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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage tech-
nology transfer in control engineering. The rapid development of control tech-
nology has an impact on all areas of the control discipline. New theory, new
controllers, actuators, sensors, new industrial processes, computer methods,
new applications, new philosophies..., new challenges. Much of this develop-
ment work resides in industrial reports, feasibility study papers, and the re-
ports of advanced collaborative projects. The series offers an opportunity for
researchers to present an extended exposition of such new work in all aspects
of industrial control for wider and rapid dissemination.

Control system design and technology continues to develop in many dif-
ferent directions. One theme that the Advances in Industrial Control series
is following is the application of nonlinear control design methods, and the
series has some interesting new commissions in progress. However, another
theme of interest is how to endow the industrial controller with the ability
to overcome faults and process degradation. Fault detection and isolation is
a broad field with a research literature spanning several decades. This topic
deals with three questions:

• How is the presence of a fault detected?
• What is the cause of the fault?
• Where is it located?

However, there has been less focus on the question of how to use the control
system to accommodate and overcome the performance deterioration caused
by the identified sensor or actuator fault.

One approach to all these issues is to institute a rigorous programme of
process and controller monitoring to minimize the actual occurrence of fault
situations altogether, so-called preventative maintenance. The response of the
control community to these questions has been a little diffuse with no method
promoted as a clear winner; for example, for a period the method of “reliable
control” featured in the literature and at control conferences. This approach
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relaxes the control to accommodate fault failures but the cost is degraded
performance. Another approach was that of “reconfigurable control” in which
the controller is restructured to use the remaining available sensors and actu-
ators and to use any available knowledge of the changes that have occurred
to the process or system.

However, from this diversity of approaches, the industrial control engineer
or the process engineer is quite likely to ask “But do any of these methods
work and what is the online industrial overhead for the application of these
methods?” One way to find out is to study this new volume Fault-tolerant
Control Systems: Design and Practical Applications by Hassan Noura, Didier
Theilliol, Jean-Christophe Ponsart, and Abbas Chamseddine. This monograph
is a little different from some in the Advances in Industrial Control series, for
it is a very focused study of the application of fault-tolerant control (FTC) to
three increasingly complex processes. It has the objective of showing the reader
all the steps in design, implementation, and assessment for some laboratory-
scale and industrial applications of FTC.

The monograph opens with a brief introductory chapter, but it is in Chap.
2 where all the components of FTC design are presented. Six sections of the
chapter build up the design systematically by introducing process models (lin-
ear and nonlinear), fault descriptions (both actuators and sensors), the nom-
inal tracking control design, fault diagnosis methods (using residual genera-
tion), fault effect and size estimation and controller compensation mechanisms
to accommodate the fault. All this is brought together and presented in the
final section as a generic FTC system architecture. Three extended case-study
chapters, which give this monograph its distinctive character, follow this fo-
cussed presentation of the methods to be used. The three process applications
are a laboratory-scale winding machine that characterises “simple” complex-
ity, a laboratory-scale three-tank process that represents “middle-level” com-
plexity, and finally “complex” complexity is represented by an industry-grade
automotive active suspension system. The value of these case studies lies in
their fully documented thoroughness that gives the reader a good practical
insight into how the methods work and allows the possibility of replicating
the three studies themselves.

The practical emphasis of the monograph and its case studies will appeal
to a wide range of academic researchers and industrial control and process
engineers. Academics and students will be able to repeat the case studies on
in-house laboratory equipment, whilst the industrial engineer should obtain a
better insight as to how FTC can be implemented on industrial processes.

This is a growing field and the Advances in Industrial Control series
has a number of volumes available on FTC and related subjects. It is per-
haps worth mentioning Soft Sensors for Monitoring and Control of Indus-
trial Processes by Luigi Fortuna and colleagues (ISBN 978-1-84628-479-3,
2007), Process Control Performance Assessment edited by Andrzej W. Ordys
and colleagues (ISBN 978-1-84628-623-0, 2007), Diagnosis of Process Non-
linearities and Valve Stiction by M.A.A. Shoukat Choudhury and colleagues
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(ISBN 978-3-540-79223-9, 2008), and finally Guillaume Ducard’s monograph
Fault-tolerant Flight Control and Guidance Systems (ISBN 978-1-84882-560-4,
2009). Clearly, the Advances in Industrial Control series has some very strong
entries to this growing technical field and the editors are pleased to see the
monograph Fault-tolerant Control Systems by Hassan Noura and colleagues
join the collection.

Industrial Control Centre M.J. Grimble
Glasgow, Scotland, UK M.A. Johnson
2009



Foreword

As technological systems become more and more complex, the dependence on
their control systems has also increased significantly. This is particularly true
in safety-critical applications where either the success of a mission or ultimate
protection of human lives, property, and environment becomes a paramount
goal. For any practical control systems, no matter how ingenious the design is,
and how immaculate the manufacture process is carried out, things will break.
It is a matter of time, sooner or later. One way to ensure reliable operation
of a system for intended purposes, despite those undesirable circumstances,
such as failures, is to rely on fault-tolerant control strategies.

A fault-tolerant control system is a control system specifically designed
with potential system component failures in mind. Clearly, a fault-tolerant
control may not offer optimal performance in a strict sense for normal system
operation, but generally it can mitigate effects of system component failures
without completely jeopardizing the mission or putting the users/public at
risk. Clearly, the philosophy of fault-tolerant control systems design is different
from other design methodologies. Consequently, their behavior under system
component failures will also be different.

Design of control systems to achieve fault-tolerance for closed-loop control
of safety-critical systems has been an active area of investigation for many
years. It becomes more and more clear that there are certain trade-offs between
achievable normal performance and fault-tolerance capability. A fault-tolerant
control system design has essentially become a decision on manipulation of
such trade-offs.

Despite the efforts in control system community, the field of fault-tolerant
control systems is still wide open. Most of the contributions so far are theo-
retical in nature. It is important to emphasize that when a failure occurs in a
system, either in sensors or actuators, the characteristics of the entire system
can undergo significant change, i.e., degradation. The actuators may not be
able to provide the same level of driving power, while the sensors may not
supply dependable measurements. Without full understanding of those prac-
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tical constraints and respecting the failure induced limitations, fault-tolerant
control system design based purely on theory will be bound to fail in practice.

In the past decade, most of the work in this area has been theoretical in
nature. It is refreshing to read this book which has put the emphasis on the
practical applications. This book will certainly be an important addition to
the library on fault-tolerant control systems. It is one of very few books in this
area that considers practical aspects of fault-tolerant control. It is certainly a
welcome addition and valuable reference for anyone working in this area.

The basic concepts of fault-tolerant control systems are introduced in
Chap. 1. Classification of fault-tolerant control strategies is presented in
terms of fault severity levels. Fault-tolerant control system design and analysis
against actuator and sensor failures have been treated in detail in Chap. 2 for
linear and nonlinear systems. All the important concepts have been presented
using physical system examples by comparing normal system performance
against those under component failures. Both partial and complete failures
of sensors and actuators have been considered. In this chapter, techniques
for fault diagnosis and fault estimations have also been presented. Finally, a
general architecture of a fault-tolerant control system is developed.

Chapter 3 is devoted to the application of fault-tolerant control strategies
on a physical lab-scale winding machine. The authors have provided basic
control objectives for this system with sufficient detail. The performance of
the system under normal conditions is analyzed first to provide a baseline
benchmark for fault-tolerant control system design and analysis. Subsequently,
various actuator and sensor failure scenarios have been dealt with. In this
chapter, both linearized and nonlinear system models are considered. The
book has clearly shown that the effects of faults can be compensated with
properly designed fault-tolerant control systems.

A well known three-tank system is used in Chap. 4 to illustrate design and
analysis techniques for fault-tolerant control systems. An advantage of choos-
ing this system is that the physical relationships among key system variables
can be easily obtained. Using the dynamic models obtained, the detailed pro-
cedure for fault-tolerant control system design and analysis can be clearly
demonstrated. The authors have also included some MATLAB� scripts to
guide the readers through the process and to encourage readers to try by
themselves. Both linear and nonlinear system models have been utilized in
the design and analysis process.

Finally, fault-tolerant control system design and analysis against sensor
failures in an active suspension of a full vehicle system have been considered.
Detailed mathematical description of the suspension is derived first. Based on
this model, fault-tolerant control systems performance against several com-
monly encountered sensor failures have been investigated. The originality of
the work in this chapter is the breakdown of the entire suspension system into
several interconnected subsystems. Each subsystem has its own local controller
and its own fault diagnostic module. A higher level control system coordinates
the information issued from these local modules.
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In summary, the authors have successfully presented some most important
concepts and procedures in fault-tolerant control system design and analysis.
The authors have done this with elegance of mathematics, as well as in-depth
physical understanding of the limitations of handicapped actuators and sen-
sors. This is a must read book on the subject of fault-tolerant control systems.

The logical introduction and the easy to understand styles of presentation
have made this book particularly suitable for graduate students and practising
engineers who are looking for some guidance in applying active fault-tolerant
control methods in their own fields of interests.

London, Ontario, Canada, Professor Jin Jiang
March 2009
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1

Introduction to Model-based Fault Diagnosis
and Fault-tolerant Control

The automation of a process consists in providing a quasi-optimal solution to
obtain the best possible quality of the final product and consequently an in-
crease in profits. Automated system control theory has been widely developed
and applied to industrial processes. These techniques ensure the stability of
the closed-loop system and yield a pre-defined performance in the case where
all system components operate safely. However, the more the process is au-
tomated, the more it is subject to the occurrence of faults. Consequently, a
conventional feedback control design may result in an unsatisfactory perfor-
mance in the event of malfunctions in the actuators, sensors, or other compo-
nents of the system. This may even lead the system to instability. In highly
automated industrial systems where maintenance or repair cannot always be
achieved immediately, it is convenient to design control methods capable of
ensuring nominal performance when taking into account the occurrence of
faults. This control is referred to as fault-tolerant control (FTC) which has
become of paramount importance in the last few decades. The design of an
FTC system requires obviously quick fault detection and isolation (FDI) for
adequate decision making. Hence, to preserve the safety of operators and the
reliability of processes, the presence of faults must be taken into account dur-
ing the system control design.

1.1 Fault Diagnosis

Process monitoring is necessary to ensure the effectiveness of process control
and consequently a safe and a profitable plant operation. Sensor or actuator
failure, equipment fouling, feedstock variations, product changes, and seasonal
influences may affect the controller performance. Such issues apparently make
up to 60% of industrial controllers problems [61]. FDI refers to the task of
inferring the occurrence of faults in a process and finding their root causes
using the following various knowledge-based system strategies: quantitative
models [128], qualitative models [126], and historical data [127].
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The diagnosis of such problems from raw data trends is often difficult.
However, quantitative or qualitative model-based FDI techniques are consid-
ered and combined to supervise the process and to ensure appropriate re-
liability and safety in industry. Short historical review of model-based FDI
can be found in [43, 70, 86] and current developments are reviewed in [44].
Among quantitative models, FDI for linear/nonlinear systems remains a chal-
lenge due to the problem of discriminating between disturbances and faults
through a wide range of operating conditions. Model-based FDI methods have
been developed for exact and uncertain linear/nonlinear mathematical de-
scription of systems based on observer schemes, parameter estimation algo-
rithms, or parity space techniques. Several books are dedicated to these topics
such as [22,24,53] or more recently [31]. For fault isolation, various techniques
based on an exact knowledge of the nonlinear model allow us to generate
residuals sensitive to specific faults and insensitive to others using decoupling
methods [49, 80] or geometric approaches [60, 101].

Based on the large diversity of advanced model-based methods for auto-
mated FDI, the problem of actuator or/and sensor fault detection (which
is one of the main targets of this book) is of basic importance. Nevertheless,
due to difficulties inherent in the on-line identification of closed-loop systems,
parameter estimation techniques are not always suitable. The parity space
technique is suitable to distinguish between different faults in the presence of
uncertain parameters, but is not useful for fault magnitude estimation. How-
ever, the observer-based method is more appropriate to achieve this objective.
Classical decoupled techniques, such as unknown input observer or dedicated
filter devoted to detect and estimate faults (considered as unknown inputs),
can be synthesized for solving the FDI problem in certain cases. It should be
highlighted that the fault magnitude estimation is necessary to ensure an ac-
curate fault monitoring in order to provide an efficient maintenance operation
and to ensure the safety of the environment.

Moreover, many accidents with airplanes or in nuclear power plants have
dramatically illustrated the very important step of FDI to inform the opera-
tors about the system’s status. However, it appears clear that detecting and
isolating a fault is not sufficient if no subsequent action occurs once a fault
has been identified.

As recently proposed by [14, 59], an FTC system, based on fault isolation
and magnitude estimation, can be envisioned to maintain control objectives
despite the occurrence of a fault.

1.2 Fault-tolerant Control

Much effort has been made in the field of FTC in the presence of faults in the
functioning of the nuclear and avionics industries, chemical or petrochemical
plants, etc. The various studies dealing with this problem are based on hard-
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ware or analytical redundancy. Hardware redundancy is necessary in systems
where the safety of people could be affected (airplanes, nuclear plants).

In other industrial processes, hardware redundancy is rare or non-existant,
because of its expensive financial cost. Redundant sensors, usually much eas-
ier and less expensive than actuators, are generally installed. Thus, in the
presence of a major actuator failure, it is impossible to maintain the dam-
aged system at some acceptable level of performance. It becomes of prime
importance to lead it to its optimal operating order, with respect to desir-
able performances and degree of priority. Therefore, the main feature is to
minimize the loss in productivity (lower quality production) or/and to op-
erate safely without danger to human operators or equipment. The system
can continue its operation with decreased performance as long as it remains
within acceptable limits. The use of analytical redundancy makes possible the
reduction in instruments cost and maintenance.

The topic of fault-tolerance has attracted the interest of many researchers
worldwide. Recently, a very interesting bibliographical review of fault-tolerance
was performed by Zhang and Jiang [140]. Various books on FTC have also
been published recently [13, 14, 17, 59, 69, 92].

The analytical fault-tolerant operation can be achieved either passively by
the use of a control law designed to be insensitive to some known faults, or
actively by an FDI mechanism, and the redesign of a new control law. The
active methods are more realistic because all the faults that may affect the
system cannot be known a priori.

Unlike the fault diagnostic field, where definitions and classification of
methods have been clearly given in the literature, FTC is still missing standard
definitions and classifications. In this book we propose a classification of FTC
techniques. This classification is illustrated by the control system performance
vs the severity of the failure (Fig. 1.1). As previously stated, for a priori known
faults, a controller with fixed parameters could be set up with the objective of
controlling the nominal system as well as the system affected by these known
faults (passive methods). This strategy can be achieved using the simultaneous
stabilization methods or methods based on robust control (H∞, disturbance
rejection, etc.). These techniques are also known as reliable control techniques
where the controller must be insensitive to the occurrence of specific faults.

However, it is obvious that passive methods are very restrictive because all
the expected faults and their effects on the plant cannot be known a priori.
Active approaches are preferable to deal with an increasing number of faults.
These methods consist of adjusting the controllers on-line according to the
fault magnitude and type, in order to maintain the closed-loop performance
of the system. If it remains possible to preserve the faulty system performance
close to the nominal one, active methods correspond to reconfiguration. For
more critical failures (a complete loss of an actuator), the nominal perfor-
mance cannot be maintained anymore, the current performance are reduced
as shown in the shaded area of Fig. 1.1. In such cases, a restructuring strat-
egy consisting of modifying the system structure or the control objectives is
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Fig. 1.1. FTC strategies

used. For instance, the number of controlled outputs has to be reduced, or
the nominal reference inputs cannot be reached anymore, and other references
have to be redefined. The objective is to lead the system into a degraded op-
erating mode. Moreover, for a certain type of failure, it is impossible to keep
the system operating even in degraded mode. In this case, the aim is to shut
down the system safely.

In general, an FTC strategy must include an FDI module and an upper
level of supervision module aiming at:

• Dealing with various kinds of faults affecting the plant
• Providing information about the system behavior, the degradations pro-

duced by the fault and the new performance reached by the degraded
system

• Deciding if an FTC method has to be switched on, or if the system must
shut down

In the literature, FTC methods are developed considering that the FDI is
already achieved. FDI techniques are rarely integrated into FTC systems. It is
very often assumed that the model of the faulty system is known, which is not
always realistic for unexpected faults. In order to eliminate the actuator fault
effect which occurs on the system, various methods have been proposed to
recover, as close as possible, the performance of the pre-fault system accord-
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ing to the considered fault representation. Two main approaches have been
developed. One is based on a model matching principle where the control gain
is completely re-computed on-line, and the other method is based on adding
fault compensation to the nominal control law. In the first approach, the con-
trol system can be designed so that the faulty system performance is recovered
and the new system behaves as originally specified. Gao and Antsaklis [47]
suggest a basic approach based on what they called the pseudo-inverse method
(PIM). Rather than the exact model matching method proposed by [48, 117]
has recently proposed an extended PIM method to develop an admissible
model matching approach. These gain redesign methods are not considered in
this book which is completely dedicated to the method based on the additive
control law. From a general point of view, one objective of this book is to show
the development of complete FTC methods where the control law is modified
once a fault has been detected, isolated, and estimated. Another objective
is to show the application of these methods to real laboratory-scale systems
taking into account the constraints of the real applications.

In Chap. 2, the study is developed showing the various steps of active
methods according to the severity of the faults and the ability of the system
to tolerate them. First, actuators and sensors are considered to operate badly
but they are still able to achieve part of the original system performance.
Then a complete loss of a sensor and an actuator are analyzed. The complete
loss of an actuator is a major failure which leads to a large decrease in sys-
tem performance. Thus, it is necessary to restructure the control objectives
with degraded performance. It is shown that, according to the classification
described previously, the strategy to adopt and the level of performance to
recover depend on:

• The process itself
• The degree of the available (hardware and/or analytical) redundancy in

the system
• The severity of the fault or the failure
• The level of desired performance

In this chapter, linear and nonlinear systems are considered. A nominal
control law is described for both cases. For the case of linear or linearized
systems, the notion of an operating point is detailed. Actually, this notion
is not always very well understood and needs to be highlighted. Nominal
tracking control and model-based fault diagnostic techniques are described in
detail and used in the design of the FTC. These methods will be illustrated
by applying them to different systems as will be detailed in the following
chapters.

Chapter 3 is dedicated to the application of the FTC methods described
in Chap. 2 to a laboratory-scale system representing a winding machine. This
electro-mechanical system is a nonlinear system and its model and parameters
are not easy to obtain. Therefore, a model linearized around an operating point
is obtained experimentally as a black box model. Later, a multiple model
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technique is described to allow the system to range over the whole operating
region.

In Chap. 4, the well known three-tank system is used to illustrate FTC
methods and results. For this system, the physical equations are easily ob-
tained allowing us to write a nonlinear model of the system. This model is
first linearized around an operating point and used in the design and the ap-
plication of FDI and FTC methods. Later in this chapter, the nonlinear model
is used to deal with the case of major actuator faults such as actuator loss.
In this case, the system is driven outside the linearized zone and the linear
model is no longer valid, yielding a bad performance of the control system.

Chapter 5 considers a nonlinear complex system represented by a car active
suspension. Unfortunately, a real active suspension system is not available,
but the physical model is described according to papers from the literature
and validated on real systems. This system is considered to be complex due
to its large number of variables. The originality of the work presented in this
chapter is in the breakdown of this system to interconnected subsystems. Each
subsystem has its own local controller and its own fault diagnostic module.
A higher level module coordinates the information issued from these local
modules. Simulation results are performed to illustrate the performance of an
FTC method in the presence of sensor faults for complex systems. Moreover,
as the number of state variables is large, the number of sensors to use for such
systems is analyzed and existing sensors in industry are discussed.
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Application to a Winding Machine

3.1 Introduction

Web transport systems allow the operations of unwinding and rewinding of
various products including plastic films, sheets of paper, sheets, and fabrics.
These operations are necessary for the development and the treatment of
these products. Web transport systems generally consist of the same machine
elements in spite of the diversity of the transported products.

A reduced pilot-plant of an industrial web transport system allows study-
ing of the different operations. The characteristics of this pilot-plant and its
control device are presented in the following. The control of these systems is
not simple because their dynamic characteristics change throughout unwind-
ing. Moreover, quality standards of rewinding and the requirements of manu-
facture are often very constraining. The FTC system associated with the fault
diagnosis module should improve the control performance without leading to
undesirable consequences such as faults or catastrophic breakdowns [124].

A web transport system can be divided into several subsystems (Fig. 3.1).
Among them, generally an unroller and a roller are respectively laid out at
the beginning and at the end of the process. The other subsystems such as
the free rollers dancers, engines tractors, rollers, or the accumulators are used
and laid out according to the process of treatment.

The unroller is the starting point of a web transport system. The qual-
ity of the reel to be unrolled will influence the behavior of the web during
its unwinding. A reel reforming into an oval during storage or badly wound
generates disturbances.

A dancer roller downstream from the unroller is used on one hand to im-
pose the unwinding web tension and on the other hand to filter the variations
of web tension due to the defects of the reel.

The web is involved and guided by rollers which can be motorized or free.
The traction of the web is generally ensured by three rollers: a central roller
motorized on a controlled surface and two rollers of smaller sizes, placed so
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Fig. 3.1. Industrial web transport system

as to obtain a great contact angle web/roller and to support the adherence of
the web with respect to the roller tractor.

The accumulator is used to store the web during the normal operations of
the system and to restore the web during a change of wind. Consequently it
allows a continuous drive.

The step of rolling is the most important among the various operation
steps. This step gives the quasi-final aspect to the material and conditions its
final quality. The process of rolling in successive layers without appearance
of defects is far from easy. Indeed, some folds, some wavelets, or some air
pockets can appear and consequently compromise the quality of the product.
The causes of these defects are on the one hand, the conditions of rolling
(web tension, speed winding, forces support, etc.), and on the other hand, the
properties of the rolled product (surface topography, homogeneity of elasticity,
etc.).

The process of web transport must respect several criteria according to
the quality of the rolled product. The product should not worsen during its
transport because of:

• Elongation
• Crumple
• Folding
• Tear
• Shift

The control of such a system must take into account the characteristics of
the product to be transported.

Moreover, web transport systems are multi-variable and coupled systems,
the process parameters of which vary during operation. The parameter vari-
ation is due to the reels radius variation during unwinding.

The variation of the reels radius significantly modifies the dynamic behav-
ior of the system during the complete process of unwinding. So, the control
performances deteriorate. The strategy of industrial control consists in leav-
ing a margin of sufficient stability by reducing the required performances, and
more particularly by decreasing the linear velocity of the web.
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In this chapter, the objective is to apply the methods described in Chap.
2 to a laboratory-scale winding machine. A complete design of an active FTC
system is proposed and analyzed in the presence of minor faults and more
critical failures. This is done around an operating point and for a complete
unwinding process. The originality of this work is reflected in the description
of the effect of various kinds of faults or failures which may affect the system
and the classification of FTC techniques according to the severity of these
malfunctions.

This study takes into account minor faults and major failures. Minor faults
could be biases or drifts on actuators or sensors, a decrease in the actuator
effectiveness, or even a complete loss of a sensor under some conditions. Major
failures, which involve drastic and discontinuous variations in the plant dy-
namics, correspond, for instance, to an actuator blocked or out of order. In the
presence of such faults, the nominal system performance cannot be reached
anymore. Thus, restructuring control objectives with a degraded performance
must be set up or the system has to be shut down immediately and safely.

3.2 System Description

3.2.1 Process Description

The winding machine (Fig. 3.2) is composed of three reels driven by DC
motors denoted M1, M2, and M3, gears reduction coupled with the reels, and
a plastic strip (300 m length, 5 cm broad and 0.2 mm thickness)(Fig. 3.3).
The radius of the unwinding reel varies from 210 to 70 mm for the totality of
the unwinding operation which lasts approximately 40 min.

Fig. 3.2. Winding machine
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Motor M1 corresponds to the unwinding reel, M3 to the rewinding reel,
and M2 to the traction reel. The angular velocity of motor M2 (Ω2) and the
strip tensions between the reels (T1, T3) are measured using a tachometer and
tensiometers, respectively. Each motor is driven by a local controller. Torque
control is achieved for motors M1 and M3, while speed control is realized for
motor M2.

Fig. 3.3. System description

The control inputs of the three motors are U1, U2, and U3. U1 and U3

correspond to the current set-points I1 and I3 of the local controller as shown
in Fig. 3.4. U2 is the input voltage of motor M2. In winding processes, the main
goal usually consists of controlling tensions T1 and T3 and the linear velocity
of the strip. Here the linear velocity is not available for measurement, but
since the traction reel radius is constant, the linear velocity can be controlled
by the angular velocity Ω2.

3.2.2 Connection to dSPACE�

For the application of a multi-variable control law, a real-time develop-
ment environment (MATLAB�/Simulink� and Real-Time Workshop� and
dSPACE�) is used. The dSPACE� board is the DS1102 based on a Texas
Instrument DSP TMS320C31. This board has four analog inputs and four
analog outputs. The inputs are the measurements of the strip tensions be-
tween the reels (T1 and T3), and the angular velocity of motor M2 (Ω2). The
outputs are the three control inputs U1, U2 and U3 described in Fig. 3.5.

A first study is conducted to illustrate the linear methods developed in
Chap. 2. As previously stated, in nominal operation, the objective is to con-
trol the strip tensions and velocity. From theoretical point of view, the ten-
sion control principle of winding processes seems to be very easy. However, in
practice some disturbances such as the vibration, the interaction between the
tensions, and the slipping problems make the design of the strip tension con-
trol difficult. This winding machine presents one more difficulty: the physical
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Fig. 3.4. Inputs/outputs of the winding machine

parameters of the system which are time-variant due to the variation of the
unwinding and rewinding reel radii. To design a control law for this winding
machine, a model describing the nominal behavior is required. This will be
described in the next section provided that some assumptions are fulfilled. 
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3.3 Linear Case

3.3.1 System Modeling

Winding processes are generally continuous and nonlinear processes. In prac-
tice, the system modeling phase is a tedious and time consuming task and re-
quires a good knowledge of the physical parameters which are often unknown
and unmeasurable. Several studies have dealt with the modeling problem of
winding systems. Since this is not the main objective of this book, an “aver-
age” linear model of the system identified with a nominal working conditions
in a small operating zone is considered. For a detailed study of the modeling
of this winding machine, the reader can refer to [10].

In the first step, the aim is to consider a linear model around an operating
point. Then a multi-linear approach will be considered.

For the linear case, an operating zone is taken around the middle of the
strip, i.e., the radius of the unwinding reel is almost equal to the radius of
the rewinding. The experiments are then conducted in less than 2 min. This
is enough to illustrate the control, FDI, and FTC methods while the model
can be still considered as linear.

A “black-box” identification of the winding pilot-plant is used considering
a model for each output as a multiple-input single-output (MISO) model. The
corresponding analytical model is obtained using an auto-regressive with ex-
ternal inputs (ARX) structure. This model describes the dynamical behavior
of the system in terms of input/output variations (u, y) around the operating
point (U0, Y0):

U0 =
[−0.15 0.55 0.15

]T ; Y0 =
[
0.6 0.5 0.4

]T
. (3.1)

To get this model and to identify the system parameters, pseudo-random
binary sequence (PRBS) signals, considered as variations of the control inputs
around the operating point, are applied to the system at a sampling period
Ts = 0.1 s (Fig. 3.6). The magnitude of these signals should be taken such
that the system is still operating properly within the operating zone where it
is considered as linear. Using the dSPACE� board, the collected signals are
given in the interval

[−1 +1
]

corresponding to
[−10 V +10 V

]
.

The response of the system to these input signals is shown in Fig. 3.7.
After removing the mean value of these signals, and considering the ARX

structure, the model for each output is given as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T1(k + 1) = a11T1(k) + a13T3(k) + b11u1(k) + b12u2(k) + b13u3(k)
Ω2(k + 1) = a21T1(k) + a22Ω2(k) + a23T3(k) + b21u1(k)

+ b22u2(k) + b23u3(k)
T3(k + 1) = a31T1(k) + a33T3(k) + b31u1(k) + b32u2(k) + b33u3(k)

. (3.2)
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Fig. 3.6. PRBS signals

Fig. 3.7. System outputs in response to the PRBS signals
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Then, gathering these equations into a discrete-time state-space represen-
tation, the linearized model of the winding machine around the operating
point (U0, Y0) is given by{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

, (3.3)

with

x =

⎡
⎣ T1

Ω2

T3

⎤
⎦; u =

⎡
⎣ U1

U2

U3

⎤
⎦; A =

⎡
⎣ 0.4126 0 −0.0196

0.0333 0.5207 −0.0413
−0.0101 0 0.2571

⎤
⎦;

and

B =

⎡
⎣−1.7734 0.0696 0.0734

0.0928 0.4658 0.1051
−0.0424 −0.093 2.0752

⎤
⎦.

C is the identity matrix I3. The reader can easily check that the system
described by these matrices is completely observable and controllable.

The next step before going on to the design of the control consists of
validating this model. To achieve this task, another experiment should be
conducted around the same operating point. Then a cross validation is done
and the model given by (3.2) and (3.3) is declared to describe the linear
behavior of the system around the selected operating point.

3.3.2 Linear Nominal Control Law

The nominal control law is set up according to a tracking control design
described in Sect. 2.4. The tracking control problem requires that the number
of outputs that have to follow a reference input vector yr must be less than
or equal to the number of control inputs. This is the case for the winding
machine: three control inputs U1, U2, and U3 are available, thus the three
outputs T1, Ω2, and T3 can be tracked. There is also no need to break down
the output vector, we have y1 = y. The feedback controller to set up has to
cause the output vector y to track the reference input vector in the sense that
in steady-state:

yr(k) − y(k) = 0. (3.4)

Figure 3.8 shows the real-time implementation of the designed control law
around the selected operating point using Simulink� and dSPACE�. When
the program is compiled and runs in real-time, it is driven in open-loop until
reaching the operating zone close to the selected operating point. Then, the
closed-loop is switched on using the trigger “g1.”

The block “Reference vector” corresponds to the reference vector yr that
the system outputs have to track. Actually, this reference vector contains
variations of the real references around the operating point Y0. The block
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Fig. 3.8. Implementation of the nominal tracking control

“Measurements” corresponds to the data acquisition of the three measure-
ments T1, Ω2, and T3 via the analog inputs of the dSPACE� board (the
ADC unit). These three measurements correspond to the output vector Y .
These data are filtered using a first order digital filter to reduce the noise
level. Then the variations of these measurements around the operating point
Y0 are calculated (Fig. 3.9). These variations correspond to the output vector
y = Y − Y0.
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Fig. 3.9. Data acquisition from the sensors

The variations of the control inputs u around the operating points are
calculated according to

u(k) = − [K1 K2

] [x(k)
z(k)

]
, (3.5)

where z is the integral of the tracking error vector

z(k + 1) = z(k) + Ts(yr(k) − y(k)). (3.6)

The variations of the control law u (3.5) are added to the operating point
values U0 in order to get the global control law U = u + U0. The saturation
of the global control inputs U must be considered before applying it to the
actuators via the analog outputs of the dSPACE� (the DAC unit) (Fig. 3.10):
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• If U1 ≥ 1, then U1 = 1, and if U1 ≤ −1, then U1 = −1
• If U2 ≥ 1, then U2 = 1, and if U2 ≤ 0, then U2 = 0
• If U3 ≥ 1, then U3 = 1, and if U3 ≤ −1, then U3 = −1

Fig. 3.10. Application of the control inputs

Remark 3.1. The negative values of U2 mean that the motor is rotating in the
opposite sense so U2 is always equal to zero in our application. The negative
values of U1 and U3 correspond to a resistant torque.

Remark 3.2. The block “Saturations” and the block “Control inputs” could
be combined into one block, but separating them highlights the fact that the
saturations should not be forgotten.

Calculation of the Feedback Control Gain Matrix K

After defining the augmented matrices Ā and B̄ described by (2.32), K =[
K1 K2

]
is computed using the LQ technique such that the following cost

function is minimized:

J =
1
2

∞∑
k=0

(
XT (k)QX(k) + uT (k)Ru(k)

)
. (3.7)

Weighting matrices Q and R are respectively nonnegative symmetric and
positive definite symmetric matrices, Q = 0.05I6 and R = 0.1I3. Using
MATLAB�, the feedback gain matrix for the augmented system can be cal-
culated as follows.
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A bar = [A zeros ( 3 ) ; −Ts∗C eye ( 3 ) ] ;
B bar = [B; zeros ( 3 ) ] ;
Q = 0.05∗eye ( 6 ) ;
R = 0.1∗ eye ( 3 ) ;
[K, s , e ] = d lq r (A bar , B bar ,Q,R) ;
K1 = K( : , 1 : 3 ) ;
K2 = K( : , 4 : 6 ) ;

The application of this control law to the winding machine for a given reference
vector close to the operating point leads to the following results illustrated by
Figs. 3.11 and 3.12.

Fig. 3.11. Outputs response of the closed-loop system
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Fig. 3.12. Inputs response of the closed-loop system

3.3.3 Fault-tolerant Control for Actuator Faults

After the design of the nominal control law, the performances of the FTC
methods developed in Chap. 2 are tested by simulating actuator and sensor
faults according to the description given in Sects. 2.3.1 and 2.3.2. The sim-
ulation of the sensor faults consists of modifying the data acquired from the
sensors in the Simulink� program, while the simulation of the actuator faults
consists of modifying the control inputs to apply to the actuators.

Loss of Effectiveness

As described in Sect. 2.3.1, an abrupt loss of the effectiveness occurring on
the ith actuator can be simulated by multiplying the global control input Ui

by a constant coefficient αi ∈
]
0 ; 1

[
.

Remark 3.3. To simulate an actuator fault, the global control input Ui should
be considered rather than the variation of the control input around the oper-
ating point ui.

Here, an abrupt decrease of 70% in the effectiveness of motor M3 which is
the third actuator has been considered: the control input U3 is multiplied by
α3 = 0.3. Figure 3.13 shows how to simulate this fault in the block “Satura-
tion” of the Simulink� program.
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Fig. 3.13. Abrupt loss of the effectiveness of motor M3

The fault is not considered from the beginning of the experiment. This
means that α3 is equal to 1 at the beginning and when the fault occurs at
time tf , α3 is switched to 0.3. In the following experiments, the fault occurs
at tf = 32 s.

The actuator fault acts on the system as a disturbance. Thus, in the nom-
inal tracking control law considered in this application, the presence of the
integrator in the controller compensates for the fault effect in steady-state:
the output vector will reach its reference value in steady-state. However, it is
obvious that the dynamical behavior of the system will be affected and the
system responses will be slower than those in the nominal case.

In order to compensate for this actuator fault effect, the fault magnitude
should be estimated and then a new control law uadd added to the nominal
one. In the following, the application of the fault estimation based on the
SVD technique described in Sect. 2.6.3 is presented. Let us recall the system
equations in the presence of an actuator fault:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
x(k + 1)
z(k + 1)

]
=
[

A 03,3

−TsC I3

] [
x(k)
z(k)

]
+
[

B
03,3

]
u(k)

+
[

03,3

TsI3

]
yr(k) +

[
Fa

03,3

]
fa(k)

y(k) =
[
C 03,3

] [x(k)
z(k)

] . (3.8)

It is possible to consider Fa = B; then fa will be a vector composed of
three components. The ith component corresponds to the fault on the ith

actuator.
These equations can be rewritten in the following form:

EaXa(k + 1) = AaXa(k) + BaU(k) + Gayr(k), (3.9)

where
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Ea =

⎡
⎣ I3 0 −Fa

0 I3 0
C 0 0

⎤
⎦ ; Aa =

⎡
⎣ A 0 0
−TsC I3 0

0 0 0

⎤
⎦ ; Ba =

⎡
⎣B 0

0 0
0 I3

⎤
⎦ ;

Ga =

⎡
⎣ 0

TsI3

0

⎤
⎦ ; Xa(k) =

⎡
⎣ x(k)

z(k)
fa(k − 1)

⎤
⎦ ; U(k) =

[
u(k)

y(k + 1)

]
.

The following lines show a section of the MATLAB� program that calcu-
lates the necessary matrices to solve the fault estimation problem as described
in Sect. 2.6.3.

