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Preface

Reasoning by analogies is a natural inclination of the human brain that operates by
associating new and unknown situations to a series of known and previously en-
countered situations. On the basis of these analogies, judgements and decisions are
made: associations are the building blocks for predictive thought. It is therefore nat-
ural that analogue models are also a constant presence in the world of physics and an
invaluable instrument in the progress of our knowledge of the world that surrounds
us. It would be impossible to give a comprehensive list of these analogue models
but a few recent and relevant examples are optical waveguide analogues of the rel-
ativistic Dirac equation (linking optics with quantum mechanics), photonic crystals
(linking optical wave propagation in periodic lattices with electron propagation in
metals) or, at a more profound level, the Anti-de Sitter/Conformal Field Theory cor-
respondence (linking quantum systems in D dimensions to gravitational systems in
D + 1 dimensions). The purpose of this book is to give a general overview and in-
troduction to the world of analogue gravity: the simulation or recreation of certain
phenomena that are usually attributed to the effects of gravity but that can be shown
to naturally emerge in a variety of systems ranging from flowing liquids to nonlinear
optics.

Questions often arises regarding the implications of analogue models, particu-
larly in the context of analogue gravity. So this appears to possibly be a good starting
point for a Preface. The analogue models treated here can all be reconnected to some
form of flowing medium. This flowing medium, under appropriate conditions is ex-
pected to reproduce or mimic the flow of space generated by a gravitational field.
However, it is important to bear in mind that analogue models are always “analo-
gies” and never, or hardly ever, “identities”, meaning that we should not confuse the
two systems under comparison. In the specific case of analogue gravity, the analo-
gies do not usually attempt to reproduce the dynamics of a gravitational system, for
example a black hole. The dynamics rely on Einstein’s equations and require the
presence of a gravitational source term. On the other hand, the analogies can repro-
duce to a large extent the kinematics of a black hole. The kinematics refer for exam-
ple to photon or particle trajectories and these are determined by the system’s space-
time metric. Whether the curved spacetime metric is the result of a gravitational field
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vi Preface

or of a flowing medium becomes irrelevant when the analysis is restricted to the de-
scription of wave propagation and evolution in this flowing medium: the kinematics
are identical and the analogy is robust. The absence of a link between the dynam-
ics of the analogue and gravitational systems may seem to be an inherent and even
disappointing weakness of the ideas presented here. Questions often arise regarding
the usefulness of analogue models for gravity if we cannot produce predictions re-
garding the evolution of, for example, binary black hole systems, the quantum or the
purely geometrical nature of gravity or whatever may be the hot topic at the moment
you are reading this book. These objections are certainly valid: unless things take
an unexpected twist in the future, it seems rather unlikely that analogue gravity will
provide us with answers to these questions. This is mainly because analogue gravity
simply does not address these problems. Re-iterating once more, analogue gravity
builds upon our knowledge in general relativity and condensed matter physics in
order to build a deeper understanding of certain physical effects that rely solely on
the kinematics of the two systems. This declaration contains within it a series of
fundamental and outstanding problems in modern physics that fully justify the in-
terest in the field. Moreover, the search for a deeper understanding of the laws that
govern the universe is only one aspect of analogue gravity. We hope that in reading
this book, you will appreciate how the strive to develop and understand both old
and new analogue models is leading to innovation, technical advancement and new
discoveries in a remarkable range of physical systems ranging from acoustics and
gravity waves to optics, all linked by the common denominator that lies within the
geometrical description of spacetime, as first introduced in the context of gravity.

So what are these “kinematical” effects addressed by analogue gravity? The
most important and obvious member of this list is without doubt Hawking radia-
tion. Hawking radiation is the spontaneous emission of blackbody radiation due to
the distortion of the quantum vacuum in the vicinity of a black hole event hori-
zon. This effect was first described in detail by Stephen Hawking in 1974 although
the first hints that black holes should have non-zero equilibrium temperatures came
from Bekenstein, a year earlier based on the analogy between the laws of thermody-
namics and those of black hole mechanics (yet another fruitful analogy!). Hawking
radiation has since attracted the imagination and efforts of countless scientists, all
looking for a deeper understanding of why this radiation is emitted, how it is emitted
and the implications of this emission with big questions concerning information loss
and even the final fate of our universe. A remarkable point that needs to be remem-
bered is that Hawking radiation in realistic gravitational systems such as stellar and
galactic black holes, is remarkably weak—so weak that we have very little hope
of directly observing it in a gravitational context. This is somewhat of a set-back
for what is without doubt one of the most fascinating and prolific ideas of modern
physics. Analogue gravity will probably not be able to claim that this unfortunate
glitch will be overcome, simply because analogue gravity experiments do not deal
with gravitational black holes, yet it certainly does give us the opportunity to study
Hawking radiation from a fresh and rather unexpected perspective.

Bill Unruh first proposed an analogue for gravity in 1981 in the context of sound
waves propagating in a flowing medium. The underlying idea is very simple: if we
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imagine a sound wave propagating against a counter-flowing medium it is easy to
appreciate that if the medium flow velocity is smaller than the wave velocity, then
the wave will be allowed to propagate upstream. If the wave then encounters a ve-
locity gradient such that the flow accelerates up to supersonic speeds, then the wave
will inevitably slow down until it is completely blocked by the counter-propagating
medium. The sound wave cannot propagate upstream against a supersonic flow. The
wave-blocking point lies at the transition from sub to super-sonic flow and, as such,
represents the analogue of a gravitational wave-blocking horizon. This is just a pic-
torial description of the situation. The mathematics reveals a far more unexpected
and revolutionary aspect: the sound wave propagation and trajectory is fully de-
scribed by a spacetime metric that is distorted by the flowing medium close to the
velocity gradient. This distortion can be formally identical to the metric close to
the event horizon of a gravitational black hole and, taking one step further, Hawk-
ing radiation, now in the form of sound waves is predicted to be emitted from the
“sonic” horizon. Most interestingly, the sonic horizon emits Hawking radiation that
depends on the gradient of the medium velocity across the horizon and therefore can
in principle be engineered and optimised in the laboratory. For several years these
predictions were not fully appreciated and it was only later on that Bill re-proposed
his idea and today, under the thrust of continuous technological improvements there
is a thriving and expanding community dedicated to the search of new settings in
which a flowing medium of some sort can be generated and controlled in a such a
way as to recreate curved spacetime metrics with various applications.

The resulting theoretical models are becoming ever more sophisticated, spurred
by and in turn spurring new laboratory tests and experimental success stories.
Hawking-like radiation mechanisms have now been analysed in wide range of sys-
tems well beyond the original acoustical analogue, e.g. superfluids, flowing Bose-
Einstein Condensates, ion-rings, electromagnetic waveguides, soliton-like pulses in
optical media just to name a few. The last few years in particular have seen a sud-
den surge of experimental tests that are paving the way for greater things to come:
horizons have been generated and observed with gravity waves in flowing water,
phonon oscillations in flowing Bose-Einstein-Condensates and light scattering from
laser pulse-induced flowing optical media. Negative frequency waves have been ob-
served in water-wave and optical analogues and direct evidence of Hawking-like
behaviour in a classically stimulated context has been observed using water-waves.
The first evidence of spontaneous emission from an optically generated perturbation
has also been observed. These are all remarkably important in light of the evident ad-
vancement of the whole field from a rather sidetrack idea to a fully fledged research
area that is leading to innovation and important discoveries at both the theoretical
and experimental level.

Clearly there still remain many challenges and hurdles. Notwithstanding the re-
markable experimental progress in the last years, a clear and undisputed experi-
mental indication of spontaneous Hawking emission is still lacking. This may come
from one of the analogue models mentioned above or possibly from one of the many
and new models that are currently emerging. An additional point that is requiring
significant effort and is one of the main complications with respect to the original
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Hawking description, is the presence of dispersion. On the one hand, dispersion
provides a simple solution to the so-called transplanckian problem as it curbs any
frequency divergence at the horizon. But on the other hand, it may significantly
complicate the analogy or even modify the nature of the emission. This difficulty
is certainly relevant in the optical analogues but plays a role also in other settings.
Moreover, although Hawking radiation is certainly the most prominent and desired
effect one would want to observe in these analogues, other effects are also equally
noteworthy and are gradually gaining attention, such as the emission from analogues
of a cosmological expansion, from superluminal flows, rapidly changing media or
from rotating media in analogy with so-called superradiance from rotating black
holes.

The scope of this book is to present an overview of the ideas underlying analogue
gravity together with a description of some of the most promising and interesting
systems in which analogues may be built. The aim is to provide scientists, indepen-
dently of their background in any of the topics approached by analogue gravity, with
a general understanding of the field. A full and deeper understanding will probably
require some extra work beyond the reading of this book. However, it is our hope
that these pages will encourage you to ponder the beauty of how wave propagation
in flowing media is intricately connected to the geometry of space and time and to
thus stimulate new ideas and new questions.

This book is divided into a number of chapters that start from a general overview
of analogue gravity, providing also some background knowledge to black hole
physics before moving on to consider in detail some specific analogue gravity mod-
els.

Chapter 1 gives an overview of black hole geometry and Hawking emission from
gravitational and analogue black holes.

Chapter 2 delivers an overview of the field of analogue gravity as a whole with a
brief description of the foundation pillars applied to a few specific examples.

Chapter 3 gives a broader description of some possibilities for observing diverse
fundamental quantum effects in the laboratory, therefore going beyond Hawking
radiation.

Motivated by recent experimental success, Chap. 4 gives a theoretical and general
description of surface waves in fluids.

Chapters 4 to 8 give an in-depth description of surface waves on flowing media in
terms of the analogue gravity perspective, rounding up with a description of recent
experimental results in this area.

Chapter 9 treats the Bose-Einstein-Condensate analogue model and Chaps. 8
and 9 treat in detail the optical analogue first from a purely theoretical perspective
and then introducing some recent experimental results with these analogues.

Chapters 10 and 11 deal with the so-called optical analogue model including an
overview of some recent experimental results.

Chapter 12 also deals with a particular application of nonlinear optics in which
light flows as if it were a fluid (“luminous liquid”) and represents a promising ex-
perimental avenue.

Chapter 13 gives an overview of Lorentz-invariance breaking and possible ob-
servational tests in the context of analogue gravity.
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Chapter 14 extends the concepts of analogue gravity to studies involving the
topology of the vacuum—the topological constraints on the quantum vacuum struc-
ture determine some universal properties of our universe and these can be mimicked
and studied in analogue systems.

Chapter 15 describes a further extension of analogue gravity, here in the realm of
Einstein diffusion modified by a curved, or analogue curved spacetime background.

Finally, Chap. 16 is a return to the origins and provides the reader with an
overview of the current observational evidence of event horizons in gravitational
black holes.

In closing, I wish to acknowledge Fondazione Cariplo for funding and Centro
Volta, Como, Italy for hosting the 2011 summer school on Analogue Gravity—the
chapters in this book are mostly based on the lectures delivered during this summer
school. We also gratefully acknowledge all of the authors who so kindly contributed
with their knowledge to this publication and the students and collaborators who
kindly assisted in proof-reading, Niclas Westerberg, Mihail Petev, Daniel Moss.

Daniele FaccioEdinburgh
December 2012
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Chapter 1
Black Holes and Hawking Radiation
in Spacetime and Its Analogues

Ted Jacobson

Abstract These notes introduce the fundamentals of black hole geometry, the ther-
mality of the vacuum, and the Hawking effect, in spacetime and its analogues. Stim-
ulated emission of Hawking radiation, the trans-Planckian question, short wave-
length dispersion, and white hole radiation in the setting of analogue models are
also discussed. No prior knowledge of differential geometry, general relativity, or
quantum field theory in curved spacetime is assumed. The discussion attempts to
capture the essence of these topics without oversimplification.

1.1 Spacetime Geometry and Black Holes

In this section I explain how black holes are described in general relativity, starting
with the example of a spherical black hole, and followed by the 1+ 1 dimensional
generalization that figures in many analogue models. Next I discuss how symmetries
and conservation laws are formulated in this setting, and how negative energy states
arise. Finally, I introduce the concepts of Killing horizon and surface gravity, and
illustrate them with the Rindler or acceleration horizon, which forms the template
for all horizons.

1.1.1 Spacetime Geometry

The line element or metric ds2 assigns a number to any infinitesimal displacement
in spacetime. In a flat spacetime in a Minkowski coordinate system it takes the form

ds2 = c2dt2 − (dx2 + dy2 + dz2), (1.1)

where t is the time coordinate, x, y, z are the spatial Cartesian coordinates, and c is
the speed of light. Hereafter I will mostly employ units with c= 1 except when dis-
cussing analogue models (for which c may depend on position and time when using

T. Jacobson (B)
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2 T. Jacobson

Fig. 1.1 The light cone at an
event p. The event A is future
timelike related to p, while
B , C, D, and E respectively
are future lightlike, spacelike,
past lightlike, and past
timelike related to p

the Newtonian t coordinate) . When ds2 = 0 the displacement is called lightlike, or
null. The set of such displacements at each event p forms a double cone with vertex
at p and spherical cross sections, called the light cone or null cone (see Fig. 1.1).
Events outside the light cone are spacelike related to p, while events inside the cone
are either future timelike or past timelike related to p. For timelike displacements,
ds2 determines the square of the corresponding proper time interval.

The metric also defines the spacetime inner product g(v,w) between two 4-
vectors v and w, that is,

g(v,w)= ds2(v,w)

= c2dt (v)dt (w)− [dx(v)dx(w)+ dy(v)dy(w)+ dz(v)dz(w)
]
. (1.2)

Here dt (v)= va∂at = vt is the rate of change of the t coordinate along v, etc.
In a general curved spacetime the metric takes the form

ds2 = gαβ(x)dx
αdxβ, (1.3)

where {xα} are coordinates that label the points in a patch of a spacetime (perhaps
the whole spacetime), and there is an implicit summation over the values of the in-
dices α and β . The metric components gαβ are functions of the coordinates, denoted
x in (1.3). In order to define a metric with Minkowski signature, the matrix gαβ must
have one positive and three negative eigenvalues at each point. Then local inertial
coordinates can be chosen in the neighborhood any point p such that (i) the metric
has the Minkowski form (1.1) at p and (ii) the first partial derivatives of the metric
vanish at p. In two spacetime dimensions there are 9 independent second partials of
the metric at a point. These can be modified by a change of coordinates xμ → xμ′ ,
but the relevant freedom resides in the third order Taylor expansion coefficients
(∂3x′μ/∂xα∂xβ∂xγ )p , of which only 8 are independent because of the symmetry
of mixed partials. The discrepancy 9− 8 = 1 measures the number of independent
second partials of the metric that cannot be set to zero at p, which is the same as
the number of independent components of the Riemann curvature tensor at p. So a
single curvature scalar characterizes the curvature in a two dimensional spacetime.
In four dimensions the count is 100− 80= 20.

1.1.2 Spherical Black Hole

The Einstein equation has a unique (up to coordinate changes) spherical solution in
vacuum for each mass, called the Schwarzschild spacetime.



1 Black Holes and Hawking Radiation in Spacetime and Its Analogues 3

Fig. 1.2 Gravitational
redshift. Two lightrays
propagating from ra to rb ,
separated by a coordinate
time δt̄ . The corresponding
proper time at ra is less than
that at rb

1.1.2.1 Schwarzschild Coordinates

The line element in so-called Schwarzschild coordinates is given by

ds2 =
(

1− rs

r

)
dt̄2 −

(
1− rs

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (1.4)

Here rs = 2GM/c2 is the Schwarzschild radius, with M is the mass, and c is set
to 1. Far from the black hole, M determines the force of attraction in the Newtonian
limit, and Mc2 is the total energy of the spacetime.

The spherical symmetry is manifest in the form of the line element. The coor-
dinates θ and φ are standard spherical coordinates, while r measures 1/2π times
the circumference of a great circle, or the square root of 1/4π times the area of a
sphere. The value r = rs corresponds to the event horizon, as will be explained, and
the value r = 0 is the “center”, where the gravitational tidal force (curvature of the
spacetime) is infinite. Note that r should not to be thought of as the radial distance
to r = 0. That distance isn’t well defined until a spacetime path is chosen. (A path
at constant t̄ does not reach any r < rs .)

The coordinate t̄ is the Schwarzschild time. It measures proper time at r =∞,
whereas at any other fixed r , θ , φ the proper time interval is 
τ = √

1− rs/rdt .
The coefficients in the line element are independent of t̄ , hence the spacetime has a
symmetry under t̄ translation. This is ordinary time translation symmetry at r =∞,
but it becomes a lightlike translation at r = rs , and a space translation symmetry for
r < rs , since the coefficient of dt̄2 is negative there. The defining property of the
Schwarzschild time coordinate, other than that it measures proper time in the rest
frame of the black hole at infinity, is that surfaces of constant t̄ are orthogonal, in the
spacetime sense, to the direction of the time-translation symmetry, i.e. to the lines of
constant (r, θ,φ): there are no off-diagonal terms in the line element. But this nice
property is also why t̄ is ill behaved at the horizon.

Redshift and Horizon Suppose a light wave is generated with coordinate period

t̄ at some radius ra , and propagates to another radius rb (see Fig. 1.2). Because of
the time translation symmetry of the spacetime, the coordinate period of the wave
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Fig. 1.3 A null surface is
tangent to the local light cone

at rb will also be 
t̄ . The ratio of the proper time periods will thus be 
τa/
τb =√
1− rs/ra/

√
1− rs/rb , and the ratio of the frequencies will the reciprocal. This is

the gravitational redshift. Note that as ra → rs , the redshift is infinite. The infinite
redshift surface r = rs of the spherical black hole is the (stationary) event horizon.
The same is true of the 1 + 1 dimensional black holes we focus on later in these
notes.

It is worth emphasizing that for a non-spherical stationary black hole, for in-
stance a rotating black hole, the infinite redshift surface, where the time-translation
symmetry becomes lightlike, is generally not the event horizon, because it is a time-
like surface. A timelike surface can be crossed in either direction. In order to be a
horizon, a surface must be tangent to the local light cone at each point, so that it
cannot be crossed from inside to outside without going faster than light. At each
point of such a null surface there is one null tangent direction, and all other tangent
directions are spacelike and orthogonal to the null direction (see Fig. 1.3). Therefore
the null tangent direction is orthogonal to all directions in the surface, i.e. the null
tangent is also the normal. If the horizon is a constant r surface, then the gradient
∇αr is also orthogonal to all directions in the surface, so it must be parallel to the
null normal. This means that it is a null (co)vector, hence gαβ∇αr∇βr = grr = 0 at
the horizon.

1.1.2.2 Painlevé-Gullstrand Coordinates

A new time coordinate t that is well behaved at the horizon can be defined by t =
t̄ +h(r) for a suitable function h(r) whose bad behavior at rs cancels that of t̄ . This
property of course leaves a huge freedom in h(r), but a particularly nice choice is
defined by

dt = dt̄ +
√
r

r − 1
dr, i.e. t = t̄ − 2

√
r + ln

(√
r + 1√
r − 1

)
(1.5)

where now I have adopted units with rs = 1. It is easy to see that the t-r part of the
Schwarzschild line element takes the form
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ds2 = dt2 −
(
dr +

√
1

r
dt

)2

− r2(dθ2 + sin2 θdφ2) (1.6)

=
(

1− 1

r

)
dt2 − 2√

r
dtdr − dr2 − r2(dθ2 + sin2 θdφ2). (1.7)

The new coordinate t is called the Painlevé-Gullstrand (PG) time. At r = 1 the
metric coefficients are all regular, and indeed the coordinates are all well behaved
there. According to (1.7), we have ds2 = 0 along a line of constant (r = 1, θ,φ), so
such a line is lightlike. Such lines generate the event horizon of the black hole. The
PG time coordinate has some remarkable properties:

• the constant t surfaces are flat, Euclidean spaces;
• the radial worldlines orthogonal to the constant t surfaces are timelike geodesics

(free-fall trajectories) along which dt is the proper time.

For some practice in spacetime geometry, let me take you through verifying these
properties. Setting dt = 0 in the line element we see immediately that {r, θ,φ} are
standard spherical coordinates in Euclidean space. To find the direction orthogonal
to a constant t surface we could note that the gradient ∇αt has vanishing contraction
with any vector tangent to this surface, which implies that the contravariant vector
gαβ∇βt , formed by contraction with the inverse metric gαβ , is orthogonal to the
surface. Alternatively, we need not compute the inverse metric, since the form of
the line element (1.6) allows us to read off the orthogonal direction “by inspection”
as follows. Consider the inner product of two 4-vectors v and w in this metric,

g(v,w)= dt (v)dt (w)−
(
dr +

√
1

r
dt

)
(v)

(
dr +

√
1

r
dt

)
(w)

− r2dθ(v)dθ(w)− r2 sin2 θdφ(v)dφ(w), (1.8)

using the notation of Eq. (1.2). If the vector v is tangent to the constant t surface,
then dt (v)= 0, so the first term vanishes. The remaining terms will vanish if (dr +√

1
r
dt)(w) = dθ(w) = dφ(w) = 0. Thus radial curves with dr +√

1/rdt = dθ =
dφ = 0 are orthogonal to the surface, and along them ds2 = dt2, i.e. dt measures
proper time along those curves. Moreover, any other timelike curve connecting the
same two spacetime points will have shorter proper time, because the negative terms
in ds2 will contribute. The proper time is thus stationary with respect to first order
variations of the curve, which is the defining property of a geodesic.1

1Even if the other terms in the line element (1.6) had not been negative, they would not contribute to
the first order variation in the proper time away from a path with (dr+√1/rdt)= dθ2 = dφ2 = 0,
since the line element is quadratic in these terms. Thus the curve would still have been a geodesic
(although the metric signature would not be Lorentzian).
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Fig. 1.4 Painlevé-Gullstrand
coordinate grid for
Schwarzschild black hole.
Vertical lines have constant r ,
horizontal lines have
constant t . Shown are one
ingoing radial light ray and
three outgoing ones. The one
outside the horizon escapes to
larger radii, the one on the
horizon remains at rs , and the
one inside the horizon falls to
smaller radii and into the
singularity at r = 0

1.1.2.3 Spacetime Diagram of the Black Hole

The nature of the unusual geometry of the black hole spacetime can be grasped
rather easily with the aid of a spacetime diagram (see Fig. 1.4). For the Schwarz-
schild black hole, we may exploit the spherical symmetry and plot just a fixed value
of the spherical angles (θ,φ), and we may plot the lines of constant r vertically and
the lines of constant PG time t horizontally. Then the time translation symmetry
corresponds to a vertical translation symmetry of the diagram.

The diagram comes alive when the light cones are plotted. At a given event, the
light cone is determined by ds2 = 0, which for radial displacements corresponds to
the two slopes

dt/dr = 1

±1−√
1/r

(radial lightrays). (1.9)

Far from the horizon these are the outgoing and incoming lightrays dt/dr →±1.
The ingoing slope is negative and gets smaller in absolute value as r decreases, ap-
proaching 0 as r → 0. The outgoing slope grows as r decreases, until reaching infin-
ity at the horizon at r = 1. Inside the horizon it is negative, so an “outgoing” lightray
actually propagates to smaller values of r . The outgoing slope also approaches 0 as
r → 0.

1.1.2.4 Redshift of Outgoing Waves Near the Horizon

An outgoing wave is stretched as it climbs away from the horizon. The lines of
constant phase for an outgoing wave satisfying the relativistic wave equation are
just the outgoing lightrays (1.9). The rate of change of a wavelength λ is given by
the difference of dr/dt of the lightrays on the two ends of a wavelength, hence
dλ/dt = (d/dr)(dr/dt)λ. The relative stretching rate is thus given by

κ ≡ dλ/dt

λ
= d

dr

dr

dt
= c

2rs
, (1.10)
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where in the second step the expression is evaluated at the horizon, and the dimen-
sionful constants are restored to better illustrate the meaning. This rate is called the
“surface gravity” κ of the horizon. Later I will explain different ways in which the
surface gravity can defined and calculated.

We can go further and use the lightray equation (1.9) to obtain an approximate
expression for the wave phase near the horizon. Consider an outgoing wave of the
form eiφ , with φ =−ωt+∫ r

k(r ′)dr ′. (This simple harmonic t dependence is exact
because the metric is independent of t .) Along an outgoing lightray the phase is
constant: 0= dφ =−ωdt + k(r)dr , so

k(r)= ω

1− r−1/2
∼ 2ω

r − 1
= ω/κ

r − rs
, (1.11)

where in the second step a near horizon approximation is used, and in the last step
the dimensionful constants are again restored. The wave thus has the near-horizon
form

e−iωt ei(ω/κ) ln(r−rs ). (1.12)

Note that the surface gravity appears in a ratio with the wave frequency, and there is
a logarithmic divergence in the outgoing wave phase at the horizon.

1.1.3 Effective Black Hole and White Hole Spacetimes

Many black hole analogues can be described with one spatial dimension, and I will
focus on those here. They are simple generalizations of the radial direction for a
spherical black hole.

Waves or quasiparticles in a stationary 1 + 1 dimensional setting can often be
described by a relativistic field in an effective spacetime defined by a metric of the
form

ds2 = c(x)2dt2 − [dx − v(x)dt
]2 = [c(x)2 − v(x)2]dt2 + 2v(x)dtdx − dx2.

(1.13)

In fact, any stationary two dimensional metric can be put in this form, with c(x)= 1,
by a suitable choice of coordinates (see e.g. Appendix A in Ref. [1] for a proof
of this statement). If c(x) = 1 this corresponds to the PG metric, with x ↔ r and
v(x)↔−1/

√
r . if |v(x)|> |c(x)| somewhere.

The metric (1.13) would arise for example in a Newtonian setting of a fluid, with
velocity v(x) in a “laboratory frame”, with c(x)= c a constant speed of sound. In
that example, the coordinate x would measure distance in the lab at fixed Newtonian
time t , and the metric would describe the effective spacetime for waves in the fluid
that propagate at speed c relative to the local rest frame of the fluid. If the wave
speed in the frame of the medium depends on some ambient local conditions then
c(x) will depend on position.
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Fig. 1.5 Black hole horizon
on the right and white hole
horizon on the left. The
vertical arrows depict the
Killing vector, which is
spacelike in the ergoregion
between the horizons and
timelike outside

Moving Texture In some models the medium may be at rest in the lab, but the
local conditions that determine the wave speed may depend on both time and space
in a “texture” that moves. (If the motion is uniform then in the frame of the texture
this is equivalent to the previous case.) An example of a line element of this sort is
[c(y −wt)]2dt2 − dy2. Here again y measures proper distance in the lab at Newto-
nian time t , and the texture moves in the y direction with constant speed w. The line
element may not look stationary, but it has a symmetry under t → t +
t combined
with y → y +w
t .

Black Hole–White Hole Pair An example that often arises has v(x) <−c(x) < 0
in a finite interval (x−, x+). Then x+ is a black hole horizon, analogous to the one
previously discussed for the PG spacetime, and x− is a white hole horizon: no waves
can escape from the region x < x+ into the region x > x+, and no waves can enter
the region x > x− from the region x < x−. The region between the horizons is of
finite size and nonsingular. Figure 1.5 is a spacetime diagram of this scenario. Black
hole horizon on the right and white hole horizon on the left. The vertical arrows
depict the Killing vector, which is spacelike in the ergoregion between the horizons
and timelike outside.

1.1.4 Symmetries, Killing Vectors, and Conserved Quantities

Each symmetry of the background spacetime and fields leads to a corresponding
conservation law. The most transparent situation is when the metric and any other
background fields are simply independent of some coordinate. This holds for exam-
ple with the Schwarzschild metric (1.4), which is independent of both t and φ. Of
course the spherical symmetry goes beyond just φ translations, but the other rota-
tional symmetries are not manifest in this particular form of the line element. They
could be made manifest by a change of coordinates however, but not all at once. To
be able to talk about symmetries in a way that is independent of whether or not they
are manifest it is useful to introduce the notion of a Killing vector field. The flow
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of the spacetime along the integral curves of a Killing vector is a symmetry of the
spacetime.

Suppose translation by some particular coordinate xα̂ (α̂ indicates one particu-
lar value of the index α) is a manifest symmetry. The metric components satisfy
gμν,α̂ = 0, where the comma notation denotes partial derivative with respect to xα̂ .
The corresponding Killing vector, written in these coordinates, is χμ = δ

μ

α̂
, i.e. the

vector with all components zero except the α̂ component which is 1. Then the sym-
metry is expressed by the equation gμν,αχ

α = 0. This holds only in special coor-
dinate systems adapted to the Killing vector. It is not a tensor equation, since the
partial derivative of the metric is not a tensor.

It may be helpful to understand that this condition is equivalent to the covariant,
tensor equation for a Killing vector,

χα;β + χβ;α = 0, (1.14)

where the semicolon denotes the covariant derivative. This is called Killing’s equa-
tion. One way to see the equivalence is to use the fact that in a local inertial coor-
dinate system at a point p, the covariant derivative reduces to the partial derivative,
and the partials of the metric are zero. Thus Killing’s equation at the point p be-
comes χσ

,βησα + χσ
,αησβ = 0, where ηστ is the Minkowski metric. This implies

that the infinitesimal flow xσ → xσ + εχσ (x) generated by χα is, to lowest order,
a translation plus a Lorentz transformation, i.e. a symmetry of the metric.2

A simple example is the Euclidean plane with line element ds2 = dx2 + dy2 =
dr2 + r2dφ2 in Cartesian and polar coordinates respectively. The rotation Killing
vector about the origin in polar coordinates is just ∂φ , with components δαφ , as the
metric components are independent of φ. The same Killing vector in Cartesian co-
ordinates is x∂y − y∂x . This satisfies Killing’s equation since χx,x = 0= χy,y , and
χx,y + χy,x =−1+ 1= 0.

1.1.4.1 Ergoregions

It is of paramount importance in black hole physics that a Killing field may be time-
like in some regions and spacelike in other regions of a spacetime. For example in
the Schwarzschild spacetime, say in PG coordinates (1.6), or the 1+ 1 dimensional
generalization (1.13) the Killing vector ∂t is timelike outside the horizon, but it is
lightlike on the horizon and spacelike inside. For the black hole-white hole pair
discussed above, it is the region between the black and white hole horizons (see

2For a more computational proof, note that since Killing’s equation is a tensor equation it holds
in all coordinate systems if it holds in one. In a coordinate system for which χμ = δ

μ

α̂
we have

χα;β = gαμχ
μ;β = gαμΓ

μ
βσ χ

σ = 1
2 (gαβ,σ + gασ,β − gβσ,α)χ

σ . If χσ is a Killing vector the first
term vanishes in this adapted coordinate system, and the remaining expression is antisymmetric in
α and β , so adding χβ;α yields zero. Conversely, if Killing’s equation holds, the entire expression
is antisymmetric in α and β , so the first term must vanish.
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Fig. 1.5). This is evident because the coefficient of dt2 in the line element becomes
negative.

A region where an otherwise timelike Killing vector becomes spacelike is called
an ergoregion. (The reason for the name will become clear below.) The boundary of
this region is called the ergosurface, and it is a surface of infinite redshift, since the
norm of the time translation Killing vector vanishes there. An ergoregion need not
lie behind a horizon. For instance it occurs outside the horizon (as well as inside) of
a spinning black hole. In analogue models, ergoregions can arise for example around
a vortex [2] or in a moving soliton in superfluid 3He-A [3]. For the Schwarzschild
black hole, and the 1+1 dimensional generalization (1.13), however, the ergoregion
always corresponds to the region inside the horizon.

1.1.4.2 Conserved Quantities

Particle trajectories (both timelike and lightlike) can be determined by the varia-
tional principle δ

∫
Ldλ = 0 with Lagrangian L = 1

2gμν(x)ẋ
μẋν . Here λ is a path

parameter and the dot denotes d/dλ. The Euler-Lagrange equation is the geodesic
equation for motion in the metric gμν with affine parameter λ. If the metric is inde-
pendent of xα̂ then the corresponding conjugate momentum pα̂ = ∂L/∂ẋα̂ = gμα̂ẋ

μ

is a constant of motion. Note that this momentum can also be expressed as the inner
product of the 4-velocity uν = ẋν with the Killing field, u ·χ = gμνẋ

μχν = gμα̂ẋ
μ.

Killing Energy and Ergoregions The conserved momentum conjugate to a par-
ticular timelike Killing field is called Killing energy. For a particle with rest mass m,
the physical 4-momentum would be p =mu, so the Killing energy as defined above
is actually the Killing energy per unit rest mass. For a massless particle, the physical
4-momentum is proportional to the lightlike 4-velocity, scaled so that the time com-
ponent in a given frame is the energy in that frame. In both cases, the true Killing
energy is the inner product of the 4-momentum and the Killing vector,

EKilling = p · χ. (1.15)

The 4-momentum of a massive particle is timelike, while that of a massless particle
is lightlike. In both cases, for a physical state (i.e. an allowable excitation of the
vacuum), stability of the local vacuum implies that the energy of the particle is
positive as measured locally in any rest frame. This is equivalent to the statement
that p is a future pointing 4-vector.

The importance of ergoregions stems from the fact that negative Killing energy
physical states exist there. This happens because a future pointing 4-momentum can
of course have a negative inner product with a spacelike vector (see Fig. 1.6). In an
ergoregion, the Killing energy is what would normally be called a linear momentum
component, and there is of course no lower limit on the linear momentum of a
physical state.

Penrose [4, 5] realized that the existence of an ergoregion outside a spinning
black hole implies that energy can be extracted from the black hole by a classical
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Fig. 1.6 Killing energy. On the left the Killing vector χ is timelike, hence all future causal (time-
like or lightlike) 4-momenta have positive χ -energy. On the right χ is spacelike, hence future
causal 4-momenta like p2 can have negative χ -energy, while others like p1 have positive χ -energy

Fig. 1.7 Inside the horizon,
the Killing vector χ is
spacelike, outgoing radial
particles have negative
χ -energy, and infalling ones
have positive χ -energy (Since
the latter come from outside
the ergoregion, and Killing
energy is conserved, they
must have positive Killing
energy)

process, at the cost of lowering the angular momentum. This is the Penrose process,
whose existence led to the discovery of black hole thermodynamics. For a non-
spinning black hole the ergoregion lies inside the horizon, so no classical process
can exploit it to extract energy, but the Hawking effect is a quantum process by
which energy is extracted.

What do the negative Killing energy states “look like”? A particle with negative
Killing energy cannot escape from the ergoregion, nor can it have fallen freely into
the ergoregion, because Killing energy is conserved along a geodesic and it must
have positive Killing energy if outside the ergoregion. For example, in the 1 + 1
black hole, or in the radial direction of the Schwarzschild solution, a massless par-
ticle with negative Killing energy inside the horizon must be “outgoing” as seen by
a local observer (see Fig. 1.7).

1.1.5 Killing Horizons and Surface Gravity

An event horizon can be defined purely in terms of the causal structure of a space-
time, and is meaningful even when the spacetime is not stationary, i.e. has no time
translation symmetry. A Killing horizon on the other hand is a lightlike hypersurface
(surface of one less dimension than the whole spacetime) generated by the flow of
a Killing vector. This is sometimes called the horizon generating Killing vector.
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Fig. 1.8 Boost killing flow in
Minkowski space (1.17).
Curves of constant � are
hyperbolic flow lines. Lines
of constant η are radial from
the origin, and η measures the
hyperbolic opening angle of
the shaded wedge

The Schwarzschild event horizon is a Killing horizon with respect to the Killing
vector ∂t , as is the horizon of the 1+ 1 black hole. A distinction arises in the case of
a stationary black hole with spin. Then the Killing vector ∂t that is a time translation
at spatial infinity becomes lightlike at the boundary of the ergoregion, which lies
outside the event horizon. However that boundary is timelike, so the ergosurface is
not a Killing horizon. The event horizon of a spinning black hole is nevertheless a
Killing horizon, but for a Killing vector ∂t +ΩH∂φ that is a linear combination of
the time translation and rotation Killing vectors, ΩH being the angular velocity of
the horizon. In the effective spacetime of a moving texture in superfluid 3He-A, the
horizon generating Killing vector has the similar form ∂t + w∂x , where ∂t and ∂x
are time and space translation Killing vectors, and the constant w can be thought of
as the transverse velocity of the horizon [3].

Rindler (Acceleration) Horizon A simple yet canonical example of a Killing
horizon is the Rindler horizon in Minkowski spacetime. The relevant Killing sym-
metry here is Lorentz boosts is a certain direction. Geometrically, these are just hy-
perbolic rotations. For example, using the Minkowski coordinates of (1.1) a boost
Killing vector is

χB = x∂t + t∂x. (1.16)

This has covariant components (χB)α = ηαβχ
β
B = (x,−t) and so obviously satisfies

Killing’s equation (1.14). It can also be made manifest by changing from Minkowski
to polar coordinates:

dt2 − dx2 = �2dη2 − d�2. (1.17)

Then the boost symmetry is just rotation of the hyperbolic angle η, i.e.

χB = ∂η. (1.18)

The flow lines of the Killing field are hyperbolas (see Fig. 1.8). Note that the polar
coordinate system covers only one “Rindler wedge”, e.g. x > |t | of the Minkowski
spacetime. The full Killing horizon is the set |x| = |t |.
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1.1.5.1 Surface Gravity

Associated to a Killing horizon is a quantity κ called the surface gravity. There are
many ways to define, calculate, and think of the surface gravity. It was already intro-
duced in Sect. 1.1.2.4, as the relative rate of stretching of outgoing wavelengths near
the horizon. I will mention here several other definitions, which are given directly
in terms of the geometry of the horizon.

Geometrically, the simplest definition of surface gravity may be via
[
χ[α,β]χ [α,β]

]
H
=−2κ2, (1.19)

horizon the square bracket on indices denotes antisymmetrization, and the subscript
H indicates that the quantity is evaluated on the horizon. That is, κ is the magnitude
of the infinitesimal Lorentz transformation generator. However the meaning of this
is probably not very intuitive.

The conceptually simplest definition might be the rate at which the norm of the
Killing vector vanishes as the horizon is approached from outside. That is,

κ = ∣∣|χ |,α
∣∣
H
, (1.20)

the horizon limit of the norm of the gradient of the norm of χ . Notice that if the
Killing vector is rescaled by a constant multiple χ → αχ , then it remains a Killing
vector, and the surface gravity for this new Killing vector is ακ . This illustrates
the important point that the intrinsic structure of a Killing horizon alone does not
suffice to define the surface gravity. Rather, a particular normalization of the Killing
vector is required. The symmetry implies that κ is constant along a particular null
generator of the horizon, but in general it need not be the same on all generators.
For a discussion of conditions under which the surface gravity can be proved to be
constant see [6].

The surface gravity (1.20) has the interesting property that it is conformally in-
variant. That is, it is unchanged by a conformal rescaling of the metric gab →
Ω2gab , provided the conformal factor Ω is regular at the horizon [7]. This follows
simply because |χ | is rescaled by Ω , while the norm of its gradient is rescaled by
Ω−1, and the contribution from dΩ vanishes since it is multiplied by |χ |H which
vanishes.

For the metric (1.13) and the Killing vector χ = ∂t we have |χ | = √
c2 − v2,

which depends on x and not t . Thus κ = (−gxx∂x |χ |∂x |χ |)1/2
H , and the minus sign

arises because the gradient is spacelike outside the horizon. At a horizon where
v = c this evaluates to |∂x(v − c)|H , while at a horizon where v = −c it would
instead be |∂x(v+ c)|H .

In case c= constant, the surface gravity is thus just the gradient of the flow speed
at the horizon. A covariant and more general version of this can be formulated. Any
observer falling freely across a horizon can define the velocity of the static frame rel-
ative to himself, and can evaluate the spatial gradient of this velocity in his frame.
If he has unit Killing energy (u · χ = 1) then it can be shown that this gradient,
evaluated at the horizon, agrees with the surface gravity [8]. Another interesting ob-
servation is that this velocity gradient has a sort of “cosmological” interpretation as
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the local fractional rate of expansion (“Hubble constant”) of the distances separat-
ing a family of freely falling observers stretched along the direction of the Killing
frame velocity [8]. At the horizon, for unit energy observers, this expansion rate is
the same as the surface gravity.

Computationally, a somewhat simpler definition of surface gravity is via
[
∂α
(
χ2)=−2κχα

]
H
. (1.21)

This is at least well-defined: since χ2 vanishes everywhere on the Killing horizon,
its gradient has zero contraction with all vectors tangent to the horizon. The same
is true for χa = gαβχ

β , so these two co-vectors must be parallel. If using a coor-
dinate component of this equation to evaluate κ , it is important that the coordinate
system be regular at the horizon. For the metric (1.13), we may just evaluate the x

component of this equation: ∂x(c
2 − v2) = −2κχx = −2κgxt = −2κv, which on

the horizon v = c yields κ = [∂x(v − c)]H as before. (Note that this definition does
not come with an absolute value. At a horizon v =−c it yields κ = [∂x(v + c)]H .)

Surface Gravity of the Rindler Horizon The surface gravity of the Rindler
horizon can be computed for example using the polar coordinates to evaluate
(1.20). Then the norm of the Killing vector is just �, so ∂α|χB | = δ�α , which has
norm 1. Thus the boost Killing vector has unit surface gravity. Alternatively, we
may use the x component of (1.21): ∂xχ2

B = x2 − t2 = 2x, and −2κ(χB)x = 2κt ,
so κ = (x/t)H =±1. On the future horizon x = t and this is positive, while on the
past horizon it is negative. Usually one is only interested in the absolute value.

Finally, it is sometimes of interest to use the proper time along a particular hy-
perbola rather than the hyperbolic angle as the coordinate. On the hyperbola located
at �= �0 the proper time is dτ = �0dη. The Minkowski line element can be written
in terms of the time coordinate τ = �0η as ds2 = (�/�0)

2dτ 2 − d�2. The scaling
of the Killing field ∂τ = (1/�0)∂η that generates proper time flow on this particular
hyperbola has surface gravity κ = 1/�0. This is also equal to the acceleration of
the hyperbolic worldline. The relation between the surface gravity and acceleration
can be shown quite generally using coordinate free methods, but here let’s just show
it by direct computation using Cartesian coordinates. The 4-velocity of the hyper-
bola is the unit vector u = �−1

0 (x, t,0,0), and the acceleration of this worldline is
(u · ∇)u = �−2

0 (x∂t + t∂x)(x, t,0,0) = �−2
0 (t, x,0,0). The norm of the spacelike

vector (t, x,0,0) is �0, so the norm of the acceleration is 1/�0.

1.2 Thermality of the Vacuum

The subject of the rest of these notes is the Hawking effect, i.e. the emission of
thermal radiation from a black hole. The root of the Hawking effect is the thermality
of the vacuum in flat spacetime. This thermality is known as the Unruh, or Fulling-
Davies-Unruh, effect [9]. In its narrowest form, this is the fact that a probe with
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uniform proper acceleration a, moving through the vacuum of a quantum field in
flat spacetime, is thermally excited at the Unruh temperature

TU = �a/2πc. (1.22)

(I’ve restored c here to show where it enters, but will immediately revert to units
with c = 1.) When described this way, however, too much attention is focused on
the probe and its acceleration.

Underlying the response of the probe is a rather amazing general fact: when re-
stricted to a Rindler wedge, the vacuum of a relativistic quantum field is a canonical
thermal state with density matrix

ρR ∝ exp(−2πHη/�), (1.23)

where Hη is the “boost Hamiltonian” or “Rindler Hamiltonian” generating shifts of
the hyperbolic angle coordinate η defined in (1.17). In terms of Minkowski coordi-
nates (t, x, y, z), Hη is given on a t = 0 surface of the Rindler wedge by

Hη =
∫

ΣR

Tabχ
a
BdΣb =

∫
xTttdxdydz, (1.24)

where Tab is the energy-momentum tensor. The “temperature” of the thermal state
(1.23) is

TR = �/2π. (1.25)

Like a rotation angle, the hyperbolic angle is dimensionless, so the boost generator
and temperature have dimensions of angular momentum.

Note that the thermal nature of the vacuum in the wedge does not refer to any
particular acceleration, and it characterizes the state even on a single time slice.
Nevertheless it does directly predict the Unruh effect. A localized probe that moves
along a particular hyperbolic trajectory at proper distance �0 from the vertex of the
wedge has proper time interval dτ = �0dη (cf. (1.17)). When scaled to generate
translations of this proper time the field Hamiltonian is thus Hτ = �−1

0 Hη, and the
corresponding temperature is T0 = �−1

0 �/2π . The proper acceleration of that hyper-
bola is �−1

0 , so the probe will be excited at the Unruh temperature (1.22).
The thermality of the vacuum in one wedge is related to entanglement between

the quantum states in the right and left wedges. It can be understood using a simple,
but abstract and formal, argument that employs the path integral expression for the
ground state. Because the result is so central to the subject, I think this argument
deserves to be explained.

The vacuum |0〉 is the ground state of the field Hamiltonian H , and can therefore
be projected out of any state |χ〉 as |0〉 ∝ limt→∞ e−tH |χ〉, as long as 〈0|χ〉 = 0.
The operator e−tH can be thought of as the time evolution operator for an imaginary
time −it , and its matrix elements can be represented by a path integral over fields φ

on Euclidean space. This yields a path integral representation for the vacuum wave
functional,

Ψ0[φ] ∝ lim
t→∞〈φ|e

−tH |χ〉 ∝
∫ φ(t=0)=φ

φ(t=−∞)=χ

Dφe−S/�, (1.26)
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Fig. 1.9 Euclidean Minkowski space with boundary at t = 0. When the path integral (1.26) is
sliced by constant t surfaces it presents the vacuum wave-functional. When sliced by constant
angle surfaces, it presents matrix elements of the operator exp(−πHη), where Hη is the Lorentz
boost generator

where S is the Euclidean action corresponding to the Hamiltonian H . The standard
demonstration of this path integral expression for matrix elements of e−tH proceeds
by slicing the Euclidean space into steps of constant Euclidean time, and exploits
the time translation invariance of the Hamiltonian. If the original Hamiltonian is
also Lorentz boost invariant, then the Euclidean action is also rotationally invariant.
This extra symmetry leads to an alternate interpretation of the path integral.

Fixing a particular rotational symmetry, e.g. around the origin in the Euclidean
tx plane, we may choose to slice the Euclidean space into steps of constant angle
around the corresponding vertex (see Fig. 1.9). This vertex divides the time slice
t = 0 into two halves, and the final field configuration φ restricts to some φL and
φR on the left and right sides respectively. These configurations define Dirac “bras”
〈φL| and 〈φR| in the duals of the left and right side Hilbert spaces HL and HR . The
full Hilbert space is the tensor product HL ⊗HR .

With this angular slicing, (and not worrying about boundary conditions at the
vertex), we can think of the path integral as producing the matrix element of the
operator exp(−πHη) between φL, regarded now as an initial state, and the final
state φR ,

Ψ0[φL,φR] ∝ 〈φR|e−πHηJ |φL〉. (1.27)

Here Hη is the boost Hamiltonian, which is the generator of angle shifts, and π is
the rotation angle in the Euclidean plane. (The rotation angle is to the boost angle as
the Euclidean time is to the Minkowski time.) The final state bra 〈φL| is replaced by
a “corresponding” initial state ket J |φL〉 that can be identified with a state in HR .
Here J = CT P 1 is the operator of charge conjugation, time reversal, and reflection
across the Rindler plane, which is a symmetry of all Lorentz invariant quantum field
theories.3

3For a configuration eigenstate of a real field, the ket J |φL〉 can just be identified with the same
function φL, reflected by an operator P 1 across the Rindler plane. More generally, J includes CT
to undo the conjugation of the 〈bra| → |ket〉 duality.
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The vacuum wave-functional (1.27) can also be represented as a vector in the
Hilbert space HL⊗HR , by multiplying the amplitudes (1.27) by the corresponding
kets and integrating over the fields:

|0〉 ∝
∫

DφLDφR|φL〉|φR〉〈φR|e−πHηJ |φL〉 (1.28)

=
∫

DφL|φL〉e−πHηJ |φL〉 (1.29)

=
∑

n

e−πEn |n〉L|n̄〉R. (1.30)

In the last line the state is expressed in terms of eigenstates |n〉 of the boost Hamil-
tonian with boost energy En (with additional implicit quantum numbers). It is ob-
tained via J |φL〉 =∑n J |n〉〈n|φL〉 =∑n〈φL|n〉J |n〉, using the anti-linearity of J .
Then the integral over φL yields the identity operator, and the result follows since
Hη commutes with J . The state |n̄〉 stands for the “antiparticle state” J |n〉.

This exhibits the precise sense in which the quantum field degrees of freedom in
the left and right Rindler wedges are entangled in the vacuum state. This entangle-
ment is the origin of the correlations between the Hawking quanta and their partners,
and it produces the entanglement entropy for quantum fields outside a horizon. Trac-
ing over the state in the left wedge we obtain the reduced density matrix for the state
restricted to right wedge,

ρR = TrL|0〉〈0| ∝
∑

n

e−2πEn |n〉〈n|. (1.31)

This is the canonical thermal state (1.23) mentioned above.4 The horizon entangle-
ment entropy is the entropy of this thermal state. It diverges as the horizon area
times the square of the momentum cutoff.

1.3 Hawking Effect

The essence of the Hawking effect [10] is that the correlated vacuum fluctuations
described in the previous section exist near the horizon of a black hole, which is
locally equivalent to a Rindler horizon. The crucial difference from flat space is
that tidal effects of curved spacetime peel apart the correlated partners. The outside
quanta sometimes escape to infinity and sometimes fall backwards into the black
hole, while the inside ones fall deeper into the black hole. The escaping quanta
have a thermal spectrum with respect to the analogue of the boost Hamiltonian,
that is, with respect to the Hamiltonian for the horizon-generating symmetry. If the
horizon generating Killing vector is normalized to have unit surface gravity, like the
boost Killing vector, the temperature is again the Rindler temperature TR = �/2π

4Its matrix elements could also have been obtained directly using the wave functional (1.27), via∫
DφLΨ0[φL,φR]Ψ ∗

0 [φL,φ
′
R] ∝ 〈φR |e−2πHη |φ′R〉.
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(1.25). However, for a quantum that escapes from the black hole region, the natural
definition of energy is the generator of asymptotic time translations. For defining
this energy we normalize the time translation Killing vector at infinity. Then the
black hole horizon has a surface gravity κ , and the temperature is the Hawking
temperature,

TH = �κ/2π. (1.32)

Note that the Unruh temperature (1.22) can be expressed in exactly the same way as
the Hawking temperature since, as explained in Sect. 1.1.5.1, when the boost Killing
field is normalized to unity on a given hyperbola the surface gravity of the Rindler
horizon is precisely the acceleration of that hyperbola.

For a rotating black hole, as explained in Sect. 1.1.5, the horizon generating
Killing vector is ∂t + ΩH∂φ . The eigenvalues of the Hamiltonian corresponding
to this Killing vector are5 E −ΩHL, where E and L are the energy “at infinity”
and angular momentum respectively. Thus the Boltzmann factor for the Hawking
radiation is e−(E−ΩHL)/TH . The angular velocity ΩH plays the role of a chemical
potential for the angular momentum.

Missing from this explanation of the Hawking effect is the specification of the
incoming state. In principle, there are two places where the state can “come in”
from: spatial infinity, and the horizon. The state coming from the horizon is deter-
mined to be the local vacuum by a regularity condition, since anything other than
the vacuum would be singular as a result of infinite blueshift when followed back-
wards in time toward the horizon. This is what accounts for the universality of the
thermal emission. However the state coming in from infinity has freedom. If it is
the vacuum, the state is called the “Unruh state”, while if it is a thermal state, as
appropriate for thermal equilibrium of a black hole with its surroundings, it is the
“Hartle-Hawking” state. In the neighborhood of the intersection of past and future
horizons, the Hartle-Hawking state is close to the local Minkowski vacuum.

For black holes in general relativity, the above description of the Hawking ef-
fect is, in a sense, the complete story. For analogue models, however, one wants a
derivation that does not assume Lorentz invariance, and that shows the way to the
modifications brought about by the lack thereof. Also, it is important to be able to
allow for experimental conditions that determine different incoming states. More-
over, in the analogue case the horizon state need not be the vacuum, since in the
presence of Lorentz violating dispersion a different state can exist without entail-
ing anything singular on the horizon. Thus we now take a very different viewpoint,
analyzing the vacuum “mode by mode”. It is this approach that Hawking originally
followed when he discovered black hole radiation. It should be emphasized at the
outset however that, unlike the previous treatment, this approach will apply only to
free field theory, with uncoupled modes satisfying a linear field equation.

5The sign of the L term is opposite to that of the E term because ∂φ is spacelike while ∂t is
timelike.
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1.3.1 Mode Solutions

My aim here is to convey the essence of the Hawking effect, using a language that
is easily adapted to analogue models in which dispersive effects play a role. Hence
I will discuss only a system with one spatial dimension, and will highlight the role
of the dispersion relation, using WKB methods.

Consider a scalar field ϕ that satisfies the wave equation ∂α(
√−ggαβ∂βϕ)= 0.

For the metric (1.13) we have
√−g = c and gtt = 1/c2, gtx = v/c2, gxx =

(v2−c2)/c2. Since the metric is independent of t we can find solutions with definite
Killing frequency, ϕ = e−iωtu(x). Because of the redshift effect an outgoing solu-
tion has very rapid spatial oscillations of u(x) near the horizon. We can thus find an
approximate solution near the horizon by neglecting all terms in which there is not
at least one derivative of u(x). This yields the equation

∂x
[(
v2/c− c

)
∂xu
]= (2iωv/c)∂xu. (1.33)

Near a horizon x = xH where v =−c we have the expansions v/c =−1+O(x −
xH ) and v2/c − c = −2κ(x − xH ) + O[(x − xH )2]. Thus at the lowest order in
x − xH the near horizon approximation of (1.33) becomes

∂x
[
(x − xH )∂xu

]= (iω/κ)∂xu, (1.34)

whose solutions have the form

u∼ (x − xH )iω/κ = ei(ω/κ) ln(x−xH ). (1.35)

The logarithmic divergence in the phase justifies the dominance of spatial deriva-
tives of ϕ near the horizon. Note that this mode has the same form as (1.12), which
we inferred in Sect. 1.1.2.4 using the equation of outgoing lightrays to propagate
the phase of the wave in the near horizon region.

Now let’s see how to arrive at the same approximate solution using the dispersion
relation with the fluid picture. First, a mode solution in a homogeneous fluid has the
form ϕ ∼ e−iωt eikx , where x is the position in the fluid frame and the dispersion
relation is ω2 = F(k)2 for some function F(k). For instance, for a nondispersive
wave with speed c we have simply F(k)= ck. If the fluid is flowing with speed v

relative to the “lab” then x = xf +vt , where xf is at rest with respect to the fluid. In
terms of xf the mode is e−i(ω−vk)t eikxf , which allows us to read off the frequency
as measured in the fluid frame, ωf = ω − vk. The dispersion relation holds in the
fluid frame, so we have ω− vk =±F(k).

If the flow velocity v(x) is not uniform, ωf = ω − v(x)k is locally accurate
provided the change of v(x) over a wavelength is small compared to v(x) itself.
The local dispersion relation then becomes

ω− v(x)k =±F(k), (1.36)

which for a fixed Killing frequency yields a position-dependent wavevector, kω(x).
It should be emphasized that the Killing frequency ω is a well-defined global con-
stant for a solution, even if the Killing vector is not everywhere timelike.
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An approximate, WKB mode solution, taking into account only the phase factor,
is thus

u(x)∼ exp

(
i

∫ x

kω
(
x′
)
dx′
)
. (1.37)

Finally, if the local wave velocity c(x) also depends on position in the fluid (but
is time independent in the lab frame), then the function F(k, x) also depends on
position. If c(x) changes slowly over a wavelength, then the mode of the same form
is again a good approximation. For the case of relativistic dispersion F(k, x) =
c(x)k we obtain kω = ω/(c + v) for the outgoing mode. Expanding around the
horizon this yields kω(x)= (ω/κ)(x−xH )−1, and so the mode takes the same form
as (1.35) derived above.

1.3.2 Positive Norm Modes and the Local Vacuum

When the field is quantized, the Hilbert space is constructed as a Fock space built
from single particle states corresponding to (complex) solutions to the field equation
with positive conserved “norm”. The norm can be identified using a conserved inner
product, the existence of which follows from global phase invariance of the action.
Here I will not attempt to explain the details of this construction, which can be found
in many expositions,6 but instead will try to provide a simple argument that captures
the essence of the story. In this section the relativistic case will be explained, and in
the last section I will make some brief comments about what happens when there is
Lorentz violating dispersion for short wavelengths. The quantum field is taken to be
a hermitian scalar, which arises from quantization of a real scalar field.

Positive norm modes that are localized can be recognized as those that have
positive frequency in the fluid frame. In the relativistic case, this amounts to pos-
itive frequency in any freely falling frame. The time derivative in the fluid frame
is (∂t )f = ∂t + v∂x . For a mode of the form (1.35) near the horizon, this is dom-
inated by the second term, and v ≈ −c, hence for such modes positive frequency
with respect to t in the fluid frame is the same as positive frequency with respect
to x. (There are two minus signs that cancel: v = −c < 0 at the horizon, but the
conventional definition of “positive frequency” is ∼ e−iωt with ω > 0 for temporal
frequency, and ∼ e+ikx with k > 0 for spatial frequency.)

The mode (1.35) with logarithmic phase divergence at the horizon can be analyt-
ically continued across the horizon to make either a positive or a negative frequency
solution. To see how this works, let’s first simplify the notation a bit and set xH = 0,
so the horizon lies at x = 0. Now a positive x-frequency function has the form∫∞

0 dkf (k)eikx , which is analytic in the upper-half complex x-plane since addition
of a positive imaginary part to x leaves the integral convergent. Similarly, a negative

6For a pedagogical introduction see, e.g. [10], or references therein.
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x-frequency function is analytic in the lower half x-plane. The argument of the log-
arithm is x = eiθ |x|, so lnx = iθ + ln |x|. Continuing to −x in the upper or lower
half plane thus gives (lnx)± =±iπ + ln |x| respectively, hence

ei(ω/κ) lnx → e∓πω/κei(ω/κ) ln |x|. (1.38)

We can thus write down positive and negative frequency continuations,

q+ = u+ e−πω/κ ũ, (1.39)

q− = e−πω/κu+ ũ, (1.40)

where u= θ(x)ei(ω/κ) lnx and ũ= θ(−x)ei(ω/κ) ln |x|, and N is a normalization fac-
tor. (The negative frequency continuation q− has been multiplied by e−πω/κ to bet-
ter reflect the symmetry and thus simplify the following discussion.)

We can now express u as a superposition of positive and negative norm parts,

u= u+ + u− ∝ q+ − e−πω/κq−. (1.41)

From the symmetry of the construction, the norms of q+ and q− are equal up to a
sign, hence the ratio of the squared norms (denoted 〈, 〉) of the negative and positive
norm parts of u is

|〈u−, u−〉|
〈u+, u+〉 = e−2πω/κ = e−E/TH . (1.42)

In the last equality I’ve defined the energy E = �ω, and TH = �κ/2π is the Hawking
temperature. This “thermal ratio” is the signature of the Hawking effect, as indicated
via the mode u outside the horizon. Note that this ratio is a property of the classical
solution to the wave equation, and is determined by the ratio of the frequency to the
surface gravity. Planck’s constant enters only when we express the result in terms
of the energy quantum �ω. Note also that if the Killing vector is rescaled, then the
Killing frequency ω and surface gravity κ are rescaled in the same way, so that the
ratio ω/κ is unchanged.

The presence of the negative frequency part u− in u (1.41) is unexpected from
the WKB viewpoint. It corresponds to a negative wavevector, whereas when we
solved the local dispersion relation we found kω(x)= (ω/κ)(x − xH )−1. Since the
support of u lies outside the horizon at x > xH , it might seem that this dispersion
relation implies that kω(x) is positive, and thus that the frequency is purely positive.
However this is a misconception, because a function with support on a half line
cannot have purely positive frequency. The concept of a definite local wavevector
must therefore have broken down. Indeed, if we examine the change of k over a
wavelength we find (dk/dx)/k ∼ (κ/ω)k, which is not much smaller than k unless
ω� κ . This resolves the puzzle.7

7However, it raises another one: why did the WKB type mode ∼ exp(i
∫ x

kω(x
′)dx′) agree so well

with the mode function (1.35)? The answer is that (1.34) is a first order equation, not a second
order one, once an overall ∂x derivative is peeled off.
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The Local Outgoing Vacuum The local outgoing vacuum contains no outgoing
excitations. More precisely, it is the ground state in the Fock space of outgoing pos-
itive norm modes. The outgoing modes we have been discussing are not themselves
localized, but one can form localized wavepackets from superpositions of them with
different frequencies. Hence we may characterize the local outgoing vacuum by the
requirement that it be annihilated by the annihilation operators8 a(q+) and a(q∗−)
for all positive norm modes.

These operators can be expressed in terms of the annihilation and creation op-
erators corresponding to u and ũ using (i) linearity, (ii) Eqs. (1.39) and (1.40), and
(iii) the relation a(f ) = −a†(f ∗) which should be used if f has negative norm.9

For example, a(q+)= a(u)+e−πω/κa(ũ)= a(u)−e−πω/κa(ũ∗). The vacuum con-
ditions

a(q+)|0〉 = 0, (1.43)

a
(
q∗−
)|0〉 = 0 (1.44)

thus amount to

a(u)|0〉 = e−πω/κa†(ũ∗
)|0〉, (1.45)

a
(
ũ∗
)|0〉 = e−πω/κa†(u)|0〉. (1.46)

If we normalize the mode u, then the commutation relation [a(u), a†(u)] = 1 holds
and implies that, in effect, a(u)= ∂/∂a†(u), and similarly for ũ. Thus (1.45) can be
solved to find the vacuum state for these particular modes of frequency ω,

|0〉 ∝ exp
(
e−πω/κa†(u)a†(ũ∗

))|0L0R〉, (1.47)

where |0L0R〉 is the state with no u or ũ∗ excitations on either side of the horizon,
a(u)|0L0R〉 = 0 = a(ũ∗)|0L0R〉. In flat space |0L0R〉 is called the (outgoing fac-
tor of the) “Rindler vacuum”, while in a black hole spacetime it is the “Boulware
vacuum”.

Expanding the exponential in (1.47) we obtain another expression for the vacuum

|0〉 ∝
∑

e−nπω/κ |nLnR〉, (1.48)

where nL and nR are the number of particles in the given mode.10 Taking the prod-
uct over all frequencies, we then arrive at an expression for the local vacuum of
a free field theory near the horizon that has the same form as the general thermal
result (1.30) obtained earlier using the path integral. The results look different only
because here the energies of free field states with n quanta are given by n�ω, and
because here the Killing vector is not normalized to unit surface gravity.

8What I am calling the annihilation operator here is related to the field operator φ by a(f )= 〈f,φ〉,
where f is a positive norm mode. If f is not normalized this is actually 〈f,f 〉1/2 times a true
annihilation operator.
9The minus sign comes from the conjugation of a factor of i in the definition of the norm, which I
will not explain in detail here.
10Here I’ve use the relation (a†)n|0〉 =√

n!|n〉.
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1.3.3 Stimulated Emission of Hawking Radiation

So far I spoke only of the Hawking effect arising from the local vacuum at the hori-
zon. For a real black hole this is probably the only relevant condition, but for ana-
logue models it is possible, and even unavoidable because of thermal fluctuations,
noise, or coherent excitations, that the in-state is not the vacuum. Then what arises
is stimulated emission of Hawking radiation [11], just as the decay of an excited
atomic state can be stimulated by the presence of a photon.

To quantify this process, instead of imposing the vacuum condition (1.43) we can
assume the quantum field is in an excited state,

a†(q̂+)a(q̂+)|Ψ 〉 = n+|Ψ 〉, (1.49)

a†(q̂∗−
)
a
(
q̂∗−
)|Ψ 〉 = n−|Ψ 〉, (1.50)

where the q̂± are normalized versions of (1.39,1.40). A simple way to diagnose the
emission is via the expectation value of the occupation number of the normalized
mode u. Using (1.41) and (1.42) we find

〈Ψ |a†(u)a(u)|Ψ 〉 = 〈Ψ |a†(u+)a(u+)+ a
(
u∗−
)
a†(u∗−

)|Ψ 〉 (1.51)

= 〈u+, u+〉
[
n+ + e−2πω/κ(n− + 1)

]
(1.52)

= n+ + n+ + n− + 1

e2πω/κ − 1
(1.53)

where 〈u+, u+〉 = 1/(1− e−2πω/κ). Thus both n+ and n− stimulate Hawking emis-
sion, while only n+ shows up in the non-thermal spectrum. Had the state been a
coherent state, the occupation numbers would be replaced by squared amplitudes.
Something analogous to this occurs in the surface wave white hole radiation exper-
iments [12], although those waves do not have a relativistic dispersion relation. In
the case of a Bose condensate, the appropriate in-state would presumably be more
like a thermal state [13].

1.4 The Trans-Planckian Question

The sonic black hole was originally conceived by Unruh [14] in part to address what
has come to be called the trans-Planckian question: Can the derivation of Hawking
radiation be considered reliable given that it refers to arbitrarily high frequency field
modes? If one assumes local Lorentz invariance at arbitrarily large boosts, then any
high frequency mode can be Doppler shifted to low frequency, so one might argue
that there is nothing to be concerned about. Sometimes the point is raised that there
is an arbitrarily large invariant center of mass energy in the collision between in-
going and outgoing modes in the vacuum outside a horizon. However, this is true
even in flat spacetime. We never see the effects of such collisions because they
concern the “internal structure” of the ground state. We could presumably see this
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quantum gravity structure of the vacuum only with probes that have Planckian in-
variant energy. Hence it is not clear to me that there is anything to worry about in
the derivation, provided one is willing to assume local Lorentz symmetry at boost
factors arbitrarily far beyond anything that will ever be tested.

Even without assuming exact Lorentz symmetry, one can infer the Hawking ef-
fect by assuming that the outgoing modes are in their local ground state near the
horizon for free-fall frequencies high compared to, say, the light-crossing time of
the black hole, but small compared to the Planck frequency [15]. Validity of this
assumption is highly plausible since the black hole formation, and field propagation
in the black hole background, is very slow compared to frequencies much higher
than the light crossing time. One would thus expect that whatever is happening in
the vacuum, it remains unexcited, and the outgoing modes would emerge in their
ground state in the near horizon region. The sonic model and other analogues allow
this hypothesis to be tested in well-understood material systems that break Lorentz
symmetry.

Thus one is led to consider Hawking radiation in the presence of high fre-
quency/short wavelength dispersion, both because of the possibility that spacetime
is Lorentz violating (LV), and because of the fact that analogue models are LV.
However, given the very strong observational constraints on Lorentz violation [16],
as well as the difficulty of accounting for low energy Lorentz symmetry in a the-
ory that is LV in the UV [17], the possibility of fundamental LV seems rather un-
likely. Hence the main motivations for considering LV dispersion are to understand
condensed matter analogues, and to have an example—probably unphysical from a
fundamental viewpoint—in which the vacuum has strong UV modifications and the
existence of Hawking radiation can be checked.

The central issue in my view is the origin of the outgoing modes [18]. In a con-
densed matter model with a UV cutoff these must arise from somewhere other than
the near horizon region, either from “superluminal” modes behind the horizon, from
“subluminal” modes that are dragged towards the horizon and then released, or from
no modes at all. The last scenario refers to the possibility that modes “assemble”
from microscopic degrees of freedom in the near horizon region. This seems most
likely the closest to what happens near a spacetime black hole, and for that reason
deserves to be better understood. Other than a linear model that has been studied
in the cosmological context [19], and a linear model of quantum field theory on a
1+ 1 dimensional growing lattice [20], I don’t know of any work focusing on how
to characterize or study such a process.

1.5 Short Wavelength Dispersion

In this concluding section, I discuss what becomes of the Hawking effect when
the dispersion relation is Lorentz invariant (“relativistic”) for long wavelengths but
not for short wavelengths, as would be relevant for many analogue models. First I
summarize results on the robustness of the “standard” black hole radiation spectrum,
and then I describe the phenomena of stimulated emission and white hole radiation.
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Dispersion relations of the form ω2 = c2(k2 ± k4/Λ2) have been exhaustively
studied. The plus sign gives “superluminal” propagation at high wavevectors, while
the minus sign gives “subluminal” propagation. Roughly speaking, a horizon (for
long wavelengths) will emit thermal Hawking radiation in a given mode provided
that there is a regime near the horizon in which the mode is relativistic and in the lo-
cally defined vacuum state. This much was argued carefully in Ref. [15], and much
subsequent work has gone into determining the precise conditions under which this
will happen, and the size of the deviations from the thermal spectrum, for specific
types of dispersion relations. The dispersion determines how the outgoing modes
arise, that is whether they come from inside or outside the horizon, and what quan-
tum state they would be found in if the initial state were near the ground state of the
field, as in Hawking’s original calculation.

The most recent and most complete analysis of the effects of dispersion on the
spectrum can be found in Ref. [21], in which many references to earlier work can
also be found. The basic technique used there is that of matched asymptotic ex-
pansions, pioneered in Refs. [22, 23] as applied to Hawking radiation for dispersive
fields. The dispersive modes have associated eikonal trajectories with a turning point
outside or inside the horizon for the sub- and super-luminal cases respectively. Away
from the turning point approximate solutions can be found using WKB methods. If
the background fluid velocity (or its analogue) has a linear form v(x)=−1+ κx to
a good approximation out beyond the turning point, then one can match a near hori-
zon solution to WKB solutions, and use this to find the Hawking radiation state and
correlation functions. The near horizon solution is most easily found in k space, be-
cause while the mode equation is of higher order in x derivatives, v(x)=−1+ iκ∂k
is linear in k derivatives, so the mode equation is second order in ∂k . Further simplifi-
cations come about because a linear v(x) in fact corresponds to de Sitter spacetime,
which has an extra symmetry that produces factorized modes. One factor is inde-
pendent of the dispersion and has a universal ω dependence, while the other factor
is independent of ω and captures the dispersion dependence.

The result, for dispersion relations of the form ω2 = c2(k ± k2n+1/Λ2n)2 (cho-
sen for convenience to be a perfect square), is that the relative deviations from the
thermal spectrum are no greater than of order (κ/Λ)(κxlin)

−(1+1/2n) times a poly-
nomial in ω/κ .11 Here the horizon is at x = 0, and xlin is the largest x for which
v(x) has the linear form to a good approximation. Thus while it is important that
the Lorentz violation wavevector scale Λ be much greater than the surface gravity
κ , this may not be good enough to ensure agreement with the relativistic Hawking
spectrum if the linear regime of the velocity extends over a distance much shorter
than the inverse surface gravity.

At the other extreme, when the surface gravity is much larger than the largest
frequency for which the turning point falls in the linear region, the spectrum of
created excitations has been found to be proportional to 1/ω, at least for disper-
sion relations of the form ω2 = c2(k2 ± k4/Λ2). This is the low frequency limit

11For frequencies of order the surface gravity, this quantity can also be expressed as (xtp/

xlin)
1+1/2n, where xtp is the (ω-dependent) WKB turning point.
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of a thermal spectrum, but the temperature is set not by the surface gravity but by
∼Λ(κxlin)

3/2. This result applies even in the limit of an abrupt “step” at which the
velocity changes discontinuously from sub- to supersonic [24, 25].

1.5.1 Stimulated Hawking Radiation and Dispersion

For a relativistic free field, the ancestors of Hawking quanta can be traced back-
wards in time along the horizon to the formation of the horizon, and then out to
infinity. They are thus exponentially trans-Planckian. In the presence of dispersion,
blueshifting is limited by the scale of dispersion, so that ancestors can be traced back
to incoming modes with wave vectors of order Λ. If the dispersion is subluminal,
those modes come from outside the black hole horizon, while if it is superluminal,
they come from behind the horizon. Either way, they are potentially accessible to
the control of an experiment. Instead of being in their ground state, they might be
intentionally populated in an experiment, or they might be inadvertently thermally
populated. Either way, they can lead to stimulated emission of Hawking radiation,
as discussed in Sect. 1.3.3.

This opportunity to probe the dependence of the emitted radiation on the incom-
ing state is useful to experiments, and it can amplify the Hawking effect, making it
easier to detect. Note however that when the Hawking radiation is stimulated rather
than spontaneous, it is less quantum mechanical, and if the incoming mode is sig-
nificantly populated it is essentially purely classical.

1.5.2 White Hole Radiation

A white hole is the time reverse of a black hole. Just as nothing can escape from a
black hole horizon without going faster than light, nothing can enter a white hole
horizon without going faster than light. Einstein’s field equation is time reversal in-
variant, so it admits white hole solutions. In fact the Schwarzschild solution is time
reversal symmetric: when taken in its entirety it includes a white hole. A black hole
that forms from collapse is of course not time reversal invariant, but the time re-
verse of this spacetime is also a solution to Einstein’s equation. It is not a solution
we expect to see in Nature, however, both because we don’t expect the correspond-
ing initial condition to occur, and because, even if it did, the white hole would be
gravitationally unstable to forming a black hole due to accretion of matter [26, 27].
Moreover, even if there were no matter to accrete, the horizon would be classically
and quantum mechanically unstable due to an infinite blueshift effect, as will be
explained below.

White hole analogues, on the other hand, can be engineered in a laboratory, and
are amenable to experimental investigation. For example, one could be realized by
a fluid flow with velocity decreasing from supersonic to subsonic in the direction of
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the flow. Sound waves propagating against the flow would slow down and blueshift
as they approach the sonic point, but the blueshifting would be limited by short
wavelength dispersion, so the white hole horizon might be stable. If the horizon is
stable, then the time reverse of the Hawking effect will take place on a white hole
background, and the emitted radiation will be thermal, at the Hawking temperature
of the white hole horizon [24] (see also Appendix D of Ref. [13]). Underlying this
relation is the fact that the modes on the white hole background are the time reverse
of the modes on the time-reversed black hole background. Note that this means that
the roles of the in and out modes are swapped. In particular, the incoming vacuum
relevant to the Hawking radiation consists of low wavenumber modes propagating
against the flow.

When such a mode with positive norm approaches the white hole horizon, it is
blocked and begins blueshifting. At this stage, it has become a superposition of pos-
itive and negative co-moving frequency (and therefore positive and negative norm)
parts. If it were relativistic at all scales, it would continue blueshifting without limit.
It would also be unentangled with the other side of the horizon, so would evidently
be in an excited state, not the co-moving ground state. Hence there would be a quan-
tum instability of the vacuum in which the state becomes increasingly singular on
the horizon. A classical perturbation would behave in a similarly unstable fashion.

In the presence of dispersion, however, the blueshifting is arrested when the it
reaches the dispersion scale. At that stage, if the mode becomes superluminal, it
accelerates and both parts propagate across the horizon. If instead it becomes sub-
luminal, then it slows down and both parts get dragged back out with the flow. In
either case, the positive and negative norm parts are in an entangled, excited state
that is thermal when tracing over one of the pair. Thus, a dispersive wave field ex-
hibits Hawking radiation from a white hole horizon, but with two marked differences
when compared to black hole radiation: the Hawking quanta have high wavevectors
even when the Hawking temperature is low, and the entangled partners propagate on
the same side of the horizon (inside for superluminal, outside for subluminal disper-
sion). While on the same side, the partners can separate, since in general they have
different group velocities.

There is an important potential complication with this story of white hole radi-
ation. Although the singularity that would arise in the relativistic case is cured by
dispersion, an avatar of it emerges in the form of a zero Killing frequency standing
wave. This has been shown to arise from the zero frequency limit of the Hawking
radiation. In that limit, the emission rate diverges as 1/ω, leading to a state with
macroscopic occupation number that grows in time [21, 28]. This process can also
be seeded by classical perturbations, and it grows until nonlinear effects saturate the
growth. The resulting standing wave, which is a well-known phenomenon in other
contexts, is referred to in the white hole setting as an “undulation”. It is composed of
short wavelengths that are well into the dispersive regime. Depending on the nature
of the flow and the saturation mechanism, it could disrupt the flow and prevent a
smooth horizon from forming.

To conclude, I will now describe what was seen in the Vancouver experi-
ment [12]. That experiment involved a flow of water in a flume tank with a velocity
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profile that produced a white hole horizon for long wavelength, shallow water, sur-
face waves (which are dispersionless over a uniform bottom). When blueshifted
those waves convert to deep water waves, with a lower group velocity, which be-
have like the “subluminal” case described above. In the experiment coherent, long
waves with nine different frequencies were launched from downstream, propagating
back upstream towards the white hole horizon, and the resulting conversion to short
waves was observed. The squared norm ratio of the negative and positive norm com-
ponents of the corresponding frequency eigenmode was consistent with the thermal
ratio (1.42).12 This can be understood as coherently stimulated emission of Hawk-
ing radiation (see Appendix C of Ref. [13] for a general discussion of this process).
It is strictly classical, but it is governed by the same mode conversion amplitudes
that would produce spontaneous emission if the system could be prepared in the
ground state.
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Chapter 2
Survey of Analogue Spacetimes

Matt Visser

Abstract Analogue spacetimes (and more boldly, analogue models both of and for
gravity), have attracted significant and increasing attention over the last decade and
a half. Perhaps the most straightforward physical example, which serves as a tem-
plate for most of the others, is Bill Unruh’s model for a dumb hole,(mute black hole,
acoustic black hole), wherein sound is dragged along by a moving fluid—and can
even be trapped behind an acoustic horizon. This and related analogue models for
curved spacetimes are useful in many ways: analogue spacetimes provide general
relativists with extremely concrete physical models to help focus their thinking, and
conversely the techniques of curved spacetime can sometimes help improve our un-
derstanding of condensed matter and/or optical systems by providing an unexpected
and countervailing viewpoint. In this chapter, I shall provide a few simple examples
of analogue spacetimes as general background for the rest of the contributions.

2.1 Introduction

While the pre-history of analogue spacetimes is quite long and convoluted, with
optics-based contributions dating as far back as the Gordon metric of 1923 [1],
significant attention from within the general relativity community dates back to Bill
Unruh’s PRL concerning acoustic black holes (dumb holes) published in 1981 [2].
Even then, it is fair to say that the investigation of analogue spacetimes did not
become mainstream until the late 1990’s. (See the recently updated Living Review
article on “Analogue gravity” for a summary of the historical context [3].)

In all of the analogue spacetimes, the key idea is to take some sort of “excitation”,
travelling on some sort of “background”, and analyze its propagation in terms of the
tools and methods of differential geometry. The first crucial technical distinction
one has to make is between “rays” and “waves”.

• The rays of ray optics (geometrical optics), ray acoustics (geometrical acoustics),
or indeed any more general ray-like phenomenon, are only concerned with the
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“light cones”, “sound cones”, or more generally the purely geometrical “prop-
agation cones” defined by the ray propagation speed relative to the appropriate
background. Physically, in this approximation one should think photons/phonons/
quasi-particles following some well-localized trajectory, rather than the more dif-
fuse notion of a wave. Mathematically, we will soon see that it is appropriate to
construct some metric gab , and some tangent vector ka to the particle trajectory,
such that:

gabk
akb = 0. (2.1)

Here indices such as a, b, c, . . . , take on values in {0,1,2,3}, corresponding to
both time and space, whereas indices such as i, j , k, . . . , will take on values in
{1,2,3}, corresponding to space only. Of course we could multiply the metric by
any scalar quantity without affecting this equation; this is known as a conformal
transformation of the metric. (So distances change but angles are unaffected.)
In the language of differential geometry, ray phenomena are sensitive only to a
conformal class of Lorentzian geometries.

• In contrast, for waves one needs to write down some PDE—some sort of wave
equation. For example, for a scalar excitation Ψ one needs to construct a wave
equation in terms of a d’Alembertian [2–7]:

1√−g
∂a
(√−ggab∂bΨ

)= 0. (2.2)

This d’Alembertian, (and in fact very many of the different possible types of wave
equation), depends on all the components of the metric gab , not just the conformal
class. (And conformal wave equations, of which the Maxwell electromagnetic
wave equations are the most common, have their own somewhat different issues.)

In short, depending on exactly what one is trying to accomplish, one may sometimes
be able to get away with ignoring an overall multiplicative conformal factor—but
for other applications knowledge of the conformal factor is utterly essential.

What I shall now do is to present some elementary examples—and a few not
so elementary implications—that will hopefully serve as a pedagogical introduction
to the more specific physics problems addressed in the other contributions to this
volume.

2.2 Optics: The Gordon Metric and Its Generalizations

The original Gordon metric [1] of 1923 was limited to ray optics in a medium with a
position-independent refractive index, and with some position-independent velocity.
Let

ηab =
[−1 0

0 δij

]
, (2.3)
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denote (as usual) the special relativistic Minkowski metric, and correspondingly set
the zeroth coordinate to x0 = t = ctphysical. Denote the refractive index by n and the
4-velocity of the medium by V a = γ (1;βn). Then we have Va = γ (−1;βn). Now
define

gab = (ηab + VaVb)− VaVb

n2
= ηab +

(
1− 1

n2

)
VaVb. (2.4)

In the rest frame of the medium V a → (1;0) and

gab →
[−1/n2 0

0 δij

]
. (2.5)

Therefore in this rest frame the null cones of the medium are exactly what we want:

0= ds2 =−dt2

n2
+ ‖dx‖2 =⇒

∥∥∥∥
dx
dt

∥∥∥∥=
1

n
. (2.6)

But more generally, for non-zero velocity, β = 0, the metric gab provides a per-
fectly good special relativistic model for the light cones in a homogeneous moving
medium. Let us agree to raise and lower the indices on the 4-velocity V using the
Minkowski metric η, then the contravariant Gordon metric is

gab = (ηab + V aV b
)− n2V aV b. (2.7)

The first and most obvious generalization is to note that one can easily make the
refractive index and 4-velocity both space and time dependent. (Physically, this will
certainly work as long as the wavelength and period of the light wavicle is short
compared to the spatial and temporal scales over which changes of the background
refractive index and 4-velocity are taking place.)

A second generalization is to note that from the point of view of ray optics one
might as well take

gab =Ω2
[
(ηab + VaVb)− VaVb

n2

]
; gab =Ω−2[(ηab + V aV b

)− n2V aV b
]
.

(2.8)
The conformal factor Ω will simply drop out when determining the light cones.
With the quantities Ω(x), n(x), and V (x) all being space and/or time dependent,
this is the most general (but still physically natural) form of the (special relativity
based) Gordon metric one can write.

One can certainly calculate the Einstein tensor for this optical metric, but there
is a priori no really compelling reason to do so—there is a priori no good reason
to attempt to enforce the Einstein equations for this optical metric, the physics is
just completely different. (That being said, if one merely views this as an ansatz
for interesting metrics to look at, then many of the standard spacetimes of general
relativity can certainly be put into this form. For example, the Schwarzschild and
Reissner–Nordström spacetimes, and the FLRW cosmologies, can certainly be put
in this form [8].)
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Example Let us take Ω = n and write

gab = n2(ηab + VaVb)− VaVb. (2.9)

This corresponds to

ds2 =−dt2 + n2
∥∥dx2

∥∥. (2.10)

Now pick the specific refractive-index profile

n= n0

1+ r2/a2
, (2.11)

so

ds2 =−dt2 + n2
0[dr2 + r2{dθ2 + sin2 θdφ2}]

(1+ r2/a2)2
. (2.12)

A theoretical cosmologist should recognize this as the Einstein static universe in
isotropic coordinates [9–11]. A theoretician working in optics should recognize
this as the Maxwell fish-eye lens [12–14]. This is simply the first of many cross-
connections between optics and general relativity. This becomes (or should become)
a two-way street for information exchange.

The Maxwell fish-eye above is an example of a Lüneburg lens [15], and has now
become the canonical example which helped initiate much of the recently developed
field of “transformation optics” [16–19]. In particular, if one looks at this from the
perspective of a theoretical cosmologist then the prefect focussing properties are
utterly trivial—after all, the spatial slices of the Einstein static universe are just
the hyper-sphere S3 in suitable coordinates—the geodesics are obviously just great
circles, which by symmetry must meet at the antipodes of the emission event, and
so perfect focussing in the ray optics approximation is trivial.

Limitations Perhaps the greatest limitation of the Gordon metric is its inability
(in its original 1923 formulation) to deal with wave properties of light. There is a
rather non-trivial generalization to the full Maxwell equations [3], but for technical
reasons the generalization requires the very specific constraint

[magnetic permittivity]∝ [electric permeability]. (2.13)

For ordinary physical media this constraint is somewhat unphysical [3], but there is
hope that suitably designed metamaterials [20] may be designed to at least approxi-
mately satisfy this constraint.

Foreground-Background Version So far, the Gordon metric has been based on
a optical medium in Minkowski space described by the flat metric ηab . But now
suppose we have a non-trivial background metric fab arising from standard gen-
eral relativity, and place a flowing optical medium on top of that. It now becomes
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interesting to consider the generalized Gordon metric

gab =Ω2
[
(fab + VaVb)− VaVb

n2

]
; gab =Ω−2[(f ab + V aV b

)− n2V aV b
]
.

(2.14)
We now have the possibility of a non-trivial general relativistic background fab(x),
a position-dependent refractive index n(x), a position-dependent 4-velocity V a(x),
and a position-dependent conformal factor Ω(x). Note that the 4-velocity V a(x)

now has to be a timelike unit vector with respect to the background metric fab(x),
and the indices on V are raised and lowered using f . In particular, note gabV

aV b =
−Ω2/n2 and gabVaVb =−n2/Ω2, so it makes sense to define

Ṽ a = n

Ω
V a; and Ṽa = Ω

n
Va. (2.15)

Then Ṽ is a timelike unit vector with respect to g, and its indices should be raised
and lowered using g. Then we can adapt the generalized Gordon metric to also write
the background f in terms of the foreground g as:

fab =Ω−2[(gab + ṼaṼb)− n2ṼaṼb

]; f ab =Ω2
[(

gab + Ṽ aṼ b
)− Ṽ aṼ b

n2

]
.

(2.16)
For a relativist the generalized Gordon metric provides an interesting ansatz for a
potentially intriguing class of spacetimes to consider. From a theoretical optics per-
spective, one might view this procedure as an extremely general way of “compos-
ing” and/or “inverting” the transformations of transformation optics—for example,
one might first design some metamaterial [20] to generate the background fab(x),
and then impose some flowing optical medium on top of that. Various interesting
possibilities come to mind.

2.3 Non-relativistic Acoustics: The Unruh Metric

Bill Unruh’s 1981 PRL article [2], and much of the follow up work [3–5], was
explicitly and intrinsically based on non-relativistic acoustics. Let us explore the
basic features of this particular model.

Geometric Acoustics From the acoustic ray perspective the derivation is trivial:
Let cs be the speed of sound, and let v be the velocity of the fluid. Then sound rays
(phonon trajectories) satisfy [3–5]

‖dx− vdt‖ = csdt. (2.17)

Let us, already anticipating the possibility of an arbitrary conformal factor, define

ds2 =Ω2{−csdt
2 + (dx− vdt)2}=Ω2{−(c2

s − v2)− 2v · dxdt +‖dx‖2}. (2.18)
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(The zeroth coordinate is now most naturally chosen to simply be x0 = t = tphysical,
without any explicit factor of c. The speed of sound cs has the dimensions of a phys-
ical velocity.) Then the sound-ray condition is completely equivalent geometrically
to the null-cone condition ds2 = 0. In terms of a 4 × 4 matrix this is equivalent to
defining the metric tensor [3–5]

gab =Ω2
[−(c2

s − v2) −vj
−vi δij

]
. (2.19)

The corresponding inverse metric is

gab =Ω−2
[ −1/c2

s −vj /c2
s

−vi/c2
s δij − vivj /c2

s

]
. (2.20)

It should be emphasized that in this situation the velocity v and speed of sound
cs will be inter-related in some (often quite complicated) manner—the background
fluid flow must satisfy the Euler equation and the continuity equation [2–5].

It should again further be emphasized (forcefully) that while one can certainly
calculate the Einstein tensor for this acoustic metric, there is a priori no really com-
pelling reason to do so—there is a priori no good reason to attempt to enforce the
Einstein equations for this acoustic metric, the physics is just completely different.
That being said, if one again views this as an ansatz for interesting metrics to look
at, then many of the standard spacetimes of general relativity (but certainly not all
interesting spacetimes) can be put into this form. (For instance the Schwarzschild
and Reissner–Nordström spacetimes can be put into this form by going to Painlevé–
Gullstrand coordinates, but the Kerr and Kerr–Newman spacetimes cannot be put in
this form [3, 21].)

To further develop the discussion, let us now introduce quantities

Qab =
[

0 0
0 δij

]
; V a = (1;vi

)= (1;v). (2.21)

Here the 4-velocity V a is normalized non-relativistically—with the time component
being unity. Then for the inverse metric

gab =Ω−2
[
Qab − V aV b

c2
s

]
. (2.22)

But what about the covariant metric gab? Let us now define

Q
�
ab =

[
0 0
0 δij

]
. (2.23)

Then Q
�
ab is the Moore–Penrose pseudo-inverse of Qab , and the object

Pa
b =QacQcb =

[
0 0
0 δij

]
(2.24)
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is a projection operator onto spatial slices. Let us now furthermore define the quan-
tities V

�
a =Q

�
abV

b = (0;vi)= (0;v), while Ta = (1;0). The best we can do for the
covariant metric gab is to now write the somewhat clumsy expression:

gab =Ω2[Q�
ab −

(
c2
s − v2)TaTb − TaV

�
b − V �

a Tb

]
. (2.25)

In view of the fact that, with these definitions, one has TaV
a = 1 and V

�
a V

a = v2,
while QabTb = 0 and QabV

�
b = V a − T a , it is easy to verify that (as required)

gabgbc = δac. (2.26)

As we shall soon see, relativistic acoustics is in some sense actually somewhat sim-
pler than the non-relativistic case.

Wave Acoustics If one goes beyond ray acoustics, then the parameter Ω is no
longer arbitrary. One does have to make some additional (and rather stringent) tech-
nical assumptions—barotropic, irrotational, and inviscd (zero viscosity) flow [3–5].
Under those assumptions, by linearizing the Euler equation and continuity equa-
tion, after a little work one ultimately obtains a wave equation (a curved-spacetime
d’Alembertian equation) for perturbations of the velocity potential specified in terms
of the density of the fluid and the speed of sound—specifically one has Ω =√

ρ/cs
in 3 space dimensions, Ω = ρ/cs in 2 space dimensions, and technical problems
arise in 1 space dimension. Generally, in d space dimensions, Ω = (ρ/cs)

1/(d−1).
(See for example Ref. [3].)

A specific feature of physical (wave) acoustics, not probed in the geometrical
acoustics limit, is the behaviour of quasi-normal modes [22, 23]. Furthermore, if
the flow is not irrotational, so one is dealing with both background vorticity and
vorticity-bearing perturbations, then a considerably more complicated system of
wave equations can be written down [24], but this system of PDEs has nowhere
near as clean a geometrical interpretation as the irrotational case.

2.4 Horizons and Ergo-Surfaces in Non-relativistic Acoustics

One of the very nice features of non-relativistic acoustics is that it is very simple and
straightforward to define horizons and ergo-surfaces [3–5]. To define these concepts,
it is sufficient to work in the geometric acoustics limit; wave acoustics adds addi-
tional constraints not directly needed to define horizons and ergo-surfaces. Consider
for simplicity a stationary (time independent) configuration.

• Ergo-surfaces are defined by the condition ‖v‖ = cs .
• Horizons are surfaces, located for definiteness at f (x)= 0, that are defined by the

3-dimensional spatial condition ∇f · v= cs‖∇f ‖.

So the ergo-surface bounds the region where one cannot stand still without gener-
ating a sonic boom, and corresponds to Mach one, (M ≡ v/cs = 1). In contrast, on
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a horizon the normal component of the fluid velocity equals the speed of sound,
thereby either trapping or anti-trapping the acoustic excitations.

Stationary Versus Static In general relativity the words “stationary” and “static”
have precise technical meanings that may not be obvious to non-experts. So a few
words of explanation are called for:

• Stationary: For all practical purposes this means “time independent”. More pre-
cisely, mathematically there is a Killing vector (a symmetry of the system) which
is timelike at spatial infinity. Physically there is a class of natural time coordi-
nates (not quite unique) in which the metric is time-independent. In this coordi-
nate system the Killing vector is naturally associated with invariance under time
translations t → t +C.

• Static: For all practical purposes this means “time independent and non-rotating”.
More precisely, mathematically there is a Killing vector (a symmetry of the sys-
tem) which is both timelike at spatial infinity and “hypersurface orthogonal”,
meaning there exist functions ξ(x) and τ(x) such that Ka = ξ(x)gab∂bτ (x).
Physically there is then a unique natural time coordinate, (in fact τ , which is
unfortunately not necessarily “laboratory time”), in which the metric is both time-
independent and block-diagonal. That is, with vanishing time-space components
gti = 0, in these coordinates the metric block diagonalizes into (time)⊕ (space).
The existence of a coordinate system with vanishing time-space metric compo-
nents is sufficient in general relativity to imply zero angular momentum for the
spacetime, and absence of “frame dragging”, hence the sobriquet “non-rotating”.

A word of warning: Just because one can always choose a coordinate system to
block diagonalize a static spacetime does not mean this is always a good idea. Co-
ordinates in which static spacetimes are block diagonal will break down at any hori-
zon that might be present in the spacetime. (For instance, Schwarzschild geometry
in the usual coordinates.) Permitting coordinates for static spacetimes which retain
the manifest time independence, but do not explicitly force block diagonalization
of the metric, has significant technical and physical advantages. For one thing, this
is the most natural situation when one works with “laboratory time” and a time in-
dependent fluid flow. For another thing, once one allows off-diagonal elements for
the metric one can easily construct “horizon penetrating” coordinates, which are
well defined both at and across the horizon. (For instance, Schwarzschild geome-
try in Painlevé–Gullstrand or Eddington–Finklestein coordinates.) In particular, the
acoustic metric as given above (in terms of laboratory time, speed of sound, and
fluid velocities) is automatically in horizon-penetrating form, all the components of
both the metric gab and its inverse gab remain finite as one crosses the horizon. Let
us now see how these ideas are used in practice.

Static Configurations Suppose the background flow satisfies the integrability
constraint

v
c2
s − v2

=∇Φ, (2.27)
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and then consider the new time coordinate τ = t+Φ . (Here t is explicitly laboratory
time, while τ is constructed for mathematical convenience rather than for direct
physical purposes.) Note that this integrability condition implies (but is stronger
than) the vanishing of local helicity

h≡ v · (∇× v)= 0. (2.28)

In terms of this new time coordinate

ds2 =Ω2
{
−(c2

s − v2)dτ 2 +
[
δij + vivj

c2
s − v2

]
dxidxj

}
. (2.29)

The geometry is now in this form block-diagonal so it is manifestly static, not just
stationary. (And so the ergo-surfaces and horizons will automatically coincide.) The
time translation Killing vector is

Ka = (1;0), so Ka =−Ω2(c2
s − v2;0

)
. (2.30)

To explicitly verify that this is hypersurface orthogonal in the sense defined above,
note

Ka =−Ω2(c2
s − v2)∂aτ, so Ka =−Ω2(c2

s − v2)gab∂bτ. (2.31)

The norm of this Killing vector is given by

KaKa =−Ω2(c2
s − v2)=−Ω2c2

s

(
1− v2

c2
s

)
. (2.32)

Using very standard techniques, the surface gravity is then calculable in terms of the
gradient of this norm [3]. It is a standard result that for a Killing horizon the overall
conformal factor drops out of the calculation [25]. Generalizing Unruh’s original
calculation [2], which corresponds to cs being constant, one finds [3–5]

gH = 1

2

∥∥n ·∇(c2
s − v2)∥∥

H
= cH

∥∥n ·∇(cs − v)
∥∥
H
= cH

∣∣∣∣
∂(cs − v)

∂n

∣∣∣∣
H

, (2.33)

which can also be compactly written in terms of the Mach number M ≡ v/cs as

gH = c2
H

∥
∥n ·∇(v/cs)

∥
∥
H
= c2

H‖n ·∇M‖H = c2
H

∣∣
∣∣
∂M

∂n

∣∣
∣∣
H

. (2.34)

We emphasise that this already works in the geometric acoustics framework, and
that there is no need to make the more restrictive assumptions corresponding to wave
acoustics that were made in references [3] and [5]. If the integrability condition is
not satisfied one must be a little more devious.
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Stationary but Non-static Configurations If the acoustic horizon is stationary
but not static there may or may not be additional symmetries, (in addition to the as-
sumed time independence), so in particular the horizon may or may not be a Killing
horizon. (A horizon is said to be a Killing horizon if and only if there exists some
Killing vector such that the location of the horizon coincides with the vanishing of
the norm of that Killing vector. So Killing horizons automatically satisfy nice sym-
metry properties.) For a Killing horizon the calculation of surface gravity is still
relatively straightforward, for non-Killing horizons the situation is far more com-
plex.

Note that in full generality, on the horizon we have (∇f · v)2 = c2
s ‖∇f ‖2, which

we can rewrite in 3-dimensional form as gij ∂if ∂jf = 0. Since the configuration,
and location of the horizon, is time independent this statement can be bootstrapped
to 3+ 1 dimensions to see that on the horizon

gab∇af∇bf = 0. (2.35)

That is, the 4-vector ∇f is null on the horizon. In fact, on the horizon, where in
terms of the 3-normal n we can decompose vH = csn + v‖, we can furthermore
write

(∇f )aH = (gab∇bf
)
H
= ‖∇f ‖

Ω2
HcH

(1;v‖)H . (2.36)

That is, not only is the 4-vector ∇f null on the horizon, it is also a 4-tangent to the
horizon—so (as in general relativity) the horizon is ruled by a set of null curves.
Furthermore, extending the 3-normal n to a region surrounding the horizon (for
instance by taking n = ∇f/‖∇f ‖) we can quite generally write v = v⊥n + v‖.
Then away from the horizon

gab∇af∇bf = (c2
s − v2⊥)‖∇f ‖2

Ω2c2
s

. (2.37)

That is, the 4-vector ∇f is spacelike outside the horizon, null on the horizon, and
timelike inside the horizon.

Stationary but Non-static Killing Horizons If the stationary horizon is Killing,
then even if we do not explicitly know what the relevant Killing vector K̃a is, we
know that its norm has to vanish on the horizon, and so the norm of this horizon-
generating Killing vector is of the form

K̃aK̃a =Q
(
c2
s − v2⊥

)=−Qc2
s

(
1− v2⊥

c2
s

)
, (2.38)

for some unknown (but for current purposes irrelevant) function Q. Following
closely the argument for the static case, mutatis mutandis, we have [3–5]

gH = 1

2

∥∥n ·∇(c2
s − v2⊥

)∥∥
H
= cH

∥∥n ·∇(cs − v⊥)
∥∥
H
= cH

∣∣∣∣
∂(cs − v⊥)

∂n

∣∣∣∣
H

, (2.39)
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which can also be compactly written in terms of the horizon-crossing Mach number,
M⊥ ≡ v⊥/cs , as

gH = c2
H

∥∥n ·∇(v⊥/cs)
∥∥
H
= c2

H‖n ·∇M⊥‖H = c2
H

∣∣∣∣
∂M⊥
∂n

∣∣∣∣
H

. (2.40)

We again emphasise that this already works in the geometric acoustics framework,
and that there is no need to make the more restrictive assumptions corresponding to
wave acoustics that were made in Refs. [3, 5]. If the horizon is non-Killing then one
must be even more devious.

Stationary but Non-static Non-Killing Horizons Such situations are, from a
technical perspective, much more difficult to deal with. Such behaviour cannot oc-
cur in standard general relativity, where the Einstein equations stringently constrain
the allowable spacetimes, but there seems no good reason to exclude it for acoustic
horizons. Unfortunately, when it comes to explicit computations of the surface grav-
ity there are still some unresolved technical issues. There is still a lot of opportunity
for significant new physics hiding in these non-Killing horizons.

2.5 Relativistic Acoustics

Full relativistic acoustics (either special relativistic or general relativistic) adds a
few other quirks which I briefly describe below. (See early astrophysical work by
Moncrief [26], a more recent cosmological framework developed in [27], and a
pedagogical exposition in reference [7] for details.) Note that the interest in, and
need for, relativistic acoustics is driven by astrophysical and cosmological consid-
erations, not by direct laboratory applications. There are at least three situations in
which relativistic acoustics is important:

• Speed of sound comparable to that of light.
In any ideal gas once kT �m0c

2 then p ≈ 1
3ρ and so cs ≈ 1√

3
c.

This is physically relevant, for instance, in various stages of big bang cosmol-
ogy.

• Speed of fluid flow comparable to that of light.
This is physically relevant, for instance, in some black hole accretion disks

and/or the jets emerging from active galactic nuclei (AGNs).
• Tight binding: p � ρ or |μ| �m0c

2.
Once the pressure is an appreciable fraction of the energy density, or the ab-

solute value of the chemical potential is much smaller than the rest mass, then
the usual derivation of the conformal factor appearing in the wave version of the
acoustic metric must be significantly modified.

This is physically relevant, for instance, in cores of neutron stars.

It is somewhat unclear at present as to whether relativistic acoustics can be made
directly relevant for laboratory physics. Some first steps in this regard may be found
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in reference [28], where the possibility of experimentally constructing relativistic
BECs is considered.

Geometric Acoustics If one works with special relativistic acoustics, rather than
non-relativistic acoustics, then at the level of ray acoustics one will simply obtain
an acoustic variant of the Gordon optical metric

gab =Ω2
[
(ηab + VaVb)− c2

s

c2
VaVb

]
. (2.41)

The only difference is that the refractive index has now been replaced by the ratio
of the speed of sound to the speed of light: n−1(x)→ cs(x)/c. (The 4-velocity of
the medium is still V a(x), and the conformal factor Ω(x) is still undetermined.) In
general relativistic acoustics this would become

gab =Ω2
[
(fab + VaVb)− c2

s

c2
VaVb

]
, (2.42)

where fab(x) is now the general relativistic physical background metric obtained by
solving the Einstein equations, and gab is the acoustic metric for the acoustic per-
turbations in the fluid flow. Note that the 4-velocity V a(x) now has to be a timelike
unit vector with respect to the background metric fab(x). For ray acoustics this is
all one can say.

Wave Acoustics One can again go to wave acoustics, deriving a wave equation
by linearizing the general-relativistic version of the Euler equations. The same sort
of technical assumptions must be made, (irrotational, barotropic, and inviscid), and
one now obtains a slightly more complicated formula for the conformal factor [7]

Ω =
(

n2

cs(ρ + p)

)1/(d−1)

. (2.43)

Here n is the number density of particles, and ρ is the energy density (rather than
the mass density ρ), while cs is the speed of sound. The quantity p is the pressure,
and d is the number of space dimensions.

Non-relativistic Limit In the non-relativistic limit among other things we cer-
tainly have p� ρ. Also in terms of the average particle mass �m one has

ρ = ρc2 ≈ n�mc2, (2.44)

and so

n2

cs(ρ + p)
≈ n2

csρ
≈ n

cs(�mc2)
= ρ

cs(�m2c2)
∝ ρ

cs
, (2.45)

thereby (as required for internal consistency) reproducing the correct limit for the
conformal factor.
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The correct limit for the tensor structure is more subtle. (A suitable discussion
can be found in reference [7].) Formally taking the limit c→∞, but holding cs and
v fixed, a brief calculation yields:

g00 =Ω2
[
−1+ γ 2 − c2

s

c2
γ 2
]
→−Ω2 c

2
s − v2

c2
+ · · · , (2.46)

g0i = −Ω2
[

1− c2
s

c2

]
γ 2βi →−Ω2 v

c
+ · · · , (2.47)

g0i =Ω2
{
δij −

[
1− c2

s

c2

]
γ 2βiβj

}
→Ω2δij + · · · . (2.48)

Then, switching from (ct,x) coordinates to (t,x) coordinates, the relativistic gab of
this section correctly limits to the non-relativistic gab of the previous section.

2.6 Bose–Einstein Condensates

Bose–Einstein condensates (BECs) provide a particularly interesting analogue
model because they are relatively easy to construct and manipulate in the labora-
tory, and specifically because the speed of sound is as low as a few centimetres per
second. Most work along these lines has focussed on non-relativistic BECs. Suitable
background references are [29–35]. See also the companion chapter by Balbinot et
al. in the current volume [36]. In view of the coverage of this topic already provided
in that chapter, I shall not have more to say about it here.

In contrast, I will briefly discuss the relativistic BEC model of Fagnocchi et al.
that is presented in reference [28]. While relativistic BECs do not seem currently
to be a realistic experimental possibility, the theoretical treatment introduces some
new issues and effects. The relativistic BECs naturally lead to two quasiparticle ex-
citations, one massless and one massive, with rather complicated excitation spectra.
(In this sense the relativistic BECs are reminiscent of the “massive phonon” models
obtained from multiple mutually interacting non-relativistic BECs [37–39].) In the
relativistic BEC one obtains a 4th-order differential wave equation for the excita-
tions, which is ultimately why one has two branches of quasiparticle excitations. In
the limit where the relativistic generalization of the so-called quantum potential can
be neglected, the wave equation simplifies to the d’Alembertian equation—for a rel-
ativistic acoustic metric of the generalized Gordon form discussed in the previous
section. In the limit where both relativistic effects and the quantum potential can
be neglected, one recovers the (wave acoustic version of) Unruh’s non-relativistic
acoustic metric.

Madelung Representation There is an important and non-obvious technical
point to be made regarding the linearization of the Madelung representation in a
BEC context, (or in fact in any situation where one is dealing with a non-linear
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Schrödinger-like equation). For any complex field ψ the Madelung representation
is

ψ =√
ρeiφ. (2.49)

When linearizing, (which is the basis of separating the system into background plus
excitation, or condensate plus quasiparticle), there are at least three things one might
envisage doing:

1. Take ψ =ψ0 + εψ1 +O(ε2).
2. Take ρ = ρ0 + ερ1 +O(ε2), and φ = φ0 + εφ1 +O(ε2).
3. Take ψ =ψ0{1+ εχ +O(ε2)}.
Note that routes 2 and 3 are related by:

ρ1

ρ0
= χ + χ†

2
; φ1 = χ − χ†

2i
. (2.50)

Mathematically, all three routes must carry the same intrinsic physical information,
but the clarity with which the information can be extracted varies widely depending
on the manner in which the perturbative analysis is presented. When actually car-
rying out the linearization, it turns out that route 1 is never particularly useful, and
that routes 2 and 3 are essentially equivalent for a non-relativistic BEC, ultimately
leading to formally identical wave equations. In contrast, for relativistic BECs it is
route 3 that leads to the cleanest representation [28], while route 2 leads to a bit of a
mess [3]. (A mess involving integro-differential equations.) This is not supposed to
be obvious, and will not be obvious unless one tries to carefully work through the
relevant technical literature. With hindsight, route 3 appears to be the superior way
of organizing the perturbative calculation.

2.7 Surface Waves and Blocking Horizons

Surface waves (water-air, or more generally waves on any fluid-fluid interface) are
described by an incredibly complex and subtle theoretical framework—one of the
major technical complications comes from the fact that surface waves are highly dis-
persive, with a propagation speed that is very strongly frequency dependent. Thus,
insofar as one can put surface wave propagation into a Lorentzian metric framework,
one will have to adopt a “rainbow metric” formalism with a frequency dependent
metric. The trade-off is that this system is relatively easily amenable to laboratory
investigation through “wave tank” technology [40–42].

Surface Waves in the Geometric Limit As long as the wavelength and period
of the surface wave are small compared to the distances and timescales on which
the depth of water is changing one can usefully work in the geometric (ray) limit.
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Under those conditions one can write a 2 + 1 dimensional metric to describe ray
propagation:

ds2 =Ω2{−c2
swdt2 + (dx− vdt)2}=Ω2{−(c2

sw − v2)− 2v · dxdt + ‖dx‖2}.
(2.51)

Here csw is the speed of the surface waves in the comoving frame (that is, comoving
with the surface of the fluid), and v is the (horizontal) velocity of the surface. Unfor-
tunately the speed csw is a relatively complicated function of (comoving) frequency,
depth of the water, density of the fluid, the acceleration due to gravity, the surface
tension, etcetera. (See for instance references [43–46].)

