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Preface

In preparing this new edition, I have endeavored to retain the substance of the 
previous five editions while adding some flavors of my own. These additions are 
ones which reflect my research interests (in magnetism and phase transformations) 
and are also relevant to current materials science students. Additions to this book 
include the role of work terms other than P-V work (e.g., magnetic work), along with 
their attendant aspects of entropy, Maxwell relations, and the role of such applied 
fields on phase diagrams. Also, there is an increased emphasis on the thermodynam-
ics of phase transformations. These topics are sprinkled throughout the text, and an 
entirely new chapter (Chapter 15) has been included which collects specific thermo-
dynamic applications to the study of phase transformations. To make the agreed-
upon deadline for the manuscript, other potential changes remain on my computer. 
Perhaps they will see the light of day in the seventh edition!

The text is written for undergraduate materials science students and can be uti-
lized by materials-related graduate students who have not taken such a course in 
their undergraduate studies. It has been more than 40 years since I used the first edi-
tion of the text when teaching my first class in thermodynamics at Carnegie Mellon 
University. I also used the text in the mid-1990s in several summer school classes on 
thermodynamics at CMU. Experience makes me aware that it is impossible to make 
it through the entire text in a one-semester course. In this edition, I have divided the 
book into three sections. I suggest that at least the first section (“Thermodynamic 
Principles”) and as much as possible of the second section (“Phase Equilibria”) be 
included in a one-semester undergraduate course. The third section (“Reactions and 
Transformations”) can make its way into other courses of the curriculum that deal 
with oxidation, energy, and phase transformations.

This author is well aware of the rise of computational materials science and the 
need for computational thermodynamics in such courses. I consider this text a pre-
requisite for any course that utilizes the computational methods of thermodynamics: 
one should not compute what one does not understand!

I acknowledge the continual support of my family, especially my wife Diane, 
who has been very patient over the years with my excursions to my study in prepa-
ration for lectures, often on weekends! All of my students have been helpful in so 
many ways over the years of teaching and research. My former student Dr. Jingxi 
Zhu is especially thanked for help with the proof reading of several chapters. For 
nearly twenty years I have had the benefit of collaboration and friendship with Prof. 
Michael McHenry with whom I have taught magnetic materials classes in which 
thermodynamics has played a major role. Lastly, I acknowledge my long friend-
ship with Prof. William A. Soffa of the University of Virginia for countless discus-
sions and learning sessions on topics relevant to thermodynamics, magnetism, phase 
transformations, as well as the history and philosophy of science. I hope that he has 
learned at least half as much from me as I have from him.



xviii PrefaCe

I count it a privilege to produce the sixth edition of Gaskell’s Thermodynamics, 
some 4 years after David’s death. May the text continue to train materials students 
well in the basics of thermodynamics.

David E. Laughlin
ALCOA Professor of Physical Metallurgy

Department of Materials Science and Engineering
Carnegie Mellon University

Postscript: Typographical errors enter thermodynamics books at an alarm-
ing rate. There is a Web site for this text https://www.crcpress.com/product/
isbn/9781498757003 and on it will be a list of typos. Please feel free to send me any 
that you find. Send all typos to Gaskell.Laughlin@gmail.com.
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3

ChAPter 1

Introduction and Definition of terms

1.1 INtrODUCtION 

The term thermodynamics  is related to the two Greek words therme  and 
dynamikos , which translate into English as “ heat”  and “ power”  (or “ movement” ), 
respectively. Thermodynamics is the physical science that focuses on the relation-
ship between energy and work as well as the equilibrium states and variables of 
systems that are being investigated. Importantly, thermodynamics defines heat and 
identifies it as the process in which energy is transferred from one region to another 
down a temperature gradient. In this text, we will mainly use the phrase thermal 
energy  to identify this form of energy transfer, but sometimes the word heat  will be 
used. Thermodynamics deals with the conservation  of energy as well as the conver-
sion  of the various forms of energy into each other or into work. Thermodynamics 
is concerned with the behavior of and interactions between portions of the universe 
denoted as systems  and those portions of the universe called the surroundings  or 
the environment . The system is that part of the universe we wish to investigate in 
detail, and the surroundings is that part of the universe outside the system which may 
interact with it by exchanging energy or matter. The system may perform work on 
the surroundings or have work performed on it by the surroundings. The boundary 
or wall between the system and the surroundings is what allows such interactions. 
In what we will call simple thermodynamic systems , the surroundings interacts with 
the system only via pressure and temperature changes. The composition remains 
constant in simple systems.

It is convenient to characterize systems by the kinds of interactions that are 
allowed between them and their surroundings.

 1. Isolated systems : In these systems, no work is done on or by the system. In addi-
tion, energy or matter may not enter or leave it. Thus, the energy of these systems 
remains constant, as does the overall composition. Isolated systems are therefore 
unaffected by changes in the surroundings.

 2. Closed systems : These are systems which may receive (or give off) energy from 
(or to) the surroundings. The boundaries are called diathermal ; that is, they allow 
thermal energy to transfer through them into or out of the system. However, the 
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boundaries are impermeable to matter; hence, the amount of matter is constant in 
these systems.

 3. Open systems : These are systems which can exchange both energy and matter with 
the surroundings. Neither the energy nor the composition of these systems need 
remain constant. The boundaries are both permeable and diathermal.

The boundaries or walls of the system are classified as follows:

• Adiabatic : No thermal energy can pass through.
• Diathermal : Thermal energy can pass through.
• Permeable : Matter can pass through.
• Impermeable : Matter cannot pass through.
• Semipermeable : Some components are able to pass through, while others are not.

It is evident that when evaluating a system, it is important that its interactions 
with the surroundings be either known or determined.

The macroscopic property of systems called temperature  is a distinguishing 
aspect of the subject of thermodynamics. Temperature is not utilized in the mechani-
cal description of matter (mass, velocity, momentum, etc.) encountered in introduc-
tory physics courses. The discovery that mechanical energy could be converted  to 
thermal energy (via friction) was an important early step in the development of ther-
modynamics. Later, the conversion of thermal energy into mechanical work, or other 
forms of energy, became a focus of classical thermodynamics. This will be discussed 
in the introduction to the First Law of Thermodynamics in Chapter  2.

The system may be a machine (heat engine) or a device (transducer) of interest to 
us. In the study of the thermodynamics of materials, the system is usually composed 
of matter, which is anything that has mass and occupies space. Matter has a given 
temperature, pressure, and chemical composition, as well as physical properties such 
as thermal expansion, compressibility, heat capacity, viscosity, and so on. A central 
aim of applied thermodynamics is the determination of the effect of the surround-
ings on the equilibrium state of a given system. Since the surroundings interacts 
with the system by transferring or receiving various forms of energy or matter with 
it, another focus of applied thermodynamics is the establishment of the relationships 
which exist between the equilibrium state of a given system and the influences which 
have been brought to bear on it.

1.2 the CONCePt OF StAte

A fundamental concept in thermodynamics is that of the thermodynamic state . 
If it were possible to know the masses, velocities, positions, and all modes of motion 
(translational, rotational, etc.) of all of the constituent particles in a system, this 
knowledge would serve to describe the microscopic state  of the system, which, in 
turn, would determine, in principle, all of the thermodynamic variables of the sys-
tem that can be measured (energy, temperature, pressure, etc.). For systems with 
macroscopic dimensions, this would entail more than 1024  coordinates, which is 
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clearly an impossible task. In the absence of such detailed knowledge as is required 
to determine the microscopic state of the system, classical thermodynamics begins 
with a consideration of the variables of the system, which, when determined, com-
pletely define the macroscopic state  of the system; that is, when all of the thermo-
dynamic variables are fixed, then the macroscopic state of the system is fixed and 
is said to be in equilibrium. It is found that when the values of a small number of 
thermodynamic variables are fixed, the values of the rest of the thermodynamic 
variables are also fixed. Indeed, when a simple system  such as a given quantity of a 
substance of fixed composition is being considered, the fixing of the values of two 
of the thermodynamic variables fixes the values of the rest of the thermodynamic 
variables. Thus, only two thermodynamic variables are independent, which, con-
sequently, are called the independent thermodynamic variables  of the system. All 
of the other variables are dependent variables . The thermodynamic state of such a 
system is thus uniquely determined when the values of the two independent vari-
ables are fixed. This has been called the Duhem * postulate . There are situations, 
however, when more independent variables are needed— for example, when thermo-
dynamic fields other than temperature and pressure are present. Such fields include 
electric or magnetic fields.

The values of the thermodynamic variables of a system are not functions of the 
history of the system; that is, they are independent of the path over which the process 
has taken the system in changing it from its previous state to its present state. These 
thermodynamic variables are thus intrinsic  to the state of the system. Such thermo-
dynamic variables are functions of state and can be expressed as exact differentials † 
of their dependent variables. There are, of course, times when the system has proper-
ties which do depend on its history; these properties are commonly called extrinsic  
properties. They are not equilibrium properties of the system; given time, they may 
change. It should be noted that some of these extrinsic properties can be manipulated 
to produce materials with optimum characteristics.

Consider the volume, V , of 1 mole of a pure gas. The value of the volume is 
dependent on the values of the pressure, P , and temperature, T , of the gas. The rela-
tionship between the dependent variable V  and the independent variables P  and T  
can be expressed as

 V V P T= ( , )  (1.1)

In a three-dimensional diagram, the coordinates of which are volume, pressure, and 
temperature, the points in V -P -T  space which represent the equilibrium states of 
existence of the system lie on a surface. This is shown in Figure  1.1 for 1 mole of a 
simple gas. Fixing the values of any two of the three variables fixes the value of the 
third variable of the system when it is in equilibrium.

Consider a process which changes the state of the gas from state 1 to state 2. This 
process causes the volume of the gas to change by

* Pierre Maurice Marie Duhem (1861– 1916).
† See Appendix B for a discussion of exact differential equations.
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 ∆V V V= −2 1  

The process could proceed along many different paths on the V -P -T  surface, two 
of which, 1 →  a  →  2 and 1 →  b  →  2, are shown in Figure  1.1. Consider the path 
1 →  a  →  2. The change in volume is

 ∆ ∆ ∆V V Va a= +→ →1 2  

 ∆V V V V Va a= −( ) + −( )1 2  

 ∆V V V= −2 1  

where:
1 →  a  occurs at the constant pressure, P1

 a  →  2 occurs at the constant temperature, T2 

We can express these changes as

 ∆V V V
V

T
dTa a

T

T

P

1 1

1

2

1

→ = − = ∂
∂





∫  

and

 ∆V V V
V

P
dPa a

P

P

T

→ = − = ∂
∂





∫2 2

1

2

2

 

V

a
1

2

P2

P

b

P1

T1

T

T2

Figure 1.1   the equilibrium states of existence for 1 mole of gas in V -P -T  space, shown to lie 
on a surface.
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Thus,

 ∆V
V

T
dT

V

P
dP

T

T

P P

P

T

1 2

1

2

1 1

2

2

→ = ∂
∂







+ ∂
∂





∫ ∫  (1.2)

Similarly, for the path 1 →  b  →  2:

 ∆V V V
V

P
dPb b

P

P

T

1 1

1

2

1

→ = − = ∂
∂





∫  

and

 ∆V V V
V

P
dTb b

T

T

P

→ = − = ∂
∂





∫2 2

1

2

2

 

Hence,

 ∆V
V

P
dP

V

T
dT

P

P

T T

T

P

1 2

1

2

1 1

2

2

→ = ∂
∂







+ ∂
∂





∫ ∫  (1.3)

Equations  1.2 and 1.3 must yield the same value of ∆ V 1→ 2 . In the limit of infini-
tesimal change in volume, these equations yield the complete differential of 
Equation  1.1:

 dV
V

P
dP

V

T
dT

T P

= ∂
∂







+ ∂
∂







 (1.4)

The change in volume caused by changing the state of the gas from state 1 to state 2 
depends only on the volumes at states 1 and 2 and is independent of the path taken by 
the gas between the states. This is because the volume of the gas is a state function  
and Equation  1.4 is an exact differential of the volume, which is a thermodynamic 
state variable.

The partial differentials which relate the change in volume to changes in the 
intensive thermodynamic variables (P  and T ) are related to the properties of the 
gas— namely,

βT

TV

V

P
= − ∂

∂






1
,  the isothermal compressibility with dimeensions of 

and

  the coefficient of the

P

V

V

T P

−

= ∂
∂







1

1α , rrmal expansion with dimensions of T −1
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Thus, the complete differential of Equation  1.4 can be written as

 dV VdT VdPT= −α β  

This equation can be easily integrated over the ranges in T  and P , where β T   and α  
are assumed to be constant.

1.3 eXAMPLe OF eQUILIBrIUM

In Figure  1.1, the equilibrium states of the system are shown to lie on a surface 
in V -P -T  space. This means that equilibrium exists at unique combinations of P  and 
T  such that P  and T  satisfy the equation for the V (P ,T ) surface.

A particularly simple system is illustrated in Figure  1.2. In this figure, 1 mole of 
a gas is shown to be contained in a cylinder by a movable piston. The system is at 
equilibrium when

 1. The pressure exerted by  the gas on  the piston equals the pressure exerted by  the 
piston on  the gas.

 2. The temperature of the gas is the same as the temperature of the surroundings (pro-
vided that thermal energy can be transferred through the boundary of the cylinder; 
that is, the boundaries of the cylinder are diathermal).

The state of the gas is thus fixed, and equilibrium occurs as a result of the estab-
lishment of a balance between the tendency of the external influences acting on the 
system to cause a change in the system (i.e., the temperature and pressure) and the 
tendency of the system to resist such a change. Fixing the pressure of the gas at P 1  

Gas

W

Figure 1.2   one mole of a gas is shown to be contained in a cylinder by a piston. the walls 
of the cylinder are diathermal, and W is the mass that is exerting pressure on 
the gas.
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and T 1  determines the state of the system and hence fixes the volume at the value 
V 1 . If, at constant temperature, by a suitable increase in the weight placed on the 
piston, the pressure exerted on the gas is increased to P 2  (Figure  1.1), the resulting 
imbalance between the pressure exerted by the gas and the pressure exerted on the 
gas causes the piston to move into the cylinder. This process decreases the volume 
of the gas and hence increases the pressure of the gas which it exerts on the piston 
until equalization of the pressures is restored. As a result of this process, the volume 
of the gas decreases from V 1  to V b  . Thermodynamically, the isothermal change of 
pressure from P 1  to P 2  changes the state of the system from state 1 (characterized by 
P 1 , T 1 ) to state b  (characterized by P 2 , T 1 ), and the volume, as a dependent variable, 
decreases from the value V 1  to V b  . This shows that work was performed on the gas 
by the piston.

If the pressure exerted by the piston on the gas is maintained constant at P 2  and 
the temperature of the surroundings is raised from T 1  to T 2 , the consequent tempera-
ture gradient across the cylinder wall causes the transfer of thermal energy from the 
surroundings into the gas. The increase in the temperature of the gas at the constant 
pressure P 2  causes the expansion of the gas, which pushes the piston out of the cyl-
inder. When the gas is uniformly at the temperature T 2 , the volume of the gas is V 2 . 
Again, thermodynamically, the increasing of the temperature from T 1  to T 2  at the 
constant pressure P 2  changes the state of the system from state b  (P 2 , T 1 ) to state 2 
(P 2 , T 2 ), and the volume as a dependent variable increases from V b   in the state b  to 
V 2  in the state 2. In this case, work was performed on the piston by the expanding 
gas. Since volume is a state function, the final volume V 2  would be the same if the 
state were first changed from 1 to a  and then from a  to 2.

1.4 the eQUAtION OF StAte OF AN IDeAL GAS

The pressure– volume relationship of a gas at constant temperature was determined 
experimentally in 1660 by Robert Boyle (1627– 1691), who found that, at constant T ,

 P
V

∝ 1
 

This is known as Boyle’ s law . Similarly, the volume– temperature relationship of a gas 
at constant pressure was determined experimentally in 1787 by Jacques-Alexandre-
Cesar Charles (1746– 1823). This relationship, which is known as Charles’  law , is 
that, at constant pressure,

 V T∝  

Thus, in Figure  1.1, which is drawn for 1 mole of a gas, sections of the V -P -T  
surface drawn at constant T  produce rectangular hyperbolae which asymptotically 
approach the P  and V  axes in a P  versus V  plot, and sections of the surface drawn 
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at constant P  produce straight lines in a V  versus T  plot. These sections are shown 
in Figure 1.3a and b.

In 1802, Joseph-Luis Gay-Lussac (1778– 1850) observed that the thermal 
coefficient of what were called permanent gases  was a constant. Previously, we 
noted that the coefficient of thermal expansion, α , is defined as the fractional 
increase of the volume of the gas, with the change in temperature at constant 
pressure; that is,
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Figure 1.3   (a) the variation, with pressure, of the volume of 1 mole of ideal gas at 300 and 
1000 K. (b) the variation, with temperature, of the volume of 1 mole of ideal gas 
at 1, 2, and 5 atm.
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 α = ∂
∂







1
V

V

T P

 (1.5)

where V  is the volume of 1 mole of the gas at 0° C. Gay-Lussac obtained a value 
of 1 267/  for α , but more refined experimentation by Henri Victor Regnault 
(1810– 1878) in 1847 showed α  to have the value 1 273/ . Later, it was found that 
the accuracy with which Boyle’ s and Charles’  laws describe the behavior of dif-
ferent gases varies from one gas to another. Generally, gases with lower boiling 
points obey the laws more closely than do gases with higher boiling points. It was 
also found that the laws are more closely obeyed by all gases as the pressure of 
the gas is decreased. It was thus found convenient to invent a hypothetical gas 
which obeys Boyle’ s and Charles’  laws exactly at all temperatures and pres-
sures . This hypothetical gas is called the perfect  or ideal gas , and it has a value 
of α  =1 273 15/ . .

The existence of a finite coefficient of thermal expansion therefore sets a limit 
on the thermal contraction of the ideal gas; that is, since α  = 1 273 15/ . , then the 
fractional decrease in the volume of the gas, per degree decrease in temperature, 
is 1 273 15/ .  of the volume at 0° C. Thus, at – 273.15° C, the volume of the gas 
would be zero, and hence the limit of temperature decrease, – 273.15° C, is the 
absolute zero of temperature. This defines an absolute scale of temperature called 
the ideal gas temperature scale , which is related to the arbitrary Celsius scale by 
the equation

 T T degrees absolute  degrees Celsius 273 15( ) = ( ) + .  

A combination of Boyle’ s law:

 P V T P PV T P0 0( , ) ( , )=  

and Charles’  law:

 
V P T

T

V P T

T

( , ) ( , )0 0

0

0=  

where:
 P 0   = standard pressure (1 atmosphere [atm])
 T 0   = standard temperature (273.15 degrees absolute)
 V (P ,T ) = volume at pressure P  and temperature T 

gives

 
PV

T

P V

T
= =0

0

constant  (1.6)
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From Avogadro’ s (Lorenzo Avogadro, 1776– 1856) hypothesis, the volume per 
gram-mole* of all ideal gases at 0° C and 1 atm pressure (termed standard tempera-
ture and pressure  [STP]) is 22.414 liters. Thus, the constant in Equation  1.6 has the 
value

 
P V

T
0 0

0

1 22 414
273 15

0 082057= ⋅
⋅

= ⋅ atm  liters
 K mole

liter atm
d

.
.

.
eegree mole⋅

 

This constant is given the symbol R , the gas constant , and, being applicable to all 
ideal gases, it is a universal constant. Equation  1.6 can thus be written as

 PV RT=  (1.7)

which is the equation of state for 1 mole of ideal gas. Equation  1.7 is also called the 
ideal gas law . Because of the simple form of its equation of state, the ideal gas is 
used extensively as a system in thermodynamic discussions.

The existence of an absolute temperature scale shows that different systems can 
be assigned a single-valued function to designate the intensity  of its thermal energy. 
The Zeroth Law of Thermodynamics can be stated as follows: if system A is in 
thermal equilibrium with system B, and system B is in thermal equilibrium with 
system C, then system A is in thermal equilibrium with system C. Thus, all three 
systems must have the same absolute temperature, and therefore, the temperature 
of a system is a thermodynamic intensive state variable. If the temperature gradient 
between two systems is equal to zero, the systems are in thermal equilibrium. If 
the temperature gradient is nonzero, there is a tendency for energy to transfer from 
the high-temperature system to the low-temperature system, commonly called heat 
transfer . We will see that temperature is a measure of the energy of the particles 
which compose the system.

1.5 the UNItS OF eNerGY AND WOrK

The unit liter· atm occurring in the units of R  is an energy term. Work is done 
when a force moves a body through a distance. Work and energy have the dimen-
sions force· distance. Pressure is force per unit area; hence, work and energy can have 
the dimensions pressure· area· distance, or pressure· volume. The unit of energy in SI 
is the joule, which is the work done when a force of 1 newton moves a distance of 1 
meter. Liter· atm are converted to joules as follows:

 1 atm 1 1 325 
newtons
meters2= 0 ,  

* A gram-mole (g-mole or mole) of a substance is the mass of Avogadro’ s number of molecules of the 
substance expressed in grams. Thus, a g-mole of O2  has a mass of 32 g, a g-mole of C has a mass of 12 g, 
and a g-mole of CO2  has a mass of 44 g.
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Multiplying both sides by liters (10– 3  meters3 ) gives

 1 liter atm  newton meters  joules⋅ = ⋅ =101 325 101 325. .  

Thus,

 

R

R

= ⋅
⋅

=
⋅

0 0 0.

.

82 57 
liter atm

degree mole

8 3144 
joules

degree mole

 

Other forms of work, such as magnetic and electrical, and their conversions will be 
discussed as they arise in the course of the text.

1.6 eXteNSIVe AND INteNSIVe therMODYNAMIC VArIABLeS

Thermodynamic state variables are either extensive  or intensive . Extensive vari-
ables have values which depend on the size of the system, whereas values of intensive 
variables are independent of the size of the system. Volume is an extensive variable, 
and temperature and pressure are intensive variables. The values of extensive vari-
ables, expressed per unit volume or unit mass of the system, have the characteristics 
of intensive variables; for example, the volume per unit mass (specific volume) and 
the volume per mole (molar volume) are variables whose values are independent of 
the size of the system. For a system of n  moles of an ideal gas, the equation of state is

 PV nRT′ =  

where Vʹ   is the total volume of the system. Per mole of the system, the equation of 
state reduces to Equation  1.7:

 PV RT=  

where V , the molar volume of the gas, equals ′V n/ . The molar volume of an ideal gas 
at Standard Temperature Pressure (STP) is 22.414 liters.

1.7 eQUILIBrIUM PhASe DIAGrAMS AND 
therMODYNAMIC COMPONeNtS

Of the several ways to graphically represent the equilibrium states of the exis-
tence of a system, the constitution  or equilibrium phase diagram  is the most popular 
and convenient. The complexity of a phase diagram is determined primarily by the 
number of components  which occur in the system, where components are chemi-
cal species of fixed composition. The simplest components are chemical elements 
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and stoichiometric compounds. Systems are primarily categorized by the number of 
components which they contain— for example, one-component (unary) systems, two-
component (binary) systems, three-component (ternary) systems, four-component 
(quaternary) systems, and so on.

The phase diagram of a one-component system with only two independent state 
variables is a two-dimensional representation of the dependence of the equilibrium 
state, with the two independent variables as the coordinate axes. Pressure and tem-
perature are normally chosen as the two independent variables. Figure  1.4 shows a 
schematic representation of part of such a phase diagram for H2 O. The full curves in 
Figure  1.4 divide the diagram into three areas, designated solid, liquid, and vapor. If 
a quantity of pure H2 O is at some temperature and pressure which is represented by 
a point within  the area AOB , the equilibrium state of the H2 O is a liquid. Similarly, 
within the area COA  and below the COB curve , the equilibrium states are, respectively, 
the solid and vapor states of water. When the equilibrium state lies within one of these 
regions, it is said to be homogeneous ; that is, it consists of only one phase of water.

If the state of existence lies on a curve, the equilibrium state consists of two 
phases. On the curve AO , the liquid and solid H2 O coexist in equilibrium with one 
another. States such as these are called heterogeneous . For now,* we define a phase  
as being a finite volume in the physical system within which the thermodynamic 
variables are uniformly constant; that is, they do not experience any abrupt change 
in passing from one point in the volume to another.

The curve AO  represents the simultaneous variation of P  and T  required for the 
maintenance of the equilibrium between solid and liquid H2 O, and thus represents 
the influence of pressure on the melting temperature of ice. Similarly, the curves CO  
and OB  represent the simultaneous variations of P  and T  required, respectively, for 
the maintenance of the equilibrium between solid and vapor H2 O and between liquid 

* See the introduction to chapter 15 for a more precise definition of phase.
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Figure 1.4   schematic representation of part of the pressure– temperature equilibrium phase 
diagram for h2 o. the melting point is designated as m  and the boiling point as b .
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and vapor H2 O. The curve CO  is thus the variation, with temperature, of the saturated 
vapor pressure of solid ice or, alternatively, the variation, with pressure, of the sublima-
tion temperature of water vapor. The curve OB  is the variation, with temperature, of 
the saturated vapor pressure of liquid water or, alternatively, the variation, with pres-
sure, of the dew point of water vapor. The three two-phase equilibrium curves meet 
at the point O  (the triple point), which thus represents the unique values of P  and T  
required for the establishment of the three-phase (solid + liquid + vapor) equilibrium.

The path amb  indicates that if a quantity of ice is heated at a constant pressure 
of 1 atm, melting occurs at the state m , which, by definition, is the normal melting 
temperature of ice. Boiling occurs at the state b , which is the normal boiling tem-
perature of water.

We have seen that phases may be solids, liquids, or gases. Gases are single-phase 
solutions and, hence, are homogeneous phases. Liquids may be homogeneous and 
single phase or they may divide into regions of different composition and therefore be 
composed of two or more phases. Likewise, solids may be single phase or may also 
be composed of more than one phase. It is common to call a metal composed of more 
than one component an alloy. Alloys may be single phase or multiphase. A single-
phase crystalline alloy consists of two or more components distributed randomly on 
a single crystal structure. Such single-phase alloys are called solid solutions .

If the system contains two components, a composition axis must be included 
and, consequently, the complete diagram is three-dimensional, with the coordinates 
composition, temperature, and pressure. In most cases of condensed phases, how-
ever, it is sufficient to present a binary phase diagram as a constant-pressure sec-
tion of the three-dimensional diagram. The constant pressure chosen is normally 
1 atm, and the coordinates are composition and temperature. Figure  1.5, which is 
a typical simple binary phase diagram, shows the phase relationships occurring in 
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Figure 1.5   the temperature composition equilibrium phase diagram for the system 
al2 o3 – Cr2 o3  at a constant pressure of 1 atm.
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the system Al2 O3 – Cr2 O3  at 1 atm pressure. This phase diagram shows that, at tem-
peratures below the melting temperature of Al2 O3  (2050° C), solid Al2 O3  and solid 
Cr2 O3  are completely miscible in all proportions and form a solid solution. This can 
occur because Al2 O3  and Cr2 O3  have the same crystal structure (corundum, space 
group R c3 ) and the Al3+  and Cr3+  ions are of similar size. The Al3+  and Cr3+  ions are 
considered to be randomly distributed on the c  sites of the space group R c3 . At tem-
peratures above the melting temperature of Cr2 O3  (2265° C), liquid Al2 O3  and liquid 
Cr2 O3  are completely miscible in all proportions and form a liquid solution.

This diagram thus contains areas of complete solid solubility and complete liquid 
solubility, which are separated from one another by a two-phase area in which solid 
and liquid solutions coexist in equilibrium with one another. For example, at the 
temperature T 1 , the Al2 O3 – Cr2 O3  system of composition between X  and Y  exists as a 
two-phase system comprising a liquid solution of composition l  in equilibrium with a 
solid solution of composition s . The relative proportions of the two phases present in 
equilibrium depend only on the overall composition of the system in the range X – Y  
and are determined by the lever rule, as follows:

For the overall composition C  at the temperature T 1 , the fraction of solid in equilib-
rium at T 1  is given as lC lS/  and the fraction of liquid is given as CS lS/  where the 
numerator and denominators of the expressions are the length of the cords denoted on 
the phase diagram.

Because the only requirement of a component is that it has a fixed composition, 
the designation of the components of a system is somewhat arbitrary. In the system 
Al2 O3 – Cr2 O3 , the obvious choice of the components is Al2 O3  and Cr2 O3 . However, 
the most convenient choice is not always as obvious, and the general arbitrariness 
in selecting the components will be discussed later when dealing with other oxide 
phase diagrams.

1.8 LAWS OF therMODYNAMICS *

Sometimes, thermodynamics is summarized by stating its laws, which can be 
treated either as experimentally determined facts of nature or as axioms from which 
other thermodynamic relationships can be derived. We have seen that the so-called 
Zeroth Law introduces us to the important intensive thermodynamic variable tem-
perature, T , which is a measure of the thermal intensity of a material and allows the 
determination of thermal equilibrium. The other three laws are summarized in the 
following subsections and will be the subject of study throughout the text.

* A very good summary of the Laws of Thermodynamics is found in Peter Atkins, The Laws of 
Thermodynamics: A Very Short Introduction , Oxford University Press, Oxford, UK, 2010.
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1.8.1 the First Law of thermodynamics

The First Law not only states that the energy of the universe is conserved  but it 
also posits that the various forms of energy (e.g., thermal, electrical, magnetic, and 
mechanical) can be converted  into other forms of energy. When first delineated, it 
was the fact that thermal energy (heat) could be converted to mechanical work that 
was of special interest (heat engines). This law also defines an important extensive 
thermodynamic state function called the internal energy , U , of the system under 
investigation.

1.8.2 the Second Law of thermodynamics

Although the Second Law is the one that often gets the most attention in popu-
lar discussions of science, it is often incorrectly understood! Care must be taken in 
applying the law by delineating the system and the surroundings. This law allows us 
to make important predictions of the direction in which a system will evolve with 
time during spontaneous processes, if other important caveats are taken into account. 
The Second Law introduces another important extensive thermodynamic state func-
tion called entropy , S . A short version of the Second Law is that the entropy of the 
universe never decreases.

1.8.3 the third Law of thermodynamics

In its boldest form, the Third Law states that when a system which is in complete 
internal equilibrium approaches the absolute zero in temperature, all of the aspects 
of its entropy approach zero. Sometimes, the Third Law is stated as follows: a system 
can never be taken to the absolute zero in temperature. This is also called the unat-
tainability principle .

The Laws of Thermodynamics will be discussed in the following chapters and 
applied to the thermodynamic stability of systems in later chapters of the text.

1.9 SUMMArY

 1. In thermodynamics, the universe is divided into the system (that part of the universe 
of interest to us) and the surroundings. There are several kinds of walls between 
the system and the surroundings, and each type gives rise to a system with specific 
characteristics.

 2. In thermodynamics, the equilibrium of the system is of interest in that, if it is 
known, one can determine if the state of the system will change and in which direc-
tion such a change would go.

 3. The state of a simple system is determined by its temperature and pressure, the two 
intensive independent variables of the system.
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 4. Other thermodynamic variables are functions of pressure and temperature, and 
graphs may be plotted which display the equilibrium states of the system as a func-
tion of the independent variables.

 5. The Zeroth Law of Thermodynamics introduces the intensive variable tempera-
ture, T .

 6. The First Law of Thermodynamics states that the energy of the universe is con-
stant, shows that different forms of energy may be converted into one another, and 
introduces the extensive thermodynamic variable internal energy, U .

 7. The Second Law of Thermodynamics defines which processes may occur spon-
taneously and introduces the extensive thermodynamic variable entropy, S . The 
entropy of the universe can never decrease.

 8. The Third Law of Thermodynamics states that all aspects of entropy approach the 
value of zero as the temperature of the system approaches zero, if the system is in 
complete internal equilibrium.

1.10 CONCePtS AND terMS INtrODUCeD IN ChAPter 1

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Alloy
Boundaries: adiabatic/diathermal/permeable/semipermeable
Boyle’ s law
Charles’  law
Coefficient of thermal expansion
Components
Conservation of energy
Conversion of energy
Energy/work
Equilibrium phase diagram
Exact differentials
Extensive/intensive thermodynamic variables
Gas constant, R 
Homogeneous/heterogeneous systems
Ideal gases/ideal gas law
Independent/dependent thermodynamic variables
Isolated/closed/open systems
Isothermal compressibility
Laws of Thermodynamics
Microscopic/macroscopic thermodynamic variables
Solid/liquid solutions
System/surroundings
Thermodynamic field variables
Thermodynamic state
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Thermodynamic state functions
Thermodynamic state variables
Triple point
Vapor pressure
V -P -T  space

1.11 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1  

Figure  1.1 shows the volume versus pressure and temperature plot for 1 mole of an 
ideal gas. How would the plot change for 2 moles of an ideal gas? How would it 
change for n  moles?

Solution to Qualitative Problem 1 

The surface would be shifted up to double the volume at every point. The slopes and 
curvatures of the surface at 2V i  remain the same as those at V i .

For n  moles, the surface shifts up at every point by n V i — again, with the slopes 
and curvatures remaining the same.

Qualitative Problem 2 

Obtain simplified expressions for β T   and α  of an ideal gas.

Solution to Qualitative Problem 2 

and
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1.12 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Consider 1 mole of an ideal gas. Using a y  axis of pressure and an x  axis of  temperature, 
plot the variations of pressure with temperature for volumes of 11.2 liters, 22.4 liters, 
and 44.8 liters. Use ranges of pressure and temperature consistent with Figure  1.3.

Solution to Quantitative Problem 1 

States of constant volume can be calculated using the ideal gas law (PVʹ   = nRT ). The 
following table summarizes the calculations. The plot is found in Figure  1.6.

400 600 800 1000 1200
Temperature, K

Pr
es
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re

, a
tm

44.8 liters

22.4 liters

11.2 liters

10

8

6

4

2

0

Figure 1.6   Pressure temperature plots for 1 mole of an ideal gas at three different volumes.

Pressure (atm) 

temperature (K) V   = 11.2 liters V   = 22.4 liters V   = 44.8 liters 

300 2.20 1.10 0.55

400 2.93 1.47 0.73

500 3.66 1.83 0.92

600 4.40 2.20 1.10

700 5.13 2.56 1.28

800 5.86 2.93 1.47

900 6.59 3.30 1.65

1000 7.33 3.66 1.83

1100 8.06 4.03 2.01

1200 8.79 4.40 2.20

1300 9.52 4.76 2.38
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Quantitative Problem 2 

A rock with a mass of 10 lb falls 100 ft from a cliff to the floor of a canyon. What is 
the change in potential energy (∆ PE ) of the rock?

Solution  to Quantitative Problem 2 

 

1 lb 4536 kg; thus, 1  lb 4 536 kg

1 in 2 54 cm; thus, 1 

= =

=

0 0. .

. mm 1  cm and 1 ft 12 in; therefore,  ft  m= = =

=

00 100 30 48.

∆ ∆PE mg hh

PE∆ = ( )( ) −( )

= − ⋅ ⋅

=

−

4 536 kg 9 81 m/s 3 48 m

1356 kg m s

1 N 1

2

2 2

. . .0

  kg m s  and 1 J 1 N m

1356 J

1⋅ ⋅ = ⋅

= −

−

∆PE

 

PrOBLeMS

1.1*  The plot of V  = V (P ,T ) for a gas is shown in Figure  1.1. Determine the expres-
sions of the two second derivatives of the volume of this plot (note : the principle 
curvatures of the surface are proportional to these second derivatives).

  What are the signs of the curvatures? Explain.

1.2 *  The expression for the total derivative of V  with respect to the dependent vari-
ables P  and T  is

 dV
V

P
dP

V

T
dT

T P

= ∂
∂







+ ∂
∂







 

   Substitute the values of β T   and α  obtained in Qualitative Problem 2 into this 
equation and integrate them to obtain the equation of state for an ideal gas.

1.3 *  The pressure temperature phase diagram in Figure  1.4 has no two-phase areas 
(only two-phase curves), but the temperature composition diagram in Figure  1.5 
does have two-phase areas. Explain.

1.4 * Calculate the value of the ratio α β/ T for an ideal gas in terms of its volume.

* New problem in this edition.
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ChAPter 2

the First Law of thermodynamics

2.1 INtrODUCtION

The First Law of Thermodynamics is sometimes thought to be merely an 
extension to the Law of Conservation of Energy, which was discovered in the late 
seventeenth century for mechanical systems. It is, however, much more! The First 
Law introduces the important thermodynamic state variable internal energy , U  
(also called a thermodynamic potential ), and the law posits that energy may be 
converted from one of its forms to another form. Furthermore, the law introduces 
the important concept that the transfer of thermal energy (heat) is a different kind 
of energy than that which is done during a process of work . First, we start with a 
review of basic mechanics.

Kinetic energy  is conserved in a frictionless system of interacting rigid elastic 
bodies. A collision between two of these bodies results in a transfer of kinetic energy 
from one to the other; the work done by the one equals the work done on the other. 
The total kinetic energy of the system is unchanged as a result of the collision. If the 
kinetic system is in the influence of a gravitational field, then the sum of the kinetic 
and potential energies of the bodies is constant. Changes of position of the bodies in 
the gravitational field, in addition to changes in the velocities of the bodies, do not 
alter the total dynamic energy of the system. As the result of possible interactions, 
kinetic energy may be converted  to potential energy and vice versa, but the sum of 
the two remains constant. If, however, friction occurs in the system, then with con-
tinuing collision and interaction among the bodies, the total dynamic energy of the 
system decreases  and thermal energy is produced. It is thus reasonable to expect that 
a relationship exists between the dynamic energy dissipated  and the thermal energy 
produced  as a result of the effects of friction.

The establishment of such a relationship laid the foundations for the development 
of the thermodynamic method. As a subject, this has now gone far beyond simple 
considerations of the interchange of energy from one form to another— for example, 
from dynamic energy to thermal energy. The development of thermodynamics from 
its early beginnings to its present state was achieved as the result of the invention  
of convenient thermodynamic functions of state . In this chapter, the first two of 
these thermodynamic functions— the internal energy , U , and the enthalpy , H — are 
introduced.
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2.2 the reLAtIONShIP BetWeeN heAt AND WOrK

The relationship between heat (thermal energy) and work was suggested in 1798 
by Count Rumford (aka Sir Benjamin Thomson, 1753– 1814), who, during the bor-
ing of cannons at the Munich Arsenal, noticed that the heat, q , produced during the 
boring was roughly proportional to the work, w , performed during the boring. This 
suggestion was novel, as hitherto, heat had been regarded as being an invisible fluid 
called caloric , which resided between the constituent particles of a substance. In the 
caloric theory of heat, the temperature of a substance was considered to be deter-
mined by the quantity of caloric gas which it contained. It was thought that when two 
bodies of differing temperature were placed in contact with one another, they came 
to an intermediate common temperature as the result of caloric flowing between 
them. Thermal equilibrium was thought to be reached when the pressure of caloric 
gas in the one body equaled that in the other.

Some 40 years would pass before the relationship between heat and work was 
placed on a firm quantitative basis, as the result of a series of experiments carried out 
by James Prescott Joule (1818– 1889). Joule conducted experiments in which work 
was performed in a certain quantity of adiabatically* contained water, and he then 
measured the resultant increase in the temperature of the water. He observed that 
a direct proportionality existed between the work done and the resultant increase 
in temperature and that the same proportionality existed no matter what means 
were employed in the work production. Methods of work production used by Joule 
included:

 1. Rotating a paddle wheel immersed in the water
 2. An electric motor driving a current through a coil immersed in the water
 3. Compressing a cylinder of gas immersed in the water
 4. Rubbing together two metal blocks immersed in the water

This proportionality between the work performed and the rise in temperature 
gave rise to the notion of a mechanical equivalent of heat , and for the purpose of 
defining this figure it was necessary to define a unit of thermal energy. This unit is 
the calorie  (or 15°  calorie ), which is the quantity of thermal energy needed to be 
transferred to 1 gram of water to increase the temperature of the water from 14.5° C 
to 15.5° C. On the basis of this definition, Joule determined the value of the mechani-
cal equivalent of heat to be 0.241 calories per what we now call a joule  (J). The 
presently accepted value is 0.2389 calories (15°  calories) per joule. Rounding this to 
0.239 calories per joule defines the thermochemical calorie , which, until the intro-
duction in 1960 of SI units, was the traditional energy unit used in thermochemistry.

* An adiabatic vessel is one which is constructed in such a way as to prohibit, or at least minimize, the 
passage of thermal energy through its walls. The most familiar example of an adiabatic vessel is the 
Dewar flask  (known more popularly as a thermos flask ). Thermal energy transmission by conduction 
into or out of this vessel is minimized by using double glass walls separated by an evacuated space, 
and a rubber or cork stopper. Thermal energy transmitted by radiation is minimized by using highly 
polished mirror surfaces.
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From the preceding discussion, it is seen that the transfer of thermal energy, q , 
and the performance of work, w , are processes  which occur on or to a system and 
are not intrinsic to the system; that is, they are not variables of the system. When 
performed on a system they do, however, change the properties of the system.

2.3 INterNAL eNerGY AND the FIrSt LAW OF therMODYNAMICS

From Joule’ s experiments, it can be said that “ the change of a body inside an 
adiabatic enclosure from a given initial state to a given final state involves the same 
amount of work by whatever means the process is carried out.” * The statement is a 
preliminary formulation of the First Law of Thermodynamics, and in view of this 
statement, it is necessary to define some function which depends only on the internal 
state  of a body or system. Such a function is U , the internal energy. We will see that 
the internal energy is related to the system’ s capacity to do work. Internal energy is 
best introduced by means of comparison with more familiar concepts.

When a body of mass m  is lifted in a gravitational field from height h 1  to height h 2 , the 
work w  done on the body is given by

 

w

mg h h

mgh mgh

= ×
= × −
= −
=

force distance

potential energy at 

( )2 1

2 1

pposition potential energy at position h h2 1−

  

Since the potential energy of the body of given mass m  depends only on the position of 
the body in the gravitational field, it is seen that the work done on the body is depen-
dent only on its final and initial positions and is independent of the path taken by the 
body between the two positions— that is, between the two states. U  is that potential.

Similarly, the application of a force f  to a body of mass m  causes the body to accel-
erate according to Newton’ s law:

 f ma m
dv

dt
= =  

where the acceleration a  equals dv dt/ . The work done on the body is thus obtained 
by integrating

 dw f dl=   

where dl  is the distance that the force moves the body.

* Kenneth Denbigh, The Principles of Chemical Equilibrium , Cambridge University Press, Cambridge, 
UK, 1971.
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 ∴ = = =   dw m
dv

dt
dl m

dl

dt
dv mv dv  

Integration gives
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the kinetic energy of the body at velocity   state 

           the kinetic energy of the body a

v2 2( )

− tt velocity  state v1 1( )

 

Again, the work done on the body is the difference between the values of a function 
of the state of the body and is independent of the path  taken by the body between the 
states. In this case, the change in U  is equal to the change in the kinetic energy of the 
system.

In the case of work being done on an adiabatically contained body of constant 
potential and kinetic energy, the pertinent function which describes the state of the 
body, or the change in the state of the body, is the internal energy, U . Thus, the work 
done on (or by) an adiabatically contained body equals the change in the internal 
energy of the body; that is, the work equals the difference between the value of U  in 
the final state and the value of U  in the initial state. In describing work, we will use 
the convention that assigns a negative value to work done on  a body and a positive 
value to work done by  a body. This convention arises because we often consider 
only the work done to be PdV  work. When a gas expands, and hence does work 
against an external pressure, the integral PdV1

2
∫ , which is the work performed by  

the  system, is a positive quantity. Thus, the internal energy must decrease. For an 
adiabatic process in which work w  is done on the gas, as a result of which its state 
moves from A  to B .

 w U UB A= − ′ − ′( )  

If work w  is done on the body, then ′ > ′ <U U wB A ( ) 0 , and if the body itself 
performs work, then ′ < ′ <U U wB A ( ) 0 .*

In Joule’ s experiments, the change in the state of the adiabatically contained 
water was measured as an increase in the temperature of the water. The same increase 
in temperature, and hence the same change of state, could have been produced by 
placing the water in thermal contact with a source that was hotter than the water, 
allowing energy to flow down the temperature gradient into the water. In describing 
the transfer of thermal energy, we will use the convention that assigns a negative 
value to thermal energy which transfers out  of a body (an exothermic process) and 

* The prime in U ́  indicates the total internal energy of the system. U  is the internal energy per mole.
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a positive value to thermal energy which transfers into  a body (an endothermic pro-
cess). Hence,

 q U UB A= ′ − ′( )  

Thus, when energy transfers into the body due to a thermal gradient, q  is a positive 
quantity and Uʹ  B   >  Uʹ  A  , whereas, if energy transfers out of the body due to a ther-
mal gradient, Uʹ  B   <  Uʹ  A   and q  is a negative quantity. See Figure  2.1 for a schematic 
description of the sign conventions for heat and work used in the text.

It is now of interest to consider the change in the internal energy of a body which 
simultaneously performs work and absorbs thermal energy. Consider a body, ini-
tially in the state A , which performs work, w , and absorbs energy, q , via a thermal 
gradient, and, as a consequence, moves to the state B . The absorption of q increases  
the internal energy of the body by the amount q , and the performance of work w  by 
the body decreases  its internal energy by the amount w . Thus, the total change in the 
internal energy of the body, ∆ Uʹ  , is

 ∆ ′ = ′ − ′ = −U U U q wB A  (2.1)

This equation summarizes the First Law of Thermodynamics for a system of fixed 
composition. The equation shows that while the internal energy of the system 
has changed by an amount (q  –  w ), the energy of the surroundings has changed 
by – (q  –  w ). Thus, the total energy of the universe (system plus surroundings) is 
unchanged.

For an infinitesimal change of state, Equation  2.1 can be written as a differential:

 dU q w′ = −δ δ  (2.2)

Notice that the left-hand side of Equation  2.2 gives the value of the increment in 
an already existing property of the system, whereas the right-hand side has no cor-
responding interpretation. Uʹ  , the total internal energy, is an extensive state variable 
(function) of the system, which means that the integration of dUʹ   between two states 
gives a value which is independent of the path taken by the system between the two 

Surroundings

System w

q

Figure 2.1   schematic showing the sign convention for the work, w  (positive), done by the 
system and energy transferred as heat, q , added to the system.
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states. Such is not the case when δ q  and δ w  are integrated. The thermal and work 
effects, which involve energy in transit, depend on the path taken between the two 
states, as a result of which the integrals of δ w  and δ q  cannot be evaluated without 
knowledge of the specific path. This is illustrated in Figure  2.2. Here, the value of 
Uʹ  2  –  Uʹ  1  is independent of the path taken between state 1 (P 1 V 1 ) and state 2 (P 2 V 2 ). 
However, the work done by the system, which is given by w PdVV

V= ∫ 1

2  (the area 
under the curve between V 1  and V 2 ) varies, depending on the path. In Figure  2.2 
the work done in the process 1 →  2 via c  is less than that done via b , which, in 
turn, is less than that done via a . From Equation  2.1, it is seen that the δ q  must also 
depend on the path, and in the process 1 →  2, more thermal energy is absorbed by 
the system via a  than is absorbed via b , which, again in turn, is greater than the 
heat absorbed via c . In Equation  2.2, use of the symbol d  indicates a differential 
element of a state function or state variable, the integral of which is independent of 
the path. The use of the symbol δ  indicates a small change of some quantity which 
is not a state function. In Equation 2.1, note that the algebraic sum of two quantities, 
neither of which individually is independent of the path, gives a quantity which is 
independent of the path.

In the case of a cyclic process  which returns the system to its initial state— for 
example, the process 1 →  2 →  1 in Figure  2.2— the change in U  as a result of this 
process is zero; that is,

 ∆ ′ = ′ + ′ = ′ − ′ + ′ − ′ =∫ ∫U dU dU U U U U
1

2

2

1

2 1 1 2 0( ) ( )  

The vanishing of a cyclic integral dU′ =∫ 0�  is a property of a state variable.

V1

c

2

1

Volume

Pr
es
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re

b

a

P2

P1

V2

Figure 2.2   three process paths taken by a fixed quantity of gas in moving from the state 
1 to the state 2, showing that the work performed by the gas during expansion 
depends on the path traversed during the process.
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In Joule’ s experiments, where (U ́ 2  –  U ́ 1 ) = – w , the process was adiabatic (q  = 0), 
and thus, the path of the process was specified.

Since Uʹ   is an extensive thermodynamic state variable, for a simple system con-
sisting of a given amount of substance of fixed composition, the value of Uʹ   is fixed 
once any two thermodynamic variables (the independent variables) are fixed. If tem-
perature and volume are chosen as the independent variables, then

 ′ = ′ ′( )U U V T,  

The complete differential Uʹ   in terms of the partial derivatives gives

 dU
U

T
dT

U

V
dV

V T
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It should be noted that if the system is open to changes in the number of moles of the 
substance, this equation is rewritten to include such changes:

 dU
U

T
dT

U

V
dV

U

n
dn

V n T n T V

′ = ∂ ′
∂







+ ∂ ′
∂ ′







′ + ∂ ′
∂





′ ′, , ,

 

(Here we are assuming the system to be composed of but one chemical component.)
Since the state of a closed system is fixed when the two independent variables 

are fixed, it is of interest to examine those processes which can occur when the value 
of one of the independent variables is maintained constant and the other is allowed 
to vary. In this manner, we can examine processes in which the volume Vʹ   is main-
tained constant (isochore or isometric processes), the pressure P  is maintained con-
stant (isobaric processes), or the temperature T  is maintained constant (isothermal 
processes). We can also examine adiabatic processes in which δ q  = 0.

2.4 CONStANt-VOLUMe PrOCeSSeS

If the volume of a simple system  is maintained constant during a process, then 
the system does no work ( PdV ′ =∫ 0), and from the First Law, Equation  2.2,

 dU qv′ = δ  (2.3)

where the subscript v  indicates constant volume. Integration of Equation  2.3 gives

 ∆ ′ =U qv  

for such a process. This shows that the increase or decrease in the internal energy of 
the closed system equals, respectively, the thermal energy absorbed or rejected by 
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the system during the constant-volume process. If thermal energy enters the system, 
the internal energy of the system increases. For this process,

 dU
U

T
dT q

V
V

V′( ) = ∂ ′
∂







=
′

δ  

The thermodynamic property ( / )∂ ′ ∂ ′U T V  is the constant-volume heat capacity of the 
system (see Section 2.6).

2.5 CONStANt-PreSSUre PrOCeSSeS AND the eNthALPY,  H  

If the pressure is maintained constant during a process which takes the system 
from state 1 to state 2, then the work done by the closed system is given as

 w PdV P dV P V V
V

V

V

V

= = = × −∫ ∫
1

2

1

2

2 1( )  

and the First Law gives

 ′ − ′ = − −U U q P V Vp2 1 2 1( )  

where the subscript P  indicates constant pressure. Rearrangement gives

 ′ +( ) − ′ +( ) =U PV U PV qp2 2 1 1  

Since the expression (Uʹ   + PVʹ  ) contains only thermodynamic state variables, the 
expression itself must be a thermodynamic state variable. This is called the enthalpy , 
Hʹ  , of the system; that is,

 ′ ≡ ′ + ′H U PV  (2.4)

Hence, the total derivative of the enthalpy is

 dH dU PdV V dP′ = ′ + ′ + ′  

and at constant pressure, 

 dH dU PdV′ = ′ + ′  

Integrating, we obtain

 ∆ ′ = ′ − ′ =H H H qP2 1  (2.5)

Thus, the enthalpy change during a constant-pressure process is equal to the thermal 
energy admitted to or withdrawn from the system during the process.
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Suppose we need to know the enthalpy change, ∆ H , for the oxidation of BCC 
iron (α ) into solid hematite.

 2
3
2

2Fe O Fe O2 3( )α + →  

Tables do not show the value of ∆ H  for this reaction. However, the molar values of 
∆ H   for the following reactions are found in the tables:

 

3

2
1
2

3

2 1

3

Fe 2O Fe O             

Fe O O Fe O         

3 4

3 4 2 2

( )α + →

+ →

∆

∆

H

HH2

 

Since enthalpy is a thermodynamic state variable, the value of its change from one 
state to another is independent of the path of the reaction. Thus, if we add two-thirds 
of the reaction

 3 2 4 1Fe O Fe O     2 3( )α + → ∆H  

to one-third of the reaction

 2
1
2

2Fe O O 3Fe O     3 4 2 2 3+ → ∆H  

we get

 2Fe O Fe O2 3( )α + →3
2

2  

and

 ∆ ∆ ∆H H H= +2
3

1
3

1 2  

This use of equivalent reactions is a direct consequence of the First Law of 
Thermodynamics and the path independency of enthalpy changes. It is called Hess’  
law of constant heat summation  (Germain Hess, 1802– 1850) and is commonly used 
in thermochemistry.

2.6 heAt CAPACItY

Before discussing the adiabatic and isothermal processes, it is convenient to 
introduce the concept of heat capacity . The heat capacity, C , of a system is the ratio 
of the thermal energy added to or withdrawn from a system of fixed composition 
to the resultant change in the temperature of the system. Thus,
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 C
q

T
≡

∆
 

or, if the temperature change is made vanishingly small, then

 C
q

dT
≡ δ

 

The concept of heat capacity is only used when the addition of thermal energy to or 
withdrawal of thermal energy from the system produces a temperature change; the 
concept is not used when a phase change is involved. For example, if the system is a 
mixture of ice and water at 1 atm pressure and 0° C, then the addition of heat simply 
melts some of the ice and no change in temperature occurs. In such a case, the heat 
capacity, as defined, would be infinite.

Note that if a system is in a state 1 and the absorption of a certain quantity of ther-
mal energy by the system increases its temperature from T 1  to T 2 , then the statement 
that the final temperature is T 2  is insufficient to determine the final state of the system. 
This is because the system has two independent variables, and so one other variable, 
in addition to the temperature, must be specified in order to define the state of the sys-
tem. This second independent variable could be varied in a specified manner or could 
be maintained constant during the change. The latter possibility is the more practical, 
and so the addition of thermal energy to a simple system to produce a change in tem-
perature is normally considered at either constant pressure or constant volume. In this 
way, the path of the process is specified, and the final state of the system is known.

Thus, the heat capacity at constant volume, C v  , and the heat capacity at constant 
pressure, C p  , are defined as

 

C
q

dT

C
q

dT

v

V

p

P

≡ 





≡ 





δ

δ
 

From Equations  2.3 and 2.5,

 C
q

dT

U

T
dU C dTv

V V

v= 





= ∂ ′
∂







′ =δ
or  (2.6a)

 C
q

dT

H

T
dH C dTp

P P

p= 





= ∂ ′
∂







′ =δ
or  (2.6b)

The heat capacity is dependent on the size of the system and is therefore an extensive  
property. However, in normal usage, it is more convenient to use the heat capac-
ity per unit quantity of the system. Thus, the specific heat of the system is the heat 
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capacity per gram at constant P  (or constant V ), and the molar heat capacity is the 
heat capacity per mole at constant pressure or at constant volume. Thus, for a system 
containing n  moles,

 nc Cp p=  

and

 nc Cv v=  

where c p   and c v   are the molar values  of the heat capacity.
It is to be expected that, for any substance, c p   will be of greater magnitude 

than c v  . If it is required that the temperature of a system be increased by a certain 
amount, then, if the process is carried out at a constant volume, all of the thermal 
energy added to the system is used to raise the temperature of the system. However, 
if the process is carried out at constant pressure, then, in addition to raising the 
temperature by the required amount, the thermal energy added is required to pro-
vide the work necessary to expand the system at the constant pressure. This work 
of expansion against the constant pressure per degree of temperature increase is 
calculated as

 
PdV

dT
P

V

T P

′ ∂ ′
∂







 or   

and hence, it might be expected that

 c c P
V

T
p v

P

− = ∂
∂







 (2.7)

For 1 mole of an ideal gas, 
∂
∂







=V

T

R

PP

 

and thus, c p   –  c v   = R .

For any gas, the difference between c p   and c v   is calculated as follows:

 c
H

T

U

T
P

V

T
p

P P P

= ∂
∂







= ∂
∂







+ ∂
∂







 

and

 c
U

T
v

V

= ∂
∂







 

Hence,
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 c c
U

T
P

V

T

U

T
p v

P P V

− = ∂
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+ ∂
∂







− ∂
∂







 

but

 dU
U

V
dV

U

T
dT

T V

= ∂
∂







+ ∂
∂







 

and therefore,

 ∂
∂







= ∂
∂







∂
∂







+ ∂
∂
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T
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V

V

T
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TP T P V

 

Hence,

 
c c

U

V

V

T

U

T
P

V

T
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p v

T P V P

− = ∂
∂







∂
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+ ∂
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+ ∂
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 (2.8)

The two expressions for c p   –  c v   (Equations 2.7 and 2.8) differ by the term

 ∂
∂







∂
∂







V

T

U

VP T

 

In an attempt to evaluate the term

 ∂
∂







U

V T

 

for gases, Joule performed an experiment which involved filling a copper vessel with a 
gas at some pressure and connecting this vessel via a stopcock to a similar but evacu-
ated vessel. The two-vessel system was immersed in a quantity of adiabatically con-
tained water and the stopcock was opened, thus allowing the free expansion of the gas 
into the evacuated vessel. After this expansion, Joule could not detect any change in 
the temperature of the system. Since the system was adiabatically contained and no 
work was performed, then from the First Law,

 ∆U = 0  

and hence,

 dU
U

V
dV

U

T
dT

T V

= ∂
∂







+ ∂
∂







= 0  

Thus, since dT  = 0 (experimentally determined) and dV  is not 0, the term
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 ∂
∂







U

V T

 

must be zero. Joule thus concluded that the internal energy of a gas is a function only 
of temperature and is independent of the volume (and hence pressure). Consequently, 
for a gas

 c c P
V

T
p v

P

− = ∂
∂







 

However, in a more critical experiment performed by Joule and Thomson, in which 
an adiabatically contained gas of molar volume V 1  at the pressure P 1  was throttled 
through a porous diaphragm to the pressure P 2  and the molar volume V 2 , a change in 
the temperature of the gas was observed, which showed that, for real gases,

 ∂
∂







≠U

V
0  

Nevertheless, if

 ∂
∂







=U

V T

0  

then, from Equation  2.8,

 c c P
V

T
p v

P

− = ∂
∂







 

and since, for 1 mole of ideal gas, PV  = RT , we obtain as before

 c c Rp v− =  

The reason Joule did not observe a temperature rise in the original experiment was that 
the heat capacity of the copper vessels and the water was considerably greater than the 
heat capacity of the gas, and thus, the small heat changes which actually occurred in 
the gas were absorbed in the copper vessels and the water. This decreased the actual 
temperature change to below the limits of the available means of temperature measure-
ment at that time.

In Equation  2.8, the term

 P
V

T P

∂
∂







 

represents the work done by the system per degree rise in temperature in expand-
ing against the constant external pressure P  acting on the system. The other term in 
Equation  2.8— namely,
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 ∂
∂







∂
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U

V

V

TT P

 

represents the work done per degree rise in temperature in expanding against the inter-
nal cohesive forces acting between the constituent particles of the substance. As will 
be seen in Chapter 8, an ideal gas is a gas consisting of noninteracting particles, and 
hence, the atoms or molecules of an ideal gas can be separated from one another with-
out the expenditure of work. Thus, for an ideal gas, 

 ∂
∂







∂
∂







U

V

V

TT P

 

equals zero, and since

 ∂
∂







= ≠V

T
V

P

α 0  

(where α  is the volume thermal expansion coefficient) in the preceding equation, the 
term

 ∂
∂







U

V T

 

 equals zero for an ideal gas.
In real gases the internal pressure contribution is very much smaller in magnitude 

than the external pressure contribution; but in liquids and solids, in which the inter-
atomic forces are considerable, the work done in expanding the system against the 
external pressure is insignificant in comparison with the work done against the internal 
pressure. Thus, for liquids and solids the term

 ∂
∂







U

V T

 

 is very large.

Heat capacities can be used in conjunction with the First Law of Thermodynamics 
to calculate enthalpy changes of reactions as a function of temperature. Consider 
the solidification of 1 mole of a liquid to a solid at its equilibrium freezing tempera-
ture T 2  (Figure  2.3). The value of its enthalpy of freezing (or solidification) is seen 
to be

 H T H TS L2 2 0( ) − ( ) <  

since thermal energy leaves the substance and enters the surroundings (exothermic). 

This value is the negative of the length of the cord ad  in Figure 2.3. If the liquid is 
supercooled to a temperature of T 1 , the enthalpy change for freezing is seen now to 
be H S  (T 1 ) –  H L  (T 1 ). This value can be calculated as follows:
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The enthalpy of the liquid at  T H T c dT H TL P
L

T
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L1 2 2
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= + =∫( ) ( ) ++ −

= + =

c T T

T H T c dT
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( ) ( )

( ) ( ) ( ) ( ) (cc c dTP
S

P
L

T

T

−∫ )

2

1

 

which is equal to the negative of the length of the cord ba. This value is more negative 
(more thermal energy leaving the system: more exothermic) than that at T 2 because 
the temperature dependence of the enthalpy of the solid is greater than that of the 
liquid. The temperature dependence of the enthalpy is the heat capacity! The change 
in the enthalpy as a function of temperature can be written as

 
∂
∂







=∆ ∆H

T
c

P

P  

when the heat capacities vary linearly with temperature.

2.7 reVerSIBLe ADIABAtIC PrOCeSSeS

During a reversible process  in which the state of a gas is changed, gas never 
leaves the  equilibrium surface shown in Figure  1.1. Consequently, during a revers-
ible process, the gas passes through a continuum of equilibrium states, and the work 

HL(T2)

HL(T1)

HS(T2)

HS(T1)

T1

a

En
th

al
py

Solid

Liquid

d

c

b

T2

Figure 2.3   enthalpy vs. temperature plots for 1 mole of a solid and liquid, showing that the 
enthalpy of transformation depends on temperature if the heat capacities differ. 
T 2  is the equilibrium solidification temperature.



38 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

w  is given by the integral PdVV
V

1

2∫ . In a reversible adiabatic process , q  = 0, and thus, 
from the First Law, dU  = – δ w .

Consider a system comprising 1 mole of an ideal gas. From Equation  2.6a,

 dU c dTv=  

and, for a reversible adiabatic process,

 dU w PdV= − = −δ  

Thus,

 c dT PdVv = −  

Since the system is 1 mole of ideal gas, then

 P
RT

V
=  

and hence,

 c dT
RT

V
dVV = −  

Integrating between states 1 and 2 gives

 c
T

T
R

V

V
v ln ln2

1

1

2







 = 






  

or
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V

C Rv
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1

1

2







 = 
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cV2

1
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2







= 





 

For an ideal gas, it has been shown that c p   –  c v   = R . Thus, ( / ) /c c R cP V V− =1 , and if 
we set c cP V/ = γ , then R cV/ = −γ 1 , and hence,
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V

V
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1

2
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−γ
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From the ideal gas law,
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P V
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Thus,

 
P

P

V

V
2

1

1

2
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γ

 

and hence,

 P V PV PV2 2 1 1
γ γ γ= = = constant  (2.9)

This is the relationship between the pressure and the volume of an ideal gas undergo-
ing a reversible adiabatic process (Figure  2.4). For an ideal gas, since

 c R c RP V= =5
2

3
2

 and  

we see that

 γ = 5
3
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Figure 2.4   Comparison of the process path taken by a reversible isothermal expansion of one 
mole an ideal gas with the process path taken by a reversible adiabatic expansion 
of an ideal gas between an initial pressure of 20 atm and a final pressure of 4 atm.
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2.8 reVerSIBLe ISOtherMAL PreSSUre Or 
VOLUMe ChANGeS OF AN IDeAL GAS

From the First Law,

 dU q w′ = −δ δ  

and for an isothermal process, dT  = 0 and dU’   = 0 for an ideal gas.
Therefore, δ δw q PdV RT dV V= = = /  per mole of gas.
Integrating between the states 1 and 2 gives

 w q RT
V

V
RT

P

P
= = 






 = 






ln ln2

1

1

2

 (2.10)

Thus, for an ideal gas, an isothermal  process is one of constant internal energy, dur-
ing which the work done by the system equals the thermal energy absorbed by the 
system, both of which are given by Equation  2.10.

The plots of pressure versus volume for a reversible isothermal process and for 
a reversible adiabatic process are shown in Figure  2.4. It is seen that, for a given 
decrease in pressure, the work done by the reversible isothermal  process (which is 
equal to the area under the curve) exceeds that done by the reversible adiabatic pro-
cess. This difference is due to the fact that during the isothermal process, thermal 
energy is absorbed by the system in order to maintain constant temperature, whereas 
during the adiabatic process, no thermal energy is admitted to the system. During 
the isothermal expansion , the internal energy of the gas remains constant, but dur-
ing the adiabatic expansion , the internal energy decreases by an amount equal to 
the work done by the gas.

Example 

For the reversible isothermal path shown in Figure  2.4, Equation  2.10 gives the work 
done by the gas as

 w RT
P

P
= 






 = × × 





=ln . ln .1

2

8 3144 1000
20
4

13 38 kJ  

For the reversible adiabatic path, the area under the curve is obtained as follows. 
Since PV γ   = constant = 210.3 and

 
γ = = =c

c

R

R
P

V

5 2
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/
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then
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w Pdv

dV

V
= = ×∫∫ 210 3 5 3. /

 

The volume of the gas in the state 3 is obtained from Equation  2.9 as V 3  = 
(210.4/4)3/5  = 10.78 liters, and the volume in the state 1 is V 1  = (210.3/20)3/5  = 4.10 
liters. Thus,

 

w V V= × −




× −( )

= × −( )× −

− −

−

210 3
3
2

210 3 1 5 10 78 4 10

3
2 3

1
2 3

2 3

.

. . . . −−( ) = ⋅2 3 58 4.  atm = 5.92 kJ1

 

Alternatively, since q  = 0, w  = – Δ U  = c v   (T 3  –  T 1 ) = – 1.5 ×  8.3144 ×  (525 –  1000) 
= 5.92 kJ

Thus more work is performed during the isothermal process that during the adia-
batic process.

2.9 Other FOrMS OF WOrK

Up to this point, we have only used PdV  work in the First Law. We called these 
systems simple systems . There are, of course, other kinds of work that may be per-
formed on or by a system. Here, we present three additional kinds of work that we 
will utilize in later chapters of the text. To include other forms of work, the First Law 
can be written as

 dU q wi′ = −∑δ δ  

It is important to remember that in this equation, each of the terms δ w i   is the work 
done by  the system.

2.9.1 Magnetic Work on a Paramagnetic Material

The work done on  a material by an external magnetic field is given by

 

δ µ

µ

′ = −

′ = − ∫
w V d

w V d
M

M

0

0
1

2

 H

H

M

M
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M   and H   have units of amp/m, μ0 the permittivity of vacuum has units of 
N/amp2 , and V is in units of m3 . The units of work in this equation are in joules. 
Both H   and M   are axial vectors.

The First Law therefore becomes

 dU q w q PdV V di′ = − = − +∑δ δ δ µ0H M  

For an adiabatic process at constant volume,

 dU V d
q V

′( ) =
,

µ0H M  

Thus, under the specified conditions, the internal energy, Uʹ  , of the paramagnetic 
material increases when an applied magnetic field increases its magnetization. Thus, 
the system is capable of doing more work, since some of the internal energy is avail-
able to perform work.

2.9.2 electrical Work on a Dielectric Material

The work done on  a dielectric material by an external electric field is given by

 

δ ′ = −

′ = − ∫
w V d

w V d
D

D

E D

E D
1

2  

where E   is the electric field intensity (N/coul) and D   is electric displacement 
(coul·m/m3 ). The units of work are in joules. Both E   and D   are polar  vectors.

The First Law in this case therefore becomes

 dU q w q PdV V di′ = − = − +∑δ δ δ E D  

For an adiabatic process at constant volume,

 dU V d
q V

′( ) =
,

E D  

Thus, under the specified conditions, the internal energy, U , of the dielectric material 
increases if an applied electric field increases its displacement field.

2.9.3 Work to Create or extend a Surface

The reversible work done in creating  a new surface (in joules) of area A  is given as

 δ γ′ = −w dA  

γ  having units of J/m2  and A  having units of m2 . The surface energy, γ , is a scaler. 
For liquids, the surface energy is isotropic; for solids, the surface energy has a 
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symmetry that is at least that of the point symmetry of the solid. The First Law now 
becomes

 dU q w q PdV dAi′ = ′ − = ′ − ′ +∑δ δ δ γ  

For an adiabatic process at constant volume,

 dU dA
q V

′( ) =
,

γ  

Thus, under the specified conditions, the total energy of the system increases when 
new surface area is created.

In the text to this point, we have ignored the surface energy of a material. Our 
implicit assumption has been that the volume terms are much larger than the surface 
terms, and hence, the surface terms may be neglected. Surface terms need to be 
included when the surface-to-volume ratio is not negligible, such as is the case for 
small particles.

A related quantity of work is the reversible work necessary to increase  the sur-
face area by stretching  it with a stress σ . This work is given as

 δ σ′ = −w dA  

Surface stress is a second-rank tensor, with units of N/m. For a liquid, the surface 
stress, σ , is isotropic and is numerically equal to the surface energy, γ , which is posi-
tive. This is not necessarily the case for crystalline solids, where the surface stress 
may take on positive or negative values.

2.10 SUMMArY

 1. The establishment of the relationship between the work done on or by a system and 
the thermal energy entering or leaving the system is facilitated by the introduction 
of the thermodynamic function U , the internal energy.

 2.  U  is a function of state, and thus, the difference between the values of U  in two 
states depends only on the states and is independent of the process path taken by 
the system in moving between the states.

 3. The relationship between the internal energy change, the work done, and the ther-
mal energy absorbed per mole by a system of fixed composition in moving from one 
state to another is given as Δ U  = q  –  w, or, for an increment of this process, dU  = 
δ q  –  δ w . This relationship summarizes the First Law of Thermodynamics.

 4. The internal energy of an isolated system (δ q  = 0 and δ w  = 0) is constant.
 5. The integrals of δ q  and δ w  can only be obtained if the process path taken by the 

system in moving from one state to another is known. Process paths which are con-
venient for consideration include

 a. Constant-volume processes (isochoric) in which ∫   δ w  = ∫  PdV  = 0, if only PdV  
work is possible.
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 b. Constant-pressure processes (isobaric) in which ∫   δ w  = P ∫  dV  = P Δ V  if only 
PdV  work is possible.

 c. Constant-temperature (isothermal) processes.
 d. Adiabatic  processes in which q  = 0. For adiabatic processes, the work needed 

to take the system from Uʹ   = Uʹ  1  to Uʹ   = Uʹ  2  is independent of the path.
 6. For a constant-volume process in a simple system, w  = 0 and Δ Uʹ   = q v  . The defini-

tion of the constant-volume molar heat capacity as

  c
q

dT

U

T
V

V V

= 





= ∂
∂







δ  

  (which is an experimentally measurable quantity) facilitates the determination of 
the change in U  resulting from a constant-volume process, since ∆ = ∫U c dTvT

T .
1

2

 7. Consideration of constant-pressure processes is facilitated by the introduction of 
the thermodynamic function H ; the enthalpy for 1 mole is defined as H  ≡  U  + PV . 
Since the expression for H  contains only functions of state, H  is also a function of 
state, and thus, the difference between the values of H  in two states depends only 
on the states and is independent of the path taken by the system in moving between 
them.

 8. For a constant-pressure process, Δ H  = Δ U  + P Δ V  = (q p   –  P Δ V ) + P Δ V  = q p  . The 
definition of the constant-pressure molar heat capacity as

  c
q

dT

H

T
P

P P

= 





= ∂
∂







δ  

  (which is an experimentally measurable quantity) facilitates the determination of 
the change in H  as the result of a constant-pressure process, since dH c dTpT

T= ∫ 1

2 .
 9. For an ideal gas, the internal energy Uʹ   is a function only of temperature.
 10. c p   –  c v   = R  for an ideal gas.
 11. The process path of an ideal gas undergoing a reversible adiabatic change of state 

is described by PV γ   = constant, where γ = c cP V/ . During an adiabatic expansion, 
since q  = 0, the decrease in the internal energy of the system equals the work done 
by the system.

 12. Since the internal energy of an ideal gas is a function only of temperature, the inter-
nal energy of an ideal gas remains constant during an isothermal change of state. 
Thus, the thermal energy which enters or leaves the gas as a result of the isothermal 
process equals the work done by or on the gas, with both quantities being given by

  w q RT
V

V
RT

P

P
= = 






 = 






ln ln2

1

1

2

 

 13. Only the differences in the values of U  and H  between two states— that is, the 
values of Δ U  and Δ H — can be measured. The absolute values of U  and H  in any 
given state cannot be determined.

 14. Other work terms include the work done on a material by the application of an 
external magnetic field or by an electric field. Also, the creation of new surface must 
be done by doing work on the material. A generalized First Law can be written as
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  dU q wi′ = −∑δ δ  

  where δwi∑  is the total work done by the system.

2.11 CONCePtS AND terMS INtrODUCeD IN ChAPter 2

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Adiabatic process
Calorie
Conservation of energy
Cyclic process
Electric work
Enthalpy of melting/freezing
Enthalpy, H 
First Law of Thermodynamics
Heat (thermal energy)
Heat capacity
Hess’  law of constant heat summation
Internal energy, U 
Isobaric process
Isochoric process
Isothermal process
Kinetic energy/potential energy
Magnetic work
Mechanical equivalent of heat
Process
Reversible processes
Specific/molar heat capacity
Surface energy/work
Thermodynamic state variable (function)
Work

2.12 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

One mole of an ideal gas at a pressure of 1 atm and temperature of 273 K is expanded 
to twice its volume at constant pressure.
 a. In terms of P  and V 1  and V 2  how much work was performed? Was the work per-

formed on the gas or by the gas? Explain.
 b. If two moles of an ideal gas at the same initial pressure and temperature were to 

double its volume under constant pressure, how much work would be performed on 
or by the gas? Compare the value with that in part (a).

 c. In either case (a) or (b), does the temperature increase or decrease? Explain.
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Solution to Qualitative Problem 1 

 a. The work is performed by  the gas and equals P ∆ V  = P (V 2  –  V 1  ) = P V 1 .
 b. The starting volume for this part of the problem is 2V 1  = V 2 . This doubles to 4V 1 . 

Thus, the work performed by 2 moles of the gas is 2PV 1 , twice that of part (a) of the 
problem.

 c. The temperature increases in both cases. Take case (a):

  P 1 V 1  = RT 1  and P 2 V 2  = RT 2 , but P 2  = P 1  and V 2  = 2V 1 .
  Thus, T 2  = 2T 1 . The temperature increases.

Why does the temperature increase? In order to expand at constant pressure, 
more energy must be given to the gas to keep the pressure from decreasing.

Qualitative Problem 2 

A magnetic field H  is applied to a material with a positive susceptibility χ . Assume 
M   // H  and that the M   versus H  plot is linear with a slope χ  (Figure  2.5a).
 a. Determine the work done when H  varies from zero to H  = H f  .
 b. Sketch the area on the H – M   plot that corresponds to the work done on the material.
 c. The product of V μ 0 , M f    ·   H f  , is an energy. Subtract your answer in part (a) from the 

value M f    ·   H f  . What is this energy?

Solution to Qualitative Problem 2 

 a. w V d V d
V M V MM M

f f f
f f

= = = =∫ ∫µ µ
χ

µ
χ

µ
0

0
0

0

0
2

0

2 2
H

H
M

M
M

 b. Refer to Figure  2.5b.
 c. This is the work that the moments, M  , performed against the applied magnetic field, 

H , in resisting magnetization. Since this was a reversible and linear process, the work 
is equal to in magnitude and opposite in sign to the work applied to the material.

Mf Mf

(a) (b)

M
®

M
®

H® Hf H® Hf

Figure 2.5   (a) schematic showing M   vs. H  plot for a material under the applied magnetic 
field. (b) Plot of figure 2.6a, showing work done on the material as the shaded 
region.
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2.13 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 

Ten liters of a monatomic ideal gas at 25° C and 10 atm pressure are expanded to a 
final pressure of 1 atm. The molar heat capacity of the gas at constant volume, c v  , is 
3/2 R  and is independent of temperature. Calculate the work done, the heat absorbed, 
and the change in U  and in H  for the gas if the process is carried out

• Isothermally and reversibly
• Adiabatically and reversibly

Having determined the final state of the gas after the reversible adiabatic 
expansion, verify that the change in U  for the process is independent of the path 
taken between the initial and final states by considering the process to be carried 
out as

• An isothermal process followed by a constant-volume process
• A constant-volume process followed by an isothermal process
• An isothermal process followed by a constant-pressure process
• A constant-volume process followed by a constant-pressure process
• A constant-pressure process followed by a constant-volume process

Solution to Quantitative Problem 

The size of the system must first be calculated. From consideration of the initial state 
of the system (the point a  in Figure  2.6),

 n
P V

RT
a a

a

= = = ×
×

=the number of moles
10 10

0 08206 298
4 09

.
.  

 a. The isothermal reversible expansion . The state of the gas moves from a  to b  along 
the 298-degree isotherm. Along any isotherm, the product PV  is constant:

 V
P V

P
b

a a

b

= = × =10 10
1

100 liters  

 For an ideal gas undergoing an isothermal process, Δ U  = 0, and hence, from the 
First Law,

 
q w PdV nRT

dV

Va

b

a

b

= = = = × × ×∫ ∫ 4 09 8 3144 298
100
10

. . ln J

                                                kJ= 23 3.

 

 Thus, in passing from the state a  to the state b  along the 298-degree isotherm, the 
system performs 23.3 kJ of work and absorbs 23.3 kJ of heat from the constant-
temperature surroundings.

  Since for an ideal gas, H  is a function only of temperature, Δ Hʹ ( a→ b  ) = 0; that is,
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 ∆ ∆H U P V P V P V P V

nRT nRT nR T T
a b a b b b a a b b a a

b a b a

( ) ( ) ( ) ( )

(
→ →= + − = −

= − = − )) = 0
 

 b. The reversible adiabatic expansion . If the adiabatic expansion is carried out revers-
ibly, then during the process the state of the system is, at all times, given by PV γ   = 
constant, and the final state is the point c  in the diagram. The volume V c   is obtained 
from P V P Va a c c

γ γ=  as

 Vc = ×
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=1 39 8
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 The point c  thus lies on the 119-degree isotherm. As the process is adiabatic, q  = 0, 
and hence,
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Figure 2.6   the five process paths considered in the numerical problem.
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 The work done by the system as a result of the process equals the decrease in the 
internal energy of the system = 9.13 kJ.

 i. An isothermal process followed by a constant-volume process  (the path a →  e 
→  c ; that is, an isothermal change from a  to e , followed by a constant-volume 
change from e  to c ).

 
∆
∆

′ =
′

→

→

U

U
a e

e

( )

(

,0  as this is an isothermal change of state

cc v

v
e

c

q V w

nc dT

) ( , )= = =

= ∫
∆ 0 0 and hence,  

  and as the state e  lies on the 298-degree isotherm, then

 ∆ ′ = × × ×( ) =→U e c( ) . . . . 4 9 1 5 8 3144 119 298 J 9 13 kJ0  

  Thus,

 ∆ ∆ ∆′ = ′ + ′ =→( ) →( ) →( )U U Ua c a e e c – .9 13 kJ  

 ii. A constant-volume process followed by an isothermal process  (the path a  →  d  
→  c ; that is, a constant-volume change from a  to d , followed by an isothermal 
change from d  to c ).

∆ ∆′ = = =

=

→U q V w

nc dT

a d v

v

( ) ( , )

,

0 0 and hence, 

 and as the state dd lies in the 119-degree isotherm, then
a

d

a dU

∫
′ = ×→∆ ( ) .4 09 1.. . ( ) .

,( )

5 8 3144 119 298 9 13

0

× × − = −
′ =→

 J  kJ

 as this is an i∆U d c ssothermal process, and hence,

∆ ∆ ∆′ = ′ + ′ = −→ → →U U Ua c a d d c( ) ( ) ( ) 99 13.  kJ

 iii. An isothermal process followed by a constant-pressure process  (the path a  
→  b  →  c; that is, an isothermal change from a  to b, followed by a constant-
pressure change from b  to c ).

 
∆
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  Since  c v   = 1.5 R  and c p   –  c v   = R , then c p   = 2.5 R ; and as 1 liter atm equals 101.3 J,
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  Thus,

 ∆ ′ = ′ + ′ =→( ) →( ) →( )U U Ua c a b b c – .9 1 kJ  

 iv. A constant-volume process followed by a constant-pressure process  (the 
path a  →  f  →  c ; that is, a constant-volume change from a  to f , followed by a 
constant-pressure change from f  to c ).

 
∆ ′ = = =

=

→

∫
U q V V w

nc dT

a f v a f

v
a

f

( ) ( , ) and hence, 0
 

  From the ideal gas law,

 T
P V

nR
f

f f= = ×
×

=1 10
4 09 0 08206
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. .
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  That is, the state f  lies on the 30-degree isotherm. Thus,
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  Thus,
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 v. A constant-pressure process followed by a constant-volume process  (the path 
a  →  g  →  c ; that is, a constant-pressure step from a  to g , followed by a constant-
volume step from g  to c ).

 ∆ ′ =→( )U qa g p – w  

  From the ideal gas law,
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  and hence, the state g  lies on the 1186-degree isotherm. Thus,
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  Thus,

 ∆ ∆ ∆′ = ′ + ′ = − −
= −

→ → →U U Ua c a g g c( ) ( ) ( ) . . .

.

75 5 30 2 54 4

9 1 kJ
 

  The value of Δ Uʹ ( a  →  c  )  is thus seen to be independent of the path taken by the 
process between the states a  and c .

    The change in enthalpy from a to c  (Figure 2.6). The enthalpy change 
is most simply calculated from the consideration of a path which involves an 
isothermal portion, over which Δ Hʹ  = 0, and an isobaric portion, over which 
Δ Hʹ   = q p   = ∫  nc p  dT . For example, consider the path a  →  b  →  c .

 
∆
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  and hence,

 ∆ ′ =→( )H a c – .15 2 kJ  

  or alternatively
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  in each of the paths (i) to (v), the heat and work effects differ, although in each 
case the difference q  –  w  equals – 9.12 kJ. In the case of the reversible adiabatic 
path, q  = 0, and hence, w  = +9.12 kJ. If the processes (i) to (v) are carried out 
reversibly, then
• For path (i), q  = – 9.12 + the area aeih 
• For path (ii), q  = – 9.12 + the area dcih 
• For path (iii), q  = – 9.12 + the area abjh  –  the area cbji 
• For path (iv), q  = – 9.12 + the area fcih 
• For path (v), q  = – 9.12 + the area agih 

PrOBLeMS

2.1    An monatomic ideal gas at 300 K has a volume of 15 liters at a pressure of 
15 atm. Calculate

 a. The final volume of the system
 b. The work done by the system
 c. The heat entering or leaving the system
 d. The change in the internal energy
 e. The change in the enthalpy when the gas undergoes
 i. A reversible isothermal expansion to a pressure of 10 atm
 ii. A reversible adiabatic expansion to a pressure of 10 atm

  The constant-volume molar heat capacity of the gas, c v  , has the value 1.5 R .
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2.2   One mole of a monatomic ideal gas, in the initial state T  = 273 K, P  = 1 atm, 
is subjected to the following three processes, each of which is conducted 
reversibly:

 a. A doubling of its volume at constant pressure,
 b. Then a doubling of its pressure at constant volume,
 c. Then a return to the initial state along the path P  = 6.643 ×  10– 4 V 2  + 0.6667.

    Calculate the heat and work effects which occur during each of the three 
processes.

2.3   The initial state of a quantity of monatomic ideal gas is P  = 1 atm, V  = 1 liter, 
and T  = 373 K. The gas is isothermally expanded to a volume of 2 liters and is 
then cooled at constant pressure to the volume V . This volume is such that a 
reversible adiabatic compression to a pressure of 1 atm returns the system to its 
initial state. All of the changes of state are conducted reversibly. Calculate the 
value of V  and the total work done on or by the gas.

2.4   Two moles of a monatomic ideal gas are contained at a pressure of 1 atm and a 
temperature of 300 K; 34,166 J of heat are transferred to the gas, as a result of 
which the gas expands and does 1216 J of work against its surroundings. The 
process is reversible. Calculate the final temperature of the gas.

2.5   One mole of N2  gas is contained at 273 K and a pressure of 1 atm. The addition 
of 3000 J of heat to the gas at constant pressure causes 832 J of work to be done 
during the expansion. Calculate

 a. The final state of the gas
 b. The values of Δ U  and Δ H  for the change of state
 c. The values of c v   and c p   for N2 

   Assume that nitrogen behaves as an ideal gas, and that the change of state is 
conducted reversibly.

2.6   Ten moles of monatomic ideal gas, in the initial state P 1  = 10 atm, T 1  = 300 K, 
are taken round the following cycle:

 a. A reversible change of state along a straight line path on the P-V  diagram to 
the state P  = 1 atm, T  = 300 K

 b. A reversible isobaric compression to V  = 24.6 liters
 c. A reversible constant-volume process to P  = 10 atm

   How much work is done on or by the system during the cycle? Is this work done 
on the system or by the system?

2.7    One mole of an monatomic ideal gas at 25° C and 1 atm undergoes the following 
reversibly conducted cycle:

 a. An isothermal expansion to 0.5 atm, followed by
 b. An isobaric expansion to 100°  C, followed by
 c. An isothermal compression to 1 atm, followed by
 d. An isobaric compression to 25°  C

 The system then undergoes the following reversible cyclic process:
 a. An isobaric expansion to 100°  C, followed by
 b. A decrease in pressure at constant volume to the pressure P  atm, followed by
 c. An isobaric compression at P  atm to 24.5 liters, followed by
 e. An increase in pressure at constant volume to 1 atm

   Calculate the value of P  which makes the work done on the gas during the first 
cycle equal to the work done by the gas during the second cycle.
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2. 8 *  One mole of a monatomic ideal gas at standard temperature and pressure (STP) 
undergoes the following three processes:

 a. At constant pressure, the temperature is doubled.
 b. At constant temperature the pressure is doubled.
 c. The gas is returned to STP via a constant-volume process.

  Calculate ∆ U , ∆ H , Q , and W  for each of the steps.
2.9*  Paramagnetic salts often obey the Curie relation:

  M

T

C

TH
= =constant  

   Obtain an expression for the work needed to change the magnetization from 
M  = 0 to M = M  of such a material. Assume that the field and the magnetization 
are parallel.

2.10*   One mole of a monatomic ideal gas is taken on the path A →  B →  C →  D →  A, 
as shown in Figure  2.7. All paths are reversible.
• A  →  B  is a reversible isothermal expansion of the gas.
• B  →  C  is a reversible adiabatic expansion of the gas.
• C  →  D  is a reversible isothermal compression of the gas.
• D  →  A  is a reversible adiabatic compression of the gas.

 a. Derive expressions for ∆ U , q , and w  during each step in terms of V a  , V b  , V c  , 
V d  , t 1 , t 2 , and R . Determine the sign of each.

 b. Determine the values of ∑ (w i  ), ∑ (q i  ), and ∑ (∆ U i  ) in terms of V a  , V b  , V c  , 
V d  , t 1 , t 2 , and R . Determine the sign of each.

2.11*   The change in enthalpy when 1 mole of solid water (ice) is melted at 273 K is 
6008 J.

 a. Calculate the change in enthalpy when ice is melted at 298 K. Is this process 
possible at 1 atm?

 b. Calculate the change in enthalpy when supercooled water solidifies at 260 K.
 c. Sketch the H  versus T  plot for both solid and liquid water.
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Figure 2.7   a cycle for one mole of a monatomic ideal gas with two isothermal paths and two 
adiabatic paths. the area enclosed by ABCD is the work done by the gas during the cycle.
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   For this problem, take the heat capacity of liquid water to be 75.44 J/K and that 
of solid water to be 38 J/K over the range in temperatures of the problem. The 
enthalpy of liquid water at 298 K may be arbitrarily set equal to zero.

2.12 *  Three phases, α ,  β , and δ  meet as shown in Figure  2.8a, forming three inter-
phase interfaces— namely, α /β , α /δ , and β /δ .  It can be shown that the following 
holds.

 γ
θ

γ
θ

γ
θ

α β α δ β δ/ / /

sin sin sin3 2 1

= =  

   Using this equation, determine the equation that relates the grain boundary 
grooving angle θ gb  to the interface energy γ α /L  and the grain boundary energy 
γ α /α   (Figure  2.8b).

APPeNDIX 2A:  Note on the Sign Convention of δ  w  

There are two sign conventions in the literature for the work term in the First 
Law. One convention is that work done by the system is considered positive, and 
therefore, since the internal energy, U , decreases, for δ q  = 0, we have

 dU w i= ( )–δ convention  

This is the convention used in this text.
The other convention is that work done on the system is positive work, and there-

fore, the internal energy of the system increases when positive work is performed 
(for δ q  = 0):

 dU w ii= + ( )δ convention  

In thermodynamic discussions which deal mainly with gases, the first convention is 
the best one to use. This is because when the system is a gas and pressure is applied 

* New problem in this edition.
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(a) (b)

q2
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Figure 2.8   (a) three phases meeting at a point, showing the angles between their surfaces. 
(b) a grain boundary groove showing the equilibrium groove angle.
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to it, the gas contracts (V 2  <  V 1 ). This means that the internal energy of the gas 
changes (for δ q  = 0) as 

 dU PdV P V V= = ( ) >– – –2 1 0  

This convention is based on the fact that pressure applied to a gas is defined as posi-
tive, and therefore, the volume of the gas decreases.

The internal energy of the gas must decrease if the gas does work.
Using this convention, for work terms caused by the application of external 

magnetic fields or stress fields, the work term on the system is negative work. For 
example, we write

 dU q w q V d q V d= = ( ) = +δ δ δ µ δ µ– – – 0 0H M H M  

which shows that magnetic work done on the system increases the internal energy, 
as expected.

For stress, this is taken care of since the equivalent stress to hydrostatic pressure 
is a compressive stress:

 P = −
















1
3

0 0

0 0

0 0

σ
σ

σ

 

which is defined as negative stress, tensile stress being positive.
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ChAPter 3

the Second Law of thermodynamics

3.1 INtrODUCtION

In Chapter 2, it was seen that when a system undergoes a change of state, the con-
sequent change in the internal energy of the system is dependent only on the initial 
and final states and is equal to the algebraic sum of the thermal energy, q , and work, 
w , effects. Two questions now arise.

 1. What magnitudes may the q  and w  effects have?
 2. What criteria govern these magnitudes?

Two extreme cases related to the first question can occur.
• w  = 0 and q  = ∆ Uʹ
• q  = 0 and w  = – ∆ Uʹ

But if q  ≠  0 and w  ≠  0, a third question arises.
 3. Is there a definite limit to the amount of work which the system can do during its 

change of state?

The answers to these questions require an examination of the nature  of the pro-
cesses which affect q  and w . This examination, which is made in this chapter, identi-
fies two types of processes (reversible  and irreversible  processes) and introduces a 
state function called the entropy  (S ).

The concept of entropy will be introduced from two different starting points. In 
Sections 3.2 through 3.8, entropy will be seen as a quantification  of the degree of 
irreversibility of a process. In Sections  3.10 through 3.14, it will be seen that, as a 
result of an examination of the properties of reversibly operated heat engines, there 
naturally develops a quantity which has all the properties of a thermodynamic state 
function. This state function is the entropy. These findings lead to a statement of the 
Second Law of Thermodynamics, which, together with the other laws of thermody-
namics lay the foundation for the thermodynamic method of describing the behavior 
of matter to be discussed in the text.
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3.2 SPONtANeOUS Or NAtUrAL PrOCeSSeS

A system left to itself will do one of two things: it may remain in the state in 
which it happens to be or it may change of its own accord to some other state. That 
is, if the system is initially in equilibrium with its surroundings, then, left to itself, it 
will remain in this equilibrium state. On the other hand, if the initial state is not the 
equilibrium state, the system will spontaneously* (i.e., without any external influ-
ence) move toward its equilibrium state. The equilibrium state is a state of rest (at 
least at the macroscopic level), and thus, once at equilibrium, a system will only 
move away from equilibrium if it is acted on by some external agency. Even then, the 
combined system, comprising the original system and the external agency, is simply 
moving toward the equilibrium state of the new combined system. A process which 
involves the spontaneous movement of a system from a nonequilibrium state to an 
equilibrium state is called a natural  or spontaneous  process. Since such a process 
cannot be reversed without the application of an external agency which leaves a 
permanent change in this agency, such a process is said to be irreversible . The terms 
natural , spontaneous , and irreversible  are synonymous in this context.

The mixing of gases and the transfer of energy down a temperature gradient are 
common examples of natural processes.

• If the initial state of a system consisting of two gases A  and B  is that in which gas 
A  is contained in one vessel and gas B  is contained in a separate vessel, then, when 
the vessels are connected to one another, the system spontaneously  moves to the 
equilibrium state in which the two gases are completely mixed; that is, the compo-
sition of the gas mixture is uniform throughout the volume which the gas occupies.

• If the initial state of a two-body system is that in which one body is at one tempera-
ture and the other body is at another temperature, then, when the bodies are placed 
in thermal contact with one another, a spontaneous process occurs in which energy 
is transferred from the hotter to the colder body. The equilibrium state is reached 
when both bodies attain a common uniform temperature.

In both of these examples, the reverse process (the unmixing of the gases and 
the transfer of thermal energy up a temperature gradient) will never occur spon-
taneously, and in both thermal examples, common experience allows the equilib-
rium states to be predicted without any knowledge of the criteria for equilibrium. 
However, in more complex systems, the equilibrium state may not be able to be 
predicted from common experience, and thermodynamic criteria governing equilib-
rium must be established before a calculation of the equilibrium state can be made.

The determination of the equilibrium state is of prime importance in thermody-
namics, since knowledge of this state for any materials system will allow the deter-
mination of the direction in which any change of state will proceed from any starting 
or initial state. For example, knowledge of the equilibrium state of a chemical reac-
tion system such as

* In thermodynamics, a spontaneous change  does not imply anything about the rate of change of the 

system, only that there is no energetic barrier to its occurrence.
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 A B C D+ = +  

will afford knowledge of whether, from any initial state, which would be some mix-
ture of A , B , C , and D , the reaction will proceed from right to left or from left to 
right. Also, knowledge of the extent to which the reaction will proceed before equi-
librium is reached can be attained.

If a system undergoes a spontaneous process involving the performance of work  
and the transfer of thermal energy, then, as the process continues, during which time 
the system approaches its equilibrium state, the capacity of the system for further 
spontaneous change decreases, as does its capacity to do further work. Once equi-
librium is reached, the capacity of the system  for doing further work is exhausted. In 
the initial nonequilibrium state of an isolated system (a system of constant internal 
energy), some of the energy of the system is available for doing useful work, and 
when the equilibrium state is reached, as a result of the completion of a spontaneous 
process, none of the energy of the system is available for doing further spontaneous 
useful work, even though the total energy of the system has not decreased. Thus, as 
a result of the spontaneous process, the energy of the system has become degraded, 
in the sense that energy, which was available for doing useful work, is now in a form 
which is not available for external purposes. Sometimes, this is referred to as the 
dissipation  of energy.

3.3 eNtrOPY AND the QUANtIFICAtION OF IrreVerSIBILItY

Two distinct types of spontaneous processes are

 1. The conversion of work into thermal energy— that is, the degradation  of mechani-
cal energy to thermal energy (heat)

 2. The transfer of thermal energy down a temperature gradient

If an irreversible process is one in which the energy of the system undergoing 
the process is degraded, then the possibility that the extent of degradation can differ 
from one process to another suggests that a quantitative measure  of the extent of 
degradation, or degree of irreversibility, can be developed.

The existence of processes which exhibit differing degrees of irreversibility can 
be illustrated as follows. Consider the weight– heat reservoir system shown schemati-
cally in Figure 3.1. This system consists of a weight– pulley arrangement which is 
coupled to a constant-temperature heat reservoir. The system is at equilibrium when 
an upward force acting on the weight exactly balances the downward force, W , of 
the weight. If the upward force is removed, the equilibrium is upset and the weight 
spontaneously falls, performing work, which is converted, by means of a suitable 
system of paddle wheels, into thermal energy, which enters the constant-temperature 
heat reservoir. Equilibrium is reattained when the upward force acting on the weight 
is replaced, and the net effect of this process is that mechanical energy is converted 
to thermal energy.
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Lewis and Randall* considered the following three processes:

 1. The heat reservoir in the weight– heat reservoir system is at the temperature T 2 . The 
weight is allowed to fall, performing work, w , and the thermal energy produced, q , 
enters the heat reservoir.

 2. The heat reservoir at the temperature T 2  is placed in thermal contact with another 
heat reservoir at a lower temperature T 1 , and the same thermal energy, q , is allowed 
to be transferred from the reservoir at T 2  to the reservoir at T 1 .

 3. The heat reservoir in the weight– heat reservoir system is at the temperature T 1 . The 
weight is allowed to fall, performing work, w , and the thermal energy produced, q , 
enters the reservoir.

Each of these processes is spontaneous  and hence irreversible , and therefore, 
degradation occurs in each of them. However, since process 3 is the sum of processes 
1 and 2, the degradation occurring in process 3 must be greater than the degrada-
tion occurring in each of the processes 1 and 2. Thus, it can be said that process 3 
is more irreversible than either process 1 or process 2. An examination of the three 
processes indicates that both the amount of thermal energy transferred, q , and the 
temperatures between which this energy is transferred are important in defining a 
quantitative scale of irreversibility. In the case of comparison between process 1 and 
process 3, the quantity q T/ 2  is smaller than the quantity q T/ 1 , which is in agreement 
with the conclusion that process 1 is less irreversible than process 3. The quantity 
q T/  can thus be taken as a measure of the degree of irreversibility of the process, 
and the value of q T/ is the increase in entropy occurring as a result of the pro-
cess. Thus, when the weight– heat reservoir system undergoes a spontaneous process 

* G. N. Lewis and M. Randall, Thermodynamics , revised by K. S. Pitzer and L. Brewer, 3rd ed., 

McGraw-Hill, New York, 1995, p. 78.

W

Figure  3.1   a weight– pulley– heat reservoir arrangement in which the work done by the falling 
weight is degraded to thermal energy, which appears in the heat reservoir.
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which causes the absorption of thermal energy q  at the constant temperature T , the 
entropy produced by the system, Δ Sʹ , is given by

 ∆ ′ = >S
q

T
0  (3.1)

This value is larger in the case of the lower-temperature reservoir. The increase in 
entropy caused by the process is thus a measure of the degree of irreversibility of 
the process.

3.4 reVerSIBLe PrOCeSSeS

Since the degree of irreversibility of a process is path dependent, it should be 
possible for the process to be conducted in such a manner that the degree of irrevers-
ibility is minimized. The ultimate of this minimization is a process in which the 
degree of irreversibility is zero and in which no degradation of energy occurs. This 
limit, which the behavior of real systems can be made to approach, is called a revers-
ible  process. If a process is reversible, then the concept of spontaneity is no longer 
applicable. Recall that spontaneity occurs as a result of the system moving, of its own 
accord (i.e., no external influences), from a nonequilibrium state to an equilibrium 
state. Thus, if the spontaneity is removed, it is apparent that, at all times during  
the process, the system is at equilibrium. A reversible process, then, is one during 
which the system is never away from equilibrium. A reversible process which takes 
the system from the state A  to the state B  is one in which the process path passes 
through a continuum of equilibrium states. Such a path is, of course, an idealization, 
but it is possible to conduct an actual process in such a manner that it is virtually 
reversible. Such an actual process (sometimes called a quasi-static  process) is one 
which proceeds under the influence of an infinitesimally small driving force, such 
that, during the process, the system is never more than an infinitesimal amount from 
equilibrium. If, at any point along the path, the small external influence is removed, 
then the process ceases; if the direction of the small external influence is reversed, 
then the direction of the process is reversed.

Reversible and natural processes are illustrated in the following section.

3.5 ILLUStrAtION OF reVerSIBLe AND 
IrreVerSIBLe PrOCeSSeS

In this section, we will compare two processes: the isothermal reversible expan-
sion of an ideal gas and the free expansion of an ideal gas. These two processes have 
in common that the temperature of the gas remains constant. Since the gas is ideal, 
the internal energy of the gas does not change for either process, since the tempera-
ture does not change. However, the processes differ in that, in the reversible case, 
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work is performed by  the gas during its expansion, but no work is performed by the 
gas during the free expansion. We will see that, in the reversible case, the entropy of 
the universe (system plus surroundings) remains constant (∆ Sʹ total  = 0), while in the 
irreversible case (free expansion), the entropy of the universe increases (∆ Sʹ total  >  0).

3.5.1 the reversible Isothermal expansion of an Ideal Gas

Let us consider the reversible isothermal expansion of 1 mole of a monatomic 
ideal gas from the state (V A  ,T ) to the state (V B  ,T ), where V B   >  V A   (Figure  3.2). The 
gas is placed in thermal contact with a heat reservoir* at the temperature T , and by slowly 
reducing the weight on the piston by removing one grain of sand at a time, the pres-
sure exerted by the gas is only infinitesimally greater than the instantaneous pressure 
exerted by the piston on the gas. The state of the gas thus lies, at all times, on a section 
at the constant temperature T  of the V -P -T  surface (Figures 1.1 and 1.3a), and hence, 
the gas passes through a continuum of equilibrium states in going from the state (V A  ,T ) 
to the state (V B  ,T ). Since the gas is never out of equilibrium, the process is reversible.

From the First Law,

 ∆U q w= −  

We have seen that the internal energy of an ideal gas depends only on its tempera-
ture. Hence, ∆ U  = 0, and thus, q  = w ; that is, the work done by the expanding gas on 

* The pertinent feature of a constant-temperature heat reservoir is that it experiences only heat effects 
and neither performs work nor has work performed on it. The ice calorimeter , which comprises a 
system of ice and water at 0° C and 1 atm pressure, is an example of a simple constant-temperature heat 
reservoir. Thermal energy transferring into or out of this calorimeter at 0° C is measured as the change 
occurring in the ratio of the amount of ice to that of water present as a result of the thermal energy 
flow. Since the molar volume of ice is larger than that of water, the change in this ratio is measured as 
a change in the total volume of ice plus water in the calorimeter. Strictly speaking, if thermal energy 
flows out of the calorimeter, freezing some of the water, the volume of the system increases, and 
hence, the calorimeter does, in fact, perform the work of expansion against the atmospheric pressure. 
However, the ratio of the work done in expansion to the corresponding thermal energy leaving the 
system is small enough that the work effects may be neglected.

(a)

Heat bath at constant temperature, T Heat bath at constant temperature, T

Sand

VA
1 mole of

an ideal gas

(b)

1 mole of
an ideal gas

VB

Figure  3.2   (a) one mole of a confined ideal gas being held at V A   by a mass of sand. (b) the 
mass of sand is removed and the new volume if the gas is VB.
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the piston equals the thermal energy transferred from the constant-temperature heat 
reservoir into the gas.

We calculate the work done as

 w PdV
RTdV

V
RT

V

VV

V

V

V
B

AA

B

A

B

rev = = =∫∫ ln  

Since V B   >  V A  , w rev  is a positive quantity, in accordance with the fact that work is 
done by  the gas. The transfer of thermal energy from the reservoir to the gas (at con-
stant internal energy) causes a change in the entropy of the gas:

 ∆ = − = = =S S S
q

T

w

T
R

V

V
B A

B

A
gas

rev rev ln  

which is also a positive quantity. The change in the entropy of the reservoir is 
given by

 ∆ = − = −∆ = <S
q

T
S R

V

V
A

B
heat reservoir gas ln 0  

The total change in the entropy (gas plus heat reservoir) can be written as

 ∆ = ∆ + ∆ =S S Stotal gas reservoir 0  (3.2)

For the reversible process, the total change in entropy of the universe is zero: no 
entropy has been produced.

3.5.2 the Free expansion of an Ideal Gas

We now consider the free expansion (i.e., expansion against zero atmospheric 
pressure) of 1 mole of an ideal gas from V A   to V B  . We have seen in Chapter 2 that 
the free expansion of an ideal gas is also isothermal. Thus, the final state of the free 
expansion is the same as the state of the isothermal reversible expansion process 
(i.e., both states have the same V  and T ). In this case, however, no work is done by 
the gas against the piston, since the weight on the piston is rapidly removed. Thus, 
∆ U  = 0 and w  = 0, which by the First Law means that q  = 0 as well. Since entropy is 
a state function, the change of entropy of the gas for the free expansion must be the 
same as that for the isothermal expansion.

 ∆ = − =S S S R
V

V
B A

B

A
gas ln  

Also, since no thermal energy leaves the heat reservoir, ∆ S reservoir  =  0 The total 
change in the entropy (gas plus heat reservoir) for the free expansion is
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 ∆ = ∆ + ∆ = ∆ =S S S S R
V

V
B

A
total gas reservoir gas ln  (3.3)

In the case of free expansion, there is no decrease in entropy of the heat reservoir, 
since no thermal energy was absorbed by the ideal gas, since it did no work. Thus, 
for the free expansion process, the entropy of the universe increases (∆ S total  >  0).

3 .6 FUrther DIFFereNCeS BetWeeN reVerSIBLe 
AND IrreVerSIBLe eXPANSION 

We now look at the processes from the point of view of the thermal energy that 
was transferred from the heat reservoir to the gas and the work that was performed 
by the gas. For the reversible isothermal expansion case, q rev  = w max . This process 
yields the maximum amount of work that can be performed by the gas during iso-
thermal expansion. The reversible process also yields the most amount of thermal 
energy that can be transferred to the gas from the heat reservoir. The total change in 
entropy of the universe is zero.

For the case of the free expansion of the gas, we have seen that w  = q  = 0.
Overall, it can be seen that the work performed in the preceding two cases of the 

isothermal expansion of an ideal gas varies between 0 for free expansion (isother-
mal) and w max  for reversible isothermal expansion; that is,

 0 ≤ ≤w wmax  

We also see that

 0 ≤ ≤q qrev  

This means that

 0 ≤ ≤∆S
q

T
total

rev  

∆ S total  = 0 when the process is reversible. ∆ S total  >  0 when the process is irreversible. 
The maximum value of ∆ S total  occurs for the completely irreversible free expansion 
case.

It is important to note that the difference in entropy between the final and initial 
states of the gas is independent of whether the process is conducted reversibly or 
irreversibly. In going from state A  to state B ,

 ∆ ∆S S S
q

T
SB A= − = + irr

 (3.4a)
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 = q

T
rev  (3.4b)

Equation 3.4b indicates that, since the change in entropy can be determined only by 
the measurement of thermal energy transferred reversibly at the temperature T , then 
entropy changes can be measured only for reversible processes, in which case the 
measured thermal energy transferred is q rev  and Δ S irr  = 0.

3.7 COMPreSSION OF AN IDeAL GAS

3.7.1 reversible Isothermal Compression

Consider the reversible isothermal compression of 1 mole of an ideal gas from 
the state (V B  ,T ) to the state (V A  ,T ) (Figure  3.2). The gas is placed in thermal con-
tact with a heat reservoir at the temperature T , and, by adding one grain of sand 
at a time to the top of the piston, the gas is compressed slowly enough that, at all 
times during its compression, the pressure exerted on the gas is only infinitesimally 
greater than the instantaneous pressure of the gas, P inst , where P RT Vinst inst= / . The 
state of the gas thus lies, at all times, on a section at the constant temperature T  of 
the V -P -T  surface (Figures  1.1 and 1.3a), and hence, the gas passes through a con-
tinuum of equilibrium states in going from the state (V B  ,T ) to the state (V A  ,T ). Since 
the gas is never out of equilibrium, the process is reversible and no degradation of 
energy occurs. Entropy is not created  during this process. Entropy is transferred 
from the gas to the heat reservoir, where it is measured as the thermal energy enter-
ing divided by the temperature T . Since the compression is conducted isothermally, 
Δ U  = 0; thus, the work done on the gas is equal to the thermal energy withdrawn 
from the gas; that is,

 w qmax rev=  

where

 w PdV
RTdV

V
RT

V

VV

V

V

V
A

BB

A

B

A

max ln= = =∫∫  

Since V B   >  V A  , w max  is a negative quantity, in accordance with the fact that work is 
done on the gas. The transfer of thermal energy from the gas to the reservoir causes 
a change in the entropy of the gas:

 ∆ = = =S
q

T

w

T
R

V

V
A

B
gas

rev max ln  
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which is also a negative quantity. Since there is no change in the total entropy 
during the reversible compression, the change in the entropy of the reservoir is 
given by

 ∆ = −∆ = >S S R
V

V
B

A
heat reservoir gas ln 0  

3.8 the ADIABAtIC eXPANSION OF AN IDeAL GAS

Consider the reversible adiabatic expansion of 1 mole of an ideal gas from the 
state (P A  ,T A  ) to the state (P B  ,T B  ), where P B   <  P A  . For the process to be reversible, 
it must be conducted slowly enough that, at all times, the state of the gas lies on its 
V -P -T  surface. As has been shown in Chapter 2, this condition, together with the 
condition that q  = 0 (an adiabatic process), dictates that the process path across the 
V -P -T  surface follows the curve PV γ   = constant. Since the process is reversible, no 
degradation of energy occurs, and, since the process is adiabatic, no thermal energy 
transfer occurs. The change in the entropy of the gas is therefore zero. Consequently, 
all states of an ideal gas lying on a PV γ   = constant curve are states of equal entropy 
(cf. all states of an ideal gas lying on a PV  = RT  curve are states of equal internal 
energy). A reversible adiabatic process is thus an isentropic  process. During a revers-
ible adiabatic expansion, the work done by the gas, w max , equals the decrease in the 
internal energy of the gas; that is,

 ∆U w= − max  

We can write the following for the reversible process:
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Since the work done by the gas is positive, T B   <  T A  ; that is, the gas cools. The change 
in the internal energy can be calculated as

 ∆U c dT R T T wv

T

T

B A

A

B

= = − = −∫ 3
2

( )  
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which is negative. The internal energy of the gas decreased by the amount of work 
that the gas performed.

The gas has now returned to its original equilibrium state (P A  ,T A  ). If the pres-
sure exerted on the gas is now suddenly decreased from P A   to P B  , then the state of 
the gas moves off the V -P -T  surface, and, being out of equilibrium, the expansion 
occurs irreversibly and the degradation of energy occurs. Since the gas is contained 
adiabatically, the thermal energy produced by the energy degradation remains in 
the gas, and thus, the final temperature of the gas after an irreversible expansion is 
greater than the temperature T B   of the reversible adiabatic expansion. Thus, the final 
state of a gas after an irreversible adiabatic expansion from P A   to P B   differs from the 
final state after a reversible expansion from the same initial to the same final pres-
sures. The irreversible adiabatic expansion does not follow the path PV γ   = constant. 
The entropy produced in the gas due to the irreversible process is the difference in 
entropy between the final and initial states, and the final state itself is determined by 
the degree of irreversibility of the process. That is, for a given decrease in pressure 
(P A   →  P B  ), the more irreversible the process, the more thermal energy produced in 
the gas by degradation, the higher the final temperature and internal energy, and the 
greater the increase in entropy. Thus, during an irreversible adiabatic expansion, the 
work done by the gas still equals the decrease in the internal energy of the gas (as 
is required by the First Law), but the decrease in U  is less than that in the reversible 
expansion from P A   to P B  , due to the production of thermal energy in the gas as the 
result of degradation.

3.9 SUMMArY StAteMeNtS

The following points have emerged from the discussion so far.

 1. Entropy is a thermodynamic state variable (function).
 2. Entropy is not created when a system undergoes a reversible process; entropy is 

transferred from one part of the system/surroundings to another part.
 3. The total entropy of the universe increases when an irreversible process occurs.
 4. For all processes, we can write ∆ ′ = + ∆ ′S q T Ssystem irr/ and q  ≤  q rev .
 5. For all processes, the entropy of the universe increases or stays the same. The total 

entropy of the universe never decreases.

3.10 the PrOPertIeS OF heAt eNGINeS

Traditionally, the concept of entropy as a thermodynamic state function is intro-
duced by considering the behaviors and properties of heat engines. A heat engine is 
a device which converts thermal energy (heat) into work. It is interesting to note that 
steam engines were in operation for a considerable number of years before the reverse 
process— that is, the conversion of work into thermal energy— was investigated by 
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Rumford in 1798. In the operation of a heat engine, some  of the energy that has been 
transferred from a high-temperature heat reservoir is converted into work, with the 
remainder of the energy being transferred to a low-temperature heat reservoir. The 
process is shown schematically in Figure 3.3. Treating the engine as the system, the 
First Law gives

 ∆ ′ = − −U q q w2 1  

Consider the steam engine, which is a typical example of a heat engine. In a steam 
engine, superheated steam is passed from the boiler (the high-temperature heat 
reservoir) to the cylinders, where the steam performs work by expanding against 
the pistons (the engine). As a result of this expansion, the temperature of the steam 
decreases, and at the end of the piston stroke, the spent steam is exhausted to the 
atmosphere (the low-temperature heat reservoir). A flywheel returns the piston to 
its original position, thus completing the cycle and preparing for the next working 
stroke.

The efficiency of a heat engine is given by

 Efficiency
work obtained
energy input

= = =η w

q2

 

The factors governing the efficiency of this process were explained in 1824 by Carnot 
(Nicolas Lé onard Sadi Carnot, 1796– 1832), who considered the cyclic process illus-
trated in Figure 3.4.

In the step A →  B , thermal energy q 2  is isothermally and reversibly transferred 
from a heat reservoir at the temperature t 2  to a thermodynamic substance, as a result 
of which the thermodynamic substance isothermally and reversibly expands from 
the state A  to the state B  and performs work w 1  equal to the area ABba .

In the step B →  C , the thermodynamic substance undergoes a reversible adia-
batic expansion from the state B  to the state C , as a result of which its temperature 
decreases to t 1 , and it performs work equal to the area BCcb .

In the step C →  D , energy q 1  is isothermally and reversibly transferred from the 
thermodynamic substance to a heat reservoir at the temperature t 1 . Work w 3 , equal 
to the area DCcd , is done on the substance.

Heat reservoir at high
temperature t2

Heat reservoir at low
temperature t1

q2 q1Heat
engine

Work, w

Figure  3.3   schematic representation of the working of a heat engine.
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In the step D →  A , the substance is reversibly and adiabatically compressed, 
during which its temperature increases from t 1  to t 2 , and work w 4 , equal to the area 
ADda , is done on the substance.

During this cyclic process , which has returned the thermodynamic substance to 
its initial state, the substance has performed the work w  = w 1  + w 2  –  w 3  –  w 4  (equal 
to the area ABCD ) and has absorbed thermal energy q  = q 2  –  q 1 . For a cyclic process, 
Δ Uʹ  = 0, and thus, from the First Law,

 q wi i=∑ ∑  

Thus,

 q q w wi2 1− = ≡∑  

The efficiency of this cyclic process (which is known as a Carnot cycle ) is given by

 Efficiency = = = − = −η w

q

q q

q

q

q2

2 1

2

1

2

1  

This equation shows that in this idealized Carnot cycle (all processes assumed to 
be reversible), the efficiency is less than unity for finite values of q 1 , the dissipated 
energy.

The consequence of all of the steps in the cyclic process having been conducted 
reversibly is illustrated in the following discussion. Consider a second engine work-
ing with a different substance, again between the temperatures t 1  and t 2 , and let this 

a d b c

C

B

D

A

t1

t2

Pr
es

su
re

Volume

Figure  3.4   a pressure vs. volume depiction of a Carnot cycle.
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second engine be more  efficient than the first one. This greater efficiency could be 
obtained in either of two ways:

 1. The same amount of thermal energy, q 2 , is withdrawn from the heat reservoir at 
t 2 , and more work , w'  , is obtained from it than was obtained from the first engine; 
that is, w'   >  w . Thus, the second engine rejects less thermal energy, ′q1, to the cold 
reservoir at t 1  than does the first engine; that is, q'   <  q .

 2. The same work is obtained by withdrawing less thermal energy, ′q2, from the heat 
reservoir at t 2 ; that is, ′ <q q2 2. Thus, less thermal energy, ′q1, is rejected into the heat 
reservoir at t 1 ; that is, ′ <q q1 1.

Consider now that the second engine is run in the forward direction, and the first 
engine is run in the reverse direction; that is, it acts as a heat pump . Then, from (1), 
for the second engine run in the forward direction, ′ = − ′w q q2 1 . For the first engine 
run in the reverse direction, – w  = – q 2  + q 1 . The sum of the two processes is

 ( ) ( )′ − = − ′w w q q1 1  

that is, an amount of work (w'   –  w ) has been obtained from a quantity of thermal 
energy ( )q q1 1− ′  without any other change occurring. Although this conclusion does 
not contravene the First Law of Thermodynamics, it is contrary to human experi-
ence. Such a process corresponds to perpetual motion of the second kind ; that is, 
heat is converted to work without leaving a change in any other body. (Perpetual 
motion of the first kind is the creation of energy from nothing.)

From (2), for the second engine run in the forward direction, w q q= ′ − ′2 1 . For the 
first engine run in the reverse direction, – w  = – q 2  + q 1 . The sum of the two processes is

 ′ − = − ′ =q q q q q2 2 1 1  

that is, an amount of thermal energy at the lower temperature has been transferred 
to a higher temperature without any other change occurring. This corresponds to the 
spontaneous transfer of thermal energy  up a temperature gradient and is thus even 
more contrary to human experience than is perpetual motion of the second kind.

The preceding discussion gives rise to the following two preliminary formula-
tions of the Second Law of Thermodynamics:

 1. It is impossible, by means of a cyclic process, to transfer thermal energy from a hot 
reservoir and convert it to work without, in the same process, transferring thermal 
energy to a cold reservoir. This is known as the principle of Kelvin and Planck  
(Lord Kelvin, aka William Thomson, 1824– 1907, and Max Karl Ernst Ludwig 
Planck, 1858– 1947).

 2. It is impossible to transfer thermal energy from a cold to a hot reservoir without, in 
the same process, converting a certain amount of work to thermal energy. This is 
the principle of Clausius  (Rudolf Julius Emanuel Clausius, 1822– 1888).

These two statements are equivalent to each other: if one of them can be shown 
to be false, the other one must also be false.
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3.11 the therMODYNAMIC teMPerAtUre SCALe

The foregoing discussion suggests that all reversible Carnot cycles operat-
ing between the same upper and lower temperatures must have the same effi-
ciency— namely, the maximum possible. This maximum efficiency is independent 
of the working substance and is a function only of the working temperatures t 1  and 
t 2 . Thus,

 Efficiency = = − = ′ = −η q q

q
f t t

q

q
2 1

2
1 2

1
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q

q
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Consider the Carnot cycles shown in Figure 3.5. The two cycles operating between 
t 1  and t 2 , and between t 2  and t 3 , are equivalent to a single cycle operating between 
t 1  and t 3 . Thus,
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Figure 3.5   Carnot cycles operating between t 1  and t 2 , t 1  and t 3 , and t 2  and t 3 .
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Since f (t 1 ,t 2 ) is independent of t 3 , then f (t 1 ,t 3 ) and f (t 2 ,t 3 ) must be of the form
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that is, the efficiency function f (t 1 ,t 2 ) is the quotient of a function of t 1  alone and t 2  
alone. Thus,
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Kelvin took these functions to have the simplest possible form— namely, T 1  and T 2 . 
Thus,
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In which case the efficiency of a Carnot cycle is

 Efficiency = − = − = −q q
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This defines an absolute thermodynamic scale of temperature  which is independent 
of the working substance. It is seen that the zero of this temperature scale is that 
temperature of the cold reservoir which makes the Carnot cycle 100% efficient.

The absolute thermodynamic temperature scale (or Kelvin scale) is identical to 
the ideal gas temperature scale discussed in Chapter 1. This can be demonstrated 
by considering 1 mole of ideal gas to be the working substance in a Carnot cycle. 
Referring to Figure 3.4,
State A to state B . Reversible isothermal expansion at t 2 :

 Δ U  = 0

and from Equation  2.10,

 q w Rt
V

V
B

A
2 1 2= = 






ln  
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State B to state C . Reversible adiabatic expansion:

 q = 0

and from Equation  2.6a,

 w U c dTv
t

t

2
2

1

= −∆ = −∫  

State C to state D . Reversible isothermal compression at t 1 :

 q w Rt
V

V
D

C
1 3 1= = 






ln  

State D to state A . Reversible adiabatic compression:

 

q

w c dTv
t

t

=

= −∫

0

4
1

2  

The total work done on the gas = w  = w 1  + w 2  + w 3  + w 4 

 = 





 − + 






 −∫ ∫Rt

V

V
c dT Rt

V

V
c dTB

A
v

t

t
D

C
v

t

t

2 1
2

1

1

2

ln ln  

The thermal energy transferred from the hot reservoir = = 





q Rt

V

V
B

A
2 2 ln .

It can be shown (see Problem 3.7) that

 
V

V

V

V
B

A

C

D

=  

and thus,

 w R t t
V

V
B

A

= − 





( ) ln2 1  

Finally,

 Efficiency = = = − = −η w

q

t t

t

T

T2

2 1

2

1

2

1
( )

 

which is equivalent to Equation  3.5. Thus, the absolute thermodynamic temperature 
scale is the same as the ideal gas temperature scale.
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3.12 the SeCOND LAW OF therMODYNAMICS

The equation

 
q q

q

T T

T
2 1

2

2 1

2

− = −
 

can be written as

 
q

T

q

T
2

2

1

1

0− =  (3.6)

Any cyclic process can be broken down into a number of Carnot cycles, as shown in 
Figure 3.6. In going around the cycle ABA  in a clockwise direction, the work done 
by the system equals the area enclosed by the path loop. This loop can be roughly 
approximated by a number of Carnot cycles as shown, and for the zigzag paths of 
these cycles, from Equation  3.6,

 ∑ =q

T
i

i

0  

where the thermal energy being transferred into the system is positive and the ther-
mal energy being transferred out of the system is negative. The zigzag path of the 
Carnot cycles can be made to coincide with loop ABA  by making the Carnot cycles 
smaller and smaller, and in the limit of coincidence, the summation can be replaced 
by a cyclic integral; that is,

 
δq

T
i





=∫
rev

0�  

B

A

Volume

Pr
es

su
re

Figure 3.6   a cyclic process broken down into a large number of Carnot cycles.
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The vanishing of the cyclic integral indicates that the integral is an exact  differential 
of some function of state of the system. This function is the entropy, S , and for the 
case of a reversible process, we can write

 dS
q

T
′ = δ

 (3.7)

where δ q  is the infinitesimal thermal energy transferred into (or out of) the system 
at temperature T . Thus, if thermal energy is transferred into the system, the entropy 
of the system increases.

For the loop ABA ,

 dS dS dS S S S S
A

B

B A A B
B

A

′ = = ′ + ′ = − + − =∫ ∫∫ 0 0( ) ( )�  

It is to be emphasized that q  in Equation  3.7 is the reversible thermal energy incre-
ment, and thus, Equation  3.7 should be written properly as

 dS
q

T
′ = δ rev  (3.8)

Recall that this expression was derived from the consideration of Carnot cycles, in 
which all operations are conducted reversibly.

The application of Equation  3.6 to a reversibly operated heat engine, in which q 2  
is withdrawn from a constant-temperature source at T 2 , work w  is performed, and 
q 1  is rejected into a constant-temperature heat sink at T 1 , shows that the decrease in 
the entropy of the high-temperature source, q T2 2/ , equals the increase in the entropy 
of the heat sink, q T1 1/ ; that is, Δ Sʹ total  = 0, which is a consequence of the fact that the 
process is conducted reversibly.

The Second Law of Thermodynamics can thus be stated as follows:

 1. The incremental change in entropy dSʹ  of a system into which (or out of which) 
thermal energy has been reversibly added (or expelled) is given as dS q Trev′ = δ / , 
and the function S  is a state function of the system.

 2. The entropy of a system in an adiabatic enclosure can never decrease.
• The entropy increases during an irreversible process.
• The entropy remains constant during a reversible process.
• The entropy remains constant if the system was initially in equilibrium.

From (2), it is seen that, for an infinitesimal change of state of an adiabatically 
contained system,

 ∑ ′ ≥dSi 0  (3.9)
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that is, the sum of the incremental changes in entropy of all i  parts of the system 
which are in thermal contact with each other is zero if the infinitesimal change of 
state is reversible and is greater than zero if the infinitesimal change of state is irre-
versible. Equation  3.9 can be converted to an equality by writing

 dS dSi

i

′ = ′∑ irr  (3.10)

where dSʹ irr  is the total entropy created in the given incremental irreversible process.

3.13 MAXIMUM WOrK

For a change of state from A  to B , the First Law gives

 ′ − ′ = −U U q wB A

In Section  3.1, three questions were raised concerning this law. The third question 
was,

Is there a definite limit to the amount of work which the system can do during its 
change of state? 

As we indicated in Section 3.1, the First Law gives no indication of the allowed 
magnitudes of q  and w  in the given process. We have seen in the preceding discus-
sion that, although the values of q  and w  can vary depending on the degree of irre-
versibility of the path taken between the state A  and B , the Second Law sets a definite 
limit on the maximum amount of work which can be obtained from the system dur-
ing a given change of state and, hence, sets a limit on the quantity of thermal energy 
which the system may absorb. For an infinitesimal change of state, Equation  3.4a 
can be written as

 dS
q

T
dS′ = + ′system irr

δ
 

and, from the First Law,

 δ δq dU w= ′ +system   

Thus,

 dS
dU w

T
dS′ =

′ +
+ ′system

system
irr

δ
 

or
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 δw TdS dU TdS= ′ − ′ − ′system system irr  

and finally,

 δw TdS dU≤ ′ − ′system system  (3.11)

If the temperature remains constant throughout the process (and equal to the tem-
perature of the reservoir supplying heat to the system), then the integration of 
Equation  3.11 from state A  to state B  gives

 w T S S U UB A B A≤ ′ − ′( ) − ′ − ′( )  

and since U  and S  are functions of state, then w  cannot be greater than a certain 
amount, w max , the work which is obtained from the system when the process is con-
ducted reversibly; that is,

 w T S S U UB A B Amax = ′ − ′( ) − ′ − ′( )  

This work, w max , corresponds to the absorption of the maximum heat, q rev , and is the 
most work that can be performed during the change of state.

Since entropy is a state function, then, in undergoing any specific change of state 
from A  to B ,

The change in the entropy of the system is the same whether the process is conducted 
reversibly or irreversibly. 

The preceding discussion indicates that it is the  heat effect which is different  in 
the two cases; that is, if the process involves the absorption of thermal energy and 
is conducted reversibly, then the thermal energy absorbed, q rev , is greater than the 
thermal energy which would have been absorbed if the process had been conducted 
irreversibly. As has been seen, when 1 mole of an ideal gas is isothermally and 
reversibly expanded from state A  to state B , energy q , where

 q RT
V

V
B

B

= ln  

is reversibly transferred from the heat reservoir to the gas, and the increase in the 
entropy of the gas, S B   –  S A  , equals R V VB Bln / . The entropy of the thermal reser-
voir decreases by an equal amount and, therefore, entropy is not created; that is, 
Δ S irr  = 0. However, if the mole of gas is allowed to expand freely from P A   to P B   
(as in Joule’ s experiment discussed in, Section 2.6), then, since the gas performs 
no work, no thermal energy is transferred from the reservoir to the gas, and there 
is no change in the entropy of the reservoir. Since entropy is a state function, the 
value of S B   –  S A   is independent of the process path, and hence, the entropy created, 
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Δ S irr , equals S B   –  S A  , which equals R V VB Bln / . This entropy is created as a result 
of the degradation of the work which would have been performed by the gas had the 
expansion not been carried out against zero pressure. This degraded work equals 
w max  as well as q rev .

The free expansion therefore represents the limit of complete irreversibility, dur-
ing which all of the potential  work is degraded because of the increase in volume 
of the gas. The degraded potential work in the gas accounts for the increase in the 
entropy of the gas. For the isothermal expansion of 1 mole of ideal gas from the state 
A  to the state B , the value of Δ S irr  is

 0 ln≤ ≤∆S R
V

V
B

B
irr  

Δ S irr  = 0 for a reversible isothermal expansion and Δ S irr  = R V VB Bln /  for a free 
expansion. The value of Δ S irr  is thus shown to depend on the degree of irreversibility 
of the process.

3.14 eNtrOPY AND the CrIterION FOr eQUILIBrIUM

At the beginning of this chapter, it was stated that a system, left to itself (i.e., no 
interactions with the surroundings, an isolated system), would either remain in the 
state in which it happened to be or would spontaneously  change (that is, without any 
outside influence) to some other state. If the system is initially at equilibrium, then 
it will remain at equilibrium, and if it is not initially in equilibrium it will change to 
its equilibrium state. This spontaneous  process is, by definition, irreversible, and the 
movement of the system from its initial nonequilibrium state to its final equilibrium 
state is accompanied by an increase in the entropy of the system. The attainment 
of the equilibrium state coincides with the entropy reaching a maximum value , and 
hence, for such systems, entropy can be used as a criterion for determining the equi-
librium state.

In an isolated  system of constant internal energy, U , and constant volume, V , 
equilibrium is attained when the entropy of the system is at maximum, consistent 
with the fixed values of U  and V . Consider the chemical reaction

 A B C D+ = +  

occurring in an adiabatic enclosure at constant volume. Starting with A  and B , 
the reaction will proceed from left to right as long as the entropy of the system is 
thereby increased; or, conversely, starting with C  and D , the reaction will proceed 
from right to left, again provided that the entropy of the system is thereby increased. 
Figure 3.7 shows a possible variation of entropy with the extent of reaction. It is 
seen that a point is reached along the reaction coordinate at which the entropy of 
the system has its maximum value. This is the equilibrium state of the system, since 
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further reaction in either direction would decrease the entropy and, hence, will not 
occur spontaneously. This concept will be utilized when we discuss the reactions of 
gases in Chapter 11.

3.15 the COMBINeD StAteMeNt OF the FIrSt 
AND SeCOND LAWS OF therMODYNAMICS

For an incremental change in the state of a closed simple system, the First Law 
of Thermodynamics gives

 dU q w′ = −δ δ  

and, if the process occurs reversibly, the Second Law of Thermodynamics gives

 dS
q

T
q TdS′ = = ′δ δ or   

For a simple system,

 δw PdV= ′  

A combination of the two laws gives the equation

 dU TdS PdV′ = ′ − ′  (3.12)

Restrictions on the application of Equation  3.12 are

 1. That the system is closed— that is, does not exchange matter with its surroundings 
during the process

 2. That work due to change in volume is the only form of work performed by the system

En
tr

op
y

(A + B) (C + D)

Equilibrium

Composition

Figure 3.7   schematic representation of the entropy of a closed system containing A  + B  + C  
+ D  as a function of the extent of the reaction A  + B  = C  + D  at constant internal 
energy and volume.
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Equation  3.12 relates the dependent variable of the system, U , to the independent 
variables, S  and V ; that is,

 ′ = ′ ′ ′( )U U S V,  

The total differential of U′ is written as

 dU
U

S
dS

U

V
dV

V S

′ = ∂ ′
∂ ′







′ + ∂ ′
∂ ′







′  (3.13)

A comparison of Equations  3.12 and 3.13 shows that

 

Temperature =  =

Pressure =  = 

T
U

S

P
U

V

V

∂ ′
∂ ′







− ∂ ′
∂ ′







SS

 

The particularly simple form of Equation  3.12 stems from the fact that, in consider-
ing variations in U  as the dependent variable, the “ natural”  choice of independent 
variables is S  and V . The consideration of S  as the dependent variable and U  and V  
as the independent variables— that is,

 ′ = ′ ′ ′( )S S U V,  

gives

 dS
S

U
dU

S

V
dV

V U

′ = ∂ ′
∂ ′







′ + ∂ ′
∂ ′







′  (3.14)

Rearranging Equation  3.12 as

 dS
dU

T

PdV

T
′ = ′ + ′

 

and comparing it with Equation  3.14 shows that

 
∂ ′
∂ ′







= ∂ ′
∂ ′







=S

U T

S

V

P

TV U

1
  and   (3.15)

From this equation, it can be seen that increasing the internal energy of the system at 
constant volume increases its entropy, since 1/T  >  0 (Figure 3.8). The curvature of 
the S  versus U  plot is negative.
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Also, since P T/  >  0, increasing the volume increases the entropy of a system 
at constant U . The plot of S  versus V  is similar to the one of S  versus U : S  increases 
with V  and the plot has negative curvature.

It can also be seen that as T  approaches zero, U  approaches its minimum value, as 
does the entropy (more on this in Chapter 6, when the Third Law of Thermodynamics 
is discussed).

There is no need to have a δ q  transfer of energy to have entropy increase! This 
type of entropy is related to the increase of the space the system occupies . We will 
call this configurational entropy  to distinguish it from so-called thermal entropy.

The further development of thermodynamics is a consequence of the fact that S  
and V  (or S  and P ) are an inconvenient pair of independent variables. In considering 
a real system, considerable difficulty would be encountered in arranging the state 
of the system such that, simultaneously, it has the required entropy and occupies 
the required volume. It would be much better to have temperature and pressure or 
temperature and volume be the two independent variables. In Chapter 5, we will 
introduce other thermodynamic state functions that will be of help to our study of 
thermodynamics.

In the next chapter, we will give a more physical description of entropy.

3.16 SUMMArY

 1. The process paths taken by a system undergoing a change of state can be classified 
into two types: reversible  and irreversible .
• When the change in the state of the system occurs as the result of the applica-

tion of a finite driving force, the process proceeds irreversibly, and the degree 
of irreversibility of the process increases with the increasing magnitude of the 
driving force.