% Actuator Fau l t Est imat ion
A bar a=[A zeros (3 ) zeros (3 , 3 )

−Ts∗C eye (3 ) zeros (3 , 3 )
zeros (3 ) zeros (3 ) zeros ( 3 , 3 ) ] ;

B bar a=[B zeros (3 )
zeros (3 ) zeros (3 )
zeros (3 ) eye ( 3 ) ] ;

G bar a=[zeros (3 )
Ts∗eye (3 )
zeros ( 3 ) ] ;

Ea=[eye (3 ) zeros (n , p) −Fa
zeros (3 ) eye (3 ) zeros ( 3 ) ] ;

Ha=[C zeros (3 ) zeros ( 3 ) ] ;

[ pea , nea ]= s ize (Ea ) ;
[ mea , nea ]= s ize (Ha ) ;

EHa=[Ea ;Ha ] ;
[ neha , meha]= s ize (EHa ) ;
% neh = n + p + p , % meh = n + p + nd

[ T1a , S1a ,M1a]=svd (EHa ) ;
% EHa=T1∗S1∗M1’ % But we need T’∗EH∗M=S1

Ttransa=inv (T1a ) ; Ma=inv (M1a ’ ) ;
i f S1a ( : , meha)==zeros ( neha , 1 )

fprintf ( ’ a t t en t i o n ’ )
end
Sa=S1a ( 1 : meha , 1 : meha ) ;

[ nTa ,mTa]= s ize ( Ttransa ) ;
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T11a=Ttransa ( 1 : nea , 1 : pea ) ;
T12a=Ttransa ( 1 : nea , pea+1:mTa) ;
T21a=Ttransa ( nea+1:nTa , 1 : pea ) ;
T22a=Ttransa ( nea+1:nTa , pea+1:mTa) ;

[ nauga mauga]= s ize (Aauga ) ; SM 1a=inv ( Sa∗ inv (Ma) ) ;

At i ld a=SM 1a ∗ [ T11a T12a ]∗ A bar a ;
B t i l d a=SM 1a ∗ [ T11aT12a ]∗ B bar a ;
Gt i ld a=SM 1a ∗ [ T11a T12a ]∗ G bar a ;

Once these matrices are calculated, the actuator fault fa can be estimated
by solving the system equations given in (2.98). The real-time actuator fault
estimation is added to the Simulink� nominal control program as shown in
Fig. 3.14. The additive control law is then calculated according to (2.107).
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Fig. 3.14. Real-time actuator fault estimation

Application and Results: Actuator Bias Fault

The global actuator FTC is then built as illustrated by the Simulink� program
(Fig. 3.15). The complete program is then compiled and executed in real-time
for the abrupt actuator fault described above.

The FTC approach enables the compensation for this loss in the dynamical
performance of the system outputs corrupted by this fault as illustrated in
Fig. 3.16. This fault depends directly on the accommodated input u3 (Fig.
3.17).
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Fig. 3.15. Global actuator FTC scheme

Fig. 3.16. Time evolution of the system output T3

Figure 3.18 shows the estimation of the faults components associated with
each actuator. It can be easily seen that the third component associated with
the faulty actuator is only different from zero after the fault occurrence. The
estimation of this fault is also compared to its theoretical value after the fault
has occurred: f̂a = (α3 − 1)U3.

In addition to the visual analysis of the results, the norm of the tracking
error e = yr − y (Table 3.1) can be calculated and analyzed. The norm em-
phasizes the performances of the FTC method for actuator faults. It can be
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Fig. 3.17. Time evolution of the system input U3

Fig. 3.18. Actuator fault magnitude estimation
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easily noted that the norm of the tracking error for the strip tension T3 after
fault compensation is much less than that without fault compensation.

Table 3.1. Norm of the tracking error

Nominal control Without compensation With compensation

‖eT1‖ 0.3451 0.3453 0.3506

‖eΩ2‖ 0.1187 0.119 0.1196

‖eT3‖ 0.4127 0.7913 0.4692

Application and Results: Actuator Ramp Fault

Then a drift fault is assumed to occur on the third actuator M3:

U3f (k) = U3(k) − 0.01kTs. (3.10)

This fault can be easily simulated as shown in Fig. 3.19.
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Fig. 3.19. Ramp actuator fault

Although the nominal control law is able to compensate for a constant
abrupt fault in steady-state, the presence of a ramp fault leads to a nonzero
steady-state error on strip tension T3. This shows the necessity of the FTC
to allow the strip tension to reach its reference value as soon as the fault is
detected (Fig. 3.20). However, it is obvious that the compensation for a ramp
fault is still possible while maintaining the control input within its physical
limits which are −1 and +1, corresponding respectively to −10 V and +10 V .
In this case, the objective of the FTC system is to avoid stopping the sys-
tem immediately after the fault detection. The fault magnitude estimation is
presented in Fig. 3.21.
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Fig. 3.20. Time evolution of the system output T3

Fig. 3.21. Estimation of the ramp actuator fault



60 3 Application to a Winding Machine

3.3.4 Fault-tolerant Control for Sensor Faults

Let us now examine the influence of sensor faults on the winding machine and
the way to compensate for their effect. The sensor faults can appear as a bias,
a drift, or a complete loss of the sensor.

Bias Sensor Fault

A first experimentation has been conducted and corresponds to a negative
bias on the sensor measuring strip tension T3 (Fig. 3.22):

T3f(k) = T3(k) − 0.1. (3.11)
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Fig. 3.22. Sensor fault on T3

The value of the sensor fault is initialized to zero and is switched to −0.1
on-line. In this experiment, the fault occurs at time instant tf = 32 s.

In the presence of this fault, the controller receives the faulty measurement
while the true value is still equal to its reference value. The tracking error
between the measurement T3f and its reference value is no longer equal to
zero. Therefore, the nominal control law tries to bring back the steady-state
error to zero. The variation of the control input causes the strip tension T3 to
increase by the same value of the bias on the faulty sensor as it can be seen
in Fig. 3.23.

If the bias is larger than 0.1, the real strip tension will be larger which
means that the strip may be broken. This shows the importance of taking
into consideration the potential sensor fault while designing the control law.
Therefore, the control law is computed according to the method presented in
Sect. 2.7.2 aiming at preventing the nominal control law from reacting in the
presence of this fault. This method is based on the sensor fault estimation
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Fig. 3.23. Time evolution of the strip tension T3 without fault compensation

which is taken into account in the calculation of the control law in order to
prevent it from reacting when a sensor fault occurs.

In the presence of sensor faults, the integral error vector z is also affected
by the fault:

z(k + 1) = z(k) + Ts(yr(k) − y(k))
= z(k) + Ts(yr(k) − Cx(k) − Fsfs(k)).

(3.12)

The sensor fault magnitude can be estimated in a way similar to the ac-
tuator fault, by rearranging the augmented system in the form

EsXs(k + 1) = AsXs(k) + BsU(k) + Gsyr(k), (3.13)

where

Es =

⎡
⎣ I3 0 0

0 I3 0
C 0 Fs

⎤
⎦ ; As =

⎡
⎣ A 0 0
−TsC I3 −TsFs

0 0 0

⎤
⎦ ; Bs =

⎡
⎣B 0

0 0
0 I3

⎤
⎦ ;

Gs =

⎡
⎣ 0

TsI3

0

⎤
⎦ ; Xs(k) =

⎡
⎣ x(k)

z(k)
fs(k)

⎤
⎦ ; U(k) =

[
u(k)

y(k + 1)

]
.
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The estimation of the fault magnitude f̂s is then obtained using the SVD
of matrix Es.

The estimation of the fault affecting the sensor measuring the strip tension
T3 is shown in Fig. 3.24.

Fig. 3.24. Time evolution of the fault magnitude

The compensation for the sensor fault effect makes use of the sensor fault
estimation f̂s3. Figure 3.25 shows the nominal control law without taking the
fault into account and the new control law able to maintain the real strip
tension to its reference value as shown in Fig. 3.26.
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Fig. 3.25. Time evolution of the control input U3 without and with fault compen-
sation

Fig. 3.26. Time evolution of the strip tension T3 with fault compensation
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Ramp Sensor Fault

Incipient faults may also affect the sensors in industrial systems which are
mainly due to ageing. These faults cannot always be easily detected because
of their slow development. They can be detected when their effect on the
system becomes visible. Sometimes this is unacceptable.

The presence of the integrator in the nominal tracking control law leads to
a constant nonzero steady-state error between the measurement issued from
the sensor and the reference value. At the same time the real measurement
deviates slowly from its reference value until the control input reaches the
physical limits of the system. In this case the system should be stopped im-
mediately.

An experiment has been conducted by emulating a drift of slope 0.01 on
the sensor measuring the strip tension T3. Figure 3.27 shows the behavior of
the strip tension T3 in the presence of the fault.

Fig. 3.27. Strip tension T3 with ramp fault

Using the method presented previously, while taking into account the ramp
fault sensor, allows the estimation of the sensor fault magnitude (Fig. 3.28).
This estimation is used in order to prevent the control input U3 from moving
face to the fault occurrence as can be seen in Fig. 3.29, which keeps the real
value of the strip tension close to its reference value (Fig. 3.30).
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Fig. 3.28. Estimation of the ramp sensor fault

Fig. 3.29. Control input U3 for ramp sensor fault
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Fig. 3.30. Strip tension T3 with ramp fault accommodation

3.4 Nonlinear Case

3.4.1 System Modeling

Modeling

During the process of unwinding and rewinding, the radius and inertia of the
reels vary. In order to take into account these variations, the system model is
defined according to the unwinding reel radius (denoted R) which is a time-
varying parameter.

In this case, the dynamic behavior of a winding machine cannot be de-
scribed using a MIMO linear state-space representation as is done around a
particular radius [99, 111]. Indeed, if a complete rolling is performed, the ra-
dius variation should be considered and the linear assumption is no longer
satisfied.

So the system model can be described by the following nonlinear repre-
sentation:

ξ(k + 1) = f(ξ(k)) + g(ξ(k))u(k), (3.14)

where f(.) and g(.) represent the nonlinear functions and ξ =
[
T1 Ω2 T3 R

]T .
Only state variables

[
T1 Ω2 T3

]
depend on the control input vector u.

The radius is governed by the following equation:
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R(k) = 0.55(R(k − 1) − 1.22Ω2(k)). (3.15)

Therefore, the system (3.14) can be broken down into two independent
subsystems when a specific operating point yref =

[
T ref

1 Ωref
2 T ref

3

]T
is

considered. State variable Ω2 is then considered as an input for radius evolu-
tion described by (3.15).

Then a discrete linear time-varying (LTV) model, where the time-varying
parameter is the unwinding reel radius R (not measured), is obtained such as{

x(k + 1) = A(R)x(k) + B(R)u(k)
y(k) = x(k)

, (3.16)

where y = x =
[
T1 Ω2 T3

]T , u =
[
u1 u2 u3

]T , and x(k) = x(kTs). Ts is
the sampling period.

If an operating point is considered for the unwinding strip, it can be noted
that this operating point depends on the nonlinearity introduced by the radius
R. The effect of the radius can be considered with the nominal control input
(Fig. 3.31a), as well as with the nominal output (Fig. 3.31b).

Fig. 3.31. Representation of the operating point

The aim is to control the system outputs, i.e., to control this system around
a constant y0. Thus the representation given in Fig. 3.31a is chosen since the
evolution of the outputs does not depend on the radius R.

In order to obtain a model as in (3.16), an identification procedure is
established.

Identification

The identification methodology used in this application is composed of four
steps:

• The division of the strip into various operating zones (as represented in
Fig. 3.32)

• An open-loop identification
• A closed-loop identification
• A polynomial interpolation synthesis
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Fig. 3.32. Data organization for identification

The LTV model (3.16) is obtained after considering 240 operating zones
(as represented in Fig. 3.32), where each operating zone can be modeled with
an LTI model. Experiments of 45 s for each operating zone are used in order
to consider an LTI representation; i.e., the radius is considered to be constant
(variation between 1 and 4 mm) and is manually measured (no sensor is
available), with a sampling period Ts = 0.1 s.

The second step, dedicated to the open-loop identification of each oper-
ating zone, following the same methodology as presented in the linear case,
allows to obtain 240 analytical models using a classical ARX structure [90,99].
In order to identify each LTI model parameter, a PRBS is added as an ex-
ternal input to the nominal control input unom =

[−0.05 0.4 0.15
]T (the

system inputs and outputs are given in the interval
[−1 +1

]
corresponding

to
[−10 V +10 V

]
).

The measured outputs vary with the radius R of the strip roll over the
whole operating range as shown in Fig. 3.33.

The final goal is to design a control law for angular velocity Ω2 and strip
tensions T1 and T3. Therefore, the system must be characterized for constant
measured outputs as proposed in Fig. 3.31a. Thus, an elementary and classical
LQ with integrator control law [45] is synthesized and implemented for each
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Fig. 3.33. Measured outputs with constant inputs unom =
[−0.05 0.4 0.15

]T

LTI model identified above (i.e., for each operating zone). Since there is an
integrator in the control law, the measured outputs are constant and equal to
the reference inputs which are chosen to be equal to ynom =

[
0.2 0.4 0.5

]T .
The third step consists of a closed-loop identification of an LTI model for

each operating zone by means of a direct solution [30]. It can be noted that the
results are biased since the plant input signal u is correlated with the output
noise disturbance and because no noise model is specified. But this solution
is kept in the first approach. It can also be noted that since the controller
is completely known for each LTI model, an indirect solution could also be
applied.

The last step is the acquisition of one LTV model. The 240 LTI models
are considered and a polynomial interpolation, dependent on the radius R, of
each component of matrices A and B has been synthesized to approximate the
dynamic behavior of the LTV system. Then, each coefficient in these matrices
is expressed in the following form (∀ i, j = 1, · · · , 3):

{aij , bij}R(k) = p0
ij + p1

ij(R(k)) + p2
ij(R(k))2 + p3

ij(R(k))3

+p4
ij(R(k))4 + p5

ij(R(k))5 + p6
ij(R(k))6,

(3.17)

where pσ
ij(σ = 0, · · · , 6) are constant values of polynomial form.

An LTV model described by (3.16) was established and is considered in
the following. Each coefficient of A(R) and B(R) matrices is defined by an
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optimal sixth order polynomial function of the radius R. Figures 3.34 and 3.35
validate the previous results.

Fig. 3.34. Evolutions of model coefficients a11 and b11 vs radius R

Figure 3.34 compares the measured and approximated evolutions of two
coefficients of the model according to the radius R (coefficient a11 of matrix
A and coefficient b11 of matrix B). Note that the polynomial approximation
is very close to the measurements.

Figure 3.35 represents the evolution of the eigenvalues of the system ac-
cording to the radius (one real and two complex conjugate eigenvalues). The
crosses represent the eigenvalues associated with each of the 240 identified
models and the curve represents the eigenvalues of the variable system ac-
cording to R. The eigenvalues are very close in both approximations.

3.4.2 Controller Gain Synthesis

The winding process model presented previously is linear with a variable pa-
rameter and is available around the operating point (U0, Y0). Moreover, the
number of measured outputs is equal to the number of control inputs. This
model is completely suitable to design a control law using nonlinear techniques
by linearization presented in Sect. 2.4.2. In this section, the input-output lin-
earizing control, developed within the framework of the continuous systems is
considered in discrete-time.
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Fig. 3.35. Representation of the eigenvalues of the system as function of R

The definitions and the theorem of Sect. 2.4.2 can be applied to the LTV
model of the winding machine (3.16) with f(x) = A(R)x(k), g(x) = B(R),
and h(x) = Cx(k) [102].

According to the methodology described in Sect. 2.4.2, the first step cor-
responds to the calculation of the relative degrees. All are equal to 1. The
linearizing state-feedback is thus written as

u(k) = −B−1(R)A(R)x(k) + B−1(R)v(k). (3.18)

Note that this feedback is nonlinear since it depends on R. B−1(R) can be
verified off-line in order to guarantee the stability of the system. The linearized
system is then decoupled and three SISO subsystems can be considered for
the description of the input-output behavior, each one being equivalent to an
exact delay such as

yi(k + 1) = vi(k), ∀i ∈ [1, . . . , 3]. (3.19)

Such a closed-loop system requires a second state-feedback, built using
linear control theory. A proportional output feedback vi is set up for each
decoupled subsystem to perform this task. Consequently, each discrete input-
output z-transfer function is given by

yi(z)
yref,i(z)

=
(1 − Ki)z
z − Ki

, ∀i ∈ [1, . . . , 3], (3.20)



72 3 Application to a Winding Machine

where Ki allows adjustment of the stability dynamic and yref,i is the reference
input.

The closed-loop system can be represented by Fig. 3.36. In this study,
all the states are available through the measurements; thus no observer is
required to estimate the states.

Fig. 3.36. Block diagram of the nonlinear control

The control law described above is valid if and only if the model of the con-
sidered process is exact. In the presence of modeling errors, which is generally
the case in practice, some steady-state errors will appear on the controlled
outputs. The modeling errors can be considered as a disturbance input d.
Thus, (3.16) can be written in the following form:{

x(k + 1) = A(R)x(k) + B(R)(u(k) + d(k))
y(k) = x(k)

. (3.21)

In order to reject modeling errors, a disturbance rejection control is used
as proposed in [103]. In the presence of this disturbance input d, and with the
linearizing state-feedback (3.18), the subsystem yi

vi
will not be strictly equiva-

lent to ri. A component vadd,i, which will be added to v, must be determined
in order to verify (3.19). Theoretical output ŷ(k) obtained in the presence of
an exact decoupling, is considered and estimated. For the winding system,
this estimation is obtained via a classical Luenberger observer of a system
equivalent to an exact delay, such as

ŷi(k) = vi(k − 1) + L(yi(k − 1) − ŷi(k − 1)), (3.22)

where L is the observer gain.
The observation error vector obeys the relation

εi(k + 1) = −Lεi(k) − vadd,i(k), (3.23)

where εi(k) = yi(k) − ŷi(k), ∀i ∈ [1, . . . , 3].
So, each component of vadd is defined by

vadd,i(k) = −(εi(k + 1) + Lεi(k)). (3.24)
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Equation (3.24) associated with the disturbance rejection depends on the
future values at time instant (k + 1). Consequently, a delay is introduced to
establish this recurrence.

The complete control law can be illustrated by Fig. 3.37.

Fig. 3.37. Complete control scheme

Figure 3.38 shows the Simulink� program of the designed nonlinear con-
trol law. In order to implement it and test it using dSPACE� software, the
“Winding Machine” block must be replaced by input and output ports con-
nected to the input-output card.

Fig. 3.38. Implementation of the nonlinear control law

Figure 3.39 shows the details of the disturbance rejection block associated
with (3.22)–(3.24).

In the following tests, the various signals are only represented on part of
the complete unwinding strip for legibility.
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Fig. 3.39. Details of the disturbance rejection implementation

First, the decoupling control law (3.18) is validated in simulation (as pre-
sented in Figs. 3.40–3.42 using the discrete-time LTV model estimated in Sect.
3.4.1. Steps of magnitude 30% are added successively to the reference inputs.
It can be noticed that the outputs follow the reference inputs and that they
are decoupled from each other.

Fig. 3.40. Simulated output T1 based on the linearizing control law
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Fig. 3.41. Simulated output Ω2 based on the linearizing control law

Fig. 3.42. Simulated output T3 based on the linearizing control law
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Figures 3.43–3.45 check the integral action added to the control of the real
system. Indeed, it can be verified that the steady-state errors are canceled.
Moreover, the outputs are decoupled. Nevertheless, a significant noise affects
the measurements.

Fig. 3.43. Real output T1 based on the linearizing control law

The experiment illustrated by Figs. 3.46–3.48 highlights the exact decou-
pling approach associated with the reduction of the noise level (compared
to Figs. 3.43–3.45, respectively). This result is obtained using a Kalman fil-
ter [55]: the control law is computed with these estimations instead of sensor
measurements.
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Fig. 3.44. Real output Ω2 based on the linearizing control law

Fig. 3.45. Real output T3 based on the linearizing control law
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Fig. 3.46. Control law performances with a Kalman filter: measured output T1

Fig. 3.47. Control law performances with a Kalman filter: measured output Ω2
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Fig. 3.48. Control law performances with a Kalman filter: measured output T3

3.4.3 Fault-tolerant Control for Actuator Faults

In order to detect actuator faults with the detection filter (2.84) presented in
Chap. 2, the winding process model (3.16) becomes{

x(k + 1) = A(R)x(k) + B(R)u(k) + Ffk(k)
y(k) = x(k)

, (3.25)

where F = B(R).
For the winding machine, the fault detectability indexes are equal to one

for all faults and regardless of the value of radius R.
The linear detection filter (2.84) is extended and applied to the LTV model

(3.25).
In order to facilitate the parametrization of the FDI module, a bank of

detection filters is considered. Each filter is dedicated to detect and to isolate
a unique actuator fault. Equation (3.25) is rewritten as{

x(k + 1) = A(R)x(k) + B(R)u(k) + Fifi(k)
y(k) = x(k)

, (3.26)

where Fi is the ith column of matrix B(R).
Let us define the matrices for each detection filter in the case of the con-

sidered application. From (2.85) and (2.86), the gains of the detection filters
(2.84) are defined as
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⎧⎪⎪⎨
⎪⎪⎩

ωi = ωi(R) = A(R)Fi

Ξi = Ξi(R) = (CFi)
+

Ψi = Ψi(R) = β
(
I3 − (CFi) (CFi)

+
) . (3.27)

The gain K is synthesized by a common eigenstructure assignment such
that (A(R) − K) is stable.

The fault detection is directly established with the fault magnitude esti-
mation vectors f̂i(k) from the η(k) component of the projected residual vector
p(k) as presented in (2.89). Each residual is associated with each fault mag-
nitude estimator. Then residuals have directional properties in response to a
particular fault. This kind of residuals is an attractive way for enhancing fault
isolation.

The actuator fault compensation is implemented according to the method
described in Sect. 2.7.1. Thus, for the Winding Machine, (2.107) becomes

uadd(k) = − (B−1(R)
)
Fif̂i(k). (3.28)

As in nominal case, B−1(R) should be checked off-line in order to guarantee
the stability of the closed-loop.

Figure 3.49 illustrates the Simulink� diagram allowing the validation of
the presented method on the Winding Machine model. Each block corresponds
to the differential equations developed previously such as “actuator isolation
filter,” “fault estimation,” and “actuator fault compensation.”

First, FDI and fault estimation modules effectiveness are considered in
both simulation and real experiment. Then, FTC results will be illustrated by
considering a significant fault on actuator M2.

To show the efficiency of the FDI module, actuator faults are carried out
starting from levels of magnitude 2% added to the inputs of the system which
is controlled with the nonlinear and decoupling control law. These faults are
biases which appear and disappear after a short period. The first one concerns
the input of motor 1 (U1), the second one affects the input of motor 2 (U2)
and the last fault occurs on the input of motor 3 (U3).

First, FDI module is validated in simulation. Noise was added on the
system outputs.

In the case of an exact LTV model, the fault detection, isolation and
estimation module indicates which actuator is faulty and estimates accurately
the fault magnitude. The estimated faults are decoupled from each other and
they have the same magnitude as the faults applied to the system. In fault-free
cases, residuals have an average value close to zero.

The results are presented in Figs. 3.50–3.52 around R = 210 mm and are
identical for the whole unwinding strip regardless of the value of the radius.

The results for bias type faults in a complete unwinding process on the
real system are presented in Fig. 3.53 (the unwinding reel is initialized with
a radius of 210 mm and then with 70 mm). The three actuator faults have
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Fig. 3.49. FTC scheme for the winding machine

Fig. 3.50. Simulation of fault estimation for actuator 1 (R = 210 mm)
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Fig. 3.51. Simulation of fault estimation for actuator 2 (R = 210 mm)

Fig. 3.52. Simulation of fault estimation for actuator 3 (R = 210 mm)
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the same magnitude as for the simulations presented above and are applied
to the process with a square form during all the unwinding process.

Fig. 3.53. Estimated actuator faults for a complete unwinding

For legibility, Figs. 3.54–3.56 represent the results displayed on Fig. 3.53
around the radius value equal to 157 mm.

As for the simulation test presented above, it can be noted that actuator
faults are well detected and isolated. When there is no fault, the fault esti-
mation has a constant average value close to zero. From a practical point of
view, this knowledge should be taken into account in the residual evaluation
part.
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Fig. 3.54. Estimated actuator 1 fault (R = 157 mm)

Fig. 3.55. Estimated actuator 2 fault (R = 157 mm)
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Fig. 3.56. Estimated actuator 3 fault (R = 157 mm)

In order to illustrate the FTC results, another test is carried out in a second
experiment. The effectiveness of the second actuator M2 acting on the strip
velocity is reduced by 50% and appears abruptly for a radius equal to 150 mm
at time instant 1175 s. During complete unwinding, steps of magnitude ±0.1
are added successively to the reference inputs.

The system outputs are displayed in Fig. 3.57 without accommodating the
control law and with the accommodation.

The actuator fault acts on the system as a disturbance. Since there is
an integral action (via the disturbance rejection module) associated with the
nonlinear control law, the fault effect in steady-state can be compensated for:
the output vector will reach its reference value in steady-state. However, it is
obvious that the dynamical behavior of the system will be affected and the
system responses will be slower than those in the nominal case.

In order to compensate for this actuator fault effect, a new control law
uadd is added to the nominal one as specified in (3.28) and in Fig. 3.49.

Figure 3.58 displays the component η(k) of the projected residual vector
p(k) (2.89) which corresponds to the estimation of the fault magnitude of
actuator 2.
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Fig. 3.57. Measured outputs without and with fault compensation
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Fig. 3.58. Estimated fault magnitude without and with reconfiguration

The display of measurements during a short period of time presented in
Fig. 3.59 allows the comparison of the system responses to the faults with-
out and with fault compensation. These figures clearly demonstrate the FTC
method’s ability to compensate for such actuator faults.

The results obtained clearly show the ability of the residuals to detect and
isolate faults. Once the fault is isolated with a time delay, the corresponding
fault estimation and compensation module is switched on to reduce the fault
effect on the system through the additive control input uadd.

It is shown that, without FTC, the velocity reaches its corresponding ref-
erence input about 20 s after the fault occurrence, whereas it takes only about
2 s using the FTC method.

These results can be confirmed by examining the control inputs (Figs. 3.60
and 3.61) applied to the system: without the FTC method, it increases slowly
due to the integral error trying to compensate for the fault effect, whereas the
FTC method makes this control input increase quickly and enables the rapid
fault compensation, even if a coupling effect can be noted on control input
U1.
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Fig. 3.59. Measured outputs without and with reconfiguration
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Fig. 3.60. System control inputs without and with reconfiguration
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Fig. 3.61. Control inputs without and with reconfiguration

3.4.4 Fault-tolerant Control for Sensor Faults

Based on the capability to represent a sensor fault as a pseudo-actuator fault
(see Chap. 2), the previous filter allows us to compute a magnitude estima-
tion of sensor faults. Before using the filter, a preliminary work consists of
rewriting LTV faulty model using Park et al. developments [100] as detailed
in Sect. 2.5.1. The fault detection is directly established with the magnitude
fault estimation vectors. Each residual is associated with each fault magni-
tude estimator. Then residuals have directional properties in response to a
particular fault. This kind of residuals is an attractive way for enhancing
fault isolation.

A first experiment is considered with software sensor faults to each sensor
except Ω2 which is considered to estimate the radius R(k) as presented in the
previous paragraph. A bias with a magnitude of 10% appears and disappears
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on the real process during all the unwinding strip. For legibility, results for
a radius value close to 180 mm are presented in Figs. 3.62 and 3.63 where
the real and estimated fault magnitudes highlight the capabilities of the FDI
module. Actually, based on LTV model, the fault detection, isolation, and
estimation module indicates which sensor is faulty and estimates accurately
the fault magnitude. In a fault-free case, residuals have an average value close
to zero.

Fig. 3.62. Estimation and real sensor T1 fault magnitude

The next experiment considers a sensor fault only on the measured output
T1. A bias with a magnitude of 0.05, which corresponds to step changes of
the reference inputs equal to 50%, is applied throughout all the unwinding
strip. For legibility, magnified images for a radius value around 150 mm are
presented.

Based on the LTV model, the fault detection, isolation, and estimation
module indicates which sensor is faulty and estimates accurately the fault
magnitude as presented in Fig. 3.64.

Without sensor fault masking, the control law tries to cancel the steady-
state error created by the corrupted output. Consequently, the real output
is different from the reference input (Fig. 3.65). As illustrated in Fig. 3.66,
the synthesized nonlinear control law provides decoupled outputs despite the
occurrence of a sensor T1 fault.
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Fig. 3.63. Estimation and real sensor T3 fault magnitude

Fig. 3.64. Sensor fault magnitude estimations around R = 150 mm with a bias on
T1 without sensor fault masking method
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Fig. 3.65. Real system output T1 around R = 150 mm with a bias on T1 without
sensor fault masking method

Fig. 3.66. Real and measured system outputs around R = 150 mm with a bias on
T1 without sensor fault masking method
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However, with the developed sensor fault compensation method, the real
output follows its reference input as illustrated in Fig. 3.67. The fault esti-
mation is used to track the reference input. The dynamic behavior of the real
and measured outputs shows clearly that the compensated output behavior
is closer to the nominal one than the faulty output without compensation
as illustrated in Fig. 3.68. As presented in Fig. 3.69, the real output is only
affected by the fault according to the fault isolation time delay. In this case
the time delay is very small due to the considered fault magnitude compared
to the noise level. The sensor fault compensation avoids faults developing into
failures and minimizes the effects on the system performance and safety. The
proposed FDI strategy represents an efficient tool in the operator’s decision
winding process. This sensor fault monitoring should be associated with the
sensor FTC system to provide alarms about the new dynamic behavior of the
system concerning, for instance, the measured outputs.

Fig. 3.67. Real system outputs around R = 150 mm with sensor fault masking
method in the presence of a bias on T1
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Fig. 3.68. Real and measured system output T1 around R = 150 mm with sensor
fault masking method in the presence of a bias on T1

Fig. 3.69. Real system output T1 around the occurrence of a sensor bias on T1 with
sensor fault masking method
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3.5 Major Fault

In the previous two sections, biases or drifts affecting the actuators or the
sensors have been considered. In the sequel, the FTC of the winding machine
will be studied when a major fault occurs. A complete loss of an actuator or a
sensor are considered as a major fault. It is easily understood that, without an
FTC law, the winding machine cannot continue operating: system shutdown
is necessary.

Next, the situation of a major actuator fault will be studied in the linear
case according to Sect. 3.3. Then, in the nonlinear case, the complete loss of
one sensor will be considered according to Sect. 3.4.

3.5.1 Actuator Failure in Linear Case

For bias or drift faults, it was shown that it is still possible to track all the
outputs of the system, because the latter is supposed to remain controllable
in the presence of an actuator fault. This was achieved using another control
law, added to the nominal one, in order to compensate for the faults. This
additive control law is based on the estimation of the fault magnitude. The
reconfiguration strategy employed here allows us to maintain the performance
of the faulty system in closed-loop close to the performance of the nominal
system; the tracking control objectives remain achieved. However, the limits
of this method are reached in case of a stuck or completely lost actuator. Now,
the possibility to continue operating with degraded performance is analyzed
in the presence of a critical failure such as the complete loss of an actuator.

In the winding machine, the strip has to be rolled up in a correct way, i.e.,
strip tensions T1 and T3 have to be maintained to a given reference level. In
this application, this is achieved by maintaining a negative (resistant) torque
on motor M1 and a positive torque on motor M3. Due to the strong coupling
in this system, the angular velocity Ω2 of the traction reel M2 influences the
strip tensions.

Here motor M1 is supposed to be out of order at time instant tf = 49.5 s;
i.e., motor M1 runs as if its control input U1 = 0. This failure leads to a
large decrease in strip tension T1 which can no longer be controlled. With the
nominal control law, the coupling in the system causes angular velocity Ω2 to
increase trying to compensate for T1; Ω2 increases about 20%. Not only is it
impossible to compensate for T1, but this also has the opposite effect on strip
tension T3, which decreases almost 20% from its reference value. That makes
the strip roll up incorrectly. Figures 3.70–3.73 illustrate the failure effect on
the system inputs and outputs.

For this specific failure where the motor M1 is lost, the system operates
badly in terms of the product quality but not in terms of the system stability
or security. It is also easy to understand that if this failure occurs on one of the
other motors M2 or M3, the system will no longer be able to run and should be
stopped safely. That is to say that it is not always possible to accommodate
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Fig. 3.70. Control inputs when M1 is lost

Fig. 3.71. Strip tension T1 when M1 is lost
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Fig. 3.72. Strip tension T3 when M1 is lost

Fig. 3.73. Angular velocity Ω2 when M1 is lost
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for all failures occurring on the system. It always depends on the available
hardware or analytical redundancy.

We have seen that, if motor M1 is lost, it is still possible to continue
operating but the performance is reduced. Now the question is: is it possible
to do something to preserve the main performance and keep a good quality
of the product despite the loss of this motor.

This is a severe failure because it leads to a large loss in the closed-loop
system performance. As one of the system control inputs is out of order, it
becomes impossible to track the three system outputs because the tracking
control requires the number of control inputs to be greater than or equal to
the number of outputs to be tracked. Hence, according to the system opera-
tion requirements, these outputs have to be divided into priority outputs to
keep equal to their reference inputs to the detriment of other secondary out-
puts. From the knowledge of the system operating conditions, although one
control input is no more available (namely M1), the system is still control-
lable. Analyzing the behavior of the system, it is easy to select the output to
take off. Strip tension T3 should be controlled to roll up the strip properly.
Angular velocity Ω2 is the image of the linear velocity of the strip and needs
to be kept controlled, while there is no loss in the quality or the productivity
if strip tension T1 is no longer controlled. Thus, the priority outputs will be
T3 and Ω2, while T1 will be considered as a disturbance. The system control
inputs are U2 and U3.

There is no hardware redundancy available in the winding machine. One
can easily understand that it is very difficult, if not impossible, to design a
hardware redundancy for such a system. Moreover, if the nonlinear model
of the system was available, it would have been possible to calculate a new
equilibrium state of the system the closest possible to the nominal system,
but the nonlinear model of the winding machine is very difficult to get. This
point will be illustrated in the next chapter for the three-tank system.

In the case that the nonlinear model of the system is not available, one
way to cope with these critical failures is to get a model of the faulty system.
For these kinds of critical failures, the number of faulty models is limited.
From the knowledge that one has of the system, it is easy to define which
failures could be compensated for and which require the shutdown of the
system immediately and safely.

In the winding machine there are three actuators driven by control inputs
U1, U2, and U3. Motor M2 has to impose the velocity of the strip. If this
motor is out of order, it is obvious that the strip cannot be rolled up and the
system must be shut down immediately. It is also the case if motor M3 is out
of order, because strip tension T3 can no longer be maintained to its reference
value. Thus, the only critical failure to deal with in this system is the loss of
motor M1.
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Faulty System Model and Results

Since two control inputs are only available after the failure has occurred, it is
impossible to continue tracking the three system outputs. Therefore, a track-
ing control law using the same principle as described previously, based on
the faulty system model, has been achieved to track two system outputs Ω2

and T3 which are considered as priority outputs. It has been noted previously
that strip tension T1 is considered as a disturbance. With this system restruc-
turing, the identification of the faulty system has been achieved off-line. The
system is running with U1 = 0, and a set of excitation signals, U2 and U3, has
been applied to the winding machine. Using these experiments, the following
model is obtained:{

xf (k + 1) = Afxf (k) + Bfuf(k) + BdT1(k)
yf (k) = Cfxf (k)

, (3.29)

where

xf = yf =
[

Ω2

T3

]
; uf =

[
U2

U3

]
,

and

Af =
[

0.4995 −0.0262
0.0723 0.4314

]
; Bf =

[
0.53 0.0236

−0.0782 1.2865

]
; Bd =

[
0.2149
−0.0490

]
.

Once the failure is detected and isolated, the FTC module switches from
the nominal control law to the new one. This control law guarantees the fact
that the strip continues to be rolled up properly and avoids having to stop
the machine due to a bad quality of the final product.

Figures 3.74–3.77 show the results obtained when switching from the orig-
inal model to the new one after the failure has been detected and isolated.
The FDI module is not achieved here, but a delay of 10 sampling periods is
considered before switching to the new control law. This delay corresponds to
the detection and isolation task. It can be seen that strip tension T1 is still
far from its reference value because it is not tracked, while strip tension T3

and the angular velocity Ω2 follow their respective reference inputs after the
switching process and the strip is rolled up in a correct way.

