by Λ(b), on the
state |ψ〉 in (1.4.16) confirms this notation.

1.4.2 Transformation Functions and Wavefunctions in Different
Descriptions

Equation (1.4.16) emphasizes again the expansion of the state |ψ〉 in terms
of the |b〉 states, with the b values corresponding to a complete set of compat-
ible observables characteristic of the system into consideration. |ψ〉 is referred
to as a state vector, and ψ(b) as the wavefunction in the B-description.
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Upon the application of a selective measurement Λ(a), of a physical quan-
tity A characteristic of the system in state |ψ〉, one obtains

ψ(a) =
∑

b

〈a |b〉ψ(b) (1.4.17)

providing the transformation law of a wavefunction from the B-description to
the A-description, with the amplitude 〈a |b〉, as is referred to below (1.2.11),
is also called the transformation function from the B- to A-descriptions.

The trace operation

Tr
[
|a〉〈b|M4

]
= 〈b |M4|a〉 = ψ(b) (1.4.18)

corresponding to the machine M4 in (1.4.1), as also introduced in (1.3.29),
gives the wavefunction ψ(b).

+

−

z

|ψ〉 B

M

Fig. 1.9. A machine (apparatus) M consisting of two parts, a Stern-Gerlach
apparatus (a filter) transmitting a beam of spin 1/2 particles with spin com-
ponents along the +z direction, with the beam then fed into a region of
constant magnetic field. As far as a particle is concerned the machine M
may be represented as in (1.4.24). If the initial state of a particle is different
from |+1/2, z〉, such as being in a state |+1/2, x〉, the interesting situation of
absorption by the machine arises.

1.4.3 An Illustration

As an illustration, consider the simple machine (apparatus) M in Fig-
ure 1.9. It consists of two parts. The fist part is a filter which transmits par-
ticles of spin 1/2 with spin components along the +z direction while those
with components along the −z direction are not transmitted. If we represent
the state |+1/2, z〉 by

|+1/2, z〉 =
(

1
0

)
(1.4.19)

and its adjoint by
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〈z,+1/2| =
(

1
0

)†
=
(
1 0

)
. (1.4.20)

Then the filter may be represented by the selective measurement symbol

Λz(+1/2) =
(

1
0

)(
1 0

)
=
(

1 0
0 0

)
. (1.4.21)

The second part consists of a region of constant magnetic field

B = (B, 0, 0). (1.4.22)

Let µ denote the magnetic dipole moment of a particle. If t0 is the time
spent by a particle in the magnetic field B, then as we will see later when
studying the physics of spin 1/2 in Chapter 8 (see (8.1.28) later), that as far
as a particle is concerned, the second part of the machine may be represented
by the 2 × 2 (non-Hermitian) matrix

M(B) =




cos
µBt0

�
i sin

µBt0
�

i sin
µBt0

�
cos

µBt0
�


 . (1.4.23)

From (1.4.21) and (1.4.23), the combined machine M in Figure 1.9 may
be then represented simply by

M =




cos
µBt0

�
0

i sin
µBt0

�
0


 . (1.4.24)

Hence, if the particles are initially prepared in the state |+1/2, z〉, so
that 100% of them are transmitted through the first stage, via the filtering
machine in (1.4.21), the machine M in Figure 1.9, from (1.4.4), produces
particles each in the state

|ψ〉 = M |+1/2, z〉

=




cos
µBt0

�
0

i sin
µBt0

�
0



(

1
0

)
(1.4.25)

or
|ψ〉 =

(
1
0

)
cos

µB

�
t0 + i

(
0
1

)
sin

µB

�
t0. (1.4.26)

We may rewrite (1.4.26) as
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|ψ〉 = ψ({+1/2, z}) |+1/2, z〉 + ψ({−1/2, z}) |−1/2, z〉 (1.4.27)

with

ψ({+1/2, z}) = cos
µB

�
t0, ψ({−1/2, z}) = i sin

µB

�
t0. (1.4.28)

By comparing (1.4.28)/(1.4.27) with (1.4.15)/(1.4.16), we may infer that

〈+1/2, z |ψ〉 = cos
µB

�
t0, 〈−1/2, z |ψ〉 = i sin

µB

�
t0 (1.4.29)

and from (1.4.12), (1.4.13) that

|〈+1/2, z |ψ〉|2 + |〈−1/2, z |ψ〉|2 = cos2
µB

�
t0 + sin2 µB

�
t0

= 1 (1.4.30)

as expected.
As will be seen later (§8.1), that particles in the states |±1/2, x〉 may be

represented as

|+1/2, x〉 =
1√
2

(
1
1

)
, |−1/2, x〉 =

1√
2

(
1
−1

)
. (1.4.31)

For the selective measurement symbol Λx(+1/2), we then have the represen-
tation

Λx(+1/2) =
1
2

(
1 1
1 1

)
. (1.4.32)

Upon making a selective measurement via Λx(+1/2) of a system in the
state |ψ〉 in (1.4.26), we obtain, in analogy to (1.4.17),

ψ({+1/2, x}) =
1√
2
ψ({+1/2, z}) +

1√
2
ψ({−1/2, z}) (1.4.33)

where we have used the normalizability of the state |+1/2, x〉 as given in
(1.4.31), and the identifications in (1.4.28).

Upon the comparison of (1.4.33) with (1.4.17) we obtain

〈+1/2, x |+1/2, z〉 =
1√
2

= 〈+1/2, x |−1/2, z〉 . (1.4.34)

Similarly, one derives that

〈−1/2, x |+1/2, z〉 =
1√
2

(1.4.35)

〈−1/2, x |−1/2, z〉 = − 1√
2

(1.4.36)
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thus obtaining the transformation function 〈m′, x |m, z〉 for, m′,m = ±1/2,
and we have developed the transformation from a description of spin along
the z-axis to one along the x-axis, with wavefunctions ψ({m, z}), ψ({m′, x})
in these descriptions, respectively.

With particles in an initial state |+1/2, z〉 fed into the machine M in
Figure 1.9, the presence of the filter as part of the machine seems redundant
since 100% of the particles in this initial state will be transmitted through
the filter. The interesting situation then arises if the particles are initially in
a different state, say, in the state |+1/2, x〉, which we now consider.

According to (1.4.34), only 50% of the particles will go through the filter,
i.e., we will have absorption, and the machine M will produce a particular
state |Φ〉ABS from |+1/2, x〉 reflecting this fact. In detail

|Φ〉ABS = M |+1/2, x〉

=




cos
µBt0

�
0

i sin
µBt0

�
0


 1√

2

(
1
1

)

=
1√
2

cos
µB

�
t0

(
1
0

)
+

i√
2

sin
µB

�
t0

(
0
1

)
(1.4.37)

and as expected
∣∣∣∣ 1√

2
cos

µB

�
t0

∣∣∣∣
2

+
∣∣∣∣ i√

2
sin

µB

�
t0

∣∣∣∣
2

=
1
2

(1.4.38)

showing 50% absorption.
In general, consider an initial state |c〉, with c a priori fixed value taken by

a different physical quantity C characteristic of the system into consideration,
then from (1.4.3), machine M4 in Figure 1.8, will produce, from the initial
state |c〉 fed into it, a state

|Φ〉ABS = M4 |c〉

= |ψ〉 〈a |c〉 (1.4.39)

or from (1.4.16), (1.4.15)

|Φ〉ABS =
∑

b

|b〉 〈b |ψ〉 〈a |c〉 . (1.4.40)

From (1.4.12), (1.4.40) we then have[
1 − |〈a |c〉|2

]
× 100%

absorption by the machine M4.
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1.4.4 Generation of Inner Product Spaces

Finally, we are led to consider the measurement symbol |ψ 〉〈φ|, with |ψ〉,
|φ〉 two states, written as linear combinations of |b〉 states. The trace operation
(see (1.2.16)) in the following

Tr
[
|ψ 〉〈φ|

]
= 〈φ |ψ〉 (1.4.41)

leads to the definition of an inner product, which from (1.4.16) may be written
as

〈φ |ψ〉 =
∑

b

φ∗(b)ψ(b) (1.4.42)

where we have used the property that the adjoint transformation takes the
complex conjugation of numericals,

|φ〉† =
∑

b

φ∗(b) 〈b| ≡ 〈φ| (1.4.43)

denoting the right-hand side of the above by 〈φ| as an expansion in terms of
the adjoints 〈b|. The vector space generated by the adjoints 〈b| is called the
dual vector space to the vector space generated the |b〉 vectors having similar
properties as the initial vector space itself. A vector |b〉 and its adjoint 〈b| are
often referred to as a ket and as a bra, respectively.

From (1.2.17), we also have,

pψ(|φ〉) = |〈φ |ψ〉|2 (1.4.44)

representing the probability that the system is found in the state |φ〉 if it
is initially in the state |ψ〉, and the trace operation in (1.4.41) gives the
corresponding amplitude 〈φ |ψ〉.

A vector space on which an inner product is defined is called an inner
product space. Thus with the inner product given in (1.4.42), we have thus
introduced such an inner product space from the vector space generated by
the |b〉 vectors.

It is easily seen that (1.4.42) actually provides a definition of an inner
product by explicitly verifying the following properties,

(i)
〈ψ |ψ〉 =

∑
b

|ψ(b)|2 � 0 (1.4.45)

(ii)
〈φ |ψ〉∗ = 〈ψ |φ〉 (1.4.46)

(iii)
〈αφ |ψ〉 = α∗ 〈φ |ψ〉 , 〈φ |αψ〉 = α 〈φ |ψ〉 (1.4.47)
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(iv)

〈φ |ψ1 + ψ2〉 = 〈φ|
(
|ψ1〉 + |ψ2〉

)

= 〈φ |ψ1〉 + 〈φ |ψ2〉 (1.4.48)

for any complex number α. In regard to |ψ1 + ψ2〉 see (1.4.9).
The length or the norm of a vector |ψ〉 is defined by

‖ψ‖ =
√

〈ψ |ψ〉 (1.4.49)

and hence the normalization condition (1.4.13) reads

‖ψ‖2 =
∑

b

|ψ(b)|2 = 1. (1.4.50)

From (1.4.17), we note that
∑

b

φ∗(b)ψ(b) =
∑

a

φ∗(a)ψ(a) (1.4.51)

establishing the description independence of an inner product corresponding
to any two physical quantities B and A, characteristics of the systems in
question.

The following basic inequalities follow from the definitions of the inner
product and the norm of vectors given above

|〈φ |ψ〉| � ‖φ‖ ‖ψ‖ (1.4.52)

referred to as the Cauchy-Schwarz inequality, and

‖φ + ψ‖ � ‖φ‖ + ‖ψ‖ (1.4.53)

referred to as the triangular inequality.

1.4.5 Hermitian Operators and the Eigenvalue Problem

The definition in (1.3.3), together with (1.1.2) and (1.1.3), lead to the
eigenvalue problem of a Hermitian operator

B |b〉 = b |b〉 (1.4.54)

or
Bi |b〉 = bi |b〉 , i = 1, . . . , k (1.4.55)

where B = {B1, . . . , Bk}, |b〉 = {b1, . . . , bk}. The Hermiticity condition reads

B† = B (1.4.56)
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and follows from the reality of the b values and the definition of the adjoint
through (1.2.18)–(1.2.20).

Clearly, for any given value bi in (1.4.55), there will be, in general, more
than one vector |b1, . . . , bi, . . . , bk〉, satisfying (1.4.55), as the other bj (j �=
i) take on, consistently, their allowed values. The number of such distinct
vectors |b1, . . . , bk〉 defines the degree of degeneracy of the eigenvalue bi of Bi.
Once all the eigenvalues |b1, . . . , bk〉 are specified, then there will be only one
eigenvector |b1, . . . , bk〉 corresponding to the eigenvalue b in question. That
is, by definition, the eigenvalue b of a complete set of compatible observables
{B1, . . . , Bk} ≡ B is non-degenerate. The set of values {b} of B is called its
spectrum, and the set of vectors |b〉 provides a basis for the generated vector
space, with

〈b |b′〉 = δ(b, b′) ≡
∏

i

δ(bi, b
′
i) (1.4.57)

providing the orthonormality condition of the vectors |b〉, as follows from
(1.1.3).

In the case when the eigenvalues b take on an infinite number of discrete
values and/or continuous values, one is faced with convergence problems.
These problems are dealt with by defining the concept of a Hilbert space
(§1.7), as an underlying vector space, and introduce in turn the concept of
self-adjoint operators (§1.7), representing observables, operating on vectors
in such a vector space.

1.5 Pure Ensembles and Mixtures

In the elementary selective measurements experiments discussed in §1.1–
§1.3, all the initial systems were prepared in some definite state a. Such
a collection of systems all prepared in the same state is referred to as an
ensemble or more appropriately as a pure ensemble. More generally, one may
design an apparatus which may prepare an ensemble of systems, for further
experimentation, such that every system in the ensemble may be represented
by a creation symbol |ψ〉 in the form

|ψ〉 =
∑

b

|b〉ψ(b) (1.5.1)

satisfying the normalization in (1.4.50).

then

|B〉ψ = Tr
[
|ψ 〉〈ψ|B

]

=
∑

b

b|ψ(b)|2 = 〈ψ |B|ψ〉 (1.5.2)

The expectation value of an observable B for systems in the state |ψ〉 is
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(see (1.3.1)–(1.3.4), (1.3.17), (1.4.18)).
The operator

ρ = |ψ 〉〈ψ| (1.5.3)

is called the density or statistical operator for the ensemble of systems all in
the state |ψ〉. Immediate properties of ρ, as defined in (1.5.3), are

Tr
[
ρ
]

= 1 (1.5.4)

Tr
[
ρ2
]

= 1. (1.5.5)

|ψ1〉

w1

|ψ2〉

w2

|ψn〉

wn

Fig. 1.10. A figure displaying n machines preparing independently n ensemble
of systems in states |ψ1〉, |ψ2〉, . . . , |ψn〉, respectively, constituting w1%, w2%,
. . . , wn% of the total number of prepared systems.

One may also consider more general preparatory procedures such as de-
scribed in Figure 1.10, where we have, say, n machines which produce (pre-
pare) independently n ensemble of systems, respectively, in states |ψ1〉, |ψ2〉,
. . . , |ψn〉 with w1% of systems in state |ψ1〉, w2% of systems in state |ψ2〉,
. . . , wn% of systems in state |ψn〉, respectively, with

n∑
i=1

wi = 1. (1.5.6)

A collection of such ensembles is called a mixture. The expectation values
of an observable B in these different states are 〈ψ1 |B|ψ1〉, 〈ψ2 |B|ψ2〉, . . . ,
〈ψn |B|ψn〉 and hence the average over all the systems produced is given by

〈B〉 =
n∑

i=1

wi 〈ψi |B|ψi〉 . (1.5.7)

In this case the statistical operator associated with the mixture is given
by

ρ =
n∑

i=1

wi |ψi 〉〈ψi| (1.5.8)
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and it is easily checked that the latter may not be rewritten in the form
|ψ 〉〈ψ| for any state |ψ〉. In terms of ρ, (1.5.7) reduces to

〈B〉 = Tr
[
ρB

]
. (1.5.9)

In particular,

Tr
[
ρ
]

=
n∑

i=1

wi = 1. (1.5.10)

Unlike the pure ensemble case in (1.5.5), for a mixture we have

Tr
[
ρ2
]

=
n∑

i=1

w2
i <

n∑
i=1

wi (1.5.11)

that is,
Tr

[
ρ2
]

< 1 (1.5.12)

since for at least two of the w1, w2, . . . , wn non-zero, say, wi and wj , w2
i < wi

(and w2
j < wj).

In an extreme case when all the states |ψ1〉, . . . , |ψn〉 occur equally likely,
wi = 1/n and we have, what is called, a completely random mixture.

Fig. 1.11. A machine which because of its very nature (such as malfunc-
tioning or for any other reason) produces systems in a statistically fluctu-
ating manner in states |Φ1〉, |Φ2〉, . . . , |Φn〉, described by an overall state

|Φα〉 =

n∑
i=1

αi |Φi〉 with statistically fluctuating coefficients (α1, . . . , αn).

The density operator in the form given in (1.5.8) also holds if we have
a machine which because of its very nature (such as malfunctioning or for
any other reason) produces systems in a statistically fluctuating manner in
states |Φ1〉, |Φ2〉, . . . , |Φn〉 as summarized in Figure 1.11. This situation and
the one spelled out in Figure 1.10 may be described by the same underlying
theory. To this end we may define a state



28 1 Fundamentals

|Φα〉 =
n∑

i=1

αi |Φi〉 (1.5.13)

where because of the experimental set up as given in Figure 1.10 or because
of the fluctuating nature of a machine (Figure 1.11) or both, the coefficients
(α1, . . . , αn) = α may statistically fluctuate. Since the coefficients αi are, in
general, complex numbers, we may write

αj = rj eiδj (1.5.14)

where rj , δj are real.
For a fixed value of α, the expectation value of an observable B in the

state (1.5.13) is given by

〈B〉
∣∣∣
α

=
n∑

i,j=1

ri rj e−iγij 〈Φi |B|Φj〉 (1.5.15)

where
γij = δi − δj (1.5.16)

and
n∑

i=1

r2
i = 1. (1.5.17)

Let
f(r1, . . . , rn, γ12, γ13, . . . , γ23, . . . , γn−1,n) (1.5.18)

denote the probability density describing the statistical distribution of r1, . . . ,
rn, γ12, . . . , γn−1,n, whose explicit knowledge is not essential. To obtain the
expectation value of the observable B over all fluctuations of the coefficients
ri rj exp(−iγij) in (1.5.15), one has to average the latter over the density in
(1.5.18), subject to the constraint (1.5.17). Suppose wij denotes the latter
average. Accordingly, the overall expectation of the observable B is given by

〈B〉 =
n∑

i,j=1

wij 〈Φi |B|Φj〉 . (1.5.19)

We note, in particular, that
w∗

ij = wji. (1.5.20)

That is, wij denotes the matrix elements of a Hermitian n × n matrix w.
From elementary matrix algebra, we know that we may then find a unitary
matrix U , i.e., U† = U−1 such that

U†wU = diag
[
w1, . . . , wn

]
(1.5.21)

where, from (1.5.17), wi � 0 and satisfy (1.5.10). Accordingly, let
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U∗
ijΦi = ψj (1.5.22)

where
U∗

ijUkj = δik (1.5.23)

U∗
imwijUjk = wmδmk (1.5.24)

and a summation over repeated indices in (1.5.22)–(1.5.24) is understood.
Hence

〈B〉 =
n∑

i=1

wi 〈ψi |B|ψi〉 (1.5.25)

coinciding with the formula in (1.5.7).
For a completely randomized system where the probability density f in

(1.5.18) has a constant value over its domain of definition, the unitary op-
erator U above becomes the identity operator with wii = 1/n (no sum over
i here). To see this, note that for the phase averages (i < j) in this case we
have

1
2π

∫ 2π

0

dγij e−iγij = δij (1.5.26)

and by symmetry or by explicit calculation (see Problem 1.4)

〈
r2
1

〉
= · · · =

〈
r2
n

〉
=

1
n

(1.5.27)

under the constraint in (1.5.17). Accordingly,

〈B〉 =
1
n

n∑
i=1

〈ψi |B|ψi〉 (1.5.28)

for a completely random mixture.

1.6 Polarization of Light: An Interlude

An illustration of most of the developments provided so far is readily given
by examining polarization aspects of light. The relative simplicity of dealing,
at this stage, with a photon, as opposed to, say, a spin 1/2 particle, is that the
vector character of light, being of spin 1, allows one readily to decompose the
polarization states along different directions by using the same elementary
geometry as one uses in decomposing the three dimensional position vector of
a particle along different directions in Euclidean space. The situation dealing
with the decomposition of spin 1/2 states along different axes is different and
will be dealt with later. One should be careful, however, that for a photon,
like any other massless particle, the direction of polarization is perpendicular
to the direction of its propagation.
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It is convenient to denote the polarization state of light polarized along a
unit vector making an angle φ with the x-axis simply by |φ〉. An x-polarized
state may be then written as |0〉 and a y-polarized state as |π/2〉.

From the vector nature of light we may decompose |φ〉 as (see Figure 1.12)

|φ〉 = |0〉 cos φ + |π/2〉 sin φ. (1.6.1)

The states |0〉, |π/2〉 may be represented by the column vectors:

|0〉 =


1

0
0


 ,

(
〈0| =

(
1 0 0

) )
(1.6.2)

|π/2〉 =


0

1
0


 ,

(
〈π/2| =

(
0 1 0

) )
(1.6.3)

and hence

|φ〉 =


cos φ

sin φ
0


 ,

(
〈φ| =

(
cos φ sin φ 0

) )
. (1.6.4)

POLA
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Fig. 1.12. Light polarized along a unit vector in the xy-plane making an
angle φ with the x-axis on its way to an x-polarizer.

The selective measurement symbols may be then explicitly represented as
follows:

Λ(0) =


1 0 0

0 0 0
0 0 0


 (1.6.5)
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Λ(π/2) =


0 0 0

0 1 0
0 0 0


 (1.6.6)

Λ(φ) =


 cos2 φ sin φ cos φ 0

sin φ cos φ sin2 φ 0
0 0 0


 . (1.6.7)

In particular for successive selective measurements,

Λ(0)Λ(φ) =


cos2 φ sin φ cos φ 0

0 0 0
0 0 0


 (1.6.8)

Λ(φ)Λ(0) =


 cos2 φ 0 0

sin φ cos φ 0 0
0 0 0


 (1.6.9)

and for 0 < φ < π/2
Λ(0)Λ(φ) �= Λ(φ)Λ(0) (1.6.10)

establishing the non-commutativity of measurements of polarization along
the two different orientations.

To make contact with formula (1.1.5), (1.6.8) may be written as

Λ(0)Λ(φ) = |0〉〈φ| cos φ (1.6.11)

with
〈0 |φ〉 = cos φ. (1.6.12)

The latter is also directly obtained from (1.6.1). By referring to Figure 1.12
we may infer that the probability that a photon goes through the x-polarizer
is

|〈0 |φ〉|2 = cos2 φ (1.6.13)

which is the famous Malus formula.
The density operator corresponding to the state |φ〉 in Figure 1.12 is

ρ = |φ〉〈φ| =


 cos2 φ sinφ cos φ 0

sinφ cos φ sin2 φ 0
0 0 0


 (1.6.14)

as given in (1.6.7). The probability that a photon goes through the x-polarizer
shown in Figure 1.12 is equivalently given by

Tr
[
Λ(0)ρ

]
= cos2 φ. (1.6.15)

For an initial mixture, the density operator ρ may be written as
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ρ = w1Λ(0) + w2Λ(π/2) (1.6.16)

for light propagating along the z-axis. For such a mixture going to a ϑ-
polarizer, that is a polarizer with polarization axis making an angle ϑ with
the x-axis, the probability of transmission is given by

Tr
[
Λ(ϑ)ρ

]
= w1 cos2 ϑ + w2 sin2 ϑ (1.6.17)

as is easily worked out.
For unpolarized light, that is light with a complete random polarization,

w1 = w2 = 1/2, (1.6.17) gives

Tr
[
Λ(ϑ)ρunpol

]
=

1
2

(1.6.18)

independently of the orientation of the polarization axis, specified by the
angle ϑ, of the polarizer.

xx
yy

ϑ

(a) (b)

Fig. 1.13. (a) An x-polarizer followed by a y-polarizer corresponding to
successive selective measurement symbols. No light may go through the com-
bined polarization system. (b) A ϑ-polarizer is inserted between the x- and
y-polarizers in (a). The corresponding successive selective measurements is,
for 0 < ϑ < π/2, for example, not the 0-operation. Depending on the ini-
tial state for light, a photon may go through the arrangement with the three
polarizers.

Finally we consider the successive selective measurements provided by the
polarizers in Figure 1.13. For the successive measurements corresponding to
Figure 1.13 (a)

Λ(π/2)Λ(0) = 0 (1.6.19)

and no photon may go through the two polarizers. On the other hand if we
insert a ϑ-polarizer between these two polarizers as shown in Figure 1.13 (b),
we obtain
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Λ(π/2)Λ(ϑ)Λ(0) =


 0 0 0

sinϑ cos ϑ 0 0
0 0 0


 �= 0 (1.6.20)

with 0 < ϑ < π/2, for example, and a photon may go through the new
arrangement with the three polarizers.

What is remarkable about the arrangement in Figure 1.13 (b) is that
although the x-polarizer makes sure to eliminate light polarized along the
y-axis to go through it, the insertion of the ϑ-polarizer, depending on the
initial state, may allow y-polarized light to be finally transmitted through the
y-polarizer. The naïve impression that the insertion of a polarizer between
two polarizers will reduce the final intensity of light transmitted through the
system is not necessarily true. To this end, suppose that light is initially
polarized along an axis making an angle φ, with the x-axis given in (1.6.4).
Consider, using in the process (1.6.20), the successive selective measurements

Λ(π/2)Λ(ϑ)Λ(0)Λ(φ) = |π/2〉〈φ| sin ϑ cos ϑ cos φ. (1.6.21)

Thus the insertion of the ϑ-polarizer, as in Figure 1.13 (b), increases the
intensity of light transmitted from 0 to 100 ×

(
sin2 ϑ cos2 ϑ cos2 φ

)
%.

The arrangements given in Figure 1.13 together with the quantitative
details given above provide an illustration of the theory developed with in-
compatible observables at the end of §1.1. The system of the three polarizers
in Figure 1.13 (b) is represented by the matrix

M = Λ(π/2)Λ(ϑ)Λ(0) =


 0 0 0

sin ϑ cos ϑ 0 0
0 0 0


 (1.6.22)

in the notation of §1.3, §1.4, as introduced in (1.6.20).
Although aspects of the polarization of light are easily treated, as shown

above, and many authors use light to illustrate concepts in quantum mechan-
ics, a detailed quantum description of light is far from straightforward.

1.7 The Hilbert Space; Rigged Hilbert Space

In quantum physics, one generally deals not only with finite dimensional
inner-product spaces but also with infinite dimensional ones. The Hilbert
space concept is such a generalization which applies to both cases. In view
of applications, we consider only separable Hilbert spaces, the property of
which is spelled out in point (iii) below.

Definition of a Hilbert Space

A set of vectors is called a Hilbert space, denoted by H, if
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(i) |f1〉, |f2〉 are in H, then so is α1 |f1〉+α2 |f2〉 for all complex numbers α1,
α2. For the 0 vector in H, 0 + |f〉 = |f〉 for all |f〉 in H. This provides
just the definition of a vector space.

(ii) It is equipped with an inner product 〈f1 |f2〉 for all |f1〉, |f2〉 in H, which
is in general a complex number such that

〈f1 |f2 + f3〉 = 〈f1 |f2〉 + 〈f1 |f3〉

〈αf1 |f2〉 = α∗ 〈f1 |f2〉

〈f1 |f2〉∗ = 〈f2 |f1〉

〈f |f〉 � 0

and 〈f |f〉 = 0 if and only if |f〉 is the zero vector. Property (ii) provides
the definition of an inner product space. The norm of a vector |f〉, denoted
by ‖f‖, is defined by

‖f‖ =
√
〈f |f〉.

(iii) In H there exists a sequence of orthonormal vectors {|f1〉 , |f2〉 , . . .},
called a basis, i.e., 〈fi |fj〉 = δij , and for any f in H, we may find con-
stants c

(N)
k such that

∥∥∥∥∥f −
N∑

k=1

c
(N)
k fk

∥∥∥∥∥ → 0 as N → ∞.

Property (iii) constitutes of what is called its separability condition of H.
(iv) A sequence of vectors {

∣∣f1
〉
,
∣∣f2

〉
, . . .} in H is called a Cauchy sequence,

if given any ε > 0, we may find a positive integer N such that
∥∥f (n) − f (m)

∥∥ < ε

whenever n > N and m > N . Then every Cauchy sequence in H con-
verges to a vector |f〉 in H. That is,

∥∥f − f (n)
∥∥ −→ 0

for n → ∞. This is called the completeness property of H.

Immediate consequences of the above definitions are the following inequal-
ities. For any |f〉, |g〉 in H

|〈f |g〉| � ‖f‖ ‖g‖ (1.7.1)

referred to as the Cauchy-Schwarz inequality (see also (1.4.52)),

‖f + g‖ � ‖f‖ + ‖g‖ (1.7.2)
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referred to as the triangular inequality (see also (1.4.53)). Finally let
{|f1〉 , |f2〉 , . . .} be an orthonormal (i.e., 〈fi |fj〉 = δij) basis in H. For any
|f〉 in H define ∣∣∣f (n)

〉
=

n∑
k=1

|fk〉 〈fk |f〉 . (1.7.3)

Then ∥∥f (n)
∥∥ � ‖f‖ (1.7.4)

and is referred to as Bessel ’s inequality.
The proofs of these inequalities are elementary and follow. If at least one

of |f〉, |g〉 is the zero vector then (1.7.1) is obvious. If two non-zero vectors
|f〉, |g〉 are orthogonal, that is 〈f |g〉 = 0, then (1.7.1) is again obvious. If
〈f |g〉 �= 0, define

a = α
|〈g |f〉|
〈f |g〉 (1.7.5)

where α is a real number. Then

0 � ‖f + ag‖2 = ‖f‖2 + 2α |〈g |f〉| + α2‖g‖2 (1.7.6)

which upon minimizing over α gives (1.7.1).
For the triangular inequality, we have

‖f + g‖2 = ‖f‖2 + 2Re 〈f |g〉 + ‖g‖2. (1.7.7)

But by making use of (1.7.1),

Re 〈f |g〉 � |〈f |g〉| � ‖f‖ ‖g‖ (1.7.8)

that is
‖f + g‖2 �

(
‖f‖ + ‖g‖

)2 (1.7.9)

which is equivalent to (1.7.2).
For Bessel’s inequality we note that

〈
f − f (n)

∣∣∣f (n)
〉

= 0. (1.7.10)

Hence

‖f‖2 =
∥∥f − f (n) + f (n)

∥∥2 =
∥∥f − f (n)

∥∥2 +
∥∥f (n)

∥∥2

�
∥∥f (n)

∥∥2 (1.7.11)

giving (1.7.4).
A typical example of a Hilbert space is the set, denoted by �2(∞), of all

vectors |a〉 = (a1, a2, . . .), involving components as complex numbers such
that
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‖a‖2 =
∞∑

k=1

|ak|2 < ∞ (1.7.12)

with the addition law defined by

α |a〉 + β |b〉 = (αa1 + βb1, αa2 + βb2, . . .) (1.7.13)

and the inner-product given by

〈a |b〉 =
∞∑

k=1

a∗
kbk. (1.7.14)

[The proof of the separability and completeness of this space is relegated to
Problem 1.7.]

A particularly important example of a Hilbert space is the space of square-
integrable functions, denoted by L2(R3), associated with a particle of spin 0.
For any f(x), g(x) in L2(R3), x in R

3,

〈f |g〉 =
∫

d3x f∗(x) g(x) (1.7.15)

and
‖f‖2 =

∫
d3x |f(x)|2 < ∞. (1.7.16)

For a (massive) particle of spin s, having (2s + 1) components along a
given direction, we may introduce the space L2(R3, C2s+1) (where C stands
for complex), and define

〈f |g〉 =
∑

σ

∫
d3x f∗(x, σ) g(x, σ) (1.7.17)

where the sum is over all σ = −s,−s + 1, . . . , s.
For n distinguishable spin 0 particles, for example, one may introduce the

space L2(R3n) with inner product

〈f |g〉 =
∫

d3x1 · · · d3xn f∗(x1, . . . ,xn) g(x1, . . . ,xn). (1.7.18)

Of particular interest is the case dealing with n indistinguishable particles
of spin s, such as n electrons (s = 1/2), n neutral pions (s = 0), etc. In such
cases we have to invoke the spin and statistics connection and restrict to
subclasses of square-integrable functions ψ(x1, σ1; . . . ;xn, σn) with definite
symmetries as defined below for the interchange of any two particles:

ψ(. . . ;xi, σi; . . . ;xj , σj ; . . .) = −ψ(. . . ;xj , σj ; . . . ;xi, σi; . . .) (1.7.19)

for half-odd integer spin s, with such particles referred to as fermions, and



1.7 The Hilbert Space; Rigged Hilbert Space 37

ψ(. . . ;xi, σi; . . . ;xj , σj ; . . .) = +ψ(. . . ;xj , σj ; . . . ;xi, σi; . . .) (1.7.20)

for integer spin s, and such particles are referred to as bosons.
The state of a system is described by a unit vector |ψ〉 in some Hilbert

space H. Since, as we have already seen in §1.2, §1.3, §1.5 and we have ample
opportunity to see this further later on, physical quantities (such as proba-
bilities, expectation values, . . . ), to be compared with experiments, involve
the combination |ψ 〉〈ψ|, and the states |ψ〉 and |ψ〉 eiφ, defined up to arbi-
trary phase factors, are equivalent. The set

{
|ψ〉 eiφ

}
, also denoted by |ψ〉

for convenience, with φ varying over all real numbers, is called a unit ray.
Accordingly, the states of a physical system are represented by unit rays.

Given a Hilbert space H, not every unit ray |ψ〉 in H, however, is necessar-
ily a physically realizable state. From the very definition of a Hilbert space,
for example, a linear combination of two states |ψ1〉 and |ψ2〉 with different
charges Q1, Q2 is also in H. But such a vector is not physically realizable.
Similarly the superposition of two vectors |ψ1〉, |ψ2〉 with integer and half-
odd integer angular momentum states, respectively, resulting a vector |ψ〉, is
not physically realizable, if the principle of rotational invariance is invoked.
The reason is that under a rotation by an angle 2π, for example, about the
quantization z-axis, as we shall see later, |ψ1〉 and |ψ2〉 transform in different
ways and the projection operator |ψ 〉〈ψ| does not remain invariant. In detail,
if

|ψ〉 = α1 |ψ1〉 + α2 |ψ2〉 (1.7.21)

then under the above specified rotation with

|ψ 〉〈ψ| −→ |ψ′ 〉〈ψ′| (1.7.22)

|ψ′〉 = α1 |ψ1〉 − α2 |ψ2〉 . (1.7.23)

Accordingly, not every unit ray in a Hilbert space is necessarily physi-
cally realizable and any rule which singles out such rays is referred to as a
superselection rule.

Any given vector |f〉 in a Hilbert space H may be also defined as an anti-
linear functional, through the inner product as follows. For |g〉 a vector in H,
and with an inner product 〈g |f〉, one may consider |f〉 as a functional in |g〉,
with the property

〈α1ψ1 + α2ψ2 |f〉 = α∗
1 〈ψ1 |f〉 + α∗

2 〈ψ2 |f〉 (1.7.24)

for any two complex numbers α1, α2. The “linearity” condition in (1.7.24) is
implicit. “Anti” in anti-linear refers to the fact that the coefficients α1, α2

in (1.7.24) are complex conjugated which follows from the definition of the
inner product 〈g |f〉.

The above definition is useful in studying properties of observables with
corresponding operators having a continuous spectrum. Such operators are



38 1 Fundamentals

studied in §1.8. But for the moment, consider, for example, the position
operator in one dimension. This may be written as

X =
∫ ∞

−∞
dx x |x〉〈x| (1.7.25)

with the sharp selective measurement symbol Λ(x) = |x〉〈x| satisfying (com-
pare with (1.1.2), (1.1.3))

Λ(x′)Λ(x) = Λ(x) 〈x′ |x〉 (1.7.26)

〈x′ |x〉 = δ(x′ − x) (1.7.27)

with the latter denoting the Dirac delta. The identity operator, which accepts
and transmits all particles crossing anywhere the x-axis with no discrimina-
tion, is given by the expression

1 =
∫ ∞

−∞
dx |x〉〈x| . (1.7.28)

If the system is initially prepared to be in a state |ψ〉, then one may write

|ψ〉 = 1 |ψ〉 =
∫ ∞

−∞
dx |x〉 〈x |ψ〉 (1.7.29)

and the probability density that a particle crosses the x-axis at point x is

Tr
[
Λ(x) |ψ 〉〈ψ|

]
= |〈ψ |x〉|2 . (1.7.30)

Although |x〉 is obviously not a vector in the underlying Hilbert space H,
it is nevertheless rigorously defined as an anti-linear functional on vectors |ψ〉
in H through

〈α1ψ1 + α2ψ2 |x〉 = α∗
1 〈ψ1 |x〉 + α∗

2 〈ψ2 |x〉 . (1.7.31)

The set of all anti-linear functionals consists then not only of vectors
|f〉, as discussed above, but also generalized ket vectors (such as |x〉) and
is obviously larger than the Hilbert space H itself. The triplet consisting of
H, the set of all anti-linear functionals and the domain, depending on the
problem in hand, consisting of those vectors in H on which the anti-linear
functionals are defined, is referred to as a Rigged Hilbert space.

It is interesting to dwell further on the anti-linear functional |x〉 as a
functional of functions belonging to L2(R3). Given some function ψ(·) in
L2(R3), the anti-linear functional |x〉 may be represented by δ3(x− x′), in a
space larger than L2(R3), as defined through

〈ψ |x〉 =
〈
ψ(·)

∣∣δ3(x − ·)
〉
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=
∫

d3x′ ψ∗(x′) δ3(x − x′) = ψ∗(x). (1.7.32)

A sharp momentum state |p〉 of a particle, as we shall see later, may be
written as

|p〉 =
∫

d3x eip·x/� |x〉 (1.7.33)

where � is the Planck constant h divided by 2π. As an anti-linear functional
on functions ψ(·) in L2(R3), |p〉 may be represented by eip·x/� in, obviously,
a larger space than L2(R3), due to its lack of square-integrability, defined
through

〈ψ |p〉 =
〈
ψ(·)

∣∣∣eip·(·)/�

〉

=
∫

d3x ψ∗(x) eip·x/� (1.7.34)

(a Fourier transform). Obviously, the domain of |p〉 consists of functions ψ(x)
in L2(R3) for which the integral in (1.7.34) exists.

Finally consider the anti-linear functional

|Φ〉 =
∫

d3x |x〉Φ(x) (1.7.35)

where Φ(x) is not a square-integrable function, and hence necessarily belongs
to a space larger than L2(R3). Its domain consists of those functions ψ(x) in
L2(R3) such that

〈ψ |Φ〉 =
∫

d3x ψ∗(x)Φ(x) (1.7.36)

exists.
The moral of the Rigged Hilbert space formalism is that physics dictates,

in general, to introduce in addition to a Hilbert space H, a space, say, D+,
larger than H of anti-linear functionals, including generalized ket vectors,
with a domain of definition for the anti-linear functionals, say, D, contained in
H. The Rigged Hilbert space is then written as the triplet D ⊂ H ⊂ D+. The
Rigged Hilbert formalism has clarified some of the ambiguous manipulations
carried out in earlier days of quantum physics.

1.8 Self-Adjoint Operators and Their Spectra

An observable B which may take on a finite number of real discrete values,
{b, b′, . . .}, is represented (see §1.3) by a Hermitian operator

B =
∑

b

b |b〉〈b| (1.8.1)
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B† = B

(using the same notation for the latter as the observable it represents) in
a finite dimensional inner-product space generated by the eigenvectors |b〉.
That is, any vector |f〉 in the generated inner-product space may be written
as (see (1.4.2), (1.4.16))

|f〉 =
∑

b

|b〉 f(b) (1.8.2)

where
f(b) = 〈b |f〉 (1.8.3)

are complex numbers. The operator B maps any vector |f〉, in the generated
inner product space, into another vector

B |f〉 =
∑

b

|b〉 g(b) ≡ |g〉 (1.8.4)

where
g(b) = bf(b) (1.8.5)

in the same inner-product space. In particular, the Hermiticity of B implies
that

〈f2 |B|f1〉 =
∑

b

bf∗
2 (b)f1(b)

= 〈Bf2 |f1〉 (1.8.6)

for any two vectors in the generated inner-product space.
The selective-measurement symbol

Λ(b) = |b〉〈b| (1.8.7)

defines a projection operator, i.e.,

Λ(b)Λ(b) = Λ(b) (1.8.8)

(see (1.1.2)). One may also define the following projection operator

PB(b′) =
∑
b�b′

Λ(b) (1.8.9)

by summing over the projection operators over all the eigenvalues of B, from
the lowest, up to any given eigenvalue b′ as indicated in the summation sign in
(1.8.9). Properties of the projection operators in (1.8.9) are easily established
and will be spelled out for the more general cases to be discussed below.

In the general case when an observable, say, A may take on infinite num-
ber of real discrete values and/or continuous real values, one is faced with



1.8 Self-Adjoint Operators and Their Spectra 41

convergence problems and one carries out physical computations, more gen-
erally, in a Hilbert space as defined in §1.7. The object of physical interest
representing an observable, such as A, is a self-adjoint operator, as defined
below, and coincides with the definition above, for a Hermitian operator, in
the simpler case discussed above with a finite number of real discrete values,
operating in a finite dimensional inner-product space. Hermitian operators
may, however, be defined in the general case as well, but in quantum physics
it is the more general concept of a self-adjoint operator that is relevant as
representing a given observable. We do not wish to get too technical about
the distinction between these two types of operators and we provide the bare
minimum in this respect.

An operator A maps, in general, a vector |f〉 in the underlying Hilbert
space H into some other vector A |f〉 in H. The totality of all vectors {|f〉}
in H such that for each |f〉 in this set, A |f〉 is also in H, i.e., ‖Af‖ < ∞,
is called the domain of A. We are interested in operators with domains rich
enough such that, as a generalization of (1.8.2), any vector in H may be
well approximated by a vector in the domain of the operator in question.
[Technically, this means that for any vector |h〉 in H, and any given ε > 0,
we may find a vector |hε〉 in the domain of A such that ‖h − hε‖ < ε.] For
such an operator, the adjoint A† may be defined through

〈g |A|f〉 =
〈
A†g

∣∣f〉 (1.8.10)

for all |f〉 in the domain of A.
If the domains of A and A† coincide and

〈g |A|f〉 = 〈Ag |f〉 (1.8.11)

(see (1.8.6) for the special case) then A is said to be self-adjoint and one
writes A† = A. [In the case (1.8.11) holds for all |f〉 and |g〉 in the domain of
A, but the domains of A and A† do not coincide, A is said to be Hermitian.]

The remaining part of this section deals with the spectra of self-adjoint
operators and the meaning of the eigenvalue problem. This topic is of central
importance in quantum physics. We restrict, however, the presentation to
those aspects which are only relevant to the rest of the volume.

Given a self-adjoint operator A we may write

A =
∫ ∞

−∞
dλ λ δ(λ − A) (1.8.12)

which has obviously a meaning whenever a measurement of the observable
with which the operator A is associated takes a given real value, say, λ0.

Define

PA(λ) = Θ(λ − A) =
∫ λ

−∞
dλ′ δ(λ′ − A) (1.8.13)

(see (1.8.9) for comparison), where Θ(λ) is the step function, Θ(λ) = 1 for
λ > 0 and Θ(λ) = 0 otherwise. Then formally
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dPA(λ) = δ(λ − A) dλ. (1.8.14)

We may then write from (1.8.12)

A =
∫ ∞

−∞
λ dPA(λ). (1.8.15)

The latter is called the spectral decomposition of A.
The PA(λ) are projection operators whose properties are readily estab-

lished from (1.8.13). They are:

(i) Since a step-function is bounded by 1,
∥∥PA(λ) f

∥∥ � ‖f‖ (1.8.16)

for all |f〉 in the underlying Hilbert space H, i.e., (1.8.16) is defined for
all vectors |f〉 in H. In particular, PA(λ) is self-adjoint.

(ii)
PA(−∞) = 0. (1.8.17)

(iii)

PA(+∞) = 1 =
∫ ∞

−∞
dPA(λ) (1.8.18)

giving the identity operator (compare with (1.1.4), see also (1.8.1),
(1.8.9)). The equality on the right-hand side of (1.8.18) is called the res-
olution of the identity operator.

(iv)
〈f |PA(λ1)|f〉 � 〈f |PA(λ2)|f〉 (1.8.19)

for λ1 < λ2.
(v)

PA(λ1)PA(λ2) = PA(λ0) (1.8.20)

where
λ0 = min(λ1, λ2). (1.8.21)

(vi) From (1.8.18),

‖f‖2 = 〈f |f〉 =
∫ ∞

−∞
d 〈f |PA(λ)|f〉 =

∫ ∞

−∞
d‖PA(λ)f‖2 (1.8.22)

where in writing the last equality we have used (1.8.20).

To study the spectrum of A and hence infer about the possible values
that may be obtained by a measurement of the observable with which A is
associated, we consider the operator

[
PA(λ0 + ε) − PA(λ0 − ε)

]
≡
∫ λ0+ε

λ0−ε

dPA(λ). (1.8.23)
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Suppose λ0 is an isolated point of the spectrum of A. That is, for some
ε > 0, A takes no values in (λ0−ε, λ0 +ε) except the value λ0. The integrand
in (1.8.23) then makes a finite “jump” from zero when A takes on this value
and the subspace [

PA(λ0 + ε) − PA(λ0 − ε)
]
H (1.8.24)

including the case with the limit ε → +0, is not empty. Hence for ε → +0,
the latter contains at least one vector, say, |f〉, and

[
PA(λ0 + 0) − PA(λ0 − 0)

]
|f〉 = |f〉 . (1.8.25)

Accordingly, from (1.8.15), property (iii) in (1.8.18) and property (iv) in
(1.8.22)

∥∥(A − λ0) f
∥∥2 =

∫ ∞

−∞
(λ − λ0)2 d

∥∥PA(λ) f
∥∥2

=
∫ λ0+0

λ0−0

(λ − λ0)2 d
∥∥PA(λ) f

∥∥2 = 0 (1.8.26)

where we have also used (1.8.23), (1.8.25). Hence (A − λ0) |f〉 is the zero
vector, i.e.,

A |f〉 = λ0 |f〉 (1.8.27)

which is the familiar eigenvalue equation for a (discrete) eigenvalue λ0. This
occurs whenever the integrand in (1.8.23) makes a “jump” from zero when
A takes on the value λ = λ0 and the point λ0 is isolated in (λ0 − ε, λ0 + ε)
with no other values occurring in this interval for some ε > 0, and (1.8.24) is
non-empty for ε → +0.

On the other hand, suppose that for some value λ0, that the observable
in question may take, and for all ε > 0, no matter how small, one may find
a point λ1 �= λ0 in (λ0 − ε, λ0 + ε) in the spectrum of A, and

[
PA(λ0 + ε) − PA(λ0 − ε)

]
(1.8.28)

becomes the zero operator for ε → +0. For such a point
[
PA(λ0 + 0) − PA(λ0 − 0)

]
H (1.8.29)

is empty and hence contains no non-zero vectors. As we shall see, this refers to
the fact that there are no eigenvectors in H corresponding to the continuous
spectrum of A.

For ε > 0, however, any non-zero vector in the subspace
[
PA(λ0 + ε) − PA(λ0 − ε)

]
H (1.8.30)

of H for which (1.8.23) is not the zero operator, necessarily depends on ε.
Let |f(ε)〉 be a non-zero in this non-empty subspace of H. That is,
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[
PA(λ0 + ε) − PA(λ0 − ε)

]
|f(ε)〉 = |f(ε)〉 . (1.8.31)

For ε > 0, we may consider |f(ε)〉 to be normalized, i.e., ‖f(ε)‖ = 1. Hence

∥∥(A − λ0) f(ε)
∥∥2 =

∫ λ0+ε

λ0−ε

(λ − λ0)2 d
∥∥PA(λ) f(ε)

∥∥2 (1.8.32)

where we have used (1.8.31), (1.8.23).
The right-hand side of (1.8.32) is bounded above by

ε2

∫ λ0+ε

λ0−ε

d
∥∥PA(λ) f(ε)

∥∥2 = ε2

∫ ∞

−∞
d
∥∥PA(λ) f(ε)

∥∥2 = ε2 (1.8.33)

where we have used (1.8.22), and the normalizability of f(ε) for ε > 0.
That is, for any ε > 0, for which (1.8.30) is not empty (and is otherwise

empty for ε → +0, we may find a vector |f(ε)〉, depending on ε, in H such
that ∥∥(A − λ0) f(ε)

∥∥ � ε (1.8.34)

and (A−λ0) f(ε) can be made closer and closer to the zero vector by making
ε smaller and smaller. Equation (1.8.34) covers the earlier case in (1.8.27) for
the eigenvalue equation as well by taking the limit ε → +0.

One encounters this latter case quite often in elementary quantum physics
courses and a classic example of this is the one dealing with the position
observable and is given below.

Try to set up an eigenvalue equation for the position of a particle, via the
equation

xfx0(x) = x0fx0(x). (1.8.35)

We may rewrite the latter as

(x − x0)fx0(x) = 0 (1.8.36)

whose solution, up to a multiplicative constant, is

fx0(x) = δ3(x − x0). (1.8.37)

[Note that any function of x multiplied by (1.8.37) is evaluated at x = x0 and
hence reduces to a constant.] The solution (1.8.37) is obviously not square-
integrable. What the above analysis, however, shows, and this is in conformity
with experimental limitations, that is given any ε > 0, as small as one wishes,
one may find a square-integrable function δε(x,x0), depending on ε, such that

∥∥(x − x0)δε(x,x0)
∥∥ =

(∫
d3x

∣∣x − x0

∣∣2∣∣δε(x,x0)
∣∣2)1/2

� ε. (1.8.38)

Such an explicit function is given by



1.8 Self-Adjoint Operators and Their Spectra 45

δε(x,x0) =
(

2
π

)3/4 1
ε3/2

exp
[
− (x − x0)2

ε2

]
. (1.8.39)

This is obviously normalized (ε > 0), and the left-hand side of (1.8.38) is
equal to ε/2 < ε.

A similar analysis may be given for the momentum operator of a particle
(see Problem 1.8).

The above analysis leads to the definition of the spectrum of a self-adjoint
operator A as consisting of all (real) λ0 such that

[
PA(λ0 + ε) − PA(λ0 − ε)

]
�= 0 (1.8.40)

for all ε > 0.
For the eigenvalue equation, (A−λ0) annihilates an eigenvector, i.e., some

vector in H, hence the inverse operator (A − λ0)−1 does not exist in all H.
On the other hand for ε > 0 for which (1.8.40) is true, that is the subspace

in (1.8.30) is not empty, and, is otherwise empty for ε → + 0,

(A − λ0) |f(ε)〉 ≡ |g(ε)〉 (1.8.41)

as well as |f(ε)〉, are non-zero vectors in H. In such cases (A − λ0)−1 may
be defined in H since there are no vectors |f〉 in H that make (A − λ0) |f〉
zero. Using the normalizability condition for |f(ε)〉, we have from (1.8.34),
(1.8.41) ∥∥g(ε)

∥∥ � ε = ε
∥∥(A − λ0)−1g(ε)

∥∥ (1.8.42)

which leads to ∥∥(A − λ0)−1g(ε)
∥∥∥∥g(ε)

∥∥ � 1
ε
. (1.8.43)

The latter says that although the inverse (A− λ0)−1 may be defined in such
cases it is an unbounded operator as the right-hand side of (1.8.43) may be
made larger and larger as ε is chosen smaller and smaller.

Consider any two distinct points λ1 and λ2 in the spectrum of A. For any
ε1 > 0, ε2 > 0, and any normalized vectors |f1(ε1)〉, |f2(ε2)〉 such that (see
(1.8.34))

∥∥(A − λ1)f1(ε1)
∥∥ � ε1 (1.8.44)

∥∥(A − λ2)f2(ε2)
∥∥ � ε2 (1.8.45)

the orthogonality relation

lim
ε1→0

lim
ε2→0

〈f1(ε1) |f2(ε2)〉 = lim
ε2→0

lim
ε1→0

〈f1(ε1) |f2(ε2)〉 = 0 (1.8.46)

easily follows. To this end,

(λ1 − λ2) 〈f1(ε1) |f2(ε2)〉 = 〈f1(ε1) |(A − λ2)|f2(ε2)〉
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− 〈f1(ε1) |(A − λ1)|f2(ε2)〉 . (1.8.47)

Hence from the Cauchy-Schwarz inequality (1.7.1), (1.8.44) and (1.8.45),

|〈f1(ε1) |f2(ε2)〉| � (ε1 + ε2)
|λ1 − λ2|

(1.8.48)

leading to the result in (1.8.46) for λ1 �= λ2. [Note that (1.8.48) is an inequality
and its left-hand side may indeed vanish for some ε1, ε2.]

The results in (1.8.46) establish the familiar statement of orthogonality
not only of two eigenvectors, with eigenvalue equations defined as in (1.8.27),
but also in a limiting sense of the orthogonality of two eigenfunctions with λ1

and λ2 in the continuous spectrum and also the orthogonality relation with
λ1, an eigenvalue (i.e., belonging to the discrete spectrum) and λ2 belonging
to the continuous spectrum in a unified manner. In particular, for the very
last situations with λ1 in the discrete spectrum and λ2 in the continuous one
we may write

A |f1〉 = λ1 |f1〉 (1.8.49)
∥∥(A − λ2)f2(ε2)

∥∥ � ε2 (1.8.50)

and
lim

ε2→0
〈f1 |f2(ε2)〉 = 0 (1.8.51)

whose importance cannot be overemphasized.
Since the inverse (A− ξ)−1, where now ξ, in general, is taken to be some

complex number is important in studying the spectrum of A, we consider
further some of its properties. (A − ξ)−1 is called the resolvent of A. To this
end, we may formally write

(A − ξ)−1 =
∫ ∞

−∞

dλ

(λ − ξ)
δ(λ − A)

=
∫ ∞

−∞

1
(λ − ξ)

dPA(λ) (1.8.52)

where in the last equality we have used (1.8.14).
If, as we will shortly investigate, (1.8.52) exists, we have

∥∥(A − ξ)−1f
∥∥2 =

∫ ∞

−∞

1
|λ − ξ|2 d

∥∥PA(λ)f
∥∥2

. (1.8.53)

For Im ξ �= 0, this integral is obviously meaningful since |λ−ξ|2 � | Im ξ|2 > 0,

∥∥(A − ξ)−1f
∥∥2 � 1

| Im ξ|2
∫ ∞

−∞
d
∥∥PA(λ)f

∥∥2 =
‖f‖2

| Im ξ|2 (1.8.54)
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for all |f〉.
If for ξ real and some ε > 0

[
PA(ξ + ε) − PA(ξ − ε)

]
= 0 (1.8.55)

then

∥∥(A − ξ)−1f
∥∥2 =

∫ ξ−ε

−∞

1
|λ − ξ|2 d

∥∥PA(λ)f
∥∥2

+
∫ ∞

ξ+ε

1
|λ − ξ|2 d

∥∥PA(λ)f
∥∥2 � ‖f‖2

ε2
(1.8.56)

and (A − ξ)−1 exists. All complex ξ (i.e., Im ξ �= 0), and all real ξ such that
(1.8.55) is true, constitute of what is called the resolvent set of A.

Finally, for ξ = λ0 real, with λ0 an isolated point of the spectrum of A,
i.e., in particular,

[
PA(λ0 + 0) − PA(λ0 − 0)

]
|f〉 �= 0 (1.8.57)

obviously (1.8.53) does not exist as we already know. On the other hand for
ξ = λ0 real such that

[
PA(λ0 + ε) − PA(λ0 − ε)

]
�= 0 (1.8.58)

for all ε > 0, and is otherwise the zero operator for ε → + 0,

∥∥(A − ξ)−1f
∥∥2 �

∫ λ0+ε

λ0−ε

1
|λ − λ0|2

d
∥∥PA(λ)f

∥∥2 � ‖f‖2

ε2
(1.8.59)

(1.8.53) exists but (A−ξ)−1 is an unbounded operator as the right-hand side
of the above inequality may be made larger and larger by making ε smaller
and smaller, which we also already knew. These last two cases corresponding
to values of ξ as given through (1.8.57)–(1.8.59) constitute the spectrum of
A.

Suppose that for a given self-adjoint operator A, a real number λ0 belongs
to its continuous spectrum or is an eigenvalue of infinite degeneracy, then, by
definition

dim
([

PA(λ0 + ε) − PA(λ0 − ε)
]
H
)

= ∞ (1.8.60)

for all ε > 0. Because of this property, eigenvalues of infinite degeneracy
and the continuous spectrum are grouped together and constitute of what is
called the essential spectrum of a self-adjoint operator.

On the other hand, eigenvalues of at most finite degeneracy (i.e., which are
non-degenerate or of finite degree of degeneracy) constitute of what is called
the discrete spectrum of a self-adjoint operator. In this case, suppose that
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some real number λ0 belongs to the discrete spectrum of a given self-adjoint
operator A. Then we can always find some δ > 0 such that

0 �= dim
([

PA(λ0 + δ) − PA(λ0 − δ)
]
H
)

< ∞ (1.8.61)

including the limiting case δ → + 0, i.e.,

0 �= dim
([

PA(λ0 + 0) − PA(λ0 − 0)
]
H
)

< ∞. (1.8.62)

Two powerful propositions establish results concerning the nature of es-
sential and discrete spectra of self-adjoint operators.

Proposition 1.8.1
For a real number λ0 to belong to the essential spectrum of a given self-adjoint
operator A it is necessary and sufficient that there exists an infinite sequence
{|fn〉} of orthonormal vectors such that

∥∥(A − λ0)fn

∥∥ −→ 0 for n → ∞. (1.8.63)

To establish2 this, suppose first that λ0 belongs to the essential spectrum
of A. Then let ε0 be any positive number such that

ε0 >
|λ0|
2

. (1.8.64)

Choose a number λ1 �= λ0 and a corresponding ε1 such that

ε1 = |λ1 − λ0| < ε0. (1.8.65)

Similarly, choose a number λ2 �= λ0 and a corresponding ε2 such that

|λ2 − λ0| = ε2 < ε1 (1.8.66)

and so on (see Figure 1.14).
We have thus generated a sequence {εn} such that

ε0 > ε1 > ε2 > . . . > εn > . . . (1.8.67)

and (by definition of λ0 as belonging to the essential spectrum) correspond
to infinite dimensional spaces:

[
PA(λ0 + ε0) − PA(λ0 − ε0)

]
H ⊃

[
PA(λ0 + ε1) − PA(λ0 − ε1)

]
H

⊃ . . .

⊃
[
PA(λ0 + εn) − PA(λ0 − εn)

]
H

2 The proofs of Propositions 1.8.1 and 1.8.2 may be omitted at a first reading.
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Fig. 1.14. The figure shows the process of generating the sequence {εn} for
forming intervals about λ0 in the essential spectrum of a self-adjoint operator.

⊃ . . . . (1.8.68)

We may, therefore, select an infinite sequence {|fn〉} of orthonormal vec-
tors such that

[
PA(λ0 + εn) − PA(λ0 − εn)

]
|fn〉 = |fn〉 . (1.8.69)

Hence

∥∥(A − λ0)fn

∥∥2 =
∫ λ0+εn

λ0−εn

(λ − λ0)2 d
∥∥PA(λ)fn

∥∥2 � ε2
n. (1.8.70)

Since in the process of construction we may arrange such that ε2
n → 0 for

n → ∞, it follows that
∥∥(A − λ0)fn

∥∥ −→ 0 for n → ∞. (1.8.71)

Conversely, suppose that there exists an infinite sequence {|fn〉} of ortho-
normal vectors such that

∥∥(A − λ0)fn

∥∥ −→ 0 for n → ∞. (1.8.72)

We then have to show that λ0 belongs to the essential spectrum of A.
To the above end, for any ε > 0
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∥∥(A − λ0)fn

∥∥2 �
∫ λ0−ε

−∞
(λ − λ0)2 d

∥∥PA(λ)fn

∥∥2

+
∫ ∞

λ0+ε

(λ − λ0)2 d
∥∥PA(λ)fn

∥∥2
. (1.8.73)

On the other hand
∫ λ0−ε

−∞
(λ − λ0)2 d

∥∥PA(λ)fn

∥∥2 � ε2
∥∥PA(λ0 − ε)fn

∥∥2 (1.8.74)

and ∫ ∞

λ0+ε

(λ − λ0)2 d
∥∥PA(λ)fn

∥∥2 � ε2
∥∥[1 − PA(λ0 + ε)

]
fn

∥∥2 (1.8.75)

where we have used (1.8.17), (1.8.18), (1.8.20).
Hence

∥∥(A − λ0)fn

∥∥2 � ε2
∥∥PA(λ0 − ε)fn

∥∥2 + ε2
∥∥[1 − PA(λ0 + ε)

]
fn

∥∥2 (1.8.76)

and from this and (1.8.72) we conclude that

lim
n→∞

∥∥PA(λ0 − ε)fn

∥∥2 = 0 (1.8.77)

lim
n→∞

∥∥[1 − PA(λ0 + ε)
]
fn

∥∥2 = 0 (1.8.78)

for any ε > 0. These results may be equivalently rewritten as

lim
n→∞

〈fn |PA(λ0 − ε)|fn〉 = 0 (1.8.79)

lim
n→∞

〈fn |PA(λ0 + ε)|fn〉 = 1 (1.8.80)

or, by combining the two, we may write

lim
n→∞

〈fn|
[
PA(λ0 + ε) − PA(λ0 − ε)

]
|fn〉 = 1 (1.8.81)

for any ε > 0.
Therefore [

PA(λ0 + ε) − PA(λ0 − ε)
]
H (1.8.82)

is not empty and it remains to show that the latter is infinite dimensional.
Suppose that this is not true. That is, it is a finite dimensional space. Select
an orthonormal set {g1, . . . , gk}, k < ∞ in it. Then

〈fn|
[
PA(λ0 + ε) − PA(λ0 − ε)

]
|fn〉 =

k∑
m=1

|〈gm |fn〉|2 � 1 (1.8.83)
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for any ε > 0 and all n.
Since {|fn〉} constitutes an orthonormal set, Bessel’s inequality (1.7.4)

reads
n∑

�=1

|〈gm |f�〉|2 � 1 (1.8.84)

and the convergence of this series for n → ∞ in particular for all m = 1, . . . , k,
implies that

lim
n→∞

|〈gm |fn〉|2 = 0 (1.8.85)

for m = 1, . . . , k. Due to the finite number of terms in the sum in (1.8.83),
we may take the limit n → ∞ inside the summation sign in (1.8.83) to infer
that

〈fn|
[
PA(λ0 + ε) − PA(λ0 − ε)

]
|fn〉 −→ 0 (1.8.86)

for n → ∞ in contradiction with (1.8.81). That is, for any ε > 0, the space
(1.8.82) must be infinite dimensional. This establishes the statement made in
the proposition.

Before stating and establishing the next important proposition regard-
ing now discrete spectra of self-adjoint operators, we need some preliminary
results.

To the above end, we first recall the definitions of the infimum and supre-
mum of a set of real numbers. A real number λ is a lower bound of a set
of real numbers if λ is less than or equal to every element of the set. If in
addition, no lower bound of the set is greater than λ, then λ is referred to as
the infimum of the set. Similarly, λ is an upper bound of a set of real numbers
if λ is greater than or equal to every element of the set. If in addition, no
upper bound of the set is less than λ then λ is referred to as the supremum
of the set.

We define3 the following real numbers associated with a self-adjoint op-
erator A for which a lower bound for its spectrum (§3.2, §3.3) exists:

λn(A) = sup
|f1〉,...,|fn−1〉

{
inf

|ψ〉∈[|f1〉,...,|fn−1〉]⊥
〈ψ |A|ψ〉

}
(1.8.87)

where |f1〉 , . . . , |fn−1〉, |ψ〉 are normalized vectors, |f1〉 , . . . , |fn−1〉 are not
necessarily independent, and |ψ〉 ∈ [|f1〉 , . . . , |fn−1〉]⊥ means that 〈ψ |fi〉 = 0
for i = 0, . . . , n − 1, i.e., the |ψ〉 are orthogonal to |f1〉 , . . . , |fn−1〉.

That is, we define by [|f1〉 , . . . , |fn−1〉]⊥ the space generated by the vectors
(in the domain of A) orthogonal to |f1〉 , . . . , |fn−1〉.

Since,
[|f1〉 , . . . , |fn−1〉]⊥ ⊃ [|f1〉 , . . . , |fn−1〉 , |fn〉]⊥ (1.8.88)

with the set on the left-hand side involving, in general, of more vectors than
the set on the right-hand side, we may infer that

3 This treatment follows that of Reed and Simon (1978).
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inf
|ψ〉∈[|f1〉,...,|fn−1〉]⊥

〈ψ |A|ψ〉 � inf
|φ〉∈[|f1〉,...,|fn−1〉,|fn〉]⊥

〈φ |A|φ〉 (1.8.89)

and then considering the operation of taking the supremum over all
f1, . . . , fn−1, fn we obtain

λn(A) � λn+1(A). (1.8.90)

We also need the following results. Let a and b be any two real numbers
such that

a < λn(A) < b. (1.8.91)

Then

(i)
dim

([
PA(a)

]
H
)

< n (1.8.92)

(ii)
n � dim

([
PA(b)

]
H
)
. (1.8.93)

To establish (i), suppose that dim
([

PA(a)
]
H
)

= k � n. That is, there

exist k � n independent vectors in
[
PA(a)

]
H. Given any k − 1 vectors

|f1〉 , . . . , |fk−1〉, not necessarily independent then

[|f1〉 , . . . , |fk−1〉]⊥ ∩
[
PA(a)

]
H (1.8.94)

is not empty. Let ψ be a (normalized) vector (in the domain of A) belonging
to the latter space. Then

〈ψ |A|ψ〉 =
∫ a

−∞
λ d

∥∥PA(λ)ψ
∥∥2 � a, (1.8.95)

i.e., λk(A) � a. Since by hypothesis k � n, (1.8.90) implies that λn(A) � a
in contradiction with the fact that a < λn(A). This establishes (i) in (1.8.92).

To establish (ii), suppose that dim
([

PA(b)
]
H
)

= k � n − 1, and
that |g1〉 , . . . , |gk〉 are k independent vectors that generate this space. Let
|ψ〉 be any (normalized) vector (in the domain of A) such that |ψ〉 ∈
[|g1〉 , . . . , |gk〉]⊥ ≡

[
1 − PA(b)

]
H. Then

〈ψ |A|ψ〉 =
∫ ∞

b

λ d
∥∥PA(λ)ψ

∥∥2 � b, (1.8.96)

i.e., λk+1(A) � b, and hence λn(A) � b, since by hypothesis n � k + 1. This
contradicts the fact that λn(A) < b and establishes (ii) in (1.8.93).

Now we are ready to state and establish the following proposition.
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Proposition 1.8.2
Either there are n eigenvalues (counting degeneracy) λ1(A) � . . . � λn(A)
below the bottom of the essential spectrum of A, where λn(A) is the nth eigen-
value, or

λn(A) = inf
{
λ, with λ belonging to the essential spectrum

}
with λn(A) = λn+1(A) = . . ., and there may be at most (n − 1) eigenvalues
(counting degeneracy) below λn(A).

To establish the above statements, we first note that for all ε > 0, we
have shown earlier in (1.8.92), (1.8.93) that

dim
([

PA(λn − ε)
]
H
)

< n (1.8.97)

n � dim
([

PA(λn + ε)
]
H
)

(1.8.98)

respectively, where we have simply written λn for λn(A).
We consider the two possibilities:

(i)
dim

([
PA(λn + ε0)

]
H
)

< ∞ (1.8.99)

for some ε0 > 0, or the possibility that
(ii)

dim
([

PA(λn + ε0)
]
H
)

= ∞ (1.8.100)

for all ε0 > 0.

For the case (i), (1.8.97)–(1.8.99), imply that

1 � dim
([

PA(λn + ε0) − PA(λn − ε0)
]
H
)

< ∞ (1.8.101)

for some ε0 > 0. That is, λn is an eigenvalue (of at most finite degeneracy).
Hence (1.8.98), (1.8.101) imply that we may find a δ0 > 0 such that

n � dim
([

PA(λn)
]
H
)

= dim
([

PA(λn + δ0)
]
H
)
. (1.8.102)

This means that there are exactly (n− 1) eigenvalues strictly below λn. This
is because if there are, say, n + k eigenvalues less or equal to λn, i.e., λ′

1 �
. . . � λ′

n+k � λn, then (1.8.97) implies that dim
([

PA(λ′
n+k)

]
H
)

� n+k−1.
But λ′

n+k � λn means that n + k − 1 � n − 1, which is true only if k = 0,

and λ′
n ≡ λn. We also note from (1.8.97) that dim

([
PA(λ1 − ε)

]
H
)

= 0 for
all ε > 0 and hence the spectrum set is empty below λ1. This settles the first
part of the proposition.

For the case (ii), given in (1.8.100), (1.8.97) then necessarily implies that
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dim
([

PA(λn + ε) − PA(λn − ε)
]
H
)

= ∞ (1.8.103)

for all ε > 0. Hence λn, in this case, belongs to the essential spectrum of A.
Let a be any real number such that a < λn − ε, i.e., a + ε < λn. Hence from
(1.8.92),

dim
([

PA(a + ε)
]
H
)

� n − 1. (1.8.104)

Also
dim

([
PA(a − ε)

]
H
)

� dim
([

PA(a + ε)
]
H
)
, (1.8.105)

i.e.,
dim

([
PA(a + ε) − PA(a − ε)

]
H
)

< ∞ (1.8.106)

for all ε > 0. That is, a cannot belong to the essential spectrum and this is for
all ε > 0. This in turn means that λn is the bottom of the essential spectrum
as stated in the second part of the proposition. Now suppose λn+1 > λn, and
note that

λn+1 −
(λn+1 − λn)

2
= λn +

(λn+1 − λn)
2

=
(λn+1 + λn)

2
(1.8.107)

which from (1.8.92) and (1.8.93) imply the contradictory statements that

dim
([

PA

(
λn+1 + λn

2

)]
H
)

(1.8.108)

is � n + 1 and = ∞, respectively. That is, we must have λn+1 = λn.
Also for a < λn − ε, we have from (1.8.104), (1.8.105)

dim
([

PA(a − ε)
]
H
)

� n − 1 (1.8.109)

for all ε > 0, hence there may be at most (n− 1) eigenvalues below λn. This
establishes the second part of the proposition.

For future developments, we establish an order relationship between
the eigenvalues of two self-adjacent operators A and B, whose spectra are
bounded from below, such that for all vectors |ψ〉 in their domains

〈ψ |A|ψ〉 � 〈ψ |B|ψ〉 . (1.8.110)

From the very definitions of the infimum and supremum of a set of real
numbers it is not difficult to see, as shown below, that

λn(A) � λn(B). (1.8.111)

To this end note that if, relative to a given space [|f1〉 , . . . , |fn−1〉]⊥
(see (1.8.87)), c′B provides the infimum corresponding to the operator B,
then from (1.8.110), c′B also gives a lower bound to 〈ψ |A|ψ〉 for all |ψ〉 ∈
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[|f1〉 , . . . , |fn−1〉]⊥. Since, by definition, no such a lower bound can be greater
than the corresponding c′A, we conclude that c′B � c′A. The result then follows
by considering the supremum of all such c′B and c′A as we consider all vectors
|f1〉,. . . ,|fn−1〉.

A special function of a self-adjoint operator A is the unitary operator
defined by

U(t) = eitA (1.8.112)

depending on a real parameter t, which may be rewritten as

U(t) =
∫ ∞

−∞
dλ eitλ δ(λ − A) (1.8.113)

and from (1.8.14) as

U(t) =
∫ ∞

−∞
eitλ dPA(λ) (1.8.114)

providing its spectral decomposition. It satisfies the basic property

U−1(t) = U†(t), (1.8.115)

i.e.,
U†(t)U(t) = 1 = U(t)U†(t) (1.8.116)

and also the group property

U(t1)U(t2) = U(t1 + t2). (1.8.117)

Particular attention will be given later to the study of some basic prop-
erties of an important self-adjoint operator — the Hamiltonian for various
physical systems.

1.9 Wigner’s Theorem on Symmetry Transformations

Invariance of physical laws under some given transformations lead to con-
servation laws and the underlying transformations are referred to as symmetry
transformations. For example, invariance of a physical law under the rotation
of one’s coordinate system in describing the underlying theory leads to the
conservation of angular momentum, and invariance under time translation
(by setting, for example, one’s clocks back by a certain amount) and under
space translation (by shifting the origin of one’s coordinate system) lead, re-
spectively, to energy and momentum conservations. Other transformations,
for example, involve space reflection (also known as parity transformation),
time reversal, and charge conjugation, where in the latter every particle in
the physical process under consideration is replaced by its anti-particle. [It is
remarkable that by combining relativity with quantum mechanics, leading to
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what is called quantum field theory, one concurs that the simultaneous trans-
formation of charge conjugation, parity transformation and time reversal is
a symmetry transformation based on such a merger.]

Invoking invariance properties in developing a dynamical theory, conve-
niently, narrows down one’s choices in providing the final stages of the the-
ory. Not all transformations are, obviously, symmetry transformations of a
given physical system. But invoking the invariance of a system under such
transformations may provide the starting point in describing the underlying
dynamical theory, and then one may consistently modify the interaction in
the theory to take into account any symmetry breaking.

A celebrated theorem due to Wigner, in the thirties originating on sym-
metry due to rotation in space, spells out the nature of the transformations
implemented on elements of a Hilbert space under symmetry transformations.

To see how these implemented transformations on elements of a Hilbert
space occur, we reconsider the general physical question arising in quantum
physics (§1.2–§1.6). One prepares a system in a state |ψ〉. The question then
arises as to what is the probability of finding the system is a state |φ〉 if |ψ〉
is what we initially have? The latter is given by

Tr
[
|φ〉〈φ| |ψ 〉〈ψ|

]
= |〈φ |ψ〉|2 . (1.9.1)

More generally, one may have a mixture described by a density operator
(§1.5)

ρ =
∑

i

wi |ψi 〉〈ψi| . (1.9.2)

The probability of finding a system in state |φ〉 if ρ, in (1.9.2), is what we
initially have is

Tr
[
|φ〉〈φ| ρ

]
=
∑

i

wi |〈φ |ψi〉|2 . (1.9.3)

That is, in both cases one is confronted with the problem of computing
|〈φ |ψ〉|2 for given vectors |ψ〉, |φ〉.

If |ψ′〉, |φ′〉 denote the vectors |ψ〉, |φ〉 resulting under a symmetry trans-
formation, then the invariance of the corresponding probabilities may be
stated by the equality

|〈ψ′ |φ′〉|2 = |〈ψ |φ〉|2 . (1.9.4)

That is, under a symmetry transformation, {|ψ′〉 , |φ′〉} give an equivalent
physical description as {|ψ〉 , |φ〉}.

Each of the vectors |ψ′〉, |φ′〉, |ψ〉, |φ〉 may be scaled by arbitrary phase
factors without changing the physically relevant probabilities given in (1.9.4).
Accordingly, one needs to consider only unit rays (see §1.7) generated by such
vectors. Although such overall phase factors are not important, the relative
phases occurring when adding two or more vectors are physically relevant
with far reaching consequences. Such details will be dealt with later such as
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in §1.10, §8.7, §8.8 and Chapter 8, in general. For the time being we note
that in computing an expression like

|〈α1ψ1 + α2ψ2 |β1φ1 + β2φ2〉|2 (1.9.5)

overall phase factors of the vectors (α1 |ψ1〉+α2 |ψ2〉), (β1 |φ1〉+β2 |φ2〉), for
complex numbers α1, α2, β1, β2 are unimportant, and one is dealing with
rays generated by the two vectors. There are, however, in general important
relative phase factors which arise, when expanding the expression in (1.9.5),
in terms of scalar products of |ψ1〉, |ψ2〉 with |φ1〉, |φ2〉.

To see how rays |ψ〉, |ψ′〉, as occurring in (1.9.4), are related and hence,
in the process, spell out Wigner’s Theorem of Symmetry Transformations,
we provide and re-iterate the following definitions.

Definition 1. An operator L is called linear, or else anti-linear, if given any
vectors |ψ〉, |φ〉, (α |ψ〉 + β |φ〉),

L(α |ψ〉 + β |φ〉) = αL |ψ〉 + βL |φ〉 , (1.9.6)

or else
L(α |ψ〉 + β |φ〉) = α∗L |ψ〉 + β∗L |φ〉 , (1.9.7)

for the corresponding rays generated, respectively, by the vectors L |ψ〉, L |φ〉,
L(α |ψ〉 + β |φ〉). [Note that these equalities do not necessarily hold for the
vectors themselves but only for the corresponding rays just described.]

Definition 2. A linear or else anti-linear operator U , as given as given in
Definition 1, is called unitary or else anti-unitary if

〈Uψ |Uφ〉 = 〈ψ |φ〉 , (1.9.8)

or else
〈Uψ |Uφ〉 = 〈ψ |φ〉∗ , (1.9.9)

for the corresponding rays generated by vectors |ψ〉, |φ〉.

Wigner’s Theorem:

Under a symmetry transformation, these exists a unitary, or else, an anti-
unitary, operator U such that (1.9.6), (1.9.8) or else (1.9.7), (1.9.9), hold
with

|ψ′〉 = U |ψ〉 (1.9.10)

|φ′〉 = U |φ〉 (1.9.11)

(α |ψ〉 + β |φ〉)′ = U(α |ψ〉 + β |φ〉) (1.9.12)
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as applied to rays. The latter means that |ψ′〉, |φ′〉, (α |ψ〉+β |φ〉)′ are defined
up to overall phase factors.

The proof of the theorem is not difficult but long if one spells out all the
details.

To establish the validity of the theorem, we proceed through various pro-
gressive steps.

1. Let {|f1〉 , |f2〉 , . . .} be an orthonormal basis in H. Any vector |ψ〉 in H
may written as

|ψ〉 =
∑

k

αk |fk〉 . (1.9.13)

By definition, under a symmetry transformation,

|〈f ′
k |f ′

�〉| = |〈fk |f�〉| = δk�,

i.e.,
〈f ′

k |f ′
�〉 = δk�. (1.9.14)

Also
|〈f ′

k |ψ′〉| = |〈fk |ψ〉| = |αk|.
Hence let

ak = 〈f ′
k |ψ′〉 (1.9.15)

then we have
|ak| = |αk|. (1.9.16)

2. Consider the vector
|φ〉 = |ψ′〉 −

∑
k

ak |f ′
k〉

with ak defined in (1.9.15). Then

‖φ‖2 = ‖ψ′‖2 −
∑

k

|ak|2

= ‖ψ‖2 −
∑

k

|αk|2 = 0.

That is, |φ〉 is the zero vector, and we may write

|ψ′〉 =
∑

k

ak |f ′
k〉 (1.9.17)

with the ak satisfying (1.9.16). Thus |f ′
1〉, |f ′

2〉, . . . provide an orthonormal
basis for expanding the transformed state |ψ′〉.
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3. Consider the three vectors (j �= k, j �= 1, k �= 1)

|ψ1j〉 = |f1〉 + |fj〉 (1.9.18)

|ψ1k〉 = |f1〉 + |fk〉 (1.9.19)

|ψ1jk〉 = |f1〉 + |fj〉 + |fk〉 . (1.9.20)

From (1.9.18), (1.9.16),
∣∣ψ′

1j

〉
= eiδ1j |f ′

1〉 + eiδj1
∣∣f ′

j

〉
(1.9.21)

which may be rewritten as
∣∣ψ′

1j

〉
= eiδ1j

[
|f ′

1〉 + eiηj1
∣∣f ′

j

〉 ]
(1.9.22)

where the subscripts j1 in ηj1 indicate that the corresponding phase
factor may, in general, depend on |fj〉 as well as on |f1〉.
Similarly,

|ψ′
1k〉 = eiδ1k

[
|f ′

1〉 + eiηk1 |f ′
k〉
]

(1.9.23)
∣∣ψ′

1jk

〉
= eiδ1jk

[
|f ′

1〉 + eiηjk1
∣∣f ′

j

〉
+ eiηk1j |f ′

k〉
]
. (1.9.24)

By definition ∣∣〈ψ′
1j

∣∣ψ′
1jk

〉∣∣ = |〈ψ1j |ψ1jk〉| (1.9.25)

from which we obtain ∣∣∣1 + ei(ηjk1−ηj1)
∣∣∣ = 2. (1.9.26)

That is,
eiηjk1 = eiηj1 (1.9.27)

and the phase factor multiplying
∣∣f ′

j

〉
within the square brackets in

(1.9.24) is independent of the vector |fk〉.
Similarly, ∣∣〈ψ′

1k

∣∣ψ′
1jk

〉∣∣ = |〈ψ1k |ψ1jk〉| (1.9.28)

implies that
eiηk1j = eiηk1 (1.9.29)

and the phase factor multiplying |f ′
k〉 within the square brackets in

(1.9.24) is independent of the vector |fj〉.
Accordingly, under a symmetry transformation, |ψ1j〉, |ψ1k〉, |ψ1jk〉 in
(1.9.18), (1.9.19), (1.9.20), respectively, transform to

∣∣ψ′
1j

〉
, |ψ′

1k〉 as given
in (1.9.22), (1.9.23), and

∣∣ψ′
1jk

〉
= eiδ1jk

[
|f ′

1〉 + eiηj1
∣∣f ′

j

〉
+ eiηk1 |f ′

k〉
]

(1.9.30)
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and the phase factors multiplying
∣∣f ′

j

〉
, and |f ′

k〉 within these square
brackets are the same as the corresponding ones within the square brack-
ets in (1.9.22) and (1.9.23).
Since the phase factors eiηj1 , eiηk1 are understood to be defined relative
to, and may depend on, |f ′

1〉, we will suppress in the sequel the subscript
1 in ηj1, ηk1.

4. Suppose first that α1 �= 0. Then by definition

|〈ψ′
1k |ψ′〉| = |〈ψ1k |ψ〉| (1.9.31)

which implies that
∣∣∣∣1 + e−iηk

ak

a1

∣∣∣∣ =
∣∣∣∣1 +

αk

α1

∣∣∣∣ . (1.9.32)

That is,

Re
(

e−iηk
ak

a1

)
= Re

(
αk

α1

)
. (1.9.33)

Finally from the constraints |ak| = |αk| in (1.9.16), this implies that
[
Im

(
e−iηk

ak

a1

)]2

=
[
Im

(
αk

α1

)]2

. (1.9.34)

5. By definition, ∣∣〈ψ′
1jk

∣∣ψ′〉∣∣ = |〈ψ1jk |ψ〉| (1.9.35)

which implies that
∣∣∣∣1 + e−iηj

aj

a1
+ e−iηk

ak

a1

∣∣∣∣ =
∣∣∣∣1 +

αj

α1
+

αk

α1

∣∣∣∣ . (1.9.36)

This equality together (1.9.33) and the constraints in (1.9.16) give
[
Im

(
e−iηj

aj

a1

)][
Im

(
e−iηk

ak

a1

)]
=
[
Im

(
αj

α1

)][
Im

(
αk

α1

)]
.

(1.9.37)
We use this equality in conjunction with (1.9.34). If from the latter

Im
(

e−iηk
ak

a1

)
= + Im

(
αk

α1

)
(1.9.38)

then (1.9.37) implies that simultaneously

Im
(

e−iηj
aj

a1

)
= + Im

(
αj

α1

)
(1.9.39)

and vice versa, occurring with the same signs for all j �= k not equal to
1.
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Similarly, if

Im
(

e−iηk
ak

a1

)
= − Im

(
αk

α1

)
(1.9.40)

then
Im

(
e−iηj

aj

a1

)
= − Im

(
αj

α1

)
(1.9.41)

simultaneously, and vice versa, occurring with the same signs for all j �= k
not equal to 1.
From (1.9.33) and (1.9.38), (1.9.39), or (1.9.40), (1.9.41), we conclude
that we have two alternatives

ak = a1eiηk

(
αk

α1

)
(1.9.42)

for all k �= 1 uniformly for the expansion coefficients of |ψ′〉 in (1.9.17) or
else

ak = a1eiηk

(
αk

α1

)∗
(1.9.43)

again for all k �= 1 uniformly for the expansion coefficients of |ψ′〉.
That is, under a symmetry transformation, |ψ〉 transforms to

|ψ′〉 =
a1

α#
1

∑
k

α#
k eiηk |f ′

k〉 (1.9.44)

with eiη1 = 1 and α# denotes either α or else α∗. The same # rule for the
transformation applies to every coefficient in |ψ〉 multiplying the vectors
|fk〉.
The case α1 = 0 is easily treated. To this end, we introduce the vector
|χ〉

|χ〉 = |f1〉 +
∑
k�2

αk |fk〉 . (1.9.45)

Since
|〈f ′

k |ψ′〉| = |〈fk |ψ〉| = |〈fk |χ〉| (1.9.46)

we obtain
ak = eiηkα#

k a1, k � 2 (1.9.47)

where a1 is some phase factor.
That is, in all cases, we have either

|ψ′〉 =
∑

k

αkeiηk |f ′
k〉 (1.9.48)

or else
|ψ′〉 =

∑
k

α∗
keiηk |f ′

k〉 (1.9.49)
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up to overall phase factors, thus defining the corresponding ray transfor-
mations. The phases eiηk are independent of the expansion coefficients,
and for each k, eiηk is defined in terms of the pair of vectors |fk〉, |f1〉 only.
Here it is also worth recalling that the vectors |f1〉, |f2〉, . . . are pairwise
orthogonal and hence the relative phases exp i(ηj − ηk), for j �= k, never
occur.

6. It remains to establish, that under a symmetry transformation, if one
vector transforms under the # rule of complex conjugation (respectively
unaltered) rule, then every other vector transforms under the same #
rule.4 To establish this, we assume otherwise and, in turn, run into a
contradiction.
Accordingly, suppose that for two given vectors |ψ〉, |φ〉,

|ψ〉 =
∑

k

αk |fk〉 (1.9.50)

|φ〉 =
∑

k

βk |fk〉 (1.9.51)

we have

|ψ′〉 =
∑

k

αkeiηk |f ′
k〉 (1.9.52)

|φ′〉 =
∑

k

β∗
keiηk |f ′

k〉 . (1.9.53)

Then
|〈ψ′ |φ′〉| = |〈ψ |φ〉| (1.9.54)

implies that ∑
j,k

Im
(
αjα

∗
k

)
Im

(
βjβ

∗
k

)
= 0. (1.9.55)

We consider the various possible cases regarding (1.9.55).

[I] There is at least one pair (j, k) with j �= k, such that

Im
(
αjα

∗
k

)
�= 0 (1.9.56)

Im
(
βjβ

∗
k

)
�= 0. (1.9.57)

We may then introduce the following vector

|χ〉 =
1√
2

[
|fj〉 − i |fk〉

]
≡

∑
i

γi |fi〉 . (1.9.58)

4 The importance of considering this step was particularly and rightly, emphasized
by Weinberg (1995).
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If this vector transforms like the vector |φ〉 we obtain

Im
(
αjα

∗
k

)
Im

(
γjγ

∗
k

)
= 0. (1.9.59)

But since Im
(
γjγ

∗
k

)
= 1/2, the above equality contradicts (1.9.56). Sim-

ilarly, if |χ〉 transforms like |ψ〉 we obtain a contradiction with (1.9.57).
That is, |ψ〉 and |φ〉 must follow the same # rule.

[II] No such a pair as in [I] exists, but there exists a triplet (j, k, �), all unequal,
such that

Im
(
αjα

∗
k

)
�= 0, Im

(
αjα

∗
�

)
= 0

Im
(
βjβ

∗
k

)
= 0, Im

(
βjβ

∗
�

)
�= 0.

(1.9.60)

Note that if either (or both) of Im
(
αjα

∗
�

)
, Im

(
βjβ

∗
k

)
are not equal to

zero we are back to case [I]. We introduce the vector

|ξ〉 =
1√
3

[
|fj〉 − i |fk〉 − i |f�〉

]
≡

∑
i

γi |fi〉 (1.9.61)

where Im
(
γjγ

∗
k

)
= Im

(
γjγ

∗
�

)
= 1/3, Im

(
γkγ∗

�

)
= 0. Again we run into a

contradiction with Im
(
αjα

∗
k

)
�= 0, Im

(
βjβ

∗
�

)
�= 0 if |ξ〉 transforms either

as |φ〉 or |ψ〉. That is, |ψ〉 and |φ〉 must follow the same # rule.
[III] No such a triplet may be found as in [II], but we may find a quadruplet

(j, k, �,m), all unequal, such that

Im
(
αjα

∗
k

)
�= 0, Im

(
αjα

∗
m

)
= 0

Im
(
αkα∗

�

)
= 0, Im

(
α�α

∗
m

)
= 0

(1.9.62)

and
Im

(
βjβ

∗
k

)
= 0, Im

(
βjβ

∗
m

)
= 0

Im
(
βkβ∗

�

)
= 0, Im

(
β�β

∗
m

)
�= 0.

(1.9.63)

We may then introduce the vector

|η〉 =
1√
4

[
|fj〉 − i |fk〉 + |f�〉 − i |fm〉

]
≡

∑
i

γi |fi〉 (1.9.64)

and note that

Im
(
γjγ

∗
k

)
= Im

(
γjγ

∗
m

)

= Im
(
γ�γ

∗
m

)
= Im

(
γ�γ

∗
k

)

=
1
4
, (1.9.65)

Im
(
γjγ

∗
�

)
= Im

(
γkγ∗

m

)
= 0. (1.9.66)
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We then run into a contradiction and conclude of the necessity that the
same transformation rule holds for |ψ〉 and |φ〉.

[IV] For all pairs (j, k), j �= k, Im
(
αjα

∗
k

)
= 0. This in turn leads to two pos-

sibilities. Suppose Im αk = 0 for all k. Then αk = α∗
k and |ψ〉 transforms

the same way as |φ〉, up to an overall phase. Suppose at least for one j,
Im αj �= 0. Then Im

(
αjα

∗
k

)
= 0 gives

αk = α∗
k

(
αj

α∗
j

)
(1.9.67)

since αj/α∗
j is just a phase factor, we again reach the same conclusion

regarding |ψ〉 and |φ〉.
[V] For all pairs (j, k), j �= k, Im

(
βjβ

∗
k

)
= 0. This case is treated in the same

way as case [IV] by reversing the roles of |φ〉 and |ψ〉.
Therefore we have reached the conclusion that we may introduce an op-

erator U such that
eiηk |f ′

k〉 = U |fk〉 (1.9.68)

and

U

(∑
k

αk |fk〉
)

=
∑

k

αkU |fk〉 (1.9.69)

or else

U

(∑
k

αk |fk〉
)

=
∑

k

α∗
kU |fk〉 (1.9.70)

and therefore
|ψ′〉 = U |ψ〉 . (1.9.71)

It is worth recalling that any vector |ψ〉 may be expanded in terms of the
orthonormal basis {|fk〉}, and the transformed vector |ψ′〉 is then expanded
in terms of the orthonormal basis {|f ′

k〉}. Also due to the orthogonality of
the vectors |f ′

k〉, the relative phases exp i(ηj − ηk), for j �= k, never occur.
Hence for any two rays |ψ〉, |φ〉 one has

〈Uψ |Uφ〉 =
∑

k

α∗
kβk = 〈ψ |φ〉 (1.9.72)

or else

〈Uψ |Uφ〉 =
∑

k

αkβ∗
k = 〈ψ |φ〉∗

= 〈φ |ψ〉 . (1.9.73)

Finally consider any linear combination such as
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α |ψ〉 + β |φ〉 =
∑

k

(
ααk + ββk

)
|fk〉 . (1.9.74)

Under a symmetry transformation, we have shown that
(
α |ψ〉 + β |φ〉

)′ =
∑

k

(
ααk + ββk

)
eiηk |f ′

k〉 (1.9.75)

or else (
α |ψ〉 + β |φ〉

)′ =
∑

k

(
α∗α∗

k + β∗β∗
k

)
eiηk |f ′

k〉 (1.9.76)

up to overall phase factors for the combination
(
α |ψ〉+ β |φ〉

)′ which do not
necessarily coincide with those of the separate vectors |ψ′〉, |φ′〉. According
to (1.9.68), the right-hand of (1.9.75), or else (1.9.76), is given by

αU |ψ〉 + βU |φ〉 (1.9.77)

or else by
α∗U |ψ〉 + β∗U |φ〉 (1.9.78)

which establish the linearity, or else the anti-linearity, of U upon identifying(
α |ψ〉 + β |φ〉

)′ with U
(
α |ψ〉 + β |φ〉

)
, for the corresponding rays.

1.10 Probability, Conditional Probability and
Measurement

As a physical attribute of a given system, consider the measurement of
some quantity B that may take on values from a discrete set of real numbers
{b, b′, . . .}. For simplicity of the notation, let B also denote the self-adjoint
operator associated with this physical quantity satisfying the eigenvalue equa-
tion

B |b〉 = b |b〉 (1.10.1)

〈b′ |b〉 = δ(b′, b). (1.10.2)

The states of the apparatus, which registers in which state it has found
the physical system, will be denoted by |a′, ν′〉, where a′ corresponds to a
“needle” registering-value. The latter will be denoted by ab if the “needle”
registers the value b for the physical system. We consider the situation in
which the apparatus may, in general, disturb the physical system causing the
latter to make a transition from a state specified by the value b, as registered
by the apparatus to a state specified by some other value, say, b′ afterwards.
In |a′, ν′〉, ν′ denotes the collection of all other quantum numbers needed to
specify the state of the apparatus. After a value for B is registered by the
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apparatus, ν′ may also change and take on some other set of values, say, ν′′

specifying together with the “needle” registering value ab, the new state of the
apparatus. In this section, the states |a′, ν′〉 of the apparatus will be taken
to satisfy the orthonormality condition5

〈a′′, ν′′ |a′, ν′〉 = δ(a′′, a′)δ(ν′′, ν′). (1.10.3)

1.10.1 Correlation of a Physical System and an Apparatus

Initially, the state of the apparatus before it is switched on, or before it
interacts with the physical system, will be denoted by |a, ν〉. The initial state
of the combined system consisting of the physical system under consideration
and the apparatus will be taken to be of the form

|ψ0〉 =

(∑
b

cb |b〉
)
|a, ν〉 ,

∑
b

|cb|2 = 1. (1.10.4)

The situation with the physical system and the registering apparatus is
depicted pictorially in Figure 1.15 for a given b value.

During the registration process by the apparatus, the combined system
will evolve and finally after the registration has been completed, will be de-
scribed by a state having the structure

|ψ〉 =
∑

b,b′,ν′

cb |b′〉 |ab, ν
′〉C(b′, ab, ν

′; b, a, ν) (1.10.5)

showing a correlation has occurred between the apparatus and the physical
system and also incorporating a general disturbing transition as a result of
the interaction between these two sub-systems.

We introduce the class of unitary operators which lead from the state |ψ0〉
to the possible states |ψ〉 in (1.10.5). [For an apparatus that is not switched
on, the identity operator is the corresponding unitary operator.] In general,
such a unitary operator has the structure

U =
∑

b′,a′,ν′

b′′,a′′,ν′′

|b′〉 |a′, ν′〉U(b′, a′, ν′; b′′, a′′, ν′′) 〈b′′| 〈a′′, ν′′| (1.10.6)

leading to

U |ψ0〉 =
∑

b,b′,a′,ν′

cb |b′〉 |a′, ν′〉U(b′, a′, ν′; b, a, ν) (1.10.7)

which, in particular, requires from (1.10.5) that
5 For greater generality in applications, such orthogonality conditions will be re-

laxed in Chapter 8 (cf. §8.7, §8.9) allowing less restrictive apparatuses.
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Fig. 1.15. Distinguishable states of the physical system in question are shown
on the left-hand side of the figure. The registering apparatus may, in general,
disturb the physical system to jump from a state |b〉 to a state, say, |b′〉
following the registration process by interacting with this system. The “nee-
dle” registering-value a′ together with a collection of other possible quantum
numbers ν′ specify the state of the apparatus.

U(b′, a′, ν′; b, a, ν) = δ(a′, ab)C(b′, ab, ν
′; b, a, ν) (1.10.8)

implying that the apparatus has registered the value “b” for the physical
system under consideration, and that

U |ψ0〉 = |ψ〉 (1.10.9)

with |ψ〉 defined in (1.10.5).
Unitarity of U means that

U†U = 1, UU† = 1 (1.10.10)

giving, respectively, the general constraints
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∑

b′′,a′′,ν′′

U∗(b′′, a′′, ν′′; b′′′, a′′′, ν′′′)U(b′′, a′′, ν′′; b′, a′, ν′)

= δ(b′′′, b′)δ(a′′′, a′)δ(ν′′′, ν′) (1.10.11)

∑
b′′,a′′,ν′′

U(b′, a′, ν′; b′′, a′′, ν′′)U∗(b′′′, a′′′, ν′′′; b′′, a′′, ν′′)

= δ(b′, b′′′)δ(a′, a′′′)δ(ν′, ν′′′). (1.10.12)

In particular, for b′′′ = b′, a′′′ = a′, ν′′′ = ν′ we have the normalization
conditions: ∑

b′′,a′′,ν′′

∣∣U(b′′, a′′, ν′′; b′, a′, ν′)
∣∣2 = 1 (1.10.13)

∑
b′′,a′′,ν′′

∣∣U(b′, a′, ν′; b′′, a′′, ν′′)
∣∣2 = 1. (1.10.14)

For the sequel, it is convenient to rewrite (1.10.5) as

|ψ〉 =
∑

b

cb

∣∣∣Φ(b)
〉

(1.10.15)

where ∣∣∣Φ(b)
〉

=
∑
b′,ν′

|b′〉 |ab, ν
′〉C(b′, ab, ν

′; b, a, ν) (1.10.16)

and (1.10.8), (1.10.13) imply that
∑
b′,ν′

∣∣C(b′, ab, ν
′; b, a, ν)

∣∣2 = 1 (1.10.17)

and the inequality ∑
ν′

∣∣C(b′, ab, ν
′; b, a, ν)

∣∣2 � 1. (1.10.18)

Equations (1.10.2), (1.10.3), (1.10.17) give the normalization condition
〈
Φ(b′)

∣∣∣Φ(b)
〉

= δ(b′, b). (1.10.19)

1.10.2 Probability and Conditional Probability

We may define the density operator

ρ = |ψ 〉〈ψ| (1.10.20)

and ask pertinent physical questions.
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After the experiment has been completed on the physical system in ques-
tion, what is the probability that the “experimentalist” will find (read) the
registered value ab on the apparatus regardless in which state the physical
system has made a transition to? From (1.10.15), (1.10.19), (1.10.20) this
probability is given by

Tr
[∣∣∣Φ(b)

〉〈
Φ(b)

∣∣∣ ρ] = |cb|2 (1.10.21)

as expected.
After the registration process of the apparatus has been completed, what

is the probability that a B-filter will find the system in the state |b〉 and a
reading on the registering apparatus to be ab? This may be obtained directly
from (1.10.5) to be

|cb|2
∑
ν′

∣∣C(b, ab, ν
′; b, a, ν)

∣∣2 � |cb|2 (1.10.22)

where we have used the inequality (1.10.18), implying, in general, that the
probability in question is reduced over the value |cb|2 due to the possibility
of the apparatus causing the physical system to make a transition.

The importance of the expressions for the probability on the left-hand
side of (1.10.22) and the one on the right-hand side of (1.10.21) cannot be
overemphasized. They lead to the following, almost tautological, question.
First we note that in the initial state |ψ0〉 in (1.10.4), there is a summation
over all b. If a measurement is made on the system and the apparatus read-
ing is ab, then one may ask the question: what is the probability that the
system immediately afterwards is in the state |b〉? Such a probability is what
probabilists call a conditional probability :

“Given that the apparatus yielded the value ab, what is the probabil-
ity that the system is in the state |b〉?”

This probability, written as,

Prob
[
system in state |b〉 / apparatus yielded value ab

]
(1.10.23)

is given by the ratio:

Prob
[
system in state |b〉 and apparatus yielded ab

]
Prob

[
apparatus yielded ab regardless of the state of the system

] .
(1.10.24)

From the left-hand side of (1.10.22), and (1.10.21), this probability works
out to be

|cb|2
∑
ν′

∣∣C(b, ab, ν
′; b, a, ν)

∣∣2

|cb|2
=
∑
ν′

∣∣C(b, ab, ν
′; b, a, ν)

∣∣2 (1.10.25)
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and the |cb|2 term (for |cb|2 �= 0) cancels out in the final expression for the
probability. This is “as if” the measurement carried out on the system, giving
the read value ab on the apparatus, has forced all the expansion coefficients
in (1.10.4) to be zero with the exception of cb, for the particular b value in
question, and replaced this latter coefficient by one!

For an idealistic, rather simplistic description of an apparatus, the final
state |ψ〉 for the combined physical system and the apparatus may be taken
to be of the simple form

|ψ〉 =
∑
b′

cb′ |b′〉 |ab′〉 (1.10.26)

and the probability in (1.10.23) then reduces from (1.10.24) to

|cb|2
|cb|2

= 1 (1.10.27)

giving the idealistic confirmation of measurement that if (i.e., given that)
the apparatus yields the value ab, then the system is found in the state |b〉
with probability one, and as if all the coefficients cb′ in (1.10.26) have been
replaced by zero with the exception of cb which has been effectively replaced
by 1, as mentioned earlier.

1.10.3 An Exactly Solvable Model

As a further illustration, consider a two-level physical system such as for
a particle of spin 1/2 which will be considered below. The states of such a
system will be denoted by |±〉. If the system is in the state |+〉, then an
apparatus, detecting the system, will be found in some corresponding state
denoted, say, by

∣∣+〉
. Similarly, if the system is in the state |−〉, the apparatus

will be found in some corresponding state
∣∣−〉

.
The states of the apparatus are shown in Figure 1.16, where the initial

state of the apparatus, corresponding to a neutral position, is taken to be∣∣0〉 with the “needle” of the apparatus initially pointing at 0.
As we will see later, the state

∣∣0〉 may be expanded as follows

∣∣0〉 =
1√
2

(
e−iπ/4

∣∣+〉
+ eiπ/4

∣∣−〉 )
. (1.10.28)

The origin of the phase factors exp(∓iπ/4) in the combination of the states∣∣±〉
in (1.10.28) will become clear later and have to do with the needle spin

state along the y-axis and 1/
√

2 is a normalization factor.
The state of the physical system plus the apparatus before their mutual

interaction will be taken to be

|ψ0〉 =
(
c+ |+〉 + c− |−〉

) ∣∣0〉 (1.10.29)
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y

z

++ +

−−−
000

∣∣0〉 ∣∣+〉 ∣∣−〉

Fig. 1.16. The figure denotes the states of the apparatus with the first one
on the left-hand side denoting its neutral state before it interacts with the
physical system.

|c+|2 + |c−|2 = 1, and for the final state

|ψ〉 =
{(

c+ +
1
2
[
c+(cos κ − 1) + ic− sinκ

])
|+〉

+
1
2
[
ic+ sinκ + c−(cos κ − 1)

]
|−〉

} ∣∣+〉

+
{(

c− +
1
2
[
ic+ sin κ + c−(cos κ − 1)

])
|−〉

+
1
2
[
c+(cos κ − 1) + ic− sin κ

]
|+〉

} ∣∣−〉
(1.10.30)

showing that a correlation has occurred between the apparatus and the phys-
ical system, and also incorporating a general disturbing transition specified
by the “angle” κ. For an almost ideal apparatus, κ is arbitrarily small — see
(1.10.40)–(1.10.43). For an ideal apparatus, with κ → 0, (1.10.30) becomes

|ψ〉ideal = c+ |+〉
∣∣+〉

+ c− |−〉
∣∣−〉

. (1.10.31)

This state defines the perfect correlation between the apparatus and the
physical system with the “needle” pointing in the same direction as the spin of
the particle, respectively, in each case. For such an ideal apparatus, (1.10.31)
is of the form in (1.10.26), and, for example, (for c+ �= 0),

Prob
[
system in state |+〉 and apparatus in state

∣∣+〉 ]
= |c+|2,

(1.10.32)

Prob
[
apparatus in state

∣∣+〉 ]
= |c+|2 (1.10.33)
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and hence from (1.10.24)

Prob
[
system in state |+〉 / if apparatus in state

∣∣+〉 ]
=

|c+|2
|c+|2

= 1

(1.10.34)
as in (1.10.27).

If c+ �= 0, c− �= 0, in (1.10.31), neither the physical system nor the
apparatus is in a definite state.6

More generally, the state |ψ0〉 in (1.10.29) evolves to state |ψ〉 in (1.10.30)
via the unitary operator

U = 1 + A + B (1.10.35)

where

A = −
[
(1 − i) |+〉〈+| + (1 + i) |−〉〈−|

]

× 1
2

[ ∣∣+〉〈
+
∣∣+ ∣∣−〉〈−∣∣− ∣∣−〉〈

+
∣∣− ∣∣+〉〈−∣∣ ] (1.10.36)

B =
[
(cos κ − 1)

(
|+〉〈+| + |−〉〈−|

)
+ i sin κ

(
|−〉〈+| + |+〉〈−|

)]

× 1
2

[ ∣∣+〉〈
+
∣∣+ ∣∣−〉〈−∣∣+ ∣∣−〉〈

+
∣∣+ ∣∣+〉〈−∣∣ ]. (1.10.37)

That is (see Problem 1.10),

U |ψ0〉 = |ψ〉 (1.10.38)

with |ψ0〉, |ψ〉 given, respectively, in (1.10.29), (1.10.30) and

U†U = UU† = 1. (1.10.39)

Later (§8.7) we will see how the unitary operator U in (1.10.35)–(1.10.37)
actually arises as an elementary interaction between the variables of the phys-
ical system and the apparatus. The system consisting of the apparatus and
the physical system based on (1.10.30) will be analyzed in detail below.

For the interpretation of κ in (1.10.30), (1.10.36), (1.10.37), suppose that
a system is initially in the state |+〉, i.e., c+ = 1, c− = 0. After the interaction
of the apparatus with the system, the probability that the apparatus will be
in the state

∣∣+〉
is from (1.10.30) given by

1
4

[
(1 + cos κ)2 + sin2 κ

]
=

1
2
(1 + cos κ). (1.10.40)

Now given that the apparatus is in the state
∣∣+〉

, the (conditional) prob-
ability that the physical state has made a transition to the state |−〉 is from
(1.10.30), (1.10.40) with c+ = 1, c− = 0,
6 Such a state is called an entangled state. The properties of entangled states will

be studied in detail in Chapter 8, in particular, in §8.10.
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1
4

sin2 κ

1
2
(1 + cos κ)

=
1
2

sin2 κ

(1 + cos κ)
(1.10.41)

which for an ideal apparatus, κ → 0, goes to zero.
Conversely, the probability that the system remains in the state |+〉 after

the interaction with the apparatus irrespective of the state of the apparatus
is, from (1.10.30) (with c+ = 1, c− = 0), given by

1
4

[
(cos κ + 1)2 + (cos κ − 1)2

]
=

1
2
(1 + cos2 κ). (1.10.42)

Given that the system remains in the state |+〉, the (conditional) probability
that the apparatus is in the state

∣∣−〉
is then from (1.10.30), (1.10.42).

1
2

(1 − cos κ)2

(1 + cos2 κ)
(1.10.43)

which would again vanish for an ideal apparatus, as expected.
Finally, the probability that the system makes a transition to the state |−〉

and the apparatus is found in the state
∣∣−〉

is (sin2 κ)/4, again for c+ = 1,
c− = 0.

Figure 1.17 depicts experiments, where a spin 1/2 particle prepared in
the state |+1/2, z〉 goes through a Stern-Gerlach set up. In the subsequent
analysis, we make the identifications |±〉 → |±1/2, z〉 in (1.10.29), (1.10.30).
In part (d) of the figure, an operating apparatus is inserted of the type just
described. As in Figure 1.3 in §1.1, the numerical factor m in |m, z〉, with m =
±1/2, correspond, respectively, to spin components along the ±z directions.

The coefficients c± in (1.10.29), (1.10.30) are now given by

c± = 〈±1/2, z |+1/2, z〉 . (1.10.44)

In part (a) of the Figure, the probability that the particle emerges and a
spin flip occurs, i.e., with the spin component being along the −z direction,
is obtained from the successive measurements symbols

Λz(−1/2)Λz(−1/2)Λz(+1/2) = |−1/2, z 〉〈+1/2, z|

×
(
〈−1/2, z |−1/2, z〉 〈−1/2, z |+1/2, z〉

)
(1.10.45)

relative to the z-, z-, z-axes, respectively, to be given by

|〈−1/2, z |−1/2, z〉|2 |〈−1/2, z |+1/2, z〉|2 . (1.10.46)

Similarly for the probability of a non-flip of spin, we have

|〈+1/2, z |−1/2, z〉|4 (1.10.47)
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Fig. 1.17. A spin 1/2 particle initially prepared in the state |+1/2, z〉 goes
through the Stern-Gerlach set up illustrated, with a non-zero (0 < θ < π)
angle of orientation of the z-axis relative to the z-axis. In part (a), the proba-
bility that the particle emerges and has a spin flip, i.e., is in the −z direction, is
|〈−1/2, z |−1/2, z〉|2 |〈−1/2, z |+1/2, z〉|2. In part (b), the corresponding prob-
ability is |〈−1/2, z |+1/2, z〉|2 |〈+1/2, z |+1/2, z〉|2. In (c), this probability is
zero due to destructive interference. In part (d), an operating apparatus is
inserted to determine the component of the spin, in the intermediate stage, is
along the +z or the −z directions but the “experimentalist” does not take a
reading and hence does not know this result. The probability in this case that
the particle emerges with a spin-flip is, up to an additional term of the order
(sin2 κ)/2, the sum of the corresponding probabilities in parts (a) and (b).
For κ arbitrarily small, the interference term becomes small. This idealized
experimental set-up mimics the famous “double-slit” experiment.

in part (a).
For part (b), the probabilities that the particle emerges and with a spin

flip or with a non-flip of spin are, respectively,

|〈−1/2, z |+1/2, z〉|2 |〈+1/2, z |+1/2, z〉|2 (1.10.48)

|〈+1/2, z |+1/2, z〉|4 . (1.10.49)

To consider the situation in parts (c) and (d), we first define corresponding
density operators
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ρ0 = |ψ0 〉〈ψ0| (1.10.50)

ρ = |ψ 〉〈ψ| (1.10.51)

where the states |ψ0〉, |ψ〉 are given, respectively, in (1.10.29), (1.10.30).
In part (c), the probabilities that the particle emerges with a spin flip or

with a non-flip of spin are, respectively,

0 = |〈−1/2, z |+1/2, z〉|2 = Tr
[
Λz(−1/2)ρ0

]

=|c+|2 |〈+1/2, z |−1/2, z〉|2 + |c−|2 |〈−1/2, z |−1/2, z〉|2

+
[
c∗+c− 〈+1/2, z |−1/2, z〉 〈−1/2, z |−1/2, z〉

+ c∗−c+ 〈−1/2, z |−1/2, z〉 〈−1/2, z |+1/2, z〉
]

(1.10.52)

or

1 = |〈+1/2, z |+1/2, z〉|2 = Tr
[
Λz(+1/2)ρ0

]

=|c+|2 |〈+1/2, z |+1/2, z〉|2 + |c−|2 |〈−1/2, z |+1/2, z〉|2

+
[
c∗+c− 〈+1/2, z |+1/2, z〉 〈+1/2, z |−1/2, z〉

+ c∗−c+ 〈−1/2, z |+1/2, z〉 〈+1/2, z |+1/2, z〉
]
. (1.10.53)

The numerical values 0 or 1 on the extreme left-hand sides of (1.10.52),
(1.10.53) are obtained from the consideration of the successive measurements
symbols

Λz(∓1/2)Λz(+1/2) = |∓1/2, z 〉〈+1/2, z|
(
〈∓1/2, z |+1/2, z〉

)

= |∓1/2, z 〉〈+1/2, z| δ(∓z,+z). (1.10.54)

The third terms in the square brackets on the extreme right-hand sides
of (1.10.52), (1.10.53) are referred to as interference terms, showing that de-
structive and constructive interferences, have, respectively, occurred in these
experiments.

Now we come to the interesting situation depicted in part (d), where the
apparatus has been inserted. The corresponding probabilities are given by

Tr
[
Λz(∓1/2)ρ

]
(1.10.55)

where the operating apparatus is inserted but no reading of the apparatus is
undertaken.
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From (1.10.30), (1.10.51), (1.10.55) a lengthy but straightforward calcu-
lation (see Problem 1.13) shows that the probabilities in (1.10.55) work out
to be equal to

|c+|2 |〈+1/2, z |∓1/2, z〉|2 + |c−|2 |〈−1/2, z |∓1/2, z〉|2

+ (sin κ)
[(
|c−|2 − |c+|2

)
sinκ + i

(
c−c∗+ − c∗−c+

)
cos κ

]

× 1
2

(
|〈∓1/2, z |+1/2, z〉|2 − |〈∓1/2, z |−1/2, z〉|2

)

+ (sin κ)
[(
|c−|2 − |c+|2

)
cos κ + i

(
c−c∗+ − c∗−c+

)
sin κ

]

× i
2

(
〈−1/2, z |∓1/2, z〉 〈∓1/2, z |+1/2, z〉

− 〈+1/2, z |∓1/2, z〉 〈∓1/2, z |−1/2, z〉
)

(1.10.56)

which is to be compared with the extreme right-hand sides of (1.10.52),
(1.10.53) given, in part (c) of Figure 1.7 in the absence of the apparatus.

For a negligibly disturbing apparatus, specified by a very small κ, the
interference terms in the square brackets on the right-hand sides of (1.10.52),
(1.10.53) essentially disappear, as seen from (1.10.56) for κ � 0, by the mere
insertion of an unread apparatus! and completely disappear for κ → 0.

Let us be more quantitative. To this end, if the angle between the z- and
z-axes is β, then as we will see later

〈+1/2, z |+1/2, z〉 = cos
β

2
= 〈−1/2, z |−1/2, z〉 (1.10.57)

〈−1/2, z |+1/2, z〉 = − sin
β

2
, 〈+1/2, z |−1/2, z〉 = sin

β

2
. (1.10.58)

Upon setting
1
2

sin2 κ = ε2 (1.10.59)

the probabilities corresponding to parts (a), (b), (c), (d) in Figure 1.17 are
directly obtained from (1.10.46)–(1.10.49), (1.10.52), (1.10.53), (1.10.56), by
using (1.10.57)–(1.10.59), and are spelled out in Figure 1.18, where c± are
defined in (1.10.44).

In particular, we note from Figure 1.17 (a), (b) that blocking one of the
“z-outlets”, for a spin projection, increases the probability that a particle
emerges with a spin-flip from a 0 value (versus part (c)) to a non-vanishing
value of (sin2 β)/4, where in part (c) both “z-outlets” are kept open.

Unlike the situations in part (c) and (d), the blocking of the “z-outlet”
shown in part (a) (and similarly in part (b)), the particle does not necessarily
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Fig. 1.18. In parts (a), (b), the probabilities are given for the particle emerg-
ing has a spin flip (spin non-flip), i.e., is in the state |−1/2, z〉 (|+1/2, z〉). In
parts (c), (d), the probabilities are given for the particle emerging with a spin
flip or with a non-flip of spin, where both of the “z-outlets” are kept “open”.
In part (d), the apparatus is inserted in the intermediate stage. For the cor-
responding experiments refer to Figure 1.17. The angle between the z- and
z-axes is equal to β. The probability spikes are not drawn to scale for any
specific value of β.

emerge from the left-hand side of the experimental set-up and hence the sum
of the probabilities (sin2 β)/4, for spin-flip, and sin4(β/2), for a spin non-flip,
shown by the spikes in Figure 1.18 (a), is less than one.

When the apparatus is inserted in part (d), but unread by the “experi-
mentalist”, the probabilities, up to the ±ε2 cos2 β terms, are the sum of the
corresponding ones in parts (a) and (b), respectively. That is, for κ arbitrar-
ily small, and hence small ε, the mere insertion of the apparatus essentially
washes away interferences as occurring in part (c), and they completely dis-
appear for κ → 0.

In part (c), the particle emerges with a non-flip of spin. The probabilities
of 0 (for a spin-flip) and 1 (for a spin non-flip) are not simply the sum of
the corresponding probabilities in parts (a) and (b). There are interference
terms

− (sin2 β)
2

(1.10.60)

and

+
(sin2 β)

2
=
(

1 − sin4 β

2
− cos4

β

2

)
(1.10.61)
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within the square brackets on the right-hand sides of (1.10.52), (1.10.53), re-
spectively, leading finally to the value 0 and 1 for the probabilities mentioned
above.

That is, the fate of a single particle, in the experimental set-up in part (c)
of Figure 1.17 is inferred from the intensity distributions computed in part (c)
of Figure 1.18 and these probabilities are not obtained by simply summing
the corresponding probabilities in parts (a) and (b) which would exclude
the interference terms discussed above. This has led to such a statement,
attributed to Paul Dirac, referring to a photon, that a particle interferes with
itself! The interference, however, occurs between different amplitudes when
adding them up to obtain a given probability of occurrence as in (1.10.52),
(1.10.53). It is misleading to think of a particle in the quantum world as a
particle in a classical sense, otherwise one would run into a typical classical
argument on how a single particle may simultaneously go through both “±z-
outlets” leading finally to the built up of the interference pattern observed in
several experiments, with very low particle densities used at each given time,
but are run for long periods of time so designed to avoid arguments based on
particle-particle interactions as necessarily the source of interference.

Finally we note in reference to part (d) in Figure 1.17, if the apparatus
is read and found to be in the state

∣∣+〉
, then one may enquire about the

probability that the particle is in state |+1/2, z〉 before it enters the second
Stern-Gerlach apparatus. As in (1.10.23), one is then dealing with a condi-
tional probability stated as follows: given that the state of the apparatus is∣∣+〉

, then what is the probability that the state of the spin of the particle is
given by |+1/2, z〉? From (1.10.30), (1.10.44), (1.10.56)–(1.10.58), (1.10.24),
this conditional probability works out to be (see Problem 1.15)


1 +

cos2
β

2
sin2 κ + sin2 β

2
(1 − cos κ)2

cos2
β

2
(1 + cos κ)2 + sin2 β

2
sin2 κ



−1

. (1.10.62)

As in (1.10.25), we see that “as if” the measurement carried out by the
apparatus, and found to be in the state

∣∣+〉
has, for κ → 0, forced the

coefficient c+ = cos β/2 in (1.10.29) (see (1.10.44), (1.10.57), (1.10.58)) to be
replaced by one and c− = sin β/2 to be replaced by zero.

The experimental set-up in Figure 1.17 mimics the so-called “double-slit”
experiment (see also §8.7–§8.9, §9.1, §9.5) elaborated upon repeatedly in the
literature and notably by R. P. Feynman.

Later on in §8.7, we will see how the unitary operator U in (1.10.35)–
(1.10.38) arises as an elementary interaction between the variables of the
physical system and the apparatus.

There are many views, descriptions and interpretations on what measure-
ment theory in quantum physics is and how it may be achieved. Each view
involves internal consistency problems that have to be checked and further
generalizations may be often needed based on such consistency checks.
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Additional details on measurement theory and related aspects will be
given in Chapter 8. In particular situations will be encountered where the
orthogonality conditions in (1.10.3) are necessarily relaxed. We will see, as
one may argue, that taking into account of the environment coupled to the
meter (apparatus) variables and consisting of everything else monitoring the
observables being measured, provides the different alternative readings of a
meter being sought. That is, after a measurement, the system is found in
one of its alternative states rather than in a superposition of them. The
information thus obtained on the system can be then described in usually
perceived classical terms. The destruction of such quantum superpositions,
resulting from the interaction with the environment, is referred to as quantum
decoherence.

Problems

1.1. Derive the expression for the measure of fraction of the number of
particles transmitted in Figure 1.4 and Figure 1.5 (c).

1.2. Show that the inner product in (1.4.42) does indeed satisfy the prop-
erties in (1.4.46)–(1.4.48), and establish the description independence
of the inner product as given in (1.4.51).

1.3. Establish the inequalities in (1.4.52), (1.4.53) using (1.4.42), (1.4.49).
1.4. For a sphere of unit radius in the n-dimensional Euclidean space, a

point on the surface of the sphere may be defined in terms of the n
variables

x1 = cos ϑ1

xk = sin ϑ1 · · · sinϑk−1 cos ϑk, k = 2, . . . , n − 1
xn = sin ϑ1 · · · sinϑn−2 sin ϑn−1

with 0 � ϑi � π (i = 1, . . . , n − 2), 0 � ϑn−1 � 2π,
n∑

i=1

x2
i = 1.

(i) Show that the surface element on the sphere is given by

dΩ =
(
sinn−2 ϑ1dϑ1

)(
sinn−3 ϑ2dϑ2

)
· · ·

(
sin1 ϑn−2dϑn−2

)(
dϑn−1

)
.

(ii) Using the definition
〈
x2

j

〉
=
∫

x2
j dΩ

/∫
dΩ, show explicitly that

〈
x2

1

〉
= · · · =

〈
x2

n

〉
=

1
n

as in (1.5.27).
1.5. Verify the property (1.6.10) which is relevant to the incompatibility of

measurements of polarizations along two different directions.
1.6. Derive (1.6.21) corresponding to the transmission of light through the

arrangement of polarizers in Figure 1.13 (b).
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1.7. Establish the separability and completeness of the space �2(∞) defined
in (1.7.12)–(1.7.14).

1.8. Extend the analysis given for the position operator through (1.8.35)–
(1.8.39) to the momentum operator p = −i�∇ (§2.3) in the x-
description.[

Hint. For any ε > 0, define the normalized function

F ε
β0

(x) =
(

ε2

π�2

)3/4

exp
(

i
�
p0 · x

)
exp

(
−x2ε2

2�2

)

and show that
∥∥∥(−i�∇ − p0)F

ε
p0

∥∥∥ < ε.
]

1.9. Establish the properties in (1.8.16)–(1.8.22) of the projection operator
PA(λ) associated with a self-adjoint operator A.

1.10. Show that the unitary operator in (1.10.35)–(1.10.37) leads from the
state |ψ0〉 in (1.10.29) to the state |ψ〉 in (1.10.30)/(1.10.38) and verify
explicitly the unitarity condition in (1.10.39).

1.11. Work out the expressions for the probabilities in (1.10.40)–(1.10.43).
1.12. Derive the equalities on the extreme right-hand sides of (1.10.52),

(1.10.53).
1.13. Show that the probabilities in (1.10.55) are given in detail in (1.10.56).
1.14. From the probabilities given in (1.10.57), (1.10.58), establish the prob-

ability spikes given in Figure 1.18.
1.15. Work out the conditional probability given in (1.10.62).



2

Symmetries and Transformations

This chapter is an extension of the first dealing with the formalism of
quantum theory being sought. The present one is based on symmetries and
deals with their implementations and the mechanics of the transformations
of the underlying variables in the theory. The main symmetries and the cor-
responding transformations in non-relativistic quantum mechanics are the
Galilean ones. Different labellings of an event by two Galilean frames (§2.1,
§2.2) are continuously related and the corresponding transformations, which
relate the two labellings, reduce to the identity one in the limit that the two
frames coincide. Accordingly, we may infer from Wigner’s Theorem on sym-
metry transformations (§1.9), that such symmetries must be implemented, in
the underlying Hilbert space of the theory, by unitary, rather than by anti-
unitary, operators as they must continuously reduce to the identity in the
limit of coincident Galilean frames — the identity element being, of course, a
unitary operator. Group properties of these transformations are derived and
their corresponding generators are introduced. These group relations give
rise to basic commutation rules to be satisfied by the generators and their
physical meanings emerge naturally. One of such generators is the Hamil-
tonian generating time translations and describing the dynamics of systems.
Explicit Galilean invariant Hamiltonians will be constructed for several phys-
ical systems of interest. We also introduce discrete symmetries, and consider
further properties of the generator of spatial rotations. Special attention will
be given to so-called spinors which allow the description of particles of any
spin. Finally supersymmetry is introduced in analogy to the Galilean ones
and basic properties are established which will find several applications in
later chapters.

2.1 Galilean Space-Time Coordinate Transformations

Consider a Cartesian coordinate system F resulting from a given one F
by carrying a c.c.w. rotation of the coordinate system by an angle ϕ about
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a unit vector n, translating its origin by a given amount and setting the
corresponding frame in uniform motion relative to that of F (see Figure 2.1).
The corresponding structure of the rotation matrix with matrix elements Rij

is worked out in Figure 2.2.
A point P with coordinate vector label x in F will be assigned the coor-

dinate vector label x in F . The clocks in F will be set back relative to those
in F by a given amount.

Fig. 2.1. A space-time point P is labelled, in F and F , respectively, by (x, t)
and (x, t). These labellings are related through (2.1.1), (2.1.2).

Accordingly, the labelling of point P : (x, t) and (x, t) in the frames F and
F , respectively, are related by the transformations

xi = Rijxj − ai − vit (2.1.1)

t = t − τ (2.1.2)

(with a sum over j in (2.1.1) understood), where ai, vi are independent of
time t,−v denotes the velocity of frame F relative to F , and the rotation
matrix R with matrix elements Rij satisfies

RijRik = δjk (2.1.3)



2.1 Galilean Space-Time Coordinate Transformations 83

(with a sum over i) and from Figure 2.2, it is explicitly given by

Rik = δik − εijknj sinϕ +
(
δik − nink

)
(cos ϕ − 1)

≡ Rik(ϕ,n) (2.1.4)

where

εijk =




+1, if (i, j, k) is an even permutation of (1,2,3)
−1, if (i, j, k) is an odd permutation of (1,2,3)

0, if two or three of the indices are the same.
(2.1.5)

The transformations (2.1.1), (2.1.2) define the Galilean space-time coordi-
nate transformations. We note that xi in (2.1.1) defines the space coordinate
labelling in F at a given fixed time in terms of x and t.

In particular, we consider an infinitesimal rotation by an angle δϕ and
introduce the vector

δω = nδϕ (2.1.6)

To second order in δϕ, the rotation matrix R may be written as

R = 1 + A + B (2.1.7)

where ( � for transpose)

A� = −A (2.1.8)

B� = B =
A2

2
(2.1.9)

and
Aik = −εijkδωj . (2.1.10)

Also up to second order in δϕ

R−1 = 1 − A + B. (2.1.11)

In establishing (2.1.9), the following identity

εijkεilm =
(
δjlδkm − δjmδkl

)
(2.1.12)

is quite useful.
For infinitesimal first order transformations with parameters δa, δv, δω,

δτ the Galilean transformations (2.1.1), (2.1.2) reduce to

x = x − δa − δvt − δω × x (2.1.13)

t = t − δτ (2.1.14)
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h

x × n

ϕ

x′

(x · n)n

x − (x · n)n

x

n

0

Fig. 2.2. Rotation of a vector x c.w. by an angle ϕ about a unit vector n.
This is equivalent to the rotation of the coordinate system, instead, c.c.w.
about n and keep the direction of x fixed. From the figure

x′ = (x · n)n + h

where

h = [x − (x · n)n] cos ϕ + x × n sin ϕ

or

x′ = x − n × x sin ϕ + [x − (x · n)n] (cos ϕ − 1)

with x in (2.1.13) given at a given fixed time t. We set

δx = x − x = δa + δvt + δω × x (2.1.15)

δt = t − t = δτ. (2.1.16)

We provide an exponential representation of the rotation matrix R =(
Rik

)
in (2.1.24).

To this end, we define the matrices M j , j = 1, 2, 3, with matrix elements
[
M j

]ik
= iεijk (2.1.17)

i, k = 1, 2, 3. In particular,
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[n · M]ik = iεijknj (2.1.18)

[
(n · M)2

]ik
= δik − nink (2.1.19)

(n · M)3 = n · M (2.1.20)

and we may rewrite the matrix R as

R = 1 + in · M sinϕ + (n · M)2(cos ϕ − 1). (2.1.21)

Upon differentiation the latter with respect to ϕ and using (2.1.19),
(2.1.20) we obtain

dR

dϕ
= (in · M)R. (2.1.22)

The integration of this equation, using the boundary condition

R
∣∣
ϕ=0

= 1, (2.1.23)

leads to the expression
R = exp [iϕn · M] (2.1.24)

or using the standard notation

ω = ϕn (2.1.25)

(see also (2.1.6)), one has

R = exp [iω · M] . (2.1.26)

The matrices M j , satisfy the commutation relations
[
M i,M j

]
= iεijkMk (2.1.27)

as is easily obtained upon using the identity in (2.1.12).
These matrices are explicitly given by

M1 = i


0 0 0

0 0 −1
0 1 0


 (2.1.28)

M2 = i


 0 0 1

0 0 0
−1 0 0


 (2.1.29)

M3 = i


0 −1 0

1 0 0
0 0 0


 (2.1.30)
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Also (with � for transpose, Tr for trace, det for determinant)
(
M j

)†
= M j ,

(
M j

)�
= −M j (2.1.31)

M2 = 21 (2.1.32)

Tr [n · M] = 0 (2.1.33)

R� = R† = R−1 (2.1.34)

RR� = R�R = 1 (2.1.35)

detR = 1 (2.1.36)

Tr (R) = 2 cos ϕ + 1. (2.1.37)

Finally, we derive a useful identity involving the rotation matrix. To this
end, from the expression of x′ given in Figure 2.2, we have

d
dϕ

x′ = −n × x′. (2.1.38)

Let

A(ϕ) = exp [−ϕn · (x × ∇)]x exp [ϕn · (x × ∇)] (2.1.39)

which upon using the commutator[
∇i, xj

]
= δij (2.1.40)

leads to
d
dϕ

A(ϕ) = −n × A(ϕ). (2.1.41)

Using the boundary condition

A(ϕ)
∣∣
ϕ=0

= x (2.1.42)

and (2.1.38), together with the expressions (2.1.24), (2.1.26), one may infer
the identity

exp [−ω · (x × ∇)]x exp [ω · (x × ∇)] = exp [iω · M]x (2.1.43)

where (ω · Mx)l = iωjεljkxk in the sense of matrix multiplication.

2.2 Successive Galilean Transformations and the Closed
Path

Consider two successive Galilean transformations written in matrix form:
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x = Rx − a − vt (2.2.1)

t = t − τ (2.2.2)

x = R x − a − v t (2.2.3)

t = t − τ . (2.2.4)

These allow us to relate the final configuration to the initial one through

x = (RR)x − (a + Ra − vτ) − (v + Rv)t (2.2.5)

t = t − (τ + τ). (2.2.6)

A Galilean transformation is specified by the following quadruplet

(τ, a, v,R). (2.2.7)

From (2.2.5), (2.2.6), the following group properties easily follow:

(1)
(τ , a, v,R)(τ, a, v,R) = (τ + τ , a + Ra − vτ, v + Rv,RR) (2.2.8)

(2) The identity element I is given by

I = (0, 0, 0,1) (2.2.9)

(3) The inverse is worked out to be

(τ, a, v,R)−1 = (−τ,−R−1(a + vτ),−R−1v,R−1) (2.2.10)

as one easily checks that

(τ, a, v,R)−1(τ, a, v,R) = (τ, a, v,R)(τ, a, v,R)−1

= (0, 0, 0,1) (2.2.11)

(4) Finally, we have the associativity rule

(τ3, a3, v3, R3)[(τ2, a2, v2, R2)(τ1, a1, v1, R1)]

= [(τ3, a3, v3, R3)(τ2, a2, v2, R2)](τ1, a1, v1, R1) (2.2.12)

Of utmost importance for the subsequent analysis are the following suc-
cessive transformations forming a closed path given by

(τ, a, v,R) =(τ2, a2, v2, R2)−1(τ1, a1, v1, R1)−1

× (τ2, a2, v2, R2)(τ1, a1, v1, R1) (2.2.13)
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represented pictorially by the box diagram

� �

1

�
2

�
1

�2

emphasizing the reversal of the transformations in the third and the fourth
segments of the path.

The resulting elements in (τ, a, v,R) arising from the closed path trans-
formation given in (2.2.13) are readily worked out from the group properties
spelled out above. They are given by

τ = 0 (2.2.14)

a = −R−1
2

[
a2 + v2τ2 + R−1

1 (a1 − a2 − R2a1 + v2τ1 − v1τ2) − v2τ2

]
(2.2.15)

v = −R−1
2

[
v2 + R−1

1 (v1 − v2 − R2v1)
]

(2.2.16)

R = R−1
2 R−1

1 R2R1. (2.2.17)

The infinitesimal transformation corresponding to (τ, a, v,R) in (2.2.13)
follows from (2.2.14)–(2.2.17). The corresponding infinitesimal parameters
are readily obtained from the latter four equations and are given by

δτ = 0 (2.2.18)

δa = A2δa1 − A1δa2 + δv1δτ2 − δv2δτ1 (2.2.19)

δv = A2δv1 − A1δv2 (2.2.20)

δ(R − 1) = A2A1 − A1A2 ≡
[
A2, A1

]
(2.2.21)

where A is defined in (2.1.10) (see also (2.1.9)) with a corresponding infini-
tesimal δω.

In detail (2.2.19)–(2.2.21) are given by

δa = − (δω2 × δa1 − δω1 × δa2) + δv1δτ2 − δv2δτ1 (2.2.22)
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δv = (δω1 × δv2 − δω2 × δv1) (2.2.23)

δ(R − 1) = −εijkδωj (2.2.24)

and
δω = δω1 × δω2. (2.2.25)

Hence under the closed path transformation (2.2.13), we have the trans-
formations x → xf , t → tf = t, leading to the infinitesimal expressions

δx = x − xf = δa + δvt + δω × x (2.2.26)

δt = t − tf = 0 (2.2.27)

(compare with (2.1.15), (2.1.16)), and the parameters δa, δv, δω are given,
respectively, in (2.2.22), (2.2.23), (2.2.25).

2.3 Quantum Galilean Transformations and Their
Generators

The Galilean transformations include the trivial identity transformation
I in (2.2.9) which may be obtained from an arbitrary Galilean transforma-
tion, specified by the quadruplet (τ, a, v,R), when the parameters in τ , a, v,
(R−1) are led continuously go to zero. This continuity property of the trans-
formations approaching the identity in the just discussed limit implies from
the celebrated Wigner’s Theorem (§1.9), that Galilean symmetry transforma-
tions on the states in quantum physics must be represented by unitary rather
than by anti-unitary operators with the identity being obviously a (trivial)
unitary operator. The transformations are then continuously connected with
the identity.

Accordingly, invariance under a Galilean transformation dictates that a
state |ψ〉 obeys the transformation rule |ψ〉 →

∣∣ψ〉:
∣∣ψ〉 = U |ψ〉 (2.3.1)

with
U† = U−1 (2.3.2)

guaranteeing that a transition amplitude 〈φ |ψ〉 transforms as a Galilean
scalar, i.e., 〈

φ
∣∣ψ〉 = 〈φ |ψ〉 . (2.3.3)

For systems involving non-zero spins, |ψ〉 is a multi-component object (cf.
(2.7.20), §2.8, (2.8.24)) and (2.3.3) involves a sum over such components, i.e.,
in detail it is of the form
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∑

a

〈
φ

a
∣∣∣ψa

〉
=
∑

b

〈
φb
∣∣ψb

〉
. (2.3.4)

In the coordinate description, invariance under space translations and
boosts, providing a uniform motion of a frame relative to another, but not
involving rotations, means that

〈
x
∣∣ψ〉 = 〈x |ψ〉 , 〈x| = 〈x|U† (2.3.5)

and the former equality may be rewritten in the more familiar form

ψ(x) = ψ(x). (2.3.6)

By definition of a scalar, (2.3.6) holds under rotations as well for spin 0. On
the other hand for non-zero spins, the transformation law in (2.3.6) cannot
hold true under rotations. This is most apparent for spin 1, with ψ(x) as
a vector (field), since under rotations, a component ψj(x) will be a linear
combination of the components ψi(x) (see (2.7.18)). This is fully exploited in
§2.8 for arbitrary spins and the transformation law (2.3.6), under rotations,
in the general case is simply modified to an expression of the form

ψ
a
(x) = Aabψb(x) (2.3.7)

where the
(
Aab

)
are some matrices which depend on spin.

As discussed above in the beginning of this section, since the Galilean
transformations are continuously connected with the identity, then for infin-
itesimal transformations, one may write a unitary operator U as

U = 1 + iG (2.3.8)

where G has the property that it vanishes when δτ , δa, δv, δω all approach
zero (see, in particular, (2.1.15), (2.1.16)), and the i factor is chosen so that
G is a self-adjoint operator G† = G.

The operator G in (2.3.8) is dimensionless, and the operator coefficients
of δτ , δa, δv, δω, respectively1 in G have, what is called in quantum physics,
natural units. These operators, as we will see later, have important physical
meanings and are, in general, counterparts of classical quantities which, how-
ever, are defined in terms of different units. In order to make the comparison
with these classical standards, an overall conversion factor is introduced by
dividing G, in (2.3.8), by this conversion factor which necessarily has the
dimensions of action. The operator coefficients of δτ , δa, δv, δω are then all
defined in the same units as their classical standards. The unit of action in
quantum physics found empirically is that provided by � (Planck’s constant

1 See (2.3.13) for details concerning these operator coefficients whose physical in-
terpretations will then follow.
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divided by 2π).2 By introducing this conversion factor we may rewrite (2.3.8)
as

U = 1 +
i
�
G (2.3.9)

in conformity with the classical standards. For example, as we will see below,
the coefficient of δa will be associated with momentum and hence by dividing
by the unit of action � in (2.3.9) it will have the same units as in classical
physics.

We consider successive Galilean transformations corresponding to the
overall closed path in (2.2.13). That is, we consider the unitary operator

U = U†
2U†

1U2U1 (2.3.10)

For infinitesimal transformations, the right-hand side of (2.3.10) is given by
(
1 − i

�
G2 + . . .

)(
1 − i

�
G1 + . . .

)(
1 +

i
�
G2 + . . .

)(
1 +

i
�
G1 + . . .

)

= 1 +
1
�2

[
G1, G2

]
+ . . . (2.3.11)

where we note that G1 (respectively G2) are of first order in the infinitesimal
parameters δτ1, δa1, δv1, δω1 (respectively δτ2, δa2, δv2, δω2) and second
order terms in these parameters, e.g. (δτ1)2, (δτ1δa1), . . ., (respectively (δτ2)2,
(δτ2δa2), . . .), cancel out. The latter fact is emphasized by writing dots . . . in
each of the factors on the left-hand side of (2.3.11). Upon writing U on the
left-hand of side of (2.3.10) as in (2.3.9) we obtain

G =
1
i�
[
G1, G2

]
(2.3.12)

The most general structure of G in (2.3.10) is

G = δa · P + δv · N − δτH + δω · J + δφ1 (2.3.13)

guaranteeing the fact that G goes to zero when δa, δv, δτ , δω all go to zero
provided δφ, contributing to a phase factor, vanishes as well in these limits.
The operators P, N, H, J are called generators of the Galilean transforma-
tions. P generates space translations, N, which is sometimes referred as the
“booster”, generates uniform motion, H generates time translations, and J
generates space rotations.

Similarly, for G1, G2 we may write
2 The question arises as to what happens if one chooses another constant with

units of action, such as a multiple of �: κ� for some κ > 0, as a conversion
factor. The energy levels of the hydrogen atom (§7.2), for example, would come
out to be −me4/2κ2

�
2n2. By confronting theory with one or a finite number of

experiments then fixes the value of this conversion factor.



92 2 Symmetries and Transformations

Gj = δaj · P + δvj · N − δτjH + δωj · J (2.3.14)

j = 1, 2. Clearly, the addition of any multiple of the identity in (2.3.14) cannot
contribute to the commutator

[
G1, G2

]
in (2.3.12).

We note that in (2.3.14) we have written −δτjH rather than δτjH as
this provides, in particular, the correct overall sign for H corresponding to
the observable it represents. [This is spelled out in §2.5.] G in (2.3.12) is
anti-symmetric in the interchange of the indices 1 and 2 in

[
G1, G2

]
. This

property is explicitly verified in the expressions for δv, δτ , δω respectively,
given in (2.2.22), (2.2.23), (2.2.25). [Also we note from (2.2.18) that δτ = 0]
Accordingly, the coefficient δφ of the identity 1 in (2.3.13) must be also anti-
symmetric in the indices 1 and 2 and is to be constructed out of dot products
of δa1, δv1, δω1, δa2, δv2, δω2. The most general structure of δφ is then

δφ = M (δa1 · δv2 − δa2 · δv1) + B (δω1 · δv2 − δω2 · δv1)

+ E (δω1 · δa2 − δω2 · δa1) (2.3.15)

The coefficients E, B will turn out to be zero.
All told, we explicitly carry out the commutation relation in (2.3.12) by

using the expressions in (2.3.14). Upon the comparison of the coefficients with
those arising in (2.3.13), (2.3.15) and by using, in the process, the equalities
(2.2.18)–(2.2.21), (2.2.22)–(2.2.25), we are led to Table 2.1.

From the commutation relation 6 in Table 2.1, it is easily derived that

E = − 1
6�2

εijk
[
Jk,

[
P i, Jj

]]
(2.3.16)

which is readily worked out to be zero (see Problem 2.4). Similarly, from the
commutator 7 in the Table, it is easily shown that B = 0.

Instead of transforming a state |ψ〉, under a Galilean transformation, one
may keep |ψ〉 fixed and transform instead the observables A → A such that
expectation values 〈

ψ
∣∣A∣∣ψ〉 =

〈
ψ
∣∣A∣∣ψ〉 (2.3.17)

are unaltered. From (2.3.1), this requires that

A = U†AU. (2.3.18)

[This may be generally referred to as an observable in a Heisenberg-like pic-
ture.] For infinitesimal transformations given in (2.3.9) we then have

δA = A − A =
1
i�
[
A,G

]
. (2.3.19)

Under a Galilean transformation we may then write from (2.3.13), (2.3.14)

i�δA = δaj
[
A,P j

]
+ δvj

[
A,N j

]
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− δτ
[
A,H

]
+ δωj

[
A, Jj

]
. (2.3.20)

As an application of (2.3.20), we consider the operator

Q =
1
M

(tP − N) (2.3.21)

for δτ = 0. From (2.3.20) and Table 2.1

δQ = δa + δvt + δω × Q (2.3.22)

which upon comparison with the transformation law in (2.1.15), one identifies
Q with the position operator which, in the sequel, is denoted by X.

Table 2.1 and/or (2.3.22) then lead to the following commutation relations
involving X:

[
Xi,Xj

]
= 0 (2.3.23)

[
Xi, Jj

]
= i�εijkXk (2.3.24)

[
Xi, P j

]
= i�δij (2.3.25)

Table 2.1. Commutation relations of the generators of the Galilean trans-
formations as obtained from (2.3.12) upon the comparison of the appropri-
ate coefficient-parameters defining the transformations.

COEFFICIENT RESULTING COMMUTATOR

1. δai
1δaj

2

[
P i, P j

]
= 0

2. (δai
1δτ2 − δai

2δτ1)
[
H, P i

]
= 0

3. (δvi
1δτ2 − δvi

2δτ1)
[
H, N i

]
= i�P i

4. δωi
1δωj

2

[
J i, Jj

]
= i�εijkJk

5. (δai
1δvj

2 − δai
2δvj

1)
[
P i, N j

]
= i�Mδij

6. (δai
1δωj

2 − δai
2δωj

1)
[
P i, Jj

]
= i�

(
εijkP k − Eδij

)

7. (δωi
1δvj

2 − δωi
2δvj

1)
[
N i, Jj

]
= i�

(
εijk k − Bδij

)

8. (δωi
1δτ2 − δωi

2δτ1)
[
H, J i

]
= 0

9. δvi
1δvj

2

[
N i, N j

]
= 0

N
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[
H,Xi

]
= − i�P i

M
. (2.3.26)

On the other hand for δa = 0, δv = 0, δω = 0, (2.3.20) gives for δτ �= 0

i� δXi = −δτ
[
Xi,H

]
= −i� δτ

P i

M
(2.3.27)

where we have also used (2.3.26). Hence from δXi(t) = Xi(t) − X
i
(t) =

Xi(t) − X
i
(t + δt), (2.3.27) gives

Ẋ =
P
M

(2.3.28)

where we have used the fact that X(t) = X(t), for δa = 0, δv = 0, δω = 0.
Finally, we note from Table 2.1 again that

[
P2

2M
,Xi

]
= −i�

P i

M
=
[
H,Xi

]
. (2.3.29)

Here in writing the last equality in (2.3.29) we have used (2.3.26). From
(2.3.29) and the commutators 1 and 2 in Table 2.1 and (2.3.25) one is led to
the following general expression for H

H =
P2

2M
+ HI (2.3.30)

where [
HI, P

i
]

= 0 (2.3.31)

and [
HI,X

i
]

= 0. (2.3.32)

The expressions (2.3.28), (2.3.30) lead inescapably one to identify P with
the momentum operator associated with the system in question, M with its
mass, and H with the total Hamiltonian operator.

The momentum operator P generates space translations. More specifi-
cally, for an infinitesimal numerical quantity δa, the unitary operator

U(δa · P) = 1 +
i
�
δa · P (2.3.33)

leads from (2.3.25) (see also (2.3.18)) to

U†(δa · P)XU(δa · P) = X − δa. (2.3.34)

Similarly,

U(−δp · X) = 1 − i
�
δp · X (2.3.35)
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for an infinitesimal numerical δp, leads from

U†(−δp · X)PU(−δp · X) = P − δp (2.3.36)

to a shift of the momentum operator P by the numerical quantity −δp.
For a rotation by an infinitesimal angle δφ about a unit vector n (δω =

nδφ) we have also seen that

U(δω · J) = 1 +
i
�
δω · J (2.3.37)

which leads to

U†(δω · J)XU(δω · J) = X − δω × X (2.3.38)

where we will see in §2.7, that J is identified with the angular momentum
operator.

A finite space translation by a numerical quantity a may be obtained by
writing δa = a/N , and consider successive N infinitesimal translations each
by an amount a/N for N → ∞:

(
U
( a

N
· P

))N

→ exp
(

i
�
a · P

)
(2.3.39)

(see also Problem 2.5).
Similarly upon writing δp = p/N , δω = ω/N we have for finite momen-

tum shifts and finite rotations:
(
U
(
− p

N
· X

))N

→ exp
(
− i

�
p · X

)
(2.3.40)

(
U

(
δω

N
· J
))N

→ exp
(

i
�
ω · J

)
(2.3.41)

for N → ∞, respectively, where ω = nφ, for numericals p.
That is, under a shift of a coordinate system by an amount a, a state

vector |ψ〉 changes in the following way

|ψ〉 → exp
(

i
�
a · P

)
|ψ〉 . (2.3.42)

Similarly, when a coordinate system is rotated c.c.w. through an angle φ
about a unit vector n, a state vector |ψ〉 changes by the rule

|ψ〉 → exp
(

i
�
ϕn · J

)
|ψ〉 ≡ |ψ′〉 . (2.3.43)

We now provide explicit representations of the generators P, X.



96 2 Symmetries and Transformations

In the X-description, under an infinitesimal space translation (see (2.3.5))
〈
x
∣∣ψ〉 = 〈x |ψ〉 (2.3.44)

where ∣∣ψ〉 = U |ψ〉 (2.3.45)

with
〈x| = 〈x − δa| (2.3.46)

giving
〈x − δa |Uψ〉 = 〈x |ψ〉 (2.3.47)

or
(Uψ)(x) = ψ(x + δa). (2.3.48)

A Taylor expansion of the right-hand side expression leads to

(Uψ)(x) = ψ(x) + δa · ∇ψ(x) (2.3.49)

from which we may infer that

U = 1 + δa · ∇ (2.3.50)

leading to the following representation for the momentum operator

P = −i�∇. (2.3.51)

Similarly, in the P-description, under a momentum shift (translation),
〈
p
∣∣ψ〉 = 〈p |ψ〉 , p = p − δp (2.3.52)

leading to
(Uψ)(p) = ψ(p + δp) (2.3.53)

and from a Taylor expansion, we may infer that

U = 1 + δp · ∇p (2.3.54)

thus giving the following representation for the position operator (see
(2.3.35))

X = i�∇p. (2.3.55)

Generation of time translations and coordinate rotations will be dealt
with in detail later in §2.5 and §2.7, respectively.

Space translations are provided by the unitary operator (see (2.3.42))

U = exp
(

i
�
a · P

)
. (2.3.56)

Invariance under space translations implies the vanishing of the commutator
of P with H (see entry 2 in Table 2.1) and the transformation provided by
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the unitary operator in (2.3.56) is referred to as a symmetry transformation.
The latter, in particular means, that the momentum operator satisfies the
time independent property

P(t) = eiH/� P e−iH/� = P (2.3.57)

and implies the conservation of momentum. In particular, (2.3.57) establishes
(see also (2.3.17)) the time independence of the expectation value

〈ψ |P(t)|ψ〉 = 〈ψ |P|ψ〉 (2.3.58)

in a state |ψ〉.
Similarly, rotation of a coordinate system, is implemented by the unitary

operator (see (2.3.43))

U = exp
(

i
�
ϕn · J

)
(2.3.59)

in the underlying Hilbert space. As a symmetry operation, rotational invari-
ance, leading to the vanishing of the commutator of J with H (entry 8 in
Table 2.1), implies the time independence of J(t), similarly defined as P(t)
in (2.3.57), and gives rise to the conservation of angular momentum, and, in
particular, to the time-independence of expectation values 〈ψ |J(t)|ψ〉.

Of particular interest in using (2.3.20) is to derive the equations satisfied
by X(t) and P(t), under pure time translations. These may be obtained from
(2.3.20) by setting δa = 0, δv = 0, δω = 0. For example,

i
�

[
X(t),H

]
δτ = δX(t) = X(t) − X(t)

= X(t) − X(t + δτ) (2.3.60)

or
i�Ẋ(t) =

[
X(t),H

]
(2.3.61)

since X(t) = X(t). Similarly, we have

i�Ṗ(t) =
[
P(t),H

]
. (2.3.62)

Equations (2.3.61), (2.3.62) are referred to as Heisenberg’s Equations of Mo-
tion.

Finally, consider a system of n particles of masses m1, . . . ,mn with asso-
ciated position operators X1, . . . ,Xn and define the center of mass position
operator

X =
∑
α

mα

M
Xα (2.3.63)

where M =
∑
α

mα is the sum of the masses of the particles. Invariance under

an infinitesimal coordinate translation means as before
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〈
x1, . . . ,xn

∣∣ψ〉 = 〈x1, . . . ,xn |ψ〉 . (2.3.64)

This leads to the following chain of equalities
〈
x1 − δa, . . . ,xn − δa

∣∣ψ〉 = 〈x1, . . . ,xn |ψ〉 (2.3.65)

〈x1, . . . ,xn |Uψ〉 = 〈x1 + δa, . . . ,xn + δa |ψ〉 (2.3.66)

(Uψ)(x1, . . . ,xn) = ψ(x1 + δa, . . . ,xn + δa)

=

(
1 + δa ·

∑
α

∇α

)
ψ(x1, . . . ,xn). (2.3.67)

From (2.3.50), (2.3.51), we may introduce the total momentum operator

P =
∑
α

Pα (2.3.68)

with
Pα = −i�∇α (2.3.69)

denoting the momentum operator associated with the αth particle as ex-
pected. A property consistent with (2.3.23), (2.3.63), is that the operators
Xα associated with different particles commute as well,

[
Xi

α,Xj
β

]
= 0. (2.3.70)

From (2.3.69), one also has
[
Xi

α, P j
β

]
= i�δijδαβ (2.3.71)

and [
P i

α, P j
β

]
= 0. (2.3.72)

2.4 The Transformation Function 〈x|p〉

In this short section we derive the explicit expression for the transfor-
mation function 〈x|p〉 from the momentum: p-description to the position:
x-description.

The resolution of the identity in the p-description is written as

1 =
∫

d3p
(2π�)3

|p〉 〈p| . (2.4.1)

The transformation function 〈x|p〉 from the p-description to the x-
description arises through (see also (1.4.17)) the relation
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〈x|ψ〉 =
∫

d3p
(2π�)3

〈x|p〉 〈p|ψ〉 . (2.4.2)

We consider infinitesimal shifts by numerical factors δx, δp: x → x− δx,
p → p − δp provided through unitary operators (see §2.3, (2.3.5), (2.3.46),
(2.3.39)) explicitly given by

〈x − δx| = 〈x|
(
1 − i

�
δx · P

)
(2.4.3)

and (see (2.3.51), (2.3.52), (2.3.54))

|p − δp〉 =
(
1 − i

�
δp · X

)
|p〉 . (2.4.4)

The formal identifications

P |p〉 = p |p〉 (2.4.5)

〈x|X = x 〈x| (2.4.6)

then lead for infinitesimal numericals δx, δp to

δ 〈x|p〉 = 〈x |p〉 − 〈x − δx |p − δp〉

=
i
�
〈x |(δx · P + δp · X)|p〉

=
i
�

(δx · p + δp · x) 〈x|p〉

=
i
�
〈x|p〉 δ(x · p) (2.4.7)

and upon integration to

〈x|p〉 = exp
(

i
�
x · p

)
(2.4.8)

where the integration constant has been set equal to one by adopting the
normalization condition∫

d3p
(2π�)3

〈x|p〉 〈p|x′〉 = δ3(x − x′). (2.4.9)

The importance of the expression (2.4.8) for the transformation function
〈x|p〉 cannot be overemphasized. From (2.4.2) it leads to the Fourier trans-
form

ψ(x) =
∫

d3p
(2π�)3

eix·p/� ψ(p) (2.4.10)
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as a physical transformation from the p-description to the x-description.
The inverse transform from the x-description to the p-description simi-

larly follows to be given by

ψ(p) =
∫

d3x e−ix·p/� ψ(x) (2.4.11)

with
〈p|x〉 = exp

(
− i

�
x · p

)
. (2.4.12)

Finally, the resolution of the identity in the x-description may be written
as

1 =
∫

d3x |x〉 〈x| (2.4.13)

with the normalization condition (2.4.9):

〈x′|x〉 = δ3(x′ − x). (2.4.14)

From (2.4.8), (2.4.13), we then have the following normalization condition
for momenta

〈p′|p〉 = (2π�)3δ3(p′ − p). (2.4.15)

2.5 Quantum Dynamics and Construction of
Hamiltonians

Had we written +δτjH instead of −δτjH in (2.3.14), the commutator[
H,N j

]
in Table 2.1 would have been equal to −i�P i instead of +i�P i. This

in turn would have led H in (2.3.30) to be of the form −
[
P2/2M + H ′

I

]
,

where H ′
I is some operator which satisfies (2.3.31), (2.3.32) [as before, P2

does not commute with X], with the wrong sign for the kinetic energy term.
That is, for an infinitesimal transformation t → t − δτ (see (2.1.16), (2.1.2))
the corresponding unitary transformation must be given from (2.3.14) to be

U(−δτH) = 1 − i
�
δτH (2.5.1)

with H denoting the Hamiltonian of the system having the general form (see
(2.3.30)–(2.3.32))

H =
P2

2M
+ HI (2.5.2)

where HI is referred to as the internal energy and satisfies

[HI,P] = 0 (2.5.3)

2.5.1 The Time Evolution: Schrodinger Equation..
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[HI,X] = 0 (2.5.4)

for a Galilean invariant theory.
To obtain the unitary operator for finite time translations we write

δτ = τ/N , as in §2.3, (see, e.g., (2.3.39)) and consider successive infinitesimal
transformations for N → ∞:

(
U
(
− τ

N
H
))N

→ exp
(
− i

�
τH

)
. (2.5.5)

Let |ψt〉 denote a state determined at time t in the frame F (see §2.1–§2.3).
For infinitesimal δτ this state is given by

∣∣ψt

〉
in F :

∣∣ψt

〉
=
(
1 − i

�
δτH

)
|ψt〉 . (2.5.6)

For pure time translations, we recall from §2.1, that the frames F and F are
the same, except that time readings are carried out, at the same instant of
time, by two clocks with one set simply −δτ units of time back relative to
the other. That is,

∣∣ψt

〉
denotes the state |ψt+δτ 〉. Hence from (2.5.6)

|ψt+δτ 〉 =
(
1 − i

�
δτH

)
|ψt〉 (2.5.7)

or
|ψt+δτ 〉 − |ψt〉 = − i

�
δτH |ψt〉

which by taking the limit δτ → 0 gives the familiar Schrödinger equation

i�
∂

∂t
|ψt〉 = H |ψt〉 . (2.5.8)

In particular, by setting |ψ0〉 ≡ |ψ〉 for t = 0, (2.5.8) may be integrated
to give

|ψt〉 = e−itH/� |ψ〉 (2.5.9)

for the time evolution of a state |ψ〉.

2.5.2 Time as an Operator?

It is important to emphasize that time is a parameter and is not promoted
to an operator on physical grounds. To see this, suppose that top stands for the
corresponding “operator”. Then for δa = 0, δv = 0, δω = 0, and numerical
δτ �= 0, (2.3.20) implies that

i� δtop = −δτ
[
top,H

]
(2.5.10)
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which upon comparison with (2.1.16) leads to3

[
top,H

]
= −i�. (2.5.11)

This then implies that for any real numerical E

exp
(

i
�
Etop

)
H exp

(
− i

�
Etop

)
= H + E. (2.5.12)

Now let λ0 be in the spectrum of H. Whether λ0 is in the discrete or in
the continuous spectrum, given any ε > 0 (see §1.8, (1.8.34)), we can find a
vector |ψε〉 such that

‖(H − λ0)ψε‖ < ε. (2.5.13)

Upon setting |φε〉 = exp
(

i
�
Etop

)
|ψε〉, (2.5.13) in turn implies that

∥∥∥∥
[
exp

(
i
�
Etop

)
H exp

(
− i

�
Etop

)
− λ0

]
φε

∥∥∥∥ < ε (2.5.14)

or from (2.5.12) that
‖[H − (λ0 − E)] φε‖ < ε. (2.5.15)

That is, λ0 − E is also in the spectrum of H for all E. One may choose
E, in particular, an arbitrarily large positive number implying that H is un-
bounded from below — a physically unacceptable property of a Hamiltonian
and for the stability of the system in question. That is, time is to be treated
as a parameter and not as an operator. [Some authors have, nevertheless,
suggested promoting time, under some circumstances, to the status of an
operator, but we will no go into this here.] Special attention will be given
later in §3.3, §3.4 to the boundedness of Hamiltonians from below and the
corresponding stability problem.

2.5.3 Construction of Hamiltonians

We now proceed to construct Hamiltonians consistent with (2.5.2)–(2.5.4).
To this end consider a system of particles with masses mα, associated po-

sition and momentum operators Xα and Pα, respectively, where α = 1, . . . , n
(see (2.3.63)–(2.3.72)). The operators Xα, Pα associated with different par-
ticles commute.

With X representing the position of the whole system, that is of the
center of mass position operator, P its total momentum and M the sum of
the masses, we here record the definitions
3 A “relativistic version”: [P µ, Xν ] = −i�gµν for which (gµν) = diag[−1, 1, 1, 1], or

[P µ, Xν ] = i�gµν for which (gµν) = diag[1,−1,−1,−1], also gives (2.5.11) with
P 0 = H/c, X0 = ctop and c denoting the speed of light. One, however, does not
need to use this to obtain (2.5.11) and our result follows directly from (2.3.20)
and the identification in (2.1.16).
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X =
∑
α

mα

M
Xα (2.5.16)

P =
∑
α

Pα (2.5.17)

M =
∑
α

mα. (2.5.18)

In Table 2.2, we consider commutation relations of various combinations
of the particles’ operators with P j and Xj .

Table 2.2. Commutation relations of various combinations of the particles’
operators with P j and Xj .

1.
[ (

Xi
α − Xi

β

)
, P j

]
=
∑
ρ

([
Xi

α, P j
ρ

]
−
[
Xi

β , P j
ρ

])
= i�δij ∑

ρ

(δαρ − δβρ) = 0

2.
[ (

Xi
α − Xi

β

)
, Xj

]
=
∑
ρ

mρ

M

[ (
Xi

α − Xi
β

)
, Xj

ρ

]
= 0

3.
[ (

Xi
α − Xi

)
, P j

]
=
∑
ρ

[
Xi

α, P j
ρ

]
− i�δij = 0

4.
[ (

Xi
α − Xi

)
, Xj

]
= 0

5.
[ (

P i
α − P i

β

)
, P j

]
= 0

6.
[ (

P i
α − P i

β

)
, Xj

]
=
∑
ρ

mρ

M

([
P i

α, Xj
ρ

]
−
[
P i

β , Xj
ρ

])
= − i�

M
(mα − mβ) δij

7.
[ (

P i
α − mα

M
P i
)
, P j

]
= 0

8.
[ (

P i
α − mα

M
P i
)
, Xj

]
=
(
−i� mα

M
+ i� mα

M

)
δij = 0

From the Table, we see that HI in (2.5.2), consistent with (2.5.3) and
(2.5.4), may be chosen, in particular, a function of: (Xα − Xβ), (Xα − X),
Pα − (mα/M)P.

That is, for a very large class of Hamiltonians consistent with (2.5.2)–
(2.5.4), we may choose

H =
P2

2M
+

n∑
α

(
Pα − mα

M P
)2

2mα
+ V (2.5.19)
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where

V =
n∑

α	=β

Vαβ (Xα − Xβ) +
n∑
α

Vα (Xα − X) . (2.5.20)

Additional conditions may be spelled out for V by invoking, for example,
rotational invariance as given in entry 8 in Table 2.1.

In the remaining part of this section, we work out some details of the class
of Hamiltonians in (2.5.19) of physical interest.

2.5.4 Multi-Particle Hamiltonians

In detail, we may write

n∑
α

(
Pα − mα

M P
)2

2mα
=

n∑
α

P2
α

2mα
− 1

M
P ·

n∑
α

Pα +
P2

2M

=
n∑
α

P2
α

2mα
− P2

2M
. (2.5.21)

That is, the expression on the left-hand side amounts automatically in re-
moving the center of mass motion, and (2.5.19) leads to a familiar expression

H =
n∑
α

P2
α

2mα
+ V (2.5.22)

where V has the structure in (2.5.20).
For example, for a system of charged particles of charges qα and masses

mα, α = 1, . . . , n, with Coulomb interactions, in the coordinate description,
one has

H =
n∑
α

P2
α

2mα
+

1
2

n∑
α	=β

qαqβ

|xα − xβ |
. (2.5.23)

It is important to realize that the Hamiltonian (H ′ ≡ HI):

H ′ =
n∑
α

(
Pα − mα

M P
)2

2mα
+ V (2.5.24)

provides, and is appropriately referred to as, the internal energy as it has, as
seen in (2.5.21), the center of mass motion removed.

2.5.5 Two-Particle Systems and Relative Motion

We consider the structure given (2.5.19) for n = 2, in a coordinate de-
scription, and consider the motion of one particle relative to the other. To
this end, we write
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r = x1 − x2 (2.5.25)

R =
1
M

(m1x1 + m2x2) (2.5.26)

M = m1 + m2. (2.5.27)

It is easily verified that

∇1 −
m1

M
∇R = ∇r (2.5.28)

∇2 −
m2

M
∇R = −∇r (2.5.29)

which directly lead from (2.5.19) to the expression

H = − �
2

2M
∇2

R − �
2

2µ
∇2

r + V (r) (2.5.30)

with
1
µ

=
1

m1
+

1
m2

(2.5.31)

and µ defining the so-called reduced mass of the system of two particles.
Here we note that since x1 − R = m2r/M , x2 − R = −m1r/M , V (r) is
some function of r. The first term in (2.5.30) describes the center of mass
free motion. The remaining part describes the relative motion of the two
particles.

2.5.6 Multi-Electron Atoms with Positions of the Electrons
Defined Relative to the Nucleus

Consider a system of N electrons with

mα ≡ m, α = 1, . . . , N (2.5.32)

and a nucleus of mass mN+1 ≡ m0.
That is, M = Nm + m0. We consider a coordinate description of the

system. To this end we define the variables

rα = xα − xN+1, α = 1, . . . , N (2.5.33)

R =
1
M

(m (x1 + . . . + xN ) + m0xN+1) . (2.5.34)

It is readily obtained that

∇xα
− m

M
∇R = ∇rα

, α = 1, . . . , N (2.5.35)
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∇xN+1 −
m0

M
∇R = −

N∑
α=1

∇rα . (2.5.36)

The expression in (2.5.19) then gives for the multi-electron atom in the co-
ordinate description, the Hamiltonian

H =
P2

2M
+

N∑
α=1

P2
α

2m
+

1
2m0

(
N∑

α=1

Pα

)2

+
1
2

N∑
α	=β

e2

|rα − rβ |
−

N∑
α=1

Ze2

|rα|
(2.5.37)

where Z|e| is the charge of the nucleus. For a neutral atom N = Z. Here
Pα = −i�∇rα

. Since m0, M � m, one, in practical applications, may neglect
the first and the third terms on the right-hand side of (2.5.37). In any case,

since P2 and
(

N∑
α

Pα

)2

are positive operators, that is, their expectation

values are non-negative, we have the following lower bound for atoms

〈ψ|H|ψ〉 � 〈ψ|HAT|ψ〉 (2.5.38)

for the expectation values, where

HAT =
N∑

α=1

P2
α

2m
+

1
2

N∑
α	=β

e2

|rα − rβ |
−

N∑
α=1

Ze2

|rα|
. (2.5.39)

2.5.7 Decompositions into Clusters of Particles

As a final application of the expression (2.5.19) for a Hamiltonian, we
consider the class of two-body particle-particle interactions given by the first
term in (2.5.20). The interest here consists in grouping the n particles into
k disjoint subsets of particles, which we refer to as clusters, with the first
containing n1 particles,..., and with the kth containing nk particles.

The above grouping is most convenient if one is interested in studying the
properties of the different clusters as separate entities. In a scattering exper-
iment, for example, one may have, as a final state of the process, particles
emerging (within experimental limitations) into localized clusters (with non-
vanishing intra-clusteral interactions) which are widely separated one from
the other (with negligible inter-clusteral interactions). [Intra-clusteral interac-
tions refer to interactions occurring between particles within the same cluster,
while inter-clusteral referring to interactions between different clusters, due
to particle-particle interactions with the particles belonging to the different
clusters.] That is, these clusters of particles emerge as separate entities and
the properties of some or all of them may explored.
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The positions of the particles in the clusters are conveniently labelled as

{x11, . . . ,x1n1} , . . . , {xk1, . . . ,xknk
} (2.5.40)

and their masses as

{m11, . . . ,m1n1} , . . . , {mk1, . . . ,mknk
} . (2.5.41)

The center of mass positions of the clusters are then defined by

Rα =
1

Mα

nα∑
β=1

mαβxαβ (2.5.42)

with

Mα =
nα∑

β=1

mαβ (2.5.43)

α = 1, . . . , k, and Mα denoting the sum of the masses of the particles in the
αth cluster. For the center of mass position of the k clusters we have

R =
1
M

k∑
α=1

MαRα (2.5.44)

with

M =
k∑

α=1

Mα. (2.5.45)

, . . . ,

n1 PARTICLES WITH THE

SUM OF MASSES M1,
CENTER OF MASS POSITION R1

nk PARTICLES WITH THE

SUM OF MASSES Mk,
CENTER OF MASS POSITION Rk

Fig. 2.3. Grouping of n particles into k clusters of particles. Such a grouping
is convenient for the study of properties of these clusters as separate entities.

Upon defining the αth cluster total momentum operator

Pα· =
nα∑

β=1

Pαβ (2.5.46)
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and using the identity

nα∑
β=1

(
Pαβ − mαβ

Mα
Pα·

)
= 0 (2.5.47)

one may write the Hamiltonian in question as

H =
P2

2M
+

k∑
α=1

nα∑
β=1

(
Pαβ − mαβ

Mα
Pα·

)2

2mαβ
+

k∑
α=1

(
Pα· − Mα

M P
)2

2Mα

+ VE + VA (2.5.48)

where

VA =
k∑

α=1

nα∑
β 	=γ

Vαβγ (xαβ − xαγ) (2.5.49)

VE =
k∑

α=1

k∑
β=1

(α	=β)

nα∑
γ=1

nβ∑
ρ=1

Vαβγρ (xαγ − xβρ) . (2.5.50)

The potential energies VE and VA are, respectively, responsible for the inter -
clusteral and the intra-clusteral interactions.

From (2.5.21) we note that, in reference to (2.5.48), one has the center of
mass motion of an αth cluster conveniently removed in

nα∑
β=1

(
Pαβ − mαβ

Mα
Pα·

)2

2mαβ
=

nα∑
β=1

P2
αβ

2mαβ
− P2

α·
2Mα

. (2.5.51)

Similarly, in
k∑

α=1

(
Pα· − Mα

M P
)2

2Mα
=

k∑
α=1

P2
α·

2Mα
− P2

2M
(2.5.52)

one has the center of mass motion of the k clusters removed.
At this stage, if one wishes, one may introduce variables as in (2.5.33),

(2.5.34) in reference to each cluster, and also introduce such variables for the
system of the k clusters. That is, one may set

rαβ = xαβ − xαnα
, β = 1, . . . , nα − 1 (2.5.53)

for α = 1, . . . , k and Rα as already given in (2.5.42). On the other hand for
the system of clusters, one may set

ηα = Rα − Rk, α = 1, . . . , k − 1 (2.5.54)
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and R as defined in (2.5.44). Such variables may not always be the most
convenient ones and different variables may be introduced instead.

As an example, consider two clusters (k = 2) with the first consisting of
one particle (n1 = 1) and the second consisting of two particles (n2 = 2).
This may correspond, for example, to a situation in a scattering process
involving a positron e+ and a hydrogen atom with the latter consisting of an
electron-proton bound state. The variables (2.5.53), (2.5.54) in question are

r11 = x11 ≡ R1 (2.5.55)

r21 = x21 − x22 ≡ r (2.5.56)

η = R1 − R2 (2.5.57)

and the following Hamiltonian

H = − �
2

2M
∇2

R − �
2

2

(
1

M1
+

1
M2

)
∇2

η − �
2

2

(
1

m21
+

1
m22

)
∇2

r

+ VA(r) + V1

(
η +

m21

M2
r
)

+ V2

(
η − m22

M2
r
)

(2.5.58)

is of the form in (2.5.48), where VA(r) is responsible for the intra-clusteral
interaction of the second cluster, and VE = V1 + V2 is a potential energy
responsible for the inter-clusteral interaction, that is, the interaction between
the two clusters. Here M1 = m11, M2 = m21 + m22. The decomposition in
(2.5.58) may, for example, be convenient if VE vanishes sufficiently rapidly
for |η| → ∞ and, initially and/or finally in some scattering process, one is
dealing with two non-interacting clusters.

Other examples of clusters decompositions may be also carried out (see
Problem 2.7) in a similar manner.

In the appendix to this section, the time evolution of states given in (2.5.9)
will be generalized to time-dependent Hamiltonians.

Appendix to §2.5: Time-Evolution for Time-Dependent
Hamiltonians

The purpose of this appendix is to describe the time evolution of a state for
time-dependent Hamiltonians. A state |ψt+δτ 〉 approaches the state |ψt〉 for
δt → 0, and must coincide with (2.5.7) for a time-independent Hamiltonian.
Quite generally we may then write

|ψt+δτ 〉 =
(
1 − i

�
δτH(t)

)
|ψt〉 (A-2.5.1)
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to first order in δτ , where the Hamiltonian H(t) is assumed to be, in general,
time-dependent. As in (2.5.8), (A-2.5.1) leads, by taking the limit δτ → 0, to
the Schrödinger equation

i�
∂

∂t
|ψt〉 = H(t) |ψt〉 . (A-2.5.2)

To integrate (A-2.5.2), we denote the initial state |ψ0〉 by |ψ〉. To this end,
we have by an elementary iterative formal procedure

|ψt〉 � |ψ〉

|ψt〉 � |ψ〉 +
(
−i
�

)∫ t

0

dt1 H(t1) |ψ〉

|ψt〉 � |ψ〉 +
(
−i
�

)∫ t

0

dt1 H(t1) |ψ〉 +
(
−i
�

)2 ∫ t

0

dt2

∫ t2

0

dt1 H(t2)H(t1) |ψ〉

...

and finally obtain

|ψt〉 = |ψ〉+
∑
n�1

(
−i
�

)n ∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 H(tn)H(tn−1) . . . H(t1) |ψ〉

(A-2.5.3)
where we note that

tn � tn−1 � . . . � t2 � t1 (A-2.5.4)

and the important ordering of the operators

H(tn)H(tn−1) . . . H(t2)H(t1) (A-2.5.5)

in (A-2.5.3) from right to left corresponding to the ordering in (A-2.5.4).
To rewrite (A-2.5.3) in a more manageable form, we introduce the chrono-

logical time ordering operation defined by

(H(t)H(t′))+ = (H(t′)H(t))+ = H(t)H(t′) (A-2.5.6)

if t � t′, and more generally

(H(t1) . . . H(tn))+ = (H(ti1) . . . H(tin
))+

= H(tn) . . . H(t1) (A-2.5.7)

if tn � tn−1 � . . . � t1, and {ti1 , . . . , tin
} is any permutation of {t1, . . . , tn}.

From the definition in (A-2.5.6), we have the following equality
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∫ t

0

dt2

∫ t

0

dt1 (H(t2)H(t1))+ =
∫ t

0

dt2

∫ t2

0

dt1 H(t2)H(t1)

+
∫ t

0

dt1

∫ t1

0

dt2 H(t1)H(t2)

= 2
∫ t

0

dt2

∫ t2

0

dt1 H(t2)H(t1) (A-2.5.8)

and more generally from (A-2.5.7)∫ t

0

dtn

∫ t

0

dtn−1 . . .

∫ t

0

dt1 (H(tn) . . . H(t1))+

= n!
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 H(tn) . . . H(t1). (A-2.5.9)

Equation (A-2.5.9) allows us to rewrite the solution in (A-2.5.3) as

|ψt〉 =
∑
n�0

(−i/�)n

n!

∫ t

0

dtn

∫ t

0

dtn−1 . . .

∫ t

0

dt1 (H(tn) . . . H(t1))+ |ψ〉

=
∑
n�0

(−i/�)n

n!

(∫ t

0

dt′ H(t′)
)n

+

(A-2.5.10)

or

|ψt〉 =
(

exp− i
�

∫ t

0

dt′ H(t′)
)

+

|ψ〉 (A-2.5.11)

generalizing the solution in (2.5.9) for time-dependent Hamiltonians.
We note that the adjoint transformation of (A-2.5.7) leads to

[
(H(t1) . . . H(tn))+

]† =
[
(H(ti1) . . . H(tin

))+
]†

= H(t1) . . . H(tn−1)H(tn) (A-2.5.12)

if t1 � . . . � tn−1 � tn. Thus we may introduce the chronological time
anti-ordering operation defined by

(H(t1) . . . H(tn))− = (H(ti1) . . . H(tin
))−

= H(t1) . . . H(tn−1)H(tn) (A-2.5.13)

if t1 � . . . � tn−1 � tn, and {ti1 , . . . , tin
} is any permutation of {ti, . . . , tn}.

From (A-2.5.11)–(A-2.5.13), we then have for the adjoint of the time evo-
lution operator[(

exp− i
�

∫ t

0

dt′ H(t′)
)

+

]†

=
(

exp
i
�

∫ t

0

dt′ H(t′)
)

−
. (A-2.5.14)
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2.6 Discrete Transformations: Parity and Time Reversal

In this section, we consider two discrete transformations. The first consists
of the operation of reflecting the sense of every spatial coordinate axis. This
amounts to the transformation x → x′:

x′ → −x (2.6.1)

as a reflection through the origin of the space coordinate system. The other
is the reversal of the direction of time flow. We will see that on the physical
states, a space reflection is implemented by a unitary operator P, referred
to as the parity transformation, while time reversal is implemented by an
anti-unitary operator which we denote by T . The problem encountered in
trying to represent P by an anti-unitary operator rather than a unitary one
will be discussed explicitly below. The analysis of the problem encountered
in representing T by a unitary operator rather than by an anti-unitary one is
similarly carried out and is left as an exercise to the reader (see Problem 2.8).
A third discrete transformation, referred to as charge conjugation, denoted by
C, will be discussed later in Chapter 16. As mentioned earlier, if one combines
special relativity with quantum mechanics, leading to what is called quantum
field theory, then one may establish that the combined transformation CPT
is a symmetry transformation based on such a merger.

A point Q in a given (right-handed) coordinate system labelled by x, will
be labelled by x′ in a (left-handed) coordinate system arising from the initial
one by reflecting the sense of every spatial coordinate axis (see Figure 2.3).

For infinitesimal Galilean transformations, we recall that (see (2.1.15),
(2.1.16))

δx = δa + δvt + δω × x (2.6.2)

δt = δτ (2.6.3)

where δω is defined in (2.1.6). For the combined Galilean transformation
and space reflection, for example, we have

(δx)′ = −δa − δvt − δω × x (2.6.4)

(δt)′ = δτ (2.6.5)

which amount to the replacements, δa → −δa, δv → −δv, δω → δω,
δτ → δτ .

With the change of description given in (2.6.4), we associate an operator
P, operating on physical states, whose nature will be soon established.

In reference to Wigner’s Theorem (§1.9), to establish whether P should be
anti-unitary or unitary, we consider the case in (2.6.4) with δa = 0, δv = 0,
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(a) (b)

θ

θ′

QQ

φ
φ′

x1

x2

x3

x′1

x′2

x′3

Fig. 2.4. A point Q labelled by x in the right-handed coordinate system in
(a) and is labelled by x′ in the left-handed coordinate system in (b) obtained
from the initial one by reflecting the sense of each of its coordinate axes. We
note that θ = π − θ′, φ = φ′ − π, x = −x′, or equivalently θ′ = π − θ,
φ′ = φ + π, x′ = −x.

δω = 0 first. Since the operation consisting of a space reflection followed by
a time shift δτ in one’s clocks readings and the operation of a time shift δτ
in one’s clocks readings followed by a space reflection are equivalent we may
infer that (

1 − i
�
δτH

)
P = P

(
1 − i

�
δτ(H + c1)

)
(2.6.6)

up to a phase factor specified by an additional structure (1/�)δϕ1, with
δϕ = −cδτ , as appearing on the right-hand of (2.6.6), with c some real
constant. This equality implies that

iHP = Pi(H + c1). (2.6.7)

If P is anti-unitary, that is, in particular, it complex conjugates numerical
factors, we obtain after re-arrangement of terms

PHP−1 = −(H + c1). (2.6.8)

A Hamiltonian, in general, is unbounded from above. This is true even for a
free particle. Equation (2.6.8) says that for every eigenstate |ψ〉 of H with
a given non-negative energy E arbitrarily large, H has an eigenstate P |ψ〉
with corresponding energy −(E + c). With E arbitrarily large, this in turn
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implies that the Hamiltonian is unbounded from below and is physically un-
acceptable. The latter argument may be made rigorous by stating that for
any ε > 0, however small,

‖(H − E)ψε‖ < ε (2.6.9)

if and only if
‖[H + (E + c)]Pψε‖ < ε (2.6.10)

implying the unboundedness of the spectrum of H from below for arbitrarily
large non-negative E. That is, P must be unitary.

With P as a unitary operator, we consider the more general cases corre-
sponding to (2.6.4), (2.6.5).

Since the operation consisting of a space reflection, followed by an infini-
tesimal Galilean transformation, specified by the parameters δa, δv, δτ , δω,
is equivalent to first performing the infinitesimal changes −δa, −δv, δτ , δω,
and then a space reflection, we may infer that

[
1 +

i
�

(δa · P + δv · N − δτH + δω · J)
]
P

= P
[
1 +

i
�

(−δa · P − δv · N − δτH + δω · J)
]

(2.6.11)

where we have dispensed with a phase factor specified by an additional struc-
ture (1/�)δϕ1 within the square brackets on the right-hand side (see Prob-
lem 2.9).

Unitarity of P then implies from (2.6.11) that

HP − PH = 0 (2.6.12)

JP − PJ = 0 (2.6.13)

PP + PP = 0 (2.6.14)

NP + PN = 0. (2.6.15)

From (2.6.14), (2.6.15) and (2.3.21) we may also infer that

XP + PX = 0 (2.6.16)

as expected.
If parity is not a symmetry transformation, such as in beta decay (a weak

interaction process), the Hamiltonian is so constructed to reflect this fact by
ensuring, in particular, that HP − PH �= 0.

A very similar analysis to the one given through (2.6.6)–(2.6.10) implies
that time reversal is implemented by an anti-unitary operator rather than
by a unitary operator (see Problem 2.8).
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The infinitesimal Galilean transformations in (2.6.2), (2.6.3) followed by
the reversal of the time translation t − δτ → −t + δτ give

(δx)′ = δa + δvt + δω × x (2.6.17)

(δt)′ = −δτ (2.6.18)

where δv → −δv, δω → δω under the reversal of the direction of time flow.
We note the invariance of the product δvt.

By using the identification of the position operator in (2.3.21), we spell
out an infinitesimal Galilean transformation, at a given time t, as

1 +
i
�

[(δa + tδv) · P − Mδv · X − δτH + δω · J] . (2.6.19)

Since the operation of time reversal followed by an infinitesimal Galilean
transformation specified by δa, δv, δτ , δω, at a given time t as the latter
is shown in (2.6.19), is equivalent to an infinitesimal Galilean transformation
specified by δa, −δv, −δτ , δω, at time −t, followed by a time reversal, we
obtain(

1 +
i
�

[(δa + tδv) · P − Mδv · X − δτH + δω · J]
)
T

= T
(
1 +

i
�

[(δa + tδv) · P + Mδv · X + δτH + δω · J]
)

(2.6.20)

where as for the case of the parity transformation in (2.6.11), we have dis-
pensed with a phase factor contribution in (2.6.20) (see Problem 2.9). It is
worth recalling the complex conjugation nature of numerical factors of the
operator T . Accordingly, (2.6.20) leads to

HT − T H = 0 (2.6.21)

JT + T J = 0 (2.6.22)

PT + T P = 0 (2.6.23)

and
(tP − MX)T + T (tP + MX) = 0. (2.6.24)

The letter two equations then give

XT − T X = 0. (2.6.25)

We note that the operator T does not operate on the real parameter t in
(2.6.24).
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2.7 Orbital Angular Momentum and Spin

In this section we investigate the nature of the generator J (see (2.3.13),
(2.3.43)) of space coordinate rotations. Important commutation relations in-
volving J are given in Table 2.1 below (2.3.15) and in (2.3.24), where we recall
that E = 0, B = 0 in the Table. From these commutation relations, and from
(2.3.21) and (2.3.20) it is not difficult to derive that for infinitesimal Galilean
transformations

δJ = (δa + tδv) × P − Mδv × X + δω × J. (2.7.1)

On the other hand from (2.3.22), (2.3.27)

δX = (δa + tδv) + δω × X − δτ
P
M

(2.7.2)

and from (2.3.20), Table 2.1,

δP = Mδv + δω × P. (2.7.3)

From the latter two equations or directly from (2.3.20) (see Problem 2.10),
one has

δ(X × P) = (δa + tδv) × P − Mδv × X + δω × (X × P) (2.7.4)

where we note, in particular, that

[H,X × P] = 0. (2.7.5)

As a matter of fact X × P satisfies the same commutation relations in Ta-
ble 2.1 and in (2.3.24) as J. Hence upon the comparison of (2.7.1) with (2.7.4)
we conclude that J has the very general form

J = (X × P) + S (2.7.6)

where the operator S necessarily, as is easily established, satisfies the com-
mutation relations

[
P i, Sj

]
= 0 (2.7.7)

[
Xi, Sj

]
= 0 (2.7.8)

[
H,Si

]
= 0 (2.7.9)

[
Si, Sj

]
= iεijkSk. (2.7.10)

The operator
X × P ≡ L (2.7.11)
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denotes the familiar orbital angular momentum. On the other hand S in
(2.7.6) is a translational independent contribution to J and is referred to
as the spin or the internal angular momentum. We note, in particular, that
(2.7.7), (2.7.8) imply that [

Li, Sj
]

= 0. (2.7.12)

To obtain further insight into the nature of the spin operator S, we con-
sider the transformations of a Galilean scalar (field) and a Galilean vector
(field) under a rotation of the coordinate system.

A Galilean scalar (field) ψ(x), under a rotation of the coordinate system,
is defined by (see (2.1.1)) the transformation law

ψ′(Rx) = ψ(x) (2.7.13)

or by
ψ′(x) = ψ(R−1x). (2.7.14)

Upon using (2.3.43), and (2.1.26), (2.1.34), (2.1.43) we obtain from
(2.7.14)

((
exp

i
�
ω · J

)
ψ

)
(x) = exp [ω · (x × ∇)] ψ(x) (2.7.15)

thus leading to the representation

J = x × (−i�∇) (2.7.16)

and
S = 0 (2.7.17)

reflecting the spin 0 character of a scalar (field).
A Galilean vector (field) Φ(x) under the rotation of the coordinate system,

is defined by the transformation law4

Φ′i(Rx) = RijΦj(x) (2.7.18)

or by
Φ′i(x) = RijΦj(R−1x) (2.7.19)

where, in the same way as the vector x itself (see (2.1.1)), the presence of the
matrix

(
Rij

)
on the right-hand sides of (2.7.18), (2.7.19) reflects the vector

character of Φ. Of course, we have to check that the spin associated with
Φ is indeed equal to one which is the spin content of a vector (field). The
presence of the matrix

(
Rij

)
, in turn, implies the invariance of an amplitude

under a rotation of the coordinate system:

4 Vector fields also arise as a particular case within a spinor analysis context as
given in §2.8.
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3∑
i=1

〈
Φ′i|ψ′i〉 =

3∑
i=1

〈
Φi|ψi

〉
(2.7.20)

where we have used (2.1.3), and (2.1.36) for the evaluation of the Jacobian
of the transformation which is equal to one.

From (2.1.26), (2.1.34), (2.1.43), we have for (2.7.19) the explicit expres-
sion

Φ′(x) = exp
[
i
ω

�
· (x × (−i�∇) + �M)

]
Φ(x) (2.7.21)

leading from (2.3.43) to the representation

J = x × (−i�∇) + �M (2.7.22)

and hence to
S = �M (2.7.23)

where the matrices M j are defined in (2.1.17), (2.1.28)–(2.1.30), (2.1.32). In
particular,

S2 = 2�1 (2.7.24)

which upon using the definition that for a particle of spin s (see §5.1, §5.4)
we must have S2 = �

2s(s + 1)1, (2.7.24) then gives s = 1, thus verifying the
spin content of Φ.

Now we turn to a system of n particles. Using the definitions given in
(2.5.16)–(2.5.18), we rewrite (2.7.6) as

J =
n∑

α=1

(Xα × Pα + Sα) (2.7.25)

with X and P given in (2.5.16), and (2.5.17), respectively, and S is to be
determined. J may be rewritten in the form

J = X × P +
n∑

α=1

[(Xα − X) × Pα + Sα] (2.7.26)

On the other hand since
n∑

α=1

mα

M
(Xα − X) = 0 (2.7.27)

and hence
n∑

α=1

mα

M
(Xα − X) × P = 0 (2.7.28)

one may finally rewrite (2.7.25) as

J = X × P +
n∑

α=1

[
(Xα − X) ×

(
Pα − mα

M
P
)

+ Sα

]
. (2.7.29)
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This leads to the following expression for the total internal angular mo-
mentum S of the system of particles as one composite object made up of the
n particles:

S =
n∑

α=1

[
(Xα − X) ×

(
Pα − mα

M
P
)

+ Sα

]
(2.7.30)

with (Xα − X) denoting the operator for the position of the αth particle
relative to the center of mass, and (Pα − mαP/M) denoting the operator
of its momentum as determined in the center of mass. The first term in the
summand in (2.7.30) represents the orbital angular momentum operator of
the αth particle in the center of mass system. The internal angular momentum
S in (2.7.30) is the total angular momentum of the system of particles relative
to the center of mass. It is easily checked from (2.7.30) that

[
P i, Sj

]
= 0,

[
Xi, Sj

]
= 0 (2.7.31)

as they should be for a proper definition of spin (see (2.7.7), (2.7.8)).
Consider the decomposition of J in (2.7.25) into k �= 1 clusters (see §2.5),

rather than one, as in (2.7.29), (2.7.30), composed, respectively, of n1, . . . , nk

particles. To this end, it is more convenient to introduce the operators Xαβ ,
Pαβ , Xα·, X, Pα·, P where

Xα· =
nα∑

β=1

mαβ

Mα
Xαβ (2.7.32)

X =
k∑

α=1

Mα

M
Xα· (2.7.33)

denoting, respectively, the position operator associated with the center of
mass of the αth cluster, and the position operator of the center of mass of

the k clusters with the latter coinciding with the center of mass of the
k∑

α=1
nα

particles. The operators Pαβ , Pα·, P and the masses mαβ , Mα, M are defined
in §2.5. In particular, Mα denotes the sum of the masses of the particles in
the αth cluster.

Suppose Sαβ denotes the spin of the βth particle in the αth cluster. Then

J =
k∑

α=1

nα∑
β=1

(Xαβ × Pαβ + Sαβ) (2.7.34)

may be rewritten as

J = X × P +
k∑

α=1

[
(Xα· − X) ×

(
Pα· −

Mα

M
P
)

+ S(α)

]
(2.7.35)
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where

S(α) =
nα∑

β=1

[
(Xαβ − Xα·) ×

(
Pαβ − mαβ

M
Pα·

)
+ Sαβ

]
(2.7.36)

is the total internal angular momentum of the αth cluster as a composite
object made up of nα particles. The following commutation relations again
hold true [

P i
α·, S

j
(α)

]
= 0,

[
Xi

α·, S
j
(α)

]
= 0. (2.7.37)

Also [
P i, Sj

(α)

]
= 0,

[
Xi, Sj

(α)

]
= 0 (2.7.38)

for all i, j = 1, 2, 3.
For a two cluster decomposition (k = 2), consisting, respectively, of n1

and n2 particles, J in (2.7.35) may be rewritten as

J = X × P +
2∑

α=1

[
(Xα· − X) ×

(
Pα· −

Mα

M
P
)

+ S(α)

]

= X × P + Lr + S(1) + S(2) (2.7.39)

where Lr is the total orbital angular momentum of the two clusters residing
in their center of mass given by

Lr =
2∑

α=1

(Xα· − X) ×
(
Pα· −

Mα

M
P
)

= (X1· − X2·) ×
(

M2P1· − M1P2·
M1 + M2

)
(2.7.40)

and Lr + S(1) + S(2) is the internal angular momentum of the two clusters.
Pertinent properties of the angular momentum operator, in general, as

well as of the orbital angular momentum operator and spin, in particular,
will be studied in detail later in Chapter 5. Arbitrary spins are also studied
in §2.8.

Finally we note from the transformation law (2.3.43) of a state |ψ〉 under
a coordinate rotation

|ψ′〉 = exp
(

i
�
ϕn · J

)
|ψ〉 , (2.7.41)

in a coordinate description, we have

ψ′(x) =
(

exp
(

i
�
ϕn · J

)
ψ

)
(x) (2.7.42)
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and from (2.7.6), (2.7.11), (2.7.12) and the identity (2.1.43)

ψ′(x′) =
(

exp
(

i
�
ϕn · S

)
ψ

)
(x) (2.7.43)

where x′ = Rx, with R defined in (2.1.26). Note that in (2.7.42), (2.7.43)
the argument of ψ′ is x when the right-hand side of the equation of its
transformation law involves J, while it is x′ when it involves only the spin S,
respectively.

2.8 Spinors and Arbitrary Spins

In generalizing the concept of spin 0 and spin 1 studied in §2.7, we intro-
duce the concept of a spinor. Spinors are essential objects needed to describe
spin 1/2 and, more generally, half-odd integral spins. One may even describe
integer spins by using these curious objects as we will see below.

2.8.1 Spinors and Generation of Arbitrary Spins

We begin by defining on how a spinor transforms under a coordinate
rotation. Spinors of so-called of rank 1 and their transformation rule under
a coordinate rotation are introduced from first principles in the appendix to
this chapter. At a first reading, one may skip the reading of this appendix.
The burden of this section is to see how these mathematical entities together
with their underlying definitions describe arbitrary spins.

A spinor (field) of rank k, ψa1...ak(x), depending on k indices a1 . . . ak

each taking the possible values 1 and 2, has the following transformation law
under a coordinate rotation by an angle ϕ about a unit vector n:

ψ′a1...ak(x′) =
(

exp
[

i
2
ϕn · σ

])a1b1

. . .

(
exp

[
i
2
ϕn · σ

])akbk

ψb1...bk(x)

(2.8.1)
where a summation over the repeated indices b1, . . . , bk is understood. In the
notation of §2.1, x′ = Rx. Here σ = (σ1, σ2, σ3), where σ1, σ2, σ3 are 2 × 2
matrices introduced by Pauli

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.8.2)

which together the unit matrix

1 =
(

1 0
0 1

)
(2.8.3)

constitute a complete set of matrices in the vector space consisting of complex
2 × 2 matrices. That is, any element in such a vector space may be written
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as a linear combination of the matrices 1, σ1, σ2, σ3. [·]ab denotes the matrix
elements of the matrix in question.

In the sense of §2.7, spin 0 (see (2.7.17)), is described by a spinor of rank
0. To describe arbitrary spins, we are interested in symmetric spinors of rank
k. That is, spinors ψa1...ak(x) which are completely symmetric in the indices
a1 . . . ak.

The matrix exp(iϕn ·σ/2) in (2.8.1) may be rewritten in the simple form

1 cos
ϕ

2
+ i(n · σ) sin

ϕ

2
. (2.8.4)

To see this note that

d
dϕ

[
1 cos

ϕ

2
+ i(n · σ) sin

ϕ

2

]
=

i
2
n · σ

[
1 cos

ϕ

2
+ i(n · σ) sin

ϕ

2

]
(2.8.5)

where we have used the useful identity

σiσj = δij + iεijkσk. (2.8.6)

Upon integration of (2.8.5), we obtain

exp
(
i
ϕ

2
n · σ

)
= 1 cos

ϕ

2
+ i(n · σ) sin

ϕ

2
(2.8.7)

with the boundary condition

exp
(
i
ϕ

2
n · σ

) ∣∣∣∣
ϕ=0

= 1. (2.8.8)

[Another way of deriving (2.8.7) is given in Problem 2.13.]
As the indices a1, . . . , ak, take on the values 1 or 2, a completely symmetric

spinor ψa1...ak(x) define (k+1) functions which we denote by ψ0(x), . . . , ψk(x)
and, in particular, we may choose

ψ11...11(x) ≡ ψk(x) (2.8.9)

ψ22...22(x) ≡ ψ0(x). (2.8.10)

For arbitrary a1, . . . , ak taking the values 1 or 2, we may expand ψa1...ak(x)
in terms of these functions. To this end, let i of the indices a1, . . . , ak take
on the value 1 and the (k − i) remaining of them take on the value 2. We
introduce the orthonormal set consisting of the objects

Ca1...ak(i) =
1√

k! i! (k − i)!

(
δa11 . . . δai1δai+12 . . . δak2

)
permut.

(2.8.11)

with i = 0, 1, . . . , k. Here permut. stands for a summation over all permuta-
tions of {a1, . . . , ak}. The orthonormality property reads:
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∑

a1,...,ak=1,2

Ca1...ak(i)Ca1...ak(i′) = δii′ . (2.8.12)

The orthogonality property for i �= i′ is obvious since the number of ones
(and hence also the number of twos) will be different in this case. The overall
normalization factor in (2.8.11) arises in the following manner. Out of the k
permutations of {a1, . . . , ak}, i! (k − i)! are redundant. Hence we may write(

δa11 . . . δai1δai+12 . . . δak2
)
permut.

= i!(k − i)!
(
δa11 . . . δai1δai+12 . . . δak2

)′
permut.

(2.8.13)

where
(
δa11 . . . δai1δai+12 . . . δak2

)′
permut.

stands for a summation over all non-
redundant permutations. The latter will consist of exactly Ck

i ≡ k!/i!(k − i)!
orthonormal terms. That is,∑

a1,...,ak=1,2

(
δa11 . . . δai1δai+12 . . . δak2

)
permut.

×
(
δa11 . . . δai1δai+12 . . . δak2

)
permut.

= (i!(k − i)!)2 Ck
i = k! i! (k − i)! (2.8.14)

leading to the expression in (2.8.11).
Hence we may rewrite

ψa1...ak(x) =
k∑

i=0

Ca1...ak(i)ψi(x) (2.8.15)

with, in particular,

Ca1...ak(k) = δa11 . . . δak1 (2.8.16)

ψa1...ak(0) = δa12 . . . δak2 (2.8.17)

to be compared, respectively, with (2.8.9), (2.8.10).
The structures Ca1...ak(k) in (2.8.11) may be rewritten in a more conve-

nient form as follows. We introduce two independent variables g1, g2. Then
it is not difficult to see that (2.8.11) may be rewritten in the equivalent form

Ca1...ak(i) =
1√

k! i! (k − i)!
∂

∂ga1

. . .
∂

∂gak

(g1)i(g2)k−i. (2.8.18)

At this stage, it is more convenient to introduce the parameters s and m
defined by5

5 To simplify the notation in what follows, we use the symbol m rather than the
more common one ms in (2.8.20).
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k = 2s, k = 1, 2, . . . (2.8.19)

m = i − s, i = 0, 1, . . . , k. (2.8.20)

Hence s and m take the possible values

s =
1
2
, 1,

3
2
, 2, . . . (2.8.21)

m = −s,−s + 1, . . . , s − 1, s. (2.8.22)

We may then rewrite (2.8.15) as

ψa1...a2s(x) =
s∑

m=−s

Ca1...a2s(s + m)ψ(x,m) (2.8.23)

where ψ(x,m) = ψs+m(x) in a coordinate description.
From the orthonormality condition (2.8.12), we have the unitarity of the

transformation in (2.8.23)

∑
a1,...,a2s=1,2

∫
d3x (ψa1...a2s(x))† φa1...a2s(x)

=
s∑

m=−s

∫
d3x ψ∗(x,m)φ(x,m) (2.8.24)

and, in particular,

1 =
∑

a1,...,a2s=1,2

‖ψa1...a2s‖2 =
s∑

m=−s

∫
d3x |ψ(x,m)|2 (2.8.25)

when normalized to one.
More generally, we may write instead of (2.8.23) in general

ψa1...a2s =
s∑

m=−s

Ca1...a2s(s + m)ψ(m). (2.8.26)

The matrix in (2.8.7) is easily worked out, by using in the process (2.8.2),
to be

exp
(

i
2
ϕn · σ

)
=


cos ϕ

2 + in3 sin ϕ
2 i

(
n1 − in2

)
sin ϕ

2

i
(
n1 + in2

)
sin ϕ

2 cos ϕ
2 − in3 sin ϕ

2




≡ A (2.8.27)
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where n =
(
n1, n2, n3

)
. The inverse of the matrix A is obtained by replacing

ϕ by −ϕ in (2.8.27):

A−1 =


 cos ϕ

2 − in3 sin ϕ
2 −i

(
n1 − in2

)
sin ϕ

2

−i
(
n1 + in2

)
sin ϕ

2 cos ϕ
2 + in3 sin ϕ

2


 . (2.8.28)

The transformation

Aa1b1 . . . Aa2sb2sψb1...b2s (2.8.29)

corresponding to the right-hand side of (2.8.26) may be explicitly carried out.
To this end, we introduce two new variables h1, h2 defined by

ha = gb

[
A−1

]ba (2.8.30)

leading to

[A]ab ∂

∂gb
=

∂

∂ha
(2.8.31)

ga = hb [A]ba
. (2.8.32)

Accordingly, from (2.8.1), (2.8.18)–(2.8.20), (2.8.26), we have

[A]a1b1 . . .[A]a2sb2sψb1...b2s =
s∑

m=−s

(
1√

(2s)!(s + m)!(s − m)!

× ∂

∂ha1

. . .
∂

∂ha2s

(
hb[A]b1

)s+m (
hc[A]c2

)s−m
ψ(m)

)
. (2.8.33)

Upon using the elementary binomial expansion

(a + b)n =
n∑

q=0

n!
q!(n − q)!

(a)q(b)n−q (2.8.34)

for any non-negative integer n, as applied to
(
hb[A]b1

)s+m ≡
(
h1[A]11 + h2[A]21

)s+m (2.8.35)

(
hc[A]c2

)s−m ≡
(
h1[A]12 + h2[A]22

)s−m (2.8.36)

the right-hand side of (2.8.33) may be rewritten as

s∑
m=−s

Ca1...a2s(s + m)ψ̃(m) (2.8.37)
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where

ψ̃(m) =
∑
q,m′

√
(s + m)!(s − m)!(s + m′)!(s − m′)!

(s + m − q)!(m′ − m + q)!q′!(s − m′ − q)!

×
(
[A]11

)s+m−q (
[A]21

)m′−m+q (
[A]12

)q (
[A]22

)s−m′−q
ψ(m′) (2.8.38)

giving the transformation law for ψ(m), and the q-sum is over all non-negative
integers q for which the arguments of the factorials involving q are non-
negative integers.

Upon writing
ψ(m) = 〈s,m|ψ〉 (2.8.39)

the spin operator S is defined through (see, in particular, (2.7.43), (2.8.23),
(2.8.37), (2.8.1)),

〈
s,m

∣∣∣ ψ̃〉 = 〈s,m| exp
(

i
�
ϕn · S

)
|ψ〉 (2.8.40)

which from (2.8.38) gives

〈s,m| exp
(

i
�
ϕn · S

)
=
∑
q,m′

√
(s + m)!(s − m)!(s + m′)!(s − m′)!

(s + m − q)!(m′ − m + q)!q′!(s − m′ − q)!

×
(
[A]11

)s+m−q (
[A]21

)m′−m+q (
[A]12

)q (
[A]22

)s−m′−q 〈s,m′| .
(2.8.41)

By differentiating the latter with respect to ϕ, using the expression for
the matrix elements [A]ab in (2.8.27), and setting ϕ = 0, one easily obtains

〈s,m|n · S = (n1 + in2)
�

2

√
(s − m)(s + m + 1) 〈s,m + 1|

+ (n1 − in2)
�

2

√
(s + m)(s − m + 1) 〈s,m − 1|

+ n3
�m 〈s,m| . (2.8.42)

Hence, in particular,

S1 |s,m〉 =
�

2

√
(s − m)(s + m + 1) |s,m + 1〉

+
�

2

√
(s + m)(s − m + 1) |s,m − 1〉 (2.8.43)

S2 |s,m〉 = −i
�

2

√
(s − m)(s + m + 1) |s,m + 1〉
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+ i
�

2

√
(s + m)(s − m + 1) |s,m − 1〉 (2.8.44)

S3 |s,m〉 = �m |s,m〉 . (2.8.45)

Upon applying the operators S1, S2, S3 to (2.8.43)–(2.8.45) and using
the latter equations all over again, one immediately obtains

S2 |s,m〉 = �
2s(s + 1) |s,m〉 (2.8.46)

[
Si, Sj

]
|s,m〉 = i�εijkSk |s,m〉 . (2.8.47)

Using the definition that a particle is of spin s if S2 = �
2s(s + 1)1 (see

§5.1, §5.4), (2.8.46) establishes the fact that the symmetric spinor ψa1...a2s is
associated with spin s, and that the components of the spin along the x3-axis,
as dictated by (2.8.45), are given by −�s, �(−s + 1),. . . , �(s − 1), �s. The
spin matrix [〈s′,m′|S|s,m〉] for any spin may be readily constructed from
(2.8.43)–(2.8.45).

Equations (2.8.45), (2.8.46) also lead, respectively, to

�(m − m′) 〈s′,m′|s,m〉 = 0 (2.8.48)

�
2 [s(s + 1) − s′(s′ + 1)] 〈s′,m′|s,m〉 = 0 (2.8.49)

establishing the orthogonality (orthonormality) of the eigenstates |s,m〉

〈s′,m′|s,m〉 = δs′,sδm′,m. (2.8.50)

With the normalization condition in (2.8.25), ψ(x,m) denotes the
wavefunction of a particle of spin s. In a matrix notation ψ(x) =
(ψ(x, s), . . . , ψ(x,−s))�, one has, from (2.8.1), (2.8.23), (2.8.38), (2.8.40), the
transformation law in (2.7.43) with the matrix elements of exp (iϕn · S/�)
given below in (2.8.51), as directly obtained from (2.8.41), that

〈s,m| exp
(

i
�
ϕn · S

)
|s′,m′〉

= δss′
∑

q

√
(s + m)!(s − m)!(s + m′)!(s − m′)!

(s + m − q)!(m′ − m + q)!q′!(s − m′ − q)!

×
(
[A]11

)s+m−q (
[A]21

)m′−m+q (
[A]12

)q (
[A]22

)s−m′−q (2.8.51)

where the sum is over all non-negative integers q such that the arguments of
the factorials are non-negative integers.

For example, for n = (0, 1, 0), we have from (2.8.27), (2.8.51)

〈s,m| exp
(

i
�
ϕS2

)
|s′,m′〉
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= δss′
∑

q

√
(s + m)!(s − m)!(s + m′)!(s − m′)!

(s + m − q)!(m′ − m + q)!q′!(s − m′ − q)!

× (−1)m′−m+q
(
cos

ϕ

2

)2s−2q+m−m′ (
sin

ϕ

2

)2q+m′−m

. (2.8.52)

For spin s = 1/2,

ψa(x) =
s∑

m=−s

Ca

(
1
2

+ m

)
ψ(x,m), a = 1, 2 (2.8.53)

Ca(1) = δa1, Ca(0) = δa2 (2.8.54)

and the spin matrix is from (2.8.43)–(2.8.45),

S =
�

2
σ (2.8.55)

and, for example, from (2.8.52)

[
exp

iϕ
�

S2

]
=


 cos ϕ

2 sin ϕ
2

− sin ϕ
2 cos ϕ

2


 . (2.8.56)

From (2.8.53), (2.8.54), the spinor may be written in a column matrix form

ψ(x) =
(

ψ(x,+1/2)
ψ(x,−1/2)

)
=
(

1
0

)
ψ(x,+1/2) +

(
0
1

)
ψ(x,−1/2). (2.8.57)

For spin s = 1,

ψa1a2(x) =
s∑

m=−1,0,1

Ca1a2(1 + m)ψ(x,m) (2.8.58)

and from (2.8.18) or (2.8.11):

Ca1a2(1 + 1) = δa11δa21 (2.8.59)

Ca1a2(1 + 0) =
1√
2

(
δa11δa22 + δa12δa21

)
(2.8.60)

Ca1a2(1 − 1) = δa12δa22 (2.8.61)

and the spin S = (S1, S2, S3) has from (2.8.43)–(2.8.45) the components

S1 =
�√
2


0 1 0

1 0 1
0 1 0


 (2.8.62)
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S2 = i
�√
2


0 −1 0

1 0 −1
0 1 0


 (2.8.63)

S3 = �


1 0 0

0 0 0
0 0 −1


 (2.8.64)

in the diagonal representation for S3. For (2.8.52), we have

[
exp

iϕ
�

S2

]
=




(1 + cos ϕ)/2 (sinϕ)/
√

2 (1 − cos ϕ)/2

−(sin ϕ)/
√

2 cos ϕ (sin ϕ)/
√

2

(1 − cos ϕ)/2 −(sin ϕ)/
√

2 (1 + cos ϕ)/2


 . (2.8.65)

We will recover the structures (2.8.59)–(2.8.61) in §5.5 when adding two
spin 1/2’s. It is remarkable that the system (2.8.18)–(2.8.20) provides the
general solution for describing a spin s out of 2s spin 1/2’s and generalizes
the expressions (2.8.59)–(2.8.61).

As mentioned before spin 0 may be described by a spinor of rank 0. That
is, it transforms as

ψ′(x′) = ψ(x) (2.8.66)

(see also (2.7.13)). It may be also described by a second rank anti -symmetric
spinor Φa1a2(x) (see Problem 2.15).

2.8.2 Rotation of a Spinor by 2π Radians

An intriguing result which distinguishes half-odd integral spins (s =
1/2, 3/2, . . .) from integral spins (s = 0, 1, 2, . . .) is that under a rotation
of a coordinate system by 2π radians, about any axis, thus bringing us back
to the same initial situation, a half-odd integral spin spinor, is read to ac-
quire an overall minus sign multiplied by the initial spinor. This relative
phase change for such spin values is physically observable and will be dis-
cussed later in §8.12. Particles with half-odd integer spins are referred to as
fermions, while particles with integer spins are referred to as bosons.

To see how this phase change occurs put ϕ = 2π in (2.8.7) to obtain

exp
(

i
2π

2
n · σ

)
= 1 cos π + i(n · σ) sin π = −1. (2.8.67)

Hence (2.8.1), with k = 2s, leads to

ψ′a1...a2s(x) = (−1)2sψa1...a2s(x) (2.8.68)
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establishing the relative phase change which results under a 2π rotation for
s = 1/2, 3/2, . . .. Only through a rotation by 4π (or by integer multiples of
4π) a +1 phase is obtained for half-odd integral spins!

For the matrix element (2.8.51), we also have

〈s,m| exp
(

i
2π

�
n · S

)
|s′,m′〉 = (−1)2sδss′δmm′ (2.8.69)

and hence also for the wavefunctions (see (2.8.23), (2.8.38))

ψ′(x,m) = (−1)2sψ(x,m). (2.8.70)

2.8.3 Time Reversal and Parity Transformation

We next consider the time reversal operation for arbitrary spins. To this
end, consider first the situation for spin 1/2.

In a vector space generated by 2×2 matrices, the most general expression
for the time reversal operator T for spin 1/2 is

T = (1a + ibn · σ)K (2.8.71)

expanded in terms of the complete set of 2 × 2 matrices 1, σi, i = 1, 2, 3,
where a and b are, in general, complex numbers, n is a unit vector, and K is
the complex conjugation operation to ensure, in particular, the anti-unitary
nature of T (see §2.6). The latter must satisfy the anti-commutation relation
in (2.6.22) with the spin operator S in (2.8.55). That is, we must have

(1a + ibn · σ)σj∗ + σj(1a + ibn · σ) = 0 (2.8.72)

for j = 1, 2, 3. It is easily checked that the solution consistent with (2.8.72)
is

a = 0, n = (0, 1, 0) (2.8.73)

i.e.,
T = ibσ2K. (2.8.74)

The anti-unitarity nature of T then implies that |b|2 = 1, where we note,
in particular, the reality of the matrix (iσ2). That is, up to an overall phase
factor, b, which we define for a basic spin 1/2 state to be one, (2.8.74) gives

T = (iσ2)K. (2.8.75)

For two successive time reversals, we obtain

T 2 = −1. (2.8.76)

A spinor then transforms as
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ψ′a(x) = K[iσ2]abψb(x) (2.8.77)

under time reversal. Using the identity

[iσ2]ab = δa1δb2 − δa2δb1 (2.8.78)

we obtain, from (2.8.53), the following transformation law of a spin 1/2 wave-
function

ψ(x,+1/2) → ψ∗(x,−1/2) (2.8.79)

ψ(x,−1/2) → −ψ∗(x,+1/2) (2.8.80)

causing, in particular, a spin flip.
For an arbitrary spin s, we define from (2.8.77), the following transfor-

mation law under time reversal

ψ′a1...a2s(x) = K[iσ2]a1b1 . . . [iσ2]a2sb2sψb1...b2s(x) (2.8.81)

where an overall complex conjugation operation is retained to ensure the
anti-unitarity nature of the time reversal operation.

To see how a wavefunction ψ(x,m) (see (2.8.23), (2.8.25)) transforms
under time reversal, it is easily proved from (2.8.18), (2.8.78), that

[iσ2]a1b1 . . . [iσ2]a2sb2sCb1...b2s(s + m)

= (−1)s+mCa1...a2s(s − m). (2.8.82)

Hence

ψ′a1...a2s(x) =
s∑

m=−s

(−1)s+mCa1...a2s(s − m)ψ∗(x,m)

=
s∑

m=−s

Ca1...a2s(s + m)ψ′(x,m) (2.8.83)

where
ψ′(x,m) = (−1)s−mψ∗(x,−m) (2.8.84)

giving the transformation law ψ(x,m) → ψ′(x,m). For s = 1/2 we recover
the expressions in (2.8.79), (2.8.80).

Again we have a distinction between half-odd integral spins and integral
spins when the time reversal operation is applied twice in succession. From
(2.8.81), (2.8.78), we have

T 2 = (−1)2s1. (2.8.85)

The parity operator is similarly treated, using now the commutation re-
lation in (2.6.13), and one may infer that (see Problem 2.17)
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ψ′a(x) = ξψa(−x) (2.8.86)

where ξ is a phase factor, and a similar expression for a spinor of rank k then
also follows.

An important consequence of time reversal as a symmetry operation arises
from the following consideration.

Upon multiplying the Schrödinger equation

i�
∂

∂t
|ψ〉 = H |ψ〉 (2.8.87)

from the left by T , we may rewrite the resulting equation as

− i�
∂

∂t
(T |ψ〉) = HT (T |ψ〉) (2.8.88)

where
HT = T HT −1 (2.8.89)

and we have used the complex conjugation nature of T in (2.8.81) replacing i
by −i in (2.8.88). For time reversal as a symmetry operation, (2.6.21) implies
that

T HT −1 = H. (2.8.90)

A theory which is invariant under time reversal, that is satisfying (2.8.90)
gives rise to the following degeneracy problem of energy levels discussed be-
low.

2.8.4 Kramers Degeneracy

For time reversal as a symmetry operation for which T 2 = −1, each
eigenvalue of H is at least two-fold degenerate. This result easily follows by
noting that

H |ψ〉 = E |ψ〉 (2.8.91)

implies, from (2.8.90), that T |ψ〉 is an eigenstate of H with the same eigen-
value E. Also from the chain of equalities

〈T ψ |ψ〉 = 〈T T ψ |T ψ〉∗ = −〈ψ |T ψ〉∗ = −〈T ψ |ψ〉 , (2.8.92)

we note that T |ψ〉 and |ψ〉 are orthogonal and are independent eigenstates
of H. This type of degeneracy is referred to as Kramers degeneracy. For
example, for the simple hydrogen atom, each energy level is at least two-fold
degenerate due to the electron spin.
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Appendix to §2.8: Transformation Rule of a Spinor of
Rank One Under a Coordinate Rotation

We are interested in the transformation rule of spinors under a coordinate
rotation. To introduce spinors with this in mind, we define for each point
labelled by x in R

3, a complex 2 × 2 matrix

X = x · σ ≡
(

x3 x1 − ix2

x1 + ix2 −x3

)
(A-2.8.1)

where σ = (σ1, σ2, σ3), with σ1, σ2, σ3 denoting the Pauli matrices (see
(2.8.2)).

Some properties of the Pauli matrices are collected here for convenience
and are given by

σiσj = δij + iεijkσk (A-2.8.2)

σiσjσk = σiδjk − σjδik + σkδij + iεijk (A-2.8.3)

Tr(σi) = 0,
1
2
Tr(σiσj) = δij ,

1
2
Tr(σiσjσk) = iεijk (A-2.8.4)

and εijk ≡ εijk is defined in (2.1.5).
From the second equality in (A-2.8.4), we may solve for x in terms of X

x =
1
2
Tr(σX). (A-2.8.5)

We consider the transformations X → X ′ defined by

X ′ = AXA† = x′ · σ (A-2.8.6)

where x′ (see (2.1.4)) is given by

x′i = Rij(ϕ,n)xj (A-2.8.7)

for all 2× 2 complex unitary matrices A ≡ A(ϕ,n), corresponding to coordi-
nate rotations by angles {φ} about unit vectors {n}.

We note that
det X = −x · x (A-2.8.8)

implying from (A-2.8.6) and the fact that

x′ · x′ = x · x (A-2.8.9)

the invariance property
det X = det X ′ (A-2.8.10)

under a coordinate rotation. Equation (A-2.8.10) also follows directly from
the unitarity condition of the matrices A in (A-2.8.6).
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For a subsequent coordinate rotation

x′′i = Rij(ϕ′,n′)x′j (A-2.8.11)

X ′′ = A′X ′A′† = (A′A)X(A′A)† ≡ x′′ · σ (A-2.8.12)

Since the product of unitary operators defines a unitary operator, the set of
all such transformations in (A-2.8.6) forms a group.

The most general structure of a 2 × 2 complex matrix A is given by

A = 1a + ib · σ (A-2.8.13)

giving

A†A = |a|2 + b · b∗ + i(b∗ibjεijk − b∗ka + a∗bk)σk. (A-2.8.14)

Unitarity then implies that

|a|2 + b · b∗ = 1 (A-2.8.15)

b∗ibjεijk − b∗ka + a∗bk = 0. (A-2.8.16)

On the other hand (A-2.8.6), (A-2.8.13) lead to the equality
(
|a|2 − b · b∗)σj +

(
bj∗b · σ + bjb∗ · σ

)
− (ab∗i + a∗bi)εijkσk

= cos ϕσj + njn · σ(1 − cos ϕ) − ni sinϕεijkσk (A-2.8.17)

where we have made use of (A-2.8.2)–(A-2.8.4).
Upon multiplying (A-2.8.17) by σj , we obtain

3|a|2 − b · b∗ = 2 cos ϕ + 1 (A-2.8.18)

ab∗ · σ + a∗b · σ = n · σ sinϕ. (A-2.8.19)

Equations (A-2.8.15), (2.8.18) then imply that

a = eiδ cos(ϕ/2) (A-2.8.20)

bj = eiδj nj sin(ϕ/2) (A-2.8.21)

where δ, δj are real. On the other hand (A-2.8.19) is equivalent to the con-
ditions

ab∗j + a∗bj = nj sin ϕ (A-2.8.22)

which from (A-2.8.20), (A-2.8.21) imply that cos(δ − δj) = 1 for j = 1, 2, 3,
and hence that

bj = eiδnj sin (ϕ/2) . (A-2.8.23)
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Accordingly, a rotation by an angle ϕ about a unit vector n induces the
transformation X → X ′ where X, X ′ are, respectively, defined in (A-2.8.1),
(A-2.8.6), with the matrix A, up to an overall phase factor which by conven-
tion we set equal to one, is given by

A = 1 cos ϕ/2 + in · σ sinϕ/2. (A-2.8.24)

It is readily checked that
det A = 1. (A-2.8.25)

Conversely, it is easily shown (see Problem 2.18) that the set of all trans-
formations X → X ′ with

X ′ = BXB† (A-2.8.26)

for any 2×2 complex unitary matrices B of determinant one each one induces
a coordinate rotation. With B having the general structure as given on the
right-hand side of (A-2.8.13), det B = 1 implies that

a2 + b · b = 1. (A-2.8.27)

This together with the unitarity condition in (A-2.8.15) imply that a and b
are real and may be parameterized as in (A-2.8.20), (A-2.8.21) with eiδ ≡ 1.
Equation (A-2.8.18) is then automatically satisfied.

The matrices A in (A-2.8.24) operate on two dimensional objects

ψ =
(

ψ1

ψ2

)
(A-2.8.28)

referred to as spinors or more precisely as spinors of rank 1, guaranteeing the
invariance property of the inner product

∑
a=1,2

ψ′∗aψ′a =
∑

a=1,2

ψ∗aψa (A-2.8.29)

under a coordinate rotation, where

ψ′a = [A]abψb (A-2.8.30)

and [·]ab denotes a matrix element of the matrix in question.
Equation (A-2.8.30), with A given in (A-2.8.24), provides the rule of trans-

formation of a spinor of rank 1 under a coordinate rotation by an angle ϕ
about a unit vector n. The transformation law for a spinor of rank k un-
der a coordinate rotation is defined in (2.8.1). Equation (2.8.7), shows the
equivalent exponential form of the operator A in (A-2.8.24):

A = exp
(
i
ϕ

2
n · σ

)
. (A-2.8.31)
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2.9 Supersymmetry

In quantum field theory, supersymmetric transformations give rise to
transformations between bosons and fermions. As a unifying principle, super-
symmetric Lagrangians in field theory have this appealing invariance prop-
erty built in. Such a symmetry then puts constraints on physical processes
involving the underlying particles. Although nature is not necessarily super-
symmetric, the imposition of such a symmetry on a field theory has turned out
to have some advantages over its non-symmetric counterpart. In particular,
it has bean shown, in general, that the number of divergences (encountered
in defining coupling parameters, masses and related physical quantities) are
consequently reduced. Also the imposition of a symmetry narrows down the
class of interactions that one may write down. With the hope of recovering
more realistic theories, one may then break such a symmetry guided by some
physical principles.

Supersymmetric transformations may be also defined in quantum me-
chanics, in general, as an abstract notion which turn out to have far reach-
ing consequences and yield to several physical applications. For example, in
the elementary Bose/Fermi oscillator, as a prototype of field theory models,
the explicit transformations between Bose and Fermi states may be readily
demonstrated. This and other examples will be given later (see, e.g., §6.5,
§4.7).

In this section, we define supersymmetric transformations which parallel
the treatment of the Galilean transformations carried out in §2.2, §2.3. The
closed path transformations lead to basic commutation/anti-commutation
relations of the supersymmetry generators and of the Hamiltonian in a way
similar to the earlier study. Consequences of these relations and physical
applications will be given later as mentioned above.

Together with the time variable t, as a c-number, we introduce anti-
commuting c-number variables θ, θ∗ having the following transformations:

t → t − τ + iξ∗θ − iθ∗ξ = t (2.9.1)

θ → θ + ξ = θ, θ
∗

= θ∗ + ξ∗ (2.9.2)

where by anti-commuting c-numbers θ, θ∗ one means

{θ, θ} = 0, {θ∗, θ∗} = 0, {θ, θ∗} = 0 (2.9.3)

where
{A,B} ≡ AB + BA. (2.9.4)

Equations (2.9.3), in particular, imply that

(θ)2 = 0, (θ∗)2 = 0. (2.9.5)
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The variables θ, θ are referred to as Grassmann variables.6
As before, τ is a c-number. On the other hand, θ, θ∗, ξ, ξ∗, ξ, ξ

∗
,...,

anti-commute with each other but commute with t, τ , τ ,. . . .
For a subsequent transformation to (2.9.1), (2.9.2), we have

t = t − τ + iξ
∗
θ − iθ

∗
ξ (2.9.6)

θ = θ + ξ (2.9.7)

and similarly for θ
∗
, or

t = t −
(
τ + τ − iξ

∗
ξ + iξ∗ ξ

)
+ i

(
ξ∗ + ξ

∗)
θ − iθ∗

(
ξ + ξ

)
(2.9.8)

θ = θ +
(
ξ + ξ

)
. (2.9.9)

The transformations in (2.9.1), (2.9.2) may be specified by the pair

(τ, ξ) (2.9.10)

which for simplicity of notation we have suppressed the entry ξ∗.
From (2.9.1), (2.9.2), (2.9.8), (2.9.9) we have the following group proper-

ties:

(1)
(τ2, ξ2) (τ1, ξ1) = (τ1 + τ2 − iξ∗2ξ1 + iξ∗1ξ2, ξ1 + ξ2) . (2.9.11)

(2) For the identity element I
I = (0, 0). (2.9.12)

(3) The inverse is given by

(τ, ξ)−1 = (−τ,−ξ) (2.9.13)

as is easily checked that

(−τ,−ξ) (τ, ξ) = (0, 0). (2.9.14)

(4) Finally, we have the associativity rule

(τ3, ξ3) [(τ2, ξ2) (τ1, ξ1)] = [(τ3, ξ3) (τ2, ξ2)] (τ1, ξ1) . (2.9.15)

We consider successive transformations following a closed path given by

(τ2, ξ2)
−1 (τ1, ξ1)

−1 (τ2, ξ2) (τ1, ξ1) (2.9.16)

represented pictorially by the box diagram
6 A fairly detailed treatment of Grassmann variables will be given in §10.6.
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� �

1

�
2

�
1

�2

emphasizing the reversal of the transformations in the third and the fourth
segments of the path.

The group properties (1)–(4) above then lead to the following rule asso-
ciated with the closed path:

(τ2, ξ2)
−1 (τ1, ξ1)

−1 (τ2, ξ2) (τ1, ξ1) = (τ, ξ) (2.9.17)

where

τ = −2 i ξ∗2 ξ1 + 2 i ξ∗1 ξ2 (2.9.18)

ξ = 0. (2.9.19)

Since the above transformations are connected with the identity, the corre-
sponding transformations in the vector space of physical states is represented
by unitary transformations. For infinitesimal transformations, we may write
for the overall transformation

U = 1 +
i
�
G + . . . (2.9.20)

where
G = −δτH + i δξ∗Q − iQ† δξ (2.9.21)

and

Uj = 1 +
i
�
Gj + . . . (2.9.22)

Gj = −δτjH + i δξ∗j Q − iQ† δξj (2.9.23)

j = 1, 2, and Q, Q† are generators of supersymmetric transformations.
Upon writing

U = U−1
2 U−1

1 U2U1 (2.9.24)

we have the identity

G =
1
i�
[
G1, G2

]
(2.9.25)
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and, from (2.9.18), (2.9.19),

δτ = −2 i δξ∗2 δξ1 + 2 i δξ∗1 δξ2 (2.9.26)

δξ = 0 (2.9.27)

δξ1, δξ∗1 , δξ2, δξ∗2 anti-commute with Q, Q† and anti-commute with each
other. δξ1, δξ∗1 , δξ2, δξ∗2 however, commute with δτ1, δτ2, H.

The commutator on the right-hand side of (2.9.25) is easily worked out
to [

G1, G2

]
= (iδτ2 δξ∗1 − iδτ1 δξ∗2)

[
H,Q

]

+ (iδτ1 δξ2 − iδτ2 δξ1)
[
Q†,H

]

+ (δξ∗1 δξ∗2)
{
Q,Q

}

+ (δξ1 δξ2)
{
Q†, Q†}

+ (δξ∗1 δξ2 − δξ∗2 δξ1)
{
Q,Q†} (2.9.28)

which, from (2.9.21), (2.9.25)–(2.9.27), and upon the comparison of (2.9.28)
with i�G in (2.9.21) yields to[

H,Q
]

= 0 (2.9.29)

[
H,Q†] = 0 (2.9.30)
{
Q,Q

}
= 0 or (Q)2 = 0 (2.9.31)

{
Q†, Q†} = 0 or (Q†)2 = 0 (2.9.32)

and
H =

1
2�

{
Q,Q†}. (2.9.33)

Applications of the results obtained above will be given later (e.g., in §4.7,
§6.5 also in §8.2).

Problems

2.1. Establish the properties (2.1.18)–(2.1.20), (2.1.27)–(2.1.30) for the ma-
trices M1, M2, M3 involved in the expression for the rotation matrix
R in (2.1.21)

2.2. Work out in detail the group properties (2.2.8)–(2.2.12) of the Galilean
transformation and also the infinitesimal changes in the coordinate
labels given in (2.2.26), (2.2.27) together with (2.2.22)–(2.2.25) under
the closed path transformation (2.2.13).
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2.3. Derive the entries in Table 2.1 below (2.3.15) by using the commu-
tation relation in (2.3.12) and the expressions for the G and Gj in
(2.3.13), and (2.3.14)/(2.3.15), respectively.

2.4. Obtain the expression for the coefficient E in (2.3.16) and show explic-
itly it is equal to zero. Carry out a similar analysis for the coefficient
B in entry 7 of Table 2.1, to show finally that it is zero as well.

2.5. Provide another derivation of (2.3.39) for finite translations without
building it up from infinitesimal translations.

2.6. Using the position variables defined in (2.5.55)–(2.5.57), show that the
Hamiltonian in (2.5.58) is of the form (2.5.48) for the two cluster prob-
lem with one cluster consisting of one particle and the other involving
two particles.

2.7. Extend the analysis of the two cluster case given in Problem 2.6, to the
case where each cluster consists of two particles as in the interaction
of two hydrogen atoms. Choose your variables conveniently.

2.8. Repeat the analysis in §2.6, where it was shown that the parity trans-
formation is to be implemented by a unitary operation, to show that
the time reversal transformation is to be implemented by an anti-
unitary one.

2.9. Show that consistently that no phase terms need to be introduced on
the right-hand sides of (2.6.11), (2.6.20).

2.10. Show that (2.7.2), (2.7.3) lead to (2.7.4) for δL, where L denotes the
orbital angular momentum operator, in (2.7.11).

2.11. Establish the commutation relations for spin in (2.7.7)–(2.7.10) as they
follow from the earlier commutation relations involving J, X, H, P.

2.12. Show that the spin of a system of particles, as one composite object,
obtained in (2.7.30) satisfies the commutation relations in (2.7.31).

2.13. Since
exp

(
i
ϕ

2
n · σ

)
= cos

(ϕ

2
n · σ

)
+ i sin

(ϕ

2
n · σ

)

use the fact that (n · σ)2 = 1 and the facts that the cosine and sine
functions are, respectively, even and odd functions, to obtain another
derivation of (2.8.7).

2.14. Show that the expression in (2.8.11) may be rewritten as in (2.8.18)
in terms of the two variables g1, g2.

2.15. Prove that spin 0 may be described by a second rank anti-symmetric
spinor and verify explicitly, in the process, the spin 0 content of such
a description.

2.16. Establish the identity in (2.8.82).
2.17. Repeat the analysis given through (2.8.71)–(2.8.77), (2.8.81) for time

reversal, to the parity operation to derive, in the process, (2.8.86).
2.18. Provide the details to show that the set of all transformation X → X ′,

with X ′ given in (A-2.8.26), induce a coordinate rotation.
2.19. Work out the closed path exact supersymmetric transformation law

given in (2.9.17)–(2.9.19).
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2.20. Prove the commutation rule
[
G1, G2

]
given in (2.9.28) involving the

supersymmetry generators and the Hamiltonian, and finally derive
(2.9.29)–(2.9.33).
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Uncertainties, Localization, Stability and Decay
of Quantum Systems

Uncertainties, localization and stability are significant features concerning
quantum systems. These are aspects which distinguish the latter systems
from classical ones. This chapter is involved with such key points including
related ones as the boundedness of the spectra of Hamiltonians of physical
systems from below. This property of boundedness from below is important as
otherwise a system would collapse to such a level as to release, in the process,
an infinite amount of energy which is physically meaningless and the system,
in question, would be unstable. The first section deals with analyses related
to investigating the probability of the “fall” of a particle into another in a
bound state as well as in determining a lower bound for the average spatial
extension of such a system and in deriving an upper bound for the average
kinetic energy into consideration in addition to other details. This includes
investigating the nature of the resistance of a system with a large number of
Fermi particles to the increase in its density. The boundedness of the spectra
of Hamiltonians from below is the subject of §3.2–§3.4 for several classes of
interactions and §3.4 is involved with multi-particle systems. The final section
§3.5 is concerned with the decay of quantum systems and special emphasis
is put on the celebrated Paley-Wiener Theorem for describing a physically
consistent theory of quantum decay in which the underlying Hamiltonians
are bounded from below.

3.1 Uncertainties, Localization and Stability

3.1.1 A Basic Inequality

Our starting inequality to study uncertainties and localization in quantum
physics is the following one:

∫
dνx

∣∣[(∇ − ia) + α (x − b) g(x)] ψ(x)
∣∣2 � 0 (3.1.1)
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where a, b are real constant vectors, α is a real parameter and g(x) is a real
function. For greater generality, the space dimension, denoted by the natural
number ν, is left arbitrary.

Upon expanding the above inequality and multiplying the latter by �
2,

we obtain〈
(p − a�)2

〉
− α�

2 〈∇ · [(x − b)g(x)]〉 + α2
�

2
〈
(x − b)2g2(x)

〉
� 0. (3.1.2)

Here we have used the notation 〈A〉 for 〈ψ |A|ψ〉. Minimizing the left-hand
side of the above over α gives the useful bound

〈
(p − a�)2

〉
� �

2

4
〈∇ · (x − b)g(x)〉2

〈(x − b)2g2(x)〉 . (3.1.3)

3.1.2 Uncertainties

For example, for g(x) = 1, (3.1.3) leads to the familiar Heisenberg uncer-
tainty principle inequality

〈
(x − b)2

〉 〈
(p − a�)2

〉
� ν2

�
2

4
. (3.1.4)

Equation (3.1.4) puts a lower limit on the product of the expectations of the
deviations squared of the position and momentum about the constant vectors
b and a�, respectively. For b = 〈x〉, a� = 〈p〉, these lead to the definitions
of the variances or the standard deviations squared.

An uncertainty relation of the form in (3.1.4) is also obtained for other
two non-commuting self-adjoint operators A, B with

A · B − B · A = iC (3.1.5)

giving rise, formally, to a self-adjoint operator C.
Upon using the Cauchy-Schwarz inequality

∣∣〈Aψ | ·Bψ〉 − 〈Bψ | ·Aψ〉
∣∣ � 2

√〈
A2

〉√〈
B2

〉
(3.1.6)

where
〈Aψ | ·Bψ〉 =

∑
i

〈Aiψ |Biψ〉

we obtain ∣∣〈C〉
∣∣ � 2

√〈
A2

〉√〈
B2

〉
. (3.1.7)

For A = x − b, B = p − a�, C = ν�, (3.1.7) leads to (3.1.4).
Another useful inequality which follows from (3.1.2) is the following

− µ

2�2

〈
x2g2(x)

〉
�
〈

p2

2µ
−

∇ ·
(
xg(x)

)
2

〉
(3.1.8)

obtained by setting a = 0, b = 0 and choosing α = µ/�
2.
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3.1.3 Localization and Stability

An interesting application follows from (3.1.3) by setting g(x) = 1/ |x − b|
and a = 0. This gives the important lower bound for the expectation value
of the kinetic operator for ν = 3:

〈
p2

2M

〉
� �

2

2M

〈
1

|x − b|

〉2

(3.1.9)

for a given mass M .
On the other hand, we may invoke the Cauchy-Schwarz inequality

1 =
∫

d3x |ψ(x)|2 =
∫

d3x
|ψ(x)|

|x − b|1/2
|x − b|1/2|ψ(x)|

�
〈

1
|x − b|

〉1/2 〈
|x − b|

〉1/2 (3.1.10)

for a normalized state, to obtain from (3.1.9), (3.1.10)
〈

p2

2M

〉
〈|x − b|〉2 � �

2

2M
. (3.1.11)

By using the symbol X for the random variable associated with the po-
sition, we have for the probability of occurrence of the event {|X − b| � δ}
for any δ > 0:

Prob
[
|X − b| � δ

]
=
∫

d3x |ψ(x)|2 Θ(δ − |x − b|) (3.1.12)

where Θ(c) is the step function, i.e., equal to 1 for c > 0, and zero for c < 0.
Since in the integral we have the constraint

1 � δ/ |x − b| (3.1.13)

and Θ(c) � 1, we have from (3.1.12) the bound

Prob
[
|X − b| � δ

]
�
〈

1
|x − b|

〉
δ (3.1.14)

which from (3.1.9) leads to

Prob
[
|X − b| � δ

]
δ

�
√

2M

�2

〈
p2

2M

〉1/2

. (3.1.15)

The physical interpretation of this result is clear. If for arbitrary small
δ, Prob

[
|X − b| � δ

]
, is non-vanishing, then the expectation value of the

kinetic energy is necessarily arbitrarily large. That is, for a particle which
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has a non-vanishing probability of being found within a sphere of radius δ
about a fixed point, specified by the vector b, its average kinetic energy is
necessarily large for an arbitrarily small sphere of localization.

In collision theory, for example, we may identify M with the reduced
mass µ of two particles, set b = 0 in (3.1.15), with |x| denoting the distance
between the two particles. Accordingly, in order to bring the “colliding” parti-
cles arbitrarily close to each other, there must exist an arbitrarily large lower
bound to the average kinetic energy of the relative motion.

large

H =
p2

2µ
+ V (3.1.16)

where µ = m1m2/(m1 + m2) is the reduced mass.
Suppose that V (x) remains invariant under the scalings m1 → κm1, m2 →

κm2, by an arbitrary positive parameter κ, and the scalings

λ1 −→ (κ)δ1λ1, λ2 −→ (κ)δ2λ2, . . . (3.1.17)

where λ1, λ2, . . . are coupling parameters, and δ1, δ2, . . . are some real num-
bers. For the Coulomb interaction, for example, V is independent of m1, m2,
and λ1 = q1q2, δ1 = 0 where q1, q2 denote the charges of the two particles.
For the Newtonian gravitational interaction, with λ1 chosen to coincide with
the gravitational coupling constant G, δ1 = −2.

In Chapter 4, the nature of the spectra of Hamiltonians is studied under
some general sufficiency conditions satisfied by the potentials. In general, we
consider a strictly negative energy-state of a Hamiltonian, if there exists one,
|ψ (m1,m2, λi)〉 satisfying, by definition,

〈ψ(m1,m2, λi) |H|ψ(m1,m2, λi)〉 < 0 (3.1.18)

with the understanding that energy is required to “break up” the system by
separating the two particles and make the energy of the system non-negative.
Here we have labelled the state |ψ(m1,m2, λi)〉by m1, m2 and by λi, standing
for λ1, λ2, . . ., for a reason that will become clear below.

A physical system is one that has the spectrum of its corresponding Hamil-
tonian bounded from below (§3.3), that is, its spectrum does not go down to
−∞. Otherwise, the system would collapse to such a level as to release an
infinite (!) amount of energy which is physically meaningless and the system
would be unstable.

Suppose that the ground-state energy −E[m1,m2, λi] of the Hamiltonian
(3.1.16), that is, corresponding to the lowest point of its spectrum (§3.3), is
finite and is strictly negative. Then for the state |ψ(m1,m2, λi)〉 satisfying
(3.1.18) we may write

and (3.1.15) may be used in the following manner. Consider the Hamil-
tonian of relative motion of a two-particle system (§2.5),

For a negative-energy , state the average kinetic energy cannot be arbitrarily
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− E [m1,m2, λi] � 〈ψ(m1,m2, λi) |H|ψ(m1,m2, λi)〉 < 0. (3.1.19)

Let
∣∣∣ψ(m1

2 , m2
2 ,

(
1
2

)δi
λi

)〉
denote the state |ψ(m1,m2, λi)〉 with m1, m2,

λi replaced, respectively, by m1
2 , m2

2 ,
(

1
2

)δi
λi.

Clearly, the state
∣∣∣ψ(m1

2 , m2
2 ,

(
1
2

)δi
λi

)〉
cannot lead for the expectation

value 〈
ψ

(
m1

2
,
m2

2
,

(
1
2

)δi

λi

)∣∣∣∣∣H
∣∣∣∣∣ψ
(

m1

2
,
m2

2
,

(
1
2

)δi

λi

)〉
(3.1.20)

where H is given in (3.1.16), a numerical value lower than −E[m1,m2, λi],
for the given H, otherwise this would contradict the fact that −E[m1,m2, λi]
is the ground-state energy of H. That is,

−E[m1,m2, λi]

�
〈

ψ

(
m1

2
,
m2

2
,

(
1
2

)δi

λi

)∣∣∣∣∣
(

p2

2µ
+ V

)∣∣∣∣∣ψ
(

m1

2
,
m2

2
,

(
1
2

)δi

λi

)〉

(3.1.21)

or

−E[2m1, 2m2, (2)δiλi]

�
〈

ψ(m1,m2, λi)
∣∣∣∣
(

p2

4µ
+ V

)∣∣∣∣ψ(m1,m2, λi)
〉

. (3.1.22)

On the other hand, the inequality (3.1.18) implies, for the Hamiltonian
(3.1.16), that for the expectation value of p2/4µ:

〈
ψ(m1,m2, λi)

∣∣∣∣p
2

4µ

∣∣∣∣ψ(m1,m2, λi)
〉

< −
〈

ψ(m1,m2, λi)
∣∣∣∣
(

p2

4µ
+ V

)∣∣∣∣ψ(m1,m2, λi)
〉

� E[2m1, 2m2, (2)δiλi] (3.1.23)

where in writing the last inequality we have used (3.1.22).
Equation (3.1.23) gives the following upper bound for the expectation

〈
p2

2µ

〉
< 2E[2m1, 2m2, (2)δiλi]. (3.1.24)

value of the kinetic energy operator for such a system
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From (3.1.11), with b = 0, we have the following non-vanishing lower
bound for the expectation value 〈|x|〉 of the separation distance between the
two particles

〈|x|〉 >

√
�2

2µ

(
2E[2m1, 2m2, (2)δiλi]

)−1/2
(3.1.25)

as follows from (3.1.24).
From (3.1.15), (3.1.24) we also obtain, with b = 0, M → µ,

Prob
[
|X| � δ

]
< 2δ

( µ

�2
E
[
2m1, 2m2, (2)δiλi

])1/2

. (3.1.26)

That is, for a physical system for which 0 < E[2m1, 2m2, (2)δiλi] < ∞,
(3.1.26) gives the satisfactory result of a vanishingly small probability, for a
vanishingly small δ, and rigorously vanishes for the “fall” of one particle into
the other.