U

S

Figure 3.8   Plot of entropy vs. internal energy. note that as U  approaches its minimum value, 
S  also approaches its minimum value.
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• For a process to occur reversibly, the driving force must be infinitesimal, and 
thus, a reversible process proceeds at an infinitesimal rate. The system is imag-
ined to move through a continuum of equilibrium states during a reversible 
process.

 2. When a system undergoes a change of state, during which it performs work and 
absorbs thermal energy, the magnitudes of the quantities w  and q  are maxima (w max  
and q rev ), respectively, when the change of state occurs reversibly. For an irrevers-
ible path between the two states, less work is performed by the system, and cor-
respondingly less thermal energy is absorbed.

 3. There exists a state function called entropy, S , which can be written as

 dS
q

T
′ = δ rev 

  when δ q rev  enters (or leaves) the system. The difference between the entropy in state 
B  and that in state A  is thus

 ∆ ′ = ′ − ′ = ∫S S S
q

T
B A

A

B δ rev 

 4. If, in moving between the two states, the temperature of the system remains con-
stant, the change in the entropy of the system is Δ Sʹ  = q Trev /  where q rev  is the 
thermal energy absorbed or given off by the system in moving reversibly  between 
the two states.

 5. If q rev  is provided by a constant-temperature heat reservoir at the temperature T , the 
entropy of the reservoir decreases by the amount q Trev /  as a result of the system 
moving from A  to B . The entropy of the combined system plus heat reservoir is thus 
unchanged as a result of the reversible process ; entropy has simply been transferred 
from the heat reservoir to the system.

 6. If the change in the state of a system from A  to B  were carried out irreversibly , then 
less thermal energy, q  (q  <  q rev ), would be withdrawn from the heat reservoir by the 
system. Thus, the magnitude of the decrease in the entropy of the reservoir would 
be smaller (equal to q T/ ). However, since entropy is a state function, the change in 
entropy of the gas, Sʹ B   –  Sʹ A  , is independent of the process path, and thus, Δ S  ́system  
+ Δ Sʹ heat reservoir  >  0. Entropy has been created as a result of the occurrence of an 
irreversible process. The entropy created is termed Δ Sʹ irr .

 7. In the general case, Sʹ B   –  Sʹ A   = q T/  + Δ Sʹ irr , and as the degree of irreversibility 
increases, the thermal energy, q , withdrawn from the heat reservoir decreases and 
the magnitude of Δ S  ́irr  increases.

 8. The increase in entropy, due to the occurrence of an irreversible process, arises 
from the degradation of the energy of the system, wherein some of the internal 
energy, which is potentially available for the doing of useful work, is degraded.

 9. A process occurring in an adiabatically contained system of constant volume (i.e., 
a system of constant Uʹ  and Vʹ ) will proceed irreversibly with a consequent produc-
tion of entropy until the entropy is maximized . The attainment of maximum entropy 
is the criterion for equilibrium. Thus, the entropy of an adiabatically contained 
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system can never decrease; it increases as the result of an irreversible process and 
remains constant at its maximum value during a reversible process.

 10. A combination of the First and Second Laws of Thermodynamics gives, for a 
closed system which does no work other than the work of expansion against a pres-
sure, dU  = TdS  –  PdV . U  is thus the natural choice of dependent variable for S  and 
V  as the independent variables.

3.17 CONCePtS AND terMS INtrODUCeD IN ChAPter 3

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Adiabatic expansion of gas
Carnot cycle
Constant-temperature heat reservoir
Dissipation of energy
Driving force
Efficiency of engine
Entropy
Equilibrium state
Heat engine
Irreversible processes
Isentropic process
Isothermal expansion of gas
Maximum work
Natural processes
Nonequilibrium state
Perpetual motion
Principle of Clausius
Principle of Kelvin and Planck
Quasi-static process
Reversible processes
Second Law of Thermodynamics
Spontaneous processes

3.18 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

A heat engine is operating in a Carnot cycle: all processes are reversible (Figure  3.4). 
For each of the processes, obtain expressions for the change in entropy of the engine 
and the change in entropy of the surroundings after one cycle. Assume one mole of 
an ideal monatomic gas.
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Solution to Qualitative Problem 1 

The values of q  for each process can be found in Section  3.11.
The engine :

 1. For the reversible isothermal expansion process from A  to B :

 ∆S
q

T
R

V

V
B

A
engine = = 








2

2

ln  

 2. For the reversible adiabatic expansion process from B  to C :

 ∆S qengine  since = =0 0,  

 3. For the reversible isothermal compression process from C  to D :

 ∆S
q

T
R

V

V
D

C
engine = = 








1

1

ln  

 4. For the reversible adiabatic compression process from D  to A :

 ∆S qengine  since = =0 0,  

The total change in entropy of the engine is therefore

 ∆S R
V

V
R

V

V

V

V

VB

A

D

C

B

A

D
engine
total  since = 






 + 






 = =ln ln ,0

VVC

 (see Problem 3.7)

For each of the processes, the change in entropy of the surroundings is the nega-

tive of that for the engine. Thus, ∆Ssurroundings
total = 0 .

Thus, for the Carnot cycle, ∆ ∆ ∆S S Stotal system surrounds= + = 0.

Qualitative Problem 2 

Draw the entropy versus temperature diagram for the Carnot cycle depicted in 
Figure 3.4.

Solution to Qualitative Problem 2 

Start by choosing a position in the temperature– entropy space for that of state A .

 1. The first process is an isothermal (dT  = 0) increase in entropy from state A  to B .
 2. The second process is a constant entropy decrease in temperature from state B  to C .
 3. The third process is an isothermal decrease in entropy from state C  to state D .
 4. The last process is a constant entropy increase in temperature from state D  to state A .

Be sure you understand the sign of each of the changes in temperature and 
entropy (Figure 3.9).
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3.19 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Five moles of a monatomic ideal gas are contained adiabatically at 50 atm pressure 
and 300 K. The pressure is suddenly released to 10 atm, and the gas undergoes an 
irreversible expansion, during which it performs 4000 J of work.

 a. Show that the final temperature of the gas after the irreversible expansion is greater 
than that which the gas would attain if the expansion from 50 to 10 atm had been 
conducted reversibly.

 b. Calculate the entropy produced as a result of the irreversible expansion.

Given : The constant-volume molar heat capacity of the gas, c v  , has the value 1.5 R .

Solution to Quantitative Problem 1 

 a. In the initial state 1:

 ′ = = × × =V
nRT

P
1

1

1

5 0 08206 300
50

2 46
.

.  liters  

If the adiabatic expansion from 50 to 10 atm is carried out reversibly, then the pro-
cess path follows PV γ   = constant, and in the final state 2:

 ′ =






= ×





=V
PV

P
2

1 1

2

1 5 3 3 5
50 2 46

10
6 47

γ γ
.

.  liters  

and
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Figure 3.9   the temperature entropy diagram for the Carnot cycle of figure 3.4.
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For the irreversible process, which takes the gas from the state 1 to the state 3, as q  = 0:

 ∆ ′ = = = ( ) = × × × ( )U w nc T T Tv– – – . . –4 5 1 5 8 3144 33 1 3000 00  

and hence, T 3  = 236 K, which is higher than T 2 .

 b. As the irreversible expansion from state 1 to state 3 was conducted adiabatically, no 
thermal energy was transferred into the system, and hence, the difference between 
the entropy at state 3 and the entropy at state 1 is the entropy created, Δ Sʹ irr , as a 
result of the irreversible process. This difference in entropy can be calculated by 
considering any reversible path from state 1 to state 3. Consider the reversible path 
1 →  a  →  3 shown in Figure 3.10, which is a reversible decrease in temperature from 
300 to 236 K at constant volume, followed by a reversible isothermal expansion 
from Vʹ a   and V  ́3 .
For a reversible constant-volume process,

 δq nc dT TdSv v= = ′  

or

 dS
nc dT

T
v′ =  

the integration of which, from state 1 to state a , gives

 ′ − ′ = = × × × = −S S nc
T

T
a v

a
1

1

5 1 5 8 3144
234
300

15 0ln . . ln .  J/K  

For the reversible isothermal expansion from state a  to state 3, as Δ Uʹ  = 0:

 q w nRT
V

Va

= = ′
′

ln 3  

300 K isotherm

236 K isotherm

158 K isotherm

2
3

1

a

Volume

Pr
es

su
re

Figure 3.10   the process paths considered in example 1.
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where

 ′ = = × × =V
nRT

P
3

3

3

5 0 08206 236
10

9 68
.

.  liters  

and thus,

 ′ − ′ = = ′
′

= × =S S
q

T
nR

V

V
a

a
3

3 5 8 3144
9 68
2 46

57 8ln . ln
.
.

.   J/K  

The entropy created during the irreversible expansion is thus

 ′ ′ = + =S S3 1 15 57 42  J/K– – . . .0 0 0  

Alternatively, the state of the gas could be changed from 1 to 3 along the path 1 →  2 →  
3. As the reversible adiabatic expansion from state 1 to state 2 is isentropic:

 ′ − ′ = ′ − ′S S S S3 1 3 2  

and, for the reversible isobaric expansion from state 2 to state 3:

 δq nc dT TdSp p= = ′  

or

 dS
nc dT

T
p′ =  

the integration of which, from state 2 to state 3, gives

 ′ − ′ = × × × =S S3 2 5
236
158

42 02.5 8.3144  J/Kln .  

which, again, is the entropy created by the irreversible adiabatic expansion of the gas 
from state 1 to state 3.

Quantitative Problem 2 

At a pressure of 1 atm, the equilibrium melting temperature of lead is 600 K, and at 
this temperature, the latent heat of melting of lead is 4810 J/mole.

Calculate the entropy produced when 1 mole of supercooled liquid lead sponta-
neously freezes at 590 K and 1 atm pressure.

Given : The constant-pressure molar heat capacity of liquid lead, as a function of 
temperature, at 1 atm pressure is given by

 c Tp l( )
−= − ×32 4 3 1 10 3. .    J/K  
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and the corresponding expression for solid lead is

 c Tp s( )
−− + ×23 56 9 75 1  J/K3. . 0  

Solution to Quantitative Problem 2 

The entropy produced during the irreversible freezing of the lead equals the differ-
ence between the change in the entropy of the lead and the change in the entropy of 
the constant-temperature heat reservoir (at 590 K) caused by the process.

First, calculate the difference between the entropy of 1 mole of solid lead at 
590 K and 1 mole of liquid lead at 590 K. Consider the processes illustrated in 
Figure 3.11.

 1. Step a →  b : 1 mole of supercooled liquid lead is heated from 590 to 600 K at 1 atm 
pressure.

 2. Step b →  c : 1 mole of liquid lead is solidified reversibly at 600 K (the equilibrium 
melting or freezing temperature is the only temperature at which the melting or 
freezing process can be conducted).

 3. Step c →  d : 1 mole of solid lead is cooled from 600 to 590 K at 1 atm pressure.

Since entropy is a state function,

 ∆ = ∆ + ∆ + ∆→ → → →S S S Sa d a b b c c d( ) ( ) ( ) ( )  

En
tr

op
y,

 S

Temperature,  K
590 600

a

d
c

0.514 J/K

8.017 J/K
7.997 J/K

b

Solid lead

Liquid lead

Figure 3.11   the changes of state examined in Quantitative Problem 2 depicted in an entropy 
vs. temperature diagram.
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 ∆S a d( ) . . . .→ = + − − = −0 514 8 017 0 494 7 997 J/K  

Consider the thermal energy entering the constant-temperature heat reservoir at 
590 K. As the thermal energy is transferred at constant pressure, q p   = Δ H , where Δ H  
is the difference between the enthalpies of states d  and a . As H  is a state function,
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Thus,

 ∆H a d−( ) = −4799 J  

and so, the heat reservoir absorbs 4799 J of thermal energy at 590 K. Consequently,

 ∆ = =Sheat reservoir  J K
4799
590

8 134.  

Thus, the entropy created is

 ∆Sirr 7 994 8 134 137 J/K= − + =. . .0  

An examination shows that the lower the temperature of the irreversible freezing of 
the supercooled liquid, the more irreversible the process and the larger the value of 
Δ S irr .

PrOBLeMS

3.1    The initial state of 1 mole of a monatomic ideal gas is P  = 10 atm and T  = 300 K. 
Calculate the change in the entropy of the gas for

 a. An isothermal decrease in the pressure to 5 atm
 b. A reversible adiabatic expansion to a pressure of 5 atm
 c. A constant-volume decrease in the pressure to 5 atm

3.2    One mole of a monatomic ideal gas is subjected to the following sequence of 
steps:

 a. Starting at 300 K and 10 atm, the gas expands freely into a vacuum to triple 
its volume.

 b. The gas is next heated reversibly to 400 K at constant volume.
 c. The gas is reversibly expanded at constant temperature until its volume is 

again tripled.
 d. The gas is finally reversibly cooled to 300 K at constant pressure.

  Calculate the values of q  and w  and the changes in U , H , and S .
3.3   One mole of a monatomic ideal gas undergoes a reversible expansion at constant 

pressure, during which the entropy of the gas increases by 14.41 J/K and the gas 
absorbs 6236 J of thermal energy. Calculate the initial and final temperatures 
of the gas. One mole of a second monatomic ideal gas undergoes a reversible 
isothermal expansion, during which it doubles its volume, performs 1729 J of 
work, and increases its entropy by 5.763 J/K. Calculate the temperature at which 
the expansion was conducted.

3.4    Calculate the change in the enthalpy and the change in entropy when 1 mole of 
SiC is heated from 25° C to 1000° C. The constant-pressure molar heat capacity 
of SiC varies with temperature as

 c T T Tp = + × − × + × ⋅− − −50 79 1 97 10 4 92 10 8 20 103 6 2 8 3. . . .  J/mole K  
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3.5   One mole of copper at a uniform temperature of 0° C is placed in thermal  contact 
with a second mole of copper which, initially, is at a uniform temperature of 
100° C. Calculate the temperature of the 2-mole system, which is contained 
in an adiabatic enclosure, when thermal equilibrium is attained. Why is the 
common uniform temperature not exactly 50° C? How much thermal energy is 
transferred, and how much entropy is produced by the transfer? The constant-
pressure molar heat capacity of solid copper varies with temperature as

 c Tp = + × ⋅−22 64 6 28 1  J/mole K3. . 0  

3.6    A reversible heat engine, operating in a cycle, withdraws thermal energy from a 
high-temperature reservoir (the temperature of which consequently decreases), 
performs work w , and rejects thermal energy into a low-temperature reservoir 
(the temperature of which consequently increases). The two reservoirs are, ini-
tially, at the temperatures T 1  and T 2  and have constant heat capacities C 1  and C 2 , 
respectively. Calculate the final temperature of the system and the maximum 
amount of work which can be obtained from the engine.

3.7*   In deriving the equation for the efficiency of a Carnot engine in Section  3.11, it 
was stated that V V V VB A C D/ /= . Show that this equality is valid.

3.8*   This problem picks up from Problem 2.11. Use data from that problem for this 
one.

 a. Calculate the change in entropy at 273 K for the freezing of water.
 b. Calculate the change in entropy for the freezing of water at 260 K.

3.9*   Calculate the work performed by the Carnot cycle shown in Figure 3.4 using the 
T -S  diagram of Figure 3.9.

* New problem in this edition.
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ChAPter 4

the Statistical Interpretation of entropy

4.1 INtrODUCtION

Classical thermodynamics is phenomenological ; that is, it deals with matter as it 
appears to our senses. In this regard, we use our senses to describe the properties of 
matter such as pressure, volume, and temperature. Classical thermodynamics does 
not delve into the more fundamental aspect, of what does matter consist? In this 
chapter, we will use the understanding of matter consisting of atoms and molecules 
and introduce the use of statistics to the approach of the topic of thermodynamics. 
This starting place moves us from the realm of classical thermodynamics to statisti-
cal thermodynamics. Our excursion will be brief, but it is hoped that it will give the 
reader a better physical understanding of entropy.

In Chapter 3, the introduction of entropy as a thermodynamic state function 
was facilitated by the realization that there exist possible and impossible sponta-
neous processes, and by the examination of the thermal energy and work effects 
occurring during these processes. From the formal statements of the Second Law 
of Thermodynamics, as developed from classical thermodynamics arguments, it 
is difficult to assign a physical significance  or a physical quality  to entropy. In 
this respect, entropy differs from internal energy in spite of the fact that, within 
the scope of classical thermodynamics, both properties are extensive thermody-
namic functions of the state of a system. The ready acceptance of the First Law of 
Thermodynamics in the nineteenth century, after its enunciation, was due to the 
easily understood physical significance of internal energy, whereas the lack of a 
corresponding understanding of entropy caused the acceptance of the Second Law 
of Thermodynamics to be slower. A more physical interpretation of entropy had to 
await the development of statistical thermodynamics and the subsequent develop-
ment of quantum mechanics.
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4.2 eNtrOPY AND DISOrDer ON AN AtOMIC SCALe

Gibbs (Josiah Willard Gibbs, 1839– 1903) described the entropy of a system as 
being its “ mixed-up-ness.” * We can understand this concept of mixed-up-ness to be 
applied at the atomic or molecular level; that is, the more “ mixed up”  the constituent 
particles of a system, the larger is the value of its entropy. For example, in the crystal-
line solid state, most of the constituent particles are confined to vibrating about their 
regularly arrayed positions, whereas in the liquid state, confinement of the particles 
to specific sites is absent. The particles are relatively free to wander through the 
communal volume occupied by the liquid. The arrangement of the particles in the 
crystalline solid state is thus said to be more ordered than that of the liquid state, or 
alternatively, is less mixed up than that of the liquid state. As a consequence, the con-
figurational entropy of the liquid state can be understood to be greater than that of 
the solid crystalline state. Similarly, the atomic or molecular disorder in the gaseous 
state is greater than that in the liquid state, since, in the gaseous state, there is more 
volume in which the molecules are free to move. Thus, the entropy of the gaseous 
state is greater than that of the liquid state.

This qualitative understanding of entropy correlates with phenomena on a mac-
roscopic level. For example, the transformation of a solid to a liquid at its equilibrium 
melting temperature, T m  , requires that the substance absorb a quantity of thermal 
energy, q , called the enthalpy of melting . The entropy of the substance being melted 
is thus understood to be increased. Indeed, if the melting process is conducted at 
constant pressure:

 ∆
∆

′ =
′

S
H

Tm
melting

melting  

The increase in the entropy of the substance which accompanies melting correlates 
with the corresponding increase in the degree of disorder of the configurational 
states of its constituent particles.

Care must be taken, however, in using the concept of mixed-up-ness. An isolated 
supercooled liquid increases its entropy when it spontaneously transforms to a crys-
tal, since the process is an irreversible one. But a crystal is certainly less mixed up 
than a liquid! How can the entropy of the substance increase? This apparent anomaly 
exists because we have focused on only one of the aspects of entropy— namely, the 
configurational aspect. If we include in our examination the influence of the enthalpy 
of freezing (the thermal energy released during freezing), it is seen that this release 
of energy increases the temperature of the isolated system, resulting in a concomi-
tant increase in the thermal entropy of the system. This increase in thermal entropy 
is greater than that of the decrease in configurational entropy during the liquid-to-
crystal transformation. This shows that all aspects of the entropy of a system must be 

* The Collected Works of J. W. Gibbs , Vol. 1, Yale University Press, New Haven, CT, 1928, unpublished 

fragments.
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considered when evaluating changes in a system, just as all aspects of the energy of a 
system must be taken into account when applying the First Law of Thermodynamics.

If the transformation from liquid to solid occurs isothermally at the equilibrium 
melting temperature of the substance, T m  , then the increase in the degree of disor-
der of the heat reservoir equals the decrease in the degree of disorder of the sub-
stance, and the total degree of disorder of the combined system plus heat reservoir 
is unchanged. Consequently, the entropy of the combined system is unchanged as 
a result of the equilibrium freezing process; entropy has been transferred from the 
substance to the heat reservoir. The equilibrium melting or freezing temperature of a 
substance can thus be defined as that temperature at which no change in the entropy 
of the substance plus heat reservoir occurs as a result of the phase change. Only at 
this temperature are the solid and liquid in equilibrium with one another, and hence, 
only at this temperature can the phase change occur reversibly, with no net increase 
of entropy.

4.3 the CONCePt OF MICrOStAte

In classical thermodynamics, the state  of a single-component isolated system, 
which in this chapter is denoted as its macrostate , is fixed with the knowledge of two 
of its thermodynamic variables, usually considered to be the intensive thermody-
namic variables of pressure and temperature. However, when we consider the atomic 
and molecular makeup of the system, there are many more possible configurations of 
the constituents which give rise to the same macrostate of the system. Each constitu-
ent has three coordinates for its position and three coordinates for its momentum. In 
addition, there is an enormous number of constituents in real systems, of the order of 
1024  for a mole of particles. Statistical thermodynamics considers the various ways 
that the total number of constituents, N, can be configured in the systems we encoun-
tered in the first three chapters, namely:

 1. Isolated systems, where S ′ = S ′(U′,V′,N ) or U ′ = U ′(S′,V′,N)
 2. Closed systems in equilibrium with a heat bath, where S ′ = S ′(T,V′,N)
 3. Open systems, where S ′ = S ′(T,V′,µ)

When considering such systems, special names have been given in the statistical 
approach to thermodynamics— namely, the microcanonical, canonical, and grand-
canonical formalisms, respectively. In this brief introduction to statistical thermody-
namics, we will consider the microcanonical (isolated) cases.

The development of a quantitative relationship between entropy and the degree 
of mixed-up-ness requires quantification of the term degree of mixed-up-ness , and 
this can be obtained from a consideration of elementary statistical thermodynamics. 
Statistical thermodynamics postulates that the equilibrium state of a system is sim-
ply the most probable of all of its possible (i.e., accessible) microstates. Therefore, 
statistical thermodynamics is concerned with
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• The determination of the most probable microstate
• The criteria governing the most probable microstate
• The properties of this most probable microstate

Both Boltzmann (Ludwig Eduard Boltzmann, 1844– 1906) and Gibbs found it con-
venient to examine the distribution of energies among the particles of the system by 
placing the energy of the particles into discrete compartments . This changed the 
distribution of energy of the particles from being a continuous function of state to 
a discrete function and therefore made it more convenient to perform various sta-
tistical operations (averages, RMS deviations, etc.) on the system of interest. This 
method turned out to be similar (but not identical) to the one used by quantum the-
ory, which was developed several decades later. A postulate of quantum theory is 
that, if a particle is confined to move within a given fixed volume, then its energy 
is quantized; that is, the particle may only have certain discrete values of energy, 
which are separated by forbidden energy bands . For any given particle, the spacing 
between the quantized values of energy (the allowed energy levels) decreases as the 
volume available to the movement of the particle increases. This identifies another 
aspect of the entropy of a system— namely, the degree of spread in the distribution 
of the particles among its possible energy levels. This spread can be considered the 
degree of mixed-up-ness of the occupied energy levels of the particles in the system 
and is related to the system’s thermal entropy.

4.4 the MICrOCANONICAL APPrOACh

4.4.1  Identical Particles on  Distinguishable   Sites 
with Different Assigned energies 

The effect of the quantization of energy and its resulting distribution can be 
illustrated by considering a hypothetical system comprising a perfect crystal in 
which all of the distinguishable sites are occupied by identical  particles. The char-
acteristics of the particles and the crystal structure determine the quantization of 
the allowed energy levels, in which the lowest energy level, or the ground state, is 
designated ε 0 , and the succeeding levels of increasing energy are designated ε 1 , 
ε 2 , ε 3 , and so on. The crystal contains n  particles and has the fixed energy U ́  and 
fixed volume V ́ . The system is therefore considered to be an isolated  one: neither 
energy nor particles can enter or leave the system. Statistical thermodynamics asks 
the following questions:

• In how many ways can the n  particles be distributed over the available energy levels 
such that the total energy of the crystal (i.e., Uʹ  ) remains the same?

• Of the possible distributions, which is the most probable?

Consider that the crystal contains three identical particles which are located on 
three distinguishable lattice sites A , B , and C . Suppose, for simplicity, that the quan-
tization is such that the energy levels are equally spaced, with the ground level being 
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taken as ε 0  = 0, the first level ε 1  = u , the second level ε 2  = 2u , and so on, and let the 
total energy of the system be U ́ = 3u . This system has three possible distributions, 
as shown in Figure 4.1.

 a. All three particles on level 1
 b. One particle on level 3, and the other two particles on level 0
 c. One particle on level 2, one particle on level 1, and one particle on level 0

These distributions are now examined to determine how many distinguishable 
arrangements (complexions or microstates) they individually contain.

• Distribution a . There is only one microstate of this distribution, since the inter-
change of the particles among the three sites does not produce a different microstate.

• Distribution b . Any of the three distinguishable sites can be occupied by any of 
the three particles of energy 3u , and the remaining two sites are each occupied by 
a particle of zero energy. Since the interchange of the particles of zero energy does 
not produce a different arrangement, there are three microstates in distribution b .

• Distribution c . Any of the three distinguishable sites can be occupied by the par-
ticle of energy 2u . Either of the two remaining sites can be occupied by the par-
ticle of energy 1u , and the single remaining site is occupied by the particle of zero 
energy. The number of distinguishable microstates in distribution c  is thus 3 ×  2 
×  1 = 3! = 6.

These arrangements are shown in Figure 4.2. The 10 arrangements are the 10 micro-
states of the system. Since each of the microstates have the same energy, they cor-
respond to one macrostate of the system.

The concept of macrostate lies within the domain of classical thermodynamics. 
The macrostate is fixed when the values of the independent variables are fixed. In the 

(a)

ε0

ε1

ε2

ε3

(b) (c)

Figure 4.1   the distributions of particles among energy levels in a system of constant energy.

A B C

(a) (b) (c)

A B C A B C A B C A B C A B C A B C A B C A B C A B C
ε3
ε2
ε1
ε0

Figure 4.2   Illustration of the complexions or microstates within distributions of particles 
among energy levels in a system of constant energy.
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preceding example, the system was considered to be isolated; that is, the values of U , 
V , and N  are fixed (the constancy of volume is required in order that the quantiza-
tion of the energy levels can be determined), and hence, the macrostate of the system 
is fixed. With respect to the occupancy of the microstates within any macrostate, 
in view of the absence of any reason to the contrary, it is assumed that each of the 
microstates is equally probable , and thus, the probability of observing the preceding 
system in any one of its 10 possible microstates is 1/10. However, the ten microstates 
occur in three distinct distributions, and hence, the probability that the system occurs

• In distribution a  is 1/10
• In distribution b  is 3/10
• In distribution c  is 6/10

Distribution c  is thus the most probable . The physical significance of these prob-
abilities can be viewed in either of two ways:

 1. If it were possible to make an instantaneous observation of the system, the prob-
ability of observing an arrangement in distribution c  would be 6/10.

 2. If the system were observed over a finite interval of time, during which the system 
rapidly changed from one microstate to another, the fraction of time which the 
system spends in all of the arrangements in distribution c  would be 6/10.

As the total energy of the system and the number of particles which it contains 
increase, the number of distinguishable microstates also increases, and, for given 
values of U ′, V ′, and N , these microstates still correspond to a single macrostate. 
Similarly, the number of possible distributions increases, and in real systems— for 
example, 1 mole of a system which contains 6.023 ×  1023  particles— the number 
of arrangements within the most probable distribution is very much larger than the 
number of arrangements in all of the other distributions (Ω  ≈  Ω max ). Thus, the most 
probable microstate is considered to be the  equilibrium state in the macrosystem, 
and the total number of possible arrangements, Ω , is set equal to the number of 
microstates with maximum probability, Ω max . Since the equilibrium state in a closed 
system is the one of greatest entropy, the entropy, S ′, varies with Ω :

 ′S ~ Ω  (4.1)

Hence, the entropy of an isolated system is calculated from the microstates which 
maximize the spread of the particles among the energy levels. From the preceding 
simplified example, the maximum entropy occurs when occupied energy levels of 
the particles are the most spread out (see Figure 4.2 (c)).

4.4.2 Configurational entropy of Differing Atoms in a Crystal

In the preceding discussion, the entropy was considered in terms of the number 
of ways that the energy of identical but distinguishable particles could be distributed. 
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The entropy was seen to be greatest when the occupancy of the energy levels was 
broadly distributed. The degree of mixed-up-ness corresponded to the spread of the 
distribution. Entropy can also be considered in terms of the number of ways in which 
particles themselves can be distributed in space, and this consideration gives rise to 
the concept of configurational entropy  mentioned briefly in Section 4.1.

Consider two crystals, one containing white atoms and the other containing gray 
atoms. Assume that there is no difference in the energy of white/white, white/gray, 
and gray/gray bonds. When the two crystals are placed in physical contact with one 
another, a spontaneous process  occurs in which the white atoms diffuse into the 
crystal of the gray atoms and the gray atoms diffuse into the crystal of the white 
atoms.* Since this process is spontaneous, entropy must be produced. If the system 
is isolated, it is predicted that equilibrium will be reached when the entropy of the 
system reaches a maximum value, which would be when the diffusion processes 
have occurred to the extent that all concentration gradients in the system have been 
eliminated. This is the mass transport analog of the heat transfer case, in which 
heat flows irreversibly between two bodies until the temperature gradients have been 
eliminated (see Section 3.2).

Consider the two crystals to be composed of four white atoms and four gray 
atoms, as shown in Figure 4.3, which shows the initial arrangement of the atoms. 
Assume the crystals are held at the same temperature and volume. As stated previ-
ously, we assume that there are no energetically favored bonds.

If the partition is removed, the atoms are able to rearrange themselves by dif-
fusion. We seek to determine the most probable state of the system; that is, where 
will the atoms reside with respect to the position of the barrier after equilibrium is 
attained (i.e., how many gray atoms will be on the left side and how many will be on 
the right side of the system)?

The use of combinatorics allows us to calculate the number of distinguishable 
ways in which this arrangement can be realized. Recall that the number of ways that 
N  atoms can be arranged into two groups of n  atoms each is given as

 Ω =
⋅ −

N

n N n

!
! ( )!  

 (4.2)

* We ignore the mechanism of diffusion in this discussion.

X

Y

Figure 4.3   representation of a crystal of white atoms in contact with a crystal of gray 
atoms.
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First, consider the number of possible distributions of white atoms on the left side:

 1. Four white atoms on the left: Ω4 0 4 3 2 4 0 1, ( / ! !)= × × ⋅ =  (in which the notation indi-
cates four white atoms on the left of XY  and none on the right).

 2. Three white atoms on the left: Ω3 1 4 3 1 4, ( !/ ! !)= ⋅ =  (the “ missing”  white atom could 
be in any of the four sites).

 3. Two white atoms on the left: Ω2 2 4 2 2 6, ( !/ ! !)= ⋅ = .
 4. One white atom on the left: Ω1 3 4 1 3 4, ( !/ ! !)= ⋅ =  (the one white atom could be on 

any of the four sites).
 5. No white atoms on the left: Ω0 4 4 0 4 1, ( !/ ! !)= ⋅ = .

For each of these distribution of white atoms there is a corresponding set of distribu-
tion of gray atoms on the right side:

 1. For case 1, all gray atoms are on the right side: Ω0 4 4 0 4 1, ( !/ ! !)= ⋅ =  (in which the 
notation indicates four gray atoms on the right of XY  and none on the left).

 2. For case 2, three gray atoms are on the right side: Ω1 3 4 1 3 4, ( !/ ! !)= ⋅ =  (the “ miss-
ing”  gray atom could be on any of the four sites).

 3. For case 3, two gray atoms are on the right side: Ω2 2 4 2 2 6, ( !/ ! !)= ⋅ = .
 4. For case 4, one gray atom is on the right side: Ω3 1 4 3 1 4, ( !/ ! !)= ⋅ = .
 5. For case 5, no gray atoms are on the right side: Ω4 0 4 4 0 1, ( !/ ! !)= ⋅ = .

Now consider the number of ways that each of the preceding configurations can 
be made. Starting with all white atoms on the left and all gray atoms on the right, 
clearly there is only one way for this to occur, which can be found as Ω Ω4 0 0 4 1, ,⋅ = .

Next, consider three white atoms on the left and one gray atom on the right: This 
is case 2, so there are four ways to obtain the configuration on the left. There are also 
four ways to arrive at that corresponding configuration (three gray atoms and one 
white atom) on the right. Thus, there are 16 ways of distributing one gray atom on the 
left and one white atom on the right. This can be found as Ω Ω3 1 1 3 16, ,⋅ = .

The case of two white atoms on the left and two gray atoms on the right is given 
as Ω Ω2 2 2 2 36, ,⋅ = . The rest can be found by symmetry:

• One white atom on the left and three gray atoms on the right is the same as three 
white atoms on the left and one gray atom on the right; Ω Ω Ω Ω1 3 3 1 3 1 1 3 16, , , ,⋅ = ⋅ = .

• No white atoms on the left can only be done one way.

These results are summarized in the following table:

Atoms on Left of 
Partition 

Atoms on right of 
Partition 

No. of Ways 
(Complexions) 

4 white 4 gray 1

3 white/1 gray 3 gray/1 white 16

2 white/2 gray 2 gray/2 white 36

1 white/3 gray 1 gray/3 white 16

4 gray 4 white 1
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Thus, the total number of spatial configurations available to the system is 1 + 16 
+ 36 + 16 + 1 = 70, which is the number of distinguishable ways in which four atoms 
of one color and four atoms of the other color can be arranged on eight sites; that is,

 Number of ways = =8
4 4

70
!

! !
 

If, as before, it is assumed that each of these configurations is equally probable, 
then the probability of finding the system in the arrangements 4:0 or 0:4 is 1/70, the 
probability of arrangements 3:1 or 1:3 is 16/70, and the probability of arrangement 
2:2 is 36/70. Arrangement 2:2 is thus the most probable and thus corresponds to the 
equilibrium state, in which the concentration gradients have been eliminated. Again, 
it is seen that the maximization of Ω  maximizes the entropy under consideration 
(configurational).

The most likely arrangement of atoms would be to have two gray atoms and two 
white atoms on both sides of the permeable partition. But other arrangements are 
possible, and since there is no energetic difference between the various microstates, 
all are equally probable. However, since there are 36 microstates with equal num-
bers of gray and white atoms on either side, that macrostate would be most prob-
able. Once again, the most probable case is the one with the greatest configurational 
entropy for the given energy. Statistical thermodynamics thus does not determine 
with absolute certainty what the final arrangement will be, but only that which is the 
most probable configuration and the most likely to be observed. Again, it is empha-
sized that for large systems, there is negligible chance for the system to be found 
away from its maximum Ω .

In the preceding case, the increase in entropy occurs as a result of the increase 
in the number of spatial configurations which become available to the system when 
the crystals of A  and B  are placed in contact with one another. The increase in the 
entropy of the system arises from an increase in its configurational entropy, S conf . It 
must be kept in mind that this is for the case where there is no energetically favored 
bonds between or among the particles of the system. If, for example, the white/gray 
bond energy was much greater than the white/white and gray/gray bond energy, the 
system may have to remain as shown in Figure 4.3 in order to keep the total energy 
of the system constant.

The mixing process can be expressed as

 
A B A B U V n+ ( ) → + ( )unmixed mixed  at constant  and , ,

 

that is,
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conf conf
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and, if n a   atoms of A  are mixed with n b   atoms of B , then

 Ω Ωconf confand( ) ( )
( )!

! !
2 1 1= + =n n

n n
a b

a b

 

Thus,

 ∆ ′ = +
S k

n n

n n
B

a b

a b
conf ln

( )!
! !

 (4.3)

If we consider X A   and X B   to be the mole fraction of A  atoms and the mole fraction of 
B  atoms, the expression can be reduced to

 ∆S R X X X XA A B Bconf = +[ ]ln ln  

for 1 mole of atoms (see Qualitative Problem 1a in this chapter). This equation gives 
the configurational entropy of a binary system containing two distinguishable kinds 
of atoms. It is plotted in Figure 4.4. The maximum configurational entropy of mix-
ing can be seen to occur when equal numbers of the two kinds of atoms are mixed 
together to form a (solid) solution.

4.4.3 Configurational entropy of Magnetic Spins on an Array of Atoms

As a final example, consider a collection of magnetic spins in a paramagnet i.e., 
one in which the spins are randomly placed on the atoms. The spins may take values 
of ± ½ . The spins will be called up  and down  spins for convenience, even though 
they do not have a direction in space.
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Figure 4.4   the molar configurational entropy of mixing for a binary solution with no prefer-
ence for any type of bonds. the maximum value is R  ln 2.
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If there is no external magnetic field applied and if the interaction energy 
between the spins (also called the exchange energy ) is nonexistent, each of the two 
quantum states (up or down) has the same energy. This is therefore another case of 
the microcanonical formalism, since the total energy of the system is the sum of the 
individual energies of the spins and remains constant. We wish to enumerate all pos-
sible microstates of the system.

Consider a system consisting of eight sites on which magnetic spins will be 
placed. One microstate is that all atoms have their spins pointing up. There is only 
one such microstate state possible. Consider a microstate with one down spin. 
The down spin could be on any of the eight sites. Hence, there are eight such pos-
sible microstates with one down spin. Next, consider a microstate with two down 
spins. The first one could be on any of the eight atoms and the second could be on 
any of the remaining seven atoms. This would be 56 microstates, except that we 
have counted the states twice, since the order in which we placed the spins on the 
atoms could be switched without producing a new microstate. Hence, there are 
28 microstates with two down spins. This can be calculated from the following 
formula:

 6 up and 2 down =
8

6 2
28

!
! !⋅

=  

The case for three down spins can be calculated from

 5 up and 3 down =
3!

8
5

56
!

!⋅
=  

The case for four up and four down can be determined as

 4 up and 4 down =
8

4 4
70

!
! !⋅

=  

The other cases can easily be seen by symmetry to be

• 3 up and 5 down = 56
• 2 up and 6 down = 28
• 1 up and 7 down = 8
• 0 up and 8 down = 1

Thus, there are a total of 28  = 256 possible microstates* of the spins, which can be 
divided into nine distinct groups (Figure 4.5).

* In the case under considerations here, the spin on an atom may be either up or down. In the case of the 
four white atoms and four gray atoms, the atoms could not change “ color.”  This accounts for the differ-
ent number of microstates in the eight-atom spin system (256) versus the number in the eight– colored 
atom system of Section 4.4.2, which was found to have 70 microstates.
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The magnetization of a material is defined as

 M mi

i

= ∑  (4.4)

where:
 M  is the magnetization

mi

i
∑  is the sum of the moments of the ±  spins

It can be seen that M  can be less than zero, equal to zero, or greater than zero, 
depending on the microstate. However, the most probable microstate has a total mag-
netization of zero, and this is considered to be the equilibrium state. It can also be 
seen that the average value of M  over all microstates is also zero. A material in this 
state is called a paramagnet . If an external magnetic field is applied to the system, M  
would change to a nonzero value.

4.5 the BOLtZMANN DIStrIBUtION

In this section, a general derivation of the Boltzmann distribution  for a large 
number of particles among various energy levels is derived.

The number of arrangements within a given distribution, Ω , is calculated as fol-
lows: if n  particles are distributed among the energy levels such that n 0  are on level 
ε 0 , n 1  on level ε 1 , n 2  on level ε 2 ,… , and n r   on ε r  , the highest level of occupancy, then 
the number of arrangements, Ω , is given by
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Figure 4.5   Plot of the number of microstates against the number of up spins in each 
microstate.
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For example, a consideration of the system discussed in Section 4.4.1 gives

 

Ω

Ω

Ω

( )
!

! ! !

( )
!

! ! !

(

distribution 

distribution 

a

b

= =

= =

3
3 0 0

1

3
2 1 0

3

ddistribution c)
!

! ! !
= =3

1 1 1
6

 

The most probable distribution is obtained by determining the set of numbers n 0 , 
n 1 ,… , n r  , which maximizes the value of Ω . When the values of n i   are large, Stirling’s 
approximation can be used (i.e., ln X!  = X  ln X  –  X ). Thus, taking the logarithms of 
the terms in Equation  4.5 gives

 ln ln ( ln )Ω = − − −
=

=

∑n n n n n ni i i

i

i r

0

 (4.6)

Since the macrostate of the system is determined by the fixed values of U ′, V ′, and 
n , any distribution of the particles among the energy levels must conform to the 
conditions
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 (4.7)

and

 

n n n n n

n

r

i

i

i r

= = + + +

=
=

=

∑
constant 0 1 2

0

�

 (4.8)

From Equations 4.7 and 4.8, any interchange of particles among the energy levels 
must conform to the conditions
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 δ ε δ′ = =∑U ni i

i

0  (4.9)

and

 δ δn ni

i

= =∑ 0  (4.10)

Also, from Equation  4.6, any interchange of particles among the energy levels gives

 
δ δ δ δ

δ

ln ln

ln

Ω = − + −





= − ( )
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n n
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n
n

n n
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i i

i
i
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 (4.11)

If Ω  has the maximum possible value, then a small rearrangement of particles among 
the energy levels will not alter the value of Ω  or the value of ln Ω . Thus, if the set of 
values of n i   is such that Ω  has its maximum value, then

 δ δ ln  ln Ω Σ= − ( ) =n ni i 0  (4.12)

The condition that Ω  has its maximum value for the given macrostate is thus that 
Equations 4.9, 4.10, and 4.12 are simultaneously satisfied. The set of values of n i   in 
the most probable distribution is obtained by the method of undetermined multipli-
ers, in the following manner. Equation 4.9 is multiplied by the constant β , which has 
the units of reciprocal energy, to give

 Σ  βε δi in = 0  (4.13)

Equation 4.10 is multiplied by the dimensionless constant a  to give

 Σ  αδni = 0  (4.14)

and Equations 4.12, 4.13, and 4.14 are added to give

 ln n ni i i

i

i r

+ +( ) =
=

=

∑ α βε δ 0
0

 (4.15)

that is,
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The solution of Equation 4.15 requires that each of the bracketed terms be individu-
ally equal to zero; that is,

 ln ni i+ + =α βε 0  

or

 n e ei
i= − −α βε  (4.16)

Summing over all r  energy levels gives

 n n e ei

i

i r

i

i r

i

=

=
− −

=

=

∑ ∑= =
0 0

α βε  

The summation

 e e e e ei r− − − − −= + + + +∑ βε βε βε βε βε0 1 2 . . .   

which is determined by the magnitude of β  and by the quantization of the energy, is 
called the partition function , Z . Thus,

 e
n− =α

Z
 

and thus,

 n
ne

i

i

=
−βε

Z
 (4.17)

The distribution of particles in the energy levels which maximizes Ω  (i.e., the most 
probable distribution) is thus one in which the occupancy of the levels decreases 
exponentially with increasing energy, and the shape of this distribution is shown 
in Figure 4.6. The actual shape of the exponential curve in Figure 4.6 (for a given 
system) is determined by the value of β . β  is inversely proportional to the absolute 
temperature, being given by

 β = 1
k TB

 (4.18)

in which k B   is Boltzmann’s constant, an expression of the gas constant per atom or 
molecule; that is,

 k
R

N
B = =

×
= × −

O

J K
8 3144 6

6 0221 10
1 38065 1023

23. ( )
.

.  

where N O   is Avogadro’s number. This brings us to a discussion of the role of tem-
perature in a system.
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4.6 the INFLUeNCe OF teMPerAtUre

The nature of the exponential distribution of particles in Figure 4.6 is determined 
by the temperature of the system. However, since the macrostate of the system is 
fixed by fixing the values of U ′, V ′, and n , then T , as a dependent variable, is also 
fixed. Equation 4.18 shows that T  increases with decreasing β , and the shape of the 
exponential distribution changes as shown in Figure 4.7. An increase in temperature 
causes the upper energy levels to become relatively more populated, and this corre-
sponds to an increase in the average energy of the particles; that is, to an increase in 
the value of U′/n , which, for fixed values of V  and n , corresponds to an increase in U ′.

As has been stated, when the number of particles in the system is very large, the 
number of arrangements within the most probable distribution, Ω max , is the only term 

ε0

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

Constant V and n
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Figure 4.7   the influence of temperature on the most probable distribution of particles among 
energy levels in a closed system of constant volume.
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Figure 4.6   schematic representation of the most probable distribution of particles among 
the quantized energy levels.
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which makes a significant contribution to the total number of arrangements, Ω total , 
which the system may have; that is, Ω max  is significantly larger than the sum of all 
of the other arrangements. Thus, when the number of particles is large, Ω total  can be 
equated with Ω max .

Substituting β  = 1/k B  T , Equation 4.6 can be written as

 
ln ln ln lnmaxΩ Ωtotal = = −∑n n n ni i  

in which the values of n i   are given by Equation 4.17. Thus,
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and thus,

 ln lnΩ = + ′
n

U

k TB

Z  

or

 k T nk T UB Bln lnΩ = + ′Z  (4.19)

In Chapter 5, a function called the Helmholtz free energy  will be defined as

 A′ ≡  U′  –  TS′ 

It can be seen from Equation 4.19 that

 ′ = −A nk TB ln Z  (4.20)

and that

 ′ =S kB ln Ω  (4.21)
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4.7 therMAL eQUILIBrIUM AND the BOLtZMANN eQUAtION

Consider now a system of particles in thermal equilibrium with a constant-tem-
perature heat bath . Let the state of the combined system (particles + heat bath) be 
fixed by fixing the values of U ′, V ′, and n , where:

U ′ = U′particles system  + U′heat bath 
V′  = V′particles system  + V′heat bath 
n  = the number of particles in the system + the heat bath of fixed size

Since the system of particles and the heat bath are in thermal equilibrium, small 
exchanges of energy can occur between them, and for such a small exchange at con-
stant U ′, V ′, and n , Equation 4.19 for the system of particles gives

 δ δ
ln Ω = ′U

k TB

 

(Z  is dependent only on the values of ε i   and T ). Since this exchange of energy is car-
ried out at constant total volume, then

 δ δ′ =U q  

that is, the energy exchange occurs as an exchange of heat. Thus,

 δ δ
ln Ω = q

k TB

 (4.22)

Since the exchange of heat occurs at constant temperature (i.e., occurs reversibly), 
then, from Chapter 3,

 
δ δq

T
S= ′  

and thus,

 δ δ′ =S kB ln Ω  

Since both S ′ and Ω  are state functions, the preceding expression can be written as a 
differential equation, the integration of which gives

 ′ =S kB ln Ω  (4.23)

Equation 4.23, which is called the Boltzmann equation , is the required quantitative 
relationship between the entropy of a system and its degree of mixed-up-ness, in 
which the latter, given by Ω , is the number of ways in which the energy of the system 
can be distributed among the particles. The most probable state of the system is that 
in which Ω  has a maximum value, consistent with the fixed values of U ′, V ′, and n , 
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and hence, the equilibrium state of the system is that in which S  is a maximum, con-
sistent with the fixed values of U , V , and n . The Boltzmann equation thus provides a 
helpful qualitative understanding of entropy.

4.8 heAt FLOW AND the PrODUCtION OF eNtrOPY

Classical thermodynamics shows that the transfer of thermal energy from a body 
at some temperature to a body at a lower temperature is an irreversible process which 
is accompanied by the production of entropy, and that the reverse process— that is, 
the flow of thermal energy up a temperature gradient— is an impossible spontaneous 
process. An examination of microstates shows that a microstate in which variations 
in temperature occur within a system is less probable than a microstate in which the 
temperature of the system is uniformly constant.

Consider two closed systems, A  and B . Let the energy of A  be U ́A   and the number 
of complexions of A  be Ω A  . Similarly, let the energy of B  be U ́B   and its number of 
complexions be Ω B  . When thermal contact is made between A  and B , the product 
Ω A  Ω B   will, generally, not have its maximum possible value, and thermal energy 
will be transferred either from A  to B  or from B  to A . Thermal energy flows from 
A  to B  if, thereby, the increase in Ω B  , caused by the increase in U ́B  , is greater than 
the decrease in Ω A  , caused by the decrease in U ́A  . Thermal energy continues to 
flow from A  to B  as long as the product Ω A  Ω B   continues to increase, and the flow 
of thermal energy ceases when Ω A  Ω B   reaches its maximum value— that is, when 
the increase in Ω B   caused by the transfer of an increment of thermal energy from A  
is exactly compensated by the decrease in Ω A  . The condition for A  to be in thermal 
equilibrium with B  is thus that the transfer of a quantity of thermal energy from one 
body to the other does not cause a change in the value of Ω A  Ω B  . That is,

 δ ln Ω ΩA B = 0  

Consider a rearrangement of the particles in the quantized energy levels in B  which 
causes U ́B   to increase by a certain amount, and consider a simultaneous rearrange-
ment of the particles in the energy levels of A  which causes U ́A   to decrease by the 
same amount; that is, (U ́A   + U ́B  ) remains constant. If the levels of A  are populated 
in accordance with Equation 4.22 with T  = T A   and if the levels of B  are populated in 
accordance with Equation 4.22 with T  = T B  , then

 δ δ
ln ΩA

A

B A

q

k T
=  

and

 δ δ
ln ΩB

B

B B

q

k T
=  
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When a quantity of thermal energy is transferred from A  to B  at total constant 
energy, then

 δ δq qA B= −  

Thus,

 δ δ δ δ
ln ln lnΩ Ω Ω ΩA B A B

A B BT T

q

k
= + = −








1 1
 

and hence, the condition that δ  ln Ω A  Ω B   be zero is that T A   = T B  . The reversible 
transfer of thermal energy from one body to another thus only occurs when the 
temperatures of the bodies are equal, since only in such a case does Ω A  Ω B  — and 
hence, the total entropy of the combined system (S′A   + S′B  )— remain constant. An 
irreversible transfer of thermal energy increases the value of the product Ω A  Ω B  , 
and hence, entropy is created. From the point of view of microstates, an irreversible 
process is one which takes the system from a less probable state to the most prob-
able state. From the point of view of macrostates, an irreversible process takes the 
system from a nonequilibrium state to the equilibrium state. Thus, what is deemed 
in classical thermodynamics to be an impossible process is shown by the consid-
eration of microstates to be a highly improbable process. As the size of the system 
increases, the probability of the “ up-hill”  flow of thermal energy approaches zero. 
For very small systems (clusters of atoms), these improbable processes must be 
considered.

The total entropy of a simple system consists of its thermal entropy, S′th , which 
arises from the number of ways in which the energy of the system can be shared 
among the particles, and its configurational entropy, S ′conf , which arises from the 
number of distinguishable ways in which the particles can fill the space available 
to them. Thus,

 

′ = ′ + ′
= +
=

S S S
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th conf
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If two systems are placed together in thermal contact, the change in entropy is 
given as

 ∆ Ω Ω
Ω Ω

′ =S kBtotal
th conf

th conf

ln ( ) ( )

( ) ( )

2 2

1 1

 

If, however, the two systems were closed systems, there can be no change in the 
configurational entropy: Ωconf(1) = Ωconf(2). This is also true if the two systems were 
open systems which were chemically identical. Thus, in the case of thermal energy 
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flow down a temperature gradient between two such systems, since only Ω th  changes, 
the increase in the entropy arising from the thermal energy transfer which takes the 
system from state 1 to state 2 is

 ∆ Ω Ω
Ω Ω

Ω
Ω

′ = = =S k kBtotal
th conf

th conf

th

th

ln ln( ) ( )

( ) ( )

( )

( )

2 2

1 1

2

1

∆∆ ′Sth  

Similarly, in the mixing of particles of A  with particles of B , Δ S total  only equals 
Δ S′conf  if the mixing process does not cause a redistribution of the particles among 
the energy levels— that is, if Ω th(1)  = Ω th(2) . This condition corresponds to the ideal 
mixing  of the particles and requires that the quantization of energy be the same in 
crystals A  and B . Ideal mixing is the exception rather than the rule, and, generally, 
when two or more components are mixed at constant U′, V′, and n , Ωth(2)  does not 
have the same value as Ω th(1) ; thus, the completely random mixing of particles does 
not occur. In such cases, either the clustering of like particles (indicating difficulty 
in mixing) or ordering (indicating a tendency toward compound formation) occurs. 
In all cases, however, the equilibrium state of the system is that which, at constant 
U ′, V ′, and n , maximizes the product Ω th Ω conf . If, in addition to particles, the system 
is composed of magnetic spins, electric dipoles, and so on, their entropy must be 
included in the consideration of the total entropy of the system.

4.9 SUMMArY

 1. A single macrostate of a system, which is determined when the independent vari-
ables of the system are fixed, contains a very large number of microstates, each of 
which is characterized by the manner in which
• The thermal energy of the system is distributed among the particles
• The particles are distributed in the configurations available to them

 2. Although the occurrence of a system in any one of its microstates is equally prob-
able (for the case of the closed system), greatly differing numbers of microstates 
occur in differing distributions. The distribution which contains the largest number 
of microstates is the most probable distribution.

 3. In real systems (with a very large number of particles) the number of microstates in 
the most probable distribution is significantly larger than the sum of all of the other 
microstates occurring in all of the other distributions. This most probable distribu-
tion is the equilibrium thermodynamic state of the system.

 4. The relationship between the number of microstates available to the system, Ω , and 
the entropy of the system is given by the Boltzmann equation:

 ′ =S kB ln Ω  

 in which kB is Boltzmann’s constant.
 5. If a situation arises which allows an increase in the number of microstates available 

to the system (at constant energy), then spontaneous redistribution of the energy 
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among the particles (or particles over the available configurations) occurs until the 
newly available most probable distribution occurs. The Boltzmann equation shows 
that an increase in the number of microstates made available to the system causes 
an increase in the entropy of the system.

 6. The total entropy of a system is the sum of each of the aspects of entropy:
• Thermal entropy, S′th 
• Configurational entropy, S′conf 
• Any other aspect of entropy, such as spin entropy, electric dipole entropy, and 

so on
 7. The thermal entropy arises from the number of ways in which the thermal energy 

available to the system can be shared among the constituent particles, Ω th .
 8. The configurational entropy arises from the number of ways in which the particles 

can be distributed over the configurations available to them, Ω conf .
 9. The spin entropy arises from the number of ways in which the spins can be distrib-

uted over the sites available to them, Ω spin .
 10. Since any of the thermal distributions can be combined with any of the configura-

tional distributions, the total number of microstates available to the system is the 
product Ω th Ω conf  (Ω th Ω conf Ω spin  if spins are present), and hence, from the logarith-
mic form of the Boltzmann equation, the total entropy of the system is the sum of 
the individual entropies of the system.

4.10 CONCePtS AND terMS INtrODUCeD IN ChAPter 4

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Aspects of entropy
Boltzmann distribution
Boltzmann equation for entropy
Bond energy
Classical thermodynamics
Configurational entropy
Entropy as “ mixed-up-ness” 
Exchange field
External field
Macrostate
Microcanonical ensemble
Microstate
Most probable state
Paramagnet
Partition function
Phenomenological
Spin entropy
Spin system
Statistical thermodynamics
Thermal entropy
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4.11 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

One mole of a FeX alloy of 50 at% X has its Fe and X atoms randomly arranged on 
a body centered cubic lattice (BBC). The spins on the Fe atoms are also randomly 
arranged. The X atoms do not have spins.

 a. Calculate the configurational entropy of the alloy.
 b. Calculate the spin entropy of the alloy.
 c. Is the sum of the entropies for (a) and (b) the total entropy of the alloy? Explain.

Solution to Qualitative Problem 1 

 a. From Equation 4.3 we get

∆

∆
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eercent X alloy, we get:

conf∆S R= ln2

 b. The spin entropy is found by

 ∆S k n kB

n

Bspin Fe
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=ln ln
1
2
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Since n Fe  is 0.5 moles,

 ∆S
R

spin =
2

2ln  

 c. No, there is also thermal entropy, which must be included.
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Qualitative Problem 2 

We saw in Section 4.6 that

 ′ = −A nk TB ln Z  

In the next chapter, we will show that ∂ ′ ∂ = − ′A T S/
Take the derivative of A′  with respect to T  and obtain expressions for S ′ and U′  in 

terms of the partition function Z .

Solution to Qualitative Problem 2 
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4.12 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Spectroscopic observation of molecular N2  in an electrical discharge shows that the 
relative numbers of molecules in excited vibrational states with energies given by

 εi i hv= +





1
2

 (4.24)

are

 
i

n

n
i

            0 1 2 3

1 00 0 250 0 062 0 016. . . .
 

Show that the gas is in thermodynamic equilibrium with respect to the distribution of 
vibrational energy, and calculate the temperature of the gas. In Equation 4.24, i  is an 
integer which has values in the range zero to infinity, h  is Planck’s constant of action 
(= 6.6252 ×  10– 34  J· s), and the vibration frequency, ν , is 7.00 ×  1013  s– 1 .
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Solution to Quantitative Problem 1 

From Equations 4.17, 4.18, and 4.24,
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Normalizing gives

 

n

n
n

n
n

n
n

n

0

1

2

3

0 5 0 5 1 0

0 125 0 5 0 25

0 031 0 5 0 062

0 008

= =

= =

= =

=

. . .

. . .

. . .

. 00 5 0 016. .=

 



118 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

which shows that the gas is in equilibrium with respect to the distribution of vibra-
tional energy. The temperature of the gas is obtained as

 T
h

kB

= = × ×
× ×

=
−

−
ν

1 386
6 6262 10 7 00 10

1 386 1 38065 10
2

34 13

23.
( . )( . )

. .
4424 K  

Quantitative Problem 2 

The isotopic composition of lead in atomic percent is as follows:

Atomic Weight Atomic Percent 

204 1.5

206 23.6

207 22.6

208 52.3

Calculate the molar configurational entropy of lead.

Solution to Quantitative Problem 2 

The configurational entropy is obtained from the Boltzmann equation:

 S kB= ln Ω  (4.21)

where

 Ω = ( )!
( . )!( . )!( . )!( . )!

N

N N N N
O

O O O O0 015 0 236 0 226 0 523
 

Stirling’s theorem gives
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N N NO O O−
= × − × − × − 77 251 10
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6 498 10

24
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.

.

×
− ×

= ×
   

 

Therefore, the molar configurational entropy is

 S kB= = × × × =−ln ( . ) ( . ) .Ω 1 38054 10 6 498 10 8 9723 23  J/K  
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PrOBLeMS

4.1   A rigid container is divided into two compartments of equal volume by a parti-
tion. One compartment contains 1 mole of ideal gas A  at 1 atm, and the other 
contains 1 mole of ideal gas B  at 1 atm. Calculate the increase in entropy which 
occurs when the partition between the two compartments is removed. If the first 
compartment had contained 2 moles of ideal gas A , what would have been the 
increase in entropy when the partition was removed? Calculate the correspond-
ing increases in entropy in each of the preceding two situations if both compart-
ments had contained ideal gas A .

4.2   Show that, when n  atoms of A  and n  atoms of B  form a randomly mixed solu-
tion, the fraction of the total number of distinguishable complexions which 
occur in the most probable distribution decreases with the increasing value of n .

4.3   Assuming that a silver– gold alloy is a random mixture of gold and silver atoms, 
calculate the increase in entropy when 10 g of gold are mixed with 20 g of sil-
ver to form a homogeneous alloy. The gram atomic weights of Au and Ag are, 
respectively, 198 and 107.9.

4.4   On the assumption that copper– nickel alloys are random mixtures of copper 
and nickel atoms, calculate the mass of copper which, when mixed with 100 g 
of nickel, causes an increase in entropy of 15 J/K. The gram atomic weights of 
Cu and Ni are, respectively, 63.55 and 58.69.

4.5 *   We saw in Section 4.6 (Equation 4.20) that A′  = – nk B  T  ln Z . We will see in the 
next chapter that ∂ ′ ∂ = − ′A T S/ . Perform the differentiation of A ′ with respect to 
temperature and obtain the relationship for the entropy of an isolated system in 
terms of its partition function Z .

4.6 *   A weak magnetic field is applied to a system of up and down spins. The up spins 
have a slightly lower energy state than down spins. This is because the up spins 
are favored by the weak magnetic field. Thus,

 ε ε↑ ↓<  

 a. Determine the partition function for this system under the influence of the 
weak magnetic field.

 b. Determine the ratio of n n↑ ↓/  for very high temperatures and very low 
temperatures.

* New problem in this edition
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ChAPter 5

Fundamental equations and 
their relationships

5.1 INtrODUCtION

The main power of the thermodynamic method stems from its provision of crite-
ria for equilibrium in materials systems and for the determination of the effects that 
changes in the external influences acting on the system have on the equilibrium state. 
The practical usefulness of this power is, however, determined by the practicality of 
the equations of state for the system— that is, the relationships which can be estab-
lished among the thermodynamic variables of the system.

Combining the First and Second Laws of Thermodynamics for one mole of a 
simple system leads to Equation  3.12:

 dU TdS PdV= −  

This fundamental equation gives the relationship between the dependent variable U  
(molar internal energy ) and the independent molar variables S  and V  for a closed 
system, consisting of 1 mole of the material, which is undergoing a process involving 
a change of volume against the external pressure as the only form of work performed 
on, or by, the system. Combining the First and Second Laws also provides the fol-
lowing criteria for equilibrium:

• In a simple system of constant internal energy and constant volume, the molar 
entropy has its maximum value.

• In a simple system of constant entropy and constant volume, the molar internal 
energy has its minimum value.

The further development of thermodynamics beyond Equation  3.12 arises, in 
part, from the fact that, from a practical point of view, the choice of S  and V  as 
the independent variables is inconvenient. Although the volume of a system can 
be measured with relative ease and, in principle, can be controlled, entropy can 
be neither simply measured nor simply controlled. It is thus desirable to develop 
a simple expression, similar in form to Equation  3.12, which contains a more 
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convenient choice of independent variables and which can accommodate changes 
in the composition of the system. From a practical point of view, a convenient pair 
of independent variables would be temperature and pressure, since these variables 
are easily measured and controlled. The derivation of an equation of state of the 
simple form of Equation  3.12, but using P  and T  as the independent variables, and 
of a criterion for equilibrium in a constant-pressure, constant-temperature system, 
are thus desirable. Alternatively, from the theoretician’ s point of view, a convenient 
choice of independent variables would be V  and T , since constant-volume constant-
temperature systems are easily examined by the methods of statistical mechanics. 
This arises because fixing the volume of a closed system fixes the quantization of 
its energy levels, and thus, the Boltzmann factor, exp( / ),−εi j kT , and the partition 
function, both of which appear in Equation  4.17, have constant values in constant-
volume constant-temperature systems. Thus, the derivation of an equation of state 
using V  and T  as the independent variables and the establishment of a criterion for 
equilibrium in a system of fixed volume and fixed temperature are also desirable. 
In Sections 5.3 and 5.4, fundamental equations using these independent variables 
will be developed.

Equation  3.12 cannot be applied to systems which undergo changes in composi-
tion caused by chemical reactions or to systems which perform work other than the 
work of expansion against an external pressure (so-called P -V  work). Since systems 
which experience changes in composition are of prime importance to the materi-
als scientist and engineer, composition variables must be included in any equation 
of state and in any criterion for equilibrium. Also, any equation of state must be 
capable of accommodating forms of work other than P -V  work, such as the electrical 
work performed by a galvanic cell or magnetic work performed on the system by an 
applied external magnetic field.

Thus, although Equation  3.12 lays the foundation of thermodynamics, it is neces-
sary to develop other thermodynamic potentials (which are sometimes called aux-
iliary functions ) which, as dependent variables, are related in simple form to more 
convenient choices of independent variables. Also, with this increase in the number 
of thermodynamic functions, it is necessary to establish the relationships which exist 
among them. It is often found that some required thermodynamic expression which 
itself is not amenable to experimental measurement is related in a simple manner to 
some measurable quantity. Examples of this have been presented in Chapter 3, where 
it was found that

 
∂ ′
∂ ′







= − ∂ ′
∂ ′







= ∂ ′
∂ ′







=U

S
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S

V
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TV S U

, ,    and   

In this chapter, the thermodynamic potentials (state functions) H  (the enthalpy), 
A  (the Helmholtz free energy), G  (the Gibbs free energy), and µ i   (the chemical 
potential of the species i ) are defined and their properties and interrelationships 
examined.
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5.2 the eNthALPY,  H  

We have already been introduced to the state function enthalpy in  Section 2.5. 
It is defined as

 ′ ≡ ′ + ′H U PV  

Its full differential is seen to be

 dH dU PdV V dP′ = ′ + ′ + ′  

 dH TdS V dP′ = ′ + ′  (5.1)

We see that the natural thermodynamic independent variables for enthalpy are S ́ and 
P ; that is, H ́ = H ́(Sʹ ,P ). For a system undergoing a change of state at constant pres-
sure and doing only P -V  work, Equation  5.1 simplifies to

 dH q TdSP′ = = ′δ  

This equation shows that the change of state of a simple closed system at constant 
pressure, during which only P -V  work is done, is the change in the enthalpy of the 
system and equals the thermal energy entering or leaving the system, q P  . For this 
reason, it was called the heat function at constant pressure  by Gibbs (Josiah Willard 
Gibbs, 1839– 1903), who introduced it in 1875.* More of the properties and applica-
tions of the enthalpy state variable will be examined in Chapter 6.

5.3 the heLMhOLtZ Free eNerGY,  A  

Changes in the internal energy, U , can be measured by processes involving heat 
and work. Changes in the enthalpy at constant pressure P  quantify the changes in the 
thermal energy of the system. It may be asked, is there a thermodynamic potential 
that measures the maximum work that a change on the internal energy of a system 
can perform? There is, and it is called the Helmholtz free energy  or work term A . 

Consider a simple system that undergoes a spontaneous change of state at con-
stant temperature T . Since the process is spontaneous, we can write

 ∆ ∆ ∆′ = ′ + ′ >S S Stot system surroundings 0  

* J. W. Gibbs, “ On the Equilibrium of Heterogeneous Substances” , Trans. Conn. Acad.  (1875), vol. 3, 
pp. 108– 248.
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If the process is done at constant volume, the change in the internal energy of the system 
is δ qV  . This δ qV   changes the entropy of the surroundings by the amount δq TV / . Thus, 
we can write

 ∆ ∆ ∆′ = ′ −
′

S S
U

T
tot system

system  

or

 − ′ = ′ − ′T S U T S∆ ∆ ∆tot system system  (5.2)

Since the process is spontaneous, ∆ ∆′ − ′ <U T Ssystem system 0 . This gives us a cri-
terion for a spontaneous change in terms that only apply to the system. If 
∆ ∆′ − ′ >U T Ssystem system 0 , no spontaneous change will occur, according to the Second 
Law of Thermodynamics.

Defining the Helmholtz free energy as

 ′ ≡ ′ − ′A U TS  

we obtain, for a system undergoing a change of state from state 1 to state 2,

 ′ − ′( ) = ′ − ′( ) − ′ − ′( )A A U U T S T S2 1 2 1 2 2 1 1  

and, if the system is closed,

 ′ − ′( ) = −U U q w2 1  

in which case

 ′ − ′( ) = − − ′ − ′( )A A q w T S T S2 1 2 2 1 1  

If the process is also isothermal— that is, T 2  = T 1  = T , which is the temperature 
of the heat reservoir which supplies or withdraws thermal energy during the 
process— then, from the Second Law, Equation  3.4a,

 q T S S≤ ′ − ′( )2 1  

and hence,

 ′ − ′( ) ≤ −A A w2 1  

A comparison with

 δw TdS dU≤ ′ − ′system system  (3.11) 
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shows that the equality can be written as

 ′ − ′( ) + ′ = −A A T S w2 1 irr∆  (5.3)

and thus, during a reversible isothermal process, for which ∆ Sʹ irr  is zero, the amount 
of work done by the system is a maximum and is equal to the decrease in the value 
of the Helmholtz free energy. For this reason, the Helmholtz free energy is some-
times called the work function . Furthermore, for an isothermal process conducted at 
constant volume, which, necessarily, does not perform P -V  work, Equation  5.3 gives

 ( )′ − ′ + ′ =A A T S2 1 irr∆ 0  (5.4)

or, for an increment of such a process,

 dA TdS′ + ′ =irr 0  

Since dSʹ irr  is always positive during a spontaneous process, it is seen that Aʹ  decreases 
during a spontaneous process, as shown.

Also, since dSʹ irr  = 0 is a criterion for a reversible process, equilibrium requires that

 dA′ = 0  (5.5)

Thus, in a closed system held at constant T  and V ́, the Helmholtz free energy can only 
decrease (for spontaneous processes) or remain constant. Equilibrium is attained in 
such a system when A ́ achieves its minimum value. The Helmholtz free energy thus 
provides a criterion for equilibrium in a system at constant temperature and constant 
volume— namely,

 dA d AT V T V′ = ′ >, ,0 02  and   

The natural independent thermodynamic variables for the Helmholtz free energy are 
seen to be T  and V ; that is, A ́ = A ́(T ,V ́).

Consider a crystalline solid in equilibrium with its vapor, the system being at 
constant volume and its pressure below that of its triple point. As the temperature 
approaches 0 K, the internal energy of the two-phase system approaches its mini-
mum value and the entropy of the two-phase system approaches zero, since the vapor 
phase vanishes and the entropy of the crystalline phase approaches zero (Figure  5.1a 
and Figure  5.2b). On the other hand, as the temperature of the system becomes very 
high, the solid phase disappears and all the atoms enter the vapor phase, which 
maximizes the entropy of the system (Figure  5.1c). At intermediate temperatures, 
there is an equilibrium between the vapor and solid phases. The number of atoms in 
the vapor phase in equilibrium with the solid can be determined from a plot of the 
Helmholtz energy versus n v  , since the Helmholtz energy is a minimum at equilibrium 
(Figure  5.3). This plot shows that the equilibrium is a trade-off between the system 
minimizing its internal energy, U ́, and maximizing its entropy. As the temperature 
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rises from T 1  to T 2  (Figure  5.4), the minimum in the Helmholtz energy moves to a 
larger number of atoms in the vapor— namely, n v  (T 2 ) >  n v  (T 1 ). Eventually, at the 
limit of very high temperature, all the atoms are in the vapor phase. It should also 
be noted that the schematic plot of the Helmholtz free energy shows that its slope at 
n v   = 0 is large and negative, meaning for all temperatures greater than 0 K, there will 
be a finite number of atoms in the vapor phase in equilibrium with the solid.

(a) (b) (c)

Figure 5.1   schematic of a crystalline solid and its vapor at three different temperatures, 
where the pressure is below its triple point. (a) T  = 0 K, (b) 0 <  T , (c) T  very large. 
the volume of the system is fixed.

Constant volume,
constant temperature

(a)

(b)

S¢

U¢

0 n
nv

Figure 5.2   the variations of (a) internal energy, U ́, and (b) entropy, S ́, with the number of 
atoms in the vapor phase of a closed solid-vapor system at constant temperature 
and constant volume.
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Constant volume,
constant temperature

U¢

A¢ = U¢ – TS¢

– TS¢

nv(eq, T ) n0
nv

Figure 5.3   Illustration of the criterion for equilibrium in a closed solid-vapor system at con-
stant temperature and constant volume.

Constant volume,
constant temperature

U¢

A¢ = U¢ – T1S¢

A¢ = U¢ – T2S¢

– T1S¢

– T2S¢

nv(eq, T1) nv(eq, T2) n0

nv

Figure 5.4   the influence of temperature on the equilibrium state of a closed solid-vapor 
system of constant volume.
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5.4 the GIBBS Free eNerGY,  G  

The Gibbs free energy is defined as

 ′ ≡ ′ − ′G H TS  

For a system of one mole, undergoing a change of state from 1 to 2, this yields

 
( ) ( ) ( )

( ) ( ) (

G G H H T S T S

U U P V PV T S T S
2 1 2 1 2 2 1 1

2 1 2 2 1 1 2 2 1 1

− = − − −
= − + − − − ))

 

For a closed simple system, the First Law gives

 ( )U U q w2 1  − = −  

and thus,

 G G q w P V PV T S T S2 1 2 2 1 1 2 2 1 1−( ) = − + −( ) − −( )  (5.6)

If the process is carried out such that T 1  = T 2  = T , which is the temperature of the 
heat reservoir which supplies or withdraws thermal energy from the system, and 
also, if P 1  = P 2  = P , which is the constant pressure at which the system undergoes a 
change in volume, then

 ( )G G q w P V V T S S2 1 2 1 2 1− = − + −( ) − −( )  

In the expression for the First Law, the work w  is the total  work done on or by the 
system during the process. Thus, if the system performs chemical, magnetic, or elec-
trical work in addition to the work of expansion against the external pressure, then 
these work terms are included in w . Thus, w  can be expressed as

 w w P V V= ′ + −( )2 1  

where:
 P (V 2  –  V 1 ) is the P -V  work done by the change in volume at the constant pressure P 
 w'    is the sum of all of the non– P-V  forms of work done

Substituting into Equation  5.6 gives

 ( )G G q w T S S2 1 2 1− = − ′ − −( )  

and again, since

 q T S S≤ −( )2 1  
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then

 ′ ≤ − −( )w G G2 1  (5.7)

The equality can be written as

 − ′ = −( ) +w G G T S2 1 irr∆  

Thus, for an isothermal, isobaric process, during which no form of work other than 
P -V  work is performed (i.e., w'   = 0),

 ( )G G T S2 1 irr− + =∆ 0  (5.8)

Such a process can only occur spontaneously (with a consequent increase in entropy) 
if the Gibbs free energy decreases. Since Δ S irr  = 0 is a criterion for thermodynamic 
equilibrium, then an increment of an isothermal isobaric process occurring at equi-
librium requires that

 dG = 0  (5.9)

Thus, for a system undergoing a process at constant T  and constant P , the Gibbs free 
energy can only decrease or remain constant, and the attainment of equilibrium in 
the system coincides with the system having the minimum value of G  consistent with 
the values of P  and T ; that is,

 dG d GT P T P, ,= >0 02  and   

This criterion of equilibrium, which is of considerable practical use, will be used 
extensively in the subsequent chapters.

5.5 the FUNDAMeNtAL eQUAtIONS FOr A CLOSeD SYSteM

Using the aforementioned definitions for H , A , and G , we have the following four 
fundamental equations for one mole of a closed simple system:

 dU TdS PdV= −  (5.10a)

 dH TdS VdP= +  (5.10b)

 dA SdT PdV= − −  (5.10c)

 dG SdT VdP= − +  (5.10d)

As indicated earlier, work terms in addition to work against pressure may also be 
present. This adds terms to the fundamental equations. For example, if the system 
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is also under the influence of an applied magnetic field, the work performed on the 
system is V μ 0 HdM  (V  is the molar volume) and must be added to the combined First 
and Second Laws expression (Equation  3.12) to obtain

 dU TdS PdV V dM′ = ′ − ′ + ′µ0H  (5.11a)

The other three forms of the fundamental equation become*

 dH TdS V dP V Md′ = ′ + ′ − ′µ0 H  (5.11b) 

 dA S dT PdV V dM′ = − ′ − ′ + ′ µ0H  (5.11c)

 dG S dT V dP V Md′ = − ′ + ′ − ′µ0 H  (5.11d) 

Let us look at the fundamental equation which uses G ′  as the dependent variable 
and temperature, pressure, and magnetic field as the independent intensive variables.

 dG S dT V dP V Md′ = − ′ + ′ − ′µ0 H  

The slope of the curve of the Gibbs free energy, G, versus temperature, T , at constant 
pressure and applied magnetic field can be seen to be
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When there is no applied magnetic field, this reduces to the following equation:
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* The forms shown here are consistent with the modern texts of thermodynamics, using: H  = U  + PV  
–  V μ 0 MH ; A  = U  –  TS , and G  = H  –  TS . See R. C. O’ Handley, Modern Magnetic Materials: Principles 
and Applications , John Wiley, New York, 2000; and J. M. D. Coey, Magnetism and Magnetic 
Materials , Cambridge University Press, Cambridge, UK, 2010.
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5.6 the VArIAtION OF the COMPOSItION 
WIthIN A CLOSeD SYSteM

So far, we have restricted our considerations to closed systems in which the 
phases were of fixed composition. In such cases, it was found that simple systems 
have two independent variables which, when fixed, uniquely determine the state of 
the system.

However, a closed system of a fixed amount of matter can still have changes of 
the composition of its phases. The number of moles of the various species present 
can change as the consequence of a chemical reaction occurring in the system. Also, 
new phases can be formed by chemical reaction. Thus, the minimization of G  at 
constant P  and T  occurs when the system has a unique number or ratio of moles of 
each phase. For example, if the system contains the gaseous species CO, CO2 , H2 , 
and H2 O, then, at constant T  and P , the minimization of G  will occur when the reac-
tion equilibrium CO + H2 O = CO2  + H2  is established (Figure  5.5).

5.7 the CheMICAL POteNtIAL

The Gibbs free energy of a simple closed system with no chemical reactions 
depends only on the temperature and the pressure. If the system is an open system, 
since the Gibbs free energy is an extensive property, its value is dependent on the 
amount of matter of the system. It is therefore necessary that the number of moles 
within the open system be specified. The Gibbs free energy is thus a function of T , 
P , and the numbers of moles of all of the species; that is,

 ′ = ′( )G G T P n n ni j k, , , , ,  …  (5.13)

G

CO + H2O CO2 + H2
Equilibrium

Figure 5.5   schematic of the Gibbs free energy vs. degree of reaction completion for the 
Co + h2 o ↔  Co2  + h2  reaction.
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in which Gʹ   is the total Gibbs free energy, and n i  , n i  , n k  , …  are the numbers of moles 
of the species i , j , k , …  present in the system, and the thermodynamic state of the 
system is only fixed when all of the independent variables are fixed. Differentiating 
Equation  5.13 gives
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where

 
∂
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i k

i
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, , ,�1

 (5.16)

is the sum of k  terms (one for each of the k  species), each of which is determined by 
the partial differentiation of G  with respect to the number of moles of the i th species 
at constant T , P , and n j  , where n j   represents the numbers of moles of every species 
other than the i th species.

The term ( ’/ ) , , ,∂G dni T P nj � is called the chemical potential  of species i , and is 
usually denoted as μ i  .

The chemical potential of the i th species in a homogeneous phase is thus the 
incremental change of the Gibbs free energy that accompanies an incremental 
increase of the species to the system at constant temperature, pressure, and numbers 
of moles of all of the other species. Alternatively, if the system is large enough that 
the addition of 1 mole of the i th species at constant temperature and pressure does 
not measurably change the composition of the system, then μ i   is the increase in the 
Gibbs free energy of the system caused by the addition.

Equation  5.15 can be written as

 dG S dT V dP dni i

k

′ = − ′ + ′ +∑µ
1

 (5.17)

in which Gʹ   is expressed as a function of T , P , and the numbers of moles of each 
substance. Equation  5.15 can thus be applied to open systems , which exchange mat-
ter as well as thermal energy with their surroundings, and to closed  systems, which 
undergo changes in composition caused by chemical reactions (Section 5.6).
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Similarly, Equations 3.12, 5.10b, and 5.10c can be made applicable to open systems 
by including the terms describing the dependences on composition of, respectively, U , 
H , and A :

 dU TdS PdV
U

n
dn

i S V n

i

k

j

′ = ′ − ′ + ∂ ′
∂







∑

, , ,�1

 (5.18)

 dH TdS V dP
H

n
dn

i S P n

i

k

j

′ = ′ − ′ + ∂ ′
∂







∑

, , ,�1

 (5.19)

 dA S dT PdV
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 (5.20)

Inspecting Equations  5.16 through 5.20 shows that
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 (5.21)

Hence, the complete set of equations for open systems with only P -V  work is as 
follows:

 dU TdS PdV dni i′ = ′ − ′ + Σµ  (5.22)

 dH TdS V dP dni i′ = ′ + ′ +  Σµ  (5.23)

 dA S dT PdV dni i′ = − ′ − ′ + Σµ  (5.24)

 dG S dT V dP dni i′ = − ′ + ′ +  Σµ  (5.25)

From Equations  5.22 through 5.25, we have the following:

• Uʹ   is the characteristic thermodynamic potential (state function) of the independent 
extensive variables S , Vʹ  , and composition; that is, Uʹ   = Uʹ  (Sʹ  ,Vʹ  ,n i  ).

• Hʹ   is the characteristic thermodynamic potential (state function) of the independent 
variables Sʹ  , P  and composition; that is, Hʹ   = Hʹ  (Sʹ  ,P ,n i  ).

• Aʹ   is the characteristic thermodynamic potential (state function) of the independent 
variables T , Vʹ  , and composition; that is, Aʹ   = Aʹ  (T ,Vʹ  ,n i  ).

• Gʹ   is the characteristic thermodynamic potential (state function) of the independent 
intensive variables T , P , and composition; that is, Gʹ   = Gʹ  (T ,P ,n i  ).

Although all four of the preceding equations are basic in nature, Equation  5.25 
is sometimes called the   fundamental equation  because of its practical usefulness.
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A comparison of the combined First and Second Laws of a simple system

 dU q w w′ = − − ′δ δ δ  

with Equation  5.22, indicates that, for a closed system undergoing a process involv-
ing a reversible change in composition (e.g., a reversible chemical reaction),

 δq TdS= ′  

and

 δ µw PdV dni i= ′ +  Σ  

The term Σ μ i  dn i   is the chemical work  done by the system, which was denoted as wʹ   
in Equation  5.7, and the total work w  is the sum of the P -V  work and the chemical 
work. Gibbs introduced this term to thermodynamics in 1875.*

5.8 therMODYNAMIC reLAtIONS

Including the chemical potential terms in Equations  5.11a through 5.11d yields 
an open system:

 dU TdS PdV V dM dni i′ = ′ − ′ + ′ +µ µ0H Σ  

 dH TdS V dP V Md dni i′ = ′ + ′ − ′ +µ µ0 H Σ  

 dA S dT PdV V dM dni i′ = − ′ − ′ + ′ +µ µ0H Σ  

 dG S dT V dP V Md dni i′ = − ′ + ′ − ′ +µ µ0 H Σ  

We see that the intensive  thermodynamic state variables T , P , H, and μ i  are equal 
to the derivatives of an energy potential with respect to their conjugate extensive  
variables, S , V , M , and n i  , respectively:

 T
U

S

H

SV n P ni i

= ∂ ′
∂ ′







= ∂ ′
∂ ′







, , , ,M H

 (5.26)

 P
U

V

A

VS n T ni i

= − ∂ ′
∂ ′







= − ∂ ′
∂ ′







, , , ,M M

 (5.27)

* J. W. Gibbs, “ On the Equilibrium of Heterogeneous Substances,”  Trans. Conn. Acad.  (1875), vol. 3, 

pp. 108– 248 (Equation 12).
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We also see that the extensive  thermodynamic state functions are derivatives of a 
thermodynamic potential (energy) function with respect to their conjugate intensive  
state variables:
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5.9 MAXWeLL’ S reLAtIONS

If Z  is a state function and x  and y  are chosen as the independent thermodynamic 
variables in a closed system of fixed composition, then we write

 Z Z x y= ( ),

differentiation of which gives

 dZ
Z

x
dx

Z

y
dy

y x

= ∂
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+ ∂
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If the partial derivative ( / )∂ ∂Z x y  is itself a function of x  and y , being given by 
( / ) ( , )∂ ∂ =Z x L x yy , and similarly, the partial derivative ( / ) ( , )∂ ∂ =Z y M x yx , then

 dZ Ldx Mdy= +

Thus,
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and
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But, since Z  is a state function, the change in Z  is independent of the order of dif-
ferentiation; that is,
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 (5.32)

Previously, we obtained the following equations of state for a one mole of closed 
simple system:

 dU TdS PdV= −  (3.12)

 dH TdS VdP= +  (5.10b)

 dA SdT PdV= − −  (5.10c)

 dG SdT VdP= − +  (5.10d)

These equations yield the following Maxwell relations:
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Additional Maxwell relations can be obtained by considering systems with varia-
tions in composition or with magnetic terms (see Problems 5.14* and 5.15*).
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The value of the preceding Maxwell relations lies in the fact that they contain 
many experimentally measurable quantities that can be used to determine quantities 
that are not easy to measure directly. For example, Equation  5.35 shows that increas-
ing the pressure on a material at constant temperature deceases the entropy of the 
material by an amount that is proportional to α VdP .

5.10 eXAMPLeS OF the APPLICAtION OF MAXWeLL reLAtIONS

5.10.1 the First  TdS   equation 

Consider the dependence of the entropy of 1 mole of a substance on the indepen-
dent variables T  and V .

 S S T V= ( ),  

differentiation of which gives

 dS
S

T
dT

S

V
dV

V T
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+ ∂
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 (i)

At constant volume, the First Law can be written as

 TdS q dU c dTv v= = =δ  

The partial derivatives of Equation  (i)

 
∂
∂







= ∂
∂







= ∂
∂







S

T

c

T

S

V

P

TV

v

T V

and  

are obtained from the Maxwell relation of equation 5.34.
Thus, Equation  (i) can be written as

 dS
c
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 (ii)

Multiplying the equation by T , the following is obtained.

 TdS c dT T
P

T
dVv

V

= + ∂
∂







 

This equation is called the first TdS  equation by Zemansky.* The term ( / )∂ ∂P T v  can 
be shown to equal α β/ T . So, the equation can be written as

* M. W. Zemansky, Heat and Thermodynamics , McGraw-Hill, New York, 1957.
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 TdS c dT
T

dVv
T

= + α
β

 

We have the following cases:

• For an isothermal expansion :

 ∆S dV
T

= >∫ α
β

0

• If the temperature is raised at constant volume:

 ∆S
c

T
dTv= >∫ 0

• For an isentropic expansion :
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If the substance is 1 mole of an ideal gas, we can write
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and thus, Equation (ii) can be written as

 dS
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T
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R

V
dVv= +  (iv)

the integration of which (assuming constant c v  ) between the states 1 and 2 gives, for 
an ideal gas,
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We have the following three special cases for 1 mole of an ideal gas:

• For an isothermal expansion  of an ideal gas:

 ∆S R
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V
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1
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• If the temperature of an ideal gas is raised at constant volume:

 ∆S c
T

T
vgas = 






ln 2

1

 

• For an isentropic expansion  of an ideal gas:
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,  and thus,  ln ln  

and since γ = c cP V/  and c P   –  c V   = R , for an ideal gas, we obtain (cf. Section 2.7)
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5.10.2 the Second  TdS   equation 

Consider the dependence of the entropy of 1 mole of a substance on the indepen-
dent variables T  and P :

 S S T P= ( ),  

differentiation of which gives
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At constant pressure, the First Law can be written as
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Using these relations, we can write Equation (vi) in the form of the second TdS  
equation:

 TdS c dT T
V

T
dP c dT VTdPP

P

P= − ∂
∂







= − α  

We have the following cases:

• For an isothermal reversible change of pressure:

 dS VdP= −α  

 which shows that an increase in P  at constant T  decreases the entropy of the sub-
stance (cf. Equation  5.35).



140 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

• For an isobaric reversible change in temperature:

 dS c
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P=  

 ∆S c
dT

T
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 Thus, increasing the temperature at constant pressure increases the entropy of the 
substance.

• For an isentropic process:
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 This shows that if the entropy is held constant, and the temperature is raised, the 
pressure is also raised if α  >  0.

These cases reduce to the following when we consider 1 mole of an ideal gas:

• For an isothermal reversible change of pressure of an ideal gas:
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• For an isobaric reversible change in temperature of an ideal gas:
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• For an isentropic process of an ideal gas:
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Thus, if an ideal gas increases in temperature at constant entropy, the pressure must 
also increase. This can be rationalized as follows: increasing the temperature would 
increase the entropy of the gas, so the pressure must decrease to keep the entropy 
constant.

5.10.3   S   and  V   as Dependent Variables and  T   
and  P   as Independent Variables 

We can write the entropy and the volume of a one mole of one-component simple 
system as a function of the intensive variables T  and P  (i.e., S  = S (T , P ) and V  = V (T , 
P )) and obtain the following:
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and by a Maxwell relation (Equation 5.35):
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Thus, we can write
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or, in matrix notation:
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This set of equations shows that the response of a material to a rise in tempera-
ture at constant pressure is twofold: the entropy changes by an amount proportional 
to the material’ s heat capacity and the volume changes by an amount propor-
tional to the coefficient of expansion of the material. Furthermore, a change in the 
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pressure of the system at constant temperature changes the material’ s volume by 
an amount which is proportional to the negative of its isothermal compressibility, 
while its entropy changes proportional to the negative of its coefficient of expansion. 
Figure  5.6 shows in diagrammatic form the relationship among the four thermody-
namic variables under discussion.

5.10.4 An energy equation (Internal energy)

Another example of the use of the Maxwell’ s relations is as follows. For one mole 
of a closed system of fixed composition, Equation  3.12 gives

 dU TdS PdV= −  

Thus,
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Using a Maxwell relation  (Equation 5.34) allows this to be written as
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which is an equation of state relating the internal energy, U , of a closed system of 
fixed composition to the measurable quantities T , V , and P . If the system is 1 mole of 

Entropy

Temperature Pressure

Volume

cP = T

bT = –

¶S

¶T
= –a

P
T

= a
P T

¶V

¶T

1
V

V

1
V

¶V

¶P

¶S

¶P

Figure 5.6   the intrinsic independent thermodynamic parameters T  and P  with their conju-
gate extrinsic thermodynamic parameters. also shown are the properties which 
relate the various thermodynamic variables.
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ideal gas, substitution of Equation (iii) into (vii) gives ( / )∂ ∂ =U V T 0 , which shows 
that the internal energy of an ideal gas is independent of the volume of the gas.

5.10.5 Another energy equation (enthalpy)

Similarly, for one mole of a closed system of fixed composition, Equation  5.10b 
gives dH  = TdS  + VdP , in which case
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Substituting a Maxwell relation  (Equation 5.35) gives
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which is an equation of state which gives the dependence of enthalpy on the measure-
able quantities T , P , and V . Again, if the system is 1 mole of an ideal gas, this equa-
tion of state shows that the enthalpy of an ideal gas is independent of its pressure.

5.10.6 A Magnetic Maxwell relation

For another example, we obtain a Maxwell relation on the fundamental equation 
for a single-component material under the influence of an external magnetic field.

 ′ =G G T P( , , )H  

 dG S dT V dP V d′ = − ′ + ′ − ′µ0M H  

 ∂ ′
∂







= ′ ∂
∂







S
V

TT P PH H, ,

µ0
M  

Since increasing the applied field H  decreases the spin entropy of a magnetic mate-
rial, the plot of magnetization versus temperature must have negative slope. We will 
use this equation later to discuss the magnetocaloric effect. The applied magnetic 
field and the temperature oppose each other’ s effects on the ordering or disordering 
of the magnetic spins.

In ferromagnetic materials, the magnetization is the order parameter of the sys-
tem. Above the Curie temperature (T C  ), where the material is paramagnetic, M  = 0. 
Below the Curie temperature, the material is ferromagnetic, and with decreasing 
temperature the magnetization increases continuously until it reaches its maximum 
value, M (0) at 0 K. Thus, increasing the temperature of a ferromagnet decreases its 
magnetization and increases its entropy. Figure  5.7 plots M M( )/ ( ) /T T TC0 versus  
(the reduced thermodynamic variables).
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5.10.7 S, V, and M with Independent Variables T, P, and H

Writing the entropy, the volume, and the magnetization for one mole of a one-
component system as a function of the intensive variables T, P, and H, we obtain the 
following:
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These equations can be written in matrix form, as done previously for the two inten-
sive variables case.
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Figure  5.7   reduced magnetization vs. reduced temperature for a magnetic material 
displaying a negative slope for T  >  0.
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Each of the terms in the 3 ×  3 matrix represents a property of the substance in 
question. Also, it can be proved that the cross-diagonal terms are equal in absolute 
magnitude to each other.

5.11 ANOther IMPOrtANt FOrMULA

Given three state functions x , y , and z  and a closed system of fixed composition, then

 x x y z= ( ),  

or

 dx
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= ∂
∂
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For an incremental change of state at constant x ,
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This can be written as
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∂











∂
∂







∂
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= −x

y

y

z

z

x
z x y

1  (5.36)

Equation  5.36 can be used with any three state functions. It can be seen that each of 
the state functions appears once in the numerator, once in the denominator, and once 
outside the bracket.

5.12 the GIBBS– heLMhOLtZ eQUAtION

Starting with the definition of the Gibbs free energy for one mole of a substance,

 G H TS= −  

dividing by T  and taking the derivative of both sides with respect to T  at constant 
pressure, we obtain
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Thus, we obtain
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TP
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 (5.37)

which is a form of what is called the Gibbs– Helmholtz equation . It is applicable to a 
closed system of fixed composition undergoing processes at constant pressure.

For an isobaric change of state of a closed system of fixed composition, Equation  5.37 
gives the relation of the change in G  to the change in H  as

 ∂ 





∂













 = −

∆
∆

G

T
T

H

TP
2

 (5.38)

This equation is of particular use in experimental thermodynamics, as it allows Δ G  to be 
obtained from a measurement of Δ H as well as  Δ H , the heat of a reaction, to be obtained 
from a measurement of the variation of Δ G , the free energy change for the reaction, with 
temperature. The usefulness of this equation will be developed and applied later in the 
text to the calculation of partial molar heats of solution as well as to the calculation of the 
temperature variation of the equilibrium constants of reactions in systems.

The corresponding relationship between the Helmholtz free energy and the inter-
nal energy is obtained as follows:

 A U TS= −

Dividing by T  and performing a similar procedure gives
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TV
2

 (5.39)

This equation is applicable to closed systems of fixed composition undergoing 
processes at constant volume. As before, for a change of state under these conditions:
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TV
2

 (5.40)
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5.13 SUMMArY

 1. The Helmholtz free energy, A , is defined by A  ≡  U  –  TS . In a closed system held at 
constant T  and V , the Helmholtz free energy can only
• Decrease, for a spontaneous process
• Remain constant if the system is in equilibrium

 Equilibrium at constant T  and V  is attained when the Helmholtz free energy 
achieves its minimum value.

 2. The Gibbs free energy, G , is defined by G  ≡  H  –  TS . In a closed system at con-
stant pressure and temperature, the Gibbs free energy is a minimum at equilibrium. 
During an isothermal, isobaric process during which no form of work other than 
P -V  work is performed (i.e., w'   = 0), G  can only
• Decrease for a spontaneous process
• Remain constant if the system is in equilibrium

 Equilibrium is attained at constant T  and P  when the Gibbs free energy reaches its 
minimum value.

 3. For a change of state at constant pressure, Δ H ′ = q p  .
 4. The chemical potential, μ i  , of the i th component can be expressed as

 µi
i T P n i S V n i S P n
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n

U

n
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n
j j

= ∂ ′
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∂







= ∂ ′
∂







, , , , , , jj j
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ni T V n

= ∂ ′
∂







, ,

 

 5. The internal energy, Uʹ , varies with Sʹ , V ́, and composition as

 dU TdS PdV dni i′ = ′ − ′ +  Σµ  

 The enthalpy, H ′, varies with S ′, P , and composition as

 dH TdS V dP dni i′ = ′ + ′ +  Σµ  

 The Helmholtz free energy, A ′, varies with T , V ′, and composition as

 dA S dT PdV dni i′ = − ′ − ′ + Σµ  

 The Gibbs free energy, G ′, varies with T , P , and composition as

 dG S dT V dP dni i′ = − ′ + ′ + Σµ  

 6. For one mole of a closed system with magnetic terms, the following holds.

 dG SdT VdP V d= − + − µ0M H  

 7. The Maxwell relations for one mole of a closed simple system are
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 8. With x , y , and z  as state functions, the following is valid.

 ∂
∂











∂
∂







∂
∂







= −x

y

y

z

z

x
z x y

1  

 9. The Gibbs– Helmholtz equations are
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5.14 CONCePtS AND terMS INtrODUCeD IN ChAPter 5

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Auxiliary functions
Chemical potential
Chemical reaction
Chemical work
Fundamental equations
Gibbs free energy
Gibbs– Helmholtz equation
Helmholtz free energy
Magnetic work
Magnetization as order parameter
Maximum entropy criterion
Maxwell relations
Minimum internal energy criterion
Work function

5.15 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

Obtain the following expression:

 c c
VT

p v
T

− = α
β

2
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Solution to Qualitative Problem 1 

Equation  2.8 gives the relationship between c p   and c v   as

 c c
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P T
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  (2.8)

Since we know that α = ∂ ∂1/ /V V T P( ) , we obtain αV V T P= ∂ ∂( )/
Also, P A V T= − ∂ ∂( )/ , so combining this with αV V T P= ∂ ∂( )/ , we obtain

 c c V
A

V

U

V
p v

T T

− = − ∂
∂







+ ∂
∂















α  

 

A U TS

A

V

U

V
T

S

VT T T

= −

∂
∂







= ∂
∂







− ∂
∂







 

Rearranging, we get
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From Equation 5.36,
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Finally,
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Thus,

 c c
VT

p v
T

− = α
β

2

 (5.41)

and the right-hand side of this equation contains only experimentally measurable 
quantities. We see that c cp v− > 0  for all T  >  0; c cp v= = 0  at T  = 0.
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Qualitative  Problem 2 

Derive the third TdS  equation for one mole of a substance,  namely, 
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P
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Solution to Qualitative Problem 2
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5.16 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Determine the constant-volume heat capacity of aluminum given the following data:
At 20° C, aluminum has the following properties:

 cp = ⋅24 36 J mole K. /  

 α = × − −7 5 1 K5 1.0 0  

 βT = × − −1 2 1 atm6 1. 0 0  

 density  2 7  g/cm3, .ρ = 0  

Solution to Quantitative Problem 1 

The atomic weight of aluminum is 26.98, and thus, at 20° C, the molar volume of 
aluminum, V , is

 V =
×

=26 98
2 70 1000

0 010
.

.
.  liters mole  

and thus, the difference between c p   and c v   is (see Qualitative Problem 1):

 c c
VT

p v
T

− = α
β

2
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0 010 293 7 05 10
1 20 10

0 0121

0 01

5 2

6

. ( . )
.

.

.

× × ×
×

= ⋅ ⋅
−

−  liter atm mole K

221
8 3144
0 08206

1 23× = ⋅.
.
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The constant-volume molar heat capacity of aluminum at 20°  C is thus

 24 36 1 23 23 13 J/mole K. . .− = ⋅  

Quantitative Problem 2 

The following example was provided by Dr. Bill Fahrenholtz, University of 
Missouri– Rolla.

The adiabatic thermoelastic effect describes the change in temperature with 
pressure for a brittle solid when it is loaded rapidly (i.e., the rate of loading is much 
more rapid than the rate of heat transfer). This effect has been used to measure the 
stresses that develop around defects in composite materials using cyclic loading and 
a high-speed thermal imaging camera. Using Maxwell relations, derive an expres-
sion for the adiabatic thermoelastic effect. Estimate the change in temperature for 
one mole of alumina that is loaded to 500 MPa.

Data :
Initial temperature = 298 K

α = × −2 2 1 /K5. 0
cP = 8  J/mole K0 ·

Solution to Quantitative Problem 2 

The problem requires calculation of the variation in temperature with pressure at 
constant entropy— that is, ( / )∂ ∂T P s .

Start with the second TdS  equation:
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It is reasonable to assume that Al2 O3  is an incompressible solid and that its heat 
capacity does not vary significantly over small ranges of temperature and pressure. 
Thus, the variables can be separated for integration.

 
∂
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PrOBLeMS

5.1   Show that
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5.2   Show that
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5.3  Show that
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5.4   Show that
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5.5  Show that
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∂
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5.6   Show that
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5.7   Show that
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5.8   Show that
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5.9   Show that
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5.10  Show that
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5.11   Joule and Thomson showed experimentally that when a steady stream of nonideal 
gas is passed through a thermally insulated tube, in which is inserted a throttle 
valve, the temperature of the gas changes and the state of the gas is changed from 
P 1 , T 1  to P 2 , T 2 . Show that this process is isenthalpic. The change in T  is described 
in terms of the Joule– Thomson coefficient, µ J  –  T  , as follows:

 µJ T

H

T

P
− = ∂

∂






 

  Show that

 µ αJ T
p

V

c
T− = − −( )1  

  and show that the Joule– Thomson coefficient for an ideal gas is zero.
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5.12   Determine the values of Δ U′ , Δ H′  , Δ S ′ , Δ A ′ , and Δ G ′  for the following pro-
cesses (in (c), (d), and (e), show that an absolute value of the entropy is required):

 a. The four processes in Problem 4.1
 b. The expansion of 1 mole of an ideal gas at the pressure P  and the tempera-

ture T  into a vacuum to double its volume
 c. The adiabatic expansion of 1 mole of an ideal gas from P 1 , T 1  to P 2 , T 2 
 d. The expansion of 1 mole of an ideal gas at constant pressure from V 1 , T 1  to 

V 2 , T 2 
 e. The expansion of 1 mole of an ideal gas at constant volume from P 1 , T 1  to 

P 2 , T 2 
5.13*  Show that the three TdS  equations can be written as

 

1

2

3

.

.

.

   

   

   

TdS c dT
T

dV

TdS c dT TV dP

TdS c dP
c

V
T

P

V
T P

= +

= −

= +

α
β

α

β
α ααV

dV

 

5.14*   Starting from the following equation valid for one mole of a closed system, 
obtain Maxwell relationships.

 dH TdS VdP V d= + − µ0 M H

5.15*   Starting from the following equation valid for one mole of a closed system, 
obtain Maxwell relationships.

 dA SdT PdV V d= − − + µ0 H M

5.16 *  The cycle shown in Figure  5.8 consists of two isotherms (AB  and CD ) and two 
isobars (BC  and DA ). Use the TdS  equations to draw the T -S  diagram for this 
cycle.

5.17*   Show that β β γT S P Vc c/ /= = , where βT TV V P= ∂ ∂1/ /( )  and βS SV V P= ∂ ∂1/ /( ) .
  Hint : use the TdS  equations.

* New problem in this edition

P

V

A

B

D

C

Figure 5.8   Pressure– volume diagram of two isothermals (AB  and CD ) and two isobaric 
changes (BC  and DA ) making up a cycle.
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ChAPter 6

heat Capacity, enthalpy, entropy, and 
the third Law of thermodynamics

6.1 INtrODUCtION

We have defined two heat capacities— namely, the heat capacity at constant 
volume:

 C
U

T
v

V

= ∂ ′
∂







 

and the heat capacity at constant pressure:
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Recall that in Chapter 5 we arrived at another equation for the constant-pressure heat 
capacity: namely,
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It can also be shown that the following holds for the constant-volume heat capacity:
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In Chapter 2, we also introduced the distinction between the heat capacity per mole 
of substance and the heat capacity of the entire substance as follows:

 C dT nc dT dU c dTv v v= =or  (2.6a)

 C dT nc dT dH c dTp p p= =or  (2.6b)
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in which c p   and c v   are, respectively, the constant-pressure and constant-volume 
molar heat capacities and the internal energy and enthalpy are given for 1 mole of the 
substance. Integration of Equation  2.6b between the states (T 2 ,P ) and (T 1 ,P ) gives 
the difference between the molar enthalpies of the two states as

 ∆ = = ∫H H T P H T P c dTp
T

T

( , ) ( , )2 1
1

2

−  (6.1)

from which it is seen that knowledge of the variation of c p   with temperature is 
required for the determination of the temperature dependence of the enthalpy. 
Similarly, integration of Equation 2.6a between T 2  and T 1  at constant volume shows 
that knowledge of the variation of c v   with temperature is required for the determina-
tion of the temperature dependence of the internal energy. Later in this chapter, we 
will show that this is also the case for the determination of the temperature depen-
dence of entropy. Thus, by knowing the temperature dependence at constant pressure 
(volume) of the heat capacity as a function of temperature, we will know the Gibbs 
(Helmholtz) free energy change with temperature, which will enable us to determine 
the equilibrium state of the system in question.

6.2 theOretICAL CALCULAtION OF the heAt CAPACItY

In 1819, as a result of experimental measurements, Dulong (Pierre Louis Dulong, 
1785– 1838) and Petit (Alexis Thé rè se Petit, 1791– 1820) introduced an empirical rule 
which states that the molar heat capacities (c v  ) of all solid elements have the value 3R  
(= 24.9 J/K). In 1864, Kopp (Emile Kopp, 1817– 1875) introduced a rule which states 
that, at ordinary temperatures, the molar heat capacity of a solid chemical compound 
is approximately equal to the sum of the molar heat capacities of its constituent 
chemical elements. Thus, for example, the molar heat capacity of an A2 B compound 
will be approximately 9R  (i.e., 3 ×  3R ) at high temperatures. Although the molar 
heat capacities of most elements at room temperature have values which are close 
to 3R , subsequent experimental measurement showed that the heat capacity usu-
ally increases slightly with increasing temperature and can have values significantly 
lower values than 3R  at low temperatures. Figure  6.1 shows that, although lead and 
copper closely obey Dulong and Petit’ s rule at room temperature, the constant- 
volume heat capacities of silicon and diamond are significantly less than 3R  at room 
temperature. Figure  6.1 also shows the significant decrease in the heat capacities at 
low temperatures.

Calculation of the heat capacity of a solid element, as a function of tempera-
ture, was one of the early successful applications of quantum theory to the solid 
state. The first such calculation was published in 1907 by Einstein (Albert Einstein, 
1879– 1955), who considered the properties of a solid containing n  atoms, each of 
which behaves as a quantum harmonic oscillator vibrating independently in three 
orthogonal directions about its position. Furthermore, he assumed the behavior of 
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each of the 3n  oscillators is not influenced by the behavior of its neighbors, and 
assigned a single frequency ν  to each of the oscillators. Such a system of quantum 
oscillators is now called an Einstein solid  (sometimes an Einstein crystal ).

For a fixed frequency of vibration, the energy levels of a quantum harmonic 
oscillator take values of the i th energy level as

 ε νi i h= +





1
2

 (6.2)

In Equation  6.2, i  is an integer which has values in the range zero to infinity, and h  is 
Planck’ s constant (Max Karl Ernst Ludwig Planck, 1858– 1947). Since each oscilla-
tor has three degrees of freedom (i.e., it can vibrate in the x , y , and z  directions), the 
energy, U'  , of the Einstein solid (which can be considered to be a system of 3n  linear 
independent [distinguishable] quantum harmonic oscillators) is given as

 ′ = ∑U ni i3 ε  (6.3)

where, as before, n i   is the number of atoms in the i th energy level. In Chapter 4, we 
defined the partition function Z  as

 Z ≡ −



∑ exp

εi

Bi k T
 

and the number of particles (n i  ) with a given energy ε i   was written as
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Figure 6.1   the constant-volume molar heat capacities of Pb, Cu, si, and diamond as func-
tions of temperature.
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since the quantum oscillators are distinguishable. Substituting Equations 6.2 into 6.3 
and simplifying, we obtain
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Now, substituting Equation  6.4 into this equation, we obtain
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This represents the total internal energy of an Einstein solid. This equation can be 
shown (see Appendix A to this chapter) to reduce to

 ′ = +












U nh
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exp −
 (6.5)

Uʹ   is the total internal energy of a system composed of 3n  quantum harmonic oscil-
lators, which Einstein used to model the thermal properties of a solid with n  atoms 
vibrating independently of each other. Equation  6.5 gives the variation of the energy 
of the system with temperature, and differentiation with respect to temperature at con-
stant volume gives, by definition, the constant-volume heat capacity c v  . Maintaining a 
constant volume causes constant quantization of the energy levels. Thus,
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Defining hu kB/  = θ E  , where θ E   is the Einstein characteristic temperature, and tak-
ing n  as equal to Avogadro’ s number, gives the constant-volume molar heat capacity 
of the crystal as
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The variation of c v   with T E/θ  is shown in Figure  6.2a, which shows that as T E/θ  
(and hence, T ) increases, c v   →  3R , in agreement with Dulong and Petit’ s law. We 
also see that as T  →  0, c v   →  0, which is in agreement with experimental observa-
tions. The actual values of θ E   for any element and its vibration frequency, ν , are 
obtained by curve-fitting Equation  6.6 to experimentally measured heat capacity 
data. Such curve fitting, which is shown in Figure  6.2a, shows that although the 
Einstein equation adequately represents actual heat capacities at higher tempera-
tures, the theoretical values of the Einstein model approach zero more rapidly than 
do the actual values. For example, as T E/θ  decreases from 0.02 to 0.01, the theoreti-
cal molar heat capacity decreases from 1.2 ×  10– 17  to 9.3 ×  10– 39  J/K. This discrep-
ancy is caused by the fact that the quantum oscillators do not vibrate with a single 
frequency, as was assumed by Einstein, as well as the fact that the vibrations are 
correlated with each other (i.e., they do not vibrate independently of each other, as 
was also assumed).

The next step in the theory was made in 1912 by Debye (Peter Joseph William 
Debye, 1884– 1966), who assumed that the range of frequencies of vibration (pho-
nons) available to the oscillators is the same as that available to the elastic vibrations 
in a continuous solid. The lower limit of the wavelength of these vibrations is deter-
mined by the interatomic distances in the solid. Taking this minimum wavelength, 
λ min , to be in the order of 5 ×  10– 10  m, and the wave velocity, v , in the solid to be 
about 5 ×  103  m/sec, gives the maximum frequency of vibration of an oscillator to 
be of the order of

0
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30
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θE

0.8 1
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Figure 6.2a   (a) the experimental constant-volume heat capacity for diamond, plotted with 
the best fit to the einstein model of a solid, Θ e  = 1320 K (adapted from dehoff, 
Thermodynamics in Materials Science , CrC Press, Boca raton, fl, 2006.) 
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Debye assumed that the frequency distribution is one in which the number of vibra-
tions per unit volume per unit frequency range increases parabolically with increas-
ing frequency in the allowed range 0 ≤  v  ≤  v max , and, by integrating Einstein’ s 
equation over this range of frequencies, he obtained the heat capacity of the solid as
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which, with x h k TB= ν/ , gives
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θ −

−−( )
 (6.7)

where:
v D   (the Debye frequency) = v max 
θ νD D Bh k= /  is the characteristic Debye temperature of the solid

Equation  6.7 is compared with Einstein’ s equation in Figure  6.2b. Debye’ s equation 
approaches the Dulong and Petit limit at high temperatures and shows an excellent 
fit to the experimental data at lower temperatures. Figure  6.3 shows the curve fitting 
of Debye’ s equation to the measured heat capacities of Pb, Ag, Al, and diamond. 
The curves are nearly identical, except for a horizontal displacement. The relative 
horizontal displacement is a measure of θ D  . When plotted as c v   versus log T D/θ , the 
data in Figure  6.3 fall on a single curve. This is an example of a law of correspond-
ing states. We will see another example of this when we study the van der Waals gas 
in Chapter 8.

The value of the integral in Equation  6.7 from zero to infinity is 25.98, and thus, 
for very low temperatures, Equation  6.7 becomes

 c R
T T

v
D D

= × 





= 





9 25 98 1944
3 3

.
θ θ

 

which is called the Debye  T3   law  for low-temperature heat capacities.
Debye’ s theory does not consider the contribution made to the heat capac-

ity by the uptake of energy by free electrons at the Fermi level in a metal at low 
temperatures.

For a metal at low temperatures, the heat capacity varies as
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 c T
T

v
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Thus, at temperatures approaching 0 K, c v   for a metal varies linearly with T .
Because of the various uncertainties in the theoretical calculation of heat capaci-

ties, it is normal practice to measure the variation of the constant-pressure molar heat 
capacity with temperature and express the relationship analytically.
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Figure 6.2b   (b) Comparisons of the debye heat capacity, the einstein heat capacity, and the 
actual heat capacity of aluminum.
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Figure 6.3   the constant-volume molar heat capacities of several solid elements. the curves 
are the debye equation with the indicated values of θ D  .
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6.3 the eMPIrICAL rePreSeNtAtION OF heAt CAPACItIeS

The experimentally measured variation of the constant-pressure molar heat 
capacity of a material with temperature is normally fitted to an expression of the form

 c a bT
c

T
p = + + 2

 

It should be noted that the analytical expression is only applicable in the stated tem-
perature range over which the values of the heat capacity were measured and fit to 
the equation. For example, ZrO2  exists as monoclinic α -ZrO2  from room tempera-
ture to 1478 K and as tetragonal β -ZrO2  in the range of temperature 1478– 2670 K, 
and each polymorph has its own equation giving the variation of its heat capacity 
with temperature.

 α − = + × − × ⋅− −ZrO 69 62 7 53 1 14 6 1 J/K mole2
3 5 2c T Tp . . .0 0 0  

over the temperature range 298– 1478 K, and

 β − = ⋅ZrO 74 48 J/K mole2cp .  

from 1478 to 2670 K. At the transition temperature, the heat capacity drops by about 
5.6 J/K⋅ mole. In fitting the analytical expression to the measured heat capacities a , b , 
and c , each have nonzero values in the expression for α -ZrO2 , whereas the molar heat 
capacity of β -ZrO2  is independent of temperature, in which case b  and c  are zero 
in the analytical expression. The variations, with temperature, of c p   for several ele-
ments and compounds which do not undergo phase transitions in the solid state are 
shown in Figure  6.4, and the variations for some elements which exhibit allotropy 
and compounds which exhibit polymorphism are shown in Figure  6.5. The data for 
α -ZrO2  and β -ZrO2  are included in Figure  6.5. Other values for the coefficients of 
the analytical expressions for selected elements and compounds are found in Table 
A-2 of Appendix A.

6.4 eNthALPY AS A FUNCtION OF 
teMPerAtUre AND COMPOSItION

For one mole of a closed system of fixed composition undergoing a change in 
temperature from T 1  to T 2  at the constant pressure P , integration of Equation  2.6b 
gives Equation  6.1:

 ∆ = = ∫H H T P H T P c dTp
T

T

( , ) ( , )2 1
1

2

−  (6.1)

Δ H  is thus the area under a plot of c p   versus T  between the limits T 1  and T 2 . The 
change in enthalpy is thus Δ H  = q p  , which is simply the amount of thermal energy 
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Figure 6.4   the variations, with temperature, of the constant-pressure heat capacities of sev-
eral elements and compounds.
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required to enter the system and to increase the temperature of 1 mole of the system 
from T 1  to T 2  at the constant pressure P .

When one mole of a system undergoes a chemical reaction or a phase transfor-
mation at constant temperature and pressure (e.g., the reaction A + B = AB),  Δ H is 
the difference between the enthalpy of the products of the reaction (state 2) and the 
enthalpy of the reactants (state 1); that is,

 ∆H T P H T P H T P H T PAB A B, , [ , , ]( ) = ( ) − ( ) + ( )  (6.8)

If Δ H is a positive quantity, the reaction causes the system to absorb thermal energy 
from its constant-temperature heat bath, and the reaction is called endothermic . 
Conversely, if Δ  H is a negative quantity, the reaction occurs with an evolution of 
thermal energy and is called an exothermic  process. This convention is the same as 
that used with the First Law for the sign of q , the thermal energy entering or leav-
ing the system. The changes in enthalpy caused by changes in temperature and/or 
composition can be graphically represented on an enthalpy– temperature diagram 
(Figure  6.6). Consider the change of state

 A Al s( ) → ( )  

That is, the solidification of liquid A , whose equilibrium solidification temperature 
(which is also the equilibrium melting temperature) is T 2 . The segment cd  is the 
change in enthalpy at the equilibrium liquid-to-solid transformation; that is, it is 
the heat of solidification and can be seen to be H S  (T 2 ) –  H L  (T 2 ) <  0 (exothermic). A 
supercooled liquid can transform to a solid at T 1 . The molar enthalpy of transforma-
tion at this temperature can be determined, since the enthalpy is a state function. 
Thus,

 ∆ ∆ ∆ ∆H b a H b c H c d H d a→( ) = →( ) + →( ) + →( )  (i)

HL (T2)
b

a

T1 T2

d

c
Liquid

Solid

HL (T1)

HS (T2)

HS (T1)

En
th

al
py

Figure 6.6   the variation, with temperature, of the molar enthalpies of the solid and liquid 
phases of a substance.
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• ∆ H (b  →  a ) = ∆ H (l  →  s ,T 1 ) is the molar enthalpy of transformation of the super-
cooled liquid to the solid at the temperature T1. 

 ∆H l s T H s T H l T( , ) ( , ) ( , )→ = −1 1 2
 

 This change in enthalpy is represented by ba  in Figure  6.6 and is negative 
(exothermic).

• ∆ H (b  →  c ) is the thermal energy which needs to be supplied to 1 mole of liquid to 
increase its temperature from T 1  to T 2 .

 c l dTp
T

T

( )
1

2

∫  

 in which c lp( ) is the molar heat capacity of liquid.
• ∆ H (c →  d ) = ∆ H (l  →  s ,T 2 ) = H (s ,T 2 ) –  H (l ,T 2 ) is the molar enthalpy of transforma-

tion of the liquid at the equilibrium transition temperature T 2 , which is represented 
in Figure  6.6 by cd .

• ∆ H (d  →  a ) is the thermal energy required to leave the solid and decrease the tem-
perature of 1 mole of solid from T 2  to T 1  at constant pressure.

 ∆H d a c s dTp
T

T

→( )= ∫ ( )
2

1

 

 in which c p  (s ) is the molar heat capacity of solid. Substitution of the individual 
expressions into Equation  (i) gives

 ∆ ∆H l s T c l dT H l s T c s dTp
T

T

p
T

T

( , ) ( ) ( , ) ( )→ = + → +∫ ∫1 2
1

2

2

1

 

 ∆ ∆ ∆H l s T c dT H l s Tp
T

T

( , ) ( , )→ = + →∫1 2
1

2

 (6.9)

 Where ∆ c p   = c p  (l ) –  c p  (s ). 
 The molar enthalpy of solidification (fusion) at T 1  is more negative than at T 2  for the 

material shown in Figure  6.6. Each of the terms on the right hand of Equation  6.9 
are negative.

Thus, if the molar enthalpy of fusion is known at one temperature and the con-
stant-pressure heat capacities of the products and the reactants are known (along with 
their dependencies on temperature), then the molar enthalpy of fusion at any other 
temperature can be calculated. It is to be noted that if ∆ c p   = 0, then ∆ = ∆H HT T2 1; 
that is, the thermal energy of the reaction, ∆ H , is independent of the temperature. In 
Figure  6.6, the slope of the line ad , which is ∂ ∂( )H T

P
/ , is the molar heat capacity of 

the solid, c p  . It is a straight line only if the heat capacity is independent of temperature.
Since H  does not have an absolute value (only changes in H  can be measured), it 

is convenient to introduce a convention which will allow the comparison of different 
enthalpy– temperature diagrams. This convention assigns the value of zero to the 
enthalpy of elements in their stable states at 298 K  (25° C) and P  = 1 atm. Thus, the 
enthalpy of a compound at 298 K and P  = 1 atm is simply the enthalpy of formation 
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of one mole of the compound from its elements at 298 K and P  = 1 atm. For example, 
for the oxidation reaction

 M O MO  at  K and  atmsolid gas solid( ) ( ) ( )+ = =1
2

298 12 P  

 ∆ =H H H Hs s g298 298 298
1
2 2MO( )298 M O− −( ) ( )

 

and, since H M,298  and HO2 298,  are by convention set equal to zero, then

 ∆H H298 MO 298= ,  

The variation of heats of chemical reaction (or heats of formation) with temperature 
at constant pressure can be represented on an enthalpy– temperature diagram, such 
as those in Figure  6.7a and b, which are drawn for the oxidation reaction

 Pb O PbO+ =1
2

2
 

The pertinent thermochemical data for this system are listed in Table 6.1.
In Figure  6.7a:
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Figure 6.7a   (a) the variation, with temperature, of the enthalpies of Pb( s  ) , Pb( l  ) , 1/2o2( g  ) , and 
Pbo( s  ) . 
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• a  represents the enthalpy of 1/2 mole of oxygen gas and 1 mole of Pb( s  )  at 298 K 
(set = 0 by convention).

• ab  represents the variation of H Pb( s  )  with temperature in the range 298 ≤  T  ≤  600 K, 
where H Pb( s  ) , T  is given by c dTp s

T
, ( ) Pb  298∫ .

• ac  represents the variation of H g1
2 2O ( ) with temperature in the range 298 <  T  <  

3000 K, where H g1
2 2O ( )  is given by 1

2 298 2c dTp g
T

, ( )O  ∫ .
• ad  is Δ H PbO( s  ),298 K  = – 219,000 J.
• de  represents the variation of H PbO( s  )  with temperature in the range 298 K ≤  T  ≤  

1159 K, where H c dTs T p s
T

PbO( ), PbO( )  J= + ∫−219 000 298, , .

In Figure  6.7b:

• a  represents the enthalpy of 1/2 mole of O2( g  )  and 1 mole of Pb( s  )  at 298 K.
• f  represents the enthalpy of 1/2 mole of O2( g  )  and 1 mole of Pb( s  )  at the temperature T .
• g  represents the enthalpy of 1 mole of PbO( s  )  at the temperature T .

table 6.1 thermochemical Data for Pb, PbO, and O2

HPbo(298) = –219,000 J/K

cp,Pb(s) = 23.6 + 9.75 × 10–3T J/K from 298 K to Tm,Pb

cp,Pb(l ) = 32.4 – 3.1 × 10–3T J/K from Tm,Pb to 1200 K

cp,Pbo(s) = 37.9 + 26.8 × 10–3T J/K from 298 K to Tm,Pbo

cp,o2(g) = 29.96 + 4.18 × 10–3T – 1.67 × 105T–2 J/K from 298 K to 3000 K

ΔHm,Pb = 4810 J at Tm,Pb = 600 K

Tm,Pbo = 1159 K
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Figure 6.7b   (b) the variation, with temperature, of the enthalpies of (Pb + 1/2o 2 )  and Pbo.
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Thus,

 

∆ = ∆ → + ∆ → + ∆ →

= +


H H a f H f g H g d

c cp g p s

PbO,298 K

O Pb

 ( ) ( ) ( )

, ( ) , ( )
1
2 2




+ ∆ + ∫∫ dT H c dTT p s
T

T

PbO, PbO( ),

298

298

 

and thus,

 ∆ = ∆ + ∆∫H H c dTT p

T

298
298

 

where:

 ∆ =c c c cp p s p s p g, ( ) , ( ) , ( )PbO Pb O− − 1
2 2  

From the data in Table 6.1,

 ∆c T Tp = − + × + ×− −0 0 0 0. . .7 14 96 1 85 13 5 2  

and, thus, in the range of temperature from 298 to 600 K (T m  ,Pb ):

 

∆ = + + × + ×

= −
∫H T T dTT

T

− − − −219 000 0 7 14 96 10 0 85 10
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3 5 2
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− − −

 − −
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+ ×
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With T  = 500 K, this gives ∆ H 500 K  = – 217,800 J, as can be seen in Figures  6.7b and 
6.8. If a phase change occurs in one or more of the reactants or products, between 
the two temperatures at which the reaction is being considered, then the enthalpies of 
transformation of the phase changes must be considered. In Figure  6.7a, h  represents 
the enthalpy of 1 mole of Pb( l  )  at the melting temperature of 600 K, given as

 H c dT Hl p s mPb K ,Pb ,Pb( ), ( )600
298

600

= + ∆∫  

hb  is the enthalpy of melting of Pb at the melting temperature of 600 K (= 4810 J), and 
hi  represents the variation of the enthalpy of 1 mole of Pb( l  )  with temperature in the 
range 600– 1200 K.

 H c dT H c dTl T p s m p l

T

Pb Pb Pb Pb( ), , ( ) , , ( )= + ∆ +∫ ∫298

600

600

 

In Figure  6.7b, ajkl  represents the variation of the enthalpy of 1 mole of Pb and 1/2 
moles of O2( g  ) , and hence, ∆HT ’  is calculated from the cycle
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This gives Δ H 1000  = – 216,700 J at T'   = 1000 K, as is seen in Figures  6.7b and 6.8. 
Figure  6.8 shows the variation of Δ H PbO, T   with temperature in the range 298– 1100 K. 
If the temperature of interest is higher than the melting temperatures of both the metal 
and its oxide, then both enthalpies of melting must be considered. For example, with 
reference to Figure  6.9, which is drawn for the general oxidation,

 M O MO+ =1
2

2
 

 

∆ = ∆ + 



∫H H c c c dTT p s p s p g

Tm

298
298

1
2 2, ( ) , ( ) , ( )

,

MO M O

M

     

− −

     

 

M MO( ) M( ) O
M

MO

− − −∆ + 



∫H c c c dTm p s p l p g

T

T

m

m

, , , , ( )
,

, 1
2 2

         MO MO M( ) O
MO

+ ∆ + 





H c c c dTm p l p l p g
T

T

m

, , ( ) , , ( )
,

− − 1
2 2∫∫

 



170 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

–214

–216

–218
–217.8

300 500 700

Temperature, K

DH
Pb

O
, K

J/
m

ol
e

900 1100

–216.7

–220

–222

–224

Figure 6.8   the variation, with temperature, of the enthalpy change for the reaction Pb + 
1/2o 2  = Pbo.

En
th

al
py

Temperature

298

DH298

0

Tm,M Tm,MO

DHm,MO

DHm,M

MO(s)

MO(l)M(s) + 1/2 O2(g)

M(l) + 1/2 O2(g)

T

DHT

Figure 6.9   the effect of phase changes on Δ H  for a chemical reaction.



171heat CaPaCIty, enthalPy, entroPy

When phase transformations of the reactants or products have to be considered, care 
must be taken with the signs of the changes in enthalpy. The signs can be obtained 
from a consideration of Le Chatelier’ s principle  (Henry Louis Le Chatelier, 
1850– 1936), which can be stated as, “ When a system, which is at equilibrium, is 
subjected to an external influence, the system moves in that direction which nullifies 
the effects of the external influence.”  Thus, if the system contains a low-temperature 
phase in equilibrium with a high-temperature phase at the equilibrium phase transi-
tion temperature, such as a solid coexisting with a liquid at the equilibrium melt-
ing temperature, then the introduction of heat to the system (the external influence) 
would be expected to increase the temperature of the system (the effect). However, 
the system undergoes an endothermic change, which absorbs the heat introduced 
at constant temperature and hence nullifies the effect of the external influence. The 
endothermic process is the melting of some of the solid. A phase change from a low- 
to a high-temperature phase is always endothermic, and hence, Δ H  for the change is 
always a positive quantity. Thus, Δ H m  , the molar enthalpy of melting, which is the 
difference between the enthalpy of a mole of liquid and the enthalpy of a mole of 
solid, is always positive.

Consider a phase transition between two allotropes, α  and β , the β  being the 
high-temperature allotrope.

 For :  α α α∂
∂







=H

T
c

P

p  

 For :  β β β∂
∂







=H

T
c

P

p  

Subtraction gives

 ∂
∂







− ∂
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= −H

T
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T
c c
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p p
β α β α  

 
∂ −
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=
( )H H

T
c

P

p
β α ∆  
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 ∂∆
∂







= ∆H

T
c

P

p
 (6.10)

and integrating from state 1 to state 2 gives

 ∆ ∆ = ∆∫H H c dTT T p
T

T

2 1
1

2

−  (6.11)

Equations 6.10 and 6.11 are expressions of Kirchhoff’ s law  (Gustav Robert Kirchhoff, 
1824– 1887).
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6.5 the DePeNDeNCe OF eNtrOPY ON teMPerAtUre 
AND the thIrD LAW OF therMODYNAMICS

6.5.1 Development of the third Law of thermodynamics

The molar change in Gibbs free energy for a reaction is given as

 ∆ ∆ ∆G H T S= −  

If this expression can be determined as a function of temperature, the driving force 
for the reaction would be determined.
We have seen that Δ H  for a reaction is given as

 ∆ ∆ ∆H T H T c dTp
T

T

( ) ( )2 1
1

2

− = ∫  

If the heat capacities of the reactants are known as a function of temperature, Δ H  
can be calculated at any temperature.

What about Δ S  for a reaction at any temperature? For a closed system undergo-
ing a reversible process, the Second Law gives

 dS
q

T
= δ rev  (3.8)

If the process is conducted at constant pressure, then

 dS
q

T

dH

T

c dT

TP P

p= 





= 





=δ rev  

and thus, if the temperature of a closed system of fixed composition is increased 
from T 1  to T 2  at constant pressure, the increase in the entropy per mole of the system, 
Δ S , is given by

 ∆ = = ∫S S T P S T P
c

T
dTp

T

T

( , ) ( , )2 1
1

2

−  (6.12)

This change of entropy is obtained as the area under a plot of c Tp /  versus T  between 
the limits T 2  and T 1 , or, equivalently, as the area under a plot of c p   versus lnT  between 
the limits lnT 2  and lnT 1 . Generally, S T  , the molar entropy of the system at any tem-
perature T , is given by

 S S
c

T
dTT

p
T

= + ∫0
0

 (6.13)
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where S 0  is the molar entropy of the system at 0 K. In turn, the Gibbs free energy 
can be written as

 ∆G c dT T
c

T
dT TSP

T
p

T

= − −∫ ∫0 0
0  

Clearly, if the entropy at 0 K is known, the thermodynamics of the reaction is com-
pletely known. This was proposed by Le Chatelier in 1888:

It is highly probable that the constant of integration is a determinate function of certain 
physical properties of the substances in question. The determination of the nature of 
this function would lead to a complete knowledge of the laws of equilibrium. It would 
permit us to determine a priori independently of any new experimental data, the full 
conditions of equilibrium corresponding to a chemical reaction.*

In other words, if the value of S 0  for a reaction could be determined, Δ G  would be 
known as a function of temperature as well, and hence, the reaction thermodynamics 
would be known. Consideration of the value of S 0  in the late nineteenth and early 
twentieth century lead to the statement of the Third Law of Thermodynamics.

In 1902, Richards (Theodore William Richards, 1868– 1928) collected data which 
showed, for many reactions, the values of Δ G  and Δ H  asymptotically approached 
each other at low temperatures with slopes that approached zero; that is,

 as T 0   → ∂∆
∂







= ∂∆
∂







=G

T

H

TP P

0  

In 1906, Nernst (Walther Hermann Nernst 1864– 1941) postulated that this was true 
for all reactions involving liquids and solids, and this has become known as the 
Nernst heat theorem .

For any change in the state of a system (e.g., a chemical reaction at the constant 
temperature T ):

 ∆ ∆ ∆G H T ST T T= −  

and thus, ∆ G  for the reaction varies with temperature, as shown in Figure  6.10. Note 
that the values of Δ G , Δ H , and Δ S  are for the transformation of the low-temperature 
state to that of the high-temperature state (α  →  β ).

The slope of the line in Figure  6.10, at any temperature, is equal to –  Δ S T  , and the 
intercept, with the Δ G  axis at T  = 0, of the tangent to the line at any temperature is 
equal to ∆ H T  , the change in the enthalpy at the temperature T . As the temperature 
approaches zero, the slope of both the Δ G  and Δ H  curves approaches zero. The 
consequences of this are that, as T  →  0, then Δ S  →  0 and ∆ c p   →  0. At constant p ,

* H. Le Chatelier, Ann. Mines , vol. 13, pp. 157ff., 1888. Translated by Lewis and Randall, Thermodynamics 
and the Free Energy of Chemical Substances , McGraw-Hill, New York, 1923, pp. 436ff.
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Since ∂∆ ∂( )G T
P

/  and ∂∆ ∂( )H T
P

/  approach zero as T  →  0, the values of Δ S  and 
Δ c p   approach zero as T  →  0 (provided that ∂∆ ∂( )S T

P
/  is not infinite at T  = 0).

Thus, for the general reaction

 A B AB+ =  

Δ S  = S AB   –  S A   –  S B   = 0 at T  = 0, which shows that if the entropies of the pure sub-
stances A and B are equal to zero at 0 K, then the value of the entropy of the com-
pound AB is also zero.

Planck (Max Karl Ernst Ludwig Planck, 1858– 1947) extended the Nernst’ s heat 
theorem by positing to the effect that the entropy of any homogeneous substance 
which is in complete internal equilibrium is zero at 0 K. This has become known as 

DH(T1)

T®

DHa®b

DGa®b

Slope = –DSa®b

T1

Ga = Gb

Figure 6.10   the variation of the change in the Gibbs free energy and the enthalpy for a 
reaction with temperature. as the temperature approaches absolute zero, their 
values approach each other and their slopes approach 0. 
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the Nernst–Planck– Simon statement  (Francis Simon, 1893– 1956) of the Third Law. 
Thus, in the aforementioned reaction (the entropy of AB), the entropy of A and the 
entropy of B would all be zero at 0 K under the specifications of Planck. This state-
ment summarizes the Third Law of Thermodynamics and has ramifications on the 
types of phases that are stable at the absolute zero. This will be utilized later in the 
text when equilibrium phase diagrams are discussed.

6.5.2 Apparent Contradictions to the third Law of thermodynamics

The requirement that the substance be in complete internal equilibrium 
is an important part of the statement of the Third Law of Thermodynamics. 
Counterexamples to the Third Law that are often brought against it fail in some way 
to have the system in complete equilibrium. Several examples of such purported fail-
ings of the Third Law follow.

 1. Glasses are noncrystalline solids which form from supercooled liquids in which the 
disordered atomic arrangements occurring in the liquid state have been “ frozen”  
into the solid state. Substances which form glasses often have complex atomic, 
ionic, or molecular structures in the liquid state, and the structures would require 
extensive atomic reorganization in order to assume a periodic structure character-
istic of its equilibrium crystalline state. In the absence of the ability of the glass-
forming substance to undergo the necessary atomic rearrangement at its freezing 
temperature, the supercooled liquid simply becomes more and more viscous and 
eventually loses its rotational degrees of freedom and forms a solid glass. If the 
solid glass were to crystallize, its enthalpy and entropy would decrease, and the 
decreases in the enthalpy and entropy would be, respectively, the enthalpy and 
entropy of crystallization at the temperature at which devitrification occurred. At 
temperatures below its equilibrium freezing temperature, the glassy state is not 
stable with respect to the crystalline state, and a glass, not being in internal equi-
librium, has an entropy at 0 K which is greater than zero by an amount which is 
dependent on the cooling rate and the degree of atomic disorder in the glass.