Now in terms of a 3× 3 matrix, this is equivalent to defining the metric tensor

gab =Ω2
[−(c2

sw − v2) −vj

−vi δij

]
. (2.52)

The indices a, b, c, . . . , take on values in {0,1,2}, corresponding to both time and
(horizontal) space, whereas indices such as i, j , k, . . . , take on values in {1,2},
corresponding to (horizontal) space only. The corresponding inverse metric is

gab =Ω−2
[ −1/c2

sw −vj /c2
sw

−vi/c2
sw δij − vivj /c2

sw

]
. (2.53)

In the fluid dynamics community, one most often restricts attention to 1 spatial di-
mension, then surface waves are said to be “blocked” whenever one has ‖v‖> csw,
and one will encounter considerable attention paid to this concept of “wave block-
ing” in that community. This is what a general relativist would instead call “trap-
ping”, and consequently the mixed terminology phrase “blocking horizon” has now
come into use within the analogue spacetime community. Note that instead of speak-
ing of Mach number (appropriate for acoustic propagation through the bulk of a
medium), in a surface wave context it is the Froude number that governs the forma-
tion of ergo-regions and horizons.

Surface Waves in the Physical Limit Moving beyond the geometric/ray approx-
imation for surface waves is mathematically rather tricky. Within the fluid dynamics
community relevant work is based on the Boussinesq approximation [47, 48], and
its modern variants [49]. Within the analogue spacetime community, see particu-
larly the basic theoretical work in Ref. [50], and in the related chapter [51] in this
volume. (See also [52, 53] for a more applied perspective.) Physically, in addition
to the presence of dispersion, a second complicating issue is this: The fluid at the
surface is moving both vertically (the wave) and horizontally (the background flow),
while at the base of the fluid (which may be at variable depth), the no-slip boundary
condition enforces zero velocity.

Based on the three-dimensional Euler and continuity equations one then has to
construct an interpolating model for the fluid flow that connects the surface motion
to the zero-velocity motion at the (variable depth) base. Once this is achieved, one
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throws away the interpolating model and concentrates only on the physical observ-
able: the motion of the surface. The analysis is mathematically and physically sub-
tle, and (in the physical or wave limit) the theoretical framework for surface waves
is nowhere near as clean and straightforward as for barotropic inviscid irrotational
acoustic perturbations travelling through the bulk.

Experiments The key benefit of surface waves is that the propagation speed csw

is easily controllable by adjusting the depth of fluid, that background flows are easily
set up by simple mechanical pumps, and that “wave tank” and related technologies
are well understood and well developed. (See for example, the early 1983 experi-
ments by Badulin et al. [40].) This particular analogue spacetime has recently led
to several very interesting experimental efforts [41, 42, 54]. For instance, Wein-
furtner et al. have performed an experiment looking at the classical (stimulated)
analogue of Hawking radiation from a blocking horizon, and have detected an ap-
proximately Boltzmann spectrum of Hawking-like modes [41], while Rousseaux et
al. have experimentally investigated the related “negative-norm modes” [42]. The
relation between the “hydraulic jump” and blocking horizons has been experimen-
tally investigated by Jannes et al. [54]. Some related theoretical developments are
reported in [45, 55]. Work on this topic is ongoing.

2.8 Optical Fibres/Optical Glass

In an optical context, related “optical blocking” phenomena occur when a “refractive
index pulse” (RIP) is initiated in an optical fibre [56], or in optical glass [57–59].
The basic idea is that things are arranged so that while the RIP moves at some speed
vRIP, the velocity of light outside the RIP is greater than the velocity of the RIP
coutside > vRIP, while inside the RIP we have the contrary situation cinside < vRIP.
This, (certainly within the geometric optics framework), sets up a “black” horizon at
the leading edge of the RIP, and a “white” horizon at the trailing edge. (For technical
details see references [56–59].) Some subtleties of the theoretical analysis lie in
the distinction between group and phase velocities—are we dealing with “phase
velocity horizons” or “group velocity horizons”? Other technical subtleties have to
do with the transition from geometric optics to wave optics—there are a number of
complex and messy technical details involved in this step.

An intriguing experiment based on these ideas has been carried out by Bel-
giorno et al., with results reported in reference [60]. While it is clear that some
form of quantum radiation has been detected, there is still some disagreement as
to whether this is (analogue) Hawking radiation, or possibly some other form of
quantum vacuum radiation [61–63]. Work on this topic is ongoing.
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2.9 Other Models

A complete and exhaustive catalogue of other analogue models would be imprac-
tical. See the Living Review article on “Analogue gravity” for more details [3].
Selected models, (a necessarily incomplete list), include:

• Electromagnetic wave guides [64].
• Graphene [65, 66].
• Slow light [67–71].
• Liquid helium [72, 73].
• Fermi gasses [74, 75].
• Ion rings [76].

Beyond the issue of simply developing analogue models, there is the whole subject
of using analogue models to probe, (either theoretically or more boldly experimen-
tally), a whole raft of physics questions such as directly verifying the existence of
Hawking radiation, the possibility of Lorentz symmetry violations [77], the nature
of the quantum vacuum [78–80], etcetera. For more details, see Ref. [3], and other
chapters in this volume.

2.10 Discussion

The general theme to be extracted from these considerations is this: The propagation
of excitations (either particles or waves) over a background can often (not always) be
given a geometric interpretation in therms of some “analogue spacetime”. As such
a geometric interpretation exists, there is a strong likelihood of significant cross-
fertilization of ideas and techniques between general relativity and other branches of
physics. Such possibilities have increasingly attracted attention over the last decade,
for many reasons. The other chapters in these proceedings will explore these ideas
in more specific detail.
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Chapter 3
Cosmological Particle Creation in the Lab?

Ralf Schützhold and William G. Unruh

Abstract We give an overview of some fundamental quantum vacuum effects in
curved space times that may be studied in earth based laboratories. In particular
we review the concept of cosmological particle creation related to a contraction or
expansion of the Universe.

3.1 Introduction

One of the most striking examples for the production of particles out of the quantum
vacuum due to external conditions is cosmological particle creation, which is caused
by the expansion or contraction of the Universe. Already in 1939, Schrödinger un-
derstood that the cosmic evolution could lead to a mixing of positive and negative
frequencies and that this “would mean production or annihilation of matter, merely
by the expansion” [9]. Intuitively speaking, the expansion of the universe tears apart
the quantum vacuum fluctuations and thereby transforms them into pairs of real
particles. More precisely, the quantum state of the field under consideration cannot
follow the cosmic evolution1 (breakdown of adiabaticity) and thus deviates from
the ground state, i.e., turns into an excited state containing particles. Later this phe-
nomenon was derived via more modern techniques of quantum field theory in curved
spacetimes by Parker [8] (who apparently was not aware of Schrödinger’s work) and
subsequently has been studied in numerous publications, see, e.g., [3, 6, 13]. Even

1It is like the situation in which the parameters of a quantised harmonic oscillator (spring constant
or mass) are changed at a rate faster than the period of oscillation. This causes the oscillator to
become excited (creates a squeezed state). The expansion of the universe alters the spring constant
of each of the modes of the quantum field.
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though cosmological particle creation typically occurs on extremely large length
scales, it is one of the very few examples for such fundamental effects where we ac-
tually may have observational evidence: According to the inflationary model of cos-
mology, the seeds for the anisotropies in the cosmic microwave background (CMB)
and basically all large scale structures stem from this effect, see Sect. 3.5. In this
chapter, we shall provide a brief discussion of this phenomenon and sketch a possi-
bility for an experimental realisation via an analogue in the laboratory.

3.2 Scattering Analogy

For simplicity, let us consider a massive scalar field Φ in the 1 + 1 dimensional
Friedmann-Robertson-Walker metric with scale factor a(τ)

ds2 = dτ 2 − a2(τ )dx2 = a2(η)
[
dη2 − dx2], (3.1)

where τ is the proper (co-moving) time and η the conformal time. The latter co-
ordinate is more convenient for our purpose since the wave equation simplifies to
(�= c= 1)

(
∂2

∂η2
− ∂2

∂x2
− a2(η)m2

)
Φ(η,x). (3.2)

In the massless case m= 0, the scalar field is conformally invariant (in 1+1 dimen-
sions) and thus the solution Φ(η,x) is not affected by the cosmic evolution a2(η).
As a result, there is no mixing between positive and negative frequencies (see be-
low) in this case m= 0, i.e., the expansion does only create particles for m> 0. The
same argument applies to the electromagnetic field in 3 + 1 dimensions, which is
also comformally invariant.

After a spatial Fourier transform, we find that each mode φk(η) behaves like a
harmonic oscillator with a time-dependent potential

(
d2

dt2
+Ω2(t)

)
φ(t)= 0, (3.3)

with k2 + a2(η)m2 →Ω2(t) and η→ t . There is yet another analogy which might
be interesting to notice. If we compare the above equation to a Schrödinger scatter-
ing problem in one spatial dimension

(
− 1

2m

d2

dx2
+ V (x)

)
Ψ (x)=EΨ (x), (3.4)

we find that is has precisely the same form after identifying t ↔ x, φ(t)↔ Ψ (x),
and Ω2(t) ↔ 2m[E − V (x)]. Now we may apply our knowledge of such one-
dimensional scattering problems. Assuming a localised potential V (|x| → ∞) =
const, the general asymptotic solutions for Ψ (x →±∞) are linear combinations of
plane waves e+ikx and e−ikx . The connection formulas between these solutions on
the far left and the far right of the potential V (x) then define the 2 × 2 scattering
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matrix S. For example, a solution which behaves as Ψ (x →−∞)= T e−ikx on the
far left is connected via Eq. (3.4) to the corresponding solution Ψ (x →+∞) =
e−ikx +Re+ikx on the far right, where R and T are the reflection and transmission
coefficients. If E > V (x) holds everywhere, we have propagation over the barrier,
where the reflection coefficient R vanishes in the classical limit. On the other hand,
if E < V (x), we have a barrier penetration problem where the transmission coeffi-
cient T due to quantum tunnelling vanishes in the classical limit.

Note that Ω2 is always greater than zero in our case—which corresponds to
propagation over the barrier E > V (x). If Ω2 were less than zero over some region
in time, one would have a barrier penetration (i.e., tunnelling) problem E < V (x).
In both cases, an initial solution of the form eiΩint evolves into a future solution
αeiΩoutt+βe−iΩoutt due to scattering from the region where Ω2 = const. This would
correspond to particle creation with probability proportional to |β|2.

Assuming that Ω is constant asymptotically, we have a static wave equation (3.3)
in that regime and thus positive and negative pseudo-norm solutions correspond to
positive and negative frequencies, see, e.g., [3, 6, 13]. In order to derive the cos-
mological particle creation, we can study an initial positive pseudo-norm solution
e−iΩint of Eq. (3.3) and see how it finally evolves into a mixture of positive and neg-
ative pseudo-norm solutions αe−iΩoutt + βe+iΩoutt . In the Schrödinger scattering
problem, the initial solution e−iΩt could be identified with a left-moving wave on
the left-hand side of the potential “barrier” while the final solution αe−iΩt +βe+iΩt

would then correspond to a mixture of left-moving αe−iΩt and right-moving
βe+iΩt waves on the right-hand-side. As a consequence, the Bogoliubov coeffi-
cients α and β are related to the reflection R and transmission T coefficients via
α = 1/T and β = R/T . In this way, the Bogoliubov relation |α|2 − |β|2 = 1 is
equivalent to the conservation law |R|2 + |T |2 = 1 for the Schrödinger scattering
problem. The probability for particle creation can be inferred from the expecta-
tion value of the number of final particles in the initial vacuum state which reads
〈0in|n̂out|0in〉 = |β|2.

3.3 WKB Analysis

In order to actually calculate or estimate the Bogoliubov coefficients, let us re-write
Eq. (3.3) in a first-order form via introducing the phase-space vector u and the ma-
trix M

d

dt

(
φ

φ̇

)

= u̇=
(

0 1
−Ω2(t) 0

)
·
(
φ

φ̇

)

=M · u. (3.5)

If we define an inner product via
(
u
∣∣u′
)= i

(
u∗2u′1 − u∗1u′2

)
, (3.6)

we find that the inner product of two solutions u and u′ of Eq. (3.5) is conserved



54 R. Schützhold and W.G. Unruh

d

dt

(
u
∣∣u′
)= 0. (3.7)

The split of a solution into positive and negative frequencies (i.e., positive and nega-
tive pseudo-norm) corresponds to a decomposition in the instantaneous eigen-basis
of the matrix

M · u± =±iΩu±. (3.8)

Choosing the usual normalisation u± = (1,±iΩ)T /
√

2Ω known from the defini-
tion of the creation and annihilation operators (x̂ ± iΩp̂)/

√
2Ω of the harmonic

oscillator, we find

(u+|u+)= 1, (u−|u−)=−1, (u+|u−)= 0. (3.9)

At each time t , we may expand a given solution u(t) of Eq. (3.5) into the instanta-
neous eigen-vectors

u(t)= α(t)eiϕ(t)u+(t)+ β(t)e−iϕ(t)u−(t), (3.10)

where the pre-factors are now defined as time-dependent Bogoliubov coefficients
α(t) and β(t). It is useful to separate out the oscillatory part with the WKB phase

ϕ(t)=
∫ t

−∞
dt ′Ω

(
t ′
)
. (3.11)

Now we may insert the expansion (3.10) into the equation of motion (3.5), i.e.,
u̇=M · u. Using Eq. (3.8), we find that the eigen-values ±iΩ are cancelled by the
ϕ̇-derivatives. If we project the remaining equation with the inner product (3.6) onto
the eigen-vectors u± and use the properties (u+|u̇+) = (u−|u̇−) = 0, (u−|u̇+) =
Ω̇/(2Ω) and (u+|u̇−)=−Ω̇/(2Ω), as well as (3.9), we find

α̇ = Ω̇

2Ω
e−2iϕβ, β̇ = Ω̇

2Ω
e2iϕα. (3.12)

These equations (3.12) are still exact but very hard to solve analytically—except in
very special cases. They can be solved formally by a iterative integral equation

αn+1 = αin +
∫ t

−∞
dt ′ Ω̇(t ′)

2Ω(t ′)
e−2iϕ(t ′)βn

(
t ′
)
,

βn+1 = βin +
∫ t

−∞
dt ′ Ω̇(t ′)

2Ω(t ′)
e−2iϕ(t ′)αn

(
t ′
)
.

(3.13)

It can be shown that this iteration converges to the exact solution for well-behaved
Ω(t) [1]. Standard perturbation theory would then correspond to cutting off this
iteration at a finite order, which can be justified if Ω(t) changes only very little.
For the scalar field in Eq. (3.2) this perturbative treatment should be applicable in
the ultra-relativistic limit, i.e., as long as the mass is much smaller than the wave-
number.

In many cases, however, another approximation—the WKB method—is more
useful. This method can be applied if the rate of change of Ω(t), e.g., the expansion
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of the universe, is much slower than the internal frequency Ω(t) itself. Formally, we
may write

Ω(t)=Ω0f (ωt), (3.14)

where Ω0 denotes the overall magnitude of Ω(t), i.e., the internal frequency, and
ω its rate of change, i.e., the external frequency, while f is some dimensionless
function f of order one. In this scaling, the WKB limit corresponds to Ω0 � ω. In
terms of the reflection coefficient R = β/α mentioned earlier, we have Ṙ = (αβ̇ −
α̇β)/α2 and inserting (3.12) we can combine these two Eqs. (3.12) into one simple
equality via [14]

Ṙ = Ω̇

2Ω

(
e2iϕ −R2e−2iϕ), (3.15)

which is known as Riccati equation. Again, this equation is still exact but unfortu-
nately non-linear. Neglecting the quadratic term R2 would bring us back to pertur-
bation theory. In the WKB-limit, the phase factors e±2iϕ are rapidly oscillating and
the magnitude of R can be estimated by going to the complex plane. Re-writing the
Riccati equation (3.15) as

dR

dϕ
= 1

2

(
e2iϕ −R2e−2iϕ)d lnΩ

dϕ
, (3.16)

we may use an analytic continuation ϕ → ϕ + iχ to see that R becomes exponen-
tially suppressed R ∼ e−2χ . How strongly it is suppressed depends on the point
where the analytic continuation breaks down. Since e±2iϕ is analytic everywhere,
this will be determined by the term lnΩ . Typically, the first non-analytic points t∗
encountered are the zeros of Ω , i.e., where Ω(t∗)= 0. In the case of barrier reflec-
tion, these points t∗ where Ω(t∗) = 0, i.e., where V = E, lie on the real axis and
correspond to the classical turning points in WKB. In our case, we have scattering
above the barrier and thus these points become complex—but are still analogous to
the classical turning points in WKB. If we analytically continue R in Eq. (3.16) into
the upper complex plane ϕ→ ϕ+ iχ until we hit the first turning point t∗, the expo-
nential e2iϕ in Eq. (3.16) contains an oscillating factor from the real part �[ϕ] and
an exponentially suppressed factor e−2χ∗ from the imaginary part χ∗ = �[ϕ(t∗)].
Consequently, we find2

R = β

α
∼ e−2χ∗ = exp

{
−2�

[∫ t∗

0
dt ′Ω

(
t ′
)
]}

. (3.17)

If there is more than one turning point, the one with the smallest χ∗ > 0, i.e., clos-
est to the real axis (in the complex ϕ-plane) dominates. If these multiple turning
points have similar χ∗ > 0, there can be interference effects between the different
contributions, see, e.g., [5].

2In fact, it can be shown that Eq. (3.17) becomes exact in the adiabatic limit ω/Ω ↓ 0, i.e., the
pre-factor in front of the exponent tends to one, see, e.g., [4, 7].
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3.4 Adiabatic Expansion and Its Breakdown

Note that we could repeat steps (3.5) till (3.12) and expand the solution u(t) into the
first-order adiabatic eigen-states instead of the instantaneous eigen-vectors u±. To
this end, let us re-write (3.12) as

d

dt

(
α(t)e+iϕ(t)

β(t)e−iϕ(t)

)
= ẇ=

(
iΩ Ω̇/(2Ω)

Ω̇/(2Ω) −iΩ

)
·
(
α(t)e+iϕ(t)

β(t)e−iϕ(t)

)
=N ·w.

(3.18)

The eigen-vectors of the matrix N are the first-order adiabatic eigen-states w± and
the eigen-frequencies N ·w± =±iΩadw± are renormalised to

Ωad =Ω

√

1− Ω̇2

4Ω4
. (3.19)

Assuming αin = 1 and βin = 0, the system stays in the adiabatic eigen-state w+ to
lowest order in ω/Ω and we get

α(t)= 1+O

(
ω2

Ω2

)
, β(t)=− i

4

Ω̇

Ω2
+O

(
ω2

Ω2

)
. (3.20)

This adiabatic expansion into powers of ω/Ω can be continued and gives terms like
Ω̇2/Ω4 and Ω̈/Ω3 to the next order in ω/Ω (see below). One should stress that
this expansion is not the same as in (3.13) since it is local—i.e., only contains time-
derivatives—while (3.13) is global—i.e., contains time-integrals. Since all terms
of the adiabatic expansion (3.20) are local, they cannot describe particle creation—
which depends on the whole history of Ω(t). In terms of the adiabatic expansion into
powers of ω/Ω , particle creation is a non-perturbative effect, i.e., it is exponentially
suppressed: If we estimate the exponent in Eq. (3.17), we find that the turning point
t∗ scales with t ∝ 1/ω whereas the integrand Ω(t) obviously scales with Ω . Thus
we find the following exponential scaling

R ∼ exp

{
−O

(
Ω

ω

)}
, (3.21)

which does not admit a Taylor expansion into powers of ω/Ω and thus is non-
perturbative in terms of the adiabatic expansion. For any finite ratio of ω/Ω , this
also means that the adiabatic expansion (into powers of ω/Ω) must break down at
some order. To make this argument more precise, let us re-write Eq. (3.18) in yet
another form

dw
dt

=N ·w=Λ

(
i cosh(2ξ) sinh(2ξ)
sinh(2ξ) −i cosh(2ξ)

)
·w. (3.22)

In this representation, the eigen-values of N are given by ±iΛ and the eigen-vectors
read

w+ =
(

cosh ξ

−i sinh ξ

)
, w− =

(
sinh ξ

−i cosh ξ

)
. (3.23)



3 Cosmological Particle Creation in the Lab? 57

Decomposing the solution w(t) into these eigen-vectors

w(t)= a(t)w+(t)+ b(t)w−(t), (3.24)

and using ẇ+ = ξ̇w− as well as ẇ− = ξ̇w+, we find

d

dt

(
a

b

)
=
(

iΛ −ξ̇

−ξ̇ −iΛ

)
·
(
a

b

)
. (3.25)

This is the same form as Eq. (3.22) if we change Λ and ξ accordingly. Thus, by
repeating this procedure, we get the iteration law

Λn+1 =
√
Λ2

n − ξ̇2
n , ξn+1 =−1

2
arctanh

(
ξ̇n

Λn

)
. (3.26)

By this iteration, we go higher and higher up in the adiabatic expansion since ξn
always acquires an additional factor of ω/Ω . Thus, for ω � Ω , the values of ξn
quickly decay with a power-law ξn = O([ω/Ω]n) initially. As we go up in this
expansion, however, the effective rate of change of ξn increases. For example, if
Ω(t) has one global maximum (or minimum) and otherwise no structure, the time-
derivative Ω̇/(2Ω2) = tanh(2ξ1) has two extremal points and a zero in between.
By taking higher and higher time derivatives, more and more extremal points and a
zeros arise and thus the effective frequency ωeff

n of ξn(t) increases roughly linearly
with the number n of iterations ωeff

n =O(nω). Furthermore, the adiabatically renor-
malised eigen-values Λn decrease with each iteration. Thus, after approximately
n=O(Ω/ω) iterations, the effective frequency ωeff

n becomes comparable to the in-
ternal frequency Λn. At that point, the adiabatic expansion starts to break down.
Estimating the order of magnitude of ξn at that order gives

ξn =O

([
ω

Ω

]n)
=O

([
ω

Ω

]O(Ω/ω))
. (3.27)

Since the effective external ωeff
n and internal Λn frequencies are comparable and

ξn is very small, we may just use perturbation theory to estimate β and we get
β = O(ξn), i.e., the same exponential suppression as in Eq. (3.21). If we would
continue the iteration beyond that order, the ξn would start to increase again—which
the usual situation in an asymptotic expansion, see Fig. 3.1. Carrying on the iteration
too far beyond this point, the ξ̇2

n exceed the Λ2
n and thus we have barrier penetration

instead of propagation over the barrier (as occurs for all orders below this value
of n). In this procedure, it is this barrier penetration which gives the mixing of
positive and negative pseudo-norm, and the creation of particles. Were the system
to remain as propagation over the barrier for all orders n in this adiabatic expansion,
one would have no particle creation.

3.5 Example: Inflation

As an illustrative example, let us consider a minimally coupled massive scalar field
in 3 + 1 dimensions—which could be the inflaton field (according to our standard
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Fig. 3.1 Sketch of the effective external frequencies ωeff
n (crosses) and amplitudes ξn (solid line)

depending on the iteration number n obtained numerically for a concrete example. One can observe
that ωeff

n grows approximately linearly with n while ξn first decreases but later (for n > 5) increases
again

model of cosmology). Again, we start with the Friedmann-Robertson-Walker metric
(3.1) with a scale factor a(τ) and obtain the equation of motion

(
1

a3(τ )

∂

∂τ
a3(τ )

∂

∂τ
− 1

a2(τ )
∇2 +m2

)
Φ = 0. (3.28)

Rescaling the field φ(τ, r)=�(τ )Φ(τ, r) with �(τ )= a3/2(τ ) and applying a spa-
tial Fourier transform, we obtain the same form as in Eq. (3.3)

(
d2

dτ 2
+ k2

a2(τ )
+m2 − 1

�(τ )

d2
�(τ )

dτ 2

)
φk = 0. (3.29)

In the standard scenario of inflation, the spacetime can be described by the de Sitter
metric a(τ)= exp{Hτ } to a very good approximation, where H is the Hubble pa-
rameter. In this case, the effective potential �̈/� just becomes a constant (3H/2)2

and the frequency Ω(τ) reads

Ω2(τ )= k2

a2(τ )
+m2 − 9H 2

4
. (3.30)

Inserting a(τ) = exp{Hτ }, we see that modes with different k-values follow the
same evolution—just translated in time. (This fact is related to the scale invariance
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of the created k spectrum.) Initially, this frequency is dominated by the k2 term and
we have Ω̇/Ω = −H which means that we are in the WKB regime Ω̇/Ω � Ω .
However, due to the cosmological red-shift, this k2 term decreases with time until
the other terms become relevant. Then the behaviour of the modes depends on the
ratio m/H . For m�H , the modes remain adiabatic (i.e., stay in the WKB regime)
and thus particle creation is exponentially suppressed. If m and H are not very dif-
ferent, but still m> 3H/2 holds, the modes are adiabatic again for large times—but
for intermediated times, the WKB expansion breaks down, leading to a moderate
particle creation. For m< 3H/2, on the other hand—which is (or was) supposed to
be the case during inflation —the frequency Ω(τ) goes to zero at some time and
becomes imaginary afterwards. This means that we get a barrier penetration (tun-
nelling) problem where the modes φk(τ ) do not oscillate but evolve exponentially
in time φk(τ )∝ exp{±τ

√
9H 2/4−m2}. Here one should remember that the origi-

nal field does not grow exponentially due to the re-scaling with the additional factor
�(τ ) = a3/2(τ ). This behaviour persists until the barrier vanishes, i.e., the expan-
sion slows down (at the end of the inflationary period) and thus the effective poten-
tial �̈/� drops below the mass term. After that, the modes start oscillating again.
However, in view of the barrier penetration (tunnelling) over a relatively long time
(distance), we get reflection coefficients R which are not small but extremely close
to unity R ≈ 1. This means that the Bogoliubov coefficients α and β are huge—i.e.,
that we have created a tremendous amount of particles out of the initial vacuum
fluctuations. According to our understanding, precisely this effect is responsible for
the creation of the seeds for all structures in our Universe. Perhaps the most di-
rect signatures of this effect are still visible today in the anisotropies of the cosmic
microwave background radiation.

An alternative picture of the mode evolution in terms of a damped harmonic
oscillator can be obtained from the original field in Eq. (3.28)

(
d2

dτ 2
+ 3H

d

dτ
+ e−2Hτk2 +m2

)
Φk = 0. (3.31)

Initially, the term e−2Hτk2 dominates and the modes oscillate. Assuming m� H

(which is related to the slow-roll condition of inflation), the damping term dominates
for late times and we get a strongly over-damped oscillator, whose dynamics is
basically frozen (like a pendulum in a very sticky liquid). The transition happens
when H ∼ ke−Hτ , i.e., when the physical wavelength λ = 2πeHτ /k exceeds the
de Sitter horizon ∝ 1/H due to the cosmological expansion eHτ . After that, crest
and trough of a wave lose causal contact and cannot exchange energy any more—
that’s why the oscillations effectively stops.

As a final remark, we stress that this enormous particle creation effect is fa-
cilitated by the rapid (here: exponential) expansion and the resulting stretching of
wavelengths over many many orders of magnitude (i.e., the extremely large red-
shift). Therefore, a final mode with a moderate wavelength originated from waves
with extremely short wavelengths initially. Formally, these initial wavelengths could
be easily far shorter than the Planck length. However, on these scales one would ex-
pect deviations from the theory of quantum fields in classical spacetimes we used
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to derive these effects. On the other hand, this problem is not only negative—it
might open up the possibility to actually see signatures of new (Planckian) physics
in high-precision measurements of the cosmic microwave background radiation, for
example.

3.6 Laboratory Analogues

Apart from the observation evidence in the anisotropies of the cosmic microwave
background radiation mentioned above, one may study the phenomenon of cosmo-
logical particle creation experimentally by means of suitable laboratory analogues,
see, e.g., [2, 12]. The are two major possibilities to mimic the expansion or contrac-
tion of the Universe—a medium at rest with time-dependent properties (such as the
propagation speed of the quasi-particles) or an expanding medium, see, e.g., [2, 11].
Let us start with the former option and consider linearised and scalar quasi-particles
(e.g., sound waves) with low energies and momenta propagating in a spatially homo-
geneous and isotropic medium. Under these conditions, their dynamics is governed
by the low-energy effective action [2, 11]

Leff = 1

2

(
a2(t)φ̇2 + b2(t)φ2 + c2(t)[∇φ]2)+O

(
φ3)+O

(
∂3). (3.32)

Here we assume positive a2 and non-negative b2 and c2 for stability. The factor
a2(t) can be eliminated by suitable re-scaling of the time co-ordinate. Then, after
a spatial Fourier transform, we obtain the same form as in Eq. (3.3). The quasi-
particle excitations φ in such a medium behave in the same way as a scalar field
in an expanding or contracting Universe with a possibly time-dependent potential
(mass) term ∝ b2(t)φ2. In order to avoid this additional time-dependence of the
potential (mass) term, the factors b and c must obey special conditions. For ex-
ample, Goldstone modes with b = 0 correspond to a massless scalar field in 3+ 1
dimensions—whereas the case of constant c is analogous to a massive scalar field
in 1+ 1 dimensions.

As one would intuitively expect, the expansion or contraction of the Universe
can also be mimicked by an expanding or contracting medium. Due to local Galilee
invariance, such a medium can also be effectively spatially homogeneous and
isotropic as in Eq. (3.32) when described in terms of co-moving co-ordinates. For a
quite detailed list of references, see [2].

There are basically three major experimental challenges for observing the ana-
logue of cosmological particle creation in the laboratory. First, the initial tempera-
ture should be low enough such that the particles are produced due to quantum rather
than thermal fluctuations. Second, one must be able to generate a time-dependence
(e.g., expansion of the medium) during which the effective action in Eq. (3.32) re-
mains valid (in some sense) but which is also sufficiently rapid to create particles.
Third, one must be able to detect the created particles and to distinguish them from
the radiation stemming from other sources. For trapped ions, for example (see, e.g.,



3 Cosmological Particle Creation in the Lab? 61

[10]), the first and third point (i.e., cooling and detection) is experimental state of
the art, while a sufficiently rapid but still controlled expansion/contraction of the ion
trap presents difficulties. For Bose-Einstein condensates (see, e.g., [2, 11] and ref-
erences therein), on the other hand, the first and third points are the main obstacles.
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Chapter 4
Irrotational, Two-Dimensional Surface Waves
in Fluids

William G. Unruh

Abstract The equations for waves on the surface of an irrotational incompressible
fluid are derived in the coordinates of the velocity potential/stream function. The
low frequency shallow water approximation for these waves is derived for a varying
bottom topography. Most importantly, the conserved norm for the surface waves is
derived, important for quantisation of these waves and their use in analogue models
for black holes.

4.1 Introduction

One of the most fascinating predictions of Einstein’s theory of general relativity is
the potential existence of black holes—i.e. spacetime regions from which nothing
is able to escape. Perhaps no less interesting are their antonyms: white holes which
nothing can penetrate. Both are described by solutions of the Einstein equations and
are related to each other via time-inversion, see e.g. [1, 2].

It is equally fascinating that some of the predictions for fields in a black hole
spacetime can be modelled by waves in a variety of other situations, with the interior
of the black hole or white hole horizons that can be mimicked by fluid flow which
exceeds the velocity of the waves in some regions. One of these is the use of surface
waves on a incompressible fluid [3]. One can alter the flow properties of the fluid
by placing obstacles into the bottom of a flume (a long tank along which the water
flows) to speed up and slow down the fluid over these obstacles.

One of the difficulties in the theoretical treatment of such systems is the compli-
cated boundary conditions on the bottom of the tank (where the fluid velocities must
be tangential to the bottom) and the top (where the pressure of the fluid must be zero
or at a constant atmospheric pressure). In fact, as we will see, the equations for the
fluid itself are remarkably simple. The interesting physics arises entirely from those
boundary conditions.
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We will be interested in irrotational, incompressible flow. While both are cer-
tainly approximations for water flow (the former assumes no turbulence, and no
viscosity which would create vorticity at the shear layer along the bottom, while
the latter assumes that the velocity of sound in the fluid is far higher than any other
velocities in the problem). While this problem has been investigated before [4, 5],
this is in general in the three dimensional context (which is more difficult) and using
approximations and expansions for the shape of the bottom.

I will assume that the fluid flow is a two dimensional flow—i.e. is uniform across
the tank and that the tank maintains a constant width throughout. This is much sim-
pler case than three dimensional flow, which allows the coordinate transformations
I use.

The usual spatial coordinates are x, y with x being the horizontal direction in
which the fluid flows, and y is the vertical direction parallel to the gravitational
acceleration, g, directed in the negative y direction.

The Euler-Lagrange equations are

∂tv+ v · ∇v=−gey −∇p

ρ
, (4.1)

∇ · v= 0, (4.2)

where the second equation is the incompressibility condition. In the usual way, if
we assume that the flow is irrotational, then

v=∇φ̃, (4.3)

and the above equation can be written as

∇
(
∂t φ̃ + 1

2
v2 + gy + p̃

ρ

)
= 0, (4.4)

∇2φ̃ = 0, (4.5)

where p̃ is the pressure. Let me define the specific pressure, p = p̃
ρ

.
In the following I will consider only flows in the x − y directions. Everything is

assumed to be independent of z. Consider the vector w = ez × v. This vector also
obeys

∇ ·w=−ez ·∇× v= 0, (4.6)

∇ ×w= ez∇ · v− (ez ·∇)v= 0, (4.7)

since nothing depends on z.
Thus we can define

w=∇ψ̃, (4.8)

where ψ̃ also obeys ∇2ψ̃ = 0 and where

∇ψ̃ · ∇φ̃ = 0, (4.9)

∇φ̃ · ∇φ̃ = v · v= v2, (4.10)

∇ψ̃ · ∇ψ̃ =w ·w= v2. (4.11)
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Let me now define a new coordinate system. I could use φ̃ and ψ̃ , but I will be
interested in fluid flows where the velocity approaches a constant value vx = v0,
vy = 0 at large distances. I will thus instead use the functions ψ,φ defined by

φ = φ̃

v0
, (4.12)

ψ = ψ̃

v0
, (4.13)

as the new coordinates. This choice will also allow me to take the limit as the veloc-
ity v0 goes to zero, where the potentials φ̃, ψ̃ are undefined. Thus at large distances,
φ = x and ψ = y. The spatial metric in the xy coordinates is

ds2 = dx2 + dy2 = gij dz
idzj (4.14)

(where the Einstein summation convention has been used where a repeated index
implies summation over that index, and where z1 = x, z2 = y). Do not confuse
zi with the horizontal direction z which nothing depends on. The Laplacian for a
general metric function of gij (z

k) is

∇2 = 1√|g|∂i
√|g|gij ∂j , (4.15)

where gij are the components of the matrix which is the inverse to the matrix of co-
efficients gij and where g is the determinant of the matrix with coefficients gij . For
a reference regarding metrics and the coordinate independent equations see almost
any book on General Relativity [6].

In two dimensions, if gij = f g̃ij where f is some function of the coordinates zi ,
then since gij = 1

f
g̃ij and g = det(gij )= f 2 det(g̃ij )= f 2g̃, we have ∇2 = 1

f
∇̃2.

Metrics such as gij and g̃ij are said to be conformally related.
Recalling that the change in the metric components from one coordinate system

zi to a new system ẑj are given by

ĝkl = ∂ẑK

∂zi

∂zl

∂zj
gij , (4.16)

where the Einstein summation convention has been used, the upper components of
the usual flat space metric in this new ẑ1 = φ, ẑ2 =ψ coordinate system are

ĝφφ =∇φ ·∇φ = v2

v2
0

, (4.17)

ĝψψ =∇ψ ·∇ψ = v2

v2
0

, (4.18)

ĝφψ =∇φ ·∇ψ = 0, (4.19)

i.e., the new metric (the inverse of this upper form metric) in these new coordinates
is a conformally flat metric
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ĝij = v2
0

v2

(
1 0
0 1

)
. (4.20)

Since in the xy coordinates the metric is flat, this metric is also flat in ψ,φ coordi-
nates, (the curvature is not changed by a coordinate transformation) and the scalar
curvature in this new coordinate system is zero. Using the equation for the scalar
curvature of a metric (and in two dimensions, the scalar curvature is the only inde-
pendent component of the curvature) one gets

(
∂2
φ + ∂2

ψ

)
ln

(
v2

v2
0

)
= 0 (4.21)

(This is valid as long as v2

v2
0

is not equal to zero anywhere.)

I define

∇̃2 = ∂2
φ + ∂2

ψ. (4.22)

Since the metric in ψ,φ coordinates is conformally flat, the Laplacian

1√
(ĝ)

∂i
√
ĝĝij ∂jΦ (4.23)

is just

v2

v2
0

∇̃2Φ (4.24)

for any scalar function Φ .
Since in x, y coordinates, the Laplacian of both the scalar functions x and y are

zero, they must also be zero in φ,ψ coordinates (since the Laplacian is an invariant
scalar operator), and, as functions of φ,ψ , we have

∇̃2x(φ,ψ, t)= ∇̃2y(φ,ψ, t)= 0, (4.25)

as the equations of motion obeyed by x and y in these new coordinates.
ψ is the stream function, and the vector v is tangent to the surfaces of constant

ψ : v ·∇ψ = v · w = 0. The bottom of the flow must be tangent to the flow vector
(no flow can penetrate the bottom), and thus must be a surface of constant ψ , which
I will take to be ψ = 0. Similarly, if the flow is stationary, the top of the water, no
matter how convoluted, must also lie along a streamline, since a particle of the fluid
which is at the top, must flow along the top (the velocity of the particles must be
parallel to the top surface). This means that the top of a stationary flow (but not a
time dependent flow) also is at a constant value of ψ which I will label ψT .

We also have

∂xφ = ∂yψ = vx

v0
, (4.26)

∂yφ =−∂xψ = vy

v0
, (4.27)
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∂φx = ∂ψy = vxv0

v2
, (4.28)

−∂ψx = ∂φy = vyv0

v2
(4.29)

and thus

v2

v2
0

= 1

(∂φy)2 + (∂ψy)2
(4.30)

= 1

(∂φx)2 + (∂ψx)2
. (4.31)

Solving for x and y as a function of ψ,φ, which is just solving the Laplacian in
terms of ψ,φ, gives us the velocity at all points.

The boundary condition along the bottom for these functions must be that the
velocity along the bottom be parallel to the bottom. If the bottom has the functional
form y = F(x) then y(φ,0) = F(x(φ,0)). On the top of the flow, we have the
boundary condition that p = 0. The Bernoulli equation for a stationary flow is

1

2
v2 + gy + p = const, (4.32)

which, if the flow has constant velocity u over a constant depth bottom of height h
far away from the obstacle, gives the equation for the top of the flow

1

2
v(φ,ψT )

2 + gy(φ,ψT )= 1

2
v2

0 + gh. (4.33)

Writing this in terms of φ,ψ we have the upper boundary condition of

v2
0

2((∂φy(φ,ψT ))2 + (∂φx(φ,ψT ))2)
+ gy(φ,ψT )= 1

2
v2

0 + gh. (4.34)

This is a complicated, non-linear, boundary condition. Thus while the equations of
motion of x, y are simple (Laplacian equals zero), the physics is all contained in
the boundary conditions.

If we are given y(x) as the equation for the bottom, the solution of the above
non-linear boundary value problem is difficult. However if, instead of specifying
the lower boundary, one specifies the shape of the upper boundary y(φ,ψT ), one
can use Bernoulli’s equation in these new coordinates to determine the ψ derivative
of y. Since

∂ψy = vy

v2
, (4.35)

∂φy = vx

v2
, (4.36)

we have

v2 = 1

(∂ψy)2 + (∂φy)2
, (4.37)
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and Bernoulli’s equation is v2 + gy = const along the top surface of the fluid where
p = 0. Solving for ∂ψy we get

∂ψy(φ,ψT )=−
√

−(∂φy(φ,ψT )
)2 + 1

v2
0 + g(y(∞,ψT )− y(φ,ψT ))

. (4.38)

Any function H(ψφ) which is a solution of ∂2
ψH + ∂2

φH = 0 can be expanded

in exponentials eikφ . We see immediately that the dependence of these modes of ψ

must be in terms of e±kψ or equivalently in terms of cosh(kψ) and sinh(kψ) for the
ψ dependence. Thus, since y obeys that equation, we have

y(φ,ψ)=
∫

eikφ
(
αk cosh

(
k(ψ −ψT )

)+ βk sinh
(
k(ψ −ψT )

))
dk, (4.39)

with

αk = 1

2π

∫
y(φ,ψT )e

−ikφdφ, (4.40)

βk = 1

2π

∫
1

k
∂ψy(φ,ψT )e

−ikφdφ. (4.41)

Then at the lower boundary,

y(φ,0)=
∫ [

ŷ(k)cosh(kψT )− ∂̂y(k)
sinh(kψT )

k

]
eikφdk, (4.42)

x(φ,0)=
∫ [

∂̂y(k)k cosh(kψT )+ ŷ(k)sinh(kψT )
]
eikφdk, (4.43)

where

ŷ(k)= 1

2π

∫
y(φ,ψT )e

−ikφdφ = αk, (4.44)

∂̂y(k)= 1

2π

∫
∂ψy(φ,ψT )e

−ikφdφ = kβk. (4.45)

This gives the bottom as a parametric set of functions of φ.
In Fig. 4.1 we have an example of sub to supercritical flow over an obstacle,

calculated as above. Note that the obstacle is a reasonable function y(x).

4.1.1 v0 = 0 Limit

The boundary condition equations are easily solved in the limit as v0 → 0. The
upper boundary condition becomes simply y = h and ∂φy = 0. This can be solved
(in terms of the unknown lower boundary solutions y(φ,0), x(φ,0) by

y(φ,ψ)=
∫

αke
ikφ sinh(k(ψT −ψ))

sinh(kψT )
dk, (4.46)

x(φ,ψ)= i

∫
αke

ikφ cosh(k(ψT −ψ))

sinh(kψT )
dk, (4.47)
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Fig. 4.1 The upper graph gives the top and bottom (y(ψT ) and y(0) of a symmetric flume
flow with v0 = 0.3 m/s. The top of the flow was specified with y(φ,ψT ) = 0.015(e(ψ−.5)2/2 +
e(ψ+0.5)2/2). Note that the bottom of the flume is a reasonable function of x. The lower graph
gives the velocity of the fluid flow, (v(φ)) as a function of x and the phase velocity of long wave-
length waves

√
g(y(φ,ψT )− y(φ,0)) as a function of x. The ratio of these two velocities is the

Froude number, which is greater than unity over the obstacle

where

αk = 1

2π

∫
y(φ,0)e−ikφdφ. (4.48)

Of course, we are not given y(φ,0) but rather y(φ,0)= F(x(φ,0)). However, one
can get rapid convergence by iteration

x0(φ,0)= φ, (4.49)

yi+1(φ,0)= F
(
xi(φ,0)

)
, (4.50)

which gives, via the above equations, the solution yi+1(φ,ψ) and thus

xi+1(φ,0)=
∫

∂ψyi+1(φ,0)dφ. (4.51)

For small v0, one can get a first order correction for the surface value of y(φ,ψT )

by taking

y(φ,ψT )= h− v2
0

1

(∂ψyv0=0(φ,ψ))2|ψ=ψT

. (4.52)
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I.e., for slow flow over a bottom boundary, the stationary solution for that flow is
easy to find.

4.1.2 Formal General Solution

The general solution to the equation ∇̃2F = 0 can be written as

F = f (φ + iψ)+ g(φ − iψ). (4.53)

If F is real, then g(φ − iψ)= (f (φ + iψ))∗. We then have

x(φ,ψ)= x̂(φ + iψ)+ x̂∗(φ + iψ), (4.54)

y(φ,ψ)= i
(
x̂(φ + iψ)− x̂∗(φ + iψ)

)
. (4.55)

Given the boundary conditions along the bottom, we have

x̂(φ)= 1

2

(
x0(φ,0)− iy0(φ,0)

)
. (4.56)

This of course still leaves the highly non-linear boundary conditions at the top to
solve, to find x and y everywhere.

4.2 Fluctuations

Let us assume that we have a background solution to the stationary equation,
x0(φ,ψ), y0(φ,ψ), or equivalently, φ0(x, y),ψ0(x, y). We want to find the equa-
tions for small perturbations around this background flow. Let us also consider a
solution to the full time dependent equations, φ(x, y, t),ψ(x, y, t) together with
their inverses, x(φ,ψ, t), y(φ,ψ, t), such that y(φ(x, y, t),ψ(x, y, t), t) = y and
x(φ(x, y, t),ψ(x, y, t), t)= x. Define the small deviations from the background by

δφ = φ(x, y, t)− φ0(x, y), (4.57)

δψ =ψ(x, y, t)−ψ0(x, y), (4.58)

δx = x(ψ,φ, t)− x0(φ,ψ), (4.59)

δy = y(φ,ψ, t)− y0(φ,ψ). (4.60)

Then, we have

y = y
(
φ0(x, y)+ δφ(x, y, t),ψ0(x, y)+ δψ(x, y, t), t

)
, (4.61)

= y0
(
φ0(x, y)+ δφ(x, y, t),ψ0(x, y)+ δψ(x, y, t), t

)

+ δy
(
φ0(x, y)+ δφ(x, y, t),ψ0(x, y)+ δψ(x, y, t), t

)
. (4.62)

Keeping terms only to first order in “δ”, we have
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y = y0
(
φ0(x, y),ψ0(x, y)

)+ ∂φy0
(
φ0(x, y),ψ0(x, y)

)
δφ

+ ∂ψy0
(
φ0(x, y),ψ0(x, y)

)
δψ + δy

(
φ0(x, y),ψ0(x, y)

)
, (4.63)

or

δy
(
φ0(x, y),ψ0(x, y)

)=−v0vy

v2
δφ(x, y)− v0vx

v2
δψ(x, y) (4.64)

(where all velocity components are those in the background flow).
Similarly

δx =−v0vx

v2
δφ(x, y)+ v0vy

v2
δψ(x, y) (4.65)

and

δφ
(
x0(φ,ψ), y0(φ,ψ)

)= 1

v0

(
vxδx(φ,ψ)+ vyδy(φ,ψ)

)
, (4.66)

δψ
(
x0(φ,ψ), y0(φ,ψ)

)= 1

v0

(−vyδx(φ,ψ)+ vxδy(φ,ψ)
)
. (4.67)

The Bernoulli equation is

v0∂tφ
(
x(φ,ψ, t), y(φ,ψ, t), t

)+ v2
0

2

1

(∂φx(φ,ψ, t))2 + (∂φy(φ,ψ, t))2

+ gy(φ,ψ, t)+ p = const, (4.68)

where the first ∂t is defined as the derivative keeping x, y fixed, not φ,ψ fixed. Here
p is the specific pressure.

Writing this equation perturbatively, we have

−vx∂t δx − vy∂ty − v2
0

((∂φx)2 + (∂φy)2)2

(
v0vx

v2
∂φδx + v0vy

v2
∂φy

)

+ gδy + δp = 0, (4.69)

where all of the velocities are the values of the background velocities at the location
φ,ψ . I.e., vx(φ,ψ)= v0x(x0(φ,ψ), y0(φ,ψ)).

We can now rewrite this equation in terms of δφ = δφ(x0(φ,ψ), y0(φ,ψ)) to
get

v0∂̃t δφ + v2
(
vx∂φ

(
vx

v2
δφ − vy

v2
δψ

)
+ vy∂φ

(
vy

v2
δφ + vx

v2
δψ

))

− g

(
v0vx

v2
δψ + v0vy

v2
δφ

)
+ δp = 0. (4.70)

Recalling that ∂φ
vx
v2 = ∂φ∂ψy0 = ∂ψ

v0vy

v2 and ∂φ
v0vy

v2 =−∂ψ
v0vx
v2 , we finally get

v0∂̃t δφ + v2∂φδφ + ∂φ

(
1

2
v2 + gy0

)
δφ − ∂ψ

(
gy0 + 1

2
v2
)
δψ + δp = 0. (4.71)

The boundary conditions at the bottom are that δx and δy must be parallel to the
bottom, or vxδy − vyδx = 0 which is just
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δψ(φ,0)= 0. (4.72)

At the top, the pressure at the surface must be 0. However the surface is no longer
simply ψ = ψT because of the time dependence of the equations. Let us assume
that the surface is defined by

ψ = Ψ (φ, t)+ψT . (4.73)

Since a particle of the fluid which starts on the surface, remains on the surface, we
can define the fluid coordinates η, ζ . Then the velocity of the fluid is

vφ = d

dt
φ(ζ, η, t), (4.74)

vψ = d

dt
ψ(ζ, η, t). (4.75)

Along the surface, we therefore have

vψ = ∂tΨ + vφ∂φΨ. (4.76)

But,

vφ = d

dt
φ
(
x(η, ζ, t), y(η, ζ, t), t

)
(4.77)

= vx∂xφ + vy∂yφ + ∂tφ (4.78)

= v2

v0
+ ∂tφ(x, y, t), (4.79)

vψ = ∂tψ(x, y, t). (4.80)

Thus, assuming that Ψ is also small (the same order as the other “δ” terms), we have

v0∂tΨ + v2

v0
∂φΨ = v0∂t δψ. (4.81)

On the surface, we have the Bernoulli equation, which to first order is

1

2
v2(φ,ψT +Ψ )+ gy0(φ,ψT +Ψ )− 1

2
v2(φ,ψT +Ψ )

+ gy0(φ,ψt +Ψ )+ ∂̃t δφ + v2∂φδφ

− ∂φ

(
1

2
v2 + gy

)
δφ − ∂ψ

(
1

2
v2 + gy

)
δψ + p− p0 = 0. (4.82)

But along the surface ψ =ψT , the background 1
2v

2+gy is constant, so the φ deriva-
tive is 0. We have

(
∂̃t + v2∂φ

)
δφ + ∂ψ

(
1

2
v2 + gy

)
(Ψ − δψ)= 0. (4.83)

Dividing by G= ∂ψ( 1
2v

2 + gy) and taking the derivative ∂̃t + v2

v0
∂φ we get

(
∂̃t + v2

v0
∂φ

)[
1

G

(
∂̃t + v2

v0
∂φ

)]
δφ − v2

v0
∂φδψ = 0, (4.84)
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as the equation of motion for the surface wave. δφ and δψ are related by the bound-
ary condition δφ = 0 along the bottom.

Since both δφ and δψ obey ∇2δψ =∇2δφ = 0, we have

∇̃2δψ = ∇̃2δφ = 0. (4.85)

Furthermore, since

∂xδφ = ∂yδψ, (4.86)

∂yδφ =−∂xδψ, (4.87)

so

∂φδφ = ∂φx0∂xδφ + ∂φy0∂yδφφ (4.88)

= ∂ψy0∂yδψ − ∂ψx0(−∂xδψ)= ∂ψδψ, (4.89)

∂ψδφ =−∂φδψ. (4.90)

For irrotational time-independent flow, the acceleration of a parcel of fluid is
v · ∇v=∇( 1

2v
2) and the orthogonal component of this, the centripetal acceleration

is

1

|∇ψ |2∇ψ · ∇
(

1

2
v2
)
= 1

v
∂ψ

(
1

2
v2
)
. (4.91)

Also g∂ψy = g
vxv0
v2 ≈ gv0/v so Gv/v0 is the effective gravitational field orthogonal

to the flow lines (including the centripetal acceleration).
However it is important to note that it is the effective force of gravity only at the

surface of the fluid, not at the obstacle to the flow along the bottom, that is important
for the equations of motion.

4.3 Shallow Water Waves

Since φ, ψ are real functions, the solutions can be written as

δφ(φ,ψ)= Z(φ + iψ)+ (Z(φ + iψ)
)∗
, (4.92)

δψ(φ,ψ)= i
(
Z(φ + iψ)− (Z(φ + iψ)

)∗)
, (4.93)

for some function Z. These functions clearly satisfy the Laplacian equation for,
and furthermore also satisfy the differential relations on the derivatives of x, y with
respect to φ,ψ . This gives

0= δψ(φ,0)= i
(
Z(φ)−Z∗(φ)

)
, (4.94)

i.e., Z is a real function of a real arguments, which gives

δφ(φ,ψ)= (Z(φ + iψ)+Z(φ − iψ)
)≈ 2Z(φ)+Z′′(φ)ψ2, (4.95)

δψ = 2ψZ′(φ), (4.96)
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or, to first order in ψT

δψ =ψT ∂φδφ. (4.97)

The equation for the waves then becomes

(
∂̃t + v2∂φ

) 1

G

(
∂̃t + v2∂φ

)
δφ − v2ψT ∂

2
φδφ = 0. (4.98)

We note that this is not a Hermitian operator acting on δφ. Recall that a Hermitian
operator is one such that

∫
δφ̂H φdφdt =

∫
(H δφ̂)δφdφdt, (4.99)

if we assume that all of the boundary terms in the integration by parts are zero. We
can rewrite the equation for δφ by dividing by v2 as

(
∂̃t + ∂φv

2) 1

v2G

(
∂̃t + v2∂φ

)
δφ −ψT ∂

2
φδφ = 0. (4.100)

This is a symmetric equation, derivable from an action,
∫ [

1

v2G

(
∂̃t + v2∂φ

)
δφ∗
(
∂̃t + v2∂φ

)
δφ −ΨT ∂φδφ

∗∂φδφ
]
dφdt. (4.101)

This action has the global symmetry δφ → eiμδφ and thus has the usual Noether
current associated with this symmetry. In particular it has the conserved norm

〈
δφ, δφ′

〉= i

2

∫ {
δφ∗ 1

Gv

(
∂t + v2∂φ

)δφ′

v
− δφ′ 1

Gv

(
∂t + v2∂φ

)δφ∗

v

}
dφ. (4.102)

4.4 Deep Water Waves

For deep water waves, we can assume that either Z(φ + iψT )� Z(ψ − iφT ) or
Z(φ + iψT )� Z(ψ − iφT ). (I.e., we assume that as analytic functions, Z goes to
zero either in the upper or lower half plane.)

Let us also assume it is the first case, and let us define Ẑ(φ)= Z(φ + iψT ), and
that ∂̃t δφ = iωδφ. We then have

(
iω+ v2∂φ

) 1

G

(
iω+ v2

φ

)
Ẑ − (−i)v2∂φẐ = 0. (4.103)

If we assume that K = i(∂φ ln(Ẑ)) is large and negative, such that Ẑ varies faster
than v2 or G, we have approximately

(ω+ v2(φ)K)2

G
+Kv2 = 0, (4.104)

or

ω=−v2K ±
√
v2GK. (4.105)
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4.5 General Linearized Waves

The equation in general is

(
∂̃t + v2∂φ

) 1

G

(
∂̃t + v2∂φ

)
δφ − v2∂φδψ = 0. (4.106)

Fourier transforming with respect to φ and ψ , and using the fact that δψ = 0 at
ψ = 0, the functions δφ, δψ then can be written as

δφ(φ,ψ, t)=
∫

A(k, t)eikφ cosh(kψ)dk, (4.107)

δψ(φ,ψ, t)= i

∫
A(k, t)eikφ sinh(kψ)dk, (4.108)

since again they obey the Laplacian equal to zero in these variables.
Defining B(k, t)=A(k, t) cosh(kψ) this can be written as

δφ(φ,ψT , t)=
∫

B(k, t)eikφdk, (4.109)

δψ(φ,ψT , t)= i

∫
B(k, t)eikφT tanh(kψ)dk = i tanh(−iψT ∂φ)

∫
B(k, t)eikφdk

= i tanh(−iψT ∂φ)δφ. (4.110)

Thus the equation of the surface waves can be written as

0= (∂̃t + ∂φv
2) 1

v2G

(
∂̃t + v2∂φ

)
δφ − i∂k tanh(−iψT ∂φ)δφ. (4.111)

I.e., we get the usual tanh dispersion relation for the transition from shallow to
deep water waves.

This equation is symmetric and real, and thus if δφ is a solution, so is δφ∗. Again
this gives a conserved norm between two solutions to the equations of motion δφ

and δφ′ of

〈
δφ, δφ′

〉=
∫

1

v2G

[
φ∗
(
∂̃t + v2∂φ

)
δφ′ − δφ′

(
∂̃t + v2∂φ

)
δφ∗
]
dφ. (4.112)

We note that this equation depends only the conditions at the surface of the flow.
It is defined entirely in terms of the factors v2 and G = ∂ψ(gy + 1

2v
2) defined at

ψ = ψT , and is independent of the obstacles, or the flow throughout the rest of the
stream except insofar as they affect the flow at the surface. This might well change
if either vorticity or viscosity were introduced into the equations.

This norm is crucial to the analysis of the wave equation. It is conserved (in the
absence of viscosity), and in the use of such waves as models for black holes, it is
this norm which determines the Bogoliubov coefficients (or the amplification factor)
for waves in the vicinity of a horizon (blocking flow in the hydrodynamics sense)
and determines the quantum noise (Hawking radiation) emitted by such a horizon
analogue. The quantum norm used in the quantization procedure is

〈δφ, δφ〉Q = i

2
〈δφ, δφ〉. (4.113)
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If we define a new coordinate φ̂ = ∫ 1
v2 dφ, the norm becomes

〈
δφ, δφ′

〉=
∫

1

G

[
δφ∗(∂̃t − ∂

ψ̂
)δφ′ − δφ∗(∂̃t − ∂

ψ̂
)δφ
]
dφ̂. (4.114)

If the surface of the flow is shallow ( dyT
dx

� 1) then dφ
dx
= vx ≈ v and φ̂ ≈ dx

vx
.

To relate this to the measured quantity, the vertical displacement at the surface of
the waves, we must relate δφ to δy at the surface of the fluid. We have

Ψ (t,φ)=ψ
(
t, x, yT (t, x)

)−ψT = δψ
(
t, x(φ,ψT ), y(φ,ψT )

)+ vxδyT ,

(4.115)

or

δyT = 1

vx
(Ψ − δψ)=

(
1

Gvx
∂t + v2∂φ

)
δφ. (4.116)

Now, Gvx ≈ g
v2
x

v2 ≈ g (ignoring the centrifugal contribution to the effective gravity),
so the norm becomes

〈δyt , δyT 〉 =
∫

v2

g

[
(∂t + ∂

ψ̂
)−1δy∗T δyT − (∂t + ∂

ψ̂
)−1δyT δy

∗
T

]
dφ̂

=
∫

1

g

[(
(∂t + ∂

ψ̂
)−1√vδy∗T

)√
vδyT

− ((∂t + ∂
ψ̂
)−1√vδyT

)√
vδy∗T

]
dφ̂, (4.117)

and dφ̂
dφ

v2 ≈ dx
v

.
If we assume that the incoming wave is at a set frequency ω and take the Fourier

transform with respect to t, x̂ of
√
v(ψ̂)yT (t, φ̂) this becomes

〈δy, δy〉 =
∫ |(√vyT )(k̂)|2

(ω+ k̂)
dk̂. (4.118)

We can also look at the norm current

∂t

∫ φ2

φ1

1

v2G

[
φ∗
(
∂̃t + v2∂φ

)
δφ′ − δφ′

(
∂̃t + v2∂φ

)
δφ∗
]
dφ

=
∫ φ2

φ1

∂x

(
1

G

(
∂̃t + v2∂∗φ

)
δφ − ∂x

(
1

G

(
∂̃t + v2∂φ

)
δφ∗
)

+ [(−i∂φ tanh(−iψT ∂φ)δφ
∗)δφ − (i∂φ tanh(iψT )∂φ

)
δφ∗
)
δφ
]
dφ.

(4.119)

The integrand is a complete derivative. Although this is not obvious for the terms
with the tanh in them, we can use

(
∂2n
φ δφ∗

)
δφ − δφ∗∂2n

φ δφ = ∂φ

(
2n−1∑

r=0

(−1)r∂r
φδφ

∗r∂2n−1−r
φ δφ

)

(4.120)
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and the fact that i∂φ tanh(iψT ∂φ) can be expanded in a power series in ∂2
φ to show

that they also a complete derivative.
Thus the integrand can be written in terms of a complete derivative of with re-

spect to ∂ψ and we can regard the term that is being taken the derivative of as a
spatial norm current Jφ so that if J t is the temporal part of the norm current, we
have ∂tJ

t + ∂φJ
φ = 0.

If we are in a regime where δφ =Ae−iωt−kφ , (i.e., a regime where the velocity v

and G are both constants), then we have

Jφ = i|A|2 (ω+ v2k)

Gv2
+ ∂k

(
k tanh(ΨT k)

)= i|A|2ω(1+ v2/vp − 2vg)

Gv2
, (4.121)

where vp and vg are the phase and group velocity of the wave. In a situation in
which one has a wave train with some definite frequency and wave number entering
a region, then the sum of all the norm currents for each k at the boundary of the
region must be zero.

4.6 Blocking Flow

Let us return to the static situation. Define U = ∂φδφ, we have the equation

∂φ
v2

G
U + i tanh(iψT ∂φ)U = 0. (4.122)

As above, there is a solution if we assume that the derivatives are small, which gives

U = const
v2

G
−ψT

. (4.123)

For rapid variations, we have

U = const
v2

G
e
i
∫

G

v2 dφ
, (4.124)

with the transition from one to the other occuring roughly when the logarithmic
derivatives of the two solutions are equal

(v2/G)′
v2

G
−ψT

≈
√
(v2/G)′2 + 1

v2/G
. (4.125)

Defining the Froude number by F 2 = v2

GψT
(the square of the velocity of the fluid

over the velocity of the long wavelengths in the fluid in the WKB approximation),
we have

(F 2)′

F 2 − 1
≈
√

4
(
ln(F )′

)2 +
(

1

F 2ψT

)2

. (4.126)

Note that for a non-trivial rate of change of the bottom, the turning point occurs
well before the horizon.



78 W.G. Unruh

The ′ denotes derivative with respect to φ not x. We can rewrite this approxi-
mately (assuming that vx

v
≈ 1 and that 2 ln(F )′<1

F 2ψT
and ψT ≈ vd where d is the depth

of the water at position x) as

dF 2

dx
≈ (F 2 − 1)

F 2d
. (4.127)

Note that this transition occurs before GψT = v2 or Froude number equals 1.
The wave on the slope piles up and its frequency makes the transition to deep water
wave before we hit the effective horizon.

The long wavelength equation,

1

v2

(
∂̃t + v2∂φ

) 1

G

(
∂̃t + v2∂φ

)
δφ −ψT ∂

2
φδφ = 0, (4.128)

is not that of a two dimension metric, which is always conformally flat, but can be
written as a the wave equation for a three dimensional metric where all derivatives
are equal to zero in the third ξ dimension for the variable δφ. The metric is

ds2 = α

((
1− v2

GψT

)
dt2 + 2

1

GψT

dtdφ − 1

v2GψT

dφ2
)
− 1

v2GψT

dξ2,

(4.129)

where α is an arbitrary function of φ, a two dimensional conformal factor which
does not affect the two dimensional wave equation. This metric has surface gravity

κ = v2

2
∂φ

(
v2

GψT

)
= 1

2
v2∂φF

2. (4.130)

(The surface gravity is the acceleration in the horizon as seen from far away. For
a static time independent metric in a coordinate system which is regular across the
horizon, it can be defined by κ = Γ t

tt at the horizon, where Γ i
jk is the Christoffel

symbol for the metric. Then Γ t
tt =− 1

2g
tφ(∂φgtt ) at the horizon.)

4.7 Conversion to δy

Of course δφ is not what is actually measured in an experiment. That is the fluctu-
ation 
y(x) which is the difference in height between the stationary flow, and the
height with the wave present. We can relate this to δψ and Ψ :

ys(x, t)= y0(x)+
y(x, t) (4.131)

where y0 is the surface for the background,

δy = vy

v2
δφ + vx

v2
δψ. (4.132)

Since δψ = tanh(ΨH∂φ)δφ, we have

v2δy = [vy + vx tanh(ΨH∂φ)
]
δφ. (4.133)
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Inverting this for deep water waves,

δφ = v2

vy + vx
δy, (4.134)

while for shallow water waves

δφ =
∫

e
− ∫ vy

vx
dφ v2

vx
δydφ. (4.135)

The integrand in the exponent is non-zero only in the region where the background
flow is dimpled, and, since vy

vx
is in general very small, the exponential can be ne-

glected in most situations.
In the intermediate region, where the wave changes from shallow to deep wa-

ter wave, there is no easy solution to these equations, but they can be integrated
numerically.

4.8 Waves in Stationary Water over Uneven Bottom

In the limit as v0 goes to zero, so does v with the ratio being a finite function. y
obeys the equation (∂2

φ + ∂2
ψ)y = 0 with the boundary conditions along the bottom

that y = Y(x), with Y the given function of x of the bottom, and along the top,
y = H , a constant. If we assume that we know Y(φ) (instead of Y(x)) along the
bottom, this can be solved by

y(φ,ψ)=H +
∫

α(k)eikφ
sinh(k(ψ −ψT ))

sinh(kψT )
dk, (4.136)

where

α(k)= 1

2π

∫
Y(φ)eikφ, (4.137)

and

x(φ,ψ)= φ + i

∫
α(k)

cosh(k(ψ −ψT ))

sinh(k(ψT ))
dk. (4.138)

One gets rapid convergence if one starts by taking x = φ, substituting into Y(x(φ))

to find Y(φ), finding the new x(φ) and substituting in again.
Then vy

v0
at the surface is zero, while

v0

vx
= v0

v
= ∂ψy =

∫
kα(k)

1

sinh(k(ψT ))
dk. (4.139)

The equation for small perturbations becomes

v2
0

v2G
∂2
t δφ − i∂φ tanh(iψT ∂φ)δφ = 0, (4.140)

where
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v2

v2
0

G= v2

v2
0

g∂ψy = g
vx

v0
= g

∂φ

∂x
. (4.141)

If the depth is constant, the background ψ = y and φ = x giving the usual equation,
which allows us to write

∂2
t δφ + ig∂x tanh(ψT ∂φ)δφ. (4.142)

For deep water waves, where the tanh is unity, this equation is exactly the same
as the deep water equation for constant depth. The fact that the bottom varies makes
no difference to the propagation of the waves, as one would expect.

For shallow water waves, where the tanh can be approximated as the linear func-
tion in its argument, the equation becomes

∂2
t δφ =ψT ∂x∂φδψ = gψT

v0

v
∂2
x δφ. (4.143)

This allows us to determine the wave propagation over an arbitrarily defined bot-
tom. Note that in the stationary limit, the background flow is certainly irrotational,
implying that the assumptions made here should certainly be valid (of course ne-
glecting the viscosity of the fluid).
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Chapter 5
The Basics of Water Waves Theory for Analogue
Gravity

Germain Rousseaux

Abstract This chapter gives an introduction to the connection between the physics
of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is
assumed as a prerequisite.

5.1 Introduction

According to Pierre-Gilles de Gennes, “the borders between great empires are often
populated by the most interesting groups”. Indeed, these people often speak several
languages and are more open-minded due to cultural exchanges. A wonderful anal-
ogy exists between the propagation of hydrodynamic waves on a fluid flow and the
propagation of light in the curved spacetime of a black hole. It allows us to test as-
trophysical predictions such as Hawking radiation and the effects of high frequency
dispersion on it. It provides new insights in Fluid Mechanics thanks to the use of
tools and concepts borrowed from Quantum Field Theory in curved spacetime and
vice versa. General relativists speak with hydraulicians and this chapter is a testi-
mony of their common language and relationships [1, 2].

Here, we provide the general background on water waves propagation for ana-
logue gravity: we will try to explain how water waves propagate and how a flow
current implies the existence of an effective spacetime; we will insist on the differ-
ence between propagation in deep and shallow waters on the dispersion relation; a
generalized definition of a horizon will be given and which, in the particular case of
shallow water, reduces to the usual habit of general relativists.

5.2 A Glimpse of Dimensional Analysis

The equations of fluid mechanics are known since several centuries but they still
defy modern physics when we try to understand one of its outstanding mysteries
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like turbulence. As they are non-linear and feature several effects such as pressure,
gravity and external forces, practitioners have been forced to introduce a very useful
way to grasp the relevant effects when dealing with a peculiar flow. This technique is
the so-called dimensional analysis which is often the only rescue procedure to disen-
tangle the relative magnitude of several processes at play. The reader will be referred
to the book by Barenblatt on scaling and dimensional analysis for a thorough intro-
duction [3]. Here, we will construct with simple arguments the relevant velocities of
propagation of water waves depending on the water depth. Three regimes of prop-
agation will be uncovered with corresponding dispersion relations. Then, the effect
of a current will be added and this ingredient is going to be essential in order to have
an analogue gravity system.

Waves are characterized by both their wavenumber k and their angular fre-
quency ω. Since we are dealing with Newton’s laws of motion applied to fluids,
the second time derivative (namely inertia) will translate in a square term in the
angular frequency and the dispersion relation has the general form ω2 = F(k). Ob-
viously, waves with both positive and negative angular frequency are thus described
by the dispersion relation (ω = ±√F(k)). Usually, the negative root is dismissed
since, when the propagation is free, it is a matter of convention to focus either on
the right or left-propagating waves. Of course, in the presence of a current, the sys-
tem will no longer be symmetric with respect to space reflection (x →−x) and then
both types of waves (positive and negative) turn to be important. . .

5.2.1 Shallow Waters

Let us assume that a train of continuous sinusoidal water waves with wavelength λ

is propagating at the surface of a fluid at rest in a given depth h. We make the strong
hypothesis that the wavelength is much longer than the depth, that is kh� 1 using
the wavenumber k = 2π/λ. The fluid vertical extension h has the dimension of a
length L. Since inertia is balanced by gravity, the gravity field is a relevant parameter
and its intensity g has the dimension of an acceleration L.T −2. We are looking for
the typical scaling of the wave velocity. The crests of the water waves propagate with
the so-called phase velocity and its value c has the following dimension L.T −1. We
are lead to the obvious scaling law up to a constant term:

cshallow ≈
√
gh. (5.1)

Using the definition of the phase velocity cφ = ω/k, it is straightforward to infer
the approximate dispersion relation for water waves propagating in shallow waters:

ω2 ≈ ghk2 (5.2)

which is similar to the dispersion relation for light waves in empty flat spacetime.
Analogue Gravity will emerge when effective curved spacetime is added as we will
see. . .

Gravity waves in shallow waters are not dispersive since, whatever their wave-
length, they do propagate with the same velocity.
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5.2.2 Deep Waters

Far from the sea shore or for very short gravity waves, the water depth is no more
a relevant parameter and the only length scale left is the wavelength of the water
waves. So, if we assume that kh� 1 and recalling that the wavenumber k has the
dimension of an inverse length L−1, we find the scaling for the phase velocity in
deep waters:

cdeep ≈
√

g

k
(5.3)

and the dispersion relation:

ω2 ≈ gk. (5.4)

Newton derived this scaling in his Principia by applying the Galileo formula for
the period of oscillation of a pendulum T � √

l/g to the water waves. Indeed, if
the length of the pendulum l is replaced by the wavelength, we do recover the same
scaling.

Gravity waves in deep waters are dispersive since longer waves propagates faster
than the short ones.

5.2.3 Arbitrary Water Depth

Without doing more calculations, we can anticipate that the general dispersion rela-
tion for waters on arbitrary depth will write according to the following form:

ω2 = gkH(k), (5.5)

bearing in mind that the following asymptotic limits must be fulfilled: limkh→∞×
H(k) = 1 and limkh→0 H(k) = kh. It can been shown that one has rigorously
H(k) = tanh (kh) after a lengthy calculation that we will avoid to the reader (see
the books by Mei [4] or Dingemans [5] for a mathematical demonstration).

5.2.4 The Capillary Length

Water is made of molecules. In the bulk of the liquid, every molecule is surrounded
by the same number of neighboring molecules whereas at the boundary with another
substance (like air at the free surface of sea water), a water molecule is also sur-
rounded by gas molecules and the resulting imbalance in the chemical interactions
results in a pressure difference between the liquid and the gas. The Young-Laplace
law states that the pressure jump is proportional both to the local curvature of the
interface and to a phenomenological coefficient γ named surface tension which is a
property of both media:


pY−L = γC, (5.6)
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where C is the curvature of the free surface and has the dimension of an inverse
length (roughly the radius of curvature).

When the Young-Laplace pressure 
pY−L is balanced by the Pascal pressure
drop 
pP = ρgh due to the static gravity field, a scaling law is deduced easily
for the so-called capillary length which is the typical size on which surface tension
effects are acting:


pY−L ≈ γ

lc
=
pP ≈ ρglc. (5.7)

Hence, the capillary length writes:

lc =
√

γ

ρg
. (5.8)

Let us introduce the effective gravity field g∗ induced by the capillarity and its
dispersive scaling law in terms of the wavenumber k:

g∗ � γ

ρ

1

l2c
≈ γ

ρ
k2. (5.9)

The dispersion relation for water waves taking into account the effect of surface
tension becomes:

ω2 = (g + g∗
)
k tanh (kh), (5.10)

that is [4]:

ω2 =
(
gk+ γ

ρ
k3
)

tanh (kh). (5.11)

5.3 Long Water Waves on a Current as a Gravity Analogue

In a letter to H. Cavendish in 1783, Reverend John Michell introduced the concept
of what is named, in modern physics, a “black hole” (he was inspired by the cor-
puscular theory of light by I. Newton) [6]: “If the semi-diameter of a sphere of the
same density as the Sun in the proportion of five hundred to one, and by supposing
light to be attracted by the same force in proportion to its [mass] with other bodies,
all light emitted from such a body would be made to return towards it, by its own
proper gravity”. According to him, this situation occurs when the “escape velocity”
of a massive particle is equal to the velocity of light. Then, Pierre-Simon de Laplace
introduced the term “étoile sombre” (dark star) in his “Exposition du Système du
Monde” in 1796 to denote such an object. Laplace is also well known for having
proposed in 1775 an analytical model to describe standing water waves in shallow
water and for having derived the related dispersion relation [7].

Recently, Schützhold & Unruh derived the equation of propagation of water
waves moving on a background flow in the shallow waters limit [8] and this equa-
tion describes also the behaviour of light near the event horizon of a black hole.
Indeed, under the impulsion of the seminal work by Unruh [9], there has been more
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and more interest for analogue models in general relativity in order to understand
the physics of wave propagation on an effective curved spacetime. Several systems
exhibit a so-called “acoustic” metric similar to the metric describing a black hole
when a wave is moving in a “flowing” medium [1, 2].

Here, we will reproduce the derivation of Schützhold & Unruh with some details
for pedagogy [8]. Hence, we consider the propagation of small linear perturbations
of a free surface between water and air in the presence of an underlying current. The
current is uniform in depth z, time-independent and varies slowly in the longitudinal
direction x. We are in the so-called WKB approximation such that the wavelength is
smaller than the typical length on which the current varies (λ� U(x)

dU
dx

). U= vB will

denote the background flow current whereas v will stand for the velocity associated
with the propagation of waves.

The liquid is inviscid, its density is constant (ρ = const) and the flow is incom-
pressible.

We have the following equations of motion:

– The continuity equation which comes from the incompressibility condition:
∇.v= 0;

– The Euler equation:

dv
dt

= v̇+ (v.∇)v=−∇p

ρ
+ g+ f

ρ
, (5.12)

with p the pressure, g =−gez the gravitational acceleration and f =−ρ∇‖V ‖ a
horizontal and irrotational force in the x direction (‖) driven by the potential V ‖
which is at the origin of the flow.

Since the flow is assumed to be vorticity-free ∇ × v = 0 (a crucial feature of
water waves propagation), one has (v.∇)v = (∇ × v) × v + 1

2∇(v2) = 1
2∇(v2),

with v=∇φ where φ stands for the velocity potential. The vectorial Euler equation
reduces to the simpler scalar Bernoulli equation

φ̇ + 1

2
(∇φ)2 =−p

ρ
− gz− V ‖. (5.13)

The boundary conditions are such that:

– In z = 0, the vertical flow velocity must be null, i.e. v⊥(z = 0) = 0. z = 0 is by
definition the bottom depth.

– The height variations of the fluid are determined by the very same velocity but
computed on the free surface:

v⊥(z= h)= dh

dt
= ḣ+ (v.∇)h, (5.14)

where dh
dt

is the velocity of a point on the air-water interface.
– The relative pressure with respect to the atmospheric pressure on the free surface

cancels by definition: p(z= h)= 0.
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Let us consider a velocity perturbation δv of the background flow vB with a
corresponding vertical displacement δh. We assume the background flow vB to be
stationary, irrotational and horizontal: ∇⊥vB = 0, vB = v‖B →∇‖.vB = 0.

The Bernoulli equation gives:

1

2
v2
B =−pB

ρ
− gz− V ‖, (5.15)

where pB follows Pascal’s law for static pressure distribution in the water column
pB(z)= ρg(h− z).

We assume that the velocity perturbation δv is also curl-less: hence, we can define
a perturbed velocity potential δφ. Using again the Bernoulli equation, we get:

δφ̇ + v‖B.∇‖δφ =−δp

ρ
. (5.16)

By taking into account the condition pB(z= h)= 0 and using the expression for
pB , we obtain the boundary condition for the pressure fluctuation at the free surface
δp: δp(z= h)= gρδh.

The same procedure applies to the vertical velocity, using the following con-
ditions (5.14) and v⊥(z = 0) = 0 : δv⊥(z = 0) = 0 and δv⊥(z = hB) = δḣ +
(v‖B.∇‖)δh.

We now develop the velocity potential δφ using a Taylor series:

δφ(x, y, z)=
∞∑

n=0

zn

n! δφ(n)(x, y). (5.17)

The boundary condition v⊥(z = 0) = 0, implies δφ(1) = 0. With the continuity
equation, we find:

∇2‖δφ(0) + δφ(2) + · · · = 0. (5.18)

We assume that the depth h is much longer than the wavelength λ of the free
surface perturbation. Hence, the higher-order terms in the Taylor expansion are sup-
pressed by powers of h/λ� 1 since we have ∇2‖ =O(1/λ2). Keeping only the two
lowest terms in the Taylor series, we get:

δv⊥(z)=∇⊥δφ

=∇⊥
(
δφ(0) + z2

2
δφ(2)

)

= zδφ(2). (5.19)

At the free surface z= h and using (5.18), we then find:

δv⊥(z= h)=−h∇2‖δφ(0). (5.20)

In order to find a wave equation for δφ(0), let us take the partial derivative with
respect to time t of Eq. (5.16), then, with the help of the boundary conditions
δp(z= h), δv⊥(z = h) and of Eq. (5.20), we substitute δḣ with an equivalent ex-
pression. Finally, we end up with:

∂2
t (δφ)+ 2

(
v‖B.∇‖

)
∂t (δφ)+

(
v‖B ⊗ v‖B − gh

)∇2(δφ)= 0, (5.21)
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that is the so-called Beltrami-Laplace equation:

�δφ(0) = 1√−g
∂μ
(√−ggμν∂νδφ(0)

)= 0, (5.22)

provided that we identify gμν as an inverse metric expressed in the following matrix
form:

gμν =

⎛

⎜
⎜
⎝

1
... v‖B

. . . . . . . . . . . . . . . . . . . . . .

v‖B
... v‖2

B − ghI

⎞

⎟
⎟
⎠ . (5.23)

Using gμνgμσ = δνσ we get the so-called acoustic metric gμν in its typical
Painlevé-Gullstrand form:

gμν = 1

c2

⎛

⎜⎜
⎝

gh− v‖2
B

... v‖B
. . . . . . . . . . . . . . . . . . . . . .

v‖B
... −1

⎞

⎟⎟
⎠ , (5.24)

with c =√
gh the velocity of water waves in shallow water which is the analogue

of the velocity of light.
It is straightforward to show that the dispersion relation associated with

Eq. (5.21) is:

(ω− k.U)2 ≈ c2k2, (5.25)

which describes the propagation of long water waves on a given flow U= vB where
we insist on its approximate nature (kh� 1). The flow induces a Doppler shift of
the angular frequency: we refer the reader to the hydrodynamics literature where
the effect of a current on water waves has been discussed extensively [10–15].
One speaks of blue-shifting (red-shifting) when the current encounters (follows)
the waves and the wavenumber increases (decreases). When the flow vanishes, the
Beltrami-Laplace operator reduces to the usual d’Alembertian operator.

The dispersion relation is solved graphically in Fig. 5.1. The so-called trans-
planckian problem arises when U =−c that is when the wavenumber of the positive
solution (in green) diverges at +∞, disappears and then reappears as a new diverg-
ing negative solution (in blue) at −∞ for increasing modulus of the flow velocity.

5.4 Fluid Particles’ Trajectories

In this part, we recall (without demonstration) some classical results from water
waves theory on the trajectories of the fluid particles beneath a water wave [4]. For
small wave amplitudes (ka � 1), the non-linear terms of the Euler equation and
of the boundary conditions can be neglected. In 1845, G.B. Airy derived within
this approximation the fluid particles’ trajectories compatible with the following
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Fig. 5.1 Graphical solutions of the dispersion relation (ω− k.U)2 ≈ c2k2: ω=Ω(k) is plotted as
a function of k for increasing modulus of the background flow U < 0. The conserved frequency
ω is the horizontal red dotted line. The green (blue) color corresponds to the positive (negative)
branches

dispersion relation valid for pure gravity waves without a background flow for a
given depth:

ω2 = gk tanh (kh). (5.26)

We denote z′ = 0 the mean water depth of the free surface without wave. Let us
consider the following perturbation with respect to rest:

z′ = η(x, t)= a sin(ωt − kx). (5.27)

Airy computed the resulting velocity profile:

u
(
x, z′, t

)= aω
cosh(k(z′ + h))

sinh(kh)
sin(ωt − kx), (5.28)

and

w
(
x, z′, t

)= aω
sinh(k(z′ + h))

sinh(kh)
cos(ωt − kx), (5.29)

where u and w correspond to the projections of the perturbation velocity in the
horizontal and vertical directions.
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Fig. 5.2 The flow generated
beneath a surface waves:
(a) deep water case;
(b) shallow water case

Under the hypothesis of small displacements, one deduces the horizontal motion
of fluid particles:

X
(
x, z′, t

)−X0 =−a
cosh(k(z′ + h))

sinh(kh)
cos(ωt − kx), (5.30)

as well as the vertical motion:

Z
(
x, z′, t

)−Z0 = a
sinh(k(z′ + h))

sinh(kh)
sin(ωt − kx). (5.31)

In deep waters (far from the sea shore for example), the fluid particles’ trajecto-
ries are circular with radius R. In shallow waters (close to the beach!), the trajecto-
ries flatten and the particles follow an ellipse of semi-axis A and B for respectively
the horizontal and vertical motions (see Fig. 5.2). In practice, practitioners distin-
guish three zones:

• The deep water case (h/λ > 1/2):

A∼ B ∼ aekz
′
. (5.32)

The trajectories are circles of radius R ∼ A ∼ B which decreases exponen-
tially with the depth z′.

• The intermediate case (1/20 < h/λ < 1/2):

A= a
cosh(k(z′ + h))

sinh(kh)
, (5.33)
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and

B = a
sinh(k(z′ + h))

sinh(kh)
. (5.34)

The trajectories are ellipses whose semi-axes diminish with depth. The de-
crease is slower than the exponential one of deep waters.

• The shallow water case (h/λ < 1/20):

A∼ a

kh
, (5.35)

and

B ∼ ak(z′ + h)

kh
. (5.36)

The trajectories are ellipses whose major semi-axis A is independent of the
water depth z′ and whose minor semi-axis B decreases linearly with z′. On the
bottom (z′ = −h), B cancels and the trajectories become a horizontal oscillation
of amplitude A.

In the presence of a current U, the previous expressions for the velocity field
keep the same form provided the dependence of the amplitude (and not of the phase)
with the angular frequency ω is replaced by the relative angular frequency ω′ = ω−
k.U [10–16]. Of course, u becomes u′ + U whereas w′ is invariant. The particles’
trajectories are thus similar to cycloids whose amplitude decreases with the water
depth for waves following the current [16].

5.5 A Plethora of Dispersive Effects

One of the salient effects of analogue gravity is the possibility to solve the trans-
planckian problem thanks to the introduction of dispersion close to the horizon of
an artificial black hole. As a matter of fact, a major drawback of the original calcu-
lation by Stephen Hawking of the black hole radiation is the necessity for the field
to have a wavelength which goes to zero as one gets close to the event horizon.
Water waves provide several regularization scales in a cascade such as the water
depth, the capillary length or even a viscous scale in order to cope with a diverging
wavenumber by counter-acting the continuous blue-shifting of the flow. . .

Let us consider the propagation of gravity waves (without surface tension γ = 0
for the moment) on a linear shear flow U(z)=U0 +Ωz with constant plug flow U0

and constant vorticity Ω . Here, one assumes that both the bottom depth and the flow
velocity vary slowly such that h

dh
dx

� λ and U
dU
dx

� λ. The dispersion relation between

the frequency ω
2π and the wavenumber k writes either with its implicit expression

due to Thompson [17]:

(ω−U0k)
2 = [gk−Ω(ω− kU0)

]
tanh (kh), (5.37)
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or with its explicit expression due to Biesel [18]:

ω=U0k − Ω

2
tanh (kh)±

√(
Ω

2
tanh (kh)

)2

+ gk tanh (kh). (5.38)

With surface tension, Huang has derived recently the following dispersion rela-
tion with its implicit expression [19]:

(ω− kU0)
2 =

[
gk+ γ

ρ
k3 −Ω(ω− kU0)

]
tanh (kh), (5.39)

which can be written explicitly according to Choi [20] in the form:

ω=U0k − Ω

2
tanh (kh)±

√(
Ω

2
tanh (kh)

)2

+
(
gk + γ

ρ
k3

)
tanh (kh). (5.40)

It is interesting to notice that the “relativistic” dispersion relation (ω−U.k)2 =
c2k2 is recovered in the long wavelength limit kh� 1 whatever is the dispersive cor-
rection. It obvious when dealing with the surface tension since the capillary length
is smaller that the long wavelength. It is less obvious for the dispersive effect of vor-
ticity. Indeed, the long wavelength approximation of the Biesel’s dispersion relation
writes:

ω�U0k− hΩ

2
k±

√

ghk2 + Ω2h2

4
k2. (5.41)

Fortunately, it can be transformed into the usual dispersion relation associated
with the acoustic metric (ω−U ′.k)2 = c′2k2 provided one introduces renormalized
flow and waves velocities U ′ =U0 −Ωh/2 and c′ =√gh+Ω2h2/4.

Assuming a uniform flow in the vertical direction (Ω = 0), the dispersion relation
becomes [10–15]:

(ω−Uk)2 �
(
gk+ γ

ρ
k3
)

tanh(kh). (5.42)

• In the shallow water limit kh� 1,

(ω−Uk)2 � ghk2 +
(
γ h

ρ
− gh3

3

)
k4 +O

(
k6), (5.43)

the dispersion relation is identical to a BEC-type phonons spectrum:

(ω−Uk)2 � c2k2 ± c2ξ2k4, (5.44)

with the corresponding “healing length”:

ξ =
√∣∣∣∣l

2
c −

h2

3

∣∣∣∣. (5.45)

An interesting observation is that the superluminal correction can have a negative
sign in contrast to the BEC case if the capillary length is less than h/

√
3 or even

null. . .
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• In the deep water limit kh � 1, the dispersion relation looses its “relativis-
tic/acoustic” branch:

(ω−Uk)2 � gk + γ

ρ
k3. (5.46)

Viscosity has both a dissipative (imaginary term) and a dispersive (real term)
contributions to the dispersion relation. By dimensional analysis, it is obvious that

the typical viscous scale would be of the order of δ ≈
√

ν
ω

otherwise known as the

Stokes viscous length which is the scale of the viscous boundary layer [4].

5.6 Hydrodynamic Horizons

In this part, we propose a generalized definition of a horizon with respect to the usual
custom in General Relativity. Condensed matter horizons and here, hydrodynamic
horizons lead to a dispersive-like definition. What is a Horizon? The word horizon
derives from the Greek “oριζων κυκλoς” (horizon kyklos), “separating circle”,
from the verb “oριζω” (horizo), “to divide, to separate”, from the word “oρoς”
(oros), “boundary, landmark”. In the Fable of Jean de la Fontaine recalled at the
beginning of this chapter, will the Lamb be right to argue against the Wolf that the
waves he creates as he is drinking at the river border will not climb against the
current and reach the Wolf? Will a frontier separate the Lamb from the Wolf: will a
horizon form? Will the position of the frontier depend on the period of the waves:
will the horizon be dispersive or not?

5.6.1 Non-dispersive Horizons

The analogy between the propagation of light in a curved spacetime and the
propagation of long gravity waves on a current features the so-called “acous-
tic/relativistic” dispersion relation (ω − k.U)2 ≈ c2k2 as a common characteristic
for both systems assuming kh� 1 and without surface tension. A simple dimen-
sional analysis of it:

ω2 ≈U2k2 ≈ ghk2, (5.47)

allows to infer scaling laws for the wavenumber:

k ≈ ω√
gh

, (5.48)

and the blocking velocity:

U ≈√gh, (5.49)

which we confirm by solving the “relativistic” dispersion relation as a polynomial
in k:

kh = ω

U +√
gh

, (5.50)



5 The Basics of Water Waves Theory for Analogue Gravity 93

Fig. 5.3 Phase-space U

versus T of the dispersion
relation (ω− k.U)2 ≈ c2k2

implying the transplanckian problem (kh →∞) when the blocking velocity (U∗ in
modulus) of long gravity waves matches the current flow:

Uh =−√gh. (5.51)

This non-dispersive definition of a horizon in hydrodynamics corresponds to
the definition of General Relativity where the pure temporal matrix element of the
Painlevé-Gullstrand metric is cancelled:

g00 = 0, (5.52)

leading to:

U =−c=−√gh. (5.53)

Here, it is crucial to understand that the relativistic horizon hides in fact three
intricate horizons (Fig. 5.3: blocking velocity U∗ versus the wave period T ):
a group velocity horizon (cg = ∂ω

∂k
= U + c = 0), a phase velocity horizon

(cφ = ω
k
=U + c= 0) and a negative horizon (or negative energy mode horizon):

negative relative frequencies ω − k.U < 0 can appear. This last fact implies that
Stimulated Hawking Radiation can be observed in Classical Physics using water
waves and this is one of the major interests of the analogue gravity program for the
Fluid Mechanics community [21–25]. As soon as there is a phase velocity horizon,
this one is identical with a negative horizon. Because of dispersion, a phase velocity
horizon can be absent whereas a negative group velocity horizon can be present (see
below).

These “negative energy waves” are well known in Hydrodynamics. Werner
Heisenberg discovered them in his PhD Thesis on the stability of the plane Cou-
ette flow. He showed that viscosity can have a destabilizing effect if negative energy
waves (also named Tollmien-Schlichting waves) are present (at the so-called critical
layer corresponding to a phase velocity horizon) in a unidirectional non-inflectional
plane flow which is normally stable if inviscid according to the classical Rayleigh
criterion [7, 14]!
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Fig. 5.4 Graphical solutions of the dispersion relation (ω− k.U)2 = gk tanh(kh). The conserved
frequency ω is the horizontal red dotted line. The green (blue) color corresponds to the positive
(negative) branches

5.6.2 Dispersive Horizons

How is the definition of a horizon modified in the presence of dispersion? Wave
blocking is a process where a flow separates a free surface into a flat and a de-
formed surface. The boundary defines a “horizon”. A wave phenomenon implies
the existence of a dispersion relation ω =Ω(k). At the boundary, the energy flow
of the system “waves+ current” cancels:

cwave+current
group = ∂Ω

∂k
= 0. (5.54)

This last criterion will define a hydrodynamic horizon as a group velocity hori-
zon (or turning point using WKBJ terminology). Of course, one recovers the
non-dispersive definition U = −c for an “acoustic/relativistic” dispersion relation.
We treat here the simple case of a white hole horizon which is the time reverse
of a black hole horizon. As previously, the dispersion relation for water waves
in arbitrary depth is solved graphically (Fig. 5.4). An extremum of the function
ω=Ω(k)=Uk±√

gk tanh(kh) corresponds to a horizon.
Some scaling laws can be derived in the high dispersive regime where kh� 1:

• Without surface tension. Dimensional analysis leads to:

ω2 ≈U2k2 ≈ gk, (5.55)
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Fig. 5.5 Superposed
phase-spaces U versus T for
the shallow and deep water
cases without surface tension

that is:

k ≈ ω2

g
, (5.56)

and:

U ≈ ω

k
≈ g

ω
≈ gT . (5.57)

The rigorous mathematical treatment gives [22]:

kg = 4ω2

g
, (5.58)

and

Ug =− g

4ω
=−gT

8π
. (5.59)

The blocking velocity U∗ depends now on the incoming period of the water waves
(Fig. 5.5). Depending on the period, we have either U∗ = Uh for long waves or
U∗ =Ug for short waves.

• With surface tension. Dimensional analysis leads to:

ω2 ≈U2k2 ≈ gk ≈ γ

ρ
k3, (5.60)

that is:

k ≈
(
ρg

γ

)1/2

, (5.61)

and:

U ≈
(
γg

ρ

)1/4

. (5.62)

The rigorous mathematical treatment gives [23]:

kγ =
(
ρg

γ

)1/2

, (5.63)
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Fig. 5.6 Graphical solutions of the dispersion relation (ω − k.U)2 = (gk + γ
ρ
k3) tanh(kh). The

conserved frequency ω is the horizontal red dotted line. The green (blue) color corresponds to the
positive (negative) branches

Fig. 5.7 Phase-space U

versus T for the deep water
case including surface tension

and:

Uγ =−√2

(
γg

ρ

)1/4

. (5.64)

A new horizon (in fact two) appears. Blue-shifted waves and negative energy
waves can be reflected at a blue horizon and a negative horizon whose common
asymptotic value is Uγ (see [23] for the details and the corresponding chapter in
this book). Two maxima and a minimum appear in the graphical analysis of the
dispersion relation (Fig. 5.6). A cusp where the white and blue horizons merge
appears in the Phase-Space (Fig. 5.7).
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Fig. 5.8 Phase-spaces U versus T for a changing water depth including surface tension

When the water depth changes, the dispersion relation is either (ω− Uk)2 �
c2k2 ± c2ξ2k4 for kh � 1 allowing dispersive corrections (only a negative
horizon remains with the positive quartic correction) or (ω − k.U)2 = (gk +
γ
ρ
k3) tanh(kh) and three horizons are observed (Fig. 5.8). h∗ = 2lc determines

the transition depth between both behaviours.
• With vorticity. Similar arguments would lead to a new horizon replacing Uγ when

including vorticity Ω with qualitatively the same behaviour in the limit kh� 1:

kΩ ≈
(
ρΩ2

γ

)1/3

, (5.65)

and

UΩ ≈
(
Ωγ

ρ

)1/3

. (5.66)

5.6.3 Natural and Artificial Horizons

In this part, we give some examples of water wave horizons. In hydrodynamics,
white holes are more usual than black holes whose canonical example is the draining
flow in the bathtub. A river mouth dying in the sea is a nice case of a natural white
hole: the sea waves are blocked by the river flow. Figure 5.9 is an example found by
the author when he used to walk on the Promenade des Anglais in Nice (France).
This white hole inspired the following studies [21, 23, 24].
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Fig. 5.9 A natural white hole of the French Riviera

Fig. 5.10 A laboratory white hole in the kitchen sink

A more controlled white hole in the laboratory was suggested a few years ago by
Volovik [26]: the circular jump in the kitchen sink (Fig. 5.10). We studied its related
Mach cone and its dispersive properties in [25].
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Fig. 5.11 A “biological” dispersive white hole

Recently, the author became aware of a biological-induced white hole with in-
teresting dispersive properties, namely the whale fluke-print. As a whale swims or
dives, it releases a vortex ring behind its fluke at each oscillation. The flow induced
on the free surface is directed radially and forms a oval patch that gravity waves
cannot enter whereas capillary waves are seen on its boundary (Fig. 5.11).

Dispersive and non-dispersive horizons are all encountered in nature and can be
simulated in the laboratory. Dispersion has another intriguing consequence, namely
the appearance of current-induced zero-frequency waves which appear sponta-
neously. These so-called “zero modes” have no counterpart in General Relativity
so far. . .

5.6.4 Zero Modes

A flat interface can be considered as a wave with zero frequency ω = 0 and zero
wavenumber k = 0. When a spatially varying current is flowing under such an in-
terface, the infinite wavelength of the interface can be reflected at a blocking line
(creation of a group velocity horizon). This process produces a static (ω = 0) jump
through the interferences between the incident wave (flat surface with infinite wave-
length k = 0) and the reflected one. This explains the formation of the circular
[25, 26] and hydraulic [27] jumps. An undulation is observed which has a zero phase
velocity but a non-zero group velocity and thus withdraws energy from the horizon



100 G. Rousseaux

towards infinity. When surface tension is present, the “gravity” jump is decorated
by static capillary ripples inside the circular jump [28].

5.6.4.1 The Zero Mode (Static Undulation) for Gravity Waves

Two opposite wavenumbers are solutions of the dispersion relation for a zero fre-
quency:

(0−Uk)2 = gk tanh(kh). (5.67)

Clearly, there is no threshold since there is always a solution whatever the veloc-
ity of the flow. Whatever the water depth, the slightest current flow induces a free
surface deformation.

Let us take the extreme shallow waters limit (kh� 1):

U2k2 � ghk2. (5.68)

The threshold velocity for the zero mode appearance would correspond to:

U �√gh= cphase = cgroup, (5.69)

that is:

Fr = U√
gh

= 1, (5.70)

in terms of the dimensionless Froude number Fr. This latter constraint is well known
in Hydraulics as the condition of appearance of the hydraulic jump when water flows
over a bump:

Froude= Fr = U√
gh

= U

cphase

= U

cgroup
=M =Mach, (5.71)

which is similar to the supersonic-subsonic transition of air flows in aerodynamics
described by the so-called Mach number M [25].

Then, one distinguishes in Hydraulics the following regimes:

• Fr < 1: (a) subcritical-to-subcritical flow over a bump. A group velocity horizon
can appear but no phase velocity horizon [21]. No hydraulic jump is created but
a static undulation is observed. The water depth decreases on average over the
bump.

• Fr > 1: (b) supercritical-to-supercritical flow over a bump. The water depth in-
creases on average over the bump.

• Fr = 1: (c) subcritical-to-supercritical flow over a bump. The group and phase
velocity horizons are the same. A hydraulic jump appears as part of the static
undulation [24, 27].
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5.6.4.2 The Zero Mode (Static Undulation) for Capillo-Gravity Waves

If one takes into account the effect of surface tension:

(0−Uk)2 =
(
gk + γ

ρ
k3
)

tanh(kh). (5.72)

One is lead to the existence of a velocity threshold which corresponds to the
minimum of the phase velocity with the wavenumber Uγ =−√2( γg

ρ
)1/4 [23].

For the case of the circular jump assuming kh� 1,

(0−Uk)2 = c2k2 +
(
l2c −

h2

3

)
k4, (5.73)

the following condition:

h <
√

3lc ⇒U > c=√gh, (5.74)

implies the existence of static capillary undulations in the supersonic region of the
circular jump [28].

We have seen how the dispersion relation explains the appearance of a horizon
as well as the evolution of the wavelength of the converted modes. How does the
amplitude of the modes evolve?

5.7 The “Norm”

If someone tells you that he knows what E = �ω means,
tell him that he is a liar.

Albert Einstein

In this final part, we will show how the so-called “norm” used by relativists in
order to derive the Hawking spectrum is nothing else than the wave action, a pure
classical concept.

In 1905, Albert Einstein pointed out that the four-momentum and the four-wave
vector transform similarly under a Lorentz boost. This simple remark was funda-
mental in order to infer the existence of the light quantum whose energy is propor-
tional to the frequency. The factor of proportionality was the Planck constant and
Physicists soon realized that the latter constant of nature was measured in units of
action. Quantum Mechanics then will shortly take its roots in Analytical Mechan-
ics. In the famous 1911 Solvay conference [29], Lorentz wondered about the para-
doxical behaviour of a harmonic oscillator like a pendulum whose frequency was
made to change slowly with time by reducing its length. Indeed, the corresponding
quantum behaviour of the oscillator would forbid a change in the quantum number
describing the state of the oscillator since the frequency variation would not be high
enough to allow transition to another state. Einstein pointed out that both the en-
ergy and the frequency of the pendulum would change with time but not their ratio
as discovered by Rayleigh in 1902 [30]. Ehrenfest showed that the ratio of energy
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to frequency namely the action was an “adiabatic invariant”. Adiabatic invariants
of a given dynamical system are approximate constants of motion which are ap-
proximately preserved during a process where the parameters of the system change
slowly on a time scale, which is supposed to be much larger than any typical dynam-
ical time scale. They are the quantities to quantize when switching from Analytical
Mechanics to Quantum Mechanics. A similar relation was discovered later by De
Broglie between the momentum and the wavenumber. It should be borne in mind
that the ratio of the action to the Planck constant is the number of photons which is
another way to interpret the norm (as we will see) as the number of photons/phonons
times the quantum of action in a quantum context.

Water waves are an example of a classical field. Thus, we can anticipate that
the fluid system will have a corresponding wave action density defined as the ratio
between a mean energy density (computed by averaging the instantaneous energy
density on a spatial wave period) and the wave frequency. This action J = E/ω is
assumed to be an adiabatic invariant (see [31] for a demonstration based on classical
field theory). Then, if prime denotes a moving frame of reference with velocity v,
we must have J ′ = J for a Galilean boost (recall that Einstein dealt with Lorentz
transformations applied to light) that is [32, 33]:

E′

ω′
= E

ω
, (5.75)

which is valid if and only if we have the following transformations:

E′ =E − v.P, P′ = P, (5.76)

and

ω′ = ω− v.k, k′ = k. (5.77)

The latter formulae are just the usual Doppler effect whereas the former correspond
to the change of energy/momentum for a classical wave and NOT a particle [34].
These would apply to a quasi-particle that is a collective excitation: phonon in acous-
tics or ripplons for water waves. In the following, momentum and energy would
refer to quasi-momentum and quasi-energy if not specified.

It is now obvious that the energy in the moving frame will be given by E′ =
E(1 − v/cφ) where cφ = ω/k is the phase velocity in the rest frame [32, 33]. In
order to have negative energy waves (E′ < 0), the so-called Landau criterion must
be fulfilled ω−U.k < 0 since the energy in the rest frame E > 0 is always positive.
It is well known that superfluidity is lost when negative energy waves are created at
the minimum of the roton spectrum [26]. It is similar to waves creation (Cerenkov-
like effect) by an object in a flowing current U perforating the interface between
water and air (capillary waves in the front and gravity waves in the rear) when
min(cφ) < U : the phase velocity cφ = ω/k features a minimum under which no
waves are created (cf. Thomson and Helmholtz fishing line as described by Darrigol
[7] and the corresponding chapter in this book). Let us recall that, in the direct space,
the mean energy density (or pseudo-energy) for water waves (without any current) is
proportional to the square of the amplitude E = 1/2ρga2, where a is the amplitude
of the wave [4].
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Here, we must be careful when we want to evaluate the wave energy in the mov-
ing frame of the current because the velocity of the flow is changing with space.
Hence, every part of the water waves wavelength will be “desynchronized” by the
spatial-dependent Doppler effect due to the current. That is why Weinfurtner et al.
[24] introduced a time shift tc =

∫
dx

U(x)
which is reminiscent of Carroll kinematics

for classical waves t ′ = t − vx/c2 and x′ = x or t ′ = t − x/V0 where V0 = c2/v is
the dual velocity associated with the wavefront [34]. The Carrollian time shift writes
dt ′ = dt − dx/V0 in differential form where V0 is now a function of space x in the
water waves problem. The tc coordinate has dimension of time and its associated
“wavenumber” fc has units of a frequency. The usual convective derivative operator
∂t +U(x)∂x becomes ∂t + ∂tc and in Fourier transform space f + fc. Then, when
analysing data in the Carrollian coordinate system, the amplitude of the wave η is a
function of both the normal time t and the Carrollian time tc that is in the Fourier
transform space η̃(f, fc). The wave action density in the Fourier space Ĵwave is
by definition the integral on the different Carrollian times of the ratio between the
Fourier transform of the wave energy density (E) and the Fourier transform of the
relative angular frequency (ω′):

Ĵwave =
∫ |η̃(f, fc)|2

f + fc

dfc. (5.78)

The expression of Jwave is similar to the Zeldovich formula for the number of
photons N when dealing with plane electromagnetic waves that are not monochro-
matic (ω=±cL|k|):

N = 1

�

1

8π

∫
d3k

|Ê(k, t)|2 + |B̂(k, t)|2
±cL|k| , (5.79)

where cL is the light velocity and Ê(k, t), B̂(k, t) are the Fourier transforms of
the electric and magnetic fields [35]. The sign in the denominator comes from the
dispersion relation of light which features both positive and negative branches. The
Zeldovich formula and the “norm” used in [24] writes as the ratio between a wave
energy (which scales with the square of an amplitude) and the wave frequency.
The case of acoustics is discussed in [36] following the treatment by Landau and
Lifschitz [37].

The equivalence between the norm and the wave action density can be formally
proven as follows. First, wave packets on the free surface of water obey the Beltrami-
Laplace equation in the Painlevé-Gullstrand metric as shown by Schutzhold and
Unruh in 2002 (see [8] and the corresponding chapter in this book):

∂t (∂tφ +U∂xφ)+ ∂x
(
U∂tφ +U2∂xφ

)− c2∂2
xφ = 0, (5.80)

where φ is the velocity potential fluctuation. The complete velocity potential featur-
ing both the waves and the background flow U is such that its space derivative is by
definition the flow velocity.

We can expect the conservation of two quantities due to the invariance of the cor-
responding action under (1) the transformation φ → eiαφ, α constant, and (2) time
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translation (for time-independent U ). The former invariance gives conservation of
the Klein-Gordon norm (as demonstrated elsewhere in this book):

N = i

2c2

∫ ∞

−∞
dx
[
φ∗(∂tφ +U∂xφ)− φ

(
∂tφ

∗ +U∂xφ
∗)], (5.81)

whereas the latter gives conservation of (pseudo-)energy. For wave packets confined
to a region where the flow velocity U is constant, the norm (5.81) can be written in
k-space in terms of the Fourier transform φ̃(k) as:

N = 1

c2

∫ ∞

−∞
dk(ω−Uk)

∣∣φ̃(k)
∣∣2. (5.82)

The typical interpretation of the Zeldovich formula is that it is a positive quantity:
the number of photons. However, the Klein-Gordon norm used but the relativists
is either positive or negative. Then, the Zeldovich formula encodes in general a
different information than the Klein-Gordon norm. The latter counts the amount of
charge, that is why for real fields it is zero. The complex solutions however do have
charge. In fact, strictly speaking, the last equation is not correct as for a single k

there can be modes with ±|k|. Thus, apart from the integral there should be a sum
in positive/negative branches:

N = 1

c2

∫
dk
(
c|k||ak|2 − c|k||bk|2

)
, (5.83)

with ak , bk the corresponding Fourier coefficients.
The Zeldovich formula (without the negative sign in the denominator) does not

give zero for real fields. It really corresponds to 1
c2

∫
dk(c|k||ak|2). It does not con-

tain the second term that in the case of real fields (ak = bk), would combine to yield
a total zero (this is the case also for photons). The point is that what corresponds to
the norm is not one of the pieces individually but the addition of the two.

In general, the norm scales like the integral over the wavenumber of the ampli-
tude square of the Fourier transformed velocity potential times the relative frequency
in the moving frame. Hence, the norm scaling is N ≈ ∫ dk(ω−Uk)φ̃2 [24]. How-
ever, because the velocity potential is related to the free surface deformation η by
the Bernoulli equation ∂φ/∂t + gη= 0 (here, without a flow to simplify), it follows
that the velocity potential scales like φ̃ ≈ gη̃/(ω−Uk) in the Fourier space [8]. We
conclude that the norm behaves like N ≈ ∫ dkg2η̃2/(ω − Uk) as the wave action
that is as the ratio between the square of the amplitude (the energy) and the relative
frequency.

The norm is strictly conserved. Is this the case for the wave action? In the
fluid mechanics literature, the wave action is the solution of a conservation equa-
tion which replaces obviously the conservation of energy of a closed system. Here
the system is open since the waves interact with the flow and do exchange energy.
Bretherton and Garrett have shown that the wave action conservation writes in the
so-called WKBJ regime where the flow velocity varies on a length scale much larger
that the wavelength [38, 39]:

∂

∂t

(
E′

ω′

)
+∇.

