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Preface

This book was written for advanced undergraduates, graduate students, and mature
scientists in mathematics, computer science, engineering, and all disciplines in which
numerical methods are used. At the heart of most scientific computer codes lie matrix
computations, so it is important to understand how to perform such computations effi-
ciently and accurately. This book meets that need by providing a detailed introduction
to the fundamental ideas of numerical linear algebra.

The prerequisites are a first course in linear algebra and some experience with
computer programming. For the understanding of some of the examples, especially
in the second half of the book, the student will find it helpful to have had a first course
in differential equations.

There are several other excellent books on this subject, including those by Demmel
[15], Golub and Van Loan [33], and Trefethen and Bau [71]. Students who are new to
this material often find those books quite difficult to read. The purpose of this book
is to provide a gentler, more gradual introduction to the subject that is nevertheless
mathematically solid. The strong positive student response to the first edition has
assured me that my first attempt was successful and encouraged me to produce this
updated and extended edition.

The first edition was aimed mainly at the undergraduate level. As it turned out,
the book also found a great deal of use as a graduate text. I have therefore added
new material to make the book more attractive at the graduate level. These additions
are detailed below. However, the text remains suitable for undergraduate use, as
the elementary material has been kept largely intact, and more elementary exercises
have been added. The instructor can control the level of difficulty by deciding which

IX
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sections to cover and how far to push into each section. Numerous advanced topics
are developed in exercises at the ends of the sections.

The book contains many exercises, ranging from easy to moderately difficult.
Some are interspersed with the textual material and others are collected at the end
of each section. Those that are interspersed with the text are meant to be worked
immediately by the reader. This is my way of getting students actively involved in
the learning process. In order to get something out, you have to put something in.
Many of the exercises at the ends of sections are lengthy and may appear intimidating
at first. However, the persistent student will find that s/he can make it through them
with the help of the ample hints and advice that are given. I encourage every student
to work as many of the exercises as possible.

Numbering Scheme

Nearly all numbered items in this book, including theorems, lemmas, numbered
equations, examples, and exercises, share a single numbering scheme. For example,
the first numbered item in Section 1.3 is Theorem 1.3.1. The next two numbered
items are displayed equations, which are numbered (1.3.2) and (1.3.3), respectively.
These are followed by the first exercise of the section, which bears the number 1.3.4.
Thus each item has a unique number: the only item in the book that has the number
1.3.4 is Exercise 1.3.4. Although this scheme is unusual, I believe that most readers
will find it perfectly natural, once they have gotten used to it. Its big advantage is that
it makes things easy to find: The reader who has located Exercises 1.4.15 and 1.4.25
but is looking for Example 1.4.20, knows for sure that this example lies somewhere
between the two exercises.

There are a couple of exceptions to the scheme. For technical reasons related
to the type setting, tables and figures (the so-called floating bodies) are numbered
separately by chapter. For example, the third figure of Chapter 1 is Figure 1.3.

New Features of the Second Edition

Use of MATLAB

By now MATLAB1 is firmly established as the most widely used vehicle for teaching
matrix computations. MATLAB is an easy to use, very high-level language that
allows the student to perform much more elaborate computational experiments than
before. MATLAB is also widely used in industry. I have therefore added many
examples and exercises that make use of MATLAB. This book is not, however, an
introduction to MATLAB, nor is it a MATLAB manual. For those purposes there are
other books available, for example, the MATLAB Guide by Higham and Higham [40].

1 MATLAB is a registered trademark of the MathWorks, Inc. (http: //www.mathworks . com)
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However, MATLAB's extensive help facilities are good enough that the reader may
feel no need for a supplementary text. In an effort to make it easier for the student to
use MATLAB with this book, I have included an index of MATLAB terms, separate
from the ordinary index.

I used to make my students write and debug their own Fortran programs. I have
left the Fortran exercises from the first edition largely intact. I hope a few students
will choose to work through some of these worthwhile projects.

More Applications

In order to help the student better understand the importance of the subject matter of
this book, I have included more examples and exercises on applications (solved using
MATLAB), mostly at the beginnings of chapters. I have chosen very simple applica-
tions: electrical circuits, mass-spring systems, simple partial differential equations.
In my opinion the simplest examples are the ones from which we can learn the most.

Earlier Introduction of the Singular Value Decomposition (SVD)

The SVD is one of the most important tools in numerical linear algebra. In the first
edition it was placed in the final chapter of the book, because it is impossible to
discuss methods for computing the SVD until after eigenvalue problems have been
discussed. I have since decided that the SVD needs to be introduced sooner, so
that the student can find out earlier about its properties and uses. With the help
of MATLAB, the student can experiment with the SVD without knowing anything
about how it is computed. Therefore I have added a brief chapter on the SVD in the
middle of the book.

New Material on Iterative Methods

The biggest addition to the book is a chapter on iterative methods for solving large,
sparse systems of linear equations. The main focus of the chapter is the powerful
conjugate-gradient method for solving symmetric, positive definite systems. How-
ever, the classical iterations are also discussed, and so are preconditioners. Krylov
subspace methods for solving indefinite and nonsymmetric problems are surveyed
briefly.

There are also two new sections on methods for solving large, sparse eigenvalue
problems. The discussion includes the popular implicitly-restarted Arnoldi and
Jacobi-Davidson methods.

I hope that these additions in particular will make the book more attractive as a
graduate text.

Other New Features

To make the book more versatile, a number of other topics have been added, including:
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• a backward error analysis of Gaussian elimination, including a discussion of
the modern componentwise error analysis.

• a discussion of reorthogonalization, a practical means of obtaining numerically
orthonormal vectors.

• a discussion of how to update the QR decomposition when a row or column is
added to or deleted from the data matrix, as happens in signal processing and
data analysis applications.

• a section introducing new methods for the symmetric eigenvalue problem that
have been developed since the first edition was published.

A few topics have been deleted on the grounds that they are either obsolete or too
specialized. I have also taken the opportunity to correct several vexing errors from
the first edition. I can only hope that I have not introduced too many new ones.

DAVID S. WATKINS

Pullman, Washington

January, 2002
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1
Gaussian Elimination

and Its Variants

One of the most frequently occurring problems in all areas of scientific endeavor
is that of solving a system of n linear equations in n unknowns. For example, in
Section 1.2 we will see how to compute the voltages and currents in electrical circuits,
analyze simple elastic systems, and solve differential equations numerically, all by
solving systems of linear equations. The main business of this chapter is to study the
use of Gaussian elimination to solve such systems. We will see that there are many
ways to organize this fundamental algorithm.

1.1 MATRIX MULTIPLICATION

Before we begin to study the solution of linear systems, let us take a look at some
simpler matrix computations. In the process we will introduce some of the basic
themes that will appear throughout the book. These include the use of operation
counts (flop counts) to measure the complexity of an algorithm, the use of partitioned
matrices and block matrix operations, and an illustration of the wide variety of ways
in which a simple matrix computation can be organized.

Multiplying a Matrix by a Vector

Of the various matrix operations, the most fundamental one that cannot be termed
entirely trivial is that of multiplying a matrix by a vector. Consider an n x m matrix,
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that is, a matrix with n rows and m columns:

The entries of A might be real or complex numbers. Let us assume that they are real
for now. Given an m-tuple x of real numbers:

we can multiply A by x to get a product b = Ax, where b is an n-tuple. Its ith
component is given by

In words, the ith component of 6 is obtained by taking the inner product (dot product)
of ith row of A with x.

Example 1.1.2 An example of matrix-vector multiplication with n = 2 and m = 3
is

A computer code to perform matrix-vector multiplication might look something
like this:

The j-loop accumulates the inner product bi.
There is another way to view matrix-vector multiplication that turns out to be quite

useful. Take another look at (1.1.1), but now view it as a formula for the entire vector
b rather than just a single component. In other words, take the equation (1.1.1), which
is really n equations for 61, 62> • • • bn, and stack the n equations into a single vector
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equation.

This shows that b is a linear combination of the columns of A.

Example 1.1.5 Referring to Example 1.1.2, we have

Proposition 1.1.6 If b = Ax, then b is a linear combination of the columns of A.

If we let AJ denote the j'th column of A, we have

Expressing these operations as computer pseudocode, we have

If we use a loop to perform each vector operation, the code becomes

Notice that (1.1.7) is identical to (1.1.3), except that the loops are interchanged. The
two algorithms perform exactly the same operations but not in the same order. We
call (1.1.3) a row-oriented matrix-vector multiply, because it accesses A by rows. In
contrast, (1.1.7) is a column-oriented matrix-vector multiply.

Flop Counts

Real numbers are normally stored in computers in a floating-point format. The
arithmetic operations that a computer performs on these numbers are called floating-
point operations or flops, for short. The update bj bi + a i jx j involves two flops,
one floating-point multiply and one floating-point add.1

JWe discuss floating-point arithmetic in Section 2.5.
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Any time we run a computer program, we want to know how long it will take to
complete its task. If the job involves large matrices, say 1000 x 1000, it may take a
while. The traditional way to estimate running time is to count how many flops the
computer must perform. Let us therefore count the flops in a matrix-vector multiply.
Looking at (1.1.7), we see that if A is n x m, the outer loop will be executed m
times. On each of these passes, the inner loop is executed n times. Each execution
of the inner loop involves two flops. Therefore the total flop count for the algorithm
is 2nm. This is a particularly easy flop count. On more complex algorithms it will
prove useful to use the following device. Replace each loop by a summation sign S.
Since the inner loop is executed for i — 1, . . . , n, and there are two flops per pass, the

total number of flops performed on each execution of the inner loop is Since

the outer loop runs from j — I... m, the total number of flops is

The flop count gives a rough idea of how long it will take the algorithm to run.
Suppose, for example, we have run the algorithm on a 300 x 400 matrix and observed
how long it takes. If we now want to run the same algorithm on a matrix of size
600 x 400, we expect it to take about twice as long, since we are doubling n while
holding m fixed and thereby doubling the flop count 2nm.

Square matrices arise frequently in applications. If A is n x n, the flop count for
a matrix- vector multiply is 2n2. If we have performed a matrix- vector multiply on,
say, a 500 x 500 matrix, we can expect the same operation on a 1000 x 1000 matrix
to take about four times as long, since doubling n quadruples the flop count in this
case.

An nx n matrix- vector multiply is an example of what we call an O (n2 ) process,
or a process of order n2. This just means that the amount of work is proportional
to n2 . The notation is used as a way of emphasizing the dependence on n and de-
emphasizing the proportionality constant, which is 2 in this case. Any O(n2) process
has the property that doubling the problem size quadruples the amount of work.

It is important to realize that the flop count is only a crude indicator of the
amount of work that an algorithm entails. It ignores many other tasks that the
computer must perform in the course of executing the algorithm. The most important
of these are fetching data from memory to be operated on and returning data to
memory once the operations are done. On many computers the memory access
operations are slower than the floating point operations, so it makes more sense to
count memory accesses than flops. The flop count is useful, nevertheless, because
it also gives us a rough count of the memory traffic. For each operation we must
fetch operands from memory, and after each operation we must return the result
to memory. This is a gross oversimplification of what actually goes on in modern
computers. The execution speed of the algorithm can be affected drastically by how
the memory traffic is organized. We will have more to say about this at the end
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of the section. Nevertheless, the flop count gives us a useful first indication of an
algorithm's operation time, and we shall count flops as a matter of course.

Exercise 1.1.8 Begin to familiarize yourself with MATLAB. Log on to a machine that has
MATLAB installed, and start MATLAB. From MATLAB's command line type A =
randn ( 3 , 4 ) to generate a 3 x 4 matrix with random entries. To learn more about
the randn command, type help randn. Now type x = randn ( 4 , 1 ) to get
a vector (a 4 x 1 matrix) of random numbers. To multiply A by x and store the result
in a new vector 6, type b = A*x.

To get MATLAB to save a transcript of your session, type diary on. This will
cause a file named diary, containing a record of your MATLAB session, to be saved.
Later on you can edit this file, print it out, turn it in to your instructor, or whatever.
To learn more about the diary command, type help diary.

Other useful commands are help and help help. To see a demonstration of
MATLAB's capabilities, type demo. n

Exercise 1.1.9 Consider the following simple MATLAB program.

n = 200;
for jay = 1:4

if jay > 1
oldtime = time;

end
A = randn(n) ;
x = randn(n,1);
t = cputime;
b = A*x;
matrixsize = n
time = cputime - t
if jay > 1
ratio = time/oldtime

end
n = 2*n;

end

The syntax is simple enough that you can readily figure out what the program does.
The commands randn and b = A*x are familiar from the previous exercise.
The function cputime tells how much computer (central processing unit) time
the current MATLAB session has used. This program times the execution of a
matrix-vector multiply for square matrices A of dimension 200,400, 800, and 1600.

Enter this program into a file called matvectime.m. Actually, you can call it
whatever you please, but you must use the .m extension. (MATLAB programs are
called m-files.) Now start MATLAB and type matvectime (without the .m) to
execute the program. Depending on how fast your computer is, you may like to
change the size of the matrix or the number of times the jay loop is executed. If
the computer is fast and has a relatively crude clock, it might say that the execution
time is zero, depending on how big a matrix you start with.
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MATLAB normally prints the output of all of its operations to the screen. You
can suppress printing by terminating the operation with a semicolon. Looking at
the program, we see that A, x, t, and b will not be printed, but matrixsize,
time, and ratio will.

Look at the values of ratio . Are they close to what you would expect based on
the flop count?

Exercise 1.1.10 Write a MATLAB program that performs matrix-vector multiplication two
different ways: (a) using the built-in MATLAB command b = A* x, and (b) using
loops, as follows.

for j = l:n
for i = l:n

b ( i ) = A ( i , j ) * x ( j ) ;
end

end

Time the two different methods on matrices of various sizes. Which method is faster?
(You may want to use some of the code from Exercise 1.1.9.) n

Exercise 1.1.11 Write a Fortran or C program that performs matrix-vector multiplication
using loops. How does its speed compare with that of MATLAB? D

Multiplying a Matrix by a Matrix

If A is an n x m matrix, and X is m x p, we can form the product B = AX, which
is n x p. The (i, j) entry of B is

In words, the (i, j} entry of B is the dot product of the ith row of A with the jth
column of X. If p = 1, this operation reduces to matrix-vector multiplication. If
p > 1, the matrix-matrix multiply amounts to p matrix-vector multiplies: the jth
column of B is just A times the jth column of X.

A computer program to multiply A by X might look something like this:

The decision to put the i-loop outside the j-loop was perfectly arbitrary. In fact, the
order in which the updates bij bij + a i kx k j are made is irrelevant, so the three
loops can be nested in any way. Thus there are six basic variants of the matrix-matrix
multiplication algorithm. These are all equivalent in principle. In practice, some
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versions may run faster than others on a given computer, because of the order in
which the data are accessed.

It is a simple matter to count the flops in matrix-matrix multiplication. Since there
are two flops in the innermost loop of (1.1.13), the total flop count is

In the important case when all of the matrices are square of dimension n x n, the flop
count is 2n3. Thus square matrix multiplication is an O(n3) operation. This function
grows rather quickly with n: each time n is doubled, the flop count is multiplied
by eight. (However, this is not the whole story. See the remarks on fast matrix
multiplication at the end of this section.)

Exercise 1.1.14 Modify the MATLAB code from Exercise 1.1.9 by changing the matrix-vector
multiply b = A*x to a matrix-matrix multiply B = A*X, where X is n x n. You
may also want to decrease the initial matrix dimension n. Run the code and check
the ratios. Are they close to what you would expect them to be, based on the flop
count?

Block Matrices and Block Matrix Operations

The idea of partitioning matrices into blocks is simple but powerful. It is a useful
tool for proving theorems, constructing algorithms, and developing faster variants of
algorithms. We will use block matrices again and again throughout the book.

Consider the matrix product AX = B, where the matrices have dimensions n x ra,
ra x p, and n x p, respectively. Suppose we partition A into blocks:

The labels m, n2, m1, and m2 indicate that the block Aij has dimensions ni x mj.
We can partition X similarly.

The numbers m1 and m2 are the same as in (1.1.15). Thus, for example, the number
of rows in X\2 is the same as the number of columns in A11 and A21. Continuing in
the same spirit, we partition B as follows:
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The row partition of B is the same as that of A, and the column partition is the same
as that of X. The product AX = B can now be written as

We know that B is related to A and X by the equations (1.1.12), but how are the blocks
of B related to the blocks of A and X ? We would hope to be able to multiply the
blocks as if they were numbers. For example, we hope that A11 X11+A12X21 = B11.
Theorem 1.1.19 states that this is indeed the case.

Theorem 1.1.19 Let A, X, and B be partitioned as in (1.1. 15), (1.1. 16), and(1.1.17),
respectively. Then AX = B if and only if

You can easily convince yourself that Theorem 1.1.19 is true. It follows more
or less immediately from the definition of matrix multiplication. We will skip the
tedious but routine exercise of writing out a detailed proof. You might find the
following exercise useful.

Exercise 1.1.20 Consider matrices A, X, and B, partitioned as indicated.

Thus, for e x a m p l e , a n d A21 = [ - 1 ] . Show that AX = B and

A i lX i j + A12X2j = Bij for i,j = 1,2.

Once you believe Theorem 1.1.19, you should have no difficulty with the following
generalization. Make a finer partition of A into r block rows and s block columns.

Then partition X conformably with A; that is, make the block row structure of X
identical to the block column structure of A.
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Finally, partition the product B conformably with both A and X.

