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Preface

This work arose during my occupation at the Chair of Production and Operations
Management at the Catholic University Eichstätt–Ingolstadt, where it was accepted
as my doctoral thesis. Professor Heinrich Kuhn served as the first and Professor
Ulrich Küsters as the second reviewer. This thesis started off as my attempt to solve
all the issues related to multi-level inventory management in discrete time once
and for all. In retrospect, I am very glad that I took on the challenge. It taught me
humility. Much as I wished to resolve everything in one fell swoop, I am now proud
to be able to say that this is it: this is what is possible at the present time. We –
the many researchers that came before me, and now myself – gave it our very best.
I collated all the knowledge that was available, and hope to have driven the topic
forwards a little. I admit the going was extremely tough, and wish my successors in
this particular field of inventory theory courage and tenacity.

I am so very grateful to the many friends and colleagues who accompanied me on
this path. It would be hard to pick out individuals – I would run the risk of leaving out
far too many. Instead, I will not mention anyone specifically at all, and would like
to simply express my heartfelt thanks to everyone who shared this journey with me,
or contributed to it – I am sure you all recognize yourselves, and will understand.

I would, however, like to single out two names that I have already mentioned:
Professor Heinrich Kuhn and Professor Ulrich Küsters. I owe the deepest appreci-
ation to Professor Ulrich Küsters for his open and always constructive criticism.
Readers should be thankful to him, too: his comments have spared them many
of my excesses. And to more than anyone else, I am enormously grateful to my
doctoral supervisor, Professor Heinrich Kuhn, for his guidance and latitude during
the six years that I worked with him at his chair. His untiring commitment to
teaching and research is a continuous inspiration. I am indebted to him as steadfast
mentor, and know he will always remain true to himself. But now curtains up on
the models, methods and approaches to the management of periodically reviewed
inventory systems that await you on the following pages. I hope I have managed to

vii



viii Preface

clearly express my thoughts and ideas, and that I can perhaps encourage you, the
reader, to work with them, and – even more importantly – to further refine them.

Ingolstadt Thomas Wensing
February 2011
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Chapter 1
Introduction

1.1 Subject Matter

Controlling and maintaining inventories of physical goods has always been an
issue for enterprises that consume materials in their goods or service production
processes. While in the past this field has often been treated as a subordinate, merely
operational task, recent developments in supply chain management have given rise
to a strong demand for more profound methods for inventory management. The
increasing division of labor coupled with the application of multi-national sourcing
strategies have led to the formation of complex supply networks that need protection
from random disturbances. Protection – but not at any price. The requirements that
inventory management methods need to fulfil are thus easily defined: safeguard
supply at an acceptable cost level.

Even the general problem is easily defined. As pointed out by Hadley and Whitin
in their early and influential book, all theory on inventory management is dedicated
to answering two fundamental questions: when to replenish the inventory, and how
much replenishment to order (Hadley and Whitin 1963, p. 1). How difficult it is to
give an appropriate answer to those two questions, however, differs from one type
of inventory system to another. Another issue is that the performance of existing
solution methods vitally depends on the nature of the inventory system being
examined. It is not unusual for methods that are promising in one type of system
to perform badly in another, or to even be completely useless. In contemporary
inventory theory we therefore observe a focus on the development of multiple
specific approaches to different representative systems, rather than on the search
for one single approach that would comply with any type of inventory system. It is
common believe in the research community nowadays that the (individual) nature
of inventory systems is too complex to allow a unified, generic approach.

T. Wensing, Periodic Review Inventory Systems, Lecture Notes in Economics
and Mathematical Systems 651, DOI 10.1007/978-3-642-20479-1 1,
© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

1.2 Purpose and Problem Definition

The aim of this study is to assist the reader in making decisions on inventory
management problems within supply chain structures. As outlined in the previous
section, however, it is practically impossible to solve all potential problems in
advance and create a multi-purpose toolbox for all needs. Instead of trying that, we
have chosen a systematic modular approach to introduce a general way of thinking
about problems in inventory theory and provide an understanding of structural
coherence as well as causes and consequences. The reader will undoubtedly find
a lot of formulae and specialized algorithms on specific problems relating to
closely defined inventory systems. However, the structure and representation of
these technical aspects is meant to provide an open framework that should allow
modification or recombination depending on the specific needs of the analysis of
comparable or even entirely different systems.

To be more specific, the core of this study is the analysis and optimization of a
periodically reviewed inventory system in discrete time. Customer demand arrives
in stochastic batches, and we observe stochastic replenishment lead times. The
overall model describes a basic system type that is typically found within multi-
level production or distribution systems. Reflecting the basic idea of a modular
structure, the demand generating process substantially complies with the demand
process that the supplier observes from our inventory system. The same holds –
with limitations – for the replenishment process, which may exhibit varying delivery
times. This variation may be caused by possible material unavailability, where the
lead time delay may either be zero or – due to the underlying periodic time axis –
an integer. Admittedly, the replenishment process does not perfectly match the
customer waiting time process. Following almost the entire literature so far, we
assume here that replenishment lead times are independent of the amounts ordered,
where the customer waiting time clearly depends on how much is ordered from an
inventory system.

Technically speaking, we examine a single-level inventory model that is operated
on a discrete time axis according to a periodic review order-up-to policy, i.e.,
replenishment orders are regularly placed at fixed intervals and the order amount
equals consumption since the last order was issued. Customer demand occurs in
independent and identically distributed batches once in a constant demand interval.
We assume full backordering, i.e., the customer never cancels an order, regardless
of the waiting time observed. Replenishment lead times are discretely distributed,
where we consider both the case of independent and dependent distributions.

In order to illustrate the analytical needs of the specific characteristics, we exam-
ine and implicitly contrast the two mentioned types of dependent and independent
lead time processes on the supplier’s side, as well as two demand delivery modes on
the customer’s side. Besides analyzing the specific system variants, we provide the
reader with additional background on the analysis of inventory systems in discrete
time. We include a broad introduction to the literature on single-level inventory
models as well as a brief aside on some statistical and computer science methods
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that are helpful for analyzing inventory systems in discrete time. We also discuss
basic aspects of modeling replenishment processes to provide further insights into
thinking about inventory systems in a modular way.

The contribution of this work is threefold. First, we try to give access to the inner
logic of the class of systems that we examine, and that we consider highly relevant
for understanding and configuring inventory systems within multi-level supply
chains. Second, we aim to provide ready-to-implement formulae and computational
approaches that can help to improve decisions on practical inventory management
wherever the system being considered is close enough or even identical to the one
we analyze. Third, we contribute to inventory theory by presenting a comprehensive
analysis of the system class considered. In that context, we summarize the research
that has already been done on comparable systems and extend the available
approaches or develop new ones wherever there is no existing solution method. The
individual research issues thus emerge automatically from the attempt to conduct a
systematic analysis of the inventory system variants examined. To our knowledge,
analysis of order-oriented customer waiting times and the entire independent lead
time case has not previously been performed for this system class. Furthermore,
a comprehensive discussion of one family of inventory systems has never been
conducted in this way before.

1.3 Outline

The outline of this study is as follows.
Chapter 2 provides an introduction to inventory systems, where the emphasis

is on classifying different possible characteristics and describing cost and service
metrics that are commonly used to evaluate the performance of inventory systems.
This chapter maps out the field of our interest and defines the key indicators that we
will use to describe the performance of an inventory system.

Chapter 3 contains an overview of the literature that we consider relevant for the
understanding, analysis and optimization of systems of our type. We have chosen
a rather wide scope, and give a comprehensive overview of important work on
single-level inventory systems overall. This is primarily due to the fact that we have
drawn some important ideas for our analysis from work on systems quite different
to ours. One general observation, for example, is that several important findings on
periodic review systems were first examined based on continuous review systems.
We therefore consider it worthwhile to give at least a rough idea of the entire field
of research on single-level inventory systems.

Chapter 4 presents some basic stochastic analysis methods and proceeds that are
highly relevant for the analysis and optimization of inventory systems in discrete
time. This chapter is meant to give guidance for implementing the basic analytical
methods in an appropriate programming language such as Java, CCC, C# or
even Visual Basic. We also give insights into the corresponding computational
complexity that is required for runtime examinations in the chapters after that.
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Chapter 5 discusses different approaches to modeling the process of generating
replenishment lead times. We examine the basic cases of dependent and independent
lead times as well as two rather academic special forms. The latter may be especially
helpful for testing new ideas where one may wish to exclude specific problems that
emerge from a generally defined lead time process.

Chapter 6 constitutes the main part of this study. Here, we systematically discuss
the analysis and optimization of the basic type of inventory system outlined above
for different specifications relating the lead time and order fulfillment process.

Chapter 7 provides a conclusion and outlook.



Chapter 2
Concepts and Definitions

We first give a brief introduction to the objects and phenomena that we will examine
in this study. The key object of our interest is an inventory system within a non-
changing, static environment. In order to make any statements about this inventory
system, we will first define how to describe the state of such a system in terms of the
relevant characteristics. From an epistemological point of view, we will introduce
the vocabulary here that enables us to talk about the object being examined. Next,
we propose a framework to classify the structure and relevant elements of an
inventory system within a static environment. This should help us to later on declare
the specific nature of the system being analyzed and its variants. To evaluate the
specific configuration of a system and allow for a preferential order with alternative
configurations, the last section summarizes common metrics for evaluating the
performance of inventory systems.

2.1 State of an Inventory System

From the pure perspective of keeping inventory, the following seven basic concepts
are generally used in the literature to characterize the state of an inventory system
at a certain moment t in time. In discrete time, these states commonly refer to the
end of each period. Instead of inventory, a significant fraction of the literature uses
the term stock, at least in some of the definitions. In the following, we use the term
inventory to describe amounts of the goods in question, whereas stock refers to the
installation (e.g., a warehouse) in which the goods are kept.

• Physical inventory. Physical inventory (It ) is the amount of inventory that is
immediately available to satisfy incoming demand. It is sometimes also referred
to as inventory on hand.

• Number of backorders. The number of backorders (Bt ) or simply backorder(s) is
the volume of customer orders that currently cannot be satisfied due to inventory
unavailability, and that are not lost. Backorders occur whenever customers are

T. Wensing, Periodic Review Inventory Systems, Lecture Notes in Economics
and Mathematical Systems 651, DOI 10.1007/978-3-642-20479-1 2,
© Springer-Verlag Berlin Heidelberg 2011
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6 2 Concepts and Definitions

willing to wait for their orders, and the physical inventory is insufficient to cover
their demand. The term backlog is often used as synonym for Bt in the literature.

• Outstanding orders. The (number of) outstanding orders Kt is the random
number of orders that have been issued before time t , and have not yet arrived.

• Inventory on order. Inventory on order (IOt ) is the amount of material that has
been ordered from the supplier but has not yet arrived. In other words, it is the
total amount of material covered by outstanding orders.

• Inventory shortfall. The inventory shortfall (SFt ) is the difference between
planned and the actual inventory levels. It is equal to the inventory on order plus
the demand that has occurred since the last replenishment order was placed (see
also Sect. 5.2.2.).

• Net inventory. Net inventory (NIt ) is defined as physical inventory minus
backorders (NIt D It � Bt ).

• Inventory position. The inventory position (IPt ) is defined as physical inventory
minus backorders plus inventory on order (IPt D It � Bt C IOt ).

The state of an inventory system in terms of the concepts defined above may
be changed by three events: order initiation, order arrival and demand occurrence.
We thus have the following three concepts to describe the change of an inventory
system at moment t in time, as compared to the previous moment. In our case of a
discrete time axis, the previous moment is t � 1, so we have chosen to illustrate the
definitions according to this paradigm:

• Demand. Demand (Dt ) is the customer demand that is requested from the system
in t . The demand may effect all of the state concepts described above.

• Issued Inventory. Issued inventory (IIt ) is the amount of inventory that is ordered
from suppliers in t . The issued inventory may effect the outstanding orders, the
inventory on order and the inventory position (e.g. IPt D IPt�1 C IIt � Dt ).

• Arriving Inventory. Arriving inventory (AIt ) is the amount of inventory on order
that finally arrives in t . The arriving inventory may effect all of the state concepts
described above except for the inventory position (e.g., IOt D IOt�1CIIt �AIt ,
It D maxf0; NIt�1 C IIt � Dtg).

Finally, we have the concept of replenishment lead time which somewhat
connects the issued and arriving inventory.

• Replenishment lead time. Replenishment lead time (Lk) is the time that passes
between issue and arrival of an order indexed with k.

The concept of safety stocks (SS ) is also frequently used in inventory manage-
ment. It is commonly referred to as the amount of physical inventory that would
never be undershot if replenishment lead times and demand were deterministic
according to their expected values. In other words, safety stock is the amount of
stock that is kept beyond expected requirements. From the perspective of analyzing
a policy, SS is more of a performance indicator, even if it is often perceived as a
parameter for configuring an inventory system. We do not adhere to this perspective
in the following, instead, we will always define the configuration of an inventory
system by declaring when and how much to order.
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2.2 Classification

In the literature on inventory theory, various different systems are analyzed using
diverse methods. Comparing the approaches on different systems reveals that
even minor changes in the assumptions may lead to dramatic changes in systems
behavior. It is therefore essential for the analysis to carefully define the nature of the
system being examined.

This section presents a classification scheme for inventory systems with special
consideration of the systems we analyze in Chap. 6. The organization of the
scheme basically follows the proposal of Hollier and Vrat (1978). On the top
level, we distinguish between the system structure, its environmental parameters
and the replenishment policy that is applied. Similar schemes with less aggregation
are given by Aggarwal (1974), Silver (1981) and Silver (2008). An even more
detailed scheme is proposed by Prasad (1994). Deviating from Hollier and Vrat,
we do not consider inventory-related costs as part of the system classification. The
performance aspects (including costs) are therefore treated separately in Sect. 2.3.

We will briefly indicate for each item to what extent it is considered in the
analysis in Chap. 6. These model limitations are also summarized in Sect. 2.2.4.

2.2.1 Structure

In terms of the overall structure, we primarily distinguish between single-level
(or single-echelon) and multi-level models, where the latter may have a linear,
converging, diverging or general structure. In a linear structure, each stock may
have one predecessor (supplier) and one successor (receiver) at most. In converging
systems, each stock may have multiple predecessors but only one successor at the
most, whereas this is vice versa in diverging systems. Finally, a system is said
to have a general structure if a stock may have multiple predecessors as well as
multiple successors.

Furthermore, inventory systems may hold a single item or multiple items. In the
event of multiple predecessors, the inventories of certain items may be replenished
from a single source or from multiple sources.

In the following we will limit the analysis to the single-item and single-source
case.

2.2.2 Environmental Parameters

Every inventory system is emptied by a demand process and refilled by a replen-
ishment process, both of which significantly influence the systems behavior.
Furthermore, the nature of the stored item may be of importance. The remainder
of this section takes a closer look at these three aspects.
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2.2.2.1 Demand Process and Customer Order Fulfilment

An inventory system can either face stationary or dynamic (time-varying) demand.
Furthermore, the interarrival time between two demand occurrences as well as the
volume of a single demand occurrence can be either deterministic or stochastic.
In case of stochastic interarrival times and/or demand volumes, the underlying
distribution may be fully known, only be known in type but not in parameterization
or be completely unknown. Both, interarrival times and demand volumes may be
independent from or dependent on the previous occurrences.

In the event that demand exceeds the physical inventory, customers are either
utterly willing to wait (full backordering), may or may not be willing to wait (partial
backordering), or may immediately lose interest (lost sales). If backordering is
possible and physical inventory is only sufficient to partly cover the demand, the
system may allow for split deliveries to the customer, or may only fulfill customer
orders with full deliveries.

In the following, we will only consider stationary demand occurring with a
constant interarrival time. Demand may be deterministic or stochastic, with the dis-
tribution completely known and independent from previous occurrences. Demand
may always be backordered without limitation, and we address the case of split
deliveries as well as that of full deliveries only.

2.2.2.2 Replenishment Process

Analogously to demand arrivals, the replenishments arrive after a certain (lead) time
and consist of a certain amount. The lead time may be stationary or dynamic. It may
furthermore be deterministic or stochastic, where in the latter case the distribution
may be known, be known in type but not in parameterization, or may be completely
unknown. Stochastic lead times may be considered independent from or dependent
on the previous occurrence or even a history of occurrences.

Replenishment deliveries may either arrive in the exact amount as issued (full
reliability), or may deviate with known, partially known or unknown distribution.
Finally, there may or may not be dependencies between lead times and order
amounts.

Please also refer to Chap. 5 for further distinctions concerning replenishment
processes.

In the following we will assume that replenishment lead times are stationary,
independent from order volumes and either deterministic or stochastic with known
distributions. Amounts delivered may not deviate from what has been ordered. We
also consider independent lead times as well as a case of lead time dependencies.

2.2.2.3 Stored Goods

Stored goods may be considered non-perishable or perishable. Perishable products
may either be completely lost or decrease in value or usefulness, if kept in stock for
too long.

We will always assume non-perishable goods in the following.
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2.2.3 Replenishment Policies

In the introduction we outlined that inventory management always revolves around
the two fundamental questions of when to replenish the inventory and how much to
order. In the literature we commonly find two decision parameters for each of the
two questions that may be combined to form an inventory policy. On behalf of
the first question, we can either place an order every fixed period r or as soon as
the inventory position falls below a particular value s. The order volume may either
be a fixed quantity q or may be determined as the difference between a value S (the
so-called order-up-to-level) and the inventory position.

Considering the task of determining current inventory levels, we may add the
further decision of how often the inventory status should be determined. (See Silver
et al. 1998, for example.) In that context, one may either want to establish a fixed
review period t or continuously review the inventory levels (t ! 0).

From the combination of these possible decision parameters, we may derive five
useful inventory policies as boldly highlighted in Table 2.1. Note that the possible
.t; r; S/ policy is not explicitly regarded in the literature as it would be useless in
terms of the replenishment rule to review the inventory levels without having the
option to place an order. Thus, t WD r is commonly assumed, where this (special)
case is covered by the (r; S ) policy. Furthermore, a non-adaptive policy such as
.t; r; q/ or .r; q/ is not appropriate in a stochastic environment.

Thus, we derive the five basic decision rules printed in bold in Table 2.1, two of
which apply continuous review and three of which apply periodic review.

The replenishment doctrines highlighted in bold can be described as follows.
Remember that IPt denotes the inventory position at time t.

• (s,S): Order a variable amount of Qt D S � IPt as soon as IPt falls below s.
This policy demands high standards of the supply and inventory review process.
Changes in the IP must instantly be monitored, and it must be possible to order
any amount in Qt at any time. A special case of this policy, with s WD S � 1

is discussed as base stock policy. Here, an order is placed as soon as one unit
or more is taken from stock. Requirements of the supply and inventory review
process are more or less equivalent to those of the (s; S ) doctrine.

Table 2.1 Elementary inventory policies

Monitoring Impulse Quantity
No. t or 0 r or s q or S Policy

1 t r q (t,r,q)
2 0 r q (r,q)
3 t s q (t,s,q)
4 0 s q (s,q)
5 t r S (t,r,S)
6 0 r S (r,S)
7 t s S (t,s,S)
8 0 s S (s,S)
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• (s,q): Order a fixed quantity q as soon as IPt falls below s.
This policy reflects that the supplier may only offer certain discrete order batches
of size q or an integer multiple of q. As for the (s; S ) policy, instant review as
well as the possibility that an order could always be placed is required for the
application of this policy.

• (t,s,S): Every period t , review IPt and order a variable amount Qt D S � IPt if
IPt is below s.
This periodic review equivalent to the (s; S ) policy requires that the supplier may
deliver any amount in Qt . Review effort is reduced to the possible order periods,
where the main benefit for the process is the possibility of coordinating orders
over time.

• (t,s,q): Every period t , review IPt and order the smallest multiple of the fixed
quantity q that raises IPt above s. This policy is also discussed as .t; s; n � q/

policy to indicate that a multiple of q may be necessary to raise IPt sufficiently.
This periodic review equivalent to the (s; q) policy offers the possibility of
coordinating order processes regarding time due to the fixed review interval t

as well as regarding volume due to the fixed q.
• (r,S): Every period r , order a variable amount of Qt D S � IP .

The characteristics of this policy are more or less equal to those of the (t; s; S )
policy. In contrast, it lacks the possibility of skipping an order as a reaction to
low demand occurrences between two order periods.
This is the decision rule that we will examine in this study.

Comparing these policies, the (t; s; q) and (r; S ) policy appear to be the most
advantageous with respect to the supply and review processes. In turn, however, we
are most likely observing the highest costs for operating those policies in terms of
costs for inventory holding and backordering or lost sales.

2.2.4 Summary of Model Assumptions

This study considers a single-level, single-item and single-source inventory system
with non-perishable goods. Replenishment orders are placed according to the
periodic review order-up-to .r; S/ doctrine.

From the customer side, our system observes stationary (static) stochastic or
deterministic demand batches with a constant interarrival time. The distribution
of the demand batches is known, and each realization is independent of previous
occurrences. We assume full backordering, where two alternative delivery modes
are addressed in the event of material insufficiency: we examine the option of split
deliveries where a customer order may be delivered in two or more instalments as
well as the restriction to the delivery of complete orders only.

From the supplier side, we observe stationary (static) stochastic or deterministic
lead times that are independent of the volumes that we order. The arriving order
amounts may not deviate from what has been ordered. We examine an independent
lead time process as well as the case of interdependent lead time occurrences.
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2.3 Performance Indicators

2.3.1 Costs

Assuming that the operating tasks of an inventory system range from material
replenishment to customer order delivery, we may identify five types of relevant
costs: the purchase costs of the replenishment material, the inventory holding costs,
the costs for fulfilling customer demand, the costs that occur as the result of a
stockout situation, and the costs of operating the inventory system itself, e.g., the
effort required for data gathering and control procedures (Hadley and Whitin 1963,
Chap. 1). A detailed description of the drivers of inventory system costs is given by
Brooking (1987), for example.

In the more recent literature, we usually find the order fulfillment task reduced
to holding the inventory available, where the actual delivery costs are not taken into
account (Silver et al. 1998, Chap. 3).

For our scope, we will also neglect the costs of operating the system itself, as
we will examine different parameterizations of the same basic system, where we
assume identical operating costs. We thus retain the three classical types of costs
that are considered for evaluating inventory system policies, namely purchasing
costs, costs for inventory keeping, and costs that are incurred due to stockout
situations.

2.3.1.1 Purchasing Costs

Purchasing costs may be incurred per unit and/or for an entire order, while both
may depend on the size of the corresponding order. Dependence occurs for example,
if the supplier offers volume discounts. In the following however, we will assume
that costs per unit as well as costs for full orders are independent of order sizes,
because this aspect is not what we want to focus our model on. In our case,
acquisition costs cannot be influenced by the parameterization of an inventory
system, and are thus irrelevant for the decision on order quantities. Nonetheless,
we define them here because we need them for the proper calculation of inventory
holding costs.

Definition 1 (Fixed acquisition price per unit). We define p as the fixed acquisi-
tion price per unit that is kept in stock.

The total order-related costs of replenishing inventory may well be influenced by
the parameterization of an inventory system. These costs are obviously higher the
more often replenishment orders are placed.

Definition 2 (Fixed costs per order). We define c1 as fixed costs that are incurred
for placing an order of arbitrary size.
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2.3.1.2 Inventory Holding Costs

Definition 3 (Inventory holding costs). Let p be the acquisition price (Defini-
tion 1), i the interest rate per period, and h the costs of keeping one unit in stock for
one period that do not include costs of tied capital. Then

c2 D p � i C h (2.1)

are the costs that are incurred for keeping one unit of stock for one period.

The quantification of these costs for an inventory system requires computation
of average stock levels for a certain time span that is fully representative for the
system behavior. In our case of the (r; S ) replenishment doctrine, this time span is
one complete order cycle of length r .

From an accounting perspective, one might argue that the fixed order costs c1

must also be considered proportionally within the expected purchase price, and thus
influence c1. Let Q be the stochastic order size that is implied by the application of
a stock policy. Then we may state c2.:/ depending on the order quantity as follows:

c2.EŒQ�/ D
�
p C c1

EŒQ�

�
� i C h: (2.2)

Whenever the average inventory develops proportionally to the average order size,
i.e., I ø.EŒk �Q�/ D k �I ø.EŒQ�/, we can easily show that the tied capital associated
with the fixed order costs is independent of the order size Q:

c2.EŒk � Q�/�I ø.EŒk � Q�/ D
�
p � i C c1 � i

EŒk � Q�
C h

�
� I ø.EŒk � q�/

D c1 � I ø.EŒk � Q�/ � i

EŒk � Q�
C
�
p � i C h

�
� I ø.EŒk � Q�/

D c1 � k � I ø.EŒQ�/ � i

k � EŒQ�
C
�
p � i C h

�
� I ø.EŒk � Q�/

D c1 � I ø.EŒQ�/ � i

EŒQ�
C
�
p � i C h

�
� I ø.EŒk � Q�/ (2.3)

However, we cannot generally assume that I ø.EŒk � Q�/ D k � I ø.EŒQ�/ holds.
Using a constant c2 therefore must be considered an approximation under general
conditions.

2.3.1.3 Costs of Stockout

When an inventory system fails to provide a required amount of material in
time, some negative consequences have to be expected, otherwise the need for
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the inventory system is called into question. In the literature, three basic types of
costs are discussed to estimate the consequences of unavailability of material. See
Schneider (1981) for example.

Definition 4 (Costs of being in stockout state). We define c31 as the costs that are
incurred if an inventory system is unable to provide material in the corresponding
period, regardless of the amount of material missing and the previous duration of
the stockout.

Relatively irrelevant from the perspective of the inventory system’s customers, costs
of type c31 may be incurred in connection with general arrangements to overcome
the stockout situation. This could be the exceptional start of a production process,
for example, or the request for an expensive emergency delivery, where the actual
amount of missing units is secondary for the calculation of total costs. Even if the
stockout does not induce any emergency activities, costs of type c31 may reflect a
loss of customer goodwill as a reaction to the news that the system is in trouble.

Definition 5 (Costs per missing unit). We define c32 as the costs that are incurred
per unit of material that cannot be provided in time.

Costs of type c32 are typically incurred if potential sales are lost in the event that
immediate delivery is not possible.

Definition 6 (Costs per missing unit and time). We define c33 as the costs that are
incurred if the delivery of one unit of material is delayed for one (further) period.

In contrast with c32, c33 is only observed when unsatisfied demand can be
delivered with a delay (backorder case).

It will generally be difficult to give reasonable estimates for all three types of
stockout costs. This problem especially emerges from the wide range of possible
customer reactions when demands cannot be satisfied. At one end of the scale,
customers may be willing to wait without any compensation, while at the other, they
may forever be lost as business partners. To circumvent the problem of estimating
stockout costs, a common approach is to define service metrics, where the inventory
system must fulfill a certain prescribed level.

2.3.2 Service Metrics

The pertinent literature discusses a variety of different elementary and compound
service metrics. See Zinn et al. (2002) for an illustrative overview and Boylan and
Johnston (1994) for insights into service measurement when orders may include
multiple items.

We focus our scope on non-compound service metrics for single items. Following
the logic that underlies our definition of stockout costs in Sect. 2.3.1.3, we consider
one analogous service metric for each of the three types of costs that we have defined
above. See Ronen (1982), for example, for a similar scope.
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We have to distinguish two perspectives for determining the values of certain
service metrics. On the one hand, we can obtain these values a posteriori from the
observed history of a real or simulated inventory system. In this case, we may speak
of the random final state of a stochastic process that has run for a certain time.
On the other hand, we can try to estimate the expected values a priori from the
parametrization of a modeled system. This is the scope of Chap. 6.

In our view, it is important to understand that the metrics defined in the following
sections describe either observed or expected relative frequencies. They may be
interpreted as probabilities if it can reasonably be assumed that the system will
behave in the same manner in the future as it did in the past. See Hacking (2001),
p. 127–139, on the different conceptions of probability, and Hacking (2006) for
an overview of the historic development that also illustrates the problems of the
different conceptions.

2.3.2.1 Ready Rate

Definition 7 (Ready rate). Let IS be an inventory system that is observed in a
time interval of length � . Let A� be a discretely distributed random variable with
two possible states, where A� D 1 means that the system had material on hand
throughout the full time interval, and A� D 0 means that the system was out of
stock for at least a fraction of the time interval regarded. Then we define

˛� D EŒA� � (2.4)

as the ready rate for a basic interval of length � , ˛� 2 Œ0; 1�.

As indicated by the symbol, this event-oriented service level is often referred to as
˛-service level, especially in the European literature.

Let IS� be a real or simulated inventory system with an underlying and probably
unknown A� . Let a�;i� be the recorded system behavior in one interval i of length
� , where a�;i� D 1 if all demands in i could immediately be fulfilled and a�;i� D 0

otherwise, and finally let I be a set of observed time intervals. Then

a�� D 1

jIj
X
i2I

a�;i� (2.5)

is an unbiased estimator for ˛� . We can interpret each a�;i� as the random draw
from an underlying and probably unknown A� , while a�� is obviously the fraction
of all observed periods in which no stockout has occurred. In the literature, a�� is
sometimes referred to as realized ready rate or realized ˛ service level, respectively.
See for example Suchanek (1996) in Chap. 4 and Tempelmeier (2006) in Chap. B.3.

Various values for � may apply. Especially in practical applications, � is often
chosen as equivalent to some period length critical for the planning (i.e., 1 day, week,
month, : : :). In this case, ˛� is referred to as the periodic ready rate. Two values for �

that are more inventory system-related are the replenishment lead time and the order
interarrival rate. The service level corresponding to the first value is then referred to
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as cyclic ready rate, while the one corresponding to the latter value is equivalent to
the probability that a customer order can be completely fulfilled without any delay.

If � refers to a time unit smaller than an order cycle, we may observe different
values for the micro periods of a cycle. For example, if replenishment orders
always arrive in the second period of an order cycle, then the stockout probability
for this period is most likely lower than it is for the previous period in which
the replenishment material is still outstanding. It may therefore be helpful to
differentiate the corresponding service levels for the periods of a subdivided order
cycle.

For values of � that are larger than the customer order interarrival rate, one or
more stockout incidents might be considered as one event. Under special circum-
stances, the result may be influenced by the pattern we choose to jointly consider
the periods of an order cycle. For example, let SEQ1 D 00001111000011111 and
SEQ2 D 10000111100001111 be two sequences of inventory states that have
been observed for two inventory systems, where 0 denotes unavailability and 1

availability of material. In the event that we consider four consecutive periods as
one cycle, we observe ˛�D4 D 0:5 for SEQ1 and ˛�D4 D 0:0 for SEQ2 for the four
fully observable cycles if we start with the first period and vice versa ˛�D4 D 0:0

for SEQ1 and ˛�D4 D 0:5 for SEQ2 if we start with the second period. This effect
may only be observed if replenishment lead times are longer than the order cycle and
demand is highly volatile. Nonetheless, it raises some doubt as to the expressiveness
of the commonly used ready rate per replenishment cycle.

In the literature, the ready rate is also defined as the fraction of time for which
the net inventory levels are positive, see Axsäter (2006) for example. However, we
do not consider this definition appropriate for a discrete time axis. In this instance,
we may consider time units � in which more than one event can possibly alter the
inventory levels, so that we may observe both positive and negative stock levels in
the same underlying period.

For a discussion of fiscal-period-based versus lead-time-based measurement of
the ready rate, see Haehling von Lanzenauer and Hamidi-Noori (1986). Insights on
mathematical properties of a special ready rate metric are studied by Zipkin (1986a),
for example.

2.3.2.2 Fill Rate

Definition 8 (Fill rate). Let IS be an inventory system that observes random
demand D� in time intervals of length � . Let D�;p be the random demand in �

that could be served by IS without delay. Then we define

ˇ� D EŒD�;p�

EŒD� �
(2.6)

as fill rate, ˇ� 2 Œ0; 1�.
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Let D�;f D D� � D�;p be the demand in periods of length � that could not have
been served in time. Then obviously

ˇ� D 1 � EŒD�;f �

EŒD� �
(2.7)

is equivalent to (2.6).

Proposition 1. Let �b be a basic demand arrival interval observing i.i.d. demand
occurrences of size D. Then (2.6) has an identical result for any value � that is an
integer multiple of �b , and ˇ D ˇ� for all � D c � �b; c 2 ZC.

Proof. Since the D are i.i.d. by definition, EŒD� � D � � EŒD� holds for any � D
c ��b; c 2 ZC. The demand Dp that is satisfied in the basic period �b clearly depends
on D. Furthermore, inventory systems in static environments typically observe a
cyclic change of state, meaning that Dp also depends on the observed micro period
of the characteristic cycle. Hence, the Dp are neither identically nor independently
distributed. We may, however, always find a macro �m for which D�m;p are i.i.d. due
to the cyclic structure of the inventory system’s behavior. Therefore, EŒD�;p� D
� � EŒDp� also holds for any � D c � �b; c 2 ZC as long as the intervals of length �

do not systematically begin in specific micro periods, and thus equally represent all
subperiods of �m. ut

Thus, we have

ˇ D EŒD�;p�

EŒD� �
D � � EŒDp�

� � EŒD�
D EŒDp�

EŒD�

for any � D c � �b; c 2 ZC.
Note that the unit-oriented service fill rate is frequently referred to as ˇ-service

level, especially in the European literature.
Analogous to the ready rate that we discussed in the previous section, we also

distinguish between the theoretical mean fill rate ˇ described above and the realized
fill rate ˇ�. For this purpose, let IS�� be a real or simulated inventory system that
observes demand occurrences d�;i� 2 D� and fulfils demand d �;p;i� 2 D�;p� over
time. Furthermore, let I be a set of observed time intervals. Then

ˇ� D �D�;p�

�D��

; �D�;p� D 1

jIj
X
i2I

d �;p;i�; �D�� D 1

jIj
X
i2I

d �;i� (2.8)

is an unbiased estimator for ˇ.
Besides the fill rate as defined here, the order fill rate is discussed in the literature

as the percentage of customer orders that have been served in time. As already
mentioned in Sect. 2.3.2.1, we consider this a special case of the ready rate, where �

is the replenishment order interarrival time and thus may also be a random variable.
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Larsen and Thorstenson (2008) compare the latter service metric (defined as order
fill rate) and the (volume) fill rate.

Just like the ready rate, the average fill rate may differ for certain subperiods of
the review or replenishment cycle. In this context, Haehling von Lanzenauer and
Hamidi-Noori (1986) and Haehling von Lanzenauer (1988) discuss the ready rate
based on fiscal periods and propose a model that requires meeting the corresponding
service level in every period of their fiscal-based scheme, not just the periods’
average.

In this context, please also refer to the study of Zipkin (1986a) for a discussion
of mathematical properties of the average number of backorders.

2.3.2.3 Time-Weighted Fill Rate

Definition 9 (Time-weighted fill rate). Let IS be an inventory system that
observes random demand D� in time intervals of length � (as in Definition 8), and
let D�;b be a random variable denoting the customer demand that is outstanding due
to insufficient stock (number of backorders). Then

� D �� 1 � EŒD�;b �

EŒD� �
(2.9)

is called the time-weighted fill rate, � 2 Œ�1; 1�.

This unit- and time-oriented service level is often referred to as � -service level,
especially in the European literature. Under the same assumptions as for ˇ and using
analogous argumentation, we can consider � as independent from the underlying
time interval � . As for the ready rate and (classical) fill rate, we distinguish the
theoretically expected time-weighted fill rate and the realized time-weighted fill
rate. The latter is defined in the same manner as the fill rate, where we regard
the number of backorders instead of the delayed or non-delayed demand. We will
therefore not go into a detailed description here.

The interpretation of this metric is difficult because of two properties. First, � is
not bound to the left and may therefore not be interpreted as a fraction of any kind.
Second, two performance aspects of an inventory system are inseparably mixed: the
fill rate, and the customer waiting time.

As an illustration of the first problem, consider the following example. Let
IS� be an assemble-to-order system with fixed demand D, reorder cycle r , order
quantity r � D and lead time l D 0 for simplicity. Then in each micro period of the
order cycle, an amount D is backlogged and finally fulfilled in the order period. The
expected backlog per period is thus given as:

EŒDb� D 1

r
�

rX
iD1

i � D D D

r
�

rX
iD1

i D D

r
� r � .r C 1/

2
D D � .r C 1/

2
:
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The time-weighted fill rate for this system is given as follows:

� D 1 �
D�.rC1/

2

r � D
D 1 � r

2

Thus, we have limr!1 � D �1, or more generally, � converges with �1 in
the (theoretical) case that an inventory system observes positive demand and does
not deliver at all. Clearly, the time-weighted fill rate does not describe a relative
frequency and may not be interpreted as probability. The metric must therefore be
viewed critically, and we recommend considering the customer waiting times to
analyze the time span that an item or order has to wait until it can be delivered.