(
cg

E′

ω′

)
= 0, (5.84)
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where ω′ = ω − Uk and cg is the total group velocity including the background
flow. According to Bretherton and Garrett, “because E’ is an energy density, it is not
constant down a ray, even if wave energy is conserved. However, in a time dependent
and/or non-uniformly moving medium, ω′ varies along a ray. If E′/ω′ is the wave
action density, total wave action is conserved, whereas total wave energy is not”.
For a stationary process, we deduce that η2cg/(ω − kU) = const since the energy
density in the moving E′ is proportional to the square of the interface deformation
η (as in the rest frame without current). As a consequence, the amplitude diverges
to infinity if one gets close to a turning point where the group velocity vanishes and
where the WKBJ approximation is no longer valid. Dispersion enters the game to
avoid such a caustic.

The change of wave action J = E/ω of a slowly modulated oscillator is expo-
nentially small in the non-adiabatic parameter (ω/(rate of change of the medium
properties)): a mathematical theorem due to Meyer in 1973 [40]. For the linear pen-
dulum of Rayleigh with a varying length, the rate of change is directly the inverse
of the time lapse. Here, with water waves on a non-uniform flow, the property is the
velocity U and its typical rate of change is its space gradient (the so-called surface
gravity in General Relativity) whose dimension is the one of a frequency: Jacobson
and Parentani defined the surface gravity as a local expansion rate seen by a freely
falling observer when he crosses the horizon [41]. One is tempted to extrapolate the
following behaviour for the change of wave action as the waves propagate against
the flow:


J = J0 exp

(
−constant

ω

κ

)
, (5.85)

where κ = dU/dx is the surface gravity for water waves.
The change of wave action would be very similar to the famous Hawking spec-

trum [2]:

β2

α2
= exp

(
−2π

ω

κ

)
. (5.86)

The fact that the Bogoliubov coefficient behaves as an exponential has been dis-
cussed by Jacobson [42].

Let us introduce the following dimensionless numbers ω / (rate of change of the
medium properties) with names of distinguished physicists:

ω

κ
=Hawking number=Hw, (5.87)

ω

dU
dx

=Unruh number=Un. (5.88)

The validity of the WKBJ inequality U
dU
dx

� λ can be reassessed thanks to the

Unruh number close to the horizon. As a matter of fact, U∗ ≈ g/ω and λ∗ ≈ g/ω2

then Un � O(1): close to the horizon, the WKBJ approximation breaks down. If
Un � 1, then the process is adiabatic. In order not to have a vanishing spectrum,
Un ≈O(1), then vacuum radiation à la Hawking-Unruh is a non-adiabatic process
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[43]. The case Un � 1 would imply a too small frequency, hence the amplitude
of the energy spectrum (which scales with the cube of the frequency in 3D) would
vanish.

5.8 Conclusion

This rapid tour of the field of analogue gravity through the prism of water waves the-
ory has broadened our definition of a horizon and has deepened our understanding
of the concept of norm as used by relativists. In a related chapter of this book, we
study experimentally the influence of surface tension and the associated dispersive
horizons. Moreover, we try to answer to the question “what is a particle close to a
horizon?”.

Acknowledgements I would like to thank Thomas Philbin, Gil Jannes, Carlos Barcelo and Ia-
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Chapter 6
The C̆erenkov Effect Revisited: From Swimming
Ducks to Zero Modes in Gravitational Analogues

Iacopo Carusotto and Germain Rousseaux

Abstract We present an interdisciplinary review of the generalized C̆erenkov emis-
sion of radiation from uniformly moving sources in the different contexts of classi-
cal electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The
details of each specific physical systems enter our theory via the dispersion law of
the excitations. A geometrical recipe to obtain the emission patterns in both real and
wave-vector space from the geometrical shape of the dispersion law is discussed and
applied to a number of cases of current experimental interest. Some consequences of
these emission processes onto the stability of condensed-matter analogues of gravi-
tational systems are finally illustrated.

6.1 Introduction

The emission of radiation by a uniformly moving source is a widely used paradigm
in field theories to describe a number of very different effects, from the wake
generated by a swimming duck on the surface of a quiet lake [1–12], to the
C̆erenkov emission by a charged particle relativistically moving through a dielec-
tric medium [13], to the sound waves emitted by an object travelling across a fluid
or a superfluid at super-sonic speed [14–18]. Of course, the radiated field has a dif-
ferent physical nature in each case, consisting e.g. of gravity or capillary waves at
the water/air interface, or electromagnetic waves in a dielectric medium, or Bogoli-
ubov excitations in the superfluid. In spite of this, the basic qualitative features of the
emission process are very similar in all cases and a unitary discussion is possible.

In the present chapter, we shall present an interdisciplinary review of this gener-
alized C̆erenkov effect from the various points of view of classical electromagnetism,
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superfluid hydrodynamics, and classical hydrodynamics. The details of each specific
physical systems enter our theory via the dispersion law Ω(k) of its excitations. In
particular, the emission patterns in both real and wave-vector space can be extracted
from the geometrical shape of the intersection of the Ω(k) dispersion law with the
Ω = k · v hyper-plane that encodes energy-momentum conservation. Once the dis-
persion law of a generic system is known, our geometrical algorithm provides an
efficient tool to obtain the most significant qualitative features of wake pattern in a
straightforward and physically transparent way.

In the last years, the interest of the scientific community on this classical prob-
lem of wave theory has been revived by several experiments which have started
exploring the peculiar features that appear in new configurations made accessible
by the last technological developments, e.g. the C̆erenkov emission of electromag-
netic radiation in resonant media [19, 20] and the Bogoliubov-C̆erenkov emission
of sound waves in bulk dilute superfluids [16–18]. Another reason for this renewed
interest comes from the condensed-matter models of gravitational systems that are
the central subject of the present book. In many of such analogue models, the pres-
ence of a horizon may be responsible for the emission of waves from the horizon by
generalized C̆erenkov processes. A full understanding of these classical effects is
then required if one is to isolate quantum features such as the analogues of Hawking
radiation, dynamical Casimir emission and anomalous Doppler effect.

The structure of the chapter is the following. In Sect. 6.2, we shall introduce the
general field-theoretical formalism to calculate the real and momentum space emis-
sion patterns and the geometrical construction to obtain qualitative information on
them. These methods will then be applied in the following sections to a few differ-
ent systems of current interest. As a first example, in Sect. 6.3 we will review the
main features of the C̆erenkov emission of electromagnetic waves from relativisti-
cally moving charges in a dielectric medium. We shall restrict our attention to the
simplest case of a non-dispersive dielectric with frequency-independent refractive
index n, where the phase and group velocities are equal and constant. In this case, a
C̆erenkov emission takes place as soon as the charge speed exceeds the velocity of
light in the medium c = c0/n. Modern developments for the case of a strongly dis-
persive media [19–21], photonic crystals, and left-handed metamaterials [22] will
be briefly mentioned. In Sect. 6.4 we shall review the emission of sound waves by a
supersonically moving impurity in the bulk of a dilute superfluid. In addition to the
Mach cone that appears in the wake behind the object, the presence of single-particle
excitations in the excitation spectrum is responsible for the appearance of a series of
curved wavefronts ahead of the impurity. On the other hand, a subsonically moving
impurity will produce no propagating wave and the perturbation will remain local-
ized in its vicinity: the resulting frictionless motion is one of the clearest examples
of the class of phenomena that go under the name of superfluidity [24–26]. This
physics is currently of high experimental relevance, as first real-space images of
the density perturbation pattern induced by a moving impurity have been recently
obtained using Bose-Einstein condensates of ultracold atoms [17] and of exciton-
polaritons in semiconductor microcavities [16]. The case of a parabolic dispersion
will be presented in Sect. 6.5: this specific functional form allows for an elementary
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analytical treatment of the wake pattern in both real and momentum space. On one
hand, this discussion provides a useful guideline to understand the qualitative shape
of the wake in superfluids and in surface waves. On the other hand, it is of central
importance in view of the experimental realization of gravitational analogues based
on magnon excitations in magnetic solids [27]. The physics of a material object such
as a boat, a duck or a fishing line creating surface waves on the air/water interface
of a lake will be considered in Sect. 6.6: not only does this example provide the
most intuitive example of the generalized C̆erenkov effect, but is perhaps also the
richest one in terms of different behaviours that can be observed depending on the
system parameters, e.g. the velocity of the object with respect to the fluid, the depth
of the water, the surface tension of the fluid [1–12]. The concepts that have been laid
down so far are finally applied in Sect. 6.7 to analogue models of gravity based on
flowing superfluids or surface waves on flowing water. In both these cases, classical
C̆erenkov emission into the so-called zero modes at the horizon may disturb detec-
tion of the analogue Hawking radiation as well as affect the dynamical stability of
the analogue black/white hole [28]. Conclusions are finally drawn in Sect. 6.8.

6.2 Generic Model

In this section, we introduce the generic model that will be used to study the dif-
ferent physical systems in the following sections. The model is based on a linear
partial differential equation for a scalar C-number field φ(r, t): in most relevant
cases, the multi-component physical field (i.e. the vector electromagnetic field or
the Bogoliubov spinor) can in fact be reduced to a single scalar field upon straight-
forward algebraic manipulations under controlled approximations. We are also as-
suming that quantum fluctuations of the field φ(r, t) can be fully neglected. The ge-
ometry under investigations consists of a spatially homogeneous system interacting
with a spatially localized moving source describing the moving electric charge, or
the interaction potential of the moving impurity with the fluid, or the extra pressure
exerted on the fluid surface by the moving object. In this geometry, the microscopic
information on the field dynamics is summarized in the dispersion law relating the
frequency Ω of a plane wave to its wave-vector k: different forms of dispersion
laws corresponding to first- or higher-order partial differential equations are dis-
cussed in the subsections Sects. 6.2.1 and 6.2.3. The geometric construction of the
wake pattern starting from the dispersion law Ω(k) is discussed in Sect. 6.2.2.

6.2.1 The Wave Equation and the Source Term

We start by considering a generic, d-dimensional classical complex field φ(r, t)
(d = 2 in the figures) that evolves according to the generic linear, first-order in time,
partial differential equation:

i∂tφ(r, t)=Ω(−i∇r)φ(r, t)+ S(r, t) (6.1)

with a source term S(r, t).
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The function Ω(k) defines the so-called dispersion law for free field propagation,
that is the frequency of the plane wave solutions

φ(r, t)= φ0e
ikre−iΩ(k)t (6.2)

as a function of the wave-vector k in the absence of sources, S(r, t)= 0.
Throughout this chapter we shall consider a spatially localized and uniformly

moving source term of the form

S(r, t)= S0(r− vt), (6.3)

with a spatial profile S0(r) concentrated in the vicinity of r = 0 and moving at a
speed v.

Thanks to the translational invariance of the free field problem in both space and
time, solution of the full wave equation (6.1) in the presence of the source term is
easily obtained in Fourier space with respect to both space and time. Defining the
Fourier transform in the usual way

φ̃(k,ω)=
∫

dt

∫
ddrφ(r, t)e−ik·reiωt , (6.4)

the source term in Fourier space has the simple form

S̃(k,ω)= 2πS̃0(k)δ(ω− k · v) (6.5)

in terms of the structure factor S̃0(k) defined as the Fourier transform of the source
shape S0(r).

In Fourier space, the solution of (6.1) is then

φ̃(k,ω)= 2πS0(k)δ(ω− k · v)
ω−Ω(k)+ i0+

, (6.6)

where an infinitesimally small imaginary part is introduced in the denominator of
(6.6) to specify the integration contour to be followed around the poles and, in this
way, ensure causality of the solution. This trick dates back to Rayleigh [4, 5] and
is equivalent to a infinitesimal shift of the dispersion law into the lower half-space,
Ω(k)→Ω(k)− i0+. Physically, it corresponds to introducing a very weak damp-
ing of the plane wave solutions in time,

φ(r, t)= φ0e
ikre−iΩ(k)t e−0+t (6.7)

or to assume that the source term is slowly switched on in time [11].
The real-space pattern is obtained by an inverse Fourier transform of (6.6),

φ(r, t)=−
∫

ddk
(2π)d

S̃0(k)eik(r−vt)

Ω(k)− k · v− i0+
= φ(r− vt). (6.8)

Thanks to the δ(ω− k · v) factor in (6.6), this expression only depends on the com-
bination r′ = r− vt : as expected, the wake pattern is rigidly moving at the speed of
the source. Within Galilean invariance, the r′ coordinate corresponds to the spatial
coordinate in the reference frame of the source in motion at velocity v.

Evaluation of (6.8) can be performed with standard numerical tools. The result
for some most interesting cases will be presented in the next sections. Now, we
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shall rather proceed with some analytical manipulations of (6.8) that allow to extract
qualitative information on the emitted field pattern from the dispersion law Ω(k).
The first step in this direction is to note that the integral in (6.8) is dominated by
those k values for which the resonant denominator vanishes, that is

Ω(k)= k · v. (6.9)

This equation recovers the standard C̆erenkov condition for emission of radia-
tion [13] and can be geometrically interpreted as the intersection of the dispersion
surface Ω(k) with the Ω = k · v plane. In a quantum description of the C̆erenkov
emission by a massive charged particle, the condition (6.9) naturally appears when
energy-momentum conservation is imposed to the photon emission process [13].
When reformulated in the reference frame of the moving source, the condition (6.9)
reduces to Ω ′ = γ (Ω − k · v)= 0, meaning that the perturbation pattern around the
source at rest is stationary in time in the moving reference frame.

The locus Σ of k = 0 modes that satisfy (6.9) is a central object in all the follow-
ing discussion as it defines the modes in k space into which the C̆erenkov emission
will be peaked.1 In particular, no emission of propagating waves takes place if the lo-
cus Σ is empty; the non-resonant contributions to (6.8) only provide a non-radiative
perturbation that remains spatially localized in the close vicinity of the source and
is not able to transport energy away. In spite of this, the momentum and energy that
are stored in the localized moving pattern of the field φ are responsible for a sizeable
renormalization of the particle mass [11, 30, 31].

6.2.2 Qualitative Geometrical Study of the Wake Pattern

Let us consider a generic point k0 ∈Σ . Within a neighbourhood of k0, we introduce
a new set of k-space coordinates defined as follows: for each point q, qn is the
distance of k from the Σ surface and the position of the closest point on the surface
Σ is parametrized by the (d − 1)-dimensional q‖ curvilinear coordinate system.
A sketch of this coordinate system is indicated as a grid in Fig. 6.1(a).

In this new coordinate system, the Fourier integral giving the emitted field pattern
in real space can be approximately rewritten as:

φ
(
r′
)=−S̃0(k0)

∫

Σ

dd−1q‖
(2π)d−1

eik̄(q‖)·r′
∫

dqn

2π

eiqnn̂·r′

v′gqn − i0+
, (6.10)

where k̄(q‖) is the position of the point on the surface Σ corresponding to the value
q‖ of the (d − 1)-dimensional coordinate and n̂ is the unit vector normal to the

1The k = 0 mode corresponds to a spatially constant modulation that does not transport energy
nor momentum. As discussed in [29], many other interesting features of wave propagation can be
graphically studied starting from iso-frequency surfaces analogous to the locus Σ .
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Fig. 6.1 (a) k-space sketch of a patch of the locus Σ around the wave-vector k0. The grid shows
the (q‖, qn) coordinate system used in the geometrical construction of the wake pattern. (b) Sketch
of the region of the wake pattern generated by the emission in the neighbourhood of k0: the blue
fringes have wave-vector k0, the direction of propagation v′g is determined by the normal to the
locus Σ at the point k0

surface at k0 in the direction of growing Ω(k)− k · v. As the surface Σ is defined
by the zeros of Ω(k)− k · v, the velocity

v′g = v′gn̂=∇k
[
Ω(k)− k · v

]= vg − v (6.11)

is directed along the normal n̂ and corresponds to the group velocity of the wave,
as measured relative to the moving source at v. For a non-relativistic source speed
v� c0, it can be interpreted as the group velocity observed from the source refer-
ence frame.

The integral over qn can be performed by closing the contour on the complex
plane. The only pole is located slightly above the real axis. Depending on the sign
of n̂ · r′, the contour has to be closed in the upper or lower half plane, which gives

φ
(
r′
)=−iS0(k0)

∫

Σ

dd−1q‖
(2π)d−1

eik̄(q‖)·r′

v′g
Θ
[
v′g · r′

]
. (6.12)

The expression (6.12) can be further simplified by performing the so-called sta-
tionary phase approximation, as first proposed by Thomson [4, 5]. For each value
r′ of the relative coordinate, the integral over q‖ is dominated by those points for
which the phase is stationary, i.e. the variation of k̄(q‖) on q‖ is orthogonal to r′.
In combination with the Heaviside-Θ function in (6.12), this is equivalent to requir-
ing that the vector r′ is parallel to the normal n̂ to the surface Σ at point k0 in the
direction of growing Ω(k)− k · v , i.e. parallel to the relative group velocity v′g .

For a generic relative position r̄′, there are only a few discrete points kj on Σ

such that this condition is met. As a consequence, for generic values of r′ in a
neighbourhood of r̄′, one can approximately write

φ
(
r′
)≈−i

S0(kj )

(2π)d−1

∑

j


k2
j

v′g,j
eikj ·r′ , (6.13)
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where the sum is over the allowed kj vectors: the numerical coefficient 
k2
j is

inversely proportional to the curvature of Σ at kj and v′g,j is the group velocity of
the kj mode.

A physical understanding of this result can be easily obtained by looking at the
diagram of Fig. 6.1(b). Within Galilean invariance, sitting in the moving reference
frame of the source may facilitate building an intuitive picture of the emission pro-
cess: every point on the surface Σ corresponds to a continuous plane wave of wave-
vector k0 that is emitted from the source and propagates away from it at a group
velocity v′g (indicated by the green arrow in the figure). As a result, it is able to
reach all points r′ that lie in the vicinity of the straight line of direction v′g . While
the group velocity v′g is always along the radial direction, the wave-vector k0 (blue
arrow in the figure) can have arbitrary direction: as a result, the wave-fronts (indi-
cated by the blue fringes) are generally tilted and the emission pattern does not nec-
essarily resemble a spherical wave. Of course, all this reasoning can be performed
equally well in the laboratory frame if v′g is interpreted as the relative group velocity
of the wave with respect to the moving source.

6.2.3 Generalization to Higher-Order Wave Equations

The geometrical framework introduced in the previous subsections is not restricted
to partial differential equations that are of first-order in time, but can be extended to
more general wave equations of the form

P [i∂t ,−i∇r]φ(r, t)= S(r, t), (6.14)

where P is an arbitrary polynomial in two variables, a scalar variable and a d-
component vectorial variable. The degree of the polynomial P corresponds to the
order of the partial differential equation for φ(r, t): in the case of electromagnetic
waves in a non-dispersive medium, it is of second order in both variables; in the
case of Bogoliubov excitations in a superfluid, it is of second order in time and of
fourth order in space; in the case of surface waves, it is of second order in time,
but it involves arbitrarily high derivatives in the spatial coordinates. The different
branches Ω(k) of the dispersion law are then defined by the roots of P via the
equation

P
[
Ω(k),k

]= 0. (6.15)

In the presence of a source term of the form (6.3), the solution of (6.14) has the
form

φ̃(k,ω)= 2πS̃0(k)
P (k · v+ i0+,k)

, (6.16)

where the infinitesimally small imaginary part has been again added in order to
enforce causality by shifting the real roots Ω of the dispersion law (6.15) into the
lower half of the complex-plane.
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The reasoning to extract from (6.16) the qualitative shape of the real-space pat-
tern is then the same as before, the locus Σ in k-space being now defined by the
zeros of the polynomial equation

P(k · v,k)= 0 (6.17)

with k = 0. In the next sections, we shall discuss in full detail a few physical ex-
amples illustrating how the geometrical structure of Σ determines the shape of the
emission pattern in both real and momentum spaces.

6.3 C̆erenkov Emission by Uniformly Moving Charges

As a first application of the theory, in this section we shall review the basic features
of the emission of electromagnetic radiation by a charged particle relativistically
moving through a dielectric medium at speed higher than the phase velocity of light
in the medium. This is the well-known C̆erenkov effect (or, more precisely, Vavilov-
C̆erenkov effect) first observed by Marie Curie, then experimentally characterized
by Vavilov and C̆erenkov [32, 33] and finally theoretically understood by Frank and
Tamm [34].

6.3.1 Non-dispersive Dielectric

In the simplest case of a non-dispersive dielectric with a frequency-independent
refractive index n, the dispersion law satisfies the second-order equation

Ω2 = c2
0

n2
k2 : (6.18)

in the (Ω,k) space, the dispersion Ω(k) corresponds to a conical surface with vertex
in Ω = k = 0. A cut of this cone along the ky = 0 line is shown in Fig. 6.2(a): the
thick lines indicate the positive frequency part of the conical surface, the thin line
indicate the negative frequency part. In the absence of dispersion, the phase and
group velocities coincide and are equal to c= c0/n.

The shape of the locus Σ of k = 0 points satisfying Ω(k)− k · v = 0 crucially
depends on whether the charge is moving at a sub-luminal v < c or super-luminal
v > c speed. In the former case, the locus Σ is empty and no radiation is emitted.
The localized, non-radiative perturbation that is present around the charge due to the
non-resonant excitation of the field modes contributes to the (velocity-dependent)
Coulomb field around the charge.

The locus Σ in the case of a super-luminally moving charge in the positive x

direction is illustrated in Fig. 6.2(b): it has the analytic form

k2
y = k2

x

(
v2

c2
− 1

)
(6.19)
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Fig. 6.2 (a) Cut along ky = 0
of the photon dispersion in a
non-dispersive medium of
frequency-independent
refractive index n. The
dashed line indicates the
Ω = k · v plane for a
super-luminal charge speed
v > c. (b) k-space locus Σ of
resonant modes into which
the C̆erenkov emission
occurs, the so-called
C̆erenkov cone; the green
arrows indicate the normal to
the Σ locus, that is the
direction of the relative group
velocity
v′g =∇k[Ω(k)− k · v].
(c) Real-space pattern of the
electric field amplitude in the
wake of the charge; the
pattern is numerically
obtained as the fast Fourier
transform of the k-space
perturbation (6.16). The
Mach cone around the
negative x axis is apparent
with aperture φ

and consists of a pair of half straight lines originating from k= 0 and symmetrically
located with respect to the kx axis at an angle θ such that cos θ = c/v. The higher
the particle speed v/c, the wider the angle θ made by the direction of the C̆erenkov
emission with the direction of the charge motion.

The most peculiar feature of the locus Σ is that the normal vector to Σ indicating
the direction of the relative group velocity v′g =∇k[Ω(k)−k ·v] = vg−v [indicated
by the green arrows on Fig. 6.2(b)] is constant for all points k lying on each of the
two straight lines forming Σ and points in the backward direction. This last feature
is a straightforward consequence of the fact that the charge velocity is larger than
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the speed of light c in the medium. As a result, all modes on Σ propagate (as seen
from the charge reference frame) in the same direction and the electromagnetic field
radiated by the charge is spatially concentrated around the direction of v′g . This
defines a single-sheet conical surface in real space, i.e. a pair of half straight lines in
the two dimensional geometry considered here,

y2 = c2x2

v2 − c2
with x < 0. (6.20)

Its aperture φ around the negative x axis2 is determined by the condition sinφ =
c/v: the faster the charge speed, the narrower the cone behind the charge. In the
analogue y with the conical sonic wake generated by a super-sonically moving bullet
in a bulk fluid, we will refer to this real space cone as the Mach cone. The very thin
shape of the Mach cone results from the interference of the continuum of points on
the Σ locus. For each k0 ∈Σ , the fringes are orthogonal to the Mach cone and have
different spacing: the interference is everywhere destructive but for the thin surface
of the Mach cone. If the correct form of the structure factor S0(k) is included, the
usual δ-shape for the Mach cone is recovered [13].

In view of the discussion of the next sections, it is crucial to clearly keep in mind
the conceptual distinction between the Mach cone in real space on which the elec-
tric field intensity is spatially concentrated and the k-space C̆erenkov cone defining
the directions into which the radiation does occur. The former was experimentally
detected and characterized in [20, 35] by looking at the spatial profile of the electric
field wake behind the charge.3 The latter is observed in any standard C̆erenkov ra-
diation experiment measuring the far-field angular distribution of the radiation, that
turns out to be concentrated in the forward direction on a conical surface making a
C̆erenkov radiation angle θ with the charge velocity.

The conceptual distinction between the C̆erenkov and the Mach cones is related
to the distinction between the so-called phase and group cones, first pointed out in
the context of the C̆erenkov emission in dispersive media in [36, 37]. Restricting for
a moment our attention to a given emission frequency, the wave cone is defined as
the real space conical wavefront passing through the source and orthogonal to the
direction of the far-field emission in k space: its aperture φph around the negative
x axis is determined by the phase velocity as sinφph = vph/v and is related to the
aperture of the C̆erenkov cone by φph = π/2− θ . With some caveats, it can be in-
terpreted as the wavefront on which the C̆erenkov emission has a constant phase.
On the other hand, the group cone is defined as the Mach cone for the given fre-
quency and describes the spatial points on which the (spectrally filtered) electric
field intensity is peaked. Its aperture φ depends on the group velocity of light vgr

2The coefficients of the analytical form (6.20) can be understood from the Fourier transform of a
delta function peaked on the conically-shaped locus Σ of Eq. (6.19).
3It is interesting to note that in both these experiments the moving charge responsible for the
C̆erenkov emission did not consist of a charged physical particle travelling through the medium,
but rather consisted of a moving bullet of nonlinear optical polarization generated by a femtosecond
optical pulse via the so-called inverse electro-optic effect.
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as sinφ = vgr/v. The distinction between the phase and group cones has been an-
ticipated in [21] to be most striking in the case of ultra-slow light media where vgr
is reduced to the m/s range while vph remains of the order of the speed of light in
vacuum c0 � 3× 108 m/s [38–41].

The study of the C̆erenkov effect in strongly dispersive media where the refrac-
tive index n(ω) has a strong dependence on the frequency and/or the medium ex-
hibits a non-trivial spatial patterning is still a very active domain of research from
both the theoretical and the experimental points of view. For instance, the conse-
quences of a strong resonance in n(ω) were theoretically investigated in [19]: the
sub-linear dispersion of the photon in a resonant medium is responsible for the dis-
appearance of the threshold velocity for the C̆erenkov emission and for a non-trivial
spatial patterning of the electric field wake behind the charge. These striking re-
sults were experimentally confirmed in [20] and bear a close resemblance to the
surface wave pattern in the wake of a duck swimming on shallow water that will be
discussed in Sect. 6.6.3. Another active and promising research line is addressing
those new features of C̆erenkov radiation that follow from the peculiar band dis-
persion of photons in spatially periodic media [22] and in negative refractive index
metamaterials, the so-called left-handed media [23].

6.4 Moving Impurities in a Superfluid

A central concept in the theory of superfluids [24–26] is the so-called Landau crite-
rion for superfluidity, that determines the maximum speed at which a weak impurity
can freely travel across a superfluid without experiencing any friction force and
without generating any propagating perturbation in the fluid. In terms of the disper-
sion Ω(k) of the excitations in the superfluid, the Landau critical velocity has the
form

vcr =min
k

[
Ω(k)
k

]
. (6.21)

This cornerstone of our theoretical understanding of quantum liquids has a simple
interpretation in terms of the theory of the generalized C̆erenkov effect reviewed in
Sect. 6.2: the friction force experienced by the moving impurity is due to the emis-
sion of elementary excitations in the fluid by a mechanism that is a quantum fluid
analogue of C̆erenkov emission. The v < vcr condition for superfluidity corresponds
to imposing that the locus Σ of excited modes is empty, while for faster impurities
a characteristic wake pattern is generated around the impurity.

An experimental image of this wake using a dilute Bose-Einstein condensate
of ultracold atoms hitting4 the repulsive potential of a blue-detuned laser is repro-
duced in the left panel of Fig. 6.3; an analogous image for a condensate of exciton-
polaritons in a semiconductor microcavity is reproduced in the middle panel. In both

4Needless to say that the configuration of a moving superfluid hitting an impurity at rest is fully
equivalent modulo a Galilean transformation to the case of a moving impurity crossing a superfluid
at rest.
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Fig. 6.3 Left panel: experimental image of the real-space wake pattern that appears in a Bose-E-
instein condensate of ultracold atoms hitting the repulsive potential of a blue-detuned laser beam.
The condensate motion is from right to left. Figure taken from [17], as published in [18]. Middle
and right panels: experimental images of the real-space wake pattern (middle) and the momentum
distribution (right) for a Bose-Einstein condensate of exciton-polaritons hitting a fabrication defect
in the planar microcavity. The polariton flow is from top to bottom. The value of the density in the
right panel is very small and interactions negligible. Figures taken from [16]

cases, the density wake extends both behind and ahead of the impurity. The geomet-
rical shape of the Σ locus is instead clearly visible in the momentum distribution
pattern shown in the right panel.

The situation is of course more complex when stronger impurities are considered,
e.g. a finite-sized impenetrable object: in this case, the critical speed for frictionless
flow was predicted in [42] to be limited by the nucleation of pairs of quantized
vortices at the surface of the object, and therefore to be significantly lower than the
speed of sound. This mechanism was recently confirmed in experiments for with
atomic [43] and polariton [44–46] condensates. Furthermore, it is worth reminding
that all our reasonings are based on a mean-field description of the condensate that
neglects quantum fluctuations: more sophisticated Bethe ansatz calculations for a
strongly interacting one-dimensional Bose gas [31] have anticipated the appearance
of a finite drag force also at sub-sonic speed. Including higher order terms of the
Bogoliubov theory led the authors of [47] to a similar claim for a three-dimensional
condensate.

6.4.1 The Bogoliubov Dispersion of Excitations

The theoretical description of superfluids is simplest in the case of a dilute Bose gas
below the transition temperature TBEC for Bose-Einstein condensation [24]. For
T � TBEC and sufficiently weak interactions, most of the atoms are accumulated
in the same one-particle orbital, the so-called Bose-Einstein condensate. The ele-
mentary excitations in a dilute Bose-Einstein condensate are characterized by the
Bogoliubov dispersion [24]

�
2Ω2 = �

2k2

2m

(
�

2k2

2m
+ 2μ

)
, (6.22)
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where m is the mass of the constituent particles and the chemical potential μ is
given (at zero temperature) by

μ= 4π�2a0n

m
(6.23)

in terms of the particle-particle low-energy collisional scattering length a0 and the
particle density n. In the standard three-dimensional case, the weak interaction (or
diluteness) condition requires that na3

0 � 1.
The characteristic shape of the Bogoliubov dispersion (6.22) is illustrated in the

(a, d) panels of Fig. 6.4. For small momenta kξ � 1 (the so-called healing length ξ

being defined as �2/mξ2 = μ), the dispersion has a sonic behaviour

Ω2 � c2
s k

2 (6.24)

with a sound speed cs =√
μ/m, while at high wave-vectors kξ � 1 it grows at a

super-sonic rate and eventually recovers the parabolic behaviour of single particles,

Ω �±
[
�k2

2m
+μ

]
. (6.25)

An explicit calculation from (6.22) shows that the Landau critical velocity (6.21) in
the dilute Bose gas is determined by the speed of sound vcr = cs . It is worth remind-
ing that this is no longer true in more complex superfluids with strong interparticle
interactions as liquid He-II, where vcr is determined by the roton branch of the el-
ementary excitations [24–26, 48, 49]. Remarkably, super-linear dispersions in the
form (6.22) also appear in the theory of surface waves on shallow fluids when the
fluid depth is lower than the capillary length, see Eqs. (6.42) in Sect. 6.6.

The effect of the moving impurity onto the superfluid can be described by a
time-dependent external potential of the form V (r, t) = V0(r − vt) coupled to the
particles forming the superfluid. Inclusion of this external potential in the Bogoli-
ubov theory requires including a classical source term in the Bogoliubov equa-
tions of motion for the two-component spinor describing the quantum field of the
non-condensed particles: a complete theoretical discussion along these lines can be
found in the recent works [14, 15, 18]. Here we shall use an approximate, yet qual-
itatively accurate model based on the simplified scalar theory of Sect. 6.2: the real
and imaginary parts of the field φ(r, t) correspond to the density and phase modu-
lation of the condensate.

6.4.2 Superfluidity vs. Bogoliubov-C̆erenkov Wake

As we have already mentioned, the locus Σ is empty for sub-sonic impurity speeds
v < cs : the impurity is able to cross the superfluid without resonantly exciting any
propagating mode of the fluid. As a result, within mean-field theory it is not expected
to experience any friction force. Modulo a Galilean transformation, this effect is
equivalent to a frictionless flow along a containing pipe in spite of the roughness of
the walls, which is one of the clearest signatures of superfluid behaviour [24–26].
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Fig. 6.4 Top row: Bogoliubov dispersion of excitations in a dilute Bose-Einstein condensate. The
dashed line indicates the Ω = k · v plane for two different impurity speeds v/cs = 1.2 [panel (a)]
and v/cs = 2.5 [panel (d)]. Middle row: shape of the corresponding k-space locus Σ of resonantly
excited modes. The dashed lines indicate the C̆erenkov cone in the low wave-vector region kξ � 1;
the green arrows indicate the normal to the Σ locus, that is the direction of the relative group
velocity v′g . Bottom row: real space pattern of the density modulation. All patterns are numerically
obtained performing the integral via a fast Fourier transform of the k-space perturbation (6.16).
The black dashed lines indicate the Mach cone
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Still, the non-resonant excitation of the Bogoliubov modes by the moving impu-
rity is responsible for a sizable density modulation in the vicinity of the impurity,
that quickly decays to zero in space with an exponential law. An important conse-
quence of this localized density perturbation is a sizable renormalization of the mass
of the object [31]: the linear momentum that is associated to the moving impurity
gets in fact a contribution from the portion of fluid that is displaced by it.

For super-sonic motion, the locus Σ consists of a conical region at small kξ � 1
analogue ous to what was found in Sect. 6.3.1 for a purely linear dispersion: as
in that case, the aperture angle θ of the k-space C̆erenkov cone [dashed lines in
Fig. 6.4(b, e)] defining the far-field angle at which phonons are emitted by the im-
purity is defined by the condition cos θ = cs/v.

Correspondingly, the aperture φ of the Mach cone that is visible in the real-
space density modulation pattern behind the impurity is defined by sinφ = cs/v

(dashed black lines in [Fig. 6.4(c, f)]. This cone is the superfluid analogue of the
Mach cone that is created in a generic fluid by a super-sonically moving object, e.g.
an aircraft or a bullet. An experimental image of a Mach cone in a superfluid of
exciton-polaritons is shown in the central panel of Fig. 6.3. As usual, the faster the
impurity, the narrower the Mach cone.

Differently from sound waves in an ordinary fluid, the Bogoliubov dispersion of
the excitations in a superfluid is characterized by a parabolic shape at large wave-
vectors kξ � 1 according to (6.25). This region of the Bogoliubov spectrum is re-
sponsible for the smooth arc in the high wave-vector region of Σ that connects the
two straight lines emerging from the origin k = 0. In experiments, the shape of Σ

can be inferred following the peak of the momentum distribution of the particles
in the superfluid: an example of experimental image using exciton-polaritons in the
low-density regime is reproduced in the right panel of Fig. 6.3 analogous images for
atomic gases can be found e.g. in [50].

In the low wave-vector region, the relative group velocity v′g is oriented along
the edges of the Mach cone. Along the high wave-vector part of Σ , the relative
group velocity v′g rotates in a continuous and monotonous way spanning all inter-
mediate directions external to the Mach cone. As no point on Σ corresponds to a
relative group velocity oriented in the backward direction inside the Mach cone,
the density profile remains unperturbed in this region. On the other hand, the den-
sity perturbation shows peculiar features in front of the Mach cone, with a series of
curved wavefronts extending all the way ahead of the impurity. These wavefronts
are clearly visible in the experimental images that are shown in Fig. 6.3 for atomic
(left panel) and polaritonic (middle panel) superfluids. In the k-space diagrams of
Fig. 6.4(b, e), these waves correspond to the regions in the vicinity of the extreme
points of Σ where v′g is directed in the direction of the impurity speed along the
positive x direction.

Physically, these curved wavefronts in the density modulation pattern can be un-
derstood as originating from the interference of the macroscopic coherent wave as-
sociated to the Bose-Einstein condensate with the atoms that are coherently scat-
tered by the moving impurity. An analytic discussion of their shape is discussed in
detail in [53]; their one-dimensional restriction was first mentioned in [51, 52]. In
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the next section we shall present analytical formulas for an approximated theory
where the single particle region of the Bogoliubov dispersion is modelled with the
parabolic dispersion of single-particle excitations.

6.5 Parabolic Dispersion: Conics in the Wake

Another example of dispersion that is fully amenable to analytic treatment is the
parabolic one,

Ω(k)= �k2

2m
+μ. (6.26)

In spite of its simplicity, this form of dispersion can be used to model a number
of different physical configurations, from the large wave-vector kξ � 1 region of
the Bogoliubov dispersion (6.22) of superfluids, to the resonant Rayleigh scattering
in planar microcavities [54–56], to magnons in solid-state materials [27, 57–59]. In
particular, the results of this section will shine further light on the curved wavefronts
observed in Fig. 6.4(c, f) ahead of the impurity.

For a generic dispersion of the parabolic form (6.26), simple analytical manip-
ulations show that the locus Σ has a circular shape as shown in Fig. 6.5(b, e, h).
Assuming again that the particle speed v is directed along the positive x axis, the
center of the circle is located at kx = ko =mv/�, ky = 0 and has a radius k̄ such that

�k̄2

2m
= mv2

2�
−μ. (6.27)

Depending on the relative value of the velocity v and of the μ parameter, different
regimes can be identified.

For positive μ (but such that the RHS of (6.27) is still positive), the radius k̄

is smaller than ko and the origin k = 0 lies outside the circle. This is the typi-
cal case of large k excitations in superfluids, whose dispersion is approximated by
Eq. (6.25). The usual resonant Rayleigh scattering ring [54–56] passing through the
origin k = 0 is recovered in the μ = 0 case describing the case of an ideal gas of
non-interacting particles: an experimental example of such a ring is visible in the
momentum distribution shown in Fig. 6.3(c) for a low-density gas of (almost) non-
interacting polaritons flowing against a localized impurity potential. For negative μ,
the radius is instead larger k̄ > k0 and the origin k= 0 falls inside the circle.

The relative group velocity v′g is directed in the outward radial direction. As a
consequence of the smooth shape of Σ , v′g spans all possible directions and the real-
space perturbation shown in Fig. 6.5(c, f, i) extends to the whole plane. However,
the wavefronts can have very different shapes depending on the relative value of v

and μ.
A closed form for the real-space wake pattern is straightforwardly obtained by

noting that the integral in the right-hand side of (6.8) is in this case closely related
to the retarded Green’s function for a free non-relativistic particle [60],

Gret(r,ω)=
∫

ddk
(2π)d

eik·r

�k2/2m−ω− i0+
. (6.28)
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Fig. 6.5 Top row: parabolic dispersion of excitations ω = k2/2 + μ in the μ = 0 (a),
μ = −1 < 0 (b), μ = 0.4 > 0 (c) cases (for notational simplicity, we have set m = � = 1). The
dashed line indicates the Ω = k · v plane for a generic particle speed v = 1 along the positive x

direction. Middle row: circular shape of the k-space locus Σ of resonantly excited modes. Bottom
row: real space patterns of the density modulation. All patterns are numerically obtained perform-
ing the integral in (6.8) via a fast Fourier transform algorithm

In a generic dimension d , the asymptotic form of Gret at large r has the outgoing
spherical wave form

Gret(r,ω)= 2πiCd

r(d−1)/2
eik̄r (6.29)

with a wave-vector k̄ such that

�k̄2

2m
= ω. (6.30)

Of course, for ω > 0 (or ω < 0), the solution such that k̄ > 0 (or Im[k̄]> 0) must be
considered. Cd is a dimension- and energy-dependent normalization constant.

Using this result, the expression (6.8) for the wake generated by a point-like
source term can be simplified into

φ
(
r′
)=−

∫
d2k
(2π)2

eik·r′

μ+ �k2

2m − k · v− i0+
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=−
∫

d2k
(2π)2

eik·r′

�k2

2m − (mv2

2� −μ)− i0+
ei

m
�

v·r′ = −2πiCd√
r ′

eik̄r
′
eikox

′
.

(6.31)

The real part of this wave provides the wake pattern plotted in Fig. 6.5(c, f, i): The
different panels correspond to the μ = 0 (c), μ < 0 (f) and μ > 0 (i) cases, which
correspond to k̄ = ko (c), k̄ > ko (f), and k̄ < ko (i), respectively.

The shape of the wavefronts is obtained as the constant phase loci of (6.31).
For instance, the loci of points for which the phase of the field φ equals an integer
multiple of 2π are described by

k̄

√
x2 + y2 + kox = 2πM (6.32)

with M a generic integer. After moving the kox term to the LHS and then tak-
ing the square of both members, this equation is straightforwardly rewritten as a
quadratic equation in the spatial coordinates. The shape of the wavefronts in the
two-dimensional plane is therefore described by conic curves: the specific nature of
the conic in the different cases depends on the ratio k̄/ko.

For ko = k̄, the wavefronts have a parabolic shape described by the equation

4π2M2 − 4πMkox = koy
2. (6.33)

As the square root has by definition a non-negative value, the further condition
2πM − kox ≥ 0 has to be imposed to ensure that the RHS of (6.32) is non-negative.
Combined with (6.33), this condition is equivalent to imposing that the integer
M ≥ 0. An example of these parabolic wavefronts is shown in Fig. 6.5(c).

For k̄ > ko, the wavefronts have an elliptic shape described by the equation

k̄2y2 + (k̄2 − k2
o

)[
x + 2πMko

k̄2 − k2
o

]2

= 4π2M2k̄2

k̄2 − k2
o

. (6.34)

An example of these elliptic wavefronts is shown in Fig. 6.5(f). The condition on
the non-negativity of the RHS of (6.32) imposes that M ≥ 0. The ellipticity of Σ

is a function of the ratio k̄/ko: the closer this ratio is to 1, the more elongated the
ellipse is. In the limit k̄/ko → 1, the ellipse tends to a parabola, recovering the case
k̄ = ko discussed above. The larger the ratio k̄/ko, the closer the wavefront shape to
a series of concentric circles.

Finally, for k̄ < ko, the wavefronts have hyperbolic shapes described by the equa-
tion

(
k2
o − k̄2)

[
x − 2πMko

k2
o − k̄2

]2

− k̄2y2 = 4π2M2k̄2

k2
o − k̄2

. (6.35)

In this case, the condition on the RHS of (6.32) does not impose any condition on
M that can have arbitrary positive or negative integer values. However, combining
this condition with the equation defining the hyperbola, one finds that for each M

only the left branch of the hyperbola at lower x has to be retained. Positive vs.
negative values of M are responsible for the different periodicities that are visible
in Fig. 6.5(i) in the x > 0 and x < 0 regions, respectively.
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From the k space diagrams in Fig. 6.5(b, e, h), it is immediate to see that the
points on Σ corresponding to the backward and forward propagating waves are the
two intersections of the circle with the x axis: the wider spacing of the wavefronts
in the backward direction is due to the smaller magnitude of the wave-vector at the
intersection point at lower x. In the parabolic case, this point coincides with the
origin, which explains the absence of density oscillations on the negative x axis.

The characteristic curvature of the forward propagating wavefronts provides a
qualitative explanation for the shape of the density modulation experimentally ob-
served ahead of the impurity and illustrated in the left and central panel of Fig. 6.3.
Of course, the absence of backward propagating waves in the superfluid behind the
impurity is due to the k = 0 singularity of the Σ locus for the case of the Bogoli-
ubov dispersion. It is worth reminding that, in contrast to previous works, the shape
of the forward propagating wavefronts is exactly parabolic only in the μ= 0 limit
of non-interacting particles. For the generic μ > 0 case of Bogoliubov theory, the
Hartree potential in (6.25) makes their shape to be closer to (part of) an hyperbola.

6.6 Surface Waves on a Liquid

The discussion of the previous sections on the C̆erenkov effect in classical electro-
magnetism and on the response of superfluids to moving impurities puts us in the
position of getting an easy qualitative understanding of the surface waves that are
generated by a duck steadily swimming on the surface of a quiet pond or, equiva-
lently, a fishing line in a uniformly flowing river.5 This system is by far the most
accessible from the experimental point of view, but perhaps also the richest one for
the variety of different behaviours that can be observed depending on the system
parameters. A few examples of experimental pictures are shown in Fig. 6.6. For the
sake of conciseness, we shall restrict ourselves to the case of the water-air inter-
face and restrict to the linear regime of wave propagation described by the model
equation (6.1). More complete treatments based on the full hydrodynamic equations
including nonlinear effects can be found in the dedicated literature, see e.g. [1–12].

6.6.1 Dispersion of Surface Waves

The dispersion of surface waves on top of a fluid layer of height h and at rest has
the form

Ω(k)2 =
(
gk+ γ

ρ
k3
)

tanhkh, (6.36)

5It is interesting to note that, as in the case of electromagnetic waves, accelerated objects emit
surface waves independently from their speed [64].
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Fig. 6.6 Upper panels: picture of the Kelvin’s ship-wave pattern behind a duck swimming at uni-
form speed on a quiet lake (left). Photograph courtesy of Fabrice Neyret, ARTIS-CNRS, France.
Experimental picture of the Mach cone downstream of a wire immersed in radially flowing silicon
oil (upper right). Capillary waves are not visible as they are quickly damped by the larger viscos-
ity of silicon oil. Picture from [61]. Experimental picture of the Mach cone downstream of a pin
immersed in very shallow flowing water: the surface wave dispersion is supersonic and the height
modulation stays outside the Mach cone. Picture courtesy of Silke Weinfurtner (lower right). Mid-
dle panel: Original hand drawing by John Scott Russell [62] of the waves generated by a vertical
rod (diameter= 1/16 inch) moving along the water surface with a uniform velocity. The rod moves
in the leftward direction: the capillary waves are visible in front of the rod and the gravity waves
behind it. A cut of the surface height modulation is shown right above the main drawing. Lower
panel: Original hand drawing by Lord Kelvin of Kelvin’s ship-wave pattern [63]. The BCD wave-
front belongs to the so-called transverse wave pattern. The so-called diverging waves connect the
object at A to the dashed lines indicating the edges of the pattern
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where ρ is the mass density of the fluid, g is the gravitational acceleration, and γ is
the surface tension of the fluid-air interface.

In the simplest case of a deep fluid, the tanhkh factor can be approximated with 1
and the dispersion is characterized by two regions. For low wave-vectors k � kγ ,
the dispersion follows the sub-linear square-root behaviour

Ω(k)�±√gk, (6.37)

of gravity waves, while for large k � kγ it is dominated by capillarity effects and
has a super-linear growth as

Ω(k)�±
√

γ

ρ
k3/2. (6.38)

The characteristic wave-vector scale separating the two regions is fixed by the cap-
illary wave-vector

kγ =
√

ρg

γ
. (6.39)

For the specific case of water/air interface, kγ � 370 m−1, which corresponds to the
value

�γ = 1/kγ = 2.7× 10−3 m (6.40)

for the capillary length.
In fluids of finite depth, one can no longer approximate the tanh in (6.36) with 1.

As a result, the dispersion in the low-wave-vector region recovers a sonic behaviour
at low k’s

Ω(k)�±csk (6.41)

with a speed of sound cs =√
gh proportional to the square root of the fluid depth.

The sign of the first correction to the sonic behaviour (6.41),

Ω(k)2 � ghk2 +
[
�2
γ −

h2

3

]
c2
s k

4 (6.42)

critically depends on the depth of the fluid as compared to the capillary length (6.40).
For relatively deep fluids such that h >

√
3�γ , the dispersion has a sub-linear be-

haviour, while it recovers a super-linear behaviour analogue ous to the Bogoliubov
dispersion (6.22) for very shallow fluids such that h <

√
3�γ .

Independently of the fluid depth h, the super-linear behaviour of the dispersion
Ω(k) at large k makes the locus Σ to be either empty or to consist of a closed
curve. For very slow sub-sonic motions v < vmin (with vmin to be defined in the next
subsection), the locus Σ is empty. For intermediate cs > v > vmin (or infinitely deep
fluids, cs =∞), the locus Σ shown in Fig. 6.7(e) consists of a smooth closed curve
that does not encircle the origin point k = 0. For super-sonic motions v > cs , the
locus Σ shown in Fig. 6.8(b, e) develops a conical C̆erenkov singularity at k= 0.
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Fig. 6.7 Top row: dispersion of surface wave in the h =∞ deep water limit. The dashed line
indicates the Ω = k · v plane for generic particle speeds v = 2 m/s ((a) panel), v = 0.26 m/s ((d)
panel). Middle row: corresponding shapes of the k-space locus Σ of resonantly excited modes
(panels (b, e)); the green arrows indicate the normal to the locus Σ , that is the direction of the rel-
ative group velocity v′g . Bottom row: real space patterns of the surface height modulation (panels
(c, f)). These patterns are numerically obtained via a fast Fourier transform of the k-space per-
turbation (6.16) using the density and surface tension values of water. The (c) panel corresponds
to the Kelvin’s ship-wave pattern behind a duck swimming on a deep lake, a picture of which is
shown in the upper left panel of Fig. 6.6. An original sketch by Lord Kelvin is shown in the lower
panel of the same figure
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Fig. 6.8 Top row: dispersion of surface wave on shallow water of height h= 0.2 m (left (a) panel)
and h= 0.001 m (right (d) panel). The dashed line indicates the Ω = k · v plane for generic par-
ticle speeds v = 2 m/s (left (a) panel), v = 0.14 m/s (right (d) panel). Middle row: corresponding
shapes of the k-space locus Σ of resonantly excited modes (panels (b, e)). The dashed lines in-
dicate the C̆erenkov cone in the low wave-vector region kξ � 1. Bottom row: real space patterns
of the surface height modulation (panels (c, f)). The black dashed lines indicate the Mach cone.
These patterns are numerically obtained via a fast Fourier transform of the k-space perturbation
(6.16) using the density and surface tension values of water. The left panels correspond to a case
where h >

√
3�γ and the lowest-order correction to the sonic dispersion (6.42) is sub-linear. The

right panels correspond to a case where h <
√

3�γ and the lowest-order correction has the same
super-linear behaviour as the Bogoliubov dispersion (6.22) illustrated in Fig. 6.4
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6.6.2 Deep Fluid

Let us start by investigating the deep fluid regime h→∞ for which the sonic speed
cs →∞. The structure of the locus Σ can be understood by looking at Fig. 6.7(d):
for low speeds

v < vmin =
(

4gγ

ρ

)1/4

, (6.43)

the locus Σ is empty and there is no emission. This critical speed depends on
the surface tension of the fluid: for the case of a water/air interface it is equal to
vmin � 0.23 m/s. The absence of emission corresponds to a vanishing wave resis-
tance experienced by the slowly moving object which is able to slide with no friction
on the surface of the fluid [12]. Still, the localized deformation of the surface around
the object is responsible for a renormalization of the mass of the object [11].

An efficient emission of surface waves with the associated wave resistance [12]
is suddenly recovered as soon as v > vmin. In this regime, the locus Σ shown in
Fig. 6.7(e) has a kind of oval shape [11], with two intersections with the kx axis at
respectively

k = k(1,2)x = kγ

[
v2

v2
min

±
√

v4

v4
min

− 1

]
. (6.44)

As expected, the two solutions merge to kx = kγ for v � vmin, while at larger
v� vmin they respectively tend to

k(1)x � g/v2, (6.45)

k(2)x � 2kγ v
2/v2

min, (6.46)

the former solution k
(1)
x tends to zero in the large v limit and corresponds to almost

pure gravity waves, while the latter one k
(2)
x quickly diverges as v2 and corresponds

to almost pure capillary waves.

6.6.2.1 Fast Speed v � vmin (Deep Fluid, Negligible Surface Tension)

Within the v� vmin limit, we can start our discussion from the low wave vector re-
gion k� kγ , where the waves have a mostly gravity nature, Ω(k)�√

gk. Because
of the fourth power of v/vmin that appears in (6.44), this limit is achieved already
for moderate values of v/vmin of the order of a few unities. In this region, the locus
Σ is approximately defined by the condition

k2
y =

v4k2
x

g2

(
k2
x −

g2

v4

)
, (6.47)

whose shape is plotted in the panel (b) of Fig. 6.7. The locus Σ extends in the
|kx | ≥ kcx = g/v2 regions: for kx � kcx , it has the form

ky =±
√

2g

v2

(
kx − kcx

)
, (6.48)
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while for large kx � kcx , one recovers an asymptotic behaviour

ky =±v2

g
k2
x. (6.49)

A most remarkable feature are the inflection points at kinfl
x = ±√3/2g/v2 where

the slope dky/dkx is minimum. At these points the normal to the locus Σ makes
the maximum angle to the kx axis, with a value φmax such that tanφmax = 1/

√
8�

19◦28′. This angle determines the aperture of the wake cone behind the moving
object: remarkably, this value is universal and does not depend on the speed of the
object. A picture of the Kelvin’s ship-wave pattern behind a swimming duck on a
quiet lake is shown in the upper left panel of Fig. 6.6; an original hand drawing by
Lord Kelvin illustrating this physics is reproduced in the lower panel of the same
figure.

Another, related feature that is worth noticing is that for each angle |φ|< φmax,
there exist two points on the locus Σ such that the normal to Σ makes an angle φ

with the negative kx axis: according to the theory discussed in Sect. 6.2, these two
solutions are responsible for the two inter-penetrating fringe patterns: the so-called
transverse waves with a small ky and the so-called diverging waves with large ky .

The transverse waves are clearly visible as the long wavelength modulation right
behind the object along the axis of motion: their wave-vector kx = kcx = g/v2 is
determined by the intersection of the locus Σ with the kx axis. Remarkably, the
faster the object is moving, the smaller is the wave-vector kcx . On Kelvin’s hand
drawing of Fig. 6.6, the wavefront passing by point C belongs to the transverse
wave pattern.

The diverging waves are easily identified in the hand drawing as the wavefronts
with opposite curvature connecting the source at A with the edge of the wake pat-
tern where the two patterns collapse onto each other. The direction of the peculiar
fringe modulation of the edge of the wake [indicated by the blue dashed lines on
Fig. 6.7(c)] is determined by the wave-vector kinfl of the inflection point of the
k-space locus Σ : the orientation of kinfl fixes the angle β to a value such that
tanβ = ky/kx |infl = 1/

√
2, i.e. β � 35◦.

Of course, a complete treatment of the wake would require including the capillary
waves at very high wave-vector k ≈ k

(2)
x � kγ , i.e. the part of the locus Σ that

closes the curve at large k’s outside the field of view of Fig. 6.7(b). However, the
amplitude in these short-wavelength modes is quickly damped by viscous effects, so
their contribution to the observable pattern turns out to be irrelevant in most practical
cases.

6.6.2.2 Moderate Speed v � vmin (Deep Fluid, Significant Surface Tension)

For moderate speeds v � vmin, surface tension effects are no longer negligible and
all points of the k-space locus Σ contribute to the real-space pattern. In particu-
lar, the locus Σ is a closed curve that does not encircle the origin, as shown in
Fig. 6.7(e): the two intersections with the kx axis at kx = k

(1,2)
x , corresponding to
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gravity and capillary waves propagate with relative group velocities directed in op-
posite directions from the fishing line of the celebrated experiment by Thomson.
The pattern of long-wavelength gravity waves is located downstream of the fishing
line, while the short-wavelength capillary waves are located in the upstream region,
see Fig. 6.7(f) and the drawing by J.S. Russell reproduced in the middle panel of
Fig. 6.6.

An approximate analytical understanding of this pattern can be obtained by ap-
proximating the locus Σ of Fig. 6.7(e) with a pair of circles analogue ously to the
case of a parabolic dispersion discussed in Sect. 6.5 and shown in Fig. 6.5(g–i):
within this approximation, the shape of the wavefronts consists a system of hyper-
bolas, with a closer spacing ahead of the object. The qualitative agreement of the
hyperbolic wavefronts of Fig. 6.5(i) with the full calculations shown in Fig. 6.7(f) is
manifest.

6.6.2.3 Effect of the Source Structure Factor

To complete the discussion, it is worth mentioning that the emission of waves can be
hindered by the source structure factor S̃(k) even at large v > vmin. For example, the
emission of surface waves will be strongly suppressed if the size � of the source term
(modelled as a Gaussian-shaped potential S(r)) is large enough to have k�� 1 for
all points on Σ . For instance, for an object of typical size �= 30 cm, the argument
such that k(1)x �≤ 1 imposes a lower critical speed v ≥ vsize

c = 3 m/s to the emission
of gravity waves. A similar argument for capillary waves was mentioned to explain
the characteristic swimming speed of some floating insects [65, 66].

6.6.3 Shallow Fluid

When the wavelength of the perturbation is longer than the depth h of the fluid, the
tanh(kh) term in the dispersion begins to be important and causes a radical change in
the structure of the locus Σ . The left and right columns of Fig. 6.8 illustrate the two
regimes h >

√
3�γ and h <

√
3�γ where the first correction to the sonic dispersion

has either a sub-linear or a super-linear nature.

6.6.3.1 Small Surface Tension (Sub-luminal Dispersion)

We start here from the case where the surface tension is small enough to have
h >

√
3�γ . Depending on the speed v of the object, several regimes can be identi-

fied. For very low speeds v < vmin, the locus Σ is empty and there is no perturbation
to the fluid. For intermediate speeds vmin < v �√

gh, the shape of the locus Σ is
determined by the high-k capillary region of the dispersion and is almost unaffected
by the finite height h of the fluid: as in the deep fluid limit, Σ consists of closed,
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egg-shaped smooth curve and the real-space pattern again resembles a system of hy-
perbolas extending to the whole space, as illustrated in Fig. 6.7(d–f). For increasing,
yet sub-sonic speeds v < cs = √

gh, gravity recovers an important role, while the
finite height h keeps providing only a small correction to the deep water behaviour
illustrated in Fig. 6.7(a–c).

The situation is completely different for supersonic speeds v > cs [Fig. 6.8(a–c)]:
in this case, the locus Σ starts from the origin, where it exhibits a conical singularity
as a result of the sonic dispersion. At larger k, the locus Σ recovers a shape similar
to the infinitely deep fluid case: the sub-linear growth of the dispersion with k is
responsible for the fast increase of ky as a function of kx . Of course, the super-
sonic dispersion of capillary waves at very large k [well outside the field of view of
Fig. 6.8(a, b)] makes the locus Σ to close on itself. However, as already mentioned,
these short-wavelength waves are quickly attenuated and hardly visible.

The singularity of Σ at the origin k= 0 is responsible for the Mach cone and the
disappearance of the transverse wave pattern, as shown in Fig. 6.8(c). As usual for
sonic dispersions, the aperture of the Mach cone [indicated by the dashed line on
Fig. 6.8(c)] depends on the source speed v as sinφ = cs/v: on the Σ locus shown in
Fig. 6.8(b), this corresponds to the fact that the normal to Σ starts at a finite angle
φ with the negative kx axis for k = 0. For growing k’s, the angle monotonically
decreases to 0 meaning that the perturbation is restricted to the spatial region inside
the Mach cone. The absence of the transverse wave pattern is clearly visible in
Fig. 6.8(c) as the absence of modulation along the negative x direction right behind
the object.

6.6.3.2 Shallow One-Dimensional Channel

The restriction of this model to a one-dimensional geometry provides interesting
insight on the physics of long wavelength surface waves in a spatially narrow chan-
nel of width W . Spatial confinement along the orthogonal direction (say y) makes
the corresponding wave-vector to be quantized in discrete values determined by
the boundary conditions at the edges of the channel, ky = πp/W with the integer
p = 0,1,2, . . . . For simplicity, we assume that the transverse shape of the source
(e.g. a boat sailing along the channel) is broad enough to only excite the lowest
mode at ky = 0, corresponding to a transversally homogeneous wave.

Neglecting for simplicity also capillarity effects, a generalized Landau criterion
for one-dimensional gravity waves anticipates that a uniformly moving object can
emit ky = 0 gravity waves only if its velocity is slower than a maximum velocity

vmax =max
kx

[
Ω(kx, ky = 0)

kx

]
= cs =

√
gh. (6.50)

This feature is easily understood looking at the ky = 0 cut of the dispersion shown in
Fig. 6.8(a): for sub-sonic speed v < cs , the Ω = kxv straight line corresponding to
the C̆erenkov condition (6.9) has a non-trivial intersection with the dispersion law,
while the intersection reduces to the irrelevant kx = 0 point for supersonic speeds
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v > cs . In this case, no modes are any longer available for the emission, which
reflects into a marked decrease of the wave drag friction experienced by the object.
The observation of an effect of this kind when a ship travels at sufficiently fast speed
long a channel was first reported by Scott Russel and often goes under the name of
Houston paradox in the hydrodynamics and naval engineering literature [4, 5].

As compared to the standard Landau criterion for superfluidity, it is interesting
to note that the condition on the object speed to have a (quasi-)frictionless flow is
here reversed: friction is large at slow speeds and suddenly drops for v > cs . This
remarkable difference is due to the different sub-sonic rather than super-sonic shape
of the gravity wave dispersion with respect to the Bogoliubov one. Of course, this
suppression of friction is less dramatic when also higher p > 0 transverse modes of
the channel can be excited and a richer phenomenology can be observed [67–69].
As we have previously discussed at length, in a transversally unlimited geometry the
transition from sub-sonic to super-sonic speeds manifests itself as the disappearance
of the transverse wave pattern from Kelvin’s wake and a corresponding sudden but
only partial decrease of the friction force.

6.6.3.3 Large Surface Tension (Super-luminal Dispersion)

In the opposite regime of large surface tension h <
√

3�γ , the super-linear form
of the dispersion (6.42) makes the physics to closely resemble the behaviour of
impurities in a dilute superfluid discussed in Sect. 6.4. For a slowly moving object
at v < cs , the locus Σ is empty and the perturbation of the surface remains localized
in the vicinity of the impurity. For a fast moving object at v > cs , the locus Σ

and the wake pattern closely resemble the corresponding ones for the case of a
supersonically moving impurity in a superfluid shown in Fig. 6.4: a Mach cone
of aperture sinφ = cs/v located behind the object [indicated by the dashed line
on Fig. 6.8(f)] and a series of curved wavefronts ahead of the object. The most
significant difference with the h >

√
3�γ case of Sect. 6.6.3.1 is the position of the

modulation with respect to the Mach cone: in the sub-linear case of panel (c), it lies
within (i.e. behind) the Mach cone, while in the super-linear case of panel (f), it
stays outside (i.e. in front of) the Mach cone.

6.7 C̆erenkov Processes and the Stability of Analogue
Black/White Holes

The systems that were considered in the previous sections are presently among the
most promising candidates for the realization of condensed matter analogues of
gravitational black (or white) holes: the key idea of analogue models is to tailor
the spatial structure of the flow in a way to obtain a horizon surface that waves can
cross only in one direction. Upon quantization, a number of theoretical works have
predicted that a condensed matter analogue of Hawking radiation should be emitted
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by the horizon. A complete review of this fascinating physics can be found in the
other chapters of the book. In this last section, we shall review some consequences
of C̆erenkov processes that are most significant for the stability of analogue black
and white holes based on either flowing superfluids or surface waves on flowing
water.

The role of C̆erenkov-like emission processes in the dynamics of the strong op-
tical pulses that are used in optical analogue models based on nonlinear optics [70]
is still in the course of being elucidated and interesting experimental observations
in this direction have recently appeared [71]. Here, it is important to remind that,
differently from the all-optical C̆erenkov radiation experiments of [20, 35] where
an effective moving dipole was generated by χ(2) nonlinearity, the analogue models
of [70] are based on the time- and space-dependent effective refractive index profile
due to a χ(3) optical nonlinearity: given the centro-symmetric nature of the medium
under examination, no effective moving dipole can in fact appear unless the medium
shows some material imperfection.

6.7.1 Superfluid-Based Analogue Models

Let us start from the simplest case of analogue black/white holes based on flowing
superfluids for which a complete theoretical understanding is available [28, 72–76].
In a one dimensional geometry, the horizon consists of a point separating a region
of sub-sonic flow from a region of super-sonic flow. In a black hole the sub-sonic
region lies upstream of the horizon, while in a white hole the sub-sonic region lies
downstream of the horizon. A sketch of both configurations is reproduced in Fig. 6.9
together with the Bogoliubov dispersion of excitations as observed from the labora-
tory frame: in the most common configurations, the flow has a non-trivial structure
only in a small region around the horizon and recovers a homogeneous shape with
space-independent density and speed farther away from the horizon. In the labora-
tory reference frame (corresponding to the rest frame of the impurity), the C̆erenkov
emission occurs in the zero-frequency Bogoliubov modes, the so-called zero modes.

As we have discussed in detail in Sect. 6.4, the super-linear nature of Bogoli-
ubov dispersion restricts C̆erenkov emission processes to super-sonic flows, where
they generate waves that propagate in the upstream direction. In the geometry under
consideration here, the flow is everywhere smooth exception made for the hori-
zon region. Combining these requirements immediately rules out the possibility of
C̆erenkov emission in black hole configurations: the group velocity of the zero mode
waves emitted at the horizon points in the direction of the sub-sonic region, where
it can no longer be supported. This simple kinematic argument contributes to ex-
plaining the remarkable dynamical stability of acoustic black hole configurations,
as observed in numerical simulations of their formation starting from a uniformly
moving fluid hitting a localized potential barrier [77].

In contrast, white hole configurations are much more sensitive to the dissipation
of energy via C̆erenkov processes: Bogoliubov excitations can appear in the super-
sonic region upstream of the horizon and give rise to significant modulations of



138 I. Carusotto and G. Rousseaux

Fig. 6.9 Main panels: sketch of the flow geometry for white (a) and black (b) hole configurations
based on superfluids. Smaller panels (a1, a2, b1, b2): dispersion of Bogoliubov excitations in
the asymptotic regions far from the horizon. C̆erenkov emission is only possible for white hole
configurations: the corresponding zero mode is indicated in blue in (a1). Figure from [28]

the density and flow speed, the so-called undulation patterns. Several reasons make
such processes to be potentially harmful to the study of quantum features of the
white hole radiation. To the best of our knowledge, the only known realistic scheme
to generate a white hole configuration in a flowing superfluid is the one of [28] using
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a simultaneous spatial and temporal modulation of both the atom-atom interaction
strength and the external confining potential. The main difficulty of this configura-
tion is that it requires a very precise tuning of the system parameters to eliminate
unwanted C̆erenkov emission processes that may mask the quantum vacuum radia-
tion.

Even if a perfect preparation of the white hole is assumed, C̆erenkov emission
processes may still be triggered by nonlinear effects in the horizon region. As it
was shown in [28], an incident classical Bogoliubov wavepacket is able to induce a
distortion of the horizon proportional to the square of its amplitude, which then re-
sults in the onset of a continuous wave C̆erenkov emission from the horizon and the
appearance of a spatially oscillating modulation in the density profile upstream of
the horizon. Of course, a similar mechanism is expected to be initiated by quantum
fluctuations when back-reaction effects are included in the model, i.e. the non-linear
interaction of quantum fluctuations with the underlying flow. A third, more subtle
mechanism of instability of a white hole configuration was unveiled in [28]: the
1/
√
ω divergence of the matrix elements of the S-matrix for low-frequency outgo-

ing modes in the neighbourhood of the finite wave-vector zero mode is responsible
for a steady growth of the density fluctuation amplitude in time since the forma-
tion of the white hole. Even if the temporal growth of fluctuations follows a slow
logarithmic (linear at a finite initial temperature T > 0) law, still it is expected to
strongly affect the properties of the horizon at long times.

The situation is expected to be different if fully three dimensional systems with-
out transverse confinement are considered. In this case, C̆erenkov emission can take
place also in a black hole configuration: a distortion of the horizon by classical or
quantum fluctuations with a non-trivial transverse structure is in fact able to excite
Bogoliubov modes with a finite transverse component ky = 0. As we have seen in
Fig. 6.4, there exist such modes that can propagate in the downstream direction into
the supersonic region inside the black hole.

6.7.2 Analogue Models Based on Surface Waves

The different dispersion of surface waves is responsible for dramatic qualitative
differences in the wave propagation from the horizon of analogue black and white
holes configurations. As it is sketched in Fig. 6.10(a, b), the trans-sonic interface is
generally created in these systems by means of a spatial variation of the fluid depth
h [78–80]. Depending on the detailed shape of the transition region and/or on the
presence of fluctuations, C̆erenkov emission by the horizon can occur into the zero
modes of zero energy in the laboratory frame, as observed e.g. in [81]: a quantitative
estimate of the amplitude of the resulting stationary undulation pattern for specific
configurations of actual experimental interest requires however a complete solution
of the hydrodynamic equations, which goes beyond the scope of the present work.
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Fig. 6.10 Main panels: sketch of the flow geometry for white (a) and black (b) hole configurations
based on surface waves on a fluid. Smaller panels (a1, a2, b1, b2): surface wave dispersion in the
asymptotic regions far from the horizon. C̆erenkov emission is only possible for white hole config-
urations: the corresponding zero mode is indicated in blue in (a2). Differently from the superfluid
case of Fig. 6.9, the zero mode now has a group velocity in the downstream direction into the sub-
sonic region. Parameters: flow speed v = 2 m/s, fluid depth h= 0.1 m [white hole, upstream inner
region, panel (a1)], v = 0.666 m/s, fluid depth h = 0.3 m [white hole, downstream outer region,
panel (a2)]; flow speed v =−2 m/s, fluid depth h= 0.1 m [black hole, downstream inner region,
panel (b1)], v =−0.666 m/s, fluid depth h= 0.3 m [black hole, upstream outer region, panel (b2)].
For the chosen parameters, the effect of surface tension at the water/air interface is negligible
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With an eye to the experiments of [78–80], we can restrict our attention to low-
wave-vector gravity waves and neglect surface tension effects in a simplest one-
dimensional geometry. In this case, C̆erenkov emission processes only occur for
flow speeds lower than the sonic speed cs =√

gh and result in an emission in the
downstream direction. From the surface wave dispersions shown in Fig. 6.10(a1, a2,
b1, b2), one can easily see that C̆erenkov emission can again only occur in white
hole configurations, which are then expected to be again less stable than black hole
ones. As in the superfluid case, C̆erenkov emission of surface waves with a finite
ky = 0 become possible also in the black hole case as soon as a two dimensional
geometry is considered and Kelvin’s diverging waves are allowed. In spite of its
importance in view of on-going experiments, we are not aware of any comprehen-
sive work having studied in full detail the dynamical stability of surface wave-based
analogue white/black holes as in the case of superfluid-based ones [28].

6.8 Conclusions

In this chapter we have presented a review on some most significant aspects of the
C̆erenkov effect from a modern and interdisciplinary point of view. In our perspec-
tive the same basic process of generalized C̆erenkov emission encompasses all those
emission processes that take place when a uniformly moving source is coupled to
some excitation field: as soon as the source velocity exceeds the phase velocity of
some mode of the field, this gets continuously excited. Simple geometrical argu-
ments are presented that allow to extract the shape of the emission pattern in real
and k space from the dispersion law Ω(k) of the field. Application of the general
concepts to some most illustrative cases is discussed, from the standard C̆erenkov
emission of relativistically moving charged particles in non-dispersive media, to the
Mach cone behind a supersonically moving impurity in a superfluid, to the wake of
gravity and capillary waves behind a duck swimming on the surface of a quiet lake.
The impact of C̆erenkov emission processes on condensed-matter analogue mod-
els of gravitational physics is finally discussed. Open questions in this direction are
reviewed.
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Chapter 7
Some Aspects of Dispersive Horizons:
Lessons from Surface Waves

Jennifer Chaline, Gil Jannes, Philppe Maïssa, and Germain Rousseaux

Abstract Hydrodynamic surface waves propagating on a moving background flow
experience an effective curved spacetime. We discuss experiments with gravity
waves and capillary-gravity waves in which we study hydrodynamic black/white-
hole horizons and the possibility of penetrating across them. Such possibility of
penetration is due to the interaction with an additional “blue” horizon, which results
from the inclusion of surface tension in the low-frequency gravity-wave theory. This
interaction leads to a dispersive cusp beyond which both horizons completely disap-
pear. We speculate the appearance of high-frequency “superluminal” corrections to
be a universal characteristic of analogue gravity systems, and discuss their relevance
for the trans-Planckian problem. We also discuss the role of Airy interference in hy-
bridising the incoming waves with the flowing background (the effective spacetime)
and blurring the position of the black/white-hole horizon.

7.1 Introduction

Several physical systems reproduce certain properties of astrophysical objects like
black holes: they exhibit an effective curved spacetime when a wave propagates in
a “moving” medium [1, 2]. Examples can be found in acoustics, dielectrics, opti-
cal fibres, micro-wave guides, Bose-Einstein condensates, superfluids, ion traps. . .
Starting with the seminal works of White [3], Anderson & Spiegel [4], Moncrief [5]
and Unruh [6], there has been a growing interest for such analogue models of grav-
ity in order to simulate and understand the physics of wave propagation on a curved
spacetime. The case of interface and surface waves was initiated by Schützhold &
Unruh, who derived the equation of propagation of long gravity waves moving on
a background flow in terms of a general relativistic metric [7]. A black hole, or its
time-inverse: a white hole, can indeed be mimicked by the interaction between in-
terfacial waves and a liquid current [7–11]. Just like the expected behaviour of light
near the event horizon of a black hole, gravity waves cannot escape a hydrodynamic
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black hole featuring a trapping line caused by the velocity gradient of a sufficiently
strong background flow. In hydrodynamic experiments, it is usually more conve-
nient to simulate a white hole. Then, gravity waves cannot enter a hydrodynamic
white hole featuring a blocking line.

In a previous series of experiments, such an artificial white hole was created and
observed in a laboratory, using water waves in the presence of a counter-flow in-
side a wave-tank with varying bottom profile [8]. Here, we provide a status report
on a new series of ongoing experiments, in which we study the behaviour of sur-
face waves of various frequencies in the gravity and gravity-capillary regime in the
presence of such white-hole horizons. We encounter a good qualitative agreement
with the theory developed in [9, 10], and interpret the interesting quantitative dif-
ferences. We are in particular interested in the following key points of the theory of
gravity-capillary surface waves. When including surface tension, a second and third
horizon appear on top of the white-hole horizon for gravity waves: a “blue” horizon
associated with mode-converted blue-shifted waves, and a “negative” horizon. This
negative horizon is associated with the appearance of negative-energy waves [8] (re-
cently observed in a similar setup [11]), an essential feature of Hawking radiation
(the quantum glow of super-massive objects). The blue horizon can interact and
even merge with the white horizon providing two scenarios in order to escape an
artificial black hole. One scenario, consisting of a double bounce with mode con-
version, was experimentally discovered nearly three decades ago by Badulin et al.
[12], and interpreted in terms of the black/white-hole analogy in [10]. The other
scenario is novel and consists of a direct dispersive penetration across the white-
hole horizon. We have observed strong indications to validate this second scenario,
and hope to confirm these quantitatively in the near future. This would establish
that one can enter into the (normally forbidden) white-hole region by sending high-
frequency capillary waves. These are not blocked at the primary white-hole horizon,
contrarily to the low-frequency gravity waves, nor even at higher counter-flow ve-
locities.1 Indeed, the horizon completely disappears above a certain frequency due
to the merging and consequent disappearance of the blue and white horizons.

These scenarios are not limited to hydrodynamic models, but are generic con-
sequences of the dispersive properties beyond the relativistic regime. A double-
bouncing scenario is possible in any system where “subluminal” dispersion (group
velocity cg decreasing with the wave number k) at intermediate wavenumbers k

gives place to “superluminal” dispersion (cg increasing with k) at higher k. This
latter condition (superluminal high-k dispersion, irrespective of the behaviour at in-
termediate k) alone is sufficient for direct dispersive penetration.

1In the presence of an ever-increasing counter-flow velocity, the capillary waves will continu-
ously blueshift and ultimately vanish through viscous damping. We will come back to this point in
Sect. 7.6.
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7.2 Preliminaries

Water waves in the presence of a uniform current are described by the dispersion
relation [12–15]

(ω−U.k)2 =
(
gk + γ

ρ
k3
)

tanh(kh), (7.1)

where ω/2π is the frequency of the wave in the rest frame and k the wavenumber;
g denotes the gravitational acceleration at the water surface, ρ the fluid density, γ
the surface tension, U < 0 the constant velocity of the background flow and h the
water depth. For water, ρ = 1000 kg m−3 and γ = 0.073 N m−1. The flow induces
a Doppler shift of the pulsation ω.

The relativistic regime with its Schwarzschild-like metric corresponds to the
shallow-water limit (kh� 1) of gravity-wave propagation [7]: (ω−U.k)2 � ghk2,
with the relativistic “invariant” speed c=√

gh. An analogue black/white-hole hori-
zon will then appear when |U | = √

gh. But the concept of horizon can easily be
generalized to any location where the group velocity cg ≡ dω/dk vanishes. The
shallow-water limit kh� 1 can be realized for example in the circular hydraulic
jump, which spontaneously forms a hydrodynamic white hole [16]. In wave-channel
experiments, both the shallow-water and the deep-water limits can be probed, de-
pending on the setup. Interaction with a counter-current will lead to a blueshifting
of the incident waves: k increases. But variations of the counter-current flow rate
are typically achieved by a variation of h (e.g. through the immersion of a bump).
These two effects compete and various kh regimes can in principle be realised. At
sufficiently high wavenumbers k, small-scale dispersive corrections appear due to
capillarity, which will turn out to be crucial to cross a horizon. Since this is our main
object of study, we will from now on focus on the deep-water limit (kh� 1), and
start again from long-wavelength gravity waves, proceeding step by step towards
higher k.

When a gravity wave meets a counter-current, the incident wavelength dimin-
ishes and the wave height increases [12–14, 17–26]. According to the ray theory,
the wave amplitude would diverge when blocking occurs. However, such caustic for
the energy is avoided by a regularization process. Due to the velocity gradient, the
incoming waves are somewhat diffracted before being stopped at the blocking point,
where cg changes sign and the waves are reflected. Blue-shifted modes are there-
fore created through a process of mode conversion at the blocking point. Since the
incident and blue-shifted waves have the same wavenumber at the blocking point,
they interfere and a spatial resonance appears. The diffraction implies that the figure
of interference is not a simple standing wave. In the deep-water limit valid for our
experiments, an Airy interferences pattern appears [9, 19–21]. The blocking point
itself is a saddle-node or tangent bifurcation [9]: it marks the point where the two
real solutions disappear.

When including surface tension [10], the deep-water (kh� 1) dispersion relation
becomes

(ω−Uk)2 � gk + γ

ρ
k3, (7.2)
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Fig. 7.1 Dispersion relation (7.2) for varying counter-flow U (the curves rotate clockwise

with increasing |U |), plotted in the form ω = Uk ±
√
(gk+ γ

ρ
k3) tanh(kh). The group velocity

cg = dω
dk

corresponds to the slope of the green/blue curves (green: positive co-moving frequency
ω′ = ω − U.k, blue: negative ω′), and horizons are characterized by local minima/maxima. The
double-bouncing observed by Badulin [12] corresponds to the dashed red line (see also [10])

or (ω−Uk)2 � gk(1+ l2c k
2), where lc ≡

√
γ
ρg

is the capillary length (lc � 2.7 mm

for water). The gravity waves are still blocked, with the blocking velocity for pure
gravity waves (γ = 0) given by |Ug| = gT /8π , with T = 2π/ω the period. More-
over, the blue-shifted waves are also stopped at a new blocking point on their back-
ward drift (group velocity cg < 0, along with the background flow U , although
the phase velocity cφ ≡ ω/k > 0). The capillary asymptotic limit for the block-
ing velocity of these blue-shifted waves is U∗

T→∞ = Uγ = −√2( γg
ρ
)1/4 [10]. At

this second blocking point, the blue-shifted wave merges with a new capillary solu-
tion, which appears (again through mode conversion, see Fig. 7.1) at this secondary
turning point. The capillary waves propagate in the same direction as the original
incident gravity waves. These newly created capillary waves are not blocked by
the primary saddle-node line but go through the gravity horizon [10]. Badulin et
al. observed experimentally that gravity waves can undergo such double bouncing
behaviour followed by conversion to capillary waves which propagate into the for-
bidden region, and finally vanish by viscous damping [12]. Figure 7.1 illustrates
the process. In the context of the black hole analogy, when time-reversing these
observations, one concludes that incident long-wavelength gravity waves cannot es-
cape from a trapping region (black hole) unless they are converted into the capillary
range.

The second escape route consists of creating incident waves from the start in the
capillary range. The horizon completely disappears below some critical period Tc ,
determined by the cusp formed through the interaction of the white and blue hori-
zons. Waves with T < Tc can then propagate straight ahead, avoiding any horizons,
and enter the “forbidden” region (or escape from the trapping region). The cusp can
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Fig. 7.2 Phase space: background counter-flow velocities U versus wave period T . The blocking
curves U∗ are marked in thick black lines. The white-hole horizon (corresponding to the gravi-
ty-wave blocking curve Ug—thick red line—when γ = 0) intersects the blue horizon or blocking
curve for the blueshifted waves (the lowest thick black line, which asymptotes to Uγ from below)
and creates a cusp (Tc,Uc) below which both horizons disappear. Note that there also exists a
blocking line for the negative-frequency waves, which intersects Ug at (Tb,Ub) and also asymp-
totes to Uγ (from above). See also [10]. The four coloured stars correspond to the experimental
results reported in Sect. 7.4

clearly be identified graphically from the (U∗ vs T ) phase diagram for deep-water
waves (kh� 1), see Fig. 7.2, where U∗ represents any critical or blocking velocity.

The theoretical phase diagram Fig. 7.2 was derived in [10]. We briefly recall the
main steps in its derivation. We start from the cubic dispersion relation (7.2) for
water waves: (ω−Uk)2 � gk+ γ

ρ
k3, where we have taken k > 0. A double root k2

of this cubic equation, characteristic of a saddle-node point (and hence a horizon or
turning point), is such that (k − k1)(k − k2)

2 = 0, where k1 is the remaining simple
root.

After some straightforward but tedious algebra, this constraint leads to a quintic
equation for the critical velocity U∗, corresponding to all possible resonances (for
k > 0):

4ρ2gω

[
U5+ 1

4

g

ω
U4+ γω2

ρg
U3− 15

2

γω

ρ
U2−6

gγ

ρ
U −

(
γg2

ρω
+ 27

4

γ 2ω3

ρ2g

)]
= 0.

(7.3)
A dual quintic is obtained for k < 0 by reversing the velocity U →−U .

Using this quintic, one can numerically compute and plot the velocity for saddle-
node bifurcations or blocking points as a function of the period of the incident
waves, as in Fig. 7.2. Here we are mainly concerned with the gravity-wave block-
ing speed Ug and the blocking speed for blue-shifted waves (of which Uγ is the
asymptotic limit as T →∞), but we note that there also exists a blocking line for
the negative-frequency waves [10].

The well-known result Ug =−g/4ω in the gravity-wave limit immediately fol-
lows from Eq. (7.3) when setting γ = 0 (or |U | →∞). The asymptotic capillary
limit Uγ = −√2( γg

ρ
)1/4 is likewise obtained for T = 2π

ω
→∞. From Eq. (7.3),
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several analytic approximations can also be obtained. For example, to find an ap-
proximate expression for the blue horizon (the blocking of blue-shifted waves), we
keep the terms up to first order in ω and introduce the perturbative development

U∗ �Uγ

(
1+ ε

Uγ

)
, (7.4)

in order to write:

4ρωU5
γ

(
1+ 5ε

Uγ

)
+ gρU4

γ

(
1+ 4ε

Uγ

)
− 24gωγUγ

(
1+ ε

Uγ

)
− 4g2γ � 0. (7.5)

Solving for ε, using ω→ 0, we obtain

ε � ω

(
6γ

ρU2
γ

− U2
γ

g

)
, (7.6)

or

U∗ �Uγ + 2π

T

√
γ

gρ
=−√2

(
gγ

ρ

)1/4

+ 2π
lc

T
. (7.7)

Note that an identical computation for the negative quintic leads to a simple change
of sign in the second term: to first order, the negative-frequency blocking line has
the same departure (but in opposite direction) from the capillary asymptotic limit as
the blue horizon (for T ≥ Tc).

The cusp (Tc,Uc)= (0.425 s,−0.178 m s−1) corresponds to the intersection of
two saddle-node lines (the white and blue horizons), and is associated with an in-
flection point of the dispersion relation (7.2). In dynamical-systems theory, we an-
ticipate a so-called pitchfork bifurcation [27]: the merging of two saddle-node bi-
furcations is equivalent to the appearance of a fictive symmetry in the representation
space of the cubic-in-k Eq. (7.2). The resulting pitchfork bifurcation is then associ-
ated with the breaking of this symmetry, which is absent from the original system. In
other words, below Tc, the blocking lines or horizons corresponding to both saddle-
node bifurcations completely disappear.

Note that the cusp is analogous to a critical point (second-order phase transition)
in a thermodynamical phase diagram (Fig. 7.2). The saddle-node lines (first-order
phase transitions) separate the analogues of thermodynamical phases [10]. One can
distinguish seven regions of interest, marked by Roman numerals, which can be
grouped into four phases: A= I + II + III, B = IV , C = V + VI and D = VII.

The vertical line T = Tc roughly separates the capillary (T < Tc) and the gravity
(T > Tc) regimes. The A phase corresponds to a simple root of the cubic disper-
sion relation, where the incident wave can be of capillary (I ) or gravity (II or III)
type. The saddle-node line ending on Uc (critical point) and Uγ (tricritical point
at infinity) corresponds to the threshold for the simultaneous appearance of blue-
shifted waves and capillary waves propagating in the same direction as the incident
ones (B). The C and D phases are characterized by the presence of negative energy
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Fig. 7.3 Experimental setup. Characteristics of the bump (from left to right): linear slope with an-
gle α1 = 7.5◦ and length l1 = 8 m, flat part l2 = 4.80 m, linear slope α3 =−18.5◦ and l3 = 3.30 m.
Water depth (min–max): 50 cm–160 cm

waves. In the D phase, these negative energy waves are of the gravity and capillary
type and propagate in the same direction as the counter-flow. The C phase is the for-
bidden region for gravity waves coming from A across B or D. Only gravity waves
from the A phase (after mode conversion) or directly capillary waves are allowed to
go into the C phase.

7.3 Experimental Setup

We performed laboratory experiments to corroborate various aspects of the phase
diagram in Fig. 7.2. These experiments were performed at ACRI, a private research
company working on environmental fluid mechanics such as coastal engineering.
The experiment features a wave-tank 30 m long, 1 m 80 large and 1 m 80 deep, see
Fig. 7.3. The piston-type wave-maker can generate waves with periods T = 0.35–3 s
and typical wave heights of 0.5–30 cm. A current can be created along or opposite
to the direction of wave propagation with a maximum flow rate around 1.2 m3 s−1.
The waves themselves are recorded using several video cameras and the videos are
digitalized and calibrated.

In order to generate a gravity-wave horizon, a bump is immersed into the channel.
The bump has a positive and a negative slope separated by a flat section. We send
a train of progressive water waves onto the bump, hindered by a reverse fluid flow
produced by a pump.
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The background flow velocity depends on the water depth through flow rate con-
servation. The counter-current accelerates as the water height diminishes, reaches
a maximum on the flat part of the bump before slowing down again as the bump
height decreases.

7.4 Experimental Results

We have performed detailed measurements at the (U,T ) values marked by the four
coloured stars in Fig. 7.2. Continuous low-amplitude wave-trains were used in order
to minimize non-linear effects. The corresponding experimental spacetime diagrams
are shown in Fig. 7.4.

In the absence of a counter-current, the gravity and capillary terms in the dis-
persion relation (7.2) are equal for ω = √

2g/lc = 86 rad s−1 (f = 13.7 Hz), i.e.
T = 0.073 s. The range T > 0.1 s corresponds (by convention) to a pure gravity
regime, while a pure capillary regime exists for T < 0.04 s. In the presence of a
counter-current, one must look at the phase diagram in Fig. 7.2 to distinguish the
gravity and capillary influence. The upper diagrams in Fig. 7.4 correspond to waves
with a period of T = 1 s. These are therefore pure gravity waves, and we expect
them to be blocked near |Ug| = gT /8π = 0.39 m s−1. The lower diagrams show the
propagation of waves with a period T = 0.4 s, approximately the lowest period al-
lowed by the wave-maker. For weak counter-currents, these behave as pure gravity
waves, but they should suffer a strong blueshifting towards the pure capillary regime
as the counter-current increases, and penetrate through the gravity-wave white-hole
horizon. The four diagrams in Fig. 7.4 thus correspond to the following cases.

(a) First (red star), we recorded the normal propagation of a gravity wave of T = 1 s
and amplitude A = 3 cm against a moderate counter-current (|U | increases
from 0.074 to 0.087 m s−1 from left to right, well below |Ug| = gT /8π =
0.39 m s−1), see Fig. 7.4 (top left).

(b) Second (yellow star), still for gravity waves of T = 1 s and A = 3 cm, we
depict the range |U | = 0.45–0.55 m s−1 for which we recover the existence
of a white hole marking a forbidden region into which gravity waves cannot
enter (|U exp

g | ≈ 0.53 m s−1), see Fig. 7.4 (top right), in agreement with the value
measured in [22, 28]. We will come back to the apparent mismatch with the
theoretical prediction |U th

g | = 0.39 m s−1 in the following section. Note that
the white horizon or blocking line is actually blurred into a “blocking region”.
Also notice the clear blue-shifting due to the increasing counter-current: the
slope of the world-lines increases from left to right, in full analogy with the
behavior of light close to a gravitational fountain. Indeed, the slope is the inverse
of the phase velocity and therefore proportional to the wavelength. The slope
of incoming rays grows until the rays disappear at the horizon. We point out
forcefully that the slope does not increase to infinity. This is due to the dispersive
effect close to the horizon, which leads to an Airy regularization mechanism,
which we will discuss below. A “trans-Planckian” problem is thus avoided for
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Fig. 7.4 Spatio-temporal diagrams for the four values of (U,T ) marked with coloured stars in
Fig. 7.2. The light and dark lines represent the world-lines of crests and troughs, respectively.
The diagrams show: the normal propagation of a gravity wave against a moderate counter-current
(top left); the blocking of a gravity wave at a blocking line or white-hole horizon due to a strong
counter-current (top right); the normal propagation of a capillary-gravity wave in the absence of a
counter-current (bottom left); and the propagation of a capillary-gravity wave across a region with
a counter-flow velocity well above the gravity-wave blocking value (bottom right). The width of
the images along the x-coordinate is 78.1 cm (top left), 191.7 cm (top right), 78.1 cm (bottom left)
and 113.92 cm (bottom right). Other parameters: see main text

the incident wave, since the blue-shifting does not become infinite, as in the
purely relativistic case. However, as we will also discuss below (see Fig. 7.9),
there is still a problem for the mode-converted blue-shifted waves (as well as
for the negative waves). In the pure gravity case, these would have k →∞ as
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Fig. 7.5 Appearance of capillary waves for T = 0.4 s in the presence of a strong counter-current U

U → 0: if capillarity did not come into play, then the trans-Planckian problem
would, in a sense, simply be displaced to flat spacetime.

(c) Third (blue star), we show the normal propagation of a capillary-gravity wave
(T = 0.4 s and A = 1–2 cm) in the absence of a counter-current (U = 0), see
Fig. 7.4 (bottom left). Note that there is an excellent agreement between theory
and experiment about the wavelengths in this case: λexp = 0.25 m versus λth =
0.249 m in the whole range h= 0.50–1.60 m.

(d) Finally (green star), we show the propagation of a capillary-gravity wave
(T = 0.4 s < Tc, A = 1 cm) against a counter-current well above the block-
ing value: |U | = 0.232–0.275 m s−1 versus |Ug| = gT /8π = 0.156 m s−1, see
Fig. 7.4 (bottom right). From the diagram, we conclude that there is a com-
plete penetration across this part of the white-hole region (forbidden for gravity
waves), and barely any noticeable blue-shifting, contrarily to the case (b) of the
blocked gravity waves. This last diagram therefore shows a double discrepancy
with the theoretical expectation.

First, the lack of any strong blueshifting with respect to the previous case means
that the transition to the capillary regime has not been fully completed for these
values of U . Indeed, for the counter-currents in the range of this camera position
(|U | = 0.233–0.275 m s−1), λth = 8.95–6.13× 10−3 m whereas the measured λexp
is of the same order of magnitude as the incident wavelength. The capillary conver-
sion seems to have taken place at a much higher value of the counter-current than
expected. Indeed, further upstream (at higher values of the counter-current |U |), the
appearance of capillary waves can be observed with the naked eye, see Fig. 7.5. We
believe that the mismatch is due to the appearance of a transversal instability, see
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Fig. 7.6 Development of transversal instability for T = 0.4 s: near the wave-maker (at the fur-
thest end of the channel), the wavefronts are nearly perfectly perpendicular to the channel’s edges.
Towards the bottom of the picture, the wavefronts start to deform under the effect of a transversal
instability, and the free water surface acquires a ‘fish-scale’ pattern. The capillary waves in Fig. 7.5
appear on the fronts of these fish scales

Fig. 7.6, which blurs the capillary conversion. We plan experiments with a narrower
wave channel in the near future in order to reduce this transversal instability and
study the conversion to the capillary regime in more detail.

Second, in the absence of such a full transition to the capillary regime, the
waves should have been blocked at (or near) the gravity-wave blocking velocity
|Ug| = gT /8π = 0.156 m s−1. This blocking has not taken place either. This sec-
ond discrepancy is in the line of the mismatch mentioned above in the pure gravity
case, and we will come back to it in the next section.

7.5 Airy Interference and Gravity-Wave Blocking

Airy interference provides the crucial mechanism through which a divergence of the
amplitude is avoided [9] in the regime kh� 1, see Fig. 7.7. An explicit expression
for the stopping length Ls associated with the Airy interference in the case of pure
gravity waves is

Ls = 1

16(2π5)1/3
gT 5/3

(
dU

dx

)−1/3

x=x∗
, (7.8)



156 J. Chaline et al.

Fig. 7.7 Blocking of rays (in red) versus waves (in blue). In the ray approximation, the amplitude
theoretically diverges towards the blocking point x∗rays, beyond which it vanishes discontinuously.
This divergence is regularized in the wave picture through Airy interference. The wave blocking
point x∗waves lies several Airy stopping lengths Ls further than x∗rays

with x∗ the horizontal blocking position. A simple derivation of this expression can
be found in the Appendix. Because of the geometry of our experiment, the back-
ground surface velocity evolves linearly: |U(x)| = 0.51− 0.05x, where x = 0 cor-
responds to the kink in the mobile floor (note that the x-axis is oriented along the
background flow, i.e. from right to left in Fig. 7.3). From Fig. 7.7, the apparent mis-
match between the well-known theoretical prediction U th

g = − gT
8π for the counter-

flow velocity at blocking (|U th
g | = 0.39 m s−1 for T = 1 s), and the measured value

(|U exp
g | = 0.53 m s−1) can also partially be understood. U th

g is obtained in the ray ap-
proximation. The waves will actually be blocked a certain distance 
x∗waves further
due to the Airy interference. The experimental blocking position x

exp
∗ = −0.36 m

corresponds to the wave-blocking position. Taking the conservative assumption that
a wave is considered “blocked” (i.e., it is no longer detected on camera) when its
amplitude has decreased below 1 % of its maximum, one obtains 
x∗waves = 3.11Ls ,
i.e. (for T = 1 s) 
x∗waves = 0.61 m. The ray-divergence position would then be at
x

exp
∗ +
x∗waves = 0.25 m, corresponding to a velocity U

exp-ray
g = 0.50 m s−1. The

theoretical blocking position corresponding to |U th
g | = 0.39 m s−1 is xth∗ = +2.42 m.

In other words, Airy interference explains roughly 20–25 % of the difference be-
tween the theoretical prediction and the experimental measure.

A second element which contributes to the difference between U th
g and U

exp
g lies

in the decrease with depth of the real velocity profile. The theoretical prediction for
the value at the surface should, in a real experiment, be considered as an averaged
(integrated) value over some depth, necessarily leading to a slightly higher value at
the surface. The vertical velocity profile is approximately of the so-called plug type
on the flat part of the bump and acquires a parabolic form after the flow has decel-
erated on the descending slope of the bump, see Fig. 7.8. Comparison of the surface
values with the average, vertically integrated values gives differences of 5–20 %.
Interpolating between the cases represented in Fig. 7.8, we obtain an estimated dif-
ference of ∼ 10 % between the theoretically predicted value and the value measured
experimentally at the surface near the blocking point (xexp∗ = −0.36 m for T = 1 s).
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Fig. 7.8 Vertical background-flow velocity profiles: nearly plug-type profile on the bump at
x =−2.43 m (left) and parabolic profile towards the wave-maker at x = 4.20 m (right), where
x = 0 corresponds to the kink in the bump, see Fig. 7.3

A third element which might be thought to be important is that the blocking
velocity U th

g = − gT
8π is obtained in the pure gravity-wave limit, whereas even for

T = 1 s, a small capillary influence persists and slightly increases the real block-
ing velocity. However, this difference is negligible, as can be seen from Fig. 7.4,
where it corresponds to the departure between the red line Ug and the correspond-
ing black line U∗ obtained numerically from the full Eq. (7.3). It can be estimated
quantitatively as follows. In the regime klc � 1, the dispersion relation (7.2) can be
approximated by

ω�Uk +√gk

(
1+ (klc)

2

2

)
. (7.9)

The condition dω
dk
= 0 for wave blocking becomes

U∗ = −
√

g

4k

(
1+ 5

2
l2c k

2
)
. (7.10)

In the limit lc = 0, the blocking wavenumber kg (corresponding to Ug = −g/4ω)

gives kg = 4ω2

g
. Inserting this value in the previous expression leads to

U∗ �Ug +
U∗ = −gT

8π
− 80π3 l2c

gT 3
. (7.11)

For T = 1 s, 
U∗ � −0.002 m s−1 �Ug .
Non-linear effects could also play an important role, in spite of our attempts to

limit them by working with small amplitudes. We limit ourselves to two comments.
First, the finite wave amplitude A increases the blocking velocity. This well-known
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(but poorly understood) phenomenon [22, 24] can to a first approximation be mod-
elled as an effective surface tension (see e.g. [29]):

ω2 = gk
(
1+A2k2) (7.12)

(for pure gravity waves in the absence of a counter-current). Since A/lc ∼ 10 in
our experiments, it is clear that the finite amplitude has a much stronger influence
on the blocking velocity than the intrinsic surface tension, and is perhaps the main
contributor to the difference between U th

g and U
exp
g . This illustrates the importance

of generating waves with a low factor Ak (Ak ∼ 0.1 at T = 1 s in our current
setup). A second non-linear effect which plays an important role in certain other
wave-blocking experiments [23, 28] is the Benjamin-Feir instability, which leads to
the appearance of so-called side-bands (excitations at frequencies slightly different
from the fundamental one). However, we have verified conservation of period in our
experiments, thereby nearly excluding this possibility.

We believe the above elements to provide a reasonable explanation for the ap-
parent mismatch between |U exp

g | ≈ 0.53 m s−1 and |U th
g | = 0.39 m s−1. It should be

noted that this mismatch is well known in the fluid-mechanics community, but not
well understood. For example, [22] and [28] also observe the blocking of T = 1s
waves at a countercurrent velocity |U exp

g | ≈ 0.53 m s−1, but do not attempt to inter-
pret this discrepancy with the theoretical prediction.

Also note that similar arguments would apply to the case of the gravity-capillary
waves at T = 0.4 s. There, however, the additional appearance of a transversal in-
stability mentioned above further complicates matters and further experiments are
required to clarify the situation.

It is remarkable that the Airy interference hybridizes the character of the incom-
ing wave. A hybrid is created between the original wave (through the period T , in the
expression (7.8) of the stopping length Ls ) and the background flow (through dU

dx
).

In our experiment, we are sending continuous wave-trains. If one were to send wave-
packets (“particles”, i.e.: superpositions of waves), then these would be deformed
into superpositions of wave-flow hybrids, or “hybridons”. As a matter of fact, we
can take this observation further. The Airy stopping length obeys Ls ∝ λ∗U 1/3

n ,
where λ∗ is the wavelength at blocking, and Un the dimensionless “Unruh” number
Un = ω(dU

dx
)−1
x∗ obtained from the two characteristic “frequencies” at blocking: the

wave frequency ω and the flow gradient dU
dx

. This leads to the following interpreta-
tion. Dispersion has a double role in the near-horizon physics. It keeps the wavenum-
ber finite (i.e., it solves the trans-Planckian problem—see next section), thereby
avoiding the first relativistic ray-theory pathology λ∗ → 0. Second, it creates an in-
terference mechanism which hybridizes this wavelength with the background flow
by modulating it through Un. Dispersion thus replaces the wavelength by a char-
acteristic interference length Ls . This mechanism of interferences allows to solve
the second pathology associated with the ray theory: the infinite amplitude at the
blocking point. Indeed, when Un � 1, i.e. when the frequency of the wave is large
compared to the spatial variation of the background flow velocity, then the WKB-
approximation is valid. Note that Un � 1 also leads to exp(ω/(dU

dx
)x∗)− 1� 1 and
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therefore to negligible Hawking radiation. Near the blocking point, though, one al-
ways has Un ∼ 1. The WKB approximation then breaks down, and two resonance
mechanisms come into play. The first one (Airy interference) is an adiabatic process
and the second one (Hawking radiation) is a non-adiabatic process, see the Chapter
on “The Basics of Water Waves Theory for Analogue Gravity” elsewhere in this
Volume.

As a final note, we should point out that we have neglected the presence of a zero
mode in our considerations on the Airy mechanism. Such a zero mode (an ω = 0
solution to the dispersion relation, or superposition of various such solutions) would
deform the free surface and complicate the interference pattern, see [11, 30] and the
discussion in the Chapter “The Cerenkov effect revisited: from swimming ducks
to zero modes in gravitational analogs” elsewhere in this Volume. This omission is
justified since in the regime kh� 1 one can minimize the amplitude of the zero
mode by working at low velocities and limiting the slope of the bump. Note that
γ = 0 implies the existence of a threshold |U | ≥ |Uγ | for the appearance of a zero
mode, contrarily to the pure gravity case.

7.6 The Trans-Planckian Problem

Our experimental results to corroborate the theory developed in [10] have been
slightly marred by the appearance of a transversal instability, which we hope to
remedy using a narrower wave-channel. Nevertheless, there is little doubt that cap-
illary waves can penetrate through a gravity-wave blocking line. The full strength
of this statement becomes clear in the context of the gravitational analogy. The sur-
face tension constitutes a high-k dispersive correction to the low-k gravity-wave
theory. Such dispersive corrections can therefore completely alter the properties of
a horizon: dispersive horizons are no longer one-way membranes, and the infinite
blueshifting associated with strictly relativistic horizons disappears. The example
of surface waves shows that this statement can be true even if the dispersion is (ini-
tially) subluminal.

The idea that dispersive corrections could solve the trans-Planckian problem of
gravity has from the start been one of the cornerstones of the analogue gravity pro-
gramme [6]. Most work has historically focused on the study of subluminal (“nor-
mal”) dispersion. This seems curious in the light of the following observations. In
the pure gravity-wave (subluminal) regime, the trans-Planckian problem is indeed
avoided for the incident wave: it is mode-converted into a blue-shifted wave and
the wave bounces away from the horizon (in terms of the group velocity; the phase
velocity is still directed towards the white hole). However, as this blue-shifted wave
approaches “flat spacetime” (i.e., as the counter-current velocity |U | → 0), a new,
secondary trans-Planckian problem arises: the wavenumber of the blue-shifted wave
kB →∞, see Fig. 7.9. This was observed earlier [31] with respect to Unruh’s origi-
nal subluminal model [32], and related problems with other subluminal models were
also discussed in [33] and [34]. The same secondary trans-Planckian problem occurs
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Fig. 7.9 Gravity waves and the trans-Planckian problem. For a given frequency ω (dashed red
line), a blue-shifted wave kB is created from the incident wave kI through mode conversion at the
blocking line U = Ug . Since kB has cg < 0, it moves away from the horizon towards lower |U |.
As |U |→ 0, kB →∞, leading to a secondary trans-Planckian problem in flat spacetime

for the negative-frequency waves associated with a Hawking-like process. Actually,
even without invoking any horizon effects, a similar problem arises: Any counter-
current, no matter how small, would allow for the existence of both blue-shifted and
negative-energy waves with infinitely small wavelengths. Purely subluminal dis-
persion would then solve the primary trans-Planckian problem associated with the
horizon, at the cost of creating a new one in flat spacetime.

More complicated dispersion relations, e.g. as in Helium-II (superfluid 4He),
which has a “roton” minimum in the ω′–vs–k diagram, could overcome this prob-
lem by letting the outgoing blue-shifted wave decay at the end of the quasipar-
ticle spectrum into two rotons, with the same total energy and momentum (i.e.,
ω→ ω/2+ ω/2; k→ k/2+ k/2) [31]. The secondary trans-Planckian problem is
then avoided because the dispersion curve ends in such a two-roton decay channel.2

Another obvious way of resolving the secondary trans-Planckian problem with
subluminal dispersion is through dissipation, for example due to viscosity. Note
that viscosity, apart from leading to dissipation, necessarily also introduces disper-
sion [37]. Dissipation in media is quite generic, often unavoidable (as in optical
media, where dissipation and dispersion are coupled through the Kramers-Kronig
relations), and might be relevant for our “fundamental” spacetime as well. Actually,

2Actually, this is not the end of the story: these rotons are still subject to the background flow, and
will therefore also start blueshifting, just like the original mode, and again split into two rotons each
at the end of the quasiparticle dispersion curve, etcetera, leading to an apparently endless creation
of rotons. This process is limited because the roton creation will deplete the superfluid component,
and ultimately destabilizes the white-hole configuration. Also note that the rotons will relax after
some time due to interaction with the environment and condense into a roton BEC [35]. If one
takes such a 4He-like dispersion model seriously for true gravity, this could lead to the creation of
a photon condensate near a white hole, or vice versa: outgoing particles from a black hole might
originate from a condensate in curved spacetime. Although such a scenario might not be as crazy
as it sounds [36], we will not pursue this exotic line of thought further here, and stick to “simpler”
solutions of the trans-Planckian problem.
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from a theoretical QFT point of view, Lorentz symmetry violation is automatically
accompanied by dissipation under quite general assumptions, and dissipative effects
should therefore in principle be treated together with dispersive ones [38]. However,
dissipation is formally much harder to treat than dispersion, and it has received little
attention in the context of (analogue) gravity. Also, the relevance of dissipation ob-
viously depends on its characteristic scale. Here, we mainly wish to stress that the
secondary trans-Planckian problem in surface waves is solved through dispersion
before dissipation becomes relevant.

These observations suggest a more general interpretation for our results with
water waves. The mesoscopic scale of surface tension “saves” the fluid continuum
approximation from breaking down in the presence of a counter-current: The cap-
illary behaviour at high k is essential in order to avoid a trans-Planckian pathol-
ogy. We therefore expect that any system displaying analogue gravity behaviour at
low k through propagation on a moving background medium will necessarily have
superluminal dispersion at sufficiently high k’s, unless dissipation kills the whole
phenomenon before such scales are actually reached. The exotic case of Helium-II
mentioned above might be the exception that confirms the rule, since even then, the
dispersion relation is superluminal for a certain range of high wavenumbers beyond
the roton minimum.

Moreover, we can establish the following general rules. If the first corrections
at intermediate k are subluminal, followed by superluminal corrections at high k,
as in the case of deep-water waves, then there will always be a white horizon and
a blue horizon, leading to the possibility of a Badulin-type double-bouncing sce-
nario. There will then also always exist some counter-current velocity Uc for which
these white and blue saddle-node points merge into a pitchfork bifurcation and both
horizons disappear, allowing for direct dispersive penetration. Such direct disper-
sive penetration is actually even more universal: it suffices to have a superluminal
correction at high k to a relativistic low-k behaviour, irrespective of the interme-
diate regime. This is true, e.g., for phonons in BECs [39], just like for capillary
surface waves: sufficiently blueshifted (“superblueshifted”) modes will always be
able to penetrate through any counter-flow barrier, unless dissipation prevents such
superblueshifting. The case of surface waves is in a sense richer than that of BEC-
phonons, in that there is a true blocking line for low-frequency gravity waves, which
cannot directly penetrate the horizon. For BECs, the absence of an intermediate
subluminal correction implies that even low-frequency phonons can in principle su-
perblueshift and cross the horizon directly. Finally, in spite of our several comments
regarding dissipation, it seems that both horizon-crossing scenarios can indeed be
fully realized for surface waves before being dissipated.

