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Preface

This book is based on courses on “Riccati, Ermakov and the Quantum-Classical
Connection”, “Nonlinearities and Dissipation in Classical and Quantum Physics”
and “Is Quantum Theory Intrinsically Nonlinear?” that I taught at Goethe
University in Frankfurt am Main. Contact with Springer publishing house was
made at the opening reception of the Conference DICE 2012 in Castiglioncello,
Italy where I met Dr. Angela Lahee, Senior Editor Physics at Springer. After talking
with her about Plato, Pythagoras and their relation to an unconventional view on
quantum theory, the idea was born to write a monograph on this topic and publish it
in the Springer Series “Fundamental Theories of Physics”.

The contract was signed in July 2013 and the original plan was to deliver the
manuscript within 2 years. However, the field was increasingly expanding since
then and I obtained my own new results that I definitely wanted to include in the
book. So, various parts of Chaps. 2, 3, 5 and 7, as well as Appendix D, represent
results that were found and published only after the contract was signed. Still, it is
impossible to cover all aspects of the field, particularly the effective description of
dissipative systems and work on the Ermakov invariant and related equations of
motion. Therefore, the references presented in this book represent a concise
selection of all the material that is published in this field. Further references can be
found in the papers cited but a complete bibliography on this subject is beyond the
scope of this book. My apologies to all authors who contributed significant work in
this field and are not cited. Please be reassured that this is without contempt. It is
likely that some papers escaped my knowledge, while others known to me were
omitted as I had to select a reasonable number on a subjective basis.

Many of the new results mentioned above have been obtained in collaboration
with colleagues (some of whom have become very dear friends), particularly in
Mexico, Spain and Italy.

The joint efforts with Marcos Moshinsky at Instituto de Física at UNAM in
Mexico City made a significant impact on my work. It started in the latter years
of the last century and developed into a deep friendship that lasted until his death in
2009. Some of the papers that I consider my best or most influential ones originated
from this collaboration with Marcos or were inspired by him. Fortunately, the
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Mexican connection was not severed after he had passed away but continued with
one of his colleagues, Octavio Castaños, at Instituto de Ciencias Nucleares at
UNAM who then made contact with Oscar Rosas-Ortiz at CINVESTAV in Mexico
City. The projects undertaken with my Mexican colleagues were always generously
supported by their respective Institutes and in part by CONACyT for which I am
immensely grateful.

Work on the Bateman model and its connections with my earlier research
stemmed from “Damping in Granada”, a conference organized by Victor Aladaya.
This expanded into my Spanish collaboration to also include Julio Guerrero and
Francisco López-Ruiz. The connection with ‘t Hooft’s idea of be-ables was then
established while visiting with Massimo Blasone of the University of Salerno in
Italy.

Links to my chemistry roots still exist via Robert Berger of Marburg University
in Germany and his former student Joonsuk Huh, now a Professor at
Sungkyunkwan University in South Korea.

Certainly, my teachers deserve sincere thanks and, notably, my supervisor
Hermann Hartmann had lasting influence on my attitude towards research, teaching
and academia. Not only was he (officially) a Professor of Physical and Theoretical
Chemistry, he was also a theoretical physicist in disguise who published his first
paper with Arnold Sommerfeld in Munich. His broad knowledge in numerous
academic fields was also quite impressive and, even in his latter years, he was still
very open-minded to unconventional approaches of youngsters like me and sup-
ported my heretic ideas of nonlinear modifications of the Schrödinger equation in
my Ph.D. thesis; at that time, not something that could be taken for granted.

Actually, I got infected with the idea of nonlinear Schrödinger equations by his
collaborator and my dear Korean colleague K.-M. Chung who introduced me to a
Korean paper on the subject. Despite countless personal misfortunes, he followed
my progress in this field until he died in 2005.

Being essentially an orphan in the Theoretical Chemistry Department after my
supervisor’s death in 1984, another collaborator of Prof. Hartmann, Prof. Karl
Hensen, supported me in my metamorphosis from a theoretical chemist to a the-
oretical physicist. To this day, he never doubted that I would succeed and
encouraged me in many a dark period, something very important to me. From the
very beginning of my studies, just for fun, I attended lectures on Theoretical
Physics given by Prof. Rainer Jelitto. This later proved advantageous in my move
from chemistry to physics. Then, it happened that said Prof. Jelitto took over the
role of a kind of godfather when I switched to physics and followed my work with
interest until he died in 2011.

I wish to thank my Ph.D. student Hans Cruz Prado for his assistance in the final
stage of the manuscript; for integrating the figures and tables and putting together
all the parts into one opus.

Thanks also to Angela Lahee of Springer Publishers for her patience and trust
that this project would come to a successful end.

However, all of this would not have been possible without the support of my
family. My parents and my grandmother stimulated my interest in the beauty,
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aesthetics and elegance of nature, numbers and their relations. They also supplied
the mental, moral and material support that allowed me to pursue my ideas.

Special thanks go to my wife, Yvette. She is a constant source of encouragement
for my work, was (and still is) my most meticulous critic (not only on matters
linguistic), though also my biggest fan. Her proficient advice for this book was not
always made use of as I insisted that the international language of scientists is bad
English (to quote Bogdan Mielnik) and it is not my intention to win the Pulitzer
Prize. Without Yvette’s relentless support and technical know-how, this book
would not have been written.

Frankfurt am Main Dieter Schuch
Mai 2017
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Chapter 1
Introduction

An attempt to look at quantum theory from a different perspective also leads to
the question of where the idea of “quantization”, i.e., dividing our material world
into “smallest building blocks”, actually originates. In the western hemisphere this
takes one back to ancient Greece and its philosophers. In this case, one might first
think of Democritus (ca. 460–ca. 371 B.C.) who coint the term “atomos” for the
smallest building blocks of matter which cannot be divided any further. The word
“atom” remains today. However, the atom turned out to be composed of even smaller
constituents and, at present we are at the level of quarks and gluons. Is this the
end, or will it be possible to detect yet smaller components with higher energized
accelerators? Maybe we are even searching for the wrong answer and should not
be looking for the smallest material particle but rather for some general elementary
structure(s) that are ubiquitous in the universe and not depending on the size!

Another Greek philisopher even more famous than Democritus was probably
thinking more along this line. In his book “Timaeus”, Plato (428/29–348/47 B.C.)
gives his view of how the world is made up in terms of right-angled triangels. Werner
Heisenberg, who was equally fascinated with and puzzeled by this text summarizes
this idea in his book “Der Teil und das Ganze” [1]. The general idea is that matter is
made up of right-angled triangleswhich, after being paired to form isosceles triangles
or squares, are simply joined together to construct the regular bodies of stereometry:
cube, tetrahedron, octahedron and icosahedron. These four solids then represent the
basic units of the four elements: earth, fire, air and water. Plato makes no statement
about the size of the triangles, only about their form and resulting properties.

Some 2000years later, the idea of Platonic solids (polyhedra) fascinated Johannes
Kepler (1571–1630) so much that, in his quest for harmony in nature, he tried to
explain the orbits of the planets in our solar system by fitting one polyhedron onto
another so that the radii of spheres enveloping these polyhedra would correspond to
the mean distances of the planets from the sun.

An aspect of “quantization”was brought into this picture by Titius vonWittenberg
(1729–1796) and Johann Elert Bode (1747–1826) who proposed a series of numbers

© Springer International Publishing AG 2018
D. Schuch, Quantum Theory from a Nonlinear Perspective,
Fundamental Theories of Physics 191, https://doi.org/10.1007/978-3-319-65594-9_1
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2 1 Introduction

(integers!) that describes the (relative) distance of the planets from the sun (Titius–
Bode law) similar to Bohr’s model of the atom. (Remarkably, a new formulation
of this law has been found by Reinisch ([2] and literature quoted therein) using a
nonlinear (NL) formulation of a (formal) macroscopic Schrödinger equation (SE) to
describe the solar system. This NL formalism is equivalent to the treatment of a NL
complex Riccati equation as presented in Sect. 2.3 in the context of time-dependent
(TD) quantum mechanics and a NL formulation of time-independent (TI) quantum
mechanics [3] as discussed in Sect. 3.2.

Kepler tried to connect the geometry of the planetary orbits and movement of the
planets with some kind of imaginary sounds – the music of the spheres. This takes
us back to the ancient Greeks and the right-angled triangles.

The Greek philosopher Pythagoras lived around 570–500 B.C. Today, even if
(almost) nothing survived from our early mathematics lessons, most people can
recollect the theorem named after him and some might even be able to quote it as
a2 + b2 = c2 where a and b are the catheti and c the hypotenuse of a right-angled
triangle. Pythagoras and his pupils were well-known for their dogma “everything
is number”; number meaning integer. They applied it to develop a musical scale
(see Kepler’s music of the spheres) and also to the right-angled triangle. So, the
Pythagorean triples are three integers denoting the length of the three sides of a right-
angled triangle thus fulfilling Pythagoras’ theorem. The most common example is
(3, 4, 5) with 9 + 16 = 25. Asked for a few more examples of this kind, even
individuals affiliated with mathematics have difficulty providing some (or even one)
though infinitely-many triples exist! Moreover, there is even a rather simple rule to
find these triples. This rule, or something similar, was probably already known in
Mesopotamia around 2000 B.C. but certainly Diophantus of Alexandria (around the
year 250) knew it.1

Why do I mention this here? And what does this have to do with the topics stated
in the title of this book? In Chap.2 it is shown that a complex nonlinear evolution
equation, in particular a Riccati equation, can be obtained from the dynamics of
Gaussian wave packet (WP) solutions of the TD Schrödinger equation (TDSE) that
also provides the key to answering the above question of obtaining Pythagorean
triples.

Returning to amore recent era of physics, around the beginning of the 20th century,
physicists were puzzled by what is called wave-particle duality. For instance light,
that (after Maxwell) was finally considered to be a continuous wave, behaved like
discrete particles in certain experiments such as the photoelectric effect. Contrarily,
electrons that (in the meantime) were assumed to be particles, displayed wave-like
behaviour in some experiments and produced interference patterns. The dichotomy
of light versus matter, or continuous versus discrete, was only resolved in the mid-

1Fermat claimed to have found an elegant proof showing that if a, b and c are integers, the relation
an+bn = cn cannot be fulfilled forn larger than2; but themargin ofDiophantus’ book “Arithmetica”
was too small to write it down. This so-called Fermat’s conjecture was proven only recently by A.J.
Wiles.



1 Introduction 3

twenties of the last century by Schrödinger and Heisenberg (and finally Dirac) with
the development of quantum theory [4–6].

Though physically equivalent, Schrödinger’s wave mechanics turned out to be
more successful and receptive to the physics community than Heisenberg’s matrix
mechanics that used a less familiar mathematical description than Schrödinger’s
partial differential equation. (The Schrödinger picture is also preferred in this book.)
As both formulations are closely-related to classical Hamiltonian mechanics, they
also have similar properties. In particular, there is no direction of time in the evolution
of the system and energy is a constant of motion (at least in the cases that are usually
discussed in textbooks and can be solved analytically in closed form).

However, as everyone can observe daily in the surrounding world, nature actually
behaves quite differently. There is a direction of time in almost every evolutionary
process (and we usually cannot reverse it directly even if we would sometimes like
to do so). Also mechanical energy is not a conserved quantity but dissipated into heat
by effects like friction. There are ways of explaining and including these phenom-
ena into the theories mentioned earlier. However, for ordinary people, concepts like
(Poincaré’s) recurrence time that is longer than the age of the universe are not really
convincing. Nevertheless, quantum theory (with all its technological developments)
is undoubtedly the most successful theory so far, and not only in physics but also
from an economic viewpoint.

The situation in physics took a different twist near the end of the 20th century with
the development ofNonlinear Dynamics. This theory is able to describe evolutionary
processes like population growthwith limited resources orweather patterns and other
such complex systems as they occur in real life. At the same time, it can also take
into account phenomena like irreversibility of evolution and dissipation of energy.

So why not combine the two theories to get the best of both worlds? In order to
answer this question one must specify what the essential elements of these theories
are and which aspects can be abandoned in order to have, at least, a chance for
unification.

Starting with quantum mechanics, the quantization of action introduced by Max
Planck around the year 1900 in order to explain the black-body radiation is obviously
the most fundamental concept of all quantum theory. Interestingly enough, action
usually cannot be measured directly as it is the product of two physical quantities
(like position times momentum or energy times time) that both cannot be measured
exactly at the same time. (Something thatHeisenberg later on proved to be impossible
in principle.)

So it is actually not energy, represented by the Hamiltonian, that is the most
fundamental quantity in this theory but action, an aspect that will become of interest
when dynamical invariants are discussed in Chap.2.

The second indispensible ingredient of quantum physics has been specified by
C.N. Yang in his lecture on the occasion of Schrödinger’s centennial celebration
[7]. In his opinion, the major difference between classical and quantum physics
is the occurrence of the imaginary unit i = √−1 in quantum mechanics since it
enters physics here in a fundamental way (not just as a tool for computational conve-
nience) and “complex numbers became a conceptual element of the very foundations
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of physics”. The very meaning of the fundamental equations of wave mechanics
and matrix mechanics (the TDSE and the commutator relations) “would be totally
destroyed if one tries to get rid of i by writing them in terms of real and imaginary
parts”. Also E.P. Wigner stresses the important role of complex numbers in quan-
tummechanics in his article “The Unreasonable Effectiveness of Mathematics in the
Natural Sciences” [8]. This, however, should not be a problem in the unification of
quantum theory and NL theories like Nonlinear Dynamics as, in the latter one, also
complex numbers can play an eminent role (e.g., in the complex quadratic family
leading to the Mandelbrot set).

The contrast between reversible time-evolution in quantum theory and irreversible
evolution as possible in Nonlinear Dynamics appears more problematic. Even if one
would restrict the unification only to systems with reversible evolution, the major
problem would seem to be that quantum theory in its conventional form is a linear
one, i.e., it is essentially based on linear differential equations. On the other hand,
Nonlinear Dynamics, by definition, uses NL differential equations (or discretized
versions of such). Why then should linearity be so important for quantum theory?
As mentioned above, quantum theory can explain the wave properties of material
systems such as diffraction patterns that can essentially be considered a superposition
of different solutions of the same equation. However, this superposition principle is
usually only attributed to linear differential equations!

Is there a way out of this dilemma?
In principle, Nonlinear Dynamics (or NL theories in general) cannot exactly be

linearized otherwise it would lose not only its linguisticmeaning, but also its physical
properties. Therefore, the only solution seems to be a NL version of quantum theory
that takes into account all of the conventional properties of this theory (including
a kind of superposition principle) while displaying formal compatibility with NL
theories like Nonlinear Dynamics. One might ask why we should give up the nice
mathematical properties of a linear theory;what dowegain?Wemight gain additional
information that cannot be obtained easily (or even be expected) from the linear form
of quantum theory. The sensitivity of NL theories to initial conditions is an example
that demonstrates an advantage of a NL formulation over the linear one. Also the
NL treatment of complex quantities mixes real and imaginary parts, or phase and
amplitude, of these quantities. As it turns out, this mixing is not arbitrary but related
to some conservation laws that are not at all obvious in the linear version of quantum
mechanics. Furthermore, a formal link between a NL version of quantum mechanics
and other NL theories, e.g., soliton theory (as shown in Chap. 7), enables analogies
to be drawn between them and knowledge gained in one field to be transferred and
applied in another.

What then should this nonlinear version of quantum mechanics look like? There
are several modifications adding NL terms to the Schrödinger equation (particularly
in the dissipative case, examples are mentioned in Chap. 4, but also in a general
context [9, 10]) and the resulting problematic aspects of some of these attempts
are discussed in the literature ([11–14] and literature cited therein). In the approach
presented in thisworkquantum theory is not considered incomplete in its present form



1 Introduction 5

Fig. 1.1 Quantum theory from different perspectives

(at least for non-dissipative2 systems); that means it does not require any (eventually
NL) additions. The conventional view is regarded rather as a particular projection
of quantum theory but this theory contains more information and further properties
that are lost by looking at it from this perspective. If one would consider quantum
theory as a three-dimensional object, like a cone (see Fig. 1.1), the conventional
view could be compared to looking at it from the top, thus having the impression of
viewing a circle. This corresponds to the conventional linear perspective with unitary
time-evolution as a rotation in Hilbert space and other established properties.

The non-conventional view presented in the following could be compared to
looking at the same cone from the side, giving the impression of viewing an isosce-
les triangle that can be divided into two right-angled triangles, as it were, a Pla-
tonic/Pythagorean viewpoint. This then leads to a non-conventional, NL perspective
that can also include non-Hermitian Hamiltonians, non-unitary time-evolution (and,
with a simple extension, dissipative open systems) and finally can be linked to the
Pythagorean “quantization” in terms of the above-mentioned triples.

In particular, the search is for a NL reformulation of quantum mechanics that can
be exactly linearized. It thus retains the property of a kind of superposition principle
but still exhibits properties of NL systems like sensitivity to the choice of initial
conditions, scale invariance (i.e., only relative changes like logarithmic derivatives

2Usually, “dissipative” is set against “conservative”, the latter describing systems where the energy,
and therefore also theHamiltonian function, is a constant ofmotion.However, already the parametric
oscillator with ω = ω(t) leads to a time-dependent Hamiltonian H(t), i.e., non-conservative but
without dissipation due to friction forces. To distinguish this type of systems from dissipative ones
the first type is referred to as “non-dissipative” systems.
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matter) etc. How can this goal be achieved? It is known that the Riccati3 equation
provides all necessary properties for this purpose. It is a NL differential equation but
can be linearized (involving a logarithmic derivative), therefore still preserving a kind
of superposition principle. However, due to its (quadratic) nonlinearity, it is sensitive
to the choice of initial conditions and, in the case of complex functions, mixes real
and imaginary parts, or, phase and amplitude of these functions, respectively, in a
unique way.

Therefore, in Chap.2, it is shown where a (complex) Riccati equation already
occurs in conventional quantum mechanics. For this purpose, the TDSE for cases
with exact analytic solutions in the form of Gaussian WPs will be considered; in
other words, for potentials at most quadratic (or bilinear) in position and momentum
variables, here explicitly for the one-dimensional harmonic oscillator (HO) with
V = m

2 ω2x2 and constant frequency ω = ω0, its generalization, the parametric
oscillator with ω = ω(t) and, in the limit ω → 0, for the free motion V = 0. It
will be shown that the information about the dynamics of the systems can not only
be obtainable from the TDSE but equally well (and even more) from a complex,
quadratically-nonlinear, inhomogeneous Riccati equation.

Thedirect solutionof this equation (by transformation to ahomogeneousBernoulli
equation, once a particular solution of the Riccati equation is known) shows the sen-
sitivity of the dynamics to the choice of the initial conditions. This characteristic
feature of a NL differential equations is not at all obvious in the linearized form. In
an alternative treatment of the complex Riccati equation, it is transformed into a real
(but still NL) so-called Ermakov equation. This equation, together with the New-
tonian equation describing the motion of theWPmaximum, allows for the definition
of a dynamical invariant that is still a constant of motion even if the Hamiltonian of
the system no longer has this property (e.g., if ω = ω(t)). This invariant turns out to
be important for the formulation of generalized creation and annihilation operators,
corresponding coherent states and the Wigner function of the system and can also
be derived by an algebraic method.

Finally, the complex Riccati equation can be linearized to a complex Newtonian
equation. The relation between the amplitude of the complex variable fulfilling this
equation and the WP width, as well as its relation to the phase of this variable, are
explained. The latter relation, representing a conservative law, is due to the nonlin-
earity of the Riccati equation. Real and imaginary parts of the linearized complex
variable are also sufficient for defining the time-dependent Green function (or Feyn-
man kernel) and the representation of canonical transformations (in terms of the
symplectic group) in quantum mechanics for the systems under consideration.

The variable fulfilling the Ermakov equation also allows for rewriting the quan-
tum mechanical contribution of the mean value of the Hamiltonian calculated
using the WP solution, i.e., the ground state energy, in a form that fits into the
Lagrange/Hamilton formalism of classical mechanics but now for typical quantum
mechanical properties like position and momentum uncertainties.

3Jacopo Riccati lived from 1676 to 1754. He wrote on philosophy and physics and is mainly known
for the differential equation named after him.
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In Chap.3, similarities with supersymmetric (SUSY) quantum mechanics in the
TI case are shown. Furthermore, a NL reformulation of TI quantummechanics in the
form of a real NL Ermakov equation or a complex NL Riccati equation for arbitrary
potentials are given.

In Chap.4 different approaches for an effective description of open systems with
dissipative friction forces and irreversible dynamics are considered. In particular,
models are discussed in detail where the environmental degrees of freedom do not
appear explicitly or can be eliminated by certain constraints. Those models that
provide a correct description for the classical aspect, as represented by the motion
of the WP maximum, and the quantum aspect, as represented by the dynamics of the
WP width, can be interrelated classically by a combination of canonical and non-
canonical transformations, quantum mechanically by a corresponding combination
of unitary and non-unitary transformations. The crucial point is the non-canonical
or non-unitary transformation between a formal canonical and the physical level of
description.

Choosing a NL modification of the TDSE with complex logarithmic nonlinearity
for the description of irreversibility and dissipation (that can be related to other
established methods in the above-mentioned way), the WP dynamics dealt with
in Chap.2 is further examined in Chap. 5 including a dissipative, linear velocity-
dependent friction force.

Chapter6 explains how the results of Chap.3 for the TISE can be extended to
include the afore-mentioned friction effect. The results turn out to be consistent with
the TD treatment.

In Chap.7 examples are given where NL Riccati equations also occur in other
fields of physics thus allowing results obtained in the quantum mechanical context
to be transferred, where possible, to these systems. Starting from examples with real
Riccati equations (as they occur in statistical thermodynamics, systems with Nonlin-
ear Dynamics and solitons), the discussion is extended to complex Riccati equations
(as they occur in classical optics, Bose–Einstein condensates and cosmological mod-
els) and finally to the more abstract problem of determining the Pythagorean triples.
The last case gives an idea of how any evolution (in space, time or some other
variable) that obeys a kind of complex Riccati/Bernoulli equation can be quantized.

Chapter8 summarizes the results, points out related aspects that were not men-
tioned before or discussed in detail and cites some future perspectives. The appen-
dices comprise some explicit calculations that are not essential for understanding the
general idea but are still useful for completing the approach.
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Chapter 2
Time-Dependent Schrödinger Equation
and Gaussian Wave Packets

2.1 Dynamics of Mean Values and Uncertainties

In the following, the one-dimensional time-dependent Schrödinger equation (TDSE)
for problems with analytic solutions in the form of Gaussian wave packets (WPs) is
considered. This applies to potentials that are at most quadratic (or bilinear) in posi-
tion and momentum variables. In particular, the discussion focuses on the harmonic
oscillator (HO) (V = m

2 ω2x2) with constant frequency, ω = ω0, or the parametric
oscillator with TD frequency, ω = ω(t), where the corresponding expressions for
the free motion (V = 0) are obtained in the limit ω → 0. The Gaussian function
(see Fig. 2.1) is completely determined by its maximum and width.

In our case, both parameters can be TD. The evolution equations for these para-
meters can be obtained by inserting a general Gaussian WP ansatz,

�(x, t) = N(t) exp

{
i

[
y(t) x̃2 + 〈p〉

�
x̃ + K(t)

]}
(2.1)

into the TDSE

i�
∂

∂t
�(x, t) =

{
− �

2

2m

∂2

∂x2
+ m

2
ω2x2

}
�(x, t) (2.2)

where � = h
2π with h = Planck’s constant.

The variable x̃ in WP (2.1) is a shifted coordinate, x̃ = x −〈x〉 = x −η(t), where
the mean value 〈x〉 = ∫ +∞

−∞ dx �∗x� = η(t) corresponds to the classical trajectory
and defines the maximum of the WP, 〈p〉 = mη̇ represents the classical momentum
and the coefficient of the quadratic term in the exponent, y(t) = yR(t) + iyI(t),
is a complex function of time and related to the WP width. The (possibly TD)
normalization factor N(t) and the purely TD function K(t) in the exponent are not
relevant for the dynamics of the WP maximum and width and will be specified later.

© Springer International Publishing AG 2018
D. Schuch, Quantum Theory from a Nonlinear Perspective,
Fundamental Theories of Physics 191, https://doi.org/10.1007/978-3-319-65594-9_2
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Fig. 2.1 Gaussian function, uniquely determined by its maximum and width

Inserting WP ansatz (2.1) into the TDSE (2.2) provides terms proportional to
x̃2, x̃ and independent of x̃ . Equating the terms proportional to x̃ to zero provides
the equation of motion for η(t)

η̈ + ω2η = 0 . (2.3)

Similarly from the terms proportional to x̃2, one obtains for y(t), or 2�

m y = C, the
equation

Ċ + C2 + ω2 = 0 . (2.4)

Overdots denote derivatives with respect to time.
The Newtonian equation (2.3) simply states that the maximum of the WP, located

at x = 〈x〉 = η(t), follows the classical trajectory. The equation for the quantity
2�

m y = C has the form of a complex NL Riccati equation and describes the time-
dependence of the WP width that is related to the position uncertainty via yI = 1

4〈x̃2〉
with 〈x̃2〉 = 〈x2〉 − 〈x〉2 being the mean square deviation of position. Now it will
be shown that the complex Riccati equation (2.4) not only provides the information
about the evolution of the quantum uncertainties (and thus characteristic quantum
mechanical properties like tunnelling currents) but all the dynamical information (and
possibly more) that is supplied by the TDSE. For this purpose, different treatments
of the Riccati equation (2.4) are discussed.

2.2 Direct Solution of the Riccati Equation

There are different ways of treating the (inhomogeneous) Riccati equation, illus-
trating different aspects of this equation [1, 2]. First, it can be solved directly by
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transforming it into a (homogeneous) NL (complex) Bernoulli equation providing a
particular solution C̃ of the Riccati equation is known. The general solution of Eq.
(2.4) is then given by C = C̃ + V(t) where V(t) fulfils the Bernoulli equation

V̇ + 2 C̃V + V2 = 0 . (2.5)

The coefficient of the linear term, occurring now instead of the inhomogeneity
ω2, depends on the particular solution C̃. An advantage of Eq. (2.5) is its exact
linearizability via V = 1

κ(t) to

κ̇ − 2 C̃ κ = 1 (2.6)

which can be solved straightforwardly.
For constant C̃, κ(t) can be expressed in terms of exponential or hyperbolic func-

tions (for real C̃) or trigonometric functions (for imaginary C̃). In this case, C can be
written as

C(t) = C̃ + e−2C̃t

1
2C̃

(
1 − e−2C̃t

)
+ κ0

(2.7)

where the enumerator is obviously the derivative of the denominator (with constant
initial condition κ0), i.e., the second term on the rhs is just a (scale-invariant) loga-
rithmic derivative.

For C̃ being TD, κ(t) and hence V can be expressed in terms of the integral
I(t) = ∫ t dt ′ exp{− ∫ t ′ dt ′′2C̃(t ′′)}. Then the general solution of Eq. (2.4) can be
written as

C(t) = C̃ + d

dt
ln [I(t) + κ0] (2.8)

with the logarithmic derivative representing the solution of the Bernoulli equation. It
defines a one-parameter family of solutions depending on the (complex) initial value
κ0 = V−1

0 as parameter.
The choice of this parameter can have enormous qualitative effects on the solution

of the Riccati equation and thus the behaviour of the WP width (and tunnelling
currents). This can be illustrated already using the HO with constant frequency ω,
as an example. Choosing the particular solution C̃ to be constant, from Eq. (2.4) it
follows that C̃ = ± i ω0 = i C̃I, where only the plus-sign is physically reasonable
because the minus-sign would lead to a positive sign for the quadratic term in the
exponent of theWP, prohibiting normalizability. The parameter κ0 then takes the form

κ0 = 1

C(0) − C̃(0)
= CR(0)

C2
R (0) +

[
CI(0) − C̃I

]2 − i
CI(0) − C̃I

C2
R (0) +

[
CI(0) − C̃I

]2 . (2.9)

The imaginary part of C (or C̃) is related to the WP width or position uncertainty
via
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CI = �

2m〈x̃2〉 . (2.10)

For the particular solution C̃I = ω0 this leads to 〈x̃2〉 = �

2mω0
which is the well-known

expression for the ground state wave function of the HO. Therefore, if the width of
the initial WP is chosen to be that of the ground state, then CI and C̃I are identical
and, for1 CR(0) = 0, κ0 diverges, so in Eq. (2.7) the second term on the rhs vanishes,
simply leaving the particular solution corresponding to aWPwith constantwidth. For
any other choice of 〈x̃2〉(t = 0), κ0 remains finite, leading to a WP with oscillating
width (more details will be given in Sect. 2.3.1). This oscillating WP corresponds to
the general solution of the Riccati equation (2.4) and only this one leads, in the limit
ω0 → 0, to the WP solution of the free particle problem, spreading quadratically
with time, whereas in this limit the WP with constant width only turns into a plane
wave-type solution.

Expressions with exactly the same form as (2.7) or (2.8) can be found in super-
symmetric (SUSY) quantum mechanics if time t is replaced by a spatial variable in
the context of isospectral potentials, also derived from Riccati equations. There too,
the choice of the free parameter leads to drastic qualitative effects. More about this
is mentioned in Sect. 2.1.

2.3 Alternative Treatment via the Ermakov Equation
and Its Corresponding Dynamical Invariant

Alternative treatments of the complex Riccati equation (2.4) are also possible. It can
be separated into real and imaginary parts,

Re : ĊR + C2
R − C2

I + ω2 = 0 , (2.11)

Im : ĊI + 2CICR = 0 . (2.12)

Using (2.12), the real part CR can be expressed in terms of CI and its derivative. It
turns out to be useful to introduce a new variable, α(t), that is connected with CI(t)
via

CI(t) = 1

α2(t)
, (2.13)

where α(t) is directly proportional to the WP width or position uncertainty,

α =
√
2m〈x̃2〉

�
. (2.14)

1From the meaning of CR that will become evident in the next subsection, it is obvious that in this
case CR(0) �= 0 would not agree with the assumption of CI(0) being constant.
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Inserting definition (2.13) intoEq. (2.12) shows that the real part ofC just describes
the relative change in time of the WP width,

CR = α̇

α
= 1

2

d
dt 〈x̃2〉
〈x̃2〉 , (2.15)

i.e., again a logarithmic derivate but now independent of the initial width of the WP.
Together with definition (2.13), this turns Eq. (2.11) into the so-called Ermakov

equation2 for α(t),

α̈ + ω2α = 1

α3
. (2.16)

It had been shown by Ermakov [6] in 1880, 45years before quantum mechanics
was formulated by Schrödinger and Heisenberg, that from the pair of equations
(2.3) and (2.16), coupled via ω2, by eliminating ω2 from the equations, a dynamical
invariant can be obtained. Following Ermakov’s method (see also Ray and Reid [7])
this leads to

α̈ − η̈

η
α = 1

α3
. (2.17)

Multiplying this equation first by η,

η α̈ − η̈ α = d

dt
(η α̇ − η̇ α) = η

α3
, (2.18)

and then by η α̇ − η̇ α,

(η α̇ − η̇ α)
d

dt
(η α̇ − η̇ α) = (η α̇ − η̇ α) η

α3
, (2.19)

allows one to express it as

1

2

d

dt
(η α̇ − η̇ α)2 = −1

2

d

dt

(η

α

)2
, (2.20)

thus yielding the Ermakov invariant

IL = 1

2

[
(η̇ α − η α̇)2 +

(η

α

)2] = const. (2.21)

2This equation had been studied already in 1874, six years before Ermakov, by Steen [3]. However,
Steen’s work was ignored by mathematicians and physicists for more than a century because it was
published in Danish in a journal not usually containing many articles on mathematics. An English
translation of the original paper [4] and generalizations can be found in [5].
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This invariant3 was rediscovered by several authors, also in a quantummechanical
context; see, e.g. [8–10].

There are some remarkable properties of this invariant [11, 12]: (i) it is also a
constant of motion for ω = ω(t) (as the frequency gets eliminated in the course
of the above derivation), in the case where the corresponding Hamiltonian does not
have this property; (ii) apart from a missing constant m, i.e. mass of the system, it
has the dimension of action, not of energy. The missing factor m is due to the fact
that Ermakov used the mathematical Eq. (2.3) whereas, in a physical context,
Newtons equation, i.e. Eq. (2.3) multiplied by m, is relevant.

Furthermore, as will be shown in Chap. 4, an invariant of this type also exists for
certain dissipative systems, i.e. systems for which a conventional physical Hamil-
tonian (for the system alone without involving environmental degrees of freedom)
does not even exist.

Also, factorization of the operator corresponding to the Ermakov invariant leads
to generalized creation and annihilation operators (see Sect. 2.11). In this context the
complex Riccati equation (2.4) again plays the central role.

2.3.1 Position and Momentum Uncertainties in Terms
of Ermakov and Riccati Variables

The quantum uncertainties of position, momentum and their correlation can be deter-
mined directly by calculating the corresponding mean values using the GaussianWP
solution. They can be expressed in terms of α(t) and α̇(t) or in terms of real and
imaginary parts of C(t), respectively, as

〈x̃2〉(t) = �

2m
α2(t) = �

2m

1

CI(t)
, (2.22)

〈 p̃2〉(t) = m�

2

[
α̇2(t) + 1

α2(t)

]
= m�

2

C2
R (t) + C2

I (t)

CI(t)
, (2.23)

〈[x̃, p̃]+〉(t) = 〈x̃ p̃ + p̃x̃〉(t) = � α(t) α̇(t) = �
CR(t)

CI(t)
, (2.24)

where [ , ]+ denotes the anti-commutator and C(t) and α(t) are related by

C(t) = α̇

α
+ i

1

α2
. (2.25)

3The index L indicates that this invariant corresponds to the conventional linear SE for non-
dissipative systems. There is a similar invariant also for certain dissipative systems. Other for-
mulations aside, these systems can also be described by NLmodifications of the SE. Therefore, this
invariant will be distinguished from the above one by the subscript NL.
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It can be shown straitforwardly that also the Schrödinger–Robertson uncertainty
relation [13, 14]

〈x̃2〉〈 p̃2〉 −
(
1

2
〈[x̃, p̃]+〉

)2

= �
2

4
(2.26)

is fulfilled.
In order to obtain explicit expressions for the time-dependence of the uncertainties,

essentially, the Ermakov equation (2.16) must be solved for given initial conditions
α(t0) ≡ α0 and α̇(t0) ≡ α̇0, or the Riccati equation (2.4) for given κ0.

It is interesting to note that the solution of the Ermakov equation (2.16) can also
be obtained knowing two linear independent solutions f1(t) and f2(t) of the (linear)
Newtonian equation (2.3). This can be achieved using the method of linear invariant
operators and their relation with quadratic invariant operators, introduced byMan’ko
et al. [15, 16] and outlined in Appendix A.4

The solution of the Ermakov equation (2.16) can then be given in the form

α(t) =
[(

α̇2
0 + 1

α2
0

)
f 21 (t) + α2

0 f
2
2 (t) ∓ 2α̇0α0 f1(t) f2(t)

] 1
2

(2.27)

where the two solutions of the Newtonian equation and their time-derivatives have
the initial conditions

f1(t0) = 0, ḟ1(t0) = −1, f2(t0) = 1, ḟ2(t0) = 0 (2.28)

with f1(t) = − 1
v0

η(t) (for details, see Appendix A).
The initial conditions for α and α̇ can also be given in terms of the initial uncer-

tainties and their correlation function as

α0 =
(
2m

�
〈x̃2〉0

) 1
2

, α̇0 =
(

1

2m�〈x̃2〉0
) 1

2

〈[x̃, p̃]+〉0 . (2.29)

The relations between the initial condition κ0 of the Riccati solution and the initial
WP uncertainties can be expressed (using Eqs. (2.22–2.24)) as

C(t0) ≡ C0 = α̇0

α0
+ i

1

α2
0

(2.30)

with V0 = 1
κ0

= C0 − C̃0. Note that all previous results are valid for TD and well as
TI frequency ω.

As an example, the WP solution of the HO with constant frequency ω0 is now
considered. For the particular solution C̃+ = iω0 we have

4A different way to establish relations between linear and quadratic invariants and how the quadratic
invariant can be related to the Ermakov invariant is given in [17].
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V0 = α̇0

α0
+ i

(
1

α2
0

− ω0

)
, κ0 =

α̇0
α0

− i
(

1
α2
0

− ω0

)
α̇2
0

α2
0

+
(

1
α2
0

− ω0

)2 . (2.31)

The particular solution itself corresponds to the WP with constant width, as the
real part vanishes, C̃+,R = α̇

α
= 0, leading to

〈x̃2〉 = �

2mω0
, 〈 p̃2〉 = �mω0

2
, 〈[x̃, p̃]+〉 = 0 , (2.32)

which is also valid for the ground state of the HO.
The analytic expression for the solution of the Ermakov equation, corresponding

to the WP with TD width, is

α(t) = α0

[(
α̇2
0

α2
0

+ 1

α4
0

)
1

ω2
0

sin2 ω0t + cos2 ω0t ∓ 2

ω0

α̇0

α0
sinω0t cosω0t

] 1
2

.

(2.33)
Even in the case where the initial spreading vanishes, α̇0 = 0, the WP width is still
oscillating. With the abbreviation β0 = 1

α2
0

= �

2m〈x̃2〉0 , α(t) then takes the form

α(t) = α0

[
cos2 ω0t +

(
β0

ω0
sinω0t

)2
] 1

2

. (2.34)

So, whenever β0 �= ω0, i.e., 〈x̃2〉0 is different from the ground state initial position
uncertainty (as given in (2.32)), the width of the WP solution – even for constant
ω0 – is oscillating.

Knowing (2.33), the uncertainties and their correlation can be written explicitly
as

〈x̃2〉(t) = �

2m

[(
α̇2
0 + 1

α2
0

)
1

ω2
0

sin2 ω0t + α2
0 cos

2 ω0t + 2α̇0α0
1

ω0
sinω0t cosω0t

]
,

(2.35)

〈 p̃2〉(t) = m�

2

[(
α̇2
0 + 1

α2
0

)
cos2 ω0t + α2

0ω
2
0 sin

2 ω0t − 2α̇0α0ω0 sinω0t cosω0t

]
,

(2.36)

〈[x̃, p̃]+〉(t) = �

4

[{(
α̇2
0 + 1

α2
0

)
1

ω0
− α2

0 ω0

}
sin 2ω0t + 2α̇0α0 cos 2ω0t

]
. (2.37)

The corresponding results for the free motion are obtained easily using

lim
ω0→0

sinω0t

ω0t
= t, lim

ω0→0
cosω0t = 1 . (2.38)
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The solution of the Ermakov equation turns into

α(t) = α0

[(
α̇2
0

α2
0

t ∓ 1

)2

+ t2

α4
0

] 1
2

(2.39)

and the uncertainties and their correlation into

〈x̃2〉(t) = �

2m

[(
α̇2
0 + 1

α2
0

)
t2 + α2

0 ∓ 2α̇0α0 t

]
, (2.40)

〈 p̃2〉(t) = m�

2

(
α̇2
0 + 1

α2
0

)
, (2.41)

〈[x̃, p̃]+〉(t) = �

2

[(
α̇2
0 + 1

α2
0

)
t + α̇0α0

]
. (2.42)

For α̇0 = 0 the well-known textbook results are regained.

2.3.2 Consequences of the Wave Packet Spreading
for the Probability Current

The non-classical aspect of the quantum mechanical WP solutions is expressed by
the fact that the probability of finding the system somewhere in (position) space is not
only restricted to a point, in this case the maximum of theWP, as in the classical situ-
ation, but also has non-vanishing positive values at all other positions in space. This
probability distribution, characterized by the function 
(x, t) = �∗(x, t)�(x, t) is
not necessarily fixed in space and time but can evolve according to the continuity
equation

∂

∂t

 + ∂

∂x
(
 v−) = ∂

∂t

 + ∂

∂x
j = 0 (2.43)

with the probability current j = 
v−, where the velocity field v−(x, t) is defined as

v− = �

2mi

( ∂
∂x �

�
−

∂
∂x �

∗

�∗

)
= �

2mi

∂

∂x
ln

�

�∗ . (2.44)

For a Gaussian WP, this velocity field is given by

v− = η̇ + α̇

α
x̃ , (2.45)

i.e., the probability of finding the system at a particular point in space cannot only
change due to themotion of theWPmaximum, but also due to the (relative) change of
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its width, characterized by α̇
α
, being connected with a tunnelling current. The explicit

form of this term determines the tunnelling dynamics.
Already for the free motion (V = 0) this term does not vanish and has the form

of a Lorentzian curve,
α̇

α
= β0

(β0t)

1 + (β0t)2
, (2.46)

again with the abbreviation β0 = 1
α2
0
, having the dimension of a frequency.

A formal difference compared to the continuity equation in classical statistical
mechanics shall be mentioned. For Hamiltonian systems, in classical phase space
(�-space) the divergence of the velocity field always vanishes, ∇�v� = 0, leading
from the continuity equation to the Liouville equation. In our quantum mechanical
situation (in posi tion space only!) the divergence (here in one dimension) has the
form

∂

∂x
v− = α̇

α
(2.47)

and vanishes only for α̇ = 0, i.e., WPs with constant width.

2.4 Linearization of the Complex Riccati Equation

Another property of the Riccati equation, particularly interesting in a quantum
mechanical context, is the existence of a superposition principle for this NL dif-
ferential equation [18, 19]. This is related to the fact that the Riccati equation can
be linearized. This lineari zation is not an approximation of a NL equation by a
linear one but an exact transformation. In our case, this can be achieved using the
ansatz [20] (

2�

m
y

)
= C = λ̇

λ
(2.48)

with complex λ(t), leading to

λ̈ + ω2(t)λ = 0 , (2.49)

which has the form of the Newton-type equation (2.3) of the corresponding problem,
but now for a complex variable.

First, a kind of geometric interpretation of the motion of λ(t) in the complex plane
shall be given. Expressed in Cartesian coordinates, λ can be written as λ = u + iz,
or in polar coordinates as λ = αeiϕ . Inserting the polar form into Eq. (2.48) leads to

C = α̇

α
+ i ϕ̇ (2.50)
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where the real part is already identical to CR, as defined above.
The quantity α defined in CI as being proportional to the position uncertainty is

identical to the absolute value of λ if it can be shown that

ϕ̇ = 1

α2
. (2.51)

This, however, can be provenby simply inserting real and imaginary parts of (2.50)
into the imaginary part of the Riccati equation (2.4). Comparing relation (2.51), that
can also be written in the form

żu − u̇z = α2ϕ̇ = 1 , (2.52)

with themotion of a particle under the influence of a central force in two-dimensional
physical space, shows that this relation corresponds to the “conservation of angular
momentum”, but here for the motion in the complex plane!

Relation (2.52) also shows that real and imaginary parts, or phase and amplitude,
respectively, of the complex quantity are not independent of each other but uniquely
coupled. This coupling is due to the quadratic nonlinearity in the Riccati equation.
We will find an analogous situation in the TI case, discussed in Chap. 3.

2.5 Time-Dependent Green Function or Feynman Kernel

After the physical meaning of the absolute value of λ(t) in polar coordinates and its
relation to the phase angle via (2.51), ϕ̇ = 1

α2 , have been clarified, the interpretation
of the Cartesian coordinates u and z (λ = u + iz) needs to be ascertained.

For this purpose, it can be utilized that the WP solution �WP(x, t) at time t can
also be obtained with the help of an initial WP at time t ′ (e.g., t ′ = 0) and a TD
Green function, also called time-propagator or Feynman kernel, via

�WP(x, t) =
∫

dx ′ G(x, x ′, t, t ′ = 0) �WP

(
x ′, t ′ = 0

)
. (2.53)

For the considered Gaussian WP the initial distribution5 is given by

�WP

(
x ′, 0

) =
(

m

π�α2
0

) 1
4

exp

{
im

2�

[
i

(
x ′

α0

)2

+ 2
p0
m

x ′
]}

, (2.54)

5If the initial change of the WP width, and thus α̇0, is different from zero, the term i
(

x ′
α0

)2
in Eq.

(2.54) must be replaced by

(
α̇0
α0

+ i 1
α2
0

)
x ′2 = C0x ′2. However, in the examples discussed in this

section, this is not the case.
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with p0 = 〈p〉(t = 0) = mη̇0. The integral kernel G(x, x ′, t, t ′) was determined
by Feynman using his path integral method [21]. Particularly for Gaussian WPs, the
Green function also has the form of a Gaussian function6 and can be written as

G
(
x, x ′, t, 0

) =
(

m

2π i�α0z

) 1
2

exp

{
im

2�

[
ż

z
x2 − 2

x

z

(
x ′

α0

)
+ u

z

(
x ′

α0

)2
]}

.

(2.55)
So far, z(t) and u(t) are only arbitrary TD parameters; only later will they be

identified with imaginary and real parts of λ(t)!
As in the definition of�WP(x, t) according to (2.53) only G actually depends on x

and t , therefore the kernelG, as defined in (2.55), must also fulfil the TDSE. Inserting
(2.55) into the TDSE (2.2) and sorting according to powers of x shows that z(t) and
u(t) not only fulfil the same Newtonian equation as η(t) and λ(t) but, in addition,
are also uniquely coupled via the relation

żu − u̇z = 1 , (2.56)

identical to the conservation law α2ϕ̇ = 1, as shown in Eq. (2.52).
The last step necessary for the identification of z(t) andu(t) is to explicitly perform

the integration in (2.53) using (2.54) and (2.55) to yield the WP solution in the form

�WP(x, t) =
(

m

π�

) 1
4
(

1

u + iz

) 1
2

exp

{
im

2�

[
ż

z
x2 − (x − p0α0

m z)2

z(u + iz)

]}
. (2.57)

Comparison with the WP solution written in the form (2.1) shows that the fol-
lowing relations hold:

z(t) = m

α0 p0
η(t) (2.58)

and
ż

z
− 1

z λ
= λ̇

λ
= C (2.59)

where, in the latter case, λ = u + iz and Eq. (2.56) have been used. From Eq. (2.56),
however, also u(t) can be determined (up to an integration constant) once z(t), i.e.
the classical trajectory, is known, as

6The equivalence between deriving the TD Green function via a Gaussian ansatz or via Feynman’s
path integral method has been shown in [22, 23] where also the relation to the Ermakov invariant is
considered. Starting fromamore generalGaussian ansatz than (2.55), just using threeTDparameters
a(t), b(t) and c(t), the Green function (2.55) was also obtained in [24]. An elegant method to derive
the timepropagator using theErmakov system is shown in [25] and in [11] comparedwith themethod
described here.
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Fig. 2.2 Different treatments of the complex Riccati equation and relation to particle and wave
aspects

u = − z

t∫
1

z2(t ′)
dt ′ . (2.60)

In Fig. 2.2 the different treatments of the complex Riccati equation (2.4) and their
relation to particle and wave aspects of the system are summarized.

Knowing z and u, also α(t) can be determined via α = (
u2 + z2

) 1
2 . So, the

knowledge of the solution of the classical Newtonian equation is sufficient to also
obtain the solution of the Ermakov equation determining the dynamics of the quan-
tum mechanical uncertainties (and thus the WP width). This is in agreement with
the result in Sect. 2.3.1 where the solution of the Ermakov equation (following the
method outlined in Appendix A) could also be written (see Eq. (2.27)) in terms of
solutions of the correspondingNewtonian equation (there are two linear-independent
solutions necessary, what is guaranteed here, as Eq. (2.56) shows that theWronskian
determinant of the two solutions z and u is different from zero).
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On the other hand, it is also possible to obtain the solution of the classical New-
tonian equation determining the dynamics of the WP maximum once the solution
of the Ermakov equation is known. Knowing the amplitude α(t) of the complex
quantity λ = α eiϕ , the phase angle ϕ(t) can be determined (up to an integration
constant), using ϕ̇ = 1

α2 , via

ϕ =
t∫

1

α2(t ′)
dt ′ . (2.61)

Knowingα andϕ, alsoλ is known and thus, from its imaginary part, z = α sin ϕ =
m

α0 p0
η(t), the classical trajectory is obtained.
These interrelations between the dynamics of the classical and quantum mechan-

ical aspects are summarized schematically in Fig. 2.3.
In conclusion, one can say that the complex quantity λ(t) contains the particle

as well as the wave aspects of the system. In polar coordinates, the absolute value
α of λ is connected directly with the quantum mechanical position uncertainty. In
Cartesian coordinates, the imaginary part of λ is directly proportional to the classical
particle trajectory η. Absolute value and phase, or real and imaginary part, of λ

Fig. 2.3 Interrelations between the quantities determining the dynamics of maximum (classical
aspect) and width (quantum mechanical aspect) of the wave packet solutions of the Schrödinger
equation in position space
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are not independent of each other but uniquely coupled via the conservation law
(2.52) which has its origin in the quadratic nonlinearity of the corresponding Riccati
equation (2.4).

2.5.1 Riccati Equations from the Green Function
and Trigonometric Considerations

When inserting the TDGreen function (2.55) into the SE (2.2) and sorting according
to powers of x , from the terms proportional to x2 one actually first obtains the Riccati
equation

∂

∂t

(
ż

z

)
+
(
ż

z

)2

+ ω2 = 0 , (2.62)

which can then be linearized to the Newtonian equation for z(t).
Then again, also the terms independent of x provide a Riccati equation although

this is not obvious at first sight as they fulfil the equation

∂

∂t

(
u

z

)
+ 1

z2
= 0 . (2.63)

Rewriting z and u in polar coordinates and using ∂
∂t =

(
dϕ

dt

)
∂
∂ϕ

= 1
α2

∂
∂ϕ

leads to

∂

∂t
cot ϕ + 1

α2 sin2 ϕ
= 1

α2

∂

∂ϕ
cot ϕ + 1

α2 sin2 ϕ
= 0 , (2.64)

or
∂

∂ϕ
cot ϕ = − 1

sin2 ϕ
, (2.65)

which is obviously correct. However, using the trigonometric relation cos2 ϕ +
sin2 ϕ = 1 to replace the 1 in the enumerator, Eq. (2.65) turns into the Riccati
equation

∂

∂ϕ
cot ϕ + cot2 ϕ + 1 = 0 . (2.66)

Knowing that ∂
∂ϕ

tan ϕ = 1
cos2 ϕ

, it follows immediately that also the inverse func-
tion, tan ϕ, fulfils a Riccati equation but now with a minus-sign for the derivative
term,

− ∂

∂ϕ
tan ϕ + tan2 ϕ + 1 = 0 . (2.67)
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Changing to an imaginary variable, ϕ → iϕ turns the trigonometric functions into
hyperbolic ones. In this case, the derivatives are ∂

∂ϕ
coth ϕ = − 1

sinh2 ϕ
and ∂

∂ϕ
tanh ϕ =

1
cosh2 ϕ

and the relation cosh2 ϕ−sinh2 ϕ = 1 is valid, resulting in theRiccati equations

∂

∂ϕ
coth ϕ + coth2 ϕ − 1 = 0 (2.68)

and
∂

∂ϕ
tanh ϕ + tanh2 ϕ − 1 = 0 . (2.69)

The differences compared with the trigonometric functions are that there is no
change of sign of the derivative term and the sign of the inhomogeneity changes from
plus to minus. The latter change would correspond in our TD quantum mechanical
problem to a change from an attractive oscillator potential to a repulsive one, i.e. to
V = −m

2 ω2x2. This becomes even more obvious when changing the variables and
their functions according to ϕ → ωϕ, f (ϕ) → ω f (ϕ), turning ±1 into ±ω2.

The hyperbolic functions and corresponding Riccati equations will become rel-
evant in connection with dissipative systems, as discussed in Chap.4, and when
considering other fields of physics like statistical thermodynamics, NL dynamics or
soliton theory, as will be done in Chap. 7.

The complex variable λ = u + i z = α cosϕ + i α sin ϕ also allows for a kind
of trigonometric interpretation of the Ermakov invariant. For this purpose we take
advantage of the imaginary part of λ being directly proportional to the classical
trajectory, i.e., z = m

α0 p0
η(t). Therefore, the second quadratic term of the invariant

(2.21) is proportional to
(
z
α

)2 = sin2 ϕ. Consequently, the first term must be
(
u
α

)2 =
cos2 ϕ to yield a constant value for IL. So the invariant can be written as

IL = 1

2

(α0 p0
m

)2 [(u
α

)2 +
( z
α

)2] = const. (2.70)

Furthermore, the real part of λ can be expressed in terms of η, η̇, α and α̇ as

u = żα2 − zα̇α =
(

m

α0 p0

) (
α2η̇ − α̇αη

) =
(

m

α0 p0

)
α2

(
η̇ − α̇

α
η

)
. (2.71)

Defining a new variable Y(ϕ) = z
α

= sin ϕ that depends on the angle ϕ instead
of time t , the first term in the square brackets can be expressed as

Y ′(ϕ) = d

dϕ
Y = cosϕ =

(u
α

)
. (2.72)

In this form, the invariant (2.70) is formally equivalent to the Hamiltonian of a HO
with angle-dependent variableY(ϕ) (instead of TD variable η(t)) and unit frequency
ω = 1, leading to the corresponding equation of motion
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Y ′′ + 12Y = 0 . (2.73)

However, the time-dependence is implicitly contained in the time-dependence of
the angle ϕ, i.e., ϕ = ϕ(t). Therefore, expressing Eq. (2.73) as a differential equation
with respect to time t instead of angle ϕ and using d

dϕ
= α2 d

dt with Y(ϕ(t)) = Ŷ(t)
yields

d2

dt2
Ŷ(t) + 2

α̇

α

d

dt
Ŷ(t) + ϕ̇2Ŷ(t) = 0 . (2.74)

For α̇ = 0, i.e. α = constant, with z(t) ∝ η(t) and ϕ̇ = const. = ω0, Eq. (2.74)
just turns into η̈+ω2

0η = 0, i.e., Eq. (2.3) for TI frequencyω = ω0 and aWP solution
with constant width.

For α̇ �= 0, i.e., α = α(t), an additional first-derivative term appears in (2.74) that
looks like a linear velocity dependent friction force in the Langevin equation (see
below, Chap.4) with friction coefficient 2 α̇

α
. At first sight this looks contradictory as

we are not dealing so far with dissipative systems with irreversible time-evolution.
A closer look shows that Eq. (2.74) is actually still invariant under time-reversal as
the coefficient of the second term also contains a time-derivative (in α̇

α
). So, together

with ∂
∂tY , this term also does not change its sign under time-reversal (unlike in the

Langevin equationwhere the friction coefficient γ is usually assumed to be constant).
Equation (2.74) takes into account that not only the angleϕ(t) of the complex quantity
λ(t) describing the system, but also its amplitude α may change in time.

2.6 Lagrange–Hamilton Formalism for Quantum
Uncertainties

In classical mechanics, the Hamiltonian function is not only representing the energy
of a (conservative) system but also supplies the equations of motion for the system.
In quantum mechanics, the mean value of the Hamiltonian operator (Hop) (in the
cases considered so far) does not only supply the classical energy (Ecl , equivalent to
the classical Hamiltonian function) but also a quantum mechanical contribution (Ẽ)

due to the position and momentum uncertainties, i.e.,

〈Hop〉 = 1

2m
〈p2〉 + m

2
ω2〈x2〉

=
(

1

2m
〈p〉2 + m

2
ω2〈x〉2

)
+
(

1

2m
〈 p̃2〉 + m

2
ω2〈x̃2〉

)

= Ecl + Ẽ = (Tcl + Vcl) + (T̃ + Ṽ ) (2.75)

(with 〈p2〉 = 〈p〉2 + 〈 p̃2〉 and 〈x2〉 = 〈x〉2 + 〈x̃2〉). For the WP solution of the HO,
the quantum mechanical contribution Ẽ just represents the ground state energy, i.e.
Ẽ = �

2ω0.
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However, as we have seen that equations of motion exist also for the quantum
uncertainties, could this quantum contribution to the energy also be formulated in a
way that it provides a Lagrangian/Hamitonian formalism for the quantum uncertain-
ties as in the classical situation? It is shown subsequently that this question can be
answered positively.

For this purpose the difference between kinetic and potential energy uncertain-
ties is written as Lagrangian function L̃ depending on the variables α, ϕ and the
corresponding velocities α̇ and ϕ̇, i.e.,

L̃(α, α̇, ϕ, ϕ̇) = T̃ − Ṽ = �

4

(
α̇2 + α2ϕ̇2 − ω2α2

)
(2.76)

where Eqs. (2.22), (2.23) and (2.51), as well as the analogy to the two-dimensional
motion in a real plane, expressed in polar coordinates, have been used.

The corresponding Euler–Lagrange equations are then

d

dt

∂L̃
∂ϕ̇

− ∂L̃
∂ϕ

= 0 , (2.77)

d

dt

∂L̃
∂α̇

− ∂L̃
∂α

= 0 . (2.78)

From the first equation follows d
dt

(
�

2α2ϕ̇
) = 0, or, α2ϕ̇ = const., in agreement

with Eq. (2.51) (for const.= 1); from the second equation follows α̈+ω2α = ϕ̇2α =
(const.)2

α3 , equivalent to Eq. (2.16) (again for const. = 1; in general, the “constant” is
proportional to an “angular momentum”).

The corresponding canonical momenta are then given by

∂L̃
∂ϕ̇

= �

2
α2ϕ̇ = pϕ , (2.79)

∂L̃
∂α̇

= �

2
α̇ = pα . (2.80)

An interesting point is that, in the case of our GaussianWP, we found particularly
ϕ̇ = 1

α2 , therefore the “angular momentum” pϕ is not only constant but has the value

pϕ = �

2
, (2.81)

a value that does not usually describe an orbital angular momentum in quantum
mechanics, but the non-classical angular momentum-type quantity spin. So, is spin
just an angular momentum for the motion, in this case of λ(t), in the complex plane?

With the help of the canonical momenta, the quantum energy contribution Ẽ =
T̃ + Ṽ can be written in a Hamiltonian form as
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H̃(α, pα, ϕ, pϕ) = p2α
�

+ p2ϕ
�α2

+ �

4
ω2α2 . (2.82)

The Hamiltonian equations of motion then take the form

∂H̃
∂pϕ

= 2

�

pϕ

α2
= 1

α2
= ϕ̇ ,

∂H̃
∂ϕ

= 0 = − ṗϕ (2.83)

∂H̃
∂pα

= 2

�
pα = α̇ ,

∂H̃
∂α

= �

2

(
ω2α − 1

α3

)
= −�

2
α̈ = − ṗα , (2.84)

which is in agreement with the previous results.
With these variables, the uncertainty product can be written as

U = 〈x̃2〉〈 p̃2〉 = p2ϕ + (α pα)2 . (2.85)

The second term on the rhs describes the deviation from the minimum uncertainty
p2ϕ = �

2

4 and is given by the product of the “radial” variable α and the corresponding
momentum pα , depending on the time-dependence of the WP width according to
pα = �

2 α̇.
Furthermore, the quantum uncertainties can also be expressed in terms of the

complex quantities λ and λ̇ and their complex conjugates as

〈x̃2〉 = �

2m
λλ∗ (2.86)

〈 p̃2〉 = �m

2
λ̇λ̇∗ (2.87)

〈[x̃, p̃]+〉 = �

2

∂

∂t
(λλ∗) . (2.88)

Expressed in these variables, the Lagrangian can be written as

L̃(λ, λ̇, λ∗, λ̇∗) = �

4

(
λ̇λ̇∗ − ω2λλ∗) , (2.89)

leading to the Euler–Lagrange equations

d

dt

∂L̃
∂λ̇∗ − ∂L̃

∂λ∗ = �

4

(
λ̈ + ω2λ

) = 0 , (2.90)

d

dt

∂L̃
∂λ̇

− ∂L̃
∂λ

= �

4

(
λ̈∗ + ω2λ∗) = 0 , (2.91)

i.e., the complex Newtonian equation (2.49) and its complex conjugate.
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With the canonical momenta

pλ = ∂L̃
∂λ̇

= �

4
λ̇∗ , pλ∗ = ∂L̃

∂λ̇∗ = �

4
λ̇ , (2.92)

the Hamiltonian H̃ can be obtained from H̃ = λ̇ pλ + λ̇∗ pλ∗ − L̃ as

H̃(λ, λ∗, pλ, pλ∗) = 4

�
pλ pλ∗ + �

4
λλ∗ , (2.93)

leading to the Hamiltonian equations of motion

∂H̃
∂pλ

= 4

�
pλ∗ = λ̇ ,

∂H̃
∂λ

= �

4
ω2λ∗ = −�

4
λ̈∗ = − ṗλ (2.94)

∂H̃
∂pλ∗

= 4

�
pλ = λ̇∗ ,

∂H̃
∂λ∗ = �

4
ω2λ = −�

4
λ̈ = − ṗλ∗ , (2.95)

agreeing with the results in Sect. 2.4.
In conclusion it can be stated that the quantum mechanical energy contribution

Ẽ = T̃ + Ṽ , expressed in terms of the real variables α, α̇, ϕ and ϕ̇ as well as in terms
of the complex variables λ, λ̇, λ∗ and λ̇∗ (and corresponding conjugate momenta) can
be used as a Hamiltonian function (or L̃ = T̃ − Ṽ as a Lagrangian function) to obtain
the correct equations of motion for the quantum uncertainties in a Hamiltonian (or
Lagrangian) formalism.