It was shown that for more critical failures, such as a complete loss of
an actuator, where the system becomes uncontrollable, the system has to be
restructured and new objectives have to be defined. These objectives corre-
spond, for instance, to the modification of the reference inputs and the system
outputs to control. Here, the number of outputs to track is reduced. In case it
is possible to design such an FTC method for this kind of major failure, the
corresponding model is achieved off-line. According to the process described
by Fig. 2.10, the supervision module at the upper level decides to switch to
the accurate control law according to the isolated failure. In the system used
here, there is no problem of security, but the system is still able to continue its
operation avoiding loss in productivity and quality of the product. It should
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Fig. 3.74. Control inputs after restructuring

Fig. 3.75. Strip tension T1 after restructuring
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Fig. 3.76. Strip tension T3 after restructuring

Fig. 3.77. Angular velocity Ω2 after restructuring
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be noticed that, whatever the importance of the FTC system designed, it is
never obvious to compensate for all kinds of failures. In this case, the only
possible solution is to shut down the system safely.

3.5.2 Complete Loss of a Sensor in Nonlinear Case

The last experiment concerns a complete loss of measurement Ω2 when con-
sidering the nonlinear approach. The radius R(k) is not measured directly but
estimated through the recursive equation R(k) = 0.55(R(k− 1)− 1.22Ω2(k)).
Due to the fault occurrence on Ω2, radius R(k) cannot be estimated correctly.
In this experiment, the complete loss of sensor Ω2 appears from time instant
t = 50 s to t = 100 s, then from sample t = 250 s to t = 300 s and finally
from sample t = 450 s to t = 500 s. As illustrated in Fig. 3.78, the estimation
of radius R is corrupted. When sensor Ω2(k) is out of order (i.e., Ω2 = 0 V ),
the linear evolution of the radius time function is affected by the fault.

Fig. 3.78. Estimation of radius R

In the presence of such a failure, the faulty measurement influences the
closed-loop behavior associated with the desired reference input but also the
LTV model used for the decoupled control law.

A test was carried out for a radius R(k) varying between 180 mm and
150 mm with step changes (20% of their corresponding operating values)
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added to the nominal reference inputs. Figures 3.79 and 3.80 represent, re-
spectively, the measured and real controlled output responses to reference
changes (step responses are considered for a range of 150 s). The complete
loss of the sensor can easily be seen in the second graph in Fig. 3.79. The con-
trol law tries to cancel the steady-state error created by the corrupted output.
Consequently, the real output differs from the reference input as illustrated
in the second graph in Fig. 3.80. Regarding the MIMO controller, the effect
of this loss of information has some drastic consequence on the other tracking
outputs as shown in the other graphs of Fig. 3.80.

Fig. 3.79. Measured outputs evolution (T1, Ω2, T3)

Based on the LTV model, the fault detection, isolation, and estimation
module indicates which sensor is faulty and provides an accurate fault magni-
tude estimation as illustrated in Fig. 3.81. It can be verified that the first and
third components of the fault magnitude estimator are close to zero. These
components are used to isolate the faulty sensor. Due to the detectability
index of the filter, it should be highlighted that the fault magnitude estima-
tor associated with the first and third components is affected by an abrupt
variation different from zero during one sample when the fault appears and
also disappears. Indeed, the detectability index of the filter synthesized for a
sensor fault is equal to one which provides a time delay of one sample.
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Fig. 3.80. Real outputs evolution (T1, Ω2, T3)

Fig. 3.81. Estimated sensor faults evolution (fd1 , fd2 , fd3)
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Based on the FDI module, a suitable estimation of radius R is provided
through the fault-free estimation of Ω2. As illustrated in Fig. 3.82, the esti-
mation of R(k) is not affected by the loss of sensor Ω2. Consequently, with
the sensor fault compensation method, the real outputs follow their reference
inputs as presented in Fig. 3.83. The fault estimation is used to track the
reference input. According to the time delay issued from the FDI module, the
results show that the compensated outputs behavior is closer to the nominal
outputs rather than the faulty outputs.

Fig. 3.82. Estimation of radius R with sensor fault compensation

3.6 Conclusion

A winding machine representing a subsystem in many industrial systems is
presented in this chapter. It is used to illustrate the FTC strategy presented
in the previous chapter. Since the system is nonlinear and the mathematical
model is difficult to establish, it is first considered to be linear around an
operating point. The model is obtained experimentally using identification
methods. Then, in order to run the system throughout a wider operating zone,
the model is taken as an LTV system driven by the radius of the unwinding
reel.
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Fig. 3.83. Real outputs (T1, Ω2, T3) with sensor fault compensation

The effect of sensors and actuators faults are considered. It was shown that
the methods using the additive control law are able to compensate for the fault
effect provided that the system is still observable in the case of a sensor fault
and controllable in the case of an actuator fault. The fault estimation can also
be used to detect and isolate the fault. Indeed, while the fault estimation is
close to zero in the fault-free case, it deviates from zero and it is equal to the
fault magnitude when a fault occurs. The system can be written such that
only the ith component of the fault vector fa or fs deviates from zero when
the ith actuator or sensor is faulty.

For major failures such as the loss of an actuator, it is obvious that the
nominal tracking control is no longer suitable. This is because the number
of control inputs becomes less than the number of outputs to track. In this
case, in addition to the understanding of the physical behavior of the system,
an off-line study helps one to select priority outputs to keep tracking to the
detriment to other secondary outputs. This restructuring strategy allows one
to avoid the immediate shutdown of the system and to keep operating in
degraded mode.
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Actuator and Sensor Fault-tolerant Control
Design

2.1 Introduction

Many industrial systems are complex and nonlinear. When it is not easy to
deal with the nonlinear models, systems are usually described by linear or
linearized models around operating points. This notion of operating point is
very important when a linearized model is considered, but it is not always
easily understood. The objective in this chapter is to highlight the way to
seek an operating point and to show a complete procedure which includes the
identification step, the design of the control law, the FDI, and the FTC. In
addition to the detailed approach dealing with linearized systems around an
operation point, a nonlinear approach will be presented.

2.2 Plant Models

2.2.1 Nonlinear Model

Many dynamical system can be described either in continuous-time domain
by differential equations: {

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

, (2.1)

or in discrete-time domain by recursive equations:{
x(k + 1) = f(x(k), u(k))

y(k) = h(x(k), u(k))
, (2.2)

where x ∈ �n is the state vector, u ∈ �m is the control input vector, and
y ∈ �q is the system output vector. f and h are nonlinear functions.
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These forms are much more general than their standard linear counterparts
which are described in the next section.

There is a particular class of nonlinear systems – named input-linear or
affine systems – which is often considered, as many real systems can be de-
scribed by these equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ẋ(t) = f(x(t)) +

m∑
j=1

(gj(x(t))uj(t))

= f(x(t)) + G(x(t))u(t)
yi(t) = hi(x(t)), 1 ≤ i ≤ q

. (2.3)

f(x) and gj(x) can be represented in the form of n-dimensional vector of
real-valued functions of the real variables x1, . . . , xn, namely

f(x) =

⎡
⎢⎢⎢⎣

f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)

⎤
⎥⎥⎥⎦ ; gj(x) =

⎡
⎢⎢⎢⎣

g1j(x1, . . . , xn)
g2j(x1, . . . , xn)

...
gnj(x1, . . . , xn)

⎤
⎥⎥⎥⎦ . (2.4)

Functions h1, . . . , hq which characterize the output equation of system
(2.3) may be represented in the form

hi(x) = hi(x1, . . . , xn). (2.5)

The corresponding discrete-time representation is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k + 1) = fd(x(k)) +
m∑

i=j

(gdj (x(k))uj(k)

= fd(x(k)) + Gd(x(k))u(k)
y(k) = hd(x(k))

. (2.6)

2.2.2 Linear Model: Operating Point

An operating point is usually defined as an equilibrium point. It has to be
chosen first when one has to linearize a system. The obtained linearized model
corresponds to the relationship between the variation of the system output and
the variation of the system input around this operating point. Let us consider
a system associated with its actuators and sensors, with the whole range of
the operating zone of its inputs U and measurements Y (Fig. 2.1).

If the system is linearized around an operating point (U0, Y0), the linearized
model corresponds to the relationship between the variations of the system
inputs u and outputs y (Fig. 2.2) such that

u = U − U0 and y = Y − Y0. (2.7)
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Fig. 2.1. System representation considering the whole operating zone
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Fig. 2.2. System representation taking into account the operating point

Then the model describing the relationship between the input u and the
output y can be given by a Laplace transfer function for single-input single-
output (SISO) systems:

Θ(s) =
y(s)
u(s)

, (2.8)

or by a state-space representation given in continuous-time for SISO or
multiple-input multiple-output (MIMO) systems:{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (2.9)

where x ∈ �n is the state vector, u ∈ �m is the control input vector, and
y ∈ �q is the output vector. A, B, C, and D are matrices of appropriate
dimensions.

Very often, in real applications where a digital processor is used (microcon-
troller, programmable logic controller, computer, and data acquisition board,
etc.), it may be more convenient to consider a discrete-time representation:{

x(k + 1) = Adx(k) + Bdu(k)
y(k) = Cdx(k) + Ddu(k)

. (2.10)

Ad, Bd, Cd, and Dd are the matrices of the discrete-time system of appro-
priate dimensions.

In the sequel, linear systems will be described in discrete-time, whereas
nonlinear systems will be considered in continuous-time. For the simplicity of
notation and without loss of generality, matrix Dd is taken as a zero matrix,
and the subscript d is removed.

2.2.3 Example: Linearization Around an Operating Point

To illustrate the notion of the operating point, let us consider the following
example. In the tank presented in Fig. 2.3, the objective is to study the be-
havior of the water level L and the outlet water temperature To. An inlet flow
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rate Qi is feeding the tank. An electrical power Pu is applied to an electrical
resistor to heat the water in the tank.

Fig. 2.3. Tank with heater

• Qi is the inlet water flow rate
• Ti is the inlet water temperature considered as constant
• Qo is the outlet water flow rate
• To is the outlet water temperature
• L is the water level in the tank
• Pu is the power applied to the electrical resistor
• S is the cross section of the tank

The outputs of this MIMO system are L and To. The control inputs are
Qi and Pu. The block diagram of this system is given in Fig. 2.4.

Fig. 2.4. The input/output block diagram

Assuming that the outlet flow rate Qo is proportional to the square root
of the water level in the tank (Qo = α

√
L), the water level L will be given by

the following nonlinear differential equation:

dL(t)
dt

=
1
S

(Qi(t) − Qo(t)) =
1
S

(Qi(t) − α
√

L(t)). (2.11)
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Based on the thermodynamics equations, the outlet water temperature To

is described by the following nonlinear differential equation:

dTo(t)
dt

=
Pu(t)

SL(t)μc
− To(t) − Ti(t)

SL(t)
Qi(t), (2.12)

where c is the specific heat capacity, and μ is the density of the water.
The objective now is to linearize these equations around a given operating

point: OP = (Qi0, Pu0, Qo0, To0, L0). Around this operating point, the system
variables can be considered as

Qi(t) = Qi0 + qi(t); Pu(t) = Pu0 + pu(t); Qo(t) = Qo0 + qo(t);
To(t) = To0 + to(t); L(t) = L0 + lo(t).

(2.13)

The linearization of (2.11) around the operating point OP is given by

dl(t)
dt

=
1
S

qi(t) − α

2S
√

L0

l(t). (2.14)

Similarly, the linearization of (2.12) around the operating point OP is
given by

dto(t)

dt
= −To0 − Ti

SL0
qi(t) +

1

SL0μc
pu(t)

− 1

L2
0

(
Pu0

Sμc
− To0 − Ti

S
Qi0

)
l(t)

− Qi0

SL0
to(t).

(2.15)

Considering the following state vector x =
[
l to

]T
, the linearized state-

space representation of this system around the operating point is then given
by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) =
[

l̇(t)
ṫo(t)

]
=

[
− α

2S
√

L0

0

a b

] [
l(t)
to(t)

]
+

[ 1
S

0
c d

][
qi(t)
pu(t)

]

y(t) =
[

l(t)
to(t)

]
=
[

1 0
0 1

] [
l(t)
to(t)

] , (2.16)

where

a = − 1
L2

0

(
Pu0

Sμc
− To0 − Ti

S
Qi0

)
; b = − Qi0

SL0
;

c = −To0 − Ti

SL0
; d =

1
SL0μc

.
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Numerical Application

Study the response of the system to the variation of the input variables as
follows: qi = 10 l/h and pu = 2 kW . The numerical values of the system lead
to the following state-space representation:

ẋ(t) =
[

l̇(t)
ṫo(t)

]
=
[−0.01 0

0 −0.02

] [
l(t)
to(t)

]
+
[

0.01 0
−0.03 0.04

] [
qi(t)
pu(t)

]
. (2.17)

The simulation results of the linearized system in response to the variation
of the system inputs in open-loop around the operating point are shown in
Fig. 2.5.

Fig. 2.5. The variation of the system inputs/outputs

It can be seen that initial values of these variables are zero. The zero here
corresponds to the value of the operating point. However, the real variables
Qi, Pu, L, and To are shown in Fig. 2.6.

Later on, if a state-feedback control has to be designed, it should be based
on the linearized equations given by (2.16).
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Fig. 2.6. The actual values of the system inputs/outputs

2.3 Fault Description

During the system operation, faults or failures may affect the sensors, the
actuators, or the system components. These faults can occur as additive or
multiplicative faults due to a malfunction or equipment aging.

For FDI, a distinction is usually made between additive and multiplicative
faults. However, in FTC, the objective is to compensate for the fault effect on
the system regardless of the nature of the fault.

The faults affecting a system are often represented by a variation of system
parameters. Thus, in the presence of a fault, the system model can be written
as {

xf (k + 1) = Afxf (k) + Bfuf (k)
yf (k) = Cfxf (k)

, (2.18)

where the new matrices of the faulty system are defined by

Af = A + δA; Bf = B + δB; Cf = C + δC. (2.19)
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δA, δB, and δC correspond to the deviation of the system parameters with
respect to the nominal values. However, when a fault occurs on the system,
it is very difficult to get these new matrices on-line.

Process monitoring is necessary to ensure effectiveness of process control
and consequently a safe and a profitable plant operation. As presented in the
next paragraph, the effect of actuator and sensor faults can also be represented
as an additional unknown input vector acting on the dynamics of the system
or on the measurements.

The effect of actuator and sensor faults can also be represented using an
unknown input vector fj ∈ �l, j = a (for actuators), s (for sensors) acting on
the dynamics of the system or on the measurements.

2.3.1 Actuator Faults

It is important to note that an actuator fault corresponds to the variation of
the global control input U applied to the system, and not only to u:

Uf = ΓU + Uf0, (2.20)

where

• U is the global control input applied to the system
• Uf is the global faulty control input
• u is the variation of the control input around the operating point U0,

(u = U − U0, uf = Uf − U0 )
• Uf0 corresponds to the effect of an additive actuator fault
• ΓU represents the effect of a multiplicative actuator fault

with Γ = diag(α), α =
[
α1 · · · αi · · · αm

]T and

Uf0 =
[
uf01 · · · uf0i · · · uf0m

]T . The ith actuator is faulty if αi �= 1 or
uf0i �= 0 as presented in Table 2.1 where different types of actuator faults are
described.

Table 2.1. Actuator fault

Constant offset uf0i = 0 Constant offset uf0i �= 0

αi = 1 Fault-free case Bias
αi ∈]0; 1[ Loss of effectiveness Loss of effectiveness
αi = 0 Out of order Actuator blocked

In the presence of an actuator fault, the linearized system (2.10) can be
given by {

x(k + 1) = Ax(k) + B(ΓU(k) + Uf0 − U0)
y(k) = Cx(k)

. (2.21)
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The previous equation can also be written as{
x(k + 1) = Ax(k) + Bu(k) + B[(Γ − I)U(k) + Uf0]

y(k) = Cx(k)
. (2.22)

By defining fa(k) as an unknown input vector corresponding to actuator
faults, (2.18) can be represented as follows:{

x(k + 1) = Ax(k) + Bu(k) + Fafa(k)
y(k) = Cx(k)

, (2.23)

where Fa = B and fa = (Γ − I)U + Uf0. If the ith actuator is declared to be
faulty, then Fa corresponds to the ith column of matrix B and fa corresponds
to the magnitude of the fault affecting this actuator.

In the nonlinear case and in the presence of actuator faults, (2.3) can be
described by the following continuous-time state-space representation:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f(x(t)) +
m∑

j=1

(gj(x(t))uj(t)) +
m∑

j=1

(Fa,j(x(t))fa,j(t))

yi(t) = hi(x(t)) 1 ≤ i ≤ q

, (2.24)

where Fa,j(x(t)) corresponds to the jth column of matrix G(x(t)) in (2.3) and
fa,j(t) corresponds to the magnitude of the fault affecting the jth actuator.

2.3.2 Sensor Faults

In a similar way, considering fs as an unknown input illustrating the presence
of a sensor fault, the linear faulty system will be represented by{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Fsfs(k)

. (2.25)

The affine nonlinear systems can be defined in continuous-time through
an additive component such as{

ẋ(t) = f(x(t)) + G(x(t))u(t)
yi(t) = hi(x(t)) + Fs,ifs,i(t)

, 1 ≤ i ≤ q, (2.26)

where Fs,i is the ith row of matrix Fs and fs,i is the fault magnitude affecting
the ith sensor.

This description of actuator and sensor faults is a structured representation
of these faults. Matrices Fa and Fs are assumed to be known and fa and
fs correspond, respectively, to the magnitudes of the actuator fault and the
sensor fault.
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An FTC method is based on a nominal control law associated with a fault
detection and estimation, and a modification of this control law. This is used
in order to compensate for the fault effect on the system.

2.4 Nominal Tracking Control Law

The first step in designing an FTC method is the setup of a nominal control.
In the sequel, a multi-variable linear tracking control is first addressed, then
a case of nonlinear systems is presented.

2.4.1 Linear Case

The objective in this section is to describe a nominal tracking control law able
to make the system outputs follow pre-defined reference inputs.

Consider a MIMO system given by the following discrete-time state-space
representation: {

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

, (2.27)

where x ∈ �n is the state vector, u ∈ �m is the control input vector, and y ∈
�q is the output vector. A, B, and C are matrices of appropriate dimensions.

The tracking control law requires that the number of outputs to be con-
trolled must be less than or equal to the number of the control inputs available
on the system [29].

If the number of outputs is greater than the number of control inputs,
the designer of the control law selects the outputs that must be tracked and
breaks down the output vector y as follows:

y(k) = Cx(k) =
[

C1

C2

]
x(k) =

[
y1(k)
y2(k)

]
. (2.28)

The feedback controller is required to cause the output vector y1 ∈ �p (p ≤
m) to track the reference input vector yr such that in steady-state:

yr(k) − y1(k) = 0. (2.29)

To achieve this objective, a comparator and integrator vector z ∈ �p is
added to satisfy the following relation:{

z(k + 1) = z(k) + Ts(yr(k) − y1(k))
= z(k) + Ts(yr(k) − C1x(k))

, (2.30)

where Ts is the sample period to be chosen properly. Careful consideration
should be given to the choice of Ts. If Ts is too small, the processor will not
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have enough time to calculate the control law. The system may be unstable if
Ts is too high because the system is operating in open-loop during a sample
period.

The open-loop system is governed by the augmented state and output
equations, where Ip is an identity matrix of dimension p and 0n,p is a null
matrix of n rows and p columns:

⎧⎪⎪⎨
⎪⎪⎩

[
x(k + 1)
z(k + 1)

]
=
[

A 0n,p

−TsC1 Ip

] [
x(k)
z(k)

]
+
[

B
0p,m

]
u(k) +

[
0n,p

TsIp

]
yr(k)

y(k) =
[
C 0q,p

] [x(k)
z(k)

] .

(2.31)
This state-space representation can also be written in the following form:{

X(k + 1) = ĀX(k) + B̄uu(k) + B̄ryr(k)
y(k) = C̄X(k)

. (2.32)

The nominal feedback control law of this system can be computed by

u(k) = −KX(k) = − [K1 K2

] [x(k)
z(k)

]
. (2.33)

K =
[
K1 K2

]
is the feedback gain matrix obtained, for instance, using a

pole placement technique, linear-quadratic (LQ) optimization, and so on [6,78,
119,125,130,133]. To achieve this control law, the state variables are assumed
to be available for measurement. Moreover, the state-space considered here is
that where the outputs are the state variables (C is the identity matrix In).
Otherwise, the control law is computed using the estimated state variables
obtained, for instance, by an observer or a Kalman filter.

Figure 2.7 summarizes the design of the nominal tracking control taking
into account the operating point with x = y1.
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Fig. 2.7. Nominal tracking control taking into account the operating point
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2.4.2 Nonlinear Case

The need for nonlinear control theory arises from the fact that systems are
nonlinear in practice. Although linear models are simple and easy to ana-
lyze, they are not valid except around a certain operating region. Outside
this region, the linear model is not valid and the linear representation of
the process is insufficient. Control of nonlinear systems has been extensively
considered in the literature where plenty of approaches have been proposed
for deterministic, stochastic, and uncertain nonlinear systems (see for in-
stance [46,52,58,116]). In this book, two control methods are used: the exact
input-output linearization and the sliding mode controller (SMC).

Exact Linearization and Decoupling Input-Output Controller

According to the special class of input-linear systems given by (2.3), a nonlin-
ear control law is commonly established to operate in closed-loop. To perform
this task, an exact linearization and decoupling input-output law via a static
state-feedback u(t) = α(x(t)) + β(x(t)) v(t) is designed. It is assumed here
that the system has as many outputs as inputs (i.e., q = m). For the general
case where q �= m, the reader can refer to [41, 73, 98].

The aim of this control law is to transform (2.3) into a linear and control-
lable system based on the following definitions

Definition 2.1. Let (r1, r2, . . . , rm) be the set of the relative degree per row
of (2.3) such as

ri = {min l ∈ ℵ/∃j ∈ [1, . . . , m], Lgj L
l−1
f hi(x(t)) �= 0}, (2.34)

where L is the Lie derivative operator.

The Lie derivative of hi in the direction of f , denoted Lfhi(x), is the
derivative of hi in t = 0 along the integral curve of f , such that

Lfhi(x) =
n∑

j=1

fj(x)
∂hi

∂xj
(x). (2.35)

The operation Lf , Lie derivative in the direction of f , can be iterated. Lk
fh

is defined for any k ≥ 0 by

L0
fh(x) = h(x) and Lk

fh(x) = Lf (Lk−1
f h(x)) ∀k ≥ 1 . (2.36)

Definition 2.2. If all ri exist (i = 1, . . . , m), the following matrix Δ is called
“decoupling matrix” of (2.3):
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Δ(x) =

⎡
⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)
...

. . .
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎦ . (2.37)

A vector Δ0 is also defined such as

Δ0(x) =

⎡
⎢⎣

Lr1
f h1(x)

...
Lrm

f hm(x)

⎤
⎥⎦ . (2.38)

According to the previous definition, the nonlinear control is designed as
follows.

Theorem:
a) The system defined by (2.3) is statically decouplable on a subset M0 of �n

if and only if
rank Δ(x) = m, ∀x ∈ M0. (2.39)

b) The control law computed using the state-feedback is defined by

u(t) = α(x(t)) + β(x(t))v(t), (2.40)

where {
α(x) = −Δ−1(x)Δ0(x)

β(x) = Δ−1(x)
. (2.41)

This control law is able to decouple (2.3) on M0.
c) This closed-loop system has a linear input-output behavior described by

y
(ri)
i (t) = vi(t), ∀i ∈ [1, . . . , m], (2.42)

where y
(ri)
i (t) is the rth

i derivative of yi.

Two cases may be observed:

• ∑m
i=1 ri = n: the closed-loop system characterized by the m decoupled

linear subsystems is linear, controllable and observable.
• ∑m

i=1 ri < n: a subspace made unobservable by the nonlinear feedback
(2.40). The stability of the unobservable subspace must be studied. This
subspace must have all modes stable. More details about this case can be
found in [41, 73, 98].

Since each SISO linear subsystem is equivalent to a cascade of integrators,
a second feedback control law should be considered in order to stabilize and to
set the performance of the controlled nonlinear system. This second feedback
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is built using linear control theory [29]. The simplest feedback consists of using
a pole placement associated with τi such as

yi(s)
yref,i(s)

=
1

(1 + τis)ri
(2.43)

where yref,i is the reference input associated with output yi.
The advantage of this approach is that the feedback controllers are de-

signed independently of each other. Indeed, nonlinear feedback (2.40) is built
from model (2.3) according to the theorem stated previously. The stabilized
feedback giving a closed-loop behavior described by (2.43) is designed from
the m decoupled linear equivalent subsystems (2.42) written in the Brunovsky
canonical form [65] such as

{
żi(t) = Aizi(t) + Bivi(t)
yi(t) = Cizi(t)

, ∀i ∈ [1, . . . , m], (2.44)

with

Ai =

⎡
⎢⎢⎢⎣

0
... Iri−1

0
0 0 · · · 0

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , Ci =

[
1 0 · · · 0

]
. (2.45)

The link between both state-feedbacks is defined by a diffeomorphism
z(t) = Φ(x(t)) where z(t) is the state vector of the decoupled linear system
written in the controllability canonical form.

When there is no unobservable state subspace, the diffeomorphism is de-
fined by

z(t) = Φ(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(x(t))
...
...
...

Φm(x(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

h1(x(t))
...

Lr1−1
f h1(x(t))

⎤
⎥⎦

...⎡
⎢⎣

hm(x(t))
...

Lrm−1
f hm(x(t))

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.46)

The exact linearization and decoupling input-output controller with both
state-feedback control laws may be illustrated in Fig. 2.8.
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Fig. 2.8. Nonlinear control scheme

Sliding Mode Controller

The main advantage of the SMC over the other nonlinear control laws is its
robustness to external disturbances, model uncertainties, and variations in
system parameters [135, 136]. In order to explain the SMC concept, consider
a SISO second order input affine nonlinear system:

ẍ = f(x, ẋ) + g(x, ẋ)u + df , (2.47)

where u is the control input and df represents the uncertainties and external
disturbances which are assumed to be upper bounded with |df | < D. Note that
this section considers continuous-time systems but the time index is omitted
for simplicity. Defining the state variables as x1 = x and x2 = ẋ, (2.47) leads
to {

ẋ1 = x2

ẋ2 = f(x, ẋ) + g(x, ẋ)u + df

. (2.48)

If the desired trajectory is given as xd
1, then the error between the actual

x1 and the desired trajectory xd
1 can be written as

e = x1 − xd
1. (2.49)

The time derivative of e is given by

ė = ẋ1 − ẋd
1 = x2 − xd

2 . (2.50)

The switching surface s is conventionally defined for second order systems
as a combination of the error variables e and ė:

s = ė + λe, (2.51)

where λ sets the dynamics in the sliding phase (s = 0).
The control input u should be chosen so that trajectories approach the

switching surface and then stay on it for all future time instants. Thus, the
time derivative of s is given by
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ṡ = f(x, ẋ) + g(x, ẋ)u + df − ẍ d
1 + λė. (2.52)

The control input is expressed as the sum of two terms [114]. The first one,
called the equivalent control, is chosen using the nominal plant parameters
(df = 0), so as to make ṡ = 0 when s = 0. It is given by [114]

ueq = g(x, ẋ)−1(ẍ d
1 − f(x, ẋ) − λė). (2.53)

The second term is chosen to tackle the uncertainties in the system and
to introduce a reaching law; the constant (Msign(s)) plus proportional (ks)
rate reaching law is imposed by selecting the second term as [114]

u∗ = g(x, ẋ)−1[−ks− Msign(s)], (2.54)

where k and M are positive numbers to be selected and sign(.) is the signum
function. The function g(x, ẋ) must be invertible for (2.53) and (2.54) to hold.

Then, the control input u = ueq + u∗ becomes

u = g(x, ẋ)−1[ẍ d
1 − f(x, ẋ) − λė − ks − Msign(s)]. (2.55)

Substituting input u of (2.55) in (2.52) gives the derivative ṡ of the sliding
surface

ṡ = −ks − Msign(s) + df . (2.56)

The necessary condition for the existence of conventional sliding mode for
(2.47) is given by

1
2

d

dt
s2 < 0, or sṡ < 0. (2.57)

This condition states that the squared distance to the switching surface,
as measured by s2, decreases along all system trajectories. However, this con-
dition is not feasible in practice because the switching of real components is
not instantaneous and this leads to an undesired phenomenon known as chat-
tering in the direction of the switching surface. Thus (2.57) is expanded by a
boundary layer in which the controller switching is not required:

sṡ < −η |s| . (2.58)

Multiplying (2.56) by s yields

sṡ = −ks2 − Msign(s)s + dfs = −ks2 − M |s| + dfs. (2.59)

With a proper choice of k and M , (2.58) will be satisfied.
The elimination of the chattering effect produced by the discontinuous

function sign is ensured by a saturation function sat. This saturation function
is defined as follows:

sat(s) =
{

sign(s) if |s| > φs

s/φs if |s| < φs
, (2.60)

where φs is a boundary layer around the sliding surface s.
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2.5 Model-based Fault Diagnosis

After designing the nominal control law, it is important to monitor the be-
havior of the system in order to detect and isolate any malfunction as soon as
possible. The FDI allows us to avoid critical consequences and helps in taking
appropriate decisions either on shutting down the system safely or continuing
the operation in degraded mode in spite of the presence of the fault.

The fault diagnostic problem from raw data trends is often difficult. How-
ever, model-based FDI techniques are considered and combined to supervise
the process and to ensure appropriate reliability and safety in industry. The
aim of a diagnostic procedure is to perform two main tasks: fault detection,
which consists of deciding whether a fault has occurred or not, and fault iso-
lation, which consists of deciding which element(s) of the system has (have)
indeed failed. The general procedure comprises the following three steps:

• Residual generation: the process of associating, with the measured and
estimated output pair (y, ŷ), features that allow the evaluation of the dif-
ference, denoted r (r = y− ŷ), with respect to normal operating conditions

• Residual evaluation: the process of comparing residuals r to some prede-
fined thresholds according to a test and at a stage where symptoms S(r)
are produced

• Decision making: the process of deciding through an indicator, denoted I
based on the symptoms S(r), which elements are faulty (i.e., isolation)

This implies the design of residuals r that are close to zero in the fault-free
situations (f = 0), while they will clearly deviate from zero in the presence
of faults (f �= 0). They will possess the ability to discriminate between all
possible modes of faults, which explains the use of the term isolation. A short
historical review of FDI can also be found in [71] and current developments
are reviewed in [44].

While a single residual may be enough to detect a fault, a set of structured
residuals is required for fault isolation . In order to isolate a fault, some resid-
uals with particular sensitivity properties are established. This means that
r = 0 if f∗ = 0 and r �= 0 if f∗ �= 0 regardless of the other faults defined
through fd = 0. In this context, in order to isolate and to estimate both actu-
ator and sensor faults, a bank of structured residuals is considered where each
residual vector r may be used to detect a fault according to a statistical test.
Consequently, it involves the use of statistical tests such as the Page-Hinkley
test, limit checking test, generalized likelihood ratio test, and trend analysis
test [8].

An output vector of the statistical test, called coherence vector Sr, can
then be built from the bank of ν residual generators:

Sr = [S(||r1||) · · ·S(||rν ||)]T , (2.61)
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where S(||rj ||) represents a symptom associated with the norm of the residual
vector rj . It is equal to 0 in the fault-free case and set to 1 when a fault is
detected.

The coherence vector is then compared to the fault signature vector Sref,fj

associated with the jth fault according to the residual generators built to
produce a signal sensitive to all faults except one as represented in Table 2.2.

Table 2.2. Fault signature table

Sr No faults Sref,f1 Sref,f2 · · · Sref,fν Other faults

S(‖r1‖) 0 0 1 · · · 1 1
S(‖r2‖) 0 1 0 · · · 1 1

...
...

...
...

. . .
...

...
S(‖rν‖) 0 1 1 · · · 0 1

The decision is then made according to an elementary logic test [86] that
can be described as follows: an indicator I(fj) is equal to 1 if Sr is equal to
the jth column of the incidence matrix (Sref,fj ) and otherwise it is equal to
0. The element associated with the indicator equals to 1 is then declared to
be faulty.

Moreover, the FDI module can also be exploited in order to estimate the
fault magnitude.

Based on a large diversity of advanced model-based methods for automated
FDI [22,31,53,69], the problem of actuator and/or sensor fault detection and
magnitude estimation for both linear time-invariant (LTI) and nonlinear sys-
tems has been considered in the last few decades. Indeed, due to difficulties
inherent in the on-line identification of closed-loop systems, parameter esti-
mation techniques are not considered in this book. The parity space technique
is suitable to distinguish between different faults in the presence of uncertain
parameters, but is not useful for fault magnitude estimation.

In this section, the FDI problem is first considered, then in Sect. 2.6 the
fault estimation is treated before investigating the FTC problem in Sect. 2.7.

2.5.1 Actuator/Sensor Fault Representation

Let us recall the state-space representation of a system that may be affected
by actuator and/or sensor fault:{

x(k + 1) = Ax(k) + Bu(k) + Fafa(k)
y(k) = Cx(k) + Fsfs(k)

, (2.62)

where matrices Fa and Fs are assumed to be known and fa and fs correspond
to the magnitude of the actuator and the sensor faults, respectively. The
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magnitude and time occurrence of the faults are assumed to be completely
unknown.

In the presence of sensor and actuator faults, (2.62) can also be represented
by the unified general formulation{

x(k + 1) = Ax(k) + Bu(k) + Fxf(k)
y(k) = Cx(k) + Fyf(k)

, (2.63)

where f = [fT
a fT

s ]T ∈ �ν (ν = m + q) is a common representation of sensor
and actuator faults. Fx ∈ �n×ν and Fy ∈ �q×ν are respectively the actuator
and sensor faults matrices with Fx = [B 0n×q] and Fy = [0q×m Iq ].

The objective is to isolate faults. This is achieved by generating residuals
sensitive to certain faults and insensitive to others, commonly called struc-
tured residuals . The fault vector f in (2.63) can be split into two parts. The
first part contains the “d” faults to be isolated f0 ∈ �d. In the second part,
the other “ν−d” faults are gathered in a vector f∗ ∈ �ν−d. Then, the system
can be written by the following equations:{

x(k + 1) = Ax(k) + Bu(k) + F 0
xf0(k) + F ∗

x f∗(k)

y(k) = Cx(k) + F 0
y f0(k) + F ∗

y f∗(k)
. (2.64)

Matrices F 0
x , F ∗

x , F 0
y , and F ∗

y , assumed to be known, characterize the
distribution matrices of f∗ and f0 acting directly on the system dynamics
and on the measurements, respectively.

As indicated previously, an FDI procedure is developed to enable the de-
tection and the isolation of a particular fault f0 among several others. In order
to build a set of residuals required for fault isolation, a residual generation
using an unknown input decoupled scheme is considered such that the resid-
uals are sensitive to fault vector f∗ and insensitive to f0. Only a single fault
(actuator or sensor fault) is assumed to occur at a given time, because simul-
taneous faults can hardly be isolated. Hence, vector f0 is a scalar (d = 1) and
it is considered as an unknown input. It should be noted that the necessary
condition of the existence of decoupled residual generator is fulfilled according
to Hou and Muller [66]: the number of unknown inputs must be less than the
number of measurements (d ≤ q).

In case of an ith actuator fault, the system can be represented according
to (2.64) by{

x(k + 1) = Ax(k) + Bu(k) + Bif
0(k) + [Bi 0n×q]f∗(k)

y(k) = Cx(k) + [0q×(p−1) Iq]f∗(k)
, (2.65)

where Bi is the ith column of matrix B and Bi is matrix B without the ith

column.
In order to generate a unique representation, (2.65) can be described as:
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x(k + 1) = Ax(k) + Bu(k) + Fdfd(k) + F ∗

x f∗(k)
y(k) = Cx(k) + F ∗

y f∗(k)
, (2.66)

where f0 is denoted as fd.
Similarly, for a jth sensor fault, the system is described as follows:{

x(k + 1) = Ax(k) + Bu(k) + [B 0n×(q−1)]f∗(k)

y(k) = Cx(k) + Ejf
0(k) + [0q×p Ej ]f∗(k)

, (2.67)

where Ej = [0 · · · 1 · · · 0]T represents the jth sensor fault effect on the output
vector and Ej is the identity matrix without the jth column.