2.3.2.4 Customer Waiting Times

Definition 10 (Customer waiting times per order). Let IS be an inventory
system that completely serves a random number of orders O� in an interval � , and
let O�

w be the (complying) random number of orders that are completely served by
IS after a delay of exactly w periods. Then we define

W O W P fW O D wg D pO
w D EŒO�

w�

EŒO��
8 w 2 W O: (2.10)

as the customer waiting time distribution for complete order fulfillment, where we
follow the concept of frequency probability.

Let IS� be a real or simulated inventory system with an underlying and probably
unknown W O . Let o��

w be the number of orders in time interval � that have been
served with a delay of w periods. Then we have

pO�
w D o��

wP1
wD0 o��

w

as unbiased estimator for pO
w , where pO�

w describes the realized waiting time
frequencies.

Analogously to the waiting times per customer order, we define the waiting times
per order unit.

Definition 11 (Customer waiting times per part). Let IS be an inventory system
that serves a random number of order units (parts) V � in an interval � and let V �

w be
the (complying) random number of parts that are completely served by IS after a
delay of exactly w periods. Then we define
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W V W P fW V D wg D pV
w D EŒV �

w �

EŒV � �
8 w 2 W V : (2.11)

as the customer waiting time distribution per part delivered.

The corresponding realized waiting time frequencies pV �
w are determined in the

same manner as described for pO�
w , where v��

w , the number of parts delivered with
delay w in time interval � , replaces the number of orders o��

w .
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Chapter 3
Literature Overview

In the previous chapter we have defined the vocabulary that we will use to talk
about inventory systems (Sect. 2.1), what structure and elements may constitute
them (Sect. 2.2), and which performance metrics may apply to decide in the end
which system configuration we prefer to the other (Sect. 2.3). We are therefore now
ready to take a systematic look at the literature that appears relevant to our study.

Regarding the classification scheme specified in Sect. 2.2, we notice that many
different inventory systems can be derived from the combination of possible
alternatives for the various aspects. Unfortunately every single system usually
comes with certain special characteristics that typically require specific analytical
treatment. Research literature so far merely deals with this problem by elaborating
individual approaches for each of the various systems one may reasonably think of.
Particular systems are typically selected for examination because they either exhibit
some feature of general interest, or because they are regarded as typical for a certain
kind of practical application.

Considering this nature of the research landscape, it is relatively difficult to
tightly define a rule to decide if work on a certain type of system is relevant for
a particular research project or not. It is not necessarily the case that the work
on systems most closely related to the one being examined contains the most
helpful ideas for one’s own research. Especially when following a modular approach
that combines the solutions of a certain set of subproblems, one may find several
different traits of research useful for solving the overall problem.

We therefore choose to give a broad overview of the literature on single-level
inventory systems where we focus on the single-item case, and only marginally
mention some relevant papers on multi-item systems. Although we consider a
periodic review model with backorders, we also discuss the continuous review
case and briefly reference to the lost sales case as well. We decided to cover
the continuous review paradigm because many phenomena on inventory systems
were first examined against the backdrop of continuously reviewed systems. The
corresponding basic findings, especially in the field of optimality conditions, have
been transferred later on to the periodic review case where some arguments apply

T. Wensing, Periodic Review Inventory Systems, Lecture Notes in Economics
and Mathematical Systems 651, DOI 10.1007/978-3-642-20479-1 3,
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to both review paradigms. We also briefly treat lost sales to facilitate the possible
extension of our methods to this case.

Apart from this general mapping of the basic research landscape, we go into more
depth on three selected papers that we consider particularly important for our study
in Chap. 6. The first two of these papers stand for a particularly relevant school of
thought that we will follow in the analysis later on. They include some important
basic decomposition ideas that also underlie the analysis that we conduct.

In the following, we will first deal with systems that continuously review
inventory levels (Sect. 3.1), and afterwards consider the case of periodic reviews
(Sect. 3.2). Where the latter are concerned, we do not follow a frequently found
distinction between systems that are reviewed on the basis of an exogenously
determined schedule, and systems for which the review interval is also considered
an optimizable variable. The basic analysis is more or less identical for both cases,
so the main difference lies merely in the presence or absence of an additional
optimizing principle.

Besides the fundamental form of inventory review, we will review approaches
that solely consider costs separately from those that focus on determining perfor-
mance criteria such as the fill rate or the customer waiting time. When treating the
pure cost view, we firstly refer to studies that analyze the conditions under which
the given form of the considered replenishment doctrine is optimal, and then review
studies that regard the problem of optimally configuring a given type of policy.

Section 3.3 goes into more detail on the three papers mentioned above that are
concerned with systems and problems similar to those that we regard in this study.

For a general overview on the genesis of inventory models, we recommend Lee
and Nahmias (1993).

3.1 Continuous Review Models

If inventory levels are continuously monitored, two basic replenishment policies are
possible, namely the (s; q) and (s; S ) policies, as described in Sect. 2.2.3. A further
special case of the (s; S ) policy with s WD S � 1 is discussed as base-stock-
policy in the literature. Note that in reality we find transactions reporting rather
than systems that truly review their inventory levels continuously, i.e., by registering
every transaction, the system behaves as if the inventory were being continuously
monitored (Hadley and Whitin 1963).

3.1.1 Pure Cost View

3.1.1.1 (s; q) Policy

Optimality Conditions. It is shown by Axsäter (2006) in Chap. 6 that the continuous
review (s; q) type policy is optimal for a system with constant lead times and a
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compound Poisson demand process if costs for inventory holding and backordering
are constant, and order sizes are a multiple of q. The proof follows an approach by
Chen (2000) on a multi-echelon system with periodical demand occurrences.

Policy Configuration. The seminal paper on the (s; q) inventory policy is by
Galliher et al. (1959). They present an approach for minimizing the total costs for
two classes of inventory models with random demand, where the lead times are
fixed in the first model and exponentially distributed in the second. A similar model
is intensively discussed in Chap. 4 of Hadley and Whitin (1963). Hadley and Whitin
primarily develop heuristic proceeds to determine near-optimum configurations for
both the backorder and lost sales case with deterministic lead times, where fixed
order costs, inventory holding costs and costs for backordering and lost sales are
considered. The basic observation underlying the solution principle is that the
optimum values for s and q can easily be determined if the other parameter is
fixed. Thus, an iterative solution approach is proposed that repeatedly fixes one and
optimizes the other parameter until they have sufficiently converged.

Hadley and Whitin furthermore develop exact formulations for the assumption
of one-unit demands arriving with Poisson-distributed interarrival times and deter-
ministic replenishment lead times. Based on these formulations, two possibilities
are indicated to significantly reduce the computational effort required at the price
of losing general optimality. The first simplification is to assume that replenishment
orders will always be sufficient to remove all backorders, i.e., backorders will not
be carried over from one replenishment cycle to the next. The higher the average
availability of the system is, the lower the error due to this relaxation will be. The
second proposed simplification is to approximate the lead time demand by a normal
distribution. Due to its tempting computational properties, this simplification has
been widely used in various inventory management approaches. However, the error
may be significant if the shape of the true distribution deviates from the shape of
the normal distribution in the regions of interest (Eppen and Martin 1988). For more
specific approaches to approximate lead time demand distributions, see Ord and
Bagchi (1983), Bagchi et al. (1984) and Dominey and Hill (2004), for example.
Browne and Zipkin (1991) examine a more elaborate demand model where the
amounts are driven by an exogenous stochastic process in continuous time.

Finally, Hadley and Whitin briefly discuss the implications of stochastic lead
times for the system being examined, where they explicitly indicate that replenish-
ment orders may cross over in time if lead times are variable. (Two orders are said
to cross over if they arrive in a different sequence to that in which they were issued;
see Sect. 5.2 for details.) For a recent study on the impact of lead time and lead time
demand on the optimum configuration of (s; q) systems with very similar properties,
see Song et al. (2010), for example.

It is a common observation that the computational effort required to determine
the optimum configuration of an (s; q) inventory system sincerely depends on the
specific characteristics of the demand and replenishment processes. Federgruen
and Zheng (1992) outline conditions for the overall cost function that allow the
computation of optimal configurations with very limited effort. The authors also
give an example of the general algorithmic approach.
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Besides optimization procedures and the heuristic mentioned above, various
other heuristics have been proposed, where (besides computational effort) the ease
of implementation is considered crucial for successful application. See for example
Yano (1985), Zhang et al. (2001), Gallego (1998) and the referenced literature.
A model with stochastic dependent lead times is examined by Heuts and de Klein
(1995) for example.

All the papers mentioned above consider the full backorder case. Please refer to
Kim and Park (1985), for example, for a heuristic treatment of the lost sales and
limited backorder case.

3.1.1.2 (s; S ) Policy

Optimality Conditions. With regard to the optimality of continuous review (s; S )
policies, the first important findings are given by Scarf (1960) on a periodically
reviewed (t D 1) inventory system with constant lead times, arbitrarily distributed
period demand and a finite time horizon. Although Scarf considers periodic review,
we will discuss his findings here, as they provide the grounds for the corresponding
continuous review analysis. His work extends the studies of Arrow et al. (1951),
Dvoretzky et al. (1953) and Karlin (1958). Scarf proves that the optimum policy
is a sequence of period-dependent pairs of (sn; Sn) when the relevant cost function
consisting of fixed ordering costs (K) and holding and shortage costs (f .x/) satisfy
the so-called K-convexity property (see Scarf 1960, p.199).

Definition 12 (K-convexity). Let K � 0, and let f .x/ be a differentiable function.
Then f .x/ is K-convex if f .a C x/ � f .x/ � a � f 0.x/ � �K .

The fixed order costs K introduce some sort of tolerance compared to strict
convexity. Note that the definition implies that f .x/ needs to be strictly convex
if the fixed order costs K are zero.

Note that we use K to denote the number of outstanding orders throughout this
study except for this passage on the K-convexity. Unfortunately, the letter K is
commonly used for both concepts in the literature, so that we consider it even more
confusing to speak of the M -convexity here, for example.

For the continuous review problem with fixed lead times, and a demand
process with arbitrarily distributed amounts and interarrival times that may be
fully backordered, Beckmann (1962) shows that the above findings also apply for
an infinite time horizon, where stationary parameterization (s; S ) is optimal here.
Bather (1966) gives analogous findings for a system with constant lead times and
demand following a Wiener Process. Hordijk and van der Duyn Schouten (1986)
model the demand process as superposition of a compound Poisson process with
arbitrarily distributed amounts and a deterministic continuous process that can also
be interpreted as depletion rate. A proof of optimality for a similar system is given
by Bensoussan et al. (2006).

According to our knowledge, the optimality of (S � 1; S ) has not been examined
in a dedicated study for the backorder case. However, it is easy to show that
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(S � 1; S ) is optimal for conditions under which (s; S ) is optimal when the fixed
costs of ordering are zero. Furthermore, it is shown by Hill (1999) that the (S �1; S )
policy is generally not optimal in the lost sales case even if fixed ordering costs are
zero.

Policy Configuration. Archibald and Silver (1978) develop an algorithm to
determine the optimal parameterization for a model that was first considered
by Beckmann (1962). The main assumptions are i.i.d. demand interarrival times
and i.i.d. demand volumes that may depend on the preceding interarrival time,
constant lead times, fixed ordering costs and linear inventory holding and shortage
costs. Archibald and Silver adapt a general approach introduced by Veinott and
Wagner (1965) for the corresponding periodic review model. Unfortunately, the cost
function may have several local optima for general assumptions. The basic approach
is therefore to apply a full enumeration of possibly optimal pairs of s and S , where
the search may be accelerated by specifying lower and upper bounds and using
specific properties of the objective function to direct the search. For a discussion of
these properties, see Sahin (1982) and Zheng and Federgruen (1991), for example.
The latter propose an algorithm whose computational complexity to determine the
optimum configuration is reported to be only 2.4 times that required to evaluate a
single policy parameterization. For a more recent discussion of the approach and
an improved algorithm, see Feng and Xiao (2000). According to our knowledge,
an exact approach for the continuous review model with stochastic lead times does
not exist. Lee (1995) reports on an exact approach for considering stochastic delays
between reaching the reorder level and actually issuing the order. The original model
was first examined by Weiss (1988).

Besides exact approaches, many approximations and heuristics can be found
in the literature, where it is also possible to consider stochastic lead times to
a certain extent. We will discuss these approaches in Sect. 3.2.1, as they are
mostly formulated for the .t D 1/ periodic review (s; S ) policy. Nonetheless, these
methods may also provide useful solutions for continuous review systems. Studies
on approximations that explicitly consider the continuous model with constant lead
times are given by Sahin and others (Sahin and Kilari 1984; Sahin and Sinha 1987;
Sahin 1988). An approximation method for exponentially distributed lead time is
given by Wijngaard and van Winkel (1979).

While the above papers consider the unlimited backorder case, Archibald
(1981) examines a model with lost sales. A limited backorder model is studied
by Krishnamoorthy and Islam (2004). Instead of considering an estimate of the
customer demand process, Iyer and Schrage (1992) determine the parameterization
that would have been optimal for a historical demand data stream.

The (S�1; S ) policy with i.i.d. Poisson demand arrivals, arbitrary i.i.d. lead times
and lost sales is analyzed by Smith (1977). The author gives insights into optimum
inventory levels and develops a heuristic approach for determining near-optimum
solutions.

Furthermore, Feeney and Sherbrooke (1966) examine a continuous review base-
stock policy with a compound Poisson demand process and constant lead times.
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Song et al. (2010) examines the effect of lead time variability on the optimum
reorder point for a base-stock policy.

3.1.2 Performance View

3.1.2.1 (s; q) Policy

We have already discussed the difficulties of monetarily quantifying the costs of a
stockout in Sect. 2.3.1.3. The common alternative to purely counting costs against
costs is to minimize the more traceable costs of ordering and holding inventory
subject to a certain service criterion. In order to do this, the primary requirement to
analytical approaches is the capability to evaluate a parameterized system according
to the performance criterion considered.

Where this problem is concerned, Hadley and Whitin propose an appraoch based
on Lagrangean relaxation to minimize the average costs of ordering and inventory
holding subject to a ready rate constraint (Hadley and Whitin 1963, Sect. 4–16).
Both parameters are simultaneously determined by an iterative procedure. The
underlying inventory system is the same as described above for the pure cost
perspective.

The problem of configuring an (s; q) policy subject to a fill rate criterion is
addressed by Yano (1985). The author gives insights on properties of the optimum
solution and develops a heuristic approach. A practice-driven approach to configure
the reorder level of an (s,q) policy subject to a minimum fill rate can be found
in van der Veen (1981). Approximate results are given for normal and Gamma-
distributed lead time demand. In van der Veen (1984), related findings are given for
more general assumptions on lead time demand distribution. The expected duration
of a stockout is examined as well in that paper. In van der Veen (1986), the ready
rate (per replenishment cycle) is considered instead of the fill rate. Alternatively
to considering the fill rate, Boyaci and Gallego (2001) describe an approach to
minimize the total holding and ordering costs subject to a limit on the expected
number of backorders. In a more recent paper, Agrawal and Seshadrin (2000)
discuss general limits for the fill rate constrained problem as well as convexity
conditions for the corresponding Lagrangian relaxation.

Eppen and Martin (1988) point out that approximating the lead time demand
by a normal distribution can lead to severe errors in the estimate of safety
stock requirements. They emphasize that modeling lead time demand as mixed
distribution allows for a precise safety stock adjustment in discrete-time (s; q)
systems if q is preselected.

Akinniyi and Silver (1981) examine the problem of determining the reorder point
subject to a maximum expected stockout duration for the case of constant lead time
and normal or Poisson demand. They point out that the customer waiting times
is probably an even more interesting metric in the case of backordered demands.
Boyaci and Guillermo (2002) address the problem of finding the optimum (s; q)
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configuration subject to an upper bound on the expected and maximum waiting
time per volume for those demand units that are actually backordered. The authors
consider the class of logconcave continuous lead time demand distributions. The
approach could easily be extended to all (backordered and immediately delivered)
demand units.

Heuristic appraoches for characterizing customer waiting times in continuous
review (s; q) systems are given by van Beek (1981) as well as Svoronos and Zipkin
(1988), both in a multi-echelon environment.

3.1.2.2 (s; S ) Policy

On behalf of the continuous review (s; S ) model, Sahin (1982) gives a compre-
hensive analysis of elementary characteristics, such as inventory position, on-hand
inventory and performance metrics. Expressions are obtained for generally i.i.d.
demand interarrival times, generally i.i.d. demand volumes and constant lead times.
A study on configuring continuous review (s; S ) systems subject to a fill rate and
two ready rate criterions is given by Tijms and Groenevelt (1984). Chen and Krass
(2001) present an adaptation of the cost-based optimization procedure of Zheng and
Federgruen (1991) to minimize costs subject to the three types of service criteria
discussed in Sects. 2.3.2.1–2.3.2.3. More recently, Larsen and Thorstenson (2008)
compare the classical volume fill rate (as defined in Sect. 2.3.2.2) and the fraction of
orders that are delivered in time as performance indicators for an (S � 1; S ) base-
stock inventory policy. The ready rate and fill rate are also considered in the paper
by Feeney and Sherbrooke (1966) that we have already mentioned above.

A special performance metric, customer waiting times, has been intensively
studied relating to continuous review (s; S ) policies. In fact, the first studies on
customer waiting times in inventory systems consider this type of replenishment
doctrine. The corresponding papers are therefore also important for the analysis of
other types of systems as they introduce the general proceed. To begin with the first
paper, Higa et al. (1975) develop approximate results for the distribution of waiting
times per customer order batch in an (S � 1; S ) system with compound Poisson
demand arrivals and negative exponential lead times. For the corresponding system
with constant lead times, Sherbrooke (1975) derives exact formulations. Finally,
Kruse (1980) gives an exact formulation for the continuous review (S �1; S ) system
with compound Poisson demands and arbitrarily distributed lead times. This study
also provides a numerical comparison of the exact results with the approximation by
Higa et al. Kruse (1981) later considers the waiting time per demand unit for general
(s; S ) systems with arbitrarily distributed demand interarrival times and volumes
and constant lead times. This study is based on distribution of the inventory position,
and this makes it methodically comparable with the approaches we will develop
in Chap. 6. (See also Lee and Nahmias 1993 on the genesis of the approaches
mentioned.) Das (1977) considers customer waiting times for an (S�1; S ) inventory
system against the backdrop of customer demands that may only be backordered for
a certain limited time.
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For a multi-item production system, Federgruen and Katalan (1994) give approx-
imations for the customer waiting time if all items are replenished from the same
capacity-restricted source according to a base-stock policy.

Continuous review inventory models with perishable products are discussed
in Weiss (1980), Berk and Gürler (2008) and the literature that is referenced in
these two papers. Liu (1990) and Kalpakam and Sapna (1994), for example, focus
particularly on the (s; S ) policy.

3.2 Periodic Review Models

The general alternative to continuously monitoring inventory levels is the use of a
regular review interval. This interval can either be externally determined or itself
be a parameter of the replenishment policy, which may be changed. According to
our classification scheme (see Sect. 2.2.3), the three relevant policies are (t; s; q),
(t; s; S ), and (r; S ), where we assume that all given parameters may be adjusted.
In the event that parameter t of the first two policies is fixed to the underlying base
period (t D 1), the corresponding systems are commonly denoted as periodic review
(s; q) and (s; S ) systems in the literature. Following our classification, these policies
would be equivalent to an (t D 1; s; q) and (t D 1; s; S ) doctrine.

Note that the works presented in this section are selected according to their gen-
eral value for understanding and analyzing periodic review systems. We therefore
did not consider it helpful to treat models with a fixed review interval separately
from those that may freely choose t .

As in Sect. 3.1, we will first distinguish between cost and performance view.

3.2.1 Pure Cost View

3.2.1.1 (t; s; S ) Policy

Optimality Conditions. It is proven in several papers that the (s; S ) replenishment
policy is the optimum doctrine to minimize costs if the inventory is reviewed
every period (t D 1), and certain conditions apply to the cost function. The
individual proofs differ mainly in terms of the planning horizon considered and the
assumptions concerning the cost function. The first relevant paper on the periodic
review system is found in Scarf (1960). It was already mentioned in Sect. 3.1.1 as
it is seminal to both the analysis of the continuous review and periodic review case.
Based on Scarf’s work, Iglehart (1963) proves that the analogous findings apply for
the infinite time case, where the optimum policy is then of a stationary (s; S ) type.
Please also refer Veinott and Wagner (1965) for a summary of the proof. The general
cost structure is the same as for the continuous review model, i.e., we observe fixed
costs for issuing an order and additional costs for inventory holding and shortfall
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compensation that are proportional to the corresponding amounts. Some models
also consider variable ordering costs (apart from the fixed costs for ordering), which
does not greatly complicate the analysis. Veinott (1966) as well as Johnson (1968)
extend these results to more general properties of the cost function. More compact
proofs that directly focus on the finite time horizon are provided by Zheng (1991)
and Benkherouf (2008).

An interesting extension to the demand process is examined by Sethi and Cheng
(1997). The authors indicate properties of the cost function that result in the
optimality of the (s; S ) doctrine if the demand in successive periods depends on
the previous occurrence, and may be modeled as a Markov chain.

For further discussion on the optimality of (s; S ) type policies with a finite
planning horizon, see Porteus (1971), Porteus (1972) and Schäl (1976). Similar
proofs for multi-item systems are elaborated by Johnson (1967) and Kalin (1980).

Optimality conditions for (s; S ) systems with stochastic lead times can be found
in Kaplan (1970) for a finite planning horizon and in Ehrhardt (1984) for an infinite
planning horizon.

An important proof for the periodic review (S � 1; S ) base-stock policy is given
by Clark and Scarf (1960). They show that the base-stock policy is optimal even in
a multi-echelon environment, when holding and shortage costs are convex and there
is no capacity limit on order quantities, which in this model is equivalent to zero
fixed ordering costs. Considering that (t D 1; s; S ) is optimal in the presence of
fixed order costs, the result is rather intuitive: clearly there is no reason to wait with
an order if the ordering costs for two split orders are the same as for one combined
order. While Clark and Scarf consider a finite time horizon, Federgruen and Zipkin
(1984a) show that their results also apply to the infinite time horizon. Proofs of
optimality for the base-stock policy type when demands are non-stationary are given
by Karlin (1960) and Morton (1978).

In all of the above studies, full backordering is assumed. To our knowledge, no
proof of optimality conditions for the lost sales case exists.
Policy Configuration. For the problem of finding optimal (s; S ) configurations, the
genesis of approaches is quite similar to the continuous review model. In fact,
the general algorithmic approach can basically be applied to both problem types,
where the differences emerge in evaluating single solutions and using specific
properties to direct the search. As mentioned above, Veinott and Wagner (1965)
introduce a basic algorithmic approach for that problem. For the periodic review
model, improvements within the general framework are proposed by Johnson
(1968), Bell (1970) and Archibald and Silver (1978), for example. For a different
approach based on Markov decision models, see Küenle and Küenle (1977) and
Federgruen and Zipkin (1984b). Even for the periodic review model, the algorithms
of Zheng and Federgruen (1991) and Feng and Xiao (2000), respectively, claim to
find optimal (s; S ) configurations most quickly.

An approach for determining optimum solutions for systems with stochastic lead
times has been developed by Ehrhardt (1984) for the infinite planning horizon.
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Besides the optimal approach, numerous approximate methods are proposed.
Overviews on the literature are given by Porteus (1985) along with an extensive
numerical comparison of various methods and Sani and Kingsman (1997).

A first straightforward approach in that context is using the approximation of
Hadley and Whitin for the continuous review (s; q) system and set S WD s C q,
where the deviation from the optimum solution may be rather large. See Porteus
(1985) for a further refinement of this method.

Several studies explore different approaches to simplifying the relevant cost
functions by replacing those parts that are difficult to evaluate by simpler approxi-
mations. A prominent method of this category is the approximation of the lead time
demand by normal distribution that has already been mentioned. An example of
this strategy is given by Freeland and Porteus (1980), who elaborate an idea due to
Norman and White (1968). They first consider the deterministic problem based on
expected values that is easy to solve. This initial solution is then improved based
on the adjusted cost function. Further possible simplifications to the resulting cost
function that may still be difficult to handle are given by Porteus (1985). Related
approaches are proposed by Wagner et al. (1965) and Naddor (1975).

Ehrhardt (1979) derives a closed approximation formula by regression analysis
on the basis of 288 different instances of (s; S ) configuration problems with
fixed lead times and period demand following Poisson and negative binomial
distributions. See also Ehrhardt and Mosier (1984).

For the stochastic lead time case, we again refer to Ehrhardt (1984), who also
presents an approximate method.

3.2.1.2 (t; s; q) Policy

The (s; S ) policy may only be applied if it is possible to order arbitrary amounts of
the considered goods. In the event that the orders must correspond to certain batch
sizes, the periodic review (s; q) policy is the appropriate decision rule. Note that in
the periodic review context, the (s; q) policy is to be understood as (t; s; n �q), where
the replenishment rule is as follows: every period t , review the inventory position
and order the smallest multiple of q that will raise the inventory position above s.
Optimality Conditions. In this context, Veinott (1965) indicates conditions under
which (s; q) is the optimum type of replenishment rule. Proof is given for linear
ordering costs and unimodal (i.e., convex) costs for inventory holding and backo-
rdering. In the case of fixed order costs, the (s; q) type is not optimal for general
conditions.
Policy Configuration. Zheng and Chen (1992) propose an algorithm to find the
values for s and q that minimize the average costs of ordering, inventory holding
and backordering. They examine a system with i.i.d. demand per period, constant
lead times, fixed order costs and unimodular holding and backordering costs. The
analysis is based on findings given by Hadley and Whitin (1962) and Hadley and
Whitin (1963), Sect. 5–3 on distribution of inventory position in systems of the
corresponding type. The algorithm sequentially optimizes first s and then q. The
authors suggest that the approach may easily be adjusted to stochastic lead times
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if these follow the model proposed by Zipkin (1986b). (See also Sect. 5.3 of this
study.) More recently, Larson and Kiesmüller (2007) have obtained a closed-form
cost expression when lead times are constant and the demand process is compound
generalized Erlang.

Early heuristic approaches to the determination of s and q are given by Hadley
and Whitin (1962), Hadley and Whitin (1963), Wagner et al. (1965) and Naddor
(1975), where all these approaches aim for the (globally) optimum solution, but
cannot guarantee not to end up with a local optimum. Approximation formulae for
the case of Gamma-distributed lead time demand are derived by Das (1976).

While all papers above assume full backordering, Johansen and Thorstenson
(1993) and Johansen and Thorstenson (1996) consider the lost sales case. Heuristic
and optimum solutions are given, where the latter depend on the assumption that
only one replenishment order is outstanding. See also Johansen and Hill (2000) for
a similar study. The case of time-weighted backorders (backorder costs that depend
on amount and duration) is examined by Das (1983). Kim and Park (1985) study the
mixed case of lost demand and time-weighted backorders.

3.2.1.3 (r; S ) Policy

The (r; S ) policy may be regarded as a special case of both the (t; s; S ) and (t; s; q)
policy. The (t; s; S ) policy is equivalent to (r; S ) if we set t D r and s D S . The
(t; s; n � q) policy behaves like (r; S ) if t D r , s D S and q D dmin, where dmin

is the minimum positive customer order amount that the system may observe. It is
probably due to this observation that the literature on the (r; S ) doctrine is relatively
sparse. It is reasonable for researchers to try to examine a system under the most
general assumptions that still allow for the implications considered.
Optimality Conditions. Being only a special case of (t; s; S ), the (r; S ) policy type
is not optimal for the same general conditions as discussed above. This is mainly
due to the fact that the latter policy clearly has less potential to issue orders of
similar sizes. While orders are at least of size S � s for the (t; s; S ) type, they may
be arbitrarily small for the (r; S ) type. In the absence of fixed order costs, the (r; S )
type may well be optimal due to being the equivalent to the periodic review base-
stock policy. Then clearly r D 1 will always hold for optimal parameterizations.
An explicit proof of the optimality of the (r; S ) policy type when the review interval
is fixed and no fixed order costs occur is given by Chiang (2006), see also Chiang
(2007).

In this context, Rao (2003) discusses theoretical properties of the periodic
review (r; S ) policy with constant lead times and a continuous stochastic demand
process. Specifically, he examines a Brownian motion model and a compound
Poisson distribution to generate demands. Rao shows for this model that the costs
of the optimum (r; S ) policy may be around a maximum of 42% higher than
for the corresponding optimum (s; q) policy. Furthermore, conditions for the joint
convexity of the cost function in r and S are given that allow a fast enumeration of
optimum policy configurations.
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Optimality conditions for the periodic review (S �1; S ) base-stock model (which
is equivalent to the .r D 1; S/ model) are given by Feng et al. (2006a,b), where the
authors consider the possibility of choosing from multiple delivery modes for each
replenishment order.
Optimality conditions. Considering the optimum policy configuration, Hadley and
Whitin (1963) point out that it is easy to find if lead times are constant and unit
demands arrive on a continuous time axis according to a Poisson distribution. If that
is the case, the (r; S ) policy is a special case of the (r; s; n � q) policy with s D S � 1

and q D 1, and the problem may be solved with the same methods that are at hand
for the latter policy.

Besides the optimization approach, Hadley and Whitin also describe an approx-
imation that has been rather influential on later inventory theory. The authors
consider Poisson-distributed demand unit arrivals and arbitrarily distributed lead
times, where the probability that orders cross over, i.e., that they arrive in a different
sequence than they were issued, is assumed to be negligible. The approximation is
based on the observation that it is much easier to calculate the mean net inventory
than the physical inventory. Thus, the mean net inventory is used to approximate
the physical inventory, which is obviously the better the lower the stock-out
probability is. Hadley and Whitin also develop the corresponding approach for the
lost sales case.

Due to the regular replenishment interval, the (r; S ) policy is well suited for
coordinated joint replenishment in multi-item inventory systems. A problem of
this type is examined by Fung et al. (2001), for example, for a system with fixed
item-specific lead times and a compound Poisson demand process. As a continuous
review counterpart, the can order (s; c; S ) policy is discussed in the literature, which
means that an order is placed whenever the inventory position of any item drops
below the specific s. The order then raises the inventory positions of all those items
up to the corresponding S whose inventory position is below c. A comparison
of both policies is given by Atkins and Iyogun (1988), for example. The authors
assume constant lead times and Poisson demand-unit arrivals.

3.2.2 Performance View

3.2.2.1 (t; s; q) Policy

The literature that directly considers the performance issues of the (t; s; q) policy is
rather sparse, which may be due to the substantial analysis that was already done
early on the influential book of Hadley and Whitin (1963). Although not developed
directly, the expressions for the fill rate and time-weighted fill rate may quite
easily be derived from their analysis of the mean backorder amount, for example.
Nonetheless, some further work on this inventory model should be mentioned.

Janssen et al. (1998) approximate the optimum (t; s; q) configuration subject to a
fill rate constraint. They consider a system with dependent stochastic lead times (no
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crossover) and demand following a compound Bernoulli process, i.e., demand in a
period is either zero with a certain probability, or follows an arbitrary continuous
distribution. Their work extends an earlier practice-driven study of Dunsmuir and
Snyder (1989).

Fischer (2008) gives approximations for the mean inventory, fill rate and time-
weighted fill rate for the case of discrete distributed lead times and periodical
demand that may be normally or Gamma-distributed.

The customer waiting time per order is approximated by Kiesmüller and de Kok
(2006) for a .t; s; q/ system with discrete distributed lead times and compound
Poisson demand occurrences. Please also refer to Tempelmeier (1985) for a related
approach with periodical customer order arrivals. The customer order waiting time
per part is approximated by Tempelmeier and Fischer (2010) for a (t; s; q) system
with discretely distributed demand and normally or Gamma-distributed demand per
period.

3.2.2.2 (t; s; S ) Policy

Basic insights on the performance analysis of (t; s; S ) policies are given by Tijms
(1994) for the backorder and lost sales case. The author gives approximations for
the fill rate under general assumptions and outlines a simple proceed to parameterize
an (t; s; S ) policy subject to a fill rate criterion. More detailed studies on similar
problems are given by Schneider (1978), Schneider (1981) and Schneider and
Ringuest (1990) for the case of constant lead times, whereas stochastic lead times
are considered by Tijms and Groenevelt (1984) and Bashyam and Fu (1998).

Exact formulations to determine the fill rate when demand is Gamma-distributed
and lead times are constant are given by Moors and Strijbosch (2002).

Recently, Silver et al. (2009) consider a (t; s; S ) system with arbitrary indepen-
dent demand and deterministic lead times. They develop an approach to approximate
the optimum (t; s; S ) configuration subject to a fill rate criterion and the average time
between two consecutive replenishment orders.

Multi-item problems with service constraints are addressed by Cohen et al.
(1989) and Cohen et al. (1992), for example.

3.2.2.3 (r; S ) Policy

A basic performance analysis of the (r; S ) policy is given in Zipkin (2000) for
Poisson demand arrivals and constant lead times. The author analyzes the mean
physical inventory levels, the ready rate per order cycle and the mean backorder
amount that directly implies the fill rate. Also see van der Heijden and de Kok (1998)
on mean physical inventory levels and on fill rate. Cardós et al. (2006) develop an
exact approach to determine the ready rate per replenishment cycle for a system with
constant lead times and arbitrarily distributed lead time demand. Exact formulations
for the fill rate are given by Zhang and Zhang (2007) for constant lead times and
generally distributed demand per period, where closed expressions are given for
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normally distributed period demand. Also see Teunter (2009). A similar study on
the fill rate as well as a discussion of commonly used approximations can be found
in Johnson et al. (1995). A further brief general discussion of the (r; S ) policy is
given in Silver et al. (1998).

Two similar studies on computing the customer waiting times per order are con-
ducted by van der Heijden and de Kok (1992) and Chen and Zheng (1992) for con-
tinuously distributed stochastic lead times and compound Poisson demand arrivals,
where the latter use slightly more general assumptions. In both papers, exact non-
closed expressions are derived that may be enumerated to any desired accuracy.
See Sect. 3.3 for details. Tempelmeier (2000) proposes a heuristic approach for
discretely distributed lead times and normal or Gamma-distributed demand per
period that is reported to work well for high service levels. This paper is also briefly
addressed in Sect. 3.3. A similar study for a multi-item system with fixed lead times
is conducted by Hausman et al. (1998).

If customer orders arrive on a periodical basis, the customer waiting time per
unit can easily be computed based on development of the average backorder amount
from one period to the other. (See Fischer 2008 for example.)

Finally, we would like to mention three papers that discuss special issues related
to modeling demand using the example of an (r; s) policy. Strijbosch and Moors
(2006) question the widespread approach of using the normal distribution to model
demand even if a significant probability mass lies on negative values. Alternatively
they propose to either concentrate the mass of negative values on zero or to use
the corresponding truncated distribution for values greater than or equal to zero.
Strijbosch and Moors (2005) also discuss the problem that demand parameters are
usually unknown or uncertain in practical applications. Charnes et al. (1995) drop
the assumption of i.i.d. demands and suggest an approach to determine safety stock
levels in an (r; S ) policy when period demand is serially correlated.

3.3 Selected Studies

In this section, we go into more depth on three papers that analyze the customer
waiting time per order for (r; S ) systems, each under slightly different assumptions.
We pay special attention to this metric here as we consider the corresponding
analysis to have the most differentiated structure of those approaches that we will
describe in Chap. 6. We select the papers, as these three are the only ones to our
knowledge that regard the customer waiting time per order in the context of a
single-level, single-item (r; S ) policy. The two first studies presented in Sects. 3.3.1
and 3.3.2 are particularly relevant for our analysis in Sect. 6 for two reasons.
First, they are closely related to the analysis that we conduct in Sect. 6.3.1.2 and
provide valuable insights into the underlying problem structure of determining
waiting times. Second, we consider these two studies to be generally very useful for
understanding basic concepts of analyzing periodic review inventory systems that
go beyond the classic analysis of inventory and backorder amounts. The third study
is interesting because it more or less considers the same system that we examine
in Sect. 6.3.1. However, it uses a rather different approximate approach, while our
approach is exact.
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3.3.1 Van der Heijden and De Kok (1992)

Customer waiting times per order are analyzed by van der Heijden and de Kok
(1992) for a periodic review order-up-to .r; S/ inventory system with customer
orders arriving at the system according to a compound renewal process. Demand
per customer order is arbitrary i.i.d. and will be backlogged if stock on hand is
insufficient. Replenishment orders take arbitrarily continuous distributed lead times
and arrive in the same sequence as they were issued (i.e., order crossover is ruled
out). A lead time process that satisfies the assumption is not specified, but it is
noted that lead times are not necessarily independent. Customer waiting times are
analyzed for complete order fulfilment, i.e., the time between the arrival of an order
and the delivery of the last outstanding part.