To sum up, to enter a white hole—or, by time-inversion: to escape a black hole—
one has to either tune the period to be subcritical, or bounce on two horizons.

The bottom line is of course what this teaches us for real gravity. Here the issue is
more complicated, because extrapolation from the current state of observations has
so far not given any evidence for dispersion (or dissipation) even at the Planck scale.
Other complications might also arise which are peculiar to real gravity. For example,
in [40] it was shown using a simple toy model that superluminal dispersion would
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render gravitational black holes strongly unstable, due to the leaking of resonant
modes. In any case, we may conclude that, if dispersion is indeed relevant in gravity
(possibly even far beyond the Planck scale), then subluminal dispersion alone would
most certainly not be sufficient to solve the trans-Planckian problem.
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Appendix: Airy Stopping Length

Smith was the first to derive the Airy equation in 1975 by performing an asymptotic
expansion of the water-wave equations (Euler equations + continuity equation +
boundary conditions) close to the caustic [19]. He inferred the so-called amplitude
equation which is a nonlinear Schrödinger equation with a term proportional to the
distance to the caustic. When the cubic term is negligible, the amplitude equation
reduces to the Airy equation.

Following Smith and after tedious algebra (matched asymptotics and WKB so-
lutions), Trulsen and Mei computed the following stopping length (for γ = 0) in
1993 [41]:

Ls =
(

U2∗
2k∗ω(dU

dx
)x∗

)1/3

. (7.13)

In 1977, Basovich & Talanov [21] provided another derivation of the Airy equa-
tion by noticing that dU

dk
= 0 at the blocking point. Taylor-expanding the function

U(k) close to its parabolic minimum and the function U(x) close to the stopping
point x∗ and taking the inverse Fourier transformation, they deduced the Airy func-
tion and the associated stopping length:

Ls =
(

ω

4k3∗( dUdx )x∗

)1/3

. (7.14)

In 1979, Peregrine & Smith [20] used an operator expansion method: the idea is
to inverse Fourier-transform a truncated series expansion of the dispersion relation
written in the form G(ω,k, x) = 0. Again, the cubic Schrödinger equation with a
spatial term was derived with another expression for the stopping length:

Ls =
(

Gkk

2Gx

)1/3

, (7.15)

where the subscripts mean partial derivative and the derivatives are taken at the
blocking line. The method was generalized in 2004 by Suastika [24, 25] to include
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viscous dissipation and wave breaking. In 2003, Lavrenov [17] applied a saddle-
point method to the Maslov integral representation of the uniform wave field asymp-
totics in the vicinity of the blocking line. He found:

Ls =
(

Ωkk

2Ωx

)1/3

, (7.16)

where ω =Ω(k,x) is the dispersion relation function and the derivatives are taken
at the caustic.

We will show that it is possible to derive the stopping length in a very simple
fashion, inspired by the method of Basovich & Talanov, and derive a previously
unnoticed scaling law for Ls .

We write the background flow velocity near the critical value U∗ = − gT
8π as a

function of x and k, and develop both to lowest non-zero order around the stopping
length:

U(k)�U(k∗)+ U ′′(k∗)
2

(k − k∗)2 =U∗ − U3∗
4ω2

(k − k∗)2, (7.17)

U(x)�U∗ +
(
dU

dx

)

x∗
(x − x∗). (7.18)

Equating both into

U3∗
4ω2

(k − k∗)2 +
(
dU

dx

)

x∗
(x − x∗)� 0, (7.19)

and making the substitution H(x)� ei(k−k∗)x immediately leads to the Airy differ-
ential equation

d2H

dX2
−XH = 0, (7.20)

where X = x−x∗
Ls

, with Ls = |U∗|
(4ω2( dU

dx
)x∗ )1/3 . Thus, H(x) is an Airy function

H(x)�Ai

(
x − x∗
Ls

)
= 1

π

∫ ∞

0
cos

(
1

3
t3 + x − x∗

Ls

t

)
dt, (7.21)

and

Ls = 1

16(2π5)1/3
gT 5/3

(
dU

dx

)−1/3

x=x∗
(7.22)

is the Airy stopping length, which depends both on the incident wave and the back-
ground flow: it scales with the period T of the incident wave as Ls ∝ T 5/3 and with
the background flow acceleration as Ls ∝ ( dU

dx
)
−1/3
x=x∗ . A straightforward dimensional

analysis (Ls � gαT β(dU
dx

)
γ
x=x∗ ) would only lead to α = 1 and β − γ = 2.
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Note that Airy interference requires the flow gradient to remain approximately
constant over the characteristic length of the interference process. This can easily

be seen in our derivation: Eq. (7.18) is only a good approximation if d2U

dx2 ≈ 0 for

x − x∗ =O(Ls). In our experiments, dU
dx

is a constant on the whole linear slope of
the bump where the horizon x∗ is located, so we do not need to worry about this
issue.
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Chapter 8
Classical Aspects of Hawking Radiation Verified
in Analogue Gravity Experiment

Silke Weinfurtner, Edmund W. Tedford, Matthew C.J. Penrice,
William G. Unruh, and Gregory A. Lawrence

Abstract There is an analogy between the propagation of fields on a curved space-
time and shallow water waves in an open channel flow. By placing a streamlined
obstacle into an open channel flow we create a region of high velocity over the ob-
stacle that can include wave horizons. Long (shallow water) waves propagating up-
stream towards this region are blocked and converted into short (deep water) waves.
This is the analogue of the stimulated Hawking emission by a white hole (the time
inverse of a black hole). The measurements of amplitudes of the converted waves
demonstrate that they appear in pairs and are classically correlated; the spectra of the
conversion process is described by a Boltzmann-distribution; and the Boltzmann-
distribution is determined by the change in flow across the white hole horizon.

8.1 Motivation

There is a broad class of systems where perturbations propagate on an effec-
tive (d + 1) dimensional spacetime geometry. In the literature this phenomenon
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Fig. 8.1 Acoustic horizons. The propagation of sound waves in a convergent fluid flow exhibiting
sub- and supersonic flow regions are depicted. The dashed (red) black/white lines, separating the
sub- and supersonic regions, indicate the location of the acoustic black/white horizon. From the
left to the right the flow velocity is speeding up and slowing down again

is referred to as an analogue model. The first modern paper on analogue space-
time geometry was published in 1981 by W.G. Unruh [22], followed by Matt
Visser [27] in 1993. It was demonstrated that sound waves in a fluid flow propa-
gate along geodesics of an acoustic spacetime metric. More generally, for a single
scalar field φ whose dynamics is governed by some generic Lagrangian L (∂aφ,φ),
the kinematics of small perturbations around some background solution, φ(t,x)=
φ0(t,x) + εφ1(t,x) + ε2

2 φ2(t,x) + · · · , can be described by a minimally coupled
free scalar field, (Δg(φ0) − V (φ0))φ1 = 0, where Δg(φ0), a d’Alembertian operator
with metric tensor

gab(φ0)=
[
−det

(
∂2L

∂(∂aφ)∂(∂bφ)

)] 1
d−1
∣∣∣
∣
φ0

(
∂2L

∂(∂aφ)∂(∂bφ)

)−1∣∣∣
∣
φ0

, (8.1)

an effective curved spacetime geometry [3]. Over the last 25 years the basic concept
of analogue models has been transferred to many different media, and by now we
know of a broad class of systems that possess an effective spacetime metric tensor
as seen by linear excitations. Detailed background information and current develop-
ments can be found in [4].

Analogue models of gravity provide not only a theoretical but also an experimen-
tal framework in which to verify predictions of classical and quantum field theory in
curved spacetimes. For example, the first model, proposed by W.G. Unruh in 1981,
is based on the fact that sound waves propagating on an inviscid and irrotational fluid
flow satisfy the Klein–Gordon equation in an effective curved background [22]. If
the velocity of the fluid exceeds the velocity of sound at some closed surface, a
dumb hole, i.e. an analogue of a black hole, forms, see Fig. 8.1. The presence of
effective horizons opens up new possibilities to experimentally explore the black
hole evaporation/Hawking radiation process.

There are several hinderances that one has to overcome before testing ana-
logue gravity systems in a laboratory experiment. Any experimental setup has to
fall within the approximations made when deriving the analogy. For example, the
main difficulty in implementing acoustic black hole (dumb hole) horizons, is to en-
sure that the waves obey the linear approximation throughout. Shock waves (sonic
booms) occur far too readily at transitions between sub- and supersonic flows. In
fact, we are all familiar with the sonic boom related to the shock wave generated by
supersonic aircrafts.
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In 2002 it was argued that surface waves in an open channel flow with vary-
ing depth are an ideal toy model for black hole experiments [19]. Unruh’s 1981
paper raised the possibility of doing experiments with these analogues. One issue
with Hawking’s derivation is its apparent reliance on arbitrarily high frequencies,
this phenomenon is commonly referred to as the trans-Planckian problem.1 The
dispersion relation of gravity waves creates a natural physical short wavelength cut-
off, which obviates this difficulty. Thus the dependence of the Hawking effect on
the high-frequency behavior of the theory can be tested in such analogue experi-
ments [7, 23, 24]. While numerical studies indicate that the effect is independent
of short-wavelength physics, experimental verification of this would strengthen our
faith in the process. The presence of this effect in our physical system, which ex-
hibits turbulence, viscosity, and non-linearities, would indicate the generic nature of
the Hawking thermal process. Below we present all the necessary steps to under-
stand and carry out such an experiment.

8.2 Black & White Hole Evaporation Process

One of the most striking findings of general relativity is the prediction of black holes,
accessible regions of no escape surrounded by an event horizon. In the early 70s,
Hawking suggested that black holes evaporate via a quantum instability [11, 21].
The study of classical and quantum fields around black holes shows that small clas-
sical as well as quantum field excitations are being amplified. In particular, a pair
of field excitations at temporal frequency f are created, with amplitudes αf , βf

(Bogoliubov coefficients) related by,

|βf |2
|αf |2 = exp

(−4π2f

gH

)
(8.2)

where gH is the surface gravity of the black hole, and αf and βf are positive
and negative norm components [11, 21]. Positive norm modes are emitted, while
negative ones are absorbed by the black hole, effectively reducing its mass. The
surface gravity for a non-rotating black hole with a mass M is given by gH =
1.0× 1035/M [kg/s]. Equation (8.2) is applicable for both stimulated and sponta-
neous emission, and at regimes where the quantum physics is dominant. A compar-
ison of (8.2) with the Boltzmann-distribution allows one to associate a temperature
T with the black hole,

T = �gH

2πkB
= 1.2× 10−12 · gH [sK] = 6.03× 10−8 M◦

M
[K]. (8.3)

Here M◦ is a solar mass, and the smallest observed black holes are of this order.
Thus black hole evaporation is clearly difficult to observe directly [6].

1The original derivation by Hawking radiation predicts that the quantum field excitations in the
initial state—which are responsible for the late time radiation—have frequencies exponentially
higher than the frequency associated with the Planck scale [5, 12].
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Fig. 8.2 Experimental apparatus. The experimental apparatus used in our experiments: (1) holding
reservoir, (2) pump and pump valve, (3) intake reservoir, (4) flume, (5) obstacle, (6) wave generator,
and (7) adjustable weir

The situation is not as challenging in an analogue gravity experiment, where one
is dealing with table-top experiments that are under much better control and sig-
nificantly easier to access. The question then arises as to how to collect conclusive
experimental evidence to be assured one is dealing with analogue black hole evap-
oration, and not with some other classical or quantum process. As we will demon-
strate below, the Hawking process exhibits in principle the following measurable
characteristics: (i) the emission of field excitations is correlated; (ii) the spectra of
the emission process is described by a Boltzmann-distribution; (iii) the Boltzmann-
distribution is determined by the surface gravity at the effective horizon; and (iv) the
emitted field excitations are stronger-than-classically/quantum correlated. In the fol-
lowing we will present an analogue gravity experiment in which we observe all clas-
sical features of the Hawking process, i.e. (i)–(iii). We will later argue that it is not
practical to look for (iv) due to the particular analogue system we are using.

8.3 Experimental Setup

Our experiments were performed in a 6.2 m long, 0.15 m wide and 0.48 m
deep flume (Fig. 8.2), and were partly motivated by experiments in similar
flumes [2, 15, 18]. We set up a spatially varying background flow by placing a
1.55 m long and 0.106 m high obstacle in the flume.

Particular care was taken to design an obstacle to minimize, or avoid, flow sep-
aration. Especially downstream of the obstacle as the flow slows down it has the
tendency to separate and create a recirculating flow, see Fig. 8.3. Initially our obsta-
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Fig. 8.3 Image of flow
separation. The image
visualize the flow behavior at
the lee side of an obstacle
with a trapezoidal profile. The
visualization technique
utilizes emerged neutrally
buoyant particles. The motion
of the particles during the
exposure time causes streak
lines indicating
approximately the velocity
field of the flow

Fig. 8.4 Obstacle used for experiments: (1a) and (1b) curved parts motivated by airplane wing;
(2) flat aluminum plate to further reduce flow separation; and (3) flat top aluminum plate to reduce
wave tunneling effects

cle was modeled after an airplane wing with a flat top and a maximum downstream
slope of 5.2 degrees designed to prevent flow separation, with a profile given by

H(x)= 2a
(
1− x − exp(−bx)

)
, (8.4)

where a = 0.094 of a meter and b = 5.94 per meter. However the gradual change
in slope along the down stream side of the profile, as well as the absence of any
sharp transitions, were not sufficient to fully prevent flow separation. To address
this issue we added a constant slope along the backside of the obstacle. The plate
is 0.81 meters long. It tapers at a 4.5 degree angle on each end so as to create a
smooth transition from obstacle to plate and then from the plate to the bottom of
the flume. The gradual slope eliminated apparent flow separation. Maximum flow
velocity occurs at the crest of the obstacle. In order to reduce wave tunneling effects
between the effective black and white hole horizons, the crest of the obstacle was
extended. This was done by cutting the obstacle at the crest and adding a plate
(15 cm in length) to join the sections. The extended flat section at the crest of the
obstacle resulted in a region of relatively uniform maximum flow velocity. The final
obstacle is displayed in Fig. 8.4.

We used particle imaging velocimetry [1] to determine the flow rate q , and to
verify the suppression of flow separation. In this technique, small neutrally buoyant,
tracer particles are added to the fluid. A short light pulse from each of two lasers
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(with different colors, red and green, say) is focussed into a narrow sheet within
the fluid, the two pulses being separated in time by a few milliseconds. The light
scattered in a direction normal to the sheet by the tracer particles within the sheet is
focussed so that it forms an image of the particles in a monochrome CCD camera.
Each particle produces two images, separated by a distance that is a measure of the
component of the velocity in the plane of the light sheet with which the particle is
moving; the distance between the two images is therefore a measure of the compo-
nent of the local fluid velocity. Analysis requires that the pair of images belonging
to a given particle be identified, and this is achieved by a cross-correlation technique
based on the assumption that particles within a small interrogation area are moving
with approximately the same velocity. As a result one obtains the flow velocity as a
function of height v(h), and the flow rate is given by q = ∫ h0

0 v(h)dh.
Shallow water waves of approximately 2 mm amplitude were generated 2 m

downstream of the obstacle, by a vertically oscillating mesh, which partially blocked
the flow as it moved in and out of the water. The intake reservoir had flow straight-
eners and conditioners to dissipate turbulence, inhomogeneous flow, and surface
waves caused by the inflow from the pump. The flume was transparent to allow
photography through the walls, and the experimental area was covered to exclude
exterior light.

We are interested in the excitations propagating on the background flow in our
setup. We measured and analyzed the variations in water surface height using es-
sentially the same techniques as in [10]. The water surface was illuminated us-
ing laser-induced fluorescence, and photographed with a high-resolution (1080p)
monochrome camera. The fluoresces served to scatter the light to the sides where it
could be photographed, to sharply delineate the surface, since the mean free path of
the laser in the dyed water was less than 1 mm, and to suppressed the speckle which
bedevils all laser illuminated objects.

The camera was set up such that the pixel size was 1.3 mm, the imaged area was
2 m wide and 0.3 m high, and the sampling rate was 20 Hz. The green (532 nm)
0.5 W laser light passed through a Powell lens to create a thin (∼2 mm) light sheet
(Fig. 8.5). Rhodamine-WT dye was dissolved in the water, which fluoresced to cre-
ate a sharp (<0.2 mm) surface maximum in the light intensity. We interpolated the
intensity of light between neighboring pixels to determine the height of the water
surface to subpixel accuracy.

8.4 Quasi-Particle Excitations

The excitation spectrum of gravity waves on a slowly varying background flow is
well understood and has a dispersion relation given by,

f 2 =
(

gk

2π

)
· tanh(2πkh), (8.5)

with the frequency, f = 1/ω, where is the wave period; the wavenumber, where
k = 1/λ is the wavelength; g is the gravitational acceleration, and h the depth of the



8 Classical Aspects of Hawking Radiation Verified in Analogue Gravity 173

Fig. 8.5 Surface wave
detection. Diagram of
light-sheet projection for
surface wave detection:
(1) water with dye, (2) Powell
lens, (3) light sheet, and
(4) fluorescing water surface

fluid. We neglect surface tension and viscosity. We classify waves according to the
value of 2πkh. Our waves all had wavelengths longer than about 2.1 m (still water
wavelengths), and surface tension would only play a role for waves with wave-
lengths less than about 1 cm.

For 2πkh < 1 the dispersion relation can be approximated by f =√
ghk. These

shallow water waves (called that because their wavelength 1/k is much longer than
the depth of the water h) have both group and phase speed approximately equal to√
gh. For 2πkh > 1, the dispersion relation is approximated by f = (gk/2π)1/2.

The group speed of these deep water waves is approximately half the phase speed,
and both vary as the square root of the wavelength. For a given water depth, both
the group and phase speeds of deep water waves are less than the group and phase
speeds of shallow water waves.

To determine the ambient wave noise in our facility, and to check the effective-
ness of our procedures, we conducted an experiment without the obstacle in place
and with no wave generation. The space and time Fourier transform of the noise
match the dispersion relation for this flow (q = 0.039 m2/s and h = 0.24 m) ex-
tremely well (Fig. 8.6). In general, the amplitude of the Fourier components has a
noise level of less than 0.2 mm away from the dispersion curves. The apparently
elevated noise energy crossing the k axis at f =±3.1 Hz is due to the second trans-
verse mode branch of the dispersion relation (the first transverse mode has a node at
the location of the light sheet).

In [19] Schützhold and Unruh argued that the equation of motion of shallow
water waves can be cast into a wave equation on a curved spacetime background if
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Fig. 8.6 Background noise.
Fourier transform of water
surface in flat bottom flume
without waves;
q = 0.039 m2/s and
h= 0.24 m. Fluctuations lie
on upstream (red line) and
downstream (green line)
branches of the dispersion
relation. Just visible at
f =±3.1, k = 0 are the
second transverse mode
branches of the dispersion
relation. Off the dispersion
curves, the background noise
amplitudes are less than
0.1 mm

the speed of the background flow varies. Assuming a steady, incompressible flow
the velocity

v(x)= q

h(x)
. (8.6)

Here the two-dimensional flow rate q is fixed. The dispersion relation in the presence
of a non-zero background velocity becomes,

(f + vk)2 =
(

gk

2π

)
· tanh(2πkh). (8.7)

In Fig. 8.7, the dispersion relation is plotted for a flow typical of our experiments.
Only the branch corresponding to waves propagating against the flow is plotted.
For low frequencies, there are three possible waves, which we denote according
to wavenumber. The first, k+in, is a shallow water wave with both positive phase
and group velocities, and corresponds to the wave that we generate in our exper-
iments. The second, k+out , has positive phase velocity, but negative group velocity.
Both waves, k+in and k+out , are on the positive norm branch of the dispersion rela-
tion. The third, k-out, has both negative phase and group velocities, and it lies on
the negative norm branch. In our experiment, generated shallow water waves move
into a region where they are blocked by a counter-current, and converted into the
other two waves. The goal of our experiment was the measurement of the relative
amplitudes of the outgoing positive and negative norm modes to test the validity
of (8.2). (Further conversion from deep-water waves to capillary waves [2, 17] are
also possible but are not studied here.) The conversion from shallow water to deep
water waves occurs where a counter-current become sufficiently strong to block the
upstream propagation of shallow water waves [17, 20, 25]. It is this that creates the
analogy with the white hole horizon in general relativity. That is, there is a region
that the shallow water waves cannot access, just as light cannot enter a white hole
horizon. Note that while our experiment is on white hole horizon analogues, it is
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Fig. 8.7 Conversion process. Dispersion relation for waves propagating against a flow typical of
our experiments. A shallow water wave, kin, sent upstream, is blocked by the flow and converted
to a pair of deep water waves (k+out and k−out ) that are swept downstream

because they are equivalent to the time inverse of black hole analogues that we can
apply our results to the black hole situation.

8.5 Experimental Procedure

We are interested in the physics around white hole, not black hole horizon. In our
particular analogue gravity system the two “outgoing” modes are now not on either
side of the horizon but both come out downstream of the white hole horizon. In order
to measure the effect of the horizon on incident waves, we sent shallow water waves
toward the effective white hole horizon, which sits on the lee side of the obstacle.
We conducted a series of experiments, with q = 0.045 m2/s and h= 0.194 m, and
examined 9 different ingoing frequencies between 0.02 and 0.67 Hz, with corre-
sponding still water wavelengths between 2.1 and 69 meters, corresponding to 0.67
to 0.02 Hz frequencies. This surface was imaged at 20 frames per second, for about
200 s. In all cases we analyzed a period of time which was an exact multiple of
the period of the ingoing wave, allowing us to carry out sharp temporal frequency
filtering of the signals (i.e., eliminating spectral leakage).

The analysis of the surface wave data was facilitated by introducing the convec-
tive derivative operator ∂t + v(x)∂x . We redefine the spatial coordinate using,

ξ =
∫

x=0

dx

v(x)
dx, (8.8)

where x is the distance downstream from the right hand edge of the flat portion of
the obstacle. The coordinate has dimensions of time, and its associated wave number
has units of Hz. The convective derivative becomes ∂t + ∂ξ , or, in Fourier transform
space, f + κ . This is the term that enters the conserved norm. From Eqs. (35), (36)
and (87) of Ref. [19] we find that the conserved norm has the form

∫ |A(f,κ)|2
(f + κ)

dκ, (8.9)

where A(f,κ) is the t , ξ Fourier transform of the vertical displacement of the wave.
In using this coordinate system the outgoing waves have an almost uniform wave-
length even over the obstacle slope.
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Fig. 8.8 The wave
characteristics (a) shows the
changes in the free surface.
Notice the colors indicate the
water level relative to the
bottom of the tank, not that
actual water heights. The
double Fourier transformation
(b) of the wave characteristics
shows three excited frequency
bands. The one at ω= 0
represents the background (at
k = 0) and a standing wave,
refereed to as the undulation
(to peaks at k ∼±10 Hz).
The other two excited
frequency bands at
±0.185 cycles/s correspond
to the stimulated frequency
bands

8.6 Data Analysis and Results

We will illustrate the pair-wave creation process by presenting the results for
fin = 0.185 Hz. In this case we analyzed images from exactly 18 cycles, measuring
the free surface along approximately 2 m of the flow including the obstacle. We cal-
culated from the wave characteristics, and after converting to ξ -coordinates (8.8),
the two-dimensional Fourier transformation as displayed in Figs. 8.8(a) and (b).
Note that the amplitudes of the Fourier transform at frequencies above and below
±0.185 Hz are very small, indicating that the noise level is small.

As expected, there are three peaks, one corresponding to the ingoing shallow wa-
ter wavelength around κ = 0, and the other two corresponding to converted deep
water waves peaked near κ+out = 9.7 Hz and κ−out =−10.5 Hz. The former is a posi-
tive norm and the latter a negative norm outgoing wave, see Eq. (8.9).

In Fig. 8.9 we plot the wave characteristics (amplitude as function of t and ξ )
filtered to give only the temporal 0.185 Hz band. Figures 8.9(b) and (c) are the char-
acteristic plots where we further filter to include only κ < −1 Hz and κ > 1 Hz
respectively. These are the negative and positive norm outgoing components with-
out the central peak of the ingoing wave (because of their very long wavelengths and
the rapid change in wavelength as they ascend the slope, the incoming waves have
a very broad Fourier transform). Recall, because we are only interested in counter-
propagating waves, we defined positive phase and group speeds as pointing to the
left. As expected from the dispersion relationship, see Fig. 8.7, the negative norm
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Fig. 8.9 Demonstration of
pair-wave conversion of an
ingoing frequency of
0.185 cycles/s: (a) Fourier
transform of unfiltered wave
characteristic. (b) Filtered
wave characteristic
containing only the ingoing
frequency band. (c) and
(d) Wave characteristics for
filtered negative and positive
norm modes (The colours
represent the amplitudes of
the waves, see color bars)

waves have negative phase velocity, while the positive norm waves have positive
phase velocity. The complex structure in the characteristics of Fig. 8.9(a) arises be-
cause of the interference between the three components, the original ingoing wave,
and the positive and negative norm outgoing waves. In Fig. 8.9(b), we see that the
ingoing wave is blocked around ξ = 0, with only a small component penetrating
into the region over the top of the obstacle ξ < 0.

Our key results are presented in Fig. 8.10. Figure 8.10(a) shows the amplitude of
the spatial Fourier transform at three selected ingoing frequencies. As the frequency
increases, the ratio of the negative norm peak to positive norm peak decreases. Fur-
thermore, the location of the positive norm peak moves slightly toward zero as the
frequency increases, while the negative norm peak moves away from zero. This is
to be expected from the location of the allowed spatial wavenumber from the dis-
persion plot, see Fig. 8.7. The red-dashed curve in Fig. 8.10(a) shows the Fourier
transform in the adjacent temporal frequency bands for the sample case of 0.185 Hz.
This is a representation of the noise, and is a factor of at least 10 lower than the sig-
nal in the 0.185 frequency band.

To test whether or not the negative norm wave creation was due to non-linearities
we repeated the runs at all frequencies with 50 % larger amplitudes. The converted
wave amplitudes did, in fact, scale linearly.

The crucial question is: Does the ratio of the negative to positive norm outgoing
waves scale as predicted by the thermal hypothesis of Eq. (8.2)? This is shown
to be the case in Fig. 8.10(b), where the norm ratios are plotted as a function
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Fig. 8.10 Amplitudes and
thermal spectrum.
(a) Absolute value of three
different ingoing frequency
bands, and typical noise level
(red line). (b) Ratio between
negative and positive norm
components in between 0.02
and 0.67 cycles/s (red stars),
and linear least-squares fit
(red line)

of ingoing frequency. To calculate the norm of the outgoing waves we integrate∫ |A(f,κ)|2/(f + κ)dκ over the peaks. In Fig. 8.10(b) the points represent the log
of the ratios of these areas for each of the input frequencies we tested. The ther-
mal hypothesis is strongly supported, with linear regression giving an inverse slope
of 0.12 Hz and an offset close to zero. The slope corresponds to a temperature of
T = 6× 10−12 K, and the offset is zero within our error bounds.

We see from Figs. 8.9(b), (c) that the region of “wave blocking” where the ingo-
ing wave is converted to a pair of outgoing waves, is not a phase velocity horizon
(where the phase velocity in the laboratory frame goes to zero). This is true even for
the very lowest frequencies. The usual derivation of the temperature from the surface
gravity relies on this conversion occurring at a phase velocity horizon. This makes
the calculation of the surface gravity, and thus the predicted temperature uncertain.
In our case estimates of the surface gravity give a predicted temperature of the same
order as the measured temperature. What is important is that the conversion process
does exhibit the thermal form predicted for the Hawking process.

This, together with the loss of irrotational flow near the horizon, and absence of
a dependable theory of surface waves over an uneven bottom make prediction of the
temperature from the fluid flow difficult. Our estimates—using the background flow
parameters (i.e. flow rate and water height) to calculate gH = 1/2∂(c2 − v2)/∂x—
give us a value somewhere between about 0.08 and 0.18 Hz. What is important is
that the conversion process does exhibit the thermal form predicted for the Hawking
process.
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8.7 Conclusions and Outlook

We have conducted a series of experiments to verify the stimulated Hawking pro-
cess at a white hole horizon in a fluid analogue gravity system. These experiments
demonstrate that the pair-wave creation is described by a Boltzmann-distribution,
indicating that the thermal emission process is a generic phenomenon. It survives
fluid-dynamical properties, such as turbulence and viscosity that, while present in
our system, are not included when deriving the analogy. The ratio is thermal despite
the different dispersion relation from that used by Hawking in his black hole deriva-
tion. This increases our trust in the ultraviolet independence of the effect, and our
belief that the effect depends only on the low frequency, long wavelength aspects
of the physics. When the thermal emission was originally discovered by Hawking,
it was believed to be a feature peculiar to black holes. Our experiments, and prior
numerical work [7, 22], demonstrate that this phenomenon seems to be ubiquitous,
and not something that relies on quantum gravity or Planck-scale physics.

Black holes are linear phase-insensitive field amplifiers of a very peculiar
kind [16, 26]. As mentioned in the introduction, the energy of the modes suffers
an extremely severe de-amplification, going from frequencies and wave numbers
far far higher than the Planck scale, to ones in the kHz regime for solar mass black
holes. Nevertheless, when looking at the norms of the modes, they act just like any
other amplifier. The Hawking effect is the quantum noise which must accompany
any amplifier, but the characteristics of that noise are entirely determined by the
amplification properties of the amplifier, which can of course be measured in the
classical regime. This relation between the classical and quantum behavior was first
pointed out by Einstein in his relation between stimulated and spontaneous emis-
sion, by Haus and Mullen in their characterization of quantum noise in a linear
amplifier, and by many others [8, 9]. In our case, the direct measurement of the
quantum noise, with a characteristic temperature of the order of T = 6× 10−12 K,
is of course impossible. A possible step forward is to study the behavior of quantum
noise in analogue gravity systems in Bose–Einstein condensates, as described e.g.
in Refs. [13, 14] and in the following chapter of this book.
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Chapter 9
Understanding Hawking Radiation from Simple
Models of Atomic Bose-Einstein Condensates

Roberto Balbinot, Iacopo Carusotto, Alessandro Fabbri, Carlos Mayoral,
and Alessio Recati

Abstract This chapter is an introduction to the Bogoliubov theory of dilute Bose
condensates as applied to the study of the spontaneous emission of phonons in
a stationary condensate flowing at supersonic speeds. This emission process is a
condensed-matter analog of Hawking radiation from astrophysical black holes but
is derived here from a microscopic quantum theory of the condensate without any
use of the analogy with gravitational systems. To facilitate physical understanding
of the basic concepts, a simple one-dimensional geometry with a stepwise homoge-
nous flow is considered which allows for a fully analytical treatment.

9.1 Introduction

One of the most spectacular predictions of Einstein’s General Relativity is the ex-
istence of Black Holes (BHs), mysterious objects whose gravitational field is so

R. Balbinot (B)
Dipartimento di Fisica, Università di Bologna and INFN sezione di Bologna, Via Irnerio 46,
40126 Bologna, Italy
e-mail: balbinot@bo.infn.it

I. Carusotto · A. Recati
INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, via Sommarive 14,
38123 Povo, Trento, Italy

I. Carusotto
e-mail: carusott@science.unitn.it

A. Recati
e-mail: recati@science.unitn.it

A. Fabbri · C. Mayoral
Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, C. Dr. Moliner 50,
46100 Burjassot, Spain

A. Fabbri
e-mail: afabbri@ific.uv.es

C. Mayoral
e-mail: carlosmsaenz@gmail.com

D. Faccio et al. (eds.), Analogue Gravity Phenomenology,
Lecture Notes in Physics 870, DOI 10.1007/978-3-319-00266-8_9,
© Springer International Publishing Switzerland 2013

181

mailto:balbinot@bo.infn.it
mailto:carusott@science.unitn.it
mailto:recati@science.unitn.it
mailto:afabbri@ific.uv.es
mailto:carlosmsaenz@gmail.com
http://dx.doi.org/10.1007/978-3-319-00266-8_9


182 R. Balbinot et al.

strong that not even light can escape from them but remains trapped inside a hori-
zon. According to the standard view, BHs are formed by the collapse of massive
stars (M > 3MSun) at the end of their thermonuclear evolution when the internal
pressure is no longer able to balance the gravitational self attraction of the star. Fur-
thermore supermassive BHs (M > 10MSun) are supposed to constitute the inner
core of active galaxies.

As no light can escape from them, BHs are expected to be really “black” objects.
In particular, their observational evidence can only be indirect: typically, the pres-
ence of a black hole is deduced by observing the behavior of matter (typically hot
gas) orbiting outside the horizon. A hypothetical isolated BH (i.e. a BH surrounded
by vacuum) would not manifest its presence except for its gravitational field, which
after a short time becomes stationary (even static if there is no angular momentum).

In 1974 Hawking showed [1] that this common belief is incorrect. If one takes
into account Quantum Mechanics, static and stationary BHs are no longer “black”,
but rather emit a steady radiation flux with a thermal spectrum at a temperature
given, simply speaking, by the gradient of the gravitational potential at the horizon.
This intrinsically quantum mechanical process is triggered by the formation of the
horizon and proceeds via the conversion of off-shell vacuum fluctuations into on-
shell particles. This effect is a universal feature of BHs, completely independent of
the details of the BH formation.

In spite of the interest that this fascinating effect has raised in a wide audience, no
experimental evidence is yet available to support this amazing theoretical prediction.
Since the emission temperature scales as the inverse of the BH mass (T ∼ 10−7 K
for a solar mass BH), the expected Hawking signal is in fact many order of mag-
nitudes below the 2.7 K cosmic microwave background. As a result, the Hawking
radiation by BHs appears to be a completely irrelevant process in any realistic as-
trophysical situation, with no hope to be detected in the sky. This situation is rather
frustrating, since the conceptual relevance of Hawking discovery is extremely pro-
found: the existence of Hawking radiation allows such a beautiful synthesis between
gravity and thermodynamics that it cannot be just an accident; many people indeed
regard Hawking result as a milestone in the yet undiscovered quantum theory of
gravity.

After almost 40 years of research into BHs, the attitude nowadays appears a bit
different and more promising on the experimental side. In particular, it was real-
ized that the Hawking emission process is not exclusively bound to gravitational
physics: its “kinematical” rather than “dynamical” nature makes it manifest itself in
different physical contexts. This way of looking at the Hawking effect has its origin
in a paper by Unruh in 1981 [2] where a steady emission of thermal phonons was
predicted to appear in any fluid with a transition from stationary to supersonic flow:
the basic process underlying this phonon emission is completely identical to the one
discussed by Hawking for the gravitational BH, in the sense that the mathematical
equations describing it are exactly the same as the ones describing Hawking radia-
tion from gravitational BHs. The reason for this amazing and unexpected “analogy”
is that the equation describing the propagation of long wavelength sound waves in a
moving fluid can be recast in terms of a massless scalar field propagating in a curved
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spacetime with a suitably chosen “acoustic metric”. In particular, the point where
a sub-sonic flow turns supersonic plays the role of an “acoustic horizon”, since
sound waves in the supersonic region are no longer able to propagate upstream.
Similarly to light inside a BH, sound waves are trapped inside the sonic horizon of
the “acoustic black hole”: upon quantization, Hawking radiation by the horizon is
predicted. Nowadays, we know that this analogy with gravitational systems is not
limited to fluids but can be developed for many other condensed matter and optical
systems [3]. Unlike gravitational BHs, these analog condensed matter models often
possess a well understood quantum mechanical description at the microscopic level,
which allows for a complete control of their physics. This is the case, in particular,
for atomic Bose-Einstein condensates which are the subject of the present chapter.

The relevance of the analogy is therefore twofold. On the one hand, one can
concretely consider investigating the actual existence of Hawking radiation using
table top experiments with complete control over the physical system. On the other
hand, the detailed knowledge of the microscopic quantum theory that underpins
these systems allows us to address a very delicate point in the theory of Hawking
radiation and possibly to eliminate some intrinsic inconsistencies in its standard
derivation.

In the absence of a complete and self-consistent quantum theory of gravity, one
typically adopts a semi-classical framework where gravity is treated classically ac-
cording to General Relativity, whereas light and matter fields propagating in the
curved spacetime are quantized. This is the so called Quantum Field Theory in
Curved Space [4]. One expects this scheme to provide a sufficiently accurate de-
scription of the gravity-matter systems for scales which are sufficiently large when
compared to the fundamental quantum scale for gravity, the so-called Planck scale
equal to 10−33 cm or 1019 GeV. Approaching this Planck scale, one can reasonably
expect that this semiclassical description becomes inaccurate and has to be replaced
by a (yet to be discovered) complete theory of quantum gravity.

Now because of the infinite (exponential) redshift suffered by the Hawking
phonons in their journey from near the horizon to infinity, a given mode of Hawking
radiation measured at time t with frequency ν far from the BH appears to have had
a frequency ν′ = νect/2R near the BH horizon (R is the radius), which rapidly ex-
ceeds the Planck energy. This feature makes the derivation clearly inconsistent and
casts serious doubts over the very existence of Hawking BH radiation. This is the so
called transplanckian problem [5].

The same kind of argument can also be repeated for Hawking-like radiation in
condensed matter systems: because of the infinite Doppler shift at the sonic hori-
zon, the modes responsible for Hawking-like radiation oscillate near the horizon at
a wavelength much smaller than the intermolecular or interatomic spacing, which
makes the hydrodynamical long-wavelength approximation inconsistent. On this ba-
sis, it would therefore be difficult to rule out the possibility that Hawking radiation is
an artifact, illegitimately extrapolated from of the long-wavelength approximation,
i.e. a spurious outcome without any physical reality.

From this perspective, analogue condensed matter systems provide a new angle
from which the transplanckian problem may be attacked: as they possess a detailed
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and well understood microscopic quantum description, the question of the existence
of Hawking radiation can be investigated from first principles, without using the
hydrodynamical approximation and hence any of the concepts borrowed from the
gravitational analogy such as the effective metric, horizon, etc. So far, most of the
work in this direction has been performed using atomic BECs, but the entirely pos-
itive results originating from these studies appears to hold under very general as-
sumptions: Hawking radiation is indeed a real physical phenomenon!

A closer look at the spectral and coherence properties of the predicted Hawking
radiation match the original expectation that, if the transition is sufficiently smooth
with respect to the microscopic scales of the fluid, the Hawking emission of Bogoli-
ubov phonons is thermal with a temperature proportional to the gradient of the flow
potential at the horizon [6–8]. In addition, several novel interesting features have
pointed out in regimes beyond the hydrodynamical approximation as well as in dif-
ferent configurations, e.g. white holes (the time-reversed black hole) [9] and the
so-called black-hole lasers (a pair of adjacent black and white hole horizons) [44].

In parallel to these theoretical and conceptual advances, a great effort has been
devoted in the last number of years to the identification of the most promising phys-
ical systems for experimental investigation of analogue Hawking radiation. Having
established that the Hawking effect exists, one can start to think at the best exper-
imental setting to reveal it. There are many systems proposed at this end, like ul-
tracold atoms, optical systems, water tank experiments and others. At the moment,
experiments with water tanks [10] have detected the classical counterpart of Hawk-
ing emission in flows exhibiting white hole horizons: stimulated emission by the
Hawking mechanism is probed by sending a classical incident wavepacket of sur-
face waves against the horizon. Unfortunately, these room-temperature experiments
do not appear suitable for investigating the quantum-mechanical nature of Hawking
radiation, that is the conversion of zero-point fluctuations into observable quanta by
the horizon. An observation of Hawking radiation from laser pulses propagating in
nonlinear optical media has been recently reported [11], but this result is still object
of intense discussion in the community [12–16].

The main experimental difficulty in the quest for analog Hawking radiation in
condensed matter systems is the extremely weak intensity of the signal in realistic
systems, which is therefore easily obscured by competing effects such as thermal
emission due to the non zero temperature of the systems as well as quantum noise. In
this respect, atomic gases appear to be the most promising candidate system [19, 20],
as they combine a variety of tools for the manipulation of the state of a system on a
microscopic level with the possibility of cooling the system to very low temperatures
where zero point quantum fluctuations start playing an important role. Still, even in
these systems temperatures below the expected Hawking temperature—of the order
of 10 nK—are hardly reached, and further difficulty comes from the detection of the
Hawking phonons emitted from the horizon.

A major breakthrough that appears to bypass both these problems was proposed
by us in 2008 [17] and is based on the use of density correlations, a modern pow-
erful tool to investigate microscopic properties of strongly correlated atomic gases
and in particular of their elementary excitations. Taking advantage of the fact that



9 Simple Models of Hawking Radiation in Atomic BECs 185

the Hawking radiation consists of correlated pairs of quanta emitted in opposite di-
rections from the horizon, a characteristic signal will appear in the density-density
correlation function for points situated on opposite sides with respect to the hori-
zon. Quantitative analysis of this unique signature was made using methods from
gravitational physics and then numerically confirmed by ab initio simulations of the
condensate dynamics based on a microscopic description of their collective proper-
ties [18]. As a result, it appears to be an ideal tool to isolate the Hawking radiation
signal from the background due to competing processes and experimental noise
even at non-zero temperatures. Of course, a similar strategy would be clearly im-
possible in astrophysical black holes as no access is possible to the region beyond
the horizon.

In this paper we shall use standard tools of the theory of a dilute Bose gas to show
in a rather pedagogical way how Hawking radiation emerges in an atomic BEC and
to explain its features on a simple and analytically tractable toy model. Our treat-
ment, as we shall see, closely resembles a model used to teach elementary Quantum
Mechanics—a one dimensional Schrödinger equation with square potential. Most
of the material presented here was originally published in Refs. [21, 22].

9.2 The Theory of Dilute Bose-Einstein Condensates
in a Nutshell

In this section we give a brief and rapid introduction to the theory of BECs. In
particular, we shall review the Gross-Pitaevskii equation describing the dynamics of
the condensate at the mean field level and the Bogoliubov description of quantum
fluctuations on it. More details can be found in textbooks [45] and in dedicated
reviews [46].

Bose-Einstein condensation is characterized by the accumulation of a macro-
scopic fraction of the particles into a single quantum state. To achieve such a quan-
tum degeneracy very low temperatures are required (on the order of T = 100 nK for
the typical densities of ultracold atomic gases in magnetic or optical traps), where
particles are no longer distinguishable and their Bose statistics start to become rele-
vant.

9.2.1 The Gross-Pitaevskii Equation and the Bogoliubov Theory

The model Hamiltonian describing a many-body system composed of N interacting
bosons confined in an external potential Vext (x) can be written in a second quantized
formalism as:

Ĥ =
∫

d3x

[
Ψ̂ †
(
− �

2

2m
∇2 + Vext

)
Ψ̂ + g

2
Ψ̂ †Ψ̂ †Ψ̂ Ψ̂

]
(9.1)
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where Ψ̂ (t,x) is the field operator which annihilates an atom at position x and obeys
standard bosonic equal time commutation rules

[
Ψ̂ (x), Ψ̂ †(x′

)]= δ3(x− x′
)
. (9.2)

The model Hamiltonian (9.1) is generally used within the dilute gas approxima-
tion where the two body interatomic potential can be approximated by a local term
V (x − x′)= gδ3(x− x′) with an effective coupling constant g related to the atom-
atom scattering length a by g = 4π�2a/m.

At sufficiently low temperatures well below the Bose-Einstein condensation tem-
perature, a macroscopic fraction of the atoms are accumulated into the single parti-
cle, lowest energy state, described by the macroscopic wavefunction Ψ0(x). The
time evolution of the macroscopic wavefunction in response of some excitation
(e.g. a temporal variation of the confining potential Vext ) is described by the Gross-
Pitaevski equation

i�
∂Ψ

∂t
=
(
− �

2

2m
∇2 + Vext + g|Ψ |2

)
Ψ : (9.3)

whose form can be heuristically derived by performing a mean-field approximation
Ψ̂ → Ψ0 in the Heisenberg equation

i�
∂Ψ̂ (t,x)

∂t
= [Ψ̂ (t,x), Ĥ

]
(9.4)

for the time-evolution of the atomic quantum field operator Ψ̂ . The ground state
wavefunction naturally emerges as the lowest-energy steady-state Ψ0(x) of the
Gross-Pitaevskii equation and oscillates at a frequency μ/�.

Small fluctuations around the mean-field can be studied within the so-called Bo-
goliubov approximation, where the bosonic field operator Ψ̂ is written as the sum of
a classical mean-field plus quantum fluctuations. In its usual formulation to describe
weakly excited condensates, one takes a steady state Ψ0 as the mean-field,

Ψ̂ (t,x)= Ψ0(x)
[
1+ φ̂(t,x)

]
e−iμt/�. (9.5)

The field operator φ̂ describing fluctuations then satisfies the Bogoliubov-de Gennes
(BdG) equation

i�
∂φ̂

dt
=−

(
�

2∇2

2m
+ �

2

m

∇Ψ0

Ψ0
∇
)
φ̂ + ng

(
φ̂ + φ̂†), (9.6)

where n= |Ψ0|2. The next subsections will be devoted re-expressing the BdG equa-
tion in terms of a curved spacetime with an effective metric determined by the spatial
profiles of the local speed of sound c=√

ng/m and of the local flow velocity v0.
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9.2.2 Analogue Gravity in Atomic BECs

Before continuing the formal development of BEC theory, we will show that by
parameterizing the field operator in a different way leads to a reinterpretation of
the above equations in a hydrodynamical language and then to the gravitational
analogy [3].

Using the so called density-phase representation of the condensate wavefunction
Ψ0 = √

neiθ , the Gross-Pitaevskii equation (9.3) can be rewritten as a pair of real
equations,

∂tn+∇(nv)= 0, (9.7)

�∂t θ =− �
2

2m
(∇θ)2 − gn− Vext − Vq : (9.8)

the former equation Eq. (9.7) is the continuity equation with an irrotational1 con-
densate velocity v0 = �∇θ/m. The latter is analogous to Euler equation for an irro-
tational inviscid fluid, with an additional “quantum pressure” term Vq(x)

Vq ≡− �
2

2m

∇2√n√
n

(9.9)

describing a kind of stiffness of the macroscopic wavefunction.
In this density-phase representation, the Bogoliubov expression (9.5) of the field

operator is rewritten as

Ψ̂ =
√
n+ n̂1e

i(θ+θ̂1) � Ψ0

(
1+ n̂1

2n
+ iθ̂1

)
(9.10)

and the Bogoliubov equation (9.6) reduce to a pair of equations of motion for the
fluctuations in the density n̂1 and in the phase (θ̂1) in the form

�∂t θ̂1 =−�v0∇ θ̂1 − mc2

n
n̂1 + mc2

4n
ξ2∇

[
n∇
(
n̂1

n

)]
= 0, (9.11)

∂t n̂1 =−∇
(

v0n̂1 + �n

m
∇θ1

)
. (9.12)

Here, a fundamental length scale is set by the so-called healing length defined as
ξ ≡ �/mc in terms of the local speed of sound c=√

ng/m.
If one is probing the system on length scales much larger than ξ (the so-called

hydrodynamic approximation), the last term in Eq. (9.11) can be neglected. As a
result, the density fluctuations can be decoupled as

n̂1 =− �n

mc2
[v0∇ θ̂1 + ∂t θ̂1]. (9.13)

1From the definition of the velocity field v0, it is immediate to see that the vorticity in the conden-
sate can only appear at points where the density vanishes.
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When this form is inserted in Eq. (9.12), the equation of motion for the phase per-
turbation

−(∂t +∇v0)
n

mc2
(∂t + v0∇)θ1 +∇ n

m
∇θ1 = 0 (9.14)

can be rewritten in a matrix form

∂μ
(
f μν∂ν θ̂1

)= 0 (9.15)

where the matrix elements f μν are defined as

f 00 =− n

c2
, f 0i = f i0 =− n

c2
vi

0, f ij = n

c2

(
c2δij − vi

0v
j

0

)
(9.16)

in terms of the condensate density n and local velocity v0. Greek indices μ,ν =
0,1,2,3 indicate 4-dimensional objects, while Latin ones i = 1,2,3 indicate the
space coordinates.

Now in any Lorentzian manifold the curved space scalar d’Alembertian operator
can be written as

�= 1√−g
∂μ
(√−ggμν∂ν

)
(9.17)

where g is the metric, gμν its inverse and g = det(gμν). Keeping this in mind,
Eq. (9.14) for the condensate phase dynamics can be rewritten in the form of a
curved space wave equation

�θ1 = 0, (9.18)

provided one identifies
√−ggμν ≡ f μν, (9.19)

which can be inverted leading to the effective metric

gμν = n

mc

(−(c2 − v2
0) −vi

0
−v

j

0 δij

)
. (9.20)

To summarise, we have shown that under the hydrodynamical approximation,
the equation of motion for the phase fluctuation in a BEC can be rewritten in terms
of a Klein-Gordon equation for a massless scalar field propagating in a fictitious
spacetime described by the metric gμν defined by Eq. (9.20). This is the core of the
gravitational analogy.

It should be stressed that this Lorentzian spacetime has nothing to do with the
real spacetime in which our BEC lives. Note also that the invariance of Eq. (9.18)
under general coordinate transformation is fake. The underlying BEC theory is not
even (special) relativistic, but Newtonian, with an absolute time, the laboratory time,
with respect to which the equal time commutators (Eq. (9.2)) are given.

However, having said this, taking a closer look at the metric gμν given by
Eq. (9.20): a particularly interesting situation arises in the fluid where there is a tran-
sition from sub to supersonic flow (i.e. |v0|> c). The gravitational analogy of such
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a configuration corresponds to a black hole as described in the so-called Painlevé—
Gullstrand coordinate system and is therefore called a “sonic black hole”—since
sound waves travel at a velocity c which is lower than the fluid velocity v0, they
are not able to propagate back and therefore become trapped inside the supersonic
region beyond the “sonic horizon”, i.e. the locus where |v0| = c.

In such a setting Eq. (9.18) describes a massless scalar field propagating in a
black hole spacetime. But this is exactly the system considered by Hawking to ob-
tain his famous result. One can therefore repeat, step by step, Hawking’s derivation
of black hole radiation. First of all, one has to perform a modal expansion of the
field and then focus on the upstream propagating modes which are barely able to
avoid being trapped by the horizon and escape into the subsonic region. Upon quan-
tization, the a comparison of the ‘in’ and ‘out’ vacuum states shows that they are
inequivalent since the corresponding annihilation and creation operators are related
by a Bogoliubov transformation that mixes them in a non-trivial way. As a result,
one can expect that the emission of Bogoliubov phonons by the horizon, appearing
in sub-sonic region and thermally distributed at a temperature given by the surface
gravity κ of the sonic horizon defined as

with κ = 1

2c

d(c2 − v2
0)

dn

∣∣∣∣
hor

, (9.21)

where n is the spatial coordinate normal to the horizon.
It is however crucial to note that this conclusion is based on a very strong as-

sumption, namely the large wavelength approximation, used to neglect the last term
in Eq. (9.11) and therefore rewrite this equation as �2θ1 = 0, and introduce the
gravitational analogy. As explained in the introduction, the modes of the field re-
sponsible for the Hawking emission experience an infinite Doppler shift when leav-
ing the near-horizon region in the upstream direction. As their wavelength in this
region is many order of magnitude smaller than the healing length of the atomic
gas, all the derivation of Hawking radiation in atomic BEC, outlined above, is at
least questionable.

For this reason we need to go back to the original microscopic BEC theory of
Sect. 9.2 and try to derive Hawking radiation without making any hydrodynamical
approximations and without any reference to the gravitational analog: the emission
of Hawking radiation in BEC supersonic configurations will then appear as a natural
outcome of the underlying quantum theory.

9.3 Stepwise Homogeneous Condensates

A simple analytical treatment can be developed to show the occurrence of Bogoli-
ubov phonon creation “à la Hawking” in an atomic BEC undergoing supersonic
motion in a very idealized setting consisting of two semi-infinite stationary homo-
geneous one dimensional condensates (left and right sector) connected by a step-like
discontinuity [22]. As the purpose of this article is mostly a pedagogical one, we will
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not discuss the actual experimental feasibility of such a configuration, but instead
refer to the most recent research literature [47, 48].

In particular, we will assume the condensate to have uniform density n in both
sections as well as a spatially uniform flow velocity v along the negative x axis. The
external potential Vext and the repulsive atom-atom interaction coupling g are taken
as constants within each sector, but to have different values in each sector, satisfying

V l
ext + gln= V r

ext + grn. (9.22)

Here, the superscripts “l” and “r” refer to left (x < 0) sector and right (x > 0) sector
respectively with the discontinuity located at x = 0. The change in the interaction
constant g can be obtained either via the dependence of the atom-atom scattering
length on the value of a static external magnetic field, or by modulating the trans-
verse confinement orthogonal to the x direction. Such a change in g directly trans-
lates into a change in the local sound speed, which therefore has a different value cl

and cr in the two sections, defined as usual by m(cl,r )2 = ngl,r . Due to condition
(9.22), the plane wave form

Ψ0(t, x)=√
neik0x−iω0t (9.23)

of the condensate wavefunction is a solution of the Gross-Pitaevski equation (9.3)
at all times t and positions x. The wavevector k0 and the frequency ω0 are related
to the flow velocity v0 by v0 = �k0/m and �ω0 = �

2k2
0/(2m)+ gn.

Let us look now at the solutions of the BdG equation Eq. (9.6) for the fluctua-
tion field φ̂ within each sector. Exploiting the stationarity of the configuration, it is
convenient to separate φ̂ into its “particle” and “antiparticle” components

φ̂(t, x)=
∑

j

[
âj φj (t, x)+ â

†
j ϕ

∗
j (t, x)

]
, (9.24)

where âj and â
†
j are phonons annihilation and creation operators, satisfying the

usual bosonic commutations rules [âi , â†
j ] = δij . The mode functions φj and ϕj

satisfy the equations of motion

[
i(∂t + v0∂x)+ ξc

2
∂2
x −

c

ξ

]
φj = c

ξ
ϕj ,

[
−i(∂t + v0∂x)+ ξc

2
∂2
x −

c

ξ

]
ϕj = c

ξ
φj

(9.25)

which follow from Eq. (9.6) and its conjugate and are to be chosen as oscillating at
a frequency ωj . Imposing that the equal time commutators satisfy

[
φ̂(t, x), φ̂†(t, x′

)]= 1

n
δ
(
x − x′

)
, (9.26)
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allows the modes to be normalised:
∫

dx
[
φjφ

∗
j ′ − ϕ∗j ϕj ′

]=±δjj ′

�n
. (9.27)

The sum over j in (9.24) only involves positive norm modes for which the sign in
(9.27) is positive.

Within each of the two x < 0 and x > 0 spatially uniform regions, the mode
functions have a plane wave form

φω =D(ω)e−iωt+ik(ω)x, ϕω =E(ω)e−iωt+ik(ω)x, (9.28)

where D(ω) and E(ω) are normalization factors to be determined using Eq. (9.27).
Inserting Eqs. (9.28) into (9.25) yields

[
(ω− v0k)− ξck2

2
− c

ξ

]
D(ω)= c

ξ
E(ω),

[
−(ω− v0k)− ξck2

2
− c

ξ

]
E(ω)= c

ξ
D(ω):

(9.29)

the existence of nontrivial solutions requires that the determinant associated with
the above homogeneous system vanishes,

(ω− v0k)
2 = c2

(
k2 + ξ2k4

4

)
. (9.30)

Solving this implicit equation provides the so-called Bogoliubov dispersion of weak
excitations on top of a spatially uniform condensate,

ω− v0k =±c

√

k2 + ξ2k4

4
≡Ω±(k): (9.31)

here, Ω± is the excitation frequency as measured in the frame co-moving with the
fluid. The + (−) sign refers to the positive (negative) norm branch. As expected, for
small k such that kξ � 1, the dispersion relation is linear

ω− v0k =±ck, (9.32)

this is the hydrodynamical regime to which the gravitational analogy is strictly
speaking restricted. At higher k, the corrections to the linear dispersion are positive
and the modes propagate supersonically. For large k such that kξ � 1, the relation
tends to the quadratic dispersion of single particles.

The normalization condition gives

∣∣D(ω)
∣∣2 − ∣∣E(ω)

∣∣2 =± 1

2π�n

∣∣∣∣
dk

dω

∣∣∣∣ (9.33)
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which using Eqs. (9.29) yields the normalization factors

D(ω)= ω− v0k + cξk2

2√
4π�ncξk2|(ω− v0k)(

dk
dω

)−1|
,

E(ω)=− ω− v0k − cξk2

2√
4π�ncξk2|(ω− v0k)(

dk
dω

)−1|
:

(9.34)

as expected, positive (negative) norm states correspond to the branch of the dis-
persion relation at a positive (negative) comoving frequency. Remarkably, for any
positive norm branch of frequency ω and wavevector k, there exists a negative norm
branch of opposite frequency −ω and wavevector −k. Taking advantage of this du-
ality, one can use both positive and negative norm states, replacing the sum over j

in (9.24) with an integral over ω and restrict to the positive frequency ones.
Let us go back to the dispersion relation Eq. (9.30). At fixed ω (>0) this is a

fourth order equation in k. It has four solutions k
(i)
ω and in general φω is a linear

combination of four plane waves constructed from these solutions

φω(x, t)= e−iωt
4∑

i=1

A
(ω)
i Di(ω)eik

(i)
ω x (9.35)

where the Ai(ω) are the amplitudes of the modes, not to be confused with the nor-
malization coefficients D(ω). Similarly for ϕω(x, t).

As said before, our systems consist of two semi-infinite homogeneous conden-
sates joined at x = 0 where there is a step-like discontinuity in the speed of sound.
Looking at the modes equations (9.25), one has to require that the solutions in the
left region and the ones in the right region satisfy the following matching conditions
at x = 0

[φ] = 0,
[
φ′
]= 0, [ϕ] = 0,

[
ϕ′
]= 0, (9.36)

where [f (x)] = limε→0[f (x+ε)−f (x−ε)] and ′ means d
dx

. These four conditions
allow to establish a linear relation between the left and right amplitudes

Al
i =MijA

r
j (9.37)

where M is a 4× 4 matrix called the matching matrix, not to be confused with the
scattering matrix S we will introduce later, whose dimensionality may vary.

To proceed further in the analysis and explicitly solve the dispersion relation to
get the four roots k

(i)
ω , one has to specify the flow configuration under investigation,

as the position of the roots in the complex plane varies according to the subsonic or
supersonic character of the flow. In the next sections we shall separately consider
the different cases.
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Fig. 9.1 Upper panel: sketch of the subsonic-subsonic flow configuration. Low panels: dispersion
relation of Bogoliubov modes in the asymptotic flat regions away from the transition region

9.4 Subsonic-Subsonic Configuration

We start by considering a uniformly sub-sonic flow, that is with a flow speed v0

smaller in magnitude than both cl and cr , that is |v0|< cr,l . A sketch of the config-
uration under investigation is given in the upper panel of Fig. 9.1.

9.4.1 The Bogoliubov Modes and the Matching Matrix

The Bogoliubov dispersion in a subsonic flow is graphically displayed in the two
lower panels of Fig. 9.1 for two different relative values of the speed of sound cl

(left) and cr > cl (right). The positive (negative) norm branches are plotted as solid
(dashed) lines. For any given ω > 0, two real solutions belonging to the positive
norm branch exist within each l, r region: one, ku, has a positive group velocity
vg = dω

dk
and propagates in the rightward, upstream direction; the other, kv has a

negative group velocity and propagates in the leftward, downstream direction. The
u,v labels used to indicate these solutions are the conventional ones in General



194 R. Balbinot et al.

Relativity. These two real roots admit a perturbative expansion

kv = ω

v0 − c

(
1+ c3z2

8(v0 − c)3
+O

(
z4)
)
,

ku = ω

v0 + c

(
1− c3z2

8(v0 + c)3
+O

(
z4)
) (9.38)

where the dimensionless expansion parameter is z ≡ ξω/c. To zeroth order in z,
one recovers the well known hydrodynamical results kv = ω/(v0 − c) and ku =
ω/(v0 + c). In the following, we shall indicate as ku,v the value of these roots in
each of the two homogeneous sections on either side of the interface.

The other two solutions of the dispersion relation are a pair of complex conjugate
roots. Within the right sector at x > 0, we call kr+ the root with positive imaginary
part, which represents a decaying mode when one goes away from the horizon in
the positive x direction. The other solution with a negative imaginary part kr− corre-
sponds instead to a growing (and therefore non-normalizable) mode. The opposite
holds in the left sector at x < 0; the kl+ root with a positive imaginary part rep-
resents a growing mode away from the horizon, while the other root kl− with a
negative imaginary part represents the decaying mode. Within each l, r region, the
wavevector of these modes can be expanded in powers of z= ξω/c as

k± = ωv0

c2 − v2
0

[
1− (c2 + v2

0)c
4z2

4(c2 − v2
0)

3
+O

(
z4)
]

±
2i
√
c2 − v2

0

cξ

[
1+ (c2 + 2v2

0)c
4z2

8(c2 − v2
0)

3
+O

(
z4)
]
. (9.39)

To summarise, the decomposition of φω and ϕω in the left (right) regions reads

φl(r)
ω = e−iωt

[
Al(r)

v Dl(r)
v eik

l(r)
v x +Al(r)

u Dl(r)
u eik

l(r)
u x

+A
l(r)
+ D

l(r)
+ eik

l(r)
+ x +A

l(r)
− D

l(r)
− eik

l(r)
− x
]
, (9.40)

ϕl(r)
ω = e−iωt

[
Al(r)

v El(r)
v eik

l(r)
v x +Al(r)

u El(r)
u eik

l(r)
u x

+A
l(r)
+ E

l(r)
+ eik

l(r)
+ x +A

l(r)
− E

l(r)
− eik

l(r)
− x
]
. (9.41)

We stress again the fact that the coefficients A
l(r)
u,v,± are the amplitudes of the dif-

ferent modes, not to be confused with the normalization coefficients, Dl(r)
u,v,± for φω

and E
l(r)
u,v,± for ϕω: these latter coefficients are uniquely fixed by the commutator

relations and the equation of motion, while the amplitudes depend on the choice of
basis for the scattering states as we shall see in Sect. 9.4.2. Note that the amplitudes
A

l(r)
u,v± are the same for φω and ϕω as required by the equation of motion.
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The matching conditions at x = 0, [φ] = 0, [ϕ] = 0, [φ′] = 0, [ϕ′] = 0 impose a
linear relation between the four left amplitudes Al

u,v,± and the right ones Ar
u,v,±

Wl

⎛

⎜⎜⎜
⎝

Al
v

Al
u

Al+
Al−

⎞

⎟⎟⎟
⎠
=Wr

⎛

⎜⎜⎜
⎝

Ar
v

Ar
u

Ar+
Ar−

⎞

⎟⎟⎟
⎠

, (9.42)

where the 4× 4 matrices Wl(r) are

Wl(r) =

⎛

⎜⎜⎜⎜
⎝

D
l(r)
v D

l(r)
u D

l(r)
+ D

l(r)
−

ik
l(r)
v D

l(r)
v ik

l(r)
u D

l(r)
u ik

l(r)
+ D

l(r)
+ ik

l(r)
− D

l(r)
−

E
l(r)
v E

l(r)
u E

l(r)
+ E

l(r)
−

ik
l(r)
v E

l(r)
v ik

l(r)
u E

l(r)
u ikl+D

l(r)
+ ik

l(r)
− D

l(r)
−

⎞

⎟⎟⎟⎟
⎠

. (9.43)

Multiplying both sides by W−1
l one finally gets

⎛

⎜⎜⎜
⎝

Al
v

Al
u

Al+
Al−

⎞

⎟⎟⎟
⎠
=M

⎛

⎜⎜⎜
⎝

Ar
v

Ar
u

Ar+
Ar−

⎞

⎟⎟⎟
⎠

, (9.44)

in terms of the matching matrix M =W−1
l Wr whose explicit form is rather involved

and is not given here.

9.4.2 The “In” and “Out” Basis

We now proceed to construct a complete and orthonormal (with respect the scalar
product Eq. (9.27)) basis for the scattering states of our operator. This can be done in
two ways: either choosing a “in” basis constructed with incoming scattering states
(i.e. states that propagate from the asymptotic regions x =±∞ towards the discon-
tinuity at x = 0) or an “out” basis constructed with outgoing scattering states (i.e.
states that propagate away from the discontinuity to x =±∞).

Let us start with the “in” basis, whose construction is sketched in Fig. 9.2. We
define the in v-mode φv,in

ω as a left-moving scattering state with a unit initial ampli-
tude incident on the discontinuity from the right (x =+∞), i.e. Dr

ve
−iωt+ikrvx . The

incident wave is scattered by the discontinuity at x = 0 into a transmitted v-mode
in the left region with amplitude Al

v (i.e. Al
vD

l
ve
−iωt+iklvx ) and partially reflected in

the right region with amplitude Ar
u (i.e. Ar

uD
r
ue
−iωt+ikrux ). In order to complete the

construction, we have to include, in both regions, the complex decaying modes as
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Fig. 9.2 Sketch of the Bogoliubov modes involved in the “in” (left panels) and “out” (right panels)
basis. The mode labels refer to the dispersion shown in the lower panels of Fig. 9.1

well: Ar+Dr+e−iωt+ikr+x and Al−Dl−e−iωt+ikl−x . Growing modes are not included as
they diverge at infinity.

The general matching equation (9.44) becomes in this case

⎛

⎜⎜⎜
⎝

Al
v

0

0

Al−

⎞

⎟⎟⎟
⎠
=M

⎛

⎜⎜⎜
⎝

1

Ar
u

Ar+
0

⎞

⎟⎟⎟
⎠

. (9.45)

Treating M perturbatively in zl ≡ ωξl
cl

we obtain (for the simplest case v0 = 0; for
the general subsonic v0 = 0 case the amplitudes are given in the appendix of [21])

Al
v ≡ T = 2

√
clcr

cl + cr
− i

√
cl(cl − cr)

2zl

c
3/2
r (cl + cr)

+ cl(cl − cr)
2(c2

l + c2
r )z

2
l

2c3
r (cl + cr)2

, (9.46)

Ar
u ≡ R = cl − cr

cl + cr
− icl(cl − cr)

2zl

c2
r (cl + cr)

− cl(cl − cr)(2c3
l − 3c2

l cr + 2clc2
r + c3

r )z
2
l

4c4
r (cl + cr)

,

(9.47)

Al− =
(cl − cr)

√
zl

Dl−
√
cr(cl + cr)

− (cl − cr)z
2
l

2Dl−c
5/2
r (cl + cr)

[
cr

2 + i
(
cl

2 + cr
2 − crcl

)]
, (9.48)
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Ar+ =
cl(−cl + cr)

√
zl

Dr+c
3/2
r (cl + cr)

+ c2
l (cl − cr)z

2
l

2Dr+c
7/2
r (cl + cr)

[
cl + i(cl − 2cr)

]
. (9.49)

Note that these combine in such a way that the unitarity relation |R|2 + |T |2 = 1
is satisfied. Note also that even though they do not enter the unitarity relation, the
amplitudes of the decaying modes are part of the full mode and their presence will
show up as an explicit contribution to the density-density correlation.

In a similar way we can construct the φu,in
ω as a scattering state with a unit ini-

tial amplitude moving to the right and incident on the discontinuity from the left
(x =−∞), which is partially reflected back and partially transmitted, as shown in
Fig. 9.2. Here too, we have to include the decaying modes.

The matching relation now reads

⎛

⎜⎜⎜
⎝

Al
v

1

0

Al−

⎞

⎟⎟⎟
⎠
=M

⎛

⎜⎜⎜
⎝

0

Ar
u

Ar+
0

⎞

⎟⎟⎟
⎠

(9.50)

yielding

Al
v ≡ R′ = cr − cl

cl + cr
− i(cl − cr)

2zl

cr (cl + cr)
+ (cl − cr)(c

3
l + 2c2

l cr − 3clc2
r + 2c3

r )z
2
l

4c3
r (cl + cr)

,

(9.51)

Ar
u ≡ T ′ = 2

√
clcr

cl + cr
− i

√
cl(cl − cr)

2zl

c
3/2
r (cl + cr)

−
√
cl(cl − cr)

2(c2
l − 4clcr + c2

r )z
2
l

8c7/2
r (cl + cr)

,

(9.52)

Al− =
(cl − cr)

√
zl

Dl−
√
cl(cl + cr)

+ (cl − cr)

2Dl−
√
clcr (cl + cr)

[−cr + i(2cl − cr)
]
z2
l , (9.53)

Ar+ =
√
cl(−cl + cr)

√
zl

Dr+cr(cl + cr)
+

√
cl(cl − cr)

2Dr+c3
r (cl + cr)

[
cl

2 + i
(
cl

2 + cr
2 − clcr

)]
z2
l (9.54)

which implies |R′|2 + |T ′|2 = 1, as required by unitarity.
The scattering modes φv,in

ω and φu,in
ω , and the similarly constructed ϕv,in

ω and
ϕu,in
ω , constitute a complete “in” basis for our field operator φ̂, that can be then

expanded as

φ̂(x, t) =
∫ ∞

0
dω
[
âv,in
ω φin

v,r (t, x)+ âu,in
ω φin

u,l(t, x)+ âv,in†
ω ϕin∗

v,r (t, x)

+ âu,in†
ω ϕin∗

u,l (t, x)
]
. (9.55)

The “in” vacuum state |0, in〉 is defined as usual by âu,in
ω |0, in〉 = 0 and

âv,in
ω |0, in〉 = 0. The N -phonons states that constitute the “in” basis of the Hilbert
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space are constructed by a repeated action of the creation operators â†u,in
ω and â†v,in

ω

on the vacuum state.
While the “in” basis has been constructed using incoming scattering modes, an

alternative “out” basis can be constructed starting from the outgoing scattering basis
of the φ̂ field operator, composed of modes that emerge from the scattering region
around x = 0 with unit amplitude on a wave propagating at t = +∞ either right-
wards towards x =+∞ or leftwards towards x =−∞.

We begin by defining the φv,out
ω scattering mode: as it is sketched in Fig. 9.2, this

is a linear combination of in-going right and left moving components with ampli-
tudes Al

u and Ar
v and decaying modes with amplitudes Al− and Ar+. These coeffi-

cients are chosen in a way to give after scattering only a left moving v-mode of unit
amplitude. This imposes the condition:

⎛

⎜⎜⎜
⎝

1

Al
u

0

Al−

⎞

⎟⎟⎟
⎠
=M

⎛

⎜⎜⎜
⎝

Ar
v

0

Ar+
0

⎞

⎟⎟⎟
⎠

(9.56)

that yields

Al
u ≡ R′∗ = cr − cl

cl + cr
+ i(cl − cr)

2zl

cr (cl + cr)
+ (cl − cr)(c

3
l + 2c2

l cr − 3clc2
r + 2c3

r )z
2
l

4c3
r (cl + cr)

,

(9.57)

Ar
v ≡ T ′∗ = 2

√
clcr

cl + cr
+ i

√
cl(cl − cr)

2zl

c
3/2
r (cl + cr)

− (cl − cr)
2(c2

l − 4clcr + c2
r )z

2
l

8c7/2
r (cl + cr)

,

(9.58)

Al− =
(cl − cr)

√
zl

Dl−
√
cl(cl + cr)

− (cl − cr)z
2
l

2Dl−cr(cl + cr)

[
cr + i(2cl − cr)

]
, (9.59)

Ar+ =
√
cl(−cl + cr)

√
zl

Dr+cr(cl + cr)
+

√
cl(cl − cr)z

2
l

2Dr+c3
r (cl + cr)

[
cl

2 − i
(
cl

2 + cr
2 − crcl

)]
(9.60)

with |R′∗|2 + |T ′∗|2 = 1.
The same procedure can be used to construct the mode φu,out

ω , by imposing that
the out-going waves consist of a unit amplitude right moving u-mode only. In this
case, the matching relations are

⎛

⎜⎜⎜
⎝

0

Al
u

0

Al−

⎞

⎟⎟⎟
⎠
=M

⎛

⎜⎜⎜
⎝

Ar
v

1

Ar+
0

⎞

⎟⎟⎟
⎠

(9.61)
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with

Al
u ≡ T ∗ = 2

√
clcr

cl + cr
+ i

√
cl(cl − cr)

2zl

c
3/2
r (cl + cr)

−
√
cl(cl − cr)

2(c2
l − 4clcr + c2

r )z
2
l

8c7/2
r (cl + cr)

,

(9.62)

Ar
v ≡ R∗ = cl − cr

cl + cr
+ icl(cl − cr)

2zl

c2
r (cl + cr)

− cl(cl − cr)(2c3
l − 3c2

l cr + 2clc2
r + c3

r )z
2
l

4c4
r (cl + cr)

,

(9.63)

Al− =
cl(cl − cr)zl

Dl−
√
cr(cl + cr)

+ (cl − cr)z
2
l

2Dl−c
5/2
r (cl + cr)

[−cr
2 + i

(
cl

2 + cr
2 − clcr

)]
, (9.64)

Ar+ =
cl(−cl + cr)zl

Dr+c
3/2
r (cl + cr)

+ c2
l (cl − cr)z

2
l

2Dr+c
7/2
r (cl + cr)

[
cl + i(2cr − cl)

]
. (9.65)

In analogy to what was done for the “in” basis, this “out” basis can be used to obtain
a decomposition of the φ̂ field operator as

φ̂(x, t) =
∫ ∞

0
dω
[
âv,out
ω φout

v,l (t, x)+ âu,out
ω φout

u,r (t, x)+ âv,out†
ω ϕout∗

v,l (t, x)

+ âu,out†
ω ϕout∗

u,r (t, x)
]

(9.66)

in terms of the bosonic annihilation and creation operators for the out-going
modes. This also leads to an alternative vacuum state defined by the conditions
âu,out
ω |0, out〉 = âv,out

ω |0, out〉 = 0 and an alternative “out” basis of the Hilbert
space.

9.4.3 Bogoliubov Transformation

As both the “in” and the “out” basis are complete, the “in” and “out” scattering
modes can be related by the simple linear scattering relations

φin
v,r = T φout

v,l +Rφout
u,r ,

φin
u,l =R′φout

v,l + T ′φout
u,r ,

(9.67)

that can be summarized in terms of a unitary 2× 2 scattering matrix S

S =
(

T R

R′ T ′
)
. (9.68)

Analogous relations hold for the ϕω modes.
Expressed in terms of mode amplitudes, these scattering relations define a linear

Bogoliubov transformation relating the annihilation and creation operators for the
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“out” modes to the ones of the “in” modes. In the specific case of the sub-sub inter-
face considered in the present section, all u and v modes involved in the scattering
process have positive norm, so there is no mixing of the annihilation and creation
operators:

âv,out
ω = T âv,in

ω +R′âu,in
ω ,

âu,out
ω =Râv,in

ω + T ′âu,in
ω .

(9.69)

As a result, the Bogoliubov transformation trivially reduces to a unitary transfor-
mation of the “in” and “out” Hilbert space that conserves the number of excitations
and, in particular, preserves the vacuum state: if the system is initially in the |0, in〉
state with no incoming particles, the number of outgoing particles will also be zero,

nv(u),out
ω = 〈0, in|âv(u),out†

ω av(u),out
ω |0, in〉

= 〈0, in|(T ∗(R∗)âv,in†
ω +R′∗(T ′∗)âu,in†

ω

)

× (T (R)âv,in
ω +R′(T ′)âu,in

ω

)|0, in〉 = 0. (9.70)

No phonon can be created, but only scattered at the horizon.

9.4.4 Density-Density Correlations

Correlation functions are a modern powerful tool to investigate the properties of
strongly correlated atomic gases [49–55]. We shall concentrate our attention to the
correlation pattern of the density fluctuations at equal time, defined as

G(2)(t;x, x′)≡ 1

2n2
lim
t→t ′

〈in|{n̂1(t, x), n̂1
(
t ′, x′

)}|in〉, (9.71)

where {, } denotes the anticommutator. In our configuration with a spatially uniform
condensate density n, the density fluctuation operator n̂1 can be expanded in the
in-going annihilation and creation operators as

n̂1 ≡ n
(
φ̂(x, t)+ φ̂†(x, t)

)

= n

∫ ∞

0
dω
[
âv,in
ω

(
φin
v,r + ϕin

v,r

)+ âu,in
ω

(
φin
u,l + ϕin

u,l

)+ h.c.
]
, (9.72)

or, alternatively, one can use the “out” basis.
In either case, by evaluating G(2) on the vacuum state |0, in〉 = |0, out〉, one

finds for one point located to the left (x < 0) and the other to the right (x > 0) the
expression

G(2)(t;x, x′) � − �

2πmn(cr + cl)

[
1

(v0 − cl)(v0 − cr)(
x

cl−v0
+ x′

v0−cr
)2



9 Simple Models of Hawking Radiation in Atomic BECs 201

+ 1

(v0 + cl)(v0 + cr)(− x
v0+cl

+ x′
v0+cr

)2

]
, (9.73)

which has little significance, only showing correlations decreasing with the square
of the distance weighted by the effective speed of sound in the different regions.
The physical origin of these correlations is traced back to the repulsive interactions
between particles in the gas.

9.5 Subsonic-Supersonic Configuration

9.5.1 The Modes and the Matching Matrix

The warm up exercise discussed in detail in the previous section has allowed to
take confidence in the formalism. In this section, we shall consider the much more
interesting case of the acoustic black hole configuration sketched in Fig. 9.3: taking
again the flow to be in the negative x direction (v0 < 0), we assume that the flow is
sub-sonic cr > |v0| in the upstream x > 0 sector, while it is super-sonic cl < |v0| in
the downstream x < 0 sector.

The analogy with a gravitational black hole is simply understood: long wave-
length sound waves in the x < 0 supersonic region are dragged away by the flow
and no longer able to propagate in the upstream direction. The outer boundary of
the super-sonic region separating it from the sub-sonic one plays the role of the hori-
zon: long wavelength sound waves can cross it only in the direction of the flow, and
eventually get trapped inside the acoustic black hole. Even if this picture perfectly
captures the dynamics of long wavelength Bogoliubov waves in the sonic window
where the dispersion has the form Eq. (9.32), the supersonic correction that is visible
in Eq. (9.31) introduces remarkable new effects as we shall see in this section.

The analysis of the dispersion relation and of the modes in the x > 0 subsonic
region on the right of the horizon is the same as given in the previous section: two
oscillating modes exist with real wave vectors kru(v) as well as two complex conju-
gate evanescent modes with kr±.

In the x < 0 supersonic region on the left of the horizon, the dispersion rela-
tion has a significantly different shape, as shown in the lower-left panel Fig. 9.3. In
particular, it is immediate to see that there exists a threshold frequency ωmax above
which the situation resembles the one of the subsonic regime: two oscillatory modes
exist propagating in the downstream and upstream directions, respectively. Note that
the upstream propagation occurs in spite of the super-sonic character of the under-
lying flow because of the super-luminal dispersion of Bogoliubov waves predicted
by Eq. (9.31). Of course, this mode falls well outside the sonic region where the
hydrodynamic approximation is valid. The threshold frequency ωmax is given by
the maximum frequency of the negative norm Bogoliubov mode as indicated in the
lower-left panel Fig. 9.3. In formulas, it corresponds to the Bogoliubov frequency
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Fig. 9.3 Upper panel: sketch of the subsonic-supersonic flow configuration. Low panels: disper-
sion relation of Bogoliubov modes in the asymptotic regions away from the horizon

of the mode at a kmax value such that

kmax =− 1

ξl

[
−2+ v2

0

2c2
l

+ |v0|
2cl

√

8+ v2
0

c2
l

]1/2

. (9.74)

The 0 < ω < ωmax case is much more interesting: from Fig. 9.3, one sees that
four real roots of the dispersion relation exist, corresponding to four oscillatory
modes, two on the positive norm branch and two on the negative norm one. Two of
these modes denoted as u,v lie in the small k region at

kv = ω

v− cl

[
1+ c3

l z
2
l

8(v0 − cl)3
+O

(
z2
l

)]
, (9.75)

ku = ω

v+ cl

[
1− c3

l z
2
l

8(v0 + cl)3
+O

(
z2
l

)]
(9.76)

and have a hydrodynamic character. In contrast to the sub-sonic case, both of them
propagate in the downstream direction with a negative group velocity dω

dk
< 0: also

the u mode, which propagates to the right in the frame comoving with the fluid,
is dragged by the super-sonic flow and is forced to propagate in the left direction.
Furthermore, while the kv solution belongs as before to the positive norm branch,
the ku solution belongs now to the negative norm branch and the corresponding
excitation quanta carry a negative energy ω < 0.
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The wavevector of the other two roots indicated as k3 and k4 in the figure is
non-perturbative in ξ

k3,4 = ωv0

c2
l − v2

0

[
1− (c2

l + v2
0)c

4
l z

2
l

4(c2
l − v2

0)
3
+O

(
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±
2
√
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clξl
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1+ (c2

l + 2v2
0)c

4
l z

2
l

8(c2
l − v2

0)
3

+O
(
z4
l

)]
(9.77)

and lies well outside the hydrodynamic region. Comparing these roots with
Eq. (9.39), one realizes that k3,4 are the analytic continuation for supersonic flow of
the growing and decaying modes previously discussed for the subsonic regime. The
k3 mode belongs to the positive norm branch, while k4 to the negative one; both of
them have a positive group velocity and propagate in the upstream direction.

For ω < ωmax , the general solution of the modes equation in the super-sonic (left)
region reads then

φl
ω = e−iωt

[
Al

vD
l
ve

iklvx +Al
uD

l
ue

iklux +Al
3D

l
3e

ikl3x +Al
4D

l
4e

ikl4x
]
,

ϕl
ω = e−iωt

[
Al

vE
l
ve

iklvx +Al
uE

l
ue

iklux +Al
3E

l
3e

ikl3x +Al
4E

l
4e

ikl4x
]
,

while in the sub-sonic (right) region it reads

φr
ω = e−iωt

[
Ar

vD
r
ve

ikrvx +Ar
uD

r
ue

ikrux +Ar+Dr+eik
r+x +Ar−Dr−eik

r−x
]
. (9.78)

An analogous expression holds for ϕr
ω once we replace D(ω) with E(ω).

As we have discussed in the sub-sub case, the field amplitudes on the left and the
right of the discontinuity point at x = 0 are related by

⎛

⎜⎜⎜
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⎠

, (9.79)

where the matching matrix is M = W−1
l Wr , written in terms of Wr given by

Eq. (9.43) and

Wl =

⎛

⎜⎜⎜
⎝

Dl
v Dl

u Dl
3 Dl
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3 El
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l
u ikl3D

l
3 ikl4D

l
4

⎞

⎟⎟⎟
⎠

. (9.80)
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Fig. 9.4 Sketch of the Bogoliubov modes involved in the “in” (left panels) and “out” (right panels)
basis. The mode labels refer to the dispersion shown in the lower panels of Fig. 9.3

9.5.2 The “In” and “Out” Basis

We can now proceed to construct the “in” scattering basis. Differently from the sub-
sub case discussed in the previous section, there are now three “in” scattering modes
which are associated with the processes sketched in Fig. 9.4.

The mode φv,in
ω is defined as left-moving, unit amplitude, v wave originating in

the x > 0 sub-sonic region propagating towards the horizon, which upon scattering
generates in the subsonic region a reflected right-moving u wave of amplitude Ar

u

and a spatially decaying wave of amplitude Ar+. There are now two transmitted
waves in the x < 0 supersonic region and both travel in the leftward direction along
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the flow. One is the standard transmitted v wave, with positive norm and amplitude
Al

v , the other is a negative norm u wave with amplitude Al
u, the so-called anomalous

transmitted wave.
To leading order in zl , the corresponding amplitudes are

Al
v =

√
cr

cl

v0 − cl

v0 − cr
= Svl,vr , (9.81)

Ar
u =

v0 + cr

v0 − cr
= Sur,vr , (9.82)

Al
u =

√
cr

cl

v0 + cl

cr − v0
= Sul,vr , (9.83)

Ar+ =
cl
√
zl

√
cr(v

2
0 − c2

l )√
2Dr+(v0 − cl)(c2

r − v2
0)

3/2(cr + cl)

[√
c2
r − v2

0

(
v+

√
v2

0 − c2
l

)

+ i
(
v0

√
v2

0 − c2
l + v2

0 − c2
r

)]
= S+r,vr . (9.84)

Note the shorthand notation introduced in (9.81)–(9.84) to simply identify the in-
coming and outgoing channel: for example the matrix element Sul,vr indicates that
the incoming channel (second index) is a v-mode entering from the right region,
while the outgoing channel (first index) is a u-mode escaping in the left region. The
conservation of the Bogoliubov norm translates into a unitary condition between the
amplitudes of the propagating modes,

∣∣Al
v

∣∣2 + ∣∣Ar
u

∣∣2 − ∣∣Al
u

∣∣2 = 1, (9.85)

where the minus sign comes from the negative norm u, l-mode.
As sketched in Fig. 9.4, the other two “in” scattering modes φ3,in

ω and φ4,in
ω are

constructed in a similar way by imposing a unit amplitude in the k3 or k4 waves
incident on the horizon from the left supersonic side. For the φ3,in

ω “in” scattering
mode, the corresponding amplitudes are given by

Al
v =
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l )
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)
= S+r,3l (9.89)
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and satisfy the unitarity relation

∣∣Al
v

∣∣2 + ∣∣Ar
u

∣∣2 − ∣∣Al
u

∣∣2 = 1. (9.90)

Remarkably the amplitudes for the propagating modes now diverge at small ω

as 1√
ω

.

For the φ4,in
ω “in” scattering mode,
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(9.94)

and the unitarity condition reads

∣∣Al
v

∣∣2 + ∣∣Ar
u

∣∣2 − ∣∣Al
u

∣∣2 =−1: (9.95)

where the minus sign on the right-hand side comes from the fact that the incom-
ing unit amplitude k4 mode has negative norm. All together, the v, 3 and 4 “in”
scattering modes form a basis in which the φ̂ field operator may be expanded.

The construction of the “out” basis proceeds along similar lines: one has the three
φout
v,l , φout

u,r and φout
u,l “out” scattering modes, where the l(r) label near the superscript

u indicates again the left (right) region of space. The corresponding scattering pro-
cesses are depicted in Fig. 9.4.

As the corresponding amplitudes will not be needed in the following, we refer
the reader to Ref. [21] for their explicit expression. As discussed in [6–8, 22], the
field operator can then be equivalently expanded in the basis of the “in” scattering
modes as

φ̂ =
∫ ωmax

0
dω
[
âv,in
ω φin

v,r + â3,in
ω φin

3,l + â4,in†
ω φin

4,l

+ âv,in†
ω ϕin∗

v,r + â3,in†
ω ϕin∗

3,l + â4,in
ω ϕin∗

4,l

]
, (9.96)

or, equivalently on the basis of the “out” scattering ones. Note in particular the third
term on the right-hand side, as the corresponding k4 mode is a negative norm one,
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this term enters with a φin
4,l field multiplied by a creation â4,in†

ω operator: as we
shall see in the next sub-section, this simple fact is the key element leading to the
emission of analog Hawking radiation by the horizon.

9.5.3 Bogoliubov Transformation

The “in” and “out” basis are now related by a 3× 3 scattering matrix S relating the
three incoming states to the three outgoing states. Explicitly

φin
v,r = Svl,vrφ

out
v,l + Sur,vrφ

out
u,r + Sul,vrφ

out
u,l , (9.97)

φin
3,l = Svl,3lφ

out
v,l + Sur,3lφ

out
u,r + Sul,3lφ

out
u,l , (9.98)

φin
4,l = Svl,4lφ

out
v,l + Sur,4lφ

out
u,r + Sul,4lφ

out
u,l . (9.99)

Because of the negative norm of the φout
ul mode, conservation of the Bogoli-

ubov norm imposes the modified unitarity condition S†ηS = SηS† with η =
diag(1,1,−1) and the scattering matrix S mixes positive and negative norm modes.

As a result, the Bogoliubov transformation relating the creation and destruction
operators of the “in” and “out” scattering states is no longer trivial and mixes cre-
ation and destruction operators as follows

⎛

⎜
⎝

âv,out
ω

âur,out
ω

âul,out†
ω

⎞

⎟
⎠=

⎛

⎜
⎝

Svl,vr Svl,3l Svl,4l

Sur,vr Sur,3l Sur,4l

Sul,vr Sul,3l Sul,4l

⎞

⎟
⎠

⎛

⎜
⎝

âv,in
ω

â3in
ω

a4in†
ω

⎞

⎟
⎠ . (9.100)

The non triviality of the Bogoliubov transformation has the crucial consequence
that the “in” and “out” vacuum states no longer coincide |0, in〉 = |0, out〉: while the
|0, in〉 “in” vacuum state (defined as the state annihilated by the â

(v,3,4),in
ω operators)

contains no incoming phonons, it contains a finite amount of phonons in all three
out-going modes due to a parametric conversion process taking place at the horizon,

nu,r
ω = 〈0, in|âur,out†

ω âur,out
ω |0, in〉 = |Sur,4l |2, (9.101)

nu,l
ω = 〈0, in|âul,out†

ω âul,out
ω |0, in〉 = |Sul,vr |2 + |Sul,3l |2, (9.102)

nv,l
ω = 〈0, in|âv,out†

ω âv,out
ω |0, in〉 = |Svl,4l |2. (9.103)

Note in particular the remarkable relation

nu,l
ω = |Sul,vr |2 + |Sul,3l |2 = |Sur,4l |2 + |Svl,4l |2 = nu,r

ω + nv,l
ω . (9.104)

The physical meaning of the above relations can be understood as follows. Sup-
pose that at t = −∞ we have prepared the system in the |0, in〉 vacuum state,
so there are no incoming phonons. We are working in the Heisenberg picture of
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Quantum Mechanics, so that |0, in〉 describes the state of our systems at all time.
Now Eqs. (9.101)–(9.103) tell us that at late time in this state there will be out-
going quanta on both sides of the horizon: the vacuum has spontaneously emitted
phonons. This occurs by converting vacuum fluctuations of the k4 mode into real
on shell Bogoliubov phonons (see lower left panel of Fig. 9.4) in the hydrodynamic
region.

While processes involving particle creation in time-varying settings are well-
known in quantum mechanics, e.g. the dynamical Casimir effect [23–39], the pro-
duction of particles in a stationary background seems to contradict energy conser-
vation. The solution of this puzzle lies in Eq. (9.104): besides the positive energy
ur and vl phonons , there is also production of negative energy (ul) phonons, the
so called “partners” which propagate down in the supersonic region. The number of
these latter equals the number of the formers. This is how energy conservation and
particle production coexist in our stationary systems. As particles are produced in
pairs with opposite ±ω frequencies, energy is conserved.

Now let us give a closer look at Eq. (9.101): according to this, an hypothetical
observer sitting far away from the horizon in the subsonic region at x →+∞ will
observe a flux of phonons coming from the horizon. This is the analogue of black
hole Hawking radiation. The number of phonons of this kind emitted per unit time
and per unit bandwidth is

dNu,r
ω

dtdω
= |Sur,4l |2 � (cr + v0)

(cr − v0)

(v2
0 − c2

l )
3/2

(c2
r − c2

l )

2cr
clξlω

. (9.105)

The 1
ω

dependence of the above expression is reminiscent of the low frequency
expansion of a thermal Bose distribution [22]

nT (ω)= 1

e
kBT

�ω − 1
� kBT

�ω
+ · · · (9.106)

and one can try to identify the 1
ω

coefficient of (9.105) as an effective temperature

T = �

kB

(cr + v0)

(cr − v0)

(v2
0 − c2

l )
3/2

(c2
r − c2

l )

2cr
clξl

. (9.107)

As the surface gravity of our toy model with an abrupt discontinuity in the flow is
formally infinite while the temperature remains finite, the connection of the analog
model to the original gravitational framework seems to fail. However, to investigate
the correspondence with the gravitational black holes, one has to consider more gen-
eral and realistic velocity profiles where the transition from the subsonic region to
the supersonic one is smooth enough to justify the hydrodynamical approximation.
Accurate numerical calculations in this regime show that the emission is indeed ther-
mal in this case and the temperature is to a good accuracy determined by the surface
gravity κ of the associated black hole according to Eq. (9.21). As shown in [6–8, 42],
the original Hawking’s prediction for the emission temperature holds provided the
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spatial variation of the flow parameters occurs on a characteristic length scale longer
than ξ2/3κ−1/3. Of course, the thermal spectrum is restricted to frequencies lower
than the upper cut-off at ωmax : above this frequency, one in fact recovers the physics
of the sub-sub interface where no emission takes place. These results, together with
the full numerical simulation in [18] confirm that the emission of Hawking radiation
is not an artifact of the hydrodynamical approximation and provide an independent
validation of the model of phonon propagation based on the metric in Eq. (9.20).

Even in the most favorable configurations, realistic estimates of the Hawking
temperature in atomic BECs give values of the order of 10 nK, that is one order
of magnitude lower than the typical temperature of the condensates (100 nK). This
makes the Hawking emission of Bogoliubov phonons in BECs a quite difficult ef-
fect to reveal in an actual experiment, as the interesting signal is masked by an
overwhelming thermal noise.

A proposal to overcome this difficulty was put forward in [17]: as the pairs of
Bogoliubov excitations produced by the Hawking process originate from the same
vacuum fluctuation, their strong correlation is expected to be responsible for specific
features in the correlation function of density fluctuations. This idea was soon con-
firmed by numerical simulations of the dynamics of atomic condensates in acoustic
black hole configurations. The features analytically predicted in [17] are indeed visi-
ble in the density correlation pattern and, moreover, are robust with respect to a finite
temperature. At present, this method represents the most promising strategy to ex-
perimentally detect the analog Hawking effect in atomic Bose-Einstein condensates.
The first investigation into the potential power of density correlation techniques in
the context of an analog dynamical Casimir effect in condensates has been recently
reported in [41] along the lines of the theoretical proposal in [40].

9.5.4 Density-Density Correlations

The fact that the density correlation function in BECs exhibits characteristic peaks
associated with phonon creation à la Hawking can be easily seen in our simple toy
model. For simplicity, let us restrict our attention to the contribution to the density-
density correlation function due to the “out” particles and consider the decomposi-
tion

n̂1(t, x) � n

∫ ωmax

0

[
âv,out
ω

(
φout
v,l + ϕout

v,l

)+ âur,out
ω

(
φout
u,r + ϕout

u,r

)

+ âul,out†
ω

(
φout
u,l + ϕout

u,l

)+ h.c.
]
. (9.108)

Expanding the “out” creation and annihilation operators in terms of the “in” ones
and using the approximate form of the S matrix elements given by Eq. (9.100), and
finally evaluating expectation values on the |0, in〉 “in” vacuum state, one finds that
the above expression describes correlations between the (ur) and (ul) particles and
the (ur) and (vl) particles if the points x and x′ are taken on opposite sides with
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Fig. 9.5 Color plots of the
rescaled density correlation
function
(n0ξr )× [G(2)(x, x′)− 1] a
time grnt/�= 160 after the
switch-on of the black hole
horizon. The calculation has
been performed using the
truncated-Wigner method of
[18]. Black hole parameters:
|v0|/cl = 1.5, |v0|/cr = 0.75.
The dashed white line
indicates the analytically
expected position (9.110) of
the negative peak in the
density correlation signal

respect the horizon, while one finds (ul)–(vl) correlations if both points are inside
the horizon. If both x, x′ are located outside the horizon, correlations just show a
monotonic decrease with distance as in the sub-sub case.

As in general one has |Svl,4l | � |Sul,4l |, the main contribution to the density
correlation in the x < 0 and x′ < 0 sector comes from the (ul)–(ur) term describing
correlations between the Hawking phonon (ur) and its partner (ul). Integrating over
all frequencies up to ωmax , one obtains term of the form [22]

G(2)(x, x′
)∼− 1

4πn

(v2
0 − c2

l )
3/2

cl(v0 + cl)(v0 − cr)(cr − cl)

sin[ωmax(
x′

v0+cr
− x

v0+cl
)]

x′
v0+cr

− x
v0+cl

.

(9.109)
From this expression, it is easy to see that the density-density correlation function
has a negative value and is peaked along the half-line

x′

v0 + cr
= x

v0 + cl
. (9.110)

The stationarity of the Hawking process is apparent in the fact that the peak value
of Eq. (9.109) does not depend on the distance from the horizon.

The physical picture that emerges from this mathematical derivation is that pairs
of (ul) and (ur) phonons are continuously created by the horizon at each time t

and then propagate in opposite directions at speeds vul = v0 + cl < 0 for (ul) and
vur = v0 + cr > 0 for (ur). At time 
t after their emission they are located at
x = vul
t and x′ = vur
t , which explains the geometrical shape of the peak line
Eq. (9.110) where correlations are strongest. A numerical evaluated example of the
correlation function of density fluctuations is shown in Fig. 9.5: the dashed line
indicates the expected position of the peak line Eq. (9.110). A detailed discussion of
the other peaks (that are barely visible on the color scale of the figure) can be found
in [18, 22].
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9.5.5 Remarks

Let us try to summarize the results discussed in the present chapter. We have seen
that for a stationary flowing BEC with a horizon-like boundary separating an up-
stream subsonic region from a downstream supersonic one, spontaneous emission of
Bogoliubov phonons occurs at the horizon by converting zero-point quantum fluc-
tuations into real and observable radiation quanta. The emitted radiation appears to
an observer outside the horizon in the subsonic region to have an approximately
thermal distribution: this is the analog Hawking effect in BECs.

Similarly to the gravitational context, where nothing can travel faster than light,
the horizon has a well-defined meaning of surface of no return: no physical sig-
nal can travel from inside the black hole to the outside crossing the horizon in the
outward direction. In the case of an atomic BECs, the “sonic” horizon is defined
as the surface where the speed of sound c equals the velocity |v0| of the fluid: for
the hydrodynamical u,v modes at low wavevector, the acoustic black hole exactly
mimics what happens in the gravitational case: no long wavevector sound wave can
cross the horizon in the upstream direction. On the other hand the dispersion of Bo-
goliubov modes in an atomic BEC shows significant super-luminal corrections: the
higher the wavevector of the excitation, the larger its group velocity. As a result,
the k3,4 modes are able to travel in the upstream direction in the super-sonic region
inside the horizon and therefore to escape from the black hole. In contrast to the
hydrodynamic modes, they are not trapped inside and do not see any horizon: for
them the gravitational analogy has no meaning.

Some authors have recently introduced wavevector dependent rainbow metrics
to describe the propagation of different modes at different wave vectors and have
defined several distinct concepts of horizon, such as the phase horizon and the group
horizon. Our opinion is that these additional concepts may end up hiding the essence
of Hawking radiation behind unessential details.

The key ingredient in order to have the emission of radiation in the “in” vacuum
state is in fact the presence of negative energy states that allow the emission of a pair
of quanta while conserving energy: this requires that the flow becomes supersonic
within some spatial region. The main role of a horizon where the flow goes from
sub- to super-sonic is in determining the thermal shape of the spectral distribution
of the emitted radiation. To better appreciate this fundamental point, the next chap-
ter will be devoted to a short discussion of configurations with a super-sonic flow
on both sides of the interface: as it was first pointed out in [43], the spontaneous
emission of radiation takes place in this case in spite of the total absence of a hori-
zon: sound waves are always dragged by the super-sonic flow and can not propagate
upstream. Because of the absence of an horizon, the resulting spectral distribution
of the associated zero-point radiation is however very different from the thermal
Hawking radiation, with a low-frequency tail dominated by a constant term instead
of 1/ω.
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Fig. 9.6 Upper panel: sketch of the supersonic-supersonic flow configuration. Low panels: dis-
persion relation of Bogoliubov modes in the asymptotic regions away from the horizon

9.6 Supersonic-Supersonic Configuration

Consider a BEC undergoing supersonic motion at every point, with a sound velocity
profile varying abruptly at x = 0: no sonic horizon is present in this setting and at
all points long wavelength sound waves are dragged in the downstream direction by
the underlying flowing fluid.

The dispersion relation pattern on either sides of the discontinuity is shown in the
lower panels of Fig. 9.6. For ω < ωmax =min[ωl

max,ω
r
max], one has four oscillatory

solutions in both regions with real wavevectors. The ku and kv hydrodynamic solu-
tions propagate in the downstream direction (i.e. to the left with negative v0) while
the large wavevector k3 and k4 solutions are able to propagate upstream. The kv,3

and ku,4 solutions correspond to positive and negative norm modes respectively.
The general solution of the mode equations in both regions is

φr(l)
ω = e−iωt

[
Al(r)

v Dl(r)
v eik

l(r)
v x +Al(r)

u Dl(r)
u eik

l(r)
u x

+A
l(r)
3 D

l(r)
3 eik

l(r)
3 x +A

l(r)
4 D

l(r)
4 eik

l(r)
4 x
]
. (9.111)
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As usual, the left and right amplitudes are related by

⎛

⎜
⎜⎜
⎝

Al
v

Al
u

Al
3

Al
4

⎞

⎟
⎟⎟
⎠
=M

⎛

⎜
⎜⎜
⎝

Ar
v

Ar
u

Ar
3

Ar
4

⎞

⎟
⎟⎟
⎠

, (9.112)

the matching matrix is given by M =W−1
l Wr , where

Wl(r) =

⎛

⎜
⎜⎜⎜
⎝

D
l(r)
v D

l(r)
u D

l(r)
3 D

l(r)
4

ik
l(r)
v D

l(r)
v ik

l(r)
u D

l(r)
u ik

l(r)
3 D

l(r)
3 ik

l(r)
4 D

l(r)
4

E
l(r)
v E

l(r)
u E

l(r)
3 E

l(r)
4

ik
l(r)
v E

l(r)
v ik

l(r)
u E

l(r)
u ik

l(r)
3 D

l(r)
3 ik

l(r)
4 D

l(r)
4

⎞

⎟
⎟⎟⎟
⎠

. (9.113)

As illustrated in Fig. 9.7, the “in” basis is here defined by four incoming waves:
two of them (u,v) are incident on the discontinuity from the right (left panels on the
first and second rows); the two others (3,4), from the left (left panels on the third
and fourth rows). The “out” basis is defined along the same lines as sketched in the
four panels of the right column.

The field operator can be expanded either in the “in” or in the “out” basis as

φ̂ =
∫ ωmax

0
dω
[
âv,in
ω φv

v,r + âu,in†
ω φin

u,r + â3,in
ω φin

3,l + â4,in†
ω φin

4,l

+ âv,in†
ω ϕin∗

v,r + au,in
ω ϕin∗

u,r + â3,in†
ω ϕin∗

3,l + â4,in
ω ϕin∗

4,l

]
(9.114)

or

φ̂ =
∫ ωmax

0
dω
[
âv,out
ω φout

v,l + âu,out†
ω φout

u,l + â3,out
ω φout

3,r + â4,out†
ω φout

4,r

+ âv,out†
ω ϕout∗

v,l + âu,out
ω ϕout∗

u,l + â3,out†
ω ϕout∗

3,r + â4,out
ω ϕout∗

4,r

]
. (9.115)

The “in” and “out” basis are related by

φin
v,r = Svl,vrφ

out
v,l + Sul,vrφ

out
u,l + S3r,vrφ

out
3,r + S4r,vrφ

out
4,r , (9.116)

φin
u,r = Svl,urφ

out
v,l + Sul,urφ

out
u,l + S3r,urφ

out
3,r + S4r,urφ

out
4,r , (9.117)

φin
3,l = Svl,3lφ

out
v,l + Sul,3lφ

out
u,l + S3r,3lφ

out
3,r + S4r,3lφ

out
4,r , (9.118)

φin
4,l = Svl,4lφ

out
v,l + Sul,4lφ

out
u,l + S3r,4lφ

out
3,r + S4r,4lφ

out
4,r (9.119)
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Fig. 9.7 Sketch of the Bogoliubov modes involved in the “in” (left panels) and “out” (right panels)
basis. The mode labels refer to the dispersion shown in the lower panels of Fig. 9.6
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and the corresponding relation between the “in” and “out” annihilation and creation
operators is

⎛

⎜⎜⎜
⎝

âv,out
ω

âu,out†
ω

â3,out
ω

â4,out†
ω

⎞

⎟⎟⎟
⎠
=

⎛

⎜⎜⎜
⎝

Svl,vr Svl,ur Svl,3l Svl,4l

Sul,vr Sul,ur Sul,3l Sul,4l

S3r,vr S3r,ur S3r,3l S3r,4l

S4r,vr S4r,ur S4r,3l S4r,4l

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

âv,in
ω

âu,in†
ω

â3,in
ω

a4,in†
ω

⎞

⎟⎟⎟
⎠

. (9.120)

Explicit expressions for the corresponding amplitudes are listed in the Appendix.
Here we see again that the S matrix mixes creation and annihilation operators. As

a consequence, the |0, in〉 and |0, out〉 vacua do not coincide: in particular the “in”
vacuum |0, in〉 state with no incident quanta leads to a finite amount of out-going
particles that can be detected: in the left region, corresponding to the u,v modes; in
the right region, the 3,4 modes.

More precisely

nv,l
ω = 〈0, in|âv,out†

ω âv,out
ω |0, in〉 = |Svl,ur |2 + |Svl,4l |2 (9.121)

nu,l
ω = 〈0, in|âu,out†

ω âu,out
ω |0, in〉 = |Sul,vr |2 + |Sul,3l |2 (9.122)

n3,r
ω = 〈0, in|â3,out†

ω â3,out
ω |0, in〉 = |S3r,ur |2 + |S3r,4l |2 (9.123)

n4,r
ω = 〈0, in|â4,out†

ω â4,out
ω |0, in〉 = |S4r,vr |2 + |S4r,3l |2 (9.124)

and unitarity of the S matrix imposes that

nv,l
ω + n3,r

ω = nu,l
ω + n4,r

ω : (9.125)

the number of positive energy particles equals the number of negative energy ones.
From the explicit expressions for the S matrix elements listed in the Appendix, it
is immediate to see that all spectral distributions nv,l

ω , nu,l
ω , n3,r

ω and n4,r
ω at low

frequencies are dominated by constant terms, in stark contrast with the 1/ω shape
of the thermal Hawking radiation.

9.7 Conclusions

In this chapter, we have given an introductory review of Hawking radiation effects in
atomic Bose-Einstein condensates. By focussing our attention on a simple toy model
based on a piecewise uniform flow interrupted by sharp interfaces, we have made
use of the standard Bogoliubov theory of dilute condensates to obtain analytical
predictions for the quantum vacuum emission of phonons by the interface: a neces-
sary and sufficient condition for this emission to occur is super-sonic flow. While
the low-frequency part of the emission follows an approximately thermal form for
a black-hole interface separating a sub-sonic upstream region from a super-sonic
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downstream one, a completely different spectrum is found for flows that do not ex-
hibit any horizon and are super-sonic everywhere.

The interest of our development is manifold: on one hand, our analytical treat-
ment provides an intuitive understanding of Hawking radiation based on a Bogoli-
ubov generalization of the scattering of waves by square potentials in a one dimen-
sional Schrödinger equation. On the other hand, our derivation is however com-
pletely “ab initio”, based on the fundamental microscopic quantum description of
the BEC without any recourse to the gravitational analogy. As a result, it does not
depend on the hydrodynamic approximation that underlies the introduction of the
effective metric and shows that the Hawking effect in atomic BECs is not at all an
artifact of the low wavelength (hydrodynamical) approximation: no transplanckian
problem is present which may cast doubts on the derivation, rather our derivation
shows that the transplanckian problem is itself an artifact of the hydrodynamical
approximation.