 2. Solutions are mixtures of atoms, ions, or molecules, and a contribution is made to 
their entropies by the fact that they are mixtures (see Equation  4.3). This contribu-
tion is called the entropy of mixing  and is determined by the randomness with 
which the particles are mixed in the solution. The atomic randomness of a mixture 
determines its degree of order; for example, in a mixture containing 50 at% of A 
and 50 at% of B, complete ordering occurs when every atom of A is coordinated 
only by B atoms and vice versa, and complete randomness occurs when, on aver-
age, 50% of the neighbors of every atom are A atoms and 50% are B atoms.

  The degrees of order in these two extreme configurations are respectively unity 
and zero. The equilibrium degree of order is temperature dependent and increases 
with decreasing temperature. However, the maintenance of the equilibrium degree 
of order is dependent on the abilities of the particles to change their positions in 
the solution, and, with ever-decreasing temperature, as atomic mobility decreases 
exponentially with decreasing temperature, the maintenance of internal equilibrium 
becomes increasingly difficult. Consequently, a nonequilibrium degree of order can 
be frozen into the solid solution, in which case the entropy will not decrease to zero 
at 0 K.
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 3. Even chemically pure elements are mixtures of isotopes, and because of the chemi-
cal similarity between isotopes, it is to be expected that completely random mixing 
of the isotopes occurs. Thus, an entropy of mixing occurs, and consequently, the 
entropy does not decrease to zero at 0 K. For example, solid chlorine at 0 K is a 
solid solution of Cl35 – Cl35 , Cl35 – Cl37 , and Cl37 – Cl37  molecules. However, since this 
entropy of mixing is present in any other substance which contains the element, it 
is customary to ignore this aspect of the entropy.

 4. At any finite temperature, a pure crystalline solid contains an equilibrium number 
of vacant lattice sites, which, because of their random positioning in the crystal, 
give rise to an entropy of mixing which is similar to the entropy of mixing in a 
chemical solution. Both the equilibrium number of vacancies and the diffusivity 
of the atoms in the crystal decrease exponentially with decreasing temperature, 
and since the vacancies “ disappear”  by diffusing to the free surface of the crystal, 
nonequilibrium concentrations of vacancies can be frozen into the crystal at low 
temperatures if diffusion is limited, causing a nonzero entropy at 0 K.

 5. Random crystallographic orientation of molecules in the crystalline state can also 
give rise to a nonzero entropy at 0 K. Such is the case with solid CO, in which a 
structure such as the following can occur.

CO CO OC CO OC CO CO
OC CO CO OC CO OC OC
OC CO CO OC OC CO CO

  The entropy would have its maximum value if equal numbers of molecules were 
oriented in opposite directions and random mixing of the two orientations occurred. 
From Equation  4.3, the molar configurational entropy of mixing would be
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  A comparison of this value with the measured value of 4.2 J/mole· K indicates that 
the actual molecular orientations in solid CO are not fully random.

    In view of the these considerations, the statement of the Third Law of 
Thermodynamics requires the inclusion of the qualification that the system in ques-
tion be in complete internal equilibrium .

    In the next section, we discuss the experimental verification of the Third Law.



177heat CaPaCIty, enthalPy, entroPy

6.6 eXPerIMeNtAL VerIFICAtION OF the thIrD LAW

The Third Law can be verified by considering the phase transition of one mole 
of an element, such as

 α β→  

where α  and β  are allotropes of the element. In Figure  6.11, T trans  is the temperature, 
at atmospheric pressure, at which the α  and β  phases are in equilibrium with one 
another. For the cycle shown in Figure  6.11,

 ∆ ∆ ∆ ∆S S S SIV I II III= + +  

For the Third Law to be obeyed, Δ  S IV  = 0, which requires that

 ∆ ∆ ∆S S SII I III= − +( )  

where:
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∆ = ∆ = −
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T
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Figure 6.11   the cycle used for the experimental verification of the third law of 
thermodynamics.
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Δ  S II  is called the experimental entropy change , and – (Δ  S I  + Δ  S III ) is called the 
Third Law entropy change . If the Third Law is valid,  Δ  S II  = – (Δ  S I  + Δ  S III ).

The cycle shown in Figure  6.11 has been examined for the case of sulfur, which 
has two allotropes: a monoclinic form which is stable above 368.5 K and an ortho-
rhombic form which is stable below 368.5 K, with a molar enthalpy of transforma-
tion of 400 J/mole at the equilibrium transformation temperature of 368.5 K. Since 
monoclinic sulfur can be supercooled with relative ease, the variations, with temper-
ature, of the heat capacities of both allotropes have been measured experimentally at 
temperatures below 368.5 K. The measured heat capacities give
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and

 ∆ =∫S
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III
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Thus,

 ∆ ∆S SI III 94 J/K+( ) = − −( ) =36 86 37 8 0. . .  

This is the value of the Third Law entropy change. The value of the experimen-
tal entropy change ΔSII was shown to be 1.09 J/K. Since the difference between the 
experimental and the Third Law entropy changes (0.15 J/K) is less than the experi-
mental error, the equality is taken as being an experimental verification of the Third 
Law. The same has been shown to be valid for many other allotropes.

Assigning a value of zero to S 0  allows the absolute value of the entropy of any 
material to be determined as

 S
c

T
dTT

p
T

= ∫0
 J/K  

and molar entropies are normally tabulated at 298 K, where:

 S
c

T
dTp

298
0

298

= ∫  J/K  

The variations, with temperature, of the molar entropies of several elements and 
compounds are shown in Figure  6.12. With the constant-pressure molar heat capac-
ity of the solid expressed in the form

 c a bT cTp s( ) = + + –2  
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the molar entropy of the solid at the temperature T  is obtained as

 S S a
T

b T c
T

T = + 





+ 





298 2 2298
298

1
2

1 1
298

ln ( )− − −  

At temperatures higher than the melting temperature, T m  , the molar entropy of the 
liquid is obtained as

 S S
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T
dT S
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dTT

p s
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p l
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TT
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m

= + + ∆ + ∫∫298
298

( ) ( )  

where the molar entropy of the melting, Δ S m  , is obtained as ∆H Tm m/ .
In 1897, Richards suggested that the enthalpies of fusion of metals should have 

the same value, which would require that a plot of Δ H m   versus T m   be a straight line. 
Figure  6.13 is a plot of the molar enthalpies of fusion versus the melting tempera-
tures of 11 face-centered cubic (FCC) metals (open circles) and 27 body-centered 
cubic (BCC) metals (closed circles) which have melting temperatures below 3000 K. 
A least-squares analysis of the data for the face-centered cubic metals gives for the 
molar entropies of melting:
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Figure 6.12   the variation, with temperature, of the molar entropies of several elements and 
compounds.
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and for body-centered cubic metals:

 ∆ ∆
S

H

T
m

m

m

BCC
BCC

 J/K= = 8 25.  

This observation, which is known as Richards’ s rule , indicates that the difference 
between the degree of disorder in the liquid structure (due to configurational and 
thermal entropy) and that in both the FCC and BCC crystal structures is approxi-
mately the same for FCC and BCC metals.

Trouton’ s rule  (Frederick Thomas Trouton, 1863– 1922) states that the molar 
entropy of boiling of a liquid metal is 88 J/K. Figure  6.14 shows a plot of Δ H b   versus 
the boiling temperature, T b  , for 29 liquid metals with boiling temperatures below 
4000 K. A least-squares fit of the data, shown as the full line, gives

 ∆H Tb B= −121 43 J/K  

However, a least-squares fit of the data for the 13 metals with boiling temperatures 
below 2100 K, shown as the broken line, gives

 ∆H Tb b= −87 4 J/K0.  
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Figure 6.13   an illustration of richard’ s rule.



181heat CaPaCIty, enthalPy, entroPy

which indicates a common molar entropy of boiling of approximately 87 J/K for 
these metals.

Figure  6.15 is the entropy– temperature diagram for the reaction

 Pb O PbO+ =1
2

2  

corresponding to the enthalpy– temperature diagram shown in Figure  6.7. Because of 
the similar magnitudes of the molar entropies of the condensed phases Pb and PbO, 
it is seen that the entropy change for the reaction

 ∆ =S S S ST T T T, , ,PbO Pb O− − 1
2 2  

is very nearly equal to −1 2 2ST ,O . For example, at 298 K,

 

∆ =

= ×

S S S S298 298 298 298 2
1
2
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PbO Pb O

        

 

− −

− −

         J K= − 100

 

which is similar in magnitude to the decrease in entropy caused by the disappear-
ance of 1/2 moles of oxygen gas. This approximation is generally valid; that is, in 
reactions in which a gas reacts with a condensed phase to produce another condensed 
phase, the change in the entropy is of similar magnitude to that caused by the disap-
pearance of the gas.
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Figure 6.14   an illustration of trouton’ s rule.
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6.7 the INFLUeNCe OF PreSSUre ON eNthALPY AND eNtrOPY

For one mole of a closed system of fixed composition undergoing a change of 
pressure at constant temperature,

 dH
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Equation  5.10b gives dH  = TdS  + VdP , and thus,
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A Maxwell relation (Equation 5.35) gives
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Figure 6.15   the variation, with temperature, of the entropies of Pb( s  ) , Pb( l  ) , Pbo( s  ) , and 
1/2o2( g  ) , and the entropy change for the reaction Pb + 1/2o2  = Pbo.



183heat CaPaCIty, enthalPy, entroPy

 ∂
∂







= ∂
∂







+H

P
T

V

T
V

T P

−  

The isobaric coefficient of thermal expansion, α , is defined as

 α = ∂
∂







1
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and thus,
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The change in molar enthalpy caused by the change in state from (P 1 ,T ) to (P 2 ,T ) is 
thus

 ∆ = = ∫H H P T H P T V T dP
P

P

( , ) ( , ) ( )2 1 1
1

2

− − α  (6.14)

For an ideal gas, α  = 1/T , and thus, Equation  6.14 shows once again that the enthalpy 
of an ideal gas is independent of pressure.

The molar volume and expansivity of Fe are, respectively, 7.1 cm3  and 0.3 ×  
10– 4  K– 1 . Thus, an increase in the pressure exerted on Fe from 1 to 100 atm at 298 K 
causes the molar enthalpy to increase by

 7 1 10 1 0 3 10 298 100 1 0 6963 4. ( . ) ( ) .× × × × × = ⋅− −− −  liter atm

                                                                 = 0.. .696 101 3 71× =  J
 

The same increase in molar enthalpy would be obtained by heating Fe from 298 to 
301 K at 1 atm pressure, which demonstrates the relative insensitivity of the effect of 
pressure on the enthalpy of a solid.

For a closed system of fixed composition undergoing a change of pressure at 
constant temperature,

 dS
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Maxwell’ s relation (Equation 5.35) is
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which, with the definition of α , gives
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Thus, for the change of state (P 1 ,T ) to (P 2 ,T ),

 ∆ = = ∫S S P T S P T VdP
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For an ideal gas, since α  = 1/T , Equation  6.15 simplifies to
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as was obtained in Section 3.7.
An increase in the pressure exerted on Fe from 1 to 100 atm decreases the molar 

entropy by 0.0022 J/K, which is the same as is obtained by decreasing the tempera-
ture by 0.02 degrees from 298 K at 1 atm pressure. It is thus seen that the molar 
entropies of condensed phases are relatively insensitive to changes in pressure. In 
the majority of materials applications, in which the range of pressure is 0 to 1 atm, 
the influence of pressure on the enthalpies and entropies of condensed phases can 
be ignored.

For a closed system of fixed composition undergoing changes in both pressure 
and temperature, a combination of Equations  6.1 and 6.14 gives

 ∆ = = + ∫∫H H P T H P T c dT V T dPp
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and the combination of Equations  6.12 and 6.15 gives
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The pressure dependence of V  and α  must be known for the integration of 
Equations  6.14 and 6.15. However, for condensed phases being considered over small 
ranges of pressure, these pressure dependencies can be ignored.

6.8 SUMMArY

 1. Knowledge of the heat capacities and the entropies of substances and the heats of 
formation of compounds allows the enthalpy and entropy changes to be evaluated 
for any process— that is, for phase changes and chemical reactions.
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 2. The heat capacity of solids can be modeled by the statistical thermodynamic 
models of Einstein and Debye. The Debye model is best at low temperatures as it 
displays the experimentally observed T 3  dependence at low temperatures for non 
conductors.

 3. Heat capacities can also be fit to experimental data via an equation of the form

 c a bT
c

T
P = + + 2

 4. Since enthalpy does not have an absolute value, it is conventional to assign the value 
of zero to the enthalpy of all elements in their stable states of existence at 298 K and 
to consider changes in enthalpy with respect to this reference state.

 5. The entropy of all substances which are in complete internal equilibrium is 
zero at 0 K. This is the Nernst–Planck–Simon statement of the Third Law of 
Thermodynamics.

 6. Both the enthalpy and entropy are dependent on pressure and temperature; how-
ever, the pressure dependence of the enthalpy and entropy of condensed phases is 
normally small enough to be ignored, especially when the pressure of interest is in 
the range 0– 1 atm.

 7. The variation of enthalpies of transformation with temperature and pressure can be 
calculated by the application of the First Law of Thermodynamics to the changes in 
enthalpy with temperature and pressure, as well as the temperature dependence of 
the heat capacities and expansion coefficients.

 8. The enthalpies and entropies of transformation at the melting point and boiling 
point of metals can be estimated by the rules of Richard and Trouton.

 9. The determination of Δ H T   and Δ S T   for any change of state at any temperature and 
pressure allows the all-important change in the Gibbs free energy for the change of 
state to be calculated as

  ∆ ∆ ∆G H T ST T T= −  

 10. Since consideration of the Gibbs free energy in any isothermal, isobaric process 
provides the criterion for equilibrium, the equilibrium state of a system can be 
determined from knowledge of the thermochemical properties of the system.

6.9 CONCePtS AND terMS INtrODUCeD IN ChAPter 6

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Allotropy
Corresponding states
Debye model of the heat capacity of a crystal
Einstein model of the heat capacity of a solid
Endothermic process 
Exothermic process
Kirchhoff’ s law
Kopp rule of the heat capacity of compounds
Law of Dulong and Petit
Le Chatelier’ s principle



186 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

Nernst heat theorem
Phonon
Polymorphism
Third Law of Thermodynamics

6.10 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1  

Estimate c p  , the molar heat capacity of the iron silicon spinel, Fe2 SiO4 , at very high 
temperatures (>  1400 K).

Solution to Qualitative Problem 1 

Assume that this is in the range where the Dulong and Petit law is followed. There 
are seven atoms in the formula unit of the spinel. Thus, by Kopp’ s rule, we estimate 
c v   to be 7 ×  3R  = 21R  = 174.6 J/mole· K; c p   would be larger than that number.

Actual c p   at 1400 K = 206 J/mole· K.

Qualitative Problem 2 

Show that the following equation holds, relating the Helmholtz free energy to the 
constant-volume heat capacity of a material.
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6.11 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

A mixture of Fe2 O3  and Al, present in the molar ratio 1/2, is placed in an adiabatic 
container at 298 K, and the Thermit reaction

 2 Al Fe O 2Fe Al O2 3 2 3+ → +  

is allowed to proceed to completion. Calculate the state and the temperature of the 
reaction products.

Solution to Quantitative Problem 1 

From the thermochemical data

 HAl O  J mole2 3 298 1 675 700, , ,= −  

and

 HFe O  J mole2 3 298 823 400, ,= −  

the heat released by the Thermit reaction at 298 K is calculated as

 ∆H298 1 675 7 823 4 852 3  J= − + = −, , , ,00 00 00  

and this heat raises the temperature of the reaction products. Assume, first, that the 
sensible heat raises the temperature of the products to the melting temperature of Fe, 
1809 K, in which state the reactants occur as 2 moles of liquid Fe and 1 mole of solid 
Al2 O3 . The molar heat capacities and molar heats of transformation are

• c T Tp s, ( ) . . .Al O  in the range 2
2 3

3 5 2117 49 10 38 10 37 11 10= + × ×− −− 998 2325 K−

• c T Tp,
.. . .Fe( )

3 537 12 6 17 1  56 92 J/K in the range 298α = + × − −− −0 0 11187 K

• c Tp, 24 48 8 45 1  in the range 1187 1664 KFe
3

( ) . .γ = + × −−0

• c T Tp,
.. . .Fe( )

3 537 12 6 17 1 56 92 J/K in the range 1667δ = + × − −− −0 0 118 9 K0

• For Fe Fe  67  J at 1187 Ktrans( ) ( ),α γ→ =∆H 0

• For Fe Fe 84  J at 1664 K trans( ) ( ),γ δ→ =∆H 0

• For Fe Fe 13 77  J at 18 9 K( ) , ,δ → =( )l mH∆ 0 0

The heat required to raise the temperature of 1 mole of Al2 O3  from 298 to 
1809 K is
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∆ = ×  + ×





H1
3 2 2117 48 1809 298

10 38
2

10 1809 298. ( )
.

( )− −−

          

       J

+ × 





=

37 11 10
1

1809
1

298

183 649

5.

,

−  

and the heat required to raise the temperature of 2 moles of Fe from 298 to 1809 K 
and melt the 2 moles at 1809 K is

 

∆ = × ×  + × ×





H2
3 2 22 37 12 1187 298

2 6 17
2

10 1187 298. ( )
.

( )− −−

           

       

+ ×





+ ×2 56 92
0 5

1187 298 2 6700 5 0 5.
.

( ) ( ). .−

    + × ×  + × ×



2 24 28 1664 1187

2 8 45
2

10 1664 11873 2 2. ( )
.

( )− −−



+ × + × ×

+ ×
          

          

( ) [ . ( )]

.

2 840 2 37 12 1809 1664

2 6

−
117

2
10 1809 1664

2 56 92
0 5

1809 16643 2 2 0 5 0 5×





+ ×


− − −( )
.

.
( ). .





+ ×
= + + + +

          

      

( , )

( , ,

2 13 770

78 058 1340 34 654 1680 114 268 27 540

157 541

, , )

,

+
=       J

The total heat required is thus

 ∆ ∆H H1 2 183 649 157 541 341 19  J+ = + =, , , 0  

The remaining available sensible heat is 852,300 –  341,190 = 511,110 J.
Consider that the remaining sensible heat raises the temperature of the system 

to the melting temperature of Al2 O3 , 2325 K, and melts the mole of Al2 O3 . The heat 
required to increase the temperature of the mole of Al2 O3  is

 

∆ = × + ×





H3
3 2 2117 49 2325 1809

10 38
2

10 2325 1809[ . ( )]
.

( )− −−

           

        J

+ × 





=

37 11 10
1

2325
1

1809

71 240

5.

,

−  

and, with c p  ,Fe( l  )  = 41.84 J/K, the heat required to increase the temperature of the 
2 moles of liquid Fe is
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 ∆H4 2 41 84 43 178 J= × × −( ) =. ,2325 1809  

The molar latent heat of melting of Al2 O3  at its melting temperature of 2325 K is 
107,000 J, and thus, the sensible heat consumed is

 71 24 43 178 1 7 221 418 J, , , ,0 0 000+ + =  

which still leaves 511,110 –  221,418 = 289,692 J of sensible heat. Consider that this 
is sufficient to raise the temperature of the system to the boiling point of Fe, 3343 K. 
The constant-pressure molar heat capacity of liquid Al2 O3  is 184.1 J/K, and thus, the 
heat required to increase the temperature of 1 mole of liquid Al2 O3  and 2 moles of 
liquid Fe from 2325 to 3343 K is

 2 41 84 184 1 3343 2325 272 6  J× +( )× −( ) =. . , 00  

which leaves 289,692 –  272,600 = 17,092 J. The molar heat of boiling of Fe at its 
boiling temperature of 3343 K is 340,159 J, and thus, the remaining 17,092 J of sen-
sible heat is used to convert

 
17 092
340 159

0 05
,
,

.=  

moles of liquid iron to iron vapor. The final state of the system is thus 1 mole of liq-
uid Al2 O3 , 1.95 moles of liquid Fe, and 0.05 moles of iron vapor at 3343 K.

Suppose, now, that it is required that the increase in the temperature of the prod-
ucts of the Thermit reaction be limited to 1809 K to produce liquid Fe at its melting 
temperature. This could be achieved by including Fe in the reactants in an amount 
sufficient to absorb the excess sensible heat. The sensible heat remaining after the 
temperature of the mole of Al2 O3  and the 2 moles of Fe has been increased to 1809 K 
has been calculated as 511,110 J, and the heat required to raise the temperature of 
2 moles of Fe from 298 to 1809 K and melt the Fe has been calculated as Δ H 2  = 
157,541 J. The number of moles of Fe which must be added to the reacting mole of 
Fe2 O3  and 2 moles of Al2 O3  is thus

 
511 110

0 5 157 541
6 49

,
. ,

.
×

=  

The required final state is thus achieved by starting with Fe, Al, and Fe2 O3  at 298 K, 
occurring in the ratio 6.49/2/1. The Thermit reaction is used to weld steel in locations 
which are not amenable to conventional welding equipment.

Quantitative Problem 2

A quantity of supercooled liquid tin is adiabatically contained at 495 K. Calculate 
the fraction of the tin which spontaneously freezes, given
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Solution to Quantitative Problem 2

The equilibrium state of the adiabatically contained system is that in which the solid, 
which has formed spontaneously, and the remaining liquid coexist at 505 K. Thus, 
the fraction of the liquid which freezes is that which releases just enough heat to 
increase the temperature of the system from 495 to 505 K.

Consider 1 mole of tin and let the molar fraction which freezes be x . In Figure  6.16, 
the process is represented by a change of state from a  to c , and, as the process is 
adiabatic, the enthalpy of the system remains constant; that is,

 ∆H H Hc a= − = 0  

Either of two paths can be considered.
Path 1 : a  →  b  →  c , during which the temperature of the 1 mole of liquid is 

increased from 495 to 505 K and then x  moles freeze. In this case,
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a b p l
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a d
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Figure 6.16   Changes in the state of sn, considered in Quantitative example 2.
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and thus,

 x = =301
7070

0 0426.  

That is, 4.26 mol% of the tin freezes.
Path 2 : a  →  d  →  c ; that is, the fraction x  freezes at 495 K, and then, the tempera-

ture of the solid and the remaining liquid is increased from 495 to 505 K. In this case,

 
∆ = ∆
∆ =
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−
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Thus,
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x . ( ) ( )− −−
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( ) . ( )

.
( )1 34 7 505 495

9 2
2

10 505 4953 2 2− − − −−x


= +            301 14x

 

Thus,

 − = − −7 84 14 3 10 0x x  

which gives

 x = =301
7070

0 0426.  

The actual path the process follows is intermediate between paths 1 and 2; that is, the 
process of freezing and increase in temperature occur simultaneously.
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The entropy produced by the spontaneous freezing is

 

∆ + ∆ = × 





×→ →S Sa b b c( ) ( ) . ln [ . ( )]34 7
505
495

9 2 10 505 4953− −−

                              

          

− 0 0426
7070
505

. ×





                   J K mole= = ⋅0 602 0 596 0 006. . .−

 

Quantitative Problem 3

The adiabatic flame temperature is that temperature reached when all of the sensible 
heat released by the combustion of a fuel is used to raise the temperature of the 
gaseous products of combustion. Consider the adiabatic flame temperature reached 
when acetylene, C2 H2 , is combusted at 298 K with (1) the stoichiometric amount of 
oxygen and (2) the number of moles of air containing the stoichiometric number of 
moles of oxygen. Air is, by mole or volume percent, 21% O2  and 79% N2 .

The combustion reaction with stoichiometric oxygen is

 C H 2 5 O 2 CO H O2 2 2 2 2+ = +.  (i)

For C2 H2 : Δ H 298  = +226,700 J
For CO2 : Δ H 298  = – 393,500 J
For H2 O: Δ H 298  = – 241,800 J

Solution  to Quantitative Problem 3 

Thus, for the reaction given by Equation  (i):

 ∆H i 2 393 5 241 8 226 7 1 255 5  J
298( ) = − × − − = −( , ) , , , ,00 00 00 00  

The constant-pressure molar heat capacities of the products of reaction are

 
For H O: H O  J/K mole

For CO
22

3 5 230 00 10 71 10 0 33 10c T Tp, . . .= + × + × ⋅−

22: CO  J/K molec T Tp, . . .2
3 5 244 14 9 04 10 8 54 10= + × − × ⋅−  

The adiabatic flame temperature, T , is then obtained from the requirement

 ∆ + + =∫H c c dTp p

T

( ) ( , , )i CO H O298 2 2
298

2 0  

or

 
− − −−1 255 500 118 28 298 14 40 10 298

16 75 10

3 2 2, , . ( ) . ( )

.

+ × + × ×
+ ×

T T

   55 1 1 298 0( )T − =
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which has the solution T  = 6,236 K.
For combustion with the stoichiometric amount of air, the reaction is written as

 C2 H2  + 2.5 O2  + 2.5 × (79/21) N2  = 2CO2  + H2 O + 9.41 N2 

 For N : N  J/mole K2 2
327 87 4 27 10c Tp, . .= + × ⋅−  

and the adiabatic flame temperature, T , is obtained from

 ∆ + + + =∫H c c c dTp p p

T

( ) ( , , . , )i CO H O N2298 2 2
298

2 9 41 0  

or

 − − −−1 255 500 380 1 298 40 16 10 298

16 75 10

3 2 2, , . ( ) . ( )

.

+ × + × ×
+ ×

T T

    55 1 1 298 0( )T − =
 

as T  = 2,797 K.
This high adiabatic flame temperature facilitates the use of acetylene for welding 

metals with high melting temperatures.

PrOBLeMS *

6.1   Calculate Δ H 1600  and Δ S 1600  for the reaction Zr(β ) + O2  = ZrO2 (β ).
6.2   Which of the following two reactions is the more exothermic?

 a. C g g( ) ( ) ( )graphite / O CO  at  K+ →1 2 10002

 b. C g g( ) ( ) ( )diamond / O CO at  K+ →1 2 10002

6.3   Calculate the change in enthalpy and the change in entropy at 1000 K for the 
reaction CaO( s  )  + TiO2( s  )  →  CaTiO3( s  ) .

6.4   Copper exists in the state T  = 298 K, P  = 1 atm. Calculate the temperature to 
which the copper must be raised at 1 atm pressure to cause the same increase 
in molar enthalpy as is caused by increasing its pressure to 1000 atm at 298 K. 
The molar volume of Cu at 298 K is 7.09 cm3 , and the volumetric coefficient 
of thermal expansion is 0.501 ×  10– 4  K– 1 . These values can be taken as being 
independent of pressure in the range 1– 1000 atm.

6.5   Calculate Δ H 298  and Δ S 298  for the following reactions:
 a. 2 1 2 2 2 3 TiO / O Ti O+ =
 b. 3 1 2 22 3 2 3 5 Ti O / O Ti O+ =
 c. Ti O / O TiO3 5 2 21 2 3+ =

6.6   An adiabatic vessel contains 1000 g of liquid aluminum at 700° C. Calculate the 
mass of Cr2 O3  at room temperature, which, when added to the liquid aluminum 
(with which it reacts to form Cr and Al3 O3 ), raises the temperature of the result-
ing mixture of Al2 O3 , Cr2 O3 , and Cr to 1600 K.

* Thermodynamic data required for the solution of the end-of-chapter problems are tabulated in the 
appendices of the text.
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6.7   Calculate the adiabatic flame temperature attained when methane, at 298 K, is 
combusted with (a) oxygen in the molar ratio O2 /CH4  = 2.0, and (b) air in the 
molar ratio air/CH4  = 9.524. Assume that CO2  and H2 O are the products of com-
bustion. The adiabatic flame temperature is that temperature reached if all of the 
heat of the oxidation reaction is used to increase the temperature of the products 
of the reaction. Air is 21 mol% O2  and 79 mol% N2 .

6.8   Calculate the value of Δ G  for the reaction

  Si N 3 O 3 SiO 2 N3 4 2 2 quartz 2+ = +−( )α  

   at 800 K. What percentage error occurs if it is assumed that Δ c p   for the reaction 
is zero?

6.9   Determine the stoichiometric coefficients for the reaction

  ( ) ( )3 32 3 2 2 3 2 CaO Al O  SiO CaO Al O SiO

                   

⋅ ⋅ + ⋅ ⋅ =a

                       CaO Al O  SiO  CaO Al O Sb c( ) (⋅ ⋅ + ⋅ ⋅2 3 2 2 32 2 iiO2 )
 

  and calculate Δ H 298 , Δ S 298 , and Δ G 298  for the reaction.
6.10  How much heat is required to increase the temperature of 1 kg of cordierite, 

2 MgO· 2 Al2 O3 · 5 SiO2 , from 298 K to its incongruent melting temperature of 
1738 K?

6.11 *   A function Ω  ≡  –A + μ  N, has been defined, where A is the Helmholtz free 
energy, μ  is the chemical potential and N is the number of particles in the system. 

   Obtain an expression for dΩ  and thus determine the independent variables for 
this function.

6.12 *  (a) Given that the Helmholtz energy can be written as

  A N k TB= − system ln Z  

  Obtain simplified expressions for both A and S of an Einstein solid.
   (b) Show that the entropy approaches 0 as the temperature approaches 0 in such 

a solid.
6.13 *   Obtain an expression for the internal energy of an Einstein solid as the tempera-

ture gets very large, differentiate it with respect to T , and show that the Dulong 
and Petit value for the heat capacity is attained.

APPeNDIX  6A 

In Section 6.2, we found that by substituting Equation  6.2 and 6.4 into 6.3 we 
obtain
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* New problem in this edition
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This represents the total internal energy of an Einstein solid. This equation can 
be expanded to obtain

 ′ =
−





−





+
−

∑
∑

∑
U nh

i
k T

k T

k Ti

i

B

i

Bi

i

i

B3
1
2

ν

ε

ε

ε
exp

exp

exp 



−







































∑ exp

εi

Bi k T

 

 

′ =
− +











− +








∑
U nh

i
i

k T
i h

k T
i h

i B

B

3

1
2

1 1
2

ν
ν

ν

exp

exp 



+



















′ =
−





−

∑

∑

i

i B

B

U nh

i
ih

k T

ih

k T

1
2

3 ν

ν

ν

exp

exp






+

















∑ i

1
2

 

Now we let 

 
i B

ii
ih

k T
ix x x x

x

x∑ ∑−





= = + + + =
−( )

exp ( ...)
ν

1 2 3
1

2
2  

and let

 
i B

iih

k T
x x x

x∑ ∑−





= = + + + =
−

exp ...
ν

1
1

1
2  

where x h k TB= −exp( )ν/ .
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This gives us the total internal energy of a system composed of 3n  quantum har-
monic oscillators, which Einstein used to model the thermal properties of a solid 
with its n  atoms vibrating independently of each other.
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ChAPter 7

Phase equilibrium in a 
One-Component System

7.1 INtrODUCtION

The intensive thermodynamic variables which control the equilibrium of a sys-
tem are the temperature, the pressure, and the chemical potentials of the various 
species that compose the system. If, within a system, a gradient exists in any one of 
these variables, there is a driving force for change in the system.

The temperature  of a system is a measure of the intensity of the thermal energy 
(heat) in the system. If the system is able to exchange energy with its surroundings, 
and if the surroundings are of a different temperature than the system, the gradi-
ent in temperature is a measure of the tendency for thermal energy (heat) to leave 
or enter the system. If, within an isolated system, a gradient in temperature exists, 
it produces a driving force for the transport of thermal energy down the gradient 
from the part of the system at the higher temperature to the part of the system at the 
lower temperature. The spontaneous transfer of thermal energy (heat) occurs until 
the thermal energy gradient has been eliminated, in which state, the thermal energy 
is distributed at uniform intensity (temperature) throughout the system. Thus, in an 
isolated system, thermal equilibrium is established when the temperature is uniform 
throughout the system. We have seen that this means that the entropy of the system 
is maximized.

The pressure  of a system is a measure of its potential for undergoing massive 
movement by expansion or contraction. If, in a system of fixed volume, the pres-
sure exerted by one phase is greater than that exerted by another phase, then the 
tendency of the first phase to expand exceeds that of the second phase. The pressure 
gradient is the driving force for the expansion of the first phase, and this expansion 
decreases its pressure, hence its tendency for further expansion. The other phase 
contracts, which increases its pressure, hence its tendency to resist further contrac-
tion. Mechanical equilibrium is established when the massive movement of the two 
phases has occurred to the extent that the pressure gradient has been eliminated, in 
which state the pressure is uniform throughout the system.

The chemical potential  of the species i  in a phase is a measure of the tendency 
of the species i  to leave the phase. It is thus a measure of the chemical pressure  
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exerted by component i  in the phase. If, at constant temperature and pressure, the 
chemical potential of i  has different values in different phases of the system, then, 
as the escaping tendencies differ, the species i  will tend to move from the phases in 
which it occurs at the higher chemical potential to the phases in which it occurs at 
the lower chemical potential. A gradient in chemical potential is the driving force  
for chemical diffusion, and equilibrium is attained when the species i  is distributed 
throughout the various phases in the system, such that its chemical potential has the 
same value in all phases.

In a closed system of fixed composition (e.g., a one-component simple system), 
at the temperature T  and the pressure, P , equilibrium occurs when the system exists 
in that state which has the minimum  value of the total Gibbs free energy, G ′ , of the 
system . The equilibrium state can thus be determined by means of an examination of 
the dependence of G′   (or the molar Gibbs free energy G ) on pressure and tempera-
ture. Throughout this chapter we deal with molar properties unless stated otherwise. 

7.2 the VArIAtION OF GIBBS Free eNerGY WIth 
teMPerAtUre At CONStANt PreSSUre

We have seen that the molar Gibbs free energy for a single-component closed 
system can be written as

 dG SdT VdP= − +  (5.10d)

At constant pressure, this reduces to

 dG SdT= −  

Using this equation, we can sketch G  versus T  for a solid phase, α , as shown in 
Figure  7.1. We now examine the features of this plot.

G

Temperature ®

Constant pressure

Solid, α

Figure 7.1   schematic of the molar Gibbs free energy vs. temperature plot at constant pres-
sure of a solid phase.
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 1. The slope of the curve is negative for T  >  0, since the slope is equal to minus the 
entropy of the system and the entropy must be positive.

 2. As T  approaches zero, S G T P= − ∂ ∂( )/ approaches zero, as indicated by the Third 
Law of Thermodynamics (see Chapter 6).

 3. The curvature of the plot is proportional to

 ∂
∂







= − ∂
∂







= −
2

2

G

T

S

T

c

T
P P

P  (7.1)

 and since c p   and T  are positive (T  >  0K), the curvature is negative for T  >  0 K.
 4. As the temperature increases, the entropy of the system increases and the curvature 

of the plot decreases: ( ) ( )∂ ∂ = − ∂ ∂S T G TP P/ /2 2 .

Now, consider the addition to the plot of the molar Gibbs free energy curve for 
the liquid phase of this one-component system (Figure  7.2). Once again, we examine 
the salient features of this plot.

 1. We note that the Gibbs free energy of the liquid is greater than that of the solid at 
T  = 0. This follows, since the solid phase is the stable phase below the system’ s 
melting point, T m  .

 2. The slope of the Gibbs free energy curve for the liquid, ( )∂ ∂G TL
P/ , is less than the 

slope for the solid, for T  >  0 K, since the entropy of the liquid is greater than that 
of the solid at all temperatures greater than 0 K.

 3. At the temperature denoted as T m  , the Gibbs free energy of the solid equals that of 
the liquid: G S   = G L  . This is the equilibrium melting temperature of the solid. It is 
also the equilibrium freezing temperature of the liquid.

 4. At T m  , since the slope of the liquid Gibbs free energy is more negative than that of 
the solid (since S L   >  S S  ), the Gibbs free energy of the liquid begins to drop below 
that of the free energy of the solid, and hence, the liquid becomes the stable phase.

G

Constant pressure

Liquid

Temperature →

Tm

Solid, α

Figure 7.2   schematic of the molar Gibbs free energy vs. temperature plot of the solid phase 
shown in figure 7.1 along with the plot of its liquid phase. T m   is the melting point 
of the solid.
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 5. The curvature of the Gibbs free energy of the liquid is more negative than that of 
the solid, and hence, its heat capacity is greater than that of the solid.
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This is a general feature of competing phases in a simple system: the phase with the 
highest heat capacity is the stable phase at high temperatures. This was first stated 
by van’ t Hoff (Jacobus Henricus van’ t Hoff, 1852– 1911) and is sometimes called the 
van’ t Hoff rule .

These qualitative features of the molar Gibbs free energy plots of a solid phase 
and its liquid phase give insight into the underlying thermodynamic causes which 
bring about changes in the equilibrium of a system.

Let us now examine what happens to the solid phase when thermal energy (heat) 
is added to it at constant pressure and in a reversible manner, starting at T  = 0. At 
constant pressure, the molar heat capacity, cP

S  , which equals ( )∂ ∂H TS
P/ , increases as 

the temperature of the solid increases. The solid remains a solid until its equilibrium 
melting temperature T m   is reached. At this temperature (and pressure), the solid is 
able to exist in equilibrium with its liquid phase. If both phases are present at T m   and 
more thermal energy is added to the solid and liquid mixture, the temperature of 
the two-phase system will not increase. This is because the added thermal energy is 
utilized to melt the remaining solid until, eventually, only liquid at the melting tem-
perature, T m  , remains. During the process of melting, the amount of thermal energy 
added to the system is written as Δ H m   and is called the molar enthalpy of melting  
(sometimes the latent heat of melting ). During the melting process, thermal energy 
is added to the system, but there is no change in temperature. The two-phase mixture 
of the solid and liquid effectively has an infinite heat capacity at the melting point. 
After all of the solid has melted, the continued addition of thermal energy increases 
the temperature of the liquid. Since the transformation from solid to liquid occurs 
at constant temperature, we can calculate the entropy change of the melting process 
as follows:

 ∆ ∆
S

H

Tm
melting

melting=  (7.2)

This change in entropy is positive (thermal energy has entered the system), and there-
fore, as expected, the entropy of the liquid is greater than that of the solid from which 
it is formed.

It is of interest to plot the heat capacity of the system as a function of tempera-
ture. This is shown in Figure  7.3. This plot shows what was described in the previous 
paragraph during the process of heating the solid. The effective infinity in the heat 
capacity is denoted by the vertical arrow. The heat capacity of the liquid just above 
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the melting temperature is shown to be larger than the heat capacity of the solid just 
before melting began, because the curvature of its molar Gibbs free energy plot is 
more negative than that of the solid (Figure  7.2).

Phase transformations such as the melting of a one-component solid were called 
first-order phase changes  by Ehrenfest (Paul Ehrenfest, 1880– 1933). This is based 
on the behavior of the derivative of the Gibbs free energy (or any other energy func-
tion of the system, such as U , H , or A ) in the vicinity of the phase change. The order 
of a phase transition in this classification is defined as the lowest derivative of the 
Gibbs free energy with respect to temperature (or pressure), which is discontinuous  
at the transition temperature.

We have seen that the entropy, S G T P= −( )∂ ∂/ , is discontinuous at the melt-
ing temperature. Also, ( )∂ ∂G P VT/ =  and ∂ ∂( ) / ( )G T T H

P
/ /1( ) =  are also discon-

tinuous at the melting temperature. Each of these discontinuities in the derivatives 
shows that the variables derived (the molar entropy, S , the molar volume, V , and the 
molar enthalpy, H ) have different values in the low-temperature phase and the high- 
temperature phase. The discontinuity in these thermodynamic state variables is a 
feature of first-order phase transitions. If they had the same values, the transitions 
would be called higher-order  or continuous transitions .

We can also plot the change in the enthalpy and the Gibbs free energy for 
transformation between the solid and liquid phases as a function of temperature 
(Figure  7.4). It can be seen that Δ G  and Δ H  approach the same value as the tem-
perature approaches 0 K. This follows from the definition of the Gibbs free energy; 
that is,

 ∆ ∆ ∆G H T S= −  

P

cP = − T
T2

æ ö¶2G
ç ÷¶è ø

Constant pressure

Liquid

Tm

Solid

Temperature ®

Figure 7.3   schematic of the molar heat capacity vs. temperature plot at constant pressure of 
the system shown in figures 7.1 and 7.2. at the equilibrium melting temperature, 
the heat capacity displays an effective infinity, indicating that there is a latent 
enthalpy of melting.
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In addition their slopes, ∂ ∂ = − ∂ ∂ =∆ ∆ ∆ ∆G T S H T C TP/   and  / /  both approach zero 
as the temperature approaches 0 K. This was discussed in Chapter 6 when the Third 
Law of Thermodynamics was being considered.

As the temperature increases, the difference between Δ G  and Δ H  becomes 
larger. The difference is the value of T Δ S S  →  L  . Below T m  , Δ G S  →  L   = G L   –  G S   >  0, 
indicating that the solid phase will not transform into the liquid phase, since it is the 
stable phase. At T m  , the value of Δ G S  →  L   goes to zero since the solid and liquid are 
in equilibrium at that temperature. Above T m  , Δ G S  →  L   <  0, indicating that the solid 
phase will transform into the equilibrium liquid phase.

7.3 the VArIAtION OF GIBBS Free eNerGY WIth 
PreSSUre At CONStANt teMPerAtUre

From Equation  5.10d, we see that the molar Gibbs free energy is a function of 
pressure as well as temperature. At constant temperature, we have

 dG VdP=  

A sketch of the molar Gibbs free energy versus pressure for the solid and liquid 
phases at a fixed temperature is shown in Figure  7.5. Since ( )∂ ∂ =G P VT/ , which 
is the molar volume of the phase, the slopes must be positive. The phase with the 
larger molar volume has the larger slope. Usually, this is the liquid phase, as shown 
in Figure  7.5. However, there are known examples to the contrary. The curvature of 
the plot of G  versus P  is proportional to ( )∂ ∂ = ∂ ∂ = −2 2G P V P VT T/ / β , where β T   is 
the isothermal compressibility, which is inversely related to the elastic modulus in a 

∆G = 0

Constant pressure

∆HS®L

∆GS®L

Tm

Temperature ®

Figure 7.4   schematic of the Δ H  and Δ G  plots of the solid to liquid transformation in the 
system depicted in figures 7.1 and 7.2. at T  = 0 K, Δ H  = Δ G . at the equilibrium 
melting temperature, Δ G  = 0. above T m  , Δ G S  →  L   <  0.
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solid phase. The compressibility is positive as defined, so the curvatures of the plots 
of Figure  7.5 are negative, as shown.

If the constant temperature of the phase shown in Figure  7.5 is the melting tem-
perature of the solid, the pressure where the Gibbs free energies of the solid and 
liquid are equal is 1 atm. At this temperature and pressure, the solid and liquid 
phases are in equilibrium, and, if the pressure is increased (holding the temperature 
constant), it is readily seen that the liquid phase becomes unstable with respect to 
the formation of the solid phase. The role of pressure on the equilibrium of a solid 
and a liquid can be considered from the point of view of the principle of Le Chatelier 
which states that, when subjected to an external influence, the state of a system at 
equilibrium shifts in that direction which tends to nullify the effect of the external 
influence. Thus, when the pressure exerted on a system is increased, the state of 
the system shifts in the direction which causes a decrease in its volume. The mate-
rial system depicted by Figure  7.5 shows a larger molar volume for the liquid phase 
(( ) ( )∂ ∂ > ∂ ∂G P G PL T S T/ / ). If the liquid and solid phases are in equilibrium in this 
system, and if the external pressure is increased, the system divests itself of the 
higher molar volume liquid phase and becomes completely solid. This phase is the 
one with the lower isothermal compressibility. Water, at 0° C, has a smaller molar 
volume than has ice at 0° C, and therefore, the melting  of ice is the change in state 
caused by an increase in pressure at its melting temperature.

7.4 the GIBBS Free eNerGY AS A FUNCtION 
OF teMPerAtUre AND PreSSUre

For a liquid and its solid phase to be in equilibrium, we know that their molar Gibbs 
free energies must be equal: G L   = G S  . Thus, for a single-component system, we know 
that dG L   = dG S  . Consider Equation 5.10d applied to both the solid and liquid phases:

 dG S dT V dPS S S= − +  

Pressure ®

G

Liquid

Solid

Constant temperature

Figure 7.5   schematic of the molar Gibbs free energy vs. pressure plot of the phases shown 
in figures 7.1 and 7.2.
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 dG S dT V dPL L L= − +  

For equilibrium to be maintained between the liquid and solid phases,

 − + = − +S dT V dP S dT V dPS S L L  

or

 dP

dT

S S

V V

S S

V V

S

V

S L

S L

L S

L S







= −
−

= −
−

=
eq

∆
∆

 

At equilibrium, Δ G  = 0, and hence, Δ H  = T Δ S . When this is substituted into the 
preceding equation, we arrive at

 dP

dT

H

T V






=
eq

∆
∆

 (7.3)

This is known as the Clapeyron equation  (Benoî t Paul É mile Clapeyron, 1799– 1864) 
and it gives the relationship between the variation of temperature and pressure, 
which is required for the maintenance of equilibrium between the solid and the liq-
uid phases.

Consider again the equilibrium between a solid and its liquid phase. When ther-
mal energy is added to this two-phase equilibrium, it causes the solid to melt and 
Δ H ( S  →  L  )  >  0 (endothermic). The sign of ( )dP dT/ eq is thus determined by the sign 
of Δ V ( S  →  L  ) . The value of Δ V ( S  →  L  )  for H2 O is negative. Thus, ( )dP dT/ eq  for H2 O is 
negative; that is, an increase in pressure decreases the equilibrium melting tempera-
ture, as discussed in Section 7.3. Recall that for most materials, Δ V ( S  →  L  )  is positive, 
which means that for most materials, an increase in pressure at the melting tempera-
ture causes the solid to be stable, and thereby, the melting temperature increases.

The thermodynamic states of the solid and liquid phases can be represented in a 
three-dimensional diagram with G , T , and P  as coordinates. A schematic of such a 
diagram for H2 O is shown in Figure  7.6. In this figure, the solid and liquid states of 
existence are shown as a surface in G -T -P  space. The curve along which the surfaces 
intersect represents the variation of P  with T  required for the maintenance of the 
equilibrium between the solid and liquid phases. At any state, which is determined 
by fixing the values of T  and P , the equilibrium phase is that which has the lower 
value of G .

If the G -T -P  surface for the states of existence of the vapor phase were included 
in Figure  7.6, the surface would intersect with the solid-state surface along another 
curve and would intersect with the liquid-state surface along yet another curve. 
Projection of these curves, together with the curve of the intersection of the solid- and 
liquid-state surfaces, onto the two-dimensional P -T  basal plane of Figure  7.6 would 
produce a plot such as that shown in Figure  7.7. The three surfaces representing the 
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three phases, intersect at a point, the projection of which onto the P -T  basal plane 
gives the invariant point O , known as the triple point . The dashed lines OA′  , OB′  , 
and OC′   in Figure  7.7 represent, respectively, metastable solid– liquid, metastable 
vapor– liquid, and metastable vapor– solid equilibria. The equilibria are metastable 
because, in the case of the line OB'  , the intersection of the liquid- and vapor-state 

Solid
Liquid

Liquid
Liquid

SolidSolid

Solid

Liquid
G

o

0.0075°C

0°C, 1 atm

0.006 atm

m

P

T

Figure 7.6   schematic representation of the equilibrium surfaces of the solid and liquid 
phases of water in G -T -P  space.
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Figure 7.7   schematic representation of part of the pressure– temperature phase diagram for 
h2 o, showing the metastable extensions of the two-phase equilibrium curves.
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surfaces lies at higher values of G  than does the solid-state surface for the same 
values of P  and T . Similarly, the solid– liquid equilibrium OA′   is metastable with 
respect to the vapor phase, and the solid– vapor equilibrium OC′   is metastable with 
respect to the liquid phase.

Figure  7.8a shows the isobaric sections for the three phases of H2 O in the vicinity 
of the triple point for P 1  >  P triple point , P 2  = P triple point , and P 3  <  P triple point . Figure  7.8b 
shows three isothermal sections at T 1  <  T triple point , T 2  = T triple point , and T 3  >  T triple point . 
In Figure  7.8a, the slopes of the G  versus T  curves in any isobaric section increase 
negatively in the order solid, liquid, vapor, in accordance with the fact that 

 S S SS L V< <  

Similarly, in Figure  7.8b, the slopes of the G  versus P  curves in any isothermal section 
increase in the order liquid, solid, vapor in accordance with the fact that, for H2 O, 

 V V VL S V< <  

Notice that the relative positions of the metastable extensions of the stable curves can 
be determined from these plots.

The curves OA , OB , and OC  divide Figure  7.7 into three areas, within each of 
which only one phase is stable. Within these areas, the pressure exerted on the phase 
and the temperature of the phase can be independently varied without changing the 
phase, which is in equilibrium. In this case, the equilibrium is said to have two ther-
modynamic degrees of freedom . The number of degrees of freedom that a system in 
equilibrium has is the maximum number of thermodynamic variables which may be 
independently varied without changing the phase(s) which is (are) in equilibrium. The 
single-phase areas meet at the lines OA , OB , and OC , along which two phases coexist 
in equilibrium, and for the continued maintenance of any of these two-phase equilib-
ria, only one variable (either P  or T ) can be independently varied. Two-phase equilibria 
in a one-component system thus have only one thermodynamic degree of freedom. 
The three two-phase equilibria curves meet at the triple point, which is the invariant 
state at which solid, liquid, and vapor coexist in equilibrium. The three-phase equilib-
rium in a one-component system thus has no thermodynamic degrees of freedom. The 
maximum number of phases which can coexist at equilibrium in a one-component sys-
tem is therefore three. The number of degrees of freedom, F , that a system containing 
one  component can have when ϕ  phases are in equilibrium can be seen to be given by

 F = −3 φ  (7.4)

This expression is the equilibrium Gibbs phase rule  for a single-component sys-
tem. It will be extended in Section 13.4, to a system with C  components present, 
to yield

 F = + −C 2 φ  
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Figure 7.8a   (a) schematic of the constant-pressure variations of the molar Gibbs free ener-
gies of solid, liquid, and vapor h2 o at pressures above, at, and below the tri-
ple-point pressure; (b) schematic of the constant-temperature variations of the 
molar Gibbs free energies of solid, liquid, and vapor h2 o at temperatures above, 
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7.5 eQUILIBrIUM BetWeeN the VAPOr 
PhASe AND A CONDeNSeD PhASe

If the Clapeyron equation is applied to the equilibrium between a vapor phase 
and a condensed phase, then Δ V  is the change in the molar volume accompanying 
evaporation (liquid to vapor) or sublimation (solid to vapor), and Δ H  is the corre-
sponding change in the molar enthalpy— that is, the molar enthalpy of evaporation 
or of sublimation.

Now, ∆ V  = V vapor  –  V condensed phase , and since the molar volume of the vapor, V vapor , 
is much larger than the molar volume of the condensed phase, V condensed phase , then, 
with the introduction of an insignificant error,

 ∆V V= vapor  

Thus, for condensed phase– vapor equilibria, the Clapeyron equation can be written as

 
dP

dT

H

TV






=
eq

vapor

∆
 

in which V vapor  is the molar volume of the vapor. If it is further assumed that the 
vapor in equilibrium with the condensed phase behaves ideally (i.e., PV  = RT ), then
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rearrangement of which gives

 dP

P

H

RT
dT= ∆

2
 

or

 d P
H

RT
dTln = ∆

2  (7.6)

Equation  7.6 is known as the Clausius– Clapeyron equation .
If Δ H  is independent of temperature— that is, if c p  (vapor) = c p  (condensed 

phase)— integration of Equation  7.6 gives

 
ln P

H

RT
= − +∆

constant
 (7.6a)

where the initial pressure is assumed to be 1 atm. If we use the boiling point values 
of the pressure and temperature (P 0  and T b  ), we can write

 ln
P

P

H

R T Tb0

1 1= − −





∆  (7.7)



211Phase eQuIlIBrIum In a one-ComPonent system

Since equilibrium is maintained between the vapor phase and the condensed phase, the 
value of P  at any T  in Equation  7.7 is the saturated vapor pressure  exerted by the con-
densed phase at the temperature T . Equation  7.7 thus shows that the saturated vapor pres-
sure exerted by a condensed phase increases exponentially with increasing temperature.

A plot of lnP  versus 1/T  is linear, in this approximation, with a slope of −∆H R/  
(Figure  7.9). The change in slope in Figure  7.9 occurs at the melting point of the 
solid. The saturated vapor pressure versus temperature of several of the more com-
mon elements is depicted in Figure  7.10.

lnP

1/T (K–1)

R
∆HL→V

∆HS→L

−

R
−

Figure 7.9   schematic plot of lnP  vs. 1/T . the slope of the plot is −∆H R/ , and the slope 
changes at the melting point of the solid.
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et al., Selected Values of the Thermodynamic Properties of the Elements , asm, 
metals Park, oh, 1973.)
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7.6 GrAPhICAL rePreSeNtAtION OF VAPOr 
PhASe AND CONDeNSeD PhASe eQUILIBrIA

When a liquid and its vapor are in equilibrium, the normal boiling point of the 
liquid is defined as that temperature at which the saturated vapor pressure exerted by 
the liquid is 1 atm. Knowledge of the molar heat capacities of the liquid and vapor 
phases, the molar enthalpy of evaporation at any one temperature, Δ H evap, T  , and the 
normal boiling temperature allows the saturated vapor pressure– temperature to be 
determined for any material.

The phase diagram of a one-component system depicted in Figure  7.7 has T  and 
P  as the independent thermodynamic coordinates. The curve AOA′   is a graphical 
representation of the integral of Equation  7.3, which is the variation of pressure with 
temperature required for phase equilibrium between the solid and liquid phases. If 
Δ H m   is independent of temperature, integration of Equation  7.3 gives an expression 
of the form

 P
H

V
T= +∆

∆
ln constant  (7.11)

By definition, the normal melting temperature of the material is the melting tempera-
ture at a pressure of 1 atm, and in Figure  7.7, the normal melting point is designated 
as the point m . The curve BOB′   is the curve for equilibrium between the vapor and 
the liquid given by Equation  7.7, in which Δ H T   is Δ H evap, T  . In the case of water, the 
line BOB′   represents the variation, with temperature, of the saturated vapor pressure 
of the liquid, or alternatively, the variation, with pressure, of the dew point of water 
vapor. The curve BOB′   passes through the normal boiling point (represented by the 
point b  in the figure) and intersects the line AOA'   at the triple point , O . The triple 
point is the state represented by the invariant values of P  and T  at which the solid, 
liquid, and vapor phases are in equilibrium with each other. Knowledge of the triple 
point, together with the value of Δ H sublim, T  , allows the variation of the saturated 
vapor pressure of the solid with temperature to be determined. This equilibrium 
curve is drawn as COC'   in Figure  7.7.

7.7 SOLID– SOLID eQUILIBrIA

Elements which can exist in more than one crystal form are said to exhibit allot-
ropy , and chemical compounds or solid solutions which can exist in more than one 
solid form are said to exhibit polymorphism . The variation of pressure with tempera-
ture required to maintain equilibrium between two solids is given by Equation  7.3:

 dP

dT

H

T V
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in which Δ H  and Δ V  are the changes in the molar enthalpy and the molar volume for 
the change of state solid I →  solid II.

Figure  7.11a is a schematic of the P -T  diagram of an element exhibiting two 
allotropes. Figure  7.11b shows a schematic of the enthalpy of each of the phases as a 
function of temperature. Starting at low temperatures and atmospheric pressure, the 
stable phase is solid phase I. At T I→ II , this phase transforms into the solid phase II. 
This transformation is shown to have an enthalpy of transformation, and is therefore 
a first-order transformation. Phase II melts at T m  , and the liquid boils at T b  . These 
transformations also display enthalpies of transformation and are thermodynami-
cally first order.

The pressure– temperature phase diagram for iron at relatively low pressures is 
shown in Figure  7.12. Iron has the body-centered cubic crystal structures in the para-
magnetic α  and δ  phases at, respectively, low and high temperatures and exhibits the 
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Figure 7.11   (a) schematic pressure vs. temperature diagram of a system with two solid-state 
phases (I and II) and a liquid phase. (b) schematic enthalpy vs. temperature dia-
gram of the system in figure 7.11a, showing the transformation temperature from 
I to II, the melting temperature, and the boiling temperature.
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face-centered cubic (FCC) crystal structure (γ  phase) at intermediate temperatures. 
Figure  7.12 shows three triple points involving two condensed phases and the vapor 
phase.

It is of interest to consider the slope of the α – γ   equilibrium curve. As was the 
case for the solid water– liquid water equilibrium curve, the slope is negative. For 
water, this was because of the anomalous density of liquid water, it being greater 
than that of solid water in the region of the equilibrium— that is V M  (L ) <  V M  (S ). 
This, combined with the greater entropy of liquid water, S M  (L ) >  S M  (S ), gives rise 
to a negative slope.

The negative slope of the P -T  coexistence boundary for α  and γ  is also anomalous. 
The slope dP dT S V/ /= ∆ ∆  is usually positive in solids (considering only vibrational 
entropy), since the smaller molar volume phase usually has the smaller entropy. The 
volume change for Fe transforming from α  to γ  is negative. Since Δ V α → γ   is negative, 
Δ S α → γ   must be positive in order that the curve have a negative slope. This means that 
the entropy of the γ  phase (FCC) is larger than that of α  phase (body-centered cubic 
[BCC]), which is unusual.

To explain this, recall that there are various aspects of entropy, and in a magnetic 
solid, the spin entropy must be considered. Thus, the important aspects of entropy 
here are

• Vibrational entropy (thermal)
• The spin entropy of the moments on each Fe atom

The Clapeyron equation shows

 S Sγ α>  
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Figure 7.12   the pressure temperature phase diagram for iron.
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Therefore,

 S S S Svibrational spin vibrational spin
γ γ α α+ > +  

The vibrational entropy for BCC metals is larger than that for FCC metals (see 
Chapter 6), so that it can be further concluded that

 S S S Sspin vibrational vibrational spin
γ α γ α> − +( )  

Since both terms on the right-hand side are positive, we conclude that

 S Sspin spin
γ α>  

FCC γ iron must have larger spin entropy than BCC paramagnetic α iron does. The 
origin of the large c p  , and therefore, the entropy of the γ phase, is the disordering 
of the antiferromagnetic (AF) state of γ iron, which occurs at very low tempera-
tures. It is this transition which gives the paramagnetic γ  phase such a large spin 
entropy and stabilizes the γ   phase at elevated temperatures. If γ  iron were not 
antiferromagnetic at low temperatures, it would not have enough entropy to replace 
α  iron at high temperatures. This would mean that martensite could not be formed 
in Fe-based alloys!

The curve for equilibrium between γ  and δ  has a positive slope. In this case, the 
high-temperature δ  phase is BCC, so its vibrational entropy is greater than that of the 
FCC (γ ) phase, and its molar volume is greater as well.

With increasing pressure, the slope of the γ – δ  line becomes greater than that 
of the δ – liquid line, and the two lines meet at a triple point for the three-phase 
γ – δ –  liquid equilibrium at P  = 14,420 atm and T  = 1590° C (not shown in Figure  7.12). 
The vapor pressure of liquid iron, which is given by

 ln ( )
,

. ln .p
T

T atm = − − +19 710
1 27 10 39  

reaches 1 atm at 3330 K (3057° C), which is thus the normal boiling temperature of 
iron.

Figure  7.13 is a schematic representation of the variation of the molar Gibbs free 
energies with temperature (at constant pressure) of the BCC, FCC, liquid, and vapor 
phases of iron. In iron, the less close-packed phase BCC (α ) is stable at 0 K because 
its internal energy is lowered due to its ferromagnetism . The curvature of the BCC 
(α ) iron G  versus T  curve is more negative than that of the FCC (γ ) curve, and hence, 
it intersects the FCC iron line twice, with the consequence that, at 1 atm pressure, 
BCC iron is stable relative to FCC iron at temperatures less than 910° C and at tem-
peratures greater than 1390° C. Since the curvature of the Gibbs free energy of the 
BCC iron is always more negative than that of FCC iron, the heat capacity of FCC 
(γ )  iron is less than that of BCC (α ) iron near the temperatures of transformation 
(Figure  6.5).
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A schematic phase diagram for zirconia, ZrO2 , is shown in Figure  7.14. Zirconia 
has monoclinic, tetragonal, and cubic polymorphs. Note that the point group sym-
metry of the stable polymorph increases as the temperature increases (monoclinic to 
tetragonal to cubic). Including the liquid and vapor phases, zirconium exhibits five 
stable phases, and hence, the phase diagram contains as many as 5!/3! = 20 triple 
points, five of which are shown in Figure  7.14. The states a , b , and c  are stable triple 
points for, respectively, the three-phase equilibria monoclinic– tetragonal– vapor, 
tetragonal– cubic– vapor, and cubic– liquid– vapor, and the states d  and e  are meta-
stable triple points. The state d  is that at which the extrapolated vapor pressure lines 

a
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fcc

d L V

Vapor

Liquid

BCC
FCC

fcc

T

G

Figure 7.13   schematic representation of the variation of the molar Gibbs free energies of 
the BCC, fCC, liquid, and vapor phases of iron with temperature at constant 
pressure.
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Figure 7.14   a schematic pressure temperature phase diagram for zirconia, Zro2 .
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of the monoclinic and the cubic lines meet in the phase field of stable tetragonal 
zirconia. The state d  is thus the metastable triple point for the equilibrium between 
vapor, monoclinic, and cubic zirconia, which occurs at a higher value of molar Gibbs 
free energy than that of tetragonal zirconia at the same value of P  and T . Similarly, 
the state e , which is that at which the extrapolated vapor pressures of tetragonal and 
liquid zirconia intersect in the phase field of stable cubic zirconia, is the metastable 
triple point for equilibrium between liquid, vapor, and tetragonal zirconia.

7.8 the eFFeCt OF AN APPLIeD MAGNetIC 
FIeLD ON the  P  - T   DIAGrAM 

When a magnetic field is applied to a system in equilibrium, a change in the equi-
librium state will occur. Consider the P -T  diagram of Figure  7.15. The solid line rep-
resents equilibrium between the β  and γ  phases when H  = 0. If a magnetic field is now 
applied, there will be a change in the equilibrium state, indicated by the dotted line.

In Chapter  2, we saw that when a magnetic field is applied to a material, the field 
does work on the material.

 δ µw V d’= − ⋅0H
� �� � ��

M  

In Qualitative Problem 2 of Chapter  2, we saw that H = M /χ  for the linear region 
of the H – M  plot, where χ  is the magnetic susceptibility of the material. For equilib-
rium in a one-component system, we write the Gibbs free energy as

 dG S dT V dP V d′ = − ′ + ′ − ′µ0M H  

T ®

P 
®

b
g

H = 0 H > 0

Figure 7.15   schematic pressure vs. temperature diagram for two solid phases, β  and γ . the 
β  phase has the higher magnetic susceptibility. when a magnetic field is applied, 
the equilibrium curve shifts and expands the stability region of the phase with the 
higher magnetic susceptibility.
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and substituting χ H  for M ,

 dG S dT V dP V d′ = − ′ + ′ − ′µ χ0 H H  

It can be seen from the preceding equations that the Gibbs free energy is lowered 
more for the phase with the larger magnetic susceptibility when an external mag-
netic field H  is applied. The applied magnetic field thus stabilizes the phase with 
the larger magnetic susceptibility. For the example in Figure  7.15, the β  phase has a 
larger magnetic susceptibility than the γ  phase; hence, the curve of β – γ  equilibrium 
is shifted to higher temperatures. The applied magnetic field thus increases the sta-
bility field  of the material with the higher magnetic susceptibility.

7.9 SUMMArY

 1. Knowledge of the dependencies, on temperature and pressure, of the changes in 
molar enthalpy and molar entropy caused by phase changes in a system allows the 
determination of the corresponding change in the molar Gibbs free energy of the 
system.

 2. Since a closed one-component system has only two independent variables, the 
dependence of G  can be examined most simply by choosing the state variables 
T  and P  as the independent variables (these are the natural independent variables 
when G  is the dependent variable). The phases in which the material can exist can 
thus be represented in a three-dimensional diagram using the state function G , the 
independent state variables P , and T  as coordinates.

 3. If sections of these three-dimensional diagrams are taken at constant P , one obtains 
G  versus T  plots for the phases. The phase that is in equilibrium at a given tempera-
ture is the one with the lowest G . Crossings of the curve represent temperatures at 
which two (or three) phases are in equilibrium. The slope of the G  versus T  plot is 
the negative of the entropy, and the curvature is related to the heat capacity of the 
phases delineated by the curves.

 4. Sections of the three-dimensional diagrams may be taken at constant temperature. 
Such plots of P  versus T  show which phase is in equilibrium as a function of pres-
sure. Their slopes are equal to the molar volume of the phases, and their curvatures 
are related to the isothermal compressibility of the phase being plotted.

 5. In the three-dimensional diagrams, the various states in which the material can 
exist occur as surfaces. In any state, which is determined by the values of P  and 
T , the stable phase is that which has the lowest Gibbs free energy. The surfaces in 
the diagram intersect with one another along curves, and these curves represent the 
variations of P  with T  required for equilibrium between the two phases.

 6. The intersection of the surfaces for the solid and liquid phases gives the variation of 
the equilibrium melting temperature with pressure. The intersection of the surfaces 
for the liquid and vapor phases gives the variation of the boiling temperature with 
pressure. The normal melting and boiling points of the material occur on these 
intersections at P  = 1 atm. Three surfaces intersect at a point in the diagram, and 
the values of P  and T  at which this intersection occurs are those of the invariant tri-
ple point at which an equilibrium occurs among three phases. In a one-component 
system, no more than three phases can coexist in equilibrium with one another.
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 7. The three-dimensional G -T -P  diagram illustrates the differences between stable, 
metastable, and unstable states and, hence, shows the difference between revers-
ible and irreversible process paths. At any value of P  and T , the stable phase is that 
which has the lowest Gibbs free energy, and phases which have higher values of G  
at the same values of P  and T  are metastable with respect to the phase of lowest 
value of G . Phases with a value of G  at any combination of P  and T  which do not 
lie on a surface in the diagram are unstable. A reversible process path involving a 
change in P  and/or T  lies on a phase surface, and the state of a phase is changed 
reversibly only when, during the change, the state of the system does not leave the 
surface of the phase. If the process path leaves the phase surface, then the change 
of state, which necessarily passes through nonequilibrium states, is irreversible.

 8. Since the perspective representation, in two dimensions, of a three-dimensional 
diagram is difficult, it is normal practice to present the phase diagram for a one-
component system as the basal plane of the G -T -P  diagram (i.e., a P -T  diagram), 
onto which are projected the lines along which two surfaces intersect (equilibrium 
between two phases) and the points at which three surfaces intersect (equilibrium 
among three phases). Such a diagram contains areas in which a single phase is 
stable, which are separated by curves along which two phases exist at equilibrium, 
and points at the intersection of three curves at which three phases coexist in equi-
librium. The curves for equilibrium between a condensed phase and the vapor 
phase are called vapor pressure curves , and they are exponential in form. In view 
of the fact that saturated vapor pressures can vary over several orders of magnitude, 
 pressure– temperature phase diagrams can often be presented in more useful form 
as plots of lnP  versus 1/T  than as plots of P  versus T .

 9. The development of phase diagrams for one-component systems demonstrates the 
use of the Gibbs free energy as a criterion for equilibrium when T  and P  are chosen 
as the independent state variables.

 10. The equilibrium Gibbs phase rule for a one-component simple system is 

 F = 3 – φ  

  where F  is the number of degrees of freedom and the ϕ ̣  number of phases allowed 
to be present in equilibrium.

 11. Thermodynamic equilibrium is affected by the application of external fields, such 
as a magnetic or electrical field.

7.10 CONCePtS AND terMS INtrODUCeD IN ChAPter 7

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Allotropy
Continuous transition
Curvature of Gibbs free energy versus temperature
Enthalpy of melting
Entropy of melting
First-order phase transition (transformation)
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Gibbs equilibrium phase rule
Higher-order phase transition
Melting temperature
Polymorphism
Potential
Principle of Le Chatelier
Slope of Gibbs free energy versus temperature
Spin entropy
Thermodynamic degree of freedom
van’ t Hoff rule
Vibrational (thermal) entropy

7.11 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

Three allotropes α̤ ,β , and γ  of a certain element are in equilibrium at its triple point 
(Figure  7.16a). It is known that

 V V Sm m m m
γ α γ β< <and S  

Determine which regions of the diagram are α,β  and γ . Explain your reasoning.

Solution to Qualitative Problem 1 

If the pressure is increased, equilibrium of the system favors the lowest molar vol-

ume phase. Therefore, γ  is in either region I or II of Figure  7.16a, since V Vm m
γ α<  . 

But, at the triple point, increasing the pressure moves equilibrium to the lowest molar 
volume phase. Thus, region I is the γ  phase field.

If the temperature is increased, the equilibrium of the system favors the phase of the 
highest entropy. Therefore, the β  phase is in either region II or III, since Sm mSγ β< . But 
at the triple point, increasing the temperature moves equilibrium to the highest entropy 
phase; therefore, region III is the phase field for the β  phase.

I II

III

g
a

b

T®

P 
®

P 
®

T®
(a) (b)

Figure 7.16   (a) schematic pressure– temperature phase diagram for a one-component sys-
tem in the vicinity of its triple point. all phases are solids. (b) labeling of the 
phase fields using the properties V V Sm m m m

γ α γ β< <and S .
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The phases are as they appear in Figure  7.16b.

Qualitative Problem 2 

In Section 7.2, the order of a phase transformation was defined as the lowest deriva-
tive of the Gibbs free energy with respect to temperature (or pressure), which is 
discontinuous  at the transition temperature. Sketch entropy versus temperature and 
heat capacity versus temperature plots for first- and second -order transformations.

Solution to Qualitative Problem 2 

In a first-order transformation (Figure 7.17a), the first derivative of the Gibbs free 
energy is discontinuous; hence, the entropy versus temperature diagram shows a 
discontinuity. The second derivative which is related to the heat capacity by

 
c T

G

T
P

P

= − ∂
∂











2

2  

displays an effective infinity at the transformation temperature, which is indicative 
of an enthalpy of transformation.

A second-order transformation (usually called a continuous transformation ) has 
no discontinuity in the first derivative of its Gibbs free energy (the entropy), but the 
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Figure 7.17   schematic diagrams of entropy and heat capacity vs. temperature for (a) first-
order transformations and (b) higher-order transformations.
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second derivative is discontinuous. See the heat capacity versus temperature plot in 
Figure 7.17b.

It is very difficult to determine the order of higher-order transformations, and it is 
common to call all transformations greater than first order, continuous transformations.

7.12 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

The vapor pressure of solid NaF varies with temperature as

 ln ( )
,

. ln .p
T

T atm = − − +34 450
2 01 33 74  

and the vapor pressure of liquid NaF varies with temperature as

 ln ( )
,

. ln .p
T

T atm = − − +31 090
2 52 34 66  

Calculate

 1. The normal boiling temperature of NaF
 2. The temperature and pressure at the triple point
 3. The molar enthalpy of evaporation of NaF at its normal boiling temperature
 4. The molar enthalpy of melting of NaF at the triple point
 5. The difference between the constant-pressure molar heat capacities of liquid and 

solid NaF

The phase diagram is shown schematically in Figure  7.18.

Ptp

1

Vapor

Ttp Tb

T

Liquid
Solid

P

Figure 7.18   schematic pressure– temperature phase diagram for a one-component system.



223Phase eQuIlIBrIum In a one-ComPonent system

Solution to Quantitative Problem 1 
 1. The normal boiling temperature, T b  , is defined as that temperature at which the 

saturated vapor pressure of the liquid is 1 atm. Thus, from the equation for the 
vapor pressure of the liquid, T b   is

 ln( )
,

. ln .1 0
31 090

2 52 34 66= = − − +
T

T
b

b
 

 which has the solution

 Tb = 2 6 K00

 2. The saturated vapor pressures for the solid and liquid phases intersect at the triple 
point. Thus, at the temperature, T tp  , of the triple point

 − − + = − − +34 450
2 01 33 74

31 090
2 52 34 66

,
. ln .

,
. ln .

T
T

T
T

tp
tp

tp
tp  

 which has the solution

 Tp = 1239 K

 The triple-point pressure is then calculated from the equation for the vapor pressure 
of the solid as

 p = − − +





= × −exp
,

. ln . .
34 450
1239

2 01 1239 33 74 2 29 10 4  atm  

 or from the equation for the vapor pressure for the liquid as

 p = − − +





= × −exp
,

. ln . .
31 090
1239

2 52 1239 34 66 2 29 10 4  atm  

 3. For vapor in equilibrium with the liquid:

 ln ( )
,

. ln .

ln , .

p
T

T

d p

dT

H

RT T

 atm = − − +

= = −

31 090
2 52 34 66

31 090 2 52
2 2

∆
TT

 

 Thus,

 ∆H Tl v( ) , . . . , .→ = ×( ) − ×( ) = −31 9 8 3144 2 52 8 3144 258 5 2 95T0 0 00 0

 and, at the normal boiling temperature of 2006 K,
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 ∆H l v( ) , . ,→ = − × =258 5 2 95 2 6 216 5  J00 0 00 00

 4. For vapor in equilibrium with the solid:

 ln ( )
,

. ln .p
T

T atm = − − +34 450
2 01 33 74  

 Thus,

 ∆H T

T
s v( ) ( , . ) ( . . )

, .
→ = × − ×

= −
34 450 8 3144 2 01 8 3144

286 400 16 71  J
 

 Near the triple point,

 ∆ ∆ ∆H H Hs l l v s v( ) ( ) ( )→ → →+ =

 and thus,

 ∆H T T

T
s l( ) , . , .

, .
→ = − − ×

= +
286 400 16 71 258 500 20 95

27 900 4 24
 

 At the triple point,

 ∆H s l( ) , . ,→ = + ×( ) =27 9 4 24 1239 33 15  J00 0

 5  Δ H ( s  →  l  )  = 27,900 + 4.24T

 
d H

dT
c

c c

p

P
L

P
S

∆ ∆= =

= − >

4 24

0

.  J/K  

Quantitative Problem 2

Carbon has the following three allotropes: graphite, diamond, and a metallic form 
called solid III. Graphite is the stable form of 298 K and 1 atm pressure, and increas-
ing the pressure on graphite at temperatures less than 1440 K causes the transfor-
mation of graphite to diamond and then the transformation of diamond to solid III. 
Calculate the pressure which, when applied to one mole graphite at 298 K, causes the 
transformation of graphite to diamond, given

• H 298 K, (graphite)  –  H 298 K, (diamond)  = –  1900 J.
• S 298 K, (graphite)  = 5.74 J/K.
• S 298 K, (diamond)  = 2.37 J/K.
• The density of graphite at 298 K is 2.22 g/cm3.
• The density of diamond at 298 K is 3.515 g/cm3.
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Solution to Quantitative Problem 2

For the transformation graphite →  diamond at 298 K:

 
∆ ∆ ∆G H T S= −

= − − =1900 298 2 37 5 74 2904( . . )  J
 

For the transformation of graphite to diamond at any temperature T :

 

∂
∂







 =→

→
∆ ∆G

P
V

T

graphite diamond
graphite diamond

                       cm /molegraphite
3V = =12

2 22
5 405

.
.

 

and

 Vdiamond
3 cm /mole= =12

3 515
3 415

.
.  

Thus,

 ∆V = −1 99 cm /mole3.

Equilibrium between graphite and diamond at 298 K requires that Δ G graphite→ diamond  
be zero. Since

 ∂
∂







=∆ ∆G

P
V

T

 

then

 ∆ ∆ ∆G P T G P T VdP
P

( , ) ( , )= = = = + ∫298 1 298
1

 

If the difference between the isothermal compressibilities of the two phases is negli-
gibly small (i.e., if the influence of pressure on Δ V  can be ignored), then

 1
8 3144
82 057

0 1013

298 2904 1 99 0 1

3 cm atm  J⋅ = =

= = + − ×

.
.

.

( , ) ( . .∆G P T 0013 1)( )P −

 

and thus,

 ( )
. .

,P P− = =
×

=1
2904

1 99 0 1013
14 400 atm  

Transformation of graphite to diamond at 298 K requires the application of a pres-
sure greater than 14,400 atm.
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PrOBLeMS

7.1   Using the vapor pressure– temperature relationships for CaF2 (α ), CaF2(β ) , and 
liquid CaF2 , calculate

 a.  The temperatures and pressures of the triple points for the equilibria 
CaF2(α ) – CaF2(β ) – CaF2 (v )  and CaF2(β ) – CaF2(l ) – CaF2 (v ) 

 b. The normal boiling temperature of CaF2 
 c. The molar latent enthalpy of the transformation CaF2(α )  →  CaF2(β ) 
 d. The molar latent enthalpy of melting of CaF2(β ) 

7.2   Calculate the approximate pressure required to distill mercury at 100° C.
7.3   One mole of SiCl4  vapor is contained at 1 atm pressure and 350 K in a rigid 

container of fixed volume. The temperature of the container and its contents 
is cooled to 280 K. At what temperature does condensation of the SiCl4  vapor 
begin, and what fraction of the vapor has condensed when the temperature is 
280 K?

7.4  The vapor pressures of zinc have been written as

 ln ( )
,

. ln .p
T

T atm  = − − +15 780
0 755 19 25  (i)

  and

 ln ( )
,

. ln .p
T

T atm = − − +15 250
1 255 21 79  (ii)

   Which of the two equations is for solid zinc?
7.5   At the normal boiling temperature of iron, T b   = 3330 K, the rate of change of the 

vapor pressure of liquid iron with temperature is 3.72 ×  10– 3  atm/K. Calculate 
the molar latent enthalpy of boiling of iron at 3330 K.

7.6  Below the triple point (– 56.2° C), the vapor pressure of solid CO2  is given as

 ln ( ) .p
T

 atm = − +3116
16 01  

   The molar latent enthalpy of melting of CO2  is 8330 J. Calculate the vapor pres-
sure exerted by liquid CO2  at 25° C and explain why solid CO2  is referred to as 
“ dry ice.” 

7.7   The molar volumes of solid and liquid lead at the normal melting temperature of 
lead are, respectively, 18.92 and 19.47 cm3 . Calculate the pressure which must 
be applied to lead in order to increase its melting temperature by 20° C.

7.8   Nitrogen has a triple point at P  = 4650 atm and T  = 44.5 K, at which state the 
allotropes α , β , and γ  coexist in equilibrium with one another. At the triple 
point, V β   –  V α   = 0.043 cm3 /mole and V α   –  V γ   = 0.165 cm3 /mole. Also at the triple 
point, S β   –  S α   = 4.59 J/K and S α   –  S γ   = 1.25 J/K. The state of P  = 1 atm, T  = 36 
K lies on the boundary between the fields of stability of the α  and β  phases, and 
at this state, for the transformation of α  →  β , Δ S  = 6.52 J/K and Δ V  = 0.22 cm3 /
mole. Sketch the phase diagram for nitrogen at low temperatures.

7.9   Measurements of the saturated vapor pressure of liquid NdCl5  give 0.3045 atm 
at 478 K and 0.9310 atm at 520 K. Calculate the normal boiling temperature of 
NdCl5 .
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7.10*   Three allotropes α, β , and γ  of a certain element are in equilibrium at its triple 
point (Figure  7.19). It is known that

 V V Sm m m m
γ α γ β> <  and  S  

  Determine which regions of the diagram are α ̤ β , and γ . Explain your reasoning.
7.11*   Figure  7.11 shows a pressure versus temperature phase diagram for a system 

exhibiting two solid-state phases. Sketch the Gibbs free energy curves versus 
temperature for the two solid phases and the liquid phase. Comment on the 
slopes of the curves.

7.12*   Figure  7.20 is the Gibbs free energy versus pressure plot for three phases, solid 
(S ), liquid (L ), and gas (G ), near the triple point for the system. It is known that 
the molar volume of the solid is greater than that of the liquid.
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®

T®

Figure 7.19   schematic pressure– temperature phase diagram for a one-component system 
in the vicinity of its triple point. all phases are solids.

G
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T

Figure 7.20   schematic Gibbs free energy vs. temperature diagram for a one-component 
system and a template of the plot to be used in answering the problem.
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 a.  Label the three plots of G  versus P  as S , L , or G .
 b.  Draw the T -P  plot for the material as shown in Figure  7.19. Label the S , L , 

and G  fields and any other points of interest. Note that the temperature is 
increasing in the downward direction.

7.13*   The pressure– temperature phase diagram of a certain material is shown in 
Figure  7.21. Construct the volume– temperature diagram for this substance 
using the arrangement shown in the figure and label all phase fields.

7.14*   It can be seen from Figure  7.7 that the metastable extensions of the two-phase 
equilibria go into single-phase fields. At the triple point, it can be seen that the 
stable and metastable equilibrium curves alternate as one goes around the triple 
point. Show that the metastable extensions must alternate with stable two-phase 
curves.

* New problem in this edition
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V

Figure 7.21   the pressure– temperature phase diagram of the system discussed in Problem 
7.13 along with the volume vs. temperature template to be used in the answer.
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ChAPter  8

the Behavior of Gases

8.1 INtrODUCtION

Up to this point, we have made frequent use of the ideal gas  to illustrate the 
nature of changes in the thermodynamic state of a gaseous system. In this chapter, 
the behavior of real gases  is compared with ideal behavior. The differences between 
the two are mainly related to the atomic or molecular interactions of real gases. 
Although knowledge of the physical properties of a real gas is not required in a 
thermodynamic examination of the gas, an appreciation of the origin of the physical 
properties provides a better understanding of the thermodynamic behavior.

8.2 the  P  -V  -T   reLAtIONShIPS OF GASeS 

Experimental observation has shown that, for 1 mole of all real gases,

 limit 0 P
PV

RT
→ → 1 (8.1)

where:
 P  is the pressure of the gas
 V  is the molar volume of the gas
 R  is the universal gas constant
 T  is the absolute temperature of the gas

Thus, as the pressure of the gas approaches zero, isotherms plotted on a P -V  
diagram approach the form of a rectangular hyperbola (Figure 1.3a), given by the 
equation

 PV RT=  (8.2)

Equation  8.2 is the equation of state for 1 mole of an ideal gas and is called the ideal 
gas law.  A gas which obeys this law over a range of states is said to behave ideally 
in this range of states, and a gas which obeys this law in all states  is called a perfect 
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gas . The perfect gas is a convenient model with which the behavior of real gases can 
be compared.

8.3 the therMODYNAMIC PrOPertIeS OF IDeAL 
GASeS AND MIXtUreS OF IDeAL GASeS

The variation of the molar Gibbs free energy with pressure of a closed system of 
fixed composition and at constant temperature is found from the fundamental equa-
tion  (Equation  5.25) to be

 dG VdP=  (8.3)

For 1 mole of an ideal gas, this can be written as

 dG
RT
P

dP RTd P= = ln  (8.4)

and thus, for an isothermal change of pressure from P 1  to P 2  at T ,

 G P T G P T RT
P
P

( , ) ( , ) ln2 1
2

1

− =  (8.5)

Since Gibbs free energies do not have absolute values (only changes in G  can be 
measured), it is convenient to choose an arbitrary reference state from which the 
changes in Gibbs free energy can be measured. This reference state is called the 
standard state  and is chosen as being the state of 1 mole of pure gas at 1 atm pressure 
and the temperature of interest. The Gibbs free energy of 1 mole of gas in the stan-
dard state G (P  = 1,T ) is designated G ° (T ), and thus, from Equation  8.5, the Gibbs 
free energy of 1 mole of gas at any other pressure P  is given as

 G P T G T RT
P
P

( , ) ( ) ln= ° + 0  (8.6)

or simply,

 G G RT P= ° + ln  (8.7)

since P 0  equals 1 atm. Notice that in Equation  8.7, the logarithm of a dimensionless 
ratio, P atm/1 , occurs in the right-hand term (P  in atmospheres).

8.3.1 Mixtures of Ideal Gases

Before discussing the thermodynamic properties of mixtures of ideal gases, it is 
necessary to introduce the concepts of mole fraction , partial pressure , and partial 
molar quantities .
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8.3.1.1 Mole  Fraction 

When a system contains more than one component (i.e., when the composition of 
the system is variable), it is necessary to devise a means of expressing the composi-
tion. In this text, we use the mole fraction, X i  , of the component i.  The mole fraction 
is defined as the ratio of the number of moles of i  in the system to the total number 
of moles of all of the components in the system. For example, if the system contains 
n A   moles of A , n B   moles of B , and n C   moles of C , then

 X
n

n n n
A

A

A B C

=
+ +

 (8.8)

 X
n

n n n
B

B

A B C

=
+ +

  (8.9)

 X
n

n n n
C

C

A B C

=
+ +

 (8.10)

The sum of the mole fractions of all of the components in a system is unity (X A   + X B   
+ X C   = 1). Thus, there are only two independent composition variables in a three-
component system.

8.3.1.2 Dalton’ s Law of Partial Pressures

The pressure P  exerted by a mixture of ideal gases is equal to the sum of the 
pressures exerted by each of the individual component gases. The contribution 
made to the total pressure, P , by each individual gas is called the partial pressure  
of that gas. The partial pressure exerted by a component gas, p i  , is thus the pres-
sure that it would exert if it alone were present. In a mixture of the ideal gases A , 
B , and C ,

 P p p pA B C= + +  

Consider a fixed volume V'   at the temperature T  which contains n A   moles of an ideal 
gas A.  The pressure exerted is thus

 p
n RT

V
A

A=
′

 (8.11)

If n B   moles of ideal gas B  are added to this constant volume containing n A   moles of 
gas A , the pressure increases to

 P p p n n
RT
V

A B A B= + = +
′

( )  (8.12)
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Division of Equations  8.11 by 8.12 gives

 
p

p p
n

n n
A

A B

A

A B+
=

+
 

which, for the gas A  in the mixture, can be written as

 
p
P

XA
A=  

or

 p X PA A=  (8.13)

Thus, in a mixture of ideal gases, the partial pressure of a component gas is the 
product of its mole fraction and the total pressure of the gas mixture. Equation  8.13 
is called Dalton’ s law of partial pressures .

8.3.1.3 Partial Molar Quantities

The partial molar value* of an extensive thermodynamic variable Qʹ   is the rate 
of change of Qʹ   with respect to the addition of n i   moles of component i  at constant 
temperature, pressure, and composition. This can be written as

 Q
Q
n

i
i T p n nj k

= ∂ ′
∂











, , , ,…

 (8.14)

where Q'   is the value of the extensive  thermodynamic variable for an arbitrary quan-
tity of the mixture.

The definition of Qi  can also be made as follows. If 1 mole of i  is added, at con-
stant temperature and pressure, to a quantity of a solution which is sufficiently large 
that the addition causes virtually no change in the composition of the solution, the 
consequent increase in the value of Q'   equals the value of Qi  in the solution. In the 
case of the extensive variable being the Gibbs free energy,

 G
G
n

i
i T P n nj k

= ∂ ′
∂











, , , ,…

 

and, from Equation  5.16 it is seen that

 Gi i= µ  

* Some texts call this the partial molal property, which emphasizes that the intensive variables of T  and 
P  are held constant for all the partial quantities.
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That is, the partial molar Gibbs free energy of a component in a solution equals the 
chemical potential of the component in the solution.

The relationships among the various state variables developed in the preceding 
chapters are applicable to the partial molar properties of the components of a system. 
For example, the fundamental equation at constant T  and composition gives

 
∂ ′
∂







 = ′G

P
V

T ,comp

 

where G'   is the Gibbs free energy of the system and V'   is the volume of the system. 
For a variation in n i  , the number of moles of component i  in the system, at constant 
T , P , and n j  ,
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But, by definition,
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and since the Gibbs free energy is a thermodynamic state variable , in which case the 
order of partial differentiation has no influence on the result,
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Hence,
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which is simply the application of Equation  5.25 to the component i  in the system. 
Thus, for the ideal gas A  in a mixture of ideal gases,

 dG V dPA A=  
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The partial molar volume, VA, in a gas mixture is

 V
V

n

n

n

RT
p

X RT
p

A

i

A

i A

A

A

=
′

=





















 =∑ ∑

 

Taking the differential of Equation  8.13 at constant T  and composition gives dp A   = 
X A  dP , and hence,

 dG V dP
X RT

p
dp
X

RTd pA A
A

A

A

A
A= = = (ln )  

Integration from p A   = 1 to p A   = P  gives

 
G G RT P

G RT X RT P
A A A

A A

= +
= + +

�

�

ln

 ln  ln 
 (8.15)

Equation  8.15 could also have been obtained by integrating Equation  8.4 from the 
standard state p A   = P A   = 1, X A   = 1, T  to the state p A  , X A  , T. 

8.3.2 the enthalpy of Mixing of Ideal Gases

For each component gas in a mixture of ideal gases:

 G G RT X RT Pi i i= + +� ln ln  

where P  is the total pressure of the gas mixture at the temperature T.  Dividing by 
T  and differentiating with respect to T  at constant pressure and composition gives
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But, from Equation  5.37,
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,

= − 2  (8.17)

and thus,

 H Hi i= �  (8.18)
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That is, the partial molar enthalpy of ideal gas i  in a mixture of ideal gases equals the 
molar enthalpy of pure i , and thus, the enthalpy of the gas mixture equals the sum of 
the enthalpies of the component gases before mixing; that is,

 ∆ ′ = =∑ ∑H n H n Hi i

i

i i

i

mix − � 0  (8.19)

where ∆ H ′ mix  is the change in the enthalpy caused by the process of mixing. That is, 
the enthalpy change of mixing (the heat of mixing) of an ideal gas is zero. The zero 
heat of mixing of ideal gases is a consequence of the fact that the particles of an ideal 
gas do not interact with one another.

Since Gi
�  is, by definition, a function only of temperature, then, from 

Equations  8.16 and 8.17, it is seen that Hi  is a function only of temperature. Thus, in 
addition to being independent of composition, the partial molar enthalpy of an ideal 
gas, Hi , is independent of pressure.

8.3.3 the Gibbs Free energy of Mixing of Ideal Gases

For each component gas i  in a mixture of ideal gases,

 G G RT pi i i= +� ln  

and for each component gas before mixing,

 G G RT Pi i i= +� ln  

where:
 p i   is the partial pressure of i  in the gas mixture
 P i   is the pressure of the pure gas i  before mixing

The mixing process, being a change of state, can be written as

 unmixed components state 1 mixed components state 2( ) → ( )  

and
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 (8.20)
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Thus, the value of Δ G'  mix  depends on the value of p i   and P i   for each gas. If, before 
mixing, the gases are all at the same pressure (i.e., if P i   = P j   = P k   = … ) and mixing is 
carried out at total constant volume such that the total pressure of the mixture, P mix , 
equals the initial pressures of the gases before mixing, then, since p P Xi i i/ = ,

 ∆ ′ =∑G n RT Xi i

i

mix ln  (8.21)

Since the values of X i   are less than unity, Δ G'  mix  is a negative quantity, which cor-
responds with the fact that the mixing of ideal gases is a spontaneous process.

8.3.4 the entropy of Mixing of Ideal Gases

Since Δ H'  mix  = 0 and

 ∆ ∆ ∆G H T S′ = ′ − ′mix mix mix  

then

 ∆ ′ =








∑S n R

p
P

i
i

ii

mix  ln −  (8.22)

or, if P i   = P j   = P k   = …  = P , then

 ∆ ′ = ∑S R n Xi i

i

mix − ln  (8.23)

which is seen to be positive, in accord with the fact that the mixing of ideal gases is 
a spontaneous process (i.e., the entropy increases). Any interaction among the par-
ticles of the gas would decrease the entropy of mixing.

8.4 DeVIAtION FrOM IDeALItY AND eQUAtIONS 
OF StAte FOr reAL GASeS

The variation of V  with P  at several temperatures for a typical real gas is shown 
in Figure  8.1. The figure shows that, as the temperature of the gas is decreased from 
the high temperature T 1 , the shape of the P -V  isotherms changes, and, eventually, a 
critical value of T  = T cr  is reached at which, at some fixed critical pressure, P cr , and 
fixed molar volume, V cr , a horizontal inflection occurs on the isotherm; that is,
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 = ∂
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 =P

V
P

VT Tcr cr

and0 0
2

2  

At temperatures less than T cr , two phases exist in equilibrium: a vapor phase and 
a liquid phase. For example, if 1 mole of vapor, initially in the state A  (Figure  8.1), 
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is isothermally compressed at T 8 , the state of the vapor moves along the isotherm 
toward the state B . At B , the pressure of the vapor is the saturated vapor pressure of 
the liquid at T 8 , and further compression of the system causes condensation of the 
vapor and the consequent appearance of the liquid phase. The liquid phase, which 
is in equilibrium with the vapor, first appears when the vapor reaches B on the T8 
isotherm . V C   is the molar volume of the liquid at P C   and T 8 . Further compression 
causes further condensation, during which the states of the liquid and vapor phases 
remain fixed at C  and B , respectively, and the total volume of the system, which is 
determined by the relative proportions of the liquid and vapor phases, moves along 
the horizontal line from B  to C . Eventually, condensation is complete, and the system 
exists as 100% liquid in the state C . Further increase in pressure moves the state of 
the system along the isotherm toward the state D . The large value of − ∂ ∂( )P V T/  in 
the range of liquid states and the smaller value of − ∂ ∂( / )P V T in the range of vapor 
states indicate the low compressibility of the liquid phase and the high compressibil-
ity of the vapor phase. (recall that the isothermal compressibility equals).

 
βT

TV
V
P

= − ∂
∂







1

 

Figure  8.1 also shows that, as the temperature is increased from T 8  to T cr , the 
molar volume of the liquid in equilibrium with the vapor (corresponding to the point 
C  at T8 ) progressively increases and the molar volume of the vapor in equilibrium 
with the liquid (corresponding to the point B  at T 8 ) progressively decreases. Thus, 
as the temperature is increased toward T cr , the vapor in equilibrium with liquid 
becomes more dense, and the liquid in equilibrium with the vapor becomes less 
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Figure 8.1   P -V  isotherms for a typical real gas.
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dense. Eventually, when T cr  is reached, the molar volumes of the coexisting phases 
coincide at the state P cr , T cr . Thus, the critical point coincides with the equilibrium 
state in which the molar volume of the liquid equals the molar volume of the vapor.

At temperatures greater than T cr , distinct two-phase equilibrium (involving two 
phases separated by a boundary, across which the properties of the system change 
abruptly) does not occur, and thus, the gaseous state cannot be liquefied by isothermal 
compression at temperatures greater than T cr . Since the vapor can be condensed by 
isothermal compression at temperatures lower than T cr , the critical isotherm provides 
a distinction between the gaseous and vapor states and defines the gaseous state phase 
field. The phase fields are shown in Figure  8.2. Note, however, that along the critical 
isotherm, there is no physical distinction between the vapor and gaseous phase.

Liquefaction of a gas requires that the gas be cooled. Consider the isobaric pro-
cess path 1 →  2 in Figure  8.2. According to this path, which represents the cooling 
of the gas at constant pressure, the phase change gas →  liquid occurs at the point 
a , at which the temperature falls below T cr . In fact, at pressures greater than P cr , 
the critical-temperature isotherm has no physical significance. In passing from the 
state 1 to the state 2, the molar volume of the system progressively decreases, and 
hence, the density of the system progressively increases. No phase separation occurs 
between the states 1 and 2, and the system in state 2 can equivalently be regarded 
as being a liquid of normal density or a gas of high density and in state 1 can be 
regarded as being a gas of normal density or a liquid of low density. Physically, no 
distinction can be made between the liquid and gaseous states at pressures greater 
than P cr , and consequently, the system existing in these states is called a supercriti-
cal fluid . In the P -T  phase diagram for the system shown in Figure  8.3, the critical 
point exists at the termination of the liquid– vapor coexistence equilibrium curve, 
where P  = P cr  and T  = T cr .
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Molar volume

Pr
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re

Vapor
+

liquid

Liquid

Tcr

Figure 8.2   schematic P -V  diagram showing the fields of phase stability of a typical real gas.
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The deviation of a real gas from ideal behavior can be measured as the deviation 
of the compressibility factor from unity. The compressibility factor, Z , is defined as

 Z
PV
RT

=  (8.24)

which has the value of 1 for a perfect gas in all states of existence. Z  itself is a func-
tion of state of the system and, thus, is dependent on any two chosen dependent vari-
ables; for example, Z  = Z (P ,T ). Figure  8.4 shows the variation of Z  with P  at constant 
temperature for several gases.
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Figure 8.3   schematic P -T  diagram showing the critical point at the end of the liquid– vapor 
equilibrium curve.
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If Figure  8.4 is replotted as Z  versus the reduced pressure, P R   (where P P PR = / cr ), 
for fixed values of the reduced temperature, T R   (=T T/ cr ), it is found that all gases lie on 
a single curve. Figure  8.5 shows a series of such plots. The behavior shown in Figure  8.4 
gives rise to the law of corresponding states , which states that all gases obey the same 
equation of state when expressed in terms of the reduced variables P R  , T R  , and V R   instead 
of P , T , and V . If the values of two reduced variables are identical for two gases, then the 
gases have approximately equal values of the third reduced variable and are then said to 
be in corresponding states. The compressibility factor is the same function of the reduced 
variables for all gases (see Problem 8.1).

8.5 the VAN Der WAALS FLUID

Recall that an ideal gas obeys the ideal gas law and has an internal energy, U , which 
is a function only of temperature. An ideal gas is considered to consist of volume-
less particles that do not interact with one another, the energy of which is entirely 
the translational energy of motion of the constituent particles. Attempts to derive 
equations of state for real  gases have modified the ideal gas equation by taking into 
account two considerations:

• The particles of a real gas occupy a finite volume.
• The particles of a real gas interact with one another.
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Figure 8.5   the variations of the compressibility factors of several gases with reduced pres-
sure at several reduced temperatures, displaying the law of corresponding states.
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The magnitude of the importance of these two considerations depends on the 
state of the gas. For example, if the molar volume of the gas is large, then the volume 
fraction occupied by the particles themselves is small, and the magnitude of this 
effect on the behavior of the gas will be correspondingly small. Similarly, as the 
molar volume increases, the average distance between the particle increases, and 
thus, the effect of interactions between particles on the behavior of the gas decreases. 
For a fixed number of moles of gas, an increase in the molar volume corresponds to 
a decrease in the density, n V/ ′ . These states of existence occur at low pressure and 
high temperature, as can be seen from the ideal gas equation; that is,

 
n

V
P

RT′
=  

Thus, approach toward ideal behavior is to be expected as the pressure is decreased 
and the temperature is increased.

The most celebrated equation of state for nonideal gases, which was derived from 
considerations 1 and 2, is the van der Waals equation (Johannes Diderik van der 
Waals, 1837– 1923), which, for 1 mole of gas, is written as

 P
a

V
V b RT+






 =2 ( )−  (8.25)

where:
 P  is the measured pressure of the gas
 a /V 2  is a correction term for the interactions which occur among the particles of 

the gas
 V  is the measured volume of the gas
 b  is a correction term for the finite volume of the particles*

The term b  is determined by considering a collision between two spherical par-
ticles. Two particles, of radius r , collide when the distance between their centers 
decreases to a value less than 2r , and, as is shown in Figure  8.6a, at the point of col-
lision, the particles exclude a volume of
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* For n  moles of a van der Waals fluid, the equation of state is P
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The volume excluded is thus four times the volume of all of the particles present 
and has the value b . Thus, in 1 mole of gas, the volume (V  –  b ) is that available for 
the motion of the particles of the gas and is the molar volume which the gas would 
have were the gas ideal— that is, if the particles were volumeless.

The long-range attractive forces operating between the gas particles decrease 
the pressure exerted on the containing wall to a value less than that which would 
be exerted in the absence of the forces. Van der Waals considered the follow-
ing: the particles in the “ layer”  adjacent to the containing wall experience a net 
inward pull due to interaction with the particles in the next adjacent layer. These 
attractive forces give rise to the phenomenon of internal pressure , and the mag-
nitude of the net inward pull (i.e., the decrease in the pressure exerted by the gas 
on the containing wall) is proportional to the number of particles in the “ surface 
layer”  and to the number of particles in the “ next-to-the-surface layer.”  Both of 
these quantities are proportional to the density of the gas, n V/ , and hence, the net 
inward pull is proportional to the square of the density of the gas, or, for 1 mole 
of gas, equal to a V/ 2, where a  is a constant. Thus, if P  is the measured pressure 
of the gas, P  + a V/ 2  is the pressure which the gas would exert on the contain-
ing wall if the gas were ideal— that is, in the absence of interactions among the 
particles. The effect is illustrated in Figure  8.6b.

r r

Containing wall

Figure 8.6   (a) Illustration of the volume excluded when two spherical atoms contact; (b) the 
interactions among atoms in a gas phase, showing that the interactions cause a 
lower pressure to be exerted on the walls of the container. 
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The van der Waals equation (Equation  8.25) can be written as

 PV Pb RT V aV ab3 2 0− + + − =( )  

Since this equation is cubic in V , there are three roots. Plotting V  as a function of 
P  for different values of T  gives the family of isotherms shown in Figure  8.7. As 
the temperature is increased from T 1 , the minimum and the maximum approach 
one another until, at a temperature designated as T cr , they coincide and produce a 
horizontal inflection on the P -V  curve. This is the critical point, T  = T cr , P  = P cr , 
and V  = V cr , and the van der Waals equation gives
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Solving these equations gives

 T
a
bR

V b P
a
b

cr cr cr= = =8
27

3
27 2, ,  (8.26)

Thus, the constants a  and b  for any gas can be evaluated from knowledge of the val-
ues of T cr  and P cr . Alternatively, the values of a  and b  can be obtained by fitting the 
van der Waals equation to experimentally measured variations of V  with T  and P  for 
real gases. The critical states, van der Waal constants, and values of Z  at the critical 
point for several gases are listed in Table  8.1.
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Figure 8.7   the isothermal variation of V  with P  for a van der waals fluid at several temperatures.
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Consider the isothermal variation of V  with P  given by the van der Waals equa-
tion and shown in Figure  8.8. Any increase in the pressure exerted on a system must 
cause a decrease in the volume of the system, ∂ ∂( ) <P V

T
/ 0 . This is a condition of 

intrinsic stability . In Figure  8.8, this condition is violated  over the portion JIHGF , 
which means that this portion of the curve is a region of instability.

The equilibrium states of the system at this temperature can be obtained from 
a consideration of the variation of the Gibbs free energy with P  along the isotherm. 
Equation  5.12 gives the variation of G  with P  at constant T  as dG  = VdP , and inte-
gration of this equation between the state (P ,T ) and (P A  ,T ) gives

 G P T G P T VdPA
P

P

A

( , ) ( , )− = ∫  

or

 G G VdPA
P

P

A

= + ∫  (8.27)

If an arbitrary value is assigned to G A  , then graphical integration of the integral from 
Figure  8.8 allows the variation of G  with P , to be plotted corresponding to the varia-
tion of V  with P  in Figure  8.8. The values of the integrals are listed in Table  8.2, and 
the variation of G  with P  is shown in Figure  8.9.

Figure  8.9 shows that, as the pressure is increased from P 1 , the value of G  
increases. At pressures greater than P 2 , three states of existence become available to 
the system. For example, at P 3 , the three states are given by the points I , K , and C . 
The stable, or equilibrium, state is that with the lowest Gibbs free energy, and hence, 
over the range of pressure from P 2  to P 4 , the stable states lie on the line BCD . As the 
pressure is increased above P 4 , the state with the lowest Gibbs free energy no longer 
lies on the original line (the continuation of the curve BCD ) but lies on the curve 
LMN . The change of stability at P 4  corresponds to a change of phase at this point; 
that is, at pressures less than P 4 , one phase is stable (vapor), and at pressures greater 

table 8.1   the Critical States, van der Waals Constants, and Values of  Z   at the Critical 
Points for Several Gases 

Gas T  cr  , K P  cr  , atm V  cr  , cm 3  /mole a, 
1 atm
mole

2

2

⋅⋅
b  , liters/mole Z  cr  

he 5.3 2.26 57.6 0.0341 0.0237 0.299

h2 33.3 12.8 65.0 0.2461 0.0267 0.304

n2 126.1 33.5 90.0 1.39 0.0391 0.292

Co 134.0 35.0 90.0 1.49 0.0399 0.295

o2 153.4 49.7 74.4 1.36 0.0318 0.293

Co2 304.2 73.0 95.7 3.59 0.0427 0.280

nh3 405.6 111.5 72.4 4.17 0.0371 0.243

h2 o 647.2 217.7 45.0 5.46 0.0305 0.184
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than P 4 , another phase is stable (liquid). At low pressures (P  <  P 4 ), the system exists 
as a vapor, and at high pressures (P  >  P 4 ), it exists as a liquid. At P 4 , G D  , which is the 
molar Gibbs free energy of the vapor phase, equals G L  , which is the molar Gibbs free 
energy of the liquid phase, and thus, vapor and liquid coexist in equilibrium with one 
another at the state P 4 ,T . The transition from the vapor phase to the liquid phase is 
a first-order phase transition (see Chapter 7). In Figure  8.8, a tie-line connects the 
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Figure 8.8   the isothermal variation, with pressure, of the volume of a van der waals fluid at 
a temperature below the critical temperature.

table 8.2   Graphical Integration of Figure  8.7

G G VdPB A
A

B

= + ∫P

P

= G A   + area 1AB 2

G C  = G A   + area 1AC 3

G D  = G A   + area 1AD 4

G E  = G A   + area 1AE 5

G F  = G A   + area 1AF 6

G G  = G A   + area 1AE 5 + area EFG 

G H  = G A   + area 1AD 4 + area DFH 

G I  = G A   + area 1AC 3 + area CFI 

G J  = G A   + area 1AB 2 + area BFJ 

G K  = G A   + area 1AC 3 + area CFI  – area IJK 

G L  = G A   + area 1AD 4 + area DFH  – area HJL 

G M  = G A   + area 1AE 6 + area EFG  – area GJM 

G N  = G A   + area 1AF 6 – area FJN 

G O  = G A   + area 1AF 6 – area FJN  + area 6NO 7
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points D  and L  across a two-phase region. In Figure  8.9, the line DF  represents the 
metastable vapor phase and the line LJ  represents the metastable liquid states. Thus, 
in the absence of the formation of the liquid phase from the vapor phase at the state 
D , a supersaturated vapor would exist along the curve DEF , and, in the absence of 
the formation of the vapor phase from the liquid phase at the state L , supersaturated 
liquid would exist along the line LKJ . In view of the violation of the criterion for 
intrinsic stability over the states path JHF , the states represented by this line in both 
Figure  8.8 and Figure 8.9 are unstable, and a transformation will occur spontane-
ously (i.e., without an energy barrier) to a two-phase equilibrium.

The points F  and J  represent the limits of metastability of the vapor and liquid 
phases, respectively. These were called spina  by van der Waals in his Lehrbuch 
der Thermodynamik  (1908).* The spina or spinodes  occur where the value of 
( / )∂ ∂ =P V T 0 , which, for an isotherm of the van der Waals fluid, yields two 
points. Between JIHGF , a single-phase absolute equilibrium does not exist. This 
region is a “ gap”  in the P -V  diagram. Like all regions of instability, they are delin-
eated by points where the second derivative of an energy state function with respect 
to an intensive variable (in this case, ( / )∂ ∂2 2G V T) equals zero. Figure  8.10 shows a 
typical P -V  diagram of a van der Waal fluid in which the regions have been delin-
eated: the region of stability, regions of metastability, and a region of absolute 
instability. We will encounter such gaps when we study equilibrium binary phase 

* “ This singular point is located on the curve, the curve possesses a point (node) of return. From this form 
of its intersection which resembles a thorn (spina , in Latin) the curve obtains its name.”  Translated by 
A. H. Cahn, in J. W. Cahn, “ Spinodal Decomposition,”  Appendix B, Trans. Met. Soc. AIME  (1967), 
vol. 242, pp. 166– 180.
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Figure 8.9   schematic representation of the variation, with pressure, of the molar Gibbs free 
energy of a van der waals fluid at a constant temperature lower than the critical 
temperature. region FGHIJ  is an instability region. F  and J  demark the limits of 
phase stability, sometimes called the spinodals .
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diagrams in Chapter 9, where we call them miscibility gaps . Within the gap, the 
equilibrium state is a two-phase state.

It is thus seen that the van der Waals equation predicts the phase change which 
occurs in the system at temperatures less than T cr . At any temperature below T cr , the 
value of P  for equilibrium between the vapor and liquid phases (e.g., P 4  in Figures  8.8 
and 8.9) is that whereby the area HFD  equals the area LJH  in Figure  8.8. This is 
called the Maxwell construction .

The measured values of T cr  and P cr  for CO2  are, respectively, 31° C and 72.9 atm. 
Thus, from Equation  8.26,

 b
RT

P
= =cr

cr

 liters/mole
8

0 0427.  

and

 a b P= = ⋅27  3 59 liters atm/mole2
cr

2 2.  

in which case the van der Waals equation for CO2  is given as

 P
V

V RT+





 =3 59

0 04272

.
( . )−  

The variation of P  with V  given by this equation is shown for several temperatures 
in Figure  8.11, in which it is seen that the 304 K isotherm exhibits a horizontal 
inflection at the critical point. At temperatures lower than 304 K, the isotherms show 
the expected maxima and minima. The variation, with temperature, of the saturated 
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Figure 8.10   P -V  diagram showing the locus of spinodal  points and regions of metastability 
and instability.
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vapor pressure of van der Waals liquid CO2  can be determined by finding the tie-
line on each isotherm which gives equal areas DFH  and LJH , as explained with 
reference to Figure  8.8. Alternatively, the variation of the molar Gibbs free energy 
with pressure can be determined along each isotherm by graphical integration of 
the variation of V  with P . These relationships are shown for several temperatures 
in Figure  8.12, which shows the variation of the saturated vapor pressure of liquid 
CO2  (the points P ) with temperature. Figure  8.12 also shows that, as the temperature 
increases toward the critical point, the range of unstable states (J  to F  in Figure  8.9) 
diminishes and finally disappears at T cr . At temperatures greater than T cr , the full 
line indicates that only one phase is stable over the entire range of pressure. Since 
G A   in Equation  8.27 is a function of temperature, the positions of the isotherms in 
Figure  8.12 with respect to one another are arbitrary; only the P -axis is quantita-
tively significant.

The variation of the saturated vapor pressure of liquid CO2  with tempera-
ture, obtained from the van der Waals equation and plotted as the logarithm of 
P  versus the reciprocal of the absolute temperature, is shown in Figure  8.13. 
Figure  8.13 also shows the variation of the measured saturated vapor pressure 
with temperature. Comparison shows that the van der Waals equation predicts 
values of vapor pressure which are higher than the measured values, although 
the difference between the two values decreases with increasing temperature. 
Consequently, the van der Waals equation predicts a value of the molar latent 
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Figure 8.11   P -V  isotherms for van der waals Co2 .
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heat of evaporation  of liquid CO2  which is less than the measured value, with 
Δ H evap  being obtained as – 2.303 R  ×  (the slope of the line) in Figure  8.13 (cf. 
Figures 7.9 and 7.10). The molar latent heat of evaporation of a liquefied van der 
Waals fluid can be calculated as follows:

 ∆H H H U U P V Vv l v l v levap = − = − + −( )  

G

20 30 40 50 60
P, atm

P = 44 atm

P = 52

P = 60.2

P = 69.1
290 K

280 K

270 K

300 K

310 K

70 80 90 100

Figure 8.12   the variations of G with P for van der waals Co2 at several temperatures.
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Figure 8.13   Comparison of the variation, with temperature, of the vapor pressure of van der 
waals liquid Co2 with the measured vapor pressures.
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where:
 V v   and V l   are, respectively, the molar volumes of the coexisting vapor and 

liquid phases
 P  is the saturated vapor pressure at the temperature T 

From Equations  3.12 and 5.34,

 
∂
∂







 = ∂

∂








U
V

T
P
T

P
T V

−  

which, applied to the van der Waals fluid, gives

 
∂
∂







 = 






 =U

V
T

R
V b

P
a

VT −
− 2  

Integration gives

 U
a
V

= +− constant  

in which the integration constant is a function of temperature. Thus,

 ∆ = + +H
a

V
a
V

P V V
v l

v levap   − −( )  (8.27)

 =








 +− − −a

V V
P V V

v l
v l

1 1
  ( )  (8.29)

Equation  8.29 thus correctly predicts that Δ H evap  for a van der Waals fluid rapidly 
falls to zero as the temperature approaches T cr , in which state, V v   = V l  .

Although van der Waals developed his equation from a consideration of the 
physical factors causing nonideal behavior, the requirement that the pressure, vol-
ume, and temperature at the critical point be known for the calculation of a  and 
b  means that the equation is empirical. This, however, does not detract from the 
usefulness of the equation in representing the behavior of a gas which exhibits a 
relatively small departure from ideality. Importantly, the equation of state predicts 
a change of phase which is first order (when the vapor transforms in the liquid). It 
also predicts a continuous change of state when above the critical values of P  and T .

8.6 Other eQUAtIONS OF StAte FOr NONIDeAL GASeS

Other examples of derived equations of state for nonideal gases include the 
Dieterici equation  (Conrad Dieterici, 1858– 1929):

 P V b e RTa− ′( ) =′/RTV  
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and the Berthelot equation  (Pierre Eugè ne Marcellin Berthelot, 1827– 1907):

 P
A

TV
V B RT+






 =2 ( )−  

Neither of these equations has a fundamental basis.
Other general empirical equations include the Beattie– Bridgeman equation  

(James A. Beattie, 1895–1981; Oscar C. Bridgeman), which contains five constants 
in addition to R  and fits the P -V -T  relationships over wide ranges of temperature and 
pressure, and the Kamerlingh Onnes  or virial equation of state  (Heike Kamerlingh 
Onnes, 1853– 1926). In the latter equation, it is assumed that PV RT/  is a power 
series of either P  or of 1 / V ; that is,

 
PV
RT

BP CP= + + +1 2 �  

or

 
PV
RT

B
V

C
V

= +
′
+

′
+1 2 �  

The product PV  is called the virial , B  or B'   is called the first virial coefficient , C  or 
C'   is called the second virial coefficient , and so on, and the virial coefficients are 
functions of temperature. In both equations, as pressure approaches zero and volume 
approaches infinity, PV RT/ → 1 . The virial equation converges rapidly in the gas 
phase, and thus, the equation of state can be represented by the virial expansion over 
the entire range of densities and pressures. In practice, however, the virial equation is 
used only when the first few terms need to be retained. At low pressures or densities,

 
PV
RT

BP= +1  

or

 
PV
RT

B
V

= +
′

1  

8.7 FUrther therMODYNAMIC treAtMeNt  
OF NONIDeAL GASeS

Equation  8.7 showed that, at any temperature, the molar Gibbs free energy of an 
ideal gas is a linear function of the logarithm of the pressure of the gas. This prop-
erty arises from the ideal gas law, which was used in the derivation of this equation, 
and thus, if the gas is not ideal, then the relationship between the logarithm of the 
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pressure of the gas and its molar Gibbs free energy is not linear. However, in view 
of the simple form of Equation  8.7, a function has been defined  which, when used 
in place of pressure in Equation  8.7, gives a linear relationship between the molar 
Gibbs free energy of an nonideal gas and the logarithm of the function. This function 
is called the fugacity , f , and is partially defined by the equation

 dG RTd f= ln  

The integration constant is chosen such that the fugacity approaches the pressure as 
the pressure approaches zero; that is,

 
f
P

P→ →1 0  as  

in which case

 G G RT f= ° + ln  (8.30)

where G °  is the molar Gibbs free energy of the gas in its standard state, which is now 
defined as that state in which f  = 1 at the temperature T ; that is, G °  = G ( f  = 1, T ). The 
standard state for an ideal gas was defined as being P  = 1, T .

Consider a gas which obeys the equation of state

 V
RT

P
= − α  

where α  is a function only of temperature and is a measure of the deviation of the gas 
from ideality. Equation  5.12 gives dG  = VdP  at constant T , and Equation  8.30 gives  
dG  = RTd  ln f  at constant T . Thus, at constant T ,

 VdP RTd f= ln  

and hence,

 d
f

P RT
dPln







= − α
 (8.31)

Integration between the states P  = P  and P  = 0, at constant T  gives

 ln
f

P

f

P

P

RTP P P













=
= =

− − ln
0

α
 (8.32)

Since f P/( ) = 1 when P  = 0, then ln f P/( )  = 0 when P  = 0, and hence,

 ln
f
P

P
RT

f
P

e P RT





 = =− −α αor  
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In order that α  can be taken as being independent of pressure, the deviation of the gas 
from ideality must be small, in which case α  is a small number. Thus,

 e
P

RT

P

RT
−

=
α α

1−  

and hence,

 
f
P

P
RT

RT
P

V
P

RT
PV
RT

= = 





 =1 1− − −α

 

If the gas behaved ideally, then the ideal pressure, P id , would be given as RT V/ . 
Thus,

 f

P

P

P
=

id

 (8.33)

which shows that the actual pressure of the gas is the geometric mean  of its fugacity 
and the pressure which it would exert if it behaved ideally. It is also seen that the 
percentage error involved in assuming that the fugacity is equal to the pressure is the 
same as the percentage departure from the ideal gas law.

Alternatively, the fugacity can be considered in terms of the compressibility factor Z . 
From Equation  8.31,

 d
f

P RT
dP

V

RT P
dPln







= = 





− −α 1  

But Z  = PV RT/ , and hence,

 d
f

P

Z

P
dPln







= −1  

and

 ln
f

P

Z

P
dP

P P P

P P





=
= =

=

∫ −1

0

 (8.34)

This can be evaluated either by graphical integration of a plot of (Z  –  1)P  versus P  at 
constant T , or by direct integration if Z  is known as a function of P — that is, if the 
virial equation of state of the gas is known.

For example, the variation of PV  (cm3 · atm) with P  in the range 0– 200 atm for 
nitrogen gas at 0° C is represented by the equation

 
PV P P P= + + ×22 414 6 1 281 65189 5 1955 1

          1 3

2 7 4, . . . .

.

−

−

−0 0 0 0

1156 1 1 9 111 6 16 8× + ×0 00 0− −P P.
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Thus, dividing by RT  = 22,414.6 at 0° C gives

 
PV

RT
Z P P P= = × + × + ×1 2 9083 10 2 3179 104 6 2 11 4− 4.5867 10− − −. .

          − − −5 8694 10 4 5015 1015 6 21 8. .× + ×P P

 

This variation of Z  with P  is shown graphically in Figure  8.4. From integration of 
Equation  8.28, ln( f /P ) is obtained as

 ln . . .

.

f

P
P P P







= × + × + ×−

−

− − −4 5867 10 1 4542 10 5 794 10

0

4 6 2 12 4

   99782 10 5 627 1016 6 22 8× + ×− −P P.

 

This variation of f /P  with P  is shown in Figure  8.14. Note that as the pressure 
approaches one atmosphere, the fugacity approaches unity.

The change in the molar Gibbs free energy of an nonideal gas caused by an isother-
mal change in pressure can be calculated from either

 dG VdP=  

or

 dG RTd f= ln  

The correspondence between these two approaches is illustrated as follows. The virial 
equation of state of the gas is

 PV

RT
Z BP CP DP= = + + + +1 2 3 �  
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Figure 8.14   the variation of f/P with pressure for nitrogen gas at 0°C.
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Then,

 V RT
P

B CP DP= + + + +





1 2 �  

and so, for the change of state of 1 mole of gas from (P 1 ,T ) to (P 2 ,T ),

 
∆ = = + + + +





= +

∫ ∫G VdP RT
P

B CP DP dP

RT
P

P
B P P

P

P

P

P

1

2

1

2 1 2

2

1
2 1

�

ln ( )− ++ + +







C
P P

D
P P

2 3
2
2

1
2

2
3

1
3( ) ( )− − �

 

If the gas had been ideal, then

 ∆ = 





G RT

P

P
ln 2

1

 

and so, the contribution to change in the molar Gibbs free energy arising from the 
nonideality of the gas is

 RT B P P
C

P P
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P P( ) ( ) ( )2 1 2
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1
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2 3
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�  

Alternatively, dG  = RT d  ln f , where, from Equation  8.29,
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Now,

 dG RT d f RT d
f

P
RT d P= = 





+   ln ln ln  

and so,

 ∆ = + ( ) + +





+ 




G RT B P P
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in agreement with the preceding equations.
Thus, for 1 mole of nitrogen at 0° C, the difference between the Gibbs free energy 

at P  = 150 atm and that at P  = 1 atm is
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The contribution due to the nonideality of nitrogen is thus seen to be only 76 J in 
almost 11,300 J.

The number of terms which must be retained in the virial equation depends on the 
magnitude of the range of pressure over which it must be applied. For example, in the 
virial equation for nitrogen at 0° C, only the first term is needed up to 6 atm and only 
the first two terms are needed up to 20 atm. When only the first term is needed, the 
expression is

 PV

RT
BP= +1  

or

 V
RT

P
BRT= +  

and hence, – BRT  = a  in Equation  8.31 and α  is a function only of temperature.
Consider a nonideal gas which obeys the equation of state PV  = RT (1 + BP ). The 

work done by this nonideal gas in a reversible, isothermal expansion from P 1  to P 2  is 
the same as that done when an ideal gas is reversibly and isothermally expanded from 
P 1  to P 2  at the same temperature. However, the work done by the nonideal gas in a 
reversible, isothermal expansion from V 1  to V 2  is greater than that done when an ideal 
gas is reversibly and isothermally expanded from V 1  to V 2  at the same temperature. 
Consider why this is so.

For the ideal gas V  = RT /P , and for the nonideal gas V  = RT /P  + BRT . Thus, on a 
P -V  diagram, any isotherm for the nonideal gas is displaced from the isotherm for the 
ideal gas by the constant increment in volume BRT , as shown in Figure  8.15. Because 
of the constant displacement, the area under the isotherm for the ideal gas between P 1  
and P 2  (the area abcd ) is the same as the area under the isotherm for the nonideal gas 
between the same pressures (the area efgh ). Thus, the same amount of work is done by 
both gases in expanding isothermally from P 1  to P 2 .

For the ideal gas,

 w PdV RT
V

V
RT

P

PV

V

ideal gas = = 





 = 






∫ ln ln2

1
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21

2

 

and for the nonideal gas,

 w PdV
V

V

nonidealgas = ∫
1

2
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but, as V  = RT /P  + BRT , and hence, at constant T , dV  = – RT (dP /P 2 ), then

 w RT
dP

P
RT

P

P
w

P

P

nonideal gas ideal gas= 





= 





 =∫−

1

2
1

2

ln  

However, as any isotherm for the nonideal gas also lies above the isotherm for the ideal 
gas (for a positive value of B ), the work done by the nonideal gas in expanding isother-
mally and reversibly from V 1  to V 2  (the area aijd ) is greater than that done by the ideal 
gas in isothermally and reversibly expanding between V 1  and V 2  (the area abcd ). The 
vertical separation between the two isotherms is

 P P
RT

V BRT

RT

V

B RT

V V BRT
nonideal gas ideal gas−

− −
= − = ( )

( )

2

 

For the ideal gas, w ideal gas  = RT  ln (V 2 /V 1 ), and for the nonideal gas,

 w PdV
V

V
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2
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Figure 8.15   Isotherms for an ideal gas and a nonideal gas.
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such that

 w RT
V BRT

V BRT
wnonidealgas ideal gas= −






 >ln 2

1 −
 

Consider the comparison of the behavior of hydrogen gas, for which PV  = RT (1 + 
0.0064P ), with that of an ideal gas in reversible isothermal expansions of 1 mole 
between P 1  = 100 atm and P 2  = 50 atm at 298 K:
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Thus, for the change of state
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At V  = 0.2445 liters, T  = 298 K, P ideal gas  = 100 atm, and
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and at V  = 0.489 liters, T  = 298 K, P ideal gas  = 50 atm, and
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8.8 SUMMArY

  1. An ideal gas is an assemblage of volumeless noninteracting particles which obeys 
the ideal gas law, PV  = RT . The internal energy of an ideal gas arises solely from 
the translational motions of the gas particles and, hence, is a function only of tem-
perature. The enthalpy of an ideal gas is also a function only of temperature.

 2. A consequence of the ideal gas law is that, at constant temperature, the Gibbs free 
energy of an ideal gas is a linear function of the logarithm of the pressure of the gas.

 3. Since Gibbs free energies do not have absolute magnitudes, it is convenient to mea-
sure changes in Gibbs free energy from some arbitrary state. This state is chosen as 
P  = 1 atm at the temperature of interest and is called the standard state. Thus, the 
difference between the molar Gibbs free energy in the state (P ,T ) and that in the 
standard state (P  = l atm,T ) is Δ G  = RT  ln P .

 4. The deviations of real gases from ideal behavior are caused by the atoms or mole-
cules of real gases having finite volumes and by the interactions which occur among 
the atoms.

 5. Various attempts have been made to correct the ideal gas law for these effects, 
and the best-known derived equation is the van der Waals equation of state, which 
can be applied to gases which show small deviations from ideality. This equation 
predicts the condensation of vapor caused by compression at temperatures below 
the critical temperature, but does not give the correct dependence on temperature 
of the saturated vapor pressure of the liquid phase. Generally, measured variations 
of the molar volumes of gases with P  and T  are fitted to power series equations, in 
P  or 1/V , of the function PV . Such equations are called virial equations.

 6. The van der Waals equation predicts a phase change below the critical point.
 7. The compressibility factor, Z  = PV /RT , of all real gases at constant reduced tem-

perature, T T TR cr= / , is the same function of the reduced pressure, P P PR cr= / . This 
gives rise to the law of corresponding states, which states that when two gases have 
identical values of two reduced variables, they have almost identical values of the 
third reduced variable.

 8. Consideration of the thermodynamic behavior of nonideal gases is facilitated by the 
introduction of the fugacity, f , which is defined by the equation dG  = RT d  ln f  and 
by the condition f P/  →  1 as P  →  0. Thus, the standard state for a nonideal gas is 
that in which the fugacity is unity at the temperature of interest. For small devia-
tions from ideality, the pressure of the gas is the geometric mean of its fugacity and 
P id , the pressure which the gas would exert if it were ideal.

 9. The composition of a mixture of gases is most conveniently expressed in terms of 
the mole fractions of its component gases, and if the mixture is ideal, the partial 
pressures exerted by the component gases are related to the total pressure P  and 
the mole fraction X i   by p i   = X i  P . This equation is called Dalton’ s law of partial 
pressures. In a mixture of ideal gases, the partial molar Gibbs free energy of a 
component gas is a linear function of the logarithm of its partial pressure, and in a 
mixture of nonideal gases it is a linear function of the logarithm of its fugacity.

 10. Since the atoms in an ideal gas do not interact with one another, no change in 
enthalpy occurs when different ideal gases are mixed; that is, the enthalpy change 
of mixing of ideal gases, Δ H'  mix , is zero. The entropy change occurring when ideal 
gases are mixed arises solely from complete randomization of the different types of 
atoms in the available volume, and thus, as ∆ H mix  = 0, ∆ G mix  = – T ∆ S mix .
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8.9 CONCePtS AND terMS INtrODUCeD IN ChAPter 8

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Compressibility factor, Z 
Critical point
Dalton’ s law of partial pressure
Enthalpy of mixing
Entropy of mixing
Fugacity
Gibbs free energy of mixing
Ideal/perfect gas
Law of corresponding states
Liquid/vapor equilibrium
Maxwell construction
Mixture
Mole fraction
Partial molar quantity
Stable/unstable/metastable
Standard state
Supercritical fluid
Van der Waals fluid
Virial equation

8.10 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

Obtain a simplified expression for the total derivative of the pressure for one mole 
of an ideal gas.

Solution  to Qualitative Problem 1 

 dP
P

T
dT

P

V
dV

V T

= ∂
∂







+ ∂
∂







 

For an ideal gas,

 ∂
∂







=P

T

R

VV

 

and

 ∂
∂







= − = −P

V

RT

V

P

VT
2

 

Thus,

 dP
R

V
dT

P

V
dV= −  
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Qualitative Problem 2

One mole of an ideal gas doubles its volume at constant temperature. Calculate the 
change in the Gibbs free energy of the gas for this process. Also calculate the change 
in entropy of the gas.

Solution  to Qualitative Problem 2 

 dG SdT VdP= − +  

At constant T ,

 dG VdP
RT

P
dP= =  

but,

 dP
RT

V
dV= − 2

 

 
dP

P

RT

PV
dV

dV

V
= − = −2  

Thus,

 ∆G RT
V

V
RT= − = −ln ln2

1

2 

Since the gas is ideal, Δ H  = 0 and Δ S  = R  ln 2 >  0.

8.11 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 
Assuming that nitrogen behaves as a van der Waals gas with a  = 1.391 (liters)2 · atm/
mole2  and b  = 39.1 cm3 /mole, calculate the change in the Gibbs free energy and the 
change in entropy when the volume of 1 mole of nitrogen is increased from 1 to 2 
liters at 400 K.

Solution to Quantitative Problem 1 

For a van der Waals fluid,

 P
RT

V b

a

V
=

−
−

2

2  
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and thus,

 dP
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At constant temperature,

 dG VdP=  

which, from Equation  (i), gives
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From Equation  6.17, at constant temperature:

 dS VdP= −α  

where:

 α = ∂
∂







1
V

V

T P

 

From Equation  (ii), at constant pressure:
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dT

R

V b

V V b

a V b RTV
=

 ( )
( )

( )−
−

− −

3 2

2 2 32
 

and thus, for a van der Waals fluid:
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If the nitrogen had behaved as an ideal gas, the changes in Gibbs free energy and 
entropy would have been

 

∆ =

= × ×

=

G RT
V

V
ln

. ln

1

2

8 3144 400
1
2

2305

    

 J−

 



264 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

and

 

∆ =

= ×
=

S R
V

V
ln

. ln

2

1

8 3144 2

5 76.  J/K

 

Quantitative Problem 2 

The virial equation of state for n -butane at 460 K is Z  = 1 + A /V  + B /V 2 , in which 
A   = – 265 cm3 /g· mole and B  = 30,250 cm6 /g· mole2 . Calculate the change in the 
Gibbs free energy when the volume of 1 mole of n -butane is decreased from 400 to 
200 cm3  at 460 K.

Solution to Quantitative Problem 2 

The equation of state is

 

PV RT
V V

P RT
V V V

= +





∴ = +
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and, at constant temperature,
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PrOBLeMS

 8.1   Demonstrate the law of corresponding states by writing the van der Waals equa-
tion in terms of the reduced variables. Calculate the compressibility factor for 
a van der Waals fluid at its critical point and compare the result with the values 
obtained for real gases at their critical points listed in Table 8.1. Calculate the 
value of (∂ U /∂ V )T   for a van der Waals fluid.

8.2   n  moles of an ideal gas A  and (1 –  n ) moles of an ideal gas B , each at 1 atm pres-
sure, are mixed at total constant pressure. What ratio of A  to B  in the mixture 
maximizes the decrease in the Gibbs free energy of the system? If the decrease 
in the Gibbs free energy is Δ G M  , to what value must the pressure be increased 
in order to increase the Gibbs free energy of the gas mixture by 1/2Δ G M  ?

8.3   You are responsible for the purchase of oxygen gas which, before use, will 
be stored at a pressure of 200 atm at 300 K in a cylindrical vessel of diam-
eter 0.2 m and height 2 m. Would you prefer that the gas behaved ideally or 
as a van der Waals fluid? The van der Waals constants for oxygen are a  = 1.36 
liters2 · atm· mole– 2  and b  = 0.0318 liters/mole.

8.4   The virial equation of state for n -butane at 460 K is Z  = 1 + A /V  + B /V 2 , in which 
A  = – 265 cm3 /g· mole and B  = 30,250 cm6 /g· mole2 . Calculate the work required 
to reversibly compress 1 mole of n -butane from 50 to 100 atm at 460 K.

8.5  For sulfur dioxide, T cr  = 430.7 K and P cr  = 77.8 atm. Calculate
 a. The critical van der Waals constants for the gas
 b. The critical volume of van der Waals SO2 
 c.  The pressure exerted by 1 mole of SO2  occupying a volume of 500 cm3  at 

500 K. Compare this with the pressure which would be exerted by an ideal 
gas occupying the same molar volume at the same temperature.

8.6     One hundred moles of hydrogen gas at 298 K are reversibly and isothermally com-
pressed from 30 to 10 liters. The van der Waals constants for hydrogen are a  = 
0.2461 liters2 · atm· mole– 2  and b  = 0.02668 liters/mole, and in the range of pres-
sure 0– 1500 atm, the virial equation for hydrogen is PV  = RT  (1 + 6.4 ×  10– 4  P ). 
Calculate the work that must be done on the system to effect the required change in 
volume and compare this with the values that would be calculated assuming that (a) 
hydrogen behaves as a van der Waals fluid and (b) hydrogen behaves as an ideal gas.

8.7    Using the virial equation of state for hydrogen at 298 K given in Problem 8.6, 
calculate

 a. The fugacity of hydrogen at 500 atm and 298 K
 b. The pressure at which the fugacity is twice the pressure
 c.  The change in the Gibbs free energy caused by a compression of 1 mole of 

hydrogen at 298 K from 1 to 500 atm
   What is the magnitude of the contribution to (c) caused by the nonideality of 

hydrogen?
8.8*  Show that the truncated Kamerlingh Onnes virial equation

  
PV

RT

B T

V
= +1

'( )
 

  reduces to P (V  –  bʹ  ) = RT , and find the expression for bʹ  .
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8.9*   Figure  8.8 shows an isothermal variation, with pressure, of the volume of a van 
der Waals fluid at a temperature below its critical temperature. Redraw this fig-
ure and below it sketch the Helmholtz free energy versus volume plot. Be sure 
to indicate important points on the A  versus V  plot.

8.10*   Obtain a simplified expression for the total derivative of the pressure for a van 
der Waals gas.

8.11*  Show that the truncated Kamerlingh Onnes virial equation

 
PV

RT

B T

V
= +1

'( )
 

  reduces to P (V  –  bʹ  ) = RT , and find the expression for bʹ  .
8.12* Derive an expression for Z cr  of a van der Waals fluid.