Compared with the approach of Chen and Zheng (1992) that is described in
the following section, the model framework can be regarded as a specialization.
While the former regard an arbitrary S , van der Heijden and de Kok assume S > 0.
Furthermore, Chen and Zheng give a more detailed specification of the lead time
generating process. A comparison of the model frameworks is given at the end of
Sect. 3.3.2.

Developing their analytical model, van der Heijden and de Kok imagine an (r; S )
inventory system starting with an initial net inventory level of S and no outstanding
orders. Clearly, the inventory position then also equals S , and there is nothing on
backorder. From this initial state, the authors consider the probability of an order
arriving at time t within the m-th order cycle according to (3.1), where Q.t C m �
r C w/ is the number of replenishment orders that have arrived in Œ0; t C m � r C w�,
D.t C .m � i/ � r/ is the demand in Œt C .m � i/ � r; t C m � r�, and D is the demand
of the customer order arriving in t :

P fWtCm�r > wg

D
mX

iD0

P fQ.t C m � r C w/ D ig � P fD.t C .m � i/ � r/ C D > Sg (3.1)

To understand (3.1), let us first consider the probability P fWtCm�r > 0g. Regarding
a specific amount of orders i , the i -th element of the sum reads as the probability
that the i -th replenishment order was the last one that arrived, while the demand
since its release date exceeds S . For lead times w > 0, the time span being observed
for replenishment orders to arrive is simply extended. While the customer order is
waiting, it becomes more and more likely that a sufficient replenishment order will
arrive to finally cover the demand.

Using the property that orders cannot cross over in time (i.e., if the i -th order
has arrived, we know that all i � 1 preceding orders have arrived as well) P fQ.t C
m � r/ � ig can be derived from the cumulative density function of the lead time L

(3.2–3.5):
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P fQ.x/ � ig D P fi � r C Li � xg D P.Li � x � i � r/ 8i � 1 (3.2)

P fQ.x/ � 0g D 1 (3.3)

P fQ.x/ D ig D P fQ.x/ � ig � P fQ.x/ � i C 1g 8i � 0 (3.4)

P fQ.x/ D 0g D 1 � P fQ.x/ � 1g (3.5)

Before we continue with the subsequent steps, please note that the following
expositions deviate from the formulations in the original paper for the sake of
improving comparability with other approaches. However, only plain mathematics
was used, and no further ideas were added.

Inserting (3.4) into (3.1), we derive (3.6) by changing the order of summation
(iWDm-i). Without loss of generality, let us assume P fQ.t C m � r/ D 0g D 0,
which saves us the need to specially consider the corresponding case (3.5). Note
that Q.x/ is strictly greater than 0 as soon as the first replenishment order arrives,
so we disregard just a finite runtime span of the examined system, which is irrelevant
considering the limit m ! 1 later on.

P fWtCm�r > wg D
mX

iD0

�
P fLi � t C .m � i/ � r C wg

� P fLi � t C .m � i � 1/ � r C wg
�

� P fD.t C .m � i/ � r/ C D > Sg

D
mX

iD0

�
P fLi � t C i � r C wg � P fLi � t C .i � 1/ � r C wg

�

� P fD.t C i � r/ C D > Sg (3.6)

From the probability that a customer order arriving at time t C m � r will undergo
a delay of w or more time units (3.6), the corresponding probability of a customer
order arriving at any time in the m-th order cycle can be derived using the property
that order arrival probabilities are uniformly distributed within an order cycle. (See
Sect. 3.3.2 for details concerning this property.) This implies (3.7):

P fWm > wg D 1

r
�
Z r

0

P fWtCm�r > wg dt (3.7)

Let P fWm > wg WD 1
r

� R r

0 f .i � r C t/ and consider Beppo Levi’s Theorem
(
R1

0

P1
iD1 fi .t/ dt D P1

iD1

R1
0

fi .t/ dt , if fn.t/ � 0 8n; n 2 Z). Then (3.8)
helps us to derive a shorter formulation:

Z r

0

mX
iD0

f .i � r C t/ dt

D
Z r

0

f .t/ dt C
Z r

0

f .r C t/ dt C � � � C
Z r

0

f .m � r C t/ dt
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D
Z r

0

f .t/ dt C
Z 2�r

r

f .t/ dt C � � � C
Z m�r

.m�1/r

f .t/ dt

D
Z m

0

f .t/ dt (3.8)

Thus, (3.9) describes the overall probability of a customer order observing a waiting
time of w or longer:

P fW > wg D lim
m!1 P fWm > wg

D 1

r
�
Z 1

0

ŒP fL � t C wg � P fL � t � r C wg� � P fD.t/ C D > Sg

.D/
1

r
�
Z 1

0

P ft � r C w � L � t C wg � P fD.t/ C D > Sg (3.9)

Evaluating (3.9) with specific distribution assumption may, however, be a difficult
task. In the first place, the distribution of D.t/ C D for an arbitrary t > 0 cannot
generally be derived in closed form. Even if that succeeds, the overall integral over
t remains to be solved.

Van der Heijden and de Kok develop (3.9) for Gamma-distributed demand,
exponentially distributed interarrival times and arbitrarily distributed lead times. It is
well known that the number of arrivals in T time units follows a Poisson distribution,
with � D T

�
if the interarrival times are exponentially distributed with � D �. Thus,

P fD.t/ C D > xg can be calculated according to (3.10), where Di .x/ denotes the
i -time convolution of D and �� is the interarrival time of customer orders:

P fD.t/ C D > xg D
1X

iD0

.� � t/i

i Š
� e��t � .1 � CDFDiC1

.x// 8x � 0 (3.10)

� WD 1

��

Inserting (3.10) into (3.9), we derive (3.11), applying Beppo Levi’s Theorem:

P fW > wg D
Z 1

0

ŒP fL � t C wg � P fL � t � r C wg�

�
1X

iD0

.� � t/i

i Š
� e��t � .1 � CDFDiC1

.S// dt
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D 1

r
�
h Z 1

0

ŒP fL � t C wg � P fL � t � r C wg� dt

�
1X

iD0

CDFDiC1
.S/

i Š
�
Z 1

0

ŒP fL � t � r C wg

� P fL � t C wg� � .� � t/i � e���t dt
i

(3.11)

On the basis of (3.11), van der Heijden and de Kok give ready-to-compute
expressions for deterministic, hyperexponential and Erlang distributed lead times,
using integral approximation methods when closed forms are unknown. The authors
report accurate results for example problem instances using both deterministic and
Erlang distributed lead times.

3.3.2 Chen and Zheng (1992)

Chen and Zheng (1992) proceed from a system framework very similar to that of van
der Heijden an de Kok. Customer orders arrive according to a compound renewal
process, with continuously i.i.d. interarrival times and demand sizes. By contrast, the
demand sizes may depend on the corresponding interarrival time, i.e., the distance
versus the preceding customer demand arrival order. Furthermore, S may be chosen
arbitrarily, while van der Heijden an de Kok assume S > 0. Finally, Chen and Zheng
are more specific on their replenishment lead times, which are said to emerge from a
random process according to the model introduced by Zipkin (1986b), see Sect. 5.3.

Nonetheless, the systems considered are fairly similar, and it is interesting to see
that the two approaches start with different views on the problem, but conclude with
basic formulas that are more or less equivalent.

At first, Chen and Zheng subdivide the problem into analysis of the arrival
process of customer orders within a review cycle and analysis of the probability that
a customer order will arrive at some certain time within a review cycle, observing
a delay of more than x periods. The further analysis is based on the following
observations:

(1) The arrival time of a customer order within the review interval t 2 Œ0; r�

is uniformly distributed (p.t/ D 1
r
). To understand this property, imagine a

sample path of customer order interarrival times (Fn) wrapped around a circle
of constant length r . Unless the interarrival times describe fixed cyclic patterns,
there will be no accumulation at certain prominent points of the time scale.

(2) The inventory position is S at the beginning of each period. This is the only
deterministic assertion we can make concerning inventory levels.

(3) A customer order arriving at time t observes a waiting time w > x if the
backorder in t C x, i.e., x time units ahead, is higher than the demand between
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t and t C x.
I.e., P.Wt > x/ D P fIL.t C x/ < �D.t; t C x/g

Proceeding from (2) and (3), the authors derive (3.12) as the probability that a
customer order will arrive at time t of a review cycle to observe a delay of w time
units or higher, where they use the convention that D.a; b/ D �D.b; a/ if b � a:

P fWt > wg
D

X
kWkT �tCw

P fS < D.kT; t/g � P ft C w � .k C 1/T � Lt � t C w � kT g

(3.12)

According to (3.12), P fWt > wg is developed as the sum from k D �1 to
˙

T
tCx

�
,

enumerating the corresponding demand occurrence and lead time probabilities. For
the demand side, the possible cumulative occurrences since the order was issued that
will arrive in t C w or later are considered. For the lead time side, the probabilities
are accounted for that the lead time falls within the corresponding interval of time,
the length of which induces the demand considered. Note that w sets a boundary to
the right (t C w), while the maximum lead time effectively sets a boundary to the
left. If a maximum lead time lmax could be specified, the sum could be focused on
k D �

T
tCx�lmax

˘
to
˙

T
tCx

�
.

Combined with (3.3.2), the overall probability of a lead time of w or higher is
described by (3.13):

P fW > wg D 1

T

Z T

0

P.Wt > w/ dt (3.13)

However, it is rather unlikely that closed expressions for both (3.12) and (3.13)
will be derived for specific distribution assumptions. Two main difficulties arise
here: Considering the demand in kT � t time units, the convolution of N random
variables has to be determined, where N is itself a discretely distributed random
variable with integer states. Even if this succeeds, determining the integral of (3.12)
remains a challenging task.

The authors specify (3.12) and (3.13) for a system with constant lead times
and compound Poisson demands, where the interarrival times are i.i.d. exponential
random variables and independent of the demand sizes. Demand sizes are arbitrarily
i.i.d. For this system, an infinite sum is derived with the summands converging to
zero. The resulting formula is ready to compute with an accuracy-controlled breakup
criterion. Numerical results are not given.

Let us finally have a closer look at (3.12) and (3.13) to understand that
they indeed cover (3.11) of van der Heijden and de Kok. Actually, there are
two differences between the approaches of van der Heijden and de Kok and Chen
and Zheng that are of relevance here. Firstly, van der Heijden and De Kok separately
display the demand portion D that arrives at the specific time t Cm �r , and secondly,
they assume S > 0, while Chen and Zheng regard an arbitrary S .
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Assuming S > 0, obviously P fS < D.kT; t/g equals zero for all k > 0. Thus,
we can reformulate (3.12) according to (3.14) by substituting D.kT; t/ WD D.t �
kT / and setting k WD �k. Note that for m ! 1, the resulting formulation is
already equal to (3.7):

P fWt > wg

D
0X

kD�1
P fS < D.t � kT /g � P ft C w � .k C 1/T � Lt � t C w � kT g

D
1X

kD0

P fS < D.t C kT /g � P ft C w C .k � 1/T � Lt � t C w C kT g

(3.14)

Inserting (3.14) into (3.13), we obtain (3.15), which is equal to (3.11) if we
remember that van der Heijden and de Kok separately model the demand arriving
in t , while Chen and Zheng incorporate it into the demand that has arrived between
a certain point in time and t :

P fW > wg D 1

T

Z T

0

.

1X
kD0

P fS < D.t C kT /g

� P ft C w C .k � 1/T � Lt � t C w C kT g/ dt

D 1

T

Z 1

0

P fS < D.t/g � P ft C w � T � Lt � t C wg/ dt (3.15)

3.3.3 Tempelmeier (2000)

Tempelmeier (2000) analyzes customer waiting times in a periodic review order-up-
to .r; S/ inventory system, with customer demand arriving according to a compound
renewal process with fixed interarrival rate and continuously i.i.d. demand amounts.
The replenishment lead time is deterministic, i.e., order crossover cannot occur.

The author basically uses the discrete distribution of the demand coverage to
approximate the discrete probability distribution of the customer waiting time for
both the full and part delivery case. The main idea is to derive the expected number
of orders H.w/ D r � P fW D wg that observe a delay of w D 0; 1; : : : ; wmax

periods using the distribution of demand coverage. Knowing H.w/, the distribution
of waiting times can obviously be calculated according to (3.16):
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P fW D wg D H.w/

r
8w (3.16)

The model was implemented and tested with normal and Gamma-distributed
customer demand. A simulation study revealed accurate results for instances with
low stockout probabilities, even for high demand variation. With lower S -levels, the
accuracy tends to decline.
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Chapter 4
Basic Methods

In Chap. 2 we stated how we will be talking about inventory systems, what structure
and elements may be considered, and which performance metrics may be used for an
evaluation. Following on that, we gave an overview of single-level static stochastic
inventory systems and problem aspects that have already been studied scientifically
(Chap. 3). We were primarily trying to give an introduction to the general way
of thinking about managing inventories that underlies this present study. We also
indicated studies that exhibit similar problem scopes to those we are concerned with,
discussing two closely related papers in greater depth.

In this chapter we will introduce some basic methods and approaches that we
consider helpful for evaluating and optimizing periodic review inventory systems.
We will address the following issues. Section 4.1 describes a simple approach to
approximate the quantile function of a distribution if the closed form is unknown.
Section 4.2 is concerned with the convolution of random variables, and particularly
examines the computational complexity of convolving discrete distributions. In
Sect. 4.3 we develop a closed expression for the expected value of conditioned
normal distributions. Unfortunately, there is no general approach known for this
problem, and we therefore need to exploit the specific properties of the normal
distribution to carry out the analytical steps required. Nonetheless, the example
of normal distribution may indicate what generally needs to be done to derive
the corresponding characteristics. Finally, we introduce the general frameworks of
truncated distributions (Sect. 4.4) and mixed distributions (Sect. 4.5), two powerful
concepts modeling periodic review inventory systems.

4.1 Approximation of the Quantile Function

A standard problem in inventory theory is to determine the minimum x that satisfies
P.X � x/ D p, i.e., given a random variable X , we ask for the value x for which
p is the probability that random draws from X would fall below x.

T. Wensing, Periodic Review Inventory Systems, Lecture Notes in Economics
and Mathematical Systems 651, DOI 10.1007/978-3-642-20479-1 4,
© Springer-Verlag Berlin Heidelberg 2011
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Definition 13 (Quantile function). Let X be an arbitrarily distributed random
variable with cumulative density CDFX .:/. Then

CDF �1
X .p/ D minfx W CDFX.x/ D pg

is the quantile function or inverse cumulative density function.

There is no general closed expression for CDF �1
X .p/, and the closed form is

unknown for many distributions. However, from

CDFX .x/ D
Z x

�1
PDFX .z/ d z; PDFX .z/ � 0 8 z 2 R (4.1)

it follows that CDFX.x/ is monotonic and we can approximate x using the bisection
method. (See Burden and Faires (2005), Chap. 1 and Knuth (1997), Chap. 6 for
example.)

Assuming that we can limit the distribution of X to a relevant interval Œxmin; : : : ;

xmax�, with CDFX .xmin/ � 0 and CDFX .xmax/ � 1, we may generally apply Algo-
rithm 1 to approximate CDF �1

X .p/ within a given tolerance. Defining this and all
other algorithms, we use the following notation: x D y means that variable x is set
to the value of y, whereas x DD y checks whether x and y are set to equal values.

Algorithm 1: Approximation of the quantile function for general assumptions
Input: Distribution X , probability p, tolerance tx
Output: Quantile x

xlb D xmin;
xub D xmax;
x D 1

2
� .xlb C xub/;

q D CDFX .x/;
while jp � qj > tx do

if p < q then
xlb D x;

else
xub D x;

end
x D 1

2
� .xlb C xub/;

q D CDFX .x/;
end

Algorithm 1 works correctly, even if the cumulative density function is not
strongly monotonic, i.e., PDFX .x/ � 0 8x 2 Œxmin; xmax� holds, but PDFX .x/ >

0 8x 2 Œxmin; xmax� does not hold. If our required value lies on a plateau of weakly
monotonic cumulative density on which all values x have the same cumulative
density, the search interval will reduce around the leftmost point of the plateau,
as we only set xlb D x if CDFX .x/ is truly smaller than the required value, and
xub D x otherwise.
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Let us now examine the computational complexity Algorithm 1. Note that each
step of the while loop halves the width of the interval Œxmin; : : : ; xmax�. The interval’s
width after i steps is therefore equal to xmax�xmin

2i . The algorithm definitively
terminates if the interval is smaller than the given fault tolerance tx . We thus observe
the following maximum number of steps i :

xmax � xmin

2i
� tx

, i � log2

�xmax � xmin

tx

�

Let CCCDFX be the runtime effort to compute the cumulative density of X for
any value x. We can then denote the computational complexity for Algorithm 1
.CCa1/ as follows:

CCa1 � i � CCCDFX

� log2

�xmax � xmin

tx

�
� CCCDFX (4.2)

Let xmax � xmin � 10k and tx � 10�l , then we have (4.3):

CCa1 � log2

� 10k

10�l

�
� CCCDFX

� log2.10/ � .k C l/ � CCCDFX (4.3)

D O..k C l/ � CCCDFX/

4.2 Convolution of Random Variables

In the following, we will repeatedly encounter the problem of analytically handling
the sum of two or more random variables, i.e., given two random variables X and
Y , we ask for the distribution Z of the sum z D x C y of random draws from X

and Y .
We therefore define the convolution of random variables in this section for

the two cases of continuously and discretely distributed random variables. In
preparation of runtime examinations in Chap. 5 that are also relevant for Chap. 6,
we furthermore give a detailed runtime analysis on two algorithms to determine the
convolution of discretely distributed random variables.

Definition 14 (Convolution of continuous random variables). Let X and Y be
two independent continuous random variables, with density functions PDFX and
PDFY . Let Z be a random variable given by PDFZ :
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PDFZ.z/ D .PDFX � PDFY /.z/

D
Z 1

�1
PDFX .a/ � PDFY .z � a/ da

D
Z 1

�1
PDFX .z � a/ � PDFY .a/ da (4.4)

Then Z is called the convolution or faltung of X and Y .

Definition 15 (Convolution of discrete random variables). Let X and Y be
two independent discretely distributed random variables. The convolution of their
density functions is then given as follows:

PDFZ.z/ D
1X

aD�1
PDFX.a/ � PDFY .z � a/

D
1X

aD�1
PDFX.z � a/ � PDFY .a/ (4.5)

For further details, please refer to Ross (2006) or Strichartz (2003), for example.
If the sum of more than two random variables needs to be determined, one may

exploit the fact that the convolution of functions is generally associative, i.e.

f1 � .f2 � f3/ D .f1 � f2/ � f3

holds, where f1; f2 and f3 are arbitrary functions.

4.2.1 Continuous Distributions

For continuously distributed random variables, the integral in (4.4) may not
generally be solved in closed form. Under some assumptions, however, we may
easily calculate the convolution of two density functions. If both X and Y are
normally distributed, Z D X C Y is also normally distributed and expression (4.6)
applies, i.e., Z is parameterized by the sum of X and Y ’s mean value and variance:

Z � NORM.�Z D �X C �Y ; �2
Z D �2

X C �2
Y / (4.6)

As the convolution is associative, we can derive the convolution of n normally
distributed variables X directly from (4.6):

Z � NORM.�Z; �Z/
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�Z D
X

Xi 2X
�Xi

�2
Z D

X
Xi 2X

�2
Xi

(4.7)

For the special case of n normally distributed variables X following identical
independent distributions, obviously (4.8) holds:

Z � NORM.n � �X ; n � �X / (4.8)

The same findings apply for the convolution of (independently) Gamma-
distributed and exponentially distributed random variables. In the event that (4.4)
is not given in closed form, one of the numerous methods of numerical integration
may be applied. See Davis and Rabinowitz (1984), for example.

4.2.2 Discrete Distributions

Let us have a closer look at (4.5) to estimate the computational effort for evaluating
the denoted sum. Assuming that both X and Y only have non-zero probabilities
for certain (ordered) values Œxmin; : : : ; xmax� and Œymin; : : : ; ymax�, respectively, Z

may obviously only have positive probabilities for values in Œzmin D xmin C
ymin; : : : ; zmax D xmax C ymax�. Thus, probabilities for a total of zmax � zmin D
xmax � xmin C ymax � ymin values have to be calculated to determine the distribution
of Z.

Let us now consider the effort required to compute the probability for one such
value. For this purpose, let X and Y be restricted to values of two finite ordered sets
so that we are able to identify a lower (lb) and upper bound (ub) for any given z that
limit the summation in (4.5), leading to (4.9):

.PDFX � PDFY /.z/ D
ub.z/X

aDlb.z/

PDFX .a/ � PDFY .z � a/ (4.9)

We can determine lb.z/ and ub.z/ regarding the overlap of the two ordered sets,
Œxmin; : : : ; xmax� and Œz � ymax; : : : ; z � ymin�. In the event that a does not fall into
both sets, clearly PDFX .a/ � PDFY .z � a/ D 0 holds. Regarding zmin and zmax, the
two sets always overlap.

Proof. The sets always overlap if xmin � z � ymin and z � ymax � xmax for all z. This
can easily be shown as follows:

xmin � z � ymin 8 z

, xmin � zmin � ymin
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, xmin � xmin C ymin � ymin

, xmin � xmin
p

(4.10)

z � ymax � xmax 8 z

, zmax � ymax � xmax

, xmax C ymax � ymax � xmax

, xmax � xmax
p

(4.11)

ut
Thus, we can state lb.z/ and ub.z/:

lb.z/ D maxfxmin; z � ymaxg (4.12)

ub.z/ D minfxmax; z � yming (4.13)

According to (4.9), the computation of .PDFX � PDFY /.z/ takes ub.z/ � lb.z/ C1

steps. Thus, the computational complexity CCDCS to determine one single value of
the convolution of two discretely distributed random variables is given by (4.14):

CCDCS D
zmaxX

zDzmin

ub.z/ � lb.z/ C 1 (4.14)

For clarity, let Xspan D xmax � xmin be the value span of the distribution of X .
Without loss of generality, we assume Xspan � Yspan, i.e., we consider two discrete
distributions, where we associate the one with the smaller value span with X , and
the other with Y . Let z WD xmin C ymin C a; a 2 f0; 1; : : : ; Zspang. We then receive
the following piecewise defined functions for lb.a/ and ub.a/:

lb.z/ D maxfxmin; xmin � Yspan C ag D
(

xmin if a � Yspan

a � Yspan if a � Yspan

(4.15)

ub.z/ D minfxmax; xmin C ag D
(

xmin C a if a � Xspan

xmax if a � Xspan

(4.16)

This directly implies the following piecewise defined function for ub.z/ � lb.z/:

ub.z/ � lb.z/ D

8
ˆ̂<
ˆ̂:

a if < a � Xspan

Xspan if Yspan � a � Xspan

Xspan � b if a � Yspan

(4.17)

b D a � Yspan
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We thus derive the computational complexity of determining the convolution of two
discrete distributions depending on the number of non-zero probability values of the
latter according to (4.18):

CCDC D
zmaxX

zDzmin

ub.z/ � lb.z/ C 1

D 1 C 2 C � � � C Xspan C .Xspan C 1/ C � � � C .Xspan C 1/ C Xspan

C � � � C 2 C 1

D Xspan � .Xspan C 1/

2
C .Xspan C 1/ � .Yspan � Xspan C 1/

C Xspan � .Xspan C 1/

2

D Xspan � .Xspan C 1/ C .Xspan C 1/ � .Yspan � Xspan C 1/

D .Xspan C 1/ � .Yspan C 1/ (4.18)

To understand (4.18), note that the number of combinations to consider for values in
Œzmin; : : : ; zmax� is pyramid-shaped. We have one combination for zmin and again for
zmax on the other side, two for .zminC1/ and .zmax �1/, and so on, until the maximum
number of combinations .Xspan C 1/ is reached (remember that we assume Xspan �
Yspan). Clearly we have .Xspan C 1/ values that may be generated by .Xspan C 1/

combinations of values from X and Y .
Because of the associativity, the convolution of multiple random variables can be

determined by multiple application of (4.9). Algorithm 2 illustrates the approach.

Algorithm 2: Convolution of n discrete distributions
Input: Array of discrete distributions DDŒ1; : : : ; n�

Output: Convolution con of DD

con D DDŒ1�;
for i D 2 to n do

con D con � DDŒi�

end

Let Xspan now be the greatest span of all random variables in DD. We can then
determine the computational complexity CCa2 of Algorithm 2 as follows:

CCa2 �
nX

iD2

..i � 1/ � Xspan C 1/ � .Xspan C 1/

D .Xspan C 1/ �
n�1X
iD1

.i � Xspan C 1/

D .Xspan C 1/ �
"

.n � 1/ � n

2
� Xspan C n � 1

#
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D .Xspan C 1/ �
"

.n � 1/ � n

2
� .Xspan C 1/ � .n � 1/ � n � 2 � n C 2

2

#

D .n � 1/ � n

2
� .Xspan C 1/2 � .n � 3/ � n C 2

2
� .Xspan C 1/ (4.19)

D O.n2 � X2
span/

If all random variables in DD have the same distribution, we can apply
Algorithm 3, which runs faster than Algorithm 2 in this special case. The idea is
as follows. In a first loop, the convolutions of 1; 2; 4; 8; : : : ; 2i distributions are
determined, where i D blog2.n/c, i.e., the greatest exponent i for which 2i is
smaller than or equal to n. The required convolution is then constructed using
the corresponding smaller convolutions. E.g., let XŒn� denote the convolution of n

random variables with independent identical distributions. XŒ14� is then constructed
as XŒ14� D XŒ8� � XŒ4� � XŒ2�. As there obviously always exists an �!x 2 f0; 1gblog2.n/c
so that n D P

xi 2�!x xi � 2i ; n � 2i , the approach is correct.

Algorithm 3: Convolution of n i.i.d. random variables
Input: Discrete distribution dd , Integer n

Output: Convolution con of n random variables having the distribution dd

CONS D new DiscreteDistribution[blog2.n/c];
CONS[1] D dd;
for i D 2 to blog2.n/c do

CONSŒi � D CONSŒi � 1� � CONSŒi � 1�;
end
con D CONSŒblog2.n/c�;
n D n � 2.blog2.n/c/;
for i D blog2.n/c � 1 to 1 do

if 2i � n then
con D con � CONSŒi �;
n D n � 2i ;

end
end

The computational complexity is driven by the two for-loops. For clarity, let us
first consider them separately, and then combine the result. In each step of the first
loop, two distributions with equal span are convolved, leading to a complexity ofPblog2.n/c

iD1 .2.i�1/ � Xspan C 1/2. This can be simplified as follows:

CCa3l1
D

blog2.n/cX
iD1

.2.i�1/ � Xspan C 1/2

D
blog2.n/cX

iD1

4.i�1/ � X2
span C 2 � 2i�1 � Xspan C 1
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D
"

4blog2.n/c

3
� 1

#
� X2

span C 2 � .2blog2.n/c � 1/ � Xspan C blog2.n/c (4.20)

� n2 � 1

3
� X2

span C 2 � .n � 1/ � Xspan C log2.n/ (4.21)

Note that (4.20) is equal to (4.21) if blog2.n/c D log2.n/, i.e., for all n D 2i ; i 2 Z.
The second loop is trickier. Let us consider only the worst case here, where we

have to convolve all distributions that we have prepared in the array cons. This is
the case for n D 2i � 1; i 2 Z. We then experience the following computational
complexity of the second loop:

CCa3l2

D
blog2.n/cX

iD1

h
2blog2.n/c�i � Xspan C 1

i
�
h
.

iX
j D1

2blog2.n/cC1�j / � Xspan C 1
i

D
blog2.n/cX

iD1

h
2blog2.n/c�i � Xspan C 1

i

�
h
.2blog2.n/cC1 � 2blog2.n/cC1�i / � Xspan C 1

i

D
blog2.n/cX

iD1

h
2�.iC1/ � 2blog2.n/cC1 � Xspan C 1

i

�
h
.1 � 2�i / � 2blog2.n/cC1 � Xspan C 1

i

D
blog2.n/cX

iD1

.2�.iC1/ � 2�.2�iC1// � 4blog2.n/cC1 � X2
span

C
blog2.n/cX

iD1

.1 � 2�.iC1// � 2blog2.n/cC1 � Xspan C 1

D 4blog2.n/cC1 � X2
span � 1

2
�
" blog2.n/cX

iD1

2�i � 4�i

#

C 2blog2.n/cC1 � Xspan �
"

blog2.n/c � 1

2
�

blog2.n/cX
iD1

2�i

#
C

blog2.n/cX
iD1

1
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D 4blog2.n/cC1 � X2
span � 1

2
�
"

1 � 2�blog2.n/c � 1 � 4�blog2.n/c

3

#

C 2blog2.n/cC1 � Xspan �
"

blog2.n/c � 1

2
� .1 � 2�blog2.n/c/

#
C blog2.n/c

(4.22)

� 4 � n2 � X2
span � 1

2
� .1/ C 2 � n � Xspan � .log2.n/ � 1

2
/ C log2.n/

.D/ 2 � n2 � X2
span C 2 � n � log2.n/ � Xspan � n � Xspan C log2.n/ (4.23)

Combining these findings, we can approximate the complexity for the whole
algorithm by adding (4.21) and (4.23):

CCa3 D CCa3l1
C CCa3l2

� 7 � n2 � 1

3
� X2

span C 2 � n � log2.n/ � Xspan C .n � 2/ � Xspan

C 2 � log2.n/ (4.24)

D O.n2 � X2
span/

Although Algorithms 2 and 3 fall into the same complexity class in terms of the
O-Notation, we observe a significantly lower runtime of Algorithm 3. For example,
for xspan D 20, N D 2; : : : ; 100, Algorithm 3 is faster in every instance where the
middle ratio is 1 W 0:74.

4.3 Mass Integral of the Normal Distribution

The mean value of a continuously distributed random variable X is defined as
follows:

� D
Z 1

�1
PDFX .x/ � x dx (4.25)

For the analysis in the following sections, we will repeatedly consider not the full
integral, but only a fraction between some certain bounds a and b:

m.a; b/ D
Z b

a

PDFX .x/ � x dx (4.26)

The integral may not be solved into a closed form for general distribution assump-
tions. In the event that X is normally distributed, we may solve instances of (4.26)
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using the probability density and cumulative density function. We will show the
corresponding reformulations in the following:

m.a; b/ D
Z b

a

PDFX .x/ � x dx

D
Z b

a

1

�X

p
2 � �

� e

�
� x��X

2��X

�2

� x dx

D
Z b

a

1

�X

� 1p
2 � �

� e

�
� x��X

2��X

�2

�
�x � �X

�X

� �X C �X

�
dx

D
Z b

a

�
�X

�X

� 1p
2 � �

� e

�
� x��X

2��X

�2

�
�x � �X

�X

�

C 1

�X

� 1p
2 � �

� e

�
� x��X

2��X

�2

� �X

�
dx

D
Z b

a

�
1p
2 � �

� e

�
� x��X

2��X

�2

�
�x � �X

�X

�

C 1

�X

� 1p
2 � �

� e

�
� x��X

2��X

�2

� �X

�
dx (4.27)

Applying integration by substitution (4.28), we derive (4.29) and (4.30):

Z b

a

u.v.x// dx D
Z b

a

1

v0.x/
� U.v.x// dx (4.28)

Z b

a

1p
2 � �

� e

�
� x��X

2��X

�2

�
�x � �X

�X

�
dx D ��X � 1p

2 � �
� e

�
� x��X

2��X

�2
ˇ̌
ˇ̌
ˇ
b

a

D ��2
X � PDFX .x/

ˇ̌
ˇ̌
ˇ
b

a

(4.29)

Z b

a

1

�X

� 1p
2 � �

� e

�
� x��X

2��X

�2

� �X D
Z b

a

PDFX .x/ � �X dx

D �X � CDFX .x/

ˇ̌
ˇ̌
ˇ
b

a

(4.30)

Thus, we derive (4.31):

Z b

a

PDFX .x/ � x dx

D �2
X � .PDFX .a/ � PDFX .b// C �X � .CDFX .b/ � CDFX .a// (4.31)
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We can derive the following more general expression from (4.31):

mr.a; b; c/

D
Z b

a

PDFX .x/ � .x � c/ dx (4.32)

D
Z b

a

PDFX .x/ � x dx �
Z b

a

PDFX .x/ � c dx

D �2 � .PDFX .a/ � PDFX .b// C �X � .CDFX .b/ � CDFX .a//

� c � .CDFX .b/ � CDFX .a//

D �2
X � .PDFX .a/ � PDFX .b// C .�X � c/ � .CDFX.b/ � CDFX .a// (4.33)

If the integral is unbounded on the right side (b ! 1), (4.33) is simplified
according to (4.34):

mr.a; b ! 1; c/ D �2
X � PDFX .a/ C .�X � c/ � .1 � CDFX .a// (4.34)

4.4 Truncated Distributions

A truncated distribution may be described as the conditional equivalent of an
arbitrary distribution, whose values are bound on a given interval Œa; b�. Let X be
an arbitrarily distributed random variable, and let x1; x2; : : : be random draws from
X , where we ignore all draws that do not lie in Œa; : : : b�. In that case, the random
draws we account for follow the corresponding truncated distribution of X .

Definition 16 (Truncated distribution). Let X be an arbitrary random variable
with arbitrary support, density PDFX and cumulative density CDFX . Furthermore,
let X.a;b/ be a random variable with a density function PDFX.a;b/

, given by (4.35)
and (4.36):

PDFX.a;b/
.x/ 62 Œa; b� D 0 (4.35)

PDFX.a;b/
.x/ 2 Œa; b� D PDFX .x/

CDFX .b/ � CDFX .a/
(4.36)

Then the distribution of X.a;b/ is called the truncated distribution of X with its
support restricted to x 2 Œa; b�.

The cumulative density function can be derived as follows:

CDFX.a;b/
.x/jx � a D 0 (4.37)
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CDFX.a;b/
.x/jx 2 Œa; b� D

Z x

a

PDFX.a;b/
.z/ d z

D
Z x

a

PDFX .z/

CDFX.b/ � CDFX.a/
d z

D 1

CDFX.b/ � CDFX.a/
�
Z x

a

PDFX .z/ d z

D CDFX.x/ � CDFX .a/

CDFX .b/ � CDFX .a/
(4.38)

CDFX.a;b/
.x/jx � b D 1 (4.39)

For further details on truncated distributions, please refer to Johnson et al. (1994),
for example.

4.5 Mixed Distributions

A mixed distribution is the weighted arithmetical mean of at least two different
arbitrary distributions. In the following, we will examine inventory models for
which the lead time demand follows a mixed distribution. A formal definition is
given in Titterington et al. (1985):

Definition 17 (Mixed distribution). Let X be a random variable with values in the
probability space W, with a density function PDFX , given by

PDFX .x/ D
kX

j D1

!j � PDFj .x/; x 2 W

and it holds:

!j > 0; 8j;

kX
j D1

!j D 1I

PDFj .:/ � 0;

Z
W

PDFj .x/ dx D 1; 8j:

Then X follows a mixed distribution, with weights !j and density components
PDFj .:/.
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The cumulative density function can be derived from the corresponding expres-
sions of the components:

CDFX .x/ D
Z x

�1

kX
j D1

!j � PDFj .z/ d z

D
kX

j D1

!j �
Z x

�1
PDFj .z/ d z

D
kX

j D1

!j � CDFj .x/ (4.40)



Chapter 5
Replenishment Processes

This chapter focuses on the replenishment aspect of static stochastic inventory
models, namely the modeling of the replenishment lead time generating process.
Before starting, let us briefly recapitulate the contents of the previous chapters.
To begin with, we described the fundamental terminology related to speaking of
inventory systems and telling one system from another in Chap. 2. We then gave an
overview of the relevant literature on single-level static stochastic inventory systems
in Chap. 3. We will revisit some of the papers that we introduced there in this chapter
with respect to the analysis of the replenishment process. Finally, we described some
basic methods of stochastic analysis in Chap. 4 that we will partially revisit in the
approaches described in this chapter.

Whenever the replenishment lead times in an inventory system are considered to
be stochastic, it is indispensable for the analysis to specify the underlying lead time
generating process. Even where lead times have the same distribution, the behavior
of two systems may be very different if the underlying lead time models vary. This
chapter distinguishes three lead time models that are discussed in the literature,
namely the cases of:

• Non-interchangeability of demand units (Sect. 5.1)
• Replenishment order crossover (Sect. 5.2)
• Sequential arrivals of replenishment orders (Sect. 5.3)

For a brief literature overview of these three cases see Hayya et al. (2008), for
example.One might add a fourth case where lead time distributions are limited in
order to result in the same system behavior for all three basic cases. We consider
this a special case of all three general models and discuss it in Sect. 5.4.