A similar inequality to (3.1.26) will be also derived for multi-fermion
systems in (3.1.37), and also later on, in Chapter 14, in our study of the
important problem of the stability of matter with special attention given
to the number of particles involved and the Fermi character, that is of the
underlying Pauli exclusion principle, of the electrons. The stability of the
hydrogen atom is studied in §7.1.

3.1.4 Localization, Stability and Multi-Particle Systems

Here we are interested in the localization problem of identical Fermi
particles, such as electrons. Consider the (anti-symmetric) wave function
Ψ(x1σ1, . . . ,xNσN ) of such N particles in the coordinate description, where
σ1, . . . , σN are spin indices. A single particle probability density, normalized
to one, may be defined by

h(x) =
∑

σ1,...,σN

∫
d3x2 . . . d3xN |ψ(x1σ1, . . . ,xNσN )|2 . (3.1.27)

The probability that any one of the particles is found within a sphere of
radices δ, about some point in space specified by a vector b is given by

Prob
[
|X1 − b| � δ

]
=
∫

d3x h(x)Θ(δ − |x − b|) (3.1.28)

where Θ(a) is the step function, i.e., Θ(a) = 1 for a > 0 and Θ(a) = 0 for
a < 0.

By Hölder’s inequality in Appendix II, we may bound
∫

d3x h(x)Θ(δ − |x − b|) �
(∫

d3x h(x)5/3

)3/5
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×
(∫

d3x Θ(δ − |x − b|)
)2/5

(3.1.29)

where we have used the fact that (Θ(a))5/2 = Θ(a).
Hence from (3.1.28), (3.1.29) we have

Prob
[
|X1 − b| � δ

](1
v

)2/5

�
(∫

d3x
(
h(x)

)5/3
)3/5

(3.1.30)

where
v =

4π

3
δ3 (3.1.31)

is the volume in which a particle is confined.
In the sequel, we use the notation,

〈
ψ

∣∣∣∣∣
N∑

i=1

p2
i

2m

∣∣∣∣∣ψ
〉

≡ T (3.1.32)

for the expectation value of the kinetic energy of the N particles, where m
denotes the mass of a particle.

In §4.6, (see (4.6.24), (4.6.16), (4.6.17)), we derive the following bound on
the average kinetic energy T , where the exclusion principle plays a key role,

(∫
d3x (h(x))5/3

)3/5

� c
T 3/5

N
(3.1.33)

with

c =
(

10m

3�2

)3/5 (2 (2s + 1)
3π

)2/5

(3.1.34)

and s is the spin of a fermion.
Since

Prob [|X1 − b| � δ, . . . , |XN − b| � δ] � Prob
[
|X1 − b| � δ

]
(3.1.35)

(3.1.30), (3.1.33) give

Prob
[
|X1 − b| � δ, . . . , |XN − b| � δ

](N

v

)2/5

� c

(
T

N

)3/5

. (3.1.36)

As an application of this bound, consider a system of fermions, which may
be interacting, and with a non-vanishing probability of occurrence of the event
{|X1 − b| � δ, . . . , |XN − b| � δ}, i.e., of being localized as indicated. As N
becomes larger and larger, i.e., we increase the particle density, the left-hand
side of (3.1.36) goes to infinity for N → ∞. This can be true only if T goes
to infinity as well, and not slower than N . This shows a kind of “resistance”
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of Fermi particles to the increase in density, by the increase of their average
kinetic energy.

ble system, the ground-state energy cannot grow faster than
α withα > 1.The reason

formation of a single system consisting of 2N particles will be favored
over two separate systems broughtinto contact, each consisting of N particles,
and the energy released of such a contact, being proportional to [(2N)α−
2 (N)α] , will be 23

Accordingly, with a ground-state energy EN , with typical bounds −aN
� EN < −aN, where a, a are some positive constants, almost an identical
reasoning as the one lading to (3.1.24) for the average kinetic energy, with
similar scaling properties of the interactions, for example with Coulombic ones,
shows that T � AN ,1 with A denoting some positive

side of (3.3.36), giving

Prob [|X1 − b| � δ, . . . , |XN − b| � δ]
(

N

v

)2/5

� cA3/5 (3.1.37)

where the right-hand side is some finite constant. For a non-vanishing prob-
ability of having the fermions within a sphere of radius δ as indicated, in
order that the left-hand side of (3.1.7) remains finite, in conformity with its
right-hand side, as N grows without bound, it is necessary that the volume
v grows at least as fast as N . That is, in particular, the radius of spatial ex-
tension of the fermionic system grows not any slower than N1/3 for N → ∞.
These properties will be quantitatively analyzed in Chapter 14 in considering
the problem of the stability of matter, where the exclusion principle, plays a

A lower bound to the expectation value of
∑

i

|xi| /N , as a measure of

To the above end,

〈
N∑

i=1

|xi|
N

〉
=

∑
σ1,...,σN

∫
d3x1 . . . d3xN

(
N∑

i=1

|xi|
N

)
|ψ(x1σ1, . . . ,xNσN |2

=
∫

d3x |x|h(x). (3.1.38)

But for any δ > 0,

1 Actually just the bound −aN � EN < 0 is sufficient to establish this, in the
process, that T � AN (see (3.1.19)).

As another application , consider a negative-energy state of the fermions.
For a sta EN EN−,

example,

over whelmingly large for large N, e.g., N ∼ 10

cannotgrowlikeNEN− is that other-
wise the

(see also
Chapter 14).

finite constant indepen-
dent of N .

For such a negative-energy state, we may then further bound the right-
hand

the extension of the above system is also readily obtained.

N For.

key role and is based on Manoukian and Sirininlakul (2005).
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∫

d3x |x|h(x) �
∫

|x|>δ

d3x |x|h(x) > δ

∫
|x|>δ

d3x h(x) (3.1.39)

and ∫
|x|>δ

d3x h(x) = Prob
[
|X| > δ

]
= 1 − Prob

[
|X| � δ

]
. (3.1.40)

Accordingly, from (3.1.35), (3.1.37)–(3.1.40),
〈

N∑
i=1

|xi|
N

〉
> δ

[
1 −

( v

N

)2/5

cA3/5

]
= δ

[
1 −

(
4π

3N
δ3

)2/5

cA3/5

]

(3.1.41)
where in writing the last equality, we have used (3.1.31). Upon optimizing
the right-hand side of (3.1.41) over δ, gives

δ =
(

3N

4π

)1/3 ( 5
11c

)5/6 1
A1/2

(3.1.42)

which from (3.1.41) leads to
〈

N∑
i=1

|xi|
N

〉
>

6
11

(
5

11c

)5/6 (3N

4π

)1/3 1
A1/2

(3.1.43)

giving a lower bound proportional to N1/3, where c is defined in (3.1.34).
Bosonic systems behave differently, and so-called “bosonic matter” will be

analyzed in detail in Chapter 14 (see also Problem 14.10).

3.2 Boundedness of the Spectra of Hamiltonians From
Below

If the spectrum of a self-adjoint operator A is bounded from below then
its spectral decomposition (§1.8, (1.8.15)) may be explicitly written as

A =
∫ ∞

LA

λ dPA(λ) (3.2.1)

where |LA| < ∞. For any vector |f〉 in the domain of A, we then have the
following lower bound for its expectation value

〈f |A|f〉 =
∫ ∞

LA

λ d 〈f |PA(λ)|f〉 � LA

∫ ∞

LA

d 〈f |PA(λ)|f〉 . (3.2.2)

Hence for all |f〉 in the domain of A, the resolution of the identity (see
(1.8.18))
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1 =
∫ ∞

LA

dPA(λ) (3.2.3)

gives the bound
〈f |A|f〉 � LA‖f‖2. (3.2.4)

Conversely, suppose that for some self-adjoint operator A, and for all
vectors |f〉 in its domain, the bound (3.2.4) holds true. Then we will show that
for all λ in the spectrum of A, λ � LA. To do this we assume otherwise and
run into a contradiction. That is, suppose that for some λ0 in the spectrum
of A : λ0 < LA, and let

ε =
LA − λ0

2
> 0. (3.2.5)

Then (§1.8),
[PA(λ0 + ε) − PA(λ0 − ε)]H (3.2.6)

is not empty. Let |f0〉, in the domain of A, be a vector belonging to (3.2.6),
i.e.,

[PA(λ0 + ε) − PA(λ0 − ε)] |f0〉 = |f0〉 . (3.2.7)

Hence

〈f0 |A|f0〉 =
∫ λ0+ε

λ0−ε

λ d ‖PA(λ)f0‖2 � (λ0 + ε)
∫ λ0+ε

λ0−ε

d ‖PA(λ)f0‖2 (3.2.8)

or using, in the process, the equality in (3.2.5), we have

〈f0 |A|f0〉 � (λ0 + ε) ‖f0‖2 = (LA − ε) ‖f0‖2
< LA ‖f0‖2 (3.2.9)

which is in contradiction with (3.2.4).
That is, if for all |f〉 in the domain of A for which (3.2.4) is true, any λ

in the spectrum of A, is such that λ � LA.
One way of obtaining a lower bound of a Hamiltonian H is through the

examination of its resolvent (H − ξ)−1. According to the treatment given in
§1.8, if ξ is a real parameter belonging to the spectrum of H, then either
(H − ξ)−1 does not exist or if it exists then it is an unbounded operator.
Thus, if one may find a real number ξ0 such that for all ξ < ξ0, (H − ξ)−1

exists and is a bounded operator, then clearly ξ0 provides a lower bound to
the spectrum of H. Such a method will be applied in some of the subsequent
investigations carried out in examining the boundedness of Hamiltonians from
below.

3.3 Boundedness of Hamiltonians From Below: General
Classes of Interactions

This section is entirely involved with the investigation of the boundedness
of Hamiltonians from below (§3.2) for large classes of interactions. These
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classes will be dealt with in various parts [A] to [G] given below. Needless to
say, an interaction, specified by a given potential, may belong to more than
one of the classes considered. Lower bounds of Hamiltonians for multi-particle
systems will be considered in the next section.

The lower bounds derived are not necessarily optimal ones but they es-
tablish the important property of boundedness of Hamiltonians from below
given that some sufficiency conditions are satisfied by the potentials.

[A] The simplest potential V (x) is one that is bounded everywhere. That
is,

|V (x)| � C (< ∞) (3.3.1)

for all x. Accordingly (for normalized |ψ〉),

|〈ψ |V |ψ〉| � C ‖ψ‖2 = C (3.3.2)

and the positivity of the kinetic energy operator implies that
(
p2 = −�

2∇2
)

〈
ψ

∣∣∣∣
(

p2

2µ
+ V

)∣∣∣∣ψ
〉

� −C. (3.3.3)

An example of such a given potential is

V (x) = λ1Θ(R − |x|) + λ2e−β|x| (3.3.4)

with 0 < R < ∞, β > 0, and one may take

|V (x)| � |λ1| + |λ2| ≡ C (3.3.5)

[B] We may use the inequality in (3.1.8) to obtain lower in bounds for
Hamiltonians with a class of potentials V (x) related to a real function g(x)
given by

V (x) = −1
2
∇ · (xg(x)) . (3.3.6)

From (3.1.8), this leads to2

− µ

2�2

〈
x2g2(x)

〉
�
〈

p2

2µ
+ V (x)

〉
. (3.3.7)

The applications of (3.3.6), (3.3.7) are endless. These couple of equations
will be used to obtain lower bounds for Hamiltonians for several specific
interactions later on, notably in §4.2, §6.1, §7.1.

As another application of (3.1.8), where the potential, in this case, is not
chosen exactly in the form in (3.3.6), consider the following general class of
potentials, (|x| = r, space dimension ν = 3),

2 2 2 potential
energy itself.
Note that parts or all of x g (x) may be also reconsidered as part of the
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V (x) =
λ1e−β1r

r
+

λ2

r
+

λ3

r2
(3.3.8)

where

β1 > 0, λ3 > − �
2

8µ
(3.3.9)

which are obviously bounded from below as follows

V (x) � −|λ1|
r

+
λ2

r
+

λ3

r2
. (3.3.10)

Upon choosing g(x) in (3.1.8) to be the function

g(x) =
γ1

r
+

γ2

r2
(3.3.11)

with
γ1 =

2 (|λ1| − λ2)(
1 +

√
1 + 8µ

λ3

�2

) (3.3.12)

γ2 =
�

2

2µ

(
1 −

√
1 + 8µ

λ3

�2

)
(3.3.13)

we obtain from (3.1.8) by a re-arrangement of terms,

− µ

2�2
γ2
1 �

〈
p2

2µ
− (|λ1| − λ2)

r
+

λ3

r2

〉
(3.3.14)

which from (3.3.8), (3.3.10) gives

− µ

2�2
γ2
1 <

〈
p2

2µ
+ V (x)

〉
. (3.3.15)

[C] We now consider another class of potentials. To this end we first write
the potential in

H =
p2

2µ
+ V (3.3.16)

as
V = V Θ(V ) + V Θ(−V ) (3.3.17)

where Θ(a) is the step function and hence Θ(a)+Θ(−a) = 1. Since V Θ(V ) �
0 we have

V � V Θ(−V ) ≡ −v (3.3.18)

where v � 0. The step function Θ(−V ) picks up the points x for which the
potential V is non-positive. Another standard notation for V Θ(−V ) is

V Θ(−V ) = −|V |− (3.3.19)



3.3 Boundedness of Hamiltonians From Below 155

where |V |− � 0.
In order to obtain a lower bound for H in (3.3.16) it is sufficient, from

(3.3.18), to consider instead the Hamiltonian

H ′ =
p2

2µ
− v (3.3.20)

since
〈H〉 � 〈H ′〉 . (3.3.21)

To the above end, set
v2 = u. (3.3.22)

We consider a class of potentials for which∫
d3xd3y u(x)

1
|x − y|2 u(y) < ∞. (3.3.23)

The latter integral may be also rewritten as

1
4π�2

∫
d3p
|p| |ũ(p)|2 (< ∞) (3.3.24)

by using, in the process of the derivation, the integral expression

1
|p| =

4π�
2

(2π�)3

∫
d3x

e−ip·x/�

|x|2 (3.3.25)

where ũ(p) is the Fourier transform of u(x):

ũ(p) =
∫

d3xu(x)e−ip·x/�. (3.3.26)

From the identity

〈ψ |u|ψ〉 =
∫

d3xd3y
〈
ψ
∣∣∣√−∇2

∣∣∣x〉K(x,y)
〈
y
∣∣∣√−∇2

∣∣∣ψ〉 (3.3.27)

where

K(x,y) =

〈
x

∣∣∣∣∣
1√
−∇2

u
1√
−∇2

∣∣∣∣∣y
〉

(3.3.28)

and an application of the Cauchy-Schwarz inequality in R
6, we obtain

〈ψ |u|ψ〉 �
〈
ψ
∣∣(−∇2

)∣∣ψ〉
(∫

d3xd3y |K(x,y)|2
)1/2

(3.3.29)

where
∫

d3xd3y |K(x,y)|2 =
∫

d3y

〈
y

∣∣∣∣∣
1√
−∇2

u
1(

−∇2
)u

1√
−∇2

∣∣∣∣∣y
〉
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=
�

8

∫
d3p

(2π�)3
|ũ(p)|2

|p| (3.3.30)

or
〈ψ |u|ψ〉 � aT, u = v2 (3.3.31)

with

T =
〈

p2

2µ

〉
(3.3.32)

a =
µ

4�3π3/2

(∫
d3p
|p| |ũ(p)|2

)1/2

. (3.3.33)

We use (3.3.31) to derive a lower bound for H ′.
Upon dividing the following inequality by 4T

4T
√
〈v2〉 � 4T 2 +

〈
v2
〉

(3.3.34)

and using the bound (3.3.31) we arrive at
√
〈v2〉 � T +

a

4
(3.3.35)

or equivalently at
− a

4
� T −

√
〈v2〉. (3.3.36)

Finally, the application of the Cauchy-Schwarz inequality to(
ψ∗ψ = |ψ|2 = |ψ||ψ|

)
〈v〉 =

∫
d3x (v|ψ|) |ψ| (3.3.37)

gives
〈v〉 �

√
〈v2〉. (3.3.38)

This together with (3.3.36) yield, from (3.3.16), (3.3.20), (3.3.21), the
following lower bound for the Hamiltonian

− a

4
�
〈

p2

2µ
+ V

〉
. (3.3.39)

As an application consider the potential

V = −v = −λ
e−βr

√
r

, λ > 0, β > 0 (3.3.40)

which with u = v2, we have for ũ(p) in (3.3.26), the expression

ũ(p) =
4πλ2

�
2

(p2 + 4β2�2)
(3.3.41)

giving for a in (3.3.33)
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a =
√

2µλ2

2β�2
(3.3.42)

thus obtaining the bound

−
√

2
8

µλ2

β�2
�
〈

p2

2µ
− λe−βr

√
r

〉
. (3.3.43)

[D] The lower bound derived in this subsection is important in that it
provides a sufficient condition for a potential so that the Hamiltonian is
positive thus giving a No-Binding Theorem.

The method of development is similar to the one given in part [C]. To this
end, we use the bound in (3.3.18), and obtain directly from (3.3.29)–(3.3.31),
now working with v(x) rather than with v2(x), the bound

〈ψ |v|ψ〉 � b

〈
p2

2µ

〉
(3.3.44)

where

b =
µ

4�3π3/2

(∫
d3p
|p| |ṽ(p)|2

)1/2

. (3.3.45)

Therefore 〈
p2

2µ
+ V

〉
�
〈

p2

2µ
− v

〉
� (1 − b)

〈
p2

2µ

〉
. (3.3.46)

Since
〈
p2/2µ

〉
� 0, the Hamiltonian in question is positive for

b < 1 (3.3.47)

providing a sufficient condition for “no-binding”.
For the Yukawa potential, for example, r = |x|,

V (x) = −λ
e−βr

r
= −v(x) (3.3.48)

with λ > 0, β > 0,

ṽ(p) =
4π�

2λ

p2 + β2�2
(3.3.49)

giving

b =
λµ

√
2

�2β
(3.3.50)

and implying the positivity of the Hamiltonian

H =
p2

2µ
− λe−βr

r
(3.3.51)
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for

λ <
�

2β√
2 µ

(3.3.52)

or equivalently for √
2µλ

�2
< β (3.3.53)

as a sufficiency condition to be satisfied by β.
[E] The analysis given in this part deals, in general, in ν = 3, 2, 1 dimen-

sions of space. We consider the following class of potentials. A potential V in
this class is defined as any potential which is square-integrable over a finite
region about the origin and is bounded beyond this region. That is, we may
find finite constants Rν > 0, Cν > 0 such that

∫
|x|<Rν

dνx |V (x)|2 � aν < ∞ (3.3.54)

and
|V (x)| � Cν , for |x| � Rν . (3.3.55)

Below we will derive the following inequality

‖V ψ‖ � Aν ‖H0ψ‖ + Bν (3.3.56)

where

H0 =
p2

2µ
(3.3.57)

and Aν , Bν are positive constants, depending on ν, and 0 < Aν < 1. Such
an inequality is usually referred to as a Kato bound.3

We first show how inequality (3.3.56) leads to a lower bound to the Hamil-
tonian H = H0 + V . We recall, (see §1.8, §3.2) that if a real parameter ξ

belongs to the spectrum of H, then either (H − ξ)−1 does not exist or if it
exists then it is an unbounded operator. We will see that for all reals

ξ < −B/ (1 − A) (3.3.58)

(H − ξ)−1 exists and is a bounded operator, where, for simplicity of notation
here, we have suppressed the index ν of space dimension in Aν , Bν . That is,
−B/(1 − A) provides a lower bound to the spectrum of H.

To reach the above conclusion, we note that, for complex ξ, for example,
one may formally write

1
(H − ξ)

=
1

(H0 − ξ)
+

1
(H − ξ)

[(H0 − ξ) − (H − ξ)]
1

(H0 − ξ)

3 Cf. Kato (1966, 1967) and an earlier classic paper: Kato (1951a).
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=
1

(H0 − ξ)
+

1
(H − ξ)

(−V )
1

(H0 − ξ)
(3.3.59)

leading to the formal expansion

1
(H − ξ)

=
1

(H0 − ξ)

∑
k�0

(−1)k

[
V

1
(H0 − ξ)

]k

. (3.3.60)

For a strictly negative ξ, we may use (3.3.56) to obtain
∥∥∥∥V 1

(H0 − ξ)
f

∥∥∥∥ = A
∥∥∥H0 (H0 − ξ)−1

f
∥∥∥+

B

|ξ| ‖f‖

�
(

A +
B

|ξ|

)
‖f‖ (3.3.61)

where we have used the fact that H0 is a positive operator. For ξ <
−B/ (1 − A), A + B/ |ξ| < 1, we then have

∥∥∥∥ 1
(H − ξ)

f

∥∥∥∥ � 1
|ξ|

∑
k�0

(
A +

B

|ξ|

)k

‖f‖

=
1

(|ξ| (1 − A) − B)
‖f‖

=
1

(−ξ (1 − A) − B)
‖f‖ < ∞ (3.3.62)

for all |f〉, and ξ satisfying (3.3.58).
Hence we may conclude that for ν = 3, 2, 1:

〈
p2

2µ
+ V

〉
� −Bν/ (1 − Aν) (3.3.63)

with 0 < Aν < 1, 0 < Bν , as defined through (3.3.56). Therefore it remains
to find such constants Aν and Bν in deriving (3.3.56), in general, for ν =
3, 2, 1. The Coulomb potential q1q2/ |x|, for example, belongs to the class of
potentials considered for ν = 3, i.e., it satisfies (3.3.54) and (3.3.55).

The derivation of (3.3.56) follows. To this end we use the definition of the
Fourier-transform in ν dimensions:

ψ(x) =
∫

dνp
(2π�)ν eip·x/�ψ̃(p) (3.3.64)

and derive the following chain of inequalities:

|ψ(x)| �
∫

dνp
(2π�)ν

∣∣∣ψ̃(p)
∣∣∣
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=
∫

dνp

∣∣∣ψ̃(p)
∣∣∣
[
1 + bν

(
p2

2µ

)2
]1/2

(2π�)ν/2

[
1 + bν

(
p2

2µ

)2
]−1/2

(2π�)ν/2
(3.3.65)

or

|ψ(x)|2 � Iν

[∫
dνp

(2π�)ν

∣∣∣ψ̃(p)
∣∣∣2 + bν

∫
dνp

(2π�)ν

(
p2

2µ

)2 ∣∣∣ψ̃(p)
∣∣∣2
]

(3.3.66)

where in (3.3.65) we have multiplied and divided the integrand by[
1 + bν

(
p2/2µ

)2]1/2

, and in writing (3.3.66) we have used the Cauchy-
Schwarz inequality, and

Iν =
∫

dνp
(2π�)ν

1[
1 + bν

(
p2

2µ

)2
] =

µν/2

2�νb
ν/4
ν

1
[ν + (π − 3) δν,3]

. (3.3.67)

For each ν, bν is so far an arbitrary strictly positive constant, ν = 1, 2, 3.
Accordingly, from (3.3.66), (3.3.67), we have

|ψ(x)|2 � Iν

{
1 + bν ‖H0ψ‖2

}
. (3.3.68)

We will use this upper bound for |ψ (x)|2 for |x| < Rν only. Quite generally,
∫

dνx |V (x)|2 |ψ(x)|2 =
∫

|x|<Rν

dνx |V (x)|2 |ψ(x)|2

+
∫

|x|�Rν

dνx |V (x)|2 |ψ(x)|2 . (3.3.69)

For the second integral we have from (3.3.55)
∫

|x|�R

dνx |V (x)|2 |ψ(x)|2 � C2
ν ‖ψ‖2 = C2

ν . (3.3.70)

On the other hand for the first integral on the right-hand side of (3.3.69), we
use the bound (3.3.68). All told, we finally obtain from (3.3.54)

‖V ψ‖ � Aν ‖H0ψ‖ + Bν (3.3.71)

where
Aν = (aνbνIν)1/2 (3.3.72)

Bν =
(
C2

ν + aνIν

)1/2 (3.3.73)
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and we have used the inequality
√

c2
1 + c2

2 � c1 + c2 for real and positive c1

and c2.
Now for each ν = 3, 2, 1, we choose the positive constant bν such that

0 < Aν < 1 (3.3.74)

thus obtaining the lower bound for the Hamiltonian as given in (3.3.63).
For each ν = 3, 2, 1, we spell out a convenient expression for the lower

bound just derived for the corresponding Hamiltonian.
To the above end, for ν = 3, let

γ3 =
(

a3µ
3/2

2π�3C2
3

)2/3

(3.3.75)

λ =

(
a3µ

3/2

2π�3C2
3b

3/4
3

)1/6

(3.3.76)

to obtain A3 = γ3/λ, and for (3.3.63):
〈

p2

2µ
+ V

〉
� −C3

λ
√

1 + λ6

λ − γ3
, ν = 3 (3.3.77)

where now λ is and arbitrary positive parameter such that λ > γ3. For a given
constant γ3, as defined in (3.3.75), λ may be then fixed by optimization.

For ν = 2, let
γ2 =

a2µ

4�2C2
(3.3.78)

η =

(
a2µ

4�2C2
2b

1/2
2

)1/2

(3.3.79)

to obtain A2 = γ2/η, we then have the lower bound
〈

p2

2µ
+ V

〉
� −C2

η
√

1 + η2

η − γ2
, ν = 2 (3.3.80)

with η an arbitrary positive parameter, such that η > γ2, and may be fixed
by optimization.

For ν = 1, let

γ1 =

(
a1µ

1/2

2�C
3/2
1

)2

(3.3.81)

ρ =

(
a1µ

1/2

2�C2
1b

1/4
1

)3/2

(3.3.82)

giving A1 = γ1/ρ. This finally leads to the lower bound
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〈
p2

2µ
+ V

〉
� −C1

ρ
√

1 + ρ2/3

ρ − γ1
, ν = 1 (3.3.83)

with ρ an arbitrary positive parameter, such that ρ > γ1, and may be fixed
by optimization.

[F] We consider a class of one dimensional potentials. To this end, we
bound the potential V in the Hamiltonian

H =
p2

2µ
+ V (3.3.84)

as
V � −v (3.3.85)

with v � 0 as defined in (3.3.18). The class consists of any v(x) � 0 such that

0 <

∫
|x|<R

dx v(x) � a < ∞ (3.3.86)

where 0 < R < ∞, and

v(x) � C for |x| � R (3.3.87)

where 0 � C < ∞.
For b > 0

|ψ (x)| �
∫ ∞

−∞

dp

2π�

1[
1 + b p2

2µ

]1/2

[
1 + b

p2

2µ

]1/2 ∣∣∣ψ̃ (p)
∣∣∣ (3.3.88)

or

|ψ (x)|2 �
√

µ

2b�2

[
1 + b

〈
p2

2µ

〉]
. (3.3.89)

We use this inequality for |x| < R only.
Therefore from (3.3.86)–(3.3.88),

〈v〉 � a

√
µb

2�2

〈
p2

2µ

〉
+
(

C + a

√
µ

2b�2

)
. (3.3.90)

We may choose

b =
2�

2

µa2
(3.3.91)

thus obtaining from (3.3.90)

−
(

C +
µa2

2�2

)
�
〈

p2

2µ
− v

〉
(3.3.92)

and hence finally leading to the lower bound
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−
(

C +
µa2

2�2

)
�
〈

p2

2µ
+ V

〉
. (3.3.93)

[G] As a by-product of counting the number of the bound-states of given
potentials, the theory of which is developed in §4.5 for Hamiltonians in ν =
3, 2, 1 space dimensions we have the following bounds. The proofs are given
in that section.4 As before, we let v (x) be defined as in (3.3.18).

For ν = 3, if ∫
d3x (v (x))5/2

< ∞ (3.3.94)

then (see (4.5.92))
〈

p2

2µ
+ V

〉
� − 4

15π

(
2µ

�2

)3/2 ∫
d3x (v (x))5/2

. (3.3.95)

For ν = 2, if ∫
d2x (v (x))2 < ∞ (3.3.96)

then (see (4.5.97))
〈

p2

2µ
+ V

〉
� − 3µ

4�2

∫
d2x (v (x))2 . (3.3.97)

Finally, for ν = 1, if ∫ ∞

−∞
dx (v(x))3/2

< ∞ (3.3.98)

then (see (4.5.101))
〈

p2

2µ
+ V

〉
� −4

3

√
2µ

�

∫ ∞

−∞
dx (v(x))3/2

. (3.3.99)

In the next section, we provide lower bounds to Hamiltonians for multi-
particle systems.

3.4 Boundedness of Hamiltonian From Below:
Multi-Particle Systems

In the present section, we derive lower bounds to Hamiltonians for multi-
particle systems. First we treat systems of interacting particles without im-
posing any statistics on the particles. This analysis is then followed with some
estimates involving Coulomb interactions of fermions then of bosons taking
their appropriate statistics into account.
4 For definiteness, here one may assume that on the negative real axis, the corre-

sponding Hamiltonians have, at most, only eigenvalues.
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3.4.1 Multi-Particle Systems with Two-Body Potentials

We consider a Hamiltonian in the form

H =
N∑

i=1

p2
i

2mi
+

N∑
i<j

Vij (xi − xj) (3.4.1)

where necessarily the interaction part involves negative contributions, other-
wise H is a positive operator.

The two-body potentials Vij are chosen to satisfy the sufficiency conditions
∫

|x|�Rij

d3x |Vij(x)|2 � aij < ∞ (3.4.2)

where 0 < Rij < ∞ and

|Vij (x)| � Cij < ∞ for |x| � Rij . (3.4.3)

We note that upon the change of variables

x1 − x2 = X1, x1 + x2 = X2 (3.4.4)

in

‖V12ψ‖2 =
∫

d3x1 · · · d3xN |V12(x1 − x2)|2 |ψ(x1, . . . ,xN )|2 (3.4.5)

for example, we may write

‖V12ψ‖2 =
1
8

∫
d3X1 d3X2 d3x3 · · · d3xN |V12(X1)|2

×
∣∣∣∣ψ(

X2 + X1

2
,
X2 − X1

2
,x3, . . . ,xN )

∣∣∣∣
2

. (3.4.6)

This suggests to set

ψ(
X2 + X1

2
,
X2 − X1

2
,x3, . . . ,xN ) ≡ Φ(X1,X2,x3, . . . ,xN ) (3.4.7)

then it is easy to show that the Fourier transforms are related by

ψ̃(p1,p2,p3, . . . ,pN ) =
1
8
Φ̃(

p1 − p2

2
,
p1 + p2

2
,p3, . . . ,pN ). (3.4.8)

Consider the integral

I12 (X1) =
∫

d3X2 d3x3 · · · d3xN |Φ(X1,X2,x3, . . . ,xN )|2 (3.4.9)
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=
∫

d3q2

(2π�)3
d3p3

(2π�)3
· · · d3pN

(2π�)3

∣∣∣∣∣
∫

d3q1

(2π�)3
eiq1·X1/�Φ̃(q1,q2,p3, . . . ,pN )

∣∣∣∣∣
2

.

(3.4.10)
We now use the Cauchy-Schwarz inequality with b > 0 in the following

∣∣∣∣∣
∫

d3q1

(2π�)3
[
1 + b

(
q2

1

)2]1/2 ∣∣∣Φ̃ (q1,q2,p3, . . . ,pN )
∣∣∣ eiq1·X1/�

[
1 + b

(
q2

1

)2]−1/2
∣∣∣∣∣
2

� I

∫
d3q1

(2π�)3
[
1 + b

(
q2

1

)2] ∣∣∣Φ̃(q1,q2,p3, . . . ,pN )
∣∣∣2

(3.4.11)

where

I =
∫

d3q

(2π�)3
1[

1 + b (q2)2
]

=
1

4
√

2 π�3b3/4
(3.4.12)

to obtain for I12 (X1) in (3.4.10) the X1-independent bound

I12 (X1) � I

∫
d3q1

(2π�)3
d3q2

(2π�)3
d3p3

(2π�)3
· · · d3pN

(2π�)3

×
[
1 + b

(
q2

1

)2] ∣∣∣Φ̃ (q1,q2,p3, . . . ,pN )
∣∣∣2

=
I

8

∫
d3p1

(2π�)3
d3p2

(2π�)3
· · · d3pN

(2π�)3

×


1 + b

(
(p1 − p2)

2

4

)2


∣∣∣∣Φ̃

(
p1 − p2

2
,
p1 + p2

2
,p3, . . . ,pN

)∣∣∣∣
2

= 8I

∫
d3p1

(2π�)3
· · · d3pN

(2π�)3


1 + b

(
(p1 − p2)

2

4

)2

 ∣∣∣ψ̃ (p1,p2,p3, . . . ,pN )

∣∣∣2

(3.4.13)

where we have finally used (3.4.8).
Since

(p1 − p2)
2

4
� p2

1 + p2
2

2
� (m1 + m2)

(
p2

1

2m1
+

p2
2

2m2

)
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� (m1 + m2)
N∑

i=1

p2
i

2mi
(3.4.14)

we obtain the bound

I12 (X1) � 8I
{

1 + b (m1 + m2)
2 ‖H0ψ‖2

}
. (3.4.15)

We use this inequality in (3.4.6) for |X1| < R12 only.
From the definition (3.4.7), (3.4.9), (3.4.10) and (3.4.2), (3.4.3) we have

‖V12ψ‖2 � Ia12

{
1 + b (m1 + m2)

2 ‖H0ψ‖2
}

+ C2
12 (3.4.16)

or
‖V12ψ‖ �

√
Ia12b (m1 + m2) ‖H0ψ‖ +

√
C2

12 + Ia12. (3.4.17)

Accordingly ∥∥∥∥∥∥
N∑

i<j

Vijψ

∥∥∥∥∥∥ �
N∑

i<j

‖Vijψ‖

� A ‖H0ψ‖ + B (3.4.18)

giving a Kato bound (see also (3.3.71)), where

A =
N∑

i<j

(mi + mj)

√
aijb1/4

4
√

2 π�3
(3.4.19)

B =
N∑

i<j

√
C2

ij +
aij

4
√

2 π�3b3/4
(3.4.20)

and we have used the value of the integral I in (3.4.12).
As in (3.3.63), the above then gives the lower bound

〈
N∑

i=1

p2
i

2mi
+

N∑
i<j

Vij (xi − xj)

〉
� − B

1 − A
(3.4.21)

with A, B defined in (3.4.19), (3.4.20) and the relevant constants in (3.4.2),
(3.4.3). The positive constant b in (3.4.19) is so chosen to make A < 1.

3.4.2 Multi-Particle Systems and Other Potentials

A straightforward extension of the basic inequality in (3.1.8) for multi-
particle states which may include many-body potentials is obtained by intro-
ducing real vector fields Fj (x1, . . . ,xN ), j = 1, . . . , N, of the position vectors
of N particles, and define the potential energy
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V (x1, . . . ,xN ) = −
N∑

j=1

∇j · Fj (x1, . . . ,xN ) . (3.4.22)

Positivity implies that

N∑
j=1

∥∥∥∥∥
(

�∇j√
2mj

+

√
2mj

�
Fj

)
ψ

∥∥∥∥∥
2

� 0 (3.4.23)

which upon integration by parts yields the elementary bound〈
N∑

j=1

p2
j

2mj
+ V (x1, . . . ,xN )

〉
� −

N∑
j=1

2mj

�2

〈
F2

j

〉
(3.4.24)

Note that the lower bound on the right-hand side of (3.4.24) applies also to
other potentials U (x1, . . . ,xN ) which are bounded below by V (x1, . . . ,xN ),
i.e., for which U (x1, . . . ,xN ) � V (x1, . . . ,xN ).

Although the estimate in (3.4.24) is, in general, far from being optimal,
it is nevertheless useful in establishing boundedness from below for some
specific interactions. For an application of (3.4.22), (3.4.24), see Problem 3.5,
and see also (3.4.29)–(3.4.32) below.

3.4.3 Multi-Particle Systems with Coulomb Interactions

We consider the multi-particle systems with Coulomb interactions de-
scribed by Hamiltonian

H =
N∑

i=1

p2
i

2m
+

N∑
i<j

e2

|xi − xj |
−

N∑
i=1

k∑
j=1

Zje
2

|xi − Rj |
+

k∑
i<j

ZiZje
2

|Ri − Rj |
(3.4.25)

consisting of N negatively charged particles of charges e, masses m, and k � 2
positively charged particles of charges Z1 |e| , . . . , Zk |e|, such that

k∑
i=1

Zi = N (3.4.26)

i.e., we consider neutral systems. Here the positive charges are considered to
be fixed. The Hamiltonian of an atom with atomic number Z is obtain from
(3.4.25) by deleting the last term in it and setting k = 1, Z1 = Z.

The derivation of the lower bounds for systems of fermions and bosons
require special tools and will be given in detail in Chapter 14. Here we simply
record the bounds obtained there.

For identical spin 1/2 (fermions) negatively charged particles, such as
electrons, we have for k � 2 the bound5

5 The numerical values 8.310 and 5.235 in (3.4.27) and (3.4.28), respectively, may
be further improved, i.e., decreased but we will not attempt to do so.
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〈H〉F � −8.310
me4

2�2
N


1 +

(
1
N

k∑
i=1

Z
7/3
i

)1/2



2

. (3.4.27)

On the other hand, for identical spin 0 (bosons) negatively charged par-
ticles, we have5for k � 2

〈H〉B � −5.235
me4

2�2
N5/3


1 +

(
1
N

k∑
i=1

Z
7/3
i

)1/2



2

. (3.4.28)

An expression for the ground-state energy of an atom, as a function of
the atomic number Z, will be obtained in Chapter 13 based on physical
grounds as an extension of the so-called Thomas-Fermi atom in which the
latter corresponds to the large Z limit. We here derive a conservative lower
bound to the ground-state energy for atoms. To do this we use the simple
bound

H|k=1,N=Z �
Z∑

i=1

(
p2

i

2m
− Ze2

|xi|

)
(3.4.29)

where we have put the nucleus at the origin, i.e., R = 0 and used the posi-
tivity of the second term in (3.4.25). A conservative lower bound for an atom
is −(me4/2�

2)Z3. This is easily obtained from the right-hand side of the
inequality in (3.4.29) by knowing the ground state energy of a hydrogenic
atom or, for example directly from (3.4.29) by defining

Fi =
Ze2

2
xj

|xj |
(3.4.30)

which gives

−
N∑

j=1

∇j · Fj = −
N∑

j=1

Ze2

|xj |
(3.4.31)

and

−
N∑

j=1

2m2

�2
F2

j = −me4

2�2
Z3 (3.4.32)

with Z = N , leading from (3.4.24) to the rough lower bound stated above.
One may also derive improved bounds (cf., Problem 13.14). A fairly detailed
investigation of the ground-state energy of atoms, as a function of Z, will be
carried out in Chapter 13.

3.5 Decay of Quantum Systems

Consider a Hamiltonian H which is bounded from below by a finite num-
ber LH ,
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〈ψ |H|ψ〉 � LH (3.5.1)

for normalized |ψ〉 (§3.2), where LH is often negative. One may then conve-
niently introduce the Hamiltonian H ′ = H −LH and write the inner product
〈ψ |ψ〉 as (see also (§3.2))

〈ψ |ψ〉 =
∫ ∞

0

dλ 〈ψ |δ (λ − H ′)|ψ〉 = 1 (3.5.2)

where
〈ψ |δ (λ − H ′)|ψ〉 ≡ F (λ)

2π�
(3.5.3)

denotes the probability density, per unit energy, of finding the energy of the
system in the state |ψ〉 around the value λ in the energy scale translated by
the amount −LH .

In particular, if χ∆ (λ) denotes the characteristic function of a set ∆, i.e.,
χ∆ (λ) = 1 if λ ∈ ∆, and χ∆ (λ) = 0 if λ /∈ ∆, then∫ ∞

0

dλ

2π�
χ∆ (λ) F (λ) (3.5.4)

represents the probability of finding the energy of the system in the state |ψ〉
to have values in the set ∆ in the shifted energy scale.

Given that a system in the state |ψ〉 ≡ |ψ (0)〉 has developed in time to
the state

|ψ(t)〉 = e−itH/� |ψ〉 (3.5.5)

a quantity of physical interest is the probability of finding the system in the
same state |ψ〉 at time t. This is given by (§1.2–§1.5)

Tr
[
|ψ〉 〈ψ| |ψ (t)〉 〈ψ (t)|

]
= |〈ψ |ψ (t)〉|2 . (3.5.6)

According to (3.5.2), (3.5.3), the corresponding amplitude to the above
probability may be written as

〈ψ |ψ (t)〉 = e−itLH/�A(t) (3.5.7)

where
A(t) =

∫ ∞

−∞

dλ

2π�
F (λ)e−itλ/� (3.5.8)

as a Fourier transform with the constraint

F (λ) = 0 for λ < 0. (3.5.9)

Since |A(t)|2 denotes the probability that the system at time t is found
in its initial state,6 it is also referred to as the survival probability of the
system. Guided by this interpretation, one may formally define
6 |A(t)|2 equivalently represents the following probability. Given that the system

is in the state |ψ〉, it represents the probability that it was in the state |ψ (t)〉 at
time t < 0.
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1
2

∫ ∞

−∞
dt |A(t)|2 ≡ T (3.5.10)

as a measure of the lifetime of the system in the state |ψ〉.
An interesting application which follows from (3.5.10) is the following

one. Suppose that the energy of the system is confined to some interval ∆ of
length ∆(λ). That is, F (λ) = 0 for λ /∈ ∆, and from (3.5.2), (3.5.3)

∫ ∞

0

dλ

2π�
χ∆ (λ)F (λ) = 1 (3.5.11)

in the notation of (3.5.4). An elementary application of the Cauchy-Schwarz
inequality then gives

1 =
(∫ ∞

−∞

dλ

2π�
χ∆ (λ)F (λ)

)2

�
(∫ ∞

−∞

dλ

2π�
χ∆ (λ)

)(∫ ∞

−∞

dλ

2π�
(F (λ))2

)

=
∆(λ)
2π�

2T (3.5.12)

where we have used the property
∫ ∞

−∞

dλ

2π�
|F (λ)|2 =

∫ ∞

−∞
dt |A(t)|2. (3.5.13)

From (3.5.12) one then obtains an energy-time uncertainty principle,

h

2
� ∆(λ)T. (3.5.14)

That is, the shorter the energy “width” ∆(λ) of the state |ψ〉 is, the longer is
its lifetime against decay. In the limiting case of zero “width” ∆(λ) → 0, one
obtains a non-decaying system of infinite lifetime! The mere fact that atoms
in excited states decay from one energy level to a lower one, is an indication
of the finite “widths” of such energy levels.

Some properties of A(t) which follow directly from its definition in (3.5.8)
are

A(0) = 1 (3.5.15)

where we have used (3.5.2), (3.5.3),

A∗ (t) = A(−t) (3.5.16)

and formally

i�A′ (0) =
∫ ∞

0

λ dλF (λ) (3.5.17)

� |A′(t)| �
∫ ∞

0

λ dλF (λ) (3.5.18)
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where we have used (3.5.9). The integral on the right-hand sides of (3.5.17),
(3.5.18) denotes the mean energy in the state |ψ〉, in the shifted energy scale.

Upon using the notation

A∗(t)A(t) = P (t) (3.5.19)

for the survival probability in (3.5.6), we note that

d
dt

P (t) = −A′(−t)A(t) + A(−t)A′(t) (3.5.20)

as follows from (3.5.16). This leads to

d
dt

P (t)
∣∣∣∣
t=0

= 0 (3.5.21)

for the derivative of the survival probability at the origin.
In particular, one learns from (3.5.21) that the familiar decay law

exp (−Γt/�), for t > 0, cannot hold near the origin t → +0. A concrete
example of a physical situation, where (3.5.21) may be explicitly verified is
readily given. Consider a particle of spin 1/2 of magnetic dipole moment µ
in a uniform time-independent magnetic field B = (B, 0, 0). Then as a spe-
cial case of an analysis that will be given later in §8.8, leading to (8.8.47),
the survival probability P (t) with the initial state of the spin in the state
|+1/2, z〉 is given by

P (t) = cos2
(

µBt

�

)
(3.5.22)

and in the neighborhood of the origin, this probability has the behavior

P (t) � 1 − µ2B2t2

�2
(3.5.23)

consistent with (3.5.21) at t = 0.7
The exponential decay law with the amplitude A(t) given by

A(t) = e−iλ0t/�e−Γ|t|/2� (3.5.24)

for some λ0, cannot certainly hold true for all t. In particular it cannot hold
true for t → ∞. The reason is that it yields a density F (λ) which is non-zero
for λ < 0, for arbitrary large |λ| which is inconsistent with the boundedness
of a Hamiltonian from below.8 This is seen by the explicit evaluation of the
integral

7 This same behavior in (3.5.23) follows more generally in an oscillating magnetic
field B = (B cos ωt, B sin ωt, B0) as will be seen by examining (8.8.45) later on.

8 The expression in (3.5.24), as it stands, is likewise inconsistent with analyticity
properties when extended to the complex time domain t → t + iτ .
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F (λ) =
∫ ∞

−∞
dt e−iλ0t/�e−Γ|t|/2�eitλ/� (3.5.25)

which gives the familiar Breit-Weisskopf-Wigner expression

F (λ)
2π�

=
1
π

Γ/2
(λ − λ0)2 + Γ2/4

(3.5.26)

which, as mentioned above, does not vanish for λ < 0, for |λ| arbitrarily large.
Thus the exponential decay law cannot be true for all t.

On the other hand, if one chooses the density in the form in (3.5.26) to be
true only for λ � 0, then one has to normalize it first, obtaining the density

F0 (λ)
2π�

= C




Γ/2
[
(λ − λ0)

2 + Γ2/4
]−1

, λ � 0

0, λ < 0
(3.5.27)

where
C =

π

2
+ tan−1

(
2λ0

Γ

)
. (3.5.28)

A contour integration in the complex λ-plane, enclosing the pole at λ =
λ0 − iΓ/2, λ0 > 0, for t > 0 gives (see Problem 3.6)

A(t)/C = πe−iλ0t/�e−Γt/2� + R (t) (3.5.29)

where for t → ∞
|R (t)| = O

(
1
t

)
. (3.5.30)

That is, for t → ∞, |A(t)| would vanish slower than an exponential law for
t → ∞.

The exponential decay law, however, is not ruled out, however, for t not
close to the origin and for t not in the truly asymptotic region |t| → ∞. An
interesting example of an exponential decay will be worked out in detail in
§8.1 (see (8.1.94)) for a two-level system interacting with an infinite number
of harmonic oscillators.

The above analyses have shown the following typical behaviors P (t) =
1 − O(t2) for t � 0, P (t) = O(1/t) for t → ∞ for the survival probability,
and that the classic exponential law for intermediate t is not ruled out.

In the appendix to this section, we prove a theorem due to Paley and
Wiener9 tailored to our physical problem at hand. Given that the Hamil-
tonian of the physical system is bounded from below and |A(t)| is square-
integrable then we will see that

∫ ∞

−∞
dt

|ln |A(t)||
1 + t2

< ∞. (3.5.31)

9 Paley and Wiener (1934).
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To gain further insight into the finiteness property in (3.5.31), note the
following. For any real c > 0,

| ln c| = 2Θ(c − 1) ln c − ln c (3.5.32)

where Θ(x) is the step function, i.e., Θ(x) = 1 for x > 1, Θ(x) = 0 for x < 1.
Also

Θ(c − 1) ln c � c2 (3.5.33)

| ln c| � 2c2 − ln c (3.5.34)

and with c = |A(t)|, we obtain from (3.5.34) upon integration over t

∫ ∞

−∞
dt

|ln |A(t)||
1 + t2

� 2
∫ ∞

−∞
dt

|A(t)|2

1 + t2
−
∫ ∞

−∞
dt

ln |A(t)|
1 + t2

. (3.5.35)

Since ∫ ∞

−∞
dt

|A(t)|2

1 + t2
�
∫ ∞

−∞
dt |A(t)|2 (3.5.36)

then in order to establish (3.5.31), with the square-integrability condition of
|A(t)|, satisfied, it remains to obtain a finite lower bound (number) for the
integral ∫ ∞

−∞
dt

ln |A(t)|
1 + t2

(3.5.37)

in (3.5.35).
A question that arises in reference to (3.5.31), (3.5.35), (3.5.36) is the

following: “If we have square-integrability of |A(t)|, why bother with the lower
bound on the left-hand side of (3.5.35) — that is with the expression in
(3.5.31)?” The answer is that the condition in (3.5.31), via (3.5.35), follows
if it is given, in particular, that the Hamiltonian of the system is bounded
from below. The exponential law in (3.5.24) here comes to the “rescue” as a
counter example for which the spectrum, as seen in (3.5.26), is unbounded
from below. It is easily checked that |A(t)|, with A(t) in (3.5.24), is square-
integrable, while

|ln |A(t)||
1 + t2

=
|t|

1 + t2
Γ
2�

(3.5.38)

is, clearly, not integrable. The integral on the left-hand side of (3.5.31) pro-
vides a rigorous constraint on A(t), and hence on the survival probability
P (t), to be satisfied10 for a physically consistent theory of quantum decay in
which the Hamiltonian is bounded from below.

10 The importance of the Paley-Wiener theorem was emphasized by Khalfin (1957).
A general lucid overview treatment by Fonda et al. (1978) should be also noted.
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Appendix to §3.5: The Paley-Wiener Theorem

To prove11 the finiteness condition in (3.5.31), it is more convenient to
start from the complex conjugate

A∗(t) =
∫ ∞

−∞

dλ

2π�
F (λ)eitλ/� (A-3.5.1)

instead of A(t).
Consider the following transform

I(t′, τ ′) =
1
π

∫ ∞

−∞
dt

A∗(t)τ ′

(t − t′)2 + τ ′2 (A-3.5.2)

the so-called Poisson integral formula for a half-plane, where t′, τ ′ are reals.
The part of the integrand multiplying A∗(t) in (A-3.5.2) has the following
properties:

1
π

τ ′

(t − t′)2 + τ ′2 → δ(t − t′) for τ ′ → +0 (A-3.5.3)

formally, and
1
π

∫ ∞

−∞
dt

τ ′

(t − t′)2 + τ ′2 = 1 (A-3.5.4)

1
π

∫ ∞

−∞
dt

τ ′eiat

(t − t′)2 + τ ′2 = eia(t′+iτ ′) (A-3.5.5)

for a > 0.
Accordingly, from (A-3.5.1), (A-3.5.2), (A-3.5.5),

I(t′, τ ′) =
∫ ∞

−∞

dλ

2π�
F (λ)

∫ ∞

−∞

dt

π

τ ′eiλt/�

(t − t′)2 + τ ′2

=
∫ ∞

−∞

dλ

2π�
F (λ)eiλ(t′+iτ ′)/�

≡ B(t′ + iτ ′) (A-3.5.6)

and the transform in (A-3.5.2) has the remarkable property of extending
the Fourier transform of A∗(t) to the complex domain thus introducing the
function of the complex variable t + iτ : B(t + iτ).

Since F (λ) = 0 for λ < 0, however, we have for τ � 0
∫ ∞

−∞
dt |B(t + iτ)|2 =

∫ ∞

0

dλ

2π�
(F (λ))2e−2τλ/�

11 The proof of this theorem may be omitted at a first reading.
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�
∫ ∞

0

dλ

2π�
|F (λ)|2 =

∫ ∞

−∞
dt |A(t)|2 (A-3.5.7)

and (A-3.5.6) defines the Fourier transform in the complex-time upper plane
τ � 0 and is analytic in this region.12

From (A-3.5.6), (A-3.5.2), we rewrite

B(t′ + iτ ′) =
1
π

∫ ∞

−∞
dt

A∗(t)τ ′

(t − t′)2 + τ ′2 (A-3.5.8)

and consider the transformation of the upper complex plane into the unit
circle

z′ − i
z′ + i

= reiφ (A-3.5.9)

where
z′ = t′ + iτ ′ (A-3.5.10)

and r < 1. The boundary of the unit circle is given by r = 1. In reference to
the real variable t in (A-3.5.8), we transform the integration along the real
axis to an angular one along a unit circle defined by the transformation

t − i
t + i

= eiθ. (A-3.5.11)

The following are easily established

dθ = 2
dt

1 + t2
, t = − sin θ

1 − cos θ
(A-3.5.12)

t′ = − 2r sin φ

1 + r2 − 2r cos φ
, τ ′ =

1 − r2

1 + r2 − 2r cos φ
(A-3.5.13)

(t − t′)2 + τ ′2 = |t − z′|2 = 2
1 + r2 − 2r cos(φ − θ)

(1 + r2 − 2r cos φ)(1 − cos θ)
(A-3.5.14)

and hence

τ ′(1 + t2)
(t − t′)2 + τ ′2 =

1 − r2(
1 + r2 − 2r cos(φ − θ)

) . (A-3.5.15)

Therefore denoting A∗(t), in terms of the new variable eiθ, by a(eiθ), and
B(t′ + iτ ′) in terms of reiθ by b(reiθ), we have from (A-3.5.15), (A-3.5.12)
and (A-3.5.8)

12 A classic reference on the connection between analyticity and the Fourier trans-
form is Titchmarsh (1937). For a relatively modern treatment, see, Rudin (1966).
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b(reiφ) =
1
2π

∫ 2π

0

dθ a(eiθ)
1 − r2(

1 + r2 − 2r cos(φ − θ)
) (A-3.5.16)

showing that b(reiθ) is the so-called Poisson integral (for a circle) of a(eiθ),
where the former is obtained for r < 1, i.e., inside the unit circle, from an
integral of a(eiθ) along its circumference.

Using the integral

1
2π

∫ 2π

0

dθ
1 − r2(

1 + r2 − 2r cos(φ − θ)
) = 1 (A-3.5.17)

it is easily shown (see Problem 3.9), that
∫ 2π

0

dφ
∣∣b(reiφ)

∣∣2 �
∫ 2π

0

dθ
∣∣a(reiθ)

∣∣2 . (A-3.5.18)

To establish the finiteness condition in (3.5.31), we consider the integral

1
2π

∫ 2π

0

dφ ln
∣∣b(reiφ)

∣∣ . (A-3.5.19)

Using the notation ρ eiφ = w, ρ � r we note that although b(w) is analytic
in the circle of radius r, it may have zeros, and in (A-3.5.19), we are interested
in ln |b(w)|. Accordingly, suppose that b(w) has zeros at:

w = 0 of order m,

w = α1, . . . , αn of orders c1, . . . , cn such that |α1| < r, . . . , |αn| < r,

w = αn+1, . . . , αN of orders cn+1, . . . , cN such that |αn+1| → r, . . . , |cN | → r

and conveniently define13

h(w) =
b(w)
wm


 n∏

j=1

(
α∗

jw − r2

r(w − αj)

)cj


(

N∏
i=n+1

(
αi

w − αi

)ci
)

(A-3.5.20)

thus removing the zeros from b(w).
Upon setting αj = |αj | exp(iδj), we note that for the expression in the

j-product in (A-3.5.20) ∣∣∣∣∣
α∗

jw − r2

r(w − αj)

∣∣∣∣∣
ρ=r

= 1. (A-3.5.21)

Directly from (A-3.5.20),

13 Cf. Rudin (1966), pp. 299–300, except here we are allowing zeros at the origin
as well.
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|h(0)| =
(∣∣∣∣b(w)

wm

∣∣∣∣
w=0

) n∏
j=1

∣∣∣∣ r

αj

∣∣∣∣
cj

(A-3.5.22)

and for ρ = r, w = r exp iφ,

ln
∣∣h (reiφ

)∣∣ = ln
∣∣b (reiφ

)∣∣− m ln r −
N∑

i=n+1

ci ln
∣∣∣1 − ei(φ−δi)

∣∣∣ (A-3.5.23)

where in writing the latter we have used (A-3.5.21).
Since in (A-3.5.20), we have removed all the zeros of b(w), we have from

Cauchy’s theorem

1
2π

∫ 2π

0

dφ ln
∣∣h (reiφ

)∣∣ =
1

2πi

∮
dw

ln |h(w)|
w

= ln |h(0)| . (A-3.5.24)

Using the integral14

∫ 2π

0

dφ ln
∣∣∣1 − ei(φ−δ)

∣∣∣ = 0 (A-3.5.25)

we have from (A-3.5.22)–(A-3.5.25),

1
2π

∫ 2π

0

dφ ln
∣∣b (reiφ

)∣∣ = ln
∣∣∣∣b(w)

wm

∣∣∣∣
w=0

+
n∑

i=1

ci ln
∣∣∣∣ r

αi

∣∣∣∣+ m ln r. (A-3.5.26)

This is known as Jensen’s formula.
Since ci � 1, |r/αi| > 1 in (A-3.5.26), we have the following bound

1
2π

∫ 2π

0

dφ ln
∣∣b (reiφ

)∣∣ � ln
∣∣∣∣b(w)

wm

∣∣∣∣
w=0

+ m ln r. (A-3.5.27)

Using (3.5.34) in conjunction with (A-3.5.27), with c =
∣∣b (reiφ

)∣∣ gives,

1
2π

∫ 2π

0

dφ
∣∣ln ∣∣b (reiφ

)∣∣∣∣ � 1
π

∫ 2π

0

dφ
∣∣b (reiφ

)∣∣2

− ln
∣∣∣∣b(w)

wm

∣∣∣∣
w=0

− m ln r. (A-3.5.28)

On the other hand, we may use (A-3.5.18) to obtain from (A-3.5.28)

1
2π

∫ 2π

0

dφ
∣∣ln ∣∣b (reiφ

)∣∣∣∣ � 1
π

∫ 2π

0

dθ
∣∣a (eiθ

)∣∣2

14 Cf. Rudin (1966), pp. 299,300, and Problem 3.10.
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− ln
∣∣∣∣b(w)

wm

∣∣∣∣
w=0

− m ln r. (A-3.5.29)

Upon taking the limit r → 1, and using the t variable in (A-3.5.11),
(A-3.5.12) we have from (A-3.5.29)

∫ ∞

−∞
dt

|ln |A(t)||
1 + t2

� 2
∫ ∞

−∞
dt

|A(t)|2

1 + t2
− π ln

∣∣∣∣b(w)
wm

∣∣∣∣
w=0

(A-3.5.30)

and since ∫ ∞

−∞
dt

|A(t)|2

1 + t2
�
∫ ∞

−∞
dt |A(t)|2 (A-3.5.31)

the square-integrability of |A(t)| implies the finiteness of the integral in
(3.5.31) by noting finally that from (A-3.5.27) we have the lower bound

∫ ∞

−∞
dt

ln |A(t)|
1 + t2

� π ln
∣∣∣∣b(w)

wm

∣∣∣∣
w=0

(A-3.5.32)

is finite as a zero of order m of b(w) at w = 0, if there is one, has been
removed.

The key assumption in the above analysis is the boundedness of the Hamil-
tonian from below, i.e., that |LH | is finite. As a matter of fact, if H is not
bounded from below, then we cannot define the Hamiltonian H ′, as done in
the beginning of §3.5. In the latter case, if we define

〈ψ |ψ(t)〉 =
∫ ∞

−∞

dλ

2π�
F (λ)e−itλ/� (A-3.5.33)

with F (λ) not zero for λ < 0, then instead of (A-3.5.7), we obtain
∫ ∞

−∞
dt |B(t + iτ)|2 =

∫ ∞

−∞

dλ

2π�
(F (λ))2e−2τλ/�

� eb2τ/�

∫ −b

−a

dλ

2π�
|F (λ)|2 (A-3.5.34)

where 0 < b < a for which F (λ) �= 0 in the interval (−a,−b). Clearly for
τ positive and arbitrary large, the right-hand side of the above inequal-
ity (A-3.5.34) increases without bound, destroying the square-integrality of
|B(t + iτ)| in t as opposed to the case in (A-3.5.7).

Problems

3.1. Show that the integrals (3.3.23) and (3.3.24) are equivalent.
3.2. Derive the expressions in (3.3.25) and (3.3.30).
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3.3. Apply the formula (3.3.77) to find lower bounds for a Hamiltonian
with potential V (x) in (3.3.8) for λ3 ≡ 0, λ1 < 0, λ2 < 0, β1 > 0 in
ν = 3 dimensions, and compare your bound with the one in (3.3.15).

3.4. Use the general bound in (3.4.21) to find a lower bound to the Hamil-
tonian in (3.4.1) with

Vij(xi − xj) = − Gmimj

|xi − xj |

for the Newtonian gravitational potential.
3.5. Introduce a vector fields Fj (x1, . . . ,xN ; R1, . . . ,Rk), for j =

1, . . . , N, R1, . . . ,Rk fixed, to generate the potential energy for matter
in (3.4.25) by applying the definition of the potential in (3.4.22). Us-
ing your expression for Fj obtain a lower bound for the ground-state
energy by the application of (3.4.24). This estimate is rather rough in
comparison to the ones in (3.4.27), (3.4.28). Is it possible to choose the
position vectors R1, . . . ,Rk of the nuclei optimally to get an improved
estimate?

3.6. Verify the normalization of the density in (3.5.27)/(3.5.28). By a
contour integration in the complex λ-plane enclosing the pole at
λ = λ0 − iΓ/2, λ0 > 0, for t > 0, show that A(t) in (3.5.8) is given as
in (3.5.29) and obtain an expression for |R(t)|. What is the next order
behavior to 1/t for t → ∞?

3.7. Suppose that the density in (3.5.26) is non-zero only for 0 � λ � c,
where c is a finite constant. Does the amplitude A(t), in this case,
involve an exponentially damping term?

3.8. Derive the expressions for the integrals given in (A-3.5.4), (A-3.5.5).
3.9. Prove the inequality in (A-3.5.18). [Hint: Note, in the process of the

demonstration, that

a∗(eiθ) a(eiθ′
) + a(eiθ) a∗(eiθ′

) �
∣∣a(eiθ)

∣∣2 +
∣∣∣a(eiθ′

)
∣∣∣2

and use (A-3.5.17).]
3.10. It may be amusing to explicitly evaluate the integral in (A-3.5.25) and

show that it is equal to zero without using contour integration.
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Spectra of Hamiltonians

The chapter is involved with several aspects concerning the spectra of
Hamiltonians. In §4.1, §4.3, §4.4, the nature of the spectra of some general
classes of Hamiltonian is determined under sufficiency conditions satisfied
by the underlying potentials. These sufficiency conditions are readily verified
and if satisfied, the nature of the spectra may be inferred. This is obviously
very important if the exact solution of the problem in question is not known.
Even if the solution may be explicitly obtained, the knowledge of the nature
of the spectrum of a Hamiltonian prior to its determination is quite useful.
Bound-states are studied in §4.2. In this section sufficiency conditions are
given for their existence as well as for their absence for various physical
systems. In §4.5, we carry out an analysis for counting the eigenvalues (if
any) of given Hamiltonians. This investigation is then used in §4.6 to derive
lower bounds to the expectation values of kinetic energy operators for single-
and many-particle systems. The results obtained in these two sections will
find important applications to multi-electron atoms in Chapter 13 and to the
problem of the stability of matter in Chapter 14. The final section (§4.7) deals
with the role of supersymmetry in solving the eigenvalue problem and in the
construction of supersymmetric Hamiltonians. In this section, we make use
of the general properties of supersymmetry transformations obtained in §2.9.

Before getting into the details of this chapter we note the following. Sup-
pose that for some vector |ψ〉, in the domain of a given Hamiltonian H,

〈ψ |H|ψ〉 < 0. (4.1)

In §4.1, for example, we give sufficiency conditions to be satisfied by the po-
tential in question such that if the negative spectrum of H is not empty,
then the latter consists of eigenvalues of finite degeneracy (the discrete spec-
trum). The condition in (4.1) would then imply that the negative spectrum
of such a H is not empty consisting of a discrete one, as part of the spec-
trum. This property of the spectrum follows by noting that by the spectral
decomposition of H (§1.8, (1.8.15)), (4.1) may be rewritten as
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∫ ∞

−∞
λ d‖PH(λ)ψ‖2

< 0 (4.2)

thus admitting negative (λ < 0) eigenvalues for H.

4.1 Hamiltonians with Potentials Vanishing at Infinity

In this section we are concerned with Hamiltonians

H =
p2

2µ
+ V (x) (4.1.1)

in ν = 3, 2, 1 dimensional spaces, with potentials satisfying the following
sufficiency conditions. For any 0 < R < ∞,∫

|x|<R

dνx |V (x)|2 < ∞ (4.1.2)

and
|V (x)| −−−−−−−−→

|x|→∞
0. (4.1.3)

Such potentials are said to be locally square-integrable with vanishing prop-
erty at infinity. For ν = 3, the Coulomb potential ±e2/|x|, for example, lies
in this category.

Since condition (4.1.3), in particular, implies that for a sufficiently large R,
we may find a finite positive constant C such that |V (x)| � C for |x| � R, the
analysis given in class [E] of §3.3 shows that such Hamiltonians are necessarily
bounded from below. We will denote the lower bound of such a Hamiltonian by
−�H (= LH in our earlier notation in §3.2), emphasizing its strict negativity
if it arises.

For a two-particle system, for example, with a reduced mass µ, when the
two particles are widely separated, condition (4.1.3) means that the interac-
tion between them goes to zero, while the relative kinetic energy may take
on any value from zero up to arbitrarily large positive values. Accordingly,
the spectrum would include a continuous one on the positive real axis [0,∞).

Of particular interest is the situation when −�H is strictly negative. We
would then have, in addition to the continuous spectrum discussed above,
negative eigenvalues falling in the interval [−�H , 0). What is interesting, as
the following theorem shows, is that these negative eigenvalues are at most
finitely degenerate and there is no continuous spectrum on the negative real
axis. In the introduction to this chapter, we have seen that if one can find
any vector |ψ〉 such that 〈ψ|H|ψ〉 < 0, then −�H is strictly negative. Needless
to say, as mentioned earlier, in order for the Hamiltonian to have part of its
spectrum consisting of negative values it is necessary that the negative part
V Θ(−V ), as defined in (3.3.18), of the potential V is non-vanishing, otherwise
the Hamiltonian is a positive operator.
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Theorem 4.1.1
A Hamiltonian H in (4.1.1) with a potential V (x) satisfying (4.1.2), (4.1.3) is
bounded from below. It necessarily has a continuous spectrum on the positive
real axis [0,∞) with no continuous spectrum on the negative real axis. It has
also no eigenvalues of infinite degeneracy. In addition, if the lower bound −�H

is strictly negative, it has also negative eigenvalues (a discrete spectrum) of at
most finite degeneracy. [By finite it is meant to be non-infinite thus including
the possibility of non-degeneracy.]

The importance of this result in quantum physics is obvious and cannot
be overemphasized.

To establish1 this result we write

1
H − ξ0

=
1

H0 − ξ0
+

1
H − ξ0

(−V )
1

H0 − ξ0
(4.1.4)

where ξ0 is any fixed real negative number such that

ξ0 < min [0,−�H ] . (4.1.5)

[Actually Proposition 4.1.2 below, alone, implies that −�H � 0, and hence
we may take ξ0 < −�H .] As before H0 = p2/2µ.

We first need the following two propositions.

Proposition 4.1.1
For any infinite sequence {|fn〉} of orthonormal vectors,

∥∥∥∥ 1
[H + |ξ0|]

V
1

[H0 + |ξ0|]
fn

∥∥∥∥ → 0 for n → ∞ (4.1.6)

where ξ0 as given in (4.1.5).

To prove this we define

VL (x) =




V (x), |x| � L

0, |x| > L.
(4.1.7)

We note that we may explicitly write
〈
x
∣∣∣∣VL

1
[H0 + |ξ0|]

fn

〉
= VL (x) 〈Φx|fn〉 (4.1.8)

where we conveniently set

1 The proofs of this theorem and of the following two propositions may be omitted
at a first reading.
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Φx (y) =
∫

dνp
(2π�)ν

e−ip·(x−y)/�[
p2

2µ + |ξ0|
] (4.1.9)

and hence
〈Φx|fn〉 =

∫
dνy Φ∗

x (y) fn (y) . (4.1.10)

Also

‖Φx‖2 =
∫

dνy |Φx (y)|2 =
∫

dνp
(2π�)ν

1[
p2

2µ + |ξ0|
]2

≡ I(ν) < ∞ (4.1.11)

for ν = 3, 2, 1, and the latter norm is independent of x. Accordingly

|〈Φx|fn〉|2 � ‖Φx‖2 ‖fn‖2 = I(ν) < ∞ (4.1.12)

and is bounded independently of all x and n.
Also we note from Bessel’s inequality (1.7.4) that

n∑
j=1

|〈Φx|fj〉|2 � ‖Φx‖2 ≡ I(ν) < ∞. (4.1.13)

The finiteness of the right-hand side of this inequality for all x implies that

lim
k→∞

|〈Φx|fk〉|2 = 0 for all x (4.1.14)

for the converges of the series on the left-hand side of (4.1.13) for n → ∞.
The boundedness of |〈Φx|fn〉|2 independently of x and n, as given in

(4.1.12), and the obvious square-integrability of VL (see (4.1.2), (4.1.7)), allow
us to take the limit n → ∞ inside the integral:

lim
n→∞

∫
dνx |VL(x)|2 |〈Φx|fn〉|2 =

∫
dνx |VL(x)|2

(
lim

n→∞
|〈Φx|fn〉|2

)
= 0

(4.1.15)
where we have used (4.1.14).

Finally we consider the bound
∥∥∥∥ 1

[H + |ξ0|]
V

1
[H0 + |ξ0|]

fn

∥∥∥∥ � 1
[|ξ0| − �H ]

∥∥∥∥(V − VL)
1

[H0 + |ξ0|]
fn

∥∥∥∥

+
1

[|ξ0| − �H ]

∥∥∥∥VL
1

[H0 + |ξ0|]
fn

∥∥∥∥ (4.1.16)

and the bounds



4.1 Hamiltonians with Potentials Vanishing at Infinity 185
∥∥∥∥(V − VL)

1
[H0 + |ξ0|]

fn

∥∥∥∥ � 1
|ξ0|

max
|x|>L

|V (x)| , (4.1.17)

∥∥∥∥VL
1

[H0 + |ξ0|]
fn

∥∥∥∥ �
(∫

dνx
∣∣∣VL (x)2

∣∣∣ |〈Φx|fn〉|2
)1/2

(4.1.18)

to obtain from (4.1.15), upon taking the limit n → ∞, that

lim
n→∞

∥∥∥∥ 1
[H + |ξ0|]

V
1

[H0 + |ξ0|]
fn

∥∥∥∥ � 1
[|ξ0| (|ξ0| − �H)]

max
|x|>L

|V (x)| . (4.1.19)

The left-hand side of this inequality is independent of L. Hence finally
upon taking the limit L → ∞ and using (4.1.3) the result given in (4.1.6)
follows.

Proposition 4.1.2
The spectrum of the operator (H−ξ0)−1 includes a continuous spectrum con-
sisting of the interval [0, 1/|ξ0|] and does not contain eigenvalues of infinite
degeneracy. In particular, the spectrum of H includes a continuous spectrum
consisting of the positive axis [0,∞).

To establish the validity of the proposition, we use the notations

A =
1

H − ξ0
(−V )

1
H0 − ξ0

(4.1.20)

B =
1

H0 − ξ0
. (4.1.21)

Clearly, the operator B has only a continuous spectrum consisting of the
interval [0, 1/|ξ0|].

As a hypothesis, suppose that some real number λ0 belongs to the essential
spectrum, if not empty, of the operator (H−ξ0)−1. [That is, λ0 belongs to its
continuous spectrum or is an eigenvalue of infinite degeneracy.] According,
to Proposition 1.8.1, there must then exists an infinite sequence {|fn〉} of
orthonormal vectors such that

‖(A + B − λ0)fn‖ → 0 for n → ∞ (4.1.22)

where are have used (4.1.4), (4.1.20), (4.1.21).
Hence from the inequality

‖(B − λ0)fn‖ � ‖(A + B − λ0)fn‖ + ‖Afn‖ (4.1.23)

together with (4.1.6), (4.1.22), we conclude that

‖(B − λ0)fn‖ → 0 for n → ∞. (4.1.24)
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That is, we may infer from Proposition 1.8.1, and (4.1.22), (4.1.24), in
particular, that any real number λ0 which belongs to the continuous spectrum
of (A + B) necessarily belongs to the continuous spectrum of B as well,
recalling that B has no, so-called, eigenvalues of infinite degeneracy. Because
of the latter property of the spectrum of B we also conclude that (A + B)
cannot have such eigenvalues of infinite degeneracy.

Conversely, suppose that some real number λ0 belongs to the (continuous)
spectrum of B. That is, there exists an infinite sequence {|fn〉} of orthonormal
vectors such that

‖(B − λ0)fn‖ → 0 for n → ∞. (4.1.25)

Hence from the inequality

‖(A + B − λ0)fn‖ � ‖Afn‖ + ‖(B − λ0)fn‖ (4.1.26)

together with (4.1.6), (4.1.25) we may infer that

‖(A + B − λ0)fn‖ → 0 for n → ∞. (4.1.27)

That is, any real number λ0 in the (continuous) spectrum of B necessarily
belongs to the continuous spectrum of (A + B) and from this, together with
the conclusion following (4.1.24), we may infer that the continuous spectrum
of (A + B) consists of the interval [0, 1/|ξ0|]. Also that (A + B) has no eigen-
values of infinite degeneracy. This completes the proof of the proposition by
finally noting that the continuous spectrum of H then consists of the positive
axis [0,∞) alone.

To complete the proof of the theorem, it is instructive to reconsider the
expression for the resolvent of H. To this end let

R(ξ0) =
1

H − ξ0
(4.1.28)

with ξ0 defined to be fixed as before.
Suppose λ is some complex number, then the following expressions are

easily derived:

R(ξ0)
(−1/λ)[

R(ξ0) − 1
λ

] =
1

[H − (ξ0 + λ)]
(4.1.29)

and
1[

R(ξ0) − 1
λ

] = −λ − λ2 1
[H − (ξ0 + λ)]

. (4.1.30)

The equality in (4.1.29) leads to the bound:

∥∥∥∥ 1
[H − (ξ0 + λ)]

f

∥∥∥∥ � 1
|λ|

1
[|ξ0| − �H ]

∥∥∥∥∥
1[

R(ξ0) − 1
λ

]f
∥∥∥∥∥ . (4.1.31)
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On the other hand, (4.1.30) gives the bound:
∥∥∥∥∥

1[
R(ξ0) − 1

λ

]f
∥∥∥∥∥ � |λ| + |λ2|

∥∥∥∥ 1
[H − (ξ0 + λ)]

f

∥∥∥∥ . (4.1.32)

From (4.1.31), (4.1.32), we may then conclude, with λ now specialized to
be real and not equal to zero, that [H − (ξ0 + λ)]−1 does not exist if and
only if [R(ξ0) − 1/λ]−1 does not exist. Also that [H − (ξ0 + λ)]−1 exists as
an unbounded operator if and only if [R(ξ0) − 1/λ]−1 exists as an unbounded
operator.

In particular, the above states that if a real number 1/λ belongs to the
discrete spectrum of R(ξ0) then the real value (λ − |ξ0|) necessarily belongs
to the discrete spectrum of H and vice versa. Since the spectrum of H is
empty in the region (−∞,−�H), it is necessary that λ > 0. On the other
hand, the statement in Proposition 4.1.2 does not rule out the possibility of
having eigenvalues (of at most finite degeneracy) for R(ξ0) for 1/λ < 0 or
for 1/λ > 1/|ξ0|. These facts together with the necessary condition λ > 0,
just given, show that if −�H is strictly negative, i.e., the spectrum of H in
[−�H , 0) is not empty, then H has also a discrete spectrum (eigenvalues of at
most finite degeneracy) falling in the interval [−�H , 0). This completes the
proof of the theorem.

4.2 On Bound-States

4.2.1 A Potential Well

An elementary though important example of a potential falling in the cat-
egory of Theorem 4.1.1 is the one-dimensional potential well problem defined
by:

H =
−�

2

2m

d2

dx2
+ V (x) (4.2.1)

where

V (x) =




−U0, |x| � L

0, |x| > L
(4.2.2)

U0 > 0.
According to the theorem, this Hamiltonian has part of its spectrum a

continuous one on the positive real axis [0,∞). It is instructive to consider
the discrete spectrum in the light of Proposition 1.8.2.

To the above end, we set

2m

�2
(U0 − |E|) = K2,

2m

�2
|E| = k2 (4.2.3)
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in the Schrödinger equation
[
−�

2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (4.2.4)

with E < 0, corresponding to a bound-state, to obtain
[

d2

dx2
+ K2

]
ψ(x) = 0, |x| � L (4.2.5)

[
d2

dx2
− k2

]
ψ(x) = 0, |x| > L (4.2.6)

having, respectively, even and odd solutions

ψ(x) = A cos(Kx), |x| � L

ψ(x) = Be−k|x|, |x| > L


 (4.2.7)

and
ψ(x) = C sin(Kx), |x| � L

ψ(x) = De−k|x|, x > L

ψ(x) = −De−k|x|, x < −L.




(4.2.8)

The boundary conditions implied by the continuity of ψ′(x)/ψ(x) at |x| = L
lead immediately to the equations:

tan ξ =

√
a2 − ξ2

ξ
(4.2.9)

and
tan ξ =

−ξ√
a2 − ξ2

(4.2.10)

corresponding, respectively, to the even and odd solutions, where we have set

ξ = KL, a2 =
2mU0L

2

�2
. (4.2.11)

The energy levels may be thus written from (4.2.3), (4.2.11) as

E = −U0

[
1 − ξ2

a2

]
. (4.2.12)

We may quite generally write

a

π
= N + ε (4.2.13)
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π

0 ξ3 Nπ (N + 1)π
ξa

Fig. 4.1. The upper and lower curves are given, respectively, by f(ξ) =√
a2 − ξ2/ξ, g(ξ) = −ξ/

√
a2 − ξ2, while the eigenvalues are given by E(c) =

−U0(1−ξ2
c/a2), with ξc denoting critical values corresponding to the intersec-

tions of the former curves (denoted by crosses on the graphs) with the tan ξ
curves. One may generally write a/π = N + ε, where N is a non-negative in-
teger and 0 � ε < 1. For 0 < ε < 1, the number of eigenvalues corresponding
to the upper curve is (N + 1). For 0 < ε � 0.5, the number of eigenvalues
corresponding to the lower curve is N , while for 0.5 < ε < 1, it is (N +1). For
ε = 0, a = Nπ, N � 1, the largest E value is at the bottom of the continuous
spectrum, with 2N eigenvalues falling below it. The Figure is of a qualitative
nature only and is not based on actual numerical values.

where N is a non-negative integer and 0 � ε < 1. The bound-state energies
E are obtained as described in Figure 4.1.

For 0 < ε � 0.5, the total number of bound-states are n0 = (2N + 1),
while for 0.5 < ε < 1, the number of bound-states are n0 = (2N + 2) — See
Figure 4.1.

From (4.2.11), (4.2.12) we also have the following expression for the
bound-states

Ek = −U0 +
�

2

2mL2
ξ2
k, k = 1, . . . , n0 (4.2.14)

where ξ1, . . . , ξn0 are the ξ values corresponding to the crosses (intersections)
in Figure 4.1. The eigenvalues E1, . . . , En0 are arranged in a non-decreasing
order. In the notation of Proposition 1.8.2, Ek = λk(H), with En0 falling
below the bottom of the continuous spectrum of H.

For ε = 0, ξn0 = a = Nπ (see the Figure) and En0 = 0 is at the bottom
of the continuous spectrum of H with n0 − 1 eigenvalues falling below En0

in conformity with Proposition 1.8.2.
The limit a → 0 will be considered below.
Quite generally, we note that for N � 1, for example,
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a − π

2
� ξn0 . (4.2.15)

The above example will be useful in studying the spectrum of Hamiltoni-
ans with potentials increasing with no bound at infinity in §4.4.

4.2.2 Limit of the Potential Well

In reference to (4.2.13), (4.2.11) if

a

π
= ε, 0 < ε � 0.5 (4.2.16)

the analysis given in the figure caption of Figure 4.2, shows that there is only
one bound-state corresponding to an even solution.

We consider the limit ε → +0, i.e., a → +0, with U0 → ∞, L → 0 such
that

2U0L = λ (4.2.17)

is a finite non-vanishing positive constant.
From (4.2.3), (4.2.11) and (4.2.9) we then have from

tan

(√
2m

�2
(U0 − |E|) L

)
=

√
|E|

U0 − |E| (4.2.18)

that is in the above limit of U0 large and L small
√

2m
�2 λ

2
√

U0

=

√
|E|
U0

(4.2.19)

or that

E = −mλ2

2�2
. (4.2.20)

The eigenstate corresponding to (4.2.20) is from (4.2.7)

ψ(x) =
√

k e−k|x| (4.2.21)

where k =
√

2m|E|/�.

4.2.3 The Dirac Delta Potential

It is instructive to compare the limiting solution (4.2.20), (4.2.21), for
U0 → ∞, L → 0 and λ a finite non-zero positive constant as defined in
(4.2.17), with the one obtained directly from the Dirac delta potential

V (x) = −λ δ(x), λ > 0. (4.2.22)
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First in reference to the inequality (3.1.8) with ν = 1, we set

g(x) =
λ

|x| (4.2.23)

hence

∂

∂x
x g(x) = λ

∂

∂x

x

|x|

= λ
∂

∂x
[Θ(x) − Θ(−x)]

= 2λ δ(x) (4.2.24)

where Θ(x) is the step function.
Hence from (3.1.8), with x2g2(x) = λ2, we have

− mλ2

2�2
�
〈

p2

2m
− λ δ(x)

〉
(4.2.25)

giving the lower bound −mλ2/2�
2 for the spectrum.

Now we solve for the bound-state problem corresponding to the equation
[
− �

2

2m

d2

dx2
− λ δ(x)

]
ψ(x) = E ψ(x) (4.2.26)

with E < 0. For |x| > 0, this gives the properly normalized solution

ψ(x) =
√

k e−k|x| (4.2.27)

where k =
√

2m|E|/�. We note that

lim
x→+0

ψ(x) = lim
x→−0

ψ(x) =
√

k. (4.2.28)

On the other hand

ψ′ (x) =
√

k e−k|x|
{
−k, x > 0
+k, x < 0 (4.2.29)

and hence
lim

x→+0
ψ′(x) − lim

x→−0
ψ′(x) = −2k

√
k. (4.2.30)

Upon integration of (4.2.26) over x from −ε to ε we obtain

− �
2

2m
(ψ′(ε) − ψ′(−ε)) − λψ(0) = E

∫ ε

−ε

dx ψ(x) (4.2.31)

which because of the continuity of ψ(x) in (4.2.28) and the discontinuity of
ψ′(x) as given in (4.2.30) for ε → 0 gives
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− �
2

2m

(
−2k

√
k
)
− λ

√
k = 0, (4.2.32)

k = λm/�
2, or

E = −mλ2

2�2
(4.2.33)

consistent with (4.2.20) and coincides with the lower bound obtained in
(4.2.25), with E in (4.2.33) as the only bound-state energy with correspond-
ing eigenstate given in (4.2.27).

In the following theorems of this section, we assume, for every Hamil-
tonian into consideration, that, on the negative real axis, it may have at
most eigenvalues. In Theorem 4.1.1, for example, we have seen that a Hamil-
tonian with a potential satisfying the sufficiency conditions (4.1.2), (4.1.3)
will have such a property.

According to the introduction to this chapter we may then conclude that,
in each case, if we can find any vector |ψ〉 such that

〈ψ|H |ψ〉 < 0 (4.2.34)

then the corresponding Hamiltonian

H =
p2

2µ
+ V (x) (4.2.35)

has at least one bound-state.

4.2.4 Sufficiency Conditions for the Existence of a Bound-State
for ν = 1

Theorem 4.2.1
If

−∞ <

∫ ∞

−∞
dx V (x) < 0,

∫ ∞

−∞
dx |x| |V (x)| < ∞ (4.2.36)

then the Hamiltonian in (4.2.35) admits at least one bound-state.

To establish the validity of theorem, we use the properly normalized trial
function

ψ(x) = C exp(−α |x|/2), α > 0 (4.2.37)

where

C =
√

α

2
. (4.2.38)

It is easily verified that
〈

ψ

∣∣∣∣ p
2

2µ

∣∣∣∣ψ
〉

=
�

2α2

8µ
(4.2.39)
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and hence

〈ψ|H |ψ〉 =
�

2α2

8µ
+

α

2

∫ ∞

−∞
dx e−α|x|V (x) (4.2.40)

which may be rewritten as

〈ψ|H |ψ〉 =
�

2α2

8µ
+

α

2

∫ ∞

−∞
dx V (x)+

α

2

∫ ∞

−∞
dx

(
e−α|x| − 1

)
V (x). (4.2.41)

We use the elementary bound
∣∣∣e−α|x| − 1

∣∣∣ � α|x| (4.2.42)

for all |x|, to obtain from (4.2.41)

〈ψ|H |ψ〉 � α

2

[
α

(
�

2

4µ
+
∫ ∞

−∞
dx |x| |V (x)

)
+
∫ ∞

−∞
dx V (x)

]
(4.2.43)

and the latter is strictly negative for

(0 <) α <

[
−
∫ ∞

−∞
dx V (x)

]/[
�

2

4µ
+
∫ ∞

−∞
dx |x| |V (x)|

]
(4.2.44)

remembering the conditions stated in the theorem, proving the existence of
a vector |ψ〉 satisfying (4.2.34).

The elementary bound (4.2.42) follows by noting that for y � 0

1 − e−y =
∫ y

0

dy′ e−y′
(4.2.45)

and ∣∣1 − e−y
∣∣ =

∫ y

0

dy′ e−y′ �
∫ y

0

dy′ = y. (4.2.46)

Potentials satisfying the conditions of Theorem 4.1.1 and (4.2.36) are
numerous. Such an example is given by the potential

V (x) = U0Θ (L − |x|) + λ1e−α|x| (4.2.47)

where α > 0, L > 0 and

2LU0 +
2λ1

α
< 0 (4.2.48)

to ensure that
∫∞
−∞ dx V (x) < 0.
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4.2.5 Sufficiency Conditions for the Existence of a Bound-State
for ν = 2

Theorem 4.2.2
If

−∞ <

∫
d2x V (x) < −�

2π

4µ
(4.2.49)

and
0 <

∫
d2x |x| |V (x)| < ∞ (4.2.50)

then the Hamiltonian (4.2.35) admits at least one bound-state.

To establish this result, we choose the trial function

ψ(x) =
α√
2π

e−α|x|/2, α > 0 (4.2.51)

to obtain 〈
ψ

∣∣∣∣p
2

2µ

∣∣∣∣ψ
〉

=
�

2α2

8µ
(4.2.52)

〈ψ|H |ψ〉 =
�

2α2

8µ
+

α2

2π

∫
d2x e−α|x| V (x)

=
�

2α2

8µ
+

α2

2π

∫
d2x V (x) +

α2

2π

∫
d2x

(
e−α|x| − 1

)
V (x).

(4.2.53)

Hence

〈ψ|H |ψ〉 � α2

2π

[
�

2π

4µ
+
∫

d2x V (x) + α

∫
d2x |x| |V (x)|

]
(4.2.54)

and the right-hand side is strictly negative if one chooses

(0 <) α < −

[
�
2π
4µ +

∫
d2x V (x)

]
∫
d2x |x| |V (x)| (4.2.55)

thus establishing the validity of the theorem, remembering the conditions
(4.2.49), (4.2.50) stated (and hence, in particular, the strict positivity of the
right-hand side of the inequality in (4.2.55)).

In the light of this theorem, we may quite generally define a (space) scale
parameter

R =
3
2

∫
d2x |x| |V (x)|∣∣∫d2x V (x)

∣∣ (4.2.56)

and an energy scale parameter



4.2 On Bound-States 195

U0 =
3

2πR3

∫
d2x |x| |V (x)|. (4.2.57)

The sufficiency condition (4.2.49), in particular, for the existence of a bound-
state may be then rewritten as

4µ

�2
R2U0 > 1 (4.2.58)

with
∫
d2x V (x) < 0.

The parameters R and U0 conveniently coincide with the parameters of a
two dimensional symmetrical well

V (x) =




−U0, |x| � R

0, |x| > R
(4.2.59)

where U0 > 0.

4.2.6 Sufficiency Conditions for the Existence of a Bound-State
for ν = 3

Theorem 4.2.3
If

−∞ <

∫
d3x V (x) < 0 (4.2.60)

and

0 <
4π�

2

µ

∫
d3x |x| |V (x)| <

(∫
d3x V (x)

)2

(4.2.61)

then the Hamiltonian H in (4.2.35) admits at least one bound-state.

To establish this result we choose the normalized trial function

ψ(x) =

√
α3

8π
e−α|x|/2, α > 0 (4.2.62)

giving 〈
ψ

∣∣∣∣p
2

2µ

∣∣∣∣ψ
〉

=
�

2α2

8µ

and

〈ψ|H |ψ〉 =
�

2α2

8µ
+

α3

8π

∫
d3x V (x) +

α3

8π

∫
d3x

(
e−α|x| − 1

)
V (x) (4.2.63)

and hence

〈ψ|H |ψ〉 � �
2α2

8µ

[
α2 A − α B + 1

]
(4.2.64)
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where
A =

µ

�2π

∫
d3x |x| |V (x)| (4.2.65)

B =
µ

�2π

∣∣∣∣
∫

d3x V (x)
∣∣∣∣ . (4.2.66)

The expression in the square brackets on the right-hand side of (4.2.64)
may be rewritten as

A (α − α+) (α − α−) (4.2.67)

where

α± =
B

2A

[
1 ±

(
1 − 4A

B2

)1/2
]

(4.2.68)

and the condition (4.2.61) ensures that 4A/B2 < 1.
Accordingly, we may choose α = B/2A, thus making (4.2.67), or the

right-hand side of (4.2.64), strictly negative. This completes the proof of the
theorem.

As in the two-dimensional case, we may, in the light of the above theorem,
define a space scale parameter by

R =
4
3

∫
d3x |x| |V (x)|∣∣∫d3x V (x)

∣∣ (4.2.69)

and an energy scale parameter

U0 =
1

πR4

∫
d3x |x| |V (x)|. (4.2.70)

The sufficiency condition in (4.2.61), in particular, for the existence of a
bound-state then reads

1 <
4
9

µ U0R
2

�2
(4.2.71)

with (4.2.60) holding true.
The parameters R and U0 above conveniently coincide, with those of a

spherical potential well:

V (x) =




−U0, |x| � R

0, |x| > R
(4.2.72)

with U0 > 0.
As another illustration, consider the Yukawa potential

V (x) = −λ
e−β|x|

|x| , β > 0, λ > 0. (4.2.73)

This gives
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∫

d3x |x| |V (x)| =
8πλ

β3
(4.2.74)

and ∫
d3x V (x) =

−4πλ

β2
. (4.2.75)

The sufficiency condition (4.2.61) for the existence of a bound-state then
reads

1 <
µλ

2β�2
(4.2.76)

or equivalently reads

0 < β <
µλ

2�2
. (4.2.77)

4.2.7 No-Binding Theorems

As a by-product of establishing the boundedness of Hamiltonians for a
special class of potentials studied in class [D] of §3.3, we here first recall the
following No-Binding Theorem established there.

Theorem 4.2.4
Let −υ(x) be the negative part of the potential V (x) as defined in (3.3.18),
i.e.,

υ(x) = −V (x)Θ(−V ) (4.2.78)
and define the Fourier-transform

υ̃(p) =
∫

d3x υ(x) e−ip·x/�. (4.2.79)

Then if

b ≡ µ

4�3π3/2

(∫
d3p
|p|

∣∣υ̃(p)
∣∣2)1/2

(4.2.80)

as a sufficiency condition, is such that

b < 1 (4.2.81)

then the Hamiltonian (4.2.35) admits no bound-states as it is strictly bounded
below by zero (see (3.3.46), (3.3.47)).

By using the integral expression (3.3.25) for 1/|p|, the constant b may be
also rewritten as

b =
µ

2π�2

(∫
d3x d3x′ υ(x)

1
|x − x′|2 υ(x′)

)1/2

. (4.2.82)

For the Yukawa potential V (x) = −λe−β|x|/|x| the condition (4.2.81) implies
the sufficiency condition

√
2µλ/�

2 < β for the absence of bound-states (see
bound-states (see (3.3.48)–(3.3.53)).

As a second theorem of no-binding for ν = 3, 2, 1, we make direct use of
the inequality (3.1.8) to obtain:
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Theorem 4.2.5
Given any real function g(x) such that the potential defined by

V (x) =
µ

2�2
x2g2(x) − 1

2
∇ · (x g(x)) (4.2.83)

satisfies (4.1.2), (4.1.3), then directly from Theorem 4.1.1, (3.1.8), we have

0 �
〈

p2

2µ
+ V (x)

〉
(4.2.84)

and the Hamiltonian in question has only a continuous spectrum (see Theo-
rem 4.1.1) consisting of the positive real axis as −�H is zero.

The number of potentials that may be constructed from (4.2.83) by ap-
propriately choosing real functions g(x) are endless (see, e.g., §3.3 class [B].
See also §6.1, §7.1).

Finally, we provide a theorem of no-binding for the radial part of a Hamil-
tonian, for a given spherically symmetric potential V (r), r = |x|, specified by
an arbitrary orbital quantum number (§5.1) � = 0, 1, . . ..

The radial part of the Hamiltonian, of a spherically symmetric potential,
of a given � is given by (see, e.g., §7.2)

H� = − �
2

2µ

1
r2

(
∂

∂r
r2 ∂

∂r

)
+

�
2

2µ r2
� (� + 1) + V (r). (4.2.85)

As in (4.2.78) define the negative part of the potential V (r)

V (r) Θ(−V (r)) = −υ(r). (4.2.86)

We then have the following theorem.

Theorem 4.2.6
For

2µ

�2

∫ ∞

0

rdr υ(r) < 1 (4.2.87)

the radial Hamiltonian (4.2.85) admits no bound-states for all � = 0, 1, . . ..

The proof of this theorem is given at the end of §4.5.
For the Yukawa potential −υ(r) = −λe−βr/r, r = |x|, λ > 0, (4.2.87)

gives the sufficiency condition

2µλ

�2
< β (4.2.88)

for no binding for any � = 0, 1, . . ..
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A further interesting application of Theorem 4.2.6, is the following one
which includes the spherical well potential −υ(r) = −U0Θ(R − r), U0 > 0,
as a special case. For any given (space) scale parameter R > 0, define the
energy scale parameter

U0 =
2

R2

∫ ∞

0

r dr υ(r) (4.2.89)

then according to (4.2.87) the radial Hamiltonian (4.2.85) admits no bound-
states (for all � = 0, 1, . . .) for

µ
R2U0

�2
< 1 (4.2.90)

as a sufficiency condition.

4.3 Hamiltonians with Potentials Approaching Finite
Constants at Infinity

In this section we are interested in a special class of potentials such that
for any 0 < R < ∞, ν = 1, 2, 3,

∫
|x|<R

dνx |V (x)|2 < ∞ (4.3.1)

and there exists a real finite constant C such that

|V (x) − C| −−−−−−→
|x| → ∞

0 (4.3.2)

in reference to a Hamiltonian as given in (4.1.1).
A specific example of a potential belonging to this class is the potential

V (x) = γ tanh2 (β|x|) + αe−ρ|x| (4.3.3)

with γ, β, α, ρ real constants and ρ > 0. In this case C = γ.
We note that quite generally for any V (x)

|V (x) − C|2 � 2
(
|V (x)|2 + C2

)
(4.3.4)

and hence V (x) − C is, from (4.3.1), locally square-integrable, i.e., for any
0 < R < ∞, ∫

|x|<R

dνx |V (x) − C|2 < ∞. (4.3.5)

We may rewrite the Hamiltonian in question as

H = H ′ + C (4.3.6)
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where

H ′ =
p2

2µ
+ (V (x) − C) . (4.3.7)

According to the analysis given in subsection [E] of §3.3, H ′ is bounded
form below, with a lower bound of the spectrum given by, say, −�H′ . Hence
from (4.3.6), we have for |ψ〉 normalized,

〈ψ|H|ψ〉 = C + 〈ψ|H ′|ψ〉 � (C − �H′)

i.e., a lower bound of the spectrum of H is given by

− �H = C − �H′ . (4.3.8)

Finally, with H0 replaced by

H ′
0 =

p2

2µ
+ C (4.3.9)

and V (x) replaced by V (x) − C, we may refer to the analysis already given
in §4.1. Instead of (4.1.5), we choose ξ0 to be any fixed real number such that

ξ0 < min[C,−�H ]. (4.3.10)

From Proposition 4.1.2, in particular, we may infer that H has a continuous
spectrum consisting of the interval (C, ∞) and has no eigenvalues of infinite
degeneracy, and in particular −�H � C. Also if −�H < C, then H has
also a discrete spectrum (of at most finite degeneracy) falling in the interval
[−�H , C).

We may summarize the above by stating the following.

Theorem 4.3.1
A Hamiltonian with the potential V (x) satisfying (4.3.1), (4.3.2), with |C| <
∞, is bounded from below. It has a continuous spectrum consisting of the in-
terval [C, ∞) and has no eigenvalues of infinite degeneracy. Also if the lower
bound −�H , of H is such that −�H < C, then H has also eigenvalues (of at
most finite degeneracy) falling in the interval [−�H , C).

4.4 Hamiltonians with Potentials Increasing with No
Bound at Infinity

In this section we are concerned with the spectrum of Hamiltonians with
potentials V (x) belonging to the following important class of potentials:

V (x) � 0, V (x) −−−−→
|x|→∞

+∞ (4.4.1)
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and V (x) is locally square-integrable, ν = 1, 2, 3.
The classic example in this category includes the harmonic oscillator po-

tential
V (x) =

1
2
µω2 |x|2 . (4.4.2)

The underlying Hamiltonian

H =
p2

2µ
+ V (x) (4.4.3)

is obviously positive, and we have the following theorem:

Theorem 4.4.1
H has only a discrete spectrum.

To establish this theorem, we first note that for any positive constant C,
we may find a real positive constant R large enough such that for |x| > R

V (x) � C (4.4.4)

and for |x| � R, we may obviously simply write

V (x) � 0. (4.4.5)

Given any such a positive constant C, we define the function u(x) of one-
variable by

u(x) =




−C/ν, |x| � R

0, |x| > R
(4.4.6)

where ν = 3, 2, 1.
Let x = (x1, . . . , xν). Then if

|x| =

(
ν∑

i=1

x2
i

)1/2

� R (4.4.7)

one necessarily has |xi| � R for all i. From (4.4.6) we may then infer that

C +

(
ν∑

i=1

u(xi)

)
= 0, for |x| � R. (4.4.8)

On the other hand for |x| > R, it is easily seen that

C +
ν∑

i=1

u(xi) � C. (4.4.9)
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That is, in all cases, we have from (4.4.4), (4.4.5), (4.4.8), (4.4.9):

V (x) � C +
ν∑

i=1

u(xi) (4.4.10)

for all x, i.e. V (x) cannot be smaller than C +
ν∑

i=1

u(xi).

We define the Hamiltonian

H ′ =
p2

2µ
+

ν∑
i=1

u(xi) (4.4.11)

then
〈ψ |H|ψ〉 � C + 〈ψ |H ′|ψ〉 (4.4.12)

for normalized |ψ〉. Also from (4.4.3), (4.4.10), (4.4.11), (1.8.87), (1.8.110)
and (1.8.111) we have2

λn(H) � λn(H ′) + C. (4.4.13)

The eigenvalues of the operator H ′ may be determined from the one-
dimensional problem considered in §4.2, with the corresponding Hamiltonian
defined in (4.2.1), (4.2.2). In the notation of the latter we set U0 = C/ν,
L ≡ R. Let (k) stand for ν-tuplet of numbers (k1, . . . , kν) corresponding to
the eigenvalues in (4.2.14):

Eki
= −C

ν
+

�
2

2mR2
ξ2
ki

. (4.4.14)

In reference to the operator H ′ one has

E(k) = −C +
�

2

2mR2

ν∑
i=1

ξ2
ki

. (4.4.15)

Let n denote the total number of E(k) values in (4.4.15) which are
arranged in a non-decreasing order E1 � . . . � En, with Ek ≡ λk(H ′).
In particular

λn(H ′) = −C +
�

2

2mR2
νξ2

n0
(4.4.16)

where n0 corresponds to n for the one-dimensional case as defined in (4.2.14).
Equation (4.2.15) reads (see also (4.2.11), and note that U0 = C/ν here)

(√
2mC

ν

R

�
− π

2

)
� ξn0 (4.4.17)

2 The proof for the spectrum of H follows the treatment by Reed and Simon
(1978).
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where obviously C and, correspondingly, R, may be chosen large enough
so that the left-hand side of this inequality is strictly positive, hence from
(4.4.16)

λn(H ′) + C � �
2ν

2m

(√
2mC

ν

1
�
− π

2R

)2

. (4.4.18)

Also (4.2.13) reads
1
π

√
2mC

ν

R

�
= N + ε. (4.4.19)

From Figure 4.1, we know that we always have n � N . Accordingly, the
limit C → ∞, R → ∞ corresponds from (4.4.19) to N → ∞ and hence also
to n → ∞. From (4.4.18) and (4.4.13) we then have

lim
n→∞

λn(H) = +∞. (4.4.20)

Using Proposition 1.8.2 we may then conclude that the positive operator
H has only a discrete spectrum.

4.5 Counting the Number of Eigenvalues

4.5.1 General Treatment of the Problem

We introduce the spectral decomposition of a Hamiltonian (§1.8, (1.8.15))

H =
∫ ∞

−∞
λ dPH(λ). (4.5.1)

Suppose that for some given real and a specified number ξ, H may have
at most eigenvalues � ξ.3 Then we may write

PH(ξ) =
∑
λ�ξ
ν(λ)

∫ ξ

−∞
dλ′ δ(λ′ − H) |λ, ν(λ)〉 〈λ, ν(λ)|

=
∑
λ�ξ
ν(λ)

∫ ξ

−∞
dλ′ δ(λ′ − λ) |λ, ν(λ)〉 〈λ, ν(λ)|

=
∑

λ,ν(λ)

|λ, ν(λ)〉 〈λ, ν(λ)| Θ(ξ − λ) (4.5.2)

3 In most of this section but not all, we consider negative ξ values, and, and when
convenient, we replace ξ by −ξ, with ξ > 0 in the latter.
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where ν(λ) specifies the degree of degeneracy of the eigenvalue λ, |λ, ν(λ)〉
are corresponding eigenvectors, and Θ(ξ − λ) is defined here as Θ(x) = 1 for
x � 1, Θ(x) = 0 for x < 0.

From (4.5.2), we may introduce, a density of states

〈x|PH(ξ) |x〉 =
∑

λ,ν(λ)

∣∣ψλ,ν(λ)(x)
∣∣2 Θ(ξ − λ) (4.5.3)

where
ψλ,ν(λ)(x) = 〈x|λ, ν(λ) 〉

are the eigenstates in the x-description.
Upon integration of (4.5.3) over x, we obtain∫

dνx 〈x|PH(ξ) |x〉 =
∑

λ,ν(λ)

Θ(ξ − λ)

≡ N(H, ξ) (4.5.4)

where

N(H, ξ) = Number of states with eigenvalues � ξ

= Number of eigenvalues (counting the degree of degeneracy)

� ξ. (4.5.5)

One may also introduce a non-local density of states defined by

〈x|PH(ξ) |x′〉 =
∑

λ,ν(λ)

ψλ,ν(λ)(x) ψ∗
λ,ν(λ)(x

′) Θ(ξ − λ) (4.5.6)

which will be useful later on.
Equation (4.5.4) also allows one to obtain an expression for the degree

of degeneracy of an eigenvalue, say, λ0. Let λ1, λ2 be eigenvalues of H such
that λ1 < λ0 < λ2. Define

ε = min(λ2 − λ0, λ0 − λ1) (4.5.7)

and
λ̄0 = λ0 + ε, λ0 = λ0 − ε (4.5.8)

then from (4.5.4)∫
dνx

[
〈x|PH(λ̄0) |x〉 − 〈x|PH(λ0) |x〉

]
=

∑
λ,ν(λ)

[
Θ(λ̄0 − λ) − Θ(λ0 − λ)

]

=
∑
ν(λ)

1 (4.5.9)
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for the degree of degeneracy of the eigenvalue of λ0. Later in Chapter 9, we
will see how the left-hand sides of (4.5.3), (4.5.4), (4.5.9), may be evaluated
in terms of so-called Green functions.

Another useful expression that may be obtained from (4.5.4) is the fol-
lowing. Upon integration (4.5.4) over ξ as follows from −∞ to 0, we have

∫ 0

−∞
dξ

∫
dνx 〈x|PH(ξ) |x〉 =

∑
λ,ν(λ)

∫ 0

−∞
dξ Θ(ξ − λ)

=
∫ 0

−∞
dξ N(H, ξ) (4.5.10)

providing a useful expression for the negative of the sum of the negative
eigenvalues (if any) of H.

As another application, we consider for ξ > 0

〈x| (H − V )PH(ξ) |x〉 =
∑

λ,ν(λ)

〈x| (H − V ) |λ, ν(λ)〉 〈λ, ν(λ) |x〉 Θ(ξ − λ)

(4.5.11)
which from the equality

〈x|V =
∫

dνx′ 〈x|V |x′〉 〈x′|

=
∫

dνx′ δν(x − x′)V (x′) 〈x′|

= V (x) 〈x| (4.5.12)

for a local potential:

〈x|V |x′〉 = V (x′) δν(x − x′) (4.5.13)

leads to

〈x| (H − V )PH(ξ) |x〉 =
∑

λ,ν(λ)

〈x|H − V (x) |λ, ν(λ)〉 〈λ, ν(λ) |x〉 Θ(ξ − λ)

=
∑

λ,ν(λ)

ψ∗
λ,ν(λ)(x) [λ − V (x)] ψλ,ν(λ)(x) Θ(ξ − λ).

(4.5.14)

From the first equality in (4.5.14), if H − V (x) = −�
2∇2/2µ defines the

kinetic energy, then an integration of (4.5.14) over x gives (ξ > 0)
∫

dνx 〈x| (H −V )PH(ξ) |x〉 =
∑

λ,ν(λ)

〈λ, ν(λ)| p
2

2µ
|λ, ν(λ)〉Θ(ξ−λ). (4.5.15)
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As we will see later, this expression is important for multi-electron systems
as used in Chapter 13. For example, if only one particle occupies a given state
and the states, up to the maximum possible energy � ξ, are filled then (4.5.15)
gives the sum of the average kinetic energy of all the particles with the most
energetic having the maximum possible energy allowed � ξ.

The purpose of the remainder of this section is to find an upper bound for
the number N(H, ξ), in (4.5.4), of the eigenvalues for ξ < 0, and the negative
of the sum of the eigenvalues in (4.5.10), by considering in the process the
ξ → 0− limit, for a given Hamiltonian H. Lower-bound expressions will be
also obtained for the ground-state energy.

4.5.2 Counting the Number of Eigenvalues

We rewrite the Hamiltonian H (g) = H0 +V , where H0 is the free Hamil-
tonian p2/2µ, in the form

H (g) = H0 + gV (4.5.16)

by introducing a variable coupling parameter g � 0, with g = 1 corresponding
to the Hamiltonian in question.

As in (3.3.18), (3.3.19), we introduce the negative part of the potential

V Θ(−V ) ≡ −υ ≡ − |V |− . (4.5.17)

Accordingly,
H(g) � H0 − gυ. (4.5.18)

Let N(H(g),−ξ) denote (see (4.5.4)) the number of eigenvalues of H(g) �
−ξ, with ξ > 0. The inequality (4.5.18), together with those in (1.8.110),
(1.8.111) imply that

λn (H (g)) � λn (H0 − g υ) . (4.5.19)

That is, the number of bound-states of H0 − g υ cannot be less than that of
H(g):

N (H0 − g υ,−ξ) � N (H0 + gV,−ξ) . (4.5.20)

Similarly for 0 < g′ < g,

H0 − g′υ � H0 − g υ (4.5.21)

and hence
N (H0 − g υ,−ξ) � N (H0 − g′υ,−ξ) . (4.5.22)

Finally for ξ1 > ξ2 > 0,

N (H0 − g υ,−ξ2) � N (H0 − g υ,−ξ1) (4.5.23)
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obviously holds true recalling the definition in (4.5.5).
Let λ(g0) denote an eigenvalue of H0 − g0υ for some g0. λ(g), being neg-

ative, is a decreasing function of g (see (4.5.19) and Proposition 1.8.2) as g
increases beyond the value g0 (see Figure 4.2), the curve traced by λ(g)
necessarily cuts every horizontal axis, such as g = g′0, g = g′′0 , . . ., with
g0 < g′0 < g′′0 < . . ., in the manner shown in Figure 4.2, otherwise the
Hamiltonian H0 − g0υ will have more eigenvalues than, say, H0 − g′0υ in
contradiction with (4.5.22).

Also every eigenvalue λ(g) of H0 − g υ, for which λ(g) < −ξ, for a given
ξ, falls on a curve which cuts the vertical axis λ = −ξ (see Figure 4.2) at
some g-value, say, equal to g′ corresponds to the eigenvalue λ = −ξ of the
Hamiltonian H0−g′υ. Finally, note that the order of eigenvalues (see (1.8.90))
is preserved as g increases.

All told we have the important relation:

N (H0 − g υ,−ξ) = [Number of g′’s in 0 < g′ � g for which H0 − g′υ

has the eigenvalue λ = −ξ]. (4.5.24)

According to (4.5.24), we are led to consider the eigenvalue problem
(

p2

2µ
− g′υ

)
|ψ〉 = −ξ |ψ〉 , ‖ψ‖ = 1 (4.5.25)

which may be rewritten in the form

A |φ〉 =
1
g′

|φ〉 (4.5.26)

where A is the positive operator

A =
√

υ
1(

p2

2µ + ξ
) √

υ (4.5.27)

and
|φ〉 =

√
υ |ψ〉. (4.5.28)

In Figure 4.2, the eigenvalues, say, {λ(g′′0 )} of H0−g′′0υ are defined by the
intersections of curves {λ(g)}, as g varies, with the horizontal axis g = g′′0 .
These same curves {λ(g)} cut the vertical axis λ = −ξ at corresponding
points {g′}, where the 1/g′ are the eigenvalues of the positive operator A, in
(4.5.27), with the eigenvalue equation with the eigenvalue equation given in
(4.5.26).

We introduce the spectral representation (1.8.15) of A:

A =
∫ ∞

0

γ dPA(γ). (4.5.29)
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g = g′

λ(g)

g

λ

g = g′′0

g = g′0

g = g0

λ = −ξ 0

Fig. 4.2. λ(g), an eigenvalue of H0 − gυ, being negative, is a decreasing
function of g and necessarily cuts all the horizontal axes g = g′

0, g = g′′
0 , . . . ,

as g increases beyond a given value g0. Also every eigenvalue λ(g) < −ξ, of
H0−gυ, falling on a curve which cuts the vertical axis λ = −ξ, say, at g = g′,
corresponds to the eigenvalue λ = −ξ of the Hamiltonian H0 − g′υ.

We will have occasion to use powers of the positive operator A

Aρ =
∫ ∞

0

γρ δ(γ − A) dγ

=
∫ ∞

0

γρ dPA(γ) (4.5.30)

(see (1.8.14), (1.8.15)), where ρ is not necessarily an integer. Explicit represen-
tations of such powers of positive operators are formally given. For example

A−1/2 =
2√
π

∫ ∞

0

dx exp
(
−x2A

)
(4.5.31)

and for ρ � −1/2,

Aρ =
1

Cρ

∫ ∞

0

dx

x2ρ+1
exp

(
−x2A

)
(4.5.32)

where
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Cρ =
∫ ∞

0

dx

x2ρ+1
exp

(
−x2

)
. (4.5.33)

Positive powers of A may be obtained from (4.5.32), e.g., by multiplying the
latter by appropriate powers of A:

A1/2 =
2√
π

∫ ∞

0

dx exp
(
−x2A

)
A (4.5.34)

A3/2 =
2√
π

∫ ∞

0

dx exp
(
−x2A

)
A2 (4.5.35)

and more generally

Aρ =
1

Cσ

∫ ∞

0

dx

x2σ+1
exp

(
−x2A

)
Am, σ � −1/2 (4.5.36)

with ρ ≡ σ + m, m = 0, 1, . . ., in a convenient notation.
Other representations may be also given. For example,

Aρ = C ′
σ

∫ ∞

0

dx xσ−1 Am+1

(A + x)
, 0 < σ < 1 (4.5.37)

with ρ ≡ σ + m, m = 0, 1, . . ., and

C ′
σ =

sin(πσ)
π

. (4.5.38)

Later on, in (4.5.93), we will encounter the case ρ = 3/2.
From (4.5.30), for ρ � 0, in particular,

〈x|Aρ |x〉 �
∫ γ0

1/g

γρ d 〈x|PA(γ) |x〉

� 1
gρ

[
〈x|PA(γ0) |x〉 −

〈
x
∣∣∣∣PA

(
1
g

)∣∣∣∣x
〉]

(4.5.39)

recalling that PA(γ) is self-adjoint, thus (4.5.39) involves real numbers only,
where γ0 > 1/g, and is otherwise arbitrary. Upon integration over x we obtain
(see (4.5.4), (4.5.24))
∫

dνx 〈x |Aρ|x〉 � 1
gρ

×[number of all g′ ’s, counting degeneracy, as eigenvalues

of A in (4.5.26), such that 1/γ0 < g′ � g]. (4.5.40)

Since the point γ0 > 1/g is arbitrary, we may take the limit γ0 → ∞ in
(4.5.39) and obtain from (4.5.24), (4.5.40)

N(H0 − gυ,−ξ) � gρ

∫
dνx 〈x |Aρ|x〉 (4.5.41)



210 4 Spectra of Hamiltonians

and from (4.5.20)

N(H0 + V,−ξ) �
∫

dνx 〈x |Aρ|x〉 (4.5.42)

with g = 1.
In reference to the definition (4.5.17), the following inequality will be also

needed:
V Θ(−V ) + ξ/2 � (V + ξ/2) Θ(−V − ξ/2) (4.5.43)

where ξ > 0, whose validity is easily established by considering, in turn, the
three cases: V > 0, −ξ/2 < V < 0, V < −ξ/2.

From (4.5.43), we obtain

H0 + V Θ(−V ) � H0 +
(

V +
ξ

2

)
Θ
(
−V − ξ

2

)
− ξ

2
(4.5.44)

and hence

N(H0 + V Θ(−V ),−ξ) � N

(
H0 +

(
V +

ξ

2

)
Θ
(
−V − ξ

2

)
,−ξ

2

)
.

(4.5.45)
In (4.5.2), we are interested in Hamiltonians which are bounded from

below (§§3.2–3.4, §4.1). Accordingly, an important situation arises for which
the spectrum of a Hamiltonian is empty for energies � −ξ0 for some specific
value ξ0 of ξ, i.e., for which N(H0 + V,−ξ0) = 0. Clearly, such a value −ξ0

would then provide a lower bound to the spectrum of the Hamiltonian H0+V .
In what follows, we investigate the nature of N(H0 + V,−ξ) in space

dimensions ν = 3, 2, 1. The radial part of the Hamiltonian of a spherically
symmetric potential is also considered. Subsequently, we examine the expres-
sion in (4.5.10) for the negative of the sum of the negative eigenvalues of a
Hamiltonian. In all of these investigations, one encounters existence of in-
tegrals of the form

∫
dνx υβ(x) < ∞ of the potentials in (4.5.17), for some

positive powers β, which are implicitly assumed to be satisfied.
We will show below that the number of eigenvalues of H = H0 + V ,

counting degeneracy, with energies � −ξ, for ξ > 0, satisfies, in a compact
form, the inequality

N(H,−ξ) � aν(ξ)(ν
2−4ν+2)/2

∫
dνx (υ (x))(5ν−ν2−2)/2 (4.5.46)

for ν = 3, 2, 1, where

aν =
( µ

2�2

)ν/2

(π)(ν
2−5ν+4)/2

. (4.5.47)
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The three-dimensional case (ν = 3):

In three dimensions (ν = 3), we choose ρ = 2 on the right-hand side of
(4.5.42). Thus with the definition of A in (4.5.27), we obtain for the right-
hand side of (4.5.42):

∫
d3x d3x′ υ(x) υ(x′)

∣∣∣∣∣∣
〈

x

∣∣∣∣∣∣
1[

p2

2µ + ξ
]
∣∣∣∣∣∣x

′

〉∣∣∣∣∣∣
2

(4.5.48)

where (see the Appendix to this section), with ξ > 0,

〈
x

∣∣∣∣∣∣
1[

p2

2µ + ξ
]
∣∣∣∣∣∣x

′

〉
=

µ

2π�2

1
|x − x′| exp

(
−|x − x′|

�

√
2µξ

)
(4.5.49)

giving from (4.5.42) the so-called Schwinger inequality:4

N(H0 + V,−ξ) �
( µ

2π�2

)2
∫

d3x d3x′ υ(x)
e−2|x−x′|

√
2µξ/�

|x − x′|2 υ(x′). (4.5.50)

Since the integrand in (4.5.50) is positive, and the exponential factor is
bounded above by one, we may further bound the right-hand side of (4.5.50)
from above by

( µ

2π�2

)2
∫

d3x d3x′ υ(x)
1

|x − x′|2 υ(x′). (4.5.51)

This expression is nothing but the constant b2 in (4.2.82), (4.2.80) of Theo-
rem 4.2.4. In particular, for b < 1, the latter theorem states that the Hamil-
tonian admits no bound-states (see also (3.3.46), (3.3.47)). This is consistent
with (4.5.50), showing that N(H0 + V,−ξ) = 0 for any ξ > 0, however small,
in case b < 1.

Now we use (4.5.50) to derive a lower bound for the spectrum of the
Hamiltonian in question as well. To this end, we use Young’s inequality (see
Appendix II), with p = q = 2, to obtain

∫
d3x d3x′ υ(x)

e−2|x−x′|
√

2µξ/�

|x − x′|2 υ(x′)

�
(∫

d3x (υ(x))2
)(∫

d3x
e−2|x|

√
2µξ/�

|x|2

)
(4.5.52)

which from (4.5.50) gives
4 Schwinger (1961b).



212 4 Spectra of Hamiltonians

N(H0 + V,−ξ) �
( µ

2�2

)3/2 1
π
√

ξ

∫
d3x υ2(x) (4.5.53)

which coincides with (4.5.46)/(4.5.47) for ν = 3.
Clearly, if for any δ > 0, we choose

− ξ = − (1 + δ)
π2

( µ

2�2

)3
(∫

d3x (υ(x))2
)2

(4.5.54)

then the right-hand side of (4.5.53) is necessarily less than one, implying that
N(H0 + V,−ξ) = 0 for such a −ξ, and the spectrum of the Hamiltonian is
empty for energies � −ξ. That is, (4.5.54) gives the following lower bound
for the ground-state energy of the Hamiltonian,

− (1 + δ)
π2

( µ

2�2

)3
(∫

d3x (υ(x))2
)2

(4.5.55)

for any δ > 0.

The two-dimensional case (ν = 2):

For ν = 2, ρ = 2, the right-hand side of (4.5.42) is given by

∫
d2x

〈
x
∣∣A2

∣∣x〉 =
∫

d2x d2x′ υ(x)

∣∣∣∣∣∣
〈

x

∣∣∣∣∣∣
1[

p2

2µ + ξ
]
∣∣∣∣∣∣x

′

〉∣∣∣∣∣∣
2

υ(x′) (4.5.56)

where (see the appendix to this section)

〈
x

∣∣∣∣∣∣
1[

p2

2µ + ξ
]
∣∣∣∣∣∣x

′

〉
=

µ

π�2
K0

(
|x − x′|

�

√
2µξ

)
(4.5.57)

and K0(x) is a modified Bessel function with asymptotics

K0(x) −−−→
x→0

− ln x (4.5.58)

K0(x) −−−−→
|x|→∞

√
π

2|x| e−|x|. (4.5.59)

From (4.5.42), we obtain

N(H0 + V,−ξ) �
( µ

π�2

)2
∫

d3x d3x′ υ(x)
(

K0

(
|x − x′|

�

√
2µξ

))2

υ(x′).

(4.5.60)
Using the integral,
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∫
d2x

(
K0

(
|x|
�

√
2µξ

))2

=
π�

2

2µξ
(4.5.61)

and Young’s inequality, as done in (4.5.52), we obtain from (4.5.60), (4.5.61),

N(H0 + V,−ξ) �
( µ

2�2

) 1
πξ

∫
d2x υ2(x) (4.5.62)

which coincides with (4.5.46)/(4.5.47) for ν = 2.
Accordingly, if for any δ > 0, we choose

− ξ = − (1 + δ)
π

( µ

2�2

)∫
d2x υ2(x) (4.5.63)

then the spectrum of the Hamiltonian is empty for energies � −ξ, as the
right-hand side of (4.5.62) will be less than one. This gives the following
lower bound for the Hamiltonian

− (1 + δ)
π

( µ

2�2

)∫
d2x υ2(x) (4.5.64)

for any δ > 0.

The one-dimensional case (ν = 1):

For the one dimensional case we choose ρ = 1 in (4.5.42), to obtain

∫ ∞

−∞
dx 〈x |A|x〉 =

∫ ∞

−∞
dx υ(x)

〈
x

∣∣∣∣∣∣
1[

p2

2µ + ξ
]
∣∣∣∣∣∣x
〉

(4.5.65)

where
〈

x

∣∣∣∣∣∣
1[

p2

2µ + ξ
]
∣∣∣∣∣∣x
〉

=
∫ ∞

−∞

dp

2π�

1[
p2

2µ + ξ
]

=
√

µ

2ξ

1
�

(4.5.66)

and hence
N(H0 + V,−ξ) �

√
µ

2ξ

1
�

∫ ∞

−∞
dx υ(x) (4.5.67)

which coincides with (4.5.46)/(4.5.47) for ν = 1.
Accordingly, by choosing

− ξ = −(1 + δ)
µ

2�2

(∫ ∞

−∞
dx υ(x)

)2

(4.5.68)



214 4 Spectra of Hamiltonians

for any δ > 0, we have the following lower bound for the ground-state energy

− (1 + δ)
µ

2�2

(∫ ∞

−∞
dx υ(x)

)2

. (4.5.69)

The radial part for a spherically symmetric potential:

The radial part of the Hamiltonian of a spherically symmetric potential
energy V (r), where r = |x|, ν = 3, is given by (see, e.g., §7.2)

H� = − �
2

2µ

1
r2

(
∂

∂r
r2 ∂

∂r

)
+

�
2

2µ

�(� + 1)
r2

+ V (r) (4.5.70)

where � = 0, 1, . . . define so-called orbital angular momentum quantum num-
bers (§5.1).

The Dirac delta in spherical coordinates is given by

〈x| x′〉 = δ3(x − x′) =
δ(r − r′)

r2

δ(θ − θ′)
sin θ

δ(φ − φ′) (4.5.71)

so that ∫ ∞

0

r2 dr

∫ π

0

sin θ dθ

∫ 2π

0

dφ δ3(x − x′) = 1. (4.5.72)

Accordingly, for the radial part only, we may write

〈r| r′〉 =
δ(r − r′)

r2
. (4.5.73)

Upon defining the “free part” of (4.5.70) by

H0� = − �
2

2µ

1
r2

(
∂

∂r
r2 ∂

∂r

)
+

�
2

2µ

�(� + 1)
r2

(4.5.74)

and choosing ρ = 1, ξ = 0 in (4.5.42) we obtain

N� ≡ N(H0� + V, 0) �
∫ ∞

0

r2 dr 〈r|A|r〉 (4.5.75)

where
A =

√
υ(r)

1
H0�

√
υ(r) (4.5.76)

υ(r) = −V (r) Θ(−V (r)). (4.5.77)

We explicitly have

〈r |A| r〉 = υ(r)
〈

r

∣∣∣∣ 1
H0�

∣∣∣∣ r
〉
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=
υ(r)

2

∫ ∞

0

dr′
[
δ (r′ − (r + 0)) + δ (r′ − (r − 0))

] 1
H0�

δ(r − r′)
r2

(4.5.78)

with a symmetric average taken over r in performing the trace operation, and
where we have used (4.5.73).

It is easily verified that
(

2µ

�2

)
H0�

1
(2� + 1)

[
1
r

(
r′

r

)�

Θ(r − r′) +
1
r′

( r

r′

)�

Θ(r′ − r)

]

=
δ(r − r′)

r2
. (4.5.79)

Since
∂

∂r
Θ(r − r′) = δ(r − r′) (4.5.80)

this gives from (4.5.78)

〈r |A| r〉 =
2µ

�2

υ(r)
r(2� + 1)

(4.5.81)

which leads finally to the so-called Bargmann inequality5

N� � 2µ

�2

1
(2� + 1)

∫ ∞

0

r dr υ(r) (4.5.82)

as an upper bound for the number of bound-states corresponding to an orbital
quantum number �.

An application of (4.5.82) was given at the end of §4.2, here it is spelled out
in more details and includes the spherical well potential −υ(r) = −U0Θ(R−r)
as a special case. For υ(r) any function of r such that6

0 <

∫ ∞

0

dr υ(r) < ∞, 0 <

∫ ∞

0

r dr υ(r) < ∞. (4.5.83)

These allow us to introduce a (space) scale parameter

R = 2

∫∞
0

r dr υ(r)∫∞
0

dr υ(r)
(4.5.84)

and an energy scale parameter

U0 =
2

R2

∫ ∞

0

r dr υ(r). (4.5.85)

5 Bargmann (1952).
6 Note that the finiteness (< ∞) of any one of the integrals in (4.5.83) does not

necessarily imply the finiteness (< ∞) of the other.
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Upon substitution of (4.5.85) in (4.5.82) we obtain

N� � µR2U0

�2(2� + 1)
. (4.5.86)

Hence for
µR2U0

�2
< 1 (4.5.87)

H� admits no bound-states for any given �.

4.5.3 The Sum of the Negative Eigenvalues

Now we use the expression on the right-hand side of (4.5.10) to derive
upper bounds for the negative of the sum of the negative eigenvalues (if any),
counting degeneracy, of a Hamiltonian H. These will find useful applications,
for example, to multi-particle systems in §4.6 and in Chapter 14.

The expression for the negative of the sum of the negative energies of H
is obtained by integrating N(H, ξ), in (4.5.4), (4.5.5), over ξ from −∞ to 0,
as shown in (4.5.10). With the substitution ξ → −ξ, it will be shown below
that this sum, in ν = 3, 2, 1 dimensions, satisfies, in a compact form, the
inequality,7 ∫ ∞

0

dξ N(H,−ξ) � Cν

∫
dνx (υ(x))(ν+2)/2 (4.5.88)

where −υ(x), as before, is the negative part of the potential V in H = H0+V
defined in (4.5.17), and

Cν =
(

2µ

�2

)ν/2 4
ν(ν + 2)

(
3
4

)(3−ν)(ν−1) ( 1
π

)(ν−1)(ν−2)/2

(4.5.89)

ν = 3, 2, 1.
The inequality in (4.5.88) is established below. For the clarity of the pre-

sentations, each of the respective dimensions are treated separately.

The three-dimensional case:

The expression in (4.5.53), is not suitable for the integration to be carried
out over ξ when applying (4.5.10). We may, however, use the upper bound
expression of the inequality in (4.5.45) as long as we replace −υ(x) by −υ(x)+
ξ/2 and ξ by ξ/2 in (4.5.53). Due to the step function restriction on the right-
hand side of the inequality (4.5.45) we now have the constraint 0 < ξ/2 <
υ(x). Accordingly,

∫ ∞

0

dξ N(H0 + V,−ξ) �
( µ

2�2

)3/2
√

2
π

∫
d3x

∫ 2υ(x)

0

(
υ(x) − ξ

2

)2 dξ√
ξ

(4.5.90)
7 See also Lieb and Thirring (1976).
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or
∫ ∞

0

dξ N(H0 + V,−ξ) � 4
15π

(
2µ

�2

)3/2 ∫ ∞

0

d3x (υ(x))5/2 (4.5.91)

which coincides with the inequality in (4.5.88) for ν = 3, and is referred
to as a Lieb-Thirring bound,8 providing an upper bound for the negative
of the sum of the negative eigenvalues (if any), counting degeneracy, of the
Hamiltonian in question.

Needless to say, since the ground-state energy cannot be less than the
sum of the negative eigenvalues, (4.5.91) gives the following lower bound for
the ground-state energy

− 4
15π

(
2µ

�2

)3/2 ∫
d3x (υ(x))5/2 (4.5.92)

which is to be compared with (4.5.55). Which one provides a more optimal
bound depends on the potential υ.

The two-dimensional case (ν = 2):

This lower dimensional cases is a bit more difficult to handle. For ρ = 1,
the trace on the right-hand side of (4.5.42) is infinite (see Problem 4.4) and
hence not useful. For ρ = 2, the right-hand side of (4.5.62) is not integrable
over ξ. On the other hand, for ρ = 3/2 all the relevant integrals are conver-
gent.

To the above end, we use the inequality (see Problem 4.5)

∫
d2x

〈
x
∣∣∣A3/2

∣∣∣x〉 �
∫

d2x

〈
x

∣∣∣∣∣∣∣
υ3/2 1[

p2

2µ + ξ
]3/2

∣∣∣∣∣∣∣
x

〉
(4.5.93)

where A is defined in (4.5.27).
Upon using the integral

〈
x

∣∣∣∣∣∣∣
1[

p2

2µ + ξ
]3/2

∣∣∣∣∣∣∣
x

〉
=
∫

d2p
(2π�)2

1[
p2

2µ + ξ
]3/2

=
µ

π�2

1√
ξ

(4.5.94)

we obtain from (4.5.93) the bound

8 Lieb and Thirring (1975).
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N(H0 + V,−ξ) � µ

π�2

1√
ξ

∫
d2x υ3/2(x). (4.5.95)

Finally using the upper bound in (4.5.45), as done in writing (4.5.90),
together with (4.5.20), the above inequality leads to

∫ ∞

0

dξ N(H0 + V,−ξ) �
√

2µ

π�2

∫
d2x

∫ 2υ(x)

0

dξ√
ξ

(
υ(x) − ξ

2

)3/2

=
2µ

π�2

Γ(1/2) Γ(5/2)
Γ(3)

∫
d2x (υ(x))2 (4.5.96)

or the inequality which coincides with the one in (4.5.88) for ν = 2:
∫ ∞

0

dξ N(H0 + V,−ξ) � 3µ

4�2

∫
d2x (υ(x))2. (4.5.97)

Needless to say, minus times the expression on the right-hand side of
(4.5.97) provides a lower bound to the ground-state energy. The expression
obtained in (4.5.64), however, gives a more optimal one for sufficiently small
δ > 0. Finally, (4.5.95) also leads to another lower bound for the ground-state
energy given by

− (1 + δ)
µ2

π2�4

(∫
d2x (υ(x))3/2

)2

(4.5.98)

for any δ > 0. Which one of the expressions in (4.5.64) or (4.5.98) provides a
better bound, depends on the potential υ(x).

The one-dimensional case (ν = 1):

Upon using (4.5.45), as done in (4.5.90), (4.5.96) leads to

∫ ∞

0

dξ N(H0 + V,−ξ) �
√

µ

�

∫ ∞

−∞
dx

∫ 2υ(x)

0

dξ√
ξ

(
υ(x) − ξ

2

)
(4.5.99)

or ∫ ∞

0

dξ N(H0 + V,−ξ) � 4
3

√
2µ

�

∫ ∞

−∞
dx (υ(x))3/2 (4.5.100)

which coincides with the inequality in (4.5.88) for ν = 1.
This provides the following lower bound for the ground-state energy

− 4
3

√
2µ

�

∫ ∞

−∞
dx (υ(x))3/2. (4.5.101)

As before which one of (4.5.69) or (4.5.101) is better depends on the potential
υ.
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We rewrite the lower bound for a ground-state energy for a potential,
whose negative part is denoted by −υ as defined in (4.5.17), for ν = 3, 2, 1,
and derived in (4.5.55), (4.5.64), (4.5.69), in a compact form

Eν � −aν

(∫
dνx (υ(x))q(ν)+ν/2

)1/q(ν)

(4.5.102)

where

q(ν) =
4ν − ν2 − 2

2
=




1/2, ν = 3
1, ν = 2

1/2, ν = 1
(4.5.103)

aν = (1 + δ)
(

1
π

)ν−1 ( µ

2�2

)2(ν/2−q(ν))+1

(4.5.104)

for any δ > 0.
Similarly, for the lower bound of the ground-state energy obtained from

the sum of the negative eigenvalues, as derived in (4.5.91), (4.5.97), (4.5.100),
we have in a compact form,9

Eν � −bν

∫
dνx (υ(x))1+ν/2 (4.5.105)

where

bν =
(

2µ

�2

)ν/2 4
ν(ν + 2)

(
3
4

)(3−ν)(ν−1) ( 1
π

)(ν−1)(ν−2)/2

. (4.5.106)

Needless to say, for ν = 1, 2, 3, the existence of the integrals in (4.5.102),
(4.5.105) is assumed.

Appendix to §4.5: Evaluation of Certain Integrals

We evaluate the expression on the left-hand side of (4.5.49). To this end
we are led to consider the integral

〈
x

∣∣∣∣∣∣
1[

p2

2µ + ξ
]
∣∣∣∣∣∣x

′

〉
=
∫

d3p
(2π�)3

eip·(x−x′)/�[
p2

2µ + ξ
] .

The angular integration is readily evaluated yielding for the latter the integral

µ

2π2�2

1
iη

∫ ∞

−∞
p dp

eiηp/�

p2 + 2µξ

9 See also Lieb (2000), for similar and other inequalities and for improvements of
coefficients such as aν , bν .
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integrating symmetrically over p, where η ≡ |x−x′|. In the complex p-plane,
the integrand has simple poles at p ± i

√
2µξ. We may close the contour in

the upper complex p-plane since the infinite semi-circle contour in the upper
plane will not contribute. This gives immediately by the residue theorem at
the pole p = i

√
2µξ the result given in (4.5.49).

For the corresponding two dimensional case given in (4.5.57), we note that
for the integral ∫

d2p
(2π�)2

eip·(x−x′)/�[
p2

2µ + ξ
]

the angular part is given by
∫ 2π

0

dθ eipη cos θ/� = 2πJ0(pη/�)

where J0(x) is the Bessel function of order zero. On the other hand,
∫ ∞

0

x dx

(x2 + a2)
J0(bx) = K0(ab) (A-4.5.1)

is a well known modified Bessel function of order zero, thus obtaining (4.5.57).
[See also (4.5.58), (4.5.59).]

4.6 Lower Bounds to the Expectation Value of the
Kinetic Energy: An Application of Counting Eigenvalues

The results obtained in §4.5 will be used to obtain lower bounds for the
expectation value of the kinetic energy operator as a useful application. The
latter will be important, in particular, for studying stability problems of
multi-particle systems as given in Chapter 14.

4.6.1 One-Particle Systems

We first consider a particle in three dimensions, introduce the probability
density

ρ(x) = |ψ(x)|2 (4.6.1)

and define the positive function

f(x) = γ
ρα(x)∫

d3x ρα+1(x)
T (4.6.2)

where

T =
〈

ψ

∣∣∣∣p
2

2µ

∣∣∣∣ψ
〉

(4.6.3)



4.6 Lower Bounds to the Expectation Value of the Kinetic Energy 221

and the parameters are positive and will be defined shortly.
We note that explicitly

〈
ψ

∣∣∣∣p
2

2µ
− f

∣∣∣∣ψ
〉

= −(γ − 1)T. (4.6.4)

In reference to the bound in (4.5.92), for example, one formally10 has

〈
ψ

∣∣∣∣p
2

2µ
− f

∣∣∣∣ψ
〉

� − 4
15π

(
2µ

�2

)3/2 ∫
d3x (f(x))5/2

= − 4
15π

(
2µ

�2

)3/2

γ5/2T 5/2

∫
d3x (ρ(x))5α/2

(∫
d3x ρα+1

)5/2
(4.6.5)

where we have used (4.6.2) in writing the last equality. This suggests to choose
5α/2 = α + 1, or α = 2/3. Hence with γ > 1, (4.6.4), (4.6.5) give

(
γ − 1
γ5/2

)2/3 (15π

4

)2/3
�

2

2µ

∫
d3x (ρ(x))5/3 � T. (4.6.6)

Optimizing over γ, gives γ = 5/3, or11

3
5

(
3π

2

)2/3
�

2

2µ

∫
d3x (ρ(x))5/3 � T. (4.6.7)

Needless to say, f(x) in (4.6.2) is not the potential energy for any given
physical Hamiltonian. It is just introduced in order to be able to obtain
a lower bound for T . Also all the integrals in (4.6.2)–(4.6.7) are implicitly
assumed to be finite.

Similarly, by choosing α = 2/ν, γ = (2 + ν)/ν, we have, in reference to
the bound in (4.5.105),

Aν
�

2

2µ

∫
dνx (ρ(x))(2+ν)/ν � T (4.6.8)

with

Aν =
(ν

2

)2/ν
(

ν

2 + ν

)(
4
3

)2(3−ν)(ν−1)/ν

(π)(ν−1)(ν−2)/ν (4.6.9)

for ν = 1, 2, 3 (see Problem 4.6). It is easily checked that (4.6.8) coincides
with (4.6.7) for ν = 3.
10 For related technical details and subtleties see also, Lieb and Thirring (1976),

p. 273.
11 This inequality is referred to as a Lieb-Thirring kinetic energy inequality: Lieb

and Thirring (1975).



222 4 Spectra of Hamiltonians

On the other hand, by choosing α = 1, using the normalization condition,
∫

dνx ρ(x) = 1 (4.6.10)

and optimizing over γ, as in (4.6.6), we obtain in reference to the bound
(4.5.102), the following inequality for the expectation value of the kinetic
energy,

ν

1 + ε

(π

2

)(ν−1)(4−ν)/ν �
2

2µ

(∫
dνx ρ2(x)

)2/ν

� T (4.6.11)

for ν = 1, 2, 3 (see Problem 4.7), for any ε > 0.
In particular, for ν = 3, (4.6.11) gives

3
1 + ε

(π

2

)2/3 �
2

2µ

(∫
d3x ρ2(x)

)2/3

� T (4.6.12)

for any ε > 0, which is to be compared with (4.6.7).
To the above end, we may write

ρ5/3 = ρ4/3ρ1/3 (4.6.13)

and use Hölder’s inequality (see Appendix II), with p = 3/2, q = 3 to obtain

∫
d3x ρ5/3(x) �

(∫
d3x ρ2(x)

)2/3

(4.6.14)

where we have used the normalization condition in (4.6.10), with ν = 3.
Accordingly, the left-hand side of the inequality (4.6.12) is bounded below

by
(3)1/3

1 + ε

(
3π

2

)2/3
�

2

2µ

∫
d3x ρ5/3(x). (4.6.15)

Since for sufficiently small ε > 0, 31/3 /(1 + ε) > 3/5 , (4.6.12) provides a
better bound than the one in (4.6.7) for ε > 0 small enough. We leave it as
an exercise to the reader for the comparisons of (4.6.8), (4.6.11) for ν = 2, 1,
in a similar fashion.

4.6.2 Multi-Particle States: Fermions

We consider N identical fermions, each of mass m, and introduce the
particle number density in three dimensions:

ρ(x) = N
∑

σ1,..., σN

∫
d3x2 d3x3 . . . d3xN |ψ(xσ1,x2σ2, . . . ,xNσN )|2 (4.6.16)
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where σ1, . . . , σN specify spin projection values taking each (2s + 1) values
for a particle of spin s (§5.4).

The total number of particles N is obtained from the normalization con-
dition ∫

d3x ρ(x) = N. (4.6.17)

The (normalized) wavefunctions ψ(x1σ1, . . . ,xNσN ) are assumed to satisfy
the appropriate statistics which in this case are anti-symmetric in the ex-
change of any two particles which amounts to the interchange of the position-
spin labellings: (xiσi) ⇔ (xjσj).

As in (4.6.2), we introduce the positive function

f(x) =
5
3

ρ2/3(x)∫
d3x ρ5/3(x)

T (4.6.18)

where

T =

〈
ψ

∣∣∣∣∣
N∑

i=1

p2
i

2m

∣∣∣∣∣ψ
〉

(4.6.19)

then it is easily verified that〈
ψ

∣∣∣∣∣
N∑

i=1

f(xi)

∣∣∣∣∣ψ
〉

=
5
3
T. (4.6.20)

We consider the operator
N∑

i=1

[
p2

i

2m
− f(xi)

]
(4.6.21)

defining a hypothetical Hamiltonian of N non-interacting fermions which,
however, interact with the external “potential” −f(x).

To obtain a lower bound to the spectrum of the “Hamiltonian” in (4.6.21),
we note that, allowing for multiplicity and spin degeneracy, we can put the
N fermions in the lowest energy of levels of the “Hamiltonian” in conformity
with Pauli’s exclusion principle, if N � number of such levels. If N is larger
than this number of levels, the remaining free fermions may be chosen to
have arbitrary small (→ 0) kinetic energies, and be infinitely separated, to
define the lowest energy of the Hamiltonian in (4.6.21). That is, in all cases,
the Hamiltonian (4.6.21) is bounded below by (2s + 1) times the sum of the
negative energy levels of the Hamiltonian

[
p2/m − f(x)

]
, allowing, in the

sum, for multiplicity but not for spin degeneracy. A bound to the latter sum
has been already determined in (4.5.91), and with υ(x) → f(x), µ → m, we
obtain〈

ψ

∣∣∣∣∣
N∑

i=1

[
p2

i

2m
− f(xi)

]∣∣∣∣∣ψ
〉

� −(2s + 1)
4

15π

(
2m

�2

)3/2 ∫
d3x (f(x))5/2.

(4.6.22)
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Hence from (4.6.18)–(4.6.22), we have

−2
3
T � −(2s + 1)

4
15π

(
2m

�2

)3/2 (5
3

)5/2

T 5/2

(∫
d3x ρ5/3(x)

)−3/2

.

(4.6.23)
or12

3
5

(
3π

2(2s + 1)

)2/3
�

2

2m

∫
d3x ρ5/3(x) � T. (4.6.24)

Again, we note that f(x) is just introduced in order to derive a lower
bound for T and is not the potential for any given physical Hamiltonian.

We leave it as an exercise to the reader to consider, formally, the ν = 2, 1
cases (see Problem 4.8).

4.6.3 Multi-Particle States: Bosons

For simplicity of the notation, we consider (identical) bosons of spin 0.
We introduce the particle number density:

ρ(x) = N

∫
d3x2 . . . d3xN |ψ(x,x2, . . . ,xN )|2 . (4.6.25)

A very conservative lower bound for the bosonic case may be directly obtained
from that of the fermionic one in (4.6.24) without any further work by simply
replacing (2s + 1) in the latter by N since in the present case one can put
the N bosons in the lowest energy level of

[
p2/2m − f(x)

]
, where f(x) is

similarly defined as in (4.6.18). This leads to the inequality

3
5

(
3π

2N

)2/3
�

2

2m

∫
d3x ρ5/3(x) � T (4.6.26)

for bosons, where the N−2/3 factor on the left-hand side should be noted.
An improvement (i.e., a larger value) to the numerical (3/5)(3π/2)2/3 may
be obtained but we will not go into it here.

A similar analysis may be carried out in ν = 2, 1 dimensions (see Prob-
lem 4.8).

4.7 The Eigenvalue Problem and Supersymmetry

4.7.1 General Aspects

The purpose of this section is to construct supersymmetric Hamiltonians,
and show how one may study the eigenvalue problem of a given class of
Hamiltonians using supersymmetry as a tool for doing so.
12 This inequality is referred to as a Lieb-Thirring kinetic energy inequality: Lieb

and Thirring (1975).
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In §2.9, we have defined supersymmetric transformations and, by consid-
ering successive infinitesimal transformations in a closed path, have derived
the following commutation/anti-commutation relations involving the super-
symmetry generators Q, Q† and the Hamiltonian H:

[H,Q] = 0,
[
H,Q†] = 0 (4.7.1)

{Q,Q} = 0,
{
Q†, Q†} = 0 (4.7.2)

and, in turn, obtained the explicit expression for H in terms of Q, Q†:

H =
1
2�

{
Q,Q†} . (4.7.3)

The unitary operator for infinitesimal supersymmetry transformations,
specified by infinitesimal anti-commuting c-numbers δξ, δξ∗ (see (2.9.2),
(2.9.3)) is given by (see (2.9.21), (2.9.22), (2.9.20))

U = 1 +
i
�

(
i δξ∗ Q − iQ† δξ

)
. (4.7.4)

For any state |φ〉 in the domain of Q, (4.7.3) implies that

〈φ |H|φ〉 =
1
2�

〈
φ
∣∣QQ†∣∣φ〉+

1
2�

〈
φ
∣∣Q†Q

∣∣φ〉

=
1
2�

∥∥Q†φ
∥∥2

+
1
2�

‖Qφ‖2 � 0. (4.7.5)

That is, the spectrum of H satisfying (4.7.3) is necessarily non-negative.
A state for which

Q |ψ〉 = 0 (4.7.6)

and
Q† |ψ〉 = 0 (4.7.7)

is called a supersymmetric state as it remains invariant under the transforma-
tion implemented by the transformation in (4.7.4). Given generators Q, Q†,
the actual construction of supersymmetric states will be spelled out below by
solving the equations (4.7.6), (4.7.7). Clearly, from (4.7.5), a supersymmetric
state defines the ground-state of the Hamiltonian H corresponding to the
lowest point of its spectrum of zero energy.

A theory for which the supersymmetry generators commute with H, as
given in (4.7.1), and the ground-state is supersymmetric, is said to be super-
symmetric. A special class of theories is for which the commutation relations
in (4.7.1) hold true but for a ground-state

Q |ψ〉 �= 0 (4.7.8)
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Q† |ψ〉 = 0 (4.7.9)

(or Q† |ψ〉 �= 0, Q |ψ〉 = 0). These theories are said to be spontaneously
broken theories. For such a theory the ground-state energy is strictly positive
as follows directly from (4.7.5). The latter is also necessarily degenerate. This
is easily shown by noting that the states Q |ψ〉, |ψ〉, are orthogonal

〈ψ |Q|ψ〉 =
〈
Q†ψ |ψ

〉
= 0 (4.7.10)

where we have used the equality in (4.7.9), signaling the importance of this
equality, and

H |ψ〉 = E |ψ〉 (4.7.11)

implies from (4.7.1), upon multiplying (4.7.11) by Q, that

H (Q |ψ〉) = E (Q |ψ〉) . (4.7.12)

Here we are interested, however, in the role of supersymmetry in studying
the eigenvalue problem of quantum physics.

We first develop a method to construct supersymmetric Hamiltonians.
This is then followed by showing how supersymmetry, seemingly unrelated
to the problem at hand, may be used, as mentioned above, to study the
eigenvalue problem in quantum physics for a large class of Hamiltonians. Su-
persymmetry will be also applied later in various chapters, notably in Chap-
ter 6 in studying the Bose-Fermi oscillator, in Chapter 8 in reference to the
Pauli Hamiltonian for a charged spin-1/2 particle in an external electromag-
netic field, also discussed here. Several examples are also given in the present
chapter.

4.7.2 Construction of Supersymmetric Hamiltonians

We first consider the one-dimensional case and define the following oper-
ators:

Q =

√
�

m
[p − iw(x)] Ψ† (4.7.13)

Q† =

√
�

m
[p + iw(x)] Ψ (4.7.14)

where [x, p] = i�,
{
Ψ,Ψ†} = 1, {Ψ,Ψ} = 0,

{
Ψ†,Ψ†} = 0 (4.7.15)

and w(x) is a real function of x. The operators Q, Q† were chosen to be linear
in p to ensure, in particular, that H as given in (4.7.3) includes a kinetic
energy term p2/2µ. So-called Fermi operators satisfying anti-commutation
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relations in (4.7.15), were introduced to satisfy the conditions in (4.7.2). The
operators Ψ, Ψ† are assumed to commute with p and w(x).

We specify the range of x to be a < x < b. Implicit in the definition of
Q†, given in (4.7.14) as the adjoint of Q, is that p is self-adjoint. That is, it
is necessary that

〈g |pf〉 = 〈pg |f〉 . (4.7.16)

In detail, (4.7.16) implies from

〈g |pf〉 = 〈pg |f〉 − i� [g∗(b)f(b) − g∗(a)f(a)] (4.7.17)

that is, we must have

g∗(b)f(b) − g∗(a)f(a) = 0. (4.7.18)

Thus in defining a self-adjoint operator associated with the momentum of
a particle, one has to impose restrictions on the functions f , g satisfying
(4.7.18) and, in turn, define the associated domain of the self-adjoint operator
in question introduced.

Of particular interest in applications are the cases where (a → −∞, b →
∞), (a = 0, b → ∞). With r = |x|, for example, the latter case may be
applied to the radial part of the Schrödinger equation (assuming that it may
separated into a radial part) with the usual boundary conditions of f(r)
vanishing at r = 0 and r → ∞. In many cases encountered in practice are
those with vanishing boundary conditions at a and b.

From (4.7.13)–(4.7.15), we readily obtain the explicit expression for H to
be

H =
(

p2

2m
+

w2(x)
2m

)
1 +

�

2m
w′(x)

[
Ψ†,Ψ

]
(4.7.19)

where we have used (4.7.3).
The anti-commutation relations in (4.7.15) for the fermi operators Ψ, Ψ†

allow us to introduce the convenient representations for the latter

Ψ† = σ+ =
(

0 1
0 0

)
(4.7.20)

Ψ = σ− =
(

0 0
1 0

)
(4.7.21)

as obtained from the Pauli-matrices, with
[
Ψ†,Ψ

]
= σ3 (4.7.22)

leading to the supersymmetric Hamiltonian13

13 Throughout, it is understood that the first term in (4.7.23) is multiplied by the
identity matrix.
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H =
1

2m

(
p2 + w2(x)

)
+

�

2m
w′(x)σ3. (4.7.23)

For a supersymmetric theory, the ground-state |ψ0〉 is defined by the con-
ditions

Q |ψ0〉 = 0, Q† |ψ0〉 = 0 (4.7.24)

(see (4.7.6), (4.7.7)). That is, it is the solution of the differential equations
[
−i�

d
dx

− iw(x)
]

σ+ψ0(x) = 0 (4.7.25)

[
−i�

d
dx

+ iw(x)
]

σ−ψ0(x) = 0. (4.7.26)

Upon multiplying (4.7.25) by −σ−, and (4.7.26) by +σ+ and adding lead
to

d
dx

ψ0(x) =
w(x)

�
σ3ψ0(x). (4.7.27)

The general solution of (4.7.27) is given by

ψ0(x) = α

(
1
0

)
F (x) + β

(
0
1

)
1

F (x)
(4.7.28)

where α, β are some constants and

F (x) = exp
(

1
�

∫ x

dx w(x)
)

. (4.7.29)

The following elementary consideration shows that for an infinite interval,
i.e., a → −∞ and/or b → ∞, if F (x) is square-integrable then 1/F (x) is not
and vice versa. To see this, note that for a function f(x) such that

0 <

∫ b

a

dx |f(x)|2 < ∞ (4.7.30)

we may use the Cauchy-Schwarz inequality to write

(b − a)2 =

∣∣∣∣∣
∫ b

a

dx f(x)
1

f(x)

∣∣∣∣∣
2

�
(∫ b

a

dx |f(x)|2
)∣∣∣∣∣

∫ b

a

dx
1

|f(x)|2

∣∣∣∣∣ (4.7.31)

and derive the bound

(b − a)2∫ b

a
dx |f(x)|2

�
∫ b

a

dx
1

|f(x)|2
. (4.7.32)

The latter shows that if (4.7.30) is true for a → −∞ and/or b → ∞, then,
upon taking the corresponding limits in (4.7.32), that 1/f(x) is not square-
integrable on such infinite or semi-infinite intervals. On the other hand, for
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finite intervals (a < b, |a| < ∞, |b| < ∞) the square-integrability of a func-
tion f(x) and of 1/f(x) are not ruled out.

We may use the inequality in (4.7.32) to conclude that for an infinite
interval if F (x) is square-integrable, then for the square integrability of ψ0(x)
we have to choose β = 0 (and vice-versa, vis-à-vis 1/F (x), to choose α = 0).

We consider the construction of supersymmetric Hamiltonians in higher
dimensions (see also Problem 4.14). To this end we provide examples of the
interaction of a charged particle of charge e with an external magnetic field
B = (0, 0, B). Upon setting π = p − e A/c, with B = ∇ × A, we have the
following commutation relations

[πj , πk] =
i eh
c

εjknBn (4.7.33)

as is readily checked. In two dimensions we may define the generators

Q =

√
�

m
(π2 + iπ1)σ+, Q† =

√
�

m
(π2 − iπ1)σ− (4.7.34)

which verify the relations Q2 = 0,
(
Q†)2 = 0, and from the relations

{σ+, σ−} = 1, [σ+, σ−] = σ3, and (4.7.33) for j = 1, k = 2, we immedi-
ately obtain the supersymmetric Hamiltonian

H =
1
2�

{
Q,Q†} =

π2
1 + π2

2

2m
− e�

4mc
gBσ3 (4.7.35)

with g = 2, which is the celebrated Pauli Hamiltonian of spin −1/2 studied
in Chapter 8, with the so-called g-factor restricted to the value of 2.14,15 The
value of g = 2 is only approximate for the electron (see §8.5) and such a
departure may be formally interpreted as a breaking of supersymmetry.

In three dimensions, we introduce Fermi operators Ψ1,Ψ2 as 4× 4 matri-
ces:

Ψ1 =
(

σ− 0
0 −σ−

)
, Ψ2 =

(
0 0
1 0

)
,

[
Ψ†

1,Ψ1

]
=
(

σ3 0
0 σ3

)

{
Ψ1,Ψ2

}
= 0,

{
Ψ†

1,Ψ
†
2

}
= 0,

{
Ψi,Ψ

†
j

}
= 1δij




(4.7.36)

with obvious dimensionalities of the unit matrices.
We define the generators Q, Q†

√
m

�
Q = (π2 + iπ1)Ψ

†
1 + π3Ψ

†
2,

√
m

�
Q† = (π2 − iπ1)Ψ1 + π3Ψ2 (4.7.37)

14 Here and in (4.7.38), the so-called scalar potential U is zero.
15 See also Khare and Maharana (1984), Cooper et al. (1995) and de Crombrugghe

and Rittenberg (1983).
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where recalling that B = (0, 0, B), give from (4.7.33) that [π2, π3] = 0,
[π1, π3] = 0, i.e., π3 commutes with π1, π2. Thus we immediately verify that
Q2 = 0,

(
Q†)2 = 0. The supersymmetric Hamiltonian is then readily worked

out from (4.7.36), (4.7.37) and from the latter commutativity property of π3

with π1, π2 to be

H =
1

2m

(
π2

1 + π2
2 + π2

3

)
− e�g

4mc
Bσ3 (4.7.38)

arising from two identical copies, each as a 2 × 2 matrix. This is again the
Pauli-Hamiltonian, now in three dimensions, with g-factor equal to two, and
a magnetic field B along the x3-axis.

4.7.3 The Eigenvalue Problem

We now use supersymmetry as a tool to study the eigenvalue problem of
the discrete spectrum of a large class of Hamiltonians (to be defined below),
i.e., in particular, corresponding to normalizable eigenvectors (see §1.8) in the
underlying Hilbert space. We restrict the study to one-dimensional cases, and
as we will see below, through examples, that these cases are rich enough in
applications. The higher dimensional cases in (4.7.35), (4.7.38) will be dealt
with in Chapter 8.

In detail, we may rewrite the supersymmetric Hamiltonian H in (4.7.23)
as

H =
(

H+ 0
0 H−

)
(4.7.39)

where

H+ =
p2

2m
+ V+(x) (4.7.40)

V+(x) =
1

2m

(
w2(x) + �w′(x)

)
(4.7.41)

and

H− =
p2

2m
+ V−(x) (4.7.42)

V−(x) =
1

2m

(
w2(x) − �w′(x)

)
. (4.7.43)

Also we note that
H− = H+ − �

m
w′(x). (4.7.44)

It is convenient to introduce the operators

A =
1√
2m

(p + iw(x)) (4.7.45)
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A† =
1√
2m

(p − iw(x)) (4.7.46)

which allow us to rewrite formally

H+ = A†A (4.7.47)

H− = AA† (4.7.48)

and are referred to as supersymmetric partner Hamiltonians, and V+, V− as
supersymmetric partner potentials. The function w(x) is generally referred
to as the superpotential.

We assume that F (x), in (4.7.29), (4.7.28), is square-integrable on its
domain of definition. From (4.7.26), (4.7.28), with α �= 0, (4.7.45) (4.7.47)
imply that

A F (x) = 0 (4.7.49)

H+F (x) = 0. (4.7.50)

That is, F (x) corresponds to an eigenstate of H+ with zero eigenvalue.
We are interested in the discrete spectrum of H+ belonging to a special class
of Hamiltonians to be defined below. From (4.7.47), such a discrete spectrum
(assumed non-empty) would necessarily fall on the positive real axis with
zero as the lowest point of this spectrum.

For simplicity of the notation only, we consider dimensionless variables in
the remaining part of this section, and also divide, in the process, the Hamil-
tonians by suitable conversion energy scales thus defining their dimensionless
counterparts.

Before treating the method in the remaining part of this section on how
supersymmetry may be used to study the eigenvalue problem of a given class
of Hamiltonians, we consider the following preparatory examples.

1. Suppose that

w(z) = −(z − ξ) ≡ w(z, ξ), −∞ < z < ∞ (4.7.51)

where ξ is an arbitrary parameter. This leads to the Hamiltonians:

H+(ξ) = −1
2

d2

dz2
+ V+(z, ξ) (4.7.52)

with
V+(z, ξ) =

1
2
(z − ξ)2 − 1

2
(4.7.53)

and

H−(ξ) = −1
2

d2

dz2
+ V−(z, ξ) (4.7.54)
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with
V−(z, ξ) = V+(z, ξ) + 1 (4.7.55)

where we have made the dependence on the parameter ξ evident.
In particular (see (4.7.29)), up to a proportionality constant,

F (z) = exp
(
−1

2
(z − ξ)2

)
. (4.7.56)

The simplicity of the relationship between the potentials V+(z, ξ), V−(z, ξ),
in (4.7.55) is to be noted.

2. As another example, consider the function

w(z) =
(� + 1)

z
− 1

(� + 1)
≡ w(z, �), 0 < z < ∞ (4.7.57)

where � = 0, 1, 2, . . .. Here it is readily shown that

V+(z, �) =
�(� + 1)

2z2
− 1

z
+

1
2(� + 1)2

(4.7.58)

and
V−(z, �) = V+(z, � + 1) +

(2� + 3)
2(� + 1)2(� + 2)2

. (4.7.59)

Also,
F (z) = (z)�+1 exp (−z/(� + 1)) , 0 < z < ∞ (4.7.60)

with vanishing boundary conditions at z → 0, z → ∞. Again the interesting
relationship between the potentials V±(z, �) is to be noted.

3. Finally, consider the function

w(z) = −ξ tanh z ≡ w(z, ξ), −∞ < z < ∞ (4.7.61)

where the parameter ξ > 0. This leads to the potentials

V+(z, ξ) =
1
2
(
ξ2 − ξ(ξ + 1) sech2z

)
(4.7.62)

V−(z, ξ) = V+(z, ξ − 1) +
(

ξ − 1
2

)
(4.7.63)

An interesting and simple relationship between the potentials V+(z, ξ)
emerges again.

For F (z) we have,

F (z) = exp
(
−ξ

∫ z

dz tanh z

)
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= exp (ξ ln(sech z))

or
F (z) = (sech z)ξ (4.7.64)

and for ξ > 0, F (z) is square-integrable over −∞ < z < ∞.
The last three examples given above and, in particular, equations (4.7.55),

(4.7.59), (4.7.63), for the supersymmetric partner potentials, suggest to con-
sider the following class of supersymmetric partners H+(ξ),H−(ξ) depending
on some parameter ξ such that

V−(z, ξ) = V+(z, ξ1) + R(ξ1) (4.7.65)

where R(ξ1) is independent of z,

R(ξ1) �= 0 (4.7.66)

and there exists some function f such that

f(ξ) = ξ1. (4.7.67)

For the class of so-called supersymmetric partner potentials V±(z, ξ)
which satisfy equations of the structure in (4.7.65), we note that apart from
the additive z-independent term R(ξ1), such pairs of potentials have similar
shapes16 when parameterized with, in general, different parameters.

For example, in (4.7.55), we have the identity transformation

f(ξ) = ξ (4.7.68)

and
R(ξ) = 1. (4.7.69)

In (4.7.59), we have with � ≡ ξ,

f(ξ) = ξ + 1 (4.7.70)

and
R(ξ + 1) =

(2ξ + 3)
2(ξ + 1)2(ξ + 2)2

. (4.7.71)

Finally in (4.7.63)
f(ξ) = ξ − 1 (4.7.72)

and
R(ξ − 1) = ξ − 1

2
. (4.7.73)

16 Because of this property, partner potentials V±(z, ξ) satisfying (4.7.65) have been
referred to as being shape invariant in Gendenshteïn (1983).
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For the class of supersymmetric partner potentials satisfying (4.7.65), we
may write for the corresponding Hamiltonians

H−(ξ) = H+(ξ1) + R(ξ1). (4.7.74)

Also by setting
f(ξk) = ξk+1, k = 0, 1, . . . (4.7.75)

with
ξ0 ≡ ξ (4.7.76)

we may also write a corresponding expression to (4.7.74) the following one
by replacing ξ → ξk, ξ1 → ξk+1:

H−(ξk) = H+(ξk+1) + R(ξk+1). (4.7.77)

By definition of the H+(ξ) considered, (4.7.49), (4.7.50) admit a square-
integrable solution on its domain of definition. That is ψ0(z, ξ) = C(ξ) F (z, ξ)
satisfies

A(ξ)ψ0(z, ξ) = 0, ‖ψ0(·, ξ)‖ = 1 (4.7.78)

H+(ξ)ψ0(z, ξ) = 0. (4.7.79)

For the present analysis, we suppose, as an induction hypothesis, that for
all k = 1, . . . ,K for some K, that

φk(z, ξ) = A†(ξ)A†(ξ1) . . . A†(ξk−1)ψ0(z, ξk) (4.7.80)

are square-integrable, on the domain of definition of the variable z, and when
normalized, satisfy the boundary conditions imposed in the problem at hand,
and then generalize the result by induction.

Consider the state A† |ψ0(ξ1)〉, and hence from (4.7.47), (4.7.48) we may
write

H+(ξ)A†(ξ) |ψ0(ξ1)〉 = A†(ξ)H−(ξ) |ψ0(ξ1)〉

= A†(ξ) [H+(ξ1) + R(ξ1)] |ψ0(ξ1)〉

= R(ξ1)A†(ξ) |ψ0(ξ1)〉 (4.7.81)

where we have used (4.7.77) and (4.7.79) with ξ → ξ1 in the latter.
Accordingly we have the properly normalized state

|ψ1(ξ)〉 =
(i)√
E1(ξ)

A†(ξ) |ψ0(ξ1)〉 (4.7.82)

where the (i) factor is chosen for convenience, and
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E1(ξ) = R(ξ1) �= 0 (4.7.83)

(see (4.7.66)) implicit in the normalization that has to be done of the φk(z, ξ)
in (4.7.80),

H+(ξ) |ψ1(ξ)〉 = E1(ξ) |ψ1(ξ)〉 . (4.7.84)

Similarly, from (4.7.77), (4.7.84)

H+(ξ)A†(ξ) |ψ1(ξ1)〉 = A†(ξ)H−(ξ) |ψ1(ξ1)〉

= A†(ξ) [H+(ξ1) + R(ξ1)] |ψ1(ξ1)〉

= [E1(ξ1) + R(ξ1)] A†(ξ) |ψ1(ξ1)〉

= [R(ξ2) + R(ξ1)] A†(ξ) |ψ1(ξ1)〉 (4.7.85)

where we have finally used (4.7.75) with k = 1. Thus we may introduce the
properly normalized state

|ψ2(ξ)〉 =
(i)√
E2(ξ)

A†(ξ) |ψ1(ξ1)〉

=
(i)2√

E2(ξ)E1(ξ1)
A†(ξ)A†(ξ1) |ψ0(ξ2)〉 (4.7.86)

where
E2(ξ) = R(ξ1) + R(ξ2) (4.7.87)

and in writing (4.7.86) we have invoked the definition (4.7.82) with ξ → ξ1,
and hence also with |ψ0(ξ1)〉 → |ψ0(ξ2)〉. By hypothesis of normalizability,
E2(ξ)E1(ξ1) �= 0.

By induction, we obviously obtain from (4.7.82), (4.7.83), (4.7.86),
(4.7.87) the state

|ψk(ξ)〉 = Ck(ξ)A†(ξ)A†(ξ1) . . . A†(ξk−1) |ψ0(ξk)〉 = Ck(ξ) |φk(ξ)〉 (4.7.88)

(see (4.7.80)), where the normalization constant Ck(ξ) is given by

Ck(ξ) = (i)k (Ek(ξ)Ek−1(ξ1) . . . E1(ξk−1))
−1/2 (4.7.89)

and
H+ |ψk(ξ)〉 = Ek(ξ) |ψk(ξ)〉

H+ |ψ0(ξ)〉 = 0


 (4.7.90)

with

Ek(ξ) =
k∑

i=1

R(ξi). (4.7.91)



236 4 Spectra of Hamiltonians

The expression of the normalization constant Ck(ξ) may be readily ex-
pressed as a function of ξ as follows.

For different k, we have from (4.7.91):

Ek−m+1(ξ) = R(ξ1) +
k−m+1∑

j=2

R(ξj) (4.7.92)

Ek−m(ξ1) =
k−m+1∑

j=2

R(ξj) (4.7.93)

where in writing the latter equation we have made use of (4.7.76). Hence

Ek−m(ξ1) = Ek−(m−1)(ξ) − R(ξ1). (4.7.94)

Upon carrying out the transformation ξ → ξm−1, and hence ξ1 → ξm,
(4.7.94) reads

Ek−m(ξm) = Ek−(m−1)(ξm−1) − R(ξm)

= Ek−(m−2)(ξm−2) − R(ξm−1) − R(ξm)
...

= Ek(ξ) − [R(ξ1) + · · · + R(ξm)]

= Ek(ξ) − Em(ξ). (4.7.95)

By choosing, in turn, m = 1, 2, . . . , k − 1, in this equality, we note that the
normalization constant Ck(ξ) in (4.7.89), (4.7.88) may be rewritten as

Ck(ξ) = (i)k (Ek(ξ) [Ek(ξ) − E1(ξ)] · · · [Ek(ξ) − Ek−1(ξ)])
−1/2

. (4.7.96)

We may summarize the main result of this subsection thus far, as obtained
from supersymmetry theory, as follows.

� Summary : “Suppose we are given a Hamiltonian of interest H+(ξ), de-
pending on some parameter ξ, defined by

H+(ξ) = −1
2

d2

dz2
+ V+(z, ξ) (4.7.97)

where the potential is defined in terms of a function w(z, ξ) as follows:

V+(z, ξ) =
1
2
(
w2(z, ξ) + w′(z, ξ)

)
(4.7.98)

with w′(z, ξ) = ∂w(z, ξ)/∂z.
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Suppose that the following Hamiltonian H−(ξ):

H−(ξ) = −1
2

d2

dz2
+ V−(z, ξ) (4.7.99)

with
V−(z, ξ) =

1
2
(
w2(z, ξ) − w′(z, ξ)

)
(4.7.100)

is such that
V−(z, ξ) = V+(z, ξ1) + R(ξ1) (4.7.101)

i.e., the shape invariant property of the supersymmetric partner potentials
holds true, where R(ξ1) is independent of z, R(ξ1) �= 0, and there exists some
function f such that

f(ξ) = ξ1 (4.7.102)

and in general
f(ξk) = ξk+1 (4.7.103)

for k = 0, 1, . . . , K (for some K, which may be finite or infinite), ξ0 = ξ. Then
with the square-integrability of the ψk(z, ξ) in (4.7.88), (4.7.89), (4.7.96) (up
to some K) implicit, on their domain of definition, and consistent with the
boundary conditions imposed in the problem at hand, the ψk(z, ξ) satisfy
the eigenvalue equations in (4.7.90) with eigenvalues given in (4.7.91) for the
Hamiltonian H+. Also implicit is that ψ0(z, ξ) is square-integrable (normal-
ized) as a solution of the equation

A(z, ξ)ψ0(z, ξ) = 0 (4.7.104)

consistent with the boundary conditions in the problem, and defines the
ground-state, where

A(z, ξ) =
1√
2

[
−i

d
dz

+ iw(z, ξ)
]

. (4.7.105)

The function ψ0(z, ξk) in (4.7.88) is defined by making the formal replace-
ment ξ → ξk.” �

It is important to point out that the above construction for eigenvalues
and eigenvectors just uses supersymmetry as a method of application to a
given Hamiltonian H+(ξ) of interest satisfying the properties spelled out
above.

We apply the method just developed to study the eigenvalue problem of
two of the three examples mentioned through (4.7.51)–(4.7.64). The last one
is left as an exercise to the reader (see Problem 4.15).

1. For w(z, ξ) defined in (4.7.51), −∞ < z < ∞

H−(ξ) = H+(ξ) + 1, f(ξ) = ξ, R(ξ) = 1 (4.7.106)
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(see (4.7.68), (4.7.69)). Hence from (4.7.90), (4.7.91), the eigenvalues of

H+(ξ) = −1
2

d2

dz2
+

1
2
(z − ξ)2 − 1

2
, (4.7.107)

are 0, and

Ek =
k∑

i=1

(1) = k, k = 1, 2, . . . . (4.7.108)

From (4.7.104), the ground-state is given by

ψ0(z, ξ) =
(

1
π

)1/4

exp
(
−(z − ξ)2

)
/2 (4.7.109)

and from (4.7.88), (4.7.96), the eigenvectors corresponding to the eigenvalues
ξk = ξ are

ψk(z, ξ) =
Ck(ξ)√

2k

[
−i

d
dz

+ i(z − ξ)
]k

ψ0(z, ξ) (4.7.110)

for k = 1, 2, . . ., respectively, since ξk = ξ,

Ck(ξ) = (i)k(k!)−1/2 (4.7.111)

and is independent of ξ. Due to the exponential factor in (4.7.109), ψk(z, ξ)
is obviously square-integrable for all k = 0, 1, . . .. The connection of H+(ξ),
for ξ = 0, with the elementary harmonic oscillator problem is obvious (§6.1).
The ik factor in Ck(0) leads to the conventional normalization of the harmo-
nic oscillator wavefunctions (see §6.1) up to an overall minus sign.

2. For w(z, �) defined in (4.7.57), 0 < z < ∞,

H−(�) = H+(� + 1) +
(2� + 3)

2(� + 1)2(� + 2)2

= H+(� + 1) +
1
2

[
1

(� + 1)2
− 1

(� + 2)2

]
, (4.7.112)

(see (4.7.71)),

R(� + 1) =
1
2

[
1

(� + 1)2
− 1

(� + 2)2

]
(4.7.113)

ξ = �, ξk = � + k, k = 1, 2, . . . . (4.7.114)

Therefore the eigenvalues of

H+(�) = −1
2

d2

dz2
− 1

z
+

�(� + 1)
2z2

+
1

2(� + 1)2
(4.7.115)
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are from (4.7.91),

Ek(�) =
1
2

k∑
j=1

[
1

(� + j)2
− 1

(� + j + 1)2

]

=
1
2

[
1

(� + 1)2
− 1

(� + k + 1)2

]
(4.7.116)

and for k → 0, this reduces to the eigenvalue 0 for the ground-state. We note
from (4.7.104), (4.7.105), that

A†(ξj) = − i√
2

[
d
dz

+
ξj + 1

z
− 1

ξj + 1

]
, ξj = � + j (4.7.117)

ψ0(z, �) = c�(z)�+1 exp (−z/(� + 1)) (4.7.118)

and more generally

ψ0(z, ξj) = cξj
(z)ξj+1 exp (−z/(ξj + 1)) (4.7.119)

with the eigenvectors |ψk(�)〉, for k = 1, 2, . . . defined in (4.7.88), (4.7.96).
The connection of H+(�) to the (one-dimensional) radial part of the

Hamiltonian of the hydrogen atom (Chapter 7)

H(�) = −1
2

d2

dz2
− 1

z
+

�(� + 1)
2z2

(4.7.120)

with � as non-negative integers, should be noted. Here H(�) is expressed in
terms of the dimensionless variable

z = rµ e2/�
2 (4.7.121)

where µ is the reduced mass of the atom, and in energy conversion units of
µe4/�

2. It follows from (4.7.115), (4.7.116) that the eigenvalues of H(�) are

− 1
2

1
(� + k + 1)2

. (4.7.122)

Since � = 0, 1, 2, . . ., one may introduce a natural number n by setting

� + k + 1 = n. (4.7.123)

Therefore for a fixed n value, k = 0, 1, . . . , n − � − 1. Thus upon eliminating
k in the states |ψk(�)〉 in favor of n and �, the allowed values of � become:
� = 0, 1, . . . , n−1 for a fixed n, where n specifies the eigenvalues in (4.7.122).

In detail, we then have from (4.7.88), (4.7.96), (4.7.119) with

ξk = � + k = n − 1 (4.7.124)



240 4 Spectra of Hamiltonians

that

ψn−�−1(z, �) = cn−1Cn−�−1(�)A†(�)A†(� + 1) · · ·A†(n − 2)zne−z/n

≡ φn,�(z) for � = 0, . . . , n − 2; n = 2, 3, . . . (4.7.125)

and from (4.7.118)

ψ0(z, n − 1) = cn−1z
ne−z/n

≡ φn,n−1(z), for � = n − 1; n = 1, 2, . . . . (4.7.126)

The normalization constant factor Cn−�−1(�) in (4.7.125) is defined in
(4.7.96), with (see (4.7.91), (4.7.113))

Ej(�) =
1
2

[
1

(� + 1)2
− 1

(� + j + 1)2

]
(4.7.127)

where now j = 1, . . . , n − � − 1.
The wavefunctions φn,�(z), for � = 0, . . . , n− 1; n = 1, 2, . . ., in (4.7.125),

(4.7.126), are square-integrable on 0 � z < ∞, as one-dimensional integrals,
and vanish at z = 0, z → ∞.

For example, for n = 2, c1 = 1/
√

24 = (1/2)3/2
/√

3, and for � = 1,
(4.7.126) gives

φ2,1(z) =
(

1
2

)3/2
z2

√
3
e−z/2. (4.7.128)

For � = 0, (i.e., k = 1), E1(0) = 3/8 in (4.7.127), hence

C1(0) = i

√
8
3

(4.7.129)

and

φ2,0(z) =
i√
24

√
8
3

(−i)√
2

[
d
dz

+
1
z
− 1

]
z2e−z/2

=
(

1
2

)3/2

z(2 − z)e−z/2. (4.7.130)

The conversion factor z → r, is given in (4.7.121).
If the property of shape invariance of a pair of supersymmetric partner

potentials, as defined in (4.7.65), holds, that is

H−(ξ) = H+(ξ1) + R(ξ1) (4.7.131)

with (4.7.66), (4.7.67) satisfied, we may infer from (4.7.91) that
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k∑
i=1

R(ξi+1) + R(ξ1) = Ek+1(ξ) (4.7.132)

with k = 0, 1, . . . (up to some K which may be infinite) are eigenvalues of
H−(ξ) and note, in the process, that the eigenvalue 0 of H+(ξ1) is missing
for H−(ξ) with E1(ξ) representing the ground-state of the latter. Such a shift
of the eigenvalues for a supersymmetric partner Hamiltonians is typical. The
eigenvectors of H−(ξ) in (4.7.131) corresponding to the eigenvalues Ek+1(ξ)
in (4.7.132) are from (4.7.88) given by

|χk+1(ξ)〉 = Ck(ξ1) A†(ξ1) A†(ξ2) · · ·A†(ξk) |ψ0(ξk+1)〉 (4.7.133)

for k = 1, 2, . . . (up to some K), corresponding to eigenvalues E2(ξ),
E3(ξ), . . ., respectively, and

|χ1(ξ)〉 = |ψ0(ξ1)〉 (4.7.134)

corresponding to E1(ξ). Implicit in this is that |ψ0(ξ)〉 and the states in
(4.7.88) (up to some K) are square-integrable and consistent with the bound-
ary conditions imposed in the problem at hand. Implicit also, is that the latter
hold true for ξ → ξ1.

Irrespective of any shape invariance properties of a given pair of supersym-
metric potential partners, the following question arises. Does an eigenvalue
E, say, of a supersymmetric partner H+, i.e., corresponding, in particular,
to a square-integrable wavefunction, is also an eigenvalue of the partner H−?
The situation is different whether E = 0 (i.e., the ground-state energy of H+,
assuming it exists) or E �= 0.

Suppose E = 0 is the ground-state energy of H+. That is, F in (4.7.29)
is square-integrable, as the solution of (see (4.7.49))

A F = 0 (4.7.135)

and satisfies
A† A F = 0. (4.7.136)

From (4.7.25), (4.7.28), (4.7.29), (4.7.46), (4.7.48), we are formally led to
consider the pair of equations

A†
(

1
F

)
= 0 (4.7.137)

A A†
(

1
F

)
= 0 (4.7.138)

and at least for problems defined on infinite or semi-infinite intervals, we
may be conclude from (4.7.30)–(4.7.32) that 1/F is not square-integrable
and hence cannot correspond to any eigenvalue (discrete spectrum).
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On the other hand if E �= 0 is an eigenvalue of H+, then

H+ |ψ〉 = A†A |ψ〉 = E |ψ〉 (4.7.139)

where ‖ψ‖ < ∞. Upon multiplying the above by A from the left, we obtain

A A† (A |ψ〉) = H− (A |ψ〉) = E (A |ψ〉) (4.7.140)

where we have used (4.7.48), and rather formally infer that E also belongs
to the discrete spectrum of H−.

In the light of the above discussion, we consider a couple of examples.
Consider the superpotential

w(z) = − tanh z, −∞ < z < ∞ (4.7.141)

corresponding to ξ = 1 in (4.7.61). Then

H+ = −1
2

d2

dz2
+

1
2
(
1 − 2 sech2z

)
(4.7.142)

and

H− = −1
2

d2

dz2
+

1
2

(4.7.143)

(see (4.7.62), (4.7.63)). Clearly 0 cannot be an eigenvalue of H−.
The ground-state wavefunction F (z) of H+ is given from (4.7.64) to be17

F (z) = sech z (4.7.144)

(up to a normalization constant) which is square-integrable and vanishes
for |z| → ∞. On the other hand, 1/F (z) = cosh z, apart from its notable
properties for |z| → ∞, is not square-integrable. A second formal solution to
this, as obtained from Problem 4.9 (iii), gives the function sinh z and hence
is not acceptable either. That is, 0 is not an eigenvalue of H−, with the latter
having an empty discrete spectrum, as expected.

As another example, consider the superpotential

w(z) = π cot πz, 0 < z < 1. (4.7.145)

Hence

H+ = −1
2

d2

dz2
− π2

2
(4.7.146)

H− = −1
2

d2

dz2
+ π2

(
cot2 πz +

1
2

)
(4.7.147)

17 Note that a second formal solution of, H+g = 0 as obtained from Problem 4.9 (iii)
is given by g(z) = [sinh z + z sech z] and is not acceptable because it is not square-
integrable and its related bad behavior for |z| → ∞.
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where we note that V−(z) → ∞ for z → 0, 1.
The ground-state of H+ is given by

F (z) = exp
(∫ z

πdz cot πz

)

= sin πz (4.7.148)

(up to a normalization constant), which is square-integrable on [0, 1] and
vanishes for z → 0, 1. The function 1/F (z) = csc πz, apart from its notable
properties for z → 0, 1, is not square-integrable, neither is a second formal
solution of H+g = 0, given by

g(z) =
1

sin πz

[
z − sin 2πz

2π

]
(4.7.149)

as obtained from Problem 4.9 (iii). [Note that g(z) in (4.7.149) was chosen
such that g(0) = 0.] That is 0 is not an eigenvalue (i.e., not in the discrete
spectrum) of H−.

Now consider the eigenvalue E = 3π2/2 of H+ in (4.7.146) with eigen-
vector represented by ψ(z) = sin 2πz (up to a normalization factor). From
(4.7.140), (4.7.145), we are then led to consider the function

Aψ(z) = − i√
2

[
d
dz

− π cot πz

]
sin 2πz

= iπ
√

2 sin2 πz (4.7.150)

(vanishing at z = 0, 1) which is square-integrable, hence the non-zero eigen-
value E = 3π2/2 is also in the discrete spectrum of H−.

The formal rules spelled out above about a zero eigenvalue versus a non-
zero E �= 0 eigenvalue are, in general, true modulo some mathematical sub-
tleties. A careful analysis of this involving all subtleties, with the boundary
conditions at hand, for all general cases is quite tedious, and it is relatively far
easier to examine a pair of supersymmetric Hamiltonian partners at a time.
The moral of the formal analysis at the end of this section given through
(4.7.135)–(4.7.140) is this. By studying the eigenvalue problem of a simple
Hamiltonian, as in (4.7.146), one obtains information about the eigenvalues
of a relatively much more complicated Hamiltonian, as in (4.7.147), with little
extra work!

Much work has been done on the role of supersymmetry in quantum
physics and not just on the eigenvalue problem and we refer the reader to
the rapidly developing literature on this subject in physics journals. We will
have ample opportunities to apply notions of supersymmetry in various other
chapters as well.
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Problems

4.1. Consider the spherically symmetric potential V (r) = −λe−r/R, λ >
0, R > 0 providing an elementary and rather formal model for the
deuteron, as a loosely bound-state of a proton and a neutron with a
binding energy E � −2.23 MeV, with � = 0.
(i) By choosing N0 = 1 for � = 0, in (4.5.86) providing exactly one

bound-state, obtain a lower bound for λ as a function of �
2/µR2.

(ii) Find the exact solution for the ground-state (� = 0).
(iii) Taking, as input data, R = 2.180 fm (fm = 10−15 m), E = −2.23

MeV with the reduced mass of the deuteron µ = mpmn/(mp+mn),
obtain a value for λ (and the potential energy “depth” U0 in
(4.2.89)) admitting only one bound state. Is your estimate con-
sistent with the lower bound in (i)?

4.2. For the Yukawa potential V (r) = −λe−r/R/(r/R), in three dimen-
sions, with λ > 0, R > 0, choose 2µR2/�

2 = 3/λ. Using a radial trial
wavefunction ψ(r) = Ae−r/R0 for � = 0, with respect to the measure
r2dr, derive an upper bound for the ground-state energy (� = 0) as a
function of λ, by optimizing over the parameter R/R0. What can you
say about the maximum number of bound-states this potential can
ever have for � = 0?

4.3. For the Hamiltonian

H = −1
2

d2

dz2
+ π2 cot2(πz), 0 < z < 1

in one dimension, with a confining potential, expressed in terms of
a dimensionless variable z, and in some suitable energy unit, find the
eigenvalues and the eigenvectors for this Hamiltonian. [The reader will
be asked to reconsider this Hamiltonian in Problem 4.16 in the light of
supersymmetry in reference to the pair of Hamiltonians in (4.7.146),
(4.7.147) for direct comparison.] You may express the solutions for the
eigenvectors in terms of hypergeometric functions (see, e.g., Arfken
and Weber (1995) for the properties of these functions.)

4.4. Show that in two dimensions, the trace
∫

d2x 〈x |Aρ|x〉 in (4.5.42)
for ρ = 1, where A is given in (4.5.27), is infinite which necessitates
another choice for ρ, e.g., ρ = 3/2 as in (4.5.93).

4.5. Prove the inequality in (4.5.93), where A is given in (4.5.27). [This is
a hard nut to crack.]

4.6. Derive the general expression in (4.6.8) for the expectation value of
the kinetic energy T which is also valid for ν = 2, 1.

4.7. As in Problem 4.6, derive (4.6.11) which is valid for ν = 3, 2, 1.
4.8. Extend the analyses in deriving a lower bound to T in §4.6 for multi-

particle systems in ν = 2, 1 dimensions as done there for ν = 3. Can
you extend the analysis also to higher dimensions?
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4.9. Consider two possible functions f(z), g(z), satisfying formally the
time-independent Schrödinger equation in one-dimension[

−1
2

d2

dz2
+ V (z)

]
y(z) = Ey(z)

expressed in terms of a dimensionless variable, where E is a real num-
ber (the eigenvalue).
(i) Show that this equation leads to the constraint

g′(z) f(z) − f ′(z) g(z) = α

where α is some constant which depends on the boundary condi-
tions to be imposed on the functions. [Note that this property is
consistent with the Hermiticity condition of the Hamiltonian in
question.]

(ii) Show that for f ′(z)/f(z) = −w(z), where w(z) is some given func-
tion, g(z) satisfies the differential equation

g′(z) + w(z)g(z) =
α

f(z)

and hence the homogeneous solution of this equation coincides
with the one satisfied by f(z).

(iii) Show that the general solution for g(z) in part (ii) is given by

g(z) = αf(z)
∫ z dz

f2(z)
+ βf(z)

where β is a constant. That is, given a formal solution f(z) of
the Schrödinger equation above, then any other formal solution is
related to f(z) as given above. Also for the boundary conditions
which specify that α ≡ 0, the above shows that the formal solution
f(z) is unique.

4.10. Show that any Hamiltonian H = p2/2m + V (x), which has a finite
ground-state energy E0 with ground-state wavefunction ψ0(x), may
be rewritten as H = A† · A + E0, where

A =
1√
2m

[
p +

i� (∇ψ0)
ψ0

]

[Note that, in one-dimension � (∂ψ0/∂x) /ψ0 = w(x) in (4.7.45), for
ψ0(x) square-integrable.]

4.11. The Virial Theorem. Consider the Hamiltonian of a single particle
H = H0 + V (x), where H0 = p2/2m, and the eigenvalue equation
Hψ = Eψ. Suppose that ψ(x) is non-vanishing in a region R, of
volume υ, only. R may be of finite or of infinite extension. For example,
for a particle confined to a rigid sphere of finite radius, R is of finite
extension.
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(i) Show first that for a given function φ(x)
∫

υ

d3x ψ∗H0φ =
∫

υ

d3x (H0ψ
∗)φ

− �
2

2m

∮
s

dS · [ψ∗∇φ − (∇ψ∗)φ]

where the volume υ is bounded by the closed surface S, and that

(x · ∇ H0 ψ) = −2 H0ψ + H0(x · ∇ψ).

(ii) Upon multiplying the eigenvalue equation [H0 + V (x)] ψ(x) =
Eψ(x) from the left by ψ∗(x · ∇), and using the results in (i)
show that

2 〈H0〉υ−〈x · ∇V 〉υ =
�

2

2m

∮
s

dS·[(∇ψ∗)(x · ∇ ψ) − ψ∗∇(x · ∇ ψ)]

where 〈A〉υ =
∫

υ
d3x ψ∗A ψ.

(iii) For a multi-particle system of N particles, with Hamiltonian

H =
N∑

i=1

p2
i /2mi + V (x1, . . . ,xN),

and eigenvalue equation

Hψ(x1ε1, . . . ,xNεN ) = Eψ(x1ε1, . . . ,xNεN ),

where ε1, . . . , εN = ε are, in general, extra labellings needed to

theorem in (ii) is readily generalized to

2

〈
N∑

j=1

p2
j/2mj

〉
−
〈

N∑
j=1

(xj · ∇j V )

〉

=
∑

ε

N∑
k=1

�
2

2mk

∫
d3x1 . . . d3xk−1 d3xk+1 . . . d3xN

×
∮

dSk ·


(∇k ψ∗)


 N∑

j=1

xj · ∇jψ


− ψ∗∇k


 N∑

j=1

xj · ∇jψ






where, in an obvious notation, the integrations are over the con-
figurational coordinates.
[Ref: Marc and McMillan (1985).]

( )
specify the particles, such as spin, charge, . . ., show that the virial
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4.12. Verify the commutation relation (4.7.33), and show that the generators
in (4.7.34) lead from (4.7.3) to the Hamiltonian in (4.7.35).

4.13. For the Fermi operators in (4.7.36), verify the underlying anti-
commutation relationships given there. Then show that the generators
in (4.7.37) lead to the Hamiltonian in (4.7.38).

4.14. Show that, as direct generalization of the two Fermi operators defined
in (4.7.36) as 4×4 matrices, one may introduce three Fermi operators,
as 8 × 8 matrices,

χ1 =
(

Ψ1 0
0 −Ψ1

)
, χ2 =

(
Ψ2 0
0 −Ψ2

)
, χ3 =

(
0 0
1 0

)

where Ψ1, Ψ2 are given in (4.7.36), and satisfy the anti-commutation
relations

{χi, χj} = 0,
{

χ†
i , χ

†
j

}
= 0,

{
χi, χ

†
j

}
= 1δij .

Use these operators to generate supersymmetric Hamiltonians in
higher dimensions.

4.15. Study the eigenvalue problem for the Hamiltonian H+(ξ) with super-
potential w(z, ξ) in (4.7.61) with shape invariant partner potentials
satisfying (4.7.63). [Determine, in particular, the number of the eigen-
values.]

4.16. From the elementary eigenvalue problem associated with the Hamil-
tonian H+ in (4.7.146) for a particle confined to a one dimensional
box with constant potential −π2/2, use supersymmetry to generate
the eigenvalues and eigenvectors for the far more complicated Hamil-
tonian H− in (4.7.147). Compare your results with the ones obtained
in Problem 4.3.

4.17. Consider the superpotential

w(z) =
1
z
− z, 0 < z < ∞.

(i) Derive the expressions for the supersymmetric partner potentials
V+, V−.

(ii) Find the ground-state of H+, corresponding to the eigenvalue 0.
Is the value 0 also the ground-state energy of H−? Show your
analysis in detail.

(iii) Refer to Chapter 6, if needed, to find the eigenvalues and eigen-
vectors of H+ with the latter vanishing for z → 0, z → ∞. Do all
the eigenvalues E �= 0 of H+ also belong to H−?
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Angular Momentum Gymnastics

Under a coordinate rotation (§2.1) by an angle ϕ about a unit vector n,
a state |ψ〉 obeys the transformation law (see (2.3.1), (2.3.43))

|ψ′〉 = exp
(

i
�
ϕn · J

)
|ψ〉 (5.1)

where J is the angular momentum operator (§2.7), satisfying the commuta-
tion relations [

J i, Jj
]

= i�εijkJk (5.2)

i, j = 1, 2, 3.
By defining

J2 = (J1)2 + (J2)2 + (J3)2 (5.3)

we note that [
J2, J i

]
= 0, i = 1, 2, 3. (5.4)

Since the different components J i do not commute, but they all commute
with J2, we may find simultaneous eigenstates of J2 and one, and only one,
of the components J i which is traditionally taken to be J3.

We denote the simultaneous eigenstates of J2, J3 by |α, β〉:

J2 |α, β〉 = α |α, β〉 (5.5)

J3 |α, β〉 = β |α, β〉 . (5.6)

In a given physical problem, there may be, in general, in addition to
J2, J3, more observables constituting together a complete set of compatible
observables. In such cases, the simultaneous eigenstates of the corresponding
complete set of commuting operators, will depend on additional parameters to
α and β, which for simplicity of notation will be suppressed. We suppose that
these additional operators, in the complete set of operators, each commutes
with the angular momentum operator J. The latter means that if we denote
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the simultaneous eigenstates of the complete set of observables, including J2,
J3, by |α, β, κ〉, with κ denoting collectively the additional quantum numbers
needed to specify the eigenstates, then

〈α′, β′, κ′ |J|α, β, κ〉 = 0 unless α′ = α and κ′ = κ (5.7)

where we recall that α is the eigenvalue of J2 (see (5.5)).
To study the eigenvalue problem (5.5), (5.6), the introduction of the so-

called ladder operators
J± = J1 ± iJ2 (5.8)

turns out to be very useful. They satisfy, in particular, the following relations
[
J2, J±

]
= 0 (5.9)

[
J3, J±

]
= ±�J± (5.10)

[
J+, J−

]
= 2�J3 (5.11)

J∓J± = J2 − (J3)2 ∓ �J3 (5.12)

J− = J†
+

and from (5.7)

〈α′, β′, κ′ |J±|α, β, κ〉 = 0 unless α′ = α, κ′ = κ. (5.13)

Finally we summarize pertinent properties established in §2.7, §2.8 for
arbitrary spins.

The general structure of the angular momentum J is given in (2.7.6) to
be

J = X × P + S (5.14)

where X denotes the position operator associated with a particle, or of the
center of mass position of a system of particles, and, the spin, S is the trans-
lational independent contribution to J,

[
P i, Sj

]
= 0 (5.15)

and
[
Xi, Sj

]
= 0 (5.16)

[
Si, Sj

]
= i�εijkSk (5.17)

[
S2, Si

]
= 0. (5.18)
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Arbitrary spins s � 1/2, may be described by a completely symmetric
spinor ψa1...a2s (§2.8) and, under a coordinate rotation by an angle ϕ about
a unit vector n, it transforms as given in (2.8.1). For s = 0, we have

ψ′(x′) = ψ(x) (5.19)

where x′ = Rx.
Under a coordinate rotation by an angle 2π, about any unit vector n, one

has the profound relation (2.8.68):

ψ′a1...a2s(x) = (−1)2sψa1...a2s(x), (5.20)

for all s = 0, 1/2, 1, 3/2, . . .. This relation emphasizes the odd nature charac-
ter of half-odd integral spins. Only a rotation by 4π (or integer multiples of
it) restores a (+1) value for the corresponding transformed spinors for such
spin values. The phase change of (−1) occurring for half-odd spin values is
observable and will be discussed in §8.12.

The unitarity relation (2.8.24), (2.8.25), between spinors and wavefunc-
tions should be noted. The matrix elements of the operator exp

(
i
�
ϕn · S

)
with respect to the simultaneous eigenstates of S3, S2 (see (2.8.45), (2.8.46))
are given in (2.8.51).

This chapter covers in fairly details most of the aspects dealing with
the intricacies of angular momentum and is quite complete. The eigenvalue
problem (5.5), (5.6) is discussed in §5.1 followed by determining the matrix
elements of finite arbitrary rotations in §5.2. Orbital angular momentum and
spin are covered, respectively, in §5.3 and §5.4. The vectorial addition of two
independent angular momenta and the respective rules are worked out in
§5.5, §5.6. So called vector and, more generally, tensor operators are treated
in §5.7, §5.8 which lie in the heart of the theory of angular momentum. In §5.9,
we consider the problem of combining several independent angular momenta.
The final section, §5.10, deals with the definition and construction of single
and two particle states of arbitrary spins in terms of angular momentum
components which have become quite useful over the years.

The association of the word “gymnastics” with a topic such as angular
momentum involving “infinite” details is due to A. S. Wightman and we find
it quite appropriate to include it in the heading of this chapter. This in no
way, however, is meant to diminish the importance of the subject of angular
momentum.

5.1 The Eigenvalue Problem

We consider the eigenvalue problem

J2 |α, β〉 = α |α, β〉 (5.1.1)
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J3 |α, β〉 = β |α, β〉 (5.1.2)

which on account of J2 �
(
J3
)2, imply that

α � β2. (5.1.3)

Since J2, J i satisfy (see (5.2), (5.4)) exactly the same commutation rela-
tions as S2, Si (see (2.8.46), (2.8.47)), the solution of the eigenvalue problem
in (5.1.1), (5.1.2) may be formally inferred from (2.8.46), (2.8.47). The fol-
lowing independent and general derivation is, however, illuminating.

Let β denote the largest possible value for β satisfying (5.1.3). Then from
(5.10)

J3J+

∣∣α, β
〉

=
(
β + �

)
J+

∣∣α, β
〉

(5.1.4)

which is consistent with the fact that β is the largest possible value for β
satisfying (5.1.3) only if J+

∣∣α, β
〉

is the zero vector. The latter, in particular,
implies that

J−J+

∣∣α, β
〉

= 0 (5.1.5)

which from (5.11), (5.1.1), (5.1.2) gives
(
α − β

2 − �β
) ∣∣α, β

〉
= 0 (5.1.6)

and hence
α = β

(
β + �

)
(5.1.7)

since
∣∣α, β

〉
is not the zero vector.

Let β denote the smallest possible value for β satisfying (5.1.3). Then
from (5.10),

J3J−
∣∣α, β

〉
=
(
β − �

)
J−

∣∣α, β
〉

(5.1.8)

leading, in analogy to (5.1.7), to

α = β
(
β − �

)
. (5.1.9)

Upon adding β β to both sides of (5.1.9), (5.1.7) and comparing these equa-
tions, we obtain (

β + β
) (

β − β + �
)

= 0. (5.1.10)

Since β � β, this gives the unique solution

β = −β. (5.1.11)

By repeated applications of (5.10), with the upper sign, k times lead to

J3 (J+)k ∣∣α, β
〉

=
(
β + �k

)
(J+)k ∣∣α, β

〉
(5.1.12)

which imply that there exists a largest non-negative integer k such that
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β = β + �k (5.1.13)

or from (5.1.11) to

β =
�k

2
≡ �j, β = −�j (5.1.14)

where we have denoted the latter by �j. Accordingly, from (5.1.7), we may
write

α = �
2j (j + 1) (5.1.15)

and due to the very nature of k as a non-negative integer, the possible values
of j are restricted to

j = 0,
1
2
, 1,

3
2
, . . . . (5.1.16)

On the other hand, from (5.1.12), (5.1.13) we may write

β = β + �k = −�j + �k (5.1.17)

and since k = 0, 1, . . . , k = 2j, we have for the possible values of β:

− �j,−�j + �, . . . , �j − �, �j. (5.1.18)

Upon setting β = �m, and using the standard labelling for the eigen-
states of J2, J3 by |j,m〉, instead of |α, β〉, we may summarize the eigenvalue
problem through

J2 |j,m〉 = �
2j (j + 1) |j,m〉 (5.1.19)

J3 |j,m〉 = �m |j,m〉 (5.1.20)

〈j′,m′ |j,m〉 = δj′jδm′m (5.1.21)

where the possible values of j are given in (5.1.16), and, from (5.1.18), the
allowed m values are

m = −j,−j + 1, . . . , j − 1, j. (5.1.22)

With the assumption that the additional operators, to J2, J3, in the
complete set of operators, commute with the angular momentum operator J,
and hence also with J±, we may identify, by using in the process (5.7),

J± |j,m〉 = C± (j,m) |j,m ± 1〉 (5.1.23)

and obtain from (5.11), (5.12),

〈j,m |J∓J±|j,m〉 = �
2 (j ∓ m) (j ± m + 1) (5.1.24)

leading, with a standard phase convention, to
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J± |j,m〉 = �

√
(j ∓ m) (j ± m + 1) |j,m ± 1〉 . (5.1.25)

By repeated application of J− to |j,m〉 k times, we obtain the useful
expression

(J−)k |j,m〉 =




(�)k

√
(j + m)! (j − m + k)!
(j − m)! (j + m − k)!

|j,m − k〉 , k = 0, 1, . . . , j + m

0, k = j + m + 1, j + m + 2, . . . .

(5.1.26)
That is, k is restricted to non-negative integers such that the arguments of
the factorials are non-negative.

Similarly,

(J+)k |j,m〉 =




(�)k

√
(j − m)! (j + m + k)!
(j + m)! (j − m − k)!

|j,m + k〉 , k = 0, 1, . . . , j − m

0, k = j − m + 1, j − m + 2, . . . .

(5.1.27)
For further reference, we also note from the definitions in (5.8) and the

relations in (5.1.25) that

J1 |j,m〉 =
�

2

√
(j − m) (j + m + 1) |j,m + 1〉

+
�

2

√
(j + m) (j − m + 1) |j,m − 1〉 (5.1.28)

J2 |j,m〉 = −i
�

2

√
(j − m) (j + m + 1) |j,m + 1〉

+ i
�

2

√
(j + m) (j − m + 1) |j,m − 1〉 . (5.1.29)

5.2 Matrix Elements of Finite Rotations

Since the angular momentum components J1, J2, J3 satisfy the same com-
mutation relations as the spin components S1, S2, S3, and the rules for the
action of the operators J i on the states |j,m〉 (see (5.1.20), (5.1.28), (5.1.29))
are identical to the action of the operators Si on the states |s,ms〉 (see
(2.8.43)–(2.8.45), (2.8.22)), we may conclude directly from (2.8.51), that the

explicit expressions for the matrix elements of the operator exp
(

iϕ
�

n · J
)

,

with respect to the states |j,m〉, is given by



5.2 Matrix Elements of Finite Rotations 255
〈

j,m

∣∣∣∣exp
(

iϕ
�

n · J
)∣∣∣∣j′,m′

〉

= δj′j

∑
q

√
(j + m)!(j − m)!(j + m′)!(j − m′)!

(j + m − q)!(m′ − m + q)!q!(j − m′ − q)!

×
(
[A]11

)j+m−q (
[A]21

)m′−m+q (
[A]12

)q (
[A]22

)j−m′−q

(5.2.1)

where the sum is over all non-negative integers q such that the arguments of
the factorials are non-negative integers. Here

A =




cos
ϕ

2
+ in3 sin

ϕ

2
i
(
n1 − in2

)
sin

ϕ

2

i
(
n1 + in2

)
sin

ϕ

2
cos

ϕ

2
− in3 sin

ϕ

2


 (5.2.2)

and n =
(
n1, n2, n3

)
.

We rewrite the matrix elements of finite rotations in (5.2.1) in the equiv-
alent description in terms of the so-called Euler angles.

To the above end, we define consecutive rotations specified by the Euler
angles α, β, γ in the following manner:

• A counter-clockwise rotation of the coordinate system x y z about the
z-axis by an angle α, defining the coordinate system x′ y′ z′,

• the above is followed by a counter-clockwise rotation of the coordinate
system x′ y′ z′ about the y′-axis by an angle β, defining the coordinate
system x′′ y′′ z′′,

• finally, this is followed by a counter-clockwise rotation of the coordinate
system x′′ y′′ z′′ about the z′′-axis by an angle γ, defining the final coor-
dinate system x y z.

The above consecutive rotations are illustrated in Figure 5.1 below.
A vector x with components (x, y, z)

(
= (x1, x2, x3)

)
in the coordinate

system x, y, z, is described to have the components x, y, z in the final coor-
dinate system x y z, as follows:


x

y
z


 = R (α, β, γ)


x

y
z


 (5.2.3)

and

R (α, β, γ) =


 cos γ sin γ 0
− sin γ cos γ 0

0 0 1




cos β 0 − sin β

0 1 0
sinβ 0 cos β




 cos α sin α 0
− sin α cos α 0

0 0 1
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Fig. 5.1. Definition of the Euler angles (α, β, γ). The coordinate systems
resulting from the rotations are as follows: xyz −→

α
x′y′z′ −→

β
x′′y′′z′′ −→

γ
x y z,

with a rotation by an angle α about the z-axis, followed by a rotation by an
angle β about the y′-axis, followed by a rotation by an angle γ about the
z′′-axis, respectively.

=

(
cos β cos α cos γ − sin α sin γ cos β sin α cos γ + cos α sin γ − sin β cos γ
− cos β cos α sin γ − sin α cos γ − cos β sin α sin γ + cos α cos γ sin β sin γ

sin β cos α sin β sin α cos β

)

(5.2.4)

Upon the comparison of the matrix elements of R (α, β, γ), given in (5.2.4),
with those given in (2.1.4), corresponding to a counter-clockwise rotation by
an angle ϕ about a unit vector

n = (cos φ sin θ, sin φ sin θ, cos θ) , (5.2.5)

one obtains the equalities

sin
β

2
= sin θ sin

ϕ

2
(5.2.6)

iei(α−γ)/2 = eiφ (5.2.7)
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cos
β

2
ei(α+γ)/2 =

(
cos

ϕ

2
+ i cos θ sin

ϕ

2

)
. (5.2.8)

Accordingly, the matrix A in (5.2.2) may be rewritten in terms of the
Euler angles in the form

A =




cos
β

2
ei(α+γ)/2 sin

β

2
e−i(α−γ)/2

− sin
β

2
ei(α−γ)/2 cos

β

2
e−i(α+γ)/2


 (5.2.9)

from which (5.2.1) is spelled out to be
〈

j,m

∣∣∣∣exp
(

iϕ
�

n · J
)∣∣∣∣j′,m′

〉

= δj′j

∑
q

√
(j + m)!(j − m)!(j + m′)!(j − m′)!

(j + m − q)!(m′ − m + q)!q!(j − m′ − q)!

× (−1)m′−m+q

(
cos

β

2

)2j+m−m′−2q (
sin

β

2

)m′−m+2q

eim′αeimγ (5.2.10)

as expressed completely in terms of the Euler angles α, β, γ, where the sum
is over all non-negative integers q such that the arguments of the factorials
are non-negative integers.

Upon the comparison of (5.2.10) with (2.8.52) and using, in the process,
(5.1.20), (5.2.7), we also have the identity

〈
j,m

∣∣∣∣exp
(

iϕ
�

n · J
)∣∣∣∣j,m′

〉
=
〈
j,m

∣∣∣
(

exp
iγ

�
J3

)(
exp

iβ
�

J2

)

×
(

exp
iα
�

J3

) ∣∣∣j,m′
〉

(5.2.11)

expressing the relationships between the two equivalent schemes, where all
the rotations specified on the right-hand side of (5.2.11) are about the original
axes 0z, 0y, 0z, respectively.

We use the notation〈
j,m

∣∣∣∣
(

exp
iγ
�

J3

)(
exp

iβ
�

J2

)(
exp

iα
�

J3

)∣∣∣∣j,m′
〉

≡ D
(j)
mm′ (α, β, γ)

(5.2.12)
and 〈

j,m

∣∣∣∣
(

exp
iβ
�

J2

)∣∣∣∣j,m′
〉

≡ D
(j)
mm′ (0, β, 0) ≡ d

(j)
mm′(β). (5.2.13)
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The D
(j)
mm′ (α, β, γ) have the following property upon complex conjuga-

tion, (
D

(j)
mm′(α, β, γ)

)∗
= (−1)m′−mD

(j)
−m,−m′(α, β, γ) (5.2.14)

as follows from (5.2.10).
Useful orthogonality relations of the D

(j)
mm′(α, β, γ) will be derived in §5.5

when combining two commuting angular momenta.
The following relations for the matrix elements d

(j)
mm′(β) in (5.2.13) easily

follow from the explicit expression given in (5.2.10)

d
(j)
mm′(π − β) = (−1)j+m′

d
(j)
−m,m′(β) (5.2.15)

d
(j)
mm′(π) = (−1)j−mδm,−m′ (5.2.16)

d
(j)
mm′(−π) = (−1)j+mδm,−m′ (5.2.17)

d
(j)
mm′(2π) = (−1)2jδm,m′ . (5.2.18)

For j as obtained from the addition of an orbital angular momentum and
spin, with quantum numbers � and s, as studied in §5.5, j = |�− s|, |�− s|+
1, . . . , � + s. Then for � � s, j = � − s + k, k = 0, 1, . . . , 2s and (−1)2j =
(−1)−2s = (−1)2s. For � < s, j = s− � + k, k = 0, 1, . . . , 2�, (−1)2j = (−1)2s.
That is

d
(j)
mm′(2π) = (−1)2sδmm′ (5.2.19)

in conformity with (5.20).

5.3 Orbital Angular Momentum

5.3.1 Transformation Theory

From §5.2, the orbital angular momentum L (see (2.7.6), (2.7.11)) is de-
fined by

L = X × P. (5.3.1)

Conversely, with (2.7.43) providing the definition of the transformation of
a state, in the coordinate description, under a coordinate rotation, we have

ψ′(x′) =
(

exp
(

i
�
ω · S

)
ψ

)
(x) (5.3.2)

with x′ = Rx, ω = ϕn (§2.1), or

ψ′(x) =
(

exp
(

i
�
ω · S

)
ψ

)(
R−1x

)
. (5.3.3)
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For example, for infinitesimal δϕ

R−1x = x + δω × x

(see (2.1.13) with δω → −δω), and

ψ(x + δω × x) = ψ(x) +
i
�
δω · Lψ(x) (5.3.4)

by carrying out a Taylor expansion, where

L = x × (−i�∇) (5.3.5)

provides the coordinate description for L. From (5.3.3), (5.3.4) give for infin-
itesimal δϕ

ψ′(x) =
([

1 +
i
�
δω · (S + L)

]
ψ

)
(x) (5.3.6)

which upon comparison with the transformation law of a state in (5.1),
(2.3.43), for infinitesimal δϕ, provides the definition of J in terms of L and
S in (2.7.6).

In spherical coordinates (r, θ, φ), we have the following representations

L3 = −i�
∂

∂φ
(5.3.7)

L2 = −�
2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

]
(5.3.8)

and for the ladder operators (5.8),

L± = � e±iφ

[
i cot θ

∂

∂φ
± ∂

∂θ

]
. (5.3.9)

5.3.2 Half-Odd Integral Values?

We first formally show that according to the eigenvalue scheme for an-
gular momentum developed in §5.1, the orbital angular momentum does not
admit half-odd integral j values.1 There is a long history associated with this
problem beginning with some work by Pauli which, however, we will not go
into it here.

With m = j, k = 1, (5.1.27) gives from (5.3.9),

0 = L+ 〈θ, φ |j, j〉 = � eiφ

[
i cot θ

∂

∂φ
+

∂

∂θ

]
〈θ, φ |j, j〉 (5.3.10)

1 We will eventually use the standard notation � for the quantum number asso-
ciated with the orbital angular momentum once it is seen below that half-odd
integer values are not acceptable for the latter.



260 5 Angular Momentum Gymnastics

or [
i cot θ

∂

∂φ
+

∂

∂θ

]
〈θ, φ |j, j〉 = 0 (5.3.11)

whose solution is
〈θ, φ |j, j〉 = Ajeijφ (sin θ)j (5.3.12)

where

Aj =

√
1
2π

Γ(j + 3/2)
Γ(j + 1)Γ(1/2)

(5.3.13)

and we have used the integral
∫ π

0

dθ (sin θ)2j+1 =
√

π
Γ(j + 1)

Γ(j + 3/2)
(5.3.14)

for normalizing 〈θ, φ |j, j〉.
From (5.3.9), (5.3.12), we explicitly have

L− 〈θ, φ |j, j〉 = �Ajei(j−1)φ(sin θ)j−1(−2)j[cos θ] (5.3.15)

(L−)2 〈θ, φ |j, j〉 = �
2Ajei(j−2)φ(sin θ)j−2(−2)2

× j

[
(j − 1) cos2 θ − 1

2
sin2 θ

]
. (5.3.16)

In particular, for j = 1/2, (5.3.16) gives

(L−)2 〈θ, φ |1/2, 1/2〉 = −�
2

π
e−3iφ/2(sin θ)−3/2 (5.3.17)

while (5.1.26), with j = m = 1/2, k = 2, states that (5.3.17) should be zero
and hence, in particular, L− 〈θ, φ |j, j〉 should be in the domain of definition
of L−. We will see later that such a contradiction does not arise for integral
values of j for the orbital angular momentum. [The expression in (5.3.17)
is not only different from zero but is also not even square-integrable over θ,
i.e., L− 〈θ, φ |1/2, 1/2〉 is taken out of the space of square-integrable functions
over θ, φ by the action of L−.]

To proceed with other half-odd integral j values we consider the following.
By repeated applications of L− to 〈θ, φ |j, j〉, as in (5.3.15), (5.3.16), we have
the following elementary limits

L− 〈θ, φ |j, j〉 −−−→
θ→0

�Ajei(j−1)φ (−2) jθj−1

(L−)2 〈θ, φ |j, j〉 −−−→
θ→0

�
2Ajei(j−2)φ (−2)2 j (j − 1) θj−2

...
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(L−)2j 〈θ, φ |j, j〉 −−−→
θ→0

(�)2j
Aje−ijφ (−2)2j

j (j − 1) · · · (−j + 1) (−j) θ−j .

That is, explicitly,

lim
θ→0

θj(L−)2j 〈θ, φ |j, j〉

=




(�)2jAj e−ijφ (−2)2j (−1)j+1/2Γ2(j + 1)π−1; j = 1/2, 3/2, . . .

0, j = 0, 1, . . .

(5.3.18)

where we have used the fact that −j(−j + 1) . . . (j − 1)j necessarily includes
0 as a factor for integral values for j.

More generally, as an induction hypothesis, suppose, by invoking (5.3.15),
(5.3.16), that for some k � 1

(L−)k 〈θ, φ |j, j〉 = (�)kAjei(j−k)φ(sin θ)j−kPk(cos θ, j) (5.3.19)

where Pk(cos θ, j) is some polynomial of degree k in cos θ whose coefficients
depend on j.

By using the elementary property

∂

∂θ
Pk(cos θ, j) = − sin θ

∂

∂ cos θ
Pk(cos θ, j) (5.3.20)

we obtain directly by the application of L− to (5.3.19), that
(L−)k+1 〈θ, φ |j, j〉 has the same structure as in (5.3.19) with k replaced by
(k + 1) on its right-hand side.

Equation (5.3.18) gives for θ → 0:

P2j(cos θ = 1, j) = (−2)2j(−1)j+1/2Γ2(j + 1)π−1; j = 1/2, 3/2, . . . .
(5.3.21)

That is, for such j values, cos θ = 1 is not a root of P2j(cos θ, j). Now since
P2j(cos θ, j) is a polynomial in cos θ, and hence is continuous, the polynomial
cannot abruptly vanish as we move away from cos θ = 1 to cos θ < 1 from
the non-vanishing value in (5.3.21) for cos θ = 1. Hence there exists a non-
empty interval 0 � θ < αj , where αj depends on j and is strictly positive,
such that P2j(cos θ, j) �= 0 for all θ in this interval. The latter in turn means
that there exists a strictly positive constant Cj which depends on j such that
|P2j(cos θ, j)| � Cj > 0, for j = 1/2, 3/2, . . ., for 0 � θ < αj .

Finally, from (5.1.26), (5.3.19), with k = 2j, m = j, we may formally
write

〈θ, φ |j,−j〉 =
Aj

(2j)!
e−ijφ(sin θ)−jP2j(cos θ, j) (5.3.22)

and for half-odd integral j, one has the following lower bound
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∫ 2π

0

dφ

∫ π

0

dθ sin θ |〈θ, φ |j,−j〉|2 � 2π

∫ αj

0

dθ sin θ |〈θ, φ |j,−j〉|2

� 2π
|Aj |2

((2j)!)2
C2

j

∫ αj

0

dθ (sin θ)1−2j (5.3.23)

where αj is strictly positive, and the integral on the extreme right-hand side
of (5.3.23), clearly, does not exist (due to the divergence at the origin) for
j = 3/2, 5/2, . . . which is in contradiction with the normalizability of the
eigenstates in the eigenvalue problem.

For the non-admittance of j = 1/2 for orbital angular momentum, see
(5.3.17), (5.3.42) and the discussions immediately below these equations.

With half-odd integral values of j not admitted for the orbital angular
momentum, we will denote the latter parameter by �, where now

� = 0, 1, 2, . . . (5.3.24)

m = −�,−� + 1, . . . , 0, 1, . . . , � − 1, �. (5.3.25)

We also use the notation

〈θ, φ |�,m〉 ≡ Y�m(θ, φ) (5.3.26)

defining the so-called spherical harmonics treated next.

5.3.3 The Spherical Harmonics

With an adopted sign convention, (5.3.12) gives the properly normalized
expressions

Y��(θ, φ) = (−1)�

√
(2� + 1)
4π(2�)!

ei�φ

[
(2�)!
2��!

(sin θ)�

]
(5.3.27)

where we have written the normalization constant Al in (5.3.13) as
√

Γ (� + 3/2)
2πΓ (� + 1) Γ (1/2)

=

√
(2� + 1)
4π (2�)!

(2�)!
2��!

. (5.3.28)

Equation (5.1.26) leads to the following recursive relation

Y� k−1 (θ, φ) =
1
�

1√
(� + k) (� − k + 1)

L−Y� k. (5.3.29)

As an induction hypothesis, suppose that for all m = �, � − 1, . . . , k, for
some k,
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Y�m (θ, φ) = (−1)(m+|m|)/2 eimφ

√
(2� + 1)

4π

(� − |m|)!
(� + |m|)!P

|m|
� (cos θ) (5.3.30)

where

P
|m|
� (x) =

(
1 − x2

)|m|/2

2��!

(
d
dx

)�+|m| (
x2 − 1

)�
. (5.3.31)

For m = �, we check that Y� � (θ, φ) in (5.3.27) satisfies (5.3.30) by noting
that (

d
dx

)2� (
x2 − 1

)�
= (2�)!. (5.3.32)

We will show that (5.3.30) also holds true with k replaced by k − 1 as well:

1. Suppose k > 0. Then (5.3.29) leads to

Y� k−1 (θ, φ) = (−1)k−1 ei(k−1)φ

√
(2� + 1)

4π

(� − k + 1)!
(� + k − 1)!

(sin θ)k−1

2��!
Tk (cos θ)

(5.3.33)
where

Tk (x) =
1

(� + k) (� − k + 1)

[
2kx

(
d
dx

)�+k

−
(
1 − x2

)

×
(

d
dx

)�+k+1
] (

x2 − 1
)�

. (5.3.34)

To simplify the expression for Tk (x), we use the following identities:
(

d
dx

)�+k−1 [
x

d
dx

]
= x

(
d
dx

)�+k

+ (� + k − 1)
(

d
dx

)�+k−1

(5.3.35)

from which

x

(
d
dx

)�+k

=
(

d
dx

)�+k−1 [
x

d
dx

− (� + k − 1)
]

. (5.3.36)

Also
(

d
dx

)�+k−1 [(
1 − x2

) d
dx

]
= − (� + k − 1) (� + k − 2)

(
d
dx

)�+k−1

− 2 (� + k − 1) x

(
d
dx

)�+k

+
(
1 − x2

)( d
dx

)�+k+1

(5.3.37)

which in conjunction with the identity (5.3.36) gives
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(
1 − x2

)( d
dx

)�+k+1

=
(

d
dx

)�+k−1 [(
1 − x2

) d2

dx2
+ 2 (� + k − 1) x

d
dx

− (� + k) (� + k − 1)
]

.

(5.3.38)

The two identities (5.3.36), (5.3.38) immediately lead for Tk (x), defined
in (5.3.34), the simple expression

Tk (x) =
(

d
dx

)�+k−1 (
x2 − 1

)� (5.3.39)

which from (5.3.33) establishes the correctness of (5.3.30) for m = k − 1 as
well. Here note that (−1)k−1 = (−1)(k−1+|k−1|)/2 .

2. On the other hand suppose k � 0. Then (5.3.29) immediately gives from
(5.3.30)

Y� k−1 (θ, φ) = ei(k−1)φ

√
(2� + 1)

4π

(� + k − 1)!
(� − k + 1)!

×
(
1 − x2

)(1−k)/2

2��!

(
d
dx

)�−k+1 (
x2 − 1

)� (5.3.40)

which again verifies the expression (5.3.30) for m = k − 1 as well. Here we
note that (−1)(k−1−(k−1))/2 = 1.

This completes the derivation of the expression for the spherical harmonics
Y�m (θ, φ) as given in (5.3.30). The polynomials P

|m|
� (x) are the so-called

associated Legendre polynomials, and for m = 0, P 0
� (x) ≡ P� (x) are referred

to as the Legendre polynomials.
For m = −�, we have from (5.3.30)

Y�−� (θ, φ) = e−i�φ

√
(2� + 1)!

4π

(sin θ)�

2��!
(5.3.41)

and is easily checked that unlike for the half-odd integral values (see (5.3.17))

L−Y�−� (θ, φ) = 0 (5.3.42)

as it should be. That is, the algebraic relations (5.1.26), (5.1.27), resulting
from the eigenvalue problem for angular momentum (§5.1), are internally
consistent for orbital angular momentum only if � has integral values given
in (5.3.24). [In the earlier literature, single valuedness, for example, was, a
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priori, often imposed under a rotation over φ by 2π to dismiss with half-odd
integral values! The literature on this subject is too vast and many different
approaches have been taken on this problem to dwell upon them here.]

Under space reflection (see Figure 2.4), θ → π − θ, φ → φ + π, hence
P

|m|
� (cos θ) → (−1)�+|m|

P
|m|
� (cos θ) in (5.3.31), (−1)m+|m| = 1, and

Y� m (θ, φ) → (−1)�
Y� m (θ, φ) . (5.3.43)

Complex conjugation, on the other hand, gives

Y ∗
�m (θ, φ) = (−1)m

Y�,−m (θ, φ) . (5.3.44)

The spherical harmonics for some special values of � and m are recorded
here for convenience:

Y00 (θ, φ) = 1/
√

4π (5.3.45)

Y1,±1 (θ, φ) = ∓
√

3
8π

e±iφ sin θ, Y1,0 (θ, φ) =

√
3
4π

cos θ (5.3.46)

and

Y2,±2 (θ, φ) =

√
15
32π

e±2iφ sin2 θ (5.3.47)

Y2,±1 (θ, φ) = ∓
√

15
32π

e±iφ sin 2θ (5.3.48)

Y2,0 (θ, φ) =

√
5

16π

(
3 cos2 θ − 1

)
. (5.3.49)

For θ = 0, φ = 0,

Y� m (0, 0) =

√
2� + 1

4π
δm0. (5.3.50)

The orthonormality condition (5.1.21) reads
∫ 2π

0

dφ

∫ π

0

dθ sin θ Y ∗
�′m′ (θ, φ) Y� m (θ, φ) = δ�′� δm′m. (5.3.51)

The Cartesian components
(
x1, x2, x3

)
(= (x, y, z)) may be written in

terms of spherical harmonics as

x1 =

√
2π

3
r [Y1,−1 (θ, φ) − Y1,1 (θ, φ)] (5.3.52)

x2 =

√
2π

3
ir [Y1,−1 (θ, φ) + Y1,1 (θ, φ)] (5.3.53)
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x3 =

√
4π

3
rY1,0 (θ, φ) (5.3.54)

with all corresponding to � = 1, emphasizing the vector character of x.
Selection rules for the matrix elements

〈
�′,m′ ∣∣xi

∣∣�,m〉
are readily ob-

tained from the following considerations.
The elementary integral

∫ 2π

0

dφ ei(m−m′′)φ = 2πδm,m′′ (5.3.55)

shows that
〈
�′,m′ ∣∣x1

∣∣�,m〉
= 0 for m′ �= m ± 1 (5.3.56)

〈
�′,m′ ∣∣x2

∣∣�,m〉
= 0 for m′ �= m ± 1 (5.3.57)

〈
�′,m′ ∣∣x3

∣∣�,m〉
= 0 for m′ �= m. (5.3.58)

On the other hand, the addition rule of angular momenta studied in §5.5 (see
also (5.8.35), (5.8.36)) with xi corresponding to � = 1 (see (5.3.52)–(5.3.54)
shows that 〈

�′,m′ ∣∣xi
∣∣�,m〉

= 0 (5.3.59)

if the value of �′ is not in the set {|� − 1| , . . . , � + 1}.
The spherical harmonics in (5.3.26) may be readily related to the matrix

elements of the D(�) matrix, with matrix elements D
(�)
mm′ given in (5.2.12), as

follows.
To the above end, let

n = (sin φ,− cos φ, 0) (5.3.60)

N0 = (0, 0, 1) . (5.3.61)

Then according to (2.3.5)
〈

N0

∣∣∣∣∣
[
exp

(
i
�
θn · J

)†]∣∣∣∣∣�,m
〉

= 〈N |�,m〉 (5.3.62)

where (§2.1) in an obvious notation

N = R (θ,n)N0

= (sin θ cos φ, sin θ sinφ, cos θ) , (5.3.63)

and (5.3.62) may be rewritten as
〈

θ = 0, φ = 0
∣∣∣∣exp

(
− i

�
θn · J

)∣∣∣∣�,m
〉

= Y� m (θ, φ) . (5.3.64)
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The left-hand side of (5.3.64) may be expanded as follows

�∑
m′=−�

〈θ = 0, φ = 0 |�,m′〉
〈

�,m′
∣∣∣∣exp

(
− i

�
θn · J

)∣∣∣∣�,m
〉

=

√
2� + 1

4π

〈
�, 0

∣∣∣∣exp
(
− i

�
θn · J

)∣∣∣∣�,m
〉

(5.3.65)

where we have used (5.3.50), to give

Y�m (θ, φ) =

√
2� + 1

4π

〈
�, 0

∣∣∣∣exp
(
− i

�
θn · J

)∣∣∣∣�,m
〉

=

√
2� + 1

4π

〈
�, 0

∣∣∣∣exp
(
− i

�
φJ3

)
exp

(
i
�
θJ2

)
exp

(
i
�
φJ3

)∣∣∣∣�,m
〉

=

√
2� + 1

4π
D

(�)
0m (φ, θ, 0) ≡

√
2� + 1

4π
D

(�)
0m (φ, θ, γ) (5.3.66)

where in writing the second equality we have used the identity (5.2.11), and
in the last equality we have used the definition (5.2.12). We note that for
m = 0 in 〈�, 0|, the angle γ does not contribute in (5.3.66), i.e., the angle γ
may be taken to have any value.

5.3.4 Addition Theorem of Spherical Harmonics

Finally, we establish the following theorem for the addition of the product
of two spherical harmonics:

4π

2� + 1

�∑
m=−�

Y ∗
� m (θ1, φ1) Y� m (θ2, φ2) = P� (cos θ) (5.3.67)

where (see Figure 5.2)
cos θ = N1 · N2, (5.3.68)

Ni = (sin θi cos φi, sin θi sinφi, cos θi) , i = 1, 2 (5.3.69)

and in detail

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ1 − φ2) . (5.3.70)

We note that due to the reality of P� (cos θ), the complex conjugation sign ∗

may be put on either Y�m (θ1, φ1) or Y�m (θ2, φ2) in (5.3.67).
To establish (5.3.67), we note that according to (2.3.5)
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θ1

θ2

φ1

φ2

N1

N2

x1

x2

x3

θ

Fig. 5.2. Figure showing the angle θ as the angle between the two unit vectors
N1, N2 and hence N1 · N2 = cos θ.

〈
N2

∣∣∣∣∣
[
exp

(
i
�
θ1J

2

)
exp

(
i
�
φ1J

3

)]†∣∣∣∣∣�, 0
〉

=
〈
N
∣∣�, 0〉 (5.3.71)

where (§2.1)
N = R

(
θ1, x̂

2)R
(
φ1, x̂

3)N2 (5.3.72)

where x̂ , x̂ are unit vectors along x2 and x3 axes, respectively. In particular,
N

3
works out to be equal to cos θ. The corresponding φ-angle does not con-

tribute to
〈
N
∣∣�, 0〉 since m = 0 in |�, 0〉 (see (5.3.30)). Accordingly, (5.3.71)

may be rewritten as
〈

θ2, φ2

∣∣∣∣∣
[
exp

(
i
�

θ1J
2

)
exp

(
i
�
φ1J

3

)]†∣∣∣∣∣�, 0
〉

= Y� 0 (θ, 0)

2 3
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≡
√

2� + 1
4π

P� (cos θ) .

(5.3.73)

The extreme left-hand side of this equation may be expanded in the form

�∑
m=−�

〈θ2, φ2 |�,m〉
〈

�,m

∣∣∣∣∣
[
exp

(
i
�
θ1J

2

)
exp

(
i
�
φ1J

3

)]†∣∣∣∣∣�, 0
〉

≡
�∑

m=−�

Y�m (θ2, φ2)
[
D

(�)
0m (φ1, θ1, 0)

]∗
(5.3.74)

which from (5.3.66), (5.3.74) gives the identity in (5.3.67).
Additional properties of the spherical harmonics are given in §5.8.

5.4 Spin

5.4.1 General Structure

Under a coordinate rotation, spin is described by the transformation prop-
erty (5.3.2) of a wavefunction

ψ′ (x′) =
(

exp
(

i
�
ϕn · S

)
ψ

)
(x) (5.4.1)

where x′ = Rx. A wavefunction ψ (x) may be written as a (2s+1) component
object (see (2.8.23), (2.8.25))

ψ (x) =




ψ (x, s)
ψ (x, s − 1)

...
ψ (x,−s + 1)

ψ (x,−s)




≡
s∑

m=−s

Xs (m) ψ (x,m) (5.4.2)

where

Xs (s) =




1
0
0
...
0




,Xs (s − 1) =




0
1
0
...
0




, . . . , Xs (−s) =




0
0
...
0
1




(5.4.3)

with the normalization condition (2.8.25) for the wave functions ψ (x,m)
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s∑
m=−s

∫
d3x |ψ (x,m)|2 = 1 (5.4.4)

satisfied.
In detail, (5.4.1) may be rewritten in terms of components as

ψ′ (x′,m′) =
s∑

m=−s

〈
s,m′

∣∣∣∣exp
(

i
�
ϕn · S

)∣∣∣∣s,m
〉

ψ (x,m) (5.4.5)

where the matrix elements
〈

s,m′
∣∣∣∣exp

(
1
�
ϕn · S

)∣∣∣∣s,m
〉

are given in (2.8.51).

We may use (5.2.10), (5.2.11), (2.8.41) to find the eigenstates of the pro-
jection of the spin N · S along an arbitrary unit vector

N = (sin β cos α, sin β sin α, cos β) (5.4.6)

making, in particular an angle β with the z-axis. We consider specific ele-
mentary cases first which are easily and directly worked out before dealing
with arbitrary spins.

5.4.2 Spin 1/2

For spin 1/2, S = �σ/2,

N · S =
�

2

(
cos β sinβ e−iα

sinβ eiα − cos β

)
(5.4.7)

and the eigenstates |λ,N〉 of N · S satisfying

N · S |λ,N〉 = �λ |λ,N〉 , λ = ±1/2 (5.4.8)

are easily worked out to be

|1/2,N〉 =




cos
β

2
e−iα/2

sin
β

2
eiα/2


 (5.4.9)

|−1/2,N〉 =



− sin

β

2
e−iα/2

cos
β

2
eiα/2


 . (5.4.10)

For example, the amplitude for a spin measurement along a z-axis, making
an angle β with the z-axis with α ≡ 0, to be along the +z direction if it is
initially prepared to be in state |−1/2, z〉 is given from (5.4.9), (5.4.10) to be
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〈+1/2, z |−1/2, z〉 =
(

cos
β

2
sin

β

2

)(
0
1

)
= sin

β

2
. (5.4.11)

In reference to Figure 1.5, we also have

〈+1/2, z |+1/2, z〉 〈+1/2, z |−1/2, z〉 = sin
β

2
cos

β

2
. (5.4.12)

We recall (§2.7) that spin S and the momentum operator P commute,
and if p denotes the momentum of a particle, then the spin S along p/p is
called the helicity of the particle with eigenvalues �λ, λ = ±1/2 in (5.4.8).

We note the following elementary properties:

Tr
[
Si
]

= 0, Tr
[
SiSj

]
=

�
2

2
δij (5.4.13)

and

(N · S)2 =
�

2

4
1. (5.4.14)

The spin density operator ρ associated with a mixture (§1.5) of spin com-
ponents in reference to the vector N may be written as

ρ =
∑

λ=±1/2

w (λ) |λ,N〉 〈λ,N| (5.4.15)

with ∑
λ=±1/2

w (λ) = 1 (5.4.16)

and is easily work out from (5.4.9), (5.4.10) to be given by

ρ =
1
2

[1 + (w (+1/2) − w (−1/2))N · σ] (5.4.17)

which has the general expected structure

ρ =
1
2

[1 + b · σ] (5.4.18)

satisfying the normalization condition

Tr [ρ] = 1. (5.4.19)

The expectation value of the spin S (§1.5) is then given by

Tr [ρS] =
�

2
(w (+1/2) − w (−1/2))N (5.4.20)

where we have used (5.4.13).
The vector b
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b = (w (+1/2) − w (−1/2))N (5.4.21)

is often referred to as the spin-polarization vector and satisfies

0 � |b| � 1. (5.4.22)

For example, for w (+1/2) = 0, w (−1/2) = 1, that is, b = −N, one is
dealing with a beam with spin polarized completely in the −N direction. For
w (+1/2) = w (−1/2) = 1/2, that is, b = 0, one has a completely unpolarized
beam.

Detailed treatments, with various applications, of density operators for
spin 1/2 will be given in §8.6.

5.4.3 Spin 1

For spin 1, we have from (2.8.62)–(2.8.64),

N · S = �




cos β
sin β√

2
e−iα 0

sinβ√
2

eiα 0
sin β√

2
e−iα

0
sin β√

2
eiα − cos β




(5.4.23)

and the eigenstates |λ,N〉 are readily worked out to be

|+1,N〉 =




1 + cos β

2
e−iα

sin β√
2

1 − cos β

2
eiα




(5.4.24)

|0,N〉 =




− sin β√
2

e−iα

cos β

sin β√
2

eiα




(5.4.25)
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|−1,N〉 =




1 − cos β

2
e−iα

− sinβ√
2

1 + cos β

2
eiα




. (5.4.26)

We note the following relations

(N · S)2 = �
2




1 + cos2 β

2
sin β cos β√

2
e−iα sin2 β

2
e−2iα

sin β cos β√
2

eiα sin2 β − sinβ cos β√
2

e−iα

sin2 β

2
e2iα − sinβ cos β√

2
eiα 1 + cos2 β

2




(5.4.27)

(
N · S

�

)3

=
N · S

�
(5.4.28)

Tr
[
Sk
]

= 0, Tr
[
SkS�

�2

]
= 2δk� (5.4.29)

Tr
[
SkS�Sm

�3

]
= iεk�m. (5.4.30)

The spin density operator associated with a mixture of spin components
in reference to the vector N may be written as

ρ =
∑

λ=0,±1

w (λ) |λ,N〉 〈λ,N| (5.4.31)

with ∑
λ=0,±1

w (λ) = 1 (5.4.32)

and is readily worked out from (5.4.24)–(5.4.27), (5.4.23) to be given by

ρ = w (0)1 +
(w (+1) − w (−1))

2
N · S

�

+
(w (+1) + w (−1) − 2w (0))

2

(
N · S

�

)2

(5.4.33)
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verifying, in particular, the normalization condition

Tr [ρ] = 3w (0) + (w (+1) + w (−1) − 2w (0)) = 1 (5.4.34)

where we have used (5.4.29), (5.4.32).
Upon using (5.4.29), (5.4.30), we have for the expectation value of S

Tr [ρS] = � (w (+1) − w (−1))N (5.4.35)

(See also Problem 5.7).

5.4.4 Arbitrary Spins

From (2.8.42), (5.4.6), the matrix elements of the (2s + 1)× (2s + 1) ma-
trix N · S are given by

〈s,m |N · S|s,m′〉 =
�

2
sin βeiα

√
(s − m) (s + m + 1)δm′,m+1

+
�

2
sinβ e−iα

√
(s + m) (s − m + 1)δm′,m−1

+ � cos β mδm′,m (5.4.36)

and from (2.8.41), (2.8.51), (5.2.11), (5.2.12), the eigenstates |s;λ,N〉 satis-
fying

N · S |s;λ,N〉 = �λ |s;λ,N〉 , (5.4.37)

λ = −s,−s + 1, . . . , s − 1, s (5.4.38)

are explicitly given by

|s;λ,N〉 =




D
(s)∗

λ s (α, β, 0)

D
(s)∗

λ s−1 (α, β, 0)

...

D
(s)∗

λ −s (α, β, 0)




(5.4.39)

where D
(s)∗
λ λ′ (α, β, 0), in (5.2.12), is given by the expression on the right-hand

side of (5.2.10) with j′ = j = s, m = λ, m′ = λ′, γ = 0.
The spin density operator ρ associated with a mixture of spin components

in reference to the vector N may be then written as

ρ =
s∑

λ=−s

w (λ) |s;λ,N〉 〈s;λ,N| . (5.4.40)

For N = p/p, where p is the momentum of a particle, N ·S is referred to
as the helicity, having eigenvalues �λ, λ = −s, . . . , s.
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5.5 Addition of Angular Momenta

In this section we deal with the angular momentum eigenvalue problem
resulting from the addition of two commuting angular momenta. That is, we
consider the angular momentum operator

J = J1 + J2 (5.5.1)

where J1,J2 are assumed to commute. A typical example, is the addition of
the orbital angular momentum to the spin of the electron in the hydrogen
atom discussed later in §7.4, §7.5.

For the (J1,J2) system, J2
1, J3

1 , J2
2, J3

2 system are commuting operators,
and for a given pair (j1, j2), we may generate a (2j1 + 1) (2j1 + 1) dimen-
sional vector space V (j1, j2) spanned by the orthonormal set consisting of
the vectors

|j1,m1〉 |j2,m2〉 ≡ |j1,m1; j2,m2〉 ≡ |m1,m2〉 (5.5.2)

where m1 = −j1,−j1 + 1, . . . , j1 − 1, j1; m2 = −j2,−j2 + 1, . . . , j2 − 1, j2.
For the combined system, J2, J3, J2

1, J2
2 commute and we denote their

simultaneous eigenstates by

|j,m; j1, j2〉 ≡ |j,m〉 . (5.5.3)

For a given fixed pair (j1, j2) we may expand the eigenstates |j,m〉 in
(5.5.3) in the terms of the basis {|m1,m2〉} in (5.5.2):

|j,m〉 =
∑

m1,m2

|m1,m2〉 〈m1,m2 |j,m〉 . (5.5.4)

The expansion coefficients 〈m1,m2 |j,m〉 are referred to as Clebsch-Gordan
coefficients. Unfortunately, there are many different notations used for these
coefficients in the literature.

The application of J3 = J3
1 + J3

2 to (5.5.4) yields

�m |j,m〉 =
∑

m1,m2

� |m1 + m2〉 |m1,m2〉 〈m1,m2 |j,m〉

implying that the sum in (5.5.4) over m1, m2 is restricted to

m1 + m2 = m. (5.5.5)

Given a fixed pair (j1, j2), one may readily find the allowed j values
corresponding to J2 for the combined angular momentum.