The intense theoretical and experimental activity that is currently in progress
makes us confident that the existence of analog Hawking radiation will be soon
experimentally confirmed. The robustness of Hawking radiation with respect to the
microscopic details of the condensed-matter system would be a strong indication
that, in spite of that lack of quantum, microscopic, description of gravity, Hawking’s
prediction of black hole radiation with its important thermodynamical implications
is a real milestone in our understanding of Nature.
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Appendix

In this appendix, we give the explicit expressions for S Matrix coefficients, to first
order in the limit of small ω, for the supersonic-supersonic condition treated in
Sect. 9.6. Note in particular how those involved in the vacuum emission (Svl,ur ,
Sul,vr , S3r,4l , S4r,3l) grow as

√
ω at low ω, while (S4r,vr , S3r,ur , Sul,3l , Svl,4l) tend

to constants.

Svl,vr =
√

v0 + cl

v0 − cl

(c2
r − c2

l )
√
ωξl

2
√

2(v2
0 − c2

l )
1/4(v2

0 − c2
r )

,

Sul,vr =
√

v0 − cl

v0 + cl

(c2
r − c2

l )
√
ωξl

2
√

2(v2
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1/4(v2

0 − c2
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√
v2

0 − c2
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√
v2

0 − c2
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2(v2
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1/4(v2

0 − c2
r )

1/4
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√
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√
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, (9.126)

Svl,3l = cl + cr

2
√
clcr

,

Sul,3l = i
cl − cr

2
√
clcr

,

S3r,3l = (v2
0 − c2

r )
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Chapter 10
Transformation Optics

Ulf Leonhardt

Abstract Transformation optics applies ideas from Einstein’s general theory of rel-
ativity in optical and electrical engineering for designing devices that can do the
(almost) impossible: invisibility cloaking, perfect imaging, levitation, and the cre-
ation of analogues of the event horizon. This chapter gives an introduction to this
field requiring minimal prerequisites.

10.1 Introduction

According to Einstein’s general theory of relativity, the geometry of spacetime is
curved by the momentum and energy of macroscopic objects. This curvature is
what we perceive as gravity, because it influences the motion of particles such as
Newton’s apple falling from a tree in the spacetime geometry curved by Earth or
the planets circling around in the spacetime geometry curved by the Sun. Gravity
also influences the propagation of waves; the most striking demonstration of which
is gravitational lensing where light from distant stars or galaxies is deflected and
focused in the spacetime geometry created by other stars or galaxies. Gravity is uni-
versal, because the geometry of space and time sets the scene for everything, particle
and wave alike.

Analogues of gravity occur when the geometry of spacetime appears to be altered
by other means than momentum and energy. The most natural example of analogue
gravity is the propagation of light in media. The medium—a piece of glass, the wa-
ter in a vase or any other transparent substance—distorts images much the same
way stars and galaxies distort light. We may say, with some justification to be given
in this chapter, that media apparently alter the geometry of spacetime for light. This
geometry differs from the natural spacetime geometry of gravity: the medium es-
tablishes a virtual geometry different from the natural geometry of physical space.
The virtual geometry is created by a completely different physical process than the

U. Leonhardt (B)
School of Physics and Astronomy, University of St. Andrews, North Haugh,
St. Andrews KY16 9SS, UK
e-mail: ulf@st-andrews.ac.uk

D. Faccio et al. (eds.), Analogue Gravity Phenomenology,
Lecture Notes in Physics 870, DOI 10.1007/978-3-319-00266-8_10,
© Springer International Publishing Switzerland 2013

221

mailto:ulf@st-andrews.ac.uk
http://dx.doi.org/10.1007/978-3-319-00266-8_10


222 U. Leonhardt

Fig. 10.1 Einstein, Einwell, Maxwell. Transformation optics combines ideas from Einstein’s gen-
eral relativity and Maxwell’s electromagnetism. It particular, it uses transformations of space—like
the transformation between Einstein and Maxwell shown in the picture

geometry of physical space and it is also not universal, but restricted to certain phys-
ical phenomena. In the case of light in media, the virtual geometry differs from the
real geometry only for light (and, typically, only for light within a certain frequency
range).

In this chapter, we show how and when virtual geometries arise for light, or
electromagnetic waves in general. For this we combine ideas from two of the most
beautiful theories of physics, Maxwell’s electromagnetism and Einstein’s general
relativity such that they become transformable into each other (Fig. 10.1). This con-
nection between general relativity and electromagnetism in media is not new, it dates
back to ideas by Gordon [1] published in 1923 and Tamm [2, 3] that appeared around
that time, and further back to Newton who allegedly toyed with the idea that gravity
is mediated by a medium before settling for Newtonian gravity [4] and also to the
enigmatic genius of Fermat [5]. New applications of these ideas are in electrical and
optical engineering, as design concepts for novel devices that do the (almost) impos-
sible, for example invisibility cloaking and perfect imaging. This new research area
with old and deep roots, called transformation optics [6–11], has been regarded as
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one of the most fascinating research insights of the last decade [12]. In this chapter,
we derive the foundations of this area and explain a few of the key applications. We
also show how transformation optics is related to one of the recurring themes of this
book, the physics of the event horizon.

10.2 Maxwell’s Electromagnetism

10.2.1 Maxwell’s Equations

Let us begin at the beginning, with Maxwell’s equations in empty, flat space in
Cartesian coordinates:

∇ ·E = 0 GAUSS’S LAW,

∇×B = 1

c2

∂E

∂t
AMPÈRE’S LAW

WITH MAXWELL’S DISPLACEMENT CURRENT, (10.1)

∇×E =−∂B

∂t
FARADAY’S LAW OF INDUCTION,

∇ ·B = 0 ABSENCE OF MAGNETIC MONOPOLES.

As usual, c denotes the speed of light in vacuum. Throughout this chapter we use SI
units for the electromagnetic fields. Now suppose we change the spatial coordinates,
for example we use spherical coordinates r, θ,φ instead of the Cartesian x, y, z. The
differentials of the new coordinates appear in a different way in the line element ds
than the Cartesian differentials, for example as

ds2 = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (10.2)

in spherical coordinates. In general, curved coordinates xi contribute to the line
element as

ds2 = gijdxidxj (10.3)

where we sum over repeated indices (running from 1 to 3). The gij usually depend
on the xi , as the line element (10.2) of the spherical coordinates shows. They con-
stitute the metric tensor with determinant g and matrix inverse gij ,

g ≡ det(gij ), gij ≡ (gij )
−1. (10.4)

Differential geometry [11] tells us how to express the divergences and curls in
Maxwell’s equations (10.1) in terms of curved coordinates:

1√
g
∂i
√
ggijEj = 0 GAUSS’S LAW,
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εijk∂jBk = 1

c2

∂gijEj

∂t
AMPÈRE’S LAW

WITH MAXWELL’S DISPLACEMENT CURRENT, (10.5)

εijk∂jEk =−∂gijBj

∂t
FARADAY’S LAW OF INDUCTION,

1√
g
∂i
√
ggijBj = 0 ABSENCE OF MAGNETIC MONOPOLES,

where the Levi-Civita tensor εijk , appearing in the curls, is given in terms of the
completely antisymmetric symbols [ijk] as [11]:

εijk =± 1√
g
[ijk]. (10.6)

The ± sign depends on the handedness of the coordinate system: “+” in right-
handed systems and “−” in left-handed systems.

Maxwell’s equations (10.5) are not only valid in a flat space expressed in curved
coordinates, but also in genuine curved spaces.1 The reason is the following:
Maxwell’s equations (10.5) are first-order partial differential equations containing
maximally first derivatives of the metric tensor gij . Now, a theorem from differen-
tial geometry [11, 13] says that, for any given point, we can always construct a local
Cartesian coordinate system where gij = δij and ∂kgij = 0 at that point, regardless
how curved the geometry is. If the space is curved, these local Cartesian systems
do not form a single, global Cartesian frame, but rather represent a patchwork of
frames that are not consistent. The inconsistency is caused by the spatial curvature.
However, there is always a local coordinate transformation from each local frame
to the global frame of the curved manifold. As Maxwell’s equations depend maxi-
mally on first derivatives of gij we can assume them in the form (10.1) in each local
Cartesian frame and then transform to the general form (10.5) in the global frame.
Therefore the form (10.5) describes electromagnetism in curved space as well.

10.2.2 The Medium of a Geometry

Consider now a case similar to gravitational lensing2 where we assume a given spa-
tial geometry. In the following we show how this geometry appears as a medium.
For this we express Maxwell’s equations (10.5) for the quantities E (electric field

1We consider purely spatial geometries first and then, in Sect. 10.5, we generalise our theory to
spacetime geometries.
2In gravitational lensing, gravity alters primarily the measure of time, but due to the conformal
invariance of electromagnetism (see Sect. 10.5.2) this is equivalent to altering the measure of space.
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strength), D (dielectric displacement), H (magnetic field) and B (magnetic induc-
tion) familiar from the macroscopic electromagnetism in media,

∇ ·D = 0 GAUSS’S LAW,

∇×H = ∂D

∂t
AMPÈRE’S LAW

WITH MAXWELL’S DISPLACEMENT CURRENT, (10.7)

∇×E =−∂B

∂t
FARADAY’S LAW OF INDUCTION,

∇ ·B = 0 ABSENCE OF MAGNETIC MONOPOLES.

Considering Gauss’s law, we can write it as ∇ ·D = ∂iD
i = 0 with

Di = ε0ε
ijEj (10.8)

and εij ∝ √
ggij . Here ε0 denotes the electric permittivity of the vacuum. Let us

see whether this definition of the dielectric displacement D is consistent with the
other place D occurs in Maxwell’s equations (10.7), Ampère’s law with Maxwell’s
displacement current:

εijk∂jBk =± 1√
g
[ijk]∂jBk = 1

c2

∂gijEj

∂t
. (10.9)

If we write

Hk = ε0c
2Bk (10.10)

and

εij =±√ggij (10.11)

we obtain Ampère’s law for D given by definition (10.8). Using the same arguments
for the remaining two Maxwell equation we get

Bi = μ0μ
ijHj (10.12)

with the magnetic permeability of the vacuum

μ0 = 1

ε0c2
(10.13)

and the relative magnetic permeability

μij =±√ggij . (10.14)

In the formalism developed here [11], E and H are the fundamental fields, whereas
D and B are derived from Ei and Hi by raising the index with gij and multiplica-
tion by

√
g. Mathematically, the E and H are one-forms, whereas the D and B are
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vector densities with respect to the spatial geometry [11]. The fact that the εij and
μij are matrices that depend on two indices indicates that the medium represent-
ing the geometry gij is anisotropic in general. We also see that a spatial geometry
appears as a medium with

εij = μij . (10.15)

In electrical engineering, such media are called impedance-matched (to the vac-
uum).

10.2.3 The Geometry of a Medium

The converse is also true: impedance-matched media, i.e. media satisfying the con-
dition (10.15), can be understood as spatial geometries, for the following argument.
We calculate the determinant det ε of the matrix εij from relation (10.11) and obtain

det ε =±√g. (10.16)

Consequently, we can write gij in terms of εij and, by virtue of impedance matching
(10.15), of μij as well, as

gij = εij

det ε
= μij

detμ
. (10.17)

Spatial geometries appear as impedance-matched media and impedance-matched
media make virtual geometries. Impedance matching establishes an exact virtual
geometry where electromagnetic fields are identical in all aspects to such fields in
a real geometry. Without impedance matching, the geometric picture is not exact.
In particular, the propagation of light in non-impedance-matched anisotropic media
depends on the polarisation, a phenomenon called birefringence. However, non-
impedance-matched media can still be used for establishing geometries in planar
media for specific polarisations (see e.g. the experiments [14–18]), because in such
cases not all components of the εij and μij tensors are needed. Furthermore, in opti-
cally isotropic media (where εij = εδij and μij = μδij ) the geometric picture gives
an excellent approximation for electromagnetic waves within the validity range of
geometrical optics [11].

10.3 Spatial Transformations

In general, the virtual geometry of light in media is curved. To give a simple exam-
ple, a lens focuses parallel light rays in the focal point; parallels are thus no longer
parallel, but meet, which violates Euclid’s parallel axiom of flat space. Curved space
is common place in optics. It is much harder to create a virtual geometry that is flat.
What would it do? As any flat geometry can be reduced to Cartesian coordinates
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Fig. 10.2 Transformation of space. Optical materials appear to change the perception of space;
objects (fish) in physical space (right picture) appear at positions (left picture) different from where
they actually are. Suppose the medium performs a coordinate transformation from physical space
(right) to virtual space (left) and vice versa. Virtual space is empty and so light propagates along
straight lines. In virtual space, we may draw a coordinate system as a rectangular grid of light
rays (left grid). In physical space, the light rays are curved; the coordinate grid of virtual space
is transformed into a curved coordinate system in physical space (right grid). As the coordinate
transformation only changes space within a circle, this circle marks the boundary of the optical
material used to transform space. We see that the images of the fish are distorted in virtual space,
because the coordinate transformation illustrated here is not uniform. Moreover, the white fish has
completely disappeared, because it was swimming within a region of physical space (grey) that, in
virtual space, is contracted to a single, invisible point. Such an optical material makes an invisibility
device

by a coordinate transformation, the material would just perform a transformation
of space where each point of physical space appears to be at a position in virtual
space that may deviate from real one. If the new coordinates agree with the old ones
outside of the device, that is made of the medium, we would not see the difference
between propagation in the medium and empty, flat space. In short, the device would
be completely invisible.

10.3.1 Invisibility Cloaking

Such invisible devices could be used to make other things invisible, too: they can be
turned into invisibility devices as follows. Suppose the device performs the follow-
ing transformation (Fig. 10.2): an extended region in physical space (Fig. 10.2 right)
in condensed into a single point in virtual space (Fig. 10.2 left). Anything inside this
region has thus become as small as a single point, invisibly small. Everything inside
is hidden and, as the device itself is invisible, the very act of hiding is hidden as
well. The transformation (Fig. 10.2) makes a perfect cloaking device [8].
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Such a cloaking device has been demonstrated for microwaves [14] or, to be more
precise, an approximation without impedance matching was made [14]. However,
this device did only operate for one polarisation, because it used a medium that is
not impedance-matched, and for one frequency only, for a fundamental reason [9]
that applies to all purely transformation-based cloaking devices [8]. This reason is
easy to understand: consider a light ray that just straddles the invisible point in vir-
tual space. As the device performs a spatial transformation from virtual to physical
space, the light propagation in both spaces is synchronised. Therefore the light must
go around the invisible region in precisely the time it takes to pass a single point in
virtual space: zero time. Consequently, the speed of light must tend to infinity at the
inner surface of the cloaking device [9, 19]. By speed of light we mean the phase
velocity here, whereas the group velocity turns out to approach zero [19]. Relativis-
tic causality does not prohibit an infinity phase velocity in a medium, but it allows it
only for a single frequency—a single colour—and thus in a purely stationary regime
where nothing changes and no new information is transferred. Any change would
cause distortions, which defeats the point of a cloaking device;3 one might as well
use a hologram of the background.

Perfect invisibility is impossible, but this does not prevent invisibility that is good
enough. One might be content with deforming a surface by conformal [7] or qua-
siconformal transformations [20], which does not make an object disappear alto-
gether, but makes it optically flat; the fugu in Fig. 10.3 is turned into a flatfish. One
could then use conventional camouflage to disguise the flat object (as flatfish are
masters of). Or one might use non-Euclidean cloaking devices where virtual space
is not flat, but curved in an appropriate way [7, 21, 22]. In this case the speed of
light is finite in the device (and can be made slower than c [22]) but the price to
be paid is a time delay of the light making the detour in the cloaking device. Fur-
thermore, relativistic causality is of little concern to the cloaking of sound waves,
because the normal speed of sound is several orders of magnitude slower than c.
Near-perfect acoustical cloaking over a broad band of frequencies is possible and
has been demonstrated [23].

10.3.2 Transformation Media

What does it take to build a cloaking device and similar transformation devices?
Let us work out the electromagnetic properties of devices required for transforming
space. We use xi to denote the coordinates of physical space and xi′ for virtual
space (the prime at the index does not mean that we simply use a different index
variable but shall indicate the different coordinates of virtual space). As the device
performs a transformation from physical to virtual space and vice versa, the xi′ of
virtual space are thus functions xi′(xi) of the physical-space coordinates xi—the

3It might be reassuring to know that perfect deception is impossible; the truth will always appear
in the end.
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Fig. 10.3 From fugu to flatfish. A coordinate transformation may turn a voluminous object in
physical space (fugu) into a flat object (flatfish). Credit: Maria Leonhardt

device performs a coordinate transformation. Suppose that virtual space is flat and
empty, and that we describe it in Cartesian coordinates. In this case we obtain for
the line element:

ds2 = δi′j ′dx
i′dxj ′ = δi′j ′

∂xi′

∂xi

∂xj ′

∂xj
dxidxj (10.18)

and thus, according to definition (10.3),

gij =Λi′
i δi′j ′Λ

j ′
j with Λi′

i ≡
∂xi′

∂xi
. (10.19)

From this expression we get for the matrix inverse of gij :

gij =Λi
i′δ

i′j ′Λj

j ′ with Λi
i′ ≡

∂xi

∂xi′ , (10.20)

or, in matrix notation,

g−1 =ΛΛT (10.21)
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where g denotes the matrix gij and

Λ≡
(

∂xi

∂xi′

)
. (10.22)

Now we can calculate the matrices ε and μ of the εij and μij according to the recipe
(10.11) and (10.14). There we need the determinant g of gij , which is g = (detΛ)−2

according to formula (10.21). We thus obtain

ε = μ= ΛΛT

detΛ
. (10.23)

Equation (10.23) formulates a simple recipe for calculating the required electromag-
netic properties of a spatial transformation device. This recipe is valid in Cartesian
coordinates, where both virtual and physical space are described by Cartesian grids,
but it can be easily extended to curved coordinates [9, 11].

10.3.3 Perfect Imaging with Negative Refraction

Apart from invisibility cloaking, another prominent application of transformation
optics is perfect imaging [9]. Imagine a device that performs the following transfor-
mation in Cartesian coordinates

x = x
(
x′
)
, y = y′, z= z′, (10.24)

where x(x′) is folded as shown in Fig. 10.4. We see in Fig. 10.4 that in the fold of
the function x(x′) each point x′ in virtual space has three faithful images in physical
space, so the electromagnetic field at these three points is the same as that at the point
x′. Electromagnetic fields at each of the three points in physical space are therefore
perfectly imaged at the other two: the device is a perfect lens. The transformation
(10.24) has the transformation matrix Λ= diag(dx/dx′,1,1) and we find from the
recipe (10.23):

ε = μ= diag

(
dx

dx′
,

dx′

dx
,

dx′

dx

)
. (10.25)

Inside the device, i.e. inside the fold in the transformation of Fig. 10.4, the derivative
dx′/dx becomes negative and the coordinate system changes handedness. The elec-
tromagnetic left-handedness of such a material appears through a transformation to
a left-handed coordinate system; the material is called a left-handed material or also
a material with negative refraction. When the negative slope in the transformation
is dx′/dx =−1, Eq. (10.25) gives a perfect lens made of an isotropic material with
ε = μ=−1 (otherwise the material (10.25) is anisotropic). As Fig. 10.4 shows, the
imaging range is equal to the thickness of the lens in this case.
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Fig. 10.4 Perfect lens.
Negatively refracting perfect
lenses employ transformation
media. The top figure shows a
suitable coordinate
transformation from the
physical x axis to the
electromagnetic x′, the lower
figure illustrates the
corresponding device. The
inverse transformation from
x′ to x is either triple or
single-valued. The
triple-valued segment on the
physical x axis corresponds
to the focal region of the lens:
any source point has two
images, one inside the lens
and one on the other side.
Since the device facilitates an
exact coordinate
transformation, the images
are perfect

Perfect lensing was first analysed through the imaging of evanescent waves in a
slab of negatively-refracting material [24]. These are waves that may carry images
finer than the optical resolution limit. Various aspects of this idea have been subject
to a considerable theoretical debate (see Ref. [25]) but experiments have confirmed
negative refraction (see e.g. Ref. [26]). Sub-resolution imaging was observed for a
“poor-man’s perfect lens” [27] where the lens is effectively implemented by a sub-
wavelength sheet of silver. Our pictorial argument leads to a simple intuitive expla-
nation of why such lenses are indeed perfect. It also reveals some of the practical
limitations of perfect imaging by negative refraction.

We have seen that if the imaging device performs the spatial transformation
(10.24) illustrated in Fig. 10.4, the electromagnetic field is identical in three separate
regions of space. How is this possible? The electromagnetic field cannot instantly
hop from one region to another—this is forbidden by relativistic causality, but it can
settle to identical field structures over time in a stationary regime. But this implies
that the stationary response of the electromagnetic material must be very differ-
ent from the instantaneous response: the material must be dispersive. Dispersion is
always accompanied by dissipation and the dissipation turns out [28] to severely
reduce the resolution of imaging by negative refraction in left-handed materials.
Therefore only “poor man’s perfect lenses” have worked [27] where the imaging
distance is a mere fraction of the wavelength. Nevertheless, the tantalising ideas
of negative refraction have inspired the entire research area of metamaterials and
transformation optics [12].
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Fig. 10.5 Casimir effect of
left-handed metamaterials.
(A) illustrates a material with
ε = μ=−1 sandwiched
between two mirrors.
(B) shows how the medium
transforms the Casimir cavity
of size a in physical x space
into a cavity in x′ space of
size a′ according to
Eq. (10.26). The attractive
Casimir force in x′ space
moves the mirrors further
apart in x space: the Casimir
effect in physical space is
repulsive

10.3.4 Quantum Levitation

Left-handed materials might also exhibit some interesting quantum effects. In par-
ticular, they may alter the Casimir force. The Casimir force is a force between di-
electric materials triggered by the fluctuations of the quantum vacuum. The Casimir
force is closely related to the van der Waals force—both forces are manifestations
of the same physical mechanism. Like the van der Waals force, the Casimir force is
usually attractive. These forces are responsible for the stickiness of dielectric mate-
rials at close distances. The archetype of the Casimir force is the attraction between
two perfect mirrors [29]. Suppose now that between two perfect planar mirrors of
distance a we insert a slab of left-handed material with ε = μ=−1 and thickness b

(Fig. 10.5). In virtual space, the transformation medium has done its deed and only
the mirrors are left with the Casimir force acting upon them. The mirrors are at the
virtual distance

a′ = a − 2b. (10.26)

For a < 2b the distance is negative, which simply means that the two virtual mirrors
have swapped sides. More importantly, when the two mirrors are attracted by the
Casimir force in virtual space their distance |a′| decreases, but then their distance in
physical space a = 2b+ a′ increases, because a′ is negative with falling magnitude.
This means that the Casimir force has become repulsive.

We obtain from Casimir’s original result [29] the vacuum stress in x direction
of [30]

σxx =− �cπ2

240a′4
. (10.27)

When a ∼ 2b the repulsive Casimir force may become very strong such that it could
levitate macroscopic objects on vacuum fluctuations, on, literally, nothing [30]. Note
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that, although our picture of quantum levitation is intuitive and simple, it is also a
bit too simple, because the Casimir force is a broad-band phenomenon and so the
theory implicitly assumes that the left-handed material remains left-handed over a
broad frequency range, which, as we already know, is impossible. More realistic
calculations [30] show that some gain is needed in the left-handed material, but, in
one way or another, the idea of quantum levitation might still fly.4

10.4 Curved Space

Spatial transformations are simple and intuitive in theory, but often difficult to im-
plement in practice. In particular, for the most interesting transformations such as
invisibility cloaking and perfect imaging, fundamental problems prevent their prac-
tical realisation in a meaningful way, as we have seen. The alternative to spatial
transformations is the implementation of a curved virtual space, which is the stan-
dard case in isotropic media anyway (even non-impedance-matched isotopic media
appear to electromagnetic waves as geometries, as long as the approximation of ge-
ometrical optics is valid [11]). The theory of light in curved space is harder, but the
experiments are much easer than in implementations of flat space. In some cases,
curved spaces have extraordinary optical properties that makes their practical use in
optical devices highly desirable. Let us discuss such a case that also represents the
simplest curved space in 3D: the surface of the 4D hypersphere. There we can use
a lot of the intuition we have about the surface of the ordinary 3D sphere to predict
interesting physical phenomena without calculation, just by drawing pictures.

10.4.1 Einstein’s Universe and Maxwell’s Fish Eye

Our case is closely related to a famous cosmological model due to Einstein [33]
that happens to be wrong for the Universe, but, when turned into an electromag-
netic device, may be very useful in down-to-Earth applications. Einstein assumed
that the Universe is static and for this case derived an exact solution of the equa-
tions of general relativity that describe how matter curves spacetime. Astronomical
observations have shown however that the Universe is not static but expanding, yet
this should not deter us from turning Einstein’s solution into a practical device. In
Einstein’s static Universe light propagates as if it were confined to the 3D surface of
a 4D hypersphere in {X,Y,Z,W } space with

X2 + Y 2 +Z2 +W 2 = a2 (10.28)

4A repulsive Casimir force was observed [31] between three materials with ε1 < ε2 < ε3 over a
sufficiently broad frequency range [32], i.e. in materials but not in empty space yet.
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Fig. 10.6 Stereographic projection. Points on the sphere (or hypersphere) are projected to the
plane (or hyperplane) as follows. A line is drawn through the North Pole N and the point on the
sphere. Where this line intersects the plane cut through the Equator lies the projected point. The
picture shows a cut through the sphere and plane where a point on the sphere is characterised by
the coordinates {X,Z} and the point on the plane by x

where the constant a describes the radius of the hypersphere. Suppose that the hy-
persurface (10.28) is the virtual space of an optical device. Furthermore, the Carte-
sian coordinates {x, y, z} of physical space shall be connected to the virtual hyper-
sphere by stereographic projection (Fig. 10.6):

x = X

1−W/a
, y = Y

1−W/a
, z= Z

1−W/a
. (10.29)

One easily verifies that the virtual-space coordinates are given by the following
inverse stereographic projection:

X = 2x

1+ r2/a2
, Y = 2y

1+ r2/a2
, Z = 2z

1+ r2/a2
, W = a

r2 − a2

r2 + a2

(10.30)
where r denotes the radius in physical space with

r2 = x2 + y2 + z2. (10.31)

In order to deduce the effective geometry in physical space and hence the medium
required to implement it, we express the line element in virtual space in terms of the
differentials in physical space with the help of the inverse stereographic projection
(10.30). We obtain

ds2 = dX2 + dY 2 + dZ2 + dW 2 = n2(dx2 + dy2 + dz2) (10.32)
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with the radius-dependent prefactor

n= 2

1+ r2/a2
. (10.33)

From the line element (10.32) we read off the metric tensor gij , its determinant g
and its matrix inverse gij as

gij = n2δij , g = n6, gij = n−2δij . (10.34)

According to relations (10.11) and (10.14) this spatial geometry corresponds to a
medium with

ε = μ= n1. (10.35)

As ε and μ are proportional to the unity matrix 1 the medium is optically isotropic,
and it has the refractive-index profile (10.33). Isotropic media are usually the easiest
to implement, which is the reason why we have chosen the stereographic projection
(10.29) and not any other mapping from virtual to physical space.

The index profile (10.33) of Einstein’s static Universe [33] was written down by
Maxwell as a student at Trinity College Cambridge [34]. Maxwell was not aware of
its relation to the stereographic projection of a sphere—that was discovered in optics
by Luneburg [35] much later—Maxwell was simply fascinated by the extraordinary
optical properties of a device with the profile (10.33). It reminded him of the eye of
fish and therefore such a device is called Maxwell’s fish eye.

10.4.2 Perfect Imaging with Positive Refraction

Two properties of the fish eye Maxwell found particularly fascinating: (1) light
goes in circles and (2) all light rays from any point meet at a corresponding im-
age point. These properties turn out to be simple mathematical consequences of
the light propagation on the virtual hypersphere and the stereographic projection
to physical space. Let us, instead of the 4D hypersphere, imagine an ordinary 3D
sphere—the hypersphere is not much different (Fig. 10.7). The light rays on the
sphere are the geodesics, the great circles. Now, the stereographic projection always
maps circles on the sphere to circles in physical space [11] (some degenerate into
lines, i.e. circles with infinite radius). From this follows property (1) of Maxwell’s
fish eye—light goes in circles. Property (2) is the easiest to understand. Consider
the great circles of light rays emitted from a point P on the virtual sphere. All great
circles from a given point P must intersect at the antipodal point. To see this, just
rotate P to the North Pole of the sphere. In this case the great circles are the lines
of longitude, and they all meet at the two poles. Therefore, the geodesics from the
North Pole intersect at the South Pole. If we rotate the point P back to its original
position the rotated South Pole turns into the antipodal point. Now, as the stereo-
graphic projections maps the surface of the hypersphere to physical space, the tra-
jectories of light rays are simply the projections of the great circles. Therefore they
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Fig. 10.7 Light propagation in Einstein’s universe and Maxwell’s fish eye. The virtual space (left)
is a sphere or hypersphere—Einstein’s universe. Light follows the geodesics, the great circles here.
All light rays emitted from one point must come together again at the antipodal point. The physical
space (right) is Maxwell’s fish eye with the refractive-index profile (10.33). As the stereographic
projection (Fig. 10.6) maps circles into circles, light goes in circles in physical space. Moreover, all
light rays emitted at an arbitrary given point must focus at a corresponding image point. Maxwell’s
fish eye makes a perfect imaging device

all must meet in physical space as well, at the stereographic projection of the an-
tipodal point. All light rays emitted from any point in Maxwell’s fish eye meet at the
corresponding image point. Devices where all light rays from any point within an
object region intersect at the points of the image region are called absolute optical
instruments [36].

Maxwell’s fish eye is an absolute optical instrument and it has other curious
optical properties, too—e.g. light goes in circles—but it has never been built in its
original form (10.33) for two good reasons that are connected to each other. First,
the profile of Maxwell’s fish eye fills the entire physical space. Second, for r →∞
the refractive index (10.33) tends to zero, i.e. the speed of light becomes infinite at
infinity. The two reasons are connected, because Maxwell’s fish eye represents the
geometry of a finite space, the virtual hypersphere, in an infinitely extended space.
There the speed of light must go to infinity for keeping propagation times finite.
However, there is a remedy [37, 38] that solves both problems in one stroke. Imagine
we place a mirror around the Equator of the virtual sphere. The mirror would create
the illusion that the light propagates in the entire virtual sphere, whereas in reality
it is confined to one of the Hemispheres, say the Southern Hemisphere. In physical
space, the Southern Hemisphere corresponds to the region with r ≤ a where the
refractive index ranges only from 1 at r = a to 2 in the centre and the device is
finite now. Therefore, Maxwell’s fish eye with a mirror can be built, and recently
it has been built [39, 40] in 2D. In three-dimensional space the mirror should be a
spherical shell at r = a that encloses the index profile (10.33) of the fish eye.

As long as ray optics is concerned, absolute optical instruments like Maxwell’s
fish eye create perfect images, because all light rays from all object points faithfully
arrive at the corresponding image points. However, the resolution of optical instru-
ments is normally restricted by the wave nature of light [36] and cannot be made
much finer than the wavelength. Is perfect imaging possible with Maxwell’s fish
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eye? It is wise to consider this problem in virtual space, on the sphere (representing
the virtual hypersphere for the 3D fish eye). Any source can be regarded as a col-
lection of point sources, so it suffices to investigate the wave produced by a single
point source of arbitrary position on the sphere. A wave propagates from the point
of emission round the sphere and focuses at the antipodal point; this corresponds
with emission from a point in the plane of the actual device and focusing at the im-
age point in physical space. The wave propagating round the virtual sphere would
come to the antipodal point and focus there. Because of the symmetry of the sphere,
the initially outgoing wave from the source points turns into an ingoing wave at the
image point, i.e. a time-reversed outgoing wave. However, the time reversal is only
complete if one essential element is present at the image point: a reversed source,
a drain. The drain at the image point is something natural in imaging where one
wishes to detect an image, for example by photochemical reactions or in a CCD ar-
ray. The drain represents a detector. Without the detector the image is not infinitely
sharp, but limited by the wavelength. The perfect image may appear, but only if one
looks.

The crucial point of perfect imaging is that, given a choice of detectors in the
image area, the light localises at the correct ones. The fact that the correct light
localisation naturally happens in Maxwell’s fish eye is also understandable if we
imagine the absorption in an array of detectors as the time reverse of the emission
by a collection of point sources. Given perfect time symmetry, the light must settle
down at the image points that correspond to the actual source points and avoid the
ones corresponding to potential source points that did not emit. In this way, a sharp
image is formed with a resolution given by the cross section of the detectors and
not by the wave nature of light. Perfect imaging is possible with positive refraction
[37, 38]. This idea has stirred up controversy [41] but experiments [40, 42] indicate
that it works.

10.4.3 Casimir Force

Maxwell’s fish eye may also give new hope for a fundamental problem in physics
[43]. Casimir suggested an intriguing model that could explain the stability of
charged particles and the value of the fine structure constant [44]. The argument
goes as follows: Imagine the particle as an electrically charged hollow sphere. Two
forces are acting upon it: the electrostatic repulsion and the force of the quantum
vacuum, the Casimir force—presumed to be attractive [29]. The stress σ of the
quantum vacuum on a spherical shell of radius a must be given by a dimensionless
constant times �c/a4 on purely dimensional grounds—the quantum stress is an en-
ergy density proportional to �, and �c/a4 carries indeed the units of an energy den-
sity. Now, the electrostatic energy of the sphere is proportional to the square e2 of its
charge and is also inversely proportional to a4 [45]. Therefore, an attractive Casimir
force balances the electrostatic repulsion regardless of how small a is, provided
e2/(�c) assumes a certain value given by the strength of the Casimir force. This
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Fig. 10.8 The Casimir force on a spherical shell (left) is repulsive [46], or is it? We assumed the
shell (right) to be filled with the medium of Maxwell’s fish eye and found an attractive Casimir
stress in the material. The shades of grey indicate the profile of the medium (10.33)

strength depends on the internal structure of the particle—the fact that it is a spheri-
cal shell—but not on its size, which could be imperceptibly small. Casimir’s model,
however crude, could simultaneously explain the fine-structure constant e2/(�c) and
the stability of charged elementary particles!

All one needs to do is calculate the Casimir force on a spherical shell, but such
calculations are notoriously difficult. After a marathon struggle with special func-
tions, Boyer succeeded in numerically computing the force for an infinitely conduct-
ing, infinitely thin shell and found a surprising result [46] that shattered Casimir’s
idea: the vacuum force is repulsive and so cannot possibly balance the electrostatic
repulsion. Boyer’s heroic calculation was confirmed in a sophisticated and elegant
paper by Milton, DeRaad and Schwinger [47]. The spherical shell has become the
archetype for a shape that causes Casimir repulsion. However, doubts have been
lingering about whether the repulsive force of the shell may be an artefact of the
simple model used, for the following reason: the bare stress of the quantum vac-
uum is always infinite and this infinity is removed by regularization procedures.
The most plausible regularization involves considering the relative stress between
or inside macroscopic bodies. But an infinitely thin sphere does not represent an
extended macroscopic body, nor multiple bodies. Suppose the physically relevant
vacuum stress of an extended spherical shell tends to infinity in the limit when the
shell becomes infinitely thin and infinitely conducting. In this case the regulariza-
tion would remove this physically significant infinity, producing a finite result that
may very well have the wrong sign.

Consider a minor modification of Casimir’s model (Fig. 10.8). Imagine that the
spherical shell (though still infinitely conducting and infinitely thin) is no longer
hollow, but filled with the medium (10.33) of Maxwell’s fish eye. In this case one
can derive an exact solution for the Casimir stress, because the fish eye corresponds
to a very simple virtual space with a high degree of symmetry, the hypersphere. One
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finds for the stress tensor [43]

σ =− �c1

π2a4n(1− r2/a2)4
. (10.36)

The stress is isotropic, negative and falls monotonically, so the Casimir-force density
∇ · σ is always attractive in our model. Close to the mirror the stress and the force
in the material tend to infinity. Since the material (10.33) of Maxwell’s fish eye
represents only a modest modification of empty space with refractive index n1, it
is likely that the Casimir stress close to a perfect spherical mirror around a ball
of index n1 is infinite as well, even when n1 = 1, i.e. for a hollow perfect mirror.
An imperfect mirror, on the other hand, may lead to a finite and possibly attractive
vacuum force. In any case, our present calculation shows that the perfect spherical
mirror produces an artefact, a diverging Casimir force density, in a relatively normal
material, which casts new doubts on the claim of Casimir repulsion for the hollow
sphere [46, 47] and gives new hope for Casimir’s fascinating explanation [44] of the
fine-structure constant and the stability of elementary charged particles.5

10.5 Spacetime Media

So far we considered only spatial geometries for light—we showed that they appear
as impedance-matched media and that impedance-matched media appear as spatial
geometries. We discussed applications of spatial transformations and curved virtual
space such as invisibility cloaking and perfect imaging. Let us now include time and
expend our theory to spacetime geometries.

10.5.1 Spacetime Geometries

We distinguish spacetime coordinates xα by Greek indices running for 0 to 3 where
the 0-th coordinate refers to time, whereas purely spatial coordinates are indicated
by Latin indices. For example. xα = {ct, x, y, z} are the Galileian coordinates of
Minkowski spacetime. The lines in spacetime are world lines, they describe the
trajectories of particles in space and time. The line element ds/c with

ds2 =−c2dt2 + dx2 + dy2 + dz2 (10.37)

in Minkowski spacetime, measures the proper time experienced by a particle on its
way. The line element ds characterises the spacetime geometry. The square of ds is

5Of course, in a more realistic theory the charged particle should not be regarded as being a clas-
sical object interacting with the quantum vacuum, as in Casimir’s case [44], but rather as a self-
consistent quantum structure.
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a quadratic form of the increments of the spacetime coordinates,

ds2 = gαβdxαdxβ. (10.38)

As in the case of spatial geometries, we denote the determinant of gαβ by g and the
matrix inverse by gαβ ; note that g is usually negative. For example, in Minkowski
spacetime, gαβ = ηαβ with

ηαβ = diag(−1,1,1,1)= ηαβ (10.39)

and gαβ = ηαβ and g = −1. We know that purely spatial geometries act as
impedance-matched media on electromagnetic fields; how do genuine spacetime
geometries appear?

10.5.2 Magneto-Electric Media

Plebanski [48] deduced a description of electromagnetism in spacetime geometries
that closely resembles the familiar form of constitutive equations. Here we will sim-
ply state Plebanski’s result; readers interested in its derivation are referred to the
Appendices of Refs. [9, 11]. Plebanski’s constitutive equations are

D = ε0εE + w

c
×H , B = μ0μH − w

c
×E (10.40)

with the electromagnetic properties

εij = μij =∓
√−g

g00
gij , wi = g0i

g00
. (10.41)

The constitutive equations (10.40) and (10.41) show that spacetime geometries with
g0i = 0 mix electric and magnetic fields; they appear as magneto-electric media
(also known as bi-anisotropic media [49]). The magneto-electric coupling vector w

has the physical dimensions of a velocity. We will show in the next subsection that
w is related to the local velocity of a moving medium. In a moving medium, the ma-
terial responds to the electric and magnetic fields in locally co-moving frames where
the medium appears to be at rest. There it is described by the constitutive equations
(10.8) and (10.12). The Lorentz transformations to such locally co-moving frames
mix electric and magnetic fields, which gives Plebanski’s constitutive equations.

The dielectric tensors ε and μ of Eq. (10.41) closely resemble the tensors (10.11)
and (10.14) of purely spatial geometries, except that g and g00 are negative. Fur-
thermore, only the ratio of

√−ggij and g00 matters to electromagnetic fields, and
so does the ratio of g0i and g00 in the magneto-electric coupling, which reflects
an important property of light (and electromagnetic radiation in general) known as
conformal invariance. It originates from the fact that the proper time of a light ray is
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zero—light does not experience time. Therefore light does not recognise the mag-
nitude of the line element (10.38), only the relative contributions of the increments
dxα to ds2. This implies that we can multiply the line element (10.38) by an arbi-
trary non-vanishing function of the spacetime coordinates without any effect on the
propagation of light. Thus suppose we make the following change

gαβ →Ω2gαβ. (10.42)

As gαβ → Ω−2gαβ and g → Ω8g, Plebanski’s constitutive equations (10.41) are
invariant; hence electromagnetism is conformally invariant.

10.5.3 Moving Media

Let us discuss an instructive example of a medium that corresponds to a spacetime
geometry, the moving isotropic impedance-matched medium. We denote the local
velocities of the medium by u where u may vary. For a given spacetime point xα we
can always erect a locally co-moving frame where u vanishes at that point (where
the medium is locally at rest). As the medium is impedance-matched we can de-
scribe it in the locally co-moving frame by a spacetime geometry with

gαβ = diag
(−1, n2, n2, n2). (10.43)

In view of the conformal invariance of electromagnetism we can replace this gαβ by

gαβ = diag
(−n−2,1,1,1

)
. (10.44)

Using the definition (10.39) of the metric tensor of Minkowski spacetime and intro-
ducing

uα = (−1,0,0,0) (10.45)

we can write gαβ as

gαβ = ηαβ +
(
1− n−2)uαuβ. (10.46)

Now, the Lorentz transformation from the locally co-moving frame back to the lab-
oratory frame maintains the spacetime geometry (10.37) of Minkowski space and
hence leaves ηαβ invariant. Additionally, we write uα in terms of quantities with a
simple geometrical meaning in spacetime:

uα = ηαβu
β, uα = dxα

ds
(10.47)

where ds refers to the Minkowski line element (10.37). The uα form the local four-
velocity of the medium. In the co-moving frame xα = (ct,0,0,0) and ds = cdt and
so the four-velocity agrees with expression (10.45). As ds is a Lorentz invariant,
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the four-velocity behaves like xα under a Lorentz transformations to the laboratory
frame. Applying formula (10.38) and u= dx/dt we obtain the explicit expressions

uα = (1,u/c)
√

1− u2/c2
, uα = (−1,u/c)

√
1− u2/c2

. (10.48)

In this way we can easily express the tensor (10.46) in the laboratory frame. This
gαβ describes the spacetime geometry established for light by the moving medium.
It was discovered by Gordon [1] in 1923 and independently rediscovered several
times [50–52]. The matrix inverse gαβ of gαβ is

gαβ = ηαβ + (1− n2)uαuβ, (10.49)

as one easily verifies by calculating the matrix product gαγ g
γβ that gives δ

β
α , the

unity matrix. With these expressions we can calculate the dielectric properties of
moving media. They are particularly instructive in the limit of low velocities. In this
case we obtain from Plebanski’s constitutive equations (10.41):

ε = μ≈ n1, w ≈ (n2 − 1
)
u. (10.50)

We see that the magneto-electric coupling vector w is proportional to the velocity.
The proportionally factor is the susceptibility n2 − 1 that vanishes in empty space
when n = 1. In the case of large velocities, w and also ε = μ depend in a more
complicated way on the velocity of the moving medium [11].

10.5.4 Spacetime Transformations

Suppose the medium moves in one direction only, say the z direction (but possi-
bly with varying velocity) and that n may also only vary in z. We will show that
the light propagation in z direction is equivalent to a transformation in space and
time; the one-dimensionally moving medium appears as a spacetime transformation
medium [9]. Our starting point is Gordon’s spacetime geometry (10.49). If u has
only a z-component u and all other components vanish we have

gαβ =

⎛

⎜⎜⎜
⎝

u2−c2n2

c2−u2 0 0 (1−n2)cu

c2−u2

0 1 0 0
0 0 1 0

(1−n2)cu

c2−u2 0 0 c2−n2u2

c2−u2

⎞

⎟⎟⎟
⎠

. (10.51)

We introduce the new coordinates t ′ and z′ defined by

t ′ ∓ z′

c
= t −

∫
dz

v±
. (10.52)
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Here v± denotes the relativistic addition of the velocity of light in the medium in
either positive and negative direction, ±c/n, and the velocity of the medium, u:

v± = u± c/n

1± u/(cn)
. (10.53)

Gordon’s gαβ tensor appears in the new coordinates as

gα′β ′ =Λα′
α gαβΛ

β ′
β (10.54)

with the transformation matrix

Λα′
α =

⎛

⎜⎜⎜
⎝

1 0 0 (n2−1)cu
c2−n2u2

0 1 0 0
0 0 1 0

0 0 0 n(c2−u2)

c2−n2u2

⎞

⎟⎟⎟
⎠

. (10.55)

The result is the diagonal matrix

gα′β ′ = diag

(
−n2(c2 − u2)

c2 − n2u2
,1,1,

n2(c2 − u2)

c2 − n2u2

)
(10.56)

with the inverse

gα′β ′ = diag

(
− c2 − n2u2

n2(c2 − u2)
,1,1,

c2 − n2u2

n2(c2 − u2)

)
. (10.57)

The determinant of the metric is

g′ = − (c2 − n2u2)2

n4(c2 − u2)2
. (10.58)

The metric gα′β ′ describes the geometry in virtual spacetime. To find out how this
geometry appears as a medium we use Plebanski’s constitutive equations (10.41) in
virtual spacetime, with primed instead of unprimed tensors. Since gα′β ′ is diagonal,
the magneto-electric coupling vector w′ vanishes: in virtual spacetime the medium
is at rest. For the dielectric tensors we obtain

ε′ = μ′ = diag
(
1,1, ε′zz

)
(10.59)

with some ε′zz we do not need to specify here. Since electromagnetic waves propa-
gating in the z-direction are polarised in the x, y plane their electromagnetic fields
only experience the x and y components of the dielectric tensors. Consequently,
for one-dimensional wave propagation virtual spacetime is empty, waves are free
here. In virtual spacetime, left and right-moving wave packets are functions of ei-
ther t ′ + z′/c or t ′ − z′/c; in physical spacetime they are modulated wavepackets
according to the transformation (10.52). Instead of the velocity of light in vacuum
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they experience the relativistic velocity addition (10.53) of the speed of light in the
medium and the velocity of the medium.

Suppose that at some place, say z = 0, the velocity of the moving medium
reaches the speed of light in the medium,

∣∣u(0)
∣∣= c

n(0)
. (10.60)

Without loss of generality, we assume that u < 0 around z= 0 (the medium moves
from the right to the left) and consider electromagnetic waves propagating against
the flow as wave packets with velocity v+ that, according to the addition (10.53) of
velocities, vanishes at z= 0. Linearising v+ at z= 0,

v+ = αz, (10.61)

we see that the integral in the virtual coordinates (10.52) develops a logarithmic
singularity. Virtual spacetime appears as two branches, one corresponding to z < 0
and the other to z > 0, both being two independent Minkowski spaces. From this
follows that right-propagating light confined to either the region where z < 0 or
z > 0 will remain there; right-propagating light cannot cross z = 0, the horizon,
where the velocity of the medium reaches the speed of light.

How to create a horizon for light in practice? It seems rather hopeless for a re-
alistic medium to reach the speed of light, because although normal media reduce
the velocity of light, they do not reduce c by much; light is still rather fast. However
[54], one can mimic a moving medium with an intense pulse of light in a suitable
material with nonlinear optical response [53]. In such a case, the refractive index of
the material n may get an additional contribution that is proportional to the intensity
of the pulse (which is called Kerr effect). The pulse enhances the refractive index
as if an additional piece of material were added to the medium. As this effective
piece of material is made by light, it naturally moves at the speed of light in the
material. Consider two light fields now: the pulse and the probe light that experi-
ences the pulse as a contribution to the refractive index. One can control the speed
of both the pulse and the probe using the frequency and polarisation dependence of
the refractive index [54] and by the lateral profiles [55] of the light fields; differ-
ent frequencies, polarisations and lateral profiles propagate at different speeds. The
place where the velocity of the probe is sufficiently reduced by the pulse to reach
the speed of the pulse makes a horizon [54, 55].
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Chapter 11
Laser Pulse Analogues for Gravity

Eleonora Rubino, Francesco Belgiorno, Sergio Luigi Cacciatori,
and Daniele Faccio

Abstract Intense pulses of light may be used to create an effective flowing medium
which mimics certain properties of black hole physics. It is possible to create the
analogues of black and white hole horizons and a photon emission is predicted that
is analogous to Hawking radiation. We give an overview of the current state of the
art in the field of analogue gravity with laser pulses and of its implications and
applications for optics.

11.1 Introduction

“Analogue gravity” is the study of phenomena traditionally associated to gravitation
and general relativity, by means of analogue models that can be realised in very dif-
ferent physical systems and that do not directly rely on gravity at all [1]. Following
recent developments in the field, in this Chapter we attempt to give a brief overview
of how laser-pulses may be used to create the analogue of an astrophysical event
horizon. Analogues, as a tool to study the physics of one system in an often appar-
ently and completely different system, are certainly not a novelty. Just to name one
recent example, certain features of electron behaviour in solid state physics have
been reproduced using light propagation in specifically engineered media, e.g. pho-
tonic crystals or optical waveguide arrays [2]. Using these and related systems it has
been possible to access, using classical physics, a variety of quantum phenomena
ranging from Bloch oscillations [3, 4] to Anderson localisation [5]. Some of these
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results have also led to significant technological developments in laser physics and
are a clear example of why we should study, or attempt to study analogue models.

In order to better focus on the analogue gravity framework, where a moving
background is able to induce a cinematic horizon in the sense specified above, it can
be useful to recall that even the gravitational case can be interpreted in terms of a
flow, according to the so-called “river model”, which allows a more straightforward
link with the physical situation occurring in analogue models. We sketch in the
following the main steps.

The basic metric that describes a black hole, first derived by Schwarzschild,
was later cast in different form by Painlevé and Gullstrand [6, 7]. The Painlevé-
Gullstrand metric for a 2D black hole is

ds2 = c2dt2 − (dr − V dt)2, (11.1)

where

V =−
√

2GM

r
. (11.2)

Note that (11.1) corresponds to the t–r part of a physical (4D) black hole. Based on
these equations we may interpret space as if it were a fluid that is flowing with veloc-
ity V . This is the basis of the “river model” [8] that allows an intuitively appealing
yet mathematically correct understanding of how analogue models for gravity work.

Figures 11.1(a) and (b) schematically show how space flows and falls into an
astrophysical black hole or, under time reversal, emerges out of what is called a
white hole. The flowing river of space moves in a Galilean fashion through a flat
Galilean background space [8] and we may define a special point, the Schwarzschild
radius, for which rS = 2GM/c2 and the flow velocity equals c: beyond this point
the flow exceeds the speed of light. Therefore, because objects moving through the
river must obey the laws of special relativity and their speed cannot exceed c, it
is not possible to escape out of the black hole once inside rS , nor is it possible to
penetrate inside the white hole beyond rS . On the basis of this reasoning, one may
therefore attempt to construct a laboratory analogue using light in a flowing medium
that recreates a flowing river of space. The original proposal by Unruh based on
acoustic waves in a flowing fluid has a metric that can be reduced to a form similar
to Eq. (11.1) in which c represents the speed of sound [9].

11.1.1 White Holes

In analogue models and, in particular, in the experimental setting which aims to
verify theoretical predictions emerging from analogue gravity models, an important
role is reserved to white holes. We therefore recall some of their properties in what
follows.

Black holes are relatively well-known objects whilst white holes, also solutions
to the Einstein equations, are less studied due mostly to the fact that there is no ob-
vious mechanism by which a gravitational white hole may form. A black hole will
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Fig. 11.1 The flowing river of space in an astrophysical black (a) and white (b) hole. The black
and white hole horizons are the points at which space flow becomes equal to c. (c) Depicts the
effective geometry induced by a 1-dimensional dielectric perturbation moving from right to left.
In the frame comoving with the perturbation, space flows as shown by the arrows. Longer arrows
indicate larger velocities

trap any incoming matter, or light and forms as a natural consequence of the gravita-
tional collapse of super-massive stars. A white hole may eject particles or light until
it burns out and, most importantly it does not appear as the result of a gravitational
collapse. Hawking specifically addressed this problem [10] and pointed out that the
very nature of Hawking radiation implies that the black hole is at thermal equilib-
rium. Then, by the ergodic assumption, the system is equally likely to pass through
all possible states if observed for a long enough time, including the time-reversal of
any of those states. In other words, to an external observer a white hole and a black
hole are completely indistinguishable and the emission of a white hole is the same
as that of a black hole with the same mass [10, 11]. So we are justified in studying
one or the other kind of hole (black or white), based on what is most convenient
in a given context. Indeed, if we are unlikely to observe white holes in the cosmos,
these objects actually turn out to be more the rule than the exception in the context
of analogue gravity.

11.2 Analogue Gravity with Optics in Moving Media

The study of light in moving media is certainly not a novelty and has a relatively
long history. As far back as 1818, well before Einstein introduced the theory of
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special relativity, Fresnel discovered theoretically that the speed of light vφ in a
uniform and flowing medium depends on the flow velocity v:

vφ = c

n
+
(

1− 1

n2

)
v. (11.3)

Not many years passed and in 1851 Fizeau experimentally verified this prediction.
Only after Einstein developed his theory of general relativity, was it possible to
make the first connection between electromagnetic waves propagating in dielectrics
and in gravitational fields. The first work in this sense was developed by Gordon
who derived the so-called Gordon metric that describes how light propagates in a
moving dielectric medium and to which we will refer below [12]. A complete review
is found in for example in [1].

Indeed, propagation of light in moving dielectric media may be described in
terms of geodesics in an effective metric that depends on the refractive index, with-
out any further reference to the original picture involving Maxwell equations. All
relevant dielectric properties are reabsorbed in the effective metric which is actually
seen by photons. This can be done at the level of both physical and geometrical op-
tics. We also note that, in order to find out an horizon in the sense specified in the
previous section (Sect. 11.1), it is required to have a spatial inhomogeneity in the
refractive index, as in the acoustic models a spatial inhomogeneity in the velocity
field is required. Beyond Hawking-like phenomena in stationary dielectrics, a more
recent review of optics in nonstationary media has been given by Shvartsburg [13]
with particular emphasis on the interaction of light with a rapidly varying ionisation
or plasma. Within a similar context, Rosanov has studied the “parametric” Doppler
effect in which light interacts with a medium that is at rest but has time-varying or
moving parameters [14, 15]. A tightly correlated phenomenon is the so-called time
refraction, first introduced by Mendonça by drawing a parallelism between the be-
haviour of light at a spatial boundary and a time-varying boundary [16, 17]: as is
well-known and summarised by Snell’s relations, when light traverses a spatial (and
time-stationary) boundary separating two media with different refractive indices, its
wave-vector is modified. In a similar fashion, if the refractive index changes in time,
i.e. there is a “temporal boundary”, then the frequency of light is modified. These
ideas were then extended to account for quantum effects and, of particular interest in
this context, including also the quantum vacuum and excitation of entangled photon
pairs [18–20].

Over the last 10 years a number of papers have returned to the problem of light in
moving media within the specific context of analogue gravity and with the explicit
goal of evaluating the analogy between these systems and gravitational black holes
[21–32]. However, it was only recently that Leonhardt proposed an idea by which
an experimentally accessible layout may actually create the conditions required to
observe the analogue of an horizon for light propagating in a dielectric medium [33].

There is a potential drawback affecting a priori any optical analogue gravity
model whose aim is to induce a kinematical horizon for light. It is extremely difficult
to imagine a method by which we may actually induce a flow of matter at speeds
that are close to the speed of light, as required in order to recreate an analogue opti-
cal horizon. One early proposal by Leonhardt attempted to bypass this obstacle by
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using so-called slow light [22, 34]: with electromagnetically induced transparency
or metamaterials it is possible to slow light down to small fractions of c. However,
the slowing down of light in these systems primarily affects only the group velocity
whilst it was later realised that the important quantity for observing particle cre-
ation at a horizon is the phase velocity [34]. Leonhardt recently solved this issue
by suggesting that the medium itself need not flow at all. All that is necessary is
a localised perturbation of the refractive index that travels at speeds close to c. So
the medium itself remains at rest in the laboratory frame and by using nonlinear
optics (as described in Sect. 11.6) we may create an ultrafast perturbation. Just to
fix ideas, we assume the perturbation to be Gaussian-shaped with positive δn, so
that the surrounding refractive index has some background value n = n0 and then
this gradually increases up to a maximum value n= n0 + δn. This perturbation of
the dielectric medium is then made to move at a velocity v that is very close to the
speed of light in the medium c/n0.

We may modify Fresnel’s relation, Eq. (11.3) to account for the fact that the
perturbation is now localised: vφ = c/n0 + [1 − 1/(n0 + δn)2]v: we can see from
this that an increase δn in the local refractive index is indeed equally perceived by
light as a local increase in the flow velocity, i.e. both lead to a slowing down of the
light pulse. If v � c/n0, the perturbation will catch up with the light pulse or, in
the comoving frame, the light pulse will be gradually sucked inwards. As the pulse
is sucked in, the refractive index (or space flow velocity) increases and the speed
at which the pulse falls in towards the perturbation increases. The light pulse will
eventually pass the point xBH of no return at which v = c/(n0 + δnBH ). This point
is the analogue of a black hole horizon. In a similar fashion, one may consider the
trailing edge of a perturbation with v � c/n0: light approaching from behind will
catch up with the perturbation. As it penetrates within the higher refractive index
region it will be slowed down by the higher refractive index or, equivalently, by
the faster space flow. The pulse will then be blocked at the point xWH for which
v = c/(n0 + δnWH ). This is to all effects a time-reversed version of the black hole
horizon, i.e. it is the analogue of a white hole horizon.

11.3 Dielectric Metrics and Hawking Radiation

The relevant metric in the dielectric analogue context is the Gordon metric [12, 21,
30, 35, 36],

ds2 = c2

[n(x − vt)]2 dt
2 − dx2, (11.4)

where the travelling dielectric perturbation is described by n(x−vt)= n0+ δn(x−
vt). We choose for simplicity of description a smooth dielectric perturbation δn

with a Gaussian profile, but, for our purposes, a more general framework can be
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introduced [35]. We may rewrite this in the perturbation comoving frame by means
of a boost: t ′ = γ (t − v

c2 x), x
′ = γ (x − vt), so that

ds2 = γ 2 c2

n2

[
1−

(
nv

c

)2]
dt ′2 + 2γ 2 v

n2

(
1− n2)dt ′dx′ − γ 2

[
1−

(
v

nc

)2]
dx′2.
(11.5)

The primed coordinates, here and in the rest of this chapter, indicate comoving co-
ordinates.

It is easy to show that the above metric (11.5) is static, i.e. it has a time translation
symmetry; moreover it is possible to find global coordinates such that no “cross
terms” between spatial and time coordinates appear in the metric (see e.g. [37]), and
which may be associated with a further coordinate system which carries (11.5) in a
form which is explicitly static [35]. If we define

dt ′ = dτ − α
(
x′
)
dx′, (11.6)

with

α
(
x′
)= g01(x

′)
g00(x′)

, (11.7)

then the metric becomes

ds2 = c2

n2(x′)
gττ

(
x′
)
dτ 2 − 1

gττ (x′)
dx′2, (11.8)

where

gττ

(
x′
) := γ 2

(
1+ n

(
x′
)v
c

)(
1− n

(
x′
)v
c

)
. (11.9)

There is a remarkable resemblance of the τ, x′-part of the metric with a stan-
dard static spherically symmetric metric in general relativity in the so-called
Schwarzschild gauge, aside from the important difference represented by the fac-

tor c2

n2 replacing c2. It is indeed possible to follow an approach similar to that fol-
lowed by Painlevé and Gullstrand and recast the metric in a form that is identical
to Eq. (11.1), with a medium flow velocity that naturally does not depend on a
mass or gravitational constant but rather on the refractive index profile and speed,
V = γ v(n2 − 1)/n. Similarly to the gravitational case, a horizon is formed when
V = c and depending on the direction of the flow of space, the analogue of a black
or white hole is formed (see Fig. 11.1).

Equivalently, the horizons are determined by the condition gττ = 0, and exists
when

c

n0 + δn
< v <

c

n0
. (11.10)

The external region corresponds to x < xWH and to x > xBH . The leading horizon
x = xBH is a black hole horizon, whereas the trailing one x = xWH is a white
hole horizon. These points are indicated also in Fig. 11.1(c) which illustrates the
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geometry of a one-dimensional δn perturbation. The arrows indicate the equivalent
flow of space: interestingly, the flow of space is such that a single perturbation may
recreate the analogue of both a black hole, on the leading edge, and a white hole on
the trailing edge.

Equation (11.10) may be read in two different ways: for a given background in-
dex and perturbation amplitude, only perturbations with a certain velocity will give
rise to an analogue horizon. Alternatively, for a given perturbation velocity and am-
plitude, only those frequencies that propagate with a refractive index that satisfies
Eq. (11.10) will experience the effect of the horizon. Indeed, in general n0 varies
with frequency ω due to material dispersion. We note that although relation (11.10)
was not originally derived from a dispersive theory, recent models that account also
for dispersion arrive at exactly the same equation (see e.g. [20]) where n0 = n0(ω)

is the medium phase index. This equation therefore represents the fundamental re-
lation against which one may compare measurements in order to verify if any ob-
served radiation may be related to the presence of an horizon. For example, one may
vary the velocity and/or the perturbation amplitude and search for consistency with
Eq. (11.10).

From the comoving-frame metric (11.5) we may deduce the equivalent of a sur-
face gravity at the horizon which is found to be [35]

κ = γ 2v2 dn

dx

∣∣∣∣
H

(11.11)

where the refractive index perturbation gradient is evaluated at the horizon H . This
surface gravity may be associated to a temperature for the radiation emitted from
the analogue horizon. Indeed, the particularity of Hawking radiation is that it is
predicted to exhibit a blackbody spectrum with a temperature given by,

TH = �κ

2πckB
(11.12)

where � is the reduced Planck constant, c is the speed of light in vacuum and kB is
Boltzmann’s constant.

Laser pulse induced perturbations may be extremely steep, with a rise from n0 to
n0+ δn over a distance of the order or 1 µm or even less. This leads to temperatures,
measured in the comoving frame, that are easily of the order of 1–10 K, i.e. many
orders of magnitude higher than in any other system proposed to date.

These formulas only show that if Hawking radiation is emitted by the analogue
horizon, then it is expected to have a certain temperature. A full quantum electro-
dynamical model of the perturbation accounting for the interaction with quantum
vacuum, such as that developed in Ref. [35] is required in order to show that Hawk-
ing radiation is actually emitted from the horizon. The model starts by considering
the electromagnetic vacuum states in the absence of any perturbation and then com-
pares these with those in the presence of the travelling perturbation. The so-called
Bogoliubov coefficients, that express the new states in function of the old states, can
be used to directly evaluate the number of photons produced in such a scenario. The
result clearly shows a logarithmic divergence of the phase of the electromagnetic
field under conditions identical to Eq. (11.10) [35].
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We can sketch the main idea as follows. Let us consider a situation where there
is no dielectric perturbation. This condition represents our initial vacuum state (or
“IN” vacuum state), which is characterized by a suitable set of quantum operators
corresponding to creation and annihilation of particles. As we switch the laser on,
very rapid nonlinear effects give rise to the dielectric perturbation within the dielec-
tric sample, and a new vacuum state arises, which we call “OUT” vacuum state.
We can associate with it a new set of creation and annihilation operators, which are
apt to the OUT vacuum state. Particle creation occurs since the IN vacuum state is
not a vacuum state for the OUT number operator (constructed with the OUT cre-
ation and annihilation operators), which represents an observable at large times. In
other terms, if Nout

k = aout+
k aout

k is the number operator for the OUT particles in the
quantum state labeled by k, we obtain

〈0 in|Nout
k |0 in〉> 0, (11.13)

which indicates that particle creation occurs when passing from the IN to the OUT
state.

From a physical point of view, compared to the common S-matrix approach of
quantum field theory, the scheme does not rely on perturbation theory and is as-
sociated with linear maps, called Bogoliubov transformations, which relate the IN
creation and annihilation operators to the OUT ones. The latter approach is typi-
cal for the case of quantum field theory in external fields and in curved spacetime
[38–40].

As pointed out by Hawking in his seminal paper, in a collapse situation what is
really relevant in determining the late time behavior of Hawking radiation is the set
of field modes which, as traced back from future null infinity, pile up near the future
horizon, with a logarithmic divergence in the phase of the field which is at the root
of the thermality of black hole radiation. In particular, 〈0 in|Nout

k |0 in〉 displays a
Planckian behaviour which is corrected by a grey-body factor associated with the
potential barrier scattering for field modes. For the case of our analogue black hole,
created by the laser pulse traveling through the medium, the field modes presents an
analogous logarithmic phase divergence, and thermality of the spectrum can be still
deduced, even without referring to the geometrical analogy (see [35]). Indeed, this
emission is found to follow the expected blackbody dependence with temperature

T = 1

γ

1

1− (v/c)n0 cos θ
TH (11.14)

where TH is evaluated from Eqs. (11.12) and (11.11), and θ is the angle of the
direction of observation with respect to the propagation axis of the perturbation.
The multiplicative factor in Eq. (11.14) is simply the Doppler shift that transforms
the temperature from the comoving frame to the laboratory frame. When viewed
from the forward direction, θ = 0 deg, the temperature measured in the laboratory
frame is therefore predicted to be of the order 1000 K or more [33, 35, 41].

All of previous analysis relies on a model which does not include the effects of
optical dispersion. At the same time, the introduction of dispersion effects is quite
nontrivial, because dispersion relations are modified in a very significant way and
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Fig. 11.2 (a) Light phase velocity with no dispersion far away from the perturbation (δn= 0) and
at the peak of the perturbation with δn = 0.005. The dashed line indicates a value of the pertur-
bation v for which Hawking radiation will cover the full predicted blackbody spectrum. (b) Light
phase velocity with dispersion: fused silica glass dispersion has been used in this example. For the
same conditions as in (a), only a very restricted bandwidth of wavelengths will be emitted in the
form of Hawking radiation

the geometrical transcription, which works very well in the non-dispersive case,
becomes much more problematic in presence of dispersion. Indeed, the so-called
rainbow metrics have to be introduced, which are not properly metrics in the sense of
common (pseudo)Riemannian geometry [1]. On the one hand, nontrivial dispersion
relations tend to jeopardize a geometrical approach; on the other, they represent a
substantial tool for a correct interpretation of the physics beyond analogue Hawking
radiation. In the following subsection, the problem is discussed in detail for the case
of a dielectric perturbation moving in a dielectric medium.

11.3.1 The Role of Dispersion

In order to create an effective flowing medium we must perform experiments in a
dielectric material of some kind within which we generate the travelling perturba-
tion. In general in any medium in which we decide to perform these experiments,
the refractive index will vary as function of frequency or, equivalently wavelength.
This leads to a qualitative deviation from the ideal (dispersion-less) case analysed
by Hawking.

In Fig. 11.2(a) we show the phase velocity of light with no dispersion (it is thus
constant at all wavelengths) far away from the perturbation (δn= 0) and at the peak
of the perturbation with δn= 0.005. If the perturbation velocity is tuned anywhere in
between these two velocity values, for example to the value indicated by the dashed
line, then the whole spectrum (shaded area) experiences an horizon and Hawking ra-
diation will cover the full predicted blackbody spectrum. In Fig. 11.2(b) we show the
same situation but now including dispersion: fused silica glass dispersion has been
used in this example. For the same conditions as in (a), only a restricted bandwidth
of wavelengths will be emitted in the form of Hawking radiation (shaded area) and
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Fig. 11.3 Dispersion curves for the numerical simulations in Figs. 11.4(a) and 11.5(b). (a) Dis-
persion curves in the lab. reference frame. (b) Dispersion curves in the comoving frame. The full-
circles indicate the position of the IN, P and N mode frequencies and the horizontal dashed lines
correspond to ±ω′IN . In (c) we plot the comoving frequency, ω′/2π , as a function of the laboratory
frame frequency, ω/2π for various values of δn

the full blackbody spectrum will not be visible. On the one hand dispersion appears
therefore to “ruin” the spectrum. But on the other it provides us with a remarkably
effective method to test the presence of an horizon: the emitted spectrum depends
critically on the velocity of the perturbation. If this can be controlled, then we have
a very simple method by which we may compare precise spectral measurements
against the straightforward prediction of Eq. (11.10).

Dispersion has a further important consequence on Hawking radiation. In the
absence of dispersion, radiation would accumulate at the white hole horizon for an
infinite time. This would also lead to an infinite phase divergence and a consequently
infinite blue-shift of the incoming frequency. Likewise, any emission observed far
from a black hole horizon must originate from an infinitely blue-shifted vacuum
fluctuations close to the horizon. Hawking radiation would therefore seem to origi-
nate from wavelengths that close to the horizon were smaller than the Planck scale,
∼ 10−35 m. This in turn raises some doubts regarding the validity of the actual pre-
diction of Hawking radiation as the laws of physics are expected to change radically
at these length scales (the so-called transplanckian problem). Dispersion completely
avoids this issue: as light accumulates on the white hole horizon it is blue shifted.
However, in most dielectrics blue-shifted wavelengths will travel slower than red-
shifted wavelengths implying that at a certain point the blue-shift will become such
that the light will slow down and finally detach itself from the perturbation well be-
fore the Planck scale is reached. The study of analogue Hawking radiation therefore
occurs in a regime in which transplanckian issues are of no concern or relevance.

In Fig. 11.3(a) we show a typical dispersion relation that we will be dealing
with. This is a simple quadratic dispersion curve, n0 = A+ Bω2 where A = 1.44
and B = 10−31 s2. Such a simplified dispersion relation can actually match the real
dispersion of, for example, fused silica glass in the visible and near-infrared spectral
region with sufficient precision to capture all of the necessary physics and is a very
good model for the dispersion of diamond over practically the whole spectrum, even
down to very low frequencies. The solid/dashed curves in Fig. 11.3 indicate the
dispersion branches that have positive/negative frequency in the laboratory reference
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frame. A common practice is to adopt the dispersion curves in the comoving frame
rather than in the laboratory reference frame. We pass from one reference frame to
the other using the Doppler relations

ω′ = γ (ω− vk),

k′ = γ

(
k − v

c2
ω

)
(11.15)

where k = ω[n(ω)+ δn]/c. The laboratory frame dispersion curves in Fig. 11.3(a)
transform in the comoving frame (for v = 0.99c/n and δn = 0) as shown in
Fig. 11.3(b). An alternative and useful representation with ω′ as a function of ω

is shown in Fig. 11.3(c). We note that for increasing δn or v, the comoving frame
dispersion curves will bend further downwards, as shown in Fig. 11.3(c). The co-
moving frame dispersion curves are particularly convenient due to the fact that fre-
quency ω′ is a conserved quantity. This can be demonstrated on very simple grounds
by deriving the Hamiltonian for a spacetime varying medium and by showing that
ω′ is a constant of motion [16]. An alternative route is based on a scattering model.
The perturbation acts as a scattering defect and the scattered light will have a wave-
vector kout (ω) that is related to the input wave-vector kIN(ωIN) by momentum
conservation [42]:

kout (ω)= kIN(ωIN)+ ω−ωIN

v
. (11.16)

This momentum conservation relation may be transformed into the comoving frame
using Eq. (11.15) and leads to

ω′ = ω′IN . (11.17)

In other words, momentum conservation in the laboratory reference frame is equiv-
alent to frequency conservation in the comoving frame. We may therefore use this to
predict how a input probe wave is transformed during the interaction with the pertur-
bation by simply looking for the intersections of the comoving dispersion relation
with a horizontal line that passes through ω′IN . We call these intersection points
“modes”, in the sense that they identify specific modes of the electromagnetic field
and are described by well-defined ω and k values (or ω′ and k′ in the comoving
reference frame). In particular, in the following we will continuously refer to the in-
put mode as the “IN” mode and the positive or negative frequency Hawking modes
generated at the horizon as the “P” and “N” modes. In Fig. 11.3(b) the horizontal
dashed line intersects the dispersion curve in two points for positive frequencies.
The IN mode has positive group velocity v′g = dω′/dk′ and thus approaches the
perturbation, i.e. it is moving forward on the comoving frame. The scattered mode,
indicated with “P”, occurs with a negative gradient and is thus reflected backwards
from the perturbation (note that in the laboratory frame, both IN and P modes will
be moving in the forward direction). A third mode is possible and is indicated with
“B”: this is just the IN mode that is propagating backwards and is usually not con-
sidered as only the forward propagating IN mode is excited. Finally, a fourth mode
is available, namely the intersection with −ω′IN : this gives what we will call the
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negative mode, indicated with “N”. This mode is allowed as it is the complex con-
jugate of the “Ncc” mode that lies at +ω′IN . However, we prefer to consider the N
mode rather than the Ncc mode as the former has positive frequency in the laboratory
reference frame and will correspond to the mode actually measured in experiments.

We note that mode conversion from the IN mode to the P mode has been observed
in a wide variety of settings (although this may not be immediately apparent due to
the different terminology with respect to that used here):

1. In optical fibres it is possible to excite a soliton pulse as the result of a balance be-
tween nonlinear (intensity induced) frequency broadening and dispersion. How-
ever, at high input intensities high order solitons are generated that then breakup
as the result of an instability and shed blue-shifted light that is usually called a
dispersive wave or Cherenkov radiation (not to be confused with the Cherenkov
radiation generated by superluminal charged particles) [43]. The dispersive wave
emission obeys a momentum conservation law which, neglecting a nonlinear
phase correction term, is identical to Eq. (11.16) [43–46] and thus falls under the
same general explanation presented here;

2. In higher dimensions, e.g. in 2D waveguides or in bulk media, self-focusing and
self-induced spatiotemporal reshaping of the input pulse lead to the formation
of so-called X-waves. X-waves are characterised by two hyperbolic branches in
the spectrum when viewed in angle-frequency coordinates: one branch passes
through ωIN and the other passes through the P mode frequency at zero angle.
A more general description may be given in which the whole X-wave is actually
expressed using only Eq. (11.16) [42, 47–50].

The P mode therefore emerges as an ubiquitous feature in nonlinear optics and it
owes this ubiquity to the fact that it is simply a restatement of momentum conser-
vation. The same reasoning may of course be applied to the negative N mode: this
mode too is a result of momentum conservation and should therefore be expected.

However, before the development of analogue gravity models, no (optical) mea-
surements had ever been performed reporting the existence of this mode. Moreover,
the dispersion relations simply tell us which are the allowed modes, but do not tell us
if the modes will actually be created. The P and N modes together form the classi-
cal analogues of the Hawking pairs emitted from an horizon, yet they also naturally
emerge as from a classical analysis of the Maxwell equations.

The existence of these modes is a very general feature that is related only to the
form of the dispersion relation and to the existence of a natural comoving reference
frame in which frequency conservation leads to the excitation of negative frequen-
cies. Recently this same reasoning has been applied to surface waves travelling in
flowing water. By creating a gradient in the water flow, negative frequencies were
observed, generated at the horizon [51]. These first measurements were then further
developed and led to the first demonstration of stimulated Hawking emission [52].
The horizon is stimulated by a probe wave and the amplitudes of the emitted P and
N waves are measured. In 2012, the first measurements have also confirmed the ex-
istence of these “classical” counterparts, i.e. stimulated P an N emission also in the
optical analogue described here [57].
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According to the theory, Hawking radiation in both the gravitational and ana-
logue context will be characterised by precise relations that link the norms of the
emitted waves (normalised with respect to the norm of the input wave |IN |2)
[52–55]:

|P |2 − |N |2 = 1, (11.18)

|N |2
|P |2 = e−αω. (11.19)

Equation (11.18) implies that |P |2 + |N |2 > 1 and the Hawking effect will lead to
amplification. Equation (11.19) imposes a strict relation between the two modes:
it can be easily verified that indeed (11.18) and (11.19) imply a thermal emission
for the N mode, |N |2 = 1/[exp(αω)− 1], where α may be linked to a black body
temperature:

TH = �

αkB
. (11.20)

Gerlach gave a description of the black hole horizon in terms of a parametric am-
plifier [56]. In the absence of a probe pulse the horizon will amplify vacuum fluctua-
tions but it will of course likewise convert and amplify any classical probe pulse that
is sent onto it [11]. Parametric amplification is a well studied phenomenon in wave
physics, in particular in the context of nonlinear optics. Very efficient excitation and
amplification of vacuum states is achieved for example using crystals with a sec-
ond order, or so-called χ(2) nonlinearity [58], i.e. crystals that exhibit a nonlinear
response that scales with the square of the input electric field. This same mecha-
nism is actually the most widely used and robust method for generating quantum
correlated photon pairs that have then in turn been used to test quantum theories and
develop quantum information transmission and manipulation. The photon distribu-
tion of the radiation excited by these optical methods is also thermal. However there
is a fundamental difference with respect to Hawking radiation: the thermal emis-
sion obtained by standard nonlinear optical parametric processes is thermal with
a different temperature characterising each mode (i.e. frequency in the monochro-
matic limit) [59, 60]. Conversely, Hawking emission is composed of radiation that
has exactly the same temperature TH over the whole spectrum [56, 59]. Paramet-
ric amplification at a horizon in the form of Hawking radiation is therefore a very
specific and peculiar effect that is quite unlike usual nonlinear optical parametric
amplification.

11.4 Numerical Simulations of One-Dimensional Dielectric
White Holes

An interesting question raised by these findings and predictions is “what does Hawk-
ing radiation correspond to in the framework of the Maxwell equations?”. As should
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be expected, analogue Hawking radiation does emerge from Maxwell’s equations
yet it is a new and unexpected effect that has not been predicted before.

We performed numerical simulations using the Finite-Difference-Time-Domain
technique applied to the discretised Maxwell equations [61]. The equations solved
are

∂Ey

∂x
=−μ

∂Hz

∂t
,

∂Hz

∂x
=−∂(εEy)

∂t

(11.21)

where ε = ε(x − vt) = √
n0 + δn(x − vt) is the medium permittivity. We under-

line that there are no nonlinearities involved in these equations: only linear prop-
agation is simulated and the travelling refractive index perturbation is included
in ε. In our simulations we took a super-Gaussian form for the perturbation:
δn = δnmax exp[−((x − vt)/σ )m] where m is an even integer. In these studies we
do not directly verify the emission of radiation from the vacuum state, we rather
stimulate the horizon by an incoming classical, coherent, probe pulse and we study
how this pulse evolves. The study of the stimulated Hawking emission (SHE) is
extremely important since allows us to gather information on the underlying Hawk-
ing radiation mechanism. As mentioned above, we will only focus attention on the
white hole, i.e. on how the probe pulse interacts with the steep, trailing edge of the
perturbation.

Figure 11.4 shows an example of such a simulation. Dispersive effects are in-
troduced through numerical dispersion that depends on the grid resolution and may
thus be controlled [62]. Figure 11.6(a) shows the dispersion in the comoving frame
relative to the simulations in Fig. 11.4. The perturbation has v = 0.99c/n0, maxi-
mum amplitude δnmax = 0.01 and super-Gaussian order m = 26 so that δn raises
from 0 to ∼δnmax over a distance ∼1 µm. The input probe pulse is taken with initial
wavelength 4 µm and is placed behind the perturbation. This is equivalent to study-
ing the evolution of a mode that attempts to enter a white hole. Figures 11.4(a)–(d)
show the electric field profile at various propagation distances within a window
centred on the perturbation: the input probe pulse catches up with the perturbation
where it is blocked at the horizon and frequency shifted until it finally starts to lag
behind (due to dispersion that decreases the pulse velocity with decreasing wave-
length). Figures 11.4(e)–(h) show the spectra relative to each electric field profile:
the input spectral peak (IN) is transformed into two distinct peaks (P and N). We
underline once more that this is a purely linear simulation, i.e. the observed fre-
quency conversion is not the result of an optical interaction involving e.g. χ(2) or
χ(3) nonlinearities. Rather, this frequency conversion finds a simple explanation in
terms of the generation of positive and negative Hawking modes: in Fig. 11.6(a) we
show the modes on the dispersion curve at the horizon. As can be seen, both the P
and N modes lie on the curve and both conserve ω′IN . Moreover, in the following
section (Sect. 11.5), we repeat such a simulation for many different input frequen-
cies and then, by taking the ratio of the photon numbers in the two output modes,
R = |N |2/|P |2, we verify that these satisfy relation (11.19), i.e. the emission is ther-
mal with the same temperature over the whole spectrum of input frequencies [63].
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Fig. 11.4 Numerical simulations of stimulated Hawking radiation. (a)–(d) Evolution of the elec-
tric field of an input few-cycle laser pulse with an initial wavelength of 4 µm. The shaded area
indicates the refractive index perturbation. The arrows indicate the qualitative amplitude of the
velocities (solid arrow for the probe pulse, dashed arrow for the perturbation). The spectra (S)
relative to each of these graphs are shown in (e)–(h) in logarithmic scale: the input spectral peak
is indicated with “IN”. The output spectrum clearly exhibits two distinct blue shifted peaks, the
positive and negative Hawking modes indicated with “P” and “N” in (h)

Figure 11.5 shows the result of a simulation with the same input parameters as
in Fig. 11.4 with the only difference that the input wavelength is now 2 µm and
the probe pulse is placed inside the perturbation which is now moving faster than
the pulse. This is equivalent to study the evolution of a mode that exits a white
hole. As the pulse exits the perturbation, it is frequency converted, as before, to a
P and N mode. The dispersion curves corresponding to this simulation are shown
in Fig. 11.6(b): note that because the input probe pulse has a phase velocity that
is lower than the perturbation velocity, in the comoving frame it now has initial
negative (comoving) frequency.

11.5 Stimulated Hawking Emission and Amplification

In this section we study in more detail the stimulated process SHE that has been
introduced in the previous numerical section (Sect. 11.4). Although the stimulated
case clearly distinguishes from the spontaneous Hawking radiation (which origi-
nates from the vacuum fluctuations and has been studied in the experimental ana-
logue contest, see Sect. 11.7) it bears in common important features with it, and may
thus be useful to understand the underlying physics. In particular we want to shed
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Fig. 11.5 Numerical simulations of stimulated Hawking radiation. (a)–(d) Evolution of the elec-
tric field of a input few-cycle laser pulse with an initial wavelength of 2 µm. The input pulse now
starts from inside the perturbation with lower initial group velocity vg < v and thus exits the per-
turbation, passing through the white hole horizon. The spectra (S) relative to each of these graphs
are shown in (e)–(h) in logarithmic scale

Fig. 11.6 Dispersion curves for the numerical simulations in Figs. 11.4(a) and 11.5(b). We plot
the comoving frequency, ω′/2π , as a function of the laboratory frame frequency, ω/2π . The full–
circles indicate the position of the IN, P and N mode frequencies

some light on the photon amplification process and on the thermality of the emitted
radiation.

The conversion and amplification of the two output modes, P and N, may be bet-
ter understood in the contest of a generalized Manley-Rowe relation. Indeed, in the
geometrical optics approximation, when j new frequencies are generated starting
from an input seed pulse at frequency ω0, the photon number of the output waves,
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Fig. 11.7 Numerical results
for the stimulated Hawking
emission. Normalized photon
number evolutions for the
input mode, |IN |2 (black
dotted curve), total outgoing
photons, |P |2 + |N |2 (blue
solid), and difference
photons, |P |2 − |N |2 (red
dashed). Input seed
wavelength λIN = 5 µm, DP
velocity v = 0.97c and DP
amplitude δnmax = 0.09

Ij , is linked to the photon number of the input mode, I0, by the following general-
ized Manley-Rowe relation [64–66]:

sign (γ0)I0 =
∑

j>0

sign (γj )Ij , (11.22)

where, for α = 0,1, . . . , j , γα is defined as γα = (v2
φ − vvφ)α , v is the velocity of

the moving perturbation DP and vφ is the mode phase velocity. We note that photon
amplification occurs as far as γj < 0 for some j > 0 [64]. Indeed, the total number
of photons in this case, obtained as

∑
j>0 Ij , exceeds I0.

In particular we are interested in the case j = 2, i.e. when there is creation of
a pair of new converted modes that, in the reference frame comoving with the DP,
have positive ω′ > 0 (P-mode), and negative ω′ < 0 (N-mode), frequencies. In this
specific case, and noting that

sign (γj )= sign (ωj − vkj )= sign
(
ω′j
)
, (11.23)

Eq. (11.22) assumes the interesting form of Eq. (11.18), which indeed states that
photon amplification is tied hand in hand with the generation of negative frequen-
cies.

We can see this effect also in the numerical simulations described in Sect. 11.4.
Considering for example the interaction scheme shown in Fig. 11.4, we may plot
the photon number evolution with time. Figure 11.7 shows the numerical results for
an input seed wavelength λIN = 5 µm, DP velocity v = 0.97c and DP amplitude
δnmax = 0.09. The normalized photon number in the IN-mode (black dotted curve)
decreases along propagation and after ∼0.12 ps is fully converted in the P and N
modes. At the end of the interaction the photon difference, |P |2 − |N |2 (red dashed
curve), is shown to indeed conserve the photon number, i.e. |P |2 − |N |2 = 1, while
the total photon number, |P |2+|N |2 (blue solid curve), clearly shows an increase of
4 times with respect to the IN-mode, thus indicating the presence of amplification.

Moreover, for the stimulated case, it is possible to study the thermal behavior
for the emitted radiation, predicted by relation (11.19). Figure 11.8(a) shows the
spectral dependence of the ratio R between the number of photon in the negative
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Fig. 11.8 (a) ratio R = |N |2/|P |2 versus input comoving frequency ω′IN , by varying λIN between
2 and 20 µm (blue circles) and (b) R versus time, for the same simulation as in Fig. 11.7. The data
in (a) show a clear exponential dependence with best fit R = 0.99 exp(−18.2×10−14ω′) (red solid
curve), corresponding to a blackbody emission with temperature TH = 263.4 kelvin. DP velocity
v = 0.97c and DP amplitude δnmax = 0.09

and in the positive mode, R = |N |2/|P |2, as a function of the input comoving
frequency ω′IN . This set of simulations was performed with a fixed DP velocity
v = 0.97c and a varying input wavelength λIN , thus ensuring that the whole out-
put spectrum experiences the same horizon and, from relation (11.11) and (11.12),
would be amplified at the same temperature TH [63]. Indeed, the blue circles in
Fig. 11.8(a) show that R follows an exponential law with best fit (red solid curve)
given by R = 0.99 exp(−18.2 × 10−14ω′): for ω′IN = 0, we have R ∼ 1 to a very
good approximation, as should be expected, and from the decay constant we may es-
timate the Hawking temperature TH , by substituting in relation (11.20). This corre-
sponds to a blackbody emission with temperature TH = 263.4 kelvin. Impressively,
this numerical evaluation resulted in perfect agreement with the one predicted with
the quantum field theory model, Eq. (11.12), where the gradient of the perturbation
is evaluated for a position of the horizon corresponding to δnH ∼ 0.032.

We also note that R is characterized by an oscillating behavior during the in-
teraction and it reaches an asymptotic value only after the conversion is complete.
For example, in Fig. 11.8(b) we plot R as a function of the interaction time for the
same simulation as in Fig. 11.7. In this case, it is evident that an extrapolation of a
value of R before waiting for the full conversion would underestimate the Hawking
temperature. Indeed, for the plot of Fig. 11.8(a) we took the asymptotic values of R,
which are the only that can determine a correct evaluation for TH .

Remains to study how TH varies as a function of the dielectric perturbation am-
plitude, δnmax , so to verify the accuracy of the perturbative model for smaller values
of δnmax .
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11.6 Creating an Effective Moving Medium with a Laser Pulse

So far the discussion has referred to a generic refractive index perturbation without
actually mentioning how this may be generated. The idea originally proposed by
Leonhardt [33] is based on the Kerr effect [58]: a sufficiently intense laser pulse
propagating in any isotropic medium such as a gas, liquid or amorphous solid will
excite a nonlinear polarization response:

P = ε0
(
χ(1) + χ(3)E2)E, (11.24)

where χ(1) is the linear susceptibility that is related to the linear refractive index
n0 =

√
1+ χ(1), χ(3) is the third order nonlinear susceptibility (also know as the

Kerr nonlinearity) and E = |E| cos(ωt) is the electric field of the intense laser pulse
that excites the medium. The third order polarization term may thus be re-written as
PNL = 1/4χ(3)|E|3 cos(3ωt)+3/4χ(3)|E|3 cos(ωt). The first term oscillates at 3ω,
i.e. it acts as a source for third harmonic frequency generation and may be neglected
(unless the beams or the medium are specifically engineered so as to enhance this
process). The second term oscillates at the input frequency ω and from Eq. (11.24)
we define an effective refractive index n =√1+ χ(1) + 3/4χ(3)|E|2 � n0 + n2I ,
where the nonlinear index is n2 = (3/8)χ(3)/n0 and I = |E|2. The intensity profile
of a laser pulse usually has a Gaussian-like form, i.e. I = I (x − vt)= exp[−((x −
vt)/σ )2], where the pulse speed will be given by the group velocity of light in the
medium, v = vg = dω/dk. In other words, an intense laser pulse propagating in
a nonlinear Kerr medium will create a refractive index perturbation δn = n2I that
travels close to the speed of light.

We note that the reasoning above may be generalised without loss of general-
ity to the case in which the Kerr medium is excited by an intense laser pulse and
the resulting perturbation acts upon a second, weak probe pulse [33, 58, 63]. There
are various methods by which the Kerr medium may be excited to induce a refrac-
tive index perturbation. However, successful measurements of Hawking radiation
do impose some additional constraints:

1. The intensity profile should be stationary during propagation in order to recre-
ate stationary excitation conditions. This is not a trivial requirement due to the
fact that the same Kerr effects that generate the perturbation also lead to back-
reaction on the pump laser pulse and detrimental effects such as pulse splitting,
self-focusing and white light generation;

2. The existence and frequency range of an horizon is completely determined by the
perturbation velocity as seen in Eq. (11.10). So ideally we would like to control
the speed v.

Bearing this in mind, a few experimental setups have been proposed and are sum-
marised in Fig. 11.9. Leonhardt’s original proposal was based on the use of optical
solitons propagating in highly nonlinear photonic crystal fibres. These are fibres
with micro-structured cores that on the one hand allow one to tightly confine light
within the core region, so as to increase the pulse intensity and amplitude of the
perturbation, and on the other allow to engineer the dispersion relation and thus
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Fig. 11.9 Sketch of three different methods employed to generate intense laser pulses with
quasi-stationary propagation over long distances. Photonic crystal fibres have micro-structured
cores that allow to both tightly confine light and control the material dispersion. Spontaneous
filaments are obtained by loosely focusing an intense laser pulse in a bulk Kerr medium, e.g. fused
silica glass

the group velocity of the stationary soliton. The δnmax generated by these solitons
is usually of the order of 10−4. Experiments using fibre solitons therefore satisfy
our list of requirements and indeed the first evidence of horizon-related frequency
conversion was experimentally observed using such fibres in 2008 [33].

Another option is to attempt to harness the nonlinear propagation of laser pulses
in bulk media. One possibility that has been proposed [41, 63, 67] is to use so called
filaments. The term filament, or light filament, denotes the formation of a dynamical
structure with an intense core that is able to propagate over extended distances much
larger than the typical diffraction length while keeping a narrow beam size with-
out the help of any external guiding mechanism [68]. These sub-diffractive “light-
bullets” may be either generated spontaneously of by pre-shaping the laser beam.
Spontaneous filaments are born as a consequence of a spontaneous spatio-temporal
reshaping of an input Gaussian-shaped laser pulse when it is loosely focused into a
nonlinear Kerr medium. If the input power is larger than a certain critical threshold
power, the pulse will self-focus as a result of the spatially varying refractive index
perturbation that the pulse generates and that acts in a similar fashion to a focusing
lens. At the same time the spectrum is broadened and both the transverse and longi-
tudinal profiles of the pulse are simultaneously reshaped until a quasi-stationary (or
“dynamical”) state is formed. Spontaneous filaments exhibit a number of features
that are attractive for the generation of optical horizons: (i) they are extremely simple
to obtain and are characterized by a very intense peak, e.g. I ∼ 1012–1013 W/cm2

that propagates over distances of the order of 2–10 diffraction lengths. In fused sil-
ica n2 ∼ 3×1016 cm2/W so we may have δnmax ∼ 10−3. (ii) Along the longitudinal
coordinate the pulse may split in two and the trailing pulse will be drastically short-
ened and exhibit an extremely sharp shock front on the trailing edge. Moreover, the
trailing peak propagates with a velocity that is significantly slower than the input
pulse group velocity. By controlling the input conditions, e.g. wavelength, focusing,
power, it is possible to control to a certain extent both the steepening effects and the
peak velocity.

Figure 11.10(a) shows an example of the numerically simulated evolution of the
longitudinal profile of a 1.055 µm, 100 fs long laser pulse that undergoes filamen-
tation in fused silica. The pulse splits in two daughter pulses: the rear pulse has
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Fig. 11.10 (a) Example of the numerically simulated longitudinal profile of a spontaneous fila-
ment at various propagation distances. (b) Evolution of the of the intense trailing peak velocity

significantly higher intensity and exhibits a self-steepened shock front on its trailing
edge with a nearly single optical duration. Figure 11.10(b) shows the velocity of
this peak over a longer propagation distance. As can be seen v varies and gradually
accelerates. This feature has been used in experiments: by selecting the emission at
different x it is possible to study the behavior at different v [63, 67].

A further possibility that has been proposed is the use of Bessel filaments. In this
case the transverse profile of the input laser beam is re-shaped into a Bessel-like
pattern using a conical lens (also called axicon). The axicon transforms the laser
beam by redirecting light along a cone at an azimuthally symmetric angle θ towards
the optical axis. Light propagating towards the axis will therefore interfere and the
resulting interference pattern will be a non-diffracting Bessel pattern. Moreover,
simple geometric considerations show that central Bessel peak propagates along the
x-axis with velocity v = vg/ cos θ . Therefore, by simply changing the angle of the
axicon, it is possible to control the propagation velocity of the Bessel pulse. We note
that the spontaneous filament leads to a trailing intense peak that is slowed down
with respect to the input pulse group velocity, vg whilst the Bessel pulse travels
faster.

11.7 Experiments: Spontaneous Emission from a Moving
Perturbation

Laser-pulse induced analogues are the first analogue systems in which experiments
were carried out to investigate and probe the quantum properties of analogue Hawk-
ing emission. These experiments were initiated in 2008 by the work of Philbin et
al. [33]: a soliton was created inside a photonic crystal fibre and blue-shifting of
part of the soliton radiation was observed as a consequence of the interaction with
the self-generated white hole horizon. This was a purely classical effect but clearly
demonstrated the possibility to generate horizons in dielectric media using intense
laser pulses.

This idea was later extended to filament induced perturbations. The spectral
transformations of a filament pulse are significantly richer than in a fibre due to
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Fig. 11.11 Sketch of the experimental layout. The input laser beam is focused into the Kerr sample
(fused silica glass) using either a 20 cm focal length lens (to induce spontaneous filamentation)
or an axicon with a 20 degree cone base angle (to create a Bessel filament). The inset shows a
schematic representation of the Kerr sample: the perturbation propagates following the arrows and
photon pairs, corresponding to the negative and positive Hawking pairs, are excited

the additional transverse degree of freedom. Very specific hyperbolic-shaped spec-
tra are observed in angle-wavelength coordinates. These features were shown to be
reproduced and predicted very precisely within the framework of a model based on
the metric (11.5), thus confirming that by using the basic mathematical tools of gen-
eral relativity it is possible to capture relevant details of optical pulse propagation
in the presence of a travelling perturbation [41]. These first experiments were then
adapted so as to search for signatures of spontaneous Hawking radiation.

The experimental layout is depicted in Fig. 11.11: the input laser pulse is pro-
vided by a regeneratively amplified, 10 Hz repetition rate Nd:glass laser. The pulse
duration is 1 ps and energy is varied between ∼50 µJ and 1.2 mJ. The input pulse is
sent on to a 2 cm long sample of pure fused silica after a reshaping of the beam by
means of the focusing element (lens or axicon). Indeed filaments were formed by
either loosely focusing the input pulse with a 20 cm focal length lens (spontaneous
filaments) or by replacing the lens with an axicon so as to generate a θ ∼ 7 deg
Bessel filament. Light emitted in the forward direction is extremely intense with an
average photon number of the order 1015 photons/pulse. Considering that Hawk-
ing radiation is unlikely to provide more that 1 photon/pulse, a huge and extremely
challenging suppression of the laser pump pulse radiation is required. The photons
emitted from the sample were therefore collected at 90 degrees rather than in the for-
ward direction: the spectrum is then recorded with an imaging spectrometer coupled
to a 16 bit, cooled CCD camera. This arrangement was chosen in order to strongly
suppress or eliminate any additional nonlinear effects (e.g. four wave mixing and
self phase modulation). By employing both spontaneous and Bessel filaments in
separate measurements it was possible to measure radiation emitted from perturba-
tion with various velocities.

The results for the spontaneous filament, adapted from Refs. [63, 67], are shown
in Fig. 11.12. In particular, Fig. 11.12(a) shows the full spectrum (black curve), inte-
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Fig. 11.12 Spectra generated by the spontaneous filament (a) and image of the filament from the
side, at 90 deg (b). The coloured areas in (a) indicate spectra measured for two different positions
of the imaging spectrometer input slit, i.e., (i) beginning and (ii) end section of the filament, high-
lighted also in (b) by the vertical lines. The black curve in (a) shows the spectrum measured with
the input split fully open

Fig. 11.13 (a) Measured radiation wavelength for various perturbation velocities. The blue curves
show the predicted velocity dependence of the radiation wavelengths. The Bessel measurement
is expanded in (b): the four different vertical bars indicated four different spectrum bandwidths
obtained by increasing the input laser pulse intensity. The bars are slightly displaced horizontally
for clarity but they actually all have the same v = 2.065× 108 m/s

grated over 3600 laser shots, obtained by keeping the input slit of the spectrometer
fully open, in order to collect photons emitted from the whole filament. The fila-
ment, imaged at 90 deg, is shown in Fig. 11.12(b). The coloured areas in 11.12(a)
indicate spectra measured for two different positions of the imaging spectrometer
input slit, i.e. when collecting light from either the (i) beginning, or the (ii) end re-
gion of the filament, highlighted also in (b) by the vertical lines. Indeed, as shown
in Fig. 11.10(b), the pulse velocity varies in propagation, so that a certain range of
velocity values is covered during propagation, with low velocity at the beginning
of the filament and higher velocity at the end. This has the effect of broadening
the emission window, which is predicted from Eq. (11.10) to be between 270 and
450 nm. Remarkably, different sections of the filament emit only at selected por-
tions of the overall spectrum, and this peculiar behavior is in quantitative agreement
with the predictions of Eq. (11.10).

These results are summarised also in Fig. 11.13(a): the solid curves represent the
predicted Hawking emission wavelengths based on Eq. (11.10), for increasing δn.
The two shaded areas summarise the results from the spontaneous and Bessel fil-
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ament measurements (indicated with S and B, respectively): the vertical extension
indicates the measured spectral bandwidth (at half maximum) and the horizontal
bars indicate the velocity variation of the perturbation in the case of spontaneous
filaments. The measurements follow the expected dependence and indicate a tight
correlation between the wavelength, or colour of the emitted radiation, and the per-
turbation velocity thus supporting the claim that this radiation is indeed emitted
from the analogue horizon. The measurement indicated with B refers to the Bessel
filament and is shown in more detail in Fig. 11.13(b). In this case there is no spread
of the perturbation velocity and it was possible to probe the emission for increasing
peak intensities, i.e. increasing δn. The bandwidth of the emitted radiation increases
with intensity and increases predominantly to longer wavelengths. This is precisely
in agreement, also at a quantitative level [63, 67], with Eq. (11.10).

On the basis of these results, these measurements have been proposed as the first
experimental evidence of Hawking-like emission from an analogue horizon [63, 67].
However, this is not generally considered to be conclusive evidence and further mea-
surements are called for in order to verify some open issues: the measured photon
numbers, of the order of 0.1–0.01 photons/pulse appear to be too high to be ac-
counted for on the basis of a blackbody emission. Yet other models [20] appear to
give predictions that confirm the measurements. Moreover, the theory predicts that
photons will be generated in correlated pairs. The photons collected at 90 deg are
likely to have suffered strong scattering after emission in the forward direction and
it will therefore be very unlikely to observe any kind of pair-correlation with such a
setup. Other experimental layouts, e.g. based on fibres which will confine the photon
pairs along the same direction, are therefore required.

There are however more critical aspects that need further consideration before
the observed emission can be truly compared to analogue Hawking radiation. Some
of these measurements were performed in regimes in which the laser pulse in-
duced perturbation did not present a group-velocity horizon for any possible co-
propagating frequencies. Group-velocity horizons are considered to be a fundamen-
tal ingredient for the black hole analogy to be robust—indeed, it is only in the pres-
ence of such a horizon that one can guarantee a true and complete blocking of light
at the horizon and hence the presence of two causally disconnected regions. The
optical analogue therefore seems to hint that emission occurs irrespectively of the
presence of such a blocking horizon. This in itself is not a contradiction and models
are being developed in which such an emission is predicted [69, 70]. However, these
models treat the observed emission as an analogue of spontaneous emission from
a cosmological expansion (see also the Chapter by R. Schützhold and W. Unruh)
rather than as true Hawking emission. There are therefore many subtleties within
these measurements that need to be carefully considered before any definite claims
can be made. Future models will need to consider the full role of dispersion “ab
initio” in the quantum field theory description and additional measurements are re-
quired in order to further investigate the presence or absence of the fundamental
ingredients required for an full analogy with Hawking radiation.
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11.8 Conclusions and Perspectives

Laser pulses have been demonstrated in a variety of settings to generate analogue
white holes and horizons that transform light according to the predictions of models
that are derived within the context of general relativity. There is an intrinsic beauty
in spacetime geometries, that same beauty that pushed Einstein to develop, and oth-
ers to accept, the theory of general relativity [71]. The extension to the study of the
“geometry of light” [72], is no exception in this sense. It is possibly not clear to date
how far-reaching this extension will be and if it will allow to gain further insight
into quantum gravity theories or black hole physics. However, analogies between
black hole kinematics and flowing media are certainly extending the limits of our
understanding across various disciplines, e.g. waves in fluids, acoustics and optics.
And thanks to the common underlying tools derived from general relativity, discov-
eries developed in one field apply also to the others and a deeper insight is achieved
by directly comparing similar or different behaviours across the various disciplines.

The optical analogue is still in its infancy and we expect a strong development
in the next years. A number of recent proposals are based either directly on the
presence of an horizon or on the same technology required to build an horizon. For
example Demircan et al. have studied an optical transistor that acts through an op-
tical event horizon [73], McCall et al. have proposed a temporal cloaking device
that uses pulses that split and then recombine thus cancelling out portions of history
[74] and Ginis et al. have proposed a frequency converter based on a metamaterial
analogue of cosmological expansion [75]. Stimulated Hawking mode conversion as
seen in the numerical simulations presented here and in literature [63] represents
a novel kind of optical amplifier and is awaiting experimental demonstration. Such
an amplification mechanism could then in turn lead to the first “black hole laser”
whereby a wave is trapped between two horizons that form a cavity: at each reflec-
tion from the white hole horizon light is amplified through a stimulated Hawking
process with a resulting laser-like behaviour [76, 77].

These are just a few ideas and possibilities. There are certainly many more that
await to be investigated and brought to light through the blending of general relativ-
ity with flowing media.
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Chapter 12
An All-Optical Event Horizon in an Optical
Analogue of a Laval Nozzle

Moshe Elazar, Shimshon Bar-Ad, Victor Fleurov, and Rolf Schilling

Abstract The formal analogy between the propagation of coherent light in a
medium with Kerr nonlinearity and the flow of a dissipationless liquid is exploited
in a demonstration of an all-optical event horizon in an optical analogue of the aero-
nautical Laval nozzle. This establishes a unique experimental platform, in which
one can observe and study very unusual dynamics of classical and quantum fluctua-
tions, and in particular an analogue of the Hawking radiation emitted by astrophys-
ical black holes. We present a detailed theoretical analysis of these dynamics, and
demonstrate experimentally the formation of such an event horizon in a suitably-
shaped waveguide structure.

12.1 Introduction

Event horizons are well known in the context of astrophysics and cosmology. Less
familiar is the analogy between an astrophysical event horizon and the sonic hori-
zon in transonic fluid flow. The analogy is not restricted to the mere existence of the
horizon, but also pertains to the prediction that a thermal spectrum of sound waves
should be emitted from a sonic horizon, similarly to Hawking radiation. This is
especially significant since Hawking radiation and the associated Black-hole evap-
oration are one of the most impressive phenomena at the intersection of general
relativity and quantum field theory.

The quantum nature of the physical vacuum implies that a black hole, defined
classically as an object from which even light cannot escape, in fact has character-
istic temperature and entropy [1], and, moreover, emits thermal radiation [2]. The
suggestion that a thermal spectrum of sound waves would also be emitted from a
sonic horizon, or “Mach horizon” (the fluid counterpart of the horizon, where the
fluid velocity equals the sound velocity) [3], was based on the observation that the
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derivation of Hawking uses only the linear wave equation in curved spacetime, and
not the Einstein equations. The same conditions for wave propagation arise when
considering sound propagation in a fluid when the background flow is non-trivial,
and in particular when the background flow is a stationary accelerating transonic
flow.

An accelerating fluid may thus lend itself to laboratory experiments on the
physics of black holes and black hole evaporation. Since direct experimentation with
black holes is hardly possible, experiments using analogous phenomena in physical
systems where the “high-energy” (short-wavelength) physics is known are a very
exciting proposition. This sets the stage for an extensive activity aiming to create
laboratory black hole analogues. A sonic horizon was investigated in several water
tank experiments [4–6], and recently also in an experiment with a Bose-Einstein
condensate (BEC) [7]. An optical analogue of Hawking radiation was investigated
in filamentation experiments in glass [8], while a “white hole” horizon, involving
total back-reflection of probe light from a moving soliton, was studied in optical
fibers [9]. A rotating black hole experiment involving nonlinear optics was also pro-
posed [10]. Similar ideas were developed for BEC [11–14], superfluid 3He-A [15],
degenerate Fermi liquids [16], SQUID array transmission lines [17], and media with
singularities in the electric permittivity and magnetic permeability [18].

In what follows we describe in detail another approach to “analogue gravity”—
an all-optical experiment based on laser light propagation in a distinctive nonlinear
waveguide, which is analogous to a Laval nozzle [19]. The latter is an important ap-
paratus for transonic acceleration of fluids, and is a well-known device in the context
of aerodynamics: Typically, a high-pressure hot gas undergoes isentropic expansion
through a convergent-divergent nozzle, accelerating above the local sound velocity
(i.e. Mach = 1) at the nozzle throat (the point where the nozzle is the narrowest).
Such a device was briefly mentioned by Unruh [3], and was later employed in water
tank experiments, and discussed by others in the context of BEC [12, 20] and gen-
eral isentropic fluids [21]. Using the same idea, extended to the realm of nonlinear
optics, we explore an all-optical analogue of the Laval nozzle. As we show be-
low, when a medium with a defocusing (i.e. repulsive) Kerr nonlinearity is confined
within a properly shaped channel (i.e. transverse refractive index profile), incident
light moving at a small angle relative to the longitudinal (z) axis of the channel may
propagate transversally in a way that resembles the accelerating flow of an equiv-
alent fluid, which may be called “luminous fluid”. Thus the coordinate z plays the
role of time, the transverse component of the wave-vector plays the role of velocity,
the propagation of light is mapped to a flow with a finite transverse velocity, and a
change of the propagation angle corresponds to acceleration of the fluid. This ap-
proach has proved to be an extremely powerful one when applied to the problem of
coherent tunneling [22–27], and has also been used to model fluid flow around an
obstacle [28] and dispersive shock waves in defocussing media [29–35]. In the op-
tical analogue of the Laval nozzle an incoming “subsonic” (i.e. low-incidence) laser
beam “accelerates” (i.e. changes its direction) while traversing the nozzle, reaching
a critical velocity, which is equivalent to the sound velocity in a real fluid, at the noz-
zle throat, and exiting the nozzle at a “supersonic” velocity. Significantly, classical
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“sound” waves which may be excited at the throat, and manage to escape the noz-
zle on its subsonic side, but are washed away by the supersonic flow that exits the
nozzle on the other side, show many similarities to the quantum Hawking radiation
which is emitted from the event horizon of a black hole. This analogue of Hawk-
ing radiation has a unique optical signature which can be readily detected, and has
an important advantage over other analogue gravity experiments in that supersonic
“velocities” are very easily obtained. It thus presents a new and promising platform
for analogue gravity experiments.