5.1 Non-Interchangeability

An analytically attractive idea is to consider non-interchangeable unit demands, i.e.,
each demand unit can only be satisfied by a specific replenishment unit arriving
with a specific replenishment order. The idea was introduced in a technical paper by

T. Wensing, Periodic Review Inventory Systems, Lecture Notes in Economics
and Mathematical Systems 651, DOI 10.1007/978-3-642-20479-1 5,
© Springer-Verlag Berlin Heidelberg 2011
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Washburn (1973) on a stochastic lead time extension to the classical economic order
quantity problem. Similar problems are regarded by Liberatore (1979), Sphicas
(1982), Sphicas and Nasri (1984) and more recently He et al. (2005). Common to
all four approaches is the assumption of a constant demand rate, allowing for the
synchronization of replenishment orders and prospective demand units.

What makes the assumption so attractive is the property that an arbitrary lead
time distribution may be considered in the inventory model without causing any
stochastic dependencies. Due to the fixed assignment, each demand unit will be
fulfilled on its arrival or on the arrival of the corresponding replenishment order,
whichever event is the later. The analysis can thus be focused on one replenishment
cycle, and lead times may be independent.

For real inventory systems with stochastic demands, however, it is unlikely that
a demand unit must inevitably be satisfied by material arriving with a specific
replenishment order. It is somewhat contrary to the idea of keeping stock in order to
serve an uncertain demand. Nonetheless, it is worth checking wether the assumption
is met in a real system, as it significantly simplifies the analysis.

5.2 Order Crossover

Two orders are said to cross over in time if they arrive in a different sequence to that
in which they were issued, i.e., the order that was issued later arrives earlier. From a
theoretical point of view, this phenomenon may generally be observed in inventory
systems if lead times are independent random variables.

A formal definition is given by Riezebos (2006).

Definition 18 (Order crossover). Let A and B be two replenishment orders that
were issued at time oA and oB , respectively, where oA < oB holds, i.e., A was
issued earlier than B . Let A and B arrive at times aA and aB : these orders then
cross if aA > aB .

Definition 18 implies corollary 1.

Corollary 1. Let A and B be two orders that observe issue and arrival times as in
Definition 18. Furthermore, let lA and lB be the lead times of these orders, so that
aA D oAClA and aB D oBClB . Then A and B cross if and only if oA�oBClA > lB .

Proof. Corollary 1 follows from inserting equations aA D oAClA and aB D oB ClB

into inequation aA > aB . ut
The corollary directly implies that lead time variability is a prerequisite for order

crossover. To be more specific, crossover occurs whenever oB � oA < lA � lB ,
i.e., it can only be observed in systems with a lead time variability higher than the
minimum time between two orders. (Also see Sect. 5.4.)

Riezebos distinguishes stochastic and dynamic lead time variability, both of
which are reported to be observable in real-life inventory systems, either solely
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or in combination. Stochastic fluctuations are related to time-invariant uncertainty
in the supply processes, while dynamic fluctuations are due to systematic process
changes over time. For the latter, an example of ordering tobacco leaves is given
by Riezebos, where individual ordering modalities and production and transport
times in different countries of origin introduce high lead time volatility to the overall
ordering process. As dynamic lead times – or system dynamics in general – require
an inventory system with dynamic parametrization, we will exclusively focus on the
(static) stochastic lead time case in the following.

From a process perspective Song and Zipkin (1996) give a clear motivation for
real world systems with static stochastic lead times at which order crossover may
and may not be observed. Orders may cross over whenever they are processed in
parallel, and cannot cross over if they are sequentially processed. The first case
is considered in this section; the latter case in general means that lead times are
dependent (see Sect. 5.3).

Two further modalities can be distinguished regarding parallel processing. On
the one hand, each order may be assigned to a certain parallel process; on the other
hand, we have random assignment that may not be controlled by the system that
issues orders.

The first case is broadly discussed in the literature in the context of multiple
sourcing, which means that a company maintains more than one supplier for the
same type of goods. In this context, problems of order crossover are addressed by
Ramasesh et al. (1991) and Kelle and Silver (1990), for example. Both articles
consider a multiple sourcing strategy for a continuous review system with fixed
order sizes, where each order quantity is split among at least two suppliers. Besides
the crossover phenomenon, the related problem of determining so-called effective
lead times may arise in the context of multiple sourcing. See Sculli and Wu (1981),
Sculli and Shum (1990), Pam et al. (1991) and Fong et al. (2000), for example. In
these papers, the effective lead time is regarded as the lead time of the first, second,
etc... arrival of two or more simultaneously issued orders. In Sect. 5.2.3 we consider
the more general problem of determining the time that passes between the n-th issue
of an order and the n-th order arrival, where the corresponding orders may not be
the same if order crossover is possible.

A detailed literature overview on multiple sourcing is given by Minner (2003).
Besides the literature on multiple sourcing, some articles directly focus on the

order crossover phenomenon, where the actual cause of crossovers is of secondary
interest. The related research goes back to the 1950s. See Galliher et al. (1959),
for instance, for an early paper on a continuous review system in which order
crossover is not exactly addressed, but considered in the model. In spite of these
early works, studies on systems with replenishment processes that may randomly
cause order crossovers are limited. The majority of authors consider systems where
the possibility that orders may cross is simply ignored or cannot occur by definition.

In recent years, however, more attention has been dedicated to the phenomenon.
See for example the works of Robinson et al. (2001), Bradley and Robinson (2005)
and Robinson and Bradley (2008) on periodic review systems, and those of He
et al. (1998) and Hayya et al. (1995) on continuous review systems, where the latter
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paper also regards the multi- (here dual-) sourcing aspect. An overview of literature
concerning order crossovers when lead times are static stochastic is given by Hayya
et al. (2008).

In the remainder of this section we will look more closely at three characteristics
of the replenishment process when orders may crossover in time, namely the number
of outstanding orders, inventory shortfall and the effective lead time.

5.2.1 Outstanding Orders

Zalkind (1978) analyzes the number of outstanding orders for a periodically
distributed inventory system. It is assumed that an order is placed in every review
interval, i.e., demand is always sufficiently great between two order events that
a replenishment order will be placed. To motivate the calculation, we will firstly
assume r D 1, and derive the general formulation afterwards. An order is considered
outstanding in a period if it arrives no sooner than in the next period.

Let L be a discrete random variable with minimum lmin D 0 and a finite
maximum lmax, and let the lead times be a series of independent random variables
having the distribution of L. Furthermore, let el 2 f0; 1g indicate wether an
order placed l periods ago has arrived (0) or is outstanding (1), and P fpt D
.e0; e1; : : : ; elmax�1/g be the probability that the pattern of outstanding orders is given
by pt D .e0; e1; : : : ; elmax�1/ during the current period. We will consider the state at
the end of each period, so that an order with lead time l counts as arrived and not
outstanding after l periods. Therefore elmax D 0 always holds. Using the properties
that el is binary and lead times are independent, the corresponding probability can
be calculated according to (5.1):

P fpt D .e0; e1; : : : ; elmax�1/g D
lmax�1Y

lD0

.1 � el/ � P fL � lg C .el / � P fL > lg

(5.1)

As el D 0 for l � lmax, only patterns of length lmax � 1 need to be considered. In
terms of el , the number of outstanding orders is given by (5.2):

k D
lmax�1X

lD0

el (5.2)

Let P T be the set of all patterns pt D .e0; e1; : : : ; elmax�1/ that satisfy (5.2). The
probability that there are k orders outstanding is then given by (5.3):

P fK D kg D
X

pt2P T

P fP T D ptg 8 k D 0; : : : ; lmax � 1 (5.3)
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Obviously, there are
�

n
k

� D nŠ
kŠ�.n�k/Š

n-element patterns .e0; e1; : : : ; en�1/ that
satisfy (5.2) and need to be considered in (5.3). Thus, the calculation of the
probability distribution of the number of orders outstanding would have exponential
computational complexity O.2n/; n D lmax � 1 if r D 1, as

Pn
kD0

�
n
k

� D 2n. This
circumstance can easily be obtained from the well-studied binomial theorem (5.4),
which is included here for the reader’s convenience. (Set x D y D 1.) It is also
obvious though, as all 2n possible patterns have to be considered to calculate the
probabilities of all possible values for k:

.x C y/n D
nX

kD0

 
n

k

!
� xn�kyk 8 x; y 2 R; n 2 ZC (5.4)

Zalkind indicates an interesting possibility to reduce computational complexity. He
introduces a set of binary discrete distributions Kl that are defined according to (5.5)
and (5.6):

P fKl D 0g D P fL � lg (5.5)

P fKl D 1g D P fL > lg (5.6)

Using this set, the probability distribution of the orders outstanding equals the
convolution of K0; K1; : : : : ; Klmax�1, where the computational complexity is in
O..lmax/

2/ (see Sect. 4.2.2).
This idea is also applicable to a generalized r � 0, as will be shown in the

following. With an arbitrary positive review interval, we have to consider that there
may be periods in which no orders are issued, and thus exclude all el that do not
comply with the ordering pattern. In other words: for r > 1, only those order ages
are possible for a certain subperiod t that reach back to an order period. While r D 1

means that order cycles and periods are the same, it is now necessary to focus on
order cycles.

Let us first address the question of the maximum orders that may be outstanding,
i.e., the maximum order cycles that have to be considered with respect to a certain
maximum lead time. Considering period t 2 f1; 2; : : : ; rg within an order cycle r ,
we know that any outstanding order must be at least t periods old. Thus, an order can
only be outstanding if it has been issued no later than lmax � t periods ago. Adjusting
this observation to the order cycle pattern, we derive (5.7), where cmax.r; t/ is the
maximum number of cycles (including the present one) from which an outstanding
order might originate:

cmax.r; t/ D
$

lmax � .t � 1/

r

%
C 1 (5.7)

Kl also needs adjustment. We will therefore define Kc.t; r/ as a function indicating
that an order issued c cycles ago will be outstanding in the t-th period of an order
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cycle of length r (5.8 and 5.9), where c D 1 is the present cycle:

P fKc.t; r/ D 0g D
(

1 if cmax.r; t/ � 0

P fL � .c � 1/ � r C t � 1g else
(5.8)

P fKc.t; r/ D 1g D
(

0 if cmax.r; t/ � 0

P fL > .c � 1/ � r C t � 1g else
(5.9)

By convolution of the corresponding cycle-dependent Kc.t; r/, we derive the
distribution of outstanding orders in period t according to (5.10) if the order
cycle is r :

K.t; r/ � K1.t; r/ � : : : � Kcmax .t; r/ (5.10)

Thus, the overall probability that the inventory system has k orders outstanding is
given by (5.11). K is the mixture of r distributions K.t; r/, each having influence 1

r
:

P fK D kg D
rX

tD1

1

r
� P fK.t; r/ D kg (5.11)

Numerical Example. Let L be discretely uniformly distributed with values f1,2,3,4g
and r D 1. Then we have the following relevant distributions Kl :

P fK1 D 0g D 0; P fK2 D 0g D 0:25; P fK3 D 0g D 0:5; P fK4 D 0g D 0:75

P fK1 D 1g D 1; P fK2 D 1g D 0:75; P fK3 D 1g D 0:5; P fK4 D 1g D 0:25

By convolution, we obtain the following probabilities that k orders are outstanding:

P fK D 1g D 0:09375; P fK D 2g D 0:40625; P fK D 3g D 0:40625;

P fK D 4g D 0:09375

For r D 2, the calculations are as follows:

P fK1.1; 2/ D 0g D 0; P fK2.1; 2/ D 0g D 0:5

P fK1.1; 2/ D 1g D 1; P fK2.1; 2/ D 1g D 0:5

P fK1.2; 2/ D 0g D 0:25; P fK2.2; 2/ D 0g D 0:25

P fK1.2; 2/ D 1g D 0:75; P fK2.2; 2/ D 1g D 0:75

P fK.1; 2/ D 0g D 0; P fK.1; 2/ D 1g D 0:5; P fK.1; 2/ D 2g D 0:5

P fK.2; 2/ D 0g D 0:1875; P fK.2; 2/ D 1g D 0:625; P fK.2; 2/ D 2g D 0:1875

P fK D 0g D 0:09375; P fK D 1g D 0:5625; P fK D 2g D 0:34375
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5.2.2 Inventory Shortfall

In the previous section, the distribution of outstanding orders is developed for a
periodically distributed inventory system. This figure, however, is of limited help
for the proper configuration of an inventory system, as one is more interested in the
amount of stock missing. This amount may be either part of orders that have already
been issued, or may be preconsidered for the next order due date. We will use the
term inventory shortfall (SF ) for the combined amount, as used by Robinson et al.
(2001), for example.

An exact formulation of the inventory shortfall in periodically distributed
inventory systems is also developed by Zalkind (1978) using his findings on the
number of orders outstanding, as described above.

As indicated, inventory shortfall can be divided into (1) the order amount that
has already been issued but which has not yet arrived, and (2) the demand that has
occurred since the last order was issued. The first part is described by the mixture
of the distributions of demand in k � r periods (5.12). The second part is the demand
in .t � 1/ periods (5.13), where we assume that the demand occurring in an order
period is always considered with the corresponding replenishment order.

SF
.1/
t D

1X
kD1

P fK.t; r/ D kg � DŒk�r� (5.12)

SF
.2/
t D DŒt�1� (5.13)

The overall distribution of the inventory shortfall in a specific period t is then
obtained by proper convolution:

SFt D SF
.1/
t � SF

.2/
t

D
" 1X

kD0

P fK.t; r/ D kg � DŒk�r�

#
� DŒt�1�

D
1X

kD0

P fK.t; r/ D kg � DŒk�r� � DŒt�1�

D
1X

kD0

P fK.t; r/ D kg � DŒk�rCt�1� (5.14)

With r periods forming one order cycle, distribution of the inventory shortfall for
the whole system (5.15) is the mixture of r distributions according to (5.14):
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SF D
rX

tD1

1

r
� SFt

D
rX

tD1

1

r

1X
kD0

P fK.t; r/ D kg � DŒk�rCt�1� (5.15)

One may not want to use a combination of various different mixed distributions
for computational convenience. Regarding (5.15) a little closer, we observe that the
underlying mixed distributions may share equal elements. Thus, we can directly
formulate (5.15) as mixture of convolved demand distributions (5.16), where SFP

is the distribution of the number of demand periods constituting the inventory
shortfall:

SF D
1X

sfpD1

P fSFP D sfpg � DŒsfp� (5.16)

P fSFP D sfpg D
rX

tD1

1

r
� P
n
K.t; r/ D sfp � t C 1

r

o
(5.17)

Numerical Example. Let L be discretely uniformly distributed with values
f1,2,3,4g, D normally distributed with .� D 100; � D 30/ and r D 1. Using
the results of the previous section’s example (we obtain the following shortfall
distribution)

SF D 0:09375 � Norm.100; 30/ C 0:40625 � Norm.200; 42:43/

C 0:40625 � Norm.300; 51:96/ C 0:09375 � Norm.400; 60/

�SF D 250

�SF D 92:1954

Robinson et al. (2001) compare inventory shortfall with lead time demand
(LTD), which is commonly used in literature and practice to adjust inventory
systems. In contrast to SF , LTD is the demand that occurs from the moment an
order is placed until the moment when that particular order arrives. Thus, for our
first example (r D 1), LTD is calculated as follows. While mean values are equal,
we notice a significant disparity of standard deviations.

LTD.d/ D 0:25 � Norm.100; 30/ C 0:25 � Norm.200; 42:43/

C 0:25 � Norm.300; 51:96/ C 0:25 � Norm.400; 60/

�LTD D 250

�LTD D 121:4496



5.2 Order Crossover 65

Referring to a technical paper by Zalkind (1976), Robinson et al. (2001) give
proof that EfSF g D EfLTDg and VarfSF g � VarfLTDg hold in periodically
distributed inventory systems when r D 1.

5.2.3 Effective Lead Time

Hayya et al. (2008) introduce the concept of effective lead times (ELT) to the
crossover context in order to describe the replenishment order arrival time series
when order crossover is possible.

Definition 19 (Effective lead time). Let oi be the issue time of the i -th issued
replenishment order in an inventory system and let ai be the arrival time of the i -
th arriving order, where oi and ai may correspond to two different orders. Then
elti D oi � ai is the i -th effective lead time observed in the system. ELT is the
random distribution of the elti .

Note that ELT D L holds if no crossovers may occur in the considered inventory
system.

Hayya et al. derive expressions to calculate the effective lead time when the time
horizon is limited to two and three periods, mainly to illustrate the computational
complexity. The idea is to enumerate all possible sequences of arrivals for orders
that were issued in k consecutive periods and calculate the probabilities that each
sequence will occur. Applying their approach to a time horizon of t periods, the ELT
is the mixture of t Š distributions, assuming that each order may observe a lead time
of t or more periods.

In the following we will use this idea to derive expressions for a steady-state
analysis. Instead of restricting the time horizon, we will restrict the maximum
number of orders that may be involved in a crossover. For clarity, we will distinguish
purchase orders and deliveries in the remainder of this section. We will refer to an
order as a purchase order at the time it is issued, whereas we will speak of a delivery
if we consider its arrival. For example, if the first and second order of a sequence
cross over, we say that the first purchase order is the second delivery and the second
purchase order is the first delivery.

Furthermore, let us introduce the following notation to describe the arrival
sequence of purchase orders. Let:

• k denote the number of consecutive purchase orders that are examined for a
certain purpose

• m be the maximum number of orders in an arrival sequence that any of the orders
may cross

• as
.k;m/
s be the arrival sequence s of orders that are identified by their positions in

the order issue sequence, in which each order may cross over with a maximum
of m other orders

• as
.k;m/
s;i be the issue position of the i -th order in the arrival sequence as

.k;m/
s , and

let
• AS.k;m/ be the set of all possible arrival sequences of k orders, where each order

may crossover with a maximum of m other orders



66 5 Replenishment Processes

Example. The arrival sequence as
.3;1/
1 D .n � 1; n C 1; n/ indicates that the n-th

and (n C 1)-th purchase order are involved in a crossover so that each order crosses
the other one and the (n C 1)-th purchase order arrives before the n-th purchase
order.

With this notation, we are ready to develop an approach to compute the effective
lead times. We will start with the case of m D 1, i.e., a maximum of two orders may
be involved in a crossover, and then proceed to the general case.

One Order Case. In the event that each order may only cross one other order at
most, we observe that only those orders may cross over that have been consecutively
issued, i.e. the n-th purchase order can only cross over with either its direct
predecessor or its direct successor. From the supplier’s perspective, the n-th delivery
may only be the .n � 1/-th, n-th or .n C 1/-th purchase order.

We thus have three purchase order candidates that may be the n-th delivery, and
AS.3;1/ D f.n � 1; n; n C 1/; .n; n � 1; n C 1/; .n � 1; n C 1; n/g is the complete
set of possible arrival sequences that involve the n-th purchase order. The possible
cases that lead to a certain elt of the n-th delivery can be directly derived from these
sequences. To do this, we require the middle delivery to exactly meet the designated
elt , while the preceding and successive deliveries’ lead times need to ensure that
the assumed arrival sequence is met, i.e., the preceding delivery may not arrive later
and the successive delivery may not arrive earlier than the middle delivery. To save
subindexes, we will strictly connect the lead time L to purchase orders and the
effective lead time ELT to deliveries. Thus, the n-th delivery observes an effective
lead time of elt under the following condition:

ELTn D elt if Ln�1 � elt C r ^ Ln D elt ^ LnC1 � elt � r

_ Ln�1 D elt C r ^ Ln � elt ^ LnC1 � elt � r

_ Ln�1 � elt C r ^ Ln � elt ^ LnC1 D elt � r (5.18)

Note that the cases in (5.18) are not free of conjunctions, e.g., the special case of
Ln�1 D elt C r ^ Ln D elt ^ LnC1 D elt � r is included in all three of them.
Expanding (5.18) to comparisons with the ‘<’, ‘>’ and ‘D’ comparative operators
only leads to a conjunction-free representation (5.19), which can be reduced to
(5.20) if we again allow for the ‘�’ and ‘�’ comparative operators:

ELTn D elt if Ln�1 < elt C r ^ Ln D elt ^ LnC1 > elt � r

_ Ln�1 D elt C r ^ Ln D elt ^ LnC1 > elt � r

_ Ln�1 < elt C r ^ Ln D elt ^ LnC1 D elt � r

_ Ln�1 D elt C r ^ Ln D elt ^ LnC1 D elt � r

_ Ln�1 < elt C r ^ Ln > elt ^ LnC1 D elt � r

_ Ln�1 D elt C r ^ Ln > elt ^ LnC1 D elt � r

_ Ln�1 D elt C r ^ Ln < elt ^ LnC1 > elt � r

_ Ln�1 D elt C r ^ Ln < elt ^ LnC1 D elt � r (5.19)
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ELTn D elt if Ln�1 D elt C r ^ Ln � elt ^ LnC1 � elt � r

_ Ln�1 < elt C r ^ Ln D elt ^ LnC1 � elt � r

_ Ln�1 � elt C r ^ Ln > elt ^ LnC1 D elt � r (5.20)

We can derive the effective lead time distribution from the conjunction-free set of
cases (5.20) if a maximum of two orders may be involved in a crossover (5.21):

P fELT D eltg D P fL D elt C rg � P fL � eltg � P fL � elt � rg
C P fL < elt C rg � P fL D eltg � P fL � elt � rg
C P fL � elt C rg � P fL > eltg � P fL D elt � rg (5.21)

Numerical Example. Let L be discretely uniformly distributed with values
f1; 2; 3; 4g and r D 2. Then the corresponding ELT is calculated as follows:

P fELT D 1g D 0:25 � 0:25 � 1 C 0:5 � 0:25 � 1 C 0:75 � 0:75 � 0 D 0:1875

P fELT D 2g D 0:25 � 0:5 � 1 C 0:75 � 0:25 � 1 C 1 � 0:5 � 0 D 0:3125

P fELT D 3g D 0 � 0:75 � 1 C 1 � 0:25 � 1 C 1 � 0:25 � 0:25 D 0:3125

P fELT D 4g D 0 � 1 � 0:75 C 1 � 0:25 � 0:75 C 1 � 0 � 0:25 D 0:1875

General Case. As a first approach to generalize the above findings, let us think of
how many purchase orders may possibly arrive as the n-th delivery if we allow each
order to cross m other orders at most. Let us first consider an arrival sequence in
which all deliveries arrive in the same order as they were issued, except the n-th
delivery, which has a relative delay. Let this delayed n-th delivery be issued p

order cycles before the n-th purchase order. Then the n-th delivery is obviously
overtaken by p � 1 other orders, and m D p � 1 is the maximum number of
orders that are crossed by another one. Following on this situation, we observe
that we may only decrease m by somehow moving the n-th delivery to an earlier
position in the sequence. Obviously, the number of orders that overtake the n-th
delivery can neither be changed by swapping two earlier deliveries, nor by swapping
two later deliveries. Even swapping an earlier with a later delivery will not change
the situation because it either holds for both deliveries that they have been issued
after the n-th delivery and thus one of them still overtakes it, or, if the earlier
delivery was also issued before the n-th delivery, this particular order is overtaken
by p � 1 C 1 D p orders at least. The latter case would thus induce m � p because
the particular order is overtaken by all orders that have overtaken the n-th delivery,
and furthermore also the n-th delivery itself. The analogous argumentation holds for
the case that the n-th delivery was issued p periods after the n-th purchase order.
Thus, we have a maximum of k� D 2 �mC1 purchase orders that may finally arrive
in one particular period if no more than m order may be crossed by another one.
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Regarding the one order case, we have already noticed that we may not freely
permutate these k� orders to retrieve the possible arrival sequences. For example,
AS.3;1/ may not contain asx D .n C 1; n; n � 1/ as asx;1 D n C 1 as well as
asx;3 D n � 1 would indicate an order that crosses with two other orders, which
would be one more than is allowed. Therefore, AS.k�;m/, m � 1 will always be a set
of restricted permutations to describe all possible arrival sequences. Thus, we call

an arrival sequence as
.k�;m/
s allowed if

as
.k�;m/
s;i � as

.k�;m/
s;j C m 8 i; j i < j (5.22)

holds for the corresponding elements.
According to the condition, the i -th delivery must arrive earlier than any

delivery j that has been issued more than m periods later. I.e, no issue position
as

.k�;m/
s;j may be positioned left of as

.k�;m/
s;i in the arrival sequence that exceeds

the issue position of i by m or more cycles. Let us consider an example here.
Let m D 3. Then we need to regard k� D 7 consecutively issued orders to cover
all possible arrival sequences relative to the middle purchase order. Let us regard
an index space i 2 f�3; �2; : : : ; 3g to emphasize that the sequence regarded is
arranged around the middle purchase order indexed with 0. The sequence as

.7;3/
1 D

.�3; �1; �2; 3; 2; 1; 0/ is allowed as asi � asj C 3 holds for every index pair

i; j fulfilling i < j , whereas the sequence as
.7;3/
2 D .�2; �3; 3; 2; �1; 0; 1/ is not

allowed, as the pair as
.7;3/
2;3 D 3, as

.7;3/
2;5 D �1 dissatisfies the condition.

In the literature, several systematic methods are proposed to solve the problem of
enumerating restricted permutations. (See Vatter 2008 for an illustrative overview.)
For our application, we found the method of generating trees appropriate, both in
terms of computational efficiency and confirmability of the approach for construct-
ing the sequences. This method was introduced by Chung et al. (1978); further
applications are given by West (1995), West (1996) and Merlini and Verri (2000),
for example.

Given the problem of generating all sequences of k consecutive numbers that
satisfy a certain set of rules, the basic idea is to iteratively derive the allowed
sequences for x � k numbers from the allowed insertions into the allowed
sequences for x � 1 numbers. For the present problem, we start with x D 1 and
obviously obtain only one trivial sequence .0 � m/ that is always allowed. In a
following step x, we derive further sequences by inserting x behind the element in
position x � 1, x � 2; : : : as long as the next insertion would result in a forbidden
sequence. We can stop here, as all further insertions will obviously be forbidden as
well. Figure 5.1 displays the generating tree of allowed sequences for k D 3 and
m D 1.

Enumerating the allowed sequences for combinations of k and m, we observe
rapid combinatorial growth. Table 5.1 displays the result using a straightforward
Java implementation, without explicit memory management, which limits the
generating method to a few hundred thousand permutations. Note that we give the
number of allowed sequences for all (computable) pairs of 1 � k � 20, 1 � m � 7,
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Fig. 5.1 Fully expanded
generating tree for (n D 3,
m D 1)

Table 5.1 Number of allowed sequences

(k,m) 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 6 6 6 6 6 6

4 5 12 24 24 24 24 24

5 8 25 60 120 120 120 120

6 13 57 150 360 720 720 720

7 21 124 399 1;050 2;520 5;040 5;040

8 34 268 1;145 3;192 8;400 20;160 40;320

9 55 588 3;132 10,305 28;728 75;600 181;440

10 89 1;285 8;420 35;505 10;3050 287;280 �
11 144 2;801 22;716 116;620 390,555 � �
12 233 6;118 62;128 374;172 � � �
13 377 13;362 169;536 � � � �
14 610 29;168 � � � � �
15 987 63;685 � � � � �
16 1;597 139;057 � � � � �
17 2;584 303;608 � � � � �
18 4;181 � � � � � �
19 6;765 � � � � � �
20 10;946 � � � � � �

where in terms of the ELT we are only interested in the highlighted pairs for which
k D 2 � m C 1.D k�/ holds.

However, the very sequence is not exactly what we are after. Remember, we
are interested in the probability that an order will arrive at a certain position in the
arrival sequence. This position is already determined by the set of orders that have
arrived before, regardless of the sequence in which they arrived. Calculating the
probabilities, we will focus on the middle position only and ask wether an order
will arrive either on the exact position, before or after it.

Example. In the event that the range of the independent lead time allows each
order to crossover with a maximum of two other orders (m D 2), we have to
extend the time window observed to five orders (k� D 5). The number of allowed
sequences is now 25. Equation (5.23) displays all possible arrival sequences for
orders issued at order period n relative to a middle period (n D 0):
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(�1,0,�2,1,2) (�1,0,�2,2,1) (0,�1,�2,1,2) (0,�1,�2,2,1) (�2,0,�1,1,2)
(�2,0,�1,2,1) (�2,1,�1,0,2) (�2,1,�1,2,0) (0,�2,�1,1,2) (0,�2,�1,2,1)
(�2,�1,0,1,2) (�2,�1,0,2,1) (�1,�2,0,2,1) (�1,�2,0,1,2) (�2,1,0,�1,2)
(�2,�1,1,0,2) (�2,�1,1,2,0) (�2,0,1,�1,2) (�1,�2,1,0,2) (�1,�2,1,2,0)
(0,�2,1,�1,2) (�2,�1,2,0,1) (�2,�1,2,1,0) (�1,�2,2,0,1) (�1,�2,2,1,0)

(5.23)

Regarding the first four sequences of the first line, we note that they are equal
in terms of orders arriving before and after the middle element. Thus, those four
sequences are covered by one case .f�1; 0g; �2; f1; 2g/. Similarly, other sequences
can be reduced to one case of the described form, leading to (5.24). We will refer to
these cases as partly defined sequences.

(f�1,0g,�2,f1,2g) (f�2,0g,�1,f1,2g) (f�2,1g,�1,f0,2g) (f�2,�1g,0,f1,2g)
(f�2,1g,0,f�1,2g) (f�2,�1g,1,f0,2g) (f�2,0g,1,f�1,2g) (f�2,�1g,2,f0,1g)

(5.24)

Using the enumeration scheme described above, we can derive the relevant partly
defined sequences from the set of allowed sequences. This approach, however,
appears to be inefficient both in terms of computational effort and memory
requirements. We therefore propose Algorithm 4 to directly enumerate the partly
defined sequences for any given (odd) number k�. The basic idea of the algorithm
is as follows. Given k� D 2 � m C 1 numbers, we must consider each number as
the middle element. Choosing one of these numbers determines the set of numbers
that may be assigned to the left of it. Regarding (5.24), only f�2; �1; 0g may be
assigned to the left of 1, for example. Thus, the algorithm comes up with two
nested loops: one outer loop that defines the middle element (me), and one inner
loop that chooses one possible left element (ce). To prevent duplicate partly defined
sequences, it is ensured in the following that ce is the largest of all left side numbers.
Therefore, only some numbers apply for ce, namely those between se and le. (See
the structured exposition of the algorithm for details.)

Some numbers are definitely required on the left side of me for certain pairs of
me and ce. Regarding (5.24) again, if me D 0 and ce D 1, then �2 must not
be placed on the right of me. Admittedly, the example of (5.24) is too small to
observe the full phenomenon, as �2 must always either be on the left, or be me.
Thus imagine m D 3; k� D 7, then ce D 0; me D 1 would require all numbers
smaller than maxfce; meg�m D �2 on the left. A base sequence BS is constructed
if these required elements are added.

If all slots on the left side have already been taken in a base sequence, the
corresponding pair of ce and le only results in one partly defined sequence, which
can easily be completed by assigning all numbers to the right that have not been
assigned so far.
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Algorithm 4: Enumeration of partly defined sequences
Input: n
Output: All partly defined sequences PSQ of length n

m D b n
2
c;

PSQ D new SetOfPartlyDefinedSequences();
for me D 1 to n do

if me < b then
se D m C 1;
le D me C m;

else
se D b;
if me < n � 1 then le D n � 1;
else if me DD n � 1 then le D n � 2;
else le D m;

end
for ce D se to le, ceŠ D me do

BS D new PartlyDefinedSequence();
BS.addAsME(me); /* add me as middle element */
BS.addAsLE(ce); /* add me to the left elements */
BS.addRequired(ce; me); /* add required due to me and le */
FE D BS.getFreeElements(); /* all elements that may but need
not be included in the set of left elements */
f s D BS.getFreeSlots(); /* number of undrawn slots on left
side */
if f s DD 0 then

BS.assignRE(); /* add disregarded numbers to the right
side */
PSQ.add(BS); /* add basic set to solution set */

else
FS D getFreeSubsets(FE, fs); /* get all f s-subsets of set FE

*/
foreach Subset f ss in FS do

S D BS.clone(); /* copy elements of basic sequence */
S.addAsLE(f ss); /* add elements of chosen free subset

*/
S.assignRE(); /* add disregarded numbers */
PSQ.add(S); /* add S to solution set */

end
end

end
end

If there are x > 0 slots remaining, these may freely be filled with all possible
x-subsets of all numbers that may (but need not) stand left of ce and me. Again, the
sequences are completed by adding all remaining unassigned numbers to the right.

Experiments suggest that the total number of different partly defined sequences
is .m C 2/ � 2m�1, but providing proof for this assumption remains an open task.

Let PSQ be the set of all partly defined sequences for a given m that we are
now able to enumerate, using Algorithm 4. Furthermore, let psq be one member
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of PSQ, and psqi the value of element i in a specific psq, i.e., the position in the
order issue sequence. We can then describe the probabilities of occurrence of certain
effective lead times subject to a specific psq according to (5.25) and (5.26):

P fELT D elt jPSQ D psqg � fPSQ D psqg

D
m�1Y

iD�mC1

P fW ı elt C psqi � r jPSQ D psqg (5.25)

P fW ı elt C psqi � rg D

8
ˆ̂<
ˆ̂:

P fW � elt C psqi � rg if i < mg
P fW D elt C psqi � rg if i D m

P fW � elt C psqi � rg if i > mg
(5.26)

Numerical Example. The partly defined sequence

psq D f�2; 0g; 1; f�1; 2g

resolves to

P fELT D elt jPSQ D psqg � fPSQ D psqg
D P fW � elt � 2 � rg � P fW � eltg � P fW D elt C rg

� P fW � elt � 1 � rg � P fW � elt C 2 � rg:

We are now already able to state (5.27) as upper bound for the efficient lead time
probabilities:

P fELT D eltg �
X

psq2PSQ

P fELT D elt jPSQ D psqg � fPSQ D psqg

(5.27)

Equation (5.27) does not describe the exact probabilities, as the cases we derive
from PSQ are not generally free of conjunctions, e.g., the special case of P fW D
elt C i � rg 8i is included in every psq. We have already observed this phenomenon
regarding the special case of m D 1. To derive a form that is free of conjunctions,
we can use the technique of expansion and reduction as introduced above. Each
non-simple comparative operator (i.e., ‘�’ and ‘�’) has to be subdivided into two
cases of simple comparative operators, leading to 2' expanded cases, where ' is the
number of factors that include a non-simple comparative operator. Expression (5.27)
directly implies that we derive 22�mC1 expanded cases from each partly defined
sequence.

After the reduction, the resulting cases may again be combined to expressions
that allow for the non-simple comparative operators. This may be done by repeat-
edly combining cases that differ in only one comparison operator. To understand
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Table 5.2 Encoding of comparison operators

Operator � < D < �
Code �2 �1 0 1 2

Algorithm 5: Algorithm to construct the combined cases
Input: Reduced cases (RED), n
Output: Combined cases (COM)
COM D RED.clone();
tempCOM D new SetOfCases();
for i D 1 to n do

COM.excludingSort(i); /* Sort COM disregarding position i */
index D 1;
while index < jCOMj do

newSequence D COM[index].clone();
if COM[index].seq(i) � COM[index+1].seq(i) � 0
&& COM[index].excluding(i) DD COM[index+1].excluding(i) then

if COM[index].seq(i) < 0 jj COM[index+1].seq(i) < 0 then
newSequence.seq(i) D -2;

else
newSequence.seq(i) D 2;

end
index D index +2;

else
index D index C1;

end
tempCOM.add(newSequence)

end
if index < jCOMj then

tempCOM.add(COM.lastElement);
end
COM D tempCOM;

end

the algorithm, let us introduce the following notation. A case of k� comparisons
is represented by k� numbers x, x 2 f�2; �1; 0; 1; 2g, where we encode the
comparison operators according to Table 5.2.

The basic idea of the approach displayed in Algorithm 5 is to repeatedly combine
two cases that meet two conditions. Firstly, both cases are equal except for one
element at position i and secondly, x1

i and x2
i , i.e., the elements at position i of both

sequences, must either be both smaller than or equal to zero, or they must both be
greater than or equal to zero. When these conditions are met, we can replace the two
sequences by one, with entry �2 if both x1

i and x2
i were smaller or equal to 0 and 2

otherwise.
Table 5.3 summarizes the cardinalities of PSQ, the expanded cases (EXP ), the

reduced cases (RED) and finally the combined cases (COM ). Where we have an
indication, we denote the theoretical closed expression in the second line. Clearly,
the expansion step limits the approach, especially in terms of memory.