According to Park et al. [100], a system affected by a sensor fault can be
written as a system represented by an actuator fault. Assume the dynamic of
a sensor fault is described as

f0(k + 1) = f0(k) + Tsξ(k), (2.68)

where ξ defines the sensor error input and Ts is the sampling period.
From (2.67) and (2.68), a new system representation including the auxil-

iary state can be introduced:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
x(k + 1)
f0(k + 1)

]
=
[

A 0n×1

01×n 1

] [
x(k)
f0(k)

]
+
[

B
01×m

]
u(k) +

[
0n×1

Ts

]
ξ(k)

+
[

B 0n×(q−1)

01×m 01×(q−1)

]
f∗(k)

y(k) =
[
C Ej

] [ x(k)
f0(k)

]
+
[
0q×m Ej

]
f∗(k)

.

(2.69)
Consequently, for actuator or sensor faults representation ((2.65) and

(2.69)), a unique state-space representation can be established to describe
the faulty system as follows:{

x(k + 1) = Ax(k) + Bu(k) + Fdfd(k) + F ∗
x f∗(k)

y(k) = Cx(k) + F ∗
y f∗(k)

, (2.70)

where fd is the unknown input vector. For simplicity, the same notation for
vectors and matrices has been used in (2.66) and (2.70).

Under the FTC framework, once the FDI module indicates which sensor or
actuator is faulty, the fault magnitude should be estimated and a new control
law will be set up in order to compensate for the fault effect on the system.

As sensor and actuator faults have different effects on the system, the
control law should be modified according to the nature of the fault. In this
book, only one fault is assumed to occur at a given time. The presence of
simultaneous multiple faults is still rare, and the FDI problem in this case
is considered as a specific topic and is dealt with in the literature. Here, the
objective is to deal with a complete FTC problem for a single fault.
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2.5.2 Residual Generation

Unknown Input Observer – Linear Case

Based on the previous representation, several approaches have been suggested
by [43, 53] to generate a set of residuals called structural residuals, in order
to detect and isolate the faulty components. The theory and the design of
unknown input observers developed in [22] is considered in this book due to
the fact that a fault magnitude estimation can be generated but also that the
unknown observers concept can be extended to nonlinear systems. A full-order
observer is built as follows:{

w(k + 1) = Ew(k) + TBu(k) + Ky(k)
x̂(k) = w(k) + Hy(k)

, (2.71)

where x̂ is the estimated state vector and w is the state of this full-order
observer. E, T , K, and H are matrices to be designed for achieving unknown
input decoupling requirements. The state estimation error vector (e = x̂− x)
of the observer goes to zero asymptotically, regardless of the presence of the
unknown input in the system. The design of the unknown input observer is
achieved by solving the following equations:

(HC − I)Fd = 0, (2.72)

T = I − HC, (2.73)

E = A − HCA − K1C, (2.74)

K2 = EH, (2.75)

and
K = K1 + K2. (2.76)

E must be a stable matrix in order to guarantee a state error estimation
equal to zero.

The system defined by (2.71) is an unknown input observer for the system
given by (2.70) if the necessary and sufficient conditions are fulfilled:

• Rank(CFd) = rank(Fd)
• (C, A1) is a detectable pair, where A1 = E + K1C

If these conditions are fulfilled, an unknown input observer provides an
estimation of the state vector, used to generate a residual vector r(k) = y(k)−
Cx̂(k) independent of fd(k). This means that r(k) = 0 if f∗(k) = 0 and
r(k) �= 0 if f∗(k) �= 0 for all u(k) and fd(k).
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Unknown Input Observer – Affine Case

Among all algebraic methods, several methods consist of the generation of
fault decoupling residual for special class of nonlinear systems such as bilinear
systems [80]. Other methods focus more on general nonlinear systems where an
unknown input decoupling input-output model is obtained [138]. Exact fault
decoupling for nonlinear systems is also synthesized with geometric approach
by [60, 101]. A literature review is detailed in [81].

Consider the state-space representation of the affine system affected by an
actuator fault:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f(x(t)) +
m∑

j=1

gj(x(t))uj(t) +
m∑

j=1

Fj(x(t))fj(t)

yi(t) = hi(x(t)), 1 ≤ i ≤ q

. (2.77)

The approach presented in this section is an extension of the synthesis of
unknown input linear observers to affine nonlinear systems. The initial work
on this problem can be found in [49, 50].

The original system described by (2.77) should be broken down into two
subsystems where one subsystem depends on the fault vector f and the second
is independent of f by means of a diffeomorphism Φf such as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1(t) = f̃1(x̃1(t), x̃2(t)) +
m∑

j=1

g̃1j(x̃1(t), x̃2(t))uj(t)

+
m∑

j=1

F̃j(x̃1(t), x̃2(t))fj(t)

˙̃x2(t) = f̃2(x̃1(t), x̃2(t)) +
m∑

j=1

g̃2j(x̃1(t), x̃2(t))uj(t)

, (2.78)

where x̃(t) =
[

x̃1(t)
x̃2(t)

]
= Φf (x(t), u(t)).

The diffeomorphism Φf is defined by

m∑
j=1

∂

∂xj(t)
Φf (x(t), u(t)) × Fj(x(t))fj(t) = 0 . (2.79)

This transformation is solved using the Frobenius theorem [73]. Equation
(2.79) is not always satisfied. In order to simplify the way to solve this trans-
formation, only one component fj(t) of the fault vector f is considered with
the objective of building a bank of observers. Each observer is dedicated to
one single fault fj as proposed in the generalized observer scheme.
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A subsystem insensitive to a component fj of the fault vector f(t) is
extracted for each observer by deriving the output vector y(t). A characteristic
index is associated with each fault fj . This index corresponds to the necessary
derivative number so that the fault fj appears in yi. This index is also called
the detectability index and is defined by

ρi = min{ζ ∈ N|LF Lζ−1
g hi(x(t)) �= 0}. (2.80)

If ρi exists, only component output yi is affected by fj . It is then possible
to define a new state-space representation where a subsystem is insensitive to
fault fj , such as

x̃(t) = Φfj (x(t), u(t)) =
[

x̃1(t)
x̃2(t)

]
=

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

yi(t)
ẏi(t)

...
yρi−1

i (t)

⎤
⎥⎥⎥⎦

φi(x(t), u(t))

⎤
⎥⎥⎥⎥⎥⎦. (2.81)

It is always possible to find φi(x(t), u(t)) satisfying the following conditions
[41]:

rank

⎛
⎜⎜⎜⎜⎜⎝

∂

∂x

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

yi(t)
ẏi(t)

...
yρi−1

i (t)

⎤
⎥⎥⎥⎦

φi(x(t), u(t))

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = dim(x(t)), (2.82)

where
d

dt
(φi(x(t), u(t))) is independent of fj(t).

System (2.77) can now be written by means of the new coordinates system
defined in (2.81) and a subsystem insensitive to fj can be represented as{ ˙̃x1(t) = φi(x̃1(t), x̃2(t), u(t))

ỹi(t) = h̃i(x̃1(t), x̃2(t))
, (2.83)

where ỹi(t) is the output vector y(t) without the ith component yi(t). x̃2(t) is
considered as an input vector for (2.83).

Considering all the components of the fault vector f(t), a bank of observers
is built where each observer is insensitive to a unique fault fj. Nonlinear
subsystem (2.83), which is insensitive to fj , is used in order to synthesize a
nonlinear observer as an extended Luenberger observer [97].

Based on [100], the proposed decoupled observer method applied to an
affine system also provides an efficient FDI technique for sensor faults as
developed in the linear case. In the presence of a sensor fault, the observer
insensitive to the fault estimates state vector x̃1(t) and consequently estimates
the output corrupted by the fault. On the other hand, no estimation of an
actuator fault can be computed from (2.83).
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Fault Diagnosis Filter Design

Some control methods such as observers have been considered or modified to
solve FDI problems. Among various FDI methods, filters have been success-
fully considered to provide new tools to detect and isolate faults.

To detect and estimate the fault magnitude, a fault detection filter is de-
signed such that it does not decouple the residuals from the fault but rather
assigns the residuals vector in particular directions to guarantee the identifi-
cation of the fault [28, 79, 122].

Under the condition that (A, C) is observable from (2.66) or (2.70), the
projectors are designed such that the residual vector is sensitive only to a
particular fault direction. In order to determine the fault magnitude and the
state vector estimations, a gain is synthesized such that the residual vector
r(k) = y(k)−Cx̂(k) is insensitive to specific faults according to some projec-
tors P . These projectors are designed such that the projected residual vector
p(k) = Pr(k) is sensitive only to a particular fault direction. Hence, the spe-
cific fault filter is defined as follows:

{
x̂(k + 1) = Ax̂(k) + Bu(k) + (KA + KC) (y(k) − Cx̂(k))

ŷ(k) = Cx̂(k)
, (2.84)

where

• KA should be defined in order to obtain AFd − KACFd = 0, so KA is
equivalent to

KA = ωΞ, (2.85)

ω = AFd, Ξ = (CFd)
+ and + defines the pseudo-inverse

• KC should be defined in order to obtain KCCFd = 0 which is solved as
follows:

KC = KΨ, (2.86)

where Ψ = β
[
I − (CFd) (CFd)+

]
and K is a constant gain

It must be noted that β is chosen as a matrix with appropriate dimensions
whose elements are equal to 1. The reduced gain K defines the unique free
parameter in this specific filter.

Based on (2.85) and (2.86), (2.84) becomes equivalent to the following:{
x̂(k + 1) = (A− KC) x̂(k) + Bu(k) + KAyk + KΨyk

ŷ(k) = Cx̂(k)
, (2.87)

where A = A [I − FdΞC] and C = ΨC.
The gain K is calculated using the eigenstructure assignment method such

that (A− KC) is stable.
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The gain breakdown KA + KC and associated definitions involve the fol-
lowing matrices properties:

ΞCFd = 0, and ΨCFd = I, (2.88)

and enable the generation of projected residual vector as follows:

p(k) = Pr(k) =
[

Ψ
Ξ

]
r(k) =

[
Σr(k)

Ξr(k) + fd(k − 1)

]
=
[

γ(k)
η(k)

]
. (2.89)

It is worth noting that γ is a residual insensitive to faults and η is calculated
in order to be sensitive to fd.

As sensor and actuator faults do not affect the system similarly, the control
law should be modified according to the nature of the fault. In the sequel,
different methods for estimating the actuator and sensor faults are presented.

2.6 Actuator and Sensor Faults Estimation

2.6.1 Fault Estimation Based on Unknown Input Observer

According to the fault isolation, the fault magnitude estimation of the cor-
rupted element is extracted directly from the jth unknown input observer
which is built to be insensitive to the jth fault (f∗(k) = 0). Based on the
unknown input observer, the substitution of the state estimation in the faulty
description (2.70) leads to

Fdfd(k) = x̂(k + 1) − Ax̂(k) − Bu(k). (2.90)

In the presence of an actuator fault, Fd is a matrix of full column rank.
Thus, the estimation of the fault magnitude f̂0(k) = f̂d(k) makes use of the
singular-value decomposition (SVD) [54].

Let Fd = U

[
R
0

]
V T be the SVD of Fd. Thus, R is a diagonal and non-

singular matrix and U and V are orthonormal matrices.
Using the SVD and substituting it in (2.90) results in

x̂(k + 1) = Ax̂(k) + Bû(k) +
[

R
0

]
V T fd(k), (2.91)

where

x̂(k) = Ux̂(k) = U

[
x̂1(k)
x̂2(k)

]
, (2.92)

A = U−1AU =
[

A11(k) A12(k)
A21(k) A22(k)

]
, (2.93)
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and

B = U−1B =
[

B1(k)
B2(k)

]
. (2.94)

Based on (2.91), the estimation of the actuator fault magnitude is defined
as

f̂0(k) = f̂d(k) = V R−1(x̂1(k + 1) − A11x̂1(k) − A12x̂2(k) − B1u(k)). (2.95)

For a sensor fault, the fault estimation f̂0(k) is the last component of the
estimated augmented state vector x̂(k) as defined in (2.69).

2.6.2 Fault Estimation Based on Decoupled Filter

Based on the projected residual p(k), an estimation of input vector η(k) (which
corresponds to the fault magnitude with a delay of one sample) should be di-
rectly exploited for fault detection. Indeed, a residual evaluation algorithm
can be performed by the direct fault magnitude evaluation through a statisti-
cal test in order to monitor the process. It should be highlighted that the first
component of projector vector (2.89), denoted γ(k), can be considered as a
quality indicator of the FDI module. If a fault is not equal to fd then the mean
of the indicator will not equal zero. As previously, sensor fault estimation can
be also provided by the last component of the augmented state-space .

2.6.3 Fault Estimation Using Singular Value Decomposition

Another method to estimate the actuator and sensor faults is based on SVD
which will be described in this section.

Estimation of Actuator Faults

In the presence of an actuator fault and according to (2.23) and (2.31), the
augmented state-space representation of the system is written as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
x(k + 1)
z(k + 1)

]
=
[

A 0n,p

−TsC1 Ip

] [
x(k)
z(k)

]
+
[

B
0p,m

]
u(k)

+
[

0n,p

TsIp

]
yr(k) +

[
Fa

0

]
fa(k)

y(k) =
[
C 0q,p

] [x(k)
z(k)

] , (2.96)

where Fa corresponds to the ith column of matrix B in case the ith actuator
is faulty.
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The magnitude of the fault fa can be estimated if it is defined as a com-
ponent of an augmented state vector Xa(k). In this case, the system (2.96)
can be re-written under the following form:

EaXa(k + 1) = AaXa(k) + BaU(k) + Gayr(k), (2.97)

where

Ea =

⎡
⎣ In 0 −Fa

0 Ip 0
C 0 0

⎤
⎦ ; Aa =

⎡
⎣ A 0 0
−TsC1 Ip 0

0 0 0

⎤
⎦ ; Ba =

⎡
⎣B 0

0 0
0 Iq

⎤
⎦ ;

Ga =

⎡
⎣ 0

TsIp

0

⎤
⎦ ; Xa(k) =

⎡
⎣ x(k)

z(k)
fa(k − 1)

⎤
⎦ ; U(k) =

[
u(k)

y(k + 1)

]
.

The estimation of the fault magnitude fa can then be obtained using the
SVD of matrix Ea if it is of full column rank [9].

Consider the SVD of matrix Ea:

Ea = T

[
S
0

]
MT , with T =

[
T1 T2

]
.

T and M are orthonormal matrices such that: TT T = I , MMT = I, and
S is a diagonal nonsingular matrix.

Substituting the SVD of Ea in (2.97) leads to{
Xa(k + 1) = ÃaXa(k) + B̃aU(k) + G̃ayr(k)

0 = Ã0Xa(k) + B̃0U(k) + G̃0yr(k)
, (2.98)

where

Ãa = MS−1T T
1 Aa = E

+

a Aa; Ã0 = T T
2 Aa;

B̃a = MS−1T T
1 Ba = E

+

a Ba; B̃0 = T T
2 Ba;

G̃a = MS−1T T
1 Ga = E

+

a Ga; G̃0 = T T
2 Ga;

(2.99)

and where E
+

a is the pseudo-inverse of matrix Ea.
Therefore, the estimation f̂a of the fault magnitude fa is the last com-

ponent of the state vector Xa, which is the solution of the first equation in
(2.98). This solution Xa must satisfy the second equation of (2.98). It can be
noted from (2.97) that the estimation of the fault magnitude fa at time instant
(k) depends on the system outputs y at time instant (k + 1). To avoid this
problem, the computation of the fault estimation is delayed by one sample.
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Estimation of Sensor Faults

When a sensor fault affects the closed-loop system, the tracking error between
the reference input and the measurement will no longer be equal to zero. In
this case, the nominal control law tries to bring the steady-state error back
to zero. Hence, in the presence of a sensor fault, the control law must be
prevented from reacting, unlike the case of an actuator fault. This can be
achieved by cancelling the fault effect on the control input.

For sensor faults, the output equation given in (2.25) is broken down ac-
cording to (2.28), and can be written as

y(k) = Cx(k) + Fsfs(k) =
[

y1(k)
y2(k)

]
=
[

C1

C2

]
x(k) +

[
Fs1

Fs2

]
fs(k). (2.100)

In this case, attention should be paid to the integral error vector z which
will be affected by the fault as well. The integral error vector can then be
described as follows:{

z(k + 1) = z(k) + Ts(yr(k) − y1(k))
= z(k) + Ts(yr(k) − C1x(k) − Fs1fs(k))

. (2.101)

The sensor fault magnitude can be estimated in a similar way to that of
the actuator fault estimation by describing the augmented system as follows:

EsXs(k + 1) = AsXs(k) + BsU(k) + Gsyr(k), (2.102)

where

Es =

⎡
⎣ In 0 0

0 Ip 0
C 0 Fs

⎤
⎦ ; As =

⎡
⎣ A 0 0
−TsC1 Ip −TsFs1

0 0 0

⎤
⎦ ; Bs =

⎡
⎣B 0

0 0
0 Iq

⎤
⎦ ;

Gs =

⎡
⎣ 0

TsIp

0

⎤
⎦ ; Xs(k) =

⎡
⎣ x(k)

z(k)
fs(k)

⎤
⎦ ; U(k) =

[
u(k)

y(k + 1)

]
.

The sensor fault magnitude f̂s can then be estimated using the SVD of
matrix Es if this matrix is of full column rank.

2.7 Actuator and Sensor Fault-tolerance Principles

2.7.1 Compensation for Actuator Faults

The effect of the actuator fault on the closed-loop system is illustrated by
substituting the feedback control law (2.33) in (2.23):
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x(k + 1) = (A − BK1)x(k) − BK2z(k) + Fafa(k)

y(k) = Cx(k)
. (2.103)

A new control law uadd should be calculated and added to the nominal
one in order to compensate for the fault effect on the system. Therefore, the
total control law applied to the system is given by

u(k) = −K1x(k) − K2z(k) + uadd(k). (2.104)

Considering this new control law given by (2.104), the closed-loop state
equation becomes

x(k + 1) = (A − BK1)x(k) − BK2z(k) + Fafa(k) + Buadd(k). (2.105)

From this last equation, the additive control law uadd must be computed
such that the faulty system is as close as possible to the nominal one. In other
words, uadd must satisfy

Buadd(k) + Fafa(k) = 0. (2.106)

Using the estimation of the fault magnitude described in the previous
section, the solution of (2.106) can be obtained by the following relation if
matrix B is of full row rank:

uadd(k) = −B−1Faf̂a(k). (2.107)

The fault compensation principle presented under linear assumption can
be directly extended to nonlinear affine systems but not to general ones. In-
deed, according to (2.42) an additional control law can be applied to the
decoupled linear subsystems. The three-tank system considered in Chap. 4
will provide an excellent example to illustrate this FTC design.

Remark 2.1. Matrix B is of full row rank if the number of control inputs is
equal to the number of state variables. In this case, B is invertible.

Case of Non Full Row Rank Matrix B

In the case when matrix B is not of full row rank (i.e., the number of sys-
tem inputs is less than the number of system states), the designer chooses to
maintain as many priority outputs as available control inputs to the detriment
of other secondary outputs. To be as close as possible to the original system,
these priority outputs are composed of the tracked outputs and of other re-
maining outputs. This is achieved at the control law design stage using, if
necessary, a transformation matrix P such that
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⎪⎪⎩

[
xp(k + 1)
xs(k + 1)

]
=
[

App Aps

Asp Ass

] [
xp(k)
xs(k)

]
+
[

Bp

Bs

]
u(k) +

[
Fap

Fas

]
fa(k)

y(k) =
[

yp(k)
ys(k)

]
= CT

[
xp(k)
xs(k)

] ,

(2.108)
where index p represents the priority variables and s corresponds to the sec-
ondary variables. In this way, Bp is a nonsingular square matrix. If the state-
feedback gain matrix K1 is broken down into K1 =

[
Kp Ks

]
, the control law

is then given by

u(k) = − [Kp Ks K2

]⎡⎣xp(k)
xs(k)
z(k)

⎤
⎦+ uadd(k). (2.109)

Substituting (2.109) in (2.108) leads to

{
xp(k + 1) = (App − BpKp)xp(k) − BpK2z(k)

+ (Aps − BpKs)xs(k) + Fapfa(k) + Bpuadd(k)
(2.110)

and {
xs(k + 1) = (Ass − BsKs)xs(k) − BsK2z(k)

+ (Asp − BsKp)xp(k) + Fasfa(k) + Bsuadd(k)
. (2.111)

Here, the fault effect must be eliminated in the priority state variables xp.
Thus, from (2.110), this can be achieved by calculating the additive control
law uadd satisfying

(Aps − BpKs)xs(k) + Fapfa(k) + Bpuadd(k) = 0. (2.112)

In this breakdown, if xs is not available for measurement, it can be com-
puted from the output equation in (2.108), as CT is a full column rank matrix.
Then, the solution uadd of (2.112) is obtained using the fault estimation f̂a:

uadd(k) = −B−1
p [(Aps − BpKs)xs(k) + Fapf̂a(k)]. (2.113)

The main goal is to eliminate the effect of the fault on the priority outputs.
This is realized by choosing the transformation matrix P such that

CT =
[

CT11 0
CT21 CT22

]
.

Although that the secondary outputs are not compensated for, they must
remain stable in the faulty case. Let us examine these secondary variables.
Replacing (2.113) in (2.111) yields
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xs(k + 1) = (Ass − BsB
−1
p Aps)xs(k) − BsK2z(k)

+ (Asp − BsKp)xp(k) + (Fas − BsB
−1
p Fap)f̂a(k). (2.114)

It is easy to see that the secondary variables are stable if and only if the
eigenvalues of matrix (Ass − BsB

−1
p Aps) belong to the unit circle.

2.7.2 Sensor Fault-tolerant Control Design

As for actuator faults, two main approaches have been proposed to eliminate
the sensor fault effect which may occur on the system. One is based on the
design of a software sensor where an estimated variable is used rather than
the faulty measurement of this variable. The other method is based on adding
a new control law to the nominal one.

Sensor Fault Masking

In the presence of sensor faults, the faulty measurements influence the closed-
loop behavior and corrupt the state estimation. Sensor FTC can be obtained
by computing a new control law using a fault-free estimation of the faulty
element to prevent faults from developing into failures and to minimize the
effects on the system performance and safety. From the control point of view,
sensor FTC does not require any modification of the control law and is also
called “sensor masking” as suggested in [131]. The only requirement is that
the “estimator” provides an accurate estimation of the system output after a
sensor fault occurs.

Compensation for Sensor Faults

The compensation for a sensor fault effect on the closed-loop system can be
achieved by adding a new control law to the nominal one:

u(k) = −K1x(k) − K2z(k) + uadd(k). (2.115)

It should be emphasized here that, in the presence of a sensor fault, both
the output y and the integral error z are affected such that⎧⎪⎨

⎪⎩
y(k) = Cx(k) = Cx0(k) + Fsfs(k)

z(k) = z0(k) + f̃(k)

f̃(k) = f̃(k − 1) − TeFs1fs(k − 1)

, (2.116)

where x0 and z0 are the fault-free values of x and z and f̃ is the integral of
−Fs1fs. Assuming that matrix C = I, these equations lead the control law to
be written as follows:

u(k) = −K1x0(k) − K1Fsfs(k) − K2z0(k) − K2f̃(k) + uadd(k). (2.117)
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The sensor fault effect on the control law and on the system can be can-
celled by computing the additive control law uadd such that

uadd(k) = K1Fsf̂s(k) + K2f̃(k). (2.118)

Remark 2.2. In the case when matrix C �= In, the control law can be calculated
using the estimated state vector which is affected by the fault as well. The
fault compensation will be achieved in a similar way to that given by (2.117)
and (2.118).

It has been shown that the new control law added to the nominal one is
not the same in the case of an actuator or sensor fault. Thus, the abilities of
this FTC method to compensate for faults depend on the results given by the
FDI module concerning the decision as to whether a sensor or an actuator
fault has occurred.

2.7.3 Fault-tolerant Control Architecture

After having presented the different modules composing a general FTC ar-
chitecture, the general concept of this approach is summarized in Fig. 2.9
in the linear framework, which is easily extended to the nonlinear case. The
FDI module consists of residual generation, residual evaluation, and finally
the decision as to which sensor or actuator is faulty. The fault estimation and
compensation module starts the computation of the additive control law and
is only able to reduce the fault effect on the system once the fault is detected
and isolated. Obviously, the fault detection and isolation must be achieved as
soon as possible to avoid huge losses in system performance or catastrophic
consequences.

Fig. 2.9. FTC scheme
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2.8 General Fault-tolerant Control Scheme

The general FTC method described here addresses actuator and sensor faults,
which often affect highly automated systems. These faults correspond to a loss
of actuator effectiveness or inaccurate sensor measurements.

The complete loss of a sensor can be overcome by using the compensa-
tion method presented previously, provided that the system is still observ-
able. Actually, after the loss of a sensor, the observability property allows the
estimation of the lost measurement using the other available measurements.
However, the limits of this method are reached when there is a complete loss of
an actuator; in this case, the controllability of the system should be checked.
Very often, only a hardware duplication is effective to ensure performance
reliability.

The possibility and the necessity of designing an FTC system in the pres-
ence of a major actuator failure such as a complete loss or a blocking of an
actuator should be studied in a different way. For these kinds of failures, the
use of multiple-model techniques is appropriate, since the number of failures
is not too large. Some recent studies have used these techniques [104,137,139].

It is important to note that the strategy to implement and the level of
achieved performance in the event of failures differ according to the type of
process, the allocated degrees of freedom, and the severity of the failures . In
this case, it is necessary to restructure the control objectives with a degraded
performance. A complete active FTC scheme can be designed according to
the previous classification illustrated in Fig. 1.1. This scheme is composed
of the nominal control associated with the FDI module which aims to give
information about the nature of the fault and its severity. According to this
information, a reconfiguration or a restructuring strategy is activated. It is
obvious that the success of the FTC system is strongly related to the relia-
bility of the information issued from the FDI module. In the reconfiguration
step, the fault magnitude is estimated. This estimation could be used as re-
dundant information to that issued from the FDI module. The objective of
this redundancy is to enhance the reliability of the diagnosis information. The
complete FTC scheme discussed here is summarized in Fig. 2.10.

2.9 Conclusion

The FDI and the FTC problems are addressed in this chapter. The complete
strategy to design an FTC system is presented. For this purpose, since many
real systems are nonlinear, both nonlinear and linear techniques are shown.
The linear techniques are used in case the system is linearized around an
operating point.

The study presented here is based on the fault detection, the fault isolation,
the fault estimation, and the compensation for the fault effect on the system.
All these steps are taken into consideration. If this fault allows us to keep
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Fig. 2.10. General FTC scheme

using all the sensors and actuators, a method based on adding a new control
law to the nominal one is described in order to compensate for the fault
effect. For actuator faults, the objective of this new control law is to boost the
control inputs in order to keep the performance of the faulty system close to
the nominal system performance. Regarding sensor faults, the additive control
law aims at preventing the total control inputs from reacting when these faults
occur.

In case a major fault occurs on the system, such as the loss of an actuator,
the consequences are more critical. This case is analyzed and the system should
be restructured in order to use the healthy actuators and to redefine the
objectives to reach. Therefore, the system will perform in degraded mode.

The following chapters are dedicated to the application of the linear and
nonlinear methods described above to a laboratory-scale winding machine, a
three-tank system, and finally in simulation of a full car active suspension sys-
tem which is considered as a complex system. tured in order to use the healthy
actuators and to redefine the objectives to reach. Therefore, the system will
perform in degraded mode.

The following chapters are dedicated to the application of the linear and
nonlinear methods described above to a laboratory-scale winding machine, a
three-tank system, and finally in simulation to a full car active suspension
system which is considered as a complex system.
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Application to a Three-tank System

4.1 Introduction

In this chapter, a hydraulic system that can be used for water treatment or
storing liquids in many industrial plants is considered. During these processes,
chemical reactions are supposed to occur around pre-defined operating points.
Therefore, the liquid levels control in a plant is crucial in order to provide
desired specifications. Using a prototype of a hydraulic system, researchers
have successfully tested various methods of linear or nonlinear decoupling
control and model-based fault diagnosis.

The three-tank system considered in this study is a popular laboratory-
scale system designed by [4]. It is used in order to investigate linear, nonlinear
multivariable feedback control as well as FDI and FTC system design. Koenig
et al. [82] have synthesized a decoupled linear observer to detect and to isolate
actuator and component faults (pipe, tank, etc.) around an operating point
without fault magnitude estimation. Based on the nonlinear model, [112] have
designed an observer using the bilinear model representation of the three-tank
system to detect a leakage from a pipe. A diagnostic system based also on
a bilinear model has been considered in [7], where time varying innovation
generators combined with generalized likelihood ratio tests are designed to
detect and isolate faults. The robustness of a sliding mode observer (SMO)
to detect faults in the presence of noise on the measurements was tested
in real-time [105]. Among model-based approaches, a differential geometric
method has been successfully applied in [76]. Rather than considering a com-
plex nonlinear model, [1] have estimated the state vector based around various
operating points through a bank of decoupled observers to generate residuals
for fault detection. More recently, [106] have proposed to develop a bank of
decoupled observers to detect and isolate actuator/sensor faults around mul-
tiple operating points applied to the three-tank system. FDI methods based
on fuzzy or neural models have also been illustrated on the three-tank system
to detect and isolate faults [83,91,93]. In [115] the authors deal with the FDI
problem of plants with unknown description.
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In the FTC framework, the three-tank system has been considered as a
benchmark. In the presence of sensor faults, [143] estimates the fault magni-
tude based on an adaptive filter with an on-line parameter estimation method
developed by [142]. The sensor fault estimation is used for sensor fault mask-
ing. In [25] an effective low-order tuner for FTC of a class of unknown non-
linear stochastic sampled-data systems is proposed. The strategy is based
on the modified state-space self-tuning control via the observer/Kalman fil-
ter identification method. Weighted fuzzy predictive control is used for FTC
of an experimental three-tank system [95]. Furthermore, a European project
“COSY” (control of complex systems) [62] has considered the three-tank sys-
tem as a benchmark for all partners under the assumption: two tanks are
active and the last one is used as a redundant process.

While various FDI and FTC approaches in the literature have been ap-
plied separately to the three-tank system, this chapter aims at presenting a
complete approach in order to present and illustrate the application of the
methods developed in Chap. 2 to this system. This is investigated in the lin-
ear case around an operating point as first presented by [121] but also on
the whole operating zone using nonlinear techniques. A complete simulation
platform of the three-tank system, in closed-loop, with or without actuator
and sensor faults, is provided for the use of the reader via download from
www.springer.com/978-1-84882-652-6 as described in the Appendix.

4.2 System Description

The considered hydraulic system is presented in Fig. 4.1.

Fig. 4.1. Three-tank system

The hydraulic system consists of three identical cylindrical tanks with
equal cross-sectional area S (Fig. 4.2). These three tanks are connected by two
cylindrical pipes of the same cross-sectional area, denoted Sp, and have the
same outflow coefficient, denoted μ13 and μ32. The nominal outflow located
at tank 2 has the same cross-sectional area as the coupling pipe between the
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cylinders but a different outflow coefficient, denoted μ20. Two pumps driven
by DC motors supply the first and last tanks. Pumps flow rates (q1 and q2) are
defined by flow per rotation. A digital/analog converter is used to control each
pump. The maximum flow rate for pump i is denoted qimax. A piezo-resistive
differential pressure sensor carries out the necessary level measurement. Three
transducers deliver voltage signal levels. The variable �j denotes the level in
tank j and �jmax, the associated maximum liquid level.

Fig. 4.2. Synoptic of the three-tank system

The system can be described by the following mass balance equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S
d�1(t)

dt
= q1(t) − q13(t)

S
d�2(t)

dt
= q2(t) + q32(t) − q20(t)

S
d�3(t)

dt
= q13(t) − q32(t)

, (4.1)

where qmn represents the flow rate from tank m to n (m, n = 1, 2, 3 ∀m �= n)
which, based on the Torricelli law, is equal to

qmn(t) = μmnSpsign(lm(t) − ln(t))
√

2g | lm(t) − ln(t) |, (4.2)

and q20 represents the outflow rate described as follows:

q20(t) = μ20Sp

√
2gl2(t). (4.3)

The numerical values of the plant parameters are listed in Table 4.1.
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Table 4.1. Parameters value of the three-tank system

Variable Symbol Value

Tank cross sectional area S 0.0154 m2

Inter tank cross sectional area Sp 5 × 10−5 m2

Outflow coefficient μ13 = μ32 0.5
Outflow coefficient μ20 0.675
Maximum flow rate qimax(i ∈ [1 2]) 1.2 × 10−4 m3s−1

Maximum level ljmax(j ∈ [1 2 3]) 0.62 m

4.3 Linear Case

4.3.1 Linear Representation

Under the assumption �1 > �3 > �2, a linear model can be established
around an equilibrium point (U0, Y0). The system is linearized around this
operating point using Taylor expansion. The linearized system is described by
a discrete LTI representation with a sampling period Ts = 1 s:{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

, (4.4)

where y and u represent variations around an operating point defined by the
pair (U0, Y0).

The purpose of this study is to control the system around the operating
point (U0, Y0), which is fixed to{

Y0 =
[
0.40 0.20 0.30

]T (m)

U0 =
[
0.35 × 10−4 0.375× 10−4

]T (m3/s)
. (4.5)

In order to generate matrices A and B, the following program is written
in MATLAB� code:

% Parameters va lu e o f three−tank system
mu13=0.5 ; mu20=0.675; mu32=0.5 ;
S=0.0154; Sn=5e−5; W=sqrt ( 2 ∗ 9 . 8 1 ) ;

% Output opera t ing Points (m)
Y10=0.400; Y20=0.200; Y30=0.300;

% Input opera t ing Points (m3/s )
U10=0.350e−004; U20=0.375e−004;

% Matrix A
A11=−(mu13∗Sn∗W)/(2∗S∗ sqrt (Y10−Y30 ) ) ; A12=0;
A13=−A11 ;
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A21=0;A23=(mu32∗Sn∗W)/(2∗S∗ sqrt (Y30−Y20 ) ) ;
A22=−A23−((mu20∗Sn∗W)/(2∗S∗ sqrt (Y20 ) ) ) ;
A31=−A11 ; A32=A23 ; A33=−A32−A31 ;
A=[A11 A12 A13 ; A21 A22 A23 ; A31 A32 A33 ] ;

% Matrix B
B11=1/S ; B12=0;
B21=0;B22=1/S ;
B31=0;B32=0;
B=[B11 B12 ; B21 B22 ; B31 B32 ] ;

% Continuous to d i s c r e t s t a t e space t rans format ion
[Ad, Bd ] = c2d (A,B, 1 . 0 ) ;

Then, matrices A, B and C are equivalent to

A =

⎡
⎣0.9888 0.0001 0.0112

0.0001 0.9781 0.0111
0.0112 0.0111 0.9776

⎤
⎦ ; B =

⎡
⎣ 64.5687 0.0014

0.0014 64.2202
0.3650 0.3637

⎤
⎦ ; C = I3×3.

Remark 4.1. As presented in Chap. 3, which discussed the winding machine
application, (4.4) may be obtained using an identification method.

4.3.2 Linear Nominal Control Law

A tracking control problem is considered in this study where the desired out-
puts y1 = [�1 �2]T are required to track references yr with

y(k) =
[

y1(k)
y2(k)

]
=
[

C1

C2

]
x(k), (4.6)

where y2 = �3.
To achieve the nominal tracking control, the solution proposed by [29]

and developed in Sect. 2.4.1 has been considered for the three-tank system.
Since the feedback control can only guarantee the stability and the dynamic
behavior of the closed-loop system, a complementary controller is required to
cause the output vector y1 to track the reference input vector yr such that the
steady-state error is equal to zero. The technique consists of adding a vector
comparator and integrator z = [z1 z2]

T that satisfies

zi(k + 1) = zi(k) + Ts (yr,i(k) − y1,i(k)) . (4.7)

Therefore, the open-loop system can be described by an augmented state-
space representation and the controllability of the system is verified off-line.
Among the most popular controller design techniques for MIMO systems,
a pole placement technique is considered to impose a desired behavior of
the plant in closed-loop. Therefore, the feedback gain matrix K is designed
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such that the eigenvalues of the closed-loop augmented system are equal to[
0.92 0.97 0.90 0.95 0.94

]
:

K =
[
K1 | K2

]
= 10−4 ×

[(−0.95 −0.32
−0.30 −0.91

)
|
(

21.6 3 −5
2.9 19 −4

)]
; (4.8)

K =
[
K1 | K2

]
= 10−4 ×

[(
21.6 3 −5
2.9 19 −4

)
|
(−0.95 −0.32
−0.30 −0.91

)]
. (4.9)

The control law has been implemented in C-code on a PC associated with a
data acquisition board. For this system, the state variables x(k) are available,
and thus matrix C = I. Consequently, the control law is computed using
the measurements. Based on a vector comparator, a simple matrix operator
is computed to calculate the proportional part and also the integrator part
through a recurrent algorithm under an anti-windup scheme. This integrator
module with anti-windup scheme is jammed to a constant value when an
actuator saturates and eliminates some possible instability problems.