Theorem 1.1.24 Let A, X, and B be partitioned as in(L1.21),(1.1.22),and(1.1.23),
respectively. Then B = AX if and only if

Exercise 1.1.25 Make a partition of the matrix-vector product Ax = b that demonstrates that
b is a linear combination of the columns of A.

Use of Block Matrix Operations to Decrease Data Movement

Suppose we wish to multiply A by X to obtain B. For simplicity, let us assume that
the matrices are square, n x n, although the idea to be discussed in this section can
be applied to non-square matrices as well. Assume further that A can be partitioned
into s block rows and s block columns, where each block is r x r.

Thus n = rs. We partition X and B in the same way. The assumption that the blocks
are all the same size is again just for simplicity. (In practice we want nearly all of the
blocks to be approximately square and nearly all of approximately the same size.)
Writing a block version of (1.1.13), we have

A computer program based on this layout would perform the following operations
repeatedly: grab the blocks Aik, Xkj, and Bij, multiply Aik by Xkj and add the
result to Bij, using something like (1.1.13), then set B^ aside.
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Varying the block size will not affect the total flop count, which will always be 2n3,
but it can affect the performance of the algorithm dramatically nevertheless, because
of the way the data are handled. Every computer has a memory hierarchy. This
has always been the case, although the details have changed with time. Nowadays
a typical computer has a small number of registers, a smallish, fast cache, a much
larger, slower, main memory, and even larger, slower, bulk storage areas (e.g. disks
and tapes). Data stored in the main memory must first be moved to cache and then
to registers before it can be operated on. The transfer from main memory to cache
is much slower than that from cache to registers, and it is also slower than the rate at
which the computer can perform arithmetic. If we can move the entire arrays A, X,
and B into cache, then perform all of the operations, then move the result, B, back
to main memory, we expect the job to be done much more quickly than if we must
repeatedly move data back and forth. Indeed, if we can fit all of the arrays into cache,
the total number of data transfers between slow and fast memory will be about 4n2,
whereas the total number of flops is 2n3. Thus the ratio of arithmetic to memory
transfers is ½|n flops per data item, which implies that the relative importance of the
data transfers decreases as n increases. Unfortunately, unless n is quite small, the
cache will not be large enough to hold the entire matrices. Then it becomes beneficial
to perform the matrix-matrix multiply by blocks.

Before we consider blocking, let us see what happens if we do not use blocks. Let
us suppose the cache is big enough to hold two matrix columns or rows. Computation
of entry bij requires the ith row of A and the jth column of X. The time required
to move these into cache is proportional to 2n, the number of data items. Once
these are in fast memory, we can quickly perform the 2n flops. If we now want
to calculate bi,j+1, we can keep the ith row of A in cache, but we need to bring in
column j +1 of X, which means we have a time delay proportional to n. We can then
perform the 2n flops to get bij+i. The ratio of arithmetic to data transfers is about
2 flops per data item. In other words, the number of transfers between main memory
and cache is proportional to the amount of arithmetic done. This severely limits
performance. There are many ways to reorganize the matrix-matrix multiplication
algorithm (1.1.13) without blocking, but they all suffer from this same limitation.

Now let us see how we can improve the situation by using blocks. Suppose we
perform algorithm (1.1.26) using a block size r that is small enough that the three
blocks Aik, Xkj, and Bij can all fit into cache at once. The time to move these blocks
from main memory to cache is proportional to 3r2, the number of data items. Once
they are in the fast memory, the 2r3 flops that the matrix-matrix multiply requires
can be performed relatively quickly. The number of flops per data item is |r, which
tells us that we can maximize the ratio of arithmetic to data transfers by making r
as large as possible, subject to the constraint that three blocks must fit into cache at
once. The ratio |r can be improved upon by intelligent handling of the block Bij,
but the main point is that the ratio of arithmetic to data transfers is O(r). The larger
the blocks are, the less significant the data transfers become. The reason for this is
simply that O(r3) flops are performed on O(r2) data items.

We also remark that if the computer happens to have multiple processors, it can
operate on several blocks in parallel. The use of blocks simplifies the organization
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of parallel computing. It also helps to minimize the bottlenecks associated with
communication between processors. This latter benefit also stems from the fact that
0(r3) flops are performed on O(r2) data items.

Many of the algorithms that will be considered in this book can be organized
into blocks, as we shall see. The public-domain linear algebra subroutine library
LAPACK [1] uses block algorithms wherever it can.

Fast Matrix Multiplication

If we multiply two n x n matrices together using the definition (1.1.12), 2n3 flops
are required. In 1969 V. Strassen [68] amazed the computing world by presenting a
method that can do the job in O(ns) flops, where 5 = log2 7 2.81. Since 2.81 < 3,
Strassen's method will be faster than conventional algorithms if n is sufficiently large.
Tests have shown that even for n as small as 100 or so, Strassen's method can be
faster. However, since 2.81 is only slightly less than 3, n has to be made quite
large before Strassen's method wins by a large margin. Accuracy is also an issue.
Strassen's method has not made a great impact so far, but that could change in the
future.

Even "faster" methods have been found. The current record holder, due to Copper-
smith and Winograd, can multiply two n x n matrices in about O(n2'376) flops. But
there is a catch. When we write O(n2.376), we mean that there is a constant C such
that the algorithm takes no more than Cn2.376 flops. For this algorithm the constant
C is so large that it does not beat Strassen's method until n is really enormous.

A good overview of fast matrix multiplication methods is given by Higham [41].

1.2 SYSTEMS OF LINEAR EQUATIONS

In the previous section we discussed the problem of multiplying a matrix A times a
vector x to obtain a vector b. In scientific computations one is more likely to have to
solve the inverse problem: Given A (an n x n matrix) and b, solve for x. That is, find
x such that Ax = b. This is the problem of solving a system of n linear equations in
n unknowns.

You have undoubtedly already had some experience solving systems of linear
equations. We will begin this section by reminding you briefly of some of the basic
theoretical facts. We will then look at several simple examples to remind you of how
linear systems can arise in scientific problems.
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Nonsingularity and Uniqueness of Solutions

Consider a system of n linear equations in n unknowns

The coefficients aij and bi are given, and we wish to find x\,... xn that satisfy the
equations. In most applications the coefficients are real numbers, and we seek a
real solution. Therefore we will confine our attention to real systems. However,
everything we will do can be carried over to the complex number field. (In some
situations minor modifications are required. These will be covered in the exercises.)

Since it is tedious to write out (1.2.1) again and again, we generally prefer to write
it as a single matrix equation

where

A and b are given, and we must solve for x. A is a square matrix; it has n rows and
n columns.

Equation (1.2.2) has a unique solution if and only if the matrix A is nonsingular.
Theorem 1.2.3 summarizes some of the simple characterizations of nonsingularity
that we will use in this book.

First we recall some standard terminology. The n x n identity matrix is denoted
by /. It is the unique matrix such that AI = IA = A for all A e Rnxn. The identity
matrix has 1 's on its main diagonal and O's elsewhere. For example, the 3x3 identity
matrix has the form

Given a matrix A, if there is a matrix B such that AB = BA = /, then B is called
the inverse of A and denoted A'1. Not every matrix has an inverse.

Theorem 1.2.3 Let A be a square matrix. The following six conditions are equiva-
lent; that is, if any one holds, they all hold.

(a) A~l exists.

(b) There is no nonzero y such that Ay = 0.
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(c) The columns of A are linearly independent.

(d) The rows of A are linearly independent.

(e) det(A) 0.

(f) Given any vector b, there is exactly one vector x such that Ax = b.

(In condition (b), the symbol 0 stands for the vector whose entries are all zero.
In condition (e), the symbol 0 stands for the real number 0. det(A) denotes the
determinant of A.)

For a proof of Theorem 1.2.3 see any elementary linear algebra text. If the
conditions of Theorem 1.2.3 hold, A is said to be nonsingular or invertible. If the
conditions do not hold, A is said to be singular or noninvertible. In this case (1.2.2)
has either no solution or infinitely many solutions. In this chapter we will focus on
the nonsingular case.

If A is nonsingular, the unique solution of (1.2.2) can be obtained in principle
by multiplying both sides by A~l: From Ax — b we obtain A~lAx = A~lb, and
since A~1A — /, the identity matrix, we obtain x = A~lb. This equation solves
the problem completely in theory, but the method of solution that it suggests—first
calculate A-1, then multiply A-1 by b to obtain x—is usually a bad idea. As we
shall see, it is generally more efficient to solve Ax = b directly, without calculating
A-1. On most large problems the savings in computation and storage achieved by
avoiding the use of A~l are truly spectacular.

Situations in which the inverse really needs to be calculated are quite rare. This
does not imply that the inverse is unimportant; it is an extremely useful theoretical
tool.

Exercise 1.2.4 Prove that if A~l exists, then there can be no nonzero y for which Ay = 0. D

Exercise 1.2.5 Prove that if A'1 exists, then det(-A) 0. D

We now move on to some examples.

Electrical Circuits

Example 1.2.6 Consider the electrical circuit shown in Figure 1.1. Suppose the
circuit is in an equilibrium state; all of the voltages and currents are constant. The
four unknown nodal voltages x 1 , . . . , x4 can be determined as follows. At each of
the four nodes, the sum of the currents away from the node must be zero (Kirchhoff s
current law). This gives us an equation for each node. In each of these equations
the currents can be expressed in terms of voltages using Ohm's law, which states that
the voltage drop (in volts) is equal to the current (in amperes) times the resistance
(in ohms). For example, suppose the current from node 3 to node 4 through the 5 0
resistor is /. Then by Ohm's law, x3 — x4 = 5I, so / = .2(x3 — x4). Treating the
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other two currents flowing from node 3 in the same way, and applying Kirchhoff 's
current law, we get the equation

or

Applying the same procedure to nodes 1, 2, and 4, we obtain a system of four linear
equations in four unknowns:

which can be written as a single matrix equation

Though we will not prove it here, the coefficient matrix is nonsingular, so the system
has exactly one solution. Solving it using MATLAB, we find that

Thus, for example, the voltage at node 3 is 3.7021 volts. These are not the exact
answers; they are rounded off to four decimal places. Given the nodal voltages,

Fig. 1.1 Solve for the nodal voltages.
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we can easily calculate the current through any of the resistors by Ohm's law. For
example, the current flowing from node 3 to node 4 is .2(x3 — x4) =0.5106 amperes.

Exercise 1.2.7 Verify the correctness of the equations in Example 1.2.6. Use MATLAB (or
some other means) to compute the solution. If you are unfamiliar with MATLAB,
you can use the MATLAB demo (Start MATLAB and type demo) to find out how to
enter matrices. Once you have entered the matrix A and the vector b, you can type
x = A\b to solve for x. A transcript of your whole session (which you can later edit,
print out, and turn in to your instructor) can be made by using the command diary
on. For more information about the diary command type help diary. D

Fig. 1.2 Solve for the loop currents.

Example 1.2.8 Another way to analyze a planar electrical circuit is to solve for loop
currents instead of nodal voltages. Figure 1.2 shows the same circuit as before, but
now we have associated currents x1 and x2 with the two loops. (These are clearly
not the same xi as in the previous figure.) For the resistors that lie on the boundary
of the circuit, the loop current is the actual current flowing through the resistor, but
the current flowing through the 5 Ωi resistor in the middle is the difference x2 — x1.
An equation for each loop can be obtained by applying the principle that the sum
of the voltage drops around the loop must be zero (Kirchhoff's voltage law). The
voltage drop across each resistor can be expressed in terms of the loop currents by
applying Ohm's law. For example, the voltage drop across the 5 Ωi resistor, from top
to bottom, is 5 ( x 2 — x1) volts. Summing the voltage drops across the four resistors
in loop 1, we obtain

Similarly, in loop 2,
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Fig. 1.3 Single cart and spring

Rearranging these equations, we obtain the 2 x 2 system

Solving these equations by hand, we find that x1 = 30/47 = 0.6383 amperes and
x2 = 54/47 = 1.1489 amperes. Thus, for example, the current through the 5Ω
resistor, from top to bottom, is x2 — x1 — .5106 amperes, and the voltage drop is
2.5532 volts. These results are in agreement with those of Example 1.2.6.

Exercise 1.2.9 Check that the equations in Example 1.2.8 are correct. Check that the
coefficient matrix is nonsingular. Solve the system by hand, by MATLAB, or by
some other means.

It is easy to imagine much larger circuits with many loops. See, for example,
Exercise 1.2.19. Then imagine something much larger. If a circuit has, say, 100
loops, then it will have 100 equations in 100 unknowns.

Simple Mass-Spring Systems

In Figure 1.3 a steady force of 2 newtons is applied to a cart, pushing it to the right
and stretching the spring, which is a linear spring with a spring constant (stiffness)
4 newtons/meter. How far will the cart move before stopping at a new equilibrium
position? Here we are not studying the dynamics, that is, how the cart gets to its new

equilibrium. For that we would need to know the mass of the cart and the frictional
forces in the system. Since we are asking only for the new equilibrium position, it

suffices to know the stiffness of the spring.
The new equilibrium will be at the point at which the rightward force of 2 newtons

is exactly balanced by the leftward force applied by the spring. In other words, the
equilibrium position is the one at which the sum of the forces on the cart is zero. Let
x denote the (yet unknown) amount by which the cart moves to the right. Then the
restoring force of the spring is —4 newtons/meter x x meters = - 4x newtons. It is
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Fig. 1.4 System of three carts

negative because it pulls the cart leftward. The equilibrium occurs when— 4x+2 = 0.
Solving this system of one equation in one unknown, we find that x = 0.5 meter.

Example 1.2.10 Now suppose we have three masses attached by springs as shown
in Figure 1.4. Let x1, x2, and x3 denote the amount by which carts 1, 2, and 3,
respectively, move when the forces are applied. For each cart the new equilibrium
position is that point at which the sum of the forces on the cart is zero. Consider the
second cart, for example. An external force of two newtons is applied, and there is
the leftward force of the spring to the left, and the rightward force of the spring to
the right. The amount by which the spring on the left is stretched is x2 — x\ meters.
It therefore exerts a force -4 newtons/meter x (x2 — x1) meters = —4(x2 — x\)
newtons on the second cart. Similarly the spring on the right applies a force of
+4(x3 — x2) newtons. Thus the equilibrium equation for the second cart is

or

Similar equations apply to carts 1 and 3. Thus we obtain a system of three linear
equations in three unknowns, which we can write as a matrix equation

Entering the matrix A and vector b into MATLAB, and using the command x = A\ b
(or simply solving the system by hand) we find that

Thus the first cart is displaced to the right by a distance of 0.625 meters, for example.
The coefficient matrix A is called a stiffness matrix, because the values of its

nonzero entries are determined by the stiffnesses of the springs.
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Exercise 1.2.11 Check that the equations in Example 1.2.10 are correct. Check that the
coefficient matrix of the system is nonsingular. Solve the system by hand, by
MATLAB, or by some other means.

It is easy to imagine more complex examples. If we have n carts in a line, we
get a system of n equations in n unknowns. See Exercise 1.2.20. We can also
consider problems in which masses are free to move in two or three dimensions and
are connected by a network of springs.

Numerical (Approximate) Solution of Differential Equations

Many physical phenomena can be modeled by differential equations. We shall
consider one example without going into too many details.

Example 1.2.12 Consider a differential equation

with boundary conditions

The problem is to solve for the function u, given the constants c and d and the function
/. For example, u(x) could represent the unknown concentration of some chemical
pollutant at distance x from the end of a pipe.2 Depending on the function /, it may
or may not be within our power to solve this boundary value problem exactly. If not,
we can solve it approximately by the finite difference method, as follows.

Pick a (possibly large) integer m, and subdivide the interval [0,1] into m equal
subintervals of length h = l/m. The subdivision points of the intervals are xj = jh,
j — 0 , . . . , m. These points constitute our computational grid. The finite difference
technique will produce approximations to u(XI), ... ,u(xm - 1 ) . Since (1.2.13) holds
at each grid point, we have

If h is small, good approximations for the first and second derivatives are

and

(See Exercise 1.2.21.) Substituting these approximations for the derivatives into the
differential equation, we obtain, for i = 1, . . . , m — 1,

2The term — u"(x) is a diffusion term, cu'(x) is a convection term, du(x) is a decay term, and /(x) is
a source term.
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We now approximate this by a system of difference equations

i = l , . . . , m — 1. Here we have replaced the approximation symbol by an equal
sign and u(xi) by the symbol ui, which (hopefully) is an approximation of u(xi).
We have also introduced the symbol fi as an abbreviation for f ( x i ) . This is a system
of m — 1 linear equations in the unknowns U 0 , U 1 , ..., um. Applying the boundary
conditions (1.2.14), we can take U0 = 0 and um — 0, leaving only m — 1 unknowns
Wi, . . . , Um_i.

Suppose, for example, m = 6 and h = 1/6. Then (1.2.15) is a system of five
equations in five unknowns, which can be written as the single matrix equation

Given specific c, d, and /, we can solve this system of equations for HI, . . . , 1*5.
Since the difference equations mimic the differential equation, we expect that HI,
. . . , u5 will approximate the true solution of the boundary value problem at the points
x 1 , . . . x 5 .

Of course, we do not expect a very good approximation when we take only m — 6.
To get a good approximation, we should take m much larger, which results in a much
larger system of equations to solve. D

Exercise 1.2.16 Write the system of equations from Example 1.2.12 as a matrix equation for
(a) m = 8, (b) m = 20. d

More complicated systems of difference equations arising from partial differential
equations are discussed in Section 7.1.

Additional Exercises

Exercise 1.2.17 Consider the electrical circuit in Figure 1.5.