Using the algorithm, we derive the following expressions for m D 2; 3 and 4. We
give the expressions for m D 2 in encoded form (5.28) and in plain form (5.29) to
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Table 5.3 Effective lead time – relevant cardinalities
m k� jPSQj jEXPj jREDj jCOMj

m 2 � m C 1 .m C 2/ � 2m�1 (?) .m C 2/ � 23�m�1 (?) Unknown Unknown

1 3 3 12 8 3

2 5 8 128 60 9

3 7 20 1;280 432 26

4 9 48 12;288 3;024 73

5 11 112 114;688 20;736 201

further illustrate the encoding described above. The expressions for m D 3 (5.30)
and m D 4 (5.31) are given in encoded form only.

(�2,�2,0,1,1) (�2,�2,2,0,1) (�2,�2,2,2,0) (�2,0,�1,1,2) (�2,0,1,�1,2)
(�2,1,0,0,2) (�2,2,�1,0,2) (�2,2,0,�1,2) (0,�1,�1,2,2)

(5.28)

P fELT D eltg
D P fL � elt C 2 � rg � P fL � elt C rg � P fL D eltg � P fL > elt � rg � P fL>elt � 2 � rg
C P fL � elt C 2 � rg � P fL � elt C rg � P fL � eltg � P fL D elt � rg � P fL > elt � 2 � rg
C P fL � elt C 2 � rg � P fL � elt C rg � P fL � eltg � P fL � elt � rg � P fLD elt � 2 � rg
C P fL � elt C 2 � rg � P fL D elt C rg � P fL < eltg � P fL > elt � rg � P fL � elt � 2 � rg
C P fL � elt C 2 � rg � P fL D elt C rg � P fL > eltg � P fL < elt � rg � P fL � elt � 2 � rg
C P fL � elt C 2 � rg � P fL > elt C rg � P fL D eltg � P fLD elt � rg � P fL � elt � 2 � rg
C P fL � elt C 2 � rg � P fL � elt C rg � P fL < eltg � P fL D elt � rg � P fL � elt � 2 � rg
C P fL � elt C 2 � rg � P fL � elt C rg � P fL D eltg � P fL < elt � rg � P fL � elt � 2 � rg
C P fL D elt C 2 � rg � P fL < elt C rg � P fL < eltg � P fL � elt � rg � P fL � elt � 2 � rg

(5.29)

(�2,�2,�2,0,1,1,1) (�2,�2,�2,2,0,1,1) (�2,�2,�2,2,2,0,1) (�2,�2,�2,2,2,2,0)
(�2,�2,0,�1,1,1,2) (�2,�2,0,1,�1,1,2) (�2,�2,0,1,1,�1,2) (�2,�2,1,0,0,1,2)
(�2,�2,1,0,1,0,2) (�2,�2,1,2,0,0,2) (�2,�2,2,�1,0,1,2) (�2,�2,2,�1,2,0,2)
(�2,�2,2,0,�1,1,2) (�2,�2,2,0,1,�1,2) (�2,�2,2,2,�1,0,2) (�2,�2,2,2,0,�1,2)
(�2,0,�1,�1,1,2,2) (�2,0,�1,1,�1,2,2) (�2,0,1,�1,�1,2,2) (�2,1,�2,0,0,2,2)
(�2,1,0,�1,0,2,2) (�2,1,0,0,�1,2,2) (�2,2,�1,�1,0,2,2) (�2,2,�1,0,�1,2,2)
(�2,2,0,�1,�1,2,2) (0,�1,�1,�1,2,2,2)

(5.30)
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(�2,�2,�2,�2,0,1,1,1,1) (�2,�2,�2,�2,2,0,1,1,1) (�2,�2,�2,�2,2,2,0,1,1)
(�2,�2,�2,�2,2,2,2,0,1) (�2,�2,�2,�2,2,2,2,2,0) (�2,�2,�2,0,�1,1,1,1,2)
(�2,�2,�2,0,1,�1,1,1,2) (�2,�2,�2,0,1,1,�1,1,2) (�2,�2,�2,0,1,1,1,�1,2)
(�2,�2,�2,1,0,0,1,1,2) (�2,�2,�2,1,0,1,0,1,2) (�2,�2,�2,1,0,1,1,0,2)
(�2,�2,�2,1,2,0,0,1,2) (�2,�2,�2,1,2,0,1,0,2) (�2,�2,�2,1,2,2,0,0,2)

(�2,�2,�2,2,�1,0,1,1,2) (�2,�2,�2,2,�1,2,0,1,2) (�2,�2,�2,2,�1,2,2,0,2)
(�2,�2,�2,2,0,�1,1,1,2) (�2,�2,�2,2,0,1,�1,1,2) (�2,�2,�2,2,0,1,1,�1,2)
(�2,�2,�2,2,2,�1,0,1,2) (�2,�2,�2,2,2,�1,2,0,2) (�2,�2,�2,2,2,0,�1,1,2)
(�2,�2,�2,2,2,0,1,�1,2) (�2,�2,�2,2,2,2,�1,0,2) (�2,�2,�2,2,2,2,0,�1,2)
(�2,�2,0,�1,�1,1,1,2,2) (�2,�2,0,�1,1,�1,1,2,2) (�2,�2,0,�1,1,1,�1,2,2)
(�2,�2,0,1,�1,�1,1,2,2) (�2,�2,0,1,�1,1,�1,2,2) (�2,�2,0,1,1,�1,�1,2,2)
(�2,�2,1,�2,0,0,1,2,2) (�2,�2,1,�2,0,1,0,2,2) (�2,�2,1,�2,2,0,0,2,2)
(�2,�2,1,0,�1,0,1,2,2) (�2,�2,1,0,�1,1,0,2,2) (�2,�2,1,0,0,�1,1,2,2)
(�2,�2,1,0,0,1,�1,2,2) (�2,�2,1,0,1,�1,0,2,2) (�2,�2,1,0,1,0,�1,2,2)
(�2,�2,1,1,0,0,0,2,2) (�2,�2,1,2,�1,0,0,2,2) (�2,�2,1,2,0,�1,0,2,2)
(�2,�2,1,2,0,0,�1,2,2) (�2,�2,2,�1,�1,0,1,2,2) (�2,�2,2,�1,�1,2,0,2,2)
(�2,�2,2,�1,0,�1,1,2,2) (�2,�2,2,�1,0,1,�1,2,2) (�2,�2,2,�1,2,�1,0,2,2)
(�2,�2,2,�1,2,0,�1,2,2) (�2,�2,2,0,�1,�1,1,2,2) (�2,�2,2,0,�1,1,�1,2,2)
(�2,�2,2,0,1,�1,�1,2,2) (�2,�2,2,2,�1,�1,0,2,2) (�2,�2,2,2,�1,0,�1,2,2)
(�2,�2,2,2,0,�1,�1,2,2) (�2,0,�1,�1,�1,1,2,2,2) (�2,0,�1,�1,1,�1,2,2,2)
(�2,0,�1,1,�1,�1,2,2,2) (�2,0,1,�1,�1,�1,2,2,2) (�2,1,�2,�2,0,0,2,2,2)
(�2,1,�2,0,�1,0,2,2,2) (�2,1,�2,0,0,�1,2,2,2) (�2,1,0,�1,�1,0,2,2,2)
(�2,1,0,�1,0,�1,2,2,2) (�2,1,0,0,�1,�1,2,2,2) (�2,2,�1,�1,�1,0,2,2,2)
(�2,2,�1,�1,0,�1,2,2,2) (�2,2,�1,0,�1,�1,2,2,2) (�2,2,0,�1,�1,�1,2,2,2)
(0,�1,�1,�1,�1,2,2,2,2)

(5.31)

Numerical Example. Let L be a discrete uniform distribution with possible values
l 2 f1; 2; 3; 4; 5g, furthermore let ELT .L; r/ describe the effective lead time of a
replenishment process, where orders are issued every r-th period and replenishment
lead times have the distribution of L. Table 5.4 displays the resulting effective lead
time probabilities and first two moments for different parameters r .

Regarding these results, we observe a stable mean value and a declining standard
deviation when lowering r . This leads us to the following two conjectures.

Conjecture 1. E.L/ D E.ELT .L; r// holds for all r > 0.

Table 5.4 Effective lead times for different parameters r

r � 4 r D 3 r D 2 r D 1

P fELT .L; r/ D 1g 0.2 0.16 0.12 0.0384
P fELT .L; r/ D 2g 0.2 0.24 0.2 0.2464
P fELT .L; r/ D 3g 0.2 0.2 0.36 0.4304
P fELT .L; r/ D 4g 0.2 0.24 0.2 0.2464
P fELT .L; r/ D 5g 0.2 0.16 0.12 0.0384
�ELT 3 3 3 3
�ELT 1.414214 1.326650 1.166190 0.894427
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Conjecture 2. Var.L/ � Var.ELT .L; r// holds for all r > 0.

Incomplete Proof. We may prove the two conjectures for the special case of
m D 1, which means that two consecutive orders placed at period n and n C 1

observe either eltn D ln; eltnC1 D lnC1 (no-crossover) or eltn D lnC1Cr; eltnC1 D
ln � r (crossover).

Conjecture 1 holds because of

lnC1 C r C ln � r

2
D ln C lnC1

2
,

i.e., the mean effective lead time of the two orders equals their underlying mean lead
times, whether they cross over or not.

Considering the variance (Conjecture 2), we have to examine whether

l2
n C l2

nC1 � .lnC1 C r/2 C .ln � r/2

holds in the event that those two orders cross over. This can be shown by the
following conversions, assuming r > 0:

l2
n C l2

nC1 � .lnC1 C r/2 C .ln � r/2

, l2
n C l2

nC1 � l2
nC1 C r � lnC1 C r2 C l2

n � r � ln C r2

, 0 � r � .lnC1 C r/ � r � .ln C r/

, ln � lnC1

The last line proves the conjecture for m D 1, because we regard the crossover case
here, meaning that ln � lnC1 holds.

We leave the question open to future research as to wether the two conjectures
hold for general assumptions and close with a last unproven conjecture, based on
both empirical test results and the author’s intuition.

Conjecture 3. Var.ELT .L; r1// � Var.ELT .L; r2// holds for all r1; r2 >

0; r1 � r2.

5.3 Sequential Arrivals

Based on an idea due to Kaplan (1970), Zipkin (1986b) introduces a general set
of conditions to define a replenishment lead time process that rules out order
crossover. Let fU.t/ W t 2 Rg be a real-valued, stationary, ergodic stochastic process
that satisfies the following conditions. (See Zipkin 1986b, p. 770) U.t/ may be
interpreted as the age of the oldest order at time t .

1. U.t/ � 0 and EŒU.t/� < 1
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2. t � U.t/ is nondecreasing
3. Sample paths of fU.t/g are continuous to the right
4. fU.t/g is independent of the placement and size of orders and the demand process

U.t/ may be interpreted as the age of the oldest order arriving at time t . According
to (1), U.t/ returns meaningful (non-negative) lead times with a finite expected
value, i.e., the process is stationary. To understand that condition (2) rules out order
crossover, consider two orders arriving in t1 and t2, t1 � t2. These two orders would
cross over, if and only if U.t2/ > U.t1/ C .t2 � t1/. Reformulating the inequation to
t1 �U.t1/ > t2 �U.t2/, we clearly see that this is contradictory to (2). Condition (3)
is a rather technical condition that ensures continuity of U.t/. Typically, we observe
jump discontinuities in sample paths of U.t/ for those values t at which an (oldest)
order arrives. Nonetheless, U.t/ is continuous to the right if an order is immediately
removed from the stack as soon as it arrives, so that the age of the oldest order at the
very point of arrival is then determined by the order that was previously the second
oldest. Finally, (4) is self-explanatory.

Note that due to (2), lead times modeled in accordance with U.t/ are not
independent in general, but form a continuous-time, continuous-state Markov
process. See Ehrhardt (1984) or Nahmias (1979) for further insights into formulating
lead time processes.

The recursion defined in (5.32) and (5.33) gives an example of a sampling process
satisfying (1)–(4), where S.Ln/ is a sampling function of an arbitrarily distributed
Ln, and A.n/ returns the issue date of the n-th order. A.n/ � A.n � 1/ is thus the
time between the issue of the n�1-st and n-th order. For the case of an (r; S ) policy,
obviously A.n/ � A.n � 1/ D r holds for every pair of two consecutive orders:

l0 D S.L0/ (5.32)

ln D maxfS.Ln/; ln�1 � .A.n/ � A.n � 1//g (5.33)

Let A.n/ � A.n � 1/ D r 8 n and .L�
n jL�

n�1 D ln�1/ be the lead time generating
process defined by the recursion above. Then the probability distribution of the latter
is given by (5.34):

P fL�
n D lnjL�

n�1 D ln�1g D

8
ˆ̂<
ˆ̂:

0 if ln < ln�1 � r

P fLn � ln�1 � rg if ln D ln�1 � r

P fLn D lng if ln > ln�1 � r

(5.34)

Note that (5.34) forms a Markov chain with state transition probabilities pab

given by P fL�
n D ajL�

n�1 D bg. On analyzing Markov chains in general, see Meyn
and Tweedie (2009), for example.

Let us assume in the following that the Ln are discrete distributions with a
common finite set of integer states with probabilities pl . Then (5.34) forms a
discrete-time, discrete-state Markov chain, where steady state probabilities can
easily be calculated.
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Numerical Example. Let L1; L2; : : : ; Ln be identically discretely uniformly
distributed with states f1; 2; 3; 4g and r D 1. Then the matrix of state transitions
resolves to (5.35):

pab D

0
BB@

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:0 0:5 0:25 0:25

0:0 0:0 0:75 0:25

1
CCA (5.35)

To determine the steady state probabilities, we derive a system of linear equations
(5.36), where we can drop one of the first four lines:

0:25 � p�
1 C0:25 � p�

2 C0:25 � p�
3 C0:25 � p�

4 D p�
1

0:25 � p�
1 C0:25 � p�

2 C0:25 � p�
3 C0:25 � p�

4 D p�
2

0:0 � p�
1 C0:5 � p�

2 C0:25 � p�
3 C0:25 � p�

4 D p�
3

0:0 � p�
1 C0:0 � p�

2 C0:75 � p�
3 C0:25 � p�

4 D p�
4

p�
1 Cp�

2 Cp�
3 Cp�

4 D 1

The example lead time process has p� D f0:09375; 0:28125; 0:375; 0:25g steady
state probabilities.

Alternatively to the recursion defined in (5.32) and (5.33), it may be reasonable
to make use of a truncated distribution, where the probability distribution of
.L�

n jL�
n�1 D ln�1/ is then given by (5.36). See also Sect. 4.4.

P fL�
n D lnjL�

n�1 D ln�1g D
(

0 if ln < ln�1 � r
P fLnDlng

1�P fLn<lng if ln � ln�1 � r
(5.36)

Here, we assume that the probability mass of the forbidden values ln for a given
ln�1 is transferred proportionally to the remaining allowed values. In terms of a
probability experiment, this would be equivalent to repeatedly drawing from Ln

and discarding forbidden values until we obtain an allowed value. We obtain the
following state transition matrix for the above example:

pab D

0
BB@

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:0 0:333333 0:333333 0:333333

0:0 0:0 0:5 0:5

1
CCA (5.37)

This lead time process has p� D f0:0625; 0:1875; 0:375; 0:375g steady state
probabilities.

Remark. When lead times are dependent the proceeds for calculating the number of
outstanding orders and the amount of stock outstanding as introduced in Sects. 5.2.1
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and 5.2.2 are not applicable. We leave it open to future research to create appropriate
methods to solve these problems.

5.4 Limited Distributions

While many authors make the assumption that lead times are independent and orders
never cross, this is generally self-contradictory. (See e.g. Chen and Zheng 1992.)
However, one may specify a system where both assumptions are met, an idea that is
due to Hadley and Whitin (1963). Let us have a closer look at corollary 1, p. 58, to
understand what we necessarily have to assume.

The corollary implies that in the case of two orders A and B , oA < oB do not
cross if and only if oB � oA � lA � lB , i.e., the difference between the two order
lead times must be smaller than the difference between the order issue dates. Let
R be a random variable denoting the time between issuing two consecutive orders
and let Rn be the random time between two orders A and B that represent the i -th
and .n C i C 1/-th order in the issue sequence, so that Rn D OB � OA, where the
issuing times of A and B are random. Then A and B do not cross if and only if
either Rn � 0 or Rn � LA � LB .

Excluding the rather theoretical case of a system with R � 0, Rn � 0 is never
fulfilled. Rn � LA � LB is generally fulfilled if MinfRng � MaxfLA � LBg. With
R � 0, we have MinfRng D MinfRg, while MaxfLA � LBg D Lspan, Lspan D
lmax � lmin. In other words, in the event that the replenishment lead time span is
shorter than the minimum time between two consecutive order placements, order
crossover can be ruled out even with independent lead times.

For an application using limited distributions in inventory management, see
Sphicas and Nasri (1984), for example.
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Chapter 6
Analysis and Optimization

The preceding chapters introduced the analysis of inventory systems from a
comprehensive perspective. In Chap. 2 we described the general forms of single-
level inventory systems along with the basic concepts for describing the state of
an inventory system, and the elementary figures for evaluating its performance.
We then gave a broad literature overview in Chap. 3, and introduced some basic
analytical methods in Chap. 4 with a focus on the application to periodic review
models operating on a discrete time axis. In Chap. 5, we – also from a broad per-
spective – indicated different possibilities for incorporating lead time stochasticity
into inventory models.

This chapter inevitably leaves the comprehensive scope and confines our atten-
tion to a specific class of inventory systems that we will analyze in detail.
Nonetheless, we try to present our results in a manner that may help to adapt
them to different systems and further problems. We particularly demonstrate how to
consider different assumptions concerning the replenishment and order fulfillment
process in the analysis of the same performance metrics.

The organization of this chapter is as follows. In Sect. 6.1, we define the model of
the underlying single-level inventory system that we will analyze in the following.
Section 6.2 contains a set of example instances that we will use to exemplify the
analytical approaches. The analysis then follows in Sect. 6.3, where we distinguish
between two model subspecifications. In the first place, we separately consider the
two contrary lead time models described in Chap. 5, namely the lead time model
that rules out order crossover (as generally described in Sect. 5.3) and the one
that allows for the phenomenon (described in Sect. 5.2). Within the corresponding
specifications, we will furthermore distinguish whether customer orders may be split
in the event of a shortage, or wether they have to be served by one complete delivery.

Finally, in Sect. 6.4, we examine selected aspects of optimizing inventory
systems based on the analytical findings.

T. Wensing, Periodic Review Inventory Systems, Lecture Notes in Economics
and Mathematical Systems 651, DOI 10.1007/978-3-642-20479-1 6,
© Springer-Verlag Berlin Heidelberg 2011
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6.1 Model Formulation and Notation

The single-level inventory model intends to describe an inner node of a multi-level
inventory system in which all nodes operate according to periodic review order-up-
to (r; S ) policies. Following from that, replenishment orders as well as customer
orders are placed and arrive on a periodical basis, where the actual frequency
depends on the order cycle (r) that induces the orders. To be more specific,
customer demands arrive according to a compound renewal process fTn; Dngn�1,
where Tn 2 ZC is a constant order interarrival rate (rD in the following) induced
by the successive stock, and Dn are continuously i.i.d. order sizes. Assuming
a reorder policy with variable order sizes, the Dn comply with the successive
stock’s demand in rD time units. Lead times are discretely distributed, where we
examine both independent lead times with the possibility of order crossover (as
described in Sect. 5.2) and the dependent lead time model (as described in Sect. 5.3).
Furthermore, we will distinguish two order fulfilment modes, namely the cases of
split and full deliveries. In the first case, we allow for split deliveries if stock on hand
is sufficient to fulfill only a certain fraction of the volume of a customer order; in
the second case, the customer order will only be delivered in full, i.e., the complete
volume is delayed if one unit or more is missing.

The discrete time axis comes with the necessity of clarifying the sequence of
stock-effecting events. We assume the following sequence. First, the customer order
arrives, second, replenishment orders (possibly) arrive, third, the (backordered)
customer orders are served if possible, and finally replenishment orders are issued
if the present period is an order period.

6.2 Example Configurations

In the following we will repeatedly solve model instances to illustrate the analytical
formulae. For a clearer representation, we will define those model instances in
this section, and later on only refer to the instance number. Table 6.1 displays the
example instances, where Norm.�; �/ denotes a normal distribution with mean
� and standard deviation � , and U nif .fx; y; : : :g/ denotes a discrete uniform
distribution with possible values x; y; : : :, i.e., U nif .f1; 4g/ in Table 6.1 means that
L is either 1 or 4, both with 50% probability.

6.3 Analysis

The organization of this section is driven by the analytical requirements of the
characteristics that we want to examine. In the first place, we distinguish whether the
underlying lead time model allows for order crossover or not. For both cases, we will
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Table 6.1 Example configurations

No. r S rD D L

1 2 300 1 Norm(100,30) Unif(f1,2g)
2 4 500 1 Norm(100,30) Unif(f1,2g)
3 4 500 2 Norm(100,30) Unif(f1,2g)

4 2 80 1 Unif(f10,20,50,100g) Unif(f1,2g)
5 4 160 1 Unif(f10,20,50,100g) Unif(f1,2g)
6 4 160 2 Unif(f10,20,50,100g) Unif(f1,2g)

7 2 300 1 Norm(100,30) Unif(f1,4g)
8 4 650 1 Norm(100,30) Unif(f1,8g)
9 4 650 2 Norm(100,30) Unif(f1,8g)

10 2 80 1 Unif(f10,20,50,100g) Unif(f1,4g)
11 4 160 1 Unif(f10,20,50,100g) Unif(f1,8g)
12 4 160 2 Unif(f10,20,50,100g) Unif(f1,8g)

Table 6.2 Problems and assumptions

Dependent lead times Order crossover

Order view Sect. 6.3.1 Sect. 6.3.4
Volume view

Split deliveries Sect. 6.3.2 Sect. 6.3.5
Full deliveries Sect. 6.3.3 Sect. 6.3.6

then first be concerned with the characteristics that focus on customer orders, i.e.,
the distribution of waiting times per order, and then consider the volume-oriented
characteristics such as fill rate or average inventory levels. For the latter group
we furthermore distinguish whether customer orders may be split or have to be
delivered in full. Table 6.2 summarizes the different combinations of problems and
assumptions, and shows where to find the corresponding evaluation approaches.

In the following chapters, we will not specially mark the metrics considered
within the case being observed, i.e., we will, for example, always plainly identify
the fill rate as ˇ without adding any sub- or superscript to indicate that we actually
mean the fill rate for a special delivery mode here. We hope that the reader is not
confused by the fact that the same symbol is then associated with different equations
depending on the case that we assume to be set by the context of the chapter. We
think that the alternative use of sub- or superscripts to cleanly distinguish the cases
would reduce the readability of the formulae.

6.3.1 Dependent Lead Times, Order View

6.3.1.1 Ready Rate

[Case: � D rD .] In the event that the lead time model does not allow for order
crossover, the ready rate per period may be determined according to the following



84 6 Analysis and Optimization

considerations. Let us initially assume that the lead time l is a constant, and
a replenishment order arrives after l periods. We can then obviously state that
the stock on hand is sufficient to fulfill the demand in this period if and only if
the demand in l periods has not been higher than S . Remember that by definition of
the (r; S ) policy, each replenishment order immediately raises the inventory position
to S . Thus, when the order arrives after l periods, the net inventory levels are at S

minus the amount that has been demanded between order issue and arrival. We can
furthermore state that the stock on hand is sufficient to fulfill the demand of the next
(r � 1) periods if the demand in l C 1; l C 2; : : : ; l C r � 1 periods was not higher
than S . We can keep track of this scheme until the next replenishment order arrives
in period r C l , where we again observe the same conditions as for period l :

Let the demand rate rD D 1, then (6.1) states the ready rate per customer order
arrival, where T � D f0; 1; : : : ; r � 1g is the set of subperiods of an order cycle.

˛�D1jL D l D
X

t�2T �

1

r
� P fDŒlCt�� � Sg (6.1)

While (6.1) considers a specific lead time, the overall ready rate per customer
order is stated by (6.2), where P fL D lg is the (steady state) probability for
an order to arrive after l periods. Note that the above argumentation still holds
as long as we do not allow for order crossover. The argumentation must then be
read in the opposite direction, i.e., there is no stockout in the period just before the
replenishment order arrival if the demand in r C l � 1 periods has not exceeded S .

˛�D1 D
X

t�2T �

X
l2L

P fL D lg
r

� P fDŒlCt�� � Sg (6.2)

For an arbitrary customer order rate rD and an unchanged period demand, we have
to consider that the frequency of demand observation changes from 1

r
to rD

r
. To

reflect this circumstance, let T �� D f0; 1; : : : ; r
rD

� 1g be the set of consecutive
demand occurrences within an order cycle. Furthermore, we have to alter the amount
of demand that has occurred until the corresponding periods after the arrival of a
replenishment order. For a clearer representation, let us define an adaptation function
here for the latter purpose.

Definition 20 (First adaptation function). Let nf1.a; b/ denote the first adapta-
tion function, given as follows:

nf1.a; b/ W D
�

a

b

�
� b

Using nf1.a; b/, we can state the ready rate per customer order as follows.

˛�DrD D
X

t��2T ��

X
l2L

rD � P fL D lg
r

� P fDŒnf1.lCrD �t��;rD/� � Sg (6.3)
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Note that (6.4) is equal to (6.3), but results in avoidable multiple calculation of the
same values if rD > 1:

˛�DrD D
X

t�2T �

X
l2L

P fL D lg
r

� P fDŒnf1.lCt�;rD/� � Sg (6.4)

Numerical Example. Considering Example 1 of Table 6.1 (p. 83), the ready rate
per customer order is calculated as follows:

˛�D1 D P fL D 1g
2

� P fDŒ1� � 300g C P fL D 2g
2

� P fDŒ2� � 300g

C P fL D 1g
2

� P fDŒ2� � 300g C P fL D 2g
2

� P fDŒ3� � 300g

D 1

4
� CDFDŒ1� .300/ C 1

2
� CDFDŒ2� .300/ C 1

4
� CDFDŒ3� .300/

D 0:25 � 1:0 C 0:5 � 0:990789 C 0:25 � 0:5

D 0:870394

[Case: � D r .] The ready rate per replenishment cycle can be calculated
similarly. Again, let us first consider an order arrival after a certain lead time l .
We will not observe a stockout in the corresponding cycle if S is sufficiently large
to cover the demand of l C r � 1 periods. In other words, we need to cover the
replenishment lead time plus one cycle, where we must not consider the last period
due to the chosen event sequence. (The demand of the order period itself will
immediately be considered with the new replenishment order.) We thus denote (6.5)
for a demand rate rD D 1:

.˛�Dr jL D l/ D P fDŒlCr�1� � Sg (6.5)

For an arbitrary rD and discretely distributed replenishment lead times L, we obtain
(6.6):

˛�Dr D
X
L2l

P fL D lg � P fDŒnf1.lCr�1;rD/� � Sg (6.6)

Numerical Example. Considering Example 1 of Table 6.1 (p. 83), the ready rate
per order cycle is calculated as follows:

˛�Dr D P fL D 1g � P fDŒ2� � 300g C P fL D 2g � P fDŒ3� � 300g
D 0:5 � 0:990780 C 0:5 � 0:5

D 0:745394
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In Sect. 2.3.2.1 we have already discussed the problems that we might observe
when empirically measuring the ready rate per order cycle under some special
assumptions. Although (6.6) exactly indicates the ratio of replenishment orders that
will be connected with problems in customer order fulfilment, it is hardly possible
to track this effect on a real or simulated inventory system if two or more orders
could be outstanding at the same time.

6.3.1.2 Customer Waiting Time per Order

For a start, let us again assume that the lead time is fixed to a value l and customer
orders arrive in every period (rD D 1). Let us furthermore regard one period t� of
the order cycle, and assume S � 0. We can then state that the maximum lead time
for any order arriving in this period is r Cl �t�, as the corresponding customer order
will definitely be taken into account with the next replenishment order, which will
be issued in r � t� periods and will arrive l periods later. The corresponding waiting
time is realized if the demand of t� periods exceeds S , as otherwise the customer
order could have been satisfied with the material of some earlier replenishment
order. Equation (6.7) thus denotes the probability that a customer order will observe
the maximum possible lead time in periods T � D f0; 1; : : : ; r � 1g:

P.W O D r C l � t�jL D l; T � D t�; rD D 1; S � 0/ D P fDŒt�� > Sg (6.7)

Dropping the assumption S � 0 obviously leads to (6.8), where a customer arriving
in period t� will now observe a waiting time of r C l � t� or longer:

P.W O � r C l � t�jL D l; T � D t�; rD D 1/ D P fDŒt�� > Sg (6.8)

Let us now replace t� by t� 2 Z; t� < r C l , where t� denotes a period with
distance t� versus a specific order period. Formula (6.8) still holds, but we have
to consider that t� will match a certain period of the order cycle. Let us define a
second adaptation function to identify these matching periods.

Definition 21 (Second adaptation function). Let nf2.a; b/ denote the second
adaptation function, given as follows:

nf2.a; b/ D
 

a

b
�
$

a

b

%!
� b

Using nf2.a; b/, we can state the period-specific probabilities as follows:

P.W O � r C l � t�jL D l; T D nf2.t�; r/; rD D 1/ D P fDŒt�� > Sg (6.9)

Note that even from (6.9) we can still deduce the fundamental argument that leads
us to (6.8): In the event that the demand in period t� exceeds S , the replenishment
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order issued r C l � t� periods ago is not sufficient to cover the demand of period
t�, which would have resulted in a lead time of l � t� or lower. Instead, we have
to wait for the next replenishment order at least, which was released r periods later.
This would result in a waiting time of r C l � t�.

Now that we allow for negative order-up-to levels S , we need to specify DŒt��

for t� � 0:

DŒ0� � 0 (6.10)

DŒt�� D �DŒ�t�� 8 t� < 0 (6.11)

P fDŒt�� > Sg D P f�DŒ�t�� � �Sg 8 t� < 0 (6.12)

For the order period t� D 0 we have P fDŒ0� > Sg D 0 if S is positive, or 0 and
P fDŒ0� > Sg D 1 if S is negative. In the first case, the backorder amount including
the demand in period t� D 0 is definitely considered in full with the replenishment
order issued in t� D 0, and therefore the waiting time cannot possibly be longer
than r C l � 1. In the latter case of S < 0, the demand in period t� D 0 will
definitely not be considered in full with the corresponding replenishment order, and
thus the demand has a waiting time of r C l or longer. The calculus for t� < 0 is
somewhat the opposite of the positive case if S < 0. Here, a certain backorder level
is needed to ensure that a period’s demand is considered with the next replenishment
order. Namely the demand of period t� < 0 will only be considered, if the demand
of periods t� C 1; t� C 2; : : : ; 0 exceeds �S .

By substitution of w WD r C l � t� and t� D r C l � w; w > 0, we obtain
the general probability that an order arriving in a corresponding period of the order
cycle has a waiting time of w or longer:

P fW O � wjL D l; T D nf2.r C l � w; r/; w > 0; rD D 1g
D P fDŒrCl�w� > Sg (6.13)

Now let us drop the assumption that customer orders arrive in every period.
Obviously, we observe the same waiting time probability as for rD D 1 if there
is demand in the corresponding period. In the event that there is no demand, we
define the probability as zero with the argument that there may be no order that
could cause a waiting time.

P fW O � wjL D l; T D nf2.r C l � w; r/; w > 0g

D
(

P fDŒrCl�w� > Sg if nf2.r C l � w; rD/ D 0

0 if nf2.r C l � w; rD/ ¤ 0
(6.14)

From (6.14), we can derive the probability that the waiting time equals w by
subtracting the probability that the waiting time is equal to or greater than the next
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possible greater lead time. Remember that we always consider a certain period of
the order cycle. The next possible waiting time greater than w is therefore w C r .

P fW O D wjL D l; T D nf2.r C l � w; r/; w > 0g
D P fW O � wjL D l; T D nf2.r C l � w; r/; w > 0g

� P fW O � w C r jL D l; T D nf2.l � w; r/; w > 0g (6.15)

With an arbitrary arrival rate rD , we receive (6.16) and (6.17), respectively, for
customer orders arriving at random periods of the order cycle. Note that nf2.l �
w; rD/ D nf2.r C l �w; rD/ always holds because nf2.r; rD/ D 0 always holds due
to the model assumptions.

For a clearer representation, let us define a truth function on nf2.a; b/.

Definition 22 (Truth function on nf2.a; b/). Let NF2.a; b/ denote a truth func-
tion on nf2.a; b/, given as follows:

NF2.a; b/ D
(

1 if nf2.a; b/ D 0

0 if nf2.a; b/ ¤ 0

Using NF2.a; b/, we can denote the lead time conditioned waiting times as
follows.

P fW O D wjL D l; w > 0g

D
(

rD

r
� .P fDŒrCl�w� > Sg � P fDŒl�w� > Sg/ if nf2.l � w; rD/ D 0

0 if nf2.l � w; rD/ ¤ 0

(6.16)

D rD

r
� .P fDŒrCl�w� > Sg � P fDŒl�w� > Sg/ � NF2.l � w; rD/ (6.17)

From (6.17), we can easily derive the formula to determine P fW O D 0g:

P fW O D 0jL D lg D 1 �
1X

wD1

P fW O D wjL D l; w > 0g

D 1 � rD

r
�
 

rX
wD1

.P fDŒrCl�w� > Sg � P fDŒl�w� > Sg/ � NF2.l � w; rD/

C
1X

wD1

.P fDŒl�w� > Sg � P fDŒl�w�r� > Sg/ � NF2.l � w; rD/

!

D 1 � rD

r
�

rX
wD1

P fDŒrCl�w� > Sg � NF2.l � w; rD/ (6.18)
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At this point, let us bring to mind the connection between the waiting time per
order and the ready rate per order. It is easy to show that (6.18) is equal to the lead
time conditioned ready rate per order (6.4). The basic idea is to substitute t� by r�w,
where r � w 2 f0; : : : ; r � 1g ) �w 2 f0 � r; : : : ; r � 1 � rg ) w 2 fr; : : : ; 1g
leads to formula (6.18), as is shown in the following. Note that we can drop function
nf1.�; �/ by introducing NF2.�; �/:
X

t�2T �

1

r
� P fDŒlCt�� � Sg � NF2.l C t�; rD/ � rD

D
X

.r�w/2T �

rD

r
� P fDŒlCr�w� � Sg � NF2.l C r � w; rD/

D
rX

wD1

rD

r
� P fDŒlCr�w� � Sg � NF2.l C r � w; rD/

D
rX

wD1

rD

r
� .1 � P fDŒlCr�w� > Sg/ � NF2.l C r � w; rD/

D rD

r
�

rX
wD1

NF2.l C r � w; rD/ � P fDŒlCr�w� > Sg � NF2.l C r � w; rD/

D rD

r
� r

rD

� rD

r
�

rX
wD1

P fDŒlCr�w� > Sg � NF2.l C r � w; rD/

D 1 � rD

r
�

rX
wD1

P fDŒlCr�w� > Sg � NF2.l C r � w; rD/ .q:e:d:/

Finally, (6.19) and (6.20) denote the overall probabilities for certain customer
waiting times:

P fW O D 0g D
X
L2l

P �fL D lg � P fW O D 0jL D lg (6.19)

P fW O D wjw > 0g D
X
l2L

P �fL D lg � P fW O D wjL D l; w > 0g (6.20)

We have already noted that the maximum lead time is r C lmax � 1 if S � 0.
In the event that S < 0, the waiting time is theoretically unbound for continuous
demand distributions if demands near zero are likely to be observed. For a practical
application, we therefore need to define some maximum lead time wmax that we
want to consider. For this purpose, we propose (6.21), where wmax is the minimum
value w for which the probability that the according demand does not exceed �S is
smaller than a certain small number �. To avoid confusion, note that �S is a positive
number in the case of S < 0.
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wmax D minfw W P fDŒ�.rClmax�w/�.x/ � �Sg � �g (6.21)

Numerical Example. Considering Example 1 of Table 6.1 (p. 83), the customer
waiting time per order

P fW O D 0g D P fL D 1g �
�
1 � 1

2
� .P fDŒ1� > 300g C P fDŒ2� > 300g/

�

C P fL D 2g �
�
1 � 1

2
� .P fDŒ2� > 300g C P fDŒ3� > 300g/

�

D 0:5 � .1 � 0:5 � .0:0 C 0:009211//

C 0:5 � .1 � 0:5 � .0:009211 C 0:5//

D 0:870394

P fW O D 1g D P fL D 1g � 1

2
� .P fDŒ2� > 300g � P fDŒ0� > 300g/

C P fL D 2g � 1

2
� .P fDŒ3� > 300g � P fDŒ1� > 300g/

D 0:5 � 0:5 � .0:009211 � 0:0/ C 0:5 � 0:5 � .0:5 � 0:0/

D 0:127303

P fW O D 2g D P fL D 1g � 1

2
� .P fDŒ1� > 300g � P fDŒ�1� > 300g/

C P fL D 2g � 1

2
� .P fDŒ2� > 300g � P fDŒ0� > 300g/

D 0:5 � 0:5 � .0:0 � 0:0/ C 0:5 � 0:5 � .0:009211 � 0:0/

D 0:002303

P fW O > 2g � 0

6.3.1.3 Example Results

Table 6.3 summarizes the solutions to the example instances 1–6 of Table 6.1 for
the ready rate per customer order and the customer waiting time per order.