This chapter is organized as follows: We first present a theoretical analysis that
shows the mapping from the nonlinear optical representation to its hydrodynamic
counterpart, and the conditions under which an incoming plane wave is tilted while
traversing a properly shaped channel, in analogy to transonic acceleration of a real
fluid. We then describe an experimental realization of a horizon, which forms when
a beam confined in a nonlinear channel escapes through a small slot cut along the
side of the channel. Different regimes of operation are studied, corresponding to
transonic and supersonic acceleration. Next we analyze classical and quantum fluc-
tuations on the background transonic flow, in the vicinity of the horizon. We show
that these fluctuations have a thermal spectrum with a characteristic temperature that
is analogous to the Hawking temperature. Furthermore, similar to Hawking radia-
tion, fluctuations that propagate against the background flow break into a part which
is carried away with the supersonic flow (i.e. “falls” into the black hole), and another
part, which penetrates into the subsonic region (i.e. “escapes” from the black hole).
Finally we discuss constraints on the possibility of observing the classical fluctua-
tions experimentally.

12.2 Transonic Flow of a Luminous Fluid

The propagation of weakly nonlinear coherent optical waves is described by the
nonlinear Schrödinger (NLS) equation

i
∂A

∂z
=− 1

2β0
∇2A+U(x,y)A+ λ|A|2A. (12.1)

It assumes the paraxial approximation, according to which the electric field of the
light wave is written as E = A(x,y, t; z)e−iβ0z, where A(x,y, t; z) is the weakly z

dependent complex amplitude of the light propagating in the z direction. The time
coordinate t is converted into the τ coordinate [36] which describes the shape of
the wave packet in the moving coordinate system. Hence the Laplace operator in
Eq. (12.1) is

∇2 = ∂2
x + ∂2

y ± ∂2
τ

with the + sign for anomalous and − sign for normal dispersion. U(x,y) is the
equivalent external potential created by spatial variation of the refraction index in
the medium and does not depend on τ .
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Now we briefly sketch the fundamental result [3] as applied to coherent light
propagation in a medium with a Kerr nonlinearity. The Madelung transformation
[37] A= f eiφ (see also [10, 38, 39]) maps the NLS Eq. (12.1) onto two equations,

∂zρ +∇ · [ρv] = 0, (12.2)

∂zv+ 1

2
∇v2 =− 1

β0
∇(Vqu +U + λρ) (12.3)

for an equivalent fluid with density ρ = f 2 and velocity β0v =−∇φ. For an inci-

dent continuous wave the coordinate τ is redundant. The term Vqu = − 1
2β0

∇2f
f

is

reflects the dispersion, especially at short wave length, and is analogous to the so
called “quantum potential” (QP) which appears in the corresponding quantum me-
chanical problem. Here the problem is classical, but we may conditionally call this
term QP with �= 1. The light wave number β0 plays the role of a “particle mass”,
and the velocity v is dimensionless.

The simplest way to analyze Eqs. (12.2) and (12.3) is first to neglect the QP and
then to linearize these equations with respect to small fluctuations ρ − ρ0 = ρ0ψ

and φ − φ0 = ϕ around a steady solution ρ0(x, y) and ϕ0(x, y). This results in a
Klein-Gordon equation

(−g)−1/2∂μ(−g)1/2gμν∂νϕ = 0, (12.4)

in a space whose curvature is determined by the metric gμν with the infinitesimal
interval

dσ 2 = gμνdx
μdxν

=
√

β0

λρ0

[
dr2 − 2dzv0 · dr −

(
λρ0

β0
− v2

0

)
dz2
]

(12.5)

where gμμ′gμ′ν = δ
μ
ν and g is the determinant of the metric. Ordinary “sound

waves” in the effective luminous fluid arise as solutions of Eq. (12.4) around the
equilibrium solution ρ0 = const, φ0 = const and v0 = 0, that exists at U = 0, so
that λρ0/β0 = s2 is the squared sound velocity. The nonlinearity coefficient must
be positive, λ > 0, otherwise the “sound velocity” becomes imaginary and various
instabilities, such as collapsing solitons [40] arise. Equation (12.4) may include cor-
rections due to the QP, which may be of importance for short waves. One can readily
estimate the scale at which these corrections can become important by comparing
the first and third terms on the RHS of Eq. (12.1). This gives us the characteristic
length l−2

nl = λρ0β0, which we call here the nonlinearity length. It corresponds to
the well-know healing length in BEC.

Equation (12.5) is analogous to the equation proposed by Unruh [3] for a de-
scription of fluctuations on the background of a transonic flow in an isentropic fluid.
Therefore the conclusions made in Ref. [3] can be applied to our optical system as
well. In particular, an effect that is analogous to Hawking radiation from the vicinity
of the horizon of a black hole should, in principle, also be observed here. However,
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Fig. 12.1 A cartoon of a laser beam propagating inside the optical Laval nozzle. The beam, with
a small initial angle relative to the z axis, bends more towards the x direction as it propagates
along the z direction (“time”). The bend in the cartoon is strongly exaggerated. A fluctuation is
schematically shown near the Mach horizon as it is cut in two parts which propagate in opposite
directions

the approximation we have made, neglecting the QP, may introduce significant lim-
itations on the observability of the effect. Such limitations due to the contribution
of the QP will be discussed later on. First we will discuss, within the framework of
this approximation, a possible scenario under which transonic acceleration of such
a “luminous liquid” may be observed.

A conceivable way to create such a transonic flow is to use a Laval nozzle
[41, 42], i.e. a vessel with a variable cross-section S(x), whose application to other
condensed-matter analogues was discussed in Refs. [12, 21]. The flow velocity ini-
tially increases with decreasing S(x), until it reaches the sound velocity at the nar-
rowest part of the vessel, called the throat. Further acceleration of the supersonic
fluid is obtained by increasing S(x). Here we analyze the transonic flow for the
optical analogue of the Laval nozzle shown in Fig. 12.1. The incident laser beam,
nearly parallel to the z axis, is tilted in the x direction at an angle arctan(kx/β0), i.e.
the initial phase of the complex electric field amplitude A(x,y) is ϕ = kxx. kx/β0

plays the role of “flow velocity” in the x direction. Acceleration of the flow within
the channel of variable width (along the y-axis) corresponds to bending of the beam
(i.e. an increase of kx ), as shown in Fig. 12.1. It also leads to small corrections to
β0 that are quadratic in kx/β0 � 1 (We assume that the wavelength 1/β0 is smaller
than all the other relevant scales.)

Reference [19] considered such a flow, bounded by walls of hyperbolic shape

y2

a2
− x2

b2
= 1 (12.6)

with sliding boundary conditions. This type of description will certainly work in the
vicinity of the throat, even if the vessel profile has a general form, not necessarily
exactly hyperbolic.
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It follows from the symmetry of the system that there is a streamline along the
straight line that separates the two branches of the hyperbola at y = 0. The x depen-
dence of the flow velocity along this line has the form

v0(x)= s̄(1+ αx), ρ0 = ρ̄(1− αx) (12.7)

where overlined quantities refer to the throat at x = 0. The coefficient α character-
izes the spatial acceleration of the flow in the vicinity of the throat, and the particular
value α = 1/(

√
3c), with c=√

a2 + b2, is obtained for the hyperbolic shape of the
throat discussed above. Since this shape is generic, especially close to the throat, we
do not expect a strong variation of this coefficient. The above two equations satisfy
the 1D continuity equation ∂x(ρ0(x)v0(x)) = 0 up to terms of order O(αx). The
same equations can be used for the curved streamlines lying close to the symmetry
line (y = 0) if we neglect small corrections of order O((αy)2). The sound velocity
of the luminous liquid is

λρ(x)= β0s
2(x),

and the corresponding values of these quantities at the throat are related as
λρ̄0 = β0s̄

2.

12.3 An Experimental Horizon

We study the flow through an optical Laval nozzle experimentally by launching a
continuous wave laser beam into an appropriately shaped waveguide with reflec-
tive walls, filled with a Kerr-type defocusing nonlinear material. The experimental
challenge here is to create conditions of steady flow with a subsonic input veloc-
ity. Since the velocity is kx/β0 and the sound velocity is s2 = λρ/β0, the above
input conditions imply a small input angle of the beam and a high nonlinearity
and/or input intensity. (Note that, for a given angle, low and high intensities corre-
spond to supersonic and subsonic flow conditions, respectively, which is somewhat
unintuitive.) However, an unavoidable consequence of these conditions is a strong
self-defocusing of the beam, and as a result the wave packet which traverses the
nozzle is an expanding “droplet” of liquid, with a tendency of the power density
in the cavity to decrease with increasing input power. Furthermore, while the peak
intensity of the droplet may correspond to subsonic flow, it is always surrounded
by supersonic flow (in contrast to the usual case in hydrodynamics), and when
confined to a Laval nozzle such as the one described in Fig. 12.1, the fluid flows
from the throat towards both sides of the nozzle. It is thus impossible to generate
the steady sonic background flow conditions stipulated by the theory in a simple
waveguide with a convergent-divergent cross-section formed by two convex walls,
as in Fig. 12.1. To circumvent this problem we use an alternative waveguide design,
based on a light-pipe of circular cross-section drilled in an aluminum block, with a
groove of triangular cross-section, cut along the side of the channel, acting as the
divergent section of the nozzle (see Fig. 12.2). The total length of each light pipe is



12 An All-Optical Event Horizon in an Optical Analogue of a Laval Nozzle 281

Fig. 12.2 Images of the waveguide structures used in the experiment. Panel (a) shows the input
plane, with six circular holes that are the input ports of six lightpipes of different dimensions.
Panel (b) shows the exit plane of the same waveguide structure, and the grooves of triangular
cross-section, cut half-way along the sides of the channels, and forming the divergent sections of
the nozzles

L= 67 mm, and the groove extends over the second half of this length. This design
is intended to “trap” the expanding beam and confine it in a homogeneous, high-
density and low-velocity mode, thus preparing it for ejection through the groove,
and is akin to the configuration of a rocket engine: a high-pressure gas is first loaded
into a combustion chamber, and is then expelled through the nozzle. The aluminum
block, with several nozzles of different diameters, aperture sizes and groove open-
ing angles, is enclosed in a plexiglass cell with glass windows, which is sealed and
filled with iodine-doped ethanol. The nonlinear index variations result from optical
absorption by the iodine, which in turn leads to thermally-induced changes of the
index of refraction—a non-local nonlinearity which slightly washes out the thermal
gradients [32]. The nonlinearity λρ can be expressed, in terms of the nonlinearly-
induced refractive index change δn, as δnβ0/n0, where n0 is the linear refractive
index of the material [32]. The corresponding dimensionless sound velocity is then
s2 = δn/n0, meaning that the input beam is subsonic for kx/β0 <

√
δn/n0. We use

a continuous-wave frequency-doubled YAG laser (532 nm), and focus the beam to
a ∼0.5 mm waist at the input of a waveguide. The input power is varied by means
of the laser controller, in order to avoid thermal effects in variable-density filters.
Images of the exit plane of the waveguide are recorded by means of a CCD camera.
In all cases images were acquired after stabilization of the thermal gradients. The
images we present are unprocessed except for background subtraction.

Figure 12.3 presents images of the exit plane of two of the waveguides, and
the corresponding power density cross-sections along the nozzle axis, for an input
power (2 Watts) that is sufficiently high to completely fill the waveguides (at an
iodine concentration of ∼40 ppm). Figure 12.3(a) shows a 2 mm diameter waveg-
uide, and Fig. 12.3(c) shows a 3 mm diameter waveguide, both having a ∼0.5 mm
opening, (i.e. nozzle throat). Figures 12.3(b) and 12.3(d) are the power density
cross-sections corresponding to Figs. 12.3(a) and 12.3(c), respectively, obtained by
summation over 12 CCD lines at the center of each nozzle. Figure 12.3(e) shows
the free expansion of the beam when it propagates outside the waveguide struc-
ture. Figure 12.3(f) shows a reference image of the 3 mm diameter waveguide, ob-
tained with incoherent light and with the laser beam blocked. Figures 12.3(a)–(d)
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Fig. 12.3 Images of the exit plane of the waveguides and corresponding power density cross-sec-
tions along the nozzle axis, for a 2 Watt input power and an iodine concentration of ∼40 ppm.
Panels (a) and (b) show data for a 2 mm diameter waveguide, panels (c) and (d) show data for a
3 mm diameter waveguide, and panel (e) shows the free expansion of the beam outside the waveg-
uide structure. Panel (f) is a reference image of the 3 mm diameter waveguide

clearly show the jets of luminous liquid ejected from the nozzles as the beam prop-
agates through the waveguides. Note that the jets extend farther than the edge of
the beam undergoing free expansion (Fig. 12.3(e); A detailed analysis is presented
in Fig. 12.4). Furthermore, there is a sharp drop of the density as the jet exits the
nozzles, which is clearly seen in the images and in the power density cross-sections.
This demonstrates that the luminous liquid is accelerating at the nozzle throat rather
than gradually expanding through the opening. Finally, while the confined beam
propagates along the waveguide walls at a very slow (i.e. subsonic) velocity, the
following analysis shows that the jet of luminous liquid is indeed supersonic: The
dimensionless velocity of the jet outside the waveguide is first calculated from its ex-
tension in the transverse direction, deduced from the images. The relation is simply
v =
x/
z = 2
x/L∼ 0.1, where 
x is the transverse distance from the nozzle
throat to the edge of the jet, and 
z = L/2 is the distance along the z axis that
the same part of the jet has propagated by the time it reached the exit plane. This
velocity should be compared to the local sound velocity, which can be estimated
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Fig. 12.4 The measured jet
velocities as a function of
input power for an iodine
concentration of ∼40 ppm.
Data are shown for two
waveguides and for free
expansion of the beam
outside the waveguide
structure. The calculation of
velocities is explained in the
text. The lines are guides to
the eye

by analyzing the light intensity distribution in the exit plane and the rate of expan-
sion of the freely-expanding (i.e. self-defocusing) beam. The latter, deduced from
Fig. 12.3(e), allows us to calculate λρ0 and the corresponding sound velocity at the
input. The former in turn allows us to deduce the sound velocity which corresponds
to the lower density of the jet, taking into account the expansion of the beam in
the light-pipe, the relative intensities of the jet and inside the light-pipe, and mea-
sured losses. This calculation gives a local sound velocity in the jet on the order of
1× 10−3 or less, meaning that the local Mach number is >100. This clearly estab-
lishes that the luminous liquid undergoes transonic acceleration and forms a “sonic”
horizon as it expands through the nozzle.

Figure 12.4 shows the dimensionless velocities (v = 2
x/L) of the jets ema-
nating from the 3 mm and 2 mm nozzles, as a function of the input intensity, for
a fixed iodine concentration (∼40 ppm). Also shown is the velocity at the enve-
lope of the freely-expanding beam, which we estimate as dx/dz≈
x′/L. (In this
case we measure 
x′ from the center of the beam, which we determine from low-
intensity measurements; This velocity corresponds to the asymptotic expansion an-
gle, obtained for L � 1/λρ0, i.e. when the propagation distance is much longer
than the characteristic defocusing distance, and is a reasonable estimate for intensi-
ties >1 Watt.) Figure 12.4 clearly shows that the velocity of the jet is higher than
that of the freely-expanding beam throughout the experimental intensity range, in
spite of the fact that the initial conditions for the free expansion involve higher pres-
sures (the equivalent of pressure in a luminous liquid is 1

2λρ
2). On the other hand,

Fig. 12.4 shows that the jet emanating from the 2 mm waveguide is slower than that
ejected from the 3 mm nozzle, although, for a given input intensity, the pressure in
the latter is supposed to be lower. This discrepancy can result from the fact that the
opening in the 2 mm waveguide subjects a larger angle, resulting in a less directional
jet (compare Figs. 12.3(a) and (c)). We also measure higher losses (due to scattering
and absorption) in the smaller waveguide, so in fact the power densities in the two
waveguides are comparable. Finally, the non-locality of the nonlinearity may have
a stronger effect on the 2 mm waveguide.

Measurements at lower nonlinearities illustrate another regime of operation of
the nozzles. Figure 12.5 shows a set of images of the exit plane of the test cell for
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Fig. 12.5 Acceleration of supersonic input beams through a 3 mm nozzle. The input power is
1.5 Watts, and the iodine concentration is ∼20 ppm. Under these conditions the defocusing is not
sufficiently strong to completely fill the waveguide. Panels (a)–(f) show images of the exit plane
of the waveguide for six different positions of the nozzle throat, as the nozzle is moved, along its
axis, relative to the fixed beam position. The distances between the beam axis and the throat are
(a) 0.33 mm, (b) 0.54 mm, (c) 1.02 mm, (d) 1.25 mm, (e) 1.59 mm, and (f) 1.94 mm. Panel (g)
shows the power density cross-section, along the nozzle axis, in image (c). Panel (h) is an image
of a low intensity beam, used for calibration of the throat—beam axis distance

self-defocusing (i.e. beam expansion) that is not sufficiently strong to completely fill
the 3 mm waveguide. (The images were obtained with an input power of 1.5 Watts
and an iodine concentration of only ∼20 ppm.) Six images, Figs. 12.5(a)–(f) were
acquired at six different positions of the nozzle throat, as the nozzle was moved,
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Fig. 12.6 A plot of the jet velocity as a function of the distance between the beam axis and the
3 mm nozzle throat, at four input powers, with an iodine concentration of ∼20 ppm. Under these
conditions the defocusing is not sufficiently strong to completely fill the waveguide. The calcula-
tion of velocities is explained in the text, and the curves are guides to the eye

along its axis, relative to the fixed beam position. Figure 12.5(g) is a power density
cross-section, along the nozzle axis, of Fig. 12.5(c), and Fig. 12.5(h) is an image
of a low intensity beam, used for calibration of the distance between the beam axis
and the nozzle throat. It is evident from the images that the extension of the jet,
which is proportional to the jet velocity, strongly depends on the displacement of
the nozzle throat. Figure 12.6 summarizes the dependence of the jet velocity on
the displacement and the input power. Note that as the input power is increased the
optimum acceleration is obtained when the beam axis is moved farther away from
the throat (at an input power of 2 Watts the beam axis is then close to the center of
the waveguide). A comparison of the data in Fig. 12.6 with the divergences of the
freely-expanding beams, measured separately for the same input powers, shows that
the optimum acceleration at the nozzle is obtained when the envelope of the freely-
expanding beam coincides with the nozzle throat halfway through the waveguide
(i.e. at z= L/2). Under these conditions the luminous liquid entering the nozzle is
already moving at a supersonic velocity, and it is accelerated further in the divergent
section of the nozzle. The smooth power density cross-section shown in Fig. 12.5(g)
supports this interpretation (compare this to the sharp density gradients at the throat
in Fig. 12.3). In this case the nozzle operates in a regime that is not typical of a Laval
nozzle, though.

12.4 Fluctuations

12.4.1 Classical Straddled Fluctuations

Now we will discuss the dynamics of fluctuations on the background of the transon-
ically accelerating flow of luminous liquid. This flow is characterized by the density
and velocity spatial distributions ρ0(x) = |A0(x)|2 and v0(x) = − 1

β0
∂xϕ0(x). We
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also limit ourselves to the 1+ 1 case described by the propagation length z (“time”)
and the perpendicular coordinate x. The equations of motion for the fluctuations are
straightforward deduced by linearizing Eqs. (12.2) and (12.3) with respect to the
stationary transonic solution A0(x)= f0e

−iϕ0(x). One obtains

(∂z + v0∂x)χ − 1

β0

1

f 2
0

∂x
(
f 2

0 ∂xξ
)= 0, (12.8)

(∂z + v0∂x)ξ + 1

4β0

1

f 2
0

∂x
(
f 2

0 ∂xχ
)− λf 2

0 χ = 0 (12.9)

where the quantities

χ = 1

f0

[
e−iϕ0ψ† + eiϕ0ψ

]
,

ξ = 1

2if0

[
e−iϕ0ψ† − eiϕ0ψ

] (12.10)

are related to the density and velocity fluctuations by

δv(x, z)=− 1

β0
∂xξ(x, z),

δρ(x, z)= ρ0(x)χ(x, z)

(12.11)

with ρ0 = f 2
0 .

A straightforward way to analyze Eqs. (12.8) and (12.9) is to neglect the sec-
ond term in Eq. (12.9) (i.e. the QP), solve the resulting equation with respect to χ

and substitute it into Eq. (12.8). That is how we arrive at the Klein-Gordon equa-
tion (12.4). Assuming in addition that the flow acceleration is linear near the hori-
zon, i.e. ρ0 = ρ̄(1 − αx) and v0(x) = s̄(1 + αx), one obtains, up to linear terms
in x,

{
∂2
z + 2s̄(1+ αx)∂z∂x + αs̄∂z + 3αs̄2∂x(x∂x)

}
ξ = 0. (12.12)

As shown above the spatial acceleration is α = 1/(c
√

3) in the particular case of a
hyperbolic profile of the nozzle throat.

This equation has two sets of eigenfunctions, which at |x| → 0 behave like

ξ1 ∝ eγ0 ln(−x)−iνz, ξ2 ∝ eik2(ν)x−iνz (12.13)

where

γ0 = i
2ν

3s̄α
, k2(ν)= ν

s̄

ν + is̄α

2ν − 3is̄α
.

The correspondingly eigenfunctions for the density fluctuations are

χ1 ∝ e(γ0−1) ln(−x)−iνz, χ2 ∝ eik2(ν)x−iνz (12.14)

These two solutions [19, 20, 43, 44] are the propagating plane waves in the Bogoli-
ubov spectrum, strongly distorted by the accelerating background flow. The solu-
tion ξ1 corresponds to the excitation “attempting” to propagate against the flow in
the vicinity of the Mach horizon, which cuts it into two parts moving in opposite
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directions away from the horizon. The solution ξ2 is a fluctuation propagating with
the flow, and therefore has a shape quite similar to that of a plane wave. In the high
frequency limit this mode propagates at twice the sound velocity.

In contrast to ξ2 and χ2, the solutions ξ1 and χ1 are singular since they possess
a branching point at x = 0. This singular behavior is typical of the eigenfunctions
of the Klein-Gordon equation in the vicinity of the horizon of a real black hole (see
e.g. Ref. [45] and references therein) and leads to the celebrated Hawking radiation.
Regularization in this case requires knowledge of the physics at the Planck length
scale (see e.g. Ref. [46]). In the luminous liquid the part of Planck length is played
by the nonlinearity length lnl (which is equivalent to the healing length in BEC). In
order to regularize χ1 (and also ξ1) near the horizon we have to take into account
the QP in Eq. (12.9) (see the next subsection).

As an illustration of this special behavior of the fluctuations near the Mach hori-
zon, formed in the throat of the hyperbolic Laval nozzle, we consider a “straddled”
fluctuation

f (x, z)=
∫

dνg(ν)e−iνzξ1(x)=Φ(x, z)G(x, z)H(x) (12.15)

with the Gaussian spectral density

g(ν)= 1

Γ
√

2π
exp

{
− (ν − ν0)

2

2Γ 2

}

of width Γ around a positive “frequency” ν0. Such a fluctuation is composed ex-
clusively of the “left moving” normal modes ξ1(x), singular at x = 0. Any “right
moving” normal mode ξ2(x) would escape the vicinity of the horizon at twice the
sound velocity and can therefore be neglected. The “time” evolution (i.e. z depen-
dence) of such a wave packet is determined by the envelope function

G(x, z)= exp

{
−Γ 2

2

[
2c√
3s̄

ln |x| − z

]2}
.

The factor

H(x)= exp

{[
2πcν0√

3s̄
+ 2π2Γ 2c2

3s̄2

]
θ(x)

}

(θ(x) is the Heaviside step function) is equal to one at x < 0 (subsonic region) and
is larger than one at x > 0 (supersonic region). It appears due to the branching point
of the function ln(−x) at x = 0.

The phase factor

Φ(x, z)= exp

{
i

[
2c√
3s̄

ln |x| − z

][
ν0 + π

2Γ 2c√
3s̄

θ(x)

]}

in (12.15) indicates that the “wave vector” is now proportional to ln |x|, i.e. diverges
at x → 0. It can be interpreted as the wave length tending to zero in this limit, which
corresponds to a “blue shift” when approaching the horizon. The “frequencies” of
these oscillations on both sides of the horizon strongly vary with |x|. This is remi-
niscent of “time slowing” near the horizon of a real black hole.
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Fig. 12.7 Propagation of a straddled wave packet to the left and right of the Mach horizon. The
normalized propagation distances are z1 = 0, z2 = 0.1, z3 = 0.3, z4 = 0.5, and Γ = 2

Figure 12.7 shows the dynamics of the envelope function G(x, z). Here the co-
ordinate x is measured in units c whereas the propagation distance z is measured
in units c/s̄. Correspondingly the units s̄/c are used for ν and Γ . The figure shows
how the maxima of the fluctuation amplitude propagate on both sides of the Mach
horizon, with zero amplitude on the horizon. The part residing to the right side
of the horizon (the supersonic region, x > 0) should be multiplied by the factor
H(x) > 1 at x > 0 (not shown in Fig. 12.7). Although the discussion here is clas-
sical the parameter 2πcν0/(

√
3s̄) = �ν0/2TH appearing in the function H(x) is

directly related to the Hawking temperature TH characterizing the spectrum of the
spontaneous radiation from the horizon in the quantum problem. It will be discussed
below. Therefore the ratio of amplitudes of a classical fluctuation on the left and the
right of the horizon directly measures the Hawking temperature.

12.4.2 Regularization of Fluctuations Near the Mach Horizon

Here we will discuss the behavior of the fluctuations in the nearest vicinity of the
sonic horizon. The eigenfunctions (12.13) and (12.14) are obtained neglecting the
QP contribution (the second term in Eq. (12.9)). One can readily see, by substi-
tuting the singular eigenfunction (12.14) that the neglected term in fact diverges at
|x| → 0, meaning that there is always a narrow region close to the horizon where
the above approximation does not hold. The QP introduces dispersion effects at high
enough frequencies corresponding to small length scales. The extent to which short
range dispersion influences Hawking radiation is a question that has been exten-
sively dealt with over the past two decades. In order to deduce quantitative results,
e.g. for the flux and the spectrum, the mode equations based on specific dispersion
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laws were solved numerically [47–51] and analytically [14, 20, 52–58]. Some of
these works use the framework of general relativity [47, 48, 52–55] and the oth-
ers consider analogue gravity [20, 49–51, 56–58]. They provide clear evidence that
Hawking radiation is basically a low frequency phenomenon and is robust, although
counter examples were presented [57] (see Ref. [59] for more details).

The equations for fluctuations with full account of the QP contribution are an-
alyzed as follows. We apply the same assumptions concerning the coordinate de-
pendence of the velocity and density near the Laval nozzle throat as in the previous
subsection. The Laplace representation

χ(x, z)= e−iνz

∫

C

dkχke
ikx (12.16)

is used where the contour C is chosen in such a way that the integral converges
[60]. Here and below we omit the subscript x when denoting the wave vector of the
fluctuations in the x direction. ξk is defined similarly to (12.16). Then Eqs. (12.8)
and (12.9) become

(−iν + is̄k)χk − αs̄∂k(kχk)+ iαk
1

β0
ξk + 1

β0
k2ξk = 0, (12.17)

− 1

4β0

[
iαk + k2]χk − β0s̄

2(χk − iα∂kχk)+ (−iν + is̄k)ξk − αs̄∂k(kξk)= 0

(12.18)

where the terms O(α2/k2) have been omitted. This approximation is equivalent
to considering a region α|x| � 1 near the horizon. We can now explicitly solve
Eq. (12.17) with respect to ξk and substitute the result into Eq. (12.18). We then get
the first order differential equation

∂k lnχk = 1

iαk(2ν̄ − 3k− iα)

[
− l2h

2

(
iαk + k2)2 − k2 + (ν̄ − k)2

]
(12.19)

for the function χk , where ν̄ = ν/s̄. It can be readily solved to within a term inde-
pendent of k,

lnχk = γ1 ln(k)+ γ2 ln

(
k − 2

3
ν̄ − i

3
α

)
+Λ(k, ν̄) (12.20)

where

γ1 = 1

4
− iν̄

2α
, γ2 =−1

4
− i

1

6α
ν̄ − 4i

81α
l2nl ν̄

3 + 14

81
l2nl ν̄

2

and

Λ(k, ν̄)= l2nl

α

{
− i

18
k3 + 5

36
αk2 − i

18
ν̄k2 − 2i

27
ν̄2k+ 4

27
ν̄αk

}
. (12.21)

This means that now we know the Laplace transforms of the eigenfunctions and
what is left is to carry out the back Laplace transform (12.16) in order to have the
eigenfunctions in real space. This procedure is described in detail in Refs. [43, 44],
where a discussion of the relevant literature is also presented. Using the saddle point
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integration we can see that eigenfunctions (12.13) emerge if we neglect the Λ(k, ν)

term, i.e. at lnl → 0, which is equivalent to neglecting the QP. However, the singular
eigenfunctions now have a somewhat different form, namely

χs ∝ xγ−1, (12.22)

where the parameter

γ =−γ1 − γ2 = 2iν

3αs̄
+ 4i

81

l2nlν
3

αs̄3
− 2

27

l2nlν
2

s̄2
(12.23)

differs from the parameter γ0 in Eqs. (12.13) and (12.14) for ξ1 and χ1, respectively,
since it contains small corrections due to the QP. That is why the notation χs is used
instead of χ1. This type of singular behavior of the eigenfunction typically occurs
near the horizon and is a crucial ingredient in the formation of Hawking radiation
(see e.g. Refs. [45, 61]).

Accounting for the Λ(k, ν) term is necessary when considering large wave vec-
tors, l2nlk

3/α� 1, i.e. for |x| � lr = lnl/(αlnl)
1/3 [43, 44]. At such small distances

from the horizon the QP contribution leads to a regularization of the singular eigen-
function (12.22). On the other hand the whole derivation is carried out under the
assumption that |x| � min{1/α,1/ν}. Since the singular eigenfunction (12.22) is
important for the formation of Hawking radiation, we always need a spatial window
lr � |x| �min{1/α,1/ν} in order to have a chance to observe the radiation effect.
It is also interesting that the authors of Ref. [51] found empirically a length scale dξ
with the same dependence on α and lh as that of lr (cf. their Eq. (24), where κK and
1/Λ correspond to our α and lh, respectively). However, it is not clear whether lr
and dξ are identical.

12.4.3 Quantization and the Hawking Temperature

The analysis carried out so far follows from the NLS equation (12.1) which is de-
duced from the classical Maxwell equations for an electromagnetic wave propagat-
ing in a nonlinear Kerr medium in the paraxial approximation. It means that the
above analysis is essentially classical. Although the results are indicative of how the
quantum Hawking radiation will emerge, the issue of quantization of the fluctuations
still needs to be addressed.

We start with a discussion of Eqs. (12.8) and (12.9), which can be represented as
Euler-Lagrange equations corresponding to the Lagrangian density

L = 1

2
f 2

0 (χ∂zξ − ξ∂zχ)+ 1

2
f 2

0 v0(χ∂xξ − ξ∂xχ)− 1

2
λf 4

0 χ2

− 1

2β0
f 2

0 (∂xξ)
2 − 1

8β0∂x
f 2

0 (∂xχ)2 (12.24)

(see also the discussion in the Appendix of Ref. [50]). This Lagrangian density
allows us to define the canonical momenta
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pχ = δ

δ∂zχ

[
L − 1

2
∂z(f0χξ)

]
=−f 2

0 ξ, (12.25)

pξ = δ

δ∂zξ

[
L + 1

2
∂z(f0χξ)

]
= f 2

0 χ (12.26)

conjugate to each of the fields χ and ξ . Together they form two canonical pairs,
each of which can be used to derive the Hamiltonian density

H =−f0∂zχξ −
[
L − 1

2
∂z(f0χξ)

]
= f0χ∂zξ −

[
L + 1

2
∂z(f0χξ)

]

=−1

2
f 2

0 v0(χ∂xξ − ξ∂xχ)+ 1

2
λf 4

0 χ2 + 1

2β0
f 2

0 (∂xξ)
2 + 1

8β0
f 2

0 (∂xχ)2.

(12.27)

While the derivation of Eq. (12.27) depends on the choice of the canonical pair,
the final Hamiltonian does not depend on it. Equations (12.8) and (12.9) are now
just the pair of Hamilton equations of motion for the Hamiltonian density (12.27).
The manipulations of adding or subtracting a full derivative indicate that the varia-
tions of the Lagrangian with respect to ∂zχ and ∂zξ are not uniquely defined. How-
ever, this feature of the Lagrangian (12.24) does not affect the Euler-Lagrange equa-
tions (12.8) and (12.9) but is important when defining the canonical momentum and
Hamiltonian. It means that we have to choose which of the functions χ or ξ plays
the part of the canonical coordinate. Then the other one will enter the definition of
the conjugate canonical momentum. It is emphasized that we can use only one of
these pairs at a time, but not both of them simultaneously. The physical result is
independent of the choice.

If ξ is chosen as the canonical coordinate then the quantization condition reads
[
pξ (x, z), ξ

(
x′, z

)]= [f 2
0 χ(x, z), ξ

(
x′, z

)]= �δ
(
x − x′

)
(12.28)

where [· · · , · · ·] denotes the commutator of two operators. The other choice of the
canonical pair would obviously yield the same quantization condition.

It is worthwhile to note that here the commutation condition is defined for two
operators at equal values of the propagation length z (our “time”), contrary to the
standard quantization procedure where the commutation is defined at equal times.
It is not an unusual situation when considering light propagation in the paraxial
approximation (see e.g. the discussion in Ref. [62]).

Now we have to define the norm of the fluctuation eigenfunctions. It is convenient
to do this by first rewriting the equations (12.8) and (12.9) as

i

2
f 2

0 σy∂zϑ + i

2
f 2

0 v0∂zσy∂xϑ − 1

2
λf 4

0 (1+ σz)ϑ

+ 1

4β0
∂x
(
f 2

0 ∂xϑ
)= 0 (12.29)

where the two component field

ϑ =
(

1√
2
χ

√
2ξ

)

(12.30)
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has been introduced. We also extend the definition of these two fields and consider
them complex. Then the corresponding Lagrangian density becomes

L = i

4
f 2

0

[
ϑ†σy(D̂ϑ)− (D̂ϑ†)σyϑ

]− 1

2
λf 4

0 ϑ†(1+ σz)ϑ − 1

4β0
f 2

0

(∇ϑ†)∇ϑ

(12.31)

where σi are Pauli matrices and D̂ = ∂z + v0∂x . Now we can readily deduce the
continuity equation

∂z*+ ∂xj = 0

where the quantity *= f 2
0 ϑ†σyϑ plays the role of the density of this two component

field, whereas

j = f 2
0 v0ϑ

†σyϑ − i
1

2β0
f 2

0

[
ϑ†∂xϑ −

(
∂xϑ

†)ϑ
]

(12.32)

is the corresponding current density. Then the integral
∫

dxf 2
0 ϑ†σyϑ =−i

∫
dxf 2

0

(
χ∗ξ − ξ∗χ

)
(12.33)

is a conserved quantity, which can be used in order to normalize solutions (eigen-
functions) of Eqs. (12.8) and (12.9) or to define a scalar product of two such solu-
tions. Similarly to the well-known Klein-Gordon norm, Eq. (12.33) is not positively
defined. Positive and negative frequencies are considered separately in order to re-
solve this problem in the case of the Klein-Gordon equation (see e.g. Ref. [46]).
A similar procedure can be applied in this case as well.

Now we are in a position to calculate the frequency spectrum of the Hawking
radiation emanating from the Mach horizon. We use an approach similar to that
proposed by Damour et al. [45, 61]. The central point in this approach is the cal-
culation of the norm of a straddled fluctuation, which clearly demonstrates how a
negative frequency state is cut into negative and positive frequency states propagat-
ing in opposite directions away from the horizon. The norm (12.33) reads

〈ϑs,ϑs〉 =
∫

dx*s(x)=−i

∫
dxf 2

0

(
χ∗s ξs − ξ∗s χs

)
(12.34)

for the pair of eigenfunctions (ξs,χs). We have to deal here with the two compo-
nent function (12.30), of which χs calculated above is only one component. The
second component ξs can be found now, say, by solving Eq. (12.9). Neglecting the
contribution of the QP in Eq. (12.9) we get

χs = 1

λf 2
0

D̂ξs (12.35)

so that

ξs ∝ xγ

for min{1/ν,1/α} � |x| � lr .
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The two component field density reads

*s =−i
{[(

∂zξ
∗
s

)
ξs − ξ∗s ∂zξs

]+ v0(x)
[(
∂xξ

∗
s

)
ξs − ξ∗s ∂xξs

]}
(12.36)

where the coefficient λ is absorbed in the normalization factor of ξs . One can readily
see that the definition of the norm (12.34) coincides in this approximation with the
Klein-Gordon scalar product in the corresponding curved space. The local coordi-
nate transformation

dz̃= dz+ v0(x)dx

s2(x)− v2
0(x)

, dx̃ = dx (12.37)

proposed in Ref. [3] allows us to rewrite the density in the form

*̃s =−i
s2(x̃)

s2(x̃)− v2
0(x̃)

[(
∂z̃ξ

∗
s

)
ξs − ξ∗s ∂z̃ξs

]
, (12.38)

which has different signs in the subsonic v(x̃) < s(x̃) and supersonic v(x̃) > s(x̃)

regions.
Next we calculate the norm using the density (12.38). The corresponding integral

is separated into two regions—outside the “black hole” x̃ <−lr (left), and inside it
x̃ > lr (right). We may neglect the contribution of the narrow region |x| < lr and
reduce the norm to

〈ϑs,ϑs〉 ≈
∫ −lr

−∞
dx̃*̃s +

∫ ∞

+lr

dx̃*̃s

= 〈ϑs,ϑs〉lef t + 〈ϑs,ϑs〉right . (12.39)

The function *̃s in Eq. (12.38) diverges at |x̃| → 0, which could have resulted in
a divergent contribution of the neglected region of integration. However, it is im-
portant to emphasize that Eq. (12.38) holds only outside the narrow region near the
Mach horizon, i.e. for |x̃| > lr . Within this region, |x̃| < lr , we have to go back to
Eq. (12.34), which gives a non-divergent result. Although infinities are indicated as
the integration limits in Eq. (12.39), the principal contributions come from the re-
gions min{1/α,1/ν}> |x|> lr . Since both χs and ξs are regular at |x|< lr we will
get only a small correction to the norm (12.39) from this narrow region, which can
be neglected as long as lr �min{1/α,1/ν}.

The integrals on the two sides of the horizon (left and right) approximately obey
the relation

〈ϑs,ϑs〉lef t =−e2π Imγ 〈ϑs,ϑs〉right
due to the analytical properties of the function ξs . The total negative norm (12.39)
is cut into the left moving positive frequency state and the right moving negative
frequency state. The left state propagates against the flow “outside the black hole”.
Its relative weight is

N(ν)= (e2π Imγ − 1
)−1

, (12.40)

where

Imγ = 2ν

3α

[
1+ 2

27

l2nlν
2

s̄2

]
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contains a correction due to the QP, proportional to the third power of the frequency
(wave number in the z direction). Thus N(ν) deviates from the Planck distribution
for black body radiation. This result can also be understood as a black body radiation
spectrum with the frequency-dependent temperature

TH (ν)= TH (0)

1+ 2
27

ν2l2nl
s̄2

.

For frequencies that are not very high, ν � s̄/ lr , this dependence may be neglected,
and N(ν) becomes the standard Planck distribution with the effective Hawking tem-
perature

TH (0)= 3�s̄α

4πkB
,

where � has been re-introduced.

12.5 Discussion

While the nonlinearity length lnl = 1/
√
λρ0β0 ∼ 30 µm in the experiment is suffi-

ciently short to give way to fluctuations with a linear dispersion relation, the chal-
lenge is to create an equivalent Hawking temperature that would be high enough to
measure experimentally. Note that this is not a real temperature, but it nevertheless
sets a constraint on the minimum light intensity (and sound velocity) required in
the waveguide: As explained above, the ratio of amplitudes of the two parts of a
classical fluctuation—the part which is carried away with the supersonic flow (i.e.
“falls” into the black hole) and the part which penetrates into the subsonic region

(i.e. “escapes” from the black hole), is exp{ 2πcν0√
3s̄

+ 2π2Γ 2c2

3s̄2 }> 1. For small enough

Γ this ratio is on the order of unity when 2πcν0 ≈
√

3s̄, where c is a characteris-
tic length scale of the nozzle (c =√

a2 + b2 for the hyperbolically-shaped throat).
The same condition can also be written lH ≈ 2l0, where lH = �/TH = 4πc/

√
3s̄

and l0 = 1/ν0 are characteristic length scales of the horizon and the fluctuations,
respectively. Fulfillment of this condition would allow one to observe both parts
of a classical fluctuation in the experiment, and to directly measure the Hawking
temperature. In the experiment described above lH is on the order of a few meters
(c≈ 1× 10−3 m, s̄ ≈ 1× 10−3), while l0 must be on the order of a few centimeters
(the length of the cavity). This may still allow observation of the part of a fluctuation
which is carried away with the supersonic flow, but the part which penetrates into
the subsonic region will most likely be submerged in noise. Therefore lH must be
decreased by two orders of magnitude. Note, however, that for given input inten-
sity and nonlinear coefficient the factor c/s̄ in the expression for lH grows like c2.
We therefore estimate that an order of magnitude smaller cavity will be sufficient
for observing both parts of a straddled classical fluctuation. The requirement for a
slow rate of acceleration [51] can be met by a refined, smoother waveguide cross-
section, compared to the rudimentary prototype that we have used for demonstration
purposes.
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12.6 Summary

In summary, we demonstrate the possibility of creating an optical analogue of the
Laval nozzle, as a new platform for analogue gravity experiments. The challenge for
future investigations will be to study the dynamics of straddled fluctuations, which
may be either quantum or classical, and even artificially created. The equivalent of
the Hawking temperature enters as an important parameter characterizing all types
of fluctuations. This temperature is measured in units of momentum, rather than
energy, which corresponds to a wavelength that exceeds the width of nozzle throat
by about three orders of magnitude, and is in principle accessible to experimental
measurements.

Acknowledgements Support of Israeli Science Foundation Grant No. 944/05 and of United
States—Israel Binational Science Foundation Grant No. 2006242 is acknowledged.
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Chapter 13
Lorentz Breaking Effective Field Theory
and Observational Tests

Stefano Liberati

Abstract Analogue models of gravity have provided an experimentally realizable
test field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz invariance
at microscopic scales. In this role they have joined, and sometime anticipated, sev-
eral quantum gravity models characterized by Lorentz breaking phenomenology.
A crucial difference between these speculations and other ones associated to quan-
tum gravity scenarios, is the possibility to carry out observational and experimen-
tal tests which have nowadays led to a broad range of constraints on departures
from Lorentz invariance. We shall review here the effective field theory approach to
Lorentz breaking in the matter sector, present the constraints provided by the avail-
able observations and finally discuss the implications of the persisting uncertainty
on the composition of the ultra high energy cosmic rays for the constraints on the
higher order, analogue gravity inspired, Lorentz violations.

13.1 Introduction

Our understanding of the fundamental laws of Nature is based at present on two
different theories: the Standard Model of Fundamental Interactions (SM), and clas-
sical General Relativity (GR). However, in spite of their phenomenological success,
SM and GR leave many theoretical questions still unanswered. First of all, since we
feel that our understanding of the fundamental laws of Nature is deeper (and more
accomplished) if we are able to reduce the number of degrees of freedom and cou-
pling constants we need in order to describe it, many physicists have been trying to
construct unified theories in which not only sub-nuclear forces are seen as different
aspects of a unique interaction, but also gravity is included in a consistent manner.

Another important reason why we seek for a new theory of gravity comes di-
rectly from the gravity side. We know that GR fails to be a predictive theory in some
regimes. Indeed, some solutions of Einstein’s equations are known to be singular at
some points, meaning that in these points GR is not able to make any prediction.
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Moreover, there are apparently honest solutions of GR equations predicting the ex-
istence of time-like closed curves, which would imply the possibility of traveling
back and forth in time with the related causality paradoxes. Finally, the problem of
black-hole evaporation seems to clash with Quantum Mechanical unitary evolution.

This long list of puzzles spurred an intense research toward a quantum theory of
gravity that started almost immediately after Einstein’s proposal of GR and which
is still going on nowadays. The quantum gravity problem is not only conceptually
challenging, it has also been an almost metaphysical pursue for several decades.
Indeed, we expect QG effects at experimentally/observationally accessible energies
to be extremely small, due to suppression by the Planck scale MPl ≡ √

�c/GN �
1.22× 1019 GeV/c2. In this sense it has been considered (and it is still considered
by many) that only ultra-high-precision (or Planck scale energy) experiments would
be able to test quantum gravity models.

It was however realized (mainly over the course of the past decade) that the sit-
uation is not as bleak as it appears. In fact, models of gravitation beyond GR and
models of QG have shown that there can be several of what we term low energy
“relic signatures” of these models, which would lead to deviation from the standard
theory predictions (SM plus GR) in specific regimes. Some of these new phenom-
ena, which comprise what is often termed “QG phenomenology”, include:

• Quantum decoherence and state collapse [1]
• QG imprint on initial cosmological perturbations [2]
• Cosmological variation of couplings [3, 4]
• TeV Black Holes, related to extra-dimensions [5]
• Violation of discrete symmetries [6]
• Violation of spacetime symmetries [7]

In this lecture I will focus upon the phenomenology of violations of spacetime sym-
metries, and in particular of Local Lorentz invariance (LLI), a pillar both of quantum
field theory as well as GR (LLI is a crucial part of the Einstein Equivalence Principle
on which metric theories of gravity are based).

13.2 A Brief History of an Heresy

Contrary to the common trust, ideas about the possible breakdown of LLI have
a long standing history. It is however undeniable that the last twenty years have
witnessed a striking acceleration in the development both of theoretical ideas as
well as of phenomenological tests before unconceivable. We shall here present an
incomplete review of these developments.

13.2.1 The Dark Ages

The possibility that Lorentz invariance violation (LV) could play a role again in
physics dates back by at least sixty years [8–13] and in the seventies and eighties
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there was already a well established literature investigating the possible phenomeno-
logical consequences of LV (see e.g. [14–19]).

The relative scarcity of these studies in the field was due to the general expecta-
tion that new effects were only to appear in particle interactions at energies of order
the Planck mass MPl. However, it was only in the nineties that it was clearly realized
that there are special situations in which new effects could manifest also at lower
energy. These situations were termed “Windows on Quantum Gravity”.

13.2.2 Windows on Quantum Gravity

At first glance, it appears hopeless to search for effects suppressed by the Planck
scale. Even the most energetic particles ever detected (Ultra High Energy Cosmic
Rays, see, e.g., [20, 21]) have E � 1011 GeV ∼ 10−8MPl. However, even tiny cor-
rections can be magnified into a significant effect when dealing with high energies
(but still well below the Planck scale), long distances of signal propagation, or pe-
culiar reactions (see, e.g., [7] for an extensive review).

A partial list of these windows on QG includes:

• sidereal variation of LV couplings as the lab moves with respect to a preferred
frame or direction

• cumulative effects: long baseline dispersion and vacuum birefringence (e.g. of
signals from gamma ray bursts, active galactic nuclei, pulsars)

• anomalous (normally forbidden) threshold reactions allowed by LV terms
(e.g. photon decay, vacuum Cherenkov effect)

• shifting of existing threshold reactions (e.g. photon annihilation from Blazars,
ultra high energy protons pion production)

• LV induced decays not characterized by a threshold (e.g. decay of a particle from
one helicity to the other or photon splitting)

• maximum velocity (e.g. synchrotron peak from supernova remnants)
• dynamical effects of LV background fields (e.g. gravitational coupling and addi-

tional wave modes)

It is difficult to assign a definitive “paternity” to a field, and the so called Quan-
tum Gravity Phenomenology is no exception in this sense. However, among the pa-
pers commonly accepted as seminal we can cite the one by Kostelecký and Samuel
[22] that already in 1989 envisaged, within a string field theory framework, the pos-
sibility of non-zero vacuum expectation values (VEV) for some Lorentz breaking
operators. This work led later on to the development of a systematic extension of the
SM (what was later on called “minimal standard model extension” (mSME)) incor-
porating all possible Lorentz breaking, power counting renormalizable, operators
(i.e. of mass dimension ≤4), as proposed by Colladay and Kostelecký [23]. This
provided a framework for computing in effective field theory the observable conse-
quences for many experiments and led to much experimental work setting limits on
the LV parameters in the Lagrangian (see e.g. [24] for a review).
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Another seminal paper was that of Amelino-Camelia and collaborators [25]
which highlighted the possibility to cast observational constraints on high energy
violations of Lorentz invariance in the photon dispersion relation by using the afore-
mentioned propagation over cosmological distance of light from remote astrophys-
ical sources like gamma ray bursters (GRBs) and active galactic nuclei (AGN). The
field of phenomenological constraints on quantum gravity induced LV was born.

Finally, we should also mention the influential papers by Coleman and Glashow
[26–28] which brought the subject of systematic tests of Lorentz violation to the
attention of the broader community of particle physicists.

Let me stress that this is necessarily an incomplete account of the literature which
somehow pointed a spotlight on the investigation of departures from Special Relativ-
ity. Several papers appeared in the same period and some of them anticipated many
important results, see e.g. [29, 30], which however at the time of their appearance
were hardly noticed (and seen by many as too “exotic”).

In the years 2000 the field reached a concrete maturity and many papers pursued
a systematization both of the framework as well as of the available constraints (see
e.g. [31–33]). In this sense another crucial contribution was the development of an
effective field theory approach also for higher order (mass dimension greater than
four), naively non-power counting renormalizable, operators.1 This was firstly done
for dimension 5 operators in QED [37] by Myers and Pospelov and later on extended
to dimension 6 operators by Mattingly [38].

Why all this attention to Lorentz breaking tests developed in the late nineties and
in the first decade of the new century? I think that the answer is twofold as it is re-
lated to important developments coming from experiments and observation as well
as from theoretical investigations. It is a fact that the zoo of quantum gravity mod-
els/scenarios with a low energy phenomenology had a rapid growth during those
years. This happened mainly under the powerful push of novel puzzling observa-
tions that seemed to call for new physics possibly of gravitational origin. For ex-
ample, in cosmology these are the years of the striking realization that our universe
is undergoing an accelerated expansion phase [39, 40] which apparently requires a
new exotic cosmological fluid, called dark energy, which violates the strong energy
condition (to be added to the already well known, and still mysterious, dark matter
component).

Also in the same period high energy astrophysics provided some new puzzles,
first with the apparent absence of the Greisen-Zatsepin-Kuzmin (GZK) cut off [41,
42] (a suppression of the high-energy tail of the UHECR spectrum due to UHECR
interaction with CMB photons) as claimed by the Japanese experiment AGASA
[43], later on via the so called TeV-gamma rays crisis, i.e. the apparent detection of
a reduced absorption of TeV gamma rays emitted by AGN [44]. Both these “crises”

1Anisotropic scaling [34–36] techniques were recently recognized to be the most appropriate way
of handling higher order operators in Lorentz breaking theories and in this case the highest order
operators are indeed crucial in making the theory power counting renormalizable. This is why we
shall adopt sometime the expression “naively non renormalizable”.
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later on subsided or at least alternative, more orthodox, explanations for them were
advanced. However, their undoubtedly boosted the research in the field at that time.

It is perhaps this past “training” that made several exponents of the quantum
gravity phenomenology community the among most ready to stress the apparent
incompatibility of the recent CERN–LNGS based experiment OPERA [45] measure
of superluminal propagation of muonic neutrinos and Lorentz EFT (see e.g. [46–
49]. There is now evidence that the Opera measurement might be flawed due to
unaccounted experimental errors and furthermore it seems to be refuted by a similar
measurement of the ICARUS collaboration [50]. Nonetheless, this claim propelled a
new burst of activity in Lorentz breaking phenomenology which might still provide
useful insights for future searches.

Parallel to these exciting developments on the experimental/observational side,
also theoretical investigations provided new motivations for Lorentz breaking
searches and constraints. Indeed, specific hints of LV arose from various approaches
to Quantum Gravity. Among the many examples are the above mentioned string the-
ory tensor VEVs [22] and spacetime foam models [25, 51–54], then semiclassical
spin-network calculations in Loop QG [55], non-commutative geometry [56–58],
some brane-world backgrounds [59].

Indeed, during the last decades there were several attempts to formulate alterna-
tive theories of gravitation incorporating some form of Lorentz breaking, from early
studies [60–64] to full-fledged theories such as the Einstein–Aether theory [65–67]
and Hořava–Lifshitz gravity [35, 68, 69] (which in some limit can be seen as a UV
completion of the Einstein–Aether framework [70]).

Finally, a relevant part of this story is related to the vigorous development in the
same years of the so called condensed matter analogues of “emergent gravity” [71]
which is the main topic of this school. Let us then consider these models in some
detail and discuss some lesson that can be drawn from them.

13.3 Bose–Einstein Condensates as an Example of Emergent
Local Lorentz Invariance

Analogue models for gravity have provided a powerful tool for testing (at least in
principle) kinematical features of classical and quantum field theories in curved
spacetimes [71]. The typical setting is the one of sound waves propagating in a per-
fect fluid [72, 73]. Under certain conditions, their equation can be put in the form of
a Klein-Gordon equation for a massless particle in curved spacetime, whose geome-
try is specified by the acoustic metric. Among the various condensed matter systems
so far considered, Bose–Einstein condensate (BEC) [74, 75] had in recent years a
prominent role for their simplicity as well as for the high degree of sophistication
achieved by current experiments. In a BEC system one can consider explicitly the
quantum field theory of the quasi-particles (or phonons), the massless excitations
over the condensate state, propagating over the condensate as the analogue of a
quantum field theory of a scalar field propagating over a curved effective space-
time described by the acoustic metric. It provides therefore a natural framework
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to explore different aspects of quantum field theory in various interesting curved
backgrounds (for example quantum aspects of black hole physics [76, 77] or the
analogue of the creation of cosmological perturbations [78–81]) or even, and more
relevantly for our discussion here, emerging spacetime scenarios.

In BEC, the effective emerging metric depends on the properties of the conden-
sate wave-function. One can expect therefore the gravitational degrees of freedom
to be encoded in the variables describing the condensate wave-function [75], which
is solution of the well known Bogoliubov–de Gennes (BdG) equation. The dynam-
ics of gravitational degrees of freedom should then be inferred from this equation,
which is essentially non-relativistic. The “emerging matter”, the quasi-particles, in
the standard BEC, are phonons, i.e. massless excitations described at low energies
by a relativistic (we shall see in which sense) wave equation, however, at high en-
ergies, the emergent nature of the underlying spacetime becomes evident and the
relativistic structure of the equation broken. Let’s see this in more detail as a con-
ceptual exercise and for highlighting the inspirational role played in this sense by
analogue models of gravity.

13.3.1 The Acoustic Geometry in BEC

Let us start by very briefly reviewing the derivation of the acoustic metric for a BEC
system, and show that the equations for the phonons of the condensate closely mimic
the dynamics of a scalar field in a curved spacetime. In the dilute gas approximation,
one can describe a Bose gas through a quantum field Ψ̂ satisfying

i�
∂

∂t
Ψ̂ =

(
− �

2

2m
∇2 + Vext(x)+ κ(a)Ψ̂ †Ψ̂

)
Ψ̂ . (13.1)

m is the mass of the atoms, a is the scattering length for the atoms and κ

parametrises the strength of the interactions between the different bosons in the
gas. It can be re-expressed in terms of the scattering length a as

κ(a)= 4πa�2

m
. (13.2)

As usual, the quantum field can be separated into a macroscopic (classical) con-
densate and a fluctuation: Ψ̂ = ψ + ϕ̂, with 〈Ψ̂ 〉 = ψ . Then, by adopting the self-
consistent mean field approximation

ϕ̂†ϕ̂ϕ̂ � 2
〈
ϕ̂†ϕ̂

〉
ϕ̂ + 〈ϕ̂ϕ̂〉ϕ̂†, (13.3)

one can arrive at the set of coupled equations:

i�
∂

∂t
ψ(t,x) =

(
− �

2

2m
∇2 + Vext(x)+ κnc

)
ψ(t,x)

+ κ
{
2ñψ(t,x)+ m̃ψ∗(t,x)

}; (13.4)
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i�
∂

∂t
ϕ̂(t,x) =

(
− �

2

2m
∇2 + Vext(x)+ κ2nT

)
ϕ̂(t,x)

+ κmT ϕ̂
†(t,x). (13.5)

Here

nc ≡
∣∣ψ(t,x)

∣∣2; mc ≡ψ2(t,x); (13.6)

ñ≡ 〈ϕ̂†ϕ̂
〉; m̃≡ 〈ϕ̂ϕ̂〉; (13.7)

nT = nc + ñ; mT =mc + m̃. (13.8)

In general one will have to solve both equations for ψ and φ̂ simultaneously. The
equation for the condensate wave function ψ is closed only when the back-reaction
effects due to the fluctuations are neglected. (The back-reaction being hidden in the
quantities m̃ and ñ.) This approximation leads then to the so-called Gross–Pitaevskii
equation and can be checked a posteriori to be a good description of dilute Bose–
Einstein condensates near equilibrium configurations.

Adopting the Madelung representation for the wave function ψ of the condensate

ψ(t,x)=√nc(t,x) exp
[−iθ(t,x)/�

]
, (13.9)

and defining an irrotational “velocity field” by v ≡ ∇θ/m, the Gross–Pitaevskii
equation can be rewritten as a continuity equation plus an Euler equation:

∂

∂t
nc +∇ · (ncv)= 0, (13.10)

m
∂

∂t
v+∇

(
mv2

2
+ Vext(t,x)+ κnc − �

2

2m

∇2(
√
nc)√

nc

)
= 0. (13.11)

These equations are completely equivalent to those of an irrotational and inviscid
fluid apart from the existence of the so-called quantum potential

Vquantum =−�2∇2√nc/(2m
√
nc), (13.12)

which has the dimensions of energy.
If we write the mass density of the Madelung fluid as ρ =mnc , and use the fact

that the flow is irrotational we can write the Euler equation in the more convenient
Hamilton–Jacobi form:

m
∂

∂t
θ +

( [∇θ ]2
2m

+ Vext(t,x)+ κnc − �
2

2m

∇2√nc√
nc

)
= 0. (13.13)

When the gradients in the density of the condensate are small one can neglect the
quantum stress term leading to the standard hydrodynamic approximation.
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Let us now consider the quantum perturbations above the condensate. These can
be described in several different ways, here we are interested in the “quantum acous-
tic representation”

ϕ̂(t,x)= e−iθ/�
(

1

2
√
nc

n̂1 − i
√
nc

�
θ̂1

)
, (13.14)

where n̂1, θ̂1 are real quantum fields. By using this representation Eq. (13.5) can be
rewritten as

∂t n̂1 + 1

m
∇ · (n1∇θ + nc∇θ̂1)= 0, (13.15)

∂t θ̂1 + 1

m
∇θ ·∇θ̂1 + κ(a)n1 − �

2

2m
D2n̂1 = 0. (13.16)

Here D2 represents a second-order differential operator obtained from linearizing
the quantum potential. Explicitly:

D2n̂1 ≡ −1

2
n
−3/2
c

[∇2(n+1/2
c

)]
n̂1 + 1

2
n
−1/2
c ∇2(n−1/2

c n̂1
)
. (13.17)

The equations we have just written can be obtained easily by linearizing the Gross–
Pitaevskii equation around a classical solution: nc → nc + n̂1, φ → φ + φ̂1. It is
important to realize that in those equations the back-reaction of the quantum fluc-
tuations on the background solution has been assumed negligible. We also see in
Eqs. (13.15), (13.16), that time variations of Vext and time variations of the scat-
tering length a appear to act in very different ways. Whereas the external potential
only influences the background Eq. (13.13) (and hence the acoustic metric in the
analogue description), the scattering length directly influences both the perturbation
and background equations. From the previous equations for the linearised perturba-
tions it is possible to derive a wave equation for θ̂1 (or alternatively, for n̂1). All we
need is to substitute in Eq. (13.15) the n̂1 obtained from Eq. (13.16). This leads to a
PDE that is second-order in time derivatives but infinite order in space derivatives—
to simplify things we can construct the symmetric 4× 4 matrix

f μν(t,x)≡

⎛

⎜⎜
⎝

f 00
... f 0j

· · · · · · · · · · · · · · · · · · ·
f i0

... f ij

⎞

⎟⎟
⎠ . (13.18)

(Greek indices run from 0–3, while Roman indices run from 1–3.) Then, introducing
(3+ 1)-dimensional spacetime coordinates

xμ ≡ (t;xi
)

(13.19)

the wave equation for θ1 is easily rewritten as

∂μ
(
f μν∂ν θ̂1

)= 0. (13.20)
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Where the f μν are differential operators acting on space only. Now, if we make a
spectral decomposition of the field θ̂1 we can see that for wavelengths larger than
ξ = �/mcsound (ξ corresponds to the “healing length” and csound(a,nc)

2 = κ(a)nc

m
),

the terms coming from the linearization of the quantum potential (the D2) can be
neglected in the previous expressions, in which case the f μν can be approximated
by scalars, instead of differential operators. Then, by identifying

√−ggμν = f μν, (13.21)

the equation for the field θ̂1 becomes that of a (massless minimally coupled) quan-
tum scalar field over a curved background


θ1 ≡ 1√−g
∂μ
(√−ggμν∂ν

)
θ̂1 = 0, (13.22)

with an effective metric of the form

gμν(t,x)≡ nc

mcsound(a,nc)

⎛

⎜⎜
⎝

−{csound(a,nc)
2 − v2} ... −vj

· · · · · · · · · · · · · · · · · · ·
−vi

... δij

⎞

⎟⎟
⎠ . (13.23)

Here the magnitude csound(nc, a) represents the speed of the phonons in the medium:

csound(a,nc)
2 = κ(a)nc

m
, (13.24)

and vi is the velocity field of the fluid flow,

vi = 1

m
∇iθ. (13.25)

13.3.2 Lorentz Violation in BEC

It is interesting to consider the case in which the above “hydrodynamical” approxi-
mation for BECs does not hold. In order to explore a regime where the contribution
of the quantum potential cannot be neglected we can use the so called eikonal ap-
proximation, a high-momentum approximation where the phase fluctuation θ̂1 is it-
self treated as a slowly-varying amplitude times a rapidly varying phase. This phase
will be taken to be the same for both n̂1 and θ̂1 fluctuations. In fact, if one discards
the unphysical possibility that the respective phases differ by a time varying quan-
tity, any time-independent difference can be safely reabsorbed in the definition of
the (complex) amplitudes Aθ ,Aρ . Specifically, we shall write

θ̂1(t,x) = Re
{
Aθ exp(−iφ)

}
, (13.26)
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n̂1(t,x) = Re
{
Aρ exp(−iφ)

}
. (13.27)

As a consequence of our starting assumptions, gradients of the amplitude, and gra-
dients of the background fields, are systematically ignored relative to gradients of
φ. Note however, that what we are doing here is not quite a “standard” eikonal ap-
proximation, in the sense that it is not applied directly on the fluctuations of the field
ψ(t,x) but separately on their amplitudes and phases ρ1 and φ1. We can then adopt
the notation

ω= ∂φ

∂t
; ki =∇iφ. (13.28)

Then the operator D2 can be approximated as

D2n̂1 ≈ −1

2
n−1
c k2n̂1. (13.29)

A similar result holds for D2 acting on θ̂1. That is, under the eikonal approximation
we effectively replace the operator D2 by the function

D2 →−1

2
n−1
c k2. (13.30)

For the matrix f μν this effectively results in the replacement

f 00 →−
[
κ(a)+ �

2k2

4mnc

]−1

, (13.31)

f 0j →−
[
κ(a)+ �

2k2

4mnc

]−1∇j θ0

m
, (13.32)

f i0 →−∇
iθ0

m

[
κ(a)+ �

2k2

4mnc

]−1

, (13.33)

f ij → ncδ
ij

m
− ∇ iθ0

m

[
κ(a)+ �

2k2

4mnc

]−1∇j θ0

m
. (13.34)

(As desired, this has the net effect of making f μν a matrix of numbers, not op-
erators.) The physical wave equation (13.20) now becomes a nonlinear dispersion
relation

f 00ω2 + (f 0i + f i0)ωki + f ij kikj = 0. (13.35)

After substituting the approximate D2 into this dispersion relation and rearranging,
we see (remember: k2 = ‖k‖2 = δij kikj )

−ω2 + 2vi
0ωki + nck

2

m

[
κ(a)+ �

2

4mnc

k2
]
− (vi

0ki
)2 = 0. (13.36)
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That is (with vi
0 = 1

m
∇iθ0)

(
ω− vi

0ki
)2 = nck

2

m

[
κ(a)+ �

2

4mnc

k2
]
. (13.37)

Introducing the speed of sound csound this takes the form:

ω= vi
0ki ±

√

c2
soundk

2 +
(

�

2m
k2

)2

. (13.38)

We then see that BEC is a paradigmatic framework where a spacetime geometry
emerges at low energies and Lorentz invariance is as an accidental (never exact)
symmetry. This symmetry is naturally broken at high energies and appears emi-
nently in modified dispersion relations for the quasi-particles living above the con-
densate background.

13.4 Modified Dispersion Relations and Their Naturalness

As mentioned before, not only analogue models but also several QG scenarios
played an important role in motivating search for departures from Lorentz invari-
ance and in most of these models, LV enters through modified dispersion relations
of the sort (13.38). These relations can be cast in the general form

E2 = p2 +m2 + f (E,p;μ;M), (13.39)

where the low energy speed of light c= 1; E and p are the particle energy and mo-
mentum, respectively; μ is a particle-physics mass-scale (possibly associated with a
symmetry breaking/emergence scale) and M denotes the relevant QG scale. Gener-
ally, it is assumed that M is of order the Planck mass: M ∼MPl ≈ 1.22×1019 GeV,
corresponding to a quantum (or emergent) gravity effect. Note that we assumed a
preservation of rotational invariance by QG physics and that only boost invariance is
affected by Planck-scale corrections. This does not need to be the case (see however
[33] for a discussion about this assumption) and constraints on possible breakdown
of rotational invariance have been considered in the literature (especially in the con-
text of the minimal standard model extension). We assume it here only for simplicity
and clarity in assessing later the available constraints on the EFT framework.

Of course, once given (13.39) the natural thing to do is to expand the function
f (E,p;μ;M) in powers of the momentum (energy and momentum are basically
indistinguishable at high energies, although they are both taken to be smaller than
the Planck scale),

E2 = p2 +m2 +
∞∑

i=1

η̃ip
i, (13.40)
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where the lowest order LV terms (p, p2, p3, p4) have primarily been consid-
ered [7].2

About this last point some comments are in order. In fact, from a EFT point of
view the only relevant operators should be the lowest order ones, i.e. those of mass
dimension 3, 4 corresponding to terms of order p and p2 in the dispersion relation.
Situations in which higher order operators “weight” as much as the lowest order
ones are only possible at the cost of a severe, indeed arbitrary, fine tuning of the
coefficients η̃i .

However, we do know by now (see further discussion below) that current obser-
vational constraints are tremendous on dimension 3 operators and very severe on
dimension 4 ones. This is kind of obvious, given that these operators would end up
modifying the dispersion relation of elementary particles at low energies. Dimen-
sion 3 operator would dominate at p→ 0 while the dimension 4 ones would gener-
ically induce a, species dependent, constant shift in the limit speed for elementary
particles.

Of course one might be content to limit oneself to the study of just these terms
but we stress that emergent gravity scenarios, e.g. inspired by analogue gravity mod-
els, or QG gravity models, strongly suggest that if the origin of the breakdown of
Lorentz invariance is rooted in the UV behaviour of gravitational physics then it
should be naturally expected to become evident only at high energies. So one would
then predict a hierarchy of LV coefficients of the sort

η̃1 = η1
μ2

M
, η̃2 = η2

μ

M
, η̃3 = η3

1

M
, η̃4 = η4

1

M2
. (13.41)

In characterizing the strength of a constraint one can then refer to the ηn without the
tilde, so to compare to what might be expected from Planck-suppressed LV. In gen-
eral one can allow the LV parameters ηi to depend on the particle type, and indeed
it turns out that they must sometimes be different but related in certain ways for
photon polarization states, and for particle and antiparticle states, if the framework
of effective field theory is adopted.

13.4.1 The Naturalness Problem

While the above hierarchy (13.41) might seem now a well motivated framework
within which asses our investigations, it was soon realized [83] that it is still quite
unnatural from an EFT point of view. The reason is pretty simple: in EFT radia-
tive corrections will generically allow the percolation of higher dimension Lorentz

2I disregard here the possible appearance of dissipative terms [82] in the dispersion relation, as
this would correspond to a theory with unitarity loss and to a more radical departure from stan-
dard physics than that envisaged in the framework discussed herein (albeit a priori such dissipative
scenarios are logically consistent and even plausible within some quantum/emergent gravity frame-
works).



13 Lorentz Breaking Effective Field Theory and Observational Tests 309

violation to the lowest dimension terms due to the coupling and self-couplings of
particles [83]. In EFT loop integrals will be naturally cut-off at the EFT breaking
scale, if such scale is as well the Lorentz breaking scale the two will basically can-
cel leading to unsuppressed, couplings dependent, contributions to the propagators.
Hence radiative corrections will not allow a dispersion relation with only p3 or p4

Lorentz breaking terms but will automatically induce extra unsuppressed LV terms
in p and p2 which will be naturally dominant.

Several ideas have been advanced in order to justify such a “naturalness problem”
(see e.g. [33]), it would be cumbersome to review here all the proposals, but one can
clearly see that the most straightforward solution for this problem would consist in
breaking the degeneracy between the EFT scale and the Lorentz breaking one. This
can be achieved in two alternative ways.

13.4.1.1 A New Symmetry

Most of the aforementioned proposals implicitly assume that the Lorentz breaking
scale is the Planck scale. One then needs the EFT scale (which can be naively iden-
tified with what we called previously μ) to be different from the Planck scale and
actually sufficiently small so that the lowest order “induced” coefficients can be sup-
pressed by suitable small ratios of the kind μp/Mq where p,q are some positive
powers.

A possible solution in this direction can be provided by introducing what is com-
monly called a “custodial symmetry” something that forbids lower order operators
and, once broken, suppress them by introducing a new scale. The most plausible
candidate for this role was soon recognized to be Super Symmetry (SUSY) [84, 85].
SUSY is by definition a symmetry relating fermions to bosons i.e. matter with inter-
action carriers. As a matter of fact, SUSY is intimately related to Lorentz invariance.
Indeed, it can be shown that the composition of at least two SUSY transformations
induces spacetime translations. However, SUSY can still be an exact symmetry even
in presence of LV and can actually serve as a custodial symmetry preventing certain
operators to appear in LV field theories.

The effect of SUSY on LV is to prevent dimension ≤4, renormalizable LV oper-
ators to be present in the Lagrangian. Moreover, it has been demonstrated [84, 85]
that the renormalization group equations for Supersymmetric QED plus the addi-
tion of dimension 5 LV operators à la Myers & Pospelov [37] do not generate lower
dimensional operators, if SUSY is unbroken. However, this is not the case for our
low energy world, of which SUSY is definitely not a symmetry.

The effect of soft SUSY breaking was also investigated in [84, 85]. It was found
there that, as expected, when SUSY is broken the renormalizable operators are gen-
erated. In particular, dimension κ ones arise from the percolation of dimension κ+2
LV operators.3 The effect of SUSY soft-breaking is, however, to introduce a sup-
pression of order m2

s /MPl (κ = 3) or (ms/MPl)
2 (κ = 4), where ms � 1 TeV is the

3We consider here only κ = 3,4, for which these relationships have been demonstrated.
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scale of SUSY soft breaking. Although, given present constraints, the theory with
κ = 3 needs a lot of fine tuning to be viable, since the SUSY-breaking-induced sup-
pression is not enough powerful to kill linear modifications in the dispersion relation
of electrons, if κ = 4 then the induced dimension 4 terms are suppressed enough,
provided ms < 100 TeV. Current lower bounds from the Large Hadron Collider are
at most around 950 GeV for the most simple models of SUSY [86] (the so called
“constrained minimal supersymmetric standard model”, CMSSM).

Finally, it is also interesting to note that the analogue model of gravity can be used
as a particular implementation of the above mentioned mechanism for avoiding the
so called naturalness problem via a custodial symmetry. This was indeed the case of
multi-BEC [87, 88].

13.4.1.2 Gravitational Confinement of Lorentz Violation

The alternative to the aforementioned scenario is to turn the problem upside down.
One can in fact assume that the Lorentz breaking scale (the M appearing in the
above dispersion relations) is not set by the Planck scale while the latter is the EFT
breaking scale. If in addition one starts with a theory which has higher order Lorentz
violating operators only in the gravitational sector, then one can hope that the gravi-
tational coupling GN ∼M−2

Pl will let them “percolate” to the matter sector however
it will do so introducing factors of the order (M/MPl)

2 which can become strong
suppression factors if M �MPl. This is basically the idea at the base of the work
presented in [89] which applies it to the special case of Horařa–Lifshitz gravity.
There it was shown that indeed a workable low energy limit of the theory can be
derived through this mechanism which apparently is fully compatible with extant
constraints on Lorentz breaking operators in the matter sector. We think that this
new route deserves further attention and should be more deeply explored in the fu-
ture.

13.5 Dynamical Frameworks

Missing a definitive conclusion about the naturalness problem, the study of LV
theories has basically proceeded by considering separately extensions of the Stan-
dard Model based on naively power counting renormalizable operators or non-
renormalizable operators (at some given mass dimension). In what follows we shall
succinctly describe these frameworks before to discuss theoretical alternatives.

13.5.1 SME with Renormalizable Operators

Most of the research in EFT with only renormalizable (i.e. mass dimension 3 and 4)
LV operators has been carried out within the so called (minimal) SME [22]. It con-
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sists of the standard model of particle physics plus all Lorentz violating renormal-
izable operators (i.e. of mass dimension ≤4) that can be written without changing
the field content or violating gauge symmetry. The operators appearing in the SME
can be conveniently classified according to their behaviour under CPT. Since the
most common particles used to cast constraints on LV are photons and electrons, a
prominent role is played by LV QED.

If we label by ± the two photon helicities, we can write the photon dispersion
relation as [90]

E = (1+ ρ ± σ)|p| (13.42)

where ρ and σ depend on LV parameters appearing in the LV QED Lagrangian, as
defined in [7]. Note that the dependence of the dispersion relation on the photon
helicity is due to the fact that the SME generically also contemplates the possibility
of a breakdown of rotational invariance.

We already gave (see Sect. 13.4) motivations for assuming rotation invariance
to be preserved, at least in first approximation, in LV contexts. If we make this
assumption, we obtain a major simplification of our framework, because in this case
all LV tensors must reduce to suitable products of a time-like vector field, which
is usually called uα and, in the preferred frame, is assumed to have components
(1,0,0,0). Then, the rotational invariant LV operators are

−buμψ̄γ5γ
μψ + 1

2
icuμuνψ̄γ μ

↔
Dν ψ + 1

2
iduμuνψ̄γ5γ

μ
↔
Dν ψ (13.43)

for electrons and

−1

4
(kF )uκηλμuνF

κλFμν (13.44)

for photons.
The high energy (MPl �E�m) dispersion relations for QED can be expressed

as (see [7] and references therein for more details)

E2
el =m2

e + p2 + f (1)
e p+ f (2)

e p2 electrons, (13.45)

E2
γ =

(
1+ f (2)

γ

)
p2 photons (13.46)

where f
(1)
e = −2bs, f (2)

e = −(c − ds), and f
(2)
γ = kF /2 with s = ±1 the helicity

state of the electron [7]. The positron dispersion relation is the same as (13.45)
replacing p→−p, this will change only the f

(1)
e term.

We notice here that the typical energy at which a new phenomenology should
start to appear is quite low. In fact, taking for example f

(2)
e ∼ O(1), one finds

that the corresponding extra-term is comparable to the electron mass m precisely at
p �m� 511 keV. Even worse, for the linear modification to the dispersion relation,
we would have, in the case in which f

(1)
e �O(1), that pth ∼m2/MPl ∼ 10−17 eV.

(Notice that this energy corresponds by chance to the present upper limit on the
photon mass, mγ � 10−18 eV [91].) As said, this implied strong constraints on the
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parameters and was a further motivation for exploring the QG preferred possibil-
ity of higher order Lorentz violating operators and consequently try to address the
naturalness problem.

13.5.2 Dimension Five Operators SME

An alternative approach within EFT is to study non-renormalizable operators.
Nowadays it is widely accepted that the SM could just be an effective field theory
and in this sense its renormalizability is seen as a consequence of neglecting some
higher order operators which are suppressed by some appropriate mass scale. It is a
short deviation from orthodoxy to imagine that such non-renormalizable operators
can be generated by quantum gravity effects (and hence be naturally suppressed
by the Planck mass) and possibly associated to the violation of some fundamental
spacetime symmetry like local Lorentz invariance.

Myers & Pospelov [37] found that there are essentially only three operators of
dimension five, quadratic in the fields, that can be added to the QED Lagrangian
preserving rotation and gauge invariance, but breaking local LI.4

These extra-terms, which result in a contribution of O(E/MPl) to the dispersion
relation of the particles, are the following:

− ξ

2MPl
umFma(u · ∂)

(
unF̃

na
)+ 1

2MPl
umψ̄γm(ζ1 + ζ2γ5)(u · ∂)2ψ, (13.47)

where F̃ is the dual of F and ξ , ζ1,2 are dimensionless parameters. All these terms
also violate the CPT symmetry. More recently, this construction has been extended
to the whole SM [92].

From (13.47) the dispersion relations of the fields are modified as follows. For
the photon one has

ω2± = k2 ± ξ

MPl
k3, (13.48)

(the + and − signs denote right and left circular polarisation), while for the fermion
(with the + and − signs now denoting positive and negative helicity states)

E2± = p2 +m2 + η±
p3

MPl
, (13.49)

with η± = 2(ζ1 ± ζ2). For the antifermion, it can be shown by simple “hole in-
terpretation” arguments that the same dispersion relation holds, with η

af
± = −η

f
∓

4Actually these criteria allow the addition of other (CPT even) terms, but these would not lead
to modified dispersion relations (they can be thought of as extra, Planck suppressed, interaction
terms) [92].
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where af and f superscripts denote respectively anti-fermion and fermion coeffi-
cients [33, 93].

As we shall see, observations involving very high energies can thus potentially
cast O(1) and stronger constraint on the coefficients defined above. A natural ques-
tion arises then: what is the theoretically expected value of the LV coefficients in the
modified dispersion relations shown above?

This question is clearly intimately related to the meaning of any constraint pro-
cedure. Indeed, let us suppose that, for some reason we do not know, because we do
not know the ultimate high energy theory, the dimensionless coefficients η(n), that
in principle, according to the Dirac criterion, should be of order O(1), are defined
up to a dimensionless factor of me/MPl ∼ 10−22. (This could well be as a result of
the integration of high energy degrees of freedom.) Then, any constraint of order
larger than 10−22 would be ineffective, if our aim is learning something about the
underlying QG theory.

This problem could be further exacerbated by renormalization group effects,
which could, in principle, strongly suppress the low-energy values of the LV co-
efficients even if they are O(1) at high energies. Let us, therefore, consider the
evolution of the LV parameters first. Bolokhov & Pospelov [92] addressed the prob-
lem of calculating the renormalization group equations for QED and the Standard
Model extended with dimension-five operators that violate Lorentz Symmetry.

In the framework defined above, assuming that no extra physics enters between
the low energies at which we have modified dispersion relations and the Planck
scale at which the full theory is defined, the evolution equations for the LV terms in
Eq. (13.47) that produce modifications in the dispersion relations, can be inferred as

dζ1

dt
= 25

12

α

π
ζ1,

dζ2

dt
= 25

12

α

π
ζ2 − 5

12

α

π
ξ,

dξ

dt
= 1

12

α

π
ζ2 − 2

3

α

π
ξ,

(13.50)
where α = e2/4π � 1/137 (�= 1) is the fine structure constant and t = ln(μ2/μ2

0)

with μ and μ0 two given energy scales. (Note that the above formulae are given
to lowest order in powers of the electric charge, which allows one to neglect the
running of the fine structure constant.)

These equations show that the running is only logarithmic and therefore low
energy constraints are robust: O(1) parameters at the Planck scale are still O(1) at
lower energy. Moreover, they also show that η+ and η− cannot, in general, be equal
at all scales.

13.5.3 Dimension Six Operators SME

If CPT ends up being a fundamental symmetry of nature it would forbid all of the
above mentioned operators (hence pushing at further high energies the emergence
of Lorentz breaking physics). It makes then sense to consider dimension six, CPT
even, operators which furthermore do give rise to dispersion relations of the kind
appearing in the above mentioned BEC analogue gravity example.
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The CPT even dimension 6 LV terms have only recently been computed [38]
through the same procedure used by Myers & Pospelov for dimension 5 LV. The
known fermion operators are

− 1

MPl
ψ̄(u ·D)2(α(5)

L PL + α
(5)
R PR

)
ψ,

− i

M2
Pl

ψ̄(u ·D)3(u · γ )
(
α
(6)
L PL + α

(6)
R PR

)
ψ, (13.51)

− i

M2
Pl

ψ̄(u ·D)�(u · γ )
(
α̃
(6)
L PL + α̃

(6)
R PR

)
ψ,

where PR,L are the usual left and right spin projectors PR,L = (1±γ 5)/2 and where
D is the usual QED covariant derivative. All coefficients α are dimensionless be-
cause we factorize suitable powers of the Planck mass.

The known photon operator is

− 1

2M2
Pl

β(6)
γ Fμνuμu

σ (u · ∂)Fσν. (13.52)

From these operators, the dispersion relations of electrons and photons can be
computed, yielding

E2 − p2 −m2 = m

MPl

(
α
(5)
R + α

(5)
L

)
E2 + α

(5)
R α

(5)
L

E4

M2
Pl

+ α
(6)
R E3

M2
Pl

(E + sp)+ α
(6)
L E3

M2
Pl

(E − sp), (13.53)

ω2 − k2 = β(6) k4

M2
Pl

, (13.54)

where m is the electron mass and where s = σ ·p/|p| is the helicity of the electrons.
Also, notice that a term proportional to E2 is generated.

Because the high-energy fermion states are almost exactly chiral, we can further
simplify the fermion dispersion relation Eq. (13.54) (we pose R =+, L=−)

E2 = p2 +m2 + f
(4)
± p2 + f

(6)
±

p4

M2
Pl

. (13.55)

Being suppressed by a factor of order m/MPl, we will drop in the following the
quadratic contribution f

(4)
± p2, indeed this can be safely neglected, provided that

E >
√
mMPl. Let me stress however, that this is exactly an example of a dimension

4 LV term with a natural suppression, which for electron is of order me/MPl ∼
10−22. Therefore, any limit larger than 10−22 placed on this term would not have to
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be considered as an effective constraint. To date, the best constraint for a rotational
invariant electron LV term of dimension 4 is O(10−16) [94].

Coming back to Eq. (13.55), it may seem puzzling that in a CPT invariant the-
ory we distinguish between different fermion helicities. However, although they are
CPT invariant, some of the LV terms displayed in Eq. (13.52) are odd under P and T.

CPT invariance allows us to determine a relationship between the LV coeffi-
cients of the electrons and those of the positrons. Indeed, to obtain these we must
consider that, by CPT, the dispersion relation of the positron is given by (13.54),
with the replacements s →−s and p→−p. This implies that the relevant positron
coefficients f

(6)
positron are such that f (6)

e+±
= f

(6)
e−∓

, where e+± indicates a positron of pos-

itive/negative helicity (and similarly for the e−±).

13.5.4 Other Frameworks

Picking up a well defined dynamical framework is sometimes crucial in discussing
the phenomenology of Lorentz violations. In fact, not all the above mentioned “win-
dows on quantum gravity” can be exploited without adding additional information
about the dynamical framework one works with. Although cumulative effects ex-
clusively use the form of the modified dispersion relations, all the other “windows”
depend on the underlying dynamics of interacting particles and on whether or not
the standard energy-momentum conservation holds. Thus, to cast most of the con-
straints on dispersion relations of the form (13.40), one needs to adopt a specific
theoretical framework justifying the use of such deformed dispersion relations.

The previous discussion mainly focuses on considerations based on Lorentz
breaking EFTs. This is indeed a conservative framework within which much can be
said (e.g. reaction rates can still be calculated) and from an analogue gravity point of
view it is just the natural frame to work within. Nonetheless, this is of course not the
only dynamical framework within which a Lorentz breaking kinematics can be cast.
Because the EFT approach is nothing more than a highly reasonable, but rather ar-
bitrary “assumption”, it is worth studying and constraining additional models, given
that they may evade the majority of the constraints discussed in this review.

13.5.4.1 D-Brane Models

We consider here the model presented in [52, 54], in which modified dispersion re-
lations are found based on the Liouville string approach to quantum spacetime [95].
Liouville-string models of spacetime foam [95] motivate corrections to the usual
relativistic dispersion relations that are first order in the particle energies and that
correspond to a vacuum refractive index η = 1− (E/MPl)

α , where α = 1. Models
with quadratic dependences of the vacuum refractive index on energy: α = 2 have
also been considered [59].
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In particular, the D-particle realization of the Liouville string approach predicts
that only gauge bosons such as photons, not charged matter particles such as elec-
trons, might have QG-modified dispersion relations. This difference may be traced
to the facts that [96] excitations which are charged under the gauge group are rep-
resented by open strings with their ends attached to the D-brane [97], and that only
neutral excitations are allowed to propagate in the bulk space transverse to the brane.
Thus, if we consider photons and electrons, in this model the parameter η is forced
to be null, whereas ξ is free to vary. Even more importantly, the theory is CPT even,
implying that vacuum is not birefringent for photons (ξ+ = ξ−).

13.5.4.2 Doubly Special Relativity

Lorentz invariance of physical laws relies on only few assumptions: the principle
of relativity, stating the equivalence of physical laws for non-accelerated observers,
isotropy (no preferred direction) and homogeneity (no preferred location) of space-
time, and a notion of precausality, requiring that the time ordering of co-local events
in one reference frame be preserved [98–105].

All the realizations of LV we have discussed so far explicitly violate the principle
of relativity by introducing a preferred reference frame. This may seem a high price
to pay to include QG effects in low energy physics. For this reason, it is worth
exploring an alternative possibility that keeps the relativity principle but that relaxes
one or more of the above postulates.

For example, relaxing the space isotropy postulate leads to the so-called Very
Special Relativity framework [106], which was later on understood to be described
by a Finslerian-type geometry [107–109]. In this example, however, the generators
of the new relativity group number fewer than the usual ten associated with Poincaré
invariance. Specifically, there is an explicit breaking of the O(3) group associated
with rotational invariance.

One may wonder whether there exist alternative relativity groups with the same
number of generators as special relativity. Currently, we know of no such generaliza-
tion in coordinate space. However, it has been suggested that, at least in momentum
space, such a generalization is possible, and it was termed “doubly” or “deformed”
(to stress the fact that it still has 10 generators) special relativity, DSR. Even though
DSR aims at consistently including dynamics, a complete formulation capable of
doing so is still missing, and present attempts face major problems. Thus, at present
DSR is only a kinematic theory. Nevertheless, it is attractive because it does not
postulate the existence of a preferred frame, but rather deforms the usual concept of
Lorentz invariance in the following sense.

Consider the Lorentz algebra of the generators of rotations, Li , and boosts, Bi :

[Li,Lj ] = ıεijkLk; [Li,Bj ] = ıεijkBk; [Bi,Bj ] = −ıεijkLk (13.56)

(Latin indices i, j, . . . run from 1 to 3) and supplement it with the following com-
mutators between the Lorentz generators and those of translations in spacetime (the
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momentum operators P0 and Pi ):

[Li,P0] = 0; [Li,Pj ] = ıεijkPk; (13.57)

[Bi,P0] = ıf1

(
P

κ

)
Pi; (13.58)

[Bi,Pj ] = ı

[
δij f2

(
P

κ

)
P0 + f3

(
P

κ

)
PiPj

κ

]
, (13.59)

where κ is some unknown energy scale. Finally, assume [Pi,Pj ] = 0. The commuta-
tion relations (13.58)–(13.59) are given in terms of three unspecified, dimensionless
structure functions f1, f2, and f3, and they are sufficiently general to include all
known DSR proposals—the DSR1 [110], DSR2 [111, 112], and DSR3 [113]. Fur-
thermore, in all the DSRs considered to date, the dimensionless arguments of these
functions are specialized to

fi

(
P

κ

)
→ fi

(
P0

κ
,

∑3
i=1 P

2
i

κ2

)
, (13.60)

so rotational symmetry is completely unaffected. For the κ →+∞ limit to reduce
to ordinary special relativity, f1 and f2 must tend to 1, and f3 must tend to some
finite value.

DSR theory postulates that the Lorentz group still generates spacetime symme-
tries but that it acts in a non-linear way on the fields, such that not only is the speed
of light c an invariant quantity, but also that there is a new invariant momentum scale
κ which is usually taken to be of the order of MPl. Note that DSR-like features are
found in models of non-commutative geometry, in particular in the κ-Minkowski
framework [114, 115], as well as in non-canonically non commutative field theo-
ries [116].

Concerning phenomenology, an important point about DSR in momentum
space is that in all three of its formulations (DSR1 [110], DSR2 [111, 112], and
DSR3 [113]) the component of the four momentum having deformed commutation
with the boost generator can always be rewritten as a non-linear combination of
some energy-momentum vector that transforms linearly under the Lorentz group
[117]. For example in the case of DSR2 [111, 112] one can write s

E = −π0

1− π0/κ
; (13.61)

pi = πi

1− π0/κ
. (13.62)

It is easy to ensure that while π satisfies the usual dispersion relation π2
0 −π2 =m2

(for a particle with mass m), E and pi satisfy the modified relation

(
1−m2/κ2)E2 + 2κ−1m2E − p2 =m2. (13.63)
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Furthermore, a different composition for energy-momentum now holds, given that
the composition for the physical DSR momentum p must be derived from the stan-
dard energy-momentum conservation of the pseudo-variable π and in general im-
plies non-linear terms. A crucial point is that due to the above structure if a threshold
reaction is forbidden in relativistic physics then it is going to be still forbidden by
DSR. Hence many constraints that apply to EFT do not apply to DSR.

Despite its conceptual appeal, DSR is riddled with many open problems. First,
if DSR is formulated as described above—that is, only in momentum space—then
it is an incomplete theory. Moreover, because it is always possible to introduce the
new variables πμ, on which the Lorentz group acts in a linear manner, the only way
that DSR can avoid triviality is if there is some physical way of distinguishing the
pseudo-energy ε ≡−π0 from the true-energy E, and the pseudo-momentum π from
the true-momentum p. If not, DSR is no more than a nonlinear choice of coordinates
in momentum space.

In view of the standard relations E ↔ ı�∂t and p ↔−ı�∇ (which are presum-
ably modified in DSR), it is clear that to physically distinguish the pseudo-energy
ε from the true-energy E, and the pseudo-momentum π from the true-momentum
p, one must know how to relate momenta to position. At a minimum, one needs to
develop a notion of DSR spacetime.

In this endeavor, there have been two distinct lines of approach, one presuming
commutative spacetime coordinates, the other attempting to relate the DSR feature
in momentum space to a non commutative position space. In both cases, several
authors have pointed out major problems. In the case of commutative spacetime
coordinates, some analyses have led authors to question the triviality [118] or inter-
nal consistency [119–121] of DSR. On the other hand, non-commutative proposals
[57] are not yet well understood, although intense research in this direction is un-
der way [122]. Finally we cannot omit the recent development of what one could
perhaps consider a spin-off of DSR that is Relative Locality, which is based on the
idea that the invariant arena for classical physics is a curved momentum space rather
than spacetime (the latter being a derived concept) [123].

DSR and Relative Locality are still a subject of active research and debate (see
e.g. [124–127]); nonetheless, they have not yet attained the level of maturity needed
to cast robust constraints.5 For these reasons, in the next sections we focus upon LV
EFT and discuss the constraints within this framework.

5Note however, that some knowledge of DSR phenomenology can be obtained by considering
that, as in Special Relativity, any phenomenon that implies the existence of a preferred reference
frame is forbidden. Thus, the detection of such a phenomenon would imply the falsification of
both special and doubly-special relativity. An example of such a process is the decay of a massless
particle.
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13.6 Experimental Probes of Low Energy LV: Earth Based
Experiments

The world as we see it seems ruled by Lorentz invariance to a very high degree.
Hence, when seeking tests of Lorentz violations one is confronted with the chal-
lenge to find or very high precision experiments able to test Special Relativity or
observe effects which might be sensitive to tiny deviations from standard LI. Within
the ansatz we lied down in the previous sections it is clear that the first route is
practical only when dealing with low energy violations of Lorentz invariance as
systematically described by the minimal Standard Model extension (mSME) while
astrophysical tests, albeit much less precise, are the choice too for testing LV in-
duced by higher order operators. Let us then briefly review the main experimental
tools used so far in order to perform precision tests of Lorentz invariance in labora-
tory (for more details see e.g. [7, 24, 128]).

13.6.1 Penning Traps

In a Penning trap a charged particle can be localized for long times using a com-
bination of static magnetic and electric fields. Lorentz violating tests are based on
monitoring the particle cyclotron motion in the magnetic field and Larmor preces-
sion due to the spin. In fact the relevant frequencies for both these motions are
modified in the mSME and Penning traps can be made very sensitive to differences
in these frequencies.

13.6.2 Clock Comparison Experiments

Clock comparison experiments are generally performed by considering two atomic
transition frequencies (which can be considered as two clocks) in the same point
in space. The basic idea is that as the clocks move in space, they pick out different
components of the Lorentz violating tensors in the mSME. This would yield a side-
real drift between the two clocks. Measuring the difference between the frequencies
over long periods, allows to cast very high precision limits on the parameters in the
mSME (generally for protons and neutrons).

13.6.3 Cavity Experiments

In cavity experiments one casts constraints on the variation of the cavity resonance
frequency as its orientation changes in space. While this is intrinsically similar to
clock comparison experiments, these kind of experiments allows to cast constraints
also on the electromagnetic sector of the mSME.
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13.6.4 Spin Polarized Torsion Balance

The electron sector of the mSME can be effective constrained via spin-torsion bal-
ances. An example is an octagonal pattern of magnets which is constructed so to
have an overall spin polarization in the octagon’s plane. Four of these octagons
are suspended from a torsion fiber in a vacuum chamber. This arrangement of the
magnets give an estimated net spin polarization equivalent to ≈1023 aligned elec-
tron spins. The whole apparatus is mounted on a turntable. As the turntable moves
Lorentz violation in the mSME produces an interaction potential for non-relativistic
electrons which induces a torque on the torsion balance. The torsion fiber is then
twisted by an amount related to the relevant LV coefficients.

13.6.5 Neutral Mesons

In the mSME one expects an orientation dependent change in the mass difference
e.g. of neutral kaons. By looking for sidereal variations or other orientation effects
one can derive bounds on each component of the relevant LV coefficients.

13.7 Observational Probes of High Energy LV: Astrophysical
QED Reactions

Let us begin with a brief review of the most common types of reaction exploited in
order to give constraints on the QED sector.

For definiteness, we refer to the following modified dispersion relations:

E2
γ = k2 + ξ

(n)
±

kn

Mn−2
Pl

Photon, (13.64)

E2
el = m2

e + p2 + η
(n)
±

pn

Mn−2
Pl

Electron-Positron, (13.65)

where, in the EFT case, we have ξ (n) ≡ ξ
(n)
+ = (−)nξ

(n)
− and η(n) ≡ η

(n)
+ = (−)nη

(n)
− .

13.7.1 Photon Time of Flight

Although photon time-of-flight constraints currently provide limits several orders of
magnitude weaker than the best ones, they have been widely adopted in the astro-
physical community. Furthermore they were the first to be proposed in the seminal
paper [25]. More importantly, given their purely kinematical nature, they may be
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applied to a broad class of frameworks beyond EFT with LV. For this reason, we
provide a general description of time-of-flight effects, elaborating on their applica-
tion to the case of EFT below.

In general, a photon dispersion relation in the form of (13.64) implies that pho-
tons of different colors (wave vectors k1 and k2) travel at slightly different speeds.
Let us first assume that there are no birefringent effects, so that ξ (n)

+ = ξ
(n)
− . Then,

upon propagation on a cosmological distance d , the effect of energy dependence of
the photon group velocity produces a time delay


t(n) = n− 1

2

kn−2
2 − kn−2

1

Mn−2
Pl

ξ (n)d, (13.66)

which clearly increases with d and with the energy difference as long as n > 2.
The largest systematic error affecting this method is the uncertainty about whether
photons of different energy are produced simultaneously in the source.

So far, the most robust constraints on ξ (3), derived from time of flight differences,
have been obtained within the D-brane model (discussed in Sect. 13.5.4.1) from a
statistical analysis applied to the arrival times of sharp features in the intensity at
different energies from a large sample of GRBs with known redshifts [129], leading
to limits ξ (3) ≤O(103). A recent example illustrating the importance of systematic
uncertainties can be found in [130], where the strongest limit ξ (3) < 47 is found by
looking at a very strong flare in the TeV band of the AGN Markarian 501.

One way to alleviate systematic uncertainties—available only in the context of
birefringent theories, such as the one with n= 3 in EFT—would be to measure the
velocity difference between the two polarization states at a single energy, corre-
sponding to


t = 2
∣∣ξ (3)

∣∣kd/MPl. (13.67)

This bound would require that both polarizations be observed and that no spurious
helicity-dependent mechanism (such as, for example, propagation through a bire-
fringent medium) affects the relative propagation of the two polarization states.

Let us stress that Eq. (13.66) is no longer valid in birefringent theories. In fact,
photon beams generally are not circularly polarized; thus, they are a superposition
of fast and slow modes. Therefore, the net effect of this superposition may partially
or completely erase the time-delay effect. To compute this effect on a generic pho-
ton beam in a birefringent theory, let us describe a beam of light by means of the
associated electric field, and let us assume that this beam has been generated with a
Gaussian width

E=A
(
ei(Ω0t−k+(Ω0)z)e−(z−v+g t)2δΩ2

0 ê+ + ei(Ω0t−k−(Ω0)z)e−(z−v−g t)2δΩ2
0 ê−
)
,

(13.68)
where Ω0 is the wave frequency, δΩ0 is the Gaussian width of the wave, k±(Ω0)

is the “momentum” corresponding to the given frequency according to (13.64) and
ê± ≡ (ê1 ± iê2)/

√
2 are the helicity eigenstates. Note that by complex conjugation
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ê∗+ = ê−. Also, note that k±(ω)= ω∓ ξω2/MPl. Thus,

E=AeiΩ0(t−z)
(
eiξΩ

2
0 /MPlze−(z−v+g t)2δΩ2

0 ê+ + e−iξΩ2
0 /MPlze−(z−v−g t)2δΩ2

0 ê−
)
.

(13.69)
The intensity of the wave beam can be computed as

E ·E∗ = |A|2(e2iξΩ2
0 /MPlz + e−2iξΩ2

0 /MPlz
)
e−δΩ2

0 ((z−v+g t)2+(z−v−g t)2)

= 2|A|2e−2δΩ2
0 (z−t)2

cos

(
2ξ

Ω0

MPl
Ω0z

)
e
−2ξ2 Ω2

0
M2 (δΩ0t)

2
. (13.70)

This shows that there is an effect even on a linearly-polarised beam. The effect is
a modulation of the wave intensity that depends quadratically on the energy and
linearly on the distance of propagation. In addition, for a Gaussian wave packet,
there is a shift of the packet centre, that is controlled by the square of ξ (3)/MPl and
hence is strongly suppressed with respect to the cosinusoidal modulation.

13.7.2 Vacuum Birefringence

The fact that electromagnetic waves with opposite “helicities” have slightly different
group velocities, in EFT LV with n = 3, implies that the polarisation vector of a
linearly polarised plane wave with energy k rotates, during the wave propagation
over a distance d , through the angle [33]6

θ(d)= ω+(k)−ω−(k)
2

d � ξ (3) k2d

2MPl
. (13.72)

Observations of polarized light from a distant source can then lead to a constraint
on |ξ (3)| that, depending on the amount of available information—both on the ob-
servational and on the theoretical (i.e. astrophysical source modeling) side—can be
cast in two different ways [131]:

1. Because detectors have a finite energy bandwidth, Eq. (13.72) is never probed in
real situations. Rather, if some net amount of polarization is measured in the band
k1 <E < k2, an order-of-magnitude constraint arises from the fact that if the an-
gle of polarization rotation (13.72) differed by more than π/2 over this band, the

6Note that for an object located at cosmological distance (let z be its redshift), the distance d

becomes

d(z)= 1

H0

∫ z

0

1+ z′
√
ΩΛ +Ωm(1+ z′)3

dz′, (13.71)

where d(z) is not exactly the distance of the object as it includes a (1+ z)2 factor in the integrand
to take into account the redshift acting on the photon energies.
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detected polarization would fluctuate sufficiently for the net signal polarization
to be suppressed [93, 132]. From (13.72), this constraint is

ξ (3) � πMPl

(k2
2 − k2

1)d(z)
, (13.73)

This constraint requires that any intrinsic polarization (at source) not be com-
pletely washed out during signal propagation. It thus relies on the mere detection
of a polarized signal; there is no need to consider the observed polarization de-
gree. A more refined limit can be obtained by calculating the maximum observ-
able polarization degree, given the maximum intrinsic value [133]:

Π(ξ)=Π(0)
√〈

cos(2θ)
〉2
P + 〈sin(2θ)

〉2
P , (13.74)

where Π(0) is the maximum intrinsic degree of polarization, θ is defined in
Eq. (13.72) and the average is weighted over the source spectrum and instru-
mental efficiency, represented by the normalized weight function P(k) [132].
Conservatively, one can set Π(0) = 100 %, but a lower value may be justified
on the basis of source modeling. Using (13.74), one can then cast a constraint by
requiring Π(ξ) to exceed the observed value.

2. Suppose that polarized light measured in a certain energy band has a position an-
gle θobs with respect to a fixed direction. At fixed energy, the polarization vector
rotates by the angle (13.72);7 if the position angle is measured by averaging over
a certain energy range, the final net rotation 〈
θ〉 is given by the superposition
of the polarization vectors of all the photons in that range:

tan
(
2〈
θ〉)= 〈sin(2θ)〉P

〈cos(2θ)〉P , (13.75)

where θ is given by (13.72). If the position angle at emission θi in the same
energy band is known from a model of the emitting source, a constraint can be
set by imposing

tan
(
2〈
θ〉)< tan(2θobs − 2θi). (13.76)

Although this limit is tighter than those based on Eqs. (13.73) and (13.74), it
clearly hinges on assumptions about the nature of the source, which may intro-
duce significant uncertainties.

In conclusion the fact that polarised photon beams are indeed observed from
distant objects imposes strong constraints on LV in the photon sector (i.e. on ξ (3)),
as we shall see later on.

7Faraday rotation is negligible at high energies.
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Table 13.1 Values of pth,
according to Eq. (13.77), for
different particles involved in
the reaction: neutrinos,
electrons and proton. Here we
assume η(n) � 1

mν � 0.1 eV me � 0.5 MeV mp � 1 GeV

n= 2 0.1 eV 0.5 MeV 1 GeV

n= 3 500 MeV 14 TeV 2 PeV

n= 4 33 TeV 74 PeV 3 EeV

13.7.3 Threshold Reactions

An interesting phenomenology of threshold reactions is introduced by LV in EFT;
also, threshold theorems can be generalized [32]. Sticking to the present case of
rotational invariance and monotonic dispersion relations (see [134] for a general-
ization to more complex situations), the main conclusions of the investigation into
threshold reactions are that [31]

• Threshold configurations still corresponds to head-on incoming particles and par-
allel outgoing ones

• The threshold energy of existing threshold reactions can shift, and upper thresh-
olds (i.e. maximal incoming momenta at which the reaction can happen in any
configuration) can appear

• Pair production can occur with unequal outgoing momenta
• New, normally forbidden reactions can be viable

LV corrections are surprisingly important in threshold reactions because the LV
term (which as a first approximation can be considered as an additional mass term)
should be compared not to the momentum of the involved particles, but rather to the
(invariant) mass of the particles produced in the final state. Thus, an estimate for the
threshold energy is

pth �
(
m2Mn−2

Pl

η(n)

)1/n

, (13.77)

where m is the typical mass of particles involved in the reaction. Interesting values
for pth are discussed, e.g., in [31] and given in Table 13.1. Reactions involving
neutrinos are the best candidate for observation of LV effects, whereas electrons
and positrons can provide results for n = 3 theories but can hardly be accelerated
by astrophysical objects up to the required energy for n= 4. In this case reactions
of protons can be very effective, because cosmic-rays can have energies well above
3 EeV. Let us now briefly review the main reaction used so far in order to casts
constraints.

13.7.3.1 LV-Allowed Threshold Reactions: γ -Decay

The decay of a photon into an electron/positron pair is made possible by LV because
energy-momentum conservation may now allow reactions described by the basic
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QED vertex. This process has a threshold that, if ξ � 0 and n = 3, is set by the
condition [33]

kth =
(
6
√

3m2
eM
/∣∣η(3)

±
∣
∣)1/3

. (13.78)

Noticeably, as already mentioned above, the electron-positron pair can now be cre-
ated with slightly different outgoing momenta (asymmetric pair production). Fur-
thermore, the decay rate is extremely fast above threshold [33] and is of the order of
(10 ns)−1 (n= 3) or (10−6 ns)−1 (n= 4).

13.7.3.2 LV-Allowed Threshold Reactions: Vacuum C̆erenkov and Helicity
Decay

In the presence of LV, the process of Vacuum C̆erenkov (VC) radiation e± → e±γ
can occur. If we set ξ � 0 and n= 3, the threshold energy is given by

pVC =
(
m2

eM/2η(3))1/3 � 11 TeV η−1/3. (13.79)

Just above threshold this process is extremely efficient, with a time scale of order
τVC ∼ 10−9 s [33].

A slightly different version of this process is the Helicity Decay (HD, e∓ →
e±γ ). If η+ = η−, an electron/positron can flip its helicity by emitting a suitably
polarized photon. This reaction does not have a real threshold, but rather an ef-
fective one [33]—pHD = (m2

eM/
η)1/3, where 
η = |η(3)
+ − η

(3)
− |—at which the

decay lifetime τHD is minimized. For 
η≈O(1) this effective threshold is around
10 TeV. Note that below threshold τHD > 
η−3(p/10 TeV)−810−9 s, while above
threshold τHD becomes independent of 
η [33].

Apart from the above mentioned examples of reactions normally forbidden and
now allowed by LV dispersion relations, one can also look for modifications of nor-
mally allowed threshold reactions especially relevant in high energy astrophysics.

13.7.3.3 LV-Allowed Threshold Reactions: Photon Splitting and Lepton Pair
Production

It is rather obvious that once photon decay and vacuum C̆erenkov are allowed also
the related relations in which respectively the our going lepton pair is replaced by
two or more photons, γ → 2γ and γ → 3γ , etc., or the outgoing photons is replaced
by an electron-positron pair, e− → e−e−e+, are also allowed.

Photon Splitting This is forbidden for ξ (n) < 0 while it is always allowed if
ξ (n) > 0 [31]. When allowed, the relevance of this process is simply related to its
rate. The most relevant cases are γ → γ γ and γ → 3γ , because processes with
more photons in the final state are suppressed by more powers of the fine structure
constant.
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The γ → γ γ process is forbidden in QED because of kinematics and C-parity
conservation. In LV EFT neither condition holds. However, we can argue that this
process is suppressed by an additional power of the Planck mass, with respect to
γ → 3γ . In fact, in LI QED the matrix element is zero due to the exact cancellation
of fermionic and anti-fermionic loops. In LV EFT this cancellation is not exact and
the matrix element is expected to be proportional to at least (ξE/MPl)

p , p > 0, as
it is induced by LV and must vanish in the limit MPl →∞.

Therefore we have to deal only with γ → 3γ . This process has been studied in
[31, 135]. In particular, in [135] it was found that, if the “effective photon mass”
m2

γ ≡ ξEn
γ /M

n−2
Pl � m2

e , then the splitting lifetime of a photon is approximately

τn=3 � 0.025ξ−5f−1(50 TeV/Eγ )
14 s, where f is a phase space factor of order 1.