To the above end, we note that m takes its maximum (minimum) value
j (−j) when m1, m2 take on their maximum (minimum) values j1, j2
(−j1,−j2). For m = ± (j1 + j2) one necessarily has j = j1 + j2 and only
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one vector |±j1,±j2〉 contributes to the sum in (5.5.4) for each sign. Accord-
ingly, we may identify

|j1 + j2,± (j1 + j2)〉 ≡ |±j1,±j2〉 (5.5.6)

and set
〈±j1,±j2 |j1 + j2,± (j1 + j2)〉 = 1 (5.5.7)

for the corresponding Clebsch-Gordan coefficients.
Since m1 = −j1, . . . , j1; m2 = −j2, . . . , j2, the next possible value to

m = j1 + j2 is
m = j1 + j2 − 1. (5.5.8)

In this case we have
m2 = j2, m1 = j1 − 1

or
m2 = j2 − 1, m1 = j1. (5.5.9)

We then have exactly two vectors, |j1 − 1, j2〉, |j1, j2 − 1〉 contributing to the
sum in (5.5.4) for the given m value in (5.5.8).

More generally, we may write for the possible values of m

m = j1 + j2 − k = m1 + m2 (5.5.10)

where
k = 0, 1, 2, . . . , 2 (j1 + j2) (5.5.11)

and for k = 2 (j1 + j2), m = − (j1 + j2).
For the subsequent analysis, suppose, without loss of any generality, that

j1 � j2. The reversed situation is similarly handled.
To satisfy (5.5.10), we may find the smallest possible non-negative integers

a and b such that

m2 = −j2 + a, m1 = 2j2 + j1 − k − a

or
...

...
...

or

m2 = j2 − b, m1 = j1 − k + b




. (5.5.12)

Since, in particular, −j1 � m1 � j2, these possible solutions imply that

−j1 � 2j2 + j1 − k − a � j1 (5.5.13)

−j1 � j1 − k + b � j1 (5.5.14)

or that



5.5 Addition of Angular Momenta 277

2j2 − k � a � 2 (j1 + j2) − k (5.5.15)

k − 2j1 � b � k. (5.5.16)

Clearly the number N (k) of |m1,m2〉 states, contributing to the sum in
(5.5.4), giving rise to the same m value given in (5.5.10) is, using in the
process (5.5.12), given by

N (k) = m1(max) − m1(min) + 1

= m2(max) − m2(min) + 1. (5.5.17)

Depending on the value of k, i.e., whether 0 � k < 2j2 or 2j2 � k � 2j1 or
2j1 < k, the values of a, b and N(k) are worked out in Table 5.1 for a given
k, all corresponding to the same value m = j1 + j2 − k.

Table 5.1. For m = m1 + m2 − k, j1 � j2, depending on the value of
k = 0, 1, . . . , 2(j1 + j2), the possible values of the pair (m1, m2) are given
in (5.5.12) with a and b as given in this table. N(k) denotes number of
states |m1, m2〉 that contribute to the sum in (5.5.4) leading all to the
same m = j1 + j2 − k value for a given k.

a b N(k)

0 � k < 2j2 2j2 − k 0∗ k + 1

2j2 � k � 2j1 0 0 2j2 + 1

2j1 < k � 2(j1 + j2) 0 k − 2j1 2(j1 + j2) − k + 1

∗ This result follows because we have taken j1 � j2.

Finally, we refer to Table 5.2, to infer, by using in the process m =
−j,−j + 1, . . . , j − 1, j, that for fixed j1 � j2, the possible values of j are
j = j1 − j2, j1 − j2 + 1, . . . , j1 + j2. For j1 � j2 we may simply interchange
the indices 1, 2. That is, for a fixed pair of values (j1, j2), the possible values
of j are

j = |j1 − j2| , |j1 − j2| + 1, . . . , j1 + j2. (5.5.18)

The above constraint |j1 − j2| � j � j1+j2 is referred to as the triangular
condition.

For a given pair (j1, j2) the number of independent vectors |j,m〉 in (5.5.3)
is

(j1+j2)∑
j=|j1−j2|

(2j + 1) = (2j1 + 1) (2j2 + 1) (5.5.19)
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since m takes (2j + 1) values.
We may invert the expansion in (5.5.4), and expand |m1,m2〉 in (5.5.2)

in terms of the kets |j,m〉,

|m1,m2〉 =
j1+j2∑

j=|j1−j2|
|j,m〉 〈j,m |m1,m2〉 (5.5.20)

where m = m1 + m2.
From the orthonormality relations

〈j′,m′ |j,m〉 = δj′jδm′,m (5.5.21)

〈m′
1,m

′
2 |m1,m2〉 = δm′

1m1δm′
2m2 (5.5.22)

for a given pair (j1, j2) the following completeness relations follow from
(5.5.20) and (5.5.4),

j1+j2∑
j=|j1−j2|

〈m′
1,m

′
2 |j,m〉 〈j,m |m1,m2〉 = δm′

1m1δm′
2m2 (5.5.23)

with m = m1 + m2 = m′
1 + m′

2,∑
m1,m2

〈j′,m′ |m1,m2〉 〈m1,m2 |j,m〉 = δj′jδm′m (5.5.24)

where m = m1 + m2 = m′
1 + m′

2, m1 = −j1,−j1 + 1, . . . , j1 − 1, j1, m2 =
−j2,−j2 + 1, . . . , j2 − 1, j2. Equation (5.5.24) is valid for j taking any of the
values in (5.5.18).

Upon applying
J± = J1± + J2± (5.5.25)

to (5.5.4) and using (5.1.25), we obtain

�

√
(j ∓ m) (j ± m + 1) |j,m ± 1〉

=
∑

m1,m2

�

√
(j1 ∓ m1) (j1 ± m1 + 1) |m1 ± 1,m2〉 〈m1,m2 |j,m〉

+
∑

m1,m2

�

√
(j2 ∓ m2) (j2 ± m2 + 1) |m1,m2 ± 1〉 〈m1,m2 |j,m〉

(5.5.26)

which upon multiplying by 〈m′
1,m

′
2| and using (5.5.22) gives the following

useful relationship relating Clebsch-Gordan coefficients:
√

(j ∓ m) (j ± m + 1) 〈m1,m2 |j,m ± 1〉
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=
√

(j1 ± m1) (j1 ∓ m1 + 1) 〈m1 ∓ 1,m2 |j,m〉

+
√

(j2 ± m2) (j2 ∓ m2 + 1) 〈m1,m2 ∓ 1 |j,m〉 . (5.5.27)

The following relation for the Clebsch-Gordan coefficients as following
from (5.5.4) or (5.5.20) should be also noted

〈m1,m2 |j,m′〉 = δm′,m1+m2 〈m1,m2 |j,m1 + m2〉 . (5.5.28)

Of particular interest is the addition of an arbitrary non-zero angular
momentum j1 � 1/2 to a spin j2 = 1/2 which is easily handled. In this case
j = j1 + 1/2 or j = j1 − 1/2.

For j = j1 + 1/2, j2 = 1/2, m2 = +1/2, and taking the lower sign in
(5.5.27) gives a recurrence relation leading to the following chain of equalities:

〈m − 1/2, 1/2 |j,m〉 =

√
j + m

j + m + 1
〈m + 1/2, 1/2 |j,m + 1〉

〈m + 1/2, 1/2 |j,m + 1〉 =

√
j + m + 1
j + m + 2

〈m + 3/2, 1/2 |j,m + 2〉

...

〈j − 3/2, 1/2 |j, j − 1〉 =

√
2j − 1

2j
〈j − 1/2, 1/2 |j, j〉

or

〈m − 1/2, 1/2 |j1 + 1/2,m〉 =

√
j1 + m + 1/2

2j1 + 1
〈j1, 1/2 |j1 + 1/2, j1 + 1/2〉

(5.5.29)
and from (5.5.7), with the + sign, to

〈m − 1/2, 1/2 |j1 + 1/2,m〉 =

√
j1 + m + 1/2

2j1 + 1
. (5.5.30)

Similarly for j = j1 + 1/2, m2 = −1/2, and now taking the upper sign in
(5.5.27) leads to

〈m + 1/2,−1/2 |j1 + 1/2,m〉

=

√
j1 − m + 1/2

2j1 + 1
〈−j1,−1/2 |j1 + 1/2,− (j1 + 1/2)〉 (5.5.31)
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and from (5.5.7), with the − sign, leads to

〈m + 1/2,−1/2 |j1 + 1/2,m〉 =

√
j1 − m + 1/2

2j1 + 1
. (5.5.32)

Upon using (5.5.23) with m′
1 = m1, m′

2 = m2 = −1/2, we have from
(5.5.32)

j1 − m + 1/2
2j1 + 1

+ |〈m + 1/2,−1/2 |j1 − 1/2,m〉|2 = 1 (5.5.33)

and with a definite choice of phase to

〈m + 1/2,−1/2 |j1 − 1/2,m〉 =

√
j1 + m + 1/2

2j1 + 1
. (5.5.34)

With this choice of phase, the phase of 〈m − 1/2, 1/2 |j1 − 1/2,m〉, is
uniquely determined from (5.5.24) and one obtains

〈m − 1/2, 1/2 |j1 − 1/2,m〉 = −

√
j1 − m + 1/2

2j1 + 1
. (5.5.35)

These Clebsch-Gordan coefficients are tabulated in Table 5.3.

Table 5.3. The expression for the Clebsch-Gordan coefficients
〈j1, m1; 1/2, m2 |j, m〉 for the addition of an arbitrary j1 � 1/2 angular
momentum to a j2 = 1/2 one.

�������m2

j
j1 + 1/2 j1 − 1/2

1/2

√
j1 + m + 1/2

2j1 + 1
−
√

j1 − m + 1/2

2j1 + 1

−1/2

√
j1 − m + 1/2

2j1 + 1

√
j1 + m + 1/2

2j1 + 1

For the addition of two spin 1/2’s, the above Table gives

|1,+1〉 = |1/2, 1/2〉 (5.5.36)

|1, 0〉 =
1√
2

(|1/2,−1/2〉 + |−1/2, 1/2〉) (5.5.37)

|1,−1〉 = |−1/2,−1/2〉 (5.5.38)
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a triplet associated with spin 1, and a singlet

|0, 0〉 =
1√
2

(|1/2,−1/2〉 − |−1/2, 1/2〉) (5.5.39)

associated with spin 0. The triplet should be compared with the correspond-
ing expressions in (2.8.59)–(2.8.61).

As another illustration, we consider the problem of constructing simul-
taneous eigenstates of the commuting operators (§2.3, §2.7) J2, J3, L2, S2

which we denote by |j,m, �, s〉. In particular, for s = 1/2 we may use Table 5.3
directly to construct such eigenstates. These will be important in our study
of the hydrogen atom when we include spin. To this end, using the notation
|j,m, �, 1/2〉 ≡ |j,m, �〉, and setting j1 = �, m2 = m′ in the Table, we have
from (for � �= 0)

|j,m, �〉 =
∑

m�+m′=m

|�,m�; 1/2,m′〉 〈�,m�; 1/2,m′ |j,m〉 (5.5.40)

that

|j,m, �〉 = − |�,m − 1/2; 1/2, 1/2〉
√

� − m + 1/2
2� + 1

+ |�,m + 1/2; 1/2,−1/2〉

×
√

� + m + 1/2
2� + 1

(5.5.41)

for j = � − 1/2, and

|j,m, �〉 = |�,m − 1/2; 1/2, 1/2〉
√

� + m + 1/2
2� + 1

+ |�,m + 1/2; 1/2,−1/2〉

×
√

� − m + 1/2
2� + 1

(5.5.42)

for j = � + 1/2.
Finally, we derive a useful orthogonality relation of the D

(j)
mm′ (α, β, γ)

functions given in (5.2.12) by combining two independent, i.e., commuting,
angular momenta J1, J2 as defined in (5.5.1).

For the above purpose, we note that
〈

j1,m1; j2,m2

∣∣∣∣exp
(

i
�
ϕn · J

)∣∣∣∣j1,m′
1; j2,m

′
2

〉

=
〈

j1,m1

∣∣∣∣exp
(

i
�
ϕn · J1

)∣∣∣∣j1,m′
1

〉〈
j2,m2

∣∣∣∣exp
(

i
�
ϕn · J2

)∣∣∣∣j2,m′
2

〉

≡ D
(j1)
m1m′

1
(α, β, γ) D

(j2)
m2m′

2
(α, β, γ) . (5.5.43)
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Upon using the expansion (5.5.20), the above may be rewritten as
∑

j,m,m′

〈j1,m1; j2,m2 |j,m〉D
(j)
mm′ (α, β, γ) 〈j,m′ |j1,m′

1; j2,m
′
2〉

= D
(j1)
m1m′

1
(α, β, γ) D

(j2)
m2m′

2
(α, β, γ) . (5.5.44)

We will consider those cases in which j1, j2 are either both integers or are
both half-odd integers. Then j necessarily takes on integer values. [For other
cases see Problem 5.12].

Upon multiplying (5.5.44) by sin β and integrating over 0 � α � 2π, 0 �
β � π, 0 � γ � 2π, we obtain
∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ D
(j1)
m1m′

1
(α, β, γ) D

(j2)
m2m′

2
(α, β, γ)

= 4π2
∑

j

〈j1,m1; j2,m2 |j, 0〉
∫ π

0

dβ sinβ d
(j)
00 (β) 〈j, 0 |j1,m′

1; j2,m
′
2〉

(5.5.45)

where we have used (5.2.10) and (5.2.13). For j = 0, (5.2.10) gives d
(j)
00 (β) =

1. For j �= 0, (5.2.10) leads explicitly to

I(j) ≡
∫ π

0

dβ sinβ d
(j)
00 (β)

= 4
j∑

q=0

(j!)2 (−1)q

[(j − q)! q!]2

∫ π/2

0

dx (sin x)2q+1 (cos x)2j+1−2q (5.5.46)

which upon using the integral
∫ π/2

0

dx (sin x)2a−1 (cos x)2b−1 =
1
2

Γ (a) Γ (b)
Γ (a + b)

(5.5.47)

for non-negative integers a, b, gives

I(j) ≡ 2
(j + 1)

j∑
q=0

(−1)q j !
(j − 1)! q !

=
2

(j + 1)
(1 − 1)j = 0. (5.5.48)

That is, ∫ π

0

dβ sinβ d
(j)
00 (β) = 2δj0. (5.5.49)

The reader will recognize (5.5.49) as a special case of the orthogonality con-
dition of the Legendre polynomials P� (cos θ) = P

|m|
� (cos θ) for m = 0 (see

(5.3.30), (5.3.65), (5.3.51), (5.2.13)), with d
(j)
00 (β) = Pj (cos β).
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Hence the right-hand side of (5.5.45) becomes equal to

8π2 〈j1,m1; j2,m2 |0, 0〉 〈0, 0 |j1,m′
1; j2,m

′
2〉

= 8π2δj1j2δm1,−m2δm′
1,−m′

2
(2j1 + 1)−1 (−1)2j1−m1−m′

1

= 8π2δj1j2δm1,−m2δm′
1,−m′

2
(2j1 + 1)−1 (−1)m′

2−m2 (−1)2(j2+m2) (5.5.50)

as follows from the general expression of the Clebsch-Gordan coefficients that
will be obtained later in (5.6.14). Finally, we use the complex conjugate prop-
erty of the D

(j)
mm′ (α, β, γ) function in (5.2.14) to obtain from (5.5.45)

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

dβ sin β
(
D

(j1)
m1m′

1
(α, β, γ)

)∗
D

(j2)
m2m′

2
(α, β, γ)

=
8π2δj1j2δm1m2δm′

1m′
2

2j1 + 1
(5.5.51)

since (−1)2(j2+m2) = 1, where j1, j2 are either both (non-negative) integers
or are both half-odd integers (see also Problem 5.12).

Clearly, the same procedure as above may be used to obtain the integral
of the product of more than two D

(j)
mm′ functions.

Another useful orthogonality relation is the following one
∫ 2π

0

dα

∫ π

0

dβ sin β
(
D

(j1)
mm′ (α, β,−α)

)∗
D

(j2)
mm′′ (α, β,−α) =

4πδj1j2δm′m′′

(2j1 + 1)
(5.5.52)

where, again, j1, j2 are both either integers or are both half-odd integers.
The proof of (5.5.52) follows by noting that the integration over α, on

its left-hand side, imposes the restriction that m′ = m′′. Accordingly from
(5.2.10), (5.2.12) we may rewrite the left-hand side of (5.5.52) as

1
2π

δm′m′′

∫ 2π

0

dγ

∫ 2π

0

dα

∫ π

0

dβ sin β
(
D

(j1)
mm′ (α, β, γ)

)∗
D

(j2)
mm′ (α, β, γ)

(5.5.53)
which from (5.5.51) leads to (5.5.52).

5.6 Explicit Expression for the Clebsch-Gordan
Coefficients

To obtain the explicit expression for the Clebsch-Gordan coefficients for
the addition of any two independent angular momenta we may proceed as
follows. Taking the upper sign in the recurrence relation (5.5.27) with m = j,
m2 = j + 1 − m1, its left-hand side is then zero and leads to
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√

(j1 + m1) (j1 − m1 + 1) 〈m1 − 1,m2 |j, j〉

= −
√

(j2 + m2) (j2 − m2 + 1) 〈m1,m2 − 1 |j, j〉 . (5.6.1)

By successive replacements, m1 → m1 + 1 → m1 + 2, . . . , j1 in this equation,
we get the following chain of equalities

〈m1, j − m1 |j, j〉 = −
√

(j2 + j − m1) (j2 − j + m1 + 1)
(j1 + m1 + 1) (j1 − m1)

× 〈m1 + 1, j − m1 − 1 |j, j〉

〈m1 + 1, j − m1 − 1 |j, j〉 = −
√

(j2 + j − m1 − 1) (j2 − j + m1 + 2)
(j1 + m1 + 2) (j1 − m1 − 1)

× 〈m1 + 2, j − m1 − 2 |j, j〉

... (5.6.2)

〈j1 − 1, j − j1 + 1 |j, j〉 = −

√
(j2 + j − j1 + 1) (j2 − j + j1)

2j1

× 〈j1, j − j1 |j, j〉 .

Upon taking the product of these equalities we obtain

〈m1, j − m1 |j, j〉

=
(−1)j1−m1√

(2j1)!

√
(j2 − j + j1)!
(j2 + j − j1)!

√
(j1 + m1)! (j2 + j − m1)!
(j1 − m1)! (j2 − j + m1)!

〈j1, j − j1 |j, j〉

(5.6.3)

[It is easily checked that the arguments of all the factorials are non-negative
integers.] To obtain the expression for 〈j1, j − j1 |j, j〉, we use the unitarity
condition ∑

m1+m2=j

|〈m1, j − m1 |j, j〉|2 = 1 (5.6.4)

as obtained from (5.5.24), and the sum
∑

m1+m2=j

(j1 + m1)! (j2 + m2)!
(j1 − m1)! (j2 − m2)!

=
(j + j1 + j2 + 1)! (j2 − j1 + j)! (j1 − j2 + j)!

(2j + 1)! (j1 + j2 − j)!
(5.6.5)
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with −j1 � m1 � j1, −j2 � m2 � j2, established below. With the phase
convention, generally referred to as the Condon and Shortley convention,
defined by

〈j1, j − j1 |j, j〉 ≡ |〈j1, j − j1 |j, j〉| (5.6.6)

equations (5.6.3)–(5.6.6) immediately lead to

〈m1, j − m1 |j, j〉

= (−1)j1−m1

√
(2j + 1)! (j1 + j2 − j)!

(j + j1 + j2 + 1)! (j1 − j2 + j)! (j2 − j1 + j)!

×
√

(j1 + m1)! (j2 + j − m1)!
(j1 − m1)! (j2 − j + m1)!

. (5.6.7)

To obtain the expression for the general coefficient 〈m1,m2 |j,m〉, we note
from (5.1.26) that

|j,m〉 =

√
(j + m)!

(2j)! (j − m)!
1

(�)j−m
(J−)j−m |j, j〉 (5.6.8)

where

|j, j〉 =
j1∑

m1=−j1

|m1, j − m1〉 〈m1, j − m1 |j, j〉 (5.6.9)

and hence amounts to evaluating
√

(j + m)!
(2j)! (j − m)!

1

(�)j−m

〈
m1, j − m1

∣∣∣(J−)j−m
∣∣∣j, j〉 ≡ 〈m1, j − m1 |j,m〉 .

(5.6.10)
The evaluation of the expression on the left-hand side of the above is

straightforward. To this end we use the binomial expansion

(J−)j−m =
j−m∑
k=0

(
j − m

k

)
(J1−)k (J2−)j−m−k (5.6.11)

where (
j − m

k

)
=

(j − m)!
k! (j − m − k)!

(5.6.12)

since J1− and J2− commute, to obtain from (5.1.26), (5.6.9), (5.6.10)

(J−)j−m

(�)j−m
|j, j〉
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=
∑

m1+m2=j

√
(j1 + m1)! (j2 + m2)!
(j1 − m1)! (j2 − m2)!

∑
k

|m1 − k〉 |m + m2 − j + k〉

× (j − m)!
k! (j − m − k)!

√
(j1 − m1 + k)! (j2 − m2 + j − m − k)!
(j1 + m1 − k)! (j2 + m2 − j + m + k)!

〈m1,m2 |j, j〉

(5.6.13)

with −j1 � m1 � j1, −j2 � m2 � j2, and the sum over k is restricted
to all k non-negative integers such that the arguments of the factorials are
non-negative.

From the expression for 〈m1,m2 |j, j〉 ≡ 〈m1, j − m1 |j, j〉 in (5.6.3) to-
gether with (5.6.10) and (5.1.21), we finally obtain, the so-called Racah ex-
pression of the Clebsch-Gordan coefficients:

〈m1,m2 |j,m〉 ≡ 〈j1,m1; j2,m2 |j,m〉

=
√

2j + 1

×
√

(j1 + j2 − j)! (j − m)! (j + m)! (j1 − m1)! (j2 − m2)!
(j + j1 + j2 + 1)! (j1 − j2 + j)! (j2 − j1 + j)! (j1 + m1)! (j2 + m2)!

×
∑

k

(−1)j1−m1−k

k! (j − m − k)!
(j1 + m1 + k)! (j2 + j − m1 − k)!
(j1 − m1 − k)! (j2 − j + m1 + k)!

(5.6.14)

where now m1 + m2 = m, and k is over all non-negative integers such that
the arguments of the factorials are non-negative. The reality condition of the
Clebsch-Gordan coefficients as given in (5.6.14) is to be noted.

It remains to establish the expression for the sum as given in (5.6.5). To
this end, for any two strictly positive integers a and b, the formal expansion

(x + y)−a =
∞∑

k1=0

(−1)k1 (y)k1 x−a−k1

k1!
(a + k1 − 1)!

(a − 1)!
(5.6.15)

gives immediately, upon the comparison of the product of the expansions of
(x + y)−a · (x + y)−b with the expansion of (x + y)−(a+b),

∑
k1+k2=k

(a + k1 − 1)!
(a − 1)!

(b + k2 − 1)!
(b − 1)! k1! k2!

=
(a + b + k − 1)!
(a + b − 1)! k!

(5.6.16)

with k1, k2 non-negative integers. Upon setting

k1 = j1 − m1, k2 = j2 − m2 (5.6.17)

a − 1 = j2 − j1 + j, b − 1 = j1 − j2 + j (5.6.18)
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and hence with m1 + m2 = j,

k = k1 + k2 = j1 + j2 − j (5.6.19)

(5.6.16) leads to (5.6.5).
In §5.5, we have added a spin 1/2 to an arbitrary non-zero spin with the

Clebsch-Gordan coefficients given in Table 5.3. As an application of the gen-
eral formula (5.6.14), one may consider the addition of a spin 1 to an arbitrary
spin � 1. The results for the Clebsch-Gordan coefficients are summarized in
Table 5.4.

Table 5.4. The expression for the Clebsch-Gordan coefficients 〈j1, m1; 1, m2 |j, m〉
for the addition of an arbitrary j1 � 1 angular momentum to a j2 = 1 one.

����m2

j
j1 − 1 j1 j1 + 1

1

√
(j1 − m)(j1 − m + 1)

2j1(2j1 + 1)
−
√

(j1 + m)(j1 − m + 1)

2j1(j1 + 1)

√
(j1 + m)(j1 + m + 1)

(2j1 + 1)(2j1 + 2)

0 −
√

(j1 − m)(j1 + m)

j1(2j1 + 1)

m√
j1(j1 + 1)

√
(j1 − m + 1)(j1 + m + 1)

(2j1 + 1)(j1 + 1)

−1

√
(j1 + m + 1)(j1 + m)

2j1(2j1 + 1)

√
(j1 − m)(j1 + m + 1)

2j1(j1 + 1)

√
(j1 − m)(j1 − m + 1)

(2j1 + 1)(2j1 + 2)

For future reference, we record the following particular Clebsch-Gordan
coefficient in a unified manner (m1 + m2 = m) for j = j1:

〈j,m1; 1,m2 |j,m〉

=
1√

j (j + 1)

[
m1δm2,0 ∓

1√
2

√
(j ∓ m1) (j ± m1 + 1)δm2,±1

]

≡ 〈j,m |j,m1; 1,m2〉 (5.6.20)

as follows from the above Table.
Some symmetry properties of the Clebsch-Gordan coefficients are

〈j1,m1; j2,m2 |j,m〉 = (−1)j1+j2−j 〈j2,m2; j1,m1 |j,m〉 (5.6.21)

〈j1,m1; j2,m2 |j,m〉 = (−1)j1+j2−j 〈j1,−m1; j2,−m2 |j,−m〉 (5.6.22)

〈j1,m1; j2,m2 |j,m〉 = (−1)j2+m2

√
2j + 1
2j2 + 1

〈j2,−m2; j,m |j1,m1〉 .

(5.6.23)
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To display such symmetry properties, it is more convenient to introduce
the so-called 3-j symbols, due to Wigner, defined in terms of the Clebsch-
Gordan coefficients as follows:(

j1 j2 j
m1 m2 m

)
= (−1)j1−j2−m 1√

2j + 1
〈j1,m1; j2,m2 |j,−m〉 (5.6.24)

where we note that m1+m2+m = 0, and the 3-j symbols are zero otherwise.
Some symmetry properties of the latter symbols are

(
j1 j2 j3
m1 m2 m3

)
=
(

j3 j1 j2
m3 m1 m2

)
=
(

j2 j3 j1
m2 m3 m1

)
(5.6.25)

(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
(5.6.26)

(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (5.6.27)

The following particular values of the 3-j symbols are to be noted
(

j1 j2 j3
0 0 0

)
= 0, if J ≡ j1 + j2 + j3 is odd (5.6.28)

as follows directly from (5.6.27), and

(
j1 j2 j3
0 0 0

)
= (−1)J/2

√
(J − 2j1)! (J − 2j2)! (J − 2j3)!

(J + 1)!

×
(

1
2J

)
!(

1
2J − j1

)
!
(

1
2J − j2

)
!
(

1
2J − j3

)
!

(5.6.29)

if J ≡ j1 + j2 + j3 is even.
From (5.6.24), (5.5.23), we also have the orthogonality property

∑
j

(2j + 1)
(

j1 j2 j
m1 m2 m

)(
j1 j2 j
m′

1 m′
2 m

)
= δm1m′

1
δm2m′

2
(5.6.30)

where m = −m1 − m2 = −m′
1 − m′

2 and (5.5.24) leads to

∑
m1,m2

(
j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
=

1
(2j + 1)

δjj′δmm′ (5.6.31)

and the triangular condition on j, j1, j2 is understood.



290 5 Angular Momentum Gymnastics

5.7 Vector Operators

The operators X,P,N,L,S and the angular momentum operator J itself
all satisfy the same commutation relations with J (see §2.3):

[
V i, Jj

]
= i�εijkV k (5.7.1)

where V denotes any one of the operators mentioned above, reflecting the
vector character of these operators. Any such operator satisfying the commu-
tation relations (5.7.1) is referred to as a vector operator. The commutation
relations

[
V i, V j

]
, however, may be different for different vector operators

V. For example, the different components of P commute while the different
components of S do not.

We are interested in evaluating matrix elements of the form 〈j,m′ |V|j,m〉.
To this end, it is more convenient to define the spherical vector components:

V (m) = δm,0V
3 − 1√

2
δm,1V+ +

1√
2
δm,−1V− (5.7.2)

m = −1, 0,+1, where
V± = V 1 ± iV 2 (5.7.3)

as opposed to the Cartesian components V 1, V 2, V 3.
It is straightforward to show from (5.7.1) that

[J(m1) , V (m2)] = �

[
m2δm1,0 ∓

1√
2

√
(1 ∓ m2) (1 ± m2 + 1)δm1,±1

]

× V (m1 + m2). (5.7.4)

In particular, for m1 = m2, [J(m1) , V (m1)] ≡ 0, and there are no ambiguities
associated with the notations V (±2), arising on the right-hand side of (5.7.4),
since their coefficients are always identically equal to zero.

We also have

J(M) |j,m〉 = �

[
mδM,0 ∓

1√
2

√
(j ∓ m) (j ± m + 1)δM,±1

]
|j,m + M〉

≡ |j,m + M〉 〈j,m + M |J(M)|j,m〉 (5.7.5)

and

〈j,m′|J(M) = �

[
m′δM,0 ∓

1√
2

√
(j ± m′) (j ∓ m′ + 1)δM,±1

]
〈j,m′ − M |

≡ 〈j,m′ |J(M)|j,m′ − M〉 〈j,m′ − M | (5.7.6)

where M = −1, 0,+1.
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One may rewrite the commutations relations in (5.7.4) as

[J(m1) , V (m2)] = 〈1,m1 + m2 |J(m1)|1,m2〉V (m1 + m2) . (5.7.7)

By taking the matrix elements of (5.7.7) between 〈j,m′| and |j,m〉, and
using (5.7.5), (5.7.6) we obtain

〈j,m′ |J (m1)|j,m′ − m1〉 〈j,m′ − m1 |V (m2)|j,m〉

− 〈j,m′ |V (m2)|j,m + m1〉 〈j,m + m1 |J(m1)|j,m〉

= 〈j,m′ |V (m1 + m2)|j,m〉 〈1,m1 + m2 |J(m1)|1,m2〉 . (5.7.8)

In particular we note that

〈j,m′ |J(0)|j,m〉 = �mδm′,m. (5.7.9)

For m1 = 0,m2 → M , (5.7.8) then gives

� (m′ − m − M) 〈j,m′ |V (M)|j,m〉 = 0 (5.7.10)

for the spherical vector components of a vector operator. That is,
〈j,m′ |V (M)|j,m〉 is necessarily zero unless

m′ = m + M. (5.7.11)

From (5.7.5), we note that

〈1, 2M |J(M)|1,M〉 ≡ 0 (5.7.12)

accordingly, for m1 = m2 ≡ M , (5.7.8) gives, upon using (5.7.11), that

〈j,m + M |V (M)|j,m〉
〈j,m + M |J(M)|j,m〉 =

〈j,m + 2M |V (M)|j,m + M〉
〈j,m + 2M |J(M)|j,m + M〉 . (5.7.13)

That is, in particular,

〈j,m ± 1 |V (±1)|j,m〉
〈j,m ± 1 |J(±1)|j,m〉 =

〈j,m ± 2 |V (±1)|j,m ± 1〉
〈j,m ± 2 |J(±1)|j,m ± 1〉 . (5.7.14)

Similarly, for m1 = ∓1, m2 = ±1, m′ = m, (5.7.8) leads to

〈j,m |J(∓1)|j,m ± 1〉 〈j,m ± 1 |V (±1)|j,m〉

− 〈j,m |V (±1)|j,m ∓ 1〉 〈j,m ∓ 1 |J(∓1)|j,m〉

= 〈j,m |V (0)|j,m〉 〈1, 0 |J(∓1)|1,±1〉

= ±� 〈j,m |V (0)|j,m〉 (5.7.15)
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where we have used (5.7.2) for J(∓1) in writing the last equality. Upon using
(5.7.14), we may rewrite (5.7.15) as

{
|〈j,m |J(∓1)|j,m ± 1〉|2 − |〈j,m ∓ 1 |J(∓1)|j,m〉|2

} 〈j,m ± 1 |V (±1)|j,m〉
〈j,m ± 1 |J(±1)|j,m〉

= ±� 〈j,m |V (0)|j,m〉 . (5.7.16)

For V (±1) ≡ J(±1), the expression in the curly brackets is
±� 〈j,m|J(0) |j,m〉. Accordingly, (5.7.16) simplifies to

〈j,m |V (0)|j,m〉 = 〈j,m |J(0)|j,m〉 〈j,m ± 1 |V (±1)|j,m〉
〈j,m ± 1 |J (±1)|j,m〉 . (5.7.17)

From equations (5.7.14), (5.7.17), we then conclude that for M = −1, 0, 1,

〈j,m′ |V (M)|j,m〉 =
1
�

〈j,m′ |J(M)|j,m〉√
j (j + 1)

C(V, j) (5.7.18)

where C(V, j), a proportionality factor, characteristic of the vector operator
V, which may depend on j, but is necessarily independent of m, m′, M . It
should be noted that (5.7.18) is valid for all m,m′ = −j,−j + 1, . . . , j. The
1/
√

j (j + 1) factor is inserted for convenience. Equations (5.7.5) and (5.6.20)
allow one to rewrite

〈j,m′ |J(M)|j,m〉
�
√

j (j + 1)
= 〈j,m′ |j,m; 1,M〉 (5.7.19)

appearing in (5.7.18), in terms of a Clebsch-Gordan coefficient as given in
(5.6.20).

It has become customary to denote the proportionality factor C(V, j) in
(5.7.18) as

C(V, j) ≡ 〈j‖V‖j〉 . (5.7.20)

Don’t let the notation scare you. Due to its independence of m, m′, it may
be formally evaluated and defined by

〈j ||V||j〉 =
〈j,m′ |V (m)|j,m〉
〈j,m′ |j,m; 1,M〉 (5.7.21)

for any allowed and conveniently chosen values for m′, m, for which the
evaluation of the expression on the right-hand side of (5.7.21) is unambiguous.
This will be done explicitly later for various cases.

From the definition of V (M) in (5.7.2), (5.7.3), we may rewrite (5.7.18)
as

〈j,m′ |V|j,m〉 =
〈j,m′ |J|j,m〉
�
√

j (j + 1)
〈j ||V||j〉 . (5.7.22)
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This is a particular case of the so-called Wigner-Eckart theorem that will
be established quite generally in the next section.

For V = J, (5.7.22) gives

〈j ||J||j〉 = �

√
j (j + 1). (5.7.23)

The factor 〈j ||V||j〉 is referred to as a reduced matrix element of V. [Some
authors provide a different definition of a reduced matrix element by mul-
tiplying the latter by a given function of j. In any case such an additional
normalization factor may be absorbed in the definition of a reduced matrix
element.]

As shown below, the reduced matrix element 〈j ||V||j〉 element may be
explicitly written as

〈j ||V||j〉 =
〈j,m |V · J|j,m〉

�
√

j (j + 1)
(5.7.24)

(with j �= 0) and due to its independence of m, it may be evaluated for any
of its values.

To show (5.7.24), note that

V · J =
∑

N=0,±1

(−1)N
V (−N) J(N) (5.7.25)

and hence

〈j,m |V · J|j,m〉

=
∑

N=0,±1

(−1)N 〈j,m |V (−N)|j,m + N〉 〈j,m + N |J(N)|j,m〉

=
∑

N=0,±1

(−1)N 〈j,m |J(−N)|j,m + N〉 〈j,m + N |J(N)|j,m〉

× 〈j ||V||j〉
�
√

j (j + 1)

=
∑

N=0,±1

(−1)N 〈j,m |J(−N) J(N)|j,m〉 〈j ||V||j〉

=

〈
j,m

∣∣J2
∣∣j,m〉

〈j ||V||j〉
�
√

j (j + 1)
(5.7.26)

which upon using the fact that J2 |j,m〉 = �
2j (j + 1) |j,m〉 establishes

(5.7.24). In writing the second equality in (5.7.26) use has been made of
(5.7.22).
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We may then rewrite (5.7.22), in the convenient form

〈j,m′ |V|j,m〉 = 〈j,m′ |J|j,m〉 〈j,m |V · J|j,m〉
�2j (j + 1)

(5.7.27)

for the matrix elements of a vector operator V we were seeking.
As an application of (5.7.27), we evaluate the matrix element〈

j,m′ ∣∣(J3+S3
)∣∣j,m〉

. This latter will occur in our study of the Zeeman
effect in §7.9. To this end, (5.7.27) leads to

〈
j,m′ ∣∣(J3 + S3

)∣∣j,m〉
=
〈
j,m′ ∣∣J3

∣∣j,m〉 〈j,m ∣∣(J2 + S · J
)∣∣j,m〉

�2j (j + 1)

= � mδm′m

{
1 +

〈j,m |S · J|j,m〉
�2j (j + 1)

}
. (5.7.28)

Upon writing

S · J =
1
2
(
J2 − L2 + S2

)
(5.7.29)

and carrying out the expansion

|j,m〉 =
∑

m�+ms=m

|�,m�; s,ms〉 〈�,m�; s,ms |j,m〉 (5.7.30)

where j = |�− s|, . . . , �+ s, we obtain for the expression in the early brackets
in (5.7.28) {

1 +
j (j + 1) − � (� + 1) + s (s + 1)

2j (j + 1)

}
. (5.7.31)

The states in (5.7.30) are simultaneous eigenstates of the commuting opera-
tors J2, S2, L2, J3. [Here we note that

[
J2, S3

]
�= 0,

[
J2, L3

]
�= 0.]

In particular for s = 1/2, � = 1, 2, . . ., (5.7.31) gives the famous Landé
g-factor

g =
j + 1/2
� + 1/2

(5.7.32)

where j = � ± 1/2. For � = 0, s = 1/2, (5.7.32) gives g = 2.
Another expression for (5.7.27) may be also provided by noting that

[V · J,J] = 0 (5.7.33)

and hence with V replaced by V · JJ in (5.7.27), we obtain

〈j,m′ |V · JJ|j,m〉 = 〈j,m′ |J|j,m〉 〈j,m′ |V · J|j,m〉 . (5.7.34)

This then allows us to rewrite (5.7.27) simply as

〈j,m′ |V|j,m〉 =
〈j,m′|V · JJ|j,m〉

�2j (j + 1)
(5.7.35)
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≡
〈

j,m′
∣∣∣∣V · JJ

J2

∣∣∣∣j,m
〉

(5.7.36)

(for j �= 0). This formally shows that only the component of V along the
angular momentum may contribute to the matrix element 〈j,m′ |V|j,m〉.

The transformation of a vector operator V under arbitrary finite rotations
may be worked out from (5.7.1). To this end let (see (2.3.18), (2.3.43))

exp
(
−i
�

ϕn · J
)

V i exp
(

i
�

ϕn · J
)

= F i (ϕ) (5.7.37)

for a given fixed unit vector n. Then (5.7.1) gives

d
dϕ

F (ϕ) = −n × F (ϕ) . (5.7.38)

On the other hand, let (§2.1)

Gi (ϕ) = V kRik (ϕ,n) (5.7.39)

then
d
dϕ

G (ϕ) = −n × G (ϕ) . (5.7.40)

With the boundary conditions:

G (0) = V = F (0) (5.7.41)

we may infer that

exp
(
−i
�

ϕn · J
)

V i exp
(

i
�

ϕn · J
)

= V kRik (ϕ,n) . (5.7.42)

As an application of (5.7.42), consider

e−iφJ3/�J2eiφJ3/� = JjR2j
(
φ, x̂3) (5.7.43)

where x̂3 is a unit vector along the x3 axis, and (see (2.1.4))

R2j
(
φ, x̂3) = δ2j cos φ − δ1j sin φ (5.7.44)

thus giving
e−iφJ3/�J2eiφJ3/� = −n · J (5.7.45)

with n now given by
n = (sinφ,− cos φ, 0) . (5.7.46)

In particular (5.7.45) implies that

e−iφJ3/�eiθJ2/�eiφJ3/� = exp
[

i
�

θ
(
e−iφJ3/�J2eiφJ3/�

)]
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= exp
[
−i
�

θ n · J
]

. (5.7.47)

We will make use of this identity in §5.10.
Finally we note that for two vector operators V1, V2, the product V1 ·V2

commutes with J:
[J,V1 · V2] = 0 (5.7.48)

as expected and is readily checked from (5.7.1).

5.8 Tensor Operators

From the previous section, we recall that a vector operator is one such
that its spherical components satisfy the commutation relations (see (5.7.4))
(m = −1, 0, 1; M = −1, 0, 1):

[J(m) , V (M)] = �

[
Mδm,0 ∓

1√
2

√
(J ∓ M) (J ± M + 1)δm,±1

]

× V (m + M) (5.8.1)

with J = 1, reflecting the vector character of the operator in question.
Equation (5.8.1) naturally leads to define a tensor operator TK

M of rank
K with components specified by M = −K,−K + 1, . . . ,K, as one satisfying
the commutation solutions

[
J(m) , TK

M

]
= �

[
Mδm,0 ∓

1√
2

√
(K ∓ M) (K ± M + 1)δm,±1

]
TK

m+M

(5.8.2)
by simply changing the J = 1 value to general K = 1/2, 1, . . . for the possible
values of an angular momentum. The spherical components J(0), J(±1) of
the angular momentum operator J are defined in (5.7.2).

As a generalization of the relation in (5.7.18) (see also (5.7.19),(5.7.20)),
we establish the following one

〈
j′,m′ ∣∣TK

M

∣∣j,m〉
= 〈j′,m′ |j,m;K,M〉

〈
j′
∣∣|TK |

∣∣j〉 (5.8.3)

where
〈
j′
∣∣|TK |

∣∣j〉 is a reduced matrix element, which may depend on j′, j,
K, but is independent of m′, m, M . Here

m′ = M + m (5.8.4)

j′ = |j − K| , |j − K| + 1, . . . , j + K. (5.8.5)

Different normalization are used by different authors to define a reduced
matrix element

〈
j′
∣∣|TK |

∣∣j〉. This is done by multiplying (5.8.3) by a given
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function of j. We have chosen such a factor to be one to make direct com-
parison with the vector operator case defined earlier (see (5.7.18), (5.7.19)).
In any case, as we have done here, such an additional normalization factor
may be absorbed in the definition of a reduced matrix element.

The result embodied in (5.8.3) is referred to as the Wigner-Eckart The-
orem. As a Clebsch-Gordan coefficient is a geometrical factor, the physical
properties of TK

M enter only in the reduced matrix element. In (5.8.3), we
have suppressed other quantum numbers which may be characteristics of the
physical system at hand.

To establish (5.8.3), we define the ket vector

|ψ (j′,m′; j,K)〉 =
∑

m+M=m′

TK
M |j,m〉 〈j,m;K,M |j′,m′〉 (5.8.6)

where |j − K| � j′ � j + K in integer steps.
We multiply (5.8.6), by 〈j′,m′ |j,m′′;K,M ′′〉, sum over j′, and use the

completeness relation (5.5.23), to obtain

TK
M |j,m〉 =

j+K∑
j′=|j−K|

|ψ (j′,m′; j,K)〉 〈j′,m′ |j,m;K,M〉 . (5.8.7)

Upon applying the operator J(M ′), to (5.8.6) where M ′ = 0,±1, writing

J(M ′) TK
M =

[
J(M ′) , TK

M

]
+ TK

M J(M ′) (5.8.8)

using (5.7.5) for J(M ′) |j,m〉, and the explicit commutation relations (5.8.2),
we obtain by making a change of the summation variables m,M in (5.8.6),
and finally using (5.5.27) that:

J(M ′) |ψ (j′,m′; j,K)〉 = �

{
m′δM ′,0 ∓

1√
2

√
(j′ ∓ m′) (j′ ± m′ + 1)δM ′,±1

}

× |ψ (j′,m′ + M ′; j,K)〉 . (5.8.9)

Equation (5.8.9), in particular, implies from (5.7.2) that

J3 |ψ (j′,m′; j,K)〉 = �m′ |ψ (j′,m′; j,K)〉 (5.8.10)

J± |ψ (j′,m′; j,K)〉 = �

√
(j′ ∓ m′) (j′ ± m′ + 1) |ψ (j′,m′ ± 1; j,K)〉

(5.8.11)

and from (5.11) or (5.12)

J2 |ψ (j′,m′; j,K)〉 = �
2j′ (j′ + 1) |ψ (j′,m′; j,K)〉 . (5.8.12)

With the underlying assumption that we have at hand, together with
J2, J3 a complete set of commuting operators, with the |j′,m′〉, as before,2

2 For simplicity of the notation, we suppress additional quantum numbers that
these states may depend on.
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denoting their simultaneous eigenstates, we conclude that |ψ (j′,m′; j,K)〉 is
proportional to |j′,m′〉. That is

|ψ (j′,m′; j,K)〉 = |j′,m′〉α (j′,m′; j,K) . (5.8.13)

It is easy to show, however, that α (j′,m′; j,K) is independent of m′. To this
end (5.1.23) reads

J± |j′,m′〉 = C± (j′,m′) |j′,m′ ± 1〉 (5.8.14)

where C± (j′,m′) are the coefficients defined in (5.8.11). On the other hand
(5.8.11), (5.8.13) together (5.8.14) then give

J± |ψ (j′,m′; j,K)〉 = |j′,m′ ± 1〉C± (j′,m′) α (j′,m′; j,K)

= |j′,m′ ± 1〉C± (j′,m′) α (j′,m′ ± 1; j,K) (5.8.15)

implying the independence of the factor α (j′,m′; j,K) of m′. Hence, we may
rewrite (5.8.13) as

|ψ (j′,m′; j,K)〉 = |j′,m′〉α (j′; j,K) . (5.8.16)

Multiplying (5.8.7) by 〈j′′,m′′|, using (5.8.16), immediately leads to
〈
j′,m′ ∣∣TK

M

∣∣j,m〉
= 〈j′,m′ |j,m;K,M〉α (j′; j,K) (5.8.17)

which is the desired result quoted in (5.8.3) upon appropriately identifying
a reduced matrix element, characteristic of the operator TK

M , and as shown
above it is necessarily independent of m, m′, M , where m + M = m′.

In particular, for K = 1, we have T 1
M ≡ V (m), and for j′ = j, (5.8.3),

reduces to the expression for the vector operator obtained earlier in (5.7.18)–
(5.7.20). For j′ not necessarily equal to j, (5.8.3) generalizes (5.7.18) to

〈j′,m′ |V (M)|j,m〉 = 〈j′,m′ |j,m; 1,M〉 〈j′ ||V||j〉 (5.8.18)

where m′ = m + M, j′ = |j − 1| , . . . , j + 1.
From (5.8.16), (5.8.7) we also have the following expression for the action

of the operator TK
M on the angular momentum states |j,m〉:

TK
M |j,m〉 =

j+K∑
j′=|j−K|

|j′,m′〉
〈
j′
∣∣|TK |

∣∣j〉 〈j′,m′ |j,m;K,M〉 (5.8.19)

where m′ = m + M .
Out of two rank K1, K2 tensor operators TK1

M1
, TK2

M2
one may construct a K

rank tensor operator TK
M , where M = M1+M2, K = |K1 − K2| , . . . ,K1+K2

as follows
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F (K,K1,K2) TK
M =

∑
M1+M2=M

TK1
M1

TK2
M2

〈K1,M1;K2,M2 |K,M〉 (5.8.20)

as is readily checked, where F (K,K1,K2) is, in general, a function of K, K1,
K2 and is necessarily independent of M .

We may also invert (5.8.20) and use the completeness relation (5.5.23) to
obtain

TK1
M1

TK2
M2

=
K1+K2∑

K=|K1−K2|
TK

M F (K,K1,K2) 〈K,M |K1,M1;K2,M2〉 . (5.8.21)

An important application of tensor operators is to the spherical harmonics
studied in §5.3.

To the above end, for any non-negative integer L, we define a tensor opera-
tor Y L

M of rank L, with components specified by M = −L,−L+1, . . . , L−1, L,
as follows. The spherical harmonics YLM (Ω) (§5.3), Ω = (θ, φ), are defined
by 〈

Ω
∣∣Y L

M

∣∣Ω′〉 = δ (Ω − Ω′) YLM (Ω) (5.8.22)

where
δ (Ω − Ω′) =

δ (θ − θ′)
sin θ

δ (φ − φ′) (5.8.23)

with Y L
M satisfying the usual commutation relations in (5.8.2), with the or-

bital angular momentum states,

[
J(m) , Y L

M

]
= �

[
Mδm,0 ∓

1√
2

√
(L ∓ M) (L ± M + 1)δm,±1

]
Y L

M+1

(5.8.24)
and the orbital angular momentum states given by

|L,M〉 =
∫

dΩ′ Y L
M |Ω′〉 (5.8.25)

where
dΩ = sin θ dθ dφ.

From (5.8.25), we then have

〈Ω |L,M〉 = YLM (Ω) (5.8.26)

as expected.
Also

J(m) |L,M〉 =
∫

dΩ′ [J(m) , Y L
M

]
|Ω′〉 +

∫
dΩ′ Y L

MJ(m) |Ω′〉 . (5.8.27)

The second term on the right-hand side of this equation may be rewritten as
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∑
�′,m′

∫
dΩ′ Y L

MJ(m) |�′,m′〉Y ∗
�′,m′ |Ω′〉

=
√

4π Y L
M J(m) |0, 0〉 = 0 (5.8.28)

using the orthonormality of the spherical harmonics, with Y00 (Ω) = 1/
√

4π,
and then using (5.7.5).

From (5.8.24), (5.8.25), (5.8.27) we then obtain

J(m) |L,M〉 = �

[
Mδm,0 ∓

1√
2

√
(L ∓ M) (L ± M + 1)δm,±1

]
|L,M + m〉

(5.8.29)
yielding in particular to

J3 |L,M〉 = �M |L,M〉 (5.8.30)

J2 |L,M〉 = �
2L (L + 1) |L,M〉 (5.8.31)

as expected.
Now we use the general expansion in (5.8.20) for the tensor operator Y �

m.
Upon taking the matrix element 〈Ω| · |Ω′〉, of (5.8.21), integrating over Ω′,
and using the property

∫
dΩ′ 〈Ω ∣∣Y �1

m1
Y �2

m2

∣∣Ω′〉 =
∫

dΩ′ dΩ′′ 〈Ω ∣∣Y �1
m!

∣∣Ω′′〉 〈Ω′′ ∣∣Y �2
m2

∣∣Ω′〉

= Y�1m1 (Ω) Y�2m2 (Ω) (5.8.32)

we obtain

F (�, �1, �2) Y�m (Ω) =
∑

m1+m2=m

Y�1m1 (Ω) Y�2m2 (Ω) 〈�1,m1; �2,m2 |�,m〉 .

(5.8.33)
To evaluate the factor F (�, �1, �2) explicitly we set θ = 0, φ = 0, use the

relation (5.3.50) to obtain from (5.8.33)

F (�, �1, �2) =

√
(2�1 + 1) (2�2 + 1)

4π (2� + 1)
〈�1, 0; �2, 0 |�, 0〉 . (5.8.34)

From the inverse relation (5.8.21), we have from (5.8.33), (5.8.34),

Y�1m1 (Ω) Y�2m2 (Ω) =
�1+�2∑

�=|�1−�2|
Y� m (Ω)

√
(2�1 + 1) (2�2 + 1)

4π (2� + 1)

× 〈�1, 0; �2, 0 |�, 0〉 〈�,m |�1,m1; �2,m2〉 . (5.8.35)
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Upon multiplying this equation by Y�3m3 (Ω), integrating over Ω, and
using the orthonormality of the spherical harmonics, we obtain the following
useful integral involving three spherical harmonics
∫

dΩ Y�1m1 (Ω) Y�2m2 (Ω) Y�3m3 (Ω)

= (−1)m3

√
(2�1 + 1) (2�2 + 1)

4π (2�3 + 1)
〈�1, 0; �2, 0 |�3, 0〉 〈�3,m3 |�1,m1; �2,m2〉

≡
√

(2�1 + 1) (2�2 + 1) (2�3 + 1)
4π

(
�1 �2 �3
0 0 0

)(
�1 �2 �3
m1 m2 −m3

)
(5.8.36)

where m3 = m1+m2, �3 = |�1 − �2| , |�1 − �2|+1, . . . , �1+�2, and otherwise the
integral (5.8.36) is zero. In using the orthogonality relation between Y�m (Ω)
and Y�3m3 (Ω), we have used the fact that (see (5.3.44))

Y�3 −m3 (Ω) = (−1)m3 Y ∗
�3m3

(Ω) . (5.8.37)

In writing the last equality in (5.8.36), we have used the definition of the 3-j
symbols in (5.6.24) and the reality of the Clebsch-Gordan coefficients.

As a concrete non-trivial application of the integral (5.8.36), consider the
case �2 = 2, m2 = 1,

Y21 (Ω) = −
√

15
8π

sin θ cos θeiφ (5.8.38)

then for �1 = �3 ≡ �, m3 = m′, m1 = m, (5.8.36) leads to the following
matrix element

〈
�,m′ ∣∣sin θ cos θeiφ

∣∣�,m〉
= −

√
(� − m) (� + m + 1)

× (2m + 1)
(2� − 1) (2� + 3)

δm′,m+1. (5.8.39)

Equation (5.8.35) also leads to useful recurrence relations for the spherical
harmonics. For example, for �1 = 1, m1 = 0,

Y1 0 (Ω) =

√
3
4π

cos θ (5.8.40)

m2 = m, and (5.8.35) leads to

cos θ Y� m (Ω) =

√
(� − m + 1) (� + m + 1)

(2� + 1) (2� + 3)
Y�+1 m (Ω)
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+

√
�2 − m2

4�2 − 1
Y�−1 m (Ω) . (5.8.41)

For � = 0, the second term should be set equal to zero, and m = 0.
Equation (5.8.41) gives directly the matrix element

〈�,m′ |cos θ|�,m〉 = 0 for all m′,m (5.8.42)

and all �.
On the other hand, upon multiplying (5.8.41) by cos θ, and using the

recurrence relation (5.8.41) one more time leads to the following matrix ele-
ments

〈
�,m′ ∣∣cos2 θ

∣∣�,m〉
=

[
2�2 + 2� − 1 − 2m2

]
(2� − 1) (2� + 3)

δm′,m. (5.8.43)

The expression in (5.8.43) may be generalized as follows.
Let n = (cos φ sin θ, sin φ sin θ, cos θ), then quite generally, by using the

symmetry of the product ninj , we may write

〈
�,m′ ∣∣ninj

∣∣�,m〉
=

〈
�,m′

∣∣∣∣∣A� δij + B�

(
LiLj + LjLi

)
�2

∣∣∣∣∣�,m
〉

(5.8.44)

where A�, B� are to be determined. Since nini = 1, LiLi |�,m〉 = L2 |�,m〉 =
�

2� (� + 1) |�,m〉, we obtain

3A� = [1 − 2B� � (� + 1)] . (5.8.45)

On the other hand for i = j = 3, we have from (5.8.44), the fact that(
L3
)2 |�,m〉 = �

2m2 |�,m〉, and (5.8.45) that

A� =

(
2�2 + 2� − 1

)
(2� − 1) (2� + 3)

, B� = − 1
(2� − 1) (2� + 3)

. (5.8.46)

That is,

〈
�,m′ ∣∣ninj

∣∣�,m〉
=

1
(2� − 1) (2� + 3)

〈�,m′|
(
2�2 + 2� − 1

)
δij

−
(
LiLj + LjLi

)
�2

|�,m〉 . (5.8.47)

This equation will be useful in our treatment of the hyperfine structure
of the hydrogen atom for any � in §7.6.

Finally we use the integral (5.8.36) to evaluate the reduced matrix element
〈�′ ||YL||�〉 for the spherical-harmonic-tensor operator, and also provide an
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important application of the integral in (5.8.36) involving three spherical
harmonics.

To the above end, the integral on the left-hand side of (5.8.36) may be
rewritten as

(−1)m1
〈
�1,m1

∣∣Y �2
m2

∣∣�3,m3

〉
(5.8.48)

which for m1 = 0, m2 = 0, m3 = 0 leads to

〈
�1, 0

∣∣∣Y �2
0

∣∣∣�3, 0
〉

=

√
(2�1 + 1) (2�2 + 1) (2�3 + 1)

4π

(
�1 �2 �3
0 0 0

)2

(5.8.49)

which upon comparison with (5.8.3) we obtain

〈
�1
∣∣|Y �2 |

∣∣�3〉 = (−1)�2−�3

√
(2�2 + 1) (2�3 + 1)

4π

(
�1 �2 �3
0 0 0

)
(5.8.50)

where we have used (5.6.24), and the right-hand side of (5.8.50) is zero if
�1 + �2 + �3 is odd (see (5.6.28), (5.6.29)).

We close this section by giving an important application of (5.8.36), in-
volving the integral of the product of three spherical harmonics, in evaluating
the matrix element 〈�1,m1 |V (|r1 − r2|)|�2,m2〉 of a potential depending on
the distance

|r1 − r2| =
(
r2
1 − 2r1r2 cos θ + r2

2

)1/2 (5.8.51)

between two particles. To do this, one may expand

V (|r1 − r2|) =
∞∑

�=0

V� (r1, r2) P� (cos θ) (5.8.52)

in terms of Legendre polynomials, where3

V� (r1, r2) =
(2� + 1)

2

∫ π

0

cos θ dθ V (|r1 − r2|) P� (cos θ) . (5.8.53)

Hence upon using the identity (see (5.3.30))

P� (cos θ) =

√
4π

(2� + 1)
Y� 0 (θ, φ) (5.8.54)

the above matrix element 〈�1,m1 |V (|r1 − r2|)|�2,m2〉 becomes

∞∑
�=0

V� (r1, r2)

√
4π

2� + 1
〈
�1,m1

∣∣Y �
0

∣∣�2,m2

〉
. (5.8.55)

3 For example for the Coulomb potential λ/|r1 − r2|, V� (r1, r2) = λ (r</r>)� /r>,
r< = min (r1, r2) , r> = max (r1, r2).
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5.9 Combining Several Angular Momenta: 6-j and 9-j
Symbols

In this section, we consider the problem of combining several independent
angular momenta. More specifically, the combination of only three or four
angular momenta are considered.

One can combine three angular momenta with quantum numbers j1, j2, j3
in more than one way. We may, for example, combine j1, j2 to form a quantum
number j12 and then combine the latter with j3 to form a final quantum
number j. On the other hand, we may, for example, combine j2, j3 to form
j23 and then combine the latter with j1 to form a final j value.

Accordingly, one may define (see §5.5, (5.6.24)), the following states:

|j,m; j12 (j1j2) , j3〉

=
√

2j + 1
√

2j12 + 1
∑

m1,m2,m3,m12

(−1)j3−j12−m+j2−j1−m12

×
(

j1 j2 j12
m1 m2 −m12

)(
j12 j3 j
m12 m3 −m

)
|j1,m1〉 |j2,m2〉 |j3,m3〉 (5.9.1)

with obvious constraints on the summation variables m1, m2, m3, m12 un-
derstood, and

|j,m; j1, j23 (j2j3)〉

=
√

2j + 1
√

2j23 + 1
∑

m1,m2,m3,m23

(−1)j23−j1−m+j3−j2−m23

×
(

j1 j23 j
m1 m23 −m

)(
j2 j3 j23
m2 m3 −m23

)
|j1,m1〉 |j2,m2〉 |j3,m3〉 . (5.9.2)

The two states on the left-hand sides of (5.9.1), (5.9.2) are related by

|j,m; j1, j23 (j2j3)〉 =
√

2j23 + 1 (−1)j1+j2+j3+j
∑
j12

√
2j12 + 1

× |j,m; j12 (j1j2) , j3〉
{

j3 j12 j
j1 j23 j2

}
(5.9.3)

where the orthogonality relations (5.6.30) give
{

j1 j2 j3
�1 �2 �3

}
= (2j3 + 1)

∑
mi,ni

(−1)Σiji+Σi�i+Σini

(
j1 j2 j3

−m1 −m2 −m3

)

×
(

j1 �2 �3
m1 n2 −n3

)(
�1 j2 �3
−n1 m2 n3

)(
�1 �2 j3
n1 −n2 m3

)
. (5.9.4)
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The objects
{

j1 j2 j3
�1 �2 �3

}
are referred to as 6-j symbols. Some properties of

the latter are the following. They are left invariant by any permutations of
the columns, e.g.,

{
j1 j2 j3
�1 �2 �3

}
=
{

j3 j2 j1
�3 �2 �1

}
=
{

j2 j1 j3
�2 �1 �3

}
. (5.9.5)

A 6-j symbol remains also invariant under the interchange of upper and lower
arguments in each of any two columns, e.g.,

{
j1 j2 j3
�1 �2 �3

}
=
{

�1 j2 �3
j1 �2 j3

}
=
{

�1 �2 j3
j1 j2 �3

}
. (5.9.6)

In particular, they satisfy the orthogonality relation

∑
j

(2j + 1)
{

j1 j2 j
�1 �2 �

}{
j1 j2 j
�1 �2 �′

}
= (2� + 1)−1

δ�,�′ (5.9.7)

and the following sum rule

∑
j

(−1)j+�+�′ (2j + 1)
{

j1 j2 j
�1 �2 �

}{
j1 j2 j
�2 �1 �′

}
=
{

j1 �1 �′

j2 �2 �

}
. (5.9.8)

As an example, consider a particle composite of two particles of spins S1,
S2 and relative angular momentum (see §2.7, (2.7.40)) Lr residing in their
center of mass. Then the total internal angular momentum of the composite
particle is given by (see (2.7.39), (2.7.40))

S = S1 + S2 + Lr ≡ J1 + J2 + J3. (5.9.9)

For definiteness, suppose S1 denotes the spin of a proton: s1 = 1/2, and S2

denotes the spin of a deuteron taken to be s2 = 1. Then j12 = 1/2 or 3/2.
Consider � = 1, and that the total spin of the composite particle corresponds
to s = 3/2 and j23 = 2.

According to (5.9.3),

|s = 3/2,m; s1 = 1/2, j23 = 2〉 =
√

5
∑

j12=1/2,3/2

|s = 3/2,m; j12 (s1s2) , j3 = 1〉

×
√

(2j12 + 1)
{

2 1 1
j12 3/2 1/2

}
(5.9.10)

where we have used (5.9.5), (5.9.6), and the numerical values of the 6-j sym-
bols may be evaluated from (5.9.4) to be

{
2 1 1

1/2 3/2 1/2

}
=

1
2
√

3
,

{
2 1 1

3/2 3/2 1/2

}
=

1
2
√

30
. (5.9.11)
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That is,

|s = 3/2,m; s1 = 1/2, j23 = 2〉 =

√
5
6
|s = 3/2,m; j12 (s1s2) = 1/2, j3 = 1〉

+

√
1
6
|s = 3/2,m; j12 (s1s2) = 3/2, j3 = 1〉

(5.9.12)

and the probabilities that in the state |s = 3/2,m; s1 = 1/2, j23 = 2〉, the pro-
ton spin and the deuteron spin combine to give the values j12 = 1/2, 3/2,
respectively, are 5/6 and 1/6. These also check out the correctness of the
normalization condition.

For completeness, we note that the 6-j symbols may be also rewritten
from (5.9.3) in terms of amplitudes as

〈j,m; j12 (j1j2) , j3 |j,m; j1, j23 (j2j3)〉

= (−1)j1+j2+j3+j
√

(2j12 + 1) (2j23 + 1)
{

j12 j3 j
j23 j1 j2

}
(5.9.13)

where for the numerical example above, the corresponding amplitudes are
equal to

√
5/6 or

√
1/6 for j12 = 1/2 or j12 = 3/2, respectively.

Finally, we consider combining four angular momenta with quantum num-
bers j1, j2, j3, j4. As before, there are many ways of combining these angular
momenta first in pairs. These lead to the definition of so-called 9-j symbols,
generalizing further the expression (5.9.13) for 6-j symbols, to four angular
momenta. Specifically,

〈j,m; j12 (j1j2) , j34 (j3j4) |j,m; j13 (j1j3) , j24 (j2j4)〉

=
√

(2j12 + 1) (2j34 + 1) (2j13 + 1) (2j24 + 1)




j1 j2 j12
j3 j4 j34
j13 j24 j


 (5.9.14)

where we note that for any row (a b c) or column (a b c)T of the 9-j symbols,
the addition rule of angular momenta |a − b| � c � (a + b) is satisfied.

The 9-j symbols may be evaluated in terms of 6-j symbols as follows:


j11 j12 j13
j21 j22 j23
j31 j32 j33


 =

∑
j

(−1)2j (2j + 1)

×
{

j11 j21 j31
j31 j33 j

}{
j12 j22 j32
j21 j j23

}{
j13 j23 j33
j j11 j12

}
. (5.9.15)

The 9-j symbols satisfy particularly the following symmetry relations. A
9-j symbol remains invariant under each of the following transformations:



5.10 Particle States and Angular Momentum; Helicity States 307

cyclic permutations of its columns, cyclic permutations of its rows, a trans-
position as for a 3 × 3 matrix.

Orthonormality of states leads to the rule

∑
j13,j23

(2j13 + 1) (2j23 + 1)




j11 j12 j13
j21 j22 j23
j31 j32 j33






j11 j12 j13
j21 j22 j23
j′31 j′32 j33




=
δ (j31, j′31) δ (j32, j′32)
(2j31 + 1) (2j32 + 1)

. (5.9.16)

Ultimately, the 6-j and 9-j symbols are evaluated in terms of Clebsch-
Gordan coefficients or equivalently in terms of 3-j symbols as defined in
(5.6.24). The explicit expressions are given, respectively, in (5.9.4) and
(5.9.15).

5.10 Particle States and Angular Momentum; Helicity
States

In this section, we use some of the details worked out on angular mo-
mentum to define and construct one- and two-particle states with or without
spin. These particles may be composite of several particles as discussed in
§2.7. For example, a given particle may be the deuteron of spin 1, composite
of a proton and a neutron. For greater generality, we also consider so-called
helicity states (see also §5.4) for which the projection of the spin of a parti-
cle is taken along the direction of its momentum instead of the traditionally
taken z-axis. These latter states are also important for a relativistic treat-
ment and are essential for describing zero-mass particles. As we have already
developed the whole machinery to construct helicity states as well with no
difficulty, they are worked out here for completeness. The reader may wish
to skip over the construction of helicity states at a first reading.

5.10.1 Single Particle States

Spin 0

Consider a particle with momentum along the z-axis:

p0 = p (0, 0, 1) (5.10.1)

and a corresponding state 〈p0| satisfying

〈p0|P = p0 〈p0| (5.10.2)

where P is the momentum operator.
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To define a state 〈p| of arbitrary momentum

p = p(sin θ cos φ, sin θ sinφ, cos θ) (5.10.3)

as obtained from the state 〈p0|, we use the definition (2.3.5)/(2.3.43) which
amounts to rotating the coordinate system appropriately instead. To this
end, we consider the bra

〈p0|
[
exp

(
i
�
θn · J

)]†
(5.10.4)

where
n = (sin φ,− cos φ, 0). (5.10.5)

Since we are considering spin 0, J = L. The state in (5.10.4) is actually the
state 〈p| of arbitrary p as given in (5.10.3). To see this, apply the momentum
operator P to it:

〈p0| exp
(
− i

�
θn · J

)
P i = 〈p0|P ′i exp

(
− i

�
θn · J

)
(5.10.6)

where

P ′i = exp
(
− i

�
θn · J

)
P i exp

(
i
�
θn · J

)

= P kRik exp(θ,n) (5.10.7)

and in writing the equality, we have used the vector property of P as given
in (5.7.42). Hence

〈p0| exp
(
− i

�
n · J

)
P i = pk

0Rik (θ,n) 〈p0| exp
(
− i

�
n · J

)
(5.10.8)

and from (2.1.4) we explicitly have

Ri3(θ,n) = δi3 cos θ − εij3nj sin θ (5.10.9)

pk
0Rik(θ,n) = pi (5.10.10)

with pi as given in (5.10.3). That is,

〈p0| exp
(
− i

�
θn · J

)
P = p 〈p0| exp

(
− i

�
θn · J

)
(5.10.11)

and

〈p| = 〈p0|
[
exp

(
i
�
θn · J

)]†
. (5.10.12)
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We note that

〈p0|L3 = 〈p0|
(
X1P 2 − X2P 1

)
= 0 (5.10.13)

since
[
X1, P 2

]
= 0,

[
X2, P 1

]
= 0, and p0 has zero components along the x2

and x1 axes. That is, 〈p0| is an eigenstate of L3 with m = 0.
We introduce simultaneous eigenstates of the commuting operators

P2,L2, L3 denoted by 〈p, �,m|:

〈p, �,m|P2 = p2 〈p, �,m| (5.10.14)

〈p, �,m|L2 = �
2�(� + 1) 〈p, �,m| (5.10.15)

〈p, �,m|L3 = �m 〈p, �,m| (5.10.16)

normalized as follows:

〈p, �,m |p′, �′,m′〉 = (2π�)3
δ(p − p′)

p2
δ��′δmm′ . (5.10.17)

The following properties of the amplitude 〈p0 |p′, �,m〉 are obvious

0 =
〈
p0

∣∣L3
∣∣p′, �,m〉

= �m 〈p0 |p′, �,m〉 (5.10.18)

0 = 〈p0|
(
P2 − p2

)
|p′, �,m〉 =

(
p′2 − p2

)
〈p0 |p′, �,m〉 . (5.10.19)

Accordingly, we may write quite generally

〈p0 |p′, �,m〉 = (2π�)3
δ(p − p′)

p2
δm0C�(p) (5.10.20)

where C�(p) is to be determined.
We expand the state 〈p| in terms of the states 〈p, �,m| and hence introduce

in the process the identity operator

1 =
∑
�,m

∫ ∞

0

p′2 dp′

(2π�)3
|p′, �,m〉 〈p′, �,m| . (5.10.21)

From (5.10.12), (5.10.20), (5.10.21) we then obtain

〈p| =
∑
�,m

C�(p)

〈
�, 0

∣∣∣∣∣
[
exp

(
i
�
θn · J

)]†∣∣∣∣∣�,m
〉
〈p, �,m| (5.10.22)

where we have used the normalization

〈p′, �′, 0|
[
exp

(
i
�
θn · J

)]†
|p, �,m〉
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= (2π�)3
δ (p − p′)

p2
δ�′�

〈
�, 0

∣∣∣∣∣
[
exp

(
i
�
θn · J

)]†∣∣∣∣∣�,m
〉

(5.10.23)

since J commutes with both L2 and P2.
From the identity (5.7.47) and (5.3.65), (5.3.66), we have

〈
�, 0

∣∣∣∣∣
[
exp

(
i
�
θn · J

)]†∣∣∣∣∣�,m
〉

=
〈

�, 0
∣∣∣∣exp

(
− i

�
φJ3

)
exp

(
i
�
θJ2

)
exp

(
i
�
φJ3

)∣∣∣∣�,m
〉

≡ D
(�)
0m (φ, θ,−φ)

≡ D
(�)
0m (φ, θ, 0)

=

√
4π

2� + 1
Y�m (θ, φ) . (5.10.24)

Equation (5.10.22) then becomes

〈p| =
∑
�,m

C� (p)

√
4π

2� + 1
Y� m (θ, φ) 〈p, �,m| (5.10.25)

and

〈p |p′, �,m〉 = (2π�)3 C� (p)

√
4π

2� + 1
δ (p − p′)

p2
Y�m (θ, φ) . (5.10.26)

Finally, from the equality

(2π�)3 δ�′′�′δm′′m′
δ (p′′ − p′)

p′2
=
∫
〈p′′, �′′,m′′ |p〉 d3p

(2π�)3
〈p |p′, �′,m′〉 ,

(5.10.27)
it is readily verified from (5.10.25), that we may set

C�(p) = C� =

√
2� + 1

4π
(5.10.28)

thus obtaining

〈p| =
∞∑

�=0

�∑
m=−�

Y�m (p̂) 〈p, �,m| (5.10.29)

where p̂ is the unit vector (sin θ cos φ, sin θ sin φ, cos θ) along p.
From (5.10.29), we also obtain
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〈p, �,m| =
∫

dΩ Y ∗
� m (θ, φ) 〈p| (5.10.30)

and note from (5.10.17), the correct normalization in (2.4.15) adopted for the
states 〈p|.

Before treating arbitrary spins we also consider a coordinate description
of the above. To this end, as in (5.10.4)

〈x| = 〈z0|
[
exp

(
i
�
θ′n′ · J

)]†
, |x| = |z0| ≡ r, x = rx̂ (5.10.31)

n′ = (sinφ′,− cos φ′, 0), and from (5.10.29), (5.10.21), (5.10.24) we readily
obtain

〈x |p〉 =
∑
�,m

Y�m (x̂) Y ∗
�m (p̂) 〈z0 |p, �, 0〉 . (5.10.32)

The addition theorem of spherical harmonics in (5.3.67) and the expres-
sion for the transformation function 〈x |p〉 in (2.4.8), allow us to write

exp
(

i
�
x · p

)
=

∞∑
�=0

(2� + 1)
4π

P� (x̂ · p̂) 〈z0 |p, �, 0〉 . (5.10.33)

On the other hand, the orthogonality relation (5.3.51), and the definition
(5.3.30): Y�0 (θ, 0) =

√
(2� + 1) /4πP� (cos θ) give

〈z0 |p, �, 0〉 = 2π

∫ 1

−1

d (cos θ) P� (cos θ) eirp cos θ/�. (5.10.34)

Thus we are led to introduce a function of rp/� which defines the amplitude
〈z0 |p, �, 0〉. This function is referred to as a spherical Bessel function of order
� and may be defined as an integral over a Legendre polynomial:

j�

(pr

�

)
=

1
2i�

∫ 1

−1

d (cos θ) P� (cos θ) eirp cos θ/�. (5.10.35)

From (5.10.34) and (5.10.35), (5.10.33) becomes

exp
(

i
�
x · p

)
=

∞∑
�=0

(2� + 1) i� j� (pr/�) P� (x̂ · p̂) . (5.10.36)

The identity

〈x| =
∫
〈x |p〉 d3p

(2π �)3
〈p| (5.10.37)

allows one to write

〈x| =
∞∑

�=0

(2� + 1) i�
∫

d3p

(2π�)3
j� (pr/�) P� (x̂ · p̂) 〈p| (5.10.38)
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and from (5.10.30), (5.3.66)

〈x |p, �,m〉 = 4π i� j� (pr/�) Y� m (x̂) . (5.10.39)

As an equivalent expression to (5.10.38), (5.10.39) gives

〈x| =
∞∑

�,m

∫ ∞

0

p2dp

(2π�)3
4π i� j� (pr/�) Y� m (x̂) 〈p, �,m| . (5.10.40)

The normalization conditions 〈x′ |x〉 = δ3 (x − x′) (see (2.4.14)) and
(5.10.17), lead from (5.10.40) to infer the closure relation

∫ ∞

0

p2dp

�3
j� (pr/�) j� (pr′/�) =

π

2
δ (r − r′)

r2
. (5.10.41)

Arbitrary Spins

Consider a particle of spin s, with projection of spin along the z-axis given
by �σ, and momentum p0 (see (5.10.1) along the z-axis. We denote such a
state by 〈p0, σ|. That is,

〈p0, σ|P = p0 〈p0, σ| (5.10.42)

〈p0, σ|S3 = �σ 〈p0, σ| . (5.10.43)

As in (5.10.4), the state

〈p0, σ|
[
exp

(
i
�
θn · L

)]†
(5.10.44)

where L is the orbital angular momentum, describes a state of momentum
p, as given in (5.10.3), and projection of spin along the z-axis equal to �σ.
To see this, note that S3 commutes with L:

〈p0, σ|
[
exp

(
i
�
θn · L

)]†
S3 = 〈p0, σ|S3

[
exp

(
i
�
θn · L

)]†

= �σ 〈p0, σ|
[
exp

(
i
�
θn · L

)]†
. (5.10.45)

Also (5.10.6) holds with J replaced by L since P and S commute. Hence we
conclude that

〈p0, σ|
[
exp

(
i
�
θn · L

)]†
= 〈p, σ| . (5.10.46)

As in (5.10.13)
〈p0, σ|L3 = 0. (5.10.47)
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We introduce simultaneous eigenstates of the commuting operators P2,
L2, L3, S2, S3 which we denote by 〈p, �,m, s, σ|, with the identity defined by

1 =
∑

�,m,σ

∫
p2 dp

(2π�)3
|p, �,m, s, σ〉 〈p, �,m, s, σ| . (5.10.48)

From (5.10.46)–(5.10.48), we readily obtain in a similar way as in
(5.10.25), (5.10.29), (5.10.30),

〈p, σ| =
∑
�,m

√
2� + 1

4π
D

(�)
0 m (φ, θ,−φ) 〈p, �,m, σ|

≡
∑
�,m

Y� m (θ, φ) 〈p, �,m, σ| (5.10.49)

and
〈p, �,m, σ| =

∫
dΩ Y ∗

� m (θ, φ) 〈p, σ| . (5.10.50)

One may also combine the orbital angular momentum and spin, using
Clebsch-Gordan coefficients, to rewrite (5.10.49) as

〈p, σ| =
∑

�,m,J

Y� m (θ, φ) 〈�,m; s, σ |J,M = m + σ〉 〈p, J,M, �, s| (5.10.51)

where due to the commutativity of L2, S2, P2 with J2, J3, the states
〈p, J,M, �, s| are labelled by p, �, and s as well.

Arbitrary Spins — Helicity States

The projection of the spin along the momentum direction of a particle is
referred to as the helicity. Since

J · P = S · P (5.10.52)

as follows from (2.7.6), helicity may be equivalently defined as the projection
of the angular momentum along the direction of momentum.

From (5.7.48), we also note the commutativity properties:

[J,J · P] = 0 (5.10.53)

[
J,P2

]
= 0 (5.10.54)

and
[
J · P,P2

]
= 0 (5.10.55)
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[P,J · P] = 0. (5.10.56)

According to (5.10.55), we may define a state 〈p0, λ| labelled by p0 and
the helicity λ such that

〈p0, λ|P = p0 〈p0, λ| (5.10.57)

(see (5.10.1), p = |p|)

〈p0, λ|
J · P

p
= �λ 〈p0, λ| . (5.10.58)

On the other hand, the left-hand side of (5.10.58) is equal to 〈p0, λ|J3. That
is

〈p0, λ| J3 = �λ 〈p0, λ| . (5.10.59)

As in (5.10.4), (5.10.5), we consider the state

〈p0, λ|
[
exp

(
i
�
θn · J

)]†
(5.10.60)

for which (see (5.10.8)), (5.10.3))

〈p0, λ| exp
(
− i

�
θn · J

)
P = p 〈p0, λ| exp

(
− i

�
θn · J

)
. (5.10.61)

Also from (5.10.53), (5.10.58)

〈p0, λ| exp
(
− i

�
θn · J

)
J · P

p
= �λ 〈p0, λ| exp

(
− i

�
θn · J

)
. (5.10.62)

That is,

〈p0, λ|
[
exp

(
i
�
θn · J

)]†
= 〈p, λ| . (5.10.63)

We introduce simultaneous eigenstates of the commuting operators P2,
J2, J3, J · P

〈p, J,M, λ|P2 = p2 〈p, J,M, λ| (5.10.64)

〈p, J,M, λ|J2 = �
2J(J + 1) 〈p, J,M, λ| (5.10.65)

〈p, J,M, λ| J3 = �M 〈p, J,M, λ| (5.10.66)

〈p, J,M, λ| J · P
p

= �λ 〈p, J,M, λ| (5.10.67)

and
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1 =
∑

J,M,λ

∫ ∞

0

p2dp

(2π�)3
|p, J,M, λ〉 〈p, J,M, λ|

(5.10.68)

〈p, J,M, λ |p′, J ′,M ′, λ′〉 = (2π�)3
δ(p − p′)

p2
δJJ ′δMM ′δλλ′ . (5.10.69)

Following a procedure as the one leading to (5.10.49), we obtain

〈p, λ| =
∑
J,M

√
2J + 1

4π
D

(J)
λM (φ, θ,−φ) 〈p, J,M, λ| (5.10.70)

and upon multiplying this equation by
(
D

(J ′)
λM ′(φ, θ,−φ)

)∗, integrating over θ
and φ, and using (5.5.52), it is easily worked out that

〈p, J,M, λ| =

√
2J + 1

4π

∫
dΩ

(
D

(J)
λM (φ, θ,−φ)

)∗
〈p, λ| . (5.10.71)

Helicity Versus Standard Spin States

Consider the spin state 〈p0, σ| in (5.10.42), (5.10.43) and the helicity state
〈p0, λ| in (5.10.57), (5.10.58). Clearly, from the just mentioned equations,

〈p0, σ|
∣∣∣
σ=λ

= 〈p0, λ| (5.10.72)

relating the spin (on the left) and helicity states for a particle with momentum
p0 along the z-axis in (5.10.1).

We apply the operator exp(−iθn · J/�) in (5.10.4)/(5.10.5) to both sides
of (5.10.72), and use the commutativity of L and S to obtain from (5.10.46),
(5.10.63)

〈p, σ|
∣∣∣
σ=λ

exp
(
− i

�
θn · S

)
= 〈p, λ| (5.10.73)

for an arbitrary momentum p as defined in (5.10.3).
From (5.10.49), the left-hand side of (5.10.73) is equal to

∑
�,m

√
2� + 1

4π

(
D�

0m(φ, θ,−φ)
)
〈p, �,m, σ|

∣∣∣
σ=λ

exp
(
− i

�
θn · S

)

=
∑

�,m,σ

√
2� + 1

4π
D

(�)
0m(φ, θ,−φ)D(s)

λσ (φ, θ,−φ) 〈p, �,m, σ|

=
∑

�,m,σ,J

√
2� + 1

4π
D

(�)
0m(φ, θ,−φ)D(s)

λσ (φ, θ,−φ)
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× 〈�,m; s, σ |J,M = m + σ〉 〈p, J,M, �, s| (5.10.74)

where 〈�,m; s, σ |J,M = m + σ〉 is a Clebsch-Gordan coefficient. Due to the
commutativity of L2, S2, P2 with J2, J3 the states 〈p, J,M, �, s| are labelled
by p, � and s as well.

From (5.10.73), (5.10.70), (5.10.74)

∑
�,m,σ,J

√
2� + 1

4π
D

(�)
0m(φ, θ,−φ)D(s)

λσ (φ, θ,−φ)

× 〈�,m; s, σ |J,M = m + σ〉 〈p, J,M, �, s|

=
∑
J,M

√
2J + 1

4π
D

(J)
λ M (φ, θ,−φ) 〈p, J,M, λ| . (5.10.75)

We finally make use of the identity in (5.5.44) as specialized to the present
case to read

D
(�)
0m(φ, θ,−φ)D(s)

λσ (φ, θ,−φ)

=
∑
J,M

〈�, 0; s, λ |J, λ〉D
(J)
λM (φ, θ,−φ) 〈J,M |�,m; s, σ〉 . (5.10.76)

Upon substituting (5.10.76) in the left-hand expression in (5.10.75), and
using the completeness relation

∑
m,σ

〈J ′,M ′ |�,m; s, σ〉 〈�,m; s, σ |J,M = m + σ〉 = δJ ′JδM ′M

we obtain from (5.10.75)

∑
J,M,�

√
2� + 1

4π
D

(J)
λM (φ, θ,−φ) 〈�, 0; s, λ |J, λ〉 〈p, J,M, �, s|

=
∑
J,M

√
2J + 1

4π
D

(J)
λM (φ, θ,−φ) 〈p, J,M, λ| = 〈p, λ| . (5.10.77)

The latter leads to

〈J,M, λ |J,M, �, s〉 = 〈�, 0; s, λ |J, λ〉
√

2� + 1
2J + 1

(5.10.78)

where 〈�, 0; s, λ |J, λ〉 is just a Clebsch-Gordan coefficient with M = λ.



5.10 Particle States and Angular Momentum; Helicity States 317

5.10.2 Two Particle States

Consider two particles P1, P2. Each of the particles may in turn be a cluster
of particles (§2.3, §2.7), consisting, say, of n1 and n2 particles, respectively.
The total angular momentum J of P1, P2 may be written as (see (2.7.29))

J = X × P + J(1) + J(2) (5.10.79)

where

J(α) ≡ (Xα − X) ×
(
Pα − Mα

M
P
)

+ S(α), α = 1, 2 (5.10.80)

and S(1), S(2) denote the spins of P1, P2. That is, J(α) is the total angular
momentum of the αth cluster in the center of mass system of nα the particles.
Here P1, P2 are the linear momentum operators associated with the particles
P1, P2.

The momentum operator

Pr ≡ M2P1 − M1P2

M
, M = M1 + M2 (5.10.81)

is the relative momentum of P1, P2, as appearing in (2.7.40), where M1, M2

respectively, denote the sum of the masses of the n1, n2 particles, and may
be also rewritten as

Pr ≡ M2

M

(
P1 −

M1

M
P
)

M1

M

(
P2 −

M2

M
P
)

, (5.10.82)

where Pα − (Mα/M)P are the momenta relative to the center of mass, with

P = P1 + P2. (5.10.83)

In a coordinate description, the total angular momentum J of particles
may be rewritten as (§2.3, §2.7)

J = X × P + η × (−i�∇η) + S(1) + S(2) (5.10.84)

where
X =

M X1 2

M
(5.10.85)

with X1, X2 denoting the center of mass positions of P1 and P2

η = X1 − X2. (5.10.86)

We consider the problem of defining states for two free particles P1, P2.
The n1 particles making up P1 may, however, be interacting with arbitrary
interactions. Similarly, the n2 particles, making up P2 may have arbitrary
interactions. This is typical in a scattering process (see Figure 5.3), where

1

−

+ M X2
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∑
β

m1β = M1

∑
β

m2β = M2

S1
S2

P1
P2

m11

m12

m21

m22

Fig. 5.3. Two clusters of particles are initially widely separated and non-
interacting before they merge together in a scattering process leading finally
to a variety of possible outcomes. The intra-clusteral interactions (§2.5) are
not necessarily vanishing.

two clusters of particles are, for example, initially widely separated and non-
interacting before they merge together, interact and produce finally a variety
of possible outcomes.

Let (p1, σ1), (p2, σ2) denote the momenta and spin projections (in units
of �) along the z-axis of the particles P1, P2. We use the normalization

〈p′
1, σ

′
1;p

′
2, σ

′
2 |p1, σ1;p2, σ2〉 = (2π�)6δ3 (p′

1 − p1) δ3 (p′
2 − p2) δσ′

1σ1δσ′
2σ2

(5.10.87)
for the two particle states 〈p1, σ1;p2, σ2|.

From the formal definition of the Dirac deltas, it is easily verified, by a
change of variables, that

δ3(p′
1 − p1)δ

3(p′
2 − p2) = δ3(p′

T − pT)δ3(p′ − p) (5.10.88)

where
pT = p1 + p2 (5.10.89)

is the total momentum of the two particles (i.e., the center of mass momen-
tum), and

p =
M2p1 − M1p2

M

=
M2

M

(
p1 −

M1

M
pT

)
− M1

M

(
p2 −

M2

M
pT

)
. (5.10.90)
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From (5.10.87), (5.10.88), we may re-parameterize the two particle states
as 〈pT,p, σ1, σ2| with the normalization

〈p′
T,p′, σ′

1, σ
′
2 |pT,p, σ1, σ2〉 = (2π�)6 δ3 (p′

T − pT) δ3 (p′ − p) δσ′
1σ1δσ′

2σ2 .

(5.10.91)
Finally, we may introduce the states in the center of mass of the two

particles P1, P2

〈p, σ1, σ2| = 〈pT,p, σ1, σ2〉
∣∣∣
pT=0

. (5.10.92)

Two Spin 0 Particles

In a center of mass frame, pT = 0, p1 = −p2 and

p = p1 (5.10.93)

for the relative momentum. The two-particle state 〈p| in the center of mass
frame is obtained from a state 〈p0|, with relative momentum along the z-axis,
by

〈p| = 〈p0|
[
exp

(
− i

�
θn · Lr

)]†
(5.10.94)

where n is defined in (5.10.5), leading as in (5.10.29), (5.10.30) to

〈p| =
∑
�,m

Y�m (p̂) 〈p, �,m| (5.10.95)

〈p, �,m| =
∫

dΩ Y ∗
�m (p̂) 〈p| . (5.10.96)

The normalization conditions are as before as given in (2.4.15), (5.10.17).

Two Particles of Arbitrary Spins

Consider two particles of spins s1, s2 and momenta p1, p2 respectively. In
the center of mass frame (5.10.93), (5.10.94), and due to the commutativity
of S1, S2 with Lr,we have

〈p, σ1, σ2|
(
S3

(1) + S3
(2)

)
= 〈p0, σ1, σ2|

(
S3

(1) + S3
(2)

)[
exp

(
i
�
θn · Lr

)]†

= �(σ1 + σ2) 〈p0, σ1, σ2|
[
exp

(
i
�
θn · Lr

)]†

= �(σ1 + σ2) 〈p, σ1, σ2| . (5.10.97)
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Also
〈p0, σ1, σ2|L3

r = 0. (5.10.98)

Equations (5.10.97), (5.10.98) then lead, as for (5.10.49), (5.10.50), to

〈p, σ1, σ2| =
∑
�,m

√
2� + 1

4π
D

(�)
0m(φ, θ,−φ) 〈p, �,m, σ1, σ2|

≡
∑
�,m

Y�,m(p̂) 〈p, �,m, σ1, σ2| (5.10.99)

and
〈p, �,m, σ1, σ2| =

∫
dΩ Y ∗

�m(p̂) 〈p, σ1, σ2| . (5.10.100)

Here 〈p, �,m, σ1, σ2| are simultaneous eigenstates of the commuting operators
P2, L2, L3, S3

(1), S3
(2). The normalization conditions are

〈p′, σ′
1, σ

′
2 |p, σ1, σ2〉 = (2π�)3δ3 (p′ − p) δσ′

1σ1δσ′
2σ2 (5.10.101)

〈p′, �′,m′, σ′
1, σ

′
2 |p, �,m, σ1, σ2〉 =

δ(p′ − p)
p2

δ�′�δm′mδσ′
1σ1δσ′

2σ2 . (5.10.102)

For example, for the proton: P, pion: π system, we may write for (5.10.99),

〈P(p, σ), π(−p)| =
∑
�,m

Y�m(p̂) 〈p, �,m, σ|

=
∑

�,m,J,M

Y�m(p̂) 〈�,m; 1/2, σ |J,M〉 〈p, J,M | (5.10.103)

where M = m + σ and

J =
1
2
,
3
2
, . . . (5.10.104)

� = J ± 1
2
. (5.10.105)

For identical particles, we have to consider in our description the inter-
change of particles P1, P2 where now, in particular, s1 = s2 ≡ s.

To the above end, in the center of mass frame, if 〈p, σ1| corresponds to
one particle, then 〈−p, σ2| corresponds to the other particle.

From (5.10.49), (5.3.43)

〈−p, σ| =
∑
�,m

(−1)�Y�m(θ, φ) 〈p, �,m, σ| (5.10.106)

and, in particular, from (5.3.50)
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〈−p0, σ| =
∑

�

(−1)�

√
2� + 1

4π
〈p, �, 0, σ| . (5.10.107)

On the other hand, we also explicitly have (see (5.2.13), (5.2.17))

〈p0, σ| exp
(
− i

�
πL2

r

)
=
∑
�,m

√
2� + 1

4π
d
(�)
0m(−π) 〈p, �,m, σ|

=
∑

�

√
2� + 1

4π
(−1)� 〈p, �, 0, σ| .

That is,

〈−p0, σ| = 〈p0, σ| exp
(
− i

�
πL2

r

)
. (5.10.108)

Similarly, (5.10.107), leads to

〈p0, σ| = 〈−p0, σ| exp
(
− i

�
πL2

r

)
. (5.10.109)

Hence for the interchange of the two particles, we have

〈p0, σ1| 〈−p0, σ2| → 〈−p0, σ2| 〈p0, σ1|

= 〈p0, σ2| 〈−p0, σ1| exp
(
− i

�
πL2

r

)
(5.10.110)

where now L2
r denotes the total orbital angular momentum, in the x2-

direction, of the two particles in the center of mass system.
According to the spin and statistics connection to be studied later in §16.9,

we have to symmetrize for integral spins: s = integers, (bosons) and, anti-
symmetrize for half-odd integer spins (fermions): s = (2k+1)/2, k = 0, 1, . . ..

We are thus led to the states[
〈p0, σ1, σ2| + (−1)2s 〈−p0, σ2, σ1|

]

=
[
〈p0, σ1, σ2| + (−1)2s 〈p0, σ2, σ1| exp

(
− iπ

�
L2

r

)]
. (5.10.111)

To obtain motion in an arbitrary direction p̂, we apply the operator in
(5.10.4) to (5.10.111) leading in a straightforward manner from (5.10.99),
(5.3.43) to[

〈p, σ1, σ2| + (−1)2s 〈−p, σ2, σ1|
]

=
∑
�,m

Y�,m (p̂)
[
〈p, �,m, σ1, σ2| + (−1)2s+� 〈p, �,m, σ2, σ1|

]
. (5.10.112)
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Two Particles of Arbitrary Spins — Helicity States

The two particle helicity states are obtained as for the single particle
states in (5.10.70) by noting that

〈p0, λ1, λ2| J3 = �(λ1 − λ2) 〈p0, λ1, λ2| (5.10.113)

where λ1 is the spin projection of the first particle along the +z direction,
corresponding to the state 〈p0, λ1|, and λ2 is the spin projection of the other
particle along the −z direction, corresponding to the state 〈−p0, λ2|.

From (5.10.113), (5.10.70), by using in the process (see (5.10.63)),

〈p, λ1, λ2| = 〈p0, λ1, λ2| exp
(
− i

�
θn · J

)
(5.10.114)

we then obtain

〈p, λ1, λ2| =
∑
J,M

√
2J + 1

4π
D

(J)
λm(φ, θ,−φ) 〈p, J,M, λ1, λ2| (5.10.115)

where
λ = λ1 − λ2. (5.10.116)

We also note from (5.10.7), (2.1.4),

exp
(
− i

�
θn · J

)
J i exp

(
i
�
θn · J

)
= JkRik (θ,n) (5.10.117)

and consequently
JkRik (θ,n) p̂ i = J3 (5.10.118)

giving from (5.10.114)

〈p, λ1, λ2|J · p̂ = �(λ1 − λ2) 〈p, λ1, λ2| . (5.10.119)

To treat identical particles, we first apply the operator exp
(
−iπS2/�

)
to (5.10.108) and use (5.10.107). The expression on the right-hand side of
(5.10.108) then becomes

〈p0, σ| exp
(
− iπ

�
J2

)
=

∑
�,m,σ′

√
2� + 1

4π
d
(�)
0m(−π)d(s)

σσ′(−π) 〈p, �,m, σ′|

= (−1)s+σ
∑

�

(−1)�

√
2� + 1

4π
〈p, �, 0,−σ|

= (−1)s+σ 〈−p0,−σ|
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≡ 〈−p0, σ| exp
(
− iπ

�
S2

)
(5.10.120)

leading to the equality

(−1)s+σ 〈−p0,−σ| = 〈p0, σ| exp
(
− iπ

�
J2

)
. (5.10.121)

Upon applying the operator exp
(
−iπJ2/�

)
one more time to (5.10.121) and

using (5.20) leads to

〈p0, σ| = (−1)−s+σ 〈−p0,−σ| exp
(
− iπ

�
J2

)
. (5.10.122)

By definition of helicity states,

〈p0, λ| J3 = �λ 〈p0, λ| (5.10.123)

〈−p0, λ|
(
−J3

)
= �λ 〈−p0, λ| . (5.10.124)

For a vector operator V, it is also easily checked from (5.7.42) that

exp
(
− i

�
πJ2

)
V k exp

(
i
�
πJ2

)
= −V k + 2δk2V 2. (5.10.125)

Hence from (5.10.121), (5.10.123)–(5.10.125), we have

(−1)s−λ 〈−p0, λ| = 〈p0, λ| exp
(
− iπ

�
J2

)
(5.10.126)

for the corresponding helicity states.
Similarly, from (5.10.122)–(5.10.125), for the corresponding helicity states

in (5.10.122) we have

〈p0, λ| = (−1)−s−λ 〈−p0, λ| exp
(
− iπ

�
J2

)
. (5.10.127)

Accordingly, for the interchange of the two identical particles with s1, s2 ≡
s,

〈p0, λ1, λ2| → 〈−p0, λ2, λ1|

= (−1)−2s+λ2−λ1 〈p0, λ2, λ1| exp
(
− iπ

�
J2

)
(5.10.128)

where now J2 is the total angular momentum of the two particles in the
center of mass system. Hence

[
〈p0, λ1, λ2| + (−1)2s 〈−p0, λ2, λ1|

]
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=
[
〈p0, λ1, λ2| + (−1)−λ 〈p0, λ2, λ1| exp

(
− iπ

�
J2

)]
(5.10.129)

λ = λ1−λ2. Upon using, the expression d(J)
−λ,M (−π) = (−1)J−λδM,λ as given

in (5.2.17), we obtain from (5.10.129), (5.10.115)[
〈p, λ1, λ2| + (−1)2s 〈−p, λ2, λ1|

]

=
∑
J,M

√
2J + 1

4π
D

(J)
λm(φ, θ,−φ)

[
〈p, J,M, λ1, λ2| + (−1)J 〈p, J,M, λ2, λ1|

]

(5.10.130)

where we have used the fact that λ ≡ λ1−λ2 is always an integer for both inte-
ger as well as for half-odd integer spins s (≡ s1 = s2), and hence (−1)−2λ = 1.

Helicity Versus Standard Spin States

We follow the procedure developed for single particle states. The corre-
sponding equation to (5.10.72)

〈p0, σ1, σ2|
∣∣∣∣

σ1=λ1
σ2=−λ2

= 〈p0, λ1, λ2| (5.10.131)

relates spin (on the left-hand side) to helicity states. Upon applying the
operator exp(−iθn·J/�) in (5.10.4) to (5.10.131), the corresponding equation
to (5.10.77) becomes

∑
J,M,�

√
2� + 1

4π
D

(J)
λm(φ, θ,−φ) 〈s1, λ1; s2,−λ2 |s, λ〉 〈�, 0; s, λ |J, λ〉 〈p, J,M, �, s|

=
∑
J,M

√
2J + 1

4π
D

(J)
λm(φ, θ,−φ) 〈p, J,M, λ1, λ2| (5.10.132)

from which we finally obtain

〈J,M, λ1, λ2 |J,M, �, s〉 =

√
2� + 1
2J + 1

〈s1, λ1; s2,−λ2 |s, λ〉 〈�, 0; s, λ |J, λ〉
(5.10.133)

where 〈s1, λ1; s2,−λ2 |s, λ〉, 〈�, 0; s, λ |J, λ〉 are just Clebsch-Gordan coeffi-
cients.

Problems

5.1. Derive the relations in (5.1.26), (5.1.27) by the repeated applications
of the operators J−, J+ as well as the relations in (5.1.28), (5.1.29).
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5.2. (i) Obtain the expressions of L3, L2, L± in spherical coordinates as
given in (5.3.7)–(5.3.9).

(ii) Evaluate the commutators:
[
L2 ,x

]
,
[
L2 ,p

]
,
[
L2 , f(|x|)

]
where

f(|x|) is a function of |x|. Also show that x · L = 0, L · x = 0.
(iii) Obtain a lower bound to the product

〈
�,m

∣∣∣(L1
)2∣∣∣�,m〉〈

�,m
∣∣∣(L2

)2∣∣∣�,m〉

and interpret this result.
5.3. Upon the comparison of the matrix elements of rotation by the Euler

angles in (5.2.4) with that in (2.1.4) obtain the relationships spelled
out in (5.2.6)–(5.2.8).

5.4. Use the definition of d
(j)
mm′ (β) in (5.2.13)/(5.2.10), for the matrix el-

ements of finite rotation by the angles β about the x2 axis, to prove
(5.2.15)–(5.2.18).

5.5. Verify explicitly the transformation rules of the spherical harmonics
in (5.3.43), (5.3.44) under space reflection and complex conjugation.

5.6. Use the transformation law of a vector x =
(
x1, x2, x3

)
,
(
x1 = x, x2 =

y, x3 = z
)
, in (5.2.3) under a rotation of a coordinate system by the

Euler angles, to find the corresponding transformation law for the
transformation of the spherical harmonics Y1,1, Y1,0, Y1,−1. [Hint: Use
the identities in (5.3.52)–(5.3.54).]

5.7. For the density operator ρ in (5.4.33) for spin 1, derive (5.4.35), and
also obtain the expression for Tr

[
ρSiSj

]
.

5.8. Derive the equalities (5.5.26), (5.5.27) relating the Clebsch-Gordan
coefficients.

5.9. Consider two particles of spins S(1), S(2) of equal masses.
(i) Show that the orbital angular momenta of the two particles rela-

tive to their center of mass are equal, i.e.,

(X1 − X) ×
(
P1 −

P
2

)
=
(
X2 −

P
2

)
×
(
P2 −

P
2

)

by referring to (2.7.39), (2.7.40), where

X = (X1 + X2) /2, P = P1 + P2

and hence each particle carries angular momentum Lr/2 in the no-
tation of (2.7.40), where Lr is the total orbital angular momentum
in the center of mass.

(ii) Consider the deuteron (D) as a bound-state of a proton (p) and a
neutron (n) both of spin 1/2, with the masses taken approximately
equal. Upon defining the respective magnetic moment vector op-
erators

µp =
gpµN

�
Sp, µn =

gnµN

�
Sn, µD =

gDµN

�
J



326 5 Angular Momentum Gymnastics

where J is the internal angular momentum of the deuteron (see
(2.7.39), (2.7.40))

J = Lr + Sp + Sn

show that
µD =

µN

�

(
Lr

2
+ gpSp + gnSn

)
.

Here µN = |e|�/2mpc is the nuclear magneton, and gp = 5.58, gn =
−3.83 are the g-factors of the proton and neutron, respectively.

(iii) Consider the deuteron in the state j = 1 and (Sp + Sn) with cor-
responding s value equal to 1. Use the Wigner-Eckart Theorem in
the form given in (5.7.35) to evaluate approximately the magnetic
moment µD = gDµN of the deuteron corresponding to � = 0 and
� = 2. [Experimentally, gD � 1.72 and the deuteron is predomi-
nantly, about 98%, in the � = 0 state and about 2% in the � = 2
state.]

5.10. The Hamiltonian of the dipole-dipole interaction of two spin 1/2 par-
ticles each of magnetic moment µ separated by a vector a is

H =
µ2

a3

[
σ1 · σ2 − 3

σ1 · a σ2 · a
a2

]
.

Suppose that a = a (0, 0, 1). Show that the singlet and triplet states in
spin space are eigenvectors of H and find their corresponding eigen-
values.

5.11. Suppose that the initial spins of the particles in Problem 5.10, at time
t = 0, are along the x-axis, i.e., they are in the state

(
1 1

)�
1

(
1 1

)�
2

/2
(see (5.4.9)).
(i) Find the state of the system at any time t > 0. Consider a to be

fixed.
(ii) What is the probability that the system is found in its initial state

at time t?
5.12. Find an orthogonality relation for the D-functions in (5.5.51) for the

cases when j is a half-odd integer.
5.13. Establish the symmetry relations in (5.6.25)–(5.6.27), and the equali-

ties in (5.6.28), (5.6.29) of the 3-j symbols.
5.14. Introduce the spherical vector components ∇(m) of the gradient ∇,

and evaluate explicitly the commutator [L(m1),∇(m2)],where L(m)
are the spherical vector components of the orbital angular momentum.

5.15. Evaluate the reduced matrix element 〈�1 ||r̂||�2〉 of the unit vector r̂,
for the position vector x = rr̂. [Hint: Use (5.3.52)–(5.3.54), together
with (5.8.50) and (5.6.28), (5.6.29).]

5.16. Deviation from spherical symmetry of a charge distribution, such as
of the nucleus, is determined from its quadrupole moment. Quantum
mechanically, the corresponding operator may be defined by Q2

0 =
3z2 − r2.
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(i) Show that Q2
0 =

√
16π/5 r2 Y2,0 (θ, φ). Thus, up to the factor√

16π/5 r2, you recognize this operator as the zeroth component
of a second rank tensor and hence the notation Q2

0.
(ii) Write the matrix element

〈
j,m

∣∣Q2
0

∣∣j,m〉
in terms of the reduced

matrix element
〈
j
∣∣∣∣Q2

∣∣∣∣j〉.
(iii) Show that for j � 1

〈
j,m

∣∣Q2
0

∣∣j,m〉
=
(

3
m2

j(j + 1)
− 1

)
(j + 1)
(2j − 1)

〈
j, j

∣∣Q2
0

∣∣j, j〉

introducing (2j + 1) quadrupole moments associated with the
(2j + 1) possible orientations of the internal angular momentum
J of the body written in terms of the one oriented along the
z-axis. The angles θm m =
m/

√
j(j + 1). For j large, one has almost a continuous distribu-

tion of orientations. From the result in (iii) you may then infer
that for j large, one obtains its classical counterpart

Q (cos ϑc) =
1
2
(
3 cos2 ϑc − 1

)
Q(1)

where ϑc defines the angle between the symmetry axis of the body
and the z-axis.

5.17. Evaluate the matrix element on the left-hand side of (5.8.39) directly
from the general formula (5.8.47).

5.18. Verify the symmetry relations of the 9-j symbols stated below (5.9.15).
5.19. Use (5.10.30), (5.3.66) to establish the equality in (5.10.39) for

〈x |p, �,m〉.
5.20. Follow a procedure similar to the one giving (5.10.49) to establish the

equality in (5.10.70) for 〈p, λ| expressed in terms of the helicity.

given by cos θof the orientations are
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Intricacies of Harmonic Oscillators

This chapter deals with several problems and intricate details associated
with the harmonic oscillator potential. After solving the eigenvalue problem
in §6.1, we study transitions that may be caused between its energy levels in
the presence of a time-dependent external, i.e., classical, force coupled linearly
to the position observable at zero and finite temperatures in §6.2 and §6.3,
respectively. §6.4 deals with the construction of the so-called Fermi oscillator
in analogy to the Bose one in §6.2. In §6.5, we combine the Bose oscillator to
the Fermi one to construct supersymmetric theories and consider underlying
supersymmetric transformations in the light of the analysis carried out in
§2.9. In the final section (§6.6), the coherent state of the harmonic oscillator
is constructed and relevant details are developed which allow one to compare
the quantum mechanical problem with the corresponding classical one in the
most natural way.

6.1 The Harmonic Oscillator

The Hamiltonian of the ν-dimensional harmonic oscillator is defined by

H = − �
2

2m
∇2 +

1
2
mω2x2. (6.1.1)

Such a quadratic interaction may be considered as a perturbation, about an
equilibrium point x = 0

(
∇V (x)

∣∣
0

= 0
)

of a spherically symmetric potential
V (x) in R

ν , up to an additive constant. The harmonic oscillator Hamiltonian
is, however, in its own right, a very useful one for various investigations and is
the prototype of quantum field theories involving an arbitrary large numbers
of so-called degrees of freedom.

A lower bound to the spectrum of H in (6.1.1) is readily found by choosing
g(x) = ω�, with µ → m, in (3.1.8) giving after re-arrangement of terms,

ν�ω

2
�

〈
− �

2

2m
∇2 +

1
2
mω2x2

〉
. (6.1.2)
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Actually, the lower bound ν�ω/2 coincides with the exact ground-state
energy of H. To see this, introduce the trial normalized wave function

Φ(x) =
(α

π

)ν/4

exp
(
−αx2

2

)
(6.1.3)

and note, by the very definition of the ground-state energy E0, that the
expectation value 〈Φ |H|Φ〉 cannot be less than E0. That is, from (6.1.2)

ν�ω

2
� E0 � 〈Φ |H|Φ〉 . (6.1.4)

We explicitly have

(
HΦ

)
(x) =

(
− �

2

2m
α2x2 +

mω2

2
x2 +

�
2

2m
να

)
Φ(x) (6.1.5)

and upon choosing α = mω/�, we obtain

(
HΦ

)
(x) =

ν�ω

2
Φ(x) (6.1.6)

and from (6.1.4) that

E0 =
ν�ω

2
. (6.1.7)

From Theorem 4.1.1, we may also infer that H has only a discrete spec-
trum.

To study the eigenvalue problem of the Hamiltonian (6.1.1), it is conve-
nient to introduce the operators

X =
√

mω

�
x, P =

1√
mω�

(
−i�∇

)
(6.1.8)

and rewrite H as
H =

�ω

2
(
P2 + X2

)
. (6.1.9)

We also define the operator

a =
1√
2

(
X + iP

)
. (6.1.10)

The following are easily established (see Problem 6.1):
[
Xi , P j

]
= iδij (6.1.11)

H = �ω
(
a† · a +

ν

2

)
(6.1.12)

[
ai , aj†

]
= δij ,

[
ai , aj

]
= 0 (6.1.13)
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[
H ,ai

]
= −�ωai (6.1.14)

[
H ,ai†

]
= +�ωai†. (6.1.15)

Since for a normalized state |ψ〉, 〈ψ |H|ψ〉 = �ω ‖aψ‖2 + �ων/2 � �ων/2,
(6.1.12) alone shows that H is bounded from below by �ων/2 as expected.

To solve the eigenvalue problem, we consider first the one-dimensional
case ν = 1. The several dimensional case may be directly inferred from the
one-dimensional one.

To the above end, the eigenvalue problem reads

H |α〉 = α |α〉 (6.1.16)

and from property (6.1.14),

H (a)k |α〉 = (α − �ωk)(a)k |α〉 (6.1.17)

for k = 0, 1, 2, . . . .
The boundedness of H from below implies that for a given α, there must

exist a non-negative integer k and a αmin such that

αmin = α − �ωk (6.1.18)

and
a |αmin〉 = 0. (6.1.19)

The latter equation implies that

a†a |αmin〉 = 0 (6.1.20)

and hence
H |αmin〉 =

�ω

2
|αmin〉 (6.1.21)

where we have used (6.1.12) with ν = 1. That is,

αmin =
�ω

2
(6.1.22)

and the eigenvalues α in (6.1.16) are given from (6.1.18) to be

α = �ω

(
n +

1
2

)
, n = 0, 1, . . . (6.1.23)

for ν = 1.
For the subsequent analysis, we label eigenstates |α〉 by the non-negative

integer n instead, i.e., we have

H |n〉 = �ω

(
n +

1
2

)
|n〉 . (6.1.24)
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From the property (6.1.15),

H
(
a† |n〉

)
= �ω

(
n + 1 +

1
2

)(
a† |n〉

)
(6.1.25)

and infer from (6.1.24) that

a† |n〉 = cn |n + 1〉 (6.1.26)

where the constant cn, depending on n, is to be determined.
To the above end, we note from (6.1.13), (6.1.12), with ν = 1, that

a a† = a†a + 1 =
H

�ω
+

1
2

(6.1.27)

and hence upon taking the norm squared of (6.1.26),

|cn|2 = 〈n|
(

H

�ω
+

1
2

)
|n〉 (6.1.28)

giving
cn =

√
n + 1 (6.1.29)

with a phase convention, where we have used (6.1.24) and the normalizability
of the states |n〉.

Equations (6.1.26), (6.1.29) give the recurrence relation

|n + 1〉 =
a†

√
n + 1

|n〉 (6.1.30)

providing the solution

|n〉 =

(
a†)n

√
n!

|0〉 . (6.1.31)

On the other hand (6.1.19), with (6.1.22), imply from a |0〉 = 0 that
(

d
dx

+
mω

�
x

)
ψ0(x) = 0 (6.1.32)

where ψ0(x) = 〈x |0〉, giving the (normalized) solution

ψ0(x) =
(mω

π�

)1/4

exp
(
−mωx2

2�

)
(6.1.33)

coinciding with the one in (6.1.3) for ν = 1, with α = mω/�.
For the first excited state ψ1(x) = 〈x |1〉, we obtain from (6.1.30), with

n = 0, and (6.1.33)

ψ1(x) =
(mω

π�

)1/4
√

�

2mω

(
mω

�
x − ∂

∂x

)
exp

(
−mωx2

2�

)
(6.1.34)
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or

ψ1(x) =
(mω

π�

)1/4 √
2
√

mω

�
x exp

(
−mωx2

2�

)
. (6.1.35)

We introduce the dimensionless variable (ν = 1), using rather a conven-
tional notation

ρ =
√

mω

�
x (6.1.36)

to rewrite (6.1.33), (6.1.35) as

ψ0(x) =
(mω

π�

)1/4

exp
(
−ρ2

2

)
(6.1.37)

ψ1(x) =
(mω

π�

)1/4

exp
(
−ρ2

2

)√
2 ρ

≡
(mω

π�

)1/4

exp
(
−ρ2

2

)
(−1)√

2

[
eρ2

(
d
dρ

)
e−ρ2

]
. (6.1.38)

To obtain the solution for all n, we proceed by induction. As an induction
hypothesis, suppose that for some k, and n = 0, . . . , k,

ψn(x) =
(mω

π�

)1/4

e−ρ2/2 (−1)n

√
2nn!

[
eρ2

(
d
dρ

)n

e−ρ2
]

(6.1.39)

which obviously agree for k = 1, i.e., for n = 0, 1, with the expressions in
(6.1.37), (6.1.38), respectively.

Hence from (6.1.30), (6.1.10),

ψk+1(x) =
(mω

π�

)1/4 (−1)k

√
2kk!

1√
2(k + 1)

×
(

ρ − ∂

∂ρ

)
e−ρ2/2

[
eρ2

(
d
dρ

)k

e−ρ2

]

=
(mω

π�

)1/4

e−ρ2/2 (−1)k+1√
2k+1(k + 1)!

[
eρ2

(
d
dρ

)k+1

e−ρ2

]
(6.1.40)

thus establishing the validity of (6.1.39) for all n = 0, 1, 2, . . . .
The expression within the square brackets in (6.1.39), multiplied by

(−1)n, defines the so-called Hermite polynomials:

Hn(ρ) = (−1)neρ2
(

d
dρ

)n

e−ρ2
(6.1.41)

H0(ρ) = 1, H1(ρ) = 2ρ, H2(ρ) = 4ρ2 − 2, . . . . (6.1.42)
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The orthonormality condition

δnn′ = 〈n |n′〉 =
∫ ∞

−∞
dx ψn(x)ψn′(x) (6.1.43)

as follows from the eigenvalue equation (6.1.16) and the normalizability of
the states |n〉 in (6.1.30), (6.1.31), imply the orthogonality property of the
Hermite polynomials (6.1.41) from (6.1.39) and the definition (6.1.41):∫ ∞

−∞
dρ e−ρ2

Hn(ρ)Hn′(ρ) = δnn′
√

π 2nn! (6.1.44)

as written in terms of the dimensionless variable ρ in (6.1.36).
The following matrix elements should be noted

〈n′ |x|n〉 =

√
�

2mω

[√
n + 1 δn′,n+1 +

√
n δn′,n−1

]
(6.1.45)

〈
n
∣∣x2

∣∣n〉 =
�

mω

(
n +

1
2

)
(6.1.46)

〈n′ |p|n〉 = i

√
�mω

2
[√

n + 1 δn′,n+1 −
√

n δn′,n−1

]
(6.1.47)

〈
n
∣∣p2

∣∣n〉 = �mω

(
n +

1
2

)
. (6.1.48)

These equations, in particular, imply that

σ2
x(n)σ2

p(n) = �
2

(
n +

1
2

)2

� �
2

4
(6.1.49)

where
σ2

x(n) ≡ 〈n|
(
x − 〈n |x|n〉

)2 |n〉 =
〈
n
∣∣x2

∣∣n〉 (6.1.50)
and similarly defined for σ2

p(n). We note that the presence of the so-called zero
point energy �ω/2 in (6.1.24), as reflected on the right-hand of the inequality
(6.1.49) is consistent with the Heisenberg uncertainty principle.

For the ν dimensional case, with H defined in (6.1.1), we may immediately

infer from the additive nature of ∇2 =
n∑

i=1

(
∂/∂xi

)2, x2 =
n∑

i=1

(
xi
)2 and from

(6.1.24), (6.1.39), (6.1.41), that

H |n1, . . . , nν〉 = �ω
(
n1 + . . . + nν +

ν

2

)
|n1, . . . , nν〉 (6.1.51)

and with 〈x |ψn1,...,nν
〉 = ψn1,...,nν

(x),

ψn1,...,nν
(x) =

(mω

π�

)ν/4

e−ρ2/2
ν∏

j=1

1√
2nj nj !

Hnj
(ρj) (6.1.52)

where ρ = (ρ1, . . . , ρν), ρ =
√

mω/� x.
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6.2 Transition to and Between Excited States in the
Presence of a Time-Dependent Disturbance

We add a linear coupling of the position variable x to a time-dependent,
c-function, F (t) in the harmonic oscillator problem in one dimension, and
define the Hamiltonian

H(t) =
p2

2m
+

1
2
mω2x2 −

√
2mω

�
xF (t) (6.2.1)

where the factor (2mω/�)1/2 has been introduced for convenience, and up
to this proportionality factor, F (t) represents an external force which is also
referred to as an external source.

In terms of the annihilation and creation operators a, a†, (6.2.1) takes the
form

H(t) = �ω

(
a†a +

1
2

)
− F (t)

(
a + a†) . (6.2.2)

The Hamiltonian in (6.2.2) is a prototype of field theories in “zero” dimen-
sion of space, in the presence of an external source F (t), and where

(
a + a†)

is the “field” at time t = 0.
In the present section, we investigate the problem of transitions from the

ground-state to excited states and transitions between different states, in
general, due to the disturbance provided by F (t), not barring, however the
possibility that the system may stay in its initial state.

We choose F (t) to vanish for t � T1, t � T2 for some T1, T2, T2 > T1.1
Before F (t) is switched on, i.e., for t < T1, we consider the system to be in
the ground-state, and choose for the initial state

|ψ(T1)〉 = |0〉 ≡ |0−〉 (6.2.3)

borrowing a notation |0−〉 often used in field theory.
After F (t) is switched on, and then later on when it ceases to operate

after the time T2, the system may, or may not, be found in some excited
state.

To investigate such possible transitions, we solve the Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 (6.2.4)

for |ψ(T2)〉, with the initial condition in (6.2.3).
Equation (6.2.4) is readily solved by making the ansatz

|ψ(t)〉 = exp
[
− i

�

(
β(t)a† + γ(t)

)]
|0−〉 (6.2.5)

1 Actually, one may introduce such a function as F (t) which together with its
derivative are continuous, and vanishes at some given points, see, for example,
§8.7, (8.7.21), §12.6, (12.6.33).



336 6 Intricacies of Harmonic Oscillators

where β(t), γ(t) are c-functions satisfying

β(T1) = 0, γ(T1) = 0. (6.2.6)

Upon substitution of (6.2.5) in (6.2.4), using the fact that a |0−〉 ≡ a |0〉 =
0 and the identity in Problem 6.6, we obtain[

β̇(t)a† + γ̇(t)
]
|0−〉

=
[
�ω

(
1
2
− i

�
β(t)a†

)
− F (t)

(
− i

�
β(t) + a†

)]
|0−〉 (6.2.7)

which with the initial conditions in (6.2.6) gives the solutions

β(t) = −e−iωt

∫ t

−∞
dt′ eiωt′F (t′) (6.2.8)

γ(t) =
�ω

2
(t − T1)

− i
�

∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′ e−iω(t′′−t′)F (t′′)Θ(t − t′′)Θ(t′′ − t′)F (t′) (6.2.9)

where we have extended the integrations in (6.2.8), (6.2.9) beyond the range
T1 < t < T2 since F (t) vanishes there, i.e., it ceases to operate. Note that the
second term on the right-hand side of (6.2.9) vanishes for t = T1 in addition
to the first term, and recall also the property of the step function

d
dt

Θ(t − t′′) = δ(t − t′′). (6.2.10)

Hence from (6.2.5)–(6.2.9), the ground-state persistence amplitude, nor-
malized to one for F (t) = 0, is given by

〈0+ |0−〉F =
〈0 |ψ(T2)〉

〈0 |ψ(T2)〉
∣∣∣
F=0

=
〈0| exp [−iγ(T2)/�] |0〉

〈0| exp [−iγ(T2)/�] |0〉
∣∣∣
F=0

(6.2.11)

using the fact that 〈0| a† = 0, and we have

〈0+ |0−〉F = exp
[
− 1

�2

∫ ∞

−∞
dt′′

∫ ∞

−∞
dt′ e−iω(t′′−t′)F (t′′)Θ(t′′ − t′)F (t′)

]

(6.2.12)
where we have set Θ(T2 − t′′) = 1, since F (t′′) = 0, for t′′ � T2 and have
used the convenient notation 〈0+ |0−〉F for the amplitude in question. The
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denominator in (6.2.11) simply cancels out the phase exp [−iω(T2 − T1)/2]
due to the zero point energy (see (6.2.9)).

Given that the system is initially in the ground-state prior to the switching
on of F (t), (6.2.12) leads for the probability that the system will remain in
the ground-state after F (t) is switched on and then after it ceases to operate,
the expression

∣∣〈0+ |0−〉F
∣∣2 = exp

[
− 2

�2

∫ ∞

−∞
dt′′

×
∫ ∞

−∞
dt′ F (t′′)F (t′) cos ω(t′′ − t′)Θ(t′′ − t′)

]
.

(6.2.13)

The persistence probability in (6.2.13) may be rewritten in the more con-
venient form

∣∣〈0+ |0−〉F
∣∣2 = exp

(
− 1

�2

∣∣∣∣
∫ ∞

−∞
dt e−iωtF (t)

∣∣∣∣
2
)

(6.2.14)

which upon introducing the Fourier transform

F (ω) =
∫ ∞

−∞
dt eiωtF (t) (6.2.15)

gives the simple expression

∣∣〈0+ |0−〉F
∣∣2 = exp

(
−|F (ω)|2

�2

)
. (6.2.16)

From (6.2.16) we also obtain for the probability of having any excitation
from the ground-state due to the disturbance provided by the source F (t) to
be given by [

1 − exp
(
−|F (ω)|2

�2

)]
. (6.2.17)

To obtain the transition amplitude 〈n+ |0−〉 from the ground-state to an
excited state |n+〉 after a disturbing source is switched on and then off, we
proceed as follows.

We write a given source F (t) as a sum of two sources:2

F (t) = F1(t) + F2(t) (6.2.18)

where the source F2(t) is switched on after the source F1(t) is switched off.
Hence directly from (6.2.12), we obtain
2 Such an approach is used in particle production by external sources, see, for

example, Schwinger (1970).
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〈0+ |0−〉F = 〈0+ |0−〉F2
〈0+ |0−〉F1

× exp
[
− 1

�2

∫ ∞

−∞
dt′′

∫ ∞

−∞
dt′ e−iω(t′′−t′)F2(t′′)F1(t′)

]
(6.2.19)

where we have used the fact that F1(t′′) = 0 when F2(t′′) �= 0.
The amplitude in (6.2.19) may be rewritten in the more convenient form

as

〈0+ |0−〉F = 〈0+ |0−〉F2
〈0+ |0−〉F1

exp
[
iF ∗

2 (ω)
�

iF1(ω)
�

]

=
∞∑

n=0

〈0+ |0−〉F2

[iF ∗
2 (ω)/�]n√

n!
[iF1(ω)/�]n√

n!
〈0+ |0−〉F1

. (6.2.20)

We compare this with the expression obtained from a completeness rela-
tion, referred to as a unitarity sum, i.e.,3

〈0+ |0−〉F =
∑
n,m

〈0+ |m−〉F2
〈m |n〉′0 〈n+ |0−〉F1

(6.2.21)

where after F1 is switched on, the system may (or may not) make a transition
to a state |n+〉. After the source F1(t) is switched off the system will remain
in the same state until F2(t) is switched on. The amplitude 〈m |n〉′0 arises in
a force-free interval, and if t1 is the time F1 is switched off and t2 is the time
F2 is switched on, then 〈m |n〉′0, developing in time with a free Hamiltonian,
is given by 〈m |n〉′0 = exp [−iωn (t2 − t1)] δmn.

From (6.2.20), (6.2.21), we may infer that for given external forces F (t),
F ′(t):

〈n+ |0−〉F =

[
ie−iωT2F (ω)/�

]n
√

n!
〈0+ |0−〉F (6.2.22)

〈0+ |n−〉F ′ = 〈0+ |0−〉F ′

[
ieiωT ′

1F ′∗(ω)/�

]n

√
n!

(6.2.23)

where T2, T ′
1 denote the times that sources F , F ′ are switched off and on,

respectively.
That is, the probability of having a transition from the ground-state to an

excited state |n+〉 after an intervening force is switched on then off is given
by
3 Note that the ± signs attached to n+, m− in 〈n+ |0−〉F1

, 〈0+ |m−〉F2
refer to

the stages after the source F1(t) ceases to operate and before the source F2(t) is
switched on. These amplitudes a priori not known are obtained by comparing
(6.2.21) with (6.2.20).
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∣∣ 〈n+ |0−〉F
∣∣2 =

[
|F (ω)|2/�

2
]n

n!
exp

(
−|F (ω)|2

�2

)
(6.2.24)

where we have also used (6.2.16), and on the average the system, initially in
the ground-state, will be found in the state 〈n〉 ≡ n = |F (ω)|2/�

2 after the
intervening source is switched off.

To obtain the amplitude for the transition from a state |n−〉 to a state∣∣n′
+

〉
after a given intervening source is switched on and then off, we write

F (t) = F1(t) + F2(t) + F3(t) (6.2.25)

where the source F2(t) is switched on after the source F1(t) is switched off,
and F3(t) is switched on after the source F2(t) is switched off.

From (6.2.12), we have

〈0+ |0−〉F = 〈0+ |0−〉F3
〈0+ |0−〉F2

〈0+ |0−〉F1
exp

[
iF ∗

3 (ω)
�

iF2(ω)
�

]

× exp
[
iF ∗

3 (ω)
�

iF1(ω)
�

]
exp

[
iF ∗

2 (ω)
�

iF1(ω)
�

]

=
∑
n,n′

〈
0+

∣∣n′
−
〉

F3

〈
n′

+

∣∣n−
〉

F2
〈n+ |0−〉F1

(6.2.26)

where in the last step, we have written 〈0+ |0−〉F in terms of a unitarity
sum, as in (6.2.21). In (6.2.26), 〈n+ |0−〉F1

denotes the amplitude that we
have a transition from the ground-state to a state |n+〉 after the source F1(t)
is switched off. The latter state may then make a transition to a state

∣∣n′
+

〉
after an intervening source F2(t) is switched on and then off. We note that the
∓ signs in

〈
n′

+

∣∣n−
〉

F2
refer, respectively, to the stage before F2(t) is switched

on and after it is switched off. The amplitude
〈
0+

∣∣n′
−
〉

F3
is similarly defined.

The amplitude
〈
n′

+

∣∣n−
〉

F2
, a priori, not known will be then obtained

upon the comparison of the second equality with the first one in (6.2.26) and
using, in the process, the expressions in (6.2.22), (6.2.23) for the correspond-
ing sources.

To the above end, we note the identity

exp
[
iF ∗

3 (ω)
�

iF1(ω)
�

]
exp

[
iF ∗

3 (ω)
�

iF2(ω)
�

]
exp

[
iF ∗

2 (ω)
�

iF1(ω)
�

]

=
∑

L,M,N

[iF ∗
3 (ω)/�]L+M

L!
[iF2(ω)/�]M [iF ∗

2 (ω)/�]N

M !
[iF1(ω)/�]L+N

N !
.

(6.2.27)

Upon setting
L + M = n′, L + N = n (6.2.28)
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we may rewrite the summand in (6.2.27) as4

[iF ∗
3 (ω)/�]n

′

√
n′!

√
n′!n!

[iF2(ω)/�]n
′−L [iF ∗

2 (ω)/�]n−L

L! (n′ − L)! (n − L)!
[iF1(ω)/�]n√

n!
(6.2.29)

which from (6.2.26) and the identifications in (6.2.22), (6.2.23) for the corre-
sponding sources, gives for the amplitude

〈
n′

+

∣∣n−
〉

F
for a given source F (t)

operating within an interval from T1 to T2,5

〈
n′

+

∣∣n−
〉

F
= 〈0+ |0−〉F

√
n′!n!

×
min(n′,n)∑

L=0

[iF (ω)/�]n
′−L e−iωn′T2 eiωnT1 [iF ∗(ω)/�]n−L

(n′ − L)! L! (n − L)!
.

(6.2.30)

In particular the amplitude of making no transition in the presence of a
disturbing source F is

〈n+ |n−〉F = 〈0+ |0−〉F n!
n∑

�=0

[
−|F (ω)|2/�

2
]�

(�!)2 (n − �)!
(6.2.31)

where we have divided by exp
[
−iωn(T2 − T1)

]
for proper normalization of

〈n+ |n−〉F → 〈n |n〉 = 1 for F = 0, and where 〈0+ |0−〉F is given in (6.2.12).

6.3 The Harmonic Oscillator in the Presence of a
Disturbance at Finite Temperature

We consider the system described by the Hamiltonian given in (6.2.1) at
non-zero temperature T �= 0, where T is not to be confused with the time
limits T1,2.

Temperature dependence is introduced by averaging the expression for
the persistence amplitudes 〈n+ |n−〉F for all n = 0, 1, 2, . . . with the familiar
Boltzmann factor exp

[
−�ω(n+1/2)/kT

]
, where k is the Boltzmann constant.

This defines the thermal average

〈G+ |G−〉TF = C

∞∑
n=0

exp
[
−�ω

kT

(
n +

1
2

)]
〈n+ |n−〉F (6.3.1)

4 This treatment parallels similar, but more involved, methods used in field theory:
Manoukian (1986b).

5 Such processes are referred to as stimulated excitations where an initial state
is already in some excited state, prior to the switching on of the intervening
sources.
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involving all possible excitations. Here C is a normalization constant deter-
mined from the normalization condition

C

∞∑
n=0

exp
[
−�ω

kT

(
n +

1
2

)]
= 1. (6.3.2)

The latter gives

C = 2 sinh
(

�ω

2kT

)
. (6.3.3)

The expression for 〈n+ |n−〉F in (6.3.1) was obtained in (6.2.31).
Upon using the notation

−|F (ω)|2
�2

≡ λ (6.3.4)

we may rewrite (6.3.1) as6

〈G+ |G−〉TF = 〈0+ |0−〉F
[
1 − e−�ω/kT

] ∞∑
n=0

n∑
�=0

n! e−�ωn/kT

(�!)2 (n − �)!
(λ)�. (6.3.5)

The double sum in (6.3.5) may be conveniently rewritten as

∞∑
n=0

[
e−�ω/kT

(
∂

∂λ
+ 1

)]n (λ)n

n!
. (6.3.6)

Upon using the integral

(λ)n =
∫ ∞

−∞
dz δ(z − λ) (z)n

=
∫ ∞

−∞
dz

∫ ∞

−∞

dy

(2π)
eiy(z−λ) (z)n (6.3.7)

we obtain for the sum in (6.3.6)

∞∑
n=0

∫ ∞

−∞
dz

∫ ∞

−∞

dy

(2π)

[
ze−�ω/kT (−iy + 1)

]n
n!

eiy(z−λ)

=
∫ ∞

−∞
dz

∫ ∞

−∞

dy

(2π)
exp

[
iy
(
z − ze−�ω/kT − λ

)]
exp

[
ze−�ω/kT

]

=
∫ ∞

−∞
dz δ

(
z
[
1 − e−�ω/kT

]
− λ

)
exp

[
ze−�ω/kT

]

6 This treatment parallels similar, but more involved, methods used in field theory:
Manoukian (1990).
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=
1[

1 − e−�ω/kT
] exp

[
λ(

e�ω/kT − 1
)
]

. (6.3.8)

Hence for the thermal average in (6.3.5) we have the expression

〈G+ |G−〉TF = 〈0+ |0−〉F exp
[
−|F (ω)|2

�2

1
e�ω/kT − 1

]
. (6.3.9)

Here we recognize the Bose-Einstein
(
e�ω/kT − 1

)−1
factor occurring in the

amplitude.
From (6.3.9), (6.2.16), we obtain for the probability that the system stays

in thermal equilibrium, the expression

∣∣∣〈G+ |G−〉TF
∣∣∣2 = exp

[
−|F (ω)|2

�2
coth

(
�ω

2kT

)]
. (6.3.10)

We note that

coth
(

�ω

2kT

)
−−−−−−−→

T→∞

(
2kT

�ω

)
(6.3.11)

coth
(

�ω

2kT

)
−−−−−−−→

T→0
1. (6.3.12)

Hence, in particular, for the persistence probability in (6.3.10) at high
temperatures, one has the exponentially damping expression

∣∣∣〈G+ |G−〉TF
∣∣∣2 −−−−−−−→

T→∞
exp

[
−2kT

�ω

|F (ω)|2
�2

]
. (6.3.13)

The amplitude in (6.3.9) may be rewritten in a more convenient form by
introducing, in the process, an integral representation for the step function

Θ(t) =
i

2π

∫ ∞

−∞
dω′ e−iω′t

ω′ + iε
, ε → +0 (6.3.14)

encountered in the expression for 〈0+ |0−〉F in (6.2.12), to obtain

〈G+ |G−〉TF = exp
[

i
�2

∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′ F (t′′)∆+(t′′ − t′;T )F (t′)

]
(6.3.15)

where

∆+(t;T ) =
∫ ∞

−∞

dω′

2π
e−iω′t

[
(−1)

ω′ − (ω − iε)
+

2πi δ(ω′ − ω)
e�ω′/kT − 1

]
(6.3.16)

and T denotes the temperature.
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6.4 The Fermi Oscillator

In analogy to the Bose oscillator in (6.1.12), for ν = 1, where
[
a, a†] = 1,

defining the Bose-Einstein statistics, we define a Fermi-oscillator with Hamil-
tonian

H = �ω

(
a†
F aF − 1

2

)
(6.4.1)

where the annihilation, creation operators aF, a†
F satisfy anti-commutation

relations: {
aF , aF

}
= 0,

{
a†
F , a†

F

}
= 0 (6.4.2)

and {
aF , a†

F

}
= 1. (6.4.3)

We note that the zero point energy in (6.4.1) was chosen to be −�ω/2
rather than +�ω/2 in contrast to bosons. We will see in the next section
that when we invoke supersymmetry, alone, implying a symmetry of the
Hamiltonian for the supersymmetric version of the Bose-oscillator Hamil-
tonian �ω

(
a†a + 1/2

)
, under the boson-fermion exchange, consistency leads

to a zero point energy of −�ω/2 for the Fermi-oscillator.
The ground-state |0〉 is defined by

aF |0〉 = 0 (6.4.4)

and the single particle-state by

|1〉 = a†
F |0〉 , aF |1〉 = |0〉 (6.4.5)

with

H |0〉 = −�ω

2
|0〉 (6.4.6)

H |1〉 = +
�ω

2
|1〉 . (6.4.7)

We note that since
(
a†
F

)2 = 0, there are no two-particle states.
A representation of the annihilation and creation operators is given by

aF =
σ1 − iσ2

2
=
(

0 0
1 0

)
(6.4.8)

a†
F =

σ1 + iσ2

2
=
(

0 1
0 0

)
. (6.4.9)

where σ1, σ2 are Pauli matrices. The ground- and single-particle states may
be then represented by
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|0〉 =
(

0
1

)
, |1〉 =

(
1
0

)
. (6.4.10)

Now we couple the Fermi-oscillator to external anti-commuting sources7
η∗(t), η(t) as follows

H(t) = �ω

(
a†
F aF − 1

2

)
− η∗(t) aF − a†

F η(t) (6.4.11)

where η∗(t), η(t) anti-commute with aF, a†
F and

{
η(t) , η(t′)

}
= 0,

{
η(t) , η∗(t′)

}
= 0. (6.4.12)

To solve the dynamics involved with H(t) in (6.4.11), we follow the pro-
cedure given in §6.2 for bosons, subject to the constraints (6.4.2), (6.4.3),
(6.4.12) and the fact that η, η∗ anti-commute with both aF and a†

F. As for
the Bose-oscillator, we choose η(t), η∗(t) to vanish for t � T1, t � T2 for some
T1, T2 (T2 > T1).

To the above end, the Schrödinger equation reads

i�
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 . (6.4.13)

By setting |ψ(t)〉 = |χ(t)〉 eiωt/2, we obtain

i�
∂

∂t
|χ(t)〉 =

(
�ωa†

F aF − η∗ aF − a†
F η

)
|χ(t)〉 . (6.4.14)

By making the ansatz

|χ(t)〉 = e−iφ(t)/� exp
(
− i

�
ρ(t) a†

F

)
|0〉 (6.4.15)

where φ(t) is a c-function, ρ(t) is an anti-commuting c-function, substituting
in (6.4.13) and using the constraints (6.4.2), (6.4.3), (6.4.12), we obtain as in
(6.2.8), (6.2.9),

φ(t) =
∫ t

T1

dt′ e−iω(t−t′)η(t′) (6.4.16)

ρ(t) = − i
�

∫ ∞

−∞
dt′′

∫ ∞

−∞
dt′ η∗(t′′)Θ(t − t′′)Θ(t′′ − t′) e−iω(t′′−t′)η(t′) (6.4.17)

with the boundary conditions that φ(T1) = 0, ρ(T1) = 0.
The ground-state persistence amplitude is then given by (see (6.2.11)),

7 These objects are referred to as Grassmann variables as also noted in §2.9. Such
variables will be studied in great detail in §10.6.
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〈0+ |0−〉η,η∗ = exp
[
− 1

�2

∫ ∞

−∞
dt′′

×
∫ ∞

−∞
dt′ e−iω(t′′−t′)η∗(t′′)Θ(t′′ − t′) η(t′)

]
(6.4.18)

which is normalized to unity for η = 0, η∗ = 0, with a persistence probability

∣∣∣ 〈0+ |0−〉η,η∗

∣∣∣2 = exp
[
−η∗(ω) η(ω)

�2

]

= 1 − η∗(ω) η(ω)
�2

(6.4.19)

written in terms of the Fourier-transforms of the sources. In the last step in
(6.4.19) we have used the anti-commutativity property of η, η∗.

By a similar procedure as in obtaining (6.2.22), (6.2.23), we have

〈n+ |0−〉η,η∗ =
[
iη(ω) e−iωT2/�

]n 〈0+ |0−〉η,η∗ (6.4.20)

〈0+ |n−〉η′,η′∗ = 〈0+ |0−〉η′,η′∗

[
iη′∗(ω) eiωT ′

1/�

]n

(6.4.21)

where n = 0, 1, and hence we have dismissed with the factorial factor (n!)−1/2.
In analogy to (6.2.31), we also obtain

〈n+ |n−〉η,η∗ =
[
1 +

η∗(ω) η(ω)
�2

]n

〈0+ |0−〉η,η∗ (6.4.22)

for 〈n+ |n−〉η,η∗ properly normalized to one for η, η∗ → 0, where n = 0, 1.
Equations (6.4.18), (6.4.20)–(6.4.22) give all the relevant amplitudes.8

8 For completeness we note that although the thermal average in the present case
with only two states is quite formal, the corresponding amplitude is given by

〈G+ |G−〉Tη,η∗ = exp

[
i

�2

∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′ η∗(t′′) ∆̃+(t′′ − t′; T ) η(t′)

]

where

∆̃+(t; T ) =

∫ ∞

−∞

dω′

2π
e−iω′t

[
(−1)

ω′ − (ω − iε)
− 2πi δ(ω′ − ω)

e�ω′/kT + 1

]

in analogy to the Bose case in (6.3.15), (6.3.16), the derivation of which is
left as an exercise to the reader. Here we recognize the Fermi-Dirac factor[
exp(�ω/kT ) + 1

]−1 in the amplitude.
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6.5 Bose-Fermi Oscillators and Supersymmetric
Bose-Fermi Transformations

To construct a supersymmetric Bose-Fermi oscillator which combines the
Bose-oscillator (§6.1) and the Fermi-oscillator (§6.4), we define the supersym-
metric generators (§2.9, §4.7)

Q = �
√

2ω a†
B aF (6.5.1)

Q† = �
√

2ω aB a†
F (6.5.2)

where, together with their adjoints,

[
aB , aF

]
= 0,

[
aB , a†

F

]
= 0. (6.5.3)

For convenience, in this section, the Bose operators have been denoted by
aB, a†

B.
The generators Q, Q† lead for the Hamiltonian (§2.9) given by

H =
1
2�

{
Q,Q†} (6.5.4)

the expression
H = �ω

(
a†
B aB + a†

F aF

)
(6.5.5)

where we note, in particular, that

QQ† = 2�
2ω a†

B aB aF a†
F

= 2�
2ω a†

B aB

(
1 − a†

F aF

)
. (6.5.6)

The Hamiltonian in (6.5.5) may be rewritten as

H = �ω

(
a†
B aB +

1
2

)
+ �ω

(
a†
F aF − 1

2

)
(6.5.7)

We recognize the first term as the Hamiltonian of the Bose-oscillator and infer
a zero point energy of −�ω/2, rather than of +�ω/2, for the Fermi-oscillator.

The cancellation between the zero point energies of the Bose and Fermi
oscillators is a very special and attractive feature of supersymmetry. This
is quite significant when one is dealing with an infinite degrees of freedom
(ν → ∞, see (6.1.12)) and similar cancellations occur in field theory which
would otherwise lead to ambiguities.

The ground-state of the Bose-Fermi oscillator |0, 0〉 is defined by

aB |0, 0〉 = 0, aF |0, 0〉 = 0 (6.5.8)
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and the state with n boson excitations and m fermion ones, with m = 0, 1,
are given by (see also (6.1.31))

|n,m〉 =

(
a†
B

)n
√

n!

(
a†
F

)m |0, 0〉 . (6.5.9)

By using the property

aB

(
a†
B

)n = n
(
a†
B

)n−1 +
(
a†
B

)n
aB (6.5.10)

one obtains
H |n,m〉 = �ω(n + m) |n,m〉 (6.5.11)

as expected.
The generators Q, Q† carry out the Bose ⇔ Fermi transformations as

follows. We explicitly obtain

Q† |1, 0〉 = �
√

2ω aB a†
F a†

B |0, 0〉 (6.5.12)

or
Q† |1, 0〉 = �

√
2ω |0, 1〉 . (6.5.13)

Similarly we have
Q |0, 1〉 = �

√
2ω |1, 0〉 . (6.5.14)

More generally one has

Q† |n, 0〉 = �
√

2ω
√

n |n − 1, 1〉 (6.5.15)

Q |n, 1〉 = �
√

2ω
√

n + 1 |n + 1, 0〉 (6.5.16)

and from (6.5.11), we note that the states |n − 1, 1〉 and |n, 0〉 are degenerate
corresponding to the energy �ωn.

One may introduce interaction terms in the elementary Bose-Fermi oscil-
lator Hamiltonian in (6.5.5) by adding to it, for example, a Yukawa term, de-
scribing a direct interaction between bosons and fermions, and a cubic term,
describing a direct self-coupling of the bosons. To this end, we introduce a
Bose “field” at time t = 0 defined by

φ = aB + a†
B (6.5.17)

and consider the Hamiltonian H defined by

H

�ω
=
(
a†
B aB + a†

F aF

)
+ λ0 a†

F aF φ + λφ3. (6.5.18)

In relativistic quantum field theory, as quantum mechanics with an infinite
degrees of freedom, a generalization of (6.5.18) shows, in particular, that the
anharmonic cubic term in the Bose field gives rise to a Hamiltonian which is
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unbounded from below, that is, its spectrum goes down to −∞. Here suffice
it to say, as will be shown below, the simple Hamiltonian in (6.5.18) with the
Bose “field” of one degree of freedom, leads to a spectrum which has a strictly
negative part for all λ �= 0, and emphasize that an immediate supersymmetric
generalization of (6.5.18) “shifts” the spectrum to a non-negative value.

To the above end, we note the following expectation values, in the state
|0, 0〉, involving the anharmonic cubic term φ3:

〈0, 0|φ3 |0, 0〉 = 0 (6.5.19)

〈0, 0|φ3 φ3 |0, 0〉 = 15 (6.5.20)

〈0, 0|φ3 φ3 φ3 |0, 0〉 = 0 (6.5.21)

〈0, 0|φ3 a†
B aB φ3 |0, 0〉 = 27 (6.5.22)

as obtained from the commutation relations involving aB, a†
B.

As a trial state, we choose the normalized state

|ψ〉 =

[
1 − λφ3

]
√

15 |λ|
|0, 0〉 (6.5.23)

for λ �= 0.
By definition of the lowest point E of the spectrum (see also Prob-

lem 6.18),
E � 〈ψ |H|ψ〉 . (6.5.24)

To obtain the expression on the right-hand side of this inequality, we use
the ones for the expectation values given in (6.5.19)–(6.5.22) and note that
the terms in the Hamiltonian depending on the Fermi operators aF, a†

F, more
specifically a†

FaF, does not contribute to it. This is because aF, a†
F commute

with the Bose operators, and aF |0, 0〉 = 0.
Accordingly,

E

�ω
� 1

15λ2
λ2 〈0, 0|φ3 a†

B aB φ3 |0, 0〉 − 2
λ2

15λ2
〈0, 0|φ3 φ3 |0, 0〉 (6.5.25)

or
E � −1

5
�ω (6.5.26)

for all λ �= 0.
A supersymmetric version of the Hamiltonian in (6.5.18) which includes

correct terms to cancel out, in particular, the negative contribution of the
anharmonic term λφ3 is immediate. To obtain precisely this cubic term in the
supersymmetric Hamiltonian, we introduce the supersymmetry generators

Q = �
√

2ω
(
a†
B + λφ2

)
aF (6.5.27)



6.6 Coherent State of the Harmonic Oscillator 349

Q† = �
√

2ω
(
aB + λφ2

)
a†
F (6.5.28)

as a generalization of the non-interacting case in (6.5.1), (6.5.2).
It is readily verified, that these generators give rise from

HS =
1
2�

{
Q,Q†} (6.5.29)

to the Hamiltonian HS,

HS

�ω
= a†

B aB + a†
F aF + 4λ

(
a†
F aF − 1

2

)
φ + λφ3 + λ2φ4. (6.5.30)

The non-negativity of the spectrum of HS follows, as before (see §4.7), by
noting that for a state |χ〉

〈χ |HS|χ〉 =
1
2�

(∥∥Q†χ
∥∥2

+ ‖Qχ‖2
)

� 0. (6.5.31)

It is remarkable that a supersymmetric version of a Hamiltonian provides
a Hamiltonian with a non-negative spectrum especially if the former would
have an unbounded spectrum from below. It is also interesting to note that
supersymmetry provides constraints on the couplings (such as λ0 = 4λ in
(6.5.18)/(6.5.30)), thus reducing much of the arbitrariness in choosing inter-
actions. Such facts have been quite useful in field theory.

6.6 Coherent State of the Harmonic Oscillator

A coherent state is a very special linear combination of the states |n〉,
given in §6.1, which brings the quantum mechanical treatment into very close
proximity with its classical counterpart description in the most natural way
and a contact with classical notions is most suitable to the experimentalist.
Such a state arises naturally in the following way.

The matrix elements of the position and momentum operators x(t), p(t)
at any time t, and the Hamiltonian H = p2/2m + mω2x2/2, with respect to
the states |n〉 may be read from (6.1.45), (6.1.47), (6.1.24) to be given by

〈n′ |x(t)|n〉 =
(

�

2mω

)1/2 [√
n + 1 δn′,n+1 eiωt +

√
n δn′,n−1 e−iωt

]
(6.6.1)

〈n′ |p(t)|n〉 = i
(

�mω

2

)1/2 [√
n + 1 δn′,n+1 eiωt −

√
n δn′,n−1 e−iωt

]
(6.6.2)

〈n′ |H|n〉 = δn′,n �ω

(
n +

1
2

)
. (6.6.3)
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The expressions in (6.6.1), (6.6.2) are not only non-diagonal but also any
resemblance to the classical solutions

xc(t) = |A| cos(ωt − δ) (6.6.4)

pc(t) = −|A|mω sin(ωt − δ) (6.6.5)

Hc = |A|2 mω2

2
(6.6.6)

is quite remote.
For given ω, m these classical expressions are parameterized by the ampli-

tude |A| and the phase δ, or equivalently by the complex number A = |A| eiδ.
We will construct a state, referred to as a coherent state, as a linear

combination of the states |n〉 and conveniently parametrized by the complex
number A, denoted by |A〉, such that the expectation values of the operators
x(t), p(t), with respect to |A〉 coincide with the classical counterparts (6.6.4),
(6.6.5), and such that the expectation value of H in |A〉 comes as close as
possible to the classical expression in (6.6.6). As we will see below, the reason
why 〈A |H|A〉 cannot exactly coincide with Hc in (6.6.6) is due to the presence
of the zero point energy �ω/2 in the spectrum of H in (6.1.24) and due to a
positivity constraint.

That is, we introduce a state

|A〉 =
∞∑

n=0

Cn(A) |n〉 (6.6.7)

〈A |A〉 =
∞∑

n=0

∣∣Cn(A)
∣∣2 = 1 (6.6.8)

such that

〈A |x(t)|A〉 = |A| cos(ωt − δ) ≡ xc(t) (6.6.9)

〈A |p(t)|A〉 = −|A|mω sin(ωt − δ) ≡ pc(t) (6.6.10)

and, as we will see the closest we can come to Hc for the expectation value
of H, is given by

〈A |H|A〉 = |A|2 mω2

2
+

�ω

2
≡ Hc +

�ω

2
. (6.6.11)

The coefficients squared
∣∣Cn(A)

∣∣2 have the usual interpretation of the
probabilities of the system, described by the state |A〉, to be found in the
states |n〉.

From (6.6.1), (6.6.7), we explicitly have
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〈A |x(t)|A〉 =
∞∑

n=0

(
�

2mω

)1/2 (
Cn+1(A)

)∗
Cn(A)

√
n + 1 eiωt + c.c. (6.6.12)

which from (6.6.9) requires that

∞∑
n=0

(
�

2mω

)1/2 (
Cn+1(A)

)∗
Cn(A)

√
n + 1 =

A∗

2
. (6.6.13)

where we recall that A = |A| exp iδ.
Equation (6.6.10), for the expectation value of p(t) in the state |A〉 gives

the same condition as in (6.6.13).
On the other hand, from (6.6.3), we have

〈A |H|A〉 = �ω

∞∑
n=0

n
∣∣Cn(A)

∣∣2 +
�ω

2
(6.6.14)

and the non-negativity of
∑

n

n
∣∣Cn(A)

∣∣2 in this equation should be noted.

Upon defining the convenient complex number

z = A
(mω

2�

)1/2

(6.6.15)

the conditions (6.6.8), (6.6.13), (6.6.11), (6.6.14) give

∞∑
n=0

C∗
n Cn = 1 (6.6.16)

∞∑
n=0

C∗
n+1

z∗
Cn

√
n + 1 = 1 (6.6.17)

∞∑
n=0

C∗
n+1

z∗
Cn+1

z
(n + 1) = 1 (6.6.18)

where we have assumed n
∣∣Cn

∣∣2 = 0, for n = 0 in writing the last sum, and
suppressed the A (or z) dependence of the Cn.

We note the summands in (6.6.16), (6.6.17) have the Cn factor in common,
while (6.6.17), (6.6.18) have the C∗

n+1 factor in common. It is easy to see
that the following recurrence relation obtained from the comparison of the
summands in (6.6.17) and (6.6.18),

Cn+1 =
z√

n + 1
Cn, n = 0, 1, . . . (6.6.19)

satisfies all of the sums in (6.6.16)–(6.6.18) (see also Problem 6.20, (6.6.26)).
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The solution of (6.6.19) is elementary and is given by

Cn =
(z)n

√
n!

e−|z|2/2 (6.6.20)

where we have finally used the normalization condition (6.6.16) again to solve
for C0.

That is, apart from the expected zero point energy �ω/2 in (6.6.11), the
state, now parametrized by the complex number z in (6.6.15),

|z〉 = e−|z|2/2
∞∑

n=0

(z)n

√
n!

|n〉 (6.6.21)

〈z |z〉 = 1 (6.6.22)

gives rise to expectation values for x(t), p(t), coinciding with the classical
solutions, and for H coming close to its classical counterpart.

Let us recapitulate the physical meanings of the complex number z, with
which the coherent state in (6.6.21) is labelled. To this end, upon writing

z = |z| eiδ (6.6.23)

|z|, up to a scaling factor, denotes the amplitude of the corresponding classical
solution (6.6.4), and δ provides its phase, and the privileged state (6.6.21)
brings the quantum oscillator in the light of classical notions well suited to
the experimentalist. Many additional properties of the coherent state |z〉 will
be obtained as we go along. From (6.6.18), (6.6.20), we also have

∞∑
n=0

n
∣∣Cn

∣∣2 =
∞∑

n=0

n

(
|z|2

)n

n!
e−|z|2 = |z|2 ≡ n. (6.6.24)

That is, |z|2 denotes the mean excitation quantum number n in the state |z〉.
In this respect the probability of the system, described by the state |z〉, to
be found in the state |n〉, is then given from (6.6.21), (6.6.23) to be

|〈n |z〉|2 ≡ Pz(n) =
(n)n

n!
e−n, n = 0, 1, . . . (6.6.25)

which is the celebrated Poisson probability mass function.9
A property of central importance of a coherent state |z〉 is that with

respect to it, the annihilation operator a (§6.1) becomes a multiplicative10

one, i.e.,
9 For detailed properties of a very wide range of probability distributions, see:

Manoukian (1986c).
10 Many authors introduce coherent states by beginning from (6.6.26) as a defining

equation for the state |z〉.
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a |z〉 = z |z〉 (6.6.26)

as is easily checked, and although a is not a self-adjoint operator, (6.6.26)
signals its importance in making contact with classical solutions.

The unitary operator exp(−itH/�) applied to |z〉 gives

e−itH/� |z〉 ≡ |z; t〉 = e−|z|2/2 e−iωt/2
∞∑

n=0

(
e−iωtz

)n

√
n!

|n〉 (6.6.27)

as follows from (6.6.21) and (6.1.24). That is, we may write

|z; t〉 = |z(t)〉 e−iωt/2 (6.6.28)

where
z(t) = z e−iωt = |z| e−i(ωt−δ). (6.6.29)

The coherent states (6.6.21), for all z, satisfy at all times t, the very
optimal minimum uncertainty principle criterion:

〈
z
∣∣∣[x(t) − 〈x(t)〉]2

∣∣∣z〉〈z
∣∣∣[p(t) − 〈p(t)〉]2

∣∣∣z〉 =
�

2

4
(6.6.30)

where 〈x(t)〉 ≡ 〈z |x(t)|z〉. The equality in (6.6.30) follows by noting that

〈
z
∣∣x2(t)

∣∣z〉 =
2�

mω
|z|2 cos2(ωt − δ) +

�

2mω
(6.6.31)

〈
z
∣∣p2(t)

∣∣z〉 = 2�mω|z|2 sin2(ωt − δ) +
mω�

2
(6.6.32)

and using (6.6.9), (6.6.10), (6.6.15).
It is expected that the coherent states |z〉, for all complex z, providing

the totality of all possible amplitudes and phases, admit a (completeness)
resolution of the identity. This is indeed the case and it reads:

∫
d(Re z) d(Im z)

π
|z 〉〈z| = 1. (6.6.33)

This is easily established by working, for example in polar coordinates and
setting z = reiθ in (6.6.21) and on the left-hand side of (6.6.33) (see Prob-
lem 6.24) giving

1
π

∫ ∞

0

rdr

∫ 2π

0

dθ
∣∣reiθ

〉〈
reiθ

∣∣ =
∞∑

n=0

|n〉〈n| = 1. (6.6.34)

This resolution of the identity is not to be confused with the corresponding
one for a self-adjoint operator (§1.8), as the z are not some eigenvalues of
a self-adjoint operator and the states |z〉 do not satisfy any orthogonality
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conditions. As a matter of fact one explicitly has, directly from (6.6.21), and
(6.1.31), that

〈z′ |z〉 =
〈
0
∣∣exp (z′∗a) exp

(
za†)∣∣0〉 exp

[
−
(
|z|2 + |z′|2

)
2

]
(6.6.35)

and since [
a,
[
a, a†]] = 0 (6.6.36)

[
a† ,

[
a, a†]] = 0 (6.6.37)

an application of the Baker-Campbell-Hausdorff formula (see Appendix I)
gives

〈z′ |z〉 = exp
(

z′∗z − |z|2
2

− |z′|2
2

)
. (6.6.38)

In particular, one has

|〈z′ |z〉|2 = exp
(
−|z′ − z|2

)
. (6.6.39)

The coherent states in (6.6.21) also satisfy the continuity11 condition:
∥∥ |z′〉 − |z〉

∥∥ −−−−−−−→
z′→z

0 (6.6.40)

which is an important property in the mathematical definition of coherent
states, and follows from (6.6.22) and (6.6.38).

In the light of the minimum uncertainty principle in (6.6.30), it is worth
investigating the time development of the x-space coherent wavepacket as
well as of the p-description. We work out the details for the x-description
only; the p-description is left as an exercise (see Problem 6.26).

From (6.6.28), (6.6.21), (6.6.29) and (6.1.31), we may write

|z; t〉 = e−|z|2/2 e−iωt/2 ez(t)a† |0〉 (6.6.41)

and from the definition (6.1.10) we have

〈x |z; t〉 = e−|z|2/2 e−iωt/2 〈x| exp
[
z(t)√

2
(X − iP )

]
|0〉 . (6.6.42)

Using the commutation relation [X ,P ] = i in (6.1.11) for ν = 1 and the
Baker-Campbell-Hausdorff formula, this gives
11 More precisely this is referred to as strong continuity, while weak continuity is re-

ferred to the weaker condition 〈ψ |z′ − z〉 → 0, for normalizable states |ψ〉, which
follows from strong continuity by a direct application of the Cauchy-Schwarz in-
equality.
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〈x |z; t〉 = e−|z|2/2 e−iωt/2 ez(t)X/
√

2 e−z2(t)/4 〈x| exp
[
−i

z(t)√
2

P

]
|0〉 . (6.6.43)

Upon rewriting the ground-state wavefunction in (6.1.33) in terms of X:

ψ0(x) =
(mω

π�

)1/4

exp
(
−X2

2

)
(6.6.44)

we obtain

〈x |z; t〉 =
(mω

π�

)1/4

e−iωt/2 exp
[
−|z|2

2
+

z(t)X√
2

− z2(t)
4

]

× exp

[
−1

2

(
X − z(t)√

2

)2
]

. (6.6.45)

Finally using the expression for z(t) in (6.6.29), the definition (6.6.15),
the fact that X = (mω/�)1/2x and (6.6.4), we get

〈x |z; t〉 =
(mω

π�

)1/4

exp
[
−mω

2�

(
x − xc(t)

)2] exp [iφ(x, t)] (6.6.46)

where exp (iφ(x, t)) is a phase factor with

φ(x, t) = −ωt

2
+

|z|2
2

sin [2(ωt − δ)] −
(

2mω

�

)1/2

|z|x sin(ωt − δ). (6.6.47)

This gives a Gaussian probability density

|〈x |z; t〉|2 =
(mω

π�

)1/2

exp
[
−mω

�

(
x − xc(t)

)2] (6.6.48)

centered about the classical solution (6.6.4), and most importantly it is non-
spreading in time as the variance σ2

x(t) is time-independent given by

σ2
x(t) = σ2

x(0) =
�

2mω
. (6.6.49)

A similar analysis may be carried out in the p-description.
As a function of the dimensionless variable X in (6.1.8), the probability

density corresponding to (6.6.48) may be rewritten as

|〈X |z; t〉|2 =
1√
2π

1(
1/
√

2
) exp

[
−1

2

(
X −

√
2 Re[z(t)]

)2
1/2

]
(6.6.50)

where we have used (6.6.29), (6.6.15), (6.6.4), corresponding to a standard
deviation equal to 1/

√
2. In particular we note that for z(t) pure imaginary,

the Gaussian distribution in (6.6.50) is centered at the origin. The density in
(6.6.50) is normalized with respect to the measure dX.
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Problems

6.1. Derive the properties given through (6.1.11)–(6.1.15).
6.2. By writing the Schrödinger equation in the momentum description and

using the solutions given in (6.1.39), (6.1.41), in the position descrip-
tion for ν = 1, obtain the eigenstates 〈p |ψ〉 ≡ ψ(p) in the momentum
description satisfying the normalization condition

∫ ∞

−∞

dp

2π�
|ψ(p)|2 = 1.

6.3. Derive the expressions for the matrix elements given through (6.1.45)–
(6.1.48).

6.4. A particle is moving in a one-dimensional harmonic oscillator potential
and is in the state n = 1.
(i) Derive an expression for the probability of finding the particle in

the range x1 < x < x2.
(ii) Derive an expression for the probability of finding the particle’s

momentum in the range p1 < p < p2.
6.5. A uniform electric field E is applied to a charged particle moving in

a one-dimensional harmonic oscillator potential. Find the eigenvalues
and the eigenvectors of the resulting Hamiltonian.

6.6. For an arbitrary number β, show that

a eβa†
= eβa†

(a + β)

where a, a† are the Bose annihilation and creation operators.
6.7. Verily that β(t), γ(t) in (6.2.8), (6.2.9), are, respectively, the solutions

of (6.2.7) satisfying the initial conditions in (6.2.6).
6.8. Solve the equation (6.2.4) for the Hamiltonian (6.2.2) by the method

developed in Appendix to §2.5.
6.9. Show that the expression in (6.2.14) is equivalent to the one in (6.2.13).

6.10. Derive the expression for the normalization constant C in (6.3.3) for
the Boltzmann factor.

6.11. If the disturbing source F (t) in (6.2.1) is given by

F (t) =




�ω cos
(

πt

2T

)
, for |t| < T

0, for |t| � T

find the probability of having a transition from an initial state n = 2
to a final state n = 3.

6.12. Show that the double sum in (6.3.5) may be rewritten as the expression
in (6.3.6).

6.13. Obtain the solutions in (6.4.16), (6.4.17).
6.14. Derive the equations (6.4.20)–(6.4.22) for the Fermi-oscillator.
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6.15. Verify the Bose ⇔ Fermi transformation rules given in (6.5.15),
(6.5.16).

6.16. Obtain the values for the matrix elements in (6.5.19)–(6.5.22).
6.17. Show that the supersymmetric generators in (6.5.27), (6.5.28) lead to

the Hamiltonian HS given in (6.5.30).
6.18. Investigate further the nature of the lowest point E of the spectrum

of the Hamiltonian in (6.5.18), i.e., whether E = −∞ or E > −∞, by
constructing states, in analogy to the one in (6.5.23), containing an
arbitrary large number of boson excitations.

6.19. Show by invoking, in the process, the normalization condition (6.6.16),
that the recurrence relation in (6.6.19) leads to the solution given in
(6.6.20).

6.20. Can you find another solution for the coefficients Cn(A) in (6.6.7)
consistent with the equations (6.6.16)–(6.6.18)? Comment on this.

6.21. Show directly from the expression of the probability density

Pz(n) =

(
|z|2

)n e−|z|2

n!

that ∞∑
n=0

nPz(n) = |z|2.

6.22. Derive explicitly the multiplicative nature of a as given in (6.6.26) for
coherent states.

6.23. Establish the equalities in (6.6.31), (6.6.32) for the expectation values
of x2(t), p2(t), in the coherent state |z〉.

6.24. Derive the resolution of the identity resulting from the coherent states
|z〉 as given in (6.6.34).

6.25. Prove the non-orthogonality relation of the states |z〉 as given in
(6.6.38), (6.6.39) and establish the continuity property spelled out in
(6.6.40).

6.26. In analogy to (6.6.46), (6.6.47) derive the expression of the time-
dependent coherent states in the momentum description 〈p |z; t〉.

6.27. Use the generator G = iδξ∗ Q − iQ† δξ, for infinitesimal transforma-
tions introduced in §2.9, to derive the infinitesimal transformations
δaB, δa†

B, δaF, δa†
F corresponding to the supersymmetric generators

Q, Q† in (6.5.27), (6.5.28).



7

Intricacies of the Hydrogen Atom

The purpose of this chapter is to carry out a detailed study of the hydro-
gen atom. The first section deals with its stability whose importance cannot
be overemphasized and is based on the earlier analysis in §3.1 on uncertain-
ties, localization and stability. In the process of this analysis, we will derive an
upper bound for the average kinetic energy of the electron in the atom, and
obtain a non-vanishing lower bound to its average radial extension as well
as determine its exact ground-state energy without even considering first
the eigenvalue problem. In particular, the boundedness of the spectrum of
the corresponding Hamiltonian of the (bound) atom from below implies the
vanishing of the probability of the “fall” of the electron on the proton. The
eigenvalue problem is studied in §7.2, §7.3 and the inclusion of the spin of
the electron and relativistic corrections is the subject of §7.4–§7.6. In §7.4, we
will see how a direct generalization of the Schrödinger equation may be car-
ried out to include such effects1 as the fine-structure and hyperfine-structure
of the atom for all orbital angular momenta. The so-called non-relativistic
Lamb shift is presented in detail in §7.7 where the electron, treated non-
relativistically2 in the atom, interacts with radiation. This provides a split-
ting of some of the energy levels which would otherwise be degenerate by an
analysis based on the Schrödinger equation, as well as on the Dirac equation,
with a Coulomb interaction alone, if radiation is not included in the treat-
ment. Here due to the ever presence of radiation accompanying the electron
we will encounter the concept of mass renormalization and the analysis will
provide a glimpse of the fascinating world of quantum filed theory, namely
that of quantum electrodynamics. This section is followed by one dealing with

1 The quantum description of relativistic particles will be studied in more detail
in Chapter 16.

2 In the atom, the speed of the electron is roughly suppressed by a factor α relative
to the speed of light, where α ∼ 1/137 is the fine-structure constant (see (7.1.16),
(7.4.34)).
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the decay and determination of the mean lifetimes of excited states. Finally
in §7.9, we consider the hydrogen atom in external electromagnetic fields.

7.1 Stability of the Hydrogen Atom

Due to the central importance of the subject matter of this section in
quantum physics, we recapitulate some of the details given in §3.1 as special-
ized to the hydrogen atom.

First we derive a finite lower bound to the spectrum and prove that it ac-
tually coincides with the exact ground-state energy of the atom. The bound-
edness of the spectrum from below is important, otherwise the electron would
fall into such an unbounded level releasing an unlimited amount of energy
and is physically meaningless.3

We then use the finite negative property of the lower bound of the spec-
trum derived to investigate the localization of the electron in the atom and
study further the stability of the atom.

The Hamiltonian of the relative motion of the electron to the proton is
given by (§2.5, (2.5.30))

H = T̂ − e2

|x| . (7.1.1)

where T̂ = p2/2µ, p = −i�∇, µ is the reduced mass of the electron-proton
system. By choosing g(x) = −e2/|x| directly in (3.1.8) and using the fact
that ∇ · (x/|x|) = 2/|x|, we obtain from (3.1.8)

− µe4

2�2
�
〈

T̂ − e2

|x|

〉
(7.1.2)

providing a lower bound for the ground-state energy E of H in (7.1.1). Ac-
tually, the bound −µe4/2�

2 provides the exact value for E. To see this, note
that for any normalized trial function Φ(x), we may write (see the introduc-
tion to Chapter 4)

− µe4

2�2
� E �

〈
Φ
∣∣∣∣
(

T̂ − e2

|x|

)∣∣∣∣Φ
〉

. (7.1.3)

In particular, for

Φ(x) =
1√
π

β3/2e−βr, |x| = r, β > 0 (7.1.4)

3 From the analysis given in §4.1 alone, we already know that the spectrum is
bounded from below since the Coulomb potential −e2/|x| satisfies the sufficiency
conditions (4.1.2), (4.1.3) for ν = 3, that is, it is locally square-integrable and it
vanishes for |x| → ∞.
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with ∇2 → 1
r2

∂
∂r r2 ∂

∂r , we obtain
(

T̂ − e2

|x|

)
Φ(x) =

[(
2
r
− β

)
�

2β

2µ
− e2

r

]
Φ(x). (7.1.5)

Hence by choosing β = µe2/�
2, the right-hand side of (7.1.5) becomes

−
(
µe4/2�

2
)
Φ(x), and for (7.1.3) we have

− µe4

2�2
� E � −µe4

2�2
(7.1.6)

thus establishing that the exact ground-state energy is given by

E = −µe4

2�2
. (7.1.7)

Incidentally, 1/β = �
2/µe2 is the celebrated Bohr radius:

a0 =
�

2

µe2
(7.1.8)

which gives an order of magnitude of the average of the radial extension of
the atom in its ground-state, since

〈Φ |r|Φ〉 = 3a0/2 (7.1.9)

where |Φ〉 is the ground-state as defined in (7.1.4) with β = 1/a0.
Quite generally, we may derive a Heisenberg uncertainty-like inequality

between the average radial extension of the atom and the average kinetic
energy of the electron in the following manner. By choosing g(x) = 1/ |x| ,a =
0,b = 0 in (3.1.3), we obtain for the electron in a normalized state |ψ〉

〈
ψ
∣∣∣T̂
∣∣∣ψ〉 � �

2

2µ

〈
ψ

∣∣∣∣1r
∣∣∣∣ψ
〉2

. (7.1.10)

On the other hand, we may invoke the Cauchy-Schwarz inequality

1 =
∫

d3x |ψ(x)|2 =
∫

d3x
|ψ(x)|
r1/2

· r1/2 |ψ(x)|

�
〈

ψ

∣∣∣∣1r
∣∣∣∣ψ
〉1/2

〈ψ |r|ψ〉1/2 (7.1.11)

giving 〈
ψ

∣∣∣∣1r
∣∣∣∣ψ
〉

� 1
〈ψ |r|ψ〉 (7.1.12)

to infer from (7.1.10) that
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〈
ψ
∣∣∣T̂
∣∣∣ψ〉 〈ψ |r|ψ〉2 � �

2

2µ
. (7.1.13)

An interpretation of this inequality is that the smaller the average ex-
tension of the atom, the larger is the average kinetic energy of the electron.
The complete balance between the increase of the average kinetic energy of
the electron, as implied by localization, and any energy loss from the atom
provides the final stable state of the atom.

For the hydrogen atom, as a bound-state, the average kinetic energy can-
not increase by an unlimited amount and a finite upper bound to it may be
derived as shown below. In the same way, the average radial extension of the
atom cannot become arbitrarily small and cannot vanish as is also shown
below. To establish these properties, we note that for a bound-state〈

T̂ − e2

|x|

〉
< 0 (7.1.14)

or 〈
T̂

2

〉
< −

〈
T̂

2
− e2

|x|

〉
(7.1.15)

where T̂ /2 − e2/ |x| is the Hamiltonian of the hydrogen atom when µ is
replaced by 2µ (see also (3.1.18), (3.1.24)). Hence for a bound-state, we have
from (7.1.15), (7.1.2), 〈

T̂
〉

<
2µe4

�2
. (7.1.16)

This gives an upper bound for the average kinetic energy of the electron
bound in the atom.

The inequality (7.1.16) in turn, provides from (7.1.13) the non-vanishing
lower bound

〈r〉 >
a0

2
(7.1.17)

for the average radial extension of the atom, where we have used the definition
of a0 given in (7.1.8).

It is important to realize how quantum physics has built-in inequalities
as in (7.1.17). The boundedness of the spectrum from below by the finite
negative number in (7.1.2), (7.1.7), leading, in particular to the bound in
(7.1.16), provides also a rigorous bound on the probability distribution of the
radial extension of the atom not only for its average value as is shown below.

To the above end, (7.1.10) leads to the following chain of inequalities:√
2µ

�2

〈
ψ
∣∣∣T̂
∣∣∣ψ〉1/2

�
∫

d3x
|ψ(x)|2

r
�

∫
r0�r

d3x
|ψ(x)|2

r
(7.1.18)

for any 0 < r0 < ∞, where we have used the positivity of the integrand
|ψ(x)|2/r. Since in the last integral in (7.1.18), we have the constraint 1/r �
1/r0, we obtain
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√

2µ

�2

〈
ψ
∣∣∣T̂
∣∣∣ψ〉1/2

� 1
r0

∫
r0�r

d3x |ψ(x)|2 (7.1.19)

or equivalently to

Prob [r � r0] � r0

√
2µ

�2

〈
T̂
〉1/2

(7.1.20)

with |ψ〉 normalized. For a bound-state, (7.1.16) then leads from (7.1.20) to

Prob [r � r0] � 2
r0

a0
(7.1.21)

giving the consistent and satisfactory result of a vanishingly small probability
for a vanishingly small r0 and rigorously vanishing for r0 → 0, i.e., for the
“fall” of the electron on the proton.

7.2 The Eigenvalue Problem

From the analysis carried out in §4.1, one may readily infer the nature
of the spectrum of the Hamiltonian with a Coulomb potential. The latter
potential is locally square-integrable and vanishes at infinity, i.e., it satisfies
conditions (4.1.2), (4.1.3). Also we have shown in §7.1, that the lower bound of
the attractive Coulomb Hamiltonian is strictly negative (see (7.1.2), (7.1.7)).
Hence from Theorem 4.1.1 alone, we may immediately conclude that this
Hamiltonian has a discrete spectrum on the negative real axis of at most
finite degeneracy, and a continuous spectrum on the positive real axis [0,∞).
[For a repulsive Coulomb potential, the corresponding Hamiltonian is positive
and hence has only a continuous spectrum on the positive real axis.]

To study the spectrum of the hydrogen atom, we rewrite the Hamiltonian
(7.1.1) in detail as

H =
p2

r

2µ
+

L2

2µr2
− e2

r
, |x| = r (7.2.1)

where
pr = −i�

(
∂

∂r
+

1
r

)
(7.2.2)

and L2 is the square of the orbital angular momentum, which when written
in spherical coordinates is given by

L2 = −�
2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

]
. (7.2.3)

It is easily verified that H,L2, Lz commute and hence we may find simul-
taneous eigenstates for them which we conveniently denote by |E, �,m〉 and
set
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H |E, �,m〉 = E |E, �,m〉 (7.2.4)

L2 |E, �,m〉 = �
2� (� + 1) |E, �,m〉 (7.2.5)

Lz |E, �,m〉 = �m |E, �,m〉 (7.2.6)

where � takes on non-negative integer values (§5.3) and m = −�,−� +
1, . . . , 0, 1, . . . , �. By definition the states |E, �,m〉 are in the domain of defi-
nition of the operators H,L2, Lz.

From (7.2.4), (7.2.5), we may also write

H |E, �,m〉 = H� |E, �,m〉 = E |E, �,m〉 (7.2.7)

where

H� =
p2

r

2µ
+

�
2�(� + 1)
2µr2

− e2

r
(7.2.8)

and clearly H�,L2, Lz commute. We define the operators

D� = pr − i
(

(� + 1)�
r

− µe2

(� + 1)�

)
. (7.2.9)

To define the adjoint D†
� of D�, we must impose appropriate boundary

conditions, in the process, in defining the operator pr. With a measure of in-
tegration d3x, we consider functions f(x), g(x) such that rf(x), rg(x) vanish
not only for r → ∞ but also for r → 0+. The adjoint D†

� of D�, satisfying

〈g |D�|f〉 =
〈
D†

� g
∣∣∣f〉 (7.2.10)

obtained by integrating by parts, is then given by

D†
� = pr + i

(
(� + 1)�

r
− µe2

(� + 1)�

)
(7.2.11)

(see Problem 7.4).
The following relations are easily established for � = 0, 1, . . .

(i) H�+1 D†
� = D†

� H� (7.2.12)

(ii) H� D� = D� H�+1 (7.2.13)

and that

(iii) D� D†
� = 2µ

(
H� +

µe4

2(� + 1)2�2

)
(7.2.14)

(iv) D†
� D� = 2µ

(
H�+1 +

µe4

2(� + 1)2�2

)
.

(7.2.15)
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Since µe4/2(�+1)2�
2 in (7.2.14) is decreasing in �, the positivity of D�D

†
�

implies from (7.2.14), (7.2.7) that for the ground-state energy E = −µe4/2�
2,

obtained in (7.1.7), � = 0; for larger � this positivity is violated.
Quite generally, (7.2.12) and the right-hand side equality in (7.2.7) imply

that
H�+1

(
D†

� |E, �,m〉
)

= E
(
D†

� |E, �,m〉
)

. (7.2.16)

with the same eigenvalue E.
That is, D†

� |E, �,m〉 is an eigenstate of H�+1, and we may write4

D†
� |E, �,m〉 = c+

� |E, � + 1,m〉 . (7.2.17)

From (7.2.14), one may infer that,

c+
� = i

[
2µ

(
E +

µe4

2(� + 1)2�2

)]1/2

(7.2.18)

with a chosen overall phase convention.
Hence from the positivity of D�D

†
� the sequence D†

� |E, �,m〉,
D†

�+1D
†
� |E, �,m〉,. . . must terminate for some � = �max for an eigenvalue

E,E � E < 0. As a matter of fact if D†
� |E, �,m〉 does not vanish for such an

�, then D†
�+1D

†
� |E, �,m〉, if not the zero vector, would violate the positivity

of D�+1D
†
�+1, in (7.2.14) for � → � + 1, since E + µe4/2(� + 1)2�

2 would be
negative. That is, there exists an � = �max, for an eigenvalue E < 0 such
that D†

�max
|E, �max,m〉 is the zero vector. As we have seen above �max = 0

for the ground-state energy E. Since �max is a non-negative integer, we may
set �max = n − 1, n = 1, 2, . . . , with n = 1 corresponding to the ground-state
energy E.

The vanishing of c+
�max

= c+
n−1, then imply that the eigenvalues E may

be parameterized by n, and, from the vanishing of c+
n−1 in (7.2.18)/(7.2.17),

take the values:

En = − µe4

2�2n2
, n = 1, 2, . . . (7.2.19)

with E1 = E as seen in §7.1.
For the subsequent analysis, we use the labelling |n, �,m〉 for |E, �,m〉,

and we recall the condition

D†
n−1 |n, n − 1,m〉 = 0. (7.2.20)

Since for a given �, m may take on (2�+1) values, the degree of degeneracy
of an energy level En in (7.2.19), taking into account the spin of the electron,
is given by

2
n−1∑
�=1

(2� + 1) = 2n2. (7.2.21)

4 Here it is sufficient to assume that any operator which commutes with H�+1, L2,
Lz and which is not a function of the latter operators also commutes with D†

� .
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7.3 The Eigenstates

The x-description state wavefunctions may be represented as follows:

〈r, θ, φ |n, �,m〉 ≡ Rn�(r)Y�m(θ, φ) ≡ ψn�m(r, θ, φ) (7.3.1)

where the Y�m(θ, φ) are the spherical harmonics defined in (5.3.26), (5.3.30),
(5.3.51), satisfying (5.1.19), (5.1.20):

L2Y�m(θ, φ) ≡ �
2�(� + 1)Y�m(θ, φ) (7.3.2)

LzY�m(θ, φ) ≡ � mY�m(θ, φ) (7.3.3)

and from (7.2.20), (7.2.11) and (7.2.2), (〈r |n, �〉 = Rn�(r)):(
∂

∂r
− (n − 1)

r
+

µe2

n�2

)
Rn,n−1(r) = 0 (7.3.4)

whose normalized ∫ ∞

0

r2 dr R2
n,n−1(r) = 1 (7.3.5)

solution is

Rn,n−1(r) =
(

2
na0

)3/2
ρn−1√
(2n)!

exp(−ρ/2) (7.3.6)

where
ρ =

(
2

na0

)
r (7.3.7)

and a0 is the Bohr radius in (7.1.8).
In particular, (7.3.6), (5.3.45) imply from (7.3.1) that

R10(r) =
(

1
a0

)3/2

2 e−r/a0 (7.3.8)

and for the ground-state

ψ100(r, θ, φ) =
1√
π

(
1
a0

)3/2

e−r/a0 (7.3.9)

which coincides with the expression in (7.1.4), with β = µe2/�
2 = 1/a0.

A similar analysis as carried out in (7.2.16)–(7.2.18), in reference to
(7.2.12), as now applied to (7.2.13), (7.2.15) with � → � − 1, leads to

D�−1 |n, �,m〉 ≡ −i
µe2

√
n2 − �2

�n�
|n, � − 1,m〉 (7.3.10)

for � �= 0 (see Problem 7.7). The −i factor in (7.3.10) is chosen for convenience
(see, (7.2.18) and (7.3.12)). Equation (7.3.10) then gives
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Rn,�−1(r) =
i��n

µe2
√

n2 − �2
D�−1Rn,�(r). (7.3.11)

Equation (7.3.11) provides the differential equation

Rn,�−1(r) =
2�√

n2 − �2

[
d
dρ

+
(� + 1)

ρ
− n

2�

]
Rn,�(r) (7.3.12)

for � �= 0, and Rn,�−1 are necessarily normalized for normalized Rn,�.
In particular, for � = n − 1, (7.3.12) gives from (7.3.6)

Rn,n−2(r) =
(

2
na0

)3/2 1√
(2n − 2)!2n

ρn−2e−ρ/2 [−ρ + 2(n − 1)] (7.3.13)

for n � 2.
Equations (7.3.6), (7.3.12), (7.3.13) suggest developing a proof by in-

duction in � to find the explicit expression for Rn�. To this end, as an in-
duction hypothesis, suppose that for all � = k, k + 1, . . . , n − 1, for some
k : 0 < k � n − 1

Rn,�(r) =
(

2
na0

)3/2
√

(n − � − 1)!
(n + �)!2n

ρ�e−ρ/2L2�+1
n−�−1(ρ) (7.3.14)

where

LM
N (ρ) = ρ−M eρ

N !

(
d
dρ

)N [
ρM+Ne−ρ

]
. (7.3.15)

Equation (7.3.14) is easily checked to coincide with (7.3.6), (7.3.13) for � =
n − 1, � = n − 2, respectively. We then show that (7.3.14) holds also true for
� replaced by � − 1.

The LM
N (ρ) are so-called associated Laguerre polynomials, having the se-

ries expansion

LM
N (ρ) =

N∑
t=0

(−1)t (M + N)!
(N − t)!(M + t)!

(ρ)t

t!
(7.3.16)

with the normalization in (7.3.15) adopted,5 and satisfy for M � 2, the
recurrence relation

ρ
d
dρ

LM
N (ρ) +

[
M − N + M

M − 1
ρ

]
LM

N (ρ) − (N + 1)(N + M)
M − 1

LM−2
N+1 (ρ) = 0.

(7.3.17)
Upon substitution of the expression (7.3.14) in the right-hand side of

(7.3.12), it is readily checked by using the recurrence relation (7.3.17) with
5 Note that different normalizations are sometimes adopted for the associated La-

guerre polynomials by different authors.
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M = 2� + 1, � = k, . . . , n− 1, for some k > 0, that Rn, �−1(ρ) is also given by
(7.3.14) with � replaced by � − 1. This establishes the validity of (7.3.14) for
all � = n − 1, n − 2, . . . , 1, 0 by induction.

All told, the normalized wavefunctions in (7.3.1) are given by

ψn�m(r, θ, φ) =
(

2
na0

)3/2
√

(n − � − 1)!
(n + �)!2n

ρ� e−ρ/2 L2�+1
n−�−1(ρ)Y�m(θ, φ)

(7.3.18)
where ρ is defined in (7.3.7) and (7.1.8). Note that ρ depends on n. The
associated Laguerre polynomials are given in (7.3.15), (7.3.16). Here n =
1, 2, . . . ; � = 0, 1, . . . , n − 1; m = −�,−� + 1, . . . ,−1, 0, 1, . . . , � − 1, �. Also

∫ ∞

0

r2 dr

∫ π

0

sin θ dθ

∫ 2π

0

dφ |ψn�m(r, θ, φ)|2 = 1. (7.3.19)

To study the orthogonality of the wavefunctions in (7.3.18), we first recall
from (5.3.51) that

∫ π

0

sin θ dθ

∫ 2π

0

dφ Y ∗
�′m′(θ, φ)Y�m(θ, φ) = δ�′�δm′m. (7.3.20)

Hence it remains to establish the orthogonality of Rn�(r), Rn′�(r) for n′ �= n.
Due to the n dependence, in particular, of ρ, the argument of the Laguerre
polynomials in (7.3.18), establishing the orthogonality of Rn�(r), Rn′�(r) for
n′ �= n based on any orthogonality properties of (weighted) Laguerre polyno-
mials is not obvious. One may, however, establish this orthogonality property
directly and rather easily from the Schrödinger equation satisfied by Rn�(r),
which by using (7.3.2), (7.2.19) and (7.2.1), is given by

[
−�

2

2µr2

(
d
dr

r2 d
dr

)
− e2

r
+

µe4

2n2�2
+

�
2�(� + 1)
2µr2

]
Rn�(r) = 0. (7.3.21)

Upon setting
η = r/a0 (7.3.22)

and
un�(η) = η Rn�(r) (7.3.23)

(7.3.21) simplifies to
[

d2

dη2
+

2
η
− 1

n2
+

�(� + 1)
η2

]
un�(η) = 0. (7.3.24)

Finally by writing the corresponding equation to (7.3.24) for un′�(η), and
using the boundary condition

[
un′�(η)

d
dη

un�(η) − un�
d
dη

un′�(η)
]∣∣∣∣

∞

0

= 0 (7.3.25)
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one readily derives (see Problem 7.10) the orthogonality relation

0 =
(

1
n′2 − 1

n2

)∫ ∞

0

dη un′�(η) un�(η). (7.3.26)

Hence from (7.3.23), we have for n′ �= n

∫ ∞

0

r2 dr Rn′�(r)Rn�(r) = 0. (7.3.27)

If the Coulomb potential in (7.1.1) is replaced by

V (x) = −Ze2/ |x| (7.3.28)

corresponding to a nucleus of charge Z|e|, then (7.2.19) simply becomes

En = −µZ2e4

2n2�2
(7.3.29)

and 1/a0 as appearing in (7.3.18) (also in ρ) is to be replaced by Z/a0.
The radial wavefunctions (7.3.14) are non-vanishing at the origin only for

� = 0. To see this note that

L1
n−1(ρ) −−−→

ρ→0
n (7.3.30)

yielding

R2
n�(0) =

4
n3

(
Z

a0

)3

δ� 0. (7.3.31)

Upon using the fact that Y00(Ω) = 1/
√

4π, as given in (5.3.45), we have for
the wavefunctions in (7.3.18), (m = 0),

|ψn�m(0)|2 =
1

πn3

(
Z

a0

)3

δ� 0. (7.3.32)

With the definition,

〈f(r)〉 =
∫

d3x f(r) |ψn�m(x)|2

=
∫ ∞

0

r2 dr f(r)R2
n�(r) (7.3.33)

where for simplicity of the notation we have suppressed the dependence of
〈f(r)〉 on n and �, the following expectation values are useful:

〈r〉 =
[
3n2 − �(� + 1)

] ( a0

2Z

)
(7.3.34)
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〈
r2
〉

=
[
5n2 + 1 − 3�(� + 1)

](a2
0n

2

2Z2

)
(7.3.35)

〈
1
r

〉
=

Z

a0

1
n2

(7.3.36)

〈
1
r2

〉
=
(

Z

a0

)2 1
(� + 1/2)

1
n3

(7.3.37)

〈
1
r3

〉
=
(

Z

a0

)3 1
�(� + 1/2)(� + 1)

1
n3

, � �= 0. (7.3.38)

7.4 The Hydrogen Atom Including Spin and Relativistic
Corrections

In the present section, we extend the work in §7.2 to include spin and
relativistic corrections. This may be done from Dirac’s equation studied later
on dealing with the quantum description of the relativistic electron. We find
it, however, more suitable to treat this topic right in this chapter for conti-
nuity, especially since the Schrödinger equation may be readily generalized
to a relativistic treatment as we shall see below. Needless to say, we will,
in the process, discover the Dirac equation which will be treated afresh in
Chapter 16.

The time-independent Schrödinger equation for a free particle of mass M
may be written as (

p2

2M
− E

)
ψ = 0 (7.4.1)

providing the constraint that is imposed between the energy and the mo-
mentum. Its interaction with an external time-independent6 electromagnetic
potential (U,A) may be then obtained from (7.4.1) by the substitutions
p → p − e

cA, E → E − U .
For the relativistic free electron, we may write[√

p2c2 + M2c4 − E
]
Ψ = 0 (7.4.2)

providing the relativistic constraint between the energy and the momen-
tum,7 where c denotes the speed of light. We multiply (7.4.2) by the operator√

p2c2 + M2c4 + E to obtain the more manageable equation
6 The interaction with an external time-dependent electromagnetic potential, in

general, is easily obtained by considering the time-dependent Dirac equation —
see for example, the appendix to this section.

7 The square-root operator in (7.4.2) of the positive operator p2c2 +M2c4 is a well
defined operator, for example, by Fourier transform theory. See also (4.5.34), and
§16.1.
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(
p2c2 + M2c4 − E2

)
Ψ = 0. (7.4.3)

Using the identity
σiσj = δij + iεijkσk (7.4.4)

for the Pauli matrices, we may rewrite (7.4.3) as
[
(σ · p) (σ · p) − (E − Mc2)

c

(E + Mc2)
c

]
Ψ = 0. (7.4.5)

Upon setting

σ · pΨ =
(E + Mc2)

c
Φ (7.4.6)

σ · pΦ =
(E − Mc2)

c
Ψ. (7.4.7)

Equation (7.4.5) may be rewritten in terms of the following two equations

σ · pΦ − E

c
Ψ + McΨ = 0 (7.4.8)

− σ · pΨ +
E

c
Φ + McΦ = 0. (7.4.9)

The Pauli matrices are 2 × 2 matrices, and with Φ, Ψ each as a two-row,
one-column matrix, we may combine (7.4.8), (7.4.9) into the equation

[(
0 σ

−σ 0

)
· p −

(
I 0
0 −I

)
E

c
+ Mc

(
I 0
0 I

)][
Ψ
Φ

]
= 0 (7.4.10)

which is the famous Dirac equation to be studied later in Chapter 16 and
we will not consider it here further, as it stands, except in the appendix
to this section dealing with normalization problems. We are here interested
in (7.4.8), (7.4.9) to study, approximately, the bound-state problem of the
hydrogen atom including spin and relativistic corrections.

We isolate the rest energy Mc2 in E

E = ε + Mc2 (7.4.11)

and rewrite (7.4.8), (7.4.9), respectively, as

εΨ = cσ · pΦ (7.4.12)

(
ε + 2Mc2

)
Φ = cσ · pΨ. (7.4.13)

The interaction with an external time-independent electromagnetic poten-
tial may be then obtained by the substitutions p → p− e

cA(x), ε → ε−U(x),
giving rise to the equations
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(ε − U)Φ = cσ ·
(
p − e

c
A
)

Φ (7.4.14)

(2Mc2 + ε − U)Φ = cσ ·
(
p − e

c
A
)

Ψ. (7.4.15)

We will see below, how the familiar term −µ · B, where µ is the magnetic
dipole moment of the electron and B = ∇ × A, naturally arises in the
modified Hamiltonian as obtained from (7.4.14), (7.4.15).

We use the identity

1
2Mc2 + ε − U

=
1

2Mc2

(
1 +

U − ε

2Mc2 + ε − U

)
(7.4.16)

and note that for −U � 0 and |ε| � 2Mc2, the denominator 2Mc2 + ε − U
does not vanish. Here we have in mind the attractive Coulomb potential

U(x) = − e2

|x| (7.4.17)

and where |ε| � 2Mc2.
Using the identity (7.4.16), we may write for Φ the exact equation

Φ =
1

2Mc2

[
1 +

U − ε

(2Mc2 + ε − U)

]
cσ ·

(
p − e

c
A
)

Ψ. (7.4.18)

Upon substituting (7.4.18) in (7.4.14) we obtain for the latter

(ε − U)Ψ =
[

p2

2M
+

1
2Mc2

σ ·
(
p − e

c
A
) (U − ε)

(2Mc2 + ε − U)
σ ·

(
p − e

c
A
)]

Ψ

+
1

2M

[
σ ·

(
p − e

c
A
)

σ ·
(
p − e

c
A
)
− p2

]
Ψ (7.4.19)

where we have added and subtracted the term p2/2M on the right-hand side
of (7.4.19).

As an order of magnitude estimate, we note that (ε − U) ∼ Me4/2�
2 =

Mc2α2/2, with the latter (the Rydberg) providing the energy scale of the
hydrogen atom. Here α = e2/�c ∼ (137)−1 is the fine-structure constant.
Hence we neglect the (ε−U) term in comparison to 2Mc2 in the denominator
on the right-hand side of (7.4.19) as it is suppressed by a factor α2. We will
keep track of terms up to the order 1/c2. The vector potential A considered is
due to the magnetic dipole moment (or the spin) of the proton and involves
a factor 1/c (see (7.4.39), (7.4.40)). For the time being we will treat A in
(7.4.19) as arbitrary, as it is readily identified, and assess its contribution
later. This will save us some work in the sequel.

With the order of magnitude sought in mind, we may rewrite (7.4.19) as



7.4 The Hydrogen Atom Including Spin and Relativistic Corrections 373

(ε − U)Ψ =
[

p2

2M
+

1
4M2c2

σ · p(U − ε)σ · p
]

Ψ

+
1

2M

[
σ ·

(
p − e

c
A
)

σ ·
(
p − e

c
A
)
− p2

]
Ψ. (7.4.20)

In the appendix to this section, it is shown that the correct normalization
of Ψ is given by

∫
d3x Ψ†(x)

[
1 +

p2

4M2c2

]
Ψ(x) = 1 (7.4.21)

for the accuracy required. Accordingly, we may set

Ψ =
[
1 − p2

8M2c2

]
χ (7.4.22)

where now ∫
d3x χ†(x)χ(x) = 1 (7.4.23)

to the accuracy needed.
In terms of χ, (7.4.20) reduces to

(ε − U)χ − (ε − U)
p2

8M2c2
χ

= Fχ +
[

p2

2M
− p4

16M3c2
+

1
4M2c2

σ · p(U − ε)σ · p
]

χ (7.4.24)

where

Fχ =
1

2M

[
σ ·

(
p − e

c
A
)

σ ·
(
p − e

c
A
)
− p2

]
χ. (7.4.25)

With A given in terms of the magnetic dipole moment of the proton (see
(7.4.39), (7.4.40)), F involves a factor 1/c2 (see (7.4.31)). In (7.4.24), we
have used the notation p4 for (p2)2.

The following equalities are easily established (see Problem 7.12)

σ · p(U − ε)σ · pχ = p2(U − ε)χ + �
2(∇2U)χ

+ i�(∇U) · pχ + �σ · [(∇U) × p]χ (7.4.26)

(ε − U)p2χ = p2(ε − U)χ + �
2(∇2(ε − U))χ

+ 2i�(∇(ε − U)) · pχ (7.4.27)

where p = −i�∇, and note the positions of the various brackets in (7.4.26),
(7.4.27).
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Upon multiplying the equality (7.4.27) by 1/2 and adding the resulting
expression to the one in (7.4.26), we obtain, to the accuracy needed, for
(7.4.24)

(ε − U)χ =
[

p2

2M
− p4

16M3c2
+

p2(U − ε)
8M2c2

+
�

2

8M2c2
(∇2U)

+
1

2M2c2

(
1
r

d
dr

U

)
S · L + F

]
χ. (7.4.28)

Here S = �σ/2, and we have used the relations

S · (∇U × p) =
(

1
r

d
dr

U

)
S · (x × p)

=
(

1
r

d
dr

U

)
S · L (7.4.29)

with L denoting the orbital angular momentum. For an s-state for which
the orbital angular momentum is zero, i.e., � = 0, it is advisable to use the
expression on the extreme left-hand side of (7.4.29) and not of the first one
on the right-hand side in the evaluations of the energy corrections.

Now we combine the second and the third terms on the right-hand side
of (7.4.28) as follows:

− p2

8M2c2

[
p2

2M
+ (ε − U)

]
χ = − p2

8M2c2

[
p2

2M
+

p2

2M
+ O

(
1
c2

)]
χ

(7.4.30)
where we have used, in the process, the equality (7.4.28) for (ε − U)χ. That
is, for the accuracy needed, the second plus the third terms on the right-hand
side within the square brackets of (7.4.28) may be replaced by −(p4/8M3c2).

Finally we use the operator identity

σ ·
(
p − e

c
A
)

σ ·
(
p − e

c
A
)

=
(
p − e

c
A
)2

− e�

c
σ · (∇ × A) (7.4.31)

(see Problem 7.13) and the properties that ∇ ·A = 0, and that A involves a
factor 1/c (see (7.4.39), (7.4.40)), to simplify the expression for F in (7.4.25),
and rewrite (7.4.28) as

[
p2

2M
+ U − ε − p4

8M3c2
+

�
2

8M2c2
(∇2U)

+
1

2M2c2

(
1
r

d
dr

U

)
S · L − e

Mc
A · p − µ · B

]
χ = 0. (7.4.32)

Here
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µ =
e

Mc
S (7.4.33)

is the magnetic dipole moment of the electron, B = ∇ × A.
The magnetic dipole moment µ in (7.4.33) is more precisely given by

µ = (ge/2Mc)S, where g is the so-called g-factor of the electron given ap-
proximately8 by g = 2

(
1 + α

2π

)
according to quantum electrodynamics, due

to Schwinger, and
α = e2/�c ∼ 1/137 (7.4.34)

is the fine-structure constant. Since B = ∇ × A has already a factor 1/c
(see (7.4.39), (7.4.40)) in it, one may simply take g � 2 as given in (7.4.33),
(7.4.32).9

We investigate the meanings of the new terms arising in the modified
Schrödinger equation (7.4.32).

Since

(
p2c2 + M2c4

)1/2 − Mc2 − p2

2M
= − p4

8M3c2
+ · · · (7.4.35)

the −
(
p4/8M3c2

)
term gives the relativistic correction to the kinetic energy.

The interaction
(
�

2/8M2c2
)
∇2U is non-vanishing only at the origin since

∇2

(
1
|x|

)
= −4πδ3(x) (7.4.36)

(see Problem 7.14) implies that

∇2U(x) = 4πe2δ3(x) (7.4.37)

and contributes only to s-states. It is referred to as the Darwin term. We will
see in §16.6, that the physical origin of this may be explained to arise due to
fluctuations of the position of the electron (referred to as “Zitterbewegung”)
in the atom, and the electron encounters a smeared-out Coulomb potential
giving rise to the term ∇2U(x).

The term

1
2M2c2

S · [(∇U) × p] =
1

2M2c2

(
1
r

d
dr

U

)
S · L

= −(−∇U) ·
[

1
2M2c2

p × S
]

(7.4.38)

8 See §8.5 for a computation and observation of g.
9 One may add a term −(κe/Mc)S · B to the left-hand side of (7.4.32), with the

latter as obtained from the Hamiltonian of the system (7.4.14), (7.4.15), giving
rise to the term −(ge/2Mc)S · B instead of −(e/Mc)S · B, with g = 2(1 + κ),
κ = α/2π. For the accuracy needed here, however, this is not essential.
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is referred to as the spin-orbit (SL) coupling.10 It may be interpreted as
the interaction of an electric dipole moment

(
p × S/2M2c2

)
, set up by the

motion of the electron carrying a magnetic dipole moment µ (or spin S), with
the electric field (up to the charge) −∇U in the proton’s rest frame where
we will be carrying out the computations.11

The vector potential A due to the magnetic dipole moment µp of the
proton may be written as

A = −µp × ∇
(

1
r

)
(7.4.39)

and
µp =

|e| gpI
2Mpc

(7.4.40)

where gp is the so-called g-factor of the proton approximately equal to 5.56,
Mp is its mass and I its spin.

We have retained the last two terms in the modified Schrödinger equation
(7.4.32) because they involve the factor 1/c2 in them. This will obviously save
us some work. One should note, however, that as far as orders of magnitudes
are concerned, since M/Mp ∼ 0.545×10−3, we have

∣∣µp

∣∣ ∼ 10−3 |µ|. Accord-
ingly, the energy corrections due to the combination of the last two terms in
(7.4.32) are suppressed by a factor of 10−3 relative to the other corrections
in (7.4.32). For this reason, and for the subsequent analyses, we separate the
corresponding potentials and set

VF = − p4

8M3c2
+

�
2

8M2c2

(
∇2U

)
+

1
2M2c2

(
1
r

dU

dr

)
S · L (7.4.41)

VHF = − e

Mc
A · p − µ · B. (7.4.42)

Because of the suppression of the contribution of VHF relative to that of
VF, we first treat VF separately, and then consider VHF as a small perturbation
to the former. Every energy level resulting by including the so-called fine-
structure correction due to VF is then split due to VHF.

The energy levels of the hydrogen atom obtained in §7.2 are of the or-
der ∼ Mc2α2. The VF interaction provides corrections to these levels which

10 The 1/2 factor in the spin-orbit coupling in (7.4.38), referred to as the Thomas
factor, was automatically obtained in (7.4.32) “without tears”, which is otherwise
obtained, by some labor, by considering successive Lorentz transformations cor-
responding to the motion of the electron as it changes its velocity in infinitesimal
periods of time. This in turn implies that the spin of the electron precesses with
angular frequency involving a factor 1/c2, to the leading order (v/c)2.

11 This may be equivalently interpreted as the interaction of the magnetic dipole
moment µ of the electron with a magnetic field set up by the proton, not however
due to µp, in the electron’s rest frame.
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are suppressed by a factor α2, i.e., are of the order Mc2α4, and is said
to provide the fine-structure of the atom as mentioned above. For low ly-
ing states n = 1, n = 2, these corrections are about ∼ 1.8 × 10−4 eV,
∼ 5 × 10−5 eV, respectively, depending on the total angular momentum of
the electron. On the other hand, because of the further suppression by a fac-
tor (M/Mp), discussed above, the corrections due to VHF are of the order
∼ (M/Mp)gpMc2α4, where gp is the g-factor of the proton, and the VHF

interaction is said to provide the hyperfine-structure of the atom. We note
that (M/Mp) = .545 × 10−3 � 10.2α2. For the low lying state n = 1, the
hyperfine corrections are about ∼ 1.46× 10−6 eV, ∼ −4.39× 10−6 eV for the
spins of the electron and proton aligned or opposed, respectively.

The expression for the energy levels for the hydrogen atom in (7.2.19)
may be rewritten as

−
(

MMp

M + Mp

)
c2α2

2n2
�
(

1 − M

Mp

)(
−Mc2α2

2n2

)

� −Mc2α2

2n2
+ 10.2

Mc2α4

2n2
. (7.4.43)

That is, the reduced mass gives rise to a correction to the levels, when initially
determined in the infinite proton mass limit, by multiplying these levels by
the corrective factor (1 − M/Mp).

Since the interaction VF dominates over VHF, the question on the contribu-
tion of the reduced mass effect on the fine-structure arises. The corresponding
analysis is not as straightforward as one might think as it is involved with a
relativistic treatment of the electron and the proton as well. The same rule
as above approximately holds again and one may multiply the fine-structure
splittings by the corrective factor (1 − M/Mp), but also an additional cor-
rection arises which is the same for a fixed value of the principal quantum
number n of the order ∼ 10−7 eV or less, and will not contribute, or more
precisely gives negligible contributions, to the computations of energy dif-
ferences between levels with the same n. On the other hand, the correction
(M/Mp)×fine-structure is again of the order ∼ 10−7 eV or less. Accordingly,
we will not dwell on the reduced mass effect in the fine-structure, as well as
in the hyperfine-structure in the sequel.

The interaction of the electron with radiation (the photon) produces a
shift, the so-called Lamb shift, of the order ∼ Mc2α5 ln(α) which for the low
lying state n = 2, � = 0 is about ∼ 4.3 × 10−6 eV.

The fine-structure of the hydrogen atom is studied in §7.5. Every energy
level resulting by the inclusion of the fine-structure correction is also split
further due VHF, providing the hyperfine structure of the atom. This is treated
in §7.6. The Lamb shift, in a non-relativistic setting for the atomic electron,
is worked out in §7.7.
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Appendix to §7.4: Normalization of the Wavefunction
Including Spin and Relativistic Corrections

Upon introducing the 4 × 4 matrices12

γ0 =
(

I 0
0 −I

)
, γ =

(
0 σ

−σ 0

)
(A-7.4.1)

with properties,

(
γ0
)†

= γ0, γ† = −γ, γ0γ = −γγ0 (A-7.4.2)

(
γ0
)2

=
(

I 0
0 I

)
(A-7.4.3)

writing i�∂/∂t for E, and introducing the interaction of the electron with an
external electromagnetic potential U(x, t), A(x, t)

i�
∂

∂t
→ i�

∂

∂t
− eU(x, t) (A-7.4.4)

p → p − e

c
A(x, t) (A-7.4.5)

providing the so-called minimal electromagnetic coupling, the time-dependent
Dirac equation (7.4.10) becomes

γ0i�
c

∂

∂t

[
Ψ
Φ

]
=
[
γ ·

(
−i�∇ − e

c
A
)

+ McI +
eU

c
γ0

] [
Ψ
Φ

]
(A-7.4.6)

where I, in the latter, is the 4 × 4 identity matrix.
The adjoint of the matrix equation (A-7.4.6) is

−i�
c

∂

∂t

[
Ψ† Φ†] γ0 =

[
Ψ† Φ†] [−(

i�
←−∇ − e

c
A
)

· γ + McI +
eU

c
γ0

]

(A-7.4.7)
where we have used (A-7.4.2), and the arrow on

←−∇ means that the gradient
operates to the left.

Upon multiplying (A-7.4.6) from the left by −(ic/�)
[
Ψ† Φ†] γ0, and (A-

7.4.7) from the right by (ic/�)γ0
[
Ψ Φ

]T, and adding the resulting equations,
we obtain

∂

∂t

(
Ψ†Ψ + Φ†Φ

)
+ ∇ · J = 0 (A-7.4.8)

12 The Dirac equation will be studied in detail later. Here we introduce the mini-
mum to discuss just the normalization of the wavefunction Ψ in (7.4.19), (7.4.22),
(7.4.32) to the accuracy needed there.
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where
J = c

[
Ψ† Φ†] γ0γ

[
Ψ
Φ

]
(A-7.4.9)

is the probability current density.
The normalization condition becomes∫

d3x
(
Ψ†Ψ + Φ†Φ

)
= 1. (A-7.4.10)

From (7.4.18),

Φ =
1

2Mc
σ · pΨ + O

(
1
c2

)
(A-7.4.11)

which from (A-7.4.10) implies, by integrating by parts, that
∫

d3x Ψ†
(

1 +
p2

4M2c2

)
Ψ = 1 (A-7.4.12)

to the accuracy needed in §7.4, where we have used the facts that σ† = σ

and (σ · p)(σ · p) = p2. Hence, to the accuracy sought, we may write

Ψ =
(

1 − p2

8M2c2

)
χ (A-7.4.13)

yielding to the normalization condition∫
d3x χ†χ = 1. (A-7.4.14)

7.5 The Fine-Structure of the Hydrogen Atom

According to (7.4.32), (7.4.41) the fine-structure of the hydrogen atom is
described by the Hamiltonian

H =
p2

2M
+ U(x) + VF(x) (7.5.1)

where

VF(x) = −
(
En − U(x)

)2
2Mc2

+
�

2

8M2c2

(
∇2U(x)

)
+

1
2M2c2

(
1
r

dU

dr

)
S·L (7.5.2)

with VF(x) treated as a small perturbation, where, using the same
reasoning as in (7.4.30), we have replaced (−p4

/
8M3c2) effectively by

− (En − U)2
/
2Mc2 in (7.5.2) to the leading order.

We note that H does not commute with L and S. It commutes, however,
with J2, L2, S2, Jz, where J = L+S is the angular momentum of the electron.
That H commutes with J2 follows from the fact that
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J2 = L2 + S2 + 2S · L (7.5.3)

and that every term on the right-hand side of (7.5.3) does. Since
[
J2, Jz

]
= 0,

we also have the easily verified property [S · L, Jz] = 0 which is a statement
of rotational invariance of the scalar product (about the z-axis). For a radial
function U(r), ∇2U(r) is also a radial function and hence commutes with
L. Actually, ∇2U(r) is proportional to δ3(x) (see (7.4.36)), and δ3(x) is
essentially δ(r)/4πr2 when multiplied by a function f(r) of r in an integral.

We are thus led to consider the wavefunctions

ψj,�,mj ,n(r, θ, φ) = 〈θ, φ |j, �,mj〉Rn�(r) (7.5.4)

where Rn�(r) are the radial wavefunction in (7.3.14) with µ → M . Also
|j, �,mj〉 are expressed in terms of the states |�,m〉 |s,ms〉 via Clebsch-Gordan
coefficients:

|j, �,mj〉 =
∑

m+ms=mj

|�,m〉 |s,ms〉 〈�,m, s,ms |j, �,mj〉 (7.5.5)

and are given in the appendix to this section, the details of which, however,
are not necessary here. The quantum number s = 1/2, and for � = 0, j = 1/2
and for � �= 0, j = � ± 1/2.

Since |j, �,mj〉 is a linear combination of the states |�,m〉, for different m,
the wavefunctions in (7.5.4) are eigenvectors of the hydrogen atom problem
with eigenvalues −Me4/2�

2n2.
Undoubtedly, a reader of quantum physics presented at this level is famil-

iar with the elements of perturbation theory13 and that the leading correction
to energy levels due to VF is given by the expectation value of VF in the un-
perturbed states in (7.5.4) i.e., by the application of first order perturbation
theory.14 We note that for a given n there are exactly 2n2 |j, �,mj〉 states.
To see this, note that for n = 1, we have � = 0, j = 1/2, mj = ±1/2, and
hence we obtain two states. For n �= 1, � = 0, j = 1/2, mj = ±1/2, we
obtain two states which we have to add to the states � �= 0, j = � ± 1/2,
mj = −j, . . . , j. The total number of the latter states is

n−1∑
�=1

[
2
(

� +
1
2

)
+ 1

]
+

n−1∑
�=1

[
2
(

� − 1
2

)
+ 1

]
= 2n2 − 2 (7.5.6)

thus confirming the above result.
We first consider s-states, i.e., for which � = 0.

13 Perturbation theory will be systematically developed later on in Chapter 12.
14 Here we remark that since H commutes with J2, L2, S2, Jz, the perturbation VF

is diagonal in the states |j, �, mj〉 and so-called degenerate perturbation theory,
to the leading order, reduces to elementary first order perturbation theory.
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� = 0 States:

For the � = 0 states mj = ms, and we may write for (7.5.4)

ψ1/2,0,ms,n(r, θ, φ) =
1√
4π

Rn0(r) |1/2,ms〉 . (7.5.7)

From (7.3.29), (7.3.36), (7.3.37), with µ → M , Z → 1, we have

−
〈

1/2, 0,ms, n

∣∣∣∣∣
(En − U)2

2Mc2

∣∣∣∣∣1/2, 0,ms, n

〉
= −α2

n

(
Me4

2�2n2

)[
2 − 3

4n

]

(7.5.8)
to the leading order.

For the Darwin term
(
�

2/8M2c2
) (

∇2U
)

we have from (7.4.37), (7.3.32),
〈

1/2, 0,ms, n

∣∣∣∣ �
2

8M2c2

(
∇2U

)∣∣∣∣1/2, 0,ms, n

〉
=

α2

n

(
Me4

2�2n2

)
. (7.5.9)

Finally an � = 0 state corresponding to no angular momentum, for the
last term in (7.5.2), we may use the explicit expression given on the left-hand
side of (7.4.38), i.e.,

1
2M2c2

S · [(∇U) × p] =
−i�εijk

2M2c2
Si

(
∂

∂xj
U

)
∂

∂xk
(7.5.10)

with a summation over repeated indices understood.
The expectation value of (7.5.10) in state |1/2, 0,ms, n〉 may be explicitly

carried out and there is no need to “guess” on what its value is as is often
made in the literature. To this end, by using

∂

∂xj
U(r) =

xj

r

d
dr

U(r)

= e2 xj

r3
(7.5.11)

∂

∂xk
Rn0(r) =

xk

r

∂

∂r
Rn0(r) (7.5.12)

and that ∫
dΩ

xjxk

r2
=

4π

3
δjk (7.5.13)

we obtain〈
1/2, 0,ms, n

∣∣∣∣−i�εijkSi

(
∂

∂xj
U

)
∂

∂xk

∣∣∣∣1/2, 0,ms, n

〉
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= −i�εijk
〈
1/2, 0

∣∣Si
∣∣1/2, 0

〉 1
4π

∫
d3x Rn0(r)

(
∂

∂xj
U

)
∂

∂xk
Rn0(r)

= −i�e2εijk
〈
1/2, 0

∣∣Si
∣∣1/2, 0

〉 δjk

3
1
2

∫ ∞

0

r2 dr

r2

d
dr

R2
n0(r)

=
i�e2εijk

6
〈
1/2, 0

∣∣Si
∣∣1/2, 0

〉
δjk 4

n3

(
Me2

�2

)3

= 0 (7.5.14)

since εijkδjk = 0 and the latter is multiplied by a finite constant. We have
also used (7.3.31), and the fact that R2

n0(r) → 0 for r → ∞.
Unfortunately,15 many books have the Darwin term “missing” in the cor-

responding expression to (7.5.2) and then use (7.5.3) to infer that the expec-
tation value of the last term in (7.5.2) is finite and non-zero for � = 0 so that
the first plus the third terms alone in (7.5.2) give the same expression as the
one provided from a leading order expansion of the exact Dirac expression
(see (16.6.18), (16.6.55)). The integral in question, as seen in (7.5.14), is zero
and the fine-structure for � = 0 is provided by − (En−U)2

2Mc2 plus the Darwin
term

(
�

2/8M2c2
) (

∇2U
)
. The fine-structure correction to the hydrogen atom

energy levels is, for � = 0, j = 1/2, then given from (7.5.8) and (7.5.9) to be

∆En,j,� = −α2

n

(
α2Mc2

2n2

)[
1 − 3

4n

]
, � = 0. (7.5.15)

� �= 0 States:

For � �= 0, the Darwin term in (7.5.2) gives a zero contribution from the
property (7.3.32) and (7.4.37). On the other hand as in (7.5.8), we have from
(7.3.29), (7.3.36), (7.3.37)

−
〈

j, �,mj , n

∣∣∣∣∣
(En − U)2

2Mc2

∣∣∣∣∣j, �,mj , n

〉
= −α2

n

(
Me4

2�2n2

)[
1

� + 1/2
− 3

4n

]

(7.5.16)
for µ → M .

Also from (7.5.3), we may solve for S · L

S · L =
1
2
(
J2 − L2 − S2

)
(7.5.17)

use (7.3.38) for � �= 0, to obtain〈
j, �,mj , n

∣∣∣∣ 1
2M2c2

(
1
r

d
dr

U

)
S · L

∣∣∣∣j, �,mj , n

〉

15 Fortunately, there are some exceptions to these books emphasizing that the inte-
gral in question is zero, e.g., Bethe and Salpeter (1977), p. 60. A regularization
was, however, used in their analysis to conclude that this integral is zero.
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=
α2

2n

(
Me4

2�2n2

)
[j(j + 1) − �(� + 1) − 3/4]

�(� + 1/2)(� + 1)
(7.5.18)

where j = � ± 1/2.
From (7.5.16), (7.5.18) we have

∆En,j,� = −α2

n

(
α2Mc2

2n2

)[
1

j + 1/2
− 3

4n

]
. (7.5.19)

Upon the comparison of (7.5.19) with (7.5.15), we note that the former
coincides with the latter if we formally set � = 0, j = 1/2 in the former. That
is, (7.5.19) holds for j = � − 1/2, � = 1, . . . , n − 1, (n �= 1); j = � + 1/2 for
� = 0, 1, . . . , n − 1 as well.

Using the notation n�j , we see from (7.5.19), for example, that the levels
2P1/2/2P3/2 are split as well as the levels 3P1/2/3P3/2 and 3D3/2/3D5/2,
where P , D correspond to � = 1, 2, respectively, The shift between 2P3/2 and
2P1/2 is about 10.95GHz in frequency unit.

On the other hand for fixed n, j the fine-structure correction (7.5.19)
shows that corresponding energy levels which differ by the �-value are degen-
erate. For example, the levels 2S1/2/2P1/2, with S corresponding to � = 0,
are degenerate, while experimentally it has been confirmed not to be so. This
splitting is, however, quite elegantly predicted by quantum electrodynamics
and is referred to as the Lamb shift. The latter is reduced by a factor of α
relative to the fine-structure, and also involves α in a non-trivial way (such
as on the logarithm of α). A non-relativistic derivation of the Lamb shift, i.e.,
with the atomic electron treated non-relativistically, will be given in §7.7.

Appendix to §7.5: Combining Spin and Angular
Momentum in the Atom

In (7.5.5), we combined the spin of the electron with the angular mo-
mentum. The states |j, �,mj〉 in (7.5.5) may be written down directly from
Table 5.3, below (5.5.35), by making the substitutions in the latter:

j1 → �, m1 → m, m2 → ms, m → mj . (A-7.5.1)

Hence the states |j, �,mj〉 are explicitly given by (� �= 0):

|j, �,mj〉 =
1√

(2� + 1)


|�,mj − 1/2〉

√
� + 1/2 + mj

|�,mj + 1/2〉
√

� + 1/2 − mj


 (A-7.5.2)

for j = � + 1/2,

|j, �,mj〉 =
1√

(2� + 1)


− |�,mj − 1/2〉

√
� + 1/2 − mj

|�,mj + 1/2〉
√

� + 1/2 + mj


 (A-7.5.3)
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for j = � − 1/2.
Accordingly, we may write

〈θ, φ |j, �,mj〉 =

√
� + 1/2 + mj√

(2� + 1)
Y�,mj−1/2(θ, φ)

(
1
0

)

+

√
� + 1/2 − mj√

(2� + 1)
Y�,mj+1/2(θ, φ)

(
0
1

)
(A-7.5.4)

for j = � + 1/2,

〈θ, φ |j, �,mj〉 = −
√

� + 1/2 − mj√
(2� + 1)

Y�,mj−1/2(θ, φ)
(

1
0

)

+

√
� + 1/2 + mj√

(2� + 1)
Y�,mj+1/2(θ, φ)

(
0
1

)
(A-7.5.5)

for j = � − 1/2.
A relation which follows from (A-7.5.4), (A-7.5.5) and will be useful later

in Appendix to §16.6 in an exact treatment of the Dirac equation in the
bound Coulomb problem is the following. Let

n =
x
|x| ≡ x̂ = (sin θ cos φ, sin θ sin φ, cos θ) (A-7.5.6)

then

σ · x̂ 〈θ, φ |j, � = j ∓ 1/2,mj〉 = −〈θ, φ |j, � = j ± 1/2,mj〉 . (A-7.5.7)

The spin I of the proton may also added to J,

F = I + J (A-7.5.8)

as done in (7.6.4) in the next section and the eigenvectors |f, j, �,mf 〉 of
the commuting operators F2, J2, S2, I2, L2, Fz, (see Problem 7.17), where
�

2f(f + 1), and �mf are the eigenvalues of F2 and Fz, respectively, are
similarly constructed (see Problem 7.18, see also §5.9).

7.6 The Hyperfine-Structure of the Hydrogen Atom

The hyperfine-structure of the hydrogen atom is provided by the interac-
tion term given in (7.4.42):

VHF = − e

Mc
A · p − µ · B (7.6.1)

where A is given by
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A = −µp × ∇
(

1
r

)
(7.6.2)

and B = ∇ × A. The magnetic dipole moment µp of the proton is defined
in (7.4.40). The first term on the right-hand side of (7.6.1) may be written
in various forms:

− e

Mc
A · p =

ie2
�

2MMpc2
gpεijkIi

(
∂

∂xj

1
r

)
∂

∂xk

=
e2

2MMpc2
gp

1
r3

I · L

=
|e|
Mc

1
r3

µp · L (7.6.3)

representing an interaction between the magnetic dipole moment µp of the
proton and the orbital angular momentum L of the electron in the atom. The
−µ · B term denotes the familiar interaction between the magnetic dipole
moment µ of the electron and the magnetic field set up by the proton due to
µp.

We add the spin I of the proton to J and define

F = J + I (7.6.4)

and note that F2, J2, S2, I2, L2, Fz commute in pairs (see Problem 7.17).
The following operator equality is useful

I · J =
1
2
[
F2 − I2 − J2

]
(7.6.5)

and will be used in our analysis of the hyperfine-structure.
For a given fixed pair (n, �), for � �= 0, the splitting due to the fine-

structure between successive levels j = � − 1/2, j = � + 1/2 is given by (see
(7.5.19))

δ (∆En,j,�) =
α2

n

(
α2Mc2

2n2

)
1

�(� + 1)
(7.6.6)

and is larger by a factor of (Mp/M) relative to the hyperfine-structure effect
as discussed below (7.4.42). Also for a fixed n, � = 0, we have only one j
value = 1/2, with the fine-structure correction given in (7.5.15). Finally the
differences between the energy levels in (7.2.19) for successive n’s are much
larger than the energy splitting due to the fine-structure and the hyperfine-
structure for the n-value in question. Accordingly, we define the Hamiltonian
as obtained from (7.4.32) for a fixed triplet (n, j, �):

Hnj� = H0
nj� + H1

nj� (7.6.7)

where
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H0
nj� =

∑
mj ,m′

j

|n, j, �,mj〉
〈
n, j, �,mj

∣∣H0
∣∣n, j, �,m′

j

〉 〈
n, j, �,m′

j

∣∣ (7.6.8)

H0 =
p2

2M
− e2

r
+ VF (7.6.9)

〈
n, j, �,mj

∣∣H0
∣∣n, j, �,m′

j

〉
= δmj ,m′

j
En,j,� (7.6.10)

with En,j,� denoting the energy levels of the hydrogen atom (with µ → M)
including the fine-structure correction in (7.5.19). Also

H1
nj� =

∑
mj ,m′

j

|n, j, �,mj〉
〈
n, j, �,mj

∣∣VHF

∣∣n, j, �,m′
j

〉 〈
n, j, �,m′

j

∣∣ (7.6.11)

〈x |n, j, �,mj〉 = ψj,�,mj ,n(r, θ, φ) (7.6.12)

with the latter defined in (7.5.4).
One should note that

〈
n, j, �,mj

∣∣VHF

∣∣n, j, �,m′
j

〉
is an operator depending

on I — the spin of the proton (see (7.6.1)–(7.6.3), (7.4.40)).
Now we consider the states

|n, f, j, �,mf 〉 =
∑

(mi+mj=mf )

|n, j, �,mj〉 |i,mi〉 〈n, j, �,mj , i,mi |n, f, j, �,mf 〉

(7.6.13)
where

〈x |n, f, j, �,mf 〉 = 〈θ, φ |f, j, �,mf 〉Rn�(r) (7.6.14)

and �
2f(f +1), �mf , �

2i(i+1), �mi are the eigenvalues of F2, Fz, I2, Iz. The
states |f, j, �,mf 〉 are readily constructed out of the states |j, �,mj〉 given the
Appendix to §7.5 and of the states |i,mi〉 (see Problem 7.18), the details of
which, however, are not necessary here. The important thing to note is that
they are linear combinations of the states |j, �,mj〉 |i,mi〉, and note that the
states |n, f, j, �,mf 〉 are eigenvectors of H0

nj� with eigenvalues En,j,� as given
in (7.6.10).

� = 0 States:

We consider the states |n, f, 1/2, 0,mf 〉 ≡ |n, f,mf 〉 in (7.6.13) for � = 0,
where f = 1, 0.

Using the first equality in (7.6.3), we have for the matrix elements

〈
n, f ′,m′

f

∣∣∣− e

Mc
A · p

∣∣∣n, f,mf

〉
=

ie2
�

2MMpc2
gp

〈
n, f ′,m′

f

∣∣Ii
∣∣n, f,mf

〉

× εijk

4π

∫
d3x Rn0(r)

(
∂

∂xj

1
r

)
∂

∂xk
Rn0(r)
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= 0 (7.6.15)

directly from the identical evaluation of the integral in (7.5.14).
The second term on the right-hand side of (7.6.1) may be conveniently

written as

−µ · B = −µiεijk ∂

∂xj
Ak

=
(
µiµ�

p

)
εkijεk�m ∂

∂xj

∂

∂xm

(
1
r

)

= µ · µp∇2

(
1
r

)
− µiµj

p

(
∂

∂xi

∂

∂xj

1
r

)
(7.6.16)

with a summation over repeated indices understood. Upon using the defini-
tions (7.4.33), (7.4.40) of µ, µp, respectively, we obtain (e < 0)

〈
n, f ′,m′

f

∣∣−µ · B
∣∣n, f,mf

〉
= − e2

2MMpc2
gp

〈
n, f ′,m′

f

∣∣SiIj
∣∣n, f,mf

〉

× 1
4π

∫
d3x R2

n0(r)
[
δij∇2

(
1
r

)
− ∂

∂xi

∂

∂xj

(
1
r

)]

= − e2

2MMpc2
gp

〈
n, f ′,m′

f

∣∣SiIj
∣∣n, f,mf

〉 δij

4π

2
3

∫
d3x R2

n0(r)∇2

(
1
r

)

(7.6.17)

where we have used the spherical symmetry of R2
n0(r). From (7.4.36), (7.3.31),

with Z → 1, µ → M , we obtain

〈
n, f ′,m′

f

∣∣−µ · B
∣∣n, f,mf

〉
=

4
3n3

e2

MMpc2
gp

(
Me2

�2

)3

×
〈
n, f ′,m′

f

∣∣S · I
∣∣n, f,mf

〉
. (7.6.18)

From (7.6.5), or simply by the addition of two spin 1/2’s, we have

〈
n, f ′,m′

f

∣∣S · I
∣∣n, f,mf

〉
= δff ′δm′

f mf

�
2

2

[
f(f + 1) − 3

2

]
(7.6.19)

with f = 1, 0, and VF is diagonal in f,mf , i.e., H1
n,1/2,0 in (7.6.11) is diagonal

in |n, f,mf 〉 for a fixed n.
From (7.6.15), (7.6.18), (7.6.19), we then have for the hyperfine-structure

corrections for s-states:

∆EHF
n,f =

4
3

α2

n

(
M

Mp

)
gp

(
α2Mc2

2n2

)[
f(f + 1) − 3

2

]
, � = 0 (7.6.20)
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where f = 1 or 0 corresponding, respectively, to the spins of the electron and
proton aligned or opposed.

The frequency of radiation (∼ 1420MHz) arising from the transition from
the excited state f = 1 (the triplet state) to the ground-state f = 0 (the
singlet state) for n = 1, is one of the most precisely measured quantities
in physics and corresponds to a wavelength of 21.1 cm, well known in radio
astronomy.

� �= 0 States:

We evaluate the matrix elements
〈
n, f ′, j, �,m′

f

∣∣H1
nj�

∣∣n, f, j, �,mf

〉
(7.6.21)

of the perturbation H1
nj� in (7.6.11) to H0

nj� defined in (7.6.8).
To the above end we first note that we may rewrite VHF in (7.6.1) as

VHF =
e2

2MMpc2
gp

[
I · L
r3

+ S · I ∇2

(
1
r

)
− SiIj ∂

∂xi

∂

∂xj

(
1
r

)]
(7.6.22)

where we recall the relation (7.4.36) for ∇2(1/r). Since R2
n�(r), vanishes for

r = 0 if � �= 0, (see (7.3.31)), we may omit δ3(x) terms arising from the
last two terms on the right-hand side of (7.6.22). That is, for � �= 0 we may
effectively omit the second term in (7.6.22) and effectively write the last term
as

− S · I
r3

+ 3
I · x S · x

r5
. (7.6.23)

That is, for � �= 0, we may effectively take for VHF the expression

VHF =
e2

2MMpc2
gp

1
r3

[I · L − I · S + 3 I · n S · n] (7.6.24)

where n = x/|x| = (cos φ sin θ, sin φ sin θ, cos θ).
Now we use the important identity in (5.8.47)

〈
�,m′ ∣∣ninj

∣∣�,m〉
=

1
(2� − 1)(2� + 3)

〈�,m′|
(
2�2 + 2� − 1

)
δij

− 1
�2

(
LiLj + LjLi

)
|�,m〉 . (7.6.25)

These matrix elements allow us to compute the expressions〈
n, j, �,mj

∣∣VHF

∣∣n, j, �,m′
j

〉
in (7.6.11) by using, in the process, the expan-

sion (7.5.5) for the states |n, j, �,mj〉 involving |�,m〉 states for different m.
We may then replace VHF in (7.6.24) effectively by

V ′
HF =

e2

2MMpc2
gp

1
r3

[I · L + (3a� − 1)I · S + 3b�D] (7.6.26)
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where
D =

1
�2

(I · L L · S + L · S I · L) (7.6.27)

a� =
(2�2 + 2� − 1)

(2� − 1)(2� + 3)
(7.6.28)

b� = − 1
(2� − 1)(2� + 3)

. (7.6.29)

Upon using the operator relation for S·L in (7.5.17), we note that in com-
puting the matrix elements in (7.6.21) we may replace S·L by its eigenvalues,
and replace D in (7.6.27) by

D′ =
[
j(j + 1) − �(� + 1) − 3

4

]
I · L. (7.6.30)

That is, we may replace V ′
HF in (7.6.26) by

V ′′
HF =

e2

2MMpc2

gp

r3
[(3a� − 1)I · S + c�jI · L] (7.6.31)

where
c�j = 1 − 3

j(j + 1) − �(� + 1) − 3/4
(2� − 1)(2� + 3)

. (7.6.32)

Now we use the operator identities (see Problem 7.20):

1
�2

[
J2,

[
J2, Li

]]
= 2

(
J2Li + LiJ2

)
− 2J i

(
J2 + L2 − S2

)
(7.6.33)

1
�2

[
J2,

[
J2, Si

]]
= 2

(
J2Si + SiJ2

)
− 2J i

(
J2 − L2 + S2

)
(7.6.34)

to obtain

1
�2

[
J2,

[
J2, I ·L

]]
= 2

(
J2 I · L + I · L J2

)
−2 I ·J

(
J2 + L2 − S2

)
(7.6.35)

1
�2

[
J2,

[
J2, I·S

]]
= 2

(
J2 I · S + I · S J2

)
−2 I·J

(
J2 − L2 + S2

)
. (7.6.36)

Upon using the operator identity for I · J in (7.6.5) and taking the ma-
trix elements of (7.6.35), (7.6.36) (see Problem 7.21) between the states〈
f ′, j, �,m′

j

∣∣ and |f, j, �,mf 〉 one obtains after some algebra16 (suppressing
n)
16 The equalities (7.6.37), (7.6.38) are the contents of the Wigner-Eckart Theorem

in §5.7, §5.8 (see Problem 7.22).
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〈
f ′, j, �,m′

f

∣∣I · L
∣∣f, j, �,mf

〉
=

�
2

4
[j(j + 1) + �(� + 1) − 3/4]

j(j + 1)

× [f(f + 1) − j(j + 1) − 3/4] δf ′fδm′
f mf

(7.6.37)

〈
f ′, j, �,m′

f

∣∣I · S
∣∣f, j, �,mf

〉
=

�
2

4
[j(j + 1) − �(� + 1) + 3/4]

j(j + 1)

× [f(f + 1) − j(j + 1) − 3/4] δf ′fδm′
f mf

(7.6.38)

where we have used the identity

〈
f ′, j, �,m′

f

∣∣I · J
∣∣f, j, �,mf

〉
=

�
2

2
[f(f + 1) − j(j + 1) − 3/4] δf ′fδm′

f mf
.

(7.6.39)
That is H1

nj� is diagonal in f , mf .
We recall the values taken by j are j = �±1/2. Accordingly, for j = �+1/2

j(j + 1) + �(� + 1) − 3
4

= �(2� + 3) (7.6.40)

j(j + 1) − �(� + 1) +
3
4

=
1
2
(2� + 3) (7.6.41)

j(j + 1) − �(� + 1) − 3
4

= � (7.6.42)

and for j = � − 1/2,

j(j + 1) + �(� + 1) − 3
4

= (2� − 1)(� + 1) (7.6.43)

j(j + 1) − �(� + 1) +
3
4

= −1
2
(2� − 1) (7.6.44)

j(j + 1) − �(� + 1) − 3
4

= −(� + 1). (7.6.45)

Upon substituting (7.6.40)–(7.6.42), (7.6.43)–(7.6.45) in turn in (7.6.37)
and (7.6.38), we obtain directly from (7.6.31), for the matrix elements
(7.6.21), in reference to (7.6.11),

〈
n, f ′, j, �,m′

f

∣∣H1
nj�

∣∣n, f, j, �,mf

〉

= δf ′fδm′
f mf

e2

2MMpc2
gp

〈
n, �

∣∣∣∣ 1
r3

∣∣∣∣n, �

〉
�(� + 1)
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× �
2 [f(f + 1) − j(j + 1) − 3/4]

2j(j + 1)
(7.6.46)

where the matrix elements
〈
n, �

∣∣(1/r3
)∣∣n, �

〉
are given in (7.3.38), with Z →

1, µ → M , for � �= 0.
All told, we obtain for the hyperfine-structure correction

∆EHF
n,f,j,� =

α2

2n

(
M

Mp

)
gp

(
α2Mc2

2n2

)
[f(f + 1) − j(j + 1) − 3/4]

(� + 1/2)j(j + 1)
. (7.6.47)

If we formally set � = 0, j = 1/2 in the above formula, we see that it
coincides with the expression in (7.6.20) for � = 0. That is, (7.6.47) applies
for all � = 0, . . . , n − 1.

7.7 The Non-Relativistic Lamb Shift

This section provides a glimpse of the fascinating world of quantum field
theory, namely that of quantum electrodynamics. More precisely, this section
deals with the splitting of energy levels of the hydrogen atom due to the
interaction of the atomic electron with radiation, that is, with the photon.

An atomic electron has an average speed v of the order of e2/� ≡ αc,
and is thus much smaller than that of the speed of light c. We shall therefore
content ourselves by treating the electron non-relativistically only and not
dwell on the relativistic regime here. We will also see below that a detailed
treatment of radiation is not necessary for the problem at hand and the
following introduction suffices.

7.7.1 The Radiation Field

The photon may be simply described as follows. Let |k, λ〉 denote a state
of a photon with momentum �k, energy �|k|c and polarization described by
a polarization three-vector eλ(k), with λ taking on two possible values, say,
1 and 2, such that

k · eλ(k) = 0 (7.7.1)

and
eλ(k) · eλ′(k) = δλλ′ (7.7.2)

λ, λ′ = 1, 2. Without loss of general of generality we consider real polarization
vectors.

With k/|k|, e1(k), e2(k) representing a complete set of vectors in the
three-dimensional Euclidean space, we may write a completeness relation as
follows

δij =
kikj

|k|2 + ei
1e

j
1 + ei

2e
j
2 (7.7.3)
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i, j = 1, 2, 3. In particular, this gives us the property

∑
λ=1,2

ei
λej

λ = δij − kikj

|k|2 (7.7.4)

which will be useful later on.
One may introduce a completeness relation over the momenta and the

two polarizations, specified by λ, for a single photon, by

∑
λ

∫
d3k

(2π)32|k| |k, λ〉〈k, λ| = 1 (7.7.5)

(see also Problem 7.24). The factor 1/2|k| comes from relativity for the ever
relativistic particle — the photon. It arises as follows. With the energy-
momentum constraint between energy, denoted by �k0c, and momentum �k,
we may instead integrate over k and k0 with the measure (k0 > 0)

Θ
(
k0
)
dk0d3k δ

((
k0
)2 − |k|2

)
(7.7.6)

which leads immediately to the factor 1/2|k| in (7.7.5). The measure in (7.7.6)
turns up to be relativistically (so-called Lorentz) invariant.

We introduce a radiation (real) field ARAD(x), as well as the Hamiltonian
of the atomic electron and radiation system given by

H =
1

2M

(
p − e

c
ARAD

)2

+ H0,RAD − e2

|x| (7.7.7)

where H0,RAD is the free Hamiltonian of radiation whose detailed structure,
as will be seen below, is not needed for the problem at hand. For simplicity
we omit the spin of the electron (see also Problem 7.27).

The Hamiltonian H in (7.7.7) may be rewritten as

H = HC + H0,RAD + HI (7.7.8)

where HC is the Coulomb Hamiltonian

HC =
p2

2M
− e2

|x| (7.7.9)

HI = − e

2Mc
(ARAD · p + p · ARAD) +

e2

2Mc2
A2

RAD. (7.7.10)

We treat HI as a perturbation to HC in H.
To zeroth order in HI, the radiation field ARAD may create or destroy a

single photon. Let |0〉 denote the no photon (vacuum) state. Then we may
define the matrix element of a single photon state as
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〈0 |ARAD(x)|k, λ〉 =
√

4π
√

�c eik·xeλ(k). (7.7.11)

Due to the orthogonality of the vacuum and a photon state, the vacuum
expectation value of ARAD(x) evidently satisfies

〈0 |ARAD(x)|0〉 = 0. (7.7.12)

Also the matrix elements of ARAD between the vacuum and states containing
more than one photon are also zero.

Upon taking the complex conjugate of (7.7.11) we obtain

〈k, λ |ARAD(x)|0〉 =
√

4π
√

�c e−ik·xeλ(k) (7.7.13)

for real polarization vectors eλ(k). Here ARAD(x) creates out of the vacuum
a single photon.

To all orders in HI, and in a relativistic treatment, (7.7.13) is simply
replaced by

〈k, λ |ARAD(x)|0〉|Full =
√

4π
√

�c
√

Z3 e−ik·xeλ(k) (7.7.14)

where 0 � Z3 � 1, is a constant and is referred to as the photon wavefunction
renormalization constant. The reason why (7.7.13) is to be modified by the
presence of an additional multiplicative factor � 1 in (7.7.14), in the general
case, is easy to see. In this latter situation, ARAD may create out of the
vacuum, in addition to a photon (for Z3 �= 0), electron-positron pairs and
other particles. (See also Problem 7.25). The amplitude (7.7.13) is thus, in
general, reduced by a factor

(
≡

√
Z3

)
, as given in (7.7.14), such that the

probability that ARAD creates all other possible particles as well adds up to
one.

Now we turn to the expression in (7.7.11). The factor
√

4π in it is in-
troduced because of the definition of the fine-structure constant α = e2/�c,
in (7.4.34), adopted here. If the Coulomb potential in (7.7.7) is taken as
−e2/4π|x|, then (7.7.11) does not involve the

√
4π factor and the fine-

structure is defined as e2/4π�c. [In field theory, the latter definition is usually
adopted.] The factor

√
�c arises because of dimensional reasons.

As far as the second power A2
RAD(x) of ARAD(x) in (7.7.10) is concerned,

we will only encounter its (photon) vacuum expectation value to zeroth or-
der in e in our leading order perturbative treatment of HI. That is, only〈
0
∣∣A2

RAD(x)
∣∣0〉 is encountered. The latter is formally given from (7.7.5),

(7.7.11), (7.7.12) and the property that the matrix element of ARAD between
the vacuum and states containing more than one photon are zero, by the
expression

e2
〈
0
∣∣A2

RAD(x)
∣∣0〉 = e2

∑
λ

∫
d3k

(2π)32|k|
∣∣〈0 |A(x)|k, λ〉

∣∣2 (7.7.15)

to the leading order.
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This formal expression, although an infinite constant (as is easily checked)
is common to all the energy levels and hence does not contribute to the
computation of the energy level differences we are seeking. More precisely,
after carrying out a so-called renormalization, as a physical requirement due
to the ever presence of radiation accompanying a charged particle, this term
gets altogether cancelled out in the precess as will be seen through (7.7.37)–
(7.7.40) below.