2.7 Momentum Space Representation

The solution of the TDSE in themomentum space representation, where pop = p and
xop = −�

i
∂
∂p , can be obtained via Fourier transformation of the solution in position

space,

�(p, t) = 1√
2π

+∞∫
−∞

dx e
i
�
px �(x, t) . (2.96)

In particular for the WP solution (2.1), the Fourier transformation leads to a
Gaussian WP in momentum space,

�WP (p, t) =
(a

�

) 1
2
N(t) exp

{
− a

2�2
p̃2 − i

〈x〉
�

p̃ + i

(
K − 〈x〉〈p〉

�

)}
, (2.97)

with p̃ = p − 〈p〉 and the complex quantity a(t) = aR(t) + iaI(t) that is related to
y(t) via
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(am
i�

)
= λ

λ̇
=
(
2�

m
y

)−1

= C−1 . (2.98)

Particularly, the real part of a(t) is related to the momentum uncertainty via

(aRm

�

)
= m�

2〈 p̃2〉 . (2.99)

The equation of motion for a(t) can be obtained by inserting the WP �WP(p, t)
into the TDSE that, in momentum space, has the form

i�
∂

∂t
�WP (p, t) =

(
p2

2m
− m

2
ω2

�
2 ∂2

∂p2

)
�WP (p, t) . (2.100)

The terms proportional to p̃2 again leads to a complex Riccati equation,

−
(
ȧm

i�

)
+ ω2

(am
i�

)2 + 1 = 0 . (2.101)

With the above-mentioned definition am
i� = λ

λ̇
, this equation can be linearized

to provide the same complex Newtonian equation as in position space, i.e., λ̈ +
ω2λ = 0 (Eq.2.49). So the equation of motion for the uncertainties in the respective
spaces can be obtained simply by inverting the relevant quantities (without Fourier
transformation).

In the case of a constant particular solution, Eq. (2.101) can be brought into a
form that differs from the one in position space, i.e. Eq. (2.4), only by the sign of the
derivative term. Defining a new variable

K(t) = −C̃2C−1 = ω2C−1 (2.102)

with C̃ = ±iω, Eq. (2.101) can be rewritten as

− K̇ + K2 + ω2 = 0 , (2.103)

in agreement with Eqs. (2.66) and (2.67), where also cot ϕ = cosϕ

sin ϕ
and tan ϕ = sin ϕ

cosϕ

are logarithmic derivatives and the inverse of each other, obeying Riccati equations
that also only differ by the sign of the derivative term.

In particular for V = 0 (see Bernoulli equation in position space), one obtains
from (2.98)

λ

λ̇
= am

i�
= t − i α2

0 , (2.104)

i.e., α2
0 = �

2m 〈x̃2〉0 acts as a kind of imaginary time-variable that is related to the
position uncertainty. Attempts to complexify physical quantities (also in the context
of dissipative systems (Dekker and PT -symmetry [26–32]) have recently gained



30 2 Time-Dependent Schrödinger Equation and Gaussian Wave Packets

growing interest (some references can also be found in [33–35]). Also the transition
from quantum mechanical descriptions to those in statistical thermodynamics by
replacing t by i �

kBT
(with kB = Boltzmann’s constant and T = temperature) are

familiar [36, 37]. A formal comparison of the imaginary part of (2.104) with this
replacement would lead to α2

0 = �

kBT
, or �

2
1
α2
0

= �

2 ϕ̇0 = �

2 ω0 = 1
2kBT, i.e., relate the

quantum mechanical ground state energy of the HO with 1
2kBT, the energy attributed

to each degree of freedom (that is quadratic in the canonical variables) in statistical
thermodynamics. Further formal similarities will be mentioned in Sects. 5.4 and 7.1.

The connections between the NL Riccati equations in position and momentum
space (for arbitrary particular solutions and ω) and the linear complex Newtonian
equation for λ(t) are schematically summarized in Fig. 2.4.

In order to obtain the quantities related to the respective uncertainties (posi-
tion/momentum), it is not necessary to involve a Fourier transformation, only the
variable that fulfils the complex Riccati equation must be inverted.

Also in momentum space, the complex Riccati equation is equivalent to a real
NL Ermakov equation. For this purpose the imaginary part of

(
am
i�

) = C−1 that is
proportional to aR(t), is expressed in terms of a new real variable εL(t) according to

aRm

�
= m�

2〈 p̃2〉L = 1

ε2L
, (2.105)

where εL, given as εL =
√

2
m�

〈 p̃2〉L, is proportional to the WP width in momentum
space, in analogy with the relation between αL and the WP width in position space.

Fig. 2.4 Riccati equations in position and momentum space
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Inserting this into Eq. (2.101) yields

aIm

�
= 1

2ω2

ȧR

aR

= − 1

ω2

ε̇L

εL

(2.106)

and further

ε̈L + ω2εL = ω4

ε3L
, (2.107)

i.e., an Ermakov equation for εL. This quantity is related to αL via

ε2L =
(

4

�2
UL

)
1

α2
L

, (2.108)

where U L = 〈x̃2〉L〈 p̃2〉L is the uncertainty product. For a minimum uncertainty WP,
i.e. UL = �

2

4 , it follows ε2L = 1
α2
L
. If this is not the case, as for WPs with TD width,

at least ε2L,0 = 1
α2
L,0

is valid, providing the WP fulfils at the initial time t0 = 0 the

minimum uncertainty requirement, i.e., UL,0 = 〈x̃2〉L,0〈 p̃2〉L,0 = �
2

4 . This is usually
guaranteed in the conservative case if α̇0 = 0 (but not necessarily in the dissipative
one, as shown in Sect. 5.6.2).

One can achieve an even closer formal similarity to the position-space version by
replacing εL according to

RL = εL

ω
(2.109)

and rewriting the complex variable K(t) fulfilling the Riccati equation (2.103) in
terms of RL and its time-derivative. With

K(t) = ω2
(am
i�

)
= ω2

(aIm

�
− i

aRm

�

)
= KR(t) + i KI(t) , (2.110)

imaginary and real parts can be rewritten as

KI = −ω2

ε2L
= − 1

R2
L

(2.111)

and

KR = − ε̇L

εL

= − ṘL

RL

(2.112)

for constant frequencyω = ω0 whichwill be considered in the following. (Otherwise
an additional term ω̇

ω
on the rhs of (2.112) must be taken into account.)

This turns the complex Riccati equation (2.103) into the real Ermakov equation

R̈L + ω2RL = 1

R3
L

. (2.113)
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The equation of motion for the WP maximum is simply Newtons equation of
motion that provides the time dependence of 〈p〉 = mη̇ via mη̈ + mω2η = d

dt 〈p〉 +
mω2〈x〉 = 0. With � = 〈p〉 = mη̇ this leads to the second equation of the Ermakov
pair in the form

�̈ + ω2� = 0 . (2.114)

Together with (2.113) this leads, via elimination of ω2, to the invariant

IL,p = 1

2

[(
�̇RL − �ṘL

)2 +
(

�

RL

)2
]

= const. (2.115)

For �̇(0) = 0 (i.e., ṗ0 = 0) and ṘL(0) = 0 (i.e., ε̇0 = 0), this invariant takes the
value

IL,p = 1

2

(
p0 ω0

ε0

)2

= 1

2

( p0 α0

m

)2
m2ω2

0 , (2.116)

where an initial minimum uncertainty WP has been assumed, i.e., ε0 = 1
α0
. So, apart

from the constant factorm2ω2
0, this invariant is identical to the one in position space.

Like in position space, also in momentum space is it possible to obtain the WP
solution�WP(p, t) from an initialWP�WP(p′, t ′ = 0) via a corresponding propagator
G(p, p′, t, t ′ = 0) according to

�WP(p, t) =
∫

dp′ G(p, p′, t, t ′ = 0) �WP

(
p′, 0

)
. (2.117)

To obtain the explicit quantities, particularly for GaussianWPs, one can start with
a Fourier transformation of the initial state in position space, �WP(x ′, t ′ = 0) and
then use again a Gaussian ansatz for G(p, p′, t, t ′) like in position space.

Fourier transformation of the initial state (2.54) leads to7

�WP

(
p′, 0

) =
(

α20
π�m

) 1
4

exp

{
−mα20

2�

(
p′ − p0

m

)2}

=
(

1

π�mε20

) 1
4

exp

{
− m

2�

(
p′ − p0
mε0

)2}

=
(

α20
π�m

) 1
4

exp

{
− m

2�

(α0 p0
m

)2}
exp

{
im

2�

[
i

(
α0 p

′
m

)2
− 2iα20

p0
m2 p′

]}

=
(

1

π�mε20

) 1
4

exp

{
− m

2�

(
p0
mε0

)2}
exp

{
im

2�

[
i

(
p′

mε0

)2
− 2i

p0
m2ε20

p′
]}

.

(2.118)

7The replacement of α0 by 1
ε0

implies that the initial state is a minimum uncertainty WP, i.e.,

〈x̃2〉0〈 p̃2〉0 = �
2

4 .
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The first exponential term on the rhs of line three and four is independent of p′
and just a constant factor that can be taken care of after the integration performed in
(2.117) via an appropriate normalization (note that the term in the exponent is, apart
from a constant factor, simply the Ermakov invariant in position space). Without this
first exponential term the expression for �WP(p′, 0) looks very much like the one for
�WP(x ′, 0), essentially replacing x ′

α0
by p′

mε0
= α0 p′

m .
The Gaussian propagator attains the form

G
(
p, p′, t, 0

) =
( −α0

2π�mż

) 1
2

exp

{
− im

2�

[
z

ż

p2

m2 − 2i
p

mż

(
α0 p′

m

)
+
(
u̇

ż
+ 2i

)(
α0 p′

m

)2]}

=
( −1

2π�mε0 ż

) 1
2

exp

{
− im

2�

[
z

ż

p2

m2 − 2i
p

mż

(
p′

mε0

)
+
(
u̇

ż
+ 2i

)(
p′

mε0

)2]}
.

(2.119)

Performing the integration according to (2.117) yields theWP solution in the form

�WP (p, t) =
(

1

π�m

) 1
4
(
i

λ̇

) 1
2

exp

{
− im

2�

[
z

ż

p2

m2
+ 1

żλ̇

p̃2

m2

]}
. (2.120)

Comparison with the corresponding WP in position space,

�WP (x, t) =
( m

π�

) 1
4

(
1

λ

) 1
2

exp

{
im

2�

[
ż

z
x2 − 1

zλ
x̃2
]}

, (2.121)

shows that for the transition from position to momentum space or vice versa (in this
form), essentially the following substitutions are required: x ↔ p

m ,+ ↔ − and z, u
or λ ↔ ż, u̇ or λ̇.

A similar symmetry is also found when the WPs are finally written in the form

�WP(x, t) =
( m

π�

) 1
4

(
1

λ

) 1
2

exp

{
im

2�

(
λ̇

λ

)
x̃2 + i

�
〈p〉x̃ + i

�

〈p〉〈x〉
2

}
(2.122)

and

�WP(p, t) =
(

1

π�m

) 1
4
(
i

λ̇

) 1
2

exp

{
− im

2�

(
λ

λ̇

)
p̃2

m2
− i

�
〈x〉 p̃ − i

�

〈p〉〈x〉
2

}
.

(2.123)
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2.8 Wigner Function and Ermakov Invariant

Recently, with the development of nanotechnology, etc., the transition between
(microscopic) quantum mechanics and (macroscopic) classical mechanics has been
an object of intensive theoretical as well as experimental studies. From an experi-
mental point of view, an interesting approach is the study of single atoms caught in a
trap like the Paul trap. The motion in such a trap can be represented by an oscillator
with TD frequency ω(t). For such a system, the Hamiltonian is no longer a constant
of motion whereas the Ermakov invariant still is.

From a theoretical viewpoint, the quantum mechanical object that comes closest
to the classical phase space description is the so-called Wigner function. In the
following, the relation between the Ermakov invariant and the Wigner function is
investigated.

The Wigner function (for a pure state) can be obtained from the wave function in
position space via the transformation

W (x, p) = 1

2π�

+∞∫
−∞

dq e
i
�
pq �∗(x + q

2
) �(x − q

2
) (2.124)

which has some similarities with a Fourier transformation and was introduced by
Eugene P. Wigner in the context of quantum mechanical corrections to thermody-
namic equilibrium [36, 37] without any real explanation.

The aim is to describe themotion of a system fromposition x ′ to x ′′ (corresponding
to the transformation from x ′ to x in the Green function method mentioned above).

Therefore, a quantum-jump from x ′ to x ′′ shall be considered, i.e. a jump over
the distance q = x ′′ − x ′. One can define a centre of the jump via x = x ′+x ′′

2 and
introduce, instead of the coordinates x ′ and x ′′, the centre x and the distance q of the
jump via

x ′ = x − q

2
(2.125)

x ′′ = x + q

2
. (2.126)

The momentum p of the particle is associated with the jump from x ′ to x ′′, i.e., q.
As the momentum distribution follows from the position distribution via Fourier

transformation, a Fourier transformation with respect to the quantum jump q is
performed, i.e.,

W (x, p) = 1

2π�

+∞∫
−∞

dq e
i
�
pq 
̃(x, q) (2.127)

with 
̃(x, q) = 
(x ′′, x ′) = �∗(x + q
2 ) �(x − q

2 ), i.e., the Wigner transformation
defined above is applied. Indeed, this density 
 depends on two position variables
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(x ′ and x ′′ or q and x). Only one of them (q) is transformed and the other (x) plus
the momentum variable (p) is still maintained after Fourier transformation. So, there
are still two variables, the momentum of the jump p and the centre of the jump x ,
both being c-numbers, not operators! (For further details see, e.g. [38].)

In the following, the Wigner transformation is first applied to a TI Gaussian WP
(corresponding to an initial state) and, afterwards, to a TDGaussianWP (correspond-
ing to a solution of the TDSE).

(a) TI Gaussian WP:

The Wigner transformation is applied to the initial state WP

�(x) = N exp

{
− (x − x0)2

2δ2
+ i

�
p0x

}
(2.128)

corresponding to the probability density in position space


(x) = �∗(x) �(x) = NN∗ exp
{
− (x − x0)2

δ2

}
(2.129)

with NN∗ =
√

1
πδ2

.
Inserting �(x) into the Wigner transformation leads to

W (x, p) = 1

π�
exp

{
− (x − x0)2

δ2
− δ2(p − p0)2

�2

}
(2.130)

where δ2 = 2〈x̃2〉 and �
2

δ2
= 2〈 p̃2〉 for 〈x̃2〉〈 p̃2〉 = �

2

4 .

(b) TD Gaussian WP:

More interesting is the case where, for �, the TD Gaussian WP

�WP(x, t) = N(t) exp

{
i

[
y(t) x̃2 + 〈p〉

�
x̃ + K(t)

]}
(2.131)

is inserted into the Wigner transformation [39]. This leads to the Wigner function in
the form

W (x, p, t) = 1

π�
exp

{
−2yI

(
1 + y2R

y2I

)
x̃2 − p̃2

2�2yI
+ 2

�

(
yR
yI

)
x̃ p̃

}
. (2.132)

Using the relations between yI, yR and 〈x̃2〉, 〈 p̃2〉, 〈[x̃, p̃]+〉 (where the anti-

commutator equals �

(
yR
yI

)
), W (x, p, t) can be written as

W (x, p, t) = 1

π�
exp

{
− 2

�2

[〈 p̃2〉x̃2 − 〈[x̃, p̃]+〉x̃ p̃ + 〈x̃2〉 p̃2]
}

. (2.133)
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Expressed with the help of α and α̇ (see above) this yields

W (x, p, t) = 1

π�
exp

{
−m

�

[(
α̇2 + 1

α2

)
x̃2 − 2α̇α x̃

p̃

m
+ α2 p̃

2

m2

]}
. (2.134)

The exponent can then be rewritten in the form

W (x, p, t) = 1

π�
exp

{
−m

�

[(
α̇ x̃ − α

p̃

m

)2

+
(
x̃

α

)2
]}

. (2.135)

The expression in the square brackets has already much similarity with the
Ermakov invariant IL and, particularly at the origin of phase space, i.e. for x = 0 and
p = 0, it is up to a constant factor identical to it:

W (0, 0, t) = 1

π�
exp

{
−m

�

[
(η̇α − ηα̇)2 +

(η

α

)2]}

= 1

π�
exp

{
−2m

�
IL

}
= const. (2.136)

It can be shown (for the cases considered here) that theWigner function fulfils the
sameLiouville equation as the classical phase space probability distribution function,
i.e.

∂

∂t
W (x, p, t) = − p

m

∂W

∂x
+ ∂V

∂x

∂W

∂p
. (2.137)

Inserting theWigner function in the form (2.135) into this equation yields again the
pair of equations (2.3) and (2.16) corresponding to the Ermakov invariant, providing
the uncertainties are expressed in terms of α and α̇.

Sorting the results from inserting the Wigner function in the form (2.133) into
the Liouville equation (2.137) according to terms proportional to x̃2, p̃2 or x̃ p̃, one
obtains the following set of coupled differential equations determining the time-
evolution of the uncertainties:

∂

∂t
〈x̃2〉 = 1

m
〈[x̃, p̃]+〉 (2.138)

1

4

∂

∂t
〈[x̃, p̃]+〉 = 1

2m
〈 p̃2〉 − m

2
ω2〈x̃2〉 = L̃ (2.139)

∂

∂t
〈 p̃2〉 = − mω2〈[x̃, p̃]+〉 (2.140)

where both Eqs. (2.138) and (2.140) are equivalent to the Ermakov equation (2.16).
From Eq. (2.139), the action function S̃ for the uncertainties can be obtained via
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S̃ =
t∫

0

dt ′ L̃(t ′) = 1

4

t∫
0

dt ′
∂

∂t ′
〈[x̃, p̃]+〉

= 1

4
〈[x̃, p̃]+〉 |tt0=

�

4
(α̇α − α̇0α0) , (2.141)

which is for α̇0 = 0 just S̃ = �

4 α̇α = 1
2 αpα .

Obviously, the Ermakov invariant appears in different functions and different
contexts when TD quantum mechanical problems are considered. These properties
are investigated in more detail in the final part of this subsection and the rest of this
chapter.

The classical energy for the HO with constant frequency ω0, Ecl = m
2 η̇2(t) +

m
2 ω2η2(t) has the constant value Ecl = p20

2m for the initial conditions η(0) = η0 = 0
and η̇(0) = p0

m with the (maximum) initial momentum p0. In this case, the invariant
can be written as

IL = 1

2

(α0 p0
m

)2 = α2
0

m
Ecl (2.142)

and the WP width and the frequency of the oscillator are related via �

2m〈x̃2〉0 = β0 =
1
α2
0

= ω0. As α̇ = 0, the quantum mechanical contribution to the WP energy is just
the ground state energy of the oscillator and can be written as

Ẽ = T̃ + Ṽ = 1

2m
〈 p̃2〉 + m

2
ω2
0〈x̃2〉 = �

2
ω0 = �

2α2
0

. (2.143)

In (2.133) the exponent of the Wigner function (particularly for x = p = 0)
which, apart from a constant factor, is identical to IL is written as a sum of terms each
being a product of a classical dynamical variable ((η(t), η̇(t) = p(t)

m in x̃ and p̃) and
the conjugate quantummechanical uncertainty

(〈x̃2〉(t), 〈 p̃2〉(t)). Now, however, the
same invariant can be rewritten as a ratio of only classical to only quantummechanical
energy contributions, i.e.

IL = �

2m

Ecl

Ẽ
. (2.144)

For the WP with constant width this might appear trivial since both 〈x̃2〉 and 〈 p̃2〉
are constants. However, for the HO with TD width, these uncertainties also become
functions of time, namely

〈x̃2〉(t) = �

2m
α2
0

(
cos2 ω0t + β2

0

ω2
0

sin2 ω0t

)
(2.145)

〈 p̃2〉(t) = �m

2

1

α2
0

(
cos2 ω0t + ω2

0

β2
0

sin2 ω0t

)
(2.146)
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thus also T̃ = T̃(t) and Ṽ = Ṽ (t) are now time-dependent for β0 = 1
α2
0

�= ω0. The
quantum mechanical energy contribution now takes the form

Ẽ = T̃ + Ṽ = �

4
ω0

[
ω0

β0
+ β0

ω0

]
= �

2
ω0

[
ω2
0 + β2

0

2β0ω0

]
= �

2
ω0

[
1 + (ω0 − β0)

2

2β0ω0

]
>

�

2
ω0 ,

(2.147)
i.e., it is larger than the ground state energy �

2ω0 of the WP with constant width,
independent if ω0 or β0 is larger.

Again, α2
0 in (2.142) can be expressed in terms of Ẽ, now as α2

0 = �

4Ẽ

(
β2
0+ω2

0

β2
0

)
,

turning Eq. (2.144) into

IL = �

4m

(
ω2
0 + β2

0

β2
0

)
Ecl

Ẽ
(2.148)

(which turns into (2.144) for β0 = ω0). Apart from a different constant prefactor,
again we obtain a ratio of only classical TD variables to, this time also TD, purely
quantum mechanical contributions.

There is yet another interpretation of IL possible. For this purpose it should be noted
that theWP solution of the TDSE for the HO can be expanded in terms of the station-
ary wave functions of the problem with constant superposition coefficients and TD
phase factors. For an initial GaussianWP the coefficients can be determined in closed
form (see, e.g. [40]). The quantum number n0, for which the coefficient becomes a
maximum, can be determined in good approximation to be n0 ≈ 1

2�
mω0η

2
max where

ηmax is the maximum amplitude of the corresponding classical oscillator. The energy
of the respective quantum state n0 is given by En0 = (n0+ 1

2 )�ω0 ≈ m
2 ω2

0η
2
max + �

2ω0

and is the energy level fromwhose neighbourhoodmost of the contribution to theWP
comes. This energy is, for n0 � 1, approximately equal to the energyEcl = m

2 ω2
0η

2
max

of a classical oscillator that has the same amplitude.
Therefore, the relation

Ecl

Ẽ
≈ n0 �ω0

�

2 ω0
= 2n0 (2.149)

or

IL = �

m
n0 , (2.150)

is valid, i.e., apart from the constant factors � and m, the invariant IL is identical to
the quantum number n0.

This, however, resembles very much the interpretation of the Ermakov invari-
ant in a classical cosmological context discussed by Ray [41]. There, the clas-
sical trajectory η(t) is replaced by a field amplitude φ and α corresponds to
his quantity ρ fulfilling the Ermakov equation (2.16) in Sect. 2.2. The invariant

I = 1
2

[(
ρφ̇ − φρ̇

)2 +
(

φ

ρ

)2] = N (in the adiabatic regime) defines in his case
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the particle number of the model and “provides an interesting alternative for cal-
culating particle production in cosmological models”. We will return to Ermakov
systems in a cosmological context in Sect. 7.7.

So far, the discussion of the TD case included only systems where the potential is
at most quadratic in its variables. This might not be as restrictive as it seems at first
sight as one may sometimes perform canonical transformations to reduce a given
Hamiltonian to a quadratic form [42] which has been shown explicitly by Sarlet [43]
for some polynomial Hamiltonians. To what extent this method can also be applied
in the case discussed here requires further studies.

Generalized Ermakov systems where the rhs of Eqs. (2.3) and (2.16) are functions
of α

η
or η

α
are discussed, e.g., in Refs. [44–49].

2.9 Representation of Canonical Transformations in
Quantum Mechanics

In classical Hamiltonian mechanics the time-evolution of a physical system is
described by canonical transformations in phase space that keep the Poisson brack-
ets of the transformed coordinates and momenta with respect to the initial ones
unchanged. This transformation in phase space can be described (for a one-
dimensional problem in physical space and, therefore, a two-dimensional one in
phase space, to which the following discussion will be restricted again) by the so-
called two-dimensional real symplectic group S p(2,R), represented by 2×2matrices
with a determinant equal to 1. (In order to compare the TD results with the ones for
the TI case, only the homogeneous symplectic group without translations is con-
sidered, not the inhomogeneous symplectic group IS p(2,R).) It has been shown in
[27] how it is possible to obtain the representation of the group of linear canonical
transformations in TI quantum mechanics via the determination of the configuration
space representation of the unitary operator that connects quantum mechanically the
transformed variables x and p with the initial ones, x ′ and p′. A subsequent Wigner
transformation shows explicitly that, for the TI problems considered by this method,
essentially the classical results are reproduced.

In the TD case however, there are, at least formal, differences between the classical
and the quantummechanical descriptions of the system even already for such simple
ones like the free motion (see, e.g. Sect. 2.3.2). These differences are intimately
connected with the time-dependence of the typical quantum mechanical aspect of
the system, namely the uncertainties of position and momentum. Therefore, in the
following, the influence of the time-dependence on the representation of the group
of linear canonical transformations in quantum mechanics is investigated.

After a short summary of the main results of the TI situation, the TD case and
the characteristic differences compared with the TI case are considered; in particular
the role of the time-dependence of the uncertainties is discussed. Again, this will be
restricted to systems with analytic solutions,i.e. at most quadratic Hamiltonians.
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Time-independent case:

The time-evolution in classical Hamiltonian mechanics, described by canonical
transformations in phase space, can be represented by

(
x
p

)
=
(
a b
c d

) (
x ′
p′

)
(2.151)

where a, b, c and d are real and the determinant of the 2 × 2 matrix is 1, i.e.,
ad − bc = 1. The group of transformations represented by the 2× 2 matrices is the
so-called two-dimensional real symplectic group S p(2,R).

Following [50] (see Chap.35 and reference cited therein), it is possible to obtain
the representation of the groupof linear canonical transformations (2.151) in quantum
mechanics. Referring to [50, 51], themain objective is to determine the configuration
space representation

〈x |U |x ′〉 = G(x, x ′) (2.152)

of the unitary operator U that provides the quantum mechanical relation between
x, p and x ′, p′, according to

x = Ux ′U−1 , p = Up′U−1 . (2.153)

With the help of the kernel G(x, x ′), the effect of any canonical transformation
(2.151) can be described as

�(x) =
∫ +∞

−∞
dx ′ G(x, x ′) �(x ′) . (2.154)

The integral kernel G(x, x ′) has been derived taking into consideration that it
must satisfy the following two differential equations8 [52, 53]

(
a x + b

�

i

∂

∂x

)
G(x, x ′) = x ′ G(x, x ′) (2.155)

(
c x + d

�

i

∂

∂x

)
G(x, x ′) = −�

i

∂

∂x ′ G(x, x ′) . (2.156)

An exponential ansatz, bilinear in x and x ′, finally leads to G(x, x ′) in the form

G(x, x ′) =
(

1

2πb�

) 1
2

exp

{
− i

2b�

[
ax2 − 2xx ′ + dx ′2

]}
. (2.157)

8The minus sign on the rhs of Eq. (2.156) originates from 〈x |p|x ′〉 = �

i
∂
∂x δ(x − x ′) =

− �

i
∂

∂x ′ δ(x − x ′).
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This kernel G(x, x ′), related to the specific canonical transformation, is formu-
lated in configuration space whereas the corresponding classical canonical trans-
formation is formulated in phase space. Therefore, it is interesting to discuss the
representation of this canonical transformation in the phase space version of quantum
mechanics that was developed by Wigner [36, 37]. Applying the Wigner transfor-
mation specified in Eq. (2.124) to the kernel (2.157) leads to the phase space kernel
in the form [54]

G(x, x ′, p, p′) = 1

2π�2 =
+∞∫

−∞

+∞∫
−∞

dz dz′ e
i
�

(pz−p′z′) G∗
(
x − z

2
, x ′ − z′

2

)
G

(
x + z

2
, x ′ + z′

2

)

= δ[x ′ − (ax + bp)] δ[p′ − (cx + dp)] , (2.158)

showing that, for this linear canonical transformation, the kernel coincides with its
classical limit. So, the quantum mechanical problem mainly reproduces the classical
situation without any additional quantum mechanical aspect.

Time-dependent case:

Now it is investigated how far this is still true in the case of specific quantum
dynamical aspects entering the problem. Considering TD problems in quantum
mechanics in terms of the TDSE or equivalent formulations, one finds that not only
classical position and momentum can change in time (in a way that can be described
by canonical transformations) but also the typical quantum mechanical degrees of
freedom, like position and momentum uncertainties, may be TD (corresponding,
e.g., to WPs with TD width). In Sect. 2.5 it has been shown, according to Eq. (2.53),
how to achieve the transition of a GaussianWP from initial position x ′ and time t ′ (in
configuration space) to any later position x and time t with the help of a TD kernel
(or propagator) G(x, x ′, t, t ′). This kernel had the explicit form

G
(
x, x ′, t, 0

) =
(

m

2π i�α0z

)1/2

exp

{
im

2�

[
ż

z
x2 − 2

x

z

(
x ′

α0

)
+ u

z

(
x ′

α0

)2
]}

(2.159)
where the time dependence enters via the parameters z(t) and u(t). In the limit t → 0,
the kernel turns into a delta function.

In order to compare the TD kernel (2.159) with the kernelG(x, x ′) in (2.157), one
must take into account that G(x, x ′) has been obtained via Eqs. (2.155) and (2.156)
which describe the transformation of x and p into the initial values x ′ and p′ whereas
G(x, x ′, t, t ′) in (2.159) describes the inverse transformation from x ′ to x . This is
expressed, e.g., by the different signs in the exponents of (2.157) and (2.159). For
a direct comparison one must therefore take the inverse transformation of (2.159),
obtained by changing the sign in the exponent and interchanging ż and u. Inserting
this kernel into Eqs. (2.155) and (2.156), one obtains the corresponding equations
for the TD problem,

żx − z
p

m
= x ′

α0
, (2.160)
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− u̇x + u
p

m
= −α0 p′

m
, (2.161)

or, in matrix notation,

(
x ′
α0

− α0 p′
m

)
=
(

ż − z
−u̇ u

) (
x
p
m

)
= M

(
x
p
m

)
. (2.162)

The transformation matrixM has again a determinant equal to 1, żu− u̇z = 1. As
shown in Sect. 2.4, this is equal to ϕ̇ = 1

α2 , corresponding to a kind of conservation of
angular momentum (in the complex plane). However, different from the TI case, the
initial state is not only characterized by the initial position x ′ and momentum p′ but
also by the corresponding initial uncertainties as α0 = (

2m
�

〈x̃2〉0
) 1

2 is proportional
to the initial position uncertainty and (for a WP with initial minimum uncertainty

〈x̃2〉0〈 p̃2〉0 = �
2

4 , i.e. α̇0 = 0) the inverse 1
α0

= (
2
m�

〈 p̃2〉0
) 1

2 is proportional to the

initial momentum uncertainty, i.e. x ′
α0

∝ x ′√
〈x̃2〉0

and α0 p′
m ∝ p′√

〈 p̃2〉0
.

Also in this case we are interested in the corresponding (TD) Wigner function in
phase space (the one already derived differently in Sect. 2.8 via the Wigner transfor-
mation of the Gaussian WP �WP(x, t), see Eqs. (2.133–2.135)), now using the initial
Wigner function W (x ′, p′, t ′ = 0) and the TD kernel G(x, x ′, p, p′, t, t ′) in phase
space,

W (x, p, t) =
∫ +∞

−∞

∫ +∞

−∞
dx ′dp′ G(x, x ′, p, p′, t, t ′) W (x ′, p′, t ′ = 0) (2.163)

where the initial state can be written in the form

W (x ′, p′, t ′ = 0) = 1

π�
exp

{
− x ′2

2〈x̃2〉0 − p′2

2〈 p̃2〉0
}

= 1

π�
exp

{
− m

�

[(
x ′

α0

)2

+
(

α0 p′

m

)2 ]}
. (2.164)

The TD kernel in phase space, obtained in the same way as in the TI case by
Wigner transform of the kernel in configuration space, is again given by the product
of two delta functions where now, however, x ′ is replaced by x ′

α0
and p′ is replaced by

α0 p′
m and the transformed variables in the delta functions are determined by (2.160)

and (2.161), i.e.

G(x, x ′, p, p′, t, t ′ = 0) = δ

[(
x ′
α0

)
−
(
żx − z

p

m

)]
δ

[(
α0 p

′
m

)
−
(
u
p

m
− u̇x

)]
.

(2.165)
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Applying this kernel to the initial Wigner distribution function (2.164) yields
W (x, p, t) as

W (x, p, t) = 1

π�
exp

{
−m

�

[(
żx − z

p

m

)2 +
(
u
p

m
− u̇x

)2]}
. (2.166)

Using the definition of λ(t) in Cartesian coordtinates, λ = u+ i z, the determinant
ofM, żu − u̇z = 1, and the relations (2.86–2.88) between λ, λ̇ and the position and
momentum uncertainties as given in Sect. 2.6, finally allows one to write

W (x, p, t) = 1

π�
exp

{
− 2

�2

[〈 p̃2〉x2 − 〈[x̃, p̃]+〉xp + 〈x̃2〉p2]
}

, (2.167)

where the time-dependence of the uncertainties is determined totally by the time-
dependence of z(t) and u(t). In the case of TD Gaussian WPs, the classical time-
dependence is expressed by the fact that themaximumof theWP follows the classical
trajectory 〈x〉 = η(t). This is taken into account by shifting the variables of position
and momentum from x to x̃ = x − 〈x〉 = x − η and p to p̃ = p − 〈p〉 = p − mη̇.
As 〈x〉 and 〈p〉 are purely TD quantities, x̃ and p̃ replace x and p in Eqs. (2.155)
and (2.156) because these equations only contain derivatives with respect to space,
not time. So x and p in (2.167) would be replaced by x̃ and p̃ which would lead to
the result (2.133) obtained in Sect. 2.8 showing the connection between the exponent
of the TD Wigner function and the dynamical Ermakov invariant that can also be
expressed using the parameters z(t) and u(t) of the TD kernel G(x, x ′, t, t ′) and has
been defined, e.g., in (2.21) and (2.70).

In the quantum mechanical phase space picture according to Wigner, this results
not only in changing initial position and momentum uncertainties into their values
at time t , but also an additional contribution occurs from the time-change of 〈x̃2〉, or
α2, respectively, expressed by the term proportional 〈[x̃, p̃]+〉, or α̇α, respectively,
in the exponent of W (x, p, t).

All these quantum dynamical aspects are contained in the TD parameters z(t)
and u(t), entering the transformation matrix in (2.162). In particular, the change of
the position uncertainty (expressed by α̇) is taken into account by the parameter u,
which can be expressed as shown in Sect. 2.4, as

u = żα2 − zα̇α =
(

m

α0 p0

) [
η̇α2 − ηα̇α

]
. (2.168)

As long as the posi tion uncertainty is constant, α = α0, u is simply proportional
to the classical velocity η̇(t); for α̇ �= 0, however, the situation can become quite
different.As examples, theHOwith constantwidth and the freemotionwithα = α(t)
(expressed by the spreading of the correspondingWP solution) are discussed briefly.

For this purpose, also u̇ is now given in term of η and η̇ where the equations of
motion (2.3) (for η(t)) and (2.16) (for α(t)) are applied. So it follows from (2.168)
that
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u̇ =
(

m

α0 p0

)[
η̇α̇α − η

(
α̇2 + 1

α2

)]
. (2.169)

For constant α = α0, all terms proportional to α̇ vanish and the transformation
maxtrix (2.162) can be written as

M =
(

ż − z
−u̇ u

)
=
(

m

α0 p0

) (
η̇ − η
η

α2
0

α2
0 η̇

)
. (2.170)

This matrix M, for the HO with constant width (in agreement with α̇ = 0), i.e.,
α = α0 = 1√

ω
, and η(t) = v0

ω
sinωt (for η(0) = η0 = 0) and η̇(t) = v0 cosωt (for

η̇(0) = η̇0 = v0 = p0
m ), turns into

MHO =
(

m

α0 p0

)(
v0 cosωt − v0

ω
sinωt

v0 sinωt v0
ω
cosωt

)
=
( 1

α0
cosωt − α0 sinωt

1
α0
sinωt α0 cosωt

)
,

(2.171)
i.e., (up to the constant α0 that also occurs in the column vector) just the classical
result is reproduced.

However, for the free motion with η(t) = v0t, η̇(t) = v0, for constant α = α0,
one would obtain

M̃fr =
(

m

α0 p0

)(
v0 − v0t
1
α2
0
v0t α2

0v0

)
, (2.172)

that is different from the classical situation where the matrix element in the first
column and second row

(
1
α2
0
v0t
)
would be zero. The consequence for a free motion

WP with constant width would be that the transformation matrix would no longer
describe a canonical transformation as its determinant would no longer be equal to
1 but

det(M̃fr) =
[
1 +

(
t

α2
0

)2
]

, (2.173)

which just describes the time-dependence of the WP spreading (see Eq. (2.40) for
α̇0 = 0).

For α̇ �= 0, the well-known time-dependence of the WP width given by α2(t) =
α2
0

[
1 +

(
t

α2
0

)2]
(as can be obtained as a solution of Eq. (2.16) for ω = 0) leads to

the correct transformation matrix

M f r =
(

m

α0 p0

)(
v0 − v0t
0 α2

0v0

)
, (2.174)

with det(Mfr) = 1. This shows explicitly the influence of the time-dependence of the
uncertainties of α(t) on the transformation describing the dynamics of the system.
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It should also be mentioned that the determinant ofM, written in terms of η, η̇, α

and α̇ takes just the form of the Ermakov invariant, i.e.,

M =
(

m

α0 p0

)(
η̇ − η

−η̇α̇α + η
(
α̇2 + 1

α2

)
η̇α2 − ηα̇α

)
(2.175)

yields

det(M) =
(

m

α0 p0

)2 [
η̇2α2 − 2ηη̇αα̇ + η2

(
α̇2 + 1

α2

)]

=
(

m

α0 p0

)2 [
(η̇α − α̇η)2 +

(η

α

)2] =
(

m

α0 p0

)2

2 IL

= 1 = żu − u̇z = ϕ̇ α2 . (2.176)

This leads to the interesting result that the Ermakov invariant is actually equivalent
to the conservation law żu − u̇z = ϕ̇ α2 = 1, describing the “conservation of
angular momentum in the complex plane”, or the Wronskian determinant showing
the linear independence of the two solutions of the linear Newtonian equation of
motion, repectively. This result has been confirmed in [55].

The second result of this subsection is that, in the TD quantum mechanical prob-
lem, the transformation (2.162) corresponding to the classical linear canonical trans-
formation (2.151) and its TI quantum mechanical analogue ((2.155), (2.156)), not
only transform the initial position and momentum into its values at a later time but,
also, does the same simultaneously with the corresponding uncertainties! How far
this is connected with the existence of a Lagrangian/Hamiltonian formulation of
the dynamics of the quantum uncertainties, as presented in Sect. 2.6, needs further
investigation.

2.10 Algebraic Derivation of the Ermakov Invariant

In cases where the (classical) Hamiltonian is no longer a constant of motion, e.g., for
the parametric oscillator with TD frequency ω = ω(t), another constant of motion,
the Ermakov invariant, may still exist that does not have the dimension of an energy
but essentially that of an action.

In Sect. 2.3 it has been shown how this invariant can be obtained by eliminating
ω2(t) from the Newtonian equation (2.3)9 and the Ermakov equation (2.16), leading
to

I = 1

2

[
(q̇ α − q α̇)2 +

(q
α

)2] = const. (2.177)

9In this subsection, η is replaced by q to be in agreement with a more conventional notation in
classical phase space; η̇ consequently turns into q̇ = p

m .
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The same invariant can also be obtained in a different way via an algebraic
approach (see e.g. [56]). In this case, the Hamiltonian is rewritten in terms of (not
explicitly TD) phase space functions �n as

H =
∑
n

hn(t) �n (2.178)

where the dynamical algebra is the Lie algebra of the functions �n which is closed
with relation to the Poisson brackets { , }−,

{�n, �m}− =
∑
r

Cr
nm �r (2.179)

with the Cr
nm being the structure constants of the algebra.

The time-evolution of any phase space function F(q, p, t) is given by

d

dt
F = {F,H}− + ∂

∂t
F . (2.180)

In particular, a dynamical invariant is characterized by d
dt I = 0, i.e.,

∂

∂t
I = {H, I}− . (2.181)

Looking for an invariant that is also a member of the dynamical algebra, i.e.,

I =
∑
n

κn(t) �n , (2.182)

Eq. (2.181) leads to a coupled set of evolution equations for the expansion coefficients
κn ,

κ̇r +
∑
n

(∑
m

Cr
nm hm(t)

)
κn = 0 . (2.183)

In the following, we consider the dynamical algebra of

�1 = p2

2m
, �2 = p q , �3 = mq2

2
(2.184)

with Poisson brackets

{�1, �3}− = − �2, {�1, �2}− = −2 �1, {�3, �2}− = 2 �3 . (2.185)

For the Hamiltonian of the oscillator with TD frequency,
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H = 1

2m
p2 + m

2
ω2(t) q2 , (2.186)

with h1 = 1, h2 = 0 and h3 = ω2(t), the set of equations for κn can be written as

κ̇1 = − 2 κ2 , (2.187)

κ̇2 = ω2κ1 − κ3 , (2.188)

κ̇3 = 2 ω2 κ2 . (2.189)

This coupled set of equations can be reduced to a single second-order differential
equation by introducing a new variable α(t) via κ1 = 1

mα2, leading to the Ermakov
equation (2.16).

Assuming the same relations hold betweenα and α̇ on the one side and the position
and momentum uncertainties on the other, as in Sects. 2.3 and 2.3.1, the κn can be
written as

κ1 = 1

m
α2 = 2

�
〈x̃2〉 , (2.190)

κ2 = − 1

m
α̇α = − 1

�m
〈[x̃, p̃]+〉 , (2.191)

κ3 = 1

m

(
α̇2 + 1

α2

)
= 2

�m2
〈 p̃2〉 . (2.192)

Inserting (2.190–2.192) into (2.187–2.189), the latter equations, expressed in
terms of the uncertainties, simply turn into Eqs. (2.138–2.140) obtained from the
Liouville equation of the Wigner function in Sect. 2.8. With κn , expressed in terms
of α and α̇, the invariant (2.182) can be written as

I = 1

2

[
α2 p

2

m2
− 2α̇α

p

m
q +

(
α̇2 + k2

α2

)
q2

]
, (2.193)

which is identical to (2.21) for η = q, p = mq̇ and k = 1.

2.11 Generalized Creation and Annihilation Operators and
Coherent States

The Ermakov invariant cannot only be expressed in terms of α and α̇ but also in terms
of real and imaginary parts of the complex Riccati variable C = CR+iCI = α̇

α
+i 1

α2 as
the sum of two quadratic terms or as a product of two linear terms, complex conjugate
to each other, as10

10As this subsection again deals with TD Gaussian WPs and their dynamics, the notation using η

and η̇ instead of q and p
m is applied again.
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I = 1

2
α2
[
(η̇ − CRη)2 + (CIη)2

]

= 1

2
α2 [(η̇ − Cη)

(
η̇ − C∗η

)]
. (2.194)

This brings back to mind the rewriting of the HO Hamiltonian (in quantum
mechanics) as a product of two (adjoint) operators as

Hop = 1

2m
p2op + m

2
ω2
0 x

2 = �ω0

(
a+a + 1

2

)
(2.195)

with pop = �

i
∂
∂x , or divided by �ω0, as

H̃ = H

�ω0
=
(
a+a + 1

2

)
(2.196)

where a+a is the so-called number operator as it counts the number of quanta of
action because H

ω0
has the dimension of an action!

The creation and annihilation operators a+ and a are defined as

a = i

√
m

2�ω0

( pop
m

− i ω0 x
)

, (2.197)

a+ = −i

√
m

2�ω0

( pop
m

+ i ω0 x
)

. (2.198)

This f actori zation method had been applied by Schrödinger himself [57] but
was already mentioned earlier by Dirac in his book “The Principles of Quantum
Mechanics” [58].

With the help of the annihilation operator a, the ground state wave function of the
HO can be obtained and, by successive application of the creation operator a+, all
the excited states can be “created”.

By superimposing all these states (with appropriate weight-factors), a Gaussian
WP with constant width as solution for the SE of the HO, whose maximum follows
the classical trajectory, was already obtained by Schrödinger [59]. Generalizations
of Schrödinger’s approach were achieved in the description of coherent light beams
emitted by lasers and are connected with the names Glauber, Sudarshan and Klauder
[60–62], considering what is now known as coherent states (CS).11

There are at least three different definitions of these states in the literature:
1. minimum uncertainty CS, meaning Gaussian WPs that minimize Heisenberg’s

uncertainty relation: U = 〈x̃2〉〈 p̃2〉 = �
2

4 ;
2. annihilation operator CS, meaning eigenfunctions of the operator a with com-

plex eigenvalue w;

11For more details see also [63] and literature cited therein.
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3. displacement operator CS, meaning displaced vacuum states obtained from the
ground state �0 = |0〉 by applying the displacement operator D(w) = exp{wa+ −
w∗a}.

In the following, it is shown how the creation and annihilation operators can be
generalized to provide also CSs (WPs) with TD width, i.e., cases with position-
momentum correlations (〈[x̃, p̃]+〉 = �α̇α �= 0 or α̇ �= 0).

The CS of the HO with constant width is associated with the particular solution
of the corresponding Riccati equation

C̃ = i C̃I = i ω0 = i
1

α2
0

. (2.199)

Replacing ω0 accordingly in a and a+, they can be rewritten as

a = i

√
m

2�
α0

( pop
m

− i CI x
)

, (2.200)

a+ = −i

√
m

2�
α0

( pop
m

+ i CIx
)

. (2.201)

As shown above, already for ω = ω0 = constant, solutions exist with TD (oscil-
lating) WP width, i.e., α̇ �= 0 and α = α(t); hence, also CR = α̇

α
must be taken

into account. Obviously, the same also applies for the oscillator with TD frequency
ω = ω(t). Therefore, in the definitions of a and a+, α0 must be replaced by α(t) and
iCI by C thus leading to [63, 64]12

a(t) = i

√
m

2�
α
( pop
m

− C x
)

, (2.202)

a+(t) = −i

√
m

2�
α
( pop
m

− C∗ x
)

. (2.203)

It is easy to check that the commutator relation [a(t), a+(t)]− = 1 is fulfilled.
At least for TD frequency ω(t) the corresponding Hamiltonian is no longer a

constant of motion. So one might ask whether a(t) and a+(t) are constants of motion
or not; in other words, do they fulfil

∂

∂t
a + 1

i�
[a,H]− = 0 . (2.204)

To answer this, x , p and hence H must be expressed in terms of a(t) and a+(t),
leading to

12The notation used in the following is not consistent with the one used in [63] as a(t) and ã(t) are
interchanged!
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x = α

2

√
2�

m
(a + a+) , (2.205)

p = m
α

2

√
2�

m

(
C∗ a + C a+) (2.206)

with

H = �

4
α2
[
CR(a + a+) + i CI(a

+ − a)
]2 + �

4
ω2α2

(
a+ + a

)2
. (2.207)

This finally leads to

∂

∂t
a + 1

i�
[a,H]− = −i

1

α2
a �= 0 . (2.208)

So, a(t) and a+(t) are no constants of motion but can be turned into such by
simply introducing a phase factor according to

ã(t) = a(t) ei
∫ t dt ′ 1

α2 = a(t) eiϕ , (2.209)

ã+(t) = a+(t) e−i
∫ t dt ′ 1

α2 = a+(t) e−iϕ (2.210)

where we can use our knowledge that λ = αeiϕ to show that, for the transition from
a, a+ to ã, ã+, just the parameter α(t) in a(t) must be replaced by λ(t) and by λ∗(t)
in a+(t).

The phase factor shall be omitted in the following as it can be absorbed in the
purely TD function K(t) in the exponent of the WP/CS or into N(t) (see Eq. (2.1)).
The difference between a, a+ and ã, ã+ will also be mentioned again in connection
with the displacement operator later in this subsection.

Next, it is shown that one can use the generalized annihilation operator a(t) to
obtain a CS |w〉 according to definition (2) of CSs, i.e. a CS as eigenstate of a(t)
with complex eigenvalue w,

a(t) |w〉 = w |w〉 . (2.211)

First, the complex eigenvalue w is determined in terms of 〈x〉w = η and 〈p〉w =
mη̇, i.e., mean values calculated with |w〉 where Eq. (2.211) is assumed to be valid.

From

〈x〉w =
√

�

2m
α (w∗ + w) =

√
2�

m
α wR = η (2.212)

〈p〉w =
√

�

2m
α
[
C w∗ + C∗ w

] = mη̇ (2.213)
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it follows that

wR =
√

m

2�

(η

α

)
= 1√

2

√
m

�
α CI η (2.214)

wI =
√

m

2�
(η̇α − ηα̇) = 1√

2

√
m

�
α [η̇ − CR η] (2.215)

or

w =
√

m

2�

[( η

α

)
+ i (η̇α − ηα̇)

]
= 1√

2

√
m

�
α [CI η + i (η̇ − CR η)] = i

√
m

2�
α [η̇ − Cη] .

(2.216)

This shows the connection between the eigenvalues w (or w∗) and the Ermakov
invariant as

I = �

m

(
w2

R + w2
I

) = �

m
ww∗ = �

m
|w|2 . (2.217)

From this it immediately follows that theoperator corresponding to theErmakov
invariant , when p = mẋ is replaced by the operator pop = �

i
∂
∂x (and taking into

account that [pop, x]− = �

i ), can be written in terms of the generalized creation and
annihilation operators as13

Iop = �

m

[
a+(t)a(t) + 1

2

]
. (2.218)

In the position-space representation, the CS that is eigenstate of a(t),

〈x |a(t)|w〉 = w〈x |w〉 or i

√
m

2�
α

{
�

mi

∂

∂x
− Cx

}
�w(x) = w �w(x) , (2.219)

can be given as

�w(x, t) = M(t) exp

{
im

2�
C(x − 〈x〉)2 + i

�
〈p〉x − i

2�
〈p〉〈x〉 + 1

2

(
w2 + |w|2)

}

(2.220)

which is, for M(t) = N(t) e− 1
2 (w

2+|w|2) and N(t) = (
m
π�

) 1
4
(
1
λ

) 1
2 , identical to the

normalized Gaussian WP (2.1) (written in the form (2.122)), i.e.,

�w(x, t) =
( m

π�

) 1
4

(
1

λ

) 1
2

exp

{
im

2�
C x̃2 + i

�
〈p〉x̃ + i

2�
〈p〉〈x〉

}
= �WP(x, t) .

(2.221)

13In any case, the phase factors cancel in the product; so a+a = ã+ã.
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A comment on the normalization factor: In order to obtain the simple form
K(t) = 1

2�
〈p〉〈x〉 for the purely TD function K(t) in the exponent, the normal-

ization factor N(t) becomes complex, N(t) = ( m
π�

) 1
4
(
1
λ

) 1
2 due to the complex λ(t).

For this quantity, using the polar form λ = αeiϕ with ϕ = ∫ t dt ′ 1
α2 , N(t) can be

written as N(t) = ( m
π�α2

) 1
4 e−i ϕ

2 =
(

1
2π〈x̃2〉(t)

) 1
4
e− i

2
∫ t dt ′ 1

α2 . For α2 = α2
0 = ω−1

0 ,

N(t) turns into N(t) = (mω0
π�

) 1
4 e− i

2 ω0t and contributes the ground state energy of
the HO that corresponds to Ẽ = 1

2m 〈 p̃2〉 + m
2 ω2

0 〈x̃2〉 = �

2 ω0 in the case
of the WP with constant width. Here we obtain a generalization for α = α(t). The
phase factors e∓i

∫ t dt ′ 1
α2 occurring in the creation/annihilation operators as defined

in (2.209, 2.210) can be absorbed into N(t) in a similar way.
As mentioned before, the CS can also be defined as a displaced vacuum state |0〉,

i.e.
|w〉 = exp

{
wa+(t) − w∗a(t)

} |0〉 = D(w) |0〉 (2.222)

with the displacement operator D(w).
In the position-space representation, the vacuum state φ0 can be obtained via

〈x |a(t)|0〉 = i

√
m

2�
α

{
�

mi

∂

∂x
− Cx

}
φ0(x) = 0 (2.223)

as
〈x |0〉 = φ0(x, t) = N(t) ei

m
2�

C(t)x2 (2.224)

with the same N(t) as above.
Note that due toC(t) the exponent is now complex , in particular via iCRx2, the term

im
2�

α̇
α
x2 already occurs here naturally, whereas it must be introduced in the approach

of Hartley and Ray [65] via a unitary transformation.
Using the Baker–Campbell–Hausdorff formula, the CS can now be written in the

usual form

|w〉 = D(w) |0〉 = e− 1
2 |w| exp(wa+(t)) |0〉 = e− 1

2 |w|2
∞∑
n=0

wn(a+)n

n! |0〉 ,

(2.225)
now with a+(t) as defined in (2.203). Evaluating ewa+

with the help of w and |w|2,
as given in (2.216) and (2.217), leads again in the position-space representation to
�w(x, t) in the form as given in (2.122).

At this point, a comment concerning the displacement operator D(w) should be
added. In the case of the HO with constant width, the creation and annihilation
operators are given by (2.202) and (2.203) with CR = 0 and CI = 1

α

2
with α = α0 =(

1
ω0

) 1
2
and, according to (2.205), the sum of both operators is proportional to the

position variable
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a + a+ =
(
2m

�

) 1
2

α CI x =
(
2mα2

�

) 1
2 1

α2
x =

(
2mω0

�

) 1
2

x . (2.226)

Consequently, the corresponding eigenvalues w and w∗ fulfil

w + w∗ =
(
2m

�

) 1
2

α CI η =
(
2mα2

�

) 1
2 1

α2
η =

(
2mω0

�

) 1
2

η , (2.227)

so the “shifted” creation/annihilation operators

d = a − w , d+ = a+ − w∗ (2.228)

fulfil

d + d+ = (a + a+) − (w + w∗) =
(
2mω0

�

) 1
2

(x − η) =
(
2m

�

) 1
2 1

α0
x̃ , (2.229)

i.e., the same as (2.226), only for a position variable displaced by the classical tra-
jectory η(t) = 〈x〉 (in a negative direction). The shifted operators d and d+ can be
obtained from the original ones by a similarity transformation with the help of a
unitary operator D(w) according to [66]

D+
− a D− = a − w = d , (2.230)

D+
− a+ D− = a+ − w∗ = d+ . (2.231)

To find the explicit form of the operator D−(w) one can apply an exponential
ansatz of the form

D−(w) = e�(w) (2.232)

and make use of D−(w) being unitary, i.e., D+− = e�+ = D−1− = e−�, hence � must
be anti-Hermitian, �+(z) = −�(z).

With this ansatz, it follows that (2.230) is fulfilled for [�, a]− = w. Due to
[a, a+]− = 1, � can be written as � = −wa+. This form of �, however, is not
anti-Hermitian. Knowing that [a, a]− = 0, any linear combination of a can be added
to � without changing [�, a]− = w. So, an extension to

�(w) = −(wa+ − w∗a) (2.233)

also fulfils Eq. (2.231) and leads to the unitary displacement operator

D−(w) = exp{−(wa+ − w∗a)} , (2.234)

causing adisplacement by−η(t) (in agreementwith (2.222)whereD(w) =̂D+(w) =
D−1

− (w) = D+
−(w) causes a displacement by the same positive amount).
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How is this affected by the above treatment? As mentioned earlier, the operators
a(t) and a+(t) are not constants of motion but can be turned into such bymultiplying
them by a phase factor, leading to ã and ã+ according to Eqs. (2.209) and (2.210).
The same would also apply to the corresponding eigenvalues of the CSs, w̃ and w̃∗.
The shift of the position variable x would then, in analogy with Eq. (2.227), be given
by w̃+w̃∗, where α (in the first term on the rhs) must be replaced by αeiϕ = λ(t) and
CI by C in w̃ and by λ∗(t) and C∗ in w̃∗. With η = α0 p0

m z and C = λ̇
λ
(with λ = u+ iz),

w̃ and w̃∗ can then be written as

w̃ = i

√
m

2�
λ

(
η̇ − λ̇

λ
η

)
= i

√
m

2�

α0 p0
m

(
λż − λ̇z

)

= i
α0 p0
m

√
m

2�
(uż − u̇z) = i

α0 p0
m

√
m

2�
(2.235)

(where Eq. (2.56) has been used in the last step) and

w̃∗ = −i

√
m

2�
λ∗
(

η̇ − λ̇∗

λ∗ η

)
= −i

√
m

2�

α0 p0
m

(
λ∗ ż − λ̇∗z

)

= −i
α0 p0
m

√
m

2�
(uż − u̇z) = −i

α0 p0
m

√
m

2�
(2.236)

leading to the displacement w̃ + w̃∗ = 0, i.e. NO displacement.
As the same would also apply if in the conventional creation and annihilation

operators α0 would be replaced by α0eiω0t , i.e., by the complex quantity λ, it follows
that in order to obtain the shift by the amount η(t), not the invariant operators ã and ã+
(including the phase factor), but a and a+ which are NOT constants of motion must
be applied in the definition of the displacement operator D(w). Therefore, one can

conclude that the phase factor e∓i
∫ t dt ′ 1

α2 = eiϕ not only turns the creation/annihilation
operators into dynamical invariants but, to the contrary, its absence introduces the
dynamics that moves the position variable by an amount η(t) that corresponds to the
classical trajectory.

Finally, it is shown that our CS also fulfils the Schrödinger–Robertson uncertainty
relation and how the uncertainties can be expressed in terms of w, w∗, α, CR and CI.