(a) Write down a linear system Ax — b with seven equations for the seven unknown
nodal voltages.

(b) Using MATLAB, for example, solve the system to find the nodal voltages.
Calculate the residual r — b — Ax, where x denotes your computed solution.
In theory r should be zero. In practice you will get a tiny but nonzero residual
because of roundoff errors in your computation. Use the diary command to
make a transcript of your session that you can turn in to your instructor.
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Fig. 1.5 Electric circuit with nodal voltages

Exercise 1.2.18 The circuit in Figure 1.6 is the same as for the previous problem, but now
let us focus on the loop currents.

(a) Write down a linear system Ax — b of four equations for the four unknown
loop currents.

(b) Solve the system for x. Calculate the residual r — b — Ax, where x denotes
your computed solution.

(c) Using Ohm's law and the loop currents that you just calculated, find the voltage
drops from the node labeled 1 to the nodes labeled n2 and n3. Are these in
agreement with your solution to Exercise 1.2.17?

(d) Using Ohm's law and the voltages calculated in Exercise 1.2.17, find the current
through the resistor labeled R1 . Is this in agreement with your loop current
calculation?

Exercise 1.2.19 In the circuit in Figure 1.7 all of the resistances are 1 Ωi.

(a) Write down a linear system Ax — b that you can solve for the loop currents.

(b) Solve the system for x.
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Fig. 1.6 Electrical circuit with loop currents

Exercise 1.2.20 Consider a system of n carts connected by springs, as shown in Figure 1.8. The
ith spring has a stiffness of ki newtons/meter. Suppose that the carts are subjected
to steady forces of f1, f 2 , . . . , fn newtons, respectively, causing displacements of
x1, x2,..., xn meters, respectively.

(a) Write down a system of n linear equations Ax — b that could be solved for
x 1 , . . . , xn. Notice that if n is at all large, the vast majority of the entries of A
will be zeros. Matrices with this property are called sparse. Since all of the
nonzeros are confined to a narrow band around the main diagonal, A is also
called banded. In particular, the nonzeros are confined to three diagonals, so
A is tridiagonal.

(b) Compute the solution in the case n = 20, ki = 1 newton/meter for all i,
and fi = 0 except for f5 = 1 newton and f16 = —1 newton. (Type help
toeplitz to learn an easy way to enter the coefficient matrix in MATLAB.)

Exercise 1.2.21 Recall the definition of the derivative from elementary calculus:

(a) Show that if h is a sufficiently small positive number, then both
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Fig. 1.7 Calculate the loop currents.

Fig. 7.5 System of n masses
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are good approximations of u'(x).

(b) Take the average of the two estimates from part (a) to obtain the estimate

Draw a picture (the graph of u and a few straight lines) that shows that this
estimate is likely to be a better estimate of u'(x) than either of the estimates
from part (a) are.

(c) Apply the estimate from part (b) to u"(x) with h replaced by h/2 to obtain

Now approximate u'(x + h/2) and u'(x — h/2) using the estimate from part
(b), again with h replaced by h/2, to obtain

1.3 TRIANGULAR SYSTEMS

A linear system whose coefficient matrix is triangular is particularly easy to solve. It
is a common practice to reduce general systems to a triangular form, which can then
be solved inexpensively. For this reason we will study triangular systems in detail.

A matrix G = (gij) is lower triangular if g^ = 0 whenever i < j. Thus a
lower-triangular matrix has the form

Similarly, an upper triangular matrix is one for which gij = 0 whenever i > j. A
triangular matrix is one that is either upper or lower triangular.

Theorem 1.3.1 Let G be a triangular matrix. Then G is nonsingular if and only if
gij 0 for i = 1,... ,n.

Proof. Recall from elementary linear algebra that if G is triangular, then det(G) =
g11g12 • • • gnn- Thus det(G) 0 if and only if gij 0 for i = 1 , . . . , n. See
Exercises 1.3.23 and 1.3.24.
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Lower-Triangular Systems

Consider the system

where G is a nonsingular, lower-triangular matrix. It is easy to see how to solve this
system if we write it out in detail:

The first equation involves only the unknown y\, the second involves only y1 and y2,
and so on. We can solve the first equation for y\:

The assumption that G is nonsingular ensures that g11 0. Now that we have y1,
we can substitute its value into the second equation and solve that equation for y2:

Since G is nonsingular, g22 0. Now that we know y2, we can use the third equation
to solve for y3, and so on. In general, once we have y1, y2, •• •, yi-1, we can solve
for yi, using the ith equation:

which can be expressed more succinctly using sigma notation:

Since G is nonsingular, gii 0.
This algorithm for solving a lower-triangular system is called forward substitution

or forward elimination. This is the first of two versions we will consider. It is called
row-oriented forward substitution because it accesses G by rows; the ith row is used
at the ith step. It is also called the inner-product form of forward substitution because
the sum can be regarded as an inner or dot product.

Equation (1.3.3) describes the algorithm completely; it even describes the first
step (y1 — bi/g11), if we agree, as we shall throughout the book, that whenever the
lower limit of a sum is greater than the upper limit, the sum is zero. Thus
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Exercise 1.3.4 Use pencil and paper to solve the system

by forward substitution. You can easily check your answer by substituting it back
into the equations. This is a simple means of checking you work that you will be able
to use on many of the hand computation exercises that you will be asked to perform
in this chapter.

It would be easy to write a computer program for forward elimination. Before we
write down the algorithm, notice that b1 is only used in calculating y\, 62 is only used
in calculating y2, and so on. In general, once we have calculated yi, we no longer
need bi. It is therefore usual for a computer program to store y over b. Thus we have
a single array that contains b before the program is executed and y afterward. The
algorithm looks like this:

There are no references to y, since it is stored in the array named b. The check
of gii is included to make the program foolproof. There is nothing to guarantee that
the program will not at some time be given (accidentally or otherwise) a singular
coefficient matrix. The program needs to be able to respond appropriately to this
situation. It is a good practice to check before each division that the divisor is not
zero. In most linear algebra algorithms these checks do not contribute significantly
to the time it takes to run the program, because the division operation is executed
relatively infrequently.

To get an idea of the execution time of forward substitution, let us count the
floating-point operations (flops). In the inner loop of (1.3.5), two flops are executed.
These flops are performed i — 1 times on the ith time through the outer loop. The
outer loop is performed n times, so the total number of flops performed in the j
loop i s 2 x ( 0 + l + 2 + --- + n - l ) = 2 . Calculating this sum
by a well-known trick (see Exercises 1.3.25, 1.3.26, and 1.3.28), we get n(n — 1),
which is approximated well by the simpler expression n2. These considerations are
summarized by the equations

Looking at the operations that are performed outside the j loop, we see that ga is
compared with zero n times, and there are n divisions. Regardless of what each of



26 GAUSSIAN ELIMINATION AND ITS VARIANTS

these operations costs, the total cost of doing all of them is proportional to n, not n2,
and will therefore be insignificant if n is at all large. Making this assumption, we
ignore the lesser costs and state simply that the cost of doing forward substitution is
n2 flops.

This figure gives us valuable qualitative information. We can expect that each
time we double n, the execution time of forward substitution will be multiplied by
approximately four.

Exploiting Leading Zeros in Forward Substitution

Significant savings can be achieved if some of the leading entries of b are zero.
This observation will prove important when we study banded matrix computations in
Section 1.5. First suppose b1 = 0. Then obviously y1 = 0 as well, and we do not need
to make the computer do the computation y1 = b 1 / g 1 1 . In addition, all subsequent
computations involving y1 can be skipped. Now suppose that b2 = 0 also. Then
y2 = b2/g22 = 0. There is no need for the computer to carry out this computation
or any subsequent computation involving y2. In general, if b1 = b2

 = • • • bk =0,
then y1 = y2 = • • • = yk = 0, and we can skip all of the computations involving y1,
. . . y k . Thus (1.3.3) becomes

Notice that the sum begins at j = k + 1.
It is enlightening to look at this from the point of view of partitioned matrices. If

bi = b2 = • • • = bk = 0, we can write

where j — n — k. Partitioning G and y also, we have

where G11 and G22 are lower triangular. The equation Gy — b becomes

or

Since G11 is nonsingular (why?), the first equation implies 1 = 0. The second
equation then reduces to
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Thus we only have to solve this (n — k) x (n — k} lower-triangular system, which is
exactly what (1.3.6) does. G11 and G21 are not used, because they interact only with
the unknowns y 1 , . . . , yk, (i.e. 1). Since the system now being solved is of order
n — k, the cost is now (n — k)2 flops.

Exercise 1.3.7 Write a modified version of Algorithm (1.3.5) that checks for leading zeros
in b and takes appropriate action.

Column-Oriented Forward Substitution

We now derive a column-oriented version of forward substitution. Partition the
system Gy = b as follows:

This leads to the following algorithm:

This algorithm reduces the problem of solving an n x n triangular system to that of
solving the (n — 1) x (n — 1) system G = b. This smaller problem can be reduced
(by the same algorithm) to a problem of order n — 2, which can in turn be reduced
to a problem of order n — 3, and so on. Eventually we get to the 1 x 1 problem
gnnyn = bn, which has the solution yn = bn/gnn.

If you are a student of mathematics, this algorithm should remind you of proof
by induction. If, on the other hand, you are a student of computer science, you
might think of recursion, which is the computer science analogue of mathematical
induction. Recall that a recursive procedure is one that calls itself. If you like to
program in a computer language that supports recursion (and most modern languages
do), you might enjoy writing a recursive procedure that implements (1.3.9). The
procedure would perform steps one and two of (1.3.9) and then call itself to solve the
reduced problem. All variables named b, b,b,y, and so on, can be stored in a single
array, which will contain b before execution and y afterward.

Although it is fun to write recursive programs, this algorithm can also be coded
nonrecursively without difficulty. We will write down a nonrecursive formulation of
the algorithm, but first it is worthwhile to work through one or two examples by hand.

h, y, and b are vectors of length n — 1, and G is an (n — 1) x (n — 1) lower-triangular
matrix. The partitioned system can be written as
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Example 1.3.10 Let us use the column-oriented version of forward substitution to
solve the lower-triangular system

First we calculate y1 = b 1 / g 1 1 = 15/5 = 3. Then

Now we have to solve G = b:

We achieve this by repeating the algorithm: y2 = -8/ — 4 = 2,

[ 3 ] y3 = [ 3 ], and y3 = 3/3 = 1. Thus

You can check that if you multiply G by y, you get the correct right hand side b.

Exercise 1.3.11 Use column-oriented forward substitution to solve the system from Exer-
cise 1.3.4.

Exercise 1.3.12 Write a nonrecursive algorithm in the spirit of (1.3.5) that implements column-
oriented forward substitution. Use a single array that contains b initially, stores
intermediate results (e.g. b, b) during the computation, and contains y at the end.

Your solution to Exercise 1.3.12 should look something like this:

Notice that (1.3.13) accesses G by columns, as anticipated: on the jth step, the jth
column is used. Each time through the outer loop, the size of the problem is reduced
by one. On the last time through, the computation bn bn/gnn (giving yn) is
performed, and the inner loop is skipped.
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Exercise 1.3.14

(a) Count the operations in (1.3.13). Notice that the flop count is identical to that
of the row-oriented algorithm (1.3.5).

(b) Convince yourself that the row- and column-oriented versions of forward sub-
stitution carry out exactly the same operations but not in the same order.

D

Like the row-oriented version, the column-oriented version can be modified to
take advantage of any leading zeros that may occur in the vector b. On the jth time
through the outer loop in (1.3.13), if bj = 0, then no changes are made in b. Thus
the jth step can be skipped whenever bj = 0. (This is true regardless of whether
or not bj is a leading zero. However, once a nonzero bj has been encountered, all
subsequent bj's will not be the originals; they will have been altered on a previous
step. Therefore they are not likely to be zero.)

Which of the two versions of forward substitution is superior? The answer depends
on how G is stored and accessed. This, in turn, depends on the programmer's choice
of data structures and programming language and on the architecture of the computer.

Upper-Triangular Systems

As you might expect, upper-triangular systems can be solved in much the same way as
lower-triangular systems. Consider the system Ux = y, where U is upper triangular.
Writing out the system in detail we get

It is clear that we should solve the system from bottom to top. The nth equation can
be solved for xn, then the (n — l)st equation can be solved for x n - 1 , and so on. The
process is called back substitution, and it has row- and column-oriented versions.
The cost of back substitution is obviously the same as that of forward substitution,
about n2 flops.

Exercise 1.3.15 Develop the row-oriented version of back substitution. Write pseudocode in
the spirit of (1.3.5) and (1.3.13).

Exercise 1.3.16 Develop the column-oriented version of back substitution Write pseudocode
in the spirit of (1.3.5) and (1.3.13).
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Exercise 1.3.17 Solve the upper-triangular system

(a) by row-oriented back substitution, (b) by column-oriented back substitution.

Block Algorithms

It is easy to develop block variants of both forward and back substitution. We will
focus on forward substitution. Suppose the lower triangular matrix G has been
partitioned into blocks as follows:

Each Gii is square and lower triangular. Then the equation Gy = b can be written in
the partitioned form

In this equation the entries bi and yi are not scalars; they are vectors with r; com-
ponents each. (The partition (1.3.8) is a special case of (1.3.18), and so is the
partition used in Exercise 1.3.29 below.) Equation (1.3.18) suggests that we find y\
by solving the system G11yi = b1 .Once we have y1, we can solve the equation
G2 1y1+G2 2y2 = b2 for y2 , and so on. This leads to the block version of row-oriented
forward substitution:

This is nearly identical to (1.3.5). The operation does not require
explicit computation of It can be effected by solving the lower-triangular
system GiiX = bi by either row- or column-oriented forward substitution.
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Exercise 1.3.20 Write the block variant of the column-oriented forward substitution algorithm
(1.3.13). •

Exercise 1.3.21 Convince yourself that the block versions of forward substitution perform
exactly the same arithmetic as the scalar algorithms (1.3.5) and (1.3.13), but not in
the same order. Ž

Additional Exercises

Exercise 1.3.22 Write Fortran subroutines to do each of the following: (a) row-oriented
forward substitution, (b) column-oriented forward substitution, (c) row-oriented back
substitution, (d) column-oriented back substitution. Invent some problems on which
to test your programs.

An easy way to devise a problem Ax = b with a known solution is to specify the
matrix A and the solution ar, then multiply A by x to get b. Give A and b to your
program, and see if it can calculate x. •

Exercise 1.3.23 Prove that if G is triangular, then det(G) — g11g22 • • • gnn.
 •

Exercise 1.3.24 Devise a proof of Theorem 1 .3.1 that does not use determinants. For example,
use condition (c) or (d) of Theorem 1.2.3 instead. •

Exercise 1.3.25 Write down the numbers 1, 2, 3, . . . , n — 1 on a line. Immediately below
these, write down the numbers n — 1, n — 2, n — 3, . . . ,1 . Add these numbers up by
summing column- wise first. Conclude that

2 x (1 + 2 + 3 + • • • + n - 1) = n(n - 1).

•

Exercise 1.3.26 In this exercise you will use mathematical induction to draw the same
conclusion as in the previous exercise. If you are weak on mathematical induction,
you should definitely work this exercise. We wish to prove that

for all positive integers n. Begin by showing that (1.3.27) holds when n = 1. The
sum on the left-hand side is empty in this case. If you feel nervous about this, you
can check the case n = 2 as well. Next show that if (1.3.27) holds for n = k, then it
holds also holds for n = k + 1. That is, show that
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is true, assuming that

is true. This is just a matter of simple algebra. Once you have done this, you will
have proved by induction that (1.3.27) holds for all positive integers n. •

Exercise 1.3.28 This exercise introduces a useful approximation technique. Draw pictures
that demonstrate the inequalities

Evaluate the integrals and deduce that

Show that the same result holds for •

Exercise 1.3.29 We derived the column-oriented version of forward substitution by partition-
ing the system Gy = b. Different partitions lead to different versions. For example,
consider the partition

where G is (n — 1) x (n — 1).

(a) Derive a recursive algorithm based on this partition.

(b) Write a nonrecursive version of the algorithm. (Hint: Think about how your
recursive algorithm would calculate yi, given y 1 , . . . , yi-1.)

Observe that your nonrecursive algorithm is nothing but row-oriented forward sub-
stitution, •

1.4 POSITIVE DEFINITE SYSTEMS; CHOLESKY DECOMPOSITION

In this section we discuss the problem of solving systems of linear equations for
which the coefficient matrix is of a special form, namely, positive definite. If you
would prefer to read about general systems first, you can skip ahead to Sections 1.7
and 1.8.

Recall that the transpose of an n x m matrix A = (a i j), denoted AT, is the m x n
matrix whose ( i , j ) entry is aji. Thus the rows of AT are the columns of A. A square
matrix A is symmetric if A — AT, that is, aij = aji for all i and j. The matrices
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in the electrical circuit examples of Section 1.2 are all symmetric, as are those in the
examples of mass-spring systems. The matrix in Example 1.2.12 (approximation of
a differential equation) is not symmetric unless c (convection coefficient) is zero.

Since every vector is also a matrix, every vector has a transpose: A column vector
x is a matrix with one column. Its transpose XT is a matrix with one row. The set of
column n-vectors with real entries will be denoted Rn. That is, Rn is just the set of
real n x 1 matrices.

If A is n x n, real, symmetric, and also satisfies the property

xTAx > 0 (1.4.1)

for all nonzero x E R", then A is said to be positive definite.3 The left-hand side
of (1.4.1) is a matrix product. Examining the dimensions of XT, A, and x, we find
that xT Ax is a 1 x 1 matrix, that is, a real number. Thus (1.4.1) is just an inequality
between real numbers. It is also possible to define complex positive definite matrices.
See Exercises 1.4.63 through 1.4.65.