Results and Comments

Step responses with respect to set-point changes are considered to validate
the tracking control. Reference inputs yr are step changes for �1 and �2 which
excite the nonlinear system around the corresponding operating condition.
The dynamic behavior of the levels shows that the controller is synthesized
correctly (Fig. 4.3). According to the developed MIMO control law, level �i is
affected by step change on level �j as presented in Fig. 4.3. Moreover, it should
be noticed that the measurement noise level is very low for this application.
Figure 4.4 shows the corresponding control inputs for step changes in the
reference inputs. As indicated previously, �1 impacts the dynamic of �2 when
the reference signal changes, consequently the corresponding control input q1

is also affected.

4.3.3 Fault Detection and Isolation with Magnitude Estimation

In most conventional control systems, controllers are designed for the fault-
free case without taking into account the possibility of fault occurrence. Due
to abnormal operation or material aging, actuator or sensor faults occur in
systems. First, a constant offset of −0.03 m on level sensor �1 has been created
and added at instant 1000 s. In other words, the faulty measurement used by
the controller is equal to �1 − 0.03. As illustrated in Fig. 4.5, the control
law tries to cancel the steady-state error created by the faulty measurement.
Consequently, the real output is different from the reference input and the
control law is different from its nominal value (Fig. 4.6).
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Fig. 4.3. System outputs in fault-free case

Fig. 4.4. System inputs in fault-free case
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Fig. 4.5. Measured and real �1 with a bias on sensor �1

Fig. 4.6. Input flow rate in fault-free case and in the presence of a bias on sensor �1
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Similarly, an actuator fault on pump 1 has been applied. A gain degrada-
tion of 80% appears abruptly at instant 1000 s. Practically, the control input
applied to the system corresponds to the control input computed by the con-
troller multiplied by a constant equal to 0.2. Since an actuator fault acts on
the system as a perturbation, the system output �1 returns to its nominal
value (see Fig. 4.7). With this controller, the dynamic behavior of level �2 is
also affected by this fault as illustrated in Fig. 4.8.

Fig. 4.7. Measured �1 in fault-free and in the presence of a bias on pump q1

In the presence of sensor or actuator faults, system (4.4) can be represented
by the discrete state-space representation{

x(k + 1) = Ax(k) + Bu(k) + Fxf(k)
y(k) = x(k) + Fyf(k)

, (4.10)

where f ∈ �(3+2) is a common representation of sensor fs ∈ �3 and actuator
fa ∈ �2 faults vectors. Fx and Fy are respectively the state and output faults
matrices with Fx =

[
B 03×3

]
and Fy =

[
03×2 I3×3

]
.

To detect and isolate faults, a structured residuals scheme sensitive to
certain faults and insensitive to others is designed. For actuator or sensor fault
representations, a unique state-space model can be established to describe the
faulty system as follows (as presented in Sect. 2.5.1):
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Fig. 4.8. Measured �2 in fault-free and in the presence of a bias on pump q1

{
x(k + 1) = Ax(k) + Bu(k) + Fdfd(k) + F ∗

x f∗(k)
y(k) = Cx(k) + F ∗

y f∗(k)
. (4.11)

In both cases fd(k) is the faulty unknown input vector. This unique system
representation is considered for the FDI problem. While a single residual is
sufficient to detect a fault, a set of structured residuals is required for fault
isolation. A residual generation using unknown input observer scheme is con-
sidered in order to be sensitive to f∗(k) and insensitive to fault vector fd(k)
as {

w(k + 1) = Ew(k) + TBu(k) + Ky(k)
x̂(k) = w(k) + Hy(k)

, (4.12)

where x̂ is the estimated state vector and w is the state of this full-order
observer. E, T , K, and H are matrices to be designed to achieve unknown
input decoupling requirements.

The design of the unknown input observer is achieved by solving the fol-
lowing equations:

(HC − I)Fd = 0, (4.13)

T = I − HC, (4.14)

E = A − HCA − K1C, (4.15)
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K2 = EH, (4.16)

and

K = K1 + K2. (4.17)

Before implementing the unknown input observer, the necessary and suf-
ficient conditions should be checked:

• Rank(CFd) = rank(Fd)
• (C, A1) is a detectable pair, where A1 = E + K1C

As indicated below, the function, implemented in MATLAB�, synthesizes
each decoupled observer according to the fault matrix Fd:

function [E ,T,K,H]= u i o l i n e a r (A,B,C, Fd)
% Reference
% Chapter 3 − Robust r e s i d u a l genera t ion v ia UIOs
% page 77.
% Robust Model−Based Fau l t Diagnos is f o r Dynamic Sys t .
% J ie Chen and R. J . Patton
% Kluwer Avademic Pub l i s h e r s
% 1999
% Algorithm
% dx ( t )/ dt = A x ( t )+ B u( t ) + Fd d( t )
% y ( t ) = C x ( t )
% to b u i l t an UIO
% 1 a ) The number o f ouputs ( row o f C) must be g r ea t e r
% than the number o f unknown inpu t s (Column of Fd)
% 1 b ) Check the rank cond i t ion f o r Fd and CFd
% 2 ) Compute H, T, and A1
% H = Fd ∗ inv [ (C Fd) ’∗ (C Fd ) ]∗ (C Fd) ’
% T = I − H C
% A1 = T A
% 3 ) Check the o b s e r v a b i l i t y :
% I f (C, A1) observab l e , a UIO e x i t s and K1 can be
% computed us ing po l e placement
% Remark : The cho ice o f po l e placement i s f i x e d here
% with 0.9 ∗ e i g en va l u e o f A1
% 4 ) Compute E, K to b u i l t the f o l l ow i n g UIO
%
% dz ( t )/ dt = E z ( t ) + T B u( t ) + K y ( t )
% x e s t ( t ) = z ( t ) + H y ( t )
%
% with
% E = A1 − K1 C
% K = K1 + E H
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% 0 ) Check input cond i t i on s
i f nargin˜=4,
error ( ’Number o f input arguments i n c o r r e c t ! . . .
type help u io chen ’ ) , return
end

% 1 a ) The number o f ouputs ( row o f C) must be g r ea t e r
% than the number o f unknown inpu t s (Column of Fd)
nb Fd=s ize (Fd ) ; nb C=s ize (C) ; nb row C=nb C ( 1 ) ;
nb column Fd=nb Fd ( 2 ) ;
i f ( nb column Fd > nb row C ) ,
error ( ’The number o f ouputs ( row o f C) must be . . .
g r e a t e r than the number o f unknown inputs . . .
( column o f Fd) ’ ) , return
end

% 1 b ) Check the rank cond i t ion f o r Fd and CFd
i f (rank (C∗Fd) ˜= rank (Fd ) ) ,
error ( ’ rank (C∗Fd)==rank (Fd) ’ ) , return , end

% 2 ) Compute H, T, and A1
nb A=s ize (A) ; H=Fd∗ inv ( (C∗Fd) ’∗ (C∗Fd) )∗ (C∗Fd ) ’ ;
T=eye (nb A(1))−(H∗C) ; A1=T∗A;

% 3 ) Check the o b s e r v a b i l i t y : I f (C, A1) observab l e ,
% a UIO e x i t s and K1 can be computed us ing po l e
% placement
i f (rank ( obsv (A1 ,C) ) ˜= nb A (1 ) ) ,
error ( ’ (C,A1) should be obs e rvab l e ’ ) ,
return ,
end

po le=eig (A1 ) ; K1=pla ce (A1 ’ ,C’ , [ 0 . 9 ∗ po le ] ) ; K1=K1 ’ ;

% 4 ) Compute E, K to b u i l t the f o l l ow i n g UIO
E=A1−K1∗C; K=K1+E∗H;

For fault isolation, a bank of (3 + 2) unknown input observers is con-
structed. Each residual vector rj(k) = y(k) − Cx̂(k) produced by the jth

unknown input observer is used to detect a fault according to a statistical
test.

In the presence of a fault, the design of structured residuals generates a
residual insensitive to an expected fault. The value of the residual insensitive
to the fault is close to zero unlike the other residuals. The FDI and estimation
module based on the measured input and output vectors has been illustrated



4.3 Linear Case 121

in the presence of a fault as previously defined. For the fault on pump 1
(respectively on sensor �1), the residuals designed for this kind of faults are
close to zero while the other residuals are commonly different from zero at
the time the actuator fault (respectively sensor fault) occurs. These features
correspond to the expected results as illustrated in Figs. 4.9 and Fig. 4.10.
Among the components, the faulty one has been correctly detected with a
time delay of 16 s for the sensor and of 13 s for the actuator. In both cases
and for this fault magnitude, a time delay around 14 s should be considered
with a classical Page-Hinkley test for residuals evaluation and an elementary
logic decision.

Fig. 4.9. Residuals behavior for actuator fault on pump 1

The fault magnitude estimation of the corrupted element fd(k) is extracted
directly from the jth unknown input observer which is built to be insensitive to
the jth fault. The state estimation is generated by this unknown input observer
and matrices computations using singular value decomposition following the
instructions below.
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Fig. 4.10. Residuals behavior for level �1 sensor fault

%For in s t ance f o r a f a u l t on Pump 1
Fd=Bd ( : , 1 ) ;

%produce a complete s i n gu l a r va lu e decomposi t ion
[T,R,M]=svd (Fd ) ;
Abar=inv (T)∗Ad∗T; A11bar=Abar ( 1 , 1 ) ; A12bar=Abar ( 1 , 2 : 3 ) ;
Bbar=inv (T)∗Bd; B1bar=[Bbar ( 1 , : ) ] ;

Mat a s soc i a t ed to x1=M∗ inv (R( 1 , 1 ) ) ;
Mat assoc iated to A11=−M∗ inv (R(1 , 1 ) )∗A11bar ;
Mat assoc iated to A12=−M∗ inv (R(1 , 1 ) )∗A12bar ;
Mat assoc iated to B1=−M∗ inv (R(1 , 1 ) )∗B1bar ;

Thus, the sensor input or actuator fault magnitude can be estimated as
follows:

f̂d(k) = V R−1(x̂1(k + 1) − A11x̂1(k) − A12x̂2(k) − B1u(k)). (4.18)

It can be noted that the sensor fault estimation fd(k) is the last component
of the estimated augmented state vector ˆ̃x(k) and does not require the previous
calculation.
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Based on the experimental data set given as an example, the sensor (re-
spectively actuator) fault magnitude and their estimations are illustrated in
Fig. 4.11 (respectively Fig. 4.12). The fault estimation is close to zero in the
fault-free case. However, the fault estimation is close to the fault magnitude
when the fault occurs.

Fig. 4.11. Sensor fault magnitude and its estimation

4.3.4 Fault Accommodation

Sensor Fault Masking

In the presence of the sensor fault, only the first residual is insensitive to the
fault on level sensor �1. The fault which occurs at t = 1000 s is isolated at
instant 1016 s. Based on the sensor fault masking principle, the control law
switches from the measurement to its estimation. In Fig. 4.13, it can be noted
that using the fault accommodation method the real level follows the set-point
unlike the case without fault accommodation. Figure 4.14 shows a zoom of
Fig. 4.13 around instant 1000 s and indicates that the fault accommodation
approach preserves the dynamical behavior of the system in the presence of a
fault. The unknown input observer insensitive to the sensor fault occurrence
provides an accurate estimate of the system output after a sensor fault occurs.
The corresponding flow rates are presented in Fig. 4.15.
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Fig. 4.12. Actuator fault magnitude and its estimation

Fig. 4.13. Level �1 with level �1 sensor fault
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Fig. 4.14. Level �1 close to the fault occurrence

Fig. 4.15. Input flow rate q1 with level �1 sensor fault
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Actuator Fault Compensation

As presented in Chap. 2, an FTC method is used to eliminate the actuator
fault effect on the system. Its goal is to compute an additional control law able
to compensate for the fault effect on the system using an on-line magnitude
estimation of the fault. When the fault is detected and isolated, an additional
control term is computed and added to the nominal one. The new control law
applied to the system is then given by

U(k) = (unom(k) + uadd(k)) + U0. (4.19)

If a fault is detected and isolated on the jth actuator, according to the fault
magnitude estimation f̂d(k) described in the previous section, the additional
control law uadd(k) is computed on-line as

uadd(k) = −Baddf̂d(k), (4.20)

where Badd is computed off-line. It is equal to B+Bj where B+ is the pseudo-
inverse of matrix B and Bj is the jth column of B.

Once the fault is isolated and estimated, the compensation control law is
computed in order to reduce the fault effect on the system. With the fault
accommodation method, the outputs decrease less than in the case of a clas-
sical control law as illustrated in Figs. 4.16 and 4.17. They reach the nominal
values quicker because the fault is estimated and the new control law is able
to compensate for the fault effect at instant 1013 s. According to Fig. 4.18,
it can easily be seen that, after the fault occurrence, the time response and
the overshoot of the compensated outputs are smaller than those of the faulty
outputs with a classical control law. These results can be confirmed by the
examination of the control input flow rate (Fig. 4.19). Without fault accom-
modation, the control input increases slowly trying to compensate for the fault
effect. With the accommodation approach, the control input increases quicker
and enables the rapid fault compensation on the controlled system outputs.

With the fault accommodation method, the dynamic behavior of the out-
puts after a sensor or an actuator fault occurrence is close to the nominal one
compared to that without accommodation.
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Fig. 4.16. Level �1 with pump 1 actuator fault

Fig. 4.17. Level �2 with pump 1 actuator fault
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Fig. 4.18. Level �1 close to the occurrence of the fault on pump 1

Fig. 4.19. Input flow rate q1 with pump 1 actuator fault
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4.4 Nonlinear Case

In order to extend the proposed active FTC approach based on the FDI results
to the whole range of operating conditions, the nonlinear model is considered
rather than a multiple model approach.

4.4.1 Nonlinear Representation

According to (4.1), the system can be written in the nonlinear affine state-
space representation⎧⎪⎪⎨

⎪⎪⎩
ẋ(t) = f(x(t)) +

2∑
i=1

gi(x(t))ui(t)

y(t) = h(x(t)) = x(t)

, (4.21)

where the output vector y = [�1 �2 �3]
T is equal to the state vector x and

f(x(t)) = 1
S

⎡
⎣ −q13(t)

q32(t) − q20(t)
q13(t) − q32(t)

⎤
⎦, g1(x(t)) =

[
1
S 0 0

]T ,

and g2(x(t)) =
[
0 1

S 0
]T .

4.4.2 Closed-loop Fault-free Case

Design and Gain Synthesis

According to (4.21), a nonlinear control law is designed to track the reference
vector yr = [�1r �2r]

T . To perform this task, an input-output linearization
and input-output decoupling law via a static state-feedback [41,73,98] is uti-
lized. The system has two outputs (p = 2), so there are two relative degrees
ρ1 and ρ2 to be found as defined in Chap. 2 as follows:

ρi = {min l ∈ ℵ/∃j ∈ [1, 2] , Lgj L
l−1
f (xi(t)) �= 0}. (4.22)

Applying (4.22) to (4.21), the degrees ρ1 and ρ2 are equal to 1. Then, the
decoupling matrix Δ(x(t)) is given by

Δ(x(t)) =
[

Lg1x1(t) Lg2x1(t)
Lg1x2(t) Lg2x2(t)

]
=
[

1
S 0
0 1

S

]
. (4.23)

According to the condition rank (Δ(x(t))) = 2, the three-tank system can
be statically decoupled. The control law synthesis requires a vector Δ0 defined
as

Δ0(x) =
[

Lfx1(t)
Lfx2(t)

]
=
[ − 1

S q13(x)
1
S (q32(x) − q20(x))

]
, (4.24)
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where each inter flow rate depends on the levels.
A linearizing static feedback u(t) = −Δ−1(x)Δ0(x)+(Δ−1(x))v(t) is then

designed for the three tank system as follows:

u(t) =
[

q1(t)
q2(t)

]
=
[ − 1

S q13(x(t))
1
S (q32(x(t)) − q20(x(t)))

]
+
[

S 0
0 S

]
v(t), (4.25)

where v(t) represents the input vector of the equivalent linearized model.
According to the value of relative degrees ρ1 and ρ2, the closed-loop system

can be described as two independent linear SISO subsystems equivalent to a
unique integrator expressed as ⎧⎪⎪⎨

⎪⎪⎩
�1(s)
v1(s)

=
1
s

�2(s)
v2(s)

=
1
s

, (4.26)

where s is the Laplace variable.

Remark 4.2. It can be noted that
∑3

i=1 ri = 2 < 3. The system has an unob-
servable subspace of dimension one which can be associated with tank 3. Due
to the stable property of this unobservable subspace, the linearizing control
law can be applied to the three-tank system.

Each linear SISO subsystem (4.26) is unstable, and therefore a second
control law should be designed to stabilize it and to assign the dynamic be-
havior following the linear control theory. A proportional output feedback
vi(t) = Ki (yr,i(t) − �i(t)) is applied to each ith decoupled subsystem which is
equivalent to

�i(s)
yr,i(s)

=
Ki

s + Ki
, (4.27)

where Ki represents the proportional gain and yr,i the reference input.
The block diagram built using Simulink� (Fig. 4.20) summarizes the de-

signed nonlinear controller with the main blocks “Stabilization” and “Lin-
earization.” Each Simulink� block corresponding to the previous equations is
presented in Figs. 4.21 and 4.22. Moreover, it can be highlighted that the C-
code used for the on-line implementation of the nonlinear control law is based
on the elements presented in each block based on elementary mathematical
functions or operators.

The parameter estimation shows modeling errors, and corrupts the “ideal”
decoupled subsystem as defined in (4.26). This problem generates a steady-
state error in closed-loop. To eliminate the difference between the desired
output yr,i and the level �i, an integrator is added to each controller of the
stabilization feedback.
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Fig. 4.20. Block diagram for nonlinear control law design in fault-free case

Fig. 4.21. Stabilization Simulink� block for nonlinear control law design

Fig. 4.22. Linearization Simulink� block for nonlinear control law design

Results and Comments

The control law has been applied to the three-tank system in the fault-free
case. The results shown in the following figures are step responses obtained for
different reference inputs. All experiments are illustrated for a range of 4000 s.
The outputs �1 and �2 follow the reference inputs yr,1 and yr,2 from an initial
level of 0 m until a maximum level of 0.5 m for �1 (Fig. 4.23) and 0.4m for �2

(Fig. 4.24) with different steps. Generally speaking, the variance of the noise



132 4 Application to a Three-tank System

is more important during the first 1000 samples on the control signal q1 (Fig.
4.25). It is due to the fact that the level �1 is very low in the first tank and
the output of the pump is very high: the noise corresponds to the effect of
the water fall (Fig. 4.23). The same could be said about the control signal
q2 (Fig. 4.26). According to the considered closed-loop strategy, the system
is completely decoupled into two subsystems, since level �2 is never affected
by the variations of level �1 (which is not the case in the previously studied
linear case).

Fig. 4.23. Level �1 in fault-free case
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Fig. 4.24. Level �2 in fault-free case

Fig. 4.25. Input flow rate q1 in fault-free case
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Fig. 4.26. Input flow rate q2 in fault-free case

4.4.3 Closed-loop in the Presence of Faults

Actuator Fault

Unlike the previous study, which was carried out around an operating point,
actuator and sensor faults will now be considered for the whole operating
range.

A first experiment consists of assuming a degradation of pump 1 of 80% to
occur at instant t = 2000 s. As presented in Fig. 4.27, the output �1 does not
follow its reference input yr,1. However, it can also be noticed that, despite the
degradation of pump 1 (see Fig. 4.28), the system is perfectly decoupled into
two subsystems. The control law associated with pump 2 compensates for the
degradation of pump 1 considered as a disturbance in order to maintain the
reference input on level �2 with a dynamic behavior identical to the fault-free
case. As illustrated in Fig. 4.29 only level �3 is affected by the presence of this
fault.
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Fig. 4.27. Level �1 with pump 1 actuator fault

Fig. 4.28. Input flow rate q1 with pump 1 actuator fault
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Fig. 4.29. Level �3 with pump 1 actuator fault

Sensor Fault

A second experiment corresponds to an incipient degradation on level sensor
�1 with a gain equal to 5 × 10−5 ms−1. This fault is assumed to occur at
t = 2000 s as presented in Fig. 4.30. This type of fault often occurs on sensors
and is generally due to material aging. When the fault appears, the controller
brings the faulty measurement �1 back to the corresponding reference value
yr,1. The real level is far from the desired value (Fig. 4.30) and moreover the
subsystem associated with �1 is affected by the dynamic behavior of output �2.
Indeed, the nonlinear model considered in the decoupled control law synthesis
does not correspond to the actual system. Consequently, the robustness of
the closed-loop against disturbances is affected by the sensor fault occurrence.
Indeed, the “measured” level �1 (affected by the sensor fault) cannot reach
the set-point as illustrated in Fig. 4.30 after instant 2500 s.
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Fig. 4.30. Level �1 with a drift on sensor level �1

4.4.4 Sensor Fault-tolerant Control Design

Sensor Fault Detection and Isolation with Magnitude Estimation

In the presence of faults on each measured level, the three-tank system defined
in (4.1) can be described by the following state-space representation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ l̇1(t)

l̇2(t)
l̇3(t)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

−q13(l1,l3)
S

q32(l2,l3)−q20(l2)
S

q13(l1,l3)−q32(l2,l3)
S

⎤
⎥⎥⎥⎥⎦+

⎡
⎣ 1

S 0
0 1

S
0 0

⎤
⎦[u1(t)

u2(t)

]

⎡
⎣ y1(t)

y2(t)
y3(t)

⎤
⎦ =

⎡
⎣ l1(t)

l2(t)
l3(t)

⎤
⎦+

⎡
⎣ fs1(t)

fs2(t)
fs3(t)

⎤
⎦

, (4.28)

with ⎧⎪⎪⎨
⎪⎪⎩

q13(t) = c1

√
l1(t) − l3(t)

q20(t) = c2

√
l2(t)

q13(t) = c3

√
l3(t) − l2(t)

, (4.29)
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where parameters c1, c2, and c3 are constant and can be calculated based on
constant parameters presented in Table 4.1 according to (4.2) and (4.3).

Under sensor faults assumptions, as proposed in Sect. 2.5.1, the previous
state-space representation can be defined through the following augmented
state:

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

l1(t)
l2(t)
l3(t)
fs1(t)
fs2(t)
fs3(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4.30)

where sensor faults fsi are considered as a linear system excited by external
inputs f̄si : ⎧⎪⎪⎨

⎪⎪⎩
ḟs1(t) = γ1fs1(t) + f̄s1(t)

ḟs2(t) = γ2fs2(t) + f̄s2(t)

ḟs3(t) = γ3fs3(t) + f̄s3(t)

. (4.31)

The system can be expressed as a “pseudo-actuator” faults form as follows:

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−c1

√
l1(t) − l3(t)

c3

√
l3(t) − l2(t) − c2

√
l2(t)

c1

√
l1(t) − l3(t) − c3

√
l3(t) − l2(t)

γ1fs1(t)
γ2fs2(t)
γ3fs3(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
f(x(t))

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
S

0
0 1

S

0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
g(x(t))

[
u1(t)
u2(t)

]

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F (t)

⎡
⎣ f̄s1(t)

f̄s2(t)
f̄s3(t)

⎤
⎦

︸ ︷︷ ︸
f(t)

. (4.32)

To be sensitive to some faults and insensitive to others, the fault vector is
broken down into two parts as follows:
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ẋ(t) = f(x(t)) + g(x(t))u(t) +

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F1(t)

f̄s1(t)︸ ︷︷ ︸
f1(t)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D1(t)

[
f̄s2(t)
f̄s3(t)

]
︸ ︷︷ ︸

d1(t)

. (4.33)

Based on the previous state-space, an associated detectability index is
computed as defined in (2.80). For the first sensor (i.e. i = 1), ρ1 is defined as

ρ1 = min{ζ ∈ N|LF1L
ζ−1
f x̂1(t) �= 0}, (4.34)

where x̂1(t) is the estimation of the first component of x(t).
For the considered system, ρ1 is equal to one: only output y1 is affected

by fs1 . Thus, the state-space representation insensitive to fault fs1 is defined
as

x̃(t) = φfs1
(x(t), u(t)) =

[
x̃a(t)
x̃b(t)

]
=
[

y1(t)
φ1(x(t), u(t))

]
, (4.35)

where x̃a(t) = y1(t) = l1(t) + fs1(t) and
x̃b(t) = [l1(t) l2(t) l3(t) fs2(t) fs3(t)]

T . It can be noted that φ1(x(t), u(t))
is independent of fs1(t).

Therefore, the faulty sensor nonlinear affine state-space representation is
described through the following decoupled form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃xa(t) = l̇1(t) + ḟs1(t) =
(
−c1

√
l1(t) − l3(t)

)
+

1
S

u1(t) + ḟs1(t) = ẏ1(t)

˙̃xb(t) =

⎡
⎢⎢⎢⎢⎣

l̇1(t)
l̇2(t)
l̇3(t)
ḟs2(t)
ḟs3(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−c1

√
l1(t) − l3(t)

c3

√
l3(t) − l2(t) − c2

√
l2(t)

c1

√
l1(t) − l3(t) − c3

√
l3(t) − l2(t)

γ2fs2(t)

γ3fs3(t)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

1
S 0
0 1

S
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦
[

u1(t)
u2(t)

]
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
[

f̄s2(t)
f̄s3(t)

]

ỹa(t) = y1(t)

ỹb(t) =
[

l2(t) + fs2(t)
l3(t) + fs3(t)

]

.

(4.36)



140 4 Application to a Three-tank System

The subsystem insensitive to fs1 defined in (4.37) is considered in order
to generate a residual r1 of zero mean in both fault-free case and faulty case:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃xb(t) =

⎡
⎢⎢⎢⎢⎣

˙̃xb1(t)
˙̃xb2(t)
˙̃xb3(t)
˙̃xb4(t)
˙̃xb5(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−c1

√
x̃b1(t) − x̃b3(t)

c3

√
x̃b3(t) − x̃b2(t) − c2

√
x̃b2(t)

c1

√
x̃b1 (t) − x̃b3(t) − c3

√
x̃b3(t) − x̃b2 (t)

γ2x̃b4 (t)
γ3x̃b5 (t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
f̃(x̃b(t))

+

⎡
⎢⎢⎢⎢⎣

1
S 0
0 1

S
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
g̃(x̃b(t))

[
u1(t)
u2(t)

]
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D̃1

[
f̄s2(t)
f̄s3(t)

]

ỹb(t) = ỹ1(t) =
[

x̃b2(t) + x̃b4(t)
x̃b3(t) + x̃b5(t)

]
︸ ︷︷ ︸

h̃1(x̃b(t))

. (4.37)

Indeed, based on the previous reduced system, represented by the following
form: ⎧⎪⎨

⎪⎩
˙̃xb(t) = f̃(x̃b(t)) + g̃(x̃b(t))u(t) + D̃1

[
f̄s2(t)
f̄s3(t)

]
ỹb(t) = ỹ1(t) = h̃1(x̃b(t))

. (4.38)

A classical extended Luenberger observer should be considered to estimate
the state as follows:

˙̃̂xb(t) = f̃(ˆ̃xb(t)) + g̃(ˆ̃xb(t))u(t) + L1

(
ỹb(t) − ˆ̃yb(t)

)
, (4.39)

where L1 corresponds to the observer gain computed at each step time so that
the eigenvalues of

(
∂f̃(x̃b(t))

∂x̃b(t)
− L1

∂h̃(x̃b(t))
∂x̃b(t)

)
are stable and follow the dynamic

specifications.
The same calculation is applied to each sensor fault. Therefore, a bank of

three classical extended Luenberger observers, where each of them is decoupled
to one single fault, is used to detect and isolate sensor faults.

In the fault-free case, the residuals generated by the three extended Lu-
enberger observers are close to “zero.” Each residual is affected by estimation
errors issued from some modeling errors as illustrated in Fig. 4.31. With an
appropriate evaluation method, no faults are isolated. However, in the pres-
ence of an incipient fault on the first sensor, Fig. 4.32 shows that at instant
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2000 s, two of the three residuals present some incipient variation. It can be
noted that the residuals have the same evolution as the fault. As said previ-
ously, only the first residual is insensitive to the fault on level sensor �1. The
residual evaluation detects this evolution at instant 2009 s.

Fig. 4.31. Dynamic behavior of residuals in fault-free case

Sensor Masking Approach

As presented in the previous experiment, the observer insensitive to a sensor
fault allows one to compute an estimation of the state x̂ which is not affected
by the fault. Consequently, an estimation of the output corrupted by the fault
is considered in the control law rather than the measured (and corrupted) one.
In the presence of sensor faults, the faulty measurements directly affect the
closed-loop behavior or the state estimator. Moreover, the controller aims at
canceling the error between the measurement and its reference input. However,
the real output is far from the desired value and may drive the system to its
physical limitations or even to instability as presented in Fig. 4.30. Sensor FTC
can be obtained by computing a new control law using a fault-free estimation
of the faulty element to prevent faults from developing into failures and to
minimize the fault effects on the system performance and safety. From the
control point of view, sensor FTC does not require any modification of the
control law and is also called “sensor masking” as suggested by [131]. The
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Fig. 4.32. Dynamic behavior of residuals with a drift on sensor level �1

only requirement is that the “estimator” provides an accurate estimate of
the system output after an instrument fault occurs. Then, as previously said,
only the first residual is insensitive to the fault on level sensor. The fault
is isolated at instant 2009 s and consequently the control law switches from
measurement �1 to its estimation �̂1 issued from the extended Luenberger
observer decoupled to the sensor fault on �1. With the FTC method, the real
level �1 follows its reference. When the fault appears, the measured level �1

has the same evolution as the fault. Figure 4.33 shows the abilities of the
sensor FTC method to compensate for incipient faults.

The FDI of the developed strategy is of paramount importance to com-
pensate for these faults and to preserve system performances.

4.4.5 Actuator Fault-tolerant Control Design

Actuator FDI with Magnitude Estimation

According to the nonlinear control law synthesis, the input-output decoupled

transfer function (4.26) of each subsystem
(

�i

vi

)
with (i = 1, 2) is linear and

equal to one integrator. Each of them could then be expressed as the following
classical Brunovsky canonical form [65]:
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Fig. 4.33. Level �1 with sensor fault masking in the presence of a drift on sensor
level �1

{
˙̃x(t) = Ax̃(t) + Bvi(t)

yi(t) = Cx̃(t)
, 1 ≤ i ≤ 2, (4.40)

where for the three-tank system A = [0], B = C = [1], and yi(t) = �i(t).
As shown in Figs. 4.16 and 4.18 in the linear case, based on the nonlinear

decoupled control law, a fault on actuator i affects the reference input i. Ac-
cording to the actuator faulty linear representation presented in Section 2.3.1,
the Brunovsky canonical form (4.40) can be represented as{

˙̃x(t) = Ax̃(t) + Bvi(t) + Bdi(t)
yi(t) = Cx̃(t)

, 1 ≤ i ≤ 2, (4.41)

where di(t) represents an image of the actuator fault effect on the ith decoupled
subsystem (i = 1, 2).

Furthermore, the Brunovsky canonical form will prove useful dealing with
the problem of fault magnitude estimation. Indeed, in order to detect, isolate,
and estimate the fault, a state observer can be associated with each subsystem
(4.26) and synthesized based on the Brunovsky canonical form through the
following form:
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ŷi(t) = C ˆ̃x(t)
, 1 ≤ i ≤ 2, (4.42)

where L is the observer gain, ˆ̃x defines the estimated state vector, and ŷi

represents the estimated output. The estimation error vector, denoted ε(t) =
x̃(t) − ˆ̃x(t), is equivalent to

ε̇(t) = (A − LC)ε(t) + di(t). (4.43)

Due to the property of matrix C being equal to 1, the observation er-
ror is directly computed on-line with the measurements and it provides an
estimation of the fault magnitude as follows:

d̂i(t) = ε̇(t) − (A − LC)ε(t). (4.44)

This vector should be exploited for FDI. Then the fault magnitude esti-
mation d̂i is used as a residual in order to detect and isolate the actuator
fault occurrence. Under the abrupt degradation of 80% occurring at instant
t = 2000 s on the pump 1, it can be seen that the experimental estimation of
the fault d1 is zero mean in the absence of fault and nonzero otherwise as illus-
trated in Fig. 4.34. The estimation of the fault d2 is close to zero (Fig. 4.35):
the fault (pump degradation) concerns only subsystem 1 and d2 concerns only
subsystem 2.

Fig. 4.34. d1 fault magnitude estimation with an abrupt loss of effectiveness of
pump 1
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Fig. 4.35. d2 fault magnitude estimation with an abrupt loss of effectiveness of
pump 1

Indeed, a residual evaluation algorithm can be performed by the direct
fault magnitude evaluation through a statistical test in order to monitor the
process. A bank of residuals can be considered to generate fault signatures and
to isolate faults as presented in Chap. 2 through a decision logic for instance.

Actuator Fault Accommodation

In the spirit of fault compensation principles, an additional control term vi,
added to the nominal one vnom,i, is computed in order to eliminate the ac-
tuator fault effect. Based on the linear system, controlled by a classical state
feedback, the total control law is then computed such as

vi(t) = vnom,i(t) + vadd,i. (4.45)

Fig. 4.36 represents the implementation of the FTC system using Simulink�.
When the FDI module is active, the “accommodation” block will compute an
additive control law added to the nominal one.

Therefore, each decoupled closed-loop system, defined in (4.40), is given
by

{ ˙̃̂
x(t) = Aˆ̃x(t) + Bvnom,i(t) + Bvadd,i(t) + Bdi(t)

ŷi(t) = C ˆ̃x(t)
, 1 ≤ i ≤ 2. (4.46)
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Fig. 4.36. Block diagram for actuator fault accommodation design

The additional control law is computed on-line such that the faulty system
is as close as possible to the fault-free system behavior. This consists of solving
the following equation:

Bvadd,i(t) + Bdi(t) = 0. (4.47)

Then the closed-loop system is driven by a new control law composed of
the nominal control law with the additional one with the following property:

vadd,i(t) = −di(t). (4.48)

Since di(t) is unknown, its estimation d̂i(t) given by (4.44) should be con-
sidered in the proposed compensation approach.

The “fault accommodation” block is shown in Fig. 4.37. As presented, each
di(t) is estimated through a classical Luenberger observer. Based on each d̂i(t),
the additive control law vadd,i is generated.

Based on the on-line actuator fault magnitude estimations (d̂1(t) and
d̂2(t)), the proposed FTC approach is able to compensate for the fault ef-
fect when the fault appears with a small delay depending on the FDI module
performance. As illustrated in Fig. 4.38, the output �1 decreases less than
without fault accommodation, then it reaches its reference value.

As indicated in the proposed method, the additive control law vadd,1(t) is
able to compensate for the fault effect at the instant the fault is detected. From
a practical point of view, a simple numerical filter with an appropriate gain
is considered in order to reduce the noise on the fault magnitude estimation.
Then the closed-loop system is driven by a new control law composed of the
nominal control law with the additional one as presented in Fig. 4.39.

Nevertheless, the level �1 is sensitive to the change of the reference of �2 as
presented in Fig. 4.40 around t = 2500s. Due to modeling errors, the system
is not exactly decoupled. From a practical point of view, the FTC approach
in the presence of fault preserves the dynamical behavior of the system.
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Fig. 4.37. Actuator fault accommodation design

Fig. 4.38. Level �1 with or without fault accommodation method in the presence
of an abrupt loss of effectiveness of pump 1
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Fig. 4.39. Accommodated input flow rate q1 with an abrupt loss of effectiveness of
pump 1

Fig. 4.40. Level �1 around t = 2500s with an abrupt loss of effectiveness of pump 1
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4.4.6 Fault-tolerant Control Design Against Major Actuator
Failures

Actuator Fault-tolerant Control Synthesis

The FTC strategy, presented in this paragraph, deals with major actuator
failures as a blocking or a complete loss of an actuator appearing on sys-
tems without actuator redundancy. In the event of this kind of failure, it is
impossible to maintain the faulty system to a desirable level of performance
based on the FTC method developed in Chap. 2. Thus, the proposed method
consists of leading the system to its optimal operating order with respect
to desirable performances. Moreover, both static and dynamic performances
are taken into account in the generation of the optimal reference trajectory,
allowing the faulty system to be driven to its optimal operating order. The
distribution of the available energy among the healthy actuators, the accessi-
bility, and the stability conditions are also considered. This corresponds to a
nonlinear constrained dynamical problem.