 Z
P V

RT
cr

cr cr

cr

=  

8.13*  The ideal entropy of mixing of a binary solution is given as

 ∆S R X X X XA A B Bmix = − +( ln ln )  

 a. Sketch the entropy of mixing versus X B  .
 b.  Calculate (using the expression for the ideal entropy of mixing) the ideal 

entropy of mixing at B  = 0.25.
 c. Calculate the slope of this curve at X B   = 0.25.
 d.  Calculate the partial molar entropy of component B  for the composition 

X B   = 0.25.
 e.  Calculate the partial molar entropy of component A  for the composition 

X B   = 0.25.
 f. Show that your answers in (d) and (e) are consistent with your answer in (c).

* New problem in this edition
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ChAPter 9

the Behavior of Solutions

9.1 INtrODUCtION

We have seen in previous chapters that gases may be considered to be ideal when 
there is no interaction among their constituent atoms or molecules. This lack of inter-
action allows the gas to exist in a state in which its configurational entropy has its 
highest possible value. Gases which can be considered to be ideal all have the same 
thermodynamic mixing properties. Any interaction, such as is present in a van der 
Waals gas, lowers the entropy of the gas, and with decreasing temperature, the inter-
actions eventually lead to the gas condensing to a liquid or a solid, depending on its 
pressure.

Condensed phases do have interactions existing among their constituent atoms, 
molecules, or ions. The nature and magnitudes of these interactions have a signifi-
cant influence on the thermodynamic behavior of the solution. The interactions are 
determined by such factors as atomic size, electronegativity, and electron-to-atom 
ratio, and these determine the extent to which a component is soluble in a solution 
and whether or not two or more components will react chemically to form a new 
species. Solution thermodynamics is concerned with the vapor pressure– tempera-
ture– composition relationships of the components of a solution. An examination of 
solution thermodynamics is made in this chapter.

9.2 rAOULt’ S LAW AND heNrY’ S LAW

If a quantity of pure liquid A  is placed in a closed, initially evacuated vessel at the 
temperature T , some of the liquid will spontaneously evaporate until the pressure in 

the vessel reaches the saturated vapor pressure of liquid A , pA
� , at the temperature T . 

In this state, a dynamic equilibrium is established in which the rate of evaporation 
of liquid A  equals the rate of condensation of the vapor A . The rate of evaporation, 
re  ( A  ) , is determined by the magnitude of the energy of the bonds between the atoms 
of A  at the surface of the liquid. The forces exerted between the atoms are such that 
each surface atom is located near the bottom of a potential energy well, and for an 
atom to leave the surface of the liquid and enter the vapor phase, it must acquire an 
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activation energy, E *. The intrinsic rate of evaporation, r e  ( A  ) , is determined by the 
depth of the potential energy well— that is, by the magnitude of E *— and by the 
temperature T . On the other hand, the rate of condensation, r c  ( A  ) , is proportional to 
the number of A  atoms in the vapor phase which strike the surface of the liquid in a 
unit time. For a given temperature, this is proportional to the pressure of the vapor. 

Thus, r k pc A
A

A( ) = � , and at equilibrium, r re A c A( ) ( )= , and thus,

 r k pe A
A

A( ) = �  (9.1)

The energies of the atoms at the surface are quantized, and the distribution of 
the surface atoms among the available quantized energy levels is given by 
Equation  4.17 as

 n
n

E

k T
i

i

B=
−exp( )
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where n ni /  is the fraction of the atoms in the E i  th  energy level, and Z , the partition 
function, is given by
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If the quantized energy levels are spaced closely enough that the summation can be 
replaced by an integral, then
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which is the average energy per atom. Thus, the fraction of surface atoms which have 
energies greater than the activation energy for evaporation, E* , is
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∫1

The evaporation rate, r e  ( A  ) , is proportional to n ni
* / , and thus, it increases exponen-

tially with increasing temperature and decreases exponentially with the increasing 
value of E *. Equation  9.1 illustrates why the saturated vapor pressures of liquids are 
exponential functions of temperature. Similarly, when pure liquid B  is placed in an 
initially evacuated vessel at the temperature T , equilibrium between the liquid and 
its vapor phases occurs when

 r k pe B
B

B( ) = �  (9.2)
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Consider the effect of the addition of a small quantity of liquid B  to liquid A . If 
the mole fraction of A  in the solution is X A   and the atomic diameters of A  and B  are 
similar, then, assuming that the composition of the surface of the liquid is the same 
as that of the bulk liquid, the fraction of the surface sites occupied by A  atoms is 
X A  . Since A  can only evaporate from surface sites occupied by A  atoms, the rate of 
evaporation of A  is decreased by the factor X A  , and since the rates of evaporation and 
condensation are equal to one another at equilibrium, the equilibrium vapor pressure 

of A  exerted by the A – B  solution is decreased from pA
�  to p A  , where

 r X k pe A A
A

A( ) =  (9.3)

Similarly, for liquid B  containing a small amount of A ,

 r X k pe B B
B

B( ) =  (9.4)

Combination of Equations 9.1 and 9.3 gives

 p X pA A A= �  (9.5)

and combination of Equations 9.2 and 9.4 gives

 p X pB B B= �  (9.6)

Equations 9.5 and 9.6 are expressions of Raoult’ s law , which states that the vapor 
pressure exerted by a component i  in a solution is equal to the product of the mole 
fraction of i  in the solution and the saturated vapor pressure of pure liquid i  at the 
temperature of the solution. Raoult’ s law is shown in Figure 9.1; the components of a 
solution which obeys Raoult’ s law are said to exhibit Raoultian  behavior.

pB

p°B

p°A

A B

pA

pA + pB

Va
po

r p
re

ss
ur

e

XB

Figure  9.1   the vapor pressures exerted by the components of a binary solution as a func-
tion of composition. Both components of this solution obey raoult’ s law at all 
compositions.
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The derivations of Equations 9.3 and 9.4 require the assumption that the intrinsic 
rates of evaporation of A  and B  are independent of the composition of the solution. 
This requires that the magnitudes of the A – A , B – B , and A – B  bond energies in the 
solution be identical, in which case the depth of the potential energy well of an atom 
at the surface is independent of the types of atoms which it has as its nearest neigh-
bors. When this happens, the arrangement of the atoms does not depend on the bond 
energies, and hence, they will take a configuration which maximizes the configura-
tional entropy of the solution.

Consider the case in which the A – B  bond energy is considerably more negative 
than the A – A  and B – B  bond energies, and consider a solution of B  in A  which is suf-
ficiently dilute that every B  atom on the surface of the liquid is surrounded only by A  
atoms. In this case, the B  atoms at the surface are each located in a deeper potential 
energy well than are the B  atoms at the surface of pure B . Thus, in order to leave the 
surface and enter the vapor phase, the B  atoms have to overcome larger energy barri-
ers, and, consequently, the intrinsic rate of evaporation of B  is decreased from r e  ( B  )  to 

′re B( ). Equilibrium between the condensed solution and the vapor phase occurs when

 ′ =r X k pe B B
B

B( )  (9.7)

Combination of Equation 9.1 and 9.7 then gives

 p
r

r
X pB

e B

e B
B B=

′( )

( )

�  (9.8)

and since ′ <r re B e B( ) ( ), p B   in Equation  9.8 is a smaller quantity than p B   in Equation  9.5. 
Equation  9.8 can be written as

 p k XB
B

B=  (9.9)

where k B  <  1.
As the mole fraction of B  in the A – B  solution is increased, the probability that all 

of the B  atoms on the surface of the liquid are surrounded only by A  atoms decreases. 
The occurrence of a pair of neighboring B  atoms on the surface decreases the depth 
of the potential wells in which they are located and, hence, increases the value 
of ′re B( ). Beyond some critical mole fraction of A re B, ′( ) varies with composition, and 
hence, Equation  9.9 is no longer obeyed by B  in solution. Consequently, Equation  9.9 
is obeyed only over an initial range of concentration of B  in A , the extent of which is 
dependent on the temperature of the solution and on the relative magnitudes of the 
A – A , B – B , and A – B  bond energies. A similar consideration of dilute solutions of A  
in B  gives

 p k XA
A

A=  (9.10)

which is obeyed over an initial range of concentration. Equations 9.9 and 9.10 
are known as Henry’ s law , and, in the ranges of composition in which Henry’ s 
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law is obeyed, the solutes are said to exhibit Henrian  behavior. If the A – B  bond 
energy is less negative than the A – A  and B – B  bond energies, then, since ′ >r re B e B( ) ( )

, the Henry’ s law line lies above the Raoult’ s law line (Figure  9.2a). The solutes 
in such solutions are said to exhibit positive deviations  from Raoultian behav-
ior . Conversely, if the A – B  bond energy is more negative than the A – B  and B – B  
bond energies, the solute atom, surrounded only by solvent atoms, is located in a 
deeper  potential energy well than that which occurs in the pure solute. In this case, 
′ <r re B e B( ) ( ), and hence, the Henry’ s law line for the solute lies below the Raoult’ s law 

line (Figure  9.2b). The solute in these solutions is said to exhibit negative deviations  
from Raoultian behavior, and k B   <  1. This is the case described previously and sum-
marized in Equation  9.9.

9.3 the therMODYNAMIC ACtIVItY OF 
A COMPONeNt IN SOLUtION

The thermodynamic activity of a component in any state at the temperature T  is 
formally defined as being the ratio of the fugacity (see Section  8.7) of the substance 
in that state to its fugacity in its standard state. For the species or substance i ,

 activity of i a
f

f
i

i

i

≡ ≡ �  (9.11)

In a condensed solution, f i   is the fugacity of the component i  in the solution at the tem-

perature T , and fi
�  is the fugacity of pure i  (the standard state) at the  temperature T . 

If the vapor in equilibrium with the condensed solution is ideal, then f i   = p i  , in 
which case

xB

r'e(B) > re(B) r'e(B) < re(B)

xB

0
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Figure  9.2   (a) the vapor pressure of a solute of a binary solution which exhibits positive 

deviation from raoultian behavior. (b) the vapor pressure of a solute of a binary 
solution which exhibits negative deviation from raoultian behavior.
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 a
p

p
i

i

i

= �  (9.12)

That is, the activity of i  in a solution, with respect to pure i , is the ratio of the partial 
pressure of i  exerted by the solution to the saturated vapor pressure of pure i  at the 
same temperature. If the component i  exhibits Raoultian behavior, then Equations 
9.5 and 9.12 give

 a Xi i=  (9.13)

which is an alternative expression of Raoult’ s law (cf. Equations 9.5 and 9.6). 
Figure 9.3 shows Raoultian behavior over all compositions in a liquid binary solu-
tion of Fe and Cr, in terms of the activities of the two components. The definition of 
activity normalizes the vapor pressure– composition relationship with respect to the 
saturated vapor pressure exerted in the standard state. In an equilibrium state, the 
activity can never exceed unity.

Over the composition range in which Henry’ s law is obeyed by the solute i , 
Equations 9.9 and 9.12 give

 a
k X

p
k Xi

i
i

i
i i= =� ( )  (9.14)

which is an alternative expression of Henry’ s law (cf. Equations 9.9 and 9.10). 
Henrian behavior, in terms of the activity of a component of a binary solution, is 

1600°C

1.0

0
Fe Cr

XCr

a

Figure  9.3   activities in the liquid binary system iron– chromium at 1600° C.
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shown in Figure 9.4. It can be seen that at X Ni  = 0.5, the Ni atoms in a liquid solution 
of Fe– Ni are less “ active”  than they would be if such a solution were a Raoultian one. 
This implies that the Ni atoms are bonded more tightly to Fe atoms than they are to 
other Ni atoms; that is, E Ni– Fe  <  E Ni– Ni . The liquid Fe– Ni system exhibits negative 
deviation from ideality. It is of interest to note that in the solid state, the Fe– Ni sys-
tem has an atomically ordered phase which has opposite (i.e., Fe– Ni) near neighbors 

(e.g., FeNi3 , L12 , Pm m3 , cP 4).

9.4 the GIBBS– DUheM eQUAtION

It is frequently found that the extensive thermodynamic variables of only one 
component of a binary (or multicomponent) solution are amenable to experimental 
measurement. In such cases, the corresponding extensive variables of the other com-
ponent can be obtained from a general relationship between the values of the prop-
erties of both components. This relationship, which is known as the Gibbs– Duhem 
relationship, is introduced in this section, and some of its applications are discussed 
in Section 9.8.

The value of an extensive thermodynamic variable (state function) of a solution 
is a function of the temperature, the pressure, and the numbers of moles of the com-
ponents of the solution; that is, if Q  is an extensive molar property then

 Q Q T P n n ni j k′ = ′ ( , , , , ,. . .)  

1.0

1600°C

0.5

Raoult’s
 la

w

Henry’s law

0
Fe Ni0.5

XNi

aNi

Figure  9.4   the activity of nickel in the liquid iron– nickel system at 1600° C displaying nega-
tive deviation from raoultian behavior.
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At constant T  and P , the variation of Q′   with the composition of the solution is 
given as

dQ
Q

n
dn
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n
dn

i T P n n

i
j T P n n

j

j k i k

′ = ∂ ′
∂







 + ∂ ′
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 +
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 +Q
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k T P n n
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�  (9.15)

In Chapter 8, the partial molar value of an extensive property of a component was 
defined as

 Q
Q

n
i

i T P n nj k

= ∂ ′
∂









, , , ,…

 

In which case Equation  9.15 can be written as

 dQ Q dn Q dn Q dni i j j k k′ = + + +�  (9.16)

Also in Chapter 8, it was seen that Qi  is the increase in the value of Q'   for the mix-
ture or solution when 1 mole of i  is added to a large quantity of the solution at con-
stant T  and P . (The stipulation that the quantity of solution be large is necessitated 
by the requirement that the addition of 1 mole of i  to the solution should not cause a 

measurable change in its composition.) Thus, if Qi  is the value of Q  per mole of i  in 
the solution, then the value of Q'   for the solution itself is

 ′ = + + +Q n Q n Q n Qi i j j k k �  (9.17)

differentiation of which gives

 dQ n Q n Q n Q Q dn Q dn Q dni i j j k k i i j j k k′ = + + + + + + +� �  (9.18)

Comparison of Equations 9.16 and 9.18 shows that, at constant T  and P ,

 n Q n Q n Qi i j j k k+ + + =� 0  

or, generally,

 n dQi i

i
∑ = 0  (9.19a)

Division of Equation  9.19 by n , the total number of moles of all the components of 
the solution, gives

 X dQi i

i
∑ = 0  (9.19b)
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Equations  9.19a and b are equivalent expressions of the generalized Gibbs – Duhem 
equation .

For example, at constant temperature and pressure, the partial molar Gibbs free 
energies (chemical potentials) in a binary system are related as

 X dG X dGA A B B+ = 0  (9.20)

9.5 the GIBBS Free eNerGY OF FOrMAtION OF A SOLUtION

9.5.1  the Molar Gibbs Free energy of a Solution and the Partial 
Molar Gibbs Free energies of the Components of the Solution

Applying Equation  9.17 to a binary solution, the Gibbs free energy (an extensive 
thermodynamic state function) at fixed temperature and pressure is

 ′ = +G n G n GA A B B  (9.21)

where:

G A  and GB   are, respectively, the partial molar Gibbs free energies of A  and B  
in the solution

G′     is the total Gibbs free energy of the solution

Dividing both sides of Equation  9.21 by n A   + n B   gives the molar Gibbs free 
energy of the solution as

 G X G X GA A B B= +  (9.22)

This relation can also be seen graphically in Figure  9.5a, as follows:

 G X G X
dG X

dX
B A B

B

B

( )
( )= +  (9.23)

But,

 
dG X

dX
G GB

B

B A
( ) = −  (9.24)

Thus,

 G  ( ) ( )X G X G GB A B B A= + −  (9.25)

 G X X G X GB A A B B( ) = +  (9.26)

Inserting Equations  9.24 into 9.25 and rearranging yields

 G G X
dG

dX
A B

B

= −  (9.27a)
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Replacing X B   in Equation  9.25 with (1 –  XA ) and rearranging the resulting equation 
gives

 G G X
dG

dX
B A

B

= +  (9.27b)

A

(a)

B

XB →

XB

G(XB)
GB

GA

G

∆GM

A

s

r q

p

XA = XA

o0

∆GA
M

∆GB
M

B
XB

(b)

Figure  9.5a   (a) the variation of the molar Gibbs free energy with composition, showing 
the partial molar Gibbs free energies of components A  and B  for the solution; 
(b) the variation, with composition, of the molar Gibbs free energy of formation 
(mixing) of a binary solution at a temperature, T . the partial molar values for 
the alloy X B   = q  are shown by the tangent intercepts with ordinate axes. at this 
temperature, there is complete solubility of A  in B  and B  in A .
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These expressions relate the dependence on composition of the partial molar Gibbs 
free energies of the components of a binary and the molar Gibbs free energy of the 
solution.

9.5.2  the Change in Gibbs Free energy due 
to the Formation of a Solution

Recall from our discussion in Section 9.2 that the pure component i , occurring 
in a condensed state at the temperature T , exerts an equilibrium vapor pressure, pi

� , 
and when occurring in a condensed solution at the temperature T , it exerts a lower 
equilibrium pressure, p i  . Consider the following isothermal three-step process:

 1. The evaporation of 1 mole of pure condensed i  to vapor i  at the pressure pi
�

 2. A decrease in the pressure of 1 mole of vapor i  from pi
�  to p i  

 3. The condensation of 1 mole of vapor i  from the pressure p i   to the condensed solution

The difference between the molar Gibbs free energy of i  in the solution and the 
molar Gibbs free energy of pure i  is given by the sum Δ G (a)  + Δ G (b)  + Δ G (c) . However, 
since steps (a) and (c) are processes conducted at equilibrium, Δ G (a)  and Δ G (c)  are 
both equal to zero. The overall change in Gibbs free energy which accompanies the 
isothermal three-step process is thus Δ G (b) , which, from Equation  8.5, is given as

 ∆G RT
p

p
i

i
( ) lnb =









�  

and, from Equation  9.12, this can be written as

 ∆G G G RT ai i i( ) lnb in solution pure= ( ) − ( ) =  

But G i   (in solution) is simply the partial molar Gibbs free energy of i  in the solution, 
and G i   (pure) is the molar Gibbs free energy of pure i . The difference between the 
two is the change in the Gibbs free energy accompanying the addition of 1 mole of 

i  into the solution. This quantity is designated ∆Gi
M

 and is the partial molar Gibbs 
free energy of mixing of the solution of i . Thus,

 ∆G G G RT ai
M

i i i= − =� ln  (9.28)

If n A   moles of A  and n B   moles of B  are mixed to form a solution at constant tempera-
ture and pressure,

 the Gibbs free energy before mixing = +n G n GA A B B
� �  

and

 the Gibbs free energy after mixing = +n G n GA A B B  
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The change in the total  Gibbs free energy caused by the mixing process, Δ G'  M  , 
sometimes referred to as the integral  Gibbs free energy of mixing (total Gibbs free 
energy of mixing), is the difference between these quantities; that is,

 
∆ ′ = +( ) − +( )

= −( ) + −

G n G n G n G n G

n G G n G G

M
A A B B A A B B

A A A B B B

� �

� �( )
 

Substitution from Equation  9.28 gives

 ∆ ∆ ∆′ = +G n G n GM
A A

M

B B
M

 (9.29)

or

 ∆ ′ = +G RT n a n aM
A A B B( ln ln )  (9.30)

For 1 mole of solution, Equations 9.29 and 9.30, respectively, become

 ∆ ∆ ∆G X G X GM
A A

M

B B
M

= +  (9.31)

and

 ∆G RT X a X aM
A A B B= +( ln ln )  (9.32)

The variation of Δ G M   with composition, given by Equation  9.32, is shown in 

Figure 9.5b. ∆G X qM
B( )=  is given by the segment pq  and the segment or .

9.5.3 the Method of tangential Intercepts

From Figure  9.5b and Equation 9.27a and b, it can be seen that

 ∆ ∆ ∆
G G X

d G

dX
A
M M

B

M

B

= −  (9.33a)

and

 ∆ ∆ ∆
G G X

d G

dX
B
M M

A

M

B

= +  (9.33b)

Here, the partial molar Gibbs free energy of mixing of the components A  and B  can 
be read directly from the tangential intercepts at X B   = 0 and X B   = 1, respectively, just 
as the partial molar Gibbs free energies of X B   and X A   (their chemical potentials) can 
be read directly from Figure  9.5a.
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9.6 the PrOPertIeS OF IDeAL SOLUtIONS

The components of a Raoultian solution obey the relation a i   = X i  . An ideal solu-
tion is a solution which obeys Raoult’ s law at all temperatures, pressures, and com-
positions. Thus, for an ideal binary A – B  solution, the Gibbs free energy of mixing 
from Equation  9.32 becomes

 ∆G RT X X X XM
A A B B

,id = +( ln ln )  (9.34)

with the partial Gibbs free energy of mixing of the components A  and B  given as

 ∆ ∆G RT X G RT XA
M

A B
M

B

, ,
ln ln

id id
and= =  

As discussed in Chapter 8, the general thermodynamic relationships between the 
state properties of a system are applicable to the partial molar properties of the com-
ponents of a system. Thus, for the species i  occurring in a solution,
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 (9.35)

and, for pure i ,
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 (9.36)

9.6.1  the Change in Volume Accompanying the 
Formation of an Ideal Solution

Subtraction of Equations  9.36 from 9.35 gives
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 (9.37)

The change in volume due to mixing, Δ V'  M  , is the difference between the volumes of 
the components in the solution and the volumes of the pure components; that is, for 
a binary A – B  solution containing n A   moles of A  and n B   moles of B ,
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∆

∆

′ = +( ) − +( )
= −( ) + −( )
=

V n V n V n V n V

n V V n V V

n V

M
A A B B A A B B

A A A B B B
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� �

MM

B B
M

n V+ ∆

 

In an ideal solution, ∆G RT Xi
M

i

,
ln

id
= , and since this term is not a function of pres-

sure, ∆V i
M ,id

= 0. Thus, it is seen that the change in volume accompanying an ideal 
solution is zero; that is,

 ∆ ′ =V M ,id 0  (9.38)

The volume of an ideal solution is thus equal to the sum of the volumes of the pure 
components. The variation, with composition, of the molar volume of an ideal 
binary solution is shown in Figure 9.6. At any composition, the values of the partial 
molar volumes V A

M
 and V B

M
 are obtained as the intercepts of the tangents to the vol-

ume– composition line with the respective axes. Since the molar volume of an ideal 
solution is a linear function of composition (i.e., it follows the rule of mixtures), the 
tangent at any point coincides with the straight line, such that

 V V V VA A B B= =� �and  

For crystalline solids, this plot is similar to the case where the lattice parameter 
versus composition is linear (called Vegard’ s law , after Lars Vegard, 1880– 1963).

M
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XB
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Figure  9.6   the variation, with composition, of the molar volume of a binary ideal solution.
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9.6.2 the enthalpy of Formation of an Ideal Solution

For a component in a solution, the Gibbs– Helmholtz equation (Equation  5.37), 
can be used to obtain
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2  (9.39)

and, for the pure component,
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2  (9.40)

where Hi  and Hi
�  are, respectively, the partial molar enthalpy of i  in the solution and 

the standard molar enthalpy of i . Subtraction of Equation  9.40 from Equation  9.39 
gives
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2  (9.41)

where ∆Hi
M

 is the partial molar enthalpy of mixing of solution of i .

In an ideal solution, ∆G RT Xi
M

i

,
ln

id
= , substitution of which into Equation  9.41 

gives

 
d R X

dT

H

T
i i

M
ln( ) = − ∆

2  
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and, since the first term is not a function of temperature, it is seen that, for a compo-
nent of an ideal solution,

 ∆H H Hi
M

i i

,id
= − =� 0  

or

 H Hi i= �  (9.42)

The enthalpy of formation of a solution (or the enthalpy of mixing of the compo-
nents) is the difference between the enthalpies of the components in solution and the 
enthalpies of the pure components before mixing. Thus, for a mixture of n A   moles of 
A  and n B   moles of B ,
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∆
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For an ideal solution, ∆Hi
M

= 0 , and thus, it is seen that the enthalpy of formation (or 
the enthalpy of mixing) of an ideal solution is zero; that is,

 ∆H M ,id = 0  (9.43)

9.6.3 the entropy of Formation of an Ideal Solution

The fundamental equation (Equation  5.25), gives
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Thus, for the formation of one mole of a solution,
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For an ideal solution, Equation  9.34 showed that

 ∆G RT X X X XM
A A B B

, ( )id ln ln= +  
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and hence,

 
∆ ∆
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= − +

 (9.44)

Equation  9.44 shows that the entropy of formation of an ideal binary solution is inde-
pendent of temperature and is positive.

Equation  4.3 for total change in configurational entropy gives, for the mixing of 
N A   particles of A  with N B   particles of B ,

 
∆ ′ = +

= + − −

S k
N N

N N

k N N N N

M
B

A B

A B

B A B A B

ln
( )!

! !

[ln( )! ln ! ln !]  

 

Application of Stirling’ s theorem * (after James Sterling, 1692– 1770) gives
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Now,
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and, similarly,

 
N

N N
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A B
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Also,

 N A
N

N
A n AA

A
A particles of  moles of  moles of 

O

= =  

and

 N B
N

N
B n BB

B
B particles of  moles of  moles of 

O

= =  

* Stirling’ s theorem is m m m em m! = 2π   , and thus, ln m ! = ln (2 π m ) + m  ln m  –  m , which, for large 
values of m , can be written as ln m ! = m  ln m  –  m .
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where N O  is Avogadro’ s number. Thus,

 ∆ ′ = − +S k N n X n XM
B A A B BO( ln ln )  

But, since Boltzmann’ s constant, kB , times Avogadro’ s number, N O , equals the gas 
constant, R ,

 ∆ ′ = − +S R n X n XM
A A B B( ln ln )  

Division by the total number of moles, n A   + n B  , gives

 ∆S R X X X XM
A A B B= +( )– ln ln  (9.45)

which is identical to Equation  9.44. The increase in entropy accompanying the for-
mation of 1 mole of an ideal solution is a measure of the increase in the number of 
spatial configurations  which become available to the system as a result of the mix-
ing process. This is dependent only on the numbers of moles of the components in 
the solution and is independent of temperature. The variation of ∆ S M  ,id  with com-
position in a binary A – B  solution is shown in Figure 9.7. Note that this is symmetric 
about X B   = 0.5 and has a maximum value of R  ln 2. The function has infinite slopes 
at X B   = 0 and X B   = 1.

Since

 ∆ ∆ ∆S X S X SM
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M

B B
M

= +  
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Figure  9.7   the variation, with composition, of the molar entropy of formation of a binary ideal 
solution. the maximum value is R  ln 2.
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it is seen that, in an ideal solution,

 ∆ ∆S R X S R XA
M

A B
M

B

, ,
ln ln

id id
and= − = −  

For any solution,

 ∆ ∆ ∆G H T SM M M= −  

and, for an ideal solution, since ∆ H M  ,id  = 0, then

 ∆ ∆G T SM M,id ,id= − <0  

9.7 NONIDeAL SOLUtIONS

A nonideal solution is one in which the activities of the components are not equal 
to their mole fractions at all compositions or temperatures. However, in view of the 
convenience of the concept of activity and the simplicity of Raoult’ s law, it is conve-
nient to define an additional thermodynamic function called the activity coefficient , 
γ . The activity coefficient of a component of a solution is defined as the ratio of the 
activity of the component to its mole fraction; that is, for the component i ,

 γi
i

i

a

X
=  (9.46)

The value of γ i   can be greater or less than unity (γ i   = 1 gives Raoultian behavior). 
If γ i   >  1, then the component i  is said to exhibit a positive deviation  from 

Raoultian behavior, and, if γ i   <  1, then the component i  is said to exhibit a nega-
tive deviation  from Raoult’ s law. Figure 9.8 shows the variation of a i   with X i   for a 
component i  which exhibits negative deviations. Figure 9.9 shows a system which 
exhibits positive deviations.

If γ i   varies with temperature, then ∆Hi
M

 has a nonzero value; that is, from 
Equation  9.41,
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Figure  9.8   activities in the liquid system iron– nickel at 1600° C which display negative devia-
tion from ideality. (from G. r. Zellars, s. l. Payne, J. P. morris, and r. l. Kipp, 
“ the activities of Iron and nickel in liquid fe– ni alloys,”  Trans. AIME  (1959), vol. 
215, p. 181.)
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Figure  9.9   activities in the liquid system iron– copper at 1550° C which display positive 
 deviation from ideality. (from J. P. morris and G. r. Zellars, “ vapor Pressure 
of  liquid Copper and activities in liquid fe– Cu alloys,”  Trans. AIME  (1956), 
vol. 206, p. 1086.)
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Thus,
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In general, increasing the temperature of a nonideal solution causes a decrease in the 
extent to which its components deviate from ideal behavior; that is, if γ i   >   1, then an 
increase in temperature causes γ i   to decrease toward unity, and if γ i   <   1, an increase 
in temperature causes γ i   to increase toward unity. Thus, in a solution, the compo-
nents of which exhibit positive deviations from ideality, the values of the activity 
coefficients decrease with increasing temperature, and since

 
∂
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=( ln )R

T
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i
Mγ

1
∆  

the partial molar enthalpies of formation of the components are positive  quantities. 
This means that the molar enthalpy of formation (mixing) of the solution, Δ H M  , is 
a positive quantity, which indicates that the mixing process is endothermic. Δ H M   is 
the quantity of thermal energy absorbed from the thermal reservoir surrounding the 
solution per mole of solution formed at the temperature T . Conversely, in a solution, 
the components of which exhibit negative deviations from ideality, the activity coef-
ficients increase with increasing temperature, and hence, the partial molar enthalpies 
of mixing and the molar enthalpy of mixing are negative. Such a solution forms 
exothermically , and Δ H M   is the enthalpy absorbed by the constant-temperature ther-
mal reservoir, per mole of solution formed, at the temperature T . These trends can 
be understood by assuming that the interactions among particles decrease as the 
temperature rises, because the particles have greater movement with increasing tem-
perature and therefore less chance of interacting with each other.

Exothermic mixing in an A – B  binary condensed system occurs when the A – B  
bond energy is more negative than both the A – A  and B – B  bond energies, and this 
causes a tendency toward atomic ordering  in the solution, in which the A  atoms 
(B  atoms) attempt to have as many B  atoms (A  atoms) as the nearest neighbors as 
is possible for the overall composition of the solution. Exothermic mixing thus 
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indicates a tendency toward the formation of an atomically ordered phase or com-
pound between the two components (e.g., the Fe– Ni system). Conversely, endother-
mic mixing occurs when the A – B  bond energy is less negative than both the A – A  and 
B – B  bond energies, and this causes a tendency toward phase separation or clustering  
in the solution (e.g., the Fe– Cu system). The A  atoms attempt to be coordinated only 
by A  atoms, and the B  atoms attempt to be coordinated only by B  atoms.

In both of these cases (exothermic and endothermic), the equilibrium configura-
tion of the solution is reached as a compromise between the enthalpy and entropy fac-
tors. The enthalpy, being determined by the relative magnitudes of the bond energies, 
attempts to either completely order (negative deviation from ideality) or completely 
unmix (positive deviation from ideality) the solution. The entropy factor attempts to 
maximize the randomness of mixing of the atoms in the solution. For the cluster-
ing case, as the temperature approaches 0 K, the equilibrium state approaches that of 
pure A  and pure B , and hence, as the temperature approaches 0 K, the configurational 
entropy of a solid solution approaches zero. For the ordering case, the situation is more 
complex and will be discussed later in Chapter 10. However, it too predicts zero con-
figurational entropy for the crystalline alloy as the temperature approaches 0 K. These 
are Third Law constraints on the ground state (0 K) equilibrium entropy of alloys.

9.8 APPLICAtION OF the GIBBS– DUheM reLAtION 
tO the DeterMINAtION OF ACtIVItY

Applied to a binary A – B  solution and using the partial molar Gibbs free energy 
of mixing (Equation  9.28) as the extensive property, Equation 9.19b becomes

 X d G X d GA A
M

B B
M

∆ ∆+ = 0  (9.48)

and, since ∆Gi
M

 = RT  ln a i  , then

 X d a X d aA A B Bln ln+ = 0  (9.49a)

 X d a X d aA A B Blog log+ = 0  (9.49b)

or

 d a
X

X
d aA

B

A
Bln ln= −  (9.50a)

 d a
X

X
d aA

B

A
Blog log= −  (9.50b)

If the variation of a B   with composition is known, then the integration of Equation  9.50b 
from X A   = 1 to X A   gives the value of log a A   at X A   as
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 log log
log

log

a X
X

X
d aA A

B

A
B

a X

a X X

B A

B A

 at  
  at 

  at 

= − 







=

=

1

AA

∫  (9.51)

Since an analytical expression for the variation of the activity of B  is not usually 
computed, Equation  9.51 is solved by graphical integration.

Figure 9.10 shows a typical variation of log a B   with composition, and the value 
of log a A   at X A   = X A   is equal to the shaded area under the curve. Two points are to 
be noticed in Figure 9.10.

 1. X B   →   1, a B   →  1, log a B   →  0, and X B  /X A   →  ∞ . Thus, the curve exhibits a tail to 
infinity as X B   →  1.

 2. X B   →  0, a B   →   0, and log a B   →  – ∞ . Thus, the curve exhibits a tail to minus infinity 
as X B   →  0.

These points have been addressed by Darken and Gurry,* and methods of inte-
grating with better accuracy are presented in their text.

9.8.1 the relationship between henry’ s and raoult’ s Laws

Henry’ s law for the solute B  in a binary A – B  solution (Equation  9.14) can be written as

 a XB B B= γ  

* L. S. Darken and R. W. Gurry, Physical Chemistry of Metals , McGraw-Hill, New York, 1953, 
pp. 258– 266.

log aA at XA = XA is given by
the shaded area

log aB at XA = XA

–log aB

XA = 1

XA = XA

XB
XA

Figure  9.10   a schematic representation of the variation of log a B   with X B  /X A   in a binary solu-
tion, illustrating the application of the Gibbs– duhem equation to the calculation 
of the activity of component A .
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or, in terms of logarithms,

 ln ln lna XB B B= +γ  

differentiation of which gives

 d a d XB Bln ln=  

Inserting this into the Gibbs– Duhem equation gives

 

d a
X

X
d X

X

X

dX

X

dX

X

dX

X
d X

A
B

B
B

B

A

B

B

B

A

A

A
A

ln ln

ln

= − = − = −

= =
 

Integration gives

 ln ln ln (a XA A= + constant)  

or

 a XA A= ×constant  

But, by definition, a i   = 1 when X i   = 1, and thus, the integration constant equals unity. 
Consequently, in the range of composition over which the solute B  obeys Henry’ s 
law, the solvent A  obeys Raoult’ s law. As an example of this, see Figure  9.8, where 
Henry’ s law holds for the solute Ni up to about X Ni  = 0.3 and Raoult’ s law holds for 
the solvent Fe for X Ni  <  0.3.

9.8.3  Direct Calculation of the total Molar 
Gibbs Free energy of Mixing

Equation  9.33b gave

 ∆ ∆ ∆
G G X

d G

dX
A
M M

B

M

A

= +  

Rearranging and dividing by XB
2  gives

 
∆ ∆ ∆ ∆G dX

X

X d G G dX

X
d

G

X
A
M

A

B

B
M M

B

B

M

B
2 2= − =









  

or

 d
G

X

G

X
dX

M

B

A
M

B
A

∆ ∆







 = 2  
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Integrating between X A   = X A   and X A   = 0 gives

 ∆ ∆
G X

G

X
dXM

B
A
M

B
A

XA

= ∫ 2
0

 (9.52)

Since ∆G RT aA
M

A= ln , the integral molar Gibbs free energy of mixing of A  and B  
can be obtained directly from the variation of a A   with composition as

 ∆G RTX
a

X
dXM

B
A

B
A

XA

= ∫ ln
2

0
 (9.53)

The measured activities of Ni in Fe and Cu in Fe shown in Figures 9.8 and 9.9 can 
be used to obtain

 ∆G RTX
a

X
dXM

X

( )
ln

in the system Fe Ni Fe
Ni

Fe
Ni

Ni

− = ∫ 2
0

 

and

 ∆G RTX
a

X
dXM

X

( )
ln

in the system Cu Fe Fe
Cu

Fe
Cu

Cu

− = ∫ 2
0

 

The graphical integrations of these equations are shown in Figure  9.11, in which 
curve (a ) is (ln )a XCu Fe

2  versus X Cu  and curve (c ) is (ln )a XNi Fe
2  versus X Ni . Curve 

(b ) shows the variation of (ln X i  )/(1 –  X i  )2  with X i  , which is the variation of the func-
tion for a component i  which exhibits Raoultian behavior. As is seen, some uncer-
tainty is introduced into the integration by virtue of the fact that the function (ln a i  )/
(1 –  X i  )2  →  – ∞ , as X i   →  0. In Figure 9.11, the shaded area (which is the value of the 
integral between X Cu  = 0.5 and X Cu  = 0) multiplied by the factor (2.303 ×  8.3144 ×  
1823 ×  0.5) gives the value of Δ G M   at X Fe  = 0.5.

The variations of Δ G M   obtained from graphical integrations are shown in 
Figure 9.12. Here, the α  function α γi i iX= −ln /( )1 2  introduced by Darken and Gurry* 
is applied to a solution which exhibits ideal (γ i  = 1) behavior (curve b ); integra-
tion gives

 

∆G RT X
X

X
dX

RT X
X X

X
X

M
B

B

B
B

X

B
B B

B
B

B

= −
−

= −
−

+ −( )

∫( )
ln

( )

( )
ln

ln

1
1

1
1

1

2
0







= + − −( ) 

= +

RT X X X X

RT X X X

B B B B

B B

ln ( ) ln

ln

1 1

            AA AXln 

 

* L. S. Darken and R. W. Gurry, Physical Chemistry of Metals , McGraw-Hill, New York, 1953, 

pp. 258– 266.
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which is in agreement with Equation  9.34.

9.9 reGULAr SOLUtIONS

Up to this point, two classes of solutions have been identified. The first is the 
ideal solution, in which

 a Xi i=  

 ∆Hi
M

= 0  

1.0
0

–0.5

–1.0

–1.5

–2.0

(c)

(b)

(a)

–2.5

–3.0

–3.5

–4.0

–4.5

–5.0

Shaded area = (DGM at XFe = 0.5)
2.303 × 8.3144 × 1823 × 0.5

a: log aCu/X2
Fe

b: log Xi/1 – Xi)
2

c: log aNi/X2
Fe

0.8 0.6 0.4

XFe

0.2 0

X2
Fe

log ai

Figure  9.11   Illustration of the direct calculation of the molar Gibbs free energies of mixing in 
the liquid systems iron– copper at 1550° C and iron– nickel at 1600° C.
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 ∆V i
M

= 0  

 ∆S R Xi
M

i= − ln  

for all X i  , all temperatures and all pressures. All other solutions can be classified as 
nonideal solutions in which the relationships a Xi i=  and ∆Hi

M
= 0  are not valid.

Attempts to classify nonideal solutions have involved the development of equations 
that describe the behavior of hypothetical solutions, and the simplest of these mathe-
matical formalisms is that which generates what is known as regular solution behavior .

A regular solution is one in which

 ∆H X XM
A B= α  (9.54)

Cu–Fe at 1550°C

DGM,id at 1550°C

DG
M

, k
J

DGM,id at 1600°C

Ni–Fe at 1600°C

0

–140

–120

–100

–80

–60

–40

–20

0

0.2 0.4 0.6
XFe

0.8 1.0

Figure 9.12   the molar Gibbs free energies of mixing in the liquid systems iron– copper at 
1550° C and iron– nickel at 1600° C. Iron nickel displays negative deviations from 
ideality and iron copper displays positive deviations from ideality.
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and

 ∆ ∆S SM M= ,ideal  (9.55)

where α  is a constant.
Thus, for a regular solution:

 ∆ ∆G X X T SM
A B

M= −α ,ideal  (9.56)

It is common to define excess functions as the value of the state function minus that 
of the ideal value of the state function.

 G G GXS id= −  (9.57)

Thus, for a regular solution, the excess molar Gibbs free energy of mixing is

 G G G H X XM M M
A B

XS ideal= − = =∆ ∆ ∆, α  (9.58)

Also, for a regular solution,

 
∂
∂

= − =G

T
S

XS
XS 0  

We see that, at any composition,

 G RTA A

XS
= ln γ  

is independent of temperature. Thus,

 G RT T RT TA A A

XS
= =1 1 2 2ln ( ) ln ( )γ γ  

from which we see that

 
ln ( )
ln ( )

γ
γ

A

A

T

T

T

T
2

1

1

2

=  (9.59)

Equation  9.59 is of considerable practical use in converting activity data for a regu-
lar solution at one temperature to activity data at another temperature. We also see 
that as T 2  becomes very large, γ A  (T 2 ) approaches unity (see also the discussion in 
Section  9.7 concerning Equation  9.47).

We can write

 ∆ ∆ ∆
H H X

d H

dX
B

M
B

M

B

= + −( )1  
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and since ∆H X XM
A B= α , this yields

 ∆H XB A= α 2  (9.61)

Since all the state functions of a regular solution are symmetric with respect to the 
interchanging of X A   and X B  , we can also write

 ∆H XA B= α 2  (9.62)

Now,

 ∆ ∆ ∆G RT a H T SA
M

A A
M

A
M

= = −ln  

 RT a T S HA A
M

A
M

ln + =∆ ∆  

 RT RT X RT X HA A A A
M

ln ln lnγ + − = ∆  

 ∴ = = RT H XA A
M

Bln γ α∆ 2  (9.63)

Finally, this gives us

 γ α
A

BX

RT
=









exp

2

 (9.64)

 γ α
B

AX

RT
=









exp

2

 (9.65)

The following relationships are valid for a regular solution.

 As    is a Raultian solution.X
RT

AA A→ = ⋅





→1
0

1, exp ,γ α
 

 As  a constant,  is a Henrian soluX
RT

AA A→ = ⋅





→0
1

, expγ α
ttion.  

 As    is a Raultian solution.X
RT

BB B→ = ⋅





→1
0

1, exp ,γ α
 

 As  a constant,  is a Henrian soluX
RT

BB B→ = ⋅





→0
1

, expγ α
ttion.  

Figures 9.13 and 9.14, respectively, show the symmetrical variation, with composition, of the 
activities and activity coefficients in the liquid system tin– thallium measured by Hildebrand 
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and Sharma* at three temperatures. Figure 9.15 shows the linear variations of log γ T1  
with XSn

2 , the slopes of which equal α  at the given temperatures.

* J. H. Hildebrand and J. N. Sharma, “ The Activities of Molten Alloys of Thallium with Tin and Lead,”  
J. Am. Chem. Soc.  (1929), vol. 51, p. 462.
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0.2 0.4 0.6 0.8 1.0

Figure  9.13   activities in the liquid system tin– thallium. (from J. h. hildebrand and J. n. 
sharma, “ the activities of molten alloys of thallium with tin and lead,”  J. Am. 
Chem. Soc.  (1929), vol. 51, p. 462.)
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Figure  9.14   activity coefficients in the liquid system tin– thallium. (from J. h. hildebrand and 
J. n. sharma, “ the activities of molten alloys of thallium with tin and lead,”  
J. Am. Chem Soc.  (1929), vol. 51, p. 462.)
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The variation of γ i   with X i   is that of a regular solution, but Figure 9.16 shows 
that α T , which for strict adherence to regular behavior should be independent of T , 
decreases slowly with increasing temperature. Figure 9.17 shows the variations, with 
composition, of Δ G M  , Δ H M  , and – T Δ S M   for the liquid system Sn– Tl at 414° C. It 
is to be noted that a parabolic form for Δ H M   or G XS  should not be taken as being a 
demonstration that the solution is regular, as it is frequently found that Δ H M   or G XS  
can be adequately expressed by means of the relations

 ∆H bX X G b X XM
A B A B= = ′  or  XS  

where b  and b ′  are unequal, in which case

0
0

0.2

log gTl

0.4

0.6

0.2 0.4 0.6

356°C

414°C

478°C

X2
Sn

0.8 1.0

Figure  9.15   log γ t1  vs. X 2 sn  in the system tin– thallium. (from J. h. hildebrand and J. n. 
sharma, “ the activities of molten alloys of thallium with tin and lead,”  J. Am. 
Chem. Soc.  (1929), vol. 51, p. 462.)
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Figure  9.16   the variation of the product α T  with T  in the system sn– tl, showing that the 
system does not conform to a regular solution, since α T  depends on T .
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 ∆ ∆S SM M≠ ,id  

If only configurational entropy is considered, then ∆ S M   <  ∆ S M  ,id . If, however, other 
aspects of entropy exist in the alloy (e.g., magnetic spins, defects, volume effects), 
∆ S M   may be greater than ∆ S M  ,id .

9.10 A StAtIStICAL MODeL OF SOLUtIONS

Regular solution behavior can be understood by the application of the statistical 
mixing model, introduced in Chapter 4, to two components which have equal molar 
volumes and which do not exhibit a change in molar volume when mixed; that is, 

∆V i
M

= 0. In both the pure state and in solution, the interatomic forces are assumed 
to exist only between neighboring atoms (near-neighbor model), in which case the 
energy of the solution is the sum of the interatomic near-neighbor bond energies.

Consider 1 mole of a mixed crystal containing N A   atoms of A  and N B   atoms of 
B , such that

2

1
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/m

ol
e

Tl

414°C

DGM

DHM

–TDSM

Figure  9.17   the molar enthalpy, entropy, and Gibbs free energy of mixing of liquid tin and 
thallium at 414° C. the system exhibits positive deviations from ideality.
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 X
N

N N

N

N
X

N

N
A

A

A B

A
B

B=
+

= =
O O

and  

where N O  is Avogadro’ s number. The mixed crystal, or solid solution, contains three 
types of atomic bonds:

 1. A – A  bonds with energy E AA  
 2. B – B  bonds with energy E BB  
 3. A – B  bonds with energy E AB  

By considering the relative zero of energy to be that when the atoms are infinitely far 
apart, the bond energies E AA  , E BB  , and E AB   are negative quantities . Let the coordina-
tion number of an atom in the crystal be z ; that is, each atom has z  nearest neighbors. 
If, in the solution, there are P AA   A – A  bonds, P BB   B – B  bonds, and P AB   A – B  bonds, 
the energy of the solution, E , is obtained as the linear combination

 E P E P E P EAA AA BB BB AB AB= + +  (9.66)

and the problem of calculating E  becomes one of calculating the values of P AA  , P BB  , 
and P AB  .

 
the number of  atoms the number of bonds per atom

= the nu

A ×

mmber of  bonds + 2 the number of  bondsA B A A− × −
 

(The factor 2 arises because each A – A  bond involves two A  atoms). Thus,

 zN P PA AB AA= +  2  

or

 P
zN P

AA
A AB= −

2 2
 (9.67)

Similarly, for B , zN B   = P AB   + 2P BB  , or

 P
zN P

BB
B AB= −

2 2
 (9.68)

The substitution of Equations 9.67 and 9.68 into Equation  9.66 gives

 
E

zN P
E

zN P
E P E

zN E

A AB
AA

B AB
BB AB AB

A AA

= −





+ −





+

= +

2 2 2 2

1
2

1
2

zzN E P E E EB BB AB AB AA BB+ − +[ ( )]
1
2

 (9.69)
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Consider now the energies of the pure components before mixing. With N A   atoms 
in pure A ,

 
2 the number of  bonds

= the number of atoms the number 

× −

×

A A

oof bonds per atom
 

That is,

 P zNAA A= 1
2

 

and similarly, for N B   atoms in pure B ,

 P zNBB B= 1
2

 

Thus,

 

∆E M = −( ) (the energy of the solution the energy of the unimixeed components)

( )= − +





P E E EAB AB AA BB
1
2

 

For the mixing process, from Equation  5.10b,

 ∆ ∆ ∆H E P VM M M= −  

and, since it has been stipulated that ∆ V M   = 0, then

 ∆ ∆H E P E E EM M
AB AB AA BB= = − +( )





1
2

 (9.70)

Equation  9.70 shows that, for given values of E AA  , E BB  , and E AB  , Δ H M   depends on 
P AB  , and further that, for the solution to be ideal (i.e., for ∆ H M   = 0),

 E
E E

AB
AA BB=

+( )
2

 (9.71)

Thus, contrary to the preliminary discussion in Section 9.2 which suggested that 
ideal mixing required the condition E AB   = E AA   = E BB  , it is seen that a sufficient condi-
tion is that E AB   be the average of E AA   and E BB  . 

If |E AB  | >  |½ (E AA   + E BB  )|, then, from Equation  9.70, Δ H M   is a negative quantity, 
corresponding to negative deviations from Raoultian ideal behavior, and, if |E AB  | <  
|½ (E AA   + E BB  )|, then Δ H M   is a positive quantity, corresponding to positive deviations 
from Raoultian ideality.

If Δ H M   = 0, then the mixing of the N A   atoms with the N B   atoms of B  is random, 
in which case Equation  9.45 gives
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 ∆ ∆S S R X X X XM M
A A B B= = − +,id ( ln ln )  

In solutions which exhibit relatively small deviations from ideal behavior (i.e., |Δ H M  | 
≤  RT ), it can be assumed that the mixing of the atoms is also approximately random, 
in which case P AB   can be calculated as follows. Consider two neighboring lattice 
sites in the crystal labeled 1 and 2. The probability that site 1 is occupied by an A  
atom is

 
the number of  atoms in the crystal

the number of lattice 
A

ssites in the crystal O

= =N

N
XA

A  

and similarly, the probability that site 2 is occupied by a B  atom is X B  . The prob-
ability that site 1 is occupied by an A  atom and site 2 is simultaneously occupied by 
a B  atom is thus X A  X B  . But the probability that site 1 is occupied by a B  atom and 
site 2 is simultaneously occupied by an A  atom is also X A  X B  . Thus, the probability 
that a neighboring pair of sites contains an A – B  pair is 2X A  X B  . By a similar argu-

ment, the probability that the neighboring sites contain an A – A  pair is XA
2  and that 

the neighboring sites contain a B – B  pair is XB
2 . The probability that the neighboring 

sites contain an A – B  pair or an A – A  pair or a B – B  pair is

 

X X X X

X X
A A B B

A B

2 2

2

2

1

+ +
= +
=

  

  

( )  

Since a mole of crystal contains ½  zN O  pairs of lattice sites, then

 
the number of  pairs

= the number of pairs of sites the 

A B−

× pprobability of an  pairA B−
 

That is,

 P zN X X zN X XAB A B A B= × =y 2O O  (9.72)

Similarly,

 P zN X zN XAA A A= × =1
2

1
2

2 2
O O  

and

 P zN XBB B= 1
2

2
O  

Substituting Equation  9.72 into 9.70 gives
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 ∆H zN X X E E EM
A B AB AA BB= − +( )





O
1
2

 

and if we set W 1  as

 W E E EAB AA BB1 = − +( )





1
2  

then

 ∆H 1
M

A BzN W X X= 0  (9.73)

which shows that Δ H M   is a parabolic function of composition. Since random mixing 
is assumed, the statistical model corresponds to the regular solution model; that is,

 ∆H 1
M XS

A BG zN W X X= = 0  (9.74)

Thus, zNO W 1  =   α  in Equation  9.54.

The applicability of the statistical model to real solutions decreases as the magnitude 
of W 1  increases; that is, if the magnitude of E AB   is significantly greater or less than 
the average of E AA   and E BB  , then random mixing of the A  and B  atoms cannot be 
assumed. The equilibrium configuration of a solution at constant T  and P  is that which 
minimizes the Gibbs free energy, G , where G  = H  –  TS  is measured relative to the 
unmixed components. As has been seen, the minimization of G  occurs as a compro-
mise between the minimization of H  and the maximization of S . If |EAB | >  |½ (E AA   + 
E BB  )|, then the minimization of H  corresponds to the maximization of the number of 
A – B  pairs (complete ordering of the solution). On the other hand, the maximization of 
S  corresponds to completely random mixing. The minimization of G  thus occurs as a 
compromise between the maximization of P AB   (the tendency toward which increases 
with increasingly negative values of W 1 ) and random mixing (the tendency toward 
which increases with increasing temperature). The critical parameters are thus W 1  and 
T , and, if W 1  is appreciably negative and the temperature is not too high, then the value 
of P AB   will be greater than that for random mixing, in which case the assumption of 
random mixing is not valid.

Similarly, if |EAB | <  | ½  (E AA   + E BB  )|, then the minimization of H  corresponds to 
the minimization of the number of A – B  pairs (complete clustering in the solution), and 
the minimization of G  occurs as a compromise between the minimization of P AB   (the 
tendency toward which increases with increasingly positive values of W 1 ) and random 
mixing. Thus, if W 1  is appreciably positive and the temperature is not too high, then 
the value of P AB   will be less than that for random mixing, in which case the assumption 
of random mixing is again invalid.

In order for the statistical model— and hence, the regular solution model— to 
be applicable, it is necessary that the aforementioned compromise be such that the 
equilibrium solution configuration be not too distant from random mixing. Since the 
entropy contribution to the Gibbs free energy is dependent on temperature, then
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 1. For any value of W 1 , more nearly random mixing occurs as the temperature is 
increased.

 2. For any given temperature, more nearly random mixing occurs with smaller values 
of W 1 .

9.10.1  extensions of the regular Solution Model: 
the Atomic Order Parameter

As mentioned previously, a major flaw in the regular solution model is that, in 
 counting neighbors to obtain the enthalpy of mixing as well as the entropy of mixing, 
it is assumed that the atoms are randomly placed on the lattice. But if the expression

 E E EAB AA BB− +( )1
2

 

is not zero, the atoms will not be random! For atomic ordering transformations, this 
can be improved by including a thermodynamic variable which accounts for the non-
random configuration of the atoms. This factor is the long-range order parameter  
(LRO), η .

Consider the ordering transformation of a random A – B  solution phase (fully dis-
ordered) with a BCC (A2) structure to the fully ordered phase with the CsCl (B2) 
structure (Figure 9.18).

The LRO parameter η  is defined to be

 η α

β

β

α
= − = −r X

Y

r X

Y
A B  

where r α   (r β  ) is the fraction of α  (β ) sites that are “ rightly”  occupied, X i   is the frac-
tion of the i th component, and Y α   (Y β  ) is the fraction of α  (β ) sites in the lattice. For 
the BCC →  B2 transformation, Y α   and Y β   are ½ . Thus, for an equiatomic alloy (X A   
= X B   = ½ ), we have

 η α β= − = −2 1 2 1r r  

(a) (b)

a b

Figure  9.18   (a) BCC (a2) and (b) CsCl (B2) structures. the white and black atoms are ran-
domly arranged in the BCC structure, but in the CsCl structure, the black atoms 
(A  atoms) sit on the α  sites and the white atoms (B  atoms) are on the β  sites.
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If all the α  sites are occupied by A  atoms, r α = 1 and η = 1.
If all the α  sites are occupied by B  atoms, r α   = 1  and η  = – 1.
If the α  sites are randomly occupied, rα  =  ½  and η  = 0.

(The case for η  = – 1 corresponds to a translational domain of the B2-ordered 
system.)

The expression for the enthalpy of formation of a system from the pure A  and 
pure B  components was given previously as

 ∆H zN X X WM
A B= O 1  

where W 1  = E AB   –  ½ (E AA   + E BB  ). For W 1  <  0, atomic ordering is favored. For W 1  = 0, 
the alloy is random, and for W 1  >  0, clustering is favored.

If we include the effect of atomic ordering on the occupation of the sites, we 
obtain

 ∆H zN W X XM
O A B= +









1

2

4
η

 

For a full order of an equiatomic alloy, this yields ∆H zN WM
O= 1 2/ . This can 

be seen to be twice as negative as the expression which does not include the order 
parameter.

The effect of ordering also can be included in the entropy of mixing as follows:

 

∆S
Nk

X X X XM B
A A B B( ) ln lnη η η η η= − +





+





+ −





−
2 2 2 2 2
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−





−





+ +





+






X X X XA A B B
η η η η
2 2 2 2

ln ln 


 

For full order of an equiatomic alloy this yields Δ S conf  = 0, since the pure elements 
have zero configurational entropy and the fully ordered B2 phase has zero configu-
rational entropy.

Combining the expressions for enthalpy of mixing and the entropy of mixing we 
obtain:

 

∆G T zN W X X
Nk T

X XM
O A B

B
A A( , ) lnη η η η= +









 + +





+





1

2

4 2 2 2
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η
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ηη η
2 2
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ln XB

 

Since Δ G M   is a function of the order parameter, we take its derivative with respect 
to it and set it equal to zero:
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∂

∂
= + +

−








 =∆G zN W N k TM

B

η
η η

η
0 1 0

2 2
1
1

0ln  

As η  approaches zero, the temperature approaches the transition temperature. For 
small η ,

 ln [ ....]
1
1

2
3

2
3+

−








 = + + ≈η

η
η η η  

Thus,

 
zN W N k TB0 1 0

2
2

2
0

η η+ =  

which yields

 T
W

k
C

B

= − 4 1  

A plot of η  versus T  is shown in Figure  9.19. Thus, this model produces an atomic 
ordering phase transition at T C  . Above this temperature, the equilibrium phase is 
disordered BCC. Below this temperature, the equilibrium phase is ordered CsCl with 
an LRO parameter η  that increases continuously with decreasing temperature and 
which approaches unity as T  approaches 0 K.

The Gibbs free energy of mixing, Δ G M  , versus the order parameter, η   is plotted 
in Figure  9.20 for several temperatures. At temperatures above T C  , the minimum 
in Δ G M   occurs at η  = 0; that is, the disordered phase is the stable one. Below T C  , 
two minima appear at ±  η eq . A maximum appears at η  = 0, showing that the dis-
ordered phase is unstable below T C  . As the temperature is lowered, η eq  increases 

1.0

0.8

0.6

0.4

0.2

0
0 0.5

LR
O

 ®

1.0
Reduced temperature ®

Figure  9.19   the atomic lro parameter η  vs. temperature plot for a Bragg– williams model. 
note the infinite slope as T  approaches T C   and the zero slope as T  approaches 
0 K.
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until, at T  = 0 K, η eq  = 1. Plots such as this will be discussed in Chapter 15 under the 
discussion of the Landau theory of transitions. For now, we notice that Δ G M   versus 
η  can be written in a Taylor series form as follows:

 ∆G a b cM = + +η η2 4  

Where a  is a constant of integration, b  is a function of T , and c  can be considered a 
positive constant (see Problem 9.13).

9.10.2 Including Second-Neighbor Interactions

Another extension of this solution model can be made by adding second-neigh-
bor interactions. Previously, we defined first-neighbor interactions as

 W E E EAB AA BB1
1 1 11

2
= − +( ) ( ) ( )( )  

Second-neighbor interaction energies can be written as

 W E E EAB AA BB2
2 2 21

2
= − +( ) ( ) ( )( )  

This expression can be added to the one for the heat of transformation used previ-
ously to obtain

 ∆H N X X z W z W
N

z W z WM
O A B

O= + + −[ ] [ ]1 1 2 2

2

1 1 2 2
2
η

 

It can be seen from Figure  9.18 that for the B2-ordered structure, although W 1  <  0 
(favoring opposite first neighbors), W 2  >  0 (favoring the same second neighbors). The 
details and further work on these expressions can be found in Soffa and Laughlin 

T > TC T = TC

T < TC G (η)

–η η

Figure  9.20   Gibbs free energy of mixing, Δ G M  , vs. order parameter at various temperatures 
relative to the critical temperature.
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and Soffa, Laughlin, and Singh,* where the authors analyze the transformations 
FCC →  L12  and FCC →  L10 .

9.11 SUBreGULAr SOLUtIONS

In the regular solution model, the constant value of α , which, via Equation  9.73, 
gives a parabolic variation of Δ H M  , and the ideal entropy of mixing lead to varia-
tions of G XS  and Δ G M   which are symmetrical about the composition X A   = 0.5. The 
model can be made more flexible by arbitrarily allowing α  to vary with composition 
such as

 α = + + + +a bX cX dXB B B
2 3 �  (9.75)

The so-called subregular solution model is one in which the values of all of the 
constants in Equation  9.75, other than a  and b , are zero. Thus, the subregular solu-
tion model gives the molar excess Gibbs free energy of formation of a binary A – B  
solution as

 G a bX X XB A B
XS = +( )  (9.76)

Equation  9.76 is an empirical equation; that is, the constants a  and b  have no physi-
cal significance and are simply parameters, the values of which can be adjusted in 
an attempt to fit the equation to experimentally measured data. The application of 
Equations  9.27a and 9.27b to Equation  9.76 gives the partial molar excess Gibbs free 
energies of the components A  and B  as

 G aX bX X XA B B B A

XS
= + −2 2 ( )  (9.77)

and

 G aX bX XB A A B

XS
= +2 22  (9.78)

The maxima and/or minima in the curves occur at

 
dG

dXB

XS

= 0  

which, from Equation  9.76, written as

* W. Soffa, D. E. Laughlin, and N. Singh, “ Interplay of Ordering and Spinodal Decomposition 
in the Formation of Ordered Precipitates in Binary Fee Alloys: Role of Second Nearest-Neighbor 
Interactions,”  Philos. Mag.  (2010), vol. 90(1– 4), pp. 287– 304.

 W. A. Soffa, D. E. Laughlin, N. Singh, “ Re-examination of A1 →  L10 Ordering: Generalized 
Bragg– Williams Model with Elastic Relaxation,”  in Solid– Solid Phase Transformations in Inorganic 
Materials , Trans Tech, Enfield, NH, 2011.
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 G aX b a X bXB B B
XS = + − −( ) 2 3  

gives

 
dG

dX
a b a X bX

B
B B

XS

= + − − =2 3 02( )  

or

 X
b a b ab a

b
B = − ± + +2 2

6

2 2( )
 

Thus, as shown in Figure 9.21a, with a  = 0 and b  ≠  0, the minimum in the curve 
occurs at X B   = ⅔ , if b  ≠  0. In Figure 9.21b, with a  = 4000 J and b  = – 10,000 J, a 

G
XS

, J

a = 0

0
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b = –10000 J
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0

0

Figure  9.21   excess molar Gibbs free energy curves generated by the subregular solution 
model for various values of a  and b .
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maximum occurs in the curve at X B   = 0.17 and a minimum occurs at X B   = 0.76. If, 
however, b  = – 2,000 J, no minimum occurs, only a maximum.

The influence of temperature on the behavior of subregular solutions is accom-
modated by introducing a third constant, τ , to give the molar excess Gibbs free 
energy of mixing as

 
G a b X X X

T
B A B

XS = + −





( )0 0 1
τ  

(9.79)

The molar excess entropy of mixing is thus

 
S

G

T
a b X XA B

XS
XS

= − ∂
∂

= +( )0 0

τ

 (9.80)

and the molar enthalpy of mixing (which is also the molar excess enthalpy of mix-
ing) is given by

 
∆H G TS

a b X X X
T

M

B A B

= +

= + −





XS XS

( )0 0 2
τ

 (9.81)

9.12 MODIFIeD reGULAr SOLUtION MODeL 
FOr APPLICAtION tO POLYMerS

9.12.1 the Flory– huggins Model *

In 1942, Flory and Huggins independently modified the regular solution model 
to account for some of the differences that polymers present to the modeling of the 
thermodynamics of the mixing of polymers.

The main difference lies in the entropy of mixing term, which in modern nota-
tion is written as

 ∆S R
N N

A

A
A

B

B
B

mix = − +







φ φ φ φln ln  

where ϕ i   is the volume fraction of the i th monomers which make up the polymer and 
N i   is the average number of monomers  in the length of the molecule (the degree of 
polymerization). For polymers, the entity which is randomly located in the solution 
is not a single atom or molecule but rather a long chain consisting of the many -mers  

* M. L. Huggins, “ Solutions of Long Chain Compounds,”  J. Chem. Phys.  (1942), vol. 9(5), p.  440; P. J. 
Flory, “ Thermodynamics of High Polymer Solutions,”  J. Chem. Phys.  (1942), vol. 9(8), p.  660.
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of the polymer. This lowers the number of ways that the polymer can be arranged 
in a given volume, and it is accounted for by the N i   terms in the expression for the 
entropy of mixing. This greatly lowers the role of entropic mixing in large polymers.

The enthalpy of mixing term was written as

 ∆H A A
mix = φ φ χ  

where χ  accounts for the increase (decrease) in the enthalpy of the solution due to 
interactions between the polymers.

This term, combined with the entropy of mixing term, gave rise to the Gibbs free 
energy of mixing term:*

 ∆G RT
N N

A

A
A

B

B
B A A

mix = + +







φ φ φ φ φ φ χln ln  

It can be seen for polymers of long length (N i   large), the entropy of mixing term 
is not as large as that for solutions of single atoms or small molecules. Since most 
polymers have positive enthalpies of mixing, this accounts for the limited miscibility 
of many polymers.

The expression shows that if one of the polymers is not very long, it can act as the 
solvent and the long-chained polymer as the solute (a polymer blend). This enables 
much more miscibility for the polymer solutions, as the entropy term becomes more 
significant to the polymer thermodynamics.

9.13 SUMMArY

 1. Raoult’ s law is p X pi i i= �, and a component of a solution that conforms with this law 
is said to exhibit Raoultian behavior. In all solutions, the behavior of the component 
i  approaches Raoult’ s law as X i   →  1.

 2. Henry’ s law is p i   = k' X i  , and a component of a solution which conforms with this 
equation is said to exhibit Henrian behavior. In all solutions, the behavior of the 
component i  approaches Henry’ s law as X i   →  0. In a binary solution, Henry’ s law 
is obeyed by the solute in that composition range over which Raoult’ s law is obeyed 
by the solvent.

 3. The activity of the component i  in a solution, with respect to a given standard state, 
is the ratio of the vapor pressure (strictly, the fugacity) of i  exerted by the solution 
to the vapor pressure (the fugacity) of i  in the given standard state. If the standard 
state is chosen as being pure i , then a p pi i i= / �. An activity is thus a ratio, and its 
introduction effects a normalization of the vapor pressure exerted by the compo-
nent i  in the solution. In terms of activity, Raoult’ s law is a i   = X i  , and Henry’ s law 
is a i   = k B  X i  .

 4. The difference between the value of an extensive thermodynamic property per 
mole of i  in a solution and the value of the property per mole of i  in its standard 

* The regular solution “ constant”  in the Flory– Huggins model is thus RT χ .
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state is called the partial molar property change of i  for the solution process; that 
is, if Q  is any extensive thermodynamic property, the change in the property due to 
the solution of 1 mole of i  is ∆Q Q Qi

M

i i= − �. In the case of the Gibbs free energy, 
∆G G Gi

M
i i= − � . This difference in the molar Gibbs free energy is related to the 

activity of i  in solution, with respect to the standard state, as ∆G RTi
M

=  ln a i  , and 
∆Gi

M
 is called the partial molar Gibbs free energy of solution of i .

   The change in the Gibbs free energy accompanying the formation of 1 mole of 
solution from the pure components i  (called the integral Gibbs free energy change) 
is ∆ ∆G X GM

i i
M

i= ∑ , so that, for the binary A – B , ∆ ∆ ∆G X G X GM
A A

M

B B
M

= + . Since 

∆G RT aA
M

A= ln , then 

 ∆G RT X a X aM
A A B B= +( )ln ln  

 In a Raoultian solution, since a i   = X i  , then

 ∆G RT X X X XM
A A B B= +( )ln ln  

 For any general extensive thermodynamic property,

 Q Q X QM
i i

M

i
, ∆ ∆= ∑  

 5. An ideal solution has the following properties:
• a Xi i=

• V Vi i= �  (i.e., there is no change in volume when the components are mixed)
•  H Hi

M

i= �  (i.e., there is zero heat of mixing)
• ∆G RT X X XM

A B B
, ( )id  ln= +

  Since Δ S M,id  = – (∂ Δ G M,Bid /∂ T ), ∂ S M  ,id  = – R  ln ∑ i  X i  , in an ideal solution, 
∆S R Xi

M

i= − ln . Δ S M  ,id  is thus independent of temperature and is simply an expres-
sion for the maximum number of spatial configurations available to the system.

 6. The thermodynamic behavior of non-Raoultian solutions is dealt with by introduc-
ing the activity coefficient, γ , which for the component i  is defined as γi i ia X= / . 
The coefficient γ i  , which can have values of greater or less than unity, thus quanti-
fies the deviation of i  from Raoultian behavior. Since ln a i   = ln X i   + ln γ i  ,

 d a

d
T

H

R

d

d
T

i i
M

iln ln
1 1





= =






∆ γ  

  Thus, if d dTiγ /  is positive, ∆Hi
M

 is negative, and if d dTiγ /  is negative, ∆Hi
M

is positive. The magnitude of the heat of formation of a nonideal solution is deter-
mined by the magnitudes of the deviations of the components of the solution from 
ideal behavior. Nonideal components approach Raoultian behavior with increasing 
temperature. Thus, if γ i   <   1, then d dTiγ /  is positive, and if γ i   >   1, d dTiγ /  is nega-
tive. Solutions, the components of which exhibit negative deviations from Raoult’ s 
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law, form exothermically; that is, Δ H M   <  0, and those that exhibit positive devia-
tions form endothermically.

 7. The Gibbs– Duhem relationship is X dQi ii∑ = 0  at constant temperature and pres-
sure, where Qi  is the partial molar value of the extensive thermodynamic function 
Q  of the solution component i . The excess value of an extensive thermodynamic 
property of a solution is the difference between the actual value and the value that 
the property would have if the components obeyed Raoult’ s law. Thus, for the gen-
eral function Q , Q XS  = Q  –  Q id , or for the Gibbs free energy, G XS  = G  –  G id , or G XS  
= Δ G M   –  Δ G M  ,id . Since γ i   = a Xi i/ , then

 G RT Xi i
XS = ∑ ln γ  

 8. A regular solution is one which has an ideal entropy of formation and a nonzero 
heat of formation from its pure components. The activity coefficients of the compo-
nents of a regular binary solution are given by the expression

 RT Xi iln 1 
2γ α= ( )–  

  where α  is a temperature-independent constant, the value of which is characteristic 
of the particular solution. Thus, ln γ i   varies inversely with temperature, and, since 
G RTi i

XS
= ln γ , then G Hi

XS
i
M

= ∆  is independent of temperature. Furthermore, the 
heat of formation of a regular solution, being equal to G XS , is a parabolic function 
of composition, given by

 ∆H G X XM
A B= =XS α  

 9. Regular solution behavior is predicted by a statistical solution model in which it 
is assumed that the atoms mix randomly and that the energy of the solution is the 
sum of the individual interatomic bond energies in the solution. Random mixing 
can be assumed only if, in the system A – B , the A – B  bond energy is not signifi-
cantly different from the average of the A – A  and B – B  bond energies in the pure 
components. For any such deviation, the validity of the assumption of random 
mixing increases with increasing temperature. The statistical model predicts ten-
dency toward Raoultian behavior and Henrian behavior as, respectively, X i   →  1 
and X i   →  0.

 10. The statistical solution model can be improved by adding the effect of second- 
nearest neighbors. In the case of solutions with ordering tendency (negative devia-
tions from Raoultian behavior), the model for both the molar enthalpy and molar 
entropy of formation can be improved by adding an LRO parameter to the molar 
enthalpy and molar entropy terms.

 11. The subregular solution model is one in which the value of α  is assumed to be a 
linear function of composition, being given by α  = a  + bX B  . The variation of the 
molar excess Gibbs free energy of mixing is thus given by G XS  = (a  + bX B  )X A  X B  . 
This can give rise to asymmetric dependence of the molar properties of forma-
tion. The constants a  and b  are curve-fitting parameters and have no physical 
significance.
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9.14 CONCePtS AND terMS INtrODUCeD IN ChAPter 9

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Activation energy
Activity
Bond energy
Condensation/sublimation
Condensed phases
Deviations from ideality
Dynamic equilibrium
Endothermic
Evaporation
Exothermic
Flory– Huggins model
Gibbs free energy of mixing (solution)
Henry’ s law
Interactions among particles
Order parameter
Raoult’ s law
Regular solution
Subregular solution

9.15 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

The activities of liquid iron nickel solutions at 1600° C as a function of composition 
are shown in Figure  9.8. Sketch the activity coefficients as a function of composition 
at this temperature.

Solution to Qualitative Problem 1 

Figure  9.22 shows the actual plot of the activity coefficients γ Fe  and γ Ni  as a function 
of composition. Your plot should show the following:

 1. γ Fe  starts at γ Fe  = 1 and drops off after Henrys’  law no longer holds (~X Fe  = 0.7).
 2. γ Ni  starts at less than one and begins to rise and approach one after ~X Ni  = 0.3).
 3. γ Fe  = 1 at pure Fe and γ Ni  = one at pure Ni.

Qualitative Problem 2 

The LRO parameter, η , versus temperature plot of an ordered phase is shown in 
Figure  9.19.

 1. Explain why the LRO parameter goes to unity at T  = 0 K.
 2. The slope of the LRO versus T  plot goes to 0 as T  approaches 0. Show why this 

is true.



314 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

Hint : Start by writing G  = G (η ,T̤  and take the full differential dG . By the time you 
finish, you will have to use a form of L’ Hô pital’ s rule:

 lim
( )
( )

( )
( )

 of  as x 0
f x

g x

f x

g x
→ =

′
′

 

Solution to Qualitative Problem 2 
 1. From the Third Law of Thermodynamics, we expect that the configurational 

entropy of a system in equilibrium goes to zero as the temperature goes to zero.
 2. First we write G  = G (T , η ),

 

dG
G
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dT
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= ∂
∂
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∂
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 Since both terms go to zero in the quotient (at equilibrium), we need to apply 
L’ Hô pital’ s rule:

 lim  of   as T 0
d

dT

S

G

T

η η

η







→ =
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Figure  9.22   activity coefficients in the liquid system iron– nickel at 1600° C (also see 
figure  9.8).
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9.16 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Copper and gold form the complete range of solid solution at temperatures between 
410° C and 889° C, and, at 600° C, the excess molar Gibbs free energy of formation of 
the solid solutions is given by

 G X XXS
Au Cu28 28  J= − , 0  

Calculate the partial pressures of Au and Cu exerted by the solid solution of X Cu  = 
0.6 at 600° C.

The saturated vapor pressure of solid copper is given by

 ln ( )
,

. ln .p
T

TCu atm� = − − +40 920
0 86 21 67  

and the saturated vapor pressure of solid gold is given by

 ln ( )
,

. ln .p
T

TAu atm� = − − +45 650
0 306 10 81  

Solution to Quantitative Problem 1 

The solid solutions are regular with α  = – 28,280 J. Therefore, from Equation  9.64,

 ln
, .

.
.γ α

Cu Au= = − ×
×

= −
RT

X 2
228 280 0 4

8 3144 873
0 624  

Thus,

 γ γCu Cu Cu Cu536  and  536 6 322= = = × =0 0 0 0. . . .a X  

Similarly,

 ln
, .

.
.γAu = ×

×
= −28 280 0 6

8 3144 873
1 403

2

 

Thus,

 γAu Au246  and  246 4 98= = × =0 0 0 0 0. . . .a  

Therefore, at 873 K,

 pCu atm� = × −3 35 10 14.  

and
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 pAu atm� = × −1 52 10 16.  

From Equation  9.12, a p pi i i= / 0 , and thus, the partial pressures exerted by the alloy 
are

 pCu
14 14322 3 35 1 1 8 1 atm= × × = ×− −0 0 0 0. . .  

and

 pAu
16 1698 1 52 1 1 5 1 atm= × × = ×− −0 0 0 0 0. . .  

Quantitative Problem 2 

At 700 K, the activity of Ga in a liquid Ga– Cd solution of composition X Ga  = 0.5 has 
the value 0.79. On the assumption that liquid solutions of Ga and Cd exhibit regular 
solution behavior, estimate the energy of the Ga– Cd bond in the solution. The molar 
enthalpies of evaporation of liquid Ga and liquid Cd at their melting temperatures 
are, respectively, 270,000 and 100,000 J.

At their melting temperatures, the coordination numbers of liquid Cd and liquid 
Ga are, respectively, 8 and 11. It will thus be assumed that the coordination number 
in the 50:50 solution is the average of 8 and 11— namely, 9.5. 

Solution to Quantitative Problem 2 

With a Ga  = 0.79 at X Ga  = 0.5,

 γGa
Ga

Ga

= = =a

X

0 79
0 5

1 59
.
.

.  

Therefore, from Equation  9.64,

 ln .
.

.
1 59

0 5
8 3144 700

2

= ×
×

α
 

which gives

 α = × × =0 464 8 3144 700
0 5

10 7952

. .
.

,  J  

The bond energy, E Ga– Ga , is obtained from the molar enthalpy of evaporation, Δ H evap , 
according to

 ∆H zN Eevap Ga Ga O Ga Ga, − −= − 1
2

 



317the BehavIor of solutIons

The negative sign is required to conform with the convention that bond energies are 
negative quantities. Thus,

 EGa Ga  J−
−= − ×

× ×
= − ×270 000 2

11 6 023 10
8 15 1023

20,
.

.  

and similarly,

 ECd Cd  J−
−= − ×

× ×
= − ×100 000 2

8 6 023 10
4 15 1023

20,
.

.  

The bond energy, E Cd– Ga , is obtained from

 α = − +( )





− − −zN E E EO Cd Ga Cd Cd Ga Ga
1
2

 

That is,

 1 795 9 5 6 23 1 4 15 1 8 15 123
Cd Ga

2 20 0 0
1
2

0 00 0, . . . .= × × − − × − ×( )



−

− −E


 

Thus, E Cd– Ga  = – 5.96 ×  10– 20  J.

PrOBLeMS

For some of these problems, the tables in the Appendix may be needed. 
9.1    One mole of solid Cr2 O3  at 2500 K is dissolved in a large volume of a liquid 

Raoultian solution of Al2 O3  and Cr2 O3 , in which XCr O2 3 0 2= .  and which is also 
at 2500 K. Calculate the changes in enthalpy and entropy caused by the addi-
tion. The normal melting temperature of Cr2 O3  is 2538 K, and it can be assumed 
that ∆ ∆S Sm m, ,Al O Cr O2 3 2 3= .

9.2    When 1 mole of argon gas is bubbled through a large volume of an Fe– Mn melt 
of X Mn  = 0.5 at 1863 K, the evaporation of Mn into the Ar causes the mass of 
the melt to decrease by 1.5 g. The gas leaves the melt at a pressure of 1 atm. 
Calculate the activity coefficient of Mn in the liquid alloy.

9.3    The variation, with composition, of G XS  for liquid Fe– Mn alloys at 1863 K is as 
follows:

X  Mn  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G  XS   J 395 703 925 1054 1100 1054 925 703 395

 a. Does the system exhibit regular solution behavior?
 b. Calculate GFe

XS and GMn
XS

 at X Mn  = 0.6.
 c. Calculate AG M   at XMn  = 0.4.
 d.  Calculate the partial pressures of Mn and Fe exerted by the alloy of X Mn  = 0.2.
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9.4    Calculate the heat required to form a liquid solution at 1356 K, starting with 1 
mole of Cu and 1 mole of Ag at 298 K. At 1356 K, the molar heat of mixing of 
liquid Cu and liquid Ag is given by Δ H M   = – 20,590X Cu X Ag .

9.5    Melts in the system Pb– Sn exhibit regular solution behavior. At 473° C, a Pb  = 
0.055 in a liquid solution of X Pb  = 0.1. Calculate the value of α  for the system and 
calculate the activity of Sn in the liquid solution of X Sn  = 0.5 at 500° C.

9.6*     a.   Calculate the values of ∆GB  and a B   for an alloy of X B   = 0.5 at 1000 K, 
assuming the solution is ideal.

 b.  Calculate the values of ∆GB  and a B   for an alloy of X B   = 0.5 at 1000 K that 
is a regular solution with ∆H X XA Bmixing = 16 628, * * .

9.7*   A regular solution exhibits a miscibility gap. Sketch the activity of X B   versus X A   
at a temperature within the miscibility gap.

    Denote regions where Henry’ s law is obeyed and where Raoult’ s law is 
obeyed, if applicable.

9.8    Tin obeys Henry’ s law in dilute liquid solutions of Sn and Cd, and the Henrian 
activity coefficient of Sn, γSn

� , varies with temperature as

 ln .γSn
� = − +840

1 58
T

 

   Calculate the change in temperature when 1 mole of liquid Sn and 99 moles of 
liquid Cd are mixed in an adiabatic enclosure. The molar constant-pressure heat 
capacity of the alloy formed is 29.5 J/K.

9.9    Use the Gibbs– Duhem equation to show that, if the activity coefficients of the 
components of a binary solution can be expressed as

  ln γ α α αA B B BX X X= + + +1 2
2

3
31

2
1
3

�  

  and

 ln γ β β βB A A AX X X= + + +1 2
2

3
31

2
1
3

�  

   over the entire range of composition, then α 1  = β 1  = 0, and that, if the variation 
can be represented by the quadratic terms alone, then α 2  = β 2 .

9.10   The activity coefficient of Zn in liquid Zn– Cd alloys at 435° C can be repre-
sented as

 ln . .γZn Cd Cd= −0 875 0 302 3X X  

   Derive the corresponding expression for the dependence of ln γ Cd  on composi-
tion and calculate the activity of cadmium in the alloy of X Cd  = 0.5 at 435° C.

9.11   The molar excess Gibbs free energy of formation of solid solutions in the system 
Au– Ni can be represented by

 G X X X X X X
TXS

Ni Au Au Ni Au Ni J= + − −





( , , , )24 140 38 280 14 230 1
2660

 

  Calculate the activities of Au and Ni in the alloy of X Au  = 0.5 at 1100 K.
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9.12*   The activities of liquid iron– copper solutions at 1550° C as a function of compo-
sition are shown in Figure  9.9. Sketch the activity coefficients as a function of 
composition at this temperature.

9.13*  Use the equation ∆G b T T cC
XS = − +( )η η2 4 to derive the following equation:

 for  whereeqη η η= ( ) = −





 >T

T

T
b

C

: ,
/

1 0
1 2

 

  Hint : Use the Third Law of Thermodynamics to set η  = 1 at T  = 0.
9.14*   It has been found that in a certain solution, the activity a A   = X A   over a certain 

range of composition. Determine the relationship between a B   and X B   over the 
same range of composition.

9.15*   All regular solutions with positive heats of mixing have the same value of the 
activity of its components (A  or B ) at the critical point of the miscibility gap.
a. Calculate this activity.
b. Plot temperature versus a B   for a regular solution miscibility gap.

9.16*   At a certain temperature, T , the A – B  system exhibits regular solution behavior. 
The activity coefficient of A  is given by

 ln( ) ( )γ A Ab X= − −1 2  

  where b  is a constant at the given T .
    Compute the corresponding equation for the variation of γ B   with composition 

at the same temperature. Be sure to state the justification for the steps of your 
solution.

* New problem in this edition
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ChAPter 10

Gibbs Free energy Composition and 
Phase Diagrams of Binary Systems

10.1 INtrODUCtION

We have seen in Chapter  7 that when temperature and pressure are the indepen-
dent variables of a one-component system, the phase(s) with the lowest Gibbs free 
energy is (are) the stable phase(s). Likewise, in a two-component (binary) system at 
constant temperature and pressure, the stable state of existence at each composition 
of a system is that which has the lowest possible value of Gibbs free energy. Thus, 
phase stability, in a system presented on an isobaric temperature versus composition 
binary phase diagram, can be determined from knowledge of the variations of the 
Gibbs free energies of the various possible phases with composition and temperature.

When a liquid solution is cooled, a liquidus temperature is eventually reached, 
at which point a solid phase begins to separate from the liquid solution. This solid 
phase could be a virtually pure component, a solid solution of the same or different 
composition from the liquid, or a chemical compound formed by reaction between 
two or more of the components. In each of these cases, the composition of the solid 
phase which is in equilibrium with the liquid solution is that which minimizes the 
Gibbs free energy of the system. If liquid solutions are stable over the entire range of 
composition, then the Gibbs free energies of the liquid states are lower than those of 
any possible solid-state phase. Conversely, if the temperature of the system is lower 
than the lowest solidus temperature, then the Gibbs free energies of the solid states 
are everywhere lower than those of liquid-state phases. At intermediate tempera-
tures, the variation of Gibbs free energy with composition will consist of ranges of 
composition over which liquid states are stable, ranges over which solid states are 
stable, and intermediate ranges in which solid and liquid phases coexist in equilib-
rium with one another. Thus, there must exist a quantitative correspondence between 
Gibbs free energy– composition diagrams and the equilibrium phase diagrams by 
virtue of the following facts:

 1. The state of lowest Gibbs free energy is the stable state.
 2. When phases coexist in equilibrium, the partial molar Gibbs free energy of compo-

nent i , Gi , has the same value in all of the coexisting phases.
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This correspondence is examined in this chapter, in which it will be seen that 
temperature– composition phase diagrams are generated by, and are representations 
of, Gibbs free energy– composition– temperature diagrams.

10.2 GIBBS Free eNerGY AND therMODYNAMIC ACtIVItY

The Gibbs free energy of mixing of the components A  and B  to form a mole of 
solution is given by

 ∆G RT X a X aM
A A B B= +( ln ln )  

where Δ G M   is the difference between the Gibbs free energy of a mole of the homo-
geneous solution and the Gibbs free energy of the corresponding numbers of moles 
of the unmixed components. Since only changes in Gibbs free energy can be mea-
sured, the Gibbs free energies of the pure unmixed components are assigned the 
value of zero. If the solution is ideal (i.e., if a i   = X i  ), then the molar ideal Gibbs free 
energy of mixing is given by

 ∆G RT X X X XM
A A B B

,id = +( ln ln )  

and has the characteristic shape shown, at the temperature T , as curve I in Figure 
10.1. Since Δ H M  ,id  = 0, then Δ G M  ,id  = – T Δ S M  ,id . The curve I in Figure 10.1 is obtained 
by inverting the ideal entropy of mixing curve (Figure 9.7) and multiplying it by the 
temperature in question. It is thus seen that the shape of the variation of Δ G M  ,id  with 
composition depends only on the temperature of the solution.

Y

III

0

II
I

c
a
b

BA

XB

∆GM

Figure 10.1   the molar Gibbs free energies of mixing in binary systems exhibiting ideal 
behavior (I), positive deviation from ideal behavior (II), and negative deviation 
from ideal behavior (III).
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If the solution exhibits a small positive deviation from ideal mixing (i.e., if γ i   >  
1 and a i   >  X i  ), then, at the temperature T , the Gibbs free energy of mixing curve is 
typically as shown by curve II in Figure 10.1. If the solution shows a slight negative 
deviation from ideal mixing (i.e., if γ i   <  1 and a i   <  X i  ), the Gibbs free energy of 
mixing curve is typically as shown by curve III in Figure 10.1. We know from the 
discussion of Equation 9.33a and b that the tangent drawn to the Δ G M   curve at any 

composition intersects the X A   = 1 and X B   = 1 axes at ∆GA
M  and ∆GB

M, respectively. 
Also, since ∆ =G RT ai

M
iln , there is a relationship between the Δ G M  – composition 

and the activity– composition plots.
In Figure 10.1, at the composition Y , tangents drawn to curves I, II, and III inter-

sect the X B   = 1 axis at a , b , and c , respectively. Thus,

 
Bb G RT a Ba G RT X

Bc G

B
M

B B
M

B= ∆ = < = ∆ =

< = ∆

ln ( ) lnin system II

         BB
M

BRT a= ln ( )in system III
 

from which it is seen that

 γ γB Bin system II 1 in system III> >  

The variation, with composition, of the tangential intercepts generates the variations 
of activity with composition shown in Figure 10.2. It can be seen from Figure 10.2 that 
the solutions II and III follow Henry’ s law for X B   →  0 and Raoult’ s law for X B   →  1.

As X i   →  0, a i   →  0, the tangential intercept ∆ =G RTi
M  ln a i   →  – ∞  (see Figure 

10.1), which indicates that all Gibbs free energy of mixing curves have vertical tan-
gents at their extremities. These vertical tangents indicate that the first atom of B  

A
0

1

B

aB

XB

III

II
I

Figure 10.2   the activities of component B  obtained from lines I, II, and III in figure 10.1. 
solution II exhibits positive deviation from ideality, and solution III exhibits nega-
tive deviation from ideality.
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added to pure A  decreases the Gibbs free energy! This also can be seen from the 
ideal entropy of mixing curve in Figure 9.7, which by virtue of being logarithmic, 
has vertical tangents at its extremities. This thermodynamic principle thus implies 
that pure elemental components are highly unlikely.

10.3 QUALItAtIVe OVerVIeW OF COMMON 
BINArY eQUILIBrIUM PhASe DIAGrAMS

In this section, we will examine the qualitative features of common binary equi-
librium phase diagrams. We will examine the phase diagrams and discuss some of 
their important features. We also will look at several of the isobaric molar Gibbs free 
energy versus composition curves that are thermodynamically consistent with the 
phase diagrams. A more quantitative approach will be given in subsequent sections 
of this chapter.

10.3.1 the Lens Diagram: regular Solution Model

Figure 10.3 shows a simple way that a liquid and solid in a binary isobaric system 
can be in equilibrium. The end points of the diagram represent the melting points of 
A , T m  ( A  )  and of B , T m  ( B  ) . At temperatures in between the melting temperatures, there 
are three equilibrium states across the composition range:

 1. A liquid solution of B  in A , A (B )
 2. A two-phase mixture of liquid A (B ) and solid B (A )
 3. A solid solution of A  in B , B (A )

The lever rule determines the amount of the phases in the two-phase region. See 
Section  1.7.

If we model the Gibbs free energies of the solid and liquid as regular solutions, 
and if the enthalpies of mixing are approximately the same, the Gibbs free energy 
terms take the form shown in Figure 10.3b. It can be seen that for compositions 
B  <  e , the liquid phase has the lowest Gibbs energy. For compositions of B  >  f , the 
solid phase has the lowest Gibbs energy. In between these values, the lowest Gibbs 
energy is obtained by a two-phase equilibrium between a liquid of composition e  
and a solid of composition f . The common tangent demonstrates that the partial 
molar Gibbs free energies of the two phases of each of the components are equal in 
the two-phase region; that is,

 
∆ ∆

∆ ∆

G G

G G

A A

B B

L S

L S

=

=
 

where S stands for solid solution and L stands for liquid solution. These values are 
found where the common tangent intersects the molar Gibbs free energy of mixing 
ordinates X B   = 0 and X B   = 1, respectively.
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With a change in the temperature, the Gibbs energy curves shift relative to one 
another, since their temperature derivatives are proportional to the entropy of the 
phases. As the temperature decreases, the intersections e  and f  shift to lower values 
of X B   until, at T m  ( A  ) , the Gibbs energy curve of the solid is completely below the liq-
uid free energy curve. From that temperature and lower, only a single solid-solution 
phase is present.

10.3.2 Unequal enthalpies of Mixing

If we model the Gibbs free energies of the solid and liquid as regular solutions, 
and if the enthalpy of mixing of the liquid is negative and the enthalpy of mixing 
of the solid is positive, the Gibbs energy curves of the phases will look as shown in 
Figure 10.4b and the phase diagram as shown in Figure 10.4a. The lower value of the 
enthalpy of mixing stabilizes the liquid solution and results in an enlarged region of 
stability for it. At a temperature above the congruent temperature (where the liquidus 
and solidus curves are tangent to each other), there are two solid– liquid equilibrium-
phase fields and a single liquid-phase field in between. If the opposite relationship 
between the enthalpies of mixing were to hold (negative enthalpy of mixing of the 
solid and zero or positive enthalpy of mixing for the liquid), the enlarged single 

Liquid solutions

Solid solutions

f
T

0
(a)

(b)

Tm(A)

∆GM

Tm,(B)

A B

e
Curve II

solid
solutions

Curve I
liquid
solutions

f

e

Figure 10.3   (a) the equilibrium phase diagram for a system A – B  exhibiting a lens diagram 
for the liquid– solid region. (b) the Gibbs free energies of mixing in the system 
A – B  at the temperature T , showing the equilibrium compositions of the phases.
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solid-phase field would produce a congruent point at a maximum, enlarging the field 
of stability of the solid solution.

Congruent points are interesting from the point of view of the liquid-to-solid 
transformation in that the composition of the new phase (solid on cooling, liquid 
on heating) is the same as that phase from which it forms. The slopes of the solidus 
and liquidus curves must be zero at the congruent points and must be tangential to 
one another, according to the Gibbs– Konovalov rule* (Dmitry Petrovich Konovalov, 
1856– 1929).

10.3.3  the Low-temperature regions in Phase Diagrams 

In Figures  10.3 and 10.4, once the temperature is below the regions of liquid 
stability, a single solid solution is seen to be present. This solid solution may exist 
down to room temperature and even to lower temperatures, but cannot continue as a 
single-phase solid solution region to very low temperatures because of atomic inter-
actions (see Section 6.5 on the Third Law of Thermodynamics). Since the enthalpy 
of mixing of the solid was said to be positive for the system shown in Figure 10.4, the 
solution will exhibit a low-temperature miscibility gap, as shown in Figure 10.5. This 

* D. Goodman, J. Cahn, and L. Bennett, “ The Centennial of the Gibbs Konovalov Rule for Congruent 
Points,”  Bulletin of Alloy Phase Diagrams  (1981), vol. 2(1), pp. 29– 34.

T
Liquid solutions

Liquid solutions

600 K

Solid solutions Solid solutions

0 0.2 0.4 0.6 0.8 1.0
A B

XB

0 0.2 0.4 0.6 0.8 1.0
A B

XB
(a) (b)

∆GM

Figure 10.4   (a) the equilibrium phase diagram of a binary system with negative enthalpy of 
mixing of the liquid solution and positive enthalpy of mixing of the solid solution. 
(b) schematic representations of the Gibbs free energy of mixing for the solu-
tions at the temperature T .
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is consistent with the Third Law, in that at 0 K, the two phases in equilibrium would 
be pure A  and B , and therefore have zero configurational entropy. The free energy 
curves that develop such miscibility gaps for the solid solution will be discussed in 
Section 10.5.

10.3.4 the eutectic and eutectoid Phase Diagrams

Another frequently encountered binary phase diagram type is shown in Figure 
10.6, denoted as the eutectic  phase diagram (from the Greek for “ easy melting” ). In 
this isobaric phase diagram, there are three equilibrium phases: two solid phases 
(α  and β ) and a liquid phase. Above the invariant temperature (the horizontal line, 
known as the eutectic temperature ), the diagram is divided into regions similar to 
those displayed in Figure 10.4a— that is, two single-phase solid regions (one of α  and 
the other of β ), two two-phase regions (α /L and β /L), and a single-phase liquid region.

At the unique eutectic composition, this phase diagram displays the solidification 
reaction

 L → +α β  

which is commonly called a eutectic reaction . Two solid-phase solutions form from 
the liquid solution concomitantly, often giving rise to striking microstructures. Use 
of the Gibbs equilibrium phase rule shows that in a binary isobaric system, the three 

Liquid solutions

α α′α + α′

0 0.2 0.4 0.6 0.8 1.0
A

T

B
XB

Figure 10.5   low-temperature region of the phase diagram shown in figure 10.4a, showing 
a solid-state miscibility gap.
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phases α , L, and β  can be in equilibrium with each other only at a fixed temperature 
(i.e., the equilibrium has zero degrees of freedom). Therefore, the three-phase equi-
librium must exist on a horizontal line (fixed temperature) in isobaric binary phase 
diagrams.

In this diagram, there are two other temperature-invariant reactions that may 
occur involving three phases: namely, the hypoeutectic reaction

 α α β+ → +L

and the hypereutectic reaction

 β α β+ → +L

The free energy of mixing curves at three temperatures for this phase diagram 
are shown in Figure 10.6 b,c, and d. Figure 10.6b shows the relative positions of the 
three free energy of mixing curves at a temperature above the eutectic temperature 

L

α

L

β

A B

α + L

α + β

α β

T

Tb

Td

Td

TE

∆GM

(a)

(b)

β + L

  

α L β

A B

TE

∆GM

(c)

α L
β

A B

Td

∆GM

(d)

Figure 10.6   (a) an isobaric eutectic binary phase diagram displaying two solid phases (α  and 
β ) and one liquid phase. (b) Gibbs free energy of mixing curves of the three 
phases at a temperature above the eutectic temperature. (c) Gibbs free energy 
curves of the three phases at the eutectic temperature T E  . (d) Gibbs free energy 
curves of the three phases at the temperature T d  .
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T E  . Note that the liquid free energy curve lies between those of the two solids. Also, 
it can be seen that above the eutectic temperature, T E  , the free energy of mixing of 
the liquid lies below those of the two solids. As the temperature decreases, the free 
energy of mixing curve of the liquid rises faster than those of the solids. This occurs 
because the temperature dependence of the free energy, ∂ ∂( ) = −( )G T SP/ , is the 
negative of the entropy of the phase, and since the liquid has the larger entropy, it 
will be displaced to higher values of free energy of mixing at a greater rate than the 
two solid curves. At the eutectic temperature, T E  , the three free energy of mixing 
curves of the phase lie on a common tangent (Figure 10.6c). Thus, all three phases 
have equal partial molar Gibbs free energies; that is,

 
∆ ∆ ∆

∆ ∆ ∆

G G G

G G G

A A A

B B B

L

L

= =

= =

α β

α β
 

Below T E  , only the two solid phases are present in equilibrium and their composi-
tions continuously shift to that of the pure components A  and B .

If the high-temperature phase in these diagrams is replaced by a solid phase, 
the diagram is called a eutectoid  (eutectic-like) phase diagram. The alloy system 
Fe– C has the important constant-temperature eutectoid transformation γ  →  α  + 
Fe3 C, producing the well-known constituent pearlite (a two-phase lamellar mixture 
of α  + Fe3 C).

10.3.5 the Peritectic and Peritectoid Phase Diagrams

In the eutectic phase diagrams, the high-temperature liquid phase has a composi-
tion between that of the two low-temperature phases at the invariant temperature. It 
is possible for the liquid phase to be the richest in solute (or solvent) at the invariant 
temperature, as shown in Figure 10.7. For these diagrams, commonly called peritec-
tic  diagrams, on cooling, an alloy of the peritectic composition passing through the 
invariant temperature undergoes a transformation of the form

 α β+ →L  

This is followed by the reaction

 β α β→ +  

There are two other invariant reactions that may occur involving three phases in the 
peritectic system: namely, the hypo-peritectic reaction 

 α α β+ → +L  
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And the hyper-peritectic reaction

 α β+ → +L L  

The arrangements of the Gibbs free energy of mixing curves necessary to obtain 
such a phase diagram are shown in Figure  10.7b and c. It can be seen that the free 
energy of mixing curve of the liquid lies to the solute-rich side of both the solid 
phases in the diagram.

If the liquid phase is replaced by a third solid phase, α, the diagram will look 
similar but without the liquid phase. Such a diagram is called a peritectoid  diagram. 
In this case, for an alloy of the peritectoid composition cooling from the α  + γ  region, 
the invariant reaction is

 α γ β+ →  

α

L
β

α + β

α + L

β + L

β

L

α

A B

A
(a)

(b)

B

T

∆GM

Tb

Td

TP

  

α

Lβ

A B

∆GM

(c)

α

Lβ

A B

∆GM

(d)

Figure 10.7   (a) a peritectic binary phase diagram displaying two solid phases (a and b) and 
one liquid phase. (b) Gibbs free energy of mixing curves of the three phases 
at a temperature above the peritectic invariant temperature. note that the free 
energy curve of the liquid phase is to the B -rich side of both free energy curves 
of the solid phases. (c) Gibbs free energy of mixing curves of the three phases 
at the peritectic temperature T P  . (d) Gibbs free energy of mixing curves of the 
three phases at the temperature T d  .
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There are other invariant types of binary equilibrium phase diagrams. For example, 
Figures 10.23 and 10.26 display monotectic phase diagrams in which the invariant 
reaction is

 L L1 2→ +α  

Also, a metatectic  (or catatectic ) diagram displays the invariant reaction on cooling

 β α→ + L  

(See Problem 10.8.)

10.4 LIQUID AND SOLID StANDArD StAteS

The choice of the standard state of a component of a condensed system is often 
that of the pure component in its stable state at the particular temperature and pres-
sure of interest. At 1 atm pressure (the pressure normally considered), the stable state 
is determined by whether or not the temperature of interest is above or below the nor-
mal melting temperature of the component. It is often assumed that the temperature 
of interest is either above or below the melting temperatures of both components. 
An activity versus composition curve could be drawn for liquid immiscibility, in 
which case the standard states are the two pure liquids, or it could be drawn for solid 
immiscibility, in which case the standard states are the two pure solids. Since the 
standard state of a component is simply a reference state with which the component 
in any other state is compared, it follows that any state can be chosen as the standard 
state, and the choice is normally made purely on the basis of convenience.

Consider the binary system A – B  at the temperature T , which is below the melting 
temperature of B , T m  ( B  ) , and above the melting temperature of A , T m  ( A  ) . Consider, 
further, that this system forms Raoultian ideal liquid  solutions and Raoultian ideal 
solid  solutions. The phase diagram for the system is shown in Figure 10.8a. Figure 
10.8 b shows the two Gibbs free energy of mixing curves at the temperature of inter-
est. Curve I is drawn for liquid solutions and curve II is drawn for solid solutions. 
At the temperature T , the stable states of pure A  and B  are located at Δ G M   = 0, with 
pure liquid A  located at X A   = 1 (the point a ) and pure solid B  located at X B   = 1 (the 
point b ). The point c  represents the molar Gibbs free energy of solid A  relative to 
that of liquid A  at the temperature T , and T  >  T m  ( A  ) . Thus, G GA s A l( ) ( )

� �−  is a positive 
quantity which is equal to the negative of the molar Gibbs free energy of melting of 
A  at the temperature T . That is,

 G G G H T SA s A l m A m A m A( ) ( ) ( ) ( ) ( )( )� � � � �− − − −= ∆ = ∆ ∆  
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Figure 10.8   (a) the phase diagram for the system A – B . (b) the Gibbs free energies of mix-
ing in the system A – B  at the temperature T . (c) the activities of B  at the temper-
ature T  and comparison of the solid and liquid standard states. (d) the activities 
of A  at the temperature T  and comparison of the solid and liquid standard states.
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and if c p  , A  ( s  )  = c p  , A  ( l  )  (i.e., if ∆Hm A( )
�  and ∆Sm A( )

�  are independent of temperature), 
then

 ∆ = ∆








G H

T T

T
m A m A

m A

m A
( ) ( )

( )

( )

� � −
 (10.1)

As the temperature decreases and approaches the melting point of A , ∆Gm A( )
� (T ) 

approaches zero.
Similarly, the point d  represents the molar Gibbs free energy of liquid B  relative 

to that of solid B  at the temperature T , and, since T  <  T m  ( B  ) , then G GB l B s( ) ( )
� �−  is a 

positive quantity equal to ∆Gm B( )
� .

The line in Figure 10.8a joining a  and d  represents the Gibbs free energy of 
unmixed liquid A  and liquid B  relative to that of the standard state of unmixed liq-
uid A  and solid B , and the line joining c  and b  represents the Gibbs free energy of 
unmixed solid A  and solid B  relative to that of the standard state. The line cb  can be 
represented by the equation

 ∆ = ∆G X GA m A− ( )
�  

and the equation for the line ad  is

 ∆ = ∆G X GB m B( )
�  

At any composition, the formation of a homogeneous liquid solution from pure liquid 
A  and pure solid B  can be considered as being a two-step process involving

 1. The melting of X B   moles of B , which involves the change in Gibbs free energy

 ∆ = ∆G X GB m B( )
�

 2. The mixing of X B   moles of liquid B  and X A   moles of liquid A  to form an ideal liquid 
solution, which involves the change in Gibbs free energy

 ∆ ∆G G RT X X X XM
A A B B= = +, ( )id ln ln  

Thus, the molar Gibbs free energy of mixing (which can also be called the molar 

Gibbs free energy of formation ) of an ideal liquid solution, ∆G l
M
( ) , from liquid A  and 

solid B  is given by

 ∆ = + + ∆G RT X X X X X Gl
M

A A B B B m B( ) ( )( ln ln ) �  (10.2)

which is the equation of curve I in Figure 10.8b.
Similarly, at any composition, the formation of an ideal solid solution from liquid 

A  and solid B  involves a change in Gibbs free energy of
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 ∆ = + ∆G RT X X X X X Gs
M

A A B B A m A( ) ( )( ln ln ) − �  (10.3)

which is the equation of curve II in Figure 10.8b.
At the composition e , the tangent to the free energy of mixing curve for the 

liquid solution is also the tangent to the free energy of mixing curve of the solid 
solution at the composition f . Thus, at the temperature T , the liquid of composition 
e  is in equilibrium with the solid of composition f ; that is, e  is the liquidus composi-
tion and f  is the solidus composition, as seen in Figure 10.8a. As the temperature is 
lowered, the magnitude of ca  decreases until, at the melting point of A , the length 
of ca  equals zero. With decreasing temperature, the magnitude of db  increases. The 
consequent movement of the positions of curves I and II relative to one another is 
such that the positions e  and f  of the double tangent to the curves shift to the left. 
Correspondingly, if the temperature is increased, the relative movement of the Gibbs 
free energy curves is such that e  and f  shift to the right. The loci of e  and f  with 
change in temperature trace out the liquidus and solidus curves, respectively. 

The equations for the solidus and liquidus curves of this system are derived in 
Appendix 10A of this chapter. There, the equations are found to be
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RT
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If c p  , i  ( s  )  = c p  , i  ( l  ) , we obtain from Equation 10.1, for i  = A  and B ,

 ∆ = ∆








G H

T T

T
m i m i

m i

m i
( ) ( )

( )

( )

� � −
 

Thus, the phase diagram for a system which forms ideal solid and liquid solutions is 
determined only by the melting temperatures and the molar heats of melting of the 
components.

Figure 10.9 shows the Gibbs free energy of mixing curves for a binary system 
A – B  which forms ideal solid solutions and ideal liquid solutions, drawn at a tem-
perature of 500 K, which is lower than T m  ,( B  )  and higher than T m  ,( A  ) . At 500 K, 
∆ =Gm A,

� −1500 J  and ∆ =Gm B,
� 1000 J . Figure 10.9a shows the curves when liquid 

A  and solid B  are chosen as the standard states, located at Δ G M   = 0. Figure 10.9b 
shows the curves when liquid A  and liquid B  are chosen as the standard states, and 
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Figure 10.9   the Gibbs free energy of mixing curves for a binary system A – B  which forms 
ideal solid solutions and ideal liquid solutions, at a temperature which is higher 
than T m  ( A  )  and lower than T M  ( B  ) . (a) liquid A  and solid B  chosen as standard 
states located at Δ G M   = 0. (b) liquid A  and liquid B  chosen as standard states 
located at Δ G M   = 0. (c) solid A  and solid B  chosen as standard states located at 
Δ G M   = 0. the positions of the points of double tangency are not influenced by 
the choice of standard state.
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Figure 10.9c shows the curves when solid A  and solid B  are chosen as the standard 
states. Comparison among the three shows that, because of the logarithmic nature 
of the Gibbs free energy curves, the positions of the points of common tangency are 
not influenced by the choice of standard state; they are determined only  by the tem-
perature T  and by the magnitude of the difference between G l( )

�  and G s( )
�  for both 

components at the temperature T .
The activity– composition relationships for component B  are shown in Figure 

10.8c. There are two possible standard states (Figure 10.8b). The point b  for solid B  
and the point d  for liquid B  could be chosen as standard states. The lengths of the 
tangential intercepts with the X B   = 1 axis can be measured from b , in which case 
the activities of B  are obtained with respect to solid B  as the standard state, or the 
lengths can be measured from d , which gives the activities with respect to liquid B  
as the standard state.

If pure solid B  is chosen as the standard state and is located at the point g  in 
Figure 10.8c, then the length gn  is, by definition, unity, and this defines the solid 
standard-state activity scale. The line ghij  then represents a B   in the solutions, with 
respect to solid B  having unit activity at g . The line is obtained from the variation 
of the tangential intercepts from the curve aefb  to the X B   = 1 axis, measured from 
the point b . On this activity scale, Raoult’ s law is given by jg , and the points i  and h  
represent, respectively, the activity of B  in the coexisting liquid solution e  and solid 
solution f .

The point m  represents the activity of pure liquid B  measured on the solid standard-
state activity scale of B . This activity is less than unity, being given by the ratio mn gn/ . 
For B  in any state along the aefb  Gibbs free energy of mixing curve, in which state the 
partial molar Gibbs free energy of B  is GB , the following relations hold.

 G G RT a BB B l B= +( ) ln ( )�   with respect to liquid  

and

 G G RT a BB B s B= +( ) ln ( )�   with respect to solid  

Thus,

 G G G RT
a B

a
B l B s m B

B

B
( ) ( ) ( ) ln� � �− = ∆ =  with respect to solid 

 withh respect to liquid B









  (10.6)

Since T T Gm B m B< ∆( ) ( ),  �  is a positive quantity, the activity of B  in any solution with 
respect to solid B  as the standard state is less than the activity of B  with respect to 
liquid B  as the standard state, where both activities are measured on the same (solid 
or liquid) activity scale. For pure B , a B  ( s  )  >  a B  ( l  )  (i.e., gn  >  mn  in Figure 10.3c), and, 

if gn  = 1, then mn G RTm B= ∆exp( )( )− � . Equation  10.6 simply states that the length 
of the tangential intercept from any point on the curve aefb , measured from b  added 
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to the length bd  equals the length of the tangential intercept from the same point on 
the curve measured from d , which is a restatement of Equation  10.6.

If pure liquid B  is chosen as the standard state and is located at the point m , 
then the length mn  is, by definition, unity, and this defines the liquid standard-state 
activity scale. Raoult’ s law on this scale is given by the line jm , and the activities of 
B  in solution, with respect to pure liquid B  having unit activity, are represented by 
the line mlkj . The activity of solid B , located at g , is greater than unity on the liquid 
standard-state activity scale, being equal to exp ( )∆( )G RTm B

� . When measured on 
one or the other of the two activity scales, the lines jihg  and jklm  vary in the constant 
ratio exp ( )∆( )G RTm B

� , but jihg  measured on the solid standard-state activity scale 
is identical with jklm  measured on the liquid standard-state activity scale.

The variation of a A   with composition is shown in Figure 10.8d. In this case, since 
T T Gm A m A> ∆( ) ( ),  �  is a negative quantity, and hence,

 a A a AA A( ) ( )with respect to liquid with respect to solid >  

when measured on the same activity scale. If pure liquid A  is chosen as the standard 
state and is located at the point p , then the length of pw  is, by definition, unity, and 
the line pqrs  represents the activity of A  in the solution with respect to the liquid 
standard state. On the liquid standard-state activity scale, the activity of pure solid 
A , located at the point v , has the value exp ( )∆( )G RTm A

� . If, on the other hand, pure 
solid A  is chosen as the standard state, then the length of vw  is, by definition, unity, 
and Raoult’ s law is given by versus. The line vuts  represents the activities of A  in the 
solutions with respect to pure solid A . On the solid standard-state activity scale, liq-
uid A , located at the point p , has the value exp ( )− ∆( )G RTm A

� . Again, the two lines, 
measured on one or the other of the two activity scales, vary in the constant ratio 
exp ( )∆( )G RTm A

� , and when measured on their respective scales, they are identical.
If the temperature of the system is decreased to a value less than T  indicated in 

Figure 10.8a, then the length of ac , being equal to ∆Gm A( )
�  at the temperature of 

interest, decreases; correspondingly, the magnitude of ∆Gm B( )
� , and hence the length 

of bd , increases. The consequent change in the positions of the Gibbs free energy 
of mixing curves I and II in Figure 10.8b causes the double tangent points e  and f  
to shift to the left toward A . The effect on the activities is as follows. In the case of 
both components,
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which, from Equation  10.1,
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With respect to component B , if the temperature, which is less than T m  ( B  ) , is 
decreased, the ratio a aB B( ) ( )solid liquid/ , which is greater than unity, increases. Thus, 
in Figure 10.8c, the ratio gn mn/  increases. With respect to the component A , if the 
temperature, which is higher than T m  ( A  ) , is decreased, then the ratio a aA A( ) ( )solid liquid/ , 
which is less than unity, increases. Thus, the ratio vw pw/  in Figure 10.8d increases. 
At the temperature T m  ( B  ) , solid and liquid B  coexist in equilibrium, ∆ =Gm A( )

� 0 , and 
the points p  and v  coincide. Similarly, at the temperature Tm B( )

� , the points m  and g  
coincide.

10.5 the GIBBS Free eNerGY OF FOrMAtION 
OF reGULAr SOLUtIONS

Since curves II and III in Figure 10.1 are drawn for regular solutions, then the 
deviation of Δ G M   from Δ G M  ,id  is due only to the nonzero molar enthalpy of mixing 
and the difference between the two curves:

 ∆ ∆ ∆G G G H X XM M XS M
A B− ≡ = = aid,  

For curve II, |∆ G M  | <  |∆ G M  ,id |, and thus, ∆ H M   and α  are positive quantities (see 
Section 9.9). It is of interest to consider the effect of increasingly positive values of 
α  on the shape of the Gibbs free energy of mixing curve for a regular solution. In 
Figure 10.10, curve I is drawn as − = +∆S R X X X XM

A A B B
,id / ln ln . This curve rep-

resents ∆G RTM ,id / . Curves for ∆H RT X X RTM
A B/ = α /  are drawn for α/RT  = 0, + 

1.0, + 2.0, and + 3.0, and the corresponding ∆G RTM /  curves are drawn as the sum 
of the particular ∆ ∆H RT S RM M/  and /id− ( ), curves. As the magnitude of α/RT  is 
increased, it is seen that the shape of the ∆G RTM /  curve continuously changes from 
a shape typified by α  = 0 to a form typified by α/RT = 3.

Before discussing the consequences of this change of shape on the behavior of the 
solutions, it is pertinent to examine the significance of the shape of the curve. Curve 
I from Figure 10.1 is reproduced in Figure 10.11a. This curve has positive curvature 
at all compositions. Thus, the homogeneous solution formed from any mixture of A  
and B  is the stable state at the temperature in question, since this state has the lowest 
possible Gibbs free energy. Consider, further, two separate solutions— say, a  and b  
in Figure 10.11a. Before the mixing of these two solutions, the Gibbs free energy of 
the two-solution system, with respect to pure A  and pure B , lies on the straight line 
joining a  and b , with the exact position being determined, via the lever rule, by the 
relative proportions of the separate solutions. If the solutions a  and b  are present 
in equal amounts, then the Gibbs free energy of the system is given by the point c . 
When mixed, the two solutions form a new homogeneous solution, since the Gibbs 
free energy of the system is thereby decreased from c  to d , the minimum Gibbs free 
energy of mixing it can have. Consider now Figure 10.11b, in which the ∆G RTM /  
curve for α/RT  > 2 is shown. This curve has positive curvature between A  and n  
and between p  and B , and it has negative curvature between n  and p . The Gibbs free 
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energy of mixing of a system of composition between m  and q  is minimized when 
the system occurs as two solutions, one of composition m  and the other of composi-
tion q ; for example, if the homogeneous solution of composition r  separates into the 
two coexisting solutions m  and q , the Gibbs free energy of mixing of the system is 
decreased from r  to s . The equilibrium coexistence of two separate solutions at the 
temperature T  and pressure P  requires that

 G m G qA A( ) ( )in solution in solution =  (i)

and

 G m G qB B( ) ( )in solution in solution =  (ii)

Subtracting GA
�  from both sides of Equation (i) gives
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Figure 10.10   the effect of the magnitude of α / RT  on the reduced enthalpies and integral 
molar Gibbs free energies of formation of a binary regular solution.
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 RT a RT aA m A qln ln   in solution  in solution( ) ( )=  

or

 a aA m A q in solution  in solution( ) ( )=  (iii)

Similarly,

 a aB m B q in solution  in solution( ) ( )=  (iv)

Equations (iii) and (iv) are the criteria for equilibrium coexistence of two solutions 
(or phases) at constant T  and P . Since

∆GA
M  (in solution m ) = ∆GA

M  (in solution q ), and 
∆GB

M  (in solution m ) = ∆GB
M  (in solution q ), 

0

0

a
c

b

d

A

(a)

(b)

B

A
o

n p
r

m s q

B

XB

A B
XB

∆GM

∆GM

Figure 10.11   (a) the molar Gibbs free energies of mixing of binary components at a tem-
perature which forms a complete range of solutions. (b) the molar Gibbs free 
energies of mixing of binary components at a temperature in a system which 
exhibits a miscibility gap (two-phase region).
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it is seen that the tangent to the curve at the point m  is also the tangent to the curve 
at the point q . The positioning of this common tangent defines the positions of the 
points m  and q  on the Gibbs free energy of mixing curve.

The A – B  system, as represented in Figure 10.11b, is one in which, at the tem-
perature T , the value of α/RT   is sufficiently positive that the consequent tendency 
toward clustering of like atoms is great enough to cause phase separation. A homo-
geneous solution (phase I) is formed when B  is initially added to A  and the satura-
tion of phase I with B  occurs at the composition m . Further addition of B  causes 
the appearance of a second solution (phase II) of composition q  (which is phase 
II saturated with A ), and continued addition of B  causes an increase in the ratio of 
phase II to phase I occurring, until the overall composition of the two-phase system 
reaches q , at which point phase I disappears. A homogeneous solution (phase II) 
occurs between the compositions q  and B . The curve mn  represents the Gibbs free 
energy of mixing of phase I supersaturated with B , and the curve qp  represents the 
Gibbs free energy of mixing of phase II supersaturated with B . Since the line AmqB  
represents the equilibrium states of the system, then this line alone has physical sig-
nificance, and the line is the isobaric, isothermal section of the system as it occurs 
in G -T -P –  composition space.

10.6 CrIterIA FOr PhASe StABILItY IN reGULAr SOLUtIONS

If we consider Figure 10.10, for a given temperature, it is obvious that a criti-
cal value of α/RT  occurs, below which a homogeneous solution is stable over the 
entire range of composition and above which phase separation occurs. The criteria 
used to determine this critical value are illustrated in Figure 10.12. Figure 10.12a, b, 
and c shows how ∆ ∂∆ ∂ ∂ ∂G G X G XM M

B
M

B,  / , /  2 2∆ , and ∂ ∂3 3∆G XM
B/   vary with com-

position for α α α α α α/ /  / /  and / /critical critical criticalRT RT RT RT RT R< = >, , TT , respec-
tively. The critical value of α/RT  is seen to be that which makes ∂ ∂2 2∆G XM

B/  and 
∂ ∂3 3∆G XM

B/  simultaneously equal to zero at that composition at which immiscibil-
ity becomes imminent. For a regular solution,
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The third derivative, ∂ ∂3 3∆G XM
B/  = 0  at X A   = X B   = 0.5, and thus, the second deriva-

tive, ∂ ∂2 2∆G XM
B/  = 0 at X A   = 0.5, when α/  RT = 2, which is thus the critical value  

of α/RT  above which phase separation occurs (Figure 10.10).
Thus, if α/RT  >  0, the critical temperature of the miscibility gap is 

A B
(a) (b) (c)

A B A B

0

0 0 0

0 0 0

0 0 0

0

α < αcr α > αcrα = αcr

∆GM

d∆GM

dXB

d2∆GM

dX2
B

d3∆GM

dX3
B

Figure 10.12   the effect of the magnitude of α  on the first, second, and third derivatives of the 
integral Gibbs free energy of mixing with respect to composition.
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 T
R

cr = α
2

 (10.8)

Figure 10.13a shows the variation, with temperature, of the Gibbs free energy 
of mixing curve for a regular solution which has a positive molar heat of mixing 
(α  = 16,630 J) and a critical temperature of T Rcr /  K= =16630 2 1000 . The Gibbs 
free energy of mixing expression contains a negative logarithmic term, the magni-
tude of which is proportional to temperature, and a positive parabolic term which 
is independent of temperature. At high enough temperature, the logarithmic con-
tribution predominates and the Gibbs free energy of mixing has positive curvature 
at all compositions. However, with decreasing temperature, the contribution of the 
logarithmic term decreases, and eventually, the positive parabolic term predomi-
nates and produces a range of composition centered on X B   = 0.5, over which the 
Gibbs free energy curve has negative curvature. The logarithmic term still requires 
that the tangents to the curve at X A   = 1 and X B   = 1 be vertical. Figure 10.13b shows 
the phase diagram for the system, in which the miscibility curve bounding the two-
phase region is  simply the locus of the common tangent compositions in Figure 
10.13a. The influence of temperature on the variations of the activity of component 
B  with composition is shown in Figure 10.13c. The activities are obtained from the 
intercepts,  with the X B   = 1 axis, of tangents drawn to the free energy curves as 
∆ =G RT aBB

M ln . At T cr , the activity exhibits a horizontal inflection at X B   = 0.5, as 
is seen from the following. From Equation (9.33b),

 ∆ = ∆ + ∂∆
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At T cr  and X B   = 0.5, both the second and third derivatives of Δ G M   with respect to X B   
are zero, and thus, from Equations 10.9 and 10.10, the first and second derivatives of 
a B   with respect to X B   are zero, which produces a horizontal inflection point on the 
activity curve at X B   = 0.5 and T cr . For T  <  T cr , the activity curve has a maximum 
and a minimum, which occur at the spinodal compositions (where ∂ ∆ ∂2 2G XM

B/  and 
hence ∂ ∂a XB B/  are zero)— for example, the points n  and p  in Figure 10.11b and the 
points b  and c  on the activity curve at 800 K shown in Figure 10.14. The portion of 
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Figure 10.13a   (a) the effect of temperature on the molar Gibbs free energy of mixing a 
binary regular solution for which α  = 16,630 J. (b) the loci of the common 
tangent points in (a), which generate the phase diagram for the system. 
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the curve given by ab  in Figure 10.14 represents the activity of B  in phase I which is 
supersaturated with B , and the portion of the activity curve given by cd  represents 
the activity of B  in phase II which is supersaturated with A . The value of ∂ ∂a XB B/  is 
negative between b  and c , and this violates an intrinsic criterion for stability, which 
requires that ∂ ∂a Xi i/  always be positive [cf. ∂ ∂( ) >P V

T
/ 0 over the portion JHF  in, 

Figure 8.8]. Thus, the derived activity curve between b  and c , and, consequently, the 
Gibbs free energy of mixing curve between the spinodal compositions, are regions 
of absolute instability . The horizontal line drawn between a  and d  in Figure 10.14 
represents the actual constant activity of B  in the equilibrium two-phase region, and 
the compositions a  and d  are those of the double tangents to the Gibbs free energy 
of mixing curve.

Thus, the regular solution under discussion has the following different regions of 
stability at 800 K (see Figure 10.14):

• X B   = 0 to X B   = a , the single-phase solution I is stable .
• X B   = a to X B   = d , the stable state is a two-phase mixture of solution I and II.
• X B   = a  to X B   = b , the single-phase solution of I is metastable  (it will decompose into 

solution I of composition a  and solution II of composition d ). 
• X B   = b  to X B   = c , the homogeneous solution is absolutely unstable .
• X B   = c  to X B   = d , the single-phase solution of I is metastable .
• X B   = d  to X B   = 1, the solid solution II is the i  phase.
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Figure 10.13b (Continued)   (c) the activities of component B  derived from (a).
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10.7 PhASe DIAGrAMS, GIBBS Free eNerGY, 
AND therMODYNAMIC ACtIVItY

Complete mutual solid solubility of the components A  and B  requires that A  
and B  have the same crystal structures, that they be of comparable atomic size, and 
that they have similar electronegativities and valencies. If any one of these condi-
tions is not met, then one or more two-phase regions will occur in the solid state. 
Consider the eutectic A – B  binary system, the phase diagram of which is shown in 
Figure 10.15a, in which A  and B  have different crystal structures. Two terminal solid 
solutions, α  and β , occur. The molar Gibbs free energy of mixing curves, at the tem-
perature T 1 , are shown in Figure 10.15b. In this figure, a  and c , located at Δ G M   = 0, 
represent, respectively, the molar Gibbs free energies of pure solid A  and pure liquid 
B . The points b  and d  represent, respectively, the molar Gibbs free energies of pure 
liquid A  and pure solid B . The curve aeg  (curve I) is the Gibbs free energy of mix-
ing of solid A  and solid B  to form homogeneous α  solid solutions, which have the 
same crystal structure as has A . This curve intersects the X B   = 1 axis at the molar 
Gibbs free energy which solid B  would have if it had the same crystal structure as 
has A . Similarly, the curve dh  (curve II) represents the Gibbs free energy of mixing 
of solid B  and solid A  to form homogeneous β  solid solutions which have the same 
crystal structure as has B . This curve intersects the X A   = 1 axis at the molar Gibbs 
free energy which A  would have if it had the same crystal structure as B . The curve 
bfc  (curve III) represents the molar Gibbs free energy of mixing of liquid A  and liq-
uid B  to form a homogeneous liquid solution. Since curve II lies everywhere above 
curve III, solid β  solutions are not stable at the temperature T 1 . The common tangent 
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Figure 10.14   the activity of B  at 800 K derived from figure 10.13a.
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to the curves I and III identifies the α  solidus composition at the temperature T 1  as 
e  and the liquidus composition as f . Figure 10.15c shows the activity– composition 
relationships of the components at the temperature T 1 , drawn with respect to solid as 
the standard state for A  and liquid as the standard state for B . These relationships are 
drawn in accordance with the assumption that the liquid solutions exhibit Raoultian 
ideality and the solid solutions show positive deviations from Raoult’ s law.

As the temperature decreases below T 1 , the length of ab  increases and the length 
of cd  decreases until, at T  = T m  ( B  ) , the points c  and d  coincide at Δ G M  = 0. At 
T 2  <  T m  ( B  )  the point c  (liquid B ) lies above d  in Figure 10.16b, and since curve II 
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Figure 10.15    the effect of temperature on the molar Gibbs free energies of mixing and the 
activities of the components of the system A – B .
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lies partially below curve III, two common tangents can be drawn: one to the curves 
I and III, which defines the compositions of the solidus α  and its conjugate liquidus, 
and one to the curves II and III, which defines the compositions of the solidus β  and 
its conjugate liquidus. The activity-composition curves at T 2  are shown in Figure 
10.16c, in which the solid is the standard state for both components.

With the further decrease in temperature, the two liquidus compositions m  and n  
in Figure 10.17b approach one another and, at the unique temperature T E   (the eutec-
tic temperature), they coincide, which means that the two common tangents merge 
to form the “ triple”  common tangent to the three curves shown in Figure 10.17b. At 
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Figure 10.16    the effect of temperature on the molar Gibbs free energies of mixing and the 
activities of the components of the system A – B .



349GIBBs free enerGy ComPosItIon and Phase dIaGrams

compositions between o  and p  in Figure 10.17b, a doubly saturated eutectic liquid 
coexists in equilibrium with α  and β  solid solutions. From the Gibbs phase rule 
discussed in Section  7.4, this three-phase equilibrium has one degree of freedom, 
which is used to specify the pressure of the system. Thus, at the specified pressure, 
the three-phase equilibrium is invariant (the compositions of the three phases are 
fixed and the temperature is fixed). Figure 10.17c shows the activities of A  and B  at 
T E  . At T 3  <  T E  , curve III lies above the common tangent to curves I and II, and thus, 
the liquid phase is not stable. This behavior and the corresponding activity– composi-
tion relationships are shown, respectively, in Figure  10.18b and c.
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Figure 10.17    the effect of temperature on the molar Gibbs free energies of mixing and the 
activities of the components of the system A – B .
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If the ranges of solid solubility in the α  and β  phases are immeasurably small, 
then, as a reasonable approximation, it can be said that A  and B  are insoluble in one 
another in the solid state. The phase diagram for such a system is shown in Figure 
10.19a. Since the range of solid solubility in Figure 10.19a is so small that it may be 
neglected on the scale of Figure 10.19a, then the molar Gibbs free energy of mix-
ing curves for the formation of α  and β  (curves I and II in Figures  10.15 through 
10.18) are also compressed toward the X A   = 1 and X B   = 1 axes, respectively. On 
the scale of Figures  10.15 through 10.18, they coincide with the vertical axes. The 
sequence in Figure 10.20 shows how, as the solubility of B  in α  decreases, the 
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Figure 10.18    the effect of temperature on the molar Gibbs free energies of mixing and the 
activities of the components of the system A – B .
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Figure 10.19   the molar Gibbs free energy of mixing and the activities in a binary eutec-
tic system that exhibits complete liquid miscibility and virtually complete solid 
immiscibility.
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Gibbs free energy curve for α  is compressed against the X A   = 1 axis. The Gibbs 
free energy of formation of the liquid solutions in the system A – B  at the tempera-
ture T  is shown in Figure 10.19b. The common tangent to the α  solid solution and 
liquid solution curves is reduced to a tangent drawn from the point on the X A   = 1 
axis which represents pure solid A  to the liquid solutions curve. The correspond-
ing activity– composition relations are shown in Figure 10.19c. Again, these are 
drawn in accordance with the supposition that the liquid solutions are ideal. In 
Figure 10.19c, pqr  is the activity of A  with respect to pure solid A  at p , s  is the 
activity of pure liquid A  with respect to solid A  at p , str  is the activity of A  with 
respect to liquid A  having unit activity at s , and Auvw  is the activity of B  with 
respect to liquid B  having unit activity at w .

In a binary system which exhibits complete miscibility in the liquid state and vir-
tually complete immiscibility in the solid state (e.g., Figure 10.19a), the variations of 
the activities of the components of the liquid solutions can be obtained from consid-
eration of the liquidus curves. At any temperature T  (Figure 10.19a), the system with 
a composition between pure A  and the liquidus composition exists as virtually pure 
solid A  in equilibrium with a liquid solution of the liquidus composition. Thus, at T ,
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in which a A   is with respect to liquid A  as the standard state. Thus,

 ∆ =G RT am A A( ) ln� −  (10.11)

or, if the liquid solutions are Raoultian,

 ∆ =G RT Xm A A( ) ln� −  (10.12)

Figure 10.21 shows the binary phase diagram for the Bi– Cd system. This system 
shows the limited solubility of Bi in Cd and virtually zero solubility of Cd in Bi. 

A

∆GM

XB

A
XB

A
XB

A
XB

Decreasing solid solubility of B in α

Figure 10.20   the effect of decreasing solid solubility on the molar Gibbs free energy of mix-
ing curve.
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In Appendix 10B to this chapter, the liquidus lines are calculated using Equation  10.24 
and ancillary information.

It is of interest to examine what happens to the liquidus line as the magnitude 
of the positive deviation from Raoultian behavior in the liquids increases— that 
is, as G XS  becomes increasingly positive. Assuming regular solution behavior, 
Equation  10.11, written in the form

 −∆ = +G RT X RTm A A A( ) ln ln� γ  

becomes

 − −∆ = +G RT X Xm A A A( ) ln ( )�  α 1 2  (10.13)

Consider a hypothetical system A – B  in which ∆Hm A
° =( ) 1  kJ0  at T m  , A   = 2000 K. 

Thus, for this system,

 – , ( – )1 5 ln 1 20 000 + = +T RT X XA Aα  
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Figure 10.21   the phase diagram for the system Bi– Cd. the full lines are the measured liq-
uidus lines, and the broken lines are calculated assuming no solid solution and 
ideal mixing in the liquid solutions.
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where X A   is the composition of the A  liquidus at the temperature T . The A  liquidus 
lines, drawn for α  = 0.0, 10.0, 20.0, 25.3, 30.0, 40.0, and 50.0 kJ, are shown in Figure 
10.22. As α  exceeds some critical value (which is 25.3 kJ in this case), the form of 
the liquidus line changes from a monotonic decrease in liquidus temperature with 
decreasing X A   to a form which contains a maximum and a minimum (e.g., the liqui-
dus for α  = 30 kJ). At the critical value of α , the maximum and minimum coincide at 
X A   = 0.5 to produce a horizontal inflection in the liquidus curve. It is apparent that, 
when α  exceeds the critical value, isothermal tie-lines cannot be drawn between 
pure solid A  and all points on the liquidus lines, which, necessarily, means that the 
calculated liquidus lines are impossible.

From Equation  10.6:

 ln ( ) ( )

( )
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m A m A
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Figure 10.22   Calculated liquidus lines assuming regular solution behavior in the liquid solu-
tions and no solid solubility.
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Thus,
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Figure 10.23   the monotectic equilibrium in a binary system in which the liquid solutions 
exhibit regular solution behavior with α l   = 30,000 J.
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In Equations 10.9 and 10.10, it was seen that da dX d a dXA A A A/ /= =2 2 0  at 
the state of imminent immiscibility. Thus, in Equations 10.14 and 10.15, 
dT dX d T dXA A/ /= =2 2 0  at the state of imminent immiscibility. In Figure 10.22, 
α cr,r  = 25.3 kJ, and the horizontal inflection in the critical liquidus curve occurs at 
X A   = 0.5, T  = 1413 K. Thus,

 
αcr

crRT
=

×
=25 390

8 3144 1413
2

,
.

 

which is in accord with Equation  10.8. The phase equilibria generated when α cr  >  
α cr,r  are shown in Figure 10.23 which shows the immiscibility in regular liquid solu-
tions with α cr  = 30,000 J and the A -liquidus for α  = 30,000 J shown in Figure 10.22. 
The liquid immiscibility curve and the A -liquidus curve intersect at 1620 K to pro-
duce a three-phase monotectic equilibrium between A  and liquidus L1  and L2 . The 
liquid immiscibility curve is metastable at temperatures less than 1620 K, and the 
calculated A -liquidus is physically impossible between the compositions of L1  and 
L2  at 1620 K.