For the free Hamiltonian H0,RAD of radiation in (7.7.7), we have, by def-
inition,

H0,RAD |k, λ〉 = �|k| c |k, λ〉 (7.7.16)

corresponding to the energy of a photon of momentum �k.
We also note from the orthogonality relation of the polarization vectors

eλ(k) of a photon and of its momentum �k, as given in (7.7.1), the commu-
tativity relation

p · 〈0 |ARAD(x)|k, λ〉 = 〈0 |ARAD(x)|k, λ〉 · p (7.7.17)

holds true (p = −i�∇) by using (7.7.11).

7.7.2 Expression for the Energy Shifts

Let |ψn〉 denote formally the state of the atomic electron in the absence of
radiation. That is, the |ψn〉 are the eigenvectors of HC, with eigenvalue En,
where n denotes the principal quantum number, suppressing for simplicity of
the notation other quantum numbers.

In the present case, we are working in a larger space due to the presence
of radiation and the state |ψn〉 above, corresponding to such a larger space,
will be written as |ψn〉 |0〉 ≡ |ψn; 0) emphasizing, in the mean time, that it
involves no photons. This state is often referred to as the bare state of the
electron in the atom.

We assume that in the presence of the interaction HI with radiation, the
atomic electron may be described by some state |φn) , in this larger space, at
least for small HI, corresponding to the same n, with an eigenvalue denoted
by εn.

One may then write

(HC + H0,RAD) |ψn; 0) = En |ψn; 0) (7.7.18)

H |φn) = εn |φn) . (7.7.19)

Also for the state |ψn〉 |k, λ〉 ≡ |ψn;k, λ〉,

(HC + H0,RAD) |ψn;k, λ〉 = (En + �ω) |ψn;k, λ〉 (7.7.20)

where
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ω = |k|c. (7.7.21)

Upon multiplying (7.7.19) from the left by (ψn′ ; 0 | and using (7.7.18), we
obtain

(εn − En′) (ψn′ ; 0|φn) = (ψn′ ; 0 |HI|φn) . (7.7.22)

In particular, for n′ = n, this gives

∆En =
(ψn; 0 |HI|φn)

(ψn; 0|φn)
(7.7.23)

where
∆En = εn − En. (7.7.24)

On the other hand, by multiplying (7.7.19) from the left by a single photon
state 〈k, λ|, we generate a state corresponding to HC only given by17

〈k, λ|φn) =
1

(εn − HC − �ω)
(k, λ |HI|φn) . (7.7.25)

From (7.7.11), (7.7.12), the fact that the matrix element of ARAD be-
tween the vacuum and multi-photon slates are zero, and from (7.7.25), (7.7.5),
(7.7.1), we have up to order e2 in HI, the following key matrix element plus
the term in (7.7.27) to follow:

− e

Mc
(ψn′ ; 0 |p · ARAD(x)|φn)

=
4π� c e2

M2c2

∑
λ

∫
d3k

(2π)32|k|

×
〈

ψn′

∣∣∣∣p · eλ(k)eik·x 1
(En − HC − �ω)

e−ik·xeλ(k) · p
∣∣∣∣ψn

〉
(7.7.26)

obtained by simply inserting 1, given in (7.7.5), between
(p · ARAD +ARAD · p) and |φn) , and making use of (7.7.11), (7.7.17) and
(7.7.25).

The A2
RAD term in (7.7.10) already involves e2, and hence we may imme-

diately write to this order

e2

2Mc2

(
ψn; 0

∣∣A2
RAD(x)

∣∣φn

)
=

e2

2Mc2

(
ψn; 0

∣∣A2
RAD(x)

∣∣ψn; 0
)

=
e2

2Mc2

〈
0
∣∣A2

RAD(x)
∣∣0〉 (7.7.27)

17 The method to follow is a slight variation of perturbation theory. The latter will
be studied afresh in Chapter 12.
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and is independent of n (and related quantum numbers). The formal expres-
sion on the right-hand side of (7.7.27), although infinite (see (7.7.15)), is
common to all the levels (see (7.7.23)), and hence will not contribute to the
differences in the levels, and it may be omitted in the analysis.18 On physical
grounds, however, this integral cancels out, as will be seen below, when defin-
ing the concept of a free electron, accompanied by the ever present radiation
in the process of renormalization as mentioned before.

Since the expression in (7.7.26) (as well the one in (7.7.27)) is already of
order e2, as originating from HI, we may set (ψn; 0|φn) in the denominator
on the right-hand side of (7.7.23) equal to one.

Making the change of notation ∆En → δEn, for having omitted the term
in (7.7.27), common to all levels, (and for working up to e2 in HI), we then
have from (7.7.26) with n′ = n, and (7.7.23)

δEn =
α�

2

4π2M2

∑
λ

∫
d3k
|k|

〈
ψn

∣∣∣∣p · eλ(k)eik·x 1
(En − HC − �ω)

e−ik·xeλ(k) · p
∣∣∣∣ψn

〉
.

(7.7.28)

If we introduce the resolution of the identity of HC (see (1.8.18)), then
we may formally write

1
(En − HC − �ω)

=
∫

1
(En − E − �ω)

dPHC(E) (7.7.29)

and singularities, in general, develop for �ω = En − E > 0. For E = E1,
for example, and n = 2, the system may decay to the state n = 1, with the
emission of a photon of energy �ω as just given. Accordingly, we interpret the
meaning of the singularities arising from the denominator19 En − HC − �ω,
appearing in (7.7.28), as follows. We add to it a +iε term with ε → +0. The
shift then acquires from (7.7.28) a negative imaginary part, as will be shown
later by using in the process that

Im
1

(En − HC − �ω + iε)
= −πδ(En − HC − �ω) (7.7.30)

and one may write

δEn = Re (δEn) − i
2
Γ (7.7.31)

with Γ > 0. Thus a state, specified by n and related quantum numbers, will
develop in time by acquiring an exponential damping factor
18 To be rigorous, one may, in intermediate steps, insert a large (so-called ultravi-

olet) cut-off Λ, with �|k|c � Λ in the integral in (7.7.15) before considering the
limit Λ → ∞.

19 See also the interpretation of such singularities of Green’s functions in Chapter 9.
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exp− i
�
t

(
− i

2
Γ
)

= exp− t

�

Γ
2

(7.7.32)

in t > 0, leading to the decay of excited states, as described above, for a
correct interpretation of the vanishing of the denominator in (7.7.28). This
will be taken up in §7.8. [See also §3.5.]

The real part Re(δEn) in (7.7.31), corresponding to the energy shift, we
are seeking, then is obtained by taking the principal value of (En−HC−�ω)−1

and this should be understood in the sequel.
Since

eik·x
(

p2

2M
+ UC(x)

)
e−ik·x =

(p − �k)2

2M
+ UC(x) (7.7.33)

and for any function of
[
p2/2M + UC(x)

]
, where with UC(x), in this case,

given just to be −e2/|x|, we have

eik·x 1
En − HC − �ω

e−ik·x =
1

En − (p2−�k)2

2M − UC − �ω
(7.7.34)

in (7.7.28).
Thus we may rewrite (7.7.28) as

δEn =
α�

2

4π2M2

∑
λ

∫
d3k
|k|

×
〈

ψn

∣∣∣∣∣∣p · eλ(k)
1(

En − HC + p2

2M − (p−�k)2

2M − �ω
)eλ(k) · p

∣∣∣∣∣∣ψn

〉
.

(7.7.35)

This expression is not complete by itself, and before evaluating the energy
shifts, there are various physical points that will be considered first.

The corresponding expression to (7.7.35) in the absence of the Coulomb
interaction, that is, for the electron in the presence of radiation only will be
worked out first.

In analogy to (7.7.22), we then have
(

ε(p) − p′2

2m

)
(p′; 0|p) = (p′; 0 |HI|p) (7.7.36)

and by including the term in (7.7.27), we obtain, to the leading order,
(

ε(p) − p′2

2m

)
(p′; 0|p)

=
e2

2Mc2

〈
0
∣∣A2

RAD(x)
∣∣0〉 (2π�)3δ3 (p′ − p) +

α�
2

4π2M2
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×
∑

λ

∫
d3k
|k|

〈
p′

∣∣∣∣∣∣p
′ · eλ(k)

1(
p2

2M − (p′−�k)2

2M − �ω
)eλ(k) · p

∣∣∣∣∣∣p
〉

.

(7.7.37)

In the appendix to this chapter, it is shown that for a free electron20 for
HI �= 0, i.e., in the ever presence of radiation, (7.7.37) gives rise to a shift in
the energy of an electron and, in particular, its mass gets shifted from the
mass parameter appearing in p2/2M in the original Hamiltonian. This neces-
sitates to renormalize the theory. In simplest form, this amounts to adding
an operator δHc to the original Hamiltonian such that the corresponding
expression to the right-hand side of (7.7.37) is zero when computed with the
modified Hamiltonian and the mass now appearing in the theory represents
the physically observed mass of the electron. Related details to these are
spelled out in the appendix to this section. Here it is sufficient to note that
δHc, for the problem at hand, is formally given by

δHc = − α�
2

4π2M2

∑
λ

∫
d3k
|k| p · eλ(k)

1(
p2

2M − (p−�k)2

2M − �ω
)eλ(k) · p

− e2

2Mc2

〈
0
∣∣A2

RAD(x)
∣∣0〉 (7.7.38)

of course working to lowest order in e2 in HI, and the modified interaction
H ′

I be comes
H ′

I = HI + δHc. (7.7.39)

The last term in (7.7.38) is a c-number, while p in the first term is an operator.
With the above definition, then the electron stays stable, at least to order

e2 in HI, retaining its kinetic energy p2/2M as directly seen from (7.7.37),
when HI is replaced by H ′

I as defined in (7.7.39), (7.7.38). By doing so, the
mass M appearing now in (7.7.39) represents the physically observed mass
taking the ever present radiation accompanying an electron into account.
Also note that the c-number in (7.7.27) will automatically cancel out when
working with the interaction Hamiltonian H ′

I. In the literature δHc is referred
to a counter-term and the physically observed mass is referred to as the
renormalized mass.

7.7.3 The Lamb Shift and Renormalization

The shift in (7.7.35) is now to be replaced by

δERen
n =

α�
2

4π2M2

∑
λ

∫
d3k
|k| 〈ψn|p · eλ(k)

20 By a free electron, of momentum p, it is meant that its energy should be equal
to p2/2M .
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×


 1(

En − HC + p2

2M − (p−�k)2

2M − �ω
) − 1(

p2

2M − (p−�k)2

2M − �ω
)



× eλ(k) · p |ψn〉

=
α�

2

4π2M2

∑
λ

∫
d3k
|k| 〈ψn|p · eλ(k)

1[(
p

Mc

)
· �kc − �|k|c

(
1 + �|k|c

2Mc2

)]

× (HC − En)
1[

En − HC +
(

p
Mc

)
· �kc − �|k|c

(
1 + �|k|c

2Mc2

)]eλ(k) · p |ψn〉

(7.7.40)

where Ren in δERen
n stands for renormalized. We are interested in the cases

n = 2 in (7.7.40).
By counting powers of |k| in the integral on the extreme right-hand side

of (7.7.40); for |k| → ∞, we note that the integral in question is convergent
at high energies �|k|c → ∞. Although this integral in (7.7.40) is convergent
at high |k|,21 having started with a non-relativistic Hamiltonian, and hence
in a non-relativistic setting, integration over high energies exceeding the (rel-
ativistic) rest energy Mc2 of the electron is not justified. Accordingly, we
restrict the integration over k in (7.7.40) for energies �|k|c smaller than Mc2

by providing an upper bound cut-off at Mc2 as an upper limit to the integral
in question and as a natural cut-off for the applicability of the non-relativistic
treatment. The main values taken by the atomic electron |p| are of the order
αMc, and hence (|p|/Mc) �|k|c, in order of magnitude, is suppressed by a
factor of α relative �|k|c.

Accordingly, one formally replaces (7.7.40) by

δERen
n = − α�

2

4π2M2

∫
(|k|<Mc/�)

d3k
|k| (�|k|c) 〈ψn|p · eλ(k) (HC − En)

× 1
(En − HC − �|k|c)eλ(k) · p |ψn〉 (7.7.41)

or with the integration expressed in terms of the photon energy �ω, we have

δERen
n =

α

4π2M2c2

∑
λ

∫ Mc2

0

d(�ω) dΩ 〈ψn|p · eλ(k) (HC − En)

21 The convergence has resulted by retaining the exponential factors in (7.7.26)
which provide additional powers in 1/|k|, as seen from (7.7.34), for |k| → ∞ in
examining the integral in (7.7.40). This was particularly emphasized by Au and
Feinberg (1974), Grotch (1981).
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× 1
(HC − En + �ω)

eλ(k) · p |ψn〉 (7.7.42)

which is known as Bethe’s non-relativistic approximation.22 We note that
the values taken by (HC − En) may be comparable to �ω, in its integration
range, and both terms should be kept in the denominator in (7.7.42).23

We may sum over λ in (7.7.42) by using (7.7.4). Also to carry out the
Ω-integral, we note the following angular integration

∫
dΩ

(
δab − kakb

|k|

)
=

8π

3
δab. (7.7.43)

Therefore, by finally carrying out the (�ω)-integral, we obtain

δERen
n =

2
3π

α

M2c2

〈
ψn

∣∣∣∣[p,HC

]
· ln

(
Mc2

|HC − En|

)
p
∣∣∣∣ψn

〉
(7.7.44)

where we have replaced p(HC −En) by
[
p,HC

]
in (7.7.44), since 〈ψn| (HC −

En)p = 0, and noted the large energy scale provided by Mc2.
The right-hand of (7.7.44) involves the Coulomb Hamiltonian HC, the

hydrogen atomic functions ψn and the eigenvalues En, which are all known.
We are particularly interested in the splitting of the levels 2S1/2, 2P1/2.

These levels are degenerate not only in the Schrödinger theory but in the
Dirac theory as well, in the absence of radiation.

The following expression, involving the above mentioned known quanti-
ties, has been evaluated numerically by several authors24

〈2, �|
[
p,HC

]
· ln

(
Ry

|HC−En|

)
p |2, �〉

〈2, 0|
[
p,HC

]
· p |2, 0〉

= −2.81δ�,0 + .03δ�,1 (7.7.45)

where n = 2, Ry stands for the Rydberg energy equal to Me4/2�
2 =

Mc2α2/2.
Finally by using (7.4.37), it is readily shown (see Problem 7.26) that

〈
n, �,m

∣∣[p,HC

]
· p

∣∣n, �,m
〉

= 2πe2
�

2 |ψn�m(0)|2

=
2M3c4

n3
α4δ�,0 (7.7.46)

where we have also used (7.3.32) for Z = 1.
22 Bethe (1947), in which the expression in (7.7.44) was first derived.
23 Actually, HC − En provides a lower bound cut-off to the �ω-integral signalling

the fact that the Coulomb potential cannot be considered as a perturbation in a
perturbation series expansion, in the analysis of the Lamb shift, as seen by the
logarithmic singularity in α in (7.7.47).

24 In particular by Bethe et al. (1950), Schwartz and Tiemann (1959).



7.7 The Non-Relativistic Lamb Shift 401

Equations (7.7.44)–(7.7.46) then lead to the following expression

δERen
2,� =

4
3π

(
1
8

)
α5Mc2

[(
ln
(

2
α2

)
− 2.81

)
δ�,0 + .03δ�,1

]
(7.7.47)

giving for the Lamb shift

δERen
2,0 − δERen

2,1

h
= 1043.5MHz (7.7.48)

which compares favorably well with the experimental value of � 1058MHz.25
There are many other small corrections which contribute to the shift of

energy levels and a more detailed treatment will not only necessitate to use
the full machinery of (relativistic) quantum electrodynamics but to dwell on
some phenomenological aspects as well (see for example, Problem 7.29).

Appendix to §7.7: Counter-Terms and Mass
Renormalization

By summing over λ and using (7.7.4), the integral corresponding to the
second term on the right-hand side of (7.7.37) becomes

− α
�

2

4π2M2

∫
d3k
|k|

1(
(�k)2

2M − p·�k
M + �ω

)
(

p2 − (p · k)2

|k|2

)
(A-7.7.1)

multiplied by (2π�)3 δ3(p − p′).
Accordingly, upon integration over p′ in (7.7.37) we obtain to order e2,

ε(p) − p2

2M
=

e2

2Mc2

〈
0
∣∣A2

RAD(x)
∣∣0〉

− α
�

2

4π2M2

∫
d3k
|k|

1(
(�k)2

2M − p·�k
M + �ω

)
(

p2 − (p · k)2

|k|2

)
. (A-7.7.2)

The latter may be conveniently rewritten as

ε(p) =
(

1 − δM

M

)
p2

2M
+ a + b(p) (A-7.7.3)

where
δM

M
=

8α

3π

∫ ∞

0

d(�ω)
(�ω + 2Mc2)

(A-7.7.4)

whose evaluation requires an ultraviolet, i.e., a high-energy, cut-off,
25 The early experiment was due to Lamb and Retherford (1947).
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a =
e2

2Mc2

〈
0
∣∣A2

RAD(x)
∣∣0〉 (A-7.7.5)

b(p) = − α�
3

4π2M3
papbpc

∫
d3k
|k|

1(
(�k)2

2M + �ω
)

× 1(
(�k)2

2M − p·�k
M + �ω

)ka

(
δbc − kbkc

|k|2
)

. (A-7.7.6)

The moral of the calculation leading to (A-7.7.3) is the following.
We may rewrite the first term on the right-hand side of (A-7.7.3) as

(
1 − δM

M

)
p2

2M
� p2

2(M + δM)
. (A-7.7.7)

That is, the mass parameter M one starts with in the Hamiltonian does not
represent the physically observed mass. Due to the ever present radiation
accompanying the (charged) electron, its mass gets shifted from M to M +
δM , and the latter is actually the physically observed mass of the electron
Mphys � M + δM . It is also referred to as the renormalized mass.

Accordingly, if rewrite the Hamiltonian as

H =
p2

2M0
+ HI + H0,RAD (A-7.7.8)

then M0 does not represent the physically observed mass. It is referred to as
the bare mass. One may, however, rewrite M0 � Mphys − δM , to obtain

p2

2M0
� p2

2Mphys
+

δM

Mphys

p2

2Mphys
. (A-7.7.9)

Hence if we express the Hamiltonian in terms of the physical mass Mphys,
then an additional term arises in the Hamiltonian, referred to as a counter-
term, which contributes in making the kinetic energy one calculates to be
p2/2Mphys, as it should be. The situation is, however, more complicated
than that, in that we have also to subtract the term a + b(p) from H, to
ensure that the kinetic energy is just p2/2Mphys.

All told, we define a new Hamiltonian

H ′ =
p2

2M
− e2

|x| + HI + H0,RAD + δHc (A-7.7.10)

to replace (7.7.8), where the counter-term δHc is given by

δHc =
δM

M

p2

2M
− a − b(p) (A-7.7.11)
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to lowest order, where b(p) is now an operator, and M in (A-7.7.10), (A-
7.7.11) now denotes the physically observed mass. This is what we have done
in computing δERen

n in (7.7.40) with M in it denoting the physical mass.
We note that although δM in (A-7.7.4) is divergent, it does not have to be
computed (as a cut-off integral) explicitly in calculating the physical quantity
in (7.7.40). Also the term in (7.7.27), here denoted by a, is automatically
cancelled out in the process of renormalization.

For the non-relativistic electron, considered above, it is easily shown (see
Problem 7.28) that

b(p) = α
p2

2M
× O

(
|p|
Mc

)
(A-7.7.12)

for |p|/Mc � 1, hence the last term in (A-7.7.11) is small, consistent with
the fact that the kinetic energy of the electron is p2/2M , in the ever presence
of radiation, where M is the renormalized mass.26

7.8 Decay of Excited States

As discussed through (7.7.29)–(7.7.32), by inserting the +iε, ε → +0,
factor in the denominator in (7.7.28) giving (En−HC−�ω+iε)−1, we obtain
from (7.7.42) for the decay constant Γ in (7.7.31), (7.7.32),

Γ
2

= − Im δERen
n

∣∣∣∣
iε

=
α

4πM2c2

(
8π

3

)∫
d(�ω)

×
〈
ψn

∣∣[p,HC

]
δ(�ω + HC − En) · p

∣∣ψn

〉
, ε → +0

(7.8.1)

Since �ω > 0, the resolution of the identity of HC, inserted just before the
Dirac delta in (7.8.1) will be restricted to

∑
n′

(En′<En)

|ψn′ 〉〈ψn′ | (7.8.2)

giving from (7.8.1) the explicit expression

Γ =
4α

3M2c2

∑
n′

(En′<En)

|〈ψn′ |p|ψn〉|2 (En − En′). (7.8.3)

The norm of a state |φn, t) will involve the damping factor27

26 For a mathematically rigorous treatment of renormalization theory, see:
Manoukian (1983).

27 See also §3.5.
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e−Γt/� (7.8.4)

for t > 0, and if we translate t by �/Γ the exponential factor will be reduced
by the factor e−1, defining �/Γ as the mean lifetime of the state specified by
n and related quantum numbers.

For any Hamiltonian H = p2/2M + U(x), it is easily shown that

p =
iM
�

[
H,x

]
. (7.8.5)

Accordingly, we may rewrite (7.8.3) as

Γ =
4α

3

(
1

�2c2

) ∑
n′

(En′<En)

(En − En′)3 |〈ψn′ |x|ψn〉|2 . (7.8.6)

where e 〈ψn′ |x|ψn〉 is referred to as the electric dipole moment associated
with the transition from state specified by n to n′.

As an application of (7.8.6), we compute the mean lifetime of the state
2P1/2. The only state to which a transition may occur in this case is the 1S1/2

state.
Thus we are led to evaluate the matrix elements 〈n′, �′,m′ |x|n, �,m〉 with

n′ = 1, �′ = 0,m′ = 0, n = 2, � = 1,m = 0,±1.
For the radial functions in question we have from (7.3.14)

R10(r) =
(

1
a0

)3/2

2e−r/a0 (7.8.7)

R21(r) =
(

1
a0

)3/2
r

2
√

6
e−r/2a0 . (7.8.8)

The radial integration part of 〈1, 0, 0 |x|2, 1,m〉 is given from (7.8.7),
(7.8.8) to be ∫ ∞

0

dr r3R10(r)R21(r) = 8a0

(
2
3

)9/2

. (7.8.9)

For the angular integration part, we use the expansions of the components
of the vector x in terms of spherical harmonics as given in (5.3.52)–(5.3.54)
and use the orthogonality relation of the latter to obtain

〈
Y00

∣∣∣x
r

∣∣∣Y1m

〉
=

1√
6

(
δm,−1 − δm,1, i(δm,−1 + δm,1),

√
2δm,0

)
. (7.8.10)

From (7.8.9), (7.8.10) we have

|〈1, 0, 0 |x|2, 1,m〉|2 =
215

310
a2
0 (7.8.11)
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which is independent of m and is a statement of rotational invariance and
that there is no preferred direction in space. One may then average (7.8.11)
over m, for the initial state, with arbitrary weights. [This independence of m
is explicitly seen in the general case as well given in (7.8.15) below.]

Finally using the expression for the energy shift

E2 − E1 =
3
8
Mc2α5 (7.8.12)

we obtain from (7.8.6), (7.8.11), (7.8.12)

Γ =
(

2
3

)8

Mc2α5 (7.8.13)

corresponding to a frequency of 99.75MHz which is much smaller than the
Lamb shift between the 2S1/2 and 2P1/2 states. Γ is also referred to as the
decay width of the state in question.

From (7.8.13) we obtain for the mean lifetime of the 2P1/2 state

�

Γ
� 1.595 × 10−9 s. (7.8.14)

To evaluate Γ in (7.8.6) for an arbitrary initial state |n, �,m〉, we may
use again the expressions for the components of the vector x expressed in
terms of spherical harmonics, as given in (5.3.52)–(5.3.54), and the integral
(5.8.36) involving the product of three spherical harmonics with �2 = 1,m2 =
0,±1, �1 = �,m1 = m. A long but straightforward computation gives

∑
m′

∣∣∣〈Y�′m′

∣∣∣x
r

∣∣∣Y�m

〉∣∣∣2 =
(� + 1)
(2� + 1)

δ�′,�+1 +
�

(2� + 1)
δ�′,�−1 (7.8.15)

which is again independent of m and is a statement of rotational invariance
and that there is no preferred direction in space.

As in (7.8.9), one is also led to evaluate the integrals

In′,n
�′,� =

∫ ∞

0

dr r3Rn′�′(r)Rn�(r) (7.8.16)

in particular, for �′ = � + 1, and for � �= 0, �′ = � − 1, as seen from (7.8.15).
We note that the expression in (7.8.6) applies to other potentials U(x) as

well, not only to the Coulomb one, where now the states |ψn〉 correspond to
the potential U(x), for a charged particle, of charge ± |e|, interacting with
radiation and this given potential. To this end note that the expression on
the right-hand side of (7.8.1) follows directly from (7.7.28) by making the
replacement En = En + iε, and neglecting the momentum of the photon �k
in (p − �k)2/2M in (7.7.34). The latter is equivalent to the replacement of
the exponential factors
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eik·x[ ·
]
e−ik·x (7.8.17)

in (7.7.28), (7.7.34), (7.7.35) by unity. That is, it is obtained by assuming
that the wavelength of radiation is much larger than the spatial extension of
the system (e.g., the atom) so that exp (ik · x) � 1. This is the so-called long
wavelength approximation associated with dipole radiation.

7.9 The Hydrogen Atom in External Electromagnetic
Fields

7.9.1 The Atom in an External Magnetic Field

Quite generally, the shift of the energy levels of an atom induced by an
external magnetic field is referred to as the Zeeman effect. We consider the
hydrogen atom in an external uniform magnetic field Bext such that the shift
induced by the field is large in comparison to the one corresponding to the
hyperfine structure but much smaller in comparison to the Rydberg — the
energy unit of the elementary hydrogen atom.

In view to the above application, this amounts to replacing B and A in
(7.4.32)/(7.4.42), respectively, by Bext and Aext, and the latter will be taken
as

Aext =
1
2
(Bext × x). (7.9.1)

Accordingly, for the Hamiltonian, in question, we first consider the ex-
pression

H = HC + VF − e�

2Mc
σ · Bext −

e

Mc
Aext · p (7.9.2)

where we have omitted the A2
ext term in comparison to Aext ·p, based on an

order of magnitude estimate given below. Here VF is the potential in (7.5.2)
responsible for the fine-structure splitting, and HC denotes the Coulomb
potential with potential energy −e2/|x|. In reference to the Aext ·p term, we
also note that ∇ · Aext = 0.

With the magnetic field Bext chosen along the z- (3-) axis: Bext =
(0, 0, B), and with A = B(−y, x, 0)/2, we may write

− e

Mc
Aext · p = − eB

2Mc
Lz. (7.9.3)

For the magnetic quantum number m small, this term, as an order of magni-
tude estimate, is of the order −e�B/Mc. We consider magnetic fields B such
that

|eB| �
2Mc

� Ry (7.9.4)

where Ry denotes the Rydberg unit of energy Ry = Me4/2�
2 ≡ Mc2α2/2.

For the quadratic term in Aext, we have
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e2

2Mc2
A2

ext =
e2B2

8Mc2

(
x2 + y2

)

=
(

e�B

Mc

)2
M

8�2

(
x2 + y2

)
. (7.9.5)

For the principal quantum number n small, we may estimate
(
x2 + y2

)
by

the Bohr radius squared a2
0 =

(
�

2/Me2
)2. That is, as an order of magnitude

estimate
e2

2Mc2
A2

ext ∼
1
16

(
e�B

Mc

)2 1
Ry

� |eB| �
2Mc

(7.9.6)

where we have used (7.9.4). Accordingly, for n small, one may formally neglect
the term quadratic in Aext in comparison to the linear term for magnetic fields
B satisfying (7.9.4).28,29

We may then rewrite (7.9.2) as

H = HC + HI (7.9.7)

with
HI = VF − eB

2Mc
(Lz + 2Sz) (7.9.8)

and Sz = �σ3/2, such that (7.9.4), (7.9.6) hold true for |m|, n small.
With J2 written as in (7.5.3), we note that since (Lz + 2Sz) does not

commute with S · L, J2 does not commute with H. But H commutes with
L2, Jz and S2.

We are thus led to consider a linear combination of the states ψj,�,mj ,n

in (7.5.4), for different j, with the angular parts 〈θ, φ |j, �,mj〉 as given in
(A-7.5.4), (A-7.5.5). In detail

ψj,�,mj ,n(x) =
Rn�(r)√
2� + 1




√
� + 1

2 + mj Y�,mj−1/2(θ, φ)

√
� + 1

2 − mj Y�,mj+1/2(θ, φ)


 (7.9.9)

for j = � + 1/2, |mj | � � + 1/2

ψj,�,mj ,n(x) =
Rn�(r)√
2� + 1



−
√

� + 1
2 − mj Y�,mj−1/2(θ, φ)

√
� + 1

2 + mj Y�,mj+1/2(θ, φ)


 (7.9.10)

for j = � − 1/2, |mj | � � − 1/2.
28 More precisely, we deal with principal quantum numbers n such that |eB| �/Mc

is much smaller than the differences between successive energy levels En.
29 The contribution of the e2A2/2Mc2 term will be also analyzed in Chapter 12.
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For � �= 0, we introduce linear combinations

φn�m′ =
∑

j=�±1/2

a(j)(�,m′)ψj,�,m′,n(x) (7.9.11)

for |m′| � � − 1/2, and the states

φn,�,m′(x) = ψj,�,m′,n|j=�+1/2 (7.9.12)

for m′ = ±(� + 1/2).
For a sufficiently strong magnetic field B such that VF is small compared

to the second term in (7.9.8) and such that the conditions in (7.9.4), (7.9.6)
hold true, we may consider the Hamiltonian

H ′ = HC − eB

2Mc
(Lz + 2Sz). (7.9.13)

[Later we treat VF as a perturbation to H ′.]
The eigenvectors of (7.9.13) are given by

ψn�m(x)
(

1
0

)
, ψn�m(x)

(
0
1

)
(7.9.14)

where ψn�m(x) are the Coulomb wavefunctions given in (7.3.18), with corre-
sponding eigenvalues

En + η(m + 2ms), ms = ±1/2 (7.9.15)

respectively, where En = −Ry/n2, and we have set

− e�B

2Mc
≡ η > 0. (7.9.16)

The Zeeman effect for a strong magnetic field is usually referred to as the
Paschen-Back effect.

To treat VF as a perturbation to H ′, we consider the linear combination
introduced in (7.9.11), and the states in (7.9.12). The eigenvectors in (7.9.14)
may be equivalently rewritten in the form of (7.9.11), (7.9.12) as follows. For
� �= 0, the first eigenvector may be rewritten as in (7.9.11) (see Problem 7.31)
with

a(�+1/2) =

√
� + 1/2 + m′

2� + 1
, a(�−1/2) = −

√
� + 1/2 − m′

2� + 1
(7.9.17)

corresponding to the eigenvalue En + η(m′ + 1/2) with m′ = m + 1/2, |m′| �
� − 1/2, while for the second eigenvector,

a(�+1/2) =

√
� + 1/2 − m′

2� + 1
, a(�−1/2) =

√
� + 1/2 + m′

2� + 1
(7.9.18)
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corresponding to the eigenvalue En +η(m′−1/2), with m′ = m−1/2, |m′| �
� − 1/2. For m′ = ±(� + 1/2), the eigenvectors are given in (7.9.12), corre-
sponding respectively, to the eigenvalues En + η(� + 1), En − η(� + 1).

Since VF commutes with L2, Jz, it is diagonal not only in ψj,�,mj ,n but
also in φn�m′ .

The corrections to the eigenvalues of H ′ are then given by

∆En�m′ = 〈φn�m′ |VF|φn�m′〉 . (7.9.19)

The latter is easily evaluated to be

∆E±
n�′m′ =

ε+ + ε−
2

+ η

(
m′ ± 1

2

)
(7.9.20)

for |m′| � � − 1/2,

∆E±
n�′m′ = ε+ + η

(
� ± 1

2

)
(7.9.21)

for m′ = ±(� + 1/2), where,

ε± = ∆En,j�|j=�±1/2 (7.9.22)

and the ∆En,j,� are the fine-structure corrections in (7.5.19).
More generally, since we are interested in the splitting of the energy level

En, for given fixed n, due to the interaction term HI, assuming that the latter
induces a small correction to En, we consider the matrix element of HC +HI

in (7.9.7) between the state Rn�(r), thus defining an effective Hamiltonian

Heff(n, �) =
∫

d3xRn�(r) [HC + HI] Rn�(r). (7.9.23)

For � = 0, we have from (7.5.15),

Heff(n, 0) = En − α2

n
En

(
1 − 3

4n

)
+

2ηSz

�
(7.9.24)

and for � �= 0, we have from (7.5.16), (7.5.18), in particular, that

Heff(n, �) = En − α2

n
En

[(
1

� + 1/2
− 3

4n

)

− 1
2�2

(
J2 − �

2�(� + 1) − �
23/4

)
�(� + 1/2)(� + 1)

]
+

η

�
(Lz + 2Sz).

(7.9.25)

These effective Hamiltonians, as the Hamiltonian in (7.9.2), commute with
Jz. Note in particular that Heff(n, �) in (7.9.23) does not commute with J2.
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The eigenvalue problem is now formulated as follows.
The eigenvectors corresponding to (7.9.24) are given by

[
Y0,0(θ, φ)

0

]
,

[
0

Y0,0(θ, φ)

]
(7.9.26)

with eigenvalues

En − α2

n
En

(
1 − 3

4n

)
± η (7.9.27)

respectively.
From (7.9.12), for mj ≡ m′ = ±(�+1/2), J2ψj,�,m′,n = �

2j(j+1)ψj,�,m,n′ ,
with j = (� + 1/2). That is, for m′ = ±(� + 1/2), the eigenvectors of (7.9.25)
are given by [

Y�,�(θ, φ)
0

]
,

[
0

Y�,−�(θ, φ)

]
(7.9.28)

with respective eigenvalues

En + ∆En,j,�|j=�+1/2 ± η(� + 1) = En + ε+ ± η(� + 1) (7.9.29)

using the notation in (7.9.22).
For |m′| � �−1/2, the situation is more involved. To this end, we consider

eigenvectors, as obtained from (7.9.11), to be

χ�,m′ =
u√

2� + 1




√
� + 1

2 + m′ Y�,m′−1/2

√
� + 1

2 − m′ Y�,m′+1/2




+
v√

2� + 1



−
√

� + 1
2 − m′ Y�,m′−1/2

√
� + 1

2 + m′ Y�,m′+1/2


 . (7.9.30)

The eigenvalue equation then reads

Heff(n, �)χ�,m′ = (En + εn�m′) χ�,m′ . (7.9.31)

Upon substitution of (7.9.30) in (7.9.31) using (7.9.25), and the definitions
in (7.9.22), we obtain

u = v

√
� + 1/2 − m′

� + 1/2 + m′

(
ε − ε− − η(m′ + 1/2)
ε − ε+ − η(m′ + 1/2)

)
(7.9.32)

u = −v

√
� + 1/2 + m′

� + 1/2 − m′

(
ε − ε− − η(m′ − 1/2)
ε − ε+ − η(m′ − 1/2)

)
(7.9.33)
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where ε stands for εn�m′ , and by setting ε−ηm′ = ε′, we obtain the quadratic
equation

ε′2 − ε′(ε+ + ε−) +
(

ε+ε− − η2

4

)
− m′ (ε+ − ε−)

2� + 1
η = 0. (7.9.34)

The solutions of (7.9.32)–(7.9.34) are readily obtained, by using in the
process that |u|2 + |v|2 = 1, to be

ε±n�m′ =
ε+ + ε−

2
+ ∆ε

[
m′

( η

∆ε

)
± 1

2

√
1 +

( η

∆ε

)2

+
4m′

2� + 1

( η

∆ε

)]

(7.9.35)
where

∆ε = ε+ − ε− ≡ α

n
En

1
�(� + 1)

(7.9.36)

and

u± =
1√
2

(
1 +

1
Z±

(
1 +

2m′

2� + 1

( η

∆ε

)))1/2

(7.9.37)

v± = ∓ 1√
2

(
1 − 1

Z±

(
1 +

2m′

2� + 1

( η

∆ε

)))1/2

(7.9.38)

where

Z± = ±
√

1 +
( η

∆ε

)2

+
4m′

2� + 1

( η

∆ε

)
. (7.9.39)

For a strong magnetic field |η/∆ε| � 1, (7.9.35) reduces to

ε±n�m′ �
ε+ + ε−

2
+ η

(
m′ ± 1

2

)
(7.9.40)

which together with (7.9.29), (7.9.27), coincide with the earlier solution in
(7.9.20), (7.9.21). We also note that

u± →
√

� + 1/2 ± m′

2� + 1
, v± → ∓

√
� + 1/2 ∓ m′

2� + 1
(7.9.41)

which coincide with the coefficients in (7.9.17), (7.9.18).
For a weak magnetic field |η/∆ε| � 1,

ε±n�m′ � ε± + ηm′
(

1 ± 1
2� + 1

)
(7.9.42)

which upon combining with the results in (7.9.27), (7.9.29), provide a shift
induced by the magnetic field given by

∆εj�mj
= ηmjgj,� (7.9.43)
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where |mj | � j,

gj,� =
(

j + 1/2
� + 1/2

)
(7.9.44)

with the latter referred to as the Landé g-factor (see also (5.7.32)). The
expression in (7.9.44) follows by noting that for mj = ±(� + 1/2), j = � +
1/2,mjgj,� = ±(� + 1), while for |mj | � � − 1/2, j = � ± 1/2, gj,� = (2� + 1 ±
1)/(2� + 1).

The splitting in (7.9.43) takes the spin of the electron into account and is
referred to as the anomalous Zeeman effect — a rather unfortunate nomen-
clature.30 When the spin is not taken into account or if one is dealing with a
spinless particle, the effect is usually referred to as the normal Zeeman effect,
with mj → m, gj,� → 1.

7.9.2 The Atom in an External Electric Field

The shift of energy levels of an atom induced by an external electric field
is generally referred to as the Stark effect. We consider the hydrogen atom
in an external uniform electric field E such as the splittings induced by the
latter are much smaller than that of the fine-structure but much larger than
that of the hyperfine-structure.

Accordingly, we consider the Hamiltonian

H = HC + VF − eEz, z = r cos θ (7.9.45)

where we have taken the electric field to point in the z-direction, with −eEz
taken formally as a perturbation.

The energy levels of HC + VF, with the VF contribution taken small in
comparison to the differences between the energy levels En provided by the
Coulomb potential, is determined by the two quantum numbers n and j and
are given by

En,j = En − α2

n
En

[
1

j + 1/2
− 3

4n

]
. (7.9.46)

as obtained in (7.5.19)
We are considering shifts in En,j , as induced by the electric field E , for

given fixed pairs (n, j). The perturbation −eEz commutes with Jz but does
not commute with L2 due to its dependence on θ. Accordingly, we are led
to consider linear combinations, denoted by φn,j,mj

, of the states in (7.9.9),
(7.9.10) with � = j ± 1/2.

We may then introduce the effective Hamiltonian

Heff(nj , j,mj) =
∑

�=j±1/2

∑
�′=j±1/2

|n, j, �,mj〉

30 Historically, the theory of the normal Zeeman effect ran into problems when
confronting experiments until the theory of the anomalous one was used based
on the incorporation of the spin of the electron in an atom.
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× 〈n, j, �,mj |H|n, j, �′,mj〉 〈n, j, �′,mj | . (7.9.47)

Now we rewrite (7.9.9), (7.9.10) in terms of j on their right-hand sides:

ψj,�,mj ,n =
Rn,j−1/2√

2j



√

j + mj Yj−1/2,mj−1/2

√
j − mj Yj−1/2,mj+1/2


 (7.9.48)

for � = j − 1/2,

ψj,�,mj ,n =
Rn,j+1/2√
2(j + 1)


−

√
j + 1 − mj Yj+1/2,mj−1/2

√
j + 1 + mj Yj+1/2,mj+1/2


 (7.9.49)

for � = j + 1/2.
By setting

φj,mj ,n =
∑

�=j±1/2

a�ψj,�,mj ,n (7.9.50)

the eigenvalue equation then reads

Heff(n, j,mj)φj,mj ,n = Ej,mj ,nφj,mj ,n. (7.9.51)

To evaluate the matrix elements, 〈n, j, �,mj |H|n, j, �′,mj〉, we recall that
the matrix elements of (HC + VF) are given by En,jδ��′ , with En,j given in
(7.9.46). To find the matrix elements of r cos θ, we use the identity in (5.8.41)
to carry out the angular integration. To this ends, the latter identity leads
for all �, �′, m, m′:
∫

dΩ Y�′m′(θ, φ) cos θ Y�m(θ, φ)

=

√
(� + 1)2 − m2

(2� + 1)(2� + 3)
δ�′,�+1δm′,m +

√
�2 − m2

4�2 − 1
δ�′,�−1δm′,m. (7.9.52)

Thus for the radial integration only the product r3Rn,j−1/2(r)Rn,j+1/2(r)
will contribute. An application of the properties of the associated Laguerre
polynomials in (7.3.16) also shows (see Problem 7.33) from (7.3.14) that

∫ ∞

0

dr r3Rn,j−1/2(r)Rn,j+1/2(r) = −3
4
a0n

√
(2n)2 − (2j + 1)2. (7.9.53)

All told, we obtain from (7.9.52), (7.9.53)

〈n, j, j ± 1/2,mj |r cos θ|n, j, j ∓ 1/2,mj〉

=
3
8
a0nmj

√
(2n)2 − (2j + 1)2

j(j + 1)
≡ M ′ (7.9.54)
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and zero for the diagonal element � = �′.31
Upon substitution of (7.9.54) in the 2 × 2 matrix equation in (7.9.51),

we obtain the necessary condition (the secular equation) for the existence of
non-trivial solutions,

det
[
En,j − Ej,mj ,n −eM ′E

−eM ′E En,j − Ej,mj ,n

]
= 0. (7.9.55)

That is, the energy levels are given by

E±
j,mj ,n = En,j ±

3
8
ea0Emjn

√
(2n)2 − (2j + 1)2

j(j + 1)
. (7.9.56)

For an electric field E strong enough such that the fine-structure effect
may be neglected, it amounts to taking the Hamiltonian as

H = HC − eEz. (7.9.57)

The latter commutes with Jz but does not commute with J2 and L2. Accord-
ingly, the above procedure leads to considering linear combinations of several
states for n not too small and the analysis becomes laborious.

Problems

7.1. Show that for the probability distribution of the kinetic energy, in
particular, one has

Prob [T � T0] � 1
T0

〈T 〉

for any T0 > 0 and infer from (7.1.16) that for the hydrogen atom

Prob [T � T0] <
1
T0

(
2µe4

�2

)
.

7.2. For any linear combination

ψ(x) =
∑

n,�,m

an�mψn�m(x)

with the ψn�m(x) denoting the eigenstates of the hydrogen atom, and
∑

n,�,m

|an�m|2 = 1

31 We note, quite generally, that the matrix elements for � = �′ are zero because
the corresponding states have a definite parity (see (5.3.43)), while z = r cos θ
has odd parity.
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(i) derive bounds for Prob [r � r0], Prob [T � T0] and compare them
with the ones in (7.1.21), and the one in Problem 7.1, respectively.

(ii) Derive the exact expressions for Prob [r � r0], Prob [T � T0], for
the hydrogen atom in its ground-state. [Hint: It may be use-
ful to show that the ground-state in the momentum descrip-
tion is given by Φ(p) = 8

√
πa

3/2
0

[
1 + p2a2

0/�
2
]−2 normalized as∫

d3p
(2π�)3

|Φ(p)|2 = 1.

(iii) Evaluate the left-hand side of the inequality (7.1.13) for any of
the eigenstates |ψn�m〉, and show that it is consistent with the
inequality in question.

7.3. With pr defined in (7.2.2), show that

(i) p2
r = −�

2

(
∂2

∂r2
+

2
r

∂

∂r

)

(ii)
[
pr, r

]
= −i�

(iii)
[
pr,

1
r

]
=

i�
r2

(iv)
[
pr,

1
r2

]
=

2i�
r3

(v)
[
p2

r,
1
r

]
=

2�

r2

(
ipr −

�

r

)
.

7.4. With the boundary conditions imposed on the functions in (7.2.10)
for r → ∞ and r → 0+, show that the adjoint D+

� of D� is given by
the expression in (7.2.11).

7.5. Verify the relations in (7.2.12)–(7.2.15).
7.6. Show that the normalized solution of (7.3.4), according to (7.3.5), is

given by (7.3.6).
7.7. Use (7.2.13), (7.2.15), with � → � − 1, to establish (7.3.10), for � �= 0.
7.8. Show that (7.3.11) leads to the differential equation in (7.3.12), and,

in particular, for � = n − 1, it leads to the solution in (7.3.13).
7.9. Show that (7.3.14) coincide with Rn,n−1, Rn,n−2 given, respectively,

in (7.3.6), (7.3.13) for � = n − 1, n − 2.
7.10. Use (7.3.24), (7.3.25) to establish the orthogonality relation in (7.3.26),

(7.3.27). [Is there an orthogonality relation for n′ = n, �′ �= � for the
Rn�?]

7.11. Derive the expectation values in (7.3.34)–(7.3.38).
7.12. Prove the equalities in (7.4.26), (7.4.27). [Note the positions of the

various brackets in these equations.]
7.13. Derive the operator identity in (7.4.31).
7.14. Derive the fundamental Poisson equation (7.4.36).
7.15. Derive afresh the expressions for VF, VHF starting from (7.4.2) for a

spin 0 charged particle interacting with a proton.
7.16. Find the fine-structure correction corresponding to the one in (7.5.19)

for the spin 0 case in Problem 7.15.
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7.17. Show that the operators F2, J2, S2, I2, L2, Fz introduced in §7.6
commute in pairs.

7.18. Find the simultaneous eigenstates of the operators in Problem 7.17
in terms of the spherical harmonics and the spin eigenstates of the
electron and proton.

7.19. Find the hyperfine correction corresponding to the one in (7.6.47) for
the spin 0 case in Problem 7.15. Is there such a correction for � = 0
states ?

7.20. Derive the operator identities in (7.6.33)–(7.6.36). Here it is worth
recalling, in particular, the operator equality in (7.5.17).

7.21. Show that the matrix elements of (7.6.35), (7.6.36) lead to the expres-
sions as indicated in (7.6.37), (7.6.38).

7.22. Derive the equalities in (7.6.37), (7.6.38) directly from the Wigner-
Eckart Theorem in §5.7, §5.8.

7.23. Extend as much as possible, the analyses given in §7.1–7.3 to the
attractive 1/r potential in two dimensional space.

7.24. Find the coefficient of the orthogonality relation of the photon states〈
k, λ

∣∣k′, λ′〉 ∝ δ3(k−k′)δλλ′ from the completeness relation in (7.7.5).
7.25. Provide a physical explanation if the extreme case with Z3 = 0 is

realized in (7.7.14).
7.26. Prove the equality in (7.7.46) by using in the process (7.4.37), (7.3.32)

for Z → 1.
7.27. Consider the addition of the spin part − e�

2mcσ ·BRAD, where BRAD =
∇ × ARAD to the Hamiltonian in (7.7.7).
(i) Show that

〈0 |BRAD|k, λ〉 = i
√

4π
√

�c eik·xk × eλ(k).

(ii) Show that p · eλ [ ] eλ · p in (7.7.26) becomes simply replaced by
η(p,k) · eλ [ ] eλ · η†(p,k) where

η(p,k) =
(
p +

i�
2

σ × k
)

.

(iii) Show that for any operator Q which commutes with σ and k, the
following relation holds true

∑
λ

η·eλ Qeλ·η† =

(
p − k · p k

|k|2

)
·Qp+

�
2

2
k2Q+

i�
2

σ·
(
k ×

[
Q,p

])
.

(iv) Carry out the renormalization in the appendix to §7.7 by including
spin as described in (i).

(v) Investigate then the contribution of spin in the calculation of §7.7.
7.28. By explicit integration of b(p) in (A-7.7.6) derive (A-7.7.12).
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7.29. Suppose that the charge distribution of the proton is given by

ρ(x) =
1

8πγ3
exp(−r/γ), r = |x| , γ > 0

normalized to unity, with the empirical data for the root mean square
radius of the proton

√
〈r2〉 = 0.81 × 10−15 m.

(i) Find the value of γ.
(ii) With the Coulomb potential U(x) = −e2/ |x| now replaced by

U ′
C(x) = −e2

∫
d2x

ρ(x′)
|x − x′|

estimate the energy level shifts, with

∆UC(x) = U ′
C(x) − UC(x)

treated as a perturbation.
7.30. Provide the details of the computations leading to the results given

through (7.8.9)–(7.8.11) in determining the mean-life of the 2P1/2

state.
7.31. Show that the eigenvectors in (7.9.14) may be rewritten as in (7.9.11)

with coefficients given in (7.9.17), (7.9.18).
7.32. Derive the relations in (7.9.32), (7.9.33) and the quadratic equation

(7.9.34) for the eigenvalues. Finally show that the solutions of these
equations are as given in (7.9.35)–(7.9.39)

7.33. Use the expression for the associated Laguerre polynomials in
(7.3.16)/(7.3.15) and the relation of Rn,�(r) to them in (7.3.14) to
prove (7.9.53). Finally show that (7.9.52), (7.9.53) lead to the result
given in (7.9.54).

7.34. The Schrödinger equation, with the Coulomb potential −e2/|x|, can
also be separated in the so-called parabolic coordinate system. The
latter may be defined by introducing three variables ξ, η, φ, 0 � ξ < ∞,
0 � η < ∞, 0 � φ � 2π, with

x =
√

ξη cos φ, y =
√

ξη sinφ, z =
1
2
(ξ − η).

In particular note that r = (ξ + η)/2, ξη = r2 sin2 θ, φ = tan−1(y/x).
(i) Show that the Laplacian in this coordinate system is given by

∇2 =
4

(ξ + η)

[
∂

∂ξ
ξ

∂

∂ξ
+

∂

∂η
η

∂

∂η

]
+

1
ξη

∂2

∂φ2
.

(ii) Prove that the 3D volume element is given by (ξ + η) dξ dη dφ/4.
(iii) Carry out a separation of variables of the Schrödinger equation,

with the Coulomb potential, to show that the eigenvectors in the
(ξ, η, φ) representation may be written as
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ψ(x) =
χ1(ξ)√

ξ

χ2(η)
√

η

eimφ

√
2π

where m is the magnetic quantum number, and χ1, χ2 satisfy the
equations

[
− d2

dξ2
+

(m2 − 1)
4ξ2

− MZ1e
2

�2ξ
− ME

2�2

]
χ1(ξ) = 0

[
− d2

dη2
+

(m2 − 1)
4η2

− MZ2e
2

�2η
− ME

2�2

]
χ2(η) = 0

with Z1, Z2 as separation constants and Z1+Z2 = 1. [For a hydro-
genic atom with potential −Ze2/ |x|, then Z1 +Z2 = Z.] You may
express part of the solutions of the above equations, as factors, in
terms of the associated Laguerre polynomials in (7.3.15), (7.3.16)
as functions of ξ, η.



8

Quantum Physics of Spin 1/2 and Two-Level
Systems; Quantum Predictions Using Such
Systems

Spin 1/2 and two-level systems are simple enough that quite often they
allow explicit solutions to their underlying problems and provide a wealth of
information on quantum systems, in general. This chapter is devoted entirely
to these structures and their intricate details. It includes important quan-
tum predictions that are made by their direct analyses which may be tested
experimentally.

General properties of the above systems are studied in §8.1, including the
exponential decay law (§3.5) in two-level systems. The Pauli Hamiltonian as a
generalization of the Schrödinger equation of a non-relativistic spin 1/2 par-
ticle is discussed in §8.2 and makes contact with supersymmetry introduced
in §2.9 and further elaborated upon in §4.7, §6.5. The so-called Landau levels
are treated in §8.3 and special emphasis is put on the g-factor of the electron.
Spin precession and accompanying radiation losses is the subject matter of
§8.4. A derivation of the anomalous magnetic moment of the non-relativistic
electron in the ever presence of radiation accompanying a charged particle is
given in §8.5. This gives a deviation of the g-factor of the electron from the
value 2 which is remarkably quite accurate. Density operators (§1.5) and the
scattering of spin 1/2 particles off spin 0 and spin 1/2 targets are studied
in §8.6. The analysis carried out in §1.10 on probability and measurement
is extended in much detail in §8.7 emphasizing the role of the environment,
surrounding a physical system and a measuring device, and the so-called
quantum decoherence as well as the quantum superposition law in the light
of classical notions of measurements. The Ramsey oscillatory fields method,
based on the Ramsey apparatus, is introduced in §8.8 which provides inter-
esting applications to interference phenomena, spin flips, and in monitoring
spin, in general, as a particle moves in different magnetic field zones. The
role of the superposition law for macroscopic systems, such as Schrödinger’s
cat, and quasi-macroscopic (mesoscopic) systems, often referred to as kittens,
and the important role of quantum decoherence, due to the environment, are
studied in §8.9 as extensions of the work in §8.7. Bell’s test together with
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the analysis of basic processes in the light of Local Hidden Variables is the
subject matter of §8.10. Quantum teleportation and quantum cryptography
which rely on fundamental and mysterious aspects of quantum theory are
treated in §8.11. The rotation of a spinor by 2π radians, initially introduced
in §2.8 ((2.8.68), (2.8.70)), is analyzed from a practical dynamical point of
view in §8.12. The theoretical foundations of geometric phases are developed
in §8.13. There has been much interest in recent years in geometric phases
both experimentally and theoretically. Finally we provide an analytical quan-
tum dynamical treatment of the Stern-Gerlach effect for charged as well as
neutral spin 1/2 particles in §8.14.

8.1 General Properties of Spin 1/2 and Two-Level
Systems

Much has been developed in the previous chapters on spin, in general, and
spin 1/2, in particular.1 Here we discuss some of general aspects of spin 1/2
which are useful in describing its quantum dynamics and treating problems
associated with quantum measurement. Some pertinent aspects of two-level
systems, in general, are also investigated.

8.1.1 General Aspects of Spin 1/2

Under a c.c.w. rotation of a coordinate system about a unit vector n by
an angle ϕ, a wavefunction, in the coordinate description, transforms as (see
(2.7.42))

ψ′(x) =
(

exp
(

i
�
n · J

)
ψ

)
(x) (8.1.1)

where J is the total angular momentum.
The spin S arises (§2.7, §5.4), by rewriting (8.1.1) in terms of the coordi-

nate labels x′ = Rx, with R the rotation matrix defined in (2.1.4), (2.1.24),
via (see (2.7.43))

ψ′(x′) =
(

exp
(

i
�
n · S

)
ψ

)
(x). (8.1.2)

As an angular momentum operator, the spin components satisfy the com-
mutation relations (see (2.7.10)),

[
Si , Sj

]
= i�εijkSk. (8.1.3)

An elementary way of obtaining a representation of the spin operator S
for spin 1/2 is the following. With the spin quantization along the z-axis
(§5.4), the eigenvalue equations

1 Cf., §2.7, §2.8, §5.4, §5.10.
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S3

(
1
0

)
=

�

2

(
1
0

)
, S3

(
0
1

)
= −�

2

(
0
1

)
(8.1.4)

for spin along or opposite the orientation of the z-axis, provides the repre-
sentation

S3 =
�

2

(
1 0
0 −1

)
. (8.1.5)

On the other hand, the commutation relations (see (5.10)),
[
S3 , S±

]
= ±�S± (8.1.6)

where
S± = S1 ± iS2 (8.1.7)

give,

S+ = �

(
0 1
0 0

)
, S− = �

(
0 0
1 0

)
(8.1.8)

from which,

S1 =
�

2

(
0 1
1 0

)
, S2 =

�

2

(
0 −i
i 0

)
. (8.1.9)

Upon writing S = �σ/2, the so-called Pauli matrices σ1, σ2, σ3 as the
components of σ, satisfy the important relations,

σjσk = δjk + iεjklσl (8.1.10)

from which, or directly from (8.1.3),

[σj , σk] = 2iεjklσl. (8.1.11)

The transformation rule in (8.1.2), in terms of the components ψa of the
spinor ψ (§2.8), reads (see (2.8.1), (2.8.7))

ψ′a(x′) =
[
exp

(
i
ϕ

2
n · σ

)]ab

ψb(x)

=
(
cos

ϕ

2
δab + i sin

ϕ

2
[n · σ]ab

)
ψb(x). (8.1.12)

The matrix exp
(
iϕn · σ/2

)
is given explicitly by

exp
(
i
ϕ

2
n · σ

)
=




cos
ϕ

2
+ in3 sin

ϕ

2
(in1 + n2) sin

ϕ

2

(in1 − n2) sin
ϕ

2
cos

ϕ

2
− in3 sin

ϕ

2


 (8.1.13)

where n =
(
n1, n2, n3

)
.

For the spin S along an arbitrary unit vector
N =

(
sin θ cos φ, sin θ sin φ, cos θ

)
,
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N · S ≡ SN =
�

2


 cos θ sin θ e−iφ

sin θ eiφ − cos θ


 (8.1.14)

with eigenstates
∣∣1/2,N

〉
,
∣∣−1/2,N

〉
,

SN

∣∣±1/2,N
〉

= ±�

2

∣∣±1/2,N
〉

(8.1.15)

∣∣1/2,N
〉

=




cos
θ

2
e−iφ/2

sin
θ

2
eiφ/2


 ,

∣∣−1/2,N
〉

=



− sin

θ

2
e−iφ/2

cos
θ

2
eiφ/2


 . (8.1.16)

In particular,

∣∣1/2,N
〉

= cos
θ

2
e−iφ/2

(
1
0

)
+ sin

θ

2
eiφ/2

(
0
1

)
(8.1.17)

and with ẑ a unit vector along the z-axis,

∣∣1/2, ẑ
〉
≡ |+z〉 =

(
1
0

)
,

∣∣−1/2, ẑ
〉
≡ |−z〉 =

(
0
1

)
(8.1.18)

one obtains the amplitudes

〈
+z

∣∣1/2,N
〉

= cos
θ

2
e−iφ/2 (8.1.19)

〈
−z

∣∣1/2,N
〉

= sin
θ

2
eiφ/2. (8.1.20)

Similarly,

〈
+z

∣∣−1/2,N
〉

= − sin
θ

2
e−iφ/2 (8.1.21)

〈
−z

∣∣−1/2,N
〉

= cos
θ

2
eiφ/2. (8.1.22)

For example, for a particle with spin initially prepared in the state |+z〉,
which goes through a filtering process represented by a selective measurement∣∣1/2,N

〉〈
1/2,N

∣∣ symbol, the amplitude of a spin flip, i.e., that of the spin
of the particle to be found in the state |−z〉 is given by (§5.4)

〈
−z

∣∣1/2,N
〉 〈

1/2,N
∣∣+z

〉
= sin

θ

2
cos

θ

2
. (8.1.23)

This gives a probability of (sin2 θ)/4 of a spin flip, with a maximum proba-
bility of 25%, for θ = π/2.
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For an apparatus which allows both components
∣∣±1/2,N

〉
to go through,

the spin flip amplitude is reduced to zero

〈−z|
[∣∣1/2,N

〉〈
1/2,N

∣∣+ ∣∣−1/2,N
〉〈
−1/2,N

∣∣ ] |+z〉

= 〈−z |1|+z〉 = 〈−z |+z〉 = 0. (8.1.24)

As another example suppose a measurement of spin of a particle is carried
out along a direction specified by a unit vector n1 =

(
sin θ1, 0, cos θ1

)
followed

by a measurement of spin along n2 =
(
sin θ2, 0, cos θ2

)
, where θ1 �= θ2. If the

spin of the particle is initially prepared in the state |+z〉, then the probability
that a measurement of spin along n1 is found to be parallel to n1 followed
by a measurement of spin along n2 is found to be, say, parallel to n2 as well,
is given by

|〈+n2 |+n1〉 〈+n1 |+z〉|2 = cos2
(

θ1 − θ2

2

)
cos2

(
θ1

2

)
(8.1.25)

where we have used the notation
∣∣+1/2,n

〉
≡ |+n〉. On the other hand for

the reverse process of measurement of spin along n2, and found to be parallel
to n2, followed by a measurement along n1, and also found to be parallel to
n1, is given by

|〈+n1 |+n2〉 〈+n2 |+z〉|2 = cos2
(

θ1 − θ2

2

)
cos2

(
θ2

2

)
(8.1.26)

demonstrating, in particular, the inequivalence of the orders in which the
measurements are carried out.

8.1.2 Spin 1/2 in External Magnetic Fields

Consider a neutral particle of spin 1/2, such as the neutron (§8.2), with
magnetic moment µ < 0. Restricting for simplicity to the dynamics of the spin
only,2 the Hamiltonian for the interaction of spin with an external uniform
time-independent magnetic field B = |B|n is given by

H = −µ|B|n · σ = |µB|n · σ. (8.1.27)

Hence from (8.1.13), the time evolution operator is given by

U(t) = exp
(
− i

�
tH

)
=




cos
ωt

2
−in3 sin

ωt

2
−(in1 + n2) sin

ωt

2

−(in1 − n2) sin
ωt

2
cos

ωt

2
+ in3 sin

ωt

2




(8.1.28)
2 The more complete description, where the kinetic energy of the particle is not

neglected, or more precisely is not assumed to be negligible in comparison to the
spin part, will be studied in detail in §8.14 in the Stern-Gerlach effect.
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with ω = 2|µB|/�. For a particle initially prepared in the state |+z〉, the
amplitude of a spin flip at time t > 0, is then

〈−z |U(t)|+z〉 = −(in1 − n2) sin
ωt

2
(8.1.29)

giving a probability of spin flip of
(
n2

1 +n2
2

)
sin2 ωt/2. For a magnetic field in

the x-y plane and at time t = π/ω, the spin flip probability reaches a 100%.
Consider the time-dependent Hamiltonian

H(t) = −µBR(t) · σ (8.1.30)

for the interaction of spin with a time-dependent magnetic field BR(t), where
R(t) is the unit vector

R(t) =
(
sin θ cos ωt, sin θ sinωt, cos θ

)
. (8.1.31)

As an initial state |ψ(0)〉 of spin, we choose it to be the eigenstate of H(0).
That is,

|ψ(0)〉 =




cos
θ

2

sin
θ

2


 (8.1.32)

up to a phase factor.
Using the notation −µB = �ω0/2, the Hamiltonian in (8.1.30) may be

rewritten as

H(t) =
�ω0

2


 cos θ sin θ e−iωt

sin θ eiωt − cos θ


 . (8.1.33)

By setting

|ψ(t)〉 =


α+(t)

α−(t)


 (8.1.34)

the Schrödinger equation leads to the simultaneous equations

α̇+ = −i
ω0

2

[
cos θ α+ + sin θ e−iωtα−

]
(8.1.35)

α̇− = i
ω0

2

[
cos θ α− − sin θ eiωtα+

]
. (8.1.36)

With the initial condition in (8.1.32), the solutions of (8.1.35), (8.1.36) are
readily obtained (see Problem 8.2) to be conveniently written in the form

α+(t) = cos
θ

2

[
Ω + ω − ω0

2Ω
ei(Ω−ω)t/2 +

Ω − ω + ω0

2Ω
e−i(Ω+ω)t/2

]
(8.1.37)
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α−(t) = sin
θ

2
eiωt

[
Ω − ω − ω0

2Ω
ei(Ω−ω)t/2 +

Ω + ω + ω0

2Ω
e−i(Ω+ω)t/2

]

(8.1.38)

where
Ω =

√
ω2 − 2ωω0 cos θ + ω2

0 . (8.1.39)

This solution will find an interesting application in §8.13 on geometric
phases.

As an alternate initial condition to (8.1.32), consider the following one

|ψ(0)〉 =




cos
α

2

sin
α

2


 (8.1.40)

where3

sin α =
ω0 sin θ

Ω
(8.1.41)

cos α =
ω0 cos θ − ω

Ω
(8.1.42)

with Ω defined in (8.1.39). The solution then takes the particularly simple
form

|ψ(t)〉 =




cos
α

2
e−iωt/2

sin
α

2
eiωt/2


 e−itΩ/2. (8.1.43)

An application of this solution will be made in §8.13 on geometric phases.
Numerous additional applications of spin 1/2 devoted to concrete situa-

tions will be given in the remaining sections of this chapter. We next consider
the dynamics of spin in a general time-dependent magnetic field.

By absorbing the magnetic moment µ of the particle in question in the
magnetic field, we consider the Schrödinger equation

i�
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 (8.1.44)

with time-dependent Hamiltonian

H(t) =
�

2
K(t) · σ (8.1.45)

where K(t) is a time-dependent vector.

3 Such an initial condition is also considered in Lin (2002) and references therein.
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We prepare the spin of the particle in an initial state |ψ(0)〉 as an eigen-
state of n0 · σ, where n0 is an arbitrary unit vector,

n0 =
(
sin θ0 cos φ0, sin θ0 sinφ0, cos θ0

)
(8.1.46)

with
n0 · σ |ψ(0)〉 = |ψ(0)〉 . (8.1.47)

Hence |ψ(0)〉 may be chosen to be

|ψ(0)〉 =




cos
θ0

2
e−iφ0/2

sin
θ0

2
eiφ0/2


 (8.1.48)

up to a phase factor.
Let n(t) be a unit vector satisfying the equation4

ṅ(t) = K(t) × n(t) (8.1.49)

with initial condition
n(0) = n0 (8.1.50)

then, as is easily shown below, the solution |ψ(t)〉 of (8.1.44) is an eigenstate
of n(t) · σ, that is,

n(t) · σ |ψ(t)〉 = |ψ(t)〉 . (8.1.51)

To establish (8.1.51), we partition the interval [0, t] into infinitesimally
small sub-intervals. For t = 0, (8.1.51) coincides with (8.1.47) since n(0)
satisfies (8.1.50). Therefore, it is sufficient to show that (8.1.51) is true for
infinitesimally small ∆t to complete the demonstration by induction.

To the above end, it is readily checked that

d
dt

[
n(t) · σ |ψ(t)〉

]
= − i

2
K(t) · σ

[
n(t) · σ |ψ(t)〉

]
(8.1.52)

where we have used (8.1.49) and (8.1.44). Hence for ∆t � 0

n(∆t) · σ |ψ(∆t)〉 = n(0) · σ |ψ(0)〉 − i
2
K(0) · σ

[
n(0) · σ |ψ(0)〉

]
∆t

= |ψ(0)〉 − i
2
K(0) · σ |ψ(0)〉∆t

= |ψ(∆t)〉 (8.1.53)

4 Cf. Lin (2002), and references therein; Wagh and Rakhecha (1993); Feynman
et al. (1957).
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as following from (8.1.44), (8.1.47), (8.1.52). That is (8.1.51) is true for t = ∆t
as well and hence for all t by induction.

Since the unit vector n(t), may be parameterized as

n(t) =
(
sin θ(t) cos φ(t), sin θ(t) sin φ(t), cos θ(t)

)
(8.1.54)

the solution of the Schrödinger equation (8.1.44) may be written from (8.1.51)
as

|ψ(t)〉 =




cos
θ(t)
2

e−iφ(t)/2

sin
θ(t)
2

eiφ(t)/2


 (8.1.55)

up to a phase factor.

8.1.3 Two-Level Systems; Exponential Decay

Suppose that transitions occur between two levels, which we denote by
|0〉 and |1〉 with corresponding energies E0 and E1, with E1 > E0. We may
introduce creation a†

F and annihilation aF operators connecting these two
levels

a†
F |0〉 = |1〉 (8.1.56)

aF |1〉 = |0〉 . (8.1.57)

For transitions that are restricted to these two levels, we have
(
a†
F

)2 = 0,
(aF)2 = 0, for example, and the operators aF, a†

F satisfy anti -commutation
rules (cf. (6.4.2), (6.4.3)).

By representing the states |0〉, |1〉, for example, by
(
0 1

)�,
(
1 0

)�, we may
write the Hamiltonian, in the absence of interaction, i.e., the free Hamiltonian
as

H0 =
(

E1 0
0 E0

)
=

E0 + E1

2
+

E1 − E0

2
σ3 (8.1.58)

where σ3 is a Pauli matrix.
For the interaction Hamiltonian causing transitions between these two

levels, we consider the simple structure

HI =
(

0 V
V ∗ 0

)
(8.1.59)

where V may be time-dependent.
Thus upon writing the solution of the time evolution problem as

|ψ(t)〉 = e−i(E0+E1)t/2�

(
a(t)
b(t)

)
(8.1.60)
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the Schrödinger equation for |ψ(t)〉 leads to

i�
d
dt

(
a(t)
b(t)

)
=

�ω

2
σ3

(
a(t)
b(t)

)
+
(

0 V
V ∗ 0

)(
a(t)
b(t)

)
(8.1.61)

where
E1 − E0 ≡ �ω (8.1.62)

and we have the normalization condition

|a(t)|2 + |b(t)|2 = 1. (8.1.63)

We may introduce the unit vector

n(t) =
(
a(t)b∗(t) + a∗(t)b(t), i

[
a(t)b∗(t) − a∗(t)b(t)

]
, |a(t)|2 − |b(t)|2

)
(8.1.64)

and an angular frequency vector

Ω =
1
2

(
V + V ∗, i

(
V − V ∗), �ω

)
(8.1.65)

depending on V , and it may, in general, be time-dependent. It is then readily
checked directly from (8.1.61) that it may be rewritten in the form5 (8.1.49),
i.e.,

d
dt

n(t) = Ω × n(t). (8.1.66)

It is easily verified, that with the parametrization a(t) =
cos

(
θ(t)/2

)
e−iφ(t)/2, b(t) = sin

(
θ(t)/2

)
eiφ(t)/2, n(t) in (8.1.64) coincides

with the expression in (8.1.54). The system in (8.1.61), in particular, will be
considered in §8.12 in analyzing the fundamental problem of the rotation of
a spinor, corresponding to a two-level system, by 2π radians.

We close this section, by considering the following Hamiltonian to describe
transitions in a two-level system6

H =
E0 + E1

2
+

E1 − E0

2
σ3 +

∑
k

�ωk b†k bk + HI (8.1.67)

HI = a†
F

∑
k

λk bk + aF

∑
k

λ∗
k b†k (8.1.68)

where a†
F, aF are the creation, annihilation operators introduced in (8.1.56),

(8.1.57) and may be represented as

a†
F =

(
0 1
0 0

)
≡ σ+ (8.1.69)

5 Feynman et al. (1957), see also see this paper for other related details.
6 The energy levels may be considered to denote the mid-points of the correspond-

ing energy linewidths.
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aF =
(

0 0
1 0

)
≡ σ− (8.1.70)

satisfying anti-commutation relations, and b†k, bk are creation, annihilation
operators of a photon of energy �ωk satisfying commutation relations.

Unlike the interaction in (8.1.59), where V is a priori given external po-
tential, the interaction in (8.1.68), which may also cause transitions between
the two levels, is due to photons which are treated dynamically though in a
simplified manner.

Suppose that the two-level system is initially in the state |1〉, we then in-
vestigate the nature of the survival probability (§3.5) for the two-level system
to stay in the state

(
1 0

)�.
To do this, we consider the Schrödinger equation

i�
d
dt

|ψ(t)〉 = H |ψ(t)〉 (8.1.71)

write
|ψ(t)〉 = e−itH0/� |φ(t)〉 (8.1.72)

where H0 is the free Hamiltonian part in (8.1.67), to obtain (the so-called
interaction picture)

i�
d
dt

|φ(t)〉 = HI(t) |φ(t)〉 (8.1.73)

where

HI(t) = eitH0/� HI e−itH0/�

= σ+
∑

k

λk bk e−i(ωk−ω)t + σ−
∑

k

λ∗
k b†k ei(ωk−ω)t. (8.1.74)

Hence upon writing

|φ(t)〉 =


|A(t)〉

|B(t)〉


 (8.1.75)

in (8.1.73), we have

i�
d
dt

|A(t)〉 =
∑

k

λk bk e−i(ωk−ω)t |B(t)〉 (8.1.76)

i�
d
dt

|B(t)〉 =
∑

k

λ∗
k b†k ei(ωk−ω)t |A(t)〉 (8.1.77)

where we have used the expressions for the matrices in (8.1.69), (8.1.70).
Upon multiplying (8.1.77) by the operator bk and using the commutation

relations of bk, b†k, we obtain
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i�
d
dt

〈0 |bk|B(t)〉 = λ∗
k ei(ωk−ω)t 〈0 |A(t)〉 (8.1.78)

where we have also used the fact that 〈0| b†k = 0, and |0〉, here, denotes the
‘no-photon’ state.

Equations (8.1.76), (8.1.78) then yield

d
dt

〈0 |A(t)〉 = − 1
�2

∑
k

|λk|2
∫ t

0

dτ e−i(ωk−ω)τ 〈0 |A(t − τ)〉 . (8.1.79)

The survival probability of the system to stay in the state
(
1 0

)� is then

P (t) = |〈0 |A(t)〉|2 . (8.1.80)

To see this note that if we write |ψ(t)〉 =
(
α(t) β(t)

)�, then

〈0 |α(t)〉

〈0 |β(t)〉


 = 〈0| e−itH0/�


|A(t)〉

|B(t)〉




=


e−iE1t/� 〈0 |A(t)〉

e−iE0t/� 〈0 |B(t)〉


 (8.1.81)

and |〈0 |α(t)〉|2 = |〈0 |A(t)〉|2, where we have used the fact that 〈0| b†k = 0 as
arising from the application of the free photon Hamiltonian to 〈0|.

Using a continuous variable extension of the photon energy, replacing the
sum over k in (8.1.79) by an integral over ω′, and setting

〈0 |A(t)〉 = F (t) (8.1.82)

we may rewrite (8.1.79) as

d
dt

F (t) = − 1
�2

∫ ∞

0

dω′ |λ(ω′)|2 n(ω′)
∫ t

0

dτ e−i(ω′−ω)τ F (t − τ) (8.1.83)

where λ(ω′) is a continuous variable extension and n(ω′) denotes the density
of such states.

We use the relation

e−i(ω′−ω)τ =
d
dτ

[
e−i(ω′−ω)τ − 1
−i(ω′ − ω)

]
(8.1.84)

and integrate by parts over τ in (8.1.83) to obtain

d
dt

F (t) = −F (t)
(

I(t) +
d
dt

R[F ; t]
)

(8.1.85)
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where

I(t) =
1
�2

∫ ∞

0

dω′ |λ(ω′)|2 n(ω′)

[
e−i(ω′−ω)t − 1
−i(ω′ − ω)

]
(8.1.86)

R[F ; t] =
1
�2

∫ ∞

0

dω′ |λ(ω′)|2 n(ω′)

×
∫ t

0

dt′
∫ t′

0

dτ

[
e−i(ω′−ω)τ − 1
−i(ω′ − ω)

] [
1

F (t′)
d
dt′

F (t′ − τ)
]

. (8.1.87)

Equation (8.1.85) gives for the survival probability in (8.1.80)/(8.1.82),

P (t) = C(t) exp
[
−G(t)

]
,

G(t) =
∫ t

0

dt′
[
I(t′) + I∗(t′)

]
(8.1.88)

and
C(t) =

∣∣exp
(
−R[F ; t]

)∣∣2 . (8.1.89)

The time-integral in (8.1.88) is easily evaluated to yield

G(t) =
1
�2

∫ ∞

0

dω′ |λ(ω′)|2 n(ω′)
[
sin(ω′ − ω)t/2

(ω′ − ω)/2

]2

=
2t

�2

∫ ∞

−ωt/2

dx

∣∣∣∣λ
(

ω

[
1 +

2x

ωt

])∣∣∣∣
2

n

(
ω

[
1 +

2x

ωt

]) [
sinx

x

]2

. (8.1.90)

The function sinx/x peaks at the origin, and is concentrated mainly in the
region |x| � π. We make the Markov approximation7 by assuming that
|λ(ω′)|2 n(ω′) is a slowly varying function around the point of resonance
ω′ = ω and hence for ωt/2 � π, it may be taken outside the integral in
(8.1.90), evaluated at ω′ = ω, with increasing accuracy for t � 1/ω, thus
obtaining

G(t) � 2t

�2
|λ(ω)|2 n(ω)

∫ ∞

−ωt/2

dx

[
sinx

x

]2

(8.1.91)

and for t � 1/ω, 8

G(t) � 2t

�2
|λ(ω)|2 n(ω)π (8.1.92)

which allows us to set

7 The Markov approximation will be discussed further in §12.7 in terms of so-called
correlation functions.

8 Note that for �ω expressed in eV, t � 1/ω � (1 eV/�ω) × 10−15 s.



432 8 Quantum Physics of Spin 1/2 & Two-Level Systems

2
�2

|λ(ω)|2 n(ω)π ≡ γ (8.1.93)

For 1/γ � t, but t � 1/ω, it is not difficult to show that if we formally
replace

(
dF (t′ − τ)/dt′

)/
F (t′) by γ, then C(t) � exp

[
O(γ2t2)

]
.

Accordingly, in the above mentioned time limits, we obtain for the survival
probability P (t) the exponential decay law

P (t) � e−γt (8.1.94)

with γ defined in (8.1.93). For t short enough, this defines a weak coupling
limit by 1/γ � t. The time t, however, is taken large enough so that t � ω.
In particular, the latter condition implies that we must have γ � ω which is
a well known property relating decay widths Γ = �γ and energy shifts �ω.

Remarks 1
1. The exponential decay law in (8.1.94) holds for t not too small and t not

too large, as discussed above and is in the light of the general analysis of
decay in §3.5.

2. If one formally replaces |λ(ω′)|2 n(ω′) by a constant in (8.1.83) and ex-
tends the ω′ limit of the corresponding integral to −∞, thus obtaining a
Dirac delta δ(τ) in the integrand, then this equation may be readily in-
tegrated to yield the exponential decay law in (8.1.94). Such a procedure,
although used by some authors, involves, according to the above analysis,
the implicit assumption of a limit set on the time variable, and the ex-
ponential decay law (8.1.94) cannot hold true exactly for all t. Otherwise
one would run into a contradiction with the general analysis of decay in
§3.5.

3. Equation (8.1.83) may be also used self-consistently to investigate the
behavior of the survival probability P (t) in the truly asymptotic limits
t → 0, t → ∞ by basing the analysis on some sufficiency convergence
conditions to be satisfied and will be left as an exercise to the reader (see
Problem 8.3).

Another derivation of the exponential decay law (8.1.94) will be given in
§12.7 by working directly with the density operator.

8.2 The Pauli Hamiltonian; Supersymmetry

8.2.1 The Pauli Hamiltonian

The non-relativistic quantum dynamical equation of a spin 1/2 charged
particle of charge e in an external vector potential A and scalar potential U
may be derived in the following manner.

One may start with the Schrödinger equation for a free particle
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(

p2

2M
− i�

∂

∂t

)
|ψ〉 = 0 (8.2.1)

which upon using the identity (7.4.4) leads to9

[
(p · σ)(p · σ)

2M
− i�

∂

∂t

]
|ψ〉 = 0. (8.2.2)

Now one makes the so-called minimal coupling substitutions

p −→ p − e

c
A, i�

∂

∂t
−→ i�

∂

∂t
− U (8.2.3)

to obtain, by finally using the identity (7.4.31) (see also Problem 7.13),
[

1
2M

(
p − e

c
A
)2

− ge

2Mc
S · B + U

]
|ψ〉 = i�

∂

∂t
|ψ〉 (8.2.4)

known as the Pauli equation, where S = �σ/2, g = 2, B = ∇ × A.
The so-called g-factor of the electron, for example, is given approximately

by g = 2
(
1+α/2π

)
, rather than 2, according to the leading order correction in

quantum electrodynamics, where α = e2/�c is the fine-structure constant.10
A computation of g within the realm of quantum mechanics for the inter-
action of a non-relativistic electron with radiation will be given in §8.5. Its
observational aspect will be also discussed there.

By formally replacing ge�/4Mc by µ in (8.2.4) and then taking the limit
e → 0 in the latter equation, one also obtains the Pauli equation for a neutral
spin 1/2 particle interacting with the magnetic field given by −µ · B, and
µ = µσ denoting the magnetic dipole moment. This will be used in the study
of the spin precession of the neutron in §8.4, where the radiation loss due to
the interaction of its spin with the magnetic field set up by radiation is also
investigated.

An application of (8.2.4) was given in §7.9 for the interaction of spin 1/2
with a constant sufficiently strong magnetic field B along the z-axis11 such
that the potential VF, responsible for the fine-structure of the hydrogen atom,
is small in comparison to the magnetic field contribution, where U is the
coulomb potential due to the proton. The Pauli equation in (8.2.4), as it
stands, provides an approximation to the more precise treatment, including
relativistic corrections given in §7.4, for the hydrogen atom.
9 See also §7.4, in general.

10 For a phenomenological treatment of the g-factor, one may formally add a term
−(κe/Mc)S · B to the left-hand side of (8.2.4) giving rise to −(ge/2Mc)S · B,
where now g = 2

(
1 + κ/2

)
, for the interaction with the magnetic field. This,

however, is no substitute to a dynamical treatment of g as done in §8.5 for the
electron.

11 See (7.9.13) and below it, where the magnetic field is not too strong so that
quadratic term in A may be neglected (see (7.9.6)).
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For B a uniform time-independent magnetic field, say, along the z-axis,
with U = 0, the eigenvalue problem corresponding to (8.2.4) will be studied
in the next section, and is also discussed below to some extent, leading to
the so-called Landau energy levels. Equation (8.2.4) will be used in §8.14 to
study the quantum dynamics involved in the Stern-Gerlach effect.

For a purely time-dependent magnetic field B(t), the contribution of the
spin involves an overall multiplicative factor in the solution of (8.2.4) as
follows. By setting,

|ψ(t)〉 =
(

exp
[

i
�

∫ t

0

dt′ µ · B(t′)
])

+

|φ(t)〉 (8.2.5)

where (·)+ denotes the time-ordered product (see Appendix to §2.5), then
|φ(t)〉 satisfies the simpler equation

[
1

2M

(
p − e

c
A
)2

+ U

]
|φ〉 = i�

∂

∂t
|φ〉 (8.2.6)

where µ = µσ, µ = ge�/4Mc in (8.2.5).
In particular, for a constant magnetic field B = Bn, where n is a constant

unit vector, (8.2.5) gives (see (8.1.12)),

|ψ〉 =
[
cos

(
µBt

�

)
1 + i sin

(
µBt

�

)
n · σ

]
|φ〉 . (8.2.7)

8.2.2 Supersymmetry

In §4.7 through (4.7.33)–(4.7.38), we have seen that for a magnetic field
B along the z-axis, one may define supersymmetry generators Q, Q† (see
(4.7.34), (4.7.37)) such that in 2D and 3D, the Pauli Hamiltonian in (8.2.4),
with U = 0, has the formal structure (see §2.9) of a supersymmetric Hamil-
tonian

H =
1
2�

{
Q,Q†} (8.2.8)

taking the forms (π = p − eA/c)

H =
π2

1 + π2
2

2M
− e�

4Mc
gBσ3 (8.2.9)

and

H =
π2

1 + π2
2 + π2

3

2M
− e�

4Mc
gBσ3 (8.2.10)

respectively, where g = 2, B =
(
0, 0, B

)
, for a particle of mass M .

One of the most attractive features of the supersymmetric Hamiltonian
in (8.2.8) is the formal non-negativity of its spectrum (see (4.7.5)).

In particular, for a constant magnetic field B = (0, 0, B), B > 0 with
vector potential in the gauge
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A =
B

2
(
−y, x, 0

)
(8.2.11)

with motion restricted in 2D in the x-y plane, we will see in the next section,
that the eigenstates are given by

ψn,m,σ(r) = Cn,m

(
ρ2
)|m|/2

L|m|
n

(
ρ2
)
exp imφ exp

(
−ρ2/2

)(δσ,+1

δσ,−1

)

(8.2.12)
where n = 0, 1, . . .; m = 0,±1,±2, . . .,

ρ2 =
Mω

2�
r2, ω =

|eB|
Mc

(8.2.13)

r = (x, y), x = r cos φ, y = r sin φ (8.2.14)

Cn,m =
(

Mω

2π�

)1/2

[(
n + |m|+m

2

)
!
(
n + |m|−m

2

)
!
]1/2

(n + |m|)! (−1)n+|m|+m (8.2.15)

for e < 0 (as for the electron), and L
|m|
n (ρ2) are the associated Laguerre

polynomials introduced in (7.3.16) now of argument ρ2.
The eigenstates satisfy the normalizability condition∫

d2r |ψn,m,σ(r)|2 = 1. (8.2.16)

The eigenvalues are given by

En,m,σ = �ω

(
n +

|m| + m

2
+

1
2

+
g

4
σδσ,±1

)
(8.2.17)

for e < 0, n = 0, 1, . . .; m = 0,±1, . . ., and we have deliberately kept g in the
expression for En,m,σ in (8.2.17).

For g = 2, the ground-state energy (which is infinitely degenerate) is zero,
as it should be by supersymmetry, corresponding to n = 0, m = 0,−1,−2, . . ..
As a matter of fact a ground-state vector, corresponding to m = 0, or −1, or
. . . , and n = 0, is given from (8.2.12) to be

ψ0,m,−1(r) =
1√

π|m|!

(
Mω

2�

)(|m|+1)/2

(x−iy)|m| exp
(
−Mω

4�
(x2 + y2)

)(
0
1

)
.

(8.2.18)
On the other hand from (4.7.34)

Q =

√
�

m

(
−i

(
∂

∂y
+

Mωy

2

)
+
(

∂

∂x
+

Mωx

2

))(
0 1
0 0

)
(8.2.19)

for e < 0, satisfy the supersymmetry relations (4.7.6), (4.7.7). Condition
(4.7.7) is trivially satisfied. Condition (4.7.6) is readily checked by explicitly
applying Q in (8.2.19) to (8.2.18) giving
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Qψ0,m,−1 = 0
(

0
1

)
(8.2.20)

as expected for g = 2.

8.3 Landau Levels; Expression for the g-Factor

In this section, we derive the expression for the Landau levels quoted in
§8.2 through (8.2.11)–(8.2.18), and also obtain a useful relationship between
the g-factor and such levels. The latter will be used, in the process in §8.5,
to compute the anomalous magnetic moment of the electron.

8.3.1 Landau Levels

Consider the Hamiltonian H in (8.2.9) with the electron (e < 0) restricted
to a plane with a transverse constant magnetic field to it and vector potential
in the gauge given in (8.2.11).

The eigenvalue equation for the Pauli matrix σ3 may be conveniently
written as

σ3

(
δσ,+1

δσ,−1

)
= σ

(
δσ,+1

δσ,−1

)
, σ = ±1 (8.3.1)

where we note that σ3 commutes with H.
Let

H0 =
π2

1 + π2
2

2M
(8.3.2)

and hence H = H0 + |eB|�gσ3/4Mc, where

π1 = px − Mω

2
y, π2 = py +

Mω

2
x (8.3.3)

[π1, π2] = −iM�ω (8.3.4)

and ω is the so-called cyclotron angular frequency given by

ω = |eB|/Mc. (8.3.5)

Upon defining the operators (see also (4.7.34))

A =
1√

2m�ω
(π2 + iπ1), A† =

1√
2m�ω

(π2 − iπ1) (8.3.6)

we have [
A,A†] = 1 (8.3.7)

H0 = �ω
(
A†A + 1/2

)
(8.3.8)

[H0, A] = −�ωA, [H0, A
†] = +�ωA† (8.3.9)
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and the following commutation relationships with the third component Lz =
xpy − ypx of the orbital angular momentum

[Lz, A] = −�A, [Lz, A
†] = +�A† (8.3.10)

[Lz,H0] = 0. (8.3.11)

The unit of energy �ω is sometimes referred to as the Landau-Larmor energy.
The commutation relations (8.3.7), (8.3.9) are just those of the harmonic

oscillator problem. Hence, by using in the process of the commutativity of
Lz with H0 in (8.3.11), we have simultaneous eigenstates |N,m〉 of A†A, Lz,

A†A |N,m〉 = N |N,m〉 (8.3.12)

Lz |N,m〉 = �m |N,m〉 (8.3.13)

and by using (8.3.9), (8.3.11) and (6.1.30)

A† |k, q〉 =
√

k + 1 |k + 1, q + 1〉 (8.3.14)

using a general notation of the states |k, q〉 for convenience.
For the ground state energy of A†A, we have

A†A |0,−q〉 = 0 (8.3.15)

Lz |0,−q〉 = −�q |0,−q〉 (8.3.16)

A |0,−q〉 = 0 (8.3.17)

and, as we will see below, the square-integrability of a state |0,−q〉 requires
that the integer q to be non-negative, i.e., q = 0, 1, 2, . . ..

From the definition of A in (8.3.6), (8.3.17) leads to the following differ-
ential equation for 〈x, y|0,−q〉 ≡ ψ0,−q(x, y)

[
−i

(
∂

∂y
+

Mω

2
y

)
+
(

∂

∂x
+

Mω

2
x

)]
ψ0,−q(x, y) = 0. (8.3.18)

This equation together (8.3.16), then give the normalized solution

ψ0,−q(x, y) =
1√
πq!

(
Mω

2�

)(q+1)/2

(x−iy)q exp
(
−Mω

4�

(
x2 + y2

))
(8.3.19)

and q = 0, 1, . . . for square-integrability of ψ0,−q(r),
∫

d2r |ψ0,−q(r)|2 = 1 (8.3.20)

where r = (x, y).
Upon setting x = r cos φ, y = r sin φ, (8.3.19) may be rewritten as
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ψ0,−q(r) =

√
Mω/2π�√

q!

(
Mω

2�
r2

)q/2

exp(−iqφ) exp
(
−Mω

4�
r2

)
. (8.3.21)

For the purpose of obtaining all of the eigenvectors, it is convenient to set
√

Mω

2�
r = ρ. (8.3.22)

In terms of the variables ρ and φ, A† in (8.3.6) may be rewritten as

A† = ρeiφ

{
− ∂2

∂ρ2
+

1
2
− i

2ρ2

∂

∂φ

}
. (8.3.23)

From (8.3.21), and (8.3.14) with k = 0, q → −q,

〈r|0,−q〉 =

√
Mω/2π�√

q!0!

(
ρ2
)−q/2

[(
ρ2
)q
]
exp(−iqφ) exp

(
−ρ2/2

)
(8.3.24)

〈r |1, 1 − q〉 =

√
Mω/2π�√

q!1!

(
ρ2
)(1−q)/2

(−1)
[(

ρ2
)q−1

(q − ρ2)
]

× exp(i(1 − q)φ) exp
(
−ρ2/2

)

=

√
Mω/2π�√

q!1!

(
ρ2
)(1−q)/2

exp(i(1 − q)φ) exp
(
−ρ2/2

)

× (−1)

[
exp ρ2

(
d
dρ2

)1
(ρ2)q exp(−ρ2)

]
. (8.3.25)

Therefore, as an induction hypothesis, suppose that

〈r |k, k − q〉 =

√
Mω/2π�√

q!k!

(
ρ2
)(k−q)/2

exp(i(k − q)φ) exp
(
−ρ2/2

)

× (−1)k

[
eρ2

(
d
dρ2

)k

(ρ2)q exp−ρ2

]
(8.3.26)

for some k > 1, which is obviously true for k = 0, 1, then we show that (8.3.26)
is true for k replaced by k + 1 as well. This directly follows by explicitly
applying A†, in (8.3.23), to (8.3.26) and then using (8.3.14).

It is not difficult to verify that
[
eρ2

(
d
dρ2

)k

(ρ2)qe−ρ2

]
=(−1)k−qk!q!

q∑
l=0

(−1)l

(q − l)!(k − q + l)!
(ρ2)l

l!
,
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for k > q (8.3.27)

and

=(ρ2)q−kk!q!
q∑

l=0

(−1)l

(k − l)!(q − k + l)!
(ρ2)l

l!
,

for q > k (8.3.28)

which are polynomials in ρ2 of degree q. From (7.3.16), we here recognize
the sums over l to denote [(|k − q| + n)!]−1 times the associated Laguerre
polynomial L

|k−q|
n (ρ2), of argument ρ2, where

n = min(k, q) (8.3.29)

using the normalization adopted in (7.3.16).
That is,[

eρ2
(

d
dρ2

)k

(ρ2)qe−ρ2

]
=

(−1)(|m|+m)/2(ρ2)(|m|−m)/2k!q!
(|m| + n)!

L|m|
n (ρ2)

(8.3.30)
with

m = k − q (8.3.31)

(see also (8.3.26), (8.3.13)).
We note that (8.3.29), (8.3.31) allow one to write

q = n +
|m| − m

2
(8.3.32)

k = n +
|m| + m

2
. (8.3.33)

All told, we have from (8.3.1), (8.3.2), (8.3.12), (8.3.13), (8.3.26), (8.3.29)–
(8.3.33) for k = N , that the eigenvectors ψn,m,σ of H are given in (8.2.12)
with eigenvalues in (8.2.17), where

En,m,σ = �ω

(
N +

1
2

+
g

4
σδδ,±1

)
(8.3.34)

with N = n + (|m| + m)/2 as given in (8.3.33) for k = N . [For a spin 0
charged particle with e < 0 simply replace g by 0.]

In particular, for the supersymmetric case (§8.2) g = 2, and the ground
state energy 0 corresponds to n = 0, σ = −1, and m = 0,−1,−2, . . ..

The results derived in this section, as they stand, are also valid for e > 0
if the choice B < 0 is made, i.e., if the magnetic field is taken to be along the
negative of the z-axis.12

12 In the literature the choice eB > 0 is sometimes made.
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8.3.2 Expression for the g-Factor

We derive a convenient expression for the g-factor, as arising from the
Landau levels, which will be used in the process of a computation of the
anomalous magnetic moment of the electron in §8.5.

To the above end, it is more convenient to consider the problem in the
momentum description, and work in the gauge specified by a vector potential
(B > 0)

A = B(−y, 0, 0). (8.3.35)

In the momentum description, the Hamiltonian in (8.2.10) is given by

H =
1

2M

(
i|e|B

c
�

∂

∂p2
+ p1

)2

+
p2
2

2M
+

p2
3

2M
+

|e|�
4Mc

gσ3B (8.3.36)

where now g is left arbitrary, and we note that p1, p3 are just c-numbers.
We may then consider the limiting case with p1,p3 → 0 and work in one-
dimension along p2.

Upon setting
Ω =

c

|e|BM
(8.3.37)

one is then led to solve the equation[
− �

2

2m

∂2

∂p2
2

+
MΩ2

2
p2
2

]
Ψ(p2) = εΨ(p2) (8.3.38)

where for the energy E we have

E =
1

M2Ω2
ε +

gσ

4M2Ω
(8.3.39)

σ = ±1, and the eigenvalues ε are given below.
From the harmonic oscillator problem, the eigenvalues in (8.3.38) are given

by εn = �Ω
(
n+1/2

)
, n = 0, 1, . . ., and hence we may write for E in (8.3.39)

E(n, σ) =
|e|Bσ�

4Mc

[
(4n + 2)σ + g

]
(8.3.40)

where we have used the fact that (σ)2 = +1. This leads to the following
useful relationship upon differentiation with respect to B,

−2Mc

|e|�
∂

∂B
E(n = 0, σ = −1)

∣∣∣∣
B=0,p1,p3=0

=
g − 2

2
. (8.3.41)

For the ground state corresponding to (8.3.38), we obviously have

Ψ0(p2) =
(

MΩ
π�

)1/4

exp
(
−MΩ

2�
p2
2

)
(8.3.42)

normalized with respect to the measure dp2. With a proper normalization,
we will see in §8.5, how the physical 3D problem may be reduced to a com-
putation in 1D for the anomalous magnetic moment of the electron.
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8.4 Spin Precession and Radiation Losses

We consider the Hamiltonian of a neutron, an uncharged particle of
spin 1/2, in a uniform and time-independent magnetic field

H =
p2

2Mn
− µnσ · B (8.4.1)

where the magnetic moment µn is about

µn = −9.66 × 10−27 J/T. (8.4.2)

The commutator of the spin S = �σ/2 and the Hamiltonian H is easily
worked out to be

[S ,H] = 2iµnS × B. (8.4.3)

From the time-development of an operator O(t) = eitH/� O e−itH/�, we
have

d
dt

S(t) =
2µn

�
S(t) × B. (8.4.4)

In particular, for components perpendicular ⊥ or parallel ‖ to B,

d2

dt2
S⊥(t) = −4µ2

nB2

�2
S⊥(t) (8.4.5)

d
dt

S‖(t) = 0. (8.4.6)

Taking expectation values of the above yield the solutions
〈
S⊥(t)

〉
= a cos(ωnt + δ) (8.4.7)

〈
S‖(t)

〉
=
〈
S‖(0)

〉
(8.4.8)

where a is a constant vector, showing the precession of the spin about the
magnetic field B, with angular frequency

ωn =
2|µnB|

�
(8.4.9)

with the projection
〈
S‖(t)

〉
along B being constant in time.

Let B =
(
0, 0, B

)
, B > 0, then due to the precession of the spin, the

neutron, from an excited state
(

1
0

)
, for |p| → 0, with energy

E+ = |µn|B (8.4.10)

may fall to the ground-state
(
0 1

)�, for |p| → 0, of energy E− = −|µn|B
by the emission of a photon of energy �kc = 2|µn|B. The mean lifetime
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of such a transition is, however, too large for all practical values of B. For
B � 1 T, the mean lifetime τ is ∼ 1025 s, and hence such radiation losses are
not significant, in general, unless one is dealing with huge magnetic fields of
millions T encountered in astrophysics.

Due to the uncharged nature of the neutron the mean lifetime τ is easily
estimated. To this end, the total Hamiltonian of the neutron in the magnetic
field B, in the presence of radiation is given by (see also §7.7)

HI =
p2

2Mn
+ H0,RAD − µnσ3B − µnσ · (∇ × ARAD) (8.4.11)

where ARAD is the radiation field (§7.7).

For a state |p〉
(

1
0

)
, we have, in a similar manner as obtaining (7.7.28),

(7.7.37), to second order in the radiation field, due to the presence of radia-
tion, the energy shift ∆ε, (see also (7.7.35))

∆ε (2π)3 δ3(p − p′)

= µ2
n(4π�c)

∑
λ

∫
d3k

(2π)3 2|k|

(
1
0

)�
〈p′|

{
(iσ × k) · eλ

× 1
p2

2Mn
+ |µn|B − (p′ − �k)2

2Mn
+ |µn|σ3B − �|k|c + iε

× (−iσ × k) · eλ

}(
1
0

)
|p〉 (8.4.12)

where the +iε is to account for the decay under study.
Let

D =
p′2

2Mn
− p2

2Mn
− p′ · �k

Mn
+ �|k|c +

�
2k2

2Mn
− iε (8.4.13)

then

1
D − |µn|B − |µn|σ3B

=




1
D − 2|µn|B

0

0
1
D


 . (8.4.14)

Also using (see (§7.7))
∑

λ

[
(σ × k) · eλ

]
[. . .]

[
(σ × k) · eλ

]
= (σ × k) · [. . .](σ × k)

=
(
δab k2 − ka kb

)
σa[. . .]σb. (8.4.15)
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From (8.4.14), (8.4.15), the expression for (8.4.12) becomes

∆ε(p) (2π)3 δ3(p − p′)

= −µ2
n�c

4π2
(2π)3 δ3(p − p′)

∫
d3k
|k|

{
2k2 − k2

1 − k2
2

D
+

k2 − k2
3

D − 2|µn|B

}
.

(8.4.16)

Upon integration over p′, taking the limit p → 0, and performing the
k-angular integration in (8.4.16), we obtain

∆ε(0) = −µ2
n�c

π

∫
k3dk




4
3

1(
�kc +

�
2k2

2M
− iε

)

+
2
3

1(
�kc +

�
2k2

2M
− 2|µn|B − iε

)



. (8.4.17)

The first term in the curly brackets is independent of B. For a neutron, in
the absence of an external magnetic field B, in the ever presence of radiation
interacting with its spin, the shift in energy in (8.4.17) should be zero. This
amounts to carrying out a renormalization (see also §7.7, §8.5) by subtract-
ing off the corresponding expression to the one within the curly brackets in
(8.4.17) evaluated at B = 0.13

Accordingly,

∆εRen(0) = −2
3

µ2
n�c

π

∫
k3dk




1(
�kc +

�
2k2

2M
− 2|µn|B − iε

)

− 1(
�kc +

�
2k2

2M
− iε

)



. (8.4.18)

By taking the imaginary part of the above (see (7.7.30)–(7.7.32), §7.8),
we obtain for the decay constant14

13 Actually this term does not contribute to the decay rate (or the mean lifetime)
we are seeking.

14 Decays due to precession of the spin in a magnetic field was also previously
considered, by different methods, cf., Stump and Pollack (1998).

A-8.14 Appendix to §8.14
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Γ =
4
3
µ2

n

∫
k3dk

{
δ

(
k +

�k2

2Mc
− 2|µn|B

�c

)
− δ

(
k +

�k2

2Mc

)}
. (8.4.19)

For most practical cases (see (8.4.2)), |µn|B � Mc2, and (8.4.19) gives

Γ =
32
3
|µn|5B3

�3c3
(8.4.20)

where the second term in (8.4.19) does not contribute.
For B ∼ 1 T, the mean lifetime is τ = �/Γ ∼ 1025 s, which is incredibly

large and not significant unless huge magnetic fields are considered within
the realm of astrophysics of millions T.

The real part of (8.4.18) gives rise to a very small correction (contribution)
to the magnetic moment µn (see Problem 8.9, §8.5).

8.5 Anomalous Magnetic Moment of the Electron

In this section, we consider the measurement as well as an explicit com-
putation of the deviation (g − 2) of the gyromagnetic factor of the electron.

We first consider the Hamiltonian of an electron in interaction with a
uniform and time-independent magnetic field B,

H =
π2

2M
− eg

2Mc
S · B (8.5.1)

where
π = p − e

c
A (8.5.2)

with
B = ∇ × A (8.5.3)

and

[
πj , πk

]
=

i�e

c
F jk (8.5.4)

F jk = εjklBl (8.5.5)

[
Sj , Sk

]
= i�εjklSl. (8.5.6)

The following commutation relations with the Hamiltonian are then read-
ily derived

[π ,H] =
i�e

Mc
π × B (8.5.7)

[S ,H] =
i�eg

2Mc
S × B. (8.5.8)
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From the time-development of an operator, O(t) = eitH/� O e−itH/�, we
then obtain for expectation values

d
dt

〈π(t)〉 =
e

Mc
〈π(t)〉 × B (8.5.9)

d
dt

〈S(t)〉 =
eg

2Mc
〈S(t)〉 × B. (8.5.10)

In particular for components parallel ‖ or ⊥ perpendicular to B

d
dt

〈
π‖(t)

〉
= 0,

d
dt

〈
S‖(t)

〉
= 0, (8.5.11)

d2

dt2
〈
π⊥(t)

〉
= − e2B2

M2c2

〈
π⊥(t)

〉
(8.5.12)

d2

dt2
〈
S⊥(t)

〉
= −e2g2B2

4M2c2

〈
S⊥(t)

〉
(8.5.13)

giving rise to the solutions (|B| = B)

〈π(t)〉 = b1 cos
(
|eB|
Mc

t + δ1

)
+ b2 (8.5.14)

〈S(t)〉 = c1 cos
(
|egB|
2Mc

t + δ2

)
+ c2 (8.5.15)

where b1, b2, c1, c2 are constant vectors and δ1, δ2 are phase factors. That
is, 〈π(t)〉, 〈S(t)〉 would precess with the same angular velocity only if |g| = 2.

We next consider the measurement of (g − 2). Its computation will then
follow this study.

8.5.1 Observational Aspect of the Anomalous Magnetic Moment

With π/M denoting the velocity operator, we determine the commutation
relation of S·π with H. As we will see below, this commutator is proportional
to (g − 2) and hence would vanish if g were equal to 2.

A direct evaluation, leads to

[
Sjπk ,H

]
=

ie�

2Mc

(
2δjlεkmn − gεljnδkm

)
πmBnSl (8.5.16)

from which we obtain (|B| = B)

[
S · π ,H

]
= − i�e

2Mc
(g − 2)(S × π) · B (8.5.17)

[
(S × π) · B ,H

]
=

i�e

2Mc
(g − 2)(B)2

(
δij − BiBj

B2

)
Siπj (8.5.18)

Problems
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and
[[

S · π ,H
]
,H

]
=

(e�B)2

4M2c2
(g − 2)2

(
δij − BiBj

B2

)
Siπj . (8.5.19)

We note that (
δij − BiBj

B2

)
Siπj = S⊥ · π⊥ (8.5.20)

corresponding to components perpendicular to B, and from (8.5.16),
[
S‖ · π‖ ,H

]
= 0. (8.5.21)

According to (8.5.19)–(8.5.21) we then have for expectation values

d2

dt2
〈
S⊥(t) · π⊥(t)

〉
= −e2(B)2(g − 2)2

4M2c2

〈
S⊥(t) · π⊥(t)

〉
(8.5.22)

d
dt

〈
S‖(t) · π‖(t)

〉
= 0 (8.5.23)

giving rise to the solution

〈
S(t) · π(t)

〉
= c0 cos

(
|eB(g − 2)|

2Mc
t + δ

)
+ d0 (8.5.24)

with c0, d0 denoting constants.
Hence for g �= 2, (8.5.24) shows a periodic behavior in time with angular

velocity

ωg =
|eB(g − 2)|

2Mc

and period T = 2π/ωg. For a given B and the observed period, the anomaly
(g − 2)/2 is readily determined15 and is consistent with the value(g − 2)/2 =
α/2π evaluated first by Schwinger using (relativistic) quantum electrody-
namics. Actually, this anomaly has been evaluated to higher orders in the
fine-structure constant and the agreement between theory and experiment is
quite impressive.

8.5.2 Computation of the Anomalous Magnetic Moment

The expression for the eigenvalues in (8.3.40), allowed us to write the
deviation (g − 2)/2 in the convenient from (8.3.41):

−2Mc

|e|�
∂

∂B
E(n = 0, σ = −1)

∣∣∣∣
B=0,p1,p3=0

=
(g − 2)

2
(8.5.25)

(see also 8.3.1).
15 Cf. Wilkinson and Crane (1963).
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As a result of the interaction of the electron with the ever present radiation
accompanying it, the value of g deviates slightly from 2 and this correction
is of the order α — the fine-structure constant. A formal derivation of this is
given below.

The total Hamiltonian for the interaction of an electron with a uniform
magnetic field B =

(
0, 0, B

)
, B > 0 and the radiation field ARAD (see also

§7.7) is given by
HT = H + H0,RAD + HI (8.5.26)

where H is the Hamiltonian in (8.4.1) in the presence of the magnetic field
B, and

HI =
|e|

2Mc

(
ARAD · p + p · ARAD

)
+

e2

2Mc2
A2

RAD

− |e|B
2Mc2

x2|e|ARAD,1 +
|e|�g

4Mc
σ ·

(
∇ × ARAD

)
+ δH ′

c (8.5.27)

taking the spin of the electron into account, and where δH ′
c is a renormaliza-

tion counter-term whose nature is specified below.
Let

|n = 0〉
(

0
1

)
≡ |ψ0〉 (8.5.28)

corresponding to n = 0, σ = −1 and suppressing for simplicity the depen-
dence on p1, p3.

We work out the correction (g − 2)/2 to the order α as arising from the
presence of radiation.

To the above end, we denote

|ψ0〉 |0〉 = |ψ0; 0) (8.5.29)

|ψ0〉 |kλ〉 = |ψ0;kλ) (8.5.30)

as eigenstates of H + H0,RAD in (8.5.26), with |0〉, |kλ〉 denoting, respec-
tively, a no-photon state and a single-photon state with momentum �k and
polarization specified by λ (see §7.7).

Finally, let |φ0) denote the state corresponding to n = 0, σ = −1 for the
electron in the magnetic field B, in interaction with radiation,

HT |φ0) = E0 |φ0) (8.5.31)

such that if HI is formally replaced by zero, then |φ0) = |ψ0; 0) involving no
photons.

Following the derivation of (7.7.23), we may write

∆E = E0 − E0 =
(ψ0; 0 |HI|φ0)
(ψ0; 0 |φ0)

(8.5.32)
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for the energy shift in the presence of radiation, where

E0 = E(n = 0, σ = −1). (8.5.33)

To second order e2 in radiation, we then have from (8.5.32), (8.5.27), in a
similar manner as in (7.7.28),

∆E =
α�

2

4π2M2

1
〈ψ0 |ψ0〉

×
[∑

λ

∫
d3k
|k| 〈ψ0| ηλ eik·x 1

E0 − H − �|k|c e−ik·x η†
λ |ψ0〉

]

+
e2

2Mc2

〈
0
∣∣A2

RAD

∣∣0〉+
(ψ0; 0 |δH ′

c|φ0)
(ψ0; 0 |φ0)

(8.5.34)

where

ηλ = p · eλ(k) − |e|B
2c

x2 eλ1(k) +
i�g

4
(σ × k) · eλ(k) (8.5.35)

and to second order e2 in radiation, we may set g = 2 in (8.5.34).
In detail,

eik·x H e−ik·x =
(p − �k)2

2M
− |e|Bx2

Mc

(
p1 − �k1

)

+
|e|�Bg

4Mc
σ3 +

e2B2x2
2

2Mc2

= H − p · �k
M

+
�

2k2

2M
+

|e|Bx2

Mc
�k1. (8.5.36)

It is convenient to work in the momentum description, and take the limits
p1, p3 → 0. We set g equal to 2, E0 = 2 in (8.5.34) (see also (8.5.25)). For the
wavefunction, as a function on its dependence on p2, we have

〈p2 |ψ0〉 =
(

MΩ
π�

)1/4

exp
(
−p2

2

MΩ
2�

)
≡ ψ0(p2) (8.5.37)

Ω =
c

|e|BM
. (8.5.38)

With the normalization factor 〈ψ0 |ψ0〉 for the three dimensional motion, as
initially appearing in (8.5.34), all reference to p1, p3 which are formally taken
to go to zero, disappears.

To make the dependence of ∆E on B explicit, we make the change of
variable p2 → ξ, with
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p2 =

√
|e|�B

c
ξ. (8.5.39)

Then for an operator F (p2, ∂/∂p2)
∫ ∞

−∞
dp2 ψ0(p2)F

(
p2,

∂

∂p2

)
ψ0(p2)

=
∫ ∞

−∞

dξ√
π

e−ξ2/2 F

(√
|e|�B

c
ξ,

√
c

|e|�B

∂

∂ξ

)
e−ξ2/2 (8.5.40)

where we note that ψ0(p2) is properly normalized with respect to the measure
dp2.

Accordingly, (8.5.34) becomes

∆E = − α�
2

4π2M2

∑
λ

∫
d3k
|k|

∫ ∞

−∞

dξ√
π

×
[
e−ξ2/2

(
0
1

)�
η′

λ

1
H ′ + �|k|c η′†

λ

(
0
1

)
e−ξ2/2

]

+
e2

2Mc2

〈
0
∣∣A2

RAD

∣∣0〉+
(ψ0; 0 |δH ′

c|φ0)
(ψ0; 0 |φ0)

(8.5.41)

where

H ′ = −|e|�B

2Mc

∂2

∂ξ2
+

|e|�B

2Mc
ξ2 +

|e|�
2Mc

σ3B

−
√

|e|�B

c
ξ

�k2

M
+

�
2k2

2M
+

√
|e|�B

c

�k1

M
i
∂

∂ξ
(8.5.42)

η′
λ =

√
|e|�B

c
ξ eλ2 −

1
2

√
|e|�B

c
eλ1 i

∂

∂ξ
+

i�
2

(σ × k) · eλ. (8.5.43)

With the parameters M , e appearing in (8.5.41) taken to de-
note renormalized, i.e., the physically observed ones (see also §7.7),
(ψ0; 0 |δH ′

c|φ0) / (ψ0; 0 |φ0) is so chosen such that there is no energy shift
(∆E = 0) for B = 0. Physically, this is a condition of the stability of the elec-
tron in vacuum in the ever presence of radiation accompanying the electron.
In the literature, the c-number (ψ0; 0 |δH ′

c|φ0) / (ψ0; 0 |φ0) is referred to as a
contact term.

Hence
∆E = ∆1E + ∆2E + ∆3E (8.5.44)

where



450 8 Quantum Physics of Spin 1/2 & Two-Level Systems

∆1E = − α�
2

4π2M2

|e|�B

c

∑
λ

∫
d3k
|k|

∫ ∞

−∞

dξ√
π

e−ξ2/2

(
0
1

)�

× Qλ
1

H ′ + �|k|c Qλ

(
0
1

)
e−ξ2/2 (8.5.45)

Qλ = ξ eλ2 −
1
2

eλ1 i
∂

∂ξ
(8.5.46)

∆2E = − α�
2

4π2M2

√
|e|�B

c

∑
λ

∫
d3k
|k|

∫ ∞

−∞

dξ√
π

e−ξ2/2

(
0
1

)�

×
[
Qλ

1
H ′ + �|k|c

(
−i�
2

)
(σ × k) · eλ

+
(

i�
2

)
(σ × k) · eλ

1
H ′ + �|k|c Qλ

](
0
1

)
e−ξ2/2 (8.5.47)

∆3E = − α�
2

4π2M2

∑
λ

∫
d3k
|k|

∫ ∞

−∞

dξ√
π

e−ξ2/2

(
0
1

)�

×
(

i�
2

)
(σ × k) · eλ


 1

H ′ + �|k|c − 1

�|k|c +
�

2k2

2M




×
(
−i�
2

)
(σ × k) · eλ

(
0
1

)
e−ξ2/2. (8.5.48)

In a non-relativistic setting, starting from a non-relativistic Hamiltonian,
integration over �|k|c beyond the natural cut-off Mc2, corresponding to the
rest mass energy of the electron, is not justifiable. Accordingly, we cut-off the
k-integrals in (8.5.45), (8.5.47), (8.5.48) by imposing the restriction �|k|c <
Mc2. The very welcome damping in |ξ| by the Gaussian function in these
integrals should be also noted.

Since we are interested in the dependence of ∆E only up to the first
power of B, we immediately obtain, by using the completeness relation of
the photon polarization vectors in (7.7.4), and the elementary averages over
the angular integrations in (7.7.43),

∆1E = − α�
2

4π2M2

|e|�B

c

8π

3

∫ Mc/�

0

k dk[
�kc +

�
2k2

2M

]
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×
∫ ∞

−∞

dξ√
π

e−ξ2/2

(
ξ2 − 1

4
∂2

∂ξ2

)
e−ξ2/2

= −
( α

2π

)( |e|�B

2Mc

)(
10
3

)
ln
(

3
2

)
(8.5.49)

linear in B.
The computation of the linear dependence of ∆3E on B is also relatively

easy. To this end, we note that

∑
λ

(σ × k) · eλ (σ × k) · eλ = (σ × k)2 −
(
k · (σ × k)

)2
k2 = 0 (8.5.50)

and (
0
1

)�∑
λ

(σ × k) · eλ σ3 (σ × k) · eλ

(
0
1

)
= 2(k3)2. (8.5.51)

According to (8.5.50), (8.5.51), we may effectively make the replacement

1
H ′ + �|k|c − 1

�|k|c +
�

2k2

2M

−→ −
|e|�B

2Mc
σ3[

�|k|c +
�

2k2

2M

]2 (8.5.52)

in (8.5.48).
From (8.5.51), (8.5.52), we then have

∆3E =
α�

2

4π2M2

(
|e|�B

2Mc

)(
�

2

4

)
8π

3

∫ Mc/�

0

k3dk[
�kc +

�
2k2

2M

]2

=
( α

2π

)( |e|�B

2Mc

)
4
3

[
ln
(

3
2

)
− 1

3

]
(8.5.53)

for the linear part in B.
The first term within the square brackets in (8.5.47) is effectively

+
(

i�
2

)(
�

M

)√
|e|�B

c

(
ξ eλ2 −

1
2
eλ1 i

∂

∂ξ

)

×
(
−ξk2 + k1 i

∂

∂ξ

)
(σ × k) · eλ (8.5.54)

multiplied by
[
�|k|c+�

2k2/2M
]−2. By summing over λ, using (7.7.4), noting

the fact that the k-angular integration leads to the rule spelled out in (7.7.43),
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and anticipating the spin average to be performed in (8.5.47) with the simple
observations that

(
0
1

)�
σj

(
0
1

)
= 0, j = 1, 2 (8.5.55)

(
0
1

)�
σ3

(
0
1

)
= −1 (8.5.56)

we may effectively replace (8.5.54) by

(
i�
2

)(
�

M

)√
|e|�B

c

4π

3
k2

(
−iξ

∂

∂ξ
+

i
2

∂

∂ξ
ξ

)
(8.5.57)

after carrying out the k-angular integral.
Similarly, the second term within the square brackets in (8.5.47), after

carrying out the k-angular integration, may be effectively replaced by

−
(

i�
2

)(
�

M

)√
|e|�B

c

4π

3
k2

(
i
2
ξ

∂

∂ξ
− i

∂

∂ξ
ξ

)
(8.5.58)

multiplied by
[
�|k|c + �

2k2/2M
]−2, giving for the expression within the

square brackets in question the effective net result

∫
dΩ

(
0
1

)� [
· · ·

](
0
1

)
=

− �
2

4M

√
|e|�B

c
4πk2

[
�|k|c +

�
2k2

2M

]2 (8.5.59)

in (8.5.47) after the angular integration.
After carrying the elementary ξ-Gaussian integral, we have from (8.5.59),

the following expression for ∆2E in (8.5.47)

∆2E =
( α

2π

)( |e|�B

2Mc

)(
�

4

M2

)∫ Mc/�

0

k3dk[
�kc +

�
2k2

2M

]2

=
( α

2π

)( |e|�B

2Mc

)
4
[
ln
(

3
2

)
− 1

3

]
(8.5.60)

for the linear part in B. [We note that there is no term proportional to B1/2.]
All told, (8.5.44), (8.5.49), (8.5.53), (8.5.60), give

∆E = −
( α

2π

)( |e|�B

2Mc

)[
16
9

− 2 ln
(

3
2

)]
(8.5.61)
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for the linear part in B.
From (8.5.61), (8.5.25), we may finally infer that

(g − 2)
2

=
( α

2π

)[16
9

− 2 ln
(

3
2

)]
(8.5.62)

which is quite accurate since
[
16
9

− 2 ln
(

3
2

)]
� 0.97 (8.5.63)

and compares well with the fully quantum-electrodynamic value α/2π.16

8.6 Density Operators and Spin

Detailed accounts of density operators were given in §1.5, §1.6 and §5.4
with the latter section dealing with spin 1/2 and arbitrary spins as well. Here
we study general aspects of such operators as applied to concrete physical
situations for spin 1/2 particles.

8.6.1 Spin in a General Time-Dependent Magnetic Field

As a first application, we consider the spin Hamiltonian in (8.1.45) for
the interaction of spin 1/2 with a general time-dependent magnetic field:

H(t) =
�

2
K(t) · σ. (8.6.1)

The initial state |ψ(0)〉 at time t = 0 is prepared to be an eigenstate
of n0 · σ for some vector n0 =

(
sin θ0 cos φ0, sin θ0 sin φ0, cos θ0

)
. With such

an initially prepared state as given in (8.1.48), the time t = 0, the density
operator ρ(0) works out to be

ρ(0) = |ψ(0)〉〈ψ(0)| =
1
2
[
1 + n0 · σ

]
(8.6.2)

where 1 is the 2 × 2 unit matrix.
The time t > 0 density operator ρ(t) is then given by

ρ(t) =
1
2
[
1 + P(t) · σ

]
(8.6.3)

where for the average of spin at time t > 0, divided by �/2, we have
16 There is a long history of the computation of (g − 2)/2 within non-relativistic

quantum mechanics. For other attempts, cf. Arunasalam (1969), Grotch and
Kazes (1977). Arunasalam also deals with Landau states.
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Tr[σρ(t)] = P(t) ≡ n(t) (8.6.4)

and we have identified the latter with the unit vector n(t) in (8.1.54). P(t)
is referred as the polarization vector. For t = 0, P(0) = n(0) = n0.

The equation for the time development of the polarization vector P(t) was
already given in (8.1.49). Here it is more instructive to derive this equation
from the equation

i�
∂

∂t
ρ(t) =

[
H(t) , ρ(t)

]
(8.6.5)

for the density operator ρ(t), which from (8.6.3), (8.6.1), leads to

∂

∂t
P(t) · σ =

(
K(t) × P(t)

)
· σ. (8.6.6)

Upon multiplying the latter by σ, and taking the trace gives

∂

∂t
P(t) = K(t) × P(t) (8.6.7)

consistent with (8.1.49) as expected.
As another application, we consider the scattering of a spin 1/2 particle

off a spin 0 target. Later on, we will treat the problem of the scattering of a
spin 1/2 particle off a spin 1/2 target.

8.6.2 Scattering of Spin 1/2 Particle off a Spin 0 Target

For particles initially prepared to be polarized,17 say, along the x-axis,
the initial state may be taken, up to a phase factor, to be

|ψi〉x =
1√
2

(
1
1

)
. (8.6.8)

Similarly, for polarizations a long the y-, z-axes, we have respectively, up to
phase factors,

|ψi〉y =
1
2

(
1 − i
1 + i

)
, |ψi〉z =

(
1
0

)
. (8.6.9)

These states lead, respectively, to the following initial density operators

ρ(i) :
1
2

(
1 1
1 1

)
,

1
2

(
1 −i
i 1

)
,

(
1 0
0 0

)
(8.6.10)

with corresponding polarization vectors

P(i) :
(
1, 0, 0

)
,
(
0, 1, 0

)
,
(
0, 0, 1

)
. (8.6.11)

17 Polarized along the x-axis means, that the polarization vector as an average
value has only an x-component.
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The derivation of the expression for ρ(i), P(i) for an arbitrary initial state
is straightforward (see Problem 8.11).

On the other hand, for an unpolarized beam, the density operator ρ(i)

may not be presented in the form as |ψi 〉〈ψi| for some |ψi〉. Such a density
operator defines a mixture (see also §1.5) rather than a pure state some of
which are given in (8.6.10). For an initial unpolarized beam, it is easy to see
that the density operator is given by

ρ(i)
u :

1
2

(
1 0
0 1

)
(8.6.12)

giving as expected,
P(i)

u ≡ Tr
[
σρ(i)

u

]
= 0 (8.6.13)

with the letter u standing for ‘unpolarized’.
To find the general expression for the density operator ρ after the scat-

tering process, suppose that the initial and final momenta of the projectile
are, respectively, �k′ and �k. To this end, if |ψf〉 denotes the final state, we
define a 2 × 2 matrix M such that

|ψf〉 = M |ψi〉 . (8.6.14)

That is, for initially polarized, and also for initially unpolarized projectile,
the final density operator ρ may be obtained from

ρ = M ρ(i) M†. (8.6.15)

For the problem at hand, the general structure of M is readily obtained.
To this end, using the fact that 1, and the Pauli matrices σ1, σ2, σ3 constitute
a complete set of matrices in the vector space generated by 2 × 2 matrices,
we may write

M = α1 + βn · σ (8.6.16)

where n is a unit vector, α, β, are in general, appropriate function of k′, k.
If we assume the invariance of the theory under space reflection, i.e., under

parity transformation, then using the fact that σ (spin, angular momentum)
is an axial vector (§2.6), n is to be chosen as an axial vector, constructed out
of k′, k and α, β are invariant under the transformation k′ → −k′, k → −k.
That is, in particular,

n =
k′ × k
|k′ × k| (8.6.17)

(for |k′ × k| �= 0). α, β are, in general, functions of the scalar product k′ · k,
|k′|, |k|.

With n given in (8.6.17), it is convenient to choose the coordinate system
as shown in Figure 8.1, with n along the z-axis.

With the choice of the coordinate system in Figure 8.1, the matrix M
takes the simple form
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k
k′

z

x

y

ϑ

n

Fig. 8.1. The coordinate system for the scattering problem is conveniently
chosen with k′, k in the x-y plane with k′, say along the x-axis. The unit
vector n in (8.6.17) is then along the z-axis.

M =
(

α + β 0
0 α − β

)
. (8.6.18)

For an initially polarized beam along the y-axis for example, we have from
(8.6.18), (8.6.10),

ρ =
1
2


 |α + β|2 −i(α + β)(α∗ − β∗)

i(α∗ + β∗)(α − β) |α − β|2


 (8.6.19)

for the final density operator. This gives the probability density Fy(ϑ), at
scattering angle φ = ϑ (see Figure 8.1),18

Fy(ϑ) = Tr[ρ] =
1
2
(
|α + β|2 + |α − β|2

)
= |α|2 + |β|2 (8.6.20)

indicating, for simplicity of the notation, only the scattering angle ϑ of the
projectile. For the final polarization we have

Tr[σρ]
Tr[ρ]

= Py(ϑ) =

(
2|α||β| sin δ, |α|2 − |β|2, 2|α||β| cos δ

)
|α|2 + |β|2 (8.6.21)

where we have written
18 Fy(ϑ) is related to the so-called differential cross section. Differential cross sec-

tions will be studied in detail in Chapter 15.
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α = |α|eiδ1 , β = |β|eiδ2 , eiδ = ei(δ2−δ1). (8.6.22)

With the definitions in (8.6.22), the matrix M in (8.6.16) may be rewritten
as

M = eiδ1
(
|α|1 + |β|eiδn · σ

)
(8.6.23)

and the knowledge of |α|, |β|, eiδ determines the scattering problem. The
overall phase factor exp[iδ1] in (8.6.23) does not contribute to (8.6.15).

Of particular interest is the case of an initial unpolarized beam. The
reason is that upon scattering, the beam becomes polarized along the z-axis.
To this end, ρ

(i)
u in (8.6.12) gives, from (8.6.18), the final density operator

ρu =
1
2


|α + β|2 0

0 |α − β|2


 (8.6.24)

with final probability density Fu(ϑ) at scattering angle ϑ,

Fu(ϑ) = |α|2 + |β|2 (8.6.25)

and polarization vector

Pu(ϑ) =

(
0, 0, 2|α||β| cos δ

)
|α|2 + |β|2 . (8.6.26)

With an initially polarized beam along the z-axis, we have similarly,

ρz =


|α + β|2 0

0 0


 , Fz(ϑ) = |α + β|2 (8.6.27)

Pz(ϑ) =
(
0, 0, 1

)
. (8.6.28)

For a given angle ϑ, probability densities such as Fu(ϑ), Fu(−ϑ), for spe-
cific initial conditions given by ρ(i), and polarization vectors, such as Pu(ϑ)
in (8.6.26), the numbers |α|, |β|, exp[iδ1] defining the general matrix M in
(8.6.23), up to an overall phase factor, may be determined from the underly-
ing dynamics.

Before discussing the scattering of particles of spin 1/2 off a target of
spin 1/2, we recast the above problem in a more general form.

We denote the 2 × 2 identity matrix 1 by σ0, and write

ρ(i) =
3∑

µ=0

Cµσµ. (8.6.29)

Upon multiplying the latter by σν and taking the trace, one obtains

Cν =
1
2

Tr
[
σνρ(i)

]
≡ 1

2
〈σν〉(i) (8.6.30)
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where 〈σ0〉(i) = 1 with Tr
[
ρ(i)

]
normalized to unity. This leads to the expres-

sion

ρ(i) =
1
2

3∑
µ=0

〈σµ〉(i) σµ (8.6.31)

and for the final density operator

ρ =
1
2

3∑
µ=0

〈σµ〉(i) M σµ M† (8.6.32)

giving

Tr[σνρ] =
1
2

3∑
µ=0

〈σµ〉(i) Tr
[
σν M σµ M†] . (8.6.33)

In particular,

F (ϑ) =
1
2

3∑
µ=0

〈σµ〉(i) Tr
[
M σµ M†] (8.6.34)

for the probability density at angle ϑ, and with

Tr[σνρ]
Tr[ρ]

= 〈σν〉 (8.6.35)

we have

F (ϑ) 〈σν〉 =
1
2

3∑
µ=0

〈σµ〉(i) Tr
[
σν M σµ M†] . (8.6.36)

Equations (8.6.34), (8.6.36) give the final expectation values of σν in terms
of the initial expectation values of the σµ operators.

For an initial unpolarized beam, 〈σµ〉(i) = δµ0, hence (8.6.34) gives

Fu(ϑ) =
1
2

Tr
[
M M†] (8.6.37)

and (8.6.36) reduces to

Fu(ϑ) 〈σν〉u =
1
2

Tr
[
σν M M†] . (8.6.38)

For a beam initially polarized along the z-axis, 〈σµ〉(i) = δµ0 + δµ3 (see
(8.6.11)),

Fz(ϑ) =
1
2

Tr
[
M M†]+

1
2

Tr
[
M σ3 M†] . (8.6.39)

From (8.6.18) one explicitly has

Tr
[
M σν M†] = Tr

[
M† σν M

]
(8.6.40)
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which by using (8.6.37), (8.6.38), (8.6.39) leads to the interesting result

Fz(ϑ) = Fu(ϑ) [1 + 〈σ3〉u] (8.6.41)

showing the modification of the probability density due to the initial polar-
ization of the beam over the density with initially unpolarized beam. We note
that Fz(ϑ) is expressed in terms of expectation values for the final state of
the scattering problem with the initially unpolarized beam.

The sign of 〈σ3〉u in (8.6.41) determines an asymmetry in the number of
particles with spin along or opposite the orientation of the z-axis as arising
from an initially unpolarized beam. Such an asymmetry is then reflected in
the observed probability density Fz(ϑ).

8.6.3 Scattering of Spin 1/2 Particles off a Spin 1/2 Target

We introduce Pauli matrices σ(B), σ(T) corresponding to the beam and
target, and unit matrices 1(B) = σ

(B)
0 , 1(T) = σ

(T)
0 operating in their respec-

tive spin spaces.
The initial density operator ρ(i) may be quite generally expanded in terms

of the sixteen components19

σ
(B)
0 σ

(T)
0 , . . . , σ

(B)
3 σ

(T)
0 , . . . , σ

(B)
3 σ

(T)
3 (8.6.42)

ρ(i) =
3∑

µ=0

3∑
ν=0

Cµνσ(B)
µ σ(T)

ν . (8.6.43)

Upon multiplying the latter by σ
(B)
λ σ

(T)
κ , taking the trace and using the fact

that the initial polarizations of the beam and the target are independent, we
obtain

Cλk =
1
4

Tr
[
σ

(B)
λ σ(T)

κ ρ(i)
]

=
1
4

〈
σ

(B)
λ σ

(T)
k

〉(i)

(8.6.44)

for a normalized density Tr
[
ρ(i)

]
= 1.

The final density then takes the form

ρ =
1
4

3∑
µ=0

3∑
ν=0

〈
σ(B)

µ σ(T)
ν

〉
Mσ(B)

µ σ(T)
ν M†. (8.6.45)

For initially unpolarized beam and target, (8.6.45) gives

Fu(ϑ) =
1
4

Tr
[
MM†] (8.6.46)

and
19 These sixteen matrices may be rewritten as 4 × 4 matrices, cf. Fernow (1976).

See also this elegant paper for other details.
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Fu(ϑ)
〈
σ

(B)
λ

〉
u

=
1
4

Tr
[
σ

(B)
λ MM†

]
(8.6.47)

Fu(ϑ)
〈
σ(T)

κ

〉
u

=
1
4

Tr
[
σ(T)

κ MM†
]

(8.6.48)

and as a correlation of the polarizations of the beam and target

Fu(ϑ)
〈
σ

(B)
λ σ(T)

κ

〉
u

=
1
4

Tr
[
σ

(B)
λ σ(T)

κ MM†
]
. (8.6.49)

For initially polarized beam and target along pBẑ, pTẑ, respectively, where
ẑ is a unit vector along the z-axis and pB, pT take on the values ± 1,

〈
σ(B)

µ σ(T)
ν

〉(i)

= δµ0δν0 + pBδµ3δν0 + pTδµ0δν3 + pBpTδµ3δν3 (8.6.50)

where again we have used the fact that the initial polarizations of the beam
and target are independent. Equation (8.6.50) gives the probability density

F (ϑ; pBẑ, pTẑ) =
1
4

Tr
[
MM†]+

1
4
pB Tr

[
Mσ

(B)
3 M†

]

+
1
4
pT Tr

[
Mσ

(T)
3 M†

]
+

1
4
pBpT Tr

[
Mσ

(B)
3 σ

(T)
3 M†

]
.

(8.6.51)

For a process which is invariant under space reflection and time reversal,
the matrix M(k̂′, k̂,σ(B),σ(T)) expressed as a function of the unit vectors k̂′,
k̂ and the Pauli matrices, satisfies

M(k̂′, k̂,σ(B),σ(T)) = M(−k̂′,−k̂,σ(B),σ(T)) (8.6.52)

under space reflection and

M(k̂′, k̂,σ(B),σ(T)) = M(−k̂,−k̂
′
,−σ(B),−σ(T)) (8.6.53)

under time reversal.
Below we will see later that under the constraints (8.6.52), (8.6.53), the

following equalities follow,

Lemma 1.

(i) Tr
[
M σ(B),(T) M†] = Tr

[
M† σ(B),(T) M

]
(ii) Tr

[
M σ

(B)
3 σ

(T)
3 M†

]
= Tr

[
M† σ

(B)
3 σ

(T)
3 M

]

From (8.6.46)–(8.6.49) and the above two equalities give for (8.6.51)

F (ϑ; pBẑ, pTẑ) = Fµ(ϑ)
[
1 + pB

〈
σ

(B)
3

〉
u

+ pT

〈
σ

(T)
3

〉
u
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+ pBpT

〈
σ

(B)
3 σ

(T)
3

〉
u

]
. (8.6.54)

This equation shows how the probability density is obtained, with the beam
and target initially polarized along pBẑ, pTẑ, respectively, from that with ini-
tially unpolarized beam and target. The first term within the square brackets
on the right-hand side of (8.6.54) corresponds to the case that neither the
beam nor the target is polarized (from initially unpolarized ones), while the
second, third and fourth terms correspond, respectively, to the cases where
only the beam is polarized, only the target is polarized and finally both the
beam and target are polarized.

The proof of the above lemma is straightforward, and easily follows by
finding, for example, the general expression for M under the constraints in
(8.6.52), (8.6.53) as done below.

The matrix M may be written as

M = A1(B) + B · σ(B) (8.6.55)

where in addition to k̂, k̂
′
the matrices A and B may depend on σ(T).

Consider the three orthonormal vectors

a =
k̂ − k̂

′

|k̂ − k̂
′|

, b =
k̂ + k̂

′

|k̂ + k̂
′|

, c =
k̂
′ × k̂

|k̂′ × k̂|
(8.6.56)

for non-zero denominators, where c is a unit vector along the z-axis. Since
σ(T) is an axial vector, A is of the form

A = α11(T) + α2c · σ(T). (8.6.57)

On the other hand, the vector B may, in general, be written as

B = β1a + β2b + β3c. (8.6.58)

Now it is a simple matter20 to show that the constraints (8.6.52), (8.6.53)
imply that

β1 = α3a · σ(T), β2 = α4b · σ(T) (8.6.59)

β3 = α01(B) + α5c · σ
(T)
3 (8.6.60)

where α0, . . . , α5 are scalars.
The expression for M in (8.6.55) then gives explicitly

Tr
[
Mσ

(B)
j M†

]
= 2Tr′

[
AB†

j

]
+ 2Tr′

[
BjA

†]− 2iεjkl Tr′
[
BkB†

l

]
(8.6.61)

20 Cf. Goldberger and Watson (1964), p. 391.
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where Tr′ corresponds to tracing over the target variables only. Using, in
the process, the orthogonality of the vector in (8.6.56), and the structure of
B in (8.6.58)–(8.6.60), this shows that the last term in (8.6.61) is equal to
zero. This establishes part (i) of the lemma for σ(B) upon the comparison of
(8.6.61) with Tr

[
M†σ

(B)
j M

]
. The proof of the part (i) for σ(T) is similar.

The proof of part (ii) of the lemma easily follows (see Problem 8.14 (ii))
by noting, in the process, that

B3 = β3 = α01(T) + α5σ
(T)
3 (8.6.62)

which depends on the component σ
(T)
3 of σ(T) only.

Incidently (8.6.55), (8.6.56)–(8.6.60) give the following general expression
for M :

M = α11(B)1(T) + η1σ
(B) ·a σ(T) ·a + η2σ

(B) ·b σ(T) ·b

+ η3σ
(B) ·c σ(T) · c + η4

(
σ(B)1(T ) + 1(B)σ(T)

)
· c

+ η5

(
σ(B)1(T) − 1(B)σ(T)

)
· c. (8.6.63)

8.7 Quantum Interference and Measurement; The Role
of the Environment

In §1.10, an example was given of the interaction (see (1.10.29)–(1.10.31),
(1.10.35)–(1.10.38)) of a spin 1/2 physical system and an apparatus, also de-
scribed as a spin 1/2 system, and studied the role of quantum interference
(see (1.10.52), (1.10.53), (1.10.54)) in the presence of the apparatus allowing
imperfection for the latter, specified by some parameter κ, in the measure-
ment process. We have seen that up to small corrections corresponding to
a small κ, how this example provides a model for the disappearance of in-
terference (see (1.10.56)) by the mere presence of the measuring and unread
apparatus. The limit κ → 0, defines an ideal apparatus for which a perfect
correlation occurs between the physical system and the apparatus as given
in (1.10.31).

In this section, we show how the above process may be formally im-
plemented by an interaction Hamiltonian, involving the system and meter
variables, leading to the unitary operator spelled out in (1.10.35)–(1.10.39).
We also provide another illustration of the interaction of the spin 1/2 system
with an apparatus with the latter described by a harmonic oscillator in a
coherent state. We will see how this example may be used to provide a model
with an almost perfect correlation occurring between the system and the ap-
paratus with a built-in imperfection in the latter naturally arising from the
non-orthogonality of the coherent states.
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Finally, we consider the role of the environment, surrounding a quan-
tum system (e.g., as a response of excitations generated in some medium
nearby,. . . ), as part of the measuring process, on the meter readings. The
environment, coupled to the meter variables, consists of everything else mon-
itoring the observables being measured and provides, as one may argue, the
different alternative readings of the meter being sought. This gives a natural
way of producing classical correlations between the system and the detector
(meter) eliminating the coherence between different states thus destroying
quantum superpositions. The destruction of the superposition, referred to as
quantum decoherence, makes sure that the system is in one of its alternative
states rather than in a superposition of them. The information thus obtained
on the system by the meter, “hooked up” to the environment, can be then
described in usually perceived classical terms.

8.7.1 Interaction with an Apparatus and Unitary Evolution
Operator

To describe the apparatus in §1.10 as a spin 1/2 system, we introduce
its spin variables operating in the apparatus vector space. To this end, we
introduce the spin operator �Σ/2, with

Σ1 =
[
0 1
1 0

]
, Σ2 =

[
0 −i
i 0

]
, Σ3 =

[
1 0
0 −1

]
(8.7.1)

which are the Pauli matrices operating in the vector space in question. To
the three matrices in (8.7.1), we adjoin the unit matrix

1 =
[
1 0
0 1

]
. (8.7.2)

The initial state of the apparatus, given in (1.10.28), is then simply

1
2

[
1 − i
1 + i

]
(8.7.3)

which is the eigenvector of the component Σ2:[
0 −i
i 0

]
1
2

[
1 − i
1 + i

]
= +

1
2

[
1 − i
1 + i

]
(8.7.4)

with the “needle” of the apparatus initially pointing at 0 in Figure 1.16 along
the positive direction of the y-axis.

The initial state of the system and apparatus in (1.10.29) may be also
simply written in matrix form as

|ψ0〉 =
(

c+

c−

)
1
2

[
1 − i
1 + i

]
(8.7.5)
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with the variables of the system and the apparatus operating in different
vector spaces using different notations for the matrices for the two systems
with square ones for the apparatus matrices.

We consider the following pair of the apparatus variables

1
2
(1 − Σ1) =

1
2

[
1 −1
−1 1

]
=

1√
2

[
1
−1

]
1√
2

[
1
−1

]�
(8.7.6)

1
2
(1 + Σ1) =

1
2

[
1 1
1 1

]
=

1√
2

[
1
1

]
1√
2

[
1
1

]�
. (8.7.7)

with
[
1 −1

]�
/
√

2,
[
1 1

]�
/
√

2 denoting, respectively, the apparatus spin
states along the negative/positive x-axis.

These matrices, apart being Hermitian, have the following interesting
properties

1
2

[
1 ∓1
∓1 1

]
1
2

[
1 ∓1
∓1 1

]
=

1
2

[
1 ∓1
∓1 1

]
(8.7.8)

and
1
2

[
1 −1
−1 1

]
1
2

[
1 1
1 1

]
=
[
0 0
0 0

]
. (8.7.9)

As a Hamiltonian, in spin space, we consider the following simple one

H = −λσ3
1
2

[
1 −1
−1 1

]
− λ q σ1

1
2

[
1 1
1 1

]
(8.7.10)

where σ1, σ3 are Pauli matrices pertinent to the physical system, λ is a
coupling parameter and q, as we will see below, is a measure of imperfection
of the apparatus related to κ in §1.10. The coupling parameter λ is not
arbitrary and is specified by the time of operation of the apparatus until the
measurement is completed and the correlation between the apparatus and
the physical system, of the type given in (1.10.30), required is achieved. The
parameter q, however, may be controlled, taking the value 0 in the limit of
an ideal apparatus, and should, in general, be small.

Due to the property in (8.7.9), the two parts of the Hamiltonian in (8.7.10)
automatically commute, although σ1 and σ3 do not.

The construction of the time evolution operator from (8.7.10) is straight-
forward.

From the commutativity of the two terms in (8.7.10), the evolution oper-
ator may be written as the product of two factors

U(T ) = exp
(

iλT

�
σ3

1
2

[
1 −1
−1 1

])
exp

(
iλ q T

�
σ1

1
2

[
1 1
1 1

])
. (8.7.11)

Since (σ3)2 = 1, we have from (8.7.8), for the first factor in the product
in (8.7.11)
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1 +
∑
n�1

(n=odd)

(iλT/�)n

n!
σ3

1
2

[
1 −1
−1 1

]
+

∑
n�2

(n=even)

(iλT/�)n

n!
1
2

[
1 −1
−1 1

]

= 1 +
(

i sin
(

λT

�

)
σ3 +

(
cos

(
λT

�

)
− 1

)
1
)

1
2

[
1 −1
−1 1

]
. (8.7.12)

The second factor in the product in (8.7.11) is similarly handled, giving
for U(T ) the expression

U(T ) =1 +
(

i sin
(

λT

�

)
σ3 +

(
cos

(
λT

�

)
− 1

)
1
)

1
2

[
1 −1
−1 1

]

+
(

i sin
(

λqT

�

)
σ1 +

(
cos

(
λqT

�

)
− 1

)
1
)

1
2

[
1 1
1 1

]
(8.7.13)

where we have finally used (8.7.9) to carry out explicitly the product of the
two factors in (8.7.11).

The implementation of measurement by the interaction of the apparatus
with the physical system, means that a perfect correlation between these two
systems occurs for q = 0. For an ideal apparatus, for which q = 0, we must
have for a perfect correlation,

|ψ〉 = U(T ) |ψ0〉 = c+

(
1
0

)[
1
0

]
+ c−

(
0
1

)[
0
1

]
(8.7.14)

which states that if the spin is up, then the “needle” of the apparatus is also
up (see Figure 1.16), and similarly, vis-à-vis the second term in (8.7.14), if
the spin is down so is the “needle” of the apparatus.21 Hence the correlation
to be reached between the apparatus and the system by the measurement
process, as given in (8.7.14), dictates that λT/� in (8.7.13) cannot be chosen
to take any arbitrary value. It is easy to see that to achieve this correlation
condition in (8.7.14), as implied by measurement, we may choose22

λT/� = π/2. (8.7.15)

The unitary operator (8.7.13) then becomes
21 In the state (8.7.14), neither the state of the physical system nor the state of

the apparatus is well defined, and this state is referred to as an entangled one
(see also §8.10). Later on below, we will see how one may argue, by taking into
account of the environment, surrounding the combined system above, either the
first state (coefficient of c+) or the second state (coefficient of c−) in (8.7.14) is
selected in a measurement, by a process referred to as quantum decoherence, in
conformity with one’s classical notions of a measurement.

22 Such correlations measurements restrictions are typical in dynamical investiga-
tions of measurement theory, cf. Perès (1986), Yurke and Stoler (1986). Such
conditions are realized experimentally, cf. Itano et al. (1990).
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U(T ) = 1+
(
−1 + i 0

0 −1 − i

)
[

1 −1
−1 1

]

2
+


cos

(
πq
2

)
− 1 i sin

(
πq
2

)

i sin
(

πq
2

)
cos

(
πq
2

)
− 1



[
1 1
1 1

]

2

(8.7.16)
which for q = 0 leads to (8.7.14). The unit matrix in (8.7.16) is given by

1 =
(

1 0
0 1

)[
1 0
0 1

]
. (8.7.17)

Upon comparison of (8.7.16) with (1.10.35)–(1.10.38) it is easy to see that
the parameter κ, as a measure of the imperfection of the apparatus, is related
to q by the simple relation

κ = πq/2. (8.7.18)

The final state, as obtained from (8.7.16), (8.7.5), quite generally, is given
by

|ψ〉 =


c+

(
1
0

)
+

1
2



(
cos

(
πq
2

)
− 1

)
c+ + i sin

(
πq
2

)
c−

i sin
(

πq
2

)
c+ +

(
cos

(
πq
2

)
− 1

)
c−





[
1
0

]

+


c−

(
0
1

)
+

1
2



(
cos

(
πq
2

)
− 1

)
c+ + i sin

(
πq
2

)
c−

i sin
(

πq
2

)
c+ +

(
cos

(
πq
2

)
− 1

)
c−





[
0
1

]
(8.7.19)

As expected, this coincides with the expression in (1.10.30).
The relevant probabilities for the above combined systems are now

straightforward to compute and the reader may refer to §1.10 for these expres-
sions. [Here

(
1 0

)�,
(
0 1

)� in (8.7.19), refer, respectively, to the ±z̄ directions
there.]

In the above illustration, T in (8.7.11) denotes the time of operation of
the apparatus. To be rigorous in the treatment of the “switching on” of the
apparatus at time t = 0 and “switching it off” at time t = T , we may replace
the formal discontinuous expression

ξ0(t) = Θ(T − t) − Θ(t) (8.7.20)

ξ(t) =




0, −∞ < t < 0
eε
t

exp(−ε/t), 0 � t < ε

1, ε � t < T − ε
eε

T − t
exp(−ε/(T − t)), T − ε � t < T

0, T � t < ∞

(8.7.21)

reflecting this property, by a smooth function
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where ε is an arbitrarily chosen small number much less than T . This re-
markable function is not only a continuous function of t but may be also
differentiated an arbitrary number of times. It vanishes for t < 0, t > T , and
ξ(t) = 1 for ε � t < T − ε as given above.

The coupling λ is then to be replaced by λ0ξ(t), where λ0 is the coupling
parameter between the system and the apparatus during the interaction pe-
riod, and λ, now, is an effective coupling related to λ0 as spelled out below.

To the above end, we integrate ξ(t) over t to obtain
∫ ∞

−∞
dt ξ(t) = T − 2ε

(
1 − e

∫ ∞

1

dτ

τ
e−τ

)

= T − 0.8073 ε (8.7.22)

recognizing the exponential integral in (8.7.22). We may then set

λ0(T − 0.8073 ε) = λT (8.7.23)

for a given 0 < ε � T .

8.7.2 Interaction with a Harmonic Oscillator in a Coherent State

As another illustration we consider the interaction of a spin 1/2 with
an apparatus described by a harmonic oscillator, in a coherent state, with
Hamiltonian

H = −λσ3a
†a + �ωa†a (8.7.24)

omitting, for simplicity the zero point energy. The initial state of the system
plus the apparatus is taken to be

|Φ0〉 =
(

c+

c−

)
|−iα0〉 (8.7.25)

where |−iα0〉 is a coherent state (§6.6, (6.6.21), (6.6.15), (6.6.28), (6.6.4)),
providing a very close description of a classical state of the apparatus. For
convenience, we choose α0 to be real (and positive) so that iα0 is pure imag-
inary and hence in configuration space, the initial state (see (6.6.50)) cor-
responds to a Gaussian distribution centered at the origin. α0 will be taken
to be a large number. As a matter of fact, since α0 = |A|(mω/2�)1/2 (see
(6.6.15), (6.6.4)), it will be quite large for macroscopic values taken by |A|,
m.23

23 For example, for |A| ∼ 10−3 meters, m ∼ 10−3 kg, one has the estimate
α0 ∼ 1012 (ω · s)1/2, with ω in s−1. During a short time a microscopic par-
ticle interacting with an apparatus, ω will be also not small due to the rapid
response of the oscillator (apparatus) to the particle in the short time. An upper
time limit of response of the oscillator is also set up by its decay time induced
by the environment.
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If α± = iα0 exp(iδ±), where exp(iδ±) are phase factors, i.e., δ± are real,
then we recall from (6.6.38) that

〈α+|α−〉 = exp
(
−α2

0

(
1 − ei(δ−−δ+)

))
(8.7.26)

and the states |α±〉 are optimally almost orthogonal for large α2
0, if, in par-

ticular,
δ− − δ+ = π. (8.7.27)

The final state Φ is easily obtained from (8.7.25), (8.7.24), (6.6.27) to be

Φ = c+

(
1
0

) ∣∣∣−i ei(λT/�−ωT )α0

〉
+ c−

(
0
1

) ∣∣∣−i ei(−λT/�−ωT )α0

〉
. (8.7.28)

The two coherent states, on the right-hand side of (8.7.28) are not orthogonal.
The state in (8.7.28) corresponds, however, to an almost perfect corre-

lation, as in (8.7.14), between the physical system and the apparatus as a
successful measurement, for (see (8.7.27))

2λT/� = π. (8.7.29)

This gives the almost perfectly correlated state24

|Φ〉 = c+

(
1
0

)
|α〉 + c−

(
0
1

)
|−α〉 (8.7.30)

with α = α0 exp(−iωT ), and |−iα0〉 denoting the neutral state of the appa-
ratus before its interaction with the physical system. Equation (8.7.30) is to
be compared with (8.7.14).

The density operator corresponding to (8.7.30) is given by

ρ = |c+|2
(

1 0
0 0

)
|α〉 〈α| + |c−|2

(
0 0
0 1

)
|−α〉 〈−α|

+ c+c∗−

(
0 1
0 0

)
|α〉 〈−α| + c∗+c−

(
0 0
1 0

)
|−α〉 〈α| . (8.7.31)

If one is not interested in reading the apparatus, and thus the latter is
unread, one may introduce the so-called reduced density operator ρRED by
taking the trace over the coherent states in (8.7.31). This gives the remarkably
simple expression

ρRED = |c+|2
(

1 0
0 0

)
+ |c−|2

(
0 0
0 1

)

24 A correlation will be also achieved for other values of λT/�. The “tuning” condi-
tion in (8.7.29), however, provides an optimum one as dictated by the definition
of a measurement with the (almost) perfect correlation occurring between the
apparatus and the physical system as given in (8.7.30).
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+
[
c+c∗−

(
0 1
0 0

)
+ c∗+c−

(
0 0
1 0

)]
exp(−2α2

0) (8.7.32)

and the non-diagonal terms in (8.7.32) are practically equal to zero for macro-
scopic large values of α2

0 as discussed above. Thus we obtain a mixture (see
§1.5) of spin states for practical purposes.

Upon writing(
1 0
0 0

)
= |+1/2, z̄〉 〈+1/2, z̄| ,

(
0 0
0 1

)
= |−1/2, z̄〉 〈−1/2, z̄|

(
0 1
0 0

)
= |+1/2, z̄〉 〈−1/2, z̄| ,

(
0 0
1 0

)
= |−1/2, z̄〉 〈+1/2, z̄| (8.7.33)

in the notation of §1.10, we note that the apparatus has a built in imperfection
for measurement (see also Figure 1.17). In particular, the probabilities of a
spin flip or a non-flip, corresponding to the experiment in Figure 1.17 (d) in
the presence of our new apparatus are, respectively,

〈−1/2, z|ρRED| − 1/2, z〉 =
sin2 β

2
− sin2 β

2
e−2α2

0 (8.7.34)

〈+1/2, z|ρRED| + 1/2, z〉 = sin4(β/2) + cos4(β/2) +
sin2 β

2
e−2α2

0 (8.7.35)

where we have used (1.10.44), (1.10.57), (1.10.58), and the interference terms
(see (1.10.52), (1.10.53)) initially present in the experiment in part (c) of
Figure 1.17, up to the exponentially damped terms involving exp(−2α2

0),
disappear. The expressions in (8.7.34), (8.7.35) should be compared with
those in Figure 1.18 (d).

8.7.3 The Role of the Environment

Macroscopic systems, such as meters associated with the above two ex-
amples, in the real world are never in isolation from the environment. The
latter, coupled to a meter’s variables, consists of everything else monitoring
an observable being measured and may include additional degrees of free-
dom associated with the apparatus itself, providing, as one may argue, the
different alternative readings on a meter being sought.25 Modellings of the
environment, as applied to the above two examples, will be described and
shown as to how quantum decoherence may set in producing classical cor-
relations between the physical system into consideration and the detector
(meter) in conformity with one’s classical conception of measurements.

Consider the pure correlated state26 between the physical system and
the meter given in (8.7.14). Referring to such a state, it is not clear what
25 Zurek (1991).
26 Such a state, with c+ �= 0, c− �= 0 is referred to as an entangled one. Entangled

states will be considered in detail in §8.10.
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the different alternatives being measured. For example, for c± = ±i, and by
using the expansions,

(
1
0

)
=

1 + i
2

· 1
2

(
1 − i
1 + i

)
+

1 − i
2

· 1
2

(
1 + i
1 − i

)
(8.7.36)

(
0
1

)
=

1 − i
2

· 1
2

(
1 − i
1 + i

)
+

1 + i
2

· 1
2

(
1 + i
1 − i

)
(8.7.37)

and similarly for the meter’s variables, we may rewrite the same state |ψ〉 in
(8.7.14), with c± = ±i, as

|ψ〉 = −1
2

(
1 − i
1 + i

)
· 1
2

[
1 − i
1 + i

]
+

1
2

(
1 + i
1 − i

)
· 1
2

[
1 + i
1 − i

]
. (8.7.38)

This raises the ambiguity as what spin components are actually being mea-
sured — the z-components or the y-components. On the other hand, the
density operator as obtained from the state in (8.7.14) is given by

ρ = |c+|2
(

1
0

)(
1 0

) [1
0

] [
1 0

]
+ |c−|2

(
0
1

)(
0 1

) [0
1

] [
0 1

]

+ c+c∗−

(
1
0

)(
0 1

) [1
0

] [
0 1

]
+ c∗+c−

(
0
1

)(
1 0

) [0
1

] [
1 0

]
. (8.7.39)

The coefficients |c+|2, |c−|2 are interpreted as classical probabilities, and
if the non-diagonal terms, proportional to c+c∗−, c−c∗+, were absent, one may
infer that the detector and the system are either in the spin up or spin down
states, in conformity with one’s classical perception of measurements, and not
in superpositions of these states, and the set of alternatives to measurement
of spin components along the z-axis have been selected.

Now we provide a straightforward illustration of the quantum decoherence
as induced by the environment. One may consider the measurement process,
involving the physical system (S), the meter (M) and the environment (E),
as a two-step27 one. In the first step of the measurement, a correlation is
established between the system and the meter, as given in (8.7.14). In the
second step, the environment becomes correlated with the meter, as a result
of its interaction with the latter. If we develop an elementary modelling of
the environment as a two-level system, one may then consider, in the process,
the state |ψ〉, in (8.7.14), to be replaced by

|ψ〉 1
2

{
1 − i
1 + i

}
(8.7.40)

leading to the final state of the system/meter/environment:

27 Zurek (1991).
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|ψSME〉 = c+

(
1
0

)[
1
0

]{
1
0

}
+ c−

(
0
1

)[
0
1

]{
0
1

}
(8.7.41)

using the notation {·} for the environment states.
Since one is interested in the state of the system and the meter reading

only, we may obtain the reduced density operator ρSM, concerning the system
and the meter, by tracing over the environment states obtaining

ρSM = Tr
E

(|ψSME〉 〈ψSME|)

= |c+|2
(

1
0

)(
1 0

) [1
0

] [
1 0

]
+ |c−|2

(
0
1

)(
0 1

) [0
1

] [
0 1

]
(8.7.42)

transforming the quantum superpositions into statistical mixtures (see also
§1.5) readily interpreted in classical terms. As mentioned in the introduction
to this section, this reduction of the density operator from a pure to a mix-
ture is referred to as quantum decoherence. Also (8.7.42) implies that the
interaction between the meter and the environment has actually led to the
selection of the alternatives being measured — the components of spin along
the z-axis. Also the basis

[
1 0

]�,
[
0 1

]� in the meter’s vector space, referred
to as the pointer basis, have been selected. This removes the ambiguity as to
what the alternatives being measured are.

The interaction between the meter and the environment may be imple-
mented (in analogy to the one in (8.7.10) with q → 0) by the Hamiltonian

HME = −λ0

[
1 0
0 −1

]
1
2

{
1 −1
−1 1

}
(8.7.43)

which for λ0τ = π/2, with τ referring to the interaction time, leads from the
state in (8.7.40) to the state in (8.7.41) (see Problem 8.17).

A more realistic and more interesting modelling of the environment may
be given, pertaining to the second example in (8.7.24), where the environment
is represented by a collection of harmonic oscillators involving infinitely many
degrees of freedom. As the interaction of the meter and the environment, we
consider the model28 interaction Hamiltonian

HME = a†
∑

k

λkbk + a
∑

k

λ∗
kb†k (8.7.44)

where bk, b†k denote the annihilation, creation operators associated with the
various degrees of freedom of the environment (also referred to as a reservoir).
The environment is taken initially in its ground-state. This interaction will
be considered in detail in §12.7.
28 This is reminiscent of the interaction of a charged particle with the ever present

electromagnetic field surrounding it with corresponding physical consequences
and that of renormalization (see §7.7, §8.5).
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We set
γ =

2π

�2
|λ(ω)|2n(ω) (8.7.45)

where λ(ω) is a continuous variable extension of λk replacing the summation
over k in (8.7.44) by an integral, n(ω) denotes the density of such states and
ω is introduced in (8.7.24). The explicit expression of γ is not important for a
qualitative discussion of quantum decoherence. Then for weak coupling and
a time t short enough such that the oscillator, representing the meter, has
not changed much given by

γt

2
� 1 (8.7.46)

but for t much larger than the correlation time of the environment, the re-
duced density operator, pertinent to the system and meter only, is given by
(§12.7)

ρSM(t) � |c+|2
(

1 0
0 0

) ∣∣∣αe−γt/2
〉〈

αe−γt/2
∣∣∣

+ |c−|2
(

0 0
0 1

) ∣∣∣−αe−γt/2
〉〈

−αe−γt/2
∣∣∣

+ c+c∗−

(
0 1
0 0

) ∣∣∣αe−γt/2
〉〈

−αe−γt/2
∣∣∣ exp(−2α2

0(1 − e−γt))

+ c−c∗+

(
0 0
1 0

) ∣∣∣−αe−γt/2
〉〈

αe−γt/2
∣∣∣ exp(−2α2

0(1 − e−γt))

(8.7.47)

evolving from the density operator in (8.7.31), up to phase factors which are
unimportant for discussing quantum decoherence, with α a complex number.

The condition (8.7.46) implies that

exp(−2α2
0(1 − e−γt)) � exp(−2α2

0γt) (8.7.48)

and for α2
0, associated with the meter (see (8.7.25)) taking on macroscopic

large values such that

α0 � 1
2γt

(8.7.49)

the non-diagonal part in (8.7.47) will be washed away relative to the diagonal
one, demonstrating how quantum decoherence may arise destroying quantum
superpositions. Decoherence then occurs exponentially on a decoherence time
scale ∼ 1/(γα2

0).
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8.8 Ramsey Oscillatory Fields Method and Spin Flip;
Monitoring the Spin

8.8.1 Ramsey Apparatus and Interference; Spin Flip

The Ramsey separated fields method,29 in its simplest form, consists of
two oscillatory magnetic fields each acting for some time τ separated for some
time T with no oscillations. More precisely, the magnetic field as a function
of time may be taken to be of the form

B(t) =




(
B cos ωt,B sinωt,B0

)
, 0 � t < τ(

0, 0, B0

)
, τ � t < τ + T(

B cos ωt,B sinωt,B0

)
, τ + T � t < 2τ + T

(8.8.1)

where B0 > 0, B > 0 are constants. We note that for time T , the amplitude
of oscillations is reduced to zero as is shown pictorially in Figure 8.2.

It is remarkable that an interference pattern arises as a consequence of
having the two separated field zones, as will be seen below, for the spin
intensity distributions for a beam of particles, with spin, entering one Ramsey
zone and finally leaving the other Ramsey zone.

(T ) BB
B0B0B0

RAMSEYRAMSEY
ZONEZONE ττ

ττ
T

Fig. 8.2. Two separated oscillatory fields zones, each acting for a time τ , with
zero amplitude for a time T in between. [More than two oscillatory fields zones
may be also utilized.]

Consider an uncharged particle of spin 1/2 and magnetic moment µ = µσ,
µ < 0. The interaction of the magnetic moment with the magnetic field B(t)
is given by

H = |µ|σ · B(t) =


 �ω0/2 |µ|Be−iωt

|µ|Beiωt −�ω0/2


 (8.8.2)

29 Ramsey (1990), based on the 1989 Noble Prize in Physics Lectures. For an earlier
related classic paper by Ramsey, cf. Ramsey (1950).
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where
�ω0 = 2|µ|B0. (8.8.3)

In (8.8.2), B is taken to be zero for τ � t < τ + T .
From (8.8.2), we are led to solve the system

i�
(

α̇+(t)
α̇−(t)

)
=




�ω0
2 α+(t) + |µ|Be−iωtα−(t)

−�ω0
2 α−(t) + |µ|Beiωtα+(t)


 . (8.8.4)

Upon setting
α±(t) = β±(t)e∓iω0t/2 (8.8.5)

we obtain the two equations

β̈+ + i(ω − ω0)β̇+ +
µ2B2

�2
β+ = 0 (8.8.6)

β̈− − i(ω − ω0)β̇− +
µ2B2

�2
β− = 0. (8.8.7)

After a lengthy but straightforward manipulations of (8.8.4)–(8.8.7), we
obtain the following expression for the unitary evolution operator from some
time t1 to t within a zone

U(t, t1) =
(

U11(t, t1) U12(t, t1)
U21(t, t1) U22(t, t1)

)
(8.8.8)

where

U11(t, t1) =
[

cos a(t − t1) + i
(

ω − ω0

2a

)
sin a(t − t1)

]
e−iω(t−t1)/2 (8.8.9)

U12(t, t1) = −i
|µ|B
�a

sin a(t − t1)e−iω(t+t1)/2 (8.8.10)

U21(t, t1) = −i
|µ|B
�a

sin a(t − t1)eiω(t+t1)/2 (8.8.11)

U22(t, t1) =
[

cos a(t − t1) − i
(

ω − ω0

2a

)
sin a(t − t1)

]
eiω(t−t1)/2 (8.8.12)

a =

[(
ω − ω0

2

)2

+
µ2B2

�2

]1/2

. (8.8.13)

For the intermediate time range τ � t < τ +T , the unitary time evolution
operator is simply

U0(τ + T, τ) = U0(T ) =


e−iω0T/2 0

0 eiω0T/2


 . (8.8.14)
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For the full process, from 0 � t < τ + T , the time evolution operator is
given by

UF(2τ + T, 0) = U(2τ + T, τ + T )U0(T )U(τ, 0) (8.8.15)

where U , U0 are, respectively, given in (8.8.8), (8.8.14).
In particular, for a particle initially prepared in the state

(
1 0

)�, the
amplitude of a spin flip after the particle has gone through the process in
Figure 8.2 is given from (8.8.15) to be

A12(spin flip) =
(

0
1

)�
UF(2τ + T, 0)

(
1
0

)

=
−i|µ|B

�a
sin(ατ)eiωτeiωT/2

×
{

ei(ω−ω0)T/2

[
cos aτ + i

(
ω − ω0

2a

)
sin aτ

]

+ e−i(ω−ω0)T/2

[
cos aτ − i

(
ω − ω0

2a

)
sin aτ

]}
. (8.8.16)

This gives for the probability of a spin flip

Prob[spin flip] =
4µ2B2

�2a2
sin2 aτ

[
cos

(
(ω − ω0)

T

2

)
cos aτ

−
(

ω − ω0

2a

)
sin

(
(ω − ω0)

T

2

)
sin aτ

]2

(8.8.17)

where a is defined in (8.8.13), and ω0 is given in (8.8.3).
At resonance ω = ω0, a = |µ|B/� and (8.8.17) reduces to

Prob[spin flip]resonace = sin2

(
2|µ|Bτ

�

)
(8.8.18)

and a 100% probability for a spin flip is formally attained for

τ =
π

4
�

|µ|B . (8.8.19)

To investigate the nature of the interference occurring in (8.8.16), (8.8.17),
we first determine the amplitudes for a spin flip or of a non-flip of spin after
the particle has gone through the first Ramsey zone before it enters the second
one. These are respectively given by

A1(spin flip) =
(

0
1

)�
U0(T )U(τ, 0)

(
1
0

)
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=
−i|µ|B

�a
sin(aτ)eiω0T/2eiωτ/2 (8.8.20)

A1(non−flip of spin) =
(

1
0

)�
U0(T )U(τ, 0)

(
1
0

)

= e−iω0T/2e−iωτ/2

[
cos aτ + i

(
ω − ω0

2a

)
sin aτ

]
.

(8.8.21)

Similarly for a particle entering the second Ramsey zone, the amplitude
of a spin flip or of a non-flip of spin, and ending up in the state

(
0 1

)�, at
the end of the experiment, are, respectively,

A2(spin flip) =
(

0
1

)�
U(2τ + T, τ + T )

(
1
0

)

=
−i|µ|B

�a
sin(ατ) eiω(3τ+2T )/2 (8.8.22)

A2(non−flip of spin) =
(

0
1

)�
U(2τ + T, τ + T )

(
0
1

)

=
[
cos aτ − i

(
ω − ω0

2a

)
sin aτ

]
eiωτ/2. (8.8.23)

From (8.8.16), (8.8.22), (8.8.23), we see that the amplitude for a spin flip
for a particle going through the whole process in Figure 8.2, may be rewritten
as

A21(spin flip) = [A2(spin flip)A1(non−flip of spin)

+ A2(non−flip of spin)A1(spin flip)]

≡ A(− + +) + A(−− +) (8.8.24)

We note that (8.8.24) is a statement of completeness as it follows from the
insertion of the identity between U0(T ) and U(2τ + T, τ + T ) in (8.8.15):

U(2τ + T, τ + T )U0(T )U(τ, 0)

= U(2τ + T, τ + T )
{(

1
0

)(
1 0

)
+
(

0
1

)(
0 1

)}
U0(T )U(τ, 0) (8.8.25)

leading immediately to the two terms on the right-hand side of (8.8.24) upon
taking the matrix element

(
0 1

)
(·)

(
1 0

)� of (8.8.25).
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The probability of a spin flip in (8.8.17) may be then rewritten as

Prob[spin flip] = |A(− + +)|2 + |A(−− +)|2

+ (A∗(− + +)A(−− +) + A(− + +)A∗(−− +)) (8.8.26)

exhibiting an interference term

[A∗(− + +)A(−− +) + A(− + +)A∗(−− +)]. (8.8.27)

Such terms are observed and are responsible for providing narrow resonance
curves about ω = ω0 for the transition probability in corresponding experi-
ments.

It is interesting to insert the apparatus (a meter) of §8.7 in (8.7.10), de-
scribed as a spin 1/2 system, in the intermediate stage between the two
Ramsey zones in Figure 8.2, the interaction Hamiltonian in that region be-
comes

H(t) =




σ3

(
|µ|B0

[
1 0
0 1

]
− λ

2

[
1 −1
−1 1

])
, τ � t < τ + t0

σ3|µ|B0

[
1 0
0 1

]
, τ + t0 � t < τ + T

(8.8.28)

restricting for simplicity only (see also Problem 8.20) to an ideal apparatus.
Here we use the notation t0 = π�/2λ (see (8.7.15)) for the time of operation
of the apparatus, assumed to be finite, to reach the correlated state given
in (8.7.14), rather than T , with the latter reserved to denote the time of no
oscillations of the magnetic field between the two Ramsey zones. T is chosen
such that T � t0.

The unitary time evolution operator between the two Ramsey zones in
this case, then follows from (8.8.28), (8.8.14), to be given by

Û0(T ) =


e−iω0T/2 0

0 eiω0T/2



{
1 + (iσ3 − 1)

1
2

[
1 −1
−1 1

]}
(8.8.29)

instead of (8.8.14), and for the full process we obtain

UF(2τ + T, 0) = U(2τ + T, τ + T )Û0(T )U(τ, 0). (8.8.30)

Given the initial state

|ψ0〉 =
(

1
0

)
1
2

[
1 − i
1 + i

]
(8.8.31)

of the particle-apparatus system, the amplitude of a spin flip of the particle
is readily worked out from (8.8.28)–(8.8.31) to be
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A(− + +)
[
1
0

]
+ A(−− +)

[
0
1

]
. (8.8.32)

This gives for the probability of a spin flip, the simple expression

|A(− + +)|2 + |A(−− +)|2 (8.8.33)

showing the disappearance of the interference term in (8.8.27) by the mere
insertion of the meter between the two Ramsey zones.

8.8.2 Monitoring the Spin

The insertion of a meter between the two Ramsey zones, as just discussed,
leads us to investigate the fate of the spin of a particle as it goes through
the Ramsey apparatus, as described by the magnetic fields in (8.8.1), when
the spin of the particle, as it comes out of the first zone, is monitored by
the meter. We prepare the particle to be initially in the state

(
1 0

)� before
entering the first zone.

A machine, as a composite system consisting of a filter, which accepts a
particle in the state

(
1 0

)� only, and a Ramsey apparatus, in the absence
of a meter, may be represented by the matrix (see also Figure 1.7, (1.3.24),
(1.3.25), (1.3.5))

M = U(2τ + T, τ + T )U0(T )U(τ, 0)
(

1 0
0 0

)
(8.8.34)

which may be rewritten as

M =
(

M11 0
M21 0

)
(8.8.35)

with

M11 = e−iω0T/2U11(2τ + T, τ + T )U11(τ, 0)

+ eiω0T/2U12(2τ + T, τ + T )U21(τ, 0) (8.8.36)

M21 = e−iω0T/2U21(2τ + T, τ + T )U11(τ, 0)

+ eiω0T/2U22(2τ + T, τ + T )U21(τ, 0) (8.8.37)

(see (8.8.8)–(8.8.12)).
The amplitude that the particle comes out of the machine with no change

in its spin state is then given by

(
1 0

)
M

(
1
0

)
= M11 (8.8.38)
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giving the probability (see also (8.8.17))

Prob[same state] = 1 − 4µ2B2

�2a2
sin2 aτ

[
cos

(
(ω − ω0)

T

2

)
cos aτ

−
(

ω − ω0

2a

)
sin

(
(ω − ω0)

T

2

)
sin aτ

]2

. (8.8.39)

In the presence of the meter, the corresponding machine may be repre-
sented by the matrix

M0 = U(2τ + T, τ + T ) Û0(T )U(τ, 0)
(

1 0
0 0

)
(8.8.40)

where Û0(T ) is given in (8.8.29). For the apparatus in the initial state, ap-
pearing tin (8.8.31), we have

Û0(T )
1
2

[
1 − i
1 + i

]
=


e−iω0T/2 0

0 0



[
1
0

]
+


0 0

0 eiω0T/2



[
0
1

]
(8.8.41)

leading from (8.8.40) to

Prob0[same state] =
∑

x=0,2

(
µ2B2

�2a2
sin2 aτ

)x (
1 − µ2B2

�2a2
sin2 aτ

)2−x

(8.8.42)
corresponding to the probability in (8.8.39) now in the presence of the meter,
as indicated by writing Prob0 for such a probability.

At resonance ω = ω0, the expressions for the probabilities in (8.8.39),
(8.8.42) simplify to

Prob[same state] = cos2
(

2|µ|Bτ

�

)

= cos4
(
|µ|Bτ

�

)
+ sin4

(
|µ|Bτ

�

)
− 1

2
sin2

(
2|µ|Bτ

�

)

(8.8.43)

(see also (8.8.18)),

Prob0[same state] = cos4
(
|µ|Bτ

�

)
+ sin4

(
|µ|Bτ

�

)
(8.8.44)

respectively.
Upon the comparison of the probabilities in (8.8.43), (8.8.44), we learn,

under the above experimental situation, that monitoring the spin of the par-
ticle by the meter, as the particle comes out of the first zone, suppresses the
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probability of change of state, i.e., reduces the probability of decay (unless
2|µ|Bτ/� = nπ, n = 0, 1, 2, . . .).

It is interesting to consider the more general case of a system involving N
Ramsey zones. As before a meter is inserted between each zone to monitor the
spin of the particle as it comes out of a zone, with a finite time of operation
of each meter t0 = π�/2λ, so that the correlated state with the system is
reached with T � t0. The situation is depicted in Figure 8.3.

+

+

++

++

−

−

−−

−−

0

0

00

00

(a)

RZRZ RZ RZ RZ

RZRZRZRZRZ

(b)

Fig. 8.3. A spin 1/2 (uncharged) particle going through N Ramsey zones
(RZ). (a) An apparatus is set between each zone with the “needle” of each
pointing initially towards the neutral 0 direction. The initial (a) and final (b)
directions of the spin of the particle are the same in this experiment. Part (b)
shows a possible configuration of the “needles” directions after the particle
has gone through N − 1 zones.

The time evolution operator of the combined state of the jth meter and
the spin of the particle coming out of the jth zone, j = 1, . . . , N − 1, is of the
form in (8.8.29). The expression for the time evolution operator within each
Ramsey zone may be read from (8.8.8)–(8.8.12) with the appropriate values
for t1 and t in them. For the first zone, for example, t1 = 0, t = τ , and the
(1, 1) element of U(τ, 0) is (8.8.9) and so on.

From (8.8.41), the state of a jth meter may be either
[
1 0

]�
j

or
[
0 1

]�
j

. In

order that the final state of the spin of the particle be
(
1 0

)�, i.e., be in the
same state as the initial one, at the end of the experiment, the particle may
have only an even number (0, 2, . . .) of spin flips as the particle moves from
the initial spin state to each of the meters between the Ramsey zones and
to its final state. Also due to the orthogonality of the states

[
1 0

]�
j

,
[
0 1

]�
j

,
for each j, the relative phases of the elements of the U operators in (8.8.8)–
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(8.8.12) are unimportant. Here we note that we have N such U operators
corresponding to the N Ramsey zones.

All told, (8.8.8)–(8.8.12) lead, in the presence of the meters

Prob0[same state] =
N∑

x=0
(x=even)

(
N
x

)(
µ2B2

�2a2
sin2 aτ

)x (
1 − µ2B2

�2a2
sin2 aτ

)N−x

≡ P
(N)
0 [same state] (8.8.45)

which is a generalization of the expression in (8.8.42) with the latter given
for N = 2.

At resonance ω = ω0, (8.8.45) reduces to

P
(N)
0 [same state] =

N∑
x=0

(x=even)

(
N
x

)(
sin2 µB

�
τ

)x (
cos2

µB

�
τ

)N−x

. (8.8.46)

In the absence of the meters and at resonance ω = ω0, the corresponding
probability to (8.8.46) is simply given by (see Problem 8.21)

P (N)[same state] = cos2
(

NµB

�
τ

)
. (8.8.47)

For N = 3, for example,

P
(3)
0 [same state] = 4 cos6

(
µB

�
τ

)
−6 cos4

(
µB

�
τ

)
+3 cos2

(
µB

�
τ

)
(8.8.48)

and

P (3)[same state] = P
(3)
0 [same state]

+ 12
(

1 − cos2
(

µB

�
τ

))(
1
2
− cos2

(
µB

�
τ

))
cos2

(
µB

�
τ

)
(8.8.49)

and one learns that for

0 < cos2
(

µB

�
τ

)
< 1/2 (8.8.50)

monitoring the spin, in the above experimental situation, enhances the prob-
ability of decay of the system (i.e., change of state), and for

1/2 < cos2
(

µB

�
τ

)
< 1 (8.8.51)

it reduces the probability of decay. Similar considerations may be given for
N > 3.
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The x = 0 term in (8.8.45), given by

[
1 − µ2B2

�2a2
sin2 aτ

]N

(8.8.52)

corresponds to the physically interesting case where each time the meter
“encounters” the particle its spin is always found in its initial state. For τ
finite, i.e., non-zero, and, in general, for sin2 aτ �= 0, the expression within
the square-brackets in (8.8.52) is necessarily less than one. Accordingly for a
system involving a large number of Ramsey zones (i.e., N large), the prob-
ability that the spin of the particle is found by the meter, as the particle
emerges from a zone, always in its initial state becomes negligibly small.30

The above analyses show that measurements made on a system during the
course of its time evolution lead, in general, to situations where the probabil-
ity of decay of the system (change of state), at the end of the experiment, may
be either reduced or enhanced. Such conclusions depend, however, very much
on the experimental situation considered and on the variables involved.31

8.9 Schrödinger’s Cat and Quantum Decoherence

The “Schrödinger cat” paradox arises when one considers the interpre-
tation of the superposition principle of quantum physics as is extended to
macroscopic systems. The classic example of this is the one dealing with
Schrödinger’s 1935 thought experiment consisting, in a simple description,
of a vessel containing a live cat coupled by a lethal device to a radioactive
30 If τ0 denotes the total time of oscillations of the magnetic fields in the N zones,

one may write τ = τ0/N . On using the elementary inequality sin2 x � x2, one
obtains the following lower bound [1 − µ2B2τ2

0 /�
2N2]N to the probability in

(8.8.52). One is then tempted to infer that the latter probability approaches 1
for large N . Such a conclusion, however, cannot be true for finite τ . Also in
an experiment, the total time T0 of no oscillations is finite, and for the time t0
of operation of a meter we have t0 � T0/(N − 1). The limit N → ∞, would
then imply the unrealistic condition of an instantaneous operation time of an
apparatus.

31 There is a long history of the role of measurements (continuous, frequent,. . . ),
made on a system during the course of its evolution, on its decay, cf. Khalfin
(1990); Degasperis et al. (1973); Misra and Sudarshan (1977). The name “Zeno”
effect, as their effect, was coined by the last two authors, and their work has
led to numerous investigations. Cf. Nakazato et al. (1995); Koshino and Shimizu
(2004) and references therein, and many other investigations by several authors
with variations in its definition and different experimental situations with varied
consequences following from them. In generally, one may refer to the suppression
of the decay of a system noted as achieved by measurements made on it during the
course of its evolution as a “quantum Zeno effect”, while refer to the enhancement
of its decay as a “quantum anti-Zeno effect”.
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substance. If a decay in it occurs, this triggers the device to release a deadly
gas and the cat dies. On the other hand, if no decay in it occurs, the cat lives
(see Figure 8.4). The radioactive decay law obeying the probabilistic rules of
quantum physics, a decay may or may not occur within a given time speci-
fied by the “experimentalist” and it depends on the half-life of the radioactive
substance.

(a) (b)

Fig. 8.4. (a) Vessel containing an alive cat in the presence of a radioactive
substance in which no decay has occurred. (b) A decay has occurred which
in turn has triggered a device to release a deadly gas and the cat dies. Unless
one looks into the vessel, should one assume that the cat is in a superposition
of cat alive/cat dead states?

According to quantum theory, the cat may be then found in a superpo-
sition state of being alive/dead correlated with the radioactive substance in
which a no decay/decay has occurred. A state of this form may formally have
the structure

|Ψ〉 =
1√
2

[∣∣no decay, cat alive
〉

+
∣∣decay, cat dead

〉 ]
(8.9.1)

where for simplicity one may assume equal amplitudes for both configuration
states. Such a state is called an entangled one as it may not be rewritten as
the product of two states (see Appendix to §8.10). Also in (8.9.1), neither
the substance nor the cat is in a definite state.



484 8 Quantum Physics of Spin 1/2 & Two-Level Systems

In our usual perception of the world, the cat is either alive or dead and not
in a superposition of the two states. Such “cat” states are not meaningful in
the macroscopic world and one faces the question as to what the significance
of the superposition of macroscopic states, in general, is. As done at the end
of §8.7, one may then argue that the environment, surrounding a macroscopic
system and interacting with it, will destroy such superpositions thus inducing
naturally superselection rules preventing them to be observed. Such quantum
decoherences should then occur in such short times for us to perceive.

A cat is a very complex system consisting of a very large number of de-
grees of freedom with its different parts evolving in time in complicated ways
whether the cat is dead or alive. Admittedly, it is also rather too simplis-
tic to introduce a state for a cat either alive or dead in a meaningful way.
There are, however, so-called mesoscopic states which have macroscopic and
microscopic features and have been actually prepared in the laboratory.32

In this context, the state of the “cat” as being alive or dead is replaced by
some classical notion such as simply as the position of a particle.

For example, the Monroe et. al. experiment involved in preparing an atom
in a superposition of two spatially separated but localized wavepackets, thus
creating a state

|φ〉 =
1√
2

[|x1〉 |↑〉 + |x2〉 |↓〉] (8.9.2)

where |x1〉, |x2〉 refer to wavepacket states corresponding to separated posi-
tions of the atom, and |↑〉, |↓〉 refer to internal states of the atom. The ex-
tension of the wavepackets was about 7 nm, and the separation between the
wavepackets was not smaller than the rather macroscopic distance of 80 nm
which is large in comparison to the atomic dimension of the order 0.1 nm.
In the Brune et. al. experiment, the coupling of a two-level atom with a few
photon coherent field in a cavity was considered generating a Schrödinger
cat-like state of radiation and the quantum decoherence in a measurement
process was observed for such a mesoscopic state. The decoherence is consid-
ered as being due to dissipation corresponding to absorption by the cavity
walls. Mesoscopic states are often referred to as kitten-like states.

One may model the latter experiment by considering the coupling of a
spin 1/2 system and a harmonic oscillator to generate a Schrödinger cat
entangled state

|φ〉 =
1√
2

[(
1
0

)
|α〉 +

(
0
1

)
|−α〉

]
(8.9.3)

where
(
1 0

)�,
(
0 1

)� correspond to two states of an atom, while the co-
herent states |α〉, |−α〉 correspond to two configurations of radiation. In
Schrödinger’s cat thought experiment,

(
1 0

)�
/
(
0 1

)� correspond to the ra-

32 Monroe et al. (1996); Brune et al. (1996); Brune et al. (1992); see also Gerry and
Knight (1997).
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dioactive substance in which no decay/a decay has occurred, while |α〉 / |−α〉
correspond to the cat alive, dead, respectively.

By considering an interaction of the harmonic oscillator with the envi-
ronment of the form given in (8.7.44), we may infer from the analysis given
through (8.7.44)–(8.7.49), that quantum coherence will disappear exponen-
tially on a decoherence time scale ∼ 1/(γ|α|2) (see end of §8.7), where γ, for
example, is defined in (8.7.45). We also recall from (6.6.24) that |α|2 = n̄, with
n̄ denoting the mean number of the oscillator quanta. That is, the larger n̄ is
the more rapidly coherence is destroyed. For macroscopic systems, n̄ is very
large and decoherence occurs too rapidly to be observed, while for mesoscopic
ones, with n̄ not too large decoherence is expected to set in slowly.

A simple model that generates the Schrödinger entangled state in (8.9.3)
may be readily given. Consider an uncharged spin 1/2 particle with magnetic
moment µ. As an initial condition, we take the spin state

(
1 0

)�.
As a first stage, we consider the interaction of the spin of a particle with a

constant magnetic field B = (0, 1, 0), B > 0, µ < 0, for a time t = �π/(4|µ|B),
with Hamiltonian H = −µ · B. This generates the state

exp
(
− it

�
(−µ · B)

)(
1
0

)
=

1√
2

[(
1
0

)
+
(

0
1

)]
. (8.9.4)

As a second stage, we consider the interaction of the spin, in the “initial”
state (8.9.4), with a harmonic oscillator taken in an initial coherent state
|−iα0〉. This interaction will be taken to be proportional to the simple form[(

1
0

)(
1 0

)
−
(

0
1

)(
0 1

)]
a†a (8.9.5)

with a Hamiltonian (λ > 0)

H = �ωa†a − λσ3a
†a (8.9.6)

for a time t = �π/2λ. This generates the state (see (8.7.28))

exp
(
− i

�
tH

)
1√
2

(
1
1

)
|−iα0〉 =

1√
2

[(
1
0

)
exp

(
− it

�
(�ω − λ)a†a

)
|−iα0〉

+
(

0
1

)
exp

(
− it

�
(�ω + λ)a†a

)
|−iα0〉

]

=
1√
2

[(
1
0

)
|α〉 +

(
0
1

)
|−α〉

]
(8.9.7)

where
α = e−iφα0, φ =

�ω

λ

π

2
. (8.9.8)

This second stage mimics an interaction which finally establishes the correla-
tion between the radioactive substance and the cat as discussed below (8.9.3),
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[or formally the interaction of an atom in a superposition of two of its levels
with a coherent field in a cavity (see also Problem 8.22).]

As the third stage, one may also generate a pure superposition of the cat
(kitten) states as follows. By applying an identical magnetic field as in stage
1, for the same time t = �π/(4|µ|B), we generate the state

1
2

(
1
0

)[∣∣∣e−iφ′
α0

〉
−
∣∣∣−e−iφ′

α0

〉]
+

1
2

(
0
1

)[∣∣∣e−iφ′
α0

〉
+
∣∣∣−e−iφ′

α0

〉]
(8.9.9)

for a phase φ′.
Finally, as the fourth stage, one may perform a selective measurement,

selecting the state
(
0 1

)� component of the spin, and generate, in the process,
the superposition state

N
[∣∣∣e−iφ′

α0

〉
+
∣∣∣−e−iφ′

α0

〉]
(8.9.10)

where N is a normalization factor. A coupling of the form in (8.7.44), where
the harmonic oscillator in (8.9.6) interacts with the environment, represented
by a collection of harmonic oscillators involving infinitely many degrees of
freedom, leads to a destruction of such a superposition exponentially on a
decoherence time scale ∼ 1/(γ|α0|2), where γ is defined in (8.7.45).33

8.10 Bell’s Test

8.10.1 Bell’s Test

Consider the commutation relations for spin

[Si, Sj ] = i�εijkSk. (8.10.1)

Let n1, n2 be any two unit vectors specifying two different directions. Since
the components Xi of the position operator commute, and also commute with
spin (see (2.7.8)), we may multiply (8.10.1) by the components n1i, n2j and
sum over i and j to obtain

[Sn1 , Sn2 ] = i�|n1 × n2|SN (8.10.2)

33 As pointed out in the footnote to the interaction in (8.7.44), quantum decoher-
ence arising from the non-isolation of a measuring (or detection) system from
the environment and hence from its interaction with it, is reminiscent of the in-
teraction of the non-isolated charged particle with the ever present electromag-
netic field surrounding it with corresponding physical consequences and that of
renormalization. [It is interesting to note that the electromagnetic field is also
essentially represented by harmonic oscillators with infinitely many degrees of
freedom.]
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where Sn = n · S, N = (n1 × n2)/|n1 × n2|, and n1 × n2 is not the zero
vector.

For spin 1/2, the explicit expression for Sn is given in (8.1.14), and for
any unit vector n, Sn has the eigenvalues ±�/2. The commutation relations
(8.10.2) imply, in particular, that the components of spin along any two
different directions cannot be defined simultaneously. As a matter of fact,
if one argues, incorrectly, that there may be a simultaneous eigenvector for
Sn1 and Sn2 , for which n1 × n2 �= 0, then from (8.10.2), one would run into
a contradiction that this eigenvector is also an eigenvector of SN with zero
eigenvalue!

Suppose a pair of spin 1/2 particles are prepared in a singlet state
(cf. (5.5.39))

|ψ〉 =
1√
2

(|n〉1 |−n〉2 − |−n〉1 |n〉2) (8.10.3)

where we have used the notation |±1/2,n〉 ≡ |±n〉 (see (8.1.16), (8.1.25)),
and the two particles move freely with momenta in opposite directions and
cease to interact. The quantization axis in (8.10.3) was chosen, arbitrarily,
along a unit vector n (see also Problem 8.24).

An actual process will be discussed below giving rise to a singlet state as
in (8.10.3). This state is not factorable as the product of two states and is
referred to as an entangled state.34 According to (8.10.3), if the measurement
of spin of one of the particles is found to be along, say, n, then one would
infer rather instantaneously, with probability one, that the component of
spin of the other particle is along −n. This together with the fact that all the
components of spin cannot be simultaneously defined, as implied by quantum
physics, has led Einstein, Podolsky and Rosen (EPR) in 193535 to a serious
criticism of quantum mechanics.36

The EPR argument, tailored to the problem at hand, is of the following
nature.

‘Devil’s Advocate Argument

From the measurement of spin of one of the particles, call it particle 1,
and found, say, to be along n, one may conclude instantaneously, because of
the correlation implied by (8.10.3), that the component of spin of the other
particle, call it particle 2, is along −n without ever disturbing this latter
particle. With no such disturbance, one may invoke locality, as a no-action at
a distance, to infer that the value of the component of spin found indirectly
for particle 2 must have existed prior to a measurement done on particle 1.

34 The mathematical aspect of entangled states is given in the appendix to this
section.

35 Einstein et al. (1935).
36 Actually their criticism was reformulated by D. Bohm in terms of spin, while the

original EPR argument was based on positions and momenta of particles.
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Since n was arbitrary, one may also infer that all the components of spin of
particle 2 were known to begin with. That is, all the components of spin of a
particle are definite in clear contradiction with quantum mechanics and the
underlying theory of the latter is incomplete.’

The above led to the belief that perhaps quantum mechanics is a limiting
case of a more complete local theory which, involves, so-called, hidden vari-
ables. Such theories are referred to as Local Hidden Variables (LHV) theories.
In 1964, and in subsequent years, John Bell37 has put such theories to a test.
Several tests have been also proposed in the literature by various authors.
We refer to all such tests as Bell-like tests. We will discuss one originating
from the work of Clauser, Horne, Shimoney and Holt (CHSH).38

To the above end, and in view of applications to a system of two particles,
as described below (8.10.3), and other similar processes, we consider the
following in the light of LHV theories.

Let λ denote collectively the random variables expected to be relevant to
the system under study with corresponding probability density or probability
mass function dρ(λ) normalized as∫

Λ

dρ(λ) = 1 (8.10.4)

summed over the set Λ of all values that λ may take on.
One is interested in determining coincidence and single counts obtained

in the measurements of the spins of the particles, after emerging from the
process, making angles, say, χ1, χ2 with some given directions.

Suppose that the system is in a state specified by λ. We may introduce
the following probabilities of counts:

p(χ1, χ2;λ), p(χ1,−;λ), p(−, χ2;λ) (8.10.5)

correspondingly, respectively, to coincidence counts when measurements are
made on both particles’ spins, to a count when a measurement is made on only
one particle (call it particle 1), and, finally, to a count when a measurement
is made on particle 2 only.

In such a framework, one makes the key assumption that if the system
is in any given state specified by λ, the probability count obtained from
measurements performed on one particle is independent of the probability
count corresponding to the other particle after they have emerged from the
process. That is, the probability counts are necessarily factorable,

p(χ1, χ2;λ) = p(χ1,−;λ)p(−, χ2;λ) (8.10.6)

for all λ in Λ, implying their independence, with all determined in the same
state λ.
37 Bell’s insight has been of great significance in science, in general. Many of his

contributions to this problem have been collected, e.g., in: Bell (1989).
38 Clauser and Horne (1974); Clauser and Shimony (1978); Clauser et al. (1969).
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Now we use the fact that for any four numbers 0 � x1, x2, x
′
1, x

′
2 � 1, we

have the following elementary inequality

− 1 � x1x2 − x1x
′
2 + x′

1x2 + x′
1x

′
2 − x′

1 − x2 � 0 (8.10.7)

as established in the appendix to this section.
Accordingly upon setting

x1 = p(χ1,−;λ)

x2 = p(−, χ2;λ)

x′
1 = p(χ′

1,−;λ)

x′
2 = p(−, χ′

2;λ)




(8.10.8)

for four angles, χ1, χ2, χ′
1, χ′

2, and using the fact that probabilities, as in
(8.10.5), necessarily must fall in the range [0, 1], we have from (8.10.7) upon
multiplying the latter by dρ(λ) and summing (integrating) over λ:

− 1 � p(χ1, χ2)− p(χ1, χ
′
2) + p(χ′

1, χ2) + p(χ′
1, χ

′
2)− p(χ′

1,−)− p(−, χ2) � 0
(8.10.9)

where

p(χ1, χ2) =
∫

Λ

dρ(λ)p(χ1,−;λ)p(−, χ2;λ)

=
∫

Λ

dρ(λ)p(χ1, χ2;λ) (8.10.10)

etc., where we have used, in particular, the factorization assumption in
(8.10.6).

The inequality in (8.10.9) is expressed in terms of probability counts which
may be determined experimentally putting LHV theories to a test. p(χ1, χ2)
denotes the joint probability count for measurements of both spins, while
p(χ1,−), p(−, χ2) correspond to probability counts with measurements of
only one of the spins.

In the sequel, the probabilities computed from quantum theory corre-
sponding to p(χ1, χ2), p(χ1,−), p(−, χ2) will be denoted, respectively, by
P (χ1, χ2), P (χ1,−), P (−, χ2) with a capital “P ”.

In order to obtain a violation of the inequality in (8.10.9) experimentally,
it is sufficient to choose any four angles χ1, χ2, χ′

1, χ′
2 that do the job since,

according to the LHV reasoning, (8.10.9) must be true for all angles. Experi-
ments show violation of the inequalities and are consistent with the quantum
mechanical predictions. Experiments of optical nature have been performed
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and a classic one involving two photons with measurements made on photon
polarization correlations is one due to Aspect et. al.39,40

8.10.2 Basic Processes

Now we investigate the nature of the inequality (8.10.9) with the probabil-
ities appearing in it as computed from quantum theory for specific processes.

The Process:

e−e− −→ e−e−

We prepare a pair of electrons, with one spin up and the other spin down
along the z-axis and initial momenta p and −p along the y-axis (see Fig-
ure 8.5). There is a non-zero amplitude41 that the scattered electrons move
along the x-axis, as shown in Figure 8.5. In this particular case, the proba-
bilities P (χ1, χ2), P (χ1,−), P (−, χ2) take quite simple forms.42

Prior to the computation of the above probabilities let us investigate
their precise physical meanings by analyzing the possible outcomes of an
experiment.

In the above experiment, depicted in Figure 8.5, a measurement of spin
of one of the particles emerging from the process is measured along a unit
vector n1, making an angle χ1 with the z-axis, while the spin of the other
particle is measured along a unit vector n2, making an angle χ2 with the z-
axis. The outcomes of such an experiment are shown in Figure 8.6. Since we
are dealing with spin 1/2 particles, a spin measurement along a unit vector
n gives only two possible answers, the spin is either along n or in opposite
direction to n. That is, the particle’s spin is in the state |+n〉 or |−n〉 in our
earlier notation in (8.10.3).

That is, there are four possible outcomes of the experiment, as shown in
Figure 8.6, with corresponding probabilities of occurrence

P [+n1,+n2], P [−n1,+n2], P [+n1,−n2], P [−n1,−n2]. (8.10.11)

39 Aspect et al. (1982).
40 For many other experiments of different nature, cf. Clauser and Shimony (1978);

Chiao et al. (1994); Bell (1989).
41 That there is a non-zero amplitude for the process may be shown to be true from

quantum electrodynamics, for example, to the leading order in the fine-structure
constant, see: Manoukian and Yongram (2004).

42 For the scattered electrons moving along other axes than the x-axis these proba-
bilities turn out to have complicated dependences on the initial speed of the elec-
trons relative to the speed of light, in general, as discussed below, see: Manoukian
and Yongram (2004); Yongram and Manoukian (2003), for such details.
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e−

e−

e−

e−p −p

x

y

z
χ2

χ1

n2

n1

Fig. 8.5. A possible configuration of the process e−e− → e−e−, where the ini-
tial spins are prepared to be one up and one down along the z-axis, and initial
momenta p and −p are along the y-axis. There is a non-zero amplitude that
the scattered electrons move with momenta along the x-axis as shown. This
particular configuration yields to the simple probabilities given in (8.10.24),
(8.10.26), (8.10.27) with spin measurements along directions specified by the
unit vectors n1, n2. There are only four possible outcomes of the spin mea-
surements of the emerging particles along the unit vectors n1, n2. These are
spelled out in Figure 8.6.

Here, for example, read P [−n1,+n2] as the probability that a measurement
of spin of a particle, call it 1, along n1 is found in its opposite direction, while
the spin of particle 2, measured along n2 is found to lie in the same direction.
With the physical meanings of the probabilities in (8.10.11) made clear, we
have

P (χ1, χ2) ≡ P [+n1,+n2] (8.10.12)

P (χ1 + π, χ2) ≡ P [−n1,+n2] (8.10.13)

P (χ1, χ2 + π) ≡ P [+n1,−n2] (8.10.14)
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χ1

χ1

χ1

χ1

χ2

χ2

χ2

χ2

P [+n1, +n2] P [−n1, +n2]

P [+n1,−n2] P [−n1,−n2]

n1

n1

n1

n1

n2

n2

n2

n2

Fig. 8.6. The four possible outcomes of spin measurements (of the two emerg-
ing particles) along the unit vectors n1, n2 in the process depicted in Fig-
ure 8.5. The corresponding probabilities of occurrence appear under each
possible case. Some of these probabilities may be zero for some n1, n2 and
these may be read off from (8.10.24) in conjunction with (8.10.12)–(8.10.15).

P (χ1 + π, χ2 + π) ≡ P [−n1,−n2] (8.10.15)

corresponding to only four possible outcomes.
For any angles χ1, χ2, the normalization of probability reads as

P (χ1, χ2)+P (χ1 +π, χ2)+P (χ1, χ2 +π)+P (χ1 +π, χ2 +π) = 1. (8.10.16)

If a measurement of spin is made only on one particle, say, particle, call
it, 1, then with P [±n1,−] denoting the probability that a measurement of its
spin along n1 is found in the same or opposite direction to n1, respectively,
we have

P (χ1,−) ≡ P [n1,−] (8.10.17)

P (χ1 + π,−) ≡ P [−n1,−] (8.10.18)

and the normalization of probability in this case reads

P (χ1,−) + P (χ1 + π,−) = 1. (8.10.19)

Similar expressions are given for P (−, χ2), P (−, χ2 + π).
Now we go back to the process depicted in Figure 8.5, to compute the

probabilities P (χ1, χ2), P (χ1,−), P (−, χ2) and the corresponding ones with
χ1, χ2 → χ1 + π, χ2 + π. From the conservation of total angular momentum,
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and the indistinguishability of the electrons, obeying the Fermi-Dirac statis-
tics, that is, being described by an anti-symmetric state under the exchange
of the two electrons, imply that the latter initial state, in spin-space, is a
singlet-one,

|Φ〉 =
1√
2

[(
1
0

)
1

(
0
1

)
2

−
(

0
1

)
1

(
1
0

)
2

]
. (8.10.20)

With measurements of spins along the axes

n1 = (0, sin χ1, cos χ1), n2 = (0, sin χ2, cos χ2) (8.10.21)

(see Figure 8.5), and corresponding final states

e−iπ/4 cos χ1/2

eiπ/4 sinχ1/2




1

,


e−iπ/4 cos χ2/2

eiπ/4 sinχ2/2




2

(8.10.22)

(see (8.1.16)), we obtain the amplitude
(
eiπ/4 cos χ1/2 e−iπ/4 sin χ1/2

)
1

(
eiπ/4 cos χ2/2 e−iπ/4 sin χ2/2

)
2
|Φ〉

= − 1√
2

sin
(

χ1 − χ2

2

)
(8.10.23)

giving the joint probability43

P (χ1, χ2) =
1
2

sin2

(
χ1 − χ2

2

)
≡ P [+n1,+n2]. (8.10.24)

The probability P (χ1,−) may be obtained from the square of the norm
of the state (see (8.10.20), (8.10.22)):

(
eiπ/4 cos χ1/2 e−iπ/4 sin χ1/2

)
1
|Φ〉

=
1√
2

[
eiπ/4 cos

χ1

2

(
0
1

)
2

+ e−iπ/4 sin
χ1

2

(
1
0

)
2

]
(8.10.25)

giving simply

P (χ1,−) =
1
2

(8.10.26)

P (−, χ2) =
1
2
. (8.10.27)

Upon defining
43 This coincides with the quantum electrodynamics calculation (Manoukian and

Yongram (2004)), to the leading order in the fine-structure constant as obtained
for the process depicted in Figure 8.5.

and similarly
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S = P (χ1, χ2) − P (χ1, χ
′
2) + P (χ′

1, χ2) + P (χ′
1, χ

′
2) − P (χ′

1,−) − P (−, χ2)
(8.10.28)

for four angles χ1, χ2, χ′
1, χ′

2, we note that for

χ1 = 45◦, χ2 = 90◦, χ′
1 = 135◦, χ′

2 = 180◦ (8.10.29)

for example, we obtain S = −1.207, which violates the LHV theories inequal-
ity (8.10.9) (from below), according to the quantum mechanical computations
of the underlying probabilities. Such violations are in conformity with exper-
iments and are consistent with the quantum theory predictions.

Remarks 2
1. The joint probability of spin correlation in (8.10.24), whose physical

meaning is spelled out in (8.10.12)–(8.10.15), see also Figure 8.5, is
what is technically called a conditional probability. That is, given that the
process in Figure 8.5 has occurred, then (8.10.24) gives the joint proba-
bility of spins correlations of the emerging particles.

2. The expression in (8.10.24), corresponding to the process in Figure 8.5,
is valid even in the relativistic regime where β is not small. Here β = v/c
denotes the speed of any one of the incoming electrons and c denotes the
speed of light. On the other hand for the scattered electrons moving along
a different axis, than that of the x-axis, the corresponding conditional
probability of the joint spin correlations has, in general, a complicated
dependence on β.44 Only when the formal limit β → 0 is taken (the
non-relativistic regime) then these conditional joint probabilities of spin
correlations for these different scattering axes coincide with the one in
(8.10.24) as well.

3. From (8.10.24), (8.10.26), (8.10.27) we note that, in general, P (χ1, χ2) �=
P (χ1,−)P (−, χ2) showing the dependence of the two events correspond-
ing to the spin measurements of the two particles.

The Process:

e+e− −→ γγ

A very investing process, relevant to the above analysis, is the one of
positron-electron annihilation into two photons. We consider the process de-
picted in Figure 8.7. The electron, positron are prepared with spins up and
down along the z-axis, and with momenta p and −p, along the y-axis, re-
spectively. Again there is a non-zero amplitude that such a process occurs.
The created photons move with opposite momenta and, in here, along the
z-axis. For this situation, the (conditional) probabilities P (χ1, χ2), P (χ1,−),
P (−, χ2) take particularly simple forms.
44 Such details, based on quantum electrodynamics calculations, have been investi-

gated in Manoukian and Yongram (2004), Yongram and Manoukian (2003), and
are beyond the scope of the present analysis.
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e− e+

χ1

χ2

e1

e2

p −p

x

y

z

Fig. 8.7. A possible configuration of the process e+e− → γγ, where the spins
of the electron, positron are prepared to be up and down along the z-axis, and
with momenta p and −p along the y-axis, respectively. There is a non-zero
amplitude that the created photons, emerging with opposite momenta, move
along the z-axis as shown. Photon polarization correlations are measured with
polarization vectors making angles χ1, χ2 with the x-axis.

To obtain the above probabilities, it is convenient to define right-handed
(R-H) and left-handed (L-H) polarization vectors associated with a photon
with momentum �k, say, moving along the z-axis in the positive direction:

e+ =
1√
2
(e1 + ie2), e− =

1√
2
(e1 − ie2) (8.10.30)
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where e1, e2 are (linear) polarization vector components along the x- and
y-axis, respectively (see also §8.5). The action of the parity operation on R-H
and L-H polarizations is spelled out in Figure 8.8.

PARITY:

PARITY:

R-H

R-H

L-H

L-H

�k

�k

−�k

−�k

Fig. 8.8. The role of the parity operation on the momentum and right-
handed (R-H) and left-handed (L-H) polarization vectors. The photon has
also a so-called intrinsic parity of minus one.

To find the two-photon state, we note the following: (1) the photons satisfy
the Bose-Einstein statistics, and hence such a state must be even under the
interchange of the two-photons. (2) The positron and electron have opposite
intrinsic parities45 and hence the two-photon state must be odd under a
parity transformation. (3) The total angular momentum along the z-axis is
zero.

The R-H and L-H polarizations may be obtained from (8.10.30), (1.6.2),
(1.6.3), to be represented as follows:

1√
2


1

i
0


 , as R-H for kz > 0, as L-H for kz < 0 (8.10.31)

45 Intrinsic parities of some particles will be investigated in Chapter 16. The vector
potential A, for example, being coupled to the current J density via Maxwell’s
equations imply that the intrinsic parity of a photon is odd. Since we are con-
sidering here two photons, the intrinsic parity of a photon does not play an
important role in this analysis.

e( ) e( )−+1 2
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1√
2


 1
−i
0


 , as R-H for kz < 0, as L-H for kz > 0. (8.10.32)

Accordingly, the two-photon polarization correlation state may be written
as

|Ψ〉 = √
2
(e+1e+2 − e−1e−2)

=
2
√

2




1

i
0




1


 1
−i
0




2

−


 1
−i
0




1


1

i
0




2


 (8.10.33)

+1e+2 ↔ e−1e−2. To
show that the total angular momentum, associated with |Ψ〉, along the
z-axis, is zero, we note that with the convention of the representation of e1

and e2 by the column vectors in (1.6.2), (1.6.3), we may write

S3 = i�


0 −1 0

1 0 0
0 0 0




1

+ i�


0 −1 0

1 0 0
0 0 0




2

(8.10.34)

for the total angular momentum (spin) for the two photons along the z-axis,
and note that

S3 |Ψ〉 = 0. (8.10.35)

Finally, since 
 1
±i
0


 =


1

0
0


± i


0

1
0


 (8.10.36)

the state in (8.10.33) may be rewritten as

|Ψ〉 =
1√
2




1

0
0




1


0

1
0




2

−


0

1
0




1


1

0
0




2


 (8.10.37)

which is an entangled state similar to the one in (8.10.20), leading to the
amplitude

(
cos χ1 sinχ1 0

)
1

(
cos χ2 sinχ2 0

)
2
|Ψ〉 = − 1√

2
sin(χ1 − χ2) (8.10.38)

(see (1.6.4)), and the conditional probability,

P (χ1, χ2) =
1
2

sin2(χ1 − χ2). (8.10.39)

e+2( ) e( )1−

i

From Figure 8.8, this state has also an odd parity: e

i

which is consistent with the Bose characterof the photons of opposite momenta.
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The probability P (χ1,−) is obtained from the square of the norm of the
state

(
cos χ1 sin χ1 0

)
1
|Ψ〉 =

1√
2


cos χ1


0

1
0




2

− sinχ1


1

0
0




2


 (8.10.40)

giving simply
P (χ1,−) = 1/2 (8.10.41)

and similarly
P (−, χ2) = 1/2. (8.10.42)

For four angles

χ1 = 0◦, χ2 = 23◦, χ′
1 = 45◦, χ′

2 = 67◦, (8.10.43)

for example, S, defined in (8.10.28) is, according to the quantum mechanical
computation, equal to −1.207 violating the LHV theories inequality (8.10.9)
from below. For

χ1 = 0◦, χ2 = 67◦, χ′
1 = 135◦, χ′

2 = 23◦ (8.10.44)

we obtain S = 0.207, violating the LHV theories inequality (8.10.9) from
above according to the quantum mechanical computations of the underlying
probabilities. Such violations are in conformity with experiments and are
consistent with the quantum theory predictions.

Remarks 3
1. The probability in (8.10.39) is a conditional probability given that the

process depicted in Figure 8.7 has occurred and may be also obtained
directly from quantum electrodynamics, to the leading order, and is valid
for all speeds 0 � β � 1 of e+, e−. For the line of momenta of the pair
of photons in different directions than the one in Figure 8.7, P (χ1, χ2)
turns out to have a complicated dependence46 on β, in general.

2. In the formal limit β → 0 (the non-relativistic regime) of e+, e−,
P (χ1, χ2), as given in (8.10.39), holds true for all directions of the line
of momenta of the two photons.

3. The normalization condition for the photon (massless spin 1 particle)
reads

P (χ1, χ2) + P (χ1 +
π

2
, χ2) + P (χ1, χ2 +

π

2
) + P (χ1 +

π

2
, χ2 +

π

2
) = 1

(8.10.45)
instead of (8.10.16).

4. From (8.10.39), (8.10.41), (8.10.42), we note that, in general,
P (χ1, χ2) �= P (χ1,−)P (−, χ2) showing the dependence of the two events
corresponding to the polarizations measurements of the two photons.

46 Manoukian and Yongram (2004), Yongram and Manoukian (2003).
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Many other processes have been discussed in the literature.47 It is in-
teresting to note that for specific configurations, specific collision processes
lead to entangled states and speed independent expressions for the probabil-
ities. More generally, however, such probabilities depend on the speeds of the
parent particles48 and makes a Bell-like test for testing LHV theories more
challenging.

The Bell-like tests have not only put quantum theory on a pedestal, and
emphasized how reliable the theory is, but also created enormous interest
in the foundation of its underlying theory. Its inherit “non-locality”, as some
practitioners put it, remains to be a problem, while for others as a mere prob-
lem of interpretation. Operationally, however, quantum theory is in pretty
good shape. It is consistent with experiments — the final verdict of a theory.

Appendix to §8.10. Entangled States; The C-H
Inequality

Entangled States

Consider two sets of independent vectors |αi〉, |βj〉,

〈αi|αj〉 = δij , 〈βi|βj〉 = δij (A-8.10.1)

then for any vector
|ψ〉 =

∑
i

ci |αi〉 |βi〉 (A-8.10.2)

such that at least two of the coefficients ci are non-zero, cannot be rewritten
as a product

|ψ〉 = |ψ1〉 |ψ2〉 (A-8.10.3)

where
|ψ1〉 =

∑
i

ai |αi〉 (A-8.10.4)

|ψ2〉 =
∑

i

bi |βi〉 . (A-8.10.5)

To show this, suppose, without any loss of generality that c1 �= 0 and
c2 �= 0. Upon multiplying (A-8.10.2), in turn, by 〈α1| 〈β1|, 〈α2| 〈β2| and using
(A-8.10.3) we obtain

c1 = a1b1, c2 = a2b2. (A-8.10.6)

On the other hand by multiplying (A-8.10.2) in turn by 〈α1| 〈β2|, 〈α2| 〈β1|
and using (A-8.10.3) we obtain

47 Cf. Clauser and Shimony (1978).
48 Manoukian and Yongram (2004), Yongram and Manoukian (2003).
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0 = a1b2, 0 = a2b1 (A-8.10.7)

which upon comparison with (A-8.10.6) leads to the contradiction that at
least one of c1, c2 is zero.

A state as defined in (A-8.10.2), with at least two of the coefficients ci

non-zero is called an entangled state.

The Clauser-Horne (C-H) Inequality

Consider four numbers 0 � x1, x2, x
′
1, x

′
2 � 1, and set

U = x1x2 − x1x
′
2 + x′

1x2 + x′
1x

′
2 − x′

1 − x2. (A-8.10.8)

We first derive the upper bound U � 0.
For x1 � x′

1, we may rewrite

U = (x1 − 1)x2 + x′
1(x2 − 1) + x′

2(x
′
1 − x1)

� 0 (A-8.10.9)

since every term is non-positive.
For x1 < x′

1, we may rewrite

U = x1(x2 − x′
2) + (x′

1 − 1)x2 − x′
1(1 − x′

2)

� x1(x2 − x′
2) + (x′

1 − 1)x2 − x1(1 − x′
2)

= x1x2 + (x′
1 − 1)x2 − x1

= x1(x2 − 1) + (x′
1 − 1)x2 � 0. (A-8.10.10)

We now derive the lower bound −1 � U .
For x′

1 � x1,

U + 1 = (1 − x′
1)(1 − x2) + x1x2 + x′

2(x
′
1 − x1)

� 0 (A-8.10.11)

since every term is non-negative.
For x1 > x′

1,

U + 1 = (1 − x′
1)(1 − x2) − (x1 − x′

1)(x
′
2 − x2) + x′

1x2

� (x1 − x′
1)(1 − x2) − (x1 − x′

1)(x
′
2 − x2) + x′

1x2

= (x1 − x′
1)(1 − x′

2) + x′
1x2 � 0. (A-8.10.12)

All told, we have
− 1 � U � 0. (A-8.10.13)
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8.11 Quantum Teleportation and Quantum
Cryptography

Quantum teleportation, in its simplest form, is a process of transferring
the quantum state of a particle onto another particle. On the other hand,
quantum cryptography is a process of sending coded messages between two
parties with the aim of minimizing, or even abolishing, the risk that the mes-
sage be intercepted by an unwanted third party. These methods rely on such
fundamental and mysterious aspects of quantum theory such as entanglement
and on the general basic fact that a quantum system can be in a superposition
of different states. Research in such problems, under the heading of quantum
information, has quite flourished in recent years and uses, in the process, the
very basics of quantum theory in important potential applications. Quantum
teleportation and quantum cryptography are discussed next.

8.11.1 Quantum Teleportation

Suppose a person — traditionally called Alice — has a spin-1/2 particle
(or any two-level system), call it particle 1, in a state

(
α
β

)
1

(8.11.1)

|α|2 + |β|2 = 1, and she wants another person — traditionally called Bob —
at a distant location, to have a particle, of spin-1/2, call it particle 3, in this
state. Quantum theory provides an answer to the transfer of the state of one
particle to another one as follows.

Consider two particles, each of spin 1/2, call them particles 2 and 3, where
3 denotes the particle in question above. Suppose particles 2 and 3 are in the
entangled state

∣∣Ψ−
23

〉
=

1√
2

[(
0
1

)
2

(
1
0

)
3

−
(

1
0

)
2

(
0
1

)
3

]
(8.11.2)

i.e., one has no information on the states of particles 2 and 3 except that they
are in opposite spin states. One of these particles, referred to as particle 2,
is sent to Alice, and the other, referred to as particle 3, is sent to Bob. Alice
wants to transfer the state in (8.11.1) of particle 1 with her to Bob’s particle
3. The entangled state

∣∣Ψ−
23

〉
in (8.11.2) between particles 2 and 3 plays a

key role in such a transfer. Because of this, particles 2 and 3 are referred to
as entangled ancillary pair of particles.

If Alice succeeds, by a specific measurement, of putting particles 1 and
2, with her, in the entangled state

∣∣Ψ−
12

〉
, then particle 3, with Bob — at

a distant location from Alice — will be projected into the initial state of
particle 1 in (8.11.1) as shown below.
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To the above end, we introduce the four orthogonal entangled states:

∣∣Ψ±
ab

〉
=

1√
2

[(
0
1

)
a

(
1
0

)
b

±
(

1
0

)
a

(
0
1

)
b

]
(8.11.3)

∣∣Φ±
ab

〉
=

1√
2

[(
0
1

)
a

(
0
1

)
b

±
(

1
0

)
a

(
1
0

)
b

]
. (8.11.4)

These four states are referred to as Bell states. Also a measurement which
puts two particles in one of these states is referred to as a Bell state mea-
surement.

Now it is straightforward to show by some algebra (see Problem 8.25)
that we may write

(
α
β

)
1

∣∣Ψ−
23

〉
= −1

2

{(
α
β

)
3

∣∣Ψ−
12

〉
+
(
−α
β

)
3

∣∣Ψ+
12

〉

−
(

β
α

)
3

∣∣Φ−
12

〉
+
(
−β
α

)
3

∣∣Φ+
12

〉}
(8.11.5)

where the left-hand side represents the initial state of the three particles 1,
2, 3.

Clearly, all Alice has to do is to carry out a Bell state measurement such
that to put particles 1 and 2 in the entangled state

∣∣Ψ−
12

〉
. Then from (8.11.5),

we see that particle 3, with Bob, will be necessarily projected onto the state
(

α
β

)
3

(8.11.6)

as was initially for particle 1 (see also (8.11.1)).
If it is unknown onto which of the four states

∣∣Ψ−
12

〉
,
∣∣Ψ+

12

〉
,
∣∣Φ−

12

〉
,
∣∣Φ+

12

〉
Alice’s Bell state measurement of particles 1 and 2 are projected, then ac-
cording to (8.11.5) there are equal probabilities of 25% that they could be
found in any of the four states.

What happens if Alice’s Bell state measurement yields the entangled state∣∣Ψ+
12

〉
or

∣∣Φ−
12

〉
or

∣∣Φ+
12

〉
instead of

∣∣Ψ−
12

〉
. In such cases, Alice would inform

Bob, by classical means, such as by telephone, to apply the unitary operator
(up to phase factors)

σ3 or σ1 or σ2 (8.11.7)

respectively, on the state of particles 3, with him, since

σ3

(
−α
β

)
3

= −
(

α
β

)
3

, σ1

(
β
α

)
3

=
(

α
β

)
3

, σ2

(
−β
α

)
3

= −i
(

α
β

)
3

(8.11.8)
to put his particle 3 in the initial state of particle 1.

The application of any such a unitary operator is a dynamical process.
For example, if µ is the magnetic dipole magnetic moment of the particle,
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such as a neutron, one may formally apply a magnetic fields in the directions
x3, x1, x2, respectively, in reference to (8.11.5), for specific periods of times,
to achieve such transformations (see Problem 8.26).

In regard to the teleportation carried out above, up to a unitary trans-
formation to be carried out by Bob, it should be noted that the initial state
(8.11.1) of particle 1 need not be known neither to Alice nor to Bob. Also
after particles 1 and 2 are entangled in a Bell state, particle 1 would not be
in its original state, and hence particle 3 is not a clone.

The identity in (8.11.5) leads also to the following interesting result that
if particle 1 is initially entangled with another particle, call it particle 4, a
Bell state measurement by Alice which puts particles 1 and 2 in an entangled
state, automatically puts particles 4 and 3, with the latter particle with Bob,
in an entangled state as well. To see this, suppose that particles 1 and 4 are
initially in the entangled state

∣∣Ψ−
14

〉
, then by setting α, β = 0 or 1 in (8.11.5)

and multiplying the resulting equations by(
0
1

)
4

or
(

1
0

)
4

(8.11.9)

as the case be, one obtains (see Problem 8.25)

∣∣Ψ−
14

〉 ∣∣Ψ−
23

〉
= −1

2

{ ∣∣Ψ−
34

〉 ∣∣Ψ−
12

〉
+
∣∣Ψ+

34

〉 ∣∣Ψ+
12

〉

+
∣∣Φ−

34

〉 ∣∣Φ−
12

〉
−
∣∣Φ+

34

〉 ∣∣Φ+
12

〉}
. (8.11.10)

Again a Bell state measurement which puts particles 1 and 2, with Alice,
in the state

∣∣Ψ−
12

〉
, then projects particles 3 and 4 in the entangled state

∣∣Ψ−
34

〉
initially shared by particles 1 and 4. Such a quantum teleportation has been
referred to as an entangled swapping.49

For earlier investigations, see the work of Bennett et. al.50 Several experi-
ments51 have been carried out on teleportation, with most of them involving
photons, confirming this fascinating predictions of quantum theory. For the
rather rapid progress in the field, one may consult the research journals.

8.11.2 Quantum Cryptography

Before going into the role of quantum theory in modern cryptography
and its future, we first discuss a classic cryptographic system the so-called
“Vernam cipher” or the “one-time pad scheme” introduced by Gilbert Vernam
in the thirties which provides perfect secrecy of communication.
49 Zukowski et al. (1993).
50 Bennett et al. (1993).
51 Cf. Bouwmeester et al. (1997); Nielsen et al. (1998); Miranowicz and Tamaki

(2002).
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Suppose Alice wants to send a message to Bob at a distant location.
Such a message may be sent in code consisting of 1’s and 0’s called bits.
Letters, numerals, a blank space, the comma and so on are represented by
ordered sequences of 1’s and 0’s making up a message which may be then
readily read. In order to avoid an unwanted outsider – traditionally called
Eve – from reading the message, however, Alice also produces another string
of bits, randomly chosen, called the key as long as the message. She then
encodes each bit of her message using the key generated thus introducing a
scrambled text by using the following simple rule.

Let n denote the number of bits in her message. She adds the kth digit of
the key to the kth digit of the message, with k = 1, 2, . . . , n, thus generating
a scrambled message, using the rule that

0 + 0, is replaced by 0
0 + 1, is replaced by 1
1 + 0, is replaced by 1
1 + 1, is replaced by 0




. (8.11.11)

For example,

key: 0 1 1 0 1 0 0
Message: 1 0 1 1 1 1 0

Scrambled Message: 1 1 0 1 0 1 0


 . (8.11.12)

Now she transmits the scrambled message publicly (i.e., by telephone,
radio,. . . ) to Bob. She must also provide the key to Bob in secrecy in order
that he may read the actual message by using the simple rule given above
involving the key and the scrambled message.

The scrambled message is of no use to Eve if she does not have the key to
decode the message. [Eve may guess and make up factorials of keys leading,
in general, to different messages.]

The practical difficulty of the above (classical) procedure is that to trans-
mit a message in secrecy one has to transmit a key in secrecy. Also what
happens if Alice does not know the location of Bob and the two have not
even met before to share a secret key to communicate in secrecy? On the
other hand, should she trust a messenger who, at an earlier time to the avail-
ability of the message, was asked to deliver her key to Bob? For example,
the messenger may make a copy of the key without even “disturbing” it, i.e.,
without even anybody else knowing it. This is unlike the situation in quantum
physics where a measurement may, in general, disturb the system that has
been tampered with. Finally it is not advisable to re-use a key in subsequent
transmissions of messages if secrecy is of concern and hence the nomenclature
“one-time pad scheme”.

Now we will see how quantum theory may be used to generate a random
key that Alice and Bob may share and how they may test the presence of an
intruder.
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For definiteness consider the scattering process in Figure 8.5 of the pair
of spin 1/2 particles, with the pair put in the singlet state (8.10.20), such
that, after scattering, one particle from each pair goes to Alice while the
other goes to Bob. After scattering the particles from each pair are supposed
to travel (in opposite directions) along the x-axis as depicted in the figure.
When a particle reaches Alice she randomly chooses the y- or z-axis, by
tossing a coin for example, to measure the spin direction of the particle in
question. Bob, likewise, carries out a measurement of the spin orientation
of the corresponding particle by randomly choosing the y- or z-axis. They
both record their results by assigning 0 if the spin of a particle is opposite in
direction to the axis chosen and 1 if it in the same direction.

After all the measurements (assumed to be sufficiently large in number52)
have been made, Bob then selects randomly a subset of his ordered measure-
ments, again assumed to be large in number, and communicates publicly
with Alice which measurements he has selected (e.g., 2nd, 5th, 8th,. . . ) and
the corresponding axes (y or z) he had chosen and the results recorded for this
subset of ordered set of measurements. Alice then checks the results she has
recorded for the same axes, say N in number (assumed to be large enough),
common with Bob’s in the corresponding subset of the ordered set of mea-
surements. If her results are exactly opposite to those of Bob’s, as imposed
by the entanglement of their pairs of particles, for these common axes, then
with some confidence, which will be quantified and estimated below, she will
announce publicly to Bob that no intruder has spied upon them.

Alice and Bob then communicate publicly the axes (y or z) they had
chosen earlier in their remaining ordered set of measurements but not of their
corresponding results obtained. Finally they select together randomly entries,
equal in number to the number of bits, say n, making up Alice’s message,
from the ordered set of this remaining measurements having common axes to
both of them. For example, for the purpose of an illustration only, suppose
that n = 3, and the axes chosen in the remaining set of ordered measurements
are as follows

Order of measurements
1 3 4 6 7 9 10 11 15

Alice’s chosen axes y z z y z y z z y
Bob’s chosen axes y z y z z z y z y
A possible selection y z − − z − − − −
A possible selection − z − − z − − − y

then two possible selections of entries with axes common to Alice and Bob
are given above.

Assuming that they have not been spied on, and a selection of entries have
been made, as just described, Alice knows the results (0 or 1) obtained by

52 This should be much larger than the number of bits of the message Alice wants
to send to Bob.
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Bob, corresponding to the entries, by merely examining her own (opposite)
results. The string of bits of n entries appearing in this selection in Bob’s
measurements may be then taken to be the key . A scrambled message may
be sent by Alice to Bob, using the key obtained above, by the “Vernam
cipher” method, thus completing her task. Therefore it remains to quantify
and estimate her degree of confidence of not being spied upon.

To the above end, let ẑ, ŷ denote unit vectors along the z, y axes, respec-
tively. We use the notation PAB[ε1ẑ, ε2ẑ], with ε1, ε2 = ±1, for the probability
that a measurement of spin along ẑ for the respective particles, in a given
pair, by Alice and Bob are found along ε1ẑ, ε2ẑ respectively. The probability
PAB[ε1ŷ, ε2ŷ] is similarly defined. Given that Alice has obtained the spin of
her particle, in a pair, to be along ε1ẑ for a spin measurement along ẑ, we
also introduce the conditional probability PB/A[ε2ẑ/ε1ẑ] that Bob obtains for
his particle, in the pair, to be along ε2ẑ for a spin measurement along ẑ.

In the absence of an intruder, we have according to (8.10.24), (8.10.26),

PB/A[ε2ẑ/ε1ẑ] ≡
PAB[ε1ẑ, ε2ẑ]

PA[ε1ẑ]
= δ(ε1,−ε2) (8.11.13)

PB/A[ε2ŷ/ε1ŷ] ≡ PAB[ε1ŷ, ε2ŷ]
PA[ε1ŷ]

= δ(ε1,−ε2). (8.11.14)

If pA
z denotes the probability that Alice picks the z-axis for a spin mea-

surement, and hence a probability of (1− pA
z ) that she picks the y-axis, then

in reference to a spin of observations in the N pairs of observations with com-
mon axes for Alice and Bob, the probability that Bob gets an observation for
spin in opposite direction, for his particle, to that of Alice’s is given by

PB[spin opposite to that of Alice’s]

=
∑

ε1,ε2=±1

(
PAB[ε1ẑ, ε2ẑ]pA

z + PAB[ε1ŷ, ε2ŷ]
(
1 − pA

z

) )
= 1. (8.11.15)

In the presence of an intruder, (8.11.15) is not necessarily true. To inves-
tigate this pertinent situation, suppose that Eve, the intruder, is aware that
Alice and Bob have planned to measure the spins of their respective particles
along ẑ or ŷ. Accordingly, before each particle reaches Bob, Eve measures its
spin along the z or y-axis as well, with the latter axes chosen, for example, by
tossing a coin. By doing so, she puts the particle, in question in some “initial”
state before it reaches Bob.

With the above tampering by Eve, if for the N measurements recorded
by Alice, mentioned earlier, corresponding to the same axes common with
Bob’s for the ordered set of pairs, in anticipation of preparing a key, Alice
finds at least one result not to be opposite to the corresponding one of Bob’s,
then she will be certain of the presence of the intruder, and the process is
discontinued. On the other hand, if for every one of the N measurements her
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results are opposite to the corresponding ones of Bob, she will fail to detect
Eve’s presence.

Accordingly, if p denotes the probability that for any one of the N mea-
surements, Bob and Alice obtain opposite results for spins, corresponding
to either of the common axes y or z, then the probability that Alice fails
to detect Eve’s intrusion, after examining the N measurements, is pN . The
probability of Alice’s detection of the intruder is then

Prob[detection of intruder] = 1 − (p)N . (8.11.16)

The latter is referred to as the power of the test, with the test being the
detection of the intruder. Such a probability close to one, which will be the
case for p < 1 and N sufficiently large, quantifies Alice’s confidence in her
statement that “no intruder has spied” on Bob and her.

To determine p, let

n(ϑ) = (0, sin ϑ, cos ϑ) (8.11.17)

then, with the letter E corresponding to Eve, the following are readily ob-
tained, by using, in particular, (8.10.24), (8.10.27), (8.1.16), if Eve carries her
measurements along n(ϑ):

z: Common Axis of Alice and Bob
State “Prepared”

by Eve

{
PAE[+ẑ,+n̂(ϑ)]= 1

2 sin2 ϑ
2

PAE[−ẑ,+n̂(ϑ)]= 1
2 cos2 ϑ

2

} (
e−iπ/4 cos ϑ

2

e+iπ/4 sin ϑ
2

) {
PB/E[−ẑ/+n̂(ϑ)]=sin2 ϑ

2

PB/E[+ẑ/+n̂(ϑ)]=cos2 ϑ
2

}

{
PAE[+ẑ,−n̂(ϑ)]= 1

2 cos2 ϑ
2

PAE[−ẑ,−n̂(ϑ)]= 1
2 sin2 ϑ

2

} (
−e−iπ/4 sin ϑ

2

e+iπ/4 cos ϑ
2

) {
PB/E[−ẑ/−n̂(ϑ)]=cos2 ϑ

2

PB/E[+ẑ/−n̂(ϑ)]=sin2 ϑ
2

}

y: Common Axis of Alice and Bob
State “Prepared”

by Eve

{
PAE[+ŷ,+n̂(ϑ)]= 1

4 (1−sin ϑ)

PAE[−ŷ,+n̂(ϑ)]= 1
4 (1+sin ϑ)

} (
e−iπ/4 cos ϑ

2

e+iπ/4 sin ϑ
2

) {
PB/E[−ŷ/+n̂(ϑ)]= 1

2 (1−sin ϑ)

PB/E[+ŷ/+n̂(ϑ)]= 1
2 (1+sin ϑ)

}

{
PAE[+ŷ,−n̂(ϑ)]= 1

4 (1+sin ϑ)

PAE[−ŷ,−n̂(ϑ)]= 1
4 (1−sin ϑ)

} (
−e−iπ/4 sin ϑ

2

e+iπ/4 cos ϑ
2

) {
PB/E[−ŷ/−n̂(ϑ)]= 1

2 (1+sin ϑ)

PB/E[+ŷ/−n̂(ϑ)]= 1
2 (1−sin ϑ)

}
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Hence for ϑ = 0 or ϑ = π/2, if pE
ϑ denotes the corresponding probability

that Eve picks the direction specified by n(0) or n(π/2) for a spin measure-
ment of a particle before it goes off to Bob, then

p =
∑

ϑ=0,π/2

∑
ε1,ε2=±

(
PAE[ε1ẑ, ε2n(ϑ)]PB/E[−ε1ẑ/ε2n(ϑ)]pA

z

+PAE[ε1ŷ, ε2n(ϑ)]PB/E[−ε1ŷ/ε2n(ϑ)]
(
1 − pA

z

))
pE

ϑ

=
(

1 − 1
2
pA

z

)
−
(

1
2
− pA

z

)
pE

z (8.11.18)

where pE
z = pE

ϑ

∣∣∣
ϑ=0

.

Clearly if pA
z � 0 and pE

z � 0 or pA
z � 1, pE

z � 1, then p � 1 which will
not be advantageous to Alice. On the other hand for pA

z = 1/2, which, for
example, corresponds to the case of tossing a balanced coin for a large sample,
p = 3/4 irrespective of what the value of pE

z is corresponding to Eve’s choice
of the z- or y-axis. For this rather natural ’choice’ of pA

z = 1/2 by Alice, we
obtain from (8.11.16), (8.11.18)

Prob[detection of intruder] = 1 − (3/4)N (8.11.19)

which is already � 0.99982 for N = 30 (see also Problem 8.27).
There are other schemes, improvements, and other additional details that

have been and are being developed in this rapidly growing field, and the reader
may consult the literature53 on such developments including the research
journals.

8.12 Rotation of a Spinor

This section addresses the important question of the observability of the
overall minus sign (§2.8, (2.8.68), (2.8.70), §8.1) acquired by a spinor for
spin 1/2 under the operation of rotation through 2π radians. An interesting
way of investigating the nature of this phase change is by the application
of a Ramsey (§8.8) like method54 with oscillatory fields causing transitions
between hyperfine energy levels of a molecule.

In §8.1, we have seen how the nature of a spinor arises for a two-level
system, as part of a multi-level system. For a given time interval of length

53 Cf. Bennett et al. (1992); Tittel et al. (1998).
54 Klempt (1976).
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T , we consider an interaction which may cause transitions between only two
such states, which we denote by |0〉, |1〉.

Here we find it more convenient to represent the states |0〉, |1〉 by
(
1 0

)�,(
0 1

)�, respectively, rather than the other way around. The interaction
Hamiltonian, during the time interval in question, will be taken to be of
the form

HI(0, 1) =
(

0 V01

V ∗
01 0

)
. (8.12.1)

If E0, E1 denote the energies associated with the states |0〉, |1〉 then the free
Hamiltonian, restricted to these two states may be written as

H0(0, 1) =
(E0 + E1)

2
+

E0 − E1

2
σ3 (8.12.2)

where σ3 is a Pauli matrix.
We consider the system to be initially in the state |0〉, and subject it to an

interaction with an alternating field described by an interaction Hamiltonian

H1
I (0, 2) =

(
0 �b1eiωt

�b∗1e
−iωt 0

)
, 0 � t < τ (8.12.3)

acting during the time interval specified, which may cause transitions between
|0〉 and some other state |2〉 only. Here b1 is a complex number, and we denote
the energy of the state |2〉 by E2 The interaction in (8.12.3) defines the first
Ramsey zone.

For a time T , following the interaction in (8.12.3), we subject the system
to an interaction with Hamiltonian which may cause transitions between |0〉
and state |1〉 only

HI(0, 1) =
(

0 �b0eiω0t

�b0e−iω0t 0

)
, τ � t < τ + T (8.12.4)

with b0 is taken to be real, and ω0 to satisfy the resonance condition ω0 =
(E1 − E0)/�.

Finally, we subject the system to a second Ramsey zone with interaction
Hamiltonian which may cause transitions between the states |0〉 and |2〉 only
for a time interval of length τ

H2
I (0, 2) =

(
0 �b2eiωt

�b∗2e
−iωt 0

)
, τ + T � t � 2τ + T. (8.12.5)

We take
b1 = beiφ1 , b2 = beiφ2 (8.12.6)

thus introducing a phase difference between the fields in the two Ramsey
zones.55 The interaction Hamiltonian in (8.12.4) is crucial for the subsequent
55 Klempt (1976); Ramsey and Silsbee (1951); Ramsey (1990).
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considerations, and introduces, during a time interval of length T , an inter-
action occurring within this time interval between the two Ramsey zones,
specified by (8.12.3), (8.12.5), as opposed to a free one of the type treated in
§8.8.

To describe the dynamics of the system, we are led to find the expression
for the unitary operator U(t, t1; j) giving rise to the time development from
some t1 to t for a generic system specified by the integer j (j = 1, 2):

i�
(

α̇0

α̇2

)
=
(

E0 �bjeiωt

�b∗je
−iωt E2

)(
α0

α2

)
. (8.12.7)

The same analysis as carried out in §8.8, leads to the following explicit
expression for U(t, t1; j):

U(t, t1; j) =
(

U00(t, t1; j) U01(t, t1; j)
U20(t, t1; j) U22(t, t1; j)

)
(8.12.8)

where

U00(t, t1; j) =
[
cos a(t − t1) − i

∆
2a

sin a(t − t1)
]

e−iα(t−t1)ei ω
2 (t−t1) (8.12.9)

U02(t, t1; j) = −i
|b|
a

sin a(t − t1)e−iα(t−t1)ei(ω
2 (t+t1)+φj) (8.12.10)

U20(t, t1; j) = −i
|b|
a

sin a(t − t1)e−iα(t−t1)e−i(ω
2 (t+t1)+φj) (8.12.11)

U00(t, t1; j) =
[
cos a(t − t1) + i

∆
2a

sin a(t − t1)
]

e−iα(t−t1)e−i ω
2 (t−t1)

(8.12.12)

∆ = ω − E2 − E0

�
(8.12.13)

a =

[(
∆
2

)2

+ |b|2
]1/2

(8.12.14)

bj = |b|eiφj (8.12.15)

α =
E2 + E0

2�
. (8.12.16)

Hence the initial state
|ψ(0)〉 = |0〉 (8.12.17)

develops in time τ to

|ψ(τ)〉 = a0(τ) |0〉 + a2(τ) |2〉 (8.12.18)

by going through the first Ramsey zone, where
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a0(τ) = U00(τ, 0; 1) (8.12.19)

a2(τ) = U20(τ, 0; 1). (8.12.20)

It is interesting to note that the unitary operator U(t, t1; j) in (8.12.8)–
(8.12.16), corresponding to the Ramsey zones, may be rewritten in the com-
pact form (see Problem 8.28)

U(t, t1; j) = exp
[
− i

�
(t − t1)H0(0, 2)

]
exp

[
i
∆
2

(t − t1)σ3

]

× exp
[
−ia(t − t1)nj · σ

]
(8.12.21)

where H0(0, 2) is defined as in (8.12.2) with E1 replaced by E2,

nj =
(
|b|
a

cos
[
φj + ω(t − t1)

]
, −|b|

a
sin

[
φj + ω(t − t1)

]
,

∆
2a

)
. (8.12.22)

According to the interaction (8.12.4), acting in the time interval
[
τ, τ+T

)
,

the state |ψ(τ)〉 in (8.12.18) develops in time before going through the second
Ramsey zone, via the unitary operator

U(τ + T, τ) = exp
[
− i

�
τH0(0, 1)

]
exp

[
−i

ϑ

2
n · σ

]
(8.12.23)

as following from (8.12.9)–(8.12.16), (8.12.21), (8.12.22), at resonance ω0 =
(E1 − E0)/�, and hence with ∆ → 0, a → |b0|, where

ϑ

2
= |b0|T (8.12.24)

n =
(
cos ω0τ,− sin ω0τ, 0

)
(8.12.25)

and we recall that (see (2.8.7), (2.8.4)),

exp
[
−i

ϑ

2
n · σ

]
=




cos
ϑ

2
−ieiω0τ sin

ϑ

2

−ie−iω0τ sin
ϑ

2
cos

ϑ

2


 . (8.12.26)

That is, during the time interval τ � t < τ + T , a spinor, in the presence
of the interaction in (8.12.4), gets rotated by the angle ϑ, and the state |ψ(τ)〉
in (8.12.18) develops in time, before the system enters the second Ramsey
zone, to

|ψ(τ + T )〉 = e−iE0T/� cos
ϑ

2
a0(τ) |0〉 − ie−iE1T/� e−iω0τ sin

ϑ

2
|1〉

+ e−iE2T/�a2(τ) |2〉 (8.12.27)
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as follows directly from (8.12.23)–(8.12.26), and the fact that the state |2〉
develops freely in the time interval in question of length T .