In terms of these quantities the mean value of 〈x2〉 can be written as

〈x2〉w = �

2m
α2 (w∗2 + w2 + 2|w|2 + 1) (2.237)

leading (together with Eq. (2.212)) to the mean square deviation of position

〈x̃2〉w = 〈x2〉w − 〈x〉2w = �

2m
α2 . (2.238)

In the same way, from



2.11 Generalized Creation and Annihilation Operators and Coherent States 55

〈p2〉w = �m

2
α2
[
C2w∗2 + C∗2w2 + |C|2 (2|w|2 + 1

)]
(2.239)

and using Eq. (2.213), one obtains

〈 p̃2〉w = 〈p2〉w − 〈p〉2w = �m

2
α2 |C|2 = �m

2
α2
[
C2

R + C2
I

]
(2.240)

and from

〈[x, p]+〉w = 〈xp + px〉w = � α2
[
Cw∗2 + C∗w2 + CR

(
2|w|2 + 1

)]
(2.241)

with (2.212) and (2.213) the correlation uncertainty

〈
1

2
[x̃, p̃]+

〉
w

=
〈
1

2
[x, p]+

〉
w

− 〈x〉w〈p〉w = �

2
α2CR . (2.242)

From

〈x̃2〉w〈 p̃2〉w −
〈
1

2
[x̃, p̃]+

〉2
w

= �
2

4
α4 [C2

R + C2
I

]− �
2

4
α4 C2

R = �
2

4
(2.243)

it follows that our CS also fulfils the Schrödinger–Robertson uncertainty condition.
Like the annihilation operator of the HO can be used to obtain the corresponding

ground state wave function and the creation operators to obtain the excited states, the
generalized annihilation and creation operators (2.202) and (2.203) can be used to
obtain solutions of the TDSE where the (at most quadratic) potential of the problem
enters via the complex TD variable C of the corresponding Riccati equation or the
real TD variable α(t) of the equivalent Ermakov equation.

So, e.g., for the free motion (V = 0), the application of a(t) on the ground state
wave function |0〉 leads (in position representation) via a(t)|0 >= 0 to the ground
state as given in Eq. (2.224), where C(t) is obtained from the Riccati equation (2.4)
for ω = 0. Note that this ground state (in contrast to the TI HO) has a position
dependent phase via im

2�
CRx2.

The corresponding excited states can be obtained by applying a+(t) on this ground
state according to �n(x, t) = (a+)n|0〉 in position space representation as

�n(x, t) =
[( m

π�

) 1
2 1

α

1

n!2n
] 1

2

Hn

(
x

x0

)
exp

{
−1

2

(
x

x0

)2

+ i
m

2�

α̇

α
x2
}

(2.244)

with x0 =
√

�

mα(t) being TD due to α(t) and CR = α̇
α
. Hence, the dimensionless

variable ξ = x
x0

that usually appears in this context in the Hermite polynomials
Hn(ξ) is now TD [64]!
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Similar solutions for the TD free motion SE have also been found by Guerrero
et al. [67] in a different way in connection with the quantum Arnold transformation
[68–70].

Note: the �n(x, t) are exact solutions of the TDSE for V = 0 but they are no
eigenfunctions of the operator Hop = − �

2

2m
∂2

∂x2 , however, they are eigenfunctions of
the Ermakov operator (2.218).

The possibility of expanding solutions of the TDSE in terms of eigenfunctions of
the Ermakov operator (2.218) will be demonstrated in the next subsection in order
to transform TDSEs into formally TI ones.

2.12 Application of the Ermakov Invariant to Transform
Time-Dependent into Time-Independent Schrödinger
Equations

In the previous subsection it was shown that the operator that can be obtained from the
Ermakov invariant (2.21) by replacing mη̇ with the momentum operator pop = �

i
∂
∂x ,

can be expressed in terms of the generalized TD creation and annihilation operators
a+(t) and a(t), Eq. (2.218), exactly as known for theHOwith constant frequency and
TI operators a+ and a. In particular, the ground state wave function and a complete
set of eigenfunctions of Iop can be obtained in the usual way. These eigenfunctions
of Iop and the corresponding eigenvalues will be used in the following to find the
solutions of SEs with explicitly TD Hamiltonians.

For this purpose we consider a classical Ermakov system with Hamiltonian14

H(t) = 1

2
p2 + 1

2
ω2(t) x2 (2.245)

and the corresponding set of Ermakov equations (equivalent to (2.3) and (2.16)) and
the Ermakov invariant IL.

In the quantized version, obtained via the above specified replacement of p, IL
turns into a Hermitian operator that, as a constant of motion, therefore fulfils the
relation

d

dt
Iop = 1

i�

[
Iop,Hop

]
− + ∂

∂t
Iop = 0 , (2.246)

equivalent to the classical expression (2.181) in Sect. 2.10, naturally replacing the
Poisson bracket { , } by the commutator divided by i�, 1

i� [ , ]−.
Important is thatH = H(t) varies in time, depending on the frequencyω(t). Thus,

the eigenvalues of H will also change in time and cannot be determined until ω(t)
is specified. On the other hand, Iop satisfies (2.246) and has constant eigenvalues
λn which can be determined from

14In this subsection m = 1 will be set, and hence ẋ = p, to simplify comparison between H(t) and
I; the factor m is usually omitted in I; see also the comment below Eq. (2.21).
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Iopψn(x, t) = λnψn(x, t) . (2.247)

The action of Iop on a state | 〉 that solves the TDSE with the Hamilton operator
Hop(t) corresponding to (2.245)

i�
∂

∂t
| 〉 = Hop(t)| 〉 (2.248)

leads to another state (Iop| 〉) that is also a solution of this TDSE which can be
proven easily using (2.246) (for further details see [71]).

Let us assume there is a complete set of (orthonormal) eigenstates ψn(x, t) of
Iop with eigenvalues λn . Then the general solution of the TDSE with the above
Hamiltonian

i�
∂

∂t
�(x, t) =

{
−�

2

2

∂2

∂x2
+ 1

2
ω2(t)x2

}
�(x, t) , (2.249)

can be expressed in terms of the eigenfunctions of Iop in the form

�(x, t) =
∑
n

cne
ibn(t)ψn(x, t) (2.250)

with constant superposition coefficients cn and TD phase functions bn(t). It can be
shown (see [71] and below) that �(x, t) constructed in this way always satisfies the
SE (2.249), providing bn(t) fulfils

�
d

dt
bn =

〈
ψn

∣∣∣∣i� ∂

∂t
− H

∣∣∣∣ψn

〉
. (2.251)

In the following, a short outline of this method is given. The central equation is
(2.247) where the operator Iop corresponds to the invariant IL = 1

2

[
(αp − α̇x)2 +

k
(
x
α

)2]
with constant15 k and c-numbers α(t) and α̇(t). This operator can be written

as

Iop = 1

2

{
−�

2α2 ∂2

∂x2
− 2αα̇

�

i
x

∂

∂x
+ α̇2x2 + k

( x
α

)2 − αα̇
�

i

}
. (2.252)

In a next step, a unitary transformation is applied to ψn ,

ψ ′
n(x, t) = exp

(
− i

2�

α̇

α
x2
)

ψn(x, t) = U ψn(x, t) . (2.253)

15This is just a generalization of the case considered in our WP example. Therefore, 1
α3 has to be

replaced by k
α3 on the rhs of Ermakov equation (2.16).
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Note that this transformation essentially compensates the phase factor propor-
tional to x2 in our Gaussian WP solutions that was necessary (via CR = α̇

α
) in order

to take into account the time-dependence of the WP width.
In Sect. 2.8, Eq. (2.145), it has been shownexplicitly that thewidth of an oscillating

WP is TD if β0 = �

2m〈x̃2〉0 �= ω0 in the harmonic case and certainly always TD for TD
frequency as β0 = const. �= ω(t). Therefore, the unitary transformation U simply
eliminates the phase factor originating from the time-dependence of ψn(x, t) due to
ω(t) to turn it into ψ ′

n(x, t), compatible with a WP with constant width and thus
constant frequency ω = ω0, corresponding to a constant Hamiltonian instead of
H(t).

Under this transformation, the operator Iop changes into

I ′op = U Iop U
+ (2.254)

with
I ′op ψ ′

n(x, t) = λn ψ ′
n(x, t) , (2.255)

i.e., the eigenvalue spectrum remains unchanged. Straightforward calculation yields

I ′op = 1

2

{
−�

2α2 ∂2

∂x2
+ k

( x
α

)2 }
. (2.256)

Defining a new independent variable σ = x
α
allows one to rewrite Eq. (2.255) as

{
−�

2

2

d2

dσ 2
+ 1

2
kσ 2

}
φn(σ ) = λn φn(σ ) , (2.257)

or
I ′op φn(σ ) = λn φn(σ ) , (2.258)

where ψ ′
n(x, t) has been replaced by the formally TI function φ(σ) according to

ψ ′
n(x, t) = 1

α
1
2

φn(σ ) = 1

α
1
2

φn

( x
α

)
, (2.259)

removing the explicit time-dependence in ψ ′
n and in the potential (replacing ω2(t)

with k). The factor 1

α
1
2
is introduced to fulfil the normalizability condition

∫
ψ

′
n
∗(x, t)

ψ
′
n(x, t) dx = ∫ φ∗

n (σ ) φn(σ ) dσ = 1. The important point is that the transformed
eigenvalue problem (2.257) is now an ordinary one-dimensional TISE with a not
explicitly TD potential V (σ ) = 1

2kσ
2, formally equivalent to a HO with frequency

ω = √
k and well-known eigenfunctions and eigenvalues.

Knowingφn(σ ), it is easy to reconstruct the eigenfunctionsψn(x, t) of the original
eigenvalue problem (2.247). In order to obtain the solution�(x, t) of the TDproblem
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with H(t) as given in (2.245), it still remains to determine the phases bn(t) which
satisfy Eq. (2.251).

Carrying out the unitary transformation ψ ′
n = Uψn on the rhs of this equation, it

turns into

�
d

dt
bn(t) =

〈
ψ ′

n

∣∣∣∣i� ∂

∂t
− α̇

α

�

i

∂

∂x
+ α̇

α
i
�

2
− 1

α2
I ′op

∣∣∣∣ψ ′
n

〉
. (2.260)

With the substitution (2.259) for ψ ′
n and keeping in mind that via α(t) there is a

contribution to the ∂
∂t -term, this leads to

�
d

dt
bn(t) =

〈
φn

∣∣∣∣− 1

α2
I ′op

∣∣∣∣φn

〉
(2.261)

which provides with (2.258)

�
d

dt
bn(t) = − λn

α2
, (2.262)

or

bn(t) = − λn

�

∫
dt ′

1

α2(t ′)
(2.263)

where, because of ϕ̇ =
√
k

α2 the integral corresponds to the phase angle like in λ = eiϕ ;
so bn(t) is determined via this angle and the eigenvalues λn of the Ermakov invariant.

To summarize, the solution �(x, t) of the SE (2.249) can be obtained from the
eigenfunctions and eigenvalues of the corresponding Ermakov operator via

�(x, t) =
∑
n

cne
ibn(t)ψn(x, t)

with ψn(x, t) = U+ ψ ′
n(x, t) = exp

(
i

2�

α̇

α
x2
)

1

α
1
2

φn

( x
α

)

and bn(t) = −λn

�

∫
dt ′

1

α2(t ′)
cn = 〈ψn(x, t = 0)|�(x, t = 0)〉e−ibn(0)

=
∫

dx ψ∗
n (x) �(x)e−ibn . (2.264)

An advantage of thismethod transforming the original TDproblem into a formally
TISE is that all the knowledge about the solution of TI problems, like perturbation
theory, that is not always available in the TD case, can be applied to obtain the
solutions φn that, in the way described above, enables one to also get the solution of
the TD problem (more details and references can be found in [72, 73]).

There is yet another aspect to the possibility of expressing solutions of the TDSE
in terms of eigenfunctions of the Ermakov operator. As the expression for � in
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(2.264), via cn , depends also on the initial function at t ′ = 0 and the corresponding
position x ′ (because cn is TI, it can be determined at any time t ′ and position x ′),
it can be rearranged so that it provides �(x, t) from a given initial �(x ′, t ′) via
a transformation that is equivalent to the TD Green function or Feynman kernel
discussed in Sect. 2.5. For this purpose, we write (2.264) in the form

�(x, t) =
∑
n

e−ibn(t ′)
[∫

dx ′ψ∗
n (x ′, t ′) �(x ′, t ′)

]
eibn(t)ψn(x, t)

=
∫

dx ′∑
n

ei(bn(t)−bn(t ′))ψ∗
n (x ′, t ′)ψn(x, t) �(x ′, t ′)

=
∫

dx ′G(x, t, x ′, t ′) �(x ′, t ′) , (2.265)

with
G
(
x, x ′, t, t ′

) =
∑
n

ei(bn(t)−bn(t ′))ψn(x, t) ψ∗
n (x ′, t ′) . (2.266)

From the expression for bn in (2.264) and with ϕ̇ = 1
α2 and λn = �(n + 1

2 ), one
obtains bn(t) = −(n + 1

2 )ϕ(t). The eigenfunctions of Iop have been given in (2.244)

where x0 =
√

�

mα(t) and x ′
0 =

√
�

mα0 have to be taken.
Inserting all of this into Eq. (2.265), the TD Green function, at first sight, takes

the more complicated-looking form

G
(
x, x ′, t, t ′

) =
(

m

π�α0α

) 1
2

e− i
2 ϕ(t) exp

{
im

2�

[
α̇

α
x2 − α̇0

α0
x ′2 + i

(( x
α

)2 +
(
x ′

α0

)2)]}

×
∑
n

e−inϕ(t)
(

1

2nn!
)
Hn

(√
m

�

x ′

α0

)
Hn

(√
m

�

x

α

)
(2.267)

where ϕ(t ′) = ϕ0 = 0 has been taken and H∗
n = Hn , as Hn is real. Howerver, this

can be simplified using the relation [74]

∞∑
n=0

1

2n
tn

n!Hn(r)Hn(s) = (
1 − t2

)− 1
2 exp

{
2rst − (r2 + s2)t

1 − t2

}
(2.268)

where t = e−iϕ = cosϕ − i sin ϕ, r = √m
�

x
α
, s = √m

�

x ′
α0

and 1 − t2 = i2t sin ϕ to
yield the TD Green function in a form like (2.55),

G
(
x, x ′, t, t ′) =

(
m

2π iα0z(t)

) 1
2
exp

{
im

2�

[
α̇

α
x2 − α̇0

α0
x ′2 + u(t)

z(t)

(
x

α(t)

)2
− 2

x

z(t)

(
x ′
α0

)
+ u(t)

z(t)

(
x ′
α0

)2]}

(2.269)
where ż

z = α̇
α

+ u
z

1
α2 has been used and the more general case, where initially α̇0

α0
is

different from zero, has also been taken into account.
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This confirms the close connection and interrelations between the Ermakov sys-
tem, the TD Green function and the linearized form of the Riccati equation in terms
of a complex Newtonian equation.

Furthermore, the method can be generalized to Hamiltonians of the form

H(t) = 1

2
p2 + 1

2
ω2(t) x2 + 1

α2
f
( x
α

)
(2.270)

with unchanged equation for α(t), α̈ +ω2α = k
α3 ; but from (2.270) follows for x(t):

ẍ + ω2(t)x = 1

α3
f ′
( x
α

)
(2.271)

with f ′ = d
d( x

α )
f . Consequently, the Ermakov invariant changes into

I = 1

2

[
(αp − α̇x)2 + k

( x
α

)2 ]+ f
( x
α

)
. (2.272)

In the quantized version, this leads to the TDSE

i�
∂

∂t
�(x, t) =

{
−�

2

2

∂2

∂x2
+ 1

2
ω2(t)x2 + 1

α2
f
( x
α

)}
�(x, t) . (2.273)

The operator Iop corresponding to this new invariant I has the same additional
(c-number) function f

(
x
α

)
. Therefore, after the unitary transformation to I ′ and

finally in the “TISE” depending on the variable σ , also the same function turns up,
i.e. {

−�
2

2

∂2

∂σ 2
+ 1

2
kσ 2 + f (σ )

}
φn(σ ) = λn φn(σ ) , (2.274)

looking like a TISE with potential16

V (σ ) = 1

2
kσ 2 + f (σ ) . (2.275)

Apart from f = 0, only for f = c α2

x2 the parameter α(t) does not occur explicitly
in the potential V (σ ). In the other cases it can be interpreted as an external field the
time-dependence of which must be determined from the α̈-equation.

16For further details see also [72, 73] and references cited therein.
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At the end of this section, it has been indicated that Ermakov systems (and equiva-
lent complex Riccati equations) can also play a useful role in TI quantum mechanics
and for systems going beyond the harmonic or parametric oscillator. In the next
section, this is intensified to consider, firstly, real Riccati equations occurring in the
context of supersymmetric (SUSY) quantum mechanics. Afterwards, a reformula-
tion of the TISE in terms of an Ermakov or complex Riccati equation is presented
that is valid for any potential.

Before this, a short summary of the results obtained from the TDSE is given.

2.13 Interrelations Between the Different Treatments and
Properties of the Complex Riccati Equation for
Time-Dependent Systems

The equation of major interest, the complex Riccati equation (2.4), was introduced in
Sect. 2.1 in the context of the TDSE (in position space) with exact Gaussian-shaped
WP solutions and different treatments of this equation have been discussed (see also
Fig. 2.5).

(1) Direct solution of this equation can be achieved if a particular solution is
found, allowing for the transformation of the inhomogeneous Riccati equation into a
homogeneous Bernoulli equation that can be linearized and integrated. The solution,
and thus also the solution of theNLRiccati equation, depends on the initial conditions

Fig. 2.5 Different treatments of the complex Riccati equation for the TDSE
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(like initial WP width) as a parameter. The sensitivity of NL differential equations to
changes of the initial conditions applies also in this case. Consider, for example, the
HO where a constant WP width changes into an oscillating one when the initial WP
width is varied. Further examples will follow for open systems in Chap. 5. Formal
similarities with isospectral potentials in SUSY quantum mechanics are specified in
Sect. 2.1.

(2) Introduction of a new real variable α(t), that is proportional to theWPwidth or
position uncertainty, transforms the complex NL Riccati equation (2.4) into the real
NL Ermakov equation (2.16). Together with the Newtonian equation (2.3) for the
mean value of position, this Ermakov equation forms a coupled system of differential
equations that, via elimination of the (possibly TD) coupling parameter ω2(t), leads
to the dynamical invariant (2.21) that is a constant of motion even if the Hamiltonian
is not (e.g., for an oscillator with TD frequency ω(t)). This Ermakov invariant has
essentially the dimension of an action, the physical quantity that is actually quantized
in portions of �.

(3) ANewtonian equation like (2.3) can also be obtained from theRiccati equation
(2.4) if its complex variableC iswritten as a logarithmic derivative of another complex
quantity λ(t), C = λ̇

λ
, linearizing the Riccati equation to the complex Newtonian

equation (2.49). This quantity λ(t) can be written in terms of amplitude and phase
as λ = αeiϕ or in terms of real and imaginary parts as λ = u + iz. Both components
(in both cases) are not independent of each other but coupled via a conservation law
that is obtained from the imaginary part of the Riccati equation when the logarithmic
derivative of λ(t) is inserted. In polar coordinates, it couples phase and amplitude via
a kind of conservation of angular momentum in the complex plane, ϕ̇ = 1

α2 , showing
that the amplitude α of λ is exactly the variable of the Ermakov equation (2.16) and
thus proportional to the position uncertainty or WP width.

Written in Cartesian coordinates this conservation law couples real and imagi-
nary parts of λ via żu − u̇z = 1. The physical meaning of u(t) and z(t) becomes
more transparent knowing that both completely determine the time-dependence of
the Green function or Feynman kernel that transforms the initial Gaussian WP at x ′
and t ′ = 0 into the WP solution of the TDSE at position x and time t . Expressing
the TD WP with these parameters shows that the imaginary part z(t), according to
z(t) = m

α0 p0
η(t), Eq. (2.58), is directly proportional to the classical position

η(t) = 〈x〉(t). With the help of the above-mentioned “conservation of angular
momentum”, the real part u(t) of λ can be determined (up to a constant) if the imag-
inary part z(t) is known via u = −z

∫ t 1
z2(t ′) dt

′ (Eq. (2.60)) (and vice versa). The
above-mentioned conservation law in Cartesian coordinates is then the Wronskian
determinant of the two solutions u and z of the Newtonian equation, thus guarantee-
ing their linear independence (in this case, u and z are even orthogonal to each other
- in the complex plane).

The quantum mechanical contribution to the energy of the Gaussian WP solution
of the TDSE, depending on position and momentum uncertainties 〈x̃2〉 and 〈 p̃2〉, can
be expressed in terms of α, α̇, ϕ and ϕ̇ or λ, λ̇, λ∗ and λ̇∗ in a form that can be used
to develop a Lagrangian formalism. With the corresponding conjugate momenta, a
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Hamiltonian formalism is developed that allows one to obtain the equations ofmotion
for these quantities and thus for the quantum uncertainties in exactly the same way as
the equations of motion for the classical position and momentum are obtained from
the corresponding classical Lagrangian or Hamiltonian function.

The inverse of the variable C fulfilling the complex Riccati equation (2.4) also ful-
fils a complex Riccati equation, now describing the time-evolution of the momentum
uncertainties corresponding to the WP solutions of the TDSE in momentum space.
This Riccati equation can be linearized to exactly the same complex Newtonian
equation (2.49) for λ(t).

The dynamical Ermakov invariant (2.21) depends on α(t), the amplitude of the
complex quantity λ(t) and on η(t) which is essentially the imaginary part of λ(t).
As the equation for λ(t) can be obtained via linearization in position as well as
in momentum space, the information of the dynamics in both spaces should also be
contained in λ(t) and thus in the Ermakov invariant. Therefore, it is not too surprising
that the Ermakov invariant is also intimately connected to the Wigner function of the
system, giving the quantum mechanical description of the time-evolution in phase
space; essentially in our case, the Ermakov invariant is (up to a constant) identical
to the exponent of the Wigner function.

From the continuity equation in phase space, fulfilled by this Wigner function,
it also follows a closed set of coupled linear differential equations showing the
interrelations between the dynamics of the uncertainties of position and momentum
and their correlation. Exactly the same result has also been obtained by the algebraic
approach to find the Ermakov invariant in Sect. 2.10.

There is yet another aspect to the Ermakov invariant. Not only can it be written as
a sum of two quadratic terms but also be factorized as a product of two linear terms,
exactly as in the case of the HO when written in terms of creation and annihilation
operators. Quantization of the two product terms of the Ermakov invariant leads
to generalized creation and annihilation operators that allow for the construction of
generalized coherent states corresponding toWPswith aTDwidth. Furthermore, they
also provide (unusual) exact solutions of the TDSE like Hermitian polynomials (with
TD variable) for the free motion (which are not eigenfunctions of the corresponding
Hamiltonian but of the operator associated with the Ermakov invariant).

Finally, the Ermakov invariant also allows for the transformation of the TDSE
formally into a TISE thus paving the way for application of techniques that are
available for TI problems but not necessarily for TD ones. Moreover, a link between
this transformation and the TDGreen function discussed in Sect. 2.5 is also possible.
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Chapter 3
Time-Independent Schrödinger and Riccati
Equations

3.1 On Supersymmetry and Riccati Equations

In Sect. 2.11 it has been shown how a generalization of the creation and
annihilation operators, known from the algebraic treatment of the harmonic oscillator
(HO) problem, can be generalized by replacing ±iω0 = ±i 1

α2
0
, the coefficient of the

space-dependent contribution±iω0x , with a complex function of time, C = α̇
α

+ i 1
α2 ,

and its complex conjugate, where both complex quantities fulfil the Riccati equation
(2.4). A different generalization of the creation/annihilation operators can be found
that is also connected with Riccati equations (this time usually with real ones) in the
supersymmetric formulation [1–3] of time-independent (TI) quantum mechanics.
There, essentially the term linear in the coordinate x is replaced by a function of x ,
the so-called “superpotential”1 W (x), leading to the operators2

B± = ∓i
1√
2

[
pop√
m

± i W

]
= 1√

2

[
W (x) ∓ i

pop√
m

]
. (3.1)

In this case, the termω0x with constantω0 is replaced by a real, position-dependent
function W (x). The operators B± fulfil the commmutator and anti-commutator
relations

[B−, B+]− = �√
m

dW

dx
, [B−, B+]+ = W 2 + p2op

m
. (3.2)

1This nomenclature is somewhat misleading, as W has the dimension of the square-root of energy,
not energy like a usual potential.
2In comparison with a and a+ as defined in (2.200) and (2.201), a factor

√
1

�ω0
is missing because

the definitions in Sect. 2.11 refer to H̃op = Hop
�ω0

. Further, B− corresponds to a.
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The supersymmetric Hamiltonian

HSUSY =
(

H1 0
0 H2

)
(3.3)

can be expressed with the help of B± in the form

H1 = B+B− = − �
2

2m

d2

dx2
+ V1(x), (3.4)

H2 = B−B+ = − �
2

2m

d2

dx2
+ V2(x), (3.5)

where H1 represents the bosonic and H2 the fermionic part.
A detailed discussion of the formalism of supersymmetry (SUSY) can be found,

e.g. in [1, 3]. For our discussion, only the aspects mentioned in the following will
be necessary. Important in this context is that the supersymmetric partner potentials
V1(x) and V2(x) fulfil real Riccati equations,what follows directly from the definition
of B±, i.e.,

V1 = 1

2

[
W 2 − �√

m

dW

dx

]
, (3.6)

V2 = 1

2

[
W 2 + �√

m

dW

dx

]
. (3.7)

The energy spectra of H1 and H2 are identical apart from the ground state. H1

has the ground state energy E (1)
0 = 0 whereas the ground state energy E (2)

0 of H2 is
identical to the energy of the first excited state, E (1)

1 , of H1. The ground state wave
function of H1, �

(1)
0 , has no node and determines the superpotential via

W = − �√
m

d
dx�

(1)
0

�
(1)
0

. (3.8)

From Eqs. (3.6) and (3.7), the partner potentials V1 and V2 then follow. On the
other hand, �(1)

0 is connected to V1 via the solution of the equation H1�
(1)
0 = 0, i.e.,

H1�
(1)
0 = − �

2

2m

d2

dx2
�

(1)
0 + 1

2

[
W 2 − �√

m

dW

dx

]
�

(1)
0 = E (1)

0 �
(1)
0 = 0. (3.9)

The connection between the spectra of H1 and H2, i.e., E (1)
n and E (2)

n , and the
corresponding wave functions �(1)

n and �(2)
n , is determined via the generalized cre-

ation/annihilation operators B± according to



3.1 On Supersymmetry and Riccati Equations 71

�
(1)
n+1 = 1√

E (2)
n

B+ �(2)
n (3.10)

and

�(2)
n = 1√

E (1)
n+1

B− �
(1)
n+1 (3.11)

where B+ creates a node and B− annihilates a node in the wave function. So, e.g., the
first excited state �

(1)
1 of H1 (which has one node) can be obtained from the ground

state �
(2)
0 of H2 (which has no node) by applying B+ onto it as described in (3.10).

In order to obtain higher eigenvalues and eigenfunctions, �(1)
0 in definition (3.8)

of W = W1 must be replaced by �
(2)
0 , leading to W2 = − �√

m

d
dx �

(2)
0

�
(2)
0

etc., i.e.,

Ws = − �√
m

d
dx�

(s)
0

�
(s)
0

(3.12)

with the corresponding operators

B±
s = 1√

2

[
Ws ∓ �√

m

d

dx

]
, (3.13)

thus creating a hierarchy that provides all eigenvalues and eigenfunctions of the
Hamiltonians H1 and H2.

In the context of this and the next section, only two systemswith analytic solutions
are considered explicitly, namely the one-dimensional HO (with constant frequency
ω = ω0) and the Coulomb problem. The latter case, a three-dimensional system
with spherical symmetry (V (r) = V (r) = − e2

r ), can be essentially reduced to a
one-dimensional problem via separation of the radial and angular parts. Using the
ansatz �nlm(r) = 1

r �nl(r)Ynlm(ϑ, ϕ) = R(r)Ynlm(ϑ, ϕ) for the wave function (with
n = total quantum number, l = azimuthal quantum number,m =magnetic quantum
number, r, ϑ, ϕ = polar coordinates), the energy eigenvalues En of the system can
be obtained from the radial Schrödinger equation (SE)

{
− �

2

2m

d2

dr2
+ Veff

}
�nl(r) = En�nl(r) (3.14)

with the effective potential

Veff = V (r) + l(l + 1)�2

2mr2
= −e2

r
+ l(l + 1)�2

2mr2
. (3.15)
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The superpotential W , the energy eigenvalues En and the supersymmetric poten-
tial V1 for the systems under consideration are given by:3

(a) HO: V (x) = m
2 ω2x2 (eigenfunctions�n(x): Hermite polynomials multiplied by

a Gaussian function)

W = √
mω0x (3.16)

En = �ω0

(
n + 1

2

)
(3.17)

V1 = m

2
ω2
0x

2 − �

2
ω = V (x) − E0. (3.18)

(b) Coulombpotential:V (r) = − e2

r (eigenfunctions�nl(r): Laguerre polynomials)

W =
√
me2

(l + 1)�
− (l + 1)�√

mr
(3.19)

En′ = −mc2

2

(
e2

�c

)2 1

(n′ + l + 1)2
(3.20)

V1 = −e2

r
+ l(l + 1)�2

2mr2
+ mc2

2

(
e2

�c

)2 1

(l + 1)2
= Veff − E0. (3.21)

In the second case, the radial quantum number n′ occurs which indicates the
number of nodes in the wave function and is connected with the total quantum
number n that actually characterizes the energy eigenvalue, via n = n′ + l + 1.

Particularly the quantities V1, given in Eqs. (3.18) and (3.21), shall be compared
with similar expressions obtained in the next section where a nonlinear (NL) formu-
lation of TI quantum mechanics is presented. In analogy with the time-dependent
(TD) case, one can assume that the superpotential obtained in the way described in
Eq. (3.8) is only a particular solution W̃ of the Riccati equation(s) (3.6, 3.7) and,
again, the general solution can be written as W (x) = W̃ (x) + �(x) where �(x)
must now fulfil the Bernoulli equation

�√
m

d

dx
� + 2W̃� + �2 = 0 (3.22)

(written here for the plus-sign of the derivative). This can be solved in the same way,
by linearization, as shown for the TD problem in Sect. 2.2 to finally yield the general
solution

W (x) = W̃ (x) + �√
m

d

dx
ln[I(x) + ε]. (3.23)

3Here E0 is the ground state energy of the conventional solution of the problems.
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The integral I(x) is formally identical to the one in the TD case, only t must be
replaced by x and C̃ by W̃ . Also this solution depends on a (this time real) parameter
ε (corresponding to �−1(0)). This generalized W (x) gives rise to a one-parameter
family of isospectral potentials (e.g., for i = 1)

V1(x; ε) = Ṽ1(x) − �
2

m

d2

dx2
ln[I(x) + ε], (3.24)

i.e., all members of this family possess the same energy spectrum although the shapes
of these potentials may be significantly different.4 Therefore, from an experiment
measuring only the energy levels, it would not be possible to determine to which
potential of the family the measurements belong; a problem also relevant to inverse
scattering theory (for further details, see also [1, 3, 4]).5

As an example, for the HO the particular solution W̃ (x) = √
mω0x leads to

Ṽ1/2 = m

2
ω2
0x

2
0 ∓ �

2
ω0, (3.25)

i.e., essentially the parabolic harmonic potential, only shifted by minus/plus the
(conventional) ground state energy �

2ω0. To find the general solution W (x), the
solution�(x) of the Bernoulli equation (3.22) is needed, requiring the determination
of the integral I(x) which, in this case, has the form

I(x) = 1 − 1

2
erfc(

√
ω0x) with erfc(x) := 2√

π

∫ ∞

x
e−t2dt. (3.26)

Following (3.24), the one-parameter family V1(x; ε) is then given by

V1(x; ε) = m

2
ω2
0x

2 − �
2

m

d2

dx2
ln

[
ε + 1 − 1

2
erfc

(√
ω0x

)] − �

2
ω0. (3.27)

The shape of the potentials is now, unlike the parabolic harmonic potential, no
longer symmetric under the exchange x → −x . For ε decreasing from ∞ to 0, a
second minimum shows up which shifts towards x = −∞. For ε = 0, this attractive
potential vanishes and the bound state corresponding to the ground state energy
equal to zero gets lost. The potential for this limiting case ε = 0 is called Pursey
potential (for further details, see [1, 3]). Only for ε → ∞, the ln-term vanishes
and the asymmetric double potential turns into the parabolic potential Ṽ1(x). So,
obviously the parameter ε can have drastic qualitative consequences for the solution

4This “construction of families of potentials strictly isospectral to the initial (bosonic) one” can also
be interpreted as a “double Darboux general Riccati” transformation of the inverse Darboux type,
going in two steps from an initial bosonic to a deformed bosonic system; for details, see [4].
5Note that the notation in [3] and the one used here differs as the quantities with and without tilde
are interchanged.
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of the NL Riccati equation. This information is certainly hidden when only the linear
TISE is considered, a situation similar to the TD case discussed in 2.2 where the
(complex) parameter κ0 plays a role similar to ε.

3.2 Nonlinear Version of Time-Independent Quantum
Mechanics

In the last section, it has been shown that the superpotential W (x) can be written
according to (3.8) as a logarithmic derivative of the real ground state function�0(x)
thus linearizing the (real) NL Riccati equation(s) (3.6, 3.7) to (real) TISE(s).

This is like in the TD case where the variable C(t) can be written according to
(2.48) as a logarithmic derivative of the complex function λ(t), this time linearizing
the (complex) NLRiccati equation (2.4) to the (complex) Newtonian equation (2.49).
In this TD problem it has been shown that amplitude α(t) and phase ϕ(t) of the
complex function λ = αeiϕ (or real and imaginary parts of λ(t) when written as
λ = u + iz) are not independent of each other but coupled by a kind of conservation
law, Eq. (2.52).

The question arises if something similar is also possible in the TI case, i.e., can
the real Riccati equation(s) (3.6, 3.7) be replaced by a complex version and the real
ground state function�0 in the definition of the logarithmic derivative by some com-
plex wave function? And what would be the relation between phase and amplitude
of this complex wave function fulfilling a linear TISE? An answer to this question
has been given by Reinisch [5, 6] in his NL formulation of (TI) quantum mechanics.

His starting point is Madelung’s hydrodynamic formulation of quantum mechan-
ics [7] that uses the polar ansatz

�(r, t) = a(r, t) exp
{
− i

�
S(r, t)

}
(3.28)

for the (complex) wave function �(r, t) (where a2(r, t) = 
(r, t) = �∗�) turning
the linear SE

i�
∂

∂t
�(r, t) =

{
− �

2

2m
� + V (r)

}
�(r, t) (3.29)

(with � = ∇2 = Laplace operator, ∇ = Nabla operator and for any potential V (r))
into two coupled equations for the amplitude a(r, t) and the phase S(r, t), i.e., the
continuity equation

∂

∂t
a2 + 1

m
∇(a2∇S) = 0 (3.30)

and the Hamilton–Jacobi-type equation
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∂

∂t
S + 1

2m
(∇S)2 + V − �

2

2m

�a

a
= 0. (3.31)

Already here, the coupling of phase and amplitude can be seen clearly because
the Hamilton–Jacobi equation for the phase S contains a term (misleadingly called
“quantum potential”, Vqu = − �

2

2m
�a
a ) depending on the amplitude a(r, t) and the

continuity equation for the probability density 
 = a2 contains ∇S. It is shown in
the following that, also in the TI case, this coupling is not arbitrary but related to a
conservation law.

For stationary states, the energy of the system is related to the action S via ∂
∂t S =

−E = const. and the density is TI, i.e., ∂
∂t a

2 = 0. The continuity equation (3.30)
then turns into

∇(a2∇S) = 0 (3.32)

and the modified Hamilton–Jacobi equation (3.31) into

− �
2

2m
�a + (V − E)a = − 1

2m
(∇S)2 a. (3.33)

Equation (3.32) is definitely fulfilled for ∇S = 0, turning (3.33) into the usual
TISE for the real wave function a = |�| with position-independent phase S,6

− �
2

2m
�a + Va = Ea. (3.34)

However, Eq. (3.32) can also be fulfilled for ∇S 	= 0 if only the conservation law

∇S = C

a2
(3.35)

is fulfilled with constant (or, at least, position-independent) C .
This expression now shows explicitly the coupling between phase and amplitude

of the wave function and is equivalent to Eq. (2.51) in the TD case. Inserting (3.35)
into the rhs of Eq. (3.33) changes this into the Ermakov equation

�a + 2m

�2
(E − V )a =

(
1

�
∇S

)2

a =
(
C

�

)2 1

a3
, (3.36)

equivalent to Eq. (2.16) in the TD case. The corresponding complex Riccati equation,
equivalent to Eq. (2.4) in the TD case, is given here by [8]

∇
(∇�

�

)
+

(∇�

�

)2

+ 2m

�2
(E − V ) = 0, (3.37)

6N.B.: The kinetic energy term divided by a is just identical to Vqu!
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where the following substitutions must be made

∂

∂t
↔ ∇,

(
2�

m
y

)
= C = λ̇

λ
↔ ∇�

�
, λ = αeiϕ ↔ � = aei

S
� , ω2(t) ↔ 2m

�2
(E − V (r)).

(3.38)

Considering first the one-dimensional HO, and introducing the dimensionless
variable ζ via ζ = |k0|x with �k0 = p0 = ±√

2mE , V̂ (ζ ) = V [x(ζ )] and ä = d2

dζ
a,

Eq. (3.36) acquires the familiar form7

ä +
(
1 − V̂

E

)
a = 1

a3
. (3.39)

Following the method described in [5], from the real solution aNL(ζ ) of this NL
Ermakov equation (3.39) the complex solution aL(ζ ) of the linear SE (3.34) can be
obtained via

aL(ζ ) = aNL(ζ ) exp

{
− i

�
S

}
= aNL(ζ ) exp

{
−i

∫ ζ

ζ0

dζ ′ 1

a2NL(ζ
′)

}
, (3.40)

fromwhich a real (not normalized) solution of the TISE can be constructed according
to

ãL(ζ ) = Re[aL(ζ )] = 1

2

[
aNLe

i
�
S + aNLe

− i
�
S
]

= aNL cos

(∫ ζ

ζ0

dζ ′
)

. (3.41)

So far, the energy E occurring in Eq. (3.39) is still a free parameter that can
take any value. However, solving Eq. (3.39) numerically for arbitrary values of E
leads, in general, to solutions aNL that diverge for increasing ζ . Only if the energy E is
appropriately tuned to any eigenvalue En of Eq. (3.34) does this divergence disappear
and the integral in the cosine of Eq. (3.41) takes for ζ → ∞ the exact value π

2 , i.e.
the cosine vanishes at infinity. So, the quantization condition that is usually obtained
from the requirement of the truncation of an infinite series in order to avoid divergence
of the wave function is, in this case, obtained from the requirement of nondiverging
solutions of the NL Ermakov equation (3.39) by variation of the parameter E . This
has been verified numerically in the case of the one-dimensionalHOand theCoulomb

7A similar formulation of the TISE in terms of this equation, but within a different context and with
different applications, has also been given in [9]. In another paper [10, 11] the relation between
the Ermakov equation (3.39) and the TISE has been extended to also include magnetic field effects
and in [11] possible connections between SUSY and Ermakov theories are considered. The NL
differential equation (3.39) has also been used to obtain numerical solutions of the TISE for single
and double-minimum potentials as well as for complex energy resonance states; for details see [12,
13]. Here, however, we want to concentrate on the similarities between the TD and TI situation, in
particular with respect to SUSY.
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problem and there is the conjecture that this property is “universal” in the sense that
it does not depend on the potential V (see [5]).

For comparison with the situation in SUSY quantum mechanics, the HO and the
Coulomb problem can be written in the form

(a) HO: with μ = (
�ω0
2E

)2
, E = En = (

n + 1
2

)
�ω0 → μn = 1

(2n+1)2 and μζ 2

= m
2 ω2

0x
2

E = V
E follows:

ä + (
1 − μζ 2

)
a = ä +

(
1 − V̂

E

)
a = ä − Ũn

E
a = 1

a3
, (3.42)

where

Un = m

2
ω2
0x

2 − �ω0

(
n + 1

2

)
= V (x) − En. (3.43)

(b) Coulomb problem: with a(r, ϑ, ϕ) = R(r)Ylm(ϑ, ϕ) the radial part can be
separated and, with the dimensionless variable ζ = |k0|r with now
�k0 = p0 = ±√

2m(−E), (E < 0), the radial wave function can be written as
R(ζ ) = r(ζ )X [r(ζ )]which corresponds to�nl(r) in SUSYquantummechanics.
This function again obeys an Ermakov equation, namely

Ẍ +
(
Ŵ

E
− 1

)
X = Ẍ + Un′

E
X = 1

X3
, (3.44)

where

Ŵ (ζ ) = V̂ [r(ζ )] + l(l + 1)�2

2mr2(ζ )
=̂ Veff (3.45)

is simply the effective potential from SUSY (see Eqs. (3.15) and (3.21)) and

E = En′ = −mc2

2

(
e2

�c

)2
1
n2 with n = n′ + l + 1 (where here e is the elementary

charge). The coefficient of the term linear in X can again be expressed with the
help of the potential-like expression Un′ ,

Un′ = −e2

r
+ l(l + 1)�2

2mr2
+ mc2

2

(
e2

�c

)2 1

(n′ + l + 1)2
= Veff − En′ . (3.46)

In both cases, the ground state (n = 0)wave functions are real, nodeless (n′ = 0)
and the phase does not depend on the spatial variables (i.e., ∇S = 0). Therefore,
the rhs of Eqs. (3.42) and (3.44) vanishes as 1

a3 ∝ (∇S)2a = 0, i.e., the NL Ermakov
equations turn into the usual TISEs. In this case, comparison shows that, for the
HO and the Coulomb problem, the potential-like termsU0 are identical to the corre-
sponding V1 of SUSY. For n > 0 and n′ > 0, however,Un andUn′ are different from
V1 and describe higher excited states. In SUSY, these states can only be obtained
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from the hierarchy described in the previous section. Here, the price that must be
paid to include these excited states is the nonlinearity on the rhs of Eqs. (3.42) and
(3.44).

Comparing the situation in this NL formulation of TI quantum mechanics with
SUSY, one can see the following similarities:

The real superpotential W = − �√
m

(
∇�0
�0

)
is replaced by the complex “super-

potential” C(r) = − �√
m

[
∇|�|
|�| + i∇S

�

]
, i.e., the ground state �0 is replaced by the

absolute value |�| of any eigenstate and an additional imaginary part depending on
the phase 1

�
S of the wave function occurs, being responsible for the non-vanishing

rhs of the Ermakov equations (3.42) and (3.44).
A comparison with the TD systems discussed in Chap.2 will be given at the end

of this section.

3.3 Complex Hamiltonians with Real Spectra

In this section, the ideas of the preceding two are combined to obtain a new class of
complex potentials with real spectrum, a concept with growing interest for numerous
reasons over the last years [14–23]. The factorization of the Hamiltonians H1/2 in
terms of the linear operators B±, as shown in Eqs. (3.4) and (3.5) for SUSY quantum
mechanics, is an example of this (factorization) method, the main idea of which is to
reduce the second-order differential form of the one-dimensional Hamilton operator
H = − �

2

2m
d2

dx2
+ V (x) into the product of two first-order differential operators A, B,

up to an additive constant E (proper units are assumed); i.e., H = AB + E . As
mentioned previously, this method was already applied by Schrödinger [24] himself
but can be traced back to Dirac’s book in 1936 [25] and Fock’s paper [26] on second
quantization. The entire development of this method “shows chronological gaps and
inconsistencies; the ideas emerge, disappear and re-emerge again” [27]. Renewed
interest in the factorization method was definitely spurred by the development of
SUSY quantum mechanics.

Replacing the ground state wave function � in definition (3.8) of the superpoten-
tial W with any solution � of the TISE

H�(x) =
{
− �

2

2m

d2

dx2
+ V (x)

}
�(x) = E�(x) (3.47)

where, in this case, E can be any (real) eigenvalue, not necessarily E0 = 0 as in
Eq. (3.9), this generalized W can be written as

W = − �√
m

d
dx �

�
= − �√

m

d

dx
ln� (3.48)
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and used to express the potential V (x) in (3.47) as

V = 1

2

[
− �√

m

dW

dx
+ W 2 + 2E

]
. (3.49)

In analogy with the operators B± defined in (3.1), one can now define the linear
operators

A = 1√
2

[
W − �√

m

d

dx

]
, B = 1√

2

[
W + �√

m

d

dx

]
. (3.50)

With these, the Hamiltonian operators

H = AB + E = − �
2

2m

d2

dx2
+ V (x) (3.51)

and

Ĥ = BA + E = − �
2

2m

d2

dx2
+ V̂ (x) (3.52)

can be constructed where the first is identical to the one in (3.47), the second differs
by the definition of its potential V̂ as

V̂ (x) = V (x) + 2
�

2
√
m

d

dx
W = V (x) − 2

�
2

2m

d2

dx2
ln�(x) (3.53)

or

V (x) − V̂ (x) = [A, B] = −2
�

2
√
m

d

dx
W = 2

�
2

2m

d2

dx2
ln�(x) (3.54)

which gives the difference of the two Darboux-related8 potentials.
Like in SUSY quantum mechanics, where V2 (Eq. 3.7) is partner potential to V1

(Eq. 3.6), here V̂ can be considered as partner potential to V . In the SUSY case,
both Hamiltonians H1 and H2 have the same eigenvalue spectrum (apart from the
ground state of H1); here the same applies to H and Ĥ . The difference between the
two Hamiltonians is essentially the difference between the two potentials V − V̂
which, according to (3.54) solely depends on the derivatives of �(x). Usually, in
the case of the TISE, wave functions are considered that are real (or at least their
second-derivative is); so V and V̂ are real as long as V is.

In Sect. 3.2 however, we have seen that also complex wave functions �(x) can
actually be constructed as a solution of the TISE (with a non-vanishing second-
derivative of the imaginary part or phase of the wave function). The logarithmic
derivative of these functions fulfils the complex Riccati equation (3.37) that is equiv-
alent to the real Ermakov equation (3.36) for the amplitude of the wave function

8For a survey of Darboux transformations, also in relation to the factorization method and SUSY
quantum mechanics, see [4].
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when written in polar form (3.28). Once the solution of this Ermakov equation is
known, via (3.35), also the gradient of the phase can be determined that enters the
expression for the partner potential V̂ according to (3.53) via the logarithm.

That means, starting from a real potential V (x) and constructing a complex wave
function �(x) according to (3.40), the Darboux-transformed partner potential V̂ (x)
will be complex (and thus the Hamiltonian non-Hermitian) though having real eigen-
values as V (x).

From the form of the complex solution of the linear TISE as given in Eq. (3.40)
(where a = aNL, aL(ξ) is equivalent to �(x) and the constant C from Eq. (3.35) has

been kept for more generality) and written as �(x) = a(x) exp
{
−iC

∫ x dx ′ 1
a2(x)

}
,

it follows for the now complex superpotential W (x) that

W (x) = − �√
m

(
d
dxa(x)

a(x)
− i

C

a2(x)

)
, (3.55)

leading to the potential V̂ (x) in the form

V̂ (x) = V (x) − 2
�
2

2m

[
d2

dx2
ln a(x) − i2C

d
dxa(x)

a3(x)

]
(3.56)

with real constant parameter C . A more detailed discussion is given in [24]. In the
following only an example for the most simple case, i.e. V=0, will be given, showing
the corresponding complex potential V̂ (x).

For V = 0, the Ermakov equation (3.36) (in one dimension with ′ = d
dx and E =

�
2

2m k
2 = − �

2

2m
κ2

4 , i.e., k = i κ2 ) takes the form

a′′

a
= κ2

4
+ C2

a4
(3.57)

with the solution
a(x) = √

cosh(κx) (3.58)

and C2 = κ2

4 , i.e. C = ± κ
2 . Choosing (without restriction of generality) the positive

sign for C , the “superpotential” W (x), according to (3.55), can be written as

W (x) = − �√
m

(
κ

2
tanh(κx) − i

κ

2

1

cosh(κx)

)
. (3.59)

Inserting this W (x) (and E as defined above) into Eq. (3.49) confirms V (x) = 0
whereas, for V̂ (x), it follows from Eqs. (3.53) and (3.59) that
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V̂ (x) = − �
2

2m

κ2

cosh2(κx)
− i

�
2

2m
κ2 sinh(κx)

cosh2(κx)
= [1 + i sinh(κx)] VPT (3.60)

where the real part VPT = − �
2

2m
κ2

cosh2(κx)
represents the modified Pöschl–Teller poten-

tial, known as the SUSY partner potential to the free motion V = 0, but now also
an additional imaginary part appears in V̂ (x), nevertheless associated with the real
energy E = − �

2

2m
κ2

4 .
A more detailed discussion is also given in [28].

3.4 Comparison of Time-Dependent
and Time-Independent Systems

The generalization of the creation and annihilation operators provides a link to the
TISE in the form of SUSY quantum mechanics. In the TD case the constant ω0 of
the HO is replaced by a complex TD function C(t), in the SUSY TI case the term
ω0x of the HO is replaced by a more general function of x , the so-called (real)
“superpotential” W (x). This superpotential now fulfils a real Riccati equation. Also
in theTI case, the usual termproportional toω0x in the creation/annihilation operators
can be considered only a particular solution of the corresponding Riccati equation.
Looking for the general solution leads, via the Bernoulli equation mentioned in the
TD case, to the same solution (only for a real function and replacing t with x),
depending on a parameter, ε, that can have drastic influence on the shape of the
potential (as mentioned above) but not on the energy spectrum.

A complex generalization of this approach (Sect. 3.2) shows that, in this case,
exactly the same formal structures can be found as in the TD case. Both systems, the
TD and the TI ones, are compared in Fig. 3.1.

The TD complex function λ(t) fulfilling a (linear) Newtonian equation (2.49)
corresponds to the TI complex wave function �(x) fulfilling the (linear) TISE. The
logarithmic derivatives of both functions fulfil the corresponding complex Riccati
equations. The square of the TD frequency ω(t) corresponds to 2m

�2 (E − V (r)),
depending via V (r), on the position r. While the TD case was essentially restricted
to quadratic Hamiltonians (with possible explicit time-dependence via ω(t)), the TI
case is valid for any potential V (r).

In the same way as phase ϕ(t) and amplitude α(t) (or real and imaginary parts) of
λ are not independent of each other, also phase 1

�
S(r) and amplitude a(r) of�(r) are

not independent of each other but connected via a corresponding conservation law.
Furthermore, in both cases the complex Riccati equations can be rewritten as real
NL Ermakov equations. Using this information it is possible to start from a system
with real potential and energy to proceed, via a Darboux transformation, to a system
with complex partner potential, but still real energy.
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Fig. 3.1 Comparison of time-dependent and space-dependent cases

In the next chapters it is shown how this whole formalism can be extended to also
incorporate open quantum systems with irreversible time-evolution and dissipation
of energy via (linear) velocity dependent friction forces. After the discussion of the
TD case, also the TI situation will be considered and a comparison with the TD one
will be made, similarly to the conservative case.

References

1. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific,
Singapore, 2001)

2. A. Khare, U. Sukhatme, Phase-equivalent potentials obtained from supersymmetry. J. Phys.
A: Math. Gen. 22, 2847 (1989); W.-Y. Keung, U.P. Sukhatme, Q. Wang, T.D. Imbo, Families
of strictly isospectral potentials. J. Phys. A: Math. Gen. 22, L987 (1989)

3. H. Kalka, G. Soff, Supersymmetrie (Teubner, Stuttgart, 1997)
4. H.C. Rosu, Short survey of Darboux transformations (1999). arXiv:quant-ph/9809056v3
5. G. Reinisch, Nonlinear quantum mechanics. Physica A 206, 229–252 (1994)
6. G. Reinisch, Classical position probability distribution in stationary and separable quantum

systems. Phys. Rev. A 56, 3409 (1997)
7. E. Madelung, Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322 (1927)
8. D. Schuch, Riccati and Ermakov equations in time-dependent and time-independent quantum

systems. SIGMA 4, 043, 16 pp (2008). arXiv:0805.1687
9. R.A. Lee, Quantum ray equations. J. Phys. A: Math. Gen. 15, 2761–2774 (1982)

10. R.S. Kaushal, Quantum analogue of Ermakov systems and the phase of the quantum wave
function. Int. J. Theor. Phys. 40, 835–847 (2001)

11. R.S. Kaushal, D. Parashar, Can quantum mechanics and supersymmetric quantum mechanics
be the multidimensional Ermakov theories? J. Phys. A: Math. Gen. 29, 889–893 (1996)



References 83

12. H.J. Korsch, H. Laurent, Milne’s differential equation and numerical solutions of the
Schrödinger equation. I. Bound-state energies for single- and double-minimum potentials.
J. Phys. B: At. Mol. Phys. 14, 4213 (1981)

13. H.J. Korsch, H. Laurent, R.Möhlenkamp,Milne’s differential equation and numerical solutions
of the Schrödinger equation. II. Complex energy resonance states. J. Phys. B: At. Mol. Phys.
15, 1 (1982)

14. D. Baye, G. Lévai, J.M. Sparenberg, Phase-equivalent complex potentials. Nucl. Phys. A 599,
435–456 (1996)

15. A.A. Andrianov, M.V. Ioffe, F. Cannata, J.P. Dedonder, Quantum mechanics with com-
plex superpotentials and real energy spectra. Int. J. Mod. Phys. A 14, 2675–2688 (1999).
arXiv:quant-ph/9806019

16. B. Bagchi, S. Mallik, C. Quesne, Generating complex potentials with real eigenvalues in super-
symmetric quantummechanics. Int. J. Mod. Phys. A 16, 2859 (2001). arXiv:quant-ph/0102093

17. F. Cannata, G. Junker, J. Trost, Schrödinger operators with complex potential but real spectrum.
Phys. Lett. A 246, 219–226 (1998). arXiv:quant-ph/9805085

18. D.J. Fernández, R. Muñoz, A. Ramos, Second order SUSY transformations with ‘complex
energies’. Phys. Lett. A 308, 11–16 (2003). arXiv:quant-ph/0212026

19. O. Rosas-Ortiz, R. Muñoz, Non-Hermitian SUSY hydrogen-like Hamiltonians with real spec-
tra. J. Phys. A: Math. Gen. 36, 8497 (2003). arXiv:quant-ph/0302190

20. O. Rosas-Ortiz, Gamow vectors and supersymmetric quantum mechanics. Rev. Mex. Fis.
53(S2), 103–109 (2007). arXiv:0810.2283

21. N. Fernández-García, O. Rosas-Ortiz, Optical potentials using resonance states in supersym-
metric quantum mechanics. J. Phys. Conf. Ser. 128, 012044 (2008)

22. N. Fernández-García, O. Rosas-Ortiz, Gamow–Siegert functions and Darboux-deformed short
range potentials. Ann. Phys. 323, 1397–1414 (2008). arXiv:0810.5597

23. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry.
Phys. Rev. Lett. 80, 5243 (1998)

24. E. Schrödinger,Amethod of determining quantum-mechanical eigenvalues and eigenfunctions.
Proc. R. Irish Acad. A 46, 9–16 (1940)

25. P.A.M. Dirac, The Principles of Quantum Mechanics, 2nd edn. (Clarendon, Oxford, 1935)
26. V. Fock, Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622–647 (1932)
27. B. Mielnik, O. Rosas-Ortiz, Factorization: little or great algorithm? J. Phys. A: Math. Gen. 37,

10007–10035 (2004)
28. O. Rosas-Ortiz, O. Castaños, D. Schuch, New supersymmetry-generated complex potentials

with real spectra. J. Phys. A: Math. Theor. 48, 445302 (2015)



Chapter 4
Dissipative Systems with Irreversible
Dynamics

Classical Hamiltonian mechanics and quantum mechanics describe isolated systems
with reversible dynamics and (for not explicitly time-dependent (TD) potentials)
conservation of energy. However, realistic physical systems are always in contact
with some kind of environment and this coupling usually introduces the phenomena
irreversibility and dissipation (not necessarily always both simultaneously). How
then can this be taken into account in the formalism of classical (Hamiltonian or
Lagrangian) mechanics and, especially, in a quantum mechanical context?

The fundamental equations of classicalmechanics (Lagrange,Hamilton) aswell as
of quantum mechanics (Schrödinger, Heisenberg) are invariant under time-reversal,
i.e. the form does not change under the simultaneous replacements t → −t, v →
−v, p → −p (and complex conjugation in quantum mechanics). Furthermore,
the forces are assumed to be derived from a potential, thus guaranteeing for time-
independent (TI) potentials V (r) conservation of energy.

In classicalmechanics, the time-evolution can be traced back to canonical transfor-
mations; in quantum mechanics to unitary transformations, essentially representing
pure rotations, i.e., angular changes of the wave function or state vector in an abstract
Hilbert space with conserved norm, i.e., length of the vector.

Considering natural evolution processes as observed in the macroscopic world
around us, growth processes (in two or more dimensions) are usually connected with
a combination of angular and radial changes. The shell of a nautilus or the horn of
a ram, e.g., undergo these combined changes when growing, leading to forms like
(often logarithmic) spirals.

So, not only rotation, but also radial expansion (or contraction) are essential ele-
ments of these kinds of irreversible evolutions thus offering also the possibility of
defining a direction of time (e.g., larger radius = later in time, or vice versa). Another
characteristic feature of macroscopic evolution processes is the loss of energy by
transfer from the dynamical system to the environment due to dissipation, caused for
example by friction forces, transforming (mechanical) energy into heat.

© Springer International Publishing AG 2018
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86 4 Dissipative Systems with Irreversible Dynamics

Irreversibility and dissipation are usually not elements contained in the description
of a single system in terms of the conventional Hamiltonian formalism.

The aspect of irreversibility also cannot be introduced by changing to a statistical
description in terms of distribution functions (or density operators) as the correspond-
ing equations of motion are also invariant under time-reversal, i.e., in the classical
case the Liouville equation1

∂

∂t
Wcl(x, p, t) = −ẋ

∂

∂x
Wcl − ṗ

∂

∂p
Wcl = −{H,Wcl} (4.1)

for Hamiltonian systems with

ẋ = ∂H

∂p
, ṗ = −∂H

∂x
, (4.2)

or its quantum mechanical version, the von Neumann equation, where the classical
distribution functionWcl is replaced by the density operator and the Poisson brackets
{ , } by 1

i� [ , ]−, with [ , ]− being the commutator.
Explaining the origin of irreversibility by introducing our subjective (human)

ignorance of the microscopic details via a kind of coarse-graining argument (Gibbs,
ink-drop example, see e.g. [1]), degrading irreversibility to a mere illusion, is also
unsatisfactory.

4.1 Different Approaches for Treating Open
Dissipative Systems

Alternative approaches that include irreversibility and dissipation to be discussed
subsequently are:

1. phenomenological equations (e.g. Langevin, Fokker–Planck) (in this subsection);
2. system-plus-reservoir approaches (Sect. 4.2);
3. modifications of classical and quantum mechanical equations of motion (lead-

ing to non-canonical/non-unitary transformations, NL evolution equations, etc.)
(Sects. 4.3–4.5).

In a phenomenological description, a Brownian motion-type situation, i.e. a macro-
scopic body that is moving in a viscous liquid (many-body problem) is considered.
However, the degrees of freedom of the bath/environment are not taken into account
explicitly, only their effect on the observable macroscopic system. This effect is

1This is the form for a one-particle distribution function. For a many-body system Wcl actually
depends on 3N spatial variables x1, . . . x3N and 3N momentum variables p1, . . . p3N and the
corresponding derivatives must be considered where for a macroscopic system N is of the order
1024.
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twofold: (1) the environment causes a slowing down of the motion that can be
described by a friction force proportional to velocity v(t) (or momentum); (2) even if
the average velocity is zero, the system still does not come to a complete rest but still
fulfils a rapidly-fluctuating (Brownian) motion around its final position which can be
described by a purely random stochastic force F(t); i.e., an artificial decomposition
of the environmental effect into two contributions is assumed.

In the trajectory picture, the time-evolution of the system can be described by a
modified Newtonian equation of motion, the Langevin equation

mv̇ + mγ v + F(t) + ∇V = 0 (4.3)

with the friction force −mγ v where γ is the friction coefficient andF the stochastic
force (which vanishes on average,2 〈F(t)〉cl = 0) and V is an external potential.