Consider the following m-inputs, m-outputs nonlinear system:⎧⎪⎨
⎪⎩

ẋ(t) = f(x(t)) +
m∑

i=1

gi(x(t))ui(t)

Y (t) = h(x(t))

, (4.49)

where x ∈ �n is the state vector, u = [u1 ... um]T ∈ �m is the control
vector, and y ∈ �m is the output vector to be controlled. f(.), h(.) and
gi(.), (i = 1, ..., m) are smooth vector fields. This model is defined on an open
set of (Ψ) under the following physical constraints:

(Ψ) :

⎧⎪⎨
⎪⎩

xmin ≤ x(t) ≤ xmax

umin ≤ u(t) ≤ umax

ymin ≤ y(t) ≤ ymax

. (4.50)

An input-output linearization and decoupling law via a static state feed-
back is assumed to control the plant according to the set (Ψ).

When a major failure appears on the jth actuator (blocking or complete
loss), the nonlinear system becomes

(Σj) :

⎧⎪⎨
⎪⎩

ẋf (t) = f(xf (t)) +
m∑

i=1

gi(xf (t))ui,f (t) + gj(xf (t))dj

yf (t) = h(xf (t))

, (4.51)

which is equivalent to:
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(Σj) :

⎧⎪⎪⎨
⎪⎪⎩

ẋf (t) = fj(xf (t)) +
m∑

i=1, i�=j

gi(xf (t))ui,f (t)

yf (t) = h(xf (t))

, (4.52)

where

fj(xf (t)) = f(xf (t)) + gj(xf (t))dj , (4.53)

with uf = [u1,f ... uj−1,f uj+1,f um,f ]T ∈ �m−1, xf ∈ �n, yf ∈ �m

and dj is a constant corresponding to the jth actuator failure value.
If the actuator is blocked, dj is equal to the blocking value; however if the

actuator is lost (out of order), dj is null. Thus, in the case of a major actua-
tor failure, the plant dynamic structure itself changes suddenly. The nominal
control no longer maintains the damaged system (Σj) at an admissible level
of performance, regardless of the reference trajectories. The set of available
inputs has decreased. Thus, only (m − 1) outputs could be tracked now.

The active FTC for major actuator failures, developed here, is composed
of a failure detection and isolation module, the redesign of a new control law,
and the computation of suitable reference inputs. FDI is realized via the mea-
surement of inputs and assumed without false alarms and missed detection
problems. Considering a major failure, it is impossible to preserve an accept-
able level of performance, regardless of the applied control. The only possibil-
ity is to lead the damaged system to its optimal operating order with respect
to desirable performance and their degrees of priority. The reference inputs
generation, which leads the damaged system to its optimal operating order,
corresponds to the nonlinear quadratic programming optimization problem.
The objective is to minimize the distance between the desirable output vector
yd before failure and the desired output vector yf , distributing the energy
equally among the healthy actuators and such that (yf , uf ) is solution of the
damaged system (Σj) and belonging to the set (Ψ). Thus, the optimization
problem is defined as

Jopt

(
y∗

f , u∗
f

)
= min

yf , uf

(
‖yd − yf‖2

Q
1/2
opt

+ ‖uf‖2

R
1/2
opt,f

)
, (4.54)

under the constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fj(xf ) +
m∑

i=1, i�=j

gi(xf )ui,f = 0,

yf − h(xf ) = 0,

xf − xmin ≥ 0, xmax − xf ≥ 0,

yf − ymin ≥ 0, ymax − yf ≥ 0,

ui,f − ui,min ≥ 0, ui,max − ui,f ≥ 0, i = 1, ..., m, i �= j,

(4.55)
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where Ropt,f =
[

Ij−1 0 0
0 0 Im−j

]
and Qopt

⎡
⎣ Ij−1 0

0 0
0 Im−j

⎤
⎦.

Matrices Qopt ∈ �m×m and Ropt,f ∈ �m×m correspond, respectively, to
priority degree of outputs and to solicitation degree of actuators.

The system can continue to operate with degraded performance as long
as it remains within acceptable limits, defined by safety constraints and the
threshold of the admissible lowest quality T :

T = ‖Emax‖2

Q
1/2
opt

+ ‖umax‖2

R
1/2
opt,f

, (4.56)

where Emax = |yd−yf |max represents the accepted maximal output error and
umax the maximal energy provided by each actuator.

If Jopt < T , the reference inputs of the new control law are modified to

lead the damaged system to operating order
(
y∗

f , u∗
f

)
rather than stopping it.

The proposed method is based on the computation of new reference inputs
in order to drive the system in an optimal operating order (optimal trim
point for linear systems) with respect to desirable performances and to their
degrees of priority. For a plant without actuator redundancies such as the
three-tank system, this method is very important because it is impossible to
maintain the system at some acceptable level of performance in the presence
of major actuator failures. The next paragraph is dedicated to highlight the
effectiveness of this approach to the nonlinear model of the three-tank system.

Results and Comments

When the pump 1 is blocked at its current value in steady-state at t = 1280 s,
this fault becomes legible and critical only when the reference input associated
with �2 changes at t = 1300 s as illustrated in Fig. 4.41. Indeed, the modi-
fication of flow rate q2 with a jammed flow rate q1 involves the uncontrolled
increase of level �1. The security system avoids the overflowing of tank 1. The
system then oscillates because of the successive stops of pump 1. The tracking
error on level �2 being different from zero, the flow q2 becomes maximal (Fig.
4.42). The damaged system will generally be shut down.

For the three-tank system, the constraints are defined as follows:⎧⎪⎪⎨
⎪⎪⎩

[
0 0 0

]T ≤ x(t) ≤ [ 0.635 0.635 0.635
]T

[
0 0

]T ≤ y(t) ≤ [0.635 0.635
]T

[
0 0

]T ≤ u(t) ≤ [10−4 10−4
]T . (4.57)

In this case, the damaged system does not shut down. At t = 2700 s, the
reference input associated to �2 becomes equal to 0.25 m. When the reference
value of �2 changes, �2 can be correctly tracked but without worrying about
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Fig. 4.41. Dynamic behavior of levels with freezing pump 1

Fig. 4.42. Dynamic behavior of input flow rates with freezing pump1
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level �1. This is because the nominal control is decoupled. As illustrated in
Fig. 4.43, the FTC strategy avoids this critical situation and minimizes the
fall of quality. Let us define the quality of product by the following matrices:

Qopt =
[

50 0
0 25

]
; Ropt = I2 × 104; Emax =

[
0.15
0.15

]
. (4.58)

The detection module diagnoses the pump 1 blocking at 1305 s. The
threshold of the admissible lowest quality T given by (4.56), in the case of
pump 1 blocking, is equal to 1.688. The new control law allows tracking of �2,
and the new reference input leading the damaged system to its optimal oper-
ating order is then determined. Table 4.2 gives the operating orders reached
by the nominal control and the FTC, in the presence of the major failure. It
can be seen in Table 4.2 that the FTC avoids the system stop when pump 1
is blocked. The performances are degraded but remain better than the admis-
sible lowest quality Jopt < T . Regardless of the desirable operating order, the
performances are always better than without FTC.

Table 4.2. Operating orders in case of pump 1 blocked at t = 1280 s

yd Nominal control with fault Fault-tolerant control with fault

[0.5 0.45]T Critical [0.568 0.233]T Jopt = 1.408

[0.5 0.25]T [0.594 0.25]T Jopt = 0.442 [0.512 0.166]T Jopt = 0.184

[0.45 0.25]T [0.594 0.25]T Jopt = 1.04 [0.49 0.133]T Jopt = 0.422

4.5 Conclusion

The three-tank system is used to illustrate the abilities of the FTC system
to compensate for both sensor and actuator faults. A bank of unknown input
observers has been designed in order to detect, isolate, and estimate faults,
and principally to distinguish between sensor and actuator faults.

Indeed, since the compensation for an actuator fault cannot be achieved
in the same way as for a sensor fault, it is of great importance to distinguish
between these faults, which is not usually easy in closed-loop systems. Various
experiments have been conducted in the presence of sensor and actuator faults.
The fault accommodation method based on the FDI results shows that the
compensated outputs behavior are closer to the nominal outputs than the
faulty outputs without compensation.

The main difficulty in applying this FDI and accommodation method in
more complex industrial system is the establishment of an analytical model.
However in many cases, the breaking down of the whole system into subsys-
tems makes possible the modeling and the application of such a method. It
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Fig. 4.43. Dynamic behavior of levels with FTC system in a freezing case of pump 1

Fig. 4.44. Dynamic behavior of input flow rates with FTC system of freezing
pump 1
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can be noted that for each subsystem the model obtained is assumed to be
linear around an operating point and is suitable in the associated operating
zone.

Moreover, the nonlinear model of the system is considered with a nominal
control law based on an exact linearization input-output by state feedback.
Because the nonlinear features of the system are considered, the fault magni-
tude is estimated regardless of the operating zone. This method is suitable for
actuator faults such as biases or a loss in the effectiveness of an actuator or a
system component. The developed method emphasizes the importance of the
FTC applied to the three-tank system. A decoupling approach and a bank of
nonlinear observers has been designed in order to detect, isolate, and estimate
sensor faults. Then the fault is compensated using the fault free estimation of
the measured outputs. This method is suitable for sensor faults such as biases
or drift of sensor gain. it should be noted that one way to consider a wide
operating zone could consist in the use of multiple models techniques rather
than considering an exact nonlinear model [106].

A major actuator failure (blocking or complete loss) in a process without
redundancy can be considered as a critical failure. Its application to a non-
linear process, the three-tank system, emphasizes the importance and useful-
ness of such fault-tolerance. The objective of this FTC is different from that
usually met. Indeed, in the presence of critical faults on such a process, it is
impossible to maintain the damaged system at some acceptable level of perfor-
mance, regardless of the applied control strategy. The objective is to operate
safely and to minimize the loss of productivity. It is realized from a nonlinear
quadratic programming optimization. Recent works have considered compen-
sating a complete loss of an actuator. The occurrence of this kind of critical
failure requires either a hardware redundancy or an on-line modification of the
nominal objectives in order to avoid catastrophic consequences until shutting
down the system safely under explicit input saturation constraints [120].

In this chapter, the robustness against modeling errors has not been con-
sidered. However, the FDI and FTC concepts are always valid in spite of error
models which will only modify, for instance, the sensitivity of an unknown in-
put observer against faults, or the error state estimator convergence. Some
recent papers have considered this topic for the three-tank system. For in-
stance, robust FDI filter design problem for LTI uncertain systems under feed-
back control has been investigated in [63] where two-design methods involving
norm-based fault detection filters are applied to the three-tank system, and
compared to each other. To deal with imprecisions and uncertainties of models,
these uncertainties are generally represented using interval models. In [108]
an approach is proposed to generate envelopes based on interval techniques
of the modal interval analysis. In the framework of off-line model-based FDI
for multi-variable uncertain systems, a method is proposed in [64] using the
generalized structured singular value and based on frequency-domain model
invalidation tools. Other studies considered robust FDI of nonlinear systems,
as for example in [87] where new adaptive law and SMOs with boundary layer
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control are introduced into Polycarpou’s on-line approximator to offer a fast
and robust FDI strategy for a class of nonlinear systems.

As one of several popular experimental systems in control laboratories, the
three-tank process is a perfect experimental process setup for investigating
linear and nonlinear multi-variable feedback control as well as FDI and FTC
system design. The method developed in this chapter allows increasing of the
application field of FTC systems.



5

Sensor Fault-tolerant Control Method for
Active Suspension System

5.1 Introduction

The main objective of vehicle suspension is to reduce the effect of the vibra-
tions generated by road irregularities on the human body. The suspension
system is classified as a passive, semi-active, or active suspension, according
to its ability to add or extract energy. In active suspension, the force actuator
is able to both add and dissipate energy from the system. This will enable the
suspension to control the attitude of the vehicle, reduce the effects of braking
and vehicle roll during cornering maneuvers, in addition to its capability to
increase ride comfort and vehicle road handling.

The active suspension control problem has been widely studied in the
literature: a state and output-feedback scheduled [84]; a modular adaptive [21];
a fuzzy logic [27,118]; an adaptive fuzzy [26]; a stochastic optimal [94]; a mixed
H2/H∞ [51]; a proportional-integral sliding mode [109]; a combined filtered
feedback controller [67]; an H∞ [32,33,85,129]; a neural network [57]; an LQ
regulator [110]; a mixed LQ regulator/backstepping technique [89]; a sliding
mode [134–136]; an adaptive sliding controller [23] and many other controllers
were designed and applied to quarter, half, and full vehicle active suspension
systems.

This chapter aims to design and integrate control, diagnosis and fault-
tolerance for a nonlinear full vehicle active suspension. The system consists
of the chassis and the four suspension systems. In addition, the dynamics of
the four force actuators are taken into consideration. This is because force
actuators are crucial elements of the system, as they have their own dynamics
and they are subjected to faults. The resulting system is a nonlinear large-
scale complex system of 22 states. To facilitate its study, it is broken down
physically into five interconnected subsystems. Each subsystem has its own
sensors and actuators.

The control law is designed using sliding mode techniques: a local control
module is designed for each subsystem whereas a global control module at a
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higher level monitors and supervises these local modules and ensures an intel-
ligent synchronization and coordination between the subsystems. In parallel
with this structure, a fault diagnosis structure is built. A local diagnosis mod-
ule detects and isolates sensor faults in each subsystem and a global module
monitors the local ones.

The chapter starts by presenting the system and its model. The control
law is then detailed in Sect. 5.3. In Sect. 5.4, the instrumentation problem
is discussed. The design of the diagnosis and the fault-tolerant modules is
addressed in Sect. 5.5. Finally, to illustrate the control, the diagnosis and the
fault-tolerance, simulation results are shown and commented on in Sect. 5.6.

5.2 Full Vehicle Active Suspension System

Active suspension systems are nonlinear as is the nature of many systems
generally. The linear model can replace the nonlinear one around the operating
conditions. Out of this interval, the linear model is not valid and a linear
representation of the system dynamics is not sufficient. Thus, a nonlinear
model of the full vehicle active suspension system is considered.

5.2.1 System Description

The full vehicle model consists of the chassis (sprung mass) connected by the
suspension systems to four wheels (unsprung masses). This system is illus-
trated in Fig. 5.1. Each suspension is modeled as a linear viscous damper, a
linear spring, and a force actuator. Each wheel is modeled as a linear spring.
The chassis is free to heave, pitch, and roll. The wheels are free to bounce
vertically with respect to the chassis.

The dynamics of the electro-hydraulic servo valves given by Gaspar et
al. [51] are taken into consideration in this study (Fig. 5.2). The actuators
generate the actuation forces. Thus, taking their dynamics into consideration
helps in better understanding the system behavior.

Each actuation module consists of a cylinder (actuator) and a four way
servo valve. The function principle of the actuation module is to generate
an input force uϑ on the spool which is able to move forward or backward.
The variation of the spool position zvϑ

results in the variation of the amount
of fluid entering (or leaving) the cylinder chambers, thus creating a pressure
drop across the piston and generating the actuator force fϑ. ϑ = {fr, f l, rr, rl}
stands respectively for front right, front left, rear right, and rear left.

5.2.2 System Modeling

In this section, the dynamics of the sprung mass, the unsprung masses, and
the actuators are illustrated. It should be noted that this chapter deals with
continuous-time systems but the time will be omitted for simplification.
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Fig. 5.1. Model of a full vehicle active suspension
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Fig. 5.2. Representation of an actuator (ϑ ∈ {fr, fl, rr, rl})

Sprung Mass Dynamics

Using Newton’s law, the sprung mass (chassis) dynamics are [56]

z̈ = {ksfr
zufr

+ ksfl
zufl

+ ksrr zurr + ksrl
zurl

− (ksfr
+ ksfl

+ ksrr + ksrl
)z −

[a(ksfr
+ ksfl

) − b(ksrr + ksrl
)] sin θ − [d(ksfl

+ ksrl
) − c(ksfr

+ ksrr )] sin φ +
csfr

żufr
+ csfl

żufl
+ csrr żurr + csrl

żurl
− (csfr

+ csfl
+ csrr + csrl

)ż − [a(csfr
+

csfl
)− b(csrr + csrl

)] cos θθ̇− [d(csfl
+ csrl

)− c(csfr
+ csrr)] cos φφ̇+ ffr + ffl +

frr + frl}/M ,
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θ̈ = cos θ{aksfr
zufr

+aksfl
zufl

−bksrrzurr −bksrl
zurl

−[a(ksfr
+ksfl

)−b(ksrr +
ksrl

)]z − [a2(ksfr
+ ksfl

) + b2(ksrr + ksrl
)] sin θ − [d(aksfl

− bksrl
)− c(aksfr

−
bksrr )] sin φ + acsfr

żufr
+ acsfl

żufl
− bcsrr żurr − bcsrl

żurl
− [a(csfr

+ csfl
) −

b(csrr + csrl
)]ż − [a2(csfr

+ csfl
) + b2(csrr + csrl

)] cos θθ̇ − [d(acsfl
− bcsrl

) −
c(acsfr

− bcsrr )] cosφφ̇ + a(ffr + ffl) − b(frr + frl)}/Iyy,

φ̈ = cosφ{−cksfr
zufr

+ dksfl
zufl

− cksrrzurr + dksrl
zurl

− [d(ksfl
+ ksrl

) −
c(ksfr

+ ksrr )]z − [d(aksfl
− bksrl

)− c(aksfr
− bksrr )] sin θ − [d2(ksfl

+ ksrl
) +

c2(ksfr
+ ksrr )] sin φ− cacsfr

żufr
+ dcsfl

żufl
− ccsrr żurr + dcsrl

żurl
− [d(csfl

+
csrl

)− c(csfr
+ csrr )]ż − [d(acsfl

− bcsrl
)− c(acsfr

− bcsrr )] cos θθ̇ − [d2(csfl
+

csrl
) + c2(csfr

+ csrr )] cosφφ̇ − c(ffr + frr) + d(ffl + frl)}/Ixx,

where z is the heave position and θ and φ are respectively the pitch and roll
angles of the sprung mass. The other variables are illustrated in Fig. 5.1 and
the different constants are defined in the sequel.

Unsprung Masses Dynamics

The unsprung masses (tires) dynamics are [56]

z̈uϑ
= [ksϑ

(zsϑ
− zuϑ

) + csϑ
(żsϑ

− żuϑ
) + kuϑ

(zrϑ
− zuϑ

) − fϑ] /muϑ
, (5.1)

where zuϑ
(ϑ ∈ {fr, f l, rr, rl}) is the vertical displacement of the unsprung

mass. The other variables are illustrated in Fig. 5.1 and the constants are
defined in the sequel.

Actuators Dynamics

The cylinder dynamics are given by [51]

Vt

4βe
Ȧϑ = Q − CtpAϑ − S(żsϑ

− żuϑ
), (5.2)

where Aϑ is the actuator load pressure, Vt is the total actuator volume, βe

is the effective bulk modulus, Ctp is the coefficient of total leakage due to
pressure, and S is the actuator ram area. żsϑ

and żuϑ
are, respectively, the

vertical velocities of the sprung mass and the unsprung mass (see Fig. 5.1).
Q, the load flow, is given by

Q = sign(ps − sign(zvϑ
)Aϑ)Cdωzvϑ

√
|ps − sign(zvϑ

)Aϑ|
ρ

, (5.3)

where ps is the supply pressure, zvϑ
is the spool valve position (see Fig. 5.2),

Cd is the discharge coefficient, ω is the spool valve area gradient, and ρ is the
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hydraulic fluid density. By replacing the load flow Q given by (5.3) in (5.2),
the following equation is obtained:

Vt

4βe
Ȧϑϑ = −CtpAϑ − S(żsϑ

− żuϑ
) + SgCdωzvϑ

√
|ps − sign(zvϑ

)Aϑ|
ρ

, (5.4)

or

Ȧϑ = −4βeCtp

Vt
Aϑ − 4βe

Vt
S(żsϑ

− żuϑ
) +

4βe

Vt
SgCdωzvϑ

√
|ps − sign(zvϑ

)Aϑ|
ρ

,

(5.5)
where Sg = sign(ps − sign(zvϑ

)Aϑ).

By defining α, β, and γ as α = 4βe

Vt
, β = αCtp and γ = αCdω

√
1
ρ , (5.5)

becomes

Ȧϑ = −βAϑ−αS(żsϑ
−żuϑ

)+sign(ps−sign(zvϑ
)Aϑ)γ

√
|ps − sign(zvϑ

)Aϑ| zvϑ
.

(5.6)

In [2, 3], the cylinder dynamics are given by

Ȧϑ = −βAϑ − αS(żsϑ
− żuϑ

) + γ
√

ps − sign(zvϑ
)Aϑ zvϑ

. (5.7)

In this chapter, the dynamics given by (5.6) are used. The spool valve
position zvϑ

is controlled by the control input uϑ (see Fig. 5.2). The spool
valve dynamics are modeled as first order system [51]:

żvϑ
=

1
τ
(−zvϑ

+ uϑ), (5.8)

where τ is the time constant. The control input uϑ is given by

uϑ = kiϑ, (5.9)

where iϑ is the servo valve current and k is the valve gain.
In conclusion, the actuator dynamics are given by

Ȧϑ = −βAϑ − αS(żsϑ − żuϑ) + sign(ps − sign(zvϑ)Aϑ)γ
√

|ps − sign(zvϑ)Aϑ| zvϑ

(5.10)

and
żvϑ

=
1
τ
(−zvϑ

+ uϑ). (5.11)

The force generated by the actuator is given by fϑ = SAϑ where S is the
actuator ram area and ϑ = {fr, f l, rr, rl}.
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5.2.3 System’s Model

The concatenation of the vehicle active suspension and the actuator models
results in an input affine nonlinear model of order 22, which can be written
as a state-space representation{

ẋ(t) = f(x(t)) + Bu(t) + Fd(t)
y(t) = Cx(t) . (5.12)

x ∈ �22 is the state vector with:

x4.k+1 = zuϑ
: unsprung mass displacement

x4.k+2 = żuϑ
: unsprung mass velocity

x4.k+3 = Aϑ: actuator load pressure
x4.k+4 = zvϑ

: spool valve position
x17 = z: heave position of the sprung mass
x18 = ż: heave velocity of the sprung mass
x19 = θ: pitch angle of the sprung mass
x20 = θ̇: pitch angular velocity of the sprung mass
x21 = φ: roll angle of the sprung mass
x22 = φ̇: roll angular velocity of the sprung mass

where (k, ϑ) = {(0, fr), (1, f l), (2, rr), (3, rl)}. The dot “.” represents multipli-
cation. u(t) = [ufr(t) ufl(t) urr(t) url(t)]

T ∈ �4 is the vector of the con-
trol inputs to the four servo valves. d(t) =

[
zrfr

(t) zrfl
(t) zrrr (t) zrrl

(t)
]T

∈ �4 is the vector of the external disturbances induced to the active suspen-
sion due to the road irregularities.

The output vector y(t) is discussed in Sect. 5.4 where the sensors needed
for the system control are presented and their existence is investigated. The
function f(x), matrices B and F , and the numerical values of the different
parameters are given in Sect. 5.2.5.

5.2.4 System Breakdown

Complex systems are quantitatively characterized by a large dimension of the
mathematical model, a large number of input and output variables. Quali-
tatively, the complexity consists of the system nonlinearity, external distur-
bances, structural and parametric uncertainty, and sophisticated and multiple
objectives and performance criteria. When controlling a complex system, the
desired control law cannot be derived from the model of the whole system
without some kind of transformation or simplification. The most common ap-
proaches used to solve the problem of complexity include various techniques
of simplification and breakdown. Breakdown techniques can be classified as
follows [42]:

• Task-oriented (functional) associated with splitting the general problem
into several sub-problems of various hierarchical levels
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• Object-oriented (physical) implying separation of simpler subsystems to
be considered individually

• Time breakdown or separating distinct stages of system functioning

Vehicles are complex systems which consist of various mechanical, elec-
tronic, and electrical subsystems. The full vehicle active suspension model
considered in this study is a deterministic and simplified representation of the
real complex system. Nevertheless, it is a large dimension nonlinear system
with a relatively large number of input and output variables. It has sophis-
ticated and multiple objectives and it is subjected to external disturbances.
Thus, it is considered as a complex system. To facilitate the study, the system
is physically broken down into five interconnected subsystems to be considered
separately as shown in Fig. 5.3.
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Fig. 5.3. Breakdown of the system into five interconnected subsystems

The arrows in the figure represent the interconnections between subsys-
tems. This breakdown respects the system’s physical structure. The five sub-
systems are the front right SSfr, the front left SSfl, the rear right SSrr, the
rear left SSrl, and the chassis SSchassis. The breakdown facilitates the design
of the controller and the FDI modules.

For each subsystem SSϑ, a local controller Cϑ and an FDI module Diagϑ

(ϑ ∈ {fr, f l, rr, rl, chassis}) are designed. The subsystems with their con-
trol and diagnosis modules are illustrated in Fig. 5.4.
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Fig. 5.4. Local control and FDI modules for subsystems



5.2 Full Vehicle Active Suspension System 165

Figure 5.5 illustrates the functional breakdown of control and diagnosis
structures. The local control modules Cϑ are monitored by a coordination
and synchronization module at a higher level. At the top of this control struc-
ture, a supervision module supervises all the sub-modules. In parallel with
this hierarchical structure of control, a fault diagnosis scheme is designed:
a functional diagnosis module at level 1 coordinates the local FDI modules
Diagϑ. A global diagnosis module at the top of this hierarchy supervises all
these sub-modules. The coordination between the two structures is ensured
by the decision taking and resources management module.
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Fig. 5.5. Object and task-oriented breakdown of the system
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5.2.5 Subsystems Models and Vehicle Parameters

The dynamics of each subsystem are the following.

Front Right Subsystem SSfr

f1(x) = x2,

f2(x) = [−(ksfr
+kufr

)x1 +ksfr
x17 +aksfr

sin(x19)−cksfr
sin(x21)−csfr

x2 +
csfr

x18 + acsfr
cos(x19)x20 − ccsfr

cos(x21)x22 − Sx3]/mufr
,

f3(x) = −βx3 − αS[x18 + ax20 cos(x19) − cx22 cos(x21) − x2] + sign(ps −
sign(x4)x3)γ

√|ps − sign(x4)x3|x4,

f4(x) = −x4/τ .

Front Left Subsystem SSfl

f5(x) = x6,

f6(x) = [−(ksfl
+ kufl

)x5 + ksfl
x17 + aksfl

sin(x19) + dksfl
sin(x21)− csfl

x6 +
csfl

x18 + acsfl
cos(x19)x20 + dcsfl

cos(x21)x22 − Sx7]/mufl,

f7(x) =−βx7 − αS[x18 + ax20 cos(x19) + dx22 cos(x21) − x6] + sign(ps −
sign(x8)x7)γ

√|ps − sign(x8)x7|x8,

f8(x) = −x8/τ .

Rear Right Subsystem SSrr

f9(x) = x10,

f10(x) = [−(ksrr +kurr )x9+ksrr x17−bksrr sin(x19)−cksrr sin(x21)−csrr x10+
csrrx18 − bcsrr cos(x19)x20 − ccsrr cos(x21)x22 − Sx11]/murr ,

f11(x) = −βx11 − αS[x18 − bx20 cos(x19) − cx22 cos(x21) − x10] + sign(ps −
sign(x12)x11)γ

√|ps − sign(x12)x11|x12,

f12(x) = −x12/τ .
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Rear Left Subsystem SSrl

f13(x) = x14,

f14(x) = [−(ksrl
+kurl

)x13 +ksrl
x17−bksrl

sin(x19)+dksrl
sin(x21)−csrl

x14 +
csrl

x18 − bcsrl
cos(x19)x20 + dcsrl

cos(x21)x22 − Sx15]/murl,

f15(x) = −βx15 − αS[x18 − bx20 cos(x19) + dx22 cos(x21) − x14] + sign(ps −
sign(x16)x15)γ

√|ps − sign(x16)x15|x16,

f16(x) = −x16/τ .

Chassis Subsystem SSchassis

f17(x) = x18,

f18(x) = {ksfr
x1 + ksfl

x5 + ksrrx9 + ksrl
x13 − (ksfr

+ ksfl
+ ksrr + ksrl

)x17 −
[a(ksfr

+ksfl
)−b(ksrr +ksrl

)] sin(x19)−[d(ksfl
+ksrl

)−c(ksfr
+ksrr )] sin(x21)+

csfr
x2 + csfl

x6 + csrrx10 + csrl
x14 − (csfr

+ csfl
+ csrr + csrl

)x18 − [a(csfr
+

csfl
)− b(csrr + csrl

)] cos(x19)x20 − [d(csfl
+ csrl

)− c(csfr
+ csrr)] cos(x21)x22 +

S(x3 + x7 + x11 + x15)}/M ,

f19(x) = x20,

f20(x) = cos(x19){aksfr
x1 + aksfl

x5 − bksrrx9 − bksrl
x13 − [a(ksfr

+ ksfl
) −

b(ksrr +ksrl
)]x17−[a2(ksfr

+ksfl
)+b2(ksrr +ksrl

)] sin(x19)−[d(aksfl
−bksrl

)−
c(aksfr

− bksrr )] sin(x21) + acsfr
x2 + acsfl

x6 − bcsrrx10 − bcsrl
x14 − [a(csfr

+
csfl

)−b(csrr +csrl
)]x18−[a2(csfr

+csfl
)+b2(csrr +csrl

)] cos(x19)x20−[d(acsfl
−

bcsrl
) − c(acsfr

− bcsrr )] cos(x21)x22 + S[a(x3 + x7) − b(x11 + x15)]}/Iyy,

f21(x) = x22,

f22(x) = cos(x21){−cksfr
x1 + dksfl

x5 − cksrrx9 + dksrl
x13 − [d(ksfl

+ ksrl
)−

c(ksfr
+ ksrr )]x17 − [d(aksfl

− bksrl
) − c(aksfr

− bksrr )] sin(x19) − [d2(ksfl
+

ksrl
) + c2(ksfr

+ ksrr )] sin(x21) − cacsfr
x2 + dcsfl

x6 − ccsrrx10 + dcsrl
x14 −

[d(csfl
+csrl

)−c(csfr
+csrr )]x18−[d(acsfl

−bcsrl
)−c(acsfr

−bcsrr)] cos(x19)x20−
[d2(csfl

+csrl
)+c2(csfr

+csrr )] cos(x21)x22+S[−c(x3+x11)+d(x7+x15)]}/Ixx.
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Matrices B and F are given as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×4

1/τ 0 0 0
03×4

0 1/τ 0 0
03×4

0 0 1/τ 0
03×4

0 0 0 1/τ
06×4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×4

kufr
/mufr

0 0 0
03×4

0 kufl
/mufl

0 0
03×4

0 0 kurr /murr 0
03×4

0 0 0 kurl
/murl

08×4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Expression x18 + ax20 cos(x19) − cx22 cos(x21) − x2 in f3(x) denotes the
front right suspension stroke rate żsfr

− żufr
but written as function of the

system state. This is similar for f7(x), f11(x), and f15(x).
The numerical values of the different system parameters are given in Table

5.1, where G is the center of gravity of the chassis and j = {r, l}.

Table 5.1. System parameters

Parameter Description Value Unit

M Sprung mass 1,500 [kg]

muϑ Unsprung masses 59 [kg]

ksfj Front springs stiffness 35,000 [N/m]

ksrj Rear springs stiffness 38,000 [N/m]

kuϑ Tires stiffness 190,000 [N/m]

csfj Front suspensions damping 1,000 [N/m/s]

csrj Rear suspensions damping 1,100 [N/m/s]

Ixx Roll axis moment of inertia 460 [kg.m2]

Iyy Pitch axis moment of inertia 2,160 [kg.m2]

a G to the front axle 1.4 [m]

b G to the rear axle 1.7 [m]

c G to the vehicle right side 1.5 [m]

d G to the vehicle left side 1.5 [m]

α Actuator parameter 4.515×1013 [N/m5]

β Actuator parameter 1 –

γ Actuator parameter 1.545×109 [N/m5/2/kg1/2]

ps Supply pressure 10,342,500 [Pa]

S Sect.al area of the piston 3.35×10−4 [m2]

τ Servo valve time constant 0.003 [s]
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5.3 Controller Design

The concept of the sliding mode control (SMC) technique presented in Sect.
2.4.2 is applied to the vehicle active suspension. The main objective of the
control is to reduce the effect of the road irregularities on the passengers
and to insure the system safety during vehicle maneuvers. A control strategy
(Fig. 5.6) is designed for the system using SMC techniques. The control law
cannot be directly derived from the complex model of the system. Thus, the
controller is functionally broken down into five modules Cϑ, one for each sub-
system SSϑ (ϑ ∈ {fr, f l, rr, rl, chassis}). The module Cchassis supervises
the chassis state and compares it to the objectives. It then determines the
necessary (desired) forces ud

1 to attain the desired objectives. A decoupling
block calculates from the desired forces ud

1 the four actuation forces fd
ϑ that

should be generated by the four actuators.
Each fd

ϑ is treated by the control module Cϑ (ϑ ∈ {fr, f l, rr, rl}). This
module is composed of two sub-modules Cc

ϑ and Cs
ϑ (ϑ ∈ {fr, f l, rr, rl}). Cc

ϑ

is proper to the cylinders whereas Cs
ϑ is proper to the servo valves. Each sub-

module Cc
ϑ treats the desired force fd

ϑ and determines the necessary position
zd

vϑ
of the spool that generates the desired force. Finally, Cs

ϑ treats the desired
position zd

vϑ
and generates the control input uϑ that moves the spool to the

desired position. The application of the control input uϑ on the spool varies
its position zvϑ

and generates the actuation force fϑ. Ideally, the force fϑ

generated by the actuator equals the desired one fd
ϑ (fd

ϑ = fϑ). The dynamics
of the three control modules are detailed in the sequel.

5.3.1 First Control Module: Chassis Module CChassis

Consider the six equations of SSchassis (see Sect. 5.2.5) and define uz, uθ and
uφ as ⎧⎨

⎩
uz = S(x3 + x7 + x11 + x15)
uθ = S[a(x3 + x7) − b(x11 + x15)]
uφ = S[−c(x3 + x11) + d(x7 + x15)]

, (5.13)

where S, a, b, c, and d are given in Table 5.1. The six equations of SSchassis

can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f17(x) = x18,

f18(x) = f̄18(x) + g18uz,

f19(x) = x20,

f20(x) = f̄20(x) + g20uθ,

f21(x) = x22,

f22(x) = f̄22(x) + g22uφ

, (5.14)

with
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Fig. 5.6. Control strategy
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f̄18(x) = {ksfr
x1 + ksfl

x5 + ksrrx9 + ksrl
x13 − (ksfr

+ ksfl
+ ksrr + ksrl

)x17 −
[a(ksfr

+ksfl
)−b(ksrr +ksrl

)] sin(x19)−[d(ksfl
+ksrl

)−c(ksfr
+ksrr )] sin(x21)+

csfr
x2+csfl

x6+csrrx10+csrl
x14−(csfr

+csfl
+csrr +csrl

)x18−[a(csfr
+csfl

)−
b(csrr + csrl

)] cos(x19)x20 − [d(csfl
+ csrl

) − c(csfr
+ csrr )] cos(x21)x22}/M ,

g18 = 1/M ,

f̄20(x) = cos(x19){aksfr
x1 + aksfl

x5 − bksrrx9 − bksrl
x13 − [a(ksfr

+ ksfl
) −

b(ksrr +ksrl
)]x17−[a2(ksfr

+ksfl
)+b2(ksrr +ksrl

)] sin(x19)−[d(aksfl
−bksrl

)−
c(aksfr

− bksrr )] sin(x21) + acsfr
x2 + acsfl

x6 − bcsrrx10 − bcsrl
x14 − [a(csfr

+
csfl

)−b(csrr +csrl
)]x18−[a2(csfr

+csfl
)+b2(csrr +csrl

)] cos(x19)x20−[d(acsfl
−

bcsrl
) − c(acsfr

− bcsrr )] cos(x21)x22}/Iyy,

g20 = cos(x19)/Iyy,

f̄22(x) = cos(x21){−cksfr
x1 + dksfl

x5 − cksrrx9 + dksrl
x13 − [d(ksfl

+ ksrl
)−

c(ksfr
+ksrr )]x17−[d(aksfl

−bksrl
)−c(aksfr

−bksrr)] sin(x19)−[d2(ksfl
+ksrl

)+
c2(ksfr

+ ksrr )] sin(x21) − cacsfr
x2 + dcsfl

x6 − ccsrrx10 + dcsrl
x14 − [d(csfl

+
csrl

) − c(csfr
+ csrr )]x18 − [d(acsfl

− bcsrl
) − c(acsfr

− bcsrr )] cos(x19)x20 −
[d2(csfl

+ csrl
) + c2(csfr

+ csrr )] cos(x21)x22}/Ixx,

g22 = cos(x21)/Ixx.