10.8 the PhASe DIAGrAMS OF BINArY SYSteMS thAt eXhIBIt 
reGULAr SOLUtION BehAVIOr IN the LIQUID AND SOLID StAteS

Consider the binary system A – B  which forms regular liquid solutions and regu-
lar solid solutions. The melting temperatures of A  and B  are, respectively, 800 and 
1200 K, and the molar Gibbs free energies of melting in J are
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Consider the system in which α l   = – 20,000 J in the liquid solutions and α s   = 0 in 
the solid solutions. The Gibbs free energy of mixing curves at 1000 K are shown in 
Figure 10.24a. Since T m  ,( A  )  <  1000 K <  T m  ,( B  ) , the liquid is chosen as the standard 
state for A , and the solid is chosen as the standard state for B . With reference to these 
standard states, the Gibbs free energies of mixing are

 ∆ = ∆ + + +G X G RT X X X X X Xl
M

B m B A A B B l A B,( ) ( ln ln )� α  

for the liquid solutions and

 ∆ = ∆ + + +G X G RT X X X X X Xs
M

A m A A A B B s A B− ,( ) ( ln ln )� α  

for the solid solutions. Inserting the numerical data gives
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Figure 10.24   the molar Gibbs free energy of mixing curves at various temperatures, and the 
phase diagram for a binary system which forms regular solid solutions in which 
α s   = 0 and regular liquid solutions in which α l   = – 20,000 J.
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 ∆ = + +G T X T X X X X X Xl
M

A A A B B A B( , ) . ( ln ln ) ,12 000 10 8 3144 20 000− −  

and

 ∆ = + +G T X T X X X Xs
M

A A A B B− −( ) . ( ln ln )8000 10 8 3144  

The common tangent to the curves in Figure 10.24a gives the liquidus composi-
tion of X B   = 0.82 and the solidus composition of X B   = 0.97. Decreasing the tempera-
ture causes the Gibbs free energies of the liquids to increase relative to those of the 
solids. As shown in Figure 10.24b, the Gibbs free energies of pure solid A  and pure 
liquid B  are equal at the melting temperature of A , and the common tangent gives 
liquidus and solidus compositions of X B   = 0.69 and X B   = 0.94, respectively. At tem-
peratures lower than T m  ,( A  )  and T m  ,( B  ) , solid is chosen as the standard state for both 
components and the Gibbs free energies of mixing are written as
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T X X
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and

 ∆ = +G RT X X X Xs
M

A A B B( ln ln )  

The curves at 600 K, shown in Figure 10.24c, contain two common tangents, and 
as the temperature is further decreased, the curve for the liquids is raised relative to 
the curve for the solids until, at 480 K, the two double tangents collapse to a single 
point of contact between the curves at X B   = 0.41. At temperatures less than 480 K, 
the curve for the liquids lies above that for the solids, and thus, solid solutions are 
stable over the entire range of composition. The variations, with temperature, of the 
compositions of the double tangents give the phase diagram shown in Figure 10.24f.

The behavior of the system in which a l   = – 2000 J and α s   = 10,000 J is shown 
in Figure 10.25. As seen in Figures  10.25a– c, the behavior is similar to that shown 
in Figure 10.24. However, with a positive value of α s  , a critical temperature exists 
below which immiscibility occurs in the solid state, as discussed in Section 10.2. 
With α s   = 10,000 J, the critical temperature is 10,000/2R  = 601 K, and the mixing 
curves at 601 K are shown in Figure 10.25d. The phase diagram is shown in Figure 
10.25f. With increasingly negative values of α l   and increasingly positive values of α s  , 
the temperature of the point of contact of the liquidus curve with the solidus curve 
decreases and the critical temperature in the solid-state increases, which eventually 
produces a eutectic system.

The behavior of a system in which α l   = 20,000 J and α s   = 30,000 J is shown 
in Figure 10.26. The critical temperatures for the liquid and solid solutions are, 
respectively, 1203 and 1804 K, and the Gibbs free energy of mixing curves at 1203 
K are shown in Figure 10.26a. At T  ≥  1203 K, homogeneous liquids are the stable 
state, and at temperatures lower than 1203 K, immiscibility occurs in the liquid 
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Figure 10.25   the molar Gibbs free energy of mixing curves at various temperatures, and the 
phase diagram for a binary system which forms regular solid solutions in which 
α s   = 10,000 J and regular liquid solutions in which α l   = – 2000 J.
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Figure 10.26   the molar Gibbs free energy of mixing curves at various temperatures, and the 
phase diagram for a binary system which forms regular solid solutions in which 
α s   = 30,000 J and regular liquid solutions in which α l   = 20,000 J.
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state. The curves shown in Figure 10.26b at 1150 K contain two common tangents, 
one joining the conjugate liquid solutions L1  and L2  and one connecting the liq-
uidus L2  with the solidus α '  . With decreasing temperature, the compositions of 
the  conjugate liquid L2  and the liquidus L2  approach one another until, at 1090 K, 
the two common tangents merge to form a triple tangent to liquid compositions at 
X B   = 0.23 and 0.77 and α '   at X B   = 0.98. This is a monotectic equilibrium (see also 
Figure 10.23). Further cooling produces a common tangent between L1  and α '  , as 
shown in Figure 10.26c , and at 789 K another “ triple”  common tangent occurs 
between α  at X B   = 0.01, L1  at X B   = 0.03, and α '   = 0.99. At temperatures lower than 
the eutectic temperature of 789 K, the liquid phase is not stable, and, depending on 
its composition, the system exists as α , α  + α '  , or α '  . The monotectic and eutectic 
equilibria are shown in the phase diagram in Figure 10.26f.

The influence of systematic changes in the values of α l   and α s   on the phase rela-
tionships which occur in the binary system A – B  which forms regular solid and liquid 
solutions is shown in Figure 10.27.*

• In moving from the bottom of any column to the top, the value of α s   becomes more 
positive at constant α l  , and in moving from left to right along any row, the value of 
αl  becomes more positive at constant α s  .

• In the sequence Figure  10.27a– e, the liquid solutions become increasing less stable 
relative to the solid phases, with the consequence that the eutectic temperature is 
increased.

• In the transition Figure 10.27d– e, the A -liquidus becomes unstable and a monotec-
tic equilibrium occurs.

• In the sequence Figure 10.27h– i, the temperature at which the three-phase equilib-
rium occurs is increased from 633 to 799 K, with the consequence that the eutectic 
equilibrium in Figure 10.23h becomes a peritectic equilibrium in Figure 10.27i.

• In Figure 10.27j, the immiscibility in the solid state disappears at a temperature 
below that at which a peritectic equilibrium could occur.

• With α l   = 20 kJ in Figure 10.27j, liquid immiscibility occurs at temperatures lower 
than 20,000 / (2 ×  8.3144) = 1202 K, and hence, a monotectic equilibrium occurs 
at 1190 K.

• In Figure 10.27k, the three-phase L1 – L2 – α  equilibrium occurs at 1360 K, which, 
being higher than T m  ,( B  ) , produces a syntectic equilibrium in which the composition 
of the α  phase lies between the compositions of the two liquids. 

• In the sequence p →  l →  f in Figure 10.27, the solid phase becomes increasingly 
less stable than the liquid phase, which deepens the depression of the liquidus and 
solidus curves and eventually forms a eutectic. 

• Figures 10.24 and 10.26, respectively, show the Gibbs free energy relations in 
Figure 10.27l and e.

• Figure 10.25 shows the phase equilibria occurring between those in Figure 10.27l 
and those in Figure 10.27f.

Thus, even though the calculations are performed using a simple solution model, 
the trends of changing the regular solution constants α l   and α s  do shed light on the 

* A. D. Pelton and W. T. Thompson, Prog. Solid State Chem.  (1975), vol. 10(3), p. 119.
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way in which various experimentally determined diagrams vary with respect to each 
other.

10.9 SUMMArY

 1. The molar Gibbs free energy of formation of binary solution A – B  is given by

 ∆G RT X a X aM
A A B B= +( ln ln )  

 2. For a regular solution,
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Figure 10.27   topological changes in the phase diagram for a system A – B  with regular solid 
and liquid solutions, brought about by systematic changes in the values of α s   
and α l  . the melting temperatures of A  and B  are, respectively, 800 and 1200 
K, and the molar entropies of melting of both components are 10 J/K. (from a. 
d. Pelton and w. t. thompson, Prog. Solid State Chem.  (1975), vol. 10, part 
3, p. 119.)
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 ∆ ∆ ∆G G X X HM M
A B

M− = = =,id xs G α  

 3. The criteria for equilibrium between the phases α  and β  in the binary system 
A – B  are

 a aA Ain in α β( ) = ( )  

  and

 a aB B( ) ( )in in α β=  

 4. Common binary phase diagrams displaying invariant reactions include eutectic, 
eutectoid, peritectic, peritectoid, monotectic, monotectoid, and metatectic.

 5. Immiscibility becomes imminent in a regular solution at the critical value of α  = 2. 
The critical temperature, below which immiscibility occurs in a regular system, is 
given by T cr  = α  / 2R .

 6. In a binary system A – B  which forms ideal liquid solutions and ideal solid solutions, 
the solidus is given by

  X
G RT

G RT G RT
A s

m B

m A m B

( )

( )

( ) ( )

exp

exp exp
=

∆( )
∆( ) ∆( )

1− −

− − −

�

� �  

  and the liquidus line is given by

 X
G RT G RT

G RT
A l

m B m A

m A

( )

( ) ( )

( )

exp exp

exp e
=

∆(



 ∆( )

∆( )
1 − − −

− −

� �

� xxp ( )−∆( )G RTm B
�

 

 7. In a binary system A – B  which contains a eutectic equilibrium and in which the 
extent of solid solution is negligibly small, the liquidus lines are determined by the 
conditions

 ∆ =G RT a Am A A( ) ln (in )� − the -liquidus melt  

  and

 ∆ =G RT a Bm B B( ) ln ( )� − in the -liquidus melt  

 8. Thus, if the liquid solutions are ideal, the A -liquidus compositions are given by

 −∆ =G RT Xm A A( ) ln�  

  and if the liquid solutions are regular, the A -liquidus compositions are given by

 − −∆ = +G RT X Xm A A A( ) ln ( )� α 1 2  
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10 .10 CONCePtS AND terMS INtrODUCeD IN ChAPter 10 

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Common tangent
Congruent temperature
Constituent
Eutectic phase diagram
Eutectoid phase diagram
Gibbs free energy versus composition curves
Gibbs– Konovalov rule
Horizontal inflection point
Hypereutectic
Hypoeutectic
Lens phase diagram
Liquidus curve
Metatectic phase diagram
Molar free energy of melting
Monotectic
Monotectoid
Peritectic phase diagram
Peritectoid phase diagram
Solidus curve
Syntectic phase diagram
Temperature versus composition phase diagram

10.11 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1  

Part of binary phase diagram is shown in Figure 10.28a. When a magnetic field is 
applied, the solubility of the β  phase decreases, as shown by the dotted line. Using 
Gibbs free energy plots of the α  and β  phases, determine which phase has the larger 
magnetic susceptibility.

Solution to Qualitative Problem 1 

The Gibbs free energy plots for the α  and β  phases are shown in Figure 10.28b. Since 
the solubility of β  has decreased, its free energy curve must have decreased more 
than that of the α  phase in order for the common tangent to move to the left. Hence, 
the β  phase must have the larger magnetic susceptibility. As in the case discussed 
in Section 7.8, applying a magnetic field enlarges the region of stability of the phase 
with the higher magnetic susceptibility.
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Qualitative Problem 2 

All regular solutions with positive enthalpies of mixing have the same value of the 
activity of its components (A  or B ) at the critical point of the miscibility gap. Calculate 
the activity a A  and a B  at T C   for a regular solution with regular solution constant α .

Solution to Qualitative Problem 2 

At the critical temperature, 
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Figure 10.28   the A -rich section of a binary phase diagram showing the shift in the β  solvus 
when an external magnetic field is applied. In this case χ β    >   χ α  .
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10.12 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

The phase diagram for the system Cs– Rb is shown in Figure 10.29. Examine the 
extent to which the phase diagram can be reproduced, assuming that the liquid solu-
tions are ideal and that the solid solutions are regular.

For Cs:

 ∆ =G Tm Cs, .� 2100 6 95−  J  

and for Rb:

 ∆ =G Tm, .Rb
� 2200 7 05−  

Solution to Quantitative Problem 1 

Initially, draw the Gibbs free energy of mixing curves for the solid and liquid solu-
tions at 9.7° C (282.7 K) and determine if some value of α  gives Gibbs free energy 
of mixing curves similar to those shown in Figure 10.25c; that is, the curve for the 
liquid solutions lies above the curve for the solid solutions, except at a single compo-
sition where the two curves touch one another.

Relative to the pure solids as standard states at the temperature T ,
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Figure 10.29   the phase diagram for the system Cs– rb.
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∆ = ∆ + ∆G X G X GM

m m( ) , ,liquid solutions

               
Rb Rb Cs Cs

� �

                         Rb Rb Cs Cs+ +RT X X X X( ln ln )
 (i)

which, at 282.7 K, becomes

 
∆ = + + ×G X XM ( ) ( ) . .liquid solutions

      
Rb Rb205 133 1 8 3144 282 7−

                                   Rb Rb Rb× +[ ln ( ) ln(X X X1 1− − XXRb)]
 

Also,

 ∆ = + +G RT X X X X X XM ( ) ( ln ln )solid solutions Rb Rb Cs Cs Rb Csα  (ii)

Which at 282.7 K becomes

 ∆G X X X X XM solid solutions 8 3144 282 7 ln lnRb Rb Cs Cs Rb( ) = × × + +. . ( ) α XXCs  

The Gibbs free energy of mixing curves, drawn with α  = 668 J, are shown in 
Figure 10.30, which shows that the curves touch one another at X Rb  = 0.47, in exact 
agreement with Figure 10.29.
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Figure 10.30   the molar Gibbs free energy of mixing curves for ideal liquid solutions and 
regular solid solutions (with α S   = 668 J) at 282.7 K, drawn using the Gibbs free 
energies of melting of Cs and rb.
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The Gibbs free energies of mixing, given by Equations (i) and (ii), with = 668 J 
and T  = 292 K, are shown in Figure 10.31. The common tangent at the Cs-rich side of 
the diagram gives the solidus composition as X Rb  = 0.10 and the liquidus composition 
as X Rb  = 0.13, which is in excellent agreement with the phase diagram. At the Rb-rich 
side of the diagram, the double tangent gives the solidus and liquidus compositions 
as, respectively, X Rb  = 0.81, and X Rb  = 0.75, which are in good agreement with the 
phase diagram values of 0.80 and 0.77.

It is thus seen that the phase diagram is reproduced by assuming that the liquid 
solutions are ideal and the solid solutions are regular with α  = 668 J.

Quantitative Problem 2

The Ge– Si System 
The system Ge– Si exhibits the complete ranges of liquid and solid solutions.

 a.  Calculate the phase diagram for the system assuming that the solid and liquid 
solutions are Raoultian in their behavior.

 b.  Calculate the temperature at which the liquidus (and hence the solidus) compo-
sition exerts its maximum vapor pressure.
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Figure 10.31   the molar Gibbs free energy of mixing curves for ideal liquid solutions and 
regular solid solutions (with α S   = 668 J) at 293 K, drawn using the Gibbs free 
energies of melting of Cs and rb.
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Given :
Silicon melts at 1685 K, and its standard Gibbs free energy change on melting is

 ∆ =G Tm, , .Si  J� 50 200 29 8−  

The saturated vapor pressure of solid Si is

 log ( )
,

. log .( )p
T

TsSi atm� = +− −23 550
0 565 9 47  

Germanium melts at 1213 K and its standard Gibbs free energy change on melting is

 ∆ =G Tm, , .Ge  J� 36 800 30 3−  

The saturated vapor pressure of liquid Ge is

 log ( )
,

. log .( ) atm   Gep
T

Tl
� = +− −18 700

0 565 9 99  

Solution to Quantitative Problem 2a 

The equation of the liquidus curve is obtained from Equation 10.5 as

 X

G

RT

G

RT
T

m m

Ge liquidus

Ge Si

,( ),

, ,exp exp

=

∆









∆









− − −� �
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and the equation of the solidus curve is obtained from Equation 10.4 as

 X

G

RT

G

RT

T

m Si

m Ge

Ge,(solidus),

,

,

exp

exp e

=

∆
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1− −

− −

�
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xxp ,−∆









G

RT
m Si
�

 

The calculated liquidus and solidus curves are shown in comparison with the mea-
sured lines in Figure 10.32a.

Solution to Quantitative Problem 2b 

The partial pressure of Si exerted by the solidus composition (and hence by the cor-
responding liquidus melt) at the temperature T  is
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Figure 10.32   (a) the calculated phase diagram for the system Ge– si assuming raoultian 
behavior of the solid and liquid solutions. (b) the variations, with temperature, 
of the partial pressures of Ge and si (and their sum) with composition along 
the liquidus line.
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 p X pT T s TSi Si solidus Si, ,( ), ,( ),= × �  (i)

and the partial pressure of Ge exerted by the liquidus melt composition (and hence 
by the corresponding solidus) is

 p X pT T l TGe Ge liquidus Ge, ,( ), ,( ),= × �  (ii)

Equations (i) and (ii), together with the sum of the partial pressures, are shown in 

Figure 10.32b. In Equation (i) the values of both X Si,(solidus), T   and p s TSi,( ),
�  increase with 

increasing liquidus temperature, and thus, the partial pressure of Si exerted by the 
liquidus composition increases from zero at 1213 K to the saturated vapor pressure 

of pure solid Si log .,( ),pSi s 1683 6 33 K
� =( )−  at 1685 K. In contrast, in Equation (ii), 

increasing the liquidus temperature causes an increase in p l TGe,( ),
�  and a decrease in 

X Ge,(liquidus), T  , and Figure 10.32b shows that, at lower liquidus temperatures, the influ-

ence of p l TGe,( ),
�  on the partial pressure of Ge predominates and the partial pressure 

initially increases with increasing liquidus temperature. However, with the contin-
ued increase in temperature along the liquidus line, the relative influence of the dilu-
tion of Ge increases, and the partial pressure of Ge passes through a maximum at the 
liquidus state X Ge  = 0.193, T  = 1621 K before decreasing rapidly to zero at 1685 K. 
The maximum in the partial pressure of Ge causes a maximum in the total vapor 
pressure to occur at the liquidus state X Ge  = 0.165, T  = 1630 K.

PrOBLeMS

10.1   CaF2  and MgF2  are mutually insoluble in the solid state and form a simple 
binary eutectic system. Calculate the composition and temperature of the eutec-
tic melt assuming that the liquid solutions are Raoultian. The actual eutectic 
occurs at XCaF2 0 45= .  and T  = 1243 K.

10.2   Gold and silicon are mutually insoluble in the solid state and form a eutec-
tic system with a eutectic temperature of 636 K and a eutectic composition of 
X Si  = 0.186. Calculate the Gibbs free energy of the eutectic melt relative to (a) 
unmixed liquid Au and liquid Si, and (b) unmixed solid Au and solid Si.

 
At  K  J

        a

636 12 600
1338 636

1338
6 611∆ = 





=Gm Au, , ,� −

nnd 
85

85
 JSi∆ = 





=Gm, , ,� 50 200
16 636

16
30 943

−
 

 a. Δ G M  = ab  = – (0.186 ×  30,943 + 0.814 ×  6,611) J = – 11,140 J
 b. Δ G M  = 0

10.3   Al2 O3 , which melts at 2324 K, and Cr2 O3 , which melts at 2538 K, form complete 
ranges of solid and liquid solutions. Assuming that ∆ = ∆S Sm m, ,Cr O Al O2 3 2 3

� �  and 
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that the solid and liquid solutions in the system Al2 O3 – Cr2 O3  behave ideally, 
calculate

 a. The temperature at which equilibrium melting begins when an alloy of 
XAl O2 3 0 5= .  is heated

 b. The composition of the melt which first forms
 c. The temperature at which equilibrium melting is complete
 d. The composition of the last-formed solid

10.4   Na2 O· B2 O3  and K2 O· B2 O3  form complete ranges of solid and liquid solutions 
and the solidus and liquidus show a common minimum at the equimolar com-
position and T  = 1123 K. Calculate the molar Gibbs free energy of formation of 
the equimolar solid solution from solid Na2 O· B2 O3  at 1123 K, assuming that the 
liquid solutions are ideal.

10.5   SiO2 , which melts at 1723° C, and TiO2 , which melts at 1842° C, are immiscible 
in the solid state, and the SiO2 – TiO2  binary system contains a monotectic equi-
librium at 1794° C, at which temperature virtually pure TiO2  is in equilibrium 
with two liquids containing mole fractions of SiO2  of 0.04 and 0.76. If, for the 
purpose of simple calculation, it is assumed that the compositions of the two liq-
uids are XSiO2 0 24= .  and XSiO2 0 76= .  and that the liquid solutions are regular 
in their behavior, what is the value of αl  and at what temperature does the liquid 
immiscibility gap disappear?

10.6   The binary system Ge– Si contains complete solid and liquid solutions. The melt-
ing temperatures are T m  ,Si  = 1685 K and T m  ,Ge  = 1210 K, and ∆ =Hm,Si  J.� 50 200,
At 1200° C, the liquidus and solidus compositions are, respectively, X Si  = 0.32 
and X Si  = 0.665. Calculate the value of ∆Hm,Ge

� , assuming that

 a. The liquid solutions are ideal.
 b. The solid solutions are ideal.

   Which assumption gives the better estimate? The actual value of ∆Hm,Ge
�  at T m  ,Ge  

is 36,900 J.
10.7   CaO and MgO form a simple eutectic system with limited ranges of solid solu-

bility. The eutectic temperature is 2370° C. Assuming that the solutes in the two 
solid solutions obey Henry’ s law with γCaO

�  in MgO = 12.88 and γMgO
�  in CaO 

= 6.23 at 2300° C, calculate the solubility of CaO in MgO and the solubility of 
MgO in CaO at 2300° C.

10.8*   A metatectic binary phase diagram displays the following invariant transforma-
tion on cooling:

 β α→ + L

   Sketch such a phase diagram and then draw free energy curves of mixing just 
below, at, and just above the invariant temperature.

10.9*  The free energy of mixing of a regular solution is given by

 
∆G X X RT X X X XA B A A B Bmix

    and  J/mole

= + +

=

α

α

[ ln ln ]

,24 943
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 a. Plot ∆Gmix  versus X B   at 1400, 1500, and 1600 K.
 b. Plot ∂ ∂∆G XBmix /  versus X B   at the same temperatures as (a).
 c. Determine the critical temperature for this alloy. Show your work.

10.10 * A certain solid solution of A  and B  has a ∆Gmix
xs  as follows:

  ∆ ∆ ∆G G G X X a X a X RT X X X XB A A B A A B Bmix
xs

mix mix
id= − = + + +[ ] [ ln ln ]1 2  

 Where:
 a 1  = 12,500 J/mole
 a 2  = 5,500 J/mole

 a. Plot ∆Gmix
xs  at T  = 500 and 700 K.

 b. Sketch the T  versus X B   phase diagram of this alloy.
 c. Determine the critical temperature and composition of this alloy.

10.11*   The phase diagram of an alloy that has a eutectoid transformation is shown in 
Figure 10.33.

 a. Sketch the Gibbs free energy curves for this alloy at T  = Tʹ  .
 b.  Show that the α /γ  solvus must enter the α /β  two-phase field (as shown by the 

arrow).

10.12*   A eutectoid phase diagram is shown in Figure 10.33. Draw the phase diagram 
that would result if for some reason it were impossible to form the α  phase.

APPeNDIX 10A

Here we derive equations for the phase diagram of a system which consists of 
ideal solid and ideal liquid solutions.

* New problem in this edition

A

T

T’

α + β

XE XB  →
αe

βEαE

βe
B

α

γ

β

Figure 10.33   a eutectoid phase diagram showing the extension of the α /γ  equilibrium curve 
into the α /β  solvus.
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For equilibrium between the solid and liquid phases,

 ∆ ( ) = ∆ ( )G GA
M

A
Min the solid solution in the liquid solution  (10A.1)

and

 ∆ ( ) = ∆ ( )G GB
M

B
Min the liquid solution in the solid solution  (10A.2)

At any temperature T , these two conditions fix the solidus and liquidus  compositions 
— that is, the position of the points of common tangency. From Equation  10.2:

 
∂
∂

= ∆∆G

X
RT X X Gl

M

A l
A l B l m B

( )

( )
( ) ( ) ( )(ln ln )− − �  

Thus,

 X
G

X
RT X X X X X GB l

l
M

A l
B l A l B l B l B l m( )

( )

( )
( ) ( ) ( ) ( ) ( ) (( ln ln )

∂∆
∂

= ∆− − BB)
�  (10A.3)

From Equation  9.33a:

 ∆ = ∆ + ∂∆
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G G X
G

X
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B l
l
M

A l

( ) ( ) ( )
( )

( )

in liquid solutions  

Thus, adding Equation 10.2 and 10A.3 gives

 ∆ =G RT XA
M

A l( ) ln ( )in liquid solutions  (10A.4)

From Equation  10.3:
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Adding Equations  10.3 and 10A.5 gives

 ∆ = ∆ + ∂∆
∂

=G G X
G

X
RT XA

M
s
M

B s
s
M

A s
A( ) ln( ) ( )

( )

( )
(in solid solutions ss m AG) ( )− ∆ �  (10A.6)

Thus, from Equations  10A.1, 10A.4 and 10A.6:
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 RT X RT X GA l A s m Aln ln( ) ( ) ( )= ∆− �  (10A.7)

Similarly, from Equations 10.2 and 9.33b:

 ∆ = ∆ + ∂∆
∂

=G G X
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l
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A l
l
M

B l
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and from Equations  10.3 and 9.33b:
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Thus, from Equations  10A.2, 10A.8, and 10A.9:

 RT X G RT XB l m B B sln ln( ) ( ) ( )+ ∆ =�  (10A.10)

The solidus and liquidus compositions are thus determined by Equations 10A.7 and 
10A.10 as follows. Equation  10A.7 can be written as
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A l A s
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 (10A.11)

and, noting that X B   = 1 –  X A  , Equation  10A.10 can be written as
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Combination of Equations  10A.11 and 10A.12 gives
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If c p  , i  ( s  )  = c p  , i  ( l  ) , we get from Equation 10.1, for i  = A  and B ,
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Thus, the phase diagram for a system which forms ideal solid and liquid solutions is 
determined only by the melting temperatures and the molar heats of melting of the 
components.

APPeNDIX 10B

Consider the application of Equation  10.12 to the calculation of the liquidus 
lines in a binary eutectic system. In the system Cd– Bi, the phase diagram for which 
is shown in Figure 10.21, cadmium is virtually insoluble in solid bismuth, and the 
maximum solubility of bismuth in solid cadmium is 2.75 mole percent at the eutectic 
temperature of 419 K. If the liquidus solutions are ideal, the Bi liquidus is obtained 
from Equation  10.12 as

 ∆ =G RT Xm Bi( ) ( )ln� − Bi liquidus  

∆ =Hm( ) ,Bi
� 10 900  J at T m  (Bi)  = 544 K, and thus,

 ∆ = =Sm( )
,

.Bi  J/K at  K� 10 900
544

20 0 544  

The molar constant pressure heat capacities of solid and liquid bismuth vary with 
temperature as

 
c T

c T
p s

p l

, ( )

, ( )

. .

. .
Bi

Bi

 J/K= + ×
= + × + ×

18 8 22 6 10

20 6 15 10 21 1 10

3

3

−

− 55 2T −  J/K
 

Thus,

 c c c T Tp l p s p, , , . . . /( ) ( )Bi Bi Bi
3 5 21 2 16 45 1 21 1 1 J K− = = − × + ×− −∆ 0 0  

and

∆ = ∆ + ∆ ∆ +
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T
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m
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Bi Bi Bi Bi
Bi� � �

544
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544− TT

T T T T

T

544

3 2 516 560 23 79 1 2 8 225 10 10 22 10

∫





= + × ×, . . ln . .− − −− −−

−

1544

Bi liquidus= RT Xln ( )

 (10B.1)

or

 ln Bi liquidusX
T

T T( )
−= − + + − × + ×1992

2 861 0 144 9 892 10 1 269
104. . ln . .

55

2T
 

This equation is drawn as the broken line (i) in Figure 10.21.
Similarly, if the small solid solubility of Bi in Cd is ignored,
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 ∆ =G RT Xm( ) ( )lnCd Cd liquidus
� −  

∆ =Hm( )Cd
� 6400  J at T m  ,Cd  = 594 K, and thus, ∆ = =Sm( ) .Cd  J/K� 6400 594 10 77  at 

594 K. The constant-pressure molar heat capacities are

 c Tp l, . .Cd
322 2 12 3 1  J/K( )

−= + × 0  

and

 cp l, . /Cd 29 7 J K( ) =  

Thus,

 c c c Tp l p s p, ( ) , ( ) , . .Cd Cd Cd  J/K− − −= ∆ = ×7 5 12 3 10 3  
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 (10B.2)

or

 ln . . ln .)X
T

T TCd(liquidus = − + ×495
4 489 0 90 7 397 10 4− − −  

which is drawn as the broken line (ii) in Figure 10.21. Lines (i) and (ii) intersect at the 
composition of the Raoultian liquid which is simultaneously saturated with Cd and 
Bi and at 406 K, which would be the eutectic temperature if the liquids were ideal. 
The actual liquidus lines lie above those calculated, and the actual eutectic tem-
perature is 419 K. From Equation 10B.1, ∆ =Gm( ),Bi  K  J419 2482� , and from Equation 
10B.2, ∆ =Gm( ),Cd  K  J419 1898� . Thus, from Equation 10.11, in the actual eutectic melt,

 aBi = −
×







=exp
.

.
2482

8 3144 419
0 49  

and

 aCd = −
×







=exp
.

.
1898

8 3144 419
0 58  
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The actual eutectic composition is X Cd  = 0.55, X Bi  = 0.45, and thus, the activity 
coefficients are

 γBi = =0 49
0 45

1 09
.
.

.  

and

 γCd = =0 58
0 55

1 05
.
.

.  

Thus, positive deviations from Raoultian ideality cause an increase in the liquidus 
temperatures.
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ChAPter 11

reactions Involving Gases

11.1 INtrODUCtION

In Chapter  8, it was seen that the absence of interatomic forces between the 
atoms of ideal gases causes the enthalpy of mixing of ideal gases to be zero. This 
situation represents one extreme of a range of possible situations. Toward the other 
extreme of this range is the situation in which gases are mixed which exhibit marked 
chemical affinity for one another. For example, considerable heat is released when 
gaseous hydrogen and oxygen are mixed in the presence of a catalyst. The thermo-
dynamics of such a system can be treated in either of two ways:

 1. The mixture can be considered to be a highly nonideal mixture of H2  and O2 , the 
thermodynamic equilibrium state of which, at a given temperature and pressure, 
can be defined in terms of the fugacities of the components H2  and O2 .

 2. It can be considered that the H2  and O2  have reacted with one another to some 
extent to produce the product species H2 O.

In the latter case, if the pressure of the system is low enough, the equilibrium 
state at the given temperature can be defined in terms of the partial pressures exerted 
by the three species, H2 , O2 , and H2 O, occurring in the system. Although both treat-
ments are thermodynamically equivalent, the latter is the more convenient and 
practical.

As with any constant-pressure, constant-temperature system, the equilibrium 
state is that in which the Gibbs free energy of the system has its minimum possible 
value. If the gases which are present initially in the system react to form distinct 
product species, the total change in the Gibbs free energy of the system comprises a 
contribution arising from

• The change in Gibbs free energy due to the chemical reaction
• The mixing of the appearing product gases with the remaining reactant gases

Knowledge of the variation of this total change in the Gibbs free energy with 
composition (which ranges from the pure unmixed reactant gases to the pure 
unmixed product gases) allows for the determination of the equilibrium state in any 
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system of reactive gases. This determination is facilitated by the introduction of the 
equilibrium constant for the reaction, and it will be seen that the relation between 
this constant and the standard Gibbs free energy change for the reaction is one of the 
more important relationships in reaction equilibrium thermodynamics.

11.2 reACtION eQUILIBrIUM IN A GAS MIXtUre 
AND the eQUILIBrIUM CONStANt

Consider the reaction

 A B Cg g g( ) + =( ) ( )2  

occurring at constant temperature T  and constant pressure P . At any instant during 
the reaction, the total Gibbs free energy of the system is

 ′ = + +G n G n G n GA A B B C C  (11.1)

where n A  , n B  , and n C   are, respectively, the numbers of moles of A , B , and C  present 
in the reaction system at that instant, and G GA B,  , and GC  are, respectively, the 
partial molar Gibbs free energies of A , B , and C  in the gas mixture which occurs at 
that instant. It is of interest to determine the values of n A  , n B  , and n C   which minimize 
the value of G'   in Equation  11.1, since this state of minimum Gibbs free energy is 
the equilibrium state of the system at the given temperature and pressure. That is, 
once the chemical reaction between A  and B  has proceeded to the extent that the 
Gibbs free energy of the system has been minimized, the reaction at the macroscopic 
level appears to stop. On the microscopic level, however, reaction equilibrium occurs 
when the rate of the chemical reaction proceeding from right to left equals that of the 
reaction proceeding from left to right. This is a dynamic equilibrium : that is, reac-
tions still occur when the system is at equilibrium.

The stoichiometry of the reaction allows the numbers of moles of all the species 
present at any instant to be expressed in terms of the number of moles of any one of 
the species. Starting with 1 mole of A  and 1 mole of B  (i.e., 2 moles of gas), as 1 atom 
of A  reacts with 1 atom of B  to produce 2 molecules of C , then, at any time during 
the reaction,

 n nA B=  

and

 n n n nC A B A= − − = −2 2 1( )  

Equation  11.1 can thus be written as

 ′ = + +G n G n G n GA A A B A C2 1( )−  
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From Equation  8.15:
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 (11.2)

The term ∆ =G G G GC A B
� � � �2 − −  is the standard Gibbs free energy change  for the 

chemical reaction at the temperature T .
The standard Gibbs free energy change for any reaction is the difference between 

the sum of the Gibbs free energies of the reaction products in their standard states 
and the sum of the Gibbs free energies of the reactants in their standard states. In the 
present case, Δ G °  is the difference between the Gibbs free energy of 2 moles of C  
at 1 atm pressure and the temperature T , and 1 mole of A  and 1 mole of B , each at 1 
atm pressure and the temperature T . If the total pressure of the system is 1 atm, then 
Equation  11.2 simplifies to

 ′ = ∆ + 





+








G G n G RT n

n
n nC A A

A
A A− − − −2 2

2
1 1� �( ) ln ( ) ln( )  (11.3)

The left-hand side of Equation  11.3 is the difference between the Gibbs free energy 
of the 2-mole system when n A   = n B   and the Gibbs free energy of the system when it 
consists of 2 moles of C . This difference is determined by two factors:

 1. The change  in the Gibbs free energy due to the chemical reaction— that is, due to 
the disappearance of the reactants and the appearance of the products, given by the 
first term on the right-hand side of Equation  11.3

 2. The decrease  in the Gibbs free energy caused by mixing of the gases, given by the 
second term on the right-hand side of Equation  11.3
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Figure  11.1 is drawn for the reaction.

 A B Cg g g( ) + =( ) ( )2  

at 500 K and 1 atm pressure. ∆G500
�  for the reaction is taken as – 5000 J. If the 

reference for the Gibbs free energy is arbitrarily chosen as ( ) ,G GA B
� �+ = 0  then 

2 5000GC
� = −  J. In Figure  11.1, the ordinate Δ G'   is plotted as the difference between 

the Gibbs free energy of the system containing n A   moles of A  and the Gibbs free 
energy of the system comprising 1 mole of A  and 1 mole of B  before the mixing of A  
and B  occurs. Thus, the point L  (n A   = 1, n B   = 1 before mixing) is located at Δ G'   = 0, 
and the point Q  (n C   = 2) is located at Δ G ’  = – 5000 J.

The point M  represents the decrease in the Gibbs free energy due to mixing of 
1 mole of A  and 1 mole of B  before any chemical reaction between the two occurs; 
that is, from Equation  8.20:

 

∆ ′ → = 





= 
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But n A   = n B   = 1, and

1
0
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Figure  11.1   the variations of the contributions to the decrease in the Gibbs free energy due 
to chemical reaction (line II), the contribution to the decrease in the Gibbs free 
energy due to gas mixing (curve III), with the extent of the reaction A ( g  )  + B ( g  )  = 
2C ( g  ) , for which ∆ G °  = – 5000 J at 500 K. Curve I is the sum of curves II and III.
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 p p PA B= = =mixture  1  

in which case

 p pA B= = 1
2

 

Thus,

 
∆G L M= → = × × ×

= −
( ) . ln .8 3144 500 2 0 5

5763 J
 

Substituting this into Equation  11.3 we obtain

 ′ + = ×( ) −G 5 1 5 5763 J000 000  

and hence,

 G′ = −5763 J  

Thus, at M ,

 ∆ ′ = ′ + =G G G GA B− −( )� � 5763 J  

Curve I represents the variation of Δ G'   with n A  . It is obtained as the sum of line 
II (given by the first term on the right-hand side of Equation  11.3, the decrease in 
Gibbs free energy due to chemical reaction) and curve III (given by the second term 
on the right-hand side of Equation  11.3, the decrease in Gibbs free energy due to gas 
mixing). It can be seen that the magnitude of the chemical reaction contribution to 
the decrease in the Gibbs free energy of the system increases linearly with increas-
ing n C  , but the magnitude of the contribution to the change  in the total Gibbs free 
energy due to gas mixing is greatest at the composition R . R  occurs at that compo-
sition of the gas mixture which permits maximum randomization of the system. 
Further chemical reaction, which takes the composition of the system beyond R , 
decreases the magnitude of the gas-mixing contribution, since further increase in 
n C  , at the expense of n A   and n B  , decreases the randomness of the system. Eventually, 
the composition S  is reached, in which state the sum of the two contributions to the 
decrease in the Gibbs free energy is a maximum. If chemical reaction continued 
beyond S , then, since the decrease in line II is smaller than the increase in curve III, 
the total Gibbs free energy of the system would increase. The composition S  is thus 
that at which the Gibbs free energy of the system has its minimum value and is 
hence the equilibrium state.

The position of the minimum in curve I is fixed by the criterion that, at the 
minimum,
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nA T P,
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and since

 ′ = + +G n G n G n GA A A B A C2 1( )−  

and including the use of the Gibbs– Duhem equation,*

 
∂ ′
∂







 = + =G

n
G G G

A
A B C− 2 0  

That is, the criterion for reaction equilibrium is

 G G GA B C+ = 2  (11.4)

Equation  11.4 can be written as

 G RT p G RT p G RT pA A B B C C
� � �+ + 2ln ln ln+ + = 2  (11.5)

where p A  , p B  , and p C   are, respectively, the partial pressures of A , B , and C which 
occur at reaction equilibrium . Rearrangement of Equation  11.5 gives

 2
2

G G G RT
p

p p
C A B

C

A B

� � �− − = − ln  

or

 ∆ =








G RT

p

p p
C

A B

� − ln
2

 (11.6)

The quotient of the equilibrium partial pressure of the reactants and products occur-
ring as the logarithmic term in Equation  11.6 is termed the equilibrium constant for 
the reaction , Kp ; that is,

 
p

p p
KC

A B
p

2







 =

eq

 (11.7)

and hence,

 ∆G RT Kp° = − ln  (11.8)

* Equation  9.19a: n dG n dG n dGA A B B C C+ + = 0.  
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Since Δ G °  is a function only of temperature, it follows from Equation  11.8 that K p   is 
a function only of temperature.

For the example used in Figure  11.1,

 ln
.

.K
G

RT
p = − ∆ =

×
=

� 5000
8 3144 500

1 203  

Therefore,

 Kp = 3 329.  

Now,

 K
p

p p

X P

X PX P

X

X X
p

C

A B

C

A B

C

A B

= = =
2 2 2 2

 

and since X X nA B A= = /2  and X nC A= −( )1 ,

 =










=( )
.

1

4

3 329
2

2

− n

n
A

A

 

Thus,

 n nA A= =( )0. , . ,523 the other solution 11 4  is nonphysical  

The minimum in curve I in Figure  11.1 occurs at n A   = n B   = 0.523 and 

 n xC = − =2 2 0 0( . ) .523 954  

The chemical reaction A  + B  = 2C  has proceeded to 47.7% completion.
If the temperature T  was such that Δ G °  for the reaction was zero, there would be 

no chemical reaction contribution to Δ G'  , and the variation of Δ G'   with n A   would be 
given by curve III in Figure  11.1; that is, the criterion for reaction equilibrium would 
be the maximization of the configurational entropy of the system, which occurs at 
the composition R . From Equation  11.8, if Δ G °  = 0, then K P   = 1, and thus,

 1
4 1 2

3

2

2= =( )− n

n
nA

A
Aand  

The minimum in curve III occurs at n A   = n B   = n C   = ⅔ , and thus, maximum entropy 
in the system occurs when all three species are present in equal amounts.

It is important to note that the minimum in curve I in Figure  11.1, in represent-
ing the equilibrium state of the system at P  = 1 atm and 500 K, is the only point on 
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curve I which has any significance within the scope of classical equilibrium thermo-
dynamics. The point S  is the only state on the curve I which lies on the equilibrium 
surface in P -T – composition space for the fixed values of P  = 1 atm and T  = 500 K. 
Any change in P  and/or T  changes the curves II and III, which in turn produces a 
“ new”  curve I. This new curve I has a different minimum and hence represents a 
new equilibrium state. This is discussed further in the following section.

11.3 the eFFeCt OF teMPerAtUre ON 
the eQUILIBrIUM CONStANt

The position of the minimum in curve I in Figure  11.1 is determined by the dif-
ference between the lengths of LM  and NQ . The length LM  is the decrease in the 
Gibbs free energy caused by mixing of the gases before the reaction begins , and 
the length NQ  is the standard Gibbs free energy change, Δ G ° , for the reaction. The 
lengths of both of these lines are dependent on temperature.

 LM RT= 2 0 5ln .  

 NQ G f T= ° = ( )∆  

The effect of temperature on the composition at which the minimum occurs in curve 
I (and hence on the value of K p  ) thus depends on the relative effects of tempera-
ture on the lengths of LM  and NQ . For given reactants, the length of LM  increases 
linearly with temperature, and the variation of the length NQ  with temperature is 
determined by the sign and magnitude of the standard entropy change for the reac-
tion according to

 
∂∆

∂








 = ∆G

T
S

P

�
�−  

Increasing the temperature increases the length of LM , and if Δ S°   is negative, 
increasing T  must decrease Δ G°  , hence decreasing the length of NQ . Thus, the 
position of the minimum in the curve I shifts to the left, which indicates that K p   
decreases with increasing temperature.

The exact variation of Kp  with temperature is obtained from consideration of the 
Gibbs– Helmholtz equation (Equation  5.38):

 
∂ ∆

∂








 = ∆( G T

T

H

T
P

� �

− 2  

From Equation  11.8, Δ G°   = – RT  ln K p  , and since  Δ G°  is only a function of T ,

 
d K

dT

H

RT
pln = ∆ °

2  (11.9)



389reaCtIons InvolvInG Gases

or

 
d K

d T

H

R
pln

( )1/
= ∆ °−  (11.10)

Equation  11.10 is known as the van’ t Hoff equation  (Jacobus Henricus van’ t Hoff, 
1852– 1911). The equation shows that the effect of temperature on K p   is determined 
by the sign  and magnitude  of Δ H°   for the reaction.

• If Δ H°   is positive, the reaction is endothermic and K p   increases with increasing 
temperature.

• If Δ H°   is negative, the reaction is exothermic and K p   decreases with increasing 
temperature.

Integration of Equation  11.10 requires knowledge of the temperature dependence 
of Δ H°  , which, as was seen in Chapter  6, depends on the value of Δ c p   for the reaction.

The van’ t Hoff equation enables the determination of Δ H°   from a plot of ln 
K P   versus the inverse of absolute temperature. The slope of the plot is − °( )∆H R/  
(Figure  11.2).

The direction of the variation of K p   with temperature can be obtained from the 
application of Le Chatelier’ s principle (Henry Louis Le Chatelier, 1850– 1936). If 
thermal energy is added to a system at reaction equilibrium, then the equilibrium is 
displaced in that direction which involves the absorption of heat. Consider the simple 
gaseous reaction

 Cl 2Cl2 =  

1 / T

Slope = –
∆H°

RIn KP

Figure  11.2   the variation of the ln (K P  ) versus 1/T  of an exothermic reaction (a van’ t hoff plot).
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This reaction is endothermic and hence has a positive value of Δ H°  . Thus, the equi-

librium constant, K p pp = Cl Cl/2
2 ,  increases with increasing temperature; that is, the 

equilibrium shifts in that direction which involves the absorption of thermal energy. 
Conversely, if the reaction were written as

 2Cl Cl2=  

then, since the reaction has a negative value of Δ H ° , K p pP = Cl Cl/2

2  decreases with 
increasing temperature; that is, the equilibrium shifts in that direction which involves 
the absorption of thermal energy. In both cases, an increase in temperature increases 
p Cl  and decreases pCl2 .

11.4 the eFFeCt OF PreSSUre ON the eQUILIBrIUM CONStANt

The equilibrium constant, K p  , as defined by Equation  11.7, is independent of 
pressure. This is a consequence of the fact that Δ G°   is the difference between the 
Gibbs free energies of the pure products (each at unit pressure) and the Gibbs free 
energies of the pure reactants (each at unit pressure), which is, by definition, inde-
pendent of pressure. However, if reaction equilibrium is expressed in terms of the 
number of moles of species present rather than in terms of the partial pressures of 
the species present, the constant is dependent on the total pressure if the chemical 
reaction involves a change in the total number of moles present.

Consider again the reaction Cl2  = 2Cl. Completion of this reaction causes a dou-
bling of the number of moles present, and the effect of a change in pressure can again 
be obtained by the application of Le Chatelier’ s principle. If the pressure exerted 
on a system at reaction equilibrium is increased, then the equilibrium shifts in that 
direction which tends to decrease the pressure exerted by the system; that is, it shifts 
in that direction which decreases the number of moles present. Thus, if the pressure 
exerted on the Cl– Cl2  system is increased, the equilibrium will shift toward the Cl2  
side, as, thereby, the total number of moles present will be decreased to accom-
modate the increased pressure. Specifically, the effect of pressure on the reaction 
equilibrium expressed in terms of the number of moles present (or in terms of mole 
fractions) can be seen as follows:

 

K
p

p

X P

X P

p =

= =

Cl

Cl

Cl

Cl

 which is independent of pressure
2

2 2

2

2

,

XX P

X
K Px

Cl

Cl

2

2

=
 

where K x   is the equilibrium constant expressed in terms of the mole fractions. Thus, 
if the pressure is increased, then K x   decreases in order to maintain Kp  constant, and 
the decrease in K x   is achieved by the reaction equilibrium shifting toward the Cl2  
side such that X Cl  decreases and XCl2  increases.
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In the case of the reaction A  + B  = 2C , the system at all times contains 2 moles 
of gas, and thus, the reaction equilibrium, expressed in terms of the mole fractions, 
is independent of pressure; that is,

 K
p

p p

X P

X P X P

X

X X
Kp

C

A B

C

A B

C

A B
x= = = =

2 2 2 2

( )( )
 

This can also be seen from Equation  11.2, since, if P ≠   1, then the effect of the 
nonzero term 2RT  ln P  is the raising or lowering of curve I in Figure  11.1 without 
affecting the position of the minimum with respect to the composition axis.

The magnitude of the effect of a change in pressure on the value of Kx  depends on 
the magnitude of the change in the number of moles present in the system, occurring 
as a result of the chemical reaction. For the general reaction

 aA bB cC D+ = +  d  

 K
p p

p p

X X

X X

P P

P P
K Pp

C
c

D
d

A
a

B
b

C
c

D
d

A
a

B
b

c d

a b x
c d a b= = = +( )− −  

which shows that K x   is independent of the total pressure only if c  + d  = a  + b .

11.5 reACtION eQUILIBrIUM AS A COMPrOMISe 
BetWeeN eNthALPY AND eNtrOPY

Since the Gibbs free energy of a system is defined as

 ′ = ′ − ′G H TS  

low values of G  are obtained with low values of H  and large values of S . It was seen 
in the discussion of one-component systems in Chapter  7 that equilibrium occurs as 
the result of a compromise between enthalpy and entropy considerations. A similar 
discussion is now made concerning chemical reaction equilibria.

Consider again the reaction Cl2  = 2Cl. This reaction has a positive value of Δ H°   
(Δ H°   is the thermal energy required to break Avogadro’ s number of Cl– Cl bonds) 
and has a positive value of Δ S °  (2 moles of chlorine atoms are produced from 1 mole 
of chlorine molecules). Thus,

• The system occurring as Cl atoms has a high value of H  and a high value of S .
• The system occurring as Cl2  molecules has a low value of H  and a low value of S .

The minimum value of G  thus occurs somewhere between the two extreme 
states. This compromise between the enthalpy and the entropy is analogous to the 
compromise between the contributions of the chemical reaction and the mixing of 
gases to the decrease in Gibbs free energy shown in Figure  11.1.
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For the reaction A  + B  = 2C , Equation  11.3 can be written as

 

′ − = ∆ + ∆ ° + 





+


G G n H n T S RT n
n

n nC A A A
A

A A2 2
2

1 10� ( ) ( ) ln ( ) ln( )− − −








= ∆ °  + ∆ + 





+
°n H T n S R n

n
n nA A A

A
A A( ) ln ( ) ln( )− − −2

2
1 1





















  

  (11.11)

The term in the first brackets is the enthalpy contribution to the change in the Gibbs 
free energy. The second term on the right-hand side of the equation is the entropy 
contribution, with n A  Δ S°   being the entropy change caused by the chemical reaction 
and 2R [n A   ln (n A  /2) + (1 –  n A  ) ln (1 –  n A  )] being the entropy change caused by gas 
mixing. In the example in Section 11.2, Δ G°  equaled – 5000 J at 500 K. Let it be 
that Δ H °  = – 2500 J and Δ S °  = 5 J/K, in which case Figure  11.3 can be drawn from 
Figure  11.1. In Figure  11.3, the Δ H'   line is the first term on the right-hand side of 
Equation  11.11 and the T Δ S'   curve is the second term. The sum of these two gives 

′ °G GC− 2 ,  the scale of which is given on the left-hand ordinate of Figure  11.3. The 
scale on the right-hand ordinate of the figure is Δ G'  , where, as before, the reference 

zero of Gibbs free energy is chosen as G GA B
° °+ = 0 , such that Δ G'   = G'   (i.e., the 

scale is displaced by 2 5000GC
° = −  J). On this scale, the Δ G'   curve in Figure  11.3 

is identical with curve I in Figure  11.1. It can be seen that the minimum in the Δ G'   
curve is determined as a compromise between the minimum value of H'   at n A   = 0 
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Figure  11.3   the variations at 500 K of Δ H'  , – T Δ S'  , and Δ G'   with the extent of reaction 
A ( g  )  + B ( g  )  = 2C ( g  ) , for which Δ G °  = – 2500 –  5T .
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and the maximum value of T Δ S'   at n A   = 0.597 (the point M  in Figure  11.2). If the 
temperature is increased, then the TΔ S'   term becomes relatively more important, 
and hence the equilibrium value of n A   increases (the minimum in the Δ G'   curve 
shifts to the left). Thus, K p   decreases with increasing temperature in accordance with 
Equation  11.9 for negative Δ H ° .

The effect of temperature on the Δ G'   curve is illustrated in Figure  11.4, in which 
curves are drawn for the reaction A  + B  = 2C  at 500, 1000, and 1500 K. It is assumed 
that Δ c p   for the reaction is zero, in which case Δ H °  and Δ S °  are independent of tem-
perature. Since Δ G °  = Δ H °  –  T Δ S ° ,

 ∆ = ×( ) = =°G Kp500 0000 00 000– , – – , .,2 5 5 5 5  J  3 3295  

 ∆ = ×( ) = =°G Kp1000 00000 000 00– , – , – , .,2 5 1 5 7 5  J  2 4651  

 ∆ = ×( ) = =°G Kp1500 0000 00 0 000– , – , – , .,2 5 1 5 5 1  J  2 22915  

The equilibrium values of n A   at 500, 1000, and 1500 K are thus, respectively, 0.523, 
0.560, and 0.572. Thus, increasing the temperature shifts the minimum to the left, 
thereby increasing the amount of A  and B  in equilibrium.

Although K p   is constant at constant temperature, note that an infinite set of par-
tial pressures of reactants and products correspond to the fixed value of K p  . If the 
reaction involves three species, then an arbitrary choice of the partial pressures of 
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∆G
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0.6 0.4 0.2 0

Figure  11.4   the effect of temperature on the equilibrium state of the reaction A ( g  )  + B ( g  )  = 
2C ( g  ) , for which Δ G °  = – 2500 –  5T  J.
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two of the species uniquely fixes the equilibrium partial pressure of the third. This 
can also be shown by the Gibbs’  equilibrium phase rule (see Qualitative Problem 2 
in Section  11.10).

11.6 reACtION eQUILIBrIUM IN the SYSteM SO 2(  g)  – SO 3(  g)  – O 2(  g)  

Consider the equilibrium reaction of the oxidation of sulfur dioxide to sulfur trioxide:

 SO O  SO2 2 3( ) ( )g g g+ = ( )1
2

 (11.12)

The standard Gibbs free energy change for this reaction is

 ∆G T° = − +94 6 89 37  J, .00  

Thus, at 1000 K,

 ∆ =°G1000 5230−  J  

 ln
.

.Kp =
×

=5230
8 3144

0 629
  1000

 

and

 K
p

p p
p = =1 876

2 2

1 2. SO

SO O

3  

Consider the reaction between 1 mole of SO2  gas at 1 atm pressure and ½  mole of 
O2  gas at 1 atm pressure to form an equilibrium mixture of SO2 , SO3 , and O2  at 1 
atm pressure and 1000 K. From the stoichiometry of the chemical reaction given by 
Equation  11.12, x  moles of SO3  are formed from the reaction of x  moles of SO2  and 
½ x  moles of O2 . Thus, any reacting mixture contains x  moles of SO3 , (1 –  x) moles 
of SO2 , and ½ (1 –  x ) moles of O2 ; that is,

 

SO O SO

initially,

upon reaction,

2 2 3
1
2

1
1
2

0

1
1
2

1
2

+ →

− −x x x

 

The total number of moles in the system, n T  , is

 n x x x xT = − + − + = −( )1 3
1
2

1
2

1
2
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and, since

 p
n

n
Pi

i

T

=  

then

 p
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SO O SO      2 2 3
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Thus,
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or

 ( ) ( )1 3 3 3 02 3 2 2 2 2− −  − PK x PK x PK x PKp p p p+ + =  (11.13)

which, with P  = 1 and K p   = 1.876, gives x  = 0.463. Thus, at equilibrium, there are 
0.537 moles of SO2 , 0.269 moles of O2 , and 0.463 moles of SO3 , such that

 

p

p

SO

O

 atm2

2

2 1 0 463
3 0 463

0 423

1 0 463
3 0 463

0

= =

= =

( . )
( . )

.

( . )
( . )

−
−

−
−

..212 atm
 

and

 pSO  atm3

2 0 463
3 0 463

0 365= × =.
( . )

.
−

 

As a check,

 Kp =
×

=0 365
0 423 0 212

1 8741 2

.
. .

.  

The composition of the equilibrium gas is thus 42.3% SO2 , 21.2% O2 , and 36.5% SO3 .

11.6.1 the effect of temperature

Since Δ H °  for the reaction given by Equation  11.12 is negative (– 94,600 J), and 
Le Chatelier’ s principle predicts that a decrease in temperature at constant pressure 
shifts the equilibrium in that direction which involves an evolution of heat, decreas-
ing the temperature at constant pressure causes the equilibrium to shift toward the 
SO3  side. At 900 K,
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 ∆ =°G900 14 167− ,  J  

 ln
,

.
. Kp =

×
=14 167

8 3144 900
1 893  

and thus,

 Kp = 6 64.  

Substituting K p   = 6.64 and P  = 1 atm into Equation  11.13 gives x  = 0.704, and 
thus,

 p p pSO O SO atm,  atm,  atm32 20 258 0 129 0 613= = =. . .  

As a check,

 Kp =
×

=0 613
0 258

6 641 2

.
.

.
0.129

 

Thus, of the total number of moles present,

• SO2  constitutes 25.8%, which is a decrease from 42.3% at 1000 K.
• O2  constitutes 12.9%, which is a decrease from 21.2% at 1000 K.
• SO3  constitutes 61.3%, which is an increase from 36.5% at 1000 K.

It is seen that a decrease in temperature has shifted the equilibrium toward the 
SO3  side.

11.6.2 the effect of Pressure

Although K p   is independent of pressure, Le Chatelier’ s principle predicts that 
an increase in total pressure at constant temperature shifts the equilibrium in that 
direction which involves a decrease in the number of moles in the system— that is, 
toward the SO3  side. Consider the equilibrium mixture at P  = 10 atm and T  = 1000 
K. Substituting P  = 10 and K p   = 1.876 into Equation  11.13 gives x  = 0.686, in which 
case n n nSO O SO, , 32 20 314 0 157 0 686= = =. . . . Thus,

 

p

p

SO

O

2

2

 atm= × =

= ×

2 1 0 686 10
3 0 686

2 714

1 0 686 10
3 0

( . )
( . )

.

( . )
( .

−
−

−
− 6686

1 357
)

.=  atm
 

and

 pSO3

2 0 686 10
3 0 686

5 929= × × =.
( . )

.
−

 atm  
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As a check,

 Kp =
×

=5 929
2 714 1 357

1 8751 2

.
. .

.  

Of the total number of moles present

• SO2  constitutes 27.1%, which is a decrease from 42.3% at P  = 1 atm.
• O2  constitutes 13.75%, which is a decrease from 21.2% at P  = 1 atm.
• SO3  constitutes 59.29%, which is an increase from 36.5% at P  = 1 atm.

Thus, it is seen that an increase in pressure has shifted the equilibrium toward 
the SO3  side.

11.6.3 the effect of Changes in temperature and Pressure

In order to simultaneously vary the temperature and the pressure in such a man-
ner that the numbers of moles of the three gaseous species present remain constant, 

Equation  11.13 indicates that the variation must be such that the term PKp
2  remains 

constant, where

 K
G

RT T
p = −









 =

⋅






⋅ −
exp exp

,
.

exp
.

.
∆ 0 94 600

8 3144
89 37

8 3144






 

It is apparent that, by mixing SO2  gas and SO3  gas, an equilibrium mixture with a 
known partial pressure of O2  can be produced. For example, consider that it was 
required to have an SO3 – SO2 – O2  mixture at 1 atm total pressure in which pO2 = 0 1.  
atm. To obtain this gas mixture, SO3  and SO2 , both at 1 atm pressure, would be 
mixed in the molar ratio SO2 /SO3  = a  and allowed to equilibrate. If a  moles of SO2  
and 1 mole of SO3  are mixed, then from the stoichiometry of Equation  11.12, x  moles 
of SO3  would decompose to form x  moles of SO2  and ½ x  moles of O2 , such that, at 
equilibrium, the number of moles present would be

 

SO O SO

initially,

upon reaction,

2 2 3
1
2
0 1

1
2

1

+ →

+
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a x x x−

 

with

 n a x x x a xT = + + + = + +1
2

1
1
2

2 2− ( )  

In this gas mixture,
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 p
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x

a x
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    2
2

2 2
= =

+ +
 

which, for P  = 1 and pSO2 0 1= . , gives a  = 4.5x  –  1. Also,
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p P

x a x

a x xP
p
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At 1000 K, K p   = 1.876. Thus, substituting for a  in terms of x  and taking Kp
2 3 519= .  

gives

 96 45 18 709 6 481 03 2. . .x x x−  − =  

or, since x ≠   0,

 96 45 18 709 6 481 02. . .x x− − =  

which has the solution x  = 0.374. Thus,

 a = ×( ) − =4 5 374 1 683. . .0 0  
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a x
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+ +

=
× + +
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+

2 2
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2 0 683 2 0 374
0 1

2 1
2 23
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.

( )−
++

=
× + +

=
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2 1 0 374
2 0 683 2 0 374
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( . )
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and

 p
a x

a x
SO2  at= +

+ +
= +

× + +
=2

2 2
2 0 683 0 374

2 0 683 2 0 374
0 565

( ) ( . . )
( . ) .

. mm  

In the equilibrium mixture, p pSO SO2 3 1 7= . ,  compared with p p aSO SO2 3 0 683= = .  
in the initial mixture. As a check,

 Kp =
×

=0 355
0 565 0 1

1 8751 2

.
. .

.  

If it had been required to have pO2 = 0 212.  atm (the equilibrium value of pO2  in an 
equilibrated gas at 1 atm pressure of initial composition 1 mole of SO2  + ½  mole of 
O2 ), then the solution of the stoichiometric condition would have given a  = 0, which 
indicates that pure SO3  at 1000 K and 1 atm pressure decomposes to the same equi-
librium gas mixture as that formed from an initial mixture of 1 mole of SO2  + ½  mole 
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of O2  at 1 atm. Thus, 0.212 atm is the maximum value of pO2  which can be produced 
in an SO2 – SO3  mixture at 1000 K and 1 atm total pressure.

11.7 eQUILIBrIUM IN h 2  O– h 2   AND CO 2  – CO MIXtUreS 

H2 O– H2  and CO2 – CO gas mixtures are used when it is required that the partial 
pressure of oxygen in a gas phase be fixed at a very low value. For example, if it 
were required to have a gaseous atmosphere containing a partial pressure of oxygen 
of 10– 10  atm, then such an oxygen potential can be obtained with relative ease by 
establishing the equilibrium

 H O  H O2 2 2+ =1
2

 

for which

 ∆G T° = − +247 5 55 85  J, .00  

From Equation  11.8,

 ln
,

,
.

.
 K

T
p =

⋅
247 500

8 3144
55 85

8 3144
−  

If it is required to have an atmosphere containing pO2 10 10= −  atm at T  = 2000 K, 
then, at this temperature,

 
ln

,
.

.
.

.

Kp =
⋅

=

247 500
8 3144 2000

55 85
8 3144

8 167

−
 

Therefore,

 K
p

p p
p

H

= × =3 521 103
1 2

2 2

. H O

O

2  

and with pO  atm,2 10 10= −

 
p

p
H

H

2

2

3 521 10 10 3 521 103 5 2O = × × = ×. .− −  

Thus, in the H2 – H2 O gas mixture, if pH2 = 1  atm, then pH O2  must be 0.0352 atm.
The saturated vapor pressure of liquid water at 27.0° C is found from

 log ( ) . log .  atmp
T

T= − − ⋅ +2900
4 65 19 732  
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to be 0.0352. Thus, the required gas mixture can be produced by bubbling hydrogen 
gas at 1 atm pressure through pure liquid water at 27.0° C to saturate it with water vapor. 
The establishment of reaction equilibrium at 2000 K gives pO2 = 10 10−  atm in the gas.

Similarly, the partial pressure of oxygen in a gaseous atmosphere can be deter-
mined by establishing the reaction

 CO O  CO2 2+ =1
2

 

The standard Gibbs free energy change for the reaction

 
CO O( ) ( ) ( )g g sC= +1

2 2

is

 ∆G T° = +111 7 87 65  J, .00  

and that for the reaction

 C O CO2 2( ) ( ) ( )s g g+ =  

is

 ∆G T° = − −394 1 84  J, .00 0  

Summation of the standard Gibbs free energy changes gives

 ∆G T° = − +282 4 86 81  J, .00  

for the reaction

 CO O CO( ) ( ) ( )g g g+ =1
2 2 2  

 Thus,

 ln
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⋅
282 400
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If it were required to have pO2 10 20= −  atm at 1000 K, then
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 K
p

p p

p

p
p = × = =

⋅
1 646 10

10
10

1 2 10
2

. CO

CO O

CO

CO

2 2
−  



401reaCtIons InvolvInG Gases

and so

 
p

p
CO

CO

2 1 646= .  

If the total pressure P  = 1 atm, then, since p pCO CO2 1+ = ,  the partial pressure, 
p pCO CO2 21 646 1 0 622= =. ( ) .−  atm and p CO  = 0.378. The required mixture is pro-

duced by mixing CO2  and CO in the volume ratio 1.561/1— that is, 62.2 volume 
percent CO2  and 37.8 volume percent CO.

In both of the preceding equilibria, the oxygen pressure in the equilibrated gas 
is so small that the p pH H2 2/ O  and p pCO CO/2  ratios in the equilibrated gases are neg-
ligibly different from the corresponding ratios in the initial mixtures. The equality 
of the ratio of the volume percentages with the ratio of the partial pressures in a gas 
mixture can be demonstrated as follows. Consider a  cm3  of gas A  at 1 atm pressure 
and b  cm3  of gas B  at 1 atm pressure being mixed at constant pressure (and hence at 
constant total volume, a  + b ). The number of moles of A n a RT a RTA= = + =( ) ,1 / /  
and the number of moles of B  = n B   = (1 ×  b )/RT  = b/RT . Therefore, in the mixture,

 p
n RT

V

n RT

a b
A

A A=
′
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 p
n RT

a b
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Thus,
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11.8 SUMMArY

 1. The equilibrium state of the reaction a A   + b B   = cC  + dD  is that in which 
aG bG cG dGA B C D+ = + .  The equilibrium state of the reaction is thus determined 
by the value of Δ G °  for the reaction and is quantified by the equilibrium constant 
K p  , where K p p p pp C

c
D
d

A
a

B
b= ( )eq  and the standard state for each reactant and prod-

uct gas is the pure gas at 1 atm pressure.
 2. Δ G °  and K p   are related by Δ G °  = – RT  ln K p  . This relation is one of the more 

powerful equations in chemical thermodynamics and will be used extensively in 
subsequent chapters. For increasingly negative values of Δ G°  , Kp  becomes increas-
ingly greater than unity, and, conversely, for increasingly positive values of Δ G ° , K p   
becomes increasingly less than unity.

 3. Since Δ G °  is a function only of temperature, K p   is a function only of temperature, 
and the dependence of K p   on temperature is determined by the value of Δ H°   for the 
reaction; that is,
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 ∆ ∆ ∆G H T S RT Kp° = ° − ° = − ln  

  and hence,

 ln K
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p = ∆ ° + ∆ °−  

  or

 
d K
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= ∆ °
2  

  or

  d K

d T

H

R
pln

( )1
= ∆ °−  

  Thus, for an exothermic reaction, K p   decreases with increasing temperature, and 
for an endothermic reaction, K p   increases with increasing temperature.

  4. Since p i   = X i  P  in an ideal gas mixture, the equilibrium constant can be written in 
terms of the mole fractions; that is,

  K
p p

p p

X X

X X
P K Pp

C
c

D
d

A
a

B
b

C
c

D
d

A
a

B
b

c d a b
x

c d a b= = =+ +( ) ( )− − − −  

  Although K p   is, by definition, independent of pressure, K x   is independent of pres-
sure only if (c  + d  –  a  –  b) = 0— that is, if the gas mixture contains a constant num-
ber of moles in all states along the reaction coordinate. If the forward progression 
of the reaction decreases the number of moles present (i.e., if [c  + d  –  a  –  b ] <  0), 
then an increase in pressure increases the value of K x  ; conversely, if (c  + d  –  a  –  b ) 
>  0, an increase in pressure decreases the value of K x  . The dependence of K x   on 
pressure and the dependence of K p   on temperature are examples of Le Chatelier’ s 
principle.

  5. If Δ H °  and Δ S °  are known for the reaction, the following can be stated.
• If Δ H °  >  0 and Δ S °  >  0, the reaction will occur spontaneously at high 

temperatures.
• If Δ H °  <  0 and Δ S °  <  0, the reaction will occur spontaneously at low 

temperatures.
• If Δ H °  >  0 and Δ S °  <  0, the reaction will not occur spontaneously.
• If Δ H °  <  0 and Δ S°  >  0, the reaction will occur spontaneously at all temperatures.

11.9 CONCePtS AND terMS INtrODUCeD IN ChAPter 11

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.
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Catalyst
Chemical affinity
Dynamic equilibrium
Equilibrium constant K P  
Equilibrium constant K X  
Gaseous reaction
Gibbs free energy change due to chemical reaction
Le Chatelier’ s principle
Reactants and products
Standard Gibbs free energy change
Stoichiometry

11.10 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

In Figure  11.2, the natural log of K P   was plotted against 1/T . Its slope was found to 
be −∆H R0 / . What is the value of its intercept with the ordinate axis?

Solution to Qualitative Problem 1 

Earlier we wrote ∆ ∆ ∆G H T S RT Kp° = ° − ° = − ln .
Hence, ln ) ( )K H RT S Rp = ∆ ° + ∆ °−( / / . In a plot of ln K P   versus 1/T , the intercept 

is ∆ °S R/ .
This value may be positive or negative depending on the magnitude of the ln K P   

intercept.
If the intercept of ln K P   > 1, the standard entropy change is positive, and if the 

intercept of ln K P   <  1, the standard entropy change of the reaction is <  0.

Qualitative Problem 2 

Use the Gibbs equilibrium phase rule to show that the gaseous reaction

 A B 2C+ =  

has only 2 degrees of freedom at a fixed temperature.

Solution to Qualitative Problem 2 

The Gibbs equilibrium phase rule is written as

 Φ + = +F C 2  

For Φ  = 1 and fixed temperature, we get

 F = C  
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In this case, the number of independent components is reduced by one since there is 
one reaction that exists among the components. Thus, F  = 2. Only 2 partial pressure 
can be chosen arbitrarily.

11.11 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Consider the partial decomposition of gaseous P4  according to

 P  2P4 2( ) ( )g g=  

Calculate

 a. The temperature at which X XP P4 2= = 0 5.  at a total pressure of 1 atm
 b. The total pressure at which X XP P4 2= = 0 5.  at 2000 K

 given that, for the reaction P 4(g)  = 2P 2( g  ) ,

 ∆G T T T° = + −225 400 7 90 209 4, . ln .  J  

Solution to Quantitative Problem 1 

 a. Since ∆ G °  = 225,400 + 7.90T  ln T  –  209.4T  J,

 ln
,

. ln .K
T

Tp = − − +27 109
0 95 25 18  (i)

 Partial decomposition of 1 mole of P4  produces (1 –  x ) moles of P4  and 2x  moles of 
P2 . Thus, for X x x xP4 / /= + = =( ) ( ) . ,1 1 0 5 1 3− , we can write

 
p P PP4

1
1
3

1
1
3

0 5=
+

















=
−

.
 

 and

 
p P PP2 =

×

+

















=
2

1
3

1
1
3

0 5.
 

 Thus, with X XP P4 2= = 0 5.  and the pressure P ,

 
K

p

p
Pp = =P

P

2

4

2

0 5.  (ii)
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 With P  = 1 atm, Equation  (i) gives

 ln ln( . )
,

. ln .K
T

Tp = = − − +0 5
27 109

0 95 25 18  

 which has the solution T  = 1429 K. Thus, at P  = 1 atm and T  = 1429 K, X XP P2 4= = 0 5.  
in a P4 – P2  mixture.

 b. From Equations  (i) and (ii):

 K Pp, . .2000 0 K  81 83  5= =  

 which gives P  = 163.6 atm. Thus, at P  = 163.6 atm and T  = 2000 K, X XP P4 2= = 0 5.  
in the mixture.

  The variations of XP4 and XP2  with temperature in an equilibrated P4 – P2  mixture 
at P  = 1 atm and at P  = 163.3 atm are shown in Figure  11.5. Since the dissociation of 
P4  is endothermic, increasing the temperature at constant pressure shifts the equi-
librium toward P2 , and since the dissociation increases the number of moles present, 
increasing the pressure at constant temperature shifts the equilibrium toward P4 .

Quantitative Problem 2 

Consider the cracking of gaseous ammonia according to the reaction

 2NH N 3H3 2 2( ) ( ) ( )g g g= +  (i)

1200
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Figure  11.5   the variations of the mole fractions of P2  and P4  with temperature in an equili-
brated P2 – P4  mixture at P  = 1 atm and at P  = 163.6 atm.
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under the following conditions:

 a. Constant total pressure
 b. Constant volume at 400° C

Solution to Quantitative Problem 2 

 a. The standard Gibbs free energy change for the reaction given by Equation  (i) is

 ∆G T T T° = − −87 030 25 8 31 7, . ln .  J  

 Therefore,

 ∆ =°G Kp673 47 370 K ,673 K J and  = 4748− ,  

 From the stoichiometry of the reaction, partial decomposition of 1 mole of NH3  
produces 3x  moles of H2 , x  moles of N2 , and (1 –  2x ) moles of NH3 . Thus, for

 
2 3

1 0 0

1 3

3 2 2NH N H

initially

upon decomposition,

→ +
,

− 2x x x

 

 and n T   = 1 –  2x  + x  + 3x  = 1 + 2x  moles. Thus,

 p
x

x
P p

x

x
P p

x

x
PH N NH2 3and=

+
=

+
=

+
3

1 2 1 2
1

1 22, ,
−  

 such that

 
K

p p

p

x P

x x
p,

( ) ( )
673 2

4 2

2 2
3

27
1 2 1

 K
H
3

N

NH

2 2= =
+ − 2

 (ii)

 Using the identity (1 –  y )(1 + y ) = 1 –  y 2 , Equation  (ii) can be written as

 K
x P

x
p = 27

1

4 2

2 2[ ) ]− (2
 

 or

 K
x P

x
p
1 2

2

2

5 196
1

= .
( )− 4

 

 Thus, for a constant total pressure of 1 atm,

 4748 1 4 5 196
1 2 2 2( ) −( ) =/

.x x  

 which has the solution x  = 0.4954. Thus, at equilibrium,
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 p
x

x

p
x

x

H

N

2  atm

 atm

=
+

=

=
+

=

3
1 2

0 7465

1 2
0 24882

.

.

 

 and

 p
x

x
NH3  atm=

+
=1 2

1 2
0 0047

− 
.  

 in which state, 99.08% of the NH3  has decomposed.
  An alternative approach to the problem is as follows. From the stoichiometry of 

the reaction, at all times

 p pH N2 = 3 2
 (iii)

 and

 P p p p= + +NH N H3 2 2
 (iv)

 Eliminating pNH3  and pH2  from Equations (iii) and (iv) and substituting into 
Equation  (ii) gives

 
K

p

P p
p

N

= 27

4
2

2

4

2
N

( )−
 

 or

 
K

p

P p
p
1 2

1 2 227

4
2

2

= ( )

( )
N

N−
 

 with P  = 1 atm,

 ( ) ( ) ( )478 1 271 2 1 24 N N
2

2 2− 4p p=  

 which gives

 p

p p
N

H N

2

2 2

 atm

 atm

=
= =

0 2488

3 0 7464

.

.
 

 and

 p p pNNH  atm3 2 21 0 0048= =− −Η .  

 b. Now consider that the decomposition occurs at constant volume. As the decom-
position reaction increases the number of moles of gas from 1 to (1 + 2x ), the 
reaction at constant P  increases the volume of the gas by the factor (1 + 2x ). 
From Le Chatelier’ s principle, an increase in pressure shifts the equilibrium in 
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that direction which decreases the number of moles of gas present— that is, in the 
direction 3H2  + N2  →  2NH3 . Thus, the extent of equilibrium decomposition of 
ammonia at constant volume will be less than that occurring at constant pressure 
and will cause an increase in pressure.

  As before,

 p
x

x
PH2 =

+
′3

1 2
 

 p
x

x
PN2 =

+
′

1 2
 

 and

 p
x

x
PNH3 =

+
′1 2

1 2
−  (v)

 where P'   is the pressure of the reacting mixture. Before decomposition begins, the 
1 mole of NH3  obeys the relation PV  = RT . The decomposition reaction, at constant 
V  and T , increases the number of moles of gas to (1 + 2x ) and hence increases the 
total pressure of the gas to P'  , where

 P V x RT′ = + 1  2( )  

 Therefore,

 V
RT

P

x RT

P
= = = +

′
constant

( )1 2  

 such that, in Equation  (v), the original pressure of NH3  at volume V  before decom-
position started is equal to P'  /(1 + 2x ). Thus, for an original pressure of P  = 1 atm, 
at equilibrium,

 p xH2 3=  

 p xN2 =  

 and

 p xNH3 1= − 2  

 Hence,

 K
x

x
p = 27

1 2

4

2( )−
 

 or

 K
x

x
p
1 2 1 2

1 2 2

4784
27
1

= =( )
( )
( )− 2
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 which has the solution x  = 0.4909. Thus,

 

p x

p x

p x

P pi

H

N

NH

2

2

 atm

 atm

 atm

= =
= =
= =

= =

3 1 4727

0 4909

1 0 01823

.

.

.− 2

11 9819 1 2. = +∑ x
i

 

 in which state, 98.18% of the NH3  has decomposed.
  It can be shown that the yield of NH3  formed by reaction between H2  and N2  is 

maximized when the reactants H2  and N2  are mixed in the molar ratio 3/1. In the 
mixture, P p p p= + +H N NH2 2 3 ,  and, at reaction equilibrium, let it be that

 p apH2 2= N
 

 Thus,

 p P a pNH N3 2= +− ( )1  

 or

 p
P p

a
p

a P p

a
N

NH
H

NH
2

3
2

3and=
+

=
+

− −
1 1

( )

( )
 

 and hence,

 K
p

p p

p

a P p a P p a

p

p = =
+ +

=

NH

H N

NH

NH NH

NH

3

2 2

3

3 3

3

2

3

2

31 1[ ( ) ( )] [( ) ( )]− −
22 4

3 4

1

3

( )

( )

a

a P p

+
− NH

 

 It now must be shown that pNH3  has its maximum value when a  = 3; that is,

 dp

da
aNH when3 0 3= =  

 The derivative is most easily obtained by taking the logarithms of Equation  (vi):

 ln ln ln ( ) ln ln( ) K a a P p p ap NH NH+ + − = + +3 4 2 4 13 3
 

 and differentiating to obtain

 3 4
1

2 4

3 3a a
da

p P p
dp−

−( ) ( )+








 = +











NH NH
NH3

 

 Thus, dp daNH3 / = 0  requires that 3/a  = 4/(1 + a ), or a  = 3.
  The stoichiometry of the reaction shows that, for the ratio p pH N2 2/  to have the 

value 3 in the equilibrium mixture, the reactants H2  and N2  must be mixed in the 
ratio 3/1.
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PrOBLeMS

11.1   A gas mixture of 50% CO, 25% CO2 , and 25% H2  (by volume) is fed to a furnace 
at 900° C. Determine the composition of the equilibrium CO– CO2 – H2 – H2 O gas 
if the total pressure of the gas in the furnace is 1 atm.

11.2   How much heat is evolved when 1 mole of SO2  and ½  mole of O2 , each at 1 atm 
pressure, react to form the equilibrium SO3 – SO2 – O2  mixture at 1000 K and 1 
atm pressure?

11.3   A CO2 – CO– H2 O– H2  gas mixture at a total pressure of 1 atm exerts a partial 
pressure of oxygen of 10– 7  atm at 1600° C. In what ratio were the CO2  and H2  
mixed to produce the gas with this oxygen pressure?

11.4   Lithium bromide vapor dissociates according to LiBr( g  )  →  Li( g  )  + ½ Br2,( g  ) . At 
what temperature does the partial pressure of Li reach the value of 10– 5  atm 
when the gas is heated at a constant total pressure of 1 atm?

11.5   When SO3  is decomposed at the constant pressure P  and T  = 1000 K, the partial 
pressure of O2  in the equilibrium gas is 0.05 atm. What is the pressure P?  If the 
pressure of this equilibrated gas is increased to 1 atm, to what value must the 
temperature be decreased to produce a gas mixture in which pO2 = 0 05.  atm?

11.6   For the dissociation of nitrogen according to

 N 2N2 =  

 ∆G T° = −945 114 9 J, .000  

 calculate
 a.  The equilibrium partial pressure of N in nitrogen gas at 3000 K and a total 

pressure of 1 atm
 b.  The total pressure of the gas, at 3000 K, at which the partial pressure of N2  

is 90% of the total pressure
11.7   Ammonia gas is heated to 300° C. At what total pressure is the mole fraction of 

N2  in the equilibrium gas mixture equal to 0.2? Calculate the standard enthalpy 
change and the standard entropy change for the reaction

  3
2

1
2

2 2 3H N NH( ) ( ) ( )g g g+ =  

 at 300° C.
 11.8  By establishing the equilibrium

  PCl  PCl  Cl5 3 2( ) ( ) ( )g g g= +  

  at 500 K in a mixture of PCl5  and PCl3 , a gas is obtained at 1 atm total pressure in 
which the partial pressure of Cl2  is 0.1 atm. In what ratio were PCl5  and PCl3  mixed 
to obtain this equilibrium gas?

11.9   Air and hydrogen are mixed in the ratio 1/4 and are heated to 1200 K. Calculate 
the partial pressures of H2  and O2  in the equilibrium gas at 1 atm pressure and 
at 10 atm pressure. Air contains 21 volume percent O2 .
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11.10   One mole of each of hydrogen, iodine vapor, and HI gas are allowed to react 
at 1500 K and P  = 1 atm. Calculate the mole fractions of H2 , I2 , and HI in the 
equilibrium mixture. The temperature is then changed to that value at which 
p HI  in the equilibrated gas is five times pH2 . What is this temperature?

11.11*  Consider the reduction of magnetite by CO to form pure iron:

  Fe O s CO g Fe s CO g3 4 24 3 4( ) ( ) ( ) ( )+ = +  

   Calculate the partial pressure of CO and CO2  in terms of the equilibrium 
constant K P   for the reaction.

11.12*   It is known that at 300 K, the value of K P   for a certain reaction is 1012 . For the 
reaction, Δ H °  is 100 kJ/mole.

 a.  Determine if this reaction is favorable at 800 K and estimate K P   (800K). 
Explain.

 b.  The actual value of K P   (800) is 35. Explain any discrepancy from your 
estimate.

11.13*  Sketch the natural log of K P   versus 1/T  for the following cases:
 a.  Δ H °  <  0 Δ S °  <  0
 b.  Δ H °  <  0 Δ S °  >  0
 c.  Δ H °  >  0 Δ S °  >  0
 d.  Δ H °  >  0 Δ S °  <  0

* New problem in this edition
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ChAPter 12

reactions Involving Pure Condensed 
Phases and a Gaseous Phase

12.1 INtrODUCtION

The criterion for equilibrium in a gaseous reaction system was discussed in 
Chapter 11. The question now is, how is the situation changed if one or more of the 
reactants or products of the reaction occurs as a condensed phase? In this chapter, we 
consider condensed phases that are of pure species— that is, are of fixed composi-
tion. Many practical systems occur in this category: for example, the reaction of pure 
metals with gaseous elements to form pure metal oxides, sulfides, halides, and so on. 
Questions of interest include

 1. What is the maximum oxygen pressure which can be tolerated in a gaseous atmo-
sphere without oxidation of a given metal occurring at a given temperature?

 2. To what temperature must a given carbonate be heated in a gaseous atmosphere 
of given partial pressure of carbon dioxide to cause the decomposition of the 
carbonate?

The first question is of interest in any of the many annealing processes that are 
performed in the laboratory or industrial plants. The second is of interest in, for 
example, the production of lime from limestone.

In such systems, complete equilibrium entails the establishment of

• Phase equilibrium among the individual condensed phases and the gas phase
• Reaction equilibrium among the various species present in the gas phase

Since phase equilibrium is established when the pure condensed phases exert 
their saturated vapor pressures, which are uniquely fixed when the temperature of 
the system is fixed, then the only pressures which can be varied at constant tempera-
ture are those of the species which exist only in the gas phase. The unique varia-
tions, with temperature, of the saturated vapor pressures of pure condensed-phase 
species and the relative insensitivity of the Gibbs free energies of condensed phases 
to changes in pressure considerably simplify the thermodynamic treatment of reac-
tion equilibria in systems containing both gaseous and pure condensed phases.
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12.2 reACtION eQUILIBrIUM IN A SYSteM CONtAINING 
PUre CONDeNSeD PhASeS AND A GAS PhASe

Consider the reaction equilibrium between a pure solid metal M, its pure oxide* 
MO, and oxygen gas at the temperature T  and the pressure P :

 M O MO( ) ( ) ( )s g s+ =1
2

2
 

Here we assume that the oxygen is insoluble in the solid metal and that MO is 
stoichiometric.

Both the metal M and the oxide MO are in equilibrium with their vapor species 
in the gas phase, as is required by the criterion for phase equilibrium; that is,

 G GM Min the gas phase in the solid metal phase( ) ( )=  

and

 G GMO MOin the gas phase in the solid oxide phase( ) ( )=  

Thus, the reaction equilibrium

 M O MO( ) ( ) ( )g g g+ =1
2

2
 

is established in the gas phase. From Equation  11.6, the criterion for this reaction 
equilibrium to occur at the temperature T  is

 G G G RT
p

p p
g g g

O

MO O M
MO

M
( ) ( ) ( ) ln� � �− − −1

2 2

2

1 2=  (12.1)

or

 ∆ =G RT
p

p p
� − ln MO

M O2

1 2
 

where Δ G °  is the difference between the Gibbs free energy of 1 mole of gaseous  MO 
at 1 atm pressure  and the sum of the Gibbs free energies of ½  mole of oxygen gas at 
1 atm pressure and 1 mole of gaseous  M at 1 atm pressure , all at the temperature T . 
Since M and MO are present in the system as pure solids, phase equilibrium requires 
that p MO  in Equation  12.1 be the saturated vapor pressure of solid MO at the tem-
perature T , and that p M  be the saturated vapor pressure of solid M at the temperature 
T . Thus, the values of p MO  and p M  in the gas phase are uniquely fixed by the tem-
perature T , and so the value of pO2 in Equation  12.1, at which reaction equilibrium 

* By pure oxide , it is meant that there is no third element dissolved in it. It acts as a single component.
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is established, is fixed at the temperature T . As stated previously, phase equilibrium 
in the system requires that

 G GM Min the gas in the solid metal phase( ) ( )=  (12.2)

and

 G GMO MOin the gas phase in the solid oxide phase( ) ( )=  (12.3)

Equation  12.2 can be written as

 G RT p G V dPg g s s
P

P p g

M M M M

M

( ) ( ) ( ) ( )ln
( )

� �+ = +
=

=

∫ 1
 (12.4)

and Equation  12.3 can be written as

 G RT p G V dPg g s
P

P p g

MO MO MO MO

MO

( ) ( ) ( )ln
( )

� �+ = +
=

=

∫ 1
 (12.5)

Consider Equation  12.4.

• G sM( )
�  is the molar Gibbs free energy of solid M under a pressure of 1 atm at the 

temperature T .
• The integral V dPsP

P p g
M

M
( )

( )
=
=

∫ 1  is the effect of a change in pressure from P  = 1 atm 
to P  = P  on the value of the molar Gibbs free energy of solid M at the temperature 
T  (where V M( s  )  is the molar volume of the solid metal at the pressure P  and tem-
perature T ).

In the following, it is shown that the value of the integral is negligible compared 
with the other values in Equation  12.4, and hence Equation  12.4 can be written as

 G RT p Gg g sM M M( ) ( ) ( )ln� �+ =  (12.4a)

As an example to show this is the case, consider iron as a typical metal at a tempera-
ture of 1000° C. The saturated vapor pressure of solid iron at 1000° C is 6 ×  10– 10  
atm, and thus, the term RT  ln p M  ( g  )  has the value 8.3144 ×  1273 ×  ln (6 ×  10– 10 ) = 
– 224,750 J. The molar volume of solid iron at 1000° C is 7.34 cm3 , which in the range 
0– 1 atm is independent of pressure. The value of the integral for P  = 6 ×  10– 10  atm 
is – 7.34 ×  1 cm3 · atm = – 0.74 J. It is thus seen that G gFe( )

�  at 1000° C is much larger in 
value than G sFe( )

�  at 1000° C, which is to be expected in view of the large metastabil-
ity of the iron vapor at 1 atm pressure and a temperature of 1000° C with respect to 
the solid. Since the value of the integral (– 0.74 J), is small compared with – 224,750 J, 
Equation  12.4 can be written as Equation  12.4a.

As a consequence of the negligible effect of pressure on the Gibbs free energy of 
a condensed phase (when the pressure is in the range 0– 1 atm), the standard state of 
a species occurring as a condensed phase can be defined as being the pure species at 
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the temperature T ; the specification that the pressure be 1 atm is no longer required. 
G sM( )
�  is now simply the molar Gibbs free energy of pure solid M at the temperature T .

Similarly, Equation  12.5 can be written as

 G RT p Gg g sMO MO MO( ) ( ) ( )ln� �+ =  (12.5a)

and thus, Equation  12.1 can be written as

 G G G RT
p

s g sMO O M

O

( ) ( ) ( ) ln� � �− − −1
2

1
2

2

1 2=










 

or

 ∆G RT K° = – ln  (12.6)

Where K pO= 1 2

1 2/ / , and Δ G °  is the standard Gibbs free energy change for the reaction 

 M O MO( ) ( ) ( )s g s+ =1
2

2
 

Thus, in the case of a reaction equilibrium involving only pure condensed phases and 
a gas phase, the equilibrium constant K  can be written solely in terms of those species 
which occur only in the gas phase. Again, since Δ G °  is a function only of temperature, 
then K  is a function only of temperature. Thus, at any fixed temperature, the establish-
ment of reaction equilibrium occurs at a unique value of p p TO O eq2 2= ( . ). The equilibrium 
has one thermodynamic degree of freedom, as can be seen from application of the Gibbs 
equilibrium phase rule:

 Φ = ( )3 two pure solids and a gas phase  

 C = +2 metal M oxygen( )  

Thus, 

 F = + = + =C 2  2 2 3 1– –Φ  

If, at any temperature T , the actual partial pressure of oxygen in a closed metal– metal 
oxide– oxygen system is greater than p TO eq2 ( . ), spontaneous oxidation of the metal 
will occur, consuming oxygen and decreasing the oxygen pressure in the gas phase. 
When the actual oxygen pressure has thus been decreased to p TO eq2 ( . ) , then, provided 
that both solid phases are still present, the oxidation ceases and reaction equilibrium 
is reestablished. Similarly, if the oxygen pressure in the closed vessel was originally 
less than p TO eq2 ( . ), spontaneous reduction of the oxide would occur until p TO eq2 ( . )  was 
reached.
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Extraction metallurgical processes involving the reduction of oxide ores depend 
on the achievement and maintenance of an oxygen pressure less than p TO eq2 ( . ) in the 
reaction vessel. For example, the standard Gibbs free energy change for the reaction

 4Cu O 2Cu O2 2s g s( ) ( ) ( )+ =  

is

 ∆G T° = +– , .324 4 138 5 J00  

in the temperature range 298– 1200 K. Thus,

 − ln ln ( . )K p
G

RT
T= = ∆

O eq2

�
 

or

 
log

,
. .

.
. .

,

( . )p
T

TO eq2

324 400
2 303 8 3144

138 5
2 303 8 3144

16 9

=
×

+
×

=

−

− 440
7 23

T
+ .

 

This variation of log p TO eq2 ( . )  with 1/T  is drawn as the line ab  in Figure 12.1a, 
and all points on the line represent the unique oxygen pressure, p TO eq2 ( . ), required 
for equilibrium between solid Cu, solid Cu2 O, and oxygen gas at the particular 
temperature T . Thus, the line ab  divides the diagram into two regions. Above the 
line ab  (where p p TO O eq2 2> ( . )), the metal phase is not stable, and thus, the system 
exists as Cu2 O( s  )  + O2( g  ) ; below the line ab  (where  O O eqp p T2 2< ( . )), the oxide is not 
stable, and hence the system exists as Cu( s  )  + O2( g  ) .

Other equilibria among two condensed pure phases and a gas phase include the 
formation of hydroxides and carbonates.

For example, at the temperature T , the equilibrium

 MO H O M OH2 2s g s( ) ( )+ = ( ) ( )  

occurs when

 G G RT p Gs sMO H O(g) H O M OH( ) ( )ln ( )

� � �+ + =2 2 2
 

that is, when

 ∆ = =G RT K RT p T
� − ln ln ( . )H O eq2

 

Similarly, the equilibrium
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Figure  12.1   (a) the variation, with temperature, of the oxygen pressure required for mainte-
nance of the equilibrium 4Cu( s  )  + o2  = 2Cu2 o. (b) the variation, with tempera-
ture, of the carbon dioxide pressure required for maintenance of the equilibrium 
mgo( s  )  + Co2  = mgCo3( s  ) .
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 MO CO MCO2 3s g s( ) ( ) ( )+ =  

occurs when

 G G RT p Gs g T sMO CO CO eq MCO( ) ( ) ( . ) ( )ln� � �+ + =2 2 3
 

that is, when

 ∆ = =G RT K RT p T
� − ln ln ( . )CO eq2

 

For the reaction

 MgO CO MgCO

   J
( ) ( ) ( )

,
s g s

G T

+ =
∆ = +

2 3

117 600 170� −
 

in the temperature range 298 to 1000 K, and thus,

 
log

,
. . . .

( . )p
T

TCO eq
    2

117 600
2 303 8 3144

170
2 303 8 3133

6

=
×

+
×

=

−

− 1141
8 88

T
+ .

 

This variation is shown in Figure 12.1b as the line cd , which again divides the dia-
gram into two regions: one in which MgO( s  )  + CO2( g  )  are stable, and one in which 
MgCO3( s  )  + CO2(g)  are stable.

12.3 the VArIAtION OF the StANDArD GIBBS 
Free eNerGY ChANGe WIth teMPerAtUre

For any chemical reaction, combination of Equations 6.11 and 6.12 gives Δ G °  for 
the reaction as a function of temperature:

 
∆ = ∆ ∆

= ∆ + ∆ ∆ ∆∫ ∫
G H T S

H c dT T S T
c

T
dT

T T T

p

T
p

T

� � �

� �

−

− −298 298
298 298

 (12.7)

from which it is seen that the deviation from linearity between Δ G °  and T  depends 
on the sign and the magnitude of Δ c p   for the reaction. Generally, however, the varia-
tion of Δ G °  with T  is considered as follows. For each of the individual reactants and 
products of the reaction, the molar heat capacity, c p  , is expressed, over a stated range 
of temperature, in the form

 c a bT cTp = + + –2  
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Hence, for the reaction, again within the stated range of temperature,

 ∆ ∆ ∆ ∆c a bT cTp = + + –2  

From Kirchhoff’ s law:

 ∂∆
∂









 = ∆ = ∆ + ∆ + ∆H

T
c a bT cT

P

p

�
−2  

where Δ H °  is the standard enthalpy change for the reaction. Integration gives

 
∆ = ∆ + ∆ + ∆ ∆

H H aT
bT c

T
T
�

0

2

2
−

 (12.8)

where Δ H0  is an integration constant which would be equal to the standard enthalpy 
of the reaction at 0 K only if the analytical expression for Δ c p   as a function of T  was 
valid down to 0 K. Δ H0 is normally evaluated by substituting a known value of ∆HT

°  
into Equation  12.8.

The Gibbs– Helmholtz equation for the reaction is

 
∂ ∆









∂
= ∆ = ∆ ∆ ∆ + ∆

G

T

T

H

T

H

T

a

T

b c

T

�

�

− − − −2
0

2 32
 

integration of which gives

 ∆ = + ∆ ∆ ∆ ∆G

T
I

H

T
a T

bT c

T

�
0

22 2
− − −ln  

or

 ∆ = + ∆ ∆ ∆ ∆
G IT H aT T

bT c

T
�

0

2

2 2
− − −ln  (12.9)

where I  is an integration constant.
Since Δ G °  = – RT  ln K , then Equation  12.9 gives

 ln
ln

K
H

RT

I

R

a T

R

bT

R

c

RT
= ∆ + ∆ + ∆ + ∆− −0

22 2
 (12.10)

In Appendix 12A, the value of the constant I  is found to be 171.7 J/K.
The variation of ∆GT

� , as calculated from the experimentally measured variation 
of p TO eq.2 ( ) with temperature, can be fitted to an equation of the form

 ∆G A BT T CT° = + +ln  
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For the oxidation of 4Cu( s  )  to 2Cu2 O( s  ) , this gives

 ∆G T T T° = +– , – .338 9 14 2 ln 247 J00  (ii)

which can be approximated in linear form by

 ∆G T° = +– , .333 141 3 J000  (iii)

Equations 12A(i), (ii), and (iii) give, respectively, – 282.8, – 289.1, and – 290.6 kJ, and, 
at 1200 K, give – 169.7, – 163.3, and – 163.4 kJ.

It can be noticed that Equation  12.10 is similar to the vapor pressure equation 
(Equation  7.8). The relationship between the two can be seen as follows. Consider 
the evaporation of A :

 A Al v( ) ( )=  

Equilibrium occurs at the temperature T  when

 G G RT pA l A v A( ) ( ) ln� �= +  

that is, when

 ∆G RT p RT KA° = =– –ln ln  

If the liquid and the vapor have the same molar heat capacity, then

 ln p
G

RT

H

RT

S

R
A = ∆ = ∆ + ∆− −

� � �
 

This is to be compared with Equation  7.6a (Chapter 7), which gave

 ln p
H

RT
A = ∆ +− evap constant  

If the vapor behaves ideally, then, at constant temperature, H ( v  )  is independent of 
pressure, and thus,

 ∆ = = = ∆H H H H H Hv l v l
� � �

( ) ( ) ( ) ( )− − evap  

However, from Equation  6.15, for the vapor

 S T p S R pA T A( , ) ln= � −  
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and thus,

 
∆ =

= +
= ∆ +

→S S S

S S R p

S R p

l v v l

v l A

A

( ) ( ) ( )

( ) ( ) ln

ln

� � �

�

−
−

evap

 

The constant in Equation  7.6a thus has the value Δ S evap /R  + ln p A  , and Equation  7.6a 
becomes

 ln lnp
H

RT

S

R
pA A= ∆ + ∆ +− evap evap  

indicating that when the vapor is in equilibrium with the liquid at the temperature T ,

 ∆ = ∆
S

H

T
evap

evap  

or, as is required,

 ∆Gevap  = 0  

12.4 eLLINGhAM DIAGrAMS

Ellingham* (Harold Johann Thomas Ellingham, 1897– 1975) plotted the experi-
mentally determined variations of Δ G °  with T  for the oxidation and sulfidation of 
a series of metals and found that, in spite of the terms involving ln T , T 2 , and T – 1  in 
Equation  12.9, the relationship approximated to straight lines over ranges of tem-
perature in which no change of state occurred. The relations could thus be expressed 
by means of the simple equation

 ∆G A BT° = +  (12.11)

in which the constant A  is identified with the temperature-independent standard 
enthalpy change for the reaction, Δ H ° , and the constant B  is identified with the nega-
tive of the temperature-independent standard entropy change for the reaction, – Δ S ° .

The variation of Δ G °  with T  for the oxidation reaction

 4Ag O 2Ag O2 2( ) ( )s g s+ =( )  

* H. J. T. Ellingham, “ Reducibility of Oxides and Sulfides in Metallurgical Processes,”  J. Soc. Chem. 

Ind.  (1944), vol. 63, p. 125.
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is shown in Figure 12.2, which is known as an Ellingham diagram . From 
Equation  12.11, the length of the intercept of the line with the T  = 0 K axis gives 
Δ H ° , and Δ S °  is given by the negative of the slope of the line. Since Δ S °  is a nega-
tive quantity (the reaction involves the disappearance of a mole of gas), the line has a 
positive slope. Δ G °  = 0 at T  = 462 K, and thus, at this temperature, pure solid silver 
and oxygen gas at 1 atm pressure are in equilibrium with pure solid silver oxide. 
From Equation  12.6, Δ G °  = – RT  ln K  = RT  ln p TO eq2 0( . ) =  at 462 K, and, there-
fore, pO eq  K2 462 1( . ) = . If the temperature of the system (pure Ag2 O, pure Ag( s  ) , and 
oxygen gas at 1 atm pressure) is decreased to T 1 , then, since Δ G °  for the oxidation 
reaction becomes negative, the metal phase becomes unstable relative to silver oxide 
and oxygen gas at 1 atm pressure and is hence spontaneously oxidized. The value 
of p TO eq2 1( . )  is calculated from ∆ =G RTT1 1

�  ln p TO eq2 1( . ) , and, as ∆GT1

�  is a negative 
quantity, p TO eq.2 1( )  <  1 atm.

Similarly, if the temperature of the system is increased from 462 K to T 2 , then, 
since Δ G °  for the oxidation becomes positive, the oxide phase becomes unstable 
relative to silver metal and oxygen gas at 1 atm and spontaneously dissociates. Since 
∆GT2

 is a positive quantity, p TO eq2 2( . )  is greater than 1 atm. The value of Δ G °  for 
oxidation is thus a measure of the chemical affinity of the metal for oxygen, and the 
more negative the value of Δ G °  at any temperature, the more stable is the oxide.

For the oxidation reaction A( s  )  + O2(g)  = AO2( s  ) ,

 ∆ =S S S Ss g s
� � � �

AO O A2 2( ) ( ) ( )− −  
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Figure  12.2   the ellingham line for the oxidation of silver.
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and since, generally, in the temperature range in which A and AO2  are solid, SO2

�  
is considerably greater than both SA

�  and SAO2

�  (see, for example, Figure 6.15), 
then

 ∆S S� �~ O2
 

Thus, the standard entropy changes for oxidation reactions involving solid phases 
have nearly the same values, which correspond to the disappearance of 1 mole of 
oxygen gas initially at 1 atm pressure. Since the slopes of the lines in an Ellingham 
diagram are equal to – Δ S ° , the lines are more or less parallel to one another, as will 
be seen in the Ellingham diagram presented in Section 12.6.

Δ G °  at any temperature is the sum of the enthalpy contribution Δ H°   (which is 
independent of T  if Δ c p   = 0) and the entropy contribution – T Δ S  (which, if Δ c p   = 0, 
is a linear function of temperature). The two contributions are illustrated in Figure 
12.3 for the oxidation reaction of cobalt:

 2Co  O  2CoO2( ) ( ) ( )s g s+ =  

for which

 ∆G T° = +– , .467 8 143 7 J00  

in the temperature range 298– 1763 K, and for the oxidation reaction of manganese,

 2 22Mn O MnO( ) ( ) ( )s g s+ =  

for which

 ∆G T° = +– , .769 4 145 6 J00  

in the temperature range 298– 1500 K.
Since the values of Δ S°   for these two reactions are virtually equal to one another, 

Figure 12.3 shows that the relative stabilities of the oxides CoO and MnO are deter-
mined by their values of Δ H ° , in that the more negative the value of Δ H ° , the more 
negative the value of Δ G°  , and hence the more stable the oxide. Since

 ln ln
( )

K
H

RT

S

R p T

= ∆ + ∆ =








−

� � 1

2O eq.

 

then

 p
H

RT

S

R

H

RT
TO eq constant exp2 ( . ) exp exp= ∆ ∆ = × ∆� � �−  
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Since Δ H °  is a negative quantity, p TO eq2 ( . )  increases exponentially with increas-
ing temperature and, at any temperature, p TO eq2 ( . )  decreases as Δ H °  becomes more 
negative.

Consider two oxidation reactions, the Ellingham lines of which intersect each 
other; for example,

 2A O 2AO2+ =  (i)

and

 B O BO2 2+ =  (ii)

which are shown in Figure 12.4. From Figure 12.4 it is seen that ∆H( )ii
°  is more 

negative than ∆H( )i
°  and that ∆S( )ii

°  is more negative than ∆S( )i
° . The subtraction of 

reaction (i) from reaction (ii) gives

 B 2AO 2A BO2+ = +  (iii)

for which the variation of Δ G °  with T  is as shown in Figure 12.5. At temperatures 
less than T E  , A and BO2  are stable with respect to B and AO, and at temperatures 
higher than T E  , the reverse is the case. At T E  , A, B, AO, and BO2 , occurring in their 
standard states, are in equilibrium with one another. The equilibrium at T E   (as with 
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Figure  12.3   Illustration of the effect of the magnitude of Δ H °  on the Δ G °  –  T  relationships for 
reactions of the type 2m( s  )  + o2( g  )  = 2mo( s  ) .
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any equilibrium) occurs as the result of a compromise between enthalpy and entropy 
considerations. Since ∆H( )iii

�  = ∆ ∆H H( ) ( )ii i
� �−  <  0 and ∆S( )iii

�  = ∆ ∆S S( ) ( )ii i
� �−  <  0, the 

system A + B + O2  has

• A minimum enthalpy when the system occurs as A + BO2 
• A maximum entropy when the system occurs as B + AO

At T E  , ∆H( )iii
�  equals – T SE∆ ( )iii

� , and thus, ∆ =G( )ii
� 0. At temperatures less than 

T E  , the enthalpy contribution to ∆G( )iii
�  outweighs the entropy contribution, and thus, 

∆G( )iii
�  is negative and A + BO2  is the stable state. At temperatures greater than T E  , 

the reverse is the case: ∆G( )iii
�  is positive and B + AO is the stable state.

Figure 12.5 thus shows that if pure A were to be used as a reducing agent to 
reduce pure BO2 , to form pure B and pure AO, then the reduction would have to be 
conducted at temperatures greater than T E  . The foregoing discussion also illustrates 
that, in order to compare the stabilities of different oxides, the Ellingham diagrams 

0

B + O 2 =  BO 2

K TE

DG°

T

2A + O2 = 2AO

Figure  12.4   Intersecting ellingham lines for two hypothetical oxidation reactions.
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0
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T

Figure  12.5   the variation of Δ G °  with T  for B + 2ao = 2a + Bo2  from figure 12.4.
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must be drawn for oxidation reactions involving the consumption of the same num-
ber of moles of oxygen. Thus, the unit of Δ G °  for the oxidation reaction must be one 
of energy (e.g., joules) per mole of oxygen.

In order to avoid having to calculate the value of p TO eq2 ( . ) for any oxidation reac-
tion, Richardson* added a nomographic scale to the Ellingham diagram. This scale 
is constructed as follows. At any temperature T , the standard Gibbs free energy 
change for an oxidation reaction, ∆GT

� , is given by Equation  12.6 as RT  ln p TO eq2 ( . ). 
However, from Equation  8.7, 

 G G RT P= ° + ln  

∆GT
�  is seen to be numerically equal to the decrease in the Gibbs free energy of 1 

mole of oxygen gas when its pressure is decreased from 1 atm to p TO eq2 ( . )  atm at the 
temperature T . Consider the variation of Δ G  with T  in Equation  8.7. For a decrease 
in the pressure of 1 mole of ideal gas from 1 atm to P  atm, Δ G  versus T  is a straight 
line with a slope of R  ln P , and, since P  <  1, the line has a negative slope. Similarly, 
for an increase in the pressure of 1 mole of ideal gas from 1 to P  atm, the variation 
of Δ G  with T  is linear with a positive slope of R  ln P . Thus, a series of lines can be 
drawn for given pressure changes (from 1 to P  atm) as a function of temperature. 
These lines radiate from the point Δ G  = 0, T  = 0, as shown in Figure 12.6. The 
superimposition of Figure 12.6 with a typical Ellingham diagram is shown in Figure 
12.7. In Figure 12.7,

* F. D. Richardson and J. H. E. Jeffes, “ The Thermodynamics of Substances of Interest in Iron and Steel 
Making from 0° C to 2400° C: I— Oxides,”  J. Iron and Steel Inst.  (1948), vol. 160, p. 261.
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1 mole of ideal gas in the state (P  = 1 atm, T ).
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• At T 1 , ∆GT1

�  = ab  = the decrease in Gibbs free energy when pO2  is decreased from 
1 atm to 10– 20  atm at T 1 .

• At T 2 , ∆GT2

�  = cd  = the decrease in Gibbs free energy when pO2  is decreased from 
1 atm to 10– 8  atm at T 2 .

• At T 3 , ∆GT3

�  = ef  = the decrease in Gibbs free energy when pO2  is decreased from 
1 atm to 10– 4  atm at T 3 .

• At T 4 , Δ G  = 0, which corresponds to no change of pO2  from 1 atm. Thus, p TO eq2 4( . )  
= 1 atm.

The p TO eq2 ( . )  nomographic scale is thus added to the Ellingham diagram along 
the right-hand edge and along the bottom edge. The value of p TO eq2 ( . )  for any 
metal– metal oxide equilibrium is read off the graph as that value on the scale which 
is collinear with the points Δ G °  = 0, T  = 0, and ∆GT

� , T  = T .
The reactions (i) and (ii) shown in Figure 12.4 can be reexamined using the 

p TO eq.2 ( )  nomographic scale. Figure 12.4 is reproduced with a nomographic oxygen 
pressure scale in Figure 12.8. At any temperature lower than TE  (say, T 1 ), it is seen that

 pO2  (equation for reaction (ii) at T 1 ) < pO2  (equation for reaction (i) at T 1 )

Thus, if metal A and metal B are placed in a closed system in an atmosphere of oxy-
gen at P  = 1 atm, both metals spontaneously oxidize. As a consequence of the con-
sumption of oxygen to form the oxides, the pressure of oxygen decreases. Oxidation 
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Figure  12.7   the superimposition of an ellingham line onto figure 12.6.
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of both metals continues until the oxygen pressure is decreased to the value pO2  
(equation for reaction (i) at T 1 ), at which point the oxidation of A ceases. However, 
since B + O2  at pO2  (equation for reaction (i) at T 1 ) is still unstable with respect to 
BO2 , the oxidation of B continues until the oxygen pressure has been decreased to 
pO2  (equation for reaction (ii) at T 1 ). Since the oxygen pressure is decreased below 
pO2  (equation from reaction (i) at T 1 ), then AO becomes unstable with respect to 

A and O2  at the prevailing pressure, and hence AO decomposes. When complete 
equilibrium is attained, the state of the system is A + BO2  + O2  at pO2  (equation for 
reaction (ii) at T 1 ). 

At any temperature higher than T E   (say, T 2 ),

 p T pO 2 Oequation for reaction i  at equation for reacti2 2( )( ) < oon ii  at 2( ) T( )  

and an argument similar to this shows that the equilibrium state of the closed system 
containing, initially, A + B + O2  at 1 atm pressure, is B + AO + O2  at pO2  [equation 
for reaction (i) at T 2 ]. It is thus obvious that A, B, AO, BO2 , and an oxygen atmo-
sphere are in equilibrium only at that temperature T  at which

 p pT TO eq i] O eq ii]2 2( .[ ) ( .[ )=  

Figure 12.8 shows that this unique temperature is T E  , the temperature at which the 
Ellingham lines intersect one another. The system has no degrees of freedom.
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Figure  12.8   Illustration of the addition of the richardson oxygen pressure nomographic 
scale to an ellingham diagram.
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12.5 the eFFeCt OF PhASe trANSFOrMAtIONS

In the previous section, it was stated that the variation of Δ G °  with temperature 
can be approximated by a straight line only over ranges of temperature in which no 
change of phase of a reactant or product occurs. However, the enthalpy of a high-
temperature phase (e.g., the liquid phase) exceeds that of a low-temperature phase 
(e.g., the solid phase) by the latent enthalpy of the phase change. Similarly, the entropy 
of the higher-temperature phase exceeds that of the lower-temperature phase. Thus, a 
change in the slope of the Δ G °  line (an elbow ) occurs on an Ellingham line at the tem-
perature of a phase change in either a reactant phase or product phase of the reaction.

Consider the reaction

 A O AO2 2( ) ( ) ( )s g s+ =  

for which Δ H °  is the standard enthalpy change and Δ S °  is the standard entropy 
change. At T m  ,A , the melting temperature of A, the change of phase

 A  A( ) ( )s l→  

occurs, for which the standard enthalpy change (the enthalpy of melting) is ∆Hm,A
�  

and the corresponding change in entropy is ∆Sm,A
� . Thus, for the reaction

 A O AO2 2l g s( ) + =( ) ( )  

the standard enthalpy change is ∆ ∆H Hm
� �− ,A  and the standard entropy change is 

∆ ∆S Sm
� �− ,A . Since ∆Hm,A

�  and ∆Sm,A
�  are positive quantities (melting is an endo-

thermic process), then Δ H °  –  Δ H°  m  ,A  is a larger negative quantity than is Δ H °  and 
Δ S °  – ∆Sm,A

�  is a larger negative quantity than is Δ S ° . Consequently, the Ellingham 
line for the oxidation of liquid A to form solid AO2  has a greater slope than the cor-
responding line for the oxidation of solid A, and the line contains an elbow upward  
at T m  ,A . This is shown in Figure 12.9a. The line does not contain a discontinuity, 
since, at T m  ,A , G Gs lA A( ) ( )

� �= . 
If the melting temperature of the oxide, Tm,AO2, is lower than the melting tem-

perature of the metal, then, at Tm,AO2 , the change of phase

 AO  AO2 2s l( ) ( )→  

occurs, for which the standard enthalpy and entropy changes are, respectively, 
∆Hm,AO2

�  and ∆Sm,AO2

� . Thus, for the reaction

 A O AO2 2( ) ( ) ( )s g l+ =  

the standard enthalpy change is ∆ + ∆H Hm
� �

,AO2  and the standard entropy change 
is ∆ + ∆S Sm

� �
,AO2, both of which are less than the corresponding quantities Δ H °  and 
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Δ S ° . In this case, the Ellingham line for oxidation of the solid metal to produce the 
liquid oxide has a lower slope than the line for oxidation of the solid metal to the 
solid oxide, and thus, as shown in Figure 12.9b, the Ellingham line has an elbow 
downward  at Tm,AO2. In brief, if T Tm m, ,A AO< 2, the Ellingham line is as shown in 
Figure 12.10a, and, if T Tm m, ,A AO> 2, the line is as shown in Figure 12.10b.

12.5.1 example of the Oxidation of Copper

Copper is a metal which melts at a lower temperature than its lowest oxide Cu2 O. 
The standard Gibbs free energy change for the oxidation of solid copper to form 
solid cuprous oxide in the range of temperature 298 K to T m  ,Cu  is

 ∆G T T T° = +– , – .338 9 14 2 ln 247 J00  (i)

Tm,A T Tm,AO2 T

0 K 0 K

DG° DG°

DH°m,A
DH°m,AO2

A(s) + O2 = AO(s)

A (I)
 + O 2

 = AO (s)

A(s) + O2 = AO(I)

A (s) +
 O 2

 = AO (s)

(a) (b)

Figure  12.9   (a) the effect of melting of the metal on the ellingham line for the oxidation of 
the metal. (b) the effect of melting of the metal oxide on the ellingham line for 
the oxidation of the metal.

Tm,A

DG° DG°

Tm,AO2
Tm,AO2

T Tm,A T
(a) (b)

Figure  12.10   Illustration of the effects of phase changes of the reactants and products of a 
reaction on the ellingham line for the reaction.
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and for the oxidation of liquid copper to form solid cuprous oxide in the range of 
temperature T m  ,Cu  to 1503 K,

 ∆G T T T° = +– , – . . 39 8 14 2 ln 285 3 J0 00  (ii)

These two lines, which are drawn in Figure 12.11, intersect at 1356 K, which is the 
melting temperature of copper. ∆ ∆G G( ) ( )l ii

� �−  gives

 ∆G T= −51 9 38 3 J, .00  

for the phase change

 4Cu 4Cu( ) ( )s l=  

or, for the melting of 1 mole of Cu,

 ∆ =G Tm, , .Cu  J� 12 970 9 58−  

from which

 ∆ =Hm, ,Cu  J� 12 970  
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Figure  12.11   the ellingham line for the oxidation of copper.
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and

 ∆ =Sm, .Cu  J/K� 9 58  

Thus, at T m  ,Cu , the slope of the Ellingham line for the oxidation of Cu increases by 
9.58 J/K.

12.5.2 eXAMPLe OF the ChLOrINAtION OF IrON

Since FeCl2  boils at a lower temperature than the melting temperature of Fe, the 
Ellingham diagram for the chlorination of Fe shows elbows downward at the melting 
temperature of FeCl2  and at the boiling temperature of FeCl2 . For

 Fe Cl FeCl2 2( ) ( ) ( )s g s+ =  

 ∆G T T T° = +– , – . .346 3 12 68 ln 212 9 J00  (iii)

in the range 298 K to Tm,FeCl2. For

 Fe C1 FeC12 2( ) ( ) ( )s g l+ =  

 ∆G T° = +– , . 286 4 63 68 J00  (iv)

in the range Tm,FeCl2  to Tb,FeCl2. For 

 Fe Cl  FeCl2 2( ) ( ) ( )s g g+ =  

 ∆G T T° = +– , . – .1 5 6 41 87 ln 375 1 J0 00  (v)

in the range Tb,Cl2  to T m  ,Fe . Lines (iii), (iv), and (v) are shown in Figure 12.12, which 
shows that

 T Tm b, ,FeCl FeCl K and  K2 2969 1298= =  

For FeCl2( s  )  →  FeCl2( l  ) , ∆ − ∆G G( (iv) iii)
� �  gives

 ∆ = +G T T Tm, , . ln .FeCl  J2 59 900 12 68 149 0� −  

Thus,

 ∆ =
∂ ∆( )

∂













=H T
G T

T
Tm

m

,

,
, .FeCl

FeCl
 J2

22 59 900 12 68�
�

− −  
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which, at 969 K, gives ∆Hm,FeCl2
�  = 47,610 J.

 

∆ = ∂∆
∂

= +
=

S
G

T
T

m
m

,
,

. ln . .

.

FeCl
FeCl

   J/K

2
2

12 68 12 68 149 0

49 13

�
�

− −
  J/K at  K969

 

or, alternatively,

 ∆ = ∆ = =S
H

T
m

m

m
,

,

,

,
.FeCl

FeCl

FeCl

 J/K2
2

2

47 610
969

49 13�
�

 

Thus, the difference in slope between lines (iii) and (iv) at 969 K is 49.13 J/K, and the 
difference between the tangential intercepts of the slopes of the two lines at 969 K, 
with the T  = 0 axis, is 47,610 J.

Similarly, ∆ ∆G G( ) ( )v iv
� �−  gives

 ∆ = +G T T Tb, , . ln .FeCl  J2 180 800 41 8 438 8� −  

Thus,

400
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Figure  12.12   the ellingham diagram for the chlorination of iron.
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∆ =
∂ ∆( )

∂













=
=

H T
G T

T

T

b

b

,

,

, .

FeCl

FeCl

 J

2

22

180 800 41 8

126

�
�

−

−
,,500 J at 1298 K

 

and

 ∆ = =Sb,
,

.FeCl  J/K at  K2

126 500
1298

97 46 1298�  

Thus, the change in slope between lines (iv) and (v) at 1298 K is 97.46 J/K, and the 
difference between the tangential intercepts is 126,500 J.

12.6 the OXIDeS OF CArBON

Carbon forms two gaseous oxides, CO and CO2 , according to

 C  O  CO2 2( ) ( ) ( )gr g g+ =  (i)

for which ∆G( )i
�  = – 394,100 –  0.84T  J, and

 2C  O  2CO2( ) ( ) ( )gr g g+ =  (ii)

for which ∆G( )ii
�  = – 223,400 –  175.3T  J.

Combination of reactions (i) and (ii) gives

 2CO  O  2CO2 2( ) ( )g g g+ = ( )  (iii)

for which ∆ = ∆ ∆G G G( ) ( ) ( )iii i ii
� � �2 −  = – 564,800 + 173.62T  J.

The Ellingham lines for reactions (i), (ii), and (iii) are included in Figure 12.13, 
in which it is seen that

• The line for reaction (iii) has a positive slope (2 moles of gas produced from 3 moles 
of gas, ∆S( )iii

�  = – 173.62 J/K).
• The line for reaction (i) has virtually zero slope (1 mole of gas produced from 

1 mole of gas, ∆S( )i
�  = 0.84 J/K).

• The line for reaction (ii) has a negative slope (2 moles of gas produced from 1 mole 
of gas, ∆S( )ii

�  = 175.3 J/K).

Consider the equilibrium

 C  CO  2CO2( ) ( ) ( )gr g g+ =  (iv)
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for which ∆ = ∆ ∆G G G( ) ( ) ( )iv ii i
� � �−  = 170,700 –  174.5T . Reaction (iv) is known as the 

Boudouard reaction  (Octave Leopold Boudouard, 1872– 1923) and is important in 
the reduction of the oxides of iron in the blast furnace.

The value of ∆G( )iv
�  = 0 at T  = 978 K (705° C), the temperature at which the 

Ellingham lines for reactions (i) and (ii) intersect one another. At this temperature, 
CO and CO2 , in their standard states (i.e., both at 1 atm pressure), are in equilibrium 
with solid graphite, and the total pressure of the system is 2 atm. Since reaction 
equilibria are normally considered for systems under a total pressure of 1 atm, it is 
instructive to calculate the temperature at which CO and CO2 , each at a pressure of 
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Figure  12.13   the ellingham diagram for selected oxides.
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0.5 atm, are in equilibrium with solid C. Consideration of Le Chatelier’ s principle 
indicates whether this temperature is higher or lower than 978 K. For reaction (iv), 
∆G978 K

�  = 0 = – RT  ln K p   = – RT  ln ( )p pCO CO
2

2 ; that is, at 978 K, K p   = 1, and hence 
pCO2  = p CO  =  1 and P total  = 2 atm. If the pressure of the system is decreased to 1 

atm, then, as K p   is independent of pressure (remaining equal to unity) p CO  becomes 
greater than pCO2 ; that is, the equilibrium shifts toward the CO side, as is predicted 
by Le Chatelier’ s principle. Since ∆H( )iv

�  = +170,700 J, reaction (iv) is endothermic, 
and thus, from Le Chatelier’ s principle, as a decrease in temperature shifts the equi-
librium in that direction which involves an evolution of heat, a decrease in tem-
perature shifts the equilibrium toward the C + CO2  side. Thus, if it is required to 
decrease the pressure of the system from 2 to 1 atm and, at the same time, maintain 
p pCO CO= 2 , the temperature of the system must be decreased.

The temperature required for p pCO CO= 2  is calculated as follows. For reaction (i):

 C O CO    J2 i+ = ∆ = − −, , .( )G T� 394 100 0 84  

If the pressure of the CO2 , which is produced at 1 atm, is decreased to 0.5 atm, then, 
for the change of state

 CO  1 atm CO 5 atm2 2T P T P, ( , . )=( ) → = 0  (v)

the decrease in Gibbs free energy is Δ G (v) = RT  ln 0.5, and hence, for the reaction

 C O CO2   1 atm 2 g   5 atm( ) ( , ) ( , . )gr g P P+ == = 0  

 ∆ = ∆ + ∆
= +

G G G

T RT
( ) ( ) ( )

, . ln .
iv i v

 J

�

− − 394 100 0 84 0 5
 (vi)

This line is obtained on the Ellingham diagram by rotating the line for reaction (i) 
clockwise about its point of intersection with the T  = 0 axis until, at the temperature 
T , the vertical separation between line (i) and line (vi) is RT  ln 0.5. This is illustrated 
in Figure 12.14. 

Similarly, the Ellingham line for the reaction

 2C O 2CO2 1 atm 5 atm( ) ( , ) ( , . )gr g P g P+ == =0  (vii)

is obtained as the sum of ∆G( )ii
�  and Δ G  for the change of state

 2CO 1 atm   2CO 5 atm( , ) ( , . )T P T P= → = 0  

That is,

 ∆G T RTvii  223 4 175 3 2 ln 5 J( ) = +– , – . .00 0  
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This line is obtained by rotating the line for reaction (ii) clockwise about its point 
of intersection with the T  = 0 axis until, at any temperature T , the vertical separation 
between line (ii) and line (i) is 2RT  ln 0.5.

Combination of reactions (vi) and (vii) gives

 C CO 2CO2 5 atm 5 atm( ) ( , . ) ( , . )gr g g+ =0 0  (viii)

for which

 ∆ = ∆ +G G RT( ) ( ) .viii iv  ln 5� 0  
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Figure  12.14   the effect of varying the pressures of the product gases of the reactions C( gr  )  
+ o2(g, p   = 1 atm)  = Co2( g  )  and 2C( gr  )  + o2(g, p   = 1 atm)  = 2Co( g  )  on the variations of Δ G  
with T  for the two reactions.
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Thus, CO2  and CO, each at 0.5 atm pressure, are in equilibrium with solid C at 
that temperature at which Δ G (viii)  = 0, the temperature of intersection of the lines (vi) 
and (vii) in Figure 12.14 (point c ).

The temperature at which CO (at 0.25 atm) and CO2  (at 0.75 atm) are in equi-
librium with solid C is obtained in a similar manner as the intersection of line (i) 
rotated clockwise until, at T , it has been displaced a vertical distance RT  ln 0.75 
and line (ii) rotated clockwise until, at T , it has been displaced a vertical distance 
2RT  (ln 0.25). This is the point b  in Figure 12.14. Similarly, the point d  in Figure 
12.14 is the temperature at which CO at 0.75 atm pressure and CO2  at 0.25 atm pres-
sure are in equilibrium with solid C. For a mixture of CO and CO2  at 1 atm pressure 
in equilibrium with solid C, the variation of percent CO by volume in the gas with 
temperature is shown in Figure 12.15. Figure 12.15 includes the points a , b , c , d , and 
e  drawn in Figure 12.14.

Figure 12.15 shows that, at temperatures less than 600 K, the equilibrium gas 
is virtually CO2  at 1 atm pressure and, at temperatures greater than 1400 K, the 
equilibrium gas is virtually CO at 1 atm pressure. These points are, respectively, the 
points a  and e  in Figure 12.14. Thus, in Figure 12.14, the variation, with tempera-
ture, of the Gibbs free energy change for oxidation of solid C to produce a CO– CO2  
mixture at 1 atm pressure which is in equilibrium with solid C is given by line (i) up 
to the point a , then by the line abcde , and then by the line (ii) beyond the point e .
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Figure  12.15   the variation, with temperature, of the composition of the Co– Co2  gas mixture 
in equilibrium with solid graphite at P total  = 1 atm.
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At any temperature T , the CO– CO2  mixture in equilibrium with C exerts an 
equilibrium oxygen pressure via the equilibrium

 2CO O 2CO2 2+ =  

for which

 
∆ = +
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p p

R

( ) , .iii
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− 

eq. with C

 (12.12)

If it is required that solid carbon be used as a reducing agent to reduce a metal 
oxide MO2  at the temperature T , then p TO eq2 ( . ) in Equation  12.12 must be lower than 
p TO eq2 ( . )  for the equilibrium M + O2  = MO2  (see Section 12.7).

12.6.1 the equilibrium 2CO + O 2   = 2CO 2  

The Ellingham line for the reaction 2CO + O2  = 2CO2  is shown in Figure 12.16 
as the line cs . Since it is the variation, with temperature, of the standard Gibbs free 
energy of formation, Δ G ° , this line is for the reaction which produces CO2  at 1 atm 
pressure from CO at 1 atm pressure and O2  at 1 atm pressure. The effect of producing 
the CO2  at any pressure, P , other than 1 atm (from CO and O2  each at 1 atm) is the 
rotation of the Ellingham line cs  about the point c , clockwise if P  <  1 atm and anti-
clockwise if P  >  1 atm. For the given value of P  the rotation is such that, as before, 
at the temperature T , the vertical displacement of cs  is 2RT  ln P . A series of lines, 
radiating from the point c , can thus be drawn for different pressures of CO2  produced 
from CO and O2 , each at 1 atm. Figure 12.16 shows four of these lines:

• Line cq  for CO2  produced at 102  atm
• Line cr  for CO2  produced at 10 atm
• Line cu  for CO2  produced at 0.1 atm
• Line cv  for CO2  produced at 10– 2  atm

The significance of this series of lines, with respect to the possibility of using 
CO– CO2  gas mixtures as reducing agents for the metal oxide MO2 , is illustrated as 
follows. The Ellingham line for the reaction M + O2  = MO2  is drawn in Figure 12.16. 
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This intersects the line cs  at the temperature T s  , which is thus the temperature at 
which the standard Gibbs free energy change for reaction

 MO 2CO M 2CO2 2+ = +  (ix)

is zero; that is,

 ∆ = =








G T RT

p

p
s( ) lnix

CO

CO

 at   � 0 2

2

−  

and thus,

 p

p
CO

CO

2 1=  

At temperatures higher than T s  , a CO– CO2  mixture of p pCO CO/ 2 1=  is reducing 
with respect to MO2 , and at temperatures lower than T s  , it is oxidizing with respect 
to the metal M. Compare this with the previous discussion of Figure 12.2.

If it is required that a CO– CO2  mixture be made to be reducing with respect to 
MO2  at temperatures lower than T s  , then the ratio p pCO CO/ 2  must be increased  to a 
value greater than unity. The Ellingham line for the reaction M + O2  = MO2  inter-
sects the line cu  at the temperature T u  , and T u   is thus the temperature at which the 
reaction
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Figure  12.16   Illustration of the effect of the ratio p pCO CO/2  in a CO CO2 −  gas mixture on 
the temperature at which the equilibrium m + Co2  = mo + Co is established.



442 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

 MO 2CO 1 atm M 2CO 1 atm2 2+ ( ) = + ( )0.  (x)

is at equilibrium; that is,

 ∆ = ∆ +G T G RTu( ) ( ) ln .x ix at � 2 0 1  

But, by definition,

 ∆ =








G RT

p

p
( ) lnix

CO

CO eq

� − 2

2

 

and thus,

 ∆ = =








 +G RT

p

p
RT( ) ln ln .x

CO

CO eq

         0 2 2 0 12−  

Thus, ( )p pCO CO eq/ 2 10=  at T u  , and hence, by decreasing the temperature from T s   to 
T u  , the CO/CO2  ratio must be increased from 1 to 10 in order to maintain reaction 
equilibrium.

Similarly, at T v   the equilibrium CO/CO2  ratio is 100, at T r   the equilibrium 
CO/CO2  ratio is 0.1, and at T q   the equilibrium ratio is 0.01. Thus, a CO/CO2  nomo-
graphic scale can be added to the Ellingham diagram, and for any reaction

 MO 2CO M 2CO2 2+ = +  

the equilibrium CO/CO2  ratio at any temperature T  is read off the nomographic scale 

as that point which is collinear with the point C  and the point ∆GT
� , T  = T , for the 

reaction M + O2  = MO2 . This scale is included in Figure 12.13.
Figure 12.15 is generated by reading off the equilibrium CO/CO2  ratios for the 

reaction C + O2  = CO2  up to the point a  in Figure 12.14, then the CO/CO2  ratios 
along the line abcde , and finally the CO/CO2  ratios for the reaction 2C + O2  = 2CO 
beyond the point e .

In exactly the same manner, the H2 /H2 O nomographic scale is added to Figure 
12.13 by considering the effect of the variation of the pressure of H2 O on the reaction 
equilibrium

 2H O 2H O2 2 2+ =  

The equilibrium H2 /H2 O ratio at the temperature T  for the reaction

 MO 2H M 2H O2 2 2+ = +  

is read off the H2 /H2 O scale as the point which is collinear with the points H  and 

∆GT
�, T  = T  for the reaction M + O2  = MO2 .
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12.7 GrAPhICAL rePreSeNtAtION OF eQUILIBrIA 
IN the SYSteM MetAL– CArBON– OXYGeN

The main criteria for graphical representation of equilibria in a system are

• The amount of information provided
• Clarity

and both of these considerations are dependent on the coordinates chosen for use in 
the graphical representation. Since the nomographic scale for the ratio CO/CO2  in 
Figure 12.13 shows that the range of interest of values of p pCO CO2  is 10– 14  to 1014 , 
it is convenient to present this ratio on a logarithmic scale. Figure 12.17, which uses 
the coordinates log p pCO CO2( ), and T  represents a convenient method of clearly pre-
senting the reaction equilibrium in the carbon– oxygen and carbon– oxygen– metal 
systems.

From Equation  (iii), for

 2CO O 2CO2( ) 2( ) ( )g g g+ =  
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Figure  12.17   the relationship between the partial pressure of oxygen in a Co2 – Co gas mix-
ture and temperature. the broken line is the variation, with temperature, of the 
composition of the gas which is in equilibrium with graphite at 1 atm pressure. 
the lines AB  and CD  represent, respectively, the equilibria fe + Co2  = feo + 
Co and Co + Co2  = Coo + Co.
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 (xi)

For any given value of pO2 , this gives the variation of the given oxygen isobar with 
log( )p pCO CO/2  and temperature. The oxygen isobars in the range 10– 29  to 10– 4  atm 
are drawn as a function of log( )p pCO CO/2  and T  in Figure 12.17.

The equilibrium

 C CO 2CO2gr g g( ) ( ) ( )+ =  (iv)

sets a lower limit on the CO2 /CO ratio which can be obtained at any temperature:

 ∆ = =








G T RT

p

p
( ) , . lniv

CO

CO

 J� 170 700 174 5
2

2

− −  

and thus, at a total pressure of 1 atm (i.e., when pCO2 = 1 –  p CO ),

 p

p T
xCO

CO

2

1
170 700

8 3144
174 5
8 3144−

−= 











=exp
,

.
exp

.
.

 

or

 p p x xCO CO
2 0+ =−  

solution of which gives
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= + +
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and

 p

p

x x x

x x x

CO

CO

2 2 4

4

2

2
= + +

+
−

−
 (xii)

The value of p pCO CO/2  given by Equation  (xii) is the minimum obtainable value at 
the temperature T . If an attempt is made to mix CO and CO2  (at P total  = 1 atm) in a 
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ratio p pCO CO/2  lower than that given by Equation  (xii), carbon will precipitate until, 
thereby, the ratio is increased to the unique value required for equilibrium with car-
bon at the temperature T . The variation of log( ) .p pCO CO eq C/CO/CO/2 2  with temperature 
is shown as the broken line in Figure 12.17. The variation of the corresponding mini-
mum values of pO 2 with temperature in Figure 12.17 is given by the intersections of 
the oxygen isobars with the carbon deposition line.