Due to the friction force, the velocity decreases on average according to

〈v〉cl(t) = v0 e−γ t . (4.4)

Consequently, the average kinetic energy decreases like

〈T 〉cl = m

2
〈v2〉cl = m

2
v2
0e

−2γ t (4.5)

if thefluctuating force is not being taken into account. This force adds a contribution to
the remaining energy even if the average velocity 〈v〉cl has become zero. At this point
an additional assumption is introduced, explicitly, that the final state of the systems
evolution is thermal equilibrium. Using the equipartition theorem, the contribution
of the fluctuations to the system’s (kinetic) energy is assumed to be 1

2kBT (per degree
of freedom), with kB = Boltzmann’s constant and T = temperature.

If the Langevin equation is a description in the trajectory picture, with a modified
Newtonian equation of motion, there is also an equivalent description of the same
scenario in terms of a single-particle distribution function with a modified continu-
ity or Liouville equation. For a one-dimensional system, this discribution function
Wcl(x, v, t) in phase space fulfils the Fokker–Planck equation

∂

∂t
Wcl(x, v, t) + v

∂

∂x
Wcl + ∂

∂v

[(
−γ v + F(x)

m

)
Wcl

]
− γ kBT

m

∂2

∂v2
Wcl = 0,

(4.6)
where the second and third terms on the lhs correspond to the convection terms in
the Liouville equation with v = ẋ and −γ v + F(x)

m = v̇ and the last term on the rhs

is an irreversible diffusion term with diffusion coefficient γ kBT
m .

Note: The time-reversal symmetry of this equation is already broken by the con-
vection term due to the friction contribution −γ v!

2The bracket 〈· · · 〉cl denotes classical (ensemble) averages; for details, see also [2].
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In his famous paper from 1940 [3] Kramers used a trick [4] to derive a non-trivial
position-space version of this equation, the so-called Smoluchowski equation

∂

∂t
�(x, t) + ∂

∂x

(
F(x)

mγ
�

)
− kBT

mγ

∂2

∂x2
� = 0 (4.7)

for the distribution function �(x, t), again with a convection and a diffusion term
where now the diffusion coefficient obeys the Einstein relation

D = kBT
mγ

. (4.8)

A further step towards a description of the non-equilibrium many-body problem
defined above is the Boltzmann equation. This is essentially a modification of the
Liouville equation (4.1) in phase space where, on the rhs, gain and loss terms are
added thus changing the equation into an irreversible rate equation or so-called
master equation, in this case, again for a one-particle distribution function. The
major advantage of the Boltzmann equation versus the afore-mentioned approaches
is that the final state of thermal equilibrium for the system is not just put in by hand
but is a direct result of this approach. Attempts to obtain a quantum mechanical
version of the Boltzmann equation finally led to the generalized master equation [5].
In this case, the system-plus-reservoir approach [6] is applied that will be considered
in the next subsection.

4.2 System-Plus-Reservoir Approaches

In the system-plus-reservoir approaches, the system of interest is coupled to an
environment where the system and the environment together are considered to be a
closed Hamiltonian system.

The conventional way is to couple the system of interest to an environment with
many (in the limit infinitely many) degrees of freedom (e.g., coupled linearly to
a bath of harmonic oscillators (HOs) [7]). Via averaging over the environmental
degrees of freedom and other procedures (for details see e.g., [6]), an equation of
motion for the system of interest including a friction force can finally be obtained.
In the following, the frequently-applied approach of Caldeira and Leggett [7] and
modifications thereof will be mentioned.

Afterwards, a different approachwill be discussedwhere the environment consists
of only one additional degree of freedom. In this approach by Bateman [8] the
equation of motion including the damping friction force (and a complementary one
with an equally-strong accelerating force for a second degree of freedom) can be
obtained from a Hamiltonian that is also a constant of motion.
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4.2.1 Caldeira–Leggett Model and Kossakowski–Lindblad
Generators

As one of the simplest examples of a dissipative system, a HO (linearly) coupled to
an environment represented by a bath of HOs has been subject of numerous studies
(e.g., [7, 9–15]). In the literature it is usually called the Caldeira–Leggett model. In
this model, a HO with coordinate x , momentum p and mass m is interacting with a
bath of N HOs with coordinates qi , momenta pi , massesmi and frequencies ωi . The
Hamiltonian for the composite system can then be split into three contributions,

H = HS + HR + HI, (4.9)

where the Hamiltonian of the system of interest is3

HS = p2

2m
+ m

2
ω2
0x

2, (4.10)

and the reservoir of N HOs is described by

HR =
N∑
i=1

(
p2i
2mi

+ 1

2
miω

2
i q

2
i

)
. (4.11)

The interaction Hamiltonian HI could be written as

HI = −x
∑
i

ciqi + �V (x). (4.12)

The last term on the rhs, �V (x), depends only on the coordinate of the system
but not on qi and can be interpreted as a shift of the systems potential by an amount
�V (x). In the literature4 [6] it is argued that “�V (x) may serve to compensate
frequency-renormalization effects induced by the first term in the expression for HI .
If we choose �V (x) = 0, the minimum of the potential surface of the system plus
environment for given x is when qi = ci x

miω
2
i
for all i and the “effective” potential is

then given by”

Veff(x) = V (x) −
N∑
i=1

c2i
2miω

2
i

x2. (4.13)

In our case, “the second term in (4.13) causes a negative shift�ω2 = − ∑
i

c2i
mmiω

2
i

in the squared frequencyω2
0 of small oscillations about theminimum. Such coupling-

induced renormalization effects can be very large, and if ω2
eff = ω2

0 + �ω2 < 0 they

3Here the HO-potential is chosen, but in general any potential V (x) is possible.
4Compared with Ref. [6], here x and q are interchanged.
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even change the potential qualitatively” from an attractive to a repulsive one. In order
to eliminate such effects and only study the effect of dissipation, one must add

�V (x) =
N∑
i=1

c2i
2miω

2
i

x2 (4.14)

to the potential V (x)whichmeans for aHOas system to changeω2
0 into (ω2

0+|�ω2|).
From this Hamiltonian (4.9) one obtains a coupled set of equations of motion for

the system,

mẍ(t) + mω2
0x(t) −

N∑
i=1

ci

(
qi (t) − ci

miω
2
i

x(t)

)
= 0, (4.15)

and the environmental degrees of freedom,

mi q̈i (t) + miω
2
i qi (t) − ci x(t) = 0. (4.16)

After Fourier transformation, elimination of the environmental degrees of free-
dom, assumption of an Ohmic spectral density etc., one finally arrives at an equation
of motion for the system including a linear velocity dependent friction force as in
the Langevin equation.

In a quantum mechanisch context, the same model is used, only now the sys-
tem is usually described by the reduced density matrix (or operator) �op. After the
afore-mentioned elimination of the environmental degrees of freedom etc., the von
Neumann equation, with the Hamiltonian (4.9) in the commutator, finally leads to
the corresponding (high-temperature) master equation

∂

∂t
�op = 1

i
Lop�op = 1

i�
[H ′

S, �op]− − γ

�

{
mkBT

�
[x, [x, �op]−]− + i

2
[x, [p, �op]+]−

}

(4.17)

where Lop = 1
�
[H, ]− is the generator of the dynamics and H ′

S is HS plus correction
terms, as mentioned above. However, this equation is “known to violate the positivity
requirement for the density operator” [15] and therefore, in certain cases, leads to
unphysical results.

An alternative approach that uses quantum dynamical semi-groups, proposed by
Kossakowski et al. [16] and Lindblad [17] with generators of the form

LKL[�op] = 1

i�
[H, �op]− + 1

2�

∞∑
i=1

([Vi�op, V
+
i ]− + [Vi , �opV

+
i ]−

)
(4.18)

(where the Vi ’s are bounded operators on the Hilbert space of the Hamiltonian,
usually linear combinations of position and momentum operators) does not have
this problem. The specific mathematical form guarantees positivity but the particular
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choice of the operators occurring therein is usually “guided by intuition” [18] as no
obvious physical guideline exists.

Gao [15] tried linking these two approaches in order to eliminate the shortcomings
and to obtain a master equation that can also be applied in the low-temperature
regime. But also this approach has some shortcomings like a wrong friction force
in the Ehrenfest equation of motion, as pointed out in [19]. This problem does not
occur in a similar approach by Diosi [20], but this approximation diverges at low
temperatures.

One drawback in employing the system-plus-reservoir method is the large num-
ber of environmental degrees of freedom that must be considered for a realistic
description (without revivals and other artefacts) in the beginning (though they are
eliminated in the end). This leads to large, unwieldy and costly calculations.

As pointed out above, in its quantized version this approach is usually applied
to the density operator (or matrix) causing the computational effort to scale at least
quadraticallywith the number of degrees of freedom, thus limiting drastically the sys-
tems that can be treated. In contrast, methods based on pure states (likeWPs) have the
chance, in the most favourable case, of scaling linearly with the number of degrees of
freedom. Therefore, subsequent to the discussion of the Batemanmodel, in the quan-
tum mechanical context only Schrödinger equations (SEs) for “one-particle” wave
functions/wave packets (WPs) shall be considered for the description of dissipative
systems.

This choice is also supported by a statement made by Davidson [21] that classical
mechanics has entered the domain of NL and chaotic dynamics, the study of which
usually requires intense numerical simulation. A rigorous treatment of dissipation
in this context defies simulation on a quantum mechanical level when considering a
large number of degrees of freedom, as the largest and fastest computer(s) would be
required to calculate even the simplest NL problems. “Hence there is a need to find
some practical way to simulate a lossy quantum system” [21].

Can our many-body problem then be reduced to an effective few or even one-body
problem? This is somehow similar to the philosophy of density functional theory
where the solution of a many-body problem can also be reduced to the solution of
a representative one-body problem. Although this procedure might contain aspects
that could be criticised from an ab ini tio point of view, the success of the theory
shows, at least from a pragmatic viewpoint, that this kind of approach can provide a
useful alternative.

In the next subsection, the environmental degrees of freedom that are explicitly
considered are not (yet) totally eliminated but at least reduced to the minimum of
one in the Bateman model.

4.2.2 Bateman Hamiltonian

The number of environmental degrees of freedom is drastically reduced to one in an
approach by Bateman [8] describing the damped HO. In order to be able to apply the
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canonical formalism, the phase-space dimension must be doubled to obtain a kind of
effective description. The new degree of freedom can be considered a collective one
for the bath that absorbs the energy dissipated by the damped oscillator. The variable
of the dual system that fulfils a time-reversed equation with an acceleration force
of the same magnitude as the friction force of the Langevin equation, but with the
opposite sign, looks like a position variable and its relation to, and interpretation in
terms of, physical position andmomentum (or velocity) is discussed in the following.

After the rediscovery of the Bateman dual Hamiltonian by Morse and Feshbach
[22] and Bopp [23] various different features of it were studied, also in recent years.
So squeezed states for the Bateman Hamiltonian were considered in [24] and [25]
and a quantum field theoretical approach was used by Vitiello et al. [26]. The same
author also applied the dual approach as a dissipative quantum model of the brain
[27]. Quantization using Feynman’s path integral method was discussed by Blasone
and Jizba [28, 29] and the Bateman system was also studied by the same authors and
Vitiello [29, 30] as a (toy) model for ’t Hooft’s proposal of a deterministic version
of quantum mechanics [31]. More recently, together with Scardigli, these authors
considered a composite system of two classical Bateman oscillators as a particle
in an effective magnetic field [32]. Complex eigenvalues of the quantized version
of Bateman’s Hamiltonian in connection with resonances and two-dimensional par-
abolic potential barriers are discussed in [33, 34]. Also the Wigner function for the
Bateman system on non-commutative phase space [35] and the inclusion of a TD
external force [36] have been studied. The Bateman approach (as well as that of
Caldirola [37] and Kanai [38] that is considered subsequently) is also discussed in
an attempt to reformulate a dissipative system in terms of an infinite number of non-
dissipative ones [39]. A different method for the description of dissipative systems
that seems to have some advantages in the high energy regime has been compared
with the Bateman approach [40] and shown to be equivalent to it locally. Finally,
in a more recent paper [41] by Bender et al., the Bateman Hamiltonian enlarged by
a quadratic term in the two dual coordinates is studied as a model for two coupled
optical resonators. Despite the age of Bateman’s approach, this shows that there is
still considerable interest in, and potential applicability of, this model.

Since the position and momentum variables (and likewise quantities depending
on them or their time- derivatives such as Lagrangians and Hamiltonians) of the
Bateman approach obey the rules of conventional classical canonical Lagrangian or
Hamiltonian mechanics but can have a meaning quite different from their physical
counterparts, a distinction will be made between canonical and physical quantities
in the following by supplying canonical quantities with a hat “ ˆ. . .”.

The Bateman Hamiltonian ĤB, expressed in terms of the canonical position vari-
ables x̂ and ŷ and the canonical momenta p̂x and p̂y , has the form

ĤB = 1

m
p̂x p̂y + γ

2
(ŷ p̂y − x̂ p̂x) + m

(
ω2 − γ 2

4

)
x̂ ŷ = Ĥ� + D̂ (4.19)
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with D̂ = γ

2 (ŷ p̂y − x̂ p̂x ). The Poisson brackets of ĤB with D̂ as well as with Ĥ�

vanish, {Ĥ�, ĤB} = {D̂, ĤB} = 0, so both are constants of motion (in the quantized
version, the three corresponding operators commute).

The Hamiltonian equations of motion are

∂ ĤB

∂ p̂x
= 1

m
p̂y − γ

2
x̂ = ˙̂x, ∂ ĤB

∂ p̂y
= 1

m
p̂x + γ

2
ŷ = ˙̂y

∂ ĤB

∂ x̂
= −γ

2
p̂x + m

(
ω2 − γ 2

4

)
ŷ = − ˙̂px ,

∂ ĤB

∂ ŷ
= γ

2
p̂y + m

(
ω2 − γ 2

4

)
x̂ = − ˙̂py, (4.20)

where, from (4.20), p̂x and p̂y can be expressed as

p̂y = m
( ˙̂x + γ

2
x̂

)
, (4.21)

p̂x = m
( ˙̂y − γ

2
ŷ
)

. (4.22)

From there, and with the help of Eqs. (4.20), the equations of motion for x̂ and ŷ
can be obtained as

¨̂x + γ ˙̂x + ω2 x̂ = 0, (4.23)
¨̂y − γ ˙̂y + ω2 ŷ = 0. (4.24)

Equation (4.23) is just the equation for the damped HO with friction force −mγ ẋ
whereas, in the time-reversed equation for ŷ, the accelerating force +mγ ˙̂y occurs.
From Eqs. (4.23), (4.24) and (4.21), (4.22) it is clear that the (x̂, p̂x , ŷ, p̂y)-space
splits into two invariant subspaces: the one of variables (x̂, p̂y) undergoing a damped
oscillator motion and the one of variables (ŷ, p̂x ) with time-reversed (accelerated)
behaviour.

Using these equations of motion, it can also be confirmed that

d

dt
ĤB = 0, (4.25)

i.e. ĤB is a dynamical invariant which, in a first naive attempt, could be interpreted
as such that the energy dissipated by the damped system is gained by the accelerated
one. Rewritten in terms of x̂, ŷ and the corresponding velocities ˙̂x and ˙̂y, the terms
depending on the friction (or acceleration) coefficient γ cancel out (although the
Lagrangian does contain terms in γ ) and it remains that

ĤB =̂ m( ˙̂x ˙̂y + ω2 x̂ ŷ). (4.26)
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In fact, the individual energies and their changes in time for both systems, written
in terms of the velocities, take the form

Êx = m

2
˙̂x2 + m

2
ω2 x̂2, (4.27)

with
d

dt
Êx = −γm ˙̂x2, (4.28)

(in agreement with the energy dissipated by a physical system with the same friction
force, i.e. d

dt E = −2mγ T where E = T + V ) and

Êy = m

2
˙̂y2 + m

2
ω2 ŷ2, (4.29)

with
d

dt
Êy = +γm ˙̂y2. (4.30)

So, the sum of Êx and Êy would be constant and (apart from another constant
term) could be equal to HB if

d

dt
(Êx + Êy) = γ m( ˙̂y2 − ˙̂x2) = 0, (4.31)

which is fulfilled only for ˙̂y = ± ˙̂x ; so ŷ and x̂ could differ, at most, by a con-
stant and ĤB, as given in (4.26), (again apart from a constant term) would turn into
ĤB → m( ˙̂x2 + ω2 x̂2), i.e., the energy of two undamped HO.

However, ˙̂y, derived from the solution of Eq. (4.24), differs by more than just its
sign from ˙̂x = ẋ derived from the solution of Eq. (4.23). The energy of the damped
system is decreasing to zero for time going to infinity whereas the energy of the
accelerated system would grow to infinity in the same limit, yielding that the sum of
both cannot achieve the constant value of the Bateman Hamiltonian. So one must be
careful with the simple picture of energy exchange between the x̂- and ŷ-systems,
when considering ŷ as a physical position variable like x̂ = x .

Clarification can be found by eliminating the second (dual) degree of freedom
by imposing some constraints (which is not possible in a unique way) leading to a
description in terms of canonical variables for the system of interest alone without
additional degrees of freedom. This kind of effective canonical descriptions for the
dissipative system is discussed in the next subsection. Further details on the con-
nection between these approaches and the Bateman model are given at the end of
Sect. 4.5 and in Appendix D.
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4.3 Effective Models Within the Canonical Formalism

In this subsection two approaches are presented that are able to describe the damped
HO in the framework of Lagrangian and Hamiltonian mechanics. They use only one
canonical position and momentum variable (for a one-dimensional system) without
any degree of freedom of the environment, but the canonical quantities are chosen
in a way that they include the effect of the environment, like damping by friction.
These canonical variables, however, are connected with the physical position and
momentum via non− canonical transformations. In the following, canonical vari-
ables and corresponding Lagrangians/Hamiltonians will again be characterized by
a hat ( ˆ. . .). This also applies to the canonical operators and wave functions in the
quantized version.

4.3.1 Caldirola–Kanai Hamiltonian

Historically, the first and most frequently-used approach of that kind was proposed
by Caldirola [37] and Kanai [38] and uses an explicitly TD Lagrangian/Hamiltonian.
The application of a TD Hamiltonian leading to a modified (explicitly TD) linear SE
should then permit the direct use of standard schemes of quantization. The classical
version starts with the explicitly TD Lagrangian

L̂CK =
[m
2

˙̂x2 − V
(
x̂

)]
eγ t , (4.32)

leading, via the Euler–Lagrange equation

d

dt

∂ L̂CK

∂ ˙̂x − ∂ L̂CK

∂ x̂
= 0, (4.33)

to the equation of motion

m ¨̂x + mγ ˙̂x + ∂

∂ x̂
V

(
x̂

) = 0 (4.34)

which is identical to the Langevin equation for the HO (4.3) (in one dimension)
without stochastic force F(t) but including the linear velocity-dependent friction
force, providing x̂ is identified with the physical position variable x , i.e., x̂ = x .
Therefore, if not otherwise specified, the hat will be omitted for this variable in the
following.

From L̂CK, the canonical momentum p̂ can be obtained in the usual way as

∂

∂ ẋ
L̂CK = mẋ eγ t = p eγ t = p̂. (4.35)
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Note that this canonical momentum p̂ is different from the physical kinetic
momentum p = mẋ and the transition from the physical variables (x, p) to the
canonical variables (x̂ = x, p̂ = peγ t ) is given by a non−canonical transformation
(the Jacobian determinant is different from one).

The corresponding Hamiltonian ĤCK(x, p̂) can be obtained straightforwardly in
the form

ĤCK = e−γ t p̂2

2m
+ eγ t V (x) (4.36)

which also supplies the correct equations of motion including the friction force,

∂ ĤCK

∂ p̂
= 1

m
p̂ e−γ t = ẋ, (4.37)

∂ ĤCK

∂ x̂
= mω2x eγ t = − ˙̂p = −(mẍ + mγ ẋ) eγ t . (4.38)

ĤCK has been criticised as not being a constant of motion. However, the same could
be said about the usual Hamiltonian for the parametric oscillator with ω = ω(t).

In conventional classical mechanics, the Hamiltonian not only determines the
dynamics of the system via the Hamiltonian equations of motion but also represents
the energy of the system, H = T + V . The Caldirola–Kanai (CK) Hamiltonian
is not identical to the energy of the system but is at least uniquely related to it via

ĤCK=̂
(

p2

2m + V (x)
)
eγ t . So, from a pragmatic point of view, this approach is at least

useful on the classical level. Let us therefore proceed to the quantummechanical one.
Canonical quantization, i.e. replacing the canonical momentum p̂ with the oper-

ator p̂op = �

i
∂
∂x and applying the resulting (linear but explicitly TD) Hamiltonian

operator ĤCK,op to the canonical wave function �̂CK(x, t), leads to the modified SE

i�
∂

∂t
�̂CK (x, t) = ĤCK,op �̂CK (x, t)

=
{
e−γ t

(
− �

2

2m

∂2

∂x2

)
+ eγ t V (x)

}
�̂CK (x, t) . (4.39)

In the cases discussed for the TDSE in the conservative case in Chap. 2, i.e. for
oscillator potentials V (x) = m

2 ω2x2, this equation also possesses exact Gaussian
WP solutions in the form

�̂CK(x, t) = N̂CK(t) exp

{
i

[
ŷCK(t)x̃2 + 1

�
〈 p̂〉CK x̃ + K̂CK(t)

]}
(4.40)

with complex TD parameter ŷCK(t). Here, 〈· · · 〉CK indicates the mean value is cal-
culated using �̂CK(x, t).
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The equation of motion for the WP maximum is simply the one for the classical
trajectory including the friction force, in the notation of Sect. 2.1,

η̈ + γ η̇ + ω2η = 0. (4.41)

The modified complex Riccati equation for the complex coefficient ŷCK(t) of the
quadratic term in the exponent of the WP, or ĈCK(t) = 2�

m ŷCK(t),

˙̂CCK + Ĉ2
CKe

−γ t + ω2eγ t = 0, (4.42)

can, with the help of the definition

ĈCK,I = �

2m〈x̃2〉CK = 1

α2
CK(t)

, (4.43)

also be transformed, as in the conservative case, into a real Ermakov-type equation,

α̈CK + γ α̇CK + ω2αCK = e−2γ t

α3
CK

. (4.44)

This equation, together with Eq. (4.41), forms the system of equations of motion,
coupled viaω, that possesses an exact Ermakov-type invariant, now given in the form

ÎCK = 1

2

[
e2γ t

(
η̇ αCK − η α̇CK

)2

+
(

η

αCK

)2]
= const. (4.45)

However, there are some serious points of criticism against this quantized version of
the approach.

If one tries to express the operator of the physicalmomentum (which corresponds
to the quantity that can actually be measured) simply by pop = e−γ t p̂op, the com-
mutation relation and the uncertainty product of position and physical momentum
both decay exponentially,

[x, pop]− = [x, p̂op]−e−γ t = i� e−γ t → 0, (4.46)

UCK,phys = 〈x̃2〉CK〈 p̃2〉CK = 〈x̃2〉CK〈 ˜̂p2〉CK e−2γ t → 0. (4.47)

This apparent violation of the uncertainty principle has been criticised by several
authors [42–44] and attempts to justify or modify the CK approach [45–47] in order
to avoid this unphysical behaviour are not convincing. Nevertheless, this approach
is still used frequently and physical conclusions are drawn from it that sometimes
totally contradict the results of other approaches.



98 4 Dissipative Systems with Irreversible Dynamics

The situation becomes even more puzzling after Yu and Sun [13, 14] showed that
the CK-Hamiltonian operator can be derived from the conventional system-plus-
reservoir approach of Caldeira–Leggett, discussed in Sect. 4.2.1. This puzzle can be
solved if the relation between this approach and another effective model, using a
(logarithmic) NLSE (see Sect. 4.4.3) on the physical level is clarified (see Sect. 4.5).
Consequently, further effective approaches for the description of dissipative quantum
systems are discussed in the following.

4.3.2 Expanding Coordinate System

A point of criticism raised against the CK-approach is that it is not a constant of
motion. However, it can be turned into such an invariant by adding a term γ

2 xp eγ t

to ĤCK, leading to (in the following for a potential quadratic in x and constant ω)

(
1

2m
p2 + γ

2
xp + m

2
ω2x2

)
eγ t = const. (4.48)

if x(t) obeys the equation of motion including the friction force. This invariant can be
rewritten in a form like a conventional Hamiltonian if a new expanding (canonical)
coordinate and the corresponding (canonical) momentum are introduced via [48–51]

Q̂ = x e
γ

2 t , (4.49)

P̂ = m ˙̂Q = m
(
ẋ + γ

2
x

)
e

γ

2 t . (4.50)

The Hamiltonian then takes the form [48, 50, 51]

Ĥexp = 1

2m
P̂2+m

2

(
ω2 − γ 2

4

)
Q̂2 = const. =̂ m

2

[
ẋ2 + γ ẋ x + ω2x2

]
eγ t (4.51)

and is not only an invariant, but for x0 = 0 or p0 = mẋ(0), is even identical to the
initial energy E0 = 1

2m p20 + m
2 ω2x20 of the system.

Hamiltonian (4.51) looks like that of an undamped HO with shifted frequency
� = (ω2 − γ 2

4 )
1
2 and the corresponding equation of motion for Q̂ is consequently

¨̂Q + �2 Q̂ = 0 (4.52)

which, expressed in physical coordinates, provides again the averaged Langevin
equation (here for the HO)

ẍ + γ ẋ + ω2x = 0. (4.53)
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The same result is also obtained consistently from the corresponding Hamiltonian
equations of motion

∂ Ĥexp

∂ P̂
= 1

m
P̂ = ˙̂Q =

(
ẋ + γ

2
x

)
e

γ

2 t , (4.54)

∂ Ĥexp

∂ Q̂
= m�2 Q̂ = m

(
ω2 − γ 2

4

)
x e

γ

2 t = − ˙̂P = −m

(
ẍ + γ ẋ + γ 2

4
x

)
e

γ

2 t .

(4.55)

Although the dissipative system in the expanding canonical variables (Q̂, P̂) can
be described via the usual canonical f ormalism, this is obviously not possible in
terms of the physical variables (x, p).

However, as the relations between the physical and the canonical variables are
known, it is possible to transform the canonical results into the ones on the physical
level.

In particular, if the time− evolution of any phase space function F̂(Q̂, P̂, t) on
the canonical level is given by

d

dt
F̂ = {F̂, Ĥexp}(Q,P) + ∂

∂t
F̂, (4.56)

(where the subscript (Q̂, P̂) indicates the variables towhich the derivatives are taken),
on the physical level additional Poisson brackets { , }− and anti-Poisson brackets
{ , }+ (with derivatives with respect to the physical variables (x, p)) occur,

d

dt
F(x, p, t) = {F, H}− + {F,

γ

2
xp}− − {F,

γ

2
xp}+ + ∂

∂t
F, (4.57)

where H is given by H = p2

2m + m
2 ω2x2 (for further details see [51] and Appendix C).

This modification of the conventional formalism is due to the fact that also the
transformation between the canonical variables (Q̂, P̂) and the physical variables
(x, p) is a non-canonical transformation.

So what is the connection between the CK-variables and the expanding ones, i.e.,
between (x̂, p̂) and (Q̂ = x̂ e

γ

2 t , P̂ = p̂ e− γ

2 t + m γ

2 x̂ e
γ

2 t )?
The determinant in Eq. (4.58), the Jacobian

D =
∣∣∣∣∣

∂ Q̂
∂ x̂

∂ Q̂
∂ p̂

∂ P̂
∂ x̂

∂ P̂
∂ p̂

∣∣∣∣∣ =
∣∣∣∣ e

γ

2 t 0
m γ

2 e
γ

2 t e− γ

2 t

∣∣∣∣ = 1 (4.58)

shows that these two approaches are connected via a canonical transformation (on
the canonical level).
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Why is Ĥexp a constant of motion whereas ĤCK is not? Because the generating
function F̂2(x̂, P̂, t) leading to Ĥexp via

Ĥexp = ĤCK + ∂

∂t
F̂2 (4.59)

is explicitly TD,

F̂2(x̂, P̂, t) = x̂ P̂ e
γ

2 t − m
γ

4
x̂2 eγ t . (4.60)

The explicit time-derivative ∂
∂t F̂2 yields the missing contribution that turns ĤCK

into the invariant Ĥexp.
Consequently, also the action function Ŝexp and ŜCK are different which turns out

to be important in the quantummechanical case due to the relation between the action
and the wave function (further details are given subsequently), and are related via

ŜCK = Ŝexp − m
γ

4
x̂2eγ t . (4.61)

As we are working on the canonical level, quantization can be achieved in the
usual way, e.g., in position space, by keeping the position operator Q̂op = Q̂ as a
c-number and replacing the momentum operator with P̂op = �

i
∂

∂ Q̂
. The resulting

canonical SE then has the form

i�
∂

∂t
�̂exp

(
Q̂, t

)
=

{
− �

2

2m

∂2

∂ Q̂2
+ m

2

(
ω2 − γ 2

4

)
Q̂2

}
�̂exp

(
Q̂, t

)
. (4.62)

The analytic solution in form of a Gaussian WP can be written as

�̂exp(Q̂, t) = N̂exp(t) exp

{
i

[
ŷexp(t)Q̃

2 + 1

�
〈P̂〉exp Q̃ + K̂exp(t)

]}
(4.63)

with Q̃ = Q̂ − 〈Q̂〉exp, 〈P̂〉exp = m〈 ˙̂Q〉exp where 〈· · · 〉exp now indicates that the
mean values are calculated with �̂exp(Q̂, t) and ŷexp(t) is again a complex function
of time. The normalization function N̂exp(t) and the phase factor K̂exp(t) are purely
TD and not relevant for the equations of motion determining the evolution of the
maximum and width of the WP which are the two parameters completely describing
the Gaussian function .

InsertingWP(4.63) intoEq. (4.62) provides the equationofmotion for themaxium
as

d2

dt2
〈Q̂〉exp +

(
ω2 − γ 2

4

)
〈Q̂〉exp = 0, (4.64)

or, bearing in mind the fact that the mean values follow the classical equations of
motion on the physical as well as on the canonical level, this can also be expressed
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in terms of the physical position variable 〈x〉 = η(t) according to (4.53) like in
Sect. 4.3.1 as

η̈ + γ η̇ + ω2η = 0,

i.e., a damped HO.
The equation of motion for theWPwidth depends on the complex variable ŷexp(t)

and can be expressed in terms of the slightly modified variable Ĉexp(t) = 2�

m ŷexp(t)
in the form of the (complex) Riccati equation

˙̂Cexp + Ĉ2
exp +

(
ω2 − γ 2

4

)
= 0, (4.65)

where the imaginary part is connected to the mean square deviation of position
(or position uncertainty) via Ĉexp,I = �

2m〈Q̃2〉exp with 〈Q̃2〉exp = 〈Q̂2〉exp − 〈Q̂〉2exp.
Equation (4.65) is identical to Eq. (2.4) in Sect. 2.1 only that C is replaced by Ĉexp

and ω2 by
(
ω2 − γ 2

4

)
= �2. Therefore, by introducing a new variable α̂exp(t) via

Ĉexp,I = 1
α̂2
exp
, in the same way as described in Sect. 2.1, the complex Riccati Eq.

(4.65) can be transformed into the real NL Ermakov equation

¨̂αexp +
(

ω2 − γ 2

4

)
α̂exp = 1

α̂3
exp

. (4.66)

Again, following the procedure outlined in Sect. 2.1 and via elimination of(
ω2 − γ 2

4

)
between this equation and Eq. (4.64), one obtains a dynamical Ermakov

invariant of the form

Îexp = 1

2

⎡
⎣(

〈 ˙̂Q〉exp α̂exp − 〈Q̂〉exp ˙̂αexp

)2 +
(

〈Q̂〉exp
α̂exp

)2
⎤
⎦ = const. (4.67)

Expressing 〈Q̂〉exp and 〈 ˙̂Q〉exp in terms of the physical variables η = 〈x〉 and
η̇ = 〈ẋ〉, this can be rewritten as

Îexp = 1

2
eγ t

[(
η̇ α̂exp −

( ˙̂αexp − γ

2
α̂exp

)
η

)2 +
(

η

α̂exp

)2
]

= const. (4.68)

In the form (4.67), it becomes obvious that this invariant is not only independent
of ω, i.e., also existing for ω = ω(t), but also independent o f γ (apart from the
definition of Q̂), i.e., also existing for γ = γ (t)! This form is identical to the one in
the conservative case, only η = 〈x〉 is replaced by Q̂ = 〈Q̂〉exp and α by α̂exp. The
meaning of the replacement η → Q̂ has been explained above; the meaning of the
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replacement α → α̂exp will become clear from the effective quantum mechanical
description on the physical level, presented in Sect. 4.4 and its connection with the
canonical level, as shown in Sect. 4.5.

Here, the discussion shall be restricted to connections within the canonical level.
The connection between the classical CK approach and the one in expanding coor-
dinates via the generating function F̂2(x̂, P̂, t) has already been given in Eqs. (4.59)
and (4.60), and also the corresponding connection between the action functions ŜCK
and Ŝexp has been given in Eq. (4.61). This, however, can be used to define the unitary
transformation, corresponding to the canonical transformation of the classical vari-
ables that transforms the wave functions of the CK and the expanding approaches
into each other. For this purpose, Schrödinger’s original definition [52] of the wave
function � in terms of the action function S,

S = �

i
ln�, (4.69)

can be used (further details will be given in Sect. 4.5).
According to this definition, relation (4.61) translates into

�̂CK = exp

{
− im

2�

γ

2
x̂2eγ t

}
�̂exp, (4.70)

thus defining the unitary transformation between the two approaches.
One might ask, what happens to the problems with the commutator and the uncer-

tainty product in the approach in expanding coordinates? Again, like in the CK-

approach, the canonical variables pose no problem, [P̂op, Q̂op]− =
[

�

i
∂

∂ Q̂
, Q̂

]
−

= �

i .

But what happens if this is expressed in terms of physical position and momentum?
This means, particularly �

i
∂

∂ Q̂
must be expressed in terms of �

i
∂
∂x = pop. Taking into

account that, in position space, derivatives ∂
∂p do not contribute to the commutator,

the commutator of physical position and momentum can be written as

[pop, xop]− = e
γ

2 t

[
�

i

∂

∂ Q̂
, Q̂

]
−
e− γ

2 t =
[

�

i

∂

∂ Q̂
, Q̂

]
−

= �

i
, (4.71)

thus no longer violating the commutator relation for the physical quantities. A sim-
ilar situation is found for the uncertainty principle. But warning! As it has just been
shown, the CK approach and the one in expanding coordinates are connected, clas-
sically, via a canonical and, quantum mechanically, via a unitary transformation.
Assuming that on the canonical level, like on the physical level, these transforma-
tions do not change the physics of the system would solely create another puzzle
were it to be considered a solution of the problem associated with the CK approach.
The real solution will be discussed in Sect. 4.5; the absence of the CK-problem in
the expanding approach might be more by chance.
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Finally, it should be mentioned that, on the canonical level, there are further
approaches like the one by Lemos [48] with the variables

R̂ = x e
γ

2 t , �̂ = p e
γ

2 t , (4.72)

the Lagrangian

L̂L = m

2
˙̂R2 − m

2
ω2 R̂2 − m

2
γ

˙̂RR̂ (4.73)

and the Hamiltonian

ĤL(R̂, �̂, t) = 1

2m
�̂2 + m

2
ω2 R̂2 + γ

2
�̂R̂ (4.74)

which, expressed in terms of the physical variables, is identical to the constant given
in Eq. (4.48). As this approach (and others as well) is connected with the ones of
CK and the expanding coordinates via canonical transformations, it does not provide
any new aspects concerning the physics of the system and so will not be discussed
further in the forthcoming (sub-)section. (For more details, see [53].)

4.4 Effective Models Using Nonlinear Modifications
of the Schrödinger Equation

The effective models discussed in the last subsection were based on the classical
canonical Lagrange and Hamilton formalism. Particular modifications of the con-
ventional form were considered that provided a linear velocity or momentum depen-
dent friction force, −mγ ẋ or −γ p, respectively. This cannot be achieved by simply
adding to the Lagrangian or Hamiltonian function a kind of “friction potential”,
W (x, ẋ) = mγ ẋ x or W (x, p) = γ px , whose negative derivative − ∂

∂x W would
yield the desired friction force. In the Lagrangian formalism, adding such a term
provides, via the Euler–Lagrange equation, an equation of motion for x(t) without
any friction force. In theHamiltonian formalism, one of theHamiltonian equations of
motion, ∂H

∂p = 1
m p + γ x �= ẋ , would no longer be correct. Therefore, the treatments

discussed before were necessary.
However, there are attempts to break the time-reversal symmetry and/or to include

such friction forces, at least on the quantum mechanical level, by adding such a
“potential”. Different criteria are used to determine the specific form of this term of
which three distinct ones are discussed in the following. These selected approaches
possess a mutual characteristic in that they all lead to a NL modification of the SE.
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4.4.1 Models Based on Ehrenfest’s Theorem
and the Langevin Equation

The basic requirement of these approaches is that, according to Ehrenfest’s theorem,
the classical equation of motion, including the damping force, should be valid on an
average,

d

dt
〈p〉 + γ 〈p〉 +

〈
∂

∂x
V

〉
= 0, (4.75)

i.e., a kind of averaged5 Langevin Eq. (4.3)where the contribution from the stochastic
force F vanishes.

The correspondingly modified Hamiltonian operator would then have the form6

HNL = − �
2

2m

∂2

∂x2
+ V (x) + W = HL + W. (4.76)

The dissipative term7 W should be compatiblewith the equation ofmotion accord-
ing to

d

dt
〈p〉 =

〈
i

�
[HNL, p]−

〉
=

〈
− i

�

�

i

∂

∂x
(V + W )

〉
= −

〈
∂

∂x
V

〉
−

〈
∂

∂x
W

〉
. (4.77)

Comparison with Eq. (4.75) gives as criterion for the determination of W

〈
∂

∂x
W

〉
= γ 〈p〉. (4.78)

This definition of W is obviously not unique as in (4.78):

1. only the derivative of W occurs;
2. actually, not even this, but only the mean value of this quantity occurs;
3. this is compared onlywith themean value of themomentum (or velocity) operator.

Therefore, various (different) “potentials”W exist in the literature that fulfil condition
(4.78) and are thus in agreement with equation of motion (4.75). The best-studied
and most frequently-used ones are discussed subsequently.

Before this, a problem arising from point (3), i.e. the comparison with 〈p〉 or 〈v〉,
is considered.

There are obviously two different definitions of velocity occurring in quantum
mechanics. One is the momentum operator, divided by massm, i.e. vop = �

im
∂
∂x . The

5In the context of the Langevin equation, classicalmean valueswere considered, where now 〈· · · 〉 =∫
dx�∗ . . . � denotes quantum mechanical ones.

6The subscript “NL” already indicates that this will lead to nonlinear modifications of the TDSE.
7This W should not be confused with the Wigner function W (x, p, t) discussed in Sects. 2.8 and
2.9.
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other is related to the velocity field in the continuity Eq. (2.43), given as [see Eq.
(2.44)]

v− = �

2mi

(
∂
∂x �

�
−

∂
∂x �

∗

�∗

)
= �

2mi

∂

∂x
ln

�

�∗ .

The difference between these two is connected with the “imaginary velocity”

v+ = �

2mi

(
∂
∂x �

�
+

∂
∂x �

∗

�∗

)
= �

2mi

∂

∂x
ln� = �

2mi

∂
∂x �

�
(4.79)

with � = �∗�.

As (v− + v+) = �

mi

∂
∂x �

�
, it follows that

(v− + v+)� = �

mi

∂

∂x
� = vop�. (4.80)

The difference between the two definitions of velocity in quantum mechanics is
not immediately obvious as the mean value of v+ according to

〈v+〉 =
∫ +∞

−∞
dx �∗v+� = �

2mi

∫ +∞

−∞
dx

(
∂

∂x
�

)
= �(x)|+∞

−∞ = 0 (4.81)

always vanishes, similar to the contribution of the fluctuating force to the averaged
velocity in the Langevin equation.

However, this does not imply that v+ has no influence on the physics of the
system. There is a similarity with the contribution of the fluctuating force to the
energy of the Langevin system via its square, leading to the energy that remains
after the averaged motion has come to an end, i.e., the energy 1

2kBT of the final
thermal equilibrium. In the case of v+, the so-called “quantum potential” mentioned

in Sect. 4.2, Vqu = − �

2m

∂2

∂x2
√

�√
�

, can be rewritten as

Vqu = m

2
v2

+ − i
�

2

∂

∂x
v+ (4.82)

with non-vanishing mean value8 for the Gaussian WP, e.g., it is

〈
Vqu

〉 = �
2

8m〈x̃2〉 �= 0. (4.83)

8However, the mean value of its derivative ∂
∂x Vqu = − �

2

4m〈x̃2〉 (x − 〈x〉) vanishes, 〈
∂
∂x Vqu

〉 = 0, i.e.,
it does not contribute to the averaged equation of motion.
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From Eq. (4.81) follows that considering just the mean value of velocity 〈v〉, it
cannot be distinguished whether v corresponds only to v− or to v+ + v− (which is
equivalent to the definition of the velocity or momentum operator).

In the most frequently-cited, and to my knowledge first approach in this direction,
Kostin [54] had chosen the velocity v− as given in (2.44) for his definition of the
“friction potential”. From

∂

∂x
WK = γ

�

2i
ln

�

�∗ = γmv− (4.84)

follows by integration and choosing the integration constant so that 〈WK〉 = 0 is
valid, Kostin’s damping term in the form

WK = γ
�

2i

(
ln

�

�∗ −
〈
ln

�

�∗

〉)
. (4.85)

Due to 〈WK〉 = 0, the mean value of energy is still given by

〈H〉 = 〈T 〉 + 〈V 〉, (4.86)

but now with mean values calculated with the solutions �K(x, t) of the SE with the
NL Hamiltonian (4.76) where W has the form (4.85) of WK.

This NL Hamiltonian has subsequently been rederived by several authors [55–
60] with different methods like stochastic quantization etc.. For potentials at most
quadratic in x , analytic Gaussian WP solutions can also be obtained for this NLSE.
Although this approach (by definition) provides the correct averaged equation of
motion for the position, there are still several points of criticism:

1. the solutions of the damped HO contain the unshifted frequency ω0 instead of

the reduced frequency � =
(
ω2
0 − γ 2

4

) 1
2
, known from the classical case;

2. all solutions of the undamped HO, which are real functions, i.e. � = �∗ and
hence ln �

�∗ = ln 1 = 0, are also solutions of the problem including friction! This is
difficult to interprete;

3. as WK is real, it can be considered an addition to the potential V (x), i.e. it
does not occur in the continuity Eq. (2.43) for �(x, t). Therefore, the equation of
motion for �(x, t) still remains reversible although the averaged classical equation
of motion describes an irreversible process, which appears to be inconsistent!

There have been several attempts [61] to overcome these shortcomings but none
is convincing. So, one can presume that this approach is a step in the right direction,
but does not yet give a complete description of the system.

Cho [60] made an attempt to eliminate the above-mentioned inconsistencies by
adding a kind of contribution from a “diffusion velocity” according to

WCho = γ
�

2

{
1

i
ln

�

�∗ + ln(��∗)
}

− γ f (t) (4.87)



4.4 Effective Models Using Nonlinear Modifications of the Schrödinger Equation 107

where “ f (t) is taken so that at stationary states the friction operator does not depend
on time” [62]. The additional term9 γ �

2 ln(��∗) displays similarity with a term
whose derivative would provide v+, but is real, whereas v+ is purely imaginary.

Due to the additional term inCho’s approach, this operator certainly does no longer
permit the undamped solutions. However, as the additional term is real, the problem
with the reversible continuity equation for �(x, t) still remains. Furthermore, in this

case also the frequency of the damped oscillator, namely ω =
(
ω2
0 + γ 2

4

) 1
2 − γ

2 , is

different from the classical damped frequency � =
(
ω2
0 − γ 2

4

) 1
2
.

Around the same period of time, approaches in this direction were also made in
order to find an effective description for deep inelastic scattering in nuclear physics.
The underlying idea was to construct the “friction potential” W fulfilling (4.78) as
a product of the operators of position and momentum and their mean values, taking
into account that these operators do not commute. (Remember that in the classical
case such a term did not work!)

Approaches in this direction were made by Süssmann [65], Albrecht [66] and
Hasse [67]. The general “potential” of that kind can be written as

WG = γ 〈p〉(x − 〈x〉) + γ

2
C [(x − 〈x〉), (p − 〈p〉)]+ (4.88)

with C being a real constant (or purely TD function). It can be shown straightfor-
wardly that WG fulfils condition (4.78) for any value of C .

The choice C = 1 has been considered by Süssmann [65], leading to

WSü = γ

2
[(x − 〈x〉), p]+ , (4.89)

the choice C = 0 by Albrecht leading to

WAl = γ 〈p〉(x − 〈x〉). (4.90)

Still, these two approaches, in certain aspects, display unphysical behaviour, e.g.
they provide the wrong frequency for the damped HO:

Süssmann : �Sü = (
ω2
0 − γ 2

) 1
2 (4.91)

Albrecht : �Al = ω0 (4.92)

General : �G = (
ω2
0 − C2γ 2) 1

2 . (4.93)

9Under the different aspect, if linear quantum mechanics should be replaced by a NL modification
when approaching mesoscopic dimensions, Bialynicki-Birula and Mycielski [63] investigated a
NLSE with logarithmic nonlinearity of the form −b ln(��∗) with real b > 0. However, a connec-
tion between this nonlinearity and a physically-justified dissipative term in the SE is not given (see,
e.g., Enz [64]).
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TheWG-termwould provide the correct frequency� =
(
ω2
0 − γ 2

4

) 1
2
forC = ± 1

2 !

These cases have been considered by Hasse [67]. The choice C = − 1
2 would lead to

unphysical results (likeWPs with positive exponent, i.e., diverging for increasing x).
For C = + 1

2 , one obtains well-behaved results and Hasse’s NL friction term takes
the form

WHas = γ

2
[(x − 〈x〉), (p + 〈p〉)]+ . (4.94)

Comparison with the approaches by Süssmann (4.89) and Albrecht (4.90) shows
that

WHas = 1

2
(WSü + WAl) . (4.95)

Due to the “semi-empirical” fitting of the constant C , the solutions of Hasse’s
NLSE (also Gaussians like above) for the damped HO obviously have the correct
frequency �. Also the undamped solutions are no longer admitted. Consequences
for the continuity equation for the density �(x, t) are not immediately obvious but
will become clearer when this approach is compared with the complex logarithmic
one in Sect. 4.4.3. This will also clarify, in Hasse’s approach, why the mean value of
WHas does not disappear,10

〈WHas〉 �= 0, (4.96)

i.e., 〈H〉 �= 〈T 〉 + 〈V 〉.

4.4.2 Models Based on Non-unitary Time-Evolution

A different approach by Gisin [68, 69] is initially not focussing on the dissipative
Langevin equation. The major assumption here is that the quantum system is always
in a pure state nomatter if it exchanges energywith its environment or not. Therefore,
the system can always be described by a normalizable complex state vector �(t).

Following the procedure for obtaining the generalized master equation for the
density operator, Gisin arrived at a corresponding evolution equation for �(t),

i�
∂

∂t
�(t) =

{
HL + �

i
B

}
�(t). (4.97)

Due to the imaginary term, the time-reversal symmetry is broken but this equa-
tion does not conserve the norm of the state vector!

10This non-vanishing energy contribution is actually given by 〈WHas〉 = γ
4 〈[x̃, p̃]+〉 =

γ �

4

(
α̇α − γ

2 α2
)
for a Gaussian WP and is different from zero even for α̇ = 0.
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However, normalization can be achieved if the mean value of B is subtracted, i.e.,
B → B − 〈B〉, leading to the modified SE

i�
∂

∂t
�(t) =

{
HL + �

i
(B − 〈B〉)

}
�(t) (4.98)

which is, due to 〈B〉 = ∫ +∞
−∞ dx �∗B�, a NLSE.

The specific choice of B does not follow from this ansatz (it is only assumed that
B is Hermitian). Gisin’s original choice, B = kH , with real constant k, leads to a
wrong energy dissipation, i.e. a decrease of energy not proportional to the kinetic
energy, Ė �= 2γ T , in contrast to the classical case.

As mentioned before, an imaginary term in the Hamiltonian influences also the
continuity equation for �(x, t) and can introduce irreversibility. However it has no
influence on the (real) Ehrenfest equation of motion and therefore cannot induce
dissipation of energy. In Gisin’s case with B = kH , the application of H on �

produces real and imaginary terms proportion to �. Due to the factor �

i in front
of B, the imaginary terms turn into real ones and can contribute to dissipation.
Therefore this approach with B = kH is not only irreversible but also dissipative.
However, since the choice of B seems to be quite arbitrary, this approach essentially
indicates how to circumvent the problem with a time-reversible continuity equation,
i.e., including an imaginary term in the modified Hamiltonian.

In a similar approach, Beretta [70, 71] tried to describe non-equilibrium systems
(without dissipation, in agreement with the afore-mentioned) where the imaginary
term is supposed to be related to the entropy of the system that should increase during
time-evolution. The particular form of his NLSE is

i�
∂

∂t
� =

{
HL + γ

2

�

i
(ln � − 〈ln �〉)

}
�, (4.99)

a form that will appear again in another approach in Sect. 4.4.3. However, Beretta’s
approach was mainly discussed in the context of density operators. Applications can
be found in connection with “quantum thermodynamics” [72].

The same logarithmic term has also been discussed recently by Nassar [73] in the
context of WP dynamics under continuous measurement. A clearer picture of the
physical meaning of this term and its origin is presented in the following.

4.4.3 Models Based on a Smoluchowski Equation
for the Probability Density

Kostin’s approach involving only the phase of the wave function via �

2i ln
�
�∗ = S for

� = �
1
2 e

i
�
S provided the correct (averaged) equation ofmotion including dissipative

friction but no irreversibility for the equation of motion for �(x, t). Beretta’s purely
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imaginary term proportional to �

2i ln(��∗) only breaks the time-reversal symmetry
of the reversible continuity equation for �(x, t), but has no dissipative effect in the
form of a friction force. Due to terms like pop� or Hop� with complex�, approaches
such as those by Gisin or Hasse have real and imaginary contributions in their NL
terms but it is not quite clear how the terms and their influence on the dynamics of
the system can be distinguished.

The models discussed in Sect. 4.4.1 were based on a kind of Langevin-type
description of the open (quantum) system. As mentioned before, an equivalent
description can also be given in terms of a Fokker–Planck or, in position space,
Smoluchowski equation [see Eq. (4.7)]. Further, we have seen in Sect. 3.2 that (at
least in the TISE) phase and amplitude of the wave function are not independent of
each other. This shall be used in the following to start on the level of the probability
density �(x, t) = �∗� to introduce irreversibility by adding a diffusion term as
in the classical Eq. (4.7). Then, a method will be applied that was introduced by
Madelung [74] and Mrowka [75] to “rederive” the SE without making use of any
Lagrangian or Hamiltonian form of classical mechanics. Using only (an averaged)
Newton’s equation ofmotion, it separates the (real) equation for�(x, t) into two com-
plex conjugate equations for �(x, t) and �∗(x, t). These equations for the complex
functions should then also contain a contribution corresponding to the (separated)
diffusion term.

In a first step, the original method of Madelung and Mrowka for conservative
systems is outlined in the following. Afterwards, the necessary modifications due to
the additional diffusion term are discussed.11

Around themiddle of the last centuryMadelung [74] andMrowka [75] established
a formalism to “rederive” the conventional SEmore or less for didactical reasons. The
axiomatic basis for this method is given by three principles taken from experimental
experience:

(1) uncertainty principle or complementarity, respectively;
(2) the occurrence of interference phenomena in experiments with material systems,

and
(3) the correspondence principle, specified in the form of Ehrenfest’s theorem.

The mathematical form of a theory taking into account this empirical knowledge
follows from the structure of these principles. (In the following, themethod is outlined
only to an extent necessary for showing how irreversibility can be introduced. For
further details see Refs. [74–77].)

Owing to the uncertainty principle, exact initial conditions in the sense of classical
particle mechanics cannot be given. Therefore, it is only possible to develop a theory
where mean values < Q >= ∫

dr Q �(r, t) of quantities Q are determined with
the aid of a distribution function �(r, t).

11The general discussions are given for the three-dimensional case; the more detailed ones concern-
ing the resultingNLSE are then again restricted to the case in one-dimension though a generalization
to higher dimensions is straightforward in most cases.
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In order to guarantee the conservation of � (in a global sense),
∫
dr �(r, t) =

const., Madelung and Mrowka assumed the function �(r, t) to fulfil the continuity
equation

∂

∂t
� + ∇j = ∂

∂t
� + ∇ (�v−) = 0. (4.100)

Bearing in mind the second axiom and analogous to optics (where intensity is a
quadratic function of the amplitudes), the bilinear ansatz

� = a · b ≥ 0 (4.101)

with the complex field functions a(r, t) and b(r, t) is used. With these functions also
the current density j = �v− can be defined as a bilinear form,

j = �v− = C(b∇a − a∇b), (4.102)

where

v− = C

(∇a

a
− ∇b

b

)
= C ∇ ln

a

b
(4.103)

with C = constant.
For the evaluation ofmean values, the distribution function �(r, t)must be known,

i.e., the continuity equation (4.100) must be solved. However, the time-derivative of
� depends on j. So, according to Eqs. (4.102) and (4.103), not only the absolute value
must be known but also the phase of the field function, i.e., the complex functions
a(r, t) and b(r, t) have to be determined.

For this purpose, the definitions of � and j are inserted into continuity Eq. (4.100).
Introducing a function f (r, t) that is independent of a and b, it is possible to separate
the continuity equation into two equations containing only a or b, respectively,

∂

∂t
a + C�a + f a = 0, (4.104)

∂

∂t
b − C�b − f b = 0. (4.105)

The physical meaning of the separation function f (r, t) becomes obvious when
the third axiom is applied regarding the mean value of Newton’s equation of motion
with force F ,

∫
dr � F = m

d

dt

∫
dr � v− = m

∫
dr 2C

(
∂

∂t
b ∇a − ∂

∂t
a ∇b

)
, (4.106)

and ∂
∂t a and ∂

∂t b are replaced by the quantities defined in Eqs. (4.104) and (4.105).
After some straightforward calculations one finally obtains
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∫
dr � F =

∫
dr � {−∇(2mC f )} =

∫
dr � {−∇V } , (4.107)

which is the mean value of a conservative force derived from a potential V = 2mC f .
So,with thehelpof the correspondenceprinciple onefinds that the separation function
f (r, t) is proportional to the potential V .
Replacing a with �, where the choice b = a∗ = �∗ guarantees positive real �,

Eq. (4.104) multiplied by i� attains the well-known form of the TDSE

i�
∂

∂t
� = − �

2

2m
�� + V�, (4.108)

describing the quantum mechanical dynamics of a system exerted to the same force
as given in the corresponding Newton-type equation of motion.

In this case, the constant C was chosen to be C = �

2mi based on spectroscopic
results.12

In describing irreversible dynamics, the conservation law expressed by the con-
tinuity equation must be replaced by another that is no longer symmetric in time.
As mentioned above, a diffusion process is a well-suited candidate for this purpose.
Therefore, adding a diffusion current density jD = −D∇� = −D(b∇a+a∇b) (with
diffusion coefficient D) to the convection current density (4.102), the time-reversible
continuity Eq. (4.100) turns into the irreversible Smoluchowski equation

∂

∂t
� + ∇(j + jD) = ∂

∂t
� + ∇ (� v−) − D�� = 0. (4.109)

Following the scheme outlined above for conservative systems, this equationmust
be separated into two equations for the two conjugate complex functions a and b (or
� and �∗, respectively). However, this is not generally possible due to the structure
of the additional diffusion term

− D�� = −D{a �b + b �a + 2(∇a)(∇b)}, (4.110)

where the product term (∇a)(∇b) destroys the separability in a general sense. How-
ever one may nevertheless look for special cases where separation is still possible.

Separation of the Smoluchowski Eq. (4.109) can only be achieved if the additional
condition

− D
��

�
= F1(a) + F2(b) (4.111)

is fulfilled.

12This choice is not the only possible one as the constant C is not determined unequivocally by
the three basic assumptions but must be taken from experimental experience. Therefore, from the
viewpoint of classical field theory, a choice C = 1

2μi , i.e. a constant without � and m (m = mass of
one particle) is also possible (see also Refs. [76, 77]).
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An ansatz satisfying this requirement is given by

− D
��

�
= γ (ln � + Z) (4.112)

with Z = function independent of a and b and γ = constant (or at least not position
dependent; for further details see Refs. [76, 77]). It can be shown that the choice
Z = 0 would not allow the normalization of the function � (similar to Gisin’s Eq.
(4.97)), whereas the choice Z = −〈ln �〉 is in agreement with the normalizabililty
condition (as in Gisin’s case). Therefore, the separability condition, at least as a
mathematical possibility, can be written as

− D
��

�
= γ (ln � − 〈ln �〉) . (4.113)

After separation, an equation to determine a(r, t) is again obtained which now
has the form

∂

∂t
a + C�a + γ (ln a − 〈ln a〉)a + f a = 0, (4.114)

or, written in terms of �(x, t) = �NL(x, t), as the NLSE

i�
∂

∂t
�NL =

{
− �

2

2m
� + V + γ

�

i
(ln�NL − 〈ln�NL〉)

}
�NL (4.115)

with a complex logarithmic logarithmic nonlinearity that can be written as

W̃SCH = γ
�

i
(ln�NL − 〈ln�NL〉) . (4.116)

So far, this additional term is only a consequence of the additional diffusion term
in Eq. (4.109) and the mathematical separability condition (4.113).

To elucidate the physical meaning of thismathematical condition and the resulting
nonlinearity, the third axiom, Ehrenfests theorem, must again be applied. Now, how-
ever, (4.114) instead of (4.104) is substituted for ∂

∂t a in the mean value of Newton’s
equation. With the help of the definition of v− [see (4.103)], this leads to

∫
dr � F =

∫
dr � {−∇V − mγ v}

or 〈F〉 = m
d

dt
〈v〉 = 〈−∇V 〉 − mγ 〈v〉 (4.117)

(where v = v− + v+ with 〈v+〉 = 0; see above).
So, in addition to Eq. (4.107), the mean value of the linear velocity dependent

friction force, −mγ v with friction coefficient γ , occurs and is uniquely connected
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to the diffusion term of the Smoluchowski equation via the additional separability
condition and the resulting logarithmic nonlinearity.

The additional NL term W̃SCH can be written as real and imaginary contributions
in the form

W̃SCH = W̃R + W̃I = γ

2

�

i

(
ln

�NL

�∗
NL

−
〈
ln

�NL

�∗
NL

〉)

+γ

2

�

i
(ln �NL − 〈ln �NL〉) , (4.118)

where the real part only depends on the phase of the wave function and provides
the friction force in the averaged equation of motion. Comparison with the afore-
mentioned approaches shows that this real part is just identical to Kostin’s term
(4.85).

The imaginary part, however, resolves all the problems mentioned in connection
with Kostin’s approach. By definition it breaks the time-symmetry of the equation for
�NL(r, t) via the corresponding diffusion term. In addition, it changes the frequency

of the HO into the correct one known from the classical case, � =
(
ω2
0 − γ 2

4

) 1
2
,

without any fitting. Also the undamped solutions of the HO problem no longer solve
the corresponding NLSE. Formally, it is equivalent to Beretta’s term (for pure states)
and the one discussed by Nassar in [73].

Furthermore, this imaginary term introduces a non-unitary time-evolution and
turns theHamiltonian into a non-Hermitian onewhile still guaranteeing normalizable
wave functions and real energy mean values as its own mean value vanishes.