If, for the set of the first two equations f17(x) and f18(x), the desired
trajectory is defined as xd

17, then the error between the actual and the desired
trajectory can be written as

ez = z − zd = x17 − xd
17. (5.15)

The time derivative of ez is given by

ėz = ẋ17 − ẋd
17 = x18 − xd

18. (5.16)

The switching (sliding) surface sz is defined as

sz = ėz + λzez. (5.17)

The time derivative of sz is given by

ṡz = ëz + λz ėz = f̄18(x) + g18uz − ẍd
17 + λz ėz. (5.18)

Then the equivalent control is chosen as

uzeq = g−1
18 (ẍd

17 − f̄18(x) − λz ėz). (5.19)

The proportional (kzsz) rate reaching law is imposed by selecting the
second term as

u∗
z = g−1

18 (−kzsz). (5.20)

The control input uz then becomes
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uz = uzeq + u∗
z = g−1

18 (ẍd
17 − f̄18(x) − λz ėz − kzsz). (5.21)

By following the same steps for the set of equations (f19(x), f20(x)) and
(f21(x), f22(x)), two equations are obtained:

uθ = uθeq + u∗
θ = g−1

20 (ẍd
19 − f̄20(x) − λθ ėθ − kθsθ) (5.22)

and

uφ = uφeq + u∗
φ = g−1

22 (ẍd
21 − f̄22(x) − λφėφ − kφsφ). (5.23)

In matrix form:

ud
1 = G−1(ẍd − f̄(x) − Λė − ks), (5.24)

where

ud
1 =

⎡
⎢⎣

ud
z

ud
θ

ud
φ

⎤
⎥⎦, G−1 =

⎡
⎣g−1

18 0 0
0 g−1

20 0
0 0 g−1

22

⎤
⎦, ẍd =

⎡
⎢⎣
ẍd

17

ẍd
19

ẍd
21

⎤
⎥⎦, f̄(x) =

⎡
⎢⎣

f̄18(x)

f̄20(x)

f̄22(x)

⎤
⎥⎦,

Λ =

⎡
⎣λz 0 0

0 λθ 0
0 0 λφ

⎤
⎦, ė =

⎡
⎢⎣

ėz

ėθ

ėφ

⎤
⎥⎦, k =

⎡
⎣kz 0 0

0 kθ 0
0 0 kφ

⎤
⎦, and s =

⎡
⎢⎣

sz

sθ

sφ

⎤
⎥⎦.

Functions g18, g20, and g22 are nonzero scalars. Thus, they are invertible.
So is G. Note that the constant rate reaching law (Msign(s)) is not used
in (5.24). This is because the use of the proportional rate reaching law (ks)
proved to be sufficient.

The three desired inputs ud
z, ud

θ, and ud
φ can be interpreted as being, re-

spectively, the desired force in the z direction and the two desired torques
in the direction of angles θ and φ so that the controlled system reaches its
desired objectives. However, the relation between u1 and the actuator forces
f is

u1 =

⎡
⎣uz

uθ

uφ

⎤
⎦ =

⎡
⎣ 1 1 1 1

a a − b − b
−c d − c d

⎤
⎦
⎡
⎢⎢⎣
ffr

ffl

frr

frl

⎤
⎥⎥⎦ = Nf. (5.25)

Thus, for the desired ud
1 of (5.24) the four desired actuator forces are given

by
fd = N+ud

1. (5.26)

N+ = NT (NNT )−1 is the pseudo-inverse of matrix N . The pseudo-inverse
of this matrix has an exact solution. That is to say that N is of full row rank
(rank(N) = 3) and is right invertible (NN+ = I3). I3 is the identity matrix
of dimension three. The desired actuation forces fd in (5.26) are determined
by the decoupling module of the control scheme (Fig. 5.6).
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The desired actuators pressures are obtained by dividing the desired forces
(5.26) by the sectional area S of the actuator piston:

Ad =
[
Ad

fr Ad
fl Ad

rr Ad
rl

]T
=

1
S

[
fd

fr fd
fl fd

rr fd
rl

]T
=

1
S

fd. (5.27)

Once the four desired actuators pressures Ad are determined by CChassis,
the control modules Cc

ϑ and Cs
ϑ are designed to generate these desired pres-

sures.

5.3.2 Second Control Module: Cylinder Module Cc
ϑ

The desired actuator pressure Ad
ϑ is determined by the chassis control module

CChassis and the decoupling module. The role of Cc
ϑ is to determine the spool

valve position zd
vϑ

needed to generate the desired actuator pressure Ad
ϑ (see

Fig. 5.6). The pressure generated by an actuator is given by

Ȧϑ = −βAϑ − αS(żsϑ − żuϑ) + sign(ps − sign(zvϑ)Aϑ)γ
√

|ps − sign(zvϑ)Aϑ|zvϑ .

(5.28)

This notation is used in place of the state-space representation to generalize
the study of the second module for the four force actuators. This equation can
be written as

Ȧϑ = f2ϑ
+ g2ϑ

u2ϑ
, (5.29)

where f2ϑ
= −βAϑ − αS(żsϑ

− żuϑ
),

u2ϑ
= zvϑ

and g2ϑ
= sign(ps − sign(zvϑ

)Aϑ)γ
√|ps − sign(zvϑ

)Aϑ|.
Defining the sliding surface as

s2ϑ
= Aϑ − Ad

ϑ, (5.30)

and following the steps described in Sect. 5.3, the second control law can be
given by [2]

ud
2ϑ

= zd
vϑ

=
βAϑ + αS(żsϑ

− żuϑ
) + Ȧd

ϑ − k2ϑ
s2ϑ

sign(ps − sign(zvϑ
)Aϑ)γ

√|ps − sign(zvϑ
)Aϑ|

. (5.31)

k2ϑ
is chosen to satisfy (2.58) with ϑ ∈ {fr, f l, rr, rl}.

The vector of the four desired spool valve positions is

zd
v =

[
ud

2fr
ud

2fl
ud

2rr
ud

2rl

]T
=
[
zd

vfr
zd

vfl
zd

vrr
zd

vrl

]T
. (5.32)
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5.3.3 Third Control Module: Servo Valve Module Cs
ϑ

The required spool valve position zd
vϑ

to generate the desired actuator pressure
Ad

ϑ (determined by CChassis) is computed by Cc
ϑ. The role of the control

module Cs
ϑ is to determine the control input uϑ needed to obtain zd

vϑ
. The

spool valve dynamics are

żvϑ
=

1
τ
(−zvϑ

+ uϑ). (5.33)

These dynamics can be written as

żvϑ
= f3ϑ

+ g3ϑ
u3ϑ

, (5.34)

with f3ϑ
= − zvϑ

τ , g3ϑ
= 1

τ and u3ϑ
= uϑ. Defining the sliding surface as

s3ϑ
= zvϑ

− zd
vϑ

, (5.35)

and following the steps described in Sect. 5.3, the third control law can be
given by [2]

ud
3ϑ

= ud
ϑ = zvϑ

+ τ(żd
vϑ

− k3ϑ
s3ϑ

). (5.36)

k3ϑ
is chosen to satisfy (2.58) with ϑ ∈ {fr, f l, rr, rl}. The control input

u is expressed as follows:

u =
[
ud

fr ud
fl ud

rr ud
rl

]T
. (5.37)

5.4 System Instrumentation

The control law requires an investigation into the needed measurements and
the available and the unavailable sensors. Therefore, this section will analyze
the problem of active suspension instrumentation.

5.4.1 Required Measurements

The control law requires the measurement/estimation of:

• The heave position z
• The heave velocity ż
• The pitch angle θ
• The pitch angular velocity θ̇
• The roll angle φ
• The roll angular velocity φ̇
• The four suspensions stroke zsϑ

− zuϑ

• The four suspensions stroke rate żsϑ
− żuϑ

• The four spool valve positions zvϑ
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• The four actuator forces fϑ with ϑ ∈ {fr, f l, rr, rl}
Note that in the system model the suspension stroke zsϑ

− zuϑ
and stroke

rate żsϑ
− żuϑ

are expressed in function of the state components using the
physical relations between the chassis (z, θ and φ) and its four corners zsϑ

.
These relations are⎧⎪⎪⎨

⎪⎪⎩
zsfr

= x17 + a sin(x19) − c sin(x21)
zsfl

= x17 + a sin(x19) + d sin(x21)
zsrr = x17 − b sin(x19) − c sin(x21)
zsrl

= x17 − b sin(x19) + d sin(x21)

. (5.38)

The required measurements problem needs an investigation into the avail-
able sensors to provide these measurements.

5.4.2 Available Sensors

The following study details two working cases; the prototype and the industrial
levels.

Prototype Vehicles

The prototype vehicles are used in the laboratories for research purposes. The
most common sensors that can be found are the following:

• Laser sensors measure the heave position z of the sprung mass, the dis-
placement zuϑ

of the unsprung masses and the road inputs zrϑ
(ϑ ∈

{fr, f l, rr, rl})
• Accelerometers measure the heave acceleration z̈ of the sprung mass and

the vertical acceleration z̈uϑ
of the unsprung masses

• Accelerometers measure the lateral and longitudinal acceleration of the
vehicle

• Gyrometers measure pitch and roll angular velocities θ̇ and φ̇
• Linear variable displacement transducers measure the suspensions stroke

zsϑ
− zuϑ

, the sprung mass displacement zuϑ
, the road displacement zrϑ

,
and the spool valve positions zvϑ

• Linear velocity transducers measure the sprung mass vertical velocity ż,
the suspensions stroke rate żsϑ

− żuϑ
, and the unsprung masses vertical

velocities żuϑ

• Load cells measure the actuators forces fϑ

Industrial Vehicles

Not all the sensors cited above are on board. The sensors combination depends
mainly on the control law and the sensors costs. The most common sensors
available are
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• The laser sensors
• The accelerometers
• The gyrometers
• The linear variable displacement transducers which measure the suspen-

sions stroke zsϑ
− zuϑ

Here are some examples of the sensors used in standard vehicles:

• The Maserati GranSport uses four acceleration sensors on each wheel (sky-
hook system)

• The 2005 Cadillac XLR world’s fastest-reacting suspension system is
equipped with four wheel-to-body displacement sensor that measure wheel
motion over the road surface

• The Opel Astra uses five acceleration sensors: three body sensors that
measure roll, pitch, and heave and two wheel sensors for the road surface
conditions

• The Volvo S60 R and V70 R, equipped with the Four-C technology (con-
tinuously controlled chassis concept), uses sensors measuring longitudinal
and lateral acceleration, yaw rates, roll, pitch and heave, vertical position
of each wheel, speed of the car, steering wheel position and velocity, engine
torque, throttle pedal position, engine rpm, and braking force

5.4.3 Unavailable Sensors

System states that are not measurable are

• The heave velocity ż: sensors allowing the measurement of the sprung mass
heave velocity ż do not exist. On prototype vehicles, this measurement is
ensured using a linear velocity transducer and a fixed reference (i.e., the
ground) which is not possible to realize on industrial vehicles. Nevertheless,
two solutions are possible. The first uses a laser sensor to measure z and
then a smooth derivative technique gives ż. The second solution uses an
accelerometer for the heave acceleration z̈ measurement and an integration
leads to ż.

• The pitch θ and roll φ angles: sensors measuring the inclination angles
do exist. However, these sensors are sensitive to vibration. Sensors with
high vibration resistance are very expensive and are still inadequate to
be used in vibrating environments such as vehicles. Therefore, gyrometers
are used to measure θ̇ and φ̇. Angles are then obtained by integrating the
measurements.

5.4.4 Sensors in Use

For the SMC of the nonlinear system, 15 sensors are assumed to be used:
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• Five accelerometers measure the heave acceleration z̈ and the four un-
sprung masses acceleration z̈uϑ

. The noisy measurements are filtered [68].
Velocities and positions are obtained by double integration [68].

• Two gyrometers measure the pitch θ and roll φ angular velocities. Inte-
gration leads to the respective angles [68].

• Four linear variable displacement transducers measure the spool valve po-
sitions zvϑ

[2].
• Four load cells measure the actuators forces fϑ [2].

The four suspension stroke rates żsϑ
− żuϑ

are computed using the
physical relations (5.38) between the chassis and its four corners zsϑ

(ϑ ∈
{fr, f l, rr, rl}).

This sensor combination represents one of many possible sensor solutions.
However, the one proposed here is close to those used for industrial vehicles.
Thus, it respects the industrial constraints.

Obtaining velocities and positions by integrating acceleration measure-
ments is used in [68] for a prototype vehicle. A filtering of the noisy mea-
surement is performed before the integration. Integrating the measurement
is inevitable in obtaining the variables needed for the control. However, this
may lead to bias over a certain time window. This affects the control and
the diagnosis scheme. This point is not investigated in this chapter. This is
considered as an area of future research.

Remark 5.1. The used sensors will be referred to as follows:

• For SSchassis, ζ1
chassis, ζ2

chassis, and ζ3
chassis denote the three sensors that

measure z̈, θ̇, and φ̇ respectively
• For SSϑ, ζ1

ϑ, ζ2
ϑ, and ζ3

ϑ denote the three sensors that measure z̈uϑ
, fϑ,

and zvϑ
(ϑ ∈ {fr, f l, rr, rl})

5.4.5 Optimal Sensor Network Design

In this study, 15 sensors are assumed to be used. For cost reasons, not all of
these sensors may be installed on standard vehicles. However, some material
redundancy should be available for the diagnosis and fault accommodation.
Thus, the minimal number of sensors ensuring the observability of the system
and allowing the FDI must be found. This point is treated in [19,20] and will
not be presented here.

5.5 Sensor Fault Diagnosis Strategy

Like any controlled system, the behavior of the active suspension system de-
pends on, among other things, the control scheme and the information deliv-
ered by the sensors. Thus, any incorrect information caused by a faulty sensor
can lead the system to an undesirable or dangerous behavior.
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Few research studies have treated the suspension system fault diagnosis
problem. An early study used the generalized likelihood ratio approach [88]
for on-board sensor FDI of an active suspension system using a half-car model.
It was concluded that the application of this approach is feasible when the
failure can be modeled as a deterministic additive term. In other situations,
the computational requirements make it less practical. Another study uses the
nearest neighbor-based fault identification and the robust geometric method-
ology [107].

Isermann and other researchers of the Darmstadt University of Technology
are working on this problem: model-based methods are applied to a quarter
car test rig equipped with an electro-hydraulic actuator [34–40, 72]. In these
works, the unknown parameters of the system are estimated by using an
estimation algorithm. Then parity equations are used for the detection and
isolation of sensors and components faults. Parity equations are generated
with a local linear model tree.

Other methods are used for the FDI in active suspension: statistical
methodologies are applied to perform fault detection in nonlinear two degrees
of freedom quarter-car model and complete vehicle models [96]. Model-based
FDI methods are developed in [15].

In [74], analytical redundancy techniques are applied to fault detection for
heavy vehicles where the full vehicle model is divided into several subsystems
to reduce the computation cost. In [77], the model-based fault detection ap-
proach relies on simple mathematical descriptions of the system which yields
a robust FDI against disturbances or model uncertainties.

In this section, a model-based sensor FDI strategy is designed for the full
vehicle active suspension system. The consideration of the force actuators
helps mainly in better understanding the occurrence of the faults and their
propagation in the whole system. This is because the actuators are crucial
elements of the active suspension systems. They have their proper dynamics
and they are also subject to faults. Six diagnosis modules are then designed: a
global one localizes the fault in one of the subsystems and five local diagnosis
modules (one for each subsystem) determine the faulty sensor (see Figs. 5.4
and 5.5).

To detect and isolate sensor failures, the system model and a bank of SMOs
are used to generate residuals. In this study, abrupt faults are considered. The
residuals are designed in such a way that every fault has a specific pattern
and thus can be easily isolated.

5.5.1 Sliding Mode Observers-based Sensor Fault Diagnosis

This section shows how SMO can be used for detecting faults of large magni-
tude. This SMO-based FDI scheme is not useful for detecting incipient faults
in many practical applications where system model mismatch is unavoidable
and significant [17]. An incipient fault will neither produce a sudden peak in
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the residual nor will it push the system out of sliding mode. This is a limitation
of this SMO-based fault diagnosis.

The subsequent explanation of the SMO-based FDI scheme is derived from
[17]. The initial scheme is reformulated in order to be compatible with the use
of reduced order observers. For this purpose, consider a reduced order multi-
variable nonlinear system described in state-space form:{

ẋ = f(x, x̃, u, d)
y = H(x) + fo(t)

, (5.39)

where x ∈ M , a C∞ connected manifold of dimension n. The use of reduced
order systems consists in considering a part of the system model. Thus x̃ are
the states other than x. x̃ are considered as known inputs. u and d represent
respectively the control input and the system uncertainties. It is assumed
that all x, x̃, u, and d are bounded. H(x) = [h1(x), · · · , hp(x)]T are smooth
vector fields on M . fo(t) =

[
f1

o (t), · · · , fp
o (t)
]T represents the sensor faults.

A general SMO for (5.39) is of the following form:

ż = L(x̃ + fs(t), z, y, u) + Λsign(y − z), (5.40)

where z is an estimate of H(x). L is a function of x̃, z, y, and u. Λ is a diagonal
gain matrix with elements λi, i = 1, · · · , p. The term fs(t) represents the faults
of the sensors measuring x̃. It can be any function of time.

The estimation error is given by e = H(x) − z. The dynamics of the
estimation error are given by

ė =
d

dt
H(x) − ż =

∂H(x)
∂x

ẋ − ż (5.41)

=
∂H(x)

∂x
f(x, x̃, u, d) − L(x̃ + fs(t), z, y, u) − Λsign(H(x) + fo(t) − z).

Note that error e cannot be measured and that only r = y − z = H(x) +
fo(t) − z is measurable. The quantity r is considered as being the sliding
surface; thus it can be considered as a residual signal.

Assume that ei = hi(x) − zi and define

∂H(x)
∂x

f(x, x̃, u, d)=

⎡
⎢⎢⎢⎣
m1(x, x̃, u, d)
m2(x, x̃, u, d)

...
mp(x, x̃, u, d)

⎤
⎥⎥⎥⎦ and L=

⎡
⎢⎢⎢⎣
l1(x̃ + fs(t), z, y, u)
l2(x̃ + fs(t), z, y, u)

...
lp(x̃ + fs(t), z, y, u)

⎤
⎥⎥⎥⎦.

The dynamics of the error ei are then given by

ėi = mi(x, x̃, u, d) − li(x̃ + fs(t), z, y, u)− λisign(ei + f i
o(t)). (5.42)

When no sensor fault is present, fs(t) = fo(t) = 0. If λi is chosen such
that |mi(x, x̃, u, d) − li(x̃, z, H(x), u)| ≤ λi:
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d

dt
e2

i = 2ei[mi(x, x̃, u, d) − li(x̃, z, H(x), u) − λisign(ei)]. (5.43)

Therefore:

if ei > 0, d
dte

2
i = 2eiėi = 2ei[mi(x, x̃, u, d) − li(x̃, z, H(x), u) − λi] < 0,

if ei < 0, d
dte

2
i = 2eiėi = 2ei[mi(x, x̃, u, d) − li(x̃, z, H(x), u) + λi] < 0.

Thus ri = ei exponentially decreases to zero according to the Lyapunov
principle [17]. Assume now that one of the sensors measuring x̃ becomes faulty
at time ti (fs(t) �= 0). It is necessary to investigate how the fault interacts
with the sliding surface and how the sliding performance of the observer is
affected.

At time t > ti, fs(t) �= 0. Then

ṙi = mi(x, x̃, u, d) − li(x̃ + fs(t), z, y, u)− λisign(ei). (5.44)

This may produce one of the following two cases.

Case 1

If |mi(x, x̃, u, d) − li(x̃ + fs(t), z, y, u)| ≤ λi for all i = 1, · · · , p, the observer
will remain on the sliding surface and faults can not be detected, i.e., ri = 0,
i = 1, · · · , p.

Case 2

If |mi(x, x̃, u, d) − li(x̃ + fs(t), z, y, u)| ≥ λi persistently holds, the observer
will move from its surface and sliding will cease. In this case, the ith residual
element will become nonzero persistently and will alarm for the occurrence of
a sensor fault.

The effect of sensor faults fo(t) is also considered in the FDI design but
it is not presented here. The idea for these faults is similar to that of fs(t).
More details about this subject are given in [17].

5.5.2 Active Suspension Sensor Fault Detection and Isolation

Sensors are generally exposed to noise, outliers, gains, offsets, breakdown
(ground), or freeze at the minimum or the maximum value. However, this
study considers abrupt sensor faults like gains, offsets, breakdown, and freeze.
Other fault types will be considered in future works.

A model-based approach is used to detect a sensor fault and to isolate
it. The system model and a bank of SMOs generate residuals. The residuals
are designed in such a way that each possible fault has a unique pattern.
They define a priori known fault-signature inference matrices. In total, six
inference matrices are used to isolate faults. One is a global matrix for the
whole system. The others are local matrices, one for each subsystem. The
design of these matrices is detailed in the subsequent sections.
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Diagnosis Strategy

The fault diagnosis strategy is illustrated in Fig. 5.7. It consists of six diagnosis
modules: one global and five local Diagϑ for each subsystem SSϑ with ϑ ∈
{fr, f l, rr, rl, chassis}.

To construct the global diagnosis module, the system model is used to
estimate, with a geometric approach, the actuation pressures x̂4.k−1 of the four
actuators (k = 1, · · · , 4). Here, the “.” represent multiplication. The estimated
pressures x̂4.k−1 are then compared to the measurements to generate the four
residuals Rk (k = 1, · · · , 4).

For the local diagnosis modules Diagϑ, six reduced order SMO R.Obs.i
(i = 1, · · · , 6) estimate the heave velocity of the sprung mass (x18)k (k =
5, · · · , 10). The estimates are then compared to the measurement of the heave
velocity x18 to generate six additional residuals Rk (k = 5, · · · , 10). The fault
isolation is ensured by injecting the output vector y in each observer while
excluding some measurements. The notation “\m” in Fig. 5.7 denotes that
the measurement “m” is excluded from the output vector y. This helps in de-
coupling the effect of the excluded measurement from the estimated variables.

Finally, ten estimates are obtained and compared to the measurements.
Ten residuals Rk (k = 1, · · · , 10) are generated to detect and isolate sensor
faults. The global and the five local modules Diagϑ are detailed in the sequel
with ϑ ∈ {fr, f l, rr, rl, chassis}.

Global Fault Diagnosis Module

To design the global fault diagnosis module, the system model is used to define
four residuals and a global inference matrix. From ẋ4.k−1 (k = 1, · · · , 4), the
estimate ˙̂x4.k−1 is calculated as function of x4.k−2, x4.k−1, x4.k, x18, x19, x20,
x21, and x22 as follows:

˙̂x4.k−1 = f(x4.k−2, x4.k−1, x4.k, x18, x19, x20, x21, x22) + hksign(Rk), (5.45)

where Rk = x4.k−1 − x̂4.k−1. x4.k−1 is the measured actuator load pressure
and x̂4.k−1 is the

kth

calculated or estimated one. hk is a positive constant to be chosen and k =
1, · · · , 4.

In the ideal case where the model is perfect, residual Rk nominally equals
zero. When any sensor measuring x4.k−2, x4.k−1, x4.k, x18, x19, x20, x21, or x22

is faulty, x̂4.k−1 deviates from x4.k−1 and Rk deviates from zero (k = 1, · · · , 4).

Remark 5.2. In fact, no sensors measure x4.k−3, x4.k−2, x17, x18, x19, or x21

(k = 1, · · · , 4). These variables are obtained by integrating the measurements
(see Sect. 5.4.4):
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Fig. 5.7. Scheme of the diagnosis strategy
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• Sensor ζ1
chassis measures z̈; the heave z (x17) and the heave velocity ż (x18)

are obtained by integrating z̈
• Sensor ζ2

chassis measures the pitch angular velocity θ̇ (x20); the pitch angle
θ (x19) is obtained by integrating this measurement

• Sensor ζ3
chassis measures the roll angular velocity φ̇ (x22); the roll angle φ

(x21) is obtained by integrating this measurement
• Sensor ζ1

ϑ measures z̈uϑ
(ϑ ∈ {fr, f l, rr, rl}); the unsprung mass displace-

ment zuϑ
(x4.k−3) and the unsprung mass velocity żuϑ

(x4.k−2) are ob-
tained by integrating the measurement (k = 1, · · · , 4)

• Sensor ζ2
ϑ measures fϑ (x4.k−1) (k = 1, · · · , 4)

• Sensor ζ3
ϑ measures zvϑ

(x4.k) (k = 1, · · · , 4)

A sensor fault results in an error in the measurement and the variables
derived from it.

With these four defined residuals a fault-signature matrix is obtained in
Table 5.2. The “1” means that the residual is sensitive to the fault occurrence,
while the “0” means that it is insensitive.

Table 5.2. Global fault-signature matrix

SSfr SSfl SSrr SSrl SSch

ζ1
fr ζ2

fr ζ3
fr ζ1

fl ζ2
fl ζ3

fl ζ1
rr ζ2

rr ζ3
rr ζ1

rl ζ2
rl ζ3

rl ζ1
ch ζ2

ch ζ3
ch

R1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
R2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
R3 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1
R4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

This inference matrix makes it possible to detect the occurrence of a sen-
sor fault and to locate it in one of the five subsystems. This is mainly done
by the global FDI module which supervises the whole system. For instance,
if the sensor ζ2

fr measuring x3 breaks down, only the residual R1 is affected.
The fault is detected but not isolated. The global FDI module indicates that
the fault is present in the front right subsystem (SSfr) since it has the sig-
nature (1, 0, 0, 0)T , without specifying the defected sensor. Complementary
investigation should be performed by the local FDI module Diagfr of (SSfr)
to determine the faulty sensor.

In the sequel, the local FDI modules Diagϑ (ϑ ∈ {fr, f l, rr, rl, chassis})
are presented. These modules are designed using a bank of SMO.

Front Right Subsystem Diagnosis Module Diagfr

To isolate faults in SSfr, two reduced order SMO are built. A reduced order
observer is constructed with part of the system model. The consideration of
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part of the model rather than the complete model reduces computation cost
and simplifies observer design. This part must be observable.

The first observer R.Obs.1 is constructed using the set of equations ẋ18,
ẋ19, and ẋ20. The variables x17 and x18 are assumed to be non-measured (they
are excluded from the output vector y (Fig. 5.7)). This observer estimates x18.
The considered equations are

ẋ18 = {ksfr
x1 + ksfl

x5 + ksrrx9 + ksrl
x13 − (ksfr

+ ksfl
+ ksrr + ksrl

)x17 −
[a(ksfr

+ksfl
)−b(ksrr +ksrl

)] sin(x19)−[d(ksfl
+ksrl

)−c(ksfr
+ksrr )] sin(x21)+

csfr
x2 + csfl

x6 + csrrx10 + csrl
x14 − (csfr

+ csfl
+ csrr + csrl

)x18 − [a(csfr
+

csfl
)− b(csrr + csrl

)] cos(x19)x20 − [d(csfl
+ csrl

)− c(csfr
+ csrr)] cos(x21)x22 +

S(x3 + x7 + x11 + x15)}/M ,

ẋ19 = x20,

ẋ20 = cos(x19){aksfr
x1+aksfl

x5−bksrrx9−bksrl
x13−[a(ksfr

+ksfl
)−b(ksrr +

ksrl
)]x17−[a2(ksfr

+ksfl
)+b2(ksrr +ksrl

)] sin(x19)−[d(aksfl
−bksrl

)−c(aksfr
−

bksrr )] sin(x21)+acsfr
x2+acsfl

x6−bcsrrx10−bcsrl
x14−[a(csfr

+csfl
)−b(csrr +

csrl
)]x18 − [a2(csfr

+ csfl
) + b2(csrr + csrl

)] cos(x19)x20 − [d(acsfl
− bcsrl

) −
c(acsfr

− bcsrr )] cos(x21)x22 + S[a(x3 + x7) − b(x11 + x15)]}/Iyy.

According to these equations, the estimation of x18 is explicitly indepen-
dent of x4. Thus, the estimate (x̂18)5 and the residual R5 are insensitive to
the fault of the sensor ζ3

fr that measures the front-right spool valve position
x4. On the other hand, they are sensitive to the other measurements.

Remark 5.3. The estimate (x̂18)5 obtained from R.Obs.1 is independent of x8,
x12, and x16. Thus, it will be used for the generation of residuals in the other
subsystems.

The second observer R.Obs.2 is designed using ẋ3 and ẋ18. The variable
x3 is assumed to be non-measured (it is excluded from the output vector y as
illustrated in Fig. 5.7). Thus, (x̂18)6 and R6 are insensitive to the measurement
of the front-right actuator load pressure x3. They are sensitive to the other
measurements x18 and x̃.

Two additional residuals Rk = x18 − (x̂18)k are then obtained, with k =
{5, 6}. x18 is the measured heave velocity and (x̂18)k is the

kth

estimated one.
For this subsystem the inference matrix is given in Table 5.3 with ϑ = fr

and l = 0. With both additional residuals, it is possible to isolate the faults
of this subsystem. The same steps are made for the other subsystems.
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Table 5.3. Local faults-signature inference matrix for SSϑ

ζ1
ϑ ζ2

ϑ ζ3
ϑ

R5 1 1 0

R6+l 1 0 1

Front Left Subsystem Diagnosis Module Diagfl

This module has R.Obs.1 as the first observer (see Remark 5.3). This observer
is insensitive to the fault of the sensor ζ3

fl measuring the front-left spool valve
position x8 and sensitive to the other measurements.

The second observer R.Obs.3 is designed using ẋ7 and ẋ18. The variable
x7 is not assumed to be measured (it is excluded from the output vector y
as illustrated in Fig. 5.7). Thus, (x̂18)7 and R7 are insensitive to the fault of
the sensor ζ2

fl measuring the front-left actuator load pressure x7. They are
sensitive to the other measurements x18 and x̃.

Two residuals Rk = x18−(x̂18)k are then obtained, with k = {5, 7}. Table
5.3 illustrates the inference matrix of this subsystem with ϑ = fl and l = 1.

Rear Right Subsystem Diagnosis Module Diagrr

The first observer for this module is R.Obs.1 (see Remark 5.3) that is insen-
sitive to the fault of sensor ζ3

rr measuring the rear-right spool valve position
x12.

For the two equations ẋ11 and ẋ18, the observer R.Obs.4 is designed with
the assumption that the variable x11 is not measured. Thus (x̂18)8 and R8 are
insensitive to the fault of sensor ζ2

rr measuring the rear-right actuator load
pressure x11. They are sensitive to the other measurements.

Two residuals Rk = x18 − (x̂18)k are then obtained, with k = {5, 8}. The
inference matrix for this subsystem is given in Table 5.3 with ϑ = rr and
l = 2.

Rear Left Subsystem Diagnosis Module Diagrl

In addition to the observer R.Obs.1 being insensitive to the fault of ζ3
rl, a

second observer R.Obs.5 is designed for the two equations ẋ15 and ẋ18, with
the assumption that the variable x15 is not measured. Two residuals Rk =
x18 − (x̂18)k are obtained, with k = {5, 9}. The inference matrix for this
subsystem is given in Table 5.3 with ϑ = rl and l = 3.

Chassis Subsystem Diagnosis Module Diagch

As for the preceding diagnosis modules, this module has a first observer
R.Obs.1 that is sensitive to the faults of ζ1

chassis and ζ2
chassis and insensitive

to that of ζ3
chassis.
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The second observer R.Obs.6 is constructed for the three equations ẋ18,
ẋ19 and ẋ20, with the assumption that variables x19 and x20 are not measured.
The two additional residuals Rk = x18−(x̂18)k are obtained, with k = {5, 10}.
The inference matrix for this subsystem is given in Table 5.4.

Table 5.4. Chassis subsystem inference matrix

ζ1
chassis ζ2

chassis ζ3
chassis

R5 1 1 0

R10 1 0 0

In conclusion, with these five local diagnosis modules, the sensor faults
can be detected and the faulty sensors can be isolated.

5.5.3 Sensor Fault-tolerance

Once the fault is detected and isolated, the next step consists of taking a
decision to reduce its effect on the system behavior. Very few studies treat
the suspension fault-tolerance problem: a design of a bank of Kalman filters,
one for each possible sensor failure configuration, providing an estimate of
the system state when a sensor fault occurs, is carried out for a quarter car
test rig [113]. A methodology for the comparison among different alternative
fault-tolerant architectures, based on risk evaluation, has been applied to a
full active suspension control system [16].

Sensor faults can be accommodated by replacing the faulty measurement
by its estimation until the faulty sensor is replaced. This is known as sensor
masking. In order to exploit their robustness to variation in system param-
eters, external disturbances, and modeling errors, a bank of SMO [132] is
designed to provide an estimation of the different variables. Thus, it can be
ready to be injected in the controller to replace the faulty measurement. The
dynamics of such observers are given by (5.40).

However, the system observability may be lost for some sensor faults. The
observability in the presence of a fault is investigated off-line. The fault-
tolerant control system “knows” a priori when the system observability is
preserved and when it is not. After FDI, the FTC system checks for the pos-
sibility of estimating the lost measurement. If possible, the lost measurement
is estimated and replaced by its estimate. If not, the fault is considered to be
critical and the system should be stopped safely.

Table 5.5 summarizes the possibility to accommodate sensor faults. The
“1” means that the sensor fault can be compensated, the “0” means that it
is not possible to estimate the erroneous measurement and that the fault is
critical.
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Table 5.5. Possibility of sensor fault-tolerance

SSfr SSfl SSrr SSrl SSch

ζ1
fr ζ2

fr ζ3
fr ζ1

fl ζ2
fl ζ3

fl ζ1
rr ζ2

rr ζ3
rr ζ1

rl ζ2
rl ζ3

rl ζ1
ch ζ2

ch ζ3
ch

Possibility 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1

Fault-tolerance requires the coordination between the two structures of di-
agnosis and control. This coordination is performed with the module decision
taking and resources management as illustrated in Fig. 5.5. This coordina-
tion is necessary for the reconfiguration of control structure in function of the
remaining resources after fault occurrence.

5.6 Simulation

To illustrate the control and FDI approaches, simulation is made using
MATLAB�/Simulink� with the solver ODE1 and a fixed step equals to 10−4.
In order to make it more realistic, white noise is added to measurements. The
physical limits of the system and the actuator constraints are taken into con-
sideration.

5.6.1 Frequency Response

For the linearized model, Fig. 5.8 illustrates the magnitude of the loop transfer∣∣∣ z̈
zrfl

∣∣∣ with the control law given by (5.24). The solid line represents the passive
suspension and the dotted line represents the active suspension. zrfl

is the
front left wheel disturbance. As shown in Fig. 5.8, the system acceleration
is highly damped. However, this is difficult to realize in practice because of
the physical limits of the actuators: the forces generated by the actuators are
bounded and the actuator response is not fast enough to insure the damping
of the road high frequencies perturbation.

If (5.24) is replaced by the following control law:

ud
1 = G−1(ẍd − Λė − ks), (5.46)

then control input uz given by (5.21) becomes

uz = g−1
18 (ẍd

17 − λz ėz − kzsz). (5.47)

Substituting (5.47) in (5.18) gives

ṡz = f̄18(x) − kzsz, (5.48)

and multiplying (5.48) by the sliding surface sz leads to
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Fig. 5.8. Magnitude of

∣∣∣∣ z̈
zrfl

∣∣∣∣ vs frequency

sz ṡz = f̄18(x)sz − kzs
2
z. (5.49)

Because the vehicle dynamics are bounded, a proper choice of the gain
kz (respectively kθ and kφ) will satisfy the necessary condition (2.58) for the
existence of sliding mode.