Positive definite matrices arise frequently in applications. Typically the expression
xTAx has physical significance. For example, the matrices in the electrical circuit
problems of Section 1.2 are all positive definite. In the examples in which the entries
of x are loop currents, xTAx turns out to be the total power drawn by the resistors
in the circuit (Exercise 1.4.66). This is clearly a positive quantity. In the examples
in which the entries of x are nodal voltages, xTAx is closely related to (and slightly
exceeds) the power drawn by the circuit (Exercise 1.4.67).

The matrices of the mass-spring systems in Section 1.2 are also positive definite.
In those systems ½ X T A x is the strain energy of the system, the energy stored in
the springs due to compression or stretching (Exercise 1.4.68). This is a positive
quantity.

Other areas in which positive definite matrices arise are least-squares problems
(Chapter 3), statistics (Exercise 1.4.69), and the numerical solution of partial differ-
ential equations (Chapter 7).

Theorem 1.4.2 If A is positive definite, then A is nonsingular.

Proof. We will prove the contrapositive form of the theorem: If A is singular, then A
is not positive definite. Assume A is singular. Then by Theorem 1.2.3, part (b), there
is a nonzero y € Rn such that Ay — 0. But then yTAy = 0, so A is not positive
definite. •

Corollary 1.4.3 If A is positive definite, the linear system Ax — b has exactly one
solution.

Theorem 1.4.4 Let M be any n x n nonsingular matrix, and let A = MTM. Then
A is positive definite.

3 Some books, notably [33], do not include symmetry as part of the definition.
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Proof. First we must show that A is symmetric. Recalling the elementary formulas
(BC)T = CTBT and BTT = B, we find that AT = (MTM)T = MTMTT =
MTM = A. Next we must show that xTAx > 0 for all nonzero x. For any
such x, we have xTAx = xTMTMx. Let y = MX, so that yT — xTMT. Then

. This sum of squares is certainly nonnegative, and it is
strictly positive if y 0. But clearly y = MX 0, because M is nonsingular, and
x is nonzero. Thus XT Ax > 0 for all nonzero x, and A is positive definite. •

Theorem 1.4.4 provides an easy means of constructing positive definite matrices:
Just multiply any nonsingular matrix by its transpose.

The next theorem, the Cholesky Decomposition Theorem, is the most important
result of this section. It states that every positive definite matrix is of the form MTM
for some M. Thus the recipe given by Theorem 1.4.4 generates all positive definite
matrices. Furthermore M can be chosen to have a special form.

Theorem 1.4.7 (Cholesky Decomposition Theorem) Let A be positive definite. Then
A can be decomposed in exactly one way into a product

A = RTR (Cholesky Decomposition)

such that R is upper triangular and has all main diagonal entries
called the Cholesky factor of A.

positive. R is

The theorem will be proved later in the section. Right now it is more important to
discuss how the Cholesky decomposition can be used and figure out how to compute
the Cholesky factor.

Example 1.4.8 Let

Example 1.4.5 Let . M is nonsingular, since det(M) = —2.

Therefore is positive definite. •

Example 1.4.6 Let

M is nonsingular, since det(M) = 1. Therefore

is positive definite. •
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R is upper triangular and has positive main-diagonal entries. In Example 1.4.6 we
observed that A = RTR. Therefore R is the Cholesky factor of A. •

The Cholesky decomposition is useful because R and RT are triangular. Suppose
we wish to solve the system Ax = 6, where A is positive definite. If we know the
Cholesky factor R, we can write the system as RTRx = b. Let y = Rx. We do not
know x, so we do not know y either. However, y clearly satisfies RTy = b. Since
RT is lower triangular, we can solve for y by forward substitution. Once we have y,
we can solve the upper-triangular system Rx = y for x by back substitution. The
total flop count is a mere 2n2, if we know the Cholesky factor R.

If the Cholesky decomposition is to be a useful tool, we must find a practical
method for calculating the Cholesky factor. One of the easiest ways to do this is to
write out the decomposition A = RTR in detail and study it:

The element aij is the (inner) product of the ith row of RT with the jth column of
R. Noting that the first row of RT has only one nonzero entry, we focus on this row:

In particular, when j — 1 we have which tells us that

We know that the positive square root is the right one, because the main-diagonal
entries of R are positive. Now that we know r11, we can use the equation a1j =
to calculate the rest of the first row of R:

This is also the first column of RT. We next focus on the second row, because the
second row of RT has only two nonzero entries. We have

Only elements from the first two rows of R appear in this equation. In particular,
when j = 2 we have . Since r12 is already known, we can use this
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equation to calculate r22 :

Once r22 is known, the only unknown left in (1.4.11) is r2j. Thus we can use (1.4.11)
to compute the rest of the second row of R:

There is no need to calculate r21 because r21 = 0. We now know the first two rows
of R (and the first two columns of RT). Now, as an exercise, you can show how to
calculate the third row of R.

Now let us see how to calculate the ith row of R, assuming that we already have
the first i — 1 rows. Since only the first i entries in the ith row of RT are nonzero,

All entries of R appearing in (1.4.12) lie in the first i rows. Since the first i — 1 rows
are known, the only unknowns in (1.4.12) are rii and rij. Taking i = j in (1.4.12),
we have

which we can solve for rii:

Now that we have rii, we can use (1.4.12) to solve for rij:

We do not have to calculate rij for j < i because those entries are all zero.
Equations (1.4.13) and (1.4.14) give a complete recipe for calculating R. They

even hold for the first row of R (i = 1) if we make use of our convention that the
sums are zero. Notice also that when i = n, nothing is done in (1.4.14); the
only nonzero entry in the nth row of R is rnn.

The algorithm we have just developed is called Cholesky's method. This, the first
of several formulations that we will derive, is called the inner-product formulation be-
cause the sums in (1.4.13) and (1.4.14) can be regarded as inner products. Cholesky's
method turns out to be closely related to the familiar Gaussian elimination method.
The connection between them is established in Section 1.7.

A number of important observations can now be made. First, recall that the
Cholesky decomposition theorem (which we haven't proved yet) makes two asser-
tions: (i) R exists, and (ii) R is unique. In the process of developing the inner-product
form of Cholesky's method, we have proved that R is unique: The equation A = RTR
and the stipulation that R is upper triangular with r11 > 0 imply (1.4.9). Thus this
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value of r11 is the only one that will work; r11 is uniquely determined. Similarly,
r1j is uniquely determined by (1.4.10) for j = 2 , . . . ,n. Thus the first row of R
is uniquely determined. Now suppose the first i — 1 rows are uniquely determined.
Then so is the ith row, for rii is uniquely specified by (1.4.13), and rij is uniquely
determined by (1.4.14) for j = i + 1 , . . . , n. Notice the importance of the stipulation
ra > 0 in determining which square root to choose. Without this stipulation we
would not have uniqueness.

Exercise 1.4.15 Let A = n • (a) Prove that A is positive definite, (b) Calculate
[ 0 9 ]

the Cholesky factor of A. (c) Find three other upper triangular matrices R such
that A = RTR. (d) Let A be any n x n positive definite matrix. How many
upper-triangular matrices R such that A = RTR are there? •

The next important observation is that Cholesky's method serves as a test of
positive definiteness. By Theorems 1.4.4 and 1.4.7, A is positive definite if and only
if there exists an upper triangular matrix R with positive main diagonal entries such
that A — RTR. Given any symmetric matrix A, we can attempt to calculate R by
Cholesky's method. If A is not positive definite, the algorithm must fail, because any
R that satisfies (1.4.13) and (1.4.14) must also satisfy A - RTR. The algorithm fails
if and only if at some step the number under the square root sign in (1.4.13) is negative
or zero. In the first case there is no real square root; in the second case rii = 0.
Thus, if A is not positive definite, there must come a step at which the algorithm
attempts to take the square root of a number that is not positive. Conversely, if A is
positive definite, the algorithm cannot fail. The equation A = RTR guarantees that
the number under the square root sign in (1.4.13) is positive at every step. (After all,
it equals r^.) Thus Cholesky's method succeeds if and only if A is positive definite.
This is the best general test of positive definiteness known.

The next thing to notice is that (1.4.13) and (1.4.14) use only those aij for which
i < j- This is not surprising, since in a symmetric matrix the entries above the main
diagonal are identical to those below the main diagonal. This underscores the fact
that in a computer program we do not need to store all of A; there is no point in
duplicating information. If space is at a premium, the programmer may choose to
store A in a long one-dimensional array with a11, a 1 2 , . . . , a1n immediately followed
by a22,a23, ... ,a2 n , immediately followed by a33 , . . . ,a3n, and so on. This compact
storage scheme makes the programming more difficult but is worth using if space is
scarce.

Finally we note that each element aij is used only to compute rij, as is clear from
(1.4.13) and (1.4.14). It follows that in a computer program, rij can be stored over
a i j. This saves additional space by eliminating the need for separate arrays to store
R and A.

Exercise 1.4.16 Write an algorithm based on (1.4.13) and (1.4.14) that checks a matrix for
positive definiteness and calculates R, storing R over A. •

Your solution to Exercise 1.4.16 should look something like this:



38 GAUSSIAN ELIMINATION AND ITS VARIANTS

The upper part of .R is stored over the upper part of A. There is no need to store the
lower part of R because it consists entirely of zeros.

Example 1.4.18 Let

Notice that A is symmetric. We will use Cholesky's method to show that A is positive
definite and calculate the Cholesky factor R. We will then use the Cholesky factor
to solve the system Ax = b by forward and back substitution.

Thus
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Since we were able to calculate R, A is positive definite. We can check our work by
multiplying RT by R and seeing that the product is A.

To solve Ax — 6, we first solve RTy — b by forward substitution and obtain
y = [ 4 2 4 2 ] . We then solve Rx = y by back substitution to obtain

x = [ 1 2 1 2 ] . Finally, we check our work by multiplying A by x and
seeing that we get b. •

Exercise 1.4.19 Calculate R (of Example 1.4.18) by the erasure method. Start with an array
that has A penciled in initially (main diagonal and upper triangle only). As you
calculate each entry rij, erase aij and replace it by rij. Do all of the operations in
your head, using only the single array for reference. This procedure is surprisingly
easy, once you get the hang of it. •

Example 1.4.20 Let

We will use Cholesky's method to determine whether or not A is positive definite.
Proceeding as in Example 1.4.18, we find that r11 = 1, r12 = 2, r13 = 3, r22 =1,
r23 = 4, and finally In attempting to calculate
rs3, we encounter a negative number under the square root sign. Thus A is not
positive definite. •

Exercise 1.4.21 Let

Notice that A is symmetric, (a) Use the inner-product formulation of Cholesky's
method to show that A is positive definite and compute its Cholesky factor, (b) Use
forward and back substitution to solve the linear system Ax — b. •

Exercise 1.4.22 Determine whether or not each of the following matrices is positive definite.

Exercise 1.4.23 Rework Exercise 1.4.22 with the help of MATLAB. The MATLAB command
R = chol (A) computes the Cholesky factor of A and stores it in R. The upper
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half of A is used in the computation. (MATLAB does not check whether or not A is
symmetric. For more details about chol, type help chol.) •

Although Cholesky's method generally works well, a word of caution is appropri-
ate here. Unlike the small hand computations that are scattered throughout the book,
most matrix computations are performed by computer, in which case the arithmetic
operations are subject to roundoff errors. In Chapter 2 we will see that the perfor-
mance of Cholesky's method in the face of roundoff errors is as good as we could
hope for. However, there are linear systems, called ill-conditioned systems, that
simply cannot be solved accurately in the presence of errors. Naturally we cannot
expect Cholesky's method (performed with roundoff errors) to solve ill-conditioned
systems accurately. For more on ill-conditioned systems and roundoff errors, see
Chapter 2.

Flop Count

To count the flops in Cholesky's algorithm (1.4.17), we need to know that

The easiest way to obtain this is to approximate the sum by an integral:

The details are discussed in Exercises 1.4.70 and 1.4.71.

Proposition 1.4.24 Cholesky's algorithm (1.4.17) applied to an n x n matrix per-
forms about n3 / 3 flops.

Exercise 1.4.25 Prove Proposition 1.4.24 •

Proof. Examining (1.4.17), we see that in each of the two k loops, two flops are
performed. To see how many times each loop is executed, we look at the limits on
the loop indices. We conclude that the number of flops attributable to the first of the
k loops is

by Exercise 1.3.25 or 1.3.26. Applying the same procedure to the second of the k
loops, we get a flop count of
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We have a triple sum this time, because the loops are nested three deep.

Here we have used the estimates
n2 + O(n). In the end we discard the O(n2) term, because it is small in comparison
with the term n3 /3, once n is sufficiently large. Thus about n3 /3 flops are performed
in the second k loop. Notice that the number of flops performed in the first k loop is
negligible by comparison.

In addition to the flops in the k loops, there are some divisions. The exact number
is

which is also negligible. Finally, error checks and square roots are done.
We conclude that the flop count for (1.4.17) is n3/3 + O(n2). •

Since the flop count is O(n3), we expect that each time we double the matrix
dimension, the time it takes to compute the Cholesky factor will be multiplied by
about eight. See Exercise 1.4.72.

If we wish to solve a system Ax = b by Cholesky's method, we must first compute
the Cholesky decomposition at a cost of about n3/3 flops. Then we must perform
forward and back substitution using the Cholesky factor and its transpose at a total
cost of about 2n2 flops. We conclude that the bulk of the time is spent computing the
Cholesky factor; the forward and backward substitution times are negligible. Thus
the cost of solving a large system using Cholesky's method can be reckoned to be
n3/3 flops. Each time we double the dimension of the system, we can expect the
time it takes to solve Ax = b by Cholesky's method to be multiplied by about eight.
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Outer-Product Form of Cholesky's Method

The outer-product form of Cholesky's method is derived by partitioning the equation
A = RTR in the form

Equating the blocks, we obtain

The fourth equation, & = sr11, is redundant. Equations (1.4. 27) suggest the following
procedure for calculating r11 , S

T, and R (and hence R):

This procedure reduces the n x n problem to that of finding the Cholesky factor of
the (n — 1) x (n — 1) matrix A. This problem can be reduced to an (n — 2) x (n - 2)
problem by the same algorithm, and so on. Eventually the problem is reduced to the
trivial 1x1 case. This is called the outer-product formulation because at each step an
outer product SST is subtracted from the remaining submatrix. It can be implemented
recursively or nonrecursively with no difficulty.

Exercise 1.4.29 Use the outer-product formulation of Cholesky's method to calculate the
Cholesky factor of the matrix of Example 1.4.18. •

Exercise 1.4.30 Use the outer-product formulation of Cholesky's method to work Exam-
ple 1.4.20. •

Exercise 1.4.31 Use the outer-product form to work part (a) of Exercise 1.4.21. •

Exercise 1.4.32 Use the outer-product form to work Exercise 1.4.22. •

Exercise 1.4.33 Write a nonrecursive algorithm that implements the outer-product formulation
of Cholesky's algorithm (1.4.28). Your algorithm should exploit the symmetry of A
by referencing only the main diagonal and upper part of A, and it should store R over
A. Be sure to put in the necessary check before taking the square root. •

Exercise 1.4.34 (a) Do a flop count for the outer-product formulation of Cholesky's method.
You will find that approximately n3/3 flops are performed, the same number as for
the inner-product formulation. (If you do an exact flop count, you will find that the
counts are exactly equal.) (b) Convince yourself that the outer-product and inner-
product formulations of the Cholesky algorithm perform exactly the same operations,
but not in the same order. •
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Bordered Form of Cholesky's Method

The bordered form will prove useful in the next section, where we develop a version of
Cholesky's method for banded matrices. We start by introducing some new notation
and terminology. For j = 1, . . . , n let Aj be the j x j submatrix of A consisting of
the intersection of the first j rows and columns of A. Aj is called the jth leading
principal submatrix of A. In Exercise 1.4.54 you will show that if A is positive
definite, then all of its leading principal submatrices are positive definite. Suppose
A is positive definite, and let R be the Cholesky factor of A. Then R has leading
principal submatrices Rj, j = 1 , . . . , n, which are upper triangular and have positive
entries on the main diagonal.

Exercise 1.4.35 By partitioning the equation A = RTR appropriately, show that Rj is the
Cholesky factor of Aj; for j — 1 , . . . , n. •

It is easy to construct R1 = [r1 1] , since Thinking inductively, if we
can figure out how to construct Rj, given Rj-i, then we will be able to construct
Rn = R in n steps. Suppose therefore that we have calculated RJ-I and wish to find
Rj. Partitioning the equation so that AJ-I and Rj-i appear as blocks:

we get the equations

Since we already have Rj-i, we have only to calculate h and rJJ to get Rj. Equations
(1.4.37) show how this can be done. First solve the equation for h by

forward substitution. Then calculate The algorithm that can be
built along these lines is called the bordered form of Cholesky' method.