Equilibria such as

 MO CO M CO2+ = +  

can readily be presented on plots such as that in Figure 12.17. For example, for

 FeO CO Fe CO2( ) ( )s g s g+ = +( ) ( )  

 ∆G T° = +– , .22 8 24 26 J00  

and thus, the variation of the equilibrium ratio CO2 /CO with temperature is given by

 log
,

. .
.

. .
p

p T
CO

CO eq.FeO Fe

2 22 800
2 303 8 3144

24 26
2 303 8









 =

× ×
−

33144
 

This variation is drawn as the line AB  in Figure 12.17, and thus, any gas, the state of 
which lies above the line AB , is oxidizing with respect to Fe, and states below AB  are 
reducing with respect to FeO. The variation of log ( )pO eq.T,Fe FeO2  with temperature is 
given by the intersections of the oxygen isobars with the line AB . The temperature 
at which AB  intersects the carbon deposition line is the minimum temperature at 
which solid FeO can be reduced to solid Fe by graphite, and this is the temperature 
at which Fe( s  ) , FeO( s  ) , C( s  ) , and the CO– CO2  atmosphere at 1 atm pressure coexist in 
equilibrium; that is, it is the temperature at which

 p pCO (eq.C/CO/CO ) O (eq.Fe FeO2 2 2= )  

The line CD  in Figure 12.17 represents the variation of log( )p pCO CO2 /  with T  for 
the equilibrium

 CoO CO Co CO2( ) ( )s g s g+ = +( ) ( )  

for which

 ∆G° = +– , .48 5 14 9  J00 T  

and

 log
,

. .
.

. .
p

p T
CO

CO eq.Co CoO

2 48 500
2 303 8 3144

14 9
2 303 8 3









 =

× ×
−

1144
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Since the equilibrium constant K  for the reaction

 MO CO M CO2+ = +  

is given by p p TCO CO(eq. ,M MO)2 / , a plot of log ( . , )p p TCO CO eq M MO2 /  versus 1/T  is a plot of 
log K  versus 1/T . Figure 12.18 shows the information given in Figure 12.17 as such 
a plot. With respect to the amount of information which can be obtained from a 
graphical representation of equilibria in a system, Figure 12.18 is a better representa-
tion than is Figure 12.17. 

Since

 d K

d
T

H

R

ln  
1





















= ∆−
�

 

the slope of a tangent to an equilibrium line at the temperature T  gives the value of 
– Δ H ° /R . If Δ c p   = 0, log K  is a linear function of 1/T . Thus, the slope of the line 
AB  in Figure 12.18 equals – Δ H ° /R  for the reaction FeO + CO = Fe + CO2 , and the 
slope of the line CD  equals – Δ H ° /R  for the reaction CoO + CO = Co + CO2 . Also, 
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if they are linear, the intercepts of the lines themselves with the 1/T  = 0 axis give the 
corresponding values of Δ S° /R  for the reactions. From Equation  (xi), the slope of 
any oxygen isobar equals – Δ H ° /2R  for the reaction 2CO + O2  = 2CO2 , and thus, the 
oxygen isobars in Figure 12.18 are parallel lines.

12.8 SUMMArY

 1. The following two facts facilitate a convenient definition of the standard state of 
species occurring as condensed phases.
• A pure species occurring as a condensed phase exerts a unique saturated vapor 

pressure at the temperature T .
• The dependence of the Gibbs free energy of a condensed phase on pressure (at 

low pressure) is negligibly small.
  This standard state is simply the pure species in its stable condensed state at the 

temperature T . 
 2. Using this standard state, the equilibrium constant for a reaction involving pure 

condensed phases and a gas phase can be written in terms of the partial pressures 
of those species which occur only in the gas phase. For example, for the oxidation 
of a pure metal to its pure stoichiometric oxide, the equilibrium constant is given 
by1 2/ O eqp T( . ), where p TO eq.2 ( ) is the unique partial pressure of oxygen required for 
equilibrium between the metal, its oxide, and the gas phase at the temperature T . 
This pressure is such that

 G G RT p GTM O O eq MO
� � �+ + =2 2 2ln ( . )

 

  or

 ∆ = =








G RT K RT

p
T

T

� − −ln ln
( . )

1

2O eq

 

 3. Determination of the equilibrium state of a chemical reaction system requires 
knowledge of the variation, with temperature, of the standard Gibbs free energy 
change for the reaction. This relationship can be obtained from thermochemical 
data— that is, from knowledge of the standard enthalpy and entropy changes at a 
single temperature (usually ∆H298

�  and ∆S298
� ) and the variations, with tempera-

ture, of the constant-pressure molar heat capacities of the reactants and products, 
or it can be determined from knowledge of the variation, with temperature, of the 
equilibrium constant for the reaction.

 4. For the oxidation of a pure metal to its pure oxide, experimental measurement of 
the variation of p TO eq.2 ( )  with temperature gives the variation of Δ G °  with tem-
perature as

 ln
( . )

1

2p

H

RT

S

R

G

RTTO eq









 = ∆ + ∆ = ∆− −

� � �  
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  If Δ H °  and Δ S °  are independent of temperature (i.e., if Δ c p   = 0), ln K  is a linear 
function of 1/T .

 5. The fitting of the variation of Δ G °  with T  to a line produces the so-called Ellingham 
line for the reaction, and a plot of Δ G°   versus T  is known as an Ellingham diagram. 
Ellingham lines plotted on a single diagram for a series of similar reactions (e.g., 
for the formation of oxides, sulfides, etc.) provide a convenient representation of the 
relative stabilities of the compounds.

 6. The addition of p p pO CO CO/2 2,  and p pH H O2 2/  nomographic scales to these diagrams 
facilitates the geometric determination of p p pT TO eq. CO CO eq/2 2( ) ( . ), , and p p TH H O eq2 / 2 ( . ) 
for, respectively, the equilibria 2M + O2  = 2MO, M + CO2  = MO + CO, and M + 
H2 O = MO + H2 .

12.9 CONCePtS AND terMS INtrODUCeD IN ChAPter 12

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Blast furnace
Boudouard reaction
Carbon– oxygen reactions
Chemical affinity
Chlorination of a metal
Condensed-phase reactions with gases
Decomposition of a solid phase
Ellingham diagrams
Gibbs equilibrium phase rule
Log pressure versus 1/T  phase diagram
Metal– carbon– oxygen equilibria
Oxidation of pure solid phase
Phase transformations and the Ellingham diagram
Pure species
Reduction of an oxide
Richardson nomographic scale
Temperature dependence of the standard free energy change

12.10 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 

Apply the Gibbs equilibrium phase rule to the oxidation of Cu to form cuprous oxide 
(Figure 12.1).

Solution to Qualitative Problem 1

 4Cu  O  2Cu O2 2s g s( ) ( )+ = ( )  
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We use the equation

 Φ + = ( ) +F C r– 2  

where:
 Φ  is the number of phases in equilibrium
 F  is the thermodynamic degrees of freedom
 C  is the number of components
 r  is the number of chemical reactions needed to specify equilibrium
 2 accounts for the intensive variables pressure and temperature

For this case:
  r   = 1
 Φ  = 3 (2 solids and one gaseous)
 3 + F  = (3–  1) + 2 or F  = 1

We can see from Figure 12.1 that when the temperature is specified, there is 
only one possible partial pressure of oxygen gas that allows for the equilibrium of 
the given reaction. Or, if a specific partial pressure is desired, it can be found at but 
one temperature.

Qualitative Problem 2 

Apply the Gibbs equilibrium phase rule to the reduction of cupric oxide by ammonia 
and determine the number of degrees of freedom that exist for the reaction.

Solution to Qualitative Problem 2 

 3CuO  2NH  3Cu  3H O N3 2 2s g s g g( ) ( ) ( )+ = + +( ) ( )  

We use the equation

 Φ + = ( ) +F C r– 2  

Where:
 Φ  is the number of phases in equilibrium
 F    is the thermodynamic degrees of freedom
 C  is the number of components
 r  is the number of chemical reactions needed to specify equilibrium
 2 accounts for the intensive variables pressure and temperature

For this case:
 r  = 1
 Φ  = 3 (2 solids and one gaseous)

3 + F   = (5 –  1) + 2 or F  = 3
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12.11 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Compare the relative efficiencies of H2  and CO as reducing agents for metal oxides. 
For CO + ½ O2  = CO2 ,

 ∆ = +G T( ) , .i  J� −282 400 86 81  (i)

and for H2  + ½ O2  = H2 O,

 ∆ = +G T( ) , .ii  J� −247 500 55 85  (ii)

Solution to Quantitative Problem 1

The values of Δ H °  and Δ S °  for these two reactions cause their Ellingham lines 
to intersect at 1127 K, as shown in Figure 12.13, with ∆G( )ii

�  being more negative 
than ∆G( )i

�  at temperatures higher than 1125 K and ∆G( )i
�  being more negative than 

∆G( )ii
�  at temperatures lower than 1125 K. This indicates that H2  is the more efficient 

reducing agent at higher temperatures and that CO is the more efficient reducing 
agent at lower temperatures.

Consider the reduction of CoO by each of H2  and CO at 1673 K and at 873 K.
For CoO(s ) = Co( s  )  + ½ O2( g  ) :

 ∆ = +G T( ) , .iii  J� 233 900 71 85−  (iii)

Combination of ∆G( )i
�  and ∆G( )iii

�  gives

 ∆ = −G( )iv 48, 500 14.96 T� +  (iv)

for CoO + CO = Co + CO2 , and combination of ∆G( )iii
�  and ∆G( )ii

�  gives

 ∆ =G T( ) , .v  J� − −12 500 17 05  (v)

for CoO + H2  = Co + H2 O. The positive value of ∆S( )v
�  causes ∆G( )v

�  to become more 

negative with increasing temperature and the negative value of ∆S( )iv
�  causes ∆G( )iv

�  

to become less negative with increasing temperature. At 1673 K ∆G( )v
�  = – 41,024 J, 

and thus,

 K
p

p
( ), exp

,
.

.v  K
H O

H e

1673
41 024

8 3144 1673
19 1 2

2

=
×







= =










qq.
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Thus, if H2  at 1673 K is passed through a column of CoO, which is long enough that 
reaction equilibrium is achieved before the gas leaves the column, the fraction of H2  
which is consumed before equilibrium is reached is 19.1/20.1 = 0.95, and thus, 1 mole 
of H2  is required to reduce 0.95 moles of CoO.

At 1673 K, ∆G( )iv
�  = – 23,470 J, and thus,

 K
P

p
( ), .iv

CO

CO eq.

2
1673 5 40= =









  

and thus, the fraction of CO which is consumed by the reduction reaction at 1673 K 
before equilibrium is reached is 5.40/6.40 = 0.844. Thus, 1 mole of CO is required to 
reduce 0.844 moles of CoO.

At 873 K, ∆G( )iv
� = – 27,384 J, which gives

 K
p

p
( ), .v

H O

H eq.

873 43 5 2

2

= =








  

and thus, the fraction of H2  consumed is 43.5/44.5 = 0.978 and 1 mole of H2  reduces 
0.978 moles of CoO.

At 873, ∆G( )iv
�  = – 35,440 J, which gives

 K
p

p
( ),

.

iv
CO

CO eq

2
873 132= =









  

Thus, the fraction of CO consumed is 132/133 = 0.992, and 1 mole of CO reduces 
0.992 moles of CoO. Thus, H2  is the more efficient reducing agent at higher tem-
peratures and CO is the more efficient at lower temperatures, and decreasing the 
temperature at which the reduction reaction is conducted increases the efficiencies 
of both reductants.

Quantitative Problem 2 

Consider the reduction of solid ZnO by CO to form Zn vapor and CO2  according to

 ZnO CO Zn CO2( ) ( )s g v g+ = + ( )( )  (i)

For ZnO( s  )  = Zn( v  )  + ½ O2(g): 

 ∆ = −G T( ) ,ii  J� 460 200 198  (ii)

For CO( g  )  + ½  O2( g  )  = CO2( g  ) :

 ∆ = +G T( ) , .iii 282 4 86 81  J� 00  (iii)
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Summing ∆G( )ii
�  and ∆G( )iii

� gives

 ∆ − −G T( ) , .i 177 8 111 2 J� 00  

The equilibrium involves three components (Zn, O, and C) and two phases 
(a solid and a gas), and thus, from the phase rule, has

 F = + = + =C 2 3 2 2 3 degrees of freedom– –Φ  

However, the stoichiometric requirement that p pZn CO= 2  uses one of the degrees 
of freedom, and thus, the equilibrium is fixed when the temperature and total pres-
sure are fixed.
 a. Calculate the composition of the gas phase at 950° C and P  = 1 atm.
 b. To what value must the total pressure of the gas mixture be increased in order to 

cause condensation of the zinc vapor at 1223 K?
 c. Calculate the composition of the gas phase if the total pressure is increased to 150 

atm at 1223 K.

Solution to Quantitative Problem 2 

 a. At 1223 K,

 ∆ = × =G( ) , ( . ) ,i  J� 177 800 111 2 1223 41 800−  

 and thus,

 K
p p

p
( ) exp

,
.

.iii   K
Zn CO

C
1223

41 800
8 3144 1223

0 0164 2=
×







= =−
OO

 

 From the stoichiometry, p pZn CO= 2  and the total pressure P  is

 P p p p= + +CO Zn CO2
 (iv)

 Thus, with P  = 1 atm, p CO  = 1 –  2p Zn  and

 0 0164
1 2

2

. = p

p
Zn

Zn−
 (v)

 which has the solution p Zn  = 0.113 atm. Therefore, pCO2 0 113= .  atm and p CO  = 1 
–  (2 ×  0.113) = 0.775 atm. At P  = 1 atm, the mole fractions of the species in the gas 
phase are equal to their partial pressures.

 b. Condensation occurs when the partial pressure of Zn reaches the value of the satu-
rated vapor pressure of liquid zinc at 1223 K. The saturated vapor pressure of liquid 
zinc is given by

 ln ( )
,

. ln .,( )p
T

TlZn atm� = +− −15 250
1 255 21 79  
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 which gives p lZn,( )
� = 1 49.  atm at 1223 K. Therefore,

 K
P

( ) .
.

( . )
iii   K1223

2

0 0164
1 49
2 1 49

= =
×−

 

 which has the solution P  = 138 atm. Thus, p Zn  = p CO  = 1.49 atm and 
pCO2 = − × =138 2 1 49 135( . )  atm. At the point of condensation of zinc, the mole 

fractions of the species in the gas phase are X Zn  = XCO2  = 1.49/138 = 0.011 and X CO  
= 135/138 = 0.978.

 c. The system now contains three phases and the equilibrium thus has two degrees 
of freedom. Condensation of the zinc eliminates the stoichiometric requirement 
that p pZn CO= 2, but phase equilibrium between liquid zinc and zinc vapor at 1223 K 
requires that the partial pressure of zinc be the saturated value of 1.49 atm. Thus,

 K
p

p
1223 0 0164

1 49 2
 K

CO

CO

= = ×
.

.  (vi)

 and

 P p p= = + +150 1 49 2. CO CO
 (vii)

 Simultaneous solution of Equation (vi) and (vii) gives p CO  = 146.9 atm and 
pCO2 1 61= .  atm. The mole fractions of the species in the gas phase are thus X Zn  = 

1.49/150 = 0.01, XCO2 1 61 150 0 011= =. . , and X CO  = 146.9/150 = 0.98.

 Further considerations :
 i .  Consider, now, the reduction of ZnO by graphite to form zinc vapor, CO, 

and CO2  according to

 ZnO C Zn CO( ) ( ) ( )s gr v g+ = +( )  (viii)

  and

 2ZnO C 2Zn CO2( ) ( )s gr v g+ = +( ) ( )  (ix)

  For 2C + O2  = 2CO:

 ∆ =G T( ) , .x  J� − −223 400 175 3  (x)

  For C + O2  = CO2 :

 ∆ =G T( ) , .xi  J� − −394 100 0 84  (xi)

  Combination of ∆G( )ii
�  and ∆G( )x /� 2  gives

 ∆ =G T( ) , .viii  J� 348 500 285 7−  
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  for ZnO + C = Zn + CO, and combination of 2∆G( )ii
�  and ∆G( )xi

�  gives

 ∆ =G T( ) , .ix  J� 526 300 396 8−  

  for 2ZnO + C = 2Zn + CO2 .
 ii .  The equilibrium involves three components and three phases (ZnO, graph-

ite, and a gas phase) and thus, according to the phase rule, has two degrees 
of freedom. However, as stoichiometric ZnO is the only source of oxygen 
and zinc in the gas phase, one of the degrees of freedom is used by the 
requirement that equal numbers of moles of Zn and O occur in the gas 
phase. Alternatively, as ZnO has a fixed composition, the system can be 
considered to be the quasi-binary ZnO– C, in which case the phase rule 
gives one degree of freedom to the equilibrium. Thus, fixing either (1) the 
temperature, (2) the total pressure, (3) p Zn , (4) p CO , or (5) pCO2

 fixes the 
equilibrium. Determine the equilibrium state at 1223 K.

   At 1223 K, ∆ =G( )viii  K  J1223 850� −  and thus,

 K p p( ) exp
.

.viii K Zn CO1223
850

8 3144 1223
1 087=

×






= =  (xii)

  and ∆ =G( ) ,ix  K  J1223 40 960� , in which case

 K p p( ) exp
,

.
.ix  K Zn CO1223

240 960
8 3144 1223

0 018 2=
×







= =−  (xiii)

  The requirement that n Zn /n O  = 1 in the gas phase leads to

 n

n

n

n n

p

p p
Zn

O

Zn

CO CO

Zn

CO CO

= =
+

=
+

1
2 22 2

 

  Thus,

 p p pZn CO CO= + 2 2
 (xiv)

  Substitution of Equations  (xiv) into (xii) gives

 p p pCO CO CO+( ) =2 1 082 .  (xv)

  and substitution of Equations  (xiv) into (xiii) gives

 p p pCO CO CO+( ) =2 0 0182 2

2
.  (xvi)

   Simultaneous solution of Equations (xv) and (xvi) gives p CO  = 1.023 atm 
and pCO2 0 016= .  atm, and Equation  xiv gives p Zn  = 1.023 + (2 ×  0.016) = 
1.055 atm. The total pressure at which the equilibrium exists at 1223 K is 
thus 1.055 + 1.023 + 0.016 = 2.094 atm.
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 iii .  Consider now the temperature at which the total pressure is 1 atm. Rewriting 
Equations (xii) and (xiii) to include temperature as a variable gives

 K
G

RT
p pT( ),

( )expviii  
viii

Zn CO= ∆







 =− �

 

  or, substituting for ∆G( )viii
�  and p Zn ,

 exp
,

.
exp

.
.

( )
−348 500
8 3144

285 7
8 3144

2 2T
p p p













= +CO CO COO
 (xvii)

  and

 K
G

RT
pT( ),

( )expix  
ix

Zn COp= ∆







 =− �

2
2

 

  or, substituting for ∆G( )ix
�  and p Zn  ,

 K
T

pT( ), exp
,

.
exp

.
.

(ix CO= 











= +−526 300
8 3144

396 8
8 3144

22 2 2

2p pCO CO)  (xviii)

  The third equation is

 P p p p= = + +1 2Zn CO CO
 

  or

 1 2 2 2= + + +( )p p p pCO CO CO CO
 (xix)

  Simultaneous solution of Equations (xvii), (xviii), and (xix) gives

 T = 1172 K  

 pCO 489 atm= 0.  

  and

 pCO atm2 0 007= .  

   Thus, p Zn  = 0.489 + (2 ×  0.007) = 0.503 atm, and the total pressure is 0.489 
+ 0.503 + 0.007 = 1 atm.

Quantitative  Problem 3 

During the chlorination of NiO in a reactor at 900 K, it is required that 90% con-
version of the chlorine gas be achieved during a single pass through the reactor. 
Calculate the required total gas pressure.
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The reaction is

 NiO Cl NiCl O( ) ( ) ( ) ( )s g s g+ = +2 2 2
1
2

 

for which ∆ =G900 15 490 K  J� − , . Thus,

 K900
15 490

8 3144 900
7 925 K =

×






=exp
,

.
.  

From the stoichiometry of the reaction,

 NiO Cl NiCl O( ) ( ) ( ) ( )s g s g+ = +2 2 2
1
2

 

For 90% conversion of the Cl2 , x  = 0.9, and thus, n nCl O 2 20 1 0 45= =. , . , and n T  
= 0.55. In a Cl2 – O2  mixture at the pressure P , the partial pressures of chlorine and 
oxygen are thus

 p P P p P PCl Oand2 2

0 1
0 55

0 182
0 45
0 55

0 818= = = =.
.

.
.
.

.  

Thus,

 K
p

p

P

P P
900

1 2 1 2

1 27 925
0 818
0 182

4 9692

2

 K
O

Cl

= = = =.
( . )

.
.  

which has the solution P  = 0.393 atm.
For another Quantitative Problem, see Appendix 12.B.

PrOBLeMS

12.1   To what temperature must MgCO3  be heated in an atmosphere containing a 
partial pressure of CO2  of 10– 2  atm to cause the decomposition of the carbonate?

12.2   Using the standard Gibbs free energies of formation of NiO from solid Ni and 
liquid Ni, calculate the melting temperature, molar heat of melting, and the 
molar entropy of melting of nickel.

12.3   Calculate the temperature at which pure Ag2 O decomposes to Ag metal and O2  
gas when heated in (a) pure oxygen at 1 atm pressure, and (b) air.

12.4   Determine the maximum pressure of water vapor in wet hydrogen at 1 atm pres-
sure in which chromium can be heated without oxidation occurring at 1500 K. 
Is the oxidation of Cr by water vapor exothermic or endothermic?

12.5   A mixture of argon gas and hydrogen gas at 1 atm total pressure is passed 
through a reaction vessel containing a mixture of liquid Sn and liquid SnCl2  at 



457reaCtIons InvolvInG Pure Condensed Phases and a Gaseous Phase

900 K. The composition of the gas leaving the vessel is 50% H2 , 7% HCl, and 
43% Ar. Has equilibrium been attained between the gas phase and the liquid 
phases in the vessel?

12.6   Fe and FeO are in equilibrium with a gas mixture of composition 71.8% CO– 28.2% 
CO2  at 1273 K. Which of the two solid phases disappears if the composition of 
the gas is held constant and the temperature of the system is decreased?

12.7   Calculate the vapor pressure of Mg exerted at 1400° C by the system in which 
the following reaction equilibrium is established.

 MgO( s  )  + Si( s  )  = 2Mg( g  )  + Mg2 SiO4( s  ) 

12.8   One gram of CaCO3  is placed in an evacuated rigid vessel of volume 1 liter at 
room temperature, and the system is heated. Calculate (a) the highest tempera-
ture at which the CaCO3  phase is present, (b) the pressure in the vessel at 1000 
K, and (c) the pressure in the vessel at 1500 K. The molecular weight of CaCO3  
is 100.

12.9   Calculate the total pressure p p pSO SO O3 2 2+ +( )  exerted by equilibrated CoO 
and CoSO4  at 1223 K.

 12.10   A gas mixture initially containing 90% CO, 0.4% COS, and 9.6% inert constitu-
ents (by volume) is passed over sponge iron at 1000 K to remove sulfur by the 
following reaction:

COS( g  )  + Fe( s  )  = CO( g  )  + FeS( s  ) 

 a.  Assuming that the effluent gas is in equilibrium with Fe and FeS, calculate the 
percentage of sulfur removed from the gas by reaction with the sponge iron.

 b. Calculate the partial pressure of S2  in the effluent gas.
12.11   An Ar– H2 O gas mixture of pH O2 = 0 9.  atm (P total  = 1 atm) is passed over solid 

CaF2 , as a result of which CaO forms according to

 CaF2( s  )  + H2 O( g  )  = CaO( s  )  + 2HF( g  ) 

   The reaction proceeds to equilibrium and solid CaO and solid CaF2  are mutu-
ally immiscible. When the gas flow rate (measured at 298 K and 1 atm pressure) 
over the sample is 1 liter per minute, the measured rates of weight loss of the 
sample are 2.69 ×  10– 4  and 8.30 ×  10– 3  grams per hour at 900 and 1100 K, 
respectively. Use these data to calculate the variation of Δ G °   for the preceding 
reaction with temperature. The atomic weights are

 O = 16, F = 19, and Ca = 40.08

12.12   Magnetite (Fe3 O4 ) is reduced to sponge iron (Fe) in a continuous reactor operat-
ing at 800 K using methane gas (CH4 ) as the reducing agent. The gaseous reac-
tion product leaving the reactor at a total pressure of 1 atm is a mixture of CO, 
CO2 , H2 , and H2 O with a negligible methane content. The gas is at equilibrium 
with the Fe– Fe3 O4  mixture in the reactor. Calculate the consumption of meth-
ane as moles of methane used per mole of sponge iron produced.

12.13   Three equations for the oxidation of Mg according to Mg + ½ O2( g  )  = MgO( s  )  are

 ∆ G °  = – 604,000 –  5.36T  ln T  + 142.0T  J (i)
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 ∆ G °  = – 759,800 –  13.4T  ln T  + 317T  J (ii)

 ∆ G °  = – 608,100 –  0.44T  ln T  + 112.8T  J (iii)

   One of these expressions is for the oxidation of solid Mg, one is for the oxida-
tion of liquid Mg, and one is for the oxidation of gaseous Mg. Determine which 
equation is for which oxidation and calculate the melting and normal boiling 
temperature of Mg.

12.14   Two hundred grams of liquid zinc are placed in a crucible at 1030 K. Two moles 
of air are bubbled through the liquid zinc, and the gas comes to equilibrium with 
the liquid before leaving the system. If the total pressure of the gas remains con-
stant at 0.8 atm throughout the process, how many grams of metallic  zinc are left 
in the crucible? The atomic weights of Zn and O are, respectively, 65.38 and 16.

12.15   Methane gas is burned with twice the amount of stoichiometric air (i.e., the 
initial ratio of CH4  and O2  in the mixture is 0.25), and the combustion gas pro-
duced, in which the concentration of methane is negligible, is used to calcine 
CaCO3  in an isothermal furnace. The gas and the solids are at 1080 K and the 
pressure of the gas is maintained constant at 1 atm. How many moles of CaCO3  
are decomposed per mole of CH4  burned?

12.16   Mercuric oxide (HgO) is placed in a vessel which is then evacuated, filled with 
nitrogen, and heated to 600 K, at which temperature it is observed that the total 
pressure in the vessel is 2 atm. Calculate the mole fractions of O2  and Hg vapor 
in the gas phase.

12.17   In Figure 12.17 the line AB , which represents the equilibrium

 FeO( s  )  + CO( g  )  = Fe( s  )  + CO2( g  ) 

   intersects the carbon deposition line at the point A  (T  = 972 K, p CO( s  )  = 0.595 
atm, pCO2 0 405= .  atm, P  = 1.000 atm). At what total pressure does the point of 
intersection of the lines occur at 1000 K, and what are the values of the partial 
pressures of CO and CO2  in this state?

APPeNDIX 12A

The value of I  can be determined if K  is known at any temperature T . For the 
reaction

4Cu( s  )  + O2( g  )  + 2Cu2 O( s  ) 

gives I = 171.8 J/K.  Hence

 ∆ =
∆ =
H

S
298

298

324 400

138 5

�

�

−
−

,

.

 J

 J K
 

and thus,

 ∆ = + × =G298 324 400 298 138 5 283 100� − −, ( . ) ,  J  

which is K = K(T) with no unknown constants.
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In the range 298– 1356 K,

 c p  ,Cu( s  )  = 22.6 + 6.3 ×  10– 3 T  J/K

In the range 298– 1200 K,

 c Tp s, ( ) .Cu O2  J/K= + ×62 34 24 10 3−  

and in the range 298– 3000 K,

 c T Tp g, ( ) . .O  J/K2 30 4 2 10 1 7 103 5 2= + × ×− −−  

such that in the temperature range 298– 1200 K,

 ∆ =
= + × + ×

c c c c

T
p p s p s p g2 4

4 28 18 6 10 1 7 10
2 2

3 5

, ( ) , ( ) , ( )

. . .
Cu O Cu O− −

− TT −2  J/K
 

Thus,

 ∆ = ∆ + + × ×H H T T TT
�

0
3 2 5 14 28 9 3 10 1 7 10. . .− −−  J  

Substitution of ∆ =H298 324 400� − ,  J  gives Δ H 0  = – 325,900 J. Dividing by – T 2 , 
integrating with respect to T , and multiplying through by T  gives

 ∆ = × × +G T T T ITT
� − − − −− −325 900 4 28 9 3 10 0 85 103 2 5 1, . ln . .  

Substitution of ∆ =G298 283 100� − ,  J  gives I  = 171.7, and hence,

 ∆ = × × +G T T TT
� − − − −− −325 900 4 28 9 3 10 0 85 10 171 73 2 5 1, . ln . . .  J  (i)

and

 
−

− − −

ln ln

,
. ln .

( . )K
G

RT
p

T
T

T
T= ∆ =

= ×

�

 

          

O eq2

39 200
0 515 1 1 100

1 0 10
20 653

4

2
− −T

T

.
.

× +

 

APPeNDIX 12B 

Quantitative  Problem 4 

What is the equilibrium state of a CO– CO2 – H2 – H2 O gas mixture produced by mix-
ing CO2  and H2  in the molar ratio 1/1 at 1000 K and a total pressure of 1 atm?
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The reaction which occurs is

 CO  H  CO  H O2 2 2+ = +  (i)

As the molar ratio of CO2  to H2  in the initial mixture is 1/1 and P  = 1 atm, then, 
before reaction begins, p pCO H2 2=  = 0.5 atm. From the stoichiometry of the reac-
tion, at any time during the reaction, p pCO H2 2=  and p pCO H O2= . At equilibrium,

 K
p p

p p
p,( )i

CO H O

CO H

= 2

2 2

 (ii)

The total pressure is

 P p p p p= + + + =CO CO H O H2 2 2 1  

but, as

 p p p pCO H CO H O2 2 and= = 2
 

then

 P p p= = +1 2 22 2H O H
 

Thus,

 p p p pH O H CO Hand2 2 2 20 5= =. −  

substitution of which into Equation  (ii) gives

 K
p

p
p,( )

( . )
i

H

H

= 0 5 2

2

2

2

−  

The standard Gibbs free energy change for the reaction given by Equation  (i) is 
∆ =G T( ) ,i  J� 36 000 32− , and thus, ∆ =G( )i  K  J1000 4000�  and

 K
p

p
p,( ), exp

.
.

( . )
i  K

H

H
1000

24000
8 3144 1000

0 618
0 5 2=

×






= =− −

22

2
 

which has the solution pH2 0 28= .  atm. Thus, at reaction equilibrium,

 p pH CO  atm2 2 0 28= = .  

and

 p pH O CO2  atm= = 0 22.  
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Consider that this equilibrated gas is contained at 1 atm pressure and 1000 K in a 
rigid vessel of constant volume. What happens if some CaO is placed in the vessel? 
The reactions

 CaO  5CO CaC 3CO2 2( ) ( ) ( ) ( )s g s g+ = +  (iii)

 CaO  H O  Ca OH2 2( ) ( ) ( )s g s
+ = ( )  (iv)

and

 CaO  CO  CaCO2 3( ) ( ) ( )s g s+ =  (v)

are possible.
Consider the possible formation of CaC2  according to (iii). Summing

 

∆ = + =

∆ =

G T

G T

�

�

− −

− −

48 620 36 1

1 182 000 2 4 3

2, .

, , .

 J for Ca 2C CaC

 J for C ++ =

∆ = =

O CO

 J for CaO Ca+ O

2 2

2

3

633 140 99
1
2

G T� , −

 

and

 ∆ = + = +G T� 560 000 438 3 5
5
2

2, .  J for 5CO C O  

gives

 ∆ = − +G T( ) , .iii  J� 37 480 300 7  

Thus, ∆ =G( ), ,iii  K  J1000 263 200�  and

 K
p

p
p,( ),

( )

.iii  K
CO

CO eq

1000
14

3

51 78 10 2= × =








−  

Thus, if the CaO were to react with the CO in the gas mixture (which exists at p CO  = 
0.22 atm) to form CaC2  and CO2 , the pressure of CO2  in the gas mixture would have 
to be less than

 ( . . ) /1 78 1 2214 5 1 3× ×0 0  

that is, less than 2.09 ×  10– 6  atm. As the partial pressure of CO2  in the gas is 0.28 
atm, reaction (iii) does not occur.

Consider the possible formation of Ca(OH)2  according to reaction (iv), 

∆ = +G T( ) ,iv  J� −117 600 145 , and thus, ∆ =G( ). ,iv  K  J1000 27 400�  and
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 K
p

p,( ),
( )

.iv  K
H O eq

1000 0 037
1

2

= =  

Thus, the pressure of water vapor required for equilibrium between CaO, Ca(OH)2 , 
and water vapor at 1000 K is 1/0.037 = 20 atm. As the actual pressure of water vapor 
in the vessel is 0.22 atm, reaction (iv) does not occur.

Consider the possible formation of CaCO3  according to reaction (v):

 ∆ = +G T( ) ,v  J� −168 400 144  

Thus, ∆ =G( ), ,v  K  J1000 24 400� − , and hence,

 K
p

p v  K
CO eq2

,( ),
( )

.1000 18 82
1= =  

or, for equilibrium between CaO, CaCO3 , and CO2  at 1000 K, pCO2  must be 1/18.82 
= 0.053 atm. The actual partial pressure of CO2  in the vessel is greater than 0.053, 
and thus, the CO2  reacts with the CaO to form CaCO3 . Consider that an excess of 
CaO is added to the vessel so that some CaO remains after the formation of CaCO3  
has decreased the partial pressure of CO2  in the vessel to 0.053 atm. Now calculate 
the new equilibrium state of the gas.

The removal of CO2  from the gas has two effects: (1) the pressure exerted by 
the gas in the constant volume is decreased, and (2) the equilibrium of reaction (i) 
is shifted to the left. However, as all of the hydrogen in the vessel, occurring as H2  
or as H2 O, remains in the constant-volume gas phase, the sum p pH H O22 +  is not 
changed by the shift in the equilibrium. Also, from the stoichiometry of reaction (i), 
p pCO H O2=  during the shift. Thus, at the new equilibrium state,

 
p p

p p

p

H H O

CO H O

CO

 atm

           

           at

2 2

2

2

0 5

0 053

+ =
=
=

.

. mm

 

and

  

This has the solution pH O2  = 0.113 atm, and thus, the new equilibrium state is

 
p p

p

p

P

H O CO

H

CO

2

2

 atm

   atm

 atm

    

= =
=
=
=

0 113

0 387

0 053

0 666
2

.

.

.

.   atm
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What happens now if graphite is introduced to the system? If excess graphite is 
added, the equilibrium

 C( gr  )  + CO2( g  )  = 2CO( g  )  (vi)

must be established:

 ∆ =G T( ) , .vi  J� 170 700 174 5−  

Thus, ∆ =G( ),vi  K  J1000 3800� −  and

 K
p

p
p,( ),

( )

.vi  K
CO

CO e.q

1000

2

1 579
2

= =








  

Thus, as pCO2 0 053= .  atm is required for the CaO– CaCO3 – CO2  equilibrium, the 
value of p CO  in the gas mixture must change from 0.113 atm to

 (1.579 ×  0.053)1/2  = 0.289 atm

to establish the C– CO– CO2  equilibrium. Again, as all of the hydrogen remains in 
the gas phase, p pH H O22 0 5+ = .  atm, and so,

 K
p

p
p,( ), .

. ( . )
.

i  K
H

H
1000 0 618

0 289 0 5
0 053

2

2

= = × −  

which has the solution pH2 0 449= .  atm. Thus, the newly equilibrated gas mixture, 
which is now in equilibrium with CaO, CaCO3 , and graphite, is

 

   atm

 atm

  atm

 atm

 

H

H O

CO

CO

2

p

p

p

p

2

2

0 449

0 051

0 289

0 053

=
=
=
=

.

.

.

.

     atmP = 0 842.

 

Consider now that the graphite is added before  the CaO; that is, that graphite is added 
to the original gas mixture in which p pCO H O2= = 0 022.  atm and p pH CO2 2 0 28= = .  
atm, contained in the rigid vessel at 1000 K. The equilibrium (vi) is established, 
which requires that the values of p CO  and pCO2  in the mixture must change to con-
form with

 K
p

p
p,( ), .vi  K

CO

CO
1000

2

1 579
2

= =  
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Before any reaction, the partial pressure of CO in the gas mixture is 0.22 atm, which, 
for the C– CO– CO2  equilibrium, would require pCO2 0 22 1 579 0 0312= =( . ) . .  atm 
(which is lower than the value occurring in the gas mixture), or, for the existing pCO2 
of 0.28, establishment of the C– CO– CO2  equilibrium would require p CO  = (1.579 ×  
0.28)1/2  = 0.665 atm (which is higher than the value occurring in the gas mixture). 
Thus, reaction (vi) must proceed from left to right and the gas-phase equilibrium (i) 
must shift from right to left until, simultaneously,

 p

p

p p

p p
CO

CO

CO H O

CO H

and
2

2

2

2 2

1 59 0 618= =. .  

As before, p pH H O2 2 0 5+ = .  atm, and the fourth condition (required for determina-
tion of the values of the four partial pressures) is obtained from consideration of the 
oxygen and hydrogen mole balances. The reaction of graphite with CO2  to form CO 
does not change the number of moles of oxygen in the gas phase. In the original mix-
ture, CO2 /H2  = 1, and thus, equal numbers of moles of oxygen and hydrogen occur 
in the gas phase. The number of moles of oxygen in the gas is

 2 2n n nCO CO H O2+ +  

and the number of moles of hydrogen is

 2 22 2n nH H O+  

Thus, in the gas mixture,

 2 2 22 2n n n n nCO CO H O H O H2 2+ + = +  

or

 n n n nCO CO H H O22 2

1
2

1
2

+ = +  

Under conditions of constant volume and temperature, p i   ∝  n i  , and thus,

 p p p pCO CO H H O2 2 2

1
2

1
2

+ = +  

which, in combination with

 p pH O H2 2 0 5+ = .  

gives

 p p pH O CO CO2 21 2= − −  
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Thus,

 
p

p
p

p p p p p

CO
CO

CO

H O CO CO CO CO2

  

2

2

2
2

2
1 579

0 633

1 2 1 1 266

= =

= =
.

.

.− − − −
pp p p pH H O CO CO22 0 5 1 266 0 52= = +. . .− −

 

substitution of which into Equation  (ii) gives

 K
p p p

p p
p,( ), .

( . )
( . .

i  K
CO CO CO

CO CO
1000

2

20 618
1 1 266

1 266 0 5
= =

+
− −

− )) .× 0 633 2pCO

 

Or

 p p pCO CO CO
3 23 346 1 624 2 019 0+ + =. . .−  (vii)

which has the solution p CO  = 0.541 atm, and thus, the new equilibrium state is

 

  atm

 atm

   atm

 atm

 

CO

CO

H

H O2

p

p

p

p

=
=
=
=

0 541

0 185

0 412

0 088

2

2

.

.

.

.

      atmp = 1 226.

 

Now add excess CaO to the system. The partial pressure of CO2  in the gas ( pCO2  = 
0.185 atm) is greater than the value of 0.053 atm required for equilibrium between 
CaO, CaCO3 , and CO2  at 1000 K. Thus, the CO2  reacts with the CaO to form CaCO3  
until, thereby, the partial pressure of CO2  has been decreased to the equilibrium 
value of 0.053 atm, and the gas-phase equilibrium shifts in order to maintain the 
C– CO– CO2  equilibrium. Thus, at the new equilibrium,

 p pCO CO atm and  atm2 0 053 1 579 0 053 0 2891 2= = × =. ( . . ) .  

Also,

 K
p

p
p,( ), .

.
.

i  K
H O

H

2
1000 0 618

0 289
0 053 2

= =  

which gives

 p

p
H O

H

2

2

0 133= .  
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which, with p pH H O22 0 5+ = .  atm, gives pH2 0 499= .  atm and pH O2 = 0 051.  atm. 
Thus, the new equilibrium gas is

 

   atm

 atm

  atm

 atm

 

H

H O

CO

CO

2

p

p

p

p

2

2

0 499

0 051

0 289

0 053

=
=
=
=

.

.

.

.

     atmP = 0 842.  

which, necessarily, is the same state as that produced by introducing the CaO before 
the graphite.
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ChAPter 13

reaction equilibria in Systems Containing 
Components in Condensed Solution

13.1 INtrODUCtION

Dissolving the pure component i  in a condensed solution which is in contact with 
a vapor phase causes a decrease in the vapor pressure exerted by i  from the value 

pi
�  (exerted by pure i ) to p i   (exerted by i  when it occurs in solution). This decrease 

in the equilibrium vapor pressure corresponds, via Equation  8.5, to a decrease of RT  

ln ( )p pi i/ �  in the value of the partial molar Gibbs free energy of i  in the vapor phase. 
Since phase equilibrium is maintained between the vapor phase and the condensed 

solution, the partial molar Gibbs free energy of i  in the solution is RT  ln ( )p pi i/ �  lower 
than the molar Gibbs free energy of pure condensed i  at the temperature T . Since 

the activity, a i  , of i  in the solution with respect to pure i  is defined by ( )p pi i/ � , the 
partial molal Gibbs free energy of i  in the condensed solution is lower than the molar 
Gibbs free energy of pure i  by the amount RT  ln a i  . The value of p i  , and hence a i  , 
depends on the composition and the nature of the components of the solution and on 

temperature, and inasmuch as the solution of i  affects the value of Gi, it necessarily 
affects the equilibrium state of any chemical reaction system in which the compo-
nent i  is involved.

As an example, consider the equilibrium between silica, silicon, and oxygen gas:

 SiO = Si O2 2( ) ( ) ( )s s g+  

From Equation  11.4, the equality

 G G GSiO Si O2 2= +  

is the criterion for reaction equilibrium at any temperature and total pressure. If the 
SiO2  and the Si present in the system are both pure, and the pure solids are chosen 
as the standard states, then

 G G GSiO Si O2 2
° °= +  
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or

 G G G RT p TSiO Si O O eq2 2 2

° ° °= + + ln ( . )  

It has been seen in Chapter 11 that, since the values of Gi
°  are dependent only on 

temperature, then at the temperature T  there exists a unique partial pressure of oxy-
gen, p TO eq2 ( . ), at which equilibrium occurs in the system. This unique oxygen pres-
sure is calculated as

 p
RT

G G GTO eq SiO Si O2 2 2

1
( . ) exp= − −( )





° ° °  

and, if it is required to reduce pure silica at the temperature T , the oxygen pressure 
in the system must be lower than pO T2 ( . )eq . Suppose now that the silica occurs at the 
activity aSiO2  in an Al2 O3 – SiO2  solution. The criterion for equilibrium among SiO2 , 
Si, and O2  is still

 G G GSiO Si O2 2= +  

but now

 G G RT aSiO SiO SiO22 2= +° ln  

and thus, in terms of standard Gibbs free energies,

 G RT a G G RT p TSiO SiO Si O O eq2 2 2 2

° ° °+ = + + ′ln ln ( . )  

Thus, for a given value of aSiO2, there now exists a new unique equilibrium oxygen 
pressure, ′p TO eq2 ( . ), which is given by

 ′ =p p aT TO eq O eq SiO2 2 2( . ) ( . )  

and so, if it is required to reduce SiO2  from an Al2 O3  solution to form pure Si, the 
oxygen pressure in the system must be lower than ′p TO eq2 ( . ). It is thus seen that the 
possibility of reducing SiO2  from an Al2 O3 – SiO2  solution to produce pure Si with a 
gas of given partial pressure of oxygen at a given temperature is determined by the 
solution thermodynamics  of the system Al2 O3 – SiO2 . Generally, the calculation of 
the equilibrium state of any reaction involving components in condensed solution 
requires knowledge of the thermodynamic properties of the various solutions pres-
ent in the system. The influence of solution thermodynamics on reaction equilibria 
is examined in this chapter.
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13.2 the CrIterIA FOr reACtION eQUILIBrIUM IN SYSteMS 
CONtAINING COMPONeNtS IN CONDeNSeD SOLUtION

Consider the general reaction

 aA bB cC dD+ = +  

occurring at the temperature T  and the pressure P . If none of the reactants or prod-
ucts of the reaction occurs in its standard state, the change in the Gibbs free energy 
for the reaction is

 ∆ ′ = + − −G cG dG aG bGC D A B  (13.1)

If, however, all of the reaction and products occur in their standard states, the change 
in the Gibbs free energy is the standard Gibbs free energy change, Δ G ° , given by

 ∆G cG dG aG bGC D A B
° ° ° ° °= + + −  (13.2)

Subtraction of Equation  13.2 from Equation  13.1 gives

 ∆ ∆G G c G G d G G a G G b G GC C D D A A B B− = − + − − − − −° ° ° ° °( ) ( ) ( ) ( )  (13.3)

For a component i  occurring in some state other than its standard state, Equation  9.28 
gives

 G G RT ai i i= +° ln  

where a i   is the activity of i  with respect to the standard state, and thus, Equation  13.3 
can be written as

 

∆ ∆′ − = + − −

=

°G G c RT a d RT a a RT a b RT a

RT
a a

C D A B

C
c

D
d

( ln ) ( ln ) ( ln ) ( ln )

ln
aa a

RT Q
A
a

B
b







= ln
 (13.4)

where Q a a a aC
c

D
d

A
a

B
b=  is called the activity quotient . Reaction equilibrium is estab-

lished when the reaction has proceeded to such an extent that

 aG bG cG dGA B C D+ = +  

that is, that the Gibbs free energy of the system at the fixed temperature and pressure 
has been minimized, or that Δ G  for the reaction is zero. Thus, at equilibrium,

 ∆G RT Q° = – ln eq  (13.5)

where Q eq  is the value of the activity quotient at equilibrium. From Equation  11.8,
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 ∆G RT K° = – ln  

and thus,

 Q Keq =  

That is, at reaction equilibrium, the activity quotient is numerically equal to the 
equilibrium constant K . Consider the oxidation of the pure solid metal M by gaseous 
oxygen to form the pure solid metal oxide MO2 :

 M O MO2 2( ) ( ) ( )s g s+ =  (i)

at the temperature T  and the pressure P . For this reaction,

 Q
a

a a
= MO

M O

2

2

 

Since M and MO2  are pure (i.e., occur in their standard states), then a aM = =MO2 1, 
and, from the formal definition of activity, the activity of oxygen gas is given as

 aO
the pressure of oxygen in the gas phase

the pressure of2 =
  oxygen in its standard state

 

Since the standard state for gaseous species has been chosen as being the gas at 1 atm 
pressure and the temperature of interest, then the activity of oxygen in the gas phase 
is equal to its partial pressure (assuming ideal behavior of the gas). Thus,

 Q
p

Q
p

K
T

= = =1 1

2 2O

eq

O eq

and
( . )

 

Now consider that the metal in equilibrium with its pure oxide and oxygen in a gas-
eous atmosphere occurs at the activity a M  in a solution. In this case,

 Q
a p

K
T

eq

M O eq

= =1

2 ( . )

 

and, since K  is dependent only on temperature and a M  <  1, it is seen that the oxygen 
pressure required to maintain equilibrium between M in solution and pure MO2  is 
larger than that required for equilibrium between pure M and pure MO2  at the same 
temperature. Similarly, if the pure metal M is in equilibrium with MO2  occurring at 
the activity aMO2  in solution and oxygen in a gas phase, then

 Q
a

p
K

T

eq MO

O eq

= =2

2 ( . )
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in which case the oxygen pressure required for the equilibrium between pure M and 
its oxide in solution is lower than that for the equilibrium between pure M and pure 
MO2 . In Figure 13.1, the line ab  is drawn as the variation of the standard Gibbs free 
energy change, with temperature for the oxidation

 M  O  MO2 1 atm 2( ) ( , ) ( )s g s+ =  (i)

At the temperature T , Δ G°   = cd , and the oxygen pressure for equilibrium between 
pure solid M and pure solid MO2  is drawn as the point e  on the oxygen pressure 
nomographic scale. Now consider the reaction

 M O MOin solid solution at  atm( ) ( , ) ( )a g sM + =2 1 2  (ii)

for which, at the temperature T , the Gibbs free energy change is Δ G (ii) . Reaction (ii) 
can be written as the sum of

 M Min solid solution at pure( ) ( , )a sM →  (iii)

for which

 ∆G G G RT a( ) lniii M M M= − = −°  

0
0

c

f

d

h

a
e

g

pO2

T

j

b
Temperature

DG

Figure  13.1   the influence of nonunit activities of the reactants and products of a reaction on 
the Δ G – T  relationship for the reaction.
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and

 M  O  MO2 1 atm 2( ) ( , ) ( )s g s+ =  (i)

for which

 ∆ ∆G G T( )i at the temperature= °  

Thus,

 ∆ ∆ ∆
∆

G G G

G RT a
( ) ( ) ( )

ln
ii i iii

M

= +
= −°

 

At the temperature T , ∆ G°   is a negative quantity, and, since a M  <  1, then ∆ G (ii)  is a 
smaller negative quantity, drawn in Figure 13.1 as cf . The effect of the solution of M 
on its oxidation is thus an anticlockwise rotation of the standard Gibbs free energy 
line about the point a  (∆ G °  at T =  0), with the extent of this rotation being such that, 
at the temperature T , the vertical separation from the standard line equals RT  ln a M . 
The extent of the rotation is determined by the value of a M . The oxygen pressure 
required for equilibrium between M in solution and pure MO2  is increased from e  
to g  in accordance with

 
K

p

a p

T
T

T

s

a s

=

=

1

1
2 2

2 2

O eq M

M O eq M MOat M

( , )

( , )

( )

( ) ( )

 

Consider the reaction

 M O MOpure  atm in solid solution at MO( , ) ( , ) ( )s g a+ =2 1 2 2
 (iv)

for which, at the temperature T , the Gibbs free energy change is ∆ G (iv) . Reaction (iv) 
can be written as the sum of

 MO MOpure in solution at MO2 2 2( , ) ( )s a→  (v)

and reaction (i); that is,

 ∆ ∆G G RT a( ) lniv MO= +°
2

 

At the temperature T , ∆ G°   is a negative quantity, and, since aMO2 1< , then ∆ G (iv)  
is a larger negative quantity, drawn in Figure 13.1 as ch . The effect of the solution 
of MO2  on the oxidation of M is thus seen to be a clockwise rotation of the Gibbs 
free energy line about the point a  with the extent of the rotation being such that, at 
the temperature T , the vertical separation from the standard Gibbs free energy line 
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equals RT aln MO2
. The extent of the rotation is determined by the value of aMO2

, and 
the oxygen pressure required for equilibrium between pure M and MO2  in solution is 
decreased from e  to j  in accordance with

 
K

p

a

p

T
T

T a

s s

s

=

=

1

2 2

2

2 2 2

O eq M MO

MO

O eq M MO at MO

( , )

[ , ( )]

( ) ( )

( )

 

In the general case,

 M a g p a( ) ( , ) ( )in solution at at in solution at M O MOO MO+ =2 22 2
 (vi)

for which, at the temperature T , the free energy change is Δ G (vi) :

 

∆ ∆

∆

∆

G G RT a RT p RT a

G RT
a

a p

G R

( ) ln ln ln

ln

vi M O MO

MO

M O

= − − +

= +

= +

°

°

°

2 2

2

2

TT Qln

 

At equilibrium, the values of aM , aMO2, and pO2  are such that Δ G (vi)  = 0, and thus,

 ∆G RT Q RT K° = =– ln – lneq  

as in Equation  13.5.

Example 

Examine the conditions under which a liquid Fe– Mn alloy can be in equilib-
rium with an FeO– MnO liquid solution in an atmosphere containing oxygen at 
1800° C. For

 
Mn O MnO

 J

( ) ( ) ( )

( ) , .

l g l

iG T

+ =

= − +°

1
2

344 800 55 90

2

∆

 (i)

and for

 
Fe O FeO

 Jii

( ) ( ) ( )

( ) , .

l g l

G T

+ =

= − +°

1
2

232 700 45 13

2

∆

 (ii)

Solution 

The pertinent equilibrium is

 FeO  Mn  MnO  Fe( ) ( ) ( ) ( )l l l l+ = +  (iii)
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for which

 
∆ ∆ ∆G G G( ), ( ), ( ),

, ,
iii  K i  K ii  K2073 2073 2073

228 900 138

° ° °= −
= − + 8800 90 100

8 3144 2073 2073

= −
= − ×

,

. ln ( ),

 J

 Jiii  KK

 

Therefore,

 K
a a

a a
( ),

( )[ ]
( )[ ]

iii  K
MnO Fe

FeO Mn
2073 186= =  

where:
(a MnO )  =  the activity of MnO in the liquid oxide phase with respect to pure 

MnO
v(a FeO ) =  the activity of FeO in the liquid oxide phase with respect to iron-

saturated liquid iron oxide
[a Mn ]  =  the activity of Mn in the liquid metal phase with respect to pure 

liquid Mn
[a Fe ]  =  the activity of Fe in the liquid metal phase with respect to pure 

liquid Fe.

Since both the liquid metal solution and the liquid oxide solution exhibit 
Raoultian behavior, the condition for phase equilibrium between the two is

 ( )[ ]
( )[ ]
X X

X X
MnO Fe

FeO Mn

= 186  (iv)

or

 [ ]
[ ]

( )
( )

X

X

X

X
Fe

Mn

FeO

MnO

= 186  

A series of tie-lines joining the compositions of equilibrated metal and oxide 
solutions is shown in Figure 13.2. Consider the metallic alloy of composition 
X Fe  = 0.5. Equation  (iv) gives

 1 186
1

=
−
( )

( )
X

X
FeO

FeO

 

or

 XFeO 535( ) = 0 00.  

and thus, when a metallic alloy of composition X Fe  = 0.5 is equilibrated with an 
oxide solution, the composition of the latter is X FeO  = 0.00535. Consider now the 
influence of the partial pressure of oxygen in the gaseous atmosphere:

 ∆G RT K RT
a

a p
( ) ( )ln ln

( )
[ ]

i i
MnO

Mn O

° = − = −
2

1 2
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Thus, since

 
                     Ji  K

i  K

∆G

K

( ),

( ),

,

.

2073

2073

228 900

5

° = −

= 8856 105
1 2

2

× = ( )
[ ]

a

a p
MnO

Mn O

 

or, since the metallic and oxide solutions are ideal,

 ( )
[ ]

.
X

X
pMnO

Mn
O= ×5 856 105 1 2

2

 (v)

Similarly,

 ∆G RT
a

a p
( ) ln

( )
[ ]

ii
FeO

Fe O

° = −
2

1 2
 

and since

 ∆G( ), ,ii  K  J2073 138 800° = −  

then

 K
a

a p
( ),

( )
[ ]

ii  K
FeO

Fe O

2073 1 23143
2

= =  

0 0.2 0.4 0.6
g f c

e

b

ad

(i)

(ii) (iii) (iv)
(v)

(vi) (vii) (viii) (ix) (x)

0.8 1.0
MnOFeO

pO2
 = 1.02 × 10–7 atm

pO2

= 2.92 × 10–12 atm

Mole fraction of MnO in the FeO – MnO solution

0 0.2 0.4 0.6 0.8 1.0

MnFe Mole fraction of Mn in the Fe – Mn solution

Figure  13.2   tie-lines between the compositions of equilibrated metallic and oxide alloys in 
the system fe– mn– o. the tie-lines are also oxygen isobars with oxygen pres-
sures as follows: (i) 1.24 ×  10– 8  atm, (ii) 2.65 ×  10– 10  atm, (iii) 7.0 ×  10– 11  atm, (iv) 
3.14 ×  10– 11  atm, (v) 1.79 ×  10– 11  atm, (vi) 1.15 ×  10– 11  atm, (vii) 8.04 ×  10– 12  atm, 
(viii) 5.92 ×  10– 12  atm, (ix) 4.46 ×  10– 12  atm, and (x) 3.58 ×  10– 12  atm.
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or

 ( )
[ ]
a

a
pFeO

Fe
O = 3143

2

1 2  

The ideal Raoultian behavior of the two solutions allows Equation  (vi) to be 
written as

 ( )
[ ]
X

X
pFeO

Fe
O = 3143

2

1 2  

Consider the equilibrium between the metallic alloy of X Fe  = 0.5 and the oxide 
solution of X FeO  = 0.00535. From Equation  (v),

 pO  atm2

0 99465
0 5

1
5 856 10

1 15 105

2
11= ×

×






= × −.
. .

.  

and from Equation  (vi)

 pO  atm2

0 00535
0 5

1
3143

1 15 10
2

11= ×





= × −.
.

.  

Thus, the tie-line connecting the compositions of the equilibrated metallic and 
oxide alloy is also the oxygen isobar in Figure 13.2. Thus, at any fixed oxygen 
pressure, the individual ratios

 ( )
[ ]

)
[ ]

( )
[ ]

( )
[ ]

a

a

X

X

a

a

X

X
FeO

Fe

FeO

Fe

MnO

Mn

MnO

Mn

(
and=







=





 

are fixed by Equations (v) and (vi), combination of which gives

 ( )[ ]
( )[ ]

.X X

X X
MnO Fe

FeO Mn

= × =5 856 10
3143

186
5

 

in accordance with Equation  (iv). Consider the oxidation of a finite quantity of a 
liquid metallic alloy of composition X Fe  = 0.5 by an infinite oxygen-containing 
gaseous atmosphere in which the partial pressure of oxygen is slowly increased. 
From Figure 13.2, the metal phase is stable when the partial pressure of oxygen 
is less than 1.15 ×  10– 11  atm. At pO 12 1 15 0 11= × −.  atm, the metallic alloy is in 
equilibrium with an oxide solution of X FeO  = 0.00535. Increasing the partial 
pressure of oxygen to 1.79 ×  10– 11  atm moves the state of the system to the state 
b  on the (v) isobar in Figure 13.2. In this state, a metallic alloy of X Fe  = 0.6 (at a ) 
is in equilibrium with an oxide solution of X FeO  = 0.0053 (at c ), and the relative 
quantities of the two phases are given by application of the lever rule to the tie-
line (v); that is, the fraction of the system occurring as the metallic alloy in state 
a  is bc /ac , and the fraction occurring as the oxide solution in state c  is ab /ac . 
Increasing the oxygen pressure to 7.0 ×  10– 11  atm moves the system to the state 
e  on the (iii) isobar, where a metallic alloy of X Fe  = 0.8 (at d ) is in equilibrium 
with an oxide solution of X FeO  = 0.021 (at f ). The ratio of metallic alloy to oxide 
solution occurring is ef /de . Continued increase in the partial pressure of oxygen 



477reaCtIon  eQuIlIBrIa

moves the state of the system upward along the broken line in Figure 13.2, dur-
ing which the ratio of oxide-to-metal phase increases and the mole fraction of 
Fe in the metal phase and the mole fraction of FeO in the oxide phase increase. 
When the composition of the oxide reaches X FeO  = 0.5 (at g ), the infinitesimal 
amount of equilibrium metal phase has the composition X Mn  = 0.00535 and the 
oxygen pressure is 2.55 ×  10– 8  atm. The oxidation of Fe– Mn alloys at 2073 K 
occurs between the limits of oxygen pressure 2.92 ×  10– 12  atm for the equilib-
rium between pure Mn and pure MnO, and 1.02 ×  10– 7  atm for the equilibrium 
between pure Fe and pure FeO. The establishment of equilibrium (iii) requires 
that the Δ G – T  lines for the oxidation of Fe and Mn intersect at 2073 K— that 
is, that Δ G (iii),2073 K  = 0. For any oxidation 2M + O2  = 2MO, clockwise rotation 
of the Δ G – T  line (e.g., the line ab  in Figure 13.1) about its point of intersection 
with the T  = 0 axis occurs when the ratio a MO /a M  is decreased to a value less 
than unity, and, conversely, anticlockwise rotation of the line occurs when the 
ratio a MO /a M  is increased to a value greater than unity. Also, since the equilib-
rium constant K  is a function only of temperature, then, at any oxygen pres-
sure pO2  in the system M– MO2 – O2  at the temperature T , the equilibrium ratio 
a MO /a M  must be

 a

a

p

p T

MO

M

O

O eq  pure M pure MO

= 2

2

1 2

1 2
( )

 

where p TO eq  pure M pure MO2( )  is that unique oxygen pressure at the temperature T  
required for equilibrium between pure M and pure MO. Thus, for any oxygen 
pressure within the allowed limits, equilibrium (iii) occurs when Equations 
(v) and (vi) are satisfied, and, under these conditions, the Δ G – T  lines for the 
oxidation of Fe and Mn intersect at 1800° C. Thus, as a consequence of the 
ability to vary a M  and a MO , equilibrium (iii) can be established at any T  and 
any pO2  (within the aforementioned limits). This is in contrast to the situation 
illustrated in Figures 12.4 and 12.5, in which, if both metals and both oxides 
are present in their pure states, then an equilibrium such as (iii) can only be 
achieved at the single unique state (unique T  and unique pO2 ) at which the 
Ellingham lines for the two oxidation reactions intersect with one another. The 
restrictions on general multicomponent multiphase equilibria are discussed in 
Section 13.4.

13.3 ALterNAtIVe StANDArD StAteS

Up to this point, the standard state of a component of a system has been chosen as 
being the pure component in its stable state of existence at the temperature of inter-
est. This is called the Raoultian standard state ; in Figure 13.3, the Raoultian stan-
dard state for the component B  is located at point r .

In situations in which the pure component exists in a physical state which differs 
from that of the solution, the Henrian standard state may be more convenient than 
the Raoultian standard state. Such situations include the solution of a gas in a solid 
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or liquid solvent and the solution of a solid in a liquid solvent. The Henrian standard 
state is obtained from consideration of Henry’ s law, which, strictly being a limiting 
law obeyed by the solute B  at infinite dilution, is expressed as

 a

X
k XB

B
B B→ →as 0  

where:
a B    is the activity of B  in the solution with respect to the Raoultian standard 

state
k B    is the Henry’ s law constant at the temperature T 

Alternatively, Henry’ s law can be written as

 a

X
XB

B
B B→ →°γ as 0  (13.6)

where γ B Bk° =( )  is the constant activity coefficient which quantifies the difference 
between the Raoultian solution behavior of B  and the Henrian solution behavior of B . 
If the solute obeys Henry’ s law over a finite range of composition, then, over this range,

 a XB B B= °γ  

The Henrian standard state is obtained by extrapolating the Henry’ s law line to 
X B   =  1. This state (the point h  in Figure 13.3) represents pure B  in the hypothetical 
nonphysical state in which it would exist as a pure component, if it behaved as it does 

a
w

1 wt% B

c
n

m

r

h

b

Ac
tiv

ity

XB

Figure  13.3   Illustration of the raoultian, henrian, and 1 wt% standard states for component 
B  in a binary A – B  system.
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in dilute solution. The activity of B  in the Henrian standard state with respect to the 
Raoultian standard state having unit activity is given by Equation  13.6 as

 aB B= °γ  

Thus, in Figure 13.3, if the length rb  is unity, then hb B= °γ .
Having thus defined the Henrian standard state, the activity of B  in a solution, 

with respect to the Henrian standard state having unit activity, is given by

 h f XB B B=  (13.7)

where h B   is the Henrian activity and f B   is the Henrian activity coefficient. In the 
range of composition in which the solute B  obeys Henry’s law, f B  = 1, and the solute 
exhibits Henrian ideality.

The mole fraction of B  in an A – B  solution is related to the weight percentage of B  by

 
X

B

MW
B

MW

wt B

MW

B
B

B A

=
+ −

wt

wt

%

% ( % )100
 

where MW A   and MW B  are, respectively, the molecular weights of A  and B . Thus, 
in dilute solution, as the mole fraction of B  is virtually proportional to the weight 
percentage of B ; that is,

 X
B MW

MW
B

A

B

∼
wt% ×

×100
 

a third standard state can be introduced. This is the 1 wt% standard state, which is 
defined as

 h

B
BB( %)

%
%1 1 0 wt

wt
 as wt→ →  

and is located at the point on the Henry’ s law line which corresponds to a concentra-
tion of 1 wt% B  (the point w  in Figure 13.3). With respect to the 1 wt% standard state 
having unit activity, the activity of B , h B  (1 wt%) , is given by

 h f BB B1 wt 1 wt wt% ( %) %( ) =  (13.8)

where f B  (1 wt%)  is the 1 wt% activity coefficient, and in the range of composition in 
which the solute B  obeys Henry’ s law, f B  (1 wt%)  = 1, and hence,

 h BB 1 wt  wt% %( ) =  

which is of considerable practical convenience.
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From consideration of the similar triangles awc  and ahb  in Figure 13.3, the activ-
ity of B  in the 1 wt% standard state with respect to the Henrian standard state having 
unity activity is

 wc

hb

ac

ab

MW

MW
A

B

= =
100

 

and, with respect to the Raoultian standard state having unit activity, is

 γ B A

B

MW

MW

°

100
 

The value of the equilibrium constant for any reaction, being equal to the quotient 
of the activities of the reactants and products at reaction equilibrium, necessarily 
depends on the choice of standard states for the components. Similarly, the magni-
tude of Δ G °   for the reaction depends on the choice of standard states and thus, in 
order to convert from the use of one standard state to another, it is necessary that the 
differences between the Gibbs free energies of the standard states be known.

For the change of standard state

 B Bin the Raoultian standard state in the Henrian standa( ) → ( rrd state)  

 G R H G G RT
a

B B H B R
B° ° °→ = − =( ) ln( ) ( )

(in the Henrian standard statee

in the Raoultian standard state

)

( )aB

 

where both activities are measured on the same activity scale. On either the Raoultian 
or Henrian scales,

 a

a
B

B

( )

(

in the Henrian standard state

in the Raoultian standaard state)

= = °hb

rb
Bγ  

and thus,

 ∆G RTB R H B( ) ln→
° °= γ  (13.9)

where γ B
°  is the Henrian activity coefficient at the temperature T .

For the change of standard state

 B Bin the Henrian standard state in the 1 wt  standard s( ) → ( % ttate)  

 ∆G H G G RT
a

B B B H
B° ° °→ = − =( %) ln( %) ( )

( %1 1
1 wt  wt

in the  wt  standaard state

in the Henrian standard state

)

( )aB
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where, again, both activities are measured on the same scale:

 a

a
B

B

( % )

(

in the  wt  standard state

in the Henrian standard

1

  state)

= = =wc

hb

ac

ab

MW

MW
A

B100
 

and thus,

 ∆G RT
MW

MW
B H

A

B
( %) ln→

° = 



1

100
wt

 (13.10)

Combination of Equations 13.9 and 13.10 gives

 ∆G RT
MW

MW
B R

B A

B
( %) ln→

°
°

=




1

100
wt

γ  (13.11)

for the change of standard-state Raoultian →  1 wt%. Using the subscript R  to denote 
the Raoultian standard state, the subscript H  to denote the Henrian standard state, 
and the subscript wt% to denote the 1 wt% standard state, consider again the oxida-
tion of metal M to form the oxide MO2  at the temperature T :

 M   O  MO2 2( ) ( ) ( )R g R+ =  

For this equilibrium,

 ∆G RT K RT
a

a p
R R( ) ( )ln ln° = − = − MO

M O

2

2

 

If M occurs in dilute solution, in which case it may be more convenient to use the 
Henrian standard state for M, then

 
M O MO

M

( ) ( ) ( )

( ) ( ) ( )

H g R

H R R HG G G

+ =
= −° °

→
°

2 2

∆ ∆ ∆
 

That is,

 − = − − °RT K RT K RTH Rln ln ln( ) ( ) γ M
 

or

 RT
a

h p
RT

a

a p
RTln ln lnMO

M O

MO

M O
M

2

2

2

2

= + °γ  

Thus,

 a hM M M= °γ  (13.12)
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which relates the activity of M in solution with respect to the Raoultian standard 
state to the activity of M in solution with respect to the Henrian standard state; for 
example, in the case of composition m  in Figure 13.3,

 a
mn

rb

mn

hb

hb

rb
hB B B= = = °γ  

Similarly, if it is convenient to use the 1 wt% standard state for M, then

 
M O MO wt

 wt M  wt

( %) ( ) ( )

( %) ( ) ( %)

1 2 2

1 1

+ =
= −° °

→
°

g R

R RG G G∆ ∆ ∆
 

or

 − = − −
°

RT K RT K RT
MW

MW
Rln ln ln( %) ( )1

100
 wt

M solvent

M

γ  

or

 −
× ×

= − −
°

RT
a

f p
RT

a

a p
RT

MW
ln

%
ln ln

( %)

MO

M  wt O

MO

M O

M solven

wt M
2

2

2

21

γ tt

M100MW
 

or

 a f
MW

MW
M M  wt M

solvent

M

wt  M= ⋅ ⋅ ⋅°
( %) %1

100
γ  (13.13)

Example 

The activity of silicon in binary Fe– Si liquid alloys, a Si , is shown in Figure 13.4 
at two temperatures. As is seen, Si exhibits considerable negative deviation from 
Raoult’ s law; for example, at X Si  = 0.1 and 1420° C, a Si  = 0.00005. Thus, in 
considering dilute solutions of Si in Fe, there is an advantage to using either the 
Henrian standard state or the 1 wt% standard state.

For the change of standard state from Raoultian to Henrian at the tempera-
ture T ,

 ∆G RTR HSi Si( ) ln→
° °= γ  

and the experimentally measured variation of log γSi
°

 with temperature is

 log .γSi
° = − +6230

0 37
T

 

and thus,

 ∆G T

T
R HSi Si

 J
( ) . . log

, .
→

° °= ×
= − +

8 3144 2 303

119 300 7 08

γ  
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Also, for the change of standard state from Henrian to 1 wt% in Fe at the tem-
perature T 

 

∆G RT
MW

MW

RT

HSi  wt
Fe

Si
( %) ln

ln
.

.

→
° =

=
×







= −

1
100

55 85
100 28 09

322 6. T  J

 

so, for the change Si( R  )  →  Si(1 wt% in Fe) ,

 
∆ ∆ ∆G G G

T

R R H H( %) ( ) ( %)

, .

→
°

→
°

→
°= +

= − −

1 1

119 300 25 5

 wt  wt

 J
 (i)

Now, given that a liquid Fe– Si alloy is in equilibrium with an SiO2 -saturated 
FeO– SiO2  melt (in which aSiO2 1= ) and an atmosphere containing oxygen, cal-
culate the relationship between the equilibrium weight percentage of Si in the 
Fe– Si alloy and the oxygen pressure in the gaseous atmosphere. For the reaction

 Si O SiO2 2( ) ( ) ( )l g s+ =  (ii)

∆G T( ) ,ii  J° = − +952 700 204  in the temperature range 1700– 2000 K. Thus, the 
standard Gibbs free energy for the reaction

 Si O SiO1 wt 2 2( %) ( ) ( )+ =g s  (iii)
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Figure  13.4   the activity of si in fe– si melts at 1420° C and 1700° C.
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is obtained as ∆ ∆G G( ) ( )ii i
° °− ; namely

 
∆G T

RT
a

h p

( )

( %)

, .

ln

iii

SiO

Si  wt O

 J° = − +

= −

833 400 229 5

2

21

 

As aSiO2 1= , then

 ln
,

.
.

.
ln( %)h

T
pSi  wt O1

833 400
8 3144

229 5
8 3144 2= − + −  

If it can be assumed that Si in Fe obeys Henry’ s law over some initial range of 
composition, then, in this range, h Si(1 wt%)  = wt% Si, and thus,

 ln %
,

. lnwt  Si O= − + −100 200
27 60 2T

p  

Thus, to produce an equilibrium melt containing 1 wt% Si at 1600° C, the partial 
pressure of oxygen must be 5.57 ×  10– 12  atm, and the oxygen pressure for any 
other weight percentage of Si at 1600° C is calculated from

 pO
wt  Si2

5 57 10 12

= × −.
%

 

The error in this calculation caused by the assumption of Henrian behavior in 
some initial range of composition is demonstrated when the calculation is con-
sidered again in Section 13.9.

13.4 the GIBBS eQUILIBrIUM PhASe rULe

In Chapter 7, it was found that the number of degrees of freedom available in 
equilibrium in a one-component system is related to the number of phases present 
by means of a simple rule. This rule, the Gibbs equilibrium phase rule, was easily 
derived because of the simplicity of graphical representation of phase equilibria in 
a one-component system. However, phase relations in a multicomponent system can 
be complicated, and in such systems, the Gibbs equilibrium phase rule is a powerful 
tool in the determination of possible equilibria and the restrictions on these equilib-
ria. The general derivation of the phase rule is as follows. Consider a system con-
taining C  chemical species, i , j , k , …  (none of which enters into chemical reaction 
with any other). Each of the components occurs in Φ  phases, α , β , γ , … . Since the 
thermodynamic state of each of the Φ  phases is determined by the specification of 
its temperature, pressure, and composition (where composition is expressed in terms 
of C  –  1 composition variables, such as mole fractions or weight percentages), then 
the state of the entire system is specified when its Φ (C  + 1) variables are fixed. The 
conditions that the entire system be at complete equilibrium are

• T α   = T β   = T γ   = . . . (Φ  –  1) equalities of temperature
• P α   = P β   = P γ   = . . . (Φ  –  1) equalities of pressure
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• a i  (α )  = a i  (β )  = a i  (γ )  = . . . (Φ  –  1) equalities of the activity of the species i 
• a j  (α )  = a j  (β )  = a j  (γ )  = . . . (Φ  –  1) equalities of the activity of the species j 

and so on for each of the C  chemical species.
Thus, the total number of equilibrium conditions, given as the number of required 

equations among the variables of the system, is

 ( )Φ − +( )1  2C  

The number of degrees of freedom, F , which an equilibrium in the system may 
have is defined as the maximum number of variables which may be independently 
altered in value without disturbing the equilibrium. This number F   is obtained as 
the difference between the total number of variables available to the system and the 
minimum number of equations among these variables that is required to maintain 
the equilibrium; that is,

 F = + − − +
= + −

Φ Φ
Φ

( ) ( )( )C C

C

1 1 2

2
 (13.14)

In a system of nonreacting species, the number of species C  equals the number of 
components in the system. However, if some of the species enter into reaction with 
one another, such that the equilibrium of the system includes a number of reaction 
equilibria— in addition to the phase, temperature, and pressure equilibria— then the 
number of equations among the variables which must be specified is increased by 
R , the number of such independent reaction equilibria occurring in the system. For 
example, if the species i  and j  react to form the species k , then the establishment of 
the reaction equilibrium requires that, in each of the Φ  phases,

 G G Gi j k+ =  

which increases the number of equations among the variables by one. Thus, if the 
system contains N  species, among which there are R  independent reaction equilibria, 
then

 F = + − − + −
= − + −

Φ Φ
Φ

( ) ( )( )

( )

N N R

N R

1 1 2

2
 

In order that the phase rule, as given by Equation  13.14, be generally applicable to 
both reactive and nonreactive systems, the number of components in the former is 
defined as

 C N R  = –  

C  can be determined as either the minimum number of chemical species required to 
produce the system at equilibrium, or the number of species in the system minus the 
number of independent reaction equilibria among these species.
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Example 1 

Consider, again, the example discussed in Section 13.2, in which an examination 
was made of the conditions under which a liquid Fe– Mn solution and a liquid 
FeO– MnO solution can be in equilibrium with an oxygen-containing atmo-
sphere. This is a three-component system (Fe– Mn– O) existing in three phases 
(metal– oxide– gas), and thus, from the phase rule, the equilibrium has two degrees 
of freedom, which can be selected from the variables T , pO2, [XFe ], [XMn ], (XFeO ), 
and (XMnO ). With five species (O2 , Fe, Mn, FeO, MnO) and three components, 
there are two independent reaction equilibria, which can be selected as

 Fe O FeO+ =1
2

2
 

for which

 K
a

a p

X

X p
T( ),

( )
[ ]

i
FeO

Fe O

FeO

Fe O

= =
2 2

1 2 1 2
 (i)

and

 Mn O MnO+ =1
2

2
 

for which

 K
a

a p

X

X p
T( ),

( )
[ ]

ii
MnO

Mn O

MnO

Mn O

= =
2 2

1 2 1 2
 (ii)

 a. If T  and pO2  are chosen as the independent variables,

 ( )
[ ]

( ),
X

X
K pT

FeO

Fe
i O= ⋅

2

1 2  

 is fixed by Equation  (i) and

 ( )
[ ]

( )
[ ]

( ),
X

X

X

X
K pT

MnO

Mn

FeO

Fe
ii O= −

−
= ⋅1

1 2

1 2  

 is fixed by Equation  (ii). Thus, (X FeO ) [and hence (X MnO )] and [X Fe ] (and hence 
[X Mn ]) are fixed.

 b. If T  and [X Fe ] are chosen as the independent variables, [X Mn ] =  1 –  [X Fe ] is 
automatically fixed.

 ( ) ( )
( )

[ ]

[ ]
( ),

( ),

X

X

X

X

K X

K X
T

T

MnO

FeO

FeO

FeO

ii Mn

i Fe

= − =1  

 is fixed by Equations (i) and (ii), which fixes (XFeO ) [and hence (XMnO )], and

 p
X

X K T
O

FeO

Fe i
2

1 2 = ( )
[ ] ( ),

 

 is fixed by Equation  (i).
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 c. If pO2  and [X Fe ] are chosen as the independent variables, from Equation  (i),

 X K X p
H

RT

S

R
TFeO i Fe O

i i( ) = ⋅   ⋅ =
−








° °

( ),
( ) ( )exp exp

2

1 2 ∆ ∆





⋅   ⋅X pFe O2

1 2 

 and from Equation  (ii),

 

X X K X p

H

RT

TMnO FeO ii Mn O

ii

( ) = − = ⋅   ⋅

=
−





°

1
2

1 2( )

exp e

( ),

( )∆
xxp ( )∆S

R
X pii

Mn O

°





⋅   ⋅
2

1 2  

 the simultaneous solution of which fixes T  and (X FeO ). Thus, the fixing of any two 
of the variables fixes the values of all of the others. In the previous discussion of 
this example, T =  1800° C and pO2  were selected as the independent variables.

Example 2 

Consider the system M– MO– O2  in which the reaction equilibrium

 M O MO( ) ( ) ( )s g s+ =1
2

2
 

is established. This system has three phases (the condensed phases M and MO 
and the gaseous oxygen phase) and two components (M and O). The available 
variables are the temperature T  and the total pressure P . Since, at equilibrium, 
the species M and MO occur in fixed states— that is, M saturated with oxygen 
and MO saturated with M— the activities of these two species are fixed. Thus, 
the total pressure P  is the sum of the oxygen pressure and the saturated vapor 
pressures of the solid phases M and MO. Since the latter two are fixed at any 
given temperature, then the value of P  can be varied only by varying pO2. From 
the phase rule, F  = C + 2 –  Φ  = 2 + 2 –  3 = 1, and thus, the equilibrium has 
only one degree of freedom. Thus, either T  can be arbitrarily fixed, in which 
case the equilibrium constant K T  , and hence p TO eq2( ), is fixed; or P p= O2

 + 
(the vapor pressures of M and MO) can be arbitrarily fixed, in which case the 
value of K T  , and hence T , is fixed. If an inert gas is added to the system, then 
P p p= +O inert gas2  + (the vapor pressures of M and MO), and so the values of 
pO2  and p inert gas  may be independently varied. The addition of the inert gas as 

the third component increases the number of degrees of freedom to two, but the 
additional degree of freedom is restricted to variations of the value of p inert gas ; 
that is, in addition to either T  or pO2  being independently variable, p inert gas  may 
be independently varied. Consider the equilibrium

 M CO MO  CO2( ) ( ) ( ) ( )s g s g+ = +  

This three-component, three-phase equilibrium has two degrees of freedom 
which may be selected from T , P , p CO , and pCO2. For example, fixing T  and P  
uniquely fixes p CO  and pCO2 via
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K

p

p
P p pT = = +CO

CO
CO COand

2

2

 

If the system contains the solid carbide MC, then the three-component, four-
phase system (M + MO + MC + gas) has one degree of freedom, which again 
can be selected from T , P , p CO , and pCO2

. Since R = N  –  C =  5 –  3 = 2, the two 
independent reaction equilibria can be selected as

 M  CO  MO  CO2( ) ( ) ( ) ( )s g s g+ = +  (i)

and

 M  2CO  MC  CO2( ) ( ) ( ) ( )s g s g+ = +  (ii)

Fixing T  fixes

 
K

p

p
T ( )i

CO

CO

=
2

 

and

 
K

p

p
T ( )ii

CO

CO

=
2

2

 

which uniquely fixes the values of p CO  and pCO2, and hence P p p= +CO CO2
. If 

solid carbon is also present, in which case the system contains the phases M, 
MO, MC, C, and gaseous CO and CO2 , then the number of independent reaction 
equilibria is increased by one; for example, the independent equilibria

 M  CO  MO  CO2( ) ( ) ( ) ( )s g s g+ = +  (i)

 M  2CO  MC  CO2( ) ( ) ( ) ( )s g s g+ = +  (ii)

and

 C  CO  2CO2( ) ( ) ( )s g g+ =  (iii)

occur, and the number of phases present is increased by one. In this case F =  0 
and the system is invariant, occurring at a unique T  and at unique values of p CO  
and pCO2 . In a multiphase, multicomponent system in which several indepen-
dent reaction equilibria occur, the number of such equilibria can be calculated 
as follows. First write a chemical reaction equation for the formation of each 
species present from its constituents. For example, in the preceding example,

 M O MO2+ =1
2

 (a)

 M C MC+ =  (b)
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 C O CO2+ =1
2

 (c)

 C O CO2 2+ =  (d)

Then combine these reaction equations in such a manner that those elements 
not considered to be present in the system are eliminated. The resulting number 
of reaction equations is then the number of independent reaction equilibria, R . 
In the preceding system, the species present are M, MO, MC, C, CO, and CO2 . 
Thus, from Equation  (a):

 1
2

O MO M2 = −  

and thus, in Equation  (c),

 C MO M CO or C MO CO M+ = + = +–  (iv)

in Equation  (d),

 C 2MO 2M CO or C 2MO CO 2M2 2+ = + = +–  (v)

and in Equation  (b),

 M C MC+ =  (vi)

Thus, three independent equilibria occur, combination of which produces other 
equilibria which occur in the system; for example,

 MC 2MO CO 3M2+ = +  (vii)

 MC MO CO 2M+ = +  (viii)

 M CO MO CO2+ = +  (i)

 M 2CO CO MC2+ = +  (ii)

 C CO 2CO2+ =  (iii)

When any three of these five equilibria are established, the other two are also 
established.

13.5 PhASe StABILItY DIAGrAMS

In this section, we introduce phase stability diagrams  (also called predominance 
diagrams ). These are diagrams which are used in multicomponent, multiphase 
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reacting systems to display regions in thermodynamic variable space where various 
phases in the system are likely to be found. Consider equilibrium in the ternary sys-
tem Si– C– O at 1000° C. The solid phases which can exist in this system are Si, SiO2 , 
SiC, and C, and the gas phase is a mixture of CO and CO2 . Just as fixing the activity 
of one component in a binary system fixes the activity of the other, the fixing of the 
activities of two of the components in a ternary system fixes the activity of the third. 
Thus, when the activities of C and O2  are fixed in the system Si– C– O, the activity of 
Si is fixed and a definite equilibrium state exists. Thus, two-dimensional representa-
tion of the phase stability can be considered in the following ways:

 1. At constant temperature with a C  and pO2  as the variables
 2. At constant a C  (or constant pO2) with T  and pO2 (or a C ) as the variables

Application of the phase rule to a three-component system indicates that an equi-
librium among five phases has no degrees of freedom. Thus, if a gas phase is always 
present,

• Four condensed phases can be in equilibrium with one another and a gas phase at 
an invariant state (F  = 0 = C  + 2 –  Φ  = 3 + 2 –  5).

• Three condensed phases can be in equilibrium with one another and a gas phase at 
an arbitrarily chosen temperature (F   = 1 = C  + 2 –  Φ  = 3 + 2 –  4).

• Two condensed phases can be in equilibrium with one another and a gas phase at 
an arbitrarily chosen temperature and an arbitrarily chosen value of a C  or pO2  (F  = 
2 = C  + 2 –  Φ  = 3 + 2 –  3).

• One condensed phase can be in equilibrium with the gas phase at an arbitrarily 
chosen temperature and arbitrarily chosen values of a C  and pO2 (F  = 3 = C  + 2 –  Φ  
= 3 + 2 –  2).

Since four solid phases can exist, there are

• Four possible equilibria involving three condensed phases and a gas phase (found 
by taking four solid phases three at a time, or 4 3 1 4! ! !)/( ⋅ = )

• Six possible equilibria involving two condensed phases and a gas phase (found by 
taking four solid phases two at a time, or 4 2 2 6! ! !)/( ⋅ = )

• Four possible equilibria involving one condensed phase and the gas phase (found by 
taking four solid phases one at a time, or 4 1 3 4! ! !)/( ⋅ = )

Consider construction of the phase stability diagram for the system Si– C– O at 
1000° C using log a C  and log pO2  as the variables.

As shown, there are six possible equilibria involving two condensed phases and 
a gas phase: namely,

 1. Si– SiO2 – gas
 2. Si– SiC– gas
 3. SiC– SiO2 – gas
 4. SiC– C– gas
 5. SiO2 – C– gas
 6. Si– C– gas
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And the four possible equilibria involving three condensed phases and a gas 
phase are

 1. Si– SiO2 – SiC– gas
 2. Si– SiC– C– gas
 3. SiO2 – SiC– C– gas
 4. Si– SiO2 – C– gas

Consider the equilibria between two condensed phases and the gas phase.

1 . The equilibrium Si– SiO 2  – gas phase 

For the reaction

 

Si O SiO

 Ji  K

O

( ) ( ) ( )

( ) ,

ln

.

s g s

G

RT
p

+ =

= −

= −

=

°

2 2

1273 683 400

1

8 314

2

∆

44 1273 2 303 2× × . log pO

 (i)

or log .pO2 28 04= − . Thus, at 1273 K, the equilibrium between Si and SiO2  requires 
log .pO2 28 04= − , and this equilibrium, which is drawn as line AB  in Figure 13.5a, 
is independent of a C . At lower values of pO2  (the abscissa), Si is stable relative to 
SiO2  and, at higher values, SiO2  is stable relative to Si.

2. The equilibrium Si– SiC– gas phase 

For the reaction

 

Si C SiC

 Jiii  K

C

( ) ( ) ( )

( ) ,

ln

.

s s s

G

RT
a

+ =
= −

= −

= ×

°∆ 1273 63 300

1

8 3144 11273 2 303× . log aC

 (ii)

or log a C  = – 2.60. Thus, at 1273 K, the equilibrium between Si and SiC requires 
log a C  = – 2.60, and this equilibrium, which is drawn as line CD  in Figure 13.5a, is 
independent of pO2. At lower values of a C , Si is s relative to SiC and, at higher values 
of a C , SiC is stable relative to Si.

3. The equilibrium SiC– SiO 2  – gas phase 

Lines AB  and CD  intersect at the point P p a(log . , log . )O C2 28 04 2 60= − = − , which is 
the unique state at which the three solid phases Si, SiC, and SiO2  are in equilibrium 
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with one another and with a gas phase at 1273 K. The variation of log a C  with log pO2 
required for the equilibrium SiC– SiO2  must pass through this point. Combination of 
Equations (i) and (ii) gives

 SiC  O  SiO  C2 2( ) ( ) ( ) ( )s g s s+ = +  (iii)
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Figure  13.5   (a)  Construction of the phase stability diagram for the system si– C– o at 
1273 K. (b)   Co2  isobars in the phase stability diagram for si– C– o at 1273 K. 
(c) Co isobars in the phase stability diagram for si– C– o at 1273 K. 
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for which

 
∆G

a

p

( ) ,

. . log

iii  K

C

O

 J1273 620 100

8 3144 1273 2 303
2

° = −

= − × ×
 

or

 log log .a pC O= +2 25 44  

which is drawn as line EF  in Figure 13.5a. In states above this line, SiC is stable rela-
tive to SiO2 , and below the line, SiO2  is stable relative to SiC.

4 . The equilibrium SiC– C– gas phase 

The equilibrium between solid SiC and solid C is a phase equilibrium which exists 
only at a C  = 1, or log a C  = 0. Thus, in Figure 13.5a, the equilibrium between SiC and 
C exists along the log a C  = 0 line, at values of log pO2 less than – 25.44, the point of 
intersection of line EF  with the log a C  = 0 line.

5. The equilibrium SiO 2  – C– gas phase 

As with the equilibrium between SiC and C, the phase equilibrium between SiO2  
and C requires log a C  = 1, and thus occurs along the log a C  = 0 line at values of log 
pO2 greater than – 25.44.

6. The equilibrium Si– C– gas phase 

The standard Gibbs free energy change at 1273 K for the reaction

 Si  C  SiC( ) ( ) ( )s s s+ =  

SiC

10–7
10–7

10–6
Si

–30 –29 –28

log pO2
, atm

–27 –26 –25

P

F
0

–1

–2

–3

–4

SiO2
lo

ga
C

(d)

Figure  13.5   (Continued)  (d) sio isobars in the phase stability diagram for si– C– o at 
1273 K.
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is ∆G( ) ,ii  K  J1273 63 300° = − , which, being negative, indicates that Si and C spontane-
ously react with one another to form SiC until either the C or the Si is consumed. 
Thus, Si and C cannot be in equilibrium with one another. If the molar ratio Si/C 
in the system is greater than 1, the C is consumed by the reaction and equilibrium 
between the product SiC and the remaining Si is attained, and if the ratio is less 
than 1, the Si is consumed by the reaction and an equilibrium is attained between 
the SiC produced and the remaining C. The solid carbon phase exists only along the 
log a C  = 1 line, and thus, Figure 13.5a contains fields of stability of the single phases 
Si, SiO2 , and SiC. Consequently, of the six lines in the diagram radiating from point 
P , three represent stable equilibria involving two condensed phases and a gas phase, 
and three represent metastable equilibria involving two condensed phases and a gas 
phase. The problem is how to distinguish between the two types of equilibria. It is a 
property of such diagrams that the lines of metastable and stable equilibria radiate 
alternatively from a point such as P  (see, for example, Figures 7.7 and 7.8a). Thus, 
one set of lines is PA -PC -PF  and the other is PE -PB -PD . In Figure 13.5a, Si is 
stable relative to SiO2  in states to the left of PA  and is stable relative to SiC in states 
below PC . Thus, the line PE  represents the metastable equilibrium between SiC and 
SiO2 . This identifies the stable equilibrium lines as being PA -PC -PF  and, as shown 
in Figure 13.5b, defines the fields of stability of a single condensed phase with a gas 
phase, which, at constant temperature, have two degrees of freedom. These fields 
meet at lines which represent the equilibrium between two condensed phases and 
a gas phase (which, at constant temperature, have one degree of freedom), and the 
lines meet at points representing equilibrium among three condensed phases and a 
gas phase. The point P  is the state of equilibrium of Si, SiC, SiO2 , and a gas phase, 
and the point F  is the state of equilibrium of SiC, SiO2 , C, and a gas phase. The 
partial pressures of CO and CO2  are determined by the activities of carbon and oxy-
gen in the system, and the iso- pCO2  and iso-p CO  lines can be placed on the stability 
diagram as follows. For the reaction

 C  O  CO2 2( ) ( ) ( )s g g+ =  (iv)

 ∆G
p

a p
( ) , . . logiv  K

CO

C O

 J1273 395 200 8 3144 1273 2 303 2

2

° = − = − × ×  

Therefore,

 16 21 2 2. log log log= − +p a pCO C O  

or

 log log . loga p pC O CO= − − +2 216 21  

Thus, as shown in Figure 13.5b, the CO2  isobars in the phase stability diagram are 
lines with slopes of – 1. Similarly, for
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 C O CO( ) ( ) ( )s g g+ =1
2

2
 (v)

 ∆G
p

a p
( ) , . . logv  K

CO

C O

 J 1273 1 2223 300 8 3144 1273 2 303
2

° = − = − × ×  

or

 log log . loga p pC O CO= − − +1
2

9 162
 

and, as shown in Figure 13.5c, the CO isobars are lines with slopes of – ½ . The gas-
eous species SiO also occurs in the system Si– C– O, and SiO isobars can be drawn 
on the stability diagram. Since the partial pressure of SiO is determined by the activ-
ity of Si and the partial pressure of oxygen, the individual single condensed-phase 
stability fields have to be considered separately, and each equilibrium must involve 
the condensed phase of interest, SiO gas, and C and/or O2 . In the field of stability of 
Si, the equilibrium is

 Si O SiO( ) ( ) ( )s g g+ =1
2

2
 (vi)

for which

 ∆G
p

p
( ) , . . logvi  K

SiO

O

 J 1273 209 200 8 3144 1273 2 303
2

° = − = − × ×  

or

 log log .p pSiO O= +1
2

8 592
 

Thus, as shown in Figure 13.5d, the SiO isobars in the stability field of Si are vertical 
lines, and p SiO  increases with increasing pO2. In the SiO2  field, the equilibrium is

 SiO SiO O2 2
1
2

( ) ( ) ( )s g g= +  (vii)

for which combination of ∆G( )vii  K1273
°  and ∆G( )i  K1273

°  gives

 ∆G p p( ) , . . log( )vii  K SiO O J1273
1 2474 200 8 3144 1273 2 303

2

° = − = − × ×  

which gives

 log log .p pSiO O= − −1
2

19 452
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Thus, as shown in Figure 13.5d, the SiO isobars in the field of stability of SiO2  are 
vertical lines and p SiO  decreases with increasing pO2

. In the field of stability of SiC, 
the equilibrium is

 SiC O SiO C( ) ( ) ( ) ( )s g g s+ = +1
2

2
 (viii)

for which combination of ∆G( )vi  K1273
°  and ∆G( )ii  K1273

°  gives

 ∆G
p a

p
( ) , . . logviii  K

SiO C

O

 J1273 145 900 8 3144 1273 2 303
2

° = − = − × × ⋅
11 2

 

or

 log log log .a p pC O SiO= − +1
2

5 992
 

Thus, as shown in Figure 13.5d, the SiO isobars in the field of stability of SiC are 
lines with slopes of ½ . At any temperature, the maximum value of p SiO  occurs in 
states in which Si and SiO2  are in equilibrium with a gas phase. The activities of 
carbon and oxygen used as the variables in the construction of Figure 13.5 are deter-
mined by the individual values of p CO  and pCO2

, which establish the equilibria

 CO O CO+ =1
2

2 2
 

and

 C  CO  2CO2+ =  

and thus, the phase stability diagram can be constructed using p CO  and pCO2 as the 
variables. The equilibrium corresponding to Equation  (i) is

 Si  2CO  SiO  2CO2 2( ) ( ) ( ) ( )s g s g+ = +  (ix)

Combination of the Gibbs free energy changes for the reactions given by Equations 
(i), (iv), and (v) gives

 ∆G
p

p
( ) , . . logix  K

CO

CO

 J1273

2

2339 600 8 3144 1273 2 303
2

° = − = − × ×  

which gives

 log log .p pCO CO= +2 6 97  

This is drawn as the line AB  in Figure 13.6a (and corresponds to the line AB  in 
Figure 13.5a). Above the line, Si is stable relative to SiO2 , and below the line, SiO2  
is stable relative to Si. The equivalent of the equilibrium given by Equation  (ii) is
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 Si  2CO  SiC  CO2( ) ( ) ( ) ( )s g s g+ = +  (x)

for which

 ∆G
p

p
( ) , . . logx  K

CO

CO

 J1273 211 900 8 3144 1273 2 303 2° = − = − × ×  
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Figure  13.6   (a)  Construction of the phase stability diagram for the system si– C– o at 1273 
K. (b)  the phase stability diagram for the system si– C– o at 1273 K showing 
the 10– 6  and 10– 7  atm sio isobars.
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or

 log log .p pCO CO= −1
2

0 242
 

This is drawn as line CD  in Figure 13.6a. Above the line, SiC is stable relative to Si, 
and below the line, Si is stable relative to SiC. The lines AB  and CD  intersect at P , 
which is thus the invariant point at which Si, SiC, SiO2 , and a gas phase are in equi-
librium. The equivalent of the equilibrium given by Equation  (iii) is

 SiC  3CO  SiO  4CO2 2( ) ( ) ( ) ( )s g s g+ = +  (xi)

for which

 ∆G
p

p
( ) , . . logxi  K

CO

CO

 J1273

4

3327 700 8 3144 1273 2 303
2

° = − = − × ×  

or

 log . log .p pCO CO= +0 75 3 362
 

This is drawn as the line EF  in Figure 13.6a. SiC is stable relative to SiO2  above the 
line, and SiO2  is stable relative to SiC below the line.

The carbon line , which is equivalent to the log a C  = 0 line in Figure 13.5, is 
obtained from

 C  CO  2CO2( ) ( ) ( )s g g+ =  (xii)

for which

 ∆G
p

p
( ) , . . logxii  K

CO

CO

 J1273

2

51 400 8 3144 1273 2 303
2

° = − = − × ×  

which gives

 log log .p pCO CO= −1
2

1 052
 

This is drawn as the line GH  in Figure 13.6a. The phase stability fields, identified 
in the same manner as was used in Figure 13.5a, are shown in Figure 13.6b. The Si 
phase field is bounded by APC , the SiC phase field is bounded by CPFG , and the 
SiO2  phase field lies below the line APF . The region above GF  is an unstable gas. 
Any gas in this region precipitates carbon according to

 2CO  CO  C2( ) ( ) ( )g g s→ +  
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until, thereby, the ratio p pCO CO/2  is that required for equilibrium with C at a C  = 1 at 
1273 K. The isobars for SiO gas are calculated as follows. In the field of stability of 
Si, the equivalent of the equilibrium given by Equation  (vi) is

 Si CO  SiO  CO2( ) ( ) ( ) ( )s g g g+ = +  (xiii)

for which

 ∆G
p p

p
( ) , . . logxiii  K

SiO CO

CO

 J1273 37 300 8 3144 1273 2 303
2

° = − = − × ×  

which gives

 log log . logp p pCO CO SiO= + −2 1 53  

In the field of stability of SiO2 , the equivalent of the equilibrium given by 
Equation  (vii) is

 SiO  CO  SiO  CO2 2( ) ( ) ( ) ( )s g g g+ = +  (xiv)

for which

 ∆G
p p

p
( ) , . . logxiv  K

CO SiO

CO

 J1273 302 300 8 3144 1273 2 303 2° = = − × ×  

which gives

 log log . logp p pCO CO SiO= + +2 12 40  

In the field of stability of SiC, the equilibrium equivalent to that given by 
Equation  (viii) is

 SiC  2CO  SiO  3CO2( ) ( ) ( ) ( )s g g g+ = +  (xv)

for which

 ∆G
p p

p
( ) , . . logxv  K

CO SiO

CO

 J1273

3

225 400 8 3144 1273 2 303
2

° = − = − × ×  

which gives

 log log . logp p pCO CO SiO= − +2
3

0 35
1
32

 

The 10– 7  and 10– 6  atm SiO isobars are shown in Figure 13.6b, and a comparison of 
Figures 13.5 and 13.6 shows that the latter is produced by distorting the former such 
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that the CO isobars are horizontal lines and the CO2  isobars are vertical lines. The 
points P  and F  in Figure 13.6b correspond to the points P  and F  in Figure 13.5. The 
full phase stability diagram is three-dimensional, with the axes being temperature 
and the activities of two components (a C  and pO2) or the partial pressures of CO and 
CO2 . Two-dimensional phase stability diagrams which show the influence of tem-
perature can be drawn if the activity of one component is held constant. Consider the 
phase stability diagram using p CO  and 1/T  as coordinates and drawn for a constant 
partial pressure of CO2  of 10– 12  atm. The diagram will be drawn for temperatures in 
the range 1250– 1990 K, and thus, since the melting temperature of Si is 1683 K, equi-
libria involving both solid and liquid Si will have to be considered. In Figure 13.7a, the 
vertical line at T  = 1685 K represents the melting temperature of Si, and thus, liquid 
Si occurs to the left of the line and solid Si occurs to the right.

1. The  equilibrium Si (s)    – SiO 2  – gas phase 

The equilibrium is

 Si  2CO  SiO  2CO2 2( ) ( ) ( ) ( )s g s g+ = +  (xvi)

for which

 ∆G T( ) , .xvi  J° = − −337 300 0 02  

Thus,

 −
×

−
×

= −337 300
8 3144 2 303

0 02
8 3144 2 303

2

2
2

,
. .

.
. .

log
T

p

p
CO

CO

 

which can be rearranged to give

 log . logp
T

pCO CO= + × +−8807
5 22 10 4

2
 

This line, with log pCO2 12= − , is drawn as AB  in Figure 13.7a. Silicon is stable rela-
tive to SiO2  above the line, and SiO2  is stable relative to Si below the line.

The equilibrium Si( l  ) – SiO2 – gas phase: The equilibrium is

 Si  2CO  SiO  2CO2 2( ) ( ) ( ) ( )l g s g+ = +  (xvii)

for which

 ∆G T( ) , .xvii  J° = − +387 900 30 18  

Thus,

 −
×

+
×

= −387 900
8 3144 2 303

30 18
8 3144 2 303

2

2
2

,
. .

.
. .

log
T

p

p
CO

CO
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Figure  13.7   (a)  Construction of the phase stability diagram for the system si– C– o using log 
p Co  and 1/T  as coordinates at a constant partial pressure of Co2  of 10– 12  atm. 
(b)  the phase stability diagram for the system si– C– o at a constant partial 
pressure of Co2  = 10– 12  atm.
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which gives

 log
,

. logp
T

pCO CO= − +10 130
0 788 2

 

With pCO  atm2 10 12= − , this gives line CA  in Figure 13.7a. Liquid Si is stable relative 
to SiO2  above the line, and SiO2  is stable relative to liquid Si below the line.

2. The equilibrium Si (s)   – SiC– gas phase 

The equilibrium is

 Si  2CO  SiC CO2( ) ( ) ( ) ( )s g s g+ = +  (xviii)

for which

 ∆G T( ) , .xviii  J° = − +243 750 182 11  

which yields

 log . logp
T

pCO CO= − + +6364
4 76

1
2 2

 

With log pCO2 12= − , this gives line DE  in Figure 13.7a. SiC is stable relative to solid 
Si above the line, and Si is stable relative to SiC below the line.

3. The equilibrium Si( l  ) – SiC– gas phase: The equilibrium is

 Si  2CO  SiC  CO2( ) ( ) ( ) ( )l g s g+ = +  (xix)

for which

 ∆G T( ) , .xix  J° = − +293 300 211 5  

This gives

 log . logp
T

pCO CO= − + +7659
5 52

1
2 2

 

which, with log pCO2 12= − , gives line FD  in Figure 13.7a. Liquid Si is stable with 
respect to SiC below the line, and SiC is stable with respect to Si above the line.

4. The equilibrium SiC– SiO 2  – gas phase 

The equilibrium is

 SiC  3CO  SiO  4CO2 2( ) ( ) ( ) ( )s g s g+ = +  (xx)

which gives

 log . . logp
T

pCO CO= + +1221
2 38 0 75 2
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This is drawn, with log pCO2 12= − , as line GH  in Figure 13.7a. SiC is stable relative 
to SiO2  above the line, and SiO2  is stable relative to SiC below the line.

The carbon line, at which a C  = 1, is determined by the equilibrium

 C  CO  2CO2( ) ( ) ( )s g g+ =  

for which

 ∆G T° = −17 7 174 5 J0 00, .  

which gives

 log . logp
T

pCO CO= − + +4457
4 55

1
2 2

 

With pCO  atm2 10 12= − , this gives line IJ  in Figure 17.7a. States above this line rep-
resent unstable gas. The stability fields are identified as follows:

 1. In the area APD , solid silicon is stable with respect to SiO2  and SiC, and thus, this 
area is the field of stability of solid Si.

 2. In the areas FDAC , liquid silicon is stable with respect to SiC and SiO2 , and thus, 
this area is the field of stability of liquid Si.

 3. In the area FDPHJI , SiC is stable with respect to Si and SiO2 , and thus, this area is 
the field of stability of SiC.

 4. Below the line CAPH , SiO2  is stable with respect to Si and SiC, and thus, this is the 
field of stability of SiO2 

These fields of stability are shown in Figure 13.7b. The phase stability diagram 
shows that, with pCO  atm2 10 12= − , 1410 K (the point P ) is the minimum temperature 
at which silicon is stable, and that, with increasing temperature, the field of stability 
of silicon widens at the expense of SiC and SiO2 . The slopes of the lines in Figures 
13.7 are related to the standard enthalpy changes for the equilibrium reactions; for 
example, the slope of the line dividing the solid Si and the SiO2  fields (the line AB  in 
Figure 13.7a) is obtained as − ⋅ ⋅ = × × =( . )) , . )∆H R R0 2 303 2 337 300 2 303 2 8807/( /(  
for the reaction given by Equation  (xvi). The points a  and b  on the 10– 12  atm CO2  
isobar in Figure 13.6b correspond with the points a  and b  on the 1273 K isotherm 
in Figure 13.7b.

13.6 BINArY SYSteMS CONtAINING COMPOUNDS

The phase relationships in a two-component system can be represented on an 
isobaric phase diagram using temperature and composition as coordinates, and these 
are the phase diagrams often encountered in materials science (see Chapter 10). If 
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the two components react with one another to form compounds, then, in such sys-
tems, chemical reaction equilibria and phase equilibria are synonymous. Consider 
the binary system A – B , the phase diagram for which is shown in Figure 13.8. The 
negative departures from ideality in the solid state are sufficiently large that stoichio-
metric compounds following the law of definite proportions are formed, with there 
being negligible solubility of A  in B , or B  in A , and negligible range of nonstoichiom-
etry in the compounds AB 3 , AB , and A 3 B . The system contains the equilibria

 3 3A B A B+ =  

 A B AB+ = ,  

 A B AB+ = 3 3  

If one of the components (B ) is appreciably volatile and the other (A ) is not, then the 
thermodynamics of the system can be determined from knowledge of the variation 
of p B   with composition. The variation of p B   with composition at the temperature T 1  
is shown in Figure 13.9. In the range of composition between B  and AB 3 , virtually 
pure B  exists in equilibrium with AB 3  (saturated with B ), and, since pure B  exists, 
the pressure exerted by the system is pB , the saturated vapor pressure of B  at the 
temperature T 1 . In the range of composition between AB  (saturated with B ) and AB 3  
(saturated with A ), the constant pressure exerted by the system is ′pB , in the range 
between A 3 B  (saturated with B ) and AB  (saturated with A ) it is ′′pB , and in the range 
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re
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A3B
+

AB AB + AB3 AB3 + B 

A
+
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Figure  13.8   the phase diagram for the system A – B  in which three stoichiometric com-
pounds are formed.
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between A  (saturated with B ) and A 3 B  (saturated with A ) it is ′′′pB . In each of these 
ranges of composition, the two-component, three-phase equilibrium has one degree 
of freedom, which is used when T 1  is specified, which requires that P = p B   within 
these ranges at fixed temperature. The activity of B  in the system, defined as p pB B/ °

, 
is thus

 

p

p
AB B

p

p
AB AB

p

B

B

B

B

°

°

°

= −

′
−

′′

1 3

3

  in the range 

  in the range 

BB

B

B

B

p
A B AB

p

p
A A B

°

°

−

′′′
−

  in the range 

  in the range 

3

3

 

Thus, since ∆G G G RT p pB
M

B B B B= − =° °ln , the Gibbs free energy– composition dia-
gram at the temperature T 1  is as shown in Figure 13.10. Since Figure 13.10 is drawn 
for 1 mole of the system, then

 

                      for the reaction

 mole
ihb G G= =∆ ∆( )

.0 75    mole  or  moles of 
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Figure  13.9   the variation, with composition, of the vapor pressure of component B  in the 
system shown in figure 13.8 at the temperature T 1 .
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These three changes in Gibbs free energy can be determined geometrically as 
follows:

 
ek G RT

p

p

em G RT
p

p

B
M B

B

B
M B

B

= ′ =
′

= ′′ =
′′

°

°

∆

∆

 

 

ln

ln

 

and

 en G RT
p

p
B

M B

B

= ′′′ =
′′′
°∆   ln  

Thus, from consideration of the similar triangles ahb  and aen ,

 ∆
∆

G

GB
M

( )i
  ′′′

= 1
4

 

and hence,
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Figure  13.10   the molar Gibbs free energies at T 1  in the system shown in figure 13.8.
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Consideration of the similar triangles bpc  and bqm  gives

 pc

qm

bp

bq
= = 1

3
 

But

 pc gc gp G G= =– –( ) ( )∆ ∆ii i  

and

 qm em eq G GM
B= − = ′′ −∆ ∆ 

i  ( )
 

Thus,

 3( ) ( )( ) ( ) ( )∆ ∆ ∆ ∆G G G GM
Bii i

 
i  − = ′′ −  

or

 ∆ ∆ ∆G G GM
B( ) ( )ii

 
i  = ′′ +1

3
2
3

 

Consideration of the similar triangles rck  and sdk  gives

 rc

sd

rk

sk
= = 2  

But

 rc gc gr G GB
M= − = − ′∆ ∆( )ii

 

and

 sd fd fs G GB
M= − = − ′∆ ∆( )iii

 

such that

 ∆ ∆ ∆G G GB
M

( ) ( )iii ii= + ′1
2

1
2

 

Thus,
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∆
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and
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Figure 13.8 shows that, below the temperature T 2 , the compound AB 3  is unstable 
with respect to AB  and B , with the invariant equilibrium

 AB B ABs s s( ) ( )+ =2 3( )  

occurring at the temperature T 2 . The standard Gibbs free energy change for this 
reaction is calculated as ∆ ∆G G( ) ( )iii ii

° °− , which equals 2RT  ln ′ °p pB B/ . Thus, at T  >  T 2 ,

 ∆ ∆G G p pB B( ) ( )iii ii and° ° °− < ′ <0  

at T 2 ,

 ∆ ∆G G p pB B( ) ( )iii ii and° ° °− = ′ =0  

and at T  <  T 2 ,

 ∆ ∆G G p pB B( ) ( )iii ii and° ° °− > ′ >0  

The variations of the Gibbs free energy of mixing with temperature at T 2  and T 3  are 
shown in Figure 13.11a and b, respectively, which illustrates graphically that at T 2 ,

 ∆ ∆G G( ) ( )iii ii= 1
2  

and at T 3 ,

 ∆ ∆G G( ) ( )iii ii< 1
2  

such that, in the range of composition B – AB , at temperatures below T 2 , the system 
occurring as either AB  + AB 3  or AB 3  + B  is metastable with respect to its occurrence 
as AB  + B . In considering the thermodynamic properties of a system such as that 
shown in Figure 13.8, two approaches can be made: namely,

 1. The consideration that the compounds are ordered solid solutions
 2. The consideration that the compounds are formed by the chemical reaction of A  

with B 
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 1. Consider the compound AB 3  to be an ordered solid solution of A  and B  in the molar 
ratio 1/3. Then, in Figure 13.10,

 fd G RT X a X a RT a a

RT a a

M
A A B B A B

A

= = + = +
=

∆ ( ln ln ) ( . ln . ln )

ln .

0 25 0 75
0 25

BB
0 75.

 (i)

 2. Consider the compound AB 3  to form as the product of the reaction

 A B AB+ =3 3  

 for which the change in the standard Gibbs free energy is ∆G( )iii
° . Then,

 fd G RT K RT
a

a a

R

AB

A B

= = − = − 







=

°0 25 0 25 3

3

0 25

. . ln ln( ) ( )

.
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Figure  13.11   (a) the Gibbs free energies of mixing in the system shown in figure 13.8 at the 
temperature T 2 . (b) the Gibbs free energies of mixing in the system shown in 
figure 13.8 at the temperature T 3 .
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 Since AB 3  is a line compound  (i.e., it has a negligible range of nonstoichiometry), 
it exists at a fixed composition and hence exists in a fixed state. If this fixed state is 
chosen as being the standard state, in which aAB3 1= , then Equation  (ii) becomes

 fd G RT a aA B= =°0 25 0 25 0 75. ln( )
. .∆ iii

 

 which is identical with Equation  (i). In both Equations  (i) and (ii), the standard 
states of A  and B  are the pure solid elements at the temperature T . The varia-
tions of the activities of A  and B  in the compound AB 3  are limited by the separa-
tion of B  and AB ; for example, when AB 3  is in equilibrium with B , a B   =  1, and 
thus, a G RT G RTA exp( ) exp( )( ) ( )4 4∆ ∆iii iii= °  (RT  ln a A   = ai  in Figure 13.10). If 
the activity of B  is decreased to a value less than unity, then AB 3  is no longer satu-
rated with B , and the activity of A  in the compound increases in accordance with 
Equation  (iv). The minimum activity of B  in AB 3  is determined by the saturation 
of AB 3  with A , at which point the compound AB  appears. The minimum activity 
which B  may have is obtained from Figure 13.10 as RT  ln a B   = ek , and the corre-
sponding maximum activity of A  is obtained from RT  ln a A   = aj . Nonsaturation of 
AB 3  with either A  or B  occurs when the partial pressure of B  exerted by the com-
pound lies between the limits ′pB  and pB

° . Similar consideration can be made with 
respect to the compounds AB  and A 3 B ; for example, in Figure 13.10,

 gc G G RT a AM
A B= = =°∆ ∆1

2
0 5 0 5

( )
. .lnii

 

 and

 hb G G RT a AM
i A B= = =°∆ ∆0 25 0 75 0 25. ln( )

. .  

 In the preceding discussion, it was assumed that the intermediate phases were line 
compounds and that there was no solubility of A  in B . If A  and B  are partially 
soluble in one another and the compounds A 2 B  and AB 2  (identified as phases β  and 
γ , respectively) have measurable ranges of nonstoichiometry, the phase diagram is 
as shown in Figure 13.12a. Again, if B  is appreciably volatile and A  is not, then the 
variation of vapor pressure with composition at the temperature T 1  is as shown in 
Figure 13.12b, and the corresponding variation of the Gibbs free energy is as shown 
in Figure 13.12c.

Example 1: The Ga– GaP System 

The phase diagram for the system Ga– GaP is shown in Figure 13.13. Calculate 
the partial pressure of phosphorus vapor, pp2, exerted by the GaP liquidus melt 
at 1273 K. The standard Gibbs free energy change for the reaction

 Ga P GaP( ) ( ) ( )l g s+ =1
2

2
 

is

 ∆G T T T T
T

° −= − + + − × − ×
178 800 96 2 3 1 3 61 10

1 035 103 2
5

, . . ln .
.  



511reaCtIon  eQuIlIBrIa

Solution 

At 1273 K,

 ∆G K1273
4

12733 968 10 8 3144 1273 K  KJ° = − × = − ×. . ln  

which gives

 K
a

a p
1273 1 224 97

2
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Figure  13.12   (a) the phase diagram for the system A – B . (b) the partial vapor pressure of 
B  at the temperature T 1 . (c) the molar Gibbs free energies of mixing at the 
temperature T 1 .
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Figure  13.13   the phase diagram for the system Ga– GaP.
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In the preceding expression, a Ga  is the activity of Ga in the liquidus melt with 
respect to liquid Ga as the standard state, and, since the liquidus melt is in equi-
librium with pure solid GaP, the activity of GaP, a GaP , is unity. The variation 
of the liquidus composition with temperature in the range 1173– 1373 K can be 
expressed as

 ln
,

.X
T

P = − +16 550
9 902  

which gives the liquidus composition at 1273 K as X P  = 0.045. In view of the low 
solubility of the solute P, it can be assumed that the solvent Ga obeys Raoult’ s 
law, in which case the activity of Ga in the liquidus melt is 0.955, and hence the 
partial pressure of P2  exerted by the liquidus melt is

 pP

 atm

2

1
24 97 0 955

1 76 10

2

3

=
×







= × −

. .

.

 

Example 2: The Mg– Si System 

The phase diagram for the system Mg– Si is shown in Figure 13.14. Determine 
the extent to which the phase diagram can be calculated, assuming that the liq-
uid solutions exhibit regular solution behavior.

• Magnesium melts at 921 K and has a Gibbs free energy change on melting of 
∆G Tm, .Mg  J° = −8790 9 54 .
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Figure  13.14   the phase diagram for the system mg– si.
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• Silicon melts at 1688 K and has a Gibbs free energy change on melting of 
∆G Tm, , .Si  J° = −50 630 30 0 .

• Mg2 Si melts at 1358 K and has a Gibbs free energy change on melting of 
∆G Tm, , .Mg Si  J2 85 770 63 2° = − .

The standard Gibbs free energy change for the reaction

 2Mg  Si  Mg Si2( ) ( ) ( )l s s+ =  (i)

is

 ∆G T( ) , .i  J° = − +100 400 39 3  

Solution 

The Gibbs free energy diagram at 1358 K for the system, using liquid as the stan-
dard state for Mg and solid as the standard state for Si, is shown in Figure 13.15. 
∆G( ) ,i  J° = −47 030  at the melting temperature of Mg2 Si (1358 K), and thus, the 
Gibbs free energy of formation of Mg2/3 Si1/3  = – 47,030/3 = – 15,676 J, and this 
is the length of the line de  in Figure 13.15. Point b  in Figure 13.15 represents 
the free energy of liquid Si relative to solid Si and lies 9890 J above the point a . 
Consequently, the length of the line cd  is 9890/3 = 3297 J, and the length of the 
line ce  is 3,297 + 15,676 = 18,973 J. Thus, the Gibbs free energy of formation of 
solid Mg2/3 Si1/3  from liquid Mg and liquid Si is – 18,919 J. However, at the melt-
ing temperature of 1358 K, G Gs lMg Si Mg Si2 2,( ) ,( )

° °= , and thus, the Gibbs free energy 
of formation of liquid Mg2/3 Si1/3  from liquid Mg and liquid Si at 1358 K is also 
973 J. Thus, the line representing the molar Gibbs free energy of formation of 
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Figure  13.15   molar Gibbs free energies of mixing in the system mg– si at 1358 K.
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melts in the system at 1358 K passes through the point e  and from the general 
expression for the formation of a regular solution

 ∆G RT X X X X X XM = + +( )Mg Mg Si Si Mg Siln ln α  

at X Si  = ⅓ ,

 − = × +





+ ⋅18 973 8 3144 1358
2
3

2
3

1
3

1
3

1
3

2
3

, . ln ln α  

which gives α  = – 53,040 J.

Combination of ∆G( )i
°  and the Gibbs free energy change for the melting of 

Si gives

 ∆G T( ) , .ii  J° = − +151 030 69 3  

for the reaction

 2Mg  Si  Mg Si2( ) ( ) ( )l l s+ =  (ii)

Thus,

 
− + = −

= −

151 030 69 3

2

2

, . ln

ln ,( )

T RT K

RT
a

a a
sMg Si

Mg Si

 

Since liquids on the Mg2 Si liquidus line are saturated with Mg2 Si, a sMg Si2 1,( ) =
, the variations of the activities of Mg and Si with temperature along the Mg2 Si 
liquidus line are given by

 – , . ln ln15 3 69 3 2 Mg Si0 0 + = +T RT a RT a  (iii)

In a regular solution,

 RT a RT X Xi i iln ln ( )= + −Ω 1 2  

and thus, Equation  (iii) becomes

 − + = − − × −
+ −

15 030 69 3 2 1 2 53 040 1

53 040

2, . ln( ) , ( )

ln ,

T RT X X

RT X
Si Si

Si (( )1 2− XSi

 (iv)

Equation  (iv), which is the equation of the Mg2 Si liquidus, is quadratic and gives 
two values of X Si  at each temperature, with one being the liquidus composi-
tion in the Mg– Mg2 Si sub-binary and the other being the liquidus composition 
in the Mg2 Si– Si sub-binary. Equation  (iv) is drawn as the broken line abc  in 
Figure 13.16.

The Si liquidus line is obtained from Equation  10.22 as

 ∆ ∆G Gl
M

mSi Si( ) ,= − °  
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That is,

 RT X X Tln , .Si Si
2

1 5 63 3+ −( ) = − +α 0 0 0 0  

which gives

 T
X

X
= − −

−
50 630 53 040 1

30 0 8 3144

2, , ( )
. . ln

Si

Si

 (v)

Equation  (v) is drawn as the broken line cd  in Figure 13.16.
 Similarly, the Mg liquidus line is given by

 RT X X Tln( ) .1 8790 9 522− + = − +Si Siα  

which gives

 T
X

X
= −

− −
8790 53 040

9 52 8 3144 1

2

2

,
. . ln( )

Si

Si

 (vi)

The calculated diagram shows good agreement with the actual diagram; the 
calculated eutectic temperature and eutectic composition in the Mg2 Si– Si 
sub-binary are, respectively, 1200 K and X Si  = 0.58, which are close to the actual 
values of 1218 K and X Si  = 0.53, and the eutectic composition and temperature 
in the Mg– Mg2 Si sub-binary coincide with the actual values.
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Figure  13.16   Comparison between the calculated and the actual phase diagram for the sys-
tem mg– si.
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13.7 GrAPhICAL rePreSeNtAtION OF PhASe eQUILIBrIA

13.7.1 Phase equilibria in the System Mg– Al– O

Consider the phase equilibria in the system Mg– Al– O at 1073 K. At 1073 K, 
liquid Mg and Al are completely miscible in one another, and MgO, Al2 O3 , and the 
spinel * MgAl2 O4  occur as the products of oxidation of the metallic alloys. The stabili-
ties of the oxides are determined by the activities of Al and Mg in the liquid metallic 
alloys and by the standard Gibbs free energies of formation of the oxides. For

 2
3
2

2 2 3Al O Al O( ) ( ) ( )l g s+ =  (i)

 ∆G RT
a

a p
( ), . , lni  K

Al O

Al O

 J1073 2 3 21 323 000 2 3

2

° = − = −  

which gives

 2 1 5 64 392 3log . log log .a p aAl O Al O2+ − = −  (ia)

For

 
Mg O MgO

 Jii  K
MgO

Mg

( ) ( ) ( )

( ), , ln

l g s

G RT
a

a

+ =

= − = −°

1
2

484 300

2

1073∆
ppO2

1 2

  (ii)

which gives

 log log log .p a aO Mg MgO2 2 47 14= − + −  (iia)

For

 
Mg Al O MgAl O

 Jiii  K

( ) ( ) ( ) ( )

( ), , ,

l l g s

G

+ + =

= −°

2 2

1 854 000

2 2 4

1073∆ == −RT
a

a a p
ln MgAl O

Mg Al O

2 4

2

2 2

 (iii)

which gives

 log log log log .p a a aO Mg Al MgAl O2 2 4

1
2

90 24= − + −  (iiia)

Combination of the reactions given by Equations (i), (ii), and (iii) gives

* A spinel is a cubic oxide with the general formula AB2 O4 , where A is a divalent and B is a trivalent ion.
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 MgO  Al O  MgAl O2 3 2 4( ) ( ) ( )s s s+ =  (iv)

for which

 ∆G RT
a

a a
( ), , lniv  K

MgAl O

MgO Al O

 J1073 46 700 2 4

2 3

° = − = −  

or

 log log log .a a aMgO Al O MgAl O+ − = −2 3 2 4 2 273  (iva)

The Gibbs free energy of mixing diagram for the system MgO– Al2 O3  is shown in 
Figure 13.17. From ∆G( ,iv)  K1073

° , the Gibbs free energy of formation of (MgO)1/2 (Al2 O3 )1/2  
is – 23,350 J, and the existence of MgAl2 O4  as a stable phase requires that the activi-
ties of both MgO and Al2 O3  have values between log a  = – 2.273 and log a  = 0, the 
values of which are determined by Equation  (iva ). From Equation  (iva ) and Figure 
13.17, the logarithm of the activity of Al2 O3  in MgAl2 O4  (at aMgAl O2 4 1= ) which is 
saturated with MgO (at a MgO  = 1) is – 2.273, and, from symmetry, the logarithm of 
the activity of MgO in MgAl2 O4  (at aMgAl O2 4 1= ) which is saturated with Al2 O3  (at 
aAl O2 3 1= ) is – 2.273. Thus, if the activity of either MgO or Al2 O3  in the system is 
less than antilog (– 2.273), the spinel of MgAl2 O4  is not stable.

The measured activities of Mg and Al at 1073 K in the system Mg– Al have been 
fitted by the equations*

 log log  68 1 Mg Mg Mg
3

a X X= ( )– . –0  

* G. R. Belton and Y. K. Rao, “ A Galvanic Study of Activities in Mg– Al Liquid Alloys,”  Trans. Met. 
Soc.  (1969), vol. 245, p. 2189.
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Figure  13.17   molar Gibbs free energies of mixing in the system mgo– al2 o3  at 1073 K.
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and

 log log( ) . .a X X XAl Mg Mg Mg= − − +1 1 02 0 682 3  

The phase stability diagram for the system at 1073 K, using pO2  and log a Mg  as 
coordinates, is shown in Figure 13.18a (the fixing of the activities of O2  and Mg 
in the ternary system Mg– Al– O at constant temperature fixes the activity of Al). 
From Equation  (iia ), equilibrium between pure liquid Mg and MgO occurs at 
log .pO2 47 17= − , which is shown as the point a  in Figure 13.18a. The three-phase 
equilibrium involving the Mg– Al melt, MgO, and the gas phase is determined by 
Equation  (iia) and is shown as the line ab  in Figure 13.18a. The addition of Al to 
the liquid alloy decreases a Mg  and hence increases the value of the pressure of oxy-
gen required to maintain a MgO  = 1. Also, in moving along ab  from a  toward b , the 
activity of aAl O2 3, given by Equation  (i), increases, and at the point b , it reaches the 
value of antilog (– 2.273), which with a MgO  = 1 makes aMgAl O2 4 1= . Thus, the four-
phase equilibrium melt– MgO– MgAl2 O4 – gas occurs at the point b . The three-phase 
equilibrium involving the Mg– Al melt, MgAl2 O4 , and the gas phase, determined 
by Equation  (iiia), occurs along the line bd . In moving along the line from b  to d , 
the dilution of Mg in the melt causes a MgO  to decrease from unity at b  and aAl O2 3  to 
increase, and at the point d , aAl O2 3 1=  and log a MgO  = – 2.273. Thus, d  represents the 
four-phase equilibrium melt– Al2 O3 – MgAl2 O4 – gas. At activities of Mg less than that 
at d , the activity of MgO is less than antilog (– 2.273), and thus, the spinel MgAl2 O4  
is not stable. The line ed  represents the equilibrium involving a melt, Al2 O3 , and a 

–41

–42

–43

–44

–45

–46

–47

–48
–5 –4 –3

log aMg

lo
g 

p O
2, a

tm

–2 –1 0 –5

(b)(a)

–4 –3 –2 –1 0

–41

–42

–43

–44

–45

–46

–47

–48

Al–Mg

Al–Mg

a a

b
b

cf

d de
e

Al–Mg + MgO

Al-Mg + sp

MgO + sp

Al–Mg
+

Al2O3

Al2O3 + spinel

MgO

MgO·Al2O3

Al2O3

nMg
nMg + nAl

log

Figure  13.18   (a) the phase stability diagram for the system al– mg– o at 1073 K. (b) the 
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519reaCtIon  eQuIlIBrIa

gas phase, given by Equation  (ia). However, as a Mg  = 5.75 ×  10– 5  at the point d , a AI  
is virtually unity, and thus, the line ed  is virtually horizontal at log pO2  (obtained 
from Equation  [ia]) = – 42.93. The lines df  and bc  represent, respectively, the three-
phase equilibria Al2 O3 – MgAl2 O4 – gas and MgAl2 O4 – MgO– gas. The lines in 
Figure 13.18a identify the fields of stability of Al– Mg liquid alloys, MgO, MgAl2 O4 , 
and Al2 O3  at 1073 K.

The activity– composition relationships given by Equations (v) and (vi) allow the 
phase stability diagram presented as Figure 13.18a to be converted to the phase dia-
gram shown in Figure 13.18b, in which log pO2  and log n Mg /(n Mg  + nAl ) (where n Mg  
and n Al  are, respectively, the numbers of moles of Mg and Al in the system) are used 
as coordinates. The line ab  gives the compositions of the metallic melts saturated 
with MgO, the line bd  gives the compositions of the melts saturated with MgAl2 O4 , 
and the line ed  gives the compositions of the melts saturated with Al2 O3 .

Consider the sequence of oxidation of Al– Mg alloys of X Mg  = 0.333, 0.2, and 0.01 
at 1073 K. With X Mg  = 0.333 and log pO2 48= − , the system exists at the state a  in 
Figure 13.19. When the oxygen pressure is increased to log .pO2 45 6= − , the system 
exists at b , in which state the alloy is in equilibrium with MgO. Further increase in 
the oxygen pressure causes the precipitation of MgO from the melt, which decreases 
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Figure  13.19   the influence of composition and oxygen pressure on the equilibrium states of 
existence in the system mg– al– o.
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the mole fraction of X Mg  in the melt and causes its composition to move along the 
MgO saturation line from b  toward c . At log .pO2 44 3= − , the melt of composition c  
is saturated with MgO, and further increase in the oxygen pressure causes all of the 
melt of composition c  to react with all of the MgO at d  to form the spinel MgAl2 O4 . 
A melt of X Mg  = 0.2 equilibrated with oxygen at log pO2 48= −  exists at the state e  in 
Figure 13.19, and increasing the oxygen pressure to log .pO2 45 1= −  brings the alloy 
into equilibrium with MgO at the state f . Further increase in the oxygen pressure to 
log .pO2 44 3= −  causes MgO to precipitate and moves the composition of the melt 
along the MgO saturation line from f  to c . Further increase in the oxygen pressure 
causes all of the MgO to react with some of the melt to produce MgAl2 O4  and a melt 
saturated with MgAl2 O4 . With further oxidation, MgAl2 O4  is precipitated from the 
melt, and the composition of the melt is moved along the MgAl2 O4  saturation line 
from c  toward i . Although the precipitation of the spinel from the melt removes Al 
and Mg atoms from the melt in the ratio Al/Mg = 2, the values of X Mg  in the melts 
are low enough that the removal of Al atoms makes a negligible change in X Al  but 
causes a significant decrease in X Mg . At log .pO2 43 8= − , the melt at the state i  is 
doubly saturated with Al2 O3  and MgAl2 O4 , and further increase in the oxygen pres-
sure causes the disappearance of the melt. Increasing the oxygen pressure exerted on 
a melt of X Mg  = 0.01 causes saturation of the melt with MgAl2 O4  at log .pO2 43 8= −  
(the state h ), and further increase in the oxygen pressure causes oxidation to proceed 
as described previously.

13.7.2  Phase equilibria in the System Al– C– O– N 
Saturated with Carbon

We now consider phase stability in the system Al– C– O– N, saturated with carbon 
at 2000 K, and will identify the conditions under which AlN can be contained in a 
graphite crucible at 2000 K without the formation of Al4 C3 . The solid phases which 
occur in the quaternary system are AlN, Al4 C3 , Al4 O4 C, and Al2 O3 , and since the sys-
tem is saturated with graphite, the minimum number of phases which can coexist in 
equilibrium with one another is three (graphite, a gas phase, and a second condensed 
phase). The number of degrees of freedom available to this three-phase equilibrium is

 F = + = + =C  2  4  2  3  3– –Φ  

which can be selected as T , pO2, and pN2. An isothermal phase stability diagram can 
thus be constructed using log pN2

, and log pO2
 as coordinates. For

 4 3

74 060
4 3

2000

Al C Al C

 Ji  K

( ) ( ) ( )

( ), ,
l s s

G

+ =
= −°∆

 (i)

and thus, an equilibrium involving pure liquid Al, graphite, and solid Al4 C3  does not 
exist at 2000 K. The activity of Al in carbon-saturated Al4 C3  is obtained from

 K
a

a a
( ), exp

,
.

.i  K
Al C

Al C
2000 4 3

74 060
8 3144 2000

85 95 4 3=
×







= = == 1
4aAl
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which gives a Al  = 0.327, relative to pure liquid Al.
For

 4 3 2

917 900 2 8
4 3 2

2000

AlN C Al C N

 Jii  K

( ) ( ) ( ) ( )

( ), ,
s s s g

G

+ = +
= = − ×°∆ .. . log3144 2000 2 303 2× × pN

 (ii)

which gives log .pN2 11 98= −  for the equilibrium involving solid graphite, solid 
AlN, solid Al4 C3 , and a gas phase. The line representing this equilibrium is drawn 
as ab  in Figure 13.20a. Graphite and AlN are stable relative to graphite and Al4 C3  in 
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states above the line, and graphite and Al4 C3  are stable relative to graphite and AlN 
in states below the line. 

For

 Al O C C Al C O

 Jiii  K

4 4 4 3 2

2000

2 2

1 333 000
( ) ( ) ( ) ( )

( ), , ,
s s s g

G

+ = +
=°∆ == − × × ×2 8 3144 2000 2 303 2. . log pO

 (iii)

which gives log .pO2 17 40= −  for the equilibrium involving solid graphite, solid 
Al4 C3 , solid Al4 O4 C, and a gas phase. This is drawn as line cd  in Figure 13.20a. To 
the left of this line, graphite and Al4 C3  are stable relative to graphite and Al4 O4 C, 
and to the right of the line, the reverse is the case.

For
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and thus, for carbon-saturated Al4 O4 C,
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which, with log .pO2 17 40= − , gives a Al  = 0.327. Thus, the activity of Al in C-saturated 
Al4 O4 C has the same value as that in C-saturated AlN. The point of intersection of 
lines ab  and cd  is the state in which the five-phase equilibrium involving four solid 
phases and a gas phase occurs.