Also from the real part W̃R no additional contribution to the energy mean value
occurs, so this is still represented by the mean values of the operators of kinetic
and potential energies. Yet this real part is not arbitrary but uniquely determined
by the separation condition and provides the correct dissipative friction force in the
equation of motion for the mean values. Besides, the ratio of energy dissipation (for
the classical contribution) is in agreement with the classical counterpart and arises
because the mean values are calculated with �NL instead of �L (the solution of the
linear SE).

The real part alone would provide dissipation but retain a unitary time-evolution
of the wave function, whereas the imaginary part, on its own, would provide irre-
versibility via a non-unitary time-evolution but no dissipation. Consequently, only
the combination of real and imaginary parts provides all the desired properties of the
quantum system under consideration. The reason for this is the coupling of phase
and amplitude of the wave function (as W̃R depends on the phase and W̃I on the
amplitude), as mentioned in Sect. 3.2.

With respect to formal similarity, an interesting interpretation of W̃I can be found
if, according to Grössing et al. [78], one identifies the Einstein diffusion coefficient
with the quantummechanical one (providing theSE is considered a diffusion equation
with imaginary diffusion coefficient), i.e., D = kBT

mγ
= �

2m . Then W̃I turns into
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W̃I = −ikBT (ln �NL − 〈ln �NL〉) , (4.119)

where −kB〈ln �NL〉 = −kB
∫ +∞
−∞ dr �NL ln �NL has a form like the definition of

entropy, S. So the mean value of the linear Hamiltonian that still represents the
energy of the system, 〈HL〉 = E , together with the second term of (4.119) would
resemble E − iTS which is similar to the expression for free energy. Only, here
again, the imaginary unit i appears in the quantum mechanical context. This point
(still) requires further investigation.

The separation condition (4.113) is certainly compatible with wave functions like
planewaves but,more interestingly, alsowithGaussian functions.Choosing therefore
�(x, t) (in agreement with the notation used for the WP (2.1) in one dimension) as

�(x, t) = NN ∗ exp
{−2yI x̃

2
} =

(
1

2π〈x̃2〉
) 1

2

exp

{
− x̃2

2〈x̃2〉
}

(4.120)

enables one to determine the diffusion coefficient D in the Smoluchowski Eq. (4.109)
via the separation condition (4.113) in the form

D = γ

2
〈x̃2〉, (4.121)

which is compatible with similar expressions in the classical theory of Brownian
motion (see, e.g., [79]). Note that for TD WP widths also D is TD.

In comparison with Grössing’s choice D = �

2m , this would lead to γ

2 = �

2m〈x̃2〉 =
1
α2 = ϕ̇. Without dissipation, for the HO with constant width, this would imply a
“resonance-type” condition, γ

2 = ω0, however, in the damped case, ϕ̇ �= ω0. Further
work will be necessary for a better understanding of this connection.

Comparison with the Einstein relation D = kBT
mγ

finally provides

kBT = m

2
γ 2〈x̃2〉, (4.122)

an expression like the quantum mechanical contribution to the potential energy of
the HO [see (2.75)], only replacing ω0 by γ . Also this needs further clarification.

As the separation condition allows for Gaussian functions as solutions, it is not
surprising that the NLSE (4.115) also possesses analytic solutions in the form of
Gaussian WPs for at most quadratic potentials. Details will be discussed in Chap. 5.
Here (for comparison with the approaches considered before), it is only mentioned
that the maximum of the Gaussian WP, as given in Eq. (2.1), follows the Newtonian
equation of motion including the linear friction term (4.41),

η̈ + γ η̇ + ω2η = 0,

in other words, as in the CK-approach.
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Similarly, the coefficient yNL(t) of the quadratic term in the exponent of the WP,
or CNL(t) = 2�

m yNL(t), fulfils the modified complex Riccati equation

ĊNL + γ CNL + C2
NL + ω2 = 0, (4.123)

which, with the definition

CNL,I = �

2m〈x̃2〉NL = 1

α2
NL

, (4.124)

can now be transformed into the real Ermakov-type equation

α̈NL +
(

ω2 − γ 2

4

)
αNL = 1

α3 NL
. (4.125)

Eliminatingω2 betweenEqs. (4.41) and (4.125) finally leads to the exactErmakov-
type invariant

INL = 1

2
eγ t

[(
η̇ αNL −

(
α̇NL − γ

2
αNL

)
η

)2 +
(

η

αNL

)2
]

= const. (4.126)

which is identical to (4.68), the invariant for the canonical description in expanding
coordinates, expressed in physical variables. These connections will be clarified
further in Sect. 4.5.

Before addressing this, another approach should be mentioned which is based on
the same Smoluchowski equation for �(r, t) that confirms the additional diffusion
term on group-theoretical grounds [80, 81]. In this approach by Doebner and Goldin
the authors do not try to separate this term but add half of it to the modified SE and
the other half to its complex conjugate, leading to a NLSE of the form

i�
∂

∂t
�(r, t) =

{
− �

2

2m
� + V (r) + i I(F[�]) + R(F[�])

}
�(r, t) (4.127)

where

I(F[�]) = �
D

2

��

�
(4.128)

originates from the diffusion term. It is assumed that a real partR(F[�]) can also be
added which can also be a function of �, thus leading to another nonlinearity; “but
there is no information on the real part” in their approach [80] that could specify the
form of this real part. With certain additional assumptions, a whole family of NLSEs
was obtained with this approach.
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For Gaussian WPs, the diffusion term is obviously identical to the ln �-terms of
W̃SCH. One price that must be paid for the “bisection” according to (4.128) is that,
in the equation for �, also �∗ occurs and vice versa.

The mathematical and physical properties of the NLSE (4.127) have been investi-
gated in many papers (for references, see e.g. [82]). Attempts have also been made to
linearize this NLSE via NL gauge transformations [83, 84] leading to a form similar
to that of the CK approach. In the next subsection, it will be shown how linearization
of the logarithmic NLSE (4.115) can be achieved via a non-unitary transformation.
Similarities and differences between these two methods are discussed in [85]. For
the purpose of the problems discussed in this work it will be sufficient and relevant
to consider the non-unitary transformations.

4.5 Non-unitary Connections Between
the Canonical and Nonlinear Approaches

In order to establish the connection between the explicitly TD (linear) canonical
approach of Caldirola and Kanai (4.39) and the NLSE (4.115) with complex loga-
rithmic nonlinearity, referral is made to Schrödinger’s first communication on wave
mechanics [52] where he starts with the Hamilton–Jacobi equation, here written in
the form (in one dimension) as

∂

∂t
Sc + H

(
x,

∂

∂x
Sc, t

)
= 0 (4.129)

with action function Sc and momentum pc = ∂
∂x Sc. He introduces the wave function

via the definition

Sc = �

i
ln� (4.130)

and arrives, via a variational ansatz, at the Hamiltonian operator

HL = − �
2

2m

∂2

∂x2
+ V (x) . (4.131)

The subscript c (added here) indicates that this action (different from the classical
one) is a complex function as �, in general, is a complex function (a fact that
Schrödinger did not like at all in the beginning [86] and he also omitted the i in
definition (4.130) but changed this afterwards without any explanation (see also
[87]).
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Now, Schrödinger’s procedure is reversed. Starting with Eq. (4.115) (divided by
� which causes no problems, at least for Gaussian WPs) and, using the definition of
Sc, one arrives at13 (

∂

∂t
+ γ

)
Sc + H = γ 〈Sc〉. (4.132)

Of course this is as little rigorous as Schrödinger’s first attempt was. However,
it follows his idea of connecting the classical Hamilton–Jacobi theory with a wave
(mechanical) equation. The purely TD term γ 〈Sc〉 is necessary mainly for normal-
ization purposes (it can therefore be absorbed by the normalization coefficient) and
will be neglected for the moment.

Multiplying the remaining Eq. (4.132) by eγ t and using the definitions14

Ŝc = eγ t Sc and Ĥ = eγ t HL (4.133)

it can be rewritten as (canonical) Hamilton–Jacobi equation

∂

∂t
Ŝc + Ĥ = 0. (4.134)

From the definition of the action function, it follows that thewave function �̂(x, t)
on the transformed (canonical) level is connected with the wave function �NL(x, t)
on the physical level via the non-unitary relation

ln �̂ = eγ t ln�NL. (4.135)

Consequently, the (complex)15 momenta in the two systems are connected via

p̂c = �

i

∂

∂x
ln �̂ = eγ t �

i

∂

∂x
ln�NL = eγ t pc, (4.136)

which is equivalent to the connection between the canonical and the physical (kinetic)
momentum in the approach by Caldirola and Kanai [see Eq. (4.35)]. The non-
canonical connection between the classical variables (x, p) and (x̂ = x, p̂ = eγ t p)
corresponds to the non-unitary transformation between �NL and �̂.

Note: Although �NL and �̂ depend explicitly on the same variables x and t , the
two wave functions are analytically different functions of x and t and have different
physical meanings due to the non-unitary transformation (4.135).

Expressing Ĥ in terms of the canonicalmomentum, in the classical case thiswould
lead to the CK-Hamiltonian (4.36) and, following Schrödinger’s quantization pro-
cedure, but now using the canonical momentum p̂c, finally leads to the modified SE

13InAppendix E it is shown how this can be used for a “hydrodynamic” derivation of the logarithmic
NLSE (see also [88]).
14Quantities with a hat again denote canonical ones in contrast to their physical counterparts.
15Compare the complex velocity v− + v+ discussed in Sect. 4.4.1
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i�
∂

∂t
�̂ (x, t) = Ĥop �̂ (x, t)

=
{
e−γ t

(
− �

2

2m

∂2

∂x2

)
+ eγ t V

}
�̂ (x, t) . (4.137)

The Hamiltonian operator Ĥop in (4.137) is identical to the one of Caldirola and
Kanai in (4.39), ĤCK,op. However, the important difference is, that in theCKapproach
it is assumed that ĤCK,op acts on a wave function in physical space (like �(x, t))
whereas it actually acts on a canonical wave function �̂(x, t). This fact is hidden
because, in this particular non-canonical transformation between the physical and
canonical levels, x = x̂ . So it is misleadingly giving the impression that �(x, t)
and �̂(x, t) are identical. But, to be consistent it is necessary to transform operators
and wave functions simultaneously to avoid unphysical results16 like the violation
of the uncertainty principle. This will be demonstrated explicitly following a short
comment concerning the term−γ 〈Sc〉 on the rhs of Eq. (4.132) that has been ignored
so far.

As the connection between�NL and �̂ is not unitary, it follows that if the solution
�̂ of Eq. (4.137) [or (4.39)] is normalized, the solution � after the transformation,
i.e., the solution of the logarithmic NLSE without the term γ 〈Sc〉, is not normalized.
So, for normalization purposes, γ 〈Sc〉 must be taken into account on the rhs of the
equation for �NL, thus leading to the NLSE (4.115).

Now the uncertainty products in canonical and physical descriptions are consid-
ered. For the cases with analytic Gaussian WP solutions of the CK-SE, this WP
�̂CK(x, t) is proportional to

�̂CK(x, t) ∝ exp

{
i ŷCK (x − 〈x〉CK)2 + i

�
〈 p̂〉CKx

}
. (4.138)

For this purpose, the imaginary part of the complex quantity ŷCK(t) = ŷCK,R +
i ŷCK,I is relevant as it is connected with the position uncertainty via

〈
x̃2

〉
CK = 1

4 ŷCK,I
, (4.139)

where the subscript “CK” indicates themean value is calculated using �̂CK. Similarly,
the uncertainty of the canonical momentum is given by

〈 ˜̂p2
〉
CK

= �
2

(
ŷ2CK,R + ŷ2CK,I

ŷCK,I

)
, (4.140)

16Although this was published quite some time ago [89], still papers with the wrong interpretation
and unphysical results like localization, i.e., shrinking of WPs to delta functions are considered and
published.
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hence the uncertainty product

ÛCK = 〈
x̃2

〉
CK

〈 ˜̂p2
〉
CK

= �
2

4

[
1 +

(
ŷCK,R

ŷCK,I

)2
]

≥ �
2

4
(4.141)

obviously does not violate Heisenberg’s principle.
The violation seems to occur if the canonicalmomentum p̂op = �

i
∂
∂x is replaced by

the physical (kinetic) momentum, according to pop = e−γ t p̂op, and the momentum
uncertainty is calculated with the same WP �̂CK as used for p̂op, i.e., 〈 p̃2〉CK =
〈 ˜̂p2〉CKe−2γ t . However, the operator pop is not defined on the canonical space to
which �̂CK belongs but on the physical space. Therefore, to be consistent, if the
operators are transformed, the WPs must be transformed accordingly.

The WPs that apply to the physical level are, as shown above, the solutions of
the logarithmic NLSE (4.115). These WPs can be written in a form equivalent to
(4.138),

�NL(x, t) ∝ exp

{
i yNL (x − 〈x〉NL)2 + i

�
〈 p̂〉NLx

}
, (4.142)

but, according to (4.135), ŷCK must be replaced by yNL = ŷCK e−γ t .
The uncertainties of position and physical momentum, calculated with �NL(x, t)

can now be given in terms of yNL,R and yNL,I and expressed in terms of the canonical
uncertainties as

〈
x̃2

〉
NL = 1

4 yNL,I
= eγ t 1

4 ŷCK,I
= eγ t

〈
x̃2

〉
CK , (4.143)

〈
p̃2

〉
NL = �

2

(
y2NL,R + y2NL,I

yNL,I

)
= e−γ t

�
2

(
ŷ2CK,R + ŷ2CK,I

ŷCK,I

)
= e−γ t

〈 ˜̂p2
〉
CK

.

(4.144)

So the uncertainty product

UNL = 〈
x̃2

〉
NL

〈
p̃2

〉
NL = �

2

4

[
1 +

(
yNL,R

yNL,I

)2
]

= �
2

4

[
1 +

(
ŷCK,R

ŷCK,I

)2
]

≥ �
2

4

(4.145)

is identical on the physical and the canonical levels and does not violate Heisenberg’s
principle, providing both operators and wave functions are transformed simultane-
ously.

As the link between the physical and canonical levels has now been established
for the classical as well as for the quantum mechanical case, any approach on the
canonical level that is related to that of Caldirola and Kanai by a (classical) canonical
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or (quantum mechanical) unitary transformation can also be uniquely linked to the
physical level. This can be done in two steps via the CK-model or directly via one
non-canonical or non-unitary transformation [89, 90].

In Figs. 4.1 and 4.2 this is demonstrated using the approach with expanding
coordinates discussed in Sect. 4.3.2 as an example.

In the classical case (Fig. 4.1), the transition between the expanding system and
the CK-approach is given by a canonical transformation, as shown in Sect. 4.3.2. A
subsequent non-canonical transformation then leads to the physical level. These two
transformations, however, can be combined to one non-canonical transformation that
directly links the expanding system to the physical one.

Considering the quantum mechanical case, the key quantity is the action function
and its relation to the wave function according to Schrödinger’s definition S =
�

i ln�. In position-space representation, in all approaches themomentum operator is
defined as �

i times the derivative with respect to the corresponding canonical position
variable, thus providing the Hamiltonian operator when the Hamiltonian function is
given. If the action functions of two approaches are different, the correspondingwave
functions are also different, can have different meanings and can lead to different
mean values calculated with them even if the functions are expressed in the same
variables as in the other approach (as in the case of �NL(x, t) and �̂CK(x, t)). On
the canonical level (and similarly on the physical level), a difference in the action
functions can be compensated for by a unitary transformation (as shown in Sect. 4.3.2
between �̂CK and �̂exp). However, between the canonical and physical levels the non-
unitary transformation discussed in the transition between the CK-approach and the
logarithmic NLSE is necessary. Again, as in the classical case, different approaches
with different action functions on the canonical level can be linked directly to the
physical level via one non-unitary transformation.

So, depending on the problem under consideration, it might be favourable in some
cases to exploit the mathematical advantage of linearity on the canonical level and,
via a non-unitary transformation, subsequently translate the results into the corre-
sponding physical quantities. In other cases, it might be better to use the immediate
physical image, even for the price of putting up with nonlinearities of the equations.

In the case of the damped HO, all three approaches discussed in detail in this
subsection possess Gaussian WP solutions (see (4.40) for �̂CK, (4.63) for �̂exp and
(2.1) for �NL). The (Newton-type) equation of motion for the maximum of these
WPs as well as the complex Riccati equations or equivalent real NL Ermakov equa-
tions and the corresponding Ermakov invariants (that exist in all these cases) might
look different when expressed in the canonical variables of the respective approach
(see Fig. 4.3). However, using the above-mentioned transformations they can all be
transformed into the equation for the damped HO, (4.41), describing the motion of
the maximum and thus the trajectory of the classical position and, for the dynamics
of the width, the Riccati Eq. (4.123) or equivalent Ermakov Eq. (4.125) with the
corresponding invariant 4.126) obtained on the physical level from the logarithmic
NLSE (4.115). Therefore, this approach will be used in the next section to demon-
strate the similarities and differences in comparison with the conservative case if the
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Fig. 4.4 Interrelations amongst canonical and physical approaches for the description of dissipative
systems

dynamics of the dissipative system is expressed with the help of the complex Riccati
equation, like shown in Chap. 2.

On the physical level, the logarithmic NLSE combines the dissipative aspect of
Kostin’s approach with the irreversible one of Doebner and Goldin and Beretta in a
consistent manner and, apart from a purely TD contribution that does not affect the
dynamics of the WP solutions, leads to identical results like the approach by Hasse
that combines attempts bySüssmann andAlbrecht (seeFig. 4.4).A closer comparison
between Hasse’s form of the friction term and the logarithmic nonlinearity will be
given in Chap. 6 where the dissipative version of TI NL quantum mechanics is
discussed.

The connection to the canonical level has been discussed above, as well as pos-
sible transitions between different approaches on this level via canonical or unitary
transformations.

In the work of Sun and Yu [13, 14], also the transition between the system-
plus-reservoir approach of Caldeira and Leggett and the Hamiltonian operator of
Caldirola and Kanai has been supplied (though using the wrong interpretation of the
corresponding wave function), providing the link between the system-plus-reservoir
approaches and the effective models discussed above.

What is still missing in the context of the approaches mentioned in this work is the
connection between the canonical Bateman model and, e.g., the effective canonical
models. This gap will finally be closed by showing the connection between the
systemwith expanding coordinates and theBateman approach. In order to connect the
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Bateman approach to the canonical approaches presented in Sect. 4.3, it is required
that

1. the equation of motion (4.23) for the position variable of the dissipative system is
the same as the equation of motion for the (physical) position variable (including
the friction force) in the two canonical approaches when these are expressed in
terms of the physical position variable x (or η(t));

2. the Bateman Hamiltonian represents a constant of motion with the dimension of
an energy.

The two descriptions of the dissipative system can be connected if it is assumed
that the conserved quantity ĤB [see Eq. (4.19)]

ĤB = 1

m
p̂x p̂y + γ

2
(ŷ p̂y − x̂ p̂x) + m

(
ω2 − γ 2

4

)
x̂ ŷ = const.

is identical to the conserved quantity Ĥexp [see Eq. (4.51)],

Ĥexp = 1

2m
P̂2 + m

2

(
ω2 − γ 2

4

)
Q̂2 = const. =̂ m

2

[
ẋ2 + γ ẋ x + ω2x2

]
eγ t = const.

(with x = x̂) and some constraints are imposed so that the dual variable ŷ and the

corresponding momentum are eliminated. From Eq. (4.21), p̂y = m
( ˙̂x + γ

2 x̂
)
, it

follows that none of the product terms of x̂ and p̂y with one of the other variables ŷ
and p̂x in (4.19) contains the exponential factor eγ t that is common in Eq. (4.51).

Following the course outlined above, the Hamiltonian ĤB (in the form (4.26),
i.e., ĤB =̂ m( ˙̂x ˙̂y + ω2 x̂ ŷ)) is equated with Ĥexp (and, as x̂ = x = physical position
variable, the hat is omitted for x):

m

2
eγ t

[
ẋ2 + γ ẋ x + ω2x2

] = p̂x ẋ + m
γ

2
ŷ ẋ + mω2x ŷ, (4.146)

which is only possible if ŷ and p̂x are expressed in terms of x and ẋ . For this purpose
the ansatz

p̂x = eγ t (a ẋ + b x) (4.147)

and
ŷ = eγ t (c ẋ + d x) (4.148)

is inserted into (4.146) and the coefficients of ẋ2, ẋ x and x2-terms are equated,
leading to
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d = 1

2
(4.149)

a = m

2
(1 − γ c) (4.150)

b = m
(γ

4
− ω2 c

)
, (4.151)

where a, b and c must still be determined. As only two equations (4.150, 4.151)
are given, one parameter is still free to be chosen. In Appendix D a more detailed
discussion of the cases 1) c = 0, 2) a = 0 and 3) b = 0 are given.

Generally, one parameter can be eliminated leaving a condition for the relation of
the other two, e.g., a and b that must be fulfilled for any choice of c, etc.,

a = 1

2ω2

(
m

(
ω2 − γ 2

4

)
+ γ b

)
(4.152)

or

b = 2

γ

(
ω2 a − m

2

(
ω2 − γ 2

4

))
. (4.153)

Note that, in expressing (4.147) and (4.148) in terms of canonical variables,

p̂x = eγ t (a ẋ + b x) = eγ t
( a

m
p̂y +

(
b − γ

2
a

)
x

)
(4.154)

ŷ = eγ t (c ẋ + d x) = eγ t
( c

m
p̂y +

(
d − γ

2
c
)
x

)
, (4.155)

an explicit TD character of the constraints shows up although they are compatible
with the equations of motion, that is, the total time-derivative of the constraints is
zero. The explicit dependence of the constraints on time is traced back to the fact that
they have non-vanishing Poisson brackets with the Hamiltonian. From the examples
discussed in Appendix D, it becomes obvious that, in general, i.e. independent of the
choice of the third parameter, and after imposing the constraints, the Hamiltonian ĤB

is no longer a Hamiltonian in the sense that it would provide the correct equations
of motion as the constraints contain an explicit time-dependence (for further details,
see [91]).

Once the relation between the variables of the Bateman system and the ones
in expanding coordinates is given explicitly (in terms of the physical position x
and velocity ẋ of the damped system), the connection with the CK-model17 can be
achieved via the TD canonical transformation, or, with the physical level, via the
non-canonical transformation specified above.

Now the connections between all the approaches specified in Fig. 4.4 are estab-
lished. However, many other approaches exist for the description of dissipative sys-
tems (like the interesting one by Dekker using complex variables [93] that are not

17A different way of embedding the TD constraints in a TD canonical transformation for getting
directly from the Bateman Hamiltonian to the CK-Hamiltonian has been shown in [92].
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mentioned here. It is not because they are considered unimportant or (even) wrong,
but because their connections with the above-mentioned approaches are not yet so
clear to the author that they can be specified in detail. (However, this may be subject
of further investigations.)

Similarly, the connection between the approaches for the pure states and those for
the density matrix/operator, particularly in the case of the logarithmic NLSE, has not
yet been specified. Particularly the question of compatibility of a term corresponding
to the logarithmic nonlinearity with the requirements of Kossakowski/Lindblad will
be considered in forthcoming works.

The following discussion, as mentioned above, focuses on the modifications of
the description of quantum dynamics in terms of complex Riccati equations, or equa-
tions equivalent to it (like real NL Ermakov equations), for systems with exact WP
solutions, providing a dissipative friction force −mγ ẋ is involved. Particularly, the
logarithmic NLSE (4.115) is discussed; the relations with other effective approaches
can be found using Fig. 4.4.
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Chapter 5
Irreversible Dynamics and Dissipative
Energetics of Gaussian Wave Packet
Solutions

5.1 Direct Solution of the Riccati Equation, Ermakov
Equation and Corresponding Invariant

In this section the same one-dimensional problems as in Chap. 2 will be considered,
particularly the harmonic oscillator (HO)with constant frequencyω = ω0 and (in the
limitω0 → 0) the freemotion, but now including, classically, a linear velocity depen-
dent friction force. For the quantum mechanical description the effective nonlinear
Schrödinger equation (NLSE) (4.115) with complex logarithmic nonlinearity,

i�
∂

∂t
�NL(x, t) =

{
− �

2

2m

∂2

∂x2
+ m

2
ω2x2 + γ

�

i
(ln�NL − 〈ln�NL〉)

}
�NL(x, t), (5.1)

is applied [1–5]. Its interrelation with other approaches for the description of open
dissipative quantum systems has been shown in the last chapter. As in the non-
dissipative1 case, also the NLSE possesses analytic Gaussian wave packet (WP)
solutions of the form

�NL(x, t) = NNL(t) exp

{
i

[
yNL(t)x̃

2 + 〈p〉NL
�

x̃ + KNL(t)

]}
(5.2)

where again x̃ = x − 〈x〉NL, but the mean values 〈. . .〉NL are now calculated using
�NL(x, t). The dynamics of the system described by this WP is again completely

1Again, non-dissipative is used here instead of conservative because, for TD frequencyω = ω(t), the
corresponding Hamiltonian is also not a conserved quantity, though no dissipative force is present.
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determined once the time-evolution of its maximum and width are known. Inserting
(5.2) into (5.1) yields as equation of motion for the maximum

η̈ + γη̇ + ω2η = 0, (5.3)

i.e., the averaged Langevin equation including the friction force.
Thedynamics of theWPwidth canbeobtained, for 2�

m yNL = CNL, from themodified
complex Riccati equation

ĊNL + γCNL + C2
NL + ω2 = 0 (5.4)

with an additional term linear in CNL. TheWP width or position uncertainty is related
with the imaginary part CNL,I in the same way as in the non-dissipative case,

CNL,I = �

2m〈x̃2〉NL . (5.5)

It is also possible in this case to transform the inhomogeneous Riccati equation
(5.4) into a homogeneous Bernoulli equation, providing a particular solution C̃NL is
known. The resulting Bernoulli equation

V̇ + 2

(
C̃NL + γ

2

)
V + V2 = 0 (5.6)

differs from the one in the non-dissipative case (2.5), only in so far that C̃ is replaced
by C̃NL + γ

2 in the coefficient of the linear term. The general solution is again CNL(t) =
C̃NL + V(t).

Equation (5.6) can be linearized exactly like (2.5) via V(t) = 1
κ
leading to

κ̇ − 2
(
C̃NL + γ

2

)
κ = 1. (5.7)

In the case of a HO with constant frequency ω0, the particular solution has the
form

C̃± = −γ

2
±

√
γ2

4
− ω2

0, (5.8)

i.e., in general (apart from ω2
0 = γ2

4 ), two (at least mathematical) solutions exist for

C̃NL.
The solution of the Bernoulli equation (5.6) can be written down immediately in

analogy with the second term on the rhs of Eq. (2.7) as

V±(t) = 1

κ±(t)
= e−2(C̃±+ γ

2 )t

κ0 + 1
2(C̃±+ γ

2 )

[
1 − e−2(C̃±+ γ

2 )t
] . (5.9)
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For TDparticular solutions C̃NL,V(t) can be expressed in terms of the same integral
I(t) as in (2.8), again only replacing C̃ with C̃NL + γ

2 .
Like in the non-dissipative case, the solutions of the Bernoulli (and hence the

Riccati) equation are sensitive to the choice of the initial condition κ0 which is
realted to C̃NL (for constant values) and the initial value CNL(t = 0) = CNL,0, via

V±,0 = 1

κ±,0
= CNL,0 − C̃±,0, (5.10)

leading to expressions like (2.9).
The relations between the initial value CNL,0 and the initial position andmomentum

uncertainties are specified below. For this purpose, it is also useful to rewrite the
complex Riccati equation (5.4) as a real Ermakov equation.

Using the same definition of the imaginary part CNL,I(t) in terms of the Ermakov
variable αNL(t), i.e.,

CNL,I(t) = 1

α2
NL(t)

, (5.11)

the imaginary part of Eq. (5.4),

ĊNL,I + γCNL,I + 2CNL,ICNL,R = 0, (5.12)

provides the modified real part as

CNL,R(t) = α̇NL

αNL

− γ

2
. (5.13)

Inserting both parts into the real part of Eq. (5.4),

ĊNL,R + γCNL,R + C2
NL,R − C2

NL,I + ω2 = 0, (5.14)

finally yields the modified Ermakov equation

α̈NL +
(

ω2 − γ2

4

)
αNL = 1

α3
NL

(5.15)

that was already mentioned in Sect. 4.3 and has the same form as the Ermakov
equation (4.66) of the description in expanding coordinates.

Together with the Newton-type equation (5.3) they also form an Ermakov system
with the corresponding invariant

INL = 1

2
eγt

[(
η̇αNL −

(
α̇NL − γ

2
αNL

)
η

)2 +
(

η

αNL

)2
]

= const. (5.16)
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5.2 Position and Momentum Uncertainties in Terms
of Ermakov and Riccati Variables

In the same way as in the non-dissipative case (see Sect. 2.3.1), the position and
momentum-uncertainties as well as their correlation can be obtained by calculating
the corresponding mean values, but now with the WP solution (5.2) of the NLSE
(5.1). Expressed in terms of αNL(t) and α̇NL(t), or CNL,R(t) and CNL,I(t), they attain the
modified form

〈x̃2〉NL(t) = �

2m
α2

NL = �

2m

1

CNL,I

, (5.17)

〈p̃2〉NL(t) = m�

2

[(
α̇NL − γ

2
αNL

)2 + 1

α2
NL

]
= m�

2

C2
NL,R + C2

NL,I

CNL,I

, (5.18)

〈[x̃, p̃]+〉NL(t) = 〈x̃p̃ + p̃x̃〉NL(t) = �αNL

[
α̇NL − γ

2
αNL

]
= �

CNL,R

CNL,I

, (5.19)

where it is again obvious that these results minimize the Schrödinger–Robertson
uncertainty relation [6, 7]

〈x̃2〉NL〈p̃2〉NL −
(
1

2
〈[x̃, p̃]+〉NL

)2

= �
2

4
. (5.20)

Also in this dissipative case the explicit expressions for the uncertainties can
be obtained by solving the Ermakov equation (5.15) for given αNL(t0) = αNL,0 and
α̇NL(t0) = α̇NL,0 or the Riccati equation (5.4) for given κ0.

In the non-dissipative case, we have seen that the solution of the Ermakov equa-
tion can also be obtained using the method of linear invariant operators, outlined
in Appendix A, providing two linear independent solutions of the corresponding
Newtonian equation are known. The same can be used in this case [8]. To make the
formal similarity even clearer, a new (classical) variable ξ̂(t) is introduced that is
related to the classical position variable η(t) = 〈x〉NL that fulfils Eq. (5.3) via

ξ̂(t) = η(t)e
γ
2 t, (5.21)

i.e., in the same way as the canonical variable Q̂ in the expanding system is related
with the physical variable x. Written in this new variable, the Newtonian equation
(5.3) with the friction force formally turns into a Newtonian equation for an oscillator

without friction, but shifted frequency � =
(
ω2 − γ2

4

) 1
2
,

¨̂
ξ +

(
ω2 − γ2

4

)
ξ̂ = 0. (5.22)
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Together with the Ermakov equation (5.15) the corresponding invariant has the
same form as in the non-dissipative case (and in the canonical expanding system)

INL = 1

2

⎡
⎣( ˙̂

ξαNL − ξ̂α̇NL

)2 +
(

ξ̂

αNL

)2
⎤
⎦ (5.23)

(which is also useful later on in connection with the Wigner function), only η being
replaced by ξ̂ and α by αNL.

In order to be consistent with the notation in Sect. 2.3.1 and Appendix A, where
ηi(t) had been replaced by fi(t) with f1(t) = − 1

v0
η(t) (with η = 〈x〉), here ξ̂i is

replaced by ξi = − 1
v0

ξ̂i with ξ1 = − 1
v0

η(t)e
γ
2 t .

The Ermakov variable αNL±(t) can now be obtained from

αNL±(t) = [
Aξ21(t) + Bξ22(t) ± 2Cξ1(t)ξ2(t)

] 1
2 , (5.24)

if two linear independent (but not necessarily orthogonal) solutions of Eq. (5.22) are
known with the initial conditions

ξ1(t0) = 0, ξ̇1(t0) = −1, ξ2(t0) = 1, ξ̇2(t0) = 0. (5.25)

The subscript ± indicates that, due to the ±-sign in front of the bilinear term, two
solutions can be expected (at least from a mathematical point of view).

In the non-dissipative case, the coefficients A, B and C in the expression for α(t)
are obtained by comparing the most general quadratic invariant with the Ermakov
invariant (see Appendix A). Equations (5.15) and (5.22) differ from the Eqs. (2.16)

and (2.3), leading to the invariant (2.21), only by the frequency � =
(
ω2 − γ2

4

) 1
2

instead of ω. However, this frequency is eliminated anyway in the course of the
derivation of the invariant. So INL in (5.23) has the identical form with invariant
(2.21), only η is replaced by ξ̂ and α by αNL. Therefore, the coefficients A, B and C,
expressed in terms of α0 and α̇0 also have an identical form, i.e.,

A = α̇2
0 + 1

α2
0

, B = α2
0, C = α̇0α0. (5.26)

The major difference is that, in the non-dissipative case, the coefficients are
directly related to either one of the initial position, momentum or correlation uncer-
tainties via
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AL = α̇2
0 + 1

α2
0

= 2

m�
〈p̃2〉L,0, (5.27)

BL = α2
0 = 2m

�
〈x̃2〉L,0, (5.28)

CL = α̇0α0 = 1

�
〈[x̃, p̃]+〉L,0, (5.29)

whereas, in the dissipative case, these coefficients, expressed in terms of these initial
uncertainties, are mixtures of them, i.e.,

ANL = α̇2
0 + 1

α2
0

= 2

m�

[
〈p̃2〉NL,0 + m〈[x̃, p̃]+〉NL,0 + m2 γ2

4
〈x̃2〉NL,0

]
, (5.30)

BNL = α2
0 = 2m

�
〈x̃2〉NL,0, (5.31)

CNL = α̇0α0 = 1

�

[〈[x̃, p̃]+〉NL,0 − mγ〈x̃2〉NL,0
]
. (5.32)

The initial conditions α0 and α̇0 can also be expressed in terms of the initial
uncertainties as

αNL,0 =
(
2m

�
〈x̃2〉NL,0

) 1
2

,

α̇NL,0 =
(

1

2m�〈x̃2〉NL,0
) 1

2 [〈[x̃, p̃]+〉NL,0 − mγ〈x̃2〉NL,0
]
. (5.33)

As shown in (5.10), for the determination of κ±0 = 1
V±0

, CNL,0 must be known that
can be expressed in terms of α0 and α̇0 as

CNL,0 = α̇0

α0
− γ

2
+ i

1

α2
0

. (5.34)

For the damped HO with constant frequency ω0 this leads to

V±0 =
(

α̇0

α0
− γ

2

)
+ i

1

α2
0

−
[
−γ

2
±

√
γ2

4
− ω2

0

]

= α̇0

α0
+ i

[
1

α2
0

∓
√

ω2
0 − γ2

4

]
, (5.35)

where κ±0 is obtained by inverting this expression. For ω0 ≥ γ
2 , essentially ω0 in

the non-dissipative case is replaced by � =
(
ω2 − γ2

4

) 1
2
. However, for ω0 <

γ
2 or

ω0 = 0, additional real contributions (with different signs) occur that must be added
to α̇0

α0
. These will be present even if α̇0 = 0 or may compensate the contribution



5.2 Position and Momentum Uncertainties in Terms of Ermakov … 139

of α̇0
α0

�= 0. So, depending on the choice of the initial parameters and the relation
between friction coefficient γ and frequency ω0, a variety of qualitatively-different
time-dependencies of the uncertainties is possible.

Examples showing qualitatively new effects like bifurcations or resonance-type
phenomena are given below.Amore systematic discussion of the damped freemotion
and the dampedHO for undercritical damping

(
ω0 >

γ
2

)
, overdamping

(
ω0 <

γ
2

)
and

the aperiodic limit
(
ω0 = γ

2

)
as well as the corresponding uncertainties are given in

Appendix B.
Before the examples are studied, the linearization of the Riccati equation (5.4)

and consequences for a possible Lagrange/Hamilton formalism for the uncertainties
in the dissipative case are considered next.

5.3 Linearization of the Riccati Equation and Dissipative
Lagrange–Hamilton Formalism for Quantum
Uncertainties

The complex NL Riccati equation (5.4) can also be linearized via a logarithmic
derivative

2�

m
yNL = CNL =

˙̃λ
λ̃

= α̇

α
− γ

2
+ iϕ̇ = λ̇

λ
− γ

2
(5.36)

with λ̃ = λe− γ
2 t = αNLe− γ

2 t+iϕ. That is, the relation between ϕ̇ and αNL, ϕ̇ = 1
α2
NL

remains unchanged as in the non-dissipative case (also the relation between CI and α
remains unchanged, CNL,I = 1

α2
NL
), only the amplitudeαNL is affected by the dissipation

via the exponential damping factor e− γ
2 t . Expressed in terms of λ̃, the linearized

Riccati equation again takes the form of the corresponding (complex) Newtonian
equation (now including the friction force),

¨̃λ + γ ˙̃λ + ω2λ̃ = 0. (5.37)

In terms of the complex variable without tilde, λ(t), a variable that expands expo-
nentially when compared to λ̃(t) (like Q̂(t) in comparison with x(t)), the equation
of motion is

λ̈ +
(

ω2 − γ2

4

)
λ = 0, (5.38)

i.e., again like in the expanding canonical system, an undamped oscillator with
reduced frequency.
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Writing λ̃ in polar coordinates as

λ̃ = ũ + i z̃ = (u + i z)e− γ
2 t = αNL e

− γ
2 t cosϕ + i αNL e

− γ
2 t sinϕ (5.39)

shows that the conservation lawx ϕ̇α2
NL = żu − u̇z = 1, in terms of the quantities

with tilde, takes the form
˙̃zũ − ˙̃uz̃ = e−γt, (5.40)

which will be important in connection with the time-dependent (TD) Green function
discussed below.

In this dissipative case, the position and momentum uncertainties, and hence also
their contribution(s) to the mean value of the energy, can again be expressed not only

in terms of α and α̇ but also in terms of λ̃ and ˙̃λ. In particular, one obtains

〈x̃2〉NL = �

2m
α2

NL = �

2m
eγt

(
λ̃λ̃∗

)
, (5.41)

〈p̃2〉NL = �m

2

[ (
α̇NL − γ

2
αNL

)2 + 1

α2
NL

]
= �m

2
eγt(

˙̃λ ˙̃λ∗), (5.42)

〈[x̃, p̃]+〉NL = �

(
α̇NLαNL − γ

2
α2

NL

)
= �

2
eγt ∂

∂t
(λ̃λ̃∗), (5.43)

and the quantum mechanical energy contribution can be written as

ẼNL = 1

2m
〈p̃2〉NL + m

2
ω2〈x̃2〉NL

= �

4

{ (
α̇NL − γ

2
αNL

)2 + ϕ̇2α2
NL + ω2α2

NL

}

= �

4
eγt(

˙̃λ ˙̃λ∗ + ω2λ̃λ̃∗), (5.44)

which is, in general, no longer constant. In particular, it can be shown that

d

dt
ẼNL = − d

dt

(γ

4
〈[x̃, p̃]+〉NL

)
(5.45)

is valid, from which it follows that the quantity

Ẽ0 = 1

2m
〈p̃2〉NL + γ

4
〈[x̃, p̃]+〉NL + m

2
ω2〈x̃2〉NL

= �

4
eγt

{ ˙̃λ ˙̃λ∗ + γ

2

( ˙̃λλ̃∗ + ˙̃λ∗λ̃
)

+ ω2λ̃λ̃∗
}

= �

4

{
λ̇λ̇∗ +

(
ω2 − γ2

4

)
λλ∗

}
= const. (5.46)

is a constant of motion for this dissipative system.
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Based on this energetic invariant, that can also be written as

Ẽ0 = �

4

(
α̇2

NL + α2
NLϕ̇

2 + �2α2
NL

)
, (5.47)

a Lagrangian/Hamiltonian formalism for the quantum uncertainties can be obtained
in exactly the same way as described in Sect. 2.6, only ω must be replaced by

� =
(
ω2 − γ2

4

) 1
2
and the relevant variable λ(t) is expanding exponentially com-

pared to λ̃, i.e., λ = λ̃e
γ
2 t .

In terms of real and imaginary parts of λ = u + iz, the Ermakov invariant in the
dissipative case can also be written as

INL = 1

2

(p0α0

m

)2
[(

u

αNL

)2

+
(

z

αNL

)2
]

= 1

2

(p0α0

m

)2 [
sin2 ϕ + cos2 ϕ

] = 1

2

(p0α0

m

)2
. (5.48)

Comparison with (5.23) shows that z = z̃ e
γ
2 t = m

p0α0
ξ̂ = m

p0α0
η e

γ
2 t , i.e., z̃ = m

p0α0
η(t),

which is confirmed by the TD Green function shown below.

5.4 New Qualitative Quantum Effects Induced
by a Dissipative Environment

5.4.1 Increase of Ground State Energy Due to Interaction
with an Environment

Already the (undercritically) damped HO with constant frequency ω0 makes it pos-
sible to show characteristic differences between the dissipative and non-dissipative
case. Inserting a WP with constant width into NLSE (5.1) provides, as particu-
lar solution of the Riccati equation (5.4), the relation (5.8), C̃± = − γ

2 ± i� with

� =
√

ω2
0 − γ2

4 . Like in the case without dissipation, only the +-sign leads to nor-
malizable Gaussian functions (for ω0 >

γ
2 ). So, in agreement with α̇ = 0, real and

imaginary parts can be written as

C̃+R = −γ

2
, C̃+I = � = �

2m〈x̃2〉NL = 1

α2
0

. (5.49)

The position uncertainty and the WP width can therefore be expressed in terms of

〈x̃2〉NL = �

2m�
. (5.50)
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Expression (5.18) for the momentum uncertainty reduces to

〈p̃2〉NL = m�

2

[
γ2

4
α2
0 + 1

α2
0

]
= m�

2

ω2
0

�
. (5.51)

The quantum mechanical contribution to the energy, calculated as the mean value
of HNL, can therefore be written as [1]

ẼNL = 1

2m
〈p̃2〉NL + m

2
ω2
0〈x̃2〉NL = �

2

ω2
0

�
= �

2
ω0

(ω0

�

)
>

�

2
ω0, (5.52)

which is larger than in the undamped case! This is similar to the situation in clas-
sical Brownian motion described by the Langevin equation (including a stochastic
fluctuating force). Even if the motion of the centre of mass of the observable sys-
tem has (on an average) come to rest due to the action of the friction force, some
erratic motion still remains around this final position due to the interaction with the
surrounding via the fluctuating force. Even if this force vanishes on an average, this,
for example, does not apply to quantities related to the square of this force. This
supplies an additional contribution to the system’s energy. Making the conventional
assumption that the final state of the system’s evolution is thermal equilibrium, via
the equipartition theorem, this energy contribution can be set equal to 1

2kBT with
kB being Boltzmann’s constant and T the temperature of the environment. In our
dissipative quantum case, a similar situation appears to exist.

Comparison with Kostin’s approach, where only the real part of the logarithmic
nonlinearity enters (see (4.85)), shows that in his case the imaginary part of the
particular solution is unchanged by the NL term, i.e., C̃K,I = ω0 = �

2m〈x̃2〉K . Therefore,
his energy contribution ẼK = �

2ω0 is the ground state energy of the undamped HO.
Consequently, the increase of Ẽ, similar to the one caused by the stochastic force in
the classical case, is due entirely to the imaginary part of the logarithmic nonlinearity
and thus (via (4.113)) due to the diffusion term in the Smoluchowski equation (4.109).

This similarity can be taken even further, rewriting result (5.52) as

ẼNL = �

2
�

(
1 +

γ2

4

�

)
= �

2
� + m

γ2

4
〈x̃2〉 = �

2
� + m

2
γD, (5.53)

where relations (5.50) and (4.121), i.e., D = γ
2 〈x̃2〉, have been used. With the same

assumption of thermal equilibrium and replacing the diffusion coefficient according
to (4.8) by the Einstein relation , D = kBT

mγ
, Eq. (5.53) finally turns into

ẼNL = �

2
� + 1

2
kBT. (5.54)

The effect of the imaginary logarithmic term is therefore twofold.
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1. It changes the frequency of the ground state oscillation from ω0 to the same
damped frequency� that is the characteristic one for the system’s classical oscillatory
part.

2. It supplies an additional contribution to the energy from the interaction with the
(non-observable) environment that, for the above choice ofD, is equal to the thermal
energy 1

2kBT!
However, the choice of the diffusion coefficient D characterizes the specific envi-

ronment that is considered. Therefore, different choices of D also lead to different
expressions for the additional energy in (5.53).

One other interesting case occurs if, as alreadymentioned in Sect. 4.4.3, according
toGrössing et al. [9] one identifies the Einstein diffusion coefficient with the quantum
mechanical one (providing the SE is considered a diffusion equation with imaginary
diffusion coefficient), i.e.,D = kBT

mγ
= �

2m (whichwould implicate 1
2kBT = �

2
γ
2 ). Then

the imaginary part W̃I of the logarithmic nonlinearity (4.118) turns into

W̃I = −iTkB (ln�NL − 〈ln�NL〉) , (5.55)

where −kB〈ln �〉 = −kB

∫ +∞
−∞ dx � ln � has a form like the statistical definition of

entropy, S. So, the mean value of the linear Hamiltonian, 〈HL〉 = E, together with
the second term of (5.55) would look like E − iTS, i.e., similar to the expression for
the free energy, only here, again with the imaginary unit i appearing in the quantum
mechanical context (see also [10]).

5.4.2 Bifurcation and Non-diverging Uncertainty Product

Next the damped free motion is considered and compared with the conservative case.
Here, no WP solution with constant width exists (in both cases). The classical part
of the dynamics, i.e., the motion of the WP-maximum, is affected by the dissipa-
tive environment as is expected. Whereas the isolated system moves with constant
velocity 〈v〉L = η̇L = v0 = const., the damped system is slowed down by the interac-
tion according to 〈v〉NL = η̇NL = v0e−γt . Therefore, the position is no longer growing
proportional to time t but approaches a finite value 〈x〉NL(t → ∞) = v0

γ
, according

to 〈x〉NL = ηNL = v0
γ

(
1 − e−γt

)
.

Considering the time-dependence of the WP-width, the particular solution (5.8)
for ω0 = 0 and γ = 0, i.e., for the isolated system, takes the value C̃± = ±0. That
means, for the particular solution there is no term quadratic in x in the exponent.
This agrees with the statement in Sect. 5.1 that the limit of the WP solution of the
HO with constant width, corresponding to a particular solution, in the limit ω0 → 0,
does not lead to the free motion Gaussian WP but to a plane wave, i.e., a function
with no term quadratic in x but only linear in this variable.
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Consequently in the corresponding Bernoulli equation, the linear term also van-
ishes. Therefore, one obtains only one solution that leads to the well-known posi-
tion uncertainty that is growing proportional to t2, an equally increasing uncertainty
product due to a constant momentum uncertainty and, as a consequence of this, to a
constant energy contribution, i.e.,

〈x̃2〉L = 〈x̃2〉0{1 + (β0t)
2} = �

2mβ0
{1 + (β0t)

2}, (5.56)

〈p̃2〉L = 〈p̃2〉0 = m�

2
β0 = const., (5.57)

UL = �
2

4
{1 + (β0t)

2}, (5.58)

ẼL = �

4
β0, (5.59)

where β0 = �

2m〈x̃2〉0 is still used as above.

For t = 0 the WP is a minimum uncertainty WP as UL(0) = �
2

4 ; but then UL(t) is
spreading quadratically in time and diverging for t → ∞.

In the dissipative case, i.e., ω0 = 0 but γ �= 0, the particular solution (5.8) does
not just vanish but can take two different (real) values, C̃+ = 0, C̃− = −γ. As a
consequence, also the coefficient of the linear term in Bernoulli equation (5.6) can
take two different values, 2(C̃± + γ

2 ) = ±γ, leading to the same values with opposite
sign in the exponents of the solutions (5.9).

However, the problem is not yet completely defined unless the initial condition κ0,
or equivalently α0 and α̇0, have been chosen. To make the resulting expressions as
simple as possible and directly comparable with the ones given in Eqs. (5.56)–(5.59),
a situation with no initial position-momentum-uncertainty correlations is chosen,2

i.e., 〈[x̃, p̃]+〉NL(0) = �(α̇NL,0 − γ
2αNL,0)αNL,0 = 0. This corresponds, in the conserv-

ative case, to the choice α̇0 = 0 which avoids a term linear in t in the expression for
〈x̃2〉L.

The two different values ±γ lead to two solutions corresponding to two different
states with different physical properties. In this sense one could say that a kind
of degeneracy, existing in the conservative reversible case, has been removed by the
breaking of time-reversal symmetry in the dissipative irreversible case. This splitting
has close formal similarity with a Hopf-bifurcation where, depending on the value
of a critical parameter, a system can either approach a fixed point or a limit cycle
[11, 12]. This will be discussed again in Sect. 7.3 but there only for real Bernoulli
equations whereas Eq. (5.6) is complex.

2The more general case is discussed in Appendix B.
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From Eq. (5.9) follows for +γ:

〈x̃2〉+ = 〈x̃2〉0
{
eγt +

(
β0
γ
2

)2

sinh2
γ

2
t

}
, (5.60)

〈p̃2〉+ = 〈p̃2〉0e−γt, (5.61)

U+ = �
2

4

{
1 +

[(
β0

γ

) (
1 − e−γt

)]2
}

, (5.62)

Ẽ+ = �

4
β0e

−γt, (5.63)

and for −γ:

〈x̃2〉− = 〈x̃2〉0
{
e−γt +

(
β0
γ
2

)2

sinh2
γ

2
t

}
, (5.64)

〈p̃2〉− = 〈p̃2〉0
{
1 +

(
γ

β0

)2
}
e−γt, (5.65)

U− = �
2

4

{
1 +

[(
β0

γ

) (
1 − e−γt

) −
(

γ

β0

)
e−γt

]2
}

, (5.66)

Ẽ− = �

4
β0

{
1 +

(
γ

β0

)2
}
e−γt . (5.67)

In both cases, the correspondingWPsare spreading faster in time than in the reversible
case (due to the sinh2-term even exponentially; an explanation for this being reason-
able is given in the next sub-section and, more detailed, in [2]). Although themomen-
tum uncertainties both decrease exponentially in time, the uncertainty products never
violate Heisenberg’s principle.

However, there are not only similarities but also distinct differences between the
two WP solutions. While the +γ-WP has an initial value of the energy contribution
that is identical to the one of the (constant) value of the reversible case, Ẽ+(0) =
�

4β0 = ẼL the initial value of the −γ-WP has a larger contribution, given by

Ẽ− (0) = �

4
β0

{
1 +

(
γ

β0

)2
}

> Ẽ+ (0) . (5.68)

What might be the physical interpretation of the energy difference between Ẽ+
and Ẽ−? Using the definition of β0 as given above, the initial difference between the
two energy values can be expressed as
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�Ẽ0 = Ẽ−(0) − Ẽ+(0) = �

4

γ2

β0
= m

2
γ2〈x̃2〉0. (5.69)

From this it follows that�Ẽ0 is independent of � but depends only on the parame-
ters characterizing the environment. It vanishes for vanishing friction coefficient γ
or, equivalently, for vanishing (initial value of the) diffusion coefficientD0 = γ

2 〈x̃2〉0
in the Smoluchowski equation. Assuming again, as in the previous subsection, that
D0 could be identified with the Einstein relation D = kBT

mγ
, would lead to

�Ẽ0 = kBT. (5.70)

So, the two states differ initially by an energy that is related to the thermal energy of
the environment in away that only the energy Ẽ−, not Ẽ+, is raised by a corresponding
amount before both exponentially decay (see also [13]).

Similar properties also apply to the initial values for the uncertainty productwhich,
in the +γ-case, simply takes the minimum valueU+(0) = �

2

4 , whereas the value for
the −γ-WP is larger,

U−(0) = �
2

4

{
1 +

(
γ

β0

)2
}

> U+(0). (5.71)

The difference can be interpreted in the same way as the energy difference �Ẽ0.
However, both uncertainty products do not diverge for t → ∞, as in the conservative
case, but asymptotically approach the same finite maximum value

U±max = U±(t → ∞) = �
2

4

[
1 +

(
β0

γ

)2
]

. (5.72)

Some consequences:

1. For a system with large mass m, due to β0 = �

2m〈x̃2〉L the maximum value U±max

is small.
2. For larger γ, i.e., more frequent interaction between the system and the environ-

ment, the value ofU±max is getting smaller. This is similar to the quantum Zeno
effect where frequent observation of (i.e., interaction with) the quantum system
reduces the uncertainty of its state.

3. Even in the limit of permanent interaction (or observation), i.e., γ → ∞, it is
not possible to go below the lower bound of �

2

4 for the uncertainty product.
4. Expressed in terms of the quantum mechanical diffusion coefficient Dqm = �

2m
and the initial one of our Smoluchowski equation, D0 = γ

2 〈x̃2〉0, the final uncer-
tainty product can be expressed as U±max = �

2

4

[
1 +

(
1
2
Dqm

D0

)2
]
(for further

details, see [2]).
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5.4.3 Modified Plane Waves and Nonlinear Superposition

From the expressions for the position uncertainties of the damped free motion, Eqs.
(5.60) and (5.64), it is obvious that in both cases (at least due to the sinh2-term)
the corresponding WPs are spreading faster than in the conservative case. This is in
contrast with some other models that predict a slower spreading or, to the contrary,
shrinking of theWPwidth, sometimes even leading to an unphysical localisationwith
a position uncertainty shrinking to a delta function (while the momentum uncertainty
stays finite, thus leading to a violation of the uncertainty principle like the one
mentioned in Sect. 4.3.1). The suppression of the spreading is then interpreted in a
way as if the WP would be a kind of matter density whose expansion is hindered by
the collisions with the non-empty environment. As the WP should be considered a
distribution of probability, not of matter, this interpretation is obviously wrong. To
find arguments supporting the faster spreading of the damped WP, the reasons for
the spreading in the conservative case are now firstly discussed in more detail and,
afterwards, the modifications due to the interaction with the environment.

The Gaussian WP is not the only solution of the TDSE for the free motion, there
are also (particular) solutions with the form of the plane waves

�k,L(x, t) =
(

1

2π

) 1
2

exp {i [kx − ωkt]} (5.73)

describing a wave travelling with the constant “group velocity” (= particle velocity)3

vg = �

mk (see also [6]) and constant energy �ωk with ωk = �

2mk
2. The Gaussian WP

solution of the same TDSE can be expressed as superposition of these plane waves
for all possible k-values,

�WP,L(x, t) =
∫ +∞

−∞
dkAL(k)�k,L(k, t)

=
(

1

2π

) 1
2

∫ +∞

−∞
dkAL(k)e

i[kx−ωk t] (5.74)

where the subscripts L denotes quantities obeying the linear TDSE.
The expansion coefficients AL(k) can be determined from

AL(k) =
∫ +∞

−∞
dx�WP,L(x, t)�

∗
k,L(x, t). (5.75)

3The phase velocity vp is related to vg via vp = ωk
k = �

2m k = 1
2vg .
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As these coefficients are not TD, it is practical to solve this integral for the most
simple case, i.e., for t = 0,

AL(k) =
(

1

2π

) 1
2

∫ +∞

−∞
dx�WP,L(x, 0)e

−ikx, (5.76)

which means that the Fourier transform of the initial WP �WP,L(x, 0) must be deter-
mined.

As shown in Sect. 2.7, the Fourier transform of the WP in position space leads to
the corresponding one in momentum space. The width of this WP can be expressed
in terms of the inverse of the quantity fulfilling the complex Riccati equation (2.4) in

position space, i.e.,
(
am
i�

) = (
2�

m y
)−1 = C−1 where particularly the real part of a(t)

is related to the momentum uncertainty via aRm
�

= m�

2〈p̃2〉 (see also Eqs. (2.98–2.99)).
Expressed with these two quantities, the coefficients AL(k) can be written as

AL(k) =
(aR,0

π

) 1
4
exp

{
−aR,0

2
(kWP − k)2

}

=
(

�
2

2π〈p̃2〉0
) 1

4

exp

{
−�

2 (kWP − k)2

4〈p̃2〉0

}
(5.77)

with kWP being the k-value of the WP related to the constant velocity of the classical
free particle via kWP = 1

�
〈p〉 = m

�
η̇ = m

�
v0.

The reason for the spreading of theWP can be traced back to the fact that the plane
waves that are superimposed in the WP have different k-values and thus different
group and phase velocities, leading to a dephasing of the initially well-localizedWP.

In order to find the modifications due to the interaction with the dissipative envi-
ronment, a question must first be answered. Are there also wave-function solutions
of the NLSE comparable with the plane waves of the linear problem?

Such functions �k,NL(x, t; k(t)) can actually be determined and have the form [2]

�k,NL(x, t; k(t)) =
(

1

2π

) 1
2

exp

{
i

[
kx −

∫ t

0

�k2

2m
dt′ + γ

∫ t

0
k〈x〉dt′

]}
, (5.78)

which is similar to plane waves and turns into these for γ → 0. It can be shown that
these functions are eigenfunctions of the momentum operator with TD eigenvalue
�k(t) where

k(t) = k0e
−γt (5.79)

and also eigenfunction of the kinetic energy operator, also with TD eigenvalue
〈T〉NL = 1

2m�
2k2(t) = 1

2m�
2k20e

−2γt . However, due to the occurrence of 〈x〉 in the
exponent, these functions are no eigenfunctions of the energy operator i� ∂

∂t but still
provide the correct mean value of the energy

〈
i� ∂

∂t

〉
NL

= 1
2m 〈p〉2NL with 〈p〉NL = �k(t)

if k̇ = −γk is taken into account.
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Like in the linear case, an expansion of the Gaussian WP solution of the NLSE
for the damped free motion in terms of the functions �k,NL(x, t; k(t)) is possible
according to

�WP.NL(x, t) =
∫ +∞

−∞
dkANL(k)�k.NL(x, t), (5.80)

where the coefficients ANL(k) can also be determined via

ANL(k) =
∫ +∞

−∞
dx�WP,NL(x, t)�

∗
k,NL(x, t). (5.81)

However, in contrast with the linear problem, these coefficients ANL are now TD
due to the time-dependence of k = k(t). Therefore, it is not sufficient to determine
the coefficients for the most simple case t = 0 but one has to use the TD functions
�WP,NL(x, t) and �k,NL(x, t) for the calculation. The coefficients obtained in this way
are now complex functions where the imaginary term aI(t) also occurs in the phase of
these functions. This phase is irrelevant for the discussion of the spreading properties
of the WP and will be ignored in the following (for further details, see [2]). Only the
absolute value of the ANL is considered which is given by

|ANL(k)| =
(
aR(t)

π

) 1
4

exp

{
−aR(t)

2
k̃2

}

=
(

�
2

2π〈p̃2〉NL(t)
) 1

4

exp

{
− �

2k̃2

4〈p̃2〉NL(t)

}
(5.82)

with |k̃| = |kWP − k|. This quantity depends on time (via k(t)) and on the difference
between the k-value under consideration and the fixed value kWP(t) determining the
classical momentum 〈p〉NL = �kWP of the WP. Regarding the change in time, one
finds4

d

dt
|ANL(k)| = γ

{
aR(t)

2
k̃2 + 1

4

} (
aR(t)

π

) 1
4

exp

{
−aR(t)

2
k̃2

}
. (5.83)

On the one hand, this shows that the change in time of |ANL(k)| is proportional to
the friction coefficient γ and vanishes for γ → 0; on the other hand, it depends on
|ANL| itself and on |k̃|. The dependence on |k̃| is of such that one term exists which is
proportional to k̃2e− aR

2 k̃2 , therefore corresponding to a Maxwell–Boltzmann distri-
bution, and a second term is proportional to e− aR

2 k̃2 , thus describing an exponential
decay. This second term requires that also for k̃ = 0, i.e., for k = kWP, the absolute
value |ANL| changes in time despite the fact that the first term vanishes in this case;
i.e., all coefficients are TD.