Exercise 1.4.38 Use the bordered form of Cholesky's method to calculate the Cholesky factor
of the matrix of Example 1.4.18. •

Exercise 1.4.39 Use the bordered form of Cholesky's method to work Example 1.4.20. •

Exercise 1.4.40 Use the bordered form to work part (a) of Exercise 1.4.21. •

Exercise 1.4.41 Use the bordered form to work Exercise 1.4.22. •

Exercise 1.4.42 (a) Do a flop count for the bordered form of Cholesky's method. Again
you will find that approximately n3/3 flops are done, (b) Convince yourself that
this algorithm performs exactly the same arithmetic operations as the other two
formulations of Cholesky's method. •

We have now introduced three different versions of Cholesky's method. We have
observed that the inner-product formulation (1.4.17) has triply nested loops; so do
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the others. If one examines all of the possibilities, one finds that there are six distinct
basic variants, associated with the six (= 3!) different ways of nesting three loops.
Exercise 1.7.55 discusses the six variants.

Computing the Cholesky Decomposition by Blocks

All formulations of the Cholesky decomposition algorithm have block versions. As
we have shown in Section 1.1, block implementations can have superior perfor-
mance on large matrices because of more efficient use of cache and greater ease of
parallelization.

Let us develop a block version of the outer-product form. Generalizing (1.4.26),
we write the equation A = RTR by blocks:

A11 and R11 are square matrices of dimension di x di, say. AH is symmetric and
(by Exercise 1.4.54) positive definite. By the way, this equation also generalizes
(1.4.36). Equating the blocks, we have the equations

which suggest the following procedure for calculating R.

The symbol means which is the same as The operation
does not require the explicit computation of Instead we can refer

back to the equation . Letting s and b denote the ith columns of 5 and B,
respectively, we see that Since is lower triangular, we can obtain s
from b by forward substitution. (Just such an operation is performed in the bordered
form of Cholesky's method.) Performing this operation for each column of 5, we
obtain S from B. This is how the operation should normally be carried
out.

Exercise 1.4.44 Let C be any nonsingular matrix. Show that (C - 1)T = (CT}~1. •

The matrices A, B, R, and S may themselves be partitioned into blocks. Consider
a finer partition of A:
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We have shown only the upper half because of symmetry. Then

and the operation becomes

where we partition R conformably with A, and the operation Ã = Â — STS becomes

Once we have A, we can calculate its Cholesky factor by applying (1.4.43) to it.

Exercise 1.4.45 Write a nonrecursive algorithm that implements the algorithm that we have
just sketched. Your algorithm should exploit the symmetry of A by referencing only
the main diagonal and upper part of A, and it should store R over A. •

Your solution to Exercise 1.4.45 should look something like this:

Block Cholesky Algorithm (outer-product form)

In order to implement this algorithm, we need a standard Cholesky decomposition
code (based on (1.4.17), for example) to perform the small Cholesky decompositions
Akk cholesky(Akk). In the operation the block Akk holds the
triangular matrix R^k at this point. Thus the operation can be effected by a sequence
of forward substitutions, as already explained; there is no need to calculate an inverse.

Exercise 1.4.47 Write a block version of the inner-product form of Cholesky's method. •

Exercise 1.4.48 Convince yourself that the block versions of Cholesky's method perform
exactly the same arithmetic as the standard versions, but not in the same order. •

The benefits of organizing the Cholesky decomposition by blocks are exactly
the same as those of performing matrix multiplication by blocks, as discussed in
Section 1.1. To keep the discussion simple, let us speak as if all of the blocks were
square and of the same size, d x d. The bulk of the work is concentrated in the
operation
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which is triply nested in the algorithm. This is essentially a matrix-matrix multiply,
which takes 2d3 flops. If d is small enough that the three blocks Aij, Aki, and Akj

can all fit into cache at once, we can perform the entire operation without having
to swap data into and out of cache. Since we are performing 2d3 flops on 3d2 data
items, we have a ratio of |d flops per data item. The larger d is, subject to the size
constraint, the better our data use is. Similar benefits are obtained for the operations
Akk <- cholesky(Akk) and since each requires O(d3) flops on
O(d2) data items.

Exercise 1.4.49 Show that the implementation of via a sequence of forward
substitutions requires d3 + O(d2) flops if all three blocks are d x d. •

Let us also consider briefly the computation of the Cholesky factor on a parallel
computer using (1.4.46). This may be worthwhile if the matrix is really huge. We
continue to make the simplifying assumption that all of the blocks are d x d. This
implies that n — ds. If we increase d, we must decrease s, and vice versa. Let us
focus on the part of the algorithm where most of the work is done. For each A;, the
operations

can be done simultaneously for i = k + 1, . . . , s, for j = i,..., s. Thus as many as
about s2/2 processors can be kept busy at once. This suggests that s should be made
large (and, consequently, d small). On the other hand, a processor cannot perform
the operation until it has received the data. Since 2d3 flops are performed on 3d2 data
items, data movement is minimized by making d large. This suggests that d should
be made large (and, consequently, s small). Thus we see that there are tradeoffs that
keep us from making either d or s too large. Which choice of d and s is best will
depend on the details of the parallel computer that is being used.

Exercise 1.4.50 Assuming d x d blocks in (1.4.46), calculate the fraction of the total work
(reckoned in flops) that is spent (a) calculating Cholesky decompositions of the
main-diagonal blocks, and (b) executing the instruction In each
case your answer should be a function of s. What are the respective fractions when
s = 10? when s = 20? •

Proof of the Cholesky Decomposition Theorem

Having discussed the use of the Cholesky decomposition, having determined how to
calculate the Cholesky factor, and having noted the numerous ways the computation
can be organized, we now take time to prove the Cholesky Decomposition Theorem.
We begin by recalling that a symmetric matrix A is positive definite if xTAx > 0 for
all nonzero x € Rn. We can use this property to prove a few simple propositions.

Proposition 1.4.51 If A is positive definite, then aii > 0 for i — 1 , . . . , n.
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Exercise 1.4.52 Prove Proposition 1.4.51. Do not use the Cholesky decomposition in your
proof; we want to use this result to prove that the Cholesky decomposition exists.
(Hint: Find a nonzero vector x such that xTAx = an.) D

Proposition 1.4.53 Let A be positive definite, and consider a partition

in which AH and A^ are square. Then AH and A-2% are positive definite.

Exercise 1.4.54 Prove Proposition 1.4.53. As in the previous exercise, do not use the Cholesky
decomposition in your proof; use the fact that xTAx > 0 for all nonzero x. D

Propositions 1.4.51 and 1.4.53 are clearly closely related; 1.4.53 is (essentially) a
generalization of 1.4.51. Can you think of a generalization that encompasses both of
these results? What is the most general result you can think of? After you give this
some thought, take a look at Exercise 1.4.61.

Proposition 1.4.55 If A and X are nxn, A is positive definite, andX is nonsingular
then the matrix B = XT AX is also positive definite.

Considering the special case A — I (which is clearly positive definite), we see that
this proposition is a generalization of Theorem 1.4.4.

Exercise 1.4.56 Prove Proposition 1.4.55. HI

The Cholesky Decomposition Theorem states that if A is positive definite, then
there is a unique R such that R is upper triangular, the main diagonal entries of
R are positive, and A = RTR. We have already demonstrated uniqueness, so we
only have to prove existence. We do so by induction on n. When n — 1, we have
A = [an]. By Proposition 1.4.51, an > 0. Let and R — [rn].
Then R has the desired properties. Moving on to the interesting part of the proof,
we will show that every nxn positive definite matrix has a Cholesky factor, given
that every (n — 1) x (n — 1) positive definite matrix does. Given an n x n positive
definite A, partition A as we did in the development of the outer-product formulation
of Cholesky's method:

Proposition 1.4.51 guarantees that an > 0. Using (1.4.27) and (1.4.28) as a guide,
define

Then, as one easily checks,
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where / denotes the (n — 1) x (n — 1) identity matrix. The matrix

is upper triangular and its main diagonal entries are nonzero, so it is nonsingular. Let
us call its inverse X. Then if we let

we have B = XTAX, so B is positive definite, by Proposition 1.4.55. If we
now apply Proposition 1.4.53 to B, we find that A is positive definite. Since A is
(n — 1) x (n — 1), there is an upper triangular matrix R whose main-diagonal entries
are positive, such that A = RTR, by the induction hypothesis. Therefore, using
(1.4.57),

where R is upper triangular and has positive entries on the main diagonal. This
completes the proof.

The matrix is called the Schur complement of an
in A. The main business of the proof of the Cholesky Decomposition Theorem is to
show that positive definiteness is inherited by the Schur complement. The argument
is generalized in the following exercise.

Exercise 1.4.58 Let be positive definite, and suppose A11 is j x j and

A22 is k x k. By Proposition 1.4.53, AH is positive definite. Let R11 be the Cholesky
factor of AH , let , and let The matrix A22 is
called the Schur complement of A11 in A.

(a) Show that

(b) Establish a decomposition of A that is similar to (1.4.57) and involves A22.

(c) Prove that A22 is positive definite.

•

Exercise 1.4.59 Write down a second proof of the existence of the Cholesky factor based on
the decomposition established in the previous exercise. •

Exercise 1.4.60 Carefully prove by induction that the Cholesky decomposition is unique:
Suppose A — RTR = STS, where R and S are both upper-triangular matrices with
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positive main-diagonal entries. Partition A, R, and S conformably and prove that the
parts of 5 must equal the corresponding parts of R. •

Exercise 1.4.61 This Exercise generalizes Propositions 1.4.51 and 1.4.53. Let A be an n x n
positive definite matrix, let j\, J2, • • •, jk be integers such that 1 < ji < j% < • • • <
jk < n, and let Â be the k x k matrix obtained by intersecting rows ji,..., jk with
columns j 1 , . . . , jk. Prove that A is positive definite. •

Exercise 1.4.62 Prove that if A is positive definite, then det(A) > 0. •

Complex Positive Definite Matrices

The next three exercises show how the results of this section can be extended to
complex matrices. The set of complex n-vectors will be denoted Cn. The conjugate
transpose A* of a complex m x n matrix A is the n x m matrix whose (i,j) entry
is ā j i. The bar denotes the complex conjugate. A is hermitian if A — A*, that is,
aij = āji for all i and j.

Exercise 1.4.63 (a) Prove that if A and B are complex m x n and n x p matrices, then
(AB)* = B*A*. (b) Prove that if A is hermitian, then x*Ax is real for every
x G Cn. (Hint: Let a = x* Ax. Then a is real if and only if α = α. Think of a as a
1x1 matrix, and consider of the matrix a*.) �

If A is hermitian and satisfies x* Ax > 0 for all nonzero x £ Cn, then A is said to
be positive definite.

Exercise 1.4.64 Prove that if M is any n x n nonsingular matrix, then M*M is positive
definite. �

Exercise 1.4.65 Prove that if A is positive definite, then there exists a unique matrix R
such that R is upper triangular and has positive (real!) main diagonal entries, and
A — R*R. This is the Cholesky decomposition of A. �

All of the algorithms that we have developed in this section can easily be adapted
to the complex case.

Additional Exercises

Exercise 1.4.66

(a) The power drawn by an appliance (in watts) is equal to the product of the
electromotive force (in volts) and the current (in amperes). Briefly, watts =
volts x amps. Suppose a current I amperes passes through a resistor with
resistance R ohms, causing a voltage drop of E volts. Show that the power
dissipated by the resistor is (i) RI2 watts, (ii) E2/R watts.
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(b) Figure 1.9 illustrates loop currents passing through resistors with resistances R
and S. Obviously the S ohm resistor draws power which is positive unless

Fig. 1.9 Two loop currents

Xi = 0. Show that the power drawn by the R ohm resistor is R(xi — x j )
2 .

Deduce that this resistor draws positive power unless xi = xj, in which case
it draws zero power. Show that the power drawn by this resistor can also be
expressed as

(c) Let

the matrix of Example 1.2.8. Show that if is the vector of loop

currents, then the total power drawn by (all of the resistors in) the circuit is
xTAx. Show that A is positive definite.

(d) Show that the 9 x 9 coefficient matrix of Exercise 1.2.19 is positive definite.
(Hint: Show that the power drawn by the circuit is a sum of terms of the form
Rx2

k and R(xi — x j ) 2 , and that this sum is positive unless all loop currents are
zero. Then show that the power drawn by the circuit can also be expressed as
xTAx, where A is the coefficient matrix of the system.)

•

Exercise 1.4.67

(a) The conductance C of a resistor (in Siemens) is equal to the reciprocal of the
resistance: C = l/R. Show that if two nodes with voltages xi and xj are
connected by a resistor with conductance (7, the power drawn by the resistor
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is C(xi — x j)
2 , which can also be expressed as

This quantity is positive, unless xj = xj.

(b) Consider the circuit in Figure 1.1, Example 1.2.6. Show that the power drawn
by this circuit is a sum of terms of the form C(xi — Xj)2 and is positive unless
all of the nodal voltages x 1 , . . . , X6 are equal.

(c) Show that the power can be expressed as xTHx, where H is a 6 x 6 symmetric
matrix. This matrix is positive semi-definite, as xTHx > 0 for all x.

(d) Let A denote the coefficient matrix of the system in Example 1.2.6. Show that
A is a submatrix of the matrix H from part (c). Deduce that A is positive
definite. (Hint: Set x5 = X6 = 0 in the expression xTHx.)

(e) Show that the coefficient matrix of the circuit in Exercise 1.2.17 is positive
definite.

•

Exercise 1.4.68

(a) When a spring is stretched (or compressed) from its equilibrium position (0
meters) to some new position (x meters), the energy stored in the spring (strain
energy) is equal to the work required to move the spring to its new position.
This is ds joules, the integral of force with respect to distance, where
f ( s ) is the force (in newtons) exerted against the spring that has been stretched
to s meters. Show that for a linear spring with stiffness k newtons/meter, the
strain energy is ½kx2 joules.

(b) Show that if a spring is stretched or compressed by displacing its right and left
endpoints by x2 and x1 meters, respectively, the strain energy of the spring is
½k (x 1 — x 2) 2 joules, which is positive unless x1 = x2. Show that the strain
energy can also be written in the form

(c) Show that the total strain energy of the mass-spring system in Example 1.2.10
is a sum of terms of the form and k(xi — xi+1 )2 and is positive unless all
of the displacements are zero.

(d) Let A be the coefficient matrix of the mass-spring system of Example 1.2.10.
Show that the strain energy of the system is ½|xTAx. Deduce that A is positive
definite.
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(e) Show that the coefficient matrix of the mass-spring system of Exercise 1.2.20
is positive definite.

�

Exercise 1.4.69 Let v be a vector whose entries represent some statistical data. For example,
v could be a vector with 365 entries representing the high temperature in Seattle
on 365 consecutive days. We can normalize this vector by computing its mean and
subtracting the mean from each of the entries to obtain a new vector with mean zero.
Suppose now we have such a normalized vector. Then the variance of v is
This nonnegative number gives a measure of the variation in the data. Notice that if
we think of v as a column vector, the variance can be expressed as υTυ. Now let v
and w be two vectors with mean zero and variance (normalized to be) one. Then the
correlation of v and w is defined to be This number,
which can be positive or negative, measures whether the data in v and w vary with
or against one another. For example, the temperatures in Seattle and Tacoma should
have a positive correlation, while the temperatures in Seattle and Hobart, Tasmania,
should have a negative correlation. Now consider k vectors υi, ..., υk with mean
zero and variance one. The correlation matrix C of the data υ1, . . . , υk is the k x k
matrix whose (i, j] entry is the correlation of υi with υj. Show that C is

a symmetric matrix whose main-diagonal entries are all ones. Show that C = VTV
for some appropriately constructed (nonsquare) matrix V. Show that C is positive
definite if the vectors vi, ..., Vk are linearly independent. Show that if v i , . . . , υ k

are linearly dependent, then C is not positive definite, but it is positive semidefinite,
i.e. xTCx > 0 for all x. �

Exercise 1.4.70 Draw pictures that demonstrate that

�

Exercise 1.4.71 Prove by induction on n that

�
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Exercise 1.4.72 Figure out what the following MATLAB code does.

n = 100;
for jay = 1:4

if jay > 1; oldtime = time ; end
M = randn(n);
A = M'*M;
t = cputime;
R = chol(A);

matrixsize = n
time = cputime - t
if jay > 1; ratio = time/oldtime, end
n = 2*n;

end

If you put these instructions into a file named, say, zap.m, you can run the program by
typing zap from the MATLAB command line. The functions randn, cputime,
and chol are built-in MATLAB functions, so you can learn about them by typing
help randn, etc. You might find it useful to type more on before typing help
{topic}.

(a) Does the code produce reasonable values of ratio when you run it? What
value would you expect in theory? Depending on the speed of the machine on
which you are running MATLAB, you may want to adjust n or the number of
times the j ay loop is executed.

(b) Why is the execution time of this code (i.e. the time you sit waiting for the
answers) so much longer than the times that are printed out?

•

Exercise 1.4.73 Write Fortran subroutines to implement Cholesky's method in (a) inner-
product form, (b) outer-product form, (c) bordered form. If you have already written
a forward-substitution routine, you can use it in part (c). Your subroutines should
operate only on the main diagonal and upper-triangular part of A, and they should
overwrite A with R. They should either return R or set a warning flag indicating that
A is not positive definite. Try out your routines on the following examples.
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You might like to devise some additional examples. The easy way to do this is to
write down R first and then multiply RT by R to get A. With the help of MATLAB
you can generate larger matrices. Use the MATLAB save command to export a
matrix to an ASCII file. Type help save for details. •

Exercise 1.4.74 Write a Fortran program that solves positive definite systems Ax = b
by calling subroutines to (a) calculate the Cholesky factor, (b) perform forward
substitution, and (c) perform back substitution. Try out your program on the following
problems.