6.3.2 Dependent Lead Times, Volume View, Split Deliveries

6.3.2.1 Mean Backorder

The mean backorder amount is typically calculated for two purposes. In the
classical cost-based approaches, it is used to quantify backorder costs, while in
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Table 6.3 Example instances 1–6 – order-related metrics

P fW O D wg
No. ˛�DrD w D 0 w D 1 w D 2 w > 2

1 0.8704 0.8704 0.1273 0.0023 0.0
2 0.9255 0.9255 0.0685 0.0060 0.0
3 0.9761 0.9761 0.0119 0.0119 0.0
4 0.5039 0.5039 0.2461 0.1875 0.0625
5 0.6708 0.6708 0.1671 0.1094 0.0527
6 0.6797 0.6797 0.1445 0.1445 0.0313

the later service-constraint approaches, it is needed to calculate the two fill-rate
characteristics that we discussed in Sects. 2.3.2.2 and 2.3.2.3.

Let us start our considerations with a demand arrival rate rD D 1 and S � 0,
where we will drop the first but not the second assumption in the proceeding. Let
us furthermore consider the special case that a replenishment order was issued in
period 0, where it has raised the inventory position to S , and arrives in period t .
The backorder level in period t then equals the fraction of demand in t periods that
has exceeded S . It can be determined according to (6.22), where we assume that the
demand per period D is a continuous random variable:

EŒBt jL D l; rD D 1� D
Z 1

S

PDFDŒt� .x/ � .x � S/ dx (6.22)

Equation (6.22), however, holds not only for the very period in which a replenish-
ment order arrives, but for r consecutive periods until the arrival of the next order.
Thus, we may state equation (6.23):

EŒBt jL D l; l � t < l C r; rD D 1� D
Z 1

S

PDFDŒt� .x/ � .x � S/ � dx (6.23)

Let us furthermore drop the assumption that t is bound to the left. We then have
(6.24), which we can no longer interpret as backorder amount in period t , but as an
amount that will be on backorder for l C r � t periods at least. We will need this
formulation later on to determine the amount that is added to the backorder amount,
taking into account the demand of a certain time span.

EŒBt jL D l; t < l C r; rD D 1� D
Z 1

S

PDFDŒt� .x/ � .x � S/ dx (6.24)

For an arbitrary rD , we make use of the normalizing function (nf1.a; b/) as defined
in Definition 20 on p. 84:

EŒBt jL D l; t < l C r� D
Z 1

S

PDFDŒnf1.t;rD /� .x/ � .x � S/ dx (6.25)
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Considering the periods of the ordering cycle, we have to determine the mean of r

periods from period l after order issue (in which the replenishment order arrives) to
l Cr �1 (which is the period just before the next order arrives). This leads to (6.26):

EŒBjL D l� D
lCr�1X

tDl

1

r
� EŒBt jL D l; l � t < l C r�

D 1

r

X
t�2T �

EŒBlCt� � (6.26)

We finally obtain the mean amount on backorder per period for the entire system
according to (6.27), where P denotes the steady state probabilities of the lead time
model used:

EŒB� D
X
l2L

P fL D lg � EŒBjL D l� (6.27)

The total mean backorder amount, however, is not exactly what we are after if we
want to determine ˇ, for example. Here, we need to know the mean fraction of
demand that is added to the backorder amount in each period during an order cycle
or, generally, in a certain time span. It is tempting to consider this as the change
of backorder from one period to the other, but we will see that this conception can
be misleading when we examine the crossover case. Instead, we should regard it as
the backorder amount minus the backorder amount in the very time span if it were
not for the time span’s demand. Thus, we introduce BŒa;b�; a � b < l C r as the
backorder that originates from time interval Œa C 1; b�. Note that the above Bt then
equals BŒ0;t �.

Proceeding from (6.25), we derive (6.28):

EŒBŒa;b�jL D l; a � b < l C r�

D EŒBbjL D l; b < l C r� � EŒBajL D l; a < l C r�

D
Z 1

S

PDFDŒnf1.b;rD/� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.a;rD/� .x/ � .x � S/ dx (6.28)

We thus derive equation (6.29) for the mean additional backorder per period
(EŒB�;�D1�), and (6.30) for the mean additional backorder per order cycle
(EŒB�;�Dr �). Note that the selection of a and b in the formulae below always
fulfills a � b < l C r , so that we can drop the corresponding conditions of the
general formula (6.28).
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EŒB�;�D1� D
X

t�2T �

X
l2L

P fL D lg
r

� EŒBŒt�Cl�1;t�Cl�jL � l�

D
X
l2L

P fL D lg
r

� EŒBŒl�1;rCl�1�jL � l� (6.29)

EŒB�;�Dr � D
X
l2L

P fL D lg � EŒBŒl�1;rCl�1�jL � l� (6.30)

Numerical Example. Considering Example 1 of Table 6.1 (p. 83), the backorder
amounts are calculated as follows. See Sect. 4.3 for the determination of the mass
integral of normal distributions.

EŒB� D P fL D 1g � 1

2
� .EŒB1� C EŒB2�/

P fL D 2g � 1

2
� .EŒB2� C EŒB3�/

EŒB1� D
Z 1

S

PDFDŒ1� .x/ � .x � 300/ dx

D 302 � PDFDŒ1� .300/ C .100 � 300/ � .1 � CDFDŒ1� .300//

D 302 � 0 C .�200/ � 0

D 0

EŒB2� D 2 � 302 � PDFDŒ2� .300/ C .200 � 300/ � .1 � CDFDŒ2� .300//

D 2 � 302 � 0:0005847 C .�100/ � .1 � 0:990789/

D 0:131274

EŒB3� D 20:729649

EŒB� D 0:25 � 0 C 0:5 � 0:131274 C 0:25 � 20:729649

D 5:248049

EŒB�;�D1� D P fL D 1g � 1

2
� EŒBŒ0;2�� C P fL D 2g � 1

2
� EŒBŒ1;3��

D P fL D 1g � 1

2
� .EŒB2� � EŒB0�/

C P fL D 2g � 1

2
� .EŒB3� � EŒB1�/

D 0:25 � .0:131274 � 0/ C 0:25 � .20:729649 � 0/

D 5:215231
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6.3.2.2 Mean Inventory

For a start, let us again assume that we have a fixed lead time l and the customer
orders arrive at rate rD D 1. Let t; l � t < l C r be the t-th period after the
order was issued that arrives after l periods. Then the stock level in t is S minus the
demand in t periods if the demand was lower than S , and 0 otherwise. We state:

EŒIt jL D l; l � t � l C r � 1; rD D 1�

D
Z 1

�1
PDFDŒt� .x/ � .S � Minfx; Sg/ dx (6.31)

Dropping the assumption of rD D 1 leads to (6.32):

EŒIt jL D l; l � t < l C r� D
Z 1

�1
PDFDŒnf1.t;rD /� .x/ � .S � Minfx; Sg/ dx

(6.32)

This can be simplified as follows:

EŒIt jL D l; l � t < l C r�

D
Z 1

�1
PDFDnf1.t;rD / .x/ � .S � Minfx; Sg/ dx

D
Z 1

�1
PDFDŒnf1.t;rD /� .x/ � S �

Z 1

�1
PDFDŒnf1.t;rD /� .x/ � Minfx; Sg dx

D S �
Z S

�1
PDFDŒnf1.t;rD/� .x/ � x dx �

Z 1

S

PDFDŒnf1.t;rD/� .x/ � S dx

D S �
Z S

�1
PDFDŒnf1.t;rD/� .x/ � x dx � .1 � CDFDŒnf1.t;rD /� .S// � S (6.33)

For the overall system with t WD l C t�, we obtain (6.34). Here, t� D 0 denotes the
period in which the replenishment order arrives.

EŒI � D
X

t�2T �

X
l2L

P fL D lg
r

� EŒIt�Cl jL D l� (6.34)

Note that the mean stock levels can also be determined on the basis of the mean
demand and mean backorder amount:

EŒIt jL D l; l � t < l C r�

D S �
Z S

�1
PDFDŒnf1.t;rD /� .x/ � x dx �

Z 1

S

PDFDŒnf1.t;rD /� .x/ � S dx
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D S �
" Z S

�1
PDFDŒnf1.t;rD /� .x/ � x dx

C
Z 1

S

PDFDŒnf1.t;rD /� .x/ � .S � x C x/ dx

#

D S �
" Z S

�1
PDFDŒnf1.t;rD /� .x/ � x dx C

Z 1

S

PDFDŒnf1.t;rD /� .x/ � x dx

�
Z 1

S

PDFDŒnf1.t;rD /� .x/ � .x � S/ dx

#

D S �
" Z 1

�1
PDFDŒnf1.t;rD /� .x/ � x dx

�
Z 1

S

PDFDŒnf1.t;rD /� .x/ � .x � S/ dx

#

D S � EŒDŒnf1.t;rD/�� C EŒBt jL D l; l � t < l C r� (6.35)

Numerical Example. Considering Example 1 of Table 6.1 (p. 83), the mean
inventory levels are calculated as follows:

EŒI � D P fL D 1g � 1

2
� EŒI1jL D 1� C P fL D 2g � 1

2
� EŒI2jL D 2�

C P fL D 1g � 1

2
� EŒI2jL D 1� C P fL D 2g � 1

2
� EŒI3jL D 2�

D 0:25 � .300 � EŒDŒ1�� C EŒB1�/ C 0:5 � .300 � EŒDŒ2�� C EŒB2�/

C 0:25 � .300 � EŒDŒ3�� C EŒB3�/

D 0:25 � .200 C 0/ C 0:5 � .100 C 0:131227/ C 0:25 � .0 C 20:729649/

D 105:248049

6.3.2.3 Fill Rate

On the basis of the backorder amount determined in Sect. 6.3.2.1, we can state
equations (6.36) and (6.37) to compute the classic fill rate and time-weighted fill
rate:

ˇ D 1 � EŒB��

EŒD�
(6.36)

� D 1 � EŒB�

EŒD�
(6.37)
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Numerical Example. Considering Example 1 of Table 6.1 (p. 83), we have the
following fill-rates:

ˇ D 1 � 5:215231 � 100 D 0:947848

� D 1 � 5:248049 � 100 D 0:947520

6.3.2.4 Customer Waiting Time per Part

In Sect. 6.3.1.2, we considered the customer waiting time per order, i.e., the time
that passes until the final part of an order can be fulfilled. In this section, we will
consider the waiting time of a single unit, where customer orders may be split and
thus two different units of the same order may have different waiting times. The
necessary calculations are similar to those for the fill rate. Analogously, we will
apply the frequentist interpretation of probabilities, i.e., if x of y parts have to wait
for a certain time, we say that the probability to wait is x

y
per unit.

Let us again start our considerations with a fixed lead time l and a customer
order arrival rate rD D 1. A demand unit will then have to wait for w periods if (1)
it belongs to the backorder amount fraction that exceeds S after r C l � w periods,
and (2) S has not already been exceeded by demand that arrived r periods before.
Thus, we need to determine the amount of coverable new backorder (B��

w ) that
arises r C l � w periods after an order was placed, where we have to keep in mind
that a particular waiting time may only occur if the corresponding customer demand
arrives in a certain period of the order cycle:

EŒB��
w jW V > 0; L D l; rD D 1�

D
" Z 1

S

PDFDŒrCl�w� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒrCl�w�1� .x/ � .x � S/ dx

#

�
"Z 1

S

PDFDŒl�w� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒl�w�1� .x/ � .x � S/ dx

#
(6.38)

From (6.38) we can directly derive the fraction of the period demand that will have
to wait for w > 0 periods:

P fW V D wjw > 0; L D l; rD D 1g D 1

r
� EŒB��

w �

EŒD�
(6.39)
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We obtain (6.40) and (6.41) for an arbitrary rD :

EŒB��
w jW V > 0; L D l�

D
" Z 1

S

PDFDŒnf1.rCl�w;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.rCl�w�1;rD /� .x/ � .x � S/ dx

#

�
"Z 1

S

PDFDŒnf1.l�w;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.l�w�1;rD /� .x/ � .x � S/ dx

#
(6.40)

P fW V D wjw > 0; L D lg D rD

r
� EŒB��

w jW V > 0; L D l�

rD � EŒD�

D 1

r
� EŒB��

w jW V > 0; L D l�

EŒD�
(6.41)

The probability of w D 0 can be derived from (6.41), where we make use of the fact
that

P1
wD1 P fW V D wjw > 0; L D lg contains two telescoping series:

P fW V D 0jL D lg

D 1 �
1X

wD1

P fW V D wjw > 0; L D lg

D 1 � 1

r � EŒD�
�

1X
wD1

"�Z 1

S

PDFDŒnf1.rCl�w;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.rCl�w�1;rD /� .x/ � .x � S/ dx

�

�
� Z 1

S

PDFDŒnf1.l�w;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.l�w�1;rD /� .x/ � .x � S/ dx

�#

D 1 � 1

r � EŒD�
�
"

rX
wD1

"Z 1

S

PDFDŒnf1.rCl�w;rD /� .x/ � .x � S/ dx
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�
Z 1

S

PDFDŒnf1.rCl�w�1;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.l�w;rD /� .x/ � .x � S/ dx

C
Z 1

S

PDFDŒnf1.l�w�1;rD /� .x/ � .x � S/ dx

#

C
1X

wD1

" Z 1

S

PDFDŒnf1.l�w;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.l�w�1;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.l�w�r;rD /� .x/ � .x � S/ dx

C
Z 1

S

PDFDŒnf1.l�w�r�1;rD /� .x/ � .x � S/ dx

#

D 1 � 1

r � EŒD�
�

rX
wD1

"Z 1

S

PDFDŒnf1.rCl�w;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.rCl�w�1;rD /� .x/ � .x � S/ dx

#

D 1 � 1

r � EŒD�
�
" Z 1

S

PDFDŒnf1.rCl�1;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.rCl�2;rD /� .x/ � .x � S/ dx

C
Z 1

S

PDFDŒnf1.rCl�2;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.rCl�3;rD /� .x/ � .x � S/ dx C : : :

C
Z 1

S

PDFDŒnf1.rCl�r;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.rCl�r�1;rD /� .x/ � .x � S/ dx

#
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D 1 � 1

r � EŒD�
�
" Z 1

S

PDFDŒnf1.rCl�1;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒnf1.l�1;rD /� .x/ � .x � S/ dx

#
(6.42)

As previously demonstrated, the overall probability of positive customer waiting
time can be calculated using (6.43):

P fW V D wg D
X
l2L

P fL D lg � P fW V D wjL D lg (6.43)

Fischer (2008) (p.118) gives analogous formulae for rD D 1, where the author
classifies them as approximations. As the motivation of these findings remains rather
unclear, it is difficult to understand the reasoning behind this conception.

Numerical Example. Considering Example 1 of Table 6.1 (p. 83), the waiting
time probabilities per part can be calculated as follows:

P fW V D 0g

D P fL D 1g �
"

1 � 1

2 � 100
�
� Z 1

300

PDFDŒ2�.x/ � .x � 300/ dx

�
Z 1

300

PDFDŒ0�.x/ � .x � 300/ dx
�#

C P fL D 2g �
"

1 � 1

2 � 100
�
� Z 1

300

PDFDŒ3�.x/ � .x � 300/ dx

�
Z 1

300

PDFDŒ1�.x/ � .x � 300/ dx
�#

D 0:5 � .1 � 0:005 � .EŒB2� � EŒB0�//

C 0:5 � .1 � 0:005 � .EŒB3� � EŒB1�//

D 0:5 � .1 � 0:005 � 0:131274/ C 0:5 � .1 � 0:005 � 20:729649/

D 0:947847

P fW V D 1g

D P fL D 1g � 1

200
�
h
.EŒB2� � EŒB1�/ � .EŒB0� � EŒB�1�/

i

C P fL D 2g � 1

200
�
h
.EŒB3� � EŒB2�/ � .EŒB1� � EŒB0�/

i
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D 0:5 � 0:005 �
h
.0:131274 � 0/ � .0 � 0/

i

C 0:5 � 0:005 �
h
.20:729649 � 0:131274/ � .0 � 0/

i

D 0:0518241

P fW V D 2g

D P fL D 1g � 1

200
�
h
.EŒB1� � EŒB0�/ � .EŒB�1� � EŒB�2�/

i

C P fL D 2g � 1

200
�
h
.EŒB2� � EŒB1�/ � .EŒB0� � EŒB�1�/

i

D 0:000328

P fW V > 2g � 0

6.3.2.5 Example Results

Table 6.4 summarizes the solutions to the example instances 1–6 of Table 6.1 for
the fill rates and customer waiting time per part.

6.3.3 Dependent Lead Times, Volume View, Full Deliveries

6.3.3.1 Mean Backorder

If we do not permit split deliveries, the full period demand will be backordered as
soon as one single unit is missing. This complicates the analytical steps, as we will
see in the following.

For a start, let us again assume a customer demand rate rD D 1. To get an idea of
the necessary analytical steps, let us imagine a stock system with a positive amount
of x units of physical stock when a new customer order of d units arrives. After

Table 6.4 Example instances 1–6 – volume-related metrics (split deliveries)

Service levels P fW V D wg
No. ˇ � w D 0 w D 1 w D 2 w > 2

1 0:9478 0.9475 0:9478 0.0518 0.0003 0:0

2 0:9651 0.9636 0:9651 0.0335 0.0015 0:0

3 0:997 0.8654 0:997 0.0015 0.0015 0:0

4 0:5495 0.3481 0:5495 0.2769 0.1458 0:0278

5 0:6886 0.4864 0:6886 0.1629 0.1016 0:0469

6 0:783 0.2313 0:783 0.1016 0.1016 0:0139
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considering the customer demand, the backorder amount is 0 in the event that d was
smaller than or equal to x and d otherwise. If the system is already out of stock, the
backorder amount will certainly rise by d . To derive the mean backorder amount
in some period of the order cycle, we therefore need to consider three aspects: (1)
the probability that the system is out of stock even without considering the current
period’s demand, (2) distribution of the preceding demand if this demand has not
exceeded S , and (3) the demand distribution of the period observed.

We already developed a solution closely related to problem (1) when we
examined the ready rate in Sect. 6.3.1.1. At this point, however, we need some more
detailed information on the relationship between S and the demand than is given in
the ready rate. Let us therefore define a truth function SOt on the exhaustion of S

by the demand of t periods.

Definition 23 (Truth function on the exhaustion of S based on periods t). Let
SOt be a truth function that is defined as follows:

SOt D 0 if the demand in t periods does not exceed S

SOt D 1 if the demand in t periods does exceed S

Equations (6.44) and (6.45) obviously state the probability distribution of SOt if
we observe demand in every period:

P fSOt D 0jrD D 1g D CDFDŒt� .S/ (6.44)

P fSOt D 1jrD D 1g D 1 � CDFDŒt� .S/ (6.45)

In the following we will be particularly interested in the distributions of SOl�1; : : : ;

SOlCr�2 that characterize the carryover of stockout probabilities in the r relative
periods of the order cycle.

To develop an approach for problems (2) and (3), let us first consider the special
case of L D 1 and t D 0. The previous demand is 0 and we can state the mean new
backorder amount according to (6.46):

EŒB�
t jL D 1; t� D 0; rD D 1�

D
Z 1

S

PDFD.x/ � x dx (6.46)

If the period demand exceeds S , we observe the full demand as a new backorder
amount. If we have to account for previous demand, we have to distinguish two
cases. The previous demand may either have or have not already exceeded S . In
the first case, the full demand of the period being observed will be backordered.
To handle the second case, we have to reflect the information that the demand
has not exceeded S by adjusting the distribution of the previous demand. Namely,
this demand equals the truncation (see Sect. 4.4) of the correspondingly convolved
period demand within the limits of �1 (or rather 0 if we assume that demand
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is always positive) and S :

Dt j.SOt D 0; rD D 1/ D D
Œt�

.�1;S/ (6.47)

Unfortunately Dt j.SOt D 0/ does not provide us with a stable foundation as we had
in the above case in the absence of any previous demand. Here, we have to regard all
possible combinations of the truncated previous demand and the period’s demand
that would result in a stockout in the period observed:

EŒB�
t jSOt�1 D 0; rD D 1�

D
Z 1

S

� Z 1

�1
PDF

D
Œt�1�

.�1;S/

.v � x/ � PDFD.x/ � x dv
�

dx (6.48)

Considering that the system may already have been out of stock in the previous
period, we derive equation (6.49):

EŒB�
t jrD D 1� D P f.St�1jrD D 1/ D 1g � EŒD�

C P f.St�1jrD D 1/ D 0g � EŒB�
t jSOt�1 D 0� (6.49)

Before proceeding, let us introduce a third adaptation function here that helps us
to determine the new demand in t .

Definition 24 (Third adaptation function). Let nf3.a; b/ denote the third adap-
tation function, given as follows:

nf3.a; b/ D
�

a

b

�
� b �

�
a � b

b

�
� b

.D/ nf1.a; b/ � nf1.a � 1; b/

Using nf3.a; b/, we obtain the following equations for an arbitrary customer
demand rate rD:

P fSOt D 0g D CDFDŒnf1.t;rD /� .S/ (6.50)

P fSOt D 1g D 1 � CDFDŒnf1.t;rD/� .S/ (6.51)

EŒB�
t jSOt�1 D 0� D

Z 1

S

� Z 1

�1
PDF

D
Œnf1.t�1;rD /�

.�1;S/

.v � x/

� PDFDŒnf3.t;rD /� .x/x dv
�

dx (6.52)

EŒB�
t � D P f.SOt�1/ D 1g � EŒDŒnf3.t;rD/��

C P f.SOt�1/ D 0g � EŒB�
t jSOt�1 D 0� (6.53)
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The overall mean new backorder amount per period can then be determined by
(6.54):

EŒB�� D
X

t�2T �

X
l2L

1

r
� P fL D lg � EŒB�

t�Cl � (6.54)

Let us now turn to the mean backorder amount. Since we already know about the
mean new backorder amount, we should be able to determine the mean backorder
amount by somehow summing up the new backorders. On the basis of (6.50)–(6.53)
we may calculate the mean backorder amount according to (6.55) and (6.56), where
we assume S � 0:

EŒBjT � D t�; L D l� D
lCt�X
	D1

EŒB�
	 � (6.55)

EŒB� D
X

t�2T �

X
l2L

1

r
� P fL D lg � EŒBjT � D t�; L D l� (6.56)

Note that we can obviously determine the mean backorder amount in any interval
Œa; b� by changing the range of summation in (6.55).

In general, however, there is little hope of resolving (6.52) to a closed form when
we assume a certain continuous distribution for the demand per period. In most if
not all cases it will thus be inevitable to use some method of numerical integration.

Alternatively, we may discretize the demand distribution D, where we have to
transform equation (6.52) according to (6.57):

EŒB�
t jSOt�1 D 0�

D
1X

xDSC1

1X
vD�1

PDF
D

Œnf1.t�1;rD /�

.�1;S/

.v � x/ � PDFDŒnf3.t;rD /� .x/ � x (6.57)

We may then apply Algorithm 6 to conduct the necessary calculations to evaluate
(6.57), where method getNTimeConvolution(X , n) returns convolutions of n ran-
dom variables having the distribution of X , and method getTruncation(X , a, b)
returns the truncation of distribution X within the limits of a and b.

Numerical Example. Considering Example 4 of Table 6.1 (p. 83), the backorder
amounts can be calculated as follows:

EŒB�� D 1

2
� P fL D 1g � EŒB�

1 � C 1

2
� P fL D 2g � EŒB�

2 �

D 1

2
� P fL D 1g � EŒB�

2 � C 1

2
� P fL D 2g � EŒB�

3 �
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Algorithm 6: Calculation of mean new backorder t periods after an order was
issued (6.57)

Input: Discrete distribution D, Integer l , Integer t , Integer S , Integer rD

Output: Mean new backorder per period t (mnb)
dlt0 D floor..l C t � 1/=rD/ � rD;
dlt1 D floor..l C t /=rD/ - floor..l C t � 1/=rD// � rD ;
if dlt1 DD 0 then

mnb D 0;
else if dlt0 DD 0 then

thisD D getNTimeConvolution(D, dlt1);
mnb D 0;
for x D S C 1 to thisD.getMax() do

mnb CD thisD.getPDF(x) �x ;
end

else
prevD D getNTimeConvolution(D, dlt0);
prevD D getTruncation(prevD, �1, S);
thisD D getNTimeConvolution(D, dlt1);
oLB D thisD.getMin() C prevD.getMin();
oLB D getMin(oLB , SC1);
oUB D thisD.getMax() C prevD.getMax();
mnb D 0;
for v D oLB to oUB do

iLB D getMax(thisD.getMin(), v-prevD.getMax());
iUB D getMin(thisD.getMax(), v-prevD.getMin());
for x D iLB to iUB do

mnb CD prevD.getPDF(v � x) �thisD.getPDF(x) �x ;
end

end
end

EŒB�
1 � D .1 � CDFDŒ0� .80// � EŒDŒ1�� C CDFDŒ0� .80/

�
Z 1

80

� Z 1

�1
PDF

D
Œ0�
.�1;80/

.v � x/ � PDFDŒ1� .x/ dv
�

dx

D 0 � 45 C 1 � 100 � 0:25

D 25

EŒB�
2 � D .1 � CDFDŒ1� .80// � EŒDŒ1�� C CDFDŒ1� .80/

�
Z 1

80

� Z 1

�1
PDF

D
Œ1�

.�1;80/

.v � x/ � PDFDŒ1� .x/ dv
�

dx

D 0:25 � 45 C 0:75 � 29:166667

D 33:125

EŒB�
3 � D 0:5 � 45 C 0:5 � 34:0625

D 39:53125
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EŒB�� D 0:25 � 25 C 0:5 � 33:125 C 0:25 � 39:53125

D 32:695313

EŒB� D 1

2
� P fL D 1g �

1X
	D1

EŒB�
	 � C 1

2
� P fL D 2g �

2X
	D1

EŒB�
	 �

1

2
� P fL D 1g �

2X
	D1

EŒB�
	 � C 1

2
� P fL D 2g �

3X
	D1

EŒB�
	 �

D 0:25 � 25 C 0:5 � .25 C 33:125/ C 0:25 � .25 C 33:125 C 39:53125/

D 59:726563

6.3.3.2 Mean Inventory

In the event that only full deliveries are allowed, we observe problems that are very
similar to those that we had to solve to determine the overall backorder amount in
Sect. 6.3.3.1. We have to regard each relevant period rather than being allowed to
apply some overall consideration. In this section we will therefore first consider the
change in inventory levels after considering the demand of the t-th period (I .�/

t ),
and derive the overall value afterwards.

Let us again use the truth function SOt as defined in Definition 23. Depending
on the value of SOt�1 in the previous period, we can state two things. If SOt�1 D 1,
there will be no additional reduction of inventory, as S is already exceeded by
previous orders. If SOt�1 D 0, there will be a reduction to a certain extent if the
new demand is lower than what is left of S , and no reduction otherwise. The mean
of I

.�/
t can thus be calculated according to (6.58):

EŒI
.�/
t � D P fSOt�1 D 1g � 0

C P fSOt�1 D 0g �
Z S

�1

� Z 1

�1
PDF

D
Œnf1.t;rD /�

.�1;S/

.v � x/

� PDFDŒnf3.t;rD /� .x/ dv
�

dx (6.58)

As for the split deliveries case, the mean reduction of stock levels can also be
determined on the basis of the mean demand and mean backorder amount:

EŒI
.�/
t jSOt�1 D 0�

D
Z S

�1

� Z 1

�1
PDF

D
Œnf1.t�1;rD/�

.�1;S/

.v � x/ � PDFDŒnf3.t;rD /� .x/ dv
�

dx
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D
Z 1

�1

� Z 1

�1
PDF

D
Œnf1.t�1;rD/�

.�1;S/

.v � x/ � PDFDŒnf3.t;rD /� .x/ dv
�

dx

�
Z 1

S

� Z 1

�1
PDF

D
Œnf1.t�1;rD /�

.�1;S/

.v � x/ � PDFDŒnf3.t;rD /� .x/ dv
�

dx

D
Z 1

�1
PDFDŒnf3.t;rD /� .x/ dx

�
Z 1

S

� Z 1

�1
PDF

D
Œnf1.t�1;rD /�

.�1;S/

.v � x/ � PDFDŒnf3.t;rD /� .x/ dv
�

dx

D EŒDŒnf3.t;rD/�� � EŒB�
t jSOt�1 D 0� (6.59)

To understand the third transformation, note that

Z 1

�1
PDFA.x � v/ � PDFB .x/ � x dv D PDFB .x/ � x

holds for any pair of two random variables A and B because of

Z 1

�1
PDFA.x � v/ dv D

Z 1

�1
PDFA.v/ dv D 1:

Finally, we obtain (6.60) to calculate the mean inventory for the overall system:

EŒI � D
X

t�2T �

X
l2L

P fL D lg
r

�
 

S �
t�ClX
	D1

EŒI
.�/

	
�

!
(6.60)

Numerical Example. Considering Example 4 of Table 6.1 (p. 83), the mean
physical inventory levels can be calculated as follows:

EŒI � D 1

2
� P fL D 1g �

 
S �

1X
	D1

EŒI
.�/

	
�

!

C 1

2
� P fL D 2g �

 
S �

2X
	D1

EŒI
.�/

	 �

!

D 1

2
� P fL D 1g �

 
S �

2X
	D1

EŒI
.�/

	
�

!

C 1

2
� P fL D 2g �

 
S �

3X
	D1

EŒI
.�/

	 �

!



6.3 Analysis 107

EŒI
.�/
1 � D P fSO0 D 0g �

h
EŒDŒ1�� � EŒB�

1 jSO0 D 0�
i

D 1:0 � .45 � 25/

D 20

EŒI
.�/
2 � D P fSO1 D 0g �

h
EŒDŒ2�� � EŒB�

2 jSO1 D 0�
i

D 0:75 � .45 � 29:166667/

D 11:875000

EŒI
.�/
3 � D P fSO2 D 0g �

h
EŒDŒ3�� � EŒB�

3 jSO2 D 0�
i

D 0:5 � .45 � 34:0625/

D 5:46875

EŒI � D 0:25 � .80 � 20/ C 0:5 � .80 � 20 � 11:875/

C 0:25 � .80 � 20 � 11:875 � 5:46875/

D 49:726563

6.3.3.3 Fill Rate

Using (6.55) and (6.56), we can determine the fill rates according to (6.36) and
(6.37).

Numerical Example. Example 4 of Table 6.1 (p. 83) results in the following
values:

ˇ D 1 � 32:695313 � 45 D 0:273438

� D 1 � 59:726563 � 45 D �0:327257

6.3.3.4 Customer Waiting Time per Part

To determine the customer waiting time per part in the case of full deliveries, we
can make use of (6.53). In Sect. 6.3.2.4, we introduced the term coverable new
backorder. Considering full deliveries only, the mean coverable new backorder is
equal to the full new backorder in a certain period (EŒB�

rCl�w�) minus the fraction
of this new backorder that has to wait longer than w periods (EŒB�

l�w�). Thus, we
obtain (6.61):

EŒB��
w jL D l� D EŒB�

nf1.rCl�w;rD/� � EŒB�
nf1.l�w;rD/� (6.61)

Using the adjusted EŒB��
w jL D l�, equation (6.41) also applies for the case of full

deliveries only. The probability P fW V D 0jL D lg can be derived analogously to
(6.42):
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P fW V D 0jL D lg D 1 � 1

r � EŒD�
�
"

rCl�1X
	Dl

EŒB�
nf1.	;rD/�

#
(6.62)

Finally, (6.43) applies to determine the non-conditioned lead time probabilities.
Numerical Example. Considering Example 4 of Table 6.1 (p. 83), customer

waiting time per part is calculated as follows:

P fW V D 0g D P fL D 1g �
�
1 � 1

2 � 45
�

2X
	D1

EŒB�
	 �
�

C P fL D 2g �
�
1 � 1

2 � 45
�

3X
	D2

EŒB�
	 �
�

D 0:5 � .1 � 1

90
� .25 C 33:125// C 0:5 � .1 � 1

90
� .33:125 C 39:53125/

D 0:2734375

P fW V D 1g D 1

2
� P fL D 1g � EŒB��

1 jL D 1�

EŒD�

C 1

2
� P fL D 2g � EŒB��

2 jL D 1�

EŒD�

D 1

2
� P fL D 1g � EŒB�

2 � � EŒB�
0 �

EŒD�
C 1

2
� P fL D 2g � EŒB�

3 � � EŒB�
1 �

EŒD�

D 0:25 � 33:125 � 0

45
C 0:25 � 39:53125 � 25

45

D 0:264757

P fW V D 2g D 1

2
� P fL D 1g � EŒB��

2 jL D 1�

EŒD�

C 1

2
� P fL D 2g � EŒB��

2 jL D 1�

EŒD�

D 1

2
� P fL D 1g � EŒB�

1 � � EŒB��1�

EŒD�
C 1

2
� P fL D 2g � EŒB�

2 � � EŒB�
0 �

EŒD�

D 0:25 � 25

45
C 0:25 � 33:125

45

D 0:322917

P fW V D 3g D 0:25 � 0 C 0:25 � 25

45

D 0:138889

P fW V > 3g D 0



6.3 Analysis 109

Table 6.5 Example instances 1–6 – volume-related metrics (full deliveries)

Service levels P fW V D wg
No. ˇ � w D 0 w D 1 w D 2 w D 3 w > 4

1 0:8516 0:8482 0:8516 0.1449 0.0035 0:0 0:0

2 0:9157 0:908 0:9157 0.0766 0.0077 0:0 0:0

3 0:9692 0:9538 0:9692 0.0154 0.0154 0:0 0:0

4 0:2734 �0:3273 0:2734 0.2648 0.3229 0:1389 0:0

5 0:56 0:2099 0:56 0.1994 0.1487 0:0747 0:0174

6 0:5651 0:2088 0:5651 0.1827 0.1827 0:0347 0:0347

6.3.3.5 Example Results

Table 6.5 summarizes the solutions to the example instances 1–6 of Table 6.1 for
the fill rates and customer waiting time per part. To analyze the first three examples,
we used discrete transformations of the corresponding normal distributions to
compute the convolution of truncated and non-truncated distributions.

6.3.4 Order Crossover, Order View

We have already demonstrated that it is possible to handle the phenomenon of order
crossover to a certain extend in Sect. 5.2. Within the computational limits men-
tioned, we may well determine the effective lead time, for example. However, the
effective lead time provides us with insufficient information about the development
of stock levels on behalf of the demand side, as we treat replenishment orders as
interchangeable. I.e., the case of a large order arriving early in place of a smaller
order will be treated equally to the opposite case. We observe the same effect for
the distribution of outstanding orders that we will use in the following to derive
elementary service levels as well as the mean backorder and mean inventory levels.

The following approaches are clearly exact if orders are in fact interchangeable.
This is, however, only the case if customer demand is constant, i.e., if all replenish-
ment orders are for the same amount of material.

If customer demand is stochastic, the treatment of replenishment orders as
interchangeable will lead to approximate results. However, we observe a gradual
decline in accuracy of the analytical results connected with the comparability of
replenishment orders. I.e., the analytical results are fairly accurate if replenishment
orders are for more or less the same amount. As obviously the demand process
determines the variability of replenishment order amounts in our model, the
approaches developed in the following work better the lower the coefficient of
demand variation.

In any instance, the following approaches are an improvement on applying the
methods for the dependent lead time case to cases where order crossover may occur.
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Interestingly, the use of the effective lead time with the methods developed above
for the dependent lead time case seems to result in the same values as the approaches
we develop in the following. In fact, for the customer waiting time distributions, we
cannot offer a better approach than replacing the original lead time distribution by
the effective lead time. Nonetheless, we present different approaches for the other
metrics that exhibit better scalability than our limited approach to determine the
effective lead time.

6.3.4.1 Ready Rate

In Sects. 2.3.2.1 and 6.3.1.1 we have already mentioned the problems of measuring
the ready rate on a different time basis than the customer order rate. We particularly
observe these problems if the lead time model permits order crossover, where we
cannot unambiguously assign orders to a certain order cycle. In this section, we will
therefore focus on the ready rate per customer order (Case: � = rD in Sect. 6.3.1.1),
and disregard the corresponding metric per replenishment order cycle.