4Note that d
dt |ANL| �= | ddt ANL|.
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A rough qualitative draft of the change in time of |ANL| as a function of |k̃| shows
a curve starting at |k̃| = 0 with the positive value 1

4γ
( aR

π

) 1
4 , running through a max-

imum at |k̃max| =
(

3
2aR

) 1
2
with the maximum value of e− 3

4

[
γ

( aR
π

) 1
4

]
and finally

approaching the |k̃|-axis asymptotically (see Fig. 5.1).
The maximum value itself, as well as its position, i.e., |k̃max|, are TD whereby the

position of the maximum approaches |k̃| = 0 for t → ∞ and its value decreases to
1
4γ

( aR
π

) 1
4 which itself approaches (due to aR(t)), zero in this limit.

The faster spreading of the free-motionWP solution of the logarithmic NLSE now
becomes obvious and reasonable when compared with the linear case. In addition to
the dephasing effect of the linear case based on different k-values, these values also
vary in time in the NL case because k(t) = k0e−γt , wherefrom velocity differences
result which are variable in time. Furthermore, due to the time-dependence of the
coefficients ANL(k), the contributions of the individual components �k,NL to the WP
vary also in time. Thatmeans there is at least a twofold reason for the faster dephasing
and, hence, spreading of the WP in comparison with the linear case.

Another interesting aspect of the results above is the fact that here an example for
a NL differential equation obviously exists that possesses a solution with the form
of a Gaussian function that can be expanded in terms of wave functions that are also
themselves solutions of the same NL differential equation. This is usually valid only
for linear differential equations. In this special case this might be due to the fact that

Fig. 5.1 Rough qualitative draft of d
dt |ANL| as a function of |k̃| = |kWP − k|. Ordinate in units of

γ
( aR

π

) 1
4
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the absolute values of the plane-wave-type functions �k,NL are not depending on the
position x. Therefore, the non-unitary transformation (4.135) described in Sect. 4.5
to get from a NL physical level to a linear canonical level essentially turns the
exponentially-decaying k-values into constant ones but has no further consequences
for the position-dependence of the individual functions �k,NL. So the Gaussian WP
can be expanded in terms of the usual plane waves as well as in terms of the modified
ones (Eq. (5.78)) providing they also form a complete (orthonormal) basis set of
functions at any moment in time.

In the case of the (undercritically) damped HO, the situation is different. The
Gaussian WP solution (with constant width) can also be expanded in terms of the
stationary solutions of the HO, i.e., a Gaussian (ground state) function multiplied

by Hermitian polynomials where only ω0 is replaced by � =
(
ω2
0 − γ2

4

) 1
2
. As these

functions also provide a complete (orthonormal) basis this is not surprising.However,
in this case, the individual (basis) functions are no longer solutions of the logarithmic
NLSE because also the (real) Hermitian polynomials and their position dependence
are affected by the above-mentioned non-unitary transformation.

5.4.4 Environmentally-Induced Tunnelling Currents
and Resonant Energy Back-Transfer

For the damped HO three qualitatively different cases must be distinguished. As
mentioned above, in classical mechanics a friction force with friction coefficient γ

changes the frequency ω0 of the undamped HO into � =
(
ω2
0 − γ2

4

) 1
2
.

For ω0 >
γ
2 , the undercritical damping, essentially ω0 is replaced by the smaller

frequency in the expression for the trajectory and the amplitude is damped by a factor
e− γ

2 t . This trajectory then also describes the motion of the maximum of the WP that
is the solution of the logarithmic NLSE. In the Ermakov equation for α(t), only ω0

is replaced by � and no additional damping term occurs. So, like in the undamped
case, one obtains in this caseWPswith constant widths (now depending on� instead
of ω0) and oscillating widths.

The quantity α(t) is also in the damped cases the one that determines the tun-
nelling currents or velocities. This becomes obvious when having another look at the
Smoluchowski equation (4.109), written in the form

∂

∂t
�(x, t) + ∂

∂x

(
�v− − D

∂

∂x
�

)
= ∂

∂t
� + ∂

∂x
(�vT) = 0 (5.84)

where the total velocity field vT, again like in the continuity equation (2.43) has
a convective term v− (defined in (2.45)) but, in addition, a diffusive term vD, i.e.,
vT = v− + vD. Expressed in terms of α, α̇ and η̇, v− has now a slightly different form
from the non-dissipative case, namely
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v− = η̇ +
(

α̇

α
− γ

2

)
x̃, (5.85)

and, with the help of D = γ
2 〈x̃2〉, vD can be written as

vD = −D
∂
∂x�

�
= γ

2
x̃. (5.86)

Therefore, also in this case the total velocity and hence the tunnelling currents
depend on the relative change of the WP width, i.e.,

vT = v− + vD = η̇ + α̇

α
x̃. (5.87)

For ω0 <
γ
2 , the overdamped case, � obviously becomes purely imaginary, turn-

ing the trigonometric functions depending on it into hyperbolic ones. So the sys-
tem makes, at most, one oscillation (depending on the initial conditions) before it
approaches x = 0. In the Ermakov equation this changes the positive sign in front of
the term depending on�2 into a negative one which would correspond to a repulsive
parabolic potential. The behaviour of these solutions is not discussed in detail here
but a very similar situation arises when changing from a quantummechanical system
depending on (real) time t to a statistical mechanical system by replacing t with the
imaginary “time” �

kBT
(with temperature T) which will be shown in Sect. 7.1.

With respect to the open quantum systems described by the logarithmic NLSE,
the most interesting case is ω0 = γ

2 , the critical damping or aperiodic limit. The
solution of the classical equation of motion for η(t), describing the motion of the
WP maximum can be given as

η(t) = (c1t + c2)e
− γ

2 t (5.88)

where the constants c1 and c2 depend on the choice of the initial conditions. For
c1 = v0 and c2 = 0 for example, one obtains

η(t) = v0te
− γ

2 t (5.89)

and
η̇(t) = v0

(
1 − γ

2
t
)
e− γ

2 t (5.90)

with η(0) = x0 = 0 and η̇(0) = v0, but also a choice x0 �= 0 and v0 = 0 is possible.
The solution of the Ermakov equation is now trivial because, for ω = γ

2 , the
frequency � vanishes and one obtains the Ermakov equation for the undamped free
motion,

α̈ = 1

α3
, (5.91)
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with the well-known solution for the spreading free motion WP and, accordingly, a
contribution to the current as shown in (2.46).

However, this means that if one starts with an undercritically-damped situation
that can be described by a WP with constant width (and hence due to α̇ = 0 no con-
tribution to the overall tunnelling current) and changes frequency ω0 or the “collision
frequency” γ (or both) in a way that the resonance-type conditionω0 = γ

2 is met, sud-
denly a tunnelling current shows up. In an experimental setup, a change of frequency
ω0 could be achievedby considering a similar problemof the two-dimensionalmotion
in a magnetic field with a damping environment. For this system, also a description
by a logarithmic NLSE is possible (for details, see [15–18]). As the (cyclotron)
frequency ωc is connected with the magnetic field via ωc = e

mcB (with e = electric
elementary charge, B = magnetic field,5 c = (vacuum) speed of light), it can be easily
changed by varying B. A variation of γ might be more difficult but not impossible,
assuming that it is connected with the temperature of the environment.

An even more surprising result is obtained when considering the energy of this
aperiodic limit. The classical contribution for the correspondingWP solution behaves
as expected

Ecl,ap = 1

2m
〈p〉2ap + m

2

γ2

4
〈x〉2ap = E0

[(
1 − γ

2
t
)2 +

(γ

2
t
)2

]
e−γt (5.92)

with E0 = m
2 v2

0, if 〈x〉ap = η = (5.89) and 〈p〉ap = mη̇ with η̇ = (5.90) is taken. So, a
quadratic growth in time of the energy is overcompensated by an exponential decay,
leading to vanishing energy for t → ∞.

However, the quantum mechanical contribution Ẽap now fulfils

Ẽap = 1

2m
〈p̃2〉 + m

2

γ2

4
〈x̃2〉 = �

4
β0

[
2

( γ
2

β0

)2

+
(
1 − γ

2
t
)2 +

(γ

2
t
)2

]
. (5.93)

Apart from a constant contribution, it also contains the two terms that are growing
quadratically in time, just as in the classical energy, but here without the exponential

damping factor. The initial ground-state energy Ẽap,0 = �

4β0

[
1 + 2

( γ
2
β0

)2
]
drops

after tmin = 1
γ
to its minimum value Ẽap,min = �

4β0

[
1
2 + 2

( γ
2
β0

)2
]
and, afterwards,

grows quadratically in time. Where does the energy gained by the quantum sys-
tem come from? Considering the term describing the correlations of position and
momentum-fluctuations,

γ

4
〈[x̃, p̃]+〉ap = −�

4
β0

[(
1 − γ

2
t
)2 +

(γ

2
t
)2

]
+ �

4
β0

[
1 − 2

( γ
2

β0

)2
]

, (5.94)

5More precisely, magnetic induction, but the difference does not matter in this context (see, e.g.,
[19]).
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that represents the effect of the environment, onefinds the same terms that are growing
quadratically in time, as in Ẽap, only with a negative sign; and the sum of the quantum
contributions of the system and the environment,

Ẽap + γ

4
〈[x̃, p̃]+〉ap = �

4
β0 = const. (5.95)

is always a constant.
Considering the environment as a heat bath (eventually infinite), this might at

first sight appear to be a violation of the laws of thermodynamics. However, this
is not the case as the energy from the heat bath is not transferred into the classical
degrees of freedom of the system. In other words, the WP maximum does not start
accelerating or even oscillating with increasing amplitude in this resonance-like
situation, but is still damped exponentially. Only the quantum part of the systems
energy, Ẽ, absorbs energy from the surrounding. So, thermal energy is transferred into
quantum mechanical energy and, moreover, in a way that the sum of the energies of
the system and surrounding always remains constant. Somehow this has similarities
with thermal chemical reactions but it would be desirable to find experiments that
could also detect this resonance-like behaviour of the energy and of the current.
Macroscopic quantum effects (like superconducting or quantum-Hall currents)might
be candidates but require further investigation (see also [14]).

5.5 Time-Dependent Green Function
for the Dissipative Case

As has been shown in the non-dissipative case, the Gaussian WP solution of the
TDSE could also be obtained from an initial Gaussian WP �WP(x′, t′) with the help
of a TD Green function or Feynman kernel G(x, x′, t, t′). The same is assumed
to be possible also for the logarithmic NLSE. In the linear case and for at most
quadratic Hamiltonians, this Green function could be expressed in terms of the real
and imaginary parts (and their derivatives) of the complex quantity λ = u + iz that
linearizes the complex Riccati equation (2.4) for C(t) to a linear complex Newtonian
equation for λ(t), Eq. (2.49). It was also possible to express the Ermakov invariant
in terms of these quantities according to (see Eqs. (2.21) and (2.70))

IL = 1

2

[(
η̇αL − ηα̇L

)2

+
(

η

αL

)2]
= 1

2

(α0p0
m

) [(
u

αL

)2

+
(

z

αL

)2
]

= const.

In the NL case, this invariant has the form (see Eq. (5.16))

INL = 1

2
eγt

[(
η̇αNL −

(
α̇NL − γ

2
αNL

)
η

)2 +
(

η

αNL

)2
]

= const.
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Comparing these two invariants and taking into account that η(t) and η̇(t) have
the same physical meaning in both cases (namely classical position and veloc-
ity), suggests that in the transition from α0 to αNL(t), an exponential scaling factor
might be involved. In order to take this into account, the terms containing α0 in
the initial WP �NL(x′, t′ = 0), as well as in the Feynman kernel or time propagator
G(x, x′, t, t′ = 0), are multiplied by purely TD functions fi(t) that must fulfil the
condition fi(t′ = 0) = 1 so that the definition of the initial WP is identical to that in
the linear case. Further specifications of fi(t) are given later.

Therefore, the WP solution of the NLSE can be written as

�NL(x, t) =
∫ +∞

−∞
dx′GNL(x, x

′, t, t′)�NL(x
′, t′) (5.96)

with the initial WP6

�NL(x
′, t′ = 0) =

(
mβ0

π�

) 1
4

exp

{
im

2�

[
if2(t

′)
(
x′

α0

)2

+ 2f1(t
′)
p0
m

(
x′

α0

)]}
(5.97)

and the integral kernel takes the form

GNL(x, x
′, t, 0) = F(t)

(
mf2(t)e

− γ
2 t

2πi�α0 z̃

) 1
2
exp

{
im

2�

[ ˙̃z
z̃
x2 − 2

x

z̃
f1(t)

(
x′
α0

)
+ ũ

z̃
f2(t)

(
x′
α0

)2]}

(5.98)

where a possibly TD function F(t) has been introduced to eventually absorb some
phase factors that do not occur in the linear casewith this kind of ansatz. Furthermore,
for comparison with the linear case discussed in Chap.2, the nomenclature with the
TD parameters u and z has been kept. The meaning of the tilde above the parameters,
i.e., ũ and z̃, will turn out to be the same as in the linearized complex Newtonian
equation (5.37), as shown below, and does not indicate a shift of the variable by its
mean value, like in x̃ = x − 〈x〉.

Inserting (5.97) and (5.98) into (5.96), the Gaussian WP at time t is obtained in
the form

�NL(x, t) =
( m

π�

) 1
4

(
e− γ

2 t

λ̃

) 1
2

F(t) exp

{
im

2�

[ ˙̃z
z̃
x2 − (x − p0α0

m z̃)2

λ̃z̃

f 21
f2

]}
(5.99)

with the complex quantity λ̃ = ˜̂u + i˜̂z.

6Because for t �= t′ = 0 the functions fi(t) can be different from 1, this also can lead to a time-
dependence of the terms multiplied by fi in the initial WP for t > t′. Therefore, it is no longer the
case that GNL(x, x′.t, t′) itself has also to fulfil the NLSE, like GL has to fulfil the SE in the linear
case.
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Inserting GNL into the NLSE (5.1), one obtains terms proportional to powers7 of
x and x′. From the terms proportional to x2, it follows that z̃ must fulfil the classical
equation of motion for the system, i.e.,

¨̃z + γ ˙̃z + ω2z̃ = 0. (5.100)

As in the linear case, z̃ and ũ are not independent of each other but must fulfil a
relation that is obtained from the terms proportional to x′2, namely,

˙̃zũ − ˙̃uz̃ = f 21
f2

. (5.101)

However, from Eq. (5.40) we already know the value on the rhs, i.e.,

f 21
f2

= e−γt . (5.102)

The WP as given in (5.99) must be identical to WP (5.2). Comparison therefore
shows the following relations:

z̃ = m

α0p0
η(t) (5.103)

and
2�

m
yNL = CNL =

˙̃z
z̃

− 1

z̃λ̃
e−γt =

˙̃λ
λ̃

, (5.104)

where (5.101) and (5.102) have been used to obtain the very rhs of (5.104).
Using λ̃ = αNLeiϕ− γ

2 t , and hence CNL = α̇NL
αNL

− γ
2 + i 1

α2
NL
, the WP solution (5.99)

can finally be written in the form

�WP,NL(x, t) =
( m

π�

) 1
4

(
e− γ

2 t

λ̃

) 1
2

F(t) exp

{
im

2�

˙̃λ
λ̃
x̃2 + i

�
〈p〉NLx̃ + im

2�
η̇η

}
(5.105)

with

F(t) = exp

{
i

�

∫ t

0

(γ

4
〈[x̃, p̃]+〉NL + γ

2
mη̇η

)
dt′

}
. (5.106)

As in the linear case, also the Ermakov invariant INL (5.16) can be expressed in
terms of the parameters that enter the propagator GNL. In particular, with

η(t) = α0p0
m

z̃ = α0p0
m

ze− γ
2 t = ξ̂e− γ

2 t, (5.107)

7The terms independent of x and x′ do not necessarily all cancel due to what was mentioned in the
last footnote.
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the invariant can be written as

INL = 1

2

(α0p0
m

)2
[
eγt

(˙̃zαNL −
(
α̇NL − γ

2
αNL

)
z̃
)2 + eγt

(
z̃

αNL

)2
]

= 1

2

(α0p0
m

)2
[(

u

αNL

)2

+
(

z

αNL

)2
]

= const. (5.108)

where, again, eγt
(

z̃
αNL

)2 =
(

z
αNL

)2 = sin2 ϕ has been used from which it follows

that the first term in the square bracket must be
(

u
αNL

)2 = cos2 ϕ in order to obtain

a constant value for INL.
The two orthogonal solutions of the complex linear Eq. (5.38) are again u(t) and

z(t) where this time z(t) is not directly proportional to η(t) but to ξ̂(t) fulfilling Eq.
(5.22) and related to η(t) via (5.21) or (5.107).

However, u and z, or ũ and z̃, respectively, can again be expressed in terms of η
and η̇. Up to a ±-sign, one obtains

ũ = e− γ
2 tu = α2

NL
˙̃z −

(
α̇NLαNL − γ

2
α2

NL

)
z̃ (5.109)

or
ũ

z̃
= α2

NL

( ˙̃z
z̃

−
(

α̇NL

αNL

− γ

2

))
(5.110)

or ˙̃z
z̃

= η̇

η
= 1

α2
NL

ũ

z̃
+

(
α̇NL

αNL

− γ

2

)
. (5.111)

These relations are true for all times t; they also hold for t = 0. In this case (and for(
α̇NL
αNL

)
0

= 0, as assumed also in the linear case, though other choices are possible),8

ũ turns into
ũ = α2

0
˙̃z + γ

2
α2
0z̃. (5.112)

Together with (5.107), the expression for α2
NL becomes

α2
NL(t) = u2 + z2 = eγt

(
ũ2 + z̃2

) = eγt

(
m

α0p0

)2 [
α4
0

(
η̇2 + γηη̇ + γ2

4
η2

)
+ η2

]

(5.113)

8The choice α̇NL,0 = 0 is different from the choice 〈[x̃, p̃]+〉NL(0) = (α̇NL,0 − γ
2αNL,0)αNL,0 = 0 used

in Sect. 5.4.2. Therefore the analytical expression for α2
NL(t) = �

2m 〈x̃2〉NL below (for the damped
free motion) differs from the two expressions 〈x̃2〉± in Eqs. (5.60) and (5.64), showing again the
influence of the initial conditions. For γ = 0, α̇0 = 0 is equivalent to 〈[x̃, p̃]+〉L(0) = α̇L,0αL,0 = 0.
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or

α2
NL(t) = α2

0
eγt

v2
0

[
η̇2 + γηη̇ +

(
β2
0 + γ2

4

)
η2

]
= 2m

�
〈x̃2〉NL. (5.114)

Also in the dissipative case, the influence of the initial uncertainty on the time-
evolution of the position uncertainty is shown explicitly, particularly for the damped
HO (with the limiting cases ω0 → 0, i.e., damped free motion, and γ → 0).

For this purpose, the expressions for η(t) and η̇(t) of the damped HO are
inserted into Eq. (5.114), i.e., with η(t) = (

v0
�

)
e− γ

2 t sin�t (for η(0) = 0) and
η̇(t) = v0e− γ

2 t cos�t − γ
2

(
v0
�

)
e− γ

2 t sin�t (for η̇(0) = v0), one obtains

α2
NL,HO = α2

0

{
cos2 �t +

(
β0

�

)2

sin2 �t

}
= α2

0

{
1 +

(
β2
0 − �2

�2

)
sin2 �t

}
,

(5.115)

i.e., the same expression as in the conservative case, only that the frequencyω0 is now

replaced by the reduced frequency � = (
ω2
0 − γ

4

) 1
2 . In analogy with the linear SE,

also for theNLSE, a constantwidth is only obtained forβ0 = �. This is the casewhen
the system is in the state of lowest possible energy (see also Ref. [20]); otherwise,
the WP width oscillates. In the case of disappearing friction, i.e., γ → 0 and thus
� → ω0, the result of the linear SE is obviously regained. More interesting is
the limit ω0 → 0, i.e., the transition to the damped free motion. In this case,

limω0→0

(
ω2
0 − γ2

4

) 1
2 = ±i γ2 is purely imaginary. Using the relations between the

trigonometric and the hyperbolic functions, i.e., cos(ix) = cosh x and sin(ix) =
i sinh x, one obtains (with cosh2 x = 1 + sinh2 x)

α2
NL,fr = α2

0

{
cosh2

γ

2
t +

(
β0
γ
2

)2

sinh2
γ

2
t

}
= α2

0

{
1 +

(
β2
0 + γ2

4
γ2

4

)
sinh2

γ

2
t

}
,

(5.116)

which, in the limit γ → 0, indeed turns into the correct expression for the spreading
free WP

lim
γ→0

α2
NL,fr(t) = α2

0[1 + (β0t)
2] = α2

L,fr(t). (5.117)

Also for α2
NL given by (5.116), due to the exponential factor e

γ
2 t in sinh γ

2 t, the
WP width for the damped free motion is spreading much faster (exponentially) in
comparison with the undamped case (quadratically in time); for further details, see
also Sect. 5.4.3 and [12].
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The same result (5.116) for the damped free motion can also be obtained directly
by inserting η̇(t) = v0eγt (for η̇(0) = v0 ) and η(t) = ( v0

γ
)(1 − e−γt) (with η(0) = 0)

into (5.114).
That the time-dependence of αNL (now again for the damped HO), essentially

depends on the difference between the initial state’s position uncertainty and its
ground state uncertainty 〈x̃2〉GS (as in the conservative case) becomes even more
obvious regarding again the time-derivative of α2

NL

α̇NLαNL = α2
0

v2
0

eγt
[(

β2
0 − �2) ηη̇ + γ

2

(
β2
0 − �2) η2

]
, (5.118)

which only vanishes for β0 = � (which corresponds to 〈x̃2〉NL,0 = 〈x̃2〉GS) although a
second term appears that is not present in the non-dissipative case.

Finally, a comparison is made between GNL and a Feynman kernel GF for the
damped HO that is frequently quoted and used in the literature (see Grosche and
Steiner [21], p. 186, 6.2.1.19 and references therein). Their Feynman kernel derived
from the classical Lagrangian LCK (4.32) of Caldirola and Kanai reads in our notation

GF(x, x
′, t, t′ = 0) =

(
m�

2πi� sin�t

) 1
2

exp

{
im�

2� sin�t

[
(x2eγt + x′2eγt′) cos�t

− 2xx′e
γ
2 (t+t′)

]
− im

2�

γ

2

(
x2eγt − x′2eγt′

)
+ γ

t + t′

4

}
. (5.119)

In comparison, our propagator for the damped HO is explicitly given by

GNL,HO(x, x
′, t, 0) =F(t)

(
m�

2πi� sin�t

) 1
2

× exp

{
im�

2� sin�t

[
(x2 + x′2) cos�t − 2xx′] − im

4�
γx2

}
.

(5.120)

The essential difference is that, in the exponent of GF, all terms depending on x
or x′ have a factor growing exponentially in time. This factor also ends up in the
resulting WP (and for normalization purposes must be compensated for by the last
term in the exponent of (5.119)). Therefore, thisWP is a canonicalWP (which can be
expected as it is based on L̂CK) and, as discussed in detail above, leads to unphysical
results if interpreted as a physical WP. So, if the Feynman kernel of Grosche and
Steiner is used, afterwards, the transformation (4.135)with subsequent normalization
is necessary if the WP is also to be used within the context of the usual quantum
mechanical operators to avoid unphysical results (such as violation of the uncertainty
principle, etc.).
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5.6 Dissipative Schrödinger Equation in Momentum Space

5.6.1 Friction Term in Momentum Space

In order to include the observable effects of irreversibility and dissipation, the mod-
ification of the TDSE in position space was obtained by adding a time-reversal-
symmetry breaking diffusion term −D�� to the continuity equation for � = � ∗ �,
turning it into the Smoluchowski equation (4.109) and separating this equation into
the NLSE (4.115) and its complex conjugate via the separation condition (see Eq.
(4.113))

−D
��

�
= γ (ln� − 〈ln�〉) .

Due to this condition, themodified SE contains an additional complex logarithmic
nonlinearity (see Eq. (4.116))

W̃SCH = γ
�

i
(ln� − 〈ln�〉)

when written as i� ∂
∂t�NL(r, t) =

{
− �

2

2m� + V (r) + W̃SCH

}
�NL(r, t).

This additional term leads to a linear velocity dependent friction force in the aver-
aged equation ofmotion (4.117) and a corresponding decrease of energy proportional
to 2γ times the kinetic energy of the system (at least for the classical contribution).

However, the particular logarithmic form of the friction term W̃SCH is connected
with the definition of the momentum- or velocity-operator in position space, using
Schrödinger’s definition of the wave function �(r, t) via the action function S as
Sc = �

i ln�(r, t) and the momentum definition in the Hamilton-Jacobi theory, p =
∇S, as detailed in Sect. 4.5.

This leads to

pc = �

i
∇ln�(r, t) = �

i

∇�

�
= mvc (5.121)

with mean value

〈pc〉 =
∫

dr�∗ �

i

∇�

�
� =

∫
dr�∗ �

i
∇� =

〈
�

i
∇

〉
= 〈pop〉, (5.122)

i.e., the samemean value as the quantummechanical momentum operator pop = �

i ∇
in position space. In this case, the negative gradient of W̃SCH has the form of a friction
force linearly proportional to the (complex) velocity vc, ∇W̃SCH = −mγvc.

On the contrary, in momentum-space, the momentum operator is simply a
c-number, pop = p, whereas now the position operator is connected to the Nabla-
operator in momentum space, ∇p, via rop = −�

i ∇p. Therefore, if W̃SCH is used in the
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same logarithmic form as in position space, the negative momentum-space gradient
of W̃SCH, −∇pW̃SCH, no longer yields a friction force linearly proportional to veloc-
ity (with a negative sign), but an accelerating force linearly proportional to position
(with a positive sign).

So in momentum space, this form of the NLSE is no longer correct to describe the
same physical situation. This can also be seen from the fact that the Fourier-transform
of the WP solution (5.2) in position space (in contrast with the linear theory) is no
longer a solution of the NLSE in momentum space if the form of W̃SCH remains
unchanged.

In order to find a form of the NL friction term which is valid in position as well
as in momentum space, results obtained in the NL description in position space can
be used [22].

Recalling the situation in the linear case, the complex Riccati equations (Eq. (2.4)
in position space and (2.101) in momentum space) that we are most interested in
could both be linearized to the same complex Newtonian equation (2.49) for λ(t)
(see also Fig. 2.4). Assuming that the same should also be valid in the NL case, the
complex equation (5.37) for λ̃(t),

¨̃λ + γ ˙̃λ + ω2λ̃ = 0,

should play a central role in the reformulation of the friction term.
As mentioned above in connection with the rate of energy dissipation, the form

of the friction term should not explicitly depend on the potential of the problem but
somehow be connected with the kinetic energy of the system.

In the derivation of the friction term in position space, the comparison of the
diffusion term proportional to ��, with the logarithm ln� was essential. Now the
procedure on the level of the complex function � can be reversed. The logarithm of
�(r, t), ln�(r, t), is now expressed in terms of ��(r, t) or, more precisely, W̃SCH

in terms of the kinetic energy term, which shall be written as W̃D. Requiring that the
condition

W̃SCH�WP = W̃D�WP (5.123)

must be fulfilled,9 it is possible to express W̃SCH, with the help of λ̃, in terms of the
kinetic energy (and its mean value),

W̃D = γ

(
λ̃

˙̃λ

)
1

2m

(
p2op − 〈p2op〉

)
. (5.124)

This form of the friction term turns out to be valid in position and momen-
tum space. It obviously has the same property as the logarithmic nonlinearity W̃SCH,
namely a disappearingmeanvalue 〈W̃D〉 = 0. Like in position space W̃D influences the

9Hasse’s form of the friction term can also be regained by comparing it with W̃SCH according to
W̃SCH = W̃Has − 〈W̃Has〉. More details are below in Chap.6.
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dynamics of the observable system by altering the wave function that is used to cal-
culate the (TD) mean values but is itself not observable. This is again in agreement
with a situation where the motion of a Brownian particle is affected by the interaction
with the environment although the motion of the surrounding molecules cannot be
observed directly.

As the coefficient of the kinetic energy operator in (5.124),
(

λ̃
˙̃λ

)
, is complex,

this form of the dissipative term shows similarities with other approaches mentioned
before due to the imaginary contribution.

In Gisin’s approach, described in Sect. 4.4.2, a non-Hermitian term (in the particu-
lar form �

i B = �

i kHL) is considered that is proportional to the linear Hamiltonian and
thus also to the kinetic energy with imaginary coefficient. However, this assumption
(including the potential V ) leads to a wrong energy dissipation.

Also the additional imaginary term of Doebner and Goldin (mentioned at the
end of Sect. 4.4.3) can be expressed in terms of the Laplacian operator and thus the
kinetic energy operator. But as mentioned before, this term by itself does not describe
dissipation but essentially introduces irreversibility due to the diffusion term in the
Smoluchowski equation.

As in Chap.2 or Sects. 5.1–5.5, the following discussion is restricted to the one-
dimensional case: Prior to the WP solutions of the dissipative case in momentum
space, a short discussion is given of the friction term W̃D in position space for the
case of the free motion, i.e., V = 0. This has similarities with other equations, such
as the diffusion equation, if W̃D is written as

W̃D = γ

(
λ̃

˙̃λ

) (
− �

2

2m

∂2

∂x2
−

〈
− �

2

2m

∂2

∂x2

〉)
. (5.125)

The second derivativewith complex coefficient can be combinedwith the operator
of kinetic energy allowing the NLSE to be written in position space in the form

∂

∂t
�(x, t) =

{
D(t)

∂2

∂x2
+ 1

i�
V (x) − g(t)

}
�(t) (5.126)

with

D(t) =
(
1 + γ

λ̃

˙̃λ

)
i

�

2m
: complex “diffusion coefficient”, (5.127)

g(t) = γ

i�

λ̃

˙̃λ

〈
p2op
2m

〉
: nonlinearity. (5.128)

Formally, g(t) is just a (complex) TD function. However, in order to actually
calculate the mean value, the solution � of the NLSE must be known.10

10It might be possible to apply iterative techniques as in the Hartree–Fock method.
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Now considering the case V = 0, i.e., free motion with damping, and treating
g(t) formally as a mere TD function, g(t) can be removed from the equation via the
transformation

�(x, t) = �̃(x, t) exp

{
−

∫ t

0
dt′g(t′)

}
. (5.129)

The equation for �̃(x, t),

∂

∂t
�̃(x, t) − D(t)

∂2

∂x2
�̃(x, t) = 0 (5.130)

has the form of a diffusion equation with a complex TD diffusion coefficient D(t).
Keeping in mind that the SE for the free motion has the form of a diffusion equation
with a purely imaginary diffusion coefficient, i �

2m , Eq. (5.130) is a combination
of a reversible linear SE and an irreversible (also linear) diffusion equation. For
both of these equations, the superposition principle holds. This might explain why
our NLSE displays a kind of superposition property for the damped free motion in
position space, as plane-wave-type solutions exist that can be superimposed to form
a Gaussian WP-type solution of the NLSE (see Sect. 5.4.3).

5.6.2 Wave Packet Solutions in Momentum Space

In the following, the new form (5.124) of our dissipative friction term, W̃D, is consid-
ered in momentum space and the solutions of the corresponding NLSE (particularly
again for the HO in one dimension) are analyzed. Analogous to the linear theory, it
is assumed that the solution in momentum space in our NL case can also simply be
obtained by Fourier transformation of the WP solution (5.2),

�NL(p, t) =
(

1

2π�

) 1
2

+∞∫
−∞

dx�NL(x, t)e
− i

�
px, (5.131)

leading to the Gaussian WP in momentum space

�WP (p, t) =
(a

�

) 1
2
N (t) exp

{
i

[
ia(t)

2�2
p̃2 − 1

�
〈x〉NLp̃ + K(t) − 〈x〉NL〈p〉NL

�

]}

(5.132)

with p̃ = p − 〈p〉NL and the complex TD quantity

am

i�
= λ̃

˙̃λ
= C−1

NL . (5.133)
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The particle aspect is again expressed by the fact that the maximum of the WP
coincides with the classical momentum 〈p〉NL = mη̇ where the classical trajectory
η(t) = 〈x〉NL is determined by the Newtonian equation (5.3).

The wave aspect, i.e., the momentum uncertainty 〈p̃2〉 = 〈p2〉 − 〈p〉2 or the WP
width in momentum space, is connected to the real part of the complex coefficient
a(t) as in the linear case via

aRm

�
= m�

2〈p̃2〉 . (5.134)

The time-evolution of the WP width in momentum space is also governed by a
complex Riccati equation for

(
am
i�

)
, as in the linear case, but now with an additional

linear term with coefficient γ (as in position space), i.e.,

− ȧm

i�
+ γ

am

i�
+ ω2

(am
i�

)2 + 1 = 0. (5.135)

With the definition (5.133) this Riccati equation can be linearized to the same com-

plex Newtonian equation (5.37), ¨̃λ + γ ˙̃λ + ω2λ̃ = 0, as in position space. Therefore,
the transition between position and momentum space in the NL case is possible in
exactly the same way as in the linear case by considering inverse quantities instead
of necessitating Fourier transformations. Figure2.4 showing this connection in the
linear case can be taken over almost unchanged; only quantities without tilde must
be replaced by those with tilde and the Riccati equations must be supplemented with
the linear terms; the details are shown in Fig. 5.2.

Fig. 5.2 Connections amongst the equations determining the time-dependence of position and
momentum uncertainties. The complex variable entering the nonlinear Riccati equation for the
momentum uncertainty is the inverse of the corresponding variable of the Riccati equation for the
position uncertainty and both are linked via the variable λ̃(t), fulfilling the complex linearNewtonian
equation
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In order to turn the complexRiccati equation (5.135) into a real Ermakov equation,
(also in the dissipative case) a variable εNL(t) is introduced in analogy with (2.105)
that is related to aRm

�
, and thus to the momentum uncertainty, in the same way as in

the linear case
aRm

�
= m�

2〈p̃2〉NL = 1

ε2NL
. (5.136)

It should be mentioned that the situation in position space differs somewhat.
Whereas α2, expressed in terms of λ and λ∗, has the same form in the linear and the
nonlinear cases,

α2
L = λλ∗, (5.137)

α2
NL = eγt

(
λ̃λ̃∗

)
= λλ∗, (5.138)

ε2 expressed in terms of λ̇ and λ̇∗, or equivalently in terms of α and α̇, differs in the
two cases,

ε2L = λ̇λ̇∗ =
(

α̇2
L + 1

α2
L

)
, (5.139)

ε2NL = eγt
( ˙̃λ ˙̃λ∗

)
=

[(
α̇NL − γ

2
αNL

)2 + 1

α2
NL

]
, (5.140)

reflecting the difference in the expressions for 〈p̃2〉L (Eq. (2.23)) and 〈p̃2〉NL (Eq.
(5.42)).

With this definition of εNL, the imaginary part of am
i� , in comparison with (2.106),

now takes the modified form

aIm

�
= 1

2ω2

(
ȧR

aR

− γ

)
= − 1

ω2

(
ε̇NL

εNL

+ γ

2

)
. (5.141)

Inserting this and the real part (5.136) into Riccati equation (5.135), allows this
equation to be rewritten as an Ermakov equation of the form

ε̈NL +
(

ω2 − γ2

4

)
εNL = ω4

ε3NL
, (5.142)

that looks like the Ermakov equation (5.15) in position space (apart from the factor
ω4 on the rhs). Changing to a new variable RNL like in the linear case (Eq. (2.109))
according to

RNL = εNL

ω
, (5.143)
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Eq. (5.142) can actually be rewritten in exactly the same form as in position space as

R̈NL +
(

ω2 − γ2

4

)
RNL = 1

R3
NL

. (5.144)

Using again the variable � = mη̇ for the classical momentum, where now
�̇ = −mω2η − mγη̇ and thus

�̈ + γ�̇ + ω2� = 0 (5.145)

is valid, the last two equations can be combined to yield the Ermakov invariant in
momentum space for the NL case in the form

INL,p = 1

2
eγt

[(
�̇RNL −

(
ṘNL − γ

2
RNL

)
�

)2 +
(

�

RNL

)2
]

, (5.146)

having exactly the same structure as (5.16) in position space.

5.6.3 Time-Dependent Green Function in Momentum Space

Again like in position space, the dissipative WP solution, also in momentum space,
can be obtained from an initial WP �NL(p′, 0) with the help of a TD Green function
via

�NL(p, t) =
∫ +∞

−∞
dp′GNL(p, p

′, t, t′ = 0)�NL(p
′, 0) (5.147)

with

�NL(p
′, 0) =

(
1

π�mε0

) 1
4

exp

{
im

2�

[
if2(t

′)
(

p′

mε0

)2

− 2if1(t
′)
p0p′

m2ε20

]}

× exp

{
− m

2�

(
p0
mε0

)2
}

(5.148)

where the last exponential factor that is independent of p′ and t′ can be compensated
by the normalization factor of theWP and ε0 = εNL(t = 0) implies that the initial state
is a minimum uncertainty WP (see also Sect. 2.7). The integral kernel now takes the
form

GNL(p, p
′, t, 0) = F(t)

(
−f2(t)e

− γ
2 t

2π�mε0 ˙̃z

) 1
2

× exp

{
− im

2�

[
z̃
˙̃z
p2

m2 − 2if1(t)

(
p

m˙̃z
) (

p′
mε0

)
+ f2(t)

( ˙̃u
˙̃z + 2i

) (
p′
mε0

)2
]}

.

(5.149)
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The purely TD function F(t) is the same as in position space (see (5.106)) and
also here the exponential scaling factor discussed at the beginning of Sect. 5.5 has

been taken into account by the TD functions f1(t) and f2(t) with
f 21
f2

= e−γt .
Performing the integration in (5.147) using (5.148) and (5.149) yields theGaussian

WP

�WP,NL(p, t) =
(

1

π�m

) 1
4

(
ie− γ

2 t

˙̃λ

) 1
2

exp

{
− im

2�

[
z̃
˙̃z
p2

m2
+ e−γt

˙̃z ˙̃λ
p̃2

m2

]}
. (5.150)

Using the relations between λ̃, ũ, z̃ and their time-derivatives, this WP can finally
be written in a form like the corresponding position space WP (5.105), namely [23]

�WP,NL(p, t) =
(

1

π�m

) 1
4

(
ie−

γ
2 t

˙̃λ

) 1
2

F(t) exp

{
− im

2�

λ̃

˙̃λ
p̃2

m2 − i

�
〈x〉NLp̃ − i

�

〈x〉NL〈p〉NL
2

}
.

(5.151)

Comparison with the dissipative WP in position space written either as in (5.99),

�WP,NL(x, t) =
( m

π�

) 1
4

(
e− γ

2 t

λ̃

) 1
2

F(t) exp

{
im

2�

[ ˙̃z
z̃
x2 − e−γt

z̃λ̃
x̃2

]}
, (5.152)

or, as in (5.105) as

�WP,NL(x, t) =
( m

π�

) 1
4

(
e− γ

2 t

λ̃

) 1
2

F(t) exp

{
im

2�

˙̃λ
λ̃
x̃2 + i

�
〈p〉NLx̃ + i

�

〈p〉NL〈x〉NL
2

}

(5.153)

shows that the symmetry between theWP solutions in position and momentum space
in the linear case also applies in the NL case, only z, u and λ must be replaced by the
quantities with tilde. So, also here, the transition between position and momentum
space essentially can be achieved if the following substitutions are applied: x ↔
p
m ,+ ↔ − and z̃, ũ or λ̃ ↔ ˙̃z, ˙̃u or ˙̃λ.

InTable5.1 theGreen functions for position andmomentum space in the linear and
NL cases are presented for comparison. Similarly, Table5.2 shows the corresponding
Gaussian WPs and Table5.3 displays the interrelations between the coefficients of
the quadratic terms in the exponent of the Gaussians, i.e., the terms that fulfil the
Riccati equations, also expressed in terms of λ and λ̃ and their components.
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Table 5.1 Green functions for the Gaussian WP solutions in position and momentum space for
the linear and nonlinear case. Terms independent of x′, p′, t′ = 0 that can be absorbed in the nor-
malization coefficient are omitted. For t′ = 0 a minimum uncertainty WP is assumed, thus ε0 = 1

α0

Table 5.2 Gaussian WP solutions in position and momentum space for the linear and nonlinear
case – expressed in terms of λ and λ̃

Table 5.3 Interrelations between the coefficients of the quadratic terms in the exponent of the
Gaussians, i.e., the terms that fulfil the Riccati equations, also expressed in terms of λ and λ̃
fulfilling the linearized complex Newtonian equations
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Comparisonof theGreen functions inTable5.1 shows that the transition fromposi-
tion to momentum space (in the TDSE and NLSE) mainly requires the
replacement11 of u and z without “dot” (for time-derivative) by those with dot and
vice versa.

Transition from the TDSE to the NLSE (in position as well as in momentum
space) is achieved by replacing u and z with the corresponding quantities with tilde,
ũ and z̃, which means multiplying by e− γ

2 t and introducing the TD functions F(t),
f1(t) and f2(t).

Very similar relations apply to the WP solutions expressed in terms of the para-
meters z and λ, their time-derivatives or their counterparts with tilde. The time-
dependence of these parameters can be obtained from the corresponding Riccati
equations or the linearized complex Newtonian form.

5.7 Wigner Function and Ermakov Invariant
for the Dissipative Case

In Sect. 2.8 the close relation between the Wigner function and the Ermakov invari-
ant has been shown. Whether this still holds in the dissipative case or, if not, the
modifications necessary are discussed next.

For this purpose, IL in expression (2.136) for W (0, 0, t) is replaced by INL, i.e.,

Wdis(0, 0; t) = 1

π�
exp

{
−2m

�
INL

}
(5.154)

and also η and η̇ in INL by x̃ and
p̃
m , as well as α, α̇ etc. by the position and momentum

uncertainties 〈x̃2〉NL and 〈p̃2〉NL and their correlation 〈[x̃, p̃]+〉NL. In doing so, one
arrives at a form for the dissipative Wigner function

Wdis(x, p; t) = e−γt

π�
exp

{
− 2

�2
eγt

[〈p̃2〉NLx̃2 − 〈[x̃, p̃]+〉NLx̃p̃ + 〈x̃2〉NLp̃2
]}

,

(5.155)

which looks exactly like the one in the conservative case, only 〈. . .〉L being replaced
by 〈. . .〉NL and two exponential factors occurring, one in the exponent and one in
front of it, whereby the latter is a consequence of the other due to the normalization
requirement of Wdis.

As has been shown above, the same invariant, but with different physical inter-
pretation, exists on the formal canonical level (related to the CK approach, see Eq.
(4.45)) and on the physical level (related to the logarithmic NLSE, see Eq. (5.16)).

11This is concerning the TD quantities; in addition, for the transition from position to momentum
space, α0 must also be replaced by ε0 = 1

α0
(for an initial minimum-uncertainty WP) and a factor

i appears in the coefficient of the term depending on p′.
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In order to clarify the meaning of the form (5.155) of the dissipative Wigner
function, the equation of motion that it fulfils is considered. It can be shown straight-
forwardly that this is a Fokker–Planck equation in phase space,

∂

∂t
Wdis + p

m

∂

∂x
Wdis − ∂V

∂x

∂

∂p
Wdis − γp

∂

∂p
Wdis − γWdis = 0, (5.156)

or
∂

∂t
Wdis + ∂

∂x
(ẋWdis) + ∂

∂p
(ṗWdis) = 0, (5.157)

with ṗ = − ∂
∂x V − γp (for V being at most quadratic in x) but without diffusion

terms, i.e., without second derivatives.
As in classical statistical mechanics, the diffusion coefficients of these second-

derivative terms are usually proportional to the temperature of the system. Thiswould
correspond to a situation at temperature T = 0 which is one of the assumptions Sun
and Yu [24, 25] made in their derivation of the CKHamiltonian. The notion thatWdis
corresponds to the canonical level is further confirmed if one integrates Wdis over
the momentum p in order to obtain the distribution function in position space that
should be equal to �NL(x, t), the solution of the Smoluchowski equation (4.109). In
doing so, however, one obtains

∫ +∞
−∞

dpWdis(x, p; t) =
√

e−γt

2π〈x̃2〉NL exp
{

− eγt x̃2

2〈x̃2〉NL

}
�= �NL(x, t) = �∗

NL(x, t)�NL(x, t).

(5.158)

So the proper solution of the Smoluchowski equation is obtained when the trans-
formation from the canonical to the physical level is performed according to Eq.
(4.135), ln�NL = e−γt ln�̂. This essentially requires multiplying the exponent by
e−γt and normalizing the resulting density function. As a consequence, in the equa-
tion of motion for the density, the addition terms −γ(ln�(x, t) − 〈ln�(x, t)〉)�(x, t),
originating from ∂

∂t�(x, t) and the normalization, must be compensated for in order
to fulfil the conservation law for �(x, t). This compensation term for the Gaussian
WP that can be written in the form

γ (ln�NL − 〈ln�NL〉) �NL = −D
∂2

∂x2
�NL, (5.159)

withD = γ
2 〈x̃2〉NL, is nothing but the separation condition (4.113) used in the deriva-

tion of the logarithmic NLSE in Sect. 4.4.3. So, the transformation from the formal
canonical level to the physical dissipative level introduces the missing diffusion term
that is necessary to turn the reversible continuity equation for the distribution function
in position space into the irreversible Smoluchowski equation.
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Therefore, the Wigner function Wdis in Eq. (5.155), obtained with the help of
the Ermakov invariant INL, is the one on the canonical level and must be treated
accordingly.

5.8 Algebraic Derivation of the Dissipative Ermakov
Invariant

In Sect. 2.10 it has been shown how the dynamical Ermakov invariant can be obtained
in an algebraic way,making use of the canonical Hamiltonian formalism, particularly
exploiting the fact that the time-derivative of a dynamical quantity can be obtained
with the help of the Poisson brackets. A Lie algebra which is closed in relation to
these brackets finally allowed to obtain the desired invariant.

In the dissipative case, we have seen in Sect. 4.3 that there is also a description
possible using the established canonical formalism. However, not to be overlooked
is the fact that the canonical variables are connected with the physical ones via a
non-canonical transformation (in the classical case, corresponding to a non-unitary
transformation in the quantum mechanical one). The canonical description that
showed closest formal similarity with the conventional non-dissipative one was the
description in terms of exponentially-expanding variables (see Sect. 4.3.2). This is
used in the following as a basis for the construction of the dynamical invariant for
the dissipative system.12

For this purpose we recall that the equation of motion for the canonical variable
(see Eq. (4.49)),

Q̂ = xe
γ
2 t,

is given by (see Eq. (4.52))

¨̂Q + �2Q̂ = 0

and the time-evolution of any phase-space function F̂(Q̂, P̂, t) on the canonical level
is given by (see Eqs. (4.56) and (4.51))

d

dt
F̂ = {F̂, Ĥexp}(Q,P)− + ∂

∂t
F̂

with

Ĥexp = 1

2m
P̂2 + m

2

(
ω2 − γ2

4

)
Q̂2.

12An algebraic derivation of a dissipativeErmakov invariant based on the canonical Caldirola–Kanai
approach has been shown by Korsch [26], see also [27].
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Expressed in terms of the corresponding physical variables x and p, one obtains
(see Eq. (4.57))

d

dt
F(x, p, t) = {F,H}− + {F,

γ

2
xp}− − {F,

γ

2
xp}+ + ∂

∂t
F

where H = 1
2mp

2 + m
2 ω2x2; i.e., on the physical level, additional Poisson brackets

{, }− and anti-Poisson brackets {, }+ occur.
Expressing the dynamical invariant for the dissipative case in terms of the

same phase-space functions13 �n(n = 1 − 3) as defined in (2.184), i.e., �1 = p2

2m ,

�2 = xp, �3 = mx2

2 it can be written as

Iexp =
∑
n

κ̂n(t)�n (5.160)

where the κ̂n are the expansion coefficients on the canonical level. The invariant must
again fulfil the condition d

dt I = 0. As we are interested in the result on the physical
level, the time-derivative in the form (4.57), i.e., in terms of physical position and
momentum is used, leading to

d

dt
Iexp = {Iexp,H}− + {Iexp, γ

2
xp}− − {Iexp, γ

2
xp}+ + ∂

∂t
Iexp

= {Iexp,H}− + γ

2
{Iexp, �2}− − γ

2
{Iexp, �2}+ + ∂

∂t
Iexp = 0. (5.161)

In comparison with the non-dissipative case, there are additional terms from
{�n, �2}− and {�n, �2}+. From these, only

{�1, �2}− − {�1, �2}+ = −4�1 (5.162)

and
{�2, �2}+ = 2�2 (5.163)

contribute.
At this point it should be kept in mind that Iexp has the dimension of an action and,

like Ĥexp, is an invariant on the canonical level.14 As has been shown in Sect. 4.5, the
connection between the Hamiltonians and actions on the canonical and the physical
level (in the classical and in the quantum case) is given via

Ŝc = eγtSc and Ĥ = eγtHL.

13On the canonical level, x and p can be expressed in terms of Q̂ and P̂.
14This also agreeswith our finding in connectionwith the dissipativeWigner function in the previous
subsection and the dissipative creation-/annihilation operators discussed in the following subsection.
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Therefore, the expansion coefficients κn,NL on the physical level are related to the
canonical coefficients κ̂n via κn,NL = e−γtκ̂n.

Taking all this into account, one obtains a modified set of coupled evolution
equations for κn,NL,

κ̇1,NL = γκ1,NL − 2κ2,NL, (5.164)

κ̇2,NL = ω2κ1,NL − κ3,NL, (5.165)

κ̇3,NL = 2ω2κ2,NL − γκ3,NL. (5.166)

With κ1,NL = 1
mα2

NL, in analogy with the non-dissipative case, this set of coupled
equations can be condensed into the modified Ermakov equation

α̈NL +
(

ω2 − γ2

4

)
αNL = 1

α3
NL

, (5.167)

which is identical to the Ermakov equation (5.15) of the logarithmic NLSE (5.1)
(hence the subscript NL).

As in the non-dissipative case, it is again assumed that the relations between αNL

and α̇NL on the one side and the quantum uncertainties on the other, are the same
as found in (5.17)–(5.19) but now for the dissipative case. The κn,NL can then be
expressed as

κ1,NL = 1

m
α2

NL = 2

�
〈x̃2〉NL, (5.168)

κ2,NL = − 1

m
αNL

(
α̇NL − γ

2
αNL

)
= − 1

�m
〈[x̃, p̃]

+〉NL, (5.169)

κ3,NL = 1

m

[(
α̇NL − γ

2
αNL

)2 + 1

α2
NL

]
= 2

�m
〈p̃2〉NL. (5.170)

Equations (5.164–5.166) can also be written as evolution equations for the quan-
tum uncertainties in the form

∂

∂t
〈x̃2〉NL = 1

m
〈[x̃, p̃]

+〉NL + γ〈x̃2〉NL, (5.171)

∂

∂t
〈[x̃, p̃]

+〉NL = 4

(
1

2m
〈p̃2〉NL − m

2
ω2〈x̃2〉NL

)
, (5.172)

∂

∂t
〈p̃2〉NL = −mω2〈[x̃, p̃]

+〉NL − γ〈p̃2〉NL, (5.173)

similar to Eqs. (2.138)–(2.140) in the non-dissipative case.
Finally, the dissipative Ermakov invariant on the physical level can be written in

terms of x and α2
NL as
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INL = 1

2
eγt

[(
ẋαNL −

(
α̇NL − γ

2
αNL

)
x
)2 +

(
x

αNL

)2
]

= const. (5.174)

which is identical to the invariant (5.16) of the logarithmic NLSE for η = x (for fur-
ther details, see [28]).

Expressing x and ẋ in terms of the expanding coordinate Q̂ and velocity ˙̂Q, the
invariant can be rewritten in the form

Îexp = 1

2

⎡
⎣( ˙̂QαNL − Q̂α̇NL

)2 +
(

Q̂

αNL

)2
⎤
⎦ = const, (5.175)

in agreement with Eqs. (4.52) and (5.167), reproducing Eq. (4.66) for α̂exp = αNL,
thus confirming the results from Sects. 4.3.2 and 4.5.

This is again the form showing that the invariant is not only independent of ω, i.e.,
also existing for ω = ω(t), but also independent of γ, i.e., also existing for γ = γ(t)!

5.9 Generalized Creation and Annihilation Operators
and Coherent States for the Dissipative Case

In the non-dissipative case, we found that the creation and annihilation opera-
tors, and particularly their generalizations, are related to the Ermakov invariant via
(see Eqs. (2.218) and (2.217))

IL,op = �

m

[
a+(t)a(t) + 1

2

]

with

IL = �

m
ww∗,

where w is the complex eigenvalue of the coherent state |w〉 that is an eigenstate
of the annihilation operator a(t). That is, a(t) and a+(t) can be obtained by the
factorization of the operator IL,op corresponding to the invariant IL.

Attempting to do the same with INL = �

m ŵNLŵ
∗
NL (see Eq. (5.16)) leads to

ŵNL =
√

m

2�

[(
η

αNL

)
+ i

(
η̇αNL −

(
α̇NL − γ

2
αNL

)
η

)]
e

γ
2 t, (5.176)

ŵ∗
NL =

√
m

2�

[(
η

αNL

)
− i

(
η̇αNL −

(
α̇NL − γ

2
αNL

)
η

)]
e

γ
2 t, (5.177)
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and, after replacing η̇ by pop
m (with pop = �

i
∂
∂x ) and η by x, to

âNL(t) = i

√
m

2�
αNL

(pop
m

− CNLx
)
e

γ
2 t, (5.178)

â+
NL(t) = −i

√
m

2�
αNL

(pop
m

− C∗
NLx

)
e

γ
2 t . (5.179)

From (5.178) and (5.179) it is clear that, apart from the exponential factor e
γ
2 t ,

the form of the (generalized) creation and annihilation operators is identical to the
ones defined in (2.202) and (2.203) in the non-dissipative case. Only the solutions
of Riccati equation (2.4) must be replaced by the ones of Eq. (5.4) belonging to the
logarithmic NLSE (5.1).

Still the meaning of the exponential factor e
γ
2 t needs to be explained. As INL is a

constant of motion for the dissipative system (like Ĥexp on the canonical level) but
the NL Hamiltonian and its mean value are not, the invariant should correspond to
the canonical level, in agreement with the remarks in the previous sub-section (and
the results for the dissipative Wigner function).

In the classical case, the connection between the canonical and the physical level
was given by (4.133); in the quantum mechanical case this corresponds to the non-
unitary connection between the canonical and physical wave functions according to
(4.135), i.e.

ln�̂ = eγt ln�NL.

Therefore, the factor eγt in INL should be omitted if it is used for the definition of
the creation and annihilation operators that supply the wave functions and coherent
states which are solutions of the Hamiltonian operator on the physical level.

In this dissipative case, the action-type quantitymINLe−γt on the physical level can
be expressed in the same way in terms of uncertainties multiplied by the conjugate
mean values as in the non-dissipative case (with γ = 0, i.e., e−γt = 1), only the mean
values are now calculated with �NL(x, t), i.e.,

mINLe
−γt = 1

�

[〈x̃2〉NL〈p〉2NL − 〈[x̃, p̃]+〉NL〈x〉NL〈p〉NL + 〈p̃2〉NL〈x〉2NL
]
. (5.180)

The equivalent relation between the invariant INL and the Wigner function for the
dissipative case has already been mentioned above.

So finally the generalized creation and annihilation operators for the dissipative
systems can also be written in the form

aNL(t) =
√

m

2�
αNL(t)

(
�

m

∂

∂x
− i CNLx

)
= âNL e

− γ
2 t, (5.181)
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a+
NL(t) =

√
m

2�
αNL(t)

(
− �

m

∂

∂x
+ i C∗

NLx

)
= â+

NL e
− γ

2 t . (5.182)

The corresponding coherent states can again be obtained via application of aNL(t)
as eigenstates of this operator with eigenvaluewNL = ŵNLe− γ

2 t or via the displacement
operator, leading to

|w〉NL = e− 1
2 |wNL|2

∞∑
n=0

wn
NL(a

+
NL)

n

n! |0〉 (5.183)

with

wNL =
√

m

2�
αNL

[CNL,Iη + i (η̇ − CNL,Rη)
]
, (5.184)

where the coherent states |w〉NL are identical to the exactWP solutions�NL(x, t) (5.2)
of the logNLSE (5.1) discussed in this section and related to the canonical dissipative
WPs via the non-unitary transformations given in Sect. 4.5 (for further details, see
[29, 30]).
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Chapter 6
Dissipative Version of Time-Independent
Nonlinear Quantum Mechanics

In the time-dependent (TD) non-dissipative case, the information on the time-
evolution of the wave packet (WP) width, and thus on the quantum mechanical
aspect, was contained in the nonlinear (NL) complex Riccati equation for the quan-
tity 2�

m y(t) = C = λ̇(t)
λ(t) ,

d

dt

(
λ̇

λ

)
+

(
λ̇

λ

)2

+ ω2 = 0 , (6.1)

that can be linearized to the complex Newtonian equation for λ(t) = u + iz = α eiϕ

(where z(t) is proportional to the classical trajectory η(t) = 〈x〉),

λ̈ + ω2λ = 0 . (6.2)

Taking into account a linear velocity dependent friction force, an additional term

linear in CNL = ˙̃
λ

λ̃
enters the Riccati equation (with λ̃ = λ e− γ

2 t ),

d

dt

( ˙̃
λ

λ̃

)
+ γ

( ˙̃
λ

λ̃

)
+

( ˙̃
λ

λ̃

)2

+ ω2 = 0 , (6.3)

which, after linearization, causes an additional linear term with first derivative in the
second-order differential equation for λ̃(t),

¨̃
λ + γ

˙̃
λ + ω2λ̃ = 0 . (6.4)

In both cases, the additional terms depend on the coefficient γ of the friction
force.

© Springer International Publishing AG 2018
D. Schuch, Quantum Theory from a Nonlinear Perspective,
Fundamental Theories of Physics 191, https://doi.org/10.1007/978-3-319-65594-9_6

179



180 6 Dissipative Version of Time-Independent Nonlinear Quantum Mechanics

In the NL formulation of time-independent (TI) quantum mechanics (discussed
in Sect. 3.2), the complex Riccati equation

∇
(∇�

�

)
+

(∇�

�

)2

+ 2m

�2
(E − V ) = 0 (6.5)

in the non-dissipative case could be linearized to the usual (complex) TI Schrödinger
equation (SE), written in the form

	� + 2m

�2
(E − V ) � = 0 . (6.6)

The question nowarising is, what are themodifications to this Riccati equation and
its linearized form caused by the friction force in the dissipative case? Comparison
with the TD situation suggest a linear term 


(∇�
�

)
should be added to the Riccati

Eq. (6.5), i.e.,

∇
(∇�

�

)
+ 


(∇�

�

)
+

(∇�

�

)2

+ 2m

�2
(E − V ) = 0 , (6.7)

and a corresponding first-derivative term 
∇� to Eq. (6.6), i.e.,

	� + 
∇� + 2m

�2
(E − V ) � = 0 . (6.8)

The coefficient
 should somehowbe related to the friction force and its parameter
γ but, in general, could be a complex function of r (or in one dimension x) and t ,

(r, t).

As � is complex, a contribution from the imaginary part of the additional term

∇� should show up in the equation for � = �∗�, thus modifying the continuity
equation (3.30) written in the notation in Sect. 3.2 with � = a e− i

�
S (and � = a2) as

∂

∂t
a2 + 1

m
∇ (

a2∇S
) = 0 .