By going through the second Ramsey zone, the state |ψ(τ + T )〉 develops
in time, according to the unitary operator (8.12.8)–(8.12.12), with j = 2, to

|ψ(2τ + T )〉 = a0 |0〉 + a1 |1〉 + a2 |2〉 (8.12.28)

with

a0 = U00(2τ + T, τ + T ; 2) e−iE0T/�a0(τ) cos
ϑ

2

+ U02(2τ + T, τ + T ; 2) e−iE2T/�a2(τ) (8.12.29)

a1 = −ie−iE1(τ+T )/� e−iω0τ sin
ϑ

2
(8.12.30)

a2 = U20(2τ + T, τ + T ; 2) e−iE0T/�a0(τ) cos
ϑ

2

+ U22(2τ + T, τ + T ; 2) e−iE2T/�a2(τ) (8.12.31)

and a0(τ), a2(τ) are, respectively, defined in (8.12.19), (8.12.20).
In particular, a2 denotes the amplitude of a transition from the state |0〉

to the state |2〉, just after going through the second Ramsey zone, if the
spinor representing the two-level system, corresponding to the states |0〉, |1〉
is rotated by an angle ϑ.

The above transition probability is worked out from the expression of a2

in (8.12.31) to be

Pϑ

[
Transition |0〉 → |2〉

]
= |a2|2

=
|b|2
a2

sin2 aτ

[
F+ cos2 aτ − ∆

2a
F0 sin 2aτ

+
(

∆
2a

)2

F− sin2 aτ

]
(8.12.32)

where

F±

(
cos

ϑ

2
, φ2 − φ1

)
= 1 + cos2

ϑ

2
± 2 cos

ϑ

2
cos

(
T∆ + φ2 − φ1

)
(8.12.33)

F0

(
cos

ϑ

2
, φ2 − φ1

)
= cos

ϑ

2
sin

(
T∆ + φ2 − φ1

)
. (8.12.34)

We may compare this probability, for two cases of interest corresponding
to no spinor rotation ϑ = 0 and to the case corresponding to a full rotation
for ϑ = 2π. These are respectively given by
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Pϑ

∣∣∣
ϑ=0

= 4
|b|2
a2

sin2 aτ

[
cos aτ cos Ω − ∆

2a
sin aτ sin Ω

]2

(8.12.35)

Pϑ

∣∣∣
ϑ=2π

= 4
|b|2
a2

sin2 aτ

[
cos aτ sin Ω +

∆
2a

sin aτ cos Ω
]2

(8.12.36)

and are obviously different, in general, where

Ω =
1
2
(
T∆ + φ2 − φ1

)
. (8.12.37)

In particular, one may consider the difference in the transition probability
Pϑ between two cases: one with a phase difference φ2 − φ1 = π/2, and one
with the reversal of the phase difference φ2−φ1 = −π/2. Denoting the change
in the transition probability on such reversal of the phase difference by

∆Pϑ = Pϑ

∣∣∣
φ2−φ1=π/2

− Pϑ

∣∣∣
φ2−φ1=−π/2

(8.12.38)

we have from (8.12.32) the explicit expression

∆Pϑ = 4
|b|2
a2

sin2 aτ

{[(
∆
2a

)2

sin2 aτ − cos2 aτ

]
sin T∆

− ∆
2a

sin 2aτ cos T∆

}
cos

ϑ

2
(8.12.39)

leading to a complete reversal in sign from ϑ = 0 to ϑ = 2π, of the change in
the transition probability under a reversal of the phase difference φ2 − φ1 =
±π/2 between the fields in the two Ramsey zones. This sort of experiment
has been performed56 and is consistent with the reversal of sign of the change
in the transition probability. A 4π radian rotation restores everything back
to the ϑ = 0 case.

8.13 Geometric Phases

8.13.1 The Berry Phase and the Adiabatic Regime

Consider a time-dependent Hamiltonian H(t) which varies in time t over
some interval

[
0, T

]
, such that for each such t, H(t) has a discrete non-

degenerate spectrum, with eigenvalue equations

56 Klempt (1976). For some other experimental studies with different procedures,
see Rauch et al. (1975); Werner et al. (1975); Byrne (1978); Klein and Opat
(1976); Stoll et al. (1977).
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H(t) |ηn(t)〉 = En(t) |ηn(t)〉 , 〈ηn(t) |ηm(t)〉 = δmn. (8.13.1)

A process is said to be an adiabatic one, if the change of the Hamiltonian
in time is so slow, measured by a large value of the length T of the time
interval (i.e., T → ∞), such that if the system is initially the state |ηn(0)〉
of H(0), then at any later time t, in the above interval, it is found, up to a
phase factor, in the state |ηn(t)〉 of H(t).57 That is, the state of the system
evolves together with the Hamiltonian. In particular, if H(T ) coincides with
H(0), then the system will be found, approximately, in the state |ηn(0)〉 for
T large enough, up to a possible phase factor.

Now suppose that the time-dependence of H(t) is implicit and comes from
the dependence of the latter on an external time-dependent k-vector R(t),
with k � 2, i.e., H(t) = H

(
R(t)

)
, |ηn(t)〉 =

∣∣ηn

(
R(t)

)〉
. In particular,

d
dt

|ηn(t)〉 = ∇R

∣∣ηn

(
R(t)

)〉
· Ṙ(t). (8.13.2)

Also suppose that R(t) traces a closed curve C in the parameter space in
which it varies such that R(T ) = R(0). That is, the Hamiltonian parame-
trized by the vector R(t), returns to its initial form H(T ) = H(0), as R(t)
follows a cyclic motion in the parameter space.

The time T is taken to be much larger than any typical quantum mechan-
ical oscillation period in the problem.

In a remarkable paper, Berry58 made the observation, in the adiabatic
regime, that if the system is initially in the state |ψ(0)〉 = |ηn(R(0))〉, then
|ψ(T )〉 develops in addition to the familiar phase factor

exp

(
− i

�

∫ T

0

dt′En(t′)

)
(8.13.3)

a phase factor which depends on the geometry determined by the path tra-
versed by R(t) in the parameter space. Specifically,

〈ψ(0)|ψ(T )〉 = exp

(
− i

�

∫ T

0

dt′En(t′)

)
exp (iγn) 〈ηn(0)|ηn(T )〉 (8.13.4)

with

γn = i
∫ T

0

dt′ 〈ηn(t′)|η̇n(t′)〉 . (8.13.5)

To derive (8.13.4), note that according to the adiabatic hypothesis, we
may write
57 The adiabatic regime, as an approximation method, will be treated in Chapter 12.

The relevant technical details of this approximation, however, are not necessary
here to follow the present study.

58 Berry (1984).
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|ψ(t)〉 = exp
(
− i

�

∫ t

0

dt′En(t′)
)

exp (iγn(t)) |ηn(t)〉 + O
(

1
T

)
(8.13.6)

and, as indicated, up to corrections which vanish for the parameter T → ∞,
γn(t) is to be determined. Upon substitution of (8.13.6) in the Schrödinger
equation

i�
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 (8.13.7)

and taking the inner product of the resulting equation with 〈ηn(t)|, one ob-
tains

γ̇n = i 〈ηn(t)|η̇n(t)〉 (8.13.8)

which formally leads to (8.13.4), (8.13.5).
To investigate further the nature of (8.13.4), we consider phase transfor-

mations of the eigenstates

|ηn(t)〉 −→ |ηn(t)〉 eiαn(t). (8.13.9)

Since the eigenvalues En(t), in (8.13.1), obviously do not change, under the
transformations in (8.13.9), and

γn −→ γn − (αn(T ) − αn(0)) (8.13.10)

〈ηn(0)|ηn(T )〉 −→ 〈ηn(0)|ηn(T )〉 exp i(αn(T ) − αn(0)) (8.13.11)

we note that the expression on the right-hand side of (8.13.4) remains in-
variant under the transformations in (8.13.9). Accordingly, by recalling that
H(T ) = H(0), and that |ηn(T )〉 denotes the same state as |ηn(0)〉, we may
choose, by construction, the eigenstates |ηn(t)〉, by appropriate choice of
phases, such that |ηn(T )〉 = |ηn(0)〉. We may then rewrite (8.13.4) as

〈ψ(0)|ψ(T )〉 = exp

(
− i

�

∫ T

0

dt′En(t′)

)
exp (iγn(C)) (8.13.12)

with
γn(C) = i

∮
C

〈ηn(R)|∇Rηn(R)〉 · dR (8.13.13)

where we have finally used (8.13.2).
The phase γn(C) is referred to as the Berry phase, in the adiabatic regime,

while the familiar factor in (8.13.3) as the dynamical phase factor. We note
that the integral in (8.13.13) depends on the segments of the curve C and
not on the durations of time taken to travel over these segments and hence
the term geometric.

That exp(iγn(C)) is a phase factor follows by noting that the normaliza-
tion condition 〈ηn(R(t))|ηn(R(t))〉 = 1, i.e., ∇R 〈ηn(R)|ηn(R)〉 = 0, implies
that
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〈ηn(R)|∇Rηn(R)〉 = −〈∇Rηn(R)|ηn(R)〉

= −〈ηn(R)|∇Rηn(R)〉∗ (8.13.14)

which means that i 〈ηn(R)|∇Rηn(R)〉 in (8.13.5) is real. [Note that for k = 1,
the expression on the right-hand side of (8.13.13) vanishes, which explains
the condition k � 2 stated earlier for the k-vector R(t).]

γn(C) in (8.13.13) is independent of phase transformations of the eigen-
states

|ηn(R)〉 −→ |ηn(R)〉 eiβn(R). (8.13.15)

To the above end, we set

i 〈ηn(R)|∇Rηn(R)〉 = A(R) (8.13.16)

and observe that the latter then transforms according to the rule

A(R) −→ A(R) − ∇Rβ(R) (8.13.17)

reminiscent of gauge transformations of a vector potential. The invariance
of γn(C) under the phase transformations (8.13.15), then follows upon the
substitution of (8.13.17) in (8.13.13).

By the application of Stokes’s theorem, γn(C) may be also rewritten as a
surface integral

γn(C) =
∫

(∇R × A(R)) · dS (8.13.18)

Since in the transformations (8.13.15), the phases are just c-numbers and
hence they commute, such transformations are referred to as abelian transfor-
mations as opposed to the cases when degeneracy is involved in the eigenvalue
problem in (8.13.1) as will be discussed later.

As an illustration consider the Hamiltonian of spin 1/2 in an external
magnetic field B = BR(t),

H(R(t)) = −µBR(t) · σ (8.13.19)

where R(t) is the unit vector,

R(t) = (sin θ cos ωt, sin θ sin ωt, cos θ) (8.13.20)

and β, θ are time-independent. We set −µB ≡ �ω0/2.
For t = T = 2π/ω, R(t) = R(0), and for any fixed t in the interval [0, T ]

of consideration, an eigenstate of the Hamiltonian H(R(t)) is

|η+(t)〉 =


 cos θ

2

sin θ
2eiωt


 (8.13.21)

satisfying the eigenvalues equation
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H(R(t)) |η+(t)〉 =
�ω0

2
|η+(t)〉 (8.13.22)

and, |η+(T )〉 = |η+(0)〉,

i 〈η+(t)|η̇+(t)〉 = −ω

2
(1 − cos θ). (8.13.23)

The adiabatic regime is defined by the very slow change of the Hamil-
tonian, that is, for a very large T much larger than the characteristic quantum
oscillation period T0 ∼ 1/|ω0|, i.e., for |ω0| � ω.

From (8.13.4), we then have

〈ψ(0)|ψ(T )〉 = exp (−iω0T/2) exp (iγn(C)) (8.13.24)

with
γn(C) = −π(1 − cos θ) (8.13.25)

where 2π(1 − cos θ) denotes the solid angle, subtended at the origin of the
sphere of unit radius, swept out by the unit vector R(t), along the magnetic
field B(t), which traces the closed curve C on the surface of the sphere, with
the latter surface defining the parameter space (see Figure 8.9).

θ

R(t)

C

Fig. 8.9. −2γn(C) in (8.13.25) of the Berry phase, denotes the solid angle,
subtended at the origin of a sphere of unit radius, swept up by R(t) while
tracing the closed curve C in the parameter space.

It is interesting to compare the expression in (8.13.24) with the exact
solution given in (8.1.37), (8.1.38), (8.1.34), to see the adiabatic hypothesis
at work.

To the above end, Ω in (8.1.39) is given by
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Ω � |ω0| −
|ω0|
ω0

ω cos θ (8.13.26)

for |ω0| � ω, which from (8.1.34), (8.1.37), (8.1.38),

|ψ(t)〉 � e−iω0t/2e−iωt(1−cos θ)/2


 cos θ

2

sin θ
2eiωt


+ O

(
ω

|ω0|

)
. (8.13.27)

With the initial state |ψ(0)〉 given in (8.1.32), this leads, in the adiabatic
regime, to the result in (8.13.24).

Several experiments59 have measured the Berry phase for particles with
different spins including that for spin 1/2.

The analogue of the geometrical phase for classical systems has been also
found.60 The classic example of this is the change in the direction of swing
of the so-called Foucault pendulum after a full rotation of the earth.61

8.13.2 Degeneracy

We briefly consider the generalization of (8.13.4) to the cases when de-
generacy62 is involved.

To the above end, consider the eigenvalues problem

H(t) |η(t, a)〉 = E(t) |η(t, a)〉 , a = 1, . . . , N (8.13.28)

for an N -fold degenerate eigenvalue E(t) for all t in
[
0, T

]
, where we have

suppressed a generic quantum number n for simplicity of the notation. As
before if R(t) in H(t) = H(R(t)) is varied slowly over the long time interval
of length T , i.e., in the adiabatic regime, and assuming that the given space
of degenerate levels does not cross other levels, we may write for T → ∞,

|ψa(t)〉 = |η(t, b)〉 cab(t) exp
(
− i

�

∫ t

0

dt′ En(t′)
)

(8.13.29)

as a linear combination of the degenerate states |η(t, b)〉 with a summation
over b understood, where

|ψa(0)〉 = |η(0, a)〉 (8.13.30)

for a given a.
Upon substituting (8.13.29) in the Schrödinger equation gives

59 Cf. Bitter and Dubbers (1987); Tycko (1987).
60 Hannay (1985).
61 For a demonstration of this among other things, by formulating the classical

dynamical problem in complex form, cf. Manoukian and Yongram (2002).
62 Wilczek and Zee (1984).
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ċab(t) = iAbk(t) c ka (t) (8.13.31)

where
Abk(t) = i 〈η(t, b) | η̇(t, k)〉 . (8.13.32)

Equation (8.13.31) may be readily integrated as a time-ordered product as
in (A-2.5.11), (A-2.5.2) obtaining for the N × N matrix c(t) the expression:

exp

[
i
∫ T

0

dt′ A(t′)

])
(8.13.33)

which, in the adiabatic regime, allows us to write

|ψa(T )〉 = |η(T, b)〉
[(

exp

[
i
∫ T

0

dt′ A(t′)

])

+

]

ba

exp

(
− i

�

∫ T

0

dt′ En(t′)

)
.

(8.13.34)
The state |ψa(T )〉 evolves into a linear combination of the |η(T, b)〉 for

any given a with initial condition given in (8.13.30).
We consider general transformations, which generalize those in (8.13.9),

|η(t, b)〉 −→ Ωbc(t) |η(t, c)〉 (8.13.35)

〈η(t, b)| −→ 〈η(t, c)|Ω−1
cb (t) (8.13.36)

with Ω as N × N matrices whose inverses are assumed to exist. Since such
matrices do not necessarily commute, in general, these transformations are
referred to as non-abelian ones as opposed to the abelian ones in (8.13.9).

Under the transformations (8.13.35), (8.13.36), the Abk(t) in (8.13.32)
then transforms as63

Abk(t) −→ Acd(t)Ω−1
cb (t)Ωkd(t) + i Ω̇kc(t)Ωcb (t). (8.13.37)

Additional details on the problem of degeneracy are worked out in Prob-
lem 8.31.

In the study of the Berry phase above in this section, the Hamiltonian
was parametrized by a k-vector with cyclic motion in parameter space, and
the assumption of an adiabatic regime was a key one in its development. The
initial state of a system in question was also assumed to be an eigenstates of
the instantaneous Hamiltonian at t = 0 i.e., of H(0). Aharonov and Anan-
dan64 generalized Berry’s analysis by giving up the adiabaticity assumption.
They also regard the cyclic parameters as labelling the states, rather than
the Hamiltonian. This is discussed next. Later on, even the cyclicity of the
parametric motion will be given up in studying the generation of geometric
phases.
63 Such transformations are well known in non-abelian gauge theories of fundamen-

tal interactions.
64 Aharonov and Anandan (1987).

+

]

ba

[(
c(T )[ ] =ab

−1
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8.13.3 Aharonov-Anandan (AA) Phase

The AA phase arising by even giving up the adiabaticity assumption is
perhaps best introduced by considering first a couple of examples.

Consider the time-independent (!) Hamiltonian

H =
�ω0

2
σ3 (8.13.38)

and the initial state

|ψ(0)〉 =




cos
θ

2

sin
θ

2


 (8.13.39)

which is not an eigenstates of H for general θ.
The solution of the corresponding Schrödinger equation is elementary and

is given by

|ψ(t)〉 =




cos
θ

2
e−iω0t/2

sin
θ

2
eiω0t/2


 . (8.13.40)

The following expectation value is readily worked out

〈ψ(t) |H|ψ(t)〉 =
�ω0

2
cos θ. (8.13.41)

We may then introduce the dynamical phase factor by

exp
[
− i

�

∫ t

0

dt′ 〈ψ(t′) |H|ψ(t′)〉
]

= exp
[
− it

2
ω0 cos θ

]
(8.13.42)

and rewrite the solution in (8.13.40) explicitly as

|ψ(t)〉 = e−(iω0t cos θ)/2 e−iω0t(1−cos θ)/2




cos
θ

2

eitω0 sin
θ

2


 . (8.13.43)

Also for 2/� times the averaged spin, we have

〈ψ(t) |σ|ψ(t)〉 =
(
sin θ cos ω0t, sin θ sinω0t, cos θ

)
≡ n(t). (8.13.44)

Accordingly, for65 t = τ = 2π/|ω0|, as the parameter n(t) traces a closed
curve in the parameter space, of the type shown in Figure 8.9,
65 We use the notation τ rather than T in order not to confuse it with the time

parameter T used in the adiabatic regime for which the latter is taken to be
large.
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|ψ(τ)〉 = e−(iω0τ cos θ)/2 e−iεπ(1−cos θ) |ψ(0)〉 (8.13.45)

where ε = signω0. Again in addition to the dynamical phase factor in
(8.13.42), |ψ(t)〉 acquires a geometric phase factor, with 2π(1 − cos θ) de-
noting the solid angle, subtended at the origin of a unit sphere, swept out
by (2/�) times the averaged spin. Here we note that there is no question of
adiabaticity assumption, and the Hamiltonian in (8.13.38) is not only not
parametrized by n(t) but is also time-independent.

As another example consider the time-dependent Hamiltonian

H(t) =
�ω0

2
N(t) · σ =

�ω0

2


 cos θ sin θ e−iωt

sin θeiωt − cos θ


 (8.13.46)

where
N(t) =

(
sin θ cos ωt, sin θ sin ωt, cos θ

)
. (8.13.47)

As in (8.1.41), (8.1.42), we define the angle α, and consider the initial
state

|ψ(0)〉 =




cos
α

2

sin
α

2


 (8.13.48)

which is not an eigenstate of H(0) in (8.13.46). The solution of the corre-
sponding Schrödinger equation has been given in (8.1.43) to be

|ψ(t)〉 =




cos
α

2
e−iωt/2

sin
α

2
eiωt/2


 e−itΩ/2 (8.13.49)

where Ω =
(
ω2 − 2ωω0 cos θ + ω2

0

)1/2 defined in (8.1.39).
To obtain the expression for the dynamical phase factor, we compute the

expectation value

〈ψ(t) |H(t)|ψ(t)〉 =
�ω0

2
cos(θ − α). (8.13.50)

Also we note that

〈ψ(t) |σ|ψ(t)〉 =
(
sin α cos ωt, sin α sinωt, cos α

)
≡ n(t). (8.13.51)

Hence we may rewrite (8.13.49) as

|ψ(t)〉 = exp
[
− i

2
ω0t cos(θ − α)

]
exp

[
− i

2
ωt
(
1 − cos α

)]



cos
α

2

sin
α

2
eiωt




(8.13.52)
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where we have used the fact that

ω − ω0 cos(θ − α) + Ω = ω
(
1 − cos α

)
(8.13.53)

(see (8.1.41), (8.1.42)).
For t = τ = 2π/ω, as the vector parameter n(t) traces a closed curve in

the parameter space, we may write from (8.13.52)

〈ψ(0)|ψ(τ)〉 = exp
(
− i

2
ω0τ cos(θ − α)

)
exp (−iπω(1 − cos α)) (8.13.54)

recognizing the geometric phase factor as the second factor on the right-hand
side of (8.13.54).

More generally, suppose that a normalized state |ψ(t)〉 evolving according
to the Schrödinger equation

i�
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 (8.13.55)

is such that
|ψ(τ)〉 = eiα(τ) |ψ(0)〉 (8.13.56)

for some τ , where exp(iα(τ)) is a phase factor. We denote the closed curve
Π {|ψ(t)〉 : 0 � t � τ} by C, where Π is the projection map which maps each
(non-zero) vector to the ray on which it lies.

Needless to say, for t �= τ , in the neighborhood of τ , |ψ(t)〉 is not neces-
sarily related to |ψ(0)〉 by just a phase factor. Accordingly, before using the
Schrödinger equation to determine α(τ)) in (8.13.56), we carry out a phase
transformation

|ψ(t)〉 −→ e−if(t) |ψ(t)〉 ≡ χ(t) (8.13.57)

such that
〈χ(0)|χ(τ)〉 = 1 (8.13.58)

since
|χ(0)〉 = e−if(0) |ψ(0)〉 , |χ(τ)〉 ≡ e−if(τ) |ψ(τ)〉 (8.13.59)

(8.13.56) gives (up to additional integer multiples of 2π)

α(τ) = f(τ) − f(0). (8.13.60)

Upon substitution of |χ(t)〉, given in (8.13.57), in the Schrödinger equation
(8.13.55) provides the simple expression

ḟ(t) = −1
�
〈ψ(t)|H(t)|ψ(t)〉 + i 〈χ(t)|χ̇(t)〉 (8.13.61)

which upon integration, and using (8.13.60), gives
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〈ψ(0)|ψ(τ)〉 = exp
(
− i

�

∫ τ

0

dt 〈ψ(t)|H(t)|ψ(t)〉
)

exp
(

i
∫ τ

0

dt 〈χ(t)|iχ̇(t)〉
)

.

(8.13.62)
To investigate the nature of the last phase factor, in addition to the dy-

namical one
exp

(
− i

�

∫ τ

0

dt 〈ψ(t)|H(t)|ψ(t)〉
)

(8.13.63)

we define the state vector

|Φ(t)〉 = exp
(

i
�

∫ t

0

dt′ 〈ψ(t′)|H(t′)|ψ(t′)〉
)
|ψ(t)〉 (8.13.64)

thus removing the dynamical phase factor, leading to

〈Φ(0)|Φ(τ)〉 = exp
(

i
∫ τ

0

dt 〈χ(t)|iχ̇(t)〉
)

(8.13.65)

we note that due to the normalizability condition 〈χ(t)|χ(t)〉 = 1, 〈χ(t)|iχ̇(t)〉
is real, hence the expression of the right-hand side of (8.13.65) is a phase
factor.

Upon substitution of the expression (8.13.64) in the Schrödinger equation
(8.13.55), to obtain the resulting equation for

∣∣∣Φ̇(t)
〉
, and taking the inner

product of the latter with |Φ(t)〉, we obtain the simple result that
〈
Φ(t)|Φ̇(t)

〉
= 0. (8.13.66)

This expression is of some significance.66 It states, in particular, that for
two neighboring points t, t + ∆t,∆t � 0

〈Φ(t)|Φ(t + ∆t)〉

= 〈Φ(t)|Φ(t)〉
{

1 − (∆t)2

2

[
〈χ̇(t)|χ̇(t)〉 − 〈χ̇(t)|χ(t)〉 〈χ(t)|χ̇(t)〉

]}

(8.13.67)

as is readily obtained from (8.13.57), (8.13.64), (8.13.61), where we have also
used the normalizability of |Φ(t)〉. We note that the second term in the curly
brackets in (8.13.67) is not only of second order in ∆t, due to (8.13.66), but
is also real, and for ∆t � 0, the entire expression in (8.13.67) is real and
positive.

Equation (8.13.67) means, in particular, that although, for infinitesimal
∆t � 0, 〈Φ(t)|Φ(t + ∆t)〉 does not develop a phase factor, to first (not even
to second) order in ∆t, as we move from t to t + ∆t, a net phase change
arises, in general, according to (8.13.65), at the end of the journey for finite
66 Simon (1983).
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τ as we move from t = 0 to t = τ . Such a system, with a net phase change, is
said to be non-holonomic, and the phase change is known as an anholonomy .

To gain further insight into the nature of the phase acquired in (8.13.65),
we use an idea67 of Pancharatnam68 to study the phase relationship of two
(non-orthogonal) vectors |Φ1〉, |Φ2〉 by considering their interference effect by
the norm squared of their superposition

‖|Φ1〉 + |Φ2〉‖2 = 〈Φ1|Φ1〉 + 〈Φ2|Φ2〉 + 2 |〈Φ1|Φ2〉| cos δ12 (8.13.68)

where
〈Φ1|Φ2〉 = |〈Φ1|Φ2〉| eiδ12 . (8.13.69)

The vectors |Φ1〉, |Φ2〉 are then said to be “in phase” when δ12 = 0 giving a
maximum for the norm squared in (8.13.68) for which is real and positive.

In the light of the above definition, we note that for two neighboring
points t, t + ∆t, ∆t � 0, we have from (8.13.67),

‖|Φ(t + ∆t)〉 + |Φ(t)〉‖2 = 2 + 2 |〈Φ(t + ∆t)|Φ(t)〉| (8.13.70)

implying that |Φ(t + ∆t)〉, |Φ(t)〉 are “in phase”, or that the vector |Φ(t)〉 is
“parallel transported” to itself within the infinitesimal intervals [t, t + ∆t] for
∆t � 0. In spite of this “parallel transport” in infinitesimal steps, for the full
journey from t = 0 to t = τ , however, we have from (8.13.65),

‖|Φ(τ)〉 + |Φ(0)〉‖2 = 2 + 2 cos
(∫ τ

0

dt′ 〈χ(t′)|iχ̇(t′)〉
)

= 2 + 2 |〈Φ(τ)|Φ(0)〉| cos
(∫ τ

0

dt′ 〈χ(t′)|iχ̇(t′)〉
)

(8.13.71)

implying a net phase change. As a matter of fact it is easy to show that if
vectors |Φ1〉, |Φ2〉 are “in phase” and so are |Φ2〉, |Φ3〉, then |Φ1〉, |Φ3〉 are
not necessarily “in phase” (see Problem 8.33).

Now suppose that the state |χ(t)〉 may be parameterized by a vector
X(t) = (X1(t), . . . , XN (t)) : |χ(t)〉 = |χ(X(t))〉. Then by using (8.13.67), we
have for the distance squared between the states |Φ(t + dt)〉 and |Φ(t)〉

‖|Φ(t + dt)〉 − |Φ(t)〉‖2 =
(
〈∇aχ |∇bχ〉 − 〈∇aχ |χ〉 〈χ |∇bχ〉

)
dXadXb

(8.13.72)
with sums over a, b = 1, . . . , N , and ∇a = ∂/∂Xa. Hence we may define a
metric, up to an overall scale factor, in parameter space by69

67 Samuel and Bhandari (1988).
68 Pancharatnam (1956). This author applied this idea in optics, and was success-

fully extended to quantum mechanics by the Samuel and Bhandari.
69 See also Provost and Vallee (1980).
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gab = 〈∇aχ |∇bχ〉 − 〈∇aχ |χ〉 〈χ |∇bχ〉 (8.13.73)

signalling, in general, the curved nature of the parameter space.
The AA phase factor, appearing on the right-hand side of (8.13.65), de-

noted by exp(iγAA(C)), may be rewritten as

exp(iγAA(C)) = exp
(

i
∮

C

AadXa

)
(8.13.74)

where
Aa = 〈χ|i∇aχ〉 . (8.13.75)

We note that γAA(C) is independent of how fast the different parts of the
path defined by C is traversed.

Under a phase transformation

|χ(X)〉 −→ eiα(X) |χ(X)〉 (8.13.76)

the Aa transform as
Aa −→ Aa −∇aα(X) (8.13.77)

and we note that70 the metric in (8.13.73) may be rewritten as

gab = 〈(∇a + iAa)χ|(∇b + iAa)χ〉 (8.13.78)

and is obviously invariant under the transformations in (8.13.76).
As an illustration of the various concepts introduced above, consider the

Schrödinger equation

i�
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 , H(t) =
�

2
K(t) · σ (8.13.79)

where K(t) is an external time-dependent vector, n(t) is a unit vector satis-
fying the equation

ṅ(t) = K(t) × n(t) (8.13.80)

with an initially prepared state as an eigenstate of n(0) · σ:

n(0) · σ |ψ(0)〉 = |ψ(0)〉 . (8.13.81)

Then the solution of (8.13.79) satisfies the eigenvalue equation (§8.1, (8.1.44)–
(8.1.51)),

n(t) · σ |ψ(t)〉 = |ψ(t)〉 . (8.13.82)

The unit vector may be parametrized as

n(t) = (sin θ(t) cos φ(t), sin θ(t) sin φ(t), cos θ(t)). (8.13.83)

70 See also Samuel and Bhandari (1988).
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Suppose that n(t) traces some closed curve on the unit sphere (see Fig-
ure 8.10) as it moves from t = 0 to t = τ with

θ(τ) = θ(0), φ(τ) = φ(0) + 2π. (8.13.84)

With the cyclic evolution just described, the state vector |χ(t)〉 in
(8.13.57), may be represented by

|χ(t)〉 =




cos
(

θ(t)
2

)

sin
(

θ(t)
2

)
eiφ(t)


 (8.13.85)

which deviously satisfies (8.13.82) and (8.13.58).

(θ, φ)

C

n(t)

Fig. 8.10. A closed curve traced by the unit vector n in (8.13.83) over the unit
sphere. The latter is referred to as the Poincaré sphere. [The corresponding
sphere in optics involving polarization vectors is referred to as Stokes’s sphere.]

From (8.13.83), (8.13.57) it is easily verified that

〈ψ(t)|σ|ψ(t)〉 = n(t) (8.13.86)

and hence the dynamical phase factor in (8.13.63) for the system may be
written as

exp
(
− i

2

∫ τ

0

dtK(t) · n(t)
)

. (8.13.87)

On the other hand,

〈χ(t)|iχ̇(t)〉 = −1
2
(1 − cos θ(t))φ̇(t) (8.13.88)
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giving the AA phase factor

exp
(
− i

2

∫ τ

0

dt(1 − cos θ(t))φ̇(t)
)

= exp
(
− i

2

∮
(1 − cos X1)dX2

)

(8.13.89)
where X1 = θ, X2 = φ. This phase factor is equivalently rewritten as

exp i
∮

C

A · dr̂ (8.13.90)

where A in the latter may be taken to be

A = − sin θ

2(1 + cos θ)
φ̂

=
(

n2

2(1 + n3)
,− n1

2(1 + n3)
, 0
)

(8.13.91)

and φ̂ is a unit vector in the direction of increasing φ,

dr̂ = θ̂dθ + φ̂ sin θdφ, (8.13.92)

θ̂ is a unit vector in the direction of increasing θ.
In reference to (8.13.72)/(8.13.73) we observe that

‖|Φ(t + dt)〉 − |Φ(t)〉‖2 =
1
4

(
θ̇2 + sin2 θφ̇2

)
(dt)2

=
1
4
(
(dθ)2 + sin2 θ(dφ)2

)
(8.13.93)

and here we recognize the familiar metric defined on the unit sphere:71

71 A reader who has, for example, studied relativity has undoubtedly came across
the concept of the parallel transport of a vector along a curve (in curved space)
which states that the covariant derivative of its components are zero. In curved
space, the ordinary derivative of the component of a vector does not transform
as the component of a vector, and the covariant derivative is so defined to en-
sure that the resulting expression does transform as a vector component. In the
present case, with motion restricted to the surface of the unit sphere, with basis
vectors θ̂, φ̂ sin θ, spanning the tangent plane, at a point (θ, φ) on the sphere,
the covariant derivative of the components of a vector, relative to such a basis,
read

d

dt
V 1 − sin θ cos θ φ̇ V 2 = 0,

d

dt
V 2 + cot θ

(
V 2θ̇ + V 1φ̇

)
= 0

(cf. Misner et al. (1973), p. 340). These equations may be combined as

d

dt

(
V 1 − i sin θ V 2) = i cos θ φ̇

(
V 1 − i sin θ V 2)
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(gab) =
(

1 0
0 sin2 θ

)
, X1 = θ, X2 = φ (8.13.94)

up to the scale factor of 1/4 in (8.13.93). [We note that we could have instead
considered the curve traced by the vector n(t)/2 on the surface of a sphere
of radius 1/2.]

The curl of A in (8.13.91) gives

∇ × A = −1
2
r̂ = −1

2
r̂

|r̂|2 ≡ B (8.13.95)

which may be interpreted as the magnetic field on the surface of the unit
sphere at r̂ due to a magnetic monopole of strength 1/2 located at the ori-
gin.72

The vector A in (8.13.91) may be rewritten as

A = − (1 − cos θ)
2 sin θ

φ̂, 0 � θ < π (8.13.96)

which develops a line of singularities for θ → π corresponding to the negative
z-axis. [Such a line of singularities is referred to as a Dirac string.] We could
have equally chosen the vector

A′ =
(1 + cos θ)

2 sin θ
φ̂, 0 < θ � π (8.13.97)

in (8.13.90) which has a well defined limit for θ → π, but develops a line
of singularities for θ → 0, corresponding to the positive z-axis. The vectors

giving the solution

(
V 1 − i sin θ V 2) (τ) =

(
V 1 − i sin θ V 2) (0) exp

[
i

∫ τ

0

cos θ φ̇ dt

]

=
(
V 1 − i sin θ V 2) (0) exp

[
−i

∮ (
1 − cos θ

)
dφ

]
.

Here we recognize (the square of) the geometric phase in (8.13.89), arising as a
consequence of the curvature of the surface of the sphere, associated with the
vector. The extra 1/2 factor in the phase in (8.13.89) arises due to the spinor
nature of |Φ〉.

72 For θ(t) = π/2, the phase in the phase factor in (8.13.89) simply becomes −π.
One may argue that by equating this phase with the one formally generated
in the wavefunction of a particle of charge q satisfying Schrödinger’s equation
arising from the minimal coupling p → p−qA/c, due to a magnetic monopole of
strength g: −q

∮
A · dr̂/�c = −2πqg/�c, gives q = �cN/2g, where N = 1 for the

initial condition chosen for the wavefunction. One may then formally argue that
by generalizing this to arbitrary spins, that this equality becomes q = �cN/2g,
where N = 0,±1,±2, . . ., implying, in particular, the quantization of the electric
charge (Dirac (1931)) consistent with the experimental observation. See also
Aitchison (1987). The study of the geometrical phase for arbitrary spins is not
straightforward, see Lin (2002).
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A, A′ are well defined in the region ε < θ < π − ε, for ε > θ and small,
and are related by a gauge transformation (see Problem 8.35). Clearly, that
a singularity must exist for a vector A in any gauge is expected since one
would otherwise obtain ∇ × A = 0 in contradiction with the presence of a
monopole at the origin of the sphere in the formalism.

The AA geometric phase, as a generalization of the Berry phase, has been
observed experimentally73 for various cyclic cases.

We close this section by studying the generation of a geometric by re-
laxing the condition of cyclicity74 in addition to relaxing the condition of
adiabaticity already discussed.

8.13.4 Samuel-Bhandari (SB) Phase

Consider the general Hamiltonian for spin 1/2 in (8.13.79). Now suppose
that n(t) in (8.13.83) traces an open curve C0, instead of a closed curve as
in the AA phase, starting from t = 0 and ending at t = τ0 (see Figure 8.11),
where we let θ(0) = θ1, φ(0) = φ1, θ(τ0) = θ2, φ(τ0) = φ2.

Let U(τ0, 0) denote the unitary operator which takes the initial state
|Φ(0)〉, as an eigenstate of n(0) · σ, with the dynamical phase removed, to
the state |Φ(τ0)〉. As before, we are interested in the expression

〈Φ(0)|Φ(τ0)〉 = 〈Φ(0)|U(τ0, τ)|Φ(0)〉 (8.13.98)

but now involving non-cyclic evolution as just described, for the non-trivial
case where the amplitude in (8.13.98) is non-zero.

The SB phase is obtained as follows. The basic idea is to rewrite75

(8.13.98) as

〈Φ(0)|Φ(τ0)〉 =
〈
Φ(0)|U†

G(τ, τ0)UG(τ, τ0)U(τ0, 0)|Φ(0)
〉

(8.13.99)

where UG(τ, τ0) is the unitary operator which is responsible for joining the
end point (θ2, φ2) to the initial point (θ1, φ1) by the shortest path (i.e., the
geodesic76 on the surface of the sphere. The corresponding curve is denoted
by G in Figure 8.11.
73 Suter et al. (1988).
74 This remarkable result was observed by Samuel and Bhandari (1988) as an exten-

sion of earlier work of Pancharatnam (1956), in optics, to quantum mechanics.
75 Zhu et al. (2000).
76 The geodesic equation passing through the points (θ2, φ2) and (θ1, φ1) is given

by
cot θ = A cos φ + B sin φ

where

A = (sin φ1 cot θ2 − sin φ2 cot θ1)/ sin(φ1 − φ2)

B = (cos φ2 cot θ1 − cos φ1 cot θ2)/ sin(φ1 − φ2).
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(θ2, φ2)

C0
n(t)

n(0)

(θ1, φ1)

k

β

G

Fig. 8.11. The vector n(t) traces the open curve C0 on the surface of the unit
sphere. The shortest path (the geodesic) joining the point (θ2, φ2) to (θ1, φ1)
is denoted by G. The unit vector k is perpendicular to n(0).

From the earlier AA phase analysis, we have

UG(τ, τ0)U(τ0, 0) |Φ(0)〉 = exp (iγAA(C0UG)) |Φ(0)〉 (8.13.100)

where γAA(C0UG) is now given by (see (8.13.90), (8.13.91))

γAA(C0UG) =
∫

C0

A · dr̂ +
∫

G

A · dr̂. (8.13.101)

That is,

〈Φ(0)|Φ(τ0)〉 = exp (iγAA(C0UG))
〈
Φ(0)|U†

G(τ, τ0)|Φ(0)
〉

. (8.13.102)

Now all one has to do in order to establish that a geometric phase arises even
for the non-cyclic evolution considered is to show that

〈
Φ(0)|U†

G(τ, τ0)|Φ(0)
〉

(8.13.103)

is real and positive. Once this is established, one may then infer that the SB
phase is obtained by closing the open curve C0 by the geodesic joining the
end points of the curve C0 and calculate it from the AA phase for the newly
constructed closed curve.
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By definition of the geodesic, UG(τ, τ0) is given by the now familiar unitary
operator of rotation by some angle β as shown in Figure 8.11. (see §2.8)77
given by

UG(τ, τ0) = cos
β

2
+ ik · σ sin

β

2
(8.13.104)

where k is a constant unit vector perpendicular to n(0). But

〈Φ(0)|σ|Φ(0)〉 = n(0) (8.13.105)

hence the second term on the right-hand side of (8.13.104) does not contribute
in computing the matrix element in (8.13.103) since k · n(0) = 0. Thus we
may rewrite (8.13.102) as

〈Φ(0)|Φ(τ0)〉 = cos
β

2
exp (iγAA(C0UG)) (8.13.106)

for the non-cyclic evolution. For the non-trivial case considered, where
〈Φ(0)|Φ(τ0)〉 is non-zero, and for the shortest path joining the end points
of C0, |β| < π which completes the demonstration of the reality and positiv-
ity of the matrix element in (8.13.103).78

8.14 Quantum Dynamics of the Stern-Gerlach Effect

8.14.1 The Quantum Dynamics

In the present section, we provide an analytical dynamical treatment of
the Stern-Gerlach (S-G) effect which is:

(1) quantum mechanical, as it should be, and takes into account,
(2) the field equation ∇·B = 0, where B is the magnetic field in the problem,
(3) the quantum counterpart of the Lorentz force,
(4) the two, rather than one, dimensional aspect of the beam hitting the

observation screen,
(5) the rather non-trivial correlations that occur between dynamical vari-

ables, as will be seen to exist, describing the intensity distribution on the
screen.

A theoretical analysis of the effect will be given below which takes into
account all of the above five points just listed.79 We will see that an analytical
dynamical treatment to the leading order |e|/

√
�c ≡ √

α in for the electron,
where α is the fine-structure constant, and for spin 1/2 charged particles (e.g.,
77 See also Berry (1987).
78 For additional details on the subject of this section, one may refer to: Shapere

and Wilczek (1989). Although this reprint volume was assembled way over a
decade ago, it remains a useful reference source.

79 This analysis is based on, Manoukian and Rotjanakusol (2003).
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the proton), in general, leads to a unitary, i.e., positive definite, expression
for the probability intensity distribution on the observation screen, where the
magnetic field has a controllable uniform component along the initial average
direction of propagation of the particle, in addition to a non-uniform, almost
longitudinal, magnetic field lying in the plane defined by the quantization
axis, in question of the spin, and the initial average direction of propagation.

With an initially prepared Gaussian wavepacket, the analysis leads to a
sum of so-called bivariate normal distributions for the probability intensity
distribution with non-zero correlations.80 The uniform longitudinal control-
lable magnetic field, as will be seen, has a dual role. Although longitudinal,
it reduces effectively the quantum Lorentz force contribution by reducing, in
turn, the correlation between the dynamical variables describing the proba-
bility density of observation, and also provides a positive definite expression
for the latter. We will also see that the analysis applies to neutral particles
as well.

The importance of the consideration of the S-G effect for the electron
itself is evident. To this end, it is worth recalling the statement made by
Albert Einstein: “We know, it would be sufficient to really understand the
electron”.81 The difficulty in carrying out a S-G experiment for the electron,
as such a basic experiment of quantum physics, with a conventional purely
(non-uniform) transverse magnetic field has been well documented in the
literature.82,83

An obstacle in carrying out such an experiment with a standard trans-
verse magnetic field of Stern and Gerlach, is that the Lorentz force, in the
classic apparatus, causes an obvious deviation of the particle from its initial
path thus leading to a blurring of the expected splitting of the beam. Be-
cause of this, the feasibility of performing the experiment with a longitudinal
non-uniform magnetic field was suggested many years ago84 and also more re-
cently.85 Another aspect of a transversal magnetic field is that a non-uniform
magnetic field perpendicular to the non-uniform component along the quanti-
zation axis of the spin, as demanded by the field equation ∇·B = 0, tends to
cause, in general, a further splitting of the beam in a direction perpendicular
to the quantization axis as well.

We consider the Pauli-Hamiltonian in (8.2.4), written the form

H =

(
p − q

cA
)2

2M
− µ · B (8.14.1)

with
80 Cf. Manoukian (1986c), pp. 127, 129.
81 As quoted in: Rabi (1988).
82 Pauli (1964). In Wheeler and Zurek (1983), p. 701. Dehmelt (1990).
83 Batelaan et al. (1997); Gallup et al. (2001). See also Conte et al. (1995).
84 Brillouin (1928).
85 Batelaan et al. (1997). See also these papers for the historical development in

studying the S-G effect and for their analyses of the problem.
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B = ∇ × A, µ = µσ, µ =
q�

4Mc
g (8.14.2)

and g is taken to be arbitrary, where g � 2 for the electron, and, e.g., g = 5.59
for the proton. We choose the vector potential A in the Coulomb gauge, i.e.,

∇ · A = 0. (8.14.3)

In terms of the dimensionless parameter

αq = |q|2/�c, ε(q) = sign(q) (8.14.4)

the interaction Hamiltonian in (8.14.1) may be written as

HI = ε(q)
√

αq

[
−
√

�

c
A · p + ε(q)

√
αq

�

2Mc
A2 − 1

4M

√
�3

c
gσ · B

]
.

(8.14.5)
For the electron q = −|e|, α is the fine-structure constant.

For the initial wavepacket at time t = 0, in the x-description, we take the
Gaussian type

Ψ0(x) =
1

(2π)3/4γ3/2
exp

(
i
�
p0 · x

)
exp

(
− x2

4γ2

)
(8.14.6)

where we use the notation γ2 for the variance in order not to confuse it with
the Pauli matrices, and

p0 = (0, p0, 0). (8.14.7)

Here the x2-axis denotes the initial average direction of propagation of the
particle (see Figure 8.12).

In the absence of a magnetic field Ψ0(x) in (8.14.6) develops in time to

Ψ0(x, t) =
eip0·x/�e−ip2

0t/2M�

(2π)3/4γ3/2
(
1 + i�t

2Mγ2

)3/2
exp


−

(
x − p0

M t
)2

4γ2
(
1 + i�t

2Mγ2

)

 (8.14.8)

and

|Ψ0(x)|2 =
1

(2π)3/2γ3(t)
exp

(
−
(
x − p0

M t
)2

2γ2(t)

)
(8.14.9)

γ(t) = γ

(
1 +

�
2t2

4Mγ4

)1/2

. (8.14.10)

We have chosen a common γ-width in all directions to simplify the grouping
together of the various terms in the analysis. This is not a serious restriction.

For the magnetic field we choose the simple form

B = (0, b − βx2, βx3), A = (bx3, βx1x3, βx1x2) (8.14.11)
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x1

x2

x3

Fig. 8.12. The x2-axis denotes the initial average direction of propagation
of the particle with the observation screen being parallel to the x1-x3 plane.
No magnetic field component is chosen along the x1-axis.

satisfying (8.14.3), (8.14.2), where b, β are some constants. We note that
the longitudinal component (b− βx2) is along the initial average direction of
propagation specified by p0, with Ox3 denoting the traditional quantization
axis of the spin.

We will see that the uniform part (0, b, 0) of the magnetic field, although
longitudinal, may be appropriately set up to effectively reduce the quantum
mechanical counterpart of the Lorentz-force contribution by reducing, in turn,
the correlation that occurs between x1, and x3 variables on the screen, and
also provide a positive definite expression for the probability distribution in
question. Concerning the non-uniform part (0, βx2, βx3), we note that since
|x2|, a macroscopic distance, is much larger than |x3| (providing a measure of
the splitting of the beam), this non-uniform magnetic field is almost longitu-
dinal along the direction of propagation, at the screen. In the above set up,
as a working hypothesis, we treat the particles as if they are throughout in
the magnetic field. Otherwise an analytical treatment is not so manageable.

The dynamics is most elegantly described in terms of the density operator,
which at t = 0, is given by

ρ = w+

(
1
0

)
|Ψ0〉 〈Ψ0|

(
1 0

)
+ w−

(
0
1

)
|Ψ0〉 〈Ψ0|

(
0 1

)
(8.14.12)

where
w+ + w− = 1. (8.14.13)

For
w+ = w− = 1/2 (8.14.14)

one would be dealing with an unpolarized beam. For t > 0, the density
operator is given by
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ρ(t) = w+e−itH/�

(
1
0

)
|Ψ0〉 〈Ψ0|

(
1 0

)
eitH/�

+ w−e−itH/�

(
0
1

)
|Ψ0〉 〈Ψ0|

(
0 1

)
eitH/�. (8.14.15)

The probability density is then (for t > 0)

〈x |ρ(t)|x〉 (8.14.16)

and for the probability density, in question, on the screen one may then, most
conveniently, write it as

f(x1, x3; t) =
∫ ∞

−∞
dx2 〈x |ρ(t)|x〉

= w+

∫ ∞

−∞
dx2

∣∣∣∣〈x| e−itH/�

(
1
0

)
|Ψ〉

∣∣∣∣
2

+ w−

∫ ∞

−∞
dx2

∣∣∣∣〈x| e−itH/�

(
0
1

)
|Ψ〉

∣∣∣∣
2

≡ w+f+(x1, x3; t) + w−f−(x1, x3; t). (8.14.17)

8.14.2 The Intensity Distribution

With exp(−itH/�) as the time-evolution operator, the following expecta-
tion values of the Heisenberg operators in the state (8.14.6), relevant to the
observation screen, to the leading order in √

αq, are readily obtained:

〈x1(t)〉 = 0 (8.14.18)

〈x3(t)〉 =
µ

2M
σ3βt2 (8.14.19)

and the important non-trivial correlation occurring between the dynamical
variables x1(t), x3(t):

〈(
x1(t) − 〈x1(t)〉

)(
x3(t) − 〈x3(t)〉

)〉
= −qbtγ2

Mc
+

qβp0t
2γ2

2M2c
+

qβp0t
4
�

2

24M4γ2c

≡ A13 (8.14.20)

with
〈(

x1(t) − 〈x1(t)〉
)2〉1/2

=
〈(

x3(t) − 〈x3(t)〉
)2〉1/2

= γ(t). (8.14.21)
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Upon using the notation

〈g〉±t =
∫

dx1dx3 g(x1, x3) f±(x1, x3; t) (8.14.22)

〈g〉±0 = 〈g〉± (8.14.23)

where f±(x1, x2; t) are introduced in (8.14.17), then a straightforward but
tedious evaluation of f±(x1, x3; t), as given in the appendix to the section,
consistent with the following constraints, as dictated by the expectation val-
ues in (8.14.18)–(8.14.21), normalizability and positivity:

C.1. 〈x1〉±t = 0 + higher orders

C.2. 〈x3〉±t =
µβt2

2M
〈σ3〉± + higher orders

C.3.
√
〈x2

1〉
±
t = γ(t) + higher orders

C.4.
(〈

x2
3

〉±
t
−
(
〈x3〉±t

)2
)1/2

= γ(t) + higher orders

C.5.
〈(

x1 − 〈x1〉±t
)(

x3 − 〈x3〉±t
)〉±

t
= A13 + higher orders

C.6.
∫

dx1 dx3 f(x1, x3; t) = 1

C.7. f(x1, x3; t) is real and positive

where A13 is defined in (8.14.20), and higher orders stand relative to the
parameter √

αq. These lead to the following expression for the probability
density in question:

f(x1, x3; t) =

√
detC

2π

[
w+ exp

(
−1

2
(xi − xi0)Cij(xj − xj0)

)

+ w− exp
(
−1

2
(xi + xi0)Cij(xj + xj0)

)]
(8.14.24)

where C =
[
Cij

]
, i, j = 1, 3, C11 = C33 = 1/γ2(t),

C13 = C31 =
1

γ4(t)

[
qbtγ2

Mc
− qβp0t

2γ2

2M2c
− qβp0t

4
�

2

24M4γ2c

]
(8.14.25)

xi0 =
µβ

2M
t2δi3 (8.14.26)

and w+ = w− = 1/2 for an unpolarized beam. It remains to check to posi-
tivity constraint C.7 (see also the appendix to this section).

The probability density in (8.14.24) is a sum of bivariate normal distrib-
utions and [[∑]ij

]
=
[[

C−1
]ij]

(8.14.27)
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is the so-called covariance matrix describing the correlation between x1 and
x3 on the screen for i �= j.

∑
is a measure of dispersion in all directions

in the (x1, x3)-plane. The multiplicative factor
√

detC/2π is the standard
normalization factor.

Finally, the constraint C.7 implies that detC > 0, i.e., it leads to a posi-
tivity requirement. This in turn implies that we should have

|q|t
Mc

∣∣∣∣b − βp0t

2M
− βp0t

3
�

2

24M3γ4

∣∣∣∣ < 1 +
�

2t2

4M2γ4
. (8.14.28)

In reference to this inequality consider first the case with b = 0, i.e., the
constraint

C < 1 +
�

2t2

4M2γ4
(8.14.29)

with

C =
|q|βp0t

2

2M2c

(
1 +

�
2t2

12M2γ4

)
. (8.14.30)

By setting,

∆z =
|µ|βt2

2M
(8.14.31)

p0t

M
= L (8.14.32)

with the latter denoting the macroscopic distance from the particle’s initial
center of the wavepacket to the observation screen, we may rewrite C as

C =
4L

|g|

(
M

�

)
∆z

t

(
1 +

�
2t2

12M2γ4

)
. (8.14.33)

For the electron with ∆z � 10−3 m, t � 10−6 s, L � 1 m, γ < 10−3 m

C � 1.73 × 107

(
1 +

1.12 × 10−21

γ4

)
(8.14.34)

which is a very large number and the positivity constraint (8.14.29) cannot
be satisfied. On the other hand, the uniform magnetic field (0, b, 0) may a
priori be set at

b =
β

2
L (8.14.35)

defined simply in terms of the non-uniform magnetic field gradient
∂B2/∂x2 = −β = −∂B3/∂x3 (see (8.14.11)), and the distance to the obser-
vation screen L, independently of any of the details of the spin 1/2 charged
particle considered and of the (initial) spread γ. [The uniform magnetic field
component b may be, of course, chosen so that C13 = 0, but this would mean
to choose a different uniform magnetic field for every different charged par-
ticle, and a different spread γ, and would not be physically as interesting.]
The matrix elements in (8.14.25) then simply become
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C13 = C31 = −ε(q)
1

3|g|

(
∆z

γ

)(
L

γ

)
�t

M

1
γ4(t)

(8.14.36)

and the positivity constraint

1
3|g|

∆z

γ

L

γ

�t

Mγ2
< 1 +

�
2t2

4M2γ4
(8.14.37)

is readily satisfied. For example, for the electron with ∆z = 10−3 m, L =
0.7 m, γ = 0.55 × 10−3 m, t = 4 × 10−6 s, corresponding to an initial
average speed of 1.75 × 105 m/s, a magnetic field gradient β = 12.280 T/m,
and a uniform longitudinal magnetic field b = 4.298 T, the left-hand side
of (8.14.37) is � 0.59. In Figure 8.13, t = 4 × 10−6 s, and the probability
density f(x1, x3; t) for B = 0, is plotted for γ = 0.55 × 10−3 m and the
corresponding density for B �= 0, for the above just given parameters, is
plotted in Figure 8.14, for an initially unpolarized beam, showing a clear
splitting of the beam along the quantization axis. [The magnetic field b may
be chosen to be even smaller. For example, for slower electrons t = 5.93 ×
10−6 s, L = 0.5 m, b = 1.4 T consistent with (8.14.37).] The asymmetry with
elongations in the second and the fourth quadrants in Figure 8.14 are easy to
understand. For the electron ε(q) = −1, C13 = C31 > 0 and the probability
density gets, respectively, positive amplifying contributions for x3 > x30,
x1 < 0 and x3 < −x30, x1 > 0. This graph corresponds to a negative charged
particle. The formal physical argument for this asymmetry is that it arises
as a consequence of the direction of the Lorentz force, as determined by the
so-called right-hand rule, on a charged particle as applied to the transverse
part of the non-uniform magnetic field. For a positive charge, the elongations,
as arising in opposite directions, occur in the corresponding first and third
quadrants.

We note that the correlation in (8.14.20) and C13 = C31 in (8.14.25)
vanish for neutral particles. The analysis carried above (with C13 = C31 set
equal to zero), is equally valid for neutral spin 1/2 particles with magnetic
moment µ = µσ, as carried to the leading order in M |µ|/|g|(�3c)1/2, and
finally leads to the expression

f(x1, x3; t) =
1

2πγ2(t)

{
w+ exp

[
−1

2
x2

1 + (x3 − x0)2

γ2(t)

]

+ w− exp
[
−1

2
x2

1 + (x3 + x0)2

γ2(t)

]}
(8.14.38)

where x0 = µβt2/2M . For an unpolarized beam, this is plotted in Figure 8.15
for t = 4×10−6 s, |x0| = 1×10−3 m, γ = 0.55×10−3 m, showing the difference
of the densities for the charged and uncharged cases in the presence of an
appropriately chosen longitudinal uniform magnetic field.
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Fig. 8.13. Plot of the density f(x1, x3; t) for B = 0 γ = 0.55 × 10−3 m,
t = 4 × 10−6 s.
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Fig. 8.14. Plot of the density f(x1, x3; t) for the electron, based on (8.14.24),
(8.14.35), (8.14.36) with ∆z = 10−3 m, γ = 0.55 × 10−3 m, t = 4 × 10−6 s,
L = 0.7 m, corresponding to an initial average speed of 1.75 × 105 m/s, a
magnetic field gradient β = 12.280 T/m, and a uniform longitudinal magnetic
field b = 4.298 T, for an initially unpolarized beam.
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Fig. 8.15. Plot of the density f(x1, x3; t) for uncharged particles, based on
(8.14.38) for |x0| = 1 × 10−3 m, γ = 0.55 × 10−3 m, t = 4 × 10−6 s, for an
initially unpolarized beam.

Appendix to §8.14: Time Evolution and Intensity
Distribution

To study the probability intensity distribution, we note the following com-
mutation relations:[

p2

2M
,HI

]
=

i�qβ

M2c
x3p1p2 +

i�q

M2c
(βx2 + b)p1p3

+
2i�qβ

M2c
x1p2p3 −

i�µβ

M
σ2p2 +

i�µβ

M
σ3p3

(A-8.14.1)
[

p2

2M
,

[
p2

2M
,HI

] ]
=

4�
2qβ

M3c
p1p2p3 (A-8.14.2)

with all the other commutators with p2/2M vanish or are of higher order. We
use a variation of the Baker-Campbell-Hausdorff formula (see Appendix I):
if

[
B , [A,B]

]
= 0 (A-8.14.3)

[
B ,

[
A, [A,B]

] ]
= 0 (A-8.14.4)
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[
A,

[
A, [A,B]

] ]
= 0 (A-8.14.5)

for two operators A, B, then

eA+B = exp
(

1
2

[A,B] +
1
6
[
A, [A,B]

])
eB eA. (A-8.14.6)

We let

A = − it
�

p2

2M
(A-8.14.7)

B = − it
�

HI (A-8.14.8)

and note that (A-8.14.3)–(A-8.14.5) hold true to the accuracy retained. Equa-
tion (A-8.14.6) then gives

exp
(
− it

�
H

)
= exp

(
− it

2�2

[
p2

2M
,HI

])
exp

(
2it3qβ
3�M3c

p1p2p3

)

× exp
(
− it

�
HI

)
exp

(
− it

�
H0

)
(A-8.14.9)

where H0 = p2/2M is the free Hamiltonian and
(
exp(−itH0/�)ψ

)
(x) =

ψ0(x, t) is explicitly given in (8.14.8).
To carry out the time-evolution operation given in (A-8.14.9) on ψ we

use, in the process, the identity

exp
[
ia

p

�

]
f(x) = f(x + a). (A-8.14.10)

The operation defined on the right-hand side of (A-8.14.9) on ψ may be
then carried out. The analysis is very tedious but straightforward. Up to a
normalization factor, and the phase factor exp(itp0 ·x/�), (exp(−iH/�)ψ)(x),
is given by the expression:

F1

(
x1, x2 −

p0

M
t, x3; t

)
F2

(
x2 −

p0

M
t; t

)
F3(x1, x3; t) (A-8.14.11)

where we have conveniently isolated the terms dependent on the variable
x2, in the two factors F1, F2 as we have to integrate over it as indicated in
(8.14.17). With

x′
2 = x2 −

p0

M
t (A-8.14.12)

F =
1

4γ2
(
1 + i�t

2Mγ2

) ≡ F (t) (A-8.14.13)

we have

8.14 Quantum Dynamics of the Stern-Gerlach Effect
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F1 (x1, x
′
2, x3) = exp

(
−x′2

2F
)

exp
(
−4tqβ

Mc
x1x

′
2x3F

)

× exp
(

8i�qβt2

M2c
x1x

′
2x3F

2

)
exp

(
16qβ�

2t3

3M3c
x1x

′
2x3F

3

)

(A-8.14.14)

and

F2 (x′
2; t) = exp

(
itµ
�

σ2

(
b − β

p0

M
t
))

exp
(
− itµβσ2

�
x′

2

)

× exp
(

ip0µβt2

2�M
σ2

)
exp

(
−µβt2

M
σ2x

′
2F

)
(A-8.14.15)

F3 (x1, x3; t) = exp
(

itqβp0

�Mc
x1x3

)
exp

(
itµβ

�
σ3x3

)
exp

(
p0qβt2

M2c
x1x3F

)

× exp
(
−2tqb

Mc
x1x3F

)
exp

(
−8ip0t

3qβ�

3M3c
x1x3F

2

)

× exp
(

µβt2

M
σ3x3F

)
exp

(
2i�qt2

M2c

(
β

p0

M
t + b

)
x1x3F

2

)

× exp
(
−(x2

1 + x2
3)F

)
. (A-8.14.16)

Now we have to apply the operator (F1F2F3) in (A-8.14.11) to
(

1
0

)
and(

0
1

)
, and perform the operations defined in (8.14.15)–(8.14.17). To this end,

we use the identities:

σ3

(
1
0

)
=
(

1
0

)
, σ3

(
0
1

)
= −

(
0
1

)
(A-8.14.17)

(
1
0

)
=

1
2

(
1
i

)
+

1
2

(
1
−i

)
(A-8.14.18)

(
0
1

)
= − i

2

(
1
i

)
+

i
2

(
1
−i

)
(A-8.14.19)

σ2

(
1
i

)
=
(

1
i

)
, σ2

(
1
−i

)
= −

(
1
−i

)
(A-8.14.20)

and the orthogonality of
(
1 i
)�,

(
1 −i

)�. Also we note that

F (t) + F ∗(t) =
1

2γ2(t)
(A-8.14.21)
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iF (t) + (iF (t))∗ =
1

4γ2(t)
�t

Mγ2
(A-8.14.22)

iF 2(t) + (iF 2(t))∗ =
1

8γ4(t)
�t

Mγ2
. (A-8.14.23)

From (A-8.14.11)–(A-8.14.23) we obtain, up to a normalization factor, the
following expression for the x2-integrand in (8.14.17)

exp
(
− 1

2γ2(t)
[
x′2

2 + a(t)x1x
′
2x3

])[
exp

(
t2

2γ2(t)
µβ

M
x′

2

)

+ exp
(
− t2

2γ2(t)
µβ

M
x′

2

)]
f(x1, x3; t) (A-8.14.24)

where a(t), of order √
αq, is a function of t only, and up to a multiplicative

time-dependent constant,

f(x1, x3; t) ≡ w+f+(x1, x3; t) + w−f−(x1, x3; t)

= w+ exp
(
− 1

2γ2(t)

[
x2

1 + x2
3 −

t2

M
µβx3 −

xiAijxj

γ2(t)

])

+ w− exp
(
− 1

2γ2(t)

[
x2

1 + x2
3 +

t2

M
µβx3 −

xiAijxj

γ2(t)

])
.

(A-8.14.25)

A summation over the repeated indices i, j = 1, 3 in (A-8.14.25) is under-
stood,

A13 = A31 = −qbtγ2

Mc
+

qβp0t
2γ2

2M2c
+

qβp0t
4
�

2

24M4γ2c
, (A-8.14.26)

A11 = A33 = 0. (A-8.14.27)

The expression in (A-8.14.26) is identical to the correlation of the dynamical
variables x1(t), x3(t) in (8.14.20).

In reference to the x2-integral in (8.14.17), we have, from (A-8.14.24) with

b(t) =
µβt2

M
(A-8.14.28)

for the shifted x′
2-integral,

∫ ∞

−∞
dx′

2 exp
(
− 1

2γ2(t)
(
x′2

2 + [a(t)x1x3 ± b(t)]
)
x′

2

)

=
√

2πγ(t) exp
(

1
8γ2(t)

[a(t)x1x3 ± b(t)]2
)

(A-8.14.29)

8.14 Quantum Dynamics of the Stern-Gerlach Effect



544 8 Quantum Physics of Spin 1/2 & Two-Level Systems

where [a(t)x1x3 ± b(t)]2 is necessarily of a higher order correction in √
αq.

Accordingly, for the probability density f(x1, x3; t), we obtain the prelim-
inary expression given in (A-8.14.25).

To satisfy, in the process, constraint C.2 in the text (see also (8.14.19)), we
multiply the right-hand side of (A-8.14.25) by an overall normalizing factor
exp

(
−
(
µβt2/2M

)2
/2γ2(t)

)
giving

f(x1, x3; t) ∝ w+ exp

(
− 1

2γ2(t)

[
x2

1 +
(

x3 −
µβt2

2M

)2

− xiAijxj

γ2(t)

])

+ w− exp

(
− 1

2γ2(t)

[
x2

1 +
(

x3 +
µβt2

2M

)2

− xiAijxj

γ2(t)

])
.

(A-8.14.30)

Consistency with the constrains C.1–C.6 in the text necessarily leads to the
expression in (8.14.24) for the probability density in question below which
the positivity constraint C.7 has been already analyzed in the text.

Problems

8.1. For n1 =
(
sin θ1, 0, cos θ1

)
, n1 =

(
sin θ1, 0, cos θ1

)
, show that

∣∣+1/2,n1

〉
=
∣∣+1/2,n2

〉
cos

(
θ1 − θ2

2

)
+
∣∣−1/2,n2

〉
sin

(
θ1 − θ2

2

)
.

8.2. (i) Solve the simultaneous equations in (8.1.35), (8.1.36) to show that
the solutions with the initial conditions (8.1.32), (8.1.40) are given
respectively by (8.1.37)/(8.1.38) and (8.1.43).

(ii) More generally, find the unitary operator U(t, 0) for the time de-
velopment via the time-dependent Hamiltonian in (8.1.30).

[Hint: Find the latter by integrating (8.1.35), (8.1.36) rather than
by considering the time-ordered product of the exponential of(
−i

∫ t

0
dt′ H(t′)/�

)
.]

8.3. Use (8.1.83) satisfied by the amplitude F (t), self-consistently, to inves-
tigate the behavior of the survival probability in the truly asymptotic
limits t → 0, t → ∞, and state the sufficiency conditions to be satisfied
in your analysis for the validity of your results.

8.4. (i) Show that for g = 2 in (8.2.17), the eigenvectors corresponding
to the ground state energy 0, as follow from (8.2.12), are given in
(8.2.18) with m = 0 or −1, or . . . .

(ii) Verify that the supersymmetric generators Q, Q† for g = 2, actu-
ally annihilate Ψ0,m,−1 (see (8.2.19)).
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8.5. Verify explicitly the expressions for the polynomials in (8.3.27),
(8.3.28) to finally establish (8.3.30)–(8.3.33).

8.6. Repeat the operator analysis for the Landau levels in §8.3 in the gauge
given by the vector potential in (8.3.35) rather than the one in (8.2.11).
Comment on the connection between the two solutions obtained cor-
responding to these two gauges.

8.7. Solve the corresponding equation to the one in (8.3.38) without first
putting p1, p3 = 0 in (8.3.36).

8.8. Derive the equations (8.4.3)–(8.4.6).
8.9. Compute the very small contribution, by introducing in the process an

ultraviolet cut-off Mc/� for the k-integral, to the magnetic moment
µn in §8.4 by considering the real part of (8.4.18). (See §8.5 for useful
details).

8.10. Verify the angular integration in (8.5.59) starting from (8.5.47).
8.11. Derive the expressions for the density operators ρ(i) and the polariza-

tion vectors P(i) as in (8.6.10), (8.6.11), for an arbitrary initial state.
8.12. For an arbitrary initial state

∣∣Ψ(i)
〉

=
(
c+ c−

)�, using the general ex-
pressions for ρ(i) and P(i) obtained in Problem 8.11, and the expression
for the matrix M in (8.6.18), to find the general forms for the final
density operator ρ and the final polarization vector P.

8.13. Refer to (8.6.27), to find the expression F2(ϑ) + F2(−ϑ) for the final
probability densities for an initially polarized beam along the z-axis.

8.14. (i) Show that the constraints in (8.6.52), (8.6.53) lead to the general
expressions for β1, β2, β3 as given in (8.6.59), (8.6.60).

(ii) Complete the proof of part (ii) in the lemma below the constraints
(8.6.52), (8.6.53).

(iii) Finally show that (8.6.55), (8.6.56)–(8.6.60) give the structure in
(8.6.63) for M .

8.15. Find the expression for the probability density for the scattering of a
beam of spin 1/2 off a spin 0 target with the resulting spin 1/2 beam
scattering off a second spin 0 target. This is referred to as double
scattering.

8.16. Obtain the final state |Φ〉 in (8.7.28) from (8.7.25), (8.7.24) and
(6.6.21).

8.17. Show that the state in (8.7.40), with |ψ〉 given in (8.7.14), develops in
time τ = π/2λ0 via the Hamiltonian HME in (8.7.43) to the state in
(8.7.41).

8.18. Show that the system of equations in (8.8.4)–(8.8.7), lead to the time
evolution operator U(t, t1) in (8.8.8) from a time t1 to a time t.

8.19. Write down explicitly the matrix elements of the unitary matrix in
(8.8.15), then obtain the probability of a spin flip as given in (8.8.17).

8.20. Insert an apparatus described by a harmonic oscillator, as introduced
in §8.7, (8.7.24), instead of one described by a spin 1/2 system, in
reference to the Hamiltonian in (8.8.28), between two Ramsey zones,

Problems
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to study the nature of interference effect in a spin flip experiment as
done for the latter experiment emphasizing the differences between
the two apparatuses.

8.21. Derive the expression for the probability given in (8.8.47), at resonance
ω = ω0, with no meters inserted between the Ramsey zones.

8.22. Follow the elementary model set up to generate the Schrödinger cat
entangled state in (8.9.3) leading to (8.9.10), to set up a similar model
to generate the Schrödinger cat state in (8.9.2).

8.23. In the spirit of the actual experiment, reformulate the model developed
through (8.9.3)–(8.9.9) by considering two levels of an atom and re-
place, in the process, the interactions given there in the first and third
stages by appropriate interactions, as done in §8.12, within Ramsey
zones.

8.24. Show that the state |ψ〉 in (8.10.3) is invariant under rotations of the
unit vector n about any axis.

8.25. Derive the expressions for the expansions of the initial states on the
left-hand sides of (8.11.5) and (8.11.10) in terms of the other states as
stated, respectively.

8.26. Develop simple dynamical models, as done in §8.7, to generate the
unitary transformations specified in (8.11.8).

8.27. Develop the analysis in quantum cryptography in §8.11 including the
evaluation of the power of the test of detecting an intruder, if an
intruder is present, for the process depicted in Figure 8.7 for the pro-
duction of pairs of photons one going to Alice and one to Bob from
each pair.

8.28. Show that the unitary operators in (8.12.8)–(8.12.16) may be rewritten
in the compact form as given in (8.12.21).

8.29. Show that |a2|2 is as given in (8.12.32) for the transition probability
Pϑ[Transition |0〉 → |2〉] as follows from (8.12.31).

8.30. Show that in the adiabatic regime, for which |ω0| � ω, the exact
solution in (8.1.34) goes over to the one in (8.13.27).

8.31. Find the transformation law for the matrix c(T ) in (8.13.33) under
the transformations (8.13.35), (8.13.36). [Hint: It is easier to consider
(8.13.31) directly rather than the defining equation in (8.13.33).]

8.32. Reformulate the change of sign of a spinor of spin 1/2 under a rotation
by 2π radians in the light of the AA phase.

8.33. Show that in the Pancharatnam definition (see (8.13.68), (8.13.69)), if
vectors |Φ1〉, |Φ2〉 are “in phase” and so are |Φ2〉, |Φ3〉 then |Φ1〉, |Φ3〉
are not necessarily “in phase”.

8.34. Derive (8.13.67) for the inner product 〈Φ(t) |Φ(t + ∆t)〉.
8.35. Show that the vectors in A, A′ in (8.13.96), (8.13.97), which are well

defined in the region ε < θ < π − ε for ε > 0 and small, are related by
a gauge transformation.
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Green Functions

Green functions provide information on different aspects of quantum phys-
ical systems in a unified manner and their importance cannot be overempha-
sized. To see how a Green function may arise, suppose that 〈xt |ψ〉 denotes
the state of a system at time t, in the x-description, as it has evolved from an
initial state 〈x0 |ψ〉. Upon the insertion of the identity operator in (2.4.13)
between 〈xt| and |ψ〉, we may relate 〈xt |ψ〉 to the initial state as follows

〈xt |ψ〉 =
∫

d3x′ 〈xt |x′0〉 〈x′0 |ψ〉 . (9.1)

This may be rewritten as

ψt(x) =
∫

d3x′ G(xt;x′0)ψ0(x′) (9.2)

where
G(xt;x′t′) = 〈xt |x′t′〉 (9.3)

defines a Green function describing the evolution of the system. Unlike
〈xt |ψ〉, G(xt;x′t′) is independent of the state ψ, i.e., it is not tied up to
any state thus emphasizing its general character. By definition of 〈xt |x′t′〉,
we may write

G(xt;x′t′) = 〈x |U(t, t′)|x′〉 (9.4)

where U(t, t′) is the time evolution operator from time t′ to time t. For a
time independent Hamiltonian U(t, t′) = exp−i(t − t′)H/� and one has

G(xt;x′t′) =
∫ ∞

−∞
dλ 〈x |δ(λ − H)|x′〉 exp−i(t − t′)λ/� (9.5)

providing the intimate connection between a Green function and the spec-
trum of the underlying Hamiltonian of the system.

Also by definition of 〈xt |x′t′〉, we have the following completeness relation
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G(xt;x′t′) =
∫

d3x′′ G(xt;x′′t′′)G(x′′t′′;x′t′) (9.6)

for t′ < t′′ < t. With G(xt;x′t′) interpreted as the amplitude that the system
at x′ at time t′ to be found later at x at time t > t′, (9.6) shows that
for any given t′′ (t′ < t′′ < t), the system may go through any point x′′

before ending up at x. By repeated applications of (9.6), writing G(xt;x′t′)
as integrals of the product of an arbitrary number of amplitudes, the path
integral formulation will be developed in the next chapter.

In the present chapter, we carry out a detailed study of Green functions
and their properties starting with those of a free particle followed by those
for systems with interactions. The Green function method is also applied to
study the law of reflection as well as to the celebrated quantum phenomenon
known as the Aharonov-Bohm (AB) effect. Special attention will be given to
the Green function for general systems, and for the Coulomb potential, in
particular.

Green functions will find important applications in other chapters as well,
especially, in the path integral formalism of quantum physics, in scattering
theory and in the theory of multi-electron atoms.

9.1 The Free Green Functions

In this section, we consider various aspects of free Green functions mainly
in three dimensions. Other dimensional cases are treated in the next few
sections as well as in the problems.

Consider the general solution of the Schrödinger equation for a free par-
ticle in three dimensions

ψ (x, t) =
(
e−itH0/�ψ

)
(x)

=
∫

d3p

(2π�)3
ei[x·p−p2t/2m]/�ψ (p) , t > 0 (9.1.1)

where H0 = −�
2∇2/2m, with initial condition at t = 0

ψ (x, 0) = ψ (x) =
∫

d3p

(2π�)3
eix·p/�ψ (p) . (9.1.2)

Upon using the inverse Fourier transform of (9.1.2)

ψ (p) =
∫

d3x′ e−ix′·p/�ψ (x′) (9.1.3)

the general solution (9.1.1) may be rewritten as
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ψ (x, t) =
∫

d3x′ G0 (xt;x′0) ψ (x′) (9.1.4)

(compare with (9.2)), where

G0 (xt;x′0) =
∫

d3p

(2π�)3
ei [(x−x′)·p−p2t/2m]/� (9.1.5)

satisfying the initial condition

G0 (xt;x′0) −−−→
t→0

δ3 (x − x′) . (9.1.6)

By using the identity

[
(x − x′) · p − p2t/2m

]
= − t

2m

[(
p − m

(x − x′)
t

)2

− m2

t2
|x − x′|2

]

changing the integration variable p → p + m (x − x′) /t in (9.1.5), and car-
rying out the resulting Gaussian integral, we obtain

G0 (xt;x′0) =
( m

2πi�t

)3/2

exp
im |x − x′|2

2�t
(9.1.7)

with t > 0.
Since we are considering the case t > 0 in (9.1.7), we may introduce the

following Green function

G0
+ (xt;x′t′) = Θ (t − t′)

(
m

2πi� (t − t′)

)3/2

exp
im |x − x′|2

2� (t − t′)
(9.1.8)

where Θ (t − t′) is the step function, and will be referred to as the retarded
Green function. It satisfies the boundary condition

G0
+ (xt;x′t′) = 0 for t − t′ < 0 (9.1.9)

and the initial condition

G0
+ (xt;x′t′) −−−−−→

t→t′+0
δ3 (x − x′) . (9.1.10)

Because of the presence of the step function Θ (t − t′) in the definition
(9.1.8), it follows directly from (9.1.5), that G0

+ (xt;x′t′) satisfies the differ-
ential equation

[
i�

∂

∂t
− H0

]
G0

+ (xt;x′t′) = i� δ3 (x − x′) δ (t − t′) (9.1.11)

where H0 = −�
2∇2/2m.
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We may incorporate the boundary condition, in an energy momentum
description, of the retarded Green function, by rewriting the solution (9.1.8)
in the form

G0
+ (xt;x′t′) = i�

∫
(dp)

(2π�)4
ei(x−x′)·p/�[

p0 − p2

2m
+ iε

] , ε → +0 (9.1.12)

where
(x − x′) · p = (x − x′) · p − (t − t′) p0 (9.1.13)

and
(dp) = dp0d3p (9.1.14)

with −∞ < p0 < ∞,−∞ < pi < ∞, i = 1, 2, 3.
To show that the expression on the right-hand side of (9.1.12) leads to

the solution in (9.1.8), we go to the complex p0-plane and note that the
integrand in (9.1.12) has a pole at p0 = p2/2m− iε, i.e., in the lower complex
plane. Hence for t − t′ < 0, we may close the contour in the complex p0-
plane from above thus avoiding the pole, and noting that the real expression
−i (t − t′) i Im p0, in the exponential in (9.1.12), is negative for t − t′ < 0
and for Im p0 > 0 in the upper complex plane. Thus the infinite semi-circle
contour in the upper complex p0-plane gives zero contribution and we obtain
(9.1.9).

On the other hand for t−t′ > 0, we may close the contour of integration in
the complex p0-plane from below thus enclosing the pole. Also for t− t′ > 0,
the real quantity −i (t − t′) i Im p0, in the exponential in (9.1.12), is negative
for Im p0 < 0 in the lower complex p0-plane. Thus the infinite semi-circle
contour in the lower complex p0-plane gives zero (see Figure 9.1). From the
residue theorem, we then obtain for t − t′ > 0

G0
+ (xt;x′t) = (−2πi) (i�)

∫
d3p

(2π�)4
exp i

[
(x − x′) · p − p2 (t − t′) /2m

]
/�

(9.1.15)

which from (9.1.5) coincides with (9.1.8).
Upon rewriting G0

+ (xt;x′t′) as

G0
+ (xt;x′t′) = Θ (t − t′)

∫
d3p

(2π�)3
ei [(x−x′)·p−p2(t−t′)/2m]/� (9.1.16)

the following completeness relation is readily obtained∫
d3x′′G0

+ (xt;x′′t′′) G0
+ (x′′t′′;x′t′) = G0

+ (xt;x′t′) (9.1.17)

where t′′ is arbitrary such that t > t′′ > t′.
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Fig. 9.1. The contour of integration chosen in the complex p0-plane to eval-
uate the p0-integral in (9.1.12) for t − t′ > 0. The contour encloses a pole at
p0 = p2/2m − iε. For t − t′ > 0, (t − t′) Im p0 < 0 for Im p0 < 0, in the lower
complex p0-plane, and the infinite semi-circle contour gives zero contribution.
The p0-integral in (9.1.12) is then evaluated by an application of the residue
theorem.

The physical interpretation of (9.1.17) was given in the introduction to
this chapter.

As an application, and as an idealistic toy model for the double slit ex-
periment, suppose that particles are constrained to pass through two given
points,1 as shown in Figure 9.2, before hitting an observation screen. That
is, we need the constraint

d3x′′ −→ δ (x′′
1) δ (x′′

3)
[
δ (x′′

2 − d) + δ (x′′
2 + d)

]
d3x′′ (9.1.18)

to evaluate the amplitude of finding a particle at a given point on the screen.
Using the notation x = (x1, x2, x3), the geometry in Figure 9.2 together

with the constraints in (9.1.18) give

|x − x′′|2 = x2 + d2 ∓ 2x2d (9.1.19)

for the upper and lower “slits”, respectively, and

|x′ − x′′|2 = L2 + d2. (9.1.20)

1 For more realistic computations, allowing a spread, i.e., an extension, of the slits
see Problem 9.5
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x1

x2

x2

L

−d

d

x
x′ x′′

0

SCREEN

Fig. 9.2. Idealistic toy model of the double-slit experiment describing con-
strained motion. Here the vector x′′ is restricted as defined through the inte-
gration measure in (9.1.18). We are interested in determining the amplitude
that a particle hits the screen at x given that it has “originated” from the
point described by the vector x′.

Hence the amplitude of finding a particle on the screen at x = (x1, x2, x3)
is given by

( m

2πi�T

)3/2 ( m

2πi�T ′

)3/2

exp im
(

x2 + d2

2�T

)
exp im

(
L2 + d2

2�T ′

)

×
[
exp

(
im

x2d

�T

)
+ exp

(
−im

x2d

�T

)]
(9.1.21)

where T = t − t′′, T ′ = t′′ − t′. This gives a probability density ∝
cos2 (mx2d/�T ) of finding a particle at x, with constructive interference at
x2 = nπ�T/md and destructive interference at x2 = (2n + 1) π�T/2md for
n = 0,±1,±2, . . .. The non-normalizability of this probability density is due
to the simplified toy model adopted.

A useful expression for the Green function G0
+ (xt;x′t′) in (9.1.12) may

be also obtained by explicitly carrying out the p-integral to obtain a one-
dimensional representation.

To the above end, we set
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x − x′ = ρ, t − t′ = T (9.1.22)

(x − x′) · p = ρp cos θ (9.1.23)

d3p = 2πp2dp sin θdθ (9.1.24)

and carry out the angular integration in (9.1.12) to obtain

G0
+ (xt;x′t′) = − m

2π2�ρ

∫ ∞

−∞

dp0

2π�
e−ip0T/�

∫ ∞

0

p dp

[
eipρ/� − e−ipρ/�

]
(p2 − 2mp0 − iε)

(9.1.25)
or

G0
+ (xt;x′t′) = − m

2π2�ρ

∫ ∞

−∞

dp0

2π�
e−ip0T/�

∫ ∞

−∞
p dp

eipρ/�

(p2 − 2mp0 − iε)
(9.1.26)

where T > 0.
Regarding the denominator in (9.1.26), for ε → +0, we may make the

substitutions

p2 − 2mp0 − iε −→
[
p −

(√
2mp0 + iε

)] [
p +

(√
2mp0 + iε

)]
(9.1.27)

for p0 > 0, and

p2 − 2mp0 − iε −→
(
p − i

√
2m |p0|

)(
p + i

√
2m |p0|

)
(9.1.28)

for p0 < 0.
Since ρ > 0, for x �= x′, we close the contour from above in the complex

p-plane to obtain,

G0
+ (xt;x′t′) = − mi

2π�ρ

∫ ∞

−∞

dp0

2π�
e−ip0T/�

[
Θ
(
p0
)
ei
√

2mp0ρ/�

+ Θ
(
−p0

)
e−

√
2m|p0|ρ/�

]
(9.1.29)

which may be rewritten as

G0
+ (xt;x′t′) =

∫ ∞

−∞

dp0

2π�
e−ip0T/�G̃0

+

(
x,x′; p0

)
, T > 0 (9.1.30)

where

G̃0
+

(
x,x′; p0

)
=

m

2πi� |x − x′| exp
(

i
�

√
2mp0 |x − x′|

)
. (9.1.31)

Equation (9.1.30) is equivalently given by
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G0
+ (xt;x′t′) =

m

2πi�ρ

∫ ∞

0

dp0

2π�

[
e−ip0T/�eiρ

√
2mp0/� + eip0T/�e−ρ

√
2mp0/�

]
.

(9.1.32)
One may also define the advanced Green function

G0
− (xt;x′t′) = Θ (t′ − t)G0 (xt;x′t′) (9.1.33)

satisfying the differential equation[
i�

∂

∂t
− H0

]
G0

− (xt;x′t′) = −i� δ3 (x − x′) δ (t′ − t) . (9.1.34)

Its integral representation corresponding to the one in (9.1.12) is given by

G0
− (xt;x′t′) = −i�

∫
(dp)

(2π�)4
ei(x−x′)p/�(

p0 − p2

2m
− iε

) , ε → +0. (9.1.35)

The integrand, as a function of p0, has a pole at p0 = p2/2m + iε in the
upper complex p0 -plane. Hence for t − t′ < 0 (see (9.1.13)), we may close
the p0 -contour from above thus obtaining the expression in (9.1.33) by an
application of the residue theorem. For t − t′ > 0, the residue theorem gives
zero by closing the p0-contour from below.

From the identity

1

p0 − p2

2m
+ iε

− 1

p0 − p2

2m
− iε

= −2πiδ
(

p0 − p2

2m

)
(9.1.36)

or directly from the definition of the step function we note the relation

G0
+ (xt;x′t′) + G0

− (xt;x′t′) = G0 (xt;x′t′) . (9.1.37)

Almost identical derivations as the one in obtaining (9.1.7) in three di-
mensions, shows that for arbitrary ν dimensions (ν = 1, 2, . . .), e.g., for t > t′

G0
+ (xt;x′t′) =

(
m

2πi� (t − t′)

)ν/2

exp
im |x − x′|2

2� (t − t′)
(9.1.38)

satisfying the boundary condition

G0
+ (xt;x′t′) −−−→

t→t′
δν (x − x′) . (9.1.39)

From (9.1.11), (9.1.34) and (9.1.37), we note that unlike G0
±(xt;x′t′),

G0(xt;x′t′) satisfies a homogeneous differential equation[
i�

∂

∂t
− H0

]
G0(xt;x′t′) = 0. (9.1.40)

It will still be referred to as a Green function. We next treat Green functions
in the presence of interactions.
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9.2 Linear and Quadratic Potentials

Consider the Hamiltonian

H =
p2

2m
− Ex (9.2.1)

in one dimension. The following commutation relations are readily derived
[
x, p2

]
= 2i�p (9.2.2)

[
x,
[
x, p2

]]
= −2�

2 (9.2.3)
[
p2,

[
x, p2

]]
= 0. (9.2.4)

Upon setting

A = iETx/�, B = −iTp2/2m� (9.2.5)

and using the modified Baker-Campbell-Hausdorff formula (see Appendix I),
as applied to the problem at hand

exp (A + B) = exp
(

1
2

[A,B] +
1
6

[A, [A,B]]
)

exp B expA (9.2.6)

we obtain

〈x| exp− iT
�

H |x′〉

= exp
(
− i

6
E2T 3

�m

)
exp

(
iTEx′

�m

)〈
x

∣∣∣∣exp
(

iET 2

2�m
p − iT

�

p2

2m

)∣∣∣∣x′
〉

(9.2.7)

where we have used the fact that A is a multiplicative operator when applied
to |x′〉.

The last factor on the right-hand side of (9.2.7) may be rewritten as

〈x| exp
(

iET 2

2�m
p − iT

�

p2

2m

)
|x′〉

=
∫ ∞

−∞

dp

2π�
〈x| p 〉〈 p |x′〉 exp

(
iET 2

2�m
p

)
exp

(
−iT

�

p2

2m

)
(9.2.8)

where 〈x|p〉 = exp (ixp/�) (see §2.4).
Upon completing the squares in the exponentials in (9.2.8), and integrat-

ing over p, as in (9.1.5), we obtain for (9.2.8), the expression
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( m

2πi�T

)1/2

exp

[
iT

8�m

(
ET +

2m

T
(x − x′)

)2
]

(9.2.9)

giving from (9.2.7)

〈xt|x′t′〉 =
( m

2πi�T

)1/2

exp
i
�

[
m (x − x′)2

2T
+

E (x + x′) T

2
− E2

24m
T 3

]

(9.2.10)
with t− t′ = T , which obviously satisfies the boundary condition in (9.1.39).

For the quadratic Hamiltonian,

H =
p2

2m
+

1
2

mω2x2 (9.2.11)

the method just applied to the linear potential is not the best one for this
case. The reason is that the commutators of the operators p2 and x2 with[
x2, p2

]
, and their commutation relations with the resulting ones and so on,

go on and on unlike the situation in (9.2.2)–(9.2.4) for the linear potential. In
this case, it is easier to solve the differential equation satisfied by G (xt;x′t′)
directly.

To the above end, we consider the equation with t′ = 0, t > 0
[
i�

∂

∂t
+

�
2

2m

∂2

∂x2
− 1

2
mω2x2

]
G (xt;x′0) = 0. (9.2.12)

Quite generally, we may write

G = exp
i
�

[
Ax2 + Bx + C

]
(9.2.13)

where A,B,C may, in general, be functions of x′ and t, with the solution
subjected to satisfy the boundary condition in (9.1.39). Obviously, the expo-
nential in (9.2.13) cannot depend on x3 or on higher powers of x.

Upon substituting (9.2.13) in (9.2.12), we obtain the following differential
equations:

Ȧ +
2
m

A2 +
1
2
mω2 = 0 (9.2.14)

Ḃ +
2AB

m
= 0 (9.2.15)

Ċ +
B2

2m
− i�A

m
= 0 (9.2.16)

for the coefficients of x2, x and the constant term, respectively, and where
Ȧ = ∂A/∂t. Equation (9.2.15) gives A = −mḂ/2B.
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By introducing the variable u = 1/B, and replacing the expression A =
mu̇/2u in (9.2.14), leads to the equation ü + ωu = 0, giving the solution

A =
mω

2

(
−α sinωt + β cos ωt

α cos ωt + β sin ωt

)
. (9.2.17)

To satisfy the boundary condition (9.1.39), with A → m/2t, for t → 0 (see
(9.1.38), (9.2.13)), we set α = 0. That is, we have

A =
mω

2
cot ωt, B =

1
β sinωt

(9.2.18)

and β, which may depend only x′, will be determined.
Substituting the expressions for A and B, given in (9.2.18), in (9.2.16)

and using the integrals∫
dz

sin2 z
= − cot z,

∫
dz cot z = ln (sin z) (9.2.19)

gives the general solution

C =
cot ωt

2mωβ2
+

i�
2

ln (sin ωt) + C0 (9.2.20)

where C0 is independent of t.
For G, in (9.2.13), we then have

G =
1√

sinωt
exp

i
�

[
mω

2
x2 cot ωt +

x

β sin ωt
+

cot ωt

2mβ2

]
exp

i
�

C0. (9.2.21)

Upon comparison with (9.1.38), (9.1.39) for t → 0, we may infer that

1
β

= −mωx′ , exp
i
�

C0 =
( mω

2πi�

)1/2

(9.2.22)

giving the final expression,

G (xt;x′t′) =
( mω

2πi� sin ωT

)1/2

exp
imω

2�

[(
x2 + x′2) cot ωT − 2xx′

sin ωT

]

(9.2.23)
where T = t − t′.

We apply the expression in (9.2.23) to provide an independent derivation
of the eigenvalues and eigenvectors of the harmonic oscillator.

To the above end, we use the representation for the generating function
of the product of two Hermite polynomials:2

2 See, for example, Morse and Feshbach (1953), p. 786. [The overall factor
1/

√
1 + z2 on the left-hand side of the equation in question here should

read 1/
√

1 − z2 as is easily checked by the normalizability property of
exp

(
−x2/2

)
Hn (x) by first putting x = x′ in (9.2.24).]
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1√
1 − z2

exp−
[
x2 + x′2 − 2xx′z

(1 − z2)

]

= exp
[
−
(
x2 + x′2)] ∞∑

n=0

(z)n

2nn!
Hn (x) Hn (x′) . (9.2.24)

We set z = exp (−iωT ), giving

z

1 − z2
=

1
2i sin ωT

,
1 + z2

1 − z2
=

1
i

cot ωT. (9.2.25)

Upon multiplying (9.2.24) by

(mωz

π�

)1/2

exp
(
x2 + x′2) /2

and making the replacements x → (mω/�)1/2
x, x′ → (mω/�)1/2

x′, we
obtain from (9.2.24), and (9.2.23),

G (xt;x′t′) =
∞∑

n=0

exp
(
− i

�
T [�ω (n + 1/2)]

)(mω

π�

)1/4 e−mωx2/2�

√
2n n!

Hn (x)

×
(mω

π�

)1/4 e−mωx′2/2�

√
2n n!

Hn (x′) (9.2.26)

from which the eigenvalues and eigenvectors are directly read.

9.3 The Dirac Delta Potential

Consider a particle in a one dimensional Dirac delta potential λδ (x). To
solve for the Green function G+ (xt′x′t′) satisfying the differential equation

[
i�

∂

∂t
+

�
2

2m

∂2

∂x2
− λδ (x)

]
G+ (xt;x′t′) = i� δ (x − x′) δ (t − t′) (9.3.1)

we carry out a Fourier transform

G+ (xt;x′t′) =
∫ ∞

−∞

dp0

2π�
e−ip0(t−t′)/� G̃+

(
x, x′; p0

)
(9.3.2)

where G̃+

(
x, x′; p0

)
satisfies the equation

[
p0 +

�
2

2m

∂2

∂x2
− λδ (x)

]
G̃+

(
x, x′; p0

)
= i� δ (x − x′) . (9.3.3)

The latter may be rewritten as the integral equation
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G̃+

(
x, x′; p0

)
= G̃0

+

(
x, x′; p0

)

− i
�

∫ ∞

−∞
dx′′ G̃0

+

(
x, x′′; p0

)
λ δ (x′′) G̃+

(
x′′, x′; p0

)
(9.3.4)

where G̃0
+

(
x, x′; p0

)
is the free counter part of G̃+

(
x, x′; p0

)
satisfying the

equation [
p0 +

�
2

2m

∂2

∂x2

]
G̃0

+

(
x, x′; p0

)
= i� δ (x − x′) (9.3.5)

having the integral form (see (9.1.12))

G̃0
+

(
x, x′; p0

)
= i�

∫ ∞

−∞

dp

2π�

eip (x−x′)/�[
p0 − p2

2m
+ iε

] (9.3.6)

whose solution (see Problem 9.1) is

G̃0
+

(
x, x′; p0

)
=
√

m

2p0
exp

(
i
√

2mp0 |x − x′| /�

)
. (9.3.7)

Upon the application of [
p0 +

�
2

2m

∂2

∂x2

]

to (9.3.4) and using (9.3.5), it is readily verified that (9.3.3) is satisfied.
The integral in (9.3.4) may be explicitly carried out to give

G̃+

(
x, x′; p0

)
= G̃0

+

(
x, x′; p0

)
− iλ

�
G̃0

+

(
x, 0; p0

)
G̃+

(
0, x′; p0

)
(9.3.8)

from which

G̃+

(
0, x′; p0

)
=

G̃0
+

(
0, x′; p0

)
[
1 + i

λ

�
G̃0

+ (0, 0; p0)
] (9.3.9)

and hence from (9.3.8) again,we obtain

G̃+

(
x, x′; p0

)
= G̃0

+

(
x, x′; p0

)
− i

λ

�

G̃0
+

(
x, 0; p0

)
G̃0

+

(
0, x′; p0

)
[
1 + i

λ

�
G̃0

+ (0, 0; p0)
] . (9.3.10)

In detail, (9.3.7), (9.3.10) give

G̃+

(
x, x′; p0

)
=
√

m

2p0
ei
√

2mp0|x−x′|/� − i
λ

�

m

2
1√
p0

ei
√

2mp0(|x|+|x′|)/�[√
p0 + i

λ

�

√
m

2

] .

(9.3.11)
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For λ < 0, it is convenient to write

−λΘ (−λ)

2
√

p0

[√
p0 +

iλ
�

√
m

2

] =
|λ|Θ (−λ)[
p0 +

mλ2

2�2

] − |λ|Θ (−λ)

2
√

p0

[√
p0 +

i |λ|
�

√
m

2

]

(9.3.12)
and for λ > 0,

−λΘ (λ)

2
√

p0

[√
p0 +

iλ
�

√
m

2

] = − |λ|Θ (λ)

2
√

p0

[√
p0 +

i |λ|
�

√
m

2

] (9.3.13)

to obtain for all λ < 0, λ > 0,

G̃+

(
x, x′; p0

)
=

im |λ|
�

Θ (−λ)
ei
√

2mp0(|x|+|x′|)/�[
p0 +

mλ2

2�2
+ iε

]

+
√

m

2p0




ei
√

2mp0|x−x′|/� − i
|λ|
�

√
m

2
ei
√

2mp0(|x|+|x′|)/�[√
p0 +

i |λ|
�

√
m

2

]



(9.3.14)

where we have used the fact that Θ (λ) + Θ (−λ) = 1.
For λ < 0, G̃+

(
x, x′; p0

)
develops a pole at

p0 =
−mλ2

2�2
(9.3.15)

(compare with (4.2.33)),3 coming from the denominator of the first term in
(9.3.14). By adding +iε to p0 in the latter denominator, in conformity with
(9.1.12), and closing the p0 contour in the complex p0-plane from below, and
by an application of the residue theorem (see Problem 9.8), this pole gives
rise to G+ (xt;x′t′), in (9.3.2), the contribution

− 2πi
2π�

im |λ|
�

θ (−λ) exp
[
−m |λ|

�2
(|x| + |x′|)

]
exp

[
imλ2

2�3
(t − t′)

]
(9.3.16)

leading to the bound state wavefunction

ψ (x) =

√
m |λ|
�

exp
[
−m |λ|

�2
|x|
]

(9.3.17)

consistent with (4.2.27).

3 Here we let λ carry its own sign.
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The second expression in the curly brackets in (9.3.14) also contains useful
information. Suppose x′ < 0, p0 > 0. Then for x > 0, the entire second term
in (9.3.14) becomes equal to

√
m

2p0
ei
√

2mp0(|x|+|x′|)/�




√
p0

√
p0 +

i |λ|
�

√
m

2


 (9.3.18)

from which we may infer that the transmission coefficient is given by

T =

√
p0

√
p0 +

i |λ|
�

√
m

2

. (9.3.19)

For x < 0, we have for the reflection coefficient, directly from the second term
within the curly brackets in (9.3.14), the expression

R =
− i |λ|

�

√
m

2√
p0 +

i |λ|
�

√
m

2

. (9.3.20)

9.4 Time-Dependent Forced Dynamics

We consider the forced linear potential, with the Schrödinger equation
given by [

i�
∂

∂t
+

�
2

2m

∂2

∂x2
+ xF (t)

]
ψ (x, t) = 0 (9.4.1)

where F (t) is a given c-function.
Let η (t) provide the classical solution of the problem. That is, it satisfies

the classical equation of motion

mη̈ (t) = F (t) (9.4.2)

with boundary conditions taken to be

η (t′) = x′, η (t) = x (9.4.3)

for some t > t′.
We define the quantum deviation from the classical path

z = x − η (9.4.4)

and note that in terms of the new variable z, we have to make the replacement
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∂

∂t
−→ ∂

∂t
+

∂z

∂t

∂

∂z
=

∂

∂t
− η̇

∂

∂z
(9.4.5)

for the time derivative in (9.4.1).
In terms of the new variable, the Schrödinger equation (9.4.1) reads

[
i�

∂

∂t
− i� η̇

∂

∂z
+

�
2

2m

∂2

∂z2
+ (z + η (t)) F (t)

]
ψ = 0. (9.4.6)

Upon setting

ψ = exp
(

imzη̇

�

)
Φ (9.4.7)

the following differential equation for Φ is obtained
[
i�

∂

∂t
+

�
2

2m

∂2

∂z2
+
(

mη̇2

2
+ ηF

)]
Φ = 0 (9.4.8)

Here we recognize, in the last term in the square brackets, the classical La-
grangian

Lc (t) =
mη̇2 (t)

2
+ η (t) F (t) . (9.4.9)

This suggests to set

Φ =
[
exp

i
�

∫ t

0

dτ Lc (τ)
]

χ (9.4.10)

to obtain the free Schrödinger equation
[
i�

∂

∂t
+

�
2

2m

∂2

∂z2

]
χ = 0. (9.4.11)

Hence from (9.4.7), (9.4.10), the solution of (9.4.1) is given by

ψ (x, t) =
(

exp
im
�

(x − η) η̇

)(
exp

i
�

∫ t

0

dτ Lc (τ)
)

χ (x − η, t) . (9.4.12)

To obtain the Green function, which has the advantageous of not being
tied up to any wavefunctions, we note that from

ψ (x, t) =
∫ ∞

−∞
dx′ G (xt;x′t′) ψ (x′; t′) (9.4.13)

we may write for χ in (9.4.12)

χ (x − η, t) =
(

exp− im
�

(x − η) η̇

)(
exp− i

�

∫ t

0

dτ Lc (τ)
)

×
∫ ∞

−∞
dx′ G (xt;x′t′)

(
exp

im
�

(x′ − η′) η̇′
)
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×
(

exp
i
�

∫ t′

0

dτ Lc (τ)

)
χ (x′ − η′, t′) (9.4.14)

where η′ = η (t′), η̇′ = η̇ (t′).
But for the free Schrödinger equation in (9.4.11) we have

χ (z, t) =
∫ ∞

−∞
dz′ G0 (zt; z′t′) χ (z′; t′) . (9.4.15)

Upon comparing (9.4.14) with (9.4.15), this gives

G (xt;x′t′) = exp
im
�

[
(x − η) η̇ − (x′ − η′) η̇′

](
exp

i
�

∫ t

t′
dτ Lc (τ)

)

× G0 (x − η, t;x′ − η′, t′) (9.4.16)

where

G0 (x − η, t;x′ − η′, t′)

=
(

m

2πi� (t − t′)

)1/2

exp
[

im
2� (t − t′)

(
x − η (t) − x′ + η (t′)

)2]
.

(9.4.17)

With the boundary conditions in (9.4.3), we obtain

G (xt;x′t′) =
(

m

2πi� (t − t′)

)1/2

exp
i
�

∫ t

t′
dτ Lc (τ) . (9.4.18)

On the other hand the explicit expression for η (τ), in terms of F (τ), is
from (9.4.2), (9.4.3) given by

η (τ) =
∫ t

τ

dτ ′ K (τ ′)
m

− (t − τ)
(t − t′)

∫ t

t′
dτ ′K (τ ′)

m
+x

(τ − t′)
(t − t′)

+x′ (t − τ)
(t − t′)

(9.4.19)

where

K (τ) =
∫ t

τ

dτ ′F (τ ′) (9.4.20)

suppressing the t dependence for simplicity of the notation, and note that
K(t) = 0.

Upon substitution of (9.4.19), (9.4.20) in (9.4.18), this leads to

G (xt;x′t′) =
( m

2πi�T

)1/2

exp
i
�

{
m

2
(x − x′)2

T
+

(x − x′)
T

∫ t

t′
dτ K (τ)
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+
1

2mT

(∫ t

t′
dτ K (τ)

)2

− 1
2m

∫ t

t′
dτ (K (τ))2 + x′K (t′)

}

(9.4.21)

where T = t − t′.
As another application of a time-dependent forced dynamics, we consider

the interaction described by the Schrödinger equation
[
i�

∂

∂t
+

�
2

2m

∂2

∂x2
− 1

2
mω2x2 + xF (t)

]
ψ (x, t) = 0. (9.4.22)

The corresponding classical solution η (t) satisfies the equation of motion

m
(
η̈ + ω2η

)
= F (9.4.23)

with boundary conditions taken to be

η (t′) = x′, η (t) = x. (9.4.24)

In terms of the quantum deviation z = x− η, from the classical solution,
and in terms of the function Φ defined through

ψ = exp
(

imz

�
η̇

)
Φ (9.4.25)

(see (9.4.7)), (9.4.22) becomes
[
i�

∂

∂t
+

�
2

2m

∂2

∂z2
− mω2z2

2
+
(

mη̇2

2
− mω2η2

2
+ ηF

)]
Φ = 0 (9.4.26)

where
mη̇2

2
− mω2η2

2
+ ηF = Lc (9.4.27)

is the classical Lagrangian.
Upon setting

Φ =
[
exp

i
�

∫ t

0

dτ Lc (τ)
]

χ (9.4.28)

the equation corresponding to the one in (9.4.11) becomes
[
i�

∂

∂t
+

�
2

2m

∂2

∂z2
− 1

2
mω2z2

]
χ = 0. (9.4.29)

The same reasoning as given in deriving (9.4.12)–(9.4.17) shows that

G (xt;x′t′)

= exp
im
�

[
(x − η) η̇ − (x′ − η′) η̇′](exp

i
�

∫ t

t′
dτ Lc (τ)

)( mω

2πi� sin ωT

)1/2
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× exp
imω

2�

{[
(x − η)2 + (x′ − η′)2

]
cot ωT − 2 (x − η) (x′ − η′)

sin ωT

}

(9.4.30)

where we have used (9.2.23) for the harmonic oscillator Green function with
variables z, z′, and we recall that η′ = η (t′), η̇′ = η̇ (t′), (t − t′) = T .

With the boundary conditions in (9.4.24), the expression in (9.4.30) be-
comes

G (xt;x′t′) =
( mω

2πi� sin ωT

)1/2

exp
i
�

∫ t

t′
dτ Lc (τ) . (9.4.31)

Upon solving the classical system in (9.4.23), (9.4.24), as done for the
linear potential, and substituting in (9.4.31) gives after some labor

G (xt;x′t′) =
( mω

2πi� sin ωT

)1/2

exp

(
i

mω

� sin ωT

{(
x2 + x′2)

2
cos ωT

− xx′ +
1

mω

∫ t

t′
dτ F (τ) [x sin ω (τ − t′) + x′ sin ω (t − τ)]

− 1
m2ω2

∫ t

t′
dτ F (τ) sin ω (t − τ)

∫ τ

t′
dτ ′ sin ω (τ ′ − t′) F (τ ′)

})
. (9.4.32)

The factor exp
(
i
∫ t

t′ dτ Lc (τ) /�

)
in (9.4.18), (9.4.31), with the clas-

sical action is a general property of quadratic interactions such as:[
mω2 (t) x2/2 − xF (t)

]
(see Problem 9.23).

9.5 The Law of Reflection and Reconciliation with the
Classical Law

In this section, we use the method of Green functions to carry out a sim-
plified, but illuminating, analytical treatment of the reflection4 of a particle
off a reflecting (infinite) plane surface which is taken to be the z = 0 plane. To
this end, we first determine the Green function in half-space z ≥ 0, denoted
by G0

+> (xt;x′t′), with boundary conditions

G0
+> (xt;x′t′)

∣∣∣
z=0

= 0 G0
+> (xt;x′t′)

∣∣∣
z′=0

= 0 (9.5.1)

where we have used the notation x = (x, y, z), and for z < 0, z′ < 0, a particle
is assumed not to be able to penetrate.
4 The law of reflection has received some special, rather non-technical, but never-

theless fascinating treatment by Feynman (1985). Here we are considering mas-
sive non-relativistic particles.
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Since the physics of the problem occurs in the region −∞ < x < ∞,
−∞ < y < ∞, 0 � z < ∞, we may develop Fourier transforms in the first
two variables and a Fourier-sine transform in the last variable to satisfy the
boundary conditions in (9.5.1). That is, we use a representation for the delta
distribution given by5

δ3 (x,x′) =
∫

R2

d2p

(2π�)2

∫ ∞

0

2
π�

dq exp
[
ip · (r − r′) /�

]
sin

qz

�
sin

qz′

�
(9.5.2)

where x = (r, z), with r, r′ parallel to the (x, y)-plane, to obtain for G0
+>

(see (9.1.12))

G0
+> (xt;x′t′) = i�

∫
R2

d2p

(2π�)2

∫ ∞

0

2
π�

dq

×
∫ ∞

−∞

dp0

2π�

eip·(r−r′)/�e−ip0T/�[
p0 −

(
p2

2m
+

q2

2m
− iε

)] sin
qz

�
sin

qz′

�
. (9.5.3)

where T = t − t′ > 0. The latter may be integrated over p0, to yield

G0
+> (xt;x′t′) =

∫
R2

d2p

(2π�)2

∫ ∞

0

2
π�

dq eip·(r−r′)/�e−i(p2+q2)T/2m�

× sin
qz

�
sin

qz′

�
(9.5.4)

leading finally to the closed form expression

G0
+> (xt;x′t′) =

( m

2πi�T

)3/2

exp
im |r − r′|2

2�T

×
[
exp

im (z − z′)2

2�T
− exp

im (z + z′)2

2�T

]
. (9.5.5)

The Green function G0
+> satisfies the completeness relation

∫
R2

d2r′′
∫ ∞

0

dz′′G0
+> (xt;x′′t′′) G0

+> (x′′t′′;x′t′) = G0
+> (xt;x′t′) (9.5.6)

where t > t′′ > t′.
As a simplified description, and as a working hypothesis, a particle which

reaches within the interval 0 � z � δ, for some given small δ > 0, providing
loosely speaking a “skin depth” for the reflecting body, above the z = 0 plane,
is considered to have reached the reflecting body.
5 We follow the treatment given in: Manoukian (1987c).
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Suppose that a particle initially emitted at time t′ = 0 from a point Q at
a height z′ � δ, above the z = 0 plane, reaches the reflecting body (location
within unknown), at some time, say, T ′. Given that this has occurred with
probability one, we determine partial contributions to the full conditional
amplitude of finding the reflected particle at any given z at time t.

To obtain the conditional amplitude of detecting a particle at some height
z, given that the particle has reached the reflecting body, we consider, in
the process, a Gaussian region, along the z-axis, about the point z = δ/2,
with standard deviation σ and integrate, for simplicity, symmetrically for
the amplitude along the z-axis. We thus obtain for the latter amplitude the
expression (T = t − T ′),

( m

2πi�T ′

)1/2 ( m

2πi�T

)1/2

I3 (9.5.7)

where, using the z-dependent part of the Green function in (9.5.5),

I3 =
∫ ∞

−∞

dZ√
2πσ

[
exp

im (z − Z)2

2�T
− exp

im (z + Z)2

2�T

]

×
[
exp

im (Z − z′)2

2�T ′ − exp
im (Z + z′)2

2�T ′

]
exp− (Z − δ/2)2

2σ2
. (9.5.8)

Here we have extended the Z-integration beyond the region 0 < Z < δ, which
is justified provided the integral

1√
2πσ

∫ 0

−∞
dZ exp− (Z − δ/2)2

2σ2
=

1√
2πσ

∫ ∞

δ

dZ exp− (Z − δ/2)2

2σ2

=
1√
2π

∫ ∞

δ/2σ

dZ exp−Z2/2 (9.5.9)

is small, where the first equality follows from symmetry. An upper bound to
the integral in (9.5.9) is given by (see Problem 9.11)

1√
2π

∫ ∞

a

dZ exp−Z2/2 �
√

2
π

exp−a2/2
a

, a = δ/2σ > 0. (9.5.10)

For δ/2σ = 10, for example, the upper bound in (9.5.10) is bounded above
by 16×10−24 in comparison to one for the normalized Gaussian distribution.

The integral in (9.5.8) may be explicitly carried out by using the integral
of three Gaussian functions
∫ ∞

−∞
dz

exp− (z1 − z)2 /2σ2
1√

2πσ1

exp− (z2 − z)2 /2σ2
2√

2πσ2

exp− (z3 − z)2 /2σ2
3√

2πσ3
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=
1

2π
√

A
exp

[
− B

2A

]
(9.5.11)

where

A = σ2
1σ2

2 + σ2
2σ2

3 + σ2
3σ

2
1 (9.5.12)

B = σ2
3 (z1 − z2)

2 + σ2
2 (z1 − z3)

2 + σ2
1 (z2 − z3)

2
. (9.5.13)

Hence upon normalizing the amplitude in (9.5.7), we obtain for the con-
ditional probability density of detecting the particle at z given that it had
reached the reflecting body, and was emitted initially from a point of z-

P3 =

2T ′
√

π

√
σ2

C exp
(
−σ2

C z2T ′2
)[

cosh
(

2TT ′σ2zz′

C

)
− cos

(
2(T+T ′)σ4zz′

�C/m

)]
[
exp

(
σ2z′2T 2

C

)
− exp

(
− (T+T ′)2σ6z′2

T ′2�2C/m2

)]
(9.5.14)

where

C = σ4 (T + T ′)2 + T 2T ′2 �
2

m2
. (9.5.15)

The probability density is non-zero for almost all finite z. However for a
large (classical) mass such that

m

T ′ σ2 � � (9.5.16)

with an order of magnitude reference set up by �, and a macroscopic limit

σ �
√

TT ′

T + T ′ min (z, z′) , (9.5.17)

P3 simplifies to

P3 � 1√
πσ

T ′

T + T ′ exp

[
− T ′2

σ2 (T + T ′)2

(
z − z′

T

T ′

)2
]

(9.5.18)

and is easily verified to be normalized over z. The density is highly peaked at
the classical value for z, for small σ2 satisfying (9.5.17), but with m sufficiently
large so that (9.5.16) is also satisfied.

Now given that a particle had reached the reflecting body and is detected
at a point (x, y, z), we determine partial contributions to the full conditional
amplitude that the particle’s detection point has (x, y)-coordinates x and y,
which was initially emitted from the point (x′, y′, z′).

Given that the above experiment has been realized, a partial contribution
to the full conditional amplitude will be obtained as coming from an inte-
gration over a Gaussian region in the (x, y) plane with standard deviations

coordinate the expression (  , z  δ) z′ ,z′ �
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σ1, σ2, respectively, about an arbitrary point (x̄, ȳ). In this case, using the
x, y dependent part of (9.5.5), and the product formula for three Gaussian
functions in (9.5.11), one easily obtains for the partial contribution to the
conditional amplitude the expression

i�
2πm

T + T ′
√

A1A2

eiα exp

[
− σ2

1

C1
(T + T ′)2

(
x′T + xT ′

T + T ′ − x̄

)2
]

× exp

[
− σ2

2

C2
(T + T ′)2

(
y′T + yT ′

T + T ′ − ȳ

)2
]

(9.5.19)

where

Aj =
[
σ2

j (T + T ′)
i�
m

− TT ′
�

2

m2

]
(9.5.20)

Cj =
(

σ4
j (T + T ′)2 + T 2T ′2 �

2

m2

)
(9.5.21)

and α, in the phase factor exp (iα) in (9.5.19), is given by

α =
�

2m
(T + T ′) TT ′

[
1
C1

(
x′T + xT ′

T + T ′ − x̄

)2

+
1
C2

(
y′T + yT ′

T + T ′ − ȳ

)2
]

(9.5.22)
The partial amplitude (9.5.19) is properly normalized. We obtain the full
amplitude by multiplying (9.5.19) by 2πσ1σ2 and taking the limits σ1 → ∞,
σ2 → ∞, giving unity, as expected, since one is then covering the entire
reflecting surface. We note that since the partial amplitudes in (9.5.19) do
not vanish for different pairs (x̄, ȳ), the reflections may occur from almost
anywhere on the surface.

Again for a large (classical) mass m such that

m
T + T ′

TT ′ σ2
j � � (9.5.23)

with an order of magnitude reference set up by �, the partial amplitudes
(9.5.19) become arbitrary small for all x̄, ȳ, that is, as we move all around
the reflecting surface, and for sufficiently small σj , unless

x̄ − x′T + xT ′

T + T ′ , ȳ − y′T + yT ′

T + T ′ (9.5.24)

are arbitrarily small. On the other hand, with the condition (9.5.16) satisfied
with (9.5.17) not violated, the probability density P3 in (9.5.18) becomes
small unless

z − z′
T

T ′ (9.5.25)
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is arbitrary small. The conditions (9.5.16), (9.5.23) may be satisfied for a
classical particle, for large m. For a sufficiently large m, which will be the
case for a classical particle as just mentioned, the standard deviations σ, σ1, σ2

may be taken to be quite small, giving a point-like impression for the reflection
region about (x̄, ȳ), without violating the bounds in (9.5.16), (9.5.23), thus
recovering the law of reflection, corresponding to the expressions in (9.5.24),
(9.5.25) being arbitrarily small.

9.6 Two-Dimensional Green Function in Polar
Coordinates: Application to the Aharonov-Bohm Effect

The two dimensional retarded free Green function is from (9.1.38) given
by

G0
+ (xt;x′t′) =

m

2πi�T
exp

im |x − x′|2

2�T
(9.6.1)

where T = t − t′ > 0. Working in polar coordinates, x = r (cos φ, sin φ), we
may rewrite the latter as

G0
+ (xt;x′t′) =

m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)
exp

(
mrr′ cos (φ − φ′)

i�T

)
.

(9.6.2)
We use the generating function of the modified Bessel function6 Ik (z)

exp
z

2

(
s +

1
s

)
=

∞∑
k=−∞

(s)k
Ik (z) (9.6.3)

where
I−k (z) = Ik (z) (9.6.4)

for integer k values.
The modified Bessel functions Iν (z), with ν not necessarily an integer,

satisfy the differential equation
[
z2 d2

dz2
+ z

d
dz

−
(
z2 + ν2

)]
Iν (z) = 0. (9.6.5)

Upon choosing s = exp i (φ − φ′), we may rewrite the Green function in
(9.6.2) as

G0
+ (xt;x′t′) =

∞∑
k=−∞

eik(φ−φ′)F+
0k (rt; r′t′) (9.6.6)

where (T > 0)

6 The classic reference on Bessel functions is: Watson (1966).
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F+
0k (rt; r′t′) =

m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)
I|k| (−iρ) (9.6.7)

ρ =
mrr′

�T
. (9.6.8)

The expansion (9.6.6) is just a Fourier series expansion in complex form,
where

δ (φ − φ′) =
∞∑

k=−∞

eik(φ−φ′)

2π
(9.6.9)

for the angular part of the Dirac delta distribution.
We may use the Poisson sum formula (see Problem 9.13),

∞∑
k=−∞

f (k) =
∞∑

k=−∞

∫ ∞

−∞
dλ ei2πkλf (λ) (9.6.10)

for a given function f (λ), to rewrite (9.6.6) as

G0
+ (xt;x′t′) =

∞∑
k=−∞

H0
k (xt;x′t′) (9.6.11)

where

H0
k (xt;x′t′) =

∫ ∞

−∞
dλ eiλ(φ−φ′+2πk)F+

0λ (rt; r′t′) (9.6.12)

and for T > 0, we have from (9.6.7)

F+
0λ (rt; r′t′) =

m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)
I|λ| (−iρ) (9.6.13)

providing an alternative representation of the two dimensional Green function
G0

+ in polar coordinates. Note that exp (ik (φ − φ′)) F+
0k and H0

k are not the
same functions (see (9.6.10)).

From (9.6.11), (9.6.12), we may infer that the amplitude for a particle to
go from (r′, φ′) to (r, φ) may be written as a sum of amplitudes, each specified
by an integer k. For k �= 0, k �= −1, an amplitude in question corresponds
to one to go from (r′, φ′) to (r, φ) by winding around the origin exactly |k|
times on the way to the point (r, φ). The sense of a rotation is specified by
the sign of k with a c.c.w. one for k ≥ 1 and a c.w., one for k � −2. For k = 0,
k = −1, we have a c.c.w., c.w. rotations, respectively, not making full circles
around the origin. A given integer is appropriately referred to as a winding
number.

The differential equation satisfied by G0
+ (xt;x′t′) including the factor

Θ (t − t′), in polar coordinates is given by
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[
i�

∂

∂t
+

�
2

2m

(
1
r

∂

∂r
r

∂

∂r
+

1
r2

∂2

∂φ2

)]
G0

+ (xt;x′t′)

= i�
δ (r − r′)

r
δ (φ − φ′) δ (t − t′) , (9.6.14)

where we have used the definition

δ2 (x − x′) =
δ (r − r′)

r
δ (φ − φ′) , (9.6.15)

implies from (9.6.6) and (9.6.9), (9.6.13) that
[
i�

∂

∂t
+

�
2

2m

(
1
r

∂

∂r
r

∂

∂r
− k2

r2

)]
F+

0k (rt; r′t′) =
i�
2π

δ (r − r′)
r

δ (t − t′) .

(9.6.16)
We now apply the polar coordinate decompositions carried out above to

study the celebrated Aharonov-Bohm effect.7
We consider an “infinitely” long, current carrying, solenoid of circular cross

section of arbitrary small radius r0 → 0, placed all along the z-axis, and, in
polar coordinates, we take for the vector potential outside the solenoid (see
Problem 9.14) the expression

A =
Φ

2πr
φ̂ (9.6.17)

where φ̂ is a unit vector in the direction of increasing of the angle φ; Φ is
the flux

Φ =
∮

B · dS (9.6.18)

and B is the magnetic field inside the solenoid, with the surface integral
carried over the cross sectional area of the solenoid which survives for r0 → 0.
The magnetic field outside the solenoid is zero, and one explicitly checks from
(9.6.17) that ∇ × A = 0 there.

Although the magnetic field is zero outside the solenoid, the line integral
over a closed path, through which passes the solenoid, is not zero, and is
given by ∮

A · dx = Φ (9.6.19)

with dx = φ̂ r dφ+ r̂dr, or as obtained directly from (9.6.18) by the applica-
tion of Stokes’s theorem. Because of this non-vanishing flux, the latter may
have an observable effect, outside the solenoid, even though the magnetic
field is zero there. This is the Aharonov-Bohm effect.

7 This was also studied in the path integral formalism in Gerry and Singh (1983);
Schulman (1971).
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To study this effect, we consider the Green function of a charged particle
of charge q in the presence of the vector potential A. It satisfies the two
dimensional differential equation


i�

∂

∂t
−

(
p − q

c
A
)2

2m


G+ (xt;x′t′) = i� δ2 (x − x′) δ (r − r′) (9.6.20)

where c is the speed of light.
For the vector potential in (9.6.17), and in polar coordinates, (9.6.20)

reads
[
i�

∂

∂t
+

�
2

2m

[(
1
r

∂

∂r
r

∂

∂r

)
+

1
r2

(
∂

∂φ
− iλ0

)2
]]

G+ (xt;x′t′)

= i�
δ (r − r′)

r
δ (φ − φ′) δ (t − t′) (9.6.21)

where
λ0 ≡ qΦ

2π�c
(9.6.22)

expressed in terms of the flux Φ.
To solve for G+, we carry out a Fourier series as in (9.6.6):

G+ (xt;x′t′) =
∞∑

k=−∞
eik(φ−φ′)F+

k (rt; r′t′) (9.6.23)

to obtain for F+
k (rt; r′t′) the differential equation

(
i�

∂

∂t
+

�
2

2m

[
1
r

∂

∂r
r

∂

∂r
− 1

r2
(k − λ0)

2

])
F+

k (rt; r′t′)

=
i�
2π

δ (r − r′)
r

δ (t − t′) . (9.6.24)

Upon making the ansatz

F+
k (rt; r′t′) =

m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)
F+ (k, z) (9.6.25)

where z = −iρ (see (9.6.8), (9.6.7)), we obtain from (9.6.24) the following
two equations (see Problem 9.15):

i� δ (T )
m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)
F+

k (k, z) =
i�
2π

δ (T )
δ (r − r′)

r
(9.6.26)
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and for T > 0 we have(
z2 d

dz2
+ z

d
dz

−
[
z2 + (k − λ0)

2
])

F+ (k, z) = 0. (9.6.27)

Equation (9.6.26) provides a boundary condition constraint as we will
see below, where we recall that z depends on T , while (9.6.27) provides the
solution F+ (k, z).

The solutions which satisfy (9.6.27) are I|ν| (z), I−|ν| (z), K|ν| (z), where
ν = (k − λ0). K|ν| (z) diverges for z → 0, i.e., for rr′/�T → 0 and hence at
the origin. For ν = n, an integer, I−|ν| (z) = I|ν| (z) (see (9.6.4)). For ν not
an integer I−|ν| (z) also diverges for z → 0. Hence we are left with I|ν| (z).
Therefore it remains to verify that the asymptotic behavior of I|ν| (z) for
T → 0 is consistent with (9.6.26).

With z = −iρ = −imrr′/�T , r > 0, r′ > 0, and hence ρ is real and
positive, the asymptotic behavior of I|ν| (z) for T → 0, is given by8

I|ν| (−iρ) −−−→
ρ→∞

√
i

2πρ

[
e−iρ +

1
i

ei(ρ−|ν|π)

]
(9.6.28)

or

I|ν| (−iρ) −−−→
ρ→∞

√
2
πρ

e−i|ν|π/2 cos
(

ρ −
(
|ν| + 1

2

)
π

2

)
. (9.6.29)

Multiplying the expression on the right-hand side of (9.6.28) by

m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)

for T → 0, we obtain for the resulting expression the behavior

1
2π

1√
rr′

[
δ (r − r′) +

1
i
δ (r + r′) e−|ν|πi

]
(9.6.30)

which is consistent with (9.6.26) since for r > 0, r′ > 0, the second term in
(9.6.30) is zero. For ρ → ∞, i.e., ρ large, but T �= 0, both terms in (9.6.28)
contribute since the factor (m/2πi�T ) in (9.6.25) would not be relevant in
this case.

For T > 0, the Green function in (9.6.23) may be then rewritten as

G+ (xt;x′t′) =
m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

) ∞∑
k=−∞

eik(φ−φ′)I|k−λ0| (−iρ) .

(9.6.31)
8 See Watson (1966), p. 203; Gradshteyn and Ryzhik (1965), p. 962. I|ν| (−iρ) is

related to J|ν| (ρ) with the latter having the familiar cosine behavior, divided by√
πρ/2, for ρ → ∞ (op. cit. p. 203, p. 952, respectively) (see Problem 9.16).
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From the definition of λ0 in (9.6.22) we note that if

qΦ
2π�c

= N (9.6.32)

is an integer, i.e., flux is quantized, then by making a change of the sum-
mation variable k → k + N , G+ (xt;x′t′), up to the overall phase factor
exp iN (φ − φ′), coincides with the free propagator in (9.6.6). Interesting sit-
uations arise when the flux is not quantized, that is when λ0 is not an integer.
In such cases, we may write

λ0 = N + δ0 (9.6.33)

where N is some integer,
0 < δ0 < 1 (9.6.34)

and (9.6.31) takes the form

G+ (xt;x′t′) =
m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)
eiN(φ−φ′)

×
∞∑

k=−∞
eik(φ−φ′)I|k−δ0| (−iρ) (9.6.35)

where now |k − δ0| > 0 for all k and I|k−δ0| (−iρ) vanishes for ρ → 0). That is,
each term in the summand in (9.6.35) has the built in vanishing property for
r → 0 and/or r′ → 0, i.e., at the origin, thus making the solenoid a forbidden
region, for the case in (9.6.33), (9.6.34), for each winding number.

By using the equality in (9.6.10) and making a change of the continuous
variable λ → λ + λ0, (9.6.31) may be rewritten in the form

G+ (xt;x′t′) =
m

2πi�T
exp

(
im

(
r2 + r′2

)
2�T

)
eiλ0(φ−φ′)

×
∞∑

k=−∞

(
eiqΦ/�c

)k
∫ ∞

−∞
dλ exp iλ (φ − φ′ + 2πk) I|λ| (−iρ) . (9.6.36)

This expression is to be compared with the free one in (9.6.11)–(9.6.13).
The term exp iλ0 (φ − φ′) is nothing but the exponential of iq/�c times the
integral ∫ (r,φ)

(r′,φ′)
A · dx = Φ(φ − φ′) /2π (9.6.37)

obtained by integrating along a direct line segment joining the end points.
This term is also obtained by a naive examination of (9.6.21). The first factor
in the summand in (9.6.36) is the kth power of the exponential of (iq/�c)
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times the flux Φ. That is, the amplitude for the particle to arrive at (r, φ) is,
up to the phase factor exp iλ0 (φ − φ′), the sum of amplitudes of arrival at
(r, φ) after an arbitrary number of rotations around the solenoid acquiring
additional phase factors (exp iqΦ/�c)k with the sense of a rotation specified by
the sign of k. For a quantized flux defined in (9.6.32), these phases disappear.
On the other hand for a non-quantized flux, as given in (9.6.33), (9.6.34), the
mere presence of such, in general, different phases may have an observable
effect even though the magnetic field is zero outside the solenoid! This is the
celebrated Aharonov-Bohm effect. The importance of the phase factor

exp
(

iq
�c

∮
A · dx

)
= exp

(
iq
�c

Φ
)

(9.6.38)

cannot be overemphasized. Such a phase factor is usually referred to as a
Wu-Yang9 phase.

Now we come back to our expression in (9.6.35). In practice, one is in-
terested, in general, to the limit mrr′/�T → ∞ involving large distances
r → ∞ and/or r′ → ∞, with T �= 0. In such cases we may use the asymp-
totic behavior given in (9.6.28) to write formally for ρ → ∞, with T �= 0 in
(9.6.35),

√
2πρ

i

∞∑
k=−∞

eik(φ−φ′)I|k−δ0| (−iρ)

−→ e−iρ
∞∑

k=−∞
eik(φ−φ′) +

1
i

eiρ
∞∑

k=−∞
eik(φ−φ′)e−i|k−δ0|π

= 2πe−iρδ (φ − φ′) +
1
i

eiρ
∞∑

k=−∞
eik(φ−φ′)e−i|k−δ0|π (9.6.39)

where ρ → ∞ means ρ large. Here we note that since we are considering the
case T �= 0, the second term on the right-hand side of (9.6.39) does not give
rise to a δ (r + r′) term to the asymptotic behavior of (9.6.35) and gives a
non-zero contribution.

As an application of (9.6.35), with the asymptotic expression in (9.6.39),
we consider the case in (9.6.33), (9.6.34) with N = 0, 0 < δ0 < 1. [The
situation with −1 < δ0 < 0 may be handled similarly.]

To the above end, suppose, for the purpose of a simple but concrete illus-
tration, one has an initial state ψ0 (x′) which is uniform in φ′:−∆ < φ′ < ∆
for some small angle ∆, and is zero otherwise, with |x′| = R a fixed large
radial distance from the solenoid with the latter located at the origin 0 (see
Figure 9.3). This will allow us to sum the series on the extreme right-hand
side of (9.6.39) explicitly. That is, equivalently one has an extended uniform
9 Wu and Yang (1975).
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source, rather than a point-like one, which initially emits particles. The source
is situated at a fixed large radial distance from the origin and is described by
an arc subtended by a small angle 2∆ symmetrically about the angle zero,
say, with 0 < ∆ � π/4.10

To determine the probability of particle detection, for T �= 0, we must then
integrate, in the process, over φ′, on the extreme right-hand side of (9.6.39),
from −∆ to ∆. That is, one is summing over all initial configurations and
hence equivalently adding up all amplitudes from every point on the source
and ending up at the observation point in question for some T > 0.

Thus the amplitude for a particle to be found at an angle φ, for |x| =
|x′| → ∞, is up to an unimportant multiplicative factor independent of δ0,
with φ not in the range (−∆,∆), is given from (9.6.39) to be

A =
∞∑

k=−∞
eikφ sin k∆

k∆
e−i|k−δ0|π (9.6.40)

We note that for φ not in (−∆,∆), the term in (9.6.39) involving δ (φ − φ′)

φ

φ′x
x′

0 SOURCE

2∆

Fig. 9.3. The solenoid is placed at the origin 0, and the extended source is
described by an arc subtended by a very small angle 2∆ symmetrically about
the angle zero. The detector and the source are at large radial distances
|x| = |x′| ≡ R → ∞ from the origin.

does not contribute. Also note that sin k∆/k∆ → 1 for k → 0.
Since 0 < δ0 < 1, (9.6.40) may be rewritten as

A = e−iδ0π
∞∑

k=0

e−ik(φ−π) sin k∆
k∆

+ eiδ0π
∞∑

k=1

eik(φ−π) sin k∆
k∆

(9.6.41)

where note that e−ikπ = eikπ.
To verify the Aharonov-Bohm effect, it is sufficient to look at the point

φ = π in (9.6.41) (see Figure 9.3.). To this end we use the sum11

10 It is worth noting that a non-zero integer part N of λ0 may contribute in specific
situations.

11 For the summation of such trigonometric functions see: Gradshteyn and Ryzhik
(1965), pp. 38–41.
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∞∑
k=1

sin k∆
k∆

=
π − ∆
2∆

(9.6.42)

to obtain from (9.6.41), at φ = π,

|A|2 =
( π

∆

)2

cos2 (δ0π) + sin2 (δ0π) (9.6.43)

giving the relative intensity, in the presence of the solenoid with 0 < δ0 < 1,
the result

cos2 (δ0π) +
(

∆
π

)2

sin2 (δ0π) < 1 (9.6.44)

where ∆/π is some small number. The mere fact that the intensity is altered
(reduced) is a statement of the existence of this effect.

It is remarkable that the expression for the amplitude A in (9.6.41) may
be summed exactly. To this end it is sufficient to consider π/2 < φ < 3π/2.

We use the identities

1 + 2
∞∑

k=1

sin k∆
k∆

cos k (φ − π) =




π/∆, π − ∆ < φ < π + ∆

0, π/2 < φ < π − ∆, π + ∆ < φ < 3π/2
(9.6.45)

∞∑
k=1

sin k∆
k∆

sin k (φ − π) =
1

4∆
ln
[
1 + cos (φ + ∆)
1 + cos (φ − ∆)

]
, π/2 < φ < 3π/2

(9.6.46)
being, respectively, even and odd functions of (φ − π), to obtain from (9.6.41):

|A|2 =
(

π

∆
cos (δ0π) +

sin (δ0π)
2∆

ln
[
1 + cos (φ − ∆)
1 + cos (φ + ∆)

])2

+ sin2 (δ0π)

(9.6.47)
for π − ∆ < φ < π + ∆, which reduces to (9.6.43) for φ = π, and

|A|2 = sin2 (δ0π)

[
1 +

1
4∆2

(
ln
[
1 + cos (φ − ∆)
1 + cos (φ + ∆)

])2
]

(9.6.48)

for π/2 < φ < π − ∆, π + ∆ < φ < 3π/2. It is interesting to see that
(9.6.48) gives a non-vanishing contribution, in the regions thus defined (see
Figure 9.3), due to the presence of the solenoid with 0 < δ0 < 1.

The densities in (9.6.47), (9.6.48) are plotted in Figure 9.4 for δ0 = +1/4,
∆ = π/100. With a uniform initial wavefunction with sharp cut-offs at φ′ =
±∆ adopted, these densities become arbitrarily large in the limits φ − π →
±∆, in their respective intervals, which is the price one pays with an idealistic
initial wavefunction (see also Problem 9.18). In the region π−∆ < φ < π+∆,
just around the point φ = π (see also (9.6.44)), the density in question is
reduced from one over the solenoid-free case (equivalently for δ0 → 0), while
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Fig. 9.4. Plots of the densities |A|2 in (9.6.47), (9.6.48) for δ0 = +1/4,
∆ = π/100 in the regions π − ∆ < φ < π + ∆, π/2 < φ < π − ∆,
π+∆ < φ < 3π/2, respectively, in the graphs (a), (b), (c), with φ expressed
in radians.

outside this interval the intensity, as mentioned above, is non-zero but rapidly
goes to zero to the right and left of π+∆, π−∆, respectively. The Aharonov-
Bohm effect (with δ0 �= 0) is clearly seen. A similar analysis may be carried
out for −1 < δ < 0.

We note that the illustration of the Aharonov-Bohm effect given above is
based on the scattering of the charged particle off the origin due to the non-
zero flux only, i.e., is purely of electromagnetic origin in a quantum setting. In
Problem 9.17, the reader is asked to extend this analysis, to the more difficult
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case, when a particle may be scattered off the origin (by the solenoid), even
for δ0 → 0, by the application of appropriate boundary conditions at the
origin, and study how this scattering is modified by the activation of the
solenoid, i.e., for δ0 > 0, as an illustration of the Aharonov-Bohm effect.

9.7 General Properties of the Full Green Functions and
Applications

9.7.1 A Matrix Notation

We use the following convenient matrix notations as

〈x|G±(T )|x′〉 = G±(x T ;x′0) (9.7.1)

〈x|1|x′〉 = δν(x − x′) (9.7.2)

with G±(T ) satisfying the differential equation
[
i�

∂

∂T
− H

]
G±(T ) = ±i�1 δ(T ). (9.7.3)

As before, the Green functions G± considered are those with built in bound-
ary conditions as specified by the ±iε prescription adopted and spelled out
below. This equation may be integrated directly but it is more instructive to
proceed as follows. We introduce the Fourier transform

G±(T ) = ±i�

∞∫
−∞

dp0

2π�
e−ip0T/�G±(p0) (9.7.4)

where [
p0 − H

]
G±(p0) = 1. (9.7.5)

Upon introducing the resolution of the identity (see (1.8.18), (1.8.14))

1 =

∞∫
−∞

dλ δ(λ − H) (9.7.6)

we have from (9.7.5)

G±(p0) =

∞∫
−∞

1
(p0 − λ ± iε)

dλ δ(λ − H), (9.7.7)

G±(T ) = ±i�

∞∫
−∞

dp0

2π�

∞∫
−∞

dλ δ(λ − H)
(p0 − λ ± iε)

e−ip0T/�. (9.7.8)
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It is easily shown that the denominator in (9.7.8) (see Problem 9.20) may
be written as

1
(p0 − λ ± iε)

= ∓i
∫ ∞

0

dα exp
[
±i(p0 − λ ± iε)α

]
(9.7.9)

from which

G±(T ) = �

∞∫
−∞

dλ δ(λ − H)

∞∫
0

dα exp [∓iα(λ ∓ iε)]

×
∞∫

−∞

dp0

2π�
exp

[
±ip0(�α ∓ T )/�

]

=

∞∫
−∞

dλ δ(λ − H) exp [−iT (λ ∓ iε)/�]
∫ ∞

0

dα δ

(
α ∓ T

�

)
. (9.7.10)

Since α is positive, G+(T ) is zero for T < 0, and G−(T ) is zero for T > 0.
That is, upon integration over α, (9.7.10) is equivalent to

G±(T ) = Θ(±T )

∞∫
−∞

dλ δ(λ − H) exp [−iT (λ ∓ iε)/�] (9.7.11)

or
G±(T ) = Θ(±T ) exp [−iTH/�] exp (−ε|T |) . (9.7.12)

For ε → +0, it is easily verified that G±(T ) satisfy (9.7.3).
We may rewrite (9.7.11) as

G±(T ) = Θ(±T ) G(T ) (9.7.13)

where

G(T ) =

∞∫
−∞

dλ δ(λ − H) exp(−iTλ/�) (9.7.14)

for ε → +0.
From (9.7.1), we also have

G±(x T ;x′ 0) = Θ(±T ) G(x T ;x′ 0) (9.7.15)

and as in (9.5),

G(x T ;x′ 0) =

∞∫
−∞

dλ 〈x|δ(λ − H)|x′〉 exp(−iTλ/�). (9.7.16)

Complex conjugation gives the relation

(G(x T ;x′ 0))∗ = G(x′,−T ;x, 0). (9.7.17)
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9.7.2 Applications

Let
T/� = τ (9.7.18)

in (9.7.16) and consider the integral

I(x, x′;ξ) =
1

2πi

∞∫
−∞

dτ

τ − iε
G(x �τ ;x′ 0)eiξτ , ε → +0 (9.7.19)

for real ξ.
From (9.7.16), the latter is given by

I(x, x′; ξ) =

∞∫
−∞

dλ 〈x |δ(λ − H)|x′〉 1
2πi

∞∫
−∞

dτ

τ − iε
ei(ξ−λ)τ . (9.7.20)

For λ > ξ, we may close the contour of the integral in the complex τ -plane
from below and obtain zero from the residue theorem since ε → +0. On the
other hand, for λ < ξ, we may close the τ -contour from above to obtain, from
the residue theorem, that the τ -integral multiplied by (1/2πi), gives one. The
latter just provides the definition of the step function Θ(ξ − λ). That is,

I(x, x′; ξ) =

∞∫
−∞

dλ 〈x |δ(λ − H)|x′〉Θ(ξ − λ)

=

ξ∫
−∞

dλ 〈x |δ(λ − H)|x′〉

= 〈x |PH(ξ)|x′〉 (9.7.21)

where in writing the last equality we have used (1.8.14).
Suppose that for λ < ξ, we are dealing with the discrete spectrum of

the Hamiltonian in question, and ξ is not in its spectrum, then from (4.5.3),
(9.7.21) for x = x′, we have the useful relationship

1
2πi

∞∫
−∞

dτ

τ − iε
G(x, �τ ;x, 0)eiξτ =

∑
λ,ν(λ)

∣∣ψλ,ν(λ)(x)
∣∣2 Θ(ξ − λ)

≡ n(x; ξ) (9.7.22)

defining a density of states, where

ψλ,ν(λ)(x) = 〈x |λ, ν(λ)〉 (9.7.23)
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are the eigenstates in the x-description, and ν(λ), not to confuse it with the
dimensionality of space ν, specifies the degenerate states corresponding to
the eigenvalue λ.

Upon integrating (9.7.21) over x, for ξ not in the spectrum of H, we
obtain

∫
dνx

1
2πi

∞∫
−∞

dτ

τ − iε
G(x, �τ ;x, 0)eiξτ =

∑
λ,ν(λ)

Θ(ξ − λ)

≡ N(H; ξ). (9.7.24)

That is, the operation defined on the left-hand side of (9.7.24) gives the
number N(H, ξ) of eigenvalues of H, taking into account degeneracy, less
than ξ. The importance of (9.7.24) cannot be overemphasized.

To find the number of eigenvalues, taking into account degeneracy, falling
between two points ξ1, ξ2, ξ2 > ξ1, with these two points not in the spectrum
of H, may be obtained from (9.7.24) to be given by

∫
dνx

1
2πi

∞∫
−∞

dτ

τ − iε
G(x, �τ ;x, 0)

(
eiξ2τ − eiξ1τ

)
. (9.7.25)

From (4.5.6), (9.7.19), (9.7.21),

1
2πi

∞∫
−∞

dτ

τ − iε
G(x, �τ ;x′, 0)eiξτ =

∑
λ,ν(λ)

ψλ,ν(λ)(x)ψ∗
λ,ν(λ)(x

′)Θ(ξ − λ)

≡ n(x,x′; ξ) (9.7.26)

defines a non-local density of states. This expression will be used in Chap-
ter 13 dealing with multi-electron atoms. The following property obtained by
complex conjugation is to be noted

(n(x,x′; ξ))∗ = n(x′,x; ξ) (9.7.27)

as obtained, for example, from the expression on the left-hand side of (9.7.26)
and (9.7.17).

From (9.7.16) (
i�

∂

∂T
− H

)
G(xT ;x′ 0) = 0 (9.7.28)

and with

H =
p2

2µ
+ V (x) (9.7.29)

we have from (9.7.16)
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[
i

∂

∂τ
− V (x)

]
G(x, �τ ;x′, 0) =

∞∫
−α

dλ [λ − V (x)] 〈x |δ(λ − H)|x′〉 e−iτλ

=

∞∫
−α

dλ 〈x |(H − V (x))δ(λ − H)|x′〉 e−iτλ.

(9.7.30)

From (1.8.14), (4.5.14), (4.5.15), we may use (9.7.30) to infer that

∫
dνx

1
2πi

∞∫
−∞

dτ

τ − iε
eiξτ

[
i

∂

∂τ
− V

]
G(x, �τ ;x′, 0)

∣∣∣∣
x′=x

=
∑

λ,ν(λ)

〈
λ, ν(λ)

∣∣∣∣p
2

2µ

∣∣∣∣λ, ν(λ)
〉

Θ(ξ − λ). (9.7.31)

This expression will be also useful in studying multi-electron atoms in §13.1
(see also (4.5.15)).

A similar expression to (9.7.31) as follows from (9.7.28) is

∫
dνx

1
2πi

∞∫
−∞

dτ

τ − iε
eiξτ

[
i

∂

∂τ
G(x, �τ ;x, 0)

]
=

∑
λ,ν(λ)

λ Θ(ξ − λ) (9.7.32)

giving the sum of eigenvalues of H less than ξ.
Before considering specific cases, we note that, if λ0 is an eigenvalue of

H and ξ2, ξ1, not in its spectrum, are such that ξ1 < λ0 < ξ2 and that there
are no other eigenvalues between ξ1 and ξ2 then (9.7.25) gives the degree of
degeneracy of λ0. In detail, from (9.7.24), (9.7.25), this may be written as

∫
dνx

1
2πi

∞∫
−∞

dτ

τ − iε
G(x, �τ ;x, 0)(eiξ2τ − eiξ1τ ) =

∑
ν(λ0)

1. (9.7.33)

An elementary, though rather formal application of (9.7.22), since the
latter was written for a discrete spectrum, is to the free electron gas. In 3D
we have[

i
∂

∂τ
− p2

2m

]
G±σ,σ′(x, �τ ;x′, 0) = iδσ,σ′δ(τ)δ3(x − x′) (9.7.34)

where σ, σ′ are spin indices. From (9.7.15), (9.7.34), we have

Gσ,σ′(x, �τ ;x′, 0) = δσ,σ′

∫
d3p

(2π�)3
eip·(x−x′)/� e−ip2τ/2m. (9.7.35)
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Upon setting
G(x, �τ ;x, 0) =

∑
σ

Gσ,σ(x, �τ ;x, 0) (9.7.36)

we have from (9.7.22), (9.7.35) for the density of states

n(x; ξ) = 2
∫

d3p
(2π�)3

1
2πi

∫ ∞

−∞

dτ

τ − iε
ei(ξ−p2/2m)τ

= 2
∫

d3p
(2π�)3

Θ
(

ξ − p2

2m

)
(9.7.37)

leading to the familiar expression

n(x; ξ) =
1

3π2

(
2mξ

�2

)3/2

. (9.7.38)

As an illustration of the formula (9.7.25), consider the Green function in
(9.2.23) for the one-dimensional harmonic oscillator. Then from (9.2.23)

G(x T ;x 0) =
( mω

2πi� sin ωT

)1/2

exp
(
− imωx2

�
tan

(
ωT

2

))
(9.7.39)

and ∫ ∞

−∞
dx G(x T ;x 0) =

e−iωT/2

1 − e−iωT
. (9.7.40)

Hence∫ ∞

−∞
dx

1
2πi

∫ ∞

−∞

dτ

τ − iε
G(x �τ ;x 0)

(
eiξ2τ − eiξ1τ

)

=
1

2πi

∫ ∞

−∞

dτ

τ − iε
e−i�ωτ/2

(1 − e−i�ωτ/2)
(
eiξ2τ − eiξ1τ

)
(9.7.41)

which upon using the expansion

e−i�ωτ/2

1 − e−i�ωτ/2
=

∞∑
n=0

e−i�ω(n+1/2)τ (9.7.42)

and the integral representation of the step function

Θ(ξ) =
1

2πi

∫ ∞

−∞

dτ

τ − iε
eiξτ (9.7.43)

we obtain for (9.7.41), the explicit expression for the number of eigenvalues
between ξ1 and ξ2:

∞∑
n=0

[
Θ(ξ2 − �ω(n + 1/2)) − Θ(ξ1 − �ω(n + 1/2))

]
. (9.7.44)

Other properties of the Green functions will be considered in other chapters
as well.
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9.7.3 An Integral Expression for the (Homogeneous) Green
Function

From (9.7.16), (2.4.1), we may write

G(x T ;x′0) =
∫

dνp
(2π�)ν

〈p |x′〉
∫ ∞

−∞
dλ 〈x |δ(λ − H)|p〉 exp(−iTλ/�)

(9.7.45)
in ν dimensions, which satisfies the homogeneous equation (9.7.28).

Using (2.4.8) and defining

F (p,x, T ) = e−ip·x/� eip2T/2m�

∫ ∞

−∞
dλ 〈x |δ(λ − H)|p〉 e−iTλ/� (9.7.46)

with the latter being independent of x′, we rewrite (9.7.45) as

G(x �τ ;x′0) =
∫

dνp
(2π�)ν

exp i
[
p · (x − x′)

�
− p2τ/2m

]
F (p,x, �τ)

≡ f(x − x′,x, �τ). (9.7.47)

We introduce the variables

ζ ≡ x − x′ (9.7.48)

η = x (9.7.49)

noting that
∂

∂xi
=

∂

∂ζi
+

∂

∂ηi
(9.7.50)

∇2
x = ∇2

ζ + ∇2
η + 2∇ζ · ∇η (9.7.51)

and rewriting (T = � τ)

G(x �τ ;x′0) =
∫

dνp
(2π�)ν

ei[p·ζ/�−p2τ/2m]F (p,η, �τ) (9.7.52)

we have from (9.7.28), (9.7.29)

0 =
∫

dνp′

(2π�)ν
ei[p′·ζ/�−p′2τ/2m]

×
{

i
∂

∂τ
+

i�
µ

p′ · ∇η +
�

2

2µ
∇2

η − V (η)
}

F (p′,η, � τ). (9.7.53)

Upon multiplying the latter by exp(−ip · ζ/�) and integrating over ζ (or
multiplying by exp(ip · x′/�) and integrating over x′ ), we obtain
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{

i
∂

∂τ
+

i�
µ

p · ∇η +
�

2

2µ
∇2

η − V (η)
}

F (p,η, �τ) = 0. (9.7.54)

It is more convenient to have an exponential representation

F (p,η, �τ) = exp
(
− iU(p,η, τ, �)

)
(9.7.55)

and rewrite (9.7.47), (9.7.52) as

G(x � τ ;x′0) =
∫

dνp
(2π�)ν

exp i
[
p · ζ

�
− p2

2µ
τ

]
exp

(
− iU(p,η, τ, �)

)
(9.7.56)

with the initial condition

U(p,η, τ, �)
∣∣
τ=0

= 0 (9.7.57)

so that
G(x � τ ;x′0) −−−→

τ→0
δν(x − x′). (9.7.58)

From (9.7.54), (9.7.55), the following differential equation for U(p,η, τ, �)
is obtained[

∂

∂τ
U +

�p
µ

· ∇ηU − i�2

2µ
∇2

ηU − �
2

2µ
∇ηU · ∇ηU − V

]
= 0 (9.7.59)

with U satisfying the initial condition in (9.7.57).
In (9.7.54)–(9.7.59), we have used the parameter τ needed in the applica-

tions in (9.7.22), (9.7.24)–(9.7.26), (9.7.31)–(9.7.33). Some of these applica-
tions will be considered in the next section as well as, later on, in Chapter 13
in the study of multi-electron atoms.

9.8 The Thomas-Fermi Approximation and Deviations
Thereof

In view of applications of the formulae (9.7.22), (9.7.24)–(9.7.26), (9.7.31)–
(9.7.33), written in terms of integrals in the integration variable τ , we wish
to investigate the expressions in (9.7.56)–(9.7.59) for G (x �τ ;x′0) on its de-
pendence on � for a given τ .12

To the above end, to the leading order in �, we have from (9.7.59),

∂

∂τ
U − V � 0 (9.8.1)

or
12 Note that in this section, G(x �τ ;x′0) is expressed in terms of the parameter of

interest τ and not T .
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U � U0 ≡ V τ (9.8.2)

(see (9.7.57)), leading from (9.7.56) to

G (x �τ ;x′0) =
∫

dνp
(2π�)ν exp i

[
p · ζ

�
− p2

2µ
τ

]
exp (−iV τ)

=
( µ

2πi�2τ

)ν/2

exp i

(
µ |x − x′|2

2�2τ
− V (x) τ

)
(9.8.3)

which will be referred to as the Thomas-Fermi semi-classical approximation.
Upon substituting (9.8.3) for x = x′ in (9.7.22), for example, we obtain

n (x; ξ) =
∫

dνp
(2π�)ν Θ

(
ξ − V (x) − p2

2µ

)
(9.8.4)

which for ν = 3, gives

n (x; ξ) =
1

6π2

(
2µ (ξ − V (x))

�2

)3/2

. (9.8.5)

This semi-classical solution is usually referred to as the Thomas-Fermi ap-
proximation.

Several applications of the expression in (9.8.3) will be given in our study
of multi-electron atoms in Chapter 13.

To find the deviation of G (x �τ ;x′0), for example, from the Thomas-
Fermi semi-classical approximation, in view of the applications mentioned
above, we write for U satisfying (9.7.57), to order �

2 and a given τ ,

U = U0 + � δU1 + �
2δU2 (9.8.6)

thus obtaining from (9.7.59),

∂

∂τ
δU1 +

p
µ

· ∇U0 = 0 (9.8.7)

written in terms of the variable x (see (9.8.2)). That is,

δU1 = − τ2

2µ
p · ∇V (x) . (9.8.8)

For δU2 we get

∂

∂τ
δU2 =

i
2µ

τ∇2V +
τ2

2µ
(∇V )2 +

τ2

2µ2
(p · ∇)2 V (9.8.9)

giving
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δU2 =
i

4µ
τ2∇2V +

τ3

6µ
(∇V )2 +

τ3

6µ2
(p · ∇)2 V. (9.8.10)

We set

Ajk =
iτ
2µ

δjk +
iτ3

6µ2
�

2∇j∇kV (9.8.11)

Bj =
−i�
2µ

τ2∇jV (9.8.12)

Cj = −
(
A−1

)jk Bk

2
(9.8.13)

and note that

det A =
(

iτ
2µ

)ν

+
(

iτ
2µ

)ν−1 iτ3

6µ2
�

2∇2V (9.8.14)

and
1√

det A
=
(

2µ

iτ

)ν/2 [
1 − τ2

6µ
�

2∇2V

]
(9.8.15)

to order �
2, for a given τ .

From (9.8.6), (9.8.2), (9.8.8), (9.8.10)–(9.8.12), we may write for
G (x �τ ;x0) in (9.7.56)

exp
(
−i

[
V (x) τ +

i�2

4µ
τ2∇2V +

�
2

6µ
τ3 (∇V )2

])

×
∫

dνp
(2π�)ν exp−

(
pjAjkpk + Bjpj

)
(9.8.16)

with a summation over repeated indices understood.
Upon changing the integration variables in (9.8.16) as

pj → pj + Cj (9.8.17)

we have

pjAjkpk + Bjpj → pjAjkpk +
(
BjCj + CjAjkCk

)
(9.8.18)

where

BjCj + CjAjkCk =
1
2

BjCj

� 1
4

�τ2

2µ
∇jV

(
2µ

iτ
δjk

)
�τ2

2µ
∇kV
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=
−i�2τ3

8µ
(∇V )2 (9.8.19)

to order �
2 for a given τ .

Finally we use the integral
∫

dνp exp
(
−pjAjkpk

)
=

(π)ν/2

√
det A

(9.8.20)

to obtain from (9.8.16), (9.8.18), (9.8.19), (9.8.15)

G (x �τ ;x 0) �
( µ

2πi�2τ

)ν/2

e−iV (x)τ

[
1 +

�
2τ2

12µ
∇2V − i�2τ3

24µ
(∇V )2

]
.

(9.8.21)
The latter may be also rewritten as

G (x �τ ;x 0) �
[
1 +

�
2τ2

12µ

(
∇2V

)
− i�2τ3

24µ
(∇V )2

]

×
∫

dνp
(2π�)ν exp−i

[
p2/2µ + V (x)

]
τ (9.8.22)

giving the following deviation from the Thomas-Fermi semi-classical approx-
imation

δG (x� τ ;x 0) =
�

2τ2

12µ

[(
∇2V

)
− iτ

2
(∇V )2

]

×
∫

dνp
(2π�)ν exp−i

[
p2/2µ + V (x)

]
τ (9.8.23)

for a given τ .
The above expression will find an important application to multi-electron

atoms when, in the process, we carry out the τ -integral in (9.7.32).

9.9 The Coulomb Green Function: The Full Spectrum

9.9.1 An Integral Equation

The Green functions G± (xt;x′t′) for a given potential V (x) satisfies the
equation

[
i�

∂

∂t
+

�
2

2µ
∇2 − V (x)

]
G± (xt;x′t′) = ±i� δ3 (x − x′) δ (t − t′) (9.9.1)

in 3D, and their free counterparts (§9.1), with corresponding boundary con-
ditions, satisfy
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[
i�

∂

∂t
+

�
2

2µ
∇2

]
G0

± (xt;x′t′) = ±i� δ3 (x − x′) δ (t − t′) . (9.9.2)

The solution of (9.9.1) may be written as

G± (xt;x′t′) = G0
± (xt;x′t′)

∓ i
�

∫
d3x′′dt′′G0

± (xt;x′′t′′) V (x′′)G± (x′′t′′;x′t′) (9.9.3)

as is easily verified. We introduce the Fourier transforms

G± (xt;x′t′) = ±i�
∫ ∞

−∞

dp0

2π�

∫
d3p d3p′

(2π�)3
G±

(
p,p′;p0

)

× eip·x/�e−ip′·x′/�e−ip0(t−t′)/� (9.9.4)

G0
± (xt;x′t′) = ±i�

∫ ∞

−∞

dp0

2π�

∫
d3p d3p′

(2π�)3
δ3 (p − p′)(

p0 − p2

2µ
± iε

)

× eip·x/�e−ip′·x′/�e−ip0(t−t′)/�. (9.9.5)

For the potential in question

V (x) =
λ

r
, r = |x| (9.9.6)

1
r

= 4π�
2

∫
d3p

(2π�)3
eip·x/�

p2
(9.9.7)

we then obtain

G±
(
p,p′; p0

)
=

δ3 (p − p′)(
p0 − p2

2µ
± iε

) +
4πλ

� (2π)3

∫
d3p′′

(p − p′′)2
G±

(
p′′,p′; p0

)
(

p0 − p2

2µ
± iε

) .

(9.9.8)
It is convenient at this stage to set

p0 = − p2
0

2µ
. (9.9.9)

This procedure, as we will see later, applies to the continuous spectrum
as well.13 For simplicity of the notation we write G±

(
p,p′; p0

)
simply as

G (p,p′) up to (9.9.29).
13 We use the Schwinger representation of the Coulomb Green function: Schwinger

(1964).



592 9 Green Functions

We introduce the unit vectors in 4D-Euclidean space

η =
(

p2
0 − p2

p2
0 + p2

,
2p0p

p2
0 + p2

)
(9.9.10)

η2 = 1 (9.9.11)

with the latter equality easily verified.
Let

cos χ =
p2
0 − p2

p2
0 + p2

, sinχ =
2p0 |p|
p2
0 + p2

. (9.9.12)

Upon differentiation of cos χ, as a function of the variable |p| = p, we obtain

sin χ dχ =
4pp2

0

(p2
0 + p2)2

dp (9.9.13)

which upon multiplying by sin χ sin θ dθ dφ, leads to

d3p =
(

p2
0 + p2

2p0

)3

dΩ (9.9.14)

where dΩ is the solid angle element in 4D (see Appendix III, (III.8)),

dΩ = sin θ dθ dφ sin2 χ dχ (9.9.15)

where 0 � χ � π.
From the property of the Dirac deltas

∫
d3p′δ3 (p − p′) = 1 =

∫
dΩ′δ (Ω − Ω′) (9.9.16)

we may infer from (9.9.14), that

δ3 (p − p′) =
(

2p0

p2 + p2
0

)3

δ (Ω − Ω′) . (9.9.17)

In detail,

δ (Ω − Ω′) =
δ (θ − θ′) δ (φ − φ′) δ (χ − χ′)

sin θ sin2 χ
. (9.9.18)

If we set

η′ =
(

p2
0 − p′2

p2
0 + p′2

,
2p0p′

p2
0 + p′2

)
(9.9.19)

one readily obtains

1
(p − p′)2

=
4p2

0

(p2
0 + p2) (p2

0 + p′2)
1

(η − η′)2
. (9.9.20)



9.9 The Coulomb Green Function: The Full Spectrum 593

The properties in (9.9.14), (9.9.17), (9.9.20) simplify the form of the in-
tegral equation in (9.9.8) and the solution will be then read off from the
analysis provided on the Poisson equation in 4D in Appendix III.

To the above end, set

Λ (Ω,Ω′) = −
(
p2
0 + p2

)2
G (p,p′)

(
p2
0 + p′2

)2
16µp3

0

(9.9.21)

then we see upon multiplying (9.9.8) by

−
(
p2
0 + p2

)2 (
p2
0 + p′2

)2
16µp3

0

and using (9.9.14), (9.9.17), (9.9.20), the integral equation (9.9.8) becomes
replaced by

Λ (Ω,Ω′) = δ (Ω − Ω′) − λµ

2π2�p0

∫
dΩ′′

(η − η′′)2
Λ (Ω′′,Ω′) . (9.9.22)

The above may be also rewritten as

∫
dΩ′′

[
δ (Ω − Ω′′) +

λµ

2π2�p0

1
(η − η′′)2

]
Λ (Ω′′,Ω′) = δ (Ω − Ω′) . (9.9.23)

On the other hand, from (III.3.11), (III.3.12) and (III.3.2) in Appendix III
with η2 = 1 = η′′2:

δ (Ω − Ω′′) =
∞∑

n=0

(n + 1)
2π2

Un (η · η′′) (9.9.24)

1
(η − η′′)2

=
∞∑

n=0

Un (η · η′′) (9.9.25)

where the Un are Chebyshev’s polynomials of type II (see Appendix III),
which formally lead for (9.9.23) the expression

∫
dΩ′′

∞∑
n=0

[
(n + 1)

2π2
+

λµ

2π2�p0

]
Un (η · η′′) Λ (Ω′′,Ω′)

=
∞∑

n=0

(n + 1)
2π2

Un (η · η′) . (9.9.26)

Now we use the orthogonality/completeness relation over the solid angle dΩ′′

in (III.4.1) of Theorem IV.1 in Appendix III, to infer from (9.9.26) that



594 9 Green Functions

Λ (Ω,Ω′) =
1

2π2

∞∑
n=0

(n + 1)2(
n + 1 +

λµ

p0�

) Un (η · η′) (9.9.27)

which may be rewritten as

Λ (Ω,Ω′) =
1

2π2

∞∑
n=1

n2(
n +

λµ

p0�

) Un−1 (η · η′) . (9.9.28)

9.9.2 The Negative Spectrum p0 < 0, λ < 0

From (9.9.21), we then have for the Green function

G (p,p′) = − 16µp3
0

(p2
0 + p2)2 (p2

0 + p′2)2
1

2π2

∞∑
n=1

n2(
n +

λµ

p0�

) Un−1 (η · η′) .

(9.9.29)
In terms of the variable p0 in (9.9.9), with p0 → p0 ± iε, (9.9.29) reads

G±
(
p,p′; p0

)
=

1
µ2π2

(
p0
)2

(
p0 − p2

2µ
± iε

)2 (
p0 − p′2

2µ
± iε

)2

×
∞∑

n=1

nUn−1 (η · η′)(
p0 +

µλ2

2�2n2
± iε

)
(√

−2µp0 +
|λ|µ
n�

)
. (9.9.30)

For p′ = p, η = η′, Un−1 (1) = n (see (III.2.10)) in Appendix III, and for
(λ < 0)

p0 → − µλ2

2�2n2
(9.9.31)

for a given fixed n, (9.9.30) leads to

(
p0 +

µλ2

2�2n2

)
G±

(
p,p; p0

)
→ n2




8 |λ|5 µ5

n5�5π2

(
p2 +

λ2µ2

n2�2

)4


 (9.9.32)

giving the degree of degeneracy n2 for the eigenvalues in (9.9.31), and the
normalized momentum probability density in the state n:

|ψn (p)|2 =
8 |λ|5 µ5

n5�5π2

(
p2 +

λ2µ2

n2�2

)4 . (9.9.33)
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The normalizability of the latter follows from the value of the integral
∫

d3p

(p2 + a2)4
=

π2

8 |a|5
(9.9.34)

where the integration measure here is d3p. [Relative to the measure
d3p/ (2π�)3, one must multiply (9.9.33) by (2π�)3 regarding normalizabil-
ity.]

The wavefunctions in the momentum description may be also obtained
from (9.9.30) for p �= p′. To this end, one may expand Un−1 (η · η′) in terms
of Gegenbauer polynomials14 defined by

C�+1
n−�−1 (x) =

1
2� �!

(
d
dx

)�

Un−1 (x) (9.9.35)

in the form

Un−1 (η · η′) =
n−1∑
�=0

F� n (χ) F� n (χ′) P� (cos α) (9.9.36)

where

F� n (χ) = 2�

√
(n − � − 1)!

(n + �)!
�!
√

2� + 1 sin� χ C�+1
n−�−1 (cos χ) , (9.9.37)

with the P� denoting the Legendre polynomials, and

cos α = cos θ cos θ′ + sin θ sin θ′ cos (φ − φ′) . (9.9.38)

Upon using the expansion (see (5.3.67)),

P� (cos α) =
4π

(2� + 1)

�∑
m=−�

Y� m (θ, φ) Y ∗
� m (θ′, φ′) (9.9.39)

and setting

a =
|λ|µ
n�

(9.9.40)

it is not difficult to show from (9.9.30), at the pole in (9.9.31), that the
wavefunction, up to a phase factor, in the momentum description is given by

ψn�m (p) =

√
32a5

πn

22��! (ap)�

(a2 + p2)2+�

√
(n − � − 1)!

(n + �)!
C�+1

n−�−1

(
a2 − p2

a2 + p2

)
Y�m (θ, φ)

(9.9.41)

14 See, for example, Gradshteyn and Ryzhik (1965), pp. 1029–1031.
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where we have finally used the definitions in (9.9.12). The ψn � m (p), as
following from (9.9.30), are automatically normalized with respect to the
measure d3p.

It is easily verified from (9.9.36), (9.9.37), (9.9.41) that

n−1∑
�=0

�∑
m=−�

|ψn�m (p)|2 = |ψn (p)|2 (9.9.42)

thus coinciding with (9.9.33).
One may formally take the Fourier transform of ψn � m (p) in (9.9.41) and

make a transition to the configuration space description and this is left as an
exercise to the reader (see Problem 9.21)

9.9.3 The Positive Spectrum p0 > 0

To obtain an expression for the Green functions G±
(
p,p′; p0

)
, for p0 > 0,

we go back to (9.9.28).
To the above end, we note that for any ξ

(1 − ξ)2 + ξ (η − η′)2 = 1 + ξ2 − 2ξη · η′ (9.9.43)

since η2 = 1 = η′2. Hence from (III.2.1), in Appendix III, with |ξ| < 1, we
may write

1[
(1 − ξ)2 + ξ (η − η′)2

] =
∞∑

n=1

ξn−1Un−1 (η · η′) (9.9.44)

or upon multiplying the above by ξ, and explicitly taking the derivative with
respect to ξ on both sides we obtain

(
1 − ξ2

)
[
(1 − ξ)2 + ξ (η − η′)2

]2 =
∞∑

n=1

n ξn−1Un−1 (η · η′) . (9.9.45)

By multiplying this equation by ξ, and taking the derivative with respect
to ξ gives the useful equation

d
dξ

ξ
(
1 − ξ2

)
[
(1 − ξ)2 + ξ (η − η′)2

]2 =
∞∑

n=1

n2 ξn−1Un−1 (η · η′) . (9.9.46)

In reference to (9.9.28), we note from (9.9.9) that with p0 → p0 ± iε,
p0 > 0, corresponding to G±, respectively,

p2
0 = −2µp0 ∓ iε. (9.9.47)
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Hence concerning the Green function G+, we have

p2
0 =

(
2µp0

)
e−iπ (9.9.48)

for ε → +0, and for G−,
p2
0 =

(
2µp0

)
eiπ. (9.9.49)

Accordingly, we have the rule:

1
p0

=
1√
2µp0

e±iπ/2 =
±i√
2µp0

(9.9.50)

with p0 > 0, for the Green functions G±, in the interpretation of 1/p0 in the
denominators in (9.9.28).

Let
γ =

λµ/�√
2µp0

, p0 > 0 (9.9.51)

and using the fact that in (9.9.28) we may write

1
n ± iγ

=
∫ 1

0

dξ ξ(n−1±iγ) (9.9.52)

we have directly from (9.9.46) and (9.9.28) that

Λ (Ω,Ω′) =
1

2π2

∫ 1

0

ξ±iγ dξ
d
dξ

ξ
(
1 − ξ2

)
[
(1 − ξ)2 + ξ (η − η′)2

]2 . (9.9.53)

Finally we use the equalities in (9.9.20), (9.9.50) and the definition in
(9.9.21) to obtain explicitly

G±
(
p,p′; p0

)
= ∓ i

π2

√
µ

8p0

1[
(p − p′)2

]2
∫ 1

0

ξ±iγ dξ
d
dξ

ξ
(
1 − ξ2

)
[
ξ − 1

ρ±
(1 − ξ)2

]2

(9.9.54)
where

ρ± = (p − p′)2
2p0/µ(

p0 − p2

2µ
± iε

)(
p0 − p′2

2µ
± iε

) , p0 > 0 (9.9.55)

and γ is defined in (9.9.51).
The Green function in (9.9.54) for the positive spectrum p0 > 0, and λ >

0, λ < 0, will find detailed applications to Coulomb scattering in Chapter 15,
§15.5.

9.9 The Coulomb Green Function: The Full Spectrum
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Problems

9.1. Show that in one-dimension the analogous expression to the one in
(9.1.30) is given by

G0
+ (xt;x′t′) =

∫ ∞

−∞

dp0

2π�

√
m

2p0
exp

(
i
√

2mp0 |x − x′| /�

)

× exp
(
−ip0 (t − t′) /�

)
.

9.2. Show that an integral representation of G0 (xt;x′t′) in two dimensions
is given by

G0 (xt;x′t′) =
m

2π�

∫ ∞

0

dz J0

(
|x − x′|

√
2mz

�

)
e−izt

where J0 is the zeroth order Bessel function.
9.3. Derive the Green function for the linear potential in §9.2 by the

method used in deriving the Green function for the quadratic potential
in the same section.

9.4. Carry out a study of the Green function in the one dimensional po-
tential barrier

V (x) =
{

V0, 0 < x < a
0, elsewhere

where V0 > 0. It is advisable to rewrite V (x) as

V (x) = [Θ (x) − Θ (x − a)] V0.

9.5. Obtain an expression for the probability density distribution on an
observation screen in a single "slit" experiment where the "slit" is a
sharp circular hole. Find then the probability of observing a particle
outside the classical shadow of the hole on the screen. Extend your
analysis to a double slit experiment involving two sharp circular holes
of equal radii. These analyses are conveniently carried out in terms
of so-called Lommel functions (see also the appendix to §15.2). [Ref:
Manoukian (1989).]

9.6. Show that for a time independent F (t) = E in (9.4.1), the expression
in (9.4.21) goes over to the one in (9.2.10).

9.7. Carry out in detail the steps leading from (9.4.22) to (9.4.27).
9.8. In reference to the first term in (9.3.14) with the denominator [p0 +

mλ2/2�
2 + iε], show that by closing the p0-contour in (9.3.2), in the

complex p0-plane, from below, the semi-circle of infinite radius gives
zero contribution and hence an application of the residue theorem
gives (9.3.16) for the contribution of the pole p0 = −mλ2/2�

2.
9.9. Study the Green function of an oscillator for which ω in the harmonic

oscillator problem is replaced by a general time-dependent one ω (t).
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9.10. Show that (9.5.2) leads to (9.5.3) and finally to (9.5.5) for the Green
function G0

+> in half-space.
9.11. By integrating by parts, derive the inequality in (9.5.10).
9.12. Derive the expression for the probability density given in (9.5.14).
9.13. Derive the Poisson sum formula in (9.6.10). [A classic reference on this

is: Morse and Feshbach (1953), p. 467.]
9.14. (A review problem in electromagnetics). Show that the vector po-

tential A of an infinitely long solenoid of circular cross section, at a
distance r outside the solenoid is given by the expression in (9.6.17).

9.15. Using (9.6.24), (9.6.25) derive the two equations in (9.6.26), (9.6.27).
9.16. By relating the modified Bessel function I|ν| (−iρ) to J|ν| (ρ) :

I|ν| (−iρ) = e−i|ν|π/2J|ν| (ρ) and using the known asymptotic behavior
of J|ν| (ρ) for ρ → ∞, verify the corresponding one for I|ν| (−iρ) as
given in (9.6.28), (9.6.29).

9.17. By the application of appropriate boundary conditions at the origin,
as discussed at the end of §9.6, to allow the scattering of a particle
off by the solenoid at the origin, even for δ0 → 0, investigate how this
scattering is modified by the activation of the solenoid, i.e., for δ0 > 0,
as an illustration of the Aharonov-Bohm effect.

9.18. For the illustration of the Aharonov-Bohm effect at the end of
§9.6, consider rather formally initial states such as exp (− |φ′/γ|),
exp

(
−
∣∣φ′2/γ2

∣∣) with γ > 0 very small so that contributions from
|φ′| > γ may be neglected. Investigate the nature of the observation
intensities as functions of φ.

9.19. Extend the analysis provided in the example on the Aharonov-Bohm
effect at the end of §9.6 to single arc-slit and to double arc-slits exper-
iments. The reader may place the arcs in the most convenient way to
simplify the analyses.

9.20. Verify the identity in (9.7.9).
9.21. Carry out a Fourier transform of ψn�m (p) in (9.9.41) to x-space. Here

you will need properties of some special functions which will allow you
to explicitly carry out the Fourier transform.

9.22. Investigate the nature of the Green function for the 1/ |x| potential in
two and one dimensions.

9.23. Show that for a potential of the form V (x, t) = mω2 (t) x2/2 −
xF (t), the Green function takes the form G (xt;x′t′) = N (t, t′) ×
exp

(
i
∫ t

t′ dτ Lc (τ) /�

)
, with Lc(τ) the classical Lagrangian, and set

up an equation that would determine N (t, t′). [Note that Lc(τ) de-
pends on x, x′, t, t′ as well.]
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Path Integrals

The path integral formalism of quantum physics, as an alternative to the
operator approach, was introduced by Feynman1 in 1948. In recent years, it
has been applied in almost all areas of physics and has become a powerful
and essential tool to do quantum physics. There is an intimate connection
between this formalism and its classical counterpart, and the action, as the
time integral of the Lagrangian, appears naturally in it. In its simplest form,
it involves in developing an expression for the amplitude 〈xt |x′t′〉 for a par-
ticle initially at x′ at time t′ to be found at x at a later time t > t′ as a sum
over all paths beginning at x′ and ending up at x. Quantum physics being
probabilistic, this expression involves, in general, in addition to the classical
path joining x′ to x, an (uncountable) infinite number of possible paths join-
ing these two points. The importance of a so-called Lagrangian formulation
of quantum physics was emphasized by Dirac and fully exploited by Feynman
in his classic work.

The present chapter deals with a fairly detailed treatment of path inte-
grals. We approach the problem as a logical extension of our study of Green
functions in the previous chapter. A key result in the analysis is to rewrite the
amplitude 〈xt |x′t′〉, mentioned above, in terms of a completeness relation as
(see also (9.6))

〈xt |x′t′〉 =
∫

dνx′′ 〈xt |x′′t′′〉 〈x′′t′′ |x′t′〉 (10.1)

with t′′ conveniently chosen so that t′ < t′′ < t. By repeated application of
(10.1), one may rewrite 〈xt |x′t′〉 as integrals of the product of a large number
of amplitudes each of which describes the time evolution in infinitesimally
short times. This technique, usually referred to as the “time slicing method”,
allows one to readily obtain the path integral representation of the amplitude
in question. §10.1, §10.2 deal, respectively, with a free particle and a particle
in a given potential. For interactions involving velocity dependent potentials,
1 Feynman (1948); Feynman and Hibbs (1965).
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such as in the interaction of charged particles with external electromagnetic
fields, the completeness relation in (10.1) is extended to sums over momenta
as well. This leads to a phase space analysis and is the subject matter of §10.3
with emphasis put on the interaction of a charged particle with an external
electromagnetic field which is of central importance in physics. §10.4 deals
with a systematic analysis of path integrals with constrained dynamics.2 This
subject matter has become quite important in recent years and deserves the
proper attention given here. §10.5, §10.6 deal, respectively, with the problem
of Bose and Fermi excitations with special considerations for their interactions
with external sources. In §10.6 the necessarily tools for integrations over so-
called Grassmann variables are also developed in great detail in order to
handle Fermi excitations in the path integral context.

10.1 The Free Particle

In this section, we derive the path integral expression for the amplitude
that a free particle in R

ν , which is initially at x′ at time t′, is found at x at
some later time t.

Our starting point is the completeness relation (10.1), as applied (N − 1)
number of times which reads:

〈xt |x′t′〉0 =
∫

dνx1 . . . dνxN−1

[
〈x t |xN−1 tN−1〉0

× 〈xN−1 tN−1 |xN−2 tN−2〉0 · · · 〈x1 t1 |x′ t′〉0
]

(10.1.1)

where (see (9.1.38))

〈xk+1 tk+1 |xk tk〉0 =
(

m

2πi� (tk+1 − tk)

)ν/2

exp

[
im (xk+1 − xk)2

2� (tk+1 − tk)

]

(10.1.2)
t > tN−1 > · · · > t1 > t′, and we set x ≡ xN , x′ ≡ x0, t = tN , t′ = t0.

By choosing tk+1 − tk = (t − t′)/N ≡ T/N , we may rewrite (10.1.1) as

〈x t |x′ t′〉0 =
∫ (

m

2πi� T/N

)Nν/2

N−1∏

j=1

dνxj




× exp

[
i
�

N−1∑
k=0

(
T

N

)
m

2

(
xk+1 − xk

T/N

)2
]

. (10.1.3)

2 Cf. Dirac (2001), Faddeev (1969); see also Senjanovic (1976).
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x1

x′

xk

x

xN−1

t′ t1 tk tN−1 t

Fig. 10.1. A path contributing to the expression for 〈xt |x′t′〉. In the contin-
uum limit N → ∞, one has an uncountable infinite number of paths.

Upon taking the continuum limit N → ∞, defining formally the measure

D (x (·)) = lim
N→∞

(
m

2πi� T/N

)Nν/2

N−1∏

j=1

dνxj


 (10.1.4)

and in this limit, converting the sum in the exponent in (10.1.3) to an integral,
we have the so-called path integral expression for the amplitude 〈x t |x′ t′〉0:

〈x t |x′ t′〉0 =
∫ x(t)=x

x(t′)=x′
D (x (·)) exp

[
i
�

∫ t

t′
dτ

mẋ2(τ)
2

]
(10.1.5)

written as a sum over all paths going through the volume elements dνx1,
. . . , dνxN−1, respectively, about the points specified by x1(t1): (x1, t1), . . . ,
xN−1(tN−1): (xN−1, tN−1), as each one of the variables x1, . . . , xN−1 moves
all over R

ν , i.e., as we integrate over all of these variables, beginning at x (t′) =
x′ and ending at x(t) = x, and take the limit N → ∞.

A particular case of (10.1.5) is the amplitude for a particle to begin at
the origin x′ = 0 and end up at the origin x = 0. The expression for this
amplitude may be directly read from (10.1.2), and we may write for (10.1.5)
in this case:

∫ x(t)=0

x(t′)=0

D (x (·)) exp
[

i
�

∫ t

t′
dτ

mẋ2(τ)
2

]
=
(

m

2πi� (t − t′)

)ν/2

. (10.1.6)
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This equality will be useful, as a normalization factor, in some cases for a
particle interacting with a given potential as we will see in the next section.

10.2 Particle in a Given Potential

We consider a Hamiltonian of the form

H(t) =
p2

2m
+ V (x, t) ≡ H0 + V (x, t) (10.2.1)

where, for greater generality, V (x, t) may depend explicitly on time but is
independent of p. The explicit time dependence of V (x, t) is assumed to
come only from a-priori given c-functions of t such as, for example, in the
time-dependent forced dynamics studied in §9.4. As an operator, V (x, t) is a
multiplicative one with respect to |x′〉, i.e.,

V (x, t) |x′〉 = |x′〉V (x′, t) . (10.2.2)

Since for a state |Ψ(t)〉, the Schrödinger equation reads

i�
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 (10.2.3)

and 〈x′ |Ψ(t)〉 = 〈x′t |Ψ〉, one has

i�
∂

∂t
〈x′t| = 〈x′t|H(t) (10.2.4)

and similarly

− i�
∂

∂t
|x′t〉 = H(t) |x′t〉 . (10.2.5)

Upon setting (t0 + t1)/2 = t, t1 − t0 = ε, we may write the amplitude
〈x1t1 |x0t0〉 as

〈x1t1 |x0t0〉 =
〈
x1, t +

ε

2

∣∣∣x0, t −
ε

2

〉
. (10.2.6)

For ε → 0, then (10.2.4), (10.2.5) lead for (10.2.6)3

〈x1t1 |x0t0〉 �
〈
x1

∣∣∣1 − i
ε

�
H(t)

∣∣∣x0

〉
�
〈
x1

∣∣∣exp
[
−i

ε

�
H(t)

]∣∣∣x0

〉
. (10.2.7)

The exponential representation in the last equality is essential to obtain a
unitary expression and satisfy the group property in time. The final verdict
of the whole formalism is its consistency with the Schrödinger equation.

3 We note that in (10.2.7), it is understood that we eventually take the limit
ε → 0, otherwise one would necessarily have the time-ordered structure given in
the Appendix to §2.5.
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On the other hand for ε → 0, the Baker-Campbell-Hausdorff formula (see
Appendix I) states that

exp− iε
�

H0 exp− iε
�

V (x, t) � exp− i
�

(
εH(t) + O

(
ε2
))

(10.2.8)

which from (10.2.7) gives

〈x1t1 |x0t0〉 �
∫

dνx′
〈
x1

∣∣∣e−iεH0/�

∣∣∣x′
〉〈

x′
∣∣∣e−iεV(x,t)/�

∣∣∣x0

〉

�
( m

2πi�ε

)ν/2

exp
iε
�

(
m

2

(
x1 − x0

ε

)2

− V (x0, t)

)
(10.2.9)

for ε → 0, where we have used (10.1.2) corresponding to the free Green
function.

We first check that (10.2.9) is consistent with the Schrödinger equation
for a wavefunction 〈x t |Ψ〉.

To the above end, we have to verify, from (10.2.9) for ε � 0, that

〈x, t + ε |Ψ〉 �
( m

2πi�ε

)ν/2
∫

dνx′ exp
iε
�

(
m

2

(
x − x′

ε

)2

− V (x′, t)

)
〈x′t |Ψ〉

(10.2.10)
is consistent. Upon making a change of variables x′ → x′ − x = z, we obtain

〈x, t + ε |Ψ〉 �
( m

2πi�ε

)ν/2
∫

dνz exp
(

im
2�ε

z2

)

×
[
1 − iε

�

(
Tz(x)V (x, t)

)] (
Tz(x)Ψ(x, t)

)
(10.2.11)

where Tz(x) is the Taylor operator

Tz(x) =

(
1 + z · ∇ +

(z · ∇)2

2
+ · · ·

)
. (10.2.12)

Using the integrals

( m

2πi�ε

)ν/2
∫

dνz exp
(

imz2

2�ε

)
= 1 (10.2.13)

( m

2πi�ε

)ν/2
∫

dνz zj exp
(

imz2

2�ε

)
= 0 (10.2.14)

( m

2πi�ε

)ν/2
∫

dνz zizj exp
(

imz2

2�ε

)
= δij i�ε

m
(10.2.15)
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and so on, and keeping only terms up to order ε only in (10.2.11), we get

Ψ(x, t + ε) − Ψ(x, t) � i�ε

2m
∇2Ψ(x, t) − iε

�
V (x, t)Ψ(x, t) (10.2.16)

which leads to the Schrödinger equation in the limit ε → 0.
The completeness property of the Green function functions provide from

(10.2.9) the limit

〈x t |x′ t′〉 = lim
N→∞

∫ ( m

2πi�ε

)Nν/2

dνx1 · · · dνxN−1

× exp
i
�

N−1∑
k=0

ε

[
m

2

(
xk+1 − xk

ε

)2

− V
(
xk, t̂k

)]
(10.2.17)

where t̂k = (tk + tk+1)/2 = t′ + (k + 1/2)ε, tk = t′ + kε, k = 0, 1, . . . , N − 1,
ε = (t − t′)/N = tk+1 − tk, t0 = t′, tN = t, x0 = x′, xN = x.

As in (10.1.5), we may rewrite (10.2.17) in the limit N → ∞

〈x t |x′ t′〉 =
∫ x(t)=x

x(t′)=x′
D (x (·)) exp

i
�

∫ t

t′
dτ

(m

2
ẋ2(τ) − V (x(τ), τ)

)

(10.2.18)
as a sum over all paths beginning at x(t′) = x′ and ending at x(t) = x.

Here we recognize the Lagrangian

L(τ) =
m

2
ẋ2(τ) − V (x(τ), τ) (10.2.19)

as a c-function, and
∫ t

t′ dτ L(τ) = A as the action. It is not always true, how-
ever, that the Lagrangian simply appears in the integrand in the exponential
in (10.2.18) in every case (see, for example, Problem 10.5).

As an application, consider the potential V (x) = −Ex, in one dimension
(see also §9.2) and the corresponding amplitude

〈x2 t2 |x1 t1〉 =
∫ x(t2)=x2

x(t1)=x1

D (x (·)) exp
i
�

∫ t2

t1

dτ
[m

2
ẋ2(τ) + Ex(τ)

]
.

(10.2.20)
In addition to the classical path in (10.2.20), we have to consider all paths

joining the point x(t1) = x1 to x(t2) = x2. Accordingly, any given path may
be described by the function

x(τ) = xc(τ) + y(τ) (10.2.21)

where xc(τ) is the classical solution, and y(τ) denotes the deviation of x(τ)
from the classical one at time τ .

The boundary conditions are
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x(t1) = x1, x(t2) = x2 (10.2.22)

xc(t1) = x1, xc(t2) = x2 (10.2.23)

and hence
y(t1) = 0 = y(t2). (10.2.24)

The solution of
ẍc (τ) =

E

m
(10.2.25)

satisfying the boundary conditions in (10.2.23) is given by

ẋc(τ) =
E

m
(τ − t1) +

[
(x2 − x1) −

E

m

(t2 − t1)2

2

]
1

(t2 − t1)
(10.2.26)

xc(τ) =
E

m

(τ − t1)2

2
+ ẋc(t1)(t2 − t1) + x1. (10.2.27)

Also note that

mẋ2(τ)
2

+ Ex(τ) =
(

mẋ2
c(τ)
2

+ Exc(τ)
)

+ mẋc(τ)ẏ(τ) + Ey(τ) +
mẏ2(τ)

2

≡ Lc(τ) +
mẏ2(τ)

2
+ m

d
dτ

(ẋc(τ)y(τ)) (10.2.28)

where in writing the last equality we have identified Lc(τ) with the classi-
cal Lagrangian corresponding to the classical motion, and made use of the
equation for xc(τ) in (10.2.25).

Hence
∫ t2

t1

dτL(τ) =
∫ t2

t1

dτLc(τ) +
∫ t2

t1

dτ
mẏ2(τ)

2
+ 0 (10.2.29)

where on account of the boundary conditions in (10.2.24)
∫ t2

t1

d
dτ

(
ẋc(τ)y(τ)

)
= ẋc(t2)y(t2) − ẋc(t1)y(t1) = 0. (10.2.30)

In detail, (10.2.26), (10.2.27) give

∫ t2

t1

dτ Lc(τ) =
m

2
(x2 − x1)

2

(t2 − t1)
+

E (x2 + x1)
2

(t2 − t1) −
E2

24m
(t2 − t1)

3

≡ Sc (10.2.31)
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thus defining the action for the classical path.
Finally with the change of variables x(τ) to y(τ), as given in (10.2.21)

for all t1 � τ � t2, and from the translational invariance of the measure in
(10.1.4), we obtain

〈x2 t2 |x1 t1〉 = exp
(

i
�
Sc

)∫ y(t2)=0

y(t1)=0

D (y(·)) exp
i
�

∫ t2

t1

dτ
mẏ2(τ)

2
.

(10.2.32)
From (10.1.6), (10.2.31), this leads to the expression given in (9.2.10), where
now T = t2 − t1.

The derivation of 〈x2 t2 |x1 t1〉 for the time-dependent potential −xF (t),
for a time-dependent force F (t) (see §9.4) using the path integral technique
is left as an exercise to the reader (see Problem 10.1) and the expression for
which is given in (9.4.21).

10.3 Charged Particle in External Electromagnetic
Fields: Velocity Dependent Potentials

We consider the interaction of a spin 0 charged particle, say, of charge
e, with a priori given external electromagnetic field described by the pair of
fields Φ(x, t), A(x, t). The Hamiltonian in question is given by

H(x,p, t) =

(
p − e

cA
)2

2m
+ eΦ

=
p2

2m
− e

2mc
p · A − e

2mc
A · p +

e2

2mc2
A2 + eΦ. (10.3.1)

It is yet not clear in what sense the path integral derivation given in
the last section applies to this important system. For one thing, here we are
dealing with a velocity dependent interaction.

To determine the amplitude 〈x t |x′ t′〉, and, in the process, replace the
operator p by a c-variable counterpart, we may use the resolution of the
identity (see §2.4)

1 =
∫

dνp′

(2π�)ν
|p′t〉 〈p′t| (10.3.2)

for any conveniently chosen time t.
To the above end, we note that we may write

A · p + p · A = (p · A − A · p) + 2A · pR

= −i�(∇ · A) + 2A · pR (10.3.3)

where pR is the operator p operating to its right, and
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A · p + p · A = (A · p − p · A) + 2pL · A

= i�(∇ · A) + 2pL · A (10.3.4)

where pL operates on its left side.
Accordingly, we may rewrite the Hamiltonian H, with the operator p in

mind, as an operator operating to its right or left as

HR (x,p, t) =
(pR)2

2m
+

ie�

2mc
(∇ · A) − e

mc
A · pR +

e2

2mc2
A2 + eΦ (10.3.5)

HL (x,p, t) =
(pL)2

2m
− ie�

2mc
(∇ · A) − e

mc
pL · A +

e2

2mc2
A2 + eΦ. (10.3.6)

The expressions for the Hamiltonian as spelled out in the above two ways
may be now applied in the following manner.

An amplitude 〈x1 t1 |x0 t0〉, with t = (t0 + t1)/2, ε = t1 − t0, may be
written as in (10.2.6)

〈x1 t1 |x0 t0〉 =
〈
x1, t +

ε

2

∣∣∣x0, t −
ε

2

〉
. (10.3.7)

From the dynamical equation

i�
∂

∂t
〈x1, t| = 〈x1t|H (x,p, t)

= 〈x1t|HR (x,p, t)

= 〈x1t|HR (x1,p, t) (10.3.8)

we have for ε → 0
〈
x1, t +

ε

2

∣∣∣ � 〈x1t|
(

1 − iε
2�

HR (x1,p, t)
)

=
∫

d3p′

(2π�)3
eix1·p′/�

(
1 − iε

2�
HR (x1,p′, t)

)
〈p′t| (10.3.9)

where in the last equality we have used (10.3.2), (2.4.8). We note that
HR (x1,p′, t) is a c-function.

Similarly, from

−i�
∂

∂t
|x0, t〉 = H (x,p, t) |x0t〉

= HL (x,p, t) |x0t〉

= HL (x0,p, t) |x0t〉 (10.3.10)
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we obtain for ε � 0
∣∣∣x0, t −

ε

2

〉
�
(

1 − iε
2�

HL (x0,p, t)
)
|x0t〉

=
∫

d3p′

(2π�)3
e−ix0·p′/� |p′t〉

(
1 − iε

2�
HL (x0,p′, t)

)
. (10.3.11)

Equations (10.3.9), (10.3.11), when substituted in (10.3.7) lead to

〈x1 t1 |x0 t0〉

�
∫

d3p′

(2π�)3
ei(x1−x0)·p′/�

(
1 − iε

2�

(
HR (x1,p′, t) + HL (x0,p′, t)

))

�
∫

d3p′

(2π�)3
ei(x1−x0)·p′/� exp− iε

2�

(
HR (x1,p′, t) + HL (x0,p′, t)

)
(10.3.12)

for ε � 0.
In detail

HR (x1,p′, t) + HL (x0,p′, t)

=
p′2

m
+

ie�

2mc

[
(∇ · A)1 − (∇ · A)0

]
− e

mc
p′ · (A1 + A0)

+
e2

2mc2

(
(A1)

2 + (A0)
2
)

+ eΦ0 + eΦ1 (10.3.13)

where the notation f0 = f(x0, t), f1 = f(x1, t) has been used.
The Gaussian p′-integral in (10.3.12) is elementary and may be carried

out to yield,

〈x1 t1 |x0 t0〉 �
( m

2πi�ε

)3/2

exp
iε
�

[
m

2

(
x1 − x0

ε

)2

+
e

c

(x1 − x0)
ε

· (A0 + A1)
2

− e
(Φ0 + Φ1)

2
+ ∆01

]

(10.3.14)

for ε � 0, where

∆01 = − e2

2mc2

(A1 − A0)
2

4
− ie�

4mc

[
(∇ · A)1 − (∇ · A)0

]
. (10.3.15)
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The latter being the sum of differences, and not being divided by ε, is smaller
than the first three terms in the square brackets in (10.3.14). That is for
t1 − t0 = ε � 0, we may take

〈x1 t1 |x0t0〉 �
( m

2πi�ε

)3/2

exp
iε
�

[
m

2

(
x1 − x0

ε

)2

+
e

c

(x1 − x0)
ε

· (A0 + A1)
2

− e
(Φ0 + Φ1)

2

]
. (10.3.16)

Now it is not difficult to verify that (10.3.16) is consistent with the
Schrödinger equation to be satisfied by a wavefunction 〈x t |Ψ〉. To this end,
we have from (10.3.16) for ε � 0

〈x, t + ε |Ψ〉 �
( m

2πi�ε

)3/2
∫

d3x′ exp
iε
�

[
m

2

(
x − x′

ε

)2

+
e

c

(x − x′)
ε

· (A(x, t) + A(x′, t))
2

− e
(Φ(x, t) + Φ(x′, t))

2

]
〈x′t |Ψ〉 .

(10.3.17)

By making a charge of integration variables x′ → x′−x = z, and carrying out
Gaussian integrals as in (10.2.13)–(10.2.15), in the manner given in verifying
(10.2.16), it is straightforward to show (see Problem 10.2), that (10.3.17)
leads, upon taking the limit ε → 0, to

i�
∂

∂t
Ψ(x, t) = H(x,p, t)Ψ(x, t). (10.3.18)

The expression in (10.3.16) may be then systematically used to obtain

〈xt |x′t′〉 = lim
N→∞

∫ ( m

2πi�ε

)3N/2

d3x1 · · · d3xN−1

× exp
i
�

N−1∑
k=0

ε

(
m

(
xk+1 − xk

ε

)2

+
e

c

(xk+1 − xk)
ε

·
(
A(xk, t̂k) + A(xk+1, t̂k)

)
2

− e

(
Φ(xk, t̂k) + Φ(xk+1, t̂k)

)
2

)
(10.3.19)

where t̂k+1 = (tk +tk+1)/2 = t′+(k+1/2)ε, tk = t′+kε, k = 0, 1, . . . , N−1,
ε = (t − t′)/N = tk+1 − tk, t0 = t′, tN = t, x0 = x′, xN = x.
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In the limit N → ∞, (10.3.19) may be written as

〈xt |x′t〉 =
∫ x(t)=x

x(t′)=x′
D(x(·))

× exp
i
�

∫ t

t′
dτ

(
mẋ2(τ)

2
+

e

c
ẋ(τ) · A(x(τ), τ) − eΦ(x(τ), τ)

)

(10.3.20)

where we recognize the τ -integrand as the Lagrangian of a classical charged
particle in the external electromagnetic field described by (Φ,A).

The procedure developed above may be formally applied to Hamiltonians
with velocity dependent potentials in general. Using a standard notation for
such Hamiltonians H(q,p), written in terms of q’s and p’s, we may move all
the p’s to the right of q’s, using appropriate commutation relations, as done
above, thus defining HR(q,p), and similarly defining HL(q,p), we may infer
from (10.3.12) that

〈q1t1 |q0t0〉 �
∫

dνp1

(2π�)ν
ei(q1−q0)·p1/� exp

−iε
2�

(
HR (q1,p1) + HL (q0,p1)

)
(10.3.21)

where t1 − t0 = ε � 0.
The expression (10.3.21) allows us to deduce formally by using the com-

pleteness of the Green functions

〈qt |q′t′〉 = lim
N→∞

∫
dνq1 · · · dνqN−1

dνp1

(2π�)ν . . .
dνpN

(2π�)ν

× exp

(
i
�

N−1∑
k=0

εpk+1 ·
(

qk+1 − qk

ε

))

× exp− i
�

(
N−1∑
k=0

ε

2
(
HR(qk+1,pk+1) + HL(qk,pk+1)

))

(10.3.22)

where ε = tk+1− tk = (t− t′)/N , tN = t, t0 = t′, qN = q, q0 = q′, as defined
below (10.3.19).

Upon taking limit N → ∞, we have

〈qt |q′t′〉 =
∫ q(t)=q

q(t′)=q′
D(q(·),p(·))

× exp
i
�

∫ t

t′
dτ

(
p(τ) · q̇(τ) − Hc(q(τ),p(τ))

)
(10.3.23)
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where we have defined a classical Hamiltonian Hc by4

Hc(q(τ),p(τ)) =
1
2

(
HR(q(τ),p(τ)) + HL(q(τ),p(τ))

)
. (10.3.24)

The paths-measure is formally given by

D(q(·),p(·)) = lim
N→∞


 dνpN

(2π�)ν

N−1∏
j=1

(
dνqj

dνpj

(2π�)ν

)
 (10.3.25)

with the pre-limiting expression involving one additional ν-dimensional mo-
mentum integration, with the measure dνpN/(2π�)ν , than the q-ones. In the
limit N → ∞, the number of integration variables goes to infinity and in this
limit, one rather formally integrates over q(τ) and p(τ) in phase space for all
t′ � τ � t with the boundary conditions q(t′) = q′, q(t) = q. The expressions
in (10.3.23)–(10.3.24), for velocity dependent potentials, should, however, be
taken only rather formally for general cases and are not void of ambiguities
and we will not go into consistency problems of this representation here with
generality. For the particular case, however, where

H(q,p) =
p2

2m
+ V (q). (10.3.26)

Equation (10.3.22) becomes

〈qt |q′t′〉 = lim
N→∞

∫
dνq1 · · · dνqN−1

dνp1

(2π�)ν · · · dνpN

(2π�)ν

× exp

(
− i

�

N−1∑
k=0

ε

2
(
V (qk+1) + V (qk)

))

× exp− i
2m�

N−1∑
k=0

ε

(
(pk+1)

2 − 2m

(
qk+1 − qk)

ε

)
· pk+1

)
.

(10.3.27)

We may then explicitly integrate over the pi’s to obtain

〈qt |q′t′〉 = lim
N→∞

( m

2πi�ε

)Nν/2
∫

dνq1 · · · dνqN−1

4 Note that if HR (q,p) =
∑
n,m

anmfn (q1, . . . , qν) hm (p1, . . . , pν), which may

include a constant term, where fn, hm are real, then HL (q,p) =∑
n,m

a∗
nmhm (p1, . . . , pν) fn (q1, . . . , qν), and Hc in (10.3.24), expressed in terms

of c-numbers, is real. See, for example, (10.3.5), (10.3.6), and Problem 10.5.
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× exp
i
�

N−1∑
k=0

ε

(
m

2

(
qk+1 − qk

ε

)2

− V (qk+1) + V (qk)
2

)

(10.3.28)

which in the limit N → ∞ coincides with (10.2.18), where in the latter we
have, in general, an explicit time-dependence coming from a given c-function.

10.4 Constrained Dynamics

The purpose at this sections is to develop the formal theory of path in-
tegration when constraints are present in the theory. Let q = (q1, . . . , qν),
p = (p1, . . . , pν) denote canonical conjugate variables, in general. With the
path integral expression in (10.3.23) in phase space in mind, suppose because
of underlying constraints in a theory such variables are not all independent
and one succeeds in isolating a maximal number of independent canonical
conjugate variables (q∗1 , . . . , q∗M ) , (p∗1, . . . p∗M ), where M < ν. Then according
to (10.3.23) one may formally infer that

〈qt |q′t′〉 =
∫ q(t)=q

q(t′)=q′
D (q∗(·),p∗(·))

× exp
i
�

∫ t

t′
dτ (p∗(τ) · q̇∗(τ) − H∗ (q∗(τ),p∗(τ))) (10.4.1)

for the corresponding amplitude, with Hamiltonian H∗, expressed in terms of
the independent variables, where 2(ν−M) of the variables q, p are functions
of q∗, p∗, and one in turn is working in a subspace of dimension 2M < 2ν of
the phase space.

It is not, however, always easy to solve for such independent components
and an alternative general expression is needed which deals with all the com-
ponents (q,p) with the constraints imposed directly on the path integrals.
This is the aim of the present section. We note that all the variables in the
path integral (10.3.23) are c-variables and hence are more easily dealt with.
This, as mentioned before, is the most attractive feature of path integration
which solves the quantum mechanical problem in terms of c-variables and
corresponding trajectories. With this in mind, we need some notions of con-
strained classical dynamics which are dealt with next. Due to the technical
nature of this section, it may be omitted at a first reading.

10.4.1 Classical Notions

We recall Hamilton’s equations

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
(10.4.2)
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where the dots denote time derivatives. The Hamiltonian H generates the
time development in the sense that for t → t − δt = t̄ for a change δt =
t − t̄ = δτ of the time variable by a parameter τ (see (2.1.15), (2.1.16)),

qk (t) → qk (t) − δqk (t) = q̄k (t) = q̄k (t̄ + δτ)

= qk (t) + δτ q̇k (t) (10.4.3)

where we have used the fact that q̄k (t̄) = qk (t) for pure time translations,

pk (t) → pk (t) − δpk (t) = p̄k (t)

= pk(t) + δτ ṗk(t) (10.4.4)

and
δqk = − ∂H

∂pk
δτ, δpk =

∂H

∂qk
δτ. (10.4.5)

An important property of such a transformation is that the Jacobian is
one:

∂ (qk, pk)
∂ (q̄m, p̄m)

= 1 (10.4.6)

and hence the measure of integration in phase space remains invariant:
∏
k

dqkdpk −→
∏
k

dq̄k dp̄k (10.4.7)

and the transformation (10.4.3)–(10.4.5) is said to be a canonical one.
Other canonical transformations may be defined similarly by

δqk =
∂W

∂pk
δξ (10.4.8)

δpk = −∂W

∂qk
δξ (10.4.9)

where W is referred as the corresponding generator with respect to a para-
meter ξ. Infinitesimal changes δt of the time variable have been defined in
(2.1.14), (2.1.16) by δt = δτ and we set the parameter δξ = δτ , W = −H.
On the other hand for pure space translations δqj = δaj , according to the
definitions in (2.1.13), (2.1.15), and we must set δξ → δξj = δaj , W → pj .
These are in conformity with the definition of the generators in (2.3.14) and
consistent with (10.4.8). For a function F (qk, pk) of the qk’s and the pk’s,
(10.4.8), (10.4.9) dictates that for F → F − δF = F̄ ,

δF =
∑

k

(
∂F

∂qk
δqk +

∂F

∂pk
δpk

)
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=
∑

k

(
∂F

∂qk

∂W

∂pk
− ∂F

∂pk

∂W

∂qk

)
δξ. (10.4.10)

Thus introducing the Poisson bracket defined by

{F,W}P.B. =
∑

k

(
∂F

∂qk

∂W

∂pk
− ∂F

∂pk

∂W

∂qk

)
, (10.4.11)

we may rewrite (10.4.10) in the compact form5

δF =
{
F,W

}
P.B.

δξ (10.4.12)

Again the Jacobian of the transformation (10.4.8), (10.4.9) is one. As a
consequence of this, a Poisson bracket is invariant under canonical transfor-
mations, i.e., in detail

{A,B}P.B. =
∑

k

(
∂A

∂qk

∂B

∂pk
− ∂A

∂pk

∂B

∂qk

)
=
∑

k

(
∂A

∂q̄k

∂B

∂p̄k
− ∂A

∂p̄k

∂B

∂q̄k

)
.

(10.4.13)
We recall some of the important properties of the Poisson bracket:

{F1, F2}P.B. = −{F2, F1}P.B. (10.4.14)

{α1F1 + α2F2, F3}P.B. = α1 {F1, F3}P.B. + α2 {F2, F3}P.B. (10.4.15)

for any constants α1, α2,

{F1F2, F3}P.B. = F1 {F2, F3}P.B. + {F1, F3}P.B. F2 (10.4.16)

and satisfy the Jacobi identity

{F1, {F2, F3}P.B.}P.B. + {F2, {F3, F1}P.B.}P.B. + {F3, {F1, F2}P.B.}P.B. = 0.
(10.4.17)

We are, in general, interested in canonical transformations involving more
than one generator defined through

δF =
∑
α

{F,Wα}P.B. δξα (10.4.18)

for some parameters ξa, where the generators Wα satisfy the algebraic rela-
tions

{Wα,Wβ}P.B. =
∑

γ

cγ
αβWγ (10.4.19)

5 In particular for Wδξ = −Hδτ , F = F (q(t),p(t)), and by definition (see (10.4.3),
(10.4.4)), δF = F−F̄ = F (q(t),p(t))−F (q(t)+δτ q̇(t),p(t)+δτ ṗ(t)) = −Ḟδτ ={
F,−H

}
δτ or Ḟ =

{
F, H

}
, where Ḟ = dF/dt, as expected.
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with the latter stating that the Poisson bracket of any two generators may
be written as a (linear) combination of the generators in question, where the
coefficients cγ

αβ are referred to as structure constants.
Transformations q, p → q̄, p̄, H (q,p) → H̄ (q̄, p̄) are canonical, leading

to Hamilton’s equations (10.4.2), if the difference between the Lagrangians
(times dt)

(p · q̇ − H (q,p)) dt →
(
p̄ · ˙̄q − H̄ (q̄, p̄)

)
dt (10.4.20)

of the corresponding actions A → Ā is a total differential. That is,
(
p̄ · ˙̄q − H̄ (q̄, p̄)

)
dt − (p · q̇ − H (q,p)) dt = dU (10.4.21)

We leave it as an exercise to the reader to establish this property for
infinitesimal canonical transformations given in (10.4.12).

Now consider a Hamiltonian H(q,p) describing a system with ν1 inde-
pendent constraints, ν1 < ν:

φ1 (q,p) = 0, . . . , φν1 (q,p) = 0. (10.4.22)

These are referred to as primary constraints.
For a function F (q,p) of q,p, we shall use the notation F |, with a bar,

when the constraints in (10.4.22) are imposed, in its definition.
The constraints in (10.4.22) may be taken into account by introducing

Lagrange multipliers λα and by introducing the Hamiltonian

HT = H + λαφα (10.4.23)

with a summation over α from 1 to ν1 understood. The resulting Hamiltonian
HT then is parameterized by the Lagrange multipliers λα, and the pertinent
physical question and the corresponding uniqueness problem arise as to what
the explicit expressions of these multipliers are.

The constraints in (10.4.22) must be satisfied at all times. That is, it is
necessary to have

φ̇β

∣∣∣ = {φβ ,HT }P.B.

∣∣ = 0. (10.4.24)

for all β. In detail

φ̇β = {φβ ,H}P.B. + λα {φβ , φα}P.B. + {φβ , λα}P.B. φα (10.4.25)

(see (10.4.16)). In particular, we note that the last term in (10.4.25) will, in
general, vanish when the constraints in (10.4.22) are imposed.

We consider the following two cases regarding the equations in (10.4.24),
if they do not provide trivial identities:

(1) Those equations that may be independent of the multipliers λα, and hence
they cannot be used to solve for multipliers, but impose new constraints
on the q’s and the p’s.
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(2) Those that may depend at least on some of the multipliers.

In case (1), new constraints have been introduced and they are referred
to as secondary constraints, defined by

ψβ | = φ̇β

∣∣∣ = 0. (10.4.26)

We may repeat the above process, hopefully a finite number of times, by
adding the newly discovered (secondary) constraints to the original set in
(10.4.22) and to the sequel ones thus generated. This in conjunction with
type (2) equations, which would allow us to solve for as many of Lagrange
multipliers as possible, and will lead to all primary and secondary constraints
and no more equations of type (1) arise. We will denote all of these constraints
(primary and secondary) by Ω1, . . . ,ΩK .

The Hamiltonian with all these constraints may be now written as

HT = H + ραΩα (10.4.27)

with a summation over α from 1 to K. Here not all the Lagrange multipliers
ρ1,. . .,ρK are necessarily determined. We will see which ones are determined
and which are not by considering two classes of constraints to be defined
shortly below.

The constraints

Ω1 (q,p) = 0, . . . ,ΩK (q,p) = 0 (10.4.28)

hold in a K dimensional subspace of phase space which we will denote by
Γ. We will still use the notation F | when restricted to the subspace Γ. We
assume the irreducibility of these constraints with respect to the subspace Γ,
i.e., if

F | = 0 (10.4.29)

then

F =
K∑

α=1

cαΩα (10.4.30)

where the coefficients cα may depend on q, p.
A constraint is called first class, denoted by Φα, if

{Φα,Ωβ}P.B.

∣∣ = 0 (10.4.31)

for all Ωβ . Otherwise a constraint is called of second class. We assume that
linear combinations, with appropriate coefficients, depending, in general, on
q, p, have been already carried out to bring as many of the constraints as
possible to first class.

We may then write (Ωα) = (Φγ ,Ψβ) where (Φα) constitutes of first class
constraints and (Ψα) constitutes those of second class such that no coefficients
cα, not all zero, may be found to make cαΨα of first class. Clearly



10.4 Constrained Dynamics 619

det {Ψα,Ψβ}P.B.

∣∣ �= 0 (10.4.32)

since otherwise, i.e., det {Ψα,Ψβ}P.B.

∣∣ = 0, would imply that we may find a
vector [c1 · · · cK ]T, with not all of the cα equal to zero, satisfying the matrix
equation [

{Ψα,Ψβ}P.B.

]
[cβ ]

∣∣ = 0. (10.4.33)

From (10.4.16) we would then have

{Ψα, cβΨβ}P.B.

∣∣ = 0 (10.4.34)

for all α since Ψβ

∣∣ = 0, which implies that cβΨβ is of first class thus reaching
a contradiction.

With the first and second class constraints thus defined, we may rewrite
(10.4.27) as

HT = H + ηαΦα + ρβΨβ (10.4.35)

with the sum over α from 1 to, say, ν − M , and the sum over β from 1 to,
say, L. The positive integer L is necessarily even.6

All the Lagrange multipliers ρβ , multiplying the second class constraint
functions Ψβ are determined in Γ. This follows at once by noting that

0 = {HT ,Ψγ}P.B.

∣∣ = {H, Ψγ}P.B.

∣∣+ ρβ {Ψβ ,Ψγ}P.B.

∣∣ (10.4.36)

and the fact that det {Ψβ ,Ψγ}P.B.

∣∣ �= 0, where we have also used (10.4.29)
for the first class constraint functions Φα.

On the other hand,

0 = {HT ,Φα}P.B.| = {H,Φα}P.B.| + 0 (10.4.37)

and the Lagrange multipliers ηα multiplying the first class constraint func-
tions remain undetermined. For one thing we note that for a function G of
q (t), p (t), Ġ (t) =

{
G,HT

}
P.B.

implies that G (t)
∣∣ = G (0)

∣∣ + Ġ (0)
∣∣t, in

the neighborhood of t = 0, for a given initial condition G (0)
∣∣, and that

G (t)
∣∣ is not unique since Ġ (0)

∣∣, in general, would depend on the multipli-
ers ηα (0) and thus would be different for different values of the ηα (0) (see
Problem 10.9).

Before discussing the technical details concerning the undetermined mul-
tipliers associated with the first class constraints, we provide a couple of
examples.

Consider the quadratic Hamiltonian in 3D space (or in 6D phase space)

H =
p2

2m
+

1
2
mω2q2 (10.4.38)

6 This follows from the fact that the determinant of an anti-symmetric matrix (see
(10.4.32)) of odd order is zero.



620 10 Path Integrals

with the simple constraint function φ1 = q1 − q2,

φ1| = (q1 − q2)| = 0 (10.4.39)

from which one obtains

{φ1,H}P.B. =
1
m

(p1 − p2) . (10.4.40)

leading to a secondary constraint

ψ1| = (p1 − p2)| = 0 (10.4.41)

and
{ψ1,H}P.B. = −mω2 (q1 − q2) ≡ −mω2φ1. (10.4.42)

Since
2 = {φ1, ψ1}P.B. �= 0 (10.4.43)

we have two second class constraints leading to a 4D physical subspace Γ of
the 6D phase space.

The following system deals with a situation involving a first class con-
straint only. Consider the Hamiltonian

H =
p2

2m
+ V

(
q2
)

(10.4.44)

in 3D with constraint

φ| = (q1p2 − p1q2)| = 0 (10.4.45)

implying the vanishing of the third component L3 of the angular momentum.
Due to the conservation of L3:

{H, (q1p2 − p1q2)}P.B. = 0 (10.4.46)

there is no secondary constraint.
Upon writing

HT =
p2

2m
+ V

(
q2
)

+ λ (q1p2 − p1q2) . (10.4.47)

On the subspace Γ of phase space of dimension 6 − 1 = 5, specified by
the constraint in (10.4.45), λ is undetermined. This ambiguity is resolved by
introducing an additional constraint function χ which amounts in working in
a 4 dimensional subspace Γ∗ ⊂ Γ in phase space and the Lagrange multiplier
is then uniquely determined. We continue to use the notation F | for a function
F of q, p when restricted to Γ∗.

We may choose
χ = p2 cos α − p1 sin α (10.4.48)
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where α is an arbitrary angle such that

{φ, χ}P.B.| = − (p2 sin α + p1 cos α) �= 0. (10.4.49)

The introduction of a new constraint χ, such that
{
φ, χ

}
�= 0 automati-

cally turns the example above to one with second class constraints only and
the two corresponding Lagrange multipliers are then determined.

The arbitrariness in the choice of the additional constraint χ function is
often referred to as a gauge freedom — the interpretation of which will be
spelled out below.

The validity of χ| = 0 for all t, leads from (10.4.47), (10.4.49) to

−{H,χ}P.B.| = λ {φ, χ}P.B.| (10.4.50)

which allows the determination of λ|.
The interpretation of the above construction becomes clear by introducing

the canonical variables:

Q = q2 cos α − q1 sinα, P = χ = p2 cos α − p1 sin α

q∗1 = q1 cos α + q2 sinα, p∗1 = p1 cos α + p2 sin α (10.4.51)

q∗3 = q3, p∗3 = p3.

We leave it as an exercise to the reader (see Problem 10.10) to show that
the transformation q1, q2, q3, p1, p2, p3 → q∗1 , Q, q∗3 , p∗1, P , p∗3 is actually
canonical consistent with Hamilton’s equations. It is easily checked that the
pair of constraints φ| = 0, χ| = 0 may be replaced by the pair Q | = 0,
P | = 0. Also note that {

φ, χ
}

P.B.
=

∂φ

∂Q
(10.4.52)

By choosing the additional constraint χ| = 0 with χ defined in (10.4.48),
with a given fixed α, the dynamics, as will be seen below, may be then
described in the q∗1-q∗3 plane making an angle α with the original q1-q3 plane
as shown in Figure 10.2 by the appropriate choice of the canonical variables in
(10.4.51). The choice of the additional constraint χ| = 0, fixes once and for all
the choice of the plane, specified by some angle α, to describe the dynamics
of the particle in question. Such a choice of an additional constraint may be
referred to as fixing a gauge and the parameter α, in this context, may be
called as a gauge fixing parameter.

With the canonical variables defined in (10.4.51), we may write

HT ≡
(
P 2 + p∗2)

2m
+ V

(
Q2 + q∗2)+ ρ1Q + ρ2P (10.4.53)

where q∗ = (q∗1 , q∗3), p∗ = (p∗1, p
∗
3), with
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α

α′

q∗1 q1

q2

q3, q
∗
3

Fig. 10.2. The introduction of the additional (subsidiary) constraint χ fixes
once and for all the plane in which the dynamics is described by choosing
appropriately new canonical variables as defined in (10.4.51). The angle pa-
rameter α, defining the angle between the q∗1 -q∗3 and q1-q3 planes may be
referred to as a gauge fixing parameter.

[(
P 2 + p∗2)

2m
+ V

(
Q2 + q∗2)

]∣∣∣∣∣ =
p∗2

2m
+ V

(
q∗2) . (10.4.54)

Needless to say that ρ1|, ρ2| may be determined as Q,P are second class
constraints since

{
Q,P

}
P.B.

= 1 �= 0.
The introduction of such additional constraints χβ = 0, which may be also

referred to as subsidiary constraints, turn first class constraints into second
class ones, which are chosen such that

det {Φα, χβ}P.B.

∣∣ �= 0 (10.4.55)

generalizing (10.4.49) (see also (10.4.36)) for more than one first class con-
straint function: Φ1,. . . ,Φν−M . Clearly, then ν − M subsidiary constraint
functions are needed χ1,. . . ,χν−M . We will choose them such that

{χα, χβ}P.B.

∣∣ = 0 (10.4.56)

for all α, β = 1,. . . , ν − M in addition to the restriction in (10.4.55).
In the sequel, dealing with path integrals with constraints, we will con-

sider only theories with first class constraints. Problems with second class
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constraints are, however, given in the problems section and additional com-
ments concerning them will be made later. A generalization of the Poisson
bracket, due to Dirac, will be, however, introduced to deal with second class
constraints at the end of this section.

We will thus be considering ν − M first class constraints only

Φ1 (q,p)| = 0, . . . , Φν−M (q,p)| = 0 (10.4.57)

with ν − M additional subsidiary ones

χ1 (q,p)| = 0, . . . , χν−M (q,p)| = 0 (10.4.58)

with the latter satisfying (10.4.55), (10.4.56). The constraints (10.4.57),
(10.4.58) lead to a 2M dimensional subspace Γ∗ for the physical subspace
of phase space, with M < ν.

The constraints functions Φα are assumed to be irreducible in the sense
that

{Φα,Φβ}P.B. =
ν−M∑
γ=1

cγ
αβΦγ (10.4.59)

and that for any function F (q,p) such that F = 0|,

F (q,p) =
ν−M∑
γ=1

fγΦγ (10.4.60)

where the coefficients cγ
αβ , fγ may depend on q, p.

10.4.2 Constrained Path Integrals

We may choose (χα,p∗), (Qα,q∗), α = 1, . . . , ν − M , as canonical vari-
ables, with Qα as the canonical conjugate variable to χα. We may then rewrite
the right-hand side of (10.4.1) as

∫ (∏
τ

dµ(τ)

)
exp

i
�

∫ t

t′
dτ

(
χαQ̇α + p∗ · q̇∗ − H̄

)
(10.4.61)

where

dµ =

(∏
α

δ (Qα − Qα (q∗,p∗)) δ (χα) dQαdχα

)
dMq∗ dMp∗

(2π�)M
(10.4.62)

and the Dirac deltas in (10.4.62) lead to the restriction of H̄ in (10.4.61) to

H̄ (Qα, χα,q∗,p∗)
∣∣
χα=0,Qα=Qα(q∗,p∗)

= H∗ (q∗,p∗) . (10.4.63)

We may also make the substitution
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∏
α

δ (Qα − Qα (q∗,p∗)) dQα →
(∏

α

δ (Φα) dΦα

)∣∣∣∣det
(

∂

∂Qβ
Φγ

)∣∣∣∣
(10.4.64)

by making use of a property of the Dirac delta distribution in one or more di-
mensions. Remembering our choice of (Qα, χα) as pairs in the set of canonical
conjugate variables, we also have

∂

∂Qβ
Φγ = {Φγ , χβ}P.B. (10.4.65)

(see also (10.4.52)).
That is, we may rewrite (10.4.62) simply as

dµ =

(∏
α

δ (Φα) δ (χα) dΦαdχα

)∣∣det {Φγ , χβ}P.B.

∣∣dMq∗ dMp∗

(2π�)M
.

(10.4.66)
Now we invoke the formal property of the invariance of

∏
α

dQαdχαdMq∗dMp∗ (10.4.67)

under canonical transformations to infer that with the choice of canonical
variables (q,p), we may rewrite (10.4.61) as

∫
dµ(τ) exp

i
�

∫ t

t′
dτ

(
p · q̇ − H +

d
dτ

U

)
(10.4.68)

where

exp
i
�

∫ t

t′
dτ

d
dτ

U = exp
i
�

(U(t) − U(t′)) , (10.4.69)

in general, is a phase factor depending, however, only on the end points
evaluated at t and t′ (see (10.4.21)), and the expression for U is dictated by
the generators of the canonical transformation itself. Also dµ is, now given
by

dµ =

(∏
α

δ (Φα) δ (χα)

)∣∣det {Φγ , χβ}P.B.

∣∣ dνq
dνp

(2π�)M
. (10.4.70)

For our application described by the system in (10.4.44), (10.4.45), χ| = 0
in (10.4.48), the generator W of the canonical transformation

(Q,χ,q∗,p∗) → (q,p) (10.4.71)

for infinitesimal transformation is given by the generator

W = −L3δα = − (q1p2 − p1q2) δα (10.4.72)
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(see (10.4.55)) in the sense that for α � δα → 0,

δQ =
{
Q,−L3

}
P.B.

= −q1δα (10.4.73)

etc., and the conservation law

d
dt

L3 = {L3,H}P.B. = 0 (10.4.74)

implies that U̇ = 0 in this case. Also

PQ̇ + p∗ · q̇∗ = p · q̇ (10.4.75)

Q2 + q∗2 = q2 (10.4.76)

P 2 + p∗2 = p2 (10.4.77)

as a consequence of rotational invariance, and note the constraints φ| =
L3| = 0, χ| = 0, as imposed by δ(φ)δ(χ) in the measure in (10.4.70). Using
the notation in (10.4.44), we have

H (q,p)| = H∗ (q∗,p∗) =
p∗2

2m
+ V

(
q∗2) . (10.4.78)

In some instances, as in the above example involving invariance under the
canonical transformation, no phase factor in (10.4.68) arises. In other cases,
such that when t → ∞, t′ → −∞ such a phase, if non-zero, may be unim-
portant in describing the dynamics of the problem. We shall not, however, go
into such additional details here. Finite canonical transformations, not just
infinitesimal ones, is the subject of Problem 10.8.7

Finally we show that the constrained path integral is invariant under the
variation of the subsidiary constraints, i.e., when we make the replacements
χα → χα − δχα = χ′

α with the χ′
α as new constraints.

Quite generally, we may write

δχα =
{
χα, aβΦβ

}
P.B.

+ bβΦβ (10.4.79)

with a summation over β understood, for arbitrary bβ since Φβ | = 0 in Γ∗.
The coefficients aβ are uniquely determined in Γ∗ in terms of the δχα since

{
χα,Φβ

}
P.B.

aβ

∣∣ = δχα

∣∣ (10.4.80)

as a consequence of the property in (10.4.55).
With aβΦβ as the generator of the transformation, we also have

δΦα =
{
Φα, aβΦβ

}
P.B.

7 For a fairly detailed treatment of canonical transformations, cf. Sudarshan and
Mukunda (1974).
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=
{
Φα, aβ

}
P.B.

Φβ +
{
Φα,Φβ

}
P.B.

aβ (10.4.81)

or upon using (10.4.59),
δΦα = MαγΦγ (10.4.82)

where
Mαγ =

{
Φα, aγ

}
P.B.

+ cγ
αβaβ . (10.4.83)

The general expression of the matrix [Mαγ ] in (10.4.83) allows an additional
linear combination of the Φβ to be present in (10.4.81). We note that the
elements of this matrix are infinitesimal.

From the following

{Φα − δΦα, χβ − δχβ}P.B.

∣∣ = (δαγ − Mαγ) {Φγ , χβ − δχβ}P.B.

∣∣ (10.4.84)

we may infer that

det {Φα − δΦα, χβ − δχβ}P.B.

∣∣ = det (1 − M) det {Φγ , χβ − δχβ}P.B.

∣∣ .
(10.4.85)

Also we use the property of the Dirac delta∏
α

δ (Φα − δΦα) ≡
∏
α

δ ((δαβ − Mαβ) Φβ)

=
1

det (1 − M)

∏
α

δ (Φα) (10.4.86)

to see that for χα → χα − δχα = χ′
α we simply have the transformation(∏

α

δ (Φα) δ (χα)

)∣∣det {Φγ , χβ}P.B.

∣∣

−→
(∏

α

δ (Φα) δ (χ′
α)

)∣∣∣det
{
Φγ , χ′

β

}
P.B.

∣∣∣ . (10.4.87)

Finally, we note that aαΦα as the generator of the transformation

d
dt

aαΦα

∣∣∣∣ =
(

d
dt

aα

)
Φα

∣∣∣∣+ aαΦ̇α

∣∣∣
= 0. (10.4.88)

For our earlier application in (10.4.44), (10.4.45), (10.4.48),

δχ = − (p1 cos α + p2 sinα) δα

= a
{
χ, φ

}
P.B.

∣∣ (10.4.89)

hence a = −δα, implying the invariance of the path integral under variations
of the angle of rotation α.
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10.4.3 Second Class Constraints and the Dirac Bracket

In (10.4.31), the restricted Poisson bracket
{
Φα,Ωβ

}
P.B.

∣∣ of a first class
constraint Φα with all constraint functions Ωβ is zero. Otherwise a constraint
function is called of second class and has been denoted by Ψβ , β = 1, . . . , L,
where L is necessarily even.8 It is straightforward to define, self consis-
tently, a new bracket

{
·, ·
}

D
, obtained from the Poisson bracket, such that{

Ωα,Ωβ

}
D

∣∣ = 0 for all constraint functions. This new bracket, obtained be-
low and referred to as the Dirac bracket, has also other desirable properties.

To the above end, note that since det
{
Ψα,Ψβ

}
P.B

�= 0 (see (10.4.32)),
we may find a matrix c = [cαβ ] such that

{
Ψα,Ψβ

}
P.B.

cβγ = δαγ (10.4.90)

On the other hand, (10.4.36) gives

0 = Ψ̇α

∣∣∣ =
{
Ψα,H

}
P.B.

∣∣+ {
Ψα,Ψβ

}
P.B.

ρβ

∣∣ (10.4.91)

which from (10.4.90), this leads to

ρβ | = −cβγ

{
Ψγ ,H

}
P.B.

∣∣ (10.4.92)

Accordingly, for an arbitrary function F of q (t), p (t),

Ḟ
∣∣∣ =

({
F,H

}
P.B.

−
{
F,Ψα

}
P.B.

cαβ

{
Ψβ ,H

}
P.B.

)∣∣+ ηα

{
F,Φα

}
P.B.

∣∣
(10.4.93)

This suggests to introduce the modified bracket defined by
{
·, ·
}

D
=
{
·, ·
}

P.B.
−
{
·,Ψα

}
P.B.

cαβ

{
Ψβ , ·

}
P.B.

(10.4.94)

and simply write

Ḟ
∣∣∣ =

{
F,H

}
D

∣∣+ ηα

{
F,Φα

}
P.B.

∣∣, {
Ωα,H

}∣∣
D

= 0 (10.4.95)

expressed in terms of the underlying Hamiltonian H of the system (see also
(10.4.100)), where {

F,Φα

}
P.B.

∣∣ =
{
F,Φα

}
D

∣∣. (10.4.96)

From (10.4.95), we see that it is of particular interest if one has only second
class constraints since in this case Ḟ

∣∣ =
{
F,H

}
D

∣∣.
For two functions F , G of q (t), p (t), (10.4.94) implies that

{
F,G

}
D

=
{
F,G

}
P.B.

−
{
F,Ψα

}
P.B.

cαβ

{
Ψβ , G

}
P.B.

(10.4.97)

For any two second class constraints functions Ψγ , Ψγ′ (10.4.94) then also
leads to
8 See footnote 6 below (10.4.36) for a demonstration of this.
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{
Ψγ ,Ψγ′

}
D

∣∣ =
{
Ψγ ,Ψγ′

}
P.B.

∣∣− {
Ψγ ,Ψα

}
P.B.

cαβ

{
Ψβ ,Ψγ′

}
P.B.

∣∣
= 0 (10.4.98)

and note that {
Φα,Φβ

}
D

∣∣ = 0,
{
Φα,Ψβ

}
D

∣∣ = 0 (10.4.99)

Finally, for any function F of q (t), p (t),
{
Ψα, F

}
D

∣∣ = 0, (10.4.100)

and for all constraint functions Ωβ ,
{
Ωα,Ωβ

}
D

∣∣ = 0. (10.4.101)

We leave as an exercise to the reader to check the basic properties of a
bracket in (10.4.14)–(10.4.17) for

{
·, ·
}

D
as well.

10.5 Bose Excitations

We represent the Bose operators aB , a†
B defined in §6.1–§6.3, §6.5, as

follows

aB → d
dβ∗ (10.5.1)

a†
B → β∗. (10.5.2)

This representation is obviously consistent with the corresponding com-
mutation relation in (6.1.13).

The n-particle state (see also §6.5), may be defined by

〈β∗ | n〉 = ψn (β∗) =
(β∗)n

√
n!

(10.5.3)

with the vacuum state simply given by

〈β∗ |0〉 = ψ0 (β∗) = 1. (10.5.4)

The normalization condition (§6.1)

〈n |m〉 = δnm (10.5.5)

and the explicit value of the integral
∫

dβ∗dβ

2πi
exp (−β∗β) (ψn (β∗))∗ ψm (β∗) = δnm (10.5.6)
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as obtained directly from the definition in (10.5.3), by working, for example,
in polar coordinates (see Problem 10.13), allow us to introduce the identity
operator

1 =
∫

dβ∗dβ

2πi
e−β∗β |β∗〉 〈β∗| (10.5.7)

and write
〈n | m〉 = 〈n |1|m〉 = δnm (10.5.8)

consistent with (10.5.6).
We will consider, in general, any operator B, which as a function of a†

B ,
aB , may be written in the form

B =
∑
n,m

Bnm

(
a†

B

)n

(aB)m
. (10.5.9)

From (6.1.31), (6.5.10) one easily gets

〈N |B|M〉 =
∑
n,m

Bnm

√
N !M !

(N − n)!
δ(N − n,M − m) (10.5.10)

with the restriction n � N , such that N − n = M − m, with δ(·, ·) denoting
the Kronecker delta.

In the representation (10.5.1)–(10.5.4),

〈β∗ |B|β′∗〉 =
∑
N,M

(β∗)N

√
N !

〈N |B|M〉 (β′)M

√
M !

=
∑
N,M

∑
n,m

δ(N − n,M − m)Bnm(β∗)n(β′)m (β∗β′)N−n

(N − n)!

= exp(β∗β′)
∑
n,m

Bnm(β∗)n(β′)m (10.5.11)

where in the first equality we used the completeness of the states |N〉, and
in the last equality we have made a change of variable N − n → N , in the
process.

Upon comparison of (10.5.11) with (10.5.9) we obtain the rule

〈β∗ |B|β′∗〉 = exp(β∗β′)B|a†
B→β∗,aB→β′ . (10.5.12)

In particular, for the identity operator, this gives

〈β∗ | β′∗〉 = exp (β∗β′) (10.5.13)

which is also directly verified from (10.5.3).
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From (10.5.7), (10.5.13), we obtain the property

|ρ∗〉 =
∫

dβ∗dβ

2πi
e−β∗βeβ∗ρ |β∗〉 . (10.5.14)

With 〈0|, denoting 〈n = 0|, this leads, upon multiplying (10.5.14) by 〈0|, to
∫

dβ∗dβ

2πi
e−β∗βeβ∗ρ = 1. (10.5.15)

This result may be also obtained by expanding exp (β∗ρ), on the left-hand
side of (10.5.15) and then using (10.5.6).

Other useful relations which readily follow from (10.5.14) are
∫

dβ∗dβ

2πi
e−β∗βeβ∗ρ(β)n = (ρ)n (10.5.16)

∫
dβ∗dβ

2πi
e−β∗βeβ∗ρeβσ∗

= eσ∗ρ (10.5.17)

which in turn generalize (10.5.15).
From (10.5.7), we have the following representation for an operator B

obtained by writing B = 1B1,

B =
∫

dβ∗dβ

2πi
dβ′∗dβ′

2πi
e−(β∗β+β′∗β′) |β∗〉 〈β∗|B |β′∗〉 〈β′∗| . (10.5.18)

For the product of two operators B1, B2 this gives

B2B1 =
∫

dβ∗dβ

2πi
dβ′∗dβ′

2πi
e−(β∗β+β′∗β′) |β∗〉 〈β∗|B21 |β′∗〉 〈β′∗| (10.5.19)

where

〈β∗|B21 |β′∗〉 =
∫

dβ∗
1dβ1

2πi
e−β∗

1β1 〈β∗|B2 |β∗
1〉 〈β∗

1 |B1 |β′∗〉 (10.5.20)

with the rule given in (10.5.12) for computing the matrix elements on the
right-hand of (10.5.19).

In the sequel we use the notation

〈β∗|B |β′∗〉 ≡ B(β∗, β′). (10.5.21)

For a Hamiltonian H(a†
B , aB ; t), the time evolution operator U(t, t′),

t′ → t is then from (10.5.12), (10.5.18), by repeated applications of (10.5.19),
(10.5.20), given by

U(t, t′) =
∫

dβ∗dβ

2πi
dβ′∗dβ′

2πi
e−(β∗β+β′∗β′) |β∗〉 〈β′∗|U(β∗, β′; t, t′) (10.5.22)
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where

U(β∗, β′; t, t′) = lim
N→∞

∫ (
N−1∏
k=1

dβ∗
kdβk

2πi

)

× exp

(
N∑

k=1

(
β∗

kβk−1 −
i
�
εH(β∗

k , βk−1; t̃k)
)
−

N−1∑
k=1

β∗
kβk

)

(10.5.23)

and β∗
N = β∗, β0 = β′, t̃k = t′ + (k − 1/2)ε, k = 1, . . . , N , t − t′ = Nε.

We may add and subtract the term β∗
NβN in the exponential in (10.5.23)

to obtain in the limit N → ∞

U(β∗, β′; t, t′) =
∫ β∗(t)=β∗

β(t′)=β′
D(β∗(·), β(·)) exp(β∗(t), β(t))

× exp
i
�

∫ t

t′
dτ

(
i�β∗(τ)β̇(τ) − H (β∗(τ), β(τ); τ)

)
. (10.5.24)

The exponentials in (10.5.24) may be combined in the form

exp
i
�

∫ t

t′
dτ

(
i�β∗(τ)β̇(τ) − i�β∗(τ)β(τ)δ(τ − t + 0) − H (β∗(τ), β(τ); τ)

)
.

(10.5.25)
As an application, we consider the Hamiltonian

H(a†
B , aB ; t) = �ωa†

BaB − F (t)(aB + a†
B) (10.5.26)

(see also (6.2.2)), where for simplicity we have not included a zero point
energy.

For the Hamiltonian in (10.5.26), one is dealing in (10.5.23)/(10.5.24)
with Gaussian integrals. These may be carried out directly from (10.5.23) by
a method which will be explicitly worked out in detail for the corresponding
case with fermions in the next section (see Problem 10.14). They may be also
carried out by the method applied in §10.2 by considering the deviation of
β∗(τ), β(τ) from their classical solutions with boundary conditions β∗(t) =
β∗, β(t′) = β′ by using, in the process, the expression in (10.5.24). These give
the following explicit form

U(β∗, β′; t, t′) = exp
(
β∗β′e−iω(t−t′)

)
exp

(
i
�
β∗

∫ t

t′
dτ e−iω(t−τ)F (τ)

)

× exp
(

i
�
β′
∫ t

t′
dτ e−iω(τ−t′)F (τ)

)

× exp
(
− 1

�2

∫ t

t′
dτ

∫ τ

t′
dτ ′ F (τ)e−iω(τ−τ ′)F (τ ′)

)
. (10.5.27)
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With F (τ) assumed to vanish outside the interval (t′, t), we may introduce
the Fourier transform

F (ω) =
∫ ∞

−∞
dτ eiωτF (τ) (10.5.28)

and using the notation

γ =
∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′F (τ)e−iω(τ−τ ′)Θ(τ − τ ′)F (τ ′) (10.5.29)

we obtain from (10.5.27), the following expression for U(t, t′) in (10.5.22),

U(t, t′) = e−γ/�
2
∫

dβ∗dβ

2πi
dβ′∗dβ′

2πi
e−(β∗β+β′∗β′) exp

(
β∗β′e−iω(t−t′)

)

× exp
(
iβ∗e−iωtF (ω)/�

)
exp

(
iβ′eiωt′F ∗(ω)/�

)
|β∗〉 〈β′∗| .

(10.5.30)

In particular, this gives

〈0 |U(t, t′)| 0〉 = exp
(
− γ

�2

)
(10.5.31)

(compare with (6.2.12)), where we have used (10.5.4) and the explicit inte-
gral (10.5.15) which gives unity for the integral corresponding to the measure
dβ∗dβ/2πi followed, again, by one for the integral corresponding to the mea-
sure dβ′∗dβ′/2πi.

For 〈n |U(t, t′)| 0〉, the dβ′∗dβ′/2πi-integral gives one, and hence

〈n |U(t, t′)| 0〉 = e−γ/�
2
∫

dβ∗dβ

2πi
e−β∗β exp

(
iβ∗e−iωtF (ω) /�

) (β)n

√
n!

=

[
iF (ω)e−iωt/�

]n
√

n!
e−γ/�

2
(10.5.32)

where we have used (10.5.3) and (10.5.16), which is to be compared with
(6.2.22).

Finally, we derive a generating function which allows the determination
of all the matrix elements 〈n |U(t, t′)| m〉.

To the above end, we multiply (10.5.30) form the left by
(
(c∗)n/

√
n!
)
〈n|,

from the right by |m〉
(
(c′)m/

√
m!
)
, and sum over n,m = 0, 1, . . . , to obtain

∑
n,m

(c∗)n

√
n!

〈n |U(t, t′)|m〉 (c′)m

√
m!

= e−γ/�
2
∫

dβ∗dβ

2πi
dβ′∗dβ′

2πi
e−(β∗β+β′∗β′)
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× exp
(

β∗
(

β′e−iω(t−t′) +
i
�
e−iωtF (ω)

))

× eβc∗eβ′∗c′ exp
(

β′
(

i
�
eiωt′F ∗(ω)

))
.

(10.5.33)

The integrals may be carried out exactly thanks to the integral in (10.5.17)
to yield

∑
n,m

(c∗)n

√
n!

〈n |U(t, t′)|m〉 (c′)m

√
m!

= e−γ/�
2
exp

(
c∗c′e−iω(t−t′)

)

× exp
(

i
�
F ∗(ω)e+iωt′c′

)
exp

(
i
�
c∗e−iωtF (ω)

)
. (10.5.34)

The matrix elements 〈n |U(t, t′)| m〉 are then obtained from (10.5.34) by
carrying out n derivatives with respect to c∗ and m derivatives with respect to
c′, then setting c∗ = 0, c′ = 0, and dividing by

√
m!n!. This is to be compared

with the expression for 〈nt |mt′〉 in (6.2.30) in the present notation.

10.6 Grassmann Variables: Fermi Excitations

In this section, we introduce anti-commuting c-variables, referred to as
Grassmann variables, and learn how to differentiate and integrate with re-
spect to such variables. Finally Grassmann variables are used to develop
path integrals to describe Fermi-particle interactions with external sources.
We consider in turn real and complex Grassmann variables.