This rate was rather higher than the one obtained via dimensional analysis in [31]
because, due to integration of loop factors, additional dimensionless contributions
proportional to m8

e enhance the splitting rate at low energy.
This analysis, however, does not apply for the most interesting case of ultra high

energy photons around 1019 eV (see below Sect. 13.8) given that at these energies
m2

γ �m2
e if ξ (3) > 10−17 and ξ (4) > 10−8. Hence the above mentioned loop contri-

butions are at most logarithmic, as the momentum circulating in the fermionic loop
is much larger than me. Moreover, in this regime the splitting rate depends only
on mγ , the only energy scale present in the problem. One then expects the anal-
ysis proposed in [31] to be correct and the splitting time scale to be negligible at
Eγ � 1019 eV.

Lepton Pair Production The process e− → e−e−e+ is similar to vacuum
C̆erenkov radiation or helicity decay, with the final photon replaced by an electron-
positron pair. Various combinations of helicities for the different fermions can be
considered individually. If we choose the particularly simple case (and the only one
we shall consider here) where all electrons have the same helicity and the positron
has the opposite helicity, then the threshold energy will depend on only one LV pa-
rameter. In [31] was derived the threshold for this reaction, finding that it is a factor
∼ 2.5 times higher than that for soft vacuum C̆erenkov radiation. The rate for the
reaction is high as well, hence constraints may be imposed using just the value of
the threshold.

13.7.3.4 LV-Modified Threshold Reactions: Photon Pair-Creation

A process related to photon decay is photon absorption, γ γ → e+e−. Unlike photon
decay, this is allowed in Lorentz invariant QED and it plays a crucial role in making
our universe opaque to gamma rays above tents of TeVs.

If one of the photons has energy ω0, the threshold for the reaction occurs in
a head-on collision with the second photon having the momentum (equivalently
energy) kLI = m2/ω0. For example, if kLI = 10 TeV (the typical energy of inverse
Compton generated photons in some active galactic nuclei) the soft photon threshold
ω0 is approximately 25 meV, corresponding to a wavelength of 50 microns.
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In the presence of Lorentz violating dispersion relations the threshold for this
process is in general altered, and the process can even be forbidden. Moreover, as
firstly noticed by Kluźniak [136] and mentioned before, in some cases there is an
upper threshold beyond which the process does not occur. Physically, this means that
at sufficiently high momentum the photon does not carry enough energy to create a
pair and simultaneously conserve energy and momentum. Note also, that an upper
threshold can only be found in regions of the parameter space in which the γ -decay
is forbidden, because if a single photon is able to create a pair, then a fortiori two
interacting photons will do [31].

Let us exploit the above mentioned relation ηe−± = (−)nηe+∓ between the electron-
positron coefficients, and assume that on average the initial state is unpolarized. In
this case, using the energy-momentum conservation, the kinematics equation gov-
erning pair production is the following [33]

m2

kny(1− y)
= 4ωb

kn−1
+ ξ̃ − η̃

(
yn−1 + (−)n(1− y)n−1) (13.80)

where ξ̃ ≡ ξ (n)/Mn−2 and η̃ ≡ η(n)/Mn−2 are respectively the photon’s and elec-
tron’s LV coefficients divided by powers of M , 0 < y < 1 is the fraction of momen-
tum carried by either the electron or the positron with respect to the momentum k

of the incoming high-energy photon and ωb is the energy of the target photon. In
general the analysis is rather complicated. In particular it is necessary to sort out
whether the thresholds are lower or upper ones, and whether they occur with the
same or different pair momenta

13.7.4 Synchrotron Radiation

Synchrotron emission is strongly affected by LV, however for Planck scale LV and
observed energies, it is a relevant “window” only for dimension four or five LV
QED. We shall work out here the details of dimension five QED (n = 3) for illus-
trative reasons (see e.g. [137] for the mSME case).

In both LI and LV cases [33], most of the radiation from an electron of energy E

is emitted at a critical frequency

ωc = 3

2
eB

γ 3(E)

E
(13.81)

where γ (E)= (1− v2(E))−1/2, and v(E) is the electron group velocity.
However, in the LV case, and assuming specifically n = 3, the electron group

velocity is given by

v(E)= ∂E

∂p
=
(

1− m2
e

2p2
+ η(3) p

M

)
. (13.82)



328 S. Liberati

Therefore, v(E) can exceed 1 if η > 0 or it can be strictly less than 1 if η < 0. This
introduces a fundamental difference between particles with positive or negative LV
coefficient η.

If η is negative the group velocity of the electrons is strictly less than the (low en-
ergy) speed of light. This implies that, at sufficiently high energy, γ (E)− < E/me ,
for all E. As a consequence, the critical frequency ω−c (γ,E) is always less than a
maximal frequency ωmax

c [33]. Then, if synchrotron emission up to some frequency
ωobs is observed, one can deduce that the LV coefficient for the corresponding lep-
tons cannot be more negative than the value for which ωmax

c = ωobs. Then, if syn-
chrotron emission up to some maximal frequency ωobs is observed, one can deduce
that the LV coefficient for the corresponding leptons cannot be more negative than
the value for which ωmax

c = ωobs, leading to the bound [33]

η(3) >−M

me

(
0.34eB

meωobs

)3/2

. (13.83)

If η is instead positive the leptons can be superluminal. One can show that at
energies Ec � 8 TeV/η1/3, γ (E) begins to increase faster than E/me and reaches
infinity at a finite energy, which corresponds to the threshold for soft VC emission.
The critical frequency is thus larger than the LI one and the spectrum shows a char-
acteristic bump due to the enhanced ωc.

13.8 Current Constraints on the QED Sector

Let us now come to a brief review of the present constraints on LV QED and in
other sectors of the standard model. We shall not spell out the technical details here.
These can be found in dedicated, recent, reviews such as [138].

13.8.1 mSME Constraints

It would be cumbersome to summarize here the constraints on the minimal Standard
Model extension (dimension there and four operators) as many parameters charac-
terize the full model. A summary can be found in [128]. One can of course restrict
the mSME to the rotational invariant subset. In this case the model basically co-
incides with the Coleman-Glashow one [28]. In this case the constraints are quite
strong, for example on the QED sector one can easily see that the absence of gamma
decay up to 50 TeV provides a constraint of order 10−16 on the difference between
the limit speed of photons and electrons [94]. Constraint up to O(10−22) can be
achieved on other mSME parameters for dimension four LV terms via precision
experiments like Penning traps.
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13.8.2 Constraints on QED with O(E/M) LV

It is quite remarkable that a single object can nowadays provide the most stringent
constraints for LV QED with O(E/M) modified dispersion relations, this object is
the Crab Nebula (CN). The CN is a source of diffuse radio, optical and X-ray radia-
tion associated with a Supernova explosion observed in 1054 A.D. Its distance from
Earth is approximately 1.9 kpc. A pulsar, presumably a remnant of the explosion,
is located at the centre of the Nebula. The Nebula emits an extremely broad-band
spectrum (21 decades in frequency, see [139] for a comprehensive list of relevant
observations) that is produced by two major radiation mechanisms. The emission
from radio to low energy γ -rays (E < 1 GeV) is thought to be synchrotron radia-
tion from relativistic electrons, whereas inverse Compton (IC) scattering by these
electrons is the favored explanation for the higher energy γ -rays. From a theoretical
point of view, the current understanding of the whole environment is based on the
model presented in [140], which accounts for the general features observed in the
CN spectrum.

Recently, a claim of |ξ (3)| � 2 × 10−7 was made using UV/optical polarisation
measures from GRBs [141]. However, the strongest constraint to date comes from
a local object. In [131] the constraint |ξ (3)|� 6× 10−10 at 95 % Confidence Level
(CL) was obtained by considering the observed polarization of hard-X rays from the
CN [142] (see also [143]).

13.8.2.1 Synchrotron Constraint

How the synchrotron emission processes at work in the CN would appear in a “LV
world” has been studied in [139, 144]. There the role of LV in modifying the charac-
teristics of the Fermi mechanism (which is thought to be responsible for the forma-
tion of the spectrum of energetic electrons in the CN [145]) and the contributions of
vacuum C̆erenkov and helicity decay were investigated for n= 3 LV. This procedure
requires fixing most of the model parameters using radio to soft X-rays observations,
which are basically unaffected by LV.

Given the dispersion relations (13.48) and (13.49), clearly only two configura-
tions in the LV parameter space are truly different: η+ · η− > 0 and η+ · η− < 0,
where η+ is assumed to be positive for definiteness. The configuration wherein both
η± are negative is the same as the (η+ · η− > 0, η+ > 0) case, whereas that whose
signs are scrambled is equivalent to the case (η+ · η− < 0, η+ > 0). This is because
positron coefficients are related to electron coefficients through η

af
± = −η

f
∓ [33].

Examples of spectra obtained for the two different cases are shown in Fig. 13.1.
A χ2 analysis has been performed to quantify the agreement between models

and data [139]. From this analysis, one can conclude that the LV parameters for the
leptons are both constrained, at 95 % CL, to be |η±| < 10−5, as shown by the red
vertical lines in Fig. 13.3. Although the best fit model is not the LI one, a careful
statistical analysis (performed with present-day data) shows that it is statistically
indistinguishable from the LI model at 95 % CL [139].
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Fig. 13.1 Comparison between observational data, the LI model and a LV one with η+ · η− < 0
(left) and η+ · η− > 0 (right). The values of the LV coefficients, reported in the insets, show the
salient features of the LV modified spectra. The leptons are injected according to the best fit values
p = 2.4, Ec = 2.5 PeV. The individual contribution of each lepton population is shown

13.8.2.2 Birefringence Constraint

In the case of the CN a (46 ± 10) % degree of linear polarization in the
100 keV–1 MeV band has recently been measured by the INTEGRAL mission
[142, 146]. This measurement uses all photons within the SPI instrument energy
band. However the convolution of the instrumental sensitivity to polarization with
the detected number counts as a function of energy, P(k), is maximized and ap-
proximately constant within a narrower energy band (150 to 300 keV) and falls
steeply outside this range [147]. For this reason we shall, conservatively, assume
that most polarized photons are concentrated in this band. Given dCrab = 1.9 kpc,
k2 = 300 keV and k1 = 150 keV, Eq. (13.73) leads to the order-of-magnitude esti-
mate |ξ |� 2× 10−9. A more accurate limit follows from (13.74). In the case of the
CN there is a robust understanding that photons in the range of interest are produced
via the synchrotron process, for which the maximum degree of intrinsic linear po-
larization is about 70 % (see e.g. [148]). Figure 13.2 illustrates the dependence of
Π on ξ (see Eq. (13.74)) for the distance of the CN and for Π(0) = 70 %. The
requirement Π(ξ) > 16 % (taking account of a 3σ offset from the best fit value
46 %) leads to the constraint (at 99 % CL)

|ξ |� 6× 10−9. (13.84)

It is interesting to notice that X-ray polarization measurements of the CN already
available in 1978 [149], set a constraint |ξ |� 5.4× 10−6, only one order of magni-
tude less stringent than that reported in [141].

Constraint (13.84) can be tightened by exploiting the current astrophysical un-
derstanding of the source. The CN is a cloud of relativistic particles and fields pow-
ered by a rapidly rotating, strongly magnetized neutron star. Both the Hubble Space
Telescope and the Chandra X-ray satellite have imaged the system, revealing a jet
and torus that clearly identify the neutron star rotation axis [150]. The projection of
this axis on the sky lies at a position angle of 124.0◦ ± 0.1◦ (measured from North
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Fig. 13.2 Constraint for the
polarization degree.
Dependence of Π on ξ for
the distance of the CN and
photons in the 150–300 keV
range, for a constant
instrumental sensitivity P(k)

in anti-clockwise). The neutron star itself emits pulsed radiation at its rotation fre-
quency of 30 Hz. In the optical band these pulses are superimposed on a fainter
steady component with a linear polarization degree of 30 % and direction precisely
aligned with that of the rotation axis [151]. The direction of polarization measured
by INTEGRAL-SPI in the γ -rays is θobs = 123◦ ± 11◦ (1σ error) from the North,
thus also closely aligned with the jet direction and remarkably consistent with the
optical observations.

This compelling (theoretical and observational) evidence allows us to use
Eq. (13.76). Conservatively assuming θi − θobs = 33◦ (i.e. 3σ from θi, 99 % CL),
this translates into the limit

∣∣ξ (3)
∣∣� 9× 10−10, (13.85)

and |ξ (3)|� 6× 10−10 for a 2σ deviation (95 % CL).
Polarized light from GRBs has also been detected and given their cosmological

distribution they could be ideal sources for improving the above mentioned con-
straints from birefringence. Attempts in this sense were done in the past [93, 152]
(but later on the relevant observation [153] appeared controversial) but so far we
do not have sources for which the polarization is detected and the spectral red-
shift is precisely determined. In [154] this problem was circumvented by using
indirect methods (the same used to use GRBs as standard candles) for the esti-
mate of the redshift. This leads to a possibly less robust but striking constraints
|ξ (3)|� 2.4× 10−14.

Remarkably this constraint was recently further improved by using the INTE-
GRAL/IBIS observation of the GRB 041219A, for which a luminosity distance
of 85 Mpc (z ≈ 0.02) was derived thanks to the determination of the GRB’s host
galaxy. In this case a constraint |ξ (3)|� 1.1× 10−14 was derived [155].8

8The same paper claims also a strong constraint on the parameter ξ (4). Unfortunately, such a claim
is based on the erroneous assumption that the EFT order six operators responsible for this term
imply opposite signs for opposite helicities of the photon. We have instead seen that the CPT
evenness of the relevant dimension six operators imply a helicity independent dispersion relation
for the photon (see Eq. (13.54)).
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Fig. 13.3 Summary of the constraints on LV QED at order O(E/M). The red lines are related
to the constraints derived from the detection of polarized synchrotron radiation from the CN as
discussed in the text. For further reference are also shown the constraints that can be derived from
the detection of 80 TeV photons from the CN: the solid black lines symmetric w.r.t. the ξ axis
are derived from the absence of gamma decay, the dashed vertical line cutting the η axis at about
10−3 refers to the limit on the vacuum C̆erenkov effect coming from the inferred 80 TeV inverse
Compton electrons. The dashed vertical line on the negative side of the η axis is showing the first
synchrotron based constraint derived in [144]

13.8.2.3 Summary

Constraints on LV QED O(E/M) are summarized in Fig. 13.3 where also the
constraints—coming from the observations of up to 80 TeV gamma rays from
the CN [156] (which imply no gamma decay for these photons neither vacuum
Cherenkov at least up to 80 TeV for the electrons producing them via inverse Comp-
ton scattering)—are plotted for completeness.

13.8.3 Constraints on QED with O(E/M)2 LV

Looking back at Table 13.1 it is easy to realize that casting constraints on dimension
six LV operators in QED requires accessing energies beyond 1016 eV. Due to the
typical radiative processes characterizing electrons and photons it is extremely hard
to directly access these kind of energies. However, the cosmic rays spectrum does
extend in this ultra high energy region and it is therefore the main (so far the only)
channel for probing these kind of extreme UV LV.

One of the most interesting features related to the physics of Ultra-High-Energy
Cosmic Rays (UHECRs) is the Greisen-Zatsepin-Kuzmin (GZK) cut off [41, 42],
a suppression of the high-energy tail of the UHECR spectrum arising from interac-
tions with CMB photons, according to pγ →
+ → pπ0(nπ+). This process has
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a (LI) threshold energy Eth � 5× 1019 (ωb/1.3 meV)−1 eV (ωb is the target pho-
ton energy). Experimentally, the presence of a suppression of the UHECR flux was
claimed only recently [20, 21]. Although the cut off could be also due to the finite
acceleration power of the UHECR sources, the fact that it occurs at the expected en-
ergy favors the GZK explanation. The results presented in [157] seemed to further
strengthen this hypothesis (but see further discussion below).

Rather surprisingly, significant limits on ξ and η can be derived by considering
UHE photons generated as secondary products of the GZK reaction [158, 159]. This
can be used to further improve the constraints on dimension 5 LV operators and
provide a first robust constraint of QED with dimension 6 CPT even LV operators.

These UHE photons originate because the GZK process leads to the production
of neutral pions that subsequently decay into photon pairs. These photons are mainly
absorbed by pair production onto the CMB and radio background. Thus, the frac-
tion of UHE photons in UHECRs is theoretically predicted to be less than 1 % at
1019 eV [160]. Several experiments imposed limits on the presence of photons in
the UHECR spectrum. In particular, the photon fraction is less than 2.0 %, 5.1 %,
31 % and 36 % (95 % CL) at E = 10, 20, 40, 100 EeV respectively [161, 162].

The point is that pair production is strongly affected by LV. In particular, the
(lower) threshold energy can be slightly shifted and in general an upper thresh-
old can be introduced [31]. If the upper threshold energy is lower than 1020 eV,
then UHE photons are no longer attenuated by the CMB and can reach the Earth,
constituting a significant fraction of the total UHECR flux and thereby violating
experimental limits [158, 159, 163].

Moreover, it has been shown [159] that the γ -decay process can also imply a
significant constraint. Indeed, if some UHE photon (Eγ � 1019 eV) is detected by
experiments (and the Pierre Auger Observatory, PAO, will be able to do so in few
years [161]), then γ -decay must be forbidden above 1019 eV.

In conclusion we show in Fig. 13.4 the overall picture of the constraints of QED
dimension 6 LV operators, where the green dotted lines do not correspond to real
constraints, but to the ones that will be achieved when AUGER will observe, as
expected, some UHE photon.

Let us add that the same reasoning can be used to further strength the available
constraints in dimension 5 LV QED. In this case the absence of relevant UHE photon
flux strengthen by at most two order of magnitude the constraint on the photon
coefficient while the eventual detection of the expected flux of UHE photons would
constraint the electron positron coefficients down to |η(3)|� 10−16 (see [138, 159]
for further details) by limiting the gamma decay process (note however, that in this
case one cannot exclude that only one photon helicity survives and hence a detailed
flux reconstruction would be needed).

13.9 Other SM Sectors Constraints

While QED constraints are up to date the more straightforward from a theoretical
as well observational point of view, it is possible to cast constraints also on other
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Fig. 13.4 LV induced by dimension 6 operators. The LV parameter space is shown. The allowed
regions are shaded grey. Green dotted lines represent values of (η, ξ) for which the γ -decay thresh-
old kγ−dec � 1019 eV. Solid, blue lines indicate pairs (η, ξ) for which the pair production upper
threshold kup � 1020 eV

sectors of the SM, most noticeably on the hadronic and neutrino sectors. Let us
review them very briefly here.

13.9.1 Constraints on the Hadronic Sector

Being an ultra high energy threshold process, the aforementioned GZK photopion
production is strongly affected by LV. Several authors have studied the constraints
implied by the detection of this effect [31, 38, 164–167]. However, a detailed LV
study of the GZK feature is hard to perform, because of the many astrophysical un-
certainties related to the modeling of the propagation and the interactions of UHE-
CRs.

As a consequence of LV, the mean free path for the GZK reaction is modified. The
propagated UHECR spectrum can therefore display features, like bumps at specific
energies, suppression at low energy, recovery at energies above the cutoff, such that
the observed spectrum cannot be reproduced. Moreover, the emission of Cherenkov
γ -rays and pions in vacuum would lead to sharp suppression of the spectrum above
the relevant threshold energy. After a detailed statistical analysis of the agreement
between the observed UHECR spectrum and the theoretically predicted one in the
presence of LV and assuming pure proton composition, the final constraints implied
by UHECR physics are (at 99 % CL) [168]

−10−3 � η(4)
p � 10−6,

−10−3 � η(4)
π � 10−1 (

η(4)
p > 0

)
or � 10−6 (

η(4)
p < 0

)
.

(13.86)
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Of course for dimension five operators much stronger constraints can be achieved
by a similar analysis (order O(10−14)).

13.9.2 Constraints on the Neutrino Sector

LV can affect the speed of neutrinos with respect to light, influence possible thresh-
old reactions or modified the oscillations between neutrinos flavors. Unfortunately
we have a wealth of information only about the latter phenomenon which however
constraints only the differences among LV coefficients of different flavors. In this
case, the best constraint to date comes from survival of atmospheric muon neu-
trinos observed by the former IceCube detector AMANDA-II in the energy range
100 GeV to 10 TeV [169], which searched for a generic LV in the neutrino sec-
tor [170] and achieved (
c/c)ij ≤ 2.8× 10−27 at 90 % confidence level assuming
maximal mixing for some of the combinations i, j . Given that IceCube does not
distinguish neutrinos from antineutrinos, the same constraint applies to the corre-
sponding antiparticles. The IceCube detector is expected to improve this constraint
to (
c/c)ij ≤ 9 × 10−28 in the next few years [171]. The lack of sidereal varia-
tions in the atmospheric neutrino flux also yields comparable constraints on some
combinations of SME parameters [172].

For what regards the time of flight constraints we have to date only a single event
to rely on, the supernova SN1987a. This was a peculiar event which allowed to de-
tect the almost simultaneous (within a few hours) arrival of electronic antineutrinos
and photons. Although only few electronic antineutrinos at MeV energies was de-
tected by the experiments KamiokaII, IMB and Baksan, it was enough to establish a
constraint (
c/c)TOF � 10−8 [173] or (
c/c)TOF � 2×10−9 [174] by looking at
the difference in arrival time between antineutrinos and optical photons over a base-
line distance of 1.5× 105 ly. Further analyses of the time structure of the neutrino
signal strengthened this constraint down to ∼ 10−10 [175, 176].

The scarcity of the detected neutrino did not allow the reconstruction of the full
energy spectrum and of its time evolution in this sense one should probably con-
sider constraints purely based on the difference in the arrival time with respect to
photons more conservative and robust. Unfortunately adopting 
c/c � 10−8, the
SN constraint implies very weak constraints, ξ (3)

ν � 1013 and ξ
(4)
ν � 1034.

Threshold reactions also can be used to cast constraints on the neutrinos sector.
In the literature have been considered several processes most prominently the neu-
trino C̆erekov emission ν → γ ν, the neutrino splitting ν → ννν̄ and the neutrino
electron/positron pair production ν → νe−e+. Let us consider for illustration the
latter process. Neglecting possible LV modification in the electron/positron sector
(on which we have seen we have already strong constraints) the threshold energy is
for arbitrary n

E2
th,(n) =

4m2
e

δ(n)
, (13.87)

with δ(n) = ξν(Eth/M)n−2.
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Table 13.2 Summary of typical strengths of the available constrains on the SME at different orders

Order Photon e−/e+ Hadrons Neutrinosa

n= 2 N.A. O(10−16) O(10−27) O(10−8)

n= 3 O(10−14) (GRB) O(10−16) (CR) O(10−14) (CR) O(30)

n= 4 O(10−8) (CR) O(10−8) (CR) O(10−6) (CR) O(10−4)∗ (CR)

GRB= gamma rays burst, CR= cosmic rays
aFrom neutrino oscillations we have constraints on the difference of LV coefficients of different
flavors up to O(10−28) on dim 4, O(10−8) and expected up to O(10−14) on dim 5 (ICE3), expected
up to O(10−4) on dim 6 op. ∗ Expected constraint from future experiments

The rate of this reaction was firstly computed in [47] for n= 2 but can be easily
generated to arbitrary n [48] (see also [177]). The generic energy loss time-scale
then reads (dropping purely numerical factors)

τν−pair � m4
Z cos4 θw

g4E5

(
M

E

)3(n−2)

, (13.88)

where g is the weak coupling and θw is Weinberg’s angle.
The observation of upward-going atmospheric neutrinos up to 400 TeV by the

experiment IceCube implies that the free path of these particles is at least longer
than the Earth radius implies a constraint η(3)

μ � 30. No effective constraint can be
optioned for n= 4 LV, however in this case neutrino splitting (which has the further
advantage to be purely dependent on LV on the neutrinos sector) could be used on
the “cosmogenic” neutrino flux. This is supposedly created via the decay of charged
pions produced by the aforementioned GZK effect. The neutrino splitting should
modify the spectrum of the ultra high energy neutrinos by suppressing the flux at
the highest energies and enhancing it at the lowest ones. In [178] it was shown that
future experiments like ARIANNA [179] will achieve the required sensitivity to
cast a constraint of order η(4)

ν � 10−4. Note however, that the rate for neutrino split-
ting computed in [178] was recently recognized to be underestimated by a factor
O(E/M)2 [180]. Hence the future constraints here mentioned should be recom-
puted and one should be able to strengthened them by few orders of magnitude.

13.10 Summary and Perspectives

We can summarize the current status of the constraints for the LV SME in Ta-
ble 13.2.

A special caveat it is due in the case of n= 4 constraints. As we have seen, they
mostly rely (in the QED and Hadronic sector) on the actual detection of the GZK
feature of the UHECR spectrum. More specifically, UHECR constraints have relied
so far on the hypothesis, not in contrast with any previous experimental evidence,
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that protons constituted the majority of UHECRs above 1019 eV. Recent PAO [181]
and Yakutsk [182] observations, however, showed hints of an increase of the aver-
age mass composition with rising energies up to E ≈ 1019.6 eV, although still with
large uncertainties mainly due to the proton-air cross-section at ultra high energies.
Hence, experimental data suggests that heavy nuclei can possibly account for a sub-
stantial fraction of UHECR arriving on Earth.

Furthermore the evidence for correlations between UEHCR events and their
potential extragalactic sources [157]—such as active galactic nuclei (mainly
Blasars)—has not improved with increasing statistics. This might be interpreted as a
further hint that a relevant part of the flux at very high enrages should be accounted
for by heavy ions (mainly iron) which are much more deviated by the extra and inter
galactic magnetic fields due to their larger charge with respect to protons (an effect
partially compensated by their shorter mean free path at very high energies).

If consequently one conservatively decides to momentarily suspend his/her judg-
ment about the evidence for a GZK feature, then he/she would lose the constraints
at n = 4 on the QED sector9 as well as very much weaken the constraints on the
hadronic one.

Assuming that current hints for a heavy composition at energies E ∼ 1019.6 eV
[181] may be confirmed in the future, that some UHECR is observed up to E ∼
1020 eV [184], and that the energy and momentum of the nucleus are the sum of
energies and momenta of its constituents (so that the parameter in the modified
dispersion relation of the nuclei is the same of the elementary nucleons, specifically
ηp) one could place a first constraint on the absence of spontaneous decay for nuclei
which could not spontaneously decay without LV.10

It will place a limit on ηp < 0, because in this case the energy of the emitted
nucleon is lowered with respect to the LI case until it “compensates” the binding
energy of the nucleons in the initial nucleus in the energy-momentum conservation.
An upper limit for ηp > 0 can instead be obtained from the absence of vacuum
Cherenkov emission. If UHECR are mainly iron at the highest energies the con-
straint is given by ηp � 2 × 102 for nuclei observed at 1019.6 eV (and ηp � 4 for
1020 eV), while for helium it is ηp � 4× 10−3 [185].

So, in conclusion, we can see that the while much has been done still plenty
is to be explored. In particular, all of our constraints on O(E/M)2 LV EFT (the
most interesting order from a theoretical point of view) are based on the GZK effect
(more or less directly) whose detection is still uncertain. It would be nice to be able

9This is a somewhat harsh statement given that it was shown in [183] that a substantial (albeit
reduced) high energy gamma ray flux is still expected also in the case of mixed composition, so
that in principle the previously discussed line of reasoning based on the absence of upper threshold
for UHE gamma rays might still work.
10UHE nuclei suffer mainly from photo-disintegration losses as they propagate in the intergalactic
medium. Because photo-disintegration is indeed a threshold process, it can be strongly affected by
LV. According to [185], and in the same way as for the proton case, the mean free paths of UHE
nuclei are modified by LV in such a way that the final UHECR spectra after propagation can show
distinctive LV features. However, a quantitative evaluation of the propagated spectra has not been
performed yet.



338 S. Liberati

to cast comparable constrains using more reliable observations, but at the moment
it is unclear what reaction could play this role. Similarly, new ideas like the one of
gravitational confinement [89] presented in Sect. 13.4.1.2, seems to call for much
deeper investigation of LV phenomenology in the purely gravitational sector.

We have gone along way into exploring the possible phenomenology of Lorentz
breaking physics and pushed well beyond expectations the tests of this fundamental
symmetry of Nature, however still much seems to await along the path.

Acknowledgements I wish to that Luca Maccione and David Mattingly for useful insights, dis-
cussions and feedback on the manuscript preparation.
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Chapter 14
The Topology of the Quantum Vacuum

Grigorii E. Volovik

Abstract Topology in momentum space is the main characteristic of the ground
state of a system at zero temperature, the quantum vacuum. The gaplessness of
fermions in bulk, on the surface or inside the vortex core is protected by topol-
ogy, and is not sensitive to the details of the microscopic physics (atomic or trans-
Planckian). Irrespective of the deformation of the parameters of the microscopic
theory, the energy spectrum of these fermions remains strictly gapless. This solves
the main hierarchy problem in particle physics: for fermionic vacua with Fermi
points the masses of elementary particles are naturally small. The quantum vacuum
of the Standard Model is one of the representatives of topological matter alongside
with topological superfluids and superconductors, topological insulators and semi-
metals, etc. There is a number of topological invariants in momentum space of dif-
ferent dimensions. They determine the universality classes of the topological matter
and the type of the effective theory which emerges at low energy. In many cases they
also give rise to emergent symmetries, including the effective Lorentz invariance,
and emergent phenomena such as effective gauge and gravitational fields. The topo-
logical invariants in extended momentum and coordinate space determine the bulk-
surface and bulk-vortex correspondence. They connect the momentum space topol-
ogy in bulk with the real space. These invariants determine the gapless fermions
living on the surface of a system or in the core of topological defects (vortices,
strings, domain walls, solitons, monopoles, etc.). The momentum space topology
gives some lessons for quantum gravity. In effective gravity emerging at low energy,
the collective variables are the tetrad field and spin connections, while the metric is
the composite object of tetrad field. This suggests that the Einstein-Cartan-Sciama-
Kibble theory with torsion field is more relevant. There are also several scenarios
of Lorentz invariance violation governed by topology, including splitting of Fermi
point and development of the Dirac points with quadratic and cubic spectrum. The
latter leads to the natural emergence of the Hořava-Lifshitz gravity.
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14.1 Introduction

14.1.1 Symmetry vs Topology

There is a fundamental interplay of symmetry and topology in physics, both in con-
densed matter and relativistic quantum fields. Traditionally the main role was played
by symmetry: gauge symmetry of Standard Model and GUT; symmetry classifica-
tion of condensed matter systems such as solid and liquid crystals, magnets, super-
conductors and superfluids; universality classes of spontaneously broken symmetry
phase transitions; etc. The last decades demonstrated the opposite tendency in which
topology is becoming primary being the main characteristics of quantum vacua—
ground states of the system at T = 0, see reviews [1–4] and earlier papers [5–19].

Topology describes the properties of a system, which are insensitive to the de-
tails of the microscopic physics. It determines universality classes of the topological
matter and the type of the effective theory which emerges at low energy and low
temperature, and gives rise to emergent symmetry. Examples are provided by the
point nodes in the energy spectrum, which are protected by topology. Close to the
nodes the effective Lorentz invariance emerges: the fermionic spectrum forms a rel-
ativistic Dirac cone and the fermions behave as Weyl, Dirac or Majorana particles.
The bosonic collective modes give rise to effective gauge field and effective metric.
All this is the consequence of the topological theorem—the Atiyah-Bott-Shapiro
construction [19].

Among the existing and potential representatives of topological materials one can
find those which have gap in their fermionic spectrum. These are 3D topological
band insulators [3]; fully gapped superfluid 3He-B [15, 20–22]; and 2D materials
exhibiting intrinsic (i.e. without external magnetic field) quantum Hall and spin-Hall
effects, such as gapped graphene [16]; thin film of superfluid 3He-A and quasi 2D
planar phase of triplet superfluid [17, 18, 23]; and chiral superconductor Sr2RuO4
[24]. These materials have the topological properties similar to that of the quantum
vacuum of Standard Model in its massive “insulating” phase [25].

The gapless topological media are represented by superfluid 3He-A [1]; topo-
logical semi-metals [26–30]; gapless graphene [2, 31–34]; nodal cuprate [31] and
non-centrosymmetric [35, 36] superconductors. These materials are similar to the
quantum vacuum of the Standard Model in its massless “semi-metal” phase [1, 25].

14.1.2 Green’s Function vs Order Parameter

Topology operates in particular with integer numbers—topological charges—which
do not change under small deformations of the system. The conservation of these
topological charges protects the Fermi surface and another object in momentum
space—the Fermi point—from destruction. They survive when the interaction be-
tween the fermions is introduced and modified. When the momentum of a particle
approaches the Fermi surface or the Fermi point its energy necessarily vanishes.
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Thus the topology is the main reason why there are gapless quasi-particles in con-
densed matter and (nearly) massless elementary particles in our Universe.

The momentum-space topological invariants are in many respects similar to the
real-space invariants, which describe topological defects in condensed matter sys-
tems, and such topological objects as cosmic strings, magnetic monopoles and soli-
tons in particle physics (see Fig. 14.1). While the real-space invariants describes the
topologically nontrivial configurations of the order parameter fields in spacetime,
the momentum-space invariants describe the nontrivial momentum-space configu-
ration of the Green’s function G(p,ω) or other response function, which character-
izes the ground state of a system (the vacuum state) [1, 19, 37, 38]. In particular, the
Fermi surface in metals is topologically stable, because it is analogous to the vortex
loop in superfluids or superconductors. In the same way, the Fermi point (the Weyl
point) corresponds to the real-space point defects, such as a hedgehog in ferromag-
nets or a magnetic monopole in particle physics. The fully gapped topological mat-
ter, such as topological insulators and fully gapped topological superfluids represent
skyrmions in momentum space: they have no nodes in their spectrum or any other
singularities, and they correspond to non-singular objects in real space—textures or
skyrmions (Fig. 14.1 top right).

The topology of Green’s function G(ω,p; t, r) in the phase-space allows us to
consider topologically protected spectrum of fermions living on topological objects
such as domain walls, strings and monopoles [1, 15, 37, 41–43].

14.1.3 The Fermi Surface as a Topological Object

Let us start with gapless vacua. For the topological classification of the gapless
vacua, the Green’s function is considered on the imaginary frequency axis p0 = iω.
This allows us to consider only the relevant singularities in the Green’s function and
to avoid the singularities on the mass shell, which exist in any vacuum, gapless or
fully gapped. The Green’s function is generally a matrix with spin indices. In addi-
tion, it may have the band indices (in the case of electrons in the periodic potential
of crystals).

We start with zeroes of co-dimension 1. By co-dimension we denote the dimen-
sion of p-space minus dimension of the nodes. That is why co-dimension 1 refers
to two-dimensional Fermi surface in three-dimensional metal, 1D Fermi line in 2D
systems and Fermi point in 1D systems. The general analysis [19] demonstrates that
topologically stable nodes of co-dimension 1 are described by the group Z of in-
tegers. The corresponding winding number N is expressed analytically in terms of
the Green’s function [1]:

N = tr
∮

C

dl

2πi
G(ω,p)∂lG−1(ω,p). (14.1)

Here the integral is taken over an arbitrary contour C around the Green’s function
singularity in the D + 1 momentum-frequency space. See Fig. 14.2 for D = 2. Ex-
ample of the Green’s function in any dimension D is scalar function G−1(ω,p)=
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Fig. 14.1 Topological matter, represented in terms of topological objects in momentum space. (top
left): Fermi surface is the momentum-space analogue of the vortex line: the phase of the Green’s
function changes by 2π around the element of the line in (ω,p)-space. (top middle): Fermi point
(Weyl point) is the counterpart of a hedgehog and a magnetic monopole. The hedgehog in this fig-
ure has integer topological charge N =+1, and close to this Fermi point the fermionic quasiparti-
cles behave as Weyl fermions. Nontrivial topological charges in terms of Green’s functions support
the stability of the Fermi surfaces and Weyl points with respect to perturbations including interac-
tions [1, 37]. In terms of the Berry phase [39] the Fermi point represents the p-space counterpart of
Dirac magnetic monopole with unobservable Dirac string (see Ref. [40] and Fig. 11.4 in [1]). (top
right): Topological insulators and fully gapped topological superfluids/superconductors are tex-
tures in momentum space: they have no singularities in the Green’s function and thus no nodes in
the energy spectrum in the bulk. This figure shows a skyrmion in the two-dimensional momentum
space, which characterizes two-dimensional topological insulators exhibiting intrinsic quantum
Hall or spin-Hall effect. (bottom left): Flat band emerging in strongly interacting systems [44].
This dispersionless Fermi band is analogous to a soliton terminated by half-quantum vortices: the
phase of the Green’s function changes by π around the edge of the flat band [45]. (bottom right):
Fermi arc on the surface of 3He-A [46] and of topological semi-metals with Weyl points [28–30]
and flat band inside the vortex core of 3He-A [47] serve as the momentum-space analogue of a
Dirac string terminating on a monopole. The Fermi surface formed by the surface bound states ter-
minates on the points where the spectrum of zero energy states merge with the continuous spectrum
in the bulk, i.e. with the Weyl points

iω − vF (|p| − pF ). For D = 2, the singularity with winding number N = 1 is on
the line ω= 0, p2

x +p2
y = p2

F , which represents the one-dimensional Fermi surface.
Due to the nontrivial topological invariant, the Fermi surface survives the pertur-

bative interaction and exists even in marginal and Luttinger liquids without poles in
the Green’s function, where quasiparticles are not defined.
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Fig. 14.2 Nodes of co-dimension 1 in 2 + 1 systems. Green’s function has singularities on line
ω= 0, p2

x+p2
y = p2

F in the three-dimensional space (ω,px,py). The stability of the Fermi surface
is protected by the invariant (14.1) which is represented by an integral over an arbitrary contour
C around the Green’s function singularity. This is applicable to nodes of co-dimension 1 in any
D + 1 dimension. For D = 3 the nodes form conventional Fermi surface in metals and in normal
3He

14.2 Vacuum in a Semi-metal State

If the quantum vacuum of Standard Model obeys the Lorentz invariance, then the
relevant object in momentum space is either the Fermi point of chiral type, in which
fermionic excitations behave as left-handed or right-handed Weyl fermions [1, 48],
or the class of vacua with the nodal point obeying Z2 topology, where fermionic
excitations behave as massless Majorana neutrinos [19].

14.2.1 Fermi Points in 3 + 1 Vacua

The Fermi point is the Green’s function singularity described by the following topo-
logical invariant expressed via integer valued integral over the surface σ around the
singular point in the 4-momentum space pμ = (ω,p) [1]:

N = eαβμν

24π2
tr
∫

σ

dSαG∂pβG
−1G∂pμG

−1G∂pνG
−1. (14.2)

If the invariant is nonzero, the Green’s function has point singularity inside the
surface σ—the Fermi point. If the topological charge is N = +1 or N = −1, the
Fermi point represents the so-called conical Dirac point, but actually describes the
chiral Weyl fermions. This is the consequence of the so-called Atiyah-Bott-Shapiro
construction [19], which leads to the following general form of expansion of the
inverse fermionic propagator near the Fermi point with N =+1 or N =−1:

G−1(pμ)= eβαΓ
α
(
pβ − p

(0)
β

)+ · · · . (14.3)
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Here Γ μ = (1, σx, σy, σz) are Pauli matrices (or Dirac matrices in the more general

case); the expansion parameters are the vector p
(0)
β indicating the position of the

Fermi point in momentum space where the Green’s function has a singularity, and
the matrix e

β
α ; ellipsis denote higher order terms in expansion.

The Fermi or Weyl point represents the exceptional (conical) point of level cross-
ing analyzed by von Neumann and Wigner [49], which takes place in momentum
space [9, 40]. Topological invariants for points at which the branches of spectrum
merge were introduced by Novikov [50].

14.2.2 Emergent Relativistic Fermionic Matter

Equation (14.3) can be continuously deformed to the simple one, which describes
the relativistic Weyl fermions

G−1(pμ)= iω+Nσ · p+ · · · , N =±1, (14.4)

where the position of the Fermi point is shifted to p
(0)
β = 0 and ellipsis denote higher

order terms in ω and p; the matrix e
β
α is deformed to unit matrix. This means that

close to the Fermi point with N = +1, the low energy fermions behave as right
handed relativistic particles, while the Fermi point with N = −1 gives rise to the
left handed particles.

Equation (14.4) suggests the effective Weyl Hamiltonian

Heff =Nσ · p, N =±1. (14.5)

However, the infrared divergences may violate the simple pole structure of the prop-
agator in Eq. (14.4). In this case in the vicinity of Fermi point one has

G(pμ)∝ −iω+Nσ · p
(p2 +ω2)γ

, N =±1, (14.6)

with γ = 1. This modification does not change the topology of the propagator: the
topological charge of singularity is N for arbitrary parameter γ [2]. For fermionic
unparticles one has γ = 5/2− dU , where dU is the scale dimension of the quantum
field [51, 52].

The main property of the vacua with Dirac points is that according to (14.4),
close to the Fermi points the massless relativistic fermions emerge. This is consis-
tent with the fermionic content of our Universe, where all the elementary particles—
left-handed and right-handed quarks and leptons—are Weyl fermions. Such a coin-
cidence demonstrates that the vacuum of Standard Model is the topological medium
of the Fermi point universality class. This solves the hierarchy problem, since the
value of the masses of elementary particles in the vacua of this universality class is
zero.

Let us suppose for a moment, that there is no topological invariant which pro-
tects massless fermions. Then the Universe is fully gapped and the natural masses
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of fermions must be on the order of Planck energy scale: M ∼ EP ∼ 1019 GeV. In
such a natural Universe, where all masses are of order EP, all fermionic degrees of
freedom are completely frozen out because of the Bolzmann factor e−M/T , which
is about e−1016

at the temperature corresponding to the highest energy reached in
accelerators. There is no fermionic matter in such a Universe at low energy. That
we survive in our Universe is not the result of the anthropic principle (the latter
chooses the Universes which are fine-tuned for life but have an extremely low prob-
ability). Our Universe is also natural and its vacuum is generic, but it belongs to a
different universality class of vacua—the vacua with Fermi points. In such vacua,
the masslessness of fermions is protected by topology (combined with symmetry,
see below).

14.2.3 Emergent Gauge Fields

The vacua with Fermi-point suggest a particular mechanism for emergent sym-
metry. The Lorentz symmetry is simply the result of the linear expansion: this
symmetry becomes better and better when the Fermi point is approached and the
non-relativistic higher order terms in Eq. (14.4) may be neglected. This expansion
demonstrates the emergence of the relativistic spin, which is described by the Pauli
matrices. It also demonstrates how gauge fields and gravity emerge together with
chiral fermions. The expansion parameters p

(0)
β and e

β
α may depend on the space

and time coordinates and they actually represent collective dynamic bosonic fields
in the vacuum with Fermi point. The vector field p

(0)
β in the expansion plays the role

of the effective U(1) gauge field Aβ acting on fermions.

For the more complicated Fermi points with |N |> 1 the shift p(0)
β becomes the

matrix field; it gives rise to effective non-Abelian (Yang-Mills) SU(N) gauge fields
emerging in the vicinity of Fermi point, i.e. at low energy [1]. For example, the
Fermi point with N = 2 may give rise to the effective SU(2) gauge field in addition
to the effective U(1) gauge field

G−1(pμ)= eβαΓ
α(pβ − g1Aβ − g2Aβ · τ )+ higher order terms, (14.7)

where τ are Pauli matrices corresponding to the emergent isotopic spin.

14.2.4 Emergent Gravity

The matrix field e
β
α in (14.7) acts on the (quasi)particles as the field of vierbein,

and thus describes the emergent dynamical gravity field. As a result, close to the
Fermi point, matter fields (all ingredients of Standard Model: chiral fermions and
Abelian and non-Abelian gauge fields) emerge together with geometry, relativistic
spin, Dirac matrices, and physical laws: Lorentz and gauge invariance, equivalence
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principle, etc. In such vacua, gravity emerges together with matter. If this Fermi
point mechanism of emergence of physical laws works for our Universe, then the
so-called “quantum gravity” does not exist. The gravitational degrees of freedom
can be separated from all other degrees of freedom of quantum vacuum only at low
energy.

In this scenario, classical gravity is a natural macroscopic phenomenon emerging
in the low-energy corner of the microscopic quantum vacuum, i.e. it is a typical
and actually inevitable consequence of the coarse graining procedure. It is possible
to quantize gravitational waves to obtain their quanta—gravitons, since in the low
energy corner the results of microscopic and effective theories coincide. It is also
possible to obtain some (but not all) quantum corrections to Einstein equation and to
extend classical gravity to the semiclassical level. But one cannot obtain “quantum
gravity” by quantization of Einstein equations, since all other degrees of freedom of
quantum vacuum will be missed in this procedure.

14.2.5 Topological Invariant Protected by Symmetry
in the Standard Model

We assume that the Standard Model contains an equal number of right and left Weyl
fermions, nR = nL = 8ng , where ng is the number of generations (we do not con-
sider Standard Model with Majorana fermions, and assume that in the insulating
state of Standard Model neutrinos are Dirac fermions). For such a Standard Model
the topological charge in (14.2) vanishes, N = 8ng − 8ng = 0. Thus the massless-
ness of the Weyl fermions is not protected by the invariant (14.2), and an arbitrary
weak interaction may result in massive particles.

However, there is another topological invariant, which takes into account the
symmetry of the vacuum. The gapless state of the vacuum with N = 0 can be pro-
tected by the following integral [1]:

NK = eαβμν

24π2
tr
[
K

∫

σ

dSαG∂pβG
−1G∂pμG

−1G∂pνG
−1
]
, (14.8)

where Kij is the matrix of some symmetry transformation, which either commutes
or anticommutes with the Green’s function matrix. In the Standard Model there are
two relevant symmetries, both are the Z2 groups, K2 = 1. One of them is the center
subgroup of SU(2)L gauge group of weak rotations of left fermions, where the ele-
ment K is the gauge rotation by angle 2π , K = eiπτ̌3L . The other one is the group of
the hypercharge rotation be angle 6π , K = ei6πY . In the G(224) Pati-Salam exten-
sion of the G(213) group of Standard Model, this symmetry comes as combination
of the Z2 center group of the SU(2)R gauge group for right fermions, eiπτ̌3R , and
the element e3πi(B−L) of the Z4 center group of the SU(4) color group—the PM

parity (on the importance of the discrete groups in particle physics see [53, 54] and
references therein). Each of these two Z2 symmetry operations changes sign of left
spinor, but does not influence the right particles. Thus these matrices are diagonal,
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Kij = diag(1,1, . . . ,−1,−1, . . .), with eigenvalues 1 for right fermions and −1 for
left fermions.

In the symmetric phase of Standard Model, both matrices commute with the
Green’s function matrix Gij , as a result NK in (14.8) is topological invariant: it
is robust to deformations of Green’s function which preserve the symmetry K . The
value of this invariant NK = 16ng , which means that all 16ng fermions are massless.

14.2.6 Higgs Mechanism vs Splitting of Fermi Points

The gapless vacuum of the Standard Model is supported by a combined action of
topology and symmetry K , and also by the Lorentz invariance which keeps all the
Fermi points at p= 0.

Explicit violation or spontaneous breaking of one of these symmetries transforms
the vacuum of the Standard Model into one of the two possible vacua. If, for exam-
ple, the K symmetry is broken, the invariant (14.8) supported by this symmetry
ceases to exist, and the Fermi point disappears. All 16ng fermions become massive
(Fig. 14.3 bottom left). This is assumed to happen below the symmetry breaking
electroweak transition caused by Higgs mechanism where quarks and charged lep-
tons acquire the Dirac masses.

If, on the other hand, the Lorentz symmetry is violated, the marginal Fermi point
splits into topologically stable Fermi points with non-zero invariant N , which pro-
tects massless chiral fermions (Fig. 14.3 bottom right). Since the invariant N does
not depend on symmetry, the further symmetry breaking cannot destroy the nodes.
One can speculate that in the Standard Model the latter may happen with the elec-
trically neutral leptons, the neutrinos [55]. Most interestingly, Fermi-point splitting
of neutrinos may provide a new source of T and CP violation in the leptonic sector,
which may be relevant for the creation of the observed cosmic matter-antimatter
asymmetry [57].

14.2.7 Splitting of Fermi Points and Problem of Generations

An example of the multiple splitting is provided by the model Hamiltonian for
fermions in superconductors/superfluids in the state which belongs to O(D2) sym-
metry class [58]:

H = 1√
2

(
p2 − p2

F

)
τ3 + 1

2

(
2p2

x − p2
y − p2

z

)
τ1 +

√
3

2

(
p2
y − p2

z

)
τ2. (14.9)

At p2
F < 0 the energy spectrum is fully gapped, for p2

F = 0 the node in the spectrum
appears at p = 0 which at p2

F > 0 splits into 8 Fermi points at the vertices of cube
in momentum space (see Fig. 14.4):

p(n) = pF√
3
(±x̂± ŷ± ẑ), n= 1, . . . ,8. (14.10)
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Fig. 14.3 (top): In Standard Model the Fermi points with positive N =+1 and negative N =−1
topological charges are at the same point p = 0, forming the marginal Fermi point with N = 0.
Symmetry K between the Fermi points prevents their mutual annihilation giving rise to the topo-
logical invariant (14.8) with NK = 2. (bottom left): If symmetry K is violated or spontaneously
broken, Fermi points annihilate each other and Dirac mass is formed. (bottom right): If Lorentz
invariance is violated or spontaneously broken, the marginal Fermi point splits [55]. The topolog-
ical quantum phase transition between the state with Dirac mass and the state with splitted Dirac
points have been observed in cold Fermi gas [56]

These nodes have topological charges N =±1 in Eq. (14.2), and as a result, close
to each of 8 nodes the Hamiltonian is reduced to the Hamiltonian describing Weyl
fermions:

H(n) = e(n)1 · (p− p(n)
)
τ1 + e(n)2 · (p− p(n)

)
τ2 + e(n)3 · (p− p(n)

)
τ3. (14.11)

Each Weyl fermion has its own triad (dreibein). Choosing for simplicity pF =
√

3
one has

e(n)3 =√
2(±x̂± ŷ± ẑ), (14.12)

e(n)1 =±2x̂∓ ŷ∓ ẑ, (14.13)

e(n)2 =√
3(±ŷ∓ ẑ). (14.14)

All triads can be transformed to each other by rotations and/or reflection. So in this
model one obtains four identical copies of right and left relativistic Weyl fermions.
They may be considered as analogues of the generation of Standard Model fermions,
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Fig. 14.4 Sketch of topologically protected point nodes in momentum space with topological
charge N =±1 in Eq. (14.2) in superconfuctors/superfluids of O(D2) symmetry class [58]. Chiral
fermions emerge in the vicinity of each Fermi points. They have identical emergent Minkowski
metric, but different orientations of dreibein. The simplest realization of dreibein for each of eight
chiral fermions is shown by arrows. The vierbein orientations in O(D2) symmetry class super-
conductors are more complicated than in figure: one of the vectors in each vierbein is along the
cube main diagonal, see Eq. (14.12). All four pairs of left and right Weyl fermions have the same
quantum numbers, while their triads can be transformed to each other by rotations and reflection.
They are analogous to the generation of the Standard Model fermions

but with ng = 4. A different, but related mechanism for the origin of generations is
suggested in [59].

14.3 Exotic Fermions

In many systems (including condensed matter and relativistic quantum vacua), the
Fermi points with elementary charges N =±1 may merge together forming either
the neutral point with N = 0 or point with multiple N (i.e. |N | > 1 [60]). In this
case topology and symmetry become equally important, because it is the symmetry
which may stabilize the degenerate node. An example is provided by the Standard
Model of particle physics, where 16 fermions of one generation have degenerate
Dirac point at p = 0 with the trivial total topological charge N = 8 − 8 = 0. In
the symmetric phase of Standard Model the nodes in the spectrum survive due to a
discrete symmetry between the fermions and they disappear in the non-symmetric
phase forming the fully gapped vacuum [1]. In the case of degenerate Fermi point
with |N | > 1, situation is more diverse. Depending on symmetry, the interaction
between fermionic flavors may lead to a splitting of the multiple Fermi point to el-
ementary Dirac points [55]; or gives rise to the essentially non-relativistic energy
spectrum E±(p → 0) →±pN , which corresponds to different scaling for space
and time in the infrared: r → br, t → bN t . The particular case of anisotropic scal-
ing with N = 3 was suggested by Hořava for quantum gravity at short distances,
the so-called Hořava-Lifshitz gravity [61–63], while the anisotropic scaling in the
infrared was suggested in Ref. [64]. The topology of the multiple Dirac point pro-



354 G.E. Volovik

vides another possible realization of anisotropic gravity, which is different from the
scenario based on Lifshitz point in the theory of phase transitions [65, 66].

14.3.1 Dirac Fermions with Quadratic Spectrum

The nonlinear spectrum arising near the Fermi point with N = 2 has been dis-
cussed for different systems including graphene, double cuprate layer in high-
Tc superconductors, surface states of topological insulators and neutrino physics
[1, 2, 32, 67–74]. The spectrum of (quasi)particles in the vicinity of the doubly de-
generate node depends on symmetry. Let us consider the node with topological
charge N = +2 in 2 + 1 system. Such Fermi point of co-dimension 2 takes place
in bilayered graphene. According to general classification [19], the topology alone
cannot protect the gapless fermions in 2D: the topological invariant takes place only
in the presence of a symmetry. In particular, if we restrict consideration only to real
(Majorana) fermions, the nodes obey Z2 topology with summation law 1 + 1 = 0
[19]. To make the multiple Fermi point possible we need an additional symmetry K

which extends the group Z2 to the full group of integers Z. The relevant symmetry
protected topological invariant is [2, 32, 75, 76]:

N = 1

4πi
tr
∮

C

dlKG(ω= 0,p)∂lG−1(ω= 0,p)= tr
∮

C

dlKH −1(p)∂lH (p),

(14.15)

where C is contour around the Dirac point in 2D momentum space (px,py); K is
the relevant symmetry operator; G is the Green’s function matrix at zero frequency,
which can be used as the effective Hamiltonian, H (p)=G−1(ω= 0,p); the oper-
ator K commutes or anticommutes with the effective Hamiltonian.

Provided the symmetry K is preserved and thus the summation law for N takes
place, one finds several scenarios of the behavior of the system with the total topo-
logical charge N =+2.

(i) One may have two fermions with the linear Dirac spectrum, with the nodes be-
ing at the same point of momentum space. This occurs if there is some special
symmetry, such as the fundamental Lorentz invariance.

(ii) Exotic massless fermions emerge. In the 2D systems, these are fermions with
parabolic energy spectrum, which emerge at low energy:

E±(p)≈±p2. (14.16)

They are described by the following effective Hamiltonian

H (px,py)=
(

0 (px + ipy)
2

(px − ipy)
2 0

)
= (p2

x − p2
y

)
σ1 − 2pxpyσ2,

(14.17)

where σ1 and σ2 are Pauli matrices. The topological charge N of the node at
the point px = py = 0 is given by Eq. (14.15), where the symmetry operator
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Fig. 14.5 Illustration of summation rule for momentum-space topological invariant. Splitting of
N = 2 point with quadratic dispersion (a) into four Dirac points: N = 2= 1+ 1+ 1− 1 (b)

K is represented by the Pauli matrix σ3. With effective Hamiltonian (14.17)
one obtains that the node with the quadratic spectrum has the charge N = 2. In
3D systems, the corresponding fermions with the topological charge N = 2 in
Eq. (14.2) are the semi-Dirac fermions, with linear dispersion in one direction
and quadratic dispersion in the other [67]:

E±(p)≈±
√
c2p2

z + p4⊥. (14.18)

(iii) The Weyl point with N =+2 may split either into two Weyl points each with
N = +1 (see [55] for the relativistic 3 + 1 system) or into four Weyl points
(three with N =+1 and one with N =−1, see Fig. 14.5). The effective Hamil-
tonian for the latter case is [77, 78]:

H (px,py)=
(

0 (px + ipy)
2 + s(px − ipy)

(px − ipy)
2 + s(px + ipy) 0

)
.

(14.19)

The energy spectrum of this Hamiltonian has four Dirac points: the node at
p = 0 has the topological charge N = −1, while three nodes at px + ipy =
−se2πki/3 with integer k have charges N = +1 each, so that the summation
rule N = 1+ 1+ 1− 1= 2 does hold.

Note that in options (ii) and (iii) the (effective) Lorentz invariance of the Dirac
point is violated. This suggests that the topological mechanism of splitting of the
Dirac point [55] or of the formation of the nonlinear dispersion [67] may lead to
the spontaneous breaking of Lorentz invariance in the relativistic quantum vacuum,
which in principle may occur in the neutrino sector of the quantum vacuum [79–81].

Let us consider the Fermi point with higher degeneracy, described by the sym-
metry protected topological invariant N > 2.



356 G.E. Volovik

14.3.2 Dirac Fermions with Cubic and Quadratic Spectrum

Let us consider first the case with N = 3 [82]. Examples are three families of right-
handed Weyl 2-component fermions in particle physics; three cuprate layers in high-
Tc superconductors; three graphene layers, etc. If the Fermi point is topologically
protected, i.e. there is a conserved topological invariant N , the node in the spectrum
cannot disappear even in the presence of interaction, but it can split into N nodes
with elementary charge N = 1. The splitting can be prevented if there is a sym-
metry in play, such as rotational symmetry. Here we provide an example of such a
symmetry.

We consider 3 species (families or flavors) of fermions, each of them being de-
scribed by the invariant N =+1 in Eq. (14.15) and an effective relativistic Hamil-
tonian emerging in the vicinity of the Fermi point

H0(p)= σ · p= σxpx + σypy. (14.20)

The matrix K = σz anticommutes with the Hamiltonian. This supports the topolog-
ically protected node in spectrum, which is robust to interactions. The position of
the node here is chosen at p= 0:

E2 = p2. (14.21)

The total topological charge of three nodes at p = 0 of three fermionic species is
N = +3. Let us now introduce matrix elements which mix the fermions. If these
elements violate symmetry K , the topological invariant cannot be constructed and
point node will be destroyed, so let the matrix elements obey the symmetry K . For
the general case of the matrix elements, but still obeying the symmetry K , the mul-
tiple node will split into 3 or more elementary nodes, obeying the summation rule:
3= 1+ 1+ 1= 1+ 1+ 1+ 1− 1= · · · (see Fig. 14.6). However, in the presence of
some extra symmetry, which prevents splitting, the branch with the cubic spectrum
emerges.

An example is provided by the following Hamiltonian [82]

H (p)=
⎛

⎝
σ · p g12σ

+ g13σ
+

g21σ
− σ · p g23σ

+
g31σ

− g32σ
− σ · p

⎞

⎠ , (14.22)

where σ± = 1
2 (σx ± iσy) are ladder operators. This Hamiltonian anti-commutes

with K = σz and thus mixing preserves the topological charge N in (14.15). At px =
py = 0 it is independent of the spin rotations up to a global phase of the coupling
constants. Under spin rotation by angle θ all elements in the upper triangular matrix
are multiplied by eiθ , while all elements in the lower triangular matrix are multiplied
by e−iθ . This symmetry of triangular matrices generates does not allow the multiple
Fermi point to split at p = 0, as a result the gapless branch of spectrum in Fig. 14.7
has the cubic form at low energy, E → 0, which corresponds to the topological
charge N =+3:

E2 ≈ γ 2
3 p6, γ3 = 1

|g12||g23| . (14.23)
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Fig. 14.6 Splitting of Fermi
point with N = 3 into three
Fermi points with N = 1 in
the model discussed in [82]

Fig. 14.7 Spectrum of the Hamiltonian (14.22) showing cubic dispersion for the lowest two eigen-
values around the point p = 0. The spectrum has been calculated with equal coupling strengths
g12 = g13 = g23 = g, but cubic spectrum characterized by topological charge N = 3 preserves for
any nonzero values of coupling strengths. Spectrum is shown as function of px at py = 0

In the low-energy limit the spectrum in the vicinity of the multiple Fermi point
(14.23) is symmetric under rotations. But in general the spectrum is not symmetric
as demonstrated in Fig. 14.7. There is only the symmetry with respect to reflection,
(px,py)→ (px,−py). The rotational symmetry of spectrum (14.23) is an emergent
phenomenon, which takes place only in the limit p→ 0. For trilayer graphene this
spectrum has been discussed in Ref. [83].

In case of four fermionic species, the mixing which does not produce splitting of
the Fermi point is obtained by the same principle as in (14.22): all matrix elements
above the main diagonal contain only σ+ (or σ−):
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Fig. 14.8 Spectrum of the
Hamiltonian (14.24) showing
quartic dispersion for the
lowest two eigenvalues
around the point p= 0.
Different colors correspond to
different eigenvalues,
spectrum is shown as function
of px at py = 0. The spectra
have been calculated with
equal coupling strengths
g12 = g13 = g23 = g14 =
g24 = g34 = g

H (p)=

⎛

⎜
⎜
⎝

σ · p g12σ
+ g13σ

+ g14σ
+

g21σ
− σ · p g23σ

+ g24σ
+

g31σ
− g32σ

− σ · p g34σ
+

g41σ
− g42σ

− g42σ
− σ · p

⎞

⎟
⎟
⎠ . (14.24)

Then again under spin rotation by angle θ all elements in the upper triangular matrix
are multiplied by eiθ , while all elements in the lower triangular matrix are multiplied
by e−iθ . As a result the multiple Fermi point with N = 4 is preserved giving rise to
the quartic spectrum in vicinity of the Fermi point (see Fig. 14.8):

E2 = γ 2
4 p8, γ4 = 1

|g12||g23||g34| . (14.25)

For the tetralayer graphene this spectrum was suggested in Ref. [84]. Again the rota-
tional symmetry emerges new the Fermi point, but spectrum is not symmetric under
permutations. In fact, there is no such 4× 4 matrix that would consist of couplings
described by ladder operators and which would be symmetric under permutations.

In general the Fermi point with arbitrary N may give rise to the spectrum

E2 = γ 2
Np2N. (14.26)

Such spectrum emerges in multilayered graphene [32, 85]. The discussed symmetry
of matrix elements gmn extended to 2N×2N matrix gives (14.26) with the prefactor

γN = 1

|g12||g23| . . . |gN−1,N | . (14.27)

Violation of this symmetry may lead to splitting of the multiple Fermi point into
N elementary Fermi points—Dirac points with N = 1 and ‘relativistic’ spectrum
E2 ∝ p2.

The effective Hamiltonian describing fermions in the vicinity of multiple Fermi
point is H = σ−pN+ +σ+pN− , see [32, 34]. An example of the effective Hamiltonian
describing the multiple Fermi point with topological charge N in 3+ 1 systems is
[60]

H = σzpz + σ−pN+ + σ+pN− . (14.28)

This Hamiltonian has the spectrum E2 = p2
z + p2N⊥ , which has linear dispersion in

one direction and non-linear dispersion in the others.
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This is also applicable to the vacuum of particle physics. The Lorentz symmetry
prohibits both the splitting of the Dirac points and the non-linear non-relativistic
spectrum. The situation changes if the Lorentz symmetry is viewed as an emergent
phenomenon, which arises near the Dirac point (Fermi points with N =±1). In this
case both splitting of Dirac points and formation of nonlinear non-relativistic spec-
trum in the vicinity of the multiple Fermi point are possible, an the choice depends
on symmetry. In both cases the mixing of fermions violates the effective Lorentz
symmetry in the low-energy corner. This phenomenon, called the reentrant viola-
tion of special relativity [67], has been discussed for NF = 3 fermion families in
relation to neutrino oscillations [57]. The influence of possible discrete flavor sym-
metries on neutrino mixing has been reviewed in Ref. [87].

14.4 Flat Bands

Let us turn to the limit case N →∞ [86]. If the layers are equivalent and interact
only via nearest neighbor couplings, i.e. the non-zero matrix elements are

g12 = g23 = · · · = gN−1,N ≡ t, (14.29)

the low-energy spectrum becomes

E = t

(
p

t

)N

. (14.30)

In the N →∞ limit one obtains that in the lowest energy branch all the fermions
within circumference |p| = t have zero energy.

E
(
N →∞, |p|< t

)= 0. (14.31)

14.4.1 Topological Origin of Surface Flat Band

To understand the topological origin of this branch and its structure let us consider
the spectrum in the continuous limit. The effective Hamiltonian in the 3-dimensional
bulk system which emerges in the limit of infinite number of layers is the following
2× 2 matrix

H =
(

0 f

f ∗ 0

)
, f = px − ipy − te−iapz . (14.32)

Here t is the magnitude of the hopping matrix element between the layers in
Eq. (14.29). The energy spectrum of the bulk system

E2 = [px − t cos(apz)
]2 + [py + t sin(apz)

]2
, (14.33)

has zeroes on line (see Fig. 14.9):

px = t cos(apz), py =−t sin(apz), (14.34)
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Fig. 14.9 Nodal spiral generates topologically protected flat band on the surface. Projection of
spiral on the surface determines boundary of flat band. At each (px,py) except the boundary of
circle p2

x + p2
y = t2 the system represents the 1D gapped state (insulator). At each (px,py) inside

the circle, the insulator is topological being described by non-zero topological invariant (14.36)
and thus one has a gapless edge state. The manifold of these zero-energy edge state inside the
circle forms the flat band found in Eq. (14.31)

which forms a spiral, the projection of this spiral on the plane pz = const being the
circle p2⊥ ≡ p2

x + p2
y = t2. This nodal line is topologically protected by the same

topological invariant as in Eq. (14.15)

N = 1

4πi
tr
∮

C

dl σzH
−1∇lH, (14.35)

where the integral is now along the loop C around the nodal line in momentum
space, see Fig. 14.9. The winding number around the element of the nodal line is
N = 1.

Let us consider now the momentum p⊥ as a parameter of the 1D system, then
for |p⊥| = t the system represents the fully gapped system—1D insulators. This
insulator can be described by the same invariant as in Eq. (14.35) with the contour
of integration chosen parallel to pz, i.e. along the 1D Brillouin zone at fixed p⊥
(due to periodic boundary conditions, the points pz =±π/a are equivalent and the
contour of integrations forms the closed loop):

N(p⊥)= 1

4πi
tr
∫ +π/a

−π/a

dpzσzH
−1∇pzH. (14.36)

For |p⊥| < t the 1D insulator is topological, since N(|p⊥| < t) = 1, while for
|p⊥| > t one has N1(p⊥) = 0 and the 1D insulator is the trivial band insulator.
The line |p⊥| = t thus marks the topological quantum phase transition between the
topological and non-topological 1D insulators.

Topological invariant N(p⊥) in (14.36) determines the property of the surface
bound states of the 1D system at each p⊥. Due to the bulk-edge correspondence, the
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topological 1D insulator must have the surface state with exactly zero energy. Since
such states exist for any parameter within the circle |p⊥| = t , one obtains the flat
band of surface states with exactly zero energy, E(|p⊥|< t)= 0, which is protected
by topology. This is the origin of the unusual branch of spectrum in Eq. (14.31):
it represents the band of topologically protected surface states with exactly zero
energy. Such states do not exist for parameters |p⊥|> t , for which the 1D insulator
is non-topological.

The zero energy bound states on the surface of the system can be obtained di-
rectly from the Hamiltonian:

Ĥ = σx

(
px − t cos(ap̂z)

)+ σy

(
py + t sin(ap̂z)

)
, p̂z =−i∂z, z < 0. (14.37)

We assumed that the system occupies the half-space z < 0 with the boundary at
z = 0. This Hamiltonian has the bound state with exactly zero energy, E(p⊥)= 0,
for any |p⊥|< t , with the eigenfunction concentrated near the surface:

Ψ ∝
(

0
1

)
(px − ipy) exp

z ln(t/(px + ipy))

a
, |p⊥|< t. (14.38)

The normalizable wave functions with zero energy exist only for p⊥ within the
circle |p⊥| ≤ t , i.e. the surface flat band is bounded by the projection of the nodal
spiral onto the surface. Such correspondence between the flat band on the surface
and lines of zeroes in the bulk has been also found in Ref. [35] for superconductors
without inversion symmetry.

14.4.2 Dimensional Crossover in Topological Matter: Formation
of the Flat Band in Multi-layered Systems

The discrete model with a finite number N of layers has been considered in
Ref. [86]. It is described by the 2N × 2N Hamiltonian with the nearest neighbor
interaction between the layers in the form:

Hij (p⊥)= σ · p⊥δij − tσ+δi,j+1 − tσ−δi,j−1, 1≤ i ≤N, p⊥ = (px,py).

(14.39)

In the continuous limit of infinite number of layers (14.39) transforms to (14.32)
with the nodal line in the spectrum, while for finite N the spectrum contains the
Dirac point with multiple topological charge equal to N . Figures 14.10, 14.11, 14.12
and 14.13 demonstrate how this crossover from 2D to 3D occurs. When the num-
ber N of layers increases, the dispersionless surface band evolves from the gapless
branch of the spectrum E = ±|p⊥|N . Simultaneously, the gapped branches of the
spectrum of the finite-N system give rise to the nodal line in bulk. This scenario of
formation of the surface flat band takes place if the symmetry does not allow the
splitting of the multiple Dirac point, and it continuously evolves to the dispersion-
less spectrum.
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Fig. 14.10 Formation of the surface flat band. When the number N of layers increases, the disper-
sionless band evolves from the gapless branch of the spectrum, which has the form E =±|p⊥|N
in the vicinity of multiple Dirac point. The spectrum is shown as a function of px for py = 0. The
curves for N = 100 and N = 200 are almost on top of each other. Asymptotically the spectrum
E = ±|p⊥|N transforms to the dispersionless band within the projection of the nodal line to the
surface

Fig. 14.11 Formation of the nodal line from the evolution of the gapped branch of the spec-
trum of the multilayered system, when the number N of layers increases. The spectrum is shown
as function of px for py = 0. The curves for N = 100 and N = 200 lie almost on top of each
other, indicating the bulk limit. Asymptotically the nodal line px = t cos(apz), py =−t sin(apz)

is formed (two points on this line are shown, which correspond to py = 0)

If this symmetry is absent, but the symmetry supporting the topological charge
persists, the scenario of the flat band formation is different but still is governed by
topology. Figure 14.14 demonstrates the formation of the flat band in this situation.
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Fig. 14.12 The lowest
energy states for different px

and py and arbitrary pz in the
bulk limit. The flat band of
surface states is formed in the
region p2

x + p2
y < t2. Outside

this region only the bulk
states exist. In a simple model
considered here flat band
comes from the degenerate
Dirac point with nonlinear
dispersion. However, this is
not necessary condition: the
flat band emerges whenever
the nodal line appears in the
bulk

Fig. 14.13 Result of the
transformation of the gapped
states in the process of
dimensional crossover. They
form the nodal line in bulk
px = t cos(apz),
py =−t sin(apz) whose
projection to the
(px,py)-plane is shown

The reason, why the flat band emerges is the formation of the topologically protected
nodal line in bulk. The projection of the nodal line on a surface gives the boundary
of the flat band emerging on this surface. This is the realization of the bulk-surface
correspondence in systems with the nodal lines in bulk. The other examples can be
found in Ref. [88].

14.5 Anisotropic Scaling and Hořava Gravity

14.5.1 Effective Theory Near the Degenerate Dirac Point

We know that in the vicinity of the Weyl point with elementary topological charge
N =+1 or N =−1 the quantum electrodynamics and gravity emerge as effective
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Fig. 14.14 Evolution of the spectrum in a different model, in which the multiple Dirac point is
absent, but the surface flat band is formed together with the formation of the nodal line in bulk

fields. What happens near node with higher N . Let us consider again the 2 + 1
system with the multiple Dirac point and write the following effective Hamiltonian:

HN = σx + iσ y

2

(
(e1 + ie2) · (p− eA)

)|N | + σx − iσ y

2

(
(e1 − ie2) · (p− eA)

)|N |
.

(14.40)

For a single layer (N = 1) the Hamiltonian (14.40) is reduced to the conventional
Weyl-Dirac Hamiltonian for massless particles in 2+ 1 dimension:

HN=1 = σxe1 · (p− eA)+ σye2 · (p− eA)= eiaσ
a(pi − eAi), a = (1,2).

(14.41)

Here the vectors e1 and e2 play the role of zweibein (in the ground state they are
mutually orthogonal). The vector A is either the vector potential of the effective
electromagnetic field which comes from the shifts of the node, or the real electro-
magnetic field, as it takes place for electrons in graphene. The whole dreibein e

μ
a

with a = (1,2,3) and μ= (0,1,2) emerges for the Green’s function and gives the
effective metric 2+ 1 metric as a secondary object:

gμν = ηabeμa e
ν
b. (14.42)

For a general |N | the situation is somewhat different. While the action for the
relativistic fermions is invariant under rescaling r = br′, t = bt ′, the action for
the fermions living in the vicinity of the multiple Dirac point is invariant under
anisotropic rescaling r = br′, t = b|N |t ′. The anisotropic scaling is in the basis of
the Hořava gravity, which is described by the space components of metric are sepa-
rated from the time component and have different scaling laws [61–64]. The square
of Hamiltonian (14.40) gives the space metric in terms of zweibein:

H 2
N =E2

N = (gij (pi − eAi)(pj − eAj )
)|N |

, gij = ei1e
j

1 + ei2e
j

2 . (14.43)
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14.5.2 Effective Electromagnetic Action

If the effective action for fields eμa and Aμ is obtained by integration over fermions in
the vicinity of the multiple Dirac point, this bosonic action (actually the terms in ac-
tion which mostly come from these fermions) inherits the corresponding conformal
symmetry of the massless fermions. For anisotropic scaling the conformal invari-
ance means invariance under gik → b2gik and g00 → b2|N |g00;

√−g→ b−(|N |+D)

(where D is space dimension); while g0i is not considered.

14.5.2.1 Single Layered Graphene and Relativistic Fields

For D = 2 the spectrum of multiple Fermi point becomes more complicated, and
in general is not isotropic, see Eq. (14.28). For general D the spectrum is isotropic
only for |N | = 1, where one obtains effective relativistic massless D + 1 quantum
electrodynamics, which is Lorentz invariant. This implies the following nonlinear
action

Sem

(|N | = 1,D
)=

∫
dDxdt

[
B2 −E2]D+1

4 . (14.44)

For D = 3 the action is proportional to (B2 − E2) ln(B2 − E2), and is imaginary
at B2 < E2 giving rise to Schwinger pair production in massless quantum electro-
dynamics. The similar imaginary action takes place for B2 < E2 for D = 3. For
example, a single layer graphene (D = 2, |N | = 1) reproduces the relativistic 2+ 1
QED which gives rise to Lagrangian (B2 −E2)3/4 [89] with the running coupling
constant 1/α =√

2ζ(3/2)/8π2. The action is imaginary at B2 < E2 which corre-
sponds to Schwinger pair production with the rate E3/2 at B = 0.

14.5.2.2 Bilayer Graphene

For bilayered graphene, assuming the quadratic dispersion |N | = D = 2, the ex-
pected conformal invariant Heisenberg-Euler action for the constant in space and
time electromagnetic field, which is obtained by the integration over the 2 + 1
fermions with quadratic dispersion, is the function of the scale invariant combi-
nation μ [90]:

S ∼
∫

d2xdt B2g(μ), μ= E2

B3
. (14.45)

The asymptotical behavior in two limit cases, g(μ→ 0)∼ const and g(μ→∞)∼
μ2/3, gives the effective actions for the constant in space and time magnetic and
electric fields:

SB = a

∫
d2xdtB2, SE = (b+ ic)

∫
d2xdtE4/3. (14.46)
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The parameter a is the logarithmic coupling constant; the parameter b describes the
vacuum electric polarization; and the parameter c describes the instability of the
vacuum with respect to the Schwinger pair production in the electric field, which
leads to the imaginary part of the action. The action also contains the linear non-
local term

Snon-local
(|N | =D = 2

)=
∫

d2xdt
√−gg00gknF0k

1

gip∇i∇p

F0n, (14.47)

which corresponds to the polarization operator

Π00 ∝ k2

√
k4 −ω2

, |N | =D = 2. (14.48)

14.5.2.3 D = 2 Systems with Nodes with Topological Charge N

In general case of a 2D system with N -th order touching point in spectrum (a kind of
multilayered graphene) the Heisenberg-Euler action contains among the other terms
the following nonlinear terms in the actions for magnetic and electric fields [90]:

SB(N,D = 2)∼
∫

d2xdtB
2+|N |

2 , SE(N,D = 2)∼
∫

d2xdt
(−E2) 2+|N |

2(1+|N |) ,

(14.49)

where imaginary part of the action is responsible for the pair production in electric
field [90, 91], while the linear action of the type (14.47) corresponds to the polar-
ization operator

Π00 ∝ k2

√
k2N −ω2

, D = 2. (14.50)

14.5.2.4 Effective Action for Gravity

The expected action for gravitational field is

Sgrav =
∫

d2xdt
√−g

[
K1R

2 +K2g
ikgmng00∂tgim∂tgkn + · · ·], (14.51)

where K1,K2, . . . are dimensionless quantities, and the other terms of that type are
implied.

14.6 Fully Gapped Topological Media

Examples of the fully gapped topological media are the so-called topological band
insulators in crystals [3]. Examples are Bi2Se3, Bi2Te3 and Sb2Te3 compounds
which are predicted to be 3 + 1 topological insulators [92]. But the first discus-
sion of the 3 + 1 topological insulators can be found in Refs. [93, 94]. The main
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feature of such materials is that they are insulators in bulk, where electron spectrum
has a gap, but there are 2 + 1 gapless edge states of electrons on the surface or at
the interface between topologically different bulk states as discussed in Ref. [94].
The similar properties are shared by the fully gapped 3D topological superfluids
and superconductors. The spin triplet p-wave superfluid 3He-B represents the fully
gapped superfluid with nontrivial topology. It has 2+1 gapless quasiparticles living
at interfaces between vacua with different values of the topological invariant de-
scribing the bulk states of 3He-B [15, 95]. The quantum vacuum of Standard Model
below the electroweak transition, i.e. in its massive phase, also shares the properties
of the topological insulators and gapped topological superfluids and is actually the
relativistic counterpart of 3He-B [25].

Examples of the 2+1 topological fully gapped systems are provided by the films
of superfluid 3He-A with broken time reversal symmetry [23, 96] and by the planar
phase which is time reversal invariant [23, 96]. The topological invariants for 2+ 1
vacua give rise to quantization of the Hall and spin-Hall conductivity in these films
in the absence of external magnetic field (the so-called intrinsic quantum and spin-
quantum Hall effects) [23, 97].

14.6.1 2 + 1 Fully Gapped Vacua

14.6.1.1 3He-A Film: 2 + 1 Chiral Superfluid

The gapped ground states (vacua) in 2 + 1 or quasi 2 + 1 thin films of 3He-A are
characterized by the invariant obtained by dimensional reduction from the topolog-
ical invariant describing the nodes of co-dimension 3. This is the invariant N for
the Fermi point in (14.2), which is now over the (2 + 1)-dimensional momentum-
frequency space (px.py,ω):

N = eijk

24π2
tr
[∫

d2pdωG∂pi
G−1G∂pj

G−1G∂pk
G−1

]
. (14.52)

This Eq. (14.52) was introduced in relativistic 2+ 1 theories [12–14] and for the
film of 3He-A in condensed matter [17, 23], where it was inspired by the dimen-
sional reduction from the Fermi point (see [96] and also Fig. 14.16). In simple case
of the 2 × 2 matrix, the Green’s function can be expressed in terms of the three-
dimensional vector d(px,py),

G−1(ω,px.py)= iω+ τ · d(px,py), (14.53)

where τ are the Pauli matrices. Example of the d-vector configuration, which cor-
responds to the topologically nontrivial vacuum is presented in Fig. 14.15. This is
the momentum-space analogue of the topological object in real space—skyrmion.
In real space, skyrmions are described by the relative homotopy groups [98]; they
have been investigated in detail both theoretically and experimentally in the A phase
of 3He, see Sect. 16.2 in [1] and the review paper [99].
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Fig. 14.15 Skyrmion in p-space with momentum space topological charge N =−1 in (14.54). It
describes topologically non-trivial vacua in 2+1 systems with a fully gapped non-singular Green’s
function. Vacua with nonzero N have topologically protected gapless edge states. The non-zero
topological charge leads also to quantization of Hall and spin Hall conductance

Fig. 14.16 Dependence of the topological invariant (14.52) on the thickness of 3He-A film. The
even values of N result from the spin degeneracy. At the topological phase transitions between the
states with different N the gap in the spectrum of fermions is nullified

For the Green’s function in (14.53) the winding number of the momentum-space
skyrmion in Eq. (14.52) is reduced to [17]

N = 1

4π

∫
d2p d̂ ·

(
∂d̂
∂px

× ∂d̂
∂py

)
, (14.54)

where d̂= d/|d| is unit vector. For a single layer of the 3He-A film and for one spin
projection, the simplified Green’s function has the form:

G−1(ω,p)= iω+ τ · d(p)= iω+ τ3

(
p2
x + p2

y

2m
−μ

)
+ τ1px + τ2py. (14.55)

For μ > 0 the topological charge N = 1 and for μ < 0 the topological charge is
N = 0. That is why at μ= 0 there is a topological quantum phase transition between
the topological superfluid at μ> 0 and non-topological superfluid at μ< 0 [96].
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In general case of multilayered 3He-A, topological charge N may take any in-
teger value of group Z. This charge determines quantization of Hall and spin-
Hall conductance and the quantum statistics of the topological objects—real-space
skyrmions [17, 23, 96, 97]. For N = 4k + 1 and N = 4k + 3, skyrmion is anyon;
for N = 4k+ 2 it is fermion; and for N = 4k it is boson [96]. This demonstrates the
importance of the Z2 and Z4 subgroups of the group Z in classification of topolog-
ical matter; and also provides an example of the interplay of momentum-space and
real-space topologies.

14.6.1.2 Planar Phase: Time Reversal Invariant Gapped Vacuum

In case when some symmetry is present, additional invariants appear, which corre-
spond to dimensional reduction of invariant NK in (14.8):

NK = eijk

24π2
tr
[∫

d2pdωKG∂pi
G−1G∂pj

G−1G∂pk
G−1

]
, (14.56)

where as before, the matrix K commutes or anticommutes with the Green’s func-
tion matrix. Example of the symmetric 2 + 1 gapped state with NK is the film of
the planar phase of superfluid 3He [23, 96]. In the single layer case, the simplest
expression for the Green’s function is

G−1(ω,px,py)= iω+ τ3

(
p2
x + p2

y

2m
−μ

)
+ τ1(σxpx + σypy), (14.57)

with K = τ3σz commuting with the Green’s function. This state is time reversal in-
variant. It has N = 0 and NK = 2. For the general case of the quasi 2D film with
multiple layers of the planar phase, the invariant NK belongs to the group Z. The
magnetic solid state analogue of the planar phase is the 2D time reversal invari-
ant topological insulator, which experiences the quantum spin Hall effect without
external magnetic field [3].

14.7 Relativistic Quantum Vacuum and Superfluid 3He-B

Let us now turn to the class of 3+ 1 fully gapped systems, which is represented by
Standard Model in its massive phase and superfluid 3He-B.

In the asymmetric phase of the Standard Model, there is no mass protection by
topology and all the fermions become massive, i.e. the Standard Model vacuum
becomes the fully gapped insulator. In quantum liquids, the fully gapped three-
dimensional system with time reversal symmetry and nontrivial topology is rep-
resented by another phase of superfluid 3He—the 3He-B. Its topology is also sup-
ported by symmetry and gives rise to the 2D gapless quasiparticles living at in-
terfaces between vacua with different values of the topological invariant or on the
surface of 3He-B [15, 95, 100, 101].
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14.7.1 Superfluid 3He-B

3He-B belongs to the same topological class as the vacuum of Standard Model in
its present insulating phase [25]. The topological classes of the 3He-B states can be
represented by the following simplified Green’s function:

G−1(ω,p)= iω+ τ3

(
p2

2m
−μ

)
+ τ1c

Bσ · p. (14.58)

In the limit 1/m= 0 this model 3He-B transforms to the vacuum of massive Dirac
particles with speed of light c= cB .

In the fully gapped systems, the Green’s function has no singularities in the whole
4-dimensional space (ω,p). That is why we are able to use the Green’s function at
ω = 0. The topological invariant relevant for 3He-B and for quantum vacuum with
massive Dirac fermions is:

NK = eijk

24π2
tr
[∫

ω=0
d3pKG∂pi

G−1G∂pj
G−1G∂pk

G−1
]
, (14.59)

with matrix K = τ2 which anti-commutes with the Green’s function at ω = 0. In
3He-B, the τ2 symmetry is combination of time reversal and particle-hole symme-
tries; for Standard Model the matrix τ2 = γ5γ

0. Note that at ω = 0 the symmetry
of the Green’s function is enhanced, and thus there are more matrices K , which
commute or anti-commute with the Green’s function, than at ω = 0.

Figure 14.17 shows the phase diagram of topological states of 3He-B in the plane
(μ,1/m). The line 1/m= 0 corresponds to the vacuum of Dirac fermions with the
mass parameter M =−μ, its topological charge

NK = sign(M). (14.60)

The real superfluid 3He-B lives in the weak-coupling corner of the phase dia-
gram: μ > 0, m > 0, μ�mc2

B . However, in the ultracold Fermi gases with triplet
pairing the strong coupling limit is possible near the Feshbach resonance [102].
When μ crosses zero the topological quantum phase transition occurs, at which the
topological charge NK changes from NK = 2 to NK = 0.

There is an important difference between 3He-B and Dirac vacuum. The space of
the Green’s function of free Dirac fermions is non-compact: G has different asymp-
totes at |p| →∞ for different directions of momentum p. As a result, the topolog-
ical charge of the interacting Dirac fermions depends on the regularization at large
momentum. 3He-B can serve as regularization of the Dirac vacuum, which can be
made in the Lorentz invariant way [25]. One can see from Fig. 14.17, that the topo-
logical charge of free Dirac vacuum has intermediate value between the charges of
the 3He-B vacua with compact Green’s function. On the marginal behaviour of free
Dirac fermions see Refs. [1, 16, 20, 21, 100].

The vertical axis separates the states with the same asymptote of the Green’s
function at infinity. The abrupt change of the topological charge across the line,

NK = 2, with fixed asymptote shows that one cannot cross the transition line
adiabatically. This means that all the intermediate states on the line of this QPT
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Fig. 14.17 Phase diagram of topological states of 3He-B in Eq. (14.66) in the plane (μ,1/m).
States on the line 1/m = 0 correspond to the Dirac vacua, which Hamiltonian is non-compact.
Topological charge of the Dirac fermions is intermediate between charges of compact 3He-B states.
The line 1/m = 0 separates the states with different asymptotic behavior of the Green’s function
at infinity: G−1(ω = 0,p)→±τ3p

2/2m. The line μ= 0 marks topological quantum phase tran-
sition, which occurs between the weak coupling 3He-B (with μ> 0, m> 0 and topological charge
NK = 2) and the strong coupling 3He-B (with μ < 0, m > 0 and NK = 0). This transition is
topologically equivalent to quantum phase transition between Dirac vacua with opposite mass pa-
rameter M =±|μ|, which occurs when μ crosses zero along the line 1/m= 0. The interface which
separates two states contains single Majorana fermion in case of 3He-B, and single chiral fermion
in case of relativistic quantum fields. Difference in the nature of the fermions is that in Fermi su-
perfluids and in superconductors the components of the Bogoliubov-Nambu spinor are related by
complex conjugation. This reduces the number of degrees of freedom compared to Dirac case

are necessarily gapless. For the intermediate state between the free Dirac vacua
with opposite mass parameter M this is well known. But this is applicable to the
general case with or without relativistic invariance: the gaplessness is protected by
the difference of topological invariants on two sides of transition.

14.7.2 From Superfluid Relativistic Medium to 3He-B

Fully gapped 3-dimensional fermionic systems may arise also in relativistic quan-
tum field theories. In particular, the Dirac vacuum of massive Standard Model par-
ticles has also the nontrivial topology, and the domain wall separating vacua with
opposite signs of the mass parameter M contains fermion zero modes [103]. Topo-
logically nontrivial states may arise in dense quark matter, where chiral and color
superconductivity is possible. The topological properties of such fermionic sys-
tems have been recently discussed in Ref. [104]. In particular, in some range of
parameters the isotropic triplet relativistic superconductor is topological and has the
fermion zero modes both at the boundary and in the vortex core. On the other hand,
there is a range of parameters, where this triplet superconductor is reduced to the
non-relativistic superfluid 3He-B [105]. That is why the analysis in Ref. [104] is ap-
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plicable to 3He-B and becomes particularly useful when the fermions living in the
vortex core are discussed.

In a relativistic superconductor or superfluid with the isotropic pairing—such as
a color superconductor in quark matter—the fermionic spectrum is determined by
the Hamiltonian

H = τ3(cα · p+ βM −μR)+ τ1
, (14.61)

for spin singlet pairing, and by Hamiltonian

H = τ3(cα · p+ βM −μR)+ γ5τ1
, (14.62)

for spin triplet pairing [104, 105]. Here αi , β and γ5 are Dirac matrices, which in
standard representation are

α =
(

0 σ

σ 0

)
, β =

(
1 0
0 −1

)
, γ5 =

(
0 1
1 0

)
; (14.63)

M is the rest energy of fermions; μR is their relativistic chemical potential as dis-
tinct from the non-relativistic chemical potential μ; τa are matrices in Bogoliubov-
Nambu space; and 
 is the gap parameter.

In the non-relativistic limit the low-energy Hamiltonian is obtained by standard
procedure, see e.g. [106]. The non-relativistic limit is determined by the conditions

cp�M (14.64)

and
∣
∣∣M −

√
μ2

R +
2
∣
∣∣�M. (14.65)

Under these conditions the Hamiltonian (14.61) reduces to the Bogoliubov–de
Gennes (BdG) Hamiltonian for fermions in spin-singlet s-wave superconductors,
while (14.62) transforms to the BdG Hamiltonian relevant for fermions in isotropic
spin-triplet p-wave superfluid 3He-B:

H = τ3

(
p2

2m
−μ

)
+ cBτ1σ · p, m= M

c2
, cB = c




M
, (14.66)

where the nonrelativistic chemical potential μ=
√
μ2

R +
2 −M .
The Dirac-BdG system in Eq. (14.62) has the following spectrum

ε =±
√

M2 + c2p2 +
2 +μ2
R ± 2

√
M2
(
μ2

R +
2
)+μ2

Rc
2p2. (14.67)

This spectrum is plotted in Fig. 14.18. Depending on the value of the parameters
μR , 
, M the spectral branches have different configurations.

There is a soft quantum phase transition, at which the position of the minimum of
energy E(p) shifts from the origin p= 0, and the energy profile forms the Mexican
hat in momentum space. This momentum-space analogue of the Higgs transition [2]
occurs when the relativistic chemical potential μR exceeds the critical value

μ∗R =
(
M2

2
+
√

M4

4
+M2
2

)1/2

. (14.68)
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Fig. 14.18 Plot of the spectrum of relativistic Hamiltonian (14.62) for two generic cases:
(a) |μR| > μ∗R when the minimum in the energy spectrum is away from the origin and
(b) |μR | < μ∗R when the minimum in the energy spectrum is at p = 0. At |μR | > μ∗R there is a
soft quantum phase transition between these two vacua. This transition is not topological, and thus
the gap in the energy spectrum does not close at the transition. The gap closes at the topological
transition occurring at μ2

R =M2 −
2 as shown in plot (c)

Figures 14.18(a) and (b) demonstrate two generic cases: |μR|>μ∗R when there are
extremums of function ε(p) at p = 0 and |μR| < μ∗R when all extremums are at
the point p = 0. The formation of the Mexican hat at |μR| = μ∗R is an example of
non-topological quantum phase transition. Let us turn to the topological quantum
phase transitions, at which the topological invariant changes and the gap closes as
is shown in Fig. 14.18(c).

14.7.3 Topology of Relativistic Medium and 3He-B

Figure 14.19 shows the phase diagram of the vacuum states of relativistic triplet
superconductors. Different vacuum states are characterized by different values of
the topological invariant NK in Eq. (14.59), where the Green’s function matrix at
zero frequency G−1(ω = 0,p) is equivalent to effective Hamiltonian. For 3He-B
in Eq. (14.66) and for triplet relativistic superconductor in Eq. (14.62) the relevant
matrix K = τ2, which anti-commutes with the Hamiltonian. The vacuum states with
different NK cannot be adiabatically connected and thus at the phase transition lines
the states are gapless. The circle μ2

R +
2 =M2 is an example of the line of topo-
logical quantum phase transition. In non-relativistic limit this corresponds to the
line μ= 0 in Fig. 14.17. The states inside the circle μ2

R +
2 =M2 are topologi-
cally trivial, while the states outside this circle represent topological superconduc-
tivity [104]. The vacuum states with μ2

R +
2 >M2 and μ2
R +
2 <M2 cannot be

adiabatically connected which leads to the gap closing in Fig. 14.18(c). Disconti-
nuity in the topological charge across the transition induces discontinuity in energy
across the transition. For example, for the 2+ 1 px + ipy superfluid/superconductor
the phase transition is of third order, meaning that the third-order derivative of the
ground state energy is discontinuous [107].
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Fig. 14.19 Phase diagram of ground states of relativistic triplet superfluid in Eq. (14.62) in the
plane (μR,
). Topological quantum phase transitions are marked by thick lines. The states in-
side the circle μ2

R + 
2 = M2 are topologically trivial. The states outside this circle represent
topological superconductors. The states on the lines of topological quantum phase transition are
gapless

14.8 Fermions in the Core of Strings in Topological Materials

14.8.1 Vortices in 3He-B and Relativistic Strings

In relativistic theories there is an index theorem which relates the number of fermion
zero modes localized on a vortex with the vortex winding number [108]. We know
that the Dirac vacuum considered in Ref. [108] has non-zero topological charge.
This suggests that the existence of zero energy states in the core is sensitive not only
to the real-space topological charge of a vortex, but also to the momentum-space
topological charge of the quantum vacuum in which the vortex exists, and if so the
index theorem can be extended to vortices in any fully gapped systems, including the
non-relativistic superfluid 3He-B. Since both the momentum-space topology of bulk
state and the real-space topology of the vortex or other topological defects are in-
volved, the combined topology of the Green’s function in the coordinate-momentum
space (ω,p, r) [1, 41, 109–111] seems to be relevant. However, though the bulk-
vortex correspondence does evidently exist, the explicit index theorem which relates
the existence of the fermion zero modes to the topological charge of the bulk state
and the vortex winding number is still missing. The existing index theorems are ap-
plicable only to particular cases, see e.g. [104, 109, 111, 112]. There is also a special
index theorem for superconductors/superfluids with a small gap 
� μ. Spectrum
of fermions in these superconductors has branches which cross zero energy as a
function discrete quantum number—angular momentum L [113]. The index theo-
rem relates the number of such branches with the vortex winding number [114].
Here we are interested in the true fermion zero modes—the branches of spectrum
E(pz), which cross zero as function of pz.

An example, which demonstrates that the connection between the topologi-
cal charge NK and the existence of Majorana fermions—fermion zero modes on
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Fig. 14.20 Schematic illustration of spectrum of the fermionic bound states in the core of the
most symmetric vortex with n= 1, the so-called o-vortex [99], in fully gapped spin triplet super-
fluid/superconductor of 3He-B type. (left): Spectrum of bound state in the 3He-B, vortex which
corresponds to the weak coupling limit with non-zero topological charge NK = 2 [115]. L is the
azimuthal quantum number of fermions in the vortex core. There are two fermion zero modes,
which cross zero energy in the opposite directions. (right): The same vortex but in the topologi-
cally trivial state of the liquid, NK = 0, does not have fermion zero modes. The spectrum of bound
states is fully gapped. Fermion zero modes disappear at the topological quantum phase transition,
which occurs in bulk liquid at μ= 0. A similar situation may take place for strings in color super-
conductors in quark matter [104]

vortices—is in Fig. 14.20. For 3He-B, which lives in the range of parameters where
NK = 0, the gapless fermions in the core have been found in Ref. [115]. On the other
hand, in the BEC limit, when μ is negative and the Bose condensation of molecules
takes place, there are no gapless fermions. Thus in the BCS-BEC crossover region
the spectrum of fermions localized on vortices must be reconstructed. The topo-
logical reconstruction of the fermionic spectrum in the vortex core cannot occur
adiabatically. It should occur only during the topological quantum phase transition
in bulk, when the bulk gapless state is crossed. Such topological transition occurs at
μ= 0, see Fig. 14.17. At μ< 0 the topological charge NK nullifies and simultane-
ously the gap in the spectrum of core fermions arises, see Fig. 14.20. This is similar
to the situation discussed in Ref. [116] for the other type of p-wave vortices, and in
Refs. for Majorana fermions in semiconductor quantum wires [117, 118]. A review
on Majorana fermions in superconductors is in Ref. [119].

Another example is provided by the fermions on relativistic vortices in Dirac vac-
uum discussed in Ref. [108]. The Dirac vacuum has the nonzero topological invari-
ant, NK =±1, see Fig. 14.17. This is consistent with the existence of the fermion
zero modes on vortices, found in Ref. [108]. The index theorem for fermion zero
modes on these vortices can be derived using the topology in combined coordinate
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and momentum space. The number of fermion zero modes on the vortex can be ex-
pressed via the 5-form topological invariant in terms of Green’s function [43, 120]

N = 1

4π3i
tr
[∫

d3pdω

∮

C

dlG∂pxG
−1G∂pyG

−1G∂pzG
−1G∂ωG

−1G∂lG
−1
]
.

(14.69)

The space integral is along the closed contour C around the vortex line. For the
vortex in Dirac vacuum, Eq. (14.69) gives N = n, where n is the winding number
which reproduces the index theorem discussed in Ref. [108]: the algebraic number
of fermion zero modes Nzm equals the vortex winding number n.

For a vortex in 3He-B one obtains N = 0, which is consistent with Fig. 14.20:
two branches of zero modes have opposite signs of velocity vz and thus produce
zero value for the algebraic sum of zero modes, Nzm = 0. To resolve the fermion
zero modes in the systems where the branches cancel each other due to symmetry,
the index theorem for the zero modes must be complemented by symmetry consid-
eration.

The 5-form topological invariant similar to Eq. (14.69) has been discussed also
in [1, 121]. In particular, it is responsible for the topological stability of the 3 + 1
chiral fermions emerging in the core of the domain wall separating topologically
different vacua in 4+ 1 systems (see Sect. 22.2.4 in [1]). The topological invariant
for the general 2n+1 insulating relativistic vacua and the bound chiral fermion zero
modes emerging there have been considered in [59, 122, 123]. Application of the
5-form topological invariant to the states in lattice chromodynamics can be found in
[38, 124].

14.8.2 Flat Band in a Vortex Core: Analogue of Dirac String
Terminating on Monopole

The topological bulk-vortex correspondence exists also for vortices in gapless
vacua. The topological protection of fermion zero modes is provided by the non-
trivial topology of three-dimensional Weyl points in the bulk. This bulk-vortex cor-
respondence [101] is illustrated in Fig. 14.21. In bulk there is a pair of Weyl points
with opposite topological charges N = ±1 in Eq. (14.2). The projections of these
Weyl points on the direction of the vortex line determine the boundaries of the region
where the spectrum of fermions bound to the vortex core is exactly zero, E(pz)= 0.
Such flat band first obtained in Ref. [125] for the noninteracting model is not de-
stroyed by interactions. The spectrum of bound states in a singly quantized vortex
in 3He-A is shown in Fig. 14.21. The 1D flat band terminates at points where the
spectrum of bound state merges with zeroes in the bulk, i.e. with Weyl points.
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Fig. 14.21 Schematic illustration of the spectrum of bound states E(pz) in the vortex core. The
branches of bound states terminate at points where their spectrum merges with the continuous
spectrum in the bulk. The flat band terminates at points where the spectrum has zeroes in the bulk,
i.e. when it merges with Weyl points. It is the p-space analogue of a Dirac string terminating on a
monopole, another analogue is given by the Fermi arc in Fig. 14.1 bottom right

14.9 Discussion

The last decades demonstrated that topology is a very important tool in physics.
Topology in momentum space is the main characteristic of the ground states of a
system at zero temperature (T = 0), in other words it is the characteristic of the
quantum vacuum. The gaplessness of fermions in bulk on the surface or inside the
vortex core is protected by topology, and thus is not sensitive to the details of the
microscopic physics (atomic or trans-Planckian). Irrespective of the deformation of
the parameters of the microscopic theory, the value of the gap (mass) in the energy
spectrum of these fermions remains strictly zero. This solves the main hierarchy
problem in particle physics: for fermionic vacua with Fermi points the masses of
elementary particles are naturally small.

The vacua, which have nontrivial topology in momentum space, are called the
topological matter, and the quantum vacuum of Standard Model is the representative
of the topological matter alongside with topological superfluids and superconduc-
tors, topological insulators and semi-metals, etc. There is a number of topological
invariants in momentum space of different dimensions. They determine universality
classes of the topological matter and the type of the effective theory which emerges
at low energy and low temperature. In many cases they also give rise to emergent
symmetries, including the effective Lorentz invariance and probably all the symme-
tries of Standard Model, and emergent phenomena such as gauge and gravitational
fields. The symmetry appears to be the secondary factor, which emerges in the low-
energy corner due to topology, and it is possible that it is the topology of the quan-
tum vacuum, which is responsible for the properties of the fermionic matter in the
present low-energy Universe.
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The topological invariants in extended momentum and coordinate space deter-
mine the bulk-surface and bulk-vortex correspondence. They connect the momen-
tum space topology in bulk with the real space. These invariants determine the
fermion zero modes living on the surface of a system or in the core of topologi-
cal defects (vortices, strings, domain walls, solitons, hedgehogs, etc.).

In respect to gravity, the momentum space topology delivers some lessons. First,
in the effective gravity emerging at low energy, the collective variables represent
the tetrad field and spin connections. In this approach the metric field emerges as
the composite object of a tetrad field, and thus the Einstein-Cartan-Sciama-Kibble
theory with torsion field is more relevant for the description of gravity (see also
[126–129]).

Secondly, the topology suggests several scenarios of Lorentz invariance violation
governed by topology. Among them the splitting of Fermi point and development of
the Dirac points with quadratic and cubic spectrum. The latter leads to the natural
emergence of the Hořava-Lifshitz gravity.
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Chapter 15
Einstein2: Brownian Motion Meets General
Relativity

Matteo Smerlak

Abstract Blending general relativity with Brownian motion theory leads to an in-
teresting prediction: the classical root-of-time behavior of the RMS displacement
of a Brownian particle is affected by gravity. These corrections to the diffusion
law are not just a theoretical curiosity: they provide an opportunity for a new kind
of “metamaterials”, where diffusive transport—as opposed to ray propagation, as
in transformation optics—can be tailored with suitably designed effective metrics.
What is more, this effect force us to reconsider the formulation of the second law
of (non-equilibrium) thermodynamics in gravitational analogues, as tracers diffus-
ing in curved effective metrics can sometimes accumulate (instead of spreading),
thereby decreasing their Gibbs entropy, without any force being applied to them.

15.1 Introduction

It is hard to tell which of Einstein’s insights has been the most fecund of them all.
His reappraisal of the concepts of space and time has given birth to astrophysics
and cosmology as we know them today. His understanding of Brownian motion
has demonstrated the reality of atoms and opened the path to the theory of equilib-
rium and non-equilibrium fluctuations. His explanation of the photoelectric effect
has prompted the rise of quantum mechanics. And so forth—the whole twentieth
century of physics, in one way or another, is his.

Yet, many have stressed that Einstein’s revolution is “unfinished”: as of today,
we still have little clue how to merge general relativity with quantum mechanics.
Attempts in this direction have proved fruitful in unexpected ways, resulting for
instance in an entirely new branch of mathematics known as “topological quantum
field theory” [1, 23] or “quantum topology” [7]. This notwithstanding, we must
confess that, in our quest to a theory of quantum gravity, we remain—and perhaps
for a long time to come—“half-way through the woods” [13].
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The purpose of this chapter is to discuss another way in which Einstein’s revolu-
tion is unfinished: at the interface between general relativity and Brownian motion
theory. The former teaches that spacetime is curved; the latter that the RMS dis-
placement of a Brownian particle grows with the square root of time. Are these
fundamental laws consistent with each other?

They are not. Indeed, the diffusion square-root law follows from the diffusion
equation for the probability density p of Brownian motion1

∂p

∂t
=
p, (15.1)

which conflicts with general relativity (GR) in two ways.

• It is parabolic and hence propagates signals faster than light, while GR demands
that no physical process can be used to signal faster than light.

• It relies on the assumption that space is flat, while GR states that, where there is
matter, there is spacetime curvature.

The first point is definitely not a blocker: Brownian motion is a coarse-grained ap-
proximation to the microscopic dynamics of Brownian particles, which holds at
local equilibrium, in a regime where the gradients ∇ap are weak. To improve this
approximation and account for the short-time dynamics of the particle in a causal
way, we can replace the diffusion equation by a kinetic (Boltzmann, Klein-Kramers
or else) equation in phase space [5].

What about the second point? How can the effect of gravity and spacetime cur-
vature be included in the diffusion equation? Answering this question is interesting
from a theoretical perspective, as dissipative processes are seldom studied within
the framework of general relativity and could reveal interesting aspects thereof. But,
more importantly, it is also of practical significance: as emphasized in the “analogue
gravity” paradigm, curved spacetimes are good models of many inhomogeneous
condensed-matter systems, ranging from fluid flows to Bose-Einstein condensates
and gradient-index dielectrics. Finding a generalization of diffusion theory to arbi-
trary spacetimes could thus have very concrete applications. It is the purpose of this
chapter to discuss such a generalization.

Our plan is as follows. After some technical preliminaries in Sect. 15.2, we de-
scribe in Sect. 15.3 the modifications to the classical theory of stochastic processes
required by the presence of a non-trivial gravitational field. In Sect. 15.4, we con-
sider in more detail the special case of Brownian motion, and discuss possible ap-
plications in Sect. 15.5. We close our conclusions in Sect. 15.6.

15.2 Preliminaries

Throughout this paper, we consider a (D + 1)-dimensional spacetime M with sig-
nature (−++· · · ). (We keep D unspecified to include lower dimensional analogue

1We choose units where the diffusion coefficient is 1.
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spacetimes in the discussion.) We denote ∇ the spacetime Levi-Civita connection,
and a, b, c, . . . , i, j, . . . are abstract indices. (The standard references for general rel-
ativity and the D+1 formalism are [10, 22]; stochastic processes and Fokker-Planck
equations are exposed in [12, 20].)

15.2.1 The D + 1 Formalism

Consider a relativistic fluid with velocity ua . Assume its flow is irrotational, viz.

u[a∇buc] = 0. (15.2)

Then (according to the Frobenius theorem) there is a foliation of spacetime by hy-
persurfaces Σt orthogonal to ua . Furthermore, the slices Σt are the level sets of a
time functions t :M →R such that

ua =−N∇at (15.3)

for some non-negative function N . The function N is called the lapse function, and
the slices Σt have the interpretation of “instantaneous space” relative to observers
comoving with the fluid. In the following, we will denote σ a flow line of ua (a “spa-
tial point”), and σt its intersection with Σt .

The intrinsic geometry of the spatial hypersurfaces Σt is coded by the induced
metric

hij = gij + uiuj , (15.4)

and its associated covariant derivative2 Da and Laplace-Beltrami operator 
, while
their embedding in spacetime is measured by the (symmetric) extrinsic curvature
tensor

Kij =Diuj . (15.5)

Its trace θ =Dau
a =∇au

a is the expansion scalar, and measures the fractional rate
of change of an infinitesimal volume δV about a spatial point along the flow, viz.

θ = ua∇a ln δV = 1

N

1

δV

d(δV )

dt
. (15.6)

The factor 1/N above converts the proper time along the flow to the global time
coordinate t .

A situation of particular interest is the hydrostatic equilibrium: the vector ξa =
∇at = −ua/N is then Killing, i.e. generates timelike isometries. In this context,

2The covariant derivative Da associated to hab acts on a tensor field T
a1···an

b1···bm according to

DcT
a1···an

b1···bm = h a1
e1
· · ·h dm

bm
h

f
c ∇f T

d1···dn
e1···em .
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the lapse function N is usually denoted χ , and called the redshift factor. It satisfies
ua∇aχ = 0, and gives the acceleration ai = uc∇cu

i of the flow by

ai =∇ i lnχ. (15.7)

Moreover, the time-time component of the Ricci tensor E = Rabu
aub (sometimes

called the Raychaudhuri scalar), is given in this case by

E =Dia
i + aia

i . (15.8)

In general relativity, this scalar is closely related to the local mass-energy density,
by virtue of the Einstein equation. We will see that E also plays an interesting role
in diffusion phenomena.