As stated in Sect. 5.2, observing the lead time demand is misleading when
crossover may occur. We cannot develop the analysis assuming a fixed lead time
either, as this would clearly prevent order crossover. Instead, we can make use of
the distribution of the amount of outstanding orders and the inventory shortfall,
respectively. (See Sects. 5.2.1 and 5.2.2.) We now somewhat invert the perspective
and ask how much stock is missing versus our target level S under certain
circumstances, while we previously generally asked for the inventory consumption
in a certain set of periods. The following approach thus appears to be closer to
the actual problem, while the previous approach only works because the general
inventory consumption equals the missing stock if orders are not allowed not
crossover.

As in Sect. 6.3.1.1, we will first assume that rD D 1. The central idea is to
associate replenishment orders with the r-time period demand they are intended to
cover. Analogous to (6.1), we have (6.63) for the ready rate per period:

˛�D1 D
X

t�2T �

X
k2K.r;t�/

P fK.r; t�/ D kg � 1

r
� CDFDŒk�rCt� � .S/ (6.63)

For an arbitrary demand rate rD , (6.64) applies:

˛�DrD

D
X

t��2T ��

X
k2K.r;t���rD/

P fK.r; t�� � rD/ D kg � rD

r
� CDF

DŒk�rCt��
�rD /� .S/ (6.64)

Numerical Example. Considering Example 7 of Table 6.1 (p. 83), the ready rate
per period can be calculated as follows:
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K.2; 0/ 	Discf.0; 0:0/; .1; 0:5/; .2; 0:5/g
K.2; 1/ 	Discf.0; 0:25/; .1; 0:5/; .2; 0:25/g

˛�D1 D 1

2
� P fK.2; 0/ D 1g � CDFDŒ2� .300/

C 1

2
� P fK.2; 0/ D 2g � CDFDŒ4� .300/

C 1

2
� P fK.2; 1/ D 0g � CDFDŒ1� .300/

C 1

2
� P fK.2; 1/ D 1g � CDFDŒ3� .300/

C 1

2
� P fK.2; 1/ D 2g � CDFDŒ5� .300/

D 0:5 � 0:5 � 0:990789 C 0:5 � 0:5 � 0:047790

C 0:5 � 0:25 � 1:0 C 0:5 � 0:5 � 0:5 C 0:5 � 0:25 � 0:001435

D 0:509824

Note that (6.63) and (6.64) also apply for the case of dependent lead times, and
may be used alternatively to (6.1) and (6.2) if the distribution of the number of
outstanding orders is given.

6.3.4.2 Customer Waiting Time per Order

The probabilities of customer waiting times w > 0 clearly cannot be derived from
the distribution of outstanding orders alone. Besides the information that an order
has to wait, we need to know when a replenishment order will finally arrive that is
sufficient to cover the waiting customer order’s demand.

A promising attempt, we have found here, is to use the effective lead time with the
formulae that apply for the dependent lead time case in Sect. 6.3.1.2. As mentioned
in the introduction to this section, this approach is not exact as it assumes that
orders are interchangeable. We observe a decline in accuracy along with an increase
in customer order variability. Table 6.6 illustrates the phenomenon. We examined
Example 7 of Table 6.1 (p. 83) for different demand distributions with none, low and
high coefficients of variation. The analytical results were compared with the result of
simulation experiments, where we conducted 40 replications with 2,000,000 periods
for each instance. In the table, the analytical results are printed as single numbers
above the 0:98%-t-confidence intervals that resulted from the simulation runs. Note
that for a constant demand (here D D 100), the simulation results correspond to the
analytical results, while D 	 U nif .f1; 200g/ reveals the most significant deviation.
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Table 6.6 Waiting times per order – accuracy for different demand distributions

D � Norm D � U nif D � U nif

D D 100 .100; 10/ .f1; 2; : : : ; 200g/ .f1; 200g/

P fW O D 0g 0.7813 0.6875 0.6749 0.5460
[0.7812, 0.7816] [0.6875, 0.6879] [0.6747, 0.6751] [0.5456, 0.5461]

P fW O D 1g 0.125 0.1562 0.1362 0.1445
[0.1248, 0.1250] [0.1561, 0.1563] [0.1361, 0.1362] [0.1445, 0.1446]

P fW O D 2g 0.0625 0.0937 0.0972 0.1232
[0.0624, 0.0625] [0.0936, 0.0938] [0.0952, 0.0954] [0.1202, 0.1204]

P fW O D 3g 0.0313 0.0469 0.0562 0.0955
[0.0312, 0.0313] [0.0467, 0.0469] [0.0551, 0.0552] [0.0934, 0.0935]

P fW O D 4g 0.0 0.0156 0.0257 0.0557
[0.0, 0.0] [0.0156, 0.0156] [0.0274, 0.0275] [0.0565, 0.0566]

P fW O D 5g 0.0 0.0 0.0085 0.0254
[0.0, 0.0] [0.0, 0.0] [0.0095, 0.0096] [0.0284, 0.0285]

P fW O D 6g 0.0 0.0 0.0013 0.0098
[0.0, 0.0] [0.0, 0.0] [0.014, 0.014] [0.0108, 0.0109]

Table 6.7 Example instances 7–12 – order-related metrics

P fW O D wg
No. ˛�DrD w D 0 w D 1 w D 2 w D 3 w D 4 w > 4

7 0.5098 0.5098 0.2438 0:1815 0:0637 0.0012 0:0

8 0.5679 0.5679 0.1226 0:1085 0:0778 0.0609 0:0623

9 0.5726 0.5726 0.1202 0:125 0:031 0.1202 0:031

10 0.3079 0.3079 0.2058 0:207 0:1543 0.0938 0:0313

11 0.2697 0.2697 0.1054 0:1183 0:1177 0.1089 0:28

12 0.2548 0.2548 0.1229 0:117 0:1111 0.1229 0:2712

6.3.4.3 Example Results

Table 6.7 summarizes the solutions to the example instances 7–12 of Table 6.1 for
fill rates and customer waiting time per part.

6.3.5 Order Crossover, Volume View, Split Deliveries

6.3.5.1 Mean Backorder

As for the ready rate, we can exploit the distribution of outstanding orders or rather
the shortfall distribution to retrieve the mean backorder amount. In fact, we will see
that this leads us to a fairly intuitive representation.

Let us again start our considerations by assuming a customer order arrival rate
of rD D 1. Assuming that K.r; t�/ D k replenishment orders are outstanding in
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period t� of the ordering cycle, we can determine the total backorder amount in that
period according to (6.65):

EŒBjT � D t�; K.r; t�/ D k; rD D 1� D
Z 1

S

PDFDŒr�kCt� � .x/ � .x � S/ dx

(6.65)

For arbitrary values rD , we derive equation (6.66). Remember that the volume of
each replenishment order corresponds to the customer demand of r periods, where
the customer demand in the order period t� D 0 will be considered with the
corresponding order:

EŒBjT � D t�; K.r; t�/ D k� D
Z 1

S

PDF
DŒr�kCnf1 .t�;rD/� .x/ � .x � S/ dx (6.66)

Analogously to (6.27), we derive the mean backorder amount for the whole system
according to (6.67):

EŒB� D
X

t�2T �

X
k2K.r;t�/

P fK.r; t�/ D kg
r

� EŒBjT � D t�; K.r; t�/ D k� (6.67)

Now let us turn to the fraction of demand that will be backordered in certain periods
t of the order cycle. We have already considered above that this equals the mean
backorder in the specific period minus the theoretical backorder if it had not been
for the demand in the period observed. In this case, we obtain (6.68):

EŒB�jT � D t�jK.r; t�/ D k� D
Z 1

S

PDFDŒr�kCnf1.t�;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒr�kCnf1.t��1;rD/� .x/ � .x � S/ dx (6.68)

For the overall system, we obtain (6.69). The dependence of the number of
outstanding orders K.r; t�/ on t� prevents us from applying similar simplifications
to those that lead to (6.29):

EŒB�� D
X

t�2T �

X
k2K.r;t�/

P fK.r; t�/ D kg
r

� EŒBjT � D t�jK.r; t�/ D k� (6.69)

Numerical Example. Considering Example 7 of Table 6.1 (p. 83), the backorder
amounts can be calculated as follows. The distributions of K.2; 0/ and K.2; 1/ can
be found in the concluding example of Sect. 6.3.4.1.
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EŒB� D 1

2
� P fK.2; 0/ D 1g �

Z 1

S

PDFDŒ2� .x/ � .x � S/ dx

C 1

2
� P fK.2; 0/ D 2g �

Z 1

S

PDFDŒ4� .x/ � .x � S/ dx

C 1

2
� P fK.2; 0/ D 0g �

Z 1

S

PDFDŒ1� .x/ � .x � S/ dx

C 1

2
� P fK.2; 0/ D 1g �

Z 1

S

PDFDŒ3� .x/ � .x � S/ dx

C 1

2
� P fK.2; 0/ D 2g �

Z 1

S

PDFDŒ5� .x/ � .x � S/ dx

D 0:25 � 0:131247 C 0:25 � 101:189593 C 0:125 � 0:0

C 0:25 � 20:729649 C 0:125 � 200:027370

D 55:516050

EŒB�� D 1

2
� P fK.2; 0/ D 1g �

 Z 1

S

PDFDŒ2� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒ1� .x/ � .x � S/ dx

!

C 1

2
� P fK.2; 0/ D 2g �

 Z 1

S

PDFDŒ4� .x/ � .x � S/ dx

�
Z 1

S

PDFDŒ3� .x/ � .x � S/ dx

!

C .: : :/

D 0:25 � .0:131274 � 0/ C 0:25 � .101:189593 � 20:729649/

C 0:125 � .0 � 0/ C 0:25 � .20:729649 � 0:131274/

C 0:125 � .200:027370 � 101:189593/

D 37:652120

6.3.5.2 Mean Inventory

Similar to the approach for calculating the mean backorder amount, we can derive
mean inventory levels for the crossover case by conceptually replacing the lead
time demand by the demand that is bound in outstanding orders. For an arbitrary
customer demand rate and a fixed number of outstanding orders we have (6.70),



6.3 Analysis 115

where t� D 0 denotes the period of the order cycle in which replenishment orders
are issued:

EŒI jT � D t�; K.r; t�/ D k�

D
Z 1

�1
PDF

DŒr�kCnf1.t� ;rD/� .x/ � .S � Minfx; Sg/ dx (6.70)

After the analogous restatements as for the dependent lead time case, we obtain
(6.71) and finally (6.72):

EŒI jT � D t�; K.r; t�/ D k� D S �
Z S

�1
PDF

DŒr�kCnf1.t� ;rD/� .x/ � x dx

� .1 � CDF
DŒr�kCnf1.t�;rD /� .S// � S (6.71)

EŒI � D
X

t�2T �

X
k2K.r;t�/

P fK.r; t�/ D kg
r

� EŒI jT � D t�; K.r; t�/ D k� (6.72)

Analogously to (6.35), we can also determine the mean inventory levels based on
the mean demand and mean backorder amount:

EŒI jT � D t�; K.r; t�/ D k�

D S � EŒDŒk�rCt��� C EŒBjT � D t�; K.r; t�/ D k� (6.73)

Numerical Example. Considering Example 7 of Table 6.1 (p. 83), the mean
inventory levels can be calculated as follows. The distributions of K.2; 0/ and
K.2; 1/ can be found in the concluding example of Sect. 6.3.4.1. Note that for this
example the mean backorder amount equals the mean inventory level.

EŒI � D 1

2
� P fK.2; 0/ D 1g � .S � EŒDŒ2�� C EŒBjT � D 0; K.2; 0/ D 1�/

C 1

2
� P fK.2; 0/ D 2g � .S � EŒDŒ4�� C EŒBjT � D 0; K.2; 0/ D 2�/

C 1

2
� P fK.2; 1/ D 0g � .S � EŒDŒ1�� C EŒBjT � D 0; K.2; 1/ D 0�/

C 1

2
� P fK.2; 1/ D 1g � .S � EŒDŒ3�� C EŒBjT � D 0; K.2; 1/ D 1�/

C 1

2
� P fK.2; 1/ D 2g � .S � EŒDŒ5�� C EŒBjT � D 0; K.2; 1/ D 2�/
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D 0:25 � .300 � 200 C 0:131274/ C 0:25 � .300 � 400 C 101:189593/

C 0:125 � .300 � 100 C 0/ C 0:25 � .300 � 300 C 20:729649/

C 0:125 � .300 � 500 C 200:027370/

D 55:516050

6.3.5.3 Fill Rate

Using equations (6.67) for EŒB� and (6.69) for EŒB��, we can apply formulae (6.36)
and (6.37) to calculate both fill rate metrics.

Example 7 of Table 6.1 (p. 83) results in the following fill rates:

ˇ D 1 � 37:652120 � 100 D 0:623479

� D 1 � 55:516050 � 100 D 0:444839

6.3.5.4 Customer Waiting Time per Part

For the customer waiting time per part, we propose that applying the effective lead
time with the formulae described for the dependent lead time case can be used as
an approximation. We observe the same problems with this approach as we have
already outlined for the customer waiting time per order (Sect. 6.3.4.2). Here, it
becomes even clearer that neglecting the non-interchangeability of replenishment
orders leads to a systematic error, correlated with the coefficient of demand
variation. See Table 6.8 for an illustration of the phenomenon. As above, each
simulation run consisted of 40 replications with 2,000,000 periods. Note that both
instances with uniformly distributed demand (and high variation) reveal significant
deviations between the analytical and simulated values.

6.3.5.5 Example Results

Table 6.9 summarizes the solutions to the example instances 7–12 of Table 6.1 for
the performance indicators that we analyzed in this section.

6.3.6 Order Crossover, Volume View, Full Deliveries

6.3.6.1 Mean Backorder

To determine the mean backorder when order crossover may occur, we can apply
similar considerations as for the dependent lead time case that we discussed in
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Table 6.8 Waiting times per part (split deliveries) – accuracy for different demand distributions

D � Norm D � U nif D � U nif

D D 100 .100; 10/ .f1; 2; : : : ; 200g/ .f1; 200g/

P fW V D 0g 0.7813 0.7751 0.7236 0.6643
[0.7812, 0.7816] [0.7750, 0.7753] [0.7234, 0.7238] [0.6641, 0.6646]

P fW V D 1g 0.125 0.1250 0.1242 0.1240
[0.1248, 0.1250] [0.1249, 0.1251] [0.1267, 0.1268] [0.1345, 0.1348]

P fW V D 2g 0.0625 0.0655 0.0830 0.0963
[0.0624, 0.0625] [0.0655, 0.0656] [0.0802, 0.0804] [0.0891, 0.0893]

P fW V D 3g 0.0313 0.0313 0.0446 0.0641
[0.0312, 0.0313] [0.0312, 0.0313] [0.0428, 0.0429] [0.0548, 0.0550]

P fW V D 4g 0.0 0.0031 0.0187 0.0336
[0.0, 0.0] [0.0030, 0.0031] [0.0201, 0.0201] [0.0325, 0.0327]

P fW V D 5g 0.0 0.0 0.0053 0.0138
[0.0, 0.0] [0.0, 0.0] [0.0061, 0.0062] [0.0181, 0.0182]

P fW V D 6g 0.0 0.0 0.0 0.0040
[0.0, 0.0] [0.0, 0.0] [0.0, 0.0] [0.0061, 0.0062]

Table 6.9 Example instances 7–12 – volume-related metrics (split deliveries)

Service levels P fW V D wg
No. ˇ � w D 0 w D 1 w D 2 w D 3 w D 4 w > 4

7 0.6235 0:4448 0.6235 0.2241 0.1263 0.0259 0.0002 0:0

8 0.6242 0:0622 0.6242 0.1179 0.0949 0.0683 0.0555 0:0392

9 0.6867 0:2517 0.6867 0.0878 0.1242 0.0068 0.0878 0:0068

10 0.3292 �0:4581 0.3292 0.2233 0.2083 0.1523 0.0729 0:0139

11 0.2765 �1:8467 0.2765 0.1075 0.1187 0.1177 0.1087 0:2709

12 0.3225 �1:4917 0.3225 0.1213 0.1212 0.1026 0.1213 0:2112

Sect. 6.3.3. The fundamental difference is again that we base our calculations on the
distribution of outstanding orders instead of the lead time distribution, and consider
t� D 0 as first period of the order cycle. In the following, we will right away assume
an arbitrary customer demand rate of rD .

As for the dependent lead time case, we make use of the truth function SO as
defined in Definition 23, p. 101. In contrast, we have to drop the concept of regarding
the previous period in order to determine the inventory consumption prior to the new
demand in the period that we are concerned with. Considering the distribution of
outstanding orders, it is no longer sufficient to regard the situation in the preceding
period. Instead, we have to determine inventory consumption until the period we are
observing, without considering the particular period’s own demand. The formulae
for the dependent lead time case do in fact allow for the same interpretation. Here,
the very fact that we may assume the same number of outstanding orders in the
two consecutive periods that we are analyzing allows us to equivalently think of the
demand that has been accumulated until the previous period.

In this section we consider the truth function SOt (as defined in Definition 23,
p. 101) in the form SOk�rCt� , which means that we ask for the demand that is bound
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in k orders plus the demand of t� subperiods of the order cycle. SOk�rCt��1 then
denotes whether S is exceeded by the demand on order plus subperiod demand
minus the demand of the subperiod t� that we are currently considering. Thus, we
obtain the following expression equivalent to (6.52), i.e., the amount of demand in
period t� that will (still) be backordered in the relative period of the order cycle that
we are analyzing:

EŒB�jT � D t�; K.r; t�/ D k; SOk�rCt��1 D 0�

D
Z 1

S

� Z 1

�1
PDF

D
Œnf1.r�kCt��1;rD/�

.�1;S/

.v � x/

� PDFDŒnf3.t� ;rD/� .x/ � x dv
�

dx (6.74)

We may now state the equation that is equivalent to (6.53):

EŒB�jT � D t�; K.r; t�/ D k�

D P fSOk�rCt��1 D 1jK.r; t�/ D kg � EŒDŒnf3.t�;rD/��

C P fSOk�rCt��1 D 0jK.r; t�/ D kg
� EŒB�jT � D t�; K.r; t�/ D k; SOk�rCt��1 D 0� (6.75)

The overall mean new backorder amount is then given by (6.76):

EŒB�� D
X

t�2T �

X
k2K.r;t�/

P fK.r; t�/ D kg
r

� EŒB�jT � D t�; K.r; t�/ D k� (6.76)

Analogously to (6.55) and (6.56), we can determine the mean backorder amount for

systems with S � 0 according to (6.77) and (6.78). (Note that nf2.
; r/C
j



r

k
� r D�



r

�
j



r

k�
� r C

j


r

k
� r D 
.)

EŒBjT � D t�; K.r; t�/ D k�

D
r �kCt�X


D1

EŒB�jT � D nf2.
; r/; K.r; nf2.
; r// D
j


r

k
� r� (6.77)

EŒB� D
X

t�2T �

X
k2K.r;t�/

P fK.r; t�/ D kg
r

� EŒBjT � D t�; K.r; t�/ D k�

(6.78)

Numerical Example. Considering Example 10 of Table 6.1 (p. 83), the mean
backorder levels can be calculated as follows. The distributions of K.2; 0/ and
K.2; 1/ can be found in the concluding example of Sect. 6.3.4.1:
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EŒB�� D 1

2
� P fK.2; 0/ D 1g �

�
P fSO1�2�1 D 1jK.2; 0/ D 1g � EŒDŒ1��

C P fSO1 D 0jK.2; 0/ D 1g � EŒB�jT � D 0; K.2; 0/ D 1; SO1 D 0�
�

C 1

2
� P fK.2; 0/ D 2g �

�
P fSO2�2�1 D 1jK.2; 0/ D 2g � EŒDŒ1��

C P fSO3 D 0jK.2; 0/ D 2g � EŒB�jT � D 0; K.2; 0/ D 2; SO3 D 0�
�

C 1

2
� P fK.2; 1/ D 0g �

�
P fSO0�2C1�1 D 1jK.2; 1/ D 0g � EŒDŒ1��

C P fSO0 D 0jK.2; 1/ D 0g � EŒB�jT � D 1; K.2; 1/ D 0; SO0 D 0�
�

C 1

2
� P fK.2; 1/ D 1g �

�
P fSO1�2C1�1 D 1jK.2; 1/ D 1g � EŒDŒ1��

C P fSO2 D 0jK.2; 1/ D 1g � EŒB�jT � D 1; K.2; 1/ D 1; SO2 D 0�
�

C 1

2
� P fK.2; 1/ D 2g �

�
P fSO2�2C1�1 D 1jK.2; 1/ D 2g � EŒDŒ1��

C P fSO4 D 0jK.2; 1/ D 2g � EŒB�jT � D 1; K.2; 1/ D 2; SO4 D 0�
�

P fSO1jK.2; 0/ D 1g D CDFDŒ1� .80/ .D 1 � P fSO1jK.2; 0/ D 0g/
D 0:75

P fSO3jK.2; 0/ D 2g D CDFDŒ3� .80/ D 0:265625

P fSO0jK.2; 1/ D 0g D CDFDŒ0� .80/ D 0:0

P fSO2jK.2; 1/ D 1g D CDFDŒ2� .80/ D 0:5

P fSO4jK.2; 1/ D 2g D CDFDŒ4� .80/ D 0:078125

EŒB�jT � D 0; K.2; 0/ D 1; SO1 D 0�

D
Z 1

80

� Z 1

�1
PDF

D
Œ1�
.�1;80/

.v � x/ PDFDŒ1� .x/ dv
�

dx

D 29:166667

EŒB�jT � D 0; K.2; 0/ D 2; SO3 D 0�

D
Z 1

80

� Z 1

�1
PDF

D
Œ3�

.�1;80/

.v � x/ PDFDŒ1� .x/ dv
�

dx

D 40:294118
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EŒB�jT � D 1; K.2; 0/ D 0; SO0 D 0�

D
Z 1

80

� Z 1

�1
PDF

D
Œ0�
.�1;80/

.v � x/ PDFDŒ1� .x/ dv
�

dx

D 25:0

EŒB�jT � D 1; K.2; 0/ D 1; SO2 D 0�

D
Z 1

80

� Z 1

�1
PDF

D
Œ2�
.�1;80/

.v � x/ PDFDŒ1� .x/ dv
�

dx

D 34:0625

EŒB�jT � D 1; K.2; 0/ D 2; SO4 D 0�

D
Z 1

80

� Z 1

�1
PDF

D
Œ4�
�1;80

.v � x/ PDFDŒ1� .x/ dv
�

dx

D 40:375

EŒB�� D 0:5 � 0:5 � .0:25 � 45 C 0:75 � 29:166667/

C 0:5 � 0:5 � .0:734375 � 45 C 0:265625 � 40:294118/

C 0:5 � 0:25 � .0 � 45 C 1:0 � 25/

C 0:5 � 0:5 � .0:5 � 45 C 0:5 � 34:0625/

C 0:5 � 0:25 � .0:921875 � 45 C 0:078125 � 40:375/

D 0:25 � 33:125 C 0:25 � 43:75 C 0:125 � 25 C 0:25 � 39:53125

C 0:125 � 44:638672

D 37:806397

EŒB� D 1

2
� P fK.2; 0/ D 1g

�
� 2X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

C 1

2
� P fK.2; 0/ D 2g

�
� 4X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

C 1

2
� P fK.2; 1/ D 0g

�
� 1X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�
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C 1

2
� P fK.2; 1/ D 1g

�
� 3X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

C 1

2
� P fK.2; 1/ D 2g

�
� 5X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

D 1

2
� P fK.2; 0/ D 1g � .EŒB�jT � D 1; K.2; 1/ D 0�

C EŒB�jT � D 0; K.2; 1/ D 1�/

C : : :

D 0:5 � 0:5 � .25 C 33:125/

C 0:5 � 0:5 � .25 C 33:125 C 39:53125 C 43:75/

C 0:5 � 0:25 � .25/

C 0:5 � 0:5 � .25 C 33:125 C 39:53125/

C 0:5 � 0:25 � .25 C 33:125 C 39:53125 C 43:75 C 44:638672/

D 100:677490

6.3.6.2 Mean Inventory

The equations for independent lead times can be developed analogously to the case
of dependent lead times described in Sect. 6.3.3.2. The equivalent to (6.58) and
(6.59) can then be stated as follows:

EŒI .�/jT � D t�; K.r; t�/ D k� D P fSOk�rCt��1 D 0g � .EŒDŒnf3.t�;rD/��

� EŒB�jT � D t�; K.r; t�/ D k; SOk�rCt��1 D 0�/ (6.79)

The actual mean inventory is then given according to (6.80):

EŒI � D
X

t�2T �

X
k2Kt�

P fKt� D kg
r

�
�
S �

r �kCt�X

D1

EŒI .�/jT � D nf2.
; r/; K.r; nf2.
; r// D
j


r

k
� r�
�

(6.80)
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D
X

t�2T �

X
k2Kt�

P fKt� D kg
r

�
�
S �

r �kCt�X

D1

EŒDŒnf1.
;rD/�

C
r �kCt�X


D1

EŒB�jT � D nf2.
; r/; K.r; nf2.
; r// D
j


r

k
� r�
�

Considering Example 10 of Table 6.1 (p. 83), the mean inventory levels are
calculated as follows:

EŒI � D 1

2
� P fK.2; 0/ D 1g �

�
S �

2X

D1

EŒDŒnf1.
;rD/��

C
2X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

C 1

2
� P fK.2; 0/ D 2g �

�
S �

4X

D1

EŒDŒnf1.
;rD/��

C
4X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

C 1

2
� P fK.2; 1/ D 0g �

�
S �

1X

D1

EŒDŒnf1.
;rD/��

C
1X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

C 1

2
� P fK.2; 1/ D 1g �

�
S �

3X

D1

EŒDŒnf1.
;rD/��

C
3X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

C 1

2
� P fK.2; 1/ D 2g �

�
S �

5X

D1

EŒDŒnf1.
;rD/��

C
5X


D1

EŒB�jT � D nf2.
; 2/; K.2; nf2.
; 2// D
j


2

k
� 2�
�

D 0:5 � 0:5 � .80 � 2 � 45 C 25 C 33:125/

C 0:5 � 0:5 � .80 � 4 � 45 C 25 C 33:125 C 39:53125 C 43:75/
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C 0:5 � 0:25 � .80 � 1 � 45 C 25/

C 0:5 � 0:5 � .80 � 3 � 45 C 25 C 33:125 C 39:53125/

C 0:5 � 0:25 � .80 � 5 � 45 C 25 C 33:125 C 39:53125 C 43:75

C 44:638672/

D 45:677490

6.3.6.3 Fill Rate

With the findings of Sect. 6.3.6.1, we can directly derive both fill rates according to
the general formulae given as (6.36) and (6.37). Example 10 of Table 6.1 (p. 83)
results in the following fill rates:

ˇ D 1 � 37:806397 � 45 D 0:159858

� D 1 � 100:677490 � 45 D �1:237278

6.3.6.4 Customer Waiting Time per Part

For the customer waiting time with full deliveries only, we observe analogous
problems as described in Sects. 6.3.4.2 and 6.3.5.4 and recommend the same
remedy, namely using the effective lead time distribution (Table 6.10).

Table 6.10 Waiting times per part (full deliveries) – accuracy for different demand distributions

D � Norm D � U nif D � U nif

D D 100 .100; 10/ .f1; 2; : : : ; 200g/ .f1; 200g/

P fW V D 0g 0.7813 0.6860 0.6261 0.4261
[0.7810, 0.7815] [0.6842, 0.6846] [0.6261, 0.6266] [0.4259, 0.4263]

P fW V D 1g 0.125 0.1568 0.1481 0.1657
[0.1249, 0.1250] [0.1578, 0.1579] [0.1533, 0.1535] [0.1879, 0.1881]

P fW V D 2g 0.0625 0.0943 0.1114 0.1506
[0.0624, 0.0626] [0.0942, 0.0944] [0.1080, 0.1082] [0.1427, 0.1429]

P fW V D 3g 0.0313 0.0471 0.0678 0.1271
[0.0312, 0.0313] [0.0473, 0.0474] [0.0629, 0.0631] [0.1140, 0.1142]

P fW V D 4g 0.0 0.0159 0.0327 0.0779
[0.0, 0.0] [0.0161, 0.0162] [0.0336, 0.0337] [0.06974, 0.7000]

P fW V D 5g 0.0 0.0 0.0118 0.0037
[0.0, 0.0] [0.0, 0.0] [0.0131, 0.0132] [0.0413, 0.0414]

P fW V D 6g 0.0 0.0 0.0021 0.0156
[0.0, 0.0] [0.0, 0.0] [0.0023, 0.0023] [0.0177, 0.0178]
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Table 6.11 Example instances 7–12 – volume-related metrics (full deliveries)

Service levels P fW V D wg
No. ˇ � w D 0 w D 1 w D 2 w D 3 w D 4 w D 5 w > 5

7 0:4885 0:1469 0:4885 0.2458 0:1915 0.0724 0.0017 0:0 0:0

8 0:5572 �0:187 0:5572 0.1231 0:1107 0.0802 0.0617 0:0482 0:0188

9 0:5613 �0:1764 0:5613 0.1213 0:125 0.0356 0.1213 0:0 0:0356

10 0:1599 �1:2373 0:1599 0.1761 0:2313 0.2018 0.1615 0:0694 0:0

11 0:211 �2:3651 0:211 0.0959 0:1151 0.1214 0.1161 0:107 0:2334

12 0:1904 �2:3819 0:1904 0.1242 0:1076 0.1181 0.1242 0:0914 0:2442

6.3.6.5 Example Results

Table 6.11 summarizes the solutions to the example instances 7–12 of Table 6.1 for
the fill rates and customer waiting time per part. To analyze the first three examples
(7–9), we used discrete transformations of the corresponding normal distributions
to compute the convolution of truncated and non-truncated distributions.

6.4 Optimization

We are now able to evaluate certain performance aspects of .r; S/ inventory systems
that meet the given assumptions based of the analytical findings presented in
Sect. 6.3. In this section we will ask how we can use these formulae to identify
the best system configuration according to a certain optimality criterium.

Clarifying two aspects is preliminary to identifying an optimal .r; S/ policy. We
have to state which parameters we may change, and we have to define how we prefer
one configuration to another one. Regarding the first aspect, we will assume that we
may always adjust S , and we will examine the cases where r is prescribed by other
needs of the system, and where we may adjust it as well. In terms of the second
aspect, we will consider the cost- and service-oriented concepts for controling
backorder levels that can be found in the literature, i.e., we will distinguish between
cases where backorder costs can be quantified in a satisfying manner, and where the
system performance must accomplish some target service level.

We will give separate findings for the cases of split and full deliveries due to
the fact that they come with different mathematical properties. In terms of the
general solution approach, there is hardly any difference between optimization of
the independent and dependent lead time case. We will therefore focus on the
dependent lead time case, for which we have exact analytical formulas at hand.

Table 6.12 summarizes the different optimization objectives that we will examine
in the following sections.
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Table 6.12 Overview of optimization objectives

Split deliveries Full deliveries

Set S s.t. Service Sect. 6.4.1.1 Sect. 6.4.2.1
Set r and S s.t. Service Sect. 6.4.1.2 Sect. 6.4.2.2
Set S refl. Backorder Costs Sect. 6.4.1.3 Sect. 6.4.2.3
Set r and S refl. Backorder Costs Sect. 6.4.1.4 Sect. 6.4.2.4

6.4.1 Split Deliveries

6.4.1.1 Set S Subject to Service

In the first optimization scenario we assume that r is prescribed and a certain target
service level should be accomplished. We have to solve the following minimization
problem, where sv.S/ is the value of the service criterion dependent on S , and sv�
is the service level aspired to:

MinŠS (6.81)

s:t:

sv.S/ � sv� (6.82)

Conjecture 4 describes the grounds on which we intend to solve the optimization
problem stated in (6.81) and (6.82).

Conjecture 4. All service levels that are analyzed in Sects. 6.3.1.1 and 6.3.2.3
monotonically increase in S .

In other words, let A and B be two inventory systems that only differ in their
parameters S , where SA < SB ; then system B will perform better or equal in all
service levels analyzed in the above sections.

Incomplete Proof. Let us regard the service levels one by one. For the ready rate
per customer order we have (6.4), which clearly monotonically increases in S as
P fX � xg � P fX � ygI x < y obviously holds for any random variable X . In
view of (6.6), the same argument applies to prove that the ready rate per order cycle
also monotonically increases in S .

From (6.36) and (6.37) it follows that the two fill rates monotonically increase in
S if the according backorder amount monotonically decreases in S . From (6.25) and
(6.27), respectively, we can derive that the backorder amount considered in (6.37)
monotonically decreases in S . In (6.25), both the integral area and the multiplier
.x � S/ decrease when S is increased. For the backorder amount considered in
(6.36), it needs to be shown that (6.28) monotonically decreases. Although it is a
somewhat clear-cut issue, it is not easily shown that this holds true in general. We
will therefore leave the proof open to future research.
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Using the presumed property that sv.S/ monotonically increases for all service
levels, we can apply the same algorithmic idea that we used in Sect. 4.1 to
approximate the quantile function of arbitrary distributions. (Algorithm 7).

Algorithm 7: Approximation of the required order-up-to level S

Input: Target service level sv�, tolerance t

Output: Required S

Slb WD Smin;
Sub WD Smax ;
S WD 1

2
� .Slb C Sub/;

svS WD sv.S/;
while jsvS � sv�j > t do

if svS < sv� then
Slb WD S ;

else
Sub WD S ;

end
S WD 1

2
� .Slb C Sub/;

svS WD sv.S/;
end

Finally, let us examine the computational complexity. Obviously we can directly
derive it from the analysis given in Sect. 4.1. Thus, we have CCa7 D O..k C l/ �
CCSVS/, where CCSVS is the computational complexity of calculating the service
according to a certain value S .

Alternatively to a service level, one may also consider a service criterion related
to the waiting time, i.e., the mean waiting time should be n periods at most. Here, we
obtain the following optimization model that we may solve analogously to the above
approach using the analytical functions developed in Sects. 6.3.1.2 and 6.3.2.4:

MinŠS (6.83)

s:t:

EŒW.S/� � n (6.84)

6.4.1.2 Set r and S Subject to Service

In Sect. 6.4.1.1, we have seen how to set the parameter S to accomplish a certain
service level when r is given. In this section we will take the somewhat next logical
step, namely extend the approach to setting both decision parameters of an (r; S )
policy.

In the first place, we have to specify cost rates to balance the costs of ordering
against those of holding inventory. In Sect. 2.3.1 we have already introduced c1 as
purchase costs and c2 as inventory holding costs per period. Thus, we can specify the
mean costs per period for operating an (r; S ) inventory system according to (6.85),
where Sopt.r/ is the solution of the optimization problem stated in (6.81) and (6.82)
for a given r :
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EŒC1.r; Sopt .r//� D c1

r
C c2 � EŒI.r; Sopt .r//� (6.85)

Due to the embedded optimization problem, we cannot simply consider the deriva-
tive of (6.85) to solve the problem. However, if we may reasonably assume that
(6.85) is convex in r , we may apply some general enumeration method to determine
the optimum parameter combination. In that case, Algorithm 8 may serve us to
solve the problem, where getMeanInventory.r; S/ determines the mean inventory
levels according to (6.34) and getRequiredS.r; sv�/ corresponds to Algorithm 7.

Algorithm 8: Simple algorithm to calculate ropt

Input: Target service level sv�, order costs c1, holding costs c2

Output: Optimum cycle ropt

prevCosts WD c1 C c2 � getMeanI nventory.1; getRequiredS.1; sv�));
newCosts WD c1

2
C c2 � getMeanI nventory.2; getRequiredS.2; sv�//;

ropt WD 2;
while prevCosts > newCosts do

prevCosts := newCosts;
ropt WD ropt C 1;
newCosts := c1

ropt
C c2� getMeanInventory(ropt , getRequiredS(ropt , sv�));

end
ropt WD ropt � 1;

The computational complexity of Algorithm 8 is given via CCa8 D O.ropt �
.CCME C CCa7//, where CCME is the complexity to calculate the mean inventory
that mainly depends on the selected demand distribution, and CCa7 is the complex-
ity of determining the required S , as described in Sect. 6.4.1.1.