10.6.1 Real Grassmann Variables

We introduce v anti-commuting real variables η1, . . . , ηv:

{ηj , ηk} = 0 (10.6.1)

j, k = 1, . . . , v. Equation (10.6.1), in particular, implies that

η2
k = 0 (10.6.2)

for k = 1, . . . , v.
As a result of (10.6.2), we may expand a function of (η1, . . . , ηv) ≡ η

involving at most the product of the v distinct Grassmann variables:

f(η) =
v∑

k=0

∑
i1,...,ik

f
(k)
i1···ik

ηi1 . . . ηik
(10.6.3)
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where for k = 2, . . . , v, the coefficients f
(k)
i1···ik

are totally anti-symmetric in
i1, . . . , ik.

The left-hand derivative with respect to a Grassmann variable ηj is defined
by

∂

∂ηj
ηi1 · · · ηj · · · ηik

= (−1)δj−1ηi1 · · · ηik
(10.6.4)

where δj denotes the position of ηj in the product ηi1 · · · ηj · · · ηik
from the

left, and the variable ηj is omitted on the right-hand side of (10.6.4). If the
former product does not involve ηj , the right-hand side of (10.6.4) should be
replaced by zero. For example, note that

∂

∂ηj
ηkηm = δjkηm − ηkδjm (10.6.5)

and {
∂

∂ηj
, ηk

}
= δjk. (10.6.6)

Similarly the right-hand derivative with respect to a ηj , denoted by ∂/∂ηj←−
,

is defined by

ηi1 · · · ηj · · · ηik

∂

∂ηj←−
= (−1)δj−1ηi1 · · · ηik

(10.6.7)

where δj denotes the position of ηj in the product ηi1 · · · ηj · · · ηik
from the

right, etc.
For a fixed k in {1, . . . , v}, because of property (10.6.2), one has to inves-

tigate the meanings of only the following two integrals:
∫

dηk,

∫
dηk ηk. (10.6.8)

Assuming translational invariance of the integrals for ηk → ηk + αk = η′
k,

where αk is another Grassmann variable, which anti-commutes with ηk, we
obtain ∫

dη′
k =

∫
dηk (10.6.9)

∫
dη′

k η′
k =

∫
dηk ηk +

(∫
dηk

)
αk

=
∫

dηk ηk (10.6.10)

for arbitrary αk. Hence we conclude that
∫

dηk = 0 (10.6.11)
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for any k in {1, . . . , v}.
The second integral in (10.6.8), defined as a c-number, may be normalized

arbitrarily, and we choose it to be
∫

dηk ηk =
√

2π = −
∫

ηk dηk (10.6.12)

for any k, where in writing the second equality we used the fact that the
nature of ηk as a Grassmann variable requires that dηk also anti-commutes
with the Grassmann variables to make the second integral in (10.6.8) a c-
number. The latter is consistent with the definition of the differential operator
d =

∑
k

dηk∂/∂ηk satisfying the rule

d (ηiηj) = dηi ηj + ηi dηj (10.6.13)

and, on the other hand, one has explicitly from (10.6.5) that

d (ηiηj) = dηi ηj − dηj ηi (10.6.14)

which upon comparison with (10.6.13) implies that

{dηi, ηj} = 0. (10.6.15)

From the rule given in (10.6.12), we may define the multiple integral
∫

dη1 η1

∫
dη2 η2

∫
· · ·

∫
dηv ηv = (2π)v/2 (10.6.16)

or ∫
dη1 · · ·

∫
dηv ηv · · · η1 = (2π)v/2. (10.6.17)

A function f(ηk) of ηk in {η1, . . . , ηv} may be written as

f(ηk) = c0 + c ηk (10.6.18)

where c0, c are c-numbers. For any other Grassmann variable αk, which anti-
commutes with ηk we have

∫
dηk (ηk − αk) f(ηk) =

√
2π (c0 + c αk)

=
√

2πf(αk) (10.6.19)

which allows us to introduce the Dirac delta, in this context, given by

δ (ηk − αk) =
1√
2π

(ηk − αk) . (10.6.20)
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The reader is asked to derive some of the immediate properties of δ(ηk) that
follow from (10.6.20) in Problem 10.15.

From the rule of integration in (10.6.12), (10.6.11), we may then introduce
the representation

δ (ηk − αk) =
∫

dρk

2πi
eiρk(ηk−αk) (10.6.21)

as is easily checked, where ρk is a Grassmann variable which, in particular,
anti-commutes with ηk, αk.

Since dηk δ (ηk − αk) commutes with all Grassmann variables, we have
the useful property

∫
dη1 δ (η1 − α1) · · · dηv δ (ηv − αv) (η1)

ε1 · · · (ηv)εv

= (α1)
ε1 · · · (αv)εv (10.6.22)

where εi = 0 or 1, (·)0 = 1,
∫

(η1)
ε1 · · · (ηv)εv dvη δv

A (η − α) = (α1)
ε1 · · · (αv)εv (10.6.23)

and

dvη = dη1 · · · dηv−1dηv (10.6.24)

δv
A (η − α) = δ (ηv − αv) δ (ηv−1 − αv−1) · · · δ (η1 − α1) (10.6.25)

and note the different orderings in dvη and δv
A(η − α).

By using the property that a product of two Grassmann variables
ρkαk commutes with all Grassmann variables, we may infer from (10.6.21),
(10.6.25) that

δv
A(η − α) =

∫
dv

Aρ

(2πi)v
eiρ·(η−α) (10.6.26)

where
dv

Aρ = dρvdρv−1 · · · dρ1. (10.6.27)

For an arbitrary function f(η), as given in (10.6.3), we define the trans-
form

f̃(ρ) =
∫

f(η′) dvη′ eiρ·η′
. (10.6.28)

Upon multiplying (10.6.28) form the right by (dv
Aρ/(2πi)v) exp(−iρ · η) and

integrating we obtain
∫

f̃(ρ)
dv

Aρ

(2πi)v
e−iρ·η =

∫
f(η′) dvη′ dv

Aρ

(2πi)v
eiρ·(η′−η)
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=
∫

f(η′) dvη′ δv
A(η′ − η) (10.6.29)

or
f(η) =

∫
f̃(ρ)

dv
Aρ

(2πi)v
e−iρ·η (10.6.30)

where we have used (10.6.23), (10.6.22), (10.6.26).
Finally we note that the rule for the change of integration variables in

the evaluation of an integral turns out to be quite simple but surprising.
Consider the change of variables η1, . . . , ηv → α1, . . . , αv defined by the linear
combination

ηj = Cjkαk (10.6.31)

where the Cjk are c-numbers, and α1, . . . , αk are Grassmann variables. To
the above end it is sufficient to consider the integral of the product η1, . . . , ηv.
In this case, we have

∫
dvη η1 · · · ηv =

∫
dvα J C1k1αk1 · · ·Cvkv

αkv
(10.6.32)

where J is the Jacobian of the transformation to be determined. Since

αk1 · · ·αkv
= α1 · · ·αvεk1···kv (10.6.33)

where εk1···kv is the Levi-Civita symbol equal to +1, −1 if {k1, . . . , kv} is and
even, odd permutation of {1, . . . , v}, respectively, and equal to zero if any
two or more of the indices k1, . . . , kv are equal, and

C1k1 · · ·Cvkv
εk1···kv = det C (10.6.34)

we immediately obtain from (10.6.32) that

J = (det C)−1 (10.6.35)

being the inverse of det C (!).

10.6.2 Complex Grassmann Variables

Out of two real Grassmann variables αR, αI satisfying {αR, αI} = 0, we
may define a complex Grassmann variable α = αR+iαI. Immediate properties
which follow from this definition are

{α, α} = 0, {α, α∗} = 0, {α∗, α∗} = 0. (10.6.36)

Also imposing a reality restriction on the product

α∗α = −2iαIαR (10.6.37)

implies that
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(αIαR)∗ = −αIαR

= αRαI = −α∗
I α

∗
R (10.6.38)

where in writing the second equality we have used the anti-commutativity
of αI, αR, and in the last one, we have used the reality condition of these
variables.

From (10.6.12), and upon writing
∫

dαR αR =
√

2π =
(∫

dαR αR

)∗
= −

∫
(dαR)∗ α∗

R = −
∫

(dαR)∗ αR

(10.6.39)
we may infer that

(dαR)∗ = −dαR (10.6.40)

and similarly
(dαI)

∗ = − (dαI) . (10.6.41)

From the definition
dα = dαR + i dαI (10.6.42)

it follows that
(dα)∗ = −dα∗. (10.6.43)

Also from
{
dα∗, α∗} = 0 and

(∫
dα α

)∗
=
∫

α∗ (dα)∗ = −
∫

α∗dα∗

one obtains (∫
dα α

)∗
=
∫

dα∗α∗. (10.6.44)

To define integrations over complex Grassmann variables, we first note
that for consistency with (10.6.11), (10.6.42), (10.6.43)

∫
dα∗ = 0 (10.6.45)

Also to obtain a consistent definition of the integral in (10.6.45), we consider
the transformation of variables αR, αI → α∗, α:

(
αR

αI

)
=

1
2

(
1 1
i −i

)(
α∗

α

)
, (10.6.46)

define the Jacobian of the transformation given in (10.6.35)

J =
(

det
1
2

(
1 1
i −i

))−1

= 2 i (10.6.47)
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and use the fact that αIαR = αα∗/2i to infer that

2π =
∫

dαR dαI αI αR =
∫

dα∗dα (2i) (αα∗/2i) (10.6.48)

or ∫
dα∗
√

2π

dα√
2π

αα∗ = 1. (10.6.49)

Hence a consistent definition with (10.6.45) is
∫

dα∗
√

2π
α∗ = 1 =

∫
dα√
2π

α. (10.6.50)

For integrations over v complex Grassmann variables α1, . . . , αv, satisfy-
ing

{αi, αk} = 0, {αi, α
∗
k} = 0, {α∗

i , α
∗
k} = 0 (10.6.51)

consider the integral

I =
∫

dα∗
1dα1

2π
· · · dα∗

vdαi

2π
exp (−α∗

i Aijαj) (10.6.52)

where Aij are c-numbers. The commutativity of α∗
i Ai1α1, for example, with

all the Grassmann variables, and so on, allow us to rewrite the integral I as
(since α2

1 = 0, . . . , α2
v = 0)

I =
∫ dα∗

1

(
−α∗

j1
Aj11α1

)
dα1

2π
· · ·

dα∗
v

(
−α∗

jv
Ajvvαv

)
dαv

2π

=
∫ dα∗

1 α∗
j1

Aj11√
2π

· · ·
dα∗

v α∗
jv

Ajvv√
2π

=
∫

dα∗
1√

2π
· · · dα∗

v√
2π

α∗
jv
· · ·α∗

j1Ajvv · · ·Ajv1. (10.6.53)

Upon using the properties

α∗
jv
· · ·α∗

j1 = α∗
v · · ·α∗

1ε
jv···j1 (10.6.54)

and
εjv···j1Ajvv · · ·Aj11 = det A (10.6.55)

we obtain ∫
dα∗

1dα1

2π
· · · dα∗

vdαv

2π
exp (−α∗

i Aijαj) = det A. (10.6.56)

For det A �= 0, (10.6.56) gives rise to another useful integral upon making
the change of variables αj → αj + ηj , α∗

j → α∗
j + η∗

j , j = 1, . . . , v where the
ηj , η∗

j are Grassmann variables. This leads, from (10.6.56), to
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∫

dα∗
1dα1

2π
· · · dα∗

vdαv

2π
exp− (α∗

i Aijαj + α∗
i bi + c∗i αi)

= (detA) exp
(
c∗i A

−1
ij bj

)
(10.6.57)

where
bi = Aijηj (10.6.58)

c∗i = η∗
j Aji =

(
A�

ij

)
η∗

j . (10.6.59)

For A a Hermitian matrix,
ci = bi. (10.6.60)

10.6.3 Fermi Excitations

We represent the Fermi operators aF, a†
F, defined in (6.4.1)–(6.4.3), as

follows
aF −→ d

dα∗ (10.6.61)

a†
F = α∗ (10.6.62)

where α∗ is a Grassmann variable. The representation (10.6.61), (10.6.62) is
obviously consistent with the anti-commutation relations (6.4.2), (6.4.3).

The vacuum state and the single particle state may be then defined by

〈α∗ |0〉 = ψ0(α∗) = 1 (10.6.63)

〈α∗ |1〉 = ψ1(α∗) = α∗ (10.6.64)

where we recall that (α∗)2 = 0. We may rewrite (10.6.63), (10.6.64) in a
unified notation

〈α∗ | n〉 = ψn (α∗) = (α∗)n
, n = 0, 1. (10.6.65)

From (10.6.56), (10.6.50), we have
∫

dα∗dα

2π
exp (−α∗α) (ψn (α∗))∗ (ψm (α∗)) = δnm, n = 0, 1. (10.6.66)

The identity operator is defined by

1 =
∫

dα∗dα

2π
exp (−α∗α) |α∗〉 〈α∗| (10.6.67)

and
〈n | m〉 = 〈n |1|m〉 = δnm (10.6.68)

according to (10.6.66).
An operator F , which is a function of a†, a, has the general structure
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F =
∑

n,m=0,1

Cnm

(
a†)n

(a)m (10.6.69)

where the Cnm are c-numbers. It is easy to see that for N,M = 0, 1,

〈N |F |M〉 =
∑′

Cnm δ (N − n,M − m) (10.6.70)

where the summation is over all integers n, m, 0 � n � N , 0 � m � M such
that N − n = M − m.

In the |N〉, N = 0, 1, basis

F =
∑

N,M=0,1

|N〉 〈N |F |M〉 〈M | (10.6.71)

with 〈N |F |M〉 given in (10.6.70). In the representation (10.6.61), (10.6.62),

〈α∗ |F |α′∗〉 =
∑

N,M=0,1

(α∗)N 〈N |F |M〉 (α′)M
. (10.6.72)

The latter is explicitly worked out, from (10.6.70), to be

〈α∗ |F |α′∗〉 = C00 + C01α
′ + C10α

∗ + C11α
∗α′ + C00α

∗α′

= (C00 + C01α
′ + C10α

∗ + C11α
∗α′) exp (α∗α′) . (10.6.73)

Comparing (10.6.73) with (10.6.69) we have the rule

〈α∗ |F |α′∗〉 = exp (α∗α′) F

∣∣∣∣a†→α∗

a→α′
≡ F (α∗, α′) . (10.6.74)

From (10.6.67), (10.6.72), (10.6.74), we have the following convenient rep-
resentation for the operator F obtained by writing F = 1F1,

F =
∫

dα∗dα

2π

dβ∗dβ

2π
(exp− (α∗α + β∗β)) |α∗〉F (α∗, β) 〈β∗| . (10.6.75)

For F the identity, (10.6.74) gives

〈α∗ | α′∗〉 = F (α∗, α′) = exp (α∗ α′) (10.6.76)

coinciding with the expression obtained from the use of the completeness
relation

〈α∗ |α′∗〉 =
∑

n=0,1

〈α∗ | n〉 〈n | α′∗〉

=
∑

n=0,1

(α∗)n (α′)n = 1 + α∗α′ = exp α∗α′ (10.6.77)
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as expected.
For two operators F2, F1 which are functions of a†, a having the general

structure in (10.6.69), we have directly from (10.6.75),

F2F1 =
∫

dα∗dα

2π

dβ∗dβ

2π
(exp− (α∗α + β∗β)) |α∗〉F21 (α∗, β) 〈β∗|

(10.6.78)
where, using (10.6.75), (10.6.76)

F21 (α∗, β) =
∫

dα′∗dα′

2π

dβ′∗dβ′

2π

(
exp− (α′∗α′ + β′∗β′ − β′∗α′)

)

× F2 (α∗, β′) F1 (α′∗, β) (10.6.79)

or upon carrying out the elementary integrations over β′∗ and α′, we obtain
in a convenient notation

F21 (α∗
2, β0) =

∫
dα∗

1dβ1

2π
(exp−α∗

1β1) F2 (α∗
2, β1) F1 (α∗

1, β0). (10.6.80)

For a Hamiltonian H(a†, a; t), the time-evolution operator U(t, t′), t′ → t,
is then from (10.6.74), (10.6.75), by repeated applications of (10.6.80), given
by

U (t, t′) =
∫

dα∗dα

2π

dβ∗dβ

2π

(
exp− (α∗α + β∗β)

)
|α∗〉U (α∗, β; t, t′) 〈β∗|

(10.6.81)
where

U (α∗, β; t, t′) = lim
N→∞

∫ (
N−1∏
k=1

dα∗
kdβk

2π

)

× exp

(
N∑

k=1

(
α∗

kβk−1 −
i
�
εH

(
α∗

k, βk−1; t̃k
))

−
N−1∑
k=1

α∗
kβk

)

(10.6.82)

and α∗
N = α∗, β0 = β, t̃k = t′ + (k − 1/2)ε, k = 1, . . . , N .

Of particular interest is the vacuum expectation value 〈0 |U (t, t′) | 0〉.
Since 〈0 |α∗〉 = 1 = 〈β∗ |0〉, we may immediately carry out the α, β∗ inte-
grations. This in turn leads to the explicit evaluation of the α∗, β integrals
in (10.6.81) and we may effectively set α∗ = 0, β0 = 0 in (10.6.82) recalling
that we are integrating over Grassmann variables. That is,

〈0 |U (t, t′)| 0〉 = lim
N→∞

∫ (
N−1∏
k=1

dα∗
kdβk

2π

)
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× exp
N∑

k=1

(
1
2
(
α∗

k − α∗
k−1

)
βk−1 −

1
2
α∗

k (βk − βk−1) −
i
�
εH

(
α∗

k, βk; t̃k
))

(10.6.83)

where α∗
N = 0, β0 = 0.

Upon taking the limit N → ∞ in (10.6.83), we obtain

〈0 |U (t, t′)| 0〉 =
∫ α∗(t)=0

β(t′)=0

D (α∗ (·) , β (·)) exp
i
�

∫ t

t′
dτ

(
�

2i
[
α̇∗ (τ) β (τ)

−α∗ (τ) β̇ (τ)
]
− H (α∗ (τ) , β (τ) ; τ)

)
. (10.6.84)

As an application, we consider the Hamiltonian

H
(
a†
F, aF; t

)
= �ω (t) a†

FaF − η∗ (t) aF − a†
Fη (t) (10.6.85)

(see also (6.4.11)), where ω(t) is, in general, a time-dependent c-function, and
η∗(t), η(t) are time-dependent Grassmann variables, where for simplicity we
have not included a zero point energy.

The sum in the exponential in (10.6.83) or (10.6.82), with α∗
N = 0, β0 = 0,

may be then written as

N−1∑
k=2

γkα∗
kβk−1 −

N−1∑
k=1

α∗
kβk +

i
�
ε

N−1∑
k=1

(
η∗ (t̃k+1

)
βk + α∗

kη
(
t̃k
))

(10.6.86)

where
γk = 1 − iεω

(
t̃k
)
. (10.6.87)

The expression in (10.6.86) is conveniently rewritten as

− α∗
kAkjβj − α∗

kbk − c∗kβk (10.6.88)

where j, k = 1, . . . , N − 1,

A = [Aij ] =




1 0 0 0
−γ2 1 0 ·
0 −γ3 1 ·

· ·
·
·

1 0
0 · · · 0 −γN−1 1




(10.6.89)

det A = 1, and
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bk = − i
�
εη
(
t̃k
)
, c∗k = − i

�
εη∗ (t̃k+1

)
. (10.6.90)

The inverse of A is given by

A−1 =




1 0 0 0

γ2 1
. . .

... γ3
. . .

... 1 0
(γ2γ3 · · · γN−1) (γ3γ4 · · · γN−1) · · · (γN−1) 1




. (10.6.91)

From (10.6.57), we then have for 〈0 |U (t, t′)| 0〉 the expression

lim
N→∞

exp


− ε2

�2

N−1∑
k=1

η∗ (t̃k+1

) k∑
j=1

γj+1 · · · γkη
(
t̃j
)

 (10.6.92)

where, needless to say, γ1 ≡ 1, and for j = k − 1, replace γkγk by γk, and for
j = k, replace γk+1γk by one.

For ε � 0, we may rewrite

γj+1 . . . γk � exp−iε
(
ω
(
t̃j+1

)
+ · · · + ω

(
t̃k
))

= exp−iε
(
ω
(
t̃2
)

+ · · · + ω
(
t̃k
))

exp iε
(
ω
(
t̃2
)

+ · · · + ω
(
t̃j
))

.
(10.6.93)

Hence upon taking the limit N → ∞ in (10.6.92) we obtain

〈0 |U (t, t′)| 0〉 = exp
(
− 1

�2

∫ t

t′
dτ

∫ t

t′
dτ ′η∗ (τ) e−iΩ(τ,τ ′)Θ (τ − τ ′) η (τ ′)

)

(10.6.94)
where

Ω(τ, τ ′) =
∫ τ

τ ′
dτ ′′ω (τ ′′) (10.6.95)

In (10.6.94), we assume that η∗(τ), η(τ ′) vanish outside the interval (t, t′).
For ω(t) = ω, we obtain the expression in (6.4.18) in the present notation.
A very similar procedure as above (see Problem 10.16) shows, quite gen-

erally, with boundary conditions α∗(t) = α∗, β(t′) = β, for the Hamiltonian
in (10.6.85), that U(α∗, β; t, t′) is given by

U(α∗, β; t, t′) = exp
(
α∗βe−iΩ(t,t′)

)
exp

(
i
�
α∗Γ1

)
exp

(
i
�
Γ2β

)
exp

(
− 1

�2
γ

)

(10.6.96)
where
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Γ1 =

t∫
t′

dτ η(τ)e−iΩ(t,τ) (10.6.97)

Γ2 =

t∫
t′

dτ η∗(τ)e−iΩ(τ,t′) (10.6.98)

and Ω(τ, τ ′) is defined in (10.6.95).
Upon using 〈n |α∗〉 = (α)n, 〈β∗ |m〉 = (β∗)m with n,m = 0, 1, in com-

puting all the matrix elements 〈n |U (t, t′) |m〉 of U(t, t′) in (10.6.81), and
carrying out the elementary integrations over the Grassmann variables α∗,
α, β∗, β we obtain from (10.6.96) (see Problem 10.17)

〈n |U(t, t′)|m〉 =
[
δn0δm0 + δn0δm1

i
�
Γ2 + δn1δm0

i
�
Γ1

]
e−γ/�

2

+δn1δm1

[
e−iΩ(t,t′) +

Γ2Γ1

�2

]
e−γ/�

2
(10.6.99)

The reader is urged to show that for ω(t) = ω, (10.6.99) immediately reduces
to the corresponding expressions in (6.4.20)–(6.4.22).

Problems

10.1. Follow the procedure given in §10.2 in deriving the path integral for
the time-independent potential −Fx to derive the corresponding ex-
pression for the time-dependent one −F (t)x, and compare your result
with the one given in §9.4.

10.2. Verify that the integral equation in (10.3.17) leads upon taking the
limit ε → 0 to the Schrödinger equation in (10.3.18).

10.3. Carry out the multiple Gaussian integrals over the momenta in
(10.3.27), for velocity independent potentials, to obtain the path inte-
gral in (10.3.28) in coordinate space.

10.4. Investigate the nature of the path integral of a free particle moving
along a circle of fixed radius a as a non-constrained problem, i.e., by
writing the Laplacian ∇2 directly as

(
1/a2

)
∂2/∂φ2.

(i) Carry out a Fourier expansion of δ (φ − φ′) and show that

〈φt |φ′t′〉 = lim
N→∞

(
ma2

2πi�T/N

)N/2 ∞∑
k0=−∞


N−1∏

j=1

2π∫
0

dφj

∞∑
kj=−∞




× exp


i

ma2

2�T/N

N−1∑
j=0

(φj+1 − φj + 2πkj)
2


 .
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where φN = φ, φ0 = φ′.
(ii) By using the Poisson sum formula, and by appropriate change of

variables in part (i), show that

〈φt |φ′t′〉 = a

∞∑
k=−∞

〈a (φ + 2πk) , t |aφ′, t′〉0

= a
∞∑

k=−∞

a(φ+2πk)∫
aφ′

D (aφ (·)) exp


 im

2�

t∫
t′

dτ
(
aφ̇ (τ)

)2




where 〈x, t|x, t′〉0 is the free Green function. The expression above
is an infinite sum of one dimensional amplitudes on the real line
each characterized by a winding number k. Interpret this result.

10.5. Consider the following formally Hermitian operator

H =
p2

2m
− i�

a2m
xp +

1
2a2m

x2p2 + V (x) = HR

where a2 > 0 is a constant. We note that the operator p stands on the
right-hand side which explains the notation HR.
(i) Show by using [x, p] = i�, H may be rewritten with p standing on

the left-hand side as

H =
p2

2m
+

i�
a2m

px +
1

2a2m
p2x2 + V (x) = HL.

(ii) Carry out the path integral for this system with a velocity depen-
dent potential as described in §10.3, to conclude that classically
with x and p as c-numbers now

Hc =
1
2

(HR + HL)c =
(

1 +
x2

a2

)
p2

2m
+ V (x) .

(iii) Integrate explicitly on the momenta of the corresponding functions
to show that for the amplitude 〈x, t|x′, t′〉, the resulting integrand
for the corresponding one in the exponential in (10.2.18) is not
simply given by the classical Lagrangian. Here you will encounter
a δ (0) singularity well known in some field theories.

10.6. Verify explicitly the properties of the Poisson brackets in (10.4.14)–
(10.4.17).

10.7. Investigate the nature of the transformation of the amplitude
〈qt |q′t′〉, with no constraints present, under a finite canonical trans-
formation via a generator W .

10.8. Show that for a theory with first and second class constraints Φα, Ψα,
respectively, that from
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{Φα,Φγ} = aσ
αγΦσ + bσ

αγΨσ

one may infer that bσ
αγ

∣∣ = 0.
(Hint: Use the Jacobi identity and (10.4.32).)

10.9. For a function G (q (t) ,p (t)) write down explicitly the expression for
Ġ =

{
G,HT

}
P.B.

, where HT is given in (10.4.35) and integrate the
latter over t in the neighborhood of t = 0 for a given initial condition
G at t = 0, to show that G depends, in general, on the undetermined
Lagrange multipliers ηα at t = 0.

10.10. For the transformation q1, q2, q3, p1, p2, p3,H → q∗1 , Q, q∗3 , p∗1, P, p∗3, H̄,
in (10.4.51), with α a constant,
(i) show that

Q̇ = ∂H̄/∂P, Ṗ = −∂H̄/∂Q,

q̇∗i = ∂H̄/∂p∗i , ṗ∗i = −∂H̄/∂q∗i , i = 1, 3.

(ii) Show in reference to (10.4.45), (10.4.48),

{
φ, χ

}
P.B.

=
∂φ

∂Q
.

10.11. For a free particle moving in a circle with primary constraint φ1| =(
x2 + y2 − a2

)∣∣ = 0, study the properties of the constraints arising
from this apparently simple system.

10.12. Investigate the nature of path integrals in the presence of second class
constraints and their properties under variations δχα of the subsidiary
constraints. [Ref.: Senjanovic (1976).]

10.13. Establish (10.5.6) by working, for example, in polar coordinates.
10.14. By a procedure similar to the one used for Fermi excitations in §10.6,

carry out explicitly the multiple Gaussian integrals in (10.5.23) to
obtain (10.5.27), for the Hamiltonian in (10.5.26).

10.15. Derive some properties of δ (ηk − αk) for Grassmann variables as fol-

10.16. Use a procedure similar to the one given through (10.6.86)–(10.6.95) to
derive (10.6.96) with the boundary conditions α∗ (t) = α∗, β (t′) = β.

10.17. Use the expression (10.6.96) in (10.6.82) to explicitly carry out the
integrals over the Grassmann variables α∗, α, β∗, β to obtain all of
the matrix elements 〈n |U (t, t′)|m〉, as given in (10.6.99), with n,m =
0, 1. Verify that (10.6.99) reduces to the corresponding expressions in
(6.4.20)–(6.4.22) for the case ω(t) = ω.

10.18. Verify that (10.5.27), (10.6.96) may be obtained directly by substitut-
ing the classical solutions (β∗

c (τ) , βc (τ)), (α∗
c (τ) , βc (τ)) in (10.5.24),

(10.6.82) for the Hamiltonians in (10.5.26), (10.6.85), respectively.

low from (10.6.20). In particular, what is δ(0) for such variables?
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The Quantum Dynamical Principle

The quantum dynamical principle (QDP) provides a formalism for quan-
tum physics which is powerful, easy to apply and is most elegant. In the
form presented here, it gives rise to an expression for the variation δ〈at |bt′〉
of a transformation function 〈at |bt′〉 from a B-description at time t′ to an
A-description at time t, as arising from any changes made in the parame-
ters of a Hamiltonian such as of the underlying masses, coupling constants
(charges,. . . ), prescribed frequencies, external sources, as introduced in §6.2,
§6.4 and also encountered in §10.5, §10.6, and so on. Typical transformation
functions considered are 〈qt |q′t′〉 and 〈qt |pt′〉 written in the (q,p) language.
The subsequent analysis of the expressions for δ〈at |bt′〉 provides then endless
applications to all aspects of quantum physical problems.

One advantage of the QDP approach over the path integral one, is that
the former is based on carrying out functional differentiations in the theory,
while the latter involves in carrying out an (infinitely uncountable) multiple
functional integrals and it is relatively easier to functionally differentiate than
to deal with continual functional integrals. The formal equivalence of both
formalisms is, however, established in §11.4.

The QDP is entirely due to Schwinger,1 and remains to be an extremely
powerful tool in the development of quantum physics and quantum field the-
ory.2

The purpose of this chapter is to show how to do quantum physics by
using variations δ〈at |bt′〉 of transformation functions in a systematic way.
In §11.1, we derive the QDP and obtain explicit expressions for transforma-
tion functions in §11.2. So-called trace functionals are introduced in §11.3
which, in particular, provide useful information on the spectra of Hamil-
tonians. §11.4 deals with the connection of the path integral formalism to

1 Schwinger (1951a, 1953, 1960c,b, 1962); Lam (1965); Manoukian (1985).
2 For the reader who has some familiarity with field theory see, Manoukian (1986a,

1987b); Manoukian and Siranan (2005), on how the QDP solves the quantization
problem of the present gauge theories of the fundamental interactions of physics.
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the QDP one. Bose/Fermi excitations within the light of this formalism are
treated in §11.5. Finally, §11.6 develops an extension of the QDP, referred to
as the closed-time path formalism of Schwinger,3 to obtain directly expecta-
tion values of observables at any time in an initially prepared state without
first determining the underlying amplitudes. We will encounter applications
of the QDP again later, notably, in scattering theory in Chapter 15.

It took years before the path integral formalism was widely used after
it was conceived.4 Old habits die hard, however, we expect that the QDP
formalism will be also widely used in the near future not only as a practical
way for computations but also as a technically rigorous method for doing
quantum physics. We hope that this chapter will have some contribution to
this end.

11.1 The Quantum Dynamical Principle

Consider the general Hamiltonian given by

H(t, λ) = H1(t) + H2(t, λ) (11.1.1)

where H1(t), H2(t, λ) may be time-dependent but H2(t, λ) may, in addition,
depend on some parameters denoted by λ. Here λ stands for any parame-
ters such as masses, coupling constants (charges,. . . ), prescribed frequencies,
external sources (such as, e.g., in §6.2) and so on. The time dependence in
H(t, λ) is assumed to come from a priori given time-dependent potentials
and/or external sources (see, e.g., §6.2).

The time evolution operator associated with the Hamiltonian H(t, λ) will
be denoted by U(t, λ). From (A-2.5.2), (A-2.5.11), in the Appendix to §2.5,
we have

i�
d
dt

U(t, λ) = H(t, λ)U(t, λ). (11.1.2)

For the theory given in a specific description, say, the A-description (see
§1.1, (9.1)–(9.4), (10.2.3)–(10.2.5)),

i�
d
dt

〈at| = 〈at|H(t, λ). (11.1.3)

One may also work with the Hamiltonian H1(t), introduce the correspond-
ing time evolution operator U1(t), which are independent of λ, satisfying

i�
d
dt

U1(t) = H1(t)U1(t) (11.1.4)

3 Schwinger (1961a).
4 This is not to mention of the much more dramatic situation involved with the

Lagrange and the Hamilton formalisms for the time elapsed before they were
broadly used in classical mechanics after they were formulated in turn.
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and set,

i�
d
dt 1

〈at| =
1
〈at|H1(t). (11.1.5)

The theory, however, is described by the Hamiltonian H(t, λ) in (11.1.1) and
the time evolution operator U(t, λ).

The physical states 〈at| are clearly related to the states
1
〈at| by

〈at| =
1
〈at|U†

1 (t)U(t, λ). (11.1.6)

This suggests to introduce the unitary operator

V (t, λ) = U†
1 (t)U(t, λ) (11.1.7)

to rewrite (11.1.6) as
〈at| =

1
〈at|V (t, λ). (11.1.8)

We note that
i�

d
dt

V (t, λ) = U†
1 (t)H2(t, λ)U(t, λ) (11.1.9)

where we have used the definition in (11.1.7).
We are interested in studying the variations of transformation functions

(cf. §1.2, §1.4) 〈at |bt′〉, with respect to the parameters λ, from, in general,
one description to another.

To the above end, we use the identity

i�
d
dτ

[
V (t, λ)V †(τ, λ)V (τ, λ′)V †(t′, λ′)

]

= V (t, λ)
[
U†(τ, λ)

(
H2(τ, λ′) − H2(τ, λ)

)
U(τ, λ′)

]
V †(t′, λ′)

= V (t, λ)
[
U†(τ, λ)

(
H(τ, λ′) − H(τ, λ)

)
U(τ, λ′)

]
V †(t′, λ′) (11.1.10)

where we have also used (11.1.7), (11.1.9), the unitarity of U1(τ) and finally
(11.1.1). Here λ′ �= λ, in general.

We may integrate (11.1.10) over τ from t′ to t, and use the unitarity of
V (t, λ)

V (t, λ)V †(t, λ) = 1, V †(t, λ)V (t, λ) = 1, (11.1.11)

evaluated at equal times and for identical parameters, to obtain
[
V (t, λ′)V †(t′, λ′) − V (t, λ)V †(t′, λ)

]

= − i
�
V (t, λ)

[∫ t

t′
dτ U†(τ, λ)

(
H(τ, λ′) − H(τ, λ)

)
U(τ, λ′)

]
V †(t′, λ′).

(11.1.12)
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Now we set λ′ = λ + δλ, to get the variational form of (11.1.12) given by

δ
[
V (t, λ)V †(t′, λ)

]

= − i
�
V (t, λ)

[∫ t

t′
dτ U†(τ, λ) δH(τ, λ)U(τ, λ)

]
V †(t′, λ). (11.1.13)

Using the (q, p) language, as in Chapter 10, suppressing the indices speci-
fying the various degrees of freedom, the Hamiltonian H(τ, λ) may be written
as

H(τ, λ) = H(q, p, τ, λ) (11.1.14)

δH(τ, λ) in (11.1.13) refers to the change of H(τ, λ), with respect to λ, with
q, p (and τ) kept fixed.

We define a Heisenberg representation of H(τ, λ), at time τ , by

H(τ, λ) = U†(τ, λ)H(q, p, τ ;λ)U(τ, λ) ≡ H
(
q(τ), p(τ), τ ;λ

)
. (11.1.15)

δ
[
V (t, λ)V †(t′, λ)

]

= − i
�
V (t, λ)

[∫ t

t′
dτ δH

(
q(τ), p(τ), τ ;λ

)]
V †(t′, λ). (11.1.16)

provided the variation δ of H
(
q(τ), p(τ), τ ;λ

)
, with respect to λ, is carried

out with q(τ), p(τ) kept fixed, in conformity with (11.1.13), since q(τ), p(τ),
given by

q(τ) = U†(τ, λ) q U(τ, λ), p(τ) = U†(τ, λ) pU(τ, λ) (11.1.17)

will, in general, depend on λ. The q(τ), p(τ) are Heisenberg representations
of q, p.

Now we take the matrix elements of (11.1.16) with respect to
1
〈at|, |bt′〉

1
,

and use (11.1.8) to obtain

δ〈at |bt′〉 = − i
�

∫ t

t′
dτ

〈
at
∣∣δH

(
q(τ), p(τ), τ ;λ

)∣∣bt′〉 . (11.1.18)

This is the celebrated Schwinger’s dynamical (action) principle or the
quantum dynamical principle. It is expressed in terms of the physical states
|at〉, |bt′〉 which depend on λ. Needless to say, q and p in (11.1.18) may carry
indices corresponding to various degrees of freedom.

We recall that in (11.1.18), the variation of H, with respect to λ, is taken
with q(τ), p(τ) kept fixed. Also a and b are kept fixed. After all operations
associated with the variations and subsequent integrations with respect to

This allows us to rewrite (11.1.13) as
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the parameters λ in (11.1.18) are carried out, these parameters may be set to
have a priori chosen fixed values corresponding to the physical situation of
the problem, thus obtaining the expression for the transformation functions
〈at |bt′〉 one is seeking.

Of particular interests, are the transformation functions 〈qt |q′t′〉, 〈qt |pt′〉,
〈pt |p′t′〉. For example, (11.1.18) gives

δ〈qt |q′t′〉 = − i
�

∫ t

t′
dτ

〈
qt
∣∣δH

(
q(τ), p(τ), τ ;λ

)∣∣q′t′〉 (11.1.19)

and

δ〈qt |pt′〉 = − i
�

∫ t

t′
dτ

〈
qt
∣∣δH

(
q(τ), p(τ), τ ;λ

)∣∣pt′
〉
. (11.1.20)

We will make much use of these two equations in this chapter.
As an immediate application of (11.1.19), consider the Hamiltonian

H
(
q, p, τ ;F (τ), S(τ)

)
= H(q, p, τ) − qF (τ) + pS(τ) (11.1.21)

where F (τ), S(τ) are numerical (i.e., c-number) functions of τ referred to as
external sources (see also §6.2), and H(q, p, τ) is independent of them.5 The
minus sign multiplying qF (τ) is chosen for convenience.

Using the definition of the functional derivative

δ

δF (t)
F (τ) = δ(t − τ) (11.1.22)

δ

δS(t)
S(τ) = δ(t − τ) (11.1.23)

we obtain from (11.1.21)

δ

δF (t)
H
(
q, p, τ ;F (τ), S(τ)

)
= −q δ(t − τ) (11.1.24)

δ

δS(t)
H
(
q, p, τ ;F (τ), S(τ)

)
= p δ(t − τ). (11.1.25)

With λ replaced in turn by F (τ) and S(τ), (11.1.19) gives the important
results that

(−i�)
δ

δF (τ)
〈qt |q′t′〉 = 〈qt |q(τ)|q′t′〉 (11.1.26)

(i�)
δ

δS(τ)
〈qt |q′t′〉 = 〈qt |p(τ)|q′t′〉 (11.1.27)

5 In the Heisenberg representation, H
(
q(τ), p(τ), τ

)
will depend on F (τ), S(τ), and

if we perform variations with respect to F (τ), S(τ), then according to (11.1.18),
(11.1.19), q(τ), p(τ) should be kept fixed.
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for the matrix elements of the Heisenberg operators q(τ), p(τ), for t′ < τ < t,
where it is understood that 〈qt |q′t′〉 and the matrix elements in (11.1.26),
(11.1.27) depend on the external sources F , S (unless they are set equal
to zero). For the simplicity of the notation only, we have suppressed this
dependence on F , S in (11.1.26), (11.1.27).

For more examples of functional derivatives, consider the functional (i.e.,
function of function(s))

G[F, S] =
∫ t

t′
dτ ′

∫ t

t′
dτ ′′ F (τ ′)A(τ ′, τ ′′)S(τ ′′) (11.1.28)

where A(τ ′, τ ′′) is independent of F , S. Then for t′ < τ1 < t, t′ < τ2 < t

δ

δF (τ1)
G[F, S] =

∫ t

t′
dτ ′′ A(τ1, τ

′′)S(τ ′′) (11.1.29)

δ

δS(τ2)
δ

δF (τ1)
G[F, S] = A(τ1, τ2) (11.1.30)

Similarly for t′ < τ < t

δ

δF (τ)

∫ t

t′
dτ ′

∫ t

t′
dτ ′′ F (τ ′)A(τ ′, τ ′′)F (τ ′′)

=
∫ t

t′
dτ ′′ A(τ, τ ′′)F (τ ′′) +

∫ t

t′
dτ ′ F (τ ′)A(τ ′, τ). (11.1.31)

More generally, let G[F ] be a functional of F . Replace F (τ ′), wherever
it appears in G[F ], by F (τ ′) + εδ(τ − τ ′), then the functional derivative of
G[F ], with respect to F (τ), is formally defined by

δ

δF (τ)
G[F ] = lim

ε→0

G
[
F (τ ′) + εδ(τ − τ ′)

]
− G

[
F (τ ′)

]
ε

(11.1.32)

keeping in the numerator terms of order ε only on the right-hand side of
(11.1.32) before taking the limit ε → 0.

Before considering detailed applications of (11.1.18), we generalize the
latter further. To this end, consider an arbitrary function B(q, p, τ ;λ) of the
variables indicated, and define its Heisenberg representation at times τ by

U†(τ, λ)B(q, p, τ ;λ)U(τ, λ) = B
(
q(τ), p(τ), τ ;λ) ≡ B(τ, λ). (11.1.33)

We note that

V (t, λ)B(τ, λ)V †(t′, λ)

= V (t, λ)V †(τ, λ)U†
1 (τ)B(q, p, τ ;λ)U1(τ)V (τ, λ)V †(t′, λ). (11.1.34)
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Accordingly, from (11.1.13), and (11.1.34) we have

δ
[
V (t, λ)B(τ, λ)V †(t′, λ)

]

= − i
�
V (t, λ)

∫ t

τ

dτ ′ δH(τ ′, λ)B(τ, λ)V †(t′, λ)

+ V (t, λ) δB(τ, λ)V †(t′, λ)

− i
�
V (t, λ)

∫ τ

t′
dτ ′ B(τ, λ) δH(τ ′, λ)V †(t′, λ) (11.1.35)

where, according to (11.1.34), the variation in δB(τ, λ) = δB
(
q(τ), p(τ), τ ;λ

)
,

with respect to λ, is out carried by keeping q(τ) and p(τ) fixed.
We may use the definition of the chronological time ordering in (A-2.5.6),

to combine the first and the last terms on the right-hand side of (11.1.35),
thus obtaining

δ
[
V (t, λ)B(τ, λ)V †(t′, λ)

]

= − i
�
V (t, λ)

∫ t

t′
dτ ′ (B(τ, λ) δH(τ ′, λ)

)
+

V †(t′, λ)

+ V (t, λ) δB(τ, λ)V †(t′, λ). (11.1.36)

Upon taking the matrix elements of the above equation with respect to

1
〈at|, |bt′〉

1
and using (11.1.8), we obtain

δ〈at |B(τ, λ)|bt′〉 = − i
�

∫ t

t′
dτ ′ 〈at

∣∣ (B(τ, λ) δH(τ ′, λ)
)
+

∣∣bt′〉

+ 〈at |δB(τ, λ)|bt′〉 (11.1.37)

with all variations taken by keeping q(τ), p(τ) for all τ in the interval from
t′ to t, as well as a, b, fixed.

In particular, (11.1.37), in reference to (11.1.19), implies that

(−i�)
δ

δF (τ ′)
〈qt |q(τ)|q′t′〉 = (−i�)

δ

δF (τ ′)
(−i�)

δ

δF (τ)
〈qt |q′t′〉

=
〈
qt
∣∣ (q(τ ′) q(τ)

)
+

∣∣q′t′〉 (11.1.38)

and there is no additional term, as in (11.1.37), since q(τ) in (11.1.38) should
be kept fixed, when varying F (τ ′).

Repeated applications of (11.1.38), give
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(−i�)
δ

δF (τ1)
· · · (−i�)

δ

δF (τn)
(i�)

δ

δS(τ ′
1)

· · · (i�)
δ

δS(τ ′
m)

〈qt |q′t′〉

=
〈
qt
∣∣ (q(τ1) · · · q(τn) p(τ ′

1) · · · p(τ ′
m)
)
+

∣∣q′t′〉 (11.1.39)

for t′ � τ1, . . . , τn, τ ′
1, . . . , τ

′
m � t. For the time ordering of several operators

see (A-2.5.7). Note that all the functional derivatives operations on the left-
hand side of (11.1.39) commute.

In particular we note that in considering the matrix elements of the prod-
uct of non-commuting operators evaluated at coincident times such as in〈
qt
∣∣p(τ) q(τ)

∣∣q′t′〉, the latter is obtained by functional differentiations in the
following limiting way

(i�)
δ

δS(τ + ε)
(−i�)

δ

δF (τ)
〈qt |q′t′〉 (11.1.40)

with ε → +0. For replacing such matrix elements of the product of non-
commuting operators, evaluated at coincident time τ , by functional differen-
tiations with respect to their corresponding external sources, the time para-
meters in the arguments of the latter should be infinitesimally displaced, as
done in (11.1.40), to preserve the initial order of the operators in question.

Thanks to relations such as in (4.5.31)–(4.5.37), the Hamiltonian does
not always have to be a polynomial in the dynamical variables. For a typical
Hamiltonian as in (10.3.26), the question of the ordering of non-commuting
operators (at coincident times) does not arise. A matrix element such as〈
qt
∣∣ (q(τ)

)2 ∣∣q′t′〉 may be considered to be obtained as the limit of a symme-

tric average of
〈
qt
∣∣ (q(τ1) q(τ2) + q(τ2) q(τ1)

)
/2
∣∣q′t′〉.

11.2 Expressions for Transformations Functions

Given a Hamiltonian H(q, p, t) we derive expressions for transformation
functions. As before indices corresponding to various degrees of freedom will
be suppressed.

1. For a given Hamiltonian H(q, p, t) = H, we introduce a new Hamiltonian
by multiplying H by a parameter λ and by adding to it source terms as in
(11.1.21):

H ′ = λH − qF (τ) + pS(τ). (11.2.1)

From (11.1.19),

∂

∂λ
〈qt |q′t′〉λ = − i

�

∫ t

t′
dτ

〈
qt
∣∣H(

q(τ), p(τ), τ
)∣∣q′t′〉

λ
(11.2.2)
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where6 H(q, p, τ) is independent of λ. Hence one may apply (11.1.39), by
keeping q(τ), p(τ) fixed for all t′ � τ < t, to rewrite (11.2.2) as

∂

∂λ
〈qt |q′t′〉λ = − i

�

∫ t

t′
dτ H

(
−i�

δ

δF (τ)
, i�

δ

δS(τ)
, τ

)
〈qt |q′t′〉λ . (11.2.3)

We may integrate this equation over λ from λ = 0 to λ = 1, to obtain

〈qt |q′t′〉 = exp
[
− i

�

∫ t

t′
dτ H

(
−i�

δ

δF (τ)
, i�

δ

δS(τ)
, τ

)]
〈qt |q′t′〉0 (11.2.4)

where 〈qt |q′t′〉 = 〈qt |q′t′〉λ=1, and 〈qt |q′t′〉0, with λ = 0, is determined (see
(11.2.1)) from the simple Hamiltonian

Ĥ = −qF (τ) + pS(τ). (11.2.5)

The Heisenberg equations (2.3.61), (2.3.62) following from this Hamil-
tonian are

q̇(τ) = S(τ) (11.2.6)

ṗ(τ) = F (τ). (11.2.7)

These equations may be integrated to

q(τ) = q(t) −
∫ t

t′
dτ ′ Θ(τ ′ − τ)S(τ ′) (11.2.8)

p(τ) = p(t′) +
∫ t

t′
dτ ′ Θ(τ − τ ′)F (τ ′) (11.2.9)

and taking the matrix elements between 〈qt| and |pt′〉 for λ = 0, we obtain

〈qt |q(τ)|pt′〉0 =
[
q −

∫ t

t′
dτ ′ Θ(τ ′ − τ)S(τ ′)

]
〈qt |pt′〉0 (11.2.10)

〈qt |p(τ)|pt′〉0 =
[
p +

∫ t

t′
dτ ′ Θ(τ − τ ′)F (τ ′)

]
〈qt |pt′〉0 (11.2.11)

where q and p within the square brackets on the right-hand sides of the above
two equations are c-numbers, and we have used the relations

0〈qt| q(t) = q 0〈qt| (11.2.12)

p(t′) |pt′〉0 = p |pt′〉0 (11.2.13)

6 H
(
q(τ), p(τ), τ

)
involving operators in the Heisenberg representation developing

in time with the Hamiltonian H ′ in (11.2.1), however, depends on λ.
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for λ = 0 at coincident times. Equations (11.2.10), (11.2.11) may be rewritten
as

−i�
δ

δF (τ)
〈qt |pt′〉0 =

[
q −

∫ t

t′
dτ ′ Θ(τ ′ − τ)S(τ ′)

]
〈qt |pt′〉0 (11.2.14)

i�
δ

δS(τ)
〈qt |pt′〉0 =

[
p +

∫ t

t′
dτ ′ Θ(τ − τ ′)F (τ ′)

]
〈qt |pt′〉0 . (11.2.15)

These equations may be integrated to yield

〈qt |pt′〉0 = exp
[

i
�

q

∫ t

t′
dτ F (τ)

]
exp

[
− i

�
p

∫ t

t′
dτ S(τ)

]
exp

(
i
�

qp

)

× exp
[
− i

�

∫ t

t′
dτ

∫ t

t′
dτ ′ S(τ)Θ(τ − τ ′)F (τ ′)

]
(11.2.16)

where the exp
(
iqp/�

)
factor is to satisfy the boundary condition for F = 0,

S = 0, i.e., for Ĥ → 0 in (11.2.5).
Finally to obtain the expression for 〈qt |q′t′〉0, we multiply (11.2.16) by

〈pt′ |q′t′〉 = exp
(
−iq′p/�

)
and integrate over p, with measure dp/2π�, to

obtain7

〈qt |q′t′〉0 = δ

(
q − q′ −

∫ t

t′
dτ S(τ)

)
exp

[
i
�

q

∫ t

t′
dτ F (τ)

]

× exp
[
− i

�

∫ t

t′
dτ

∫ t

t′
dτ ′ S(τ)Θ(τ − τ ′)F (τ ′)

]
(11.2.17)

which is to be substituted in (11.2.4). This latter expression will be, in par-
ticular, very useful when we make contact with the path integral formalism
in §11.4.
2. Consider the Hamiltonian

H ′
0 =

p2

2m
− qF (τ) + pS(τ). (11.2.18)

Repeating the analysis given above for the transformation function 〈qt |pt′〉
we readily obtain

〈qt |pt′〉 = exp

[
− i

2m�

∫ t

t′
dτ

(
i�

δ

δS(τ)

)2
]
〈qt |pt′〉0 (11.2.19)

where 〈qt |pt′〉0 is given in (11.2.16). We are interested in evaluating 〈qt |pt′〉
in (11.2.19) for S(t) = 0.
7 This equation is also valid for several degrees of freedom with an obvious nota-

tional adaptation.
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To the above end, set∫ t

t′
dτ ′ Θ(τ − τ ′)F (τ ′) = F̂ (τ) (11.2.20)

then the expression depending on S(t) in (11.2.16) may be rewritten as

exp
[
− i

�

∫ t

t′
dτ S(τ)

(
p + F̂ (τ)

)]
(11.2.21)

and since we will consider the limit S(t) → 0, we may replace
(
δ/δS(τ)

)2
in (11.2.19) when operating on the functional in (11.2.21) simply by

[
−i
(
p +

F̂ (τ)
)/

�
]2. It is then straightforward to obtain (Problem 11.1) from (11.2.19),

(11.2.16)

〈qt |pt′〉(0) = exp
[

i
�

(
qp − p2

2m
(t − t′)

)]

× exp
[

i
�

∫ t

t′
dτ F (τ)

(
q − p

m
(t − τ)

)]

× exp
[
− i

2m�

∫ t

t′
dτ

∫ t

t′
dτ ′ F (τ)

(
t − τ>

)
F (τ ′)

]
(11.2.22)

where
τ> = max(τ, τ ′) (11.2.23)

with (11.2.22) corresponding to the Hamiltonian

H(0) =
p2

2m
− qF (τ). (11.2.24)

To obtain 〈qt |q′t′〉 for S = 0, we multiply (11.2.22) by 〈pt′ |q′t′〉 =
exp

(
−iq′p/�

)
and integrate the elementary “Gaussian” integral over p with

measure dp/2π� giving8

〈qt |q′t′〉(0) =
√

m

2πi�T
exp

[
im
2�T

(q − q′)2
]

× exp
[

i
�

∫ t

t′
dτ F (τ)

(
q′ +

(q − q′)
T

(τ − t′)
)]

× exp
[
− i

m�

∫ t

t′
dτ

∫ t

t′
dτ ′ F (τ)

(t − τ)Θ(τ − τ ′) (τ ′ − t′)
T

F (τ ′)
]

(11.2.25)
8 Needless to say this expression is easily rewritten when one is dealing with sev-

eral degrees ν of freedom. In particular,
(
m/2πi�T

)1/2 would be replaced by(
m/2πi�T

)ν/2.
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(compare with (9.4.21) — see Problem 11.2), corresponding to the Hamil-
tonian H(0) in (11.2.24), T = t − t′.
3. By an almost identical procedure as obtaining (11.2.4), the transformation
function 〈qt |q′t′〉H for the typical Hamiltonian

H =
p2

2m
+ V (q) (11.2.26)

is worked out to be

〈qt |q′t′〉H = exp
[
− i

�

∫ t

t′
dτ V

(
−i�

δ

δF (τ)

)]
〈qt |q′t′〉(0)

∣∣∣∣
F=0

(11.2.27)

with 〈qt |q′t′〉(0) given in (11.2.25).
One may use the identity (see Problem 11.6)

G1

[
−i�

δ

δF

]
G2[F ]

∣∣∣∣∣
F=0

= G2

[
−i�

δ

δF

]
G1[F ]

∣∣∣∣∣
F=0

(11.2.28)

for two functionals G1, G2, to rewrite (11.2.27) as

〈qt |q′t′〉H =
√

m

2πi�T
exp

[
im
2�T

(q − q′)2
]

× exp
[∫ t

t′
dτ

[
q′ +

(q − q′)
T

(τ − t′)
]

δ

δF (τ)

]

× exp
[

i�
m

∫ t

t′
dτ

∫ t

t′
dτ ′ (t − τ)Θ(τ − τ ′) (τ ′ − t′)

T

δ

δF (τ)
δ

δF (τ ′)

]

× exp
[
− i

�

∫ t

t′
dτ V

(
F (τ)

)] ∣∣∣∣∣
F=0

. (11.2.29)

Since

exp
[∫ t

t′
dτ

[
q′ +

(q − q′)
T

(τ − t′)
]

δ

δF (τ)

]
(11.2.30)

represents the translation operator of F (τ) by
[
q′+(q ′−q )(τ−t′)/T

]
, (11.2.29)

becomes

〈qt |q′t′〉H =
√

m

2πi�T
exp

[
im(q − q′)2

2�T

]

× exp
[

i
m

∫ t

t′
dτ

∫ t

t′
dτ ′ (t − τ)Θ(τ − τ ′) (τ ′ − t′)

T

δ

δQ(τ)
δ

δQ(τ ′)

]
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× exp
[
− i

�

∫ t

t′
dτ V

(
q′ +

(q − q′)
T

(τ − t′) +
√

� Q(τ)
)] ∣∣∣∣∣

Q=0

(11.2.31)

where we have made the substitution F (τ) →
√

� Q(τ). We note that√
� Q(τ), in the argument of V in (11.2.31), takes into account the devi-

ation of the motion of a particle from the one given by the straight line[
q′ + (q − q′)(τ − t′)/T

]
. The effect of this deviation is obtained by the

functional differentiations provided by the exponential factor involving the
functional differential operators

(
δ/δQ(τ)

)(
δ/δQ(τ ′)

)
.

4. We apply the quantum dynamical principle in (11.1.20) to the forced
harmonic oscillator problem (§9.4)

H =
p2

2m
+

1
2
mω2q2 − qF (τ) (11.2.32)

by a method which is rich enough in that we consider variation not only of
the external field F (τ) but also ω, i.e., the variation of a physical parameter
in the theory.

Heisenberg’s equations (2.3.61), (2.3.62) are given by

q̇(τ) =
p(τ)
m

(11.2.33)

ṗ(τ) = −mω2q(τ) + F (τ). (11.2.34)

For t′ < τ < t, the solutions of these equations are given by

q(τ) =
[
q(t)

cos ω(τ − t′)
cos ωT

− p(t′)
mω

sin ω(t − τ)
cos ωT

]

+
1
m

∫ t

t′
dτ ′ K(τ, τ ′)F (τ ′) (11.2.35)

p(τ) = −mω

[
q(t)

sin ω(τ − t′)
cos ωT

− p(t′)
mω

cos ω(t − τ)
cos ωT

]

+
∫ t

t′
dτ ′ d

dτ
K(τ, τ ′)F (τ ′) (11.2.36)

where T = t − t′, and the c-function K(τ, τ ′) satisfies the conditions: (t′ <
τ, τ ′ < t)
(i)

K(τ, τ ′)
∣∣
τ→t

= 0 (11.2.37)

(ii)
d
dτ

K(τ, τ ′)
∣∣∣∣
τ→t′

= 0 (11.2.38)
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(iii) (
d2

dτ2
+ ω2

)
K(τ, τ ′) = δ(τ − τ ′) (11.2.39)

so that q̈(τ) + ω2q(τ) = F (τ)/m, i.e.,
(

d2

dτ2
+ ω2

)
K(τ, τ ′) = 0 for τ �= τ ′ (11.2.40)

and as a function of τ
d
dτ

K(τ, τ ′)
∣∣∣∣
τ ′+0

τ ′−0

= 1. (11.2.41)

It is not difficult to show (Problem 11.7) that (τ> = max(τ, τ ′), τ< =
min(τ, τ ′))

K(τ, τ ′) = − sin ω(t − τ>) cos ω(τ< − t′)
ω cos ωT

. (11.2.42)

Upon taking matrix elements of (11.2.35) we obtain

〈qt |q(τ)|pt′〉 =
[
qc(τ) +

1
m

∫ t

t′
dτ ′ K(τ, τ ′)F (τ ′)

]
〈qt |pt′〉 (11.2.43)

where
qc(τ) =

[
q
cos ω(τ − t′)

cos ωT
− p

mω

sin ω(t − τ)
cos ωT

]
(11.2.44)

is a c-number function. From (11.1.20), we may rewrite (11.2.43) as

−i�
δ

δF (τ)
〈qt |pt′〉 =

[
qc(τ) +

1
m

∫ t

t′
dτ ′ K(τ, τ ′)F (τ ′)

]
〈qt |pt′〉 (11.2.45)

which upon integration gives

〈qt |pt′〉 = exp
[

i
�

∫ t

t′
dτ qc(τ)F (τ)

+
i

2m�

∫ t

t′
dτ

∫ t

t′
dτ ′ F (τ)K(τ, τ ′)F (τ ′)

]
〈qt |pt′〉F=0 .

(11.2.46)

To solve for 〈qt |pt′〉F=0, we carry out another functional differentiation
of (11.2.43) with respect to F (τ ′′), using (11.1.38), and then set F = 0 in the
resulting expression to obtain

〈qt|
(
q(τ ′′) q(τ)

)
+
|pt′〉F=0 =

[
qc(τ) qc(τ ′′) − i�

m
K(τ, τ ′′)

]
〈qt |pt′〉F=0

(11.2.47)
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we take the symmetric limit τ ′′ ↔ τ , as the average of τ ′′ = τ +0, τ ′′ = τ−0,
to write

〈
qt
∣∣q2(τ)

∣∣pt′
〉

F=0
=
[
q2
c (τ) − i�

m
K(τ, τ)

]
〈qt |pt′〉F=0 (11.2.48)

and integrate over τ . This gives

〈qt|
∫ t

t′
dτ q2(τ) |pt′〉F=0 =

[∫ t

t′
dτ q2

c (τ) − i�
m

∫ t

t′
dτ K(τ, τ)

]
〈qt |pt′〉F=0 .

(11.2.49)
Now we invoke the quantum dynamical principle (11.1.20), in regard to

the mω2q2/2 term in the Hamiltonian, to obtain

i�
2
m

∂

∂ω2
〈qt |pt′〉F=0 = 〈qt|

∫ t

t′
dτ q2(τ) |pt′〉F=0 . (11.2.50)

With qc(τ) defined in (11.2.44), and K(τ, τ ′) given in (11.2.42), we have

K(τ, τ) = − sinω(t − τ) cos ω(τ − t′)
ω cos ωT

(11.2.51)

leading to the integrals
∫ t

t′
dτ K(τ, τ) = − T

2ω
tan ωT =

1
2ω

∂

∂ω
ln cos ωT (11.2.52)

∫ t

t′
dτ q2

c (τ) =
1

mω

∂

∂ω

[
q2 mω

2
tan ωT − qp sec ωT +

p2

2m

tan ωT

ω

]
.

(11.2.53)

From (11.2.50), (11.2.49), and using the integrals (11.2.52), (11.2.53), we
obtain upon integration over: ω, and noting that ∂/∂ω2 = ∂/2ω∂ω,

〈qt |pt′〉F=0 =
1√

cos ωT
exp

[
− i

�

(
q2 mω

2
tan ωT

−qp sec ωT +
p2

2m

tan ωT

ω

)]
. (11.2.54)

This also satisfies the boundary condition

〈qt |pt′〉F=0 −−−−−−−→
ω→0

exp
[

i
�

(
qp − p2

2m
T

)]
. (11.2.55)

The expression in (11.2.54) is to be substituted in (11.2.46). Since
∫ t

t′
dτ qc(τ)F (τ) =

q

cos ωT

∫ t

t′
dτ F (τ) cos ω(τ − t′)
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− p

mω cos ωT

∫ t

t′
dτ F (τ) sin ω(t − τ) (11.2.56)

is linear in p, we may, after multiplying (11.2.46) by 〈pt′ |qt′〉F=0 dp/2π�,
integrate over p, the elementary “Gaussian” integral to obtain after re-
arrangement of terms the explicit expression

〈qt |q′t′〉 =
√

mω

2πi� sin ωT

× exp
[
i

mω

� sin ωT

(
(q2 + q′2)

2
cos ωT − qq′

+
1

mω

∫ t

t′
dτ F (τ)

[
q sin ω(τ − t′) + q′ sin ω(t − τ)

]

− 1
m2ω2

∫ t

t′
dτ

∫ t

t′
dτ ′ F (τ) sinω(t − τ)

× Θ(τ − τ ′) sin ω(τ ′ − t′)F (τ ′)
)]

(11.2.57)

which coincides with the expression in (9.4.32).
5. Finally we close this section by making contact with the analysis of the
dynamics given in the Appendix to §2.5. For a given Hamiltonian H(q, p, t)
introduce the scaled Hamiltonian

H ′(q, p, τ ;λ) = λH(q, p, τ) (11.2.58)

then as in (11.2.2), we have

∂

∂λ
〈qt |q′t′〉 = − i

�

∫ t

t′
dτ

〈
qt
∣∣H(

q(τ), p(τ), τ
)∣∣q′t′〉 (11.2.59)

and since H(q, p, τ) is independent of λ, we have9 by repeated application of
(11.1.37),

(
∂

∂λ

)n

〈qt |q′t′〉

=
(
− i

�

)n ∫ t

t′
dτ1

∫ t

t′
dτ2 · · ·

∫ t

t′
dτn 〈qt|

(
H(τ1) · · ·H(τn)

)
+
|q′t′〉

(11.2.60)

where
9 See (11.1.33)–(11.1.37).
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H(τ) = H
(
q(τ), p(τ), τ

)
(11.2.61)

in the Heisenberg representation of H(q, p, τ), developing in time with the
Hamiltonian H ′ in (11.2.58). For λ = 0, H(τ) = H(q, p, τ), 〈qt| → 〈q0|,
|q′t′〉 → |q′0〉 on the right-hand side of (11.2.60). Accordingly 〈qt |q′t′〉 for
λ = 1, is obtained by a Taylor series about λ = 0 using (11.2.60), and is
given by

〈qt |q′t′〉 = 〈q0|
(

exp
[
− i

�

∫ t

t′
dτ H(q, p, τ)

])
+

|q′0〉 . (11.2.62)

In particular, for a time-independent Hamiltonian H(q, p),

〈qt |q′t′〉 = 〈q0| exp
[
− i

�
(t − t′)H(q, p)

]
|q′0〉 (11.2.63)

as expected.

11.3 Trace Functionals

Of particular interest is the transformation function 〈qt |q′t′〉 for which
q = q′, i.e., for

q(t) = q′(t′) (11.3.1)

as it may be used to obtain information on the spectrum of the underlying
Hamiltonian.

Actually, we consider the trace of 〈qt |qt′〉 defined by
∫ L

−L

dq 〈qt |qt′〉 (11.3.2)

where L will taken to be arbitrarily large. To study the properties of the
object in (11.3.2), we carry out a Fourier series analysis,

q(τ) =
1
T

∞∑
n=−∞

qn exp
[
i
2πn

T
(τ − t′)

]
(11.3.3)

F (τ) =
1
T

∞∑
n=−∞

Fn exp
[
−i

2πn

T
(τ − t′)

]
(11.3.4)

S(τ) =
1
T

∞∑
n=−∞

Sn exp
[
i
2πn

T
(τ − t′)

]
(11.3.5)

δ

δF (τ)
=

∞∑
n=−∞

exp
[
i
2πn

T
(τ − t′)

]
∂

∂Fn
(11.3.6)
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and note that from
∂

∂Fn
Fm = δnm (11.3.7)

we have

δ

δF (τ)
F (τ ′) =

1
T

∞∑
n=−∞

exp
[
i2πn(τ − τ ′)

T

]
= δ(τ − τ ′). (11.3.8)

Similarly, we may write

δ

δS(τ)
=

∞∑
n=−∞

exp
[
−i2πn(τ − t′)

T

]
∂

∂Sn
(11.3.9)

∂

∂Sn
Sm = δnm. (11.3.10)

For a given time-independent Hamiltonian H(q, p), we may, in particular,
use (11.2.4) and (11.2.17), to write

∫ L

−L

dq 〈qt |qt′〉 =
∫ L

−L

dq exp
[
− i

�

∫ t

t′
dτ H

(
−i�

δ

δF (τ)
, i�

δ

δS(τ)

)]

× δ

(∫ t

t′
dτ S(τ)

)
exp

[
i
�

q

∫ t

t′
dτ F (τ)

]

× exp
[
− i

�

∫ t

t′
dτ

∫ t

t′
dτ ′ S(τ ′)Θ(τ ′ − τ)F (τ)

]
.

(11.3.11)

From (11.3.4), (11.3.5)
∫ t

t′
dτ F (τ) = F0,

∫ t

t′
dτ S(τ) = S0 (11.3.12)

and (see Problem 11.8)

∫ t

t′
dτ ′ S(τ ′)

∫ τ ′

t′
dτ F (τ) =

S0F0

2
− i

∑
n	=0

(SnF0 + S0Fn)
2πn

+ i
∑
n	=0

Sn
1

2πn
Fn.

(11.3.13)
Therefore,

∫ ∞

−∞
dq δ

(∫ t

t′
dτ S(τ)

)
exp

[
i
�

q

∫ t

t′
dτ F (τ)

]

× exp
[
− i

�

∫ t

t′
dτ

∫ t

t′
dτ ′ S(τ ′)Θ(τ ′ − τ)F (τ)

]
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= (2π�) δ(S0) δ(F0) exp


1

�

∑
n	=0

Sn
1

2πn
Fn


 . (11.3.14)

For the harmonic oscillator, for example, we clearly have
∫ ∞

−∞
dq 〈qt |qt′〉

∣∣∣∣
0

= exp

[
i�T

∑
n

(
1

2m

∂

∂Sn

∂

∂S−n
+

mω2

2
∂

∂Fn

∂

∂F−n

)]

× (2π�) δ(S0) δ(F0) exp


1

�

∑
n	=0

Sn
1

2πn
Fn



∣∣∣∣∣∣
0

(11.3.15)

where
∣∣
0

means setting the external sources equal to zero after the functional
differentiations are carried out.

We note that

exp

{
i�T

[
1

2m

(
∂

∂S0

)2

+
mω2

2

(
∂

∂F0

)2
]}

(2π�) δ(S0) δ(F0)

∣∣∣∣∣
S0→0, F0→0

= �
1
2π

∫ ∞

−∞
dλ1

∫ ∞

−∞
dλ2 exp

[
− i�Tλ2

1

2m

]
exp

[
− i�mω2Tλ2

2

2

]

=
(2π) �

(2π)

√
m

i�T

√
1

i�mω2T
=

1
iTω

. (11.3.16)

On the other hand,

exp


i�T

∑
n	=0

(
1

2m

∂

∂Sn

∂

∂S−n
+

mω2

2
∂

∂Fn

∂

∂F−n

)
 exp


1

�

∑
n	=0

Sn
1

2πn
Fn



∣∣∣∣∣∣
0

=
∞∏

n=1

exp
(

i�T

m

∂

∂Sn

∂

∂S−n

)
exp

(
i�Tmω2 ∂

∂Fn

∂

∂F−n

)

× exp
[

1
�

(
Sn

1
2πn

Fn − S−n
1

2πn
F−n

)]∣∣∣∣
0

=
∞∏

n=1

exp
(

i�T

m

∂

∂Sn

∂

∂S−n

)
exp

(
− iTmω2

� (2πn)2
Sn S−n

)∣∣∣∣∣
0

. (11.3.17)

Upon writing

exp
(
−iβSn S−n) =

∫ ∞

−∞
dλ2

∫ ∞

−∞

dλ1

2π
eiλ1λ2 e−iλ2 S−n e−iβλ1 Sn (11.3.18)
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with β = Tmω2/�(2πn)2, it is easily established that the right-hand side of
(11.3.17) is given by

∞∏
n=1

[
1 −

(
Tω

2πn

)2]−1

(11.3.19)

which is the infinite product representation of (Tω/2)/ sin(Tω/2), i.e.,

∞∏
n=1

[
1 −

(
Tω

2πn

)2]−1

=
iTω e−iTω/2

1 − e−iTω
= iTω

∞∑
n=0

exp
[
−i

T

�
�ω

(
n +

1
2

)]
.

(11.3.20)
From (11.3.15), (11.3.16), (11.3.20), we then have

∫ ∞

−∞
dq 〈qt |qt′〉 =

∞∑
n=0

exp
[
− iT

�
�ω

(
n +

1
2

)]
(11.3.21)

recognizing the spectrum of the harmonic oscillator Hamiltonian.
To find the number of eigenvalues � ξ of a given Hamiltonian H, we may

use (9.7.24) and (11.3.11) (see also (4.5.4)) to write for the former as

N(H; ξ) =
1

2πi

∫ ∞

−∞

dT

T − iε
eiξT/�

× exp

[
− i

�

∫ T

0

dτ H

(
−i�

δ

δF (τ)
, i�

δ

δS(τ)

)]

× (2π�) δ

(∫ T

0

dτ S(τ)

)
δ

(∫ T

0

dτ F (τ)

)

× exp

[
− i

�

∫ T

0

dτ

∫ T

0

dτ ′ S(τ ′)Θ(τ ′ − τ)F (τ)

]∣∣∣∣∣
0

. (11.3.22)

On the other hand, for the sum of the eigenvalues < ξ, with ξ not in the
spectrum of H, we have from (9.7.32), (11.3.11), the expression

1
2πi

∫ ∞

−∞

dT

T − iε
eiξT/�

× i�
∂

∂T
exp

[
− i

�

∫ T

0

dτ H

(
−i�

δ

δF (τ)
, i�

δ

δS(τ)

)]

× (2π�) δ

(∫ T

0

dτ S(τ)

)
δ

(∫ T

0

dτ F (τ)

)
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× exp

[
− i

�

∫ T

0

dτ

∫ T

0

dτ ′ S(τ ′)Θ(τ ′ − τ)F (τ)

]∣∣∣∣∣
0

. (11.3.23)

By using (11.3.14), we may rewrite the latter

1
2πi

∫ ∞

−∞

dT

T − iε
eiξT/� H

(
−i�

δ

δF (T )
, i�

δ

δS(T )

)

× exp

[
− i

�

∫ T

0

dτ H

(
−i�

δ

δF (τ)
, i�

δ

δS(τ)

)]

× (2π�) δ(S0) δ(F0) exp


1

�

∑
n	=0

Sn
1

2πn
Fn



∣∣∣∣∣∣
0

. (11.3.24)

For the harmonic oscillator, for example, this may be written as

1
2πi

∫ ∞

−∞

dT

T − iε
eiξT/� i�

∂

∂T
· iTω

iTω

∞∑
n=0

exp
[
−iTω

(
n +

1
2

)]

=
∞∑

n=0

�ω

(
n +

1
2

)
1

2πi

∫ ∞

−∞

dT

T − iε
exp

{
iT
�

[
ξ − �ω

(
n +

1
2

)]}

=
∞∑

n=0

�ω

(
n +

1
2

)
Θ
(

ξ − �ω

(
n +

1
2

))
(11.3.25)

where we have used (11.3.17)–(11.3.20) and (11.3.16). Here ξ may be taken
to fall between two consecutive eigenvalues.

11.4 From the Quantum Dynamical Principle to Path
Integrals

Consider the transformation function

〈qt |q′t′〉0 = δ

(
q − q′ −

∫ t

t′
dτ S(τ)

)
exp

[
i
�

q

∫ t

t′
dτ F (τ)

]

× exp
[
− i

�

∫ t

t′
dτ ′ F (τ ′)

∫ t

τ ′
dτ S(τ)

]
(11.4.1)

derived in (11.2.17) for the Hamiltonian

Ĥ = −q F (τ) + pS(τ) (11.4.2)
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where
〈qt| q(t) = q 〈qt| , q(t′) |q′t′〉 = q′ |q′t′〉 . (11.4.3)

We divide the time interval t′ to t into N subintervals and introduce the
telescopic representation

∫ t

t′
dτ S(τ) =

N−1∑
k=0

∫ tk+1

tk

dτ S(τ) =
N−1∑
k=0

ε Sk+1 (11.4.4)

with

t0 = t′, tN = t (11.4.5)

ε = tk+1 − tk =
(t − t′)

N
(11.4.6)

and

Sk+1 =
1
ε

∫ tk+1

tk

dτ S(τ) (11.4.7)

as a mean of S(τ) on the subinterval from tk to tk+1.
It is easily verified by explicit integrations over q1, . . . , qN−1 that

δ

(
q − q′ −

∫ t

t′
dτ S(τ)

)

=
∫ ∞

−∞
dq1

∫ ∞

−∞
dq2 · · ·

∫ ∞

−∞
dqN−1 δ(q1 − q′ − εS1)

× δ(q2 − q1 − εS2) · · · δ(q − qN−1 − εSN ). (11.4.8)

Note that the N Dirac delta distributions imply that

ε(S1 + · · · + SN ) = q − q′

ε(S2 + · · · + SN ) = q − q1

...

εSN = q − qN−1.




(11.4.9)

We are interested in making the subdivisions of the time interval from t′ to
t finer and finer by taking the limits ε → 0, N → ∞.

To the above end, we effectively have

∫ t

t′
dτ ′ F (τ ′)

∫ t

τ ′
dτ S(τ) �

N−1∑
k=0

εFk+1ε (Sk+2 + . . . + SN )
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=
N−1∑
k=0

εFk+1(qN − qk+1) (11.4.10)

and

q

∫ t

t′
dτ ′ F (τ ′) = qN

N−1∑
k=0

εFk+1 (11.4.11)

with
qN = q, q0 = q′. (11.4.12)

Hence the right-hand defined as the
N → ∞ limit of

∫
dq1 · · · dqN−1

dp1

2π�
· · · dpN

2π�
exp

[
i
�

N−1∑
k=0

pk+1(qk+1 − qk − ε Sk+1)

]

× exp

[
− i

�

N−1∑
k=0

εFk+1(qN − qk+1)

]
exp

[
i
�

N−1∑
k=0

εFk+1qN

]
(11.4.13)

by introducing, in the process, the integral representation of the N Dirac
delta distributions in (11.4.8), or equivalently as the N → ∞ limit of

∫
dq1 · · · dqN−1

dp1

2π�
· · · dpN

2π�
exp

[
i
�

N−1∑
k=0

ε pk+1

(
qk+1 − qk

ε

)]

× exp

[
i
�

N−1∑
k=0

ε qk+1Fk+1

]
exp

[
− i

�

N−1∑
k=0

ε pk+1Sk+1

]
. (11.4.14)

By taking the limit N → ∞, 〈qt |q′t′〉0 may be rewritten in the form

〈qt |q′t′〉0 =
∫ q(t)=q

q(t′)=q′
D
(
q(·), p(·)

)

× exp
[

i
�

∫ t

t′
dτ

[
p(τ) q̇(τ) + q(τ)F (τ) − p(τ)S(τ)

]]

(11.4.15)

where D
(
q(·), p(·)

)
is defined as in (10.3.25), and, needless to say, q(t), q(t′)

here denote c-numbers.
For a given Hamiltonian H(q, p, t), one obtains from (11.2.4) the path

integral expression

〈qt |q′t′〉
∣∣∣
S=0,F=0

=
∫ q(t)=q

q(t′)=q′
D
(
q(·), p(·)

)

side of (11.4.1) may be formally
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× exp
[

i
�

∫ t

t′
dτ

[
p(τ) q̇(τ) − H

(
q(τ), p(τ), τ

)]]

(11.4.16)

thus establishing the formal connection between the quantum dynamical prin-
ciple and the path integral formalisms.

As before for a Hamiltonian in the form as in (10.3.26), we may integrate
over the momenta to obtain

〈qt |q′t′〉
∣∣∣
S=0,F=0

=
∫ q(t)=q

q(t′)=q′
D
(
q(·)

)
exp

{
i
�

∫ t

t′
dτ

[
mq̇2(τ)

2
− V

(
q(τ)

)]}

(11.4.17)
where D

(
q(·)

)
is defined as in (10.1.4).

11.5 Bose/Fermi Excitations

Consider the Hamiltonian

H = �ω a†
B aB − a†

B F (τ) − F ∗(τ) aB (11.5.1)

where aB, a†
B are Bose annihilation, creation operators (§6.1), with

aB |0〉 = 0, aB |n〉 =
√

n |n − 1〉 , a†
B |n〉 =

√
n + 1 |n + 1〉 (11.5.2)

and F (τ), F ∗(τ) are external sources (§6.2), operating within a time interval
from time t′ to t, and are zero at the boundaries τ = t′, τ = t.10

Let U(τ) denote the time evolution unitary operator and set

〈n|U(τ) = 〈nτ | (11.5.3)

The Heisenberg representations of aB, a†
B are given by

a#
B (τ) = U†(τ) a#

B U(τ) (11.5.4)

where # corresponds to the operator aB or its adjoint a†
B.

The Heisenberg equations are

ȧB(τ) + iωaB(τ) =
i
�

F (τ) (11.5.5)

ȧ†
B(τ) − iωa†

B(τ) = − i
�

F ∗(τ) (11.5.6)

with solutions

10 See also (8.7.21), (12.6.33).
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aB(τ) = e−iω(τ−t′) aB(t′) +
i
�

∫ t

t′
dτ ′ e−iω(τ−τ ′) Θ(τ − τ ′)F (τ ′) (11.5.7)

a†
B(τ) = e−iω(t−τ) a†

B(t) +
i
�

∫ t

t′
dτ ′ eiω(τ−τ ′) Θ(τ ′ − τ)F ∗(τ ′). (11.5.8)

These give the matrix elements

〈
0t
∣∣ aB(τ)

∣∣0t′
〉

=
[

i
�

∫ t

t′
dτ ′ e−iω(τ−τ ′) Θ(τ − τ ′)F (τ ′)

]
〈0t |0t′〉 (11.5.9)

〈
0t
∣∣ a†

B(τ)
∣∣0t′

〉
=
[

i
�

∫ t

t′
dτ ′ eiω(τ−τ ′) F ∗(τ ′)Θ(τ ′ − τ)

]
〈0t |0t′〉 (11.5.10)

and hence from (11.5.9)

−i�
δ

δF ∗(τ)
〈0t |0t′〉 =

[
i
�

∫ t

t′
dτ ′ e−iω(τ−τ ′) Θ(τ − τ ′)F (τ ′)

]
〈0t |0t′〉

(11.5.11)
leading to

〈0t |0t′〉 = exp
[
− 1

�2

∫ t

t′
dτ

∫ t

t′
dτ ′ e−iω(τ−τ ′) F ∗(τ)Θ(τ − τ ′)F (τ ′)

]

(11.5.12)
to be compared with (6.2.12), where the latter was given for a real source. It is
easy to see that (11.5.12) is also consistent with (11.5.10) (see Problem 11.10).

Of particular interest is the amplitude of excitations 〈nt |0t′〉. To obtain
this amplitude, note that in this case (11.5.9) is to be replaced by

〈
nt
∣∣ aB(τ)

∣∣0t′
〉

=
[

i
�

∫ t

t′
dτ ′ e−iω(τ−τ ′) Θ(τ − τ ′)F (τ ′)

]
〈nt |0t′〉 . (11.5.13)

For τ = t, we may use (11.5.2) to rewrite the above equation as

√
n + 1

〈
(n + 1)t

∣∣0t′
〉

=
[

i
�

∫ t

t′
dτ ′ e−iω(t−τ ′)F (τ ′)

]
〈nt |0t′〉 (11.5.14)

providing a recurrence relation in n, whose solution is elementary and is given
by

〈nt |0t′〉 =

[
i
�

∫ t

t′
dτ ′ e−iω(t−τ ′) F (τ ′)

]n

√
n!

〈0t |0t′〉 . (11.5.15)

This is to be compared with (6.2.22) and (10.5.32).
The transformation functions 〈nt |n′t′〉 are obtained in a similar fashion

(see Problem 11.11) and may be compared with the expression in (6.2.30)
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using the present notation (see also (10.5.34)). For the study of temperature
dependence of Bose excitations see §6.3, §11.6.

For Fermi excitations, consider the Hamiltonian

H = �ω a†
F aF − η∗(τ) aF − a†

F η(τ). (11.5.16)

The external sources η(τ), η∗(τ) are Grassmann variables (§10.6, §6.4),
i.e., {

η(τ) , η#(τ ′)
}

= 0,

{
δ

δη(τ)
,

δ

δη#(τ ′)

}
= 0 (11.5.17)

and {
δ

δη(τ)
, η∗(τ ′)

}
= 0,

{
δ

δη#(τ)
, η#(τ ′)

}
= δ(τ − τ ′). (11.5.18)

The sources also anti-commute with aF, a†
F.

Apart from these properties of the external Fermi sources, and the anti-
commutation relations of the aF, a†

F (§6.4), the analysis is almost identical
to the Boson case with n restricted to 0 or 1 above,

aF |0〉 = 0, aF |1〉 = |0〉 , a†
F |0〉 = |1〉 , (11.5.19)

and due to the anti-commutativity of the sources with aF, a†
F, the commu-

tator [
aF(τ) , a†

F(τ) η(τ)
]

=
{

aF(τ) , a†
F(τ)

}
η(τ) = η(τ), (11.5.20)

for example, gives rise to an anti-commutation relation as indicated.
Equation (11.5.15) is now replaced by

〈nt |0t′〉 =
[

i
�

∫ t

t′
dτ e−iω(t−τ) η(τ)

]n

× exp
[
− 1

�2

∫ t

t′
dτ

∫ t

t′
dτ ′ e−iω(τ−τ ′) η∗(τ)Θ(τ − τ ′) η(τ ′)

]

(11.5.21)

where n = 0 or 1, for the fermionic case.
Needless to say interaction of bosons may be described by adding a

λHI(a†, a) term to the Hamiltonian (11.5.1) in the presence of the exter-
nal sources followed by an application of the quantum dynamical principle.
We will not, however, go into these details here. For the interaction of bosons
and fermions see Problem 11.12.
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11.6 Closed-Time Path and Expectation-Value
Formalism

In the present section, we apply the quantum dynamical principle to de-
termine expectation values of physical quantities for systems prepared in
initially specified states.

Consider, for example, the bosonic system described by the Hamiltonian
in (11.5.1) in the presence of external sources F , F ∗, and suppose that one is
interested in computing the expectation value

〈
0t′

∣∣a†(τ)
∣∣0t′

〉
for some τ > t′.

This, however, cannot be simply obtained by a functional differentiation of
〈0t′ |0t′〉 since the latter is equal to one — a constant independent of F , F ∗.
One may, however, use the completeness unitarity expansion

〈0t′ |0t′〉 =
∞∑

n=0

〈0t′ |nt〉 〈nt |0t′〉 (11.6.1)

and note that for t > t′, the amplitude 〈nt |0t′〉 corresponds to time evolution
in the positive sense of time, while the amplitude 〈0t′ |nt〉 corresponds to
time evolution in the negative sense of time from t back to t′. Accordingly,
to generate expectation values for a system which started initially, say, in
the state |0t′〉, one may introduce, a priori, different dynamics with pairs of
external sources

(
F+, F ∗

+

)
and

(
F−, F ∗

−
)

for the two segments in the positive
(t′ → t) and negative (t → t′) senses of time, respectively. By doing so (11.6.1)
becomes replaced by

〈0t′ |0t′〉 =
∞∑

n=0

〈0t′ |nt〉− 〈nt |0t′〉+ (11.6.2)

which is different from one for different pairs of sources, where ± refer to the
dynamics in the two segments with pairs of sources

(
F±, F ∗

±
)
. Expectation

values are then readily obtained from (11.6.2) as shown below as we have now
generated two Hamiltonians H+, H−, arising from (11.5.1), corresponding to
the above two mentioned segments.

Using the fact that 〈0t′ |nt〉− ′
+ by complex

conjugation together with the replacements
(
F+, F ∗

+

)
by

(
F−, F ∗

−
)

in the
latter, it is easily seen from (11.6.2) and (11.1.18) that

δ〈0t′ |0t′〉
∣∣∣ = − i

�
〈0t′|

∫ t

t′
dτ

[
δH+(τ) − δH−(τ)

]
|0t′〉

∣∣∣ (11.6.3)

and for t′ < τ < t,

−i�
δ

δF+(τ)
〈0t′ |0t′〉

∣∣∣ =
∞∑

n=0

〈0t′ |nt〉−
〈
nt
∣∣a†(τ)

∣∣0t′
〉
+

∣∣∣

may be obtained from 〈nt |0t 〉
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=
〈
0t′

∣∣a†(τ)
∣∣0t′

〉 ∣∣∣

= i�
δ

δF−(τ)
〈0t′ |0t′〉

∣∣∣

=
∞∑

n=0

〈
0t′

∣∣a†(τ)
∣∣nt

〉
− 〈nt |0t′〉+

∣∣∣ (11.6.4)

where the bar
∣∣∣ means to replace

(
F+, F−

)
,
(
F ∗

+, F ∗
−
)

by common source
functions F , F ∗, respectively, after functional differentiations are carried out.
The adjoint operation as applied to the product of operators appearing in an
amplitude such as 〈nt |0t′〉− upon complex conjugation of the latter giving
〈0t′ |nt〉−, reverses the order of the operator multiplication. For simplicity of
the notation we have written a# for a#

B above.
Accordingly,

(i�)
δ

δF ∗
−(τ1)

(i�)
δ

δF− 2
〈0t′ |0t′〉 = 〈0t′|

(
a(τ1) a†(τ2)

)
− |0t′〉 (11.6.5)

where now (·)− denotes the chronological time anti-ordering introduced in
(A-2.5.13), with operators at earlier times move to the left as indicated in
the latter equation.

In (11.6.2), one is dealing with two dynamical systems, one in the posi-
tive sense of time t′ → t, followed by one in the negative sense of time from
t back to t′ forming a closed-time path. Expectation values of physical quan-
tities at any time t′

F+, F ∗
+ fol-

lowed by replacing
(
F+, F−

)
,
(
F ∗

+, F ∗
−
)

by common source functions F , F ∗,
respectively, which in turn may or may not be set equal to zero depending
on the physical system into consideration. This simple, though elegant way,
of computing expectation values is referred to as the closed-time path and
expectation-value formalism.

From (11.5.7), (11.6.2), the sum over n in the latter is easily carried out,
giving the expression

〈0t′ |0t′〉 = exp
[
− 1

�2

∫ t

t′
dτ

∫ t

t′
dτ ′

{
e−iω(τ−τ ′)

[
F ∗

+(τ)Θ(τ − τ ′)F+(τ ′)

+F ∗
−(τ)Θ(τ ′ − τ)F−(τ ′) − F ∗

−(τ)F+(τ ′)
] } ]

.

(11.6.6)

This satisfies the condition

〈0t′ |0t′〉 = 1 for F+ = F− (11.6.7)

< τ < t, for a system in a specified initial state, may be

(τ )

then obtained by functional differentiations with respect to, say,
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as expected. More conveniently, 〈0t′ |0t′〉 in (11.6.6) may be rewritten in the
compact form

〈0t′ |0t′〉 = exp
[
− i

�

∫ t

t′
dτ

∫ t

t′
dτ ′ K†(τ)G(τ − τ ′)K(τ ′)

]
(11.6.8)

where
K(τ) =

(
F+(τ)
F−(τ)

)
(11.6.9)

and
G(τ − τ ′) = − i

�
e−iω(τ−τ ′)

(
Θ(τ − τ ′) 0

−1 Θ(τ ′ − τ)

)
(11.6.10)

As an application, consider the harmonic oscillator problem. From (6.1.8),
(6.1.10), we recall that

q =
�√

2 mω

(
a + a†) . (11.6.11)

Suppose at time t′ = 0, the system is in the state |0〉. To compute the
expectation value of any functions of the displacement operator q(τ) at any
time 0 < τ < t for the system initially in the state |0〉, we consider the
expectation value of the operator exp

[ ]
number. From (11.6.6), (11.6.11)

〈
0
∣∣∣eikq(τ)

∣∣∣0〉
∣∣∣
F±=F

= exp
[

k�
2

√
2 mω

∫ t

0

dτ ′′ δ(τ ′′ − τ)

×
(

δ

δF ∗
+(τ ′′)

+
δ

δF+(τ ′′)

)]
〈0 |0〉

∣∣∣
F±=F

. (11.6.12)

These functional differentiations operations give rise to translation oper-
ators leading to (see Problem 11.13),

〈
0
∣∣∣eikq(τ)

∣∣∣0〉
∣∣∣
F±=F

=
〈
0
∣∣∣eikq(τ)

∣∣∣0〉
∣∣∣
F±=0

exp
(

k√
2 mω

G[F ; τ ]
)

(11.6.13)

where
〈
0
∣∣∣eikq(τ)

∣∣∣0〉
∣∣∣
F±=0

= exp
[
− �

2k2

2m2ω2

∫ t

0

dτ1

∫ t

0

dτ2

×δ(τ1 − τ)Θ(τ1 − τ2) δ(τ2 − τ)
]

(11.6.14)

G[F ; τ ] =
∫ τ

0

dτ ′
[
F ∗(τ ′) e−iω(τ ′−τ) − F (τ ′) eiω(τ ′−τ)

]
(11.6.15)

and we have used, in the process, that 1−Θ(τ ′ − τ) = Θ(τ − τ ′) to simplify
the expression in (11.6.15).

ikq(τ) , where k is an arbitrary c-
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The expression in (11.6.14) may be unambiguously evaluated by not-
ing that an elementary application of the Baker-Campbell-Hausdorff formula
(Appendix I)

exp(A + B) = exp
(

1
2

[A,B]
)

exp(B) exp(A) (11.6.16)

with A = i�ka/
√

2 mω, B = i�ka†/
√

2 mω, yields for the left-hand side of
(11.6.14) exp

[
−�

2k2/4m2ω2
]
, from which we here adopt the definition that

Θ(0) = 1/2 on the right-hand side of (11.6.14). Thus we obtain

〈
0
∣∣∣ eikq(τ)

∣∣∣0〉
∣∣∣
F±=F

= exp
(
− �

2k2

4m2ω2

)
exp

(
kG[F ; τ ]√

2 mω

)
. (11.6.17)

In particular for the expectation value of the displacement operator at
time τ , we have

〈
0
∣∣q(τ)

∣∣0〉 ∣∣∣
F

= − i√
2 mω

∫ τ

0

dτ ′
[
F ∗(τ ′) e−iω(τ ′−τ) − F (τ ′) eiω(τ ′−τ)

]

= − iG[F ; τ ]√
2 mω

≡
〈
q(τ)

〉
(11.6.18)

as a linear response to the external source F , and note that the expression
on the right-hand side of (11.6.18) is real as it should be.

On the other hand, upon multiplying (11.6.17) by exp(−ikq) dk/2π, where
q is a c-number, and integrating over k from −∞ to ∞, gives

〈
0
∣∣δ(q − q(τ)

)∣∣0〉 ∣∣∣
F=0

=

√
m2ω2

π�2
exp

[
−m2ω2

�2

(
q −

〈
q(τ)

〉 )2
]

(11.6.19)

as the probability density for the displacement of the harmonic oscillator at
time τ , which initially, at time t′ = 0, is in its ground-state, where

〈
q(τ)

〉
is

given in (11.6.18).
The transformation function 〈nt′ |nt′〉 for a closed-time path for a system

which started initially in the state |nt′〉 may be derived by methods similar
to the ones used in §6.4 as given below.

To the above end, we write

F±(τ) = F
(1)
± (τ) + F

(2)
± (τ) (11.6.20)

where F
(1)
+ (τ) is switched on only within an interval from t′′ to t′, and F

(2)
+ (τ)

is switched on only within an interval from t′ to t. F
(2)
− (τ) and F

(1)
− (τ) cor-

respond to the negative sense of time from t back to t′ and t′ back to t′′,
respectively.

To obtain the expression for 〈nt′ |nt′〉, we note from (11.6.6), that
〈0t′′ |0t′′〉F± may be rewritten as
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〈0t′′ |0t′′〉F± = 〈0t′′ |0t〉F− 〈0t |0t′′〉F+

× exp
[

1
�2

∫ t

t′′
dτ

∫ t

t′′
dτ ′ F ∗

−(τ) e−iω(τ−τ ′) F+(τ ′)
]

.

(11.6.21)

The decompositions of the sources in (11.6.20) with their causal arrange-
ments with F

(2)
+ (τ), for example, switched on after F

(1)
+ (τ) is switched off,

allow us to rewrite (11.6.21) as,

〈0t′′ |0t′′〉F± = 〈0t′′ |0t′〉F
(1)
− eA∗

−A+ 〈0t′ |0t′′〉F
(1)
+ eA∗

−B e−B∗A+ 〈0t′ |0t′〉F
(2)
±

(11.6.22)
where

A± =
i
�

∫ t′

t′′
dτ e−iω(t′−τ)F

(1)
± (τ) (11.6.23)

B =
i
�

∫ t

t′
dτ e−iω(t′−τ)

[
F

(2)
+ (τ) − F

(2)
− (τ)

]
. (11.6.24)

Equation (11.6.22) is to be compared with the one obtained from a com-
pleteness unitarity expansion

〈0t′′ |0t′′〉F± =
∞∑

N,M=0

〈0t′′ |Nt′〉F
(1)
− 〈Nt′ |Mt′〉F

(2)
± 〈Mt′ |0t′′〉F

(1)
+ (11.6.25)

where, for example, 〈Mt′ |0t′′〉F
(1)
+ may be written down directly from

(11.5.15) with an obvious change of notation, and is given by

〈Mt′ |0t′′〉F
(1)
+ =

(A+)M

√
M !

〈0t′ |0t′′〉F
(1)
+ (11.6.26)

and similarly,

〈0t′′ |Nt′〉F
(1)
− = 〈0t′′ |0t′〉F

(1)
−

(A∗
−)N

√
N !

. (11.6.27)

To obtain the expression for 〈nt′ |nt′〉F
(2)
±

0 for arbitrary n, we expand the
exponentials exp(A∗

−A+), exp(A∗
−B), exp(−B∗A+) in (11.6.22).

To the above end,

eA∗
−A+ eA∗

−B e−B∗A+

=
∞∑

a,b,c=0

(A∗
−)a+b√

(a + b)!
(A+)a+c√

(a + c)!

√
(a + b)! (a + c)!

a!
(B)b

b!
(−B∗)c

c!
.

(11.6.28)
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Upon setting a + b = N , a + c = M , selecting the diagonal element
N = M ≡ n in (11.6.25) we obtain by comparing (11.6.22) and (11.6.25) and
using in the process (11.6.26)–(11.6.28), that11

〈nt′ |nt′〉F± = 〈0t′ |0t′〉
n∑

a=0

n![
(n − a)!

]2
a!

(
−|B|2

)n−a (11.6.29)

now for arbitrary sources F+, F− in operation within the interval from t′ to
t and t back to t′, respectively,

|B|2 =
1
�2

∣∣∣∣
∫ t

t′
dτ e−iω(t′−τ)

(
F+(τ) − F−(τ)

)∣∣∣∣
2

(11.6.30)

and we have set 〈0t′ |0t′〉F± ≡ 〈0t′ |0t′〉 as in (11.6.6).
It is physically interesting to consider the initial state to be a thermal

mixture of energy states. This is obtained by multiplying 〈nt′ |nt′〉 in (11.6.29)
by the Boltzmann factor exp(−�ωn/kT ) (see also §6.3) and summing over
all n,

(
1 − e−�ω/kT

) ∞∑
n=0

e−�ωn/kT 〈nt′ |nt′〉F± ≡ 〈t′ | t′〉T (11.6.31)

where
(
1 − e−�ω/kT

)
is the normalization constant for the Boltzmann factor.

The summation in (11.6.31) is carried out by following the steps in (6.3.5)–
(6.3.8) to obtain for a thermal mixture at temperature T

〈t′ | t′〉T = 〈0t′ |0t′〉 exp

[
− 1

�2

1(
e�ω/kT − 1

)

×
∣∣∣∣
∫ t

t′
dτ e−iω(t′−τ)

[
F+(τ) − F−(τ)

]∣∣∣∣
2
]

(11.6.32)

where 〈0t′ |0t′〉 is given in (11.6.6). Equation (11.6.32) generalizes the expres-
sion for 〈0t′ |0t′〉 in (11.6.6) to finite temperatures with the initial state of
the system being a thermal mixture.

〈t′ | t′〉T may be rewritten in a compact form as in (11.6.8). Applications
of 〈t′ | t′〉T such as in (11.6.18), (11.6.19) are given in Problem 11.18.

Interactions between bosons (and bosons/fermions) may be considered
by the addition of interaction Hamiltonians to the free oscillators, in the
presence of external sources, and consider the dynamics in the positive sense
of time t′ → t and then in the negative sense from t back to t′ followed by
an application of the quantum dynamical principle in the two segments. We
will not, however, go into these details here.
11 Similar methods are used in field theory, see: Manoukian (1991).
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Problems

11.1. Work out the details specified below (11.2.19), involving the functional
differentiations

(
δ/δS(τ)

)2, to obtain the equality in (11.2.22).
11.2. Carry out the p-integration leading to the result in (11.2.25) and show

its equivalence to one in (9.4.21).
11.3. Obtain an expression for 〈qt |pt′〉(0) corresponding to the Hamiltonian

H ′
(0) = p2/2m − qF (τ) + pS(τ), for S(τ) �= 0, generalizing the one in

(11.2.22).
11.4. Use (11.2.22) to determine 〈pt |p′t′〉(0) for the Hamiltonian in (11.2.24).
11.5. Generalize the expression in (11.2.57) for the forced harmonic oscilla-

tor by adding a term pS(τ) to the Hamiltonian in (11.2.32).
11.6. Establish the identity in (11.2.28).
11.7. Verify that K(τ, τ ′) in (11.2.42) satisfies the conditions (i)–(iii) in

(11.2.37)–(11.2.41).
11.8. Use the Fourier transforms defined in (11.3.4), (11.3.5) to derive

(11.3.13).
11.9. Show that the double Fourier integral in (11.3.18) leads from (11.3.17)

to (11.3.19).
11.10. Verify that (11.5.12) is also consistent with (11.5.10) for the creation

operator a†(τ) by taking the functional differentiation −i�δ/δF (τ) of
the former equation.

11.11. By a method similar to the one used to obtain 〈nt |0t′〉 in (11.5.15),
derive an expression for 〈nt |n′t′〉, and compare your result with the
one in (6.2.30).

11.12. Interactions of bosons and fermions were considered in (6.5.18),
(6.5.30) with the latter being supersymmetric. Investigate the nature
of the transformation functions for such interactions by adding cou-
plings to external sources in the Hamiltonians. What is the significance
of the state 〈0τ ;λ| = 〈0, 0|U(τ, λ) for τ large, given that |0, 0〉 denotes
the ground-state of the free Bose-Fermi oscillator in (6.5.8)?

11.13. Show that the functional differentiations in (11.6.12), as translation
operators, lead to (11.6.13).

11.14. Find 〈0 |p(τ)|0〉
∣∣∣
F

and
〈
0
∣∣δ(p − p(τ)

)∣∣0〉 ∣∣∣
F

in analogy to the results
in (11.6.18), (11.6.19), respectively, for the momentum description of
the oscillator.

11.15. Spell out the details leading from (11.6.28) to (11.6.29) for the trans-
formation function 〈nt′ |nt′〉F± .

11.16. Follow the steps through (6.3.5)–(6.3.8) to obtain the expression for a
thermal mixture in (11.6.32) starting from (11.6.29).

11.17. Rewrite 〈t′ | t′〉T for a thermal mixture in a compact form as in (11.6.8).
11.18. Find the average displacement

〈
t′
∣∣q(τ)

∣∣t′〉T and the probability
density

〈
t′
∣∣δ(q − q(τ)

)∣∣t′〉T , generalizing the results in (11.6.18),
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(11.6.19), for an initial state as a thermal mixture with transformation
function given in (11.6.32), at finite temperature T .



12

Approximating Quantum Systems

Several approximations were already carried out in earlier chapters. In this
respect, for example in Chapter 7, we have considered relativistic corrections
to the energy levels of the hydrogen atom, also the non-relativistic Lamb shift,
and treated the atom in external electromagnetic fields. In Chapter 8, we have
discussed the validity of the exponential law in a two-level system (§8.1) and
related approximations involved. In the same chapter, radiation loss in spin
precession was studied (§8.4), a computation of the anomalous magnetic mo-
ment of the electron was made (§8.5), the problem of quantum decoherence
by the environment was considered (§8.7, §8.9) and the so-called geometric
phase in the adiabatic approximating regime was investigated (§8.13). Some
approximations are also given in Chapter 15 on quantum scattering, just to
mention a few of the applications of approximation methods. The present
chapter supplements these studies by investigating the nature of several ap-
proximation procedures, some of which are related to the above applications
in other chapters. Accordingly, the latter material may be read in conjunction
with the present one.

Sections 12.1, 12.2 deal with conventional time-independent perturbation
theories, followed by one on variational methods. High-order perturbations
and related divergent series as applied to an anharmonic oscillator potential
is the subject matter of §12.4. In §12.5, we study the so-called semi-classical
WKB approximation. Time-dependent perturbation theory is treated in §12.5
dealing, in particular, with the sudden and adiabatic approximations in which
a Hamiltonian may change rapidly in time in a very short time interval and in

span, respectively. In the last section, we study, in the density operator for-
malism, the response of a system, into consideration, to another system, such
as the environment. In this section, we derive the master equation describing
the dynamics of the reduced density operator of the system of interest after
having traced the density operator of the combined two systems over the
variables of the other one.

the other extreme a Hamiltonian may change very slowly during a long time
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12.1 Non-Degenerate Perturbation Theory

Consider a Hamiltonian H0 which, as part of its spectrum, has a discrete
non-degenerate one with eigenvalue equation

H0 |n〉0 = E0
n |n〉0 (12.1.1)

where the E0
n are non-degenerate and the eigenvectors |n〉0 are orthonormal.

We add to H0 a term H1, referred to as a perturbation, which is in some
sense small in comparison to H0, thus introducing the Hamiltonian

H = H0 + H1. (12.1.2)

We suppose that for the new system, we have an eigenvalue equation

H |n〉 = En |n〉 (12.1.3)

and that En is near E0
n for a given quantum number n. The shift in energy

due to the addition of the perturbation H1 to H0 is defined by

∆En = En − E0
n (12.1.4)

and we set
|n〉 = |n〉0 + |n〉′ . (12.1.5)

Upon multiplying (12.1.3) from the left by 0〈n| and using (12.1.1)–
(12.1.5), we obtain for the energy shift the expression

∆En = 0〈n |H1|n〉
0〈n |n〉 . (12.1.6)

This is invariant under phase transformations

|n〉 → |n〉 eiγ (12.1.7)

as the phase factor cancels out from the numerator and the denominator in
(12.1.6).

To first order in H1, we may replace |n〉 by |n〉0 in (12.1.6), to get for the
energy shift

∆E1
n = 0〈n |H1|n〉0 (12.1.8)

or
En � E0

n + E1
n (12.1.9)

with
E1

n = 0〈n |H1|n〉0 . (12.1.10)

To first order, we write

|n〉 � |n〉0 + |n〉1 (12.1.11)
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and use the normalizability of |n〉, |n〉0

1 = 〈n |n〉 � 1 + 0〈n |n〉1 +1〈n |n〉0 (12.1.12)

to infer that
0〈n |n〉1 = −0〈n |n〉∗1 . (12.1.13)

That is, 0〈n |n〉1, if not zero, is pure imaginary. Now we invoke the invariance
of ∆En in (12.1.6) under phase transformations as in (12.1.7) to carry out
the transformation

|n〉 → |n̄〉 = |n〉 eiγ � |n〉0 (1 + iγ) + |n〉1 (12.1.14)

and choose
γ = i 0〈n |n〉1 (12.1.15)

to note from (12.1.14) that

0〈n | n̄〉 � 1 + iγ +0〈n |n〉1 = 1. (12.1.16)

The latter means that if we write

|n̄〉 � |n〉0 + |n̄〉1 (12.1.17)

then
0〈n | n̄〉1 = 0. (12.1.18)

Hence from now on, we may choose |n〉1 such that

0〈n |n〉1 = 0 (12.1.19)

using the same notation as in (12.1.11).
A non-homogeneous equation satisfied by |n〉1 is readily obtained from

(12.1.3) by using (12.1.9), (12.1.11) together with the eigenvalue equation
(12.1.1) for the unperturbed system giving

(
H0 − E0

n

)
|n〉1 =

(
E1

n − H1

)
|n〉0 . (12.1.20)

Since E1
n is determined from (12.1.10) and |n〉0 is supposed to be known, this

equation may be used to obtain |n〉 of the perturbed system to first order.
If the spectrum of H0 consists only of a discrete non-degenerate one, then

we may rewrite the right-hand of (12.1.20), by using in the precess of the
completeness of the eigenvector of H0, as

(
E1

n − H1

)
|n〉0 = E1

n |n〉0 −
∑
m

|m〉0 0〈m |H1|n〉0

= E1
n |n〉0 − E1

n |n〉0 −
∑
m	=n

|m〉0 0〈m |H1|n〉0
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= −
∑
m	=n

|m〉0 0〈m |H1|n〉0 (12.1.21)

where in writing the second equality we have used (12.1.10). From (12.1.20),
(12.1.21) gives

|n〉1 = a |n〉0 +
∑
m	=n

|m〉0
1

(E0
n − E0

m) 0〈m |H1|n〉0 (12.1.22)

where a is a constant. In general, the vector a |n〉0 is introduced since for a
Hamiltonian with a discrete non-degenerate spectrum, |n〉0, up to a multi-
plicative constant, is the only vector annihilated by H0 − E0

n in (12.1.20).
Upon multiplying (12.1.22) by 0〈n| and using (12.1.19), we may infer that
a = 0.

To first order, we then have from (12.1.11), (12.1.22)

|n〉 = |n〉0 +
∑
m	=n

|m〉0
1

(E0
n − E0

m) 0〈m |H1|n〉0 . (12.1.23)

If 0〈m |H1|n〉0 in (12.1.10) is zero, one may go to second order in H1. To
this end, we note from (12.1.6), (12.1.5), that the expression for the energy
shift may be rewritten as

∆En = 0〈n |H1|n〉0
1 + 0〈n |n〉′

+ 0〈n |H1|n〉′

1 + 0〈n |n〉′
. (12.1.24)

With the orthogonality relation in (12.1.19), ∆En, up to second order in H1,
is then given by

∆En � 0〈n |H1|n〉0 + 0〈n |H1|n〉1 (12.1.25)

or
En � E0

n + 0〈n |H1|n〉0 + 0〈n |H1|n〉1 . (12.1.26)

Using (12.1.23) this may be rewritten as

En = E0
n + 0〈n |H1|n〉0 +

∑
m	=n

|0〈m |H1|n〉0|
2

E0
n − E0

m

+ . . . . (12.1.27)

As an application, though a formal one,1 consider the Hamiltonian

H =
p2

2m
+

mω2

2
x2 + λx3 (12.1.28)

with the interaction term H1 = λx3 added to the harmonic oscillator Hamil-
tonian §6.1 in one dimension.
1 Here it is sufficient to note that for λ < 0, x → ∞ or for λ > 0, x → −∞, the

interaction term → −∞ being unbounded from below in either cases.
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Since H1 is odd in x, and the harmonic oscillator wavefunctions ψn(x)
(§6.1, (6.1.39), (6.1.41), (6.1.42) have definite parities, i.e., |ψn(x)|2 is even,
we obtain from (12.1.10)

E1
n = 0. (12.1.29)

To second order, we have to evaluate

E2
n =

∑
m	=n

|0〈m |H1|n〉0|
2

E0
n − E0

m

(12.1.30)

where E0
n = �ω (n + 1/2). By taking advantage of the completeness relations

0

〈
m
∣∣x3

∣∣n〉
0

=
∑
m′

0〈m |x|m′〉0 0

〈
m′ ∣∣x2

∣∣n〉
0

(12.1.31)

and so on, and using, in the process, such matrix elements as in (6.1.45), we
obtain the selection rules m = n ± 3, m = n ± 1 for the non-vanishing of
0

〈
m
∣∣x3

∣∣n〉
0
, leading to

0

〈
n + 3

∣∣x3
∣∣n〉

0
=
(

�

2mω

)3/2 √
(n + 1)(n + 2)(n + 3) (12.1.32)

0

〈
n − 3

∣∣x3
∣∣n〉

0
=
(

�

2mω

)3/2 √
n(n − 1)(n − 2) (12.1.33)

0

〈
n + 1

∣∣x3
∣∣n〉

0
= 3

(
�

2mω

)3/2

(n + 1)
√

n + 1 (12.1.34)

0

〈
n − 1

∣∣x3
∣∣n〉

0
= 3

(
�

2mω

)3/2

n
√

n. (12.1.35)

From (12.1.30), (12.1.27), one readily obtains

En � �ω

(
n +

1
2

)
−
(

�

2mω

)3 (30n2 + 30n + 11)
�ω

λ2 (12.1.36)

to second order in λ.
For the eigenvector |n〉 to first order in λ, we have from (12.1.23) and

(12.1.32)–(12.1.35),

|n〉 � |n〉0 −
λ

3�ω

(
�

2mω

)3/2 √
(n + 1)(n + 2)(n + 3) |n + 3〉0

+
λ

3�ω

(
�

2mω

)3/2 √
n(n − 1)(n − 2) |n − 3〉0

− 3
λ

�ω

(
�

2mω

)3/2

(n + 1)
√

n + 1 |n + 1〉0
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+ 3
λ

�ω

(
λ

2mω

)3/2

n
√

n |n − 1〉0 (12.1.37)

and we note that
0
〈n |n〉

1
= 0 where |n〉

1
consists of the last four terms in this

equation.
The series in (12.1.27) may be extended to arbitrary orders for a Hamil-

tonian with a discrete non-degenerate spectrum. Such expansions are referred
to as Rayleigh-Schrödinger series.

12.2 Degenerate Perturbation Theory

Suppose that E0
n in the discrete spectrum of a Hamiltonian H0 is k(n)-fold

degenerate,
H0 |n, ν(n)〉0 = E0

n |n, ν(n)〉0 (12.2.1)

where the eigenvector |n, ν(n)〉0, ν(n) = 1, . . . , k(n), may be chosen to be
orthonormal. Now we add a perturbation H1 to H0, defining a Hamiltonian
H, and consider the eigenvalue problem

H |n〉 = En |n〉 . (12.2.2)

When the perturbation H1 is let to go to zero, |n〉 may not necessarily go to
one of the particular eigenvectors |n, ν(n)〉0 but, in general, to some linear
combination of them. Accordingly, we introduce an eigenvector of H0 of the
form

|n〉0 =
k(n)∑

ν(n)=1

aν(n) |n, ν(n)〉0 (12.2.3)

with some expansion coefficients aν(n), ν = 1, . . . , k(n).
Upon multiplying (12.2.2) from the left by 0〈n, ν(n)| and using (12.2.1),

we obtain
∆En 0〈n, ν(n) |n〉 = 0〈n, ν(n) |H1|n〉 (12.2.4)

where ∆En = En − E0
n. To lowest order in H1, we take |n〉 to coincide with

|n〉0, and use (12.2.3) to rewrite (12.2.4) as
∑
ν′(n)

[
E1

nδνν′ − 0〈n, ν(n) |H1|n, ν′(n)〉0
]
aν′(n) = 0. (12.2.5)

where ∆En = E1
n to first order.

To have a non-trivial solution for the aν(n) it is necessary that

det
∣∣E1

nδνν′ − 0〈n, ν(n) |H1|n, ν′(n)〉0
∣∣ = 0 (12.2.6)

otherwise one may be able to invert the matrix
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[Mνν′ ] = [E1
nδνν′ − 0〈n, ν(n) |H1|n, ν′(n)〉0]

and get zero for the aν(n). Equation (12.2.6) is of a k(n)th order one in term of
the matrix elements 0〈n, ν(n) |H1|n, ν′(n)〉0 and is called the secular equation.

From (12.2.6), we may infer that if, a priori, the eigenvectors |n, ν′(n)〉0
are properly chosen, by considering suitable linear combinations of eigenvec-
tors of H0 with eigenvalue E0

n, such that [0〈n, ν(n) |H1|n, ν′(n)〉0] are diago-
nal, them the matrix [Mνν′ ] would be also diagonal and the analysis leading
to (12.2.6) would simply give the solutions E1

nν = 〈n, ν(n) |H1|n, ν(n)〉.
As an application, consider the Hamiltonian of the hydrogen atom in a suf-

ficiently strong uniform magnetic field such that the fine-structure contribu-
tion VF may be neglected as given in (7.9.13), and we treat the e2A2

ext

/
2Mc2

term as a perturbation. That is, we set

H = H0 + H1 (12.2.7)

where

H0 = HC − eB

2Mc
(Lz + 2Sz) (12.2.8)

H1 =
e2B2

8Mc2

(
x2 + y2

)
(12.2.9)

(see (7.9.5)), where B = (0, 0, B),A = B(−y, x, 0)/2, and HC is the hydrogen
atom Coulomb Hamiltonian. The eigenvalue of H0 were given in (7.9.15)

E0(n,m,ms) = EC
n + η(m + 2ms), η = − e�B

2Mc
> 0. (12.2.10)

ms = ±1/2, and the eigenstates are given in (7.9.14). Here EC
n = −Ry/n2.

Consider n = 2. In particular, we note that the eigenvalue E0 in (12.2.10)
is degenerate for (� = 1,m = 0,ms = 1/2) and (� = 0,m = 0,ms = 1/2),
corresponding to eigenstates

R21(r)Y10(Ω)
(

1
0

)
≡ Φ1, R20(r)Y00(Ω)

(
1
0

)
≡ Φ2 (12.2.11)

with eigenvalue E0 = EC
2 + η. We note that (x2 + y2) = r2 sin2 θ, and from

the identity (5.8.41), used twice, that cos2 θ Y�m is a linear combination of
Y�±2,m and Y�m. Accordingly, from this, or by direct computation, we may
infer that

〈
Y�′0

∣∣(1 − cos2 θ
)∣∣Y�0

〉
is diagonal for �, �′ = 0, 1, and from (5.8.43)

or by direct evaluation

〈
Y00

∣∣(1 − cos2 θ
)∣∣Y00

〉
=

2
3
,

〈
Y10

∣∣(1 − cos2 θ
)∣∣Y10

〉
=

2
5
. (12.2.12)

On the other hand from (7.3.35),
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〈
R20

∣∣r2
∣∣R20

〉
= 42a2

0,
〈
R21

∣∣r2
∣∣R21

〉
= 30 a2

0 (12.2.13)

where a0 is the Bohr radius.
The matrix M in (12.2.5), (12.2.6) is then in diagonal form leading from

(12.2.12), (12.2.13) to the splitting of the level EC
2 + η to

EC
2 + η + 28

(
e2B2

8Mc2

)
a2
0, EC

2 + η + 12
(

e2B2

8Mc2

)
a2
0. (12.2.14)

12.3 Variational Methods

Variational methods will be used in Chapter 13 in minimizing a functional
of the electron density in the so-called Thomas-Fermi atom (§13.1) as a first
step in obtaining an expression for the ground-state energy of atoms as a
function of the atomic number Z, and in Chapter 14 in the investigation of
a “no-binding” theorem in the process of establishing the stability of matter.
The variational method considered in the present section in its simplest form
is the following one.

Given a Hamiltonian H, the problem considered is to choose a trial wave-
function Ψ, depending, in general, on one or more parameters, to minimize
the following expectation value

F [Ψ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉 (12.3.1)

considered as a functional of Ψ. In practice, such a minimizing is achieved
by optimizing F [Ψ] over the parameter(s) on which a priori chosen Ψ may
depend.

From the very definition of a ground-state energy, or just the lowest point
of the spectrum of a Hamiltonian, such a procedure cannot provide a lower
bound to it. Thus given a trial wavefunction, it will provide, in general, an
upper bound2 to the exact ground-state energy E0 (Chapter 4). The assess-
ment of the accuracy of such a bound as an estimate of E0 is, in general, not
always an easy task. On the other hand, if one also derives a lower bound to
E0 and it turns out that both bounds are close to each other, then such a
procedure would provide an excellent way of estimating E0.

As an example, consider first the inequality in (3.1.8) rewritten, for the
simplicity of the notation, in terms of a variable z in such units that in one
dimension

− 1
4
〈
z2g2(z)

〉
�
〈
− d2

dz2
− 1

2
d
dz

(zg(z))
〉

. (12.3.2)

For example, for
2 That this method leads to an upper bound for the ground-state energy, in general,

is not sufficiently emphasized in the literature.
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g(z) = 4 + 2z2 (12.3.3)

the inequality (12.3.2) leads to

2 �
〈
− d2

dz2
+ V (z)

〉
(12.3.4)

generating an anharmonic potential with fixed couplings (see also Prob-
lem 12.8),

V (z) = z2 + 4z4 + z6. (12.3.5)

As a trial wavefunction for the ground-state of the Hamiltonian

H = − d2

dz2
+ V (z) (12.3.6)

we may choose

Ψ(z) =
1

(2π)1/4σ1/2
exp

(
− z2

4σ2

)
(12.3.7)

where the parameter σ > 0 will be chosen optimally. Upon substituting
(12.3.7) in (12.3.1), (12.3.4), we obtain

2 � E0 � F [Ψ] =
1

4σ2
+ σ2 + 12σ4 + 15σ6. (12.3.8)

The expression on the extreme right-hand side of (12.3.8) is minimized for
σ2 about .188, leading to the satisfactory bounds

2 � E0 � 2.0416. (12.3.9)

The above interesting method was used in obtaining the exact ground-
state energies of the harmonic oscillator (§6.1), of the hydrogen atom (§7.1)
and for the Dirac delta potential (§4.2), by appropriately choosing, in the
process, the trial wavefunctions in such a way that the resulting upper bounds
coincide with the respective lower bounds, and this procedure may be applied
to other cases as well (see also (3.3.6), (3.3.7), (4.2.83), (4.2.84)).

It is easy to apply the above method to generate, a priori, potentials with
variable couplings. For example, consider the function

g(z) =
1
z

√
8λ

c
+ c +

√
2λ z (12.3.10)

in (12.3.2), where λ > 0, c > 0 are constants. This leads to

1
4

(zg(z))2 − 1
2

(zg(z))′ = −1
2

(
c − 4λ

c2

)
+
(

c2

4
+

2λ

c

)
z2

+

√
λ

2
cz3 +

λ

2
z4. (12.3.11)
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Using the elementary bound
√

λ

2
cz3 = 2

(√
λ

2
z2

)(cz

2

)
� λ

2
z4 +

c2

4
z2 (12.3.12)

we have

1
4

(zg(z))2 − 1
2

(zg(z))′ � −1
2

(
c − 4λ

c2

)
+

1
2

(
c2 +

4λ

c

)
z2 + λz4 (12.3.13)

thus obtaining

1
2

(
c − 4λ

c2

)
�
〈
− d2

dz2
+

1
2

(
c2 +

4λ

c

)
z2 + λz4

〉
(12.3.14)

generating an anharmonic potential V (z) = λ0z
2 + λz4. The usefulness and

limitations of this inequality in deriving bounds on the ground-state energy
is the subject of Problem 12.9.

As another example, consider the hydrogen molecule in which one of its
electrons has been stripped off forming an ion of net charge +|e|. To gener-
ate the potential energy for the latter, we introduce a vector field (see also
(3.4.22)–(3.4.24))

F(x) =
e2

2

(
x − R/2
|x − R/2| +

x + R/2
|x + R/2|

)
(12.3.15)

where x denotes the coordinate of the electron and ±R/2 denote position
vectors of the two protons, R = (0, 0, R). Now invoking positivity

∥∥∥∥∥
(

�∇√
2m

+
√

2m

�
F

)
χ

∥∥∥∥∥
2

� 0 (12.3.16)

we obtain the simple bound

− 2m

�2

〈
F2

〉
�
〈

p2

2m
− ∇ · F

〉
(12.3.17)

and the explicit equality

− ∇ · F = − e2

|x − R/2| −
e2

|x + R/2| . (12.3.18)

On the other hand, F in (12.3.15) being equal to e2/2 times the sum of
two unit vectors, we have

F2 � e4. (12.3.19)

From (12.3.17)–(12.3.19), we obtain
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− 2me4

�2
+

e2

R
�
〈

p2

2m
+ V (x)

〉
(12.3.20)

with R = |R|,

V (x) = − e2

|x − R/2| −
e2

|x + R/2| +
e2

R
(12.3.21)

where in writing (12.3.20), we have added the term e2/R on both sides of
(12.3.17). V (x) denotes the potential energy of the one-electron (ionized) hy-
drogen molecule, and p2/2m + V (x) denotes the corresponding Hamiltonian
taking into account the fact that the mass of the proton � mass m of the
electron.

As a trial wavefunction for the electron, we choose the normalized function

Ψ(x) =
β3/2

√
2πN

[
exp

(
−β

∣∣∣∣x − R
2

∣∣∣∣
)

+ exp
(
−β

∣∣∣∣x +
R
2

∣∣∣∣
)]

(12.3.22)

where

N =

√
1 +

(
1 + λ +

λ2

3

)
exp−λ , λ ≡ βR (12.3.23)

and the parameters β,R will be chosen optimally.
If we set

φ1 =
β3/2

√
π

exp
(
−β

∣∣∣∣x − R
2

∣∣∣∣
)

, φ2 =
β3/2

√
π

exp
(
−β

∣∣∣∣x +
R
2

∣∣∣∣
)

(12.3.24)

then from symmetry

〈Ψ |H|Ψ〉 =
1

N2
[〈φ1 |H|φ1〉 + 〈φ2 |H|φ1〉] . (12.3.25)

The computation of the above matrix elements is straightforward (see Prob-
lem 12.10) but tedious and are explicitly given by

〈φ1 |H|φ1〉 =
e2

a0N2

[
ξ2

2
− ξ + ξ

(
1 +

1
λ

)
e−2λ

]
(12.3.26)

〈φ2 |H|φ1〉 =
e2

a0N2

[
ξ2

2

(
1 + λ − λ2

3

)
e−λ − 2ξ (1 + λ) e−λ +

(N2 − 1)
λ

ξ

]

(12.3.27)
where a0 = �

2/me2, and we have introduced the parameter,

ξ = βa0. (12.3.28)

From (12.3.25)–(12.3.28), we then have the following upper bound for the
ground-state energy of the molecule
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E0 � e2

a0

1
N2(λ)

[
ξ2

2
A(λ) − ξB(λ)

]
(12.3.29)

where

A(λ) = 1 +
(

1 + λ − λ2

3

)
e−λ (12.3.30)

B(λ) = 1 −
(

1 +
1
λ

)
e−2λ +

(
5λ

3
+ 1 − 1

λ

)
e−λ (12.3.31)

and N = N(λ) is defined in (12.3.23).
Optimizing the right-hand side of (12.3.29) over ξ gives

ξ = B(λ)/A(λ). (12.3.32)

Upon substituting (12.3.32) in (12.3.29), we obtain

E0 � − e2

2a0

B2(λ)
N2(λ)A(λ)

. (12.3.33)

Optimizing the right-hand side of (12.3.33) over λ yields λ � 2.48 leading to

E0 � − e2

2a0
1.173 (12.3.34)

and ξ = 1.238. From ξ = βa0, λ = βR, these give R = 2.003 a0. All told,
(12.3.20), (12.3.34) lead to the bounds

− me4

2�2
3 � E0 � −me4

2�2
1.173. (12.3.35)

By introducing a more complicated trial wavefunction depending on more
parameters, one expects that the upper bound in (12.3.35) may be further
reduced. The control of the lower bound, however, is more difficult.

Needless to say, the variational procedure may be carried out, optimizing
the expectation value in (12.3.1) over the parameters that a trial wavefunction
may depend, even if no lower bound to the exact ground-state energy E0 is
available. When both upper and lower bounds to E0 are derived one may,
or may not, be able to assess this estimation depending on how close, or
not close, these two bounds are to each other, respectively. The first excited
energy level to a given Hamiltonian may be also estimated by the variational
procedure by optimizing the expectation value in (12.3.1) by choosing a trial
wavefunction which is orthogonal to the one chosen for the ground-state,
and extend further the analysis in a similar fashion, for other excited energy
states.
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12.4 High-Order Perturbations, Divergent Series; Padé
Approximants

In this section, we investigate the nature of the high-order terms in the
Rayleigh-Schrödinger perturbation series for the so-called anharmonic oscil-
lator involving a x4 term in the potential energy in addition to the harmonic
oscillator x2 one. This interaction turns out to be important as the pertur-
bation series diverges and provides a prototype for other divergent series and
has also been useful in clarifying related aspects in field theory. We first de-
rive a dispersion relation that relates the ground-state energy for positive
coupling, for which the theory is defined, in terms of an integral restricted to
negative coupling. This integral leads to a formal expression for the pertur-
bation coefficients of the ground-state energy to any order. We then carry out
a qualitative study of these coefficients, using path integrals, which clearly
shows that they grow factorially with the order for high orders implying the
divergence of the perturbation series. Finally we comment on a procedure
which re-arranges the perturbation terms, referred to as the method of Padé
approximants, that converges, in the limit, to the actual energy value.

Consider an analytic function f(ξ′) of a complex variable ξ′ in the complex
cut-plane shown in Figure 12.1. Cauchy’s Theorem implies that

f(ξ) =
1

2πi

∮
C

dξ′
f(ξ′)

(ξ′ − ξ)
(12.4.1)

where ξ lies within the contour away from the cut axis. Assuming that there
is no contribution to the integral from the circles of radii R → ∞, δ → 0, we
obtain

f(ξ) =
1

2πi

∫ 0

−∞
dξ′

Disc f(ξ′)
(ξ′ − ξ)

(12.4.2)

where Disc f(ξ′) is the discontinuity of f(ξ′) across the cut, i.e.,

Disc f(ξ′) = f(ξ′ + iε) − f(ξ′ − iε), ε → +0. (12.4.3)

The variable ξ will be chosen to be real and positive for which f(ξ) is real.
Equation (12.4.2) is referred to as a dispersion relation relating f(ξ) to the
discontinuity of f(ξ′) across the cut.

One may subtract from f(ξ) its value at ξ → +0, obtaining the once
subtracted dispersion relation

f(ξ) − f(0) =
1

2πi

∫ 0

−∞
ξ dξ′

Disc f(ξ′)
ξ′(ξ′ − ξ)

. (12.4.4)

A formal series expansion

f(ξ) − f(0) =
∑
K�1

fK(ξ)K (12.4.5)
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C

R

δ

ξ′

Fig. 12.1. Contour of integration C in the complex cut-plane ξ′ used in
(12.4.1). The radii of the circles are taken to be R → ∞, δ → 0.

then leads to the following expression for the expansion coefficients

fK =
1

2πi

∫ 0

−∞

dξ′

(ξ′)K+1
Disc f(ξ′) (12.4.6)

where we have used the expansion

ξ

(ξ′ − ξ)
=

∑
K�1

(
ξ

ξ′

)K

(12.4.7)

in (12.4.4).
In the notation of (12.3.6), we consider the Hamiltonian

H = − d2

dz2
+ z2 + λz4, λ > 0. (12.4.8)
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The nature of the potential V (z) = z2 + λz4 is quite different for λ > 0 and
λ < 0 (see Figure 12.2). In the latter case, the potential develops unstable
states with energies involving imaginary parts and decay through the poten-
tial barriers of finite widths. Such an imaginary part for the ground-state en-
ergy E(λ), when λ is continued to |λ| exp(±iπ) from λ > 0, is what is needed
to obtain the expansion coefficients EK in a formal perturbation expansion
(λ > 0),

E(λ) − E(0+) =
∑
K�1

EK(λ)K (12.4.9)

using an integral as in (12.4.6). In the present notation used E(0+) = 1,
corresponding to the harmonic oscillator potential.

Fig. 12.2. Shapes of the potential energy for positive and negative λ. For
λ < 0 the potential develops unstable decaying states with energies involving
imaginary parts. The potential energy in the latter case is also unbounded
from below. The figures are not based on actual numerical values.

For λ < 0, the potential is unbounded from below, with the properties
of the system quite different from that with λ > 0, and the theory cannot
just be extended from λ > 0 to λ < 0. Technically, this corresponds to the
fact in the complex λ-plane, E(λ) may be analytically continued at most
only to a cut-plane with the cut along the negative real axis of λ. This, in
particular, leads to a discontinuity of E(λ) along the negative real axis, i.e.,[
E(λ + i0) − E(λ − i0)

]
�= 0 for λ < 0, and gives rise to an imaginary part

for the energy E(λ) as discussed above.
Assuming the analyticity property of E(λ) in the cut-plane and that no

contribution arises from integrations over the circles of radii R → ∞, δ → 0
in Figure 12.1 in the complex λ-plane,

E(λ + i0) − E(λ − i0) = 2i Im E(λ + i0) (12.4.10)

for the discontinuity across the cut, we may infer from (12.4.6) that
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EK =
1
π

∫ 0

−∞
dλ

Im E(λ)
λK+1

(12.4.11)

for the coefficients EK in (12.4.9), where Im E(λ) = Im E(λ + i0) approaching
from above the negative axis. We will not, however, go into the proof of the
analyticity property of E(λ)3 for which (12.4.10), (12.4.11) are assumed to
hold.

The perturbation series for E(λ) in (12.4.9) also diverges. We will provide
a qualitative analysis of this fact by using path integrals. Before doing this,
however, we will show how the ground-state energy may be formally extracted
from a time evolution analysis if time t is replaced by −i�β and the limit
β → ∞ is taken.

To the above end, suppose that E1 > E0 denotes the energy level of a
given Hamiltonian H just above the ground-state energy E0, then

〈
ψ
∣∣e−βH

∣∣ψ〉 =
∫ ∞

E0

d
∥∥PH(λ)ψ

∥∥2 e−βλ

= e−βE0

{∥∥PH(E0)ψ
∥∥2 +

∫ ∞

E1

d
∥∥PH(λ)ψ

∥∥2 e−β(λ−E0)

}

(12.4.12)

where PH(λ) is the spectral measure of the given Hamiltonian (§1.8). Upon
taking the limit β → ∞, we obtain

〈
ψ
∣∣e−βH

∣∣ψ〉 −→ e−βE0
∥∥PH(E0)ψ

∥∥2 (12.4.13)

for PH(E0) |ψ〉 not the zero vector.
Consider also, for example, the Green function of the harmonic oscillator

given in (9.2.23). For x′ = x, T → −i�β, one has explicitly,

G(xT ;x0)
∣∣
T=−i�β

=
( mω

2πi� sin ωT

)1/2

× exp
(

imωx2

�

[
cot ωT − csc ωT

])∣∣∣∣
T=−i�β

−→ e−β(�ω/2)
(mω

π�

)1/2

exp
(
−mω

�
x2
)

(12.4.14)

for β → ∞, where, again, we recognize the coefficient of β, in the first expo-
nential, denoting the ground-state energy.

To obtain the imaginary part of E(λ) for λ < 0 in (12.4.11), (with λ taken
to approach the negative axis from above), we consider the imaginary part
of the trace of the operator exp(−βH) for β large, with the trace normalized
3 For the relevant details see, Loeffel et al. (1969), and references therein.
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with respect to the corresponding one for the harmonic oscillator one. For
K → ∞, we may also consider λ ∼ 0−. That is, we investigate the nature of
the function

F (λ, β) = Im
(

1
C

Tr
[
e−βH

])
, λ < 0 (12.4.15)

where
C = Tr

[
e−βH0]

(12.4.16)

H0 = − d2

dz2
+ z2 (12.4.17)

in the above mentioned limits.
For β large and λ ∼ 0−,

F (λ, β) ∼ Im
(

e−β[1+O(λ)+i∆E]

e−β

)
(12.4.18)

where O(λ) denotes the perturbative real correction to the harmonic oscil-
lator ground-state energy equal to 1, in the units used in (12.4.8), (12.4.17),
and ∆E is the imaginary part of the corresponding unstable energy (see
Figure 12.2) arising for λ � 0. We will see that, self consistently, ∆E is ex-
ponentially small for λ ∼ 0−, and hence we may write

F (λ, β) ∼ −β∆E. (12.4.19)

By a path integral representation of F (λ, β), we will learn that for β large,
λ ∼ 0−, F (λ, β) leads to

∆E ∼ c
e2/3λ

√
−λ

(12.4.20)

for some constant c of order 1 independent of λ (and, of course, independent
of β) in the above limits.

Upon substituting the expression in (12.4.20) for Im ∆E in (12.4.11) and
explicitly carrying out the λ-integration, we obtain (K → ∞), up to an overall
numerical factor of order 1,4

EK ∼ (−1)K+1

(
3
2

)K

Γ
(
K + 1

2

)
, (12.4.21)

where Γ(K + 1/2) is the gamma function with integral representation

Γ
(
K + 1

2

)
=
∫ ∞

0

du e−u(u)K−1/2. (12.4.22)

4 This numerical factor is given by 2
√

6/π3 ∼ 0.88. This factor is not essential in
showing the growth of EK factorially in the order K. The explicit behavior in
(12.4.21) was first derived by Bender and Wu (1971).
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To carry out the integral (12.4.11), first make the substitution λ → −λ, and
then introduce the integration variable u = 2/3λ. The coefficients EK grow
factorially for K → ∞ leading to a diverging Rayleigh-Schrödinger perturba-
tion series.

To derive (12.4.20), we first write the path integral expression for F (λ, β)
in (12.4.15) with λ < 0,5

F (λ, β) = Im
(

1
C

Tr
[
e−( β

2 −(− β
2 ))H

])

= Im

(
1
C

Tr
∫

D
(
z(·)

)
exp

[
−
∫ β/2

−β/2

dτ

(
ż2(τ)

4
+ z2(τ) + λz4(τ)

)])

(12.4.23)

with the boundary condition z(−β/2) = z(β/2), and we consider the limit
β → ∞, where formally (see (10.1.4))

D
(
z(·)

)
= lim

N→∞

(
N

2π�2β

)N/2
(

N−1∏
i=1

dzi

)
. (12.4.24)

Let z(t) = η(t) + δz(t), where η(t) defines classical path(s) and δz(t) the
deviations of z(t) from η(t). η(t) satisfies the differential equation6

η̈(t)
2

− 2η(t) − 4λη3(t) = 0 (12.4.25)

with boundary condition η(−β/2) = η(β/2), β → ∞. By direct substitution
in (12.4.25), the solutions, for β → ∞, are readily verified to be given by

η(t) =
±1√

−λ cosh
[
2(t − t0)

] (12.4.26)

where η(−β/2) → 0, η(β/2) → 0 for β → ∞, t0 arbitrary.
Now for λ ∼ 0−, we consider the contribution due to derivations about

the classical paths in (12.4.26). To this end, we first note that

lim
β→∞

exp

(
−
∫ β/2

−β/2

dτ

[
η̇2(τ)

4
+ η2(τ) + λη4(τ)

])
= exp

(
2
3λ

)
(12.4.27)

and for further reference that

5 We note that classically the Lagrangian corresponding to the Hamiltonian
p2 + z2 + λz4 is given by (ż2/4) − z2 − λz4 which upon the substitution t → −it,
leads to the exponential factor in (12.4.23).

6 We use a method developed in: Zinn-Justin (1981).
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‖η̇‖ ≡
(∫ ∞

−∞
dt η̇2(t)

)1/2

=
2√
−3λ

(12.4.28)

both of which follow directly from (12.4.26).
In terms of the deviations δz(t) about η(t), with boundary conditions

δz(±β/2) = 0,

∫ β/2

−β/2

dτ

(
ż2(τ)

4
+ z2(τ) + λz4(τ)

)
� − 2

3λ
+ A(δz) (12.4.29)

where

A(δz) =
∫ β/2

−β/2

dt δz

(
−1

4
d2

dt2
+ 1 − 6

cosh2
[
2(t − t0)

]
)

δz. (12.4.30)

Here we have used (12.4.25), (12.4.26), integrated by parts over t using
the boundary conditions on δz(t) mentioned above, and noted that the co-
efficients of the terms involving (δz)3, (δz)4 vanish for λ → 0−. We note
that f0(t) = η̇(t)/‖η̇‖ is a normalized eigenvector of the operator M =
[−d2/4dt2 + 1 − 6 cosh−2(2(t − t0))] with eigenvalue 0, i.e., Mf0(t) = 0.

The arbitrariness of the parameter t0 in (12.4.26), corresponding to mul-
tiple solutions of (12.4.25), gives rise to an associated degree of freedom in
the problem. Instead of working with the parameter t0, we may consider the
scaled one −‖η̇‖t0 for a reason which will be clear below. We carry out a
change of the path-integration variables in (12.4.23) as follows. We supple-
ment the normalized function f0(t) = η̇(t)/‖η̇‖ by an infinite set of functions
f1(t), f2(t), . . . such that we may generate a mutually orthonormal set of
functions f0(t), f1(t), f2(t), . . ., and expand η(t) + δz(t) as

z(t) = η(t) +
∑
i�1

δzifi(t). (12.4.31)

In particular, we note from (12.4.26), (12.4.31) that

∂z(t)
∂
(
−‖η̇‖t0

) = − 1
‖η̇‖

(
∂η(t)
∂t0

)
=

η̇(t)
‖η̇‖ ≡ f0(t) (12.4.32)

∂z(t)
∂
(
δzj

) = fj(t), j � 1 (12.4.33)

and we have thus carried out a transformation :
(
z(t1), z(t2), . . .

)
−→

(
−‖η̇‖t0, δz1, δz2, . . .

)
. (12.4.34)

Since f0(t), f1(t), . . . are chosen to be orthonormal, the Jacobian of the
transformation is one.
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From (12.4.23), (12.4.28)–(12.4.30), (12.4.34), we then have for β → ∞,
λ ∼ 0−

Im
(

1
C

Tr
[
e−βH

])
∼ −e2/3λ

√
−λ

Im

(
1
C

Tr
∫ β/2

−β/2

dt0

∫
D
(
δz(·)

)
exp

[
−A(δz)

])

(12.4.35)
up to a multiplicative numerical factor independent of λ and β for λ ∼ 0−,
β → ∞.

The purpose of the exercise in the transformation carried out in (12.4.34)
was two-fold: (1) It was to show that the degree of freedom associated with
the parameter t0, corresponding to multiple classical solutions η(t), lead to a
multiplicative factor ‖η̇‖ ∼ 1/

√
−λ as an extra factor to exp(2/3λ), coming

from (12.4.27), as spelled out in (12.4.35). (2) The action in (12.4.35) being
quadratic, we may infer, for example, from a generalization of the Gaussian
integral in (9.8.20), that the path integral in (12.4.35) ∼ (det M)−1/2, and
det M does not involve the zero eigenvalue corresponding to f0, which has
been already extracted in the infinite t0-integral for β → ∞, and is indepen-
dent of t0 in this limit.

The t0-integral in (12.4.35) may be then explicitly carried out giving an
overall β factor in (12.4.35) for β → ∞. Since for λ < 0, the system is unstable
(see Figure 12.2) (det M)−1/2 must have an imaginary part and, otherwise,
all the coefficients in (12.4.11) will be zero. Technically this happens7 because
M has also a negative eigenvalue making det M negative.

Because of the normalization factor 1/C, the leading net β, λ-dependent
multiplicative factor for β → ∞, λ ∼ 0−, in F (λ, β) in (12.4.35) is then just
−β exp(2/3λ)/

√
−λ, simply up to a numerical factor of order 1, indepen-

dent of λ, β in the above mentioned limits. Upon comparison of the behavior
F (λ, β) ∼ −β exp(2/3λ)/

√
−λ with (12.4.19) gives (12.4.20) thus obtaining

the result stated in (12.4.21). Although the “action” in (12.4.35) is quadratic
and hence the path integral may be explicitly carried out, the actual mag-
nitude and sign of this overall λ-independent factor, for λ ∼ 0−, are clearly
not essential to establish the factorial growth in K for K → ∞ as given in
(12.4.21) (see also Problem 12.12).

Over years, several investigations were carried out in re-summation meth-
ods and/or re-groupings of various terms in perturbation expansions of diver-
gent series, as of the type studied above, leading in some cases to convergent
results. One of these methods is that of the Padé approximants one discussed
below which leads to a convergent result for E(λ).

In the Padé approximants method, one formally replaces a series∑
K aKλK , representing a function F (λ), by a double-sequence of ratios of

two polynomials

7 See Zinn-Justin (1981); see also Auberson et al. (1978).
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P [N,M ](λ) =

N∑
n=0

Anλn

M∑
n=0

Bnλn

, (12.4.36)

B0 = 1, and chooses the (N + M + 1) coefficients A0, A1, . . . , AN , B1, . . . ,
BM in such a manner that the first (N + M + 1) terms in the Taylor series
of P [N,M ](λ) coincide, term by term, with the first (N + M + 1) terms of
the power series

∑
K aKλK . P [N,M ](λ) is referred to as a Padé approximant

associated with the original formal power series in question.
The interesting situation arises if P [N,M ](λ) converges for N,M → ∞ to

the actual function F (λ), even if
∑

K aKλK diverges.
As an example of a Padé approximant, consider the Rayleigh-Schrödinger

series for the ground-state energy of the anharmonic oscillator with Hamil-
tonian given in (12.4.8). To second order in λ (see Problem 12.1),

E(λ) = 1 +
3
4
λ − 21

6
λ2 + . . . (12.4.37)

and the Padé approximant P [1,1](λ) is given by

P [1,1](λ) =
1 + 5

2λ

1 + 7
4λ

(12.4.38)

as is easily verified (see also Problem 12.13).
The above method has been successfully used in the literature8 showing

that the Padé approximants P [N,N ](λ) converge for N → ∞ to the actual
value for E(λ). For example, P [10,10](0.1) = 1.065 285 509 535, P [20,20](0.1) =
1.065 285 509 543, while the actual value E(0.1) = 1.062 285 5 ± 0.000 000 5.
And P [10,10](1) = 1.392 102 495 074, P [20,20](1) = 1.392 337 481 861, while the
actual value E(1) = 1.392 751 ± 0.000 620.

As mentioned above, there have been many other re-summation proce-
dures introduced recently and the reader may wish to consult the relevant
journals for related details.

12.5 WKB Approximation

12.5.1 General Theory

Consider the Schrödinger equation for a stationary state of energy E, in
one dimension

8 For the relevant details see, Loeffel et al. (1969), and references therein for values
of E(λ).
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(

d2

dx2
+

p2(x)
�2

)
ψ(x) = 0 (12.5.1)

where
p2(x) = 2m(E − V (x)). (12.5.2)

Within an interval, when V (x) is constant, the formal solutions of (12.5.1)
are of the form exp(±ixp/�). More generally, one may formally introduce,
locally, a scale λ̄(x) = �/|p(x)| — referred to by some as a reduced lo-
cal de Broglie wavelength of the particle in question. We consider potentials
V (x) which vary slowly over distances of the order λ̄(x) in the neighbor-
hood of x. By setting ∆V = ∆xV ′(x), then for a change ∆x of the order of
λ̄(x), for a slowly varying potential over λ̄(x), we take, as a rule of thumb,
|∆V | � | λ̄(x)V ′(x)| � �

2/(m λ̄2(x)). The latter condition may be equiva-
lently rewritten as |∆ λ̄| � | λ̄(x) λ̄′(x)| � | λ̄(x)| signifying that the approx-
imation sought corresponds to cases where λ̄(x) varies slowly over a distance
of the order λ̄(x) itself. This constraint in turn, may be rewritten formally
in terms of the local classical “momentum” |p(x)| as |p′(x)/p(x)| � |p(x)|/�.9
Such a restriction will be derived more precisely below.

To find the solutions of (12.5.1) under the above stated condition, we set

ψ(x) =
1√

S′(x)
exp S(x) (12.5.3)

where S, and its derivative, are unknown. The specific way of writing ψ(x)
in this form turns out to be convenient and simplifies the analysis to some
extent. In any case S(x) is unknown and will be, self consistently, determined
by substituting the expression for ψ(x) in (12.5.1). We explicitly have

ψ′′ =

[
1
4

(
S′′

S′

)2

− 1
2

(
S′′

S′

)′
+ (S′)2

]
ψ (12.5.4)

leading from (12.5.1) to

(S′)2 +
p2(x)

�2
+

1
4

(
S′′

S′

)2

− 1
2

(
S′′

S′

)′
= 0. (12.5.5)

For p(x) a constant, we have seen above that S(x) is linear in x, and
hence S′(x) is a constant. More generally for slowly varying S′, we neglect
the last two terms in (12.5.5) and, in turn, investigate the nature of this
approximation. To this end, we obtain

S′(x) � ± i
p(x)

�
. (12.5.6)

9 For p(x) �= 0, the condition in question, written in this last form, corresponds
formally to a � ∼ 0 analysis.
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Upon substitution of (12.5.6) in (12.5.5), we may infer that this approxi-
mation may be carried out provided

∣∣∣∣∣
1
4

(
p′

p

)2

− 1
2

(
p′

p

)′
∣∣∣∣∣ �

|p(x)|2
�2

(12.5.7)

and obtain the asymptotic solution

ψ(x) � C1√
p(x)

exp
(

i
�

∫ x

dx p(x)
)

+
C2√
p(x)

exp
(
− i

�

∫ x

dx p(x)
)

(12.5.8)

where C1, C2 are some constants. This approximation method is referred to
as the WKB approximation.10

Clearly, the approximation breaks down at such points, called turning
point,11 where p(x) = 0. A turning point is shown in Figure 12.3, where
V ′(a) > 0.

a
x

V (x)

E

Fig. 12.3. The figure shows a turning point at x = a, where V (a) = E, and
hence p(a) = 0. At this point, the approximation in (12.5.8) certainly breaks
down. Here V ′(a) > 0.

To find out how close can x come to the point a before the approximation
breaks down, we carry out the expansion

p2(x) � −2m

[
V ′(a)(x − a) + V ′′(a)

(x − a)2

2

]
(12.5.9)

where, here, V ′(a) > 0.
For

10 WKB stands for three of several contributors to this method, namely, G. Wentzel,
H. A. Kramers and L. Brillouin.

11 This terminology is taken from classical mechanics, where p(x) = 0 means that,
at such a point, the kinetic energy of a particle is zero as the particle reverses
its motion.
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|V ′′(a)(x − a)| � 2|V ′(a)| (12.5.10)

we have
p2(x) � 2mV ′(a)(a − x). (12.5.11)

In the neighborhood of the point a for which (12.5.10) is satisfied, we may
use (12.5.9) to rewrite (12.5.1) as

(
d2

dx2
− 2mV ′(a)(x − a)

�2

)
χ = 0 (12.5.12)

where we have denoted the wavefunction in this region by χ. Upon making
a change of variable x to

κ = (2mV ′(a)/�
2)1/3(x − a), (12.5.13)

we obtain for (12.5.12) (
d2

dκ2
− κ

)
χ = 0. (12.5.14)

The special functions satisfying this differential equation are called Airy
functions12 and a pair of linearly independent solutions are denoted by Ai(κ),
Bi(κ) having, in particular, the following properties:

Ai(0) =
Bi(0)√

3
= 3−2/3Γ

(
2
3

)
(12.5.15)

and for κ > 0,

Ai(κ) −−−−→
κ→∞

1
2
√

π

(
1
κ

)1/4

exp
(
−2

3
κ3/2

)
(12.5.16)

Bi(κ) −−−−→
κ→∞

1√
π

(
1
κ

)1/4

exp
(

2
3
κ3/2

)
. (12.5.17)

On the other hand for κ < 0,

Ai(κ) −−−−→
|κ|→∞

1√
π

(
1
|κ|

)1/4

sin
(

2
3
|κ|3/2 +

π

4

)
(12.5.18)

Bi(κ) −−−−→
|κ|→∞

1√
π

(
1
|κ|

)1/4

cos
(

2
3
|κ|3/2 +

π

4

)
. (12.5.19)

The general solution of (12.5.14) is

χ(x) = α Ai

((
2mV ′(a)

�2

)1/3

(x − a)

)
+ β Bi

((
2mV ′(a)

�2

)1/3

(x − a)

)

(12.5.20)
12 Cf. Abramowitz and Stegun (1972), p. 446.
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with α, β some constants. We recall that in (12.5.14), x satisfies (12.5.10).
Bi(κ), unlike Ai(κ), grows exponentially in (12.5.17) for x > a in the

region E < V , and on physical grounds (see Figure 12.3) it is necessary to
choose β = 0 in (12.5.20). Hence

χ(x) = α Ai

((
2mV ′(a)

�2

)1/3

(x − a)

)
. (12.5.21)

In particular, we learn from the property in (12.5.15) that the solution is
finite at the turning point a.

Now we have to find a common region to the left of the point a in which
the solutions in (12.5.21) and (12.5.8) are valid. Hence in the region, we are
seeking, both solutions must coincide.

To the above end, we note that the condition in (12.5.7) must be satisfied.
This leads to

(
5
16

)1/3

< 1 �
(

2mV ′(a)
�2

)1/3

(a − x) ≡ |κ|. (12.5.22)

In turn (12.5.10) requires from (12.5.22) that

|κ| � 2
|V ′′(a)|

(
2m(V ′(a))4

�2

)1/3

(12.5.23)

for V ′′(a) �= 0, for the justification of the neglect of the second term in (12.5.9)
in comparison to the first one in a Taylor expression.

To the left of the point a, i.e., for x < a, conditions (12.5.10), (12.5.22),
(12.5.23), then give κ > 0,

1 � |κ| � 2
|V ′′(a)|

(
2m(V ′(a))4

�2

)1/3

(12.5.24)

for V ′′(a) �= 0. From (12.5.18), we then write χ(κ) in (12.5.21), with κ < 0,
|κ| satisfying (12.5.24),

χ(x) � α√
π

[(
2mV ′(a)

�2

)1/3

(a − x)

]−1/4

× sin

(
2
3

√
2mV ′(a)

�
(a − x)3/2 +

π

4

)
. (12.5.25)

Now we compare this solution to the one (12.5.8) for x < a, subject to
the expansion of p2(x) in (12.5.9) and the condition (12.5.10). To do this,
we further approximate the solution in (12.5.8) by using the expansion in
(12.5.9), (12.5.10) and note that
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1
�

∫ x

a

dx p(x) � −2
3

√
2mV ′(a)

�
(a − x)3/2 +

1
10

√
2m

V ′(a)
V ′′(a)(a − x)5/2

�

(12.5.26)
which may be rewritten as

1
�

∫ x

a

dx p(x) � −2
3
|κ|3/2

{
1 − 3

20
V ′′(a)
V ′(a)

(a − x)
}

. (12.5.27)

From the condition (12.5.10), the second term in the curly brackets is
very small in comparison to one and we may take

exp± i
�

∫ x

a

dxp(x) � exp
(
∓
(

i
�

)(
2
3

)√
2mV ′(a)(a − x)3/2

)
. (12.5.28)

Hence from (12.5.7) and (12.5.10), we have for κ < 0, V ′′(a) �= 0,

1 � |κ| � 2
|V ′′(a)|

(
2m(V ′(a))4

�2

)1/3

(12.5.29)

and the solution ψ(x) in (12.5.8) takes the form

ψ(x) � C1 (2mV ′(a)(a − x))−1/4 exp
(
−
(

i
�

)(
2
3

)√
2mV ′(a)(a − x)3/2

)

+ C2 (2mV ′(a)(a − x))−1/4 exp
(

+
(

i
�

)(
2
3

)√
2mV ′(a)(a − x)3/2

)
.

(12.5.30)

In writing (12.5.30), we have finally used (12.5.9), (12.5.10) again, and have
used a lower limit a of integration for the integral in (12.5.8) and adjusted,
accordingly, the coefficients C1, C2. Obviously for the common region in
(12.5.24), (12.5.29) both solutions in (12.5.25), (12.5.30) should coincide, i.e.,
we must have

2iC1eiπ/4 = − α√
π

(2mV ′(a)�)1/6 ≡ −c (12.5.31)

2iC2e−iπ/4 =
α√
π

(2mV ′(a)�)1/6 ≡ c. (12.5.32)

These conditions on C1, C2 may be now used in (12.5.8).
In summary, we have found the following approximations

ψ(x) =
c√
p(x)

cos
(

1
�

∫ x

a

dx p(x) +
π

4

)
(12.5.33)

for13 x < a, (a − x) � (�2/2mV ′(a))1/3,
13 Note that in writing the expression in (12.5.33) we have used the fact that

sin(z − π/4) = − cos(z + π/4).
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χ(x) = α Ai

((
2mV ′(a)

�2

)1/3

(x − a)

)
(12.5.34)

for |x − a| � 2|V ′(a)|/|V ′′(a)|, and the coefficients α, c are related through
(12.5.31)/(12.5.32).

Now we consider the situation that when we move to the right of point
a, we encounter a second turning point, say, b, where V ′(b) < 0. This is
illustrated in Figure 12.4, where for a < x < b, V (x) > E, i.e., p(x) is
imaginary, and beyond the point b, V (x) < E. This will allow us next to
study the problem of tunneling through the potential barrier.

12.5.2 Barrier Penetration

The expression in (12.5.33), may be rewritten as

ψ(x) ≡ ψ1(x) � c eiπ/4

2
√

p(x)
exp

(
i
�

∫ x

a

dx p(x)
)

+
c e−iπ/4

2
√

p(x)
exp

(
− i

�

∫ x

a

dx p(x)
)

. (12.5.35)

Hence we recognize the first and second terms in (12.5.35) as corresponding
to amplitudes of incidence on and reflection off the potential barrier.

a x

V (x)

E

b1 2 3

Fig. 12.4. The figure shows two turning points at x = a and x = b, at which
V ′(a) > 0 and V ′(b) < 0, respectively. For a < x < b, V (x) > E.

Repeating the analysis leading to the approximation in (12.5.8), we may
infer that for (x − a) � (�2/2mV ′(a))1/3, in the region 2, the approximate
solution corresponding to that in (12.5.8) is given by

ψ2(x) =
γ√
|p(x)|

exp
(
−1

�

∫ x

a

dx|p(x)|
)

(12.5.36)
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where we have used the fact that in region 2, p(x) is imaginary and we have
selected the damped solution required by the physics of the problem. ψ2(x) is
not valid at turning point b (and also at a). Below we will follow the procedure
leading to (12.5.20) to investigate the nature of the solution near the point
b. Before doing this, we investigate the approximate solution in the region 3.

In the region 3, p(x) is real and only an amplitude of transmission may
arise. Accordingly for |x − b| � (�2/2m|V ′(b)|)1/3,

ψ3(x) =
c′√
p(x)

exp
(

i
�

∫ x

b

dx p(x)
)

. (12.5.37)

In the neighborhood of the point b, i.e., for |x− b| � 2|V ′(b)|/|V ′′(b)|, for
V ′′(b) �= 0, the approximate solution of the Schrödinger equation (12.5.1) is
obtained in a similar way as the one (12.5.20), except now V ′(b) < 0, giving

χ̀(x) = α′ Ai

(
−
(

2mV ′(b)
�2

)1/3

(x − b)

)
+β′ Bi

(
−
(

2mV ′(b)
�2

)1/3

(x − b)

)

(12.5.38)
and for 2|V ′(b)|/|V ′′(b)| � x − b � (�2/2m|V ′(b)|)1/3, x > b, we have ac-
cording to (12.5.18), (12.5.19),

χ̀(x) →
(

1√
π

)(
1
|κ|

)1/4 [
α′ sin

(
2
3
|κ|3/2 +

π

4

)
+ β′ cos

(
2
3
|κ|3/2 +

π

4

)]

(12.5.39)
where now |κ| = (2m|V ′(b)|/�

2)1/3(x − b).
By expanding p(x) in (12.5.37) about the point x = b, and finding a

common region of the validity of the resulting solution with one in (12.5.39),
carried out in a similar way as before, we obtain

α′ =
√

πeiπ/4c′

(2m�|V ′(b)|)1/6
(12.5.40)

β′ =
√

πe−iπ/4c′

(2m�|V ′(b)|)1/6
. (12.5.41)

On the other hand, for x < b, 2|V ′(b)|/|V ′′(b)| � |x − b| �
(�2/2m|V ′(b)|)1/3, we have from (12.5.16), (12.5.17) the leading contribution
to χ̀(x)

χ̀(x) →
(

β′
√

π

)(
1
|κ|

)1/4

exp
(

2
3
|κ|3/2

)
(12.5.42)

where |κ| is defined below (12.5.39). The solution in the region 2 damps out
as we move from a to the right on the way to b and, of course, the opposite
arises as we move from b to a, as indicated in (12.5.42).

To compare the solution in (12.5.42) with the one in (12.5.36) in a common
region of their validity, we first rewrite (12.5.36) as
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ψ2(x) = exp

(
−1

�

∫ b

a

dx |p(x)|
)

γ√
|p(x)|

exp

(
1
�

∫ b

x

dx |p(x)|
)

. (12.5.43)

As a function of x, in the neighborhood of b (x < b),
(

1√
|p(x)|

)
exp

(
1
�

∫ b

x

dx |p(x)|
)

� 1

(2m|V ′(b)||x − b|)1/4
exp

(
2
3�

√
2m|V ′(b)||x − b|3/2

)
. (12.5.44)

Upon comparison of (12.5.43)/(12.5.44) with that in (12.5.42), in their
common range of validity, we obtain

exp

(
−1

�

∫ b

a

dx |p(x)|
)

γ =
(2m�|V ′(b)|)1/6

√
π

β′ = e−iπ/4c′ (12.5.45)

where we have also used (12.5.41).
Finally, the comparison of (12.5.21) with that in (12.5.36) in the neigh-

borhood of point x = a, in their common region of validity, by using in the
process of (12.5.16) and expanding |p(x)| in (12.5.36) about the point a, gives

γ = (2m�V ′(a))1/6 α

2
√

π
=

c

2
(12.5.46)

where we have also used (12.5.32).
Upon setting c/2 = 1 in (12.5.35), and taking advantage of the equalities

(12.5.41), (12.5.45) and (12.5.46), we may infer that

c′ = eiπ/4 exp

(
−1

�

∫ b

a

dx |p(x)|
)

. (12.5.47)

Finally, from (12.5.35), (12.5.37) for the expression of the wavefunctions in
regions 1 and 3, and (12.5.47) we obtain for the transmission and reflection
probabilities the leading expressions

T � exp

(
−2

�

∫ b

a

dx
√

2m(V (x) − E)

)
(12.5.48)

R � 1 (12.5.49)

respectively. Obviously, these are valid if the exponential term in (12.5.48)
is small. The fact that R turns out to be equal to one is of no violation of
the conservation of probability (R + T = 1) as both results for R and T are
leading contributions to these probabilities and the value “1” for R dominates
over any small correction of the order T as given in (12.5.48).
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Next we investigate the nature of quantization rules set up by the WKB
approximation and make contact with the so-called old quantum theory. Be-
fore doing this we note that the WKB approximations of the wavefunctions
ψ1(x), ψ2(x), ψ3(x) obtained in regions 1, 2, 3 as given, respectively, in
(12.5.35), (12.5.36), (12.5.37), by making use of the constraints on their co-
efficients in (12.5.45), (12.5.46), (12.5.47), may be rewritten, away from the
turning points a and b, as

ψ1(x) =
c√
p(x)

cos
(

1
�

∫ x

a

dx p(x) +
π

4

)
(12.5.50)

ψ2(x) =
c

2
√

|p(x)|
exp

(
−1

�

∫ x

a

dx |p(x)|
)

(12.5.51)

ψ3(x) =
c

2
√

p(x)
exp

(
−1

�

∫ b

a

dx |p(x)|
)

exp i
(

1
�

∫ x

b

dx p(x) +
π

4

)
.

(12.5.52)

We have seen, how by examining the solution of (12.5.1) near the turning
point x = a, we were able to find the connection between the coefficients C1,
C2 in (12.5.8) and γ in (12.5.36), as given in (12.5.31), (12.5.32), (12.5.46),
going from the damped solution (12.5.36), in region 2, to the oscillatory one
in (12.5.8), in region 1. The connection between ψ1(x) and ψ2(x) on the left
and right of point x = a, respectively, as indicated by the direction of the
arrow in.14

c

2
√

|p(x)|
exp

(
−1

�

∫ x

a

dx |p(x)|
)

�→ c√
p(x)

cos
(

1
�

∫ x

a

dx p(x) +
π

4

)

(12.5.53)
is called a connection formula and shows the correspondence between regions
2 and 1, remembering that in the physics of the problem we have chosen
incidence on the potential barrier from left to right. Upon rewriting

exp
(
−1

�

∫ x

a

dx |p(x)|
)

= exp

(
−1

�

∫ b

a

dx |p(x)|
)

exp

(
− i

�

∫ b

x

dx p(x)

)

(12.5.54)
in (12.5.51), where we have used the fact that p(x) = i|p(x)| in region 2,
we see an obvious correspondence rule between the WKB wavefunctions in
(12.5.51), (12.5.52) in region 2 and 3.

12.5.3 WKB Quantization Rules

Consider the potential energies depicted in Figure 12.5. Referring to part
(A) of the figure, we may obtain the WKB approximation in the region
14 Note that in order to avoid confusion with the notation of a limit, denoted by

→, we have used the notation �→ in (12.5.53).
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a < x < b by two methods. One is to match its oscillatory solution with the
exponentially decreasing one on the left-hand side of point a, and another one
by matching it with the exponentially decreasing one as one moves away from
the point b. By requiring that the solutions obtained by these two methods
to be the same, leads to a quantization rule as follows.

aa b
b

(A) (B)

Fig. 12.5. (A) A potential energy with two turning points at a and b. (B) A
potential energy with a turning point at b, and the potential energy is taken
to go to infinity at a. This is equivalent in working in half space.

To the left of the turning point b, in part (A) of Figure 12.5, we may use
the solution in (12.5.50) with a in it simply replaced by b leading to the WKB
solution for a < x < b given by

φ(x) =

(
c√
p(x)

)
cos

(
1
�

∫ x

b

dx p(x) +
π

4

)
(12.5.55)

for some constant c. A solution in a < x < b obtained by matching it with the
exponentially decreasing one on the left-hand side of point a, may be directly
read from the one in (12.5.55) by merely replacing

∫ x

b
dx p(x) by

∫ a

x
dx p(x)

in it, and replacing the coefficient c, in general, by some other constant, say,
d. This second method then leads to

φ(x) =

(
d√
p(x)

)
cos

(
1
�

∫ a

x

dx p(x) +
π

4

)
. (12.5.56)

We first note that for the cosine function in (12.5.56), we may write

cos
(

1
�

∫ a

x

dx p(x) +
π

4

)

= cos

[(
1
�

∫ x

b

dx p(x) +
π

4

)
+

(
1
�

∫ b

a

dx p(x) − π

2

)]
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= cos
(

1
�

∫ x

b

dx p(x) +
π

4

)
cos

(
1
�

∫ b

a

dx p(x) − π

2

)

− sin
(

1
�

∫ x

b

dx p(x) +
π

4

)
sin

(
1
�

∫ b

a

dx p(x) − π

2

)
. (12.5.57)

Requiring that the solution (12.5.55), (12.5.56) obtained by the two meth-
ods coincide leads from (12.5.57) to

1
�

∫ a

b

dx p(x) − π

2
= nπ, d = (−1)nc (12.5.58)

giving the quantization rule

1
�

∫ a

b

dx p(x) = π

(
n +

1
2

)
(12.5.59)

where the n are non-negative integers. Since in the range a < x < b, p(x) is
real and positive (see Figure 12.5 (A)), n cannot take on negative integers.
The quantization rule in (12.5.59) brings us into contact with the old quantum
theory of Bohr and Sommerfeld. We recall from (12.5.48), that the validity of
the WKB approximation, requires, in particular, that such exponential terms
as in (12.5.48) be small. The latter implies that (12.5.59) is strictly valid for
large positive integers. The expression in (12.5.59) is, nevertheless, useful in
predicting the discrete spectrum for some Hamiltonians (see Problem 12.16).
By considering the wavefunctions near the turning points a and b, using
(12.5.59), and formally writing the cosine function in (12.5.56), for x →
b − 0, as cos[(π/4) + nπ], n would correspond to the number of nodes of
the wavefunction in a < x < b, since each time, π/4 is translated by π, the
wavefunction on its way to the new value cuts the x-axis.

In part (B) of Figure 12.5, the wavefunction is to have a node as x → a+ε,
for ε → +0, at which point the potential is defined to be infinite, and the
WKB solution in (12.5.56) is to be replaced by

φ(x) =

(
d′√
p(x)

)
sin

(
1
�

∫ x

a+0

dx p(x)
)

, ε → +0 (12.5.60)

for a < x < b. Upon comparison of (12.5.55) with (12.5.60), we arrive at the
quantization rule

1
�

∫ b

a+0

dx p(x) = π

(
n +

3
4

)
(12.5.61)

for non-negative integers.
It is interesting to point out that for the elementary problem of a particle

in a box with impenetrable walls at a and b, the WKB solutions are to have
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nodes at b−0, a+0 and the solutions in (12.5.55), (12.5.56) are to be replaced,
respectively, by
(

c′√
p(x)

)
sin

(
1
�

∫ b−0

x

dx p(x)

)
,

(
d′√
p(x)

)
sin

(
1
�

∫ x

a+0

dx p(x)
)

(12.5.62)
which upon their comparison leads to the quantization rule

1
�

∫ b−0

a+0

dx p(x) = π(n + 1). (12.5.63)

[With p(x) =
√

2mE, (12.5.63) leads to the familiar energy levels En =
�

2π2(n + 1)2/2m(b − a)2.]

12.5.4 The Radial Equation

For a spherically symmetric potential V (r), the radial equation is given
by

[
− �

2

2m

(
1
r2

d
dr

r2 d
dr

)
+

�
2

2mr2
�(� + 1) + V (r) − E

]
R(r) = 0, (12.5.64)

where for simplicity of the notation, we suppressed the dependence of R(r)
on � = 0, 1, 2, ..., and other quantum numbers. We may take advantage of the
analysis carried above to reduce (12.5.64) to the form (12.5.1). To do this,
we set

R(r) =
f(r)√

r
(12.5.65)

to rewrite (12.5.64) as
[
r2 d2

dr2
+ r

d
dr

+
2m

�2
r2(E − V ) − (� +

1
2
)2
]

f = 0. (12.5.66)

Finally, let a be a conveniently chosen scale, and introduce the variable
η : −∞ < η < ∞, by

r = aeη/a. (12.5.67)

In terms of this new variable, (12.5.66) becomes

d2

dη2
f +

p2(η)
�2

f = 0, −∞ < η < ∞ (12.5.68)

where

p2(η) = 2m
(
E − V

(
aeη/a

))
e2η/a − �

2

a2
(� +

1
2
)2. (12.5.69)
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Thus provided, the WKB approximation may be satisfied, we may infer, for
example, from (12.5.59) that

1
�

∫ ηb

ηa

dη p(η) = π

(
n +

1
2

)
(12.5.70)

and when the integral is rewritten in terms of the variable r, we have

1
�

∫ rb

ra

dr

√
2m (E − V (r)) − �

2

r2

(
� +

1
2

)2
= π

(
n +

1
2

)
(12.5.71)

where ra, rb are the zeros of the integrand.
We may thus conclude that to apply the WKB procedure in the one-

dimensional radial equation in the form.
[

d2

dr2
+

1
�2

(
2m(E − V (r)) − �

2

r2
�(� + 1)

)]
u(r) = 0 (12.5.72)

where
R(r) = u(r)/r, (12.5.73)

it is necessary to replace �(�+1) in it by (�+1/2)2. This is true even for � = 0.
The reader is asked to investigate conditions for the justification of the WKB
asymptotic procedure for the attractive Coulomb potential in Problem 12.17
and investigate the eigenvalues resulting from (12.5.71).

12.6 Time-Dependence; Sudden Approximation and the
Adiabatic Theorem

The time evolution of quantum systems for time-independent and time-
dependent Hamiltonians was investigated quite generally in §2.5, and the
general theory of quantum decay and its related time-dependence in §3.5.
Exact treatments of transitions between harmonic oscillator states, driven by
external time-dependent sources at zero and finite temperatures, were give in
§6.2–§6.4. Chapter 8 was almost entirely devoted to time-dependent studies
of spin 1/2 and two-level systems. A detailed account of Green functions and
their time-dependence was given in Chapter 9. Path integrals and the quan-
tum dynamical principle, as time-dependent problems, were, respectively, the
subjects of Chapters 10 and 11. Scattering theory in a time-dependent set-
ting will be carried out in Chapter 15, and relativistic dynamical aspects in
Chapter 16. In the present section, we consider some time-dependence aspects
which call for valid approximations as discussed below. The above mentioned
material may be also consulted for completeness since some of the topics are
related to the present ones as will be specified below.
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On a time scale set up by the physics of a problem, such as one given,
for example, by a typical quantum mechanical period of oscillations, we in-
vestigate the dynamics corresponding to two extreme cases of Hamiltonians.
For one case, suppose that a Hamiltonian varies from one form to a final
form during a very short time τ in comparison to a time scale set up in a
problem. The approximation corresponding to such a sudden change (τ → 0)
of a Hamiltonian is called a sudden approximation. For the other extreme
case, consider a Hamiltonian which varies very slowly in an interval [0, T ] in
comparison to a time scale set up in a problem, such that one may effec-
tively consider the limit T → ∞. The corresponding approximation is called
the adiabatic approximation (see also §8.13). In both cases, the underlying
potential energies need not be weak.

Before going into the above details, we first treat another important sit-
uation, where a weak perturbation is added to a given Hamiltonian during
a given interval of time (0, τ), and we investigate the nature of transitions
that may occur between different states of the given Hamiltonian after the
perturbation is switched off.

12.6.1 Weak Perturbations

Suppose we are given a time-independent Hamiltonian H0, and during a
time interval (0, τ), we switch on a weak perturbation H1(t), generating the
Hamiltonian15

H(t) = H0 + H1(t) (12.6.1)

where H1(t) = 0 for t � τ , t < 0.
We are interested in investigating transitions that may occur between

states of H0 caused by the perturbation H1(t) after the latter is switched off.
A state |ψ(t)〉, at time t, satisfies the Schrödinger equation

i�
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 (12.6.2)

and just prior to the switching on of the perturbation, we specify an initial
condition |ψ(t)〉|t=0 = |ψ(0)〉.

Let PA(λ), λ = (λ0, λ1, . . .), be the spectral measure associated with
commuting set of spectral measures of operators A =

(
H0, A1, . . .

)
, thus

including the Hamiltonian H0, in question, to specify a state at t � τ .
For measurements carried out on the system at time t � τ , after the

perturbation is switched off,
∫
�
〈ψ(t) |dPA(λ)|ψ(t)〉 ≡ 〈ψ(t) |PA(�)|ψ(t)〉 (12.6.3)

15 The switching on and off of the perturbation in time may be carried out in a
smooth manner as done in (8.7.21), (8.7.23), (12.6.33).
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represents the probability of the measurements of the observables in A =(
H0, A1, . . .

)
to have values in the set �, i.e., for which λ ∈ �, with |ψ(0)〉

denoting the initial state of the system. Here PA(�) denotes a projection
operator.

To consider actual transitions of the system under the action of the per-
turbation, we choose � such that

∫
�

dPA(λ′) |ψ(0)〉 = PA(�) |ψ(0)〉 = 0. (12.6.4)

The physical significance of the condition in (12.6.4) is clear. It states that the
values obtained in the measurements of the observables in A =

(
H0,H1, . . .

)
,

specified by the condition λ′ /∈ �, at least one of them is different from its
initial value as a result of the application of the perturbation thus the latter
causing the system to make a transition. This obviously does not necessarily
exclude transitions which conserve energy (i.e., for which λ0 = λ′

0) since not
all of the components of λ′ need to be different from those of λ so that
λ′ /∈ �.

To obtain the expression of the transition probability in question, we first
set

|ψ(t)〉 = e−itH0/� |φ(t)〉 (12.6.5)

and
Ĥ1(t) = eitH0/�H1(t)e−itH0/�. (12.6.6)

These lead to

|φ(t)〉 = |φ(0)〉 − i
�

∫ t

0

dt′Ĥ1(t′) |φ(t′)〉 (12.6.7)

|ψ(0)〉 = |φ(0)〉 . (12.6.8)

From (12.6.3)–(12.6.8), we then have for a weak perturbation, i.e., to the
leading order in H1(t),

〈ψ(t) |PA(�)|ψ(t)〉 = 〈ψ(τ) |PA(�)|ψ(τ)〉

=
1
�2

∫ τ

0

dt′
∫ τ

0

dt′′
〈
ψ(0)

∣∣∣Ĥ1(t′)PA(�)Ĥ1(t′′)
∣∣∣ψ(0)

〉
(12.6.9)

where we have made explicit use of (12.6.4).
For the sequel, we consider H1(t), for 0 < t < τ in (12.6.1), to be

time-independent.
Suppose that initially,

|ψ(0)〉 = |Ψ (λ′
0, λ

′
1, . . .)〉 ≡

∣∣Ψ (
λ′)〉 (12.6.10)
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for which, according to (12.6.4), λ′ /∈ �. One may then write the double
integral in (12.6.9) as

∫
�

〈
ψ(0)

∣∣H1dPA (λ) H1
∣∣ψ(0)

〉 ∫ τ

0

dt′
∫ τ

0

dt′′ei(λ′
0−λ0)(t′−t′′)/�

= τ2

∫
�

〈
H1ψ(0)

∣∣dPA (λ)
∣∣H1ψ(0)

〉 sin2 [(λ0 − λ′
0) τ/2�]

τ2 [(λ0 − λ′
0) /2�]2

(12.6.11)

where we have multiplied and divided the resulting integral by τ2.
We formally introduce a density of states ρ (λ), for values of the observ-

ables in A =
(
H0, A1, . . .

)
lying in the range (λ,λ + dλ) in �, and write

〈
H1ψ(0)

∣∣dPA(λ)
∣∣H1ψ(0)

〉
=
∣∣〈Ψ(λ)

∣∣H1
∣∣Ψ(λ′)

〉∣∣2 dnλ ρ(λ) (12.6.12)

where n specifies the number of observables in A, and we have used (12.6.10).
Suppose that λ0, in �, varies within a range I(ε) =

(
λ̄0 − ε, λ̄0 + ε

)
, and

� = I ∪�1, where �1 corresponds the range of values for λ1, λ2, . . ..
The function

sin2 [(λ0 − λ′
0) τ/2�]

τ2 [(λ0 − λ′
0) /2�]2

≡ sinc2 [(λ0 − λ′
0) τ/2�] (12.6.13)

in (12.6.11) peaks at λ0 = λ′
0 of width ∼ 2π. For λ′

0 ∈ I(ε), this
peak falls within the λ0 interval of integration in (12.6.11). We consider(
λ̄0 − λ′

0 − ε
)
τ/2� � −π,

(
λ̄0 − λ′

0 + ε
)
τ/2� � π, which, in particular,

implies that ετ/� � 2π. For such an ε, but the latter, nevertheless, suffi-
ciently small, the integrand

∣∣〈Ψ (λ)
∣∣H1

∣∣ψ (
λ′)〉∣∣2 ρ (λ), for the λ0-integral,

may be evaluated at the central point λ0 = λ′
0 as the main contribution to

the λ0-integral comes from this point.
By using the value of the integral

τ

2�

∫
I(ε)

dλ0 sinc2 (λ0 − λ′
0) τ

2�
� π (12.6.14)

we obtain from (12.6.9)–(12.6.13), the approximation

〈ψ(τ) |PA(�)|ψ(τ)〉

=
2πτ

�

∫
�1

dλ1 . . .
∣∣〈Ψ (λ′

0, λ1, . . .)
∣∣H1

∣∣Ψ (λ′
0, λ

′
1, . . .)

〉∣∣2 ρ (λ′
0, λ1, . . .) .

(12.6.15)

The approximation in (12.6.9) will be adequate if the integral in (12.6.15) is
much smaller than �/2πτ .

Since the factor multiplying τ on the right-hand side of (12.6.15) is in-
dependent of τ , we may introduce the transition probability per unit time
by
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〈ψ(τ) |PA(�)|ψ(τ)〉
τ

=
2π

�

∫
�1

dλ1 . . .
∣∣〈Ψ (λ′

0, λ1, . . .)
∣∣H1

∣∣Ψ (λ′
0, λ

′
1, . . .)

〉∣∣2 ρ (λ′
0, λ1, . . .) .

(12.6.16)

This expression emerging from work of Dirac is called the Golden Rule.16
The treatment of the case when λ′

0 /∈ I(ε) is left as an exercise to the
reader (see Problem 12.19).

Of particular interest in the application of (12.6.16) is to the (elastic)
scattering of a particle of initial momentum p′ to momentum p via a potential
H1 = V (x) conserving energy. Then by setting p′2/2m = p2/2m = E,
|p|/m = v and

d3p

(2π�)3
=

m3

(2π�)3
v dE dΩ ≡ ρ(E,Ω) dE dΩ (12.6.17)

(see also (9.7.35)), where dΩ is the element of the solid angle about the
vector p, with

〈
Ψ (λ0, λ1)

∣∣H1
∣∣Ψ (λ0, λ

′
1)
〉

identified with 〈p |V |p′〉, we obtain
for the transition probability per unit time from (12.6.16) the expression17

((θ, φ) ∈ �1)

2π

�

∫
�1

dΩ |〈p |V |p′〉|2 ρ(E,Ω) =
m2

4π2�4
v

∫
�1

dΩ |V(p − p′)|2 (12.6.18)

where V(p − p′) is the Fourier transform of V (x):

V(p − p′) =
∫

d3x e−ix·(p−p′)/� V(x) . (12.6.19)

For additional and related details to equations such as (12.6.16), the
reader is referred to Chapter 15 (see, for example, (15.8.39)).

12.6.2 Sudden Approximation

Consider a change occurring in a Hamiltonian during a very short time
τ ,

H =
{

H1, t � 0
H2, t > 0 (12.6.20)

This may be equivalently rewritten as

16 This name was coined by E. Fermi.
17 Compare this with the one in (15.3.13) for later reference in Chapter 15. The

approximation leading to the one in (12.6.18) is referred to as the Born approx-
imation which will be discussed in detail in Chapter 15.
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H(t) = H2 + V (t) (12.6.21)

where
V (t) =

{
H1 − H2, t � 0

0, t > 0.
(12.6.22)

Here V (t) need not be a weak perturbation to H2.
At time t = 0, just prior to the “sudden” change in the Hamiltonian

described above, when the Hamiltonian of the system is still given by H1, we
prepare the system in a state, say, |ψ1〉. For t > 0, the latter state develops
in time via the Hamiltonian H(t) thus satisfying the Schrödinger equation

i�
d
dt

|ψ1(t)〉 = H(t) |ψ1(t)〉 (12.6.23)

with H(t) given in (12.6.21) and |ψ1(t)〉|t=0 = |ψ1〉.
After a time t � τ , when the Hamiltonian is given by H2, a state |ψ2〉

develops in time via H2, i.e.,

|ψ2(t)〉 = e−itH2/� |ψ2〉 . (12.6.24)

We are interested in investigating the nature of the time-dependence of the
transition probability |〈ψ2(t) |ψ1(t)〉|2 under a sudden change of the Hamil-
tonian as given in (12.6.20) during a very short time τ .

To the above end, let

|ψ1(t)〉 = e−itH2/� |φ1(t)〉 (12.6.25)

V̂ (t) = eitH2/� V (t) e−itH2/� (12.6.26)

in a similar approach as done in (12.6.5), (12.6.6). Then

|φ1(t)〉 = |φ1〉 −
i
�

∫ t

0

dt′ V̂ (t′) |φ1(t′)〉 (12.6.27)

|ψ1〉 = |φ1〉 . (12.6.28)

These equations lead to the transition amplitude

〈ψ2(t) |ψ1(t)〉 = 〈ψ2 |ψ1〉 −
i
�

∫ t

0

dt′ 〈ψ2(t′) |V (t′)|ψ1(t′)〉 . (12.6.29)

We expect that if the Hamiltonian changes during a very short time τ ,
then the second term in (12.6.29) will be vanishingly small for τ → 0 since
V (t′) → 0 for t′ > τ , and obtain that

〈ψ2(t) |ψ1(t)〉 � 〈ψ2 |ψ1〉 . (12.6.30)
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That is, the transition amplitude does not significantly change for a rapid
change of the Hamiltonian. To compute this amplitude, one may then evalu-
ate the corresponding expression on the right-hand side of (12.6.30) which is
time-independent. Note that |ψ2〉, |ψ1〉 develop in time with different Hamil-
tonians and (12.6.30), although approximate, does not simply follow from
unitarity.

Clearly for

1
�

∣∣∣∣
∫ t

0

dt′ 〈ψ2(t′) |V (t′)|ψ1(t′)〉
∣∣∣∣ � 1

�

∫ t

0

dt′ ‖V (t′)ψ2(t′)‖ � 1 (12.6.31)

and |〈ψ2 |ψ1〉| not too small, one may neglect the second term on the right-
hand side of (12.6.29) in computing the corresponding transition probability.
The corresponding approximation is referred to as the sudden approximation.

Intuitively, if |V |, as an order of magnitude of the effective potential op-
erating only during a short period of time τ , then from (12.6.31), we ought
to have τ |V |/� � 1, as a rule of thumb, for the validity of the sudden ap-
proximation.18

Ideally, one may rewrite the Hamiltonian H(t) in (12.6.21) as

H(t) = H2 + (H1 − H2) Θ(−t) (12.6.32)

where Θ(−t) is the step function of negative argument corresponding to a
change of the Hamiltonian in time τ → 0. More realistically and for a rigorous
analysis, however, one may replace Θ(−t) by a smooth “function of negative
argument”:19

Θc(−t) =




1, t < 0,(
1 − τ

t
e e−τ/t

)
, 0 � t < τ,

0, τ � t.

(12.6.33)

This remarkable function is not only continuous but has a continuous deriv-
ative as well, and is non-vanishing for t � τ only. Θc(−t) and its derivative
are plotted in Figure 12.6.

Typically, if |ψ2〉 is an eigenvector of H2, then

1
�

∫ t

0

dt′ ‖V (t′)ψ2(t′)‖ =
1
�

∫ t

0

dt′ ‖V (t′)ψ2‖. (12.6.34)

For the change in the Hamiltonian occurring smoothly during a non-vanishing
time interval (0, τ ] with V (t) taken now as (H1 − H2) Θc(−t), the above is
bounded above by τ‖(H1 − H2)ψ2‖/�, where we have used the fact that

18 For example, for a charged particle moving at high speeds during its interaction
with an atom of atomic radius ∼ a, we may roughly take τ ∼ a/c, V ∼ e2/a,
thus τV/� ∼ e2/�c = α which is of the order of the fine-structure constant.

19 See also (8.7.21).
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∫ τ

0

dt Θc(−t) < τ (12.6.35)

(see also (8.7.21), (8.7.22)).

1

0
tt

ττ

Θc(−t)

dΘc(−t)/dt

(a) (b)

Fig. 12.6. (a) Plot of the function Θc(−t) and in (b) its derivative given by:

dΘc(−t)

dt
=




0, t < 0
τ

t2

(
1 − τ

t

)
e e−τ/t, 0 � t < τ

0, τ � t

Both functions are continuous and rigorously vanish for t > τ .

As an elementary example, suppose that a uniform electric field E is sud-
denly applied to a charged particle in a harmonic oscillator potential, in one
dimension, being initially in the ground-state. In this case,

H1 =
p2

2m
+

mω2x2

2
(12.6.36)

H2 =
p2

2m
+

mω2x2

2
− eEx. (12.6.37)

The latter Hamiltonian may be rewritten as

H2 =
p2

2m
+

mω2

2

(
x − eE

mω2

)2

− 1
2

e2E 2

mω2
. (12.6.38)

The transition probability, for example, that the harmonic oscillator will
be excited to the first state is according to (12.6.30), (see (6.1.37), (6.1.38))
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∣∣∣∣
(mω

π�

)1/2
∫ ∞

−∞
dx e−mω(x−a)2/2�

√
2
√

mω

�
(x − a) e−mωx2/2�

∣∣∣∣
2

(12.6.39)

where a = eE/mω2. The latter is easily integrated to yield the probability
a2(mω/2�) exp(−mωa2/2�).

12.6.3 The Adiabatic Theorem

Consider a time-dependent Hamiltonian H(t) which varies slowly in time
t in an interval [0, T ], measured by a large value of the length T of the
time interval (i.e., T → ∞). The slow variation is made in comparison to a
time scale set up in a problem. Such a time scale may be a typical quantum
mechanical oscillation period ∼ ω−1 (see, for example, (8.13.27)).

For each fixed t, let |ηn(t)〉 be a normalized eigenvector of H(t) with
eigenvalue En(t),

H(t) |ηn(t)〉 = En(t) |ηn(t)〉 . (12.6.40)

The spectrum of H(t) need not to consist only of (discrete) eigenvalues.
Given an eigenvector |ηn(t)〉, we may, conveniently, introduce the equivalent
eigenvector defined by

|φn(t)〉 = |ηn(t)〉 exp
(

i
∫ t

0

dt′ 〈ηn(t′) | iη̇n(t′)〉
)

(12.6.41)

(see also §8.13, (8.13.5)). The eigenvector |φn〉 resulting from |ηn(t)〉 by a
phase transformation (〈ηn | iη̇n〉 is real), has the advantage over |ηn(t)〉 in
that 〈

φn(t)
∣∣∣ φ̇n(t)

〉
= 0 (12.6.42)

as is easily verified.
We will assume that no crossing takes place between En(t) and other

eigenvalues for all 0 � t � T .
Let |ψ(t)〉 be any state of the dynamical system satisfying the Schrödinger

equation

i�
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 . (12.6.43)

Upon integrating the elementary equation

d
dt

[
〈φn(t) |ψ(t)〉 e

i
�

∫ t
0 dt′En(t′)

]
=
〈
φ̇n(t)

∣∣∣ψ(t)
〉

exp
(

i
�

∫ t

0

dt′En(t′)
)

(12.6.44)
where we have used the fact that〈

φn(t)
∣∣∣∣ d
dt

ψ(t) ei
∫ t
0 dt′En(t′)/�

〉
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= − i
�
〈φn(t) |(H(t) − En(t))|ψ(t)〉 ei

∫ t
0 dt′En(t′)/�

= 0, (12.6.45)

we obtain

〈ηn(t) |ψ(t)〉 exp
(
−i

∫ t

0

dt′ 〈ηn(t′) | iη̇n(t′)〉
)

exp
i
�

∫ t

0

dt′En(t′)

= 〈ηn(0) |ψ(0)〉 +
∫ t

0

dt′
〈
φ̇n(t′)

∣∣∣ψ(t′)
〉

exp

(
i
�

∫ t′

0

dt′′En(t′′)

)
.

(12.6.46)

In writing the expression on the right-hand side of (12.6.46) we have used
(12.6.41). Equation (12.6.46) is exact.

Provided that for T → ∞, the second term on the right-hand side of
(12.6.46) becomes negligible, for 〈ηn(0) |ψ(0)〉 �= 0, we obtain

〈ηn(t) |ψ(t)〉 exp
(
−i

∫ t

0

dt′ 〈ηn(t′) | iη̇n(t′)〉
)

exp
(

i
�

∫ t

0

dt′En(t′)
)

� 〈ηn(0) |ψ(0)〉 (12.6.47)

which is the content of the Adiabatic Theorem. Equation (12.6.47) states the
fact that in the adiabatic regime of a very slow change of the Hamiltonian
H(t) in the interval [0, T ] (T → ∞), the scalar product 〈ηn(t) |ψ(t)〉, with
the appropriate phase factors as given on the left-hand side of (12.6.47),
essentially remains invariant in time in the above mentioned interval.

To investigate the nature of the second term on the right-hand side of
(12.6.46) suppose for simplicity that the spectrum of H(t) consists only of a
discrete non-degenerate spectrum for all 0 � t � T . Quite generally, one may
expand |ψ(t)〉 =

∑
m |ηm(t)〉 〈ηm(t) |ψ(t)〉. For |ψ(0)〉 = |ηn(0)〉, for a given

n, then (12.6.47) implies that 〈ηn(t) |ψ(t)〉 is approximately one times the
complex conjugate of the phases multiplying it, and otherwise 〈ηm(t) |ψ(t)〉 �
0 for m �= n, since 〈ηm(0) |ηn(0)〉 = 0 for m �= n, and the second term on the
right-hand side of (12.6.46) is expected to vanish for T → ∞. Hence,

|ψ(t)〉 = |ηn(t)〉 exp
(

i
∫ t

0

dt′ 〈ηn(t′) | iη̇n(t′)〉
)

× exp
(
− i

�

∫ t

0

dt′En(t′)
)

+ . . . (12.6.48)

plus terms which are expected to vanish for T → ∞, given that

|ψ(0)〉 = |ηn(0)〉 . (12.6.49)
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That is, the state |ψ(t)〉 evolves together with the Hamiltonian satisfying
approximately the eigenvalue equation (12.6.40) for all 0 � t � T .

We note that for any state |ψ(t)〉, of the dynamical system, the second
term in (12.6.46), with the above discrete non-degenerate assumption of the
spectrum of the H(t), may be rewritten as

∑
m	=n

∫ t

0

dt′
〈
φ̇n(t′)

∣∣∣φm(t′)
〉
〈φm(t′) |ψ(t′)〉 exp

(
i
�

∫ t′

0

dt′′En(t′′)

)

(12.6.50)
where we have used (12.6.42).

Now upon taking the time derivative of

〈φn(t)|H(t) = En(t) 〈φn(t)| (12.6.51)

and multiplying the resulting equation by |φm(t)〉, for m �= n, we obtain

〈
φ̇n(t)

∣∣∣φm(t)
〉

= −
〈
φn(t)

∣∣ ∂
∂tH(t)

∣∣φm(t)
〉

(Em(t) − En(t))
(12.6.52)

expressed in terms of the change of the Hamiltonian.
Also note that as in (12.6.45),

d
dt

(
|ψ(t)〉 e

i
�

∫ t
0 dt′En(t′)

)
= − i

�
(H(t) − En(t)) |ψ(t)〉 e

i
�

∫ t
0 dt′En(t′)

(12.6.53)
from which

|ψ(t)〉 e
i
�

∫ t
0 dt′En(t′) = i�

1
(H(t) − En(t))

d
dt

(
|ψ(t)〉 e

i
�

∫ t
0 dt′En(t′)

)

≡ |χ(t)〉 . (12.6.54)

That is, we may write

〈
φ̇n

∣∣∣φm

〉
〈φm |ψ〉 exp

(
i
�

∫ t

0

dt′En(t′)
)

= −i�

〈
φn

∣∣∂H
∂t

∣∣φm

〉
(Em − En)2

〈
φm

∣∣∣∣ d
dt

χ(t)
〉

(12.6.55)

for the integrand in (12.6.50) with t → t′.
Upon substitution of (12.6.55) in (12.6.50) and integrating by parts over

t′, the latter equation becomes

exp
(

i
�

∫ t

0

dt′En(t′)
)
〈ξ(t) |ψ(t)〉

∣∣∣∣
t

0
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−
∫ t

0

dt′
〈

d
dt′

ξ(t′)
∣∣∣∣ψ(t′)

〉
exp

(
i
�

∫ t′

0

dt′′En(t′′)

)
(12.6.56)

where

〈ξ(t)| = −i�
∑
m	=n

〈φn(t) |∂H(t)/∂t|φm(t)〉
(Em(t) − En(t))2

〈φm(t)| . (12.6.57)

The reason for integrating by parts is that if we make the change of
variable t = sT in (12.6.56) where 0 � s � 1, and introduce the notation
|ξ(t)〉 → |ξ(s)〉, |ψ(t)〉 → |ψ(s)〉, En(t) → En(s), we obtain a multiplicative
factor 1/T in (12.6.56):

1
T

[
exp

(
i
�

T

∫ s

0

ds′ En(s′)
)
〈ξ(s) |ψ(s)〉

∣∣∣∣
s

0

−
∫ s

0

ds′
〈

d
ds′

ξ(s′)
∣∣∣∣ψ(s′)

〉
exp

(
i
�

T

∫ s′

0

ds′′En(s′′)

)]
(12.6.58)

as is easily checked. This is unlike the expression in (12.6.50) in its original
form as the latter involves the t′-integration variable and one time derivative
in

〈
φ̇n(t′)

∣∣∣φm(t′)
〉
, and the substitution t = sT is not helpful in that form.

Therefore provided the expression within the square brackets in (12.6.58)
remains bounded for T → ∞, (12.6.47) holds up to a correction of the order
1/T .

For a detailed application of the Adiabatic Theorem, see (8.13.19)–
(8.13.27) where the correction to the adiabatic limit is given by the ratio
of two frequencies.

The derivation of a sufficiency condition for the Theorem as obtained
in (12.6.58) with a O(1/T ) correction may be also carried out even if the
spectrum of H(t) does not consist only of a discrete non-degenerate one
by a very similar procedure as given above and further generalizations are
possible.20

12.7 Master Equation; Exponential Law, Coupling to
the Environment

Suppose we have two interacting systems described by a Hamiltonian

H = H01 + H02 + HI (12.7.1)

20 See Kato (1951b). There has been much interest in this Theorem recently with
various degrees of rigor, cf., Avron et al. (1990); Wu and Yang (2004), and ref-
erences therein.
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where H02 is the free Hamiltonian of system 2, and H01 is the Hamiltonian of
system 1, which may include interactions terms between its sub-systems. HI

is an interaction term between system 1 and 2. The Hamiltonians H01, H02

are assumed to commute. We carry out an investigation of the dynamical
process described by the Hamiltonian in the density operator formalism. Our
interest is in the dynamics and aspects of system 1 only in response to system
2. Accordingly, we trace the total density operator ρT(t) over variables of
system 2, thus introducing the reduced density operator of system 1, defined
by

ρ(t) = Tr
2

[ρT(t)] (12.7.2)

where
ρT(t) = e−itH/�ρT(0)eitH/�. (12.7.3)

To study the nature of the reduced density operator in (12.7.2), we first
introduce the operator

ηI(t) = eit(H01+H02)/� ρT(t)e−it(H01+H02)/� (12.7.4)

(the so-called density operator in the interaction picture), to obtain, the
equation

d
dt

ηI(t) = − i
�

[HI(t), ηI(t)] (12.7.5)

and
HI(t) = eit(H01+H02)/�HIe−it(H01+H02)/�. (12.7.6)

In terms of ηI(t), the reduced density operator ρ(t) is then clearly given
by

ρ(t) = e−itH01/�η(t)eitH01/� (12.7.7)

where
η(t) = Tr

2
[ηI(t)] . (12.7.8)

We first develop a differential equation for η(t) based on some approxima-
tions. The resulting equation derived is referred to as the master equation.
This is followed by applications to the exponential law presented in the analy-
sis carried out after (8.1.67), and also to the concept of quantum decoherence
as a result of coupling to the environment elaborated upon at the end of §8.7,
notably in (8.7.47).

12.7.1 Master Equation

We may integrate (12.7.5) to obtain

ηI(t) = ηI(0) − i
�

∫ t

0

dt′ [HI(t′), ηI(t′)] (12.7.9)

where ηI(0) = ρT(0).
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A formal perturbation expansion in HI(t), gives

ηI(t) = ηI(0) +
∑
n�1

(
−i
�

)n ∫ t

0

dtn

∫ tn

0

dtn−1 . . .

×
∫ t2

0

dt1

[
HI(tn), . . . , [HI(t1), ηI(0)] . . .

]
. (12.7.10)

We set
ηI(0) = ηT(0) = ρ1(0)ρ2(0) (12.7.11)

where the initial density operators of the two systems are taken to be uncor-
related. This suggests to introduce the operator

Q(t) = 1 +
∑
n�1

(
−i
�

)n ∫ t

0

dtn

∫ tn

0

dtn−1 . . .

×
∫ t2

0

dt1Tr
2

[
HI(tn), . . . , [HI(t1), ρ2(0)•] . . .

]
(12.7.12)

to write η(t) in (12.7.8) as

η(t) = Q(t)ρ2(0) (12.7.13)

giving
η̇(t) = Q̇(t)ρ2(0). (12.7.14)

The latter may be conveniently rewritten as

η̇(t) = Q̇(t)Q−1(t)η(t). (12.7.15)

The operator Q̇(t)Q−1(t) may be referred to as a time development gen-
erator.

We carry out a weak coupling expansion of the generator Q̇(t)Q−1(t) in
HI. To this end, to second order

Q̇(t) = − i
�
Tr
2

[
HI(t), ρ2(0)•

]
− 1

�2

∫ t

0

dt′ Tr
2

[
HI(t), [HI(t′), ρ2(0)•]

]
.

(12.7.16)
In the sequel, we consider, interaction Hamiltonians such that

Tr
2

[HI(t) ρ2(0)] = 0 (12.7.17)

and this property will be explicitly verified below. Therefore to go up to
second order for the generator Q̇(t)Q−1(t), we may take Q−1(t) simply to be
the identity operator 1. That is, to a second order expansion of the generator,
we obtain from (12.7.15), (12.7.8) the equation
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η̇(t) = − 1
�2

∫ t

0

dt′ Tr
2

[
HI(t), [HI(t′), ρ2(0)η(t)]

]
. (12.7.18)

The types of interaction Hamiltonians HI(t) to be investigated are of the
form

HI(t) = A†eiωt
∑

k

λkbke−iωkt + Ae−iωt
∑

k

λ∗
k b†keiωkt (12.7.19)

where b†k, bk are creation, annihilation operators of excitation energy �ωk

associated with system 2, with the free Hamiltonian H02 of the latter system,
given by

H02 =
∑

k

�ωk b†kbk (12.7.20)

corresponding to an infinite set of independent harmonic oscillators, omitting
the zero point energies.

A†, A are creation, annihilation operators of excitation energy �ω per-
taining to system 1.

We take the system 2 to be initially in the ground-state, i.e.,

ρ2(0) = |0〉
2 2
〈0| (12.7.21)

hence

2
〈0 |bk|0〉

2
= 0 =

2

〈
0
∣∣∣b†k

∣∣∣0〉
2
. (12.7.22)

We also recall the following basic relations (see §6.1, (6.1.30)),

b†k |n1, . . . , nk, . . .〉 =
√

nk + 1 |n1 . . . , nk + 1, . . .〉 (12.7.23)

bk |n1, . . . , nk, . . .〉 =
√

nk |n1 . . . , nk − 1, . . .〉 (12.7.24)

and the orthogonality property of the different states |n1, n2, . . .〉 and, in
particular, the orthogonality of |0〉 and the excited states

〈n1, n2, . . . |0〉 = 0. (12.7.25)

It is straightforward to evaluate the trace Tr
2

in (12.7.18) (see Prob-
lem 12.23) giving

η̇(t) = −
{

A†Aη(t)I(t) + η(t)A†AI∗(t) − Aη(t)A†(I(t) + I∗(t)
)}

(12.7.26)

where

I(t) =
1
�2

∫ t

0

dt′
2
〈0 |HI(t) HI(t′)|0〉

2
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=
1
�2

∑
k

|λk|2
∫ t

0

dt′ei(ω−ωk)(t−t′) (12.7.27)

and
2
〈0 |HI(t)|0〉

2
= 0 satisfying (12.7.17).

As we are summing over an infinite number of modes, we will replace
the sum over k in (12.7.27) by an integral over the frequency ωk → ω′, and
introduce, in turn a frequency density n(ω′), to rewrite I(t) as

I(t) =
1
�2

∫ ∞

0

dω′ |λ(ω′)|2 n(ω′)
∫ t

0

dt′ ei(ω−ω′)(t−t′). (12.7.28)

We will refer to (12.7.26) as the master equation,21 and

2
〈0 |HI(t) HI(t′)|0〉

2
=
∫ ∞

0

dω′ |λ(ω′)|2 n(ω′) ei(ω−ω′)(t−t′) (12.7.29)

depending on the time difference (t−t′), as the correlation function of system
2, to which we will return shortly.

After carrying out the time integral in (12.7.28), we obtain

Re{I(t)} =
1
�2

∫ ∞

0

dω′|λ(ω′)|2 n(ω′)
sin(ω′ − ω)t

(ω′ − ω)
(12.7.30)

Im{I(t)} = − 1
�2

∫ ∞

0

dω′|λ(ω′)|2n(ω′)
sin2(ω′ − ω)t/2

(ω′ − ω)/2
. (12.7.31)

In the applications to follow, the real part of I(t) will be of central im-
portance. To evaluate the latter, we note that it may be rewritten as

Re{I(t)} =
1
�2

∫ ∞

−ωt

dx
∣∣∣λ(ω(1 +

x

ωt
)
)∣∣∣2 n

(
ω(1 +

x

ωt
)
) sinx

x
(12.7.32)

(see also (8.1.90)). The function sin x/x peaks at the origin, and is concen-
trated mainly in the region |x| � π. We make the Markov approximation by
assuming that |λ(ω′)|2 n(ω′) is slowly varying around the point ω′ = ω, and
hence for ωt � π, it may be taken outside the integral evaluated at ω′ = ω,
i.e., at x = 0, with increasing accuracy for ωt � π. This gives

Re{I(t)} =
|λ(ω)|2 n(ω)

�2

∫ ∞

−ωt

dx
sin x

x
(12.7.33)

which for ωt � π,

Re{I(t)} =
π|λ(ω)|2 n(ω)

�2

21 This name is usually given to (12.7.26) after some simplifications are made in
the expression for I(t).
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≡ γ

2
(12.7.34)

using the notation in (8.1.93).
Actually, the equality in (12.7.34) is a familiar one as following directly

from (12.7.30), which for sufficiently large t, sin(ω′ −ω)t/(ω′ −ω) acts like a
delta function with support at ω. We may also rewrite the correlation function
in (12.7.29) as

2
〈0 |HI(t) HI(t′)|0〉

2
=
∫ ∞

−1

dx |λ(ω + ωx)|2 n(ω + ωx) cos(ωτx)

− i
∫ ∞

−1

dx |λ(ω + ωx)|2 n(ω + ωx) sin(ωτx) (12.7.35)

where τ = t− t′. Assuming the integrability of |λ(ω+ωx)|2 n(ω+ωx) over x,
then for ωτ sufficiently large, the so-called Riemann-Lebesgue Lemma implies
that both integrals in (12.7.35) become small.

That is, for τ � 1/ω, the correlation function
2
〈0 |HI(t) HI(t′)|0〉

2
be-

comes small, and the latter contributes mainly to the time integral in
(12.7.27)/(12.7.28) for τ not large. As a matter of fact, if we formally replace
the correlation function by the highly localized expression in τ : γ/2 δ(τ), then
this gives from (12.7.27) the result that I(t) = γ/2 consistent with (12.7.34).
This is the content of the Markov approximation. The operator HI(t′), in

2
〈0 |HI(t) HI(t′)|0〉

2
, creates single excitations from the vacuum (ground-state)

at time t′ which are annihilated by HI(t) within a short interval of time of
length τ = t− t′, ending up again by the vacuum. Such fluctuations occur in
short periods of time of the order 1/ω, referred to as the correlation time. On
the other hand, in (12.7.34), we have taken t � 1/ω, and the corresponding
approximation requires that t is long compared to the correlation time of
system 2. Finally, for the validity of the second order perturbation theory
in (12.7.18), we may infer from (12.7.26), (12.7.34) that t should be short
compared to γ−1. As shown below γ is a constant associated with the decay
of system 1 in response to system 2.

What is the significance of the small imaginary part in (12.7.31)? This, in
general, contributes to an energy shift (as in the Lamb shift) for the system
1. This is easily seen from the dynamical equation for ρ(t) in (12.7.2), which
from (12.7.7), (12.7.26) is given by

ρ̇ = − i
�

[
e−itH01/�(H01 + �Ii A†A)eitH01/�, ρ

]

−
{
A†Aρ + ρA†A−AρA†

}
Ir (12.7.36)

where
A� = e−itH01/�A�eitH01/� (12.7.37)
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Ir = Re{I}, Ii = Im{I}. (12.7.38)

In (12.7.36), note that the Hamiltonian H01 of system is displaced by the
quadratic term �IiA

†A, involving the energy correction �Ii, as a result of the
interaction of systems 1 with that of 2.

For further reference, we note that

I(t) + I∗(t) = 2Ir = γ (12.7.39)

as follows from (12.7.34).

12.7.2 Exponential Law

Consider the two-level system in (8.1.67) with interaction Hamiltonian as
given in (8.1.68)–(8.1.70),

H01 =
E0 + E1

2
+

E1 − E0

2
σ3. (12.7.40)

Suppose the system is initially in the state (1 0)T , i.e.,

η(0) = ρ(0) =
(

1 0
0 0

)
(12.7.41)

and let
η(t) =

(
a b
c d

)
. (12.7.42)

Then from (12.7.26), (8.1.69), (8.1.70)
(

ȧ ḃ

ċ ḋ

)
= −

(
a(I + I∗) bI

cI∗ −a(I + I∗)

)
(12.7.43)

which from (12.7.41) leads to

a(t) = exp
(
−
∫ t

0

dt′ (I(t′) + I∗(t′))
)

(12.7.44)

b(t) = 0 = c(t) (12.7.45)

d(t) = 1 − exp
(
−
∫ t

0

dt′ (I(t′) + I∗(t′))
)

. (12.7.46)

From (12.7.7), (12.7.40), we get

ρ(t) =
(

a(t) 0
0 d(t)

)
. (12.7.47)

This gives for the survival probability
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P (t) =
(
1 0

)(a(t) 0
0 d(t)

)(
1
0

)

= a(t) = e−γt (12.7.48)

which coincides with (8.1.94) as expected. It is valid for t � ω−1 but for t
short in comparison to γ−1, where γ is the decay constant.

The integration in
∫ t

0

dt′(I(t′) + I∗(t′)) = γt (12.7.49)

requires justification. To this end, note that from (12.7.33) that

I(t) + I∗(t) =
γ

π

∫ ∞

−ωt

dx
sinx

x
. (12.7.50)

Let ωt = z. Then∫ ∞

−z

dx
sinx

x
= π −

∫ ∞

z

dx
sinx

x

= π − cos z

z
− sin z

z2
− 2

z2

∫ ∞

1

dx
sin(xz)

x3
(12.7.51)

useful for z ≥ 1 where in the last step we have integrated by parts twice.
Similarly, ∫ ∞

−z

dx
sin x

x
=

π

2
+
∫ z

0

dx
sin x

x
(12.7.52)

and for 0 < z � π, (12.7.52) implies that
∣∣∣∣
∫ ∞

−z

dx
sinx

x

∣∣∣∣ � π

2
+ z. (12.7.53)

From (12.7.50)–(12.7.53), we then have
∫ t

0

dt′(I(t) + I∗(t′)) = γt

(
1 + O

(
ln(ωt)

ωt

))
(12.7.54)

justifying the expression given in (12.7.49) for t � ω−1.

12.7.3 Coupling to the Environment

Consider a spin 1/2 object interacting with an apparatus described by a
harmonic oscillator as given in (8.7.24), with the initial state of the system
of spin 1/2 and the apparatus as given in (8.7.25)



12.7 Master Equation; Exponential Law, Coupling to the Environment 735

|Φ0〉 =
(

c+

c−

)
|−iα0〉 (12.7.55)

where |−iα0〉 is a coherent state describing the initial state of the apparatus,
α0 is real and positive. Here H01 is taken to be the expression in (8.7.24).

In the notation, (12.7.8), we have from (8.7.31)

η(0) = |c+|2
(

1 0
0 0

)
|α〉〈α| + |c−|2

(
0 0
0 1

)
|−α〉〈−α|

+ c+c∗−

(
0 1
0 0

)
|α〉〈−α| + c∗+c−

(
0 0
1 0

)
|−α〉〈α| (12.7.56)

where α = α0 exp(−iωT ), T = �π/2λ (see (8.7.29)).
For the interaction of the apparatus with the environment (see §8.7), we

choose the one given in (8.7.44), where a†, a are the creation, annihilation
operators associated with the harmonic oscillator describing the apparatus.

To solve (12.7.26), with A†, A now identified with a†, a, we introduce22

the generating function

F [K∗, K; t] = Tr
[
eK∗a η(t) eKa†

]
(12.7.57)

where the Tr is taken over the apparatus variables, and K, K∗ are parame-
ters.

Using the elementary properties

a eKa†
= eKa†

(a + K) (12.7.58)

eK∗aa† = (a† + K∗)eK∗a (12.7.59)

we obtain

Tr
[
eK∗a a†a η eKa†

]
=K∗ Tr

[
eK∗aaη eKa†

]

+ Tr
[
eK∗aaηa† eKa†

]
(12.7.60)

Tr
[
eK∗aηa†a eKa†

]
= Tr

[
eK∗aηa† eKa†

]
K

+ Tr
[
eK∗aaηa† eKa†

]
. (12.7.61)

Therefore, from (12.7.26),

Tr
[
eK∗aη̇ eKa†

]
= −K∗I Tr

[
eK∗aaηeKa

]
− KI∗ Tr

[
eK∗aηa†eKa†

]
.

(12.7.62)
22 We use a method described in: Walls and Milburn (1985).
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In terms of the generating function in (12.7.57), this leads to

d
dt

F [K∗, K; t] = −
[
K∗I

d
dK∗ + KI

d
dK

]
F [K∗, K; t]. (12.7.63)

This is readily integrated over t to give

Tr
[
eK∗aη(t)eKa†

]
= Tr

[
exp

(
K∗ a e−

∫ t
0 I
)

η(0) exp
(
Ka† e−

∫ t
0 I∗

)]
.

(12.7.64)
Using the properties

eca |α〉 = ecα |α〉 (12.7.65)

(see (6.6.26)), 〈α |α〉 = 1, 〈α |−α〉 = exp
(
|α|2/2

)
≡ exp(α2

0/2) (see (6.6.38)),
it is not difficult to see from (12.7.56), and (12.7.64), that

η(t) = |c+|2
(

1 0
0 0

) ∣∣∣α e−
∫ t
0 I

〉〈
α e−

∫ t
0 I
∣∣∣

+ |c−|2
(

0 0
0 1

) ∣∣∣−α e−
∫ t
0 I

〉〈
−α e−

∫ t
0 I
∣∣∣

+ c+c∗−

(
0 1
0 0

) ∣∣∣α e−
∫ t
0 I

〉〈
−α e−

∫ t
0 I
∣∣∣ exp(−2α2

0(1 − e−γt))

+ c∗+c−

(
0 0
1 0

) ∣∣∣−α e−
∫ t
0 I

〉〈
α e−

∫ t
0 I
∣∣∣ exp(−2α2

0(1 − e−γt)). (12.7.66)

Now it is not necessary to carry out the oper-
ation in exp

(
−i tH01

�

)
η(t) exp

(
i tH01

�

)
, defining ρ(t) in (12.7.7), to note the

following. Although γt is small, i.e., exp[−2α2
0(1 − e−γt)] � exp[−2α2

0γt],
then for a macroscopic value α2

0 � 1/2γt, the non-diagonal part of (12.7.66)
will be washed away relative to the diagonal one, with decoherence setting in
exponentially on a decoherence time scale ∼ 1/γα2

0 as discussed at the end of
§8.7. The operation in exp(−itH01/�)η(t) exp(itH01t/�) just multiplies the
α’s in |±α〉 by phase factors without obviously destroying the Hermiticity of
ρ(t) (see Problem 12.24).

Problems

12.1. For the Hamiltonian of the anharmonic oscillator potential in (12.4.8),
show that the Rayleigh-Schrödinger series for the ground-state energy
up to third order in λ is given by

E(λ) = 1 + (3/4)λ − (21/16)λ2 + (333/64)λ3 + . . . .

Also find the ground-state to first order.
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12.2. Treating the electron-electron interaction term in the helium atom
as a perturbation, find approximately, to the leading order in this
interaction, the ground-state energy of the atom.

12.3. For a two-level system, let |1〉 , |2〉 be two orthonormal vectors. Con-
sider linear combinations [a1 |1〉 + a2 |2〉] as eigenstates of a given
Hamiltonian H to find the exact energy levels and eigenvectors of the
system in terms of the matrix elements 〈i |H|j〉. If |1〉 , |2〉 are taken
as eigenstates of a Hamiltonian H0 with eigenvalues E1, E2, compare
the expressions obtained with those of perturbation theory discussed
in §12.1, §12.2 for the cases E1 �= E2, E1 = E2 by treating H −H0 as
a perturbation to H0.

12.4. If the degeneracy of a given energy level E0
n is not removed to fist order,

then show how energy corrections may be determined to second order.
12.5. Compute the splitting of the ground-state energy of the 3D harmonic

oscillator to the leading order if a perturbation −Fz is added to the
Hamiltonian by working in Cartesian coordinates.

12.6. Investigate the splitting of the energy level E2 − η, in (12.2.10), cor-
responding to the states specified by (� = 1,m = 0,ms = −1/2), (� =
0,m = 0,ms = −1/2) due to the perturbation in (12.2.9).

12.7. To the Hamiltonian of a plane rotator H0 = −(�2/2I)(∂2/∂φ2), where
I is a moment of inertia, a perturbation −µE cos φ is added, where µ
is an electric dipole moment of the rotator and E is the magnitude of
an applied electric field. Study the leading order perturbations contri-
butions to this coupled system. [Ref. Johnston and Sposito (1976).]

12.8. Scale the variable z in the Hamiltonian in (12.3.4) to generate one
with variable couplings and re-express the bounds in (12.3.9) in terms
of the coupling parameters.

12.9. Use the variational method with trial wavefunction given in (12.3.7)
to obtain an upper-bound-estimate for the ground-state energy of the
anharmonic potential with Hamiltonian given in (12.3.14). Study care-
fully the usefulness and limitations of the inequality in (12.3.14) in
providing a lower bound to this positive Hamiltonian in question. Can
you improve the lower bound to obtain a bound closer to the upper
one?

12.10. Derive the expressions for the matrix elements, 〈φ1 |H|φ1〉 , 〈φ2 |H|φ1〉
in (12.3.26), (12.3.27) to finally obtain the bound in (12.3.29).

12.11. Derive the behavior in (12.4.21) of the expansion coefficients EK of
the ground-state energy of the anharmonic oscillator potential with
Hamiltonian in (12.4.8), from a direct perturbative analysis of the path
integral expression (12.4.23) without using the dispersion relation ex-
pression leading to the integral in (12.4.11).

12.12. The numerical factor multiplying the expression for EK in (12.4.21),
independent of K, for K → ∞, may be obtained by investigation of the
determinant of the matrix M = −(1/4)d2/dt2 +1−6 cosh−2[2(t− t0)]
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in (12.4.30), in comparison to the matrix M0 = −(1/4)d2/dt2 + 1,
since the action in the path integral in (12.4.35) is quadratic. Using
this fact, together with the λ-independent numerical factors such as in
(12.4.28) omitted in obtaining (12.4.21), evaluate the overall numerical
factor in question. [Ref. Zinn-Justin (1981).]

12.13. Determine the Padé approximant P [2,1](λ) consistent with the expan-
sion for the ground-state energy to third order in λ given in Prob-
lem 12.1 for the anharmonic oscillator potential with Hamiltonian in
(12.4.8).

12.14. How can one modify the WKB approximation if V ′(a) is zero in
(12.5.9)?

12.15. Reformulate the WKB approximation in the momentum description.
12.16. (i) In reference to part (A) of Figure 12.5, study the nature of the

eigenvalues of the harmonic oscillator as following from (12.5.59).
(ii) For a Hamiltonian with a linear potential −Fx defined for x >

0, study the nature of the eigenvalues according to (12.5.61) in
reference to part (B) of Figure 12.5 with a = 0.

12.17. Justify the use of (12.5.71) for the WKB approximation as applied to
the attractive Coulomb potential and find the corresponding eigenval-
ues according to this formula.

12.18. Attempt to extend the WKB approximation to 3D deriving in the
process a Hamilton-Jacobi-like equation encountered in classical dy-
namics.

12.19. Derive the expression corresponding to (12.6.16) in the case when
λ′

0 /∈ I(ε).
12.20. For the sudden approximation concerning the Hamiltonian H1, H2 in

(12.6.36), (12.6.37), find the transition probability from the ground-
state energy to any excited state.

12.21. Find the transition probability for the transition from the ground-
state to an arbitrary excited state when the direction of the electric
field in the Hamiltonian H ′

1 ≡ H2, where H2 is defined in (12.6.37), is
suddenly changed.

12.22. If the equilibrium point of a harmonic oscillator potential is changed
adiabatically (i.e., slowly) with a uniform speed, find the transition
probability from the ground-state to the fist excited state.

12.23. Evaluated the trace Tr
2

in (12.7.18) to show that it is given by (12.7.26).
12.24. Carry out the action of the operator exp (−itH01/�) in

[exp (−itH01/�)η(t) exp (itH01/�)] = ρ(t), where H01 is taken to be
the expression in (8.7.24), and η(t) is given in (12.7.66), to show that
this operation simply multiplies the α’s in |±α〉, in (12.7.66) by phase
factors (without obviously destroying the Hermiticity of ρ(t)).
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Multi-Electron Atoms: Beyond the
Thomas-Fermi Atom

The purpose of this chapter is to determine, as an estimate, an explicit
expression for the ground-state energy E(Z) for multi-electron neutral atoms
as a function of the atomic number Z.

The Hamiltonian of a neutral atom consisting of Z electrons and a heavy
nucleus of charge Z|e| is taken to be

H =
Z∑

i=1

(
p2

i

2m
− Ze2

ri

)
+

Z∑
i<j

e2

|xi − xj |
(13.1)

where ri = |xi|, and m is the mass of an electron. Since the last term,
responsible for the electron-electron interaction, is positive a lower bound
to the ground-state energy of multi-electron atoms is readily obtained from
(13.1) by using the bound

H �
Z∑

i=1

(
p2

i

2m
− Ze2

ri

)
(13.2)

with the right-hand side consisting of the sum of the Hamiltonians of Z “non-
interacting” hydrogenic atoms each of ground-state energy −mZ2e4/2�

2.
This leads (§3.4) to the following conservative lower bound for the ground-
state energy of atoms

E(Z) � − mZ3e4

2�2
. (13.3)

which is sufficient theoretically in establishing the stability of atoms, and
improvements to the lower bound in (13.3) may be certainly made (see Prob-
lem 13.14).

Our starting point for obtaining an explicit expression for E(Z) is the so-
called Thomas-Fermi (TF) model for the atom. The TF atom has captivated
the hearts of physicists since its birth over a three quarter of a century ago
in 1927, when quantum physics was still in its infancy, and will continue to
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do so due to its extreme simplicity. In simplest terms, the interaction that
an electron in the TF atom at x experiences is described by an effective
spherically symmetric potential V (r), |x| = r, and uses the TF semi-classical
approximation (see (9.8.1)–(9.8.5)). The key point is that complicated expres-
sions for the interactions and the multi-particle kinetic energy are replaced by
simple functions of the electron density determined in the TF semi-classical
approximation (see (9.8.4), (9.8.5), and also (9.7.31), (4.5.15) for the kinetic
energy). In Appendix A to §13.1, on the TF atom, it is shown formally that
the ground-state energy ETF(Z) computed according to this model actually
gives the leading contribution to the exact one E(Z) for large Z. Therefore,
this model provides the correct starting point for the determination of an
estimate for E(Z). Corrections to ETF(Z) are then systematically investi-
gated. The corrections turn out to be, however, not just mere perturbation
expansion terms in power of 1/Z and the analysis is more involved than that.
These corrections, based on physical grounds, are worked out in the subse-
quent sections (§13.2–§13.4) and the resulting final expression, as an estimate,
for E(Z) is given in §13.5 by adding up these contributions.

We urge the reader to review the contents of §9.7, §9.8, on Green func-
tions, before reading this chapter. Here one will witness the power and the
relative simplicity of using Green functions in dealing with endless situations
encountered in quantum physics.

13.1 The Thomas-Fermi Atom

In the Thomas-Fermi atom, the interaction that an electron at x expe-
riences is described by an effective spherically symmetric potential V (x) =
V (r), |x| = r, also that the TF semi-classical (see (9.8.1)–(9.8.5)) approxi-
mation is valid and that the complicated expressions for the multi-particle
kinetic energy and the interactions may be self consistently replaced by simple
functions of the electron density determined in the TF semi-classical approxi-
mation (see (9.8.4), (9.8.5), (9.7.31)), as will be now described. This is indeed
correct for large Z values as is formally shown in Appendix A to this section.
Deviations from large Z values will be then investigated in the next three
sections.

From (9.8.5), we may infer that the electron density n(r), allowing for
spin degeneracy, is given by

n(x) =
1

3π2

(
2m(ξ − V (r))

�2

)3/2

= n(r) (13.1.1)

where ∫
d3x n(x) = Z. (13.1.2)

Here, according to (9.7.22), (9.8.4), the parameter ξ provides an upper bound
to the maximum energy of a bound electron. The parameter ξ also determines
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the boundary of the TF atom defined by r = rB. Since the electron density
n(r) = 0 for r � rB, we have

V (rB) = ξ (13.1.3)

and due to the spherical symmetry of V (r) (and n(r)) and the assumption
of neutrality of the atom, with neutrality arising by taking the charge of the
nucleus into account as well, we may infer that V (rB) = 0 (see Problem 13.1),
i.e., ξ = 0. [Although they are related, a vanishing property of both n(x),
V (x) for |x| → ∞, would imply that ξ = 0.]

The Green function part Gσσ′(xt;x′0) (see (9.7.15), see also (9.7.34)),
with spin indices σ, σ′, satisfies the Schrödinger equation with potential V (r),
and in the TF semi-classical approximation, for coincident space points x =
x′, is given by (see (9.8.3)), (τ = t/�)

Gσσ(xt;x0) =
∫

d3p
(2π�)3

exp
[
−i

(
p2

2m
+ V (r)

)
τ

]
. (13.1.4)

For the sum of the kinetic energies of the electrons we obtain from (9.7.31),
(13.1.4) (see also below (4.5.15)) the expression

∑
σ

∫
d3x

1
2πi

∫ ∞

−∞

dτ

τ − iε

[
i

∂

∂τ
− V

]
Gσσ(xt;x0)

≡
(
3π2

)5/3
�

2

10π2m

∫
d3x

(
n(x)

)5/3 ≡ T [n] (13.1.5)

as followed by an elementary integration, where we have used (13.1.1), ξ = 0,
and allowed for spin.

From electrostatics, one may define the interaction of the electron-nucleus
system in terms of the electron density, and add to it the kinetic energy term
(13.1.5). We then obtain the energy functional F [n], dependent on the density
n, defined by

F [n] =

(
3π2

)5/3
�

2

10π2m

∫
d3x

(
n(x)

)5/3 − Ze2

∫
d3x
|x| n(x)

+
e2

2

∫
d3xd3x′ n(x)

1
|x − x′|n(x′) (13.1.6)

with the ground-state energy ETF(Z) of the TF atom obtained by minimiz-
ing F [n] over n. The second and third terms in (13.1.6) take into account,
respectively, of the interactions of the electrons with the nucleus and the
electron-electron interactions in this model.

By setting the variational (functional) derivative of (13.1.6), with respect
to n(x), equal to zero, as one proceeds in Lagrangian mechanics, gives
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(
3π2

)5/3
�

2

10π2m

5
3
(
n(x)

)2/3 =
Ze2

|x| − e2

∫
d3x′

|x − x′| n(x′) (13.1.7)

or by using (13.1.1) this leads to1

V (r) = −Ze2

r
+ e2

∫
d3x′

|x − x′| n(x′) (13.1.8)

with ξ = 0, for the effective potential felt by an electron at x in the TF atom.
In Appendix B to this section, we show that the solution n(x) = nTF(x)

of (13.1.7) actually gives the smallest value for the energy density functional
(13.1.6).

Let

V (r) = −Ze2

r
F (r) (13.1.9)

and set
r = ax, F (r) ≡ f(x) (13.1.10)

where

a =
(

3π

4

)2/3
�

2

2me2

1
Z1/3

∼= 0.8853a0
1

Z1/3
(13.1.11)

and a0 is the Bohr radius �
2/me2.

A straightforward integration over the angles in (13.1.8) gives

f(x) = 1 − x

∫ ∞

0

dx′
√

x′

x>

[
f(x′)

]3/2 (13.1.12)

satisfying the boundary condition (B.C.)

f(0) = 1. (13.1.13)

The latter B.C. corresponds to V (r) ∼ −Ze2/r for r → 0, i.e., the Coulomb
potential of the nucleus being dominant in this limit. Here x> = max(x, x′).

The integral equation in (13.1.12) may be reduced to a differential equa-
tion by differentiating twice with respect to x giving

d2

dx2
f(x) =

(
f(x)

)3/2

x1/2
, f(0) = 1. (13.1.14)

The TF electron density and the effective potential may be written in
terms of the dimensionless function f(x) as follows
1 Note that the right-hand side of (13.1.8) may be formally rewritten as

e2

∫
d3x′

|x − x′|

[
−Zδ(r′)

4πr′2
+ n(x′)

]
, r′ = |x′|.
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n(r) =
32
9π3

(
me2

�2

)3
Z2

(
f(x)

x

)3/2

≡ nTF(r) (13.1.15)

V (r) = −Z4/3 2me4

�2

(
4
3π

)2/3
f(x)

x
. (13.1.16)

The normalization condition (13.1.2), together with (13.1.14), give

Z = Z

∫ xB

0

dx xf ′′(x) = Z [xBf ′(xB) − f(xB) + 1] (13.1.17)

where xB = rB/a (see (13.1.10)) with rB specifying the boundary of the
TF atom. Thus from (13.1.3), with ξ = 0, and (13.1.9), (13.1.10), (13.1.16),
(13.1.17), we obtain

xBf ′(xB) = 0. (13.1.18)

To find the asymptotic behavior for x → ∞, we write f(x) = cx−γ and
substitute the latter in (13.1.14) to obtain c = 144, γ = 3, i.e.,

f(x) ∼ 144
x3

, (13.1.19)

for x → ∞. [Although (13.1.19) exactly satisfies the differential equation in
(13.1.14), it is not a solution for all x since it does not satisfy the normaliza-
tion condition at x = 0.] This gives the asymptotic limits

V (r) −→ − 144 a3 Ze2

r4
(13.1.20)

n(r) −→ 1
3π2

(
2mZe2

�2
144 a3

)3/2 1
r6

(13.1.21)

for r → ∞, with the latter giving a far slow decrease for n(r) in comparison
to an exponential decrease typical of bound states.

Equation (13.1.20) shows that f(x) vanishes at infinity and that xB = ∞.
Equation (13.1.18) then also implies that f ′(x) → 0 for x → ∞. Accordingly,
upon integrating (13.1.14) from 0 to ∞, we may infer that for the slope of
f(x) at the origin we have

f ′(0) = −
∫ ∞

0

dx

(
f(x)

)3/2

x1/2
< 0 (13.1.22)

i.e., it is strictly negative.
Actually the function f(x) vanishes only at infinity. This is easily seen

by integrating the differential equation (13.1.14), over x, between two points
x1 < x2, to obtain
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f ′(x2) − f ′(x1) =
∫ x2

x1

dx

(
f(x)

)3/2

x1/2
(13.1.23)

and hence conclude that with f ′(0) < 0, that

f ′(0) � · · · � f ′(x1) � · · · � f ′(x2) � · · · � 0 (13.1.24)

for 0 < · · · < x1 < · · · < x2 < · · · < ∞. That is, f(x), starting at f(0) = 1,
is monotonically non-increasing, approaching zero for x → ∞. The function
f(x) cannot vanish for finite x and then increase again as this will be in
contradiction with (13.1.24). Also note that the differential equation (13.1.14)
implies that

f ′′(x) −−−−−−−→
x→∞

0. (13.1.25)

The function f(x) and its derivative f ′(x) may be then determined numer-
ically from the differential equation in (13.1.14) with the boundary conditions
f(0) = 1, f(x) → 0 for x → ∞. In particular, f ′(0) ∼= − 1.58807. For the
integral in (13.1.22), we have numerically

∫ ∞

0

dx

(
f(x)

)3/2

x1/2
= −f ′(0) ∼= 1.58807. (13.1.26)

The numerical value of the following integral2

∫ ∞

0

dx
(
f(x)

)2 ∼= 0.6154 (13.1.27)

will be also needed later on.
The explicit analytical expressions for the following integrals are easily

established:
∫ ∞

x

dy

(
f(y)

)3/2

y1/2
= −f ′(x) (13.1.28)

∫ ∞

0

dx xf ′′(x)f ′(x) = −1
2

∫ ∞

0

dx
(
f ′(x)

)2 (13.1.29)

∫ ∞

0

dx

(
f(x)

)5/2

x1/2
= −f ′(0) −

∫ ∞

0

dx
(
f ′(x)

)2 (13.1.30)

∫ ∞

0

dx

(
f(x)

)5/2

x1/2
=

5
2

∫ ∞

0

dx
(
f ′(x)

)2
. (13.1.31)

From (13.1.29)–(13.1.31), we also have
2 Note that, in particular, this means that the TF potential V (r), as given in

(13.1.16), is square-integrable with respect to the Euclidean measure d3x.
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∫ ∞

0

dx

(
f(x)

)5/2

x1/2
= −5

7
f ′(0) (13.1.32)

∫ ∞

0

dx
(
f ′(x)

)2 = −2
7
f ′(0). (13.1.33)

The behavior of f(x) near x = 0, may be inferred by writing

f(x) = 1 + xf ′(0) + axb + . . . (13.1.34)

and by substituting the latter in the differential equation in (13.1.14) to
obtain a = 4/3, b = 3/2, i.e.,

f(x) = 1 + xf ′(0) +
4
3
x3/2 + . . . (13.1.35)

for x → 0. [Note that (13.1.14) does not represent a Taylor expansion about
x = 0, since, from (13.1.14), f ′′(x), for x → 0, does not exist.]

Equation (13.1.16) leads to

V (r) −→ − Ze2

r

[
1 +

f ′(0)
a

r

]
(13.1.36)

and (13.1.15) to

n(r) −→ 1
3π2

(
2mZe2

�2

)3/2 1
r3/2

[
1 +

3
2

f ′(0)
a

r

]
(13.1.37)

for r → 0.

Computation of ETF(Z)

For the kinetic energy term T [n] in (13.1.5), with n = nTF, given in
(13.1.15), we have

T [n] =
3
5

e2Z2

a

∫ ∞

0

dx

(
f(x)

)5/2

x1/2
(13.1.38)

and from (13.1.32), this gives

T [n] = −3
7

e2Z2

a
f ′(0) (13.1.39)

where f ′(0) < 0 is given in (13.1.26).
For the electrons-nucleus interaction part

−Ze2

∫
d3x
r

n(r) = −Z2e2

a

∫ ∞

0

dx

(
f(x)

)3/2

x1/2
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=
Z2e2

a
f ′(0) (13.1.40)

where we have used (13.1.26).
Finally, for the electron-electron interaction part

e2

2

∫
d3xd3x′ n(r)

1
|x − x′|n(r′)

=
Z2e2

2a

∫ ∞

0

dx

∫ ∞

0

dx′
√

xx′

x>

(
f(x)

)3/2(
f(x′)

)3/2

= −Z2e2

2a

[
f ′(0) +

∫ ∞

0

dx

(
f(x)

)5/2

x1/2

]

= −Z2e2

7a
f ′(0) (13.1.41)

where we have used (13.1.32).
Adding the contributions (13.1.39)–(13.1.41), for the minimizing density

(13.1.15) of the energy functional (13.1.6), we obtain for the ground-state
energy ETF(Z) of the TF atom:

ETF(Z) =
3
7

e2Z2

a
f ′(0)

=
6
7

(
4
3π

)2/3

f ′(0)
(

me4

�2

)
Z7/3 (13.1.42)

which upon using the numerical value in (13.1.26) gives

ETF(Z) ∼= −1.5375
(

me4

2�2

)
Z7/3. (13.1.43)

The power law Z7/3 is to be noted.
For future reference, we rewrite (13.1.42) as

ETF(Z) = ETF(1)Z7/3 (13.1.44)

where

ETF(1) =
6
7

(
4
3π

)2/3

f ′(0)
(

me4

�2

)
. (13.1.45)

Appendix A To §13.1: The TF Energy Gives the
Leading Contribution to E(Z) for Large Z

Let E(Z) denote the exact ground-state energy of the multi-electron atom
Hamiltonian with atomic number Z:
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H =
Z∑

i=1

(
p2

i

2m
− Ze2

ri

)
+

Z∑
i<j

e2

|xi − xj |
. (A-13.1.1)

We show rather formally that3

lim
Z→∞

Z−7/3E(Z) = ETF(1) (A-13.1.2)

where ETF(1) is the coefficient of Z7/3 in the TF energy ETF(Z) in (13.1.44).
Due to the complexity of the demonstration, the details provided in this
appendix may be omitted at a first reading. The main result (A-13.1.2) is,
however, of central importance for the multi-electron atom problem.

To establish (A-13.1.2), we derive formally upper and lower bounds to the
left-hand side of (A-13.1.2) and show that the limits of both bounds coincide
with ETF(1) thus obtaining the result in question.

The Upper Bound

We consider first the seemingly unrelated problem of a one-body potential
with Hamiltonian4

h =
p2

2m
+ V (r) (A-13.1.3)

where V (r) is the TF potential (13.1.8), (13.1.9). We set x = R/Z1/3, and
define

n(r) ≡ Z2ρTF(R) (A-13.1.4)

where n(r) (≡ nTF(r)) is the TF density in (13.1.7), (13.1.15) satisfying
(13.1.2). Thus from (13.1.16) we may write

V (r) = Z4/3v(R)

= − �
2

2m

(
3π2

)2/3
Z4/3

(
ρTF(R)

)2/3
. (A-13.1.5)

The Green function G(xt;x′0;V ), for the potential V , may be written as
(see (9.7.56))

G(xt;x′0;V ) =
∫

d3k
(2π)3

eik·(x−x′) exp
[
−i

(
�

2k2

2m
τ + U(x, τ,k)

)]

(A-13.1.6)
where τ = t/�, with U satisfying the equation (see (9.7.59)),
3 The content of this result is a Theorem due to Lieb and Simon (1973). The

derivation given here is based on: Manoukian and Osaklung (2000).
4 Note that this Hamiltonian with the given potential V (r) in (13.1.9), (13.1.16)

satisfies the conditions of Theorem 4.1.1, hence its spectrum is bounded from
below and its negative part of the spectrum is discrete.
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− ∂

∂τ
U + V − �

2k
m

· ∇U +
�

2

2m
(∇U)2 +

i�2

2m
∇2U = 0 (A-13.1.7)

with the boundary condition U
∣∣
τ=0

= 0.
We are particularly interested in the integral∫

d3x G(xt;x0;V ) (A-13.1.8)

for coincident space points. The exp[ik · (x−x′)] in (A-13.1.6) then becomes
simply replaced by one. Since the x in (A-13.1.8) and the k in (A-13.1.6) are
merely integration variables, we may make any convenient change of these
variables of integrations. In particular, we consider the change of variables
of integrations: x → R, k → K, where (see (A-13.1.4)) x = R/Z1/3, k =
Z2/3K and also carry out the following scaling substitutions: V = Z4/3v,
τ = T/Z4/3. We note that with the τ , k scalings, just defined, the product
k2τ = K2T in the exponential in (A-13.1.6) remains invariant. With these
new variables, (A-13.1.7) reduces to

− ∂

∂T
U + v − �

2K · ∇RU

mZ1/3
+

�
2

2m

(∇RU)2

Z2/3
+

i�2

2m

∇2
RU

Z2/3
= 0. (A-13.1.9)

Let lim
Z→∞

U = U∞. Then (A-13.1.9) collapses to −∂U∞/∂T +v = 0, where we

note that v is independent of Z (see (A-13.1.5)). Thus we obtain U∞ = vT .
Accordingly, we have the following limits for large Z, as is readily verified

upon substitution of vT for U , Z → ∞∫
d3x

2
2πi

∫ ∞

−∞

dτ

τ − iε
G(xt;x0;V ) −→ Z

∫
d3R ρTF(R) ≡ Z (A-13.1.10)

and

Z−7/3

∫
d3x

2
2πi

∫ ∞

−∞

dτ

τ − iε
i

∂

∂τ
G(xt;x0;V )

−→ 2
∫

d3R
∫

d3K
(2π)3

[
�

2K2

2m
+ v(R)

]
Θ

(√
−2mv(R)

�2
− |K|

)

=
(
3π2

)5/3 �
2

10π2m

∫
d3R

(
ρTF(R)

)5/3 − e2

∫
d3R
R

ρTF(R)

+ e2

∫
d3Rd3R′ ρTF(R)

1
|R − R′|ρTF(R′) (A-13.1.11)

where the factor 2 multiplying the τ -integral is to account for spin. The
τ -integrals project out the negative spectrum of h in (A-13.1.3).

Equation (A-13.1.10), in particular, is of fundamental importance. It
states (see (9.7.24)) that for large Z, the Hamiltonian h, allowing for spin,
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has Z (orthonormal) eigenvectors corresponding to its negative spectrum.
Let g1(x, σ), . . . , gZ(x, σ) denote these eigenvectors for large Z. Define the
determinantal (anti-symmetric) function

ΦZ(x1σ1, . . . ,xZσZ) =
1√
Z!

det [gα (xβ , σβ)] . (A-13.1.12)

Since such an anti-symmetric function does not necessarily coincide with
the ground-state function of the Hamiltonian H in (A-13.1.1), the expectation
value 〈ΦZ |H|ΦZ〉, with respect to ΦZ in (A-13.1.12) can only over estimate
the exact ground-state energy E(Z) of H or at best be equal to it.