What should be the specific form of this additional term and, particularly, of

(r, t)? To answer this question the following assumptions are made:

1. The SE can be obtained from the continuity equation (3.30) according to
Madelung and Mrowka [1, 2] (see Sect. 4.4.3) via separation. The log NLSE (4.115)
can be obtained from the Smoluchowski equation

∂

∂t
a2 + 1

m
∇ (

a2∇S
) − D	a2 = 0 (6.9)

with the additional diffusion term −D	a2 and the condition
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− D	a2 = γ (ln a2 − 〈ln a2〉)a2 (6.10)

also via separation [3, 4]. Therefore, the additional term 
∇� in the modified TISE
should also originate from an additional term in the continuity equation, plus sepa-
ration. That is, a term


 ∇a2 = 

(
�∗∇� + �∇�∗) (6.11)

should occur in the evolution equation for a2 = �. The contribution from this term
would enter the modified SE with an imaginary coefficient.

2. The additional term in the equation for a2 = �, at least for cases with Gaussian
WP solutions (i.e., V = 0 and HO) discussed before in this context, should have the
same effect as the diffusion term or the ln ρ-term, i.e.,

− D	x� = γ (ln � − 〈ln �〉)� = γ

2

(
1 − x̃2

〈x̃2〉
)

� . (6.12)

Comparison shows that

∇x

(γ

2
x̃�

)
= γ

2

(
1 − x̃2

〈x̃2〉
)

� (6.13)

yields the desired result! (In our one-dimensional case that is discussed in detail, ∇x

means ∂
∂x and the subscript x will be omitted in the following as the results apply to

problems in one, two and three dimensions.)
After separation, this contributes an additional term

WTI = γ

2

�

i

(
1

2
+ x̃

∇�

�

)
(6.14)

that already looks familiar when rewritten as

WTI � =
(

γ

4

�

i
+ γ

2
x̃

�

i
∇

)
� = γ

4
[x̃, pop]+ � = 1

2
WSüs � , (6.15)

where WSüs is identical to Süssman’s [5] approach (4.89) that was discussed in
Sect. 4.4.1.

However:
(a) its mean value 〈WTI〉 = γ

4 〈[x̃, p̃]+〉 = 〈WHas〉 �= 0 does not vanish (where
WHas is Hasse’s friction term [6], also discussed in Sect. 4.4.1) but this could be
compensated for by a normalization factor; and

(b) the corresponding mean value of the friction force is

〈−∇WTI〉 = −γ

2
〈p〉 ,
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i.e., half of the friction force is missing.
Considering for instance the TISE for the HOwith real wave functions, this would

not actually cause a problem as, in this case, <p> = 0. However, if one would also
take into account cases where the phase of the wave function matters, a further real
contribution

γ

2
x̃〈p〉 = 1

2
WAl (6.16)

with Albrecht’s [7] friction term WAl (4.90) would be needed, in addition to WTI.
Where could the missing terms originate from? To answer this question we need

to revisit Madelung’s hydrodynamical formulation. From the continuity equation,
rewritten in the notation with � = a2, see Eq. (3.30) above, in the TI case with
∂
∂t a

2 = 0 the conservation law

∇S = C

a2

was derived. Taking into account the additional term (6.13), this is obviously no
longer valid. However, introducing a modified action function S′ via

∂

∂t
a2 + 1

m
∇

(
a2

(
∇S + m

γ

2
x̃
))

=
∂

∂t
a2 + 1

m
∇ (

a2∇S′) = 0 (6.17)

with 1

S′ = S + m
γ

4
x̃2 + f (t) (6.18)

allows us to find, for ∂
∂t a

2 = 0, again a conservation law of the form

∇S′ = C

a2
. (6.19)

Separation of (6.17) provided the modified TISE with the additional term WTI.
However, interpreting the termm γ

2 x̃ as part of the gradient of a modified (real) action
function S′ means that also the second equation ofMadelungs formulation describing
the time-evolution of the action function S via

∂

∂t
S + 1

2m
(∇S)2 + V − �

2

2m

	a

a
= 0

must be modified to a corresponding equation for S′.

1Note that the phase factor im
�

γ
4 x̃

2 (apart from the factor eγ t linking the physical with canonical
level) corresponds to the unitary transformation between the Caldirola–Kanai approach and the one
in expanding variables, as given in Eq. (4.70).
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In a first step, from the SE plus the term WTI, one obtains the Hamilton–
Jacobi-type equation (3.31) plus an additional term fromWTI (the last on the rhs) but
still for the action S,

∂

∂t
S + 1

2m
(∇S)2 + V − �

2

2m

	a

a
+ γ

2
x̃(∇S) = 0 . (6.20)

In a second step to obtain a form that is consistent with the modified action in the
second line of Eq. (6.17), S is replaced by S′ according to (6.18). Specifically, the
(explicit) time-derivative of the action supplies the additional terms

∂

∂t
S = ∂

∂t
S′ + γ

2
〈p〉x̃ − ∂

∂t
f (t) , (6.21)

leading to Eq. (6.20) expressed in terms of S′ as

∂

∂t
S′ + 1

2m
(∇S′)2 +

[
V − m

2

γ

4
x̃2 + γ

2
〈p〉x̃ − ∂

∂t
f

]
− �

2

2m

	a

a
= 0 . (6.22)

With ∂
∂t S

′ = −E ′ and ∂
∂t f = γ

4 〈[x̃, p̃]+〉 and applying the new conservation law
(6.19), Eq. (6.22) can be rewritten as Ermakov equation

	a + 2m

�2

[
Ê ′
R − V̂

]
a = (

1

�
∇S′)2 a =

(
C

�

)2 1

a3
(6.23)

with Ê ′
R = E ′ − γ

2 〈p〉x̃ + γ

4 〈[x̃, p̃]+〉 and2 V̂ = V − m
2

γ

4 x̃
2.

Including the two additional terms originating from the time-dependence of S
expressed in terms of S′, as shown in (6.21) with ∂

∂t f = γ

4 〈[x̃, p̃]+〉, the full

irreversible dissipative term W̃TI now attains the form

W̃TI = γ

2
[x̃, pop]+ + γ

2
〈p〉x̃ − γ

4
〈[x̃, p̃]+〉 = WHas − 〈WHas〉 = W̃SCH , (6.24)

with W̃SCH being the logarithmic nonlinearity as given in (4.118).
The first additional (real) term γ

2 〈p〉x̃ simply provides the missing contribution
1
2WAl that is necessary to obtain the correct friction force in the equation ofmotion for
the mean values and the second term is equal to the mean value of Hasse’s friction
term and must be subtracted so that 〈W̃TI〉 = 0. For Gaussian WPs the equality
W̃TI�WP = W̃SCH�WP is valid.

2The replacement V = m
2 ω2x2 → V̂ = m

2

(
ω2 − γ 2

4

)
x2 in this position-dependent problem

corresponds to the replacement ω2 →
(
ω2 − γ 2

4

)
in the TD problem Eq. (5.15) and the description

in expanding variables, Eq. (4.66).
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The modified TISE including these two additional terms can be rewritten as

E ′� =
{
− �

2

2m
	x + γ

2
x̃

�

i
∇x +

(
V + γ

2
x̃〈p〉 − γ

4
〈[x̃, p̃]+〉 + i�

γ

4

)}
� ,

(6.25)

or in the form of the corresponding modified complex Riccati equation

∇x

(∇x�

�

)
+ iγ

m

�
x̃

(∇x�

�

)
+

(∇x�

�

)2

+ 2m

�2
(Ê − V ) = 0 (6.26)

with the complex quantity

Ê = E ′ − γ

2
〈p〉x̃ + γ

4
〈[x̃, p̃]+〉 − i�

γ

4
. (6.27)

In Fig. 6.1, the TD and space-dependent cases are again compared but now includ-
ing the environmental effect. Whereas in the TD situation the coefficient of the
additional linear term in the Riccati equation and the first-derivative term in its lin-
earized form do not explicitly depend on time t (only an implicit time-dependence
via γ = γ (t) is possible), in the space-dependent case the coefficient depends lin-
early on the spatial variable and is, in contrast with the TD case, purely imaginary. In
the TD case, the conservation law remains unchanged while in the space-dependent
case the phase is changed in a way that corresponds to a unitary transformation of
the wave function. On the other hand, the amplitude of the complex variable in the

Fig. 6.1 Comparison between time-dependent and space-dependent Riccati equations, their lin-
earized forms and the corresponding Ermakov equations for the dissipative case
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space-dependent situation remains unchanged whereas in the TD case, the ampli-
tude is multiplied by an exponential damping factor. Nevertheless, the resulting
Ermakov equations have the same structure in both cases. So it seems that a change
of the phase, corresponding to a unitary transformation, can have the same effect
as a change in the amplitude of a complex variable which would correspond to a
non-unitary transformation (for further details, see also [8]).
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Chapter 7
Nonlinear Riccati Equations in Other Fields
of Physics

In Chap.2 it has been shown that, for systems where the time-dependent Schrödinger
equation (TDSE) possesses analytic solutions (i.e., at most quadratic Hamiltonians),
the information about the dynamics of the classical as well as quantum mechanical
aspects of the system can equally well be obtained from a quadratically nonlinear
(NL) complexRiccati equation. The differentways of treating this equation alsomake
it possible to connect it to other established formulations of this quantummechanical
problem, like the ones using a TD Green function or Feynman kernel, a description
in momentum space or via the Wigner function in phase space. Also, well-defined
relations can be shown to algebraic and group-theoretical descriptions as well as to
those using generalized creation/annihilation operators. Not only was it possible to
rewrite all these formulations of quantum mechanics in terms of the Riccati variable
(or variables derived from it), but additional information is also gained that is not
obvious in the linear formulation, like sensitivity to the initial quantum uncertainties
or additional dynamical invariants.

In the time-independent (TI) case (discussed in Chap.3), the Riccati formulation
could even be generalized to any position-dependent potential and a unique relation
could be established between phase and amplitude of the wave function (that is not
obvious in the linear formulation, but immediately clear from the quadratic nonlin-
earity of the complex Riccati equation). Comparison with supersymmetric (SUSY)
quantum mechanics even allowed the construction of new complex (non-Hermitian)
potentials with real energy eigenvalues.

Chapters 4, 5 and 6 showed how the entire formalism could be extended consis-
tently to include dissipative velocity-dependent friction forces. The relations between
different approaches to reach this goal were shown and, in conclusion, all could be
traced back to simple modifications of the Riccati equations introduced in Chaps. 2
and 3.
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In this Chapter, the advantage of a formulation in terms of Riccati equations is
demonstrated by rewriting problems from various fields of physics in terms of (real or
complex) Riccati equations. This enables direct comparison with the corresponding
formulation of the above-mentioned quantum systems and therefore creates a unified
formulation of all these fields of physics (and more, as the following examples are
only a small selection of a much larger variety).

7.1 Riccati Equations in Statistical Thermodynamics

In Sect. 2.2 it has been shown that the solution C(t) of the complex Riccati equation
(2.4) that determines the time-dependence of the wave packet (WP) width, and thus
the position uncertainty can be obtained, once a particular solution C̃ and the solution
of the homogeneous Bernoulli equation (2.5) for the complex quantity V(t) are
known, in the form C(t) = C̃+V(t). Particularly for constant C̃, the general solution
of the Riccati equation could be written down explicitly in the form (2.7), rewritten
now for the following purpose as

C(t) = C̃ + 2C̃ e−2C̃t

κ0 2C̃ +
(
1 − e−2C̃ t

) = C̃ + 2C̃
κ0 2C̃ e2C̃t +

(
e2C̃t − 1

) . (7.1)

As shown also in Sect. 2.2, the particular solution C̃ for theHO is purely imaginary,
turning the exponential functions into trigonometric ones.

In Sect. 2.5.1. it has been shown why trigonometric functions are good candidates
for fulfilling Riccati equations. At the same time, however, it was also shown that
switching to an imaginary argument (ϕ → iϕ), which turns the trigonometric func-
tions into hyperbolic ones, also leads to functions that fulfil Riccati equations but to
those that would correspond to a repulsive quadratic potential.

In Eq. (7.1) this wouldmean that 2C̃t = i2ω0t in the exponent must be replaced by
a real quantity that can be attained by replacing the time-variable “t” by an “imaginary
time” τ , e.g., τ = i �

kBT
, with kB = Boltzmanns constant and T = temperature, thus

turning the quantum mechanical problem into one of statistical thermodynamics.
This trick of replacing the real physical time with an imaginary time (thus turning
the TDSE into a kind of diffusion equation) is also used, e.g., in quantum chemistry
for computational purposes to avoid problemswith oscillatory solutions. The concept
of an imaginary time is applied also in cosmology [1].

In our case, the formal similarity is used to show that the Riccati formalism
established in the context of TD quantummechanics can also be found in other fields
of physics, in this case in statistical thermodynamics. To show that this is not just pure
mathematical formalism, but that it has also well-known physical implications, the
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replacements 2C̃ → �ω and1 t → 1
kBT

= β are considered and the initial condition
κ0 is chosen to be zero, κ0 = 0.

Relation (7.1) then turns into

C
(

1
kBT

)
= �

2ω0 + �ω0

e
�ω0
kBT −1

= �

2 ω0 coth
(

�ω0
2kBT

)
= 〈E〉th (7.2)

which is the well-known expression [2] for the average energy 〈E〉th of a single
oscillator in thermal equilibrium. The first term on the rhs is just the ground state
energy of the harmonic oscillator (HO), the second is equal to Planck’s distribution
function for the black body radiation. This type of relation between Eq. (7.2) and the
Riccati equation has also been found by Rosu et al. [3, 4].

In the TD quantum mechanical context, the Riccati variable could be written as a
logarithmic derivative indicating that only relative changes matter. The same is also
possible in this case. Using the familiar expression of the partition function Z as

Z =
∑
n

e−n�ω0β = 1

1 − e�ω0β
, (7.3)

Equation (7.2) can be rewritten as

〈E〉th = �

2
ω0 +

∂
∂β
Z−1

Z−1
= �

2
ω0 − ∂

∂β
ln Z . (7.4)

It is worth mentioning that this energy, particularly obvious in the first part on the
rhs of Eq. (7.2), is the sum of the ground state energy of the HO and a second term
that is simply a Bose–Einstein distribution function.

Knowing this solution and the formal structure of the Riccati systems developed
in the case of the TDSE, the corresponding Riccati equation can be written straight-
forwardly as

C ′ + C2 − C̃2 = 0 (7.5)

where prime denotes derivative with respect to β = 1
kBT

, ′ = d
dβ .

As shown in Sect. 2.7 (where the momentum-space representation of the TDSE
was discussed), if C fulfils a Riccati equation like (2.4) the quantityK(t) = −C̃2C−1

also fulfils a Riccati equation, namely −K′ +K2 + ω2
0 = 0 (see (2.103)), leading in

our case to
− K′ + K2 − C̃2 = 0 , (7.6)

1As we are interested in quantities C that are related to energy, � has been taken away from the
definition of complex time and included in C̃. This is simply a formal matter of definition. The
quantity β = 1

kBT
should not be confused with β(t) = �

2m〈x̃2〉(t) that was used in the context of the
TDSE!



190 7 Nonlinear Riccati Equations in Other Fields of Physics

i.e., the same Riccati equation but now with a negative sign for the derivative term.
Therefore, the solution is proportion to the inverse of C, i.e.,

K
(

1
kBT

)
= �

2ω0 − �ω0

e
�ω0
kBT +1

= �

2ω0 tanh
(

�ω0
2kBT

)
(7.7)

where the contribution beside the ground-state energy is now a Fermi–Dirac distri-
bution.

This is strikingly similar to the situation in SUSY quantum mechanics as men-
tioned in Sect. 3.1, where the Riccati equations (3.6) and (3.7) determining the poten-
tials for the bosonic and fermionic Hamiltonians also only differ by the sign of the
derivative term.

So, the quantum statistical properties distinguishing bosons and fermions by the
sign of a derivative in a Riccati equation in SUSY quantum mechanics have a coun-
terpart in classical statistical thermodynamics, providing this is also formulated in
terms of Riccati equations.

7.2 The Logistic or Verhulst Equation

A slight modification of Eq. (7.7) leads to the solution of another Riccati/Bernoulli-
type equation, the logistic equation proposed by the Belgian mathematician Pierre
Verhulst in 1838 [5].

For this purpose, Eq. (7.7) can be written in terms of “neutral” variables, i.e.,

�ω → 1 and 1
kBT

→ x , thus K
(

1
kBT

)
→ g(x), as g(x) = 1

2 tanh
(
x
2

)
, fulfilling

g′ + g2 − 1

4
= 0 (7.8)

with ′ = d
dx . Adding the constant 1

2 to g(x) leads to

f (x) = g(x) + 1

2
= 1

2

(
tanh

( x
2

)
+ 1

)
= 1

1 + e−x
, (7.9)

which is a sigmoidal function that fulfils the logistic equation

− f ′ + f 2 − f = 0 ,

or − f ′ = f (1 − f ) . (7.10)

This equation is like a rate equation with gain and loss terms and has been applied
in such diverse fields as ecology, medicine, chemistry, linguistics, economics, for
modelling population growth, modelling tumour growth, to describe autocatalytic
reaction models, neural networks, and so on (see, e.g., [6], Sect. 10).



7.2 The Logistic or Verhulst Equation 191

The same structure of equations as (7.10) is also found in different other areas of
physics (and not only there). Another example discussed by Haken in his book on
Synergetics ([6], Sect. 5.4) is a simplified model of a laser. In this case the photon
production rate is determined by an equation for the temporal change of the photon
number n(t) having the form

ṅ = gain − loss (7.11)

that can be specified to a basic laser equation

ṅ = −kn − k1n
2 (7.12)

with appropriately-defined constants k and k1 (for details, see [6]).
Of importance is the fact that, due to the nonlinearity of Eq. (7.12), this equation

allows for bifurcations. This means small changes of a parameter can lead to drastic
changes of the system like, e.g., phase transitions. This is demonstrated subsequently
using a system that initially looks different from the ones discussed in this sub-section
(due to a cubic nonlinearity) but can be brought into the same form and displays the
property of a so-called Hopf bifurcation.

7.3 Nonlinear Dynamics with Hopf Bifurcation

AHopf bifurcation generates a limit cycle starting from a fixed point ([7], Sect. 5.4).
The initial equations may actually look different from the ones discussed in the
previous sub-section. Starting from the set of coupled NL differential equations in
rectangular Cartesian coordinates x and y,

ẋ = −{� + (
x2 + y2

)}x − ωy , (7.13)

ẏ = −{� + (
x2 + y2

)}y + ωx , (7.14)

by introducing polar coordinates r and θ with d
dt θ = ω, this can be reduced to a

single equation for r(t),
ṙ = −�r − r3 , (7.15)

i.e., a first-order differential equation with cubic nonlinearity where the parameter
� can be expressed by the difference of another parameter a and its critical value
ac, � = a − ac. The Riccati/Bernoulli form of (7.15) can be achieved simply by
multiplying this equation by 2r and defining as a new function R(t) = 2r2(t) that
now fulfils

Ṙ + 2�R + R2 = 0 (7.16)

where 2� corresponds to 2C̃ in our quantum mechanical case.
The solution of Eq. (7.16) can then be written down (in terms of r(t)) as
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r2(t) = � r20 e−2�t

r20
(
1 − e−2�t

) + �
(7.17)

with r0 = r(t = 0).
For � ≥ 0 the trajectory approaches the origin (fixed point); for � < 0 it spirals

towards a limit cycle with radius r∞ = |(a − ac| 1
2 = |�| 1

2 .
Equation (7.15) has the same structure as the Newtonian equation of motion for

the motion in a double-well potential,

V (x) = m

2
ω2
0x

2 + 1

4
k1x

4 , (7.18)

under the influence of a linear velocity dependent friction force −mγ x (with γ = 1)
if the acceleration term ẍ can be neglected, i.e.,

ẋ = −ω2
0x − k1

m
x3 . (7.19)

This was used by Haken ([4], Sect. 5.1) as starting point for the discussion of
dynamical processes including bifurcations and limit cycles that serves as basis for
the simple laser model mentioned in the previous subsection.

Double-well potentials like (7.18) can also be related to phenomena like phase
transitions, for instance those discussed by Landau. In the case of second-order phase
transitions, this leads to equations of the form

q̇ = −αq − βq3 , (7.20)

adopting the nomenclature of Haken ([4], Sect. 6.7).

7.4 Solitons and Riccati Equations

Solitary waves or solitons are waves travelling without changing their shape even
in collision with other solitary waves, particularly not spreading in time, and can
be described by NL differential equations. Historically, the observation of solitary
waves was first reported by Scott-Russell in 1844 [8] and a theoretical description
was given by Korteweg and de Vries in 1895 [9]. The interest in solitons began to
grow in the 1960s with the development of modern computers and has shown to
have applications in almost every area of physics and beyond, from the transition of
light pulses in optical fibres, electrical pulses in nerve cells to tsunamis. The aim of
this sub-section is to show the link between NL differential equations with soliton
solutions and Riccati equations and (further via linearization of these equations) to
corresponding SEs.
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Connections between soliton theory and SEs are well-known in the literature [10,
11], e.g., in the Miura transformation [12] (changing the Korteweg–de Vries (KdV)
equation into the modified KdV equation) which, via a logarithmic derivative, also
leads to a TISE (as in the cases discussed above) and provides the basis for the inverse
scatter theory.2

Here a different route is taken. It is shown how the Burgers equation and the KdV
Equation (at least for cases with real one-soliton solutions) can be transformed into
the same (real) Riccati equation that can be linearized to a TISE with well-known
potential. Using a TI equivalent of Eq. (2.102), K(t) = −C̃2C−1, a corresponding
Riccati equation and TISE can also be found where the potential of this SE is simply
the SUSY partner of the one in the above TISE.

As both soliton equations lead to the same Riccati equation, relations between
them can also be established.

7.4.1 Burgers Equation

Starting point is the Burgers equation for the function u(x, t) in the form

∂

∂t
u + u

∂

∂x
u − D

∂2

∂x2
u = 0 (7.21)

with diffusion constant D. As we are looking for spatially-localized solutions that
propagate with constant speed cB while maintaining their shape, we switch to a
coordinate system travelling with the wave according to X = x − cBt . Assuming no
further explicit time-dependence, ∂

∂t can be replaced by −cB
d
dX and u(x, t) can be

rewritten as ĝ(X), now fulfilling the equation

− cB

d

dX
ĝ− + ĝ−

d

dX
ĝ− − D

d2

dX2
ĝ− = 0 (7.22)

(where d
dX = d

dx ). The meaning of the subscript “minus” will become clear later on.
The one-soliton solution [13] of this equation can be written as

ĝ−(X) = cB

[
1 − tanh

( cB

2D
X

)]
. (7.23)

To link Eq. (7.22) to a Riccati equation, it is integrated with respect to X and,
after being multiplied by 1

2D , the function g−(X) = 1
2D ĝ−(X) fulfils the Bernoulli

equation

− d

dX
g− + g2− − cB

D
g− = 0 . (7.24)

2A logarithmic derivate also occurs in the Hopf–Cole transformation that transforms the Burgers
equation into a heat or diffusion equation; this will not be discussed further in this work.
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Comparing it with the TD situation in Chap.2, it is known that half of the coef-
ficient of the term linear in g−, here C̃− = − cB

2D , is simply the particular solution of
the corresponding Riccati equation and, therefore,

K− = g−(X) + C̃− = g−(X) − cB

2D
= − cB

2D
tanh

( cB

2D
X

)
(7.25)

then fulfils the Riccati equation

− d

dX
K− + K 2

− −
( cB

2D

)2 = 0 . (7.26)

However, this equation is also compatible with the particular solution C̃+ = + cB
2D ,

i.e., a wave travelling in the opposite direction with the same velocity cB. The Burgers
equation (7.22) then changes into

cB

d

dX
ĝ+ + ĝ+

d

dX
ĝ+ − D

d2

dX2
ĝ+ = 0 (7.27)

and solution (7.23) into

ĝ+(X) = −cB

[
1 + tanh

( cB

2D
X

)]
. (7.28)

After integrating Eq. (7.27), the resulting Bernoulli equation is now

− d

dX
g+ + g2+ + cB

D
g+ = 0 , (7.29)

compatible with C̃+ = + cB
2D . Therefore, the variable K+ fulfilling the corresponding

Riccati equation is

K+ = g+(X) + C̃+ = − cB

2D
tanh

( cB

2D
X

)
= K− = K , (7.30)

i.e., the same variable is valid for+cB and−cB. SoEq. (7.26) (without any subscript of
K ) is valid for solitary waves travelling in opposite directions. This Riccati equation

can now be linearized using K = d
dX �(1)(X)

�(1)(X)
to yield (after multiplication with �

2

2m )

− �
2

2m

d2

dX2
�(1) + �

2

2m

( cB

2D

)2
[
1 − 2

cosh2
( cB
2D X

)
]

�(1) = 0 . (7.31)

This is the TISE for the well-known Rosen–Morse potential
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V1 = �
2

2m

( cB

2D

)2
[
1 − 2

cosh2
( cB
2D X

)
]

(7.32)

which has [14] one bound state �0 with energy E0 = 0 (hence 0 on the rhs of
Eq. (7.31)).

According to the definition of the potential energies in SUSY quantum mechan-
ics in terms of logarithmic derivatives of the ground state wave function [14, 15],
the (normalized) ground state wave function of Eq. (7.31) can be determined from
Eq. (7.32) as

�
(1)
0 = 1√

2

( cB

2D

) 1
2 1

cosh
( cB
2D X

) . (7.33)

As shown in the TD case, if K fulfils a Riccati equation of type (7.26), the function
C = −C̃2K−1 also fulfils a Riccati equation, namely

d

dX
C + C2 − C̃2 = 0 (7.34)

(here the sign of the derivative term changes as C̃2 is positive for real C̃). This
definition of C leads to

C(X) = cB

2D
coth

( cB

2D
X

)
(7.35)

which can again be written as the logarithmic derivative of a function �(2)(X)

C =
d
dx �

(2)

�(2)
=

( cB
2D

)
cosh

( cB
2D X

)

sinh
( cB
2D X

) =
d
dx sinh

( cB
2D X

)

sinh
( cB
2D X

) (7.36)

with3 �(2)(X) ∝ sinh
( cB
2D X

)
, linearizing Riccati equation (7.34) to

− �
2

2m

d2

dX2
�(2) + �

2

2m

( cB

2D

)2
�(2) = 0 , (7.37)

i.e., the TISE with potential

V2 = �
2

2m

( cB

2D

)2 = const (7.38)

which is the SUSY partner potential of V1.
For completeness it should be mentioned that, in addition to �(2)(X), also


(2)(X) ∝ cosh
( cB
2D X

)
is an independent solution of Eq. (7.37) with the correspond-

ing Riccati variableC
 = + cB
2D tanh

( cB
2D X

) = −K . Similarly, for the Rosen–Morse

3As �(1)(X) is normalizable, �(2)(X) is not.
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potentialV1 the second solutionwould be
(1)(X) ∝ 1
sinh(

cB
2D X)

and the corresponding

Riccati variable K
 = − cB
2D coth

( cB
2D X

) = −C .

7.4.2 Korteweg–de Vries Equation

Applying the same type of coordinate transformation as in Sect. 7.4.1 to the KdV
equation for the function w(x, t),

∂

∂t
w − 6w

∂

∂x
w + ∂3

∂x3
w = 0 , (7.39)

i.e., shifting to a system moving with constant velocity cK according to X = x − cKt ,
changes this equation into

− cK

d

dX
f − 6 f

d

dX
f + d3

dX3
f = 0 (7.40)

with w(x, t)=̂ f (X).
Integration with respect to X now provides

d2

dX2
f = 3 f 2 + cK f + A (7.41)

with integration constant A.
Using d2

dX2 = 1
2

d
d f

(
d
dX f

)2
and integrating with respect to f then yields

1

2

(
d

dX
f

)2

= f 3 + 1

2
cK f

2 + A f + B . (7.42)

Looking for solitary waves with boundary conditions f , d
dX f and d2

dX2 f → 0,
as X → ± ∞ (see [13]), the integration constants A and B can be chosen to be
zero allowing one to write Eq. (7.42) as

− 2 f +
(

d
dX f

f

)2

− cK = 0 . (7.43)

This would be the desired Riccati equation if −2 f ∝ d
dX

( d
dX f
f

)
would be valid.

As known [13], Eq. (7.40) possesses a soliton solution of the form4

4Actually, in cosh2 it should be more general X − X0; but for the following this is not essential and
X0 = 0 will be assumed.
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f (X) = −cK

2

1

cosh2
(√

cK
2 X

) (7.44)

which fulfils the condition

d

dX

(
d
dX f

f

)
= −cK

2

1

cosh2
(√

cK
2 X

) = f . (7.45)

Therefore, with

f̃ (X) = −
√
cK

2

1

cosh
(√

cK
2 X

) , (7.46)

Equation (7.43) can be rewritten as a Riccati equation

− d

dX

(
d
dX f̃

f̃

)
+

(
d
dX f̃

f̃

)2

− cK

4
= 0 (7.47)

that has the same form as Riccati equation (7.26) for K (X), only replacing cB
D with

√
cK and K = d

dX �(1)(X)

�(1)(X)
with

d
dX f̃

f̃
. Therefore, the linearized TISE corresponding to

Eq. (7.47) is simply Eq. (7.31) for theRosen–Morse potential, only replacing�(1)(X)

with f̃ (X) and cB
D with

√
cK. The relations to the corresponding TISE with SUSY

partner potential are analogous to the case discussed for the Burgers equation.

7.4.3 Connections Between the Soliton Equations

As the Burgers equation (7.22) and the KdV (7.40) lead to the same kind of Riccati
equation, (7.26) and (7.47), respectively, using K as given in (7.30), a relation can
be established between the functions ĝ±(X) solving Eqs. (7.22), (7.27) and f = f̃ 2,
solving Eq. (7.40), in the form

2K = ĝ±
D

± cB

D
=̂

d
dX f

f
(7.48)

where only cB
D in ĝ must be replaced by

√
cK in f or vice versa.

Only a short remark connecting the results of this work with another case shall
follow where a Riccati equation is used in soliton theory, namely the Miura transfor-
mation [9, 10]. This transformation shows that if w(x, t) fulfils the KdV equation
(7.39), then a function v̂(x, t) fulfilling the Riccati equation
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w = ∂

∂x
v̂ + v̂2 (7.49)

obeys the modified KdV equation

∂

∂t
v̂ − 6v̂2 ∂

∂x
v̂ + ∂3

∂x3
v̂ = 0 , (7.50)

or, using themoving coordinate system,w(x, t) is replaced by f (X), v̂(x, t) by v(X)

and ∂
∂t must be replaced by −cK

d
dX . Expressing v(X) as a logarithmic derivative

according to v(X) = d
dX �

�
, this turns Riccati equation (7.49) into the TISE

− �
2

2m

d2

dX2
� + �

2

2m
f � = 0 . (7.51)

The case where f (X) is given in the form (7.44) shall be mentioned in connection
with the results obtained previously. In this case, the TISE (7.51) acquires the form

− �
2

2m

d2

dX2
�+ �

2

2m

(√
cK

2

)2 2

cosh2
(√

cK
2 X

)� = − �
2

2m

d2

dX2
�+VPT� = 0 (7.52)

where VPT is the well-known Pöschl–Teller potential (see, e.g., [16]).
As the KdV equation is Galilean invariant [13], the transformation

w(x, t) → � + w(x + 6�t, t), − ∞ < � < +∞ (7.53)

leaves Eq. (7.40) unchanged for arbitrary (real) �. The x-dependence is not affected
by this transformation. The only consequence for the Riccati equation (7.49) is that
w(x, t) must be replaced by w̃ = w + �. This function w̃ now obeys the same KdV
equation (7.49) as w but the linearization of Riccati equation (7.49) now yields a
TISE where f is replaced by f − �,

− �
2

2m

d2

X2
� + �

2

2m
( f − �)� = 0 , (7.54)

which is the basis for the inverse scattering method [13] and, for f (X) again given
in the form (7.44) and � = cK

4 , is identical to the TISE (7.31) for the Rosen–Morse
potential.

As both soliton equations, the Burgers equation and the KdV equation, can be
transformed into the same equation, the simple relation (7.48) can be established
between the quantities fulfilling both soliton equations. Sharing the same Riccati
equation also allows for further comparisons between the two equations (for further
details, see also [17]).
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After one integration, the Burgers equation in the moving coordinate frame turns
into the homogeneous Bernoulli equation (7.24). A Bernoulli equation with a linear
term in addition to the quadratic one also occurs in the quantum mechanical context;
there, e.g., for the dissipative free motion in the TD as well as in the TI case.5 In both
cases the coefficient of this term depends on the friction constant γ , representing a
property of the environment. The coefficient of the linear term in Eq. (7.24) is via the
diffusion coefficient also proportional to some environmental parameter. (However,
one must be careful with direct comparisons as, e.g., in the TI quantum system the
coefficient is purely imaginary – which might be due to the fact that the Bernoulli
variable, depending on the wave function, is complex – whereas the soliton solution
is real.) This would be in agreement with the statement by Su and Gardner [18] that
the Burgers equation is a limiting form for NL dissipative systems whereas the KdV
equation is a limiting form for NL dispersive systems.

A different point of view concerning the Bernoulli equation (7.24) can be taken by
assuming that the linear term originates from a transition between an inhomogeneous
Riccati equation and the homogeneous Bernoulli equation via a particular solution of
the former equation, as shown in the transition from Eq. (2.4) to (2.5). In this case, no
dissipation is involved and the coefficient of the linear term in the Bernoulli equation
simply represents (twice) this particular solution. However, this (non-dissipative)
Riccati equation is basically the one obtained from the KdV equation after two
integrations, also being in agreement with the statement by Su and Gardner [18].

The transition from the KdV to the modified KdV equation via theMiura transfor-
mation [12] – also involving a Riccati equation – provides the basis for the inverse
scattering theory via Eq. (7.54). The same equation was also obtained by Malfliet
[19] using a product ansatz for the solution of the KdV equation and its Galilean
invariance. In this approach it turns out that the solution of the KdV equation is
simply the square of the wave function of Eq. (7.54). In this case, the constant term
�
2

2m� in Eq. (7.54) would correspond to a (kinetic-type) energy term proportional to
c2B (with velocity cB) and the term proportional to 1

cosh2
in Eqs. (7.31) and (7.32) would

essentially be �2, turning Eq. (7.31) into a cubic NLSE (like equation (17) in [19]).
This might lead to a way to find connections with further soliton equations, like the
cubic NLSE (there, however, with a complex wave function �).

7.5 Complex Riccati Equation in Classical Optics

In his second communication [20] Schrödinger tried to show some analogies between
his wave equation “derived” fromHamiltonian mechanics and classical optics. In the
following, analogies between the wave equation of classical optics and our complex
Riccati formulation of quantum mechanics are shown.

5For potentials different from zero, e.g., quadratic in position variable, also linear terms appear
in the Bernoulli equation already for the non-dissipative case with coefficients proportional to the
particular solution of the Riccati equation.



200 7 Nonlinear Riccati Equations in Other Fields of Physics

For this purpose, the scalar wave equation of optics can be written (e.g., following
Goldstein [21]) as

�φ − n2

c2
∂2

∂t2
φ = 0 (7.55)

with φ(r, t) being a scalar quantity like a scalar electromagnetic potential, c the
velocity of light in vacuum and n = c

vmed
the diffraction index (with vmed = velocity

of light in themedium). In general, n = n(r) depends on themedium and the position
in space.

For the special case n = constant, plane wave solutions exist for Eq. (7.55),

φ(r, t) = φ0e
i(kr−ωt) , (7.56)

where the wave number k = |k| and the frequency ω are related via k = 2π
λ

= nω
c =

ω
vmed

.
For k being parallel to the z-direction, this can be reduced to a one-dimensional

problem with
φ(z, t) = φ0e

ik0(nz−ct) (7.57)

where k0 = wave number in vacuum with k = nk0.
In the case of geometric optics, n is not constant but varies (usually slightly) in

space, i.e., n = n(r). Then, planewaves are no longer solutions of thewave Eq. (7.55)
but one can use a similar ansatz,

φ(r, t) = eA(r)+ik0(L(r)−ct) , (7.58)

i.e., nz is replaced by L(r), the optical wave length, also called phase or Eikonal.
A(r) and L(r) are functions of the spatial variable r only. Inserting the complex
function (7.58) into (7.55) leads to two equations for the real and imaginary parts,
respectively,

Re : �a + (∇A)2 − (k0∇L)2 + (k0n)2 = 0 (7.59)

Im : �(k0L) + 2(∇A)(k0∇L) = 0 . (7.60)

Comparison with the TDSE discussed in Chap.2 shows

∇A = ∇eA(r)

eA(r)
=̂ CR = 2�

m
yR = α̇

α
, (7.61)

k0(∇L) =̂ CI = 2�

m
yI = 1

α2
= ϕ̇ . (7.62)

Combining real and imaginary parts to the complex variable

C(r) = ∇A + ik0(∇L) , (7.63)
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corresponding to C(t) = 2�

m y(t) = α̇
α

+ iϕ̇, allows the wave Eq. (7.55) to be rewritten
as the complex Riccati equation

∇C(r) + C2(r) + (k0n)2 = 0 . (7.64)

The usual approximation assumes that wavelengths are small in comparison with
the magnitude of change in the medium, i.e., terms with k20 = (

2π
λ

)2
are dominant in

(7.59); therefore, it is reduced to the Eikonal equation of geometric optics,

n2 = (∇L)2 , (7.65)

thus, however, loosing all information contained in A(r). The complete information
can be obtained by solving the complex Riccati equation (7.64), as discussed in
Chap.2.

Further examples in nonlinear opticswhereErmakov equations occur, correspond-
ing to complex Riccati equations as shown in Sect. 2.3, can be found in [22, 23].

7.6 Ermakov Equation for Bose–Einstein Condensates

A Bose–Einstein condensate (BEC) is the ground state of a collection of interacting
bosons trapped by an external potential. In the limit where the number of atoms is
sufficiently large and the atomic interactions are sufficiently weak, the mean-field
approximation can be applied where the effect felt by a particular atom due to the
ensemble is approximated by the mean action of the entire fluid on the particle.

In this case, the macroscopic wave function for the BEC, �(r, t), is determined
by the Gross–Pitaevskii equation

i�
∂

∂t
�(r, t) =

{
− �

2

2m
� + V (r, t) + g|�|2

}
�(r, t) . (7.66)

This equation is formally equivalent to a three-dimensional NLSE (with cubic
nonlinearity, but a different interpretation of�!) and, in general, it is non-integrable.
However, in two dimensions it is possible to determine the dynamics by employing
the “moment method” [24–30]. In this approach, integral relations are constructed
directly from the wave function without solving the SE explicitly and the evolution
of these physical quantities then parametrizes the dynamics of the WP solution of
(7.66).6

Therefore, in the following, a two-dimensional cylindrically-symmetric BEC in
a parabolic trapping potential

6Remark: the same model was also applied in NL optics to study the propagation of paraxial light
beams in fibres (with applications in information technology) [30, 31].
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V (r, t) = m

2
ω2(t)r2 (7.67)

with TD frequency ω(t) is considered.
A derivation of the moment method (from a Lagrangian density) can be found,

e.g., in [32]. Here, only a brief summary of this method is given. For the radially-
symmetric problem with �(r⊥, θ, t) = u(r⊥, t) eikθ , Eq. (7.66) (with g = 1) turns
into

i�
∂

∂t
u = − �

2

2m

(
1

r

∂

∂r
r

∂

∂r
u

)
+

(
�
2

2m

k2

r2
+ |u|2 + m

2
ω2(t)r2

)
u . (7.68)

Also this equation is non-integrable and has no analytic solutions, even for ω =
constant. But one can define the following integral quantities, the so-calledmoments7

Mi :

M1 =
∫

d2x |u|2 , norm (intensity or number of particles) (7.69)

M2 =
∫

d2x r2|u|2 ∼ width (7.70)

M3 = i
∫

d2x

(
∂u∗
∂r

u∗ −
∂u
∂r

u

)
|u|2 (7.71)

= i
∫

d2x

(
u

∂u∗

∂r
− u∗ ∂u

∂r

)
∼ radial momentum

M4 = 1

2

∫
d2x

(
|u|2 + k2

r2
|u|2 + |u|4

)
∼ energy of WP (7.72)

where d2x = rdrdθ and integration over θ yields 2π .
These Mi satisfy a simple and, most important, closed set of evolution equation

(for details see [32]). From the conservation of norm or particle number follows
Ṁ1 = 0. The other moments obey8

Ṁ2 = M3 , (7.73)

Ṁ3 = 4M4 − 2ω2M2 , (7.74)

Ṁ4 = −1

2
ω2M3 . (7.75)

This system of equation has several invariants under time-evolution. The most
important one is

Q = 2M4M2 − 1

4
M2

3 = const . (7.76)

7In optics these moments are used to calculate the beam-parameter evolution.
8Compare the similarity with the set of evolutions Eqs. (2.187)–(2.189) in Sect. 2.10.
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With the help of (7.76), the system of Eqs. (7.73)–(7.75) can be reduced to one
equation for M2(t),

1

2

M̈2

M2
− 1

4

(
Ṁ2

M2

)2

+ ω2(t) = Q

M2
2

. (7.77)

With M2 = α2, this can be rewritten as Ermakov equation

α̈ + ω2(t) α = Q

α3
, (7.78)

which is equivalent to a Riccati equation for the complex variable C = α̇
α

+ i 1
α2 .

Comparison with the TDSE for the one-dimensional HO,

i�
∂

∂t
�(x, t) =

{
− �

2

2m

∂2

∂x2
+ m

2
ω2(t)x2

}
�(x, t) (7.79)

leads to

M1 =
∫

dx �∗� = const. = 1 , norm, Ṁ1 = 0 (7.80)

M2 = 2m

�

∫
dx �∗ x̃2� = 2m

�
〈x̃2〉 ∼ position uncertainty, WP width (7.81)

M3 = 2

�

∫
dx �∗(x̃ p̃ + p̃x̃)� = 2

�
〈[x̃, p̃]+〉 ∼ position-momentum uncertainty correlation

(7.82)

M4 = 1

m�

∫
dx �∗ p̃2� = 1

m�
〈 p̃2〉 ∼ momentum uncertainty, quantum kinetic energy

(7.83)

or, expressed in terms of α and α̇,

M2 = 2m

�
〈x̃2〉 = α2 , (7.84)

M3 = 2

�
〈[x̃, p̃]+〉 = 2α̇α , (7.85)

M4 = 1

m�
〈 p̃2〉 = 1

2

(
α̇2 + 1

α2

)
. (7.86)

These “moments” fulfil the same closed set of evolution equations as Eqs. (7.73)–
(7.75) for the moments (7.69)–(7.72) and the invariant Q turns into Q = 1, thus
turning the Ermakov equation (7.78) into the one obtained in Sect. 2.3, i.e., Eq. (2.16).
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7.7 Ermakov Equation in Cosmology

In a paper by J.E. Lidsey [33], a correspondence was established between the BEC
(as treated in the last subsection) and cosmology. The equations of motion for the
BEC (as seen above) as well as a positively curved, perfect fluid cosmology (see
below) can both be mapped onto a one-dimensional Ermakov equation.9

This comparison starts from the Einstein field equations and assumes a spatially-
homogeneous and isotropic universe in agreement with the cosmological principle.
In this case, the Robertson–Walker metric is applicable,

ds2 = −c2dt2 + a2(t)

[
dr2

1 − kr2
+ r2d�2 + r2 sin2 � dφ2

]
, (7.87)

where the scale factor a(t) represents something like the “radius of the universe”
and k, defining the curvature, can take the values 0, +1, −1 for a flat, closed or open
universe.

This leads to the Friedmann–Lemaître equations

(
ȧ

a

)2

= H 2 = 2

3
� − k

a2
, (7.88)

�̇ = −3H(� + p) , (7.89)

with H = ȧ
a : Hubble parameter, overdot ˙ = d

dt with t : cosmological proper time,
4πG = c = 1, � = 0 (cosmological constant).

Assuming the matter source as a self-interacting scalar field 
(t), the energy
density � can be written as

� = 1

2

(
d


dt

)2

+U (
) (7.90)

with a potential U (
) and the pressure p as

p = 1

2

(
d


dt

)2

−U (
) . (7.91)

Taking the time-derivative of Eq. (7.88) and replacing �̇ using Eqs. (7.90) and
(7.91) leads to

d

dt

(
ȧ

a

)
+

(
d


dt

)2

= k

a2
. (7.92)

9Ermakov equations and corresponding invariants in a cosmological context are also discussed in
[34–38], equivalent to a complex Riccati equation.
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Introducing a new time-variable, the so-called conformal time τ , via d
dt = a d

dτ
,

this equation turns into the Ermakov equation

d2

dτ 2
a +

(
d


dτ

)2

a = k

a3
(7.93)

where d

dτ

corresponds to ω(t) in the TDSE and for a closed universe, k = 1.
It is important that this (real) Ermakov equation is equivalent to a complex Riccati

equation that can be linearized to a (complex) Newtonian equation. Considering only
the Newtonian equation (where the imaginary part actually represents the physical
Newtonian equation in one dimension), this has the same form as Eq. (7.93), only
with k = 0, i.e., vanishing rhs, which, in the cosmological case, corresponds to a flat
universe. Changing the real Newtonian equation to the complex one, in the relevant
equation for the radius, i.e., Eq. (7.93), k changes from k = 0 to k = 1. This could
mean that a description of the universe in terms of only real quantities could give the
impression of a flat universe whereas a description in terms of complex quantities,
as in quantum mechanics, could turn this into a closed-universe scenario. This is,
however, only an idea originating from formal similarities, but might inspire further
thoughts.

Knowing that a real NL Ermakov equation is equivalent to a complex NL Riccati
equation allows to write the quantity fulfilling the Riccati equation, in this case, as

C =
d
dτ
a

a
+ i

1

a2
. (7.94)

Using the results from Sect. 2.11, this complex quantity enables to define corre-
sponding creation and annihilation operators that could be used to create something
like “coherent states” of the universe.

7.8 Complex Riccati Equation and Pythagorean Triples

In the Introduction, Plato’s idea of “quantising” our material world in terms of right-
angled triangles was presented and the question of finding such triangles was posed
where the lengths of all three sides are integers (fulfilling the Pythagorean theorem),
in other words, how are the so-called Pythagorean triples constructed?

For the answer let us return to the time-evolution of the complex quantity C = 2�

m y
that determines the spreading of the WP width, as discussed in Sect. 2.1. In the
following, only the case V = 0 (i.e., ω = 0) will be considered explicitly. As shown
above, with a particular solution C̃ of the Riccati equation (2.4), its inhomogeneity
can always be removed. The resulting additional linear term (at least for a constant
coefficient 2C̃) can also be removed. So we are dealing with a complex equation of
the form
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Fig. 7.1 Complex quantity C2 as a right-angled triangle defining the Pythagorean triples

d

dt
C + C2 = 0 . (7.95)

Then − d
dt C is also a complex quantity, C2, where its real and imaginary parts as

well as its absolute value again define a right-angled triangle (in the complex plane)
and each side contains contributions from the real part R and the imaginary part I
of C = R + iI, i.e., Re{C2} = R2 − I2, Im{C2} = 2RI and |C2| = R2 + I2 (see
also Fig. 7.1).

If we now assume that R and I are no longer related to the WP width, but are
simply numbers, in particular integers (with R > I), all three sides of the right-
angled triangle created by real part, imaginary part and absolute value of C2 in the
complex plane are also integers. As examples, we choose:

a) R = 2, I = 1 : R2 − I2 = 3

2RI = 4

R2 + I2 = 5 (7.96)
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with 9 + 16 = 25,

b) R = 3, I = 2 : R2 − I2 = 5

2RI = 12

R2 + I2 = 13 (7.97)

with 25 + 144 = 169.
All possible (infinitely-many) Pythagorean triples can be obtained in this way

by simply applying all integers R and I with R > I. In a physical context this
means that whenever a physical quantity obeys a complex Riccati equation and this
quantity can be “quantised” in the sense that its real and imaginary parts can be
expressed as multiples of some units, its “evolution” (in time, space or any other
variable, depending on the respective derivative) can also be expressed in terms of
integer multiples of the same units.

This appears particularly interesting because it has been shown in the previous sub-
sections that complex Riccati equations or corresponding Ermakov systems occur
in many different areas of physics; not only in TD quantum mechanics, but also in
TI quantum mechanics, classical optics, Bose–Einsten condensates, NL dynamics,
cosmological models and many other areas not explicitly discussed here, like accel-
erator physics [39, 40], shallow water theory [41], magnetogasdynamics systems
[42] and many more. So in all these systems, intrinsically, some kind of quantisation
is possible. (Relations to the complex quadratic family as it occurs in the theory of
fractals appear also obvious, but will not be discussed here.)
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Chapter 8
Summary, Conclusions and Perspectives

The opening Chaps. (1–3) embark upon a nonlinear (NL) reformulation of quantum
mechanics in terms of complex Riccati or the equivalent real Ermakov equations. To
provide a solid foundation for the development of such a NL formulation of quantum
theory, time-dependent (TD) quantummechanics of systems with analytic solutions,
i.e., Hamiltonians at most quadratic in position and momentum are used as starting
point. The harmonic oscillator, the parametric oscillator and (in the limit ω → 0) the
free motion are specifically considered. The corresponding Gaussian wave packet
(WP) solutions of the conventional Schrödinger equation (SE) are completely deter-
mined by two parameters: their maximum and width; in these cases, both may be
TD. The time-dependence of theWP-maximum, that is actually identical to the mean
value of position 〈x〉, calculated with this WP is trivial. It is simply determined by
the equation of motion for the trajectory η(t) of a corresponding classical particle.
The time-dependence of the width contains information pertaining to the quantum
mechanical aspects, like tunnelling currents, ground-state energies and so on,making
it the key point of interest. The equations ofmotion determining the time-evolution of
the WP-width are complex, (quadratically) NL equations of Riccati-type. Different
methods for treating the Riccati equation display distinct aspects and formulations
of the quantum dynamics of the system [1–4].

In the direct treatment of the inhomogeneous Riccati equation, this can be trans-
formed into a homogeneous NL Bernoulli equation, providing a particular solution
of the Riccati equation is known. The examples possess particular solutions that are
constants, thus leading to Bernoulli equations with solutions that can be given in ana-
lytic form. (For TD particular solutions, it is still possible to achieve solutions of the
Bernoulli equation in closed form.) Characteristic of the solutions of the Bernoulli
equation is their sensitivity to the initial conditions connected to the initial position
uncertainty α0 and initial temporal change of this quantity, α̇0. This is not surprising
for a NL differential equation but would not be expected in the linear formulation of
quantum mechanics. An almost identical situation is known from supersymmetric
quantum mechanics where families of isospectral potentials are obtained that have
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rather different shapes of the potentials but same energy eigenvalues. Only there,
they result from a real Riccati equation depending on a spatial variable instead of
time.

In a different treatment, the complex NL Riccati equation is transformed into a
real NL Ermakov equation. For this purpose, the imaginary part of the variable of
the Riccati equation 2�

m y = C is set equal to the inverse square of a new variable
α(t), i.e., CI(t) = 1

α2(t) . The variable α(t) fulfils the Ermakov equation and is directly
proportional to the WP width. From the coupled system of equations for η(t) and
α(t) a dynamical invariant, the Ermakov invariant, is derived. Not only is it still a
constant of motion when the Hamiltonian no longer possesses this property, as in
the case of the parametric oscillator with ω = ω(t), but it also essentially has the
dimension of action, the physical quantity that is quantized according to Planck in
units of h or � = h

2π .
Furthermore, the solution α(t) of the Ermakov equation (and hence the solution

C(t) = α̇
α

+ i 1
α2 of the Riccati equation) and the solution of the Newtonian equation

for η(t) are not independent of each other. The quantity α(t) that describes the
quantum uncertainty can be expressed in terms of the solutions of the corresponding
Newtonian equation once they are known. There are different ways of accomplishing
this.

Firstly, as demonstrated in Sect. 2.3.1 and AppendixA, if two linear-independent
solutions of the Newtonian equation are known, α(t) can be determined with the
help of the Ermakov invariant.

A second method involves a property of the NL Riccati equation that makes it
particularly fitting for a NL description of quantum theory: its linearizability. Via a
logarithmic derivative it sustains a kind of superposition principle that is essential for
certain aspects of quantum theory. In this case, replacing C(t) with the logarithmic
derivative of a new complex variable λ(t), via C(t) = λ̇

λ
, leads to a new complex

Newtonian equation for λ(t).
In polar coordinates λ(t) can be written as λ = α eiϕ where its amplitude is

identical to the Ermakov variable mentioned above.
Further, due to the nonlinearity of the Riccati equation, amplitude and phase of

λ are not independent of each other but coupled via the conservation law ϕ̇ α2 =
const. = 1.

In Cartesian coordinates, real and imaginary parts of λ = u+ iz provide the time-
dependent parameters z(t) and u(t) that completely determine the time-dependence
of the TD Green function or Feynman kernel of the system. So, knowing the TD
Green function enables one to determine the time-evolution of any initial state, not
only of Gaussians (see, e.g., [5]).

Comparing the TDWP obtained via the TD Green function to the same Gaussian
solution obtained via the direct method by inserting the Gaussian WP (2.1) into
the TDSE (2.2) shows that the imaginary part of λ is directly proportional to the
classical trajectory, z(t) ∝ η(t) . From the conservation law, written in Cartesian
coordinates as żu − u̇z = 1, the real part of λ, u(t), can be calculated (as seen in
Eq. (2.60)) once the imaginary part z(t), the classical trajectory, is known. Knowing
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z and u, the quantity α can now be obtained from α(t) = √
u2 + z2. Hence, quantum

mechanical properties like tunnelling currents can be obtained, based essentially on
the knowledge of two linear-independent solutions of the Newtonian equation. (This
however involves the above-mentioned conservation law and depends on the initial
uncertainties α0 and α̇0.) In this case, the two solutions of the Newtonian equations,
z and u, are not only linearly independent of, but even orthogonal to, each other.

Knowing the relations between the solutions of the Newtonian equation of motion
and the Ermakov variable α(t), as well as the relation between said variable and
quantum properties like uncertainties, tunnelling currents, and so on, this formalism
will be applied to cases where no analytic solutions of the Newtonian equation exist,
such as for parametric oscillators with various time-dependent frequencies ω(t). As
the relations derived above are also valid in this case, e.g., from numerical solutions
of the Newtonian equation, also the corresponding time-dependence of the quantum
properties can be calculated.

Seeing that the Newtonian equation is not only valid for the free motion and oscil-
lators but actually for any potential, one could assume that also the relations between
the solutions of the Newtonian equation and the corresponding quantum mechani-
cal properties are valid, again via the Ermakov variable α(t). Therefore, solutions
of the Newtonian equation shall be explored for arbitrary potentials (preferably in
one dimension, to begin with) and the corresponding quantum properties calculated.
Comparison with experimental data (where possible) could show to what extent this
method could be applied.

From the TD Green function, insight can also be gained into the connection
between Riccati equations and trigonometric/hyperbolic functions. Furthermore, the
Ermakov invariant can also be written in the form of a Hamiltonian for a harmonic
oscillator with unit frequency; now, however, the variable time t is replaced by
the angle ϕ(t). The corresponding equation of motion, written in a form where the
variable ϕ is replaced by t , resembles a damped oscillator with “damping coefficient”
2 α̇

α
(as seen in Eq. (2.74)). This seems somewhat surprising since, so far, only non-

dissipative systems with time-reversible dynamics were dealt with. However, in the
conventional damped motion, the damping coefficient is a constant thus breaking
time-reversal symmetry for t → −t whereas here, due to the time-derivative in α̇

α
, also

the “damping coefficient” changes sign for t → −t . Therefore, the corresponding
Newtonian equation is still invariant under time-reversal but it shows that dissipation
might somehow be related to the temporal change of the amplitude α(t) of the
complex quantity λ(t).

Moreover, the Ermakov and Riccati variables, as well as λ(t), can be used
to rewrite the ground-state energy Ẽ of the WPs in a form so that the usual
Lagrange/Hamilton formalism of classical mechanics can also be applied to these
quantum mechanical properties. From the conservation law mentioned earlier, it fol-
lows that the canonical momentum pϕ is not only a constant but also has the value



214 8 Summary, Conclusions and Perspectives

�

2 which hints at a connection between the angular momentum for the motion in a
complex plane and the quantum mechanical spin1!

Looking at the same TD quantum problems in momentum space shows that the
information about the quantum mechanical properties and their dynamics is again
expressed in termsof a complexRiccati equation.Thedifferences, in comparisonwith
the situation in position space, are simply that the variable of this Riccati equation is
the inverse of the one in position space and the sign of the derivative term changes
from plus to minus. Everything else said about Ermakov equations and invariants,
TD Green functions, etc. applies as in position space.

Combining position and momentum space to form phase space and looking for
an appropriate description of the quantum system in this space leads to the Wigner
function. In the cases investigated in this work, the exponent of the Wigner function
is essentially the Ermakov invariant (for shifted position and momentum variables).
Different interpretations of this invariant are also given in this context [7].

Further light is shed on the nature of this invariant when considering the repre-
sentation of canonical transformations in quantum mechanics in terms of the two-
dimensional (real) symplectic group Sp(2, R). This shows that the four elements of
the 2×2 matrices representing the group Sp(2, R) are simply the real and imaginary
parts u(t) and z(t) of λ(t) and their time-derivatives (with appropriate signs). In the
case of TD quantum systems it turns out that these matrices not only transform initial
position and momentum into their values at a later time t but, simultaneously, also
the initial uncertainties into the ones at the later time.

The determinant of the 2×2 matrices reproduces the conservation law of angular
momentum in the complex plane. However, expressing u, z and their derivatives
in terms of η, η̇, α and α̇ shows this determinant is actually also equivalent to the
Ermakov invariant (divided by its constant value, thus reproducing again a determi-
nant equal to one) [8].

And there ismore to the discussion of the Ermakov invariant. It can also be derived
via a dynamical Lie algebra [9]. This leads to a set of three coupled differential
equations for the time-evolution of position- and momentum-uncertainties and their
correlation. This, in turn, is identical to the one obtained by inserting the TD Green
function into the TDSE (see Sect. 2.5).

Still further, factorization of the operator corresponding to the Ermakov invariant
leads to a TD generalization of creation and annihilation operators analogous to the
well-known treatment of the HO [10]. In these operators, the constant iω0 (corre-
sponding to the imaginary particular solution CI of the HO with constant WP width)
is simply replaced by the full complex TD solution C of the complexRiccati equation.
These operators can be applied to obtain coherent states with TD width and can also
be used to create generalized excited states, starting from the corresponding ground
state. In the course of this treatment, it is possible to create harmonic states for the

1In general, the transition between real and complex variables involves a factor 1
2 when derivatives

are considered, e.g., for w = x + iy follows ∂
∂w∗ = 1

2

(
∂
∂x + i ∂

∂y

)
or ∂

∂w
= 1

2

(
∂
∂x − i ∂

∂y

)
; see [6].
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free motion, i.e., solutions of the free motion SE in terms of a Gaussian function with
complex exponent multiplied by Hermitian polynomials depending on a TD variable
[11].

In the end, it has been shown that the operator corresponding to the Ermakov
invariant and its eigenfunctions and eigenvalues can be used to transform TDSEs
into formally TISEs where the time-dependence of the WP width is eliminated by a
unitary transformation removing the term proportional to iCR x̃2 in the exponent of the
Gaussian function. This approach again confirms the TD Green function derived in
Sect. 2.5 in a different way and offers possibilities of extending the Ermakov invariant
to systems with terms additional to the quadratic ones in the potential.