You might like to make some additional examples. You can use MATLAB to help
you build larger examples, as suggested in the previous exercise. •

1.5 BANDED POSITIVE DEFINITE SYSTEMS

Large systems of equations occur frequently in applications, and large systems are
usually sparse. In this section we will study a simple yet very effective scheme
for applying Cholesky's method to large, positive definite systems of equations that
are banded or have an envelope structure. This method is in widespread use and,
as we shall see, it can yield enormous savings in computer time and storage space.
However, it is not necessarily the most efficient scheme. More sophisticated sparse
matrix methods are discussed briefly in Section 1.6. For details see [30] and [21], for
example. For extremely large systems, iterative methods are preferred. We discuss
iterative methods for sparse linear systems in Chapter 7.

A matrix A is banded if there is a narrow band around the main diagonal such
that all of the entries of A outside of the band are zero, as shown in Figure 1.10.
More precisely, if A is n x n, and there is an s < n such that aij = 0 whenever
| i — j | > s, then all of the nonzero entries of A are confined to a band of 2s + 1
diagonals centered on the main diagonal. We say that A is banded with band width
2s +1. Since we are concerned with symmetric matrices in this section, we only need
half of the band. Since aij = 0 whenever i — j > s, there is a band of s diagonals
above the main diagonal that, together with the main diagonal, contains all of the
nonzero entries of A. We say that A has semiband width s.

Example 1.5.1 Consider the mass-spring system depicted in Figure 1.11. This is
exactly the system that we discussed in Exercise 1.2.20. There are n carts attached
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Fig. 1.10 Banded matrix: All entries outside of the band are zero.

Fig. 1.11 System of n masses

by springs. If forces are applied to the carts, we can calculate their displacements
xi by solving a system Ax — b of n equations in n unknowns. Since the i\h cart
is directly attached only to the two adjacent carts, the ith equation involves only the
unknowns x j_ i , x;, and X{+\. Thus its form is

and aij = 0 whenever | i — j| > 1. This is an extreme example of a banded
coefficient matrix. The band width is 3 and the semiband width is 1. Such matrices
are called tridiagonal. •

Example 1.5.2 Consider a 100 x 100 system of equations Ax — b associated with
the grid depicted in Figure 1.12. The ith grid point has one equation and one
unknown associated with it. For example, the unknown could be a nodal voltage (or
a displacement, a pressure, a temperature, a hydraulic head, . . . ) . Assume that the
ith equation involves only the unknowns associated with the ith grid point and the
grid points that are directly connected to it. For example, the 34th equation involves
only the unknowns x24, x33, x34, x35, and x44. This means that in the 34th row of
A, only the entries a34,24, a34,33, a34,34, a34,35 and 034,44 are nonzero. The other
95 are zero. Clearly the same is true for every other equation; no row of A contains
more than five nonzero entries. Thus the matrix is very sparse. It is also banded, if
the equations and unknowns are numbered as shown in the figure. Clearly aij = 0 if
| i - j | > 10. Thus the system is 100 x 100 with a semiband width of 10. •
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Fig. 1.12 "Large" grid

Exercise 1.5.3 Make a rough sketch of the matrix A of Example 1.5.2, noting where the
zeros and nonzeros lie. Notice that even within the band, most of the entries are zero.
Most large application problems have this feature. •

Exercise 1.5.4 Modern applications usually involve matrices that are much larger than the
one discussed in Example 1.5.2. Figure 1.12 depicts a 10 x 10 network of nodes.
Imagine an m x m network with m 3> 10. How many equations does the resulting
system have? How many nonzeros does each row of the matrix have? What is the
bandwidth of the system, assuming that the equations and unknowns are numbered
as depicted in Figure 1.12? Answer these questions in general and also in the specific
cases (a) m = 100, (b) m = 1000. •

Notice that the bandedness depends on how the nodes are numbered. If, for
example, nodes 2 and 100 are interchanged in Figure 1.12, the resulting matrix is not
banded, since a100,1 and a1,100 are nonzero. However it is still sparse; the number
of nonzero entries in the matrix does not depend on how the nodes are ordered.

If a network is regular, it is easy to see how to number the nodes to obtain a narrow
band. Irregular networks can also lead to banded systems, but it will usually be more
difficult to decide how the nodes should be numbered.

Banded positive definite systems can be solved economically because it is possible
to ignore the entries that lie outside of the band. For this it is crucial that the Cholesky
factor inherits the band structure of the original matrix. Thus we can save storage
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space by using a data structure that stores only the semiband of A. R can be stored
over A. Just as importantly, computer time is saved because all operations involving
entries outside of the band can be skipped. As we shall soon see, these savings are
substantial.

Instead of analyzing banded systems, we will introduce a more general idea, that
of the envelope of a matrix. This will increase the generality of the discussion while
simplifying the analysis. The envelope of a symmetric or upper-triangular matrix A
is a set of ordered pairs (i, j), i < j, representing element locations in the upper
triangle of A, defined as follows: (i, j) is in the envelope of A if and only if akj 0
for some k < i. Thus if the first nonzero entry of the jth column is amj and m < j,
then (m, j), (m + 1, j ) , . . . , (j — l,j) are the members of the envelope of A from
the jth column.

The crucial theorem about envelopes (Theorem 1.5.7) states that if R is the
Cholesky factor of A, then R has the same envelope as A. Thus A can be stored
in a data structure that stores only its main diagonal and the entries in its envelope,
and R can be stored over A. All operations involving the off-diagonal entries lying
outside of the envelope can be skipped. If the envelope is small, substantial savings in
computer time and storage space are realized. Banded matrices have small envelopes.
A simple example of an unbanded matrix with a small envelope is

which was obtained from discretization of an ordinary differential equation with a
periodic boundary condition.

Exercise 1.5.6 Identify the envelope of the matrix in (1.5.5). Assuming the matrix is
n x n, approximately what fraction of the upper triangle of the matrix lies within the
envelope? •

Like the band width, the envelope of a matrix depends on the order in which
the equations and unknowns are numbered. Often it is easy to see how to number
the nodes to obtain a reasonably small envelope. For those cases in which it is
hard to tell how the nodes should be ordered, there exist algorithms that attempt to
minimize the envelope in some sense. For example, see the discussion of the reverse
Cuthill-McKee algorithm in [30].

Theorem 1.5.7 Let A be positive definite, and let R be the Cholesky factor of A.
Then R and A have the same envelope.
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Proof. Consider the bordered form of Cholesky's method. At the jth step we solve
a system

where c e Rj-1 is the portion of the jth column of A lying above the main diagonal,
and h is the corresponding portion of R. (See equations (1.4.36) and (1.4.37).) Let
c € RSj be the portion of c that lies in the envelope of A. Then

In Section 1.3 we observed that if c has leading zeros, then so does h:

where h € R.sj. See (1.3.6) and the accompanying discussion. It follows immediately
that the envelope of R is contained in the envelope of A. Furthermore it is not hard
to show that the first entry of h is nonzero. Thus the envelope of R is exactly the
envelope of A. •

Corollary 1.5.8 Let A be a banded, positive definite matrix with semiband width s.
Then its Cholesky factor R also has semiband width s.

Referring to the notation in the proof of Theorem 1.5.7, if c E RSj, then the cost
of the arithmetic in the jth step of Cholesky's method is essentially equal to that
of solving an Sj x Sj lower-triangular system, that is, s? flops. (See the discussion
following (1.3.6).) If the envelope is not exploited, the cost of the jth step is j2 flops.
To get an idea of the savings that can be realized by exploiting the envelope structure
of a matrix, consider the banded case. If A has semiband width s, then the portion
of the jth row that lies in the envelope has at most s entries, so the flop count for the
jth step is about s2. Since there are n steps in the algorithm, the total flop count is
about ns2.

Exercise 1.5.9 Let R be an n x n upper-triangular matrix with semiband width 5. Show
that the system Rx = y can be solved by back substitution in about 2ns flops. An
analogous result holds for lower-triangular systems. n

Example 1.5.10 The matrix of Example 1.5.2 has n = 100 and s = 10. If we
perform a Cholesky decomposition using a program that does not exploit the band
structure of the matrix, the cost of the arithmetic is about n3 3.3 x 105 flops.
In contrast, if we do exploit the band structure, the cost is about ns2 = 104 flops,
which is about 3% of the previous figure. In the forward and back substitution
steps, substantial but less spectacular savings are achieved. The combined arithmetic
cost of forward and back substitution without exploiting the band structure is about
2n2 = 2 x 104 flops. If the band structure is exploited, the flop count is about
4ns — 4 x 103, which is 20% of the previous figure.
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If the matrix is stored naively, space for n2 = 10,000 numbers is needed. If only
the semiband is stored, space for not more than n(s +1) = 1100 numbers is required.

•

The results of Example 1.5.10, especially the savings in flops in the Cholesky
decomposition, are already impressive, even though the matrix is not particularly
large. Much more impressive results are obtained if larger matrices are considered,
as the following exercise shows.

Exercise 1.5.11 As in Exercise 1.5.4, consider the banded system of equations arising from
an m x m network of nodes like Figure 1.12 but larger, with the nodes numbered by
rows, as in Figure 1.12.

(a) For the case m = 100 (for which n = 104) calculate the cost of solving the
system Ax = b (Cholesky decomposition plus forward and back substitution)
with and without exploiting the band structure. Show that exploiting the band
structure cuts the flop count by a factor of several thousand. Show that if only
the semiband is stored, the storage space required is only about 1 % of what
would be required to store the matrix naively.

(b) Repeat part (a) with m = 1000.

•

Savings such as these can make the difference between being able to solve a large
problem and not being able to solve it.

The following exercises illustrate another important feature of banded and enve-
lope matrices: The envelope structure of A is not inherited by A"1. In fact, it is
typical of sparse matrices that the inverse is not sparse. Thus it is highly uneconomical
to solve a sparse system Ax = b by finding the inverse and computing x = A~lb.

Exercise 1.5.12 Consider a mass-spring system as in Figure 1.11 with six carts. Suppose
each spring has a stiffness ki — 1 newton/meter.

(a) Set up the tridiagonal, positive definite, coefficient matrix A associated with
this problem.

(b) Use the MATLAB chol command to calculate the Cholesky factor R. Notice
that R inherits the band structure of A. (To learn an easy way to enter this
particular A, type help toeplitz .)

(c) Use the MATLAB inv command to calculate A~l. Notice that A"1 does
not inherit the band structure of A.

n

Exercise 1.5.13 In the previous exercise, the matrix A~1 is full; none of its entries are zero.

(a) What is the physical significance of this fact? (Think of the equation x — A~lb,
especially in the case where only one entry, say the jth, of b is nonzero. If the
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( i , j ) entry of A~* were zero, what would this imply? Does this make physical
sense?)

(b) The entries of A"1 decrease in magnitude as we move away from the main
diagonal? What does this mean physically?

•

Exercise 1.5.14 Consider the linear system Ax = b from Exercise 1.2.19. The matrix A is
banded and positive definite.

(a) Use MATLAB to compute the Cholesky factor R. Observe that the envelope
is preserved.

(b) Use MATLAB to calculate A~l. Observe that A'1 is full. (What is the
physical significance of this?)

•

Envelope Storage Scheme

A fairly simple data structure can be used to store the envelope of a coefficient matrix.
We will describe the scheme from [30]. A one-dimensional real array DIAG of length
n is used to store the main diagonal of the matrix. A second one-dimensional real
array ENV is used to store the envelope by columns, one after the other. A third
array IENV, an integer array of length n + 1, is used to store pointers to ENV.
Usually IENV( J) names the position in ENV of the first (nonzero) entry of column
J of the matrix. However, if column J contains no nonzero entries above the main
diagonal, then IENV( J) points to column J +1 instead. Thus the absence of nonzero
entries in column J above the main diagonal is signaled by IENV( J) = IENV( J + 1).
IENV(n + 1) points to the first storage location after the envelope. These rules can
be expressed more succinctly (and more accurately) as follows: IENV(1) = 1 and
IENV( J +1) - IENV( J) equals the number of elements from column J of the matrix
that lie in the envelope.

Example 1.5.15 The matrix

is stored as follows using the envelope scheme:
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•

When the envelope storage scheme is used, certain formulations of the Cholesky
decomposition, forward-substitution, and back-substitution algorithms are much
more appropriate than others. For example, we would not want to use the outer-
product formulation of Cholesky's method, because that algorithm operates on (the
upper triangle of) A by rows. In the envelope storage scheme A is stored by columns;
rows are hard to access. The inner-product formulation is inappropriate for the same
reason.4 From the proof of Theorem 1.5.7 it is clear that the bordered form of
Cholesky's method is appropriate. At each step virtually all of the work goes into
solving a lower-triangular system where

If we partition conformably,

the equation . reduces to H22h = c. H22 is a lower-triangular matrix
consisting of rows and columns i — si through i — 1 of RT. A subroutine can be
used to solve H22h — c. What is needed is a forward-substitution routine that solves
systems of the form RTh = c, where R is a submatrix of R consisting of rows and
columns .;' through k, where j and k can be any integers satisfying 1 < j < k < n.
Since RT, hence RT, is stored by rows, the appropriate formulation of forward
substitution is the row-oriented version. This subroutine can also be used with j = 1
and k = n to perform the forward-substitution step (RTy = V) after the Cholesky
decomposition has been completed. Finally, a back-substitution routine is needed to
solve Rx = y. Since R is stored by columns, we use the column-oriented version.

Exercise 1.5.16 Write a set of three Fortran subroutines to solve positive definite systems,
using the envelope storage scheme:

*The inner-product formulation accesses A by both rows and columns.



62 GAUSSIAN ELIMINATION AND ITS VARIANTS

(a) Row-oriented forward-substitution routine, capable of solving systems RTh =
c, where R is a submatrix of R consisting of rows and columns j through k,
l<j<k<n.

(b) Cholesky decomposition routine, bordered form, which calls the forward-
substitution routine to do most of the work.

(c) column-oriented back-substitution routine.

Write a main program that allocates storage, handles input and output, and calls the
subroutines to solve positive definite systems Ax = b. Test your programs using the
test problems given below.

For storage you will need the arrays DIAG, ENV, and IENV discussed above and
one additional real array of length n that holds b initially, gets changed to y during the
forward-substitution step, and finally gets changed to x during the back-substitution
step. The arrays DIAG and ENV contain A initially and get changed to R as the
Cholesky decomposition is computed. This is all the storage space that is needed
(except, of course, for the space occupied by the program itself). Test problems:

The Cholesky decomposition only has to be done once. Solution:



(c) Use your program to show that

is not positive definite.
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(d) Think about how your subroutines could be used to calculate the inverse of a
positive definite matrix. Calculate A"1, where

It turns out that the entries of A l are all integers. Notice that your computed
solution suffers from significant roundoff errors. This is because A is (mildly)
ill conditioned. This is the 3x3 member of a famous family of ill-conditioned
matrices called Hilbert matrices; the condition gets rapidly worse as the size
of the matrix increases. We will discuss ill-conditioned matrices in Chapter 2.

•

1.6 SPARSE POSITIVE DEFINITE SYSTEMS

If one compares a sparse matrix A with its Cholesky factor R, one normally finds
that R has many more nonzero entries than the upper half of A does. The "new"
nonzero entries are called fill or fill-in. How much fill one gets depends on how the
equations are ordered.

Example 1.6.1 An arrowhead matrix like

suffers no fill-in during the Cholesky decomposition. Its Cholesky factor is

which has as many zeros above the main diagonal as A has. Now consider the matrix
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obtained from A by reversing the order of the rows and columns. This reversed
arrowhead matrix has the Cholesky factor

which is completely filled in. Obviously the same will happen to any arrowhead
matrix; the pattern of nonzeros is what matters, not their exact values. Furthermore,
there is nothing special about the case n — 4; we can build arbitrarily large arrowhead
matrices. Notice that A has a small envelope that contains no nonzero entries, whereas
A has a large envelope that includes many zeros. Theorem 1.5.7 guarantees that the
envelope of R will be no bigger than the envelope of A, but it says nothing about the
fate of zeros within the envelope. Usually zeros within the envelope of A will turn
into nonzeros in R. •

The key to making the sparse Cholesky decomposition economical is to keep the
fill under control. Ideally one would like to find the reordering that minimizes fill.
As it turns out, this is a difficult problem (there are n! orderings to consider). The
solution seems to be beyond reach. Fortunately there are several practical algorithms
that do a reasonable job of keeping the fill-in under control [30]. We mention two
of the more popular methods. The reverse Cuthill-McKee algorithm attempts to
make the bandwidth small. The minimum-degree algorithm tries to minimize fill-
in by analyzing the sparsity pattern of the matrix using graph-theoretic methods.
Bandwidth is ignored. For descriptions of these two methods see [30]. We will
explore their performance by means of some MATLAB examples.

MATLAB has considerable support for sparse matrix computations. There is an
easy-to-use sparse matrix data structure. Most of the operations that are available for
full (i.e. non-sparse) matrices can be applied to sparse matrices as well. For example,
if A is a positive-definite matrix stored in the sparse format, the command R =
chol (A) gives the Cholesky factor of A, also stored in the sparse format. There
are also numerous commands that apply strictly to sparse matrices. Type help
spar fun in MATLAB for a list of these.

Example 1.6.2 A nice example of a sparse matrix that's not too big is bucky,
which is the incidence matrix of the Bucky Ball (soccer ball). The Bucky Ball is
a polyhedron with 60 vertices, 32 faces (12 pentagons and 20 hexagons), and 30
edges. An incidence matrix is obtained by numbering the vertices and building a
60 x 60 matrix whose (i, j) entry is 1 if vertices i and j are connected by an edge
and 0 otherwise. Since each vertex is connected to exactly three others, each row of
the Bucky Ball matrix has exactly three nonzero entries. This matrix is not positive
definite; its main diagonal entries are all zero. We can make a positive definite matrix
by adding 31. We did this in MATLAB by typing A = bucky + 3 * speye ( 6 0 ) .
(The command speye ( 6 0 ) gives a 60 x 60 identity matrix, stored as a sparse
matrix.) The resulting A is a 60 x 60 positive definite matrix with four nonzero
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entries in each row and each column. For such a small matrix we do not really need
to use sparse matrix techniques, but it is a good example with which to begin.