For

 
Al O C N C O AlN

 v  K

4 4 2 2
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415 000

( ) ( ) ( ) ( ) ( )

( ), ,

s g s g s

G

+ = + +

=°∆ JJ O

N

= − × × ×2 8 3144 2000 2 303 2

2

. . log
p

p

 (v)

which gives

 log log .p pN O2 2 5 42= +  

for the equilibrium among graphite, solid AlN, solid Al4 O4 C, and a gas phase. This 
is drawn as line ef  in Figure 13.20a. Carbon-saturated AlN is stable relative to car-
bon-saturated Al4 O4 C above the line, with the reverse being the case below the line. 
Inspection of Figure 13.20a shows the following:

 1. In the area below ap  and to the left of pc , Al4 C3  is stable with respect to AlN and 
Al4 O4 C.

 2. In the area above ap  and above pf , AlN is stable with respect to Al4 C3  and Al4 O4 C.
 3. In the area below pf  and to the right of pc , Al4 O4 C is stable with respect to AlN and 

Al4 C3 .
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Thus, without consideration of the stability of Al2 O3 , the fields of stability of AlN, 
Al4 C3 , and Al4 O4 C are as shown in Figure 13.20b.

For

                   Al O +C O +Al O C

vi

2 2 3 2 4 4

200

( ) ( ) ( ) ( )

( ),

s s g s

G

=
∆ 00 630 800 8 3144 8 3144 2000 2 303 2 K O J° = = − × × ×, . . . log p

 (vi)

which gives log .pO2 16 47= −  for the equilibrium among graphite Al4 O4 C, Al2 O3 , 
and a gas phase. This is drawn as the line gh  in Figure 13.20c, and its point of 
intersection with pf  is the state of the five-phase equilibrium among graphite, AlN, 
Al4 O4 C, Al2 O3 , and a gas phase.

For

 
Al O N AlN O
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which gives

 log . log .p pN O2 21 5 13 65= +  

for the equilibrium given by Equation  (vii). This line, which is independent of the 
activity of C in the system, is drawn as ij  in Figure 13.20c. Since the line pq  rep-
resents a stable equilibrium, the other two lines radiating from the point q  which 
represent stable equilibria are qg  and gj , and the full phase stability diagram is as 
shown in Figure 13.20d. The diagram shows that AlN can be heated in a graphite 
crucible without forming Al4 C3  if the pressures of oxygen and nitrogen are such that 
the thermodynamic state lies in the field of stability of AlN.

13.8 the FOrMAtION OF OXIDe PhASeS 
OF VArIABLe COMPOSItION

Figure 13.21 shows the variation, with composition at a temperature T , of the molar 
Gibbs free energy of mixing for the metal M– oxygen system in which measurable 
solubility of oxygen in metallic M occurs and the oxides MO and M3 O4  have variable 
compositions. Compounds with nonstoichiometric compositions are sometimes called 
berthollides , after Claude Louis Berthollet (1748– 1822). Starting with pure M, increas-
ing the pressure of oxygen causes the molar Gibbs free energy of mixing to move from 
f  along the line fi  until, at p pO O M MO2 2= ( ), the metal is saturated with oxygen and the 
metal-saturated MO phase of composition Mb  Oa   appears. If the pure metal M and oxy-
gen gas at 1 atm pressure at the temperature T  are chosen as the standard states, then

 ∆G jk RT b a a p

RT a pb a

( ) ( ln ln )

ln
metal/saturated MO M O

M O

= = +
=

2

2

1 2

1 2
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From Figure 13.21, fg = RT  ln a M  and lm RT p= ln ( )O M MO2
.

We can also write for the reaction
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which, if the metal-saturated oxide is chosen as the standard state, is identical with 
the preceding expression. It is convenient to write the reaction of the oxidation such 
that an integer number of gram-atoms of oxygen are consumed. For example, for the 
consumption of 1 gram-atom of oxygen,

 

y y
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a p
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y

y
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or, for the consumption of 1 gram-mole of oxygen (2 gram-atoms),

 ∆G RT
a p

a

y

y

° =








ln M O

M O

2

2
2  

If the solubility of oxygen in the metal is virtually zero, then fg  in Figure 13.21 
shrinks to a point, and Figure 13.21 is redrawn as Figure 13.22. In this case, choosing 
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Figure  13.21   the Gibbs free energies of mixing of the system m– o which forms oxide 
phases of variable composition and which shows a significant solubility of oxy-
gen in metallic m.
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pure M, oxygen gas at 1 atm pressure and the temperature T , and the oxide of com-
position My O as the standard states gives, for the oxidation,

 y

G RT p

yM O M O

O M MO

+ =

=°

1
2

2

1 2
2

∆ ln ( )

 

where pO M MO2 ( )  is the pressure of oxygen required for equilibrium between the 
metal M and the metal-saturated oxide MO, given by lm RT p= ln ( )O M MO2

.
If the oxygen pressure is increased to a value greater than pO M MO2 ( ), the metal 

phase disappears, the oxygen content of the MO phase increases, the molar Gibbs 
free energy of mixing of the system moves along the line kn , and the activities of M 
and MO vary accordingly. In a classic investigation, Darken and Gurry* determined 
the phase relationships occurring in the system Fe– O by varying the oxygen pres-
sure and temperature and observing the consequential changes in phase and phase 
composition. Their diagram, drawn for the components FeO and Fe2 O3 , is shown in 
Figure 13.23. Consider the wustite (“ FeO” )† phase field which, at 1100° C, extends 
from the composition m  to the composition n . The variation of a Fe  in the wustite 
phase can be calculated from the experimentally determined variation of the compo-
sition of wustite with oxygen pressure using the Gibbs– Duhem equation:

 X d a X d aFe Fe O O  ln ln+ = 0  

* L. S. Darken and R. W. Gurry, “ The System Iron– Oxygen, I: The Wustite Field and Related 
Equilibria,”  J. Am. Chem. Soc.  (1945), vol. 67, p. 1398; “ The System Iron– Oxygen, II: Equilibria and 
Thermodynamics of Liquid Oxide and Other Phases,”  J. Am. Chem. Soc.  (1946), vol. 68, p. 798.

† Quotation marks are used for wustite since the its composition is only approximately equiatomic.
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Figure  13.22   the Gibbs free energies of mixing of the system m– o which forms oxide 
phases of variable composition and which shows a negligible solubility of oxy-
gen in metallic m.



526 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

That is,

 log log loga
X

X
d a

X

X
d pFe

O

Fe
O

O

Fe
O= − = −∫ ∫ 2

1 2  

where the upper limit of integration is the oxygen pressure in equilibrium with the 
wustite composition of interest, and the lower limit is pO2 ( " ")Fe FeO  (the oxygen pres-
sure at which wustite of composition m  is in equilibrium with oxygen-saturated 
metallic iron), at which composition a Fe  = 1. Having thus determined the variations 
of a Fe  with composition, the corresponding variations of a “ FeO”   are determined as 
follows. If the standard state for oxygen gas is selected as being pO Fe FeO2 ( " ")  at the 
temperature of interest, then for

 y s g p y sOFe O Fe O at Fe FeO( ) ( , ) ( )( " ")+ =1
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Figure  13.23   the phase diagram for the system feo– fe2 o3  showing the positions of the 
oxygen (atm) isobars.
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as the standard states are in equilibrium with one another, Δ G °  = 0, and thus, K =  1,
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in which the integration limits are the same as before.
The variations of a Fe , a “ FeO”  , and a O  across the wustite field at 1100° , 1200° , 

and 1300° C are shown in Figure 13.24, and from these variations, the molar Gibbs 
free energy curve for wustite, kn  in Figure 13.22, can be determined. For a fixed 
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Figure  13.24   the activities of iron, oxygen, and iron-saturated wustite in the wustite phase 
field at several temperatures.
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composition, the partial molar heats of solution of metal and oxygen in the wustite 
can be obtained from the Gibbs– Helmholtz relationship as

 ∆H R
p

T

M
O

O=
∂
∂
ln

( )
2

1 2

1
 

and

 ∆H R
a

T

M
Fe

Fe= ∂
∂

ln
( )1

 

The variations of ∆H
M
O  and ∆H

M
Fe  with composition are shown in Figure 13.25. In 

Figure 13.24, at the composition of wustite X O  = 0.5125, the activity of Fe is inde-
pendent of temperature, and thus, as shown in Figure 13.25, the partial molar heat of 
mixing of Fe at this composition is zero.

At the temperature T , the limit of increase of pO2 above homogeneous stable 

wustite is pO FeO Fe O2 3 4(" " ), the oxygen pressure at which wustite of composition n  is 
in equilibrium with magnetite (Fe3 O4 ) of composition o  (Figure 13.23), and, if these 
compositions are chosen as the standard states, then for

 3
1
2

2 3 4" "( ) ( ) (FeO O FeO Osaturated with oxygen saturated wit+ =g hh Fe

O FeO Fe O                       

)

(" " )ln∆G RT p° =
2 3 4

1 2

 

Figure 13.23 shows that the composition of wustite in equilibrium with magnetite 
varies significantly with temperature. Thus, the heat of formation of magnetite from 
wustite cannot be calculated by application of the Gibbs– Helmholtz equation to the 
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Figure  13.25   the partial molal heats of solution of iron and oxygen in wustite.
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variation of pO FeO Fe O2 3 4(" " )  with temperature (the Gibbs– Helmholtz partial differ-
ential is for constant total pressure and constant composition). However, since the 
composition of magnetite in equilibrium with wustite is independent of temperature, 
the change in enthalpy for the reaction

 3Fe  2O  Fe O2 3 4 saturated with Fe( ) ( ) ( )s g+ =  

can be obtained using the Gibbs– Helmholtz relationship; that is,

 K
a p

= 1
3 2

2Fe O

 

and thus,
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In this expression, a Fe  and pO2 are the respective values for equilibrium between 
wustite and magnetite obtained from the data in Figure 13.24.

Below 550° C, homogeneous wustite is metastable with respect to iron and 
magnetite. This situation corresponds to Figure 13.11b in that, below 550° C (T 2  
in Figure 13.11; see also Figure  13.8), the common tangent drawn from pure 
Fe (B in Figure 13.11) to the curve for the Gibbs free energy of magnetite lies 
below the curve for wustite. At 550° C, this common tangent becomes a “ triple”  
common tangent and the two-component, four-phase equilibrium is invariant 
(Figure 13.11a).

The phase diagram at 1 atm total pressure shown in Figure 13.23 has, super-
imposed on it, oxygen isobars which trace the loci of variation of equilibrium 
composition with temperature under a fixed oxygen pressure in the system. For 
example, consider a small quantity of hematite (Fe2 O3 ) at room temperature held 

in a gas reservoir of pO  atm2 10 8= − , the volume of which is sufficiently large that 
any oxygen gas produced by the reduction of the oxide has an insignificant effect 
on the pressure of oxygen in the gas reservoir. Let the oxide be heated slowly 
enough that equilibrium with the gas phase is maintained. From Figure 13.23, it 
is seen that the oxide remains as homogeneous hematite until 875° C is reached, at 
which temperature 10– 8  atm is the invariant partial pressure of oxygen required 
for the equilibrium

 2
1
2

33 4 2 2 3Fe O O Fe O+ =  

At 875° C, magnetite of composition b  is in equilibrium with hematite of composi-
tion a , and any increase in temperature upsets the equilibrium toward the magnetite 
side, with the consequent disappearance of the hematite phase. Further increase in 
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temperature moves the composition of the oxide along the 10– 8  atm isobar in the 
magnetite phase field until 1275° C is reached, at which temperature 10– 8  atm is the 
invariant partial pressure of oxygen required for the equilibrium

 3
1
2

2 2 4"FeO" O Fe O+ =  

At 1275° C wustite of composition d  is in equilibrium with magnetite of compo-
sition c . Further increase in temperature causes the disappearance of the magne-
tite phase, and the composition of the solid homogeneous wustite moves along the 
10– 8  atm oxygen isobar until the solidus temperature of 1400° C is reached, in which 
state solid wustite of composition e  melts to form a liquid oxide of composition f  at 
pO  atm2 10 8= − . Continued increase in temperature moves the composition of the 

liquid oxide along the 10– 8  atm isobar to saturation with iron at the temperature 
1635° C, where the liquid oxide has the composition g , and oxygen-saturated liquid 
iron appears. In this state, the equilibrium

 Fe O FeO"( ) ( ) ( )"l g l+ =1
2

2
 

is established. An increase in temperature beyond 1635° C causes the disappearance of 
the liquid oxide phase and a decrease in the dissolved oxygen content of the liquid iron.

Similarly, isothermal reduction of hematite is achieved by decreasing the par-
tial pressure of oxygen in the system. For example, from Figure 13.23, at 1300° C, 
hematite is the stable phase until the partial pressure of oxygen has been decreased 
to 1.34 ×  10– 2  atm, in which state magnetite of composition b'   is in equilibrium 
with hematite of composition a'  . Magnetite is then stable until the partial pressure 
of oxygen has been decreased to 2.15 ×  10– 8  atm, where wustite of composition d'   
is in equilibrium with magnetite of composition c'  . Wustite is then stable until the 
partial pressure of oxygen has been decreased to 1.95 ×  10– 11  atm, where solid iron 
appears in equilibrium with wustite of composition e'  . Further decrease in the pres-
sure of oxygen causes the disappearance of the oxide phase. Figure 13.26 shows 
the phase relationships in a plot of log pO2  versus temperature T , and the paths a – g  
and a'  – e'   correspond to those in Figure 13.23. In that Figure 13.26 does not contain 
the compositions of the coexisting oxide phases, it is less useful than the normal 
composition– temperature phase diagram containing oxygen isobars. Figure 13.27 
shows the phase equilibria on a plot of 1/T  versus log pO2. This plot can be converted 
to an Ellingham diagram, as shown in Figure 13.28. In this diagram, the paths a – g  
and a'  – e'   correspond to those in Figure 13.23. Except for the Fe3 O4 – Fe2 O3  line in 
Figure 13.28, the lines are drawn for oxidation reactions involving the consumption 
of 1 mole of oxygen— that is, of the type

 Fe O  O  Fe O2 2x y x y+ = +( )  

in which the lower oxide of composition Fex  Oy   is in equilibrium with the higher 
oxide of composition Fex  O(2+ y  ) . The Fe3 O4 – Fe2 O3  line is hypothetical and applies to 
the stoichiometric compounds (stoichiometric Fe3 O4  contains Fe at a higher activity 
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than does the composition in equilibrium with hematite). In the Ellingham diagram, 
lines which radiate from the origin (Δ G °  = 0, T  = 0 K) are oxygen isobars. The 
distinct advantage of the Ellingham-type representation of reaction and phase equi-
libria is its ability to indicate, at a glance, the relative stabilities of a large number of 
metal– oxygen systems, as was seen in Figure 12.13.

13.9 the SOLUBILItY OF GASeS IN MetALS

It is invariably found that molecular gases dissolve in metals as atoms. For exam-
ple, if pure liquid Ag is brought into contact with oxygen gas at a relatively low pres-
sure, the following series of events occur:

 1. Molecules of O2  striking the surface of the liquid Ag become adsorbed on the surface.
 2. The adsorbed molecules dissociate to form O atoms adsorbed on the surface.
 3. The adsorbed O atoms diffuse from the surface into the bulk melt.

The overall reaction can be written as

 1
2

2O O in Ag( ) [ ]g =  

and equilibrium is attained when the partial molal Gibbs free energy of oxygen in 
solution in the liquid Ag, GO

, is equal to the molar Gibbs free energy of oxygen in 
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the gas phase, 1
2 2GO . The standard state for a gas dissolved in a metal can be chosen 

as the 1 wt% standard state, discussed in Section 13.3, or as the 1 atom percent (at%) 
standard state, which is the point on the Henry’ s law line at a mole fraction of solute 
of 0.01. Thus, the standard change in the molar Gibbs free energy which occurs when 
a gaseous species A2 , at 1 atm pressure and the temperature T , is dissolved in a metal 
at the concentration X A  = 0.01 (1 at%), at the temperature T , according to

 1
2

2 1 1A Aatm  at( , ) ( %)[ ]g P= =  (13.15)

is

 ∆ = =G RT K RT
h

p
1 1

1
1 2

2

 at %  at%
A  at 

A

� − −ln ln
[ ]( %)  (13.16)

in which [h A ](1 at%)  is the activity of A in solution in the metal relative to the 1 at% 
standard state. If the solute obeys Henry’ s law,

 K
p

1 1 2
2

 at%

A

at% A= [ ]  (13.17)

If, however, the 1 wt% standard state is chosen for the solute, then for

 1
2

2 1 1A A atm  wt( , ) ( %)[ ]g P= =  (13.18)

 ∆ = =G RT K RT
h

p
1 1

1
1 2

2

 wt%  wt%
A  wt

A

� − −ln ln
[ ]( %)  (13.19)

in which [h A ](1 wt%)  is the activity of A in solution relative to the 1 wt% standard state. 
If Henry’ s law is obeyed,

 K
p

1 1 2
2

 wt

A

[wt  A
%

% ]=  (13.20)

For the solution of oxygen in liquid Ag in the range 1213– 1573 K,

 ∆ = +G T1 14 310 5 44 at%  J� − , .  (i)

A concentration of 1 wt% O in Ag corresponds to a mole fraction of
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and thus, the change in the molar Gibbs free energy for

 [O](in Ag. 1 at%)  = [O](in Ag. 1 wt%) 

is

 ∆ = − = −G T T( ) . ln
.

.
.ii  J� 8 3144

0 0638
0 01

15 40  

The sum of ∆G1 at%
�  and ∆G( )ii

�  gives

 ∆ = −G1 14 310 wt% 9.96T � − ,  (iii)

For the solution of oxygen in solid Ag in the range 573– 1173 K,

 ∆ =G T1 49 620 15 77 at%  J� , .−  (iv)

Oxygen obeys Henry’ s law in liquid Ag, and thus, from Equations (i), 13.16, and 
13.17, the solubility of oxygen in liquid silver is

 at  O O% exp .= 





p
T2

1 2 1721
0 654−  (v)

and, from Equations (iv), 13.16, and 13.17, the solubility of oxygen in solid Ag is

 at  O% exp .= +





p
TO2

1 2 5967
1 90−  (vi)

The phase equilibria in the system Ag– O at an oxygen pressure of 1 atm are shown 
in Figure 13.29. Equation  (i) gives ∆H at1 %

�  for the change of state

 
1
2

2 1 1O O atm)  at% in liquid Ag( , ( )[ ]g P= =  

as – 14,310 J. Thus, since the enthalpy change is negative, decreasing the temperature 
causes the equilibrium to shift to the right, with the consequence that, at constant 
oxygen pressure, the solubility of oxygen in liquid Ag increases with decreas-
ing temperature. From Equation  (v), the maximum solubility of O in liquid Ag in 
Figure 13.29 is 2.14 at% at 940° C (the state b ). Equation  (vi) gives the solubility of O 
in solid Ag at 940° C as 0.049 at% (the state d ), and thus, the transformation

 Ag  Ag O2 14 at  O 49 at  O 2  1 atm( , . % ) ( , . % ) ( , )l s g P→ + =0 0  

occurs at 940° C. The evolution of oxygen during the freezing of oxygen-containing 
liquid Ag causes the phenomenon of spitting , during which droplets of liquid silver 
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are ejected from the freezing mass of liquid. Equation  (iv) gives ∆H1at%
�  for the 

change of state

 1
2

2 1 1O O atm  at% in solid Ag( , )g P= =  

as 49,620 J, which being positive, requires that the solubility of O in solid Ag 
decreases with decreasing temperature. From Equation  (vi), the solubility of O in 
solid Ag at an oxygen pressure of 1 atm decreases from 0.049 at% at 940 º C to 1.7 ×  
10– 5  at% at 189° C (the point e  in Figure 13.29). ∆ G °  for the reaction

 2
1
2

2 2Ag O Ag O( ) ( ) ( )s g s+ =  

is written as

 ∆G T° = + 3 54 66 11 J– , .0 0  

The temperature at which pO ,eq2 1=  atm is thus 30,540/66.11 = 462 K (189° C), and 
the three-phase invariant equilibrium is shown at 189° C in Figure 13.29. The solubil-
ity of oxygen in Ag is shown as a function of temperature and oxygen pressure in 
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Figure 13.30. On a plot of log (at% O) versus inverse temperature, the oxygen isobars 
in a single-phase field are parallel lines, the slopes of which are determined by the 
molar enthalpies of solution of oxygen. From Equation  (v), the slope of the lines 
in the phase field of liquid silver is 1721, and from Equation  (vi), the slope in the 
phase field of solid silver is – 5967. The points b  and d  on the 1 atm isobar at 940° C 
correspond with the points b  and d  in Figure 13.29. Increasing the oxygen pressure 
decreases the temperature at which the equilibrium involving liquid Ag, solid Ag, 
and O2  gas occurs and increases the temperature at which the equilibrium involving 
solid Ag, Ag2 O, and O2  gas occurs. The two temperatures coincide at 508° C when 
the oxygen pressure is 414 atm (the state A  in Figure 13.30). This four-phase equilib-
rium in a binary system has zero degrees of freedom. Recasting Equation  13.17 as

 [ % ] ( )at  A A= k T p
2

1 2  (13.21)

gives an equation known as Sieverts’  law  (Adolf Sieverts, 1874– 1947) and the tem-
perature-dependent constant in Equation  13.21, k (T ), which is known as Sieverts’  
constant , is evaluated as the concentration of A in the metal equilibrated, at the 
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temperature T , with gaseous A2  at 1 atm pressure. Sieverts measured the solubility 
of oxygen in liquid Ag in 1907.*

13.10 SOLUtIONS CONtAINING SeVerAL DILUte SOLUteS

The behavior of a dilute solute in a binary solution is determined by the 
nature and magnitude of the interactions between the solute and solvent atoms. 
However, when a second dilute solute is added, three types of interaction 
occur— namely, solvent– solute I, solvent– solute II, and solute I– solute II— and 
the thermodynamic behavior of the system is determined by the relative magni-
tudes of the three types of interaction. Consider the exposure of liquid iron to a 
gaseous mixture of hydrogen and oxygen. The equilibrium

 H O H O2 2 2
1
2

( ) ( ) ( )g g g+ =  (i)

is established in the gas phase, and thus,

 p p
p

K
H O

H O

i

2
2 2

1 1 =
( )

 

Since both hydrogen and oxygen have some limited solubility in liquid iron, 
both gases will dissolve atomically until their respective activities in the iron, 
with respect to the 1 atm pressure standard state, equal the respective partial 
pressures in the gas phase. Alternatively, with respect to the 1 wt% in Fe stan-
dard state,

 1
2

2 1O O  wt  in Fe( ) ( % )[ ]g =  (ii)

and

 1
2

2 1H H  wt  in Fe( ) ( % )[ ]g =  (ii)

for which

 h K pO  wt ii O( %) ( )1
1 2

2
=  

and

 h K pH  wt iii H( %) ( )1
1 2

2
=  

Equilibrium in the metal phase is given as

* A. Sieverts and J. Hagenacker, “ Ü ber die Loslichkeit von Wasserstoff und Sauerstoff in festem und 
geschmolzenem Silber,”  Z. Phys. Chem.  (1907), vol. 68, p. 115.
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 h h
K K

K
pH  wt O(1 wt%)

iii ii

i
H O( %)

( ) ( )

( )
1

2
2

2=  

or

 f f
K K

K
pH  wt O(1 wt%)

iii ii

i
H Owt  H wt  O 2( %)

( ) ( )

( )

[ % ] [ % ]1
2 2

2

=  

The solubilities of H and O (expressed as weight percentages) are thus deter-
mined by the values of the activity coefficients ( fi (1 wt%)) of H and O, and the 
questions to be answered are

 1. How is the activity coefficient of O in Fe influenced by the presence of H?
 2. How is the activity coefficient of H in Fe influenced by the presence of O?

This problem is dealt with by the introduction of interaction coefficients and 
interaction parameters. In the binary A– B, the activity of B in dilute solution 
with respect to the Henrian standard state is given by

 h f XB B
B

B=  

If, holding the concentration of B constant, the addition of a small amount of 
C changes the value of the activity coefficient of B to f B , then the difference 
between f B  and fB

B  is quantified by the expression

 f f fB B
B

B
C=  (13.22)

where fB
C  is called the interaction coefficient  of C on B and is a measure of 

the effect, on the behavior of B, of the presence of a specific concentration of 
C, at the same concentration of B. Similarly, if a small amount of D is added to 
the A– B solution, as a result of which the value of the activity coefficient of B 
changes from fB

B  to f B , then

 f f fB B
B

B
D=  

Now consider the system A– B– C– D. Mathematical analysis of such a system is 
possible only if fB

D  is independent of the concentration of C and if fB
C  is inde-

pendent of the concentration of D. Consider that the interaction coefficient of the 
solute i  on the solute j  is independent of the other solutes present, in which case 
the interaction coefficients may be combined by means of a Taylor’ s expansion 
of ln f i   as a function of the concentrations of the solutes; for example, for the 
binary system A– B in which A is the solvent,
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In this expression, the partial derivatives are the limiting values reached as 
X B  →  0. For the multicomponent system A– B– C– D,

 
ln

l

fB some function of the fractions of B, C, and D
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= nn
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X
X

f

X X
X X �

 

in which, again, the partial derivatives are the limiting values as the mole frac-
tions of the solutes approach zero. At very low concentration, the terms contain-
ing the products of mole fractions are small enough to be ignored, and also, 
choice of the Henrian standard state makes fB

� = 1. Thus,

 ln
ln ln ln

f
f

X
X

f

X
X

f

X
X

X X X

B
B

B
B

B

C
C

B

D
D

B
B

B B
C

C B
D

D

   
= ∂

∂
+ ∂

∂
+ ∂

∂
= + +ε ε ε

 (13.23)

where

 ε j
j j

i X

f

X
i

=
∂
∂ →

ln

 0

 

is called the interaction parameter  of i  on j  and is obtained as the limiting slope 
of a plot of ln f j   against X i   at constant X j j

j.ε  and ε j
j  are related as follows. For 

the general system

 ∂
∂ ∂

= ∂
∂

=
∂
∂

2G

n n

G

n

G

ni j

i

j

j

i

 

and since ∂ = ∂ = ∂G RT a RT fi i iln ln , then

 ∂
∂

= ∂
∂

ln lnf

n

f

n
j

i

i

j

 

and thus,

 ε εi
j

j
i=  (13.24)

It is often more convenient to consider the concentrations of the solutes in 
terms of weight percentages and to use logarithms to the base 10, in which case 
Equation  13.23 becomes

 
log

log
%

%
log

%
%

log
%

f
f f f

B
B B B

 wt  B
wt  B

 wt  C
wt  C

 wt  D
w= ∂

∂
+ ∂

∂
+ ∂

∂
tt  D

wt  B wt  C wt  DB B
B

B
C

B
D

%

log % % %f e e e= + +

 (13.25)
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Multiplying Equation  13.25 by 2.303 and comparing, term by term, with 
Equation  13.23 gives

 εB B  wt  i
i

iX e i= 2 303. %  

and since, at small concentrations of B and i ,

 X
wt i

i
i

~
% MW

MW
A⋅

100
 

then

 ei

i

i
B

A
B

MW
MW

= 1
230 3.

ε  

and

 e ei

i
jB

B BMW
MW

=  

Pehlke and Elliott* have determined that nitrogen, dissolved in liquid iron at 
1600° C, obeys Sieverts’  law according to

 [ % ]wt  N N= kp
2

1 2  (iv)

where k  = 0.045 at 1873 K, and they have measured the effects of the presence 
of a second dilute solute on the thermodynamics of nitrogen dissolved in liquid 
iron. These systems are particularly amenable to experimental study because of 
the ease with which the activity of nitrogen can be controlled by the gas phase. 
The interaction parameters, ei

N, are determined by maintaining the nitrogen in 
the melt at constant activity and measuring the variation in the solubility of nitro-
gen with concentration of the second solute. Since nitrogen in liquid iron obeys 
Henry’ s (Sieverts’ ) law, fN

N = 1, and thus, eN
N  (and εN

N ) are zero. Consequently, 
the first terms in Equations 13.23 and 13.25 are zero. If the addition of a second 
solute X to the Fe– N binary (equilibrated with a fixed pN2 ) causes a change in 
the dissolved nitrogen content from [wt% N]Fe– N  to [wt% N]Fe– N– X . Then, from 
Equation  (iv),

 k
p

f

p
= =[ % ] [ % ]wt  N wt  NinFe N

N

N
X

inFe N X

N

− − −

2 2

1 2 1 2
 

and thus, fN
X  is obtained experimentally as

 
f

T p

N
X inFe N

in Fe N X

wt  N
wt  N]

N

= 







[ % ]
[ % ,

−

− −
2

 

* R. Pehlke and J. F. Elliott, “ Solubility of Nitrogen in Liquid Iron Alloys, I: Thermodynamics,”  Trans. 
Met. Soc. AIME  (1960), vol. 218, p. 1088.
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The variation of [wt% N] with [wt% X] is shown for several second solutes in 
Figure 13.31, and the corresponding variation of log fN

X  with [wt% X] is shown 
in Figure 13.32. The values of eN

X  are obtained as the slopes of the linear por-
tions of the lines in Figure 13.32.
 Thus, in a multicomponent liquid iron alloy containing several solutes 
including nitrogen, if the effect of any one solute on f N  is independent of the 
presence of any other solute, then the total effect of the solutes on f N  is the sum 
of their individual effects, and if log fN

X  is a linear function of [wt% X], then f N  
is given by Equation  13.25. If, however, the concentrations of X are higher than 
the limits of linear variation of log fN

X  with [wt% X], then a graphical solution 
is required. In these cases, the value of log fN

X  for each value of [wt% X] is read 
from the graph (Figure 13.32), and log f N  is obtained as

 log logf fN N
X

X

= ∑  

or

 f fN N
X

X

= ∏  

Figure 13.32 indicates that, as a general rule, eN
X  is a negative quantity when 

X forms a nitride which is more stable than iron nitride, and that the order of 
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increasing magnitude of eN
X  follows the order of increasing magnitude of the 

Gibbs free energy of formation of the nitride of X. Similarly, eN
X  is a positive 

quantity when X has a greater affinity for iron than either X has for N or iron 
has for nitrogen. The values of the interaction coefficients for several elements 
in dilute solution in iron at 1600° C are listed in Table 13.1 .

Example 1 

In view of the introduction of interaction parameters, the example of the Si– O 
equilibrium in liquid Fe, discussed in Section 13.3, can now be reexamined. In 
this example, it was determined that, for

 Si  O  SiO1 wt  in Fe 2 2( % ) ( ) ( )+ =g s  

 ∆G T° = +– , .833 4   229 5 J00  

For 

 ½ ( ) ( % )
O  O2 1 wt  in Feg =    

 ∆G T° = – , – .111 3 6 41 J00  (i)
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Figure  13.32   the activity coefficients of nitrogen in binary iron alloys at 1600° C.
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and thus, for

 Si  2O  SiO1 wt  in Fe 1 wt  in Fe 2( % ) ( % ) ( )+ = s  

 ∆G T° = +– , .61 8   242 32 J0 00  (ii)

From Equation  (i) at 1600° C,

 h

p
O  wt

O

( %) .1
1 2

3

2

2 746 10= ×  (iii)

and, from Equation  (ii) at 1600° C,

 a

h h
SiO

Si(1 wt O  wt

2

1
2

42 380 10
%) ( %)

.= ×  (iv)

Thus, with pO2 5 57 10 12= ×. −  atm and aSiO2 1= , Equation  (iii) gives

 hO 1 wt
3 6 48  1% .( ) = × 0  (v)

and Equation  (iv) gives

 h hO  wt Si 1 wt( %) ( %) .1
2 54 0 10= × −  (vi)

Division of Equation  (vi) by hO 1 wt%( )
2  from Equation  (v) gives

 hSi 1 wt  1%( ) =  (vii)

In the previous treatment the assumption that Si obeys Henry’ s law leads to the 
conclusion that

 hSi 1 wt  wt  Si  1% %( ) = =  

At 1600° C, from Table  13.1,

 e e

e e
O
Si

O
O

Si
O

Si
Si

= =
= =

− −
− −

0 14 0 2

0 25 0 32

. .

. .
 

Thus, from Equation  (v),

 log log wt  O log 6 48 1O
3f +   = ×( )−% . 0  
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or

 – . % – . % % .0 02 wt  O 14 wt  Si log wt  O 2 188×   ×   +   = −  (viii)

and from Equation  (vii),

 log  log wt  Si   log 1Sif +   = ( )%  

or

 0 0 0. % . % %32 wt  Si 25 wt  O log wt  Si  −   +   =  (ix)

Computer solution of Equations (viii) and (ix) gives

 wt  Si   631 and wt  O   798% . % .  =   =0 0 00  

In the example in Section 13.3, in which the effect of dissolved oxygen was 
ignored and it was assumed that fSi = 1, the equilibrium weight percentage of 
Si in iron when aSiO2 1=  and pO2 5 57 10 12= ×. −  atm was 1.0. It is of inter-
est to determine which of the two initial assumptions, that (1) eSi

Si = 0  and (2) 
e eSi O

Si� = = 0 , contributes more to the error in the initial calculation. Use 
eSi

Si = 0 32.  and assume that eSi
O  and eO

Si  are zero. From Equation  (ix):

 0 0. % %32 wt  Si log wt  Si  +   =  

which gives [wt% Si] = 0.629, and from Equation  (viii),

 – . % – . . % – .0 0 0 02   wt  O   24  629  log wt  O   2 188×   × +   =  

which gives [wt% O] = 0.00797. The error introduced by ignoring the interac-
tion between Si and O in solution in Fe is thus seen to be negligible in com-
parison with that introduced by assuming that Si obeys Henry’ s law over some 
initial range of composition.

Example 2 

Calculate the equilibrium oxygen content of an Fe– C– O alloy which, at 1600° C, 
contains 1 wt% C and is under a pressure of 1 atm of CO.

 For C O CO  111 7 87 65 J2( ) ( ) ( )‰ , , .gr g g G T+ = ° = − −∆ 00  

 For C C  22 6 42 26 J1 wt  in Fe( ) ( % ), , .gr G T= ° = −∆ 00  

 For O O  111 3 6 41 J2 g 1 wt  in Fe½ , – , – .( ) ( % )= ° =∆G T00  



546 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

Thus, for

 C O CO  23 38 98 J1 wt 1 wt( %) ( %) ( ), , .+ = ° = − −g G T∆ 000  

Therefore,

 ∆ =G1873 96 010 K  J� − ,  

and

 p

h h
CO

C O

= 476  

Thus,

 h h f f pC O C O
3

COwt  C wt  O 2 1 1=     = × −% % . 0  

At 1600° C,

 
e

e

e

e

C
C

O
O

C
O

O
C

=
=
=
=

0 22

0 2

0 097

0 13

.

.

.

.

−
−
−

 

Thus, for 1 wt% C and p CO  = 1 atm,

 log wt  O 297 wt  O 2 768% . % .  −   = −0  

solution of which gives [wt% O] = 0.00171. If all of the interaction parameters 
had been ignored, the weight percentage of O would have been calculated as 
0.00210.

Example 3 

The partial pressure of hydrogen in the atmosphere is such that an Fe– C– Ti melt 
containing 1 wt% C and 3 wt% Ti contains 5 parts per million (by weight) of 
hydrogen at 1600° C. Calculate the vacuum which is required to decrease the 
hydrogen content of the melt to 1 ppm, given that eH

Ti = −0 08. , that eH
C = 0 06. , and 

that hydrogen in pure iron obeys Henry’ s law up to a solubility of 0.0027 wt% 
under a pressure of 1 atm of hydrogen at 1600° C.
For the equilibrium between gaseous hydrogen and dissolved H, given as 
½ H2(g)  = [H](1 wt% in Fe) ,

 K
f

p
= H wt

H

wt H( %)[ % ]1
1 2

2
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In pure iron, as H obeys Henry’ s law, f H(1 wt%)  = 1, and thus,

 K1873 K 27= 0 00.  

Thus,

 log log[ ] log log .( %)f pH 1 wt Hwt% H+ =− 1
2

0 00272
 

But

 log [ % ] [ % ] [ % ]( %)f e e eH  wt H
H

H
Ti

H
Cwt  H wt  Ti wt  C1 = + +  

As f H(1 wt%)  = 1, eH
H = 0, and hence, at 1600° C,

 e e pH
Ti

H
C

Hwt  Ti wt  C wt  H 2[ % ] [ % ] log[ % ] log log .+ + =− 1
2

0 0027  

When [wt% H] = 5 ×  10– 4 ,

 log [( . ) ( . ) log( ) log . ]

.

pH2 2 0 08 3 0 06 1 5 10 0 0027

1 825

4= × × + × + ×
=

− −
−

−
 

which gives pH2 0 015= .  atm. Similarly, when [wt% H] = 1 ×  10– 4 , pH2 6 10 4= × −  
atm. Thus,

 [ % ] . ( )wt  H  ppm when  atm and  atmH total= = =5 0 015 12p P  

and so

 [ % ] .wt  H  ppm when  atmH= =1 0 00062p  

and

 Ptotal  atm= =0 0006
0 015

0 04
.
.

.  

Thus, in order to achieve the desired decrease in the content of dissolved H, the 
total pressure must be decreased from 1 to 0.04 atm.

13.11 SUMMArY

 1. Reaction equilibrium in the reaction

 aA bB cC dD+ = +  
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  is established when the reaction has proceeded to the extent that

 aG bG cG dGA B C D+ = +  

 That is, Δ G  for the reaction is zero.
 2. The state of reaction equilibrium is determined by the standard Gibbs free energy 

change for the reaction, Δ G ° , via

 ∆G RT K° = – ln  

  where K  is the equilibrium constant for the reaction given by the quotient of the 
activities of the reactants and products at reaction equilibrium; that is,

 K
a a

a a
C
c

D
d

A
a

B
b=  

 3. The Raoultian standard state of a thermodynamic component is the pure compo-
nent in its stable state of existence at the temperature of interest. The Henrian stan-
dard state is obtained from consideration of Henry’ s law, which, strictly being a 
limiting law obeyed by the solute B  at infinite dilution, is expressed as

 a

X
k XB

B
B B→ →as 0  

 where a B   is the activity of B  in the solution with respect to the Raoultian standard 
state and k  is the Henry’ s law constant at the temperature T . Alternatively,

 a

X
XB

B
B B→ →γ� as 0  

 where γB Bk� ( )=  is the constant activity coefficient which quantifies the difference 
between Raoultian and Henrian solution behavior of B . If the solute obeys Henry’ s 
law over a finite range of composition, then, over this range,

 a XB B B= γ�  

 The Henrian standard state is obtained by extrapolating the Henry’ s law line to 
X B    = 1, and the activity of B  in the Henrian standard state with respect to the 
Raoultian standard state having unit activity is

 aB B= γ�  

 The activity of B  in a solution with respect to the Henrian standard state having unit 
activity is given by

 h f XB B B=  

 where h B   is the Henrian activity and f B   is the Henrian activity coefficient. In the 
range of composition in which B  obeys Henry’ s law, f B   = 1.
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  The 1 wt% standard state is defined as

 h

B
BB( %)

%
%1 1 0 wt

wt  
as wt  → →  

 and is located at that point on the Henry’ s law line which corresponds to a concen-
tration of 1 wt% B . With respect to the 1 wt% standard state having unit activity, 
the activity of B , h B  (1 wt%) , is given by

 h f BB B1 wt 1 wt wt% ( %) %( ) =  

 where f B  (1 wt%)  is the 1 wt% activity coefficient. The activities are related via

 a hB B B= γ�  

 and

 a f BB B B
B

= ⋅ ⋅ ⋅( %) %1 wt
solventwt

MW
0MW

γ�
10

 

 4. The Gibbs equilibrium phase rule is

 F = +C 2 – Φ  

 where:
 C  is the number of components in the system
 F   is the number of degrees of freedom available to the equilibrium involving Φ  

phases

 With R  independent reaction equilibria involving N  species, the Gibbs equilibrium 
phase rule is

 F = ( ) +N R– –2 P  

 where C  = N  –  R 
 5. In a solution of solvent A  and several dilutes solutes B , C , and D ,

 ln f X X XB B
B

B B
C

C B
D

D= + +ε ε ε  

 where

 ε j
i j

i X

f

X
i

=
∂
∂ →

ln

0

 

 is the interaction parameter of i  on j . The interaction parameters are related to one 
another by

 ε εi
j

j
i=  
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 If the concentrations of the dilute solutes are expressed in weight percent, then

 log % % %f e B e C e DB B
B

B
C

B
D= + +wt  wt  wt   

 where

 e
f

i
i
j j

i

=
∂
∂ →

log

% % wt  wt  0

 

 The two interaction parameters of i  and j  are related by

 e ej
i j

i
i
j=

MW

MW
 

 Also

 ε j
i

i j
iX e i= 2 303. % wt   

13.12 CONCePtS AND terMS INtrODUCeD IN ChAPter 13

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Activity quotient
Adsorbed atoms
Alternate standard state
Berthollides
Components
Compound
Gibbs equilibrium phase rule
Infinite dilution
Interaction parameter
Law of definite proportions
Nonstoichiometric compound
Phase stability diagram
Sieverts’  constant
Sieverts’  law
Stoichiometric compound
Thermodynamic degree of freedom

13.13 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Problem 1 
 a. Find the point e  in Figure 13.29 and locate its corresponding location on 

Figure 13.30.
 b. What phase(s) is (are) present at point e ?
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 c. Apply the Gibbs equilibrium phase rule to the system at this point.
 d. What phase(s) is (are) present at point b  in Figure 13.30?
 e. If the temperature is raised slightly at point b , what phases will be present?
 f. Apply the Gibbs equilibrium phase rule to the system at this slightly higher 

temperature.

Solution to Qualitative Problem 1 
 a. 

–5 –6

–5

–4

–3

–2

–1

0

5 10

10–6 atm

10–4

10–2

100

101

101

102

102

b

d A

102

103

100

10–2

10–4

10–6

10–8

10–10 atm

Liquid Ag

Solid Ag
lo

g 
(w

t%
 O

)

lo
g 

(a
t%

 O
)

Solid Ag + Ag2O

Liquid Ag
+

Ag2O 101 100

15

Temperature, °C

104/ T, K–1

20

–4

–3

–2

–1

0

1

14
00

12
00

10
00

80
0

60
0

50
0

40
0

30
0

20
0

 b. Ag(S) , Ag2 O(S) , and O2 .
 c. In Figure 13.29, the pressure is fixed. There is one reaction relating the three phases: 

Ag(S)  + O2(G) ↔   Ag2 O(S) .
  Thus,

 F = +C R 1– – Φ  

 F = + =3 1 1 3– – 0  

 The point e  lies on an invariant temperature.
 d. Ag(L) , Ag2 O(S) , and O2(G) .
 e. Ag(L) , and O2(G) .
 f.  F  = C –  R + 1 –  Φ̣  = 3 –  1 + 1 –  2 = 1 (the temperature can change or the partial 

pressure of O2  can change and the state remains Ag(L)  and O2(G) .
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Qualitative Problem 2 

The molar Gibbs free energy of mixing of Al2 O3  and MgO at 1073 K is shown 
in Figure 13.17. Delineate the phase fields as the composition varies from 
X XAl O Al O2 3 2 30 1= = to .

Solution to Qualitative Problem 2 

 

X MgO

X MgO MgAl O

X

Al O

Al O

Al

2 3

2 3

2

0

0 0 5

0 5

2 4

=

< <

<

   only  

    and .

. OO

Al O

MgAl O Al O

X Al O

3

2 3

1

1

2 4 2 3

2 3

<

=

    and 

   only 

 

Note : The diagram in Figure 13.17 is only approximate. There must be some solubil-
ity (however small) of each of the components in each other as well as in the spinel 
phase.

13.14 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

100 g of silica and 100 g of graphite are placed in a rigid vessel of volume 20 liters, 
which is evacuated at room temperature and then heated to 1500° C, at which tem-
perature the quartz and graphite react to form SiC. Calculate

 a. The equilibrium partial pressures of CO and SiO in the vessel at 1500° C
 b. The mass of SiC formed
 c. The mass of graphite consumed to form CO and SiC

Solution to Quantitative Problem 1 

The equilibrium attained in the vessel is best seen by constructing the phase stabil-
ity diagram at 1773 K. In Example 2 in Section 13.4, an isothermal phase stability 
diagram was constructed using p CO  and pCO2  as the independent variables. However, 
in the present problem, the equilibrium values of p CO  and p SiO  are required, and thus, 
the phase stability diagram at 1773 K will be constructed using p CO  and p SiO  as the 
independent variables. When CO and SiO exist at equilibrium, the activity of O in 
the CO equals the activity of O in the SiO. Thus, at a given partial pressure of CO, 
the activity of C in the CO is fixed, and at a given partial pressure of SiO the activ-
ity of Si is fixed. The condensed phases liquid silicon, solid SiC, solid SiO2 , and 
graphite can exist in the system, and thus, the number of possible equilibria involv-
ing two condensed phases and a gas phase is (4 ×  3)/2 = 6. However, as was seen in 
Example 2 in Section 13.4, Si and C cannot exist in equilibrium with one another. 
The standard molar Gibbs free energies of formation of the four compounds of inter-
est at 1773 K are
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Compound J

   SiO

   SiO

   S

 K∆G

s

g

1773

2 595 900

246 100

,

( )

( )

,

,

�

−
−

iiC

   CO
( )

( )

,

,
s

g

−
−

56 990

266 900

 

Each of the five equilibria involving two condensed phases and a gas phase must 
include CO and SiO.

1. Equilibrium among Si, SiO 2  , CO, and SiO 

The equilibrium is

 SiO  C  SiO  CO2 + = +  (i)

for which ∆ =G1773 82 900 K  J� , . Thus, for this equilibrium,

 log log  2 44Sio COp p= – – .  

which is drawn as line 1 in Figure 13.33. Note that, as both gases occur on the same 
side of the equation describing the equilibrium, determination cannot be made as to 
which condensed phase is stable above line 1 and which condensed phase is stable 
below the line.

4

2

0

–2

–4

–6

–8
–5 –4 –3 –2

log pCO, atm

lo
g 

p S
iO

, a
tm

–1 0 1 2

2

1773 K

3

5

4
1

SiC

a

c

b

f

d

e

SiC
Unstable gas

Si

SiO2 or Si

SiO
2  or CSiO

2  or C

SiO2 or Si
SiO2 or SiC

SiO2 or SiC

Figure  13.33   Construction of the phase stability diagram for the system si– C– o at 1773 K.
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2. Equilibrium among SiO 2  , SiC, SiO, and CO 

The equilibrium is

 2SiO  SiC  3SiO  CO2 + = +  (ii)

for which ∆ =G1773 243 590 K  J� , . This gives

 log log .p pSiO CO= − −1
3

2 39  

which is drawn as line 2 in Figure 13.33. Again, a determination cannot be made as 
to which condensed phase is stable above the line and which is stable below the line.

3. Equilibrium among SiO 2  , Si, and SiO 

This equilibrium is independent of the pressure of CO and is written as

 SiO  Si  2SiO2 + =  (iii)

for which ∆ =G1773 103 700 K
� , . Thus,

 log 1 53SiOp = – .  

which is drawn as line 3 in Figure 13.33. Again, indication of the stability of the 
condensed phases is not given.

4. Equilibrium among Si, SiC, SiO, and CO 

The equilibrium is

 2Si CO SiC SiO+ = +  (iv)

for which ∆ =G1773 36 190 K  J� , . Thus, for the equilibrium,

 log log 1 6SiO COp p= + .0  

which is drawn as line 4. In this equilibrium, Si is stable relative to SiC above the 
line, and SiC is stable relative to Si below the line.

5. Equilibrium among SiC, C, SiO, and CO 

The equilibrium is

 SiC CO 2C SiO+ = +  (v)
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for which ∆ =G1773 77 790, , K  J� . Thus,

 log log 2 29SiO COp p= – .  

which is drawn as line 5 in Figure 13.33. As carbon exists at unit activity along this 
line, SiC is stable relative to graphite above the line and an unstable gas occurs below 
the line.

Inspection of Figure 13.33 shows that

 1. SiC is stable relative to Si below the line bc .
 2. SiC is stable relative to graphite above the line ed .
 3. SiC or SiO2  are stable below the line bd .

This identifies the area cbde  as the field of stability of SiC. It is then seen that (1) 
Si is stable relative to SiC above the line cb , and (2) Si or SiO2  is stable below the line 
ab . This identifies the area abc  as the field of stability of liquid Si. Thus, (1) SiO2  is 
stable relative to Si above the line ab , (2) SiO2  is stable relative to SiC above the line 
bd , and (3) SiO2  or graphite is stable above the line df .

Thus, the field of stability of SiO2  lies above the line abdf , and the phase stability 
diagram is as shown in Figure 13.34. The phase stability diagram shows that graph-
ite and quartz react with one another to produce SiC until the SiO2 – graphite– SiC 
equilibrium is reached at the state A , which is the intersection of lines 1, 2, and 5 in 

4
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–8
–5 –4 –3 –2

log pCO, atm

lo
g 

p Si
O

, a
tm

–1 0 1 2
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SiO2

ASi

Unstable gas

Saturation with carbon

Figure  13.34   the phase stability diagram for the system si– C– o at 1773 K.
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Figure 13.33. Simultaneous solution of the equations of any two of these lines gives 
the state A  as

 log 75 844 atmCO COp p= =( )– . .0 0 0  

and

 log 2365 4 32 1 atmSiO SiO
3p p= = ×( )– . . –0 0  

The mass of SiC produced and the mass of graphite consumed are obtained by con-
ducting a mass balance on Si, C, and O. The atomic weights of C, O, and Si are, 
respectively, 12, 16, and 28.09. Thus, before any reactions begin, the vessel contains 
100/60.09 = 1.6642 moles of SiO2  and 100/12 = 8.3333 moles of C. Thus, the vessel 
contains 1.6642 moles of Si, 3.3283 moles of O, and 8.3333 moles of C. When reac-
tion equilibrium is attained at 1773 K, the number of moles of CO in the gas phase 
is calculated as

 n
p V

RT
CO

CO  moles= = ×
×

=0 844 20
0 082057 1773

0 1160
.

.
.  

and the number of moles of SiO in the gas phase is

 nSiO  moles= × ×
×

= ×4 315 10 20
0 082057 1773

5 9310 10
3

4.
.

.
−

−  

Thus, the gas phase contains 0.1160 moles of C, 0.1166 moles of O, and 5.9318 ×  10– 4  
moles of Si. Consequently, at equilibrium the solid phases contain

 1 6642 5 9318 10 1 6636

3 3286 0 116

4. . .

. .

−
−

−× =  moles of Si

         66 3 2120= .  moles of O
 

and

 8 3333 116 8 2173 moles of C. . .0 0 =  

All of the oxygen in the solids occurs in the silica, and thus, 3.2120/2 = 1.6060 moles 
of silicon in the solids occurs in the silica. The remaining 1.6636 –  1.6060 = 0.0576 
moles of silicon in the solids occurs in the SiC. Thus, 0.0576 moles, or 0.0576 ×  
40.09 = 2.31 g of SiC are formed. The number of moles of graphite consumed equals 
the number of moles of SiC formed plus the number of moles of CO produced; that 
is, 0.0576 + 1160 = 0.1736 moles, or 0.1736 ×  12 = 2.08 g.

The equilibrium partial pressures of CO2  and O2 , which are, respectively, 5.9 ×  
10– 5  and 1.3 ×  10– 16  atm, are small enough that the CO2  and O2  produced in the gas 
phase do not need to be included in the mass balance.
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Quantitative Problem 2 

Determine the conditions under which an Fe– Cr– O melt is in equilibrium with

 1. Solid Cr2 O3 
 2. Solid FeO· Cr2 O3 

at 1600° C. For

 2
3
2

1 120 300 259 82 2 3Cr O Cr O ,  Ji( ) ( ) ( ) ( ) , , .s g s G T+ = ∆ = +� −  (i)

and for

 
1
2

111 070 5 872 1O O  Jwt in Fe ii( ) ( % ) ( )[ ] , , .g G T= ∆ =� − −  (ii)

Solution to Quantitative Problem 2 

At 1600° C, Fe– Cr melts exhibit Raoultian ideality, and the molar heat of melting 
of Cr, at its equilibrium melting temperature of 2173 K, is 21,000 J. Thus, for 
Cr( s  )   = Cr( l  ) ,

 ∆ = ∆ ∆ =G H T
H

T
Tm m

m

m

� �
�

− −21 000 9 66, .  J  

and for Cr( l  )  = [Cr](1 wt% in Fe) ,

 ∆ =
×

=G RT Tln
.

.
.

55 85
100 52 01

37 70−  J  

Therefore, for Cr( s  )  —  [Cr](1 wt% in Fe) ,

 ∆ =G T( ) , .iii  J� 21 000 47 36−  (iii)

The standard Gibbs free energy change for the reaction

 2 31 1 2 3[ ] [ ]( %) ( %) ( )Cr O Cr Owt wt+ = s  (iv)

is thus

 

∆ = ∆ ∆ ∆
= +

=

G G G G

T

RT

( ) ( ) ( ) ( )

, .

ln

iv i ii iii

 J

� � � �− −
−

−

3 2

829 090 372 13

aa

h h
Cr O

Cr wt O wt

2 3

1
2

1
3

( %) ( %)⋅
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or, at 1873 K,

 log .( ) %)h h

a
Cr  wt% O(1 wt

Cr O

1
2 3

2 3

3 68
⋅ = −  (v)

Saturation of the melt with solid Cr2 O3  occurs at aCr O2 3 1= , and, if the interac-
tions between Cr and O in solution are ignored, and it is assumed that oxygen obeys 
Henry’ s law, Equation  (v) can be written as

 log wt  Cr 1 5 log wt  O 1 84% . % .  = −   −  (vi)

which is the variation of [wt% Cr] with [wt% O] in liquid iron required for equilib-
rium with solid Cr2 O3  at 1600° C. Equation  (vi) is drawn as line (vi) in Figure 13.35.

For

 
Fe Cr O FeO Cr O

vii

( ) ( ) ( ) ( )

( ) , , .
l s g s

G

+ + = ⋅
∆ = +

2 2

1 409 420 318 07
2 2 3

� − TT  J
 (vii)

and thus, for the reaction

 

Fe Cr O FeO Cr O

        
1 wt 1 wt

vii

( ) ( %) ( %) ( )

(

[ ] [ ]l s

G

+ + = ⋅
∆

22 4 2 3

ii vii iii) ii

                  
) ( ) ( ( )

, ,

� � � �= ∆ ∆ ∆
=

G G G− −
−

2 4

1 007 1140 436 27

2 3

+

=
⋅

⋅

.

ln
(

T

RT
a

a h

 J
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−
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Figure  13.35   the variations of the concentrations of Cr with the concentrations of o in fe 
saturated with Cr2 o3  and feo· Cr2 o3  at 1600° C.
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or, at 1873 K,

 log .( %) ( %)a h h

a
Fe Cr 1 wt O  wt

FeO Cr O

⋅ ⋅ =
⋅

2
1

4

2 3

5 30−  (ix)

Saturation of the melt with FeO· Cr2 O3  occurs at aFeO Cr O⋅ =2 3 1  and, with the same 
assumptions as before, and a Fe  = X Fe  = 1 –  X Cr , the variation of [wt% Cr] with 
[wt% O] required for equilibrium with solid FeO· Cr2 O3  at 1600° C is

 log 1 2 log wt  Cr 4 log wt  O 5 3Cr– % % – .X( ) +   +   = 0  (x)

In solutions sufficiently dilute that X Fe  ~ 1, Equation  (x) can be simplified as

 log wt  Cr 2 log wt  O 2 65% % .  = −   −  (xi)

Equation  (xi) is drawn as line (x) in Figure 13.35. Lines (vi) and (x) intersect at the 
point A , log [wt% Cr] = 0.59, log [wt% O] = – 1.62 (wt% O = 0.024, wt% Cr = 3.89), 
which is the composition of the melt which is simultaneously saturated with solid 
Cr2 O3  and FeO· Cr2 O3 . From the phase rule, equilibrium in a three-component sys-
tem (Fe– Cr– O) among four phases (liquid Fe– Cr– O, solid Cr2 O3 , solid FeO· Cr2 O3 , 
and a gas phase) has one degree of freedom, which, in the present case, has been used 
by specifying the temperature to be 1873 K. Thus, the activities of Fe, Cr, and O are 
uniquely fixed, and hence [wt% Cr] and [wt% O] are uniquely fixed. The equilibrium 
oxygen pressure in the gas phase is obtained from Equation  (ii) as

 ∆ = = ×G
p

( ), ,
[ % ]

ii  K

O

 J 8.3144 1873 ln 
wt O

1873 1 2122 065
2

� − −  

which, with [wt% O] = 0.024, gives pO eq2 8 96 10 11
( ) .= × −  atm. The positions of the 

lines in Figure 13.35 are such that, in melts of [wt% Cr] >  3.89, Cr2 O3  is the stable 
phase in equilibrium with saturated melts along the line AB  and, in melts in which 
[wt% Cr] <  3.89, FeO· Cr2 O3  is the stable phase in equilibrium with saturated melts 
along the line AC . Alternatively, Cr2 O3  is the stable phase in equilibrium with satu-
rated melts of [wt% O] <  0.024, and FeO· Cr2 O3  is the stable phase in equilibrium 
with saturated melts of [wt% O] >  0.024. Consider a melt in which log [wt% Cr] = 
1.5. From Figure 13.35, or Equation  (vi), the oxygen content at this chromium level 
required for equilibrium with Cr2 O3  (at the point B  in Figure 13.35) is 5.93 ×  10– 3  
wt%, or log [wt% O] = – 2.25. From Equation  (v), the activity of Cr2 O3  in this melt 
with respect to solid Cr2 O3  is unity, and hence the melt is saturated with respect 
to solid Cr2 O3 . However, from Equation  (ix), in the same melt (i.e., X Fe  = 0.668, 
[wt% Cr] = 31.6, [wt% O] = 0.00593), the activity of FeO· Cr2 O3  with respect to 
solid FeO· Cr2 O3  is only 0.2. Thus, the melt is saturated with respect to Cr2 O3  and is 
undersaturated with respect to FeO· Cr2 O3 . Moving along the line BA  from B  toward 
A , aCr O2 3 1= , and aFeO Cr O⋅ =2 3 1  increases from 0.2 at B  to unity at A  in the doubly 
saturated melt. Consider a melt in which log [wt% Cr] = – 0.5. From Figure 13.35, the 
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oxygen content required for saturation with FeO· Cr2 O3  is 0.084 wt% (log [wt% O] = 
– 1.075 at the point C  in Figure 13.35). From Equation  (ix), the activity of FeO· Cr2 O3  
in this melt is unity. However, from Equation  (v), the activity of Cr2 O3  in the melt, 
with respect to solid Cr2 O3 , is only 0.285. Thus, this melt is saturated with FeO· Cr2 O3  
and is undersaturated with Cr2 O3 . On moving along the line CA  from C  toward A , 
aFeO Cr O2 3⋅  is unity and aCr O2 3  increases from 0.285 at C  to unity at A .

If the various solute– solute interactions had been considered, Equation  (v), with 
aCr O2 3 1= , would be written as

 2 log 3 log 3 68Cr 1 wt 1wth hO( %) ( %) .+ = −  

or

 2 log 2 log wt  Cr 3 log 3 log wt  Cr 1 wt O 1wtf f( %) ( %)% %+   + + OO 3 68  = − .  

or

 2 2 2 3e e eCr
Cr

Cr
O

O
Owt  Cr wt% O wt% Cr wt  O

   

⋅ + ⋅ + + ⋅[ % ] [ ] log[ ] [ % ]

                 wt  Cr wt% OO
Cr+ + =3 3 3 68e [ % ] log[ ] .−

 

With

 e e e eO
Cr O

O
O
Cr

Cr
OO and = = = =− − −0 2 0 041 0 13. . .  

this gives

 −0 43 0 0615

1

. [ % ] . [ % ] log[ % ]wt  O wt  Cr wt Cr

                  

+ +
+ .. log[ % ] .5 1 84wt  O = −

 (xii)

which is drawn as line (xii) in Figure 13.36.
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Figure  13.36   figure 13.35 amended to take into consideration the interactions between the 
solutes, Cr and o, in liquid fe.
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Similarly, with aFeO Cr O⋅ =2 3 1 , Equation  (ix) would be written as

 log 2 log 4 log 5 3Fe Cr 1 wt O 1 wtX h h+ + = −( %) ( %) . 0  

or

 log [ % ] [ % ] log[ % ] [X e e eFe Cr
Cr

Cr
O

O
Owt  Cr wt  O wt  Cr wt+ ⋅ + ⋅ + + ⋅2 2 2 4 %% ]

[ % ] log[ % ] .

 O

             wt  Cr wt  CrO
Cr+ ⋅ + =4 4 5 30e −

 

or

 log . [ ] . [ ] log[ ]XFe  wt% O  wt% Cr wt% Cr

           

− −1 06 0 164 2+
                 [wt% O+ =4 5 30log ] .−

 

which is drawn as line (xiii) in Figure 13.36. Lines (xii) and (xiii) intersect at log 
[wt% Cr] = 0.615, log [wt% O] = – 1.455 ([wt% Cr] = 4.12, [wt% O] = 0.035). When 
the interactions among the solute were ignored, the point of intersection, A , was 
obtained as [wt% Cr] = 3.89, [wt% O] = 0.024.

PrOBLeMS

13.1   Air at atmospheric pressure is blown over a Cu-rich copper– gold liquid solution 
at 1500 K. If only the copper is oxidized (to form pure solid Cu2 O), calculate the 
minimum activity of Cu which can be obtained in the solution.

13.2   Magnesium can be removed from Mg– Al liquid solution by selectively forming 
the chloride MgCl2 . Calculate the activity of Mg in the liquid Mg– Al system 
which can be achieved at 800° C by reacting the solution with an H2 – HCl gas 
mixture containing hydrogen at essentially 1 atm pressure and p HCl  = 10– 5  atm 
to form pure liquid MgCl2 .

13.3   The partial pressure of oxygen in equilibrium with pure liquid lead and pure 
liquid lead oxide at 1200 K is 2.16 ×  10– 9  atm. When SiO2  is added to the liquid 
PbO to form a lead silicate melt, the oxygen pressure in equilibrium with pure 
liquid lead and the silicate melt is decreased to 5.41 ×  10– 10  atm. Calculate the 
activity of PbO in the lead silicate melt.

13.4   Copper, present as an impurity in liquid Pb, can be removed by adding PbS to 
the Cu– Pb alloy and allowing the exchange reaction

 2Cu  PbS  Cu S  Pb2( ) ( ) ( ) ( )s s s l+ = +  

  to come to equilibrium.
    The solid sulfides are mutually immiscible, Pb is insoluble in solid Cu, and 

the Cu liquidus, below 850° C, can be represented by

 log .X
T

Cu = +− 3500
2 261  
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   where X Cu  is the solubility of Cu in liquid Pb. If Cu obeys Henry’ s law in liquid 
Pb, calculate the extent to which Cu can be removed from liquid Pb by this 
process at 800° C. Would the extent of purification of the lead be increased by 
increasing or by decreasing the temperature?

13.5   A CH4 – H2  gas mixture at 1 atm total pressure, in which pH2 0 957= .  atm, is 
equilibrated with an Fe– C alloy at 1000 K. Calculate the activity of C with 
respect to graphite in the alloy. What would the value of pH2  in the gas mixture 
(at P total  = 1 atm) have to be in order to saturate the Fe with graphite at 1000 K?

13.6   Calculate the activity of FeO in an FeO– Al2 O3 – SiO2  melt below which the FeO 
cannot be reduced to pure liquid iron by a CO– CO2  mixture of p pCO CO/ 2 105=  
at 1600° C.

13.7   A piece of iron is to be heat treated at 1000 K in a CO– CO2 – H2 O– H2  gas mix-
ture at 1 atm pressure. The gas mixture is produced by mixing CO2  and H2  and 
allowing the equilibrium CO2  + H2  = CO + H2 O to establish. Calculate (a) the 
minimum H2 /CO2  ratio in the inlet gas which can be admitted to the furnace 
without oxidizing the iron, (b) the activity of carbon (with respect to graphite) in 
the equilibrated gas of this initial minimum H2 /CO2  ratio, (c) the total pressure 
to which the equilibrated gas would have to be raised to saturate the iron with 
graphite at 1000 K, and (d) the effect, on the partial pressure of oxygen in the 
equilibrated gas, of this increase in total pressure.

13.8   An Fe– Mn solid solution containing X Mn  = 0.001 is in equilibrium with an 
FeO– MnO solid solution and an oxygen-containing gaseous atmosphere at 
1000 K. How many degrees of freedom does the equilibrium have? What is the 
composition of the equilibrium oxide solution, and what is the partial pressure 
of oxygen in the gas phase? Assume that both solid solutions are Raoultian in 
their behavior.

13.9   The elements A and B, which are both solid at 1000° C, form two stoichiometric 
compounds A2 B and AB2 , which are also both solid at 1000° C. The system A– B 
does not contain any solid solutions. A has an immeasurably small vapor pres-
sure at 1000° C, and, for the change of state B ( s  )  = B ( v  ) ,

 ∆G T° = −187 22 1 8 8 J, .0 0 0  

  The vapor pressure exerted by an equilibrated AB2 – A2 B mixture is given by

 log ( )
,

.p
T

atm = +− 11 242
6 53  

  and the vapor pressure exerted by an equilibrated A– A2 B mixture is given by

 log ( )
,

.p
T

atm = +− 12 603
6 9  

   From these data, calculate the standard Gibbs free energies of formation of A2 B 
and AB2 .

13.10  For the change of standard state V( s  )  = V(1 wt% in Fe) 

 ∆G To 15 48 45 61 J= – , – .0  
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   Calculate the value of γV
�  at 1600° C. If a liquid Fe– V solution is equilibrated 

with pure solid VO and a gas containing pO2 4 72 10 10= ×. −  atm, calculate the 
activity of V in the liquid solution (a) with respect to solid V as the standard 
state, (b) with respect to liquid V as the standard state, (c) with respect to the 
Henrian standard state, and (d) with respect to the 1 wt% in iron standard state.

13.11   When an Fe– P liquid solution is equilibrated at 1900 K with solid CaO, solid 
3CaO· P2 O5 , and a gas phase containing pO2 10 10= −

 atm, the activity of P 
in the iron, with respect to the 1 wt% in Fe standard state, is 20. Given that 
∆ =G1900 564 600 K  J� − ,  for

 3CaO  P O  3CaO P O2 5 2 5( ) ( ) ( )s g s+ = ⋅  

  and AG°  = – 122,200 –  19.22T J for

 1
2

2 1P Pg( ) ( )=  wt% in Fe
 

  calculate ∆G1900 K
�  for the reaction

 P O P O2 2 2 5
5
2

( ) ( ) ( )g g g+ =  

13.12   Liquid iron, contained in an Al2 O3  crucible under a gaseous atmosphere of 
pO2 3 10 12= × −  atm at 1600° C, contains its equilibrium contents of dissolved 

oxygen and aluminum. To what value must pO2  be raised in order that solid her-
cynite (FeO· Al2 O3 ) appears in equilibrium with the melt and with solid Al2 O3 ? 
What is the activity of Al (with respect to the 1 wt% in Fe standard state) in this 
state? How many degrees of freedom does this equilibrium have at 1600° C? 
Given

 1
2

111 070 5 872 1O O  J wt% in Fe( ) ( ) , .g G T= ∆ =� − −  

 Al  Al 43 1 32 26 J1 wt  in Fe( ) ( % ) , .l G T= ° = − −∆ 00  

 FeO Al O Fe O Al O

      
 wt% in Fe⋅ = + +

∆ =
2 3 1 2 3

146 23
( ) ( ) ( ) ( )

,
s l s

G� 00 54 35− . T  J
 

13.13   UC2  can be equilibrated with UC and C at high temperature and can be equili-
brated with U2 C3  and C at lower temperatures. Calculate the maximum and 
minimum temperatures at which UC2  can exist.

13.14   In the Pigeon process for the production of magnesium, dolomite (CaO· MgO) 
is reduced by silicon to form magnesium vapor and 2CaO· SiO2 . Calculate the 
equilibrium pressure of magnesium vapor produced by this reaction at 1200° C. 
The Gibbs free energy of formation of dolomite from CaO and MgO is small 
enough that it can be ignored.

13.15   What is the minimum value that the activity of MgO can have in MgO· Al2 O3  at 
1000° C?
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13.16   A mixture of ZnO and graphite is placed in an evacuated vessel and heated to 
1200 K. Calculate the partial pressures of Zn, CO, and CO2  that are developed.

13.17   An assemblage of solid CaO, MgO, 3CaO· Al2 O3 , and liquid Al exerts an equi-
librium vapor pressure of Mg of 0.035 atm at 1300 K. Write the equation for 
the appropriate reaction equilibrium. Calculate the standard Gibbs free energy 
of formation of 3CaO· Al2 O3  from CaO and Al2 O3  and the activity of Al2 O3  in 
CaO-saturated 3CaO· Al2 O3  at 1300 K.

13.18   An iron– carbon melt containing 0.5 wt% C is prepared in an alumina crucible 
under an atmosphere of p CO  = 1 atm at 1600° C. Calculate the equilibrium con-
centrations of O and Al in the melt (a) ignoring all solute– solute interactions and 
(b) considering the solute– solute interactions. The interaction coefficients are 
listed in Table  13.1.

13.19   It is required that PbO be eliminated from an ore containing PbO, PbS, and 
PbSO4  by converting it to PbS or PbSO4  by reaction with an SO2 – O2  gas. 
Although the pressure of O2  in the gas can vary within wide limits, the partial 
pressure of SO2  may not be higher than 0.5 atm. Calculate the maximum tem-
perature at which it can be guaranteed that the PbO phase will be eliminated.

13.20   Cementite, Fe3 C, is metastable with respect to carbon-saturated α -iron and 
graphite at 950 K and 1 atm pressure. Given that the molar volumes of α -Fe, 
graphite, and Fe3 C at 950 K are, respectively, 7.32, 5.40, and 23.92 cm3 /mole, 
calculate the pressure, at 950 K, at which Fe3 C is in equilibrium with carbon-
saturated α -Fe and graphite. At what temperature, at 1 atm pressure, is carbon-
saturated γ -Fe and graphite in equilibrium with cementite?

13.21   An experiment is being conducted on an equilibrated mixture of CaO and 
CaCO3  contained in a closed vessel at 1200 K. The mixture is contaminated 
by iron in the form of hematite (Fe2 O3 ). The contaminant would not be harmful 
to the experiment if it occurred as either wustite (FeO) or as cementite (Fe3 C). 
The necessary changes in the chemical form of the contaminant can be effected 
by admitting CO gas to the vessel. Calculate the allowable limits of p CO  in the 
vessel for the occurrence of the contaminant as (a) wustite and (b) cementite.

13.22   A Cu– Au alloy of X Cu  = 0.5 is being annealed at 600° C in deoxidized argon. 
The argon is deoxidized by being passed over heated pure copper turnings prior 
to its admission to the annealing furnace. The solid Cu– Au system is virtually 
regular in its solution behavior, with a molar Gibbs excess free energy of mixing 
given by

 G X XXS
Cu Au28 28 J= – , 0  

   Assuming that equilibrium is attained in the deoxidizing furnace, calculate the 
maximum temperature at which the deoxidizing furnace can be operated with-
out causing oxidation of the copper in the Cu– Au alloy being annealed.

13.23   In a dew-point experiment, a Cu– Zn alloy is placed in one end of an evacuated 
and closed tube and is heated to 900° C. When the other end of the tube is cooled 
to 740°  C, Zn vapor begins to condense. Calculate the activity of Zn in the alloy 
relative to pure zinc.

13.24   A crucible containing 100.0 g of silver at 1000° C is placed in the reaction cham-
ber of a Sieverts’  apparatus. The chamber is evacuated and filled with 50 cm3  
(STP) of argon, which measures the dead volume of the chamber. An external 
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manometer reads the pressure of argon as 0.9 atm. The chamber is reevacuated 
and filled with oxygen, and it is found that 251.5 cm3  (STP) are required to pro-
duce a gas pressure of 0.9 atm in the chamber. Calculate the solubility of O in 
the Ag (as atom percent) and calculate the value of the Sieverts’  law constant at 
1000° C.

13.25   Silicon and manganese are commonly used together as deoxidizers for liquid 
steel. At 1600° C,

 [ ] [ ] .

[ ]
( % ) ( ) ( )

(

Mn  O MnO

Si
wt  in Fe 1 wt% in Fe

1 wt% 

1 23 5+ = =s K

iin Fe 1 wt% in FeO SiO) ( ) ( )[ ] ,+ = =2 27 8402 s K
 

   The values of the equilibrium constants show that SiO2  is considerably more 
stable than MnO. Why, then, is a mixture of Mn and Si more effective as a 
deoxidizing agent than Si alone? The activities of MnO and SiO2 , with respect 
to solids as the standard states in MnO– SiO2  melts at 1600° C, are shown in 
Figure 13.37.
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Figure  13.37   activities in the system mno– sio2  at 1600° C.
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ChAPter 14

electrochemistry

14.1 INtrODUCtION

All chemical reactions, in which products form from reactants, involve changes 
in the state of oxidation, or valence state , of some or all of the participating atoms. 
By convention, the valence state of an atom in a compound is determined by the 
number of electrons which surround the nucleus of the atom. The assignment of a 
valence state is not influenced by the nature of the bonding between the constituent 
atoms. For example, the bonding in the HF molecule is considered to be 50% ionic 
in character and 50% covalent in character. Here, ionic character  implies complete 
electron transfer from the H atom to the F atom to form the ions H+  and F–  , and the 
covalent character  implies complete electron sharing to give a normal covalent HF 
molecule, which has zero electric dipole moment. Nevertheless, the valence states of 
H and F in HF are denoted as +1 and – 1 respectively.

Changes in the valence state of an element are caused by the addition or removal 
of electrons, and thus, the thermodynamic driving force of any reaction must, in 
some way, be related to the ease with which the required changes of valence of the 
participating atoms can occur— that is, to the ease with which the necessary transfer 
of electrons can occur. For example, the reaction

 AO B BO A+ = +  

involves a decrease in the valence state of A from +2 to 0 and an increase in the 
valence state of B from 0 to +2. The reaction involves the transfer of two electrons 
from B to A and hence can be written as

 A B B A2 2+ ++ = +  

The change in free energy is thus a manifestation of the energetics of electron trans-
fer. The reaction equation, written as the sum of

 A 2 A2+ + =e–  
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and

 B 2 B2– –e = +  

suggests the possibility of conducting the reaction as shown in Figure 14.1. A mix-
ture of A + AO and a mixture of B + BO are joined by two connections a  and b , 
where a  is an electronic conductor through which only electrons can pass and b  is 
an ionic conductor through which only oxygen ions can pass. The spontaneous reac-
tion thus occurs in the following manner. Two electrons leave a B atom, travel from 
right to left along a  and, on arrival at the A + AO mixture, convert an A2+  ion to an 
A atom. Simultaneously, an O2–   ion leaves the A + AO mixture and passes through 
b  to the B + BO mixture. Charge neutrality in the overall system is thus maintained, 
and the overall reaction can be written as

 A O B B O A2 2 2 2+ ++ = +– –  

As a result of its being conducted in an electrochemical manner, this reaction is 
called an electrochemical reaction . The driving force for the transport of electrons 
along a  is manifested as an electric voltage (or difference in electric potential) which 
can be measured by placing an external opposing voltage in the circuit a  and adjust-
ing this voltage until no electric current flows, at which point the electrochemical 
reaction ceases. At this point, the external voltage exactly balances the voltage gen-
erated by the electrochemical system; that is, the thermodynamic driving force for 
the chemical reaction is exactly balanced by the externally applied electric driving 
force. Knowledge of the mathematical relationship between these two types of forces 
allows the former (Δ G  for the reaction) to be measured. Furthermore, whereas in 
Chapter 12 it was seen that pure A, pure AO, pure B, and pure AO are in thermo-
dynamic equilibrium only at the unique temperature at which the two Ellingham 
lines intersect (if, indeed, they do intersect), it is now seen that the four phases can 
be brought into electrochemical equilibrium at any temperature by balancing the 
chemical driving force with an opposing electric driving force. The properties of 
systems such as this are examined in this chapter.

Electron �ow

Oxygen ion �ow

(a)

(b)

A + AO B + BO

Figure  14.1   a schematic representation of an electrolytic reaction.
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14.2 the reLAtIONShIP BetWeeN CheMICAL 
AND eLeCtrICAL DrIVING FOrCeS

In Section 5.4 it was seen that when a system undergoes a reversible process at 
constant temperature and pressure, the decrease in the Gibbs free energy of the sys-
tem equals ′wmax,  the work (other than the work of expansion) done by the system. 
For an increment of such a process,

 −dG w′ = ′δ max  

Consider a system which performs electrical work by transporting an electric charge 
across a voltage difference— that is, from one electric potential to another. The work 
performed is obtained as the product of the charge transported, q  (coulombs), and the 
electric potential difference, Δ ϕ  (volts). The unit of such work is the joule, which is 
equal to a volt times a coulomb. A system which is capable of performing electrical 
work as the result of the occurrence of a chemical reaction is called a galvanic cell , 
and the overall chemical reaction is represented by an equation called the cell reac-
tion . The charge carried by 1 g-ion (i.e., Avogadro’ s number of ions) of unit positive 
charge is 96,487 coulombs and is Faraday’ s constant (Michael Faraday, 1791– 1867), 
denoted 𝔣 . Thus, if dn  g-ions of valence z  are transported through a voltage differ-
ence Δ ϕ  maintained between the electrodes of a cell, then

 δ φw z dn′ = ∆  

If the transportation is conducted reversibly, in which case the electric potential dif-
ference between the electrodes of the cell is called the electromotive force  (EMF), 
ℰ , of the cell, then

 δ ε′ = ⋅ ⋅ ⋅ = ′w z dn dGmax  −  (14.1)

For the transportation of 1 mole of ions, Equation  14.1 becomes

 ∆G z= – ε  (14.2)

which is known as the Nernst equation .
Consider the familiar Daniell cell (John Frederick Daniell, 1790– 1845) shown in 

Figure 14.2. This cell consists of a zinc electrode partially immersed into an acidi-
fied aqueous solution of ZnSO4  and a copper electrode partially immersed into an 
acidified aqueous solution of CuSO4 . The two aqueous solutions, which constitute 
the electrolyte of the galvanic cell (i.e., the medium through which ionic current 
flows), are prevented from mixing by the insertion between them of a porous dia-
phragm. Consider the processes which occur when a metal is immersed in an elec-
trolyte. The asymmetric forces at the interface between the metal and the electrolyte 
cause the rearrangement of the solvent dipoles and the charged species in such a 
manner that the electrolyte side of the interface becomes electrically charged. The 
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electric field produced operates across the interface, and, depending on the direction 
of the field, free electrons in the metal either move toward or away from the inter-
face until a charge is induced in the metal which is equal and opposite to that on the 
electrolyte side of the interface. This separation of charge causes the development of 
a difference in electric potential between the interface and the bulk of the electrolyte 
far removed from the interface. Figure 14.3a shows the nature of the variation of 
electric potential with distance away from the interface into the electrolyte when the 

I II
Porous

diaphragm

Zn

ZnSO4 aq. soln CuSO4 aq. sol

Cu

Figure  14.2   the daniell cell.
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Figure  14.3   a schematic representation of the variation, with distance from a metal/electro-
lyte interface, of the potential when (a) the metal electrode acquires a negative 
charge, and (b) when the electrode acquires a positive charge.
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metal acquires a negative charge. Figure 14.3b shows the corresponding variation 
when the metal acquires a positive charge. The difference between the potential at 
the metal, ϕ M , and the potential in the bulk of the electrolyte, ϕ e , is called the abso-
lute potential  of the electrode. In the Daniell cell, before external electrical contact is 
made between the electrodes, the zinc electrode acquires an excess of electrons, and 
the copper has a deficit of electrons. This causes the variation of electric potential 
from the zinc electrode through the electrolyte to the copper electrode to be as shown 
schematically in Figure 14.4. The equilibrium

 Zn Zn2+ + =2e–  

is established at the zinc– electrolyte interface when

 µ µZn
2

Zn
2in the electrolyte  in the electrode+ +( ) = ( )  

and

 µ µ µ
Zn

Zn
Zn2 2+ + =

e−  

where:
 µ Zn  is the chemical potential of the zinc atoms in the electrode
µ

Zn2+  is the chemical potential of the zinc ions in the solution and in the electrode

µ
e−
Zn  is the chemical potential of the electrons in the zinc electrode

It is seen that the value of µ
Zn in solution2+ ( )

, which is determined by the concentra-
tion of ZnSO4  in the solution, determines the equilibrium value of µ

e−
Zn. Similarly, 

the equilibrium

fe

fCu

fe

fZn
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ZnSO4 (aq) CuSO4 (aq)
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Zinc/electrolyte interface Cu/electrolyte interface

fCu – fZn

Figure  14.4   a schematic representation of the variation of potential with position in a daniell 
cell. the open cell emf of the cell is given by ϕCu  –  ϕZn .
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 Cu 2 Cu2+ + =e–  

is established at the copper– electrolyte interface when

 µ µ
Cu Cu

the solution in the copper electrode2 2+ +=(in ) ( )  

and

 µ µ µ
Cu

Cu
Cu2+ + =2

e−  

Again it is seen that the equilibrium value of µ
e−
Cu  is determined by the concentration 

of CuSO4  in the electrolyte. If identical pieces of metal wire are joined to each of 
the electrodes as extensions, as shown in Figure 14.2, then since both the wire– Zn 
electrode and the wire– Cu electrode are electrical conductors,

 µ µ µ µI Zn II Cuand= =
e e− −  

The reversible transfer of dn  moles of electrons from the electric potential ϕ Zn  to the 
electric potential ϕ Cu  involves the performance of work δ ′wmax  given by

 δ φ φ′ = ⋅ ⋅ − ⋅w z dnCu Zn
max ( )  

The reversible transfer of dn  moles of electrons from the chemical potential µ I  to µ II  
at constant temperature and pressure also involves the performance of work δ ′wmax  
and a decrease in the Gibbs free energy, dG'  , of the system according to

 δ µ µ′ = ′ = −w dG dnmax ( )− −II I  

Thus,

 µ µ φ φII I Cu Zn− −( ) = z( )  (14.3)

where, for electrons, z  has the value of minus unity. Equation  14.3 relates the chemi-
cal potential difference and the electric potential difference for electron transfer. The 
difference ϕ Cu  –  ϕ Zn  is the open-circuit EMF , ε , of the Daniell cell.

When an opposing electric potential of magnitude ε  is applied externally between 
the electrodes I and II, the entire system is at equilibrium. This is because the chemi-
cal driving force of the cell is exactly balanced by the external opposing voltage. If 
the magnitude of the external opposing voltage is decreased, equilibrium no longer 
exists and electronic current flows through the external circuit from I to II, with the 
equivalent ionic current flowing through the cell. In the Daniell cell, the ionic current 

through the cell involves the transport of SO4
2−  ions from the solution in the CuSO4  

compartment (the catholyte) to the ZnSO4  compartment (the anolyte) at a rate equal 
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to that of the addition of Zn2+  ions to the anolyte and, hence, equal to the rate of 
removal of Cu2+  ions from the catholyte. As the cell reaction proceeds, the concen-
tration of CuSO4  in the catholyte decreases, and the concentration of ZnSO4  in the 
anolyte increases. As has been seen, the equilibrium values of µ I  and µ II ,  and hence 
the value of ε , depend on the concentrations of ZnSO4  and CuSO4  in the electrolyte, 
and thus, eventually, in the absence of unfavorable kinetic factors, the EMF of the 
cell decreases to the value of the externally applied opposing voltage, at which point 
the passage of electric current ceases and a new equilibrium is established. If, how-
ever, by appropriate addition and removal, the concentrations of ZnSO4  and CuSO4  
in their respective compartments are maintained constant, the cell reaction continues 
indefinitely. When the externally applied voltage is finitely less than the EMF of the 
cell, a finite current flows and the cell reaction proceeds irreversibly. In such a situa-
tion, less than maximum work is obtained since the electrons in the external circuit 
are being transported through a smaller difference in voltage. In the limit of decrease 
of the external voltage— that is, when the external voltage is zero and the cell is 
short-circuited— the degree of irreversibility of the reaction is maximized, no work 
is done, and the decrease in the Gibbs free energy of the system appears entirely 
as thermal energy. This system corresponds to that of placing a piece of zinc in an 
aqueous solution of CuSO4 . For the production of maximum work, the cell must be 
operated reversibly, in which case the externally applied voltage must be only infini-
tesimally smaller than the EMF of the cell, giving an infinitesimal flow of current 
in the forward direction. If the cell can be operated reversibly, then an infinitesimal 
increase in the magnitude of the external voltage reverses the direction of the current 
flow and the direction of the cell reaction. The cell thus becomes current consum-
ing rather than current producing; that is, it becomes an electrolysis cell instead of a 
galvanic cell. This scheme is illustrated in Figure 14.5.

CeII EMF

Ext EMF < cell EMF
f inite current f low

in the direction
Zn + Cu2+ = Zn2+ = Cu
less-than-max. work

obtained from the cell
galvanic cell

Ext EMF > cell EMF
f inite current f low in the direction

Cu + Zn2+ = Zn + Cu2+

work being done on the cell
electrolysis cell

0

Ext EMF = cell EMF
reversible operation.
Max. work obtained

Ext EMF = 0
no work obtained

Figure  14.5   the relationship of a current-producing cell (a galvanic cell) to a current-con-
suming cell (an electrolysis cell).
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When operating as a galvanic cell, the anodic oxidation reaction

 Zn  Zn 22= ++ e–  

occurs at the Zn anode and the cathodic reduction reaction

 Cu  2  Cu2+ + =e–  

occurs at the Cu cathode. The overall cell reaction is the sum of these, which gives

 Zn CuSO Cu ZnSO4 4+ = +  

In shorthand notation, this is written as

 Zn Zn aqueous solution Cu aqueous solution  Cu2 2+ +( ) ( )  

where the full vertical lines indicate phase boundaries in the cell and the dashed 
vertical line represents the porous diaphragm separating the two aqueous 
solutions.

14.3 the eFFeCt OF CONCeNtrAtION ON eMF

In the preceding section, it was seen that the EMF of a Daniell cell is dependent 
on the concentrations of CuSO4  and ZnSO4  in the catholyte and anolyte, respectively. 
The quantitative relationship between the concentration, or correctly, the activity, 
and the EMF can be introduced as follows. Consider the reaction

 Zn CuSO Cu ZnSO4 4+ = +  

Although it was assumed that the reaction, as written, proceeds spontaneously 
from left to right, the direction depends on the states of the reactants and products. 
Consider the reactants and products to occur in their standard states at 298 K. 
Then,

 Zn  CuSO saturated aqueous solution4( )s + ( )  

 = + ( )( ) Cu  ZnSO saturated aqueous solution4s  

which is thermodynamically equivalent to

 Zn  CuSO4  Cu  ZnSO4( ) ( ) ( ) ( )s s s s+ = +  

At 298 K, ∆ = ∆ =G G298 213 040 K  J,� − ,  and thus, from Equation  14.2,
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 ε° = ∆ ° =
×

=− G

z

213 040
2 96 487

1 104
,
,

.  volts  

where ε ° , being the EMF of the cell when the reactants and products occur in their 
designated standard states, is termed the standard EMF  of the cell. Thus, when Zn is 
immersed in a saturated aqueous solution of ZnSO4  and Cu is immersed into a satu-
rated aqueous solution of CuSO4 , the externally applied voltage which is required to 
balance the chemical driving force of the cell reaction at 298 K is 1.104 volts.

For the general reaction

 aA bB cC dD+ = +  

when the reactants and products do not occur in their standard states,

 ∆ ′ = ∆ ° +G G RT
a a

a a
C
c

D
d

A
a

B
bln  (13.4)

and, from Equation  14.2, the EMF of the cell in which the preceding reaction is 
occurring electrochemically is

 ε ε= ° − RT

z

a a

a a
C
c

D
d

A
a

B
b

ln  (14.4)

Thus, with pure Zn and Cu in the Daniell cell, the EMF is given as

 ε ε= ° − RT a

a2 4
ln ZnSO

CuSO

4  

which, at 298 K, gives

 ε = 1 104 0 0296. .−  log ZnSO

CuSO

4

4

a

a
 

In order that the EMF of the cell be zero, the activity quotient must be

 10 1 98 10
1 104

0 0296 37
.

. .= ⋅  

Thus, if the ZnSO4  solution is saturated (i.e., aZnSO4 1= ), then it is required that the 
activity of CuSO4  in the catholyte, with respect to the saturated solution as the stan-
dard state, be 5 ×  10– 38  in order that the occurrence of equilibrium does not require 
a backing EMF in the external circuit between the electrodes. The concentration 
gradient which exists across the porous diaphragm causes the diffusion of ions from 
one compartment to the other, and since diffusion is an irreversible process, the con-
centration gradient gives rise to a potential known as the liquid junction potential . 
This liquid junction potential must be minimized by such means as the use of a salt 
bridge  between the anolyte and the catholyte.
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14.4 FOrMAtION CeLLS

An example of a cell without a liquid junction is the cell

 Pb  PbO  O Pt2( ) ( ) ( ),l l g ( )  

in which the anode is liquid lead, the cathode is oxygen gas bubbled over an inert 
platinum wire immersed into the electrolyte, and the electrolyte is liquid lead oxide. 
In this cell, the driving force of the cell reaction

 Pb O  PbO( ) ( ) ( )l g l+ =1
2

2  

can be balanced by application of an opposing voltage between the electrodes. Such 
a cell, which is an example of a formation cell, is illustrated in Figure 14.6.*

At the liquid lead anode,

 Pb Pb 22= ++ e–  

and at the oxygen cathode,

 
1
2

O 2 O2
2+ =e– –  

* R. Sridhar and J. H. E. Jeffes, “ Thermodynamics of PbO and PbO– SiO2  Melts,”  Trans. Inst. Mining 
Met.  (1967), vol. 76, p. C44.

Fe lead Pt lead

–ve +ve

Al2O3 sheath

Al2O3 sheath

PbO (I)

Pb (I)

O2 gas

Al2O3
crucible

Figure  14.6   a lead oxide formation cell.
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With a pure liquid lead anode, pure liquid PbO electrolyte, and oxygen gas at 1 atm 
pressure at the cathode, the standard Gibbs free energy of formation of lead oxide 
is obtained as

 ∆G° = °–2ε  

Maintaining the oxygen pressure constant at 1 atm and varying the temperature of 
the cell facilitate the determination of the variation of Δ G °  with T . The addition to 
the electrolyte of a second oxide which

 1. Must be chemically more stable than PbO and 
 2. Must not introduce any electronic conductivity (e.g., SiO2 ) 

influences the EMF of the cell according to

 ε ε= ° − −RT a

p2 1 2
ln PbO(in PbO SiO )

O

2

2

 

Thus, measurement of the EMF of the cell as a function of the concentration of PbO 
in the lead silicate from pure PbO to saturation with SiO2  allows the determination 
of the variation of a PbO  with composition. Hence, via the Gibbs– Duhem relationship, 
the variation of aSiO2 with composition can also be determined. The variation of ε °  
with temperature and composition of the lead silicate melts, obtained by Sridhar and 
Jeffes, are shown in Figure 14.7. The variation of ε °  with temperature (the line in 
Figure 14.7 for X PbO  = 1) gives

 ∆G T° = +– , .191 6 79 8 J00 0  

for the cell reaction

 Pb O PbO( ) ( ) ( )l g l+ =1
2

2  

14.5 CONCeNtrAtION CeLLS

A cell which has identical electrodes inserted into solutions differing only in 
concentration is called a concentration cell . Consider the cell

Cu | CuSO4  (aq. sol’ n, low concentration) | CuSO4  (aq. sol’ n, high concentra-
tion) | Cu

The cell reaction is

 CuSO at high concentration   CuSO at low concentration4 4( ) → ( )  
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that is, the spontaneous process is the dilution of CuSO4 . The standard EMF of such 
a cell is zero, and thus, the EMF is

 ε = − RT a

a2
ln CuSO

CuSO

4

4

(low concentration)
(high concentrationn)

 

If one of the aqueous solutions (say the high-concentration solution) contains CuSO4  
in its standard state, then

 ε = = ∆− RT
a

GM

2 2 
ln ( )CuSo low concentration

CuSO
4

4  

Thus, an electrochemical measurement allows the determination of the partial molal 
Gibbs free energy of solution of CuSO4  in water. Such a cell suffers from the disad-
vantage of having a liquid junction potential.

A form of concentration cell of considerable importance in materials applica-
tions is the oxygen concentration cell which uses lime-stabilized zirconia as a solid 
electrolyte. The phase diagram for the system ZrO2 – CaO, presented as Figure 14.8, 
shows that the substitution of Ca2+  ions for Zr4+  ions stabilizes the high-temperature 
cubic polymorph of ZrO2 , and solid solutions containing up to 20 mole percent 
CaO can be formed. Electroneutrality in the solid solution requires that an oxygen 
vacancy be formed in the crystal lattice for every substitution of Ca2+  for Zr4+ , and 

850

0.68

0.64

0.60

0.56

0.52

0.48

0.44

0.40
1100 1200 1300

Temperature, K

Temperature, °C

EM
F, 

vo
lts

1400

900 950 1000 1050 1100

0.50

0.60

0.70
0.76

0.90
1.0

XPbO

Figure  14.7   the variation, with temperature and silica of the electrolyte, of the emf of the 
cell Pbo(/)  | Pbo– sio2( l  )  | o2(1 atm) , Pt. (r. sridhar and J. h. e. Jeffes, op. cit.)
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thus, when the stabilized cubic zirconia contains x  mole percent of CaO, 0.5x % of 
the oxygen lattice sites are vacant; for example, with 20 mole percent CaO, 10% of 
the oxygen sites in the crystal lattice are vacant. This causes the diffusivity of oxygen 
in the solid solution to be high enough that, within certain ranges of oxygen pressure 
and temperature, the cubic solid solution is an ionic conductor in which the oxygen 
ion is the only mobile species. Thus, a cell constructed as follows:

 O  lower pressure I  Pt  CaO ZrO  Pt  O  higher pres2 2 2g g, , , ,( ) − ssure II( )  

in which the cell reaction is

 O  pressure II  O  pressure I2 2g g, ,( ) → ( )  

has the EMF

 ε = − RT p

p4 2
ln ( )

( )

O I

O II

2  

In the operation of the cell, oxygen ions are transported through the electrolyte from 
the cathode to the anode (or oxygen vacancies diffuse in the reverse direction), and 
electrons are transported through the external circuit from the anode to the cathode. 
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Figure  14.8   the phase diagram for the system Zro2 – Cao (m = monoclinic polymorph, tet = 
tetragonal polymorph).
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The oxygen pressures at the electrodes can be fixed by using metal– metal oxide 
couples; for example, using the couples X– XO and Y– YO, the cell becomes

 X  XO  CaO ZrO  YO  Y2–  

At the temperature T , the lower anode oxygen pressure pO (X/XO)2  is fixed by the 
establishment of the chemical equilibrium

 X O XO( ) ( ) ( )s g s+ =1
2

2  

and the higher cathode oxygen pressure pO (Y/YO)2  is fixed by the establishment of the 
chemical equilibrium

 Y O YO( ) ( ) ( )s g s+ =1
2

2  

Thus, the anode half-cell reaction can equivalently be regarded as being

 X O at XOO (eq. ,X/XO)2+ =1
2

2( )p T  

or

 O O at O eq. ,X/XO)2

2
22

1
2

− −− e p T= ( )(  

and, similarly, the cathode half-cell reaction can equivalently be regarded as being

 YO = Y+ O at O eq ,Y/YO
1
2

2 2( )( . )p T  

or

 
1
2

22
2

2O at OO (eq. ,Y/YO)( )p eT + =− −  

The cell reaction is thus

 YO X XO Y+ = +  (i)

or

 
1
2

1
2

2 22 2O at O at O eq. ,Y/YO O eq. ,X XO)( ) ( )( ) (p pT T=  (ii)

Thus, whereas the chemical equilibrium between the pure reactants and products

 YO X XO Y+ = +  
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could be obtained only at the single invariant temperature (e.g, at T E   in Figure 12.4) 
in which state

 p pT TO eq ,X XO O eq. Y YO22 ( . ) ( , )=  

the electrochemical equilibrium

 YO X XO Y+ = +  

can be obtained at any temperature (within the limits imposed by the performance 
of the ZrO2 – CaO electrolyte) by placing an external voltage in opposition to the 
chemical driving force of the cell. For either Equation  (i) or (ii), the chemical driv-
ing force is

 ∆ =G RT
p

p
T

T

ln ( . )

( . )

1 2

1 2
2O eq ,X XO

O eq ,Y YO2

 

and hence the cell EMF is

 ε = − RT p

p
T

T2
ln ( . )

( . )

O eq ,X XO
1 2

O eq ,Y YO
1 2

2

2

 

or

 ε = − RT p

p
T

T4
2

2
ln ( )

( )

O eq. ,X XO

O eq. ,Y YO

 (iii)

If one of the metals— say, X— is dissolved in an inert solvent, where the requirement 
for “ inertness”  is that the equilibrium oxygen pressure for the solvent metal– solvent 
metal oxide equilibrium is considerably higher than p TO (eq. ,X/XO)2 , then the activity 
of X in the alloy can be obtained as follows. If X in solution is denoted X, then the 
EMF of the cell

 X  XO  CaO ZrO  Y  YO2–  

is

 ′ =ε − RT p

p
T

T4
2

2
ln ( . , )

( . )

O eq X XO

O eq ,Y YO

 (iv)

At the temperature T ,

 a p pX O (X,XO) O X,XO2 2

1 2 1 2= ( )  
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combination of Equations (iii) and (iv) gives

 ε ε− −′ = RT
a

4
ln X  

and thus, measurement of the variation of ε ́   with composition of the alloy allows 
the determination of the activity– composition relationship of X in the alloy. More 
simply, if the cell is

 X | XO | CaO ZrO  | X | XO2−  

then

 ε = = = ∆RT p

p

RT
a

GT X
M

2 2 2
2

2

1 2

  
ln ln

. , )

( . )

O (eq X XO

O eq T,X XO
1 2 X− −  

Similarly, if the metal oxide XO is dissolved in an inert oxide solvent, then, denoting 
dissolved XO as XO , for the cell

 X  XO  CaO rO   X  XO− Ζ 2  

 ε = − RT p

p
T

T2

1 2

1 2
ln ( . )

( . )

O eq ,X XO

O eq ,X XO

2

2

 

and, as

 a
p

p
T

T

XO
O eq ,X XO
1 2

O eq X XO
1 2

2= ( . )

( . , )2

 

then

 ε = − RT
a

2
ln XO  

This technique has been used by Kozuka and Samis* to measure the activities of 
PbO in the melt in the system PbO– SiO2  using the cell

 Pb PbO CaO ZrO Pb PbO,in pbO SiO 22( ) ( ) ( ) ( )| | | |l l l l− −  

Their experimental cell is illustrated in Figure 14.9, and their results, at 1000° C, are 
shown, in comparison with those obtained by Sridhar and Jeffes, in Figure 14.10.

* Z. Kozuka and C. S. Samis, “ Thermodynamic Properties of Molten PbO– SiO2  Systems,”  Met. Trans. 
AIME  (1970), vol. 1, p. 871.
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Figure  14.9   a lead oxide concentration cell using stabilized zirconia as the solid-state 
electrolyte.
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14.6 the teMPerAtUre COeFFICIeNt OF the eMF

For any cell reaction at constant temperature and pressure,

 ∆ = −G zε  

Differentiation with respect to temperature at constant pressure gives

 ∂∆
∂







= ∂
∂







= ∆G

T
z

T
S

P P

− −
ε  

Thus, for the cell reaction,

 ∆ = ∂
∂







S z
T P


ε  (14.5)

and

 ∆ = + ∂
∂







H z z T
T P

−  ε ε  (14.6)

Thus, from Equation  14.5, the slopes of the lines in Figure 14.7 are equal to ∆S /2 
for the cell reaction in the formation cell Pb + ½ O2  = PbO. The slope of the line for 
X PbO  = 1 gives

 ∆ =S S S Sa l l g( ) ( )PbO( ) Pb( ) O2

� � �− − 1
2

 

and the slopes of the lines for melts of X PbO  <  1 give

 ∆ = − −° °S S S Sb X l g( ) ( ) ( )PbO at Pb OPbO 2

1
2

 

Thus, the partial molal entropy of mixing of PbO in a melt of composition X PbO , 

∆S M
PbO ,  is given by Δ S ( b  )  –  Δ S ( a  ) .
In concentration cells such as

 A  A X  A in an A B alloyz+ ( )z– –  

since

 ε = − RT

z
a


ln A  
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the partial molar properties of A in the A– B alloy are obtained as

 ∆ = ∂
∂

S z
T

A
M


ε  

and

 ∆ = + ∂
H z z T

dT
A
M

−  ε ε  

Alternatively, from measurements on formation cells of the type

 A  A x2 2
2 1 atm

+ –
( , )X g  

for which

 ε ε( )i = °  

and measurements on cells of the type

 A in A B alloy   A X  X2 2
2 1 atm– –

( , )( ) +
g  

for which

 ε ε( ) lnii
A

= ° 





− RT

a2
1


 

the value of a A  is obtained from

 ε ε( ) ( ) lnii i A− = RT
a

2
 

Variation with temperature then gives

 ∆ = ∂
∂

S
T

A
M

2 ( )( ) ( )ε εi ii−  

and

 ∆ = ∂
∂

H T
T

A
M

2 2 ( ) ( )( ) ( ) ( ) ( )ε ε ε εii i ii i− − −  

Belton and Rao* measured the EMFs of the cells

 Mg  MgCl  Cl2 2 1 atm( ) ( ) ( , )l l g  

* G. R. Belton and Y. K. Rao, “ A Galvanic Cell Study of Activities in Mg– Al Liquid Alloys,”  Trans. 
Met. Soc. AIME  (1969), vol. 245, p. 2189.
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and

 Mg in Mg Al  MgCl  Cl2 2 l atm–
( ) ( ) ( , )( )
l l g  

in the range of temperature 700° C– 1000° C with Mg– Al alloys in the range X Mg  = 
0.096– 0.969. With pure Mg as the anode, they obtained

 ε� = − × −3 135 6 5 10 4. . ( )T volts  

which gives, for the reaction

 Mg  Cl  MgCl2 2( ) ( ) ( )l g l+ =  

 ∆G T° = +– , .6 4 97 125 4 J0 0  

They fitted their activities, measured at 1073 K, to Equations (v) and (vi) in 
Section 13.6.2.

14.7 therMAL eNerGY (heAt) eFFeCtS

In examining the properties of enthalpy, H , in Chapter 5, it was noted that the 
change in the enthalpy of a system equals the thermal energy entering or leaving the 
system during a constant-pressure process only if the work of volume change is the 
sole form of work performed on or by the system. If an electrochemical reaction is 
conducted in a galvanic cell, as a result of which electrical work is performed, Δ H  
≠  q P  .

For a change of state at constant temperature and pressure, Equation  5.6 gave

 ∆ ∆ ∆G q w P V T S= +– –  

 = ′q w T S– – ∆  

If w′   = 0, then, q  = ∆ G  + T∆ S  = ∆ H . But, if the process, which involves the perfor-
mance of work w′ , is conducted reversibly, in which case − −′ = ′ = ∆w w Gmax ,  then

 q T S= ∆  

(Recall that w′ is the sum of all non-PV work)
Consider the Daniel cell reaction Zn + CuSO4  = Cu + ZnSO4 . When the reactants 

and products are in their standard states (pure metals and saturated aqueous solu-
tions), the change in the Gibbs free energy for the cell reaction is

 ∆G T° = – , – .2 8 8 13 9 J0 00  
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If the reaction occurs as a result of placing pure solid zinc into a saturated copper 
sulfate solution at 25° C, in which case the reaction proceeds spontaneously and w′   
is zero, then, for the formation of saturated zinc sulfate solid and copper, per mole 
of the reaction,

 ∆H° = – ,2 8 8  J0 00  

is the thermal energy which flows from  the system into the constant-temperature 
heat reservoir. However, if the reaction is conducted reversibly in a Daniell cell, in 
which case

 w G′ = ° = + ×– , .∆ 2 8 8 13 9 2980 00  

then q  = T∆ S  = 13.9 ×  298 = +4140 J is the thermal energy that is transferred into  
the system from the constant-temperature reservoir.

14.8 the therMODYNAMICS OF AQUeOUS SOLUtIONS

The composition of an aqueous solution is usually expressed in terms of the 
molality, m , or the molarity, M , where the molality is the number of moles of solute 
present per 1000 g of water, and the molarity is the number of moles of solute pres-
ent in 1 liter of solution. Mole fraction, molality, and molarity are related as follows. 
Consider an aqueous solution of m i   moles of solute i  in 1000 g of H2 O, such that the 
solution is m i   molal. Since the molecular weight of H2 O is 18, 1000 g of H2 O con-
tains 1000/18 g-moles, and hence,

 X
n

n n

m

m
i

i

i

i

i

=
+

=
+H O2 1000 18/

 

Consider an M i   molar solution which contains Mi  moles of solute i  per liter of solu-
tion— that is, in 1000ρ  g of the solution, where ρ  is the density of the solution in 
g/cm3 . The number of g-moles of H2 O in the liter of solutions is (1000ρ  –  M i  MWi  )/18, 
where MWi   is the molecular weight of i , and thus,

 X
n

n n

M

M M
i

i

i

i

i i i

=
+

=
+H O2 MW( )1000 18ρ −

 

As the solution tends toward infinite dilution,

 m
X

M
X

i
i

i
i→ →1000

18
1000

18
and

ρ
 

In dilute solutions, molality and molarity are essentially equal to one another; for 
example, an aqueous solution of NaCl of X NaCl  = 10– 3  is 0.0556 molal and 0.0554 
molar.
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In the case of dilute solutes in liquid metals, it was convenient to define the 1 
wt% standard state, and hence the 1 wt% activity scale, as

 h i ii wt( %) [ ] [ % ]1 0 wt% as wt  → →  

with the 1 wt% standard state located on the Henry’ s law line at 1 wt%. It is also con-
venient, in aqueous solutions, to define the analogous unit molality standard state, 
and hence unit molality activity scale, as

 a m mm i ii( ) → →as 0  

where a i  ( m  )  is the activity of the solute with respect to the unit molality standard 
state, and the unit molality standard state is located on the Henry’ s law line at m i   = 1. 
As before, deviations from ideality are accommodated by introducing an activity 
coefficient defined as

 γi m
i m

i

a

m
( )

( )=  

Consider the electrolyte (or salt) Aa  Yy  , which, when dissolved in water, dissociates 
to form Az  +  cations and Yz  –   cations according to

 A Y A Ya y
z za y= ++ –  

When m  moles of Aa  Yy   are dissolved in n  moles of H2 O, the solution formed can be 
considered either

 1. A solution containing m  moles of the component Aa  Yy   and n  moles of H2 O
 2. A solution of am  moles of Az+  and ym  moles of Yz  –   in n  moles of H2 O

In case 1, the variation of the Gibbs free energy of the solution with composition 
at constant T  and P  is given by Equation  9.16 as

 dG G dm G dna y′ = +A Y H O2  (i)

In case 2, the stoichiometry of the dissociation is such that the number of moles of 
Az  + , m Az+ , is am  and the number of moles of Yz  –  , m Yz –

  , –is ym . Thus,

 dm a dm dm zdmz
zA Y

 and+ = =−  

and, at constant T  and P ,

 
dG G dm G dm G dn

aG yG dm G dn

z
z

z
z

z z

′ = + +

= + +

+ + + +

+ +

A A A A H O

A A H O

2

2( )
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By definition,

 G
G

m
a y

T P n

A Y = ∂ ′
∂





 , ,

 

 G
G

m
z

zT P n m

A

Az+

Y

+ = ∂ ′
∂







, , , −

 

and

 G
G

m z
zT P n m

Y

Y

z-

A

= ∂ ′
∂











+
−

, , ,

 

Since m  can be varied at constant n , G a yA Y  can be determined experimentally. 
However, since m A z  +  an m Y z  –   cannot be varied independently, neither G zA +  nor 
G zY −  can be measured. Combination of Equation (i) and (ii) gives

 G aG yGa y
z zA Y A Y= ++ −  (iii)

which shows that, although neither G zA +  nor yG zY −  can be measured, the combina-
tion given by Equation  (iii) can be measured.

If the component Aa  Yy   occurs in the unit molality standard state, Equation  (iii) 
is written as

 G aG yGa y z zA Y A Y
� � �= ++ −  (iv)

and subtraction of Equations  (iv) from (iii), noting that

 G G RT ai i i− � = ln  

gives, on rearrangement,

 a a aa y z zA
a y

A Y Y
= ++ −  (v)

Thus, again, although neither a a
Az z+  nor 

Y −  can be measured experimentally, which 
necessarily means that neither a a

Az z+  nor 
Y −  has any physical significance, the prod-

uct given by Equation  (v) can be measured and does have a physical significance. 
Equation  (v) can be written as

 
a m m

m m

a y z z z z

z z z z

a y

a y a y

A Y A A Y Y

A A A Y

= ( )
=

+ +

+ +

( )γ γ

γ γ

− −

− −

 (vi)
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The mean ionic molality, m ±  , is defined as

 m m mz z
a y a y

±
+= +( )( )

A Y −

1

 (vii)

and the mean ion activity coefficient, γ±  , is defined as

 γ γ γ±
+= +( )( )

A Y
z z

a y a y
−

1

 (viii) 

Thus, substitution of Equation (vii) and (viii) into Equation  (vi) gives

 a ma y

a y
A Y = ± ±

+( )γ  (ix)

Consider an m  molar solution of NaCl. Since z z+ − = and 1  and a  = y  = 1, 
Equation  (ix) gives

 a mmNaCl( ) ( )= ± ±γ 2  

and Equation  (vii) gives

 m mm± = ( )1 2/
 

Thus,

 a mmNaCl NaCl( ) ( )= ±γ 2  

and Henrian behavior follows

 a mmNaCl NaCl( ) = 2  

In an m  molal solution of CaCl2 , since z z a y+ −= = = =2,   and 1 1 2, , ,

 
a m

m m m
mCaCl

  
2

3

2 1 32
( ) ( )

[ ( ) ]

=
=

± ±

±

γ
 

and thus,

 a mmCaCl CaCl( ) 22 4 3= ±( )γ  

Similarly, in an m  molal solution of Fe2 (SO4 )3 ,

 a mmFe (SO ) Fe (SO2 4 ( ) 2 4= ±36 3

5( ))γ  
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14.9 the GIBBS Free eNerGY OF FOrMAtION OF 
IONS AND StANDArD reDUCtION POteNtIALS 

Consider the cell

 Pt H  HCl  Hg Cl  Hg2 g aqueous 2 2, |( ) ( ) ( ) ( )s l  

set up as shown in Figure 14.11. The half-cell reaction at the anode is

 
1
2

2H H= ++ e−  

and the Hg2 Cl2  half-cell reaction at the cathode is

 
1
2

Hg Cl Hg Cl2 2 + = +e− −  

The overall reaction is thus

 
1
2

1
2

2 2H Hg Cl Hg HCl2( ) ( ) ( ) ( )g s l m+ = +  (i)

EMF

Hydrogen

Saturated aqueous KCI

Solid KCI
Solid Hg2Cl2
Mercury

Aqueous HCl

Pt

Figure  14.11   the calomel cell, Pt,h2( g  )  | hC1( aq  )  | hg2 Cl2 (s ) | hg( l  ) .
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with Hg and Hg2 Cl2  occurring at unit activity and pH2 = 1  atm. The EMF of the 
cell is

 

ε ε

ε γ

= °

= ° ±

−

−

RT
a

RT
m

m



ln

ln( )

( )HCl

HCl
2

 

This expression can be rearranged as

 ε ε γ+ = ° ±2 2RT
m

RT

 
ln lnHCl −  (ii)

in which the measurable quantities occur on the left-hand side. Extrapolation of the 
term ε + 2RT m/ HCl ln  to infinite dilution, where γ ±   →  1, allows the calculation of 
ε °  and hence, from Equation  (ii), the calculation of the variation of γ ±   with m HCl . 
The value of ε °  at 298 K has been determined to be 0.26796 volts, and the variation 

of a mHCl( )  with mHCl
2  is as shown in Figure 14.12. Since ε °  = 0.26796 volts,

 ∆ = = × =G i( ), , . ,298 96 487 0 26796 25 855 K  J� �− − −ε  

For

 Hg Cl Hg Cl( ) ( ) ( )l g s+ =1
2

1
2

2 2 2  (iii)

 ∆ =°G( ), ,iii  K  J298 105 320−  

log m2
HCI

–4
–4

–2

0

2

4

–3 –2

Henry’s law

–1 –0 1 2

lo
g 

a H
CI

Unit molality
standard state

Figure  14.12   the activity of hCl in aqueous solution.
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and thus, for

 
1
2

1
2

2 2H Cl HCl( ) ( ) ( )g g m+ =  

 

∆ = ∆ + ∆
=
=

° ° °G G Gi( ) ( ) ( )

, ,

,

iv iii

 J

 J

− −
−

25 855 105 320

131 175

 (iv)

Thus, the standard Gibbs free energy of formation of HCl in aqueous solution at 
unit activity from H2  gas and Cl2  gas, each at 1 atm pressure, is – 131,175 J at 298 
K. For

 
1
2

1
2

2 2H Cl HCl( ) ( ) ( )g g g+ =  (v)

 ∆G( ), ,v  K  J298 94 540° = −  

and hence, for the change of state

 HCl  HCl( ) ( )g m=  

 

∆ = +
=

= ×

G

a

p
m

298 131 175 94 540

36 635

8 3144 298

K

HCl

HCl

 J

� −
−

−

, ,

,

. ln ( )

 

Thus, at 298 K, an aqueous solution of HCl at unit activity exerts a partial vapor pres-
sure of HCl of 3.79 ×  10– 7  atm.

From Equation  (iv), the standard EMF of the cell

 Pt H  HCl  Cl Pt2 2, ,( ) ( ) ( )g m g  

is

 ε° = ∆ = =
°− G( ) ,

,
.iv  volts



131 175
96 487

1 3595  

and the cell reaction

 
1
2

1
2

2 2H Cl HCl( )( ) ( )g g m+ =  
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or

 
1
2

1
2

2 2H Cl H Cl( ) ( ) ( ) ( )g g m m+ = ++ −  (vi)

is the sum of the half-cell reactions

 
1
2

2H H+
( )g e= + −  (vii)

and

 
1
2

2Cl Cl+ = −e−  (viii)

It is now convenient to introduce the concept of a half-cell , or single electrode poten-
tial , the sum of which, in any cell, equals the EMF of the cell. This concept is useful 
in spite of the fact that it is impossible to construct, and hence to measure the poten-
tial of, a cell with a single electrode. In order to give meaning to the concept, it is 
necessary to choose a particular standard single electrode and arbitrarily assign it a 
potential of zero. In aqueous solutions, this standard single electrode is the standard 
hydrogen electrode  (SHE), in which hydrogen gas at 1 atm pressure, in contact with 
a platinum wire, is bubbled through an aqueous solution containing hydrogen ions 
at unit activity. In the SHE, hydrogen gas in its standard state is arbitrarily placed 
at the same potential as hydrogen ions in their standard state in aqueous solution. 
Consider the cell

 Pt,H H Cl Cl Pt atm  atm2 1 2 1( , ) ( ) ( ) ( , )| | ,g m m g
+ −  

The variation of the potential with distance from the hydrogen gas– electrolyte inter-
face to the chlorine gas– electrolyte interface is shown schematically in Figure 14.13. 

The cell
Pt,H2(g)|H+Cl–|CI2(g),Pt

SHE

H+/H2 Cl2/Cl–

Po
te

ni
al

fe

fo,H

fo,Cl

Eo, Cl = 1.3595 volts

Figure  14.13   the relationship of the standard reduction potential of Cl to the stan-
dard hydrogen electrode and the absolute potentials in the cell 
Pt,H H Cl Cl Pt.2(g,1 atm)  atm| | ,( ) ( ) ( , )m m g

+ −
2 1
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Although the value of ϕ °, e   is not known, the difference between ϕ °,Cl  and ϕ °,H  is 
experimentally measured as 1.3595 volts. Thus, if the absolute potential ϕ °,H  is arbi-
trarily assigned the value zero, the standard electrode potential at which the reduction 
of ½ Cl2  to Cl–   occurs at the cathode is 1.3595 volts. Thus, with the standard oxida-
tion (and hence reduction) potential of hydrogen being zero, then, algebraically, from 
Figure 14.13, the standard EMF of the cell, ε ° , is obtained as the standard reduction 
potential of the cathode minus the standard reduction potential at the anode; that is,

 ε ε ε° = ° − °, ,Cl H  

 = 1 3595 volts.  

Consider, again, the Daniell cell with pure Zn and Cu as electrodes and Zn2+  and 
Cu2+  ions at unity molality. Figure 14.14a shows a schematic variation of the poten-
tial through the electrolyte in the subcell which has the cell reaction

 Z s m m gn H n H( ) ( ) ( ) ( )+ = ++ +2 2 2
2  

and Figure 14.14b shows the corresponding variation through the subcell which has 
the cell reaction

 H Cu H Cu2
2 2( ) ( ) ( ) ( )g m m s+ = ++ +  

With reference to the SHE, as shown, the standard reduction potential for Cu2+  is 
given by ϕ ° ,Cu  –  ϕ ° ,H , which is experimentally measured as 0.337 volts. The stan-
dard reduction potential of copper is thus 0.337 volts. Also, with respect to the SHE, 

The cell
Zn|Zn2+|H+|H2(g).Pt

The cell
Pt,H2(g)|H+|Cu2+|Cu

H+/H2 Cu2+/CuZn2+/Zn

(a) (b)

Po
te

ni
al

fe

fe

fo,Cu

fo,H (SHE)fo,H

fo,Zn

Eo, Cu = 0.337 volts

Eo, Zn = –0.763 volts

Figure  14.14   the relationship of the standard reduction potentials of Zn and Cu to the stan-
dard hydrogen electrode and the absolute potentials in the cells Zn | Zn2+  | h+  | 
h2( g  ) ,Pt, and Pt,h2(g)  | h+  | Cu2+  | Cu.
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the standard oxidation potential for Zn is measured experimentally as ϕ ° ,H  –  ϕ ° ,Zn  
= 0.763. Thus, the standard reduction potential of Zn, ε ° ,Zn , is – 0.763 volts, and the 
standard EMF of the Daniell cell is the standard reduction potential of Cu minus the 
standard reduction potential of Zn; that is,

 ε° = − −( ) =0 0 00. . .337 763 1 1  volts  

The systematic list of standard reduction potentials, part of which is presented as 
Table  14.1, is called the electrochemical series .

14.9.1 Solubility Products 

From Table  14.1, the standard reduction potential for sodium, ε ° ,Na , is – 2.714 
volts, and the standard reduction potential for chlorine, ε ° ,Cl , is 1.3595 volts. Thus, 
for the equilibrium

 Na Na= ++ e–  

 ∆G° = ° = × =– – , . – ,,ε Na 96 487 2 714 261 87  J0  

and for

 
1
2

2Cl Cl+ =e− –  

 ∆G° = ° = × =– – , . – ,ε Cl 96 487 1 3595 131 17  J0  

Summing gives

 ∆ = =°G( ) , , ,i  J− − −261 870 131 170 393 040  

for the reaction

 Na Cl Na( ) ( ) ( ) ( )s g m mCl+ = ++1
2

2
−  (i)

For the reaction

 Na Cl NaCl2( ) ( )( )s sg+ =1
2

 (ii)

 ∆ =°G( ), ,ii K  J298 385 310−  
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table   14.1   Standard electrode Potentials at 298 K, 1 atm 

electrode reaction ε ° ,x  , volts 

Acid Solutions 

f2  + 2e –   = 2f–  2.65
S e2 8

2
4
22 2O SO− − −+ = 1.98

Co3+  + e –   = Co2+ 1.82

Ce4+  + e –   = Ce3+ 1.61

½  Cl2  + e –   = Cl–  1.3595
Cr O H Cr H O2 27

2 314 2 7− −+ + = ++ e 1.33

mno2  + 4h+  + 2e –   = mn2+  + 2h2 o 1.23

Br2 (l ) + 2e –   = 2Br–  1.0652

2Hg  2  Hg2+ ++ =e–
2
2 0.92

hg2+  + 2e –   = hg 0.854

ag+  + e –   = ag 0.7991

fe3+  + e –   = fe2+ 0.771

I2  + 2e –   = 2I–  0.5355

Fe CN Fe CN( ) + = ( )− − −

6

3

6

4
e 0.36

Cu2+  + 2e –   = Cu 0.337

S e4 6
2

2 3
22 2O S O− − −+ = 0.17

Cu2+  + e –   = Cu+ 0.153

sn4+  + 2e –   = sn2+ 0.15

s + 2h+  + e –   = h2 s 0.141

2h+  + e –   = h2 0.000

fe3+  + 3e –   = fe – 0.036

Pb2+  + 2e –   = Pb – 0.126

sn2+  + 2e –   = sn – 0.136

Cd2+  + 2e –   = Cd – 0.403

Cr3+  + e –   = Cr2+ – 0.41

fe2+  + 2e –   = fe – 0.440

Zn2+  + 2e –   = Zn – 0.763

al3+  + 3e –   = al – 1.66

½  h2  + e –   = h–  – 2.25

mg2+  + 2e –   = mg – 2.37

na+  + e –   = na – 2.714

Ca2+  + 2e –   = Ca – 2.87

Ba2+  + 2e –   = Ba – 2.90

Cs+  + e –   = Cs – 2.923

K+  + e –   = K – 2.925

li+  + e –   = li – 3.045

Basic Solutions 

o3  + h2 o + 2e –  = o2  + 2oh–  1.24

fe(oh)3  + e –  = oh–   + fe(oh)2 – 0.56

(Continued)
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and combination of Equations (i) and (ii) gives

 NaCl Na Cl( ) ( )s m= ++ −  (iii)

for which

 

∆ = ∆ ∆
= +

= ×

° ° °

±

G G G

m

i( ( ) ( )

, ,

. ln
(

iii) ii−
−

−

393 040 385 310

8 3144 298
γ NNaCl

NaCl

)2

a

 

In Equation  (iii), the standard state on the left-hand side is pure solid NaCl, and the 
standard state on the right-hand side is the unit molality standard state. Saturation of 
the aqueous solution occurs when NaCl has dissolved to the extent that the activity 
of NaCl in the solution, with respect to solid NaCl as the standard state, is unity. In 
this state,

 γ±( ) =mNaCl
2

 22 6.  

or

 γ± =mNaCl  4 76.  

Thus, if the ions in solution are behaving ideally, the saturated aqueous solution of 
NaCl at 298 K is 4.76 molal. When the activity of NaCl in the solution is unity with 
respect to solid NaCl as the standard state, the term (γ ±  m NaCl )2  is called the solubility 
product , Ksp . Thus, generally, for the salt Aa  Yy  ,

 K m
G

R
a y

sp
K= = −

± ±
+

°

( ) expγ ∆ 298

298
 

table 14.1 (Continued)  Standard electrode Potentials at 
298 K, 1 atm

electrode reaction ε°,x  , volts 

ni(oh)2  + 2e –  = ni + 2oh–  – 0.72

2h2 o + 2e –  = h2  + 2oh–  – 0.828

SO H O+2 OH SO24
2

3
22− − − −+ = +e – 0.93

Cno–   + h2 o + 2e –  = 2oh–   + Cn–  – 0.97

ZnO H O+2 Zn + 4OH22
2 2− −+ =−e – 1.216

Cr(oh)3  + 3e –   = Cr + 3oh–  – 1.3

Ca(oh)2  + 2e –   = Ca + 2oh+ – 3.03

Note : standard state is 1 molal.
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where ∆ °G298 K  is the standard Gibbs free energy change for the change of state

 A Y A YRaoultiana y m
z

m
za y( ) ( ) ( )= ++ −  

Example 

Calculate the molalities of H+  and OH–   in water at 298 K. 

Solution 

In Table  14.1, the standard reduction potential for the half-cell reaction

 H O
1
2

H OH2 ( )l g me+ = +− −
2( ) ( )  

is – 0.828 volts, and the standard reduction potential for the reaction

 H
1
2

H( ) ( )m ge+ =−
2  

is zero. Summing gives

 H O OH2 ( ) ( ) ( )l m mH= ++ −  

for which

 
∆ = = ×

=
= ×

° °

±

G

m

298 96487 0 828

79 900

8 3144 298

K

H

 J

 ln (

− − −

−

ε

γ

( . )

,

. ++mOH− )

 

Thus, presuming that γ ±   = 1,

 m mH OH+ = ×– . –0 97 10 5  

or, from the stoichiometry of the dissociation, as m mH OH+ = – ,

 m mH OH+ = = −
– 10 7  

At a molality of 10– 7 , the assumption that γ ±   = 1 is reasonable.

14.9.2 the Influence of Acidity 

The single electrode potential for the half-cell reaction

 H H( ) ( )m ge+ + =− 1
2

2  
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is

 ε εH H

H

= °

+

, lnH RT p

m
−


2

1 2

 

ε ° ,H  = 0 and thus,

 εH H

H

=
+

− RT p

m
ln 2

1 2

 (i)

that is, for a fixed pressure of hydrogen gas, ε H  is a linear function of the logarithm of 
the molality of the hydrogen ions. The concentration of hydrogen ions in an aqueous 
solution determines the acidity of the solution, and, conventionally, acidity is quanti-
fied by the definition of pH, as

 pH log H=  
+–  (ii)

[H+ ] is the molarity  of the hydrogen ions— that is, the number of moles of H+  per liter 
of solution. Substitution of Equation  (ii) into Equation   (i) would require that either 
the half-cell reduction potential be determined with reference to the unit molarity 

standard state, or that pH be defined as − log( ).mH
+  Since in dilute solutions, molal-

ity and molarity are virtually identical, this theoretical difficulty is of no practical 
significance. In the following discussions, the unit molarity standard state will be 
used for ions in solution. This standard state is defined as

 a z
z z

A
A as   [A ]+ → →+ +[ ] 0  

Furthermore, in the following discussions, it will be assumed that all ions in aqueous 
solutions behave ideally, in which case

 a mz z
z

A A
A+ += +[ ] ∼  

With this understanding, Equation  (i) becomes

 εH H

H
= +− RT p


ln

[ ]
2

1 2

 

which, with Equation  (ii), becomes

 
εH

H = × ×
×

+ × ×− 2 303 8 3144 298
2 96 487

2 303 8 314 298
96 4872

. .
,

log
. .

,
lp oog[ ]

. ( ) . log

H

     pH H2

+

= − −0 0591 0 0296 p

 

or, with pH2 1=  atm, the reduction potential of hydrogen varies with pH as

 εH 591 pH= ( )– .0 0  
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In the previous example, it was found that the molality (and hence the molarity) of 
H+  in H2 O at 298 K is 10– 7 . Thus, the pH of H2 O at 298 K is 7, and the reduction 
potential of hydrogen in water is – 0.0591 ×  7 = – 0.414 volts. The hydrogen electrode 
has its standard reduction potential of 0 at pH = 0— that is, at [H+ ] = 1.

14.10 POUrBAIX DIAGrAMS 

Pourbaix diagrams ,* or potential-pH  diagrams, are graphical representations of 
thermodynamic and electrochemical equilibria occurring in aqueous systems. They 
are thus the electrochemical analogues of the chemical phase stability diagrams dis-
cussed in Section 13.5. Consider the cell

 Pt H  H O  O Pt2 2 2, ,( ) ( )g g  

The galvanic cell reaction

 H O H O2( ) ( )2 2
1
2

( )g g l+ =  (i)

is the sum of the half-cell reactions

 H  2H  22 = ++ e–  (ii)

and

 
1
2

2 22 2O H H O+ + =+ e−  (iii)

Thus,

 ∆ = ∆ + ∆° ° °G G Gi( ) ( ) ( )ii iii  

∆ =°G i( ) ,298 237 190 K  J− , and by convention, ∆ =°G( ) .ii  K298 0  Thus, the standard 
reduction potential for the reaction given by Equation  (iii) is

 

e ( )
( )

,

.

iii
iii

 volts

°
°

= ∆

=

=

− G

2

237 190
2

1 229




 

* M. Pourbaix, “ Atlas of Electrochemical Equilibria in Aqueous Solutions,”  National Association of 
Corrosion Engineers, Houston, TX, 1974.
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With all of the reactants and products occurring in their standard states, electro-
chemical equilibrium is established when the backing EMF applied to the cell is 
1.229 volts. If the backing EMF is less than this value, the cell is a current-producing 
galvanic cell and the cell reaction occurring is

 H O H O2 2 2
1
2

( ) ( ) ( )g g l+ →  

with the oxidation 2H2  →  2H+  + 2e –   occurring at the anode and the reduction reac-
tion ½ O2  + 2H+  + 2e –   →  H2 O occurring at the cathode. However, if the backing 
EMF is greater than 1.229 volts, the cell is a current-consuming electrolysis cell and 
the cell reaction occurring is

 H O H O2 2 2
1
2

( ) ( ) ( )l g g→ +  

with the oxidation reaction H2 O →  ½  O2  + 2H+  + 2e –   occurring at the anode 
and the reduction reaction 2H+  + 2e –   →  H2  occurring at the cathode. Thus, with 
hydrogen gas and hydrogen ions at unit activity, electrochemical equilibrium is 
established at the hydrogen electrode when the electrode is at zero potential. If the 
potential of the electrode is increased to a value above zero, the anodic reaction H2  
→  2H+  + 2e –  occurs, and if the potential of the electrode is decreased to a value less 
than zero, the cathodic reaction 2H+  + 2e –   →  H2  occurs. Similarly, with oxygen 
at unit pressure and hydrogen ions at unit activity, electrochemical equilibrium at 
the oxygen electrode is established when the electrode potential is 1.229 volts. If 
the potential of the electrode is increased above 1.229 volts, the anodic reaction 
H2  →  ½ O2  + 2H+  + 2e –   occurs, and if the potential of the electrode is decreased 
below 1.229 volts, the cathodic reaction ½ O2  + 2H+  + 2e –   →  H2 O occurs. Thus, 
generally, if the potential, ε , of an electrode at equilibrium with the electrolyte is 
increased, an anodic oxidation reaction occurs, and if it is decreased, a cathodic 
reduction reaction occurs.

Since both half-cell reactions (i) and (ii) involve hydrogen ions, the half-cell 
potentials are functions of the pH of the aqueous solution. At the hydrogen electrode, 
at 298 K, the electrochemical equilibrium

 H H+ −+ =e
1
2

2  (a)

is established at

 
ε( ) ln

[ ]

. ( ) . log

a
RT p

p

=

=

+−

− −


H

H

H

pH

2

2

1 2

0 0591 0 0298
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which, with pH2 = 1  atm, is drawn as line a  in Figure 14.15. At the oxygen electrode, 
at 298 K, the electrochemical equilibrium

 
1
2

2 22O H H O2+ + =+ −e  (b)

is established at

 
  =1.299

RT
2

ln
1

[H ] p

=1.229 0.0591pH + 0.0148 log

+ 2
O
1 2

2

ε( )b −

−



  pO2

 

which, with pO2 = 1  atm, is drawn as line b  in Figure 14.15. Lines a  and b  in 
Figure 14.15 define the domain of thermodynamic stability of water  in aqueous solu-
tions under a pressure of 1 atm of H2  and 1 atm of O2 . Below line a , the equilibrium 
pressure of hydrogen gas is greater than 1 atm, and thus, hydrogen is cathodically 
evolved from an aqueous solution, the potential of which is moved below line a  when 
the pressure of hydrogen at the electrode is 1 atm. Similarly, above line b , the equilib-
rium pressure of oxygen gas is greater than 1 atm, and thus, oxygen gas is anodically 
evolved from an aqueous solution at an electrode, the potential of which is moved 
above line b  when the oxygen pressure at the electrode is 1 atm. Water is thermody-
namically stable between lines a  and b  with oxygen and hydrogen pressures of 1 atm.

14.10.1 the Pourbaix Diagram for Aluminum

The species participating in the various chemical and electrochemical equilibria 

are the solids Al and Al2 O3  and the ions Al3+  and AlO2
− . The pertinent standard 

Gibbs free energies of formation are

2

1

0

–1

0 2

a

b

4 6 8
pH

pH2
(eq) > 1 atm. Cathodic

evolution of H2 from H2O if
pH2

 = 1 atm

pO2
(eq) > 1 atm. Anodic

evolution of O2 from H2O if
pO2

 = 1 atm.

Water
thermodynamically
stable under pH2 

= 1 atm
and pO2

 = 1 atm.

E,
 v

ol
ts

10 12 14 16

Figure  14.15   the domain of thermodynamic stability of water.



604 IntroduCtIon to the thermodynamICs of materIals, sIxth edItIon

 

                  Reaction  J
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°

        Al

            H H
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0

1
2

0
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2

2

( ) ( )
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g m

s g

e= +

+ =

+ −
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          Al
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3
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(
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,

−
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s

Al e
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+ = −

− −O AlO

        H O H O

2 2
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839 800

1
2

2

g m

g g l

e
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Consider first the equilibrium which occurs between the ions in solution. Since 
reduction potentials are being used, the equations for the electrochemical equilibria 
are set up with the higher oxidation state on the left and the lower oxidation state on 
the right— that is, with the balancing electronic charge on the left-hand side of the 
equation.