The runtime may be improved by applying the following approach. Let xlb and
xub be two values, where we know that xlb � ropt and xub � ropt . Furthermore,
let xlm and xrm be two values so that xlb < xlm < xrm < xub holds. Finally,
let xmin be the one value of the four that results in the least mean purchasing and
inventory holding costs. We can then distinguish three cases: (1) xmin has a left and
right neighbor, where a neighbor is the next smaller (left) or greater (right) value out
of the remaining three, (2) xmin has a left neighbor only, and (3) xmin has a right
neighbor only. In case (1), we know that the minimum is between the left and right
neighbor as the costs have risen from the current minimum and may not fall again
due to the convexity. For the same reason, we know that the minimum is between
xmin and the left neighbor in case (2), and between xmin and the right neighbor in
case (3). The algorithmic idea is now to redefine xlb and xub as those points that we
have identified as bounds for the possible location of ropt , then set two new values
xlm and xrm, and proceed as above. Algorithm 9 outlines the approach described
above.

To set up Algorithm 9, we may set xlb D 1 and identify xub by Algorithm 10,
which slightly modifies Algorithm 8.

Let us begin with Algorithm 10 to examine the overall computational complexity.
We observe that the inner loop definitely terminates after the second value beyond
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Algorithm 9: Improved algorithm to calculate ropt

Input: Lower bound xlb , upper bound xub

Output: Optimum cycle P Œ0�:x

P WD newCoordinateŒ4�;
P Œ0�:x WD xlb I P Œ0�:y WD getCosts.P Œ0�:x/;
P Œ1�:x WD xubI P Œ1�:y WD getCosts.P Œ1�:x/;
P Œ2�:x WD P Œ0�:x C round.0:33 � .P Œ1�:x � P Œ0�:x/I P Œ2�:y WD getCosts.P Œ2�:x/;
P Œ3�:x WD P Œ0�:x C round.0:66 � .P Œ1�:x � P Œ0�:x/I P Œ3�:y WD getCosts.P Œ3�:x/;
stop WDfalse;
while Šstop do

sort.P /; /* by y, ascending */
il D getI ndexLef tNeigbor.P Œ0�/;
ir D getI ndexRightNeigbor.P Œ0�/;
if il DD 0 then

P Œ1�:x D P Œir �:xI P Œ1�:y D P Œir �:y; /* set right neighbor, no
left neighbor */

else if ir DD 0 then
P Œ1�:x D P Œil �:xI P Œ1�:y D P Œil �:y; /* set left neighbor, no
right neighbor */

else
P Œ0�:x D P Œil �:xI P Œ0�:y D P Œil �:y; /* set left neighbor */
P Œ1�:x D P Œir �:xI P Œ1�:y D P Œir �:y; /* set right neighbor */

end
if P Œ1� � P Œ0� DD 1 then

stop WDtrue; /* P[0] is optimum */
else if P Œ1� � P Œ0� DD 2 then

P Œ2�:x WD round.0:5 � .P Œ1�:x C P Œ0�:x//I P Œ2�:y WD getCosts.P Œ2�:x/;
if P Œ2�:y < P Œ0�:y then

P Œ0�:x WD P Œ2�:xI P Œ0�:y WD P Œ2�:y;
end
stop WD true; /* P[0] is optimum */

else
P Œ2�:x WD P Œ0�:x C round.0:33 � .P Œ1�:x � P Œ0�:x/I P Œ2�:y

WD getCosts.P Œ2�:x/;
P Œ3�:x WD P Œ0�:x C round.0:66 � .P Œ1�:x � P Œ0�:x/I P Œ3�:y

WD getCosts.P Œ3�:x/; /* continue */
end

end

the optimum is examined. Due to the convexity, the second value has higher cost
than the first one after the optimum. Thus, the highest value the algorithm may
possibly return is 2 � 2 � .ropt � 1/, leading to a runtime of CCa4 D O.log2.ropt / �
.CCME C CCa7//.

Algorithm 9 starts with an interval of length xub � xlb D 4 � ropt � 1 � 4 � ropt . In
each step of the while-loop, the interval decreases by 1

3
at least. Thus, the interval

has length . 2
3
/n � 4 � ropt after n iterations. Since the algorithm terminates as soon as

the interval is 2 or lower, the upper bound for necessary loops n can be determined
as follows:
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Algorithm 10: Algorithm to calculate right bound for ropt

Input: Target service level sv�, order costs c1, holding costs c2

Output: Right bound for ropt

prevCosts WD getCosts.1/;
newCosts WD getCosts.2/;
xub D 2;
while prevCosts > newCosts do

prevCosts D newCosts;
xub D 2 � xub;
newCosts D getCosts.xub/;

end

�
2

3

	n

� 4 � ropt � 2

,
�

3

2

	n

� 2 � ropt

, n � log 3
2
.2 � ropt /

Thus, the runtime of Algorithm 9 is given by CCa9 D O.log 3
2
.ropt / � .CCME C

CCa7//. At first glance this is an improvement on the simple approach that underlies
Algorithm 8. However, the simple algorithm may in fact perform better if the
computational complexity of the convolution depends on r , and thus .CCME and
CCa7/ depend on r as well. In that case, the advantage of having fewer values
to calculate may be overcompensated by the effort of convolving the demand
distribution 4 � ropt -times instead of ropt -times. (See Sect. 4.2.)

With the algorithmic proceeds described above, we are able to determine the
optimum order cycle ropt if the relevant cost function is convex in r . Unfortunately,
this is not the case for all possible combinations of service levels and demand dis-
tributions. For example, if demand is discretely distributed with just a few sampling
points and we regard the ready rate per period, we observe jump discontinuities
in sv.S/, i.e., we may not be able to exactly meet some service level but have to
overfulfill the requirements. In the event that we have to overfulfill the service for a
value r very significantly, while r C 1 allows us to meet the required service level
very closely, we may observe an up and down of costs in consecutive values.

However, this problem can be overcome by slightly modifying Algorithm 8
according to Algorithm 11, which also takes into account the difference in service
of two consecutive solutions. It stops as soon as the next solution is worse in costs
as well as service than the best solution so far.

6.4.1.3 Set S Reflecting Backorder Costs

In Sects. 6.4.1.1 and 6.4.1.2 we applied the strategy of controlling the backorder
amount by prescribing a certain minimum service level that the system must
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Algorithm 11: Modified algorithm to calculate ropt

Input: Target service level sv�, order costs c1, holding costs c2

Output: Optimum cycle ropt

ropt WD 1;
optCosts WD c1 C c2 � getMeanI nventory.1; getRequiredS.1; sv�));
optService WD getService.1; getRequiredS.1; sv�//;
rnew WD 1;
newCosts WD c1

2
C c2 � getMeanI nventory.2; getRequiredS.2; sv�//;

newService WD getService.2; getRequiredS.2; sv�//;
while optCosts > newCostsjjoptService < newService do

if optCosts > newCosts then
ropt WD rnew;
optCosts WD newCosts;
optService WD newService;

end
ropt WD ropt C 1;
newCosts WD c1

ropt
C c2 � getMeanI nventory.ropt ; getRequiredS.ropt ; sv�//;

newService WD getService.ropt ; getRequiredS.ropt ; sv�//;
end

accomplish. If backorder costs are quantifiable, we should not follow the above
approach but instead count costs for inventory holding against costs for backorder-
ing. In the proceeding we will separately consider all three backorder cost types that
we have introduced in Sect. 2.3.1.3.

Costs per Delayed Customer Order. In the event that a singular penalty will be
incurred if an order is delayed we obtain the following cost function:

EŒC31.S/� D c2 � EŒI � C c31 � .1 � ˛�DrD / (6.86)

Resolving C31.S/ according to (6.34) and (6.27) leads to expression (6.87):

EŒC31.S/�

D
X

t�2T �

X
l2L

P fL D lg
r

� c2 � EŒI jT � D t�; L D l�

C c31

 
1 �

X
t�2T �

X
l2L

P fL D lg
r

� .˛�DrD jT � D t�; L D l/

!

D
X

t�2T �

X
l2L

P fL D lg
r

� c2 � EŒI jT � D t�; L D l�

C c31

X
t�2T �

X
l2L

P fL D lg
r

� .1 � ˛�DrD jT � D t�; L D l/
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D
X

t�2T �

X
l2L

P fL D lg
r

� 
c2 � EŒI jT � D t�; L D l�

C c31 � .1 � ˛�DrD jT � D t�; L D l/
�

(6.87)

For simplicity, let us look at the corresponding derivatives of EŒI jT � D t�; L D l�

and 1 � ˛�DrD jT � D t�; L D l separately. For the mean inventory levels, we apply
the fundamental theorem of calculus to get the derivative of an integral expression:

EŒI jT � D t�; L D l� D S �
Z S

�1
PDF

DŒnf1.t�Cl;rD /� .x/ � x dx

� .1 � CDF
DŒnf1.t�Cl;rD /� .S// � S (6.88)

ıEŒI jT � D t�; L D l�

ıS
D 1 � PDF

DŒnf1.t�Cl;rD/� .S/ � S � 1

C PDF
DŒnf1.t�Cl;rD/� .S/ � S C CDFDŒnf1.t�Cl;rD /� .S/

D CDF
DŒnf1.t�Cl;rD /� .S/ (6.89)

1 � ˛�DrD
jT � D t�; L D l D 1 � CDF

DŒnf1.t�Cl;rD /� .S/

ı.1 � ˛�DrD
jT � D t�; L D l/

ıS
D �PDFDŒnf1.t�Cl;rD /� .S/ (6.90)

Thus, we obtain the following derivative of (6.86):

ıC.S/

ıS
D

X
t�2T �

X
l2L

P fL D lg
r

�
�
c2 � CDFDŒnf1.t�Cl;rD/� .S/ � c31 � PDFDŒnf1.t�Cl;rD /� .S/

�
(6.91)

To find the value S that minimizes (6.86), we have to solve the following equation

and make sure that the second derivative ı2C.S/

ıS2 is greater than zero for our solution:

0 D
X

t�2T �

X
l2L

P fL D lg
r

�
�
c2 � CDFDŒnf1.t�Cl;rD/� .S/ � c31 � PDFDŒnf1.t�Cl;rD /� .S/

�
(6.92)

Unfortunately there are two pieces of bad news about (6.92). First, we cannot solve it
to a closed expression, and second, we may have multiple solutions. Hence, we may
not (always) apply some general approach like the bisection method or Newton’s
method. Instead, we propose the following two-phase approach. First, identify an
interval around the minimum solution of (6.87) that contains only one solution to
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(6.92). Second, approximate the solution of (6.92) within a certain tolerance t using
the bisection method. Let dis be the minimum distance on the x-axis between two
solutions of (6.92). Then we may apply Algorithm 12 to solve the first problem,
where the selection of dis depends on the distribution of demand per period. The
bisection method should then be applied to the interval ŒSopt � st; Sopt C st �.

Algorithm 12: Simple algorithm to approximate Sopt

Input: Minimum distance dis
Output: Approximation of optimum order-up-to level Sopt

Slb WD 0;
Sub WD DŒlmaxCr�1�:getQuanti le.0:9999/;
st D dis

2
;

Sopt WD Slb ;
for i WD st I i � SubI i D i C st do

if getCosts.Sopt / > getCosts.i/ then
Sopt WD i ;

end
end

Obviously, Algorithm 12 exhibits a runtime given via CCa12 D O. Sub

d is
� CCCO C

log2 . dis
t

/ � CCSL/, where CCCO and CCSL are the runtimes for evaluating (6.87)
and (6.92), respectively.

Costs per Unit and Time. If we account for backorders per unit and time, we
obtain the following cost function:

EŒC33.S/� D c2 � EŒI � C c33 � EŒB� (6.93)

Resolving C33.S/ according to (6.27) and (6.34) leads to the following expression:

C33.S/ D
X

t�2T �

X
l2L

1

r
� P fL D lg �

�
c2 � EŒI jT � D t�; L D l�

C c33 � EŒBjT � D t�; L D l�
�

(6.94)

For EŒI jT � D t�; L D l�, we already have the derivative with (6.89). To find the
derivative of EŒBjT � D t�; L D l�, let us first restate equation (6.25), where we
assume that we will always fulfill t < l C r by the order of summation later on:

EŒBjT � D t�; L D l�

D
Z 1

S

PDFDŒnf1.t�Cl;rD /� .x/ � .x � S/ dx
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D
Z 1

�1
PDFDŒnf1.t�Cl;rD/� .x/ � .x � S/ dx

�
Z S

�1
PDF

DŒnf1.t�Cl;rD /� .x/ � .x � S/ dx

D EŒDŒnf1.t�Cl;rD/�� � S

�
Z S

�1
PDFDŒnf1.t�Cl;rD /� .x/ � x dx C CDFDŒnf1.t�Cl;rD /� .S/ � S (6.95)

Thus, we have the following derivative:

ıEŒBjT � D t�; L D l�

ıS
D 0 � 1 � PDF

DŒnf1.t�Cl;rD /� .S/ � S

C CDF
DŒnf1.t�Cl;rD /� .S/

C PDF
DŒnf1.t�Cl;rD /� .S/ � S

D CDFDŒnf1.t�Cl;rD /� .S/ � 1 (6.96)

In combination, we have the following derivative for the overall cost function:

ıC33.S/

ıS
D

X
t�2T �

X
l2L

1

r
� P fL D lg � .c2 � CDF

DŒnf1.t�Cl;rD /� .S/

C c33 � .CDF
DŒnf1.t�Cl;rD /� .S/ � 1//

D
X

t�2T �

X
l2L

1

r
� P fL D lg � ..c2 C c33/

� CDFDŒnf1.t�Cl;rD/� .S/ � c33/ (6.97)

To find the optimum S , we have to solve equation (6.98):

c33

c2 C c33

D
X

t�2T �

X
l2L

1

r
� P fL D lg � CDF

DŒnf1.t�Cl;rD /� .S/ (6.98)

As the right side of the sum obviously monotonously rises in S , equation (6.98) can
be solved by the methods described in Sect. 6.4.1.1 to find the optimum S , subject
to a service level constraint.

Costs per Unit. In the event that we account for backorder costs only once they
occur, we have to consider the following cost function:

EŒC32.S/� D c2 � EŒI � C c32 � EŒB�;�D1� (6.99)
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Since we already know the derivative of EŒI � from (6.89), we focus on EŒB�;�D1�,
which corresponds to an inventory holding cost rate per period:

EŒB�;�D1�

D
X

t�2T �

X
l2L

1

r
� P fL D lg �

� Z 1

S

PDF
DŒnf1.t�Cl;rD /� .x/ � .x � S/ dx

�
Z 1

S

PDF
DŒnf1.t�Cl�1;rD /� .x/ � .x � S/ dx

�
(6.100)

From the derivative of EŒBjT � D t�jL D l� as stated above, we can directly deduce
the derivative of EŒB�;�D1jT � D t�jL D l�:

ıEŒB�;�D1jT � D t�jL D l�

ıS
D CDF

DŒnf1.t�Cl;rD /� .S/ � 1

� CDF
DŒnf1.t�Cl�1;rD/� .S/ C 1

D CDFDŒnf1.t�Cl;rD /� .S/

� CDF
DŒnf1.t�Cl�1;rD/� .S/ (6.101)

Thus, to find the optimum S , we have to solve the following equation:

0 D
X

t�2T �

X
l2L

1

r
� P fL D lg �

�
.c2 C c32/ � CDF

DŒnf1.t�Cl;rD /� .S/

� c32 � CDFDŒnf1.t�Cl�1;rD /� .S/
�

(6.102)

Again, bisection appears to be a safe method to solve equation (6.102). It is
somewhat intuitive, yet hard to prove that there is always just one solution.

6.4.1.4 Set r and S Reflecting Backorder Costs

When incorporating ordering costs into the calculus, we obtain the following
objective function:

C.r; S/ D c1

r
C C.S/ (6.103)

Based on the findings of Sect. 6.4.1.3 and assuming that (6.103) is convex in r ,
we may apply the same algorithmic approaches as described in Sect. 6.4.1.2. The
assumption of convexity has the same limitations as mentioned for the service level
approach in Sect. 6.4.1.2.
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6.4.2 Full Deliveries

6.4.2.1 Set S Subject to Service

If we only want to determine a minimum S that accomplishes a certain target service
level, we may apply the same procedure as described in Sect. 6.4.1.1 for the case of
full deliveries. For the ready rate it does not make any difference which delivery
modality is applied. For the other two service criteria, it analogously holds that
rising S may or may not improve the service, but it definitely cannot lower it. Thus,
even here the service level functions are monotonic in S , and we may apply the
bisection method to approximate the required S .

6.4.2.2 Set r and S Subject to Service

When r and S are to be optimized in terms of purchase costs and holding costs while
a specific service level is to be accomplished, we observe the same phenomena as for
the case of split deliveries (see Sect. 6.4.1.2). Thus, the same resolution approaches
may be applied within the limits mentioned above.

6.4.2.3 Set S Reflecting Backorder Costs

To evaluate the cost functions (6.86), (6.93) and (6.99) that we introduced in
Sect. 6.4.1.3, the following formulae are relevant for the full deliveries case.

For the expected average inventory, we have (6.60) and the expected delayed
orders per period are given by 1

rD
�.1�˛�DrD/ as above. The two types of backorders

are calculated according to (6.54) and (6.56), respectively.
However, no matter what type of backorder costs (c31; c32 or c33) we are

considering here, we generally observe that the resulting cost functions have a non-
convex shape. Even worse, we are not able to analytically determine their slope. For
example, finding the preliminary derivative of the mean inventory in S (6.60) seems
a hopeless task.

Therefore, we can only propose a simple linear approach to find the best solution
within the limits of a certain step granularity. This may be done by Algorithm 12,
where the bisection method should not be applied any further.

6.4.2.4 Set r and S Reflecting Backorder Costs

For setting both parameters r and S , we obtain good results with the same approach
as described in Sect. 6.4.1.4. However, we observe significantly longer runtimes
than for equivalent split order instances, which is due to the time-consuming basic
evaluation of inventory levels and backorder costs for certain parameterizations.
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Since the optimum order cycles for the split and full delivery mode tend to be
similar or even equal in many instances, a possible way to speed up the procedure
could be the following approximation method. Instead of the formulae that consider
full deliveries, use those for the split deliveries case to approximate ropt . Then
switch to the correct formulae, see if ropt � 1 or ropt C 1 exhibit lower costs, and
finally set S .



Chapter 7
Conclusion

This study is dedicated to the management of inventories with periodic review
inventory policies. We have tried to provide the reader with a theoretical and
methodological background as well as tangible results for special problems that are
ready to implement. In order to achieve this, we started with the basic vocabulary as
well as an overview on basic properties of inventory systems and replenishment
rules in Chap. 2. The relevant literature was then discussed in Chap. 3, where
we pursued two aims. One was to try and provide a comprehensive overview of
problems concerning single-level inventory management that have already been
solved in the literature. We also attempted to give an introduction to a general mode
of thinking and encountering problems in inventory theory, paying special attention
to periodic review systems. Before we began to study a specific class of inventory
systems, Chap. 4 elaborated on selected elementary methods that we find useful for
analyzing inventory systems in general.

Chapter 5 considered four forms of replenishment lead time processes that
are commonly found in the literature. We dedicated significant space to the case
of independent lead times and the possibility of order crossover. We did so for
two reasons. First, the corresponding model – despite its theoretical and practical
relevance – has not been very well studied in the literature. Second, the problems
and analysis presented provide a practicable introduction to the analysis of inventory
systems with related properties. We consider these problems especially suitable for
starting with because their focus is merely on one single property, whereas multiple
aspects are typically involved even in seemingly simple problems found in inventory
theory.

In Chap. 6, we finally attempted to consolidate the background given in the
previous sections by addressing and solving a set of problems related to an inventory
system that is typically found within a multi-level supply chain. We dedicated most
of the chapter to the analytical evaluation of a certain set of properties in order
to then be able to construct the corresponding optimization routines on the stable
foundations explained previously.

T. Wensing, Periodic Review Inventory Systems, Lecture Notes in Economics
and Mathematical Systems 651, DOI 10.1007/978-3-642-20479-1 7,
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The contribution of this study to theory and practical applications is as follows.
In the first place, it contributes to inventory theory by offering novel analytical
approaches for several properties of inventory models being considered. To our
knowledge, the effective lead time (Sect. 5.2.3) has not been analyzed in this form
before. Furthermore, analysis of customer waiting times per order (Sect. 6.3.1.2),
consideration of full deliveries (Sect. 6.3.3) for volume-oriented performance indi-
cators and the entire analysis of the independent lead time case (Sects. 6.3.4, 6.3.5
and 6.3.6) have not been conducted for this particular inventory model.

Furthermore, the study contributes to practical inventory management by provid-
ing formulae and algorithms that are ready to implement and may help practitioners
to adjust related real-world inventory systems. In that context, we put emphasis on
designing a modular system, i.e., a system that may easily be enhanced, and which
may also be embedded into a larger context of further similar systems that either
provide input to it or receive output from the system that is being examined. Not
least, the scope of this study was to design an extendable model and give insights
into the general methodological possibilities for the task of analyzing periodic
review inventory systems of the type examined. This approach follows the general
trait of contemporary inventory theory that provides specific – possibly adaptable –
methods instead than aiming at a single generic model to meet the requirements of
any practical problem.

Future research may be directed towards the further improvement of the model’s
embeddedness into a multi-level context. Besides this, the customer demand process
may be subject to deeper analysis, probably in a similar manner to how we
conducted it for the replenishment lead time process. Concerning the first aspect,
the model is ready to be used in a linear multi-level context if we consider the
customer waiting time of one system as replenishment lead time for the successive
system. This approach, however, is only exact for constant customer demands. The
case of stochastic demand introduces the problem aspect that customer waiting
times are in fact not independent of the customer demand process. Higher customer
order volume may clearly induce a higher stockout probability than a lower
volume. Therefore the customer waiting time as developed above does not provide
sufficient information to exactly analyze the successive inventory system. However,
experiments with this approach revealed quite accurate results that decline the more
stocks are considered and the more volatile the demand distribution.

Furthermore, the model may be enhanced to cover even more general supply
chain or rather supply network structures, i.e., one may allow for multiple successive
demand and preceding replenishment processes. Besides that, one may consider
that the system being analyzed provides material in combination with other similar
systems. For the latter case of converging substructures, it is then necessary to
determine the combined delay or service of several systems that serve the same
successor. Here, one may distinguish between the obligation of material availability
at all preceding systems and the possibility that one system’s shortage may be
compensated by another that keeps the same goods in stock. The complementary
case of diverging structures comes with the necessity to specify a rule to decide
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which of several successors will be served first if material is insufficient to fulfill the
entire demand.

In terms of the demand aspect, it would be also interesting to model the
interarrival times as random variables, which would be a generalization of our
demand model. Furthermore, the assumption of i.i.d. demand occurrences may not
be realistic for many practical problem instances. A simple approach in that context
that follows our model’s logic would be to replace the classical convolution by a
different approach that reflects the corresponding dependencies when determining
the combined demand of several periods.



•
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Küenle, C. and Küenle, H. (1977). Durchschnittsoptimale Strategien in Markovschen Entschei-
dungsmodellen bei unbeschränkten Kosten. Optimization, 8(4):549–564.

Larsen, C. and Thorstenson, A. (2008). A comparison between the order and the volume fill rate
for a base-stock inventory control system under a compound renewal demand process. Journal
of the Operational Research Society, 59(6):798–804.

Larson, C. and Kiesmüller, G. (2007). Developing a closed-form cost expression for an (r, s,
nq) policy where the demand process is compound generalized Erlang. Operations Research
Letters, 35:567–572.

Lee, H. and Nahmias, S. (1993). Single-product, single-location models. In Graves, S., Kan,
A. R., and Zipkin, P. H., editors, Handbooks in Operations Research and Management Science,
Volume 4: Logistics of Production and Inventory. North-Holland, Amsterdam.

Lee, H.-S. (1995). On continuous review stochastic (s,S) inventory systems with ordering delays.
Computers and Industrial Engineering, 28(4):763–771.

Liberatore, M. (1979). The EOQ model under stochastic lead time. Operations Research,
27(2):391–396.

Liu, L. (1990). (s,S) continuous review models for inventory with random lifetimes. Operations
Research Letters, 9(3):161–167.

Merlini, D. and Verri, M. C. (2000). Generating trees and proper Riordan arrays. Discrete
Mathematics, 218(1–3):167–183.

Meyn, S. and Tweedie, R. (2009). Markov Chains and Stochastic Stability. Cambridge University
Press, Cambridge, 2nd edition.

Minner, S. (2003). Multiple-supplier inventory models in supply chain management: A review.
International Journal of Production Economics, 81–82:265–279.

Moors, J. J. A. and Strijbosch, L. W. G. (2002). Exact fill rates for (R, s, S) inventory control with
Gamma distributed demand. Journal of the Operational Research Society, 53(11):1268–1274.

Morton, T. (1978). The non-stationary infinite horizon inventory problem. Management Science,
24(14):1474–1482.

Naddor, E. (1975). Optimal and heuristic decisions in single- and multi-item inventory systems.
Management Science, 21(11):1234–1249.

Nahmias, S. (1979). Simple approximations for a variety of dynamic leadtime lost-sales inventory
models. Operations Research, 27(5):904–924.

Norman, J. M. and White, D. J. (1968). A method for approximate solutions to stochastic dynamic
programming problems using expectations. Operations Research, 16(2):296–306.

Ord, J. and Bagchi, U. (1983). The truncated normal-Gamma mixture as a distribution for lead
time demand. Naval Research Logistics, 30(2):359–365.

Pam, A., Ramasesh, R., Hayya, J., and Ord, J. (1991). Multiple sourcing: The determination of
lead times. Operations Research Letters, 10(1):1–7.

Porteus, E. (1971). On the optimality of generalized (s,S) policies. Management Science,
17(7):411–426.

Porteus, E. (1972). The optimality of generalized (s,S) policies under uniform demand densities.
Management Science, 18(11):644–646.



146 References

Porteus, E. (1985). Numerical comparisons of inventory policies for periodic review systems.
Operations Research, 33(1):134–152.

Prasad, S. (1994). Classification of inventory models and systems. International Journal of
Production Economics, 34(2):209–222.

Ramasesh, R., Ord, J., Hayya, J., and Pan, A. (1991). Sole versus dual sourcing in stochastic
lead-time (s,q) inventory models. Management Science, 37(4):428–443.

Rao, U. (2003). Properties of the periodic review (r,t) inventory control policy for stationary
stochastic demand. Manufacturing and Service Operations Management, 5(1):37–53.

Riezebos, J. (2006). Inventory order crossovers. International Journal of Production Economics,
104(2):666–675.

Robinson, L., Bradley, J., and Thomas, L. (2001). Consequences of order crossover under order-
up-to inventory policies. Manufacturing & Service Operations Management, 3(3):175–188.

Robinson, L. and Bradley, R. (2008). Further improvements on base-stock approximations for
independent stochastic lead times with order crossover. Manufacturing & Service Operations
Management, 10(2):325–327.

Ronen, D. (1982). Measures of product availability. Journal of Business Logistics, 3(1):45–58.
Ross, M. (2006). Introduction to Probability Models. 9 edition.
Sahin, I. (1982). On the objective function behavior in (s,S) inventory models. Operations

Research, 30(4):709–724.
Sahin, I. (1988). Optimality conditions for regenerative inventory systems under batch demands.

Applied Stochastic Models and Data Analysis, 4(3):173–183.
Sahin, I. and Kilari, P. (1984). Performance of an approximation to continuous review (S,s) policies

under compound renewal demand. International Journal of Production Research, 22(6):1027–
1032.

Sahin, I. and Sinha, D. (1987). Renewal approximation to optimal order quantity for a class of
continuous-review inventory systems. Naval Research Logistics, 34(5):655–667.

Sani, B. and Kingsman, B. (1997). Selecting the best periodic inventory control and demand
forcasting methods for low demand items. Journal of the Operational Research Society,
48(7):700–713.

Scarf, H. (1960). The optimaltity of (s,S) policies in the dynamic inventory problem. In Arrow,
K., Karlin, S., and Suppes, P., editors, Mathematical Methods in the Social Sciences. Stanford
University Press, Stanford.

Schäl, M. (1976). On the optimality of (s,S)-policies in dynamic inventory models with finite
horizon. SIAM Journal on Applied Mathematics, 30(3):528–537.

Schneider, H. (1978). Methods for determining the re-order point of an (s,S) ordering policy when
a service level is specified. Journal of the Operational Research Society, 29(12):1181–1193.

Schneider, H. (1981). Effect of service-levels on order-points or order-levels in inventory models.
International Journal of Production Research, 19(6):615–631.

Schneider, H. and Ringuest, J. L. (1990). Power approximation for computing (s, S) policies using
service level. Management Science, 36(7):822–834.

Sculli, D. and Shum, Y. (1990). Analysis of a continuous review stock-control model with multiple
suppliers. Journal of the Operational Research Society, 41(9):873–877.

Sculli, D. and Wu, S. (1981). Stock control with two suppliers and normal lead times. Journal of
the Operational Research Society, 32:1003–1009.

Sethi, S. and Cheng, F. (1997). Optimality of (s,S) policies in inventory models with markovian
demand. Operations Research, 45(6):931–939.

Sherbrooke, C. (1975). Waiting time in an (S-1,S) inventory system - constant service time case.
Operations Research, 23(4):819–820.

Silver, E. (1981). Operations research in inventory management: A review and critique. Operations
Research, 29(4):628–645.

Silver, E. (2008). Inventory management: An overview, canadian publications, practical applica-
tions and suggestions for future research. INFOR, 46(1):15–28.

Silver, E., Pyke, D., and Peterson, R. (1998). Inventory Management and Production Planing and
Scheduling. Wiley, New York, 3rd edition.



References 147

Silver, E. A., Naseraldin, H., and Bischak, D. P. (2009). Determining the reorder point and order-
up-to-level in a periodic review system so as to achieve a desired fill rate and a desired average
time between replenishments. Journal of the Operational Research Society, 60(9):1244–1253.

Smith, A. (1977). Optimal inventories for an (S-1,S) system with no backorders. Management
Science, 23(5):522–528.

Song, J.-S., Zhang, H., Hou, Y., and Wang, M. (2010). The effect of lead time and demand
uncertainties in (r, q) inventory systems. Operations Research, 58(1):68–80.

Song, J.-S. and Zipkin, P. H. (1996). The joint effect of leadtime variance and lot size in a parallel
processing environment. Management Science, 42(9):1352–1363.

Sphicas, G. (1982). On the solution of an inventory model with variable lead times. Operations
Research, 30(2):404–410.

Sphicas, G. and Nasri, F. (1984). An inventory model with finite-range stochastic lead times. Naval
Research Logistics Quarterly, 31(4):609–616.

Strichartz, R. S. (2003). A Guide to Distribution Theory and Fourier Transforms. 2 edition.
Strijbosch, L. W. G. and Moors, J. J. A. (2005). The impact of unknown demand parameters

on (R,S)-inventory control performance. European Journal of Operational Research, 162(3):
805–815.

Strijbosch, L. W. G. and Moors, J. J. A. (2006). Modified normal demand distributions in (R,S)-
inventory control. European Journal of Operational Research, 172(1):201–212.

Suchanek, B. (1996). Sicherheitsbestände zur Einhaltung von Servicegraden. Europäischer Verlag
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146(1–3):247–262.

West, J. (1996). Generating trees and forbidden subsequences. Discrete Mathematics, 157(1–
3):363–374.

Wijngaard, I. and van Winkel, E. (1979). Average costs in a continuous review (s,S) inventory
system with exponentially distributed lead time. Operations Research, 27(2):396–401.

Yano, C. (1985). New algorithms for (Q,r) systems with complete backordering using a fill-rate
criterion. Naval Research Logistics Quarterly, 32(4):675–688.

Zalkind, D. (1976). Further results for order-level inventory systems with independent stochastic
leadtimes. Technical Report 76-6, Department of Health Administration and Curriculum
in Operations Research and Systems Analysis, University of North Carolina at Chapel Hill,
Chapel Hill, NC.

Zalkind, D. (1978). Order-level inventory systems with independent stochastic lead times.
Management Science, 24(13):1385–1392.

Zhang, J. and Zhang, J. (2007). Fill rate of single-stage general periodic review inventory systems.
Operations Research Letters, 35(4):503–509.

Zhang, R., Hopp, W., and Supatgiat, C. (2001). Spreadsheet implementable inventory control for
a distribution center. Journal of Heuristics, 7(2):185–203.

Zheng, Y. (1991). A simple proof for optimality of (s,S) policies in infinite-horizon inventory
systems. Journal of Applied Probability, 28(4):802–810.

Zheng, Y. and Federgruen, A. (1991). Finding optimal (s,S) policies is about as simple as evaluating
a single policy. Operations Research, 39(4):654–665.

Zheng, Y.-S. and Chen, F. (1992). Inventory policies with quantized ordering. Naval Research
Logistics, 39(3):285–305.

Zinn, W., Mentzer, J., and Croxton, K. (2002). Customer-based measures of inventory availability.
Journal of Business Logistics, 23(2):19–43.

Zipkin, P. H. (1986a). Inventory service-level measures: convexity and approximation. Managment
Science, 32(8):975–981.

Zipkin, P. H. (1986b). Stochastic leadtimes in continuous-time inventory models. Naval Research
Logistics Quarterly, 33(4):763–774.

Zipkin, P. H. (2000). Foundations of Inventory Management. McGraw-Hill, Boston.



Glossary of Symbols

Fundamental concepts as defined in Chaps. 2 and 4

˛� Ready rate for a basis interval of length � (def. 7, p. 14)
ˇ Fill rate (def. 8, p. 15)
� Time-weighed fill rate (def. 9, p. 17)
AI Arriving inventory (as defined on p. 6)
B Number of backorders (as defined on p. 5)
c1 Fixed costs per replenishment order (def. 2, p. 11)
c2 Inventory holding costs (def. 3, p. 12)
c31 Costs for being in stockout state (def. 4, p. 13)
c32 Costs per missing unit (def. 5, p. 13)
c33 Costs per missing unit and time (def. 6, p. 13)
CCax Computational complexity of algorithm x
CDFX.:/ Cumulative density of the distribution of random variable X

CDF �1.:/ Inverse cumulative probability density function or quantile
function (def. 13, p. 44)

D Demand per underlying base period (as defined on p. 6)
h Inventory holding cost rate without costs for capital binding

(def. 3, p. 12)
i Interest rate (def. 3, p. 12)
I Physical inventory (as defined on p. 5)
II Issued inventory (as defined on p. 6)
IO Inventory on order (as defined on p. 6)
IP Inventory position (as defined on p. 6)
IS Inventory system
K Number of outstanding orders (as defined on p. 6)
L (Replenishment) lead time (as defined on p. 6)
LTD Lead time demand (as shortly discussed in Sect. 5.2.2)
NI Net inventory (as defined on p. 6)
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p Acquisition price per unit (def. 1, p. 11)
PDFX .:/ Probability density function of the distribution of random

variable X

q Deterministic order quantity (policy parameter, see Sect. 2.2.3)
Q Stochastic order quantity (as defined in Sect. 2.2.3)
r Order cycle (policy parameter, see Sect. 2.2.3)
s Reorder point (policy parameter, see Sect. 2.2.3)
S Order-up-to level (policy parameter, see Sect. 2.2.3)
SF Inventory shortfall or inventory on order (as defined on p. 6)
t Review interval (policy parameter, see Sect. 2.2.3)
SS Safety stock (as described on p. 6)
W O Customer waiting time per order (def. 10, p. 18)
W V Customer waiting time per part (def. 11, p. 18)
xmin Minimum value of the support of random variable X

xmax Maximum value of the support of random variable X

Xspan Value span of the distribution of X , Xspan WD xmax � xmin

Additional concepts as introduced in Chap. 6

˛�D1 Ready rate per period
˛�DrD Ready rate per customer order arrival
˛�Dr Ready rate per order cycle
BŒa;b� Backorder amount that originates from time interval

Œa C 1; b�

B��
w Additional coverable backorder amount

(see Sect. 6.3.2.4, p. 96 et seq.)
B�;�D1 Additional backorder amount per period
B�;�Dr Additional backorder amount per order cycle
Dx Demand in x periods
Disc.f.x; px/; : : :g/ Discrete distribution defined by pairs of value and

probability .x; px/; : : :

ELT Effective lead time (def. 19, p. 65)
I .�/ Change of inventory
nf1.a; b/ First adaption function (def. 20, p. 84)
nf2.a; b/ Second adaption function (def. 21, p. 86)
nf3.a; b/ Third adaption function (def. 24, p. 102)
NF2.a; b/ Truth function on nf2.a; b/ (def. 22, p. 88)
SOt Truth function on the exhaustion of S (def. 23, p. 101)
sv� Aspired (target) service level
T � Set of subperiods of an order cycle, T � D f0; 1; : : : ; r�1g
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T �� Consecutively numbered demand periods of an order
cycle, T �� D f0; 1; : : : ; r

rD
� 1g

Norm.�; �/ Normal distribution with mean � and standard
deviation �

rD Customer demand cycle, i.e. the frequency of customer
demand occurrences

Unif .fx; y; : : :g/ Discrete uniform distribution with possible values
fx; y; : : :g
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