15.2.2 Markov Processes

Let Σ be a Riemannian manifold with metric hij and covariant derivative Di , rep-
resenting a curved space, and denote σt ∈Σ the instantaneous position of a random
walker at time t . In the Markovian setup, we assume that σt completely determines
its later positions σt ′ (t ′ > t), according to transition rates Γ (σ → σ ′). By defini-
tion, these are such that the elementary probability for the walker to jump from a
volume dV (σ ) about σ ∈Σ to a volume dV (σ ′) about σ ′ ∈Σ in time dt is given
by

Γ
(
σ → σ ′

)
dV (σ )dV

(
σ ′
)
dt. (15.9)

These transition rates are implicit functions of the metric hij .
Let p(σ, t) denote the probability density that the walker is in neighborhood of

σ at time t , i.e. σt = σ , and

j
(
σ → σ ′, t

)= p(σ, t)Γ
(
σ → σ ′

)
. (15.10)

the corresponding probability fluxes. Balancing the incoming and outgoing fluxes
at σ , we can write the evolution equation for p as

∂tpt (σ )=
∫

Σ

dV
(
σ ′
)(
j
(
σ ′ → σ, t

)− j
(
σ → σ ′, t

))
, (15.11)

i.e.

∂tp(σ, t)=
∫

Σ

dV
(
σ ′
)(
p
(
σ ′, t

)
Γ
(
σ ′ → σ

)− p(σ, t)Γ
(
σ → σ ′

))
, (15.12)

where dV (σt ) is the Riemannian volume element on Σt . This integro-differential
equation is known as the master equation, and the operator M such that ∂tp =Mp

as the master operator.
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In this stochastic framework, equilibrium states are defined as follows. A steady-
state solution p∗ is an equilibrium distribution if the corresponding probability
fluxes cancel pairwise, i.e.

p∗(σ )Γ
(
σ → σ ′

)= p∗
(
σ ′
)
Γ
(
σ ′ → σ

)
. (15.13)

This condition is known as the detailed balance condition.
Under certain regularity conditions for the rates Γ , one can show that the paths

(σt ) are discontinuous: for this reason one often speaks of jump processes in this
case. The situation changes in the limit where the jumps become infinitely frequent
and short-ranged (with respect to some relevant coarse-graining scale). Then Γ be-
comes distributional, and the master operator M reduces to its second-order trun-
cation L in a moment expansion,

L p =−Di

(
wi

1p
)+ f12DiDj

(
w

ij

2 p
)
. (15.14)

Here wi
1 is a vector field on Σ , the drift vector, and w

ij

2 a symmetric and positive-
definite rank-2 tensor field, the diffusion tensor. Note that the transition rates Γ are
related to L according to

Γ
(
σ ′ → σ

)=L δ
(
σ ′, σ

)
, (15.15)

where δ is the Dirac distribution on Σ and L acts on the σ ′ variable. Stochastic
processes described by such Fokker-Planck equations are called diffusion processes.

The simplest example of such a diffusion process is Brownian motion, for which
(by definition) w

j

1 = 0 and w
ij

2 = 2κhij for some positive constant κ . The corre-
sponding Fokker-Planck equation ∂tp =L p is the well-known diffusion equation

∂tp = κ
p. (15.16)

15.3 Master and Fokker-Planck Equations in Curved
Spacetimes

In this section we describe the curved spacetime generalization of the master and
Fokker-Planck equations for Markov processes.

15.3.1 Markovian Setup

Consider a Markov process defined by stationary transition rates Γ (σ ′ → σ), de-
pending parametrically on a Riemannian metric hij . In the case of Brownian mo-
tion, for instance, Γ (σ ′ → σ)= κ
δ(σ,σ ′), with 
 the Laplace-Beltrami operator
associated to hij .
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Assume that this process defines the instantaneous dynamics of a random walker
in spacetime, in proper time. In other words, given an irrotational flow ua , consider
the associated orthogonal foliation (Σt ), evaluate Γ on the induced metric hab ,3 and
assume that the probability that a random walker carried by the flow ua will jump
from the position σt to the position σ ′t in proper time ds(σt ) is given that

Γ
(
σt → σ ′t

)
dV (σt )dV

(
σ ′t
)
ds(σt ), (15.17)

where ds(σt ) is the proper time along σ .

15.3.2 Master Equation

Now, to write the corresponding probability equation, we must convert the proper
time s(σt ) in (15.17) into the time coordinate t . This is achieved by means of the
lapse function N , as

ds(σt )=N(σt )dt. (15.18)

Hence, we can rewrite (15.17) as

Γ
(
σt → σ ′t

)
dV (σt )dV

(
σ ′t
)
N(σt )dt. (15.19)

Denoting p(σt ) the probability density of the stochastic process, the probability flux
is therefore

j
(
σt → σ ′t

)=N(σt )p(σt )Γ
(
σt → σ ′t

)
. (15.20)

This expression is physically intuitive: where proper time runs faster (high N ), the
walker jumps more frequently (high j ).

From this simple argument, we see that, if M is the master operator associated
to the rates Γ , the right-hand side of the curved-spacetime master equation should
be M (Np), i.e.

∫

Σt

dV
(
σ ′t
)(
N
(
σ ′t
)
pt

(
σ ′t
)
Γ
(
σ ′t → σt

)−N(σt )pt (σ )Γ
(
σt → σ ′t

))
. (15.21)

A moment of reflection shows that the left-hand side of the master equation
should also be modified in the presence of gravity. Indeed, recall that in a curved
spacetime, the time-variation of an integrated density does not coincide with the
integral of the time-derivative of the density: it Vt is a region in Σt , then

f
d

dt

∫

Vt

dV (σt )pt (σt ) =
∫

Vt

dV (σt )∂tpt (σt ). (15.22)

3If spacetime is not static, this makes the transition rates implicit functions of time.
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This is due to the fact that the volume element dV (σt ) itself depends on time. The
correct formula follows from the relationship (15.6) defining the expansion scalar,
and reads

d

dt

∫

Vt

dV (σt )pt (σt )=
∫

Vt

dV (σt )
(
∂tpt (σt )+Nθpt

)
. (15.23)

Shrinking the volume Vt down to zero, we thus find that the left-hand side of the
master equation should be ∂tp+Nθp instead of ∂tpt .

Combining both insights, we find that the master equation in a curved spacetime
with lapse N and expansion θ is

∂tp+Nθp =M (Np). (15.24)

It is easy to check that this equation conserves the total probability
∫
Σt

dV (σt )pt (σt ),
as it should.

Note that, in the case of static spacetimes (θ = 0 and N = χ is the redshift factor),
we can read off from (15.20) the generalized detailed balance condition: for an
equilibrium distribution p∗, the probability fluxes cancel pairwise if

Γ
(
σ ′ → σ

)
χ
(
σ ′
)
p∗
(
σ ′
)= Γ

(
σ → σ ′

)
χ(σ)p∗(σ ). (15.25)

Hence, the product χp∗ must satisfy the usual detailed balance condition defined by
the rates Γ (σ → σ ′), instead of p∗ itself, as in the non-relativistic case.

15.3.3 Diffusive Limit: The Generalized Fokker-Planck Equation

Assume from now on that the stochastic process is of diffusive type (or can be
approximated by one4) and denote L the Fokker-Planck operator defined by the
rates Γ , as in (15.14). Then from (15.24) it follows immediately that the Fokker-
Planck equation reads

∂tp+Nθp =L (Np), (15.26)

i.e.

∂tp+Nθp =−Di

(
wi

1Np
)+ 1

2
DiDj

(
w

ij

2 Np
)

(15.27)

where wa
1 and wab

2 are the drift vector and diffusion tensor associated to the rates Γ ,
as in Sect. 15.2.2. This is the curved-spacetime generalization of the usual Fokker-
Planck equation.

4I recommend van Kampen’s note [18] for a discussion of the applicability of this approximation.
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Note that (15.27) can be given a more hydrodynamical flavor, by replacing the
unphysical derivative ∂t by the convective derivative ua∇a , which evolves the prob-
ability distribution in proper time rather than in coordinate time; it then becomes

ua∇ap+ θp =−Di(w
i
1Np)

N
+ 1

2

DiDj (w
ij

2 Np)

N
. (15.28)

15.4 The Case of Brownian Motion

In this section we focus on the properties of Brownian motion in curved space-
times, computing in particular the gravitational corrections to the classical diffusion
square-root law.

15.4.1 The Generalized Diffusion Equation

We saw in Sect. 15.2 that Brownian motion is characterized among diffusion pro-
cesses by the vanishing of the drift vector, wa

1 = 0, and by wab
2 = 2κhab , with κ the

diffusivity. The corresponding Fokker-Planck equation is therefore

∂tp+Nθp = κ
(Np) (15.29)

or equivalently

ua∇ap+ θp = κ

(Np)

N
. (15.30)

In the hydrostatic limit, this equation reduces to5

ua∇ap = κ

(χp)

χ
. (15.31)

Using the relation ab =Db logχ between the acceleration of the congruence ab and
the spatial gradient of the redshift factor, we can rewrite (15.31) as

(
ub − 2κab

)∇bp = κ
p+ κEp, (15.32)

where ub is the hydrostatic velocity (Killing vector divided by its norm) and E is
the Raychaudhuri scalar. In addition to the usual diffusion term 
p, we see that the
generalized diffusion equation contains two new terms.

5It is interesting to note that this equation is the same as the one postulated by Eckart [6] for thermal
diffusion in his attempt to formulate a general-relativistic theory of dissipative hydrodynamics.
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• Drift. The term 2κab∇bp is a drift term. Unlike the drift term in the classical
Fokker-Planck equation (15.14), it vanishes in the limit κ → 0, and is therefore a
genuine stochastic effect.

• Source. The term κEp, where E =Dba
b + aba

b , is a source term. It implies that
the probability density appears to comoving observers as sourced by (κ times) the
Raychaudhuri scalar E.6

Both terms, which result from the non-homogeneity of χ in space, can be interpreted
as stochastic gravitational redshift effects.

15.4.2 Gravitational Corrections to the Mean Square Displacement

The most significant observable of Brownian motion is the mean square displace-
ment (MSD). Consider for simplicity a static spacetime, which is furthermore radi-
ally symmetric about a distinguished spatial point o. If ρ(σ ) denotes the Riemannian
distance between σ and o, the MSD of a Brownian particle starting at o at time t = 0
is defined by

〈
ρ2〉

t
=
∫

Σ

dV (σ)Kt (σ )ρ2(σ ). (15.33)

Here Kt is the Green function (or heat kernel) of the generalized diffusion equation

∂p

∂t
= κ
(χp), (15.34)

namely the solution with initial condition

lim
t→0

Kt(σ )= δ(σ, o), (15.35)

where δ(σ, o) is the Dirac distribution on Σ with support at o. (Note that, with the
definition (15.33), the MSD is measured as a function of the t coordinate, and not
proper time: unlike the non-relativistic situation, there is no global physical time
parameter in a curved spacetime.)

Let us denote D the differential operator κ
q(χ ·). Then Eqs. (15.34)–(15.35)
can be solved formally as

Kt(σ )= etDδ(σ, o)=
∞∑

n=0

tn

n!D
nδ(σ, o). (15.36)

6That is not to say that the total probability is not conserved; we saw that it is.
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The MSD, in turn, can be computed by evaluating this distribution the squared dis-
tance function ρ2. This gives

〈
ρ2〉

t
=

∞∑

n=0

tn

n!
(
D†)nρ2(o), (15.37)

where D† = κχ
q is the formal adjoint of D , i.e.

〈
ρ2〉

t
=

∞∑

n=0

(κt)n

n! (χ
)nρ2(o). (15.38)

This formula provides the asymptotic expansion of the MSD in the small time limit
t → 0. To second order in t , we get [14]7

〈
ρ2〉

t
= 2κDχ(o)t

{
1+

(

χ(o)

2χ(o)
− R(D)(o)

3D

)
κt +O

(
t2)
}
. (15.39)

Here R(D)(o) is the Ricci scalar curvature of Σ at o. (To arrive at this expression
we used the geometric identities 
ρ2(o)= 2D and 
2ρ2(o)=−4R(D)(o)/3.8) At
this order, we thus find that diffusion is enhanced by a convex lapse profile about
o and by negative spatial curvature. For instance, in the case of a constant-density
Schwarzschild star with mass M and radius R, one finds that the curvature correc-
tion term to the MSD is positive and grows with 2GM/R , showing that diffusion
is actually enhanced by gravity, at least at short times. This is a somewhat coun-
terintuitive result, given that gravity is supposed to be “attractive”; the point is that
a Brownian particle is not free-falling, but collides constantly with the (constant-
density) stellar fluid.

15.5 Application: Tailored Diffusion in Gravitational Analogues

In this section we discuss possible applications of the theory of Brownian mo-
tion in curved spacetimes to condensed-matter physics, via the “analogue gravity”
paradigm.

15.5.1 Dissipation in Gravitational Analogues

It is now well known that certain condensed-matter systems are best thought of as
“analogue spacetimes”, meaning that their inhomogeneous structure can be sub-

7The original article [14] contains an error in this formula, pointed out by James Bonifacio at the
University of Canterbury (New Zealand). I thank him for that.
8The higher order terms involve higher derivatives of the squared distance function, which can also
be expressed in terms of local curvature invariants [4, 11].



15 Einstein2: Brownian Motion Meets General Relativity 395

sumed under an effective, non-Minkowskian metric—this book provides many ex-
amples. The theory of Brownian motion in curved spacetimes sketched above allows
us to consider the issue of dissipation in these analogue spacetimes.

Consider the diffusion of tracers in a material medium with space-dependent
diffusivity D(σ), such that the density of tracers p satisfies

∂p

∂t
=
(Dp). (15.40)

Not all inhomogeneous media lead to this diffusion equation [19], but some do, one
simple example being fluids with space-varying viscosity [2]. Comparing (15.40)
with the diffusion equation (15.34) for static spacetimes, we see that the diffusion
coefficient D(σ) can be interpreted as (a constant times) a redshift factor. This is
not surprising, since—heuristically—a smaller diffusion coefficient means slower
diffusion, hence, in general-relativistic terms, smaller redshift factor. Hence, just
like certain inhomogeneous dielectrics behave as curved spacetimes with respect to
the propagation of light waves [9], certain inhomogeneous media also behave as
curved spacetimes with respect to diffusive transport. This observation suggest that
the concept of “metamaterials”, materials with tuned properties according to desired
applications, can in fact be extended from the realm of conservative physics (where
it has been exclusively applied so far) to the realm of dissipative physics (where it
has not) [16].

15.5.2 From Diffusion to Antidiffusion

Here is a simple example of the way diffusion can be tailored using the effective
redshift factor i.e. diffusion coefficient D(σ). Consider a medium with a trap-like
redshift profile, with D(σ) monotonously increasing about a global minimum. (This
profile of course recalls the redshift profile of a star, where χ is an increasing func-
tion of the distance to the star: Newton’s law of gravitation.) Suppose the tracers
are initially diluted within the medium, viz. the initial distribution p0(σ ) has a large
variance. What evolution does the diffusion equation (15.40) dictate?

On the one hand, we may expect that the effective gravitational field will tend
to attract the tracers towards the center of the trap; on the other hand, the effect of
diffusion is always to smooth out density gradients. The answer is the first one: it
turns out that, in this particular case, Brownian motion will concentrate the tracers
at the bottom of the trap, see Fig. 15.1. This effect shows that effective gravitational
fields can be used to control diffusion to the point of reversing its effect, from the
spontaneous dilution to the spontaneous concentration of tracers.

15.5.3 On the Second Law of Thermodynamics

This “antidiffusion” effect raises a puzzle concerning the second law of thermo-
dynamics. In its standard (non-equilibrium) formulation, the latter states that “the
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Fig. 15.1 Numerical solution of the generalized diffusion equation (15.40) in one space dimension
(horizontal axis) with Neumann boundary conditions, at three times t0 < t1 < t2 (left to right). The
dashed curve (left axis) is the local diffusivity D(x) normalized to its maximal value; the thick
curve (right axis) are the probability densities p(ti , x), with x in arbitrary units. The amplitude of
variation of D(x) is consistent with the fluid experiment of Ref. [21]

entropy of an isolated system at local equilibrium can never decrease”. Is this prin-
ciple respected by Eq. (15.40)?

To answer this question, one should first identify the relevant thermodynamic en-
tropy S. So long as we are dealing with non-interacting tracers diffusing within a
thermal bath, this entropy can be decomposed into the internal entropy Sint, account-
ing for the uncertainty on the microscopic velocity of each tracer, and the positional
entropy Spos, measuring the uncertainty on the position of each tracer. In the context
of Brownian motion, the assumption of local thermal equilibrium (Maxwellian ve-
locity distribution at each point) implies that the former depends only on the local
temperature T (σ ); as for the latter, it is by definition a functional of the probability
density p(σ, t), usually taken to be

Spos
[
p(σ, t)

]=−
∫

Σ

dV (σ)p(σ, t) lnp(σ, t). (15.41)

In a case where the temperature of bath is constant but χ(σ) is not, one has therefore

dS

dt
=− d

dt

∫

Σ

dV (σ)p(σ, t) lnp(σ, t). (15.42)

Using the diffusion equation (15.40), one readily computes [17]

dS

dt
= κ

∫

Σ

dV (σ)χ(σ )

(∇p(σ)

p(σ )
+ ∇χ(σ)

χ(σ )

)
. (15.43)

This quantity is clearly not always non-negative: it suffices that ∇p and ∇χ have
opposite directions, and ∇χ is sufficiently large, for this quantity to be negative and
thus for S to decrease. This is the consequence of the fact, already discussed in the
previous section, that certain χ profiles can force tracers to accumulate in a given
region of space, even when they were initially perfectly diluted. Does this mean that
gravitational analogues can violate the second law of thermodynamics?

No, but this result does force us to reconsider the notion of “positional entropy”
in an inhomogeneous context, where χ(σ) actually depends on space. In this case,
the above argument shows that the “Gibbs” expression (15.41) is not a suitable
definition of positional entropy. Consider instead the relative entropy associated to
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Fig. 15.2 The positional entropy (continuous curve, left axis) and relative positional entropy
(dashed curve, right axis) in the “trap” of Fig. 15.1 as functions of time (horizontal axis, arbi-
trary units). The red dots indicate the times t0, t1, t2 plotted in Fig. 15.1

a medium with equilibrium probability density p∗ ∝ χ−1, defined by

Srel =−
∫

Σ

dV (σ)p(σ, t) ln
p(σ, t)

p∗(σ )
. (15.44)

This quantity, also known as the Kullback-Leibler divergence [8], measures the “dis-
tance” between the instantaneous probability density p(σ, t) and the equilibrium
p∗(σ ). (The “Gibbs” entropy (15.41) is a special case of this, with p∗ = constant.)
Now, due to the dissipative nature of diffusion, this “distance” can only increase in
time: from (15.40) we find [17]

dSrel

dt
= κ

∫

Σ

dV (σ)χ(σ )
(∇(χp)(σ ))2

p(σ)
≥ 0. (15.45)

This shows that a proper formulation of the second law of thermodynamics, ap-
plicable to inhomogeneous media as well as to homogeneous media, should rely
on relative entropy—and not “Gibbs” entropy. (This statement can be sharpened
within the framework of “stochastic thermodynamics” in the form of a “fluctuation
theorem”, see [15].)

15.6 Conclusion

The arguments developed in this chapter boil down to a very simple observation:
if time runs at different rates in different places (due to an actual or effective grav-
itational field), then a Brownian particle will be accelerated correspondingly, and
this affects its diffusive motion—Einstein 1905 amended by Einstein 1912, really!
Yet, I have argued that this observation could have interesting consequences for
condensed-matter physics, in effect creating an opportunity for a new class of meta-
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materials where diffusion could be tailored. No doubt some of the harvests of Ein-
stein’s revolutionary ideas are still to be gathered!

Acknowledgements The title of this chapter is inspired by the article [3], in which P. Castro-
Villarreal computes the corrections of the RMS displacement of a Brownian particle in a curved
space (as opposed to a curved spacetime, as in this chapter).
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Chapter 16
Astrophysical Black Holes: Evidence
of a Horizon?

Monica Colpi

Abstract In this Lecture Note we first follow a short account of the history of the
black hole hypothesis. We then review on the current status of the search for as-
trophysical black holes with particular attention to the black holes of stellar origin.
Later, we highlight a series of observations that reveal the albeit indirect presence
of supermassive black holes in galactic nuclei, with mention to forthcoming ex-
periments aimed at testing directly the black hole hypothesis. We further focus on
evidences of a black hole event horizon in cosmic sources.

16.1 The Black Hole Hypothesis

In General Relativity (GR), an event horizon is a boundary in spacetime, defined
with respect to the external universe, inside of which events cannot affect any ex-
ternal observer. Anything that passes through the event horizon from the observer’s
side (regardless it is matter or light) can not return to the outside world.

The most common case of an event horizon is that surrounding a black hole.
Within the event horizon of a black hole all paths that light could take are warped
so as to fall farther into the black hole.

The first black hole solution of Einstein’s field equations was discovered by Karl
Schwarzschild [1].1 It represents the exact solution for the metric tensor of a point
mass M , in otherwise empty space. This solution describes the static, isotropic grav-
itational field generated by an uncharged point mass M . In the weak field limit, the
solution recovers the static limit of a Newtonian point mass. The Schwarzschild so-
lution also describes the gravitational field generated by any spherically symmetric
star of mass M and surface radius R in vacuum, i.e. exterior to the star itself, at radii
r > R.

1The references have been limited to a minimum and are focussed on mentioning main key papers
supplemented by specific reviews and some recent publications, which do include more extensive
references.
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In Schwarzschild coordinates, the surface of no return, i.e. the horizon of the
Schwarzschild solution appears as a critical surface where spacetime is singular:
more precisely where the radial component grr of the metric tensor diverges to infin-
ity. In the usually adopted Schwarzschild coordinates, this occurs at r = 2GM/c2,
the Schwarzschild’s radius RS of the point mass M . For the Sun the Schwarzschild
radius is 2.95 km, deep in the solar interior where Einstein’s equations in matter
space exhibits no Schwarzschild singularity, nor any other singularity. The singular-
ity clearly emerges only for a hypothetical massive object (the black hole) so small
that the radius RS lies outside its hypothetical surface, in empty space. In these ex-
otic circumstances, the Schwarzschild solution holds down to RS, the radius that
Finkelstein named event horizon.

Is this singularity real? It is now regognized that the Schwarzschild singularity
is an apparent singularity, i.e. an artifact of the coordinate system used. The cur-
vature scalar is perfectly well behaved and regular at the Schwarzschild radius. If
any one of the curvature invariants had been singular at RS, then this singularity
would of course have been present in all coordinate systems. The non singular na-
ture of the Schwarzschild singularity is evident in a set of coordinates, the Kruskal–
Szekeres coordinates [2], that cover the entire spacetime manifold of the maximally
extended Schwarzschild solution and that are well-behaved everywhere outside the
physical singularity, present at the origin. While in Schwarzschild coordinates an
infalling test particle is seen to take an infinite coordinate time to reach the horizon,
a free-falling particle will only take a finite proper time (time as measured by its
own clock) to cross the event horizon, and if the particle’s world line is drawn in
the Kruskal–Szekeres diagram this will also only take a finite coordinate time in
Kruskal–Szekeres coordinates. Furthermore, and again in Kruskal–Szekeres coor-
dinates, any event inside the black hole interior region (defined by the horizon) will
have a future light cone that remains in this region such that any world line within
the event’s future light cone will eventually hit the black hole central, physical sin-
gularity where spacetime curvature is truly infinite.

The Schwarzschild solution is a limiting case of a more general solution of the
Einstein’s field equations found by Roy Kerr [3], describing the spacetime metric of
an axially-symmetric point mass M , in empty space. This solution is endowed by an
event horizon and describes an uncharged, rotating black hole. The event horizon of
a Kerr black hole, which is topologically a sphere, is where grr diverges to infinity,
in Boyer Lindquist coordinates. This inner spherical surface is now determined by
the mass M and angular momentum J of the black hole. The Schwarzschild black
hole is simply a non rotating black hole, i.e. black hole with J = 0, and the Kerr
metric approaches the Schwarzschild metric as J→ 0.

Kerr black holes posses a further critical surface where gtt = 0, defining the
boundary where gtt changes sign from negative (at larger radii) to positive (at
smaller radii), and that is exterior to the event horizon. This outer surface can be
visualized as an oblate spheroid. This surface together with the event horizon en-
closes a region called ergosphere: within this region, the purely temporal component
gtt is positive, i.e. acts like a purely spatial metric component. Consequently, parti-
cles within this ergosphere must co-rotate with the inner mass, if they are to retain
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their time-like character. Penrose demonstrated that within that region energy can
be extracted at the expenses of the rotational energy and this may have observable
consequences [4].2

Kerr black holes, and thus Schwarzschild black holes that are a limiting case, hide
at their center a singularity that can not be eliminated by any change of coordinates.
There, curvature scalars that are invariant under coordinate transformations diverge
to infinity. This divergence is generally a sign for a missing piece in the theory,
a failure of GR without quantum mechanics which forbids wavelike particles to
inhabit a space smaller than their wavelength.

The cosmic censorship conjecture is the hypothesis that no naked singularities
form in Nature. It asserts that singularities (should they be present) need to be hidden
from an observer at infinity by the event horizon of a black hole. This conjecture
is fundamental when studying black hole equilibrium states. Theorems of Israel,
Carter, Hawking and Robinson [5–8], gave proof of the remarkable result that Kerr
back holes are the only possible stationary vacuum black holes, paving the way
to a further conjecture, known as no-hair theorem. The no-hair theorem postulates
that all black hole solutions of the Einstein-Maxwell equations of gravitation and
electromagnetism in GR can be completely characterized by only three externally
observable parameters: the mass M , angular momentum J, and electric charge. All
other information (for which “hair” is a metaphor) about the matter which formed
a black hole or falling into it, disappears behind the black hole event horizon and
is therefore permanently not accessible to external observers. A corollary of the no-
hair conjecture asserts that the only deformations that black holes admit are those
obtained by a change of mass, angular momentum, and charge.

The black hole solution to the Einstein’s field equation defines a classical black
hole, i.e. a black hole for which vacuum quantum fluctuation near the event horizon
are not accounted for. Mass and angular momentum J (or spin hereon) are conserved
quantities, for isolated classical black holes. When Hawking radiation is included
(as it should) isolated black holes evaporate [9]. The radiation is as if it were emitted
by a black body with a temperature that is inversely proportional to the black hole’s
mass. Black holes of one solar mass have a temperature of only one hundred nano-
Kelvin, and evaporate on a timescale of 1063 years, much longer than the age of
the universe. Furthermore, these black holes would absorb far more radiation than
they emit in their interaction with the cosmic microwave background radiation. Only
when the black hole mass is much smaller than 1015 g is the evaporation timescale
shorter than the Hubble time. Such mini-black holes formed as a result of fluctu-
ations or phase transitions in the early universe would long since have evaporated.
Those weighing ∼1015 g would just now be exploding. Since we have observational
evidence of black holes heavier than a few solar masses in the universe, evaporation
is of no concern in this Lecture Note.

2Black holes can also carry a finite electric charge: they are described by the known Kerr-Newman
metric which is the solution of the Einstein-Maxwell field equation in GR for a rotating, charged
point mass. As any electric charge excess is shorted by opposite charges in the cosmic environment,
charged black holes have no astrophysical relevance, in this Lecture Note.
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16.2 Gravitational Collapse

A black hole forms when a star or gas cloud collapses under its own self-gravity,
having lost its dynamical stability. Ideally, the simplest case is the spherical col-
lapse of a dust, pressure-free cloud of mass M and radius ao. Oppenheimer and
Snyder [10] demonstrated that a cloud of initial uniform density ρo and zero pres-
sure collapses from rest to a state of infinite proper energy density in a finite time
Tcol = (3π/32Gρo)

1/2. The collapsing cloud reduces its radius a with time un-
til it develops a trapped surface, i.e. an event horizon at a radius equal to the
Schwarzschild radius of the mass M . When the radius of the sphere a approaches
RS, light signals emitted from the surface take an infinite time to reach a distant
observer and are infinitely redshifted. Since the gravitational redshift increases ex-
ponentially as a→RS, with an e-folding time 4GM/c3 (corresponding to the light
travel time across the horizon), the cloud dims and fades out of sight. In practice, af-
ter an early and rapid contraction of the cloud on the dynamical time∼(a3

o/GM)1/2,
where the gravitational redshift zG = (1− a/RS)

−1/2 − 1� 1, collapse appears to
relent as redshift zG increases to infinity. As the Schwarzschild metric is the only
metric outside a spherically symmetric body, the only external parameter accessible
for a measurement is M the mass of the star or cloud.

Similarly, an axially symmetric collapsing dust cloud settles down to a station-
ary state of infinite proper energy density, and as the only metric is the Kerr metric,
according to theorems of uniqueness, a Kerr black hole forms as endpoint of ax-
isymmetric gravitational collapse. As a Kerr black hole has only two measurable
parameters, i.e. the mass M and the angular momentum J, any information about
the matter distribution in the collapsing body is lost [11].

Black holes have no-hair, according to the no-hair conjecture, thus even collapse
under generic initial conditions inevitably form a Kerr black hole. Gravitational
waves during collapse carry away asymmetries seeded in the collapsing star so that
a Kerr black hole eventually forms. Thus, if gravitational collapse is the inevitable
fate of massive bodies, black holes, i.e. hidden singularities, should be ubiquitous,
in the universe. But how inevitable is gravitational collapse to a black hole in stars,
star’s clusters and even in larger scale structures such as galaxies? In order to learn
about instabilities toward collapse we need to learn about gravitational equilibria
and their stability.

16.3 Gravitational Equilibria and Stability

The idea that black holes do form in nature developed as soon as it was recognized
that stars can not remain in stable equilibrium when the pressure support against
gravity, determined by the microphysical properties of matter, drops to the point
that the total energy E of the star (composed of N baryons) is no longer a minimum.
The minimum is computed here with respect to all variations in the density profile
ρ(r) that leave the number of particles N unchanged, and unchanged and uniform
the entropy per nucleon and the chemical composition.
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Loss of dynamical stability occurs under a variety of conditions: when the star is
either supported by the pressure of degenerate relativistic electrons or neutrons in
cold, dense matter, or by radiation pressure in a hot, tenuous medium. In addition,
the instability is seeded in any star and regardless the equation of state of matter
(under currently known conditions) when the non-linear nature of the gravitational
interaction becomes important, in the strong field limit.

A star in Newtonian equilibrium has a gravitational energy Ω in full balance with
−3
∫
PdV , i.e. three times the integral of the pressure P over the star’s volume V

(with minus sign). This is known as virial relation. For non-relativistic (relativistic)
particles, P is equal to [2/3] ([1/3]) times the internal (nuclear) energy u. If E is
the total energy of the star E =Ω +U , the virial relation gives E =−U = (1/2)Ω
for non-relativistic particles (E = 0 for relativistic particles), where U is the internal
energy (i.e., U = ∫ udV over the star’s volume). E is negative relative to a state of
matter at rest at infinity, and for a star dynamically stable E can not be lowered by
any other way (i.e. E is a minimum for constant entropy perturbations). By contrast,
equilibria with E ∼ 0 correspond to states of marginal stability.

If the fluid making the star is a classical perfect fluid, the virial relation yields
U ≈ NkB〈T 〉 ≈ GM2/R, where 〈T 〉 is the mean temperature inside the star of
mass M and radius R: 〈T 〉 ∝ M/R. Stars radiate away their energy at a rate L,
and thus contract their radius if there is no internal energy source. As energy is
lost in the form of radiation, the star (evolving along equilibrium sequences) gets
smaller, denser, and hotter according to the virial relation, because gravity has neg-
ative specific heat.

Stars tend to develop degeneracy as they evolve away from the main sequence,
since they contract faster than they can heat-up. Electrons are the first to become
degenerate being the lightest particles in ordinary matter. When quantum effects in
the fluid particles become important, the star internal structure gets simpler as tem-
perature does not play any role. Electrons carry a large conductivity so that the star’s
interior is isothermal and radiative transfer is confined just in the tiny atmosphere.

Since for a degenerate non-relativistic gas of particles P = (2/3)u, Newtonian
equilibria of degenerate non-relativistic matter have E < 0, and are thus stable. In
addition they follow a mass-radius relation, MR3 = constant, since P ∝ ρ5/3. The
relation is simple as there is only a single parameter, the pressure at the center of the
star that determines uniquely its equilibrium property.3 The heavier the degenerate
star, the denser and smaller the star is. If we let M to increase to larger and larger
values, there will be a critical mass above which the degenerate particles inside the
star enter the relativistic dominated regime (when the Fermi energy exceeds the rest
mass energy of the particles). When this occurs, P = (1/3)u and E ∼ 0 is no longer
a minimum. This signals a turning point for stability on an equilibrium sequence.

3We recall that degenerate particles of mass me (i.e. electrons for white dwarfs) at a given density
n have a distribution in the momentum space p which is flat up to the maximum, known as Fermi
momentum, pF = (3h3n/8π)1/3, where h the Planck constant. Pressure in this fluid scales as
P ∝ n(p/me)p ∝ np2

F ∝ n5/3 when the particles are non-relativistic; for ultra-relativistic electrons,
P ∝ ncpF ∝ n4/3.
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White dwarfs and neutron stars do exist in nature, the first supported against grav-
ity by the pressure of degeneracy of the electrons, at densities of millions g cm−3, the
second by the degeneracy pressure of neutrons, at nuclear densities of 1014 g cm−3.
However these stars exist over a limited range of masses.

As soon as electrons become relativistic, white dwarfs loose their stability and
start collapsing under their own gravitational pull. This occurs when the white dwarf
mass exceeds the Chandrasekhar mass limit of MCH ≈ (�c)3/2/m2G3/2 equal to
1.46M&, for a composition of heavy ions (of atomic weight A, charge Z and mass
Am) and electrons (with mean electron molecular weight μe ∼ A/Z ∼ 2). MCH is
the maximum mass for a white dwarf to remain in stable equilibrium [12]. At MCH
a white dwarf is on the verge of collapsing. Collapse can further progress or can be
halted and reversed depending on the white dwarf chemical composition. If com-
posed of carbon and oxygen nuclei the star ultimately explodes: energy deposition
by runaway nuclear reactions drives a detonation wave that unbinds the entire star,
leaving no remnant.4 By contrast, the collapse continues if the white dwarf (the core
of a very massive star) is composed of iron nuclei, the most bound nuclei in nature.
Via endothermic dissociation of iron nuclei into α-particles and free neutrons, and
deleptonization of matter via inverse β-decay (e−+p→ n+ ν), collapse continues
unhalted until the star’s core reaches nuclear densities. At this point, a neutron star
forms composed mostly of free degenerate neutrons. The mass of the neutron star
is close to the Chandrasekhar mass limit as it results from the collapse of a stellar
core at MCH. A fundamental question then arises. Can neutron stars carry a mass
arbitrarily large so that very massive stars end their life as neutron stars, always?

Neutron stars are (crudely) like white dwarfs, except that they consist of clod
degenerate neutrons and are more compact having a radius me/mn times smaller,
i.e. RNS ≈ 10 km. Since the electron mass me does not enter the expression of MCH
(only the baryon mass m is involved there, and the neutron mass mn is close to the
proton mass m), we would expect that degenerate neutrons will become relativistic
(and so the star unstable) at just such mass. A critical maximum mass exists also
for neutron stars but with some slight complication as neutron stars are relativistic
stars.

In GR, the density ρ of a star in hydrostatic equilibrium is the mass-energy
density and as energy is equivalent to mass, any form of energy counterbalancing
gravity ultimately becomes a source of gravity. The key finding by Oppenheimer
and Volkoff was that neutron stars composed of an ideal-degenerate gas of (non-
relativistic) neutrons can not remain in stable equilibrium when their mass exceeds
a maximum mass at 0.7M& [13]. This occurs well before relativistic degeneracy for
the neutrons is encountered inside the star. This remarkable finding is due to GR
corrections of non-linear gravity inside the star. No stars with a mass higher than
0.7M& can exist in nature that are supported by neutron degeneracy. This maximum
mass is known as Oppenheimer-Volkoff limit.

But how much should we trust the upper mass limit of Oppenheimer and Volkoff?
Above nuclear matter densities, i.e. above a few 1014 g cm−3, the physics is not very

4These explosions are identified as Type Ia supernovae.
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Fig. 16.1 Equilibrium sequences of neutron stars for selected equations of state [14]. The figure
shows the non-rotating mass versus physical radius. The horizontal bands show the observational
constraints from the mass of J1614-2230 of 1.97 ± 0.04M& (red, [15]), of J1903+0327 (orange,
[16]) and of the double neutron star binaries [14]. Any equation of state line that does not intersect
the J1614-2230 band is ruled out by the measurement by Demorest et al. [15]. In particular, most
equations of state involving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum neutron star masses well below 2.0M&, and are therefore ruled out. Green lines refer to
strange star models. The upper left gray areas of different intensity refer to regions excluded by
GR and causality. The figure is from [15]

well understood and is poorly constrained by experimental data. No unique model
exists for nuclear forces, understood as a residual coupling of the more fundamental
force among quarks. This causes huge uncertainties on the correct equation of state
and thus on the true value of the maximum neutron star’s mass Mmax. Nonethe-
less, the existence of a maximum mass is inevitable. This was considered to be an
alarming result as the concept of a maximum mass for a neutron star is conducive to
the concept that black holes unavoidably form during core collapse of very massive
stars when their core’s mass exceeds Mmax.

The Oppenheimer-Volkoff limit was discovered much earlier than the discovery
of the Kerr solution of a rotating black hole, and for long times it was believed that
stars, in their latest stages of evolution, manage to lose significant amounts of mass
in order to “avoid” hitting the Oppenheimer-Volkoff limit, and that rotation could
be a cause of such mass loss.

There is indeed a considerable range of values for the neutron star maximum
mass Mmax today, in relation to the equation of state adopted [14]. It can vary from
1.6M& to 2.5M& as illustrated Fig. 16.1 where the mass versus radius relation is
plotted for a set of equations of state. Soft equations of state (those with a lower
pressure for a given mass-energy density) predict lower-mass maximum masses,
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and are those where hyperons, mesons, and/or pion condensates and/or are present.
A phase transition to quark matter in the core is also considered to be a possibility.

As any star is endowed of rotation, then centrifugal support against gravity would
enhance the maximum mass, but studies by [17, 18] indicate a mass increase of only
20 %. Since rotation is limited by the condition of break up and mass shedding at
the equator, the most rapidly spinning neutron stars can be used to infer the correct
equation of state for nuclear matter if their mass is known, and thus to infer the true
maximum mass of a neutron star. Soft equations of state allow for the lowest spin
periods ever possible (0.4 milliseconds for a neutron star of 1.4M&, as shown in the
works by Cook et al. [17, 18]). An inequality can be derived for the spin period

Prot >Prot,min � 0.96± 0.03

(
M

M&

)−1/2(
R

10 km

)3/2

ms, (16.1)

where M and R are the mass and radius of the spherical static neutron star solution
[14]. The apparent lack of neutron stars spinning with periods below a millisecond
is a hint that at nuclear densities matter does not follow a soft equation of state.

To circumvent uncertainties in the equation of state of cold matter at ultra-high
densities Rhoades and Ruffini in 1974 presented an argument to derive a firm up-
per mass limit [19]. If (i) gravity is described by GR; (ii) the equation of state is
well known below a threshold density ρo; (iii) matter is microscopically stable (i.e.,
dP/dρ ≥ 0); and (iv) the equation of state satisfies the causality condition, that the
sound speed is less than the speed of light (i.e., c2

sound = dP/dρ < c2): then

Mmax � 3.2

(
ρo

4.6× 1014 g cm−3

)−1/2

M&. (16.2)

Thus, if there is a maximum mass for a (rotating) neutron star, any dense star heavier
than Mmax must be/become a Kerr back hole.5

A key question rises: Do laws of nature manage to protect any star from collaps-
ing to a black hole by some mean? To answer that question we need to consider how
stars form and evolve. This will be explored in Sect. 16.5. Meantime, observations
are providing compelling evidence that white dwarfs and neutron stars do form in
nature as well as stellar-mass black holes, and this topic is shortly reviewed in the
incoming section.

5A radically different viewpoint was presented by Witten with the introduction of the strange star
model. The idea of the strange star rests on the hypothesis that strange quark matter, composed
by equal number of up, down and strange quarks, could be the absolute ground state of matter
[20]. The simplest model of self-bound strange quark matter is the MIT bag model for which
P = (ρc2 − 4B)/3 where B is the Bag constant. Interestingly, strange stars exist only below a
maximum mass of about 2.033M& for B = 56 MeV fm−3.
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16.4 Neutron Stars and Stellar-Mass Black Holes in the Realm
of Observations

While Sirius B, the white dwarf companion to Sirius A was discovered in 1844,
the discovery of neutron stars and stellar-mass black holes had to wait until the mid
1960s. Neutron stars were discovered as Pulsars, i.e., as rotation-powered highly
magnetized neutron stars in 1967 [21], and as accretion-powered X-ray sources in
binary systems a year later, in 1968 [22]. Similarly, stellar-mass black hole can-
didates were discovered as accretion-powered X-ray sources. The chief argument
used in discriminating between a stellar-mass black hole or a neutron star was and
still is the mass. Remarkably, not only we do observe these compact stars as cosmic
sources but we witness the moment of their formation. Core-collapse supernovae
and γ ray burst (those called long GRBs) that are among the most powerful sources
in the universe are the events that accompany their birth.

Neutron stars, besides their strong gravitational field (nearly as strong as that of
a black hole having a radius RNS ∼ 3RS), are endowed by rapid rotation, and often
by intense magnetic fields. They further have a surface and a crust that can be a
site of nuclear explosions. By contrast black holes are endowed by a very strong
gravitational field, and by rotation only. As a consequence neutron stars display a
much richer phenomenology than black holes.

As sources of extreme gravity, both neutron stars and black holes can be observed
in the universe, as accreting sources [23–27]. According to the accretion paradigm,
energy can be extracted in the form of radiation with high efficiency just outside the
event horizon of the black hole and outside the surface of the neutron star. A test
particle of mass mp in free fall, hitting the surface of a neutron star releases a kinetic
energy in form of radiation as large as (GM/RNSc

2)mpc
2 ∼ 0.1mpc

2 given the high
surface gravity of the star. Similarly a test particle of mass mp releases a comparable
radiation energy (0.1mpc

2) in order to rich the event horizon of a black hole after
spiralling inward along a sequence of nearly circular orbits. (Note that free-fall onto
a black hole does not require any release of radiation since black holes do not hold
a surface.)

Customarily, accretion occurs via a geometrically thin, optically thick accretion
disc as matter in the vicinity of the black hole likely carries a non-vanishing angular
momentum [30]. Gas moves on nearly Keplerian orbits around the compact object
forming a disc. As cooling is rapid, the gas settles in a geometrically thin disc and
flows inward under the action of viscous stress. During the slow drift, the gas heats
up reaching typical temperatures of several million degrees (a few keV), each an-
nulus emitting as a black body at an effective temperature that increases closer to
the black hole or neutron star. Under these conditions more than 10 % of the rest
mass energy is released at the expense of the gravitational energy by matter prior
crossing the event horizon or prior touching the surface of the neutron star. This
high efficiency (ε ∼ 10 %), much higher than nuclear reactions, makes black holes
and neutron stars sites of large energy production. Having a horizon, i.e. not a sur-
face, accretion is the main and only known vehicle for highlighting the presence of
a black hole in the universe. A disc forms around a neutron star, similarly to the case



408 M. Colpi

of a black hole: the disc however interacts with the star’s magnetosphere and later
with the surface producing additional dissipation.

Besides accretion, the intense magnetic fields that neutron stars can carry give
origin to a phenomenology that is unique of neutron stars and that categorize them
as rotation powered pulsars. The emission, distributed over a wide range of spectral
energies (often from radio to γ -rays) results from a complex and degrading cascade
of high energy photons and electron-positron pairs interacting with the magnetic
field that drain energy from the rotation of the neutron star [28, 29].

After nearly 50 years of continuous discoveries and continuous monitoring of the
sources, the picture that emerges is as follows:

(i) Neutron stars are ubiquitous in the Milky Way (more than a billion), and so
in any other galaxy. Similarly, black holes of stellar origin are ubiquitous in
the galaxies (more than a few millions) as in our own Galaxy.

(ii) More than ∼1500 rotation-powered pulsars has been discovered in our own
Galaxy, from radio surveys, and now in increasing number from surveys at
MeV energies.

(iii) Rotation-powered pulsars come into two favours: (1) The young highly mag-
netized (with magnetic fields B � 1012 G) isolated pulsars. Their lifetime is
about 107 yr as they fade away when crossing the death line [29]. They map
the young stellar population in the spiral arms of the Milky Way. (2) The old,
weakly magnetized (B � 109 G) millisecond pulsars, spinning with periods
below 10 milliseconds, which (mostly) live in binaries with a white dwarf as a
companion. In the Galaxy they are found in the bulge, in the galactic disc, and
in large numbers in globular clusters. They trace the old stellar population. In
binaries, pulsar masses can be measured with high accuracy, and so they offer
the possibility of studying the mass distribution of neutron stars (those formed
in binary systems). Intermediate to the two classes are the rotation-powered
pulsars that have as companion a second neutron star, referred to as double
neutron star binaries. These in binaries are the most exquisite laboratories for
testing GR.

(iv) Accretion-powered X-ray sources housing either a neutron star or a stellar-
mass black hole are ubiquitous in the Milky Way and are currently observed
in large numbers also in nearby galaxies [37]. They are broadly divided into
two classes: (1) The High Mass X-ray Binaries where a massive star (more
massive than ∼10M&) feeds the compact star through an accretion disc, via
its powerful wind. Dissipation in the viscous disc heats the fluid on its way to
the compact object, and a spectrum at hard X-ray energies is emitted by the in-
flowing plasma onto the large magnetosphere. Given the short lifetime of the
massive star, these sources trace the young stellar populations, and are present
in large numbers in star-forming galaxies. (2) The Low Mass X-ray Binaries
where a low-mass star (less massive than the sun) feeds the compact compan-
ion star through an extended accretion disc, via Roche lobe overflow when the
star exists the main sequence and ascends the red-giant branch. Dissipation in
the viscous disc heats the fluid on its way to the compact object, and a multi-
black body spectrum is emitted at soft X-ray energies. These sources trace the
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old stellar populations, and are present in large numbers in bright, massive el-
liptical galaxies. In both classes, X-ray emission can be either persistent or
transient (i.e. varying on timescale of weeks, months to years).

(v) In both classes of accreting X-ray sources, a lower limit to the mass of the
compact star can be inferred.

(vi) The compact object in accreting X-ray binaries can be identified as a neutron
star, if the source is pulsating (i.e., if there is a periodicity in the X-ray light
curve), or in the absence of any pulsation, if a runaway thermonuclear flash
is observed resulting in the so called Type I X-ray burst [31]. Both features
are signature of the presence in the source of a hard surface; in other words
the absence of an event horizon. Sources that lack of these two features may
host a stellar-mass black hole. In this case, this is not a sufficient condition to
identify a black hole.

(vii) Low Mass X-ray Binaries which host a neutron star (instead of a black hole)
are the progenitors of the rotation-powered Millisecond Pulsars in binaries as
in these low mass systems the neutron star is weakly magnetized. The B-field
has likely decayed from high values (∼1012 G) due to long-lived episodes of
accretion down to ∼108 G. During these episodes the mass of the accreting
object can increase sizably, as well as its angular momentum in its interac-
tion with the accretion disc. This process is termed recycling. As soon as
accretion ceases the now rapidly rotating neutron star can turn on as rotation
powered pulsar [26]. Similarly, High Mass X-ray Binaries housing a neu-
tron star are the progenitor of double neutron star binaries [26]. The second
neutron star forms when the high mass star evolves away from the main se-
quence. The evolutionary link among these classes is firmly confirmed by the
observations, and the remarkable finding is that many of these binary systems
housing the two compact stars are tight enough to emit gravitational waves.
The Hulse-Taylor binary pulsar PSR 1913+16 , and the double-pulsar PSR
J0737-3039 (where the two neutron stars are both active as rotation-powered
radio-pulsars) are the show-case binaries where there is compelling, albeit
indirect, evidence that gravitational waves are emitted from the stars in the
binary, due to the time varying quadrupolar mass distribution [32–35].

(viii) There exists a class of accreting X-ray sources, named Ultra Luminous X-
ray Sources, that have luminosities LX ∼ 1039–1041 erg s−1 is excess of the
maximum luminosity for steady accretion onto a 10M& stellar-mass black
hole. These are sources found close to young, forming star’s clusters, and for
many of these sources there is evidence of a companion star. Ultra Luminous
X-ray Sources may not be a homogeneous sample but those which show a
binary nature likely host the heaviest black holes of stellar origin [36].

(ix) No radio pulsar has been observed yet to orbit around a stellar-mass black
hole, in a binary. This represents one of the biggest challenges of incoming
radio observatories like SKA [38]. The pulsar in such systems could be used
as a powerful probe of the spacetime around the black hole. This occurs by
tracing the “in situ” propagation of the radio signal when climbing up the
potential well of the invisible black hole.
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Fig. 16.2 The masses of
neutron star from a variety of
sources: from rotation
powered pulsars to accretion
powered neutron stars. In
particular, mass
measurements refer to
neutron stars in double
neutron star binary systems
(magenta); in High Mass
eclipsing X-ray Binaries
(cyan); in Low Mass X-ray
Binaries, with white dwarf
companions (gold), with
optical observations of the
white dwarf companions
(green), and in accreting
bursters (purple). The figure
is from [39]

In this well explored and studied field of galactic binaries there is now compelling
evidence for the existence of stellar-mass black holes, and the guiding argument
rests in the measure of the mass of the compact object. Figure 16.2 shows data
grouping measured neutron star masses [39], and Fig. 16.3 data for selected stellar-
mass black hole candidates [40].

The masses of compact objects are measured in binaries by tracing the system-
atic Doppler shifts observed in the spectrum of the companion ordinary star, consis-
tent with it moving on a binary orbit under the influence of the unseen companion.
From the Doppler shift data, a radial velocity curve can be constructed, giving the
variation with time of the component of the star’s velocity along the line of sight.
Using Kepler’s laws of orbital motion one can obtain a quantity called mass func-
tion: f (M) = (M sin i)3/(M +m∗)2, where M is the mass of the compact object
and m∗ that of the visible, ordinary star. If m∗ �M (as in Low Mass X-ray Bina-
ries) a firm lower mass limit can be inferred, even if the inclination i of the binary
is unknown. More accurate mass measurements can be inferred in binary systems
housing a pulsating neutron star, through accurate timing of the pulsar signals (as
shown in Fig. 16.2, magenta data points).
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Fig. 16.3 The mass of
galactic black hole candidates
in Low Mass X-ray Binaries,
as presented and discussed
in [40]. The two colors refer
to two different categories
based on the amount of
information available on the
mass ratios and inclinations
of binaries. Arrows indicate
the measured mass function

Figure 16.2 collects an inventory of measured neutron star masses, from a variety
of different sources: from the young rotation-powered neutron stars in non-recycled
binary systems to the old ones recycled in low mass binaries. As illustrated in the
figure, neutron stars inhabiting young non-recycled high mass binary systems, all
believed near their birth masses, have a mean mass of 1.28M& and a dispersion of
0.24M&, in agreements with expectations that neutron stars from in core collapse
supernovae. The mass of the neutron star can rise over MCH if fall-back of material
occurs during the supernova explosion. This depends sensitively on the energetic of
the explosion, and the initial mass of the progenitor star. Double neutron star binaries
may have evolved in systems where fall-back was important and for this reason they
carry a slightly higher mass of 1.33M&. The neutron star mass can further increase
during accretion episodes. In Low Mass X-ray Binaries in particular, accretion can
be long lived. Again Fig. 16.2 indicates that the mass distribution of neutron stars
that have been recycled in Low Mass X-ray Binaries has a mean of 1.48M& and
a dispersion of 0.2M&, consistent with the expectation that they have experienced
extended mass accretion episodes.

Recently, radio timing observations of the binary millisecond pulsar PSR J1614-
2230 (also reported in Figs. 16.1 and 16.2) have led to the discovery of the heaviest
neutron star known of 1.97± 0.04M& measured with such certainty [15]. This find-
ing effectively rules out the presence of hyperons, bosons, or free quarks at the
center of neutron stars, and thus of equations of state with a high degree of softness
[41]. Though the sample of Fig. 16.2 is likely biased toward target neutron stars
that formed and evolved in binary systems, i.e. in peculiar galactic environments,
1.97 ± 0.04M& can be taken as a firm lower limit to the maximum mass of a neu-
tron star. Little is known about the mass of isolated neutron stars, i.e. born from
progenitor stars evolved in isolation, but in the future there will be the prospect of
measuring their masses and this will be discussed in Sect. 16.9.

Figure 16.3 shows a collection of data from galactic Low Mass X-ray transient
sources housing stellar-mass black hole candidates. Following [40], observations
are best described with a narrow mass distribution peaked around 7.8±1.2M&. The
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Fig. 16.4 The inferred mass distributions for the class of recycled neutron stars (the heaviest of the
population of neutron stars as a whole in the Galaxy) and for black hole candidates in Low Mass
X-ray Binaries (for clarity the black hole distribution has been scaled up by a factor of three).The
dashed lines correspond to the most likely values of the parameters while the solid lines represent
the weighted mass distribution. The figure shows the natural divide existing between neutron stars
and stellar-mass black holes. The figure is from [39]

heaviest black hole has been observed in a distant galaxy: identified as M33 X-7 it
has a mass of 15.65± 1.45M&.

According to our theoretical expectation, the maximum mass of a neutron star
establishes a divide between neutron stars and black holes of stellar origin. In prin-
ciple a black hole can carry any mass, thus even a mass as small as MCH or even
smaller. However, as we are guided by our knowledge on stellar evolution, any col-
lapsing iron core in a massive star will evolve into a neutron star and not a black
hole as long as its mass is below Mmax. With this strong argument (or prejudice) the
dividing line between neutron stars and black holes of stellar origin is represented
by Mmax. Thus, Mmax could be viewed as the minimum mass for a stellar-mass
black hole. With this premise, it is quite remarkable that the mass distributions of
neutron stars and of black hole candidates shows this divide, as clearly illustrated in
Fig. 16.4.

In the future, constraining both the low-mass and high-mass ends of the black
hole mass distribution will bring clues on the way black holes form, in relation to
the explosion energy in core collapse supernovae, to the degree of rotation of the
collapsing core, and to the metallicity. An example of such analysis is presented in
the incoming section.

16.5 Black Holes of Stellar Origin: A Maximum Mass?

One of the key, yet unanswered, question is: what is the maximum mass of a black
hole of stellar origin? Pilot studies by Heger et al. [42] highlighted the key role
played by metallicity in affecting the final fate of massive stars (with mass on the



16 Astrophysical Black Holes: Evidence of a Horizon? 413

main sequence in excess of 10M&) and in determining the black hole mass at the
end of star’s core collapse [42].

Stars form following the fragmentation of cold (10–100 K) molecular gaseous
cores of initial density ρ ∼ 10−24 g cm−3, corresponding to the densest phase of the
interstellar medium. Stellar embryons generally evolve to increasing central densi-
ties and temperatures as they grow by accretion of surrounding gas, and contraction
and growth halt when burning of hydrogen into helium starts in their cores. Any star
has contracted up to a mean density ρ ∼ 1 g cm−3, when entering the main sequence
phase of hydrogen ignition. In the case of massive stars, burning of helium into car-
bon and oxygen, then carbon, neon, oxygen into silicon continues until finally iron
is produced in the core. The dense growing core is progressively dominated by elec-
tron degeneracy, at temperature of ∼109 K, and when the star has built up a large
enough iron mass exceeding its Chandrasekhar mass limit MCH, collapse continues
unhalted and either a neutron star (of mean density �1014 g cm−3) or a black hole
forms. The relic core weight no less than ≈MCH or slightly more, depending on the
dynamics of the collapse, i.e. whether material has fallen back and a luminous or
dim supernova explosion or no-explosion has occurred.

Figure 16.5 from Heger et al. (2003) shows, in a rough scheme, the fate of single
stars as a function of the initial stellar mass and metallicity Z (defined as the loga-
rithm in power of ten of the iron to hydrogen abundance ratio and often expressed
in units of the solar metallicity Z&). Primordial (or Pop III) stars (at the bottom of
the diagram) are stars resulting from the collapse and fragmentation of pristine gas
formed from the composition as made in the Big Bang, and thus lacking of any metal
(Z = 0). Modern stars (at the top of the diagram) are stars formed out of gas clouds
with solar metallicity or even larger, so that on the y-axis the span of metallicity
covers more than seven orders of magnitude (near to pristine with Z = 10−6Z& up
to 10Z& for the very metal rich stars).

Figure 16.5 captures the basic findings on the end-states of stellar evolution,
showing that the fate of stars is in close relation to their metallicity at birth, be-
side their mass. Stars evolve always in neutron stars if their initial mass is below
25M&, regardless the value of Z. The fate is a neutron star, regardless the initial
star’s mass (i.e. even when the initial mass exceeds 25M&) if they are very metal
rich: this is due to the dramatic mass loss by metal-induced winds that these metal
rich stars experience even during the main sequence phase. Mass loss cause these
stars evolving as if they were initially much lighter. Above 25M&, stellar black
holes form over a wide range of metallicities provided the values of Z are not very
large. In this regime, we can distinguish black holes resulting (i) from fall-back: ini-
tially a neutron star forms in the collapsing star launching a shock wave that drives
matter out (with supernova display). Later, fall-back of outflowing gas, bound to
the forming neutron star core, drives the central core above Mmax resulting in the
formation of a black hole; and (ii) from direct collapse if the collapse of the stellar
core is un-halted (with no or dim supernova display). Black hole formed along the
first channel weight less than those formed via direct collapse, and their mass is a
fraction of the mass at birth. As noted by Heger et al. and illustrated in Fig. 16.5 the
relative importance of the fall-back and direct channels depends on the metallicity
of the progenitor star.
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Fig. 16.5 Remnants of massive single stars as a function of initial metallicity (y-axis; qualita-
tively) and initial mass (x-axis; solar masses). The thick green line separates the regimes where the
stars keep their hydrogen envelope (left and lower right) from those where the hydrogen envelope
is lost (upper right and small strip at the bottom between 100M& and 140M&). The dashed blue
line indicates the border of the regime of direct black hole formation (black). This domain is in-
terrupted by a strip of pair-instability supernovae that leave no remnant (white). Outside the direct
black hole regime, at lower mass and higher metallicity, follows the regime of black hole forma-
tion by fall-back (red cross hatching and bordered by a black dash-dotted line). Outside of this,
green cross hatching indicates the formation of neutron stars. At even lower mass, the cores do not
collapse and only white dwarfs are made (white strip at the very left). The figure is from [42]

A further finding by Heger et al. [42] is that black hole formation in metal free
and/or metal poor stars is confined to the (albeit wide) intervals of initial masses
in between 40M&–140M& and above 260M&. By contrast, stars with masses in
between 140M& and 260M& have a different fate: they explode leaving no black
hole remnant. Gamma-rays produced in their cores become so energetic that they
annihilate into particle and anti-particle electron pairs, after central carbon burning.
The resulting drop in radiation pressure causes the stellar core to collapse under
its own huge gravity and to heat up (according to the virial theorem) to produce
further gamma-ray photons via nuclear reaction that cascade back into electron-
positron pairs. This triggers runaway burning of oxygen and silicon so that rapid
energy deposition blows the star completely apart leaving no-remnant. At higher
metallicities, stars loose their mass without ever encountering the electron-positron
pair instability, and this explains why it is suppressed in stars with increasing Z as
shown in Fig. 16.5.



16 Astrophysical Black Holes: Evidence of a Horizon? 415

Only above 260M&, direct collapse to a black hole of comparable mass is “re-
stored” as photo-disintegration of alpha particles (which themselves are already the
result of photo-disintegration of iron group elements which were made in silicon
burning) reduces the pressure enough that the collapse of the star, deprived by car-
bon/helium nuclei ready to burn, is not turned around but directly continues into a
black hole.

The diagram in Fig. 16.5 thus shows that nature manages to avoid forming black
holes during the collapse of very massive stars, in a certain range of masses and
metallicities, illustrating how delicate is the balance between gravity and micro-
physics when coupled to radiative transport and nuclear energy production.

In summary, the maximum mass of a black hole of stellar origin is undetermined:
primordial/metal-poor stars likely end their life as massive stellar-mass black holes
weighing more than 260M&. No black holes of this mass have been ever observed.
Indeed, little is known at observational level not only on the true evolution of very
massive stars, but also on their statistical inference. The initial mass function of
stars in relation to the metallicity of their cosmic environment in not very well con-
strained, particularly at low metallicities. As a rule o thumb, a canonical Salpeter
initial mass function produces one stellar black hole every 103–4 ordinary stars so
that the search and identification of black holes of stellar origin is always problem-
atic and challenging. It has been speculated that the initial mass function of Pop
III and of metal poor stars is top-heavy, i.e. there is a predominance of very mas-
sive stars over stars as ordinary as the sun, but theoretical uncertainties and lack of
observations make this scenario highly debated.

Recently, it has been suggested that tracing the population of Ultra Luminous
X-ray Sources may be of central importance in order to address the issue on the
maximum mass of black holes of stellar origin, as these sources (or some of them)
may host the heaviest black holes resulting from stellar core collapse [43].

16.6 Black Holes: The Other Flavor

So far, our focus was on stellar-mass black holes of �3M& up to∼260M& (or more,
e.g. �1000M&), for which we outlined a clear formation path. Black holes appear
however to come in nature in another flavor: they are the supermassive black holes,
weighing between ∼106M& up to ∼109M& [44, 45].

The suggestion of the existence of supermassive black holes originated in the
early sixties following the discovery of Quasi Stellar Objects (QSOs; or quasars).
QSOs are active nuclei that are so luminous (with bolometric luminosities in the
range of �1044–47 erg s−1 ∼ 2× 1010–13L&) that often outshine the galaxy they in-
habit. Their radiation is emitted across a spectrum, almost equally, from X-ray to the
far-infrared, and in a fraction of cases from γ -rays to radio waves. Their variability
on short timescales reveals that the emitting region is only a few light years across.
Correlated variability over broad energy intervals indicates that this mechanism can
not be ascribed to any stellar process. Efficiencies of mass-to-light conversion of the
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order of 10 % are required in order to fulfill all observed requirements and this is
suggestive that QSOs and the more broadly called AGN (acronym of Active Galac-
tic Nuclei) are associated with the relativistic potential of a supermassive black hole.
A fraction (∼10 %) of the AGN, from radio to γ -rays, shows the presence of col-
limated jets transporting relativistic particles (with bulk Lorentz factors around ten)
extending rather coherently for up to millions of light years. Again, this requires the
presence of a relativistic potential well and of a stable preferred axis over timescales
of hundred million years, properties that hint for the presence of a stable source, i.e.
supermassive black hole. The jet power might even be extracted directly from the
rotational spin energy of the black hole itself by means of the Blandford-Znajek
mechanism [46], or from the accretion disc [47] who’s axis of orientation fixes a
preferred direction in space. A further fact supporting the black hole conjecture is
that the basic properties of AGN and QSOs seem to scale self-similarly over a lumi-
nosity range of more than six orders of magnitude indicating that a universal engine
is present for a certain time in most if not all galaxies.

16.6.1 Weighing Active Supermassive Black Holes

For long time the chief argument for weighing a black hole in an AGN or QSO
has been the Eddington limit on the luminosity, corresponding to when the radia-
tion pressure force acting on accreting electrons equals the force of gravity (upon
protons). Above this limit accreting gas that would be responsible of the emis-
sion can not fall onto the black hole as it is blown away. This occurs when the
accretion luminosity exceeds the Eddington luminosity LEdd = 4πGM•mpc/σT ∼
1046(M•/108M&) erg s−1 (where σT is the Thomson cross section, mp the proton
mass, and M• the black hole mass). The linear correspondence between the Edding-
ton luminosity and M• clearly fixes a lower limit on the black hole mass of an AGN
of given luminosity LAGN, and the interval of AGN luminosities unambiguously in-
dicate that supermassive black holes of 106M&–109M& are required to power their
loud emission.

Alternatively, if εδMaccc
2 is the fraction of radiated away energy by an accreting

black hole, (1 − ε) δMacc is the mass accreted by the black hole. As εδMaccc
2 =

LAGNδtAGN is the radiated away energy for an AGN emitting a luminosity LAGN
over a timescale δtAGN, a mass as large as 6×107M& is acquired by the active black
hole over a time of ∼108 yr, if LAGN = 1012L&, and ε ∼ 10 %. This unavoidably
lead to the accretion-induced growth of a supermassive black hole.

The mass M• of an active black hole can also be determined by studying the kine-
matics of gas orbiting around. Warm gas is revealed through the presence of broad
emission lines that are observed in the optical spectra of QSOs [44]. Mass estimates
require the independent measure of the velocity Vgas and distance Rgas of the orbit-
ing gas, assumed to move on Keplerian circular orbits (V 2

gas =GM•/R). At present,
the measurements of the velocity and velocity-width of broad emission lines (Hβ ,
Mg II and C IV, in particular) originating from gas moving around the supermas-
sive black hole on parsec and even sub-parsec scales provide measurements of their
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Fig. 16.6 Redshift distribution of the black hole masses of 14,434 QSOs selected from DSDD
DR3, by Vestergaard et al. [49]. The median mass in each selected redshift bin is marked with a
square. The median propagated black hole mass measurement error is shown in the midst of the
lower part of the diagram. The dashed line refers to the faint SDSS flux limit so that at any given
redshift observation can not pierce deep into the faint, lower mass end of the black hole mass
distribution

mass. The technique uses (besides Vgas) the monochromatic continuum luminos-
ity to estimate the position of the emitting lines Rgas via an empirical relation that
has been inferred for a number of selected sources using the so called reverberation
mapping technique [48].6

Figure 16.6 from [49] shows the mass distribution of the QSOs selected from the
Sloan Digital Sky Survey (SDSS-DR3) over a sample of 15180 QSOs in the red-
shift range 0.3 < z � 5. The median mass in redshift bins varies from a few times
107M& (at lower z) up to 109M& (at higher z). QSOs (o more generally AGN) are
a population of cosmic sources distributed over an ample interval of cosmological
redshifts [50]. Observations indicate that AGN are a population that underwent se-
vere cosmic evolution and that had their peak of activity around redshift 2 � z� 3
where also the overall star formation rate had its peak, in the universe [50]. Evi-
dence is accumulating that the complex, yet understood mechanism of black hole
fueling goes hand in hand with the formation and assembly of the baryonic compo-
nent of galaxies over the entire cosmic epoch. Gas needs to be accumulated in the
nuclear regions of a forming galaxy, and dynamical instabilities on large scales need
to reverberate down to the smallest scales to feed the central black hole. This may
occur when structures are on their way of forming [51, 52]. Thus, a clear prediction
is that as soon as the accretion activity has superseded owing to the lack of fuel, a

6This technique reminiscent of echo mapping makes use of the intrinsic variability of the contin-
uum source in active galactic nuclei to map out the distribution and kinematics of line-emitting
gas from its light travel time-delayed response to continuum changes. These echo mapping exper-
iments yield sizes for the broad line-emitting region that have been studied in about three dozen
AGNs. The dynamics of the line-emitting gas appears to be dominated by the gravity of the central
black hole, enabling measurement of the black-hole masses in AGN.
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dormant supermassive black hole should reside in galaxies that were able to grow a
supermassive black hole [53].

16.6.2 Dormant Black Holes in the Local Universe and Their
Demography

In recent years, studies of the dynamics of stars and/or gas at the centers of nearby
galaxies have revealed the presence of massive dark objects, i.e. of a non-luminous
mass in excess of the mass (in stars) resulting from the underlying galactic poten-
tial [54]. This is inferred through observations of the galaxy’s surface brightness
profile at the smallest resolvable spatial scales, able to pierce down to a volume
of size comparable to the gravitational sphere of influence of a hypothetical super-
massive black hole nested at the center of a typical stellar bulge. The detection of
a dark mass comes from the signature of a Keplerian rise in the velocity field of
a spatially resolved ensemble of stars (or gas). This implies that the dark massive
object is point-like on the smallest resolvable scales though not necessarily point-
like on the true scale. If the star’s velocity dispersion in the bulge is σ∗ (typically
of 100 km s−1 up to 300 km s−1), the influence radius of a black hole of mass M•
is Rinf ∼GM•/σ 2∗ ∼ 10(M•/108M&)(200 km s−1/σ∗)2 pc, corresponding to 0.11
arseconds of angular size for a galaxy at a distance of 20 Mpc.

Over the last ten years, thanks to the unprecedentedly high angular resolution and
sensitivity of the Hubble Space Telescope (HST), it has been possible to measure
the spatial distribution and spectroscopic velocities of stars in the nuclei of several
nearby galaxies. At present, there are 17 robust mass determinations from stellar
dynamics with HST, and among these is the case of the nearby Andromeda galaxy
(M31). All observations invariably point towards the presence of a massive dark
object with inferred masses in the interval between 107M& and 3 × 109M& [54].
Similarly, gas dynamical studies with HST have led to the discovery of 11 galaxies
(among which M87 in the Virgo cluster) housing dark matter objects of similar
mass. By exploiting the dynamics of stars and gas, HST is probing regions of size
∼Rinf that are roughly a million times bigger than the Schwarzschild radius of the
supermassive black hole, should it be present there.

While the motion of stars is directly and almost solely affected by the gravita-
tional potential of the galaxy and of the dark massive object, gas can be influenced
by forces other than gravity. However, since internal energy can easily be dissipated
whereas angular momentum cannot, the gas at the center of a galaxy plausibly settles
into a relatively cold rotating, massive nuclear disc. In this context, an independent
observational technique, which has provided one of the strongest cases for the pres-
ence of supermassive black holes, is the measurement of gas dynamics by means of
the H2O megamaser emission line at the wavelength of 1.35 cm. Radio measure-
ments with the VLBA (Very Long Baseline Array) can achieve angular resolutions
100 times smaller than HST (less than half of a milliarcsecond). The text-book case
refers to NGC 4258 housing a massive dark object of M• ∼ 3.9 × 107 ± 0.1M&
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Fig. 16.7 Mass versus density diagram re-adapted from [71]: Filled squares represent current
data for most of the observed dark massive objects: their half-mass Mh is the measured mass M•/2
and the half-mass density is computed as ρh = 3Mh/4πR3

h accounting for the spatial resolution
at the time of the measurement. Lines refer to loci of constant maximum possible lifetimes for
a dark cluster with half-mass Mh and half-mass density ρh, against the processes of evaporation
and destruction by physical collisions. The lifetime of such hypothetical clusters is much shorter
than 10 Gyr, the age of the universe, only in the cases of NGC 4258 and our Galaxy, thus strongly
arguing for a point mass in these nuclei

confined within a region as small as 0.03 parsecs, strongly pointing towards the
presence of a black hole [69, 70]. Figure 16.7 collects (on the x-axis) the masses
M• of the dormant black holes in terms of Mh =M•/2 (the half-mass of an hypo-
thetical cluster of dark star) that have been collected by Maoz [71].

The phenomenological evidence discussed so far of supermassive black holes
in the centres of nearby galaxies has also important astrophysical and cosmological
implications (that go beyond the scope of this review but that are worth mentioning).
For a long time the AGN phenomenon was depicted as caused by a process exclu-
sively confined to the nuclear region of galaxies, with no relation with the host. This
picture of disjoint black hole and galaxy evolution changed soon after data on black
hole masses were collected and confronted with properties of the underlying host
galaxies, thanks to HST that allowed a full kinematical and morphological charac-
terization of the hosts. If was then found [56, 57] that galaxy spheroids with higher
stellar velocity dispersions, i.e. with deeper gravitational potential wells and accord-
ingly higher stellar masses and luminosities, host heavier central black holes with
little dispersion in the correlation. More massive galaxies thus grow more massive
black holes: the black hole “sees” the galaxy that it inhabits, and the galaxy “sees”
the black hole at its centre despite its small influence radius [58]. The tightest cor-
relation found is between M• and the star’s velocity dispersion σ∗ in the bulge:
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log(M•/M&)= (8.12± 0.08)+ (4.24± 0.41) log(σ∗/200 km s−1), for all galaxies
and with a scatter of 0.44± 0.06 [55]. Consensus is rising that the M• − σ∗ is fossil
evidence of a co-evolution of black holes and galaxies. The relation may have been
rising along the course of galactic mergers and in episodes of self-regulated accre-
tion during the formation of the early structures, but its true origin and evolution at
look-back times is still unclear [59–61].

16.6.3 Supermassive Black Holes: How Do They Form?

There exist a number of key and independent observations that hint for a major
growth of supermassive black holes via accretion during their luminous phase as
QSOs AGN [62]. What is then the mass of the supermassive black holes at birth?
This key question has at present no answer being unconstrained by observations.
Are they growing from black hole seeds? When and where do these seeds form and
which is their characteristic mass?

Middleweight black holes of 105M& (much lighter than the black holes in the
AGN, as shown in Fig. 16.6 are now increasingly found in low mass spirals and
dwarf galaxies with and without a bulge, and evidence is rising that these lighter
black holes co-habit dense nuclear star clusters at the center of galaxies. According
to the current paradigm of galaxy formation, dwarf galaxies in the galactic field are
believed to suffer a quieter evolution than their much brighter analogues, the massive
elliptical often found in galaxy’s clusters. Thus, dwarf galaxies are the preferred
sites for the search of these pristine black holes. However our knowledge is rather
incomplete.

Models of hierarchical structure formation predict that galaxy-sized dark matter
halos start to become common at redshift z ∼ 10–20. This is the beginning of the
nonlinear phase of density fluctuations in the universe, and hence also the epoch of
baryonic collapse leading to star and galaxy formation. This is also believed to be the
time of formation of the black hole seeds [63]. In this context, different populations
of seed black holes have been proposed in the range of 100M& up to 106M&.

Small mass seeds of 100M& or 1000M& may result from the core collapse of the
first generation of massive stars (Pop III) that form inside unstable metal-free gas
clouds, at z ∼ 20 and in halos of 106M& [64–66]. Alternatively, large mass seeds
may form later and in heavier halos of 108M& from the collapse of unstable gaseous
discs [67]. This route leads to the formation of a massive quasi-star able to grow in
its core a black hole that keeps on accreting and growing from the dense envelope.
A third possibility, among others, is that star collisions in ultra dense nuclear star
clusters lead to the formation of a supra-massive star that ultimately collapses into a
black hole [68]. It is clear that these pathways are all reminiscent of the way stellar-
mass black hole form. Quite intriguingly, no current observations give us any clue on
how black hole formed and grew to the giant size characteristic of the supermassive
black holes. While it is currently accepted that black hole of stellar origin form in
the aftermath of core collapse (dim) supernovae, witnessing the formation of a seed
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black hole at look back times is still unaccessible to observation, and has no unique
signature.

16.6.4 The Supermassive Black Hole at the Galactic Center

The determination of the mass of the dark massive objects at the center of galax-
ies can give a hint on the mass of the dormant supermassive black holes residing
there, but it does not prove that the object is a Kerr black hole endowed by an event
horizon. Even in the text-book case of NGC 4258 water maser lines are detected
out to distances Robs ∼ 104RS, much larger than the size of the event horizon RS.
Combining the mass of NGC 4258 with the resolution scale Robs of the observa-
tion one can infer a lower limit to the mass density associated to the dark object:
ρdark-obj ∼ 4M•/R3

obs which for NGC 4258 is 1012M& pc−3, for Robs = 0.03 pc.
This density is much higher than the stellar mass density of a globular cluster, but
still far from the mean black hole mass density ρhorizon ∼ 4M•/R3

S ∼ 2c6/(G3M2• ),
equal to ρhorizon ∼ 1021M& pc−3 for a supermassive black hole of 108M&. Is there
a case where the presence of a supermassive black hole is more compelling?

The Galactic Center offers the closest view to a hypothetical supermassive black
hole [72, 73]. The nucleus of the Milky Way is one hundred times closer to Earth
than the nearest large external galaxy Andromeda, and one hundred thousand times
closer than the nearest AGN. Due to its proximity, it is the only nucleus in the uni-
verse that can be studied and imaged in great detail. The central few parsecs of the
Milky Way house gas cloud complexes in both neutral and hot phases, a dense lu-
minous nuclear star cluster, and a faint radio source SgrA∗ of extreme compactness
(3 to 10 light minutes across).

Observations, using diffraction-limited imaging and spectroscopy in the near-
infrared, have been able to probe the densest region of the star cluster and measure
the stellar dynamics of more than two hundred stars a few light days far from the
dynamical center. The latter is coincident, to within 0.1 arcsecconds, with the com-
pact radio source SgrA∗. The stellar velocities increase toward SgrA∗ with a Kepler
law, implying the presence of a 4 ± 0.06 ± 0.35 × 106M& central point-like dark
mass (the largest uncertainty coming from uncertainties on the distance of the Earth
relative to the Galactic Center).

This technique has also led to the discovery of nearly thirty young stars that orbit
the innermost region: the so called S0 (or S stars). These young stars are seen to
move on Keplerian orbits, all sharing the same focus. Any spherically symmetric
extended configuration of dark stars distributed over the S0 star’s complex would
give rise to planar precessing orbits that would deviate from being Keplerian. This
implies that the dark object at the Galactic Center has a size that can not exceed
the smallest periapsis of the collection of the S0 stars. For this reason, particular
attention has been given to S02 (or S2) the showcase star orbiting the putative black
hole on the closest, highly eccentric (0.88) orbit with a period of 15.9 years. S02
is skimming the hypothetical horizon of the supermassive black hole at a distance
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which is about 1000 RS. The periapsis of this orbit imposes a lower limit on the
density of the dark mass concentration of ∼1013M& pc−3, larger than that inferred
for NGC 4258. Additionally, an even lower “lower-limit” of 1018M& pc−3 can be
inferred from the compactness of the radio source SgrA∗ .

Are these limits providing compelling evidence that the dark point-mass at SgrA∗
is a supermassive black hole?

16.6.5 Testing the Black Hole Hypothesis?

To argue convincingly that the massive dark objects discovered at the center of
nearby galaxies and in our own Galaxy are dormant black holes, one must rule out
alternatives to the black hole hypothesis. The simplest is a cluster of non luminous
objects, such as stellar remnants [71]. It is clear that SgrA∗ poses the most stringent
limit on the properties of such non luminous clusters. If SgrA∗ is not a “special” ob-
ject, the limit inferred from SgrA∗ should indicate that all other dark objects would
satisfy the same limit, if explored with the same angular resolution.

Can dark clusters of relic stars or of failed stars such as planets and/or brown
dwarfs of such compactness exist in nature? In other words can clusters with densi-
ties much in excess of 109M& pc−3 and up to 1018M& pc−3, remain in dynamical
equilibrium for a timescale comparable to the Hubble time?

Black holes in nearby galaxies are likely to exist since the early epoch of galaxy
formation when they were outshining as QSOs, and the widespread stability of the
AGN phenomenon and of the radio jets in particular argues in favor of a long-lived
structure. Thus, given the observed masses M• and the lower limits of the densities
of all the massive dark objects ρdark-obj, is the characteristic lifetime of a hypothet-
ical cluster longer than 13 Gyrs? If its lifetime is longer than the Hubble time, then
hyper-dense star clusters are an alternative to the supermassive black hole hypothe-
sis.

An upper limit to the lifetime of any bound stellar system (such as a star’s clus-
ter) is given by its evaporation time. Evaporation is the inevitable outcome of clus-
ter evolution as stars escape from any dynamical system due to weak gravitational
encounters that lead the system to reach equipartition of the star’s kinetic energy.
The evaporation timescale of a cluster consisting of equal-mass (m∗) objects is
tevap ∼ 300trelax where the relaxation time trelax = (0.14N/ lnN)(R3

h/GMh)
1/2 is

given as a function of the number of stars N =M/m∗ , the half-mass radius Rh and
the total mass M of the cluster. Denoting with Mh and ρh the cluster’s half-mass
half-mass-density, one has

tevap ∼ 4× 104(Mh/m∗)
ln[0.8(Mh/m∗)]

(
ρh

108M& pc−3

)−1/2

yr. (16.3)

The other limit on a cluster lifetime comes from the disruption of stars by phys-
ical collisions (occurring at extreme star’s densities). After a time tcoll, every star
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experiences a collision. Runaway collisions among ordinary stars would lead to the
formation of a large star and to severe mass loss via stellar disruption. The large star
may then collapse into a black hole. Maoz estimates a collision time of

tcoll ∼
[

16π1/2n∗σ∗r2∗
(

1+ Gm∗
2σ 2∗ r∗

)]−1

, (16.4)

where n∗, r∗, and σ∗ is the star’s density, radius and velocity dispersion, respectively.
The lifetime τ(m∗, r∗) of a cluster of stars of given mass and radius is the min-

imum between tevap and tcoll. Accordingly, for every combination of Mh and ρh,
one can define the maximum cluster lifetime as the one obtained exploring all
types of non luminous stars and selecting the longest lived one: τmax(Mh, ρh) =
max[τ(m∗, r∗)] over all families of dark stars considered (comprising stellar-mass
black holes of �3M&, or neutron stars of 1.4M&, or white dwarfs in the mass in-
terval [0.01M&,1.4M&], or very low mass objects of mass 10−3M&, as planets or
mini-black holes).7

Following Maoz (1998), Fig. 16.7 shows, in the half-mass and half-mass density
plane, the loci of constant cluster maximum lifetimes against the processes of evap-
oration and destruction due to physical collisions. The squares refer to current data
for most of the observed massive dark objects in nearby galaxies. The figure shows
that all massive dark objects observed are consistent with being dense star clusters
of any plausible form of non-luminous objects except for SgrA∗ at the Galactic Cen-
ter, and NGC4 258. (Note that a much higher density is currently estimated for the
dark object at the Galactic Center from the compactness of the radio source, as in-
ferred from its variability.) Since the dark mass at the Galactic Center is the only
mass distribution probed with sufficient space resolution, and since we expect that
the dark mass in SgrA∗ is not exceptional, this observation provides strong evidence
in support that all dark massive objects are point masses, within the limits imposed
by SgrA∗.

Collision and evaporation arguments can not exclude the presence of dark clus-
ters, if these consist of elementary particles: in the limit of m∗ → 0 the collision and
evaporation times can be made arbitrarily long [71]. Collisionless dark matter par-
ticles is a possibility. However they may not mass segregate to extreme densities ρh

as they are dissipationless. A viable alternative to a point mass, i.e. to a Kerr black
hole, is a boson star made of self-gravitating repulsive bosons for which dynamical
stability has been proven to hold [74]. Current observations can not exclude this
possibility for the dark object at the Galactic Center, and additional and alternative
tools are necessary to prove or exclude this hypothesis, tools that will be described
in Sect. 16.9.

7Physical collisions do not affect the lifetime of clusters made of black holes as light as 0.005M&,
due to their small sizes. For these light mini-black holes the evaporation time can also be made
arbitrarily long, owing to the weakness of gravitational encounters, when m∗ → 0. These mini-
black-holes would however not be of stellar origin, and no current astrophysical scenario predict
their existence.
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16.7 Black Holes: Are They Spinning?

Astrophysical black holes carry a mass and a spin (which is a vector), and mass and
spin determine uniquely the structure of the spacetime. In Boyer Lindquist coordi-
nates, the event horizon of a Kerr black hole is fixed uniquely by the black hole mass
M and by the modulus of the spin vector J , customarily expressed in terms of the
dimensionless spin parameter a such that: J = aGM2/c with a ≤ 1, according to
the cosmic censorship conjecture. The event horizon

Rhorizon(M,a)= GM

c2

[
1+ (1− a2)1/2] (16.5)

of a rotating Kerr black hole is decreasing with increasing a, from 2GM/c2 for
a = 0 to GM/c2 for a = 1. Equation (16.5) indicates that a hypothetical measure of
the black hole spin can be obtained by pinpointing the position of the event horizon,
if the mass is known by some other, independent mean.

Can we measure the spin of a black hole? The spin itself can be viewed as a indi-
rect manifestation of an event horizon, since it is near the horizon that the ergosphere
of a Kerr black hole develops, or in other terms since the spacetime is warped in a
well defined manner. The spin is also a manifestation of the conservation of angular
momentum: cosmic bodies carry often if not always a spin and if they collapse into
a black hole, the hole is inevitably rotating and at a much higher frequency owing
to the reduction of the moment of inertia of the collapsing star.

The spin of neutron stars can be directly measured from the modulation imprinted
in the light curve of either a rotation-powered (isolated) pulsar or of an accreting X-
ray pulsar in a binary system, due to the natural misalignment that exists between
the spin axis l̂ ≡ J/J and the axis of the magnetic moment m of the star (if highly
magnetized). For the case of a black hole, the “access” to a spin measurement is
much more subtle.

In the simplest, albeit realistic case of an accreting black hole, the accretion disc
extends from far out distances (corresponding to radii where either the disc self-
gravity becomes important [for the case of supermassive black hole], or where the
Roche radius is located in a binary [for the case of a stellar-mass black hole]) down
to the so called Innermost Stable Circular Orbit (ISCO).

In the Kerr metric there exists a critical radius, the radius of the ISCO RISCO,
defined in the equatorial plane of the rotating black hole, below which no dynami-
cally stable circular orbit exists for test particles with finite mass. RISCO is a mono-
tonic decreasing function of a, in the interval −1≤ a ≤ 1. For negative values of a,
corresponding to counter-rotating discs relative to the hole’s spin axis, and in par-
ticular for a =−1, RISCO = 9GM/c2. For a = 0 the radius is at 6GM/c2, and for
a > 0, corresponding to co-rotating discs, RISCO further decreases so that at a =+1,
RISCO =GM/c2 coincides with the horizon.

RISCO can be viewed as the inner rim of any geometrically thin accretion disc
around an active black hole. At RISCO the gas loses its dynamical stability and falls
into the black hole without the intervention of viscous torques. It is before matter
reaches RISCO that there is the highest energy dissipation in the accretion disc, and
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it is before and around RISCO that a series of GR effects on light propagation leave
the spin signature imprinted in the X-ray spectra of accreting black holes, and in the
shape of their emission lines.

The sudden change in the disc structure due to the presence of this dynamical in-
stability in the Kerr spacetime is unique to black holes and gives access to measuring
the black hole spin.

Two methods are employed, both of which depend upon identifying the inner
radius of the accretion disc as the ISCO whose dimensionless radius RISCOc2/GM

is a function of the spin parameter a, only [77]. The first is the continuum-fitting
method which has so far only been applied to stellar-mass black holes that con-
sists in modeling the thermal X-ray continuum spectrum of the truncated accretion
disc. The second is the Fe Kα method, which applies to both classes of black holes
(stellar-mass and supermassive), that models the profile of a relativistically broad-
ened fluorescence iron line with special focus on the gravitational redshifted red
wing of the line. Also in this case the truncation of the disc at RISCO is a key as-
sumption of the model to infer a.

The GR generalization of the standard accretion disc model [30] by Novikov &
Thorne [76] in the late 90s allowed computing the multicolor black-body-spectra
from a geometrically thin, optically thick accretion disc. This model provides spec-
tra of the continuum that can be used as templates to fit the data. The guiding line for
the continuum-fitting method relies on an analogy: that of measuring the radius of a
star R∗ from the observed flux Fobs and the effective temperature Teff derived from
the black body spectrum of the star, i.e. from L∗ = 4πD2Fobs = 4πR2∗T 4

eff, once the
distance D to the source is known. From Fobs and Teff , one can infer π(R∗/D)2,
and thus R∗ known D.

Similarly, the continuum-fitting model aims at measuring π cos i (RISCO/D)2

from the observed flux, and Teff near RISCO by accurate fits of the multicolor black-
body disc spectrum. If the distance D to the source, the black hole mass and the
inclination of the disc i to the line of sight are known, then fitting the continuum
gives RISCO in dimenssionless units, and in turn gives a. As Teff scales with the
black hole mass as M−1/4 in the standard model [30] (i.e. lighter black holes have
harder/hotter spectra) knowledge of the black hole mass is necessary to avoid degen-
eracy in the evaluation of the temperature of the continuum. Since the flux F emitted
locally at a distance R by the disc increases with decreasing radius R, the effective
radiation temperature Teff varies with R as well. Accordingly, the hottest emitting
annuli are those near RISCO, where Teff is the highest. As spinning black holes (of
fixed mass) have smaller RISCOc2/GM , they result in a higher effective temperature
at the cut-ff radius RISCO: fastly spinning black holes should have warmer spectra
and higher luminosities per unit accreted matter L/Ṁ (with Ṁ the mass accretion
rate, and L the disc luminosity) than non spinning black holes.

Figure 16.8 shows the logarithmic derivative of L/Ṁ versus the radius r in units
of GM/c2, for the Novikov & Thorne model (dahsed lines; [75]). The sharp down
turn of d(L/Ṁ)/d ln r in the Novikov & Thorne model mirrors the effect of net
truncation of the accretion disc at RISCO. Arguments have been advanced to sug-
gest that a magnetized accreting gas will indeed have a non-zero shear stress at the
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Fig. 16.8 Luminosity profiles (solid lines) from GR magnetohydrodynamic simulations by Kulka-
rni et al. [75] compared with those (dashed lines) re-adapted from [76] for a razor thin accretion
disc truncated at the innermost stable circular orbit RISCO. From bottom to top, the spin parameter
a increases from 0, 0.7, 0.9, and 0.98

ISCO [44], and that furthermore this stress could be so large that it may completely
invalidate the Novikov & Thorne model even in very thin discs. This is clearly an
important question that strikes at the heart of the continuum fitting method. A num-
ber of recent studies of magnetized discs using three-dimensional general relativistic
magnetohydrodynamic (GRMHD) simulations have explored this question [75, 78].
The conclusion of these authors is that the shear stress and the luminosity of the sim-
ulated discs do differ from the Novikov & Thorne model, but in a “controlled” way,
as illustrated in Fig. 16.8 (solid line). Thus fitting the continuum remains a viable
method, providing all these caveats are taken into consideration.

Are the accretion discs in real sources truncated? Observational evidence of trun-
cated discs in a class of highly variable sources, the Soft X-ray Transients, has been
inferred via monitoring large changes in the flux of thermal origin. As RISCO is fixed
by the geometry of the underlying Kerr black hole, the disc is expected to extend
down to RISCO regardless the magnitude of the accretion flux and intrinsic luminos-
ity (related to the mass transfer rate). Observations reveal that in these sources the
fitted inner disc radius remains stable over changes in the flux by 10–100 factors.8

In the Fe Kα method, one determines RISCO by modeling the profile of the broad
and skewed iron line, which is formed in the inner disc by Doppler effects, light
bending, relativistic beaming, and gravitational redshift [79–81]. Of central impor-
tance is the effect of the gravitational redshift on the red wing of the line. This wing
extends to very low energies for a rapidly rotating black hole (a � 1) because in
this case gas can continue to orbit down to the event horizon. This is illustrated in
Fig. 16.9 where the line profiles predicted in the case of Schwarzschild (red) and
maximal Kerr (blue) black holes are shown.

8Recently, the evidence for a constant inner radius in the thermal state has been presented for a
number of sources via plots showing that the bolometric luminosity of the thermal component
is approximately proportional to T 4

eff. This indicates the stability of the radii of the inner annuli
contributing most to the thermal emission.
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Fig. 16.9 Line profiles
predicted in the case of
Schwarzschild (red) and
maximal Kerr (blue) black
holes. It is the extent of the
red wing and its importance
relative to the blue wing that
allow black hole spin to be
determined with disc lines.
Re-adapted from the review
by Miller [81]

Measuring the extent of the red wing in order to infer the spin a is hindered by
the relative faintness of the signal. However, the Fe Kα method has the virtues that
it is independent of the mass M of the black hole and distance D to the sources, and
that the blue wing of the line permits an estimate of the inclination i. This method,
while applicable to both classes of black holes, is presently the only viable approach
to measuring the spins of supermassive black holes.

Only for a handful of Galactic stellar-mass black holes and AGN, spins have
been measured [77, 81]. The values of the spin are found to cover the whole interval
(0 � a � 1), with no preferred value for the spin. Nor, measurements can guaran-
tee an accuracy such to yield a measure of the spin of an extreme Kerr black hole.
While spins of stellar-mass black holes are genetic since accretion in Galactic bina-
ries has never had time to alter a since birth,9 spins of supermassive black holes can
mirror specific evolutionary paths and accretion histories, given the large amount of
gas that active black holes can accrete when shining as QSOs. Thus, information on
their spin at birth is erased. No spin statistics is available yet to infer the true spin
evolution of supermassive black holes: theoretical models suggest that if accretion
occurs in the coherent mode in most of the AGN, i.e. it occurs through long-lived
episodes of accretion along a preferred plane then black hole should be spinning
close to a ∼ 1. By contrast, if accretion occurs in the chaotic mode, i.e. via a se-
quence of randomly oriented episodes favor very low spins, the black hole spins in
AGN should be quite low, owing to the rough balance of prograde and retrograde
accretion events. A further key issue is the potential correlation between the black
hole spin and the jet power in radio loud AGN. At present this correlation is quite
poor, highly debated and extremely controversial [82].

16.8 Black Holes: Evidence of an Event Horizon?

Are there prospects of demonstrating the existence of an event horizon in an alter-
native way?

9The spin of a black hole changes sizably only if the black hole accretes a mass of the order of the
black hole mass itself.
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Consider again the case of an accretion disc around a compact object extending
down to the ISCO [83]. Gas, having lost stability, inevitably falls into the event
horizon. By contrast, if there is a surface inside ISCO (as for the case of a neutron
star whose physical radius is in between RS and RISCO for most of the equations of
state) then gas that falls in rapidly is shock-heated within a boundary layer on the
star’s surface. In other terms, under identical accretion conditions a neutron star is
brighter than a black hole because it has a surface. If LBH = Ldisc is the luminosity
of a black hole surrounded by an accretion disc, LNS = Ldisc + Lsurface > LBH is
the luminosity for a neutron star. The key step forward is to find a class of sources
housing either a black hole or a neutron star that accrete under the same conditions.
If so, black holes would be underluminous and this would be a signature of an event
horizon. This is the chief argument that was pioneered by Narayan et al. (2008) and
his colleagues.

The argument is slightly more subtle: to magnify the effect of a large luminosity
mismatch between LBH and LNS, Narayan et al. (2008) searched for sources where
the break down of the thin disc approximation occurs. Accretion discs can be consid-
ered geometrically thin if gas cools rapidly (on a timescale shorter than the viscous
time of the mass inflow). However flows with long cooling times and thus low ra-
diative efficiencies can in principle form under at least two critical circumstances:
(i) when the accretion rate is so low that the inflowing gas has low density (and long
cooling times), or conversely (ii) when the accretion rate is so large that the gas, op-
tically thick, traps the radiation that is dragged in. In both cases energy is advected
inward and these flows are called ADAF, acronym of Advection Dominated Accre-
tion Flows. If the accretor is a black hole the advected energy is captured within the
horizon and invariably; if it is a neutron star that energy is ultimately released at the
surface.

In the low accretion rate regime, this process has been considered to explain
the emission of a class of X-ray binaries (the Soft X-ray Transients) that are tran-
sients as they alternate long lived phases of quiescence with short lived phases of
intense accretion. During quiescence, the sources are emitting at a very low lumi-
nosity compared to the luminosity during the outburst phase. Figure 16.10 shows
the quiescent luminosity of a number of Soft X-ray Transients versus the orbital
period (expressed in hours). Filled symbols correspond to known black hole can-
didates and open circles to neutron stars, while shaded bands are to guide the eye.
As these binaries house low mass donors of similar mass, binaries with comparable
orbital periods likely host similar accretion disc. Thus comparing sources in qui-
escence having similar orbital periods means selecting sources that accrete under
similar conditions.

Figure 16.10 shows that as a group, the neutron stars are a factor a hundred or
more brighter than the black hole candidates and this difference can be interpreted
as evidence that these sources posses an event horizon, and thus house a black hole.
There are caveats, since the interpretation of the quiescent luminosity of neutron
stars is not unique. For example, this luminosity can be attributed to heating of the
star’s crust during outburst followed by cooling in quiescence, and if true the whole
picture becomes invalid.
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Fig. 16.10 Eddington-scaled luminosities in the energy interval of 0.5–10 keV of black hole tran-
sients (filled circles) and neutron star transients (open circles) versus the orbital period. The plot
shows all systems with known orbital periods, which have optical counterparts and good distance
estimates. The diagonal hatched areas delineate the regions occupied by the two classes of sources
and indicate the observed dependence of luminosity on orbital period. Note that the black holes
systems are on average nearly 3 orders of magnitude fainter than the neutron star systems with
similar orbital periods. The figure is from [83]

16.9 Event Horizons: A New Perspective

Observations indicate that the center-most part of galaxy spheroids and bulges of
spirals consists of a cluster of a few 107 to a few 108 stars and of the dark massive
object of mass M•, from now on a supermassive black hole [84]. Star’s densities
can be in excess of 106 pc−3, and up to 108 pc−3 near the center, suggesting that
stars can interact dynamically with the central dark object. Under these exceptional
conditions stars can either be tidally torn apart and disrupted by the central black
hole or, if compact, can get swallowed. Thus, stars can probe the innermost regions
of the spacetime around a black hole as gas particles do in an accretion disc. If an
ordinary star, like the sun, of radius r∗ and mass m∗ ∼ M& happens to pass very
close to the massive black hole, i.e. within a distance rtidal ∼ r∗(M•/M&)1/3, some
part of it or all of it is teared apart under the action of the tidal field by the black
hole, and a fraction of the gas composing the star likely form a ring that is eventually
accreted by the black hole. If RS (RS,∗) is the Schwartzshild radius of the central
black hole (star), the disruption occurs at a distance (in units of the Schwartzshild
radius) rtidal/RS ∼ (r∗/RS,∗)(m∗/M•)2/3 which is only∼2×105(m∗/M•)2/3 ∼ 20,
for a black hole of 106M& and m∗ =M&.

Depending on the distribution and topology of the orbits, stars in galactic nu-
clei can alternatively be swallowed whole on their first pass by the central super-
massive black hole and these are called direct plunges. There is however a very
interesting possibility (and a range of orbits) corresponding to gradual inspiral. If
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the star is a compact object (a neutron star or a stellar-mass black hole), the star is
not tidally disrupted (having rtidal smaller than RS) and can orbit very close to the
hole’s event horizon, as if it were a “point” mass (i.e. unaffected by tides). Under
these circumstances the compact object orbits deep in the relativistic potential of the
supermassive black hole and slowly spirals inward toward the black hole as it emits
gravitational waves. This process of slow inspiral is referred to as Extreme Mass Ra-
tio Inspiral (EMRI), as extreme is the mass ratio between the large, massive black
hole M• and the neutron star or stellar-mass black holes [84]. Owing to the extreme
compactness, the star can explore the entire volume of spacetime outside the super-
massive black hole before being swallowed. The compact object doomed to death
spends many orbits (up to 105) around the large black hole and when doing so, it ra-
diates gravitational waves whose waveform is containing detailed information about
the spacetime and all the physical parameters which characterize the EMRI.

Gravitational waves are emitted typically at frequencies of fGW > 10−4 Hz, one
or two years before the object is swallowed, allowing the detection of EMRIs in
galaxies up to cosmological redshift z ∼ 0.7, corresponding to a volume of several
Gpc3 [85]. If one considers the New Gravitational wave Observatory (NGO, often
referred to as extended LISA or eLISA) as reference experiment for the direct de-
tection of low frequency gravitational waves from space [85], a few to a hundred
EMRIs could be revealed in two years of operation. Stellar-mass black hole inspi-
rals are expected to dominate the detection rate, both because higher mass means
greater gravitational wave amplitude (and hence a larger detection volume) and be-
cause dynamical mass segregation in galactic nuclei concentrates the heaviest ob-
jects closest to the supermassive black hole. Thus, stellar-mass black holes should
be the dominant population near the large black hole.

The highly relativistic orbits of EMRIs, lying within ∼5–10 Schwarzschild radii
of the supermassive black hole, display extreme versions of both relativistic peri-
center precession and Lense-Thirring precession of the orbital plane about the spin
axis, as depicted in Fig. 16.11.

The large number of cycles and complexity of the orbits encode wonderfully de-
tailed information concerning the system’s physical parameters. The mass of the
compact object and of the supermassive black hole, and the eccentricity of the orbit
will typically all be determined to a fractional accuracy of 10−4 or even less. The
analysis of these events will unable us (i) to measure the mass of isolated stellar-
mass black holes and neutron stars (a measure not accessible by any other mean),
and learn about their maximum mass; (ii) to measure the mass M• of the supermas-
sive black hole in a mass range 104M& and 106M& which is complementary to that
probed by electromagnetic observations of AGN and nearby dormant black holes;
(iii) and to have a clean and direct measure of the spin of the supermassive black
hole, i.e. a measurement unaffected by systematics introduced by model fitting, and
with an absolute error smaller than 10−5. Thus, future experiments for the detec-
tion of gravitational waves (as NGO/eLISA) will bring revolutionary information
on the nature of the dark massive objects and we further elaborate this topic in the
incoming section.
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Fig. 16.11 Cartoon of an EMRI orbit, as viewed from the side (top panel) and the emitted grav-
itational wave (bottom panel). The gravitational wave is characterized by higher amplitude and
frequency radiation associated with extreme pericenter precession when the body is close to the
central object, and lower amplitude and frequency radiation when the body is further away. There is
an overall modulation due to precession of the orbital plane. The waveform is colored to illustrate
this structure. The figure is from [81]

16.9.1 Testing the Kerr-ness of the Spacetime

Are the massive dark objects lurking at the center of galactic nuclei supermassive
black holes? No electromagnetic observations can provide a direct test on the Kerr-



432 M. Colpi

ness of a massive dark object while gravitational waves do, as EMRIs can be used
to probe directly the texture of spacetime in a galactic nucleus.

As already mentioned EMRI’s orbits are highly relativistic exhibiting extreme
forms of periastron and orbital plane precession, and given the large amount of
cycles collected during a typical EMRI observation (1–2 years) a fit of the observed
gravitational waveforms to theoretically calculated templates is very sensitive even
to small changes in the physical parameters of the system. The level of precision of
the mass and spin measurements of the central black hole in an EMRI event can be
used as a highly accurate test of the Kerr-ness of the central massive object [85].

The spacetime outside a stationary axisymmetric object is fully determined by
its mass moments Ml and current multipole moments Sl . These moments fully char-
acterize the spacetime so that the orbits of the smaller (test) object and the gravita-
tional waves it emits are fully determined by the multipolar structure of spacetime.
By detecting the gravitational waves with NGO/eLISA one can obtain a map of the
spacetime. Extracting the moments from the EMRI signal is analogous to geodesy
in which the distribution of the Earth’s mass is determined by studying the orbits of
satellites.

Black hole geodesy, also known as holiodesy, is very powerful because Kerr
black holes have a very special multipolar structure. A Kerr black hole with mass
M• and spin parameter a (in units with G= c= 1) has multipole moments given by

Ml + iSl = (ia)lM(l+1)• . (16.6)

Thus, M0 =M•, S1 = aM2• , and M2 =−a2M3• . Similarly, all other multipole mo-
ments are all completely determined by the first two moments, the black hole mass
M• and spin a. This is nothing more than the black hole no-hair theorem: the prop-
erties of a black hole are entirely determined by its mass and spin.

For inspiraling trajectories that are slightly eccentric and slightly non-equatorial,
in principle all the multipole moments are redundantly encoded in the emitted grav-
itational waves, through the time-evolution of the three fundamental frequencies of
the orbit: the fundamental frequencies associated with the r , θ , and φ motions, or,
equivalently, the radial frequency and the two precession frequencies.

The mass quadrupole moment M2 of a Kerr black hole can be measured to within

M2/M

3• ∼ 10−2–10−4 for EMRI’s signals with an SNR of 30, and at the same
time 
M•/M• and 
S1/M

2• can be estimated up to an accuracy of 10−3–10−4.
Any inconsistency with the Kerr multipole structure could signal a failure of GR,
the discovery of a new type of compact object, or a surprisingly strong perturbation
from some other material or object [86, 87].

EMRI signals can be used to distinguish definitively between a central massive
black hole and a boson star [88]. In the case of a black hole, the gravitational wave
signal shuts off shortly after the inspiraling compact object reaches the last stable
orbit (and then plunges through the event horizon), while for a massive boson star,
the signal does not fade, and its frequency derivative changes sign, as the body enters
the boson star and spirals toward its centre. Similarly, if the central object’s horizon
is replaced by some kind of membrane (this is the case for the so-called gravastars)
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the orbital radiation produced by the orbiting body could resonantly excite the quasi
normal modes of the gravastar, with characteristic signatures in the gravitational
wave energy spectrum that would be detectable by eLISA [89].

Other studies within GR considered axisymmetric solutions of the Einstein field
equations for which the multipole moments can differ from the Kerr metric, such
as the Manko-Novikov solution. These studies revealed ergodic orbital motion in
some parts of the parameter space [90] as a result of the loss of the third integral
of motion. Similar studies suggested that the inspiralling body could experience an
extended resonance in the orbital evolution when the ratio of intrinsic frequencies
of the system is a rational number. If detected, these features would be a robust
signature of a deviation from the Kerr metric.

We remark that, if GR must be modified, the “true” theory of gravity should lead
to similar deviations in all observed EMRI. For this reason, statistical studies of
many EMRI events to test GR would alleviate possible disturbances that may cause
deviations in individual systems, such as interactions with an accretion disc [91, 92]
or perturbations due to a second nearby black hole or by a near-by star.

Consensus and appreciation is now rising on experiments such as NGO/eLISA
that are designed to bring transformational science results, i.e. new data that could
improve significantly our knowledge of black holes as astrophysical sources.

16.10 Conclusions

Astrophysical black holes appear to be ubiquitous in the universe. Owing to their
extreme gravity they are hypothesized to power the Galactic X-ray sources and the
luminous QSOs. Black holes appear to influence the dynamics of gas and stars in a
unique way, giving rise of a variety of astrophysical phenomena that we outlined in
this Lecture Note.

There are many unanswered questions that will be addressed in the future, and
we here list three, among the compelling: (i) Are the dark massive objects in
galactic nuclei supermassive black holes? As highlighted in Sect. 16.9, detection
of low frequency gravitational wave from EMRI events in future experiments like
NGO/eLISA will provide a direct test of the Kerr-ness of dark massive objects. In-
coming electromagnetic observations with elevated spatial and time resolutions will
also improve our view on how the gas and stars orbit around the central dark objects
in galactic nuclei, providing accurate measurements on their masses and a view of
their physical environment. (ii) How, when and where supermassive black holes
form in the universe? What is the mass of seed black holes and their physical chan-
nel of formation? Observations indicate that black holes evolve in concordance with
galaxies. However, little is known on how galaxies assemble: whether via major
mergers, or via repeated minor mergers of satellite halos, or from cosmic filaments
or from a combination of all these effects. It is likely that supermassive black holes
are just a manifestation and a key outcome of this intricate phenomenological pro-
cess, and major progress is expected in the incoming years from both observations
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and theory. At present, the mechanism of black hole seed formation is highly de-
bated, and uncertain. (iii) Are powerful jets in radio sources powered by the spin
of the black hole? Also this is a question still unattended. Galactic X-ray binaries
provide the best laboratory for testing this hypothesis, due to their small size and
high variability on scales of milliseconds to years: they could be view as supermas-
sive black holes in miniature. Their continuous monitoring will disclose differences
between sources housing a neutron star, i.e. a star with a surface, or a black hole,
i.e. a star with an event horizon and an ergosphere. Jets are ubiquitous in cosmic
sources, but relativistic jets are somewhat unique as they require the presence of a
relativistic potential, but the different role of the disc, the magnetosphere and the
spin is difficult to disentangle.

Given all these open issues, black holes will still be offering surprises in the
incoming years.
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