Different numberings of the vertices of the Bucky Ball correspond to different
orderings of the rows/columns of A. Figure 1.13 shows the pattern of nonzeros in

Fig. 1.13 Spy plots of several orderings of modified Bucky Ball matrix

A in the "original" ordering specified by MATLAB and in three reorderings. Plots
of this type are called spy plots in MATLAB and are generated by the command
spy (A) . Each of the four plots in Figure 1.13 has 240 dots, corresponding to the
240 nonzero entries of A. We note that the reverse Cuthill-McKee ordering gathers
the nonzeros into a band, whereas the minimum-degree ordering does not. We
calculated the Cholesky factor of A and each of the reorderings and displayed their
spy plots in Figure 1.14. The number of nonzero entries, indicating the amount of
fill, is also listed for each case. In the case of the reverse Cuthill-McKee ordering, the
fill is restricted to a narrow band, but notice that the band is now almost completely
filled in. In fact, the total amount of fill-in incurred by the reverse Cuthill-McKee
ordering is not significantly less than it was for the original ordering or for the random
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Fig. 1.14 Spy plots of Cholesky factors of reorderings of modified Bucky Ball matrix
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reordering. In subsequent exercises you will see that for larger matrices significant
reduction of fill is eventually achieved by reverse Cuthill-McKee.

The most striking revelation of Figure 1.14 is that the minimum-degree algorithm
cuts fill significantly. The Cholesky factor from the minimum degree ordering has
154 fewer nonzero entries than the reverse Cuthill-McKee Cholesky factor has. Of
course, one example does not prove anything, but tests on larger problems confirm
that the minimum degree algorithm does do better than reverse Cuthill-McKee on a
wide variety of problems. However, effective exploitation of the good fill properties
of the minimum-degree ordering requires use of a more flexible data structure for
sparse matrices, since the fill is not restricted to a narrow band. In contrast, if we use
the reverse Cuthill-McKee ordering, we can use a simple banded or envelope scheme
that accommodates the fill automatically. •

MATLAB's sparse matrix data structure is quite simple. Three numbers, m, n,
and nz specify the number of rows, columns, and nonzero entries of the array. The
information about the matrix entries and their locations is stored in three lists (one-
dimensional arrays), i, j, and s, of length (at least) nz. Arrays i and j have integer
entries, and s has (double precision) real entries. For each k < nz, the sparse matrix
A has a nonzero entry equal to s(k) in position ( i ( k ) , j ( k ) ) . 5 When the MATLAB
command R = chol (A) is used to compute the Cholesky factor of the sparse
matrix A, MATLAB has to allocate space for the sparse matrix R. In doing so it must
take into account not only the amount of space that A occupies but also the fill that
occurs as R is computed. This all looks easy to the user, because MATLAB takes
care of all of the details.

Exercise 1.6.3 A larger sparse matrix example supplied by MATLAB is the nonsymmetric
479 x 479 matrix west0479 . To access this matrix type load west0479 .
Then type A = west0479 ; to get a simple abbreviation. Next type size (A)
to confirm the dimensions and is sparse (A) to find out whether A is stored as
a sparse or a full matrix. The answer 1 indicates sparse and 0 indicates full. Type
spy (A) to get a picture of the nonzero structure of A. Notice that it is nonsymmetric.
(Type simply A to get a long list of the nonzero entries of A) The spy plot tells you
that west0479 has 1887 nonzero entries. This information can also be obtained
by typing nnz (A) .

Since west0479 is not positive definite, or even symmetric, it does not have
a Cholesky decomposition. To get a positive definite matrix, type A = A' *A; or
A = west0479 ' *west0479; . Use commands such as is sparse, nnz , and
spy to find out whether your new A is being stored as a sparse matrix, how many
nonzeros it has, and what its sparsity pattern looks like. Calculate the Cholesky factor
of A and several reorderings of A:

5If more than one entry is assigned to a given ( i , j ) location, entries assigned to the same location are added
together. For example, if sparse matrix A has (z(3),j(3)) = ( i ( 7 ) , j ( 7 ) ) = (i(50), j(50)) = (21,36)
(and all other ( i , j ) pairs differ from (21,36)), then 021,35 = s(3) + s(7) + s(50).
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(a) First consider A in its original ordering. Calculate the Cholesky factor of A,
keeping track of how long it takes to do so. For example, you can use the
commands

tic, R = cho l (A) ; toe

or

t = cputime; R = cho l (A) ; time = cputime - t

How many nonzeros does R have? Take a look at the spy plot of R.

(b) Now permute the rows/columns of A randomly and repeat part (a). This is
achieved as follows, for example:

p = randperm(479);
arnd = A(p,p);
spy(arnd)
tic, rrnd = chol(arnd); toe
nz = nnz(rrnd)
spy(rrnd)

The first command returns a random permutation of the integers 1 through 479.
The second produces a new matrix arnd whose rows and columns have been
permuted according to the random permutation.

(c) Repeat part (b) using the reverse Cuthill-McKee ordering instead of a random
reordering. The correct permutation is obtained by replacing the random
permutation by p = symrcm(A) ; . Thus

p = symrcm(A);
arcm = A ( p , p ) ;
spy(arcm)
tic, rrcm = chol(arcm); toe
nz = nnz(rrcm)
spy(rrcm)

The command symrcm is a mnemonic for "SYMmetric Reverse Cuthill-
McKee."

(d) Repeat part (c) using the minimum-degree ordering instead of reverse Cuthill-
McKee. The minimum-degree permutation is obtained by p = symmmd(A);
symmmd is a mnemonic for "SYMmetric MiniMum Degree."

(e) Comment on your results.

•Exercise 1.6.4 The MATLAB command delsq generates sparse matrices associated with
discretized Laplacian ("del squared") operators on various regions. For example, try
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m = 32
A = delsq(numgrid('S',m));
issparse(A)
size(A)

This produces a 900 x 900 matrix. An advantage of this example is that it is scalable.
If this matrix is too small or too big, a larger or smaller version can be obtained
by increasing or decreasing m. In general the matrix A has dimension (m — 2)2.
Its structure is the same as that of the matrices discussed in Example 1.5.2 and
Exercise 1.5.4. For more information on delsq type help delsq and help
numgrid in MATLAB. Numerous variations can be obtained by replacing the ' S '
by other letters in the numgrid command.

Using the matrix A generated as shown above (using a larger m if your computer
allows it), calculate the Cholesky factor of A and several reorderings of A. Use the
MATLAB commands that you learned in Exercise 1.6.3.

(a) Make a spy plot of A. Notice that the original ordering already gives a narrow
bandwidth. Calculate the Cholesky factor of A, noting the CPU time. How
many nonzeros does the Cholesky factor have? Take a look at its spy plot.

(b) Repeat part (a) using a random reordering of the rows/columns of A.
(p = randperm( (m-2) ^2) ; arnd = a ( p , p ) ; ) .

(c) Repeat part (a) using the reverse Cuthill-McKee ordering.

(d) Repeat part (a) using the minimum-degree ordering.

(e) Another ordering that is available for this particular example is the nested-
dissection ordering. Type Anest = delsq(numgrid( 'N' ,m) ) . This
gives the same matrix as before, except that the rows/columns are numbered
according to a nested-dissection ordering [30]. Repeat part (a) using the
nested-dissection ordering.

(f) Discuss the results from parts (a)-(e).

D

Exercise 1.6.5 Another interesting example that is supplied with MATLAB is the "NASA
airfoil." Run the NASA Airfoil command-line Demo by typing airfoil in MAT-
LAB. This begins by plotting a grid of triangles that has been used for computation
of the flow around an airplane wing by the finite element method. The grid has 4253
points or nodes, each having from three to nine neighbors. The Demo also builds
a positive definite matrix A related to the adjacency matrix of the grid. This is a
4253 x 4253 matrix with a —1 in the (i, j] position if i ^ j and node i is adjacent
to node j (the nodes having been numbered beforehand). The main diagonal entries
are made large enough that the matrix is positive definite. The exact recipe for A is
given in the Demo. The Demo then proceeds to produce spy plots of A and several
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reorderings of A. Once you have run the Demo, the matrix A remains in memory for
your use.

(a) Calculate the Cholesky factor of A, noting the CPU time. How many nonzeros
does the Cholesky factor have? Take a look at its spy plot.

(b) Repeat part (a) using the reverse Cuthill-McKee ordering.

(c) Repeat part (a) using the minimum-degree ordering.

(d) Discuss the results from parts (a)-(c).

D

MATLAB comes equipped with many other test matrices, both sparse and full.
Type help elmat for a partial list. In particular, the gallery collection of N.
J. Higham contains many good specimens. Type help gallery and follow the
instructions.

Exercise 1.6.6 Repeat Exercise 1.6.4 (skipping part (e)) using a Wathen matrix from Higham's
gallery. Type A = gallery ( 'wathen' , 2 0 , 1 5 ) , for example. For a bigger
matrix replace the 20 and 15 by larger numbers. Type help private/wathen
for information about this matrix family. D

1.7 GAUSSIAN ELIMINATION AND THE LU DECOMPOSITION

In this and the next section, we will consider the problem of solving a system of n
linear equations in n unknowns Ax = b by Gaussian elimination. The algorithms
developed here produce (in the absence of rounding errors) the unique solution
whenever A is nonsingular. A is not assumed to have any special properties such as
symmetry or positive definiteness.

Our strategy will be to transform the system Ax = b to an equivalent system
Ux = y whose coefficient matrix is upper triangular. The system Ux = y can then
be solved easily by back substitution if U is nonsingular. To say that two systems are
equivalent is to say that they have the same solutions.

We will transform the system by means of elementary operations of three types:

1. Add a multiple of one equation to another equation.

2. Interchange two equations.

3. Multiply an equation by a nonzero constant.

Proposition 1.7.1 If Ax — b is obtained from Ax — b by an elementary operation
of type 1, 2, or 3, then the systems Ax = b and Ax = b are equivalent.

Exercise 1.7.2 Prove Proposition 1.7.1. Discussion: Suppose the system Ax — b is trans-
formed to Ax = b by an operation of type 1. You must show that (a) every solution
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of Ax — b is a solution of Ax = b and (b) every solution of Ax = b is a solution of
Ax = b. Part (a) should be easy. Part (b) becomes easy when you realize that Ax = b
can be recovered from Ax = b by an operation of type 1: If Ax = b was obtained
from Ax = b by adding m times the jth row to the ith row, then Ax — b can be
recovered from Ax — 6 by adding — m times the jth row to the Uh row. Analogous
remarks apply to operations of types 2 and 3. D

It is convenient to represent the system Ax — b by an augmented matrix [A \ b].
Each equation in the system Ax — b corresponds to a row of the matrix [A | b].
The elementary operations on the equations amount to the following elementary row
operations on [A \ b]:

1. Add a multiple of one row to another row.

2. Interchange two rows.

3. Multiply a row by a nonzero constant.

One can also apply elementary row operations to A alone, leaving off the vector
b.

Proposition 1.7.3 Suppose A is obtained from A by an elementary row operation of
type 1, 2, or 3. Then A is nonsingular if and only if A is.

Proof. By Theorem 1.2.3, A is nonsingular if and only if the system Ay = 0 has no
solutions other than y = 0. The same holds for A. If A is obtained from A by some
elementary row operation, then the same row operation will transform the augmented
matrix [A \ 0] to [A \ 0], since the row operation (regardless of type) cannot create
nonzero entries from the zeros in the last column. Thus, by Proposition 1.7.1, the
systems Ay = 0 and Ay = 0 are equivalent, that is, they have the same solutions.
Therefore A is nonsingular if and only if A is. •

Elementary row operations are explored in more depth in Exercises 1.7.34 through
1.7.36. These exercises relate row operation to multiplication by elementary matrices
of types 1, 2, and 3. They also contain an alternate proof of Proposition 1.7.3 that
uses determinants.

In this section our focus will be on operations of type 1. In the next section, type
2 operations will come into play. We will not use type 3 operations, except in the
discussion of scaling in Section 2.8.

Gaussian Elimination without Row Interchanges

We will approach the problem of solving Ax = b in two stages. In the first stage,
which will occupy us for the rest of this section, we will assume that A satisfies a
special property that makes it possible to transform A to upper triangular form using
elementary row operations of type 1 only. The algorithm that we will derive for car-
rying out this transformation is called Gaussian elimination without row interchanges
or Gaussian elimination without pivoting.
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Recall that for k = 1 , . . . , n, the kth leading principal submatrix of A is the matrix
Ak obtained by intersecting the first k rows and columns of A. For the rest of this
section, the following assumption will hold:

In particular, A (= An) is itself nonsingular, so the system Ax = b has a unique
solution.

The reduction to triangular form is carried out in n — 1 steps. In the first step
appropriate multiples of the first row are subtracted from each of the other rows to
create zeros in positions (2,1), (3,1), . . . , (n, 1). It is clear that in order to do this
we must have a11 0. This is guaranteed by the assumption that AI = [an] is
nonsingular. The appropriate multiplier for the ith row is

Exercise 1.7.6 Verify that if mi1 times the first row is subtracted from the ith row of [A \ b],
the resulting array has a zero in the (i, 1) position. D

Thus we carry out the operations

to reduce [A \ b] to the form

It is not necessary to calculate the entries explicitly, because we
know in advance that they are all zero.

In a computer implementation of this step, it is not necessary to store the zeros in
the first column. Those storage spaces can be used for something else. As we shall
soon see, it turns out to be a good idea to store the multipliers m21, m31, . . . , mn1

there. Thus the array that initially contained A and b would look as follows after the
first step:

The cost of the arithmetic in the first step is easily determined by examining (1.7.5)
and (1.7.7). There are n — 1 divisions in (1.7.5) and (n — I)2 + (n — 1) multiplications
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and an equal number of additions in (1.7.7). The total flop count is (In + 1) (n — 1),
which is approximately 2n2.

The second step operates on rows 2, 3 , . . . , n. Any operations that are performed
on these rows will leave the zeros in column 1 undisturbed, because subtraction of a
multiple of zero from zero leaves zero. Thus the second step ignores both the first
row and the first column. Appropriate multiples of the second row are subtracted
from rows 3, 4 , . . . , n to create zeros in positions (3,2), ( 4 , 2 ) , . . . , (n, 2). Thus the
second step is identical to the first, except that it operates on the submatrix

The operations are

and

As in the first step, there is no need to calculate explicitly for i = 3 , . . . , n,

because the multipliers mi2 were chosen so that

In order to carry out this step, we need That this is so follows from the
assumption that

is nonsingular. After the first step, A^ has been transformed to

A-2 was obtained from A2 by subtracting m21 times the first row from the second,
a type 1 row operation. Therefore, by Proposition 1.7.3, the nonsingularitv of A2

implies the nonsingularity of Â2. Since the Â2 is upper triangular and has on its

main diagonal, we conclude that as claimed.
After the second step the augmented matrix will have been transformed to
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In a computer implementation the zeros will be replaced by the multipliers m2 1 , . . . ,
mn1 and m32, . ., mn2 . Since the second step is the same as the first, but on a
matrix with one less row and one less column, the flop count for the second step is
about 2(n- l)2.

The third step is identical to the previous two, except that it operates on the smaller
matrix

In order to carry out the step, we need to have This is guaranteed by
the assumption that A3 is nonsingular. After the first two steps, A3 will have been
transformed to

via two elementary row operations of type 1. Therefore, by Proposition 1.7.3, the
nonsingularity of A3 implies the nonsingularity of Â3. This implies, in turn, that

The arithmetic for the third step amounts to about 2(n — 2)2 flops.
After n — 1 steps the system will be reduced to [U \ y], where U is upper triangular.

For each k, the possibility of carrying out step k is guaranteed by the assumption that
Ak is nonsingular. In the end we know that U is nonsingular because A is. Thus the
system Ux = y can be solved by back substitution to yield x, the unique solution of
Ax = b.

The total flop count for the reduction to triangular form is approximately

As in Section 1.4 (cf. Exercises 1.4.70 and 1.4.71) we can approximate this sum by
an integral:

The additional cost of the back substitution is n2 flops, which is relatively insignificant
for large n. Thus the total cost of solving Ax — b by this method is about |n3 flops.
This is about twice the cost of solving a positive definite system by Cholesky's
method, which saves a factor of 2 by exploiting the symmetry of the coefficient
matrix.

Example 1.7.8 Let



GAUSSIAN ELIMINATION AND THE LU DECOMPOSITION 75

Notice that de t (A 1 ) — 2, det(A2) = 2, and det(A3) = -4, so the leading principal
submatrices are all nonsingular. This guarantees that we will be able to transform
A to upper triangular form by row operations of type 1 only. It also guarantees that
the system Ax = b has a unique solution. In order to solve this system, we form the
augmented matrix

The multipliers for the first step are m2i = a21/a11 — 1 and m31 = a31/a11 = 2.
Thus we subtract 1 times the first row from the second row and 2 times the first row
from the third row to create zeros in the (2,1) and (3,1) positions. Performing these
row operations, we obtain

The multiplier for the second step is Thus we subtract —3
times the second row from the third row to obtain

After two steps the reduction is complete. If we save the multipliers in place of the
zeros, the array looks like this:

We can now solve the system by solving

by back substitution. Doing so, we find that x3 = 1, x2 = 2, and x\ — 3.