We rewrite the Hamiltonian H in (A-13.1.1) equivalently as

H =
Z∑

i=1

hi +


 Z∑

i<j

e2

|xi − xj |
− e2

Z∑
i=1

∫
d3x

|x − xi|
n(r)


 (A-13.1.13)

where hi is defined in (A-13.1.3) with corresponding variables xi, pi.
Accordingly,

lim
Z→∞

Z−7/3E(Z) � lim
Z→∞

Z−7/3 〈ΦZ |H|ΦZ〉

= lim
Z→∞

Z−7/3
Z∑

i=1

〈gi |hi|gi〉 + lim
Z→∞

Z−7/3FZ (A-13.1.14)

where

FZ = − e2
∑

σ

∫
d3x d3x′

|x − x′| nZ(xσ,xσ)n(r′)

+
e2

2

∑
σ,σ′

∫
d3xd3x′

|x − x′|
[
nZ(xσ,xσ)nZ(x′σ′,x′σ′) −

∣∣nZ(xσ,x′σ′)
∣∣2]

(A-13.1.15)

nZ(xσ,x′σ′) =
Z∑

i=1

gi(x, σ) g∗i (x′, σ′). (A-13.1.16)

Now using the fact that the second term in the square brackets in the second
term in (A-13.1.15) is negative and

lim
Z→∞

Z−2
∑

σ

nZ(xσ,xσ) = lim
Z→∞

Z−2 2
2πi

∫ ∞

−∞

dτ

τ − iε
G(xt;x0;V )

≡ ρTF(R) (A-13.1.17)

we obtain
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lim
Z→∞

Z−7/3FZ � − e2 lim
Z→∞

Z−7/3

∫
d3xd3x′

|x − x′|

[
n(r′)

(∑
σ

nZ(xσ,xσ)

)

− 1
2

(∑
σ

nZ(xσ,xσ)

)(∑
σ′

nZ(x′σ′,x′σ′)

)]

= −e2

2

∫
d3Rd3R′

|R − R′| ρTF(R) ρTF(R′). (A-13.1.18)

Finally, we have

lim
Z→∞

Z−7/3
Z∑

i=1

〈gi |hi|gi〉 = lim
Z→∞

(
Z−7/32

∑
λ<0

λ

)

= lim
Z→∞

Z−7/3

∫
d3x

2
2πi

∫ ∞

−∞

dτ

τ − iε
i

∂

∂τ
G(xt;x0;V )

(A-13.1.19)

where
∑
λ<0

λ in 2
∑
λ<0

λ is a sum over all the negative eigenvalues of h in (A-

13.1.3) (see (9.7.32)) allowing for multiplicity but not spin degeneracy. The
factor 2 takes the latter into account.

From (A-13.1.14)–(A-13.1.19) and (A-13.1.11) we obtain

lim
Z→∞

Z−7/3E(Z) �
(
3π2

)5/3
�

2

10π2m

∫
d3R

(
ρTF(R)

)5/3 − e2

∫
d3R
R

ρTF(R)

+
e2

2

∫
d3R d3R′

|R − R′| ρTF(R) ρTF(R′) (A-13.1.20)

where we recognize, from (13.1.6), (13.1.15), (13.1.16) and (13.1.44), that the
right-hand side of this inequality coincides with the coefficient ETF(1) of Z7/3

in ETF(Z), as given in (13.1.44), (13.1.45). That is,

lim
Z→∞

Z−7/3E(Z) � ETF(1). (A-13.1.21)

The Lower Bound

We use a special case of the lower bound of the repulsive electron-electron
potential to be established in (14.1.3) given by

Z∑
i<j

e2

|xi − xj |
�

Z∑
i=1

e2

∫
d3x

|x − xi|
n(r) − e2

2

∫
d3xd3x′ n(r)

1
|x − x′|n(r′)
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−
(
3π2

)5/3
�

2

60π2mZ

∫
d3x

(
n(r)

)5/3 + 6Z2ETF(1) (A-13.1.22)

where n(r) is taken to be the TF density in (A-13.1.4), (13.1.7), (13.1.15)
and we have chosen β = 6Z, with N = Z.

Let Ψ be a normalized anti-symmetric function in (x1σ1, . . . ,xZσZ). Then
from (A-13.1.4), (A-13.1.13) and (A-13.1.22),

〈Ψ |H|Ψ〉 � 〈Ψ|
∑

i

hi |Ψ〉 − e2

2
Z7/3

∫
d3Rd3R′ ρTF(R)

1
|R − R′|ρTF(R′)

−
(
3π2

)5/3
�

2

60π2mZ
Z7/3

∫
d3R (ρTF(R))5/3 + 6Z2ETF(1).

(A-13.1.23)

Consider the lowest energy E of the Hamiltonian
∑

i

hi. The latter Hamil-

tonian describes Z “non-interacting” electrons, but each interacting with the
external potential V . According to Pauli’s exclusion principle, these Z elec-
trons can be put in the lowest energy levels of

∑
i

hi (allowing for spin de-

generacy) if Z � the number of such available levels, or else if Z is larger,
then the remaining free electrons should have arbitrary small (→ 0) kinetic
energies to define the lowest energy of

∑
i

hi. In either cases, E � 2
∑
λ<0

λ,

where
∑
λ<0

λ is defined as before below (A-13.1.19).

Accordingly, from (A-13.1.23) and the last equality in (A-13.1.19), we
have

lim
Z→∞

Z−7/3 〈Ψ |H|Ψ〉 � lim
Z→∞

Z−7/3

∫
d3x

2
2πi

∫ ∞

−∞

dτ

τ − iε
i

∂

∂τ
G(xt;x0;V )

− e2

2

∫
d3Rd3R′ ρTF(R)

1
|R − R′|ρTF(R′)

(A-13.1.24)

involving reals, and noted that the last two terms on the right-hand side of
(A-13.1.23) go to zero, when multiplied by Z−7/3 in the limit Z → ∞. From
(A-13.1.11), (A-13.1.24) we then obtain

lim
Z→∞

Z−7/3 〈Ψ |H|Ψ〉 �
(
3π2

)5/3
�

2

10π2m

∫
d3R

(
ρTF(R)

)5/3 − e2

∫
d3R
R

ρTF(R)

+
e2

2

∫
d3Rd3R′

|R − R′| ρTF(R) ρTF(R′)
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≡ ETF(1). (A-13.1.25)

Since |Ψ〉 was arbitrary and can only overestimate E(Z) or at best would
lead to a value equal to it, (A-13.1.25) is also true for the (unknown) ground-
state wavefunction, that is

lim
Z→∞

Z−7/3E(Z) � ETF(1). (A-13.1.26)

From (A-13.1.21), (A-13.1.26), the statement in (A-13.1.2) then follows.

Appendix B to §13.1: The TF Density Actually Gives
the Smallest Value for the Energy Density Functional
in (13.1.6)

In this appendix, we show that the TF density nTF(x) satisfying (13.1.7)
actually gives the smallest possible value for the energy functional (13.1.6)
defined a priori for an arbitrary density ρ(x) � 0 by

F [ρ] = A

∫
d3x

(
ρ(x)

)5/3 − Ze2

∫
d3x
|x| ρ(x)

+
e2

2

∫
d3x d3x′ ρ(x)

1
|x − x′|ρ(x′) (B-13.1.1)

where

A =

(
3π2

)5/3
�

2

10π2m
. (B-13.1.2)

Let ρ(x) = tρ1(x) + (1− t)ρ2(x) ≡ tρ1 + (1− t)ρ2, ρ(x′) = tρ1(x′) + (1−
t)ρ2(x′) ≡ tρ′1 +(1− t)ρ′2, 0 � t � 1, and where ρ1, ρ2 � 0. From Appendix II
on convexity, we have the elementary inequality

(
tρ1 + (1 − t)ρ2

)5/3 � t (ρ1)
5/3 + (1 − t) (ρ2)

5/3
. (B-13.1.3)

Also
[
tρ1 + (1 − t)ρ2

][
tρ′1 + (1 − t)ρ′2

]

= tρ1ρ
′
1 + (1 − t)ρ2ρ

′
2 − t(1 − t)(ρ1 − ρ2)(ρ′1 − ρ′2). (B-13.1.4)

A Fourier transform, for example, shows that∫
d3x d3x′ [ρ1(x) − ρ2(x)

] 1
|x − x′|

[
ρ1(x′) − ρ2(x′)

]
� 0. (B-13.1.5)

to be used in conjunction with the last term in (B-13.1.4). Hence we may
conclude form (B-13.1.1)–(B-13.1.5) that
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F
[
tρ1 + (1 − t)ρ2

]
� tF [ρ1] + (1 − t)F [ρ2]. (B-13.1.6)

Also

d
dt

F
[
tρ1 + (1 − t)ρ2

]
=

5
3
A

∫
d3x

[
tρ1 + (1 − t)ρ2

]3/2(ρ1 − ρ2)

− Ze2

∫
d3x
|x| (ρ1 − ρ2)

+ e2

∫
d3x d3x′

|x − x′|
[
tρ′1 + (1 − t)ρ′2

]
(ρ1 − ρ2)

(B-13.1.7)

and

d
dt

F
[
tρ1 + (1 − t)ρ2

]∣∣∣∣
t=0

=
∫

d3x (ρ1 − ρ2)
[
5
3
Aρ

2/3
2 − Ze2

|x| + e2

∫
d3x′

|x − x′| ρ′2

]
. (B-13.1.8)

By choosing ρ2 = nTF, and ρ1 = σ � 0 arbitrary, we conclude from
(13.1.7) that the expression within the square brackets in (B-13.1.8) is zero,
thus

d
dt

F
[
tσ + (1 − t)nTF

]∣∣∣∣
t=0

= 0. (B-13.1.9)

Also (B-13.1.6) leads to the bound

F
[
σ
]
− F

[
nTF

]
�

F
[
tσ + (1 − t)nTF

]
− F

[
nTF

]
t

. (B-13.1.10)

Since the left-hand side of (B-13.1.10) is independent of t, we may take the
limit t → 0 and use (B-13.1.9) to conclude that

F
[
σ
]

� F
[
nTF

]
(B-13.1.11)

with the TF density nTF providing the smallest possible value for the energy
functional in (B-13.1.1).

13.2 Correction due to Electrons Bound Near the
Nucleus

According to (13.1.36), an electron near the nucleus, i.e., for r → 0, feels
the potential
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V0(r) = −Ze2

r
− Ze2

a
f ′(0) (13.2.1)

where a ∝ Z−1/3 is defined in (13.1.11), and f ′(0) is given in (13.1.26). The
first term −Ze2/r is the familiar potential due to the nucleus, while

− Ze2

a
f ′(0) =

Ze2

a

∣∣f ′(0)
∣∣ = e2

∫
d3x
|x| n(x) (13.2.2)

(see (13.1.7)–(13.1.10), (13.1.22), (13.1.1)) is a background constant potential
due to the electrons felt at the origin.

The potential V0(r) may be treated explicitly without recourse to a semi-
classical approximation. From the theory of the hydrogen atom, we may place
the electrons bound near the nucleus up to some energy level specified, say,
by a principal quantum number n′. For a given n′, the maximum energy ξ
attained by an electron bound near the nucleus in the potential V0(r) is then
given by

− Z2e4m

2�2n′2 − Ze2

a
f ′(0). (13.2.3)

Accordingly, to obtain the correction to the TF semi-classical approxima-
tion ETF(Z), due to electrons bound near the nucleus, we replace the TF
semi-classical contribution,5 in the potential V0(r), up to the maximum en-
ergy in (13.2.3), by the exact contribution due to this potential with electrons
placed in energy levels, having at most the energy in (13.2.3), according to
Pauli’s exclusion principle.

Hence the correction to ETF(Z) sought in this section is given by6

ESc =
n′∑

n=1

(
2n2

) [
−mZ2e4

2�2n2
+

Ze2

a
f ′(0)

]

− 2
2πi

∫
d3x

∫ ∞

−∞

dτ

τ − iε
eiξτ i

∂

∂τ
GSc(xt;x0;V0) (13.2.4)

where

GSc(xt;x0;V0) =
∫

d3k
(2π)3

exp
[
−i

(
�

2k2

2m
+ V0(r)

)
τ

]
(13.2.5)

with the second term in (13.2.4) giving the sum of the eigenvalues, of a
Hamiltonian with potential V0, less than ξ (see (9.7.32)). Accordingly, we
may introduce the parameter

5 In reference to this contribution, as given in the second term in (13.2.4), see
(9.7.32), (9.8.3) by finally incorporating spin.

6 Sc in ESc refers to Scott (1952) who first gave the correction in (13.2.14) — see
also Englert and Schwinger (1984).
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η =
2�

2

mZ2e4

(
ξ +

Ze2

a
f ′(0)

)
(13.2.6)

and take (1/−η)1/2 (see (13.2.3)) as the average of the principle quantum
numbers n′ and n′ +1, with the latter corresponding to the next energy level
greater than ξ. That is,

(
1
−η

)1/2

=
n′ + (n′ + 1)

2
= n′ +

1
2
. (13.2.7)

We recall that the 2n2 factor multiplying the summand in the first term
in (13.2.4) denotes the number of electrons that may be put in the energy
level specified by the principal quantum number n.

Upon summation over n, the first term in (13.2.4) is given by

− mZ2e4

�2
n′ +

Ze2

3a
n′(n′ + 1)(2n′ + 1)f ′(0) (13.2.8)

and by keeping track of the power of Z, we note that the second term in
(13.2.8) is ∝ Z4/3 in contrast to Z2 as appearing in the first term.

The second term in (13.2.4) is explicitly given by

−2
∫

d3x
∫

d3k
(2π)3

(
�

2k2

2m
− Ze2

r

)
Θ

(√
2m

�2

(
ξ′ +

Ze2

r

)
− |k|

)

=
�

2

3mπ2

(
2m(−ξ′)

�2

)5/2 ∫
(r�Ze2/−ξ′)

d3x

{
1
5

(
Ze2

−ξ′r

)5/2 [
1 −

(
−ξ′r

Ze2

)]5/2

+
1
2

(
Ze2

−ξ′r

)3/2 [
1 −

(
−ξ′r

Ze2

)]3/2
}

(13.2.9)

where

ξ′ = ξ +
Ze2

a
f ′(0). (13.2.10)

Upon setting

− ξ′r

Ze2
= y (13.2.11)

and using the integral
∫ 1

0

y2 dy

[
1
5

(1 − y)5/2

y5/2
+

1
2

(1 − y)3/2

y3/2

]
=

3π

32
(13.2.12)

we obtain for (13.2.9) the expression
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m
Z2e4

�2

(
1
−η

)1/2

= m
Z2e4

�2

(
n′ +

1
2

)
(13.2.13)

where η = 2�
2ξ′/mZ2e4 was introduced in (13.2.6), and we have used

(13.2.7), (13.2.10).
All told, we obtain from (13.2.8), (13.1.13) and (13.2.4), to the leading

order in Z

ESc =
mZ2e4

2�2
(13.2.14)

where the first term in (13.2.8) cancels out, and the principal quantum num-
ber n′ now appears only in the coefficient of Z4/3 in the second term in
(13.2.8). This term, however, may not be retained as a further correction to
the Z2 one in (13.2.14) since the corrections considered in the next sections
are proportional to Z5/3. Thus we learn, in particular, that for the correction
due to electrons bound near the nucleus, the contribution of the background
constant potential due to all of the electrons in (13.2.2) may be neglected
and we may effectively take V0 to be just the Coulomb potential

VC(r) = −Ze2

r
(13.2.15)

due to the nucleus.

13.3 The Exchange Term

In considering the electron-electron interaction term

e2

2

∫
d3xd3x′ n(x)

1
|x − x′|n(x′) (13.3.1)

in the TF theory in (13.1.6), we have not taken Pauli’s exclusion principle
into account that no two electrons may occupy the same state. In the present
section we remedy this situation.

To the above end, we consider, the non-local density given in (9.7.26) with
ξ = 0

nσσ′(x,x′) =
1

2πi

∫ ∞

−∞

dτ

τ − iε
Gσσ′(xt;x′0). (13.3.2)

Since we are considering non-spin interactions,

Gσσ′(xt;x′0) = δσσ′G(xt;x′0) (13.3.3)

nσσ′(x,x′) ≡ δσσ′N(x,x′) (13.3.4)

and ∑
σ

nσσ(x,x′) = 2N(x,x′) ≡ n(x,x′) (13.3.5)
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where N(x,x′) does not take spin into account. We also note that

n(x,x) = n(x) (13.3.6)

in the earlier notation in (13.3.1), and we may rewrite the integrand in
(13.3.1), not involving the 1/|x − x′| factor, rather trivially as

n(x,x)n(x′,x′) =
∑
σ,σ′

N(x,x)N(x′,x′)

=
∑

σ

N(x,x)N(x′,x′) +
∑
σ 	=σ′

N(x,x)N(x′,x′). (13.3.7)

To satisfy Pauli’s exclusion principle, we replace the first term in (13.3.7)
by ∑

σ

[
N(x,x)N(x′,x′) − N(x,x′)N(x′,x)

]
(13.3.8)

which when combined with the second term in (13.3.7) provides the substi-
tution rule

n(x,x)n(x′,x′) −→
∑
σ,σ′

[
N(x,x)N(x′,x′) − 1

2
N(x,x′)N(x′,x)

]

≡ n(x,x)n(x′,x′) − 1
2
n(x,x′)n(x′,x) (13.3.9)

as is easily checked by trivially summing over σ and σ′. We note the important
complex conjugation property in (9.7.27):

n(x′,x) =
(
n(x,x′)

)∗
. (13.3.10)

Hence to obtain the “exchange correction” to ETF, in the TF semi-classical
approximation, we have, from (13.3.1), (13.3.9), (13.3.10), to compute the
integral

Eexc = −e2

2

∫
d3xd3x′ n(x,x′)

1
2|x − x′|

(
n(x,x′)

)∗ (13.3.11)

where we note the additional 1/2 factor multiplying 1/|x − x′| in (13.3.11).
To the above end, by setting

√
−2mV (r)

�2
= kF(r), x − x′ = ζ, |ζ| = ζ (13.3.12)

where V (r) is the TF potential (13.1.8), (13.1.16), we have (see (13.3.2),
(9.8.3), (9.7.26))
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n(x,x′) =
2

2πi

∫ ∞

−∞

dτ

τ − iε

∫
d3k

(2π)3
eik·(x−x′) exp

[
−i

(
�

2k2

2m
+ V (r)

)
τ

]

=
4π

iζ

∫ kF(r)

0

k dk

(2π)3
(
eikζ − e−ikζ

)

= − 1
π2ζ

∂

∂ζ

1
ζ

∫ ζkF(r)

0

dx cos(x) (13.3.13)

or
n(x,x′) =

1
π2ζ3

[
sin

(
ζkF(r)

)
− ζkF(r) cos

(
ζkF(r)

)]
. (13.3.14)

Let
ζ kF(r) = y, y = |y| (13.3.15)

to obtain

n(x,x′) =
k3
F(r)

π2y3

[
sin y − y cos y

]
. (13.3.16)

For x′ → x, it is easily checked that n(x,x′) goes over to n(x) in (13.1.1),
with ξ = 0, (see Problem 13.9).

Accordingly, for the exchange effect Eexc in (13.3.11) we obtain

Eexc = −e2

2

∫
d3x d3x′ k6

F(r)
π42|x − x′|

(
sin y − y cos y

y3

)2
. (13.3.17)

Upon making a change of the variable of integration x′ to y, this leads to

Eexc = − e2

4π4

∫
d3x k4

F(r)
∫

d3y
y

(
sin y − y cos y

y3

)2
. (13.3.18)

Finally using the integral∫ ∞

0

dy

y5

(
sin y − y cos y

)2 =
1
4

(13.3.19)

and the definition of kF(r) in (13.3.12), rewritten in terms of the density n(r),
we obtain

Eexc = − e2

4π3

(
3π2

)4/3
∫

d3x
(
n(r)

)4/3
. (13.3.20)

This may be simply rewritten in terms of the TF function f(x) in (13.1.15)
as

Eexc = −
(

9
2π4

)1/3

Z5/3

(
me4

�2

)∫ ∞

0

dx
(
f(x)

)2
. (13.3.21)

The numerical value of the integral in (13.1.27) gives

Eexc
∼= − 0.4416

(
me4

2�2

)
Z5/3. (13.3.22)
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13.4 Quantum Correction

The deviation of the (space coincident) Green function δG(xt;x0;V ) part,
for a given potential, from the Thomas-Fermi semi-classical approximation
in (9.8.3) has been worked out in §9.8, (9.8.23) and is given by (τ = t/�)

δG(x �τ ;x 0;V ) =
�

2τ2

12m

[(
∇2V

)
− iτ

2
(
∇V

)2]

×
∫

d3k
(2π)3

exp
[
−i

(
�

2k2

2m
+ V

)
τ

]
(13.4.1)

using the mass m for µ, and emphasizing its dependence on V .
The (quantum) correction due to electrons near the nucleus has been

already taken into account in §13.2 where we found that the effective potential
felt by such an electron may be taken to be simply the Coulomb potential of
the nucleus alone

VC(r) = −Ze2

r
. (13.4.2)

Accordingly, from (13.4.1) and (9.7.32), we may introduce a further quan-
tum correction to the ground-state energy by7

Equa =
∫

d3x
2

2πi

∫ ∞

−∞

dτ

τ − iε

[
i

∂

∂τ
δG(x�τ ;x0;VTF) − i

∂

∂τ
δG(x�τ ;x0;VC)

]

(13.4.3)

where VTF is the TF potential (13.1.9), (13.1.10), (13.1.16) and VC is the
Coulomb potential in (13.4.2) due to the nucleus, and the τ -integral projects
out the respective negative spectra (see (9.7.32)).

Integrating by parts over τ , we have for the τ -integral in the following

I
[
V (x)

]
=

2
2πi

∫ ∞

−∞

dτ

τ − iε
i

∂

∂τ
δG(x �τ ;x 0;V )

=
1
π

∫ ∞

−∞

dτ

τ2
δG(x �τ ;x 0;V )

=
�

2

12πm

∫ ∞

−∞
dτ

[
∇2V − iτ

2
(
∇V

)2]

×
∫

d3k
(2π)3

exp
[
−i

(
�

2k2

2m
+ V

)
τ

]

7 This section is based on: Manoukian and Bantitadawit (1999).
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=
�

2

12πm

[
∇2V +

(
∇V

)2
2

d
dV

]∫
d3k

(2π)3

×
∫ ∞

−∞
dτ exp

[
−i

(
�

2k2

2m
+ V

)
τ

]
(13.4.4)

or

I
[
V (x)

]
=

�
2

6m

[
∇2V +

(
∇V

)2
2

d
dV

]∫
d3k

(2π)3
δ

(
�

2k2

2m
+ V (r)

)
. (13.4.5)

Upon integration over k, and taking the derivative with respect to V , we
obtain

I
[
V (x)

]
=

√
2m

12π2�

[
√
−V ∇2V − 1

4

(
∇V

)2
√
−V

]
. (13.4.6)

Now we use the identity

∇ ·
[
∇(g)3/2

]
=

3
2
√

g ∇2g +
3
4

(
∇g

)2
√

g
(13.4.7)

or
1
4

(
∇V

)2
√
−V

=
1
3
∇2(−V )3/2 +

1
2

√
−V ∇2V (13.4.8)

to get

I
[
V (x)

]
=

√
2m

24π2�

[√
−V ∇2V − 2

3
∇2(−V )3/2

]
. (13.4.9)

The expression for Equa in (13.4.3) then becomes

Equa =
∫

d3x
(
I
[
VTF(x)

]
− I

[
VC(x)

])
. (13.4.10)

Consider the contribution of the second term in (13.4.9) to the x-integral
in (13.4.10). To this end, using (13.1.9), (13.1.10), (13.4.2), the integral

I2 =
∫

d3x ∇2
[(
−VTF

)3/2 −
(
−VC

)3/2
]

=

(
Ze2

)3/2 (4π)
a1/2

∫ ∞

−∞
xdx

d2

dx2
x

[(
f(x)

)3/2

x3/2
− 1

x3/2

]
(13.4.11)

integrates to
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I2 =

(
Ze2

)3/2 (4π)
a1/2

3
2


x1/2

(
f(x)

)1/2
f ′(x) −

[(
f(x)

)3/2 − 1
]

x1/2




x→∞

x→0

.

(13.4.12)
From (13.1.19), (13.1.35), it is readily checked that the expression within the
brackets in (13.4.12) goes to zero for x → ∞ and x → 0. That is, the second
term in (13.4.9) gives no contribution to (13.4.10).

Using the Poisson equations (see (13.1.8), (13.1.1), with ξ = 0)

∇2VTF = 4πZe2δ3(x) − 4πe2nTF(r) (13.4.13)

∇2VC = 4πZe2δ3(x). (13.4.14)

We then obtain for (13.4.10)

Equa =
√

2m Ze2

6π�

∫
d3x

[(
−VTF

)1/2 −
(
−VC

)1/2
]
δ3(x)

− e2

6π�

∫
d3x

(
−2mVTF

)1/2
nTF(r). (13.4.15)

The first integral is proportional to
∫ ∞

0

dx
δ(x)
x1/2

[(
f(x)

)1/2 − 1
]

(13.4.16)

which, from (13.1.35), integrates to zero.
All told, we have from (13.4.15), (13.1.1),

Equa = − e2

18π3

(
3π2

)4/3
∫

d3x
(
n(x)

)4/3 (13.4.17)

where we have used the notation n(x) for nTF(r).
Upon comparison of (13.4.17) with Eexc in (13.3.20) we conclude that8

Equa =
2
9
Eexc

= −
(

4
81π4

)1/3

Z5/3

(
me4

�2

)∫ ∞

0

dx
(
f(x)

)2
. (13.4.18)

From the numerical value of the integral in (13.1.27) we then obtain

Equa
∼= − 0.09814

(
me4

2�2

)
Z5/3. (13.4.19)

8 The total contribution Eexc + Equa = (11/9)Eexc was evaluated by Schwinger
(1981) by modelling his analysis after the harmonic oscillator potential.
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13.5 Adding Up the Various Contributions: Estimation
of E(Z)

The various contributions to the estimation of the ground-state energy
E(Z) of neutral atoms evaluated in the previous sections are as follows:

• the TF energy ETF, as the leading contribution, ((13.1.42)–(13.1.45))
given by

ETF =
6
7

(
4
3π

)2/3

f ′(0)
(

me4

�2

)
Z7/3 (13.5.1)

with f ′(0) given in (13.1.26),
• correction due to electrons bound near the nucleus (see (13.2.14)) given

by

ESc =
(

me4

�2

)
Z2

2
(13.5.2)

• exchange effect (see (13.3.21)) given by

Eexc = −
(

9
2π4

)1/3 (
me4

�2

)
Z5/3

∫ ∞

0

dx
(
f(x)

)2 (13.5.3)

• a quantum correction (see (13.4.18)) given by

Equa = −
(

4
81π4

)1/3 (
me4

�2

)
Z5/3

∫ ∞

0

dx
(
f(x)

)2

=
2
9
Eexc (13.5.4)

where the numerical value of the integral in (13.5.3), (13.5.4) is given in
(13.1.27).

Adding up the various contributions (13.5.1)–(13.5.4), we obtain, as an
estimate for E(Z), the following functional dependence on Z:

E(Z) ∼=
[
−1.5375Z7/3 + Z2 − 0.5397Z5/3

](me4

2�2

)
. (13.5.5)

This expression turns out to be remarkably reliable and we refer the reader
to the general survey: Morgan III (1996), Chapter 20, p. 233, for the assess-
ment of its accuracy, for further developments and for other methods.

Problems

13.1. For a potential
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V (x) =
∫

d3x′ ρ(x′)
|x − x′| ,

∫
d3x ρ(x) = 0

corresponding to a neutral system, where ρ(x) = ρ(|x|) is a spherically
symmetric density such that ρ(|x|) = 0 for |x| � rB, show that V (x) =
0 for |x| � rB. The radius rB may be finite or infinite. [This is a special
case of Newton’s classic result.]

13.2. Derive the expression for the kinetic energy in (13.1.5) by using
(13.1.4) and (13.1.1) with ξ = 0.

13.3. Show that the variational (functional) derivative of (13.1.6) gives
(13.1.7), (13.1.8).

13.4. Starting from the expression of V (r) in (13.1.8), (13.1.9) derive the
equations (13.1.12), (13.1.14)–(13.1.16).

13.5. Establish the asymptotic limits in (13.1.20), (13.1.21) for r → ∞.
13.6. Prove the explicit analytical expressions for the integrals in (13.1.28)–

(13.1.33).
13.7. Establish the limits of the integrals in (A-13.1.10), (A-13.1.11).
13.8. Verify in detail the steps leading from (13.2.9) to (13.2.13).
13.9. Show that n(x,x′) in (13.3.16) goes over to the local density n(r) in

(13.1.1), with ξ = 0, for x′ → x.
13.10. Show that the expression within the square brackets in (13.4.12) goes

to zero for x → ∞ and x → 0.
13.11. Investigate the nature of the TF theory described in §13.1 for an ion

with N electrons, N < Z, and, in particular, the properties of the
corresponding TF function f(x).

13.12. Show that the probability Prob
[
r < r0

]
of finding an electron within

a sphere of radius r0 about the nucleus for the TF density (13.1.15) is
given by

Prob
[
r < r0

]
= 1 − f

(r0

a

)
+

r0

a
f ′
(r0

a

)

where a ∝ Z−1/3a0 is defined in (13.1.11). Make a careful study of this
probability for various r0 by noting, in the process, its dependence on
the atomic number Z.

13.13. Reconsider the TF theory in §13.1 by investigating the nature of the
next to the leading term p2/2m in the relativistic expression for the
kinetic energy

√
p2c2 + m2c4 − mc2 for an electron, where c is the

speed of light. When would such a term be important in your analysis?
13.14. In obtaining the lower bound in (13.3) from the lower bound Hamil-

tonian in (13.2), no use was made of Pauli’s exclusion principle. Make
use of the latter to obtain an improvement to the bound in (13.3) at
least for sufficiently large Z.
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Quantum Physics and the Stability of Matter

If one is asked to prepare a short list of most significant problems in
physics of theoretical nature and are critical for our existence and that of the
universe, the subject matter treated in this chapter would undoubtedly be
on such a list.

God forbid the Pauli exclusion principle becomes abolished making the
electron in matter to behave as a boson, and converts matter to a “bosonic
one”, then such matter would collapse and our world will cease to exist. This
is what quantum physics predicts. Here we see this monumental theory at its
best. The Pauli exclusion principle is not only sufficient for the stability of our
matter but is also necessary. This result alone promotes the Pauli exclusion
principle, or more generally the spin and statistics connection, as probably
one of the most important results in physics, and in the sciences, in general.

In regard to such “bosonic matter”, F. J. Dyson writes:1 “[Bosonic] mat-
ter in bulk would collapse into a condensed high-density phase. The assem-
bly of any two macroscopic objects would release energy comparable to that
of an atomic bomb. . . . Matter without the exclusion principle is unstable.”
E. H. Lieb writes:2 “Such “matter” would be very unpleasant stuff to have
lying around the house.”

The drastic difference between matter (with the exclusion principle) and
“bosonic matter”, for systems considered with Coulombic interactions, with
N negative and N positive charges, is that the ground-state energy has the
power law Nα, where α = 1 for matter,3 while α > 1 for “bosonic matter”.
Such a power law behavior with α > 1, for the ground-state energy, implies

1 Dyson (1967).
2 E. H. Lieb, in: Thirring (1991), p. 23. This volume and subsequent editions

consisting of many of his publications with various collaborators, such as
W. E. Thirring and others, contain a wealth of information on the subject.

3 Lenard and Dyson (1968); Lieb and Thirring (1975).
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the collapse of “bosonic matter”,4,5 since the formation of a single system
consisting of (2N+2N) particles is favored over two separate systems brought
into contact, each consisting of (N + N) particles, and the energy released
upon collapse of two separate systems into a single system, being proportional
to

[
(2N)α − 2(N)α

]
, will be overwhelmingly large for realistic large N , e.g.,

N ∼ 1023.
The Hamiltonian under consideration for the stability matter is taken to

be the N -electron one

H =
N∑

i=1

p2
i

2m
+

N∑
i<j

e2

|xi − xj |
−

N∑
i=1

k∑
j=1

Zj e2

|xi − Rj |
+

k∑
i<j

ZiZj e2

|Ri − Rj |
(14.1)

where m denotes the mass of the electron and the xi, Rj correspond, re-
spectively, to positions of the electrons and nuclei. Also we consider neutral
matter, i.e.,

k∑
i=1

Zi = N. (14.2)

The Hamiltonian in (14.1) is a typical one in that it corresponds to mo-
tionless (i.e., infinitely massive and hence with arbitrary large rest mass en-
ergies) fixed point-like nuclei. This is non-academic. By doing so, one does
not dwell on the fate and the dynamics of the positive background, and one
is looking at, and monitoring the fate of, the electrons through the “eye” of
the former system.

The key result in the problem of the stability of matter, with the exclu-
sion principle, is the single power law behavior EN ∼ −N of the ground-state
energy, and the physically expected result that the ground-state energy per
electron |EN/N | remains bounded for all N unlike “bosonic matter” for which
the latter becomes larger and larger as N increases. What we will actually
learn in §14.3 is that, for a non-vanishing probability of having the electrons
within a sphere of radius R, the volume vR in which the electrons are con-
fined grows not any slower than the first power of N for N → ∞. That is,
necessarily, the radius R of spatial extension of matter grows not any slower
than N1/3 for N → ∞. No wonder why matter occupies so large a volume!
Here it is worth recalling the words addressed by Paul Ehrenfest to Wolf-
gang Pauli in 1931 on the occasion of the Lorentz medal6 to this effect: “We
take a piece of metal, or a stone. When we think about it, we are astonished
that this quantity of matter should occupy so large a volume”. He went on
4 Dyson and Lenard (1967); Lieb (1979, 1976); Manoukian and Muthaporn

(2003b). The corresponding law here is N5/3 with motionless fixed (i.e., infi-
nitely massive) positive charges.

5 Dyson (1967); Manoukian and Muthaporn (2002); Conlon et al. (1988). The cor-
responding law here is N7/5, where the positive charges are treated dynamically
as well with finite masses restricted to Coulombic interactions.

6 See Ehrenfest (1959), p. 617, as quoted in Dyson (1967).
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by stating that the Pauli exclusion principle is the reason: “Answer: only the
Pauli principle, no two electrons in the same state”.

It is important to emphasize that the collapse of “bosonic matter” occurs
even if the positive charges are treated dynamically with finite masses with
Coulomb interactions.7 Also that the collapse of “bosonic matter” is not a
characteristic of the dimensionality of space,8 and that such matter does not
change, for example, from an “implosive” to a “stable” or to an “explosive”
phase with change of dimensionality.

In §14.1, we obtain a lower bound to the electron-electron repulsive
Coulomb potential energy, which when combined with the lower bound in
(4.6.24) derived for the expectation value of the kinetic energy of the elec-
trons provides a lower bound to the ground-state energy EN in §14.2. In the
latter section, an upper bound for EN is also derived consistent with the
single power of N obtained for EN in the lower bound. The high density
limit of matter is investigated in §14.3. The final section §14.4, deals with the
collapse of “bosonic matter”.

To make this work accessible to a wider audience we have relegated rather
some technical aspects of the analyses to the appendices of the relevant sec-
tions.

14.1 Lower Bound to the Multi-Particle Repulsive
Coulomb Potential Energy

In the appendix to this section, we derive the following inequality which
follows from (A-14.1.28) and reads in detail,

(
3π2

)5/3 �
2

10π2mβ

∫
d3x ρ5/3(x) −

k∑
j=1

Zj e2

∫
d3x

ρ(x)
|x − Rj |

+
e2

2

∫
d3x d3x′ ρ(x)

1
|x − x′|ρ(x′) +

k∑
i<j

ZiZj e2

|Ri − Rj |

� βETF(1)
k∑

i=1

Z
7/3
i (14.1.1)

where β > 0 is an arbitrary dimensionless parameter, ρ(x) is an arbitrary
positive function, and ETF(1) ∼= −1.5375

(
me4/2�

2
)

is the coefficient of the
TF ground-state energy defined in (13.1.43), (13.1.45).

The energy density functional, expressed in terms of the density ρ(x)
on the left-hand side of (14.1.1) is in the spirit of the TF energy functional
7 Dyson (1967); Manoukian and Muthaporn (2002).
8 Manoukian and Muthaporn (2003a); Muthaporn and Manoukian (2004a,b).



768 14 Quantum Physics and the Stability of Matter

considered earlier in (13.1.6) in the TF theory, with the mass m of the electron
replaced by mβ, and with the further generalization of including k nuclei, with
the last term, involving ‘ZiZj e2’, describing their interactions.

The inequality in (14.1.1) gives rise to a lower bound to the (repulsive)
Coulomb potential energy of k particles of charges Z1|e|, . . . , Zk|e|, or charges
−Z1|e|, . . . , −Zk|e|, i.e., for charges of the same signs as follows:

k∑
i<j

ZiZj e2

|Ri − Rj |
�

k∑
j=1

Zj e2

∫
d3x

ρ(x)
|x − Rj |

− e2

2

∫
d3xd3x′ ρ(x)

1
|x − x′|ρ(x′)

−
(
3π2

)5/3 �
2

10π2mβ

∫
d3x ρ5/3(x) + βETF(1)

k∑
i=1

Z
7/3
i .

(14.1.2)

In particular for the interaction of N electrons we have, with substitutions
k → N , Zj → 1, Rj → xj for j = 1, . . . , N :

N∑
i<j

e2

|xi − xj |
�

N∑
j=1

e2

∫
d3x

ρ(x)
|x − xj |

− e2

2

∫
d3xd3x′ ρ(x)

1
|x − x′|ρ(x′)

−
(
3π2

)5/3 �
2

10π2mβ

∫
d3x ρ5/3(x) + βNETF(1). (14.1.3)

The two inequalities (14.1.1), (14.1.3) combined with the lower bound of
the expectation of the kinetic energy given in (4.6.24) for s = 1/2, will be
used in the next section to derive a lower bound for the exact ground-state
energy of matter with Coulomb interaction by appropriately choosing ρ(x)
in (14.1.1), (14.1.3) to coincide with the particle number density defined in
(4.6.16).9

9 Note that the positive function ρ(x) in (14.1.1)–(14.1.3) being arbitrary may be
chosen to be the same in all of these three inequalities.
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Appendix to §14.1: A Thomas-Fermi-Like Energy
Functional and No Binding

Due to the technical nature of this appendix, its content may be omitted
at a first reading. The main result obtained (inequality (A-14.1.28)), however,
is important in obtaining a lower bound to the repulsive Coulomb potential
energy for the e−-e− interaction as given in (14.1.3).

We introduce the functional of a positive function ρ(x) defined by

F
[
ρ;Z1, . . . , Zk,R1, . . . ,Rk

]

=
(
3π2

)5/3 �
2

10π2mβ

∫
d3x ρ5/3(x) −

k∑
j=1

Zj e2

∫
d3x

ρ(x)
|x − Rj |

+
e2

2

∫
d3x d3x′ ρ(x)

1
|x − x′|ρ(x′) +

k∑
i<j

ZiZj e2

|Ri − Rj |
(A-14.1.1)

(compare with (13.1.6)), depending on positive parameters Z1, . . . , Zk and
vectors R1, . . . , Rk. Here β > 0 is an arbitrary dimensionless parameter. [In
particular, for k = 1, the last term in (A-14.1.1) is absent, and by setting
Ri = 0, β = 1, we obtain the energy functional in (13.1.6), (B-13.1.1).]

The main result (A-14.1.24)/(A-14.1.28) established in this appendix was
used in this section to obtain a lower bound for the (repulsive) Coulomb
potential for many particles having charges of the same signs as given in
(14.1.2), (14.1.3).

Let ρ0(x; k) satisfy the equation (see also (13.1.7))

(
3π2

)2/3 �
2

2mβ
ρ
2/3
0 (x; k) =

k∑
i=1

Zi e2

|x − Ri|
− e2

∫
d3x′ 1

|x − x′|ρ0(x′; k)

(A-14.1.2)
as obtained by functional differentiation of (A-14.1.1) with respect to ρ(x)
and by setting the result equal to zero as done in Lagrangian mechanics.

Following the proof given in Appendix B to §13.1, which shows that the
TF density satisfying (13.1.7) actually provides the smallest value (see (B-
13.1.11)), for the energy density functional (B-13.1.1), we conclude (see Prob-
lem 14.8) that ρ0(x; k) satisfying (A-14.1.2) provides the smallest value for
the functional F

[
ρ;Z1, . . . , Zk,R1, . . . ,Rk

]
in (A-14.1.1), with the normal-

ization condition ∫
d3x ρ0(x; k) =

k∑
i=1

Zi (A-14.1.3)

satisfied. That is

F
[
ρ;Z1, . . . , Zk,R1, . . . ,Rk

]
� F

[
ρ0;Z1, . . . , Zk,R1, . . . ,Rk

]
. (A-14.1.4)
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We introduce the functionals

F
[

1 l k 1 k

]
(A-14.1.5)

and
F
[
ρ;λZ1, . . . , λZl,R1, . . . ,Rl

]
(A-14.1.6)

where l < k, and λ > 0 is an arbitrary parameter.
Let ρ1(x), ρ2(x) be the corresponding solutions to (A-14.1.2) for the func-

tionals in (A-14.1.5), (A-14.1.6), respectively:

(
3π2

)2/3 �
2

2mβ
ρ
2/3
1 (x) =

l∑
j=1

λZj e2

|x − Rj |
+

k∑
j=l+1

Zj e2

|x − Rj |

− e2

∫
d3x′ 1

|x − x′|ρ1(x′) (A-14.1.7)

(
3π2

)2/3 �
2

2mβ
ρ
2/3
2 (x) =

l∑
j=1

λZj e2

|x − Rj |
− e2

∫
d3x′ 1

|x − x′|ρ2(x′). (A-14.1.8)

For simplicity of the notation only, we have suppressed the dependence of ρ1,
ρ2 on λ, k, l.

By setting

(
3π2

)2/3 �
2

2mβ
ρ
2/3
j (x) ≡ Qj(x), j = 1, 2 (A-14.1.9)

we obtain from (A-14.1.7), (A-14.1.8), upon subtraction,

Q1(x) − Q2(x) =
k∑

j=l+1

Zj e2

|x − Rj |
− e2

∫
d3x′ 1

|x − x′|
[
ρ1(x′) − ρ2(x′)

]

=
k∑

j=l+1

Zj e2

|x − Rj |

− 1
3π2

(
2mβ

�2

)3/2

e2

∫
d3x′ 1

|x − x′|
[
Q

3/2
1 (x′) − Q

3/2
2 (x′)

]
.

(A-14.1.10)

Since the sum over j in (A-14.1.10) is non-negative,
[
Q1(x) − Q2(x)

]
cannot be strictly negative for all x otherwise this will be in contradiction
with the equation (A-14.1.10) itself.

We introduce the set

S =
{

x
∣∣∣ Q1(x) − Q2(x) < 0

}
(A-14.1.11)

, . . . , Z ,R , . . . ,Rl+1ρ;λZ , . . . , λZ , Z
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and we will show that this set is empty, thus concluding that Q1(x)−Q2(x) �
0.

We assume that S is non-empty and then run into a contradiction. As
we move away from the boundary Ω of S,

[
Q1(x) − Q2(x)

]
changes sign or

vanishes, by definition of S, and we then have

n̂ · ∇
[
Q1(x) − Q2(x)

]
� 0 (A-14.1.12)

otherwise, we would run into a region beyond S where
[
Q1(x) − Q2(x)

]
is still strictly negative. [If S is of infinite extension the non-negativity of
n̂ · ∇

[
Q1(x) − Q2(x)

]
on the boundary still holds.]

The application of the Laplacian to (A-14.1.10) gives

∇2
[
Q1(x) − Q2(x)

]
= −4π

k∑
j=l+1

Zj e2δ3(x − Rj)

+ 4πe2

(
2mβ

�2 (3π2)2/3

)3/2 [
Q

3/2
1 (x) − Q

3/2
2 (x)

]

(A-14.1.13)

and for x in the set S, the expression on the right-hand side of this equation
is strictly negative since

[
Q

3/2
1 (x) − Q

3/2
2 (x)

]
< 0 for such x by hypothesis.

Accordingly,

0 >

∫
S

d3x ∇2
[
Q1(x) − Q2(x)

]
=
∫
Ω

dΩ n̂ · ∇
[
Q1(x) − Q2(x)

]
(A-14.1.14)

in contradiction with (A-14.1.12), hence S is empty and

Q1(x) − Q2(x) � 0 (A-14.1.15)

as a function of x.
In reference to the functional

F
[
ρ;Zl+1, . . . , Zk,Rl+1, . . . ,Rk

]
(A-14.1.16)

let ρ3(x) satisfy

(
3π2

)2/3 �
2

2mβ
ρ
2/3
3 (x) =

k∑
j=l+1

Zj e2

|x − Rj |
− e2

∫
d3x′ 1

|x − x′|ρ3(x′)

(A-14.1.17)
in analogy to (A-14.1.7), (A-14.1.8).

We define

g(λ) = F
[
ρ1;λZ1, . . . , λZl, Zl+1, . . . , Zk,R1, . . . ,Rk

]
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− F
[
ρ2;λZ1, . . . , λZl,R1, . . . ,Rl

]

− F
[
ρ3;Zl+1, . . . , Zk,Rl+1, . . . ,Rk

]
(A-14.1.18)

with l < k and the ρi non-negative. Since for λ = 0, ρ1 and ρ3 denote the
same density, and ρ2, in (A-14.1.8) is obviously equal to zero for λ = 0, as
the left-hand side of (A-14.1.8) is non-negative while its right-hand side is
non-positive for λ = 0, we may infer that

g(0) = 0. (A-14.1.19)

We will show that
g(1) � 0. (A-14.1.20)

From (A-14.1.19), we may write

g(1) =
∫ 1

0

dλ g′(λ) (A-14.1.21)

and hence to establish (A-14.1.20) it is sufficient to show that g′(λ) � 0 for
0 � λ � 1.

To the above end, we note from (A-14.1.1) with Z1 → λZ1, . . . , Zl → λZl,
ρ → ρ1 that

∂

∂λ
F
[
ρ1;λZ1, . . . , λZl, Zl+1, . . . , Zk,R1, . . . ,Rk

]

=
∫

d3x


(3π2

)2/3 �
2

2mβ
ρ
2/3
1 (x) − e2

l∑
j=1

λZj

|x − Rj |

−e2
k∑

j=l+1

Zj

|x − Rj |
+ e2

∫
d3x′ 1

|x − x′|ρ1(x′)


 ∂

∂λ
ρ1(x)

−
l∑

j=1

Zj e2

∫
d3x

1
|x − Rj |

ρ1(x)

+ e2


2λ

l−1∑
i=1

l∑
j=i+1

ZiZj

|Ri − Rj |
+

l∑
i=1

Zi

k∑
j=l+1

Zj

|Ri − Rj |


 .

(A-14.1.22)

On account of (A-14.1.7), the expression within the square brackets of the
x-integral in the first term on the right-hand side of (A-14.1.22) is zero. An
expression similar to the one in (A-14.1.22) for



14.1 Lower Bound to the Multi-Particle Repulsive Coulomb Potential . . . 773

∂

∂λ
F
[
ρ2;λZ1, . . . , λZl,R1, . . . ,Rl

]

may be also readily derived. Hence from (A-14.1.18)

∂

∂λ
g(λ) =

l∑
i=1

Zi


 k∑

j=l+1

Zj e2

|Ri − Rj |
− e2

∫
d3x

[
ρ1(x) − ρ2(x)

]
|x − Ri|




≡
l∑

i=1

Zi

[
Q1(Ri) − Q2(Ri)

]
� 0 (A-14.1.23)

where we have used (A-14.1.10) and (A-14.1.22), thus establishing (A-
14.1.20). Here we note that the summation over j in the first term in (A-
14.1.10) is from (l + 1) to k, while the one on the extreme right-hand side of
(A-14.1.23) is over i from 1 to l, and there are no ambiguities in the expression
in (A-14.1.23).

Accordingly, from (A-14.1.18), (A-14.1.20) we obtain

F
[
ρ1;Z1, . . . , Zk,R1, . . . ,Rk

]
� F

[
ρ2;Z1, . . . , Zl,R1, . . . ,Rl

]

+ F
[
ρ3;Zl+1, . . . , Zk,Rl+1, . . . ,Rk

]
(A-14.1.24)

for any 1 � l < k, where ρ1, ρ2, ρ3 are the densities which provide the
smallest values for the corresponding functionals, respectively.

Since l, k (with l < k) are arbitrary natural numbers, (A-14.1.24) implies
that

F
[
ρ0;Z1, . . . , Zk,R1, . . . ,Rk

]
�

k∑
i=1

F
[
ρi
TF;Zi,Ri

]
(A-14.1.25)

where each F
[
ρi
TF;Zi,Ri

]
is the TF functional (13.1.7), evaluated with the

TF density ρi
TF with nuclear charge Zi|e|, situated at Ri, and the mass m of

each negatively charged particle simply scaled by β. That is,

(
3π2

)2/3 �
2

2mβ

(
ρi
TF(x)

)2/3
=

Zi e2

|x − Ri|
− e2

∫
d3x′ 1

|x − x′|ρ
i
TF(x′).

(A-14.1.26)
Upon replacing x by x + Ri and setting

ρi
TF(x + Ri) = nTF(x)

∣∣∣∣m→mβ
Z→Zi

(A-14.1.27)

where nTF(x) is the TF density (13.1.7) of §13.1, we obtain from (A-14.1.25)
and (13.1.42)–(13.1.45), (A-14.1.4),



774 14 Quantum Physics and the Stability of Matter

F
[
ρ;Z1, . . . , Zk,R1, . . . ,Rk

]
� βETF(1)

k∑
i=1

Z
7/3
i (A-14.1.28)

for arbitrary positive ρ(x), where ETF(1) ∼= −1.5375
(
me4/2�

2
)

correspond-
ing to particles of masses m.

The basic inequality in (A-14.1.24), shows that a system identified by
the parameters

[
Z1, . . . , Zk,R1, . . . ,Rk

]
cannot have an (optimized) energy

functional (A-14.1.1) less than the sum of the (optimized) energy functional
of any two subsystems identified by parameters

[
Z1, . . . , Zl,R1, . . . ,Rl

]
,[

Zl+1, . . . , Zk,Rl+1, . . . ,Rk

]
, l < k. Because of this last property, the Theo-

rem embodied in the inequalities (A-14.1.24), (A-14.1.25) is referred to as a
“No Binding Theorem”.10

14.2 Lower and Upper Bounds for the Ground-State
Energy and the Stability of Matter

14.2.1 A Lower Bound

For anti-symmetric normalized functions Ψ(x1σ1, . . . ,xNσN ) of N elec-
trons, we have for the expectation value of the Hamiltonian H in (14.1)

〈Ψ |H|Ψ〉 =
N∑

i=1

〈
Ψ
∣∣∣∣ p

2
i

2m

∣∣∣∣Ψ
〉
−

N∑
i=1

k∑
j=1

Zj e2

〈
Ψ
∣∣∣∣ 1
|xi − Rj |

∣∣∣∣Ψ
〉

+
N∑

i<j

e2

〈
Ψ
∣∣∣∣ 1
|xi − xj |

∣∣∣∣Ψ
〉

+
k∑

i<j

e2 ZiZj

|Ri − Rj |
. (14.2.1)

To derive a lower bound to this expectation value, we recall the definition
of electron density

ρ(x) = N
∑

σ1,...,σN

∫
d3x2 . . . d3xN |Ψ(xσ1,x2σ2, . . . ,xNσN )|2 (14.2.2)

normalized to ∫
d3x ρ(x) = N (14.2.3)

which we will use in (A-14.1.28), and the lower bound (4.6.24) to the expec-
tation value of the kinetic energy for s = 1/2:

10 This important result was discovered by Teller (1962) and was established rigor-
ously by Lieb and Simon (1973); Lieb (1976) where the existence of a consistent
positive solution of (A-14.1.2) for the density is also studied.
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N∑
i=1

〈
Ψ
∣∣∣∣ p

2
i

2m

∣∣∣∣Ψ
〉

� 3
5

(
3π

4

)2/3
�

2

2m

∫
d3x ρ5/3(x). (14.2.4)

For the second term on the right-hand side of (14.2.1), we have the explicit
equality

N∑
i=1

k∑
j=1

Zj e2

〈
Ψ
∣∣∣∣ 1
|xi − Rj |

∣∣∣∣Ψ
〉

=
k∑

j=1

Zje
2

∫
d3x

1
|x − Rj |

ρ(x). (14.2.5)

We derive a lower bound to the third term in (14.2.1) by using, in the
process, the lower bound in (14.1.3) for the Coulomb potential energy of
repulsion of the electrons. To this end, we first note that

N∑
i=1

e2

∫
d3x ρ(x)

〈
Ψ
∣∣∣∣ 1
|x − xi|

∣∣∣∣Ψ
〉

= e2

∫
d3xd3x′ρ(x)

1
|x − x′|ρ(x′)

(14.2.6)
and hence from (14.1.3)

N∑
i<j

e2

〈
Ψ
∣∣∣∣ 1
|xi − xj |

∣∣∣∣Ψ
〉

� e2

2

∫
d3xd3x′ρ(x)

1
|x − x′|ρ(x′)

−
(
3π2

)5/3 �
2

10π2mβ

∫
d3x ρ5/3(x) + βNETF(1). (14.2.7)

From (14.2.4)–(14.2.7), we then obtain the following lower bound for
(14.2.1)

〈Ψ |H|Ψ〉 � (3π2)5/3 �
2

10π2mβ′

∫
d3x ρ5/3(x) −

k∑
j=1

Zje
2

∫
d3x

ρ(x)
|x − Rj |

+
e2

2

∫
d3xd3x′ρ(x)

1
|x − x′|ρ(x′) +

k∑
i<j

ZiZje
2

|Ri − Rj |
+ βNETF(1)

(14.2.8)

where we have set

3
5

(
3π

4

)2/3

− (3π2)5/3

5π2

1
β

(3π2)5/3

5π2

=
(

1
4π

)2/3

− 1
β

=
1
β′ . (14.2.9)

For a positive β′ we must choose β > (4π)2/3.
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The sum of the first four terms on the right-hand side of the inequality in
(14.2.8) coincide with the expression on the left-hand side of the inequality
in (14.1.1) with β in the latter replaced by β′. Hence

〈Ψ |H|Ψ〉 � β′ETF(1)
k∑

i=1

Z
7/3
i + βNETF(1) (14.2.10)

or

〈Ψ |H|Ψ〉 � ETF(1)


βN +

k∑
i=1

Z
7/3
i

(
1
4π

)2/3

− 1
β


 . (14.2.11)

Optimizing over β, we obtain

β = (4π)2/3


1 +




k∑
i=1

Z
7/3
i

N




1/2

 (14.2.12)

giving finally the Lieb-Thirring bound11

〈Ψ |H|Ψ〉 � ETF(1)(4π)2/3N


1 +

(
k∑

i=1

Z
7/3
i

N

)1/2



2

(14.2.13)

where

ETF(1) = −1.5375
(

me4

2�2

)
. (14.2.14)

If Z corresponds to the nucleus with the maximum charge, in units of |e|,
then

k∑
i=1

Z
7/3
i � Z4/3

k∑
i=1

Zi = NZ4/3 (14.2.15)

giving for the ground-state energy EN the lower bound

EN � −8.3104
(

me4

2�2

)
N
[
1 + Z2/3

]2
(14.2.16)

where we have used the fact that Ψ is arbitrary and hence (14.2.13) is true
for the ground-state as well. The numerical coefficient 8.3104 may be further
reduced but we will not attempt to do so here.

11 Lieb and Thirring (1975).
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14.2.2 Upper Bounds

A quick and rather conservative upper bound for EN may be derived by
considering the following trial determinantal function

Φ(x1σ1, . . . ,xNσN ) =
1√
N !

det [φj(xk, σk)] (14.2.17)

(j, k = 1, . . . , N), where

φj(x, σ) = φ
(
x − L(j)

)
χj(σ) (14.2.18)

with normalized spin functions χj(σ), which for simplicity make be taken to
be all the same, and

φ(x) =
∏

i

(
1√
L

cos
(πxi

2L

))
, |xi| � L (14.2.19)

i = 1, 2, 3, and is zero otherwise, x = (x1, x2, x3). We choose the vectors
L(1), . . . ,L(N) as follows

L(j) = jD(1, 1, 1), j = 1, . . . , N (14.2.20)

and we may choose
4L < D. (14.2.21)

It is easy to see that the intervals: {jD − L � xi � jD + L}, for j =
1, . . . , N , are disjoint, for each i = 1, 2, 3, and the functions φ(x − L(j)) are
then non-overlapping, and orthogonal with respect to each of the components
xi of x.

We choose
Rj = L(j), j = 1, . . . , k. (14.2.22)

The above construction consists of conveniently placing the k nuclei at
L(1), . . . ,L(k) and one electron in each one of the k boxes with centers at
L(1), . . . ,L(k). One electron is also placed in each of the remaining (N − k)
nuclei-free boxes with centers at L(k+1), . . . ,L(N). The Coulomb potential
being of long range, interactions occur between particles in the different boxes
as well.

Due to the localizations of the functions φj(x, σ), as described above, the
electrons are well separated, and we may write

|xi − xj | � D/
√

2 , i �= j (14.2.23)

and bound the repulsive e–e interaction term as

N∑
i<j

e2

|xi − xj |
�

√
2

D
e2

N∑
i<j

(1). (14.2.24)
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From (14.2.22), (14.2.20), |Ri − Rj | > D for i �= j, and we have the
inequality

k∑
i<j

ZiZje
2

|Ri − Rj |
<

e2

D

k∑
i<j

ZiZj . (14.2.25)

Finally, we use the conservative bound

−
N∑

i=1

k∑
j=1

Zje
2

|xi − Rj |
� −

k∑
i=1

k∑
j=1

Zje
2

|xi − Rj |

� −
k∑

i=1

Zie
2

|xi − Ri|

= −
k∑

i=1

Zie
2

|xi − L(i)|
(14.2.26)

to obtain

〈Ψ |H|Ψ〉 �
〈

Φ

∣∣∣∣∣
N∑

i=1

p2
i

2m

∣∣∣∣∣Φ
〉

−
k∑

i=1

Zie
2

∫
d3x

|x − L(i)|
φ2

i (x)

+
e2

D


√2

N∑
i<j

(1) +
k∑

i<j

ZiZj


 . (14.2.27)

The kinetic energy part is explicitly given by
〈

Φ

∣∣∣∣∣
N∑

i=1

p2
i

2m

∣∣∣∣∣Φ
〉

= N
3�

2

2m

( π

2L

)2

(14.2.28)

and ∫
d3x

|x − L(i)|
φ2

i (x) =
∫

d3x
|x| φ2(x) � 1√

3L
(14.2.29)

since |x| �
√

3L in the latter integral.
All told, we obtain

〈Ψ |H|Ψ〉 � 3�
2π2

8m

N

L2
− e2

√
3L

N +
e2

D


√2

N∑
i<j

(1) +
k∑

i<j

ZiZj


 . (14.2.30)

Optimization over L gives

L =
3
√

3
4

π2

(
�

2

me2

)
(14.2.31)
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and leads to the bound

〈Ψ |H|Ψ〉 � − 4
9π2

(
me4

2�2

)
N +

e2

D


√2

N∑
i<j

(1) +
k∑

i<j

ZiZj


 . (14.2.32)

We may choose D large enough to make the second term as small
as we please in comparison to the first one (e.g., make it equal to
0.00031(me2/2�

2)N) to obtain

〈Ψ |H|Ψ〉 � −0.0450
(

me4

2�2

)
N. (14.2.33)

Since Φ does not necessarily coincide with the ground-state wavefunction,
and the configuration positions of the nuclei does not necessarily correspond
to the lowest possible energy, (14.2.33) leads to an upper bound for EN :

EN � −0.0450
(

me4

2�2

)
N. (14.2.34)

with the upper bound having the same power of N as the lower bound.
As an estimation, the coefficient 0.0450 in (14.2.34) may be significantly

increased. For example, and quite formally, however, we may consider the
following infinitely separated N clusters: k ions (atoms), each in the ground-
state, of nuclear charges Z1|e|, . . . , Zk|e| having each one electron, and (N−k)
free electrons with vanishingly small kinetic energies. Formally, the ground-

state of such a system is −
k∑

i=1

Z2
i me4/2�

2, and since Z2
i � Zi, we obtain

EN � −
(

me4

2�2

)
N. (14.2.35)

thus increasing the above coefficient to one.
Note that the lower bound in (14.2.13), and the upper bound

−
∑k

i=1 Z2
i me4/2�

2 given above (14.2.35) imply the following interesting con-
clusion. Suppose for some q, 2 � q � N , Z1 = . . . = Zq, Zq+1 = . . . = Zk = 0,
then the ground-state energy will grow not slower than (−1)N2. Stability
then implies that as more and more matter is put together, thus increasing
the number N of electrons, the number k of nuclei in such matter, as sepa-
rate clusters, would necessarily increase and not arbitrarily fuse together and
their individual charges remain bounded. That is, technically, as N → ∞,
then stability implies that k → ∞ as well, and no nuclei may be found in
matter that would carry arbitrary large portions of the total positive charge
available. With such bounded positive charges, (14.2.16), (14.2.35) provide
bounds linear in N for large N. [Of course  is bounded in nature.]Z
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14.3 Investigation of the High-Density Limit for Matter
and Its Stability

This section addresses the important physical problem of investigating
rigorously the high-density limit of matter and of its spatial extension, as
a function of N , as the amount of matter is increased in the light of our
analysis in §3.1 (see (3.1.27)–(3.1.37)). In reference to this analysis, we recall
the words of Paul Ehrenfest to Wolfgang Pauli, quoted in the introduction
to this chapter, regarding as to why matter occupies such a large volume of
space. Our strategy of attack is the following. For a non-vanishing probability
of having the electrons within a sphere of radius R, we prove rigorously that
the radius of this spatial extension grows necessarily not slower than N1/3

this inflation of matter. In passing, the
result embodied in this investigation immediately provides also a lower bound
to the average spatial extension of matter as a function of N .

14.3.1 Upper Bound of the Average Kinetic Energy of Electrons
in Matter

the ground-state,

− εN [m] � 〈Ψ(m) |H|Ψ(m)〉 < 0 (14.3.1)

where −εN [m] = EN < 0 is the ground-state energy, and we have emphasized
its dependence on the mass m of the electron.

By definition of the ground-state energy, the state |Ψ(m/2)〉 cannot lead
for 〈Ψ(m/2) |H|Ψ(m/2)〉 a numerical value lower than −εN [m]. That is,

− εN [m] � 〈Ψ(m/2) |H|Ψ(m/2)〉 (14.3.2)

where we note that the interaction part V of the Hamiltonian H in (14.1) is
not explicitly dependent on m:

V = −
N∑

i=1

k∑
j=1

Zje
2

|xi − Rj |
+

N∑
i<j

e2

|xi − xj |
+

k∑
i<j

ZiZje
2

|Ri − Rj |
. (14.3.3)

Accordingly (14.3.2) implies that

− εN [2m] �
〈

Ψ(m)

∣∣∣∣∣
(

N∑
i=1

p2
i

4m
+ V

)∣∣∣∣∣Ψ(m)

〉
. (14.3.4)

Upon writing, trivially,

will be also made regarding
for large N . (Manoukian and Sirininlakul (2005)). An explicit quantitative
statement

Let |Ψ(m)〉 denote a strictly negative-energy state of matter, not necess-
arily
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N∑
i=1

p2
i

2m
+ V =

N∑
i=1

p2
i

4m
+

(
N∑

i=1

p2
i

4m
+ V

)
(14.3.5)

the extreme right-hand of the inequality (14.3.1) then leads to
〈

Ψ(m)

∣∣∣∣∣
N∑

i=1

p2
i

4m

∣∣∣∣∣Ψ(m)

〉
< −

〈
Ψ(m)

∣∣∣∣∣
(

N∑
i=1

p2
i

4m
+ V

)∣∣∣∣∣Ψ(m)

〉
(14.3.6)

which upon multiplying by two, (14.3.4) gives
〈

Ψ(m)

∣∣∣∣∣
N∑

i=1

p2
i

2m

∣∣∣∣∣Ψ(m)

〉
< 2εN [2m] (14.3.7)

for all states |Ψ(m)〉 such that (14.3.1) is true including the ground-state.
Thus from (14.3.7), (14.2.15), (14.2.4), we have the following bounds for

the expectation value T of the total kinetic energy of all the electrons in such
states

3
5

(
3π

4

)2/3
�

2

2m

∫
d3x ρ5/3(x) � T < 16.6208

(
me4

�2

)
N
[
1 + Z2/3

]2
.

(14.3.8)
Now we are ready for the main investigation of this section.

14.3.2 Inflation of Matter

Let x denote the position of an electron relative, for example, to the center
of mass of the nuclei. We define the set function

χR(x) =
{

1, if x lies within a sphere of radius R
0, otherwise. (14.3.9)

We are interested in the expression

∑
σ1,...,σN

∫ (
N∏

i=1

d3xi χR(xi)

)
|Ψ(x1σ1, . . . ,xNσN )|2

= Prob [|x1| � R, . . . , |xN | � R] (14.3.10)

which gives the probability of finding all the electrons within the sphere of
radius R.

Clearly,

Prob [|x1| � R, . . . , |xN | � R] � Prob [|x1| � R, . . . , |xj | � R]

� . . . � Prob [|x1| � R] =
1
N

∫
d3x χR(x)ρ(x) (14.3.11)
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for j < N , with ρ(x) given in (14.2.2).
By Hölder’s inequality in Appendix II,
∫

d3x χR(x)ρ(x) �
(∫

d3x ρ5/3(x)
)3/5 (∫

d3x χR(x)
)2/5

(14.3.12)

where χ
5/2
R (x) = χR(x), ∫

d3x χR(x) = υR (14.3.13)

denotes the volume in which the electrons are confined.
Hence, in particular, (14.3.11) gives

Prob [|x1| � R, . . . , |xN | � R] � Prob [|x1| � R]

� (υR)2/5

N

(∫
d3x ρ5/3(x)

)3/5

(14.3.14)

and (14.3.8) finally leads to the simple bound

Prob [|x1| � R, . . . , |xN | � R]
(

N

υR

)2/5

<

(
1
a3
0

)2/5

10
[
1 + Z2/3

]6/5

(14.3.15)
where a0 = �

2/me2 is the Bohr radius and Z is the maximum of the nuclear
charges.

We immediately infer from (14.3.15) the inescapable fact that necessarily,
for a non-vanishing probability of having the electrons within a sphere of
radius R, the corresponding volume vR grows not any slower than the first
power of N for N → ∞, since otherwise the left-hand side of (14.3.15) would
go to infinity in this limit and would be in contradiction with the finite upper
bound in (14.3.15). That is, necessarily, the radius R of spatial extension of
matter grows not any slower than N1/3 for N → ∞.

No wonder why matter occupies so large a volume!
(14.3.15), that the infinite density limit

N/vR → ∞, i.e., of the system collapsing onto itself, does not occur, as

From (14.3.14), (14.3.8), we may also write

1
N

∫
d3x χR(x) ρ(x) = Prob [|x| � R] <

(υR

N

)2/5
(

1
a3
0

)2/5

10
[
1 + Z2/3

]6/5

.

(14.3.16)
This immediately leads a lower bound to the expectation value
〈

N∑
i=1

|xi|
N

〉
=

∑
σ1,...,σN

∫
d3x1 . . . d3xN

(
N∑

i=1

|xi|
N

)
|Ψ(x1σ1, . . . ,xNσN )|2

(Manoukian and Sirin-
inlakul (2005)).

In  turn, one may infer from

the probability on the left-hand side of (14.3.15) goes to zero in such a limit
N/Rv ) .2/5 upon multiplying the latter equation first by  (  
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=
1
N

∫
d3x |x|ρ(x) (14.3.17)

for a measure of the extension of matter. Using the facts that

1
N

∫
d3x |x|ρ(x) � 1

N

∫
|x|>R

d3x |x|ρ(x) � R

N

∫
|x|>R

d3x ρ(x)

= R Prob [|x| > R] (14.3.18)

Prob [|x| > R] = 1 − Prob [|x| � R] (14.3.19)

υR = 4πR3/3, and (14.3.16) we obtain
〈

N∑
i=1

|xi|
N

〉
> R

[
1 −

(
R3

Na3
0

)2/5 (4π

3

)2/5

10
[
1 + Z2/3

]6/5
]

. (14.3.20)

Upon optimizing the right-hand side of the above inequality over R, this
gives

R =
(

1
22

)5/6 ( 3
4π

)1/3

a0N
1/3 1[

1 + Z2/3
] (14.3.21)

leading for (14.3.20) the explicit bound
〈

N∑
i=1

|xi|
N

〉
> 0.02575 a0

N1/3[
1 + Z2/3

] . (14.3.22)

14.4 The Collapse of “Bosonic Matter”

We derive lower and upper bounds for the ground-state energy EB
N for

“bosonic matter” consisting of N negatively charged (spin 0) bosons and N
positively charged motionless bosons of charges −|e|, +|e| respectively, with
Coulombic interactions. That is, we consider the Hamiltonian

H =
N∑

i=1

p2
i

2mi
+ V (x1, . . . ,xN ;R1, . . . ,RN ) (14.4.1)

where

V (x1, . . . ,xN ;R1, . . . ,RN )

=
N∑

i<j

e2

|xi − xj |
−

N∑
i=1

N∑
j=1

e2

|xi − Rj |
+

N∑
i<j

e2

|Ri − Rj |
(14.4.2)
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the masses m1, . . . ,mN of the negatively charged particles are not necessar-
ily taken to be equal. Here the xi, Rj respectively, refer to the negatively,
positively charged particles.

Since
N∑

i=1

p2
i /2mi is a positive operator, we may consider the bounds

N∑
i=1

p2
i

2m
�

N∑
i=1

p2
i

2mi
�

N∑
i=1

p2
i

2m
(14.4.3)

where m = max
i

(mi), m = min
i

(mi), and it is sufficient to consider, respec-
tively, the Hamiltonians

HL =
N∑

i=1

p2
i

2m
+ V (x1, . . . ,xN ;R1, . . . ,RN ) (� H) (14.4.4)

and

HU =
N∑

i=1

p2
i

2m
+ V (x1, . . . ,xN ;R1, . . . ,RN ) (� H) (14.4.5)

in determining the lower and upper bounds for the ground-state energy EB
N .

The analyses will give rise to an N5/3 law12 for such systems.

14.4.1 A Lower Bound

We first reconsider the TF theory in §13.1 when the electrons are replaced
by (spin 0) bosons.

In this case, the density in (13.1.1) becomes replaced by (see also (9.8.5))

nB(x) =
1

6π2

(
−2mV (r)

�2

)3/2

(14.4.6)

with ξ = 0. The TF energy functional (13.1.6) becomes then simply replaced
by

FB[nB] = (3π2)5/3 �
2

10π2

(
22/3

m

)∫
d3x (nB(x))5/3 − Ze2

∫
d3x
|x| nB(x)

+
e2

2

∫
d3x d3x′ nB(x)

1
|x − x′|nB(x′). (14.4.7)

That is, in the TF theory for bosons we simply have to replace m by
m/22/3 in the TF theory for electrons. Hence, in particular, EB

TF(Z) for boson,
we have from (13.1.43):
12 Dyson and Lenard (1967); Lenard and Dyson (1968); Lieb (1976, 1979);

Manoukian and Muthaporn (2003b).
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EB
TF(Z) =

1
22/3

ETF(Z). (14.4.8)

In the TF-like energy functional in (14.1.1), likewise, we replace m by
m/22/3.

For the expectation value T of the total kinetic energy for bosons, we may
use, for example, the bound in (4.6.26)

3
5

(
3π

2N

)2/3
�

2

2m

∫
d3x ρ5/3(x) � T (14.4.9)

where
ρ(x) = N

∫
d3x2 . . . d3xN |Ψ(x,x2, . . . ,xN )|2 . (14.4.10)

All told, we then have from (14.4.10), (14.4.8), for the basic inequality
corresponding to the present case,

〈Ψ |HL|Ψ〉 � 3
5

(
3π

2N

)2/3
�

2

2m

∫
d3x ρ5/3(x)

− (3π2)5/3 �
2

10π2β

(
22/3

m

)∫
d3x ρ5/3(x) −

k∑
j=1

Zje
2

∫
d3x

ρ(x)
|x − Rj |

+
e2

2

∫
d3xd3x′ ρ(x)

1
|x − x′|ρ(x′) +

k∑
i<j

ZiZje
2

|Ri − Rj |
+

βN

22/3
ETF(1)

(14.4.11)

where now we have to make the replacements Zi → 1, k → N , but we will
do that later for greater generality.

Upon setting

3
5

(
3π

2N

)2/3

− (3π2)5/3

5π2β
22/3

(3π2)5/3

5π2
22/3

=
1
β′′ (14.4.12)

we obtain instead of (14.2.10), (14.2.11) in the present case

〈Ψ |HL|Ψ〉 � β′′

22/3
ETF(1)

k∑
i=1

Z
7/3
i +

βN

22/3
ETF(1) (14.4.13)

or

〈Ψ |HL|Ψ〉 � 1
22/3

ETF(1)


βN +

k∑
i=1

Z
7/3
i((

1
4πN

)2/3

− 1
β

)


 . (14.4.14)
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Optimization over β, this gives

β = (4πN)2/3


1 +




k∑
i=1

Z
7/3
i

N




1/2

 (14.4.15)

leading to the bound

〈Ψ |H|Ψ〉 � ETF(1)(2π)2/3 N5/3


1 +

(
k∑

i=1

Z
7/3
i

N

)1/2



2

(14.4.16)

or from (13.1.43), (13.1.45)

〈Ψ |HL|Ψ〉 � −5.2352
(

me4

2�2

)
N5/3


1 +




k∑
i=1

Z
7/3
i

N




1/2



2

. (14.4.17)

[The numerical factor 5.2352 may be decreased13 further but we will not
attempt to do so here.]

Accordingly, for the bosonic system at hand we have (Zi → 1, k → N)

EB
N = −20.941

(
me4

2�2

)
N5/3. (14.4.18)

14.4.2 An Upper Bound

We consider arbitrary N � 8. Since (N/8)1/3 is some real number, it may
be written as

(N/8)1/3 = n + ε (14.4.19)

where n is a strictly positive integer and 0 � ε < 1. Let

8n3 ≡ κ (14.4.20)

then we have the useful bounds

2κε

n

(
1 +

ε

n

)
� (N − κ) � 4κε

n

(
1 +

ε

n

)
(14.4.21)

1 �
(
1 +

ε

n

)
< 2. (14.4.22)

13 See Manoukian and Sirininlakul (2004).
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We introduce the trial wavefunction Ψ(x1, . . . ,xN ) by considering the
following construction. We put14 κ of the negatively charged particles and
κ of the positively charged particles in a box of sides 2L, 2L, 2L centered
at the origin of the coordinate system. The remaining particles are placed
as follows. We consider (N − κ) non-overlapping boxes, each of sides 2L0,
2L0, 2L0 which also do not overlap with the box at the origin. The centers
of these (N −κ) boxes are defined by the tip of the vectors L(1), . . . ,L(N−κ),
(see Figure 14.1), where

L(j) = jD(1, 1, 1), j = 1, . . . , N − κ. (14.4.23)

To ensure that all the (N−κ)+1 boxes are non-overlapping, it is sufficient,
but not necessary, to choose

6L � 6L0 � D. (14.4.24)

x1

L(1)

x2

x3

Fig. 14.1. The figure shows the regions (non-overlapping boxes) where parti-
cles are localized. The centers of the boxes are situated at 0,L(1), . . . ,L(N−κ)

with the latter (N−κ) vectors being along the vector (1, 1, 1). The sides of the
box at the origin are equal to 2L, 2L, 2L, while the ones of the other (N − κ)
boxes are 2L0, 2L0, 2L0, where L0 � L. The Coulomb potential being of long
range, there are non-trivial interactions between particles in different boxes
as well.

The numerical factor 6 is chosen for convenience to simplify the algebra.
14 The following analysis is based on: Manoukian and Muthaporn (2003b) deriving

the upper bound for all N � 8 and is an extension of the classic work of Lieb
(1979) for N restricted to N = 8, 64, 216, . . ..
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Now we put (N − κ) of the positively charged particles at the centers of
the (N − κ) boxes introduced above by choosing

Rκ+1 = L(1), . . . ,RN = L(N−κ) (14.4.25)

and we put one negatively charged particle in each of the (N − κ) boxes.
R1, . . . ,Rκ are chosen to lie in the first box, with the latter centered at the
origin, as will be discussed later.

To localize the negatively charged particles in the (N − κ) + 1 boxes as
discussed above we introduce the following normalized trial wavefunction:

Ψ(x1, . . . ,xN ) =
1√

N !κ!

∑
π

φ(x(π1)) . . . φ(x(πκ))

× ψ1(x(πκ+1)) . . . ψN−κ(x(πN )) (14.4.26)

where the sum is over all permutations {π1, . . . , πN} of {1, . . . , N} such that
∫

d3x ψ∗
i (x)ψj(x) = δij ,

∫
d3x φ∗(x)ψi(x) = 0,

∫
d3x |φ(x)|2 = 1.

(14.4.27)
Since Ψ does not necessarily coincide with the ground-state wavefunction,

we have for the ground-state energy EB
N

EB
N � 〈Ψ |HU|Ψ〉 . (14.4.28)

We choose the following localized single-particle trial wavefunctions con-
sistent with the above construction by placing the negatively charged particles
in the (N − κ) + 1 boxes:

φ(x) =
∏

i

(
1√
L

cos
(πxi

2L

))
≡ φL(x), |xi| � L (14.4.29)

i = 1, 2, 3 and is zero otherwise, and for j = 1, . . . , N − κ,

ψj(x) =
∏

i


 1√

L0

cos


π

(
xi − L

(j)
i

)
2L0




 ≡ φL0(x−L(j)), |xi −L

(j)
i | � L0

(14.4.30)
and are zero otherwise, i = 1, 2, 3.

Since the intervals {−L � xi � L}, {jD − L0 � xi � jD + L0} for
j = 1, . . . , N − κ, (i = 1, 2, 3) are all disjoint, the wavefunctions φ(x), ψj(x)
are non-overlapping and automatically satisfy (14.4.27), with orthogonality
relations holding with respect to each component xi of x.

The single-particle average kinetic energies are given by

T 0 =
�

2

2m

∫
d3x|∇φ(x)|2 =

3�
2

2m

( π

2L

)2

(14.4.31)
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Tj =
�

2

2m

∫
d3x|∇ψj(x)|2 =

3�
2

2m

(
π

2L0

)2

≡ T 1 (14.4.32)

and for the multi-particle state

N∑
j=1

�
2

2m

∫
d3x1 . . . d3xN |∇jΨ(x1, . . .xN )|2 =

[
κT 0 + (N − κ)T 1

]

(14.4.33)
as is easily checked since the functions in each of the products in (14.4.26)
are orthogonal with respect to each of the components of x.

A detailed calculation gives

〈Ψ |HU|Ψ〉 =
[
κT 0 + (N − κ)T 1

]
+ 〈V1〉 + 〈V2〉 +

N∑
i<j

e2

|Ri − Rj |
(14.4.34)

where

〈V1〉 = −e2
N∑

j=1

∫
d3x

[
κ

|x − Rj |
φ2

L(x) +

(
1∣∣∣x + L(1) − Rj

∣∣∣

+ . . . +
1∣∣∣x + L(N−κ) − Rj

∣∣∣
)

φ2
L0

(x)

]
(14.4.35)

〈V2〉 =
e2

2
κ(κ − 1)

∫
d3x d3x′ φ2

L(x)
1

|x − x′|φ
2
L(x′)

+ e2κ

N−κ∑
j=1

∫
d3x d3x′ φ2

L(x)
1∣∣∣x − x′ − L(j)

∣∣∣φ
2
L0

(x′)

+ e2κ
N−κ∑
i<j

∫
d3x d3x′ φ2

L0
(x)

1∣∣∣x − x′ + L(i) − L(j)
∣∣∣φ

2
L0

(x′). (14.4.36)

By noting the overall negative sign of 〈V1〉, we may bound the latter as

〈V1〉 � −e2
κ∑

j=1

∫
d3x

κ

|x − Rj |
φ2

L(x) − e2(N − κ)
∫

d3x
1
|x|φ

2
L0

(x) (14.4.37)

where we have conveniently chosen an upper bound with the summation
going up to κ, and in writing the second term, we have chosen only the terms
with j = κ + 1, . . . , j = N , respectively, for the (N − κ) terms multiplying
φ2

L0
and used, in the process, (14.4.25).
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Since |x| �
√

3L0 in the last integral in (14.4.37), we obtain

〈V1〉 � −e2
κ∑

j=1

∫
d3x

κ

|x − Rj |
φ2

L(x) − e2(N − κ)√
3L0

. (14.4.38)

To derives an upper bound for 〈V2〉, we note that
∣∣∣L(j)

∣∣∣ �
√

3D,
∣∣∣L(i) − L(j)

∣∣∣ �
√

3D (14.4.39)

for i �= j, and because of the vanishing properties of φ2
L(x), φ2

L0
(x) outside

the corresponding intervals in questions, we obtain in reference to the second
and third set of integrals

∣∣∣x − x′ − L(j)
∣∣∣ �

∣∣∣L(j)
∣∣∣

1 − 4

√
3L0∣∣∣L(j)
∣∣∣



1/2

� D (14.4.40)

where we have used (14.4.24), and similarly
∣∣∣x − x′ + L(i) − L(j)

∣∣∣ � D. (14.4.41)

Accordingly, the second and third set of integrals on the right-hand of
(14.4.36), combined, may be bounded above by

e2

D

[
κ(N − κ) +

(N − κ)(N − κ − 1)
2

]
(14.4.42)

thus obtaining

〈V2〉 � e2

2
κ(κ− 1)

∫
d3x d3x′ φ2

L(x)
1

|x − x′|φ
2
L(x′) +

e2(N − κ)(N + κ − 1)
2D

.

(14.4.43)
Finally we use the bounds

|Ri − Rj | � D (14.4.44)

for j = κ + 1, . . . , N and all i such that 1 � i < j. This follows since for
i = κ + 1, . . . , N (such that i < j) we may use the equalities in (14.4.25),
while for i = 1, . . . , κ, |Ri| �

√
3L and (14.4.44) follows. The decomposition

N∑
i<j

1
|Ri − Rj |

=
κ∑

i<j

1
|Ri − Rj |

+
N∑

j=κ+1

j−1∑
i=1

1
|Ri − Rj |

(14.4.45)

then leads to

〈Ψ |HU|Ψ〉 � κT 0+〈H1〉+(N−κ)
[
T 1 +

e2(N + κ − 1)
D

− e2

√
3L0

]
(14.4.46)
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where

〈H1〉 = −κe2
κ∑

j=1

∫
d3x

|x − Rj |
φ2

L(x)

+
e2

2
κ(κ − 1)

∫
d3x d3x′ φ2

L(x)
1

|x − x′|φ
2
L(x′) + e2

κ∑
i<j

1
|Ri − Rj |

.

(14.4.47)

In the appendix to this section, the following upper bound for 〈H1〉 is
obtained

〈H1〉 � − e2

6L
κ4/3 (14.4.48)

by appropriately fixing the positions of the κ positive charges. Again this
latter configuration does not necessarily correspond to the lowest possible
energy, and hence we obtain an upper bound to EB

N given by

EB
N � 3�

2

8m

π2

L2
κ − e2

6L
κ4/3

+ (N − κ)
[
3�

2

8m

π2

L2
0

+
e2(N + κ − 1)

xL0
− e2

√
3L0

]
(14.4.49)

where we have set D = xL0, with x � 6, which will be conveniently and
consistently chosen.

Optimization over L and L0, gives

L =
9π2

�
2

2me2

1
κ1/3

, L0 =
3
√

3π2
�

2

2me2

1[
2 − 2

√
3
(N + κ − 1)

x

] (14.4.50)

with

0 <

[
2 − 2

√
3
(N + κ − 1)

x

]
�

√
3

3
κ1/2 (14.4.51)

and with κ1/3 � 2, we may choose x = 2
√

3(N + κ − 1), which is obviously
larger than 6, giving

L0 =
3
√

3π2
�

2

2me2
> L. (14.4.52)

The last term on the right-hand side of (14.4.49), involving the (N−κ) factor,
then leads to a strict negative contribution proportional to N , that is with a
power of N less than that of the sum of the first two terms with L as given in
(14.4.50). Hence we may further bound the right-hand side of (14.4.49) from
above by the sum of the first two terms only.

Accordingly, we obtain the strict upper bound
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EB
N < −me4

2�2

N5/3

27π2

1
(1 + ε/n)5

(14.4.53)

for all N � 8, where we have used the fact that (see (14.4.19), (14.4.20))

κ = N
[
1 +

ε

n

]−3

= 8n3. (14.4.54)

From (14.4.22), a conservative bound is [1 + ε/n]5 < 25 for this factor in
(14.4.53). For the cases where ε = 0,

EB
N < − 1

27π2

(
me4

2�2

)
N5/3. (14.4.55)

More generally, for all 0 � ε < 1, and for large bosonic systems, e.g., with
n � 4, i.e., with N � 512,

EB
N < − 1

83π2

(
me4

2�2

)
N5/3 (14.4.56)

and more interestingly for larger systems, e.g., with n � 50, i.e., for N � 106,

EB
N < − 1

30π2

(
me4

2�2

)
N5/3. (14.4.57)

A larger numerical coefficient than 1/
(
30π2

)
of

(
me4/2�

2
)
N5/3, may be

obtained but this will not be attempted here.
We note the presence of the same power N5/3 for the lower (14.4.18) and

upper bounds (14.4.53)–(14.4.57) for EB
N .

We have thus established the main objective of this section by showing the
power law behavior N5/3 for bosons, implying the collapse of such systems.
It is interesting to point out that the collapse is not a characteristic of the
dimensionality of (Euclidean) space and persists in arbitrary dimensions15
(see also Problem 14.7) with 1/r interactions. The N5/3 law for bosons just
established corresponds to fixed positively charged particles (i.e., infinitely
massive motionless point particles). As mentioned in the introductory section
to this chapter this is non-academic. The problem with the positively charged
particles treated dynamically with finite masses as well restricted, however,
to the Coulombic interaction, gives rise to a N7/5 power law implies again
the instability of such systems and we refer the reader to the literature16 for
the derivation of this law.

15 Muthaporn and Manoukian (2004a).
16 Dyson (1967); Manoukian and Muthaporn (2002); Conlon et al. (1988). For the

corresponding law in other dimensions see, Manoukian and Muthaporn (2003a).
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Appendix to §14.4: Upper Bounds for 〈H1〉 in (14.4.47)

Consider the following integrals written in terms of dimensionless vari-
ables

I1(κ;X1, . . . ,Xκ) = −κ

κ∑
j=1

∫
d3x

|x − Xj |
f2(x) (A-14.4.1)

I2(κ) =
κ2

2

∫
d3x d3x′ f2(x)

1
|x − x′|f

2(x′) (A-14.4.2)

I3(κ;X1, . . . ,Xκ) =
κ∑

i<j

1
|Xi − Xj |

(A-14.4.3)

where f(x) is a real function defined by

f(x) = g(x1)g(x2)g(x3) (A-14.4.4)

g(xi) �= 0 for −1 � xi � 1, and g(xi) = 0 otherwise, g(x) = g(−x),
∫ 1

−1

g2(x) dx = 1. (A-14.4.5)

By choosing, in particular,

g(x) = cos
πx

2
(A-14.4.6)

setting Xj = Rj/L, and noting that κ(κ − 1) < κ2, for the coefficient of the
second term in (14.4.47), we conclude that

〈H1〉 � e2

L
I(κ;X1, . . . ,Xκ) (A-14.4.7)

where

I(κ;X1, . . . ,Xκ) = I1(κ;X1, . . . ,Xκ) + I2(κ) + I3(κ;X1, . . . ,Xκ).
(A-14.4.8)

Therefore, to derive an upper bound for 〈H1〉 we may work directly with the
expressions in I(κ;X1, . . . ,Xκ).

We partition17 the unit interval [0, 1] into n subintervals: 0 = a0 < a1 <
. . . an = 1 such that ∫ aj

aj−1

dx g2(x) =
1
2n

(A-14.4.9)

for j = 1, . . . , κ. By doing so, we divide the box of sides 2, 2, 2 into (2n)3 =
8n3 ≡ κ smaller boxes.
17 We follow the construction of Lieb (1979).
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Let αj = aj − aj−1, then we note that

n∑
j=1

αj = 1. (A-14.4.10)

A box of sides αi, αj , αl may be denoted by Bijl. We label the smaller boxes
thus generated arbitrarily by B1, . . . , Bκ, and note from (A-14.4.4), (14.4.5)
that ∫

Bi

d3x f2(x) =
1

8n3
=

1
κ

(A-14.4.11)

for i = 1, . . . , κ.
The integrals in (A-14.4.1), (A-14.4.2) may be rewritten as sums of inte-

grals over such boxes as follows:

I(κ;X1, . . . ,Xκ) = −κ

κ∑
i=1

κ∑
j=1

∫
Bi

d3x
|x − Xj |

f2(x) (A-14.4.12)

I2(κ) =
κ2

2

κ∑
i=1

κ∑
j=1

∫
Bi

d3x
∫

Bj

d3x′ f2(x)
1

|x − x′|f
2(x′).

(A-14.4.13)

Now we place X1 in box B1, X2 in box B2, . . . ,Xκ in box Bκ and then
average the expression of I(κ;X1, . . . ,Xκ), over X1, . . . ,Xκ by multiplying
it by the normalized density

f2(X1)∫
B1

d3Xf2(X)
. . .

f2(Xκ)∫
Bκ

d3Xf2(X)
=

κ∏
i=1

(
κf2(Xi)

)
(A-14.4.14)

and integrating over X1, . . . ,Xκ, respectively, over the boxes B1, . . . , Bκ to
obtain for this average the expression

〈I(κ;X1, . . . ,Xκ)〉 = −κ2
κ∑

i=1

κ∑
j=1

∫
Bi

d3x
∫

Bj

d3x′f2(x)
1

|x − x′|f
2(x′)

+
κ2

2

κ∑
i=1

κ∑
j=1

∫
Bi

d3x
∫

Bj

d3x′ f2(x)
1

|x − x′|f
2(x′)

+ κ2
κ∑

i<j

∫
Bi

d3x
∫

Bj

d3x′f2(x)
1

|x − x′|f
2(x′)

≡ −κ2

2

κ∑
i=1

∫
Bi

d3x
∫

Bi

d3x′ f2(x)
1

|x − x′|f
2(x′).

(A-14.4.15)
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By the definition of an average, there must exist at least one set of
{X1, . . . ,Xκ} with X1 in box B1, . . . ,Xκ in box Bκ such that

I(κ;X1, . . . ,Xκ) � 〈I(κ;X1, . . . ,Xκ)〉 (A-14.4.16)

That is, with such a set {X1, . . . ,Xκ},

I(κ;X1, . . . ,Xκ) � −κ2

2

κ∑
i=1

∫
Bi

d3x
∫

Bi

d3x′ f2(x)
1

|x − x′|f
2(x′).

(A-14.4.17)
A box Bijl of sides αi, αj , αl may be inserted in a sphere of radius

1
2

√
α2

i + α2
j + α2

l and from the normalization condition (A-14.4.11) we have
(see Problem 14.6)

∫
Bijl

d3x
∫

Bijl

d3x′ f2(x)
1

|x − x′|f
2(x′) � 2√

α2
i + α2

j + α2
l

(
1
κ

)2

.

(A-14.4.18)
Accordingly, we may bound I(κ;X1, . . . ,Xκ) as follows

I(κ;X1, . . . ,Xκ) � −8
n∑

i,j,l=1

1√
α2

i + α2
j + α2

l

(A-14.4.19)

where, by symmetry, the factor 8 takes into account all of the boxes, since
the summation over i, j, l, accounts only for n3 boxes corresponding to 0 �
x1 � 1, 0 � x2 � 1, 0 � x3 � 1.

By noting that for ai > 0,

K∑
i=1

√
ai

1√
ai

= K (A-14.4.20)

an elementary application of the Cauchy-Schwarz inequality then yields
(

K∑
i=1

ai

)(
K∑

i=1

1
ai

)
� K2 (A-14.4.21)

or (
K∑

i=1

1
ai

)
� K2(

K∑
i=1

ai

) . (A-14.4.22)

Applying this elementary inequality to (A-14.4.19) gives

I(κ;X1, . . . ,Xκ) � −8
(
n3
)2 1

n∑
i,j,l=1

√
α2

i + α2
j + α2

l

. (A-14.4.23)



796 14 Quantum Physics and the Stability of Matter

On the other hand,
n∑

i,j,l=1

√
α2

i + α2
j + α2

l �
n∑

i,j,l=1

(αi + αj + αl) = 3n2 (A-14.4.24)

where we have used (A-14.4.10), which from (A-14.4.23) leads to

I(κ;X1, . . . ,Xκ) � −8
3
n4 = −κ4/3

6
(A-14.4.25)

since κ = 8n3. The improvement of the bound in (A-14.4.25) is not ruled out.
From (A-14.4.7), the inequality in (14.4.48) then follows.

Problems

14.1. Establish the equality in (14.2.6).
14.2. Verify the details leading from (14.4.11) to (14.4.17).
14.3. Derive the expressions for the average kinetic energies given in

(14.4.31)–(14.4.33).
14.4. Show that the expectation value 〈Ψ |HU|Ψ〉 is as given in (14.4.34)–

(14.4.36).
14.5. Repeat the derivation of the upper bound for EB

N given after (14.4.19)
by considering the following construction: Rewrite (14.4.19) (if ε1 �= 0)

(
N

8

)113

= n1 + ε1, 0 < ε1 < 1

where the natural number n1 � 1. Let k1 = 8n3
1, and continuing in

this manner, we have (if ε2 �= 0)
(

(N − k1)
8

)113

= n2 + ε2, 0 < ε2 < 1

and so on, by defining in turn k2 = 8n3
2, . . . , kb = 8n3

b , you will reach
a natural number b such that

(
[N − (k1 + . . . + kb)]

8

)113

= εb+1, 0 < εb+1 < 1.

For example, for N = 58410, b = 5. For b > 1, place k1, . . . , kb, pairs
of negatively and positively charged particles in b non-overlapping
boxes, and the remaining 2 [N − (k1 + . . . + kb)] particles in other
[N − (k1 + . . . + kb)] non-overlapping boxes with each containing one
positive and one negative charge. By such a construction, can
you increase the numerical factor multiplying −N5/3

(
me4/2�

2
)

in
(14.4.53)?



Problems 797

14.6. Let ρ(x) be a charge density vanishing outside, a region R correspond-
ing to a total charge Q, i.e.,

∫
R

d3x ρ(x) = Q

such that |x| � R for x in R for some R. Show that

I[ρ] ≡
∫
R

d3x
∫
R

d3x′ ρ(x)
1

|x − x′|ρ(x′) � Q2

R
.

14.7. Repeat the derivation of the upper bound for EB
N in §14.4 in ar-

bitrary dimensions ν [with 1/r potentials] to show that EB
N �

−
(

me4

2�2

)
cB(ν)N (2+ν)/ν and obtain an explicit expression for such

a positive constant cB(ν) depending on ν. [Ref: Muthaporn and
Manoukian (2004a).]

14.8. Follow the proof given in Appendix B to §13.1, which shows that the
TF density satisfying (13.1.7) actually gives the smallest value for the
functional (B-13.1.1), to prove simply that ρ0(x; k) in (A-14.1.2) pro-
vides the smallest value for the functional (A-14.1.1), i.e., (A-14.1.4)
holds true.

14.9. Derive the equality in (A-14.1.22), and the corresponding expression
for

∂

∂λ
F [ρ2;λZ1, . . . , λZl;R1, . . . ,Rl]

to finally obtain the result given in (A-14.1.23).
14.10. Derive the counterpart of the expression for the probability in (14.3.15)

and the counterpart of the lower bound in (14.3.22) for “bosonic mat-
ter”. Do these bounds provide useful information on the nature of such
“matter” as they do for matter with the exclusion principle? Explain.
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Quantum Scattering

Significant progress has been made over the years in physics through
scattering experiments. The discovery of the atomic nucleus, the visible tracks
of particles observed in cloud chambers, the determination of the structure
of matter, the emergence of the endless variety of particles by accelerators
and the extraction of information on their interactions, are just a few of the
examples concerned with the analyses of scattering processes.

In the present chapter, dealing with the theoretical development of quan-
tum scattering, we approach the basic problem of scattering as a time evo-
lution process involving, in general, three stages: the preparatory stage oc-
curring in the remote past to the interacting stage, followed finally by the
detection stage in the distant future. As a time evolution process, asymptotic
boundary conditions arise, dictated by the physical situation under study,
linking the three stages. These aspects are investigated in §15.1, §15.2. Special
emphasis is put in the latter section on the connection between the momen-
tum a particle has acquired in a collision and its emergence spatially within a
cone on its way to a detector. Differential cross sections are studied in §15.3.
In terms of number of particles, we here recall the definition of a differential
cross section as the number of particles scattered per unit time into a solid
angle, about the scattering angle, divided by the flux, with the latter being
the incident number of particles per unit area per unit time. In a scattering
process, the detection of a scattered particle is carried out away from the for-
ward direction to avoid or minimize interference effects between incident and
scattering components of the interacting state. The analysis of the scattering
process in the forward direction leads to the so-called optical theorem which
together its physical interpretation is the subject matter of §15.4. In this sec-
tion, a phase shift analysis is also carried out dealing with the expansion of
scattering amplitudes in terms of angular momentum states. §15.5 provides
a detailed treatment of Coulomb scattering which requires special attention
due to the long range nature of the underlying interaction. In §15.6, §15.7, we
will see how the elegant functional formulation in Chapter 11 may be used
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in scattering theory, and an application is then carried out to scattering at
small deflection angles at high energies. §15.1 through §15.7 deal with elastic
scattering theory where the initial and final particles in the process are the
same and their is no change in the internal energies of the particles involved
so that the total kinetic energy of the system remains conserved. Inelastic
processes and the underlying theory are treated in §15.8 which deal with
cluster of particles as introduced in §2.5. Here we also elaborate on some
subtleties of systems involving three particles. In the final section (§15.9),
we consider the energy loss of a charged particle moving through a medium
(hydrogen). In the same section, this is followed by a treatment of neutron in-
terferometry dealing with the splitting and recombination of a neutron beam
with an investigation of the interference effect, resulting upon recombination,
in the Earth gravitational field.

15.1 Interacting States and Asymptotic Boundary
Conditions

In a scattering process, one would initially prepare a particle in some
state, say, |Φin(t)〉, let it eventually interact with another system, assumed
widely separated in the beginning of the experiment, and then finally study
the outcome of the process. In the preparatory stage, in the remote past,
before a particle participates in the scattering process, its interaction with
the other system, if it is of short range,1 is negligible and the state |Φin(t)〉,
for t → −∞, develops in time via the free Hamiltonian H0 = −�

2∇2/2m,
where m is the mass of the particle. In time, as the particle approaches the
other system in question and its interaction with the latter becomes non-
negligible, the particle would be described by a state |ψ−(t)〉, satisfying the
time-dependent Schrödinger equation

(
i�

∂

∂t
− H

)
|ψ− (t)〉 = 0 (15.1.1)

where H �= H0 is the total Hamiltonian, and |Φin(t)〉 would provide the
asymptotic boundary condition for |ψ−(t)〉 in the limit t → −∞.

Similarly, a sufficiently long time after scattering, as a particle emerges
from such a process, and if its interaction, assumed of short range, with
the remaining system becomes negligible, one, in a statistical sense, may
investigate its localizability in a detection region and enquire as well of the
momentum it has acquired that has led it to such a region. In this detection
stage, one may then assign a state, say, |Φout(t)〉 for such a statistical study
1 By an interaction of short range, it is meant an interaction which vanishes faster

than the Coulomb potential at large distances of separations of the particle in
question from the rest of the system, such as (distance)−2 for distance → ∞, or
faster.
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which, for t → +∞, develops in time via a free Hamiltonian. Before the
interaction becomes negligible, however, the particle would be described by
some state |ψ+(t)〉, satisfying the time-dependent Schrödinger equation

(
i�

∂

∂t
− H

)
|ψ+ (t)〉 = 0 (15.1.2)

with |Φout(t)〉 taken as the asymptotic time limit t → +∞ of |ψ+(t)〉.
The purpose of this section is to study the nature of the fully inter-

acting states |ψ±(t)〉 and their asymptotic boundary conditions: |ψ±(t)〉 →∣∣Φout/in(t)
〉

for t → ±∞. The scattering of a particle off a Coulomb potential,
as of a long range interaction, will be treated in detail in §15.5.

Consider the retarted/advanced free Green functions G0
±(x, x′), intro-

duced in §9.1 (see (9.1.12), (9.1.35)), where we have used the convenient
notation2 (t,x) = x, given by

G0
± (x, x′) = ± i�

∫
(dp)

(2π�)4
ei(x−x′)p/�(

p0 − p2

2m ± iε
) , ε → +0 (15.1.3)

(x − x′) p = (x − x′) · p − (t − t′) p0 (15.1.4)

(dp) = dp0d3p (15.1.5)

with boundary conditions (see (9.1.9), (9.1.33))

G0
± (x, x′) = 0 for t − t′ ≶ 0 (15.1.6)

satisfying the differential equations
(

i�
∂

∂t
− H0

)
G0

± (x, x′) = ± i� δ4 (x − x′) (15.1.7)

where H0 = −�
2∇2/2m.

We introduce the integral equation

A± (x, x′) = δ4 (x − x′) ± i
�

∫
(dx′′) G0

∓ (x, x′′) V (x′′) A± (x′′, x′) (15.1.8)

where V (x′′) is a given potential which may be formally considered to be
time-dependent, in general, and

(dx′′) = dt′′d3x′′. (15.1.9)

It is then easily verified from (15.1.7), (15.1.8), that
2 Needless to say, this is just a convenient notation having nothing to do with a

relativistic notation.
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ψ± (x) =
∫

(dx′) A± (x, x′) Φout/in (x′) , (15.1.10)

upon applying the operator [i� ∂/∂t−H0] to the latter, that they satisfy the
interacting Schrödinger equations (15.1.1), (15.1.2), where H = H0 + V , and
use has been made of the facts that [i� ∂/∂t − H0]Φout/in(x) = 0. That is,
the compact expressions in (15.1.10) provide solutions of the fully interacting
systems. We will eventually consider only time-independent potentials.

From (15.1.8), (15.1.10), we note that ψ±(x) may be rewritten as3

ψ± (x) = Φout/in (x) ± i
�

∫
(dx′) (dx′′) G0

∓ (x, x′′) V (x′′)

× A± (x′′, x′) Φout/in (x′) (15.1.11)

We will see that the solutions ψ± (x) formally satisfy the asymptotic bound-
ary conditions4 ψ± (x) → Φout/in (x) for t → ±∞.

To the above end, we introduce the Fourier transforms

V (x) =
∫

(dp)
(2π�)4

eipx/� V (p) (15.1.12)

p =
(
p0,p

)
,

A± (x′′, x′) =
∫

(dp′′) (dp′)
(2π�)4

A± (p′′, p′) eip′′x′′/� e−ip′x′/� (15.1.13)

Φout/in (x′) =
∫

(dp)
(2π�)4

[
2π� δ

(
p0 − p2/2m

)]
eipx′/� Φ̃out/in (p) (15.1.14)

and we may rewrite the second term on the right-hand side of (15.1.11) as

∫
(dp)

(2π�)4
e−i[p0−E(p)]t/�

[p0 − E (p) ∓ iε]
ei[p·x−E(p)t]/� F± (p) (15.1.15)

where

F± (p) =
∫

(dp′′) (dp′)
(2π�)4

V (p − p′′) A± (p′′, p′) φout/in (p′) 2π� δ
(
p′0 − E (p′)

)
(15.1.16)

E (p) =
p2

2m
. (15.1.17)

In reference to the p0-integral in (15.1.15) we note that

3 Equations such as (15.1.11), (15.1.21), (15.1.33) are usually referred to as Lipp-
mann-Schwinger equations.

4 The nature of the t → ±∞ limits will be further discussed below.
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lim
t→+∞

e−i[p0−E(p)]t/�

[p0 − E (p) ∓ iε]
=
{

0
−2πi δ

(
p0 − E (p)

) (15.1.18)

as obtained by closing the contour of integration, in the complex p0-plane,
from below with Im

(
p0
)

< 0 on the infinite semi-circle part of the contour.
For the −iε term the contour does not enclose the pole p0 = E (p)+iε, which
lies in the upper half p0-plane, thus giving the value 0. For the +iε term, the
pole p0 = E (p) − iε is in the lower half p0-plane giving −2πiδ

(
p0 − E (p)

)
by the residue theorem with the minus sign arising since the direction of the
contour is in the clockwise direction. Similarly, by closing the p0-contour from
above, we have

lim
t→−∞

e−i[p0−E(p)]t/�

[p0 − E (p) ∓ iε]
=
{

+2πi δ
(
p0 − E (p)

)
0.

(15.1.19)

That is, in particular,

lim
t→±∞

e−i[p0−E(p)]t/�

[p0 − E (p) ∓ iε]
= 0 (15.1.20)

which from (15.1.15), (15.1.11) formally establish the asymptotic boundary
conditions ψ± (x) → Φout/in (x) for t → ±∞.

The following representation for ψ± (x) is easily obtained from (15.1.11),
(15.1.15)

ψ± (x) = Φout/in (x) +
∫

(dp)
(2π�)4

e−i[p0−E(p)]t/�

[p0 − E (p) ∓ iε]
ei[x·p−E(p)t]/�F± (p) .

(15.1.21)
Also we note that by using the integral representation

δ4 (x − x′) =
∫

(dp) (dp′)
(2π�)4

δ4 (p − p′) eipx/�e−ip′x′/� (15.1.22)

one obtains from (15.1.8), (15.1.13) the following integral equations for
A± (p, p′):

A± (p, p′) = δ4 (p − p′) +
1

[p0 − E (p) ∓ iε]

∫
(dp′′)
(2π�)4

V (p − p′′) A± (p′′, p′) .

(15.1.23)
For a time-independent potential V (x),

V (p) =
∫

(dx) e−ip x/� V (x)

= (2π�) δ
(
p0
)
V (p) (15.1.24)
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and we may write

A± (p, p′) = δ
(
p0 − p′0

)
A±

(
p,p′; p0

)
. (15.1.25)

Upon substitution of (15.1.24), (15.1.25) in (15.1.23), and integrating over
p′0, the equations in (15.1.23) reduce to

A±
(
p,p′; p0

)
= δ3 (p − p′) +

1
[p0 − E (p) ∓ iε]

×
∫

d3p′′

(2π�)3
V (p − p′′) A±

(
p′′,p′; p0

)
.

(15.1.26)

As we will see in §15.3, the following object defined by

f (p,p′) = −4π2
� m

([
p0 − E (p)

]
A−

(
p,p′; p0

)) ∣∣∣
p0=E(p)=E(p′)

(15.1.27)

turns out to be important in scattering theory, and for reasons discussed
there is referred to as the scattering amplitude. The restriction with a bar,
on the right-hand side of (15.1.27) indicating to set p0 = E (p) = E (p′), is
referred to as the energy shell restriction.

For a time-independent potential, ψ± (x) in (15.1.21) becomes

ψ± (x) = Φout/in (x) +
∫

d3p

(2π�)3
d3p′

(2π�)3
e−i[E(p′)−E(p)]t/�

[E (p′) − E (p) ∓ iε]

× ei[x·p−E(p)t]/� F± (p,p′;E (p′)) Φ̃out/in (p′) (15.1.28)

where

F± (p,p′;E (p′)) =
∫

d3p′′ V (p − p′′) A± (p′′,p′;E (p′)) . (15.1.29)

A± (p, p′) are related to the full Green functions G± (x, x′) in the theory
which satisfy the equations

[
i�

∂

∂t
− H

]
G± (x, x′) = ±i � δ4 (x − x′) . (15.1.30)

It is readily verified, that the solutions of (15.1.30) are given by

G± (x, x′) = G0
± (x, x′) ∓ i

�

∫
(dx′′) G0

± (x, x′′) V (x′′)G± (x′′, x′) (15.1.31)

by the application, in the process, of the operator [i� ∂/∂t − H0] to the latter
and using (15.1.7).
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Upon carrying out the Fourier transforms

G± (x, x′) = ±i�
∫

(dp) (dp′)
(2π�)4

eipx/� e−ip′x′/�G± (p, p′) (15.1.32)

we note from (15.1.31), that the G± (p, p′) satisfy the integral equations

G± (p, p′) =
δ4 (p − p′)

[p′0 − E (p′) ± iε]

+
1

[p0 − E (p) ± iε]

∫
(dp′′)
(2π�)4

V

(
p − p′′

�

)
G± (p′′, p′) . (15.1.33)

By comparing (15.1.33) with (15.1.23), we may infer that

A± (p, p′) = G∓ (p, p′)
[
p′0 − E (p′)

]
. (15.1.34)

For a time-independent potential,

G∓ (p, p′) = G∓
(
p,p′; p0

)
δ
(
p0 − p′0

)
(15.1.35)

and we have

A±
(
p,p′; p0

)
= G∓

(
p,p′; p0

) [
p0 − E (p′)

]
(15.1.36)

which will have an important application in determining transition ampli-
tudes in scattering processes in §15.3.

We close this section, by elaborating rigorously on the nature of the limits
|ψ± (t)〉 →

∣∣φout/in (t)
〉

for t → ±∞, under some sufficiency conditions. To
this end, consider a time-independent square-integrable potential V (x). We
treat the time t → +∞ limit only. The t → −∞ limit may be treated in the
same manner.

Suppose that we are given a normalized state |Φout〉, which in the x-
description satisfies the condition∫

d3x |Φout (x)| � C < ∞, (15.1.37)

and develops in time as |Φout (t)〉 = exp (−itH0/�) |Φout〉.
The solution of (15.1.2) is given by

|ψ+ (t)〉 = exp (−itH/�) |ψ+〉 (15.1.38)

and the asymptotic boundary condition |ψ+ (t)〉 → |Φout (t)〉 may be defined5

by
5 Such a limit is referred to a strong one which in turn implies the weak limit
〈χ |(ψ+ (t) − Φout (t))〉 → 0, for t → +∞, as follows by an elementary appli-
cation of the Cauchy-Schwarz inequality in conjunction with (15.1.39) for any
normalizable state |χ〉.
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lim
t→+∞

‖ψ+ (t) − Φout (t) ‖ = 0. (15.1.39)

The unitarity of the operator exp (−itH/�) implies from (15.1.39) that

lim
t→+∞

‖ψ+ − Ω(t) Φout‖ = 0 (15.1.40)

where
Ω(t) = exp (itH/�) exp (−itH0/�) . (15.1.41)

That the limit t → +∞ in (15.1.40) exists follows by noting that

(Ω (t1) − Ω(t2)) |Φout〉 =
∫ t1

t2

dτ

(
d
dτ

Ω(τ)
)
|Φout〉

=
i
�

∫ t1

t2

dτ eiτH/� V e−iτH0/� |Φout〉 (15.1.42)

leads to

‖ (Ω (t1) − Ω(t2)) φout‖ � 1
�

∣∣∣∣
∫ t1

t2

dτ‖V Φout (τ) ‖
∣∣∣∣ . (15.1.43)

On the other hand from (9.1.4), (9.1.8),

Φout (x, τ) =
( m

2πi�τ

)3/2
∫

d3x′ exp

(
im |x − x′|2

2�τ

)
Φout (x′) (15.1.44)

which from (15.1.37) gives

|Φout (x, τ)| �
( m

2π�

)3/2

C
/
|τ |3/2 (15.1.45)

and
‖V Φout (τ) ‖ �

( m

2π�

)3/2

C‖V ‖
/
|τ |3/2

. (15.1.46)

From this inequality, we may conclude that the left-hand of (15.1.43)
vanishes for |t1|, |t2| → ∞. That is, {Ω(t) |Φout〉} forms a Cauchy sequence6

whose limit (in the strong sense), denoted by |ψ+〉, exists for t → +∞, thus
establishing (15.1.39)/(15.1.40).7

A similar analysis may be carried out for |ψ−(t)〉 corresponding to a state
|Φin(t)〉 in the limit t → −∞.

The operators8 Ω±, Ω†
± defined as the (strong) limits of Ω(t), Ω† (t):

6 See property (iv) in the definition of a Hilbert space in §1.7.
7 The condition in (15.1.37) may be relaxed but we will not go into these details

here.
8 Some authors interchange the ± signs in Ω± with ∓ corresponding to the limits

t → ±∞ in their notation.
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Ω± = lim
t→±∞

eitH/� e−itH0/� (15.1.47)

Ω†
± = lim

t→±∞
eitH0/� e−itH/� (15.1.48)

are referred to as Møller wave operators. In terms of Ω±, we may write

|ψ±〉 = Ω±
∣∣Φout/in

〉
. (15.1.49)

Configuration and Momentum Spaces in Scattering

Consider the scattering of a particle off a given potential of short range.9
In the remote past, before any interaction occurs, the particle is prepared in
some state |Φin (t)〉, for t → −∞, and develops in time via the free Hamil-
tonian H0. Eventually in time, the particle would feel the presence of the
potential and would be described by an interacting state |ψ− (t)〉, satisfying
the Schrödinger equation in (15.1.1), consistent with the boundary condition
(§15.1): |ψ− (t)〉 → |Φin (t)〉 for t → −∞.

Typically, one would then enquire about the probability of finding the
emerging particle from the scattering process beyond an arbitrary large radial
distance within a cone,10 with apex at the scattering center (the origin of the
coordinate system), on its way to the detection region (see Figure 15.1). This
probability is given by

Prob[x ∈ CD] =
∫

CD

d3x |ψ− (x, t)|2 (15.2.1)

for t positive and large, ψ− (x, t) ≡ ψ− (x) is given in (15.1.11), and

CD = C0 ∩ {|x| > D} (15.2.2)

where D will be taken to be large, and for a given unit vector N,

C0 = {x : |x| � x · N � α |x| , for some α ∈ (0 , 1]} . (15.2.3)

In the preparatory stage, a wavepacket is prepared which propagates with
some average momentum, say, p′ whose direction may be taken to define the

9 The scattering off a Coulomb potential is given in §15.5, where it will be seen, in
particular, that the time development of the preparatory state does not develop
via the free Hamiltonian H0 due to the slow decrease of the Coulomb potential
at large distances.

10 Such a point is emphasized to a large extent in: Dollard (1969); Amrein et al.
(1970); Manoukian and Prugovečki (1971); Prugovečki (1971); Amrein (1981),
and others.

15.2 Particle Detection and Connection between
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O

N

cone

D

To the detector

Fig. 15.1. After a particle emerges from a scattering process, a non vanishing
probability of finding the particle within a cone, beyond an arbitrary large
radial distance D, implies that the momentum it has acquired is directed
within the same cone in conformity with one’s perception of scattering.

z-axis of the coordinate system chosen. The packet will be assumed to have
a given lateral width, i.e., in a direction perpendicular to p′, denoted by 2a.

We first set the detector in (15.2.1), at a large distance |x| =
√

x2
|| + z2 >

D from the scattering center such that
∣∣x||

∣∣ � a, so that no appreciable
interference occurs between the incident part Φin (x) and the scattered part,
represented by the integral on the right-hand side of the equation for ψ− (x)
in (15.1.11). We will consider the scattering process for

∣∣x||
∣∣ � a, i.e., in the

forward direction, later in §15.4.
So what we need is a wavepacket which at time t > 0, corresponding to

the detection time, of the form11

Φin (x, t) =
∫

d2x′
|| G0

+

(
x||,x′

||; t
)

χ
(
x′
||

)
ξ (z, t) (15.2.4)

11 A particular choice of a wavepacket is not necessary, but the form given in (15.2.4)
clarifies many aspects of the theory.
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where χ
(
x′
||

)
vanishes for

∣∣∣x′
||

∣∣∣ > a. For a uniform lateral distribution this
may be taken simply to be a step function11,12

χ
(
x′
||

)
=

1√
πa2




1
∣∣∣x′

||

∣∣∣ � a

0
∣∣∣x′

||

∣∣∣ > a.

(15.2.5)

On the other hand, ξ (z) is so chosen that its Fourier transform ξ̃ (q) ≡
η̃ (q − p′) has a pronounced peak at q = p′ and the only appreciable value of
|η̃ (q − p′)|2 occurs in the neighborhood of this point. With E (q) = q2/2m,

ξ (z, t) =
∫ ∞

−∞

dq

2π�
ei[qz−E(q)t]/� η̃ (q − p′) . (15.2.6)

By a change of the integration variable from q to Q,

Q = q − p′ (15.2.7)

and
q2 � p′2 + 2p′Q (15.2.8)

since only a small Q2 is important, we may rewrite

ξ (z, t) = ei[p′z−E(p′)t]/�

∫ ∞

−∞

dQ

2π�
eiQ

(
z− p′

m t
)

/�
η̃ (Q) (15.2.9)

or
ξ(z, t) = ei[p′z−E(p′)t]/� η

(
z − p′

m
t

)
. (15.2.10)

The integral multiplying ξ (z, t) in (15.2.4) will be denoted by χ
(
x||, t

)

χ
(
x||, t

)
=

1√
πa2

∫
∣∣∣x′

||

∣∣∣�a

d2x′
|| G0

+

(
x||,x′

||; t
)

(15.2.11)

which from (9.1.38) is given by

χ
(
x||, t

)
=

m

2πi�t

1√
πa2

∫
∣∣∣x′

||

∣∣∣�a

d2x′
|| exp

im
2�t

(
x|| − x′

||

)2

. (15.2.12)

This integral has many interesting properties.13 It may be expressed as
12 More precisely, χ

(
x′
||
)

may be taken to vanish smoothly at |x′′| = a, in a con-
tinuous manner, starting at 1/

√
πa2 for |x′′| = 0, to avoid technical problems

arising near the boundaries of the wavepacket. This, however, complicates the
analysis to some extent.

13 For the relevant details of χ
(
x||, t

)
in (15.2.12), (15.2.13) see the appendix to

this section.
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χ
(
x||, t

)
=

1
2πi

u√
πa2

eiv2/2uF (u, v) (15.2.13)

with

u =
ma2

� t
, v =

∣∣x||
∣∣

a
u (15.2.14)

F (u, v) = 2π
∫ 1

0

ρ dρ J0 (ρv) ei(u/2)ρ2
(15.2.15)

where J0 (ρv) is the zeroth order Bessel function, and we have the normal-
ization condition

1
2π2

∫ ∞

0

v dv |F (u, v)|2 = 1 (15.2.16)

that is, ‖χ (·, t) ‖ = 1.
At t = 0, χ

(
x||, 0

)
vanishes for

∣∣x||
∣∣ > a. On the other hand for t �= 0,

and
∣∣x||

∣∣ � a, corresponding to the position of the detector set, mentioned
earlier,

χ
(
x||, t

)
= O

((
a/

∣∣x||
∣∣)3/2

)
. (15.2.17)

In the sequel, we consider the limits14

|x| � a � �/p′ (15.2.18)

and
a2p′/� |x| � 2π. (15.2.19)

In (A-15.2.11), we will see by noting that m |x| /t ∼ p′, and this implies
from (15.2.19), that

∫
|x|||�a

d2x||
∣∣χ (x||, t

)∣∣2 � 1 (15.2.20)

and the lateral width of the wavepacket does not spread significantly.
To compute the probability in (15.2.1), we use the representation

G0
+ (x, x′′) =

m

2πi�
1

|x − x′′|

∫ ∞

−∞

dp0

2π�
e−ip0(t−t′′)/�

× exp
(

i
�

√
2mp0 |x − x′′|

)
(15.2.21)

in the integral equation for ψ− (x) in (15.1.11). For |x| > D, D large
14 For example, for a � 10−3 meters, |x| ∼ 1 meter, a2p′/� |x| ∼

p′1028/kg.meter.s−1, where h/p′ denotes the wavelength of the packet. For
�/p′ ∼ 10−10 meters, a2p′/� |x| ∼ 104.
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G0
+ (x, x′′) → m

2πi� |x|

∫ ∞

−∞

dp0

2π�
e−ip0(t−t′′)/� exp

(
i
�

√
2mp0 |x|

)

× exp
(
− i

�

√
2mp0 n · x′′

)
(15.2.22)

where
n = x/ |x| . (15.2.23)

For
∣∣x||

∣∣ � a, |x| > D, D large, we see from (15.2.17), (15.2.18), (15.2.22),
that Φin (x, t) may be neglected on the right-hand side of (15.1.11). That is,
no interference15 between the incident and scattered components of ψ− (x)
needs to be considered.

Using the Fourier transforms of V (x), A− (x′′, x′), in (15.1.12)/(15.1.24),
(15.1.13)/(15.1.25), respectively, we obtain from (15.1.11), (15.2.22),
(15.2.17), the asymptotic equality

ψ− (x, t) = − m

2π�2 |x|

∫
d3q

(2π�)3
ei[|q||x|−E(q)t]/�

×F− (|q|n,q;E (q)) Φ̃in (q) (15.2.24)

for
∣∣x||

∣∣3/2 � a1/2 |x|, in particular, and hence for
∣∣x||

∣∣ � a. Here

Φ̃in (q) =
∫

d3x e−iq·x/� Φin (x, 0) (15.2.25)

or
Φ̃in (q) =

1√
πa2

∫
∣∣∣x′

||

∣∣∣�a

d2x′
|| e−iq||·x′

||/� η̃ (q⊥ − p′) . (15.2.26)

Upon writing ψ− (x, t) ≡ ψ− (|x| ,n; t), we already see from (15.2.24), that
a particle initially prepared with momentum q, with distribution provided by∣∣∣Φ̃in (q)

∣∣∣2, the particle emerges from the scattering process with momentum
|q|n in the direction n. In particular, for a particle emerging, in configuration
space, within a cone C0 in (15.2.3), its momentum would be directed within
the same cone. This is in conformity with one’s perception of a scattering
process.

In (15.2.24), (15.2.26) we make a change of the variables of integrations
q||, x′

|| to Q, ρ′

ρ′ = a x′
||

√
p′

� |x| , Q = q||

√
� |x|
p′

1
a

(15.2.27)

15 We will look into the forward direction, that is in the effective direction of prop-
agation of the incident packet, in §15.4.
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and note the invariance of the product measures

d2q|| d2x′
|| = d2Q d2ρ′. (15.2.28)

From the limit in (15.2.19), the integral over ρ′ corresponding to the x′′-
integral in (15.2.26) becomes effectively replaced by (2π�)2 δ3 (Q). On the
other hand since η̃ (q⊥ − p′) has a pronounced peak at q⊥ = p′ and is appre-
ciably non-vanishing in the neighborhood of this point, we can carry out the
expansion q2

⊥ � p′2 +2p′ (q⊥ − p′) as in (15.2.8) for exp i [q⊥ |x| − E (q⊥) t] /�

in (15.2.24), and we may effectively evaluate F− (q⊥n,q⊥;E (q⊥)) at q⊥ =
(0, p′).

Accordingly, we obtain asymptotically for ψ− (x, t) in (15.2.24),

ψ− (x, t) = − m

2π�2 |x| F− (p′n,p′;E (p′)) e
i
� [|p′||x|−E(p′)t]

η
(
|x| − p′

m t
)

√
πa2

(15.2.29)
where we have used the fact that∫ ∞

−∞

dq′

2π�
exp

(
i
q′

�

(
|x| − p′

m
t

))
η̃ (q′) = η

(
|x| − p′

m
t

)
(15.2.30)

and q′ = q⊥ − p′.
For D large, we then have from (15.2.1), (15.2.30),∫

CD

d3x |ψ− (x, t)|2 =
∫

C0(n)

dΩ
( m

2π�2

)2

|F− (p′n,p′;E (p′))|2

×
∫ ∞

D

d |x|

∣∣∣η (|x| − p′

m t
)∣∣∣2

πa2
(15.2.31)

where

C0 (n) = {n : 1 � n · N � α, for some α ∈ (0 , 1]} (15.2.32)

and the unit vector N, and α are chosen such that
∣∣x||

∣∣ � a.
In the next section we will use (15.2.31) to obtain an expression for the

differential cross section of the process.

Appendix to §15.2: Some Properties of F (u, v)

The function16 F (u, v) defined in (15.2.15), of the variables u, and v
in (15.2.14), may be expressed in terms of so-called Lommel functions. For
u/v < 1,
16 For more related details, see: Manoukian (1989); Wolf (1951); Born and Wolf

(1975).
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F (u, v) =
2π

u
eiu/2 [U1 (u, v) − i U2 (u, v)] (A-15.2.1)

and for u/v > 1,

F (u, v) =
2π

u

[
ie−iv2/2u − ieiu/2 V0 (u, v) − eiu/2 V1 (u, v)

]
(A-15.2.2)

where Un (u, v), Vn (u, v) are Lommel functions defined by

Un (u, v) =
∞∑

j=0

(−1)j
(u

v

)2j+n

J2j+n (v) (A-15.2.3)

Vn (u, v) =
∞∑

j=0

(−1)j
( v

u

)2j+n

J2j+n+1 (v) (A-15.2.4)

and Jm (v) is a Bessel function of the first kind of order m.
In particular

U1 (u, u) =
sin u

2
(A-15.2.5)

U2 (u, u) =
J0 (u) − cos u

2
(A-15.2.6)

and
∫ ∞

u

v dv
[
U2

1 (u, v) + U2
2 (u, v)

]
=

u2

2
[J0 (u) cos u + J1 (u) sinu] (A-15.2.7)

F (u, v) satisfies the normalization condition in (15.2.16).
For u/v < 1,

∣∣∣∣F (u, v) − 2π

v
eiu/2J1 (v)

∣∣∣∣ =
1
v
O
(u

v

)
(A-15.2.8)

giving rise to the behavior in (15.2.17).
For u/v > 1,
∣∣∣∣F (u, v) − 2πi

u
e−iv2/2u +

2πi
u

eiu/2J0 (v)
∣∣∣∣ =

1
u

O
( v

u

)
. (A-15.2.9)

Finally we note from (A-15.2.7), (15.2.13) that
∫
|x|||�a

d2x||
∣∣χ (x||, t

)∣∣2 = 1 − (J0 (u) cos u + J1 (u) sinu) (A-15.2.10)

and for u � 1,
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∫
|x|||�a

d2x||
∣∣χ (x||, t

)∣∣2 � 1. (A-15.2.11)

For u = 50, the right-hand side of (A-15.2.10) attains the value 0.92. The
condition (15.2.19) implies that u � m|x|

t
2π
p′ and for p′ ∼ m |x| /t, this leads

to the condition u � 2π. That is, under this limit the lateral width of the
wavepacket does not spread significantly.

15.3 Differential Cross Sections

15.3.1 Expression for the Differential Cross Section

In reference to (15.2.4)–(15.2.6),

∫ ∞

D

d |x|
∣∣∣η (|x| − p′

m t
)∣∣∣2

πa2
�
∫
|x|||�a

d2x||

∫ ∞

D

dz

∣∣Φin

(
x||, z, t

)∣∣2
πa2

(15.3.1)

denotes the probability, per unit area, that the incident particle flows through
the plane z = D at time t, for both large, in the absence of a potential.17
On the other hand, the left-hand side of (15.2.31) represents the probability
that an incident particle is scattered within a cone, and is found beyond a
radial distance D at time t. Accordingly for a sufficiently narrow cone, i.e., for
which α in (15.2.32) is close to one, n → N, we obtain, by dividing (15.2.31)
by the probability per unit area in (15.3.1), the expression for the differential
cross section

dσ

dΩ
=
( m

2π�2

)2

|F− (p′n,p′;E (p′))|2 (15.3.2)

where the conservation of energy is evident.
One may define the scattering amplitude

f (p,p′) = − m

2π�2

∫
d3p′′ V (p − p′′) A− (p′′,p′;E (p′)) (15.3.3)

with
p = |p′|n (15.3.4)

to rewrite simply
dσ

dΩ
= |f (p,p′)|2 (15.3.5)

where we have used the definition of F− (p,p′;E (p′)) in (15.1.29). The reason
for choosing the multiplicative (−1) factor in (15.3.3) will be seen in the next
section when studying the so-called optical theorem.
17 In the presence of a potential, the probability of observing the particle in the

forward direction is altered due to the interference of the incident wavepacket
and the scattered amplitude in that direction as will be investigated in the next
section.
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From (15.1.27), (15.1.36), one may also write the scattering amplitude as

f (p,p′) = −4π2
� m

( [
p0 − E (p)

]

× G+

(
p,p′; p0

) [
p0 − E (p′)

] )∣∣∣
p0=E(p)=E(p′)

(15.3.6)

involving the full Green function G+

(
p,p′; p0

)
(see (15.1.33), (15.1.35)) with

a restriction set in (15.3.6) on the energy shell as indicated.
The cross section is defined by

σ =
∫

dΩ |f (p,p′)|2 (15.3.7)

and a further important relation between σ and the scattering amplitude will
be derived in the next section referred to as the optical theorem.

For a systematic study of the scattering amplitude f (p,p′) we derive an
important integral equation which follows from (15.1.26). For arbitrary p0,

A−
(
q,p′; p0

)
= δ3 (q − p′) +

1
[p0 − E (q) + iε]

×
∫

d3q′

(2π�)3
V (q − q′) A−

(
q′,p′; p0

)
. (15.3.8)

Upon multiplying this equation by V (p − q), integrating over q, and setting,
in general18

∫
d3q′ V (q − q′) A−

(
q′,p′; p0

)
= T

(
q,p′; p0

)
(15.3.9)

off the energy shell, gives

T
(
p,p′; p0

)
= V (p − p′) +

∫
d3q

(2π�)3
V (p − q)

[p0 − E (q) + iε]
T
(
q,p′; p0

)
(15.3.10)

referred to as the T -matrix. In particular, from (15.1.26), (15.1.27) and
(15.3.10), the scattering amplitude may be written as

f (p,p′) = − m

2π�2
T
(
p,p′; p0

) ∣∣∣
p0=E(p)=E(p′)

. (15.3.11)

To first order in V , i.e., for a weak potential,

T
(
p,p′; p0

)
� V (p − p′) (15.3.12)

18 Note that for p0 = E (p′), T (q,p′; E (p′)) coincides with F− (q,p′; E (p′)) —
see (15.1.29).
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referred to as the first Born approximation, the differential cross section takes
the simple form

dσ

dΩ
� m2

4π2�4
|V (p − p′)|2 (15.3.13)

with p = |p′|n. For some applications of the Born approximation see Prob-
lems 15.1, 15.2.

15.3.2 Sufficiency Conditions for the Validity of the Born
Expansion

We carry out a rigorous study of sufficiency conditions for the validity of
the Born approximation in (15.3.12) and to arbitrary orders in the potential
energy V (x) starting from the integral equation for the T -matrix given in
(15.3.10). To this end, with m replaced by the reduced mass µ of a two-
particle system and for V (x) = V (r), r = |x| as a function of the distance
between the two particles, suppose that the following sufficiency conditions
are satisfied:∫ ∞

0

r2dr |V (r)| < ∞ and
∫ ∞

0

r dr |V (r)| < ∞. (15.3.14)

The first condition refers to the absolute integrability of V (x).
We set p0 = E (p′) in the integral equation (15.3.10) and denote

T (p,p′;E (p′)) ≡ T (p,p′) . (15.3.15)

To first order in the potential,

T (1) (p,p′) =
∫

d3x e−i(p−p′)·x/� V (x) (15.3.16)

and more generally, we carry out an expansion

T (p,p′) =
∑
n�1

T (n) (p,p′) (15.3.17)

where T (n) (p,p′) is of nth order in the potential. Using the Fourier transform
in (15.3.16), and the integral (see (9.1.25), (9.1.31))

(
E (q) = q2/2µ

)
∫

d3q

(2π�)3
eiq·x/�

[p0 − E (q) + iε]
= − µ

2π�2

ei
√

2mp0 |x|

|x| (15.3.18)

one obtains the explicit expression (n � 2)

T (n) (p,p′) =
(
− µ

2π�2

)n−1
∫

d3x1 . . . d3xn e−ix1·p/� V (x1)
eip|x1−x2|/�

|x1 − x2|
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× V (x2)
eip|x2−x3|/�

|x2 − x3|
. . . V (xn−1)

eip|xn−1−xn|/�

|xn−1 − xn|
V (xn) eixn·p′/�.

(15.3.19)

We may then bound T (n) (p,p′) in absolute value as
∣∣∣T (n) (p,p′)

∣∣∣ �
( µ

2π�2

)n−1
∫

d3xn |V (xn)|
∣∣∣I(n−1) (xn)

∣∣∣ (15.3.20)

where

I(n−1) (xn) =
∫

d3x1 . . . d3xn−1 e−ix1·p/�

× V (x1)
eip|x1−x2|/�

|x1 − x2|
. . . V (xn−1)

eip |xn−1−xn|/�

|xn−1 − xn|
. (15.3.21)

Using the inequality ∫
dΩ1

|x1 − x2|
� 4π

r1
(15.3.22)

shown later, we have the following x2-independent bound
∣∣∣∣
∫

d3x1
V (x1)

|x1 − x2|

∣∣∣∣ � 4π

∫ ∞

0

r1 dr1 |V (r )| (15.3.23)

which by hypothesis (see (15.3.14)) exists.
From (15.3.23), we then have

∣∣∣I(n−1) (xn)
∣∣∣ �

(
4π

∫ ∞

0

r dr |V (r)|
)n−1

(15.3.24)

and, for all n � 1,

∣∣∣T (n) (p,p′)
∣∣∣ �

(∫
d3x |V (x)|

)(
2µ

�2

∫ ∞

0

r dr |V (r)|
)n−1

(15.3.25)

where both factors on the right-hand side exist by hypothesis.
The series in (15.3.17) is then absolutely convergent for

2µ

�2

∫ ∞

0

r dr |V (r)| < 1 (15.3.26)

giving rise to a sufficiency condition for the validity of the Born series in
(15.3.17).

For a particle of mass m in a bounded potential |V (r)| � V0 of finite range
V (r) = 0 for r > R, the condition in (15.3.26) is satisfied for

m

�2
V0 R2 < 1. (15.3.27)





818 15 Quantum Scattering

To establish the inequality in (15.3.22), we use the expansion

1
|x1 − x2|

=
∞∑

�=0

(
r<

r>

)� 1
r>

P� (cos θ)

= 4π

∞∑
�=0

�∑
m=−�

1
(2� + 1)

(
r<

r>

)� 1
r>

Y� m (x̂1) Y ∗
� m (x̂2) (15.3.28)

where r< and r> denote, respectively, the smaller and the larger of r1, r2.
Hence ∫

dΩ1

|x1 − x2|
= 4π

[
Θ (r1 − r2)

r1
+

Θ (r2 − r1)
r2

]
(15.3.29)

and since Θ (r2 − r1) /r2 < Θ (r2 − r1) /r1, and Θ (r1 − r2)+Θ (r2 − r1) = 1,
the inequality in (15.3.22) follows. Note that an equality in (15.3.22) holds if
r1 � r2.

15.3.3 Two-Particle Scattering

Needless to say, the scattering theory developed above and the expression
for the differential cross section obtained in (15.3.5) hold for the interaction
of a particle of mass m = m1 with a much heavier (approximately motionless)
particle of mass m2. If m2 is not large, and the particles are not identical
and of spin 0, all of the above formulae are still valid in the center of mass
of the two particles if one simply replaces m = m1 in them by the reduced
mass µ = m1m2/ (m1 + m2). The transformation to the laboratory system is
the same as in classical dynamics.19 For definiteness, consider the particle of
mass m2 (the target particle) at rest, and a spherically symmetric potential so
that the scattering, in the center of mass, is specified by the angle θ only. The
scattering angles ϑ1 and ϑ2 of the particles of masses m1 and m2, respectively,
in the laboratory system are given by the well know formulae

tan ϑ1 = sin θ

/(
m1

m2
+ cos θ

)
(15.3.30)

ϑ2 = (π − θ) /2 (15.3.31)

with the latter giving the recoil angle of the target particle. The differential
cross section in the laboratory system is given by

dσ

dΩ1
(ϑ1)

∣∣∣∣
LAB

=
dσ

dΩ
(θ)

d(cos θ)
d(cos ϑ1)

(15.3.32)

19 Cf. Marion and Thornton (1988), p. 310, p. 326.
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where dσ (θ) /dΩ is the one obtained in the center of mass system.
For identical (i.e., indistinguishable) particles of mass m1 = m2 = m,

ϑ1 =
θ

2
, (15.3.33)

and we have to use the proper symmetrization of the scattering amplitudes,
based on the statistics of the particles, since a detector cannot distinguish
between them. In the center of mass system two possible routes of scattering
are shown in Figure 15.2.

(a) (b)

θθ

Fig. 15.2. For identical particles, the detector (set at angle θ-shown in the
center of mass frame) cannot distinguish between the two possible routes (a)
and (b) of scattering. The necessary symmetrization, based on the statistics of
the particles, of the scattering amplitudes leads to interference effects which
are observed experimentally.

Consider two indistinguishable particles of spin 0. In this case we have
to add to f (θ) the amplitude f (π − θ) corresponding to the route of scat-
tering shown in Figure 15.2 (b) before defining the differential cross section.
The amplitude f (θ) is referred to as the direct scattering amplitude, while
f (π − θ) as the exchange one. The differential cross section (in the center of
mass) is then given by

dσ

dΩ
= |f (θ) + f (π − θ)|2

= |f (θ)|2 + |f (π − θ)|2 + 2 Re (f∗ (θ) f (π − θ)) . (15.3.34)

For a detector set at θ = π/2, dσ/dΩ is given by 4 |f (θ)|2 rather than
2 |f (θ)|2 as the latter would be expected by a naive classical argument. Such
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a doubling is observed experimentally and is due to the interference term in
(15.3.34) as a result of the correlation between the particles arising from the
symmetry of the states under the interchange of the two particles.

The situation with fermions turns out to be quite interesting. For def-
initeness consider the scattering of two indistinguishable spin 1/2 particles
interacting via a spin-independent interaction as above. Let |χ〉, |χ′〉 denote
the normalized spin states of the particles. The effective scattering amplitude
would then be given by

f (θ) |χ1〉 |χ′
2〉 − f (π − θ) |χ′

1〉 |χ2〉 (15.3.35)

and the differential cross section is

dσ

dΩ
= |f (θ)|2 + |f (π − θ)|2 − 2 Re (f∗ (θ) f (π − θ)) |〈χ |χ′〉|2 (15.3.36)

Therefore an interference term arises only if the spin states are non-
orthogonal. In particular if the spins of the particles are in opposite directions
of a quantization axis no interference term arises. On the other hand, if the
spins of the particles are along the same direction, then

dσ

dΩ
= |f (θ) − f (π − θ)|2 (15.3.37)

This expression is interesting in the sense that at θ = π/2, the differential
cross vanishes, unlike for the bosonic case, and is verified experimentally.

Now consider the scattering of unpolarized spin 1/2 particles. We know
from §2.8, §5.5, from the addition of spin 1/2’s, we have the triplet state,
corresponding to a spin 1, and the singlet state, corresponding to a spin 0.
The Fermi character of the spin 1/2 particles, requires from (15.3.36) that

dσ

dΩ
↑↑ = |f (θ) − f (π − θ)|2

dσ

dΩ
↑↓ = |f (θ)|2 + |f (π − θ)|2

dσ

dΩ
↓↑ = |f (θ)|2 + |f (π − θ)|2

dσ

dΩ
↓↓ = |f (θ) − f (π − θ)|2

(15.3.38)

with weight factors 1/4 for unpolarized particles, giving

dσu

dΩ
= |f (θ)|2 + |f (π − θ)|2 − Re (f∗ (θ) f (π − θ)) (15.3.39)

where u stands for unpolarized, and unlike (15.3.36) note that there is no
factor of 2 in the interference term in (15.3.39).
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The result in (15.3.39) may be also obtained by noting the symmetry
properties of the triplet and singlet states. To this end, note from (5.6.21)
that for spin states of spins s1, s2,

〈s1,m1; s2,m2|s,m〉 = (−1)s1+s2−s 〈s2,m2; s1,m1|s,m〉 (15.3.40)

where in the above case s1 = s2 = 1/2. Therefore the triplet state (s = 1)
is symmetric in spin space, while the singlet (s = 0) is anti-symmetric. The
Pauli exclusion principle then requires that

dσu

dΩ
=

3
4
|f (θ) − f (π − θ)|2 +

1
4
|f (θ) + f (π − θ)|2 (15.3.41)

which coincides with the expression in (15.3.39 ). The 3 to 1 factors above
correspond to the number of allowed values for m for s = 1, and 0, respec-
tively.

For spin-dependent interactions of spin 1/2 particles, we may use the very
general analysis carried out in §8.6 for the scattering of a spin 1/2 particle
off a spin 0 target as well as the one for the scattering off a spin 1/2 target.
Given an M -matrix relating an initial and final state, the differential cross
section of the scattering process is given by

dσ

dΩ
=

Tr
[
M ρ(i)M†]
Tr

[
ρ(i)

] (15.3.42)

where ρ(i) is the initial density operator, and may be normalized as Tr[ρ(i)] =
1, and M ρ(i)M† is the final density operator. General structures of the M
matrices were determined in §8.6 and polarized as well as unpolarized incident
beams were considered. For details we refer the reader to that section.

15.4 The Optical Theorem and Its Interpretation; Phase
Shifts

We derive a relation between the cross section and the scattering ampli-
tude in the forward direction, which is referred to as the optical theorem. The
physical meaning embodied in this result will be also emphasized. Finally, we
decompose the scattering amplitude into partial amplitudes specified by an-
gular momentum states, referred to as a phase shift analysis, by making use,
in the precess, of the optical theorem.

15.4.1 The Optical Theorem

To obtain the above mentioned relation, we multiply the equation for
A−

(
q,p′; p0

)
in (15.3.8) by T ∗ (q,p; p0

)
integrate over q, and use the defin-

ition in (15.3.9) to obtain after re-arrangements of terms
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T ∗ (p′,p; p0
)

=
∫

d3q d3q′ A∗
−
(
q′,p; p0

)
V (q′ − q) A−

(
q,p′; p0

)

−
∫

d3q
(2π�)3

T ∗ (q,p; p0
) 1

[p0 − E(q) + iε]
T
(
q,p′; p0

)
(15.4.1)

where we have used, in the process, the reality of the potential V (x) to inter
that V ∗(q) = V (−q).

Upon taking the complex conjugate of (15.4.1) and interchanging the
momenta p ↔ p′, we also have

T (p,p′; p0) =
∫

d3q d3q′ A∗
−(q′,p; p0) V (q′ − q) A−(q,p′; p0)

−
∫

d3q
(2π�)3

T ∗(q,p; p0)
1

[p0 − E(q) − iε]
T (q,p′; p0)

(15.4.2)

where in writing the first integral we have used again the reality of the po-
tential and conveniently relabelled the integration variables q ↔ q′. The first
integral in (15.4.2) is the same as the first integral in (15.4.1).

We set p0 = E(p′) = E(p), and use the relation

[E(p′)−E(q)− iε]−1− [E(p′)−E(q)+iε]−1 = 2πi δ(E(p′)−E(q)) (15.4.3)

to obtain by subtracting (15.4.1) from (15.4.2)

T (p,p′;E(p′)) − T ∗(p′,p;E(p′))

= −2πi m|p′|
(2π�)3

∫
dΩ′′ T ∗ (|p′|n′′,p;E(p′)) T (|p′|n′′,p′;E(p′))

(15.4.4)

where we note the (−) sign multiplying the integral on the right-hand side.
Finally using the definitions in (15.3.3)/(15.1.29), (15.3.9), (15.4.4) may be
rewritten in terms of the scattering amplitude,

f(p,p′) − f∗(p′,p) =
i|p′|
2π�

∫
dΩ′′ f∗(|p′|n′′,p) f (|p′|n′′,p′) (15.4.5)

In particular for p′ = p, we have from the expression of the cross section
in (15.3.7), the following equality referred to as the optical theorem

σ =
4π�

|p| Im f(p,p) (15.4.6)

relating the cross section to the imaginary part of the scattering amplitude
in the forward direction. The choice of the minus sign (−1) factor (a phase)
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in (15.3.3) adjusts the sign of Im f(p,p) to be positive matching consistently
the positivity of σ in (15.3.7), (15.4.6).

To understand why σ is related to the scattering amplitude in the forward
direction, we will investigate the scattering process in this direction and see
what quantum physics has to say about this.

In the forward direction, i.e., for |x||| � a, the incident component Φin(x)
of ψ−(x) in (15.1.11) cannot be neglected in comparison to the integral on
the right-hand side of (15.1.11) as we have done in (15.2.24) for the case
|x||| � a, using the vanishing property of χ(x||, t). In the present case for
|x||| � a, |x| > D, D large, (15.2.24) becomes simply replaced by

ψ−(x) → Φin(x) − m

2π�2 |x|

∫
d3q

(2π�)3
ei[|q||x|−E(q)t]/�

× F− (|q|n,q;E(q)) Φ̃in(q) (15.4.7)

leading to the asymptotic equality

|ψ−(x, t)|2 = |Φin(x, t)|2 − m

π�2|x| Re{M(x, t)} (15.4.8)

where Re{·} denotes the real part, and

M(x, t) =
∫

d3q
(2π�)3

ei[|q||x|−E(q)t]/� F− (|q|n,q;E(q)) Φ̃in(q)Φ∗
in(x, t)

(15.4.9)
The second term on the right-hand side of (15.4.8) provides an interfer-

ence term between the incident and the scattered components in the forward
direction.

Now we look at the intensity in the forward direction, as obtained from
(15.4.8), on a screen, set parallel to the x-y plane, at a distance z = D, by
integrating |ψ−(x, t)|2 over an area � πa2.

Accordingly, we are led to consider the integral
∫
|x|||�a

d2x|| M(x, t) (15.4.10)

and, as in (15.2.18), (15.2.19), we consider the limits (p′ = |p′|)

z � a � �/p′ (15.4.11)

and simultaneously,20
p′

�
a2/z � 2π. (15.4.12)

For |x||| � a , z = D � a, we have

20 A similar method was used by van de Hulst (1949). See also Newton (1976).
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|x| � z +
x2
||

2z
(15.4.13)

and we may effectively set n � n0 = (0, 0, 1) in F− since θ � 0 for D � a. By
making a change of the variables integrations q||,x||,x′

|| in (15.4.9), (15.4.10),
(15.2.26), respectively to Q′,ρ,ρ′, with the latter two dimensionless,

ρ = x||
√

p′/z�, ρ′ = x′
||
√

p′/z� (15.4.14)

Q′ = q||
√

z�/p′ (15.4.15)

the corresponding product measure changes as follows,

d2q|| d2x|| d2x′
|| →

z�

p′
d2Q′ d2ρ d2ρ′ (15.4.16)

and the z factor in the latter cancels out the multiplicative 1/|x| factor in
the second term on the right-hand side of (15.4.8) for z � a � |x|||.

From (A-15.2.9) and (15.2.12) (see also (15.2.20)), one may effectively re-
place χ(x||, t) in (15.4.9)/(15.4.10) by 1/

√
πa2. One may now repeat a similar

analysis as the one carried out through (15.2.25)–(15.2.29). We also note by
writing in the exponent in (15.4.9) (see also (15.2.10), (15.2.25), (15.2.26))

p′|x|
�

� p′z

�
+

p′x2
||

2�z

=
p′z

�
+

ρ2

2
(15.4.17)

with |ρ| � a
√

p′/z�, we are led to the evaluation of the simple Gaussian
integral in (15.4.10)

∫

|ρ|�a
√

p′/z�

d2ρ exp(iρ2/2) � 2πi (15.4.18)

which from (15.4.12), we have extended the limit of integration to infinity.
All told, we have from (15.2.20), (15.2.10) and (15.4.8)

∫
|x|||<a

d2x|| |ψ−(x, t)|2 =

∣∣∣η(z − p′

m t)
∣∣∣2

πa2

[
πa2 − 4π�

p′
Im f(p′,p′)

]

(15.4.19)
where we have used the fact that Re(i...) = − Im(...), the definitions in
(15.3.3)/(15.1.29), and recall that p′ = (0, 0, p′) ≡ p′n0.

The result in (15.4.19) is remarkable. In the absence of a potential the
expression within the square brackets would be just πa2. In the presence of an
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interaction, the interference between the incident and scattered components
of ψ−(x, t), in the forward direction, reduces the intensity observed in that
direction. The cross sectional area on the screen is thus reduced from πa2

by just the correct amount (see (15.4.6) with p′ = |p′| = |p|) to compensate
for the probability loss when a particle is scattered into all angles. It is a
consequence of the conservation of probability. The optical theorem will be
also studied in the context of inelastic processes in §15.8.

There are many authors associated with the optical theorem in physics, in
general, such as Bohr, Peierls, Placzek (in quantum physics), and several oth-
ers, dating back to Lord Rayleigh in his studies of the color and polarization
of the sky.21

The first Born approximation in (15.3.12), (15.3.16) obviously violates the
optical theorem since V (p − p′) for p = p′ is real. From (15.4.6),(15.3.7),

4π�

|p| Im f(p′,p′) =
∫

dΩ |f(p,p′)|2 (15.4.20)

where p = |p′|n and thus the result embodied in the optical theorem relates,
consistently, different orders in the potential (see Problem 15.2).

15.4.2 Phase Shifts Analysis

Consider the elastic scattering of a particle off a target particle initially
at rest both of spin 0. Let p′, p denote the initial, final relative momenta,
respectively, and µ the reduced mass. For the interaction between the particles
given by a potential energy which depends solely on the magnitude of the
relative position vectors between the particles, we have a rotational invariant
theory.

For spin 0 particles, the scattering matrix (15.3.10)/(15.3.11) may be
expanded in terms of the relative angular momentum states, in the center of
mass frame, as follows (|p| = |p′| ≡ p)

〈p |T |p′〉 =
∑
�,m

∑
�′,m′

Y�m (p̂) Y ∗
�′m′

(
p̂′) 〈p, �,m |T |p, �′,m′〉 (15.4.21)

where we have used the expansion of the states 〈p| in (5.10.95) in terms of
angular momentum states.

T must be diagonal in �,m and also be independent of m due to the
independence of the theory on the orientation of the system. Accordingly, we
write

〈p, �,m |T |p′, �′,m′〉 = − [ρ�(p) − 1]
2i

8π2
�

3

µp
δ��′δmm′ (15.4.22)

where the numerical coefficient was chosen for convenience.
21 For the fascinating history of the optical theorem, in general, see Newton (1976).
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By using the addition theorem of the spherical harmonics in (5.3.67),
(15.4.22) and (15.4.21) give

〈p |T |p′〉 = −2π�
3

µp

∞∑
�=0

(2� + 1)
[ρ�(p) − 1]

2i
P�(cos θ) (15.4.23)

where θ is the angle between the momenta, i.e., p̂′ · p̂ = cos θ.
From (15.3.11), we then have the following expansion for the scattering

amplitude f(p,p′) ≡ f(p, θ):

f(p, θ) =
�

2ip

∞∑
�=0

(2� + 1) [ρ�(p) − 1] P�(cos θ) (15.4.24)

where the coefficient [ρ�(p) − 1] is to be determined. For V = 0, ρ� → 1.
By using the orthogonality relation of the Legendre polynomials

∫ π

0

sin θ dθ P�(cos θ) P�′(cos θ) =
2

2� + 1
δ��′ (15.4.25)

we obtain from (15.3.7)/(15.4.20), i.e., from the optical theorem,

π�
2

p2

∞∑
�=0

(2� + 1) |ρ� − 1|2 =
2π�

2

p2

∞∑
�=0

(2� + 1) Im
(

ρ� − 1
i

)
(15.4.26)

suppressing the p-dependence of ρ� for simplicity of the notation. Using
Im [(ρ� − 1)/i] = 1 − Re ρ�, we may infer that

|ρ� − 1|2 = 2 − 2Re ρ� (15.4.27)

or that |ρ�|2 = 1. That is, ρ� is a phase factor which we may write as

ρ� = e2iδ� (15.4.28)

with δ� real, and is referred to as the phase shift, which depends on p and �.
The scattering amplitude in (15.4.24) takes the form of a sum of partial

scattering amplitudes

f(p, θ) =
�

2ip

∞∑
�=0

(2� + 1)
(
e2iδ� − 1

)
P�(cos θ) (15.4.29)

To obtain information on the phase shift δ�, we note from (15.4.27),
in the process, that with Φ̃in(q) = (2π�)3δ3(q − p′), ψ−(x) =
ψ−(x,p) exp(iE(p)t/�), we have, for |x| → ∞,

ψ−(x,p) → eix·p′/� + f(p, θ)
ei|x||p′|/�

|x| (15.4.30)
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where we have used the definitions (15.3.3)/(15.3.9) and (15.1.21) (see also
(15.4.7)).

Taking the advantage of the expansion of exp ip · x/� in terms22 of the
Legendre polynomials P�(cos θ) and the spherical Bessel functions j�(pr/�)
in (5.10.36), we have from (15.4.29),(15.4.30), with |x| ≡ r,

ψ−(x,p) −→ �

pr

∞∑
�=0

(2� + 1)i�eiδ� cos δ�

[
sin

(
pr

�
− �π

2

)

+ tan δ� cos
(

pr

�
− �π

2

)]
P�(cos θ) (15.4.31)

where we have used the asymptotic behavior

j�(
pr

�
) −−−−−→

r → ∞

�

pr
sin

(
pr

�
− �π

2

)
(15.4.32)

for the spherical Bessel function.
For a spherically symmetric potential V (r), we may write

ψ−(x,p) =
�

p

∞∑
�=0

(2� + 1) i� eiδ� cos δ�
g�(r)

r
P�(cos θ) (15.4.33)

and from (15.4.31), g�(r) satisfies the boundary condition,

g�(r) −−−−−→
r → ∞

sin
(

pr

�
− �π

2

)
+ tan δ� cos

(
pr

�
− �π

2

)
(15.4.34)

More generally, for all r, it is easy to show that g�(r) satisfies the one
dimensional differential equation

[
d2

dr2
− �(� + 1)

r2
− 2µ

�2
V (r) +

p2

�2

]
g�(r) = 0 (15.4.35)

as obtained from the time-independent Schrödinger equation.
Two real solutions of (15.4.35) for V (r) = 0 are given by

a�(pr/�) =
pr

�
j�

(pr

�

)
, b�

(pr

�

)
= −pr

�
n�

(pr

�

)
(15.4.36)

where n�(x) is the so-closed spherical Neumann function,23 behaving asymp-
totically for r → ∞, as

a�(pr/�) −−−−−→
r → ∞

sin
(

pr

�
− �π

2

)
(15.4.37)

22 Note that for Φ̃in(q) = (2π�)3δ3(q−p′), x points in the same direction as p (see
below (15.2.26)).

23 Cf. Arfken and Weber (1995), p. 678, p. 682.
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b� (pr/�) −−−−−→
r → ∞

cos
(

pr

�
− �π

2

)
(15.4.38)

Upon defining the Green function, associated with (15.4.35),

G�(r, r′) = −�

p

[
a�

(pr

�

)
b�

(
pr′

�

)
Θ(r′ − r) + a�

(
pr′

�

)
b�

(pr

�

)
Θ(r − r′)

]

(15.4.39)
satisfying (see Problem 15.4),

[
d2

dr2
− �(� + 1)

r2
+

�
2

p2

]
G�(r, r′) = δ(r − r′) (15.4.40)

as verified by using, in the process that, dΘ(r′ − r)/dr = −δ(r − r′),dΘ(r −
r′)/dr = δ(r − r′), and the property

(
d
dr

a�

(pr

�

))
b�

(pr

�

)
− a�

(pr

�

)( d
dr

b�

(pr

�

))
=

p

�
, (15.4.41)

the solution of (15.4.35) may be given in the form of an integral equation

g�(r) = a�

(pr

�

)
+
∫ ∞

0

dr′ G�(r, r′) u(r′) g�(r′) (15.4.42)

where
u(r) =

2µ

�2
V (r). (15.4.43)

Form the boundary condition (15.4.34), we may then use (15.4.42), and
the asymptotic behavior of G�(r, r′) as obtained from (15.4.36)–(15.4.38), for
r → ∞, to get

tan δ� = −�

p

∫ ∞

0

dr a�

(pr

�

)
u(r) g�(r). (15.4.44)

In the Born approximation, we have from (15.4.42)

g�(r) � a�(r)

giving

tan δ� � δ� � −p

�

∫ ∞

0

r2dr
(
j�

(pr

�

))2

u(r) (15.4.45)

for small δ�, assuming, of course, the convergence of the latter integral.
For small r,

a�

(pr

�

)
−−−−→
r → 0

(pr

�

)�+1
/

(2� + 1)!! (15.4.46)

showing that g�(r) → 0 for r → 0. From (15.4.45) one may also formally infer
that
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δ� ∝ O
((p

�

)2�+1
)

(15.4.47)

for p → 0 under suitable conditions imposed on u(r) as, for example, will be
the case if u(r) is of finite range.

A Born series may be formally developed for g�(r) from (15.4.42) given
by

g�(r) = a�

(pr

�

)
+
∑
n�1

∫ ∞

0

dr′1 . . .

∫ ∞

0

dr′n G�(r, r′1) u(r′1)

× G�(r′1, r
′
2) u(r′2) . . . G�(r′n−1, r

′
n) u(r′n) a�

(
pr′n
�

)
(15.4.48)

and is real.
For a given potential V (r), information may be obtained on the sign

of δ� as follows. We scale the potential energy V (r) by two parameters
V (r) → λ1V (r), V (r) → λ2V (r). The corresponding solutions g�(r) and
phase shifts δ� will be denoted by g�(λi, r) and δ�(λi), i = 1, 2. Upon multi-
plying the differential equation satisfied by g�(λ1, r) from the left by g�(λ2, r),
and similarly upon multiplying the differential equation satisfied by g�(λ2, r)
from the left by g�(λ1, r) and subtracting the latter equation from the former,
we obtain

g�(λ2, r)
d
dr

g�(λ1, r) − g�(λ1, r)
d
dr

g�(λ2, r)

= (λ1 − λ2)
∫ r

0

dr′u(r′)g�(λ1, r
′)g�(λ2, r

′). (15.4.49)

Taking the limit r → ∞, and using (15.4.34), this gives

tan δ�(λ1) − tan δ�(λ2) = −�

p
(λ1 − λ2)

∫ ∞

0

dr′u(r′)g�(λ1, r
′)g�(λ2, r

′)

(15.4.50)
Setting λ1 = λ + ∆λ, λ2 = λ, for ∆λ → 0, we get

d
dλ

δ�(λ) = −�

p

∫ ∞

0

dr u(r) (g�(λ, r) cos δ�(λ))2 (15.4.51)

which upon integrating over λ from 0 to 1, leads to

δ� = −�

p

∫ ∞

0

dr u(r)
[∫ 1

0

dλ (g�(λ, r) cos δ�(λ))2
]

(15.4.52)

showing a correlation between the sign of δ� and the potential u(r). The phase
shift is positive for u(r) < 0, and negative for u(r) > 0, in general.
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Intuitively, for a potential energy of finite range, say, a, a particle imping-
ing on a target with “impact parameter” ∼ ��/p, with � such that ��/p > a
is expected to be unimportant in scattering and one may formally cut-off the
sum in (15.4.29) at �̄ = [pa/�], where [x] is largest positive integer � x. In
particular, for low energy, one may take

f(p, θ) � �

2ip
(e2iδ0 − 1) = f0(p, θ) (15.4.53)

for the scattering amplitude.
The phase shift analysis carried out at the end of this section will be

generalized in §15.8 to include inelastic processes and see how the counterpart
of formula (15.4.29) is modified in such cases. For some applications see the
problems section.

15.5 Coulomb Scattering

This section deals with a systematic treatment of Coulomb scattering.
We first extend the result of Problem 15.3 to the Coulomb interaction to
extract the asymptotic “free” propagator corresponding to the propagation
of a particle at large distances from the scattering center. We then show that
the asymptotic time development of a charged particle is not given by the
free Hamiltonian and, in turn, obtain the corresponding modified asymptotic
time evolution operator. The modifications arise because of the long range
nature of the Coulomb potential and a particle feels its presence no matter
how far it is from the scattering center. This is followed by investigating the
behavior of the full Coulomb Green function G+ near the energy shell. Finally
the Coulomb scattering amplitude is obtained from a time-dependent setting.
The Coulomb scattering of two identical particles will be also discussed.

15.5.1 Asymptotically “Free” Coulomb Green Functions

We extend the result of Problem 15.3 to study the nature of the integrals
∫

d3p eip·x/� G±(p,p′; p0) for |x| → ∞ (15.5.1)

for p0 near E(p′) = p′2/2µ for a two-particle system of reduced mass µ, for
the full Coulomb Green function in (9.9.54).

By changing the variable of integration in this latter equation from ξ to
z, where

z =
ξ4p0

(p0 − E(p′) ± iε)
(15.5.2)

we have (see (9.9.54))
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G±(p,p′; p0) = ∓ i
π2

√
µ

8p0

(
4p0

p0 − E(p′) ± iε

)(
p0 − E(p′) ± iε

4p0

)±iγ

×
∫ ∞

0

dz z±iγ d
dz

z

[z(p − p′)2 − 2µ(p0 − E(p) ± iε)]2

(15.5.3)

for p0 � E(p′),

γ =
λµ/�√
2µp0

, V (x) =
λ

|x| (15.5.4)

with V (x) denoting a Coulomb potential. The denominator in the integrand
in (15.5.3) in the square brackets may be rewritten as

[
(z + 1)

(
p − p′z

z + 1

)2

− p′2

(z + 1)
∓ iε

]
(15.5.5)

By changing the integration variable in (15.5.1) from p to Q = p −
p′z/(z + 1), and using the integral

∫
d3Q

eiQ·x/�[
Q2 − p′2

(z+1)2 ∓ iε
]2 = ±iπ2 (z + 1)

|p′| exp
(
± i|p′||x|

(z + 1)�

)
(15.5.6)

we obtain for the integral in (15.5.1), for p0 � E(p′), the expression

1
p′

√
µ

8p0
eip′·x/�

(
4p0

p0 − E(p′) ± iε

)(
p0 − E(p′) ± iε

4p0

)±iγ

×
∫ ∞

0

dz z±iγ d
dz

[
z

(z + 1)
e±ia±/(z+1)

]
(15.5.7)

where
a± =

1
�

[|p′||x| − p′ · x] (15.5.8)

and we note that we have multiplied and divided the integral in (15.5.1) by
exp (i p′ · x/�).

We are interested in the limit a± → ∞, where we note the positivity of
a±, in general. To this end, we change the variable of integration in (15.5.7)
from z to ρ

z =
a±
ρ

. (15.5.9)

Then it readily follows from (15.5.7) that for a± → ∞,
∫

d3p eip·x/� G±(p,p′; p0) −→ eip′·x/� e±iγ ln
(

|p′||x|−p′·x
�

)
G0C

± (p′)

(15.5.10)
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where the x-independent part

G0C
± (p′) =

1

[p0 − E(p′) ± iε]1∓iγ
exp

[
∓iγ ln

(
2p2

µ

)]
eπγ/2Γ(1 ∓ iγ)

(15.5.11)
with Γ(1 ∓ iγ) denoting the gamma function, defines, for p0 � E(p), the as-
ymptotic “free” propagators. We note the change in the nature of the singu-
larity at p0 � E(p′) from a simple pole with a non-trivial dependence on the
Coulomb coupling λ. Also the exponential factor exp (i p′ · x/�) is changed
from the asymptotically free one, corresponding to a short range potential, to
one with a distortion given by the additional x-dependent exponential factor
in (15.5.10).

15.5.2 Asymptotic Time Development of a Charged Particle State

Consider the integral
∫ ∞

−∞
dx

e−iax

(β ∓ ix)ν
= Θ(±a)2π

|a|ν−1

Γ(ν)
e∓βa (15.5.12)

for a real, Re β > 0, Re ν > 0 and Θ(±a) is the step function. In reference to
the asymptotic propagator in (15.5.11), let (with p′ → p)

∓i (±iε − E(p)) = β (15.5.13)

1 ∓ iγ = ν (15.5.14)

t/� = a (15.5.15)

to infer from (15.5.12) that for ε → +0,

(±i�)
∫ ∞

−∞

dp0

2π�
e−ip0t/� G0C

± (p)

= Θ(±t) exp− i
�

[
E(p)t + (sgn t)

λµ

|p| ln
(

2p2|t|
µ�

)]
(15.5.16)

where we have cancelled Γ(1 ∓ iγ) in (15.5.11) with the one in (15.5.12) and
used the property

(∓i)∓iγ =
(
e∓i π

2
)∓iγ

= e−γπ/2 (15.5.17)

to cancel out the exp(πγ/2) factor as well.
From (15.5.16) we see that the asymptotic “free” time evolution oper-

ator for t → ±∞, is modified, for the Coulomb case, from the free one
exp(−iH0t/�) to exp(−iH0C(t)/�), where24

24 This expression was discovered by Dollard (1964) by a completely different ap-
proach.
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H0C(t) = H0t + (sgn t)
λµ√
2µH0

ln
(

4H0|t|
�

)
(15.5.18)

and reflects the fact that a charged particle always feels the presence of the
Coulomb force due to its long range effect.

An intuitive argument25 leading to (15.5.16)/(15.5.18) nay be readily
given. For t → ±∞, the momentum and the position of a particle are re-
lated classically by |p| ∼ m|x|/|t|. Accordingly, replacing |x| by |t||p|/m in
V (x) and integrating over t, to generate the asymptotic “free” time evolution
operator we obtain, in addition to tp2/2m, for a particle of mass m, the cor-
rection (λµ/|p|) ln |t| which has the correct time dependence as in (15.5.18)
with |p| →

√
2mH0. Incidentally, for a potential which vanishes faster than

the Coulomb potential, the above substitution |x| → |t||p|/m in the potential
gives a vanishing contribution to

∫
V (|t||p|/m) dt for |t| → ∞ and hence no

modification to the term H0t in (15.5.18) arises.

15.5.3 The Full Green Function G+ Near the Energy Shell

We make a change of the variable of the integration variable ξ in the
Coulomb Green function G+(p,p′; p0), relevant to the problem at hand, in
(9.9.54) to z = ρ+z, where ρ+ is defined in (9.9.55). Near the energy shell
p0 � E(p) = E(p′), i.e., for ρ+ → ∞, the expression for G+(p,p′; p0) in
(9.9.54) takes the simple form

G+(p,p′; p0) = − i
π2

√
µ

8p0

(ρ+)1−iγ

[(p − p′)2]2

∫ ∞

0

dz ziγ d
dz

z

(z − 1)2

= − γ

π2

√
µ

8p0

(ρ+)1−iγ

[(p − p′)2]2

∫ ∞

0

dz
z+iγ

(z − 1)2
(15.5.19)

where in the last equality we have integrated by parts.
We use the integral

∫ ∞

0

dz
z+iγ

(z − 1)2
= −eπγ Γ(1 + iγ)Γ(1 − iγ)

= −eπγ

(
Γ∗(1 − iγ)
Γ(1 − iγ)

)
(Γ(1 − iγ))2 (15.5.20)

and the definitions of ρ+ in (9.9.55), γ in (15.5.4), to obtain near the energy
shell

G+(p,p′; p0) → G0C
+ (p)

[
λ

2�π2

1
(p − p′)2

exp
(
−i

λµ

�|p| ln
[
(p − p′)2

4p2

])

25 Dollard and Vello (1966).
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×Γ∗(1 − iγ)
Γ(1 − iγ)

]
G0C

+ (p′) (15.5.21)

where G0C
+ (p) is the asymptotic “free” propagator in (15.5.11).

Upon comparison of (15.5.21) with (15.3.6), with G0
+(p) now replaced

by G0C
+ (p) for the Coulomb case, one is tempted to identify the Coulomb

scattering amplitude by

fC(p,p′) = − 2µλ

(p − p′)2
exp

(
−iλµ

�|p| ln
[
(p − p′)2

4p2

])
Γ∗(1 − iγ)
Γ(1 − iγ)

(15.5.22)

where Γ∗(1 − iγ)/Γ(1 − iγ) is a phase factor. That the expression for the
Coulomb scattering problem is indeed given by (15.5.22) will be now shown
by a direct time-dependent treatment via the evolution operators.

For a decomposition of fC(p,p′) ≡ fC(p, θ) into partial scattering ampli-
tudes see Problem 15.10.

With the asymptotic “free” time evolution operator given by
exp (−iH0C(t)/�), with H0C(t) defined in (15.5.18), the transition amplitude
for the scattering off a Coulomb potential with initial momentum p′ to a final
momentum p is given by

A(p,p′) = 〈p| eiH0C(t)/� e−itH/� eiτH/� e−iH0C(τ)/� |p′〉 (15.5.23)

with τ → −∞, t → +∞. The operator exp (iτH/�) exp (−iH0C(τ)/�) for
τ → −∞, for example, replaces the conventional Møller wave operator Ω− in
(15.1.47) (see also Problem 15.17).

Using the representation
∫ ∞

−∞
dp0 e−i(t−τ)p0/�

p0 − H + iε
= −2πie−i(t−τ)H/� (15.5.24)

for t > τ , and the definition (see (9.7.1), (9.9.4))

〈p| 1
p0 − H + iε

|p′〉 = i� (2π�)3 G+(p,p′; p0) (15.5.25)

we may rewrite the amplitude A(p, p′) as

A(p,p′) = − (2π�)3�

π

∫ ∞

−∞
dp0 e−i[p0−E(p)]t/� ei[p0−E(p′)]τ/�

× exp
[

iλµ

�|p| ln
(

2p2|t|
µ�

)]
exp

[
iλµ

�|p′| ln
(

2p′2|τ |
µ�

)]
G+(p,p′; p0)

(15.5.26)

15.5.4 The Scattering Amplitude via Evolution Operators
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for t → +∞, τ → −∞.
The integrals in (15.5.12) alow us to use the representation (ε → 0)

Θ(t)
(
|t|
�

)iγ

=
iΓ(1 + iγ)

2π
e−πγ/2

∫ ∞

−∞
dq0 e−iq0t/�

(q0 + iε)1+iγ
(15.5.27)

Replacing this in (15.2.26), thus introducing an integral over q0 and p0,
multiplying and dividing the resulting integrand by

[
p0 − E(p) + iε

]1−iγ , and
making a change of the variable of integration 0 to Q0 = p0 + q0, we have

A(p,p′) =
∫ ∞

−∞
dQ0

∫ ∞

−∞
dq0 e−i(Q0−E(p))t/�

(Q0 − E(p) − q0 + iε)1−iγ

× 1
(q0 + iε)1+iγ

K(p,p′, τ ;Q0 − q0) (15.5.28)

where we have set

− (2π�)2�

π
i

Γ(1 + iγ)
2π

e−πγ/2 ei[p0−E(p′)]τ/�

(
exp

iλµ

�|p| ln
(

2p2

µ

))

×
(

exp
iλµ

�|p′| ln
(

2p′2|τ |
�

))
[p0 G+(p,p′; p0)

= K(p,p′, τ ; p0). (15.5.29)

For t → +∞ (15.5.28) reduces formally to

A(p,p′) = −2πi
∫ ∞

−∞
dQ0 δ(Q0 − E(p))

× lim
a→0

∫ ∞

−∞
dx

a2

(a(1 − x) + iε)1−iγ(ax + iε)1+iγ
K(p,p′, τ ;Q0 − ax)

(15.5.30)

by formally making a change of variable of integration from q0 to x =
q0/(Q0− E ( )).26

∫ ∞

−∞
dx

1
((1 − x) + iε)1−iγ(x + iε)1+iγ

=
2π

i
1

Γ(1 − iγ) Γ(1 + iγ)
(15.5.31)

for ε → 0, we get

26 Similar limits appear in the work of Papanicolaou (1976).

p

− E(p)+ ]iε
1 iγ−

In the x-integrand  in (15.5.30), as the product of two
factors, we first  replace a by zero in K, and the first factor for a ε → +0
is independent of a . Using the integral

>~
p

0,
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A(p,p′) =
2π

i

∫ ∞

−∞
dQ0 δ(Q0 − E(p))

K(p,p′, τ ;Q0)
Γ(1 − iγ) Γ(1 + iγ)

(15.5.32)

Repeating the same procedure for the τ → −∞ limit, by using, in the
process, the representation (see (15.5.12))

Θ(−τ)
(
|τ |
�

)iγ

=
iΓ(1 + iγ)

2π
e−πγ/2

∫ ∞

−∞
dq0 eiq0τ/�

(q0 + iε)1+iγ
(15.5.33)

in the expression for K(p,p′, τ ;Q0) (with p0 → Q0), multiplying and dividing
the resulting (Q0, q0)-integrand in (15.5.32) by [Q0−E(p′)+iε]1−iγ we obtain
for τ → −∞,

A(p,p′) = − (2π�)2

µ
fC(p,p′) δ(E(p) − E(p′)) (15.5.34)

where in integrating over Q0, with the energy shell constraints provided by
δ(Q0 − E(p))δ(Q0 − E(p′)), we have used (15.5.21), (15.5.22).

To see that fC(p,p′) actually represents the scattering amplitude for the
Coulomb potential, we note that the transition probability for the process is
given from (15.5.34) to be

P(p,p′) =
(2π�)4

µ2
|fC(p,p′)|2

×
(∫ T/2

−T/2

dt

2π�
e−i[E(p)−E(p′)]t/�

)
δ (E(p) − E(p′)) (15.5.35)

where we have used the integral representation of the delta distribution for
T → ∞. Equation (15.5.35) is formally interpreted as giving for the transition
probability per unit time the expression

P(p,p′)
T

=
(2π�)4

µ2
|fC(p,p′)|2 δ(E(p) − E(p′))

2π�
(15.5.36)

Upon integrating (15.5.36) over |p|2 d|p|/(2π�)3, for a fixed solid angle
about a unit vector n, we obtain

∫ ∞

0

|p|2d|p|
(2π�)3

P(p,p′)
T

=
p′

µ
|fC(|p′|n,p′)|2 (15.5.37)

Finally we note that for a scattering process with an initial sharp momen-
tum p′ with normalization of the state carried out within a unit volume of
space, p′/µ represents the probability that an incident particle crosses a unit
cross sectional area, perpendicular to p′, per unit time, i.e., it denotes the
flux. Thus we obtain the differential cross section by dividing the right-hand
side of (15.5.37) by p′/µ,
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dσ

dΩ
= |fC(p,p′)|2 (15.5.38)

p = |p′|n, where fC(p,p′) is given in (15.5.22).
Defining the angle θ by p · p′ = |p′|2 cos θ, in (15.5.22), (15.5.38) gives

dσ

dΩ
=

µ2λ2

4|p′|4 sin4(θ/2)
. (15.5.39)

It is remarkable that the quantum mechanical answer in (15.5.39) for
Coulomb scattering agrees with the classical one.27 Due to the long range
nature of the potential, the cross section does not exist since it is not in-
tegrable at θ � 0. In practice, the Coulomb potential, however, is usually
screened at large distances and this divergence problem does not arise.

For the scattering particles of two indistinguishable particles, the solution
of amplitude fC(p,p′) ≡ fC(θ) in (15.5.22) allows us to determine the explicit
expression of the interference term (the exchange effect) of the differential
cross section discussed at the end of §15.3.

In terms of the scattering angle θ in the center of mass, (15.5.22) may be
rewritten as

fC(θ) = − e2

mv2 sin2 θ/2
exp

(
−i

e2

�v
ln[sin2 θ/2]

)
Γ∗(1 − iγ)
Γ(1 − iγ)

(15.5.40)

for particles of charge ±e, and we have used the fact that µ = m/2. Also the
scattering angle of the incident particle is given by ϑ = θ/2,d(cos θ)/d cos ϑ =
4 cos ϑ, and v denotes the speed of the incident particle.

According to the symmetrization to be carried out based on the statis-
tics of the particles, we have from the discussion at the end of §15.3 the
following result for the differential cross section for the scattering of two in-
distinguishable charged particles of charges ±e and of spin 0 or spin 1/2, in
the laboratory frame with one of the particles initially at rest,28

dσ

dΩ

∣∣∣∣
LAB

=
4e4 cos ϑ

m2v4

[
1

sin4 ϑ
+

1
cos4 ϑ

+ 2ε
cos[(e2/�v) ln tan2 ϑ]

sin2 ϑ cos2 ϑ

]

(15.5.41)
Here ε = 1 for spin 0 particles, ε = −1 for spin 1/2 particles polarized

in the same direction, ε = 0 for spin 1/2 polarized in opposite directions,
ε = −1/2 for completely unpolarized spin 1/2 particles.

For � → 0, the rapid oscillations of the last term in (15.5.41) gives rise
to a vanishing contribution when averaged over a small angular breadth thus
recovering the classical result. This same conclusion of the vanishing of the
exchange term in (15.5.41) also follows for small scattering angles and for
27 In quantum electrodynamics, the differential cross section is modified.
28 Such scattering processes are usually called Mott scatterings for the pioneering

work of N. F. Mott on the Coulomb scattering of identical charged particles.
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small speeds. As discussed in §15.3, the doubling of the differential cross sec-
tion, over the classical one, for spin 0 particles and its vanishing for polarized
spin 1/2 particles, in the same direction, at ϑ = π/4 (i.e., θ = π/2 in the
center of mass system) should be noted.

15.6 Functional Treatment of Scattering Theory

The functional treatment of the transformation function 〈xt |p′t′〉 based
on the quantum dynamical principle studied in §11.2 will be used to write
down an explicit expression for the scattering amplitude involving functional
differentiations with respect to external sources.29 The functional approach
turns to be quite useful for studying, in particular, scattering at small de-
flection angles at high energies. It is also useful for the determination of the
asymptotic “free” propagators for long range interactions such as the Coulomb
one in a straightforward manner without using the explicit solution of full
Green function. These applications of the general functional treatment pro-
vided here will be given in the next section.

For recasting our functional solution in (15.6.6), (15.6.20) derived below
into a path integral form see Problem 15.13.29

From the analysis carried out in §11.2, the transformation function
〈xt |p′t′〉, for a particle in a given potential V (x) is explicitly given form
(11.2.22), (11.2.4), (11.2.27), to be

〈xt |p′t′〉 = exp
(
− i

�

∫ t

t′
dτ V

(
−i�

δ

δF(τ)

))
〈xt |p′t′〉(0)

∣∣∣
F=0

(15.6.1)

where (E(p) = p2/2µ, with µ denoting a reduced mass)

〈xt |p′t′〉(0) = exp
i
�

[
x · p′ − E(p′)(t − t′)

]

× exp
(

i
�

∫ t

t′
dτ F(τ) ·

[
x − p′

µ
(t − τ)

])

× exp
(
− i

2µ�

∫ t

t′
dτ

∫ t

t′
dτ ′[t − τ>]F(τ) · F(τ ′)

)
(15.6.2)

τ> = max(τ, τ ′) (15.6.3)

and F(τ) is an external (vector) source coupled linearly to x in the Hamil-
tonian

H =
p2

2µ
+ V (x) − x · F(τ) (15.6.4)

29 See also Manoukian (1985, 1987a).
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By using the identity in (11.2.28) and the translational operation property
of the functional differential operator

exp
∫ t

t′
dτ

[
x − p′

µ
(t − τ)

]
· δ

δF(τ)
(15.6.5)

we may rewrite (15.6.1), (15.6.2) as

〈xt |p′t′〉 = exp
i
�

[x · p′ − E(p′)(t − t′)]

× exp
(

i
2µ

�
∫ t

t′
dτ

∫ t

t′
dτ ′[t − τ>]

δ

δF(τ)
· δ

δF(τ ′)

)

× exp
(
− i

�

∫ t

t′
dτ V

(
x − p′

m
(t − τ) + F(τ)

))∣∣∣∣
F=0

(15.6.6)

in analogy to (11.2.31). An interesting application of (15.6.6) to scattering at
small deflection angles will be given in the next section.

Since in (15.6.6), we finally set F = 0, the theory becomes translational
invariant in time and 〈xt |p′t′〉 is a function of t − t′.

For t > t′,
〈xt |x′t′〉 = G+(xt,x′t′) (15.6.7)

with G+(xt,x′t′) = 0 for t < t′ (see (9.7.13)) and

〈xt |p′t′〉 = G+(xt,p′t′)

=
∫

d3x′eip′·x′/� G+(xt,x′t′) (15.6.8)

From the Fourier transform of G+(xt,x′t′) in (15.1.32), (15.1.35), and
(15.6.8), we then have

G+(p,p′; p0) = − i
�

1
(2π�)3

∫ ∞

0

dT ei(p0+iε)T/�

∫
d3x e−ip·x/� 〈xT |p′0〉

(15.6.9)
for ε → +0, with the iε prescription involving the boundary condition in
(9.7.12).

Upon writing (T = t − t′)

〈xT |p′0〉 = exp
(

i
�
[x · p′ − E(p′)T ]

)
K(x,p′;T ) (15.6.10)

thus defining K(x,p′;T ) from (15.6.6) to be

K(x,p′;T ) = exp
(

i�
2µ

∫ t

t′
dτ

∫ t

t′
dτ ′[t − τ>]

δ

δF(τ)
· δ

δF(τ ′)

)
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× exp
(
− i

�

∫ t

t′
dτ V(x − p′

µ
(t − τ) + F(τ))

)∣∣∣∣
F=0

(15.6.11)

We then obtain

G+(p,p′; p0) = − i
�

1
(2π�)3

∫ ∞

0

dα ei[p0−E(p′)+iε]α/�

×
∫

d3x e−ix·(p−p′)/� K(x,p′;α) (15.6.12)

where α plays the role of time and this notation for it is introduced quite
often in the literature.30

In the integrand in (15.6.12), we recognize [p0 −E(p′)+ iε] as the inverse
of the free Green function in the energy-momentum description.

To use (15.6.12) in deriving an expression for the scattering amplitude
f(p,p′), we note from (15.3.11), (15.3.9), (15.1.29), (15.1.36)

f(p,p′) = − µ

2π�2

∫
d3p′′ V (p − p′′)G+(p′′,p′; p0)[p0 − E(p′)]

∣∣∣∣
p0=E(p′)

(15.6.13)
This suggests to multiply G+(p,p′; p0) in (15.6.12) by [p0 − E(p′)] thus

giving

G+(p,p′; p0)[p0 − E(p′)] = − 1
(2π�)3

∫ ∞

0

dα

(
∂

∂α
eiα[p0−E(p′)+iε]/�

)

×
∫

d3x e−ix·(p−p′)/�K(x,p′;α)

(15.6.14)

where we have used the fact that ∂/∂α of the first exponential generates the
factor i[p0 − E(p′)]/� in the integrand (for ε → +0).

Now from (15.6.10), and the fact that 〈x |p′〉 = exp ix · p′/�, we have

K(x,p′; 0) = 1 (15.6.15)

We now consider the cases for which

lim
α→∞

∫
d3x e−ix·(p−p′)/�K(x,p′;α) (15.6.16)

exits. This, in particular, implies that

lim
α→∞

e−εα

∫
d3x e−ix·(p−p′)/�K(x, p′;α) = 0. (15.6.17)

30 This is especially the case in field theory.
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We may then integrate (15.6.14) over α by parts to obtain on the energy
shell p0 = E(p′), ε → +0,

(2π�)3G+(p,p′; p0)[p0 − E(p′)]
∣∣∣∣
p0=E(p′)

= −[(2π�)3δ3(p − p′) −
∫ ∞

0

dα

∫
d3x e−ix·(p−p′)/�

∂

∂α
K(x,p′;α)]

(15.6.18)

or

G+(p,p′; p0)[p0 − E(p′)]
∣∣∣∣
p0=E(p′)

= lim
α→∞

1
(2π�)3

∫
d3x e−ix·(p−p′)/�K(x,p′;α) (15.6.19)

From this the scattering amplitude f(p,p′) in (15.6.13) may be then obtained
from the expression for K(x,p′;α) to be

f(p,p′) = − µ

2π�2
lim

α→∞

∫
d3x e−ix·(p−p′)/� V (x)K(x,p′;α) (15.6.20)

where K(x,p′; t − t′) is given in (15.6.11), and we have integrated over
p′′ in (15.6.13). The presence of the K(x,p′;α) factor in the integrand
in (15.6.20) gives an obvious modification to the Born approximation in
(15.3.11)/(15.3.12) in the exact theory.

In case that the limit in (15.6.16) does not exist, as we will encounter for
Coulomb scattering, (15.6.14) cannot be integrated parts. To deal with such
situations, one may study the behavior of G+(p,p′; p0) near the energy shell
directly from (15.6.12). To this end, define the integration variable

z =
α

�
[p0 − E(p′)] (15.6.21)

to obtain

G+(p,p′; p0)[p0 − E(p′)] = − i
(2π�)3

∫ ∞

0

dz eiz(1+iε)

×
∫

d3x e−ix·(p−p′)/�K

(
x,p′;

z�

p0 − E(p′)

)
(15.6.22)

for p0 − E(p′) � 0, ε → +0.
Applications of (15.6.20) and (15.6.22) will be given in the next section.
The scattering amplitude for the Coulomb interaction was already de-

rived and explicitly given in §15.5. A functional treatment of scattering am-
plitudes for long range interactions, in general, including the Coulomb one
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may be given by a modification of transformation functions, such as the one
in (15.6.1), based on an extension of the quantum dynamical principle, which
takes into account the unescapable fact that asymptotically in time (see, e.g.,
(15.5.18)) a particle still feels the presence of the interaction and the corre-
sponding asymptotic “free” states depend on the coupling parameter(s) of the
interaction.31

For a path integral treatment of scattering theory see Problem 15.13, and
the reference below.31

15.7 Scattering at Small Deflection Angles at High
Energies: Eikonal Approximation

As mentioned in the previous section, the functional approach turns out
to be quite suited for studying scattering at small deflection angles at high
energies. Such an analysis will be carried and the resulting approximate ex-
pression for the scattering amplitude will be obtained and is shown to satisfy
the optical theorem at high energies as an important consistency check of the
conservation of probability. This approximation is referred to as the eikonal
approximation.32 An application will be also carried out to determine the
asymptotic “free” Green function for the Coulomb potential without the use
of the explicit solution of the Coulomb Green function.

15.7.1 Eikonal Approximation

We have seen in the previous section that the scattering amplitude f(p,p′)
for a scattering process may be rewritten as in (15.6.20), where the factor
K(x,p′;α) in the integrand, defined in (15.6.11) involving functional differ-
entiations, may be conveniently re-expressed as

K(x,p′;T ) = exp
(

i
2µ

∫ t

t′
dτ

∫ t

t′
dτ ′ [t − τ>]

δ

δQ(τ)
· δ

δQ(τ ′)

)

× exp
(
− i

�

∫ t

t′
dτ V

(
x − p′

µ
(t − τ) +

√
� Q(τ)

))∣∣∣∣
Q=0

.

(15.7.1)

Here as in (11.2.31), we have made the substitution F(τ) →
√

� Q(τ). The
latter, in the argument of V takes into account the deviation of the dynamics
from a straight line

[
x − p′

µ (t − τ)
]
. The effect of this deviation is obtained

31 See Manoukian (1985).
32 The word eikonal (from Greek) means image and this term is borrowed from

optics where some similar formulae as in here appear.
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by the functional differentiations provided by the exponential factor involving
the functional differential operators (δ/δQ(τ)) · (δ/δQ(τ ′)).

For scattering at small deflection angles, we may as a first approximation,
neglect the contribution of the functional differential operators arising in
(15.7.1) and set Q = 0. Corrections to this approximation may be then
systematically taken into account by carrying out the functional differential
operations spelled out in (15.7.1).

Accordingly from (15.6.20), the scattering amplitude takes the simple
form

f(p,p′) = − µ

2π�2

∫
d3x e−ix·(p−p′)/� V (x)

× exp
(
− i

�

∫ ∞

0

dβ V

(
x − p′

µ
β

))
(15.7.2)

where we have taken the limit α → ∞ in (15.6.20) and introduced a new
integration variable β.

We note that (15.7.2) modifies the Born approximation in (15.3.12) /
(15.3.11) by the presence of a phase factor in the integrand, depending on
the potential, accumulated during the scattering process.

It is convenient to write the integration variable x as

x = b + ξ
p′

µ
(15.7.3)

where b is orthogonal to p′, −∞ < ξ < ∞, and

d3x =
∣∣∣∣p

′

µ

∣∣∣∣dξ d2b. (15.7.4)

Also we note that

(p − p′) · p′ = −1
2
(p − p′)2 +

1
2
(
p2 − p′2)

= −1
2
(p − p′)2 (15.7.5)

since p2 = p′2, and hence for small deflection angles, we may replace x · (p−
p′) by b · (p−p′) in the first exponential in (15.7.2). By making a change of
the variable integration β to η = β − ξ, we may then rewrite (15.7.2) as

f(p,p′) = − |p′|
2π�2

∫ ∞

−∞
dξ

∫
d2b V

(
b + ξ

p′

µ

)
e−ib·(p−p′)/�

× exp
(
−i
�

∫ ∞

−ξ

dη V

(
b − p′

µ
η

))

Scattering at Small Deflection Angles at High Energies
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= − i |p′|
2π�

∫ ∞

−∞
dξ

∫
d2b e−ib·(p−p′)/�

× ∂

∂ξ
exp

(
− i

�

∫ ∞

−ξ

dη V

(
b − p′

µ
η

))
. (15.7.6)

Carrying out the ξ-integration, this gives

f(p,p′) =
i |p′|
2π�

∫
d2b e−ib·(p−p′)/�

×
[
1 − exp

(
−iµ
� |p′|

∫ ∞

−∞
dρ V (b, ρ)

)]
(15.7.7)

where we have finally introduced the integration variable ρ. The expression
in (15.7.7) is usually referred to as the impact parameter representation of
the scattering amplitude, where |b| plays the role of the impact parameter.
If for some R, |b| > R, V (b, ρ) = 0, for all ρ, then the b-integral in (15.7.7)
will be restricted for |b| � R.

For V (x), depending on the distance |x| = r between two particles, the
angular part of the integral in (15.7.7) may be explicitly carried out giving

f(p,p′) =
i |p′|

�

∫ ∞

0

b db J0

(
2 |p′|

�
b sin

θ

2

)
[1 − exp iχ (b, |p′|)] (15.7.8)

where J0 is the zeroth order Bessel function and

χ (b, |p′|) = − µ

� |p′|

∫ ∞

−∞
dρ V

(√
b2 + ρ2

)
(15.7.9)

is called the eikonal phase function. The integrability of V
(√

b2 + ρ2
)

on ρ

restricts the class of potentials for the validity of the treatment.
It is remarkable that the eikonal approximation in (15.7.8) satisfies the

optical theorem at high energies. To this end, in the forward direction, i.e.,
for θ = 0, J0(0) = 1,

4π�

|p′| Im f(p′,p′) = 4π
∫ ∞

0

b db [1 − cos χ (b, |p′|)] . (15.7.10)

On the other hand,

dΩ = 2π sin θdθ = 8π sin
θ

2
d
(

sin
θ

2

)
(15.7.11)

for the element of the solid angle, and with κ = 2 |p′| sin(θ/2)/�, we have
∫

dΩ |f(p,p′)|2 = 2π

∫ ∞

0

b db

∫ ∞

0

b′ db′
[
1 − e−iχ(b,|p′|)

] [
1 − eiχ(b′,|p′|)

]
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×
∫ 2|p′|/�

0

κ dκ J0(κb)J0(κb′). (15.7.12)

At high energies, i.e., for |p′| large,

∫ 2|p′|/�

0

κ dκ J0(κb)J0(κb′) −→ δ(b − b′)
b

(15.7.13)

from which∫
dΩ |f(p,p′)|2 = 4π

∫ ∞

0

b db [1 − cos χ (b, |p′|)] . (15.7.14)

This, unlike the Born approximation expression, satisfies the equality in
(15.4.20) of the optical theorem as a consistency check. The Born approxi-
mation, however, is not restricted to small deflection scattering angles.

For an eikonal approximation for the Coulomb potential see Prob-
lem 15.15.

15.7.2 Determination of Asymptotic “Free” Green Function of the
Coulomb Interaction

The starting point for the determination of the asymptotic “free” propa-
gators is provided by examining (15.6.22) near the energy shell.

Upon substituting

K
(
x,p′; z�/(p0 − E(p′))

)

� exp− i
�

∫ z�/(p0−E(p′))

0

dβ V

(
x − p′

µ
β

)
(15.7.15)

in (15.6.22), we obtain
∫

d3p eip·x/�G+(p,p′; p0) � −ieix·p′/�

[p0 − E(p′) + iε]

∫ ∞

0

dz eiz(1+iε)

× exp− i
�

∫ z�/(p0−E(p′))

0

dβ V

(
x − p′

µ
β

)
(15.7.16)

for p0 − E(p′) � 0, ε → +0.
For the Coulomb potential V (x) = λ/ |x|,

∫ z�/(p0−E(p′))

0

dβ V

(
x − p′

µ
β

)
� λµ

|p′| ln
(

2 |p′| z�

µ(p0 − E(p)) |x| (1 − cos θ)

)

(15.7.17)

Scattering at Small Deflection Angles at High Energies
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for (p0 − E(p′)) � 0. Hence

exp− i
�

∫ z�/(p0−E(p′))

0

dβ V

(
x − p′

µ
β

)

� 1

[p0 − E(p′) + iε]−iγ
exp−iγ ln

(
2p′2z�

µ (|p′| |x| − p′ · x)

)
(15.7.18)

where γ = λµ/� |p′|.
Finally using the integral (ε → +0)

∫ ∞

0

dz eiz(1+iε)(z)−iγ = ieπγ/2 Γ(1 − iγ) (15.7.19)

this gives from (15.7.18), (15.7.16),
∫

d3p eip·x/� G+(p,p′; p0)

� eix·p′/�
e−iγ ln(2p′2/µ)

[p0 − E(p′) + iε]1−iγ
e
iγ ln

(
|p′||x|−p′·x

�

)
eπγ/2Γ(1 − iγ)

(15.7.20)

near the energy shell, which is to be compared with (15.5.10), (15.5.11), with
the latter obtained from the explicit solution of G+. Equation (15.7.20) gives
the asymptotic “free” Coulomb Green function G0C

+ (p′) in (15.5.11).
For additional applications of the eikonal approximation see Prob-

lem 15.14, 15.15. See also Problem 15.16.

15.8 Multi-Channel Scatterings of Clusters and Bound
Systems

In the present section, we extend our earlier analysis in this chapter to de-
scribe the scattering of bound particles and clusters (§2.5), in general, as well,
where the initial and final particles in a process are not necessarily the same.
The internal states of the particles are also allowed to change, in the analy-
sis, upon scattering. For example, a hydrogen atom may be excited from its
ground state or be completely ionized, with its electron being stripped from
the proton, upon the impact of the atom by an electron. To carry out such
analyses, we first introduce the concept of channels and channel Hamiltoni-
ans. This will allow us to discuss various possible processes, such as the ones
mentioned above, and define the Hamiltonians corresponding to the asymp-
totic time evolutions immediately after the preparatory stage and just before
the detection stage in scattering. This is followed by finding the solutions of
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the fully interacting theories, corresponding to the preparatory states, ob-
taining the expressions for the differential cross sections and generalizing the
optical theorem of §15.4 to accommodate the above cases. We then study
some subtleties occurring in carrying out the Born approximation for three-
particle systems and develop equations for handling such a problem. Finally,
we extend the phase shift analysis carried out in §15.4 to extract information
on inelastic processes.

15.8.1 Channels and Channel Hamiltonians

We consider a system of particles interacting via two-body potentials. To
describe the general scattering processes intended in this section, we follow
the analysis carried out in §2.5 and group the particles in consideration into
clusters. The Hamiltonian of the system may be then written quite generally
in the form in (2.5.48), where VA, VE in (2.5.49), (2.5.50) are the intra-
clusteral and inter -clusteral interaction potentials.

For example consider a system of three particles forming two clusters, with
one consisting of one particle and the other one consisting of two particles.
Such a grouping may, for example, correspond to studying a scattering process
involving a positron, defining the first cluster, and a hydrogen atom, defining
the second cluster, composed of an electron and a proton.

The Hamiltonian of the system of the three particles, interacting with
two-body potentials, may be written as

H =
3∑

i=1

p2
i /2mi + V12 (x1 − x2) + V13 (x1 − x3) + V23 (x2 − x3) (15.8.1)

For the two cluster system, the kinetic energy term of H in (15.8.1) may
be rewritten (see §2.5, in particular, (2.5.48)), consistently with Galilean in-
variance, as

H0 ({1, (2, 3)}) =
P2

2M
+

(
p1 − m1

M P
)2

2m1
+

(
p2 + p3 −

(m2+m3)
M P

)2

2 (m2 + m3)

+

(
p2 − m2

m2+m3
(p2 + p3)

)2

2m2
+

(
p3 − m3

m2+m3
(p2 + p3)

)2

2m3

(15.8.2)

where
P = p1 + p2 + p3, M = m1 + m2 + m3 (15.8.3)

and p1 denotes the momentum of the cluster involving the one particle.
The physical interpretation of the terms in (15.8.2) is as follows. P2/2M
represents the kinetic energy associated with the center of mass motion. The
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second and third term denote, respectively, the kinetic energies of the two
clusters with the center of mass motion removed. The fourth and fifth terms
denote the kinetic energies of the two particles making up the second cluster
with their center of mass motion removed.

We note that the second and the third terms in (15.8.2) may be combined
to yield

((m2 + m3)p1 − m1 (p2 + p3))
2

2M2µ1
(15.8.4)

where
µ1 = m1 (m2 + m3) /M (15.8.5)

Similarly the fourth and the fifth terms in (15.8.2) combine to yield

(m3p2 − m2p3)
2

2 (m2 + m3)
2
µ23

(15.8.6)

where
µ23 = m2m3/ (m2 + m3) (15.8.7)

Also note that

q23 = (m3p2 − m2p3) / (m2 + m3) (15.8.8)

denotes the relative momentum of particle 2 with respect to particle 3, and

q1 = [(m2 + m3)p1 − m1 (p2 + p3)]/M (15.8.9)

is the momentum of particle 1 relative to the center of mass of the cluster
consisting of particles 2 and 3.

To introduce the concept of a channel and the corresponding channel
Hamiltonian, we introduce the variables

r = x2 − x3 (15.8.10)

R2 = (m2x2 + m3x3) /(m2 + m3) (15.8.11)

R = (m1x1 + m2x2 + m3x3) /M (15.8.12)

η = x1 − R2 (15.8.13)

where r, η are conjugate to q23, q1, respectively, to rewrite the Hamiltonian
in (15.8.1)/(15.8.2), as (see (2.5.58))

H = − �
2

2M
∇2

R − �
2

2µ1
∇2

η − �
2

2µ23
∇2

r + V12

(
η − m3

m2 + m3
r
)

+ V13

(
η +

m2

m2 + m3
r
)

+ V23 (r) (15.8.14)
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and µ1, µ23 are the reduced masses defined in (15.8.5), (15.8.7). Here V12,
V13 are referred to as inter-clusteral interaction potentials describing the in-
teraction of the first cluster, consisting of one particle, with the two particles
making up the second cluster. On the other hand, V23(r) is referred to as the
intra-clusteral interaction potential responsible for the interactions between
the two particles within the second cluster.

The concept of a channel and the corresponding channel Hamiltonian
naturally arises from (15.8.14) as follows. If for |η| → ∞, V12, V13 → 0 in
(15.8.14), then we may define a channel Hamiltonian H1,

H1 = − �
2

2M
∇2

R − �
2

2µ1
∇2

η − �
2

2µ23
∇2

r + V23 (r) (15.8.15)

with one cluster remotely separated from the other. Here there is no break
up of the second cluster made up of particles 2 and 3 interacting via the
potential V23(r). This Hamiltonian may be then used to describe the ini-
tial (or final) stage of a scattering process when the two clusters are widely
separated. The grouping of the three particles into two groups (clusters) de-
fines a possible arrangement channel. This latter channel may be denoted
by {(1) , (2, 3)} consisting of two clusters, one involving particle 1, and the
other involving particles 2 and 3. By interchanging particle 1 and 2, we may
introduce the channel {(2) , (1, 3)} and, in turn introduce the corresponding
channel Hamiltonian H2. Another possible channel is {(1) , (2) , (3)} consist-
ing of three clusters each made up of one particle and so on.

A multi-channel scattering from channel {(1) , (2, 3)} to channel
{(2) , (1, 3)} is depicted in Figure 15.3.

Most importantly, we note that the total Hamiltonian H in (15.8.1), may
be equivalently rewritten in terms of the channel Hamiltonians H1, H2 intro-
duced above as

H = H1 + V1 = H2 + V2 (15.8.16)

where

H1 = H0 ({1, (2, 3)}) + V23 (x2 − x3) (15.8.17)

V1 = V12 (x1 − x2) + V13 (x1 − x3) (15.8.18)

H2 = H0 ({2, (1, 3)}) + V13 (x1 − x3) (15.8.19)

V2 = V12 (x1 − x2) + V23 (x2 − x3) (15.8.20)

where H0 ({1, (2, 3)}) is defined in (15.8.2). Here V1, defines the inter-clusteral
interaction between the clusters (1) , (2, 3), and similarly, V2 defines the inter-
clusteral interaction between the clusters (2) , (1, 3).

For the collision of two clusters containing, respectively, n1, n2 particles,
the Hamiltonian, consistent with Galilean invariance, may be written as
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2
1, 3

1 2, 3

Fig. 15.3. The figure depicts the scattering of two clusters from channel
{(1) , (2, 3)} to channel {(2) , (1, 3)}, with channel Hamiltonians H1, H2, re-
spectively, as described in the text.

H =
P2

2M
+

n1∑
β=1

(
P1β − m1β

M1
P1·

)2

2m1β
+

n2∑
β=1

(
P2β − m2β

M2
P2·

)2

2m2β

+

(
P1· − M1

M P
)2

2M1
+

(
P2· − M2

M P
)2

2M2
+

n1∑
α<β

V1αβ (x1α − x1β)

+
n2∑

α<β

V2αβ (x2α − x2β) +
n2∑

α=1

n1∑
β=1

V3αβ (x1β − x2α) (15.8.21)

in the notation of (2.5.48), where, in particular, the last term is responsible
for the inter-clusteral interaction. The fourth and fifth kinetic energy terms
may combined to (

M2P1· − M1P2·
M

)2 1
2µ12

(15.8.22)

where
µ12 =

M1M2

M1 + M2
(15.8.23)

is the reduced mass of the two clusters. (M2P1· − M1P2·) /M denotes the
relative momentum of the first cluster with respect to the second one.
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On the other hand, the five kinetic energy terms in (15.8.21) may be also
simply combined (see, for example (2.5.21)) to

2∑
α=1

nα∑
β=1

P2
αβ

/
2mαβ (15.8.24)

which allows us to re-group together the momenta, as done in the kinetic en-
ergy terms in (15.8.21), in different manners to define new clusters. Finally,
we note that we may also re-group the potential energy terms in (15.8.21)
consistently with the emerging newly chosen set of clusters and, in turn,
extract the inter-clusteral part of the potential energies as done for the ex-
ample corresponding to the one depicted in Figure 15.3, and carried out in
(15.8.16)–(15.8.20).

15.8.2 Interacting States Corresponding to Preparatory Channels

Consider a system of non-interacting clusters with total energy Ea

as the sum of their binding energies and their kinetic energies. Let
|Φa

in (Ea)〉 exp (−iEat/�) denotes the state describing the system, where
|Φa

in (Ea)〉 satisfies the time-independent Schrödinger equation

(Ha − Ea) |Φa
in (Ea)〉 = 0 (15.8.25)

where Ha is the channel Hamiltonian for the system of the non-interacting
clusters. Note that, Ha includes the intra-clusteral interaction potentials re-
sponsible for keeping (binding) the particles within the clusters together. Let
Va denote the inter-cluster potential responsible for the interaction of clusters
when they eventually merge together in a scattering process.

The total Hamiltonian of the interacting system is, by definition, given
by

H = Ha + Va (15.8.26)

The interacting state corresponding to the initial system of non-
interacting clusters may be written as

∣∣ψa
− (Ea)

〉
exp (−iEat/�), where

∣∣ψa
− (Ea)

〉
= |Φa

in (Ea)〉 +
1

(Ea − Ha + iε)
Va

∣∣ψa
− (Ea)

〉
(15.8.27)

as seen below.
Upon multiplying this equation by (Ea − Ha + iε) and by re-arrangement

of terms we get

(Ea − H + iε)
∣∣ψa

− (Ea)
〉

= (Ea − Ha + iε) |Φa
in (Ea)〉 (15.8.28)

where we have used (15.8.26). By taking the limit ε → +0 and using (15.8.25),
we verify that

∣∣ψa
− (Ea)

〉
satisfies the time-dependent Schrödinger equation
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(H − Ea)
∣∣ψa

− (Ea)
〉

= 0 (15.8.29)

involving the fully interacting Hamiltonian H.
Formally, if we replace Ea in (15.8.27) by p0, multiply the resulting equa-

tion by χ
(
p0 − Ea

)
exp−ip0t/� and integrate over p0, for some function

χ
(
p0 − Ea

)
which is appreciably non-zero for p0 � Ea, we obtain

∫ ∞

−∞

dp0

2π�

[ ∣∣ψa
−
(
p0
)〉

−
∣∣Φa

in

(
p0
)〉]

χ
(
p0 − Ea

)
exp

(
−ip0t/�

)

=
∫ ∞

−∞

dp0

2π�
χ
(
p0 − Ea

) e−itp0/�

(p0 − Ha + iε)
Va

∣∣ψa
−
(
p0
)〉

(15.8.30)

For t < 0 we may, in the complex p0-plane, close the contour of integration
from above, where Im p0 > 0, thus avoiding any pole that may arise from the
Hamiltonian Ha for ε → +0. We may thus formally infer that for t → −∞, the
right-hand side of (15.8.30) would be zero. This gives the correct asymptotic
boundary condition for the interacting state. In the sequel we consider the
limit where χ

(
p0 − Ea

)
becomes (2π�) δ

(
p0 − Ea

)
as done in (15.8.27).

Eventually the initial clusters merge together and the inter-cluster inter-
action Va becomes non-negligible. After their interactions, some new clusters
may emerge in the process with a corresponding new channel Hamiltonian
Hb. By definition the same Hamiltonian H in (15.8.26) may be rewritten as

H = Hb + Vb (15.8.31)

where Vb is the inter-clusteral interaction potential of the new clusters.
To obtain the amplitude for transition from the a channel to the b one, we

first multiply and divide the right-hand side of (15.8.27) by [Ea − Hb + iε],
to get

∣∣ψa
− (Ea)

〉
=

1
[Ea − Hb + iε]

[
(Ea − Ha + iε) + (Ha − Hb)

]
|Φa

in (Ea)〉

+
1

[Ea − Hb + iε]
[
(Ea − Ha + iε) + (Ha − Hb)

] 1
Ea − Ha + iε

Va

∣∣ψa
− (Ea)

〉
(15.8.32)

From (15.8.26), (15.8.31), Ha−Hb = Vb−Va. Accordingly, by using (15.8.29),
and the defining (15.8.27) all over again on the right-hand side of (15.8.32),
we obtain from the latter

∣∣ψa
− (Ea)

〉
=

1
[Ea − Hb + iε]

[
iε |Φa

in (Ea)〉 + Vb

∣∣ψa
− (Ea)

〉]
(15.8.33)

and note the presence of the iε factor multiplying |Φa
in (Ea)〉 on the right-hand

side of the equation.
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15.8.3 Transition Probabilities and the Optical Theorem

The transition amplitude from the a channel to the b channel, with the
latter described by an asymptotic state

∣∣Φb
out (Eb)

〉
exp (−itEb/�), is then

obtained by considering the limit t → +∞ of

〈
Φb

out (t)
∣∣ψa

− (t)
〉

= δ (a, b) +
e−i(Ea−Eb)t/�

[Ea − Eb + iε]
〈
Φb

out (Eb)
∣∣Vb ψa

− (Ea)
〉

(15.8.34)
where we have multiplied the equation by exp−i (Ea − Eb) t/� to define the
corresponding time-dependent states, and have used the equation

〈
Φb

out (Eb)
∣∣ (Ea − Hb + iε) = (Ea − Eb + iε)

〈
Φb

out (Eb)
∣∣ (15.8.35)

Note the cancellation of the iε factor multiplying |Φa
in (Ea)〉 in (15.8.33) on

account of the formal orthogonality relation
〈
Φb

out (Eb)
∣∣Φa

in (Ea)
〉

= δ (a, b) (15.8.36)

where δ (a, b) is symbolic standing for all the variables defining the state. Even
for elastic scattering, where the initial and final clusters are the same, if there
is a change in the momentum of a cluster in the process then δ (a, b) = 0.

The transition probability rate (probability per unit time) from the a
channel to the b channel is then given from (15.8.34) to be (t → +∞)

d
dt

∣∣〈Φb
out (t)

∣∣ψa
− (t)

〉∣∣2 = 2 Im
{

Taa δ(a, b) +
1
�
|Tba|2

1
[Ea − Eb − iε]

}

= 2δ (a, b) Im (Taa) +
2π

�
δ (Ea − Eb) |Tba|2

(15.8.37)

where
Tba =

〈
Φb

out (Eb)
∣∣Vb ψa

− (Ea)
〉
. (15.8.38)

For δ (a, b) = 0, corresponding to any changes occurring in the variables
of the process by the collision of the clusters, (t → +∞)

d
dt

∣∣〈Φb
out (t)

∣∣ψa
− (t)

〉∣∣2 =
2π

�
δ (Ea − Eb) |Tba|2 (15.8.39)

where the conservation of the total energy is evident.
For an application, consider the collision of a cluster of momentum p′,

with wavefunction normalized within a unit volume of space, with a cluster
at rest. In the center of mass frame, if µa denotes the reduced mass of the
two cluster system, then p′/µa denotes the incident flux. Upon summing
(integrating)

∑f(b) over the group of final states observed in the experiment
pertaining to the b channel, we obtain from (15.8.39)
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σba =
2πµa

|p′| �
∑f(b)

δ (Eb − Ea) |Tba|2 (15.8.40)

for the cross section for the transition from the a channel to the b channel.
On the other hand, if we sum the left-hand side of (15.8.37) over all pos-

sible channels with all configurations that may make transitions to from the
a channel, we have to obtain zero on account of the conservation probability
and the presence of the time derivative d/dt. Accordingly, (15.8.37) leads
from (15.8.40) to the equality,

σ =
∑

b

σba =
2µa

|p′|
∑

b

∑f(b)
δ (a, b) Im (−T ′

aa) (15.8.41)

where σ is the total cross section for transition from the a channel, and
T ′

aa corresponds to the transition for the elastic scattering where no changes
occur in the variables of the scattering process. Equation (15.8.41) is the
generalization of the optical theorem in (15.4.6).

15.8.4 Basic Processes

As an application of (15.8.40), we first consider the scattering of a particle
off a bound state. More specifically we treat the problem of the scattering of
a positron (e+) off a hydrogen atom. Let m denote the mass of e+ or e−, and
m0 the mass of the proton, taking into account that m0 � m. Labelling e+,
e− to be particles 1, 2, we have for the Hamiltonian in (15.8.14),

H −→ p2
1

2m

2m + m0

(m + m0)
+

p2
2

2m

(m + m0)
m0

− e2∣∣∣η − m0
m0+mr

∣∣∣

+
e2∣∣∣η + m
m+m0

r
∣∣∣ −

e2

|r|

−→ p2
1

2m
+

p2
2

2m
− e2

|η − r| +
e2

|η| −
e2

|r| (15.8.42)

where η, r denote the position vectors of e+, e− from the origin where the
proton is situated.

We consider the elastic scattering of e+ off the hydrogen atom with the
latter remaining in its initial ground state. Then

Va = − e2

|η − r| +
e2

|η| = Vb (15.8.43)

signalling the fact that the electron remains bound to the proton in the
scattering process.
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Let p′ denotes the initial momentum of e+, and (see (7.1.4)), (m0 � m)

Φ0 (x) =
1√
πa3

0

exp (− |x| /a0) , a0 = �
2/me2 (15.8.44)

is the ground-state wavefunction of the hydrogen atom, with E0, below, de-
noting the ground-state energy.

As an approximation to (15.8.40), (15.8.38) we may take33

dσ

dΩ
=

2πm

� |p′|

∫ ∞

0

p2dp

(2π�)3
δ

(
E0 +

p′2

2m
− E0 −

p2

2m

)
|I (p,p′)|2 (15.8.45)

with (q = p − p′)

I (p,p′) =
∫

d3η d3r e−iq·η/� |Φ0 (r)|2
[
− e2

|η − r| +
e2

|η|

]
(15.8.46)

Using the integrals
∫

d3η
e−iq·η/�

|η − r| =
4π�

2

q2
e−iq·r/� (15.8.47)

∫
d3r e−iq·r/� |Φ0 (r)|2 =

[
1 +

1
4
q2a2

0

�2

]−2

≡ F (|q|) (15.8.48)

we obtain from (15.8.45)

dσ

dΩ
=

m2e4

4 (p′)4 sin4 (θ/2)
[1 − F (|q|)]2 (15.8.49)

|q| = 2 |p′| sin θ/2 (15.8.50)

with θ denoting the scattering angle of e+.
F (|q|) is called the atomic form factor. For |p′| sin θ/2 � �/a0, F (|q|) �

1, and the hydrogen atom appears neutral to e+, dσ/dΩ � 0 and no scattering
occurs. For |p′| sin θ/2 � �/a0, F (|q|) � 0, and the differential cross section
in (15.8.49) approaches the ordinary Coulomb scattering one in (15.5.39)
with e+ experiencing the charge of the proton. For intermediate values of
|p′| sin θ/2, e+ sees the atom with an effective charge

eeff = e
√

Z (|q|) (15.8.51)
33 Here we have also neglected logarithmic distortions as occurring in (15.5.10)

accompanying charged particles.
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with
Z (|q|) = [1 − F (|q|)]2 (15.8.52)

as an effective charge “renormalization” factor, with total screening of the
charge of the proton Z (|q|) → 0 at zero momentum transfer |q| → 0.

As another application of (15.8.40), we treat the problem of the ionization
of the hydrogen atom upon the impact of an electron, with the atom initially
in its ground-state.

The Hamiltonian is given by the expression (m0 � m)

H =
p2

1

2m
+

p2
2

2m
+

e2

|η − r| −
e2

|η| −
e2

|r| (15.8.53)

and

Ha =
p2
1

2m
+

p2
2

2m
− e2

|r| , Va =
e2

|η − r| −
e2

|η| (15.8.54)

with r denoting the position vector of the initially bound electron.
Let Φ0 (x), as in (15.8.44), denote the ground state of the hydrogen atom.

We take Hb = Ha, with Φ(x,p2) denoting an eigenfunction corresponding to
the continuous spectrum of the hydrogen atom. We know from (1.8.51), that

〈Φ(·,p2) |Φ0 (·)〉 = 0. (15.8.55)

As a first approximation to (15.8.38), we take the amplitude

A (p1,p
′
1,p2) =

∫
d3ρ d3r e−ip1·η/� Φ∗ (r,p2)

[
e2

|η − r| −
e2

|η|

]

× Φ0 (r) eip′
1·η/� (15.8.56)

For the exchange amplitude, for the two-electron system, we may then
define

Aexc (p1,p
′
1,p2) =

∫
d3ρ d3r Φ∗ (η,p2) e−ip1·r/�

[
e2

|η − r| −
e2

|η|

]

× Φ0 (r) eip′
1·η/� (15.8.57)

by interchanging η ↔ r in the final states in (15.8.56).
Due to the orthogonality relation in (15.8.55), the second term −e2/ |η|

in the square brackets in (15.8.56) vanishes upon integration over r. Using
the integral (15.8.47), we obtain

A (p1,p
′
1,p2) =

4πe2
�

2

q2
f (q,p2) (15.8.58)

where
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f (q,p2) =
∫

d3r e−iq·r/� Φ∗ (r,p2) Φ0 (r) (15.8.59)

q = p1 − p′
1. (15.8.60)

In (15.8.57), we cannot dismiss with the −e2/ |η| term in the square brack-
ets since Φ∗ (η,p2) and Φ0 (r) depend on different variables. Using, (15.8.47),
and the integral

∫
d3r e−iQ·r/� Φ0 (r) = 8

√
πa3

0

[
1 + Q2a2

0/�
2
]−2

≡ g (|Q|) (15.8.61)

we may rewrite

Aexc (p1,p
′
1,p2) =

∫
d3q′

(2π�)3
4πe2

�
2

q′2

∫
d3η e−i(q′−p′

1)·η/� Φ∗ (η,p2)

× [g (|q′ − p1|) − g (|p1|)] . (15.8.62)

As a second approximation, we replace Φ∗ (x,p2) in (15.8.59), (15.8.62)
by exp (−ip2 · x/�). This gives

A (p1,p
′
1;p2) =

4πe2
�

2

q2
g (|q + p2|) . (15.8.63)

Conservation of energy, implies that

|p1| =
√

p′2 − p2
2 + 2mE0 (15.8.64)

Hence for an initial incident electron of sufficiently high energy p′2a2
0/�

2 � 1,
p2

2 not large, g (|p1|) � 0, and we obtain from (15.8.62)

Aexc (p1,p
′
1,p2) =

4πe2
�

2

|p2 − p′|2
g (|q + p2|) (15.8.65)

or

Aexc (p1,p
′
1,p2) =

q2

|p2 − p′|2
A (p1,p

′
1,p2) (15.8.66)

where q is given in (15.8.60) and A (p1,p
′
1,p2) in (15.8.63).

For an unpolarized beam of electrons, we have to take the following com-
bination of A and Aexc (see (15.3.39))

|A|2 + |Aexc|2 − Re (A∗Aexc) = P (15.8.67)

in computing dσ for the process.
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In detail, (15.8.63), (15.8.66) give

P =
(

4πe2
�

2

q2

)2

g2 (|q + p2|)
[
1 +

q4

|p2 − p′|4
− q2

|p2 − p′|2

]
. (15.8.68)

From (15.8.40), (15.8.68),

σ =
2πm

� |p′
1|

∫
d3p1

(2π�)3
d3p2

(2π�)3
δ

(
p′

1
2

2m
+ E0 −

p1
2

2m
− p2

2

2m

)
P (15.8.69)

and by setting
ε2 = p2

2/2m (15.8.70)

we obtain, by integrating over |p1| in the process over the delta distribution
in (15.8.69),

dσ

dε2
=

2πm3

� (2π�)6
|p1| |p2|
|p′

1|

∫
dΩ1dΩ2 P (15.8.71)

where |p1| is given in (15.8.64), P in (15.8.68), (15.8.61). For carrying out
the angular integrals under a simplifying assumption made on the correction
due to exchange in P, as given in (15.8.68), see Problem 15.19.

15.8.5 Born Approximation, Connectedness and Faddeev
Equations

Consider a two-particle system with a two-body potential V12. The opera-
tor form of the Green function34 G =

[
p0 − H + iε

]−1, up to a multiplicative
constant, may be written as

G = G0 + G0V12G (15.8.72)

or formally in a perturbative expansion as

G =
∑
n�0

(
G0V12

)n
G0 (15.8.73)

where G0 =
[
p0 − H0 + iε

]−1 and H0 is the free two-particle Hamiltonian.
In the center of mass of the two-particle system, the matrix element〈

p1,p2

∣∣G0V12

∣∣p′
1,p

′
2

〉
, in detail, is given by

〈
p1,p2

∣∣G0V12G
0
∣∣p′

1,p
′
2

〉

34 To simplify the notation further, we omit the + sign in G+, G0
+, corresponding

to ε → +0, in the remaining part of this section. G is related to the resolvent of
H.
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=
δ3 (p1 + p2 − p′

1 − p′
2)[

p0 − p2
1

2m1
− p2

2
2m2

+ iε
] 〈q12 |V12|q′

12〉
1[

p0 − p′
1
2

2m1
− p′

2
2

2m2
+ iε

]
(15.8.74)

up to a finite multiplicative constant, and where, in the notation of (15.8.8),

q12 = (m2p1 − m1p2) / (m1 + m2) (15.8.75)

denotes the relative momentum of particle 1 with respect to 2, and note that

q12 − q′
12 = p1 − p′

1 (15.8.76)

denotes the momentum transfer to particle 1. The δ3 (p1 + p2 − p′
1 − p′

2)
factor arises as a consequence of momentum conservation.

The expression on the right-hand side of (15.8.74) is depicted diagram-
matically in Figure 15.4 (a), where the horizontal lines represent the two
particles with initial and final momenta p′

1,p
′
2 and p1,p2, respectively. They

are connected by the wiggly line, representing the interaction potential, giv-
ing rise to a net momentum transfer p1 − p′

1 = − (p2 − p′
2). The right and

left of the interaction lines are multiplied by G0, with H0 replaced by the
sum of the kinetic energies of the particles with momenta p′

1,p
′
2 and p1,p2,

respectively. An overall δ3 (p1 + p2 − p′
1 − p′

2) arises in G0V G0V G0, and for
the higher orders as well, as a consequence of momentum conservation.

(a)

p1p1

p2p2

p′
1p′

1

p′
2p′

2

G0G0G0G0G0

(b)

V12 V12V12

p′′
1

p′′
2

Fig. 15.4. (a) This figure depicts the expression on the right-hand side of
(15.8.74). The wiggly line represents the potential energy V12, connecting the
two particles, with H0 in the G0, on the right and left of V12, evaluated, respec-
tively, at the sum of the kinetic energies of the two particles with momenta
p′

1,p
′
2 and p1,p2. The figure in (b) represents the product G0V12G

0V12G
0,

with p′′
1 = p1 + p2 − p′′

2 , as a net integration variable, and H0 in G0 in the
middle, is evaluated at p′′

1
2
/2m1 + p′′

2
2
/2m2.

Equation (15.8.72) may be depicted diagrammatically as shown in Fig-
ure 15.5, where the two horizontal unconnected lines represent two free par-
ticles. The remaining part of figure represents the connected part of G where
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the two particles are necessarily interacting connected by at least one wiggly
line as seen in Figure 15.4.

G C

Fig. 15.5. A diagrammatic representation of G in (15.8.72), where the first
two horizontal lines on the right-hand side show two non-interacting parti-
cles, i.e., not connected with wiggly lines as in Figure 15.4. The second term
gives the connected part of G, represented by graphs of the type shown in
Figure 15.4, and others of arbitrary orders, where the two lines, representing
the particles, are connected by at least one wiggly line.

From (15.8.72) and Figure 15.4, the connected part C of G is given by

C =
1

(p0 − H + iε)
V12

1
(p0 − H0 + iε)

(15.8.77)

Now let us investigate the situation corresponding to an expansion as in
(15.8.73) for a three-particle system interacting with two-body potentials.

As in (15.8.8), (15.8.9), we define the momenta

qij =
(
mjpi − mipj

)
/ (mi + mj) (15.8.78)

qi =
[
(mj + mk)pi − mi

(
pj + pk

)]
/M (15.8.79)

with i, j, k = 1, 2, 3, j �= i �= k.
The free three-particle Hamiltonian may be written in various forms (see

(15.8.2)),

H0 =
p2

1

2m1
+

p2
2

2m2
+

p2
3

2m3
=

q2
12

2µ12
+

q2
3

2µ3

=
q2

23

2µ23
+

q2
1

2µ1

=
q2

13

2µ13
+

q2
2

2µ2
(15.8.80)

where

µij = mimj/ (mi + mj) (15.8.81)
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µi = mi (mj + mk) /M (15.8.82)

with the indices defined as above.
The total potential energy V may be defined as in (15.8.1) consisting of

three terms V12, V13, V23. We may also introduce four channel Hamiltonians

H0 = H0

H1 = H0 + V23

H2 = H0 + V13

H3 = H0 + V12

(15.8.83)

corresponding, respectively, to all the particles are free, particle 1 is free,
particle 2 is free, and particle 3 is free. The inter-clusteral potentials Va,
a = 0, 1, 2, 3, such that Ha + Va = H, with the latter denoting the total
Hamiltonian, are then given by

V0 = V12 + V13 + V23 ≡ V
V1 = V12 + V13

V2 = V12 + V23

V3 = V13 + V23

(15.8.84)

From (15.8.27), (15.8.38), the transition operator, whose matrix elements
are given by Tba in (15.8.38), from the a channel to the b channel, may be
written as

Uba = Vb + Vb
1

p0 − H + iε
Va (15.8.85)

off the energy shell.
As before

G = G0 + G0 V G (15.8.86)

where now V consists of the three terms in (15.8.84), and G0 =(
p0 − H0 + iε

)−1 for a free three-particle system.
A perturbation expansion for G as in (15.8.73) is not useful as will be

seen below. For example, up to a finite multiplicative constant,

〈
p1,p2,p3

∣∣G0V G0
∣∣p′

1,p
′
2,p

′
3

〉
=

δ3 (p1 + p2 + p3 − p′
1 − p′

2 − p′
3)(

p0 −
3∑

i=1

p2
i /2mi + iε

)

×
[
〈q12 |V12|q′

12〉 δ3 (p3 − p′
3) + 〈q13 |V13|q′

13〉 δ3 (p2 − p′
2)

+ 〈q23 |V23|q′
23〉 δ3 (p1 − p′

1)
] 1[

p0 −
3∑

i=1

p′
i
2/2mi + iε

] (15.8.87)

where the first term within the square brackets indicates that particle 3 is
just a “spectator” and does not participate in the interaction, while particles
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1 and 2 interact via the potential V12. A similar interpretation is given to
the other two terms involving δ3 (p2 − p′

2) and δ3 (p1 − p′
1) as factors. The

expression on the right-hand side of (15.8.87) is represented diagrammati-
cally in Figure 15.6 (a). The deltas within the square brackets corresponding
to “spectator” particle will be referred to as dangerous deltas for reasons
discussed below.

(a) (b)

1
2
3

Fig. 15.6. (a) The first graph shows that particle 3, a “spectator”, does
not participate in the interaction, while particles 1 and 2 interact via the
potential V12, depicted by the vertical wiggly line connecting lines 1 and 2. A
similar interpretation is also given for the other two graphs. All these graphs
are disconnected including dangerous deltas associated with the “spectator”
particles. (b) A connected graph, where all the particles interact, representing
the term G0V23G

0V12G
0, involving no dangerous deltas, coming from a higher

order expansion of G.

The problem with (15.8.87) and similar terms of higher orders is
as follows. In computing transition amplitudes, one would take the ab-
solute values squared of terms such as in (15.8.87). The overall delta
δ3 (p1 + p2 + p3 − p′

1 − p′
2 − p′

3) is harmless in the sense that in com-
puting a physical quantity, such as a transition amplitude, per unit vol-
ume v, as v → ∞, as done in going from (15.5.37) to (15.5.38),
and also in going from (15.8.39) to (15.8.40), in obtaining the differen-
tial cross sections, the squaring of δ3 (p1 + p2 + p3 − p′

1 − p′
2 − p′

3) gives
δ3(0)δ3 (p1 + p2 + p3 − p′

1 − p′
2 − p′

3) =
(v/ (2π�)3)δ3 (p1 + p2 + p3 − p′

1 − p′
2 − p′

3), v → ∞, and the volume v does
not contribute in such a computation. This is unlike the squaring of the deltas
within the square brackets in (15.8.87) and any manipulation involving them
becomes meaningless.

It is thus clear that an expansion such as in (15.8.73), for the present case,
is not useful, and we have to obtain the connected part of G, as done for the
two-particle case in (15.8.77). We also have to find an iterative summation
procedure in evaluating the connected part of G involving no dangerous deltas
of the types mentioned above.

The connected part of G may be found as follows. We collect all the
graphs where particle 3 is a spectator, and denote the resultant graph by
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Λ3. Similarly define Λ2 and Λ1. Finally, we note that G0 represents the three
particles as free. The connected part C of G is then given by inspection to
be

C = G − Λ3 − Λ2 − Λ1 − G0 (15.8.88)

From (15.8.77), we note that

Λ3 = G12V12G
0 (15.8.89)

Λ2 = G13V13G
0 (15.8.90)

Λ1 = G23V23G
0 (15.8.91)

where now H0, of course, is the free three-particle Hamiltonian,

Gij =
[
p0 − H0 − Vij

]−1 (15.8.92)

The connected part C of G is depicted in Figure 15.7.

G0

C G

Λ3 Λ2 Λ1

1
2
3

Fig. 15.7. The connected part of G, where Λ3, Λ2, Λ1 are defined in (15.8.89),
(15.8.90), (15.8.91), respectively.

The explicit demonstration of (15.8.88) is straightforward. To this end,
we note that the transition operator from the channel 0 to channel 0, U00

in (15.8.85), i.e., for which the three particles are initially and finally free, is
given by

U00 = V + V G0U00 = V + U00G
0V

= V + V G V

≡ U (15.8.93)

In particular,
V G = U G0 (15.8.94)

which, in turn implies that

G = G0 + G0U G0 (15.8.95)



864 15 Quantum Scattering

Define two-particle amplitudes

Ui = Vjk + VjkGjkVjk (15.8.96)

with cyclic interchange of i, j, k, j < k, i, j, k = 1, 2, 3, with Gjk defined in
(15.8.92), involving the three-particle free Hamiltonian H0, and the potential
Vjk.

Also set
Vjk + VjkG0U = U (i) (15.8.97)

and note that
U (1) + U (2) + U (3) = U (15.8.98)

as implied by the first equality in (15.8.93), and the fact that V12+V13+V23 =
V .

Upon substituting
G0 = Vjk − GjkVjkG0 (15.8.99)

in (15.8.97), using the latter equation all over again in the resulting expres-
sion, and (15.8.98), we obtain

U (i) = Vjk + VjkGjk

(
Vjk + U (j) + U (k)

)

= Ui + VjkGjk

(
U (j) + U (k)

)
(15.8.100)

where we have, in the process, used (15.8.94). Finally, since

VjkGjk = UiG
0 (15.8.101)

as in (15.8.94), we have

U (i) = Ui + UiG
0
(
U (j) + U (k)

)
(15.8.102)

These equations are referred to as the Faddeev equations.35 We note, in par-
ticular, that each U (i) is coupled to two different U (j)’s with j �= i, only.

Equations (15.8.102) provide an iterative procedure to determine the U (i)

in terms of two-particle amplitudes U1, U2, U3 defined in (15.8.96).
From (15.8.95), (15.8.97), (15.8.98) and (15.8.102), we then have

G = G0 + G0 (U1 + U2 + U3) G0 + G0U1G
0
(
U (2) + U (3)

)
G0

+ G0U2G
0
(
U (1) + U (3)

)
G0 + G0U3G

0
(
U (1) + U (2)

)
G0 (15.8.103)

Now it is easy to see that

35 Faddeev (1960, 1961, 1962).
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G0 (U1 + U2 + U3) G0 = Λ1 + Λ2 + Λ3 (15.8.104)

with Λ1, Λ2, Λ3 defined in (15.8.89)–(15.8.91), from which we obtain

C = G0U1G
0
(
U (2) + U (3)

)
G0 + G0U2G

0
(
U (1) + U (3)

)
G0

+ G0U3

(
U (1) + U (2)

)
G0 (15.8.105)

for the connected part of G. That C is indeed connected follows by noting
that from iterating the Faddeev equations in determining U (1), U (2), U (3), in
terms of U1, U2, U3, we always obtain for C the sum of terms of the form

· · ·
(
G0Ui

) (
G0Uj

)
G0 · · · (15.8.106)

with i �= j, for any two consecutive terms in a product in the sum. The fact
that i �= j in (15.8.106), as just discussed, implies that such terms are nec-
essarily connected and thus do not involve the dangerous one particle deltas
mentioned earlier. Equations (15.8.105), (15.8.102) allow thus the determi-
nation of the connected part C of G.36

15.8.6 Phase Shifts Analysis

Consider a two-cluster system in the center of mass frame. The total
angular momentum in this frame consists (see (2.7.39)/(2.7.40)) of the orbital
angular momentum of relative motion and the internal angular momenta of
each of the two clusters. For simplicity of presentation, we study the collision
of a cluster with a target cluster both of zero internal angular momenta. A
generalization including a target with non zero internal angular momentum
is given in Problem 15.20 using the angular momentum decomposition in
(5.10.99), (5.10.103).

Let Taa denote the elastic T-scattering matrix, in the center of mass, of
the collision of the two clusters with zero internal angular momenta. In this
case the angular momentum will be just the orbital angular momentum of the
relative motion. Assuming rotational invariance, the same analysis leading to
(15.4.23) gives

Taa = −2π�
3

µap′a

∞∑
�=0

(2� + 1)
[ηa

� (p) − 1]
2i

P� (cos θ) (15.8.107)

where µa denotes the reduced mass of the two-cluster system, and, as we will
see below, when other channels are available for the scattering process, ηa

� (p)
is not just a phase for all �.

36 For analyses corresponding to more than three particles, cf., Weinberg (1964);
Yakubovsky (1967); Grinyuk (1980).
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The elastic cross section σaa is given from (15.8.40) to be

σaa =
2πµa

p′a�

∫
d3pa

(2π�)3
δ

(
p2

a

2µa
+ Ea − p′

a
2

2µa
− Ea

)
|Taa|2 (15.8.108)

where Ea is the sum of internal energies of the two clusters. The integration
over pa gives

σaa =
µ2

a

4π2�4

∫
dΩa |Taa|2 (15.8.109)

which allows us to define the elastic scattering amplitude (pa = |pa| = |p′
a|)

faa (pa, θ) = − µa

2π�2
Taa (15.8.110)

as in (15.3.11), with

faa (pa, θ) =
�

2ipa

∞∑
�=0

(2� + 1) [ηa
� (p) − 1] P� (cos θ) (15.8.111)

From (15.8.109) the elastic cross section σaa may be rewritten as (see
(15.4.25))

σaa =
π�

2

p2
a

∞∑
�=0

(2� + 1) |ηa
� (p) − 1|2 (15.8.112)

On the other hand, the optical theorem in (15.8.41) relates Im faa (pa, 0) to
the total cross section σ. The latter may, in general, be different from σaa

when other channels are available for the scattering process to go into from
the a channel. One may then introduce the concept of the reactive cross
section σre, to account for this, defined by

σre = σ − σe� (15.8.113)

where σe� = σaa is the scattering cross section for the a channel in question.
From (15.8.41), the total cross section is given by

σ =
4π�

pa
Im faa (pa, 0) (15.8.114)

or from (15.8.111)

σ =
2π�

2

p2
a

∞∑
�=0

(2� + 1) Re (1 − ηa
� (p)) (15.8.115)

For the reactive cross section we then have

σre =
π�

2

p2
a

∞∑
�=0

(2� + 1)
[
1 − |ηa

� (p)|2
]

(15.8.116)
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as is readily checked from (15.8.113), (15.8.115). Therefore, when there are
other channels available to go into from the a channel, we must have

|ηa
� (p)|2 < 1 (15.8.117)

That is, we may write

ηa
� (p) = |ηa

� (p)| e2iδa
� (p) (15.8.118)

with |ηa
� (p)| < 1 in this more general case. It is interesting to note that if

inelastic processes are permissible, i.e., |ηa
� (p)| < 1, then from (15.8.111) this

implies that the “elastic channel” a is available as well for the collision process
as faa (p, θ) would be non-zero. Note also that σre attains its maximum, for
σre = σe�.

For further generalizations, allowing non-zero internal angular momenta
see Problem 15.20.

Interferometer

An application of great practical importance connected with the passage
of charged particles through matter is that of their energy loss by collisions
with the underlying medium. We here consider the one associated with the
passage of charged particles in hydrogen as a direct application of the formal-
ism developed in the previous section. The analysis may, however, be applied
to other media as well. Finally, we study the problem of neutron interferom-
etry which has been quite important in recent years in quantum physics and
is expected to have further applications in the future. Here we are interested
in the splitting and re-combination of a beam of neutrons in the Earth’s
gravitational field and in the determination of the gravity induced quantum
mechanical phase shift arising from the interference of the combined beams.
The phase shift depends, in particular, on the gravitational and the Planck
constants.

Consider the collision of a charged particle of mass M and charge e0 with a
hydrogen atom. The amplitude for the excitation of the atom from the ground
state Φ0 to an excited state Φn is given, approximately from (15.8.58) to be

A(p,p′) =
4πe0e�

2

q2

〈
Φn

∣∣∣e−iq·x/�

∣∣∣Φ0

〉
(15.9.1)

where q = pn − p′ is the momentum transfer to the charged particle. The
cross section of excitation is then (see, for example, (15.8.69))

15.9 Passage of Particles through Media; Neutron

15.9.1 Passage of Charged Particles through Hydrogen
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σn0 =
32π3e2

0e
2
�

4µ

� |p′|

∫
d3pn

(2π�)3
δ

(
p′2

2µ
+ E0 −

p2
n

2µ
− En

)

×
∣∣〈Φn

∣∣e−iq·x/�
∣∣Φ0

〉∣∣2
|q|4

(15.9.2)

where
µ =

Mm

M + m
(15.9.3)

is the reduced mass of the system, with the reduced mass of the atom taken
to be the mass of the electron. Here E0, En denote the energies associated
with the states Φ0, Φn, respectively.

The |pn|-integration may be readily carried out by using the property of
the delta function to set

|pn| =
√

p′2 + 2µ(E0 − En). (15.9.4)

To carry out the angular integration, we note that for given |p′| , |pn|, with
the latter defined in (15.9.4),

q2 = p2
n − 2 |pn| |p′| cos θ + p′2 ≡ q2 (15.9.5)

we have
2π sin θdθ =

2πqdq

|pn| |p′| (15.9.6)

and
qmax = |p′| + |pn| , qmin = |p′| − |pn| . (15.9.7)

Hence,

σn0 =
8πe2

0e
2µ2

|p′|2
∫ qmax

qmin

dq

q3
Fn0(q) (15.9.8)

where
Fn0(q) =

∣∣∣〈Φn

∣∣∣e−iqz/�

∣∣∣Φ0

〉∣∣∣2 (15.9.9)

and we have arbitrarily chosen the direction of q to be along the z-axis in
computing Fn0(q).

Consider a system of atoms with N denoting the number of atoms per
unit volume. We may then introduce the energy loss per unit path length of
the charged particle in passing through the medium by

− dE

dL
=

∑′

n

(En − E0)N σn0 (15.9.10)

where the summation (integration) goes over all the accessible states for the
discrete as well as the continuous energy levels.

We may rewrite (15.9.10) in an equivalent form by setting
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2m

q2
(En − E0)Fn0(q) = fn0(q) (15.9.11)

to obtain

− dE

dL
=

4πe2
0e

2µ2N

m |p′|2
∑′

n

∫ qmax

qmin

dq

q
fn0(q) (15.9.12)

where we recall that qmin/max depend on n.
The function fn0(q) has the following important completeness property

∑′

n

fn0(q) = 1 (15.9.13)

for all q to be shown later below.
Because of the singular nature of Fn0(q)/q3 for q → 0, and its rapid

damping for large q, because of the 1/q3 factor and the matrix element of
the exponential exp−iqz/� in Fn0(q) (see, for example, (15.8.48)), the main
region of integration in (15.9.8) comes form small q. The latter corresponds
to a small momentum transfer to the charged particle resulting in an almost
undeflected straight path of the particle.