However, considering TDquantum systemswith exact, particularly analytic, solu-
tions, the Riccati/Ermakov formalism is essentially still restricted to problems with
at most quadratic potentials. Nevertheless, in quantum mechanics, there are more
potentials allowing for exact or even analytic solutions, like the Coulomb problem,
but in the time-independent version. A powerful tool for treating these systems is
supersymmetry. In this case, the position-dependent part of the creation and anni-
hilation operators of the HO, ω0x , is replaced by a general function of position2

W (x), the so-called “superpotential”. This is similar to the generalization in the
TD case, by replacing iω0 with C, but here the generalization concerns the position
variable. The link to the Riccati treatment is established because the superpotential
W (x) also fulfils a (actually two) Riccati equation(s) (this time real) that provides
the potential of the system. Similar to the TD case, ω0x (like iω0) represents only a
particular solution of the (TI) HO-problem and the general solution can be obtained
via a Bernoulli equation in exactly the same way as in the TD case. This leads to
an entire family of distorted potentials depending on a parameter (corresponding to
the initial uncertainties in the TD case) that all have different shapes but the same
spectrum. The superpotential can be obtained essentially as a logarithmic derivative
of the ground state wave function of the problem which is usually a real function.

An extension of this position-dependent Riccati formalism that also allows for
complexwave functions, i.e., including excited states,was givenbyReinisch [12].His
NL reformulation of TI quantum mechanics is based on Madelung’s hydrodynamic
formulation [13], leading to a NL Ermakov equation for the amplitude of the wave
function which is equivalent to a (complex) NL Riccati equation for the logarithmic
derivative of the complete complex wave function [14].

In this case, phase and amplitude of the wave function are coupled by a con-
servation law formally identical to the one that couples phase and amplitude of the
complex TD function λ(t) that fulfils a Newtonian equation of motion.

The formal similarity between this approach and supersymmetric quantum
mechanics allows one to start with a problem with real potential (or even V = 0)
and, via aDarboux transformation, introduce a complex partner potentialwith (essen-
tially) the same real spectrum [15]. This opens the way for constructing a new class
of non-Hermitian potentials with real spectrum. Further work in this direction is in

2This W (x) should not be confused with the Wigner function W (x, p, t).
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progress. This striking similarity is even more obvious when comparing the different
linear and NL formulations of the TD and TI theories, as shown in Fig. 3.1.

A problem that is still not satisfactorily solved is the treatment of open systems
with irreversible dynamics and dissipative energetics, in classical as well as in quan-
tum mechanics.

Aesthetic aspects aside, analytical mechanics in terms of Lagrangians and Hamil-
tonians has distinct advantages over “vectorial mechanics”, like in Newton’s laws
of motion (see also [16]). The invariance of the first formulations under coordinate
(or even canonical) transformations is already notable. More remarkable, however,
is the fact that the Lagrangian and Hamiltonian forms can be derived from first (vari-
ational) principles and be used as starting points for either canonical quantization
(by means of the Hamiltonian function) or path integral quantization [17] (by means
of the Lagrangian function). In the Lagrangian or Hamiltonian formalism it is not
possible to take into account the effect of a (possibly dissipative) environment acting
on an open system by simply changing the equation(s) of motion of this system of
interest without significantly modifying the formalism. The same naturally applies
to the quantized version.

However, in the Newtonian form of classical mechanics, there are modified ver-
sions for the equation of motion of open systems in the trajectory picture, like in
the form of the Langevin equation (containing a velocity-dependent friction and a
fluctuating stochastic force). Equivalently, in a description in terms of (one-particle)
distribution functions, this can be achieved in the form of Fokker–Planck equations
containing irreversible diffusion terms. These equations are usually called “phenom-
enological” equations, implying that they are less fundamental because they are not
derived from “first principles”– but isn’t all of physics essentially a phenomenolog-
ical theory?

In Chap.4 it is shown that these phenomenological equations are quite compatible
with other approaches based on the Lagrangian and Hamiltonian formalism, even
(or particularly) after quantization. For this purpose, the well-accepted system-plus-
reservoir approach is discussed that couples the system of interest to a (generally very
large) number of environmental degrees of freedom, considering both, system plus
environment (reservoir), as a closed Hamiltonian system. After assuming specific
couplings between system and reservoir and eliminating the environmental degrees
of freedom, an equation of motion is finally obtained that agrees with the above-
mentioned phenomenological approaches (e.g., [18–20]).

On the other hand, why start with a large number of environmental degrees of
freedom if they are eliminated in the end and simply makes the calculations more
cumbersome, time-consuming and costly? The other extreme of the system-plus-
reservoir approach, going from a large number (in the limit infinitely-many) of envi-
ronmental degrees of freedom to only a single one, was also discussed in the form
of the Bateman Hamiltonian [21].

As both approaches provide the same (averaged) equation ofmotion for the system
of interest, including a linear velocity-dependent friction force, the challenge was
how to connect these two formalisms.
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The problem could be solved by considering another type of approach for open
systems where the environmental degrees of freedom do not appear explicitly; only
their effect on the system shows up in terms of the aforementioned friction force.
These approaches also retain the canonical Lagrangian and/or Hamiltonian formal-
ism but the connection between the physical position and momentum variables and
the canonical ones is no longer given by a canonical, but by a non-canonical trans-
formation. That means the canonical formalism of analytical mechanics can still be
used for open dissipative systems if the class of transformations allowed for position
and momentum variables is extended consistently from canonical to non-canonical
transformations.

Two approaches of this kind were discussed in detail. One by Caldirola and Kanai
[22, 23] using an explicitly TD Hamiltonian ĤCK, the other using exponentially-
expanding coordinates leading to a Hamiltonian Ĥexp that is a constant of motion
[24–27]. It was shown by Sun and Yu [28, 29] that the Hamiltonian by Caldirola and
Kanai can be obtained starting from Caldeira and Leggett’s conventional system-
plus-reservoir approach using a large number of environmental degrees of freedom.
On the other hand, the Bateman Hamiltonian with only one environmental degree of
freedom can be transformed into the one depending on the expanding coordinates by
imposing certain constraints, thus eliminating this additional environmental degree
of freedom [30]. Furthermore, it could be shown that the two effective Hamiltonian
approaches are connected via an explicitly TD canonical transformation leading
from the explicitly TD Hamiltonian ĤCK to the constant Hamiltonian Ĥexp (or vice
versa) [31].

So far, the situation appears quite promising. Then the canonical quantization
of the Hamiltonian approaches means replacing (in position space) the momentum
with an appropriate operator that (apart from a factor �

i ) is essentially the derivative
with respect to the canonical conjugate position variable. This should lead to the
corresponding Hamiltonian operator and thus to the modified SE for the dissipative
system. However, it turns out that this is not so simple because the procedure starting
from ĤCK seemingly leads to violation of the commutation relation and Heisenberg’s
uncertainty principle for physical momentum and position. For a solution of this
problem, effective approaches were considered that work entirely on the physical
level. In other words, applying operators of position andmomentum that are identical
to the definitions in conventional quantum mechanics and then adding some terms
to the Hamiltonian operator that reflect the effect of the environment. As there are
different environmental effects, like dissipation, irreversibility or both, there are also
different approaches for this purpose.

There aremodels based on the Langevin equation and Ehrenfest’s theorem assum-
ing that, on an average, a Newtonian equation of motion including a linear velocity-
dependent friction force (i.e., an averaged Langevin equation) should determine the
time-evolution of the mean-value of position. However, this requirement is so vague
that several (all NL) modifications of the Hamiltonian operator are possible, most of
them with some unphysical results [32–34].

An approach by Gisin based on the system-plus-reservoir approach, but now for
the complex wave function [35, 36] (instead of the density operator), breaks the
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time-reversal symmetry by introducing a non-Hermitian (and also NL) term that still
allows normalization of the wave function. However, the explicit form of this term
and its physical interpretation are ambiguous.

At last, an approach based on breaking the time-reversal symmetry on the level
of the evolution equation for the probability density leads to the desired result. This
is achieved by introducing an additional diffusion term, thus replacing the conti-
nuity equation of quantum mechanics with a Fokker–Planck-type equation (to be
precise, a Smoluchowski equation). For this equation to be separable into two com-
plex conjugate modified SEs, a corresponding separability condition is necessary,
leading to a complex logarithmic NL term in the modified SE. The real part of the
resulting complex logarithmic NL term provides the friction force in the Ehrenfest
equation. Moreover, the imaginary part of the nonlinearity, directly corresponding
to the diffusion term, makes allowance for the introduction of irreversibility like
in the Gisin-approach but now with a physical motivation (that was also confirmed
on group-theoretical grounds [37–40]). Furthermore, all unphysical results in the
approaches based on Ehrenfest’s theorem are eliminated [41–43].

There is only one missing link: the connection of this approach on the physi-
cal level with the ones discussed before on the canonical level. For this purpose
Schrödinger’s original definition of the wave function 	 was used in terms of the
action function S [44] according to S = �

i ln	. This shows that the additional
complex nonlinearity on the physical level is essentially proportional to the action
as defined by Schrödinger and allows for the formulation of a canonical action and
Hamiltonian that are identical to the ones in the effective canonical approach by
Caldirola and Kanai.

The critical point is that the physical action, S = �

i ln	, and the canonical action,

Ŝ = �

i ln 	̂ with Ŝ = eγ t S, are different and so are the wave functions 	(x, t) and

	̂(x, t). Hence 	(x, t) on the physical level and 	̂(x, t) on the canonical level
are connected via a non-unitary transformation (corresponding to the non-canonical
transformation in the classical case). This then solves the problem with the violation
of the uncertainty principle mentioned above in connection with the Caldirola–Kanai
approach. As long as one stays on the canonical level there is no problem with the
Caldirola–Kanai approach involving 	̂CK(x, t) and the uncertainty principle involv-
ing the canonical momentum. Changing to the uncertainty product of position and
physical momentum, it is not sufficient to transform the corresponding momentum
operator. It is imperative that also the canonical wave function of Caldirola and
Kanai, 	̂CK(x, t), is changed into the physical one, 	NL(x, t), via the non-unitary
transformation ln 	̂CK(x, t) = eγ t ln	NL(x, t). The confusion leading to the appar-
ent physical discrepancies has its origins in the specific form of the wave functions.
The function 	̂CK(x, t) on the canonical level and 	NL(x, t) on the physical level
are both functions of the same variables x and t thus giving the impression that they
have the same physical meaning (and analytical form) which is actually not the case
[31, 45, 46].

With this in mind, the calculations concerning open (classical and quantum) sys-
tems can be performed on the canonical as well as on the physical level, whichever
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is more convenient. Important is that the results are converted consistently to the
physical level in the end.

In Chap.5 the discussion concentrates on the physical level where the position and
momentum operators have the same form and meaning as in conventional quantum
mechanics. Therefore, the modified NLSE with complex logarithmic nonlinearity
(5.1) is considered. As in the non-dissipative case, this has analytic Gaussian wave
packet solutions where the time-evolution of the maximum and width completely
determine the dynamics of the (open) quantum systems.

Themaximumof theGaussian function in thedissipative case follows aNewtonian
equation ofmotion including the above-mentioned linear velocity-dependent friction
force as it occurs in the averaged Langevin equation (without stochastic force). The
time-evolution of the width is again determined by a complex NL Riccati equation,
similar to the one in the non-dissipative case but with an additional term linear in the
complex variable C(t) with friction parameter γ as coefficient. This does not affect
the treatment of the Riccati equation much. As shown in the non-dissipative case, the
direct solution of the Riccati equation via a particular solution and transformation
into a (homogeneous) Bernoulli equation introduces such a linear term anyway,
so the friction parameter only modifies the coefficient of this term. Similarly, also
a formulation of the complex Riccati equation as a real (NL) Ermakov equation is
possible and, togetherwith the equation for theWP-maximum, a dynamical Ermakov
invariant can also be obtained for the open dissipative system(s).

Furthermore, the Riccati equation can again be linearized to a complexNewtonian
equation, now with a linear velocity-dependent friction term. The uncertainties of
position, momentum and their correlation can also be expressed in terms of the
Ermakov, Riccati or complex Newtonian variables. Even for these dissipative sys-
tems, a Lagrangian and Hamiltonian formalism can be obtained that provides the
correct equations of motion for the uncertainties [47, 48].

Further details concerning the time-dependence of the uncertainties in the dissi-
pative case are also given in AppendixB. However, there are not only similarities
with the non-dissipative case but also interesting and important differences.

The interaction of the systemwith the environment causes quantitative effects like

the change in frequency ω of an oscillator to the reduced frequency � =
√

ω2 − γ

4 .

There are also qualitative effects. For the (undercritically) damped HO the envi-
ronment does not reduce the ground-state energy from �

2ω0 to �

2� but supplies an
additional contribution that can be expressed entirely in terms of the environmen-
tal parameters and lifts this energy above the ground-state energy of the undamped
HO. This additional contribution to the energy can be interpreted in a similar man-
ner as the energy contribution in the Langevin picture due to the stochastic force.
As the additional energy contribution in this quantum case can be traced back to
the imaginary part of the logarithmic nonlinearity, and thus to the diffusion term in
the Smoluchowski equation, this term and the corresponding imaginary nonlinearity
appear to represent something like the stochastic aspect of the open system.

The additional linear term in the complex Riccati equation does not only modify
the corresponding one in the Bernoulli equation quantitatively, it can also lead to
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qualitative new effects. Despite the quadratic nonlinearity of the Bernoulli equation
for the free motion problem, due to solutions ±0, only one solution and thus only
one set of uncertainties is possible in the non-dissipative case for the free motion. In
the dissipative case, two different solutions exist with different time-evolution of the
uncertainties and different values for the ground-state energies, resembling a bifur-
cation as known fromNL dynamics [49]. This also looks like removing a degeneracy
due to symmetry-breaking; in this case time-reversal symmetry. Furthermore, it is
interesting that the difference in energy for the two ground states of the damped free
motion also depends solely on the parameters of the environment, but not on quan-
tum mechanical properties like �. Assuming the diffusion coefficient D occurring in
the Smoluchowski equation (that is the basis for separation into the NLSEs) can be
equated with the Einstein relation D = kBT

mγ
(at least for an equilibrium situation at

the initial time t = 0), then the energy gap between the two ground states is simply
proportional to kBT.

The logarithmic NLSE for the damped free motion also has further interest-
ing aspects. In this case, there are not only Gaussian-shaped solutions but also
some resembling modified plane waves. By superposition of these plane waves the
Gaussian WP can be constructed similarly as in the conservative case. The differ-
ences are only TD superposition coefficients and TD k-values, explaining a faster
spreading of the damped free motion WP due to dephasing when compared to the
conservative case. Nevertheless, the time-evolution of the uncertainty product for the
damped free motion exhibits a surprisingly different behaviour. As the momentum
uncertainty is no longer constant, but shrinking exponentially, the uncertainty prod-
uct no longer diverges quadratically in time as in the conservative case. Instead, it
approaches a finite value depending on the friction parameter and, thus, on the fre-
quency of interaction with the environment. For infinitely-frequent interaction with
(or observation of) the system, this shows that the uncertainty product approaches
its minimum value for γ → ∞ thus being similar to the quantum Zeno effect [42].

The damped HO provides new qualitative effects too [50]. So, for the undamped
as well as for the damped HO, there are Gaussian WP solutions with constant width
that, according to α̇

α
= 0, do not contribute to a tunnelling current. However, in the

dissipative case the (reduced) frequency � =
√

ω2 − γ

4 can be eliminated if ω0 = γ

2

is fulfilled. In this case, the WP solution of the dissipative HO with constant width
turns into one with the width spreading quadratically in time, as known from the free
motion without dissipation.

This is now similar to the situation in the QuantumHall Effect (QHE). In this case,
the environmental parameter γ is somehow fixed, e.g., via the temperature. However,
the frequency ω can be changed by modifying the magnetic field. For certain values
of this field, a current emerges that was not present before in this quantum device but
disappears once the strength of the magnetic field is changed from this “resonance”
condition. This effect will appear again in a different context.

Another interesting effect of this resonance condition is the behaviour of the
ground-state energy.Whereas the classical energy of the systemdecays exponentially
the quantum mechanical contribution, Ẽ = T̃ + Ṽ = 1

2m 〈 p̃2〉NL + m
2 ω2〈x̃2〉NL,
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increases quadratically in time in the case ω0 = γ

2 . This looks like a back-transfer
of energy from the environment to the system. In the cases discussed, that seems to
be a violation of the second law of thermodynamics. However, the energy from the
environment is not transferred into the classical degrees of freedom; i.e., the WP-
maximum does not start oscillating with increasing amplitude. Instead, the energy is
increasing the quantum mechanical part Ẽ of the system. Assuming an infinite heat
bath as environment (as is usually done in a Markovian approximation), the increase
of Ẽ proportional to t2 should not be a problem. For practical purposes it would be
interesting to find out how to transform the additional quantum mechanical energy
contribution into a classical one that could be used to perform mechanical, electrical
or other “macroscopic” work.

Based on the linearized formof the complexRiccati equation, aTDGreen function
is also obtained for the dissipative systems [51].

Trying to apply this entire logarithmic NLSE formalism to momentum space
seemed problematic. This is because the logarithmic term is particularly well-suited
for position space as its derivative is proportional to velocity or momentum and
thus able to provide the required friction force. In momentum space, an analogous
procedure would lead to an accelerating force proportional to position – not what is
required.

This problem could be overcome by reformulating the logarithmic NLSE in terms
of a combined Schrödinger and diffusion equation with the help of the damped
complex Newtonian equation for λ̃(t). The same kind of WP solutions found in the
non-dissipative case is also found in this circumstance. The WP width obeys also
a complex Riccati equation where the variable is again the inverse of the one in
position space [52].

Proceeding to phase space, the corresponding Wigner function for the dissipative
system could be obtained using the dissipative Ermakov invariant where the differ-
ence between physical and canonical description must be taken into account [48].
Similarly, generalized creation and annihilation operators and the corresponding
coherent states are obtained [10].

Comparing the complex linear Newtonian formulation of the dynamics for the
non-dissipative and the dissipative case, the main difference is that the amplitude of
the complex variable is damped (exponentially) in the latter case. How can this be
transferred to the TI case? Then, there, the complex quantity is the wave function that
must be normalizable, according to its interpretation; so a modification of its ampli-
tude does not seem possible. What are the formal consequences of the environment
in this dissipative case?

In the non-dissipative case, the formal similarity between the complex Newtonian
equation for λ(t) and the TISE for 	(x) was shown. Therefore, the addition of the

linear term γ
˙̃
λ in the TD case should correspond to the addition of a linear term

proportional to ∇x	 in the TI case. As 	 is assumed to be complex, this would
also lead to an additional contribution to the continuity equation for � = 	∗	.
Assuming that this term should be compatible with the diffusion term in the TD
case, it turns out that the desired term in the modified SE could be obtained, however
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now with a completely imaginary coefficient. This alone is not yet able to reproduce
the desired friction force proportional to velocity as in the TD case; only half of
it. The missing half is gained by taking into account the coupling of amplitude and
phase of 	 as established in the non-dissipative case and adjusting it according to
the modified Hamilton–Jacobi equation in Madelung’s hydrodynamic formulation
of quantum mechanics. This final form is equivalent to the approach by Hasse [53],
mentioned in Sect. 4.4.1, but without the problem of the non-vanishing mean-value
of the friction term. The consequence is an additional term in the phase of the wave
function corresponding to a unitary transformation. The resulting Ermakov equation
is formally identical to the one in the TD case [31].

This essentially shows that, in the linearized complex formulation, a change of
the amplitude of the complex quantity (in the TD case from λ ∝ α to λ̃ ∝ αe− γ

2 t )
can equally well be represented by an additional phase factor while the amplitude (in
the TI case the probability amplitude |	|) remains unchanged3 As a change of the
amplitude of 	 would correspond to a non-unitary transformation, the correlation
between amplitude and phase will be the subject of further investigations.

Following the deliberations of quantum mechanical problems, selected examples
were discussed to show the versatility of the Riccati equation. It occurs not only in the
context of TD and TI quantum mechanics but also in many other fields of physics.
Consequently, the various interrelations between different aspects of systems that
can be described by Riccati equations and that were developed in the first chapters
of this book might be transferrable (with possible modifications) to other physical
problems.

As classical physics is usually expressed in terms of real quantities, examples
with real Riccati equations were considered first. A certain qualitative change could
be achieved by going from purely imaginary variables solving the NL Bernoulli
equation (like for the HO in the non-dissipative case) to real variables (correspond-
ing, e.g., to a change from time t to an imaginary “time” �

kBT
), i.e., changing from

trigonometric to hyperbolic functions. This leads to expressions well-known from
statistical thermodynamics as well as to familiar problems dealt with in NL dynamics
such as those that can be described by the logistic or Verhulst equation. Connections
are also made to synergetics, established by Haken [55], and to systems that show
a bifurcation phenomenon (Hopf bifurcation), a first step into the regime of chaotic
systems [56].

A branch of NL systems that gained increasing interest towards the end of the
last century was those with soliton solution, i.e., waves travelling without chang-
ing their shape. Solitons obeying the Burgers equation and the Korteweg–de Vries
equation were chosen as they are particularly well-known examples. Although these
two equations look quite different at first sight, it is possible to transform both of
them into the same (real) Riccati equation that can be linearized to a TISE with
well-known potential and exact solutions [57]. This reduction to the same Riccati

3A similar situation was already mentioned when comparing the complex log NLSE [54] with the
approach by Doebner and Goldin [37–40], see Sect. 4.4.3.
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equation means that relations previously not known can be established between the
Burgers and Korteweg–de Vries equations.

As complex quantities are already used in classical optics (mainly for practical
reasons) a first example for a complexRiccati equation outside the quantummechan-
ical context is discussed in connection with the scalar wave equation of optics.4 This
showed that it is possible to reformulate this problem in terms of a complex Ric-
cati equation and that the usual Eikonal approximation loses important information
(particularly associated with the “centrifugal” term of the corresponding Ermakov
equation).

Moving from classical optics, quantum systems like Bose–Einstein condensates
(BECs) are then considered. The dynamics of such a condensate can be described
by the Gross–Pitaevskii equation, a cubic NLSE that cannot be solved exactly in this
case. However it is possible to show that it can equally well be described by a set
of so-called moments that cover all the dynamical properties of the condensate and
fulfil a closed set of differential equations determining their time-evolution. It turned
out that this set of equations can be condensed to one equation for the condensates
width where this is an Ermakov equation and is thus equivalent to a complex Riccati
equation [59].

By formal comparison, Lidsey [60] was able to transfer this microscopic prob-
lem to a really macroscopic, namely, a cosmological one. In this procedure it was
possible to show that, based on a Robertson–Walker metric,5 Friedmann–Lemaître
equations can be transformed equation into an Ermakov equation. Again, as men-
tioned earlier via equivalence with a complex Riccati equation and further aspects
as corresponding creation/annihilation operators, this provides various possibilities
like the construction of “coherent states of the universe”.

In the end, the squaring of a complex number, as it occurs in the complexRiccati or
Bernoulli equation, provides the key to obtaining the Pythagorean triples. A complex
number is chosen where real and imaginary parts are integers, the real part being
larger than the imaginary. Squaring this number produces another complex number
where the real part, imaginary part and absolute value again form a right-angled
triangle (as in Fig. 7.1), i.e., all three sides can be expressed in terms of integers.
So, for all possible integers for real and imaginary parts of the complex number, all
possible Pythagorean triples can be obtained. This implies that any theory in which
changes of a complex quantity are proportional to the square of this quantity can, in
principle, be “quantized”, no matter what kind of quantity this is [62, 63].

Up to this point, mainly one-dimensional problems were considered. Certainly
the problems discussed in the quantum mechanical context can easily be extended to
two or three dimensions. At first sight though, this would not provide any really new
qualitative aspects. A different problem, also supplying analytical solutions, is the
two-dimensional motion of a system in a magnetic field. The corresponding Hamil-

4Recent work by Gress and Cruz [58] has shown applications of the Ermakov formalism (where
time t is replaced by spatial variables) to paraxial wave optics and Hermite–Gaussian modes.
5Even in the newly-developed approach of pseudo-complex general relativity [61], (real) Riccati
equations are ubiquitous in Chap.4 on pseudo-complex Robertson–Walker metric.
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tonian is again quadratic in its variables and the motion is in a plane perpendicular to
the direction of the magnetic field. This motion and its quantum mechanical descrip-
tion in terms of WPs without [64] and with dissipation should also be considered but
is not presented here in detail. The dissipative quantum system with Gaussian WP
solutions having constant width is discussed in [65, 66]; the same problem includ-
ing TD widths of the WP solutions, again obeying complex Riccati equations, is
considered in [67, 68]. Looking at coherent states in this magnetic field situation
showed in the dissipative case that also the Hamiltonian density for the electric and
magnetic fields, Hel = 1

8π (E2 + B2), must undergo a non-canonical transformation
as in the transition between the Caldirola–Kanai system and the physical one. This
is necessary in order to avoid unphysical gauge-dependencies in the equations of
motion [69, 70]. This aspect of classical as well as quantum electrodynamics will be
the subject of further studies.

As in the case of the damped HO, also certain cases have been studied [71] for the
damped motion in a magnetic field with, e.g., resonance-like conditions but further
investigations are planned.

The combination of motion in a magnetic field and dissipation naturally leads
to problems that are well-established experimentally but, theoretically, (at least in
certain aspects) not yet completely understood, namely, the QHE and, particularly,
the Fractional Quantum Hall Effect (FQHE).

In a macroscopic electric circuit there is dissipation of the electromagnetic energy
of the electric current into heat due to Ohmic damping. Going to a microscopic
scale and very low temperatures, it turned out that the damping of the current is
not continuous but occurs in steps that can be described by integers or fractions of
integers. In a more speculative way, a connection shall be made with the Pythagorean
quantization and the concept of quantized action, linking this to Sommerfeld’s fine
structure constant.

From the continuity equation for the probability density, or its equivalent Smolu-
chowski equation in the dissipative case, it follows that the probability current, or
the velocity field, essentially depends on the relative change in time of the WP width
α(t), i.e., α̇

α
. Here the total velocity field in both cases obeys vT = η̇ + α̇

α
x̃ (again

in one dimension) with the classical contribution η̇ = 〈v〉.
For α̇ = 0, i.e., constant WP width, there is no quantum mechanical contribution

to the current. However, for α̇ 
= 0, typical quantum effects like tunnelling or QHEs
may occur.

In the QHE, the current j = � v ∝ σ E is proportional to the electric field

strength E and the conductivity σ where σ = n c
(

e2

c�

)
= n c αSom with n = integer,

c = velocity of light, e = electric elementary charge and αSom =
(

e2

c�

)
≈ 1

137 is

Sommerfeld’s fine structure constant (not to be confused with α(t), the WP width as
defined in Sect. 2!).

For fixed position of the systems centre of mass, η̇ = 0, the conductivity or

current displays the following proportionality: j ∝ n
(

e2

c�

)
∝ α̇

α
, therefore, changes
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of j by integers n would correspond to integer changes of α̇
α
, a possibility discussed

in connection with the Pythagorean triples [62].

Asides from theQHE, theFQHE is also observedwhere j ∝ n
k

(
e2

c�

)
withn, k both

being integers. There are different interpretations of this effect in the literature and not
all possible combinations of n and k (being odd, even or both) have been observed.
To my knowledge, no existing theory is able to explain all observed combinations of
n and k or even to predict hitherto unobserved ones. So there might still be room for
some unknown in the theory of the FQHE.

One interpretation [72] given some time ago (by the author and colleagues)
assumes that the FQHE is a manifestation of a phenomenon where two effects are
involved, each being quantized separately. Given that it is already stated in the intro-
duction that action is the quantity usually quantized in nature, it is assumed that in
the QHE one of the effects is quantized in terms of �, the other in terms of e2

c , so the

ratio of both is just Sommerfeld’s fine structure constant αSom = e2

c� .

The action � is certainly well known in quantum mechanics. The action e2

c was
already mentioned by Einstein [73], Schrödinger [74] and Eddington [75], assuming
its importance but not knowing its physical relevance. Here the interpretation of the
FQHE is that this is the first physical effect to be observed that shows the relevance
of a second quantum of action, e2

c .

In [33], e2

c was called the “quantum of electrostatic action”. Why this name?
For two electrons interacting via Coulomb’s law, the electrostatic action involved
is action = energy × time = e2

r × t . As the distance between the electrons, r ,
and their interaction time, t , can be related via the interaction velocity v = r

t , the

electrostatic action can be written as action = e2

v
. This action becomes minimum

when the velocity attains its maximum value v = c = velocity of light. So, the least
Coulombic action is e2

c .
Nature, however, is usually very economical, as expressed by the various extremal

principles, e.g., in mechanics, optics, etc. Why, then, should it allow the luxury of
two elementary quanta of action? Of course, no definite answer shall be given at this
point; but, based on the facts stated earlier, the following remarks shall be permitted.
Planck’s constant (divided by 2π ), �, is well known, particularly in the quantum
mechanics of oscillating systems where, e.g., the energy is quantized in terms of
�ω = �ϕ̇, i.e., the frequency is related to some kind of angular velocity and thus
to some kind of angular aspect. On the other hand, it has just been shown that e2

c

is somehow related to a physical situation where a radial distance, α̇
α
, plays the

important role.
As the radius and circumference of a circle cannot be expressed in terms of the

same units (“quanta”) because they are related via the irrational number π , perhaps
also the “radial” action and the “angular” action cannot be expressed in terms of
the same fundamental units.

As seen from the above discussion of integer values for α̇
α
and ϕ̇ the radial aspect

for integer values of e2

c is connected to the transcendental number e = 2.718 . . .
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while the angular aspect, ϕ̇ = 1
α2 , is connected to π = 3.141 . . .. Could this mean

that e2

c and � simply offer the prospect of quantizing in a (complex?) two-dimensional
(phase?) space radial changes as well as angular ones?!
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Appendix A
Method of Linear and Quadratic Invariants

According to classical Hamiltonian mechanics, the integration of the equations of
motion becomes trivial if one can find a canonical transformation to variables that
are constants. The same applies to the corresponding quantummechanical operators.
The linear time-independent operators X̂op and P̂op for the parametric oscillator are
defined by the transformation

(
X̂op

P̂op

)
=

(
g1(t) f1(t)
g2(t) f2(t)

) (
xop
pop

)
(A.1)

with xop = x, pop = �

i
∂
∂x which satisfy the commutation relation

[
X̂op, P̂op

]
= i�(f2g1 − f1g2) = i�, (A.2)

therefore,
f2g1 − f1g2 = 1 (A.3)

is valid.
The initial conditions are chosen so that X̂op(t0 = 0) = xop and P̂op(t0 = 0) = pop,

i.e.,

g1(0) = 1, f1(0) = 0,

g2(0) = 0, f2(0) = 1. (A.4)

Any invariant operator K̂ must satisfy

d

dt
K̂ = 1

i�

[
K̂, Ĥop

]
−

+ ∂

∂t
K̂ = 0. (A.5)
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Inserting, for K̂ , the operators X̂op and P̂op, leads to

ḟi(t) = −gi(t), (A.6)

ġi(t) = ω2fi(t) (A.7)

with i = 1, 2 which is equivalent to the second-order differential equation

f̈i + ω2fi = 0 (A.8)

for the Hamiltonian

Ĥop = 1

2m
p2op + m

2
ω2x2. (A.9)

With these invariant operators, the most general quadratic-invariant-operator can
be proposed as

Î = 1

2

[
AX̂2

op + BP̂2
op + C

(
X̂opP̂op + P̂opX̂op

)]
(A.10)

where A, B and C are constants still to be determined. As a quadratic invariant for the
system is already known, the Ermakov invariant, the invariant (A.10) can be assumed
to be proportional to the operator corresponding to the Ermakov invariant

Î = 1

2

[(
α
pop
m

− α̇x
)2 +

( x

α

)2
]

. (A.11)

Taking Eq. (A.10) to be equal to (A.11) and expressing X̂op and P̂op according to
(A.1) in terms of xop, pop and xoppop + popxop, one obtains from the terms proportional
to p2op

α2 = Af 21 + Bf 22 + 2Cf1f2, (A.12)

from the ones proportional to x2op

α̇2 + 1

α2
= Ag21 + Bg22 + 2Cg1g2, (A.13)

and from the ones proportional to xoppop + popxop

− α̇α = Af1g1 + Bf2g2 + C(f1g2 + f2g1). (A.14)

Expressing α̇2 using (A.14) and inserting it into (A.13) finally allows the writing
of the constant C in terms of the other two constants A and B as

|C| = √
AB − 1. (A.15)
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Using the initial conditions for f1(t) and f2(t) and requiring that α0 = α(t0 = 0)
and α̇0 = α̇(t0 = 0), the three constants take the form

A = m

�

(
α̇2
0 + 1

α2
0

)
, B = 1

m�
α2
0, |C| = 1

�
α̇0α0. (A.16)

So theWPwidth, or amplitude of the complex quantity λ = α eiϕ can be obtained
by taking the square-root of (A.12) to yield

α(t) = ±
√(

α̇2
0 + 1

α2
0

)
f 21 (t) + α2

0f
2
2 (t) ∓ α̇0α0f1(t)f2(t). (A.17)

As α(t) is related to the WP width, only the positive sign of the square-root is
physically reasonable. That means, knowing two linear-independent solutions of the
classical Newtonian equation (A.8), the quantummechanical uncertainty α(t) can be
determined if the initial uncertainty α0 and the initial time-derivative of it, α̇0, are
known.



Appendix B
Position and Momentum Uncertainties
in the Dissipative Case

The uncertainties of position and momentum, 〈x̃2〉NL(t) and 〈p̃2〉NL(t), and their
correlation, 〈[x̃, p̃]+〉NL(t), can be expressed in terms of αNL(t) and α̇NL(t) as shown
in Eqs. (5.17–5.19) where, in the last case, actually +α̇α and −α̇α must be consid-
ered1 if probability currents (see below) travelling in opposite directions are also to
be included. So, the expressions to be determined are

〈x̃2〉NL = �

2m
α2

NL (B.1)

〈p̃2〉NL = �m

2

[(
α̇2

NL + 1

α2
NL

)
∓ γα̇NLαNL + γ2

4
α2

NL

]
(B.2)

〈[x̃, p̃]+〉NL = �

[
±α̇NL αNL − γ

2
α2

NL

]
. (B.3)

This can be traced back to the determination of three quantities corresponding to
Eqs. (A.12–A.14) in the non-dissipative case,2

α2
±(t) =

[(
α̇2
0 + 1

α2
0

)
ξ21(t) + α2

0 ξ22(t) ∓ 2α̇0α0 ξ1(t)ξ2(t)

]
, (B.4)

(
α̇2 + 1

α2

)
±

(t) =
[(

α̇2
0 + 1

α2
0

)
g21 + α2

0 g22 ∓ 2α̇0α0 g1g2

]
, (B.5)

(α̇α)± (t) =
[
−

(
α̇2
0 + 1

α2
0

)
ξ1g1 − α2

0 ξ2g2 ± α̇0α0 (ξ1g2 + ξ2g1)

]
.

(B.6)

1The same also applies already in the non-dissipative case but has there no really interesting con-
sequences, particularly for the initial condition α̇0 = 〈[x̃, p̃]+〉0 = 0.
2In the following, the subscript “NL” is dropped as αNL and α̇NL cannot be confused with αL and
α̇L as the latter do not occur in Appendix B.
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The subscript “±” indicates that, for α̇0 �= 0, two different signs must be consid-
ered for the third terms in each expression.

In comparison with the non-dissipative case, the major difference now is that f1(t)
is replaced by ξ1(t) with

ξ1(t) = − 1

v0
η(t) e

γ
2 t (B.7)

(also like the second linear independent solution ξ2(t)) fulfilling the Newtonian
equation

ξ̈i +
(

ω2
0 − γ2

4

)
ξi = ξ̈i + �2ξi = 0, i = 1, 2 (B.8)

with the initial conditions

ξ1(t0) = 0, ξ2(t0) = 1, g1(t0) = 1, g2(t0) = 0, (B.9)

where, like in the non-dissipative case, gi = −ξ̇i is valid. The choice ξ2(t) = g1(t)
is in agreement with the initial conditions and provides a solution of (B.8) that is
linearly independent of ξ1(t).

For the four damped cases under consideration, the free motion (V = 0) and the
HO with ω0 = γ

2 and ω0
>
<

γ
2 , the expressions for ξ1(t), g1(t), η(t) and �2 are given

in TableB.1 (due to ξ1(0) = 0, it follows that η(0) = η0 = 0).
The WP width, or α(t), the solution of the Ermakov equation (5.15), can be

obtained from Eq. (B.4) by simply taking its square-root. In the case of the WP
width, only the positive sign of the two possible ones of the square-root is physically
reasonable, still permitting two possible values due to the plus-minus-sign of the
term proportional to α̇0α0. Considering the time-derivative of α(t), which actually

Table B.1 In this table the values of−ξ1(t), g1(t) and η(t) are given for the initial conditions (B.9)
and the four cases under consideration. Further, the values that �2, appearing in Eq. (B.8), attains

in these cases is indicated where �2 = γ2

4 − ω2
0 = −�2 > 0
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enters the expression for the tunnelling currents (see below) in the Smoluchowski
equation (5.84), both signs for α̇(t) are possible, corresponding to currents flowing
in opposite directions. Therefore, for α̇(t), or α̇α, that enter 〈[x̃, p̃]+〉 and 〈p̃2〉, four
possibilities exist for α̇0 �= 0 (but only two for α̇0 = 0 as α+ and α− then coincide).

As is obvious from Eqs. (B.4–B.6), the actual expressions depend, apart from
ξi(t) and gi(t), also strongly on the initial uncertainties α0 and α̇0 (particularly on
the latter).

Different choices for α0 in our case simply correspond to different initial widths
of theWPs. The possible choices for α̇0 can be related to different physical situations,
particularly concerning the probability currents and the uncertainty product.

So is the choice α̇0 = 0 related to a vanishing initial contribution of the total
probability current to tunnelling, i.e., for

jT = j− + jD = 
 (v− + vD) = 


([
η̇ +

(
α̇

α
− γ

2

)
x̃

]
+ γ

2
x̃

)
= 


(
η̇ + α̇

α
x̃

)

(B.10)
the tunnelling contribution

j̃tun = jT − 
η̇ = 


(
α̇

α
x̃

)
(B.11)

vanishes for t = 0.
However, this consequently means that the initial WP is not a minimum uncer-

taintyWP as this is only obtained for 〈[x̃, p̃]+〉0 = 0 which can be reached, according
to Eq. (B.3), for α̇0 = γ

2α0. In this case, also the different signs of the third terms in
Eqs. (B.4–B.6) matter.

Taking all of this into account, it would lead to 72 (in part bulky) expressions.
However, due to structural similarities, these can be reduced to a smaller number of
compact relations that essentially depend on ξ1(t) and its (negative) time-derivative
g1. By means of TableB.1, explicit expressions for all cases under consideration can
be obtained. (The left subscripts at the brackets correspond to the positive or negative
sing of α̇α and β0 = 1

α2
0
is used like in the non-dissipative case.)

Position uncertainties:
α̇0 = 0 :

〈x̃2〉 = �

2m
α2
0

[
β2
0ξ

2
1 + g21

]
(B.12)

α̇0 = γ
2 :

〈x̃2〉± = �

2m
α2
0

[
β2
0ξ

2
1 +

(
g1 ∓ γ

2
ξ1

)2
]

(B.13)
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Momentum uncertainties:
α̇0 = 0 :

(+α̇α) : +〈p̃2〉 = m�

2
α2
0

[
β2
0

(
g1 + γ

2
ξ1

)2 +
(
�2ξ1 − γ

2
g1

)2
]

(B.14)

(−α̇α) : −〈p̃2〉 = m�

2
α2
0

[
β2
0

(
g1 − γ

2
ξ1

)2 +
(
�2ξ1 + γ

2
g1

)2
]

(B.15)

α̇0 = γ
2α0 :

(+α̇α) : +〈p̃2〉± = m�

2
α2
0

[
β2
0

(
g1 + γ

2
ξ1

)2 +
{(

�2 ± γ2

4

)
ξ1 − γ

2
(1 ∓ 1)g1

}2
]

(B.16)

(−α̇α) : −〈p̃2〉± = m�

2
α2
0

[
β2
0

(
g1 − γ

2
ξ1

)2 +
{(

�2 ∓ γ2

4

)
ξ1 + γ

2
(1 ± 1)g1

}2
]

(B.17)

Position-momentum uncertainties correlation:
α̇0 = 0 :

(+α̇α) : +〈[x̃, p̃]+〉 = � α2
0

[
−β2

0ξ1

(
g1 + γ

2
ξ1

)
+

(
�2ξ1 − γ

2
g1

)
g1

]
(B.18)

(−α̇α) : −〈[x̃, p̃]+〉 = � α2
0

[
β2
0ξ1

(
g1 − γ

2
ξ1

)
−

(
�2ξ1 + γ

2
g1

)
g1

]
(B.19)

α̇0 = γ
2α0 :

(+α̇α) : +〈[x̃, p̃]+〉± = � α2
0

[
− β2

0ξ1

(
g1 + γ

2
ξ1

)

+
{(

�2 ± γ2

4

)
ξ1 − γ

2
(1 ∓ 1)g1

}(
g1 ∓ γ

2
ξ1

) ]
(B.20)

(−α̇α) : −〈[x̃, p̃]+〉± = � α2
0

[
β2
0ξ1

(
g1 − γ

2
ξ1

)

−
{(

�2 ∓ γ2

4

)
ξ1 + γ

2
(1 ± 1)g1

}(
g1 ∓ γ

2
ξ1

) ]
(B.21)

Checking that these uncertainties fulfil the Schrödinger–Robertson relation

〈x̃2〉〈p̃2〉 −
(
1

2
〈[x̃, p̃]+〉

)2

= �
2

4
(B.22)
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shows that this is given providing the condition

g21 + �2ξ21 = 1

v2
0

(
η̇2 + γηη̇ + ω2

0η
2
)
eγt = 1 (B.23)

holds; which is the case if η(t) obeys the Newtonian equation (4.41) including the
friction force. For the chosen initial condition η0 = 0, Eq. (B.23) is also in agreement
with the constant of motion (4.48), discussed in connection with the expanding
coordinate system.

From the explicit expressions for the uncertainties, i.e., after inserting ξ1(t) and
g1(t) from TableB.1, one discovers a certain symmetry under time reversal.

For α̇0 = 0, the change from +α̇α to −α̇α leads to the time-reversed expression,
i.e., +〈. . .〉(t) =− 〈. . .〉(−t).

For α̇0 = γ
2α0, two different expressions are possible for the terms given in (B.4–

B.6), indicated by the right subscript of the corresponding uncertainties. Changing
from + to −, i.e., 〈. . .〉+ → 〈. . .〉−, leads to additional terms for the momentum
uncertainties 〈p̃2〉− and the position-momentum correlations 〈[x̃, p̃]+〉−. Changing
the sign of α̇α simultaneously then leads to the same, but time-reversed, expression,
i.e., +〈. . .〉+(t) =− 〈. . .〉−(−t) and −〈. . .〉+(t) =+ 〈. . .〉−(−t). So, in general, half of
the expressions are just the time-reversed version of the other half.

With the help of the initial conditions (B.9), the initial uncertainty products
〈x̃2〉(0)〈p̃2〉(0) = �

2

4 + (
1
2 〈[x̃, p̃]+〉(0))2 ≥ �

2

4 can be determined straightforwardly
where only the equal-sign corresponds to a minimum uncertainty WP.

For α̇0 = 0, one obtains in all possible cases

〈x̃2〉(0)〈p̃2〉(0) = �
2

4

[
1 +

(γ

2
α0

)2
]

>
�
2

4
, (B.24)

which is expected as α̇0 = 0 is incompatible with 〈[x̃, p̃]+〉(0) = 0. But also for
α̇0 = γ

2α0, which is compatible with this requirement, a minimum uncertainty prod-
uct is not always obtained. So the combinations where the two subscripts of the
uncertainties are different

+〈x̃2〉−(0) +〈p̃2〉−(0) =− 〈x̃2〉+(0) −〈p̃2〉+(0) = �
2

4

[
1 + (γα0)

2] >
�
2

4
, (B.25)

leads to a larger value than �
2

4 . Only when the subscripts are the same,

+〈x̃2〉+(0) +〈p̃2〉+(0) =− 〈x̃2〉−(0) −〈p̃2〉−(0) = �
2

4
, (B.26)

the minimum product is obtained.
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Also the contributions to the tunnelling currents, originating from α̇
α
(t), can be

expressed completely with the help of ξ1, g1 and �.
In particular, for α̇0 = 0 one obtains

(
α̇

α

)
(t) =

(
�2 − β2

0

)
β0

ξ1
g1

+ g1
ξ1

=
(
�2 − β2

0

)
ξ1g1

β2
0ξ

2
1 + g21

(B.27)

and for α̇0 = γ
2α0

(
α̇

α

)
±

(t) =
(
�2ξ1 ± γ

2 g1
) (

g1 ∓ γ
2 ξ1

) − β2
0ξ1g1

β2
0ξ

2
1 + (

g1 ∓ γ
2 ξ1

)2 . (B.28)

In the latter case, the terms proportional to β2
0 remain unchanged, like for α̇0 = 0,

but g1 and �2ξ1 change according to g1 → g1 ∓ γ
2 ξ1 and �2ξ1 → �2ξ1 ± γ

2 g1.
The explicit TD expressions are given below.
For α̇0 = 0 one obtains:

V = 0 : α̇

α
=

(
β2
0 + γ2

4

)
sinh γ

2 t
γ
2

cosh γ
2 t

β2
0

(
sinh γ

2 t
γ
2

)2 + cosh2 γ
2 t

(B.29)

ω0 = γ

2
: α̇

α
= β2

0 t

β2
0 t

2 + 1
(B.30)

ω0 >
γ

2
: α̇

α
=

(
β2
0 − �2

)
sin�t

�
cos�t

β2
0

(
sin�t

�

)2 + cos2 �t
(B.31)

ω0 <
γ

2
: α̇

α
=

(
β2
0 + �2

)
sinh�t

�
cosh�t

β2
0

(
sinh�t

�

)2 + cosh2 �t
. (B.32)
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For α̇0 = γ
2α0 one obtains:

V = 0 :
(

α̇

α

)
±

=
β2
0 + sinh γ

2 t
γ
2

cosh γ
2 t ± γ

2 e
±γt

β2
0

(
sinh γ

2 t
γ
2

)2
+ e±γt

. (B.33)

ω0 = γ

2
:
(

α̇

α

)
±

= β2
0 t ± γ

2

(
1 ± γ

2 t
)

β2
0 t

2 + (
1 ± γ

2 t
)2 (B.34)

ω0 >
γ

2
:
(

α̇

α

)
±

=
β2
0
sin�t

� cos�t ± ( γ
2 cos�t ∓ � sin�t

) (
cos�t ± γ

2
sin�t

�

)

β2
0

(
sin�t

�

)2 +
(
cos�t ± γ

2
sin�t

�

)2
(B.35)

ω0 <
γ

2
:
(

α̇

α

)
±

=
β2
0
sinh�t

� cosh�t ± ( γ
2 cosh�t ± � sinh�t

) (
cosh�t ± γ

2
sinh�t

�

)

β2
0

(
sinh�t

�

)2 +
(
cosh�t ± γ

2
sinh�t

�

)2 .

(B.36)



Appendix C
Classical Lagrange–Hamilton Formalism
in Expanding Coordinates

In Sect. 4.3.2 it has been shown that a dissipative harmonic oscillator (i.e.,
V = m

2 ω2x2) with a linear velocity-dependent friction force can be described either
on the canonical level in the usual formalism or on the physical level, with a modi-
fication of this formalism. The time-dependence of any mechanical property, either
in canonical or physical variables, can be expressed equivalently in either of these
two formalisms. This is demonstrated in the following for the physical position and
momentum and for the (non conserved) energy E = T + V = E(t).

(1) Determination of the time-dependence of mechanical quantities with the help of
the canonical relation

d

dt
F̂(Q̂, P̂, t) = −

(
∂Ĥexp

∂Q̂

∂F̂

∂P̂
− ∂Ĥexp

∂P̂

∂F̂

∂Q̂

)
+ ∂

∂t
F̂

= −{Ĥexp, F̂}(Q,P)− + ∂

∂t
F̂ (C.1)

with

Ĥexp(Q̂, P̂) = 1

2m
P̂2 + m

2

(
ω2 − γ2

4

)
Q̂2. (C.2)

(a) F̂ = x = Q̂ e− γ
2 t = F̂(Q̂, t) :

∂

∂t
F̂ = −γ

2
Q̂ e− γ

2 t = −γ

2
x, (C.3)

d

dt
x = ∂Ĥexp

∂P̂

∂
(
Q̂e− γ

2 t
)

∂Q̂
+ ∂

∂t

(
Q̂e− γ

2 t
)

= ∂Ĥexp

∂P̂
e− γ

2 t − γ

2
Q̂ e− γ

2 t =
(
1

m
P̂ − γ

2
Q̂

)
e− γ

2 t = ẋ. (C.4)
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(b) F̂ = p = mẋ =
(
P̂ − m γ

2 Q̂
)
e− γ

2 t = F̂(Q̂, P̂, t) :

∂

∂t
F̂ = −m

γ

2

( ˙̂Q − γ

2
Q̂

)
e− γ

2 t = −m
γ

2
ẋ = −γ

2
p, (C.5)

d

dt
p = −

[
∂Ĥexp

∂Q̂
+ m

γ

2

∂Ĥexp

∂P̂

]
e− γ

2 t − m
γ

2

( ˙̂Q − γ

2
Q̂

)
e− γ

2 t

= −
[ ˙̂P + m

γ

2
˙̂Q + γ

2
P̂ − m

γ2

4
Q̂

]
e− γ

2 t

= −m
(
ω2x + γẋ

) = −mω2x − γp. (C.6)

(c) F̂ = T + V = E(t) =
(

1
2m P̂

2 + γ
2 Q̂P̂ + m

2

(
ω2 + γ2

4

)
Q̂2

)
e−γt = F̂(Q̂, P̂, t) :

∂

∂t
F̂ = −γ(T + V ) = −γE(t), (C.7)

d

dt
(T + V ) =

[ ˙̂P
(
1

m
P̂ − γ

2
Q̂

)
+ ˙̂Q

(
γ

2
P̂ − m

(
ω2 + γ2

4

)
Q̂2

]
e−γt − γE(t)

= −γ

[
1

m
P̂2 − γQ̂P̂ + m

γ2

4
Q̂2

]
e−γt = −2γT . (C.8)

(2) Determination of the time-dependence of mechanical quantities with the help of
the modified formalism on the physical level, i.e.,

d

dt
F(x, p, t) = −{H,F}(x,p)− +

{
F,

γ

2
px

}
(x,p)−

−
{
F,

γ

2
px

}
(x,p)+

+ ∂

∂t
F

= −{(T + V ),F}(x,p)− − γp
∂

∂p
F + ∂

∂t
F (C.9)

with

H = T + V = 1

2m
p2 + m

2
ω2x2. (C.10)

(a) F = x :

∂

∂t
F = 0,

∂

∂p
F = 0, (C.11)

d

dt
x = −{(T + V ), x}(x,p)− = ∂T

∂p
= ∂

∂p

(
p2

2m

)
= p

m
. (C.12)
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(b) F = p :

∂

∂t
F = 0,

∂

∂p
F = 0, (C.13)

d

dt
p = −{(T + V ), p}(x,p)− − γp

∂p

∂p
= −∂V

∂x
− γp. (C.14)

(c) F = T + V = E(t) :

∂

∂t
F = 0, (C.15)

d

dt
(T + V ) = −{H,H}(x,p)− − γp

∂T

∂p
= −γ

p2

m
= −2γT . (C.16)



Appendix D
On the Connection Between the Bateman
Hamiltonian and the Hamiltonian
in Expanding Coordinates

In Sect. 4.5 it has been shown that the connection between the Bateman approach
and the effective canonical one using expanding coordinates is not unique. This is
so because there are three parameters involved but only two equations to determine
them. Three choices for the third parameter and their consequences are discussed in
detail here.

D.1 The Case c = 0

For this choice of c it follows that a = m
2 and b = m γ

4 . In the ensuing discussions,

for the Bateman system x̂ = x = Q̂ e− γ
2 t and p̂y = m (ẋ + γ

2 x) = P̂ e− γ
2 t are always

valid, only ŷ and p̂x expressed in terms of of x and ẋ are changing. Therefore, ŷ and
p̂x are supplied with a (second) subscript indicating which parameter is set equal to
zero.

One obtains in this case

ŷc = 1

2
x eγt = 1

2
Q̂ e

γ
2 t (D.1)

p̂x,c = m

2

(
ẋ + γ

2
x
)
eγt = 1

2
P̂ e

γ
2 t . (D.2)

Inserting this into ĤB (Eq. (4.19)) turns it into

ĤB,c = 1

m
p̂x,c p̂y + m

(
ω2 − γ2

4

)
x̂ ŷc = Ĥ� (D.3)

as
D̂ = γ

2
(ŷc p̂y − x̂ p̂x,c) = 0. (D.4)
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ĤB,c in (D.3) when expressed in terms of x and ẋ is identical to Ĥexp as given in
(4.51). However, ĤB,c is no longer a Hamiltonian that provides the correct equations
of motion. The reason is that the constraints contain an explicit time-dependence.

On the other hand, ŷc as defined in (D.1) now fulfils the equation of motion for x,
i.e.,

¨̂yc − γ ˙̂yc + ω2 ŷc = 1

2

(
ẍ + γẋ + ω2x

)
eγt = 0. (D.5)

D.2 The Case a = 0

For this choice of a it follows that c = 1
γ
and b = − m

γ

(
ω2 − γ2

4

)
. The canonical

variables that are still missing attain in this case the values

ŷa = 1

γ

(
ẋ + γ

2
x
)
eγt = 1

mγ
P̂ e

γ
2 t (D.6)

p̂x,a = −m

γ

(
ω2 − γ2

4

)
x eγt = − m

γ
�2 Q̂ e

γ
2 t . (D.7)

Inserted into ĤB, this now yields

ĤB,a = γ

2
(ŷa p̂y − x̂ p̂x,a) = D̂ (D.8)

with

Ĥ� = 1

m
p̂x,a p̂y + m

(
ω2 − γ2

4

)
x̂ ŷa = 0, (D.9)

i.e., just the opposite situation of the case c = 0.
Again, ĤB,a is no longer a proper Hamiltonian function that provides the correct

equations of motion (see the comments in the previous case).
In this case, the equation of motion for ŷa leads to

¨̂ya − γ ˙̂ya + ω2ŷa =
[
1

γ

d

dt

(
ẍ + γẋ + ω2x

) + 1

2

(
ẍ + γẋ + ω2x

)]
eγt = 0.

(D.10)

D.3 The Case b = 0

Now one obtains c = γ
4

ω2 and a = m
2ω2

(
ω2 − γ2

4

)
, leading to
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ŷb =
( γ

4

ω2
ẋ + 1

2
x

)
eγt = 1

2ω2

( γ

2m
P̂ + �2Q̂

)
e

γ
2 t (D.11)

p̂x,b = m

2ω2

(
ω2 − γ2

4

)
ẋ eγt = m�2

2ω2

(
1

m
P̂ − γ

2
Q̂

)
e

γ
2 t . (D.12)

Comparison with ĤB (Eq. (4.19) or (4.51)) shows that now

Ĥ� = 1

m
p̂x,b p̂y + m

(
ω2 − γ2

4

)
x̂ ŷb =

(
1 −

γ2

4

ω2

)
ĤB = �2

ω2
ĤB (D.13)

D̂ = γ

2
(ŷb p̂y − x̂ p̂x,b) =

γ2

4

ω2
ĤB (D.14)

is valid.
The equation of motion for ŷb now takes the form

¨̂yb − γ ˙̂yb + ω2ŷb =
[ γ

2

ω2

d

dt

(
ẍ + γẋ + ω2x

) + 1

2

(
ẍ + γẋ + ω2x

)]
eγt = 0.

(D.15)



Appendix E
Logarithmic Nonlinear Schrödinger Equation
via Complex Hydrodynamic Equation of Motion

Using Schrödinger’s original definition of the wave function �, via the action
function S and taking into account that � is generally complex, leads to the complex
action

Sc = �

i
ln� (E.1)

as mentioned in Sect. 4.5.
A corresponding complex momemtum pc (or velocity vc) can then be defined

according to

pc = mvc = ∂

∂x
Sc = �

i

∂
∂x�

�
. (E.2)

With these quantities, theTDSEcanbe rewritten as amodified complexHamilton–
Jacobi equation where only a kind of complex “quantum potential” appears on the
rhs instead of zero, as in the classical case,

∂

∂t
Sc + 1

2m
p2c + V = i

�

2m

∂

∂x
pc. (E.3)

Taking the spatial derivative of this equation, with vc = 1
mpc, leads to a complex

Newtonian equation in a moving coordinate frame, expressed by the Lagrangian
time-derivative D

Dt = (
∂
∂t + vc

∂
∂x

)
as

m

(
∂

∂t
vc + vc

∂

∂x
vc

)
= m

D

Dt
vc = − ∂

∂x
V − i

�

2

∂2

∂x2
vc. (E.4)

For Gaussian WPs, as considered in our case, ∂2

∂x2 vc = 0 is valid.
Equation (E.4) is a hydrodynamic form of a Newtonian equation of motion for a

complex velocity vc and a complex “quantum force”Fqu = −i�

2
∂2

∂x2 vc which vanishes
for Gaussian WPs.
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In the same way as one can consider a linear velocity-dependent friction force
−mγv in the Newtonian equation of motion, one could think of adding a correspond-
ing force depending on the complex velocity leading, in this case, to

m
D

Dt
vc = − ∂

∂x
V − mγvc = − ∂

∂x
V − mγ

(
�

im

∂

∂x
ln�

)
, (E.5)

and providing, on an average, the correct equation of motion including the friction
force

m
d

dt
〈vc〉 = −

〈
∂

∂x
V

〉
− mγ〈vc〉, (E.6)

where 〈vc〉 = 〈vop〉 = η̇ in our notation.
Following the path taken above in the opposite direction, i.e., integrating instead

of differentiating, leads to −V − γ �

i (ln� − f (t)) on the rhs of Eq. (E.5) where, as
mentioned before for normalization purposes, f (t) = − < ln� > is necessary. The
lhs remains unchanged as in the conservative case, finally leading to the logarithmic
NLSE

i�
∂

∂t
�NL =

{
− �

2

2m
� + V + γ

�

i
(ln�NL − 〈ln�NL〉)

}
�NL. (E.7)
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Plato, 1, 205
Poisson brackets, 46, 99, 171
Polar coordinates, 19, 22, 26, 63, 71, 140
Pöschl–Teller potential, 81, 198
Position space, 214
Potential

Coulomb, 72
double-well, 192
effective, 71, 77, 89
harmonic, 73
isospectral, 12, 63, 73, 211
partner, 70, 79, 215
Pöschl–Teller, 81, 198
Rosen–Morse, 194, 197
supersymmetric, 70

Probability
current, 17, 224, 233, 235
density, 35, 75, 109, 224
distribution, 17, 36

Propagator, 19, 41, 155
time-dependent, 41

Pythagoras, 2
Pythagorean triples, 2, 7, 205, 223, 225

Q
Quantum

current, 18, 111, 151
effects, 141

macroscopic, 154
Hall effect (QHE), 220

fractional, 224
integer, 223

mechanics, 3, 13, 34, 39, 85
time-dependent (TD), 2, 211
time-independent (TI), 2, 74, 117

number, 38, 71
of electrostatic action, 225
potential, 75, 105

complex, 249
Zeno effect, 220

R
Radial

action, 225
change, 85, 226
momentum, 202
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