14.10.2 the equilibrium between the two Dissolved Substances

  The equilibrium between Al 3  +  and  AlO2
−:

 Al AlO3
2

+ ←→  

 The procedure for deriving the expression for the equilibrium is as follows:

 1. Balance the oxygen with H2 O; that is,

 Al H O AlO3
2 22+ −+ ←→  

 2. Balance the hydrogen with H+ ; that is,

 Al H O AlO H3
2 22 4+ − ++ ←→ +  

 3. If necessary, balance the charge with e –  .

 This step is not necessary with Al3+  and AlO2
− , as the equilibrium is not electro-

chemical. The desired expression is thus

 Al H O AlO H3
2 22 4+ − ++ = +  (i)

 for which

 
∆G( ) ( , ) ( , ) ( , )

,

.

i

 J

° = − − × − − −
=

= −

839 800 2 237 200 481 200

115 800

8 31444 298 2 303
4

2
3× ×

+ −

+. log
[ ] [ ]

[ ]
H AlO

Al
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 Thus,

 − = ++
−

+20 29 4 2
3. log [ ] log

[ ]
[ ]

 H
AlO
Al

 

 or

 log
[ ]
[ ]

.
Al
AlO

pH
3

2

20 29 4
+

− = −  

Thus, [ ] [ ]Al AlO3
2

+ −=  at pH = 5.07 and pH = 5.07 is drawn as line 1 in Figure 14.16a. 
At values of pH greater than 5.07, [ ] [ ]AlO Al2

3− +> , and at values of pH less than 5.07, 
[ ] [ ]Al AlO3

2
+ −> .

14.10.3 the equilibrium between the two Solids

  The equilibrium between Al and Al 2  O 3  : With the higher oxidation state on the left 
and the lower oxidation state on the right, the procedure for deriving the expression 
for the equilibrium begins with

 Al O 2Al2 3 ←→ c  

 Then, as before, balance the oxygen with H2 O; that is,

 Al O 2Al  3H O2 3 2←→ +  

 balance the hydrogen with H+ ; that is,

 Al O  6H 2Al  3H O2 3 2+ ←→ ++  

 and balance the charge with e –  ; that is,

 Al O  6H  6e 3H O  2Al2 3 2+ + ←→ ++ –  

 The required equilibrium is thus

 Al O  6H  6e  3H O  2Al2 3 2+ + = ++ –  (ii)

 for which

 
∆G

z

( )

( )

( , ) ( , , )

,
ii

ii

 J

°

°

= × − − −
=
= − = − ×

3 237 200 1 608 900

897 300

6 9ε 66 487, ( )ε ii
°

 

 Thus, ε( ) .ii
° = −1 55  volts and, with a aAl Al O= =2 3 1,
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Figure  14.16   (a) Construction of the Pourbaix diagram for al. (b) the Pourbaix diagram 
for al.



607eleCtroChemIstry

 

ε ε( ) ( ) ln
[ ]

.
. .

,

iii ii
H

= −

= − + × × ×
×

°
+

RT

z

1

1 55
8 3144 298 2 303 6

6 96 48

6

77

1 55 0 0591

log [ ]

. .

 H

 pH volts

+

= − −

 

 This is drawn as line 2 in Figure 14.16a and is the line along which Al is in equilib-
rium with Al2 O3 . Al is the stable solid phase in states below line 2 (at lower values 
of pH and at more negative electrode potentials), and Al2 O3  is the stable solid in 
states above the line.

14.10.4 One Solid in equilibrium with a Dissolved Substance

  The equilibrium between Al and Al 3  + : 

  The equilibrium is

 Al  3  Al3+ + =e–  (iii)

 for which

 ∆G( ) ,iii  J° = 481 200  

 Thus,

 ε( )
,
,

.iii  volts° = −
×

= −481 200
3 96 487

1 66  

 Then, with a Al  = 1,

 ε( ) .
. .

,
log

[ ]
iii

Al
= − − × ×

× +1 66
8 3144 298 2 303

3 96 487
1

3
 

 The variation of the concentration of Al3 + ions in equilibrium with Al is thus

 ε iii
2 31 66 1 971 1 log Al( )

+= + ×  – . . –0  

 With [Al3 +] = 1 mole per liter, this equation is drawn as line 3 in Figure 14.16a. 
The concentration of Al3 + in equilibrium is independent of pH and decreases with 
increasingly negative values of ε .

  The equilibrium between Al 2  O 3   and Al 3  + : The sequence in the derivation of the 
equilibrium equation is

 Al O   2Al2 3
3← → +  

 Al O   2Al  3H O2 3
3

2← → ++  

 6H  Al O   2Al  3H O2 3
3

2
+ ++ ← → +  
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 Balancing the charge with e –   is not necessary, and the required expression is thus

 6H  Al O  2Al  3H O2 3
3

2
+ ++ = +  (iv)

 for which

 ∆G( ) ( , ) ( , ) ( , , )

,
iv

 J

° = × − + × − − −
= −

3 237 200 2 481 200 1 608 900

65 100
 

 which, with aAl O2 3 1= , gives

 − = − × ×
+

+65 100 8 3144 298 2 303
3 2

6, . . log
[ ]
[ ]
Al
H

 

 or

 log Al   5 7 3pH3+  = −. 0  

 which is the variation of the concentration of Al3+  ions in equilibrium with 
Al2 O3 . This equilibrium is independent of the electrode potential, and line 4 in 
Figure 14.16a, at pH = 1.9, represents a concentration of Al3+  of 1 mole per liter in 
equilibrium with Al2 O3 .

   The equilibrium between Al and  AlO2
− :

 

AlO Al

AlO Al H O

AlO H Al H O

AlO H Al

2

2 2

2 2

2

2

4 2

4 3

−

−

− +

− + −

←→
←→ +

+ ←→ +
+ + ←→e ++ 2 2H O

 

 The equilibrium is thus

 AlO H Al H O2 24 3 2− + −+ + = +e  (v)

 for which

 ∆G( ) ( , ) ,

,
v

 J

° = × − +
=

2 237 200 839 800

365 400
 

 Thus,

 ε( )
,
,

.v  volts° = −
×

= −365 400
3 96 487

1 26  

 With a Al  = 1,

 ε( ) .
. .

,
log

[ ] [ ]
v

H AlO
= − − × ×

× + −1 26
8 3144 298 2 303

3 96 487
1

4
2
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 which gives the variation of the concentration of AlO2
−  ions in equilibrium with 

Al as

 ε( ) . . . log[ ]v  pH AlO= − − + −1 26 0 0789 0 0198 2  

 This equation, with [ ]AlO2 1− =  mole per liter, is drawn as line 5 in Figure 14.16a. 
The equilibrium is dependent on both pH and ε .

   The equilibrium between Al 2  O 3   and  AlO2
−:

 
Al O AlO

H O Al O AlO

H O Al O AlO H

2 3 2

2 2 3 2

2 2 3 2

2

2

2 2

←→
+ ←→

+ ←→ +

−

−

− +

 

 The equilibrium is thus

 H O Al O AlO H2 2 3 22 2+ = +− +  (vi)

 for which

 ∆G( ) ,vi  J° = 166 500  

 This gives

 log[ ] .AlO pH2 14 59− = −  

 as the variation of the concentration of AlO2
−  in equilibrium with Al2 O3 . This 

equation, with [ ]AlO2 1− =  mole per liter is drawn as line 6 in Figure 14.16a at pH = 
14.59.

The Pourbaix diagram for Al, containing iso-concentrations lines for Al3+  and 
AlO2

−  in the fields of stability of Al and Al2 O3 , is shown in Figure 14.16b. At pH = 5.07 
in the Al2 O3  field of stability [ ] [ ] .Al AlO3

2
103 10 10+ − −= = ×  moles per liter. However, 

in the Al stability field, the 3 ×  10– 10  moles of Al3+  per liter iso-concentration line 
occurs at ε  = – 1.85 volts, and the 3 ×  10– 10  moles of AlO2

−  per liter iso-concentration 
lines lies at ε  = – 1.45 –  0.0789 pH. The domain of thermodynamic stability of water 
at hydrogen and oxygen pressures of 1 atm is defined by the lines a  and b , and the 
position of line a  relative to line 2 in Figure 14.16a illustrates why Al metal cannot 
be produced by electrolysis of aqueous solutions. With a hydrogen pressure of 1 atm, 
attempts to decrease the potential of an electrode to a value less than that given by line 
a  cause the cathodic evolution of hydrogen gas from the electrolyte.

14.10.5 the Solubility of Alumina in Aqueous Solutions

Alumina dissolves in aqueous solutions to form Al3+  ions according to

 Al O  6H  2Al  3H O2 3
3

2+ = ++ +  
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and to form AlO2
−  ions according to

 Al O H O AlO H2 3 2 22 2+ = +− +  

The solubility, as Al3+ , which varies with pH as

 log Al 5 7 3pH3+  = −. 0  

and as AlO2
− , which varies with pH as

 log [ ] . AlO pH2 14 59− = −  

is shown in Figure 14.17. The solubility of Al2 O3  as AlO2
−  decreases by 10 orders 

of magnitude when the pH is decreased from 14 to 5, and this behavior is made use 
of in the Bayer process for the separation of Al2 O3  from bauxite. Bauxite, which is 
the principal aluminum ore, is a mixture of aluminum monohydrate and aluminum 
trihydrate containing up to 60% Al2 O3  with Fe2 O3  as the main impurity. The ore 
is digested in a strong caustic solution at a temperature between 150° C and 250° C 
and a pressure high enough to suppress boiling. The alumina dissolves as AlO2

− , 
and the insoluble residue of Fe2 O3  (red mud) is removed from the solution by filtra-
tion. The pH of the solution is then increased by adding water, and seed crystals of 
Al(OH)3  are added. The decreasing solubility causes the precipitation of Al(OH)3  by 
the hydrolysis reaction

 NaAlO  2H O  NaOH  Al OH2 2 3
+ = + ( )  

2
1
0

–1
–2
–3
–4
–5
–6
–7
–8
–9

–10
–11

2 4 6 8
pH

Al3+/Al2O3
log (Al3+)
log (AlO2)

moles/liter

AlO2
–/Al2O3

10 12 14 16

Figure  14.17   the solubility of al2 o3  in aqueous solution.



611eleCtroChemIstry

The strong caustic solution is regenerated by the removal of water by boiling, and the 
precipitated hydrate is then calcined at 1200° C– 1350° C to form α -Al2 O3 .

14.11 SUMMArY

 1. A system which is capable of performing electrical work as the result of the occur-
rence of a chemical reaction is called a galvanic cell, and the overall chemical reac-
tion is represented by an equation called the cell reaction.

• If, in such a reaction, dn  g-ions of valence z  are transported through a voltage dif-
ference Δ ϕ  maintained between the electrodes of the cell, then

 δ φ′ = ∆w z dn  

 where 𝔣  is Faraday’ s constant (= 96,487 coulombs/mole). 
• If the transportation is conducted reversibly, in which case the electric potential dif-

ference between the electrodes of the cell is called the electromotive force (EMF), 
ε , of the cell, then

 δ ε′ = = ′w z dn dGmax  −  

 and, for the transportation of 1 mole of ions,

 ∆ =G z− ε  

 2. If the reaction

 aA bB cC dD+ = +  

 is conducted in an electrochemical cell, the EMF of the cell is given by

 ε ε= � − RT

z

a a

a a
C
c

D
d

A
a

B
b

ln  

 where the standard EMF of the cell, ε ° , is given by

 ε�
�

= ∆− G

z
 

 3. For any cell reaction at constant temperature and pressure,

 ∆G z= – ε  

 Thus, the molar entropy change for the cell reaction is

 ∆ = ∂
∂







S z
T P


ε  
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 and the molar enthalpy change for the cell reaction is

 ∆ = + ∂
∂







H z z T
T P

−  ε ε  

 4. The composition of an aqueous solution is usually expressed in terms of the molal-
ity, m , or the molarity, M , where molality is the number of moles of solute present 
per 1000 g of water and molarity is the number of moles of solute present in 1 liter 
of solution. The unit molality activity scale (which is analogous with the 1 wt% 
activity scale) is defined as

 a m mi m i i( ) → →as  0  

 where a i  ( m  )  is the activity of the solute with respect the unit molality standard state, 
and the unit molality standard state is located on the Henry’ s law line at m i   = 1. 
Deviation from ideality is accommodated by an activity coefficient defined as

 γi m
i m

i

a

m
( )

( )=  

 5. The mean ionic molality, m ±  , of the electrolyte (or salt) Aa  Yy   when dissolved in 
water is defined by

 m m mz z
a y a y

±
+= ( )+A Y −

1

 

 and the mean ion activity coefficient, γ ±  , is defined as

 γ γ γ±
+= ( )A Y

z z
a y a y

+ −

1

 

 The activity of the dissolved salt is thus

 a ma y

a y
A Y = ( )± ±

+γ  

 6. Any cell reaction is the sum of two half-cell reactions, and the SHE, at which the 
half-cell reaction

 H em g P( , ) ( , )aqueous  atmH=
+

=+ =1 2 1
1
2

−  

 occurs is assigned a potential of zero. This facilitates the assignment of standard 
reduction half-cell potentials to all other half-cell reactions. The electrochemical 
series is produced by listing the half-cell reactions in decreasing order of the mag-
nitudes of their standard reduction half-cell potentials.

 7. The influence of electrode potential and pH on the phase equilibria and solubili-
ties in aqueous electrochemical systems can be presented graphically by Pourbaix 
diagrams.
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14.12 CONCePtS AND terMS INtrODUCeD IN ChAPter 14

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Absolute potential
Anodic oxidation reaction
Anolyte
Cathodic reduction reaction
Catholyte
Cell reaction
Charge neutrality
Concentration cell
Covalent character
Daniell cell
Electric potential
Electric work
Electrochemical reaction
Electrochemical series
Electrode
Electrolysis
Electrolyte
Electromotive force (EMF)
Faraday’ s constant (𝔣 ; 96,487 coulombs/mole)
Formation cell
Galvanic cell
Ionic character
Liquid junction potential
Molality
Molarity
Nernst equation
Open-circuit EMF
Salt bridge
Single electrode potential
Solubility product
Standard EMF of the cell
Standard hydrogen electrode (SHE)

14.13 QUALItAtIVe eXAMPLe PrOBLeM

Qualitative Problem 

Calculate the solubility of AgBr in water at 298 K. 

Solution to Qualitative Problem 

From Table  14.1, ε ° ,Ag  = 0.7991 volts and ε ° ,Br  = 1.0652 volts. Therefore, for the 
reaction
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 Ag Br Ag Br( ) ( ) ( ) ( )s l m m+ = ++1
2

2
−  

 ∆ = + =°G298 0 7991 1 0652 25 775 K  J− −( . . ) ,  

For

 Ag Br AgBr( ) ( ) ( )s l s+ =1
2

2  

 ∆ =°G298 95 670K  J− ,  

and hence for

 AgBr Ag Br( ) ( ) ( )s m m= ++ −  

 

∆ = +
=
= ×

°G

K

298 25 675 95 670

121 345

8 3144 298

K

sp

 J

, ,

,

. ln−
 

Thus, K sp   = (γ ±  m AgBr )2  = 5.4 ×  10– 22  or m AgBr  = 2.3 ×  10– 11 , which indicates that 
AgBr is virtually insoluble in water.

14.14 QUANtItAtIVe eXAMPLe PrOBLeMS

Quantitative Problem 1 

Fayalite, 2FeO· SiO2 , is the only iron silicate compound formed by reaction of FeO 
with SiO2  at a total pressure of 1 atm, and the standard Gibbs free energy change for 
the reaction

 2FeO  SiO  2FeO SiO2 2( ) ( ) ( )s s s+ = ⋅  

is – 11,070 J at 1200 K. Calculate the EMF of the cell

 Fe  SiO  2FeO SiO  CaO ZrO  FeO  Fe2 2 2⋅ – |  

at 1200 K. 

Solution to Quantitative Problem 1  

This is an oxygen concentration cell in which the cell reaction can be written as

 O higher pressure at the cathode   O lower pressure at t2 2( ) → hhe anode( )  (i)
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for which the EMF is

 ε = − RT p

p4
2


ln

( )O

O

at the anode
(at the cathode)2

 (ii)

The oxygen pressure at the electrodes are fixed by the chemical equilibrium

 Fe O FeO+ =1
2

2  (iii)

for which

 K
a

a p
( )iii

FeO

Fe O

=
2

1 2  

At the cathode, the activity of FeO with respect to Fe-saturated pure FeO is unity, 
and at the anode, the activity of FeO is that occurring in 2FeO· SiO2  saturated with 
Fe and SiO2 . As

 K
a

a p

a
( )iii

FeO(cathode)

Fe(cathode) O (cathode)

FeO(anode)= =
2

1 2 aa pFe(anode) O (anode)2

 

and

 

   Fe(anode) Fe(cathode) FeO(cathode)

O anode

O (ca

a a a

p

p

= = = 1

2

2

( )

tthode)
FeO(anode)= a2  

and hence, in Equation  (ii),

 ε = − RT
a

4
2


ln FeO(anode)  

For 2FeO + SiO2  = 2FeO· SiO2 ,

 
∆ =

= × ⋅

G

a

a a

1200

2
2

11 070

8 3144 1200 2

2

 K

FeO SiO

FeO SiO

 J� −

−

,

. ln
 

Thus, at the anode, with a a2 2 2 1FeO SiO SiO⋅ = = ,

 aFeO anode  574( ) = 0.  
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and thus,

 
ε = ×

×
=

− 8 3144 1200
4 96 487

0 574

0 0287

2.
,

ln ( . )

.

 

 volts

 

Alternatively, the anode half-cell reaction can be written as

 O O eq.Fe FeO
2

2
1
2

2− −= +( ) e  

and the cathode half-cell reaction can be written as

 
1
2

22
2O Oeq.Fe FeO( ) + =e− −  

or, at the anode,

 2Fe  2O  SiO  2FeO SiO  42
2 2+ + = ⋅ +– –e  

and, at the cathode,

 2FeO  4  2Fe  2O2+ = +e– –  

summation of which gives the cell reaction as

 2FeO  SiO  2FeO SiO2 2+ = ⋅  

The Gibbs free energy change for the cell reaction is

 ∆G z° = ° =– – ,ε 11 7  J0 0  

and thus,

 ε = ∆ =
×

=− G�

4
11 070

4 96 487
0 0287



,
,

.  volts 

Quantitative Problem 2 

A waste liquor consists of a 0.5 molal solution of CaCl2  in water. Calculate the mini-
mum work, per mole of CaCl2 , required to separate the liquor into anhydrous CaCl2  
and pure water at atmospheric temperature and pressure. The mean ionic activity 
coefficient of 0.5 molal CaCl2  is 0.448. 
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Solution to Quantitative Problem 2 

The minimum work is that required when the separation is conducted reversibly; 
that is, w  = – Δ G  for the process. Further, 0.5 molal CaCl2  comprises 0.5 moles of 
CaCl2  and 1000 g of H2 O or 0.5 moles of CaCl2  and 1000/18 = 55.55 moles of water. 
Thus, 1 mole of CaCl2  exists in 111.1 moles of water, and the mole fraction of water 
is 111.1/112.1 = 0.991.

 1. Move 1 mole of dissolved CaCl2  from a concentration of 0.5 molar to the 1 molal 
standard state.

 

∆ =

= ( )
=

=

=

±

G RT
a

a

RT m

m

m
( )

( )

( . )

ln

ln

1
1

0 5

3

2

2

24

CaCl   

CaCl   

CaCl−
−

γ
88 3144 298 4 0 448 0 5 76863. ln [ ( . . ) ]× × × =  J

 

 2. Transfer the 1 mole of Ca2+  ions from the 1 molal standard state to solid Ca at 298 K. 
From Table  14.1, ε ° ,Ca  = – 2.87 volts. Therefore, for the reaction

 Ca Ca

 J
( ) ( )

( ) ( , . ) ,
m se

G

2

2

2

2 96 487 2 87 553 835

+ + =
∆ = × × =

−

− −
 

 3. Transfer the 2 moles of Cl2–   ions from the 1 molal standard state to Cl2  gas at 1 atm 
pressure at 298 K. From Table  14.1, ε ° ,Cl  = 1.3595 volts. Therefore, for the reaction

 2 1 1 2

2 96 487 1 3595 262 348
2

3

C C e

G
m g( ) ( )

( ) ( , . ) ,

− −

− −
= +

∆ = × × =  J
 

 4. Transfer 111.1 moles of H2 O from a mole fraction of 0.991 to a mole fraction of 1.0. 
Assuming Raoultian behavior,

 ∆ =
= × × =

G n RT X( ) ln

. . ln .
4

111 1 8 3144 298 0 991 2486

−
−

H O H O2 2

 J
 

 5. Allow the 1 mole of solid Ca to react with the mole of gaseous Cl2  to form 1 mole 
of solid CaCl2  at 298 K. For the reaction

 
   Ca Cl CaCl

 J K

( ) ( ) ( )

( ) ,
s g s

G G

+ =
∆ = ∆ =

2 2

5 298 752 100� −
 

 Thus, the change in the Gibbs free energy for the separation process is

 ∆ ∆ ∆ ∆ ∆G G G G G( ) ( ) ( ) ( ) ( ) ,1 2 3 4 5 74 255 J+ + + + =  

 which is the minimum amount of work required per mole of CaCl2  separated.
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PrOBLeMS

14.1  The EMF of the galvanic cell

 Pb PbCl HCl AgCl Ag(aqueous)( ) ( ) ( ) ( )s s s s2  

   where all of the components are present as pure solids in contact with an HCl 
electrolyte, is 0.490 volts at 25° C and, at that temperature, the temperature coef-
ficient of the EMF is – 1.84 ×  10– 4  volts/degree. Write the cell reaction and cal-
culate the Gibbs free energy change and the change in enthropy for the cell 
reaction at 298 K.

14.2  At 298 K, the EMF of the cell

 Pb  PbCl  Hg Cl  Hg2 2 2 |  

   is +0.5357 volts and the temperature coefficient of the EMF is 1.45 ×  10– 4  volts/
degree. Calculate (a) the maximum work available from the cell at 298 K per 
mole of Pb reacted, (b) the change in entropy for the cell reaction, and (c) the 
heat absorbed by the cell at 298 K per mole of Pb reacted when the cell is operat-
ing reversibly.

    The Hg electrode in the cell is replaced by an Hg– X alloy in which X Hg  = 
0.3 and where X  is inert. The EMF of the cell at 298 K is found to increase by 
0.0089 volts. Calculate (d) the activity of Hg in the alloy at 298 K.

14.3  The solid-state electrochemical cell

 Pt O gas at CaO ZrO Fe FeO PtO2( ), ( ) ,( )2 2p −  

   is built to measure the partial pressure of oxygen in gases. Write an equation 
relating the oxygen pressure and temperature of the gas to the EMF to the cell.

14.4  The EMF of the cell

 Ag AgCl Cl Pt atm)( ) ( ) ( , ,s s g2 1  

  is found to be

 ε volts 977 57 1 35 4 8 1 354 7 2( ) = + × − − × −( )− −0 0 0 0 0. ( ) .t t  

   in the temperature range 100° C– 450° C. Calculate the value of Δ c p   for the cell 
reaction.

14.5   A galvanic cell is set up with electrodes of solid aluminum and solid 
aluminum– zinc alloy and an electrolyte of molten AlCl3 – NaCl. When the mole 
fraction of Al in the alloy electrode is 0.38, the EMF of the cell is 7.43 millivolts 
at 380° C, and the temperature coefficient of the EMF is 2.9 ×  10– 5  volts/degree. 
Calculate (a) the activity of Al in the alloy, (b) the partial molar Gibbs free 
energy of mixing of Al in the alloy, and (c) the partial molar enthalpy of mixing 
of Al in the alloy.
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14.6 By measuring the EMFs of cells of the type

 Ni( s  )  | NiO( s  )  | CaO– ZrO2  | Cu( l  )  containing dissolved oxygen

   it has been established that eO
O  in liquid copper at 1363 K is – 0.16 and that the 

standard Gibbs free energy change for

 1
2

2 1O O  wt% in Cu( ) [ ]g =  

   is Δ G °  = – 74,105 + 10.76T  J. If the EMF of such a cell is 0.222 volts at 1363 K, 
calculate (a) the activity of oxygen in the liquid copper cathode with respect to 
a standard state of oxygen gas at 1 atm pressure, (b) the activity of Cu2 O in the 
cathode metal with respect to Cu-saturated pure solid Cu2 O, (c) the weight per-
centage of oxygen dissolved in the copper cathode, (d) the maximum solubility 
of oxygen in liquid copper at 1363 K.

14.7  Calculate the conditions under which an aqueous solution of [Pb2+ ] = 1 mole/
liter is in equilibrium with metallic Pb and solid PbO at 298 K. Is any other lead 
ion present in significant concentration in this solution?
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14.8   Aluminum can be produced by the electrolysis of Al2 O3  dissolved in molten 
cryolite, 3NaF· A1F3 . If inert electrodes are used in an electrolysis cell and the 
cryolite is saturated with Al2 O3  at 1000° C, what is the decomposition voltage of 
the Al2 O3 ? The Hall– Heroult process for the electrolysis of Al2 O3  uses graphite 
as the anode material, and the gas which is evolved at the anode is essentially 
pure CO2  at 1 atm pressure. Calculate the decomposition voltage of Al2 O3  in an 
Al2 O3 -saturated 3NaF· AlF3  electrolyte at 1000° C in the Hall– Heroult cell.

14.9   At 298 K, the solubility of Cl2  in H2 O, under a partial pressure of Cl2  = 1 atm, 
is 0.0618 molal. Calculate the standard Gibbs free energy of formation of an 
aqueous solution of chlorine and calculate the change in the Gibbs free energy 
to form a solution of chlorine which is 0.01 molal. Ideal solution behavior can be 
assumed.



http://taylorandfrancis.com


621

ChAPter 15

thermodynamics of Phase 
transformations

This chapter is about phase transformations in closed thermodynamic systems. It 
is appropriate to first define the terms phase  and phase transformation .

A phase is a physically distinct homogeneous portion of a thermodynamic system 
delineated in space by a bounding surface, called an interphase interface, and distin-
guished by its state of aggregation (solid, liquid or gas), crystal structure, composition 
and/or degree of order. Each phase in a material system generally exhibits a character-
istic set of physical, mechanical and chemical properties and is, in principle, mechani-
cally separable from the whole.*

A phase transformation in a material system occurs when one or more of the 
phases in a system changes their state of aggregation, crystal structure, degree of 
order or composition resulting from a reconfiguration of the constituent particles 
(atoms, molecules, ions, electrons, etc.) comprising the phase. This reconfiguration 
is a change in the thermodynamic state leading to a more stable condition described 
by appropriate thermodynamic potentials such as a decrease in the Gibbs free energy 
(G ) at constant temperature (T ) and pressure (P ). Whether describing the freezing 
of a metal or the onset of ferromagnetism in iron (Fe), a change in phase is indicated 
when small changes in relevant thermodynamic variables produce marked changes 
and sometimes dramatic qualitative changes in the nature of the system. These 
changes can occur abruptly (discontinuously) or gradually (continuously) at critical 
values of certain thermodynamic variables. The decrease in free energy accompany-
ing the reconfiguration is often referred to as the thermodynamic “ driving force”  for 
the phase change.†

One can see that most of the topics of the preceding chapters lead very nicely into 
the field of study of phase transformations. This chapter will briefly discuss selected 
aspects of the thermodynamics of phase transformations.‡ 

* W. A. Soffa and D. E. Laughlin, “ Diffusional Phase Transformations in the Solid State,”  in Physical 
Metallurgy , vol. 1, edited by D. E. Laughlin and K. Hono, Elsevier, Waltham, MA, 2014, pp. 851– 1019.

† Ibid.
‡ For more in-depth discussion, see Soffa and Laughlin (ibid.).
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15.1 therMODYNAMICS AND DrIVING FOrCe

15.1.1 Phase transformations with No Change in Composition

A phase transformation that does not involve a change in composition and occurs 
in a single-component system (an element or a compound) is the first one we will 
examine. Figure  15.1 shows two Gibbs free energy curves for competing phases in 
a one-component system at constant pressure. We use the units of J/m3  (molar free 
energy divided by the molar mass, G VM M/ ) for the volume-extensive Gibbs free 
energy for reasons that will become apparent later. The liquid is the high-temperature 
equilibrium phase and the solid is the low-temperature equilibrium phase. The inter-
section of the two Gibbs free energy curves denotes the equilibrium melting point of 
the single-component material. We have already discussed the slopes and curvatures 
of similar Gibbs free energy versus temperature curves and how those geometric 
features are related to the heat capacities of the two phases (see Chapter 7). Now 
we look in more detail at what happens in the liquid phase as the temperature of the 
system is lowered, starting from above the melting point.

By looking into the details of the transformation, we deviate somewhat from our 
previous discussions of phase diagrams (Chapters  7 and 10), where we spoke only of 
equilibrium states of the system. During the transformation of a liquid to a crystal, 
there will be transition states  which in themselves may not be equilibrium states in 
the strictest sense. Indeed, to even discuss the “ initiation”  of a heterogeneous trans-
formation, we must include a discussion of the finite regions in which the new phase 
forms and bring into the discussion a new entity: namely, the interface between the 
liquid phase and the evolving solid phase, with its attendant excess free energy .

Above the melting temperature, T M  , any fluctuation of the equilibrium liquid phase 
into a state resembling that of the solid brings with it an increase in the free energy 
of the system. Such fluctuations are therefore unstable and will dissolve back into the 
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Figure  15.1   Gibbs free energy vs. temperature plot of the solid and liquid phase in a one-
component system. T M   is the melting point.
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liquid. At the melting point, both phases have the same Gibbs free energy and both are 
equilibrium phases. Since they have the same free energy at the melting point, there 
is no driving force (decrease in Gibbs free energy) for the formation of the solid from 
the liquid. If a fluctuation in the liquid produces a small region of the solid phase, 
since there is no increase in the volume free energy, we may think that such a fluc-
tuation would also be stable. However, it is at this point that the new feature of the 
system— namely, the interface between the incipient solid phase and the existing liquid 
phase— must be taken into account. The interface between the liquid phase and the 
emerging solid phase has a positive excess energy associated with it and it therefore 
presents a barrier to the formation of the solid phase. At the melting temperature, the 
change in Gibbs free energy of a volume of liquid into a volume of solid is positive 
because of this excess surface energy. Undercooling of the liquid must occur in order to 
form the solid phase. This is true for first-order phase transformations (see Chapter  7).

Let us examine what happens when a small, spherically shaped solid phase forms 
within an undercooled  liquid. Since the system is below the melting point, the vol-
ume Gibbs free energy change of the liquid to solid, ∆GL S→ , is negative. However, 
we must account for the surface energy between the solid and liquid as well. Taking 
these two energies into account, we write for the total change in Gibbs free energy, 
∆gL S→ , to form a sphere of the solid phase of radius r :

 ∆ ∆g r G rL S L S S L→ →= +4
3

43 2π π γ /  (15.1)

where γ S  / L   is the excess surface free energy between the solid and the liquid. 
The change in the Gibbs free energy, ∆gL S→ , as a function of its size, is shown in 

Figure  15.2. It is seen to have two components, where one is negative (the volume term) 

r*

∆g*

Interfacial energy

Volume energy

En
er

gy

∆gL→S

Figure  15.2   the free energy to form a critical size nucleus of solid from a liquid phase plotted 
against its radius, along with its volume energy and surface energy contributions.
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and the second one is positive, since it represents the positive excess surface energy 
term. For very small solid particles, the surface term dominates and the sign of the 
change in free energy is positive.

In order for a stable solid to form (nucleate), the region in which it is to form 
must undergo fluctuations in its configuration such that it becomes more like a solid 
than a liquid. If the region is large enough, the decrease in the free energy due to the 
volume of the new phase will be greater than the increase in the free energy due to 
the interface term. In such a case, the change in free energy will be negative and the 
nucleus of the solid phase will be stable.

By taking the derivative of Equation  15.1 with respect to radius and setting the 
result equal to zero, the critical radius for the initiation of the transformation is 
obtained.

 r
G

S L

L S

* /= −
→

2γ
∆

 (15.2)

This is the size of a fluctuation where the change in the Gibbs free energy accom-
panying the formation of the solid begins to decrease. Substituting the value of this 
critical radius into Equation  15.1 yields the critical activation energy which must be 
overcome in order that the fluctuation can grow.

 ∆
∆

g
G

L S
S L

L S
→

→
=* /16

3

3

2

πγ
 (15.3)

From Figure  15.1, it can be seen that the larger is the undercooling (Δ T ), the larger 

is the magnitude of the value of ∆GL S→ , and hence, as can be seen in Equation  15.2, 
the smaller is the size of the new solid phase that can grow into a stable particle. 
Note the cubic dependence of critical activation energy on the excess surface free 
energy.

15.1.2 Phase transformations with Change in Composition

The formation of a new phase in a multicomponent alloy system is some-
what more complicated. Let us examine this case for the binary system shown in 
Figure  15.3. An alloy of composition X 0  initially is held a temperature T 1 . At equilib-
rium, the state of the system at T 1  is a single phase of the solid α . Consider now what 
happens when the temperature is suddenly lowered to the temperature T 2 . The alloy 
is now in the α  + β  two-phase region of the phase diagram. Figure  15.4 shows the 
Gibbs free energy curves for the α  + β  phases at the temperature T 2 . A common tan-
gent is drawn between the two curves, and the equilibrium compositions of the two 

phases are indicated as X Xe e
α β and . Also indicated on the plot is the total decrease 

in the Gibbs free energy for the formation of the amount of β  phase in equilibrium 
with α . In this case, the final state is a two-phase state and the composition of the 
new β  phase (X β  ), is different from that of the original phase (X 0 ). The lever rule 
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(Section 1.7) can be used to determine the fractional amounts of the two phases at 
equilibrium. For example, the fractional amount of the β  phase is given by

 %β
α

β α= −
−

X X

X X
e

e e

0  

If we are to utilize Equation  15.2 to determine the critical size of the new phase, 
we need to determine the driving force for the formation of the critical nucleus of 
the new phase. This is not the value of Δ G total , shown in Figure  15.4, since that is the 
total change in the Gibbs free energy after equilibrium has been attained.

We must determine Δ g β   when a small amount of β  with composition X β   forms 
from matrix of composition X 0  changing the composition of the matrix to ′X0 .  The 
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Figure  15.3   Binary eutectic phase diagram. the equilibrium state at T 1  of an alloy of com-
position X 0  is the solid α  phase. at T 2  the equilibrium state is two-phase α  and β  
with their compositions shown on the phase diagram.
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Figure  15.4   free energy curves for the α  and β  phases at T 2 . when a small amount of β  
forms, the overall composition of the alloy changes from X 0  to X 0   . the driving 
force for the formation of the β  phase is shown as Δ g .
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value ′X0  is less than that of the original alloy, since the new phase is richer in β , 
depleting the original phase. The change in free energy of a mole of the phase when 
a fraction of β  has formed is

 ∆G G f G f G= + −′β β α α α  

where:
Δ G   is the change in free energy for the formation of f β   of β 

f
X X

X X
β

β
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− ′
0 0

0
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which after some algebra yields
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∂






<′
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0 0  (15.4)

This is shown in Figure  15.4, where Δ g β   can be seen to be found by first construct-
ing a tangent to the α  free energy curve at X 0  and then by dropping down to the free 
energy curve at the composition of the formation of the new β  phase. This is the 
value of the change in free energy which is substituted into Equations 15.2 and 15.3 
to obtain the critical size and critical barrier to the formation of the solid phase since 
this is the driving force for the nucleation of the solid.

15.2 USe OF the  T  0   CUrVeS 

In one-component systems, the temperature where two free energy curves inter-
sect is the equilibrium temperature of the phase transition between the two phases. 
This is not so for a binary system. Consider the phase diagram of Figure  15.5 and the 
Gibbs free energy curves that produce the equilibrium at T ′   (Figure  15.6). Included 
on the phase diagram are dashed curves which represent the locus of all points where 
the α   and  γ  and β  and γ  phases have equal free energies as a function of tempera-
ture— that is, where the free energy curves intersect.

Now consider the phase changes which can occur when a phase of composition 
X 1  is quenched from the γ  phase stability region to the temperature T ′. The following 
two transformations are possible:

• The γ  phase could transform directly to the α  phase without a change in composition.
• The γ  phase could decompose into the equilibrium two-phase mixture of α  +  β .
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Now consider the phase change(s) which can occur when a phase of composition 
X 2  is quenched from the γ  region to the temperature T ′  . Only the following transfor-
mation is possible:

• The γ  phase decomposes into the equilibrium two-phase mixture of α   +  β .

The reason for this difference is easily seen from the free energy curves of 
Figure  15.6. For the first case, the free energy of γ  is shown as point S′   and is above 
the Gibbs free energy curve of that of α  at the composition in question. The γ  phase 
can therefore transform directly to α  with a decrease in free energy, arriving at point 
E′  . Thus, the γ  phase has changed into the α  phase without a change in its composi-
tion. Such phase transformations are known as diffusionless transformations because 
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Figure  15.5   a eutectoid phase diagram displaying its T 0  curves for the α / γ  and γ / β  phases.
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Figure  15.6   the free energy curves for the diagram shown in figure  15.5. the alloy X 1  has a 
free energy of S′   at T′   and the alloy of composition X 2  has a free energy of S  at T´  .
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no long-range atomic diffusion is necessary for the transformation to complete. Since 
the two phases are distinguished from each other, there must be a change in crystal 
structure in such transformations.

In the second case, however, the free energy of the γ  phase is less than that 
of the α  phase at the composition being considered (points S  and R , respectively). 
Therefore, γ  cannot transform to the α  phase of the same composition.

The loci of the T 0  points on a phase diagram therefore denote which composi-
tions of the high-temperature phase can transform into a low-temperature phase of 
the same composition but a different crystal structure. This analysis is important for 
the following solid-state transformations:

• The martensite transformation in steels
• The massive transformations in a variety of binary alloys

15.2.1 Martensitic transformation

In steels of certain compositions, the alloys are held at temperatures within the 
high-temperature face-centered cubic (FCC) austenite  (γ )  phase field (named after 
Sir William Chandler Roberts-Austen, 1843– 1902) and rapidly quenched to lower 
temperatures. The resulting phase is a tetragonal phase, α '  , which is related to the 
body-centered cubic (BCC) α  phase, but somewhat distorted due to trapped carbon 
atoms in specific sites of the new phase, which lowers its symmetry. This lower-
symmetry α '   phase (called martensite , after Adolf Martens, 1850– 1914) greatly 
increases the strength of the alloy. Immediately after the quench, the α '   phase is a 
single phase of the same composition as the austenite phase from which it formed. 
The α '   martensite is not an equilibrium phase and will decompose into the equilib-
rium α    +   Fe3 C phases if given enough thermal energy.

15.2.2 Massive transformations

Another type of solid-state transformation that can be investigated using the T 0  
curves is the massive transformation , named for its characteristic “ massive”  micro-
structure. The massive transformation is a solid-state phase transformation involving 
a compositionally invariant nucleation and growth process, producing a change in 
crystal structure. The transformation was first documented in studies of Cu– Zn and 
Cu– Al alloys during the 1930s. 

Consider again the free energy curves displayed in Figure  15.6. The low-
temperature α  phase can only form from the high-temperature γ  phase if the compo-
sition of γ  is less than that of the intersection of the α   and  γ  free energy curves (i.e., 
T 0 ) composition. For example, the γ  phase of composition S′   can directly form the α  
phase of the same composition (E′  ). The same can be said about the formation of the 
β  phase from the high-temperature γ  phase of the diagram. In this case, β  can only 
be formed if the γ  phase has a composition which is greater than that of the intersec-
tion of the γ   and  β  free energy curves.
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15.2.3 the Formation of Amorphous Phases from the Liquid

Another application of the T 0  curves is understanding which alloys are likely to 
form amorphous phases when rapidly quenched from the liquid state. Amorphous 
phases can be considered supercooled liquids which have been frozen by the rapid 
increase of their viscosity on cooling.

Consider the binary eutectic phase diagram of Figure  15.7a and its accompany-
ing Gibbs free energy plots in Figure  15.7b. If a liquid of composition S′   is rapidly 
quenched to T ′  , it can do one of the following:

 1. Transform into the equilibrium mixture of the α  and β  phases
 2. Become an amorphous solid
 3. Transform into the α  solid phase of the same composition

Case 1 is not likely to occur, because the quench does not allow sufficient time 
for the decomposition to occur and to form the two solid phases of very different 
compositions. Such a transformation is therefore kinetically unlikely.
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Figure  15.7   (a) a binary eutectic phase diagram with its T 0  curves. (b) the free energy 
curves at T′   for the phase diagram in (a). 
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Either Case 2 or Case 3 may occur. Since there is a greater change in the free 
energy for the liquid to transform directly to a crystalline solid phase of the same 
composition, this is more likely. Such a process is sometimes denoted a congruent 
solidification .

Now consider the rapid cooling of the liquid phase of composition XE  . The liquid 
of this composition cannot transform into a solid of the same composition because of 
its location with respect to the T 0  points. A liquid of such composition thus has only 
two possible transformations:

 1. Transform into the equilibrium mixture of the α  and β  phases
 2. Become an amorphous solid

Once again, the option of transforming into the equilibrium mixture is unlikely 
because of the lack of time for it to occur. This leaves the option of the liquid phase 
of remaining in its undercooled liquid state and becoming a solid with an amorphous 
structure as its viscosity increases. Such will be the case if the temperature to which 
the liquid was rapidly cooled is below its glass transition temperature. An amorphous 
solid composed of metallic elements is sometimes called a metallic glass .

Once again, the T 0  curves play an important role in understanding and predict-
ing what kind of phase transformation can occur. In the case of the formation of an 
amorphous solid, the liquid should be in a position relative to the T 0  points which 
does not allow for the formation of a solid phase of the same composition. In the case 
of the eutectic phase diagram, this means liquids of composition between the two T 0  
curves are able to form amorphous solids.

15.3 SUrFACe eNerGY

15.3.1 equilibrium Shape

In the previous discussion of the determination of critical values for the size of 
the critical nuclei, we assumed a spherical shape for the solid phase when it nucle-
ated. This may be true if the surface energy of the solid is isotropic, since this is the 
shape which minimizes the ratio of the surface area to volume of a solid and there-
fore minimizes the effect of the surface energy. If the surface energy is not isotropic, 
the shape will be that which produces low-energy facets, which usually means the 
nuclei will have the shapes of polyhedrons. For cubic symmetry, the surface energy 
versus the normal to the facet in question must display m m3  point group symmetry, 
following Neumann’ s principle.*

For example, if the surface energy of the (100) planes is much less than that of 
the (111) planes, the equilibrium shape of the crystal would be that of a cube (Figure 
15.8a). On the other hand, if the reverse is true and the (111) surface energy is much 

* “ The symmetry elements of any physical property of a crystal must include the symmetry elements 
of the point group of the crystal.”  J. F. Nye, Physical Properties of Crystals , Oxford University Press, 
Oxford, UK, 1957, pp. 20– 24.
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less than (100) surface energy, a particle with the shape of an octahedron would form 
(Figure  15.8b). The anisotropy of the surface energy of a crystal can be understood 
in terms of broken bonds . In general, minimizing the number of broken bonds at the 
surface minimizes the surface free energy for those orientations.

Of course, intermediate cases of anisotropy could exist and can be illustrated 
using the polar plot shown in Figure  15.9. This polar plot can be used to establish the 

(a) (b)

(111)

(111) (111)

(111)

(001)

(100)

Figure  15.8   Particle shapes for crystals with cubic symmetry. (a) Cube, when (100) planes 
have very small surface energies. (b) octagon, when the (111) planes have very 
low surface energies.

O

Figure  15.9   a polar plot of the excess surface energy of a crystal with a fourfold axis. the 
Gibbs–wulff construction produces the equilibrium shape of the crystal. (from 
J. w. Christian, The Theory of Transformations in Metals and Alloys , Pergamon 
Press, oxford, uK, 1965.)
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equilibrium shape of a crystal through the Gibbs– Wulff (George Yuri Viktorovich 
Wulff, 1863– 1925) construction. In the plot, n  is the normal to a {hkl } plane, and the 
distance from the origin to the solid curve is proportional to the value of the surface 
energy of the plane in question. The Gibbs– Wulff construction generates an enve-
lope of planes as a function of position which has the lowest value of surface energy 
by minimizing σ( )n dA∫ . This shape defines the equilibrium shape of the crystal.

15.4 NUCLeAtION AND SUrFACe eNerGY

15.4.1 homogeneous Nucleation

Where the solid phase first forms within the liquid phase is often of interest. One 
possibility is that it can form anywhere within the liquid phase. This is what is usu-
ally termed homogeneous nucleation . In principle, the new phase can form at any 
of the sites where a atom in the liquid exists. With time, the liquid will be uniformly 
transformed into the solid phase, with the grains of the solid phase which formed 
first being the largest.

15.4.2 heterogeneous Nucleation

The most likely nucleation method is by what is called heterogeneous nucle-
ation , which means that the initiation of transformation from the liquid to the solid 
occurs at very specific sites. In this section, we will only consider the formation of a 
solid on the walls of the container of the liquid.

The reason that heterogeneous nucleation is more frequently observed to occur 
is that the energy barrier to the formation of the solid is reduced at the specific site 
at which the nucleation occurs. For example, consider the nucleation of the solid β  
phase on the wall of the vessel containing the liquid phase in Figure  15.10. The shape 
of the nucleus is constrained by the wall, and importantly, the wall itself has a surface 
with the liquid and thereby exhibits a surface energy. When the β  phase nucleates 
on the wall, the wall– liquid surface (and hence its surface energy) is replaced with 
the surface of the β  phase and the wall (and hence its surface energy). The wall– β  
phase surface energy is usually less than that of the wall– liquid, and therefore, there 

γw/β

β

Wall

Liquid

γβL

γw/L

Figure  15.10   schematic of a semispherical β  particle forming on the wall of the container of 
the liquid phase, showing the various interface energies. 
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is an energetic advantage for the β  phase to form there. This effectively reduces the 
free energy barrier to nucleation Δ g * , allowing for the formation of the new phase at 
substantially lower undercoolings.

The thermodynamics details of the process is as follows.
We saw in Equation  15.1 that the change in free energy in forming a nucleus by 

homogeneous nucleation is given as

 ∆ ∆g r G rL S L S S L→ →= +4
3

43 2π π γ /  

The barrier to homogeneous nucleation is given as
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If a sphere one-half the volume of one nucleated homogeneously is formed on the 
wall of the vessel which contains the liquid (Figure  15.10), we write the following 
for the energy changes:
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The ratio of the barrier to form the new phase heterogeneously to that to form the 
same volume of the phase homogeneously is found to be
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If the surface energy γ β /w  equals that of the surface energy γ w/L , the ratio goes to 
unity, meaning there is no advantage to form on the wall. If, however, γ γβW L W/ /> , the 
ratio of the two barriers is less than unity, and therefore, there is an smaller barrier 
for the heterogeneous formation of the β  phase on the wall of the vessel.

A similar effect can be demonstrated for other interfacial defects (e.g., grain 
boundaries in solid– solid phase transformations) as well as defects that have strain 
energies associated with them (e.g., dislocations). In the case of dislocations, the new 
phase diminishes the local strain energy, thereby effectively lowering the barrier to 
nucleation.
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The preceding discussion demonstrates the thermodynamics  of heterogeneous 
nucleation. It is the value of the thermodynamic barrier which is put into an exponen-
tial expression for the rate of nucleation. So, small changes in the magnitude of the 
barrier to nucleation yield large effects on the kinetics of the transformation.

15.5 CAPILLArItY AND LOCAL eQUILIBrIUM

The phase diagram shown in Figure  15.6 is an equilibrium diagram. The con-
struction of an equilibrium diagram assumes that the α  and β  phases are large, so that 
the effect of surface energy is negligible. It is of interest to examine what happens if 
this is not the case, and the β  phase is small with respect to the matrix (α ) phase.

The free energy curve of the large β  phase shown in Figure  15.7 must be modi-
fied to show that the Gibbs free energy of formation of the small β  phase is less nega-
tive than that of the large (r  = ∞ ) β  phase (Figure  15.11).

The increase in the Gibbs free energy, Δ μ , must be known in order to estimate 
the change in the composition of the α  phase due to size of the particle. The Gibbs 
free energy of the β  particle including its surface energy is written as

 dG dn S dT PdV dA′ = = − ′ + ′ + ′∆µ σ  

For equilibrium, at constant temperature and pressure this reduces to

 ∆µ σdn dA= ′  

For spherical particles, the surface area A = 4 2πr  and n r VM = 4 33π / .
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Figure  15.11   schematic of the free energy curves of a β  particle of very large size and one 
of very small size, showing that the solubility of the components in each of the 
phases depends on the size of the particle.
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Thus, dA r= 8π  and dn = 4 2πr VM/ . This leads to

 
∆µ σ σ π

π
σ= ′ = =dA

dn

r

r V

V
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2 /

 

It can be seen from the figure that this increase in the Gibbs free energy changes the 
location of its common tangent with the α  phase. The change of the composition of 
the α  phase which is in equilibrium with a particle of radius r i   and the composition 
of the α  phase which is in equilibrium with a very large (r  = ∞ ) particle is seen to 

be X r X ri e
α α( ) ( )− = ∞ .

The difference is related to value of the two slopes:
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If X α   is small with reference to X β  ,

 1 1− ≈Xe
α  

 X r X
V X

rRT
e

M eα α
ασ

( ) − = 2
 (15.5)

Equation 15.5 is a form of the Gibbs– Thomson equation.
Now consider two particles, one of radius r 1  and the other of radius r 2  

(Figure  15.12). It can be seen that the composition of the α  phase in equilibrium 
with the smaller particle, X rα( )1 , is greater than that in equilibrium with the larger 
particle, X rα( )2 . This gives rise to a gradient in the composition (and therefore, a gra-
dient in the chemical potential, which is the driving force for diffusion). Therefore, 
β  atoms will leave the smaller particle and be added to the larger one. This process 

X α(r1)
X α(r2)

β β

r1

r2

Figure  15.12   schematic showing that the solubility of the β  component in the α  phase is 
greater when the α  phase is in local equilibrium with a smaller β  particle. a 
composition gradient is produced between small and large β  particles.
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is known as particle coarsening  or Ostwald ripening  (Friedrich Wilhelm Ostwald, 
1853– 1932). The end effect of coarsening is to have large particles thereby lowering 
the total surface energy of the system.

15.6 therMODYNAMICS OF the LANDAU 
theOrY OF PhASe trANSFOrMAtIONS

We saw in Chapter 8 that the van der Waals equation for a nonideal gas gave rise to 
a phase change in the system and that such a change could be either a first-order one or 
a continuous one. We have also discussed the Ehrenfest designation of transitions being 
either first order or second (higher) order. In this section, we introduce another model of 
the thermodynamics of a phase that predicts phase transitions and also allows for both 
first- and higher-order transitions. This model is the Landau model of phase transitions. 

In the late 1930s, Lev Davidovich Landau (1908– 1968) proposed that many phase 
transitions can be characterized by a parameter, η , which describes an important prop-
erty that is characteristic of the system under study (spin, moment, density, strain, etc.). 
This parameter has nonzero values below a certain critical temperature, T C  , and is 
zero above this temperature. It is called an order parameter , and it describes the evolu-
tion of the system in terms of measurable physical parameters and has an equilibrium 
value for a given system which is a function of temperature and pressure. It is usually 
normalized such that in the ordered state it approaches unity (η  = 1) as T  approaches 
zero, and above the transition temperature it is equal to zero. The way that it varies in 
the vicinity of the critical point serves as a useful basis for classifying the nature of 
the phase transition/transformation. Both first-order and higher-order transitions can 
be modeled, though the original model was focused on the higher-order transitions. In 
Section 9.10, we utilized the atomic order parameter to investigate equilibrium states 
in regular solutions that exhibit negative deviations from ideality. Figure  9.19 is a plot 
of the atomic order parameter versus temperature for such systems.

The effect of order parameter on the thermodynamics of a system is tracked as 
an excess term in the free energy. Landau’ s model is that the excess free energy 

between the ordered (η  >  0) and disordered states (η  = 0), GXS( )η , can be expanded 
in a power series in the order parameter in the neighborhood of the critical point.

Landau wrote the excess free energy as

 G G GXS( ) ( ) ( )η η η= ≠ − =0 0  

 G A B C D EXS( )η η η η η η= + + + +2 3 4 5 6…  (15.6)

where the coefficients A , B , C , …  may be functions of temperature, T , and pressure, 
P . At constant pressure, the term A  can be taken as a linear function of temperature 
given by

 A a T TC= −( )  (15.7)
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with the coefficient a  being a positive constant. B , C , D , and E  are taken as constant 
in the first approximation. It can be seen that A  changes sign on passing through the 
temperature T C  .

• When T  >  T C  , A  >  0.
• When T  = T C  , A  = 0.
• When T  <  T C  , A  <  0.

The coefficient A  is proportional to the curvature of the GXS( )η  versus η  plot at 
η  = 0. Above T C  , since A >  0, the curvature of the plot is positive. At T C  , the coeffi-
cient becomes 0, signifying an impending instability of the high-temperature phase. 
Below T C  , the disordered phase is unstable and the ordered phase forms.

We will now investigate three cases of the Landau expansion.

Case (i): The 2‑4 Case 
In this case, B  = 0, C  >  0, and D  = E  = 0

When B  = D  = 0, GXS( )η  is an even function of η ; that is, 

 G GXS XS( ) ( )+ = −η η  (15.8)

As mentioned previously, A  = a (T  –  T C  ) changes sign at T  = T C  .

The behavior of GXS( )η  as a function of temperature and the variation of the 
order parameter with temperature are shown in Figure  15.13. Above T C   (T 1  and T 2 ), 
G XS (0) is the only minimum, and therefore, the equilibrium state is disordered. At 
T C  , the curvature of G XS (0) equals zero, which means that the disordered phase is 
about to become unstable. Below T C   (T 3  and T 4 ), there are two states with nonzero 
order parameters. It can be seen from the figure that the minimum in GXS( )η  occurs 
at larger η  as the temperature is decreased.

We now will look at other thermodynamic aspects of this system.

η−η

T1 T2 TC T3

T4

GXS (η)

Figure  15.13   the excess Gibbs free energy for the 2-4 case (A  and C  ≠  0) of the landau 
expansion. at T C   the disordered phase becomes unstable (curvature = 0). In 
the figure, T 1  >  T 2  >  T C   >  T 3  >  T 4 .
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First, we write the excess free energy:

 G a T T CC
XS( ) ( )η η η= − +2 4  (15.9)

For equilibrium, we minimize the excess free energy with respect to η  by taking the 
first derivative and setting it equal to zero.

 
∂

∂
= − + =G

a T T CC

XS( )
( )

η
η

η η2 4 03  

The solutions to this equation are:

 η ηeq eq  and  = = − −
0

2
2 a T T

C
C( )

 

Furthermore, if we set η  = 1 at T  = 0 (a Third Law criterion), we obtain T C AC = 2 /  
and thus, for the nonzero solutions,

 ηeq
2 1= − = −T T

T

T

T
C

C C

 (15.10)

The two solutions +η eq  and – η eq  have equal absolute values (Figure  15.13) and 
correspond to different domains of the low-temperature phase.

If T  >  T C  , there is only one real solution to the equation: namely, η  = 0. By taking 
the second derivative of GXS( )η , we get an expression which is proportional to the 
curvature of the plot.
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The positive curvature shows the disordered phase is stable above T C  .
It is only when the temperature falls below T C   that the other extrema values 

are real and thus appear in the plot. Since at T C   the curvature is zero at η  = 0, the 
high-temperature phase becomes unstable and any further drop in temperature 
will commence the continuous phase transition to the ordered phase.

The equilibrium plot of the order parameter is shown in Figure 15.14.
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This is an example of a continuous phase transition. The behavior is essentially 
identical to that of the Ehrenfest second-order transition.

The excess Gibbs free energy, G XS , for T  <  T C   is found by substituting the equi-
librium value of η  into Equation  14.1. We thus obtain

 G
a T T

T
C

C

XS = − −( )2

2
 

Since a  >  0, G XS  <  0 for all T  <  T C  . A negative excess value of G XS  is expected for 
the stable low-temperature-ordered phase.

Now the excess entropy of the system can be found as

 S
G

T
a

T T

T
C

C

XS
XS

= − ∂
∂

= − −( )
 

This varies continuously through the transition temperature, as should be the case for 
a continuous transition. Below T C  , its sign is negative since the excess is with respect 
to the disordered phase, and the configurational entropy of the ordered phase is less 
than  that of the disordered one.

The excess heat capacity of the ordered phase relative to the disordered phase at 
constant pressure for T  <  T C  is given as 

 C T
S

T

aT

T
P

C

XS
XS

= ∂
∂







=  

and is plotted in Figure  15.15.
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Figure  15.14   the order parameter vs. reduced temperature (T /T C  ) plot for the landau 2-4 
case of figure  15.13. note that the slope at T  = 0 is not zero in the landau model.
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At T C  , the value of CP
XS  is a , and just above T C  , the excess value drops to 

zero. This produces a finite discontinuity in the heat capacity, consistent with the 
transition being second order  since it is the second derivative of the energy term 
( C T G TP = ∂ ∂( )2 2/ ), which first becomes discontinuous at the transition tempera-
ture. The excess heat capacity is positive because it takes more thermal energy to 
increase the temperature of the low-temperature-ordered phase since the thermal 
energy must also be utilized to decrease the order of the system. The heat capacity 
above T C   is that of the high-temperature phase.

Finally, the excess enthalpy H XS  can be shown (see Problem 3) to be

 H
a T T

T
C

C

XS = −
2

2 2( )
 

The transition has no latent enthalpy of transformation, which is another signature of 
a second-order transition.

Case (ii): The 2‑3‑4 Case 
First-order transitions can also be modeled by the Landau expansion. If the expres-
sion for G XS  is truncated beyond the fourth order but B  and C  ≠  0 and A  = a  (T  –  T 0 ), 
a first-order phase transition results.

The excess free energy is written as

 G a T T B CC
XS( ) ( )η η η η= − + +2 3 4  

TC

Temperature, →

a

C P
XS

Figure  15.15   Plot of excess heat capacity vs. temperature for the landau 2-4 case of 
figure  15.12. note the finite discontinuity at the critical temperature.
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Taking the first derivative of G XS  with respect to η  yields three possible equilibrium 
solutions:

 η ηeq eq and = = − ± − −
0

3 9 32

8

2B B aC T T

C
C( )

 

At very high temperatures, the only real solution to the equation is ηεθ   = 0. Since
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this is a minimum for G XS  (Figure  15.16).
As the temperature is lowered a temperature is reached (T 0  ) where the free energy 

of the disordered phase (η  = 0) equals that of the ordered phase (see Figure 15.16). 
This two phase equilibrium is a signature of a first order phase transition. As the 
temperature continues to be lowered, there are two minima in the free energy curve, 
one for the ordered phase and one for the disordered phase. However, the one for the 
disordered phase is metastable. Finally, at lower temperatures the minima at η  = 0 
becomes a maximum: if the disordered phase could have been supercooled to this 
temperature it becomes unstable and the phase orders. This is the T C   temperature of 
the phase. Sometimes this is called the instability of temperature on cooling. 

There is a clear discontinuity of the excess free energy on cooling: at T C  , the 
ordered state with a finite order parameter becomes the stable state. The order param-
eter versus temperature plot of this case is shown in Figure  15.17. The discontinuity 
is apparent.

GXS

– η + η

T ~ TC < T0

T ~ T0
T > T0

Figure  15.16   G xs  for the landau 2-3-4 model above T0  , near T 0  , and below T 0   and at T C  . the 
nonsymmetrical first-order character of the transition is apparent. (Courtesy of 
ms Caroline Gorham.)
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Case (iii): The 2‑4‑6 Case 
For this case, A  ≠  0, C  ≠  0, and E  ≠  0.

Like the 2-4 case, the free energy in this case is symmetrical about η  = 0. As 
previously, only the quadric term is given a temperature dependence, and C  <  0 
and E  >  0 are taken to be independent of T  and P . The sixth-order term insures the 
proper thermodynamic behavior at low temperatures, yielding real solutions for the 
order parameter (Figure  15.18).

The interesting feature of this case is that even though the symmetry of the excess 
free energy of the low-temperature phase is symmetric about η   = 0, the phase transi-
tion is first order. At T  = T C   there are three minima: two at nonzero order parameters 
and one at the disordered state (η  = 0). Note that in this case, at low enough tempera-
tures (e.g., T 4 ), the disordered phase becomes unstable (negative curvature at η  = 0) 
and the ordered state could form continuously from a supercooled disordered state. 
As in the 2-3-4 case, the instability temperature of the disordered phase is less than 
the transition temperature.
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= 1

1

TC

Figure  15.17   the order parameter versus reduced temperature (T /T C  ) plot for landau 2-3-4 
case displaying a first order phase transition.

η−η

T1
T2 TC T3

T4

GXS(η)

Figure  15.18   the excess Gibbs free energy for the landau 2-4-6 case (A , C , and E  ≠  0, 
but C  <  0). at T 0 , the disordered phase has the same free energy as the two 
variants of the ordered phase. T 1  >  T 2  >  T C  >  T 3  >  T 4 . this is the case of a 
symmetrical first-order phase transition.
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In each of the preceding three cases, it can be seen that the η  versus T  plot has 
a nonzero slope as T  approaches absolute zero (Figures 15.4 and 15.17). This is dis-
cussed further in Qualitative Problem 1 of this chapter.

Although this approach to the modeling of phase transformations is simple, 
some important aspects of the thermodynamics are present (the order of the transi-
tion, the stability of phases, entropy, etc.). The Landau model is used in many fields 
and can be extended to nonhomogeneous phases by adding gradient terms of the 
order parameter. In addition, two or more order parameters may be included in the 
expansion and the interaction of the different types of order can be examined (see 
Qualitative Problem 2).

15.7 SUMMArY

In this chapter, several direct applications of the thermodynamics presented in the 
first 10 chapters of the text were applied to phase transformations. In the chapter, we

• Defined the terms phase  and phase transformation 
• Saw how to determine the driving force for nucleation with and without composi-

tion changes
• Discussed the importance of T 0  curves in the equilibrium phase diagram to the 

understanding of phase transformations
• Discussed the importance of surface energy in determining the equilibrium shape 

of crystals as well how surface energy effects can favor certain sites for heteroge-
neous nucleation

• Discussed how capillarity effects local compositional equilibrium and how surface 
energy produces the driving force for particle coarsening

• Introduced the Landau model of the excess free energy and showed that it leads to 
two distinct types of phase transitions

15.8 CONCePtS AND terMS INtrODUCeD IN ChAPter 15

The reader should write out brief definitions or descriptions of the following 
terms. Where appropriate, equations may be used.

Amorphous solid
Barrier to nucleation
Capillarity
Congruent transformation
Critical nucleus
Diffusionless transformation
Driving force
Equilibrium shapes
Facets
Gibbs– Wulff construction
Heterogeneous nucleation
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Homogeneous nucleation
Instability
Landau model of free energy
Martensite
Massive transformation
Metallic glass
Nucleation
Particle coarsening
Surface energy 
T 0  curves

15.9 QUALItAtIVe eXAMPLe PrOBLeMS

Qualitative Example Problem 1 

Calculate the slope of the η  versus temperature plot for the 2-4 model of a transition 
as the temperature approaches 0 K. Discuss this in terms of the Third Law prediction.

Solution to Qualitative Problem 1 
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The slope of the variation of the order parameter η  with temperature as η  →  1 at 
T  = 0 K is negative in this model, which is at variance with the predicted slope of 
zero according to the requirements of the Third Law of Thermodynamics.

See also Qualitative Problem 2 of Chapter 9, where the slope of the curve is 
shown to be zero as the temperature approaches absolute zero for systems which 
conform to the Third Law.

Qualitative Example Problem 2 

The Landau expansion for a higher-order transition is written as

 G A CXS    (C 0)= + >η η2 4  

The Landau expansion that includes a second-order parameter (strain) can be writ-
ten as:
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 G A CXS
S

2
El S

2 
1
2

 C    (C 0)= + + + >η η λε η ε2 4  

where:
 ε S  is the strain in the phase
 λ  is the coupling constant between the strain and the order parameter η 
 CEl  is an elastic constant

Show that this coupling can change the phase transition into a first-order transi-
tion and delineate under what conditions this occurs.

Solution to Qualitative Problem 2 

First we minimize the free energy with respect to the strain
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Now we substitute this value in the free energy and obtain
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If the coupling term λ   is positive and large or if the elastic constant is small, the term 
multiplying η 4  may become negative. This is no longer a higher-order transition. 
When the second term becomes negative, we must include an η 6  term for stability.

 PrOBLeMS

 15 .1* 2‑4 Landau Case:  
   The excess Gibbs free energy as a function of order parameter for a solution is 

written as

 G G G a T T CC
XS

ord dis= − = − +( )η η2 4  

 where G dis  is the free energy of the disordered phase and a  and C  are positive 
constants.
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 a.  Obtain an expression for the excess entropy of the equilibrium ordered 
phase as a function of temperature.

 b. Determine the value of Δ C P   = C P  ord  –  C P  dis  at the transition temperature T C  .
15.2 * 2‑4‑6 Landau Case 
 The Gibbs energy as a function of order parameter for a solution is written as

 G a T T C EC= − + +( )η η η2 4 6  

 For this case, assume C  <  0 and a  and E  are positive.
 a.  Find the nonzero value of the order parameter of the solution that has the 

same Gibbs energy as that of the disordered solution.
 b.  Sketch the Gibbs energy versus η  curve for the temperature in question in 

(a). This temperature can be called T 0 .
 c.  Determine if the transformation for this alloy is first order. Explain.
 d.  Calculate the heat of transformation, Δ H 0, for this disorder/order transfor-

mation in terms of (a), η 0 and T tr, where η 0 is the order parameter at the 
equilibrium transition temperature T 0.

 e. What is the significance of the sign of Δ H tr for this transformation?
15.3* 2‑4  Landau Case 
 Using the equation

 G a T T CXS( ) ( )η η η= − +0
2 4  

 show that the excess enthalpy for the Landau model with B  = 0 and C >  0 is

 ∆H
a T T

T
C

C

XS = −
2

2 2( )  

15.4*   A solid is held at high temperature until equilibrium is attained. Its surface dis-
plays grooves, as shown in Figure  15.19.

 a.  Write an expression for the relationships between the grain boundary 
energy of α 1  and α 2 .

 b. Which grain boundary has the largest energy, α 1 /α 2  or α 2 /α 3 ?
 c. If ϕ ij  goes to π , what is the value of the grain boundary energy?
 d. If ϕ ij  goes to 0, what is the value of the grain boundary energy?

15.5*   Small cylindrical particles have been observed to nucleate in certain alloy 
systems.

 a.  What values of r  and l  will minimize the energy barrier to the formation of 
these particles?

 b. What surface energies favor the formation of long, thin cylinders? Explain.
• γ 1  is the surface energy of the circular face.
• γ 2  is the surface energy along the length of the cylinder.

 Note : Assume the volume of the particle is constant.
15.6* 2‑6 Landau Case 
 The Gibbs energy of a phase can be written in terms of its order parameter as
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 G a T T EC= − +( )η η2 6  

 where a  >  0 and E  >  0
 a.  What is the temperature T 0  where the disordered phase has the same Gibbs 

energy as the equilibrium ordered phase? Show work.
 b. What is the value of the order parameter at T 0 ?
 c. Is this a first-order or higher-order phase transition? Explain.
 d.  Show mathematically that, for T  <  T C , the disordered phase is unstable.

α1 α2 α3

φ12 φ23

Figure  15.19   Grain boundary grooves arising from grain boundaries with different grain 
boundary energies.
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APPeNDIX A

Selected thermodynamic and 
thermochemical Data

tABLe A.1: the StANDArD GIBBS Free eNerGY 
ChANGeS FOr SeVerAL reACtIONS

Table  A.1 lists the standard Gibbs free energy changes for selected reactions in 
the form

 ∆ = +G A BTT
�  J  

or

 ∆ = + +G A BT T CTT
� ln  J  

and lists the range of temperature in which the expression is valid.
Example : For the oxidation of solid copper to form solid cuprous oxide accord-

ing to

 2
1
2

2 2Cu O Cu O( ) ( ) ( )s g s+ =  

 ∆ G °  = –  162,200 +  69.24T  J

in the range 298– 1356 K. Thus, at the melting temperature of Cu, 1356 K,

 ∆ = + ×
=

G1356 162 200 69 24 1 356

68 311
 K

 J

� −
−

, . ,

,
 

For the oxidation of liquid copper to form solid cuprous oxide according to

 2
1
2

2 2Cu O Cu O( ) ( ) ( )l g s+ =  

 ∆ = +G TT
� −188 300 88 48, .  J  

in the range 1356– 1509 K. Thus, at 1356 K,

 ∆ = + ×
=

G1356 188 300 88 48 1 356

68 321
 K  J

 J

� −
−

, . ,

,
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table  A.1  the Standard Gibbs Free energy Changes for Several reactions

reaction Δ  G°, J range, K 

2ag( s  )  + ½ o2( g  )  = ag2 o( s  ) – 30,540 + 66.11 T 298– 463

al( l  )  = [al](1 wt% in fe) – 43,100 –  32.26 T 

2al( l  )  + 1.5o2( g  )  = al2 o3( s  ) – 1,687,200 + 326.8 T 993– 2327

C( s  )  + ½ o2( g  )  = Co( g  ) – 111,700 –  87.65 T 298– 2000

C( s  )  + o2( g  )  = Co2( g  ) – 394,100 –  0.84 T 298– 2000

C( s  )  + ½ o2( g  )  + ½ s2( g  )  = Cos( g  ) – 202,800 –  9.96 T 773– 2000

C( gr  )  + 2h2( g  )  = Ch4( g  ) – 91,040 + 110.7 T 773– 2000

C( gr  )  = [C](1 wt% in fe) 22,600 –  42.26 T 

Cao( s  )  + Co2( g  )  = CaCo3( s  ) – 168,400 + 144 T 449– 1150

2Cao( s  )  + sio2( s  )  = 2Cao· sio2( s  ) – 118,800 –  11.30 T 298– 2400

Coo( s  )  + so3( g  )  = Coso4( s  ) – 227,860 + 165.3 T 298– 1230

2Cr( s  )  + 1.5o2( g  )  = Cr2 o3( s  ) – 1,110,100 + 247.3 T 298– 1793

2Cu( s  )  + ½ o2( g  )  = Cu2 o( s  ) – 162,200 + 69.24 T 298– 1356

2Cu( l  )  + ½ o2(g)  = Cu2 o( s  ) – 188,300 + 88.48 T 1356– 1509

2Cu( s  )  + ½ s2( g  )  = Cu2 s( s  ) – 131,800 + 30.79 T 708– 1356

3fe(α )  + C( gr  )  = fe3 C( s  ) 29,040 –  28.03 T 298– 1000

3fe(γ )  + C( gr  )  = fe3 C( s  ) 11,234 –  11.00 T 1000– 1137

fe( s  )  + ½ o2( g  )  = feo( s  ) – 263,700 + 64.35 T 298– 1644

fe( l  )  + ½ o2( g  )  = feo( s  ) – 256,000 + 53.68 T 1808– 2000

3fe( s  )  + 2o2( g  )  = fe3 o4( s  ) – 1.102,200 + 307.4 T 298– 1808

fe( s  )  + ½ s2( g  )  = fes( s  ) – 150,200 + 52.55 T 412– 1179

h2( g  )  + Cl2( g  )  = 2hCl( g  ) – 188,200 –  12.80 T 298– 2000

h2( g  )  + I2( g  )  = 2hI( g  ) – 8,370 –  17.65 T 298– 2000

h2( g  )  + ½ o2( g  )  = h2 o( g  ) – 247,500 + 55.85 T 298– 2000

hg( v  )  + ½ o2( g  )  = hg0( s  ) – 152,200 + 207.2 T 

li( g  )  + ½ Br2( g  )  = liBr( g  ) – 333,900 + 42.09 T 1289– 2000

mg( l  )  + Cl2( g  )  = mgCl2( l  ) – 603,200 + 121.43 T 987– 1368

mg( g  )  + ½ o2( g  )  = mgo( s  ) – 729,600 + 204 T 1363– 2200

2mgo( s  )  + sio2( s  )  = mg2 sio4( s  ) – 67,200 + 4.31 T 298– 2171

mgo( s  )  + Co2( g  )  = mgCo3( s  ) – 117,600 + 170 T 298– 1000

mgo( s  )  + al2 o3( s  )  = mgo· al2 o3( s  ) – 35,560 –  2.09 T 298– 1698

mn( s  )  + ½ o2( g  )  = mno( s  ) – 388,900 + 76.32 T 298– 1517

n2( g  )  + 3h2( g  )  = 2nh3( g  ) – 87,030 + 25.8 T  ln T  + 31.7 T 298– 2000

2ni( s  )  + o2( g  )  = 2nio( s  ) – 471,200 + 172 T 298– 1726

2ni( l  )  + o2(g)  = 2nio( s  ) – 506,180 + 192.2 T 1726– 2200

½ o2(g)  = [o](1 wt% in fe) – 111,070 –  5.87 T 

Pb( l  )  + ½ o2( g  )  = Pbo( s  ) – 208,700 + 91.75 T 600– 1158

Pb( l  )  + ½ o2( g  )  = Pbo( l  ) – 181,200 + 68.03 T 1158– 1808

Pb( l  )  + ½ s2( g  )  = Pbs( s  ) – 163,200 + 88.03 T 600– 1386

(Continued)
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tABLe A.2: the CONStANt-PreSSUre MOLAr 
heAt CAPACItIeS OF VArIOUS SUBStANCeS

The constant-pressure molar heat capacities are presented as

 c a bT cTp = + + –2 J/K  

or as

 c a bT cT dTp = + + +–2 2 J/K  

and Table  A.2 includes the ranges of temperature in which the expressions are valid.
Example : For Ag in the range 298– 1234 K,

 c T Tp = + × + ×− −21 30 8 54 10 1 51 103 5 2. . . J/K  

and for graphite in the range 298– 1100 K,

 c T T Tp = + × − × − ×− − −0 0 0 03 5 2 6 2. . . .11 38 94 1 1 48 1 17 38 1 J/K  

tableA.1 (Continued) the Standard Gibbs Free energy Changes for Several reactions

reaction Δ  G°, J range, K 

Pbo( s  )  + so2( g  )  + ½ o2( g  )  = 
Pbso4( s  ) 

– 401,200 + 261.5 T 298– 1158

PCl3( g  ) + Cl2( g  ) = PCl5( g  ) – 95,600 –  7.94 T  ln T  + 235.2 T 298– 1000

½ s2( g  )  + o2( g  )  = so2( g  ) – 361,700 + 76.68 T 718– 2000

si( s  ) +  o2( g  )  = sio2( s  ) – 907,100 + 175 T 298– 1685

3si( s  )  + 2n2( g  )  = si3 n4( s  ) – 723,800 + 315.1 T 298– 1685

sn(l ) + Cl2( g  )  = snCl2( l  ) – 333,000 + 118.4 T 520– 925

so2( g  )  + ½ o2( g  )  = so3( g  ) – 94,600 + 89.37 T 298– 2000

u( l  )  + C( gr  )  = uC( s  ) – 102,900 + 5.02 T 1408– 2500

2u( l  )  + 3C( gr  )  = u2 C3( s  ) – 236,800 + 25.1 T 1408– 2500

u( l  )  + 2C( gr  )  = uC2( s  ) – 115,900 + 10.9 T 1408– 2500

v( s  )  + ½ o2( g  )  = vo( s  ) – 424,700 + 80.04 T 298– 2000

Zn( v  )  + ½ o2( g  )  = Zno( s  ) – 460,200 + 198 T 1243– 1973

Note : standard states are noted by subscript.
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table A.2   the Constant-Pressure Molar heat Capacities of Various Substances ( c  p =  a 
+ bT + cT  – 2   J/mole· K) 

Substance a  b  × 10 3  c  × 10 – 5  range, K remarks 

ag 21.30 8.54 1.51 298– 1234 (T m  )

ag( l  ) 30.50 — — 1234– 1600

al( s  ) 20.67 12.38 — 298– 933(T m  )

al( l  ) 31.76 — — 933– 1600

al2 o3 106.6 17.78 – 28.53 298– 2325(T m  )

Ba(α ) – 473.2 1587.0 128.2 298– 648

Ba(β ) – 5.69 80.33 — 648– 1003

Bao 53.30 4.35 – 8.30 298– 2286(T m  )

Batio3 121.46 8.54 – 19.16 298– 1800

C(graphite) 0.11 38.94 – 1.48 298– 1100 – 17.38 ×  
10– 6 T 2 

C(graphite) 24.43 0.44 – 31.63 1100– 4000

C(diamond) 9.12 13.22 – 6.19 298– 1200

Co 28.41 4.10 – 0.46 298– 2500

Co2 44.14 9.04 – 8.54 298– 2500

Ca(α ) 25.37 – 7.26 — 298– 716 23.72 ×  
10– 6 T 2 

Ca(β ) – 0.36 41.25 — 716– 1115

Cao 49.62 4.51 – 6.95 298– 1177

Catio3 127.49 5.69 – 27.99 298– 1530

Cr( s  ) 24.43 9.87 – 3.68 298– 2130(T m  )

Cr2 o3 119.37 9.30 – 15.65 298– 1800

Cu( s  ) 22.64 6.28 — 298– 1356(T m  )

fe(α /δ ) 37.12 6.17 — 298– 1183/1664– 1809

fe(γ ) 24.47 8.45 — 1187– 1664

fe( l  ) 41.8 — — 1809– 1873

h2 o( g  ) 30.00 10.71 0.33 298– 2500

o2( g  ) 29.96 4.18 – 1.67 298– 3000

2mgo· 2al2 o3 · 5sio2 626.34 91.21 – 200.83 298– 1738(T m  )

n2 27.87 4.27 — 298– 2500

si3 n4 70.54 98.74 — 298– 900

sio2(α -quartz) 43.89 1.00 – 6.02 298– 847

ti 22.09 10.46 — 298– 1155

tio2(rutile) 75.19 1.17 – 18.20 298– 1800

Zr(α ) 21.97 11.63 — 298– 1136

Zr(β ) 23.22 4.64 — 1136– 2128

Zro2(α ) 69.62 7.53 – 14.06 298– 1478

Zro2(β ) 74.48 — — 1478– 2950(T m  )
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tABLe A.3: the StANDArD MOLAr heAtS OF FOrMAtION 
AND MOLAr eNtrOPIeS OF VArIOUS SUBStANCeS At 298 K

Example : For the reaction

 2
3
2

2 2 3Al O Al O( ) ( ) ( )s g s+ =  

 ∆ =H298 1 675 700 K  J� − , ,  

which is thus the standard molar heat of formation of Al2 O3  at 298 K. The molar 
entropy of Al2 O3  at 298 K is 50.9 J/K. By convention, the standard molar enthalpies 
of elements in their standard states at 298 K are assigned the value of zero.

table A.3   the Standard Molar heats of Formation 
and Molar entropies of Various 
Substances at 298 K

Substance ∆H298
o ,J S298

o ,J K

al2 o3 – 1,675,700 50.9
Ba — 62.4
Bao – 548,100 72.1
Batio3 – 1,653,100 107.9
C(graphite) — 5.73
C(diamond) 1,900 2.43
Ch4 – 74,800 186.3
Co – 110,500 197.5
Co2 – 393,500 213.7
Ca — 41.6
Cao – 634,900 38.1
Catio3 – 1,660,600 93.7
3Cao· al2 o3 · 3sio2 – 6,646,300 241.4
Cao· al2 o3 · sio2 – 3,293,200 144.8
Cao· al3 o3 · 2sio2 – 4,223,700 202.5
2Cao· al2 o3 · sio2 – 3,989,400 198.3
Cr2 o3 – 1,134,700 81.2
h2 o( g  ) – 241,800 232.9
n2 — 191.5
o2 — 205.1
sio2,(α -quartz) – 910,900 41.5
si3 n4 – 744,800 113.0
ti — 30.7
tio – 543,000 34.7
ti2 o3 – 1,521,000 77.2
ti3 o5 – 2,459,000 129.4
tio2 – 944,000 50.6
Zr — 39.0
Zro2 – 1,100,800 50.4
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tABLe A.4: the SAtUrAteD VAPOr PreSSUreS 
OF VArIOUS SUBStANCeS

The saturated (equilibrium) vapor pressures of substances, in the stated ranges of 
temperatures, are presented in the form

 ln ( ) lnp
A

T
B T C atm = + +−  

Example : The saturated vapor pressure exerted by liquid CaF2  in the range of tem-
perature 1691– 2783 K is given by

 ln ( )
,

. ln .p
T

T atm = +− −50 200
4 525 53 96  

Thus, at its normal boiling temperature of 2783 K, the saturated vapor pressure of 
liquid CaF2  is

 ln ( )
,
,

. ln( , ) .p atm = +

=

− −50 200
2 783

4 525 2 783 53 96

0

 

That is, at the normal boiling temperature, the saturated vapor pressure is 1 atm.

table A.4   the Saturated Vapor Pressures of Various Substances  
ln (atm) / lnp T B T C = − + + A

Substance A  B  C  range, K 

Caf2(α ) 54,350 – 4.525 56.57 298– 1430

Caf2(β ) 53,780 – 4.525 56.08 1430– 1691(T m  )

Caf2( l  ) 50,200 – 4.525 53.96 1691– 2783 (T b  )

fe( l  ) 45,390 – 1.27 23.93 1809 (T m  )– 3330 (T b  )

hg( l  ) 7,611 – 0.795 17.168 298– 630 (T b  )

mn( l  ) 33,440 – 3.02 37.68 1517 (T m  )– 2348 (T b  )

siCl4( l  ) 3,620 — 10.96 273– 333 (T b  )

Zn( l  ) 15,250 – 1.255 21.79 693 (T m  )– 1177 (T b  )
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tABLe A.5: MOLAr heAtS OF MeLtING AND trANSFOrMAtION

Example : At the melting temperature of Ag (1234 K), the enthalpy change for

 Ag  Ag( ) ( )s l→  

is 11.090 J. Thus, at 1234 K, the molar heat of melting of Ag is 11,090 J. The change 
in molar entropy due to melting at 1234 K is thus

 ∆ = =H

T
m

m

11 090
1234

8 987
,

.  J/K  

At 1187 K, the enthalpy change for the transformation

 Fe Fe( ) ( )α γ→  

is 670 J. The corresponding change in the molar entropy at 1187 K is thus

 ∆ = ∆ = =S
H

T
trans

trans

trans

 J/K
670

1187
0 56.  

table A.5    Molar heats of Melting and transformation

Substance trans. ∆H trans  J, T  trans  , K 

ag s  →  l 11,090 1,234

al s  →  l 10,700 934

al2 o3 s  →  l 107,500 2,324

au s  →  l 12,600 1,338

Ba α  →  β 630 648

Ba β  →  l 7,650 1,003

Cu s  →  l 12,970 1,356

Ca α  →  β 900 716

Caf2 s  →  l 31,200 1,691

fe α  →  γ 670 1,187

fe γ  →  δ 840 1,664

fe δ  →  l 13,770 1,809

h2 o s  →  l 6,008 273

K2 o· B2 o3 s  →  l 62,800 1,220

mgf3 s  →  l 58,160 1,563

na2 o· B2 o3 s  →  l 67,000 1,240

Pb s  →  l 4,810 600

Pbo s  →  l 27,480 1,158

si s  →  l 50,200 1,685

v s  →  l 22,840 2,193

Zr α  →  β 3,900 1,136

Zro2 α  →  β 5,900 1,478
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APPeNDIX B

exact Differential equations

Consider an initial state of a system defined by the parameters x , y , z  and a final 
state at an infinitesimal distance x + dx , y  + dy , z  + dz . Movement from the initial to 
the final state causes a change in its dependent variables, such as the volume of the 
system dV , given by

 dV V x dx y dy z dz V x y= + + + −( , , ) ( , , ) z  (B.1)

which corresponds to

 dV
V

x
dx

V

y
dy

V

z
dz

y z x z x y

= ∂
∂







+ ∂
∂









 + ∂

∂




, , ,

 (B.2)

Each function in parentheses in Equation B.2 is a partial derivative  of the function 
V (x ,y ,z ) with respect to one of the variables— that is, the derivative of V  with respect 
to one variable at constant values of the other two variables. The differential dV , 
which is the sum of the partial derivatives, is called a total differential and it is an 
exact differential if V is as state function.

Consider the function

 V x y z x y xz, ,( ) = + 2 3  

Its partial differentials are

 
∂
∂







= + ∂
∂









 = ∂

∂






=V

x
xy z

V

y
x y

V

z
x

y x x z x y, , ,

; ;2 33 2 2  

and the exact differential is

 dV xy z dx x y dy xdz= +( ) + +2  33 2 2  (B.3)

The exact differential given by Equation B.2 has the properties

 
∂
∂ ∂









 = ∂

∂ ∂










∂
∂ ∂









 = ∂

∂ ∂










∂2 2 2 2 2V

x y

V

y x

V

y z

V

z y
; ;

VV

z x

V

x z∂ ∂








 = ∂

∂ ∂










2

 (B.4)

Conversely, the differential

 dV Xdx Ydy Zdz= + +  (B.5)
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is exact if there exists a function V (x ,y ,z ) for which

 X
V

x
Y

V

y
Z

V

zyz xz xy

= ∂
∂







= ∂
∂









 = ∂

∂






; ;  (B.6)

and thus, from Equation  B.4, it follows that

 
∂
∂

= ∂
∂

∂
∂

= ∂
∂

∂
∂

= ∂
∂

X

y

Y

x

Y

z

Z

y

Z

x

X

z
; ;  (B.7)

The relationships given by Equation  B.7 are a necessary and sufficient condition 
for Equation  B.5 to be an exact differential. The application of Equation  B.7 shows 
Equation  B.3 to be an exact differential as follows:

 
∂ +

∂
= ∂

∂
=( )

;
( )2

6
3

6
3

2
2 2

2xy Z

y
xy

x y

x
xy  

 
∂

∂
= ∂

∂
=( )

;
( )3

0 0
2 2x y

z

x

y
 

 
∂
∂

= ∂ +
∂

=( )
;

( )x

x

xy z

z
1

2
1

3

 

Thermodynamic functions that are exact are called thermodynamic state functions . 
State functions do not depend on the path that is taken to change them. Their equi-
librium values at any state do not depend on the history of the paths taken, only the 
values of their independent variables.
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APPeNDIX C

the Generation of Additional 
thermodynamic Potentials as 

Legendre transformations

We have found for a simple thermodynamic system that the internal energy U  is a 
function of the independent variables entropy and volume; that is, U  = U  (S , V ). This 
appendix details the mathematical method used in Chapter 5 to obtain the other 
thermodynamic potentials of the simple system. We also give a method to obtain all 
of the thermodynamic potentials for any number of dependent variables.

The variation of the dependent variable y  with the independent variable x  can 
be represented as the locus of points satisfying the relation y = y (x ), as shown in 
Figure  C.1. It can also be shown as the envelope of a family of tangent lines shown in 
Figure  C.2. In Figure C.1, every point in the plane is described by two coordinates, 
x  and y , and every line in the plane in Figure C.2 can be described by two numbers, 
m  and ψ , where m  is the slope of the line and ψ  is the intercept of the line with the 
y -axis. Then, just as the relation y = y (x ) selects a subset of all possible points (x ,y ), 
a relation ψ  = ψ (m ) selects a subset of all possible lines (m ,ψ ). Knowledge of the 
intercept ψ  of the tangent lines as a function of the slopes m  allows the construction 
of the family of tangent lines and thus the curve for which they are the envelope. 
Thus, the relationship

 ψ ψ= ( )m  (C.1)

is equivalent to the relation y = y (x ), and in Equation  C.1, m  is the independent vari-
able. The computation of the relation ψ  = ψ (m ) from the known relation y = y (x ) 
is known as a Legendre transformation  (Adrien-Marie Legendre, 1752– 1833). 
Figure  C.3 shows a tangent line of slope m  going through the point x ,y . If the inter-
cept with the y axis is ψ , then

 m
y

x
= −

−
ψ
0

 (C.2)

or

 ψ = y mx–  (C.3)

Differentiation of the known equation y = y (x ) gives m = m (x ), and elimination of x  
and y  gives the desired relation ψ  and m . The function ψ  is known as the Legendre 
transform of y .
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Equation  3.12 gives the variation of the dependent variable U  on the independent 
variables S  and V  for one mole of a closed system which is undergoing a process 
involving a change of volume against the external pressure as the only form of work 
performed on, or by, the system.

 dU TdS PdV= –  (3.12)

A schematic variation of U  with V  at constant S  is shown in Figure  C.4. Using the 
geometry procedure outlined in Figure  C.3 gives

 m
U

V
= −

−
ψ
0

 

y

x

Figure C.2    the family of tangent lines ψ  = ψ (m ).

y

x 

Figure C.1   the locus of points satisfying the relation y = y (x ).
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which rearranges to give

 ψ = U mV–  (C.4)

From Equation  3.12, the slope of the line, m , is

 
∂
∂







=U

V
P

S

–  

and thus, Equation  C.4 becomes

y

y = y Slope m

y = y

x = 0 x = x
x

Figure C.3    Geometry procedure for obtaining ψ , the legendre transform of y .

Slope m

Constant S

U

U = U

U = y

V = 0 V = V V

Figure C.4    Geometry procedure for obtaining ψ , the legendre transform of U  at constant S .
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 ψ = +U PV  

This thermodynamic potential is called the enthalpy , H  (see Equation  2.4). The 
enthalpy is thus a Legendre transform of the internal energy, U , given as

 H U PV= +  (C.5)

Differentiation of Equation  C.5 gives

 dH dU PdV VdP= + +  

which in combination with Equation  3.12 gives

 dH TdS VdP= +  (C.6)

which is an expression for the variation of the dependent variable H  with the inde-
pendent variables S  and P . Since H  is a state function, we can write

 dH
H

S
dS

H

P
dP

P S

= ∂
∂







+ ∂
∂







 

Comparison of this equation with Equation  C.6 gives the thermodynamic definitions 
of T  and V  as

 T
H

S P

= ∂
∂







 

and

 V
H

P S

= ∂
∂







 

Figure  C.5 shows a schematic variation of U  with S  at constant V , and the geometry 
procedure gives

 m
U

S
= −

−
ψ
0

 

or

 ψ = U mS–  (C.7)

From Equation  3.12, the slope of the line, m , is

 ∂
∂







=U

S
T

V

  

and thus, Equation  C.7 becomes
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 ψ = U TS–  (C.8)

which is called the Helmholtz free energy, A  (see Equation  5.1). The Helmholtz free 
energy is thus another  Legendre transform of the internal energy, U , given as

 A U TS= –  (C.9)

Differentiation of Equation  C.9 gives

 dA dU TdS SdT= – –  

which, in combination with Equation  3.12, gives

 dA SdT PdV= – –  (C.10)

which is an expression for the variation of A , as the dependent variable, with the 
independent variables T  and V . Since A  is a state function (and therefore an exact 
differential), we can write

 dA
A

T
dT

A

V
dV

V T

= ∂
∂







+ ∂
∂







 

Comparison of this equation with Equation  C.10 gives the thermodynamic definition 
of S  and P  as

 S
A

T V

= ∂
∂







−  

Slope m

Constant V

U

U = U

U = y

S = 0 S = S S

Figure C.5   Geometry procedure for obtaining ψ , the legendre transform of U  at constant V .
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and

 P
A

V T

= ∂
∂







−  

The thermodynamic variable which is dependent on T  and P  is obtained as a 
Legendre transform of A  in which V  in Equation  C.10 is replaced by P . The varia-
tion of A  with V  at constant T  gives

 m
A

V
= 





−
− 0

ψ
 

or

 ψ = A mV–  (C.11)

From Equation  C.10,

 m
A

V
P

T

= ∂
∂







= –  

Thus, Equation  C.11 becomes

 ψ = + = + =A PV U TS PV H TS– –  

which is called the Gibbs free energy , G  (defined in Section  5.4).

 G H TS= –  (C.12)

Differentiation of Equation  C.12 gives

 dG dH TdS SdT= – –  

which, in combination with Equation  C.6 gives

 dG SdT VdP= +–  (C.13)

which is an expression for the variation of G , the dependent variable, on T  and P  as 
the independent variables. Comparison of Equation  C.13 with

 dG
G

T
dT

G

P
dP

P T

= ∂
∂







+ ∂
∂







 

gives the thermodynamic definitions of S  and V  as
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 S
G

T P

= ∂
∂







−  

and

 V
G

P T

= ∂
∂







 

Thus, starting with the First Law as 

 dU TdS PdV= –  (3.12)

we have

 U U S V= ( ),  

 H H S P= ( ),  

 A A T V= ( ),  

and

 G G T P= ( ),  

Now suppose the First Law is written to include another form of work which may be 
performed on or by the system.

 dU TdS PdV Xdy= +–  

where:
 X  is the force applied by or on the system
 y  is the resulting displacement

We now have 

 U U S V y= ( ), ,  

 H H S P y= ( ), ,  

 A A T V y= ( ), ,  

and

 G G T P y= ( ), ,  
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From this, the following additional fundamental equations can be obtained.

 dH TdS VdP Xdy= + +  

 dA SdT PdV Xdy= +– –  (C.14)

 dG SdT VdP Xdy= + +–

We may also form the Legendre transforms of the internal energy by considering the 
additional work terms*

 dU TdS PdV ydX′′ = – –  

 dH TdS VdP ydX′′ = + –  (C.15)

 dA SdT PdV ydX′′ = – – –  

 dG SdT VdP ydX′′ = +– –  

These have been primed to distinguish them from Equation  C.14. We see that the 
addition of another independent variable to the First Law increases the number of 
fundamental equations to eight. Since each member of the thermodynamic conjugate 
pairs of variables in the First Law may be considered a dependent variable, there will 
be 2n   fundamental equations for the First Law, written with n  terms.

We now look at a specific application of the three-term First Law: namely, the 
equation that includes magnetic terms. We have seen that the magnetic work done on 
or by the system can be written as

 δ µw V dMmag = 0 H  

where V  is the volume and we assume H
��� ���

/ /M .
We write the First Law as

 dU TdS PdV V dMmag = +– µ0 H  

and obtain the other three magnetic fundamental equations as

 dH TdS VdP V dMmag = + + µ0 H  

 dA SdT PdV V dMmag = +– – µ0 H  (C.16)

 dG SdT VdP V dMmag = + +– µ0 H  

* The double prime is used to distinguish these terms from dU, dH, dA and dG.
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As above, we also get the following additional fundamental equations:

 dU TdS PdV VMd′′ =mag – – µ0 H  

 dH TdS VdP VMd′′ = +mag – µ0 H  (C.17)

 dA SdT PdV VMd′′ =mag  – – – µ0 H  

 dG SdT VdP VMd′′ = +mag – – µ0 H  

Which fundamental equation one uses in dealing with a magnetic system depends on 
which of the thermodynamic variables are the independent ones (see Equation  5.11).
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Nomenclature

LISt OF SYMBOLS

 a   van der Waals constant
 a i    the activity of species i  with reference to a specified standard state
 A   Helmholtz free energy (or work function)
 b   van der Waals constant
 C   the number of components
 C   heat capacity
 c p    constant-pressure molar heat capacity
 c v    constant-volume molar heat capacity
 ej

i   the interaction parameter of i  on j 
 F   the number of degrees of freedom of an equilibrium
    Faraday’ s constant
 f   fugacity
 f i    the Henrian activity coefficient of the species i 
 fi (wt%)   the activity coefficient of the species i  with respect to the 1 weight 

percent standard state
 f j

i
  the interaction coefficient of i  on j 

 G   Gibbs free energy
 H   magnetic field
 H   enthalpy
 h i    the Henrian activity of the species i 
 h i  (wt %)  the activity of the species i  with respect to the 1 weight percent stan-

dard state
 K   the equilibrium constant
 k B    Boltzmann’ s constant
 M    magnetization
 m   mass
 n   the number of moles
 n i    the number of moles of the species i 
 N o   Avogadro’ s number
 P   pressure
 p i    the partial pressure of the species i 
 pi

�  the saturated vapor pressure of the species i 
 q   heat
 R   the gas constant
 S   entropy
 T   temperature
 T m    melting temperature
 T b     boiling temperature
 U   internal energy
 V   volume
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 w   work
 X i    the mole fraction of the species i 
 Z    partition function
 Z   the compressibility factor
 α   coefficient of thermal expansion
 α   the regular solution constant
 β S  adiabatic compressibility
 β T   coefficient of isothermal compressibility
 β  is equal to (kBT)–1

 γ   ratio of c p   to c v  
 γ i    the activity coefficient of the species i 
 γi

�   the Henry’ s law constant
 ε  i    the energy of the i th energy level
 ε j

i   the interaction parameter of i  on j 
 ε   electromotive force
 ε o,A  standard reduction potential of the species A 
 γ  surface energy
 η  efficiency of heat engine
 η   generalized order parameter
  µ  0       permeability of vacuum 
 µ  i    the chemical potential of the species i 
 σ  stress
 ϕ    the number of phases occurring in a system
 Ω  possible number of arrangements of microstates
 (s )  solid
 (l)   liquid
 (g )  gas

NOtAtION FOr eXteNSIVe therMODYNAMIC PrOPertIeS 
(eXeMPLIFIeD BY  G,   the GIBBS Free eNerGY) 

 G'    the Gibbs free energy of the system containing n  moles
 G   the Gibbs free energy per mole of the system
 Δ G  the change in G  due to a specified change in the state of the system
 Δ G M    the integral molar Gibbs free energy change due to mixing of the com-

ponents to form a solution
 Δ G M,id    the integral molar Gibbs free energy change due to mixing of the com-

ponents to form an ideal solution the molar Gibbs free energy of the 
species i 

 Gi
�   the molar Gibbs free energy of the species i  in its designated standard state

 Gi   the partial molar Gibbs free energy of i  in some specified solution
 ∆Gi

M  = G Gi i− �,  the partial molar Gibbs free energy of mixing of i 
 G XS    = Δ G M  – Δ G M  ,id , the integral excess molar Gibbs free energy of a 

solution
 Gi

xs  the partial molar excess Gibbs free energy of mixing of i 
 Δ G m   the molar Gibbs free energy of melting
 Δ G b   the molar Gibbs free energy of boiling
 ΔG0 the standard Gibbs free energy change for reaction as written
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Answers to Selected Problems

Chapter 1 

1.1*  The curvatures are proportional to the second derivatives:

 
∂
∂









 =

2

2
2V

P
V

T

Tβ  > 0  and 
∂
∂









 = >

2

2
2 0

V

T
V

P

α .

 The surface is convex. 

1.4   adiabatic compressibility 
α
βT

R

V
=

Chapter Two 

2.1   (la) 22.5 liters, (2a) w =  9244 J, (3a) q  = 9244 J, (4a) Δ U  = 0, (5a) Δ H =  
0, (lb) 19.13 liters, (2b) w =  5130 J, (3b) q = 0,  (4b) Δ U =  – 5130 J, (5b) 
Δ H=  – 8549 J

2.2   (a) w =  2270 J, q  = 5675 J; (b) w  = 0, q  = 6809 J; (c) w  = – 3278 J, q  = – 13.492 J;  
w Total = q  Total = –1008 J

2.3  V  = 1.52 liters, w  = 8.7 J
2.4  T  = 1620 K
2.5   (a) P  = 1 atm, V = 30.61 liters, T =  373 K; (b) Δ U =  2168 J, Δ H =  3000 J; 

(c) c v   = 21.7 J/mole· K, c p   = 30 J/mole· K
2.6  (a) +123.4 kJ, (b) – 22.5 kJ, (c) 0. Total work = 100.9 kJ done by the system.
2.7  p = 0.3 atm
2.8 * 

 

∆U

w RT RT

q C R T RT

i A A

i V A A

=

= −

= + −

∑
∑

0

2 2

2

  (a state function)

ln( )

( ) lln( ) ln( )2 2 2− = −C T RT RTV A A A

  

2.9*  

  w V dM V
TM

C
dM V

TM

C
V

MM M
f f f

f f

= ⋅ = ⋅ = =∫ ∫µ µ µ µ0
0

0
0

0

2

0
2 2

H
H

2.12*

   γ γ θ
αgb L

groove= 2
2

/ cos( )

Chapter Three 

3.1  (a) 5.76 J/K, (b) 0 J/K. (c) – 8.65 J/K
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3.2 
  a.  ∆ ∆ ∆U H q w S= = = = =0, .9 13 J/K
 b.  ∆ ∆ ∆U q H w S= = = = =1247 J 2 79 J 3 59 J/K, , , .0 0
 c.  ∆ ∆ ∆U H q w S= = = = = 3654 J  9 13 J/K0, , .
 d.  ∆ ∆ ∆U H q w S= = = = =– , – , – , .1247 J 2 79 J 831 J 5 98 J/K0
 totals: ∆ ∆ ∆U H w q S= = = = =0, , .2322 J 15 88 J/K

3.3  T 1  = 300 K, T 2  = 600 K. The isothermal expansion is conducted at 300 K.
3.4  Δ H  = 42750 J, Δ S  = 59.7 J/K
3.5   The final temperature is 323.32 K, which is greater than 323 K because the 

heat capacity increases with increasing temperature. Thus the decrease in 
temperature caused by withdrawing heat q  from hot copper is less than the 
increase in temperature caused by adding heat q  to cold copper. The quan-
tity of heat transferred is 1233 J and Δ S irr  = 0.6 J/K.

3.6 

 T T T w q q C T T C T TC C c c
f 2 1 2 f 2 1 f 1= ( ) = − = − − − −+ ′

1 2

1
1 2 1 2 , [ ( )] [ ( )]

3.8*
  a.  −21 23.

J

K

  b.   −19 4.
J

K

3.9*  w t t S= −( )2 1 ∆ , the area of the box in the T-S plot

Chapter Four 

4.1  R  ln 4, R  ln 8, 0, R  ln (32/27)
4.2  The total number of distinguishable complexions is

 
( )!

! !
2n

n n
 

   and, with n  being a multiple of 4, the number of complexions in the most 
probable distribution is

 
n

n n

n

n n

!
. ! . !

!
. ! . !0 5 0 5 0 5 0 5( ) ( )











 ( ) ( )













 (ii)

 The ratio of (ii) to (i) decreases with increasing n. 

4.3  Δ S conf  = 1.02 J/K
4.4  65.0 grams
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4.5* 

   S nk nk T
T

B B= + ∂
∂

ln
ln

Z
Z

4.6*

 a.    Z = 





=






+






∑
↑ ↓

exp exp exp
ε ε εi

B B Bk T k T k T

 b. at high T: equal numbers up and down
     at low temperatures: all up

Chapter Five 

5.1 
 dU TdS PdV= –  

 ∴ = +dS
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5.2 

 dU TdS PdV= –  
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dU

T

P

T
dV  

 ∴ ∂
∂







= ∂
∂







S

P T

U

PV V

1
 

 dU
U

T
dT

U

V
dV

V T

= ∂
∂







+ ∂
∂







 

 ∴ ∂
∂







= ∂
∂







∂
∂







U

P

U

T

T

PV V V

 

 ∂
∂







=

∂
∂







∂
∂







= ∂
∂







=T

P

V

P
V

T

U

T
c

V

T

P

T

V

v

−
β
α

and  

 ∴ ∂
∂







= ∂
∂







=U

P

c S

P

c

TV

v

V

v Tβ
α

β
α

and  

 c c
VT

c c
VT

p v v p
T

− −= ∴ =α
β

α
β

2 2

 

 ∴ ∂
∂







=S

P

c

T
V

V

pβ
α

α−  

5.3 
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A
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5.4 
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5.6 
 dH TdS VdP= +  
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5.8 
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5.11   The process is adiabatic. Therefore q = 0 and work done by the gas, 
w = P 2 v 2  –  P 1 v 1 . Thus Δ H = q –  w +  (P 2 V 2  –  P l  V l  ) =  0:
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5.12 
a.  l. ∆ ∆ ∆ ∆ ∆ ∆U H R A G T RT= = = = = − = −  S ln 4   S ln 40, ,
 2. ∆ ∆ ∆ ∆ ∆U H S R A G RT= = = = = −0, , ln 8  ln 8
 3.  ∆ ∆ ∆ ∆ ∆U H S A H= = = = = 0
 4. ∆ ∆ ∆ ∆ ∆U H S R A G RT= = = ( ) = = − ( )0, / , / ln 32 27  ln 32 27
b.   ∆ ∆ ∆ ∆ ∆U R R A G RT= = = ( ) = = = −H  S ln V /V ln 2  ln 22 10, ,
c.  ∆ ∆ ∆ ∆ ∆U c   c   v 2 1 p 1 2 1= ( ) = ( ) = = −( )T T H T T S A U S T T– , – , , – ,2 0

 ∆ ∆G H S T T= ( )– –2 1  

d. ∆ ∆ ∆U c T T H c T T S c T Tv p p= − = − = ( )( ), ( ), / ,2 1 2 1 2 1ln

∆ ∆ ∆ ∆ ∆ ∆A U T T S T G H T T S T S= ( ) = ( ) S   2 1 1 2 2 1 1 2– – – , – – –  
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e. ∆ ∆ ∆U c T T H c T T S c T Tv p v= − = − = ( )( ), ( ), / ,2 1 2 1 2 1ln

∆ ∆ ∆ ∆ ∆ ∆A U T T S T S G H T T S T S= ( ) = ( )– – – , – – –2 1 1 2 2 1 1 2  

5.14*   
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Chapter Six 

6.1  Δ H 1600  = – 1.086 ×  106  J, Δ S 1600  = – 178.5 J/K
6.2   H diamond, 1000  –  H graphite, 1000  = 1037 J. Thus the oxidation of diamond at 1000 

K is 1037 J/mole more exothermic than the oxidation of graphite.
6.3  Δ H 1000  = – 80,500 J, Δ S 1000  = 6.6 J/K
6.4   Increasing the pressure to 1000 atm increases the molar enthalpy by 612 J. 

This increase in molar enthalpy is achieved by increasing the temperature 
of Cu from 298 to 327 K at a pressure of 1 atm.

6.5   (a) Δ H  = – 435,000 J, Δ S  = – 94.75 J/K; (b) Δ H  = – 355,000 J, Δ S  = – 75.35 
J/K; (c) Δ H  = –  373,000 J, Δ S  = –80.15 J/K

6.6  15.1 kg
6.7  (a) 4745 K, (b) 2330 K
6.8   Δ G 800  = – 1.817 ×  106  J. If it is assumed that Δ c p   for the reaction is zero, 

Δ G 800  = Δ H 298  –  800Δ S  is calculated as – 1.811 ×  106  J, which involves a 
0.3% error.

6.9   a  = 3, b  = c  = 2, Δ H 298  = 99,700 J, Δ S 298  = 125.8 J/K, Δ G 298  = 62,210 J
6.10  1675 kJ
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6.11*   

 d   SdT  PdV  NdΩ = + + µ  

 Ω Ω=  T V m( , , )   

Chapter Seven 

7.1   (a) The triple point for α -β -vapor is T =  1163 K, p =  2.52 ×  10– 10  atm, and 
the triple point for β  -liquid-vapor is T =  1689 K, p =  8.35 ×  10– 5  atm. (b) 
T b   =  2776 K. (c) Δ H (α →  β   )  = 4739 J, Δ H m   =  29,770 J.

7.2  p Hg.373 K  = 3.55 ×  10– 4  atm
7.3  Condensation begins at 328 K; at 280 K 82.5% of the SiCl4  has condensed.
7.4  Eq. (I) gives the vapor pressure of solid zinc.
7.5 Δ H b  ,Fe,3330 K  = 342 kJ
7.6   p lCO  K2 298 73 3, ,( ) .=  atm. The triple-point pressure is 5.14 atm, and, as the 

1 atm isobar does not pass through the liquid-phase field, liquid CO2  is not 
stable at atmospheric pressure.

7.7  P =  2822 atm
7.8  The slopes of the lines at the triple-point are obtained from dP/dT =  Δ S /Δ V. 
7.9  T b   =  523 K
7.12* 

G

G
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L
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7.13* 
S

S+G

S+L
L

G+L

Gas

V ®

Chapter Eight 

8.1  The van der Waals equation containing the reduced variables is

 P
V

V TR
R

R R+





 =3

3 1 82 ( )−  

 Z cr  = 0.375; (∂ U/∂ V )T   = a/V 2  
8.2  n A  /n B   =  1, P =  1.414 atm
8.3   The tank contains 565 moles of van der Waals oxygen and 511 moles of 

ideal gas oxygen. As the gas is purchased by the tank-load, the same price 
purchases more moles of a van der Waals gas than it does an ideal gas.

8.4  w  = – 1384 J
8.5   (a) b  = 0.0567 1/mole, a  = 6.7712 · atm/mole2 ; (b) 0.170 1/mole; (c) P  (van der 

Waals) = 65.5 atm, P  (ideal gas) = 82.1 atm
8.6   With the virial equation w  = – 301 kJ, with the van der Waals equation 

w  = – 309 kJ, with the ideal gas law w  = – 272 kJ.
8.7   (a) f  = 688 atm, (b) P  = 1083 atm, (c) Δ G = 16,190 J with an nonideal con-

tribution of 790 J
8.9* 
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Chapter Nine 

9.1  Δ H  = 117,400 J, Δ S  = 59.63 J/K
9.2  γ Mn  = 1.08
9.3   (a) The average value of α  is 4396 ±  6 J which indicates that, with respect to 

the behavior of G xs , the solution is regular. (b) GFe
xs  J= 1583  and GMn

xs = 703  
(c) Δ G M   = –  9.370 J. (d) p Mn  = 0.0118 atm and p Fe  = 3.68 ×  10– 5  atm.

9.4  73,380 J
9.5  α  = –4578 J, a Sn = 0.418
9.6* 

a. 
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9.8  The temperature is increased by 2.37 degrees (K). 
9.10 ln γCd = 0.425 X XZn Zn

2 30 30+ . , aCd = 0.577
9.11  a Au  = 0.695, a Ni  = 0.85
9.14  ′′ < ′a a0 0

9.15* a B   = 0.824 

Chapter Ten 

10.1  T =  1317 K, X CaF2  = 0.53
10.2  (a) –  11,140 J, (b) zero
10.3  (a) 2418 K, (b) XAl O2 3 0 62= . , (c) 2444 K, (d) XAl O2 3 0 38= .
10.4  –  814 J
10.5  α l   = 38,096 J, T cr  = 2291 K
10.6  (a) ∆Hm,Ge

�  from liquidus = 21,527 J, (b) ∆Hm,Ge
�  from solidus = 33,111 J
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10.7   The maximum solubility of CaO in MgO is X CaO  = 0.066, and the maxi-
mum solubility of MgO in CaO is X MgO  = 0.15.

Chapter Eleven  

11.1 X XCO H2 2= = 0.182, XH O2 0 0677= . ,  XCO  = 0.568
11.2  43,800 J
11.3  CO2 /H2  = 1.276
11.4  1771 K
11.5  P T   = 0.192 atm, T  = 792 K
11.6  (a) p N   = 5.94 ×  10– 6  atm, (b) P T   = 3.18 ×  10– 9  atm
11.7  13.3 atm, ∆ =H573 50 900 K  J� − , , ∆ =H573 1107 K  J K� −  
11.8  PCl5 /PCl3  = 0.371
11.9   At P T   = 1 atm, pH2 1 05 10 8= ×. −  atm, pO2 0 0756= .  atm. At P T   = 10 atm, 

pH2 3 31 10 8= ×. −  atm, pO2 0 756= .  atm.
11.10 

 X XH l2 2=  = 0.165, XHI = 0 669. , T  = 906 K

11.11* 
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Chapter Twelve 

12.1  T  = 565 K

12.2  T m  ,Ni  = 1731 K, ∆ =Hm, ,Ni  J� 17 490 , ∆ =Sm,Ni 10.1 J K�

12.3  (a) T  = 462 K, (b) T  = 421 K
12.4  pH O2 = ×1 32 10 3. −  atm, and the oxidation reaction is exothermic.
12.5   Equilibrium would produce a gas containing 11.4% HCl, 46.6% H2 , and 

42% Ar. Therefore equilibrium is not attained.
12.6  The FeO disappears.
12.7  p Mg  = 2.42 ×  10– 2  atm
12.8  (a) T  = 1173 K, (b) pCO2 0 055= .  atm, (c) pCO2 1 23= .  atm
12.9   P  = 1 atm ( .pSO3 7 99 10 2= × − atm, pSO2 0 612= .  atm, pO2 0 306= .  atm)

12.10   99.1% of the sulfur is removed, and pS2
 in the effluent gas is 6.3 ×  10– 11  

atm
12.11  Δ G °  = 282,000 –  123T  J
12.12  0.76 moles of CH4  are consumed per mole of Fe produced.
12.13   Eq. (i) for solid Mg, Eq. (ii) for gaseous Mg, Eq. (iii) for liquid Mg, T m,  Mg  = 

930 K, T b,  Mg  = 1372 K
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12.14   54.92 g of Zn are oxidized to form ZnO and 29.78 g of Zn are evaporated, 
which leaves 115.3 g of metallic Zn in the crucible.

12.15  4.76 moles of CaCO3  are decomposed per mole of CH4  burned
12.16  X Hg  = 0.0152, X O2  = 0.0071
12.17  P T   =  1.651 atm, p CO  = 1.009 atm, pCO2 = 0 642.  atm

Chapter Thirteen 

13.1  a Cu  =  0.159
13.2  a Mg  = 6.4 ×  10– 4 
13.3  a PbO  = 0.5
13.4 X Cu  = 0.018. Increasing T  decreases the extent to which Cu is removed.
13.5  a C  = 0.5 pH2 0 92= .  atm
13.6  a FeO = 9.9 ×  10– 5 
13.7   (a) p pH CO2 2 = 2.15, (b) a C  = 0.194, (c) P T   = 5.16 atm, (d) the total pressure 

does not influence pO2
. 

13.8   With C  = 3 and P  = 3, F  = 2, which are used by specifying T  = 1000 K and 
[X Mn ] = 0.001. (X FeO ) = 1.22 ×  10– 3 , pO2 2 33 10 27= ×. −  atm.

13.9   For 2A + B = A2 B, ∆ =G1273 24 370 K  J� − , ; for A + 2B = A2 B, 
∆ =G1273 23 190 K  J� − , .

13.10  (a) 10– 3 , (b) 8.07 ×  10– 4 , (c) 7.14 ×  10– 3 , (d) 0.65
13.11  AG°  = – 567,500 J
13.12   pO2 5 17 10 10= ×. −  atm; h Al(1 wt% in Fe)  = 7.2 ×  10– 6 ; C  = 3, P  = 4, therefore F  

= 1 which is fixed by specifying T  = 1600° C
13.13  T max  = 2211 K, T min  = 1515 K
13.14  p Mg  = 0.053 atm
13.15  a MgO (min) = 0.027
13.16  p CO  = 0.739 atm, pCO2 0 0117= .  atm, p Zn  = 0.763 atm
13.17  aAl O2 3 0 129= .  
13.18   (a) wt% Al = 0.00042, wt% O = 0.0039; (b) wt% Al = 0.00054, wt% 

O = 0.0035
13.19  T max  = 1108 K
13.20  P  = 6917 atm
13.21  Wustite 0.904 <  p CO  <  3.196 atm, cementite 7.43 <  p CO  <  8.14 atm
13.22  T max  = 1026 K
13.23  a Zn = 0.154
13.24  [wt% O] = 1.9, k (1273 K) = 2.0
13.25   The formation of a manganese silicate melt as the deoxidation product 

decreases the activity of SiO2  to a value less than unity and thus shifts 
the equilibrium [Si] + 2[O] = (SiO2 ) to the right. For any given value of 
[wt% Si], the extent of deoxidation is maximized when the product of deox-
idation is an MnO-saturated silicate melt in which aSiO2 has its minimum 
value of 0.02.
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Chapter Fourteen 

14.1  Pb( s  )  + 2AgCl( s  )  = 2Ag( s  )  + PbCl2( s  ) , Δ G °  = – 94,560 J, Δ S °  = – 35.5 J/K
14.2  (a) – 103,400 J, (b) 27.98 J/K, (c) 8338 J/mole of Pb, (d) a Hg  = 0.71

14.3   ln ( )
, ,

.p
E

T T
O atm2

46 620 63 440
15 48= + −

14.4  Δ c p   = – 0.093 J/K
14.5  (a) a Al  = 0.673, (b) ∆ =GM

Al  J−2150 , (c) ∆ =H M
Al  J3329

14.6  (a) 1.62 ×  10– 6 , (b) 0.5, (c) 0.266 wt%, (d) 0.602 wt%
14.7   pH = 6.33, ℰ  = – 0.126 volts, [Pb4 +] = 3.1 ×  10– 62  moles/liter, HPbO2

910− −=  
moles/liter, PbO3

2 472 5 10− −= ×.  moles/liter, [PbO  4
4 2216 10− −] = × =  moles/

liter
14.8  2.20 volts, 1.17 volts
14.9  +6897 J, – 4513 J

Chapter Fifteen 

15.1*
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d. ∆H T a
C

E
= 





<0
2

0   since C < 0

e. Exothermic

15.4*

 a. γ γ φ
α αgb/ / cos1 2 2

122
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 b. α 1 /α 2  
 c. zero
 d. 2γα αi j/
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Absolute potential, 571
Activity quotient, 469
Adiabatic boundaries, 4
Adiabatic expansion, 40

of ideal gas, 66– 67
Adiabatic process, 38
Activation energy, 268
Al– C– O– N system, and phase equilibria in, 

523– 532
Allotropy, 162, 212
Alloy, 15, 115, 288, 329, 476– 477, 516, 519, 

624, 628
Amorphous solid, 630
Anodic oxidation reaction, 574, 602
Anolyte, 573
Atomic order parameter, 303– 306
Auxiliary functions, 122

Barrier, to nucleation, 633– 634
Berthollet, Claude Louis, 523
Berthollides, 523
Binary systems

containing compounds
The Ga–GaP system, 510– 512
The Mg–Si system, 512– 515

phase diagrams of, 356– 362
Blast furnace, 436
Boltzmann, Ludwig Eduard, 96
Boltzmann distribution, 104– 107
Boltzmann equation, 110– 111
Bond energy, 101, 271, 287– 288
Boudouard, Octave Leopold, 436
Boudouard reaction, 436
Boundaries, 4
Boyle, Robert, 9
Boyle’s law, 9, 11

Capillarity, and local equilibrium, 634– 636
Carbon–oxygen reactions, 443
Carnot, Nicolas Lé onard Sadi, 68
Carnot cycle, 69, 71, 72, 74
Cathodic reduction reaction, 574, 602
Catholyte, 573
Cell reaction, 569
Charge neutrality, 568
Charles, Jacques-Alexandre-Cesar, 9
Charles’ law, 9, 11
Chemical affinity, 381, 423
Chemical potential, 131– 134, 199– 200
Chemical reaction, 122, 131
Chemical work, 134

Chlorination, 433
Clapeyron, Benoî t Paul É mile, 206
Clapeyron equation, 206
Classical thermodynamics, 93, 111
Closed systems, 3– 4
Coefficient of thermal expansion, 10
Common tangent, 324, 341, 348, 352, 358, 361
Compressibility factor, 239, 240
Concentration cell, 577– 583
Condensation, 267– 268
Condensed and gaseous phases

and carbon oxides, 435– 442
and chlorination of iron, 433– 435
description, 414– 419
effect of phase transformations, 430– 433
Ellingham diagrams, 422– 429
and Gibbs free energy change with 

temperature, 419– 422
graphical representation of, 443– 447
overview, 413

Condensed-phase reactions, 413
Condensed solution

binary systems containing compounds, 
503– 515

criteria for, 469– 477
and dilute solute, 537– 547
and Gibbs equilibrium phase rule, 484– 489
graphical representation of, 516– 532
overview, 467– 468
and phase stability diagrams, 489– 503
solubility of gases in metals, 532– 537
standard state of, 477– 484

Configurational entropy, 81, 102– 104
Congruent solidification, 630
Congruent temperature, 325
Conservation of energy, 3, 23
Constant-pressure processes, 30– 31
Constant-temperature heat reservoir, 59
Constant-volume processes, 29– 30
Continuous transition, see  Higher-order 

transition
Conversion of energy, 3, 4
Corresponding states, 160
Covalent character, 567
Critical nucleus, 625
Critical point, 238
Cyclic process, 28

Dalton’s law, 231– 232
Daniell, John Frederick, 569
Daniell cell, 569, 572
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Debye, Peter Joseph William, 159
Debye model, 185
Degree, of mixed-up-ness, 95
Dependent thermodynamic variables, 5
Diathermal boundaries, 3, 4
Diffusionless transformation, 627
Dilute solute, and reaction equilibria, 537– 547
Dissipation of energy, 59
Dulong, Pierre Louis, 156
Dulong and Petit’s law, 156, 159, 186
Dynamic equilibrium, 267, 382

Efficiency of engine, 68
Einstein crystal, see  Einstein solid
Einstein model, 159
Einstein solid, 157
Electric potential, 569– 570, 572
Electrochemical reaction, 568
Electrochemical series, 596
Electrochemistry

and aqueous solution, 587– 590
chemical and electrical driving forces, 

569– 574
concentration cell, 577– 583
EMF

concentration on, 574– 575
temperature coefficient of, 584– 586

formation cells, 576– 577
Gibbs free energy of formation of ions and 

standard reduction potentials, 591– 601
overview, 567– 568
in Pourbaix diagrams, 601– 611

for aluminum, 603– 604
equilibrium between two dissolved 

substances, 604– 605
equilibrium between two solids, 605– 607
equilibrium with single dissolved 

substance, 607– 609
solubility of alumina in aqueous solutions, 

609– 611
thermal energy (heat) effects, 586– 587

Electrolysis, 573, 609
Electrolyte, 569– 571, 576– 579
Electromotive force (EMF)

concentration on, 574– 575
temperature coefficient of, 584– 586

Ellingham, Harold Johann Thomas, 422
diagrams, 422– 429

EMF. see  Electromotive force (EMF)
Endothermic process, 171, 287
Energy equation (internal energy), 142– 143
Enthalpy, 30, 123

and constant-pressure processes, 30– 31
energy equation, 143

of freezing, 36
as function of temperature and composition, 

162– 176
and ideal solutions, 281– 282
of melting, 94
of mixing ideal gases, 234– 235

Entropy
aspects of, 94
and atomic scale disorder, 94– 95
and Boltzmann distribution, 104– 107
configurational, 81

of differing atoms in a crystal, 98– 102
of magnetic spins, 102– 104

and criterion for equilibrium, 78– 79
heat flow and production of, 111– 113
ideal solutions, 282– 285
and identical particles, 96– 98
and microstate, 95– 96
as “mixed-up-ness,” 94, 95
of mixing ideal gases, 236
overview, 93
and quantification of irreversibility, 59– 61
and temperature effect, 108– 109
thermal equilibrium and Boltzmann equation, 

110– 111
and working of heat engine, 67– 70

Equilibrium constant, 386, 390
Equilibrium phase diagram, 13, 324
Equilibrium shape, 630– 632
Equilibrium state, 58– 59, 61, 78
Eutectic phase diagrams, 327– 329
Eutectoid phase diagrams, 327– 329
Exact differentials, 5
Exact differential equations, 657– 658
Excess free energy, 622
Exchange energy, 103
Exothermic process, 164, 287– 288
Extensive thermodynamic variable, 13, 17, 232, 273
Eutectic phase diagram, 327– 329
Eutectoid phase diagram, 327– 329
Evaporation, 267– 268, 270

Face-centered cubic (FCC), 628
Faraday, Michael, 569
Faraday’s constant, 569
FCC. see  Face-centered cubic (FCC)
First Law of Thermodynamics

constant-pressure processes, 30– 31
constant-volume processes, 29– 30
electrical work on dielectric material, 42
heat and work, 24– 25
heat capacity, 31– 37
internal energy and, 25– 29
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magnetic work on paramagnetic material, 
41– 42

overview, 23
reversible adiabatic processes, 37– 39
reversible isothermal process, 40– 41
and Second Law, 79– 81
work to create or extend surface, 42– 43

First-order phase transition, 203
Flory, P. J., 309
Flory–Huggins Model, 309– 310
Forbidden energy bands, 96
Formation cells, 576– 577
Fugacity, 252, 253
Fundamental equation, 129– 130, 133

The Ga–GaP system, 510– 512
Galvanic cell, 569, 573– 574
Gas constant, 12
Gaseous reaction, 389
Gas mixture and equilibrium constant

as compromise between enthalpy and 
entropy, 391– 394

description, 382– 388
in H2 O– H2  and CO2 – CO mixtures, 399– 401
overview, 381– 382
pressure effect on, 390– 391
in SO2 (g) – SO3 (g) – O2 (g),  394– 399
temperature effect on, 388– 390

Gibbs, Josiah Willard, 94
Gibbs– Duhem equation

ideal solutions, 273– 275
Henry’s and Raoult’s laws, 289– 290
total molar Gibbs free energy of mixing, 

290– 292
Gibbs equilibrium phase rule, 208, 484– 489
Gibbs free energy, 128– 129

constant-pressure molar heat capacities, 
659– 660

as function of temperature and pressure, 
205– 209

magnetic field on   P -T  diagram, 217– 218
of mixing ideal gases, 235– 236
molar entropies of various substances, 653
molar heat

constant-pressure capacities, 651– 652
of formation, 653
of melting and transformation, 655

and pressure at constant temperature, 
204– 205

saturated vapor pressures, 654
and saturated vapor pressures, 654
solid– solid equilibria, 212– 217
and temperature at constant pressure, 200– 204
vapor and condensed phase

equilibrium between, 210– 211
graphical representation, 212

Gibbs free energy composition
liquid and solid standard states, 331– 338
overview, 321– 322
and phase diagrams, 346– 356

of binary systems, 356– 362
eutectic and eutectoid, 327– 329
lens diagram, 324– 325
low-temperature regions in, 326– 327
peritectic and peritectoid, 329– 331
unequal enthalpies of mixing, 325– 326

of regular solutions, 338– 341
criteria for phase stability in, 341– 346

and thermodynamic activity, 322– 324, 
346– 356

Gibbs free energy of formation
and ideal solutions

change in, 277– 278
molar, 275– 277
partial molar, 275– 277
tangential intercepts, 278

of ions and standard reduction potentials, 
591– 601

Gibbs– Helmholtz equation, 145– 146
Gibbs– Konovalov rule, 326
Gibbs– Wulff construction, 632
Graphical representation, of phase equilibria

in Al– C– O– N system, 523– 532
in Mg– Al– O system, 516– 520

Heat
flow and entropy production, 111– 113
mechanical equivalent of, 24
and work, 24– 25

Heat capacity, 31– 37
constant-pressure molar, 651– 652
empirical representation of, 162
overview, 155– 156
theoretical calculation of, 156– 161

Heat engine, 67– 70
Helmholtz free energy, 123– 127, 663
Henry’s law, 267– 271, 289– 290
Hess’ law of constant heat summation, 31
Heterogeneous nucleation, 632
Heterogeneous system, 14
Higher-order phase transition, 203
Homogeneous nucleation, 632
Homogeneous system, 14
Horizontal inflection point, 343
Huggins, M. L., 309
Hypereutectic reaction, 328
Hypoeutectic reaction, 328
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Ideal gases
adiabatic expansion of, 66– 67
enthalpy of mixing, 234– 235
entropy of mixing, 236
equations of state, 236– 240
free expansion of, 63– 64
Gibbs free energy of mixing, 235– 236
isothermal expansion of, 62– 63
mixtures of

Dalton’s law of partial pressures, 
231– 232

mole fraction, 231
partial molar quantities, 232– 234

nonideal gases
equations of state for, 250– 251
thermodynamic treatment of, 251– 259

overview, 229
P -V -T  relationships, 229– 230
reversible isothermal compression, 65– 66
and van der Waals fluid, 240– 250

Ideal solutions
change in volume, 279– 280
enthalpy of formation, 281– 282
entropy of formation, 282– 285
Gibbs– Duhem equation, 273– 275

Henry’s and Raoult’s laws, 289– 290
total molar Gibbs free energy of mixing, 

290– 292
Gibbs free energy of formation

change in, 277– 278
molar, 275– 277
partial molar, 275– 277
tangential intercepts, 278

and nonideal solutions, 285– 288
overview, 267
Raoult’s law and Henry’s law, 267– 271
regular solutions, 292– 298

atomic order parameter, 303– 306
Flory– Huggins Model, 309– 310
second-neighbor interactions, 

306– 307
statistical model of, 298– 303
subregular solutions, 307– 309
thermodynamic activity of component in, 

271– 273
Impermeable boundaries, 4
Independent thermodynamic variables, 5
Infinite dilution, 478
Interaction parameter, 539
Internal energy, 25– 29

energy equation, 142– 143
Intensive thermodynamic variable, 13, 95, 199
Ionic character, 567
Irreversible processes, 57, 59

Isentropic process, 66
Isolated systems, 3
Isothermal process

compression, 7, 65– 66
expansion, 40, 62– 63

Joule, definition, 24
Joule, James Prescott, 24

Kinetic energy, 23
Kirchhoff’s law, 172
Kopp, Emile, 156
Kopp rule, 156

Landau, Lev Davidovich, 636
theory on phase transformations, 636– 644

Landau model, 636, 643
Latent heat of melting, 202
Law of corresponding states, 240
Law of definite proportions, 504
Laws of Thermodynamics, 12, 17
Le Chatelier, Henry Louis, 171, 173
Le Chatelier’s principle, 171, 205, 389, 390, 

395, 396
Legendre, Adrien-Marie, 659
Legendre transformations, 659– 667
Lens phase diagrams, 324– 325
Liquid junction potential, 575
Liquidus curve, 326, 356, 358
Liquid– vapor equilibrium, 238
Local equilibrium, and capillarity, 634– 636
Log pressure vs . 1/T  phase diagram, 446
Long-range order parameter (LRO), 303
Low-temperature regions, in phase diagrams, 

326– 327
LRO, see  Long-range order parameter (LRO)

Macroscopic thermodynamic variables, 5
Magnetic work, on paramagnetic material, 41– 42
Magnetization, 143
Martens, Adolf, 628
Martensitic phase transformations, 628
Massive phase transformations, 628
Maximum work, 76– 78
Maxwell construction, 247
Maxwell’s relations, 135– 145

energy equation (internal energy), 142– 143
enthalpy energy equation, 143
magnetic relation, 143– 144
S, V,  and M  with independent variables T, P,  

and H, 144– 145
S  and V  as dependent variables, 141– 142
T  and P  as independent variables, 141– 142
TdS  equation
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first, 137– 139
second, 139– 141

Mechanical equivalent of heat, 24
Melting temperature, 203, 206, 212
Metal– carbon– oxygen equilibria, 443
Metallic glass, 630
Metatectic phase diagram, 331
Mg– Al– O system, and phase equilibria in, 

516– 520
Mg–Si system, 512– 515
Microscopic thermodynamic variables, 4– 5
Microstate, and entropy, 95– 96
Mixtures

of ideal gases
Dalton’s law of partial pressures, 231– 232
mole fraction, 231
partial molar quantities, 232– 234

Molality, 587– 588, 600
Molar enthalpy of melting, 202
Molar free energy of melting, 331, 356
Molar heats

capacity, 47
constant-pressure capacities, 651– 652
of formation, 653
of melting and transformation, 655

Molarity, 587, 600, 601
Mole fraction, 231
Monotectic equilibrium, 361

Natural processes, 58
Nernst equation, 569
Nernst heat theorem, 173
Nernst– Planck– Simon statement, 175
Nonequilibrium state, 58, 61, 78
Nonideal gases

equations of state for, 250– 251
thermodynamic treatment of, 251– 259

Nonideal solutions, 285– 288
Nonstoichiometric compound, 523

Open-circuit EMF, 572
Open systems, 4
Order parameter, 636
Ostwald ripening, 636
Oxidation, of pure solid phase, 424

Paramagnet, 104
Partial molar quantities, 232– 234
Partial pressures, 231– 232
Particle coarsening, 636
Partition function, 107
Perfect gas, 229– 230
Peritectic phase diagrams, 329– 331
Peritectoid phase diagrams, 329– 331

Permeable boundaries, 4
Perpetual motion, 70
Petit, Alexis Thé rè se, 156
Phase, definition, 621
Phase diagrams, 346– 356

of binary systems, 356– 362
eutectic and eutectoid, 327– 329
lens diagram, 324– 325
low-temperature regions in, 326– 327
peritectic and peritectoid, 329– 331
unequal enthalpies of mixing, 325– 326

Phase stability diagrams, 489– 503
Phase transformations

capillarity and local equilibrium, 634– 636
with change in composition, 624– 626
definition, 621
and Landau theory, 636– 644
with no change in composition, 622– 624
surface energy

equilibrium shape, 630– 632
heterogeneous, 632– 634
homogeneous nucleation, 632

T 0  curves, 626– 630
formation of amorphous phases, 629– 630
martensitic transformation, 628
massive transformations, 628

Planck, Max Karl Ernst Ludwig, 157, 174
Polymorphism, 162, 212
Potential energy, 23
Pourbaix diagrams, 601– 611

for aluminum, 603– 604
equilibrium

with one dissolved substance, 607– 609
between two dissolved substances, 

604– 605
between two solids, 605– 607

solubility of alumina in aqueous solutions, 
609– 611

Predominance diagrams, see  Phase stability 
diagrams

Pressure, definition, 199
Principle of Clausius, 70
Principle of Kelvin and Planck, 70
P -T  diagram, magnetic field on, 217– 218
P -V -T  relationships, in ideal gases, 229– 230

Quasi-static process, 61

Raoultian standard state, 477
Raoult’s law, 267– 271, 289– 290
Reactants, and products, 386, 393
Reaction equilibria

in condensed and gaseous phases
and carbon oxides, 435– 442
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and chlorination of iron, 433– 435
description, 414– 419
effect of phase transformations, 430– 433
Ellingham diagrams, 422– 429
and Gibbs free energy change with 

temperature, 419– 422
graphical representation of, 443– 447
overview, 413

in condensed solution
binary systems containing compounds, 

503– 515
criteria for, 469– 477
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