We consider the high-energy limit |p′| � |p′| − |pn|, from which

qmax = |p′| + |pn| = 2 |p′| − (|p′| − |pn|)

� 2 |p′| ≡ q′max (15.9.14)

and from (15.9.4),

qmin = |p′| − |pn| =
2µ(En − E0)

qmax
� µ(En − E0)

|p′| ≡ q′min. (15.9.15)

Since the main contribution to the integral in (15.9.8) comes from small
q, we may effectively carry out the so-called dipole approximation to Fn0(q)
and replace the latter by q2 |〈Φn |z|Φ0〉|2 /�

2 by expanding the exponential
exp (−iqz/�) � 1− iqz/�, and using the orthogonality of |Φn〉 and |Φ0〉. This
gives the q-independent quantity for fn0(q)

2m

�2
(En − E0) |〈Φn |z|Φ0〉|2 ≡ fd

n0 (15.9.16)

referred to as the oscillator strength, while fn0(q) in (15.9.11) as the gener-
alized oscillator strength, with d in fd

n0 corresponding to the dipole approxi-
mation.

Accordingly, we may rewrite (15.9.12) as

− dE

dL
=

4πe2
0e

2µ2N

m |p′|2
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×
[
ln (q′max) −

2m

�2

∑′

n

(En − E0) |〈Φn |z|Φ0〉|2 ln (q′min)

]
(15.9.17)

where in writing the first term we have used the completeness summation
formula in (15.9.13) and the fact that q′max is independent of n.

Upon defining an “average ionization potential” I through

2m

�2

∑′

n

(En − E0) |〈Φn |z|Φ0〉|2 ln(En − E0) = ln I (15.9.18)

we have from (15.9.13), (15.9.14), (15.9.15), (15.9.17)

− dE

dL
=

4πe2
0e

2N

mv2
ln
(

2µv2

I

)
(15.9.19)

where p′ = µv, v is the initial velocity of the incident charged particle relative
to an atom, M in (15.9.3) denotes its mass and m denotes the mass of the
electron in the atom.

It is interesting to note that for M � m, (15.9.19) reduces to

− dE

dL
=

4πe2
0e

2N

mv2
ln
(

2mv2

I

)
(15.9.20)

which is independent of the mass of the incident charged particle.
On the other hand for an incident electron µ = m/2, and (neglecting the

exchange effect),

− dE

dL
=

4πe2
0e

2N

mv2
ln
(

mv2

I

)
. (15.9.21)

It remains to establish the completeness summation formula in (15.9.13).
To this end, we note that from the Schrödinger equation,

(En − E0)
∫

d3xΦ∗
ne−iqz/�Φ0 = − �

2

2m

∫
d3x e−iqz/�∇ · (∇Φ∗

n Φ0 − Φ∗
n ∇Φ0)

= − i�q

2m

∫
d3x e−iqz/�

(
∂

∂z
Φ∗

n Φ0 − Φ∗
n

∂

∂z
Φ0

)

=
�

2

2m

[
2iq
�

〈
Φn

∣∣∣∣e−iqz/�

∣∣∣∣ ∂

∂z
Φ0

〉
+

q2

�2

〈
Φn

∣∣∣e−iqz/�

∣∣∣Φ0

〉]
.

(15.9.22)

Upon multiplying the above equation by
〈
Φ0

∣∣∣eiqz′/�

∣∣∣Φn

〉
2m/q2 and sum-

ming (integrating) over n, we obtain from (15.9.11)

∑′

n

fn0(q) =
�

2

q2

[
2iq
�

∑′

n

〈
Φ0

∣∣∣eiqz′/�

∣∣∣Φn

〉〈
Φn

∣∣∣∣e−iqz/�

∣∣∣∣ ∂

∂z
Φ0

〉
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+
q2

�2

∑′

n

〈
Φ0

∣∣∣eiqz′/�

∣∣∣Φn

〉〈
Φn

∣∣∣e−iqz/�

∣∣∣Φ0

〉]

=
�

2

q2

[
2iq
�

〈
Φ0

∣∣∣∣ ∂

∂z
Φ0

〉
+

q2

�2
〈Φ0 |Φ0〉

]

= 1 (15.9.23)

where we have used the fact that 〈Φ0 |∂Φ0/∂z〉 = 0, 〈Φ0 |Φ0〉 = 1.
A similar analysis as above may be carried out for multi-electron atoms,

where one of the changes to be made in the analysis is to replace exp−iq · x/�

by
∑

j exp (−iq · xj/�), with a summation going over the electrons in the
atom (see Problem 15.21). For the hydrogen case, I � 15 eV. For other
atoms, I is proportional to the atomic number Z with a proportionality
factor roughly of the order of 10 eV.

Needless to say, the charged particle would also emit radiation but we will
not go into this here.

15.9.2 Neutron Interferometer

Consider a neutron beam which strikes the surface of a (cubic) crystal at
an incident angle θ as shown in Figure 15.8, with wave vector k = p/�. For
the so-called Laue scattering,37 the transmitted beam wave vector kt is the
same as the incident one, while the one of the reflected beam kr differs from
kt by a reciprocal lattice vector Q, with the latter parallel to the face of the
crystal. The initial incident state may be written as

ψi = eik·x = eik1x1(χ1 + iχ2) (15.9.24)

where χ1, χ2 are standing waves given by

χ1 = cos k2x2, χ2 = sin k2x2 (15.9.25)

and
|k2| =

|Q|
2

=
π

a2
(15.9.26)

with atomic locations given by

an = (n1a1, n2a2, n3a3) (15.9.27)

where n1, n2, n3 are integers. We note that38

37 For additional details of Laue scattering from crystals see Greenberger and Over-
hauser (1979); Olariu and Iovitzu Popescu (1985); Rauch and Petrascheck (1978).

38 Without loss of generality it is assumed that there is an atom located at x2 = 0
as indicted in (15.9.27).
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k
kr

θ Q

x2

x1

Face of crystal
kt

Fig. 15.8. The figure depicts the so-called Laue scattering of a beam of
neutrons from a (cubic) crystal where the associated transmitted wave vector
kt is the same as that of the incident one, while the wave vector kr of the
reflected beam differs from kt by a reciprocal lattice vector Q. The incident
angle θ is referred to as the Bragg angle.

|χ1|2 = cos2
πx2

a2
(15.9.28)

takes its maximum value at atomic sites, while

|χ2|2 = sin2 πx2

a2
(15.9.29)

takes rather its minimum value of zero at atomic sites. That is, i(exp ik1x1)χ2

essentially goes through the crystal undisturbed (see Figure 15.9), while
(exp ik1x1)χ1 interacts relatively stronger with the crystal. Accordingly,
where the beam emerges from the opposite face of the crystal, we may write

ψf = eik1x1(ηχ1 + iχ2) (15.9.30)

where η is a complex number
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η = αeiβ (15.9.31)

with α, β real, are characteristics of the crystal and its thickness, and where
α is the absorption coefficient. For crystals with negligible absorption of neu-
trons, such as silicon of several millimeters thickness, one may take α = 1.

Fig. 15.9. For the standing wave χ1, |χ1|2 takes its maximum values at
the atomic sites, and hence (exp ik1x1)χ1 interacts rather strongly with the
crystal. On the other hand, for the standing wave χ2, |χ2|2 takes its mini-
mum value of zero at the atomic sites, and hence i(exp ik1x1)χ2 propagates
essentially undisturbed in the crystal. For a crystal of negligible absorption of
neutrons, when the beam reaches the opposite face of the crystal, it emerges
from it with a reflection coefficient i(exp iβ/2) sin β/2 and transmission coef-
ficient (exp iβ/2) cos β/2, where β is real and is a characteristic of the crystal
and its thickness.

With α = 1, we may rewrite ψf as

ψf = ρ eik·x + κ eik·x′
(15.9.32)

where
ρ = eiβ/2 cos

β

2
, κ = i eiβ/2 sin

β

2
(15.9.33)

and
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x′ = (x1,−x2) (15.9.34)

k · x′ = kr · x (15.9.35)

kr = (k1,−k2). (15.9.36)

One may then introduce the transmission and reflection probabilities

T = |ρ|2 = cos2
β

2
, R = |κ|2 = sin2 β

2
. (15.9.37)

Note the presence of the i multiplicative factor in κ given in (15.9.33).
Referring to the experimental situation of a neutron interferometer, de-

picted in Figure 15.10, we note that since the amplitude to go from A to B,
for example, outside the crystals is, up to an unimportant multiplicative fac-
tor, just the phase factor exp (iM(xB − xA))2/2�tBA, where M is the mass
of the neutron, the intensities I1, I2 at the detection sites D1,D2 are given
from (15.9.32)/(15.9.33), up to the same overall unimportant factor

I1 =
∣∣κ3 + ρκρ

∣∣2 = R(T − R)2 (15.9.38)

I2 =
∣∣κ2ρ + ρκ2

∣∣2 = 4TR2 (15.9.39)

using the symmetry between the segments BC, AD and similarly of the
segments AB, DC for propagation outside the crystals.

Now we rotate the whole system in Figure 15.10 by an angle φ, raising
the segment BC at a height H above the segment AD, both in horizontal
direction, in the Earth’s gravitational field as shown in Figure 15.11.

For the amplitude of propagation between two points in a given potential
in almost a straight line, we may take the corresponding approximation from
the expression already derived in (11.2.31),

〈xt |x′t′〉 = 〈xt |x′t′〉0 exp− i
�

∫ t

t′
dτ V

(
x′ + (x − x′)

τ − t′

(t − t′)

)
(15.9.40)

where 〈xt |x′t′〉0 is the free Green function.
For the subsequent analysis we consider the thickness of the slabs a � d.

We choose the potential energy on the segment AD to be zero as a reference
point, and take

1
�

∫ tC

tB

dτ V

(
xB + (xC − xB)

τ − tB
(tC − tB)

)
� (tC − tB)

MgH

�

=
(

d

v cos θ

)
2Mgd sin θ sin φ

�

≡ ∆ (15.9.41)
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a
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d
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Fig. 15.10. (Neutron Interferometer) A beam of neutrons strikes a slab of
crystal in a system of three parallel slabs equally spaced at distances d apart
and each of thickness a. The beams BC, DC interfere at C and the intensities
of neutrons emerging from C are measured by the detectors D1, D2. Even-
tually the whole system will be rotated about the direction of the incident
beam by an angle φ raising the beam BC above the beam AD, both moving
horizontally, in the Earth’s gravitational field (see also Figure 15.11).

corresponding to the line segment BC for neutrons travelling at a height H as
given in Figure 15.11. outside the crystals, where v is the speed of a neutron.

By symmetry, 〈xCtC |xBtB〉0 = 〈xDtD |xAtA〉0 for the free parts of the
Green function, while 〈xBtB |xAtA〉 = 〈xCtC |xDtD〉, for propagation outside
the crystals, which according to (15.9.40), are, up to unimportant numerical
factors, just phase factors which as easily seen below may be factored out in
computing the amplitudes corresponding to the intensities I1, I2 determined
at the detection sites D1,D2, and hence are unimportant.
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From Figure 15.11, (15.9.40), (15.9.41) and (15.9.33) we have, up to an
unimportant common multiplicative factor, in analogy to (15.9.38), (15.9.39),

I1 =
∣∣κ3e−i∆ + ρ2κ

∣∣2
= R [1 − 2TR(1 + cos ∆)] (15.9.42)

and

I2 =
∣∣κ2e−i∆ρ + ρκ2

∣∣2

= 2TR2(1 + cos ∆). (15.9.43)

φ

φ

θ
A

B C

D
2θ

d/ cos θ

d/ cos θ

H

H = 2d sin θ sin φ

D1

D2

Fig. 15.11. By a rotation of the whole system in Figure 15.10 about the
direction of the incident beam by an angle φ, the beam BC is raised above
the beam AD, both in a horizontal direction, by a height H, as indicated,
in the Earth’s gravitational field. For θ �= 0, the difference I2 − I1 of the
intensities measured by the detectors D2 and D1, oscillates as a function

constant h.

We note that I1 + I2 is independent of the phase, while

I2 − I1 = R(4TR − 1) + 4TR2 cos ∆ (15.9.44)

has an oscillatory character in φ, and may be recast in the form

(I2 − I1)(φ)
(I2 − I1)(0)

= α1 + α2 cos
(

2Mgd2 tan θ sin φ

�v

)
(15.9.45)

of φ with a phase depending on the gravitational constant g and the Planck
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and is a function of a gravity induced quantum mechanical phase depending
on the gravitational constant g and the Planck constant h.

An experiment of the sort described above has been carried out39 and
the induced phase shift has been observed. The parameters taken were a =
0.2 cm, d = 3.5 cm, θ = 22.1 ◦, h/Mv = 1.445 Å. If a is not neglected in the
above analysis, then ∆ in (15.9.44) is to be multiplied40 by the corrective
factor (1 + a/d).

Problems

15.1. Find the scattering amplitude and the cross section in the Born ap-
proximation for the Yukawa potential λ(exp−µ |x|)/ |x|, and the ex-
ponential potential λ′(exp−µ |x|), µ > 0. Use the sufficiency condition
(15.3.26) to set bounds on the parameters in question for the absolute
convergence of the Born series.

15.2. Form (15.4.20) you have seen that the optical theorem relates different
orders in the potential. As a matter of fact, the Born approximation
violates the optical theorem, as seen, for example, from the previous
problem, since Im fB = 0, while σB �= 0. Accordingly, it is necessary
to go to second order in the potential in determining Im f(p′,p′) to
verify the optical theorem. Use (15.3.10)/(15.3.11) to second order in
V to verify the optical theorem in (15.4.6) with σ determined in the
Born approximation σB .

15.3. For a potential of short range, i.e., for one which vanishes faster than
the Coulomb potential, show that for |x| → ∞

(
p0 � E(p′)

)
∫

d3p eip·x/� G±(p,p′; p0) −→ eip′·x/�

(p0 − E(p′) ± iε)
.

15.4. Show that the radial partial Green function G�(r, r′) in (15.4.39) sat-
isfies the differential equation (15.4.40) and hence (15.4.42) provides
a solution for g�(r).

15.5. Restrict the sum in (15.4.29) for the scattering amplitude f(p, θ) to
S and P waves, i.e., for � = 0, � = 1, to write the differential cross
section as

dσ

dΩ
=

�
2

p2
(A + B cos θ + C cos2 θ).

Find bounds on the coefficients A,B,C. Also express these coefficients
in terms of the phase shifts δ0, δ1 and find the general structure for σ.

15.6. For the Born approximation to the phase shift δ� in (15.4.45), for
small δ� such that tan δ� � δ�, (exp 2iδ�)−1 � 2iδ�, use the expansion
formula

39 Colella et al. (1975). See also Greenberger and Overhauser (1979).
40 Greenberger and Overhauser (1979).
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∞∑
�=0

(2� + 1)
(
j�

(pr

�

))2

P�(cos θ) =
sinQr

Qr

where Q = 2(p/�) sin(θ/2), to obtain an expression for the scattering
amplitude and compare it with the one given in (15.3.12)/(15.3.11)
for a spherically symmetric potential V (r).

15.7. For the � = 0 contribution in (15.4.29), set g0(r) = g(k, r) in (15.4.33)
with p/� = k. Use the Schrödinger equation to show that for R large

Q(k,R) = Q(0, R) − k2

∫ R

0
drg(k, r)g(0, r)

g(k,R)g(0, R)

where Q(k,R) = (dg(k,R)/dR) /g(k,R), and g(0, R) may be taken
to be (R − a) for some constant a. Use this equation, together with
the asymptotic form for g(k,R) in (15.4.34) to obtain the so-called
effective range expansion

k cot δ0 = −1
a

+
r0

2
k2 + · · ·

at low energies k2 � 0, where

r0 =
2
a2

∫ R

0

dr
[
(r − a)2 − g2(0, r)

]
,

g′′(0, r)−u(r)g(0, r) = 0. The parameters a, r0 are respectively called
the scattering length and the effective range. Interpret the significance
of these parameters, and obtain the � = 0 contribution to the cross
section at low energies.

15.8. Consider a particle in the spherically symmetric potential

V (r) =

{
V0, r < R

0, r � R

at low energies.
(i) For V0 < 0, determine the scattering length a and effective r0

introduced in the previous problem.
(ii) Carry out a qualitative analysis of the sign of a versus the sign

and magnitude of V0 in a plot of g0(r) (i.e., for � = 0) versus r.
(iii) At low energies, determine the � = 0 contribution of the cross

section. Under what condition the latter and the phase shift δ0

vanish? The vanishing property of the � = 0 contribution to the
cross section is referred to as the Ramsauer effect.

15.9. For the spherically symmetric potential in the previous problem with
V0 < 0, consider the low energy � = 0 scattering amplitude f0(p, θ) in
(15.4.53). Investigate the nature of the poles that f0(p, θ) may have
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on the positive imaginary axis in the complex p-plane and the bound
states. Investigate also the analyticity property of f0(p, θ) in the com-
plex energy E = p2/2m plane.

15.10. Expand the scattering amplitude fC(p, θ) for the Coulomb potential
in (15.5.22) in terms of the Legendre polynomials P�(cos θ), where
|p − p′| = 2p sin θ/2, and show that up to an overall phase factor

fC(p, θ) =
�

2ip

∞∑
�=0

(2� + 1)
Γ(� + 1 + iγ)
Γ(� + 1 − iγ)

P�(cos θ)

where γ = λµ/�p. For an attractive potential γ = − |λ|µ/�p, and
Γ(� + 1 + i |λ|µ/�) develops poles at non-positive integers for p = iκ,
κ > 0. Use this fact to show that the corresponding energy values
p2/2µ coincide with the discrete energy levels of the hydrogen atom.

15.11. For the potential V (r) = ∞ for r < R and zero otherwise, compute the
differential cross section. Investigate the high energy behavior of the
cross section and show that it does not coincide with the one obtained
from a naïve classical computation. Interpret this result.

15.12. Use the intuitive argument given below (15.5.18) to obtain the asymp-
totic “free” time evolution operator for a potential V (r) which vanishes
at infinity like r−δ for some 0 < δ < 1 in analogy to the Coulomb case
exp(−iH0C(t)/�) with H0C(t) given in (15.5.18).
[Ref.: Manoukian and Prugovečki (1971). See also this reference for
related technical details and physical considerations.]

15.13. Use the analysis carried out in §11.4 to recast the expression for the
scattering amplitude as obtained from (15.6.6) in a path integral for-
malism.

15.14. Develop the eikonal approximation in (15.7.7) for the Yukawa poten-
tial V (x) = V (b, ρ) = λ exp

(
−µ0

√
b2 + ρ2

)
/
√

b2 + ρ2, µ0 > 0.
[Hint: You may express χ(b, |p′|) in (15.7.9) in terms of the Bessel
function K0(µ0 |b|).]

15.15. Use the asymptotic behavior of the Bessel function K0(µ0 |b|) for µ0 →
+0 to obtain an eikonal approximation for the Coulomb potential up
to an overall unimportant (infinite) phase factor by the application of
the previous problem.

15.16. Use the method developed through (15.7.15)–(15.7.20) to derive an
expression for the asymptotic “free” Green function corresponding to
potential V (r) = λr−δ, for some 0 < δ < 1. See also Problem 15.12.

15.17. Repeat the procedure worked out through (15.1.41)–(15.1.46), to
prove the existence of the modified Møller wave operators Ω±C for
the Coulomb potential as the (strong) limits t → ±∞ of ΩC(t) =
eitH/�e−iH0C(t)/� where H0C(t) is given in (15.5.18).
[Ref.: Dollard (1964).]

15.18. The scattering S operator is so defined that
〈
Φb

out

∣∣S∣∣Φa
in

〉
=
〈
ψb

+

∣∣ψa
−
〉
,

where
∣∣ψa

−
〉

= Ωa
− |Φa

in〉, ψb
+ = Ωb

+

∣∣Φb
out

〉
, and Ωc

± are given by the
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(strong) limits t → ±∞ of exp (itH/�) exp (−itHc/�), where Hc is
the corresponding c-channel Hamiltonian. Relate this operator to the
transition matrix Tba in (15.8.38) for an incoming |Φa

in〉 state and an
outgoing

∣∣Φb
out

〉
state. Formulate and spell out precisely the conditions

for which this operator is unitary.
15.19. To obtain a better agreement with experiments, one may replace∗ the

factor

[
1 +

q4

|p2 − p′|4
− q2

|p2 − p′|2

]
in (15.8.68), taking into account

of the exchange effect, by

[
1 +

(
q2

p′2 − p2
2

)2

− q2

p′2 − p2
2

]
. Make such

a replacement in (15.8.71) and carry out the angular integrations. A
change of an angular integration variable as in (15.9.6) is useful.
[∗Ochkur (1963, 1964).]

15.20. Carry out the decomposition of Taa in (15.8.107) for the scattering of
a particle of spin zero off a cluster whose internal angular momentum
s in not zero.
[Hint. Follow an analysis as in (15.4.21) and use expansions as in
(5.10.99)/(5.10.103) in terms of Clebsch-Gordan coefficients. See also
§5.9.]
Can you extend the analysis to the case for the scattering of one
cluster off another if the internal angular momenta of both clusters
are non-zero?

15.21. Recapitulate the analysis carried out in §15.9 for the energy loss per
unit path length by a charged particle passing through a medium
with multi-electron atoms. Simply replace exp (−iq · x/�) in (15.9.9)
by

∑
j exp (−iq · xj/�) as a sum over all the electrons in an atom. The

corresponding completeness summation formula to (15.9.13) would be
equal to the atomic number Z. The “average ionization potential” I

will then involve
∣∣∣〈Φn

∣∣∣∑j xj

∣∣∣Φ0

〉∣∣∣2 instead, and is defined by dividing
the resulting new expression corresponding to the left-hand side of
(15.9.18) by Z. You should then obtain the same expression as in
(15.9.19) with N simply replaced by NZ, where the latter denotes
the number of electrons per unit volume present in the medium.
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Quantum Description of Relativistic Particles

This chapter is involved with the method of providing a quantum de-
scription of relativistic particles. One is confronted with the requirement of
developing such a formalism, as imposed by nature, when the energy and mo-
mentum of a particle are large enough so that the Schrödinger equation, with
a non-relativistic kinetic energy, becomes inapplicable. A relativistic theory,
as a result of the exchange that takes place between energy and matter, allows
the creation of an unlimited number of particles and the number of particles in
a physical process need not be conserved. An appropriate description of such
physical processes for which a variable number of particles may be created or
destroyed is provided by the very rich concept of a quantum field. For exam-
ple, photon emissions and annihilations are explained by the introduction of
the electromagnetic quantum field. The theory which emerges from extend-
ing quantum physics to the relativistic regime is called Relativistic Quantum
Field Theory or just Quantum Field Theory. Quantum Electrodynamics is
an example of a quantum field theory and is the most precise theory devised
by man when confronted with experiments. The essence of special relativity
is that all inertial frames are completely equivalent in explaining a physical
theory as one inertial frame cannot be distinguished from another. This in-
variance property of physical theories in all inertial frames as required by
the special theory of relativity is also readily implemented in quantum field
theory.

This chapter is not involved with the intricacies of quantum field the-
ory, except for the moderate exception in §16.9, but with the details of the
precursor of such a theory. It provides the bridge between quantum physics
developed so far in the text and the theory of quantum fields. As a first step,
we have to find replacements for Schrödinger’s equation when the energies and
momenta of the particles to be described are too high for a non-relativistic
treatment. This will lead us to the Klein-Gordon equation for spin 0 particles
and the Dirac equation for spin 1/2 particles, and later on (§16.8) relativistic
wave equations will be developed for higher spins as well. These equations
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are Lorentz covariant in the sense that they have the same form in all iner-
tial frames. In our presentation, massive as well as massless particles will be
considered.

We have already dealt with the Dirac equation in §7.4, §7.5 in describing
relativistic corrections to the hydrogen atom spectrum. The relativistic wave
equations predict the existence of negative energy states with negative mass,
with energies going down to −∞ implying the instability of the corresponding
systems. Dirac, in his spin 1/2 theory, was led to postulate that the negative
energy states are completely filled by electrons, according to the Pauli exclu-
sion principle, so that no transitions to these states are possible and stability
would be achieved. This vacuum state thickly populated by electrons has been
called the Dirac sea. In 1930, he has interpreted the absence of an electron in
the sea (a “hole”) as an anti-particle — the positron. The physics community
found it difficult to accept his prediction until C. D. Anderson discovered the
positron in 1932 who apparently was not aware of Dirac’s prediction1 at the
time of his discovery. It is also interesting to note that G. Gamow referred1to
the electrons in the negative energy states, postulated by Dirac, as “donkey
electrons” because they would move in the opposite direction of the applied
force. It is important to realize that a theory which started with the hope of
providing a quantum description of a single relativistic particle led eventually
to a multi-particle theory.

Historically, the Klein-Gordon equation was introduced before Dirac in-
troduced his. Because of the emergence of negative energy states and the
difficulty in defining a positive definite probability density, the Klein-Gordon
equation was ignored until Dirac developed his formalism and led to his pre-
diction of the anti-particle (the positron), and its discovery, at which time
the importance of the Klein-Gordon equation was recognized and consistent
field theories were formulated.

Dirac’s theory provided tremendous insight into the nature of a combined
theory consisting of quantum physics and relativity leading eventually to the
birth of quantum field theory. As far as the achievements of the Dirac theory
were, we may summarize by saying that besides being a Lorentz covariant
theory and describes spin 1/2 particles, it also predicted approximately the
gyromagnetic ratio g = 2 of the electron,2 it gave the correct fine-structure of
the hydrogen atom and, of course, led to the discovery of anti-matter. These
achievements were so great, that apparently Dirac himself remarked3 in one
of his talks that his equation was more intelligent than its author.

The first six sections of this chapter deal with the Dirac equation. Al-
though some knowledge of the basics of special relativity is assumed of the
reader, the intricacies of the so-called Lorentz transformations are spelled
out in §16.2. Special emphasis is put on the concept of helicity in this latter

1 cf, Weisskopf (1980).
2 A correction to the g = 2 value was derived in §8.5.
3 Weisskopf (1980).
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reference, where one learns that helicity as the spin component taken parallel
to a particle’s momentum, as the latter is determined in each of the corre-
sponding inertial frames, has a Lorentz (relativistic) invariant meaning and
is well defined for massive as well as for massless particles. §16.6 provides a
detailed physical interpretation of the Dirac theory and, in particular, to the
origin of the relativistic corrections to the hydrogen atom worked out in §7.4,
§7.5. The exact bound Coulomb problem is solved in the Appendix to §16.6.
The Klein-Gordon equation and some equations which follow from it are the
subject of §16.7. Relativistic wave equations for any mass M � 0 and higher
spins are developed in §16.8. The last section, §16.9 deals with the spin and
statistics connection whose importance can never be overemphasized. We use
the ingenious approach due to Schwinger in examining typical Lagrangian
densities in relativistic quantum field theories to investigate the nature of the
spin and statistics connection. Here familiarity with Lagrangian dynamics is
essential. In the appendix to this section a detailed treatment of the so-called
action integral is given, however, for systems admitting Grassmann variables
as well.

The Spin and Statistics Theorem, in its simplest form, states that no
two identical particles of half-odd integer spins (fermions) can occupy the
same state, while any number of identical particles of integer spins (bosons)
may do so without limitation. The practical effect of this theorem prevails
over the whole of science and provides the basis for explaining the periodic
table of elements from which our world and we are made of. Matter is stable
because of the spin and statistics connection (the so-called Pauli exclusion
principle) as applied to electrons as particles of spin 1/2. It also explains
as to why matter occupies such a large volume of space.4 We have seen in
Chapter 14, §14.4 on The Collapse of “Bosonic Matter” as to what happens
to matter if the spin and statistics connection (the Pauli exclusion principle)
were abolished. In regard to matter without the spin and statistics connection,
and before carrying out the analyses intended in this chapter, it is worth
recalling5 F. Dyson’s words: “Matter in bulk would collapse into a condensed
high density phase. The assembly of any two macroscopic objects would release
energy comparable to that of an atomic bomb. . . . Matter without the exclusion
principle is unstable.”, and also quote from the translator’s Preface of the
classic book6 by S.-I. Tomonaga on The Story of Spin: The existence of spin,
and the statistics associated with it, is the most subtle and ingenious design
of Nature — without it the whole universe would collapse.

4 See §14.4 and the Introduction to Chapter 14.
5 See the Introduction to Chapter 14.
6 T. Oka in the Translator’s Preface of the book by Tomonaga (1997).
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16.1 The Dirac Equation and Pauli’s Fundamental
Theorem

Let us go over the method used in §7.4 to obtain the Dirac equation of
spin 1/2. Using the constraint between the energy E, and the momentum p,
of a free particle of mass M

√
p2c2 + M2c4 − E = 0, (16.1.1)

where c denotes the speed of light, we formally obtain, upon the substitutions
E → i�∂/∂t, p → −i�∇, the equation

i�
∂

∂t
ψ(x, t) =

(√
−�2c2∇2 + M2c4

)
ψ(x, t) (16.1.2)

where for spin 1/2, ψ(x, t) is a two-component spinor. The positive operator√
−�2c2∇2 + M2c4 is a well defined operator,7 by Fourier transform, for

example, and by using the relations

√
−�2c2∇2 + M2c4 δ3(x − x′) =

∫
d3p

(2π�)3
√

�2c2p2 + M2c4 eip·(x−x′)/�

≡ K(x − x′) (16.1.3)

ψ(x, t) =
∫

d3x′ δ3(x − x′) ψ(x′, t), (16.1.4)

(16.1.2) leads to

i�
∂

∂t
ψ(x, t) =

∫
d3x′ K(x − x′) ψ(x′, t). (16.1.5)

This equation is non-local in x. It is also not easily handed, in general, in
the presence of interactions unless one is dealing with very weak interactions
which would allow one to carry out an expansion under the square root.
Accordingly, to obtain a more manageable equation, one may go back to
(16.1.1), multiply the latter by

[√
p2c2 + M2c4 + E

]
to get

(
p2c2 + M2c4 − E2

)
ψ = 0 (16.1.6)

with E → i�∂/∂t, p → −i�∇. Using the identity in (7.4.4), involving the
Pauli matrices, and the defining coupled equations (7.4.6), (7.4.7), we obtain

7 That the square root of such an operator is well defined is not sufficiently em-
phasized in the literature. For handling such a square-root operator in a mathe-
matical rigorous way, see, for example, Daubechies and Lieb (1983).
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(

γ · �∇
i

+ γ0 �

ic
∂

∂t
+ Mc

)
Ψ = 0 (16.1.7)

where Ψ is a four-component spinor, and it is understood that Mc is multi-
plied by the 4×4 unit matrix diag[1, 1, 1, 1]. The matrices γ0, γ =

(
γ1, γ2, γ3

)
are given by (see also the Appendix to §7.4)

γ0 =
(

I 0
0 −I

)
, γ =

(
0 σ

−σ 0

)
(16.1.8)

where I in here is the 2 × 2 unit matrix, σ =
(
σ1, σ2, σ3

)
are the Pauli

matrices, and the gamma matrices have the properties (µ = 0, 1, 2, 3)

Tr
(
γµ
)

= 0,
(
γ0
)† = γ0,

(
γ
)† = −γ,

(
γµ
)† = γ0γµγ0, (16.1.9)

(
γ0
)∗ = γ0,

(
γ1
)∗ = γ1,

(
γ2
)∗ = −γ2,

(
γ3
)∗ = γ3, (16.1.10)

(
γ0
)� = γ0,

(
γ1
)� = −γ1,

(
γ2
)� = γ2,

(
γ3
)� = −γ3, (16.1.11)

(
γ0
)2 = I,

(
γ1
)2 =

(
γ2
)2 =

(
γ3
)2 = −I, (16.1.12)

where I in (16.1.12) now is the 4 × 4 unit matrix.
Using the notation,

∂

∂xi
= ∂i , i = 1, 2, 3 ,

∂

c∂t
= ∂0 (16.1.13)

we may rewrite (16.1.7) in the form
(

γµ∂µ

i
+

Mc

�

)
Ψ = 0 (16.1.14)

with a summation over upper and lower repeated indices µ = 0, 1, 2, 3, un-
derstood, or simply as (

γ∂

i
+

Mc

�

)
Ψ = 0 (16.1.15)

where γ∂ = γµ∂µ. Equation (16.1.15) is the celebrated Dirac equation.
Here we emphasize the positions of the indices µ in γµ and ∂µ. This point

will be clear when we study the relativistic invariance of the theory in the
next section.

To obtain the Dirac equation for a charged particle interacting with an
extend electromagnetic field specified by φ, A, we carry out the minimal
substitutions i�∂/∂t → i�∂/∂t − eφ, −i�∇ → −i�∇ − (e/c)A, where e is
the charge of the particle in question. That is, we make the substitutions

∂µ

i
−→ ∂µ

i
− e

�c
Aµ (16.1.16)
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where8

A0 = −φ, A =
(
A1, A2, A3

)
(16.1.17)

to obtain from (16.1.14)
[
γµ

(
∂µ

i
− e

�c
Aµ

)
+

Mc

�

]
Ψ = 0 (16.1.18)

where again we emphasize the positions of the indices µ = 0, 1, 2, 3 in
(16.1.18).

The matrices γµ in (16.1.8) satisfy the key anti-commutation relations
{
γµ , γν

}
= −2gµν (16.1.19)

where9

[gµν ] =



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 = [gµν ] (16.1.20)

is the so-called Minkowski metric on which more will be said in the next
section.

The Dirac equations (16.1.14) may be equivalently rewritten in terms of
other sets of gamma matrices γµ that satisfy the same anti-commutation
relations (16.1.19) as the original ones in (16.1.8), in the form

(
γ′µ ∂µ

i
+

Mc

�

)
Ψ′ = 0 (16.1.21)

for some new spinors Ψ′ related simply to Ψ, thus showing the representation
independence of the Dirac equation. That is, one may appropriately choose, in
general, different sets of gamma matrices γ′µ satisfying the anti-commutation
relations in (16.1.19) in setting up the Dirac equation as well. This statement
is the content of a theorem called Pauli’s Fundamental Theorem which is
proved in the appendix to this section. It states that there exists a 4 × 4
non-singular matrix G (i.e., det G �= 0) such that

γ′µ = GγµG−1 (16.1.22)

Ψ′ = GΨ (16.1.23)

8 We will see in the next section that, consistently, A1 = A1, A2 = A2, A3 = A3,
A0 = −A0.

9 Several authors, such as J. Schwinger, S. Weinberg, W. Pauli,. . . , have adopted
the definition in (16.1.20) for the metric. Equivalently, some other authors prefer
to use their gµν as the negative of the one in (16.1.20), with their right-hand side
of (16.1.19) being replaced by 2gµν . It is interesting to note that Dirac has used
both (signatures) definitions, see [Dirac (1959, 2001)].
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relating
(
γ′µ,Ψ′) to

(
γµ,Ψ

)
, which are consistent with (16.1.14), (16.1.21)

with the latter obtained by multiplying the former from the left by G and
inserting the identity G−1 G = I just to the left of Ψ in (16.1.14).

The matrices γµ in (16.1.8) are said to provide the Dirac-Pauli represen-
tation of the gamma matrices satisfying (16.1.19). Given the metric gµν as
defined in (16.1.20), and the anti-commutation relation in (16.1.19), some re-
lations involving gamma matrices which are representation independent are
given in Table 16.1. In the Dirac-Pauli representation γ5, defined in the Table,
is given by

γ5 =
(

0 I
I 0

)
. (16.1.24)

Table 16.1. Given the definition of the metric gµν in (16.1.20), and the
anti-commutation relations of gamma matrices in (16.1.19), the Table gives
some relations involving them which are representation independent. The
Greek indices go over 0, 1, 2, 3.

[gµν ] = diag [−1, 1, 1, 1] ,
{
γµ , γν

}
= −2gµν ,

γµγν = −gµνI + 1
2

[
γµ , γν

]
,

(
γ0
)2

= I,
(
γi
)2

= −I, i = 1, 2, 3.

gµνγµγν = −4I,

gµνγµ
(
γσ
)
γν = 2γσ,

gµνγµ
(
γσγλ

)
γν = 4gσλ,

gµνγµ
(
γσγλγρ

)
γν = 2γργλγσ,

[
γµ ,

[
γσ , γρ

] ]
= 4

(
γσgµρ − γρgµσ

)
,

Tr [γµγν ] = −4gµν ,

Tr
[
γαγβγµγν

]
= 4

(
gαβgµν − gαµgβν + gανgβµ

)
,

Tr [odd number of γ’s] = 0.

For γ5 = iγ0γ1γ2γ3,
(
γ5
)2

= I,
{
γ5 , γµ

}
= 0,

(
γµaµ

)2
= −I

[
a2 − (a0)2

]
,

(
γ · a

)2
= −Ia2,

a =
(
a1, a2, a3

)
, a0 = −a0, ai = ai, i = 1, 2, 3.
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As an example of a G transformation which will find important applica-
tions to problems with zero mass particles is the unitary matrix

G =
1√
2

(
I I
−I I

)
, G−1 = G† =

1√
2

(
I −I
I I

)
(16.1.25)

leading to the so-called chiral representation in which γ5 is diagonal,

γ′0 =
(

0 −I
−I 0

)
, γ′ =

(
0 σ

−σ 0

)
, γ′5 =

(
I 0
0 −I

)
(16.1.26)

where note that γ′ coincides with the one in the Dirac-Pauli representation.
Another useful representation is the so-called Majorana representation

provided by the unitary matrix

G = G−1 = G† =
1√
2

(
I σ2

σ2 −I

)
(16.1.27)

leading to

γ′′0 =
(

0 σ2

σ2 0

)
, γ′′5 =

(
σ2 0
0 −σ2

)
(16.1.28)

γ′′1 =
(

iσ3 0
0 iσ3

)
, γ′′2 =

(
0 −σ2

σ2 0

)
, γ′′3 =

(
−iσ1 0

0 −iσ1

)

(16.1.29)
in which γ′′5 is diagonal, and

(
γ′′µ/i

)∗ =
(
γ′′µ/i

)
which makes the Dirac

operator
(
γ′′∂/i + Mc/�

)
real.

As a final example, we introduce the unitary matrix of the form

G = I cos θ + γ · n sin θ (16.1.30)

where n is a unit 3-vector, and θ is an arbitrary angle. Since γ† = −γ,
(γ · n)2 = −I, we have

G† = G−1 = I cos θ − γ · n sin θ. (16.1.31)

In Problem 16.1, the reader is asked to find the new representation of the
gamma matrices for fixed n and θ.

The matrix G in (16.1.30) will be also applied in §16.6 in a slightly dif-
ferent context in studying, in the process, the physical content of the Dirac
equation, where we use the fact that for any dimensionless non-zero three-
vector a such that

n =
a
|a| (16.1.32)

cos θ =

[√
a2 + 1 + 1
2
√

a2 + 1

]1/2

(16.1.33)
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sin θ = |a|
[

1
2
√

a2 + 1
(√

a2 + 1 + 1
)
]1/2

(16.1.34)

we have (see Problem 16.2)

Gγ0
(
γ · a + 1

)
G−1 = γ0

√
a2 + 1. (16.1.35)

Appendix to §16.1: Pauli’s Fundamental Theorem

Consider the Dirac-Pauli representation of the gamma matrices γµ in
(16.1.8) satisfying the anti-commutation relations in (16.1.19). In the vector
space generated by all 4 × 4 matrices, we may choose as bases the following
set of 16 matrices constructed out of the γµ:

{
ΓA

}
=
{
I, γ0, iγ0γ1γ2γ3, γ1γ2γ3, iγ1, iγ2, iγ3, γ0γ1, γ0γ2, γ0γ3,

iγ2γ3, iγ3γ1, iγ1γ2, iγ0γ2γ3, iγ0γ3γ1, iγ0γ1γ2
}

≡
{

I, γ0, γ5, γ1γ2γ3, iγj , γ0γj ,
i
2
εjkmγkγm,

i
2
γ0εjkmγkγm

}

(A-16.1.1)

j, k,m = 1, 2, 3, A = 1, 2, . . . , 16, where γ5 is defined in (16.1.24). We note
that for all A = 1, . . . , 16

Γ †
A = ΓA, (ΓA)2 = ΓA. (A-16.1.2)

It is interesting to actually spell out the explicit forms of the ordered set
of elements in

{
ΓA

}
:

{
ΓA

}
=
{(

I 0
0 I

)
,

(
I 0
0 −I

)
,

(
0 I
I 0

)
, i
(

0 −I
I 0

)
,

i
(

0 σ

−σ 0

)
,

(
0 σ

σ 0

)
,

(
σ 0
0 σ

)
,

(
σ 0
0 −σ

)}
. (A-16.1.3)

The simplicity of the structure of the matrices in the set
{
ΓA

}
involving first

the unit matrix followed by matrices involving the Pauli ones, explains the
ordering of the elements originally taken in (A-16.1.1).

In particular, we note that for the product of any two elements ΓA, ΓB

in
{
ΓA

}
, we have

ΓA ΓB = ξAB ΓC (A-16.1.4)

for some numbers ξAB = ±1,±i, ΓC is in
{
ΓA

}
. Since every matrix ΓA is

its own inverse (see (A-16.1.2)), we also have
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ΓB ΓA = Γ−1
B Γ−1

A = (ΓA ΓB)−1 =
1

ξAB
ΓC . (A-16.1.5)

Now for matrices γ′µ, which satisfy the anti-commutation relations
{
γ′µ , γ′ν} = −2gµν . (A-16.1.6)

We may, in one-to-one correspondence to the elements ΓA in
{
ΓA

}
, defined

in (A-16.1.1), introduce the ordered set

{
Γ ′

A

}
=
{

I, γ′0, γ′5, . . . ,
i
2
γ′0εjkmγ′kγ′m

}
. (A-16.1.7)

Because of the representation independent properties of the gamma ma-
trices in Table 16.1, we have

Γ ′
A Γ ′

B = ξAB Γ ′
C , Γ ′

B Γ ′
A =

1
ξAB

Γ ′
C (A-16.1.8)

where the ξAB are the same numbers appearing in (A-16.1.4), (A-16.1.5) for
the corresponding elements ΓA, ΓB , ΓC .

The matrices in
{
ΓA

}
, and similarly in

{
Γ ′

A

}
, are linearly independent.

Given a 4 × 4 matrix U , we may introduce a matrix

Ũ =
∑
A

Γ ′
A U ΓA. (A-16.1.9)

Upon multiplying the latter from the left by Γ ′
B , and from the right by ΓB ,

we obtain by using (A-16.1.4), (A-16.1.8)

Γ ′
B Ũ ΓB =

∑
C

Γ ′
C U ΓC = Ũ (A-16.1.10)

where we have noted that the sum over A is equivalent to a sum over C
corresponding to the generated matrices Γ ′

C , ΓC . That is,

Γ ′
B Ũ = Ũ ΓB . (A-16.1.11)

It is easy to see that the linear independence of the matrices ΓA implies
that the matrix U may be chosen in (A-16.1.9) so that Ũ is not the zero
matrix. Accordingly, suppose that some matrix element

(
Ũ
)
a0b0

of Ũ is not

zero, i.e.,
(
Ũ
)
a0b0

= α �= 0 for some pair
(
a0, b0

)
. Now introduce a matrix V

such that all of its matrix elements
(
V
)
ab

are zero except the one element(
V
)
b0a0

= 1/4α.
Given the above constructed matrix V , we may introduce, in turn, the

matrix
Ṽ ′ =

∑
A

ΓA V Γ ′
A. (A-16.1.12)
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Almost an identical analysis as the one carried out in going from (A-16.1.9)
to (A-16.1.11) then shows that

ΓB Ṽ ′ = Ṽ ′ Γ ′
B. (A-16.1.13)

Upon multiplying the latter from the right by Ũ an using (A-16.1.11) give

ΓB Ṽ ′ Ũ = Ṽ ′ Ũ ΓB (A-16.1.14)

for all B = 1, . . . , 16. That is, Ṽ ′ Ũ commutes with all the elements of the
set

{
ΓA

}
in (A-16.1.1), which forms a complete set of 4 × 4 matrices, and

hence Ṽ ′ Ũ is, necessarily, some multiple of the identity matrix I.10 This is
the content of Schur’s Lemma, and we may write

Ṽ ′ Ũ = β I (A-16.1.15)

for some number β to be determined.
Taking the trace of Ṽ ′ Ũ in (A-16.1.15) and using the definition of Ṽ ′ in

(A-16.1.12) give

4β = Tr
[
Ṽ ′ Ũ

]
=
∑
A

Tr
[
ΓA V Γ ′

A Ũ
]

=
∑
A

Tr
[
ΓA V Ũ ΓA

]

=
∑
A

Tr
[
V Ũ (ΓA)2

]

= 16
(
V
)
b0a0

(
Ũ
)
a0b0

= 4 (A-16.1.16)

where in writing the third equality we have, in the process, used (A-16.1.11).
Hence β = 1, and from (A-16.1.15), we may take G = Ũ , G−1 = Ṽ ′ in the
notation of (16.1.22). We multiply (A-16.1.13) from the left by G and choose
ΓB = γµ, Γ ′

B = γ′µ, to obtain

Gγµ G−1 = γ′µ (A-16.1.17)

thus establishing the theorem. We note that G may be multiplied by any
non-zero constant for the validity of (A-16.1.17). That is, G is defined up to
an arbitrary finite multiplicative constant.
10 Actually, it is sufficient that Ṽ ′ Ũ commutes with all the γµ for µ = 0, 1, 2, 3

since this will imply that Ṽ ′ Ũ commutes with all the matrices ΓA in
{
ΓA

}
in

(A-16.1.1).
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16.2 Lorentz Covariance, Boosts and Spatial Rotations

A basic physical requirement which goes into the heart of the theory of
relativity is that physical laws should be the same in all inertial frames. This
means, in particular, that dynamical equations should not change as one goes
from one inertial frame to another up to a mere relabelling of the variables
of the underlying theories. Because of such relabellings of the variables, the
equations are said to transform covariantly from one inertial frame to another
and the corresponding rules of transformations are called, in general, Lorentz
transformations. This will be spelled out for the Dirac equation below. In
particular, we will develop the rules for the transformation of a Dirac spinor
under pure Lorentz transformations (relativistic boosts) and under spatial
rotations.

16.2.1 Lorentz Transformations

If an event is labelled by (t,x), in one inertial frame, then this same event
will be labelled, say, by (t′,x′) in another inertial frame. The transformation
rules which connect the different labellings (t,x) to (t′,x′), for the same
event, for two inertial frames are called Lorentz Transformations. One inertial
frame F ′ may move with a uniform velocity v with respect to another frame
F , as determined in F , with a possible orientation of the Cartesian space
coordinate axes of F ′ as also determined in F at time t = 0. If a (t = 0,x = 0)
reading in F corresponds to a (t′ = 0,x′ = 0) one in F ′, then the underlying
Lorentz Transformations are called homogeneous ones, otherwise they are
called inhomogeneous. In the former case, the origins of the coordinate axes
set up by F and F ′ coincide at the time readings t = 0, t′ = 0 by observers
located at the corresponding origins of the respective coordinate systems of
F and F ′.

We use the notation x0 = ct, x = (x1, x2, x3), (xµ) = (x0,x) ≡ x, µ =
0, 1, 2, 3. In Euclidean space, the distance squared between two points labelled
by x and y in a given coordinate system remains invariant under rotation of
the coordinate system for which the labelling of the points x, y change to,
say, x′, y′, i.e., (x − y)2 = (x′ − y′)2. Similarly, for Lorentz transformations
x, y → x′, y′, the following quadratic form remains invariant

(x − y)2 − (x0 − y0)2 = (x′ − y′)2 − (x′0 − y′0)2 (16.2.1)

which one may conveniently rewrite as

(xµ − yµ)gµν(xν − yν) = invariant (16.2.2)

where gµν = gνµ is referred to as the Minkowski metric and the matrix [gµν ],
with matrix elements gµν = gµν , µ, ν = 0, 1, 2, 3, is defined in (16.1.20). One
may set

gµνxν = xµ (16.2.3)
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and rewrite the left-hand side of (16.2.2) simply as (xµ − yµ)(xµ − yµ). That
is gµν may be used to lower the index ν in xν . We note, in particular, that
(16.2.3) implies that

x0 = −x0, xi = xi, i = 1, 2, 3 (16.2.4)

One may raise the index µ in xµ by multiplying it by gµν , i.e., xν = xµgµν ,
where gµν is numerically equal to gµν . We also note that

gρνgνµ = δρ
µ (16.2.5)

where [δρ
µ] = diag[1, 1, 1, 1] is the identity 4 × 4 matrix.

Under a homogeneous Lorentz transformation x → x′, we have

x′µ = Λµ
νxν (16.2.6)

For a pure boost along the z-axis, for example, x′0 = η(x0−x3v/c), x′1 = x1,
x′2 = x2, x′3 = η(x3 − vt), and hence

(
η = (1 − v2/c2)−1/2

)

Λi
j = δi

j + (η − 1)δi3δj3 (16.2.7)

Λ0
0 = η, Λi

0 = −δi3η v/c, Λ0
i = −δi3η v/c (16.2.8)

More generally, the elements Λµ
ν , depending on an arbitrary uniform relative

velocity v of F ′ relative to F , as determined in F , and an arbitrary angle of
rotation ϕ about an arbitrary unit three-vector n, are given in Table 16.2.

From (16.2.6),
∂x′µ

∂xν
= Λµ

ν (16.2.9)

since Λµ
ν is independent of x, and from the chain rule

∂

∂xν
=

∂x′µ

∂xν

∂

∂x′µ (16.2.10)

we obtain the simple rule, to be used below, that

∂ν = Λµ
ν∂′

µ (16.2.11)

where ∂ν = ∂/∂xν in the notation in (16.1.13).
From the inverse transformation x′ → x to the one in (16.2.6), it is readily

shown that
Λνµ = (Λ−1)µν (16.2.12)

and hence
Λρ

λΛνλ = gρν . (16.2.13)
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Table 16.2. Explicit expressions for the elements Λµ
ν (including the infin-

itesimal ones for small δv, δϕ) of the homogeneous Lorentz transformations
in (16.2.6). The rotation matrix elements Rij are given in (2.1.4). Note that
Λij = Λi

j (see (16.2.4)), i, j = 1, 2, 3; µ, ν = 0, 1, 2, 3.

Λνµ = (Λ−1)µν Λµ
ν � δµ

ν + δωµ
ν

Λρ
λ Λνλ = gρν δωµν = −δωνµ

Λij = Rij + (η − 1)Rik vkvj

v2
δωij = εijknkδϕ

Λ0
0 = η ≡

(
1 − v2

c2

)−1/2

δω0
0 = 0

Λ0
i = −η

vi

c
δω0

i = −δvi

c

Λi
0 = −η Rij vj

c
δωi

0 = −δvi

c

16.2.2 Lorentz Covariance, Boosts and Spatial Rotations

From (16.2.11), we may replace ∂µ by Λν
µ ∂′

ν in the Dirac equation
(16.1.14) to obtain

0 =
(

γµ∂µ

i
+

Mc

�

)
Ψ =

(
(Λν

µγµ)
∂′

ν

i
+

Mc

�

)
Ψ (16.2.14)

Let
Λν

µγµ = γ′ν (16.2.15)

and on account of (16.2.13),

{γ′ν , γ′ρ} = −2ΛνλΛρ
λ

= −2gνρ (16.2.16)

Hence from Pauli’s Fundamental Theorem in the last section, there exists a
non-singular matrix U such that

γ′ν = U−1γνU (16.2.17)

Here we find it more convenient to use U−1 for G in our previous notation
in §16.1.
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Upon multiplying (16.2.14) from the left by U , using (16.2.15), (16.2.17),
and setting

UΨ(x) = Ψ′(x′), (16.2.18)

where x′ is defined in terms of x in (16.2.6), we obtain(
γν∂′

ν

i
+

Mc

�

)
Ψ′(x′) = 0 (16.2.19)

This amounts into a mere relabelling of x and Ψ in the original Dirac equation
in (16.1.14). Pauli’s Fundamental Theorem guarantees the existence of a non-
singular matrix U satisfying (16.2.17) such that (16.2.19) holds true.

For example, for transformations implemented by Λν
µ corresponding to

pure boosts (Rij → δij), (16.2.15), (16.2.17) lead from the expression for Λν
µ

in Table 16.2, (i = 1, 2, 3)
(

γi + (η − 1)
βi γ · β

β2

)
− ηβiγ0 = U−1γiU (16.2.20)

η(γ0 − γ · β) = U−1γ0U (16.2.21)

where we have set vi/c = βi, |v| /c = β.11 Multiplying (16.2.20) by N i =
βi/β gives

η γ · N − ηβγ0 = U−1γ · NU (16.2.22)

We will see that (16.2.21), (16.2.22) are solved for U by setting

U = I cosh
ϑ

2
− γ0γ ·N sinh

ϑ

2
, U−1 = I cosh

ϑ

2
+ γ0γ ·N sinh

ϑ

2
(16.2.23)

where ϑ is to be determined, and (16.2.23) is consistent with the identity to
be shown later

U† = γ0U−1γ0 (16.2.24)

Upon substitution of the expression for U in (16.2.20)–(16.2.21) gives

cosh2 ϑ

2
+ sinh2 ϑ

2
= cosh ϑ = η (16.2.25)

2 sinh
ϑ

2
cosh

ϑ

2
= sinhϑ = ηβ (16.2.26)

or

ϑ = ln(ηβ + η)

= ln

(
2ηβ +

√
1 − β

1 + β

)
(16.2.27)

11 Note that β is a standard relativistic notation for |v|/c and should not be con-
fused with the notation for γ0 sometimes used in the literature.
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Using the facts that
(
γ0γ3

)2 = I, and that for an arbitrary matrix A, cosh A−
sinhA = exp(−A), we obtain from (16.2.23)

UB = exp
(
−ϑ

2
γ0 γ · β

β

)
(16.2.28)

where B corresponds to boosts.
In (16.2.20)–(16.2.28), v denotes the velocity of the frame F ′ relative to

the frame F as determined in F .
On the other hand for a pure spatial rotation by an angle ϕ about a unit

three-vector n, Λij = Rij (see (2.1.4)), Λ0
0 = 1, Λ0

i = 0, Λi
0 = 0, and

almost an identical analysis as given above for pure boosts, with hyperbolic
functions replaced, in the process, by trigonometric ones gives

UR = exp
(

i
2

ϕn · Σ
)

(16.2.29)

where

Σ =
(

σ 0
0 σ

)
= γ5γ0γ, Σj =

i
4
εjk�

[
γk , γ�

]
(16.2.30)

which should be compared with the rotations of spinors in (2.8.1) discussed
there in a non-relativistic context. Since

(
n · Σ

)2 = I,
(
n · Σ

)3 = n · Σ (16.2.31)

we note again from (16.2.29) the double-valuedness of the spinor under ro-
tation with 4π rather than 2π radians to return the spinor to its original
state.

Since Σ is Hermitian, UR is clearly unitary, this is unlike UB for a pure
boost given in (16.2.28) where for the latter U†

B �= U−1
B . UB , however, sat-

isfies the relation in (16.2.24) (see also (16.2.53)). Since γ0Σγ0 = Σ, UR,
apart from being unitary, also satisfies the relation in (16.2.24) with U in it
replaced by UR. We will use this fact in (16.2.61) to formulate quite generally
the invariance of the scalar product of spinors under homogeneous Lorentz

We will encounter the matrix Σ again in (16.2.46) and in sections to follow
as well, and, as expected from its expression in (16.2.30), it is associated with
spin.

For more general transformations given in Table 16.1, but for infinitesimal
ones we have

Λν
µ � δν

µ + δων
µ, δωνµ = −δωµν (16.2.32)

where δων
µ → 0 for v → 0, ϕ → 0. Since in this limit, U → I, we may also

set

γ0transformations, where  is introduced and so designed to make up for the
UBnon-unitary character of       without spoiling the unitary property of UR .
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U � I +
i

2�
δωµνSµν (16.2.33)

U−1 � I − i
2�

δωµνSµν (16.2.34)

where Sµν is to be determined.
By equating (16.2.15), (16.2.17) and using (16.2.32)–(16.2.34), we are led

to
δωνµγµ = − i

2�
δωλµ [Sλµ , γν ] (16.2.35)

Since δων
µ is anti-symmetric, the left-hand side of (16.2.35) may rewritten

as
1
2
(
δν

λδωλµγµ + δν
µδωµλγλ

)
=

δωλµ

2
(δν

λγµ − δν
µγλ) (16.2.36)

which upon comparison with the right-hand side of (16.2.35) gives
[
Sλµ, γν

]
= i�

(
gλνγµ − gµνγλ

)
(16.2.37)

The solution is readily verified to be given by

Sλµ =
i�
4
[
γλ, γµ

]
. (16.2.38)

To find the interpretation of this matrix we first note from (16.2.6),
(16.2.32)

x′µ � xµ + δωµ
νxν (16.2.39)

Hence from (16.2.18), we have

Ψ′ (xσ + δωσ
λxλ

)
�
(

I +
i

2�
δωµνSµν

)
Ψ(xσ) (16.2.40)

or
Ψ′(xσ) �

(
I +

i
2�

δωµνSµν

)
Ψ
(
xσ − δωσ

λxλ
)

(16.2.41)

Now we may carry out a Taylor expansion of Ψ in δω on the right-hand
side of (16.2.41) to get

Ψ′(x) � Ψ(x) +
i

2�
δωµνJµνΨ(x) (16.2.42)

where
Jµν = Sµν +

(
xµ

�

i
∂ν − xν

�

i
∂µ

)
(16.2.43)

In particular for i, j, k = 1, 2, 3,

Ji =
1
2
εijkJjk
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= Si + Li (16.2.44)

where L is the orbital angular momentum and

Si =
1
2
εijkSjk

=
i�
8

εijk [γi, γk] (16.2.45)

is identified with the spin. The remaining part of Jµν , that is Ji0, is usually
referred to as the “booster”.

In the notation of (16.2.30), we may rewrite the spin S as

S =
�

2
Σ, S2 = �

2 1
2

(
1
2

+ 1
)

I (16.2.46)

Upon setting Pµ = �∂µ/i, the following commutations relations are read-
ily derived

[Pµ, P ν ] = 0 (16.2.47)

[
Pµ, Jνλ

]
= i�

(
gµλP ν − gµνPλ

)
(16.2.48)

[
Jλβ , Jασ

]
= i�

(
gλαJβσ − gβαJλσ + gβσJλα − gλσJβα

)
(16.2.49)

establishing the algebra of the generators of the inhomogeneous Lorentz
transformations, where the commutation relation of any two of the gener-
ators gives rise to a linear combination of the generators.

16.2.3 Lorentz Invariant Scalar Products of Spinors, Lorentz
Scalars and Lorentz Vectors

We will establish the identity in (16.2.24) and consider some of its conse-
quences.

Using the reality of Λν
µ in (16.2.15), and hence the identity

γ′ν = γ0(γ′ν)†γ0 (16.2.50)

as obtained from (16.1.9), we have from (16.2.50)

U−1γνU = γ0
(
U−1γνU

)†
γ0

= γ0U†γ0γνγ0
(
γ0U†)−1

(16.2.51)

where we have used (16.1.9), (16.1.12), or

γν =
(
Uγ0U†γ0

)
γν

(
Uγ0U†γ0

)−1
(16.2.52)
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This in turn implies that

γν
(
Uγ0U†γ0

)
=
(
Uγ0U†γ0

)
γν (16.2.53)

That is, Uγ0U†γ0 commutes with all the γν and hence the former is some
multiple of the unit matrix (see also Appendix to §16.1)

(
Uγ0U†γ0

)
= aI (16.2.54)

From (16.2.54), we may also write

U† = aγ0U−1γ0 (16.2.55)

Upon substitution of the expressions for

U† � I − i
2�

δωµνS†
µν (16.2.56)

and U−1, given in (16.2.34), for infinitesimal transformations, where we recall
that δωµν is real, in (16.2.55), and using the property

S†
µν = γ0Sµνγ0 (16.2.57)

as follows from (16.2.38), give a = 1. Thus from (16.2.55) we have established
(16.2.24).

Now we may formulate the Lorentz invariant scalar product of two spinors
Ψ(x), χ(x) under homogeneous Lorentz transformations in analogy to the
invariance of the quadratic form

xµgµνyν = invariant (16.2.58)

in Minkowski spacetime. To this end, we note from (16.2.18) that under a
homogeneous Lorentz transformation Ψ(x) → Ψ′(x′), χ(x) → χ′(x′), there
exists a non-singular matrix U such that

Ψ′(x′) = UΨ(x), χ′(x′) = Uχ(x) (16.2.59)

and from (16.2.24) that U† = γ0U−1γ0. The later implies tat

U†γ0U = γ0. (16.2.60)

Hence for the combination Ψ′†(x′)γ0χ′(x′), we have

Ψ′†(x′)γ0χ′(x′) = Ψ†(x)U†γ0Uχ(x) = Ψ†(x)γ0χ(x). (16.2.61)

That is,
Ψ†(x)γ0χ(x) = invariant (16.2.62)

The presence of γ0 in (16.2.62), which is in analogy to the metric in
(16.2.58), stems from the fact that although the corresponding transforma-
tion for pure spatial rotations UR, given in (16.2.29), is unitary U†

R = U−1
R ,
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but nevertheless satisfies the relation U†
R = γ0U−1

R γ0 in (16.2.24), the one
involving a pure homogeneous Lorentz transformation (a boost) UB, given in
(16.2.28), is not unitary U†

B �= U−1
B but satisfies the relation U†

B = γ0U−1
B γ0

in (16.2.24). This explains the essential presence of γ0 in (16.2.62) to make
up for this distinction between the two transformations and, in turn, ensures
the invariance property stated in (16.2.62). Because of the importance of the
combination Ψ†γ0, one introduces a special notation for it

Ψ†(x)γ0 = Ψ (16.2.63)

In particular, the invariant combination Ψ(x)Ψ(x) is referred to as a
Lorentz scalar.

Similarly, by using in the process (16.2.15), (16.2.17), we obtain
(
Ψ

′
(x′)γµΨ′(x′)

)
= Λµ

ν

(
Ψ(x)γνΨ(x)

)
(16.2.64)

(see Problem 16.5). That is, Ψ(x)γνΨ(x) transforms as xν in (16.2.6) and is
referred to as a Lorentz vector.

16.3 Spin, Helicity and P, C, T Transformations

In the next section, we will see that neither the spin S nor the orbital
angular momentum L introduced in (16.2.44) are conserved but the total
angular momentum J, however, is. The spin component parallel to the mo-
mentum of a particle is referred to as the helicity (see also §5.10). The helicity
as the component of the transformed spin taken parallel to the momentum
of the particle in question, with the momentum as determined in each cor-
responding inertial frame, has a Lorentz invariant meaning. The concept of
helicity is of utmost importance when dealing with massless particles as spin
measurement along arbitrary directions has no meaning for such particles.
The application of helicity to massive Dirac particles will be given in the
next section and to massless ones in §16.5. The investigation of helicity for
massless particles of higher spins turns out to be quite interesting and will
be discussed in §16.8. In the present section, we also study the nature of the
Dirac equation under parity P, time reversal T (see also §2.6), and under the
so-called charge conjugation C whose physical meaning will emerge later in
§16.6.

16.3.1 Spin & Helicity

The spin matrix S was introduced in (16.2.44)–(16.2.46), and from
(16.2.30) is given by

S =
�

2

(
σ 0
0 σ

)
=

�

2
γ5γ0γ. (16.3.1)



16.3 Spin, Helicity and P, C, T Transformations 901

This may be taken as the spin operator for a massive particle in its rest frame.
In a momentum description (§16.4), we may define the spin in the frame

in which observations are made (the “laboratory”) and in which the particle
in question is moving with momentum p by applying the reversed boost
operation given by the transformation matrix U in (16.2.23), (16.2.17), as
reformulated in the present context, where now v in it represents the particle’s
velocity. That is, we have to find the matrix USU−1 = S′ rather than U−1SU
and the reason for applying the former operation than the latter is, as just
mentioned, we are going from the particle’s frame to the observer’s frame.

To the above end

S′ =
(

I cosh
ϑ

2
− γ0γ · N sinh

ϑ

2

)
�

2
γ5γ0γ

(
I cosh

ϑ

2
+ γ0γ · N sinh

ϑ

2

)

(16.3.2)
(see (16.2.23)), where p = Mηv, p0 = Mηc, η = (1 − v2/c2)−1/2

N =
p
|p| , p0 ≡

√
p2 + M2c2 (16.3.3)

and from (16.2.25), (16.2.26),

cosh ϑ =
p0

Mc
, sinh ϑ =

|p|
Mc

(16.3.4)

sinh
ϑ

2
=

√
p0 − Mc

2Mc
, cosh

ϑ

2
=

√
p0 + Mc

2Mc
, tanh

ϑ

2
=

|p|
p0 + Mc

.

(16.3.5)
The expression on the right-hand side of (16.3.2) simplifies to

S′ =
p0

Mc
S −

p
(
S · p

)
Mc(p0 + Mc)

− �|p|
2Mc

γ5
[
γ
(
γ · N

)
+ N

]
. (16.3.6)

The last term on the right-hand side of this equation may be expressed in
terms of S0i defined in (16.2.38) (see Problem 16.6).

We consider the components of S′ =
(
S′
‖,S

′
⊥
)

parallel and perpendicular
to p. For S′

‖, we have

S′
‖ = S‖

(
p0

Mc
− p2

Mc(p0 + Mc)

)
(16.3.7)

and the coefficient of S‖ is one, giving

S′
‖ = S‖. (16.3.8)

This result is remarkable. It states that the component of spin parallel to p
has a Lorentz invariant meaning and quite importantly it is independent of
the mass of the particle and hence exists rigorously for M → 0 as well. It
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is also Hermitian. In any other inertial frame, say, F ′′, if the momentum of
the particle in question is determined to be p′′, then the component of the
transformed spin S′′ parallel now to p′′ will also satisfy S′′

‖ = S‖.
For the component perpendicular to p,

S′
⊥ =

p0

Mc
S⊥ − �

2
|p|
Mc

γ5
[
γ
(
γ · N

)
+ N

]

=
p0

Mc
S⊥ − i

�

2
|p|
Mc

γ5
(
Σ × N

)
(16.3.9)

and S′
⊥ �= S⊥, that is, it is frame dependent. It has no zero mass limit, and,

as is easily verified, the second term is not Hermitian.
Summarizing then, we have found the privileged direction for spin mea-

surement, to be given by the direction of momentum of the particle itself, with
the momentum as determined in each of the corresponding inertial frames,
and has a Lorentz invariant meaning, and is applicable both for massive as
well as for massless particles and the corresponding operator is Hermitian.
Applications of this important result will be given in the forthcoming sections.

16.3.2 P, C, T Transformations

Let x′ =
(

0
)
(
−γ · ∂′

i
− γ0∂′0

i
+

Mc

�

)
Ψ(x) = 0. (16.3.10)

Multiplying the latter from the left by γ0 gives
(

γ∂′

i
+

Mc

�

)
γ0Ψ(x) = 0. (16.3.11)

Hence we may set
Ψ′(x′) = ηP γ0Ψ(x) (16.3.12)

and define the parity transformation by

P : Ψ(x) −→ ηP γ0Ψ(x′) (16.3.13)

where ηP is a phase factor.
The products Ψ(x)γ5Ψ(x) and Ψ(x)γ5γµΨ(x) transform, respectively, as

a pseudo-scalar and a pseudo-vector.
We consider next time reversal and this analysis will be followed by charge

conjugation. Let x′ =
(
−x0,x

)
, then

(
γ · ∂′

i
+

γ0∂′0

i
+

Mc

�

)
Ψ(x) = 0. (16.3.14)

x ,−x , then we may rewrite the Dirac equation (16.1.14) as
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Upon multiplying the latter from the left by γ1γ3K, where K denotes the
operation of complex conjugation, and making use of the fact that in the
Dirac-Pauli representation γ0, γ1, γ3 are real and (γ2)∗ = −γ2 (see (16.1.10)),
it is easy to verify that

(
γ′∂′

i
+

Mc

�

)
γ1γ3KΨ(x) = 0 (16.3.15)

and we may set
Ψ′(x′) = ηT γ1γ3Ψ∗(x) (16.3.16)

and define the time reversal transformation by

T : Ψ(x) −→ ηT γ1γ3Ψ∗(x′) (16.3.17)

up to a phase factor ηT .
For the so-called charge conjugation transformation, we consider the Dirac

equation in (16.1.18) in a given external electromagnetic field Aµ(x) given in
(16.1.17). We first take the complex conjugate of the equation (16.1.18) to
obtain from (16.1.10),

[
−γλ

(
∂λ

i
+

e

�c
Aλ

)
+ γ2

(
∂2

i
+

e

�c
A2

)
+

Mc

�

]
Ψ∗(x) = 0 (16.3.18)

where here λ = 0, 1, 3. Multiplying this equation from the left by iγ2 gives in
the Dirac-Pauli representation12

[
γµ

(
∂µ

i
+

e

�c
Aµ

)
+

Mc

�

] (
iγ2γ0

)
Ψ

�
(x) = 0. (16.3.19)

We may then define charge conjugation by

C : Ψ(x) −→ ΨC(x) = ηC
(
iγ2γ0

)
Ψ

�
(x), (16.3.20)

where ηC is a phase factor, and we have used the fact that γ0Ψ
�

=
γ0
(
Ψ†γ0

)� = Ψ∗. That is, for a given external electromagnetic field, ΨC(x)
satisfies the same equation as Ψ(x) with the sign of the charge e in it simply
reversed e → −e. The physical significance of this will be discussed in §16.6.

16.4 General Solution of the Dirac Equation

We consider the general solution of the Dirac equation
(

γ∂

i
+

Mc

�

)
Ψ(x) = 0 (16.4.1)

12 The i factor in iγ2 is chosen for convenience to make (iσ2) a real matrix.
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x = (x0,x), x0 = ct. We carry out a four dimensional Fourier transform

Ψ(x) =
∫

(dp)
(2π�)4

eipx/� Ψ(p) (16.4.2)

with the Lorentz invariant measure

(dp) = dp0dp1dp2dp3 (16.4.3)

and the Lorentz scalar
px = p · x − p0x0, (16.4.4)

p = (p0,p). From (16.4.1), (16.4.2), we have

(γp + Mc) Ψ(p) = 0 (16.4.5)

where γp = γµpµ = γ · p + γ0p0 = γ · p − γ0p0, and we note that in the
Dirac-Pauli representation given in (16.1.8), no i factors appear in (16.4.5)
in the p-description multiplying γµ

Upon multiplying (16.4.5) from the left by (−γp + Mc) gives
(
p2 + M2c2

)
Ψ(p) = 0 (16.4.6)

and the solution is of the form

Ψ(p) = δ
(
p2 + M2c2

)
Φ(p) (16.4.7)

where δ(p2 + M2c2) is the Dirac delta distribution, and we have noted that
af(a) = 0 implies that f(a) = g(a)δ(a) = g(0)δ(a). Since p2 + M2c2 =
p2 + M2c2 − p02, we may use the well known property

δ
(
p2 + M2c2

)
=

δ
(
p0 −

√
p2 + M2c2

)
+ δ

(
p0 +

√
p2 + M2c2

)
2
√

p2 + M2c2
(16.4.8)

leading to two parts contributing to Ψ(p), one for p0 > 0 and one for p0 < 0.
Equivalently, (16.4.5) has a non-trivial solution only if γp+Mc has no inverse,
i.e., det(γp + Mc) = M2c2 − p02 + p2 = 0.

To obtain a more symmetrical expression for ψ(p), we make the transfor-
mation p → −p corresponding to p0 < 0, and integrate over p0 in (16.4.2))
using the constraints imposed by the two deltas in (16.4.8). This gives the
general structure

Ψ(x) =
∫

2Mc dωp

[
eipx/�Φ+(p) + e−ipx/�Φ−(p)

]
(16.4.9)

using a rather standard notation for the Lorentz invariant measure

dωp =
d3p

(2π�)3
1

2p0
, p0 > 0 (16.4.10)
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as obtained from the Lorentz invariant measure (dp) and the Lorentz invari-
ant delta distribution δ(p2 + M2c2), where now, and from now on,

p0 = +
√

p2 + M2c2, (16.4.11)

px is defined in (16.4.4), and p0 = −p0 as always. The 2Mc factor multiplying
dωp in (16.4.9) is introduced for convenience. The restriction p2 + M2c2 = 0,
i.e.,

p2 = −M2c2 (16.4.12)

as provided by δ(p2 + M2c2) in (16.4.8) is a restriction on the mass shell
relating p0 and p. Also, Φ+(p), Φ−(p) satisfy the equations

(
γp + Mc

)
Φ+(p) = 0 (16.4.13)

(
−γp + Mc

)
Φ−(p) = 0. (16.4.14)

Now it is straightforward to solve these two equations. We consider
(16.4.13) first.

For13 p = 0, p0 = Mc, and (16.4.13) gives
(
I − γ0

)
Φ+(0) = 0. (16.4.15)

From the expression for γ0 in (16.1.8), we see that I − γ0 = diag[0, 0, 2, 2],
and hence the last two entries of Φ+(0) must be zero, i.e.,

Φ+(0, σ) =


ξσ

0


 (16.4.16)

which has only two rows and two independent (orthogonal) solutions may be
chosen

ξ†σξσ′ = δσσ′ (16.4.17)

such as
(
1 0

)†, (
0 1

)†.
Clearly, the solution of (16.4.13) is then

Φ+(p, σ) =
(
−γp + Mc

)
Φ+(0, σ), (16.4.18)

with Φ(0,σ) given in (16.4.16), since
(
γp+Mc

)(
−γp+Mc

)
=
(
p2 + M2c2

)
=

0.
Therefore, up to an arbitrary (one component) function a(p, σ) of (p, σ),

we have from (16.4.18)

Φ+(p, σ) = u(p, σ) a(p, σ) (16.4.19)
13 Here we assume M �= 0. The mass zero case will be considered in detail in the

next section.
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where u(p, σ) is taken the property normalized four component object

u(p, σ) =

√
p0 + Mc

2Mc




ξσ

σ · p
p0 + Mc

ξσ


 (16.4.20)

corresponding to two solutions in (16.4.16). The normalization condition
adopted is given by

u†(p, σ)γ0u(p, σ′) ≡ u(p, σ)u(p, σ′) = δσσ′ (16.4.21)

where
u(p, σ) = u†(p, σ)γ0. (16.4.22)

With such a normalization given in (16.4.21),

u†(p, σ)u(p, σ′) =
p0

Mc
δσσ′ (16.4.23)

and obviously (
γp + Mc

)
u(p, σ) = 0. (16.4.24)

Also
u(p, σ)

(
γp + Mc

)
= 0 (16.4.25)

A more interesting way of deriving (16.4.20) is to apply the booster op-
eration U−1 with N = p/|p| to u(0, σ) =

(
ξσ 0

)† to obtain u(p, σ). As
mentioned in the previous section, the reason why we must apply U−1 rather
than U is that the latter gives rise to the motion of the observation frame
(the “laboratory”) with respect to the rest frame of the particle in question,
while we are interested in carrying out observations on the particle itself (in
the “laboratory” frame).

To the above end, with (β = v/c)

N =
β

β
=

p
|p| (16.4.26)

p = Mηv (16.4.27)

η =
(

1 − v2

c2

)−1/2

(16.4.28)

and with the expressions for functions of ϑ in (16.3.4), (16.3.5),

U−1


ξσ

0


 = cosh

ϑ

2




ξσ

σ · p
p0 + Mc

ξσ


 (16.4.29)
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which upon normalization as in (16.4.21) gives (16.4.20). It is important to
emphasize such that such a matrix U may be defined afresh in a momentum
description where the two frames under consideration are the particle’s (for
M �= 0), and the observation frame. Massless particles will be described in
the next section.

Given the solution u(p, σ) in (16.4.20) of (16.4.24), we may introduce its
charge conjugate transform obtained from (16.3.20) given by

v(p, σ) = iγ2γ0u�(p, σ) (16.4.30)

up to a phase factor, which upon using the identity

σ2σ
� = −σσ2 (16.4.31)

gives

v(p, σ) =

√
p0 + Mc

2Mc




σ · p
p0 + Mc

ξ′σ

ξ′σ


 (16.4.32)

where
ξ′σ = (−iσ2)ξ∗σ (16.4.33)

for the corresponding ξσ in (16.4.20), and

ξ′
†

σ ξ′σ′ = δσσ′ , (16.4.34)

v(p, σ) satisfies the equation (16.4.14), i.e.,14

(
−γp + Mc

)
v(p, σ) = 0, v(p, σ)

(
−γp + Mc

)
= 0 (16.4.35)

and v(p, σ) = v†(p, σ) γ0. It satisfies the normalization condition

v(p, σ) v(p, σ′) = −δσσ′ (16.4.36)

and

v†(p, σ) v(p, σ′) =
p0

Mc
δσσ′ . (16.4.37)

Note the minus sign in (16.4.36).
We also have the orthogonality conditions

u(p, σ) v(p, σ′) = 0 (16.4.38)

for both values of σ, σ′ adopted. From (16.4.20), (16.1.8), we note that
u(p, σ) = u†(−p, σ), and we may rewrite (16.4.38) as

14 Note that for p = 0, (I +γ0)v(0, σ) = 0 and hence the first two entries of v(0, σ)
must vanish and is consistent with the expression in (16.4.32) as expected.
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u†(−p, σ)v(p, σ′) = 0 (16.4.39)

The action of (−iσ2) on ξ∗σ in (16.4.33) is clear. If the ξσ in (16.4.20) are
given by

ξ+N =




cos
θ

2
e−iφ/2

sin
θ

2
eiφ/2


 , ξ−N =



− sin

θ

2
e−iφ/2

cos
θ

2
eiφ/2


 (16.4.40)

(see (8.1.16)) with a unit three-vector

N =
(
sin θ cos φ, sin θ sinφ, cos θ

)
(16.4.41)

then
ξ′±N = (−iσ2)ξ∗±N = ±ξ∓N. (16.4.42)

That is, in particular, (−iσ2) acting on ξ∗±N reverses the direction of spin.
The solutions Φ−(p, σ) of (16.4.14) are given by

Φ−(p, σ) = v(p, σ) b∗(p, σ) (16.4.43)

with b∗(p, σ) an arbitrary function of (p, σ).
We have thus obtained four orthogonal spinors u(p, σ), v(p, σ) two for

each value taken by σ in the sense of (16.4.21), (16.4.36), (16.4.38).
The general solution of (16.4.1) may be then written from (16.4.2),

(16.4.9), (16.4.19), (16.4.43), (16.4.20), (16.4.32) as

Ψ(x) =
∑

σ

∫
2Mc dωp

[
eipx/�u(p, σ) a(p, σ) + e−ipx/�v(p, σ) b∗(p, σ)

]

(16.4.44)
For the moment, if we adopt the normalization condition15

1
�c

∫
d3x Ψ†(x)Ψ(x) = 1 (16.4.45)

thus providing, in the process, specific units for Ψ, then (16.4.23), (16.4.37),
(16.4.39) together with (16.4.45) gives the following restriction on the coeffi-
cients a(p, σ), b∗(p, σ)

1
�c

∑
σ

∫
2Mc dωp

[
|a(p, σ)|2 + |b(p, σ)|2

]
= 1 (16.4.46)

15 The alert reader might wonder why we have not considered the Lorentz scalar
Ψ†(x) γ0Ψ(x) (see (16.2.62)) instead of Ψ†(x) Ψ(x) in (16.4.45). The reason is
that neither Ψ†(x) Ψ(x) nor d3x are Lorentz invariant but their product is. More
will be said about the normalization condition adopted in (16.4.45) in §16.6.
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where because of the normalization factor p0/Mc in (16.4.23), (16.4.37), the
2Mc factor multiplying dωp appears again in (16.4.46).

The Hamiltonian may be obtained from (16.4.1) by multiplying the latter
by −�cγ0 giving

i�
∂

∂t
Ψ(x) = γ0

(
c�

γ · ∇
i

+ Mc2

)
Ψ(x) ≡ HΨ(x). (16.4.47)

We may rewrite (16.4.44) as

Ψ(x) =
∑

σ

∫
2Mc dωp eip·x/�

[
e−ip0x0/�u(p, σ) a(p, σ)

+ eip0x0/�v(−p, σ) b∗(−p, σ)
]

(16.4.48)

to obtain the two equations

Hu(p, σ) = p0c u(p, σ) (16.4.49)

Hv(−p, σ) = −p0c v(−p, σ) (16.4.50)

where the Hamiltonian in the p-description is given by

H = γ0
(
cγ · p + Mc2

)
=


 Mc2 cσ · p

cσ · p −Mc2


 (16.4.51)

with u(p, σ) and v(−p, σ) corresponding, respectively, to positive and nega-
tive energies E± = ±p0c. The significance of a negative energy solution will
be discussed in §16.6. Equations (16.4.49), (16.4.50) also follows directly from
(16.4.24), (16.4.35) if one uses the definitions of H in (16.4.51).

We consider the parity operation in (16.3.13) as applied to u(p, σ), v(p, σ),
giving

Pu(p, σ) = ηP u(−p, σ) (16.4.52)

Pv(p, σ) = −ηP v(−p, σ) (16.4.53)

Without loss of generality we may set ηP = +1 or −1, and the numerical
factor ηP chosen is referred to as the relative, intrinsic parity of a particle.
Equations (16.4.52), (16.4.53) show that the intrinsic parities associated with
the negative energy solution is opposite to the one adopted for the positive
energy. The interpretation of this will be also discussed in §16.6 when studying
the particle content of the theory.

For the spin related matrix Σ in (16.2.30), (16.2.46) we note that

Σ · Nu(0, σ) = ±u(0, σ) (16.4.54)
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for ξσ corresponding to ξ±N, respectively, in (16.4.40), while

Σ · N v(0, σ) = ∓v(0, σ). (16.4.55)

On the other hand for N taken along p, i.e., N = p/|p|,

u(p, σ) =

√
p0 + Mc

2Mc




ξ±N

± |p|
p0 + Mc

ξ±N


 (16.4.56)

with ξσ corresponding, respectively, to ξ±N, and

v(p, σ) =

√
p0 + Mc

2Mc



− |p|

p0 + Mc
ξ∓N

±ξ∓N


 . (16.4.57)

For the helicity S‖ (see (16.3.8)), with S‖ = �Σ‖/2, and with u(p, σ), v(p, σ)
given above in (16.4.56), (16.4.57),

Σ‖ u(p, σ) = ±u(p, σ) (16.4.58)

Σ‖ v(p, σ) = ∓v(p, σ). (16.4.59)

Unlike the non-relativistic case

[H ,S] �= 0, [H ,L] �= 0 (16.4.60)

where the spin S and orbital angular momentum L are defined in (16.2.44)–
(16.2.46), but the total angular momentum J = L + S is conserved, i.e., (see
Problem 16.9)

[H ,J] = 0. (16.4.61)

The spin component S‖ parallel to p, i.e., the helicity (§16.3, (16.3.8))
has the distinction that it commutes with H:

[
H ,S‖

]
= 0, (16.4.62)

as is readily verified.
We introduce the following matrices

P+(p) =
∑

σ

u(p, σ)u(p, σ) (16.4.63)

P−(p) = −
∑

σ

v(p, σ) v(p, σ). (16.4.64)

They are orthogonal projection operations, i.e., they satisfy the following
equations



16.4 General Solution of the Dirac Equation 911

P+(p)P+(p) = P+(p), P−(p)P−(p) = P−(p) (16.4.65)

P+(p)P−(p) = 0 = P−(p)P+(p). (16.4.66)

They project out, respectively, positive and negative energy solutions

P+(p)u(p, σ) = u(p, σ), P+(p) v(p, σ) = 0 (16.4.67)

P−(p) v(p, σ) = v(p, σ), P−(p)u(p, σ) = 0. (16.4.68)

The explicit expressions for these operators may be worked out directly
from their definitions in (16.4.63), (16.4.64) and are given by

P+(p) =

(
−γp + Mc

)
2Mc

(16.4.69)

P−(p) =

(
γp + Mc

)
2Mc

(16.4.70)

and satisfy the completeness relation

P+(p) + P−(p) = I. (16.4.71)

We close this section by noting that u(p, σ) in (16.4.20) may be rewritten,
in general, as

u(p, σ) =

√
p0 + Mc

2Mc




ξσ

|p|
p0 + Mc

σ · p̂ ξσ


 (16.4.72)

where p̂ = p/|p|. At low energies, i.e., for |p|/Mc � 1, the upper component
is large in comparison to the lower one with the tater suppressed by a factor
of the order |p|/Mc, and exactly the opposite happens for v(p, σ), giving

u(p, σ) ∼


ξσ

0


 , v(p, σ) ∼


 0

ξ′σ


 . (16.4.73)

For later reference, we note that by using the elementary property

(H)2 = Ip02
c2 (16.4.74)

for the Hamiltonian in (16.4.51), the Dirac time evolution operator takes the
simple form

e−itH/� = I cos
(

p0ct

�

)
− i

H

p0c
sin

(
p0ct

�

)
(16.4.75)

where p0 = +
√

p2 + M2c2.
In the next section, we consider massless particles in the light of the Dirac

equation.
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16.5 Massless Dirac Particles

To investigate the nature of Dirac massless particles, it turns out to
be more suitable to work in the chiral representation of the γ matrices in
(16.1.26) obtained via the unitary operator G given in (16.1.25). As we have
seen in §16.3, it is essential to deal with the helicity, i.e., with the component
of spin parallel to the direction of the momentum p of the particle.

To treat massless particles it is most instructive to consider first the zero
mass limit M → 0 of the solution of the Dirac equation and then compare
the solution obtained with the one derived by studying the Dirac equation
with the Mass M set equal to zero at the outset.

In the chiral representation, we have explicitly from (16.1.25), (16.4.20),

u′(p, σ) = Gu(p, σ)

=
1√
2




[√
p0 + Mc

2Mc
+

σ · p√
2Mc(p0 + Mc)

]
ξσ

−
[√

p0 + Mc

2Mc
− σ · p√

2Mc(p0 + Mc)

]
ξσ




. (16.5.1)

Using the fact that
1√

p0 + Mc
=

√
p0 − Mc

|p| (16.5.2)

and the expression for cosh ϑ/2 and sinh ϑ/2 in (16.3.5) leads, using in the
process (16.2.28), to

u′(p, σ) =
1√
2




exp
(

+
ϑ

2
σ · N

)
ξσ

− exp
(
−ϑ

2
σ · N

)
ξσ


 (16.5.3)

where N = p/|p|, and from (16.2.27), (16.4.26), (16.4.27),

ϑ = ln

(
2|p|
Mc

+

√
1 − |p|/p0

1 + |p|/p0

)
(16.5.4)

where p0 = +
√

p2 + M2c2. u′(p, σ) satisfies the normalization condition

u′(p, σ)u′(p, σ′) = δσσ′ (16.5.5)

with u′ = u′†γ′0, as expected.
For ξσ ≡ ξ−N (see (16.4.40))
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u′(p, σ) =
1√
2


e−ϑ/2ξ−N

−eϑ/2ξ−N


 (16.5.6)

and from (16.5.4), we note that for M → 0

u′(p, σ) −→ − 1√
2

exp
[
1
2

ln
(

2|p|
M

)]
 0

ξ−N


 (16.5.7)

for which using now the normalization condition

u†(p, σ)u′(p, σ′) = δσσ′ (16.5.8)

gives rigorously for M → 0,

u′(p, σ) =


 0

ξ−N


 . (16.5.9)

For the charge conjugate spinor, we have directly from (16.4.32) in the
chiral representation

v′(p, σ) =
1√
2




exp
(

+
ϑ

2
σ · N

)
ξ′σ

exp
(
−ϑ

2 σ · N
)
ξ′σ


 (16.5.10)

where ξ′±N = ±ξ∓N (see (16.4.42)). Hence for ξσ ≡ ξ−N,

v′(p, σ) −→ −eϑ/2

√
2


ξ+N

0


 (16.5.11)

for M → 0, and now with the normalization condition

v′†(p, σ) v′(p, σ′) = δσσ′ (16.5.12)

we obtain

v′(p, σ) =


ξ+N

0


 . (16.5.13)

It is interesting to note from (16.5.9), (16.5.13), that the solution of pos-
itive and negative energies decouple.

Similarly, for ξσ = ξ+N, we have for M → 0,

u′(p, σ) =


ξ+N

0


 , v′(p, σ) =


 0

ξ−N


 . (16.5.14)
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When the mass M is set rigorously equal to zero at the outset in the Dirac
equation, the Hamiltonian in the chiral representation is given by

H ′ = γ′0γ′ · p =


cσ · p 0

0 −cσ · p


 (16.5.15)

and
Σ′ = Σ =

(
σ 0
0 σ

)
, γ′5 =

(
I 0
0 −I

)
. (16.5.16)

Now it is an easy matter to show (see Problem 16.11) that the only
matrices in the complete set of the 16 matrices in the ordered set16 {Γ ′

A}
in the chiral representation that commute with H ′, apart from the identity,
are γ′5 and the linear combinations (N = p/|p|)

aN ·
(

σ 0
0 −σ

)
+ bN ·

(
σ 0
0 σ

)
(16.5.17)

for arbitrary numerical factors a and b. The first matrix in (16.5.17) is nothing
but H ′, up to a multiplicative numerical factor, while the second is Σ · N
also up to a numerical factor in the momentum description. Also note that[
γ′5 ,Σ · N

]
= 0.

That is, we have the commuting set
{
H ′,S · N, γ′5} of operators:17

[H ′ ,S · N] = 0,
[
H ′ , γ′5] = 0,

[
γ′5 ,S · N

]
= 0 (16.5.18)

where S = �Σ/2 (see (16.2.44), (16.2.46)), and we must find the simultaneous
eigenstates of these operators to specify the state of a particle. For positive
energy

H ′u′(p, σ) = |p|c u′(p, σ) (16.5.19)

S · Nu′(p, σ) = �λ u′(p, σ) (16.5.20)

γ′5u′(p, σ) = ζ u′(p, σ). (16.5.21)

From (16.5.15), (16.5.16), it is easy to see that (16.5.19)–(16.5.21) are
compatible only if u′(p, σ) has either an upper component or a lower one. It
is straightforward to show that the solutions for u′(p, σ) are given by

u′(p,−1) =


 0

ξ−N


 , u′(p,+1) =


ξ+N

0


 (16.5.22)

as before, with
16 See the appendix to §16.1.
17 The role of parity will be discussed below.
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S · Nu′(p, σ) = −�

2
u′(p, σ) (16.5.23)

γ′5u′(p, σ) = −u′(p, σ) (16.5.24)

and

S · Nu′(p, σ) = +
�

2
u′(p, σ) (16.5.25)

γ′5u′(p, σ) = +u′(p, σ) (16.5.26)

respectively.
γ′5 is called the chirality operator, and we see from (16.5.23)–(16.5.26),

that for a positive energy solution we always have

Σ · Nu′(p, σ) = γ′5u′(p, σ). (16.5.27)

That is, for positive energy massless Dirac particles, helicity and chirality
have the same sign.

For the charge conjugate spinor

v′(p, σ) = iγ′2γ′0u′�(p, σ) (16.5.28)

the solutions are 
ξ+N

0


 ,


 0

ξ−N


 (16.5.29)

for ξσ = ξ−N, ξ+N, respectively.
The corresponding equations to (16.5.19)–(16.5.26) are then

H ′v′(−p, σ) = −|p| v′(−p, σ) (16.5.30)

S · N v′(−p, σ) = −�

2
v′(−p, σ) (16.5.31)

γ′5v′(−p, σ) = +v′(−p, σ) (16.5.32)

and

S · N v′(−p, σ) = +
�

2
v′(−p, σ) (16.5.33)

γ′5v′(−p, σ) = −v′(p, σ) (16.5.34)

respectively, and we always have

Σ · N v′(−p, σ) = −γ′5v′(−p, σ) (16.5.35)

with chirality and helicity of opposite signs in this case.
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We note that the solutions in (16.5.22) obtained for u′(p, σ) are connected
by the parity operation

γ′0


 0

ξ−N


 −−−−−−−−−→

N→−N


ξ+N

0


 (16.5.36)

up to a phase, where γ′0 is given in (16.1.26). Massless particles that are
produced through processes which do not conserve parity, so that a massless
particle with only one of the helicities, say, −�/2 in (16.5.23) is observed,
may be described by the spinor

ũ(p, σ) =
1
2
(
I − γ′5)u′(p, σ) (16.5.37)

which is non-zero for u′(p, σ) =
(
0 ξ−N

)�, and that

γ′5ũ(p, σ) = −ũ(p, σ), (16.5.38)

S · N ũ(p, σ) = −�

2
ũ(p, σ). (16.5.39)

A particle with negative helicity is said to be left-handed, while one with
positive helicity is said to be right-handed.18

The charge conjugate spinor ṽ(p, σ) corresponding to ũ(p, σ) would be
then defined as in (16.5.31), satisfying

S · (−N) ṽ(−p, σ) = +
�

2
ṽ(−p, σ). (16.5.40)

The fact that the positive and energy solutions in (16.5.22), (16.5.29)
decouple, a two-component formulation for massless particles may be set up,
but we will not go into it here.

For massless particles of higher spin s, we will see in §16.8 that the only
possible values for helicities are ±s and no intermediate 2s−1 values appear.

16.6 Physical Interpretation, Localization and Particle
Content

In the previous sections of this chapter, we have developed the Dirac equa-
tion to provide a quantum description of relativistic spin 1/2 particles in a
Lorentz covariant manner. We have witnessed the existence of negative en-
ergy states. This, in particular, implies the unboundedness of the spectrum of

18 The word chirality is derived from a Greek word referring to “hand” or in this
context to “handedness”.
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the corresponding Hamiltonian from below as the kinetic energies associated
with such states become more and more negative. One cannot also simply
exclude these states, in general, from the underlying Hilbert space due to the
lack of its completeness without them for a correct statistical interpretation
of the theory. As a matter of fact, quantum transition probabilities of oc-
currence of basic fundamental relativistic processes turn out to be incorrect,
i.e., in contradiction with experiments, if such states are not included in their
calculations. The purpose of this section, is to study the nature of the nega-
tive energy states, their non-trivial consequences, the idea of localization of a
particle and that of vacuum fluctuations. As mentioned in the Introduction
to this chapter, these concepts provide the first steps in the development of
quantum field theory.

In the light of the Dirac equation, we first derive expressions for the prob-
ability density and probability current as follow from this equation and we
consider the initial value problem. One will soon realize that a single-particle
interpretation with such a probability density turns out to be not complete,
and one is led to a multi-particle theory. This is due to the fact that relativity
allows the creation of an unlimited number of pairs of particles, and we must
take them into account even when discussing the motion of a single particle.
We then study the concept of a position of a particle, its localization and
its role in the nature of relativistic corrections of the spectrum of the hy-
drogen atom, together, with the proper interpretation of the negative energy
solutions of negative mass.

16.6.1 Probability, Probability Current and the Initial Value
Problem

Consider the Dirac equation in an external electromagnetic field
[
γµ

(
∂µ

i
− e

c�
Aµ

)
+

Mc

�

]
Ψ = 0 (16.6.1)

and of its adjoint multiplied by γ0: Ψ = Ψ†γ0,

Ψ
[
γµ

(←
∂ µ

i
+

e

c�
Aµ

)
− Mc

�

]
= 0. (16.6.2)

Multiplying (16.6.1) from the left by Ψ, and (16.6.2) from the right by Ψ,
and subtracting one equation from the other, we obtain

∂µ

(
Ψ(x)γµΨ(x)

)
= 0 (16.6.3)

or
∂

∂t
Ψ†(x)Ψ(x) + ∇ ·

(
cΨ(x)γΨ(x)

)
= 0 (16.6.4)
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providing a conservation law for the probability four-current density Jµ(x) =
Ψ(x)γµΨ(x)/�, in the unit adopted for Ψ(x) in (16.4.45). The latter implies
that the decrease of probability within a given volume of space is compensated
by the flow of the probability three-current density J(x) = Ψ(x)γΨ(x)/� out
of the volume in question. The product Ψ†(x)Ψ(x)/�c = J0(x)/c allows one
formally to adopt the normalization condition in (16.4.45). We will see below
at the end of this section, however, that a single-particle probability density
interpretation of this in the relativistic domain turns out to be not complete.

The total probability three-current JTot(t) at any given time t, may be
determined from (16.4.44), with u(p, σ) and v(p, σ) satisfying the normaliza-
tion conditions in (16.4.23), (16.4.37), and the easily derived properties

u(p, σ)γu(p, σ′) =
p

Mc
δσσ′ (16.6.5)

v(p, σ)γv(p, σ′) =
p

Mc
δσσ′ , (16.6.6)

to be given by

JTot(t) =
1
�

∫
d3x Ψ(x)γΨ(x)

=
1
�c

∑
σ

∫
2Mc dωp

( p
M

) [
|a(p, σ)|2 + |b(p, σ)|2

]

+
1
�c

∑
σ,σ′

∫
2Mc dωp

[
u(−p, σ)cγv(p, σ′)

× e2ip0ct/�a∗(−p, σ) b∗(p, σ′) + c.c.
]
. (16.6.7)

Due to the interference between the negative and positive energy solu-
tions, the current JTot(t) oscillates rapidly with angular frequencies ω =
2
√

p2c2 + M2c4/� � 2Mc2/� ∼ 1021 sec−1. Such oscillations were referred
to as “Zitterbewegung” by Schrödinger. We will say more about them below.

Given an initial condition Ψ(x, 0), describing, for example, the localization
of a particle, we will see how the negative energy solution contributes to the
solution for t > 0. Given an initial condition, the Dirac equation provides in
(16.4.44) the solution of the problem for t > 0. By using, in the process, the
normalization properties in (16.4.23), (16.4.37), (16.4.39) we obtain

a(p, σ) = u†(p, σ)
∫

d3x e−ip·x/� Ψ(x, 0) (16.6.8)

b∗(p, σ) = v†(p, σ)
∫

d3x eip·x/� Ψ(x, 0). (16.6.9)
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For example, if the electron is initially prepared with spin, say, along the
z-axis, and

Ψ(x, 0) = F (x)




1
0
0
0


 (16.6.10)

then

a(p, σ) =

√
p0 + Mc

2Mc
ξ†σ


1

0


F (p) (16.6.11)

b∗(p, σ) =

√
p0 + Mc

2Mc

|p|
p0 + Mc

ξ′†σ


 cos θ′

sin θ′ eiφ′


F (−p) (16.6.12)

(see (16.4.20), (16.4.32)), where p = |p|
(
sin θ′ cos φ′, sin θ′ sinφ′, cos θ′

)
and

F (p) is the Fourier transform of F (x) in (16.6.10). That is, given an initial
condition, the coefficients b∗(p, σ), corresponding to the negative energy so-
lution, would, in general, contribute to Ψ(x, t) for t > 0 in (16.4.44). They
are suppressed by a factor |p|/(p0 + Mc) relative to the positive energy co-
efficients at low energies. On the other hand for higher energies at which |p|
is, say, comparable to Mc, |p|/(p0 + Mc) is of the order one and b∗(p, σ)
would be equally important as a(p, σ). Accordingly, if the wavepacket F (x)
is such that the particle is localized within a volume of extension R, an hence
typically |p| ∼ �/R, then energies for which |p| ∼ Mc will contribute to the
integral in (16.4.44) and make b∗(p, σ) of the same order as a(p, σ). Roughly,
as soon as a particle is localized within a radius of the order of its Comp-
ton wavelength or less, the negative energy contribution to Ψ(x) cannot be
neglected.

16.6.2 Diagonalization of the Hamiltonian and Definitions of
Position Operators

We carry out a diagonalization of the Hamiltonian in (16.4.51) of a Dirac
particle by using, in the process, a transformation of the type given in
(16.1.30)–(16.1.35), which provides a representation of the Dirac equation in
which the positive and negative energy states may be separately represented
by two-component spinors. This new representation of the Dirac theory is
referred to as the Foldy-Wouthuysen-Tani19 representation, and provides in-
sight into the problem of the position of a relativistic particle and into the
physics of the relativistic corrections of the hydrogen atom studied at length
in §7.4.

19 Foldy and Wouthuysen (1950); Tani (1951).
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Let a = p/Mc in (16.1.32)–(16.1.34), then the unitary transformation
matrix G in (16.1.30) takes the form

G =
1√

2p0(p0 + Mc)

[
p0 + Mc + γ · p

]
(16.6.13)

and
G† = G−1 =

1√
2p0(p0 + Mc)

[
p0 + Mc − γ · p

]
. (16.6.14)

It is understood that (p0 + Mc) in the square brackets in (16.6.13), (16.6.14)
is multiplied by the identity matrix.

From the expression of the Hamiltonian H = γ0
(
cγ · p + Mc2

)
in the

usual Dirac-Pauli representation, and the identity in (16.1.35), we obtain the
following expression for the Hamiltonian in the new representation

GH G−1 = H ′ = γ0
√

p2c2 + M2c2 ≡ γ0p0c. (16.6.15)

The Dirac general solution Ψ(x) in (16.4.44) then transforms to

Ψ′(x) = GΨ(x)

=
∑

σ

∫
2Mc dωp√

2p0(p0 + Mc)
eip·x/�

[
e−ip0x0/� p0

(
I + γ0

)
u(p, σ) a(p, σ)

− eip0x0/� p0
(
I − γ0

)
v(−p, σ) b∗(−p, σ)

]

≡


ψ+(x)

0


+


 0

ψ−(x)


 (16.6.16)

where we have used (16.4.49), (16.4.50) after having multiplied these two
equations by γ0 from the left. Here we have identified ψ±(x) with the two
component spinors as extracted, respectively, from the projection operators
(I±γ0)/2 onto upper/lower components as occurring within the square brack-
ets in (16.6.16). From (16.6.15), (16.6.16), we then have the two-component
equations

i�
∂

∂t
ψ±(x) = ±

√
−�2c2∇2 + M2c4 ψ±(x) (16.6.17)

where we recall the definition of γ0 in (16.1.8).
On the other hand, the Dirac position variable x in the new representation

becomes

x′ = GxG−1
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= x − i�γ

2p0
+

�

2(p0)2(p0 + Mc)

{
ipγ · p − p0Σ × p

}

≡ x + R (16.6.18)

as is easily verified, where we have used the fact that in the p-description
x = i�∇p, and that the momentum p is the same in both representations
since G in (16.6.13) commutes with p. In writing the last expression within
the curly brackets in (16.6.18) we have also used the identity

i
(
p + γ · pγ

)
= Σ × p. (16.6.19)

The first term x on the right-hand side of (16.6.18) in the new represen-
tation at time t is given by

x(t) = eitH′/� x e−itH′/� = x + t
p

(p0)2
H ′ (16.6.20)

and for the associated velocity

dx(t)
dt

=
p

(p0)2
H ′. (16.6.21)

The latter is uniform in t, and is closely analogous to the classical concept
of velocity, and gives the expression

p
p0

c when applied to a positive energy

solution.
The position operator x′ ≡ x′

op, however, is far more complex. For a given
well behaved spinor Ψ′(x), we may write

x′
opΨ′(x) =

∫
d3x′ κ(x,x′)Ψ′(x0,x′) (16.6.22)

and formally define, in the sense of distributions, the kernel,

κ(x,x′) = x δ3(x − x′) +
iγ∇2

2π2
I1(a) − i

4π2
γ · ∇ ∇I2(a)

+
i

4π2

�

Mc
Σ × ∇I3(a) (16.6.23)

where

I1(a) =
1
a

∫ ∞

0

dz

z

sin(za)√
z2 + 1

(16.6.24)

I2(a) =
1
a

∫ ∞

0

z dz sin(za)
(z2 + 1)

(√
z2 + 1 + 1

) (16.6.25)

I3(a) =
1
a

∫ ∞

0

z dz sin(za)(
z2 + 1 +

√
z2 + 1

) (16.6.26)



922 16 Quantum Description of Relativistic Particles

a ≡ Mc

�
|x − x′| . (16.6.27)

The kernel κ(x,x′) does not vanish for x �= x′, i.e., it is non-local. The
functions I1(a), I2(a), I3(a) are plotted in Figure 16.1. They become small
for a � 1, i.e., for |x − x′| � �/Mc. That is, x′ defines a non-local operator
with a non-locality spread roughly of the order of the Compton wavelength
�/Mc of the particle.

0.5 1 1.5 2 2.5 3

1

2

3

4

5

a

I1(a)

I2(a)

I3(a)

Fig. 16.1. Graphs showing the behavior of I1(a), I2(a), I3(a) in (16.6.24),
(16.6.25), (16.6.26) on their dependence on a > 0 in (16.6.27). Their rapid
vanishing properties for |x − x′| � �/Mc are evident.

The time evolution operator in the new representation may be explicitly
written as

e−itH′/� = cos
(

tp0c

�

)
− iγ0 sin

(
tp0c

�

)
(16.6.28)

where we have used the fact that (γ0)2 = I, (γ0)3 = γ0. Accordingly, the
time evolution of x′ is given by

x′(t) = eitH′/� x′ e−itH′/� (16.6.29)

and from (16.6.18), (16.6.28), this works out to be

x′(t) = x − �
Σ × p

2p0(p0 + Mc)
+ t

p

p02 H ′

− i�
2p0

(
γ − pγ · p

p0(p0 + Mc)

)[
cos

(
2p0tc

�

)
− iγ0 sin

(
2p0tc

�

)]

(16.6.30)
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and coincides with the expression in (16.6.18) for t = 0, as expected.
Equation (16.6.30) also gives

dx′(t)
dt

=
p

p02 H ′ + c

(
iγ − ipγ · p

p0(p0 + Mc)

)[
sin

(
2p0tc

�

)
+ iγ0 cos

(
2p0tc

�

)]
.

(16.6.31)
From (16.6.18), (16.6.21), (16.6.31) we may write

d
dt

R(t) = c

(
iγ − ipγ · p

p0(p0 + Mc)

)[
sin

(
2p0tc

�

)
+ iγ0 cos

(
2p0tc

�

)]

(16.6.32)
which gives the deviation of the velocity dx′/dt from dx/dt.

Therefore in the new representation in which the Hamiltonian is diagonal,
one may, in general, define two position operators x(t), x′(t). The former
is closely analogous to the classical concept of position corresponding to a
uniform velocity. The latter, however, executes a complex motion, involving
a rapidly oscillating one with frequencies 2p0c/� � 2Mc2/� ∼ 1021 sec−1

(the so-called Schrödinger’s “Zitterbewegung”) about x(t) and is responsible
for the non-locality and the associated spread of a particle over distances
roughly of the order of its Compton wavelength. Because of the reasons just
mentioned, x is usually referred to as a “mean” position operator, while x′,
with its inherited complex motion in time, is responsible for the “jittery”
behavior of the particle.

The orbital angular momentum in the new representation reads

L′ = x′ × p

= x × p + R × p

= L + R × p (16.6.33)

and for the spin

S′ =
�

2
GΣG−1

=
�

2
Σ +

i�
2p0

γ × p +
�

2p0(p0 + Mc)
(Σ × p) × p

= S − R × p (16.6.34)

where now x × p and �Σ/2 define “mean” orbital angular momentum and
spin, and both commute with H ′,

[x × p,H ′] = 0,
�

2
[Σ,H ′] = 0 (16.6.35)

(see (16.6.15)), i.e., they are separately conserved. It is interesting to note that
the total angular momentum remains invariant under the transformation
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L + S = L′ + S′. (16.6.36)

The derivations L′−L = R×p, S′−S = −R×p from the “mean” operators
are expressed in terms of the deviation of the position operator x′ from the
“mean” one R = x′−x, and are of orbital angular momentum of origin. With
the fluctuating character of R(t), with velocity as given in (16.6.32), one may
formally interpret the above spin deviation as an additional orbital angular
momentum associated with the complex motion of the particle over extended
regions as discussed above.

A similar analysis as above through (16.6.18)–(16.6.34) may be also car-
ried in the Dirac representation. In particular, the operator X in the Dirac
representation whose transformation in the new representation is x is clearly
given by

X = G−1xG. (16.6.37)

In the p-description, x = i�∇p, and a straightforward application of (16.6.37)
gives

X = x +
i�γ

2p0
− �

2(p0)2(p0 + Mc)

{
ipγ · p + p0Σ × p

}

≡ x − η. (16.6.38)

This position operator is referred to as the Pryce-Newton-Wigner20 operator.
It satisfies the commutation relations

[Xi,Xj ] = 0, [Xi, pj ] = i�δij (16.6.39)

and with X(t) = exp (itH/�)X exp (−itH/�), with H given in (16.4.51),

d
dt

X(t) =
p
p0

H

p0
=

p

p02 γ0
(
γ · pc + Mc2

)
(16.6.40)

This velocity operator is given by a satisfactory expression. It is uniform
and gives the expected expression pc/p0 when applied to a positive energy
solution. The operator x(t), however, is far more complex as discussed below.

By using the fact that x(t) = exp (itH/�)x exp (−itH/�), and the explicit
expression for the Dirac time-evolution operator given in (16.4.75), we obtain

x(t) = x − i�
2p02c

(
γ0γH − pc

)
+

tHp

p02

+
i�

2p02c

(
γ0γH − pc

) [
cos

(
2p0tc

�

)
− iH

p0c
sin

(
2p0tc

�

)]

(16.6.41)

20 Pryce (1948); Newton and Wigner (1949).
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where the identity
(
γ0γH − cp

)
= −

(
Hγ0γ − cp

)
(16.6.42)

should be noted.
For the deviation η(t) = x(t) − X(t), we also have

dη(t)
dt

= − i
p0

(
γ0γH − pc

) [
sin

(
2p0tc

�

)
+

iH
p0c

cos
(

2p0tc

�

)]
(16.6.43)

which has the oscillatory characteristic behavior with frequencies 2p0c/� �
2Mc2/�.

Therefore in the Dirac representation, one may also, in general, define
two position operators X(t), x(t). The velocity corresponding to the former
is analogous to the classical one, while the Dirac position operator executes a
complicated motion involving a rapidly fluctuating one with high frequencies
(the “Zitterbewegung”) about X(t) and is, again, responsible for the non-
locality and the associated spread of the particle. These fluctuations were also
encountered when studying the total probability current in (16.6.7) arising
from the interference of positive and negative energy solutions. We note that
due to the fact that X(t) is not in “diagonal” form,21 it mixes the positive and
negative states, i.e., it does not commute with the sign of the energy operator.
Also note that dx/dt|t=0 = cγ0γ, and

(
cγ0γ

)2 = 3c2 for its square. This is
unlike the velocity operator dX/dt in (16.6.40). The operator X(t) is usually
referred to as a “mean” position operator, while x, with its inherited complex
motion, simply as the Dirac position operator.

The “mean” orbital angular momentum in the Dirac representation is
defined by

L = X × p

= x × p − η × p (16.6.44)

and the “mean” spin operator by

S = G−1 �

2
ΣG

= S − i�
2p0

γ × p +
�

2p0(p0 + Mc)
(Σ × p) × p

21 By a matrix in “diagonal” form, in this context, it is meant a matrix of the form(
A′ 0
0 B′

)
where A′ and B′ are 2× 2 matrices. Such matrices are also referred to

as even matrices, while a matrix of the form
(

0 A′

B′ 0

)
is referred to as an odd

matrix.
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= S + η × p. (16.6.45)

These “mean” angular momentum operators are separately conserved. Also
the deviation S−S = −η×p may be formally interpreted as an additional or-
bital angular momentum contributing to spin due to the complicated motion
of the particle in an extended region as before.

16.6.3 Origin of Relativistic Corrections in the Hydrogen Atom

Consider the Dirac Hamiltonian in the presence of an electrostatic poten-
tial eφ(x):

H1 = γ0
(
cγ · p + Mc2

)
+ eφ(x)

= Mc2

[
γ0 +

γ0γ · p
Mc

+
e

Mc2
φ(x)

]

= Mc2H̃1 (16.6.46)

We wish to diagonalize this Hamiltonian. We will eventually consider correc-
tions up to the order 1/c2 only.

We first apply the unitary G transformation given in (16.6.13) to H̃1 to
obtain

H̃ ′
1 = GH̃1G

−1 = γ0

√
1 +

p2

M2c2
+

e

Mc2
φ(GxG−1) (16.6.47)

where we have used (16.6.15), and that

Gφ(x)G−1 = φ(GxG−1)

= φ(x′) (16.6.48)

Here x′ is given explicitly in (16.6.18), where x is the “mean” position and
x′(t) − x(t) has the complex motion elaborated upon earlier associated with
“Zitterbewegung”.

We are interested in finding the corrections in H1 up to order 1/c2. That
is, we have to find corrections in H̃1 in (16.6.47) up to 1/c4. The φ term is
already multiplied by 1/c2, hence we may solve for x′ in (16.6.18) up to the
order 1/c2. This is given by

x′ � x − i�
2Mc

γ − �

4M2c2
Σ × p (16.6.49)

where we note that
(
1/p0 − 1/Mc

)
is of the order (Mc)−3.
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Up to 1/c4, we then have22

1
c2

φ(x′) � 1
c2

φ

(
x − i�

2Mc
γ − �

4M2c2
Σ × p

)

� 1
c2

φ(x) − i�
2Mc3

γ · ∇φ(x) +
�

2

8M2c4
∇2φ(x)

− �

4M2c4
∇φ(x) · (Σ × p) (16.6.50)

expanded about the “mean” position in the Foldy-Wouthuysen-Tani repre-
sentation.

Accordingly, up to 1/c4, H̃ ′
1 is given by

H̃ ′
1 � γ0

(
1 +

p2

2M2c2
− p4

8M4c4

)
+

e

Mc2
φ(x)

− i�e

2M2c3
γ · ∇φ(x) +

�
2e

8M3c4
∇2φ(x)

− �e

4M3c4
∇φ(x) · (Σ × p) . (16.6.51)

This is almost in diagonal form except for the γ · ∇φ(x) term which is in
“non-diagonal” form and sticks out as a sore thumb, and we have to carry
out a further transformation to diagonalize H̃ ′

1.
To the above end, we use the following key equation. Given any odd ma-

trix, as defined before, i.e., a matrix Õ of the form

Õ =
(

0 A′

B′ 0

)

where A′, B′ are any 2 × 2 matrices, then
[
1
2
γ0Õ , γ0

]
= −Õ (16.6.52)

and note that minus sign on the right-hand of this commutation relation.
Therefore to diagonalize H̃ ′

1 and cancel out the γ · ∇φ term in (16.6.51),
which is of the order 1/c3, we choose Õ =

(
−i�e/2M2c3

)
γ·∇φ, and introduce

the unitary transformation
22 For any three-vector k which commutes with x, Σ and p, we note that k ·x and

k · (Σ × p) commute. This allows us to carry out the Taylor expansion on the
right-hand side of (16.6.50). Σ×p and γ do not commute, however, but keeping
track of their commutators is not important since this will lead to corrections of
the order 1/c5. Also note that (γ · ∇)2 = −∇2.
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G′ = I +
1
2
γ0Õ (16.6.53)

correct up to order 1/c3. The term γ0Õ/2 can act only on the γ0 term, with
coefficient one in (16.6.51), as the product of γ0Õ/2 with any of the other
terms in (16.6.51) are of the order 1/c5 or higher. Hence

H̃ ′′
1 � G′ H̃ ′

1 G′−1

� γ0

(
1 +

p2

2M2c2
− p4

8M4c4

)
+

e

Mc2
φ(x)

+
�

2e

8M3c4
∇2φ(x) − �e

4M3c4
∇φ(x) · (Σ × p) (16.6.54)

where we have used (16.6.52) to cancel out the Õ term, proportional to γ·∇φ,
identified above.

Setting eφ(x) = U(x), and using the identity ∇φ(x) · (Σ × p) = −Σ ·
(∇φ(x) × p), the diagonalized form of H1 in (16.6.46), up to the order 1/c2,
is given by

H ′′
1 = γ0

(
Mc2 +

p2

2M
− p4

8M3c2

)
+ U(x) +

�
2

8M2c2
∇2U(x)

+
1

2M2c2
S · (∇U(x) × p) (16.6.55)

which is obviously in diagonal form. When restricted to the upper component
of the Dirac spinor, it should be compared with (7.4.32) (see also (7.4.38)),
where we have generated the Darwin and the spin-orbit coupling terms, as
well as the leading relativistic correction to the kinetic energy. H ′′

1 is expressed
in terms of the “mean” position operator x, in the Foldy-Wouthuysen-Tani
representation, with the corrections arising from the deviation of the position
operator in this representation about the “mean” one associated, in particular,
with “Zitterbewegung”. This provides a beautiful explanation of the Darwin
term arising, as shown in (16.6.50), from the fluctuations of the position of the
electron which encounters a smeared-out Coulomb potential leading to the
∇2φ term in (16.6.55). An exact treatment of the bound Coulomb potential
is given in the appendix to this section.

Now we generalize the above analysis leading to (16.6.55) by including
a time-independent three-vector potential A as well. That is, we consider
the Dirac equation given in (16.1.18) with time-independent Aµ. The Hamil-
tonian associated with such a system is then given by

H2 = γ0
(
cγ · p + Mc2

)
− eγ0 γ · A(x) − eA0(x) (16.6.56)

where A0(x) = −φ(x).
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As in (16.6.46), we rewrite (16.6.56) in the form

H2 = Mc2

[
γ0 +

γ0 γ · p
Mc

+
eφ(x)
Mc2

− e

Mc2
γ0 γ · A(x)

]

≡ Mc2H̃2 (16.6.57)

We will diagonalize H̃2 up to the order 1/c4 as before.
The odd matrix in the square brackets in (16.6.57) is

1
c
Õ′ =

γ0γ

Mc
·
(
p − e

c
A
)

(16.6.58)

The commutation relation in (16.6.52) suggests to consider the matrix

1
c
D′ =

1
2c

γ0Õ′ =
γ

2Mc
·
(
p − e

c
A
)

(16.6.59)

We introduce the transformation

1G
′ = exp

(
1
c
D′
)

(16.6.60)

as a first step to diagonalize H̃2.
Since we are interested in going up to the order 1/c4, we may use the

expansion

eD′/c T e−D′/c � T +
1
c

[
D′, T

]
+

1
2!c2

[
D′,

[
D′, T

]]

+
1

3!c3

[
D′,

[
D′,

[
D′, T

]]]

+
1

4!c4

[
D′,

[
D′,

[
D′,

[
D′, T

]]]]
(16.6.61)

for any term T in H̃2. For the terms proportional to 1/c2 in H̃2, we may
restrict the right-hand side of (16.6.61) to the first three terms only and so
on.

The first transformation is readily worked out (see Problem 16.15), and
is given by

H̃ ′
2 = eD′/c H̃2 e−D′/c

= γ0 +
e

Mc2
φ(x) +

1
2M2c2

γ0
[
γ0γ ·

(
p − e

c
A
)]2

− 1
8M4c4

γ0
[
γ0γ · p

]4 − e

8M3c4

[
γ0γ · p,

[
γ0γ · p, φ

]]
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+
1
c3

Õ′′, (16.6.62)

where Õ′′ consists only of odd matrices, and all the other terms in (16.6.62)
consist of even matrices. Is the explicit expression of Õ′′in (16.6.62) impor-
tant? The answer is no, since it already involves the factor 1/c3, and we may
just use the commutation relation in (16.6.52) and define the transformation

2G
′′ � I +

γ0

2c3
Õ′′ (16.6.63)

correct up to the order 1/c3, to cancel out the Õ′′/c3 term in (16.6.62). The
term γ0Õ′′/2c3 in (16.6.63) is allowed to act only on the γ0 term in (16.6.62),
with coefficient one, as all the other terms in (16.6.62) are of the order 1/c2

and of higher orders, and would otherwise lead to corrections of the order
1/c5 and higher.

Finally, note that (∇ · A = 0)
[
γ0γ ·

(
p − e

c
A
)]2

=
(
p − e

c
A
)2

− e�

c
Σ · B (16.6.64)

(see also (7.4.31)), where B = ∇ × A,
[
γ0γ · p

]4
=
(
p2
)2 (16.6.65)

and [
γ0γ · p,

[
γ0γ · p, φ

]]
= −�

2∇2φ − 2�Σ · (∇φ × p) (16.6.66)

All told, we obtain by restricting to the upper components, denoted by
|+, the diagonalized Hamiltonian

H ′′
2 |+ � 2G

′′
(
Mc2H̃ ′

2

)
2G

′′−1
∣∣∣
+

� Mc2 +
1

2M

(
p − e

c
A
)2

− p4

8M3c2
+ U(x)

+
�

2

8M2c2
∇2U +

1
2M2c2

S · (∇U × p)

− e

Mc
S · B (16.6.67)

up to the order 1/c2. If A has a built in 1/c factor one may linearize(
p − eA/c

)2 in A thus obtaining the Hamiltonian in (7.4.32) up to the rest
energy Mc2. As discussed in §7.4, upon rewriting the last term in (16.6.67) as
−
(
2e/2Mc

)
S·B, the theory provides, the approximate g-factor equal to 2 for

the electron. The correction to g has been investigated in §8.5. In (16.6.67),
S = �σ/2, U = eφ.
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16.6.4 The Positron and Emergence of a Many-Particle Theory

The fact that the Dirac theory predicts negative energy states with en-
ergies going down to −∞ would imply the instability of such a system. For
example, an electron in the ground-state energy of an atom would sponta-
neously decay to such lower and lower negative energy states emitting radia-
tion of arbitrary large energies leading eventually to the collapse of the atom
with a release of an infinite amount of energy. To resolve such a dilemma,
Dirac assumed that a priori all the negative energy states are filled with elec-
trons, giving rise to the so-called Dirac sea or the Dirac vacuum, in accord to
the Pauli exclusion principle so that no transitions to such states are possible,
thus ensuring the stability of the atom.

The consequences of the above assumption of a completely filled vacuum
with negative energy electrons are many. A negative energy electron in the
Dirac sea, may absorb radiation of sufficient energy so as to overcome an
energy gap such as from −Mc2 to Mc2, or the corresponding one to the
problem at hand, thus making a jump to a positive energy state leaving
behind a surplus of positive energy and a surplus of positive charge +|e|
relative to the Dirac sea. This has led Dirac in 1930 to interpret the “hole”
left behind by the transition of the negative energy electron to a positive
energy state, or the absence of the negative electron, as a particle that has
the same mass as the electron but of opposite charge.23 This particle called
the positron (e+) was discovered shortly after in 1932 by C. D. Anderson
who apparently, as mentioned before, was not aware of Dirac’s prediction at
the time of his discovery. Incidentally the above argument has also provided
an explanation of the so-called pair production γ → e+e− by a photon (in
the vicinity of a nucleus24). The “donkey” electrons, as G. Gamow named
them, led to the birth of the positrons with opposite intrinsic parity to that
of electrons. Conversely, if a “hole” is created in the vacuum, then a positive
energy electron may make a transition to such a state releasing radiation
giving rise to the phenomenon of pair annihilation.

In the field of a nucleus, a pair e+e− may be created, violating conserva-
tion of energy for a short time ∆t ∼ �/2Mc2. An electron in orbit around
the nucleus may jump into the “hole” thus created, while the electron cre-
ated would travel a distance of the order c∆t ∼ �/2Mc replacing the initial
electron in orbit during this time. This process may be repeated providing
a simple explanation of “Zitterbewegung” as an exchange process between a
“primary” electron in an atom and a “secondary” electron ejected from the
Dirac sea in the field of the nucleus occurring within distances of the order of
the Compton wavelength �/Mc of the electron. Pairs created in the vicinity
of the nucleus would lead to a particle screening of the charge of the nucleus.
23 Dirac initially assumed that the particle is the proton since there were no

positrons at that time. Apart from the large mass difference between the proton
and the electron, there were other inconsistencies with this assumption.

24 The presence of the nucleus is to conserve energy and momentum.
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An electron, in the atom, at large distances from the nucleus would then
see a smaller charge on the nucleus than an electron nearby (such as one in
s-state). This leads to the concept of vacuum polarization, by the field of the
nucleus, and also to the concept of charge renormalization as a result of the
charge screening mentioned above.

Thus by putting relativity with quantum physics one has encountered neg-
ative energy states, going down to −∞. By invoking stability of the atom one
was led to the discovery of anti-matter which finally led to a multi-particle
theory. The wavefunction of a single-particle quantum particle in the rela-
tivistic regime turned out to be not complete, and a formalism which would
naturally describe creation and destruction of particles became necessary. The
so-called “hole” theory, with a filled Dirac sea of negative energy electrons,
although it gave insight into the nature of fundamental processes involving
relativistic quantum particles and of vacuum fluctuations, turned out to be
also incomplete. For example, in the “hole” theory the number of electrons
minus the number of positrons, created, is conserved by the simultaneous
creation of a “hole” for every electrons ejected from the Dirac sea. In nature,
there are processes, where just an electron or just a positron is created. Ex-
amples of such process are β− decay or muon decay: µ− → e− + ν̃e + νµ,
and β+ decay: p → n + e+ + νe, for a bound proton in a nucleus, where νµ,
νe are neutrinos, and ν̃e is an anti-neutrino, associated with the respective
particles. Also we have seen in (16.3.19) that the Dirac equation, in a given
external potential Aµ, may be transformed by charge conjugation to describe
a priori a particle of positive charge + |e|. That is, if we were set initially to
develop a relativistic theory for the positron and go through a “hole” theory
with a sea filled with negative energy positrons would we have discovered the
electron?

The Dirac theory with its tremendous accomplishments led to the devel-
opment of modern (relativistic) quantum field theory, where fields describe
the creation and annihilation of particles and the number of particles need
not be conserved. The concept of a potential, with its inherited inconsisten-
cies, in a relativistic setting, in such a multi-particle relativistic theory with
particles created and annihilated, was abandoned in describing the interac-
tion of elementary particles. The interactions between the particles were thus
described by the exchange of particles rather than by potentials. Lorentz in-
variance turned out to be readily implemented in quantum field theory25 and
vacuum fluctuations were found to be a natural consequence of the theory.

25 See, for example, the expression of the Lagrangian density in (16.9.32).
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Appendix to §16.6: Exact Treatment of the Dirac
Equation in the Bound Coulomb Problem

In §7.4–§7.7, we have given a detailed treatment of relativistic corrections
to the hydrogen atom spectrum and further physical insight into the prob-
lem was gained through the analysis worked out in (16.6.46)–(16.6.55), in
the problem of approximately diagonalizing the Dirac Hamiltonian with the
Coulomb potential and in the light of the concept of “Zitterbewegung” of the
electron. In this appendix, we give an exact treatment of the Coulomb po-
tential problem in the Dirac equation. The exact expression derived for the
bound energy spectrum, when expanded in powers of the fine-structure con-
stant, agrees, as expected, with the corresponding one obtained in §7.4, §7.5
to the order kept there. As we have already seen in §7.6, §7.7, however, there
are additional physical effects that contribute to the hydrogen spectrum. The
retention of higher order terns, to arbitrary orders, in the expansion of the
exact energy expression obtained below cannot then be justified as there
are other competing contributions to the spectrum not accounted for by an
analysis of the Dirac equation in this potential alone.

Upon writing the Dirac spinor Ψ as
(
ψ1 ψ2

)�, then the eigenvalue equa-
tion as obtained from the Hamiltonian H1 in (16.6.46) gives the following
two two-component coupled equations

cσ · pψ1 +
(
U − Mc2 − E

)
ψ2 = 0 (A-16.6.1)

cσ · pψ2 +
(
U + Mc2 − E

)
ψ1 = 0 (A-16.6.2)

where U = eφ.
We use the identity

(σ · x)(σ · p) = x · p + iσ · (x × p) (A-16.6.3)

which upon multiplying from the left by σ · x leads to

(σ · p) = σ · x̂
(
x̂ · p +

i
r
σ · L

)
(A-16.6.4)

where r = |x|, x̂ is a unit vector along x.
The Hamiltonian H1 commutes with J2, J3, L2, and upon using

J = L +
�

2
Σ (A-16.6.5)

we may write

Σ · L =
1
�2

(
J2 − L2 − 3

4
�

2

)
(A-16.6.6)

and also
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σ · L =
1
�2

(
J2 − L2 − 3

4
�

2

)
(A-16.6.7)

where it is understood that the right-hand sides of the latter two equations
are multiplied by unit matrices.

In Appendix to §7.5, we have combined the orbital angular momentum
and spin, and given the expressions for 〈θ, φ |j, � = j ∓ 1/2,mj〉 in (A-7.5.4),
(A-7.5.5) as two-component objects. It is easily seen that

σ · L 〈θ, φ |j, � = j ∓ 1/2,mj〉 = [±� (j + 1/2) − �] 〈θ, φ |j, � = j ∓ 1/2,mj〉
(A-16.6.8)

or

(σ · L + �) 〈θ, φ |j, � = j ∓ 1/2,mj〉 = ±� (j + 1/2) 〈θ, φ |j, � = j ∓ 1/2,mj〉
(A-16.6.9)

We also use the identity in (A-7.5.7),

σ · x̂ 〈θ, φ |j, � = j ∓ 1/2,mj〉 = −〈θ, φ |j, � = j ± 1/2,mj〉 (A-16.6.10)

The eigenvalue equation in (A-16.6.9) suggests to rewrite σ · p in (A-
16.6.4) as

σ · p = σ · x̂
(

pr +
i
r

(σ · L + �)
)

(A-16.6.11)

where pr is defined in (7.2.2).
Clearly, if we write

ψ1(x) = (−i)F (r) 〈θ, φ |j, � = j ∓ 1/2,mj〉 (A-16.6.12)

where the (−i) factor is chosen for convenience, then

σ ·pψ1(x) = i
[
pr ±

i�
r

(
j +

1
2

)]
F (r) 〈θ, φ |j, � = j ± 1/2,mj〉 (A-16.6.13)

where we have used (A-16.6.9), (A-16.6.10) and noted that σ·x̂ is independent
of r.

Accordingly, we have succeeded in obtaining a separation of the variables
r, (θ, φ) in (A-16.6.1), (A-16.6.2), by using in the process (A-16.6.13), by
writing

ψ2(x) = G(r) 〈θ, φ |j, � = j ± 1/2,mj〉 (A-16.6.14)

to obtain the radial equations
(

1
r

d
dr

r − κ

r

)
F (r) +

(U − E − Mc2)
�c

G(r) = 0 (A-16.6.15)

(
1
r

d
dr

r +
κ

r

)
G(r) − (U − E + Mc2)

�c
F (r) = 0 (A-16.6.16)



16.6 Physical Interpretation, Localization and Particle Content 935

where κ = ∓ (j + 1/2), and in obtaining (A-16.6.16), we have multiplied
(A-16.6.2) by (−i).

We apply the operator
1
r

d
dr

r to both of the equations in (A-16.6.15),
(A-16.6.16), and rewrite the resulting equations in matrix form to obtain

[
d2

dr2
+

2
r

d
dr

](
F
G

)
=
[
κ2

r2
+

M2c4 − (E − U)2

�2c2

](
F
G

)

+
1
r2

(
−κ −Zα
Zα κ

)(
F
G

)
. (A-16.6.17)

Here α = e2/�c is the fine-structure constant, and we have used in turn (A-
16.6.15), (A-16.6.16) all over again to obtain the final form in (A-16.6.17).

We set
γ =

√
κ2 − Z2α2 (A-16.6.18)

and we may diagonalize the last matrix on the right-hand side of (A-16.6.17)
via the matrix26

Q =
1√

2κ(κ + γ)

(
Zα −(κ + γ)

−(κ + γ) Zα

)
(A-16.6.19)

whose inverse is

Q−1 = − (κ/γ)√
2κ(κ + γ)

(
Zα κ + γ

κ + γ Zα

)
. (A-16.6.20)

In reference to the last 2×2 matrix on the right-hand side of (A-16.6.17),
the Q matrix gives

Q−1

(
−κ −Zα
Zα κ

)
Q =

(
γ 0
0 −γ

)
(A-16.6.21)

Hence upon setting

Q−1

(
F
G

)
=
(

u+

u−

)
(A-16.6.22)

√
M2c4 − E2

�c
= λ, ρ = 2λr, (A-16.6.23)

with |E| < Mc2, and multiplying (A-16.6.17) by Q−1 and inserting the iden-
tity QQ−1 between

(
F G

)� and the last 2× 2 matrix in the latter equation,
we obtain[

d2

dρ2
+

2
ρ

d
dρ

+
(
−1

4
+

E

�cλ

Zα

ρ
− γ(γ ± 1)

ρ2

)]
u± = 0 (A-16.6.24)

26 We use a method of Goodman and Ignjatović (1997).
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We carry out the substitutions

u+ = ργ e−ρ/2 y+, u− = ργ−1 e−ρ/2 y− (A-16.6.25)

and set
n′ =

E

�cλ
Zα − γ (A-16.6.26)

to obtain from (A-16.6.24)

ρ
d2

dρ2
y+ + [2(γ + 1) − ρ]

d
dρ

y+ − (1 − n′)y+ = 0 (A-16.6.27)

ρ
d2

dρ2
y− + [2γ − ρ]

d
dρ

y− + n′y− = 0. (A-16.6.28)

These equations are particular cases of Kummer’s equation27

ρ
d2

dρ2
w + (b − ρ)

d
dρ

w − aw = 0 (A-16.6.29)

where solution, regular at ρ = 0, is the confluent hypergeometric function

F (a, b; ρ) = 1 +
a

1!
ρ +

a(a + 1)
b(b + 1)

ρ2

2!
+ . . . (A-16.6.30)

and has the asymptotic behavior

F (a, b; ρ) ∼ Γ(b)
Γ(a)

eρρa−b
[
1 + O

(
1
ρ

)]
(A-16.6.31)

for ρ → ∞. It becomes a polynomial, however, for a a non-positive integer.
From (A-16.6.25), (A-16.6.27), (A-16.6.28) we may infer that

y+ = c+ F (1 − n′, 2(γ + 1); ρ) (A-16.6.32)

y− = c− F (−n′, 2γ; ρ) (A-16.6.33)

The asymptotic behavior in (A-16.6.31), in conjunction with the defi-
nitions of u± in (A-16.6.25), necessitate that y± are polynomials. For (A-
16.6.32) this means that the possible values for n′ are 1, 2, . . ., while for (A-
16.6.33) that n′ = 0, 1, 2, . . .. For n′ = 0, however, F (1, 2(γ + 1); ρ) diverges
as eρ for ρ → ∞ and hence c+ must be taken to be zero for n′ = 0.

All told, we may solve for E from (A-16.6.26) giving

E = Mc2

[
1 +

Z2α2

(n′ + γ)2

]−1/2

(A-16.6.34)

27 Cf., Abramowitz and Stegun (1972), p. 504.
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One may introduce the principal quantum number n = n′ + (j + 1/2), to
finally rewrite (A-16.6.34) as

E = Mc2


1 +

Z2α2[
n − (j + 1/2) +

√
(j + 1/2)2 − Z2α2

]2




−1/2

(A-16.6.35)

where we have used the fact that |κ| = j + 1/2 (see below (A-16.6.16)). The
reader may which to carry out an expansion of (A-16.6.35) in powers of Z2α2

to make a comparison with the results in §7.5.
The radial functions F (r), G(r) may be now determined from (A-16.6.22),

(A-16.6.25), (A-16.6.32), (A-16.6.33), with c+ = 0 for n′ = 0, and may be
then property normalized.28

16.7 The Klein-Gordon Equation

In this section we consider the quantum description of relativistic spin 0
particles. As in the spin 1/2 case, we encounter the expected negative energy
states. For bosons, however, an argument based on a completely filled sea of
bosons of negative energies to ensure stability breaks down as an arbitrary
number of bosons may be put in a given energy level. Accordingly transitions
to such negative energy levels would be possible and the argument collapses.
A quantum field theory treatment, however, overcomes such a difficulty. To
some extent the analysis given here follows the one of the Dirac theory in the
previous sections.

16.7.1 Setting Up Spin 0 Equations

Under a homogeneous Lorentz transformation x → x′, as given in (16.2.6),
a Lorentz scalar Φ(x), by definition, remains invariant, i.e.,

Φ′(x′) = Φ(x). (16.7.1)

For infinitesimal transformation given in (16.2.39), this becomes

Φ′(xσ + δωσ
λxλ) � Φ(x) (16.7.2)

or
Φ′(x) � Φ(xσ − δωσ

λ xλ) � Φ(x) +
i

2�
δωµνLµνΦ(x) (16.7.3)

where

28 See Goodman and Ignjatović (1997).
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Lµν =
(

xµ
�

i
∂ν − xν

�

i
∂µ

)
(16.7.4)

which upon comparison with (16.2.43), for example, one may infer the spin 0
content of a Lorentz scalar (also pseudo-scalar).

From the energy-momentum constraint in (16.1.6), followed by the so-
called minimal substitution in (16.1.16) in the presence of an external elec-
tromagnetic field, the wave equation of a spin 0 follows and is given by29

[(
pµ − e

c
Aµ

)(
pµ − e

c
Aµ

)
+ M2c2

]
Φ(x) = 0 (16.7.5)

and is referred to as the Klein-Gordon equation of a spin 0 charged particle.
Here we identify pµ with �∂µ/i.

From one’s experience with the Dirac equation, the first thing that might
come into one’s mind, regarding the above equation, is how to rewrite it in
first order in space and time derivatives. This is easily achieved.

To the above end, set

1
Mc

(
pµ − e

c
Aµ

)
Φ =

1
i
χµ (16.7.6)

from which, we may rewrite (16.7.5) as

1
i

(
pµ − e

c
Aµ

)
χµ + McΦ = 0 (16.7.7)

We may recast this equation elegantly in a form similar to the Dirac equation
in (16.1.18) as [

βµ
(
pµ − e

c
Aµ

)
+ Mc

]
Ξ(x) = 0 (16.7.8)

where

Ξ =




χ0

χ1

χ2

χ3

Φ


 (16.7.9)

and the 5 × 5 matrices βµ are pure imaginary and are given by

β0 = i




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0


 , β1 = i




0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0


 (16.7.10)

29 Recall the definition of our metric in (16.1.20), and the property of raising or
lowering a four-vector index ‘µ’ as given in (16.2.4). Note also we have here
divided the energy-momentum constraint equation in (16.1.6) by c2.
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β2 = i




0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 −1 0 0


 , β3 = i




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 −1 0


 (16.7.11)

as is easily verified. It is understood that Mc in (16.7.8) is multiplied by the
identity element.

The wave equation in (16.7.8) is referred to as the Duffin-Kemmer-Petiau
equation. It is also readily shown, that the matrices βµ satisfy the relations

βµβνβρ + βρβνβµ = −
(
βµgνρ + βρgνµ

)
. (16.7.12)

The matrix β0, in particular, has no inverse. This is problematic in recasting
(16.7.8) in the form of the Dirac equation given in (16.4.47) with the time
derivative simply appearing on its left-hand side with no β0 multiplying it.
This is due to the fact of the redundancy of some of the components in
(16.7.9) as seen through the definition in (16.7.6).

We may also rewrite the Klein-Gordon equation in another form which
is of first order in the time derivative where no (singular) matrix, such as
β0 in (16.7.8), multiplies it on its left-hand side, and readily allows the de-
termination of the Hamiltonian theory. This, however, turns out to sacrifice
the relativistic appearance of the resulting equation. It is a two-component
equation and is usually known as the Feshbach-Villars30 equation which we
study next.

To obtain the above mentioned equation, we rewrite (16.7.5) as
(

1 +
π0

Mc

)(
1 − π0

Mc

)
Φ +

π · π

M2c2
Φ = 0 (16.7.13)

where
πµ =

(
pµ − e

c
Aµ

)
(16.7.14)

This suggests to set
(

1 +
π0

Mc

)
Φ = ψ1,

(
1 − π0

Mc

)
Φ = ψ2 (16.7.15)

obtaining the following two equations from (16.7.13),

π0

Mc
ψ1 = ψ1 +

π · π

M2c2
(ψ1 + ψ2) (16.7.16)

π0

Mc
ψ2 = −ψ2 −

π · π

M2c2
(ψ1 + ψ2) (16.7.17)

By using the properties of the Pauli matrices in (2.8.2), and setting
30 Feshbach and Villars (1958).
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ψ =
(

ψ1

ψ2

)
, (16.7.18)

we may combine (16.7.16), (16.7.17) into the two-component equation

i�
∂

∂t
ψ =

(
eA0 + Mc2σ3

)
ψ + (σ3 + iσ2)

π2

2M
ψ (16.7.19)

which looks like a non-relativistic equation.
By taking the complex conjugate of the (16.7.19) and multiplying it from

the left by −σ1, we get

i�
∂

∂t

(
ψ∗

2

ψ∗
1

)
=
(
−eA0 + Mc2σ3

)(ψ∗
2

ψ∗
1

)
+ (σ3 + iσ2)

(
p + e

cA
)2

2M

(
ψ∗

2

ψ∗
1

)

(16.7.20)
thus obtaining the charge conjugate wavefunction

ψc =
(

ψ∗
2

ψ∗
1

)
(16.7.21)

That is, given an external field Aµ, ψc satisfies the same equation in (16.7.19)
with the charge e → −e.

16.7.2 A Continuity Equation

We obtain a continuity equation in analogy to the Dirac case in (16.6.4).
We will see below that the definition of the adjoint operation is to be modified
here and is to be taken as

Cadj = σ3 (C∗)� σ3 (16.7.22)

where (C∗)� is the familiar one.
Multiplying (16.7.19) from the left by (Ψ∗)�σ3, and by following, in the

process, a procedure similar to the one in deriving (16.6.4), we obtain

∂

∂t

[
ψ∗�σ3ψ

]
+ ∇ · J = 0 (16.7.23)

where

J =
�

2iM

(
ψ∗� (σ3 + iσ2) ∇ψ −

(
∇ψ∗�

)
(σ3 + iσ2) ψ

)

− e

Mc
Aψ∗� (σ3 + iσ2) ψ (16.7.24)

The quantity ψ∗�σ3ψ is given by

ψ∗�σ3ψ = |ψ1|2 − |ψ2|2 (16.7.25)
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and is the difference between two positive definite densities. Because of this
property, ψ∗�σ3ψ is interpreted as a charge density when multiplied by e,
rather than a probability density and is consistent with a theory describing
particles of both signs of the charge.

In reference to (16.7.25), we note that if we adopt the normalization
∫

d3x ψ∗�σ3 ψ = q, (16.7.26)

where q is some constant, then this implies that for the charge conjugate ψc

in (16.7.12) ∫
d3x ψ∗

c
�σ3 ψc = −q (16.7.27)

as expected.
The emergence of ψ∗�σ3ψ rather than of the more familiar expression

ψ∗�ψ has led to define expectation value of an operator O as31

〈O〉 =
∫

d3x ψ∗�σ3Oψ (16.7.28)

and define the adjoint of O as in (16.7.22). This is important because we may
infer from the expression of the Hamiltonian

H =
(
eA0 + Mc2σ3

)
+ (σ3 + iσ2)

π2

2M
, (16.7.29)

as obtained from (16.7.19), that it is Hermitian with the definition given in
(16.7.22), where we note that

σ3(iσ2)
∗�

σ3 = iσ2 (16.7.30)

16.7.3 General Solution of the Free Feshbach-Villars Equation

Following the procedure developed for the Dirac equation in §16.4, we
write the solution of (16.7.19) for Aµ = 0 as

ψ(x) =
∫

2Mc dωp

[
eipx/� u(p)a(p) + e−ipx/� v(p)b∗(p)

]
(16.7.31)

where u(p) is the positive-energy solution satisfying


[
p0 − Mc − p2

2Mc

]
− p2

2Mc

p2

2Mc

[
p0 + Mc + p2

2Mc

]

u(p) = 0 (16.7.32)

31 For additional details on the definition of the expectation value see Feshbach and
Villars (1958).
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with p0 = +
√

p2 + M2c2. The solution of (16.7.32) is elementary and with
the normalization condition

u∗�σ3u =
p0

Mc
(16.7.33)

(see (16.7.25)), is given by

u(p) =
1

2Mc

(
Mc + p0

Mc − p0

)
(16.7.34)

Similarly, for v(p) we have from (16.7.32) with p0 → −p0, the solution

v(p) =
1

2Mc

(
Mc − p0

Mc + p0

)
(16.7.35)

where p0 = +
√

p2 + M2c2, with the normalization condition

v∗�σ3v = − p0

Mc
(16.7.36)

and
u∗�σ3v = 0 (16.7.37)

The normalization condition∫
d3x ψ∗�(x)σ3 ψ(x) = q (16.7.38)

for a given constant C, then leads to the constraint
∫

2Mcdωp

[
|a(p)|2 − |b(p)|2

]
= q (16.7.39)

on the expansion coefficients a, b∗ in (16.7.31). The integral in (16.7.39) is, in
general, not positive definite. This has led to interpret e times the integrand
as a charge density as mentioned before.

16.7.4 Diagonalization of the Hamiltonian and Definition of
Position Operators

The Hamiltonian

H = Mc2σ3 + (σ3 + iσ2)
p2

2M
(16.7.40)

for the free system may be diagonalized by the transformation matrix

G =
1

2
√

Mcp0

[
p0 + Mc + (p0 − Mc)σ1

]
(16.7.41)
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whose inverse is

G−1 =
1

2
√

Mcp0

[
p0 + Mc − (p0 − Mc)σ1

]
(16.7.42)

The transformed Hamiltonian works out to be

H ′ = GHG−1

= σ3p
0c (16.7.43)

and the position variable x becomes

x′ = GxG−1

= x − i�
2p02 σ1p

≡ x + R (16.7.44)

The first term x in the new representation develops in time as

x(t) = eitH′/� x e−itH′/�

= x + t
p

p02 H ′ (16.7.45)

with associated velocity
dx(t)

dt
=

p

p02 H ′ (16.7.46)

and is in close analogy to the classical concept of velocity.
As in the Dirac case, x′ ≡ x′

op, however, defines a non-local operator, and
for a given well behaved function ψ′(x),

x′
opψ′(x) =

∫
d3x′ κ(x,x′)ψ′(x0,x′) (16.7.47)

where

κ(x,x′) = x δ3(x − x′) − σ1�
2

2
∇
∫

d3p
(2π�)3

eip·(x−x′)/�

[p2 + M2c2]

= x δ3(x − x′) − σ1

2
∇
[

e−Mc|x−x′|/�

4π |x − x′|

]
. (16.7.48)

This shows a clear non-locality, associated with the position operator x′,
with a spread roughly of the order of the Compton wavelength �/Mc of the
particle.
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To investigate the time development of the operator x′, we note that the
time evolution operator in the new representation is given explicitly by

e−itH′/� = cos
(

p0ct

�

)
− iσ3 sin

(
p0ct

�

)
(16.7.49)

This leads to

x′(t) = eitH′/�x′e−itH′/�

= x + t
p

p02 H ′ − i�pσ1

2p02

[
cos

(
2p0ct

�

)
− iσ3 sin

(
2p0ct

�

)]
(16.7.50)

and for the velocity associated with the deviation R(t) in (16.7.44), we have

dR(t)
dt

=
icpσ1

p0

[
sin

(
2p0ct

�

)
+ iσ3 cos

(
2p0ct

�

)]
(16.7.51)

As in the Dirac theory, R(t) has a complex “jittery” motion, the “Zitterbe-
wegung”, with high frequencies 2p0c/� � 2Mc2/�, where now M is the mass
of the spin 0 particle. In analogy to the spin 1/2 case, the position operator
x(t), in (16.7.45), is referred as a “mean” position operator with associated
velocity which is uniform and is closely analogous to the classical concept of
velocity, with x′(t) executing a complex motion about it. A similar analysis
for corresponding position operators may be also carried in the original rep-
resentation with the Hamiltonian given in (16.7.40) and is left as an exercise
to the reader (see Problem 16.20).

16.7.5 The External Field Problem

We consider the Hamiltonian in (16.7.29) in the presence of an external
time-independent weak electromagnetic field Aµ(x), and rewrite first H as

H = Mc2

{
σ3

[
1 +

π2

2M2c2

]
+

U

Mc2
+ (iσ2)

π2

2M2c2

}

≡ Mc2H̃ (16.7.52)

where U = eA0 = −eA0.
We diagonalize the Hamiltonian H by considering relativistic corrections

in it up to the order 1/c4, and hence up to 1/c6 in H̃.
The only non-diagonal term in (16.7.52) is the one involving σ2. The

other Pauli matrix which is non-diagonal is σ1. To diagonalize H, we use a
key commutation relation given below in (16.7.54).

Consider the non-diagonal 2 × 2 matrix Õ of the form
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Õ = iσ2a + bσ1 (16.7.53)

where a and b are any numbers, then from the anti-commutativity of σ3 with
σ1, σ2, we have [1

2
σ3Õ, σ3

]
= −Õ (16.7.54)

where note the minus sign on the right-hand side of this equality.
The commutation relation in (16.7.54) suggests to choose, as a first step

of the diagonalization process, the transformation

G1 = exp
( σ3

2c2
Õ1

)
(16.7.55)

where

1
2c2

σ3Õ1 =
1
2
σ3

(
iσ2

π2

2M2c2

)

=
σ1

4M2c2
π2 ≡ 1

c2
D1 (16.7.56)

From the expansion

H̃ ′ = G1H̃G−1
1 � H̃ +

1
c2

[
D1,H

]
+

1
2!c4

[
D1,

[
D1,H

]]

+
1

3!c6

[
D1,

[
D1,

[
D1,H

]]]
(16.7.57)

valid up to 1/c6, we obtain the expression

H̃ ′ � σ3

[
1 +

π2

2M2c2
− π4

8M4c4
+

π6

16M6c6

]
+

U

Mc2
+

[
π2,

[
π2, U

]]
32M5c6

+
1
c4

Õ2 (16.7.58)

where

1
c4

Õ2 = −iσ2

[
π4

4M4c4
− π6

24M6c6

]
+ σ1

[
π2, U

]
4M3c4

(16.7.59)

The matrix Õ2 is the only non-diagonal one in (16.7.58) and has the structure
given in (16.7.53).

To cancel the Õ2/c4 term in (16.7.58), we introduce the transformation
G2 = exp

(
D2/c4

)
such that the commutator of D2/c4 with the σ3 term with

coefficient one in (16.7.58) cancels the term in question. This is clearly given
by (see (16.7.54))
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G2 � 1 +
σ3

2
1
c4

Õ2

= 1 − σ1
π4

8M4c4
+ iσ2

[
π2, U

]
8M3c4

+ σ1
π6

48M6c6
(16.7.60)

The above transformation gives

H̃ ′′ = G2H̃
′G−1

2

� σ3

[
1 +

π2

2M2c2
− π4

8M4c4
+

π6

16M6c6

]
+

U

Mc2
+

[
π2,

[
π2, U

]]
32M5c6

+
1
c6

Õ3 (16.7.61)

where Õ3 is not-diagonal in the form given in (16.7.53). Its explicit expression,
however, is not important since by choosing a transformation G3 � 1 +
σ3Õ3/2c6 we may cancel out the Õ3/c6 term in (16.7.61) by applying to
(16.7.54) one more time. Here it is important to note that the only term that
σ3Õ3/2c6 can operate on is the first term involving σ3 with coefficient one
in (16.7.61). All the other terms would, otherwise, lead to corrections of the
order 1/c8 or higher.

All told, the diagonalized Hamiltonian corresponding to the one in
(16.7.52), up to the order 1/c4, is given by

H ′′ = σ3

[
Mc2 +

π2

2M
− π4

8M3c2
+

π6

16M5c4

]
+ U

+

[
π2,

[
π2, U

]]
32M4c4

(16.7.62)

For a Hamiltonian with an electric field only which is weak, (16.7.62)
simplifies to

H ′′ = σ3

[
Mc2 +

p2

2M
− p4

8M3c2
+

p6

16M5c4

]
+ U

+

[
p2,

[
p2, U

]]
32M4c4

(16.7.63)

Up to the order 1/c2, corrections arise only in the kinetic energy term, and
the next order correction is 1/c4 rather than 1/c3. On the other hand for a
weak magnetic field a correction of the order 1/c3, linear in A, comes from
the −π4/8M3c2 term within the square brackets multiplying σ3 in (16.7.62).
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This concludes our treatment of the spin 0 case. As mentioned in the
introduction to this section, an argument based on a filled sea of bosons of
negative energies to ensure stability breaks down. The quantum field theory
treatment, however, overcomes such a difficulty. The spin 0 case with equa-
tion in (16.7.8) will be considered again in §16.9 in discussing the spin and
statistics connection.

In the next section, we develop relativistic wave equations for arbitrary
spins.

16.8 Relativistic Wave Equations for Any Mass and Any
Spin

We generalize the Dirac equation for M � 0 to any spin s = 1, 3/2, 2,
. . . , with s = 0 studied in the previous section and spin s = 1/2 studied in
§16.4, §16.5. We consider in turn the cases M > 0 and M = 0.

16.8.1 M > 0:

We introduce a totally symmetric spinor Ψα1...αk , with k = 2s, where
each of the indices αj goes over from 1 to 4, satisfying the equations

(
γ∂

i
+

Mc

�

)α1β1

Ψβ1α2...αk(x) = 0

...(
γ∂

i
+

Mc

�

)αkβk

Ψα1...αk−1βk(x) = 0

(16.8.1)

That is, Ψα1...αk(x) satisfies a Dirac equation with respect to each of its k
indices. From the complete symmetry of Ψα1...αk in the αi’s, an equation
in (16.8.1) satisfied with respect to one of its indices implies the validity of
the equations with respect to the other indices by permutations. The set of
equations in (16.8.1) is called the Bargmann-Wigner set of equations.

Lorentz covariance of the above equations implies, by invoking, in the
process, Pauli’s Fundamental Theorem as in §16.1, that there exists a non-
singular matrix, say, G such that under homogeneous Lorentz transformations
Ψβ1...βk(x) → Ψ′α1...αk(x′), with

Ψ′α1...αk(x′) = (G)α1β1 · · · (G)αkβkΨβ1...βk(x) (16.8.2)

Fourier transforming Ψα1...αk(x), as in (16.4.2), and multiplying the re-
sulting equation corresponding to the first one in (16.8.1) by (−γp + Mc)α′

1α1 ,
or the second one by (−γp + Mc)α′

2α2 , and so on, we get
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(
p2 + M2c2

)
Ψα1...αk(p) = 0 (16.8.3)

Therefore repeating the analysis given through (16.4.5)–(16.4.14), we have

Ψα1...αk(x) =
∫

2Mc dωp

[
eipx/�Φ+

α1...αk(p) + e−ipx/�Φ−
α1...αk(p)

]
(16.8.4)

with p0 = +
√

p2 + M2c2,

(γp + Mc)α1β1Φ+
β1α2...αk(p) = 0

...
(γp + Mc)αkβkΦ+

α1...αk−1βk(p) = 0

(16.8.5)

and
(−γp + Mc)α1β1Φ−

β1α2...αk(p) = 0
...

(−γp + Mc)αkβkΦ−
α1...αk−1βk(p) = 0

(16.8.6)

Due to the symmetry of Φ+
α1...αk(p) in the indices α1, . . . , αk, it may be

written as a symmetrized sum of the positive energy Dirac spinors u(p, σ) in
(16.4.56) to satisfy the set of equations in (16.8.5). We may then write

Φ+
α1...αk(p, σ) =

∑
σ1,...,σk=±1

C(σ1, . . . , σk;σ) [uα1(p, σ1) · · ·uαk(p, σk)] a(p, σ)

≡ uα1...αk(p, σ)a(p, σ) (16.8.7)

with the ξσ taken to be the ξ±N given in (16.4.40). Here C(σ1, . . . , σk;σ)
is a symmetrization operation over the indices σ1, . . . , σk thus leading to
a symmetric Φ+

α1...αk in (α1, . . . , αk), and the σj take on the values ±1
corresponding to ξ±N. In (16.8.7), σ denotes the number of ξ+N occurring in
[uα1(p, σ1) · · ·uαk(p, σk)], i.e., to the number of σ1, . . . , σk taking the value
+1. The a(p, σ) are arbitrary (one component) coefficients. Clearly, σ takes
on (k + 1) values.

An explicit expansion for the symmetrization operation C(σ1, . . . , σk;σ)
may be given, in the spirit of the one given in (2.8.18), by

C(σ1, . . . , σk;σ) =
1√

k!σ!(k − σ)!

[
∂

∂gσ1

· · · ∂

∂gσk

(g+1)
σ (g−1)

k−σ

]
(16.8.8)

where g+, g− are two independent variables. We note that for any given fixed
value assigned to σ, C(σ1, . . . , σk;σ), after carrying out the differentiations
with respect to gσ1 , . . . , gσk

, with the simple rule

∂

∂gσj

(g±1) = δσj ,±1, (16.8.9)
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is independent of g+, g−. For example, for k = 2,

C(σ1, σ2; 0) = δσ1,−1δσ2,−1 (16.8.10)

C(σ1, σ2; 1) =
1√
2

(δσ1,+1δσ2,−1 + δσ1,−1δσ2,+1) (16.8.11)

C(σ1, σ2; 2) = δσ1,+1δσ2,+1 (16.8.12)
(see also Problem 16.21).

The multiplicative nature of the transformation rule via the product
(G)α1β1 · · · (G)αkβk in (16.8.2), implies, from (16.2.29), that the spin operator
has the additive nature

Sα1β1,...,αkβk = (S)α1β1 δα2β2 . . . δαkβk + · · · + δα1β1 . . . δαk−1βk−1 (S)αkβk

(16.8.13)

where (S)αβ =
�

2
(Σ)αβ is defined in (16.2.46).

With N = p/|p|, in the p-description, we may rewrite (16.4.58), in the
present notation, as

Σ · Nu(p,±1) = ±u(p,±1) (16.8.14)

Accordingly, from (16.8.7), (16.8.13), (16.8.14), we have

(S · N)α1β1,...,αkβk Φ+
β1...βk(p, σ) =

�

2
[σ − (k − σ)] Φ+

α1...αk(p, σ)

(16.8.15)
where (k − σ) denotes the number of σ1, . . . , σk taking the value −1. At this
stage, we write k = 2s, and set

σ = ms + s (16.8.16)

Since σ = 0, 1, 2, . . . , 2s, we may infer that

ms = −s,−s + 1, . . . , s − 1, s (16.8.17)

and obtain from (16.8.15),

(S · N)α1β1,...,α2sβ2s Φ+
β1...β2s(p,ms + s) = �msΦ+

α1...α2s(p,ms + s)
(16.8.18)

thus establishing the spin s character of Φ+
α1...α2s(p,ms + s). Needless to

say, the same conclusion is reached if we go to the rest frame of the particle,
choose the quantization along, say, the z-axis, and apply the spin component
S3 to Φ+

α1...α2s(0,ms + s).
Similarly, we may carry out the expansion

Φ−
α1...αk(p, σ) =

∑
σ1,...σk=±1

C(σ1, . . . σk;σ) [v(p, σ1) . . . v(p, σk)] b∗(p, σ)

(16.8.19)
in terms of the charge conjugate spinors v(p, σ) in (16.4.57), and repeat the
analysis given above now applied to Φ−

α1...α2s(p, σ). The relevant details are
left as an exercise to the reader.
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16.8.2 M = 0:

For M = 0, we work in the chiral representation and with the measure
2Mcdωp in (16.8.4) simply now replaced by dωp. The equations (16.8.5),
(16.8.6) take the form

(γ′p)α1β1 Φ±
β1α2...αk

0 (p) = 0
...

(γ′p)αkβk Φ±
α1...αk−1βk

0 (p) = 0

(16.8.20)

where the 0 in the subscript corresponds to mass zero.
For example, for Φ+

α1...α2s
0 (p), we may rewrite the above, more conve-

niently, as
(
γ′0γ′ · N

)α1β1 Φ+
β1α2...αk

0 (p) = Φ+
α1...αk
0 (p)

...(
γ′0γ′ · N

)αkβk Φ+
α1...αk−1βk

0 (p) = Φ+
α1...αk
0 (p)

(16.8.21)

where we have used the fact that p0 = +|p|, and set N = p/|p|.
As a direct generalization of the analysis carried out in §16.5, we consider

the set of operators which commute with the operators occurring on the
left-hand sides of (16.8.21):

(
γ′0 γ′ · N

)α1β1
δα2β2 . . . δαkβk

δα1β1
(
γ′0 γ′ · N

)α2β2
δα3β3 . . . δαkβk

...
δα1β1 . . . δαk−1βk−1

(
γ′0 γ′ · N

)αkβk

(16.8.22)

The analysis in §16.5 shows that the operators commuting with the above
operators are of the form

(
γ′5)α1β1

δα2β2 . . . δαkβk

...
δα1β1 . . . δαk−1βk−1

(
γ′5)αkβk

(16.8.23)

or ones involving two, or three, or...or k γ′5 matrices. Such an operator is
(
γ′5)α1β1

δα2β2 . . . δαk−1βk−1
(
γ′5)αkβk (16.8.24)

involving two γ′5 matrices. Also other operators commuting with the ones in
(16.8.22) are

(S · N)α1β1δα2β2 . . . δαkβk

...
δα1β1 . . . δαk−1βk−1(S · N)αkβk

(16.8.25)
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or ones involving two, or three, or...or k (S · N) matrices, also operators of
the form in (16.8.22) involving two, or three, or...or k (γ′0 γ′ · N) matrices.

To find simultaneous eigenstates of these commuting set of matrices is
straightforward. To this end, we carry out the expansion

Φ+
α1...αk
0 (p, σ) =

∑
σ1,...σk=±1

C(σ1, σ2, . . . σk;σ)

× [u′α1(p, σ1) . . . u′αk(p, σk)] a(p, σ) (16.8.26)

as in (16.8.7), where in the present notation

u′(p,+1) =
(

ξ+N

0

)
, u′(p,−1) =

(
0

ξ−N

)
(16.8.27)

(see (16.5.22)).
From the definition of C(σ1, . . . , σk;σ) in (16.8.8), the following equalities

are readily established (see Problem 16.22)

C(+1, σ2, . . . σk;σ) =
√

σ

k
C(σ2, . . . σk;σ − 1) (16.8.28)

C(−1, σ2, . . . σk;σ) =

√
k − σ

k
C(σ2, . . . σk;σ) (16.8.29)

which in turn vanish for σ = 0, σ = k, respectively.
The equalities in (16.8.28), (16.8.29) allow us to rewrite (16.8.26) as

Φα1...αk
+0 (p, σ) =

∑
σ1,...σk−2=±1

{ · } u′α3(p, σ1) . . . u′αk(p, σk−2) a(p, σ)

(16.8.30)
where

{ · } =

√
σ(σ − 1)
k(k − 1)

u′α1(p,+1)u′α2(p,+1)C(σ1, . . . σk−2;σ − 2)

+

√
σ(k − σ)
k(k − 1)

(
u′α1(p,+1)u′α2(p,−1) + u′α1(p,−1)u′α2(p,+1)

)

× C(σ1, . . . σk−2;σ − 1)

+

√
(k − σ)(k − σ − 1)

k(k − 1)
u′α1(p,−1)u′α2(p,−1)C(σ1, . . . σk−2;σ)

(16.8.31)

Now consider the application of the first operator in (16.8.23) to
Φ+

α1...αk
0 (p, σ) given in (16.8.30). This leads from (16.5.24), (16.5.26) to
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(
γ′5)α1β1 Φ+

β1α2...αk

0 (p, σ)

=
∑

σ1,...σk−2=±1

{ · }′ u′α3(p, σ1) . . . u′αk(p, σk−2)a(p, σ) (16.8.32)

where

{ · }′ =

√
σ(σ − 1)
k(k − 1)

u′α1(p,+1)u′α2(p,+1)C(σ1, . . . σk−2;σ − 2)

+

√
σ(k − σ)
k(k − 1)

[u′α1(p,+1)u′α2(p,−1) − u′α1(p,−1)u′α2(p,+1)]

× C(σ1, . . . σk−2;σ − 1)

−
√

(k − σ)(k − σ − 1)
k(k − 1)

u′α1(p,−1)u′α2(p,−1)C(σ1, . . . σk−2;σ).

(16.8.33)

Note, in particular, the minus sign within the square brackets in the second
term in (16.8.33).

Clearly, in order Φβ1...αk

+0 (p, σ) be an eigenstate of (γ′5)α1β1 , either σ = 0,
or σ = k, so that the second term in (16.8.33), in particular, vanishes. For
σ = 0, the first term in (16.8.33) also vanishes, while for σ = k, the third
term vanishes. For the latter we have, respectively,

(
γ′5)α1β1 Φβ1α2...αk

+0 (p, 0) = −Φα1α2...αk
+0 (p, 0), σ = 0,

where

Φα1α2...αk
+0 (p, 0) = u′α1(p,−1) . . . u′αk(p,−1)a(p, 0) (16.8.34)

or
(
γ′5)α1β1 Φβ1α2...αk

+0 (p, k) = +Φα1α2...αk
+0 (p, k), σ = k (16.8.35)

where

Φα1α2...αk
+0 (p, k) = u′α1(p,+1) . . . u′αk(p,+1)a(p, k) (16.8.36)

Now it is obvious that to have Φα1...αk
+0 (p, σ) as a simultaneous eigenstate

of all the commuting operators enumerated above, we must have either σ = 0,
or σ = k, i.e., a(p, σ) ≡ 0, for σ = 1, . . . , k − 1.

Upon writing k = 2s, and setting σ = ms + s, we then obtain

Φα1...α2s
+0 (p,ms + s) = δ(ms, s)u′α1(p,+1) . . . u′α2s(p,+1)a(p, 2s)
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+ δ(ms,−s)u′α1(p,−1) . . . u′α2s(p,−1)a(p, 0)
(16.8.37)

written in terms of Kronecker deltas.
For the helicity operator, as obtained from (16.8.13), (16.8.37) gives

(S · N)α1β1,...,α2sβ2s Φβ1...β2s

+0 (p,ms + s)

= [�sδ(ms, s) − �sδ(ms,−s)] Φ+
α1...α2s
0 (p,ms + s) (16.8.38)

yielding only two possible values for the helicity of a particle.
For a massless particle of definite helicity, as discussed in §16.5, say of

helicity ε�s, with ε = −1 (or +1), we may set

Φ̃α1...α2s
+,ε (p) =

1
2
(I + εγ′5)α1β1 . . .

1
2
(I + εγ′5)α2sβ2sΦβ1...β2s

+0 (p, (1 + ε)s)

(16.8.39)
where we recall that γ′5u′(p, ε) = εu′(p, ε), and Φ̃α1...α2s

+,ε (p) satisfies the set
of equations in (16.8.21), and

(S · N)α1β1,...,α2sβ2s Φ̃β1...β2s

+,ε (p) = ε�s Φ̃α1...α2s
+,ε (p) (16.8.40)

One may treat the charge conjugate solutions in the same manner.

16.9 Spin & Statistics

This section is involved with the spin and statistics connection. We con-
sider only spin 0 and spin 1/2. Familiarity with Lagrangian dynamics is es-
sential. In the appendix to this section we provide, however, a fairly detailed
treatment of the action integral including for systems admitting Grassmann
variables. The method developed there is extended within this section to sys-
tems with infinite degrees of freedom. Accordingly the reader is advised to
consult this appendix while reading this section.

First we examine the solutions of the free Klein-Gordon and Dirac equa-
tions and interpret their expansion coefficients as operators for creation and
annihilation of particles and anti-particles thus generating quantum fields.
We set up field equations for both systems and corresponding Lagrangian
densities which are of first order in ∂µ, and are expressed in terms of Hermi-
tian fields. We then introduce Schwinger’s ingenious constructive approach32

which treats such Lagrangians in a unified manner and leads naturally to
the spin and statistics connection. Finally we use the results stemming from
this analysis to establish the spin and statistics connection by examining the
Lagrangian densities set up earlier. In the present section we do not dwell on
the Spin and Statistics Theorem in arbitrary dimensions of space.
32 Schwinger (1953); see also Schwinger (1951b, 1958a,b, 1961b).
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For obvious reasons there has been much interest in the Spin and Statistics
Theorem over the years since the early work of Pauli on the so-called exclusion
principle named after him. I am pleased to see that the activities on this
problem are still going on and even escalating in the recent literature.

16.9.1 Quantum Fields

The solution of the Klein-Gordon equation in (16.7.5) for free spin 0
particles, i.e., for Aµ = 0, may be quite generally written as

Φ(x) =
√

�c2

∫
d3p

(2π�)32p0

[
A(p)eipx/� + B∗(p)e−ipx/�

]
(16.9.1)

where the numerical factor
√

�c2 is inserted for convenience, px = p·x−p0x0,
p0 = +

√
p2 + M2c2, x0 = ct, and, of course, the mass M does not have to

be the same as for the spin 1/2 case.
Similarly for spin 1/2, the general solution in (16.4.44) of the free Dirac

equation in (16.4.1) is given by

Ψ(x) =
∑

σ

∫
2Mc

d3p
(2π�)32p0

[
u(p, σ)a(p, σ)eipx/� + v(p, σ)b∗(p, σ)e−ipx/�

]

(16.9.2)
The expansion coefficients A(p), a(p, σ) correspond to positive energy

solutions, while B∗(p), b∗(p, σ) correspond to the negative energy ones.
To overcome the dilemma of negative energy solutions and associated in-

stability problems, A(p), a(p, σ), in quantum field theory, are interpreted as
annihilation operators of the corresponding particles of spin 0 and spin 1/2,
while their adjoints A†(p), a†(p, σ) as creation of the particles in question
acting on the vacuum state. Similarly, B(p), b(p, σ) are interpreted as annihi-
lation operators of the associated anti-particles, and their adjoints B†(p, σ),
b†(p, σ),

(
B∗(p, σ) → B†(p, σ), b∗(p, σ) → b†(p, σ)

)
as creation operators of

the anti-particles, all with positive energies, acting on the vacuum state.
The operators, A(p), A†(p), B(p), B†(p) may be written in terms the

field Φ, now as an operator, integrated over all space and evaluated at any
given time t by the method of Problem 16.23 as follows.

We use the facts that

i�
∫

d3x e−ipx/�
↔
∂ 0 eip′x/� = 2p0 (2π�

3) δ3(p − p′) (16.9.3)

and

i�
∫

d3x eipx/�
↔
∂ 0 eip′x/� = 0 (16.9.4)

where
↔
∂ 0 =

→
∂ 0 −

←
∂ 0 (16.9.5)
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to obtain

A(p) =
i�√
�c2

∫
d3x e−ipx/�

↔
∂ 0 Φ(x) (16.9.6)

B†(p) =
i�√
�c2

∫
d3x eipx/�

↔
∂ 0 Φ(x) (16.9.7)

and similarly for their adjoints.
The operators a(p, σ), b†(p, σ) may be also extracted in analogous rela-

tions as in (16.6.8), (16.6.9), but evaluated at any time t, as follows

a(p, σ) =
∫

d3x e−ipx/� u†(p, σ)Ψ(x) (16.9.8)

b†(p, σ) =
∫

d3x eipx/� v†(p, σ)Ψ(x) (16.9.9)

in terms of the operator Ψ(x). Similar relations as in (16.9.8), (16.9.9) may
be also written for a†(p, σ), b(p, σ).

For physical interpretations and applications, commutativity properties
of the above creation and annihilation operators have to be consistently es-
tablished.

To establish commutativity properties of A(p), A†(p′), B(p′′), B†(p′′′),
we note from (16.9.6), (16.9.7) and the equations for their adjoints, that
commutativity properties of the quantum field Φ(x), as well as of its adjoint
Φ†(x), have to be established at all points in space including at different ones,
but may be taken all at the same time. A similar statement holds for the
operators a(p, σ), a†(p′, σ′), b(p′′, σ′′), b†(p′′′, σ′′′) in terms of the quantum
field Ψ(x), as well as of its adjoint Ψ†(x), taken at different points in space
also.

The burden of this section is to establish commutativity properties of
Φ(x), Φ†(x) as well as of Ψ(x), Ψ†(x), and in turn establish the spin and
statistics connection for particles of spin 0 and of spin 1/2.

We next set up Lagrangian densities for the above two systems.

16.9.2 Lagrangian for Spin 0 Particles

We consider the wave equation in (16.7.8) for spin 0 free particles
(

βµ

i
∂µ +

Mc

�

)
Ξ = 0 (16.9.10)

where Ξ is defined in (16.7.9), and the βµ matrices are given in (16.7.10),
(16.7.11). The matrices βµ/i are real,

(
β0
)†

= β0, (β)† = −β (16.9.11)
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To obtain the equation satisfied by the adjoint of Ξ, we introduce the
matrix

Λ = 2
(
β0
)2 − I =




1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1


 (16.9.12)

which satisfies the relations
[
Λ, β0

]
= 0,

{
Λ,β

}
= 0 (16.9.13)

Accordingly, by taking the adjoint of (16.9.10), multiplying the resulting
equation from the right by Λ, and using (16.9.11), (16.9.13) we get

Ξ†Λ

(
−βµ

i
←
∂µ +

Mc

�

)
= 0 (16.9.14)

We may rewrite (16.9.10) in terms of real components by defining, in the
process,

Φ =
1√
2

(Φ1 + iΦ2) , χµ =
1√
2

(χµ
1 + iχµ

2 ) (16.9.15)

where the χµ are given in terms of Φ in (16.7.6), now for Aµ = 0, i.e.,

χµ =
�

Mc
∂µΦ (16.9.16)

Introducing the ten-component entity

φ = (φa) =

√
Mc

�

(
χ0

1 χ1
1 χ2

1 χ3
1 Φ1 χ0

2 χ1
2 χ2

2 χ3
2 Φ2

)�
(16.9.17)

with a = 1, 2, . . . , 10, and the 10 × 10 matrices

Bµ =




βµ

i
0

0
βµ

i


 , Γ =

(
Λ 0
0 Λ

)
(16.9.18)

we may rewrite (16.9.10), (16.9.14) as
(

Bµ∂µ +
Mc

�

)
φ = 0 (16.9.19)

φ Γ

(
−Bµ

←
∂µ +

Mc

�

)
= 0 (16.9.20)
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written as matrix multiplication. The advantage of these equations over the
earlier ones is that they are written completely in terms of real objects.

The following two matrices Bµ, Γ are of central importance in our spin 0
case. In particular, they have the following properties

Γ 2 = I, ΓB0 = B0, (ΓBµ)† = −ΓBµ, Γ † = Γ (16.9.21)

and
(ΓBµ)� = − (ΓBµ) , Γ� = Γ. (16.9.22)

We introduce the Lagrangian density for spin 0 particles in which the
derivative ∂µ appears linearly

L = −1
4

[φΓBµ∂µφ − ∂µφΓBµφ] − Mc

2�
φΓφ (16.9.23)

and the properties of ΓBµ, Γ in (16.9.21) ensure the Hermiticity of the
Lagrangian density.

We will see below, while studying Schwinger’s Theorem, how the La-
grangian density in (16.9.23) leads to the equations (16.9.19), (16.9.20) sat-
isfied by ψ and investigate the nature of the spin and statistics connection.

We next set up the Lagrangian density for free spin 1/2 particles.

16.9.3 Lagrangian for Spin 1/2 Particles

We work in the Majorana representation, with the gamma matrices given
in (16.1.28), (16.1.29). To simplify the notation, we will still denote these
corresponding gamma matrices by γµ, and recall that in this representation
the matrices γµ/i are real.

In the Majorana representation, defining the 8 × 8 matrices

Γµ =
(

γµ 0
0 γµ

)
(16.9.24)

and writing the Dirac spinor Ψ in terms of real and imaginary parts

Ψ =
1√
2

(Ψ1 + iΨ2) (16.9.25)

we may rewrite the Dirac equation in this representation as
(

Γµ

i
∂µ +

Mc

�

)
ψ = 0 (16.9.26)

where
ψ = (ψa) =

(
Ψ1

1 Ψ2
1 Ψ3

1 Ψ4
1 Ψ1

2 Ψ2
2 Ψ3

2 Ψ4
2

)�
. (16.9.27)

For the adjoint of the equation (16.9.26), we have
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ψ Γ 0

(
−Γµ

i
←
∂µ +

Mc

�

)
= 0. (16.9.28)

The matrices of central importance for spin 1/2 here are the matrices Γµ.
In particular

(
Γ 0Γµ

)†
= Γ 0Γµ,

(
Γ 0

)†
= Γ 0,

(
Γ 0

)2
= I (16.9.29)

(
Γ 0Γµ

)�
= Γ 0Γµ, Γ 0� = −Γ 0 (16.9.30)

The Lagrangian density of spin 1/2 is defined by

L = −1
4

(
ψ

Γ 0Γµ

i
∂µψ − ∂µψ

Γ 0Γµ

i
ψ

)
− Mc

2�
ψΓ 0ψ (16.9.31)

The Hermiticity of the latter follows from the Hermiticity of Γ 0Γµ, Γ 0.
As for the spin 0 case, we will show how the Lagrangian density in

(16.9.31) leads to the Dirac equations in (16.9.26), (16.9.28) and investi-
gate the spin and statistics connection after having developed Schwinger’s
constructive approach.

16.9.4 Schwinger’s Constructive Approach

The Lagrangian densities in (16.9.23), (16.9.31) are of the form33

L (x) =
1
4

[ηa(x)Qµ
ab∂µηb(x) − ∂µηa(x)Qµ

abηb(x)] +
1
2
ηa(x)Qabηb(x)

(16.9.32)
where the numerical constant matrices Qµ, Q are such that

(Qµ)† = −Qµ, Q† = Q (16.9.33)

(see (16.9.21), (16.9.29)), thus guaranteeing that L is Hermitian, and either

(Qµ)� = −Qµ, Q� = Q (16.9.34)

as in the spin 0 case in (16.9.22), or

(Qµ)� = Qµ, Q� = −Q (16.9.35)

as in the spin 1/2 case in (16.9.30).
Here it is worth noting that any square matrix C may be written as the

sum of a symmetric matrix S and an anti-symmetric one A,

Cab =
1
2

(Cab + Cba) +
1
2

(Cab − Cba)

33 See also the appendix to this section.
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≡ Sab + Aab (16.9.36)

A� = −A, S� = S. For a matrix C such that C† = −C, this means that
A† = −A, S† = −S which correspond to the cases encountered above. It is
important to note that in the Lagrangian density in (16.9.32), a symmetric
matrix Q goes with the anti-symmetric ones Qµ, while an anti-symmetric ma-
trix Q goes with the symmetric ones Qµ as shown, respectively, in (16.9.34),
(16.9.35).

The Lagrangian density in (16.9.32) is local, i.e., all the terms in it are
evaluated at the same spacetime point. At a given time t = x0/c, locality
means that we may add up the Lagrangian densities L (ct,x) evaluated at
different points to obtain a Lagrangian L(x0) =

∫
d3x L (ct,x) since relativ-

ity implies that different regions in space at the same time are dynamically
independent as no signal can propagate between them. Here the position
variable x specifies the infinitely uncountable number of degrees of freedom
in the fields η(x0,x) = ηx(ct), with the latter as dynamical variables, in the
same way that the index i in qi(t) specifies the various degrees of freedom
in particle mechanics. One may then define the action associated with the
Lagrangian density L (x) in (16.9.32) by

A =
1
c

∫
dx0

∫
d3x L (x0,x) =

1
c

∫
(dx) L (x) (16.9.37)

where we have integrated over all time. The action in (16.9.37) with La-
grangian density in (16.9.32) should be compared with the one in (A-16.9.9).
In the present case we are, however, dealing with a system of infinite degrees
of freedom.

To emphasize the functional dependence of the action on the field η, we
write L (x) = L [η(x)]. We consider the variation of the action in response
to variation of the field η(x) → η(x) − δη(x) to first order in δη(x). The
variation of the Lagrangian density is then given by

δL [η(x)] = L [η(x)] − L [η(x) − δη(x)] (16.9.38)

paying special attention to the order in which δη(x) appears relative to η(x)
and ∂µη(x) in (16.9.38).

Following Schwinger, we consider variations of the action as arising from
c-number variations δη(x) of the field. We will then encounter that such
variations we were set to achieve with δη(x) commuting with the field itself
is possible only for the system satisfying the conditions in (16.9.34), while
δη(x), as a c-number Grassmann variable, anti-commuting with the field, is
possible only for the system satisfying the conditions in (16.9.35).

The variation of the action, multiplied by c, corresponding to the variation
of the Lagrangian density in (16.9.38) is explicitly given from (16.9.32) to be
∫

(dx) δL [η(x)] =
∫

(dx)
(

1
4

[δηa(x)Qµ
ab∂µηb(x) + ηa(x)Qµ

ab∂µδηb(x)
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−∂µδηa(x)Qµ
abηb(x) − ∂µηa(x)Qµ

abδηb(x)]

+
1
2

[δηa(x)Qabηb(x) + ηa(x)Qabδηb(x)]
)

=
1
2

∫
(dx) ∂µ

(
1
2

[ηa(x)Qµ
abδηb(x) − δηa(x)Qµ

abηb(x)]
)

+
1
2

∫
(dx) [δηa(x)Qµ

ab∂µηb(x) − ∂µηa(x)Qµ
abδηb(x)

+ δηa(x)Qabηb(x) + ηa(x)Qabδηb(x)]
(16.9.39)

with the order in which δη(x) appears kept intact.
To treat both cases in (16.9.34), (16.9.35) simultaneously, we may write

Qµ
ab = εQµ

ba, Qab = −εQba (16.9.40)

where ε = −1 corresponds to the case in (16.9.34), while ε = +1 corresponds
to the case in (16.9.35).

To simplify the expressions within the second pair of square brackets on
the extreme right-hand side of (16.9.39) we use the relation

∂µηb(x) = ∂µ

∫
(dx′) δ4(x′ − x)ηb(x′)

=
∫

(dx′) ηb(x′)∂µδ4(x′ − x)

= −
∫

(dx′) ηb(x′)∂′
µδ4(x′ − x) (16.9.41)

to write∫
(dx) Qµ

abδηa(x)∂µηb(x) = −
∫

(dx)(dx′) δηa(x)ηb(x′)Qµ
ab∂

′
µδ4(x′ − x)

(16.9.42)
Similarly, we have∫
(dx) Qµ

ab∂µηa(x)δηb(x) = −
∫

(dx)(dx′) ηa(x′)δηb(x)Qµ
ab∂

′
µδ4(x′ − x)

= −ε

∫
(dx)(dx′) ηa(x′)δηb(x)Qµ

ba∂′
µδ4(x′ − x)

= −ε

∫
(dx)(dx′) ηb(x′)δηa(x)Qµ

ab∂
′
µδ4(x′ − x)

(16.9.43)
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Thus the second integral on the extreme right-hand side of (16.9.39)
(which is not the integral of a total differential) may be rewritten as

−1
2

∫
(dx)(dx′) [δηa(x)ηb(x′) − εηb(x′)δηa(x)]

×
[
Qµ

ab∂
′
µδ4(x′ − x) − Qabδ

4(x′ − x)
]

(16.9.44)

where we have used (16.9.40). It is remarkable that one is able to combine the
terms depending on Qµ

ab with the terms depending on Qab in (16.9.44) pre-
cisely because of the opposite symmetry properties of Qµ and Q in (16.9.40).

From the expression in the first pair of square brackets in (16.9.44) we
learn that a c-number variation with δηa(x) commuting with the field ηb(x′) is
possible only for ε = −1 satisfying the conditions in (16.9.34), i.e., for spin 0,
while a variation δηa(x) as a c-number Grassmann variable, anti-commuting
with the field ηb(x′) is possible only for ε = +1 satisfying the conditions in
(16.9.35), i.e., for spin 1/2, otherwise the expression in the first pair of square
brackets is identically equal to zero. Therefore

[
δηa(x), ηb(x′)

]
= 0 (16.9.45)

for ε = −1, while {
δηa(x), ηb(x′)

}
= 0 (16.9.46)

for ε = +1, i.e.,
δηa(x) ηb(x′) = −εηb(x′) δηa(x). (16.9.47)

In both cases, (16.9.44), (16.9.39), (16.9.40), (16.9.47) then give
∫

(dx) δL [η(x)] =
∫

(dx) ∂µ

[
ηa(x)Qµ

ab

2
δηb(x)

]

+
∫

(dx) δηa(x) [Qµ
ab∂µηb(x) + Qabηb(x)] (16.9.48)

For δηa(x) arbitrary, the principle of stationary action gives the field equation

Qµ∂µη(x) + Qη(x) = 0 (16.9.49)

As for the system in (A-16.9.22)–(A-16.9.32), the variation of the ac-
tion, multiplied by c, in (16.9.48) now extended to a system with an infi-
nite (uncountable) numbers of degrees of freedom introduces the generator
(∂0 = ∂/∂(ct)),

G =
1
c

∫
d3x

η(x)Q0

2
δη(x) (16.9.50)

which brings about the change of the dynamical variables η(x) by δη(x)/2
with
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δη(x)
2

=
1
i�
[
η(x), G

]
(16.9.51)

In detail, (16.9.51), with x′0 = x0, reads

δηe(x)
2

=
1

i�c
Q0

ab

∫
d3x′ [ηe(x), ηa(x′)

δηb(x′)
2

]

=
1

i�c
Q0

ab

∫
d3x′ (ηe(x)ηa(x′) + εηa(x′)ηe(x))

δηb(x′)
2

(16.9.52)

or [
ηe(x)ηa(x′) + εηa(x′)ηe(x)

]
Q0

ab = i�c δbe δ3(x − x′). (16.9.53)

We apply the above results to spin 0 and spin 1/2.

16.9.5 The Spin and Statistics Connection

Spin 0

By comparing (16.9.23) with (16.9.32) we see that

Qµ = −ΓBµ, Q = −Mc

�
Γ (16.9.54)

where Γ , Bµ are given in (16.9.18). From (16.9.49), we obtain

Γ

(
Bµ∂µ +

Mc

�

)
φ = 0 (16.9.55)

which upon multiplying from the left by Γ gives the field equation in (16.9.19)
and hence finally to the Klein-Gordon equation.

From (16.9.21), we note Q0 = −ΓB0 = −B0, with B0 given in (16.9.18)
and β0 in (16.7.10). That is,

Q0
ab = −δ(a, 1)δ(b, 5) + δ(a, 5)δ(b, 1)

− δ(a, 6)δ(b, 10) + δ(a, 10)δ(b, 6) (16.9.56)

written in term of Kronecker deltas.
From (16.9.53), (16.9.56), (16.9.17), with x0 = x′0 and ε = −1 (see

(16.9.33), (16.9.40)), we obtain

−
[
φe(x), φ1(x′)

]
δ(b, 5) +

[
φe(x), φ5(x′)

]
δ(b, 1)

−
[
φe(x), φ6(x′)

]
δ(b, 10) +

[
φe(x), φ10(x′)

]
δ(b, 6) = i�c δbe δ3(x − x′).

(16.9.57)

That is, the only non-vanishing commutators are
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[
φ1(x), φ5(x′)

]
= i�c δ3(x − x′) (16.9.58)

[
φ6(x), φ10(x′)

]
= i�c δ3(x − x′) (16.9.59)

From (16.9.17), (16.9.16), these give
[
Φ1(x), Φ̇1(x′)

]
= i�c2δ3(x − x′) (16.9.60)

[
Φ2(x), Φ̇2(x′)

]
= i�c2δ3(x − x′) (16.9.61)

For the Klein-Gordon field Φ(x) in (16.9.15), we then have, in particular,
(x0 = x′0), [

Φ(x), Φ̇†(x′)
]

= i�c2δ3(x − x′) (16.9.62)[
Φ(x),Φ(x′)

]
= 0,

[
Φ(x),Φ†(x′)

]
= 0 (16.9.63)[

Φ̇(x), Φ̇†(x′)
]

= 0 (16.9.64)

From (16.9.62)–(16.9.64), and the expression for the creation and annihi-
lation operators A†(p), A(p), as obtained from (16.9.6), we have

[
A(p), A†(p′)

]
=

�

c
2p0(2π�)3δ3(p − p′) (16.9.65)

[
A(p), A(p′)

]
= 0,

[
A†(p), A†(p′)

]
= 0 (16.9.66)

If we denote the vacuum state by |vac〉, that is, in particular, A(p) |vac〉 =
0, then a two-particle state involving spin 0 (bosons) of momenta p, p′ may
be constructed as follows

A†(p)A†(p′) |vac〉 = |p,p′〉 (16.9.67)

The second commutator in (16.9.66) then implies that

|p,p′〉 = |p′,p〉 (16.9.68)

which is the spin and statistics connection for bosons in its simplest form.
Commutation relations involving the anti-particle operators are similarly ob-
tained.

Spin 1/2

Upon comparing (16.9.32) and (16.9.31) we obtain

Qµ = −Γ 0Γµ

i
, Q = −Mc

�
Γ 0 (16.9.69)

where Γµ is defined in (16.9.24). Equation (16.9.49) gives the equation

Γ 0

(
Γµ ∂µ

i
+

Mc

�

)
ψ = 0 (16.9.70)
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which after multiplying it from the left by Γ 0 gives the field equation in
(16.9.26).

The matrix Q0, relevant to the relation in (16.9.53) takes particularly
the simple form iI, where I is the identity matrix, as follows from the first
relation in (16.9.69). Hence (16.9.53) with x0 = x′0 gives

{
ψe(x), ψa(x′)

}
= �c δea δ3(x − x′) (16.9.71)

where we have used the fact that ε = +1 (see (16.9.35), (16.9.40)).
From (16.9.27) and (16.9.25), we conclude that for the Dirac field Ψ(x)

with x0 = x′0: {
Ψa(x),Ψ†

b(x
′)
}

= �c δab δ3(x − x′) (16.9.72)
{
Ψa(x),Ψb(x′)

}
= 0,

{
Ψ†

a(x),Ψ†
b(x

′)
}

= 0 (16.9.73)

where now a, b = 1, 2, 3, 4.
The expressions for the creation and annihilation operators a†(p, σ),

a(p′, σ) as obtained from (16.9.8), then imply the following anti-commutation
relations:

{
a(p, σ), a†(p′, σ′)

}
= �c

p0

Mc
δσσ′(2π�)3δ3(p − p′) (16.9.74)

{
a(p, σ), a(p′, σ′)

}
= 0,

{
a†(p, σ), a†(p′, σ′)

}
= 0 (16.9.75)

Again if we denote the vacuum state by |vac〉, that is, in particular,
a(p, σ) |vac〉 = 0, then a two-particle state involving two spin 1/2 (fermi-
ons) particles of momenta p, p′ and spin indices σ, σ′ may be constructed as
follows

a†(p, σ)a†(p′, σ′) |vac〉 = |p, σ;p′, σ′〉 (16.9.76)

The second anti-commutation relation in (16.9.75) then implies that

|p, σ;p′, σ′〉 = − |p′, σ′;p, σ〉 (16.9.77)

which is the spin and statistics connection for fermions in its simplest form.
Anti-commutation relations involving the anti-particle operators are similarly
obtained.

Similar methods may be applied to spin 1 particles. There are some com-
plications, however, associated with higher spins and we will not go into such
details here. In theoretical descriptions of higher spin particles the latter are
often considered as composite particles and not as fundamental as the lower
spin ones.
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Appendix to §16.9: The Action Integral

As in Chapters 10 and 11, we use the (q,p) language and to simplify the
notation, we often suppress the indices in (qi, pi) corresponding to various
degrees of freedom. For example, we may often write

∑
i piq̇i simply as pq̇.

The action integral is defined by

A =
∫ T2

T1

[
1
2

(p dq + dq p) − H(q, p, t)dt

]
(A-16.9.1)

written in a symmetrized form in the product pdq to ensure Hermiticity,
where H(q, p, t) is the Hamiltonian and should be Hermitian.

We consider variations of the action that arise by the variation of the
dynamical variables only:

q → q = q − δq (A-16.9.2)

p → p = p − δp (A-16.9.3)

Since δ(dq) = δ (q(t + dt) − q(t)) = dδq, and so on, the variations in (A-
16.9.2), (A-16.9.3) lead to

δA =
∫ T2

T1

d
[
1
2

(p δq + δq p)
]

+
∫ T2

T1

[
1
2

(δp dq + dq δp − dp δq − δq dp) − δHdt

]
(A-16.9.4)

where
δH(q, p, t) = H(q, p, t) − H(q − δq, p − δp, t) (A-16.9.5)

commute with the dynamical variables, we may write

δA =
∫ T2

T1

d [p δq] +
∫ T2

T1

[δp dq − dp δq − δHdt] (A-16.9.6)

Here we recognize the pδq term in the first integral (see (2.3.13)) associated
with the boundary terms, as the generator for the infinitesimal transformation
in (A-16.9.2). To obtain the generator for both transformations in (A-16.9.2),
(A-16.9.3) in a unified manner, one rewrites the action integral in (A-16.9.1)
in a more symmetrical way in q and p as follows by omitting, in the process
the integral

1
4

∫ T2

T1

d(qp + pq)

of a total differential, to obtain

A =
∫ T2

T1

[
1
4

(p dq + dq p − dp q − q dp) − H(q, p, t) dt

]
. (A-16.9.7)

For infinitesimal numerical changes δq, δp in (A-16.9.2), (A-16.9.3) which
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It is more convenient to set

z = (p, q), Q =
(

0 I
−I 0

)
, Q� =

(
0 −I
I 0

)
(A-16.9.8)

and rewrite A as

A =
∫ T2

T1

dt

[
1
4

(ziQij żj − żiQijzj) − H(z, t)
]

(A-16.9.9)

with the indices enumerating the various degrees of freedom.
For infinitesimal variations

z → z = z − δz (A-16.9.10)

with δH(z, t) = H(z, t)−H(z−δz, t), we have for the corresponding variation
in A

δA =
∫ T2

T1

d
[
1
2

(
zi Qij

2
δzj − δzi

Qij zj

2

)]

+
∫ T2

T1

[
1
2
(
δzi Qij dzj − dzi Qij δzj

)
− δH dt

]
(A-16.9.11)

with the order in which the variations δzi appear kept intact.
We now consider numerical variations which commute with the dynamical

variables, i.e.,
[
zi(t), δzj(t′)

]
= 0. From the property of Q in (A-16.9.8), the

expression for δA simplifies to

δA =
∫ T2

T1

d
[
zi Qij

2
δzj

]
+
∫ T2

T1

[
δzi Qij dzj − δH dt

]
(A-16.9.12)

The principle of stationary action gives

δH = δzi(t)Qij żj(t) = −żi(t)Qijδzj(t) (A-16.9.13)

and the variation induces a generator

G =
z(t)Q

2
δz(t) (A-16.9.14)

which is Hermitian, and generates a unitary operator U = 1 + iG/� for
infinitesimal δz, changing the dynamical variables z by δz/2, i.e.,

δzj

2
=

1
i�
[
zj , G

]
(A-16.9.15)

The change brought about in an operator B (z(t), t)) by the change of
the dynamical variables z(t), as generated by the generator G, is linear in
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δz(t), and should also coincide with the transformation given in (A-16.9.15)
for B (z(t), t) = z(t). Accordingly quite generally,

δB

2
=

1
i�
[
B,G

]
(A-16.9.16)

In particular, (A-16.9.15) implies that

δzj(t)
2

=
1
i�

[
zj(t) , zk(t)

δz�

2

]
Qk� (A-16.9.17)

or [
zj(t) , zk(t)

]
Qk� = i� δj�. (A-16.9.18)

From the expression for Q in (A-16.9.8) this gives
[
pi(t) , pj(t)

]
= 0,

[
qi(t) , qj(t)

]
= 0, [qj(t) , pk(t)] = i� δjk

(A-16.9.19)
as expected. On the other hand, from (A-16.9.13), (A-16.9.16) we have

δH

2
=

1
i�
[
H, zk(t)

]
Qk�

δz�(t)
2

= −żj(t)Qj�
δz�(t)

2
(A-16.9.20)

leading to
i�żj(t) =

[
zj(t),H

]
(A-16.9.21)

again as expected, verifying the consistency of the analysis.
We note that Q in (A-16.9.8) is anti-Hermitian (Q† = −Q) which en-

sures the Hermiticity of the Lagrangian (the integrand) in (A-16.9.9). It also
satisfies the restrictive relation Q� = −Q as it is real.

Now any square matrix may be written as the sum of a symmetric ma-
trix and an anti-symmetric one (see (16.9.36)). If the square matrix is anti-
Hermitian then so are its symmetric and anti-symmetric parts. This allows
us to consider, more generally, two classes of Lagrangians:

L =
1
4

(ηiQij η̇j − η̇iQijηj) − H(η, t) (A-16.9.22)

with η real, as before, where

Q† = −Q (A-16.9.23)

and either
Q� = Q (A-16.9.24)

or
Q� = −Q (A-16.9.25)

The system satisfying condition (A-16.9.25) was already considered above
for a specific matrix Q. The same analysis as above then gives for an arbitrary
matrix Q satisfying (A-16.9.23), (A-16.9.25),

( = ijQ
[ ]

)Q



968 16 Quantum Description of Relativistic Particles

G =
η(t)Q

2
δη(t) (A-16.9.26)

and, in particular,[
ηj(t) , ηk(t)

]
Qk� = i� δj�, Q� = −Q. (A-16.9.27)

We will see that c-number variations δηi(t) commuting with the variables
ηj(t′) is possible for Q satisfying (A-16.9.25) only, while c-number variations
anti-commuting with the variables, so called Grassmann variables already
encountered in Chapters 6 and 10, are possible only for Q in (A-16.9.23)
satisfying (A-16.9.24).

To reach the above conclusion we may refer to (A-16.9.11) where now
Q (Q† = −Q) is arbitrary but satisfies either (A-16.9.24), (A-16.9.25). For
Q satisfying (A-16.9.25), δzj cannot anti-commute with zi otherwise both
expressions within the round brackets in the two integrals in (A-16.9.11) will
vanish. On the other hand, for Q satisfying (A-16.9.24), δzj cannot commute
with zi otherwise both expressions in the round brackets just mentioned will
vanish again. Therefore, we may state that[

δηi(t), ηj(t′)
]

= 0, Q� = −Q (A-16.9.28)
{
δηi(t), ηj(t′)

}
= 0, Q� = Q (A-16.9.29)

are admissible for the corresponding matrix Q but not vice versa.
In both cases, we have, by referring to (A-16.9.11), (A-16.9.14), that

G = η Q
δη

2
(A-16.9.30)

and, in particular, the commutator in (A-16.9.15), together with (A-16.9.28),

[
ηj(t) , ηk(t)

]
Qk� = i� δj�, Q� = −Q (A-16.9.31)

and {
ηj(t) , ηk(t)

}
Qk� = i� δj�, Q� = Q. (A-16.9.32)

for actual physical systems which exist in the just given section in
studying

variations are possible but we will not go into these here.

Problems

16.1. Find the expressions of the gamma matrices as obtained from the
Dirac-Pauli representation via the transformation G given in (16.1.30)
for fixed n and θ.

(A-16.9.29) give ( = Q
[ ]

)Q k�

The above results are extended to systems with an infinite degrees of
freedom

Further generalizations as arising, for exin (16.9.32).0
the spin and statistics connection. Here the matrix Q  corresponds 

to Q /c ample, from
more complicated
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16.2. Establish the transformation of the matrix γ0(γ · a + 1) given in
(16.1.35) via the transformation G defined in (16.1.30).

16.3. Verify the expressions (16.2.25)–(16.2.27) as obtained from (16.2.20)–
(16.2.23) to obtained the explicit expression of the transformation UB

of a spinor for pure boost in (16.2.28). Show that UB is not unitary
but it satisfies the identity in (16.2.24). Show, as expected, that the
transformation UR for pure rotations in (16.2.29) is unitary.

16.4. In analogy to the analysis carried out through (16.2.20)–(16.2.28) for
pure boosts, carry out the corresponding one leading to the expression
for the transformation of pure rotations UR given in (16.2.29).

16.5. Establish the Lorentz vector character of Ψ(x)γµΨ(x) in (16.2.64).
16.6. Derive the expression for the transformed spin S′ in (16.3.6) from

(16.3.2), and prove the second equality in (16.3.9).
16.7. Obtain the PCT product transformation rule of a Dirac spinor.
16.8. Derive the normalization conditions in (16.4.23), (16.4.37), (16.4.39),

for u(p, σ), v(p, σ′).
16.9. Show that for the Dirac Hamiltonian in (16.4.51), [H ,S] �= 0, [H ,L] �=

0 but for the total angular momentum J = L + S, [H ,J] = 0, i.e.,
total angular momentum is conserved.

16.10. Show that the time evolution operator exp(−itH/�) via the Dirac
Hamiltonian in (16.4.51) takes the simple form given in (16.4.75).

16.11. Show that the only matrices in the complete set of 16 matrices in the
ordered set {Γ ′

A} (see (A-16.1.1), (A-16.1.7)) in the chiral representa-
tion that commute with H ′ in (16.5.15), apart from the identity are
γ′5 and linear combinations of the matrices in (16.5.17).

16.12. Carry out the details in the application of GxG−1 leading to the
expression in (16.6.18) for the Foldy-Wouthuysen-Tani representation
x′ of x.

16.13. Derive the time-dependent expression for the position operator x′(t)
in (16.6.30) by using the time evolution operator given in (16.6.28).

16.14. Derive the Pryce-Newton-Wigner position operator X in (16.6.38) as
obtained from the transformation given (16.6.37), verify the commu-
tation rules in (16.6.39) and obtain the expression for corresponding
velocity given in (16.6.40). Finally derive the time-dependence of the
Dirac position operator in (16.6.41).

16.15. Carry out the transformation eD′/c H̃2e−D′/c to obtain, as a first step
of the diagonalization process of the Hamiltonian H2 in (16.6.56), and
obtain the expression given in (16.6.62). What is the explicit expres-
sion for Õ′′ in the latter equation?.

16.16. Carry out an expansion of E in (A-16.6.35) in powers of Z2α2 and
compare with the results obtained in §7.5.

16.17. (The Klein-Paradox ) Solve the Dirac equation in a potential which
varies only along the direction x given by V (x) = 0 for x < 0, V (x) =
V0 for x > 0. For a given energy E = p0c, with 0 < E < V0 determine
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the reflected and transmitted current through this potential step. The
paradoxical result encountered in your physical interpretation is called
the Klein-paradox.

16.18. Verify that with the definitions in (16.7.6), (16.7.9), the Klein-Gordon
equation may be rewritten in the form in (16.7.8) which is referred
to as the Duffin-Kemmer-Petiau equation with the βµ matrices as
given in (16.7.10), (16.7.11). Establish also the validity of (16.7.12) as
satisfied by the βµ matrices.

16.19. Show that the Hamiltonian of spin 0 particles in the Feshbach-Villars
form in (16.7.40) is diagonalized to the form in (16.7.43) via the trans-
formation matrix G in (16.7.41) and obtain the transformed position
operator in (16.7.44). Derive also the time-dependence of the latter as
given in (16.7.50).

16.20. Find the position operator of a spin 0 particle in the original Feshbach-
Villars representation whose Foldy-Wouthuysen-Tani representation is
x. Interpret your result.

16.21. In analogy to the symmetrization operation C(σ1, σ2;σ), for σ =
0, 1, 2, in (16.8.10)–(16.8.12), find the explicit expressions for the sym-
metrization operation C(σ1, σ2, σ3, σ4;σ) for σ = 0, 1, 2, 3, 4.

16.22. Prove the properties of the symmetrization operation C(σ1, . . . , σk;σ)
given in (16.8.28), (16.8.29).

16.23. Prove the equations in (16.9.3), (16.9.4), and show that A(p), B†(p)
are given by (16.9.6), (16.9.7) by integrating Φ(x) over all space and
evaluated at any given time. Write the integral expressions for A†(p),
B(p) as well.

16.24. Show that the second equality in (16.9.39) follows from the first one.
16.25. Verify all the commutators involving the Klein-Gordon field Φ(x) as

obtained from the system in (16.9.57). Work out also all the commu-
tators involving the operators A, A†, B, B† as obtained from (16.9.6),
(16.9.7).
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I

Variations of the Baker-Campbell-Hausdorff
Formula

The purpose of this appendix is to derive expressions for the product of
two exponentials exp(A) exp(B) of two non-commuting operators A and B,
as well as of taking the derivative of exp

(
A(τ)

)
, with respect to a variable

τ , of operator-valued functions A(τ) which are not necessarily linear in τ .
Several formulae will be given.

1. Integral Expression for the Product of the
Exponentials of Operators

By carrying out the derivative with respect to the parameter λ in the
following

d
dλ

[
eλA e−λB

]
= eλA(A − B) e−λB (I.1.1)

gives upon integration over λ from 0 to 1, an integral expression for a product

eA e−B = 1 +
∫ 1

0

dλ eλA(A − B) e−λB . (I.1.2)

2. Derivative of the Exponential of Operator-Valued
Functions

To take the derivative of exp
(
A(τ)

)
, with respect to τ , where A(τ) is an

operator valued function, it is wrong to say that it is given by A′(τ) exp
(
A(τ)

)
or by exp

(
A(τ)

)
A′(τ). This is not true even for

A(τ) = A1 + τA2 (I.2.1)

where
[
A1 , A2

]
�= 0. It is true, however, for A(τ) = τA. More generally,

(I.1.2) gives
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eA(τ+∆τ)e−A(τ) = 1 +
∫ 1

0

dλ eλA(τ+∆τ)
[
A(τ + ∆τ) − A(τ)

]
e−λA(τ). (I.2.2)

If we multiply the latter from the right by exp
(
A(τ)

)
, this gives for ∆τ → 0

[
eA(τ+∆τ) − eA(τ)

]
= ∆τ

[∫ 1

0

dλ eλA(τ)A′(τ) e−λA(τ)

]
eA(τ) (I.2.3)

or
d
dτ

eA(τ) =
[∫ 1

0

dλ eλA(τ)A′(τ) e−λA(τ)

]
eA(τ). (I.2.4)

Similarly, one may derive that

d
dτ

eA(τ) = eA(τ)

[∫ 1

0

dλ e−λA(τ)A′(τ) eλA(τ)

]
. (I.2.5)

One may, of course, carry out a formal Taylor expansion in λ and integrate
term by term over λ in (I.2.4) to obtain

d
dτ

eA(τ) =
∞∑

n=0



[
A(τ), . . . ,

[
A(τ) , A′(τ)

]
. . .

]]
(n + 1)!


 eA(τ) (I.2.6)

where n denotes the number of A(τ)’s that appear in each term in the sum-
mand.

As an example, consider the seemingly simple expression of the form in
(I.2.1)

A(τ) = aip + bxτ (I.2.7)

where a, b are some real constants, and p is the momentum operator
p = −i�d/dx. Then A′(τ) = bx,

[
A(τ) , A′(τ)

]
= aib [p, x] = ab�,[

A(τ) ,
[
A(τ) , A′(τ)

] ]
= 0. Accordingly, (I.2.6) gives

d
dτ

exp (aip + bxτ) =
(

bx +
ab�

2

)
exp (aip + bxτ) (I.2.8)

and is neither equal to A′(τ) exp
(
A(τ)

)
nor to exp

(
A(τ)

)
A′(τ). Note that

(I.2.5) also gives

d
dτ

eA(τ) = eA(τ)
∞∑

n=0

[[
. . .

[
A′(τ) , A(τ)

]
, . . . , A(τ)

]
(n + 1)!

. (I.2.9)

From which we also obtain

d
dτ

exp (aip + bxτ) = exp (aip + bxτ)
(

bx − ab�

2

)
. (I.2.10)
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3. The Classic Baker-Campbell-Hausdorff Formula

To obtain the formula in question, let G(τ) = τ(A+B)+C(τ), such that
C(0) = 0, C ′(0) = 0. Then (I.2.6) or (I.2.9) lead to

eG(τ) = 1 + (A + B) τ +
[
C ′′(0) + (A + B)2

] τ2

2!

+
[
C ′′′(0) +

3
2
[
C ′′(0) (A + B) + (A + B)C ′′(0)

]
+ (A + B)3

]
τ3

3!

+ . . . . (I.3.1)

On the other hand

eτA eτB = 1 + (A + B) τ +
(
B2 + 2AB + A2

) τ2

2!

+
(
B3 + 3AB2 + 3A2B + A3

) τ3

3!
+ . . . . (I.3.2)

Upon equating (I.3.1) and (I.3.2), and comparing the coefficients of τ2

and τ3 we obtain

C ′′(0) = [A,B] (I.3.3)

C ′′′(0) =
1
2
[
A, [A,B]

]
+

1
2
[
B , [B ,A]

]
. (I.3.4)

We may also write

exp G(τ) = exp
[
(A + B) τ + C ′′(0)

τ2

2!
+ C ′′′(0)

τ3

3!
+ . . .

]
(I.3.5)

which from (I.3.3), (I.3.4), and the fact that we have equated the left-hand
sides of (I.3.2), (I.3.5) give

eAeB = e(A+B+C) (I.3.6)

where

C =
1
2

[A,B] +
1
12

[
A, [A,B]

]
+

1
12

[
B , [B ,A]

]
+ . . . . (I.3.7)

4. A Modification of the Baker-Campbell-Hausdorff
Formula

A modification of the formula in (I.3.6) may be obtained as follows. We
may use the latter to write
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exp (A + B) exp (−A) exp (−B)

= exp (A + B) exp
(
− (A + B) +

1
2

[A,B]

− 1
12

[
A, [A,B]

]
− 1

12
[
B , [B ,A]

]
+ . . .

)

= exp
(

1
2

[A,B] +
1
6
[
A, [A,B]

]
− 1

3
[
B , [B ,A]

]
+ . . .

)
(I.4.1)

where in writing the last equality we have used (I.3.6)/(I.3.7) all over again
to the product of the two exponentials occurring on its immediate left-hand
side. This gives

e(A+B) e−A e−B = eD (I.4.2)

where
D =

1
2

[A,B] +
1
6
[
A, [A,B]

]
− 1

3
[
B , [B ,A]

]
+ . . . (I.4.3)



II

Convexity and Basic Inequalities

In this appendix, we study the concept of convexity and some of the in-
equalities which follow from such a property. The inequalities derived, include
the Minkowski, the Hölder and Young’s inequalities of integrals.

1. General Convexity Theorem

Let h(x) be a real function of a real variable x such that its derivative
′ ′

1
′

2 1 < x2. Then for any real
numbers α1 > 0, α2 > 0 such that α1 + α2 = 1

h(α1a + α2b) � α1h(a) + α2h(b). (II.1.1)

For a = b, this trivially holds true with an equality sign. Therefore, without
loss of generality, we may take b > a.

To prove this, we note that by the Mean-Value Theorem, we may find
numbers c and d (b > a):

a b

c d

(α1a + α2b)

such that

h′(c) =
h(α1a + α2b) − h(a)

(α1a + α2b) − a
=

h(α1a + α2b) − h(a)
α2(b − a)

(II.1.2)

h′(d) =
h(b) − h(α1a + α2b)

b − (α1a + α2b)
=

h(b) − h(α1a + α2b)
α1(b − a)

. (II.1.3)

h (x) is non-decreasing, i.e., h (x ) � h (x ) for x
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But, by the property of h′(x), h′(c) � h′(d), hence

h(α1a + α2b) − h(a)
α2(b − a)

� h(b) − h(α1a + α2b)
α1(b − a)

(II.1.4)

which by rearrangement of terms and recalling the property α1 + α2 = 1,
leads to the inequality in (II.1.1).

As an example, consider the function h(x) = xp, for x > 0, p � 1. Then
h′(x) = pxp−1 and is non-decreasing in x, and

(α1a + α2b)p � α1(a)p + α2(b)p (II.1.5)

for a, b > 0.
As another example, consider the function h(x) = − ln x, x > 0. Then

h′(x) = −1/x, and is increasing in x. That is,

− ln(α1a + α2b) � −α1 ln a − α2 ln b (II.1.6)

or
ln (aα1bα2) � ln(α1a + α2b) (II.1.7)

and
aα1bα2 � α1a + α2b (II.1.8)

a, b > 0.

2. Minkowski’s Inequality for Integrals

For 1 � p, let

‖f‖p =
(∫

Rν

dνx |f(x)|p
)1/p

> 0 (II.2.1)

where f(x) may, in general, be complex. Then the inequality in question
reads

‖f + g‖p � ‖f‖p + ‖g‖p. (II.2.2)

To prove this, we note that

|f + g|
‖f‖p + ‖g‖p

� |f |
‖f‖p + ‖g‖p

+
|g|

‖f‖p + ‖g‖p
= α1

|f |
‖f‖p

+ α2
|g|
‖g‖p

(II.2.3)

where
α1 =

‖f‖p

‖f‖p + ‖g‖p
, α2 =

‖g‖p

‖f‖p + ‖g‖p
(II.2.4)

and with a = |f |/‖f‖p, b = |g|/‖g‖p, (II.1.5), dealing with real numbers,
gives
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|f + g|p �
(
‖f‖p + ‖g‖p

)p

(
α1

|f |p(
‖f‖p

)p + α2
|g|p(
‖g‖p

)p

)
(II.2.5)

where we recall that (
‖f‖p

)p =
∫

Rν

dνx |f(x)|p. (II.2.6)

Therefore upon integrating (II.2.5) over x, and taking the 1/p root leads to
the inequality in (II.2.2) finally by using the fact that α1 + α2 = 1.

3. Hölder’s Inequality for Integrals

Let
〈f |g〉 =

∫
Rν

dνx f∗(x) g(x) (II.3.1)

and ‖f‖p as defined in (II.2.1), then inequality in question reads

|〈f |g〉| � ‖f‖p ‖g‖q (II.3.2)

where p, q > 1, such that
1
p

+
1
q

= 1. (II.3.3)

To prove the inequality in (II.3.2), we use (II.1.8) to write

(
|f(x)|p(
‖f‖p

)p

)1/p (
|g(x)|q(
‖g‖q

)q

)1/q

� 1
p

|f(x)|p(
‖f‖p

)p +
1
q

|g(x)|q(
‖g‖q

)q (II.3.4)

which upon integration over x gives
∫

Rν

dνx |f(x)| |g(x)| � ‖f‖p ‖g‖q

(
1
p

+
1
q

)
= ‖f‖p ‖g‖q. (II.3.5)

But
|〈f |g〉| �

∫
Rν

dνx |f(x)| |g(x)| (II.3.6)

from which the inequality in (II.3.2) follows.
For p = q = 2, (II.3.2), gives the Cauchy-Schwarz inequality

∣∣∣∣
∫

Rν

dνx f∗(x) g(x)
∣∣∣∣ �

(∫
Rν

dνx |f(x)|2
)1/2 (∫

Rν

dνx |g(x)|2
)1/2

. (II.3.7)
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4. Young’s Inequality for Integrals

We provide one of Young’s inequalities and it is given not in the most
general cases but in a form which is sufficient for the applications considered
in the text as stated:∣∣∣∣

∫
Rν

dνx
∫

Rν

dνy f∗(x)G(x − y) g(y)
∣∣∣∣ � ‖f‖p ‖G‖1 ‖g‖q (II.4.1)

where p, q > 1 and satisfy (II.3.3).
To prove (II.4.1), we note that its left-hand side of (II.4.1) is bounded

above by
∫

Rν

dνx
∫

Rν

dνy
(
|f(x)| |G(x − y)|1/p

)(
|g(y)| |G(x − y)|1/q

)
(II.4.2)

which from Hölder’s inequality (II.3.2) in 2ν dimensional space, is bounded
above by

(∫
Rν

dνx
∫

Rν

dνy |f(x)|p |G(x − y)|
)1/p(∫

Rν

dνx
∫

Rν

dνy |g(y)|q |G(x − y)|
)1/q

= ‖f‖p ‖G‖1 ‖g‖q (II.4.3)

where we have used (II.3.3) in writing ‖G‖1,

‖G‖1 =
∫

Rν

dνx |G(x)|. (II.4.4)



III

The Poisson Equation in 4D

In four dimensional Euclidean space, a vector

r =
(
x1, x2, x3, x4

)
(III.1)

in spherical coordinates may be written with components as

x1 = r sin θ cos φ sin χ

x2 = r sin θ sinφ sin χ

x3 = r cos θ sinχ

x4 = r cos χ

(III.2)

when r = |r|, and

0 � r < ∞, 0 � θ � π, 0 � φ � 2π, 0 � χ � π. (III.3)

For the Jacobian of the transformation
(
x1, x2, x3, x4

)
→ (r, θ, φ, χ), we

have

|J | =

∣∣∣∣∣
∂
(
x1, x2, x3, x4

)
∂ (r, θ, φ, χ)

∣∣∣∣∣ = r3 sin θ sin2 χ (III.4)

and the volume element is given by

d4r = r3dr sin θ dθ dφ sin2 χ dχ. (III.5)

The volume V (R) of a sphere of radius R in 4D is then equal to

V (R) =
∫ R

0

r3dr

∫ π

0

sin θ dθ

∫ 2π

0

dφ

∫ π

0

sin2 χ dχ =
π2R4

2
. (III.6)

To obtain the surface area S(R) of the sphere of radius R in 4D, we replace,
in the process, r3dr by R3 in (III.5), giving



982 III The Poisson Equation in 4D

S(R) = 2π2R3 (III.7)

with the solid angle element

dΩ = sin θ dθ dφ sin2 χ dχ. (III.8)

The Dirac delta distributions are given by

δ4(r − r′) =
δ(r − r′)

r3

δ(θ − θ′) δ(φ − φ′) δ(χ − χ′)
sin θ sin2 χ

(III.9)

and
δ(Ω − Ω′) =

δ(θ − θ′) δ(φ − φ′) δ(χ − χ′)
sin θ sin2 χ

. (III.10)

1. The Poisson Equation

The Poisson equation in 4D is the content of the following result:

∇2 1
|r − r′|2 = −4π2δ4(r − r′). (III.1.1)

To establish this, let

∇2G(r, r′) = −δ4(r − r′) (III.1.2)

and upon writing

δ4(r − r′) =
∫

d4k
(2π)4

eik·(r−r′) (III.1.3)

we obtain

G(r, r′) =
∫

d4k
(2π)4

eik·(r−r′)

k2 . (III.1.4)

The expression on the right-hand side may be rewritten as:
(
ρ = |r − r′|

)
(2π)
(2π)4

2
ρ

∫ ∞

0

dk

∫ π

0

dχ i
(

d
dχ

eikρ cos χ

)
sin χ

= − i
4π3ρ

∫ ∞

0

dk

∫ π

0

dχ cos χ eikρ cos χ

= − 1
4π3ρ2

∫ ∞

0

dk
d
dk

∫ π

0

dχ eikρ cos χ. (III.1.5)

Using the properties,∫ π

0

dχ eikρ cos χ = πJ0(kρ), J0(0) = 1, J0(∞) = 0 (III.1.6)

where J0(z) is the Bessel function of order zero, in (III.1.5) establishes the
result stated in (III.1.1).
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2. Generating Function

In 3D, |r−r′|−1 may be expanded in terms of Legendre polynomials with
well known orthogonality properties. We extend such a procedure to 4D.

To the above end, we introduce the special functions referred to as Cheby-
shev’s polynomials Un(x) of type II. The generating function of these special
functions is given by

1
(1 + t2 − 2tx)

=
∞∑

n=0

tnUn(x), |x| < 1, |t| < 1. (III.2.1)

The following properties of the Un(x) are to be noted:

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1,

U3(x) = 4x(2x2 − 1), U4(x) = 16x4 − 12x2 + 1, . . . (III.2.2)

Un(−x) = (−1)nUn(x) (III.2.3)

Un+1(x) = 2xUn(x) − Un−1(x). (III.2.4)

They satisfy the differential equation

(1 − x2)U ′′
n (x) − 3xU ′

n(x) + n(n + 2)Un(x) = 0 , (III.2.5)

the orthogonality relation∫ 1

−1

dx
√

1 − x2 Un(x)Um(x) =
π

2
δnm , (III.2.6)

and the following integral∫ 1

−1

dz Un

(
xy +

√
1 − x2

√
1 − y2 z

)
= 2

Un(x)Un(y)
(n + 1)

. (III.2.7)

In particular, since U0(x) = 1, (III.2.6) gives∫ 1

−1

dx
√

1 − x2 Un(x) =
π

2
δn0. (III.2.8)

The following explicit expression is also useful

Un(x) =
sin

(
(n + 1) arccos x

)
sin (arccos x)

. (III.2.9)

For x → 1, the latter gives

Un(1) = (n + 1) . (III.2.10)

For x = 0, we also have

U2n(0) = (−1)n (III.2.11)

U2n+1(0) = 0. (III.2.12)
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3. Expansion Theorem

Let

r< = min(r, r′), r> = max(r, r′), x =
r · r′
rr′

, (III.3.1)

then the expansion theorem (Theorem III.1) directly follows from (III.2.1).

Theorem III.1

1
|r − r′|2 =

∞∑
n=0

(r<)n

(r>)2+n Un

(
r · r′
rr′

)
. (III.3.2)

To establish a result given below, we note that the above expression may
be conveniently rewritten as

1
|r − r′|2 =

∞∑
n=0

{
Θ(r − r′) (r′)n

[
r−2−nUn(x)

]

+Θ(r′ − r) (r′)−2−n
[
rnUn(x)

]}
(III.3.3)

where x is defined in (III.3.1).
By using the properties

∂

∂xi
Θ(r − r′) =

xi

r
δ(r − r′) (III.3.4)

∇2x = −3x

r2
(III.3.5)

∇2r =
3
r

(III.3.6)

4∑
i=1

(
∂r

∂xi

)2

= 1 (III.3.7)

4∑
i=1

(
∂x

∂xi

)2

=

(
1 − x2

)
r2

(III.3.8)

4∑
i=1

(
∂r

∂xi

)(
∂x

∂xi

)
= 0 (III.3.9)

where x is defined in (III.3.1), and the differential equation (III.2.5), we obtain
from (III.3.3) that
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∇2 1
|r − r′|2 = −δ(r − r′)

r3

∞∑
n=0

2(n + 1)Un(x). (III.3.10)

Upon comparison of (III.3.10) with (III.1.1) and using (III.9), (III.10), we
may infer the following result:

∞∑
n=0

(n + 1)
2π2

Un(x) = δ(Ω − Ω′) (III.3.11)

where
x = N · N′ (III.3.12)

and N, N′ are unit vectors in 4D.
Now we prove the following indispensable orthogonality/completeness re-

lation over angles.

Theorem IV.1

∫
dΩ′′ Un

(
N · N′′) Um

(
N′′ · N′) =

2π2

(n + 1)
δnm Un

(
N · N′) (III.4.1)

where N, N′, N′′ are unit vectors in 4D.

Without loss of generality we may choose the x4 axis along N′, and set

N · N′ = cos χ, N′′ · N′ = cos χ′′. (III.4.2)

We may then write

N · N′′ = cos χ cos χ′′ + sinχ sin χ′′ cos α (III.4.3)

where
cos α = cos θ cos θ′′ + sin θ sin θ′′ cos (φ − φ′′) . (III.4.4)

We may expand Un

(
N · N′′) in terms of Legendre polynomials in the

angle α, i.e.,

Un

(
N · N′′) =

n∑
k=0

Ank(χ, χ′′) Pk (cos α) (III.4.5)

where, in detail,

Pk (cos α) =
4π

(2k + 1)

k∑
m′=−k

Ykm′(θ, φ) Y ∗
km′(θ′′, φ′′) . (III.4.6)

4. Generalized Orthogonality Relation
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Upon integration of (III.4.5) over (cos α): −1 � cos α � 1, using the
integral (III.2.7), with the argument of Un in the integrand given in (III.4.3),
and the fact that ∫ 1

−1

d(cos α) Pk (cos α) = 2δk0 (III.4.7)

we obtain for the coefficient An0:

An0(χ, χ′′) =
Un(cos χ) Un(cos χ′′)

(n + 1)
. (III.4.8)

For the integral on the left-hand side of (III.4.1), the latter is explicitly
given by

n∑
k=0

k∑
m′=−k

4π

(2k + 1)
Ykm′(θ, φ)

∫
dΩ′′ Ank(χ, χ′′) Y ∗

km′(θ′′, φ′′) Um(cos χ′′) .

(III.4.9)
From the definition of the solid angle element dΩ′′ (see (III.8)), and the

integral
∫ 2π

0

dφ′′
∫ π

0

dθ′′ sin θ′′ Ykm′(θ′′, φ′′) =
√

4π δk0 δm′0 (III.4.10)

(III.4.9) reduces to the expression

4π
1√
4π

√
4π

∫ π

0

dχ′′ An0(χ, χ′′) Um(cos χ′′) sin2 χ′′

=
4π

(n + 1)
Un(cos χ)

∫ π

0

dχ′′ Un(cos χ′′) Um(cos χ′′) sin2 χ′′

(III.4.11)

where in writing the last step, we have used (III.4.8). The integral in (III.4.11)
satisfies the orthogonality relation in (III.2.6). Hence by using the fact that
cos χ = N · N′, the result stated in Theorem IV.1 immediately follows.
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Landé g-factor, 294
Landau levels, 436
Landau-Larmor energy, 437
Laplacian in parabolic coordinate

system, 417
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line of singularities, 528
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field, 534, 537
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Lorentz force, 531, 538
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magnetic dipole moment, 372
magnetic dipole moment of the proton,

373
magnetic field gradient, 537, 538
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Malus formula, 31
Markov approximation, 431, 731, 732
mass renormalization, 401
massless Dirac particles, 912
master equation, 727, 728, 731
matrix elements, 12
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D
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765
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“mean” position operator, 923, 925
“mean” spin, 923
“mean” spin operator, 925
mean square radius of proton, 417
mesoscopic states, 484
metric, 524, 525
metric on the unit sphere, 527
minimal electromagnetic coupling, 378
Minkowski metric, 886
Minkowski’s inequality, 978
mixed-description, 12
mixtures, 25

mixture, 26, 31
random mixture, 27, 29

modified Bessel functions, 220, 570
momentum operator, 96
monitoring observables, 79
monitoring spin, 478
motion restricted to the surface of unit

sphere, 527
Mott scatterings, 837
multi-channel scattering, 846, 849
multi-component object, 89
multi-electron atoms, 105, 739
multi-particle Hamiltonians, 104, 167,

739, 766
multi-particle systems, 104, 106, 148,

163–168, 739, 766, 850
multi-particle systems with Coulomb

interactions, 167, 739, 766
muon decay, 932
Møller wave operators for Coulomb

potential, 879

N5/3 law for bosons, 784
natural units, 90
“needle” registering-value, 65

two particles in negative energy,
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orthogonality property, 307
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No-Binding Theorems, 197, 774
non-abelian gauge theories of funda-

mental interactions, 519
non-abelian transformations, 519
non-commutativity of measurements,

31, 423
non-degenerate perturbation theory,

684
non-empty subspace, 43
non-flip of spin, 75, 476
non-holonomic system, 524
non-local density of states, 204, 583
non-relativistic electron, 403
non-zero spins, 89
normalization condition, 9, 18, 24, 100
normalization condition for momenta,

100
normalization factor, 70
normalization of probability, 492
number of eigenvalues, 210, 583, 668

Bargmann inequality for number of
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number of eigenvalues in one-
dimensional case, 213

number of eigenvalues in three-
dimensional case, 211

number of eigenvalues in two-
dimensional case, 212

Schwinger inequality for number of
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numerical factor 〈b |a〉, 4
numerical factors, 7, 8, 10

observable, 2
compatible observables, 2
complete set of compatible observ-

ables, 2
continuous set of values, 2
finite number of discrete values, 2
incompatible observables, 2
infinite number of discrete values, 2
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old quantum theory, 712
one-time pad scheme, 504

optical theorem, 822, 853, 854
optical theorem and its interpretation,

821
orbital angular momentum, 117, 258

half-odd integral values?, 259
order of measurements, 505
orthogonal, 51
orthogonal entangled states, 502
orthogonal projection operations, 910
orthogonality conditions, 66, 79
orthogonality relation, 45
orthogonality relation of photon states,

416
orthonormal basis, 58
orthonormality property, 122
oscillator strength, 869
oscillatory magnetic field, 13

p-description, 100
Padé approximant, 738
Padé approximants method, 702
pair annihilation, 931
pair production, 931
Paley-Wiener Theorem, 172, 174
Pancharatnam definition, 524, 546
parabolic coordinate system, 417
parallel transport, 524
parallel transport of a vector, 527
parameter space, 517
parity, 112, 114
parity transformation, 130, 902
particle detection, 807
Paschen-Back effect, 408
passage of charged particles through

hydrogen, 867
passage of particles through media, 867
path integrals

and velocity dependent potentials,
608

completeness relation, 601
constrained dynamics, 614
for a given potential, 604
particle in external electromagnetic

fields, 608
Pauli equation, 433
Pauli exclusion principle, 765
Pauli Hamiltonian, 229, 432
Pauli matrices, 421, 885
Pauli’s fundamental theorem, 886, 889
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PCT transformation, 969
permutations, 123
phase factor, 61, 522
phase shifts analysis, 825, 865
photon, 391, 442, 447
physical system transitions, 69
physically observed mass, 398, 403
plane rotator, 737
Poincaré sphere, 526
Poisson equation, 415
Poisson equation in 4D, 982
Poisson probability mass function, 352
Poisson sum formula, 571
polarization of light, 29

ϑ-polarizer, 32
x-polarized state, 30
x-polarizer, 30
y-polarized state, 30
unpolarized light, 32

polarization vector, 391
polarized along the z-axis, 457
polarized beam, 457
position operators, 93, 96, 919, 942
positivity, 536
positivity constraint, 537
positron, 109, 393, 494, 882, 932
possible outcomes of spin measure-

ments, 492
potential well, 187
power of test of detection of the

intruder, 507
preparatory channels, 851
presence of radiation, 403
primary constraints, 617
probabilities of counts, 488
probability, 9, 18, 68
probability current, 917
probability density, 29, 536
probability distribution of the kinetic

energy, 414
probability for the “fall” of one particle

into the other, 148
probability mass function, 488
probability of decay, 480, 481
product of the exponentials of

operators, 973
projection operators, 42, 80

Pryce-Newton-Wigner operator, 924,
969

pseudo-scalar, 902
pseudo-vector, 902
pure ensembles, 25

quadrupole moment
reduced matrix element, 327

quantization of the electric charge, 528
quantized flux, 575, 576
quantum anti-Zeno effect, 482
quantum correction, 759
quantum cryptography, 501, 503
quantum decoherence, 79, 463, 469,

472, 482, 728
quantum dynamical principle, 649, 650,

652, 663
quantum dynamical principle to path

integrals, 669
quantum dynamics, 100
quantum electrodynamics, 375, 490,

881
quantum field theory, 881
quantum fields, 954
quantum mechanical counterpart of

Lorentz-force, 534
quantum mechanical phase depending

on the gravitational constant and
the Planck constant, 877

quantum superpositions, 79
quantum teleportation, 501
quantum Zeno effect, 482

R-H polarizations, 496
radial functions, 404
radiation field, 391
Ramsauer effect, 878
Ramsey apparatus, 13, 14, 473, 478
Ramsey oscillatory fields method, 473
Ramsey zones, 477, 478, 509
N Ramsey zones, 480
Ramsey-like method, 508
Rayleigh-Schrödinger series, 688, 700,

703, 736
rays, 37
re-summation methods, 702
reactive cross section, 866
real Grassmann variables, 633
reduced density operator, 468, 472, 728
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reflection coefficient, 561
reflection probability, 711, 874
registering apparatus, 66
relative momentum, 848
relative phases, 56
relativistic correction to the kinetic

energy, 375
relativistic quantum field theory, 881
relativistic wave equations for any mass

and any spin, 947
relativistically invariant, 392
relativity, 392
renormalization

contact term, 449
counter term, 398, 402
effective charge, 855, 932
of mass, 402, 403
physical significance and stability of

the electron, 398, 402, 403, 449
Z3: wavefunction renormalization

constant, 393
renormalized mass, 398, 402, 403
representation of simple machines, 14
representations of the generators P, X,

96
repulsive Coulomb potential energy

lower bound for multi-particles, 767
“resistance” of Fermi particles to

increase in density, 149
resolution of the identity, 42, 353
resolution of the identity in the

x-description, 100
resolvent, 46, 152
resolvent set, 47
resonance, 481
resonance condition, 509
rest energy, 371
retarded Green function, 549
retarted/advanced Green functions, 801
reversal of phase, 513
Riemann-Lebesgue Lemma, 732
Rigged Hilbert space, 38, 39
right-hand derivative, 634
right-handed, 916
right-handed (R-H) polarization, 495

role of the environment, 469
rotation matrix, 82
rotation of a coordinate system, 84
rotation of a spinor, 508, 511, 512
rotation of a spinor by 2π radians, 129,

511, 512
Rydberg, 372, 400

6-j symbol, 304
orthogonality relation, 305
relation to 3-j symbols, 304
sum rule, 305

Samuel-Bhandari (SB) phase, 529
scale transformations, 8, 146
scattering S operator, 879
scattering amplitudes, 804, 815, 826,

834
scattering at small deflection angles at

high energies, 842
scattering length, 878
scattering of indistinguishable charged

particles, 837
scattering of spin 1/2 particle off a

spin 0 target, 454
scattering of spin 1/2 particles off a

spin 1/2 target, 459
scattering theory

functional treatment, 838
Schrödinger equation, 101
Schrödinger’s cat, 482
Schwinger’s constructive approach, 958
scrambled message, 504
second class constraints, 618
second rank anti-symmetric spinor, 129
secondary constraints, 618
secular equation, 689
selection rule, 266
selective measurement symbols, 2, 14,

30
selective measurements, 2, 3, 18, 486

polarizer, 3
polarized light, 3, 30, 495
unpolarized light, 3, 32

prism, 3
Stern-Gerlach apparatus, 3, 4, 13

self-adjoint, 41
self-adjoint operators, 39
separability, 34, 80
separated oscillatory fields zones, 473
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shape invariant partner potentials, 233
silicon, 873
smooth function, 722
solenoid, 572
solid angle, 517, 982
solution of the free Feshbach-Villars

equation, 941
solutions of the fully interacting

systems, 802
space reflection, 112
space translations, 91
spatial extension of bound-state

systems, 148, 150, 151
spatial extension of matter, 782, 783
spatial extension of the fermionic

systems, 150
spatial rotations, 892, 894
spectra of self-adjoint operators, 41, 45
spectral decomposition, 42
speed of light, 370, 399, 892
spherical Bessel functions, 827
spherical harmonics, 262

addition theorem, 267
integral involving three spherical

harmonics, 301
reduced matrix element, 303
special values, 265
tensor operator Y L

M , 299
spherically symmetric potential, 214
spin, 269, 898, 900, 947

arbitrary spins, 274, 947
density operators, 453

spin s out of 2s spin 1/2’s, 129
spin and relativistic corrections, 370
spin and statistics connection, 962
spin component in the +z direction, 14
spin of the proton, 385
spin precession, 441
spin versus helicity states, 313
spin-flip, 73, 74, 76, 131, 469, 475
spin-orbit (SL) coupling, 376, 928
spinors, 121
spin 0, 117, 783, 819, 820, 937, 955, 963
spin 1, 6, 118, 129, 272
spin 1/2, 5, 7, 74, 77, 270

general aspects, 420
spin 1/2 in external magnetic fields,

423, 425

splitting of beam along quantization
axis, 538

spontaneously broken theories, 226
square-integrable, 172
square-integrable functions, 36, 44, 228,

229, 233, 242, 243
stability, 145
stability and multi-particle systems,

148
stability of matter, 774
stability of the hydrogen atom, 360
stable system, 150
Stark effect, 412
state, 16
state of combined (correlated) system,

66, 468
state of the apparatus, 67
state vector, 18
states of a physical system, 37
statistical (density) operator, 26, 31,

468, 472, 534, 728, 730
step-function, 41, 42
Stern-Gerlach, 2, 11

filtering machine, 2
filtering processes, 2, 6

Stern-Gerlach effect, 531
Stokes’s theorem, 516
strong limits, 354, 806
strong magnetic field, 408, 411
subsidiary constraint, 622
successive Galilean transformations, 86,

91
successive Lorentz transformations, 376
successive operations, 3
successive operations of two machines,

15
successive selective measurements, 31
sudden approximation, 717, 720, 722
sum of the negative eigenvalues, 216

one-dimensional case, 218
three-dimensional case, 216
two-dimensional case, 217

superposition principle, 17, 419, 482
superpotential, 231
superselection rules, 37, 484
supersymmetric Hamiltonians in higher

dimensions, 247
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supersymmetric partner Hamiltonians,
231

supersymmetric partner potentials, 231
supersymmetric transformations, 138
supersymmetry, 136, 224, 434
supersymmetry generators, 136, 225,

226, 346, 348
supremum, 51
survival probability, 169, 432
“switching on” of apparatus, 466
symbol Λ(a) = |a〉〈a|, 2
symmetric spinors of rank k, 122
symmetrization operation, 948, 970
symmetry operation, 132
symmetry transformation, 61
systems of n particles, 104, 106, 118,

148, 163, 166, 167, 739, 766, 850

21.1 cm wavelength, 388
3-j symbol

orthogonality property, 289
relations to Clebsch-Gordan

coefficients, 289
T-scattering matrix, 865
tensor operators, 296–303
TF electron density and the effective

potential, 740, 742
thermal average, 340, 680
thermal mixture, 340, 342, 345, 680
Thomas factor, 376
Thomas-Fermi (TF) approximation,

587, 588, 740
Thomas-Fermi atom, 739, 740

computation of ground-state energy,
745, 746

Thomas-Fermi-like energy functional,
769

time reversal, 112, 130, 903
time-dependent forced dynamics, 561,

564, 631, 643, 656, 660
time-dependent Hamiltonians, 111
time-evolution, 101, 109, 111, 665
trace, 12, 86
trace functionals, 665
trace operation, 10
transformation function 〈x |p〉, 98, 99
transformation function from the B- to

A-descriptions, 〈a |b〉, 19

transformation functions, 22, 649, 652,
653

transformation law under coordinate
rotation, 95, 120, 121, 249, 258

transformation law under time reversal,
131, 903

transformation rule of a spinor of rank
one under a coordinate rotation,
133

transition amplitude, 337
transition probabilities, 719, 722, 853
translational independent contribution

to J, 117
transmission coefficient, 561
transmission probability, 711, 874
transpose, 86
trial wavefunctions, 690, 777, 788
triangular inequality, 24, 35
“tuning” condition, 468
turning point, 705, 707
two-dimensional Green function, 570
two-level atom, 428, 484
two-level systems, 427, 737
two-particle scattering, 818–821, 837
two-particle states of arbitrary spins

versus helicity states, 322
two-particle systems and relative

motion, 104

ultraviolet cut-off, 396
uncertainties, 144, 145, 362
uniform time-independent magnetic

field, 13
unitarity, 67
unitary operator, 55, 57, 78, 89, 112
unpolarized beam, 455, 536, 538
upper bound cut-off, 399
upper bound for the expectation value

of the kinetic energy operator for

vacuum fluctuations, 932
variational form, 652
variational methods, 690
vector operators, 290, 298
vector space, 16, 34
vectors, 16, 33
velocity dependent potentials, 608, 612
Vernam cipher, 503

negative energies, 147, 150, 781
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virial theorem, 245
volume of sphere in 4D, 981

wavefunction in different descriptions,
18

Z3: wavefunction renormalization
constant, 393

wavefunctions of hydrogen atom, 368
wavepacket, 533, 809, 919
weak limit, 354, 805
weak magnetic field, 411
weak perturbations, 717, 718
Wigner’s Theorem on symmetry

transformations, 57, 81, 89
Wigner-Eckart theorem, 293, 297, 326,

389
winding number, 571
WKB approximation, 703, 705

barrier penetration, 709
quantization rules, 712, 714, 715
radial equation, 715

WKB procedure in the one-dimensional
radial equation, 716

x-description, 96, 100

Young’s inequality, 211, 213, 980
Yukawa potential, 157, 198, 244
Yukawa term, 347

Zeeman effect, 406, 412
zero point energy, 334, 343, 350
0 vector, 17
Zitterbewegung, 375, 918, 923, 925,

926, 928, 931, 944
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