With the modified control law (5.46), the frequency response of the system
shows that the proposed SMC improves the ride comfort at low frequencies.
The first three subfigures of Fig. 5.9 show a comparison between passive and
active suspension. The solid line represents the magnitude of the loop transfer∣∣∣ z̈
zrfl

∣∣∣, ∣∣∣ θ̈
zrfl

∣∣∣ and
∣∣∣ φ̈
zrfl

∣∣∣ vs frequency without controller (i.e., kσ = 0, λσ = 0).
The dotted, dashed, and dot-dashed lines represent the magnitude of the
integrated controller loop transfer for a feedback gain kσ = 10, kσ = 20, and
kσ = 30 respectively (for a fixed value of λσ = 25 and for σ ∈ {z, θ, φ}).
However, it can be seen that no improvements are achieved at or above the
wheel frequency ω0 (ω0

∼= 57 rad/s).
The last subfigure of Fig. 5.9 shows the effect of λz on system heave ac-

celeration z̈. For a fixed value of kz (kz = 30), the solid line represents the
magnitude of

∣∣∣ z̈
zrfl

∣∣∣ vs frequency for passive suspension. The dotted, dashed

and dot-dashed lines represent the magnitude of
∣∣∣ z̈
zrfl

∣∣∣ for active suspension
with λz = 1, λz = 5, and λz = 10 respectively.

The Bode plot can be used as a criteria for selecting the proper matrices
Λ and k of (5.46) to insure a good performance of the controlled system. The
numerical values of the different controller gains used in simulation in addition
to the desired trajectory parameters are given in Table 5.6.



5.6 Simulation 189

10
0

10
1

10
2

10
3-40

-30

-20

-10

0

10

20

30

40

50
H

ea
ve

 a
cc

el
er

at
io

n 
[d

B
]

Passive suspension (k
z
 = 0, λ

z
 = 0)

Active suspension (k
z
 = 10, λ

z
 = 25)

Active suspension (k
z
 = 20, λ

z
 = 25)

Active suspension (k
z
 = 30, λ

z
 = 25)

 10
0

10
1

10
2

10
3-40

-30

-20

-10

0

10

20

30

40

50

P
it
ch

 a
cc

el
er

at
io

n 
[d

B
]

Passive suspension (k
θ
 = 0, λ

θ
 = 0)

Active suspension (k
θ
 = 10, λ

θ
 = 25)

Active suspension (k
θ
 = 20, λ

θ
 = 25)

Active suspension (k
θ
 = 30, λ

θ
 = 25)

 

100 101 102 103-40

-20

0

20

40

60

80

Frequency [rad/s]

R
ol

l a
cc

el
er

at
io

n 
[d

B
]

Passive suspension (k
φ
 = 0, λ

φ
 = 0)

Active suspension (k
φ
 = 10, λ

φ
 = 25)

Active suspension (k
φ
 = 20, λ

φ
 = 25)

Active suspension (k
φ
 = 30, λ

φ
 = 25)

 
100 101 102 103-30

-20

-10

0

10

20

30

40

50

Frequency [rad/s]
H

ea
ve

 a
cc

el
er

at
io

n 
[d

B
]

Passive suspension (k
z
 = 0, λ

z
 = 0)

Active suspension (k
z
 = 30, λ

z
 = 1)

Active suspension (k
z
 = 30, λ

z
 = 5)

Active suspension (k
z
 = 30, λ

z
 = 10)

 

Fig. 5.9. Magnitude of

∣∣∣∣ z̈
zrfl

∣∣∣∣,
∣∣∣∣ θ̈

zrfl

∣∣∣∣ and

∣∣∣∣ φ̈
zrfl

∣∣∣∣ vs frequency

Table 5.6. SMC gains and desired trajectory parameters

Parameter Description Value

λz, λθ, λφ Sliding surfaces slops 25

kz, kθ, kφ Heave, pitch and roll gains 10

k2ϑ Gain of module Cc
ϑ 104

k3ϑ Gain of module Cs
ϑ 1

[xd
17, xd

19, xd
21] Desired trajectory parameters [0,0,0]

5.6.2 Performance of Controlled System

The controller was tested for a road of an arbitrary form. Figure 5.10 shows
the front right road input zrfr

(solid line) and the front left road input zrfl

(dashed line). The rear road inputs are similar to the front road inputs but
delayed by τr given by τr = L/v, where L is the distance between the front
and rear axles of the vehicle (L = a + b) and v is the longitudinal velocity of
the vehicle which is assumed to be equal to 22 ms−1.

Performance at the Chassis

Figure 5.11 shows a comparison between passive (dashed line) and active (solid
line) suspensions for heave position z and heave acceleration z̈.

Figure 5.12 shows a comparison between passive (dashed line) and active
(solid line) suspensions for pitch angle θ and pitch angular acceleration θ̈.

The roll angle φ and roll angular acceleration
¨
φ are compared for the

passive (dashed line) and the active (solid line) suspensions in Fig. 5.13.
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Fig. 5.10. Road inputs to the system
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Fig. 5.11. Position z and acceleration z̈ for passive (– –) and active (–) suspensions

These results are quantified using the root mean square (RMS). The RMS
for a collection of n values {x1, x2, · · · , xn} is given by

xrms =

√√√√ 1
n

n∑
i=1

x2
i =

√
x2

1 + x2
2 + · · · + x2

n

n
. (5.50)

Table 5.7 shows a comparison between passive and active suspensions using
RMS for the chassis states.

This table also shows the percentage decrease of motions in active sus-
pension compared to those of passive one. It is clear that active suspension
improves ride comfort by reducing the effect of road perturbations on the
chassis. The control is more effective for heave position and heave accelera-
tion than for the other variables.
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Fig. 5.12. Angle θ and acceleration θ̈ for passive (– –) and active (–) suspensions
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Fig. 5.13. Roll angle φ and roll angular acceleration φ̈ for passive (– –) and active
(–) suspensions
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Table 5.7. RMS of the chassis states

Parameters Passive Active Percentage

Heave position z 0.0257 0.0052 – 79.76%

Heave acceleration z̈ 0.7201 0.1683 – 76.62%

Pitch angle θ 0.0038 0.0010 – 73.68%

Pitch angular acceleration θ̈ 0.3484 0.1465 – 57.95%

Roll angle φ 0.0029 0.0020 – 31.03%

Roll angular acceleration φ̈ 0.4115 0.3858 – 6.240%

Performance at Suspensions

The four suspension strokes zsϑ
− zuϑ

(ϑ ∈ {fr, f l, rr, rl}) for passive
(dashed line) and active (solid line) suspensions are illustrated in Fig. 5.14.

It can be noted in Fig. 5.14 that the suspension strokes in passive suspen-
sion are zero-centered regardless of the road profile unlike in active suspension.
For t < 4 s the suspension strokes are negative. This is because the controller
pulls down the chassis to compensate for road convexities (see Fig. 5.10). For
6 s < t < 18 s, they are positive. This is because the controller pushes up
the chassis to compensate for road concavities (see Fig. 5.10). This change in
suspension strokes enables the system to minimize the chassis oscillation (see
Figs. 5.11–5.13) which results in improving ride comfort.

Table 5.8 summarizes the RMS and the increase percentage of the suspen-
sions stroke. The suspensions stroke are bigger for the active suspension to
compensate for the road irregularities as previously explained.

Table 5.8. RMS of suspensions stroke

Variable Passive Active Percentage

Front right suspension stroke zsfr − zufr 0.0083 0.0159 +91.57%

Front left suspension stroke zsfl − zufl 0.0088 0.0188 +113.6%

Rear right suspension stroke zsrr − zurr 0.0071 0.0146 +105.6%

Rear left suspension stroke zsrl − zurl 0.0070 0.0173 +147.1%

Performance at Tires

The tire deflections for passive (dashed line) and active (solid line) suspensions
are illustrated in Figs. 5.15–5.18.
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Fig. 5.14. Suspension strokes zsfr − zufr , zsfl − zufl , zsrr − zurr , and zsrl − zurl

A comparison between passive and active suspensions for the tires deflec-
tion is given in Table 5.9. The active suspension reduces the tire deflection
which improves system’s security and road handling.
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Fig. 5.15. Front right tire deflection zufr − zrfr
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Fig. 5.16. Front left tire deflection zufl − zrfl
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Fig. 5.17. Rear right tire deflection zurr − zrrr
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Fig. 5.18. Rear left tire deflection zurl − zrrl
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Table 5.9. RMS of tires deflection

Variable Passive Active Percentage

Front right tire deflection zufr − zrfr 0.0017 9.25×10−4 – 45.59%

Front left tire deflection zufl − zrfl 0.0023 0.0018 – 21.74%

Rear right tire deflection zurr − zrrr 0.0016 9.86×10−4 – 38.37%

Rear left tire deflection zurl − zrrl 0.0021 0.0018 – 14.28%

Actuation Forces fϑ Generation

Figures 5.19 – 5.22 illustrate the actuation forces tracking. Simulation shows
that the desired forces (dashed line) determined by the chassis control module
CChassis are generated (solid line) by the actuators.
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Fig. 5.19. Front right desired (– –) and generated (–) forces ffr
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Fig. 5.20. Front left desired (– –) and generated (–) forces ffl
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Fig. 5.21. Rear right desired (– –) and generated (–) forces frr
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Fig. 5.22. Rear left desired (– –) and generated (–) forces frl

Table 5.10 summarizes the RMS of force tracking errors and the error
percentage with respect to the desired forces.

Table 5.10. Force tracking errors

Variable Tracking error Percentage

Front right actuation force ffr 0.4523 0.08%

Front left actuation force ffl 0.8092 0.12%

Rear right actuation force frr 0.4184 0.07%

Rear left actuation force frl 0.7794 0.12%

Spool Valve Position zvϑ Generation

Figures 5.23 – 5.26 show the spool valve position zvϑ
tracking for the active

suspension. The desired positions (dashed line) determined by the control
module Cc

ϑ are generated (solid line) by the actuators.
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Fig. 5.23. Front right desired (– –) and generated (–) spool valve position zvfr
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Fig. 5.24. Front left desired (– –) and generated (–) spool valve position zvfl
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Fig. 5.25. Rear right desired (– –) and generated (–) spool valve position zvrr
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Fig. 5.26. Rear left desired (– –) and generated (–) spool valve position zvrl



198 5 Sensor Fault-tolerant Control Method for Active Suspension System

Table 5.11 summarizes the tracking error of spool valve positions and the
error percentage with respect to desired positions. The tracking errors are
negligible.
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Table 5.11. Spool valve positions tracking

Variable Tracking error Percentage

Front right spool valve position zvfr 1.435×10−6 0.65%

Front left spool valve position zvfl 2.021×10−6 0.60%

Rear right spool valve position zvrr 1.113×10−6 0.51%

Rear left spool valve position zvrl 1.651×10−6 0.50%

Control Inputs uϑ

Figures 5.27 – 5.30 show the four control inputs uϑ. These control inputs are
generated by the control modules Cs

ϑ (ϑ ∈ {fr, f l, rr, rl}).
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Fig. 5.27. Front right control input ufr
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Fig. 5.28. Front left control input ufl
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Fig. 5.29. Rear right control input urr
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Fig. 5.30. Rear left control input url

It should be noted that some active suspension test rigs can generate an
actuation force of 9800 N [5]. Moreover, the servo valves have a time constant
τ = 0.003 s. Thus, the forces obtained (Figs. 5.19–5.22) and spool valve
positions (Figs. 5.23–5.26) using the SMC are made possible to be generated
with the existing actuators. The control inputs uϑ illustrated in Figs. 5.27–5.30
are given by uϑ = Kϑiϑ. Kϑ is the servo valve gain constant and iϑ is the input
current. Being electrical inputs, uϑ can be generated (ϑ ∈ {fr, f l, rr, rl}).

5.6.3 Sliding Mode Control with Model Mismatch

The controller was tested when the system and the model were mismatched.
For this purpose, some model parameters were changed whereas the controller
parameters were kept fixed. Table 5.12 summarizes the parameters mismatch
values. The sprung mass is increased by 200 kg and the springs and tires
stiffness and the suspensions damping are decreased by some percentage to
illustrate an effectiveness loss or model uncertainties.

Simulation with model mismatch showed that the controller is still able to
give good performance. This fact reflects the robustness of the controller which
is the principal advantage of the sliding mode techniques. Tables 5.13 – 5.15
show the RMS of chassis states, suspensions stroke, and tires deflection for
the passive and active suspension with and without model uncertainties. The
percentage indicates the increase or the decrease of corresponding variables
with respect to those of the passive suspension.
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Table 5.12. System parameters mismatch

Parameter Description Mismatch value Unit

M Sprung mass +200 [kg]

ksfj Front springs stiffness – 5% [N/m]

ksrj Rear springs stiffness – 5% [N/m]

kuϑ Tires stiffness – 10% [N/m]

csfj Front suspensions damping – 2% [N/m/s]

csrj Rear suspensions damping – 2% [N/m/s]

Table 5.13. RMS of the chassis states with model uncertainties

Without uncertainties With uncertainties

Variable Passive Active Percentage Active Percentage

Heave position z 0.0257 0.0052 – 79.76% 0.0057 – 77.82%

Heave acceleration z̈ 0.7201 0.1683 – 76.62% 0.0959 – 86.68%

Pitch angle θ 0.0038 0.0010 – 73.68% 0.0010 – 73.68%

Pitch angular acceleration θ̈ 0.3484 0.1465 – 57.95% 0.0703 – 79.82%

Roll angle φ 0.0029 0.0020 – 31.03% 0.0021 – 27.58%

Roll angular acceleration φ̈ 0.4115 0.3858 – 6.240% 0.0659 – 83.98%

Table 5.14. RMS of suspensions stroke with uncertainties

Without uncertainties With uncertainties

Variable Passive Active Percentage Active Percentage

Front right stroke zsfr − zufr 0.0083 0.0159 +91.57% 0.0153 +84.34%

Front left stroke zsfl − zufl 0.0088 0.0188 +113.6% 0.0180 +104.5%

Rear right stroke zsrr − zurr 0.0071 0.0146 +105.6% 0.0140 +97.18%

Rear left stroke zsrl − zurl 0.0070 0.0173 +147.1% 0.0164 +134.2%

Table 5.15. RMS of tires deflection with uncertainties

Without uncertainties With uncertainties

Variable Passive Active Percentage Active Percentage

Front right zufr − zrfr 0.0017 9.25×10−4 – 45.59% 4.68×10−4 – 72.47%

Front left zufl − zrfl 0.0023 0.0018 – 21.74% 6.39×10−4 – 72.21%

Rear right zurr − zrrr 0.0016 9.86×10−4 – 38.37% 5.38×10−4 – 66.37%

Rear left zurl − zrrl 0.0021 0.0018 – 14.28% 5.82×10−4 – 72.28%

Remark 5.4. In Tables 5.13 – 5.15 the performance of the control law applied
to an uncertain model may appear better than those applied to a model
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without uncertainties. Indeed, this is not true since some uncertainties (as for
example the increase in the sprung mass) may minimize the effect of the road
perturbation on the chassis.

In addition, simulation shows a small degradation in the force and spool
valve position tracking. These results are illustrated in Table 5.16 for the force
tracking and in Table 5.17 for the spool valve tracking.

Table 5.16. Actuation forces tracking error with model uncertainties

Without uncertainties With uncertainties

Variable Error Percentage Error Percentage

Front right actuator force ffr 0.4523 0.08% 0.5704 0.11%

Front left actuator force ffl 0.8092 0.12% 0.7660 0.12%

Rear right actuator force frr 0.4184 0.07% 1.3043 0.25%

Rear left actuator force frl 0.7794 0.12% 0.5925 0.10%

Table 5.17. Spool valve position tracking error with model uncertainties

Without uncertainties With uncertainties

Variable Error Percentage Error Percentage

Front right spool valve zvfr 1.43×10−6 0.65% 3.196×10−6 2.22%

Front left spool valve zvfl 2.02×10−6 0.60% 4.202×10−6 2.24%

Rear right spool valve zvrr 1.11×10−6 0.51% 7.84×10−6 5.56%

Rear left spool valve zvrl 1.65×10−6 0.50% 3.194×10−6 1.81%

The test of the controller in the presence of model mismatch showed that
the controller is robust against uncertainties. Thus, it would give satisfactory
results when applied to real systems.

5.6.4 Sensor Fault Effect

The considered fault is the breakdown of the sensor measuring the pitch an-
gular velocity θ̇. This sensor is assumed to have broken down at time t = 5 s.
Figures 5.31 and 5.32 show, respectively, the pitch angle and the pitch angular
velocity: the solid lines represent the true variables whereas the dashed lines
represent the erroneous measurements. At time t = 5 s, the pitch angular
velocity measured by the sensor becomes zero (Fig. 5.32) and the pitch angle
obtained by the integration of the measurement becomes constant (Fig. 5.31).

In the absence of a fault-tolerant system, the breakdown of this sensor
mainly affects the pitch angle θ of the vehicle as shown in Fig. 5.33. When the
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Fig. 5.31. True (–) and erroneous (..) measurement of pitch angle θ
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Fig. 5.32. True (–) and erroneous (..) measurement of pitch angular velocity θ̇

fault occurs at instant t = 5 s, the nominal fault-free output of the system
(dashed line) is degraded (dotted line). The solid line represents the pitch
angle θ for the passive suspension.
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Fig. 5.33. Sensor fault effect on system’s behavior

5.6.5 Fault Diagnosis

In the presence of the FDI module, the fault is detected and isolated as it
has its own pattern. Figure 5.34 shows the effect of the fault on the residuals.
The global FDI module compares the pattern obtained (R1, R2, R3, R4) =
(1, 1, 1, 1) to the a priori known inference matrix (Table 5.2), thus locating
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the fault in SSchassis. The local FDI module of SSchassis (Table 5.4) examines
the residuals (R5, R10) = (1, 0) and isolates the faulty sensor.
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Fig. 5.34. Fault effect on the residuals

The residuals return to zero in Fig. 5.34 because the system is oscillating.
This makes the value of the true oscillating variable equal or close to its faulty
value during a time interval.

5.6.6 Fault-tolerance

After being detected and isolated, the FTC system module checks for the sys-
tem observability and the ability to estimate the faulty measurement. In the
case of the fault of this sensor, the observability is held and the estimation
of the faulty measurements is possible (Table 5.5). The fault is then accom-
modated by injecting its estimation in the controller to replace the faulty
measurement. The observer used to estimate the erroneous variables is pre-
sented in the sequel.

Estimation of Erroneous Measurements

The erroneous measurements are estimated by designing an SMO for the
reduced order model ẋ18, ẋ19, and ẋ20 given in Sect. 5.5.2. The observer
dynamics are
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˙̂x18 = {ksfr
x1 + ksfl

x5 + ksrrx9 + ksrl
x13 − (ksfr

+ ksfl
+ ksrr + ksrl

)x17 −
[a(ksfr

+ksfl
)−b(ksrr +ksrl

)] sin(x̂19)−[d(ksfl
+ksrl

)−c(ksfr
+ksrr )] sin(x21)+

csfr
x2 + csfl

x6 + csrrx10 + csrl
x14 − (csfr

+ csfl
+ csrr + csrl

)x̂18 − [a(csfr
+

csfl
)− b(csrr + csrl

)] cos(x̂19)x̂20 − [d(csfl
+ csrl

)− c(csfr
+ csrr)] cos(x21)x22 +

S(x3 + x7 + x11 + x15)}/M + λ18sign(x18 − x̂18),

˙̂x19 = x̂20 + λ19sign(x18 − x̂18),

˙̂x20 = cos(x̂19){aksfr
x1+aksfl

x5−bksrrx9−bksrl
x13−[a(ksfr

+ksfl
)−b(ksrr +

ksrl
)]x17−[a2(ksfr

+ksfl
)+b2(ksrr +ksrl

)] sin(x̂19)−[d(aksfl
−bksrl

)−c(aksfr
−

bksrr )] sin(x21)+acsfr
x2+acsfl

x6−bcsrrx10−bcsrl
x14−[a(csfr

+csfl
)−b(csrr +

csrl
)]x̂18 − [a2(csfr

+ csfl
) + b2(csrr + csrl

)] cos(x̂19)x̂20 − [d(acsfl
− bcsrl

) −
c(acsfr

−bcsrr)] cos(x21)x22 +S[a(x3+x7)−b(x11+x15)]}/Iyy +λ20sign(x18−
x̂18).

When substituting the constants by their numerical values and supposing
that angles are small, the estimation error dynamics become

˙̃x18 = ẋ18 − ˙̂x18 = −2.8x̃18 + 20.8x̃19 + 0.6267x̃20 − λ18sign(x̃18),
˙̃x19 = ẋ19 − ˙̂x19 = x̃20 − λ19sign(x̃18),
˙̃x20 = ẋ20 − ˙̂x20 = 0.4352x̃18 − 165.2037x̃19 − 4.7583x̃20 − λ20sign(x̃18).

If the gain λ18 is chosen such that |20.8x̃19 + 0.6267x̃20| ≤ λ18:

d

dt
x̃2

18 = 2x̃18[−2.8x̃18 + 20.8x̃19 + 0.6267x̃20 − λ18sign(x̃18)]. (5.51)

Then,

if x̃18 > 0, d
dt x̃

2
18 = 2x̃18

˙̃x18 = 2x̃18(−2.8x̃18 + 20.8x̃19 + 0.6267x̃20 − λ18) < 0;

if x̃18 < 0, d
dt x̃

2
18 = 2x̃18

˙̃x18 = 2x̃18(−2.8x̃18 + 20.8x̃19 + 0.6267x̃20 + λ18) < 0.

According to the Lyapunov principal, x̃18 exponentially decreases to zero.
If the sliding surface is defined as s = x̃18 = x18 − x̂18 then the average error
dynamics during sliding when s = 0 and ṡ = 0 are

⎧⎪⎨
⎪⎩

x̃18 = 0
˙̃x18 = 0 ⇒ 20.8x̃19 + 0.6267x̃20 − λ18sign(x̃18) = 0

⇒ sign(x̃18) = 1
λ18

(20.8x̃19 + 0.6267x̃20)
, (5.52)

and { ˙̃x19 = x̃20 − λ19sign(x̃18)
˙̃x20 = −165.2037x̃19 − 4.7583x̃20 − λ20sign(x̃18)

. (5.53)
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When replacing (5.52) in (5.53), the following equations are obtained:{ ˙̃x19 = x̃20 − 20.8px̃19 − 0.6267px̃20

˙̃x20 = −165.2037x̃19 − 4.7583x̃20 − 20.8qx̃19 − 0.6267qx̃20
, (5.54)

or in matrix form:[ ˙̃x19

˙̃x20

]
=
[ −20.8p 1 − 0.6267p
−165.2037− 20.8q − 4.7583− 0.6267q

] [
x̃19

x̃20

]
. (5.55)

The convergence of estimation errors x̃19 and x̃20 depends on the values
of p and q where p = λ19

λ18
and q = λ20

λ18
. These constants can be determined by

pole placement such that matrix is Hurwitz. Figure 5.35 shows the estimation
of the pitch angle θ and the pitch angular velocity θ̇. The angular velocity is
estimated despite the measurement noise.
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Fig. 5.35. Estimation of the erroneous measurements

Fault Compensation

The fault is compensated by replacing at time t = 8 s the erroneous measure-
ments by their estimations. This is illustrated in Fig. 5.36. After the occurrence
of the fault, and in the presence of FDI and FTC system modules, the pitch
angle (dotted line) of the faulty system returns to its fault-free value (dashed
line) at time t = 10 s.
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Fig. 5.36. Fault compensation
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The estimations are injected in the control module at time t = 8 s by
using an exponential transition law. For illustration, the fault is compensated
3 s after its occurrence. The fault can be compensated faster by injecting the
estimations earlier. In certain applications, the fault accommodation should
be fast before the system becomes unstable.

5.7 Conclusion

This chapter presents an SMC approach for the active suspension taking into
consideration the nonlinear full vehicle model and the dynamics of the four
actuators. In addition to the control, an FDI module is designed to diagnose
sensor faults. The system is physically broken down into subsystems whereas
the control and the diagnosis structures are functionally broken down into
hierarchical modules.

In order to accommodate for faults, an FTC system is designed to replace
the corrupted measurement by its estimate. The idea of replacing the faulty
measurement by its estimate is quite classical. However, the main idea of this
chapter is in the design and the integration of the controller, the diagnosis,
and the fault-tolerant modules.

Experimental application of the proposed strategy could not be made be-
cause of the absence of a test rig. However, the model of the force actuator is
being validated by other researchers [2, 51].

Many of the research studies on active suspension do not take into con-
sideration the force actuators. These works suppose that the control input
desired by the controller is the control input to the system without investi-
gating if the desired control input can be generated by the actuators or not.
This assumption is not always true. Simulation shows that actuators are not
always able to generate the desired forces. This usually happens for sudden or
high frequency road perturbations, or for actuators saturation. The actuators
consist of mechanical parts with certain response time which bounds their
capacity. This point will be studied to determine, for given specifications, the
operating range of the actuators.

The FDI strategy is able to detect and isolate abrupt sensor faults such as
gains, bias, breakdown, or freeze. However, the isolation of sensor faults is not
always precise. This possibility depends on several factors: the amplitude of
the fault, the gains of the observers, the chosen thresholds, and the amplitude
of the road perturbation exciting the system.

The gains of the observers should be chosen to allow fast convergence.
However, a high gain may make the estimation, used in the generation of
the residuals, insensitive to the fault and consequently the FDI misses its
occurrence.

As previously defined, the residual is the comparison between the mea-
sured and the estimated variable. Ideally the residual equals zero when there



208 5 Sensor Fault-tolerant Control Method for Active Suspension System

is no fault and the deviation of the residual from its nominal value indi-
cates the presence of a fault. However, due to measurement noise and model
uncertainties, the residual does not equal zero in fault-free mode. Thus ade-
quate thresholds should be defined to prevent fault alarms of the presence of
a fault and at the same time to prevent the FDI missing the occurrence of
faults. Many researchers treated the problem of designing robust and dynamic
thresholds for the purpose of FDI for uncertain systems [75].

The decision about the sensor fault location depends on its signature.
However, a sufficient time interval should be allowed after the detection of
the fault to permit a correct isolation.



6

Conclusion

The theory of FDI and FTC has been developed for years. The objective of
this book was to present FDI/FTC techniques applied to real laboratory-scale
systems or in simulation to a realistic model of an industrial system.

Many research studies have been developed in the literature. Only some of
them are applied to real systems and many others consider theoretical devel-
opment in linear and nonlinear cases. Moreover, many of these methods do not
take into account the fault diagnostic module and consider that the fault has
already been detected and isolated properly. However, it goes without saying
that the performance of any FTC method is tightly linked to the information
issued from the FDI module.

The methods presented in this book are intended as a contribution to the
application of FDI/FTC methods to real systems. One of the advantages of
these approaches is that they consider the whole steps of an FTC method. A
guideline is given to develop a complete method emphasizing the importance
of the selection of an operating point and including modeling, identification,
nominal tracking control, fault diagnosis and the FTC design.

Chapter 2 presented a theoretical development of an FDI/FTC approach
in the linear case and then in the nonlinear case. Through many years of
teaching and developing research activities, it was noticed that the notion of
the operating point is still ambiguous and not easily understood. One objective
of this book was to clarify this issue which is very important in the design of
a nominal control when the system has to be linearized around an operating
point. The modeling of sensor and actuator faults has been recalled and the
analysis of their effect on the system has been detailed. Then, the nominal
tracking control method is reexamined. The performance of the FTC method
presented later in the chapter has to be as close as possible to the performance
of the nominal tracking control. The FDI is a major issue in FTC design. That
is why attention has been paid to the presentation of an FDI module which
is integrated to the whole strategy. Once the fault is detected and isolated,
two different approaches are presented to estimate the fault magnitude. This
estimation is then used to compensate for the fault effect.
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In parallel to the linear study, an FDI/FTC method based on nonlinear
techniques has been detailed. This nonlinear approach takes into account all
required steps for fault tolerance design. Finally, the occurrence of major
failures such as the complete loss of a sensor or an actuator was discussed
and a method of dealing with the presence of such failures was proposed.
If a sensor is completely lost, the compensation method using the additive
control law is still able to compensate for the sensor fault if the system is still
observable despite the sensor loss.

Regarding the blocking or the complete loss of an actuator, if there is no
hardware redundancy, the system becomes uncontrollable. In this case, the
system is restructured in order to distribute the control law over the healthy
actuators.

Chapter 3 is dedicated to apply the complete FDI/FTC approaches de-
scribed in Chap. 2 to a winding machine which is a nonlinear system. This
system was first considered as linear around an operating point. Then, the
nominal tracking control, the FDI, and the FTC for sensor and actuator faults
are designed and detailed. This application gives the reader a detailed exam-
ple taking into account all the steps to follow in order to design an FDI/FTC
method if the system is described by a linear state-space representation.

As stated previously, the model of the winding machine is nonlinear. How-
ever, the description of the nonlinear model is difficult to achieve. Therefore,
a modeling of the system for several operating zones was proposed. A detailed
FTC method was applied to the winding machine throughout the whole op-
erating zone.

In Chap. 4, a three-tank system was considered to illustrate the FDI/FTC
approaches in both linear and nonlinear cases. A detailed study was conducted
and discussed in the presence of sensor and actuator faults. While for the wind-
ing machine the linearized model was obtained experimentally, the nonlinear
model of the three-tank system is easy to get and to linearize around an oper-
ating point using, for instance, the Taylor expansion. The methods developed
in Chap. 2 were applied to this system in the linear case for faults such as
biases or drifts on the measurements or a loss of actuators effectiveness.

The case of major failures was discussed as well. The objective was to
keep the system operating safely by redefining the degraded performance to
reach if one actuator is blocked or completely lost. A new equilibrium point
was calculated based on the nonlinear equations in order to avoid system
shutdown. Similar study for the major actuator failures with application to
an unmanned aerial vehicle has been conducted and showed interesting results
in calculating a new trim point if a control surface of the aircraft is blocked.
For more details, the reader can refer to [12].

A full vehicle active suspension system was used in simulation to present
a detailed FDI/FTC approach in Chap. 5. The particularity of this system is
that it is a complex system. It is described by a nonlinear model of order 22.
Since it is difficult to deal with this high order model to design a nominal con-
troller, an FDI module, and an FTC method, the system is broken down into
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five interconnected subsystems. Each subsystem is driven by a local controller
and monitored by a local FDI module. A higher level coordinates the informa-
tion issued from these local modules. For this system, only sensor faults were
considered. The nominal control and the state estimation were based on the
sliding mode techniques. The objective was to substitute the faulty or the lost
measurement by its estimation. This idea is not new; however the challenge
here was in the way of estimating the state variables and the outputs for this
high order system.

Another advantage of this study in Chap. 5 corresponded to the techno-
logical analysis of the available sensors on the market. This is an interesting
issue in real applications where one has to optimize the number of sensors to
use from the economical point of view and the available space to install these
sensors. Once a sensor is lost, the objective is to estimate the corresponding
output using available and healthy measurement. This requires that the sys-
tem is still observable despite the sensor loss. A study has been conducted to
determine the minimal number of sensors to use in a complex system while
ensuring its observability. This study was not only developed in the nominal
case, but it also aimed at determining the optimal number of sensors to install
in order to keep the system observable despite the loss of a sensor. For more
details, the reader can refer to [18].

This book does not aim at being an exhaustive overview of FDI/FTC
methods. For instance, one way to consider a wide operating zone could consist
of using multiple-model techniques rather than considering an exact nonlinear
model. The reader can refer to [106] where this modeling technique is used to
provide a specific FDI approach applied to the three-tank system. As recently
considered in the literature, FDI/FTC methods have been developed under
linear parameter-varying (LPV) model representation in order to describe the
dynamic behavior of systems. In this way, as recently proposed by [123], the
winding machine can also be considered as an LPV system with an appropri-
ate dedicated FDI/FTC strategy. Moreover, the objective of the book was to
show some applications developed for many years. Among these applications,
unmanned aerial vehicles, not presented in this book, is an interesting system
to show a detailed FDI/FTC approach with challenging problems in the pres-
ence of major actuator failures such as the blocking of a control surface [11].
Finally, the robustness of a given solution against FDI inaccuracies which is a
key problem in FTC methods [141], should be addressed. thods [141], should
be addressed.
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Three-tank System Simulation

The three-tank system is simulated using MATLAB�/Simulink�. The simula-
tion has been developed using MATLAB� version 6.5.1 (R13SP1), Simulink�

version 5.1 (R13SP1), and Virtual Reality Toolbox� version 3.1 (R13SP1).
It consists of the modeling part and the animation part. It also works with
newer MATLAB� versions such as version 7.3 (R2006b).

A.1 Main Page

The main Simulink� file is Three tank.mdl. Once this file is open, the main
page illustrated in Fig. A.1 appears. The reference levels are displayed on the
right hand side of this page in addition to the sensors measurement and the
real levels in the tank.

It is also possible to test the effect of sensor and actuator faults on the
behavior of the system by using the blocks on the left hand side of the main
page. Consider for example the block shown in Fig. A.2. This block allows us
to simulate bias faults for sensor 1 by adjusting the fault amplitude (here it
is set to –0.03) and the fault time occurrence (set to 1500 s). Users can easily
test other faults such as drifts or freezing.

Figure A.3 shows the block that allows us to simulate a fault on actuator 1.
In this case, the Loss block is set to 0.2 which means that a loss of effectiveness
of 20% is supposed to occur at 1500 s. A value of 1 means the complete loss
of the actuator. A value of 0 means that no fault occurs.

Finally, the main page contains the animation window which shows up
automatically once simulation is started. This window will be explained in
Sect. A.3. It should be noted that the model is automatically initialized; thus
a manual initialization is not needed.
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Fig. A.1. Main page of the simulation
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Fault sensor 1 (Bias)

1500

fault time

-0.03

fault amplitude

MATLAB
Function

Fault_sensor1

Fig. A.2. Sensor fault block

Fault actuator 1 (Effectiveness)

1500

fault time2

MATLAB
Function

0.2

Loss

Fault_actuator1

Fig. A.3. Actuator fault block

A.2 Modeling Part

The modeling part shown in Fig. A.4 consists of:

• The nonlinear model of the system (the block “Three tank system”)
• The controller
• The reference levels block
• Two blocks to simulate sensor and actuator faults
• Signal routing blocks for the animation purposes

1
Levels

I O

Three tank system

I O

Sensor faults

Flow

references

reference_level.mat
[Levels]

Ref

y

U

Controller

I O

Actuator
fauls

Fig. A.4. The three-tank system

The control law used in this simulation is a state-feedback with integrator
where the gains are determined using a linearized model around an operating
point (Fig. A.5). Therefore, the controller will give satisfactory performance
only around this operating point. Thus, users should pay attention not to
drive the system outside the operating region when simulating the nominal



216 A Three-tank System Simulation

behavior of the system. On the other hand, users are invited to apply nonlinear
control laws (see for example Chap. 2) for the whole operating range of the
system.

1
U

T

z-1

K*u

-C-

-C-

K*u

-K2

K*u

-K12 y

1
Ref

Fig. A.5. State-feedback with integrator controller

Remark A.1. It should be noted that, in this simulation, actuators are as-
sumed to be scalar gains. In addition, no sensor noise is used. These two
points can be easily considered in simulation for more consistency.

A.3 Animation Part

The animation window shown in Fig. A.6 allows one to visualize the measure-
ments issued from the modeling part. As stated before, this window shows up
automatically when simulation starts, but it can also be forced to show up by
clicking the middle block of the main page (Fig. A.1).

This window shows the three interconnected tanks, the two pumps, and
two red rings representing the reference levels (set-points). During the sim-
ulation, users can note how water levels follow the references and how the
different water flow rates vary with time. This animation is not only useful
in displaying the measurements, but also in examining what is going on in
the real system when faults occur. In the case of a sensor fault (a bias for
example), the sensor tells that the reference is followed while this is not the
case in reality. This can be easily seen on the animation.
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Fig. A.6. The animation window

A.4 Various Files

This simulation comes with a set of files:

• Three tank.mdl : the main simulation file
• init para.m: file containing the different constants initializing the model
• tank system.m: the nonlinear model of the system
• sensor fault.m: used to simulate sensor faults
• actuator fault.m: used to simulate actuator faults
• reference level.mat : a .mat file containing the reference levels
• 3tanks.wrl : the virtual reality file used for the animation
• tanks.bmp: a .bmp figure used for the main page
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