Exercise 1.7.10 Let

D

(a) Calculate the appropriate (four) determinants to show that A can be transformed
to (nonsingular) upper-triangular form by operations of type 1 only. (By the
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way, this is strictly an academic exercise. In practice one never calculates these
determinants in advance.)

(b) Carry out the row operations of type 1 to transform the system Ax — b to an
equivalent system Ux — y, where U is upper triangular. Save the multipliers
for use in Exercise 1.7.18.

(c) Carry out the back substitution on the system Ux = y to obtain the solution of
Ax = b. Don't forget to check your work.

•

In real-life problems it will not be practical to verify in advance that the conditions
(1.7.4) are satisfied. This does not of itself stop us from proceeding with the algorithm.
In the course of performing the eliminations, if some Ak turns out to be singular (and
all previous Aj were nonsingular), this fact will be signalled by akk — 0. This
gives us, in principle, a test that we can apply in the course of transforming A to
triangular form, to determine whether or not the conditions (1.7.4) are satisfied.

Although this test is perfectly satisfying in theory, it fails badly in practice. In real
problems the entries are not all integers, the computations are done on a computer,
and there are roundoff errors. Consequently an akk that should be exactly zero in
theory will typically turn out to be nonzero (albeit tiny) in practice. The test then fails
to stop the computation, we divide by this erroneous number to obtain the multipliers
for the kth step, and we end up with a disastrously inaccurate result. We will see how
to deal with this problem in the next section.

Interpretation of the Multipliers

Now let us see why it is a good idea to save the multipliers mij . Suppose we have
solved the system Ax = b, and we now wish to solve another system Ax — b,
which has the same coefficient matrix but a different right-hand side. We could form
the augmented matrix [A \ b] and solve the system from scratch, but this would be
inefficient. Since the coefficient matrix is the same as before, all of the multipliers and
row operations will be the same. If the multipliers have been saved, we can perform
the row operations on the b column only and save a good many computations. Let's
see how this works. The operations on 6 were as follows:
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At the end of the operations b has been transformed to

The same operations applied to b would yield a vector y. The system Ax — b could
then be solved by solving the equivalent upper-triangular system Ux = y, where U
is the upper-triangular matrix that was obtained in the original reduction of A.

Example 1.7.13 Suppose we wish to solve the system Ax = b, where

The coefficient matrix is the same as in Example 1.7.8, so the multipliers are as
shown in (1.7.9), that is, m21 = 1, m31 = 2, and m32 = —3. This means that A can
be transformed to upper-triangular form by subtracting 1 times the first row from the
third row, 2 times the first row from the third row, and —3 times the (new) second
row from the third row. Rather than performing these operations on the augmented
matrix [A \ b], we apply them to the column b only and get

After these transformations, the new right-hand side is

Now we can get the solution by solving Ux — y by back substitution, where

as in Example 1.7.8. Doing so, we find that #3 = 3, x^ — 2, and xi = 1. •

A quick count shows that (1.7.11) takes about n2 flops. Adding this to the n2

flops for back substitution, we find that the total arithmetic cost of solving Ax = b
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is about 2n2 flops. When we compare this with the n3 flops that were needed to
transform A to upper triangular form initially, we conclude that once we have solved
Ax — b, we can solve additional systems with the same coefficient matrix at little
additional cost.

A closer look at the transformation of b to y yields an important interpretation of
Gaussian elimination. By (1.7.12), we can rewrite (1.7.11) in terms of the components
of y as follows:

Together with (1.7.12), these equations can be used to derive expressions for y 1 , y 2 ,
..., yn. By the first equation of (1.7.14), By the first two
equations of (1.7.14), .Similarly
y4 = b4 - m41y1 - m42y2 - m43y3, and in general

We can use (1.7.15) to calculate y1, y2 , . . . yn. Clearly the operations are the same as
those of (1.7.11), but in a different order. The equations (1.7.15) can be interpreted
as a matrix operation if we rewrite them as

This can be expressed as the matrix equation

Thus we see that y is just the solution of a linear system Ly = b, where L is lower
triangular. In fact L is unit lower triangular, which means that its main diagonal
entries are all ones. We learned in Section 1.3 that any lower-triangular system
can be solved by forward substitution. In fact (1.7.15) is just row-oriented forward
substitution. The divisions that are generally required (as in (1.3.3)) are absent from
(1.7.15) because he main-diagonal entries of (1.7.16) are ones. You can easily check
that (1.7.11) is nothing but column-oriented forward substitution.
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A brief summary of what we have done so far will lead to an interesting and
important conclusion: L and U can be interpreted as factors of A. In order to solve
the system

we reduced it to the form

where U is upper triangular, and y is the solution of a unit lower-triangular system

Combining these last two equations, we find that LUx = b. Thus LUx — b = Ax.
These equations hold for any choice of b, and hence for any choice of x. (For a
given x, the appropriate b is obtained by the calculation b = Ax.) Since the equation
LUx = Ax holds for all x E Rn, it must be that

We conclude that Gaussian elimination without row interchanges (saving the multi-
pliers) can be viewed as a process of decomposing A into a product, A — LU, where
L is lower triangular and U is upper triangular. In fact the usual procedure is not to
form an augmented matrix [A | b] but to do row operations on A alone. A is reduced,
saving multipliers, to the form

which contains all information about L and U. The system LUx = b is then solved
by first solving Ly = b for y by forward substitution and then solving Ux — y by
back substitution.

Example 1.7.17 Solve the system Ax = b, where

The coefficient matrix is the same as in Example 1.7.8. From (1.7.9) we know that
A = LU, where
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Solving Ly = b by forward substitution, we get y = [3, —3, — 4]T. Solving Ux = y

by back substitution, we get x = [0, 1, 2]T. •Exercise 1.7.18 Solve the linear system Ax = b, where A is as in Exercise 1.7.10 and

b - [12, -8, 21, -26]T. Use the L and U that you calculated in Exercise 1.7.10. •

We have already proved most of the following theorem.

Theorem 1.7.19 (LU Decomposition Theorem) Let A be an n x n matrix whose
leading principal submatrices are all nonsingular. Then A can be decomposed in
exactly one way into a product

such that L is unit lower triangular and U is upper triangular.

Proof. We have already shown that L and U exist.6 It remains only to show that they
are unique. Our uniqueness proof will yield a second algorithm for calculating the
LU decomposition. Look at the equation A = LU in detail.

The first row of L is known completely, and it has only one nonzero entry. Multiplying
the first row of L by the j'th column of U, we find that

That is, uIJ = aij. Thus the first row of U is uniquely determined. Now that we
know the first row of U, we see that the first column of U is also known, since its
only nonzero entry is MH . Multiplying the ith row of L by the first column of U, we
find that

The assumption that A is nonsingular implies that U is also nonsingular. (Why?)
Hence Ukk 0 for k = 1, ... ,n, and, in particular, u11 0. Therefore (1.7.20)
determines the first column of L uniquely:

6Exercise 1.7.47 outlines a second existence proof.
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Thus the first column of L is uniquely determined. Now that the first row of U and
first column of L have been determined, it is not hard to show that the second row of
U is also uniquely determined. As an exercise, determine a formula for u2j (j > 2)
in terms of a2j and entries of the first row of U and column of L. Once u22 is known,
it is possible to determine the second column of L. Do this also as an exercise.

Now suppose the first k — 1 rows of U and columns of L have been shown to
be uniquely determined. We will show that the kth row of U and column of L are
uniquely determined; this will prove uniqueness by induction. The kth row of L is
[Iki Iki • • • lk,k-i 10 • • • 0]. Since lk\,. • •, lk,k-i are all in the first k—l columns
of L, they are uniquely determined. Multiplying the kth row of L by the jth column
of U (j > k), we find that

All of the umj (aside from U k j ) lie in the first k — l rows of U and are therefore known
(i.e., uniquely determined). Therefore Ukj is uniquely determined by (1.7.21):

This proves that the kth row of U is uniquely determined and provides a way of
computing it. Now that Ukk is known, the entire kth column of U is determined.
Multiplying the ith row of L by the kth column of U, we find that

All of the lim (aside from lik) lie in the first k — l columns of L and are therefore
uniquely determined. Furthermore Ukk 0. Thus (1.7.23) determines lik uniquely:

This proves that the kth column of L is uniquely determined and provides a way of
calculating it. The proof that L and U are unique is now complete. •

Equations (1.7.22) and (1.7.24), applied in the correct order, provide a means
of calculating L and U. Because both (1.7.22) and (1.7.24) require inner-product
computations, we will call this algorithm the inner-product formulation of Gaussian
elimination.7 Historically it has been known as the Doolittle reduction*

7 In contrast, the calculation of L and U by row operations of type 1 is an outer product formulation. See
Exercise 1.7.27.
8 A well-known variant is the Croat reduction, which is very similar but produces a decomposition in
which U, instead of L, has ones on the main diagonal.
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In the calculation of L and U by row operations, the entries of A are gradually
replaced by entries of L and U. The same can be done if the inner-product formulation
is used: a^j (k < j) is used only to compute Ukj, and a^ (i > k) is used only
to compute lik- Therefore each entry of L or U can be stored in place of the
corresponding entry of A as soon as it is computed. You should convince yourself
that the two methods perform exactly the same operations, although not in the same
order. In Gaussian elimination by row operations a typical entry is modified numerous
times before the final result is obtained. In the inner-product formulation the same
modifications are made, but all of the modifications of each entry are made at once.

Example 1.7.25 Let

We will calculate L and U such that A — LU by two different methods. First let's
do Gaussian elimination by row operations.

Step 1:

Step 3:

Now Let's try the inner-product formulation.

Step 1:

The first row of U and column of L have been calculated. The rest of the matrix
remains untouched.

Step 2:
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Step 2:

Step 3:

Now only 1/44 remains to be calculated.

Step 4:

Both reductions yield the same result. You might find it instructive to try the inner-

product reduction by the erasure method. Begin with the entries of A entered in
pencil. As you calculate each entry of L or U, erase the corresponding entry of A
and replace it with the new result. Do the arithmetic in your head.

Now that we have the LU decomposition of A, we perform forward substitution
on

to get y = [—3, 0, 5, — 2]T. We then perform back substitution on

to get x = [4, -3, 2, -1]T. •

Exercise 1.7.26 Use the inner-product formulation to calculate the LU decomposition of the
matrix A in Exercise 1.7.10 •

Exercise 1.7.27 Develop an outer-product formulation of the LU decomposition algorithm in
the spirit of the outer-product formulation of the Cholesky decomposition algorithm.
Show that this algorithm is identical to Gaussian elimination by row operations of
type 1. •
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Variants of the LU Decomposition

An important variant of the LU decomposition is the LDV decomposition, which
has a diagonal matrix sandwiched between two unit-triangular matrices. A matrix B
is a diagonal matrix if bij = 0 whenever i j. Thus all of the entries off of the main
diagonal are zero.

Theorem 1.7.28 (LDV Decomposition Theorem) Let A be an n x n matrix whose
leading principal submatrices are all nonsingular. Then A can be decomposed in
exactly one way as a product

A = LDV,

such that L is unit lower triangular, D is diagonal, and V is unit upper triangular.

Proof. By Theorem 1.7.19 there exist unit lower-triangular L and upper-triangular
U such that A = LU. Since U is nonsingular, Ukk 0 for k = 1 • • •, n. Let D
be the diagonal matrix whose main-diagonal entries are u11, . . . , unn. Then D is
nonsingular; D~l is the diagonal matrix whose main-diagonal entries are u^, . . . ,
u~*. Let V = D~1U. You can easily check that V is unit upper triangular, and
A = LDV.

To complete the proof, we must show that the decomposition is unique. Suppose
A = L1D1V1 = L2D2V2. Let Ui = DiVi and U2 - D2V2. Then obviously Ui
and t/2 are upper triangular, and A = L\U\ — L2U2. By the uniqueness of LU
decompositions, I/i = L2 andC/i = U2. The latter equation implies DIV\ = D2V2;
therefore

D^Dl = VbVf1. (1.7.29)

Since V\ is unit upper triangular, so is V{~1. Since V2 and V^~l are unit upper
triangular, so is V^V^"1. (See Exercises 1.7.44, 1.7.45, and 1.7.46.) On the other
hand, D^lDi is clearly diagonal. Thus by (1.7.29) V2V-^1 is both unit upper
triangular and diagonal; that is, V2V^1 = I. Therefore V2 = Vi and D2 = DI. n

Because of the symmetric roles played by L and V, the LDV decomposition is
of special interest when A is symmetric.

Theorem 1.7.30 Let A be a symmetric matrix whose leading principal submatrices
are nonsingular. Then A can be expressed in exactly one way as a product A —
LDLT, such that L is unit lower triangular and D is diagonal.

Proof. A has an LDV decomposition: A = LDV. We need only show that
V = LT. Now A = AT = (LDV)T = VTDTLT. VT is unit lower triangular, DT

is diagonal, and LT is unit upper triangular, so VTDTLT is an LDV decomposition
of A. By uniqueness of the LDV decomposition, V — LT. •

In Section 1.4 we proved that if A is positive definite, then each of the leading
principal submatrices Ak is positive definite and hence nonsingular. Therefore every
positive definite matrix satisfies the hypotheses of Theorem 1.7.30.
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Theorem 1.7.31 Let A be positive definite. Then A can be expressed in exactly one
way as a product A = LDLT, such that L is unit lower triangular, and D is a
diagonal matrix whose main-diagonal entries are positive.

Exercise 1.7.32 Prove Theorem 1.7.31. To this end it suffices to show that A is positive definite
if and only if the main-diagonal entries of D are positive. See Proposition 1.4.55. D

Theorem 1.7.31 leads to a second proof of the existence of the Cholesky de-
composition: Since the main-diagonal entries of D are positive, we can take their
square roots. Let E = D1/2. This is the diagonal matrix whose main diagonal
entries are Then A = LDLT = LE2LT = LEETLT =
(LE}(LE}T = RTR, where R - (LE)T. Then R is upper triangular with positive
main-diagonal entries, and A = RTR.

The LDLT decomposition is sometimes used in place of the Cholesky decom-
position to solve positive definite systems. Algorithms analogous to the various
formulations of Cholesky's method exist (Exercise 1.7.40). Each of these algorithms
has block versions. The LDLT decomposition is sometimes preferred because it
does not require the extraction of square roots.

The next theorem presents a third decomposition for positive definite matrices that
is preferred in some situations.

Theorem 1.7.33 Let A be positive definite. Then A can be expressed in exactly one
way as a product A = MD~1MT, such that M is lower triangular, D is a diagonal
matrix whose main-diagonal entries are positive, and the main diagonal entries of
M are the same as those of D.

Proof. Starting with the decomposition A — LDLT, let M = LD. Then clearly
A = MD~1MT, and the main-diagonal entries of M are the same as those of D.
The proof of uniqueness is left as an exercise. D

Algorithms for calculating the MD~1MT decomposition can be derived by mak-
ing slight modifications to algorithms for the Cholesky or LDLT decomposition.
Like the LDLT algorithms, the MD~1MT algorithms do not require the computa-
tion of square roots. In a sense the MD"1MT decomposition is more fundamental
than the others; see the discussion of generic Gaussian elimination in Exercise 1.7.55.

The LDLT and MD~1MT algorithms can be applied to symmetric matrices that
are not positive definite, provided the leading principal submatrices are not singular.
However, it is difficult to check in advance whether these conditions are satisfied, and
even if they are, the computation may be spoiled by roundoff errors. Stable, efficient
algorithms for symmetric, indefinite linear systems do exist, but we will not discuss
them here. See the discussion in [33, § 4.4].

Additional Exercises

Exercise 1.7.34 In this exercise you will show that performing an elementary row operation
of type 1 is equivalent to left multiplication by a matrix of a special type. Suppose A
is obtained from A by adding m times the jth row to the ith row.
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(a) Show that A — MA, where M is the triangular matrix obtained from the
identity matrix by replacing the zero by an m in the ( i , j ) position. For
example, when i > j, M has the form

Notice that this is the matrix obtained by applying the type 1 row operation
directly to the identity matrix. We call M an elementary matrix of type 1.

(b) Show that det(M) = 1 and det(Â) = det(A). Thus we see (again) that A is
nonsingular if and only if A is.

(c) Show that M~l differs from M only in that it has — m instead of m in the (i, j)
position. M~l is also an elementary matrix of type 1. To which elementary
operation does it correspond?

D

Exercise 1.7.35 Suppose A is obtained from A by interchanging the ith and jth rows. This is
an operation of type 2.

(a) Show that A — MA, where M is the matrix obtained from the identity matrix
by interchanging the ith and jth rows. We call this M an elementary matrix of
type 2.

(b) Show that det(M) = -1 and det(Â) = - det(A). Thus we see (again) that
A is nonsingular if and only if A is.

(c) Show that M"1 = M. Explain why this result would have been expected, in
view of the action of M as the effector of an elementary operation.

D

Exercise 1.7.36 Suppose A is obtained from A by multiplying the ith row by the nonzero
constant c.

(a) Find the form of the matrix M (an elementary matrix of type 3) such that
A = MA.

(b) Find M"1 and state its function as an elementary matrix.

(c) Find det(M) and determine the relationship between det(Â) and det(A).
Deduce that A is nonsingular if and only if A is.
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D

Exercise 1.7.37 Let A be a symmetric matrix with a11 0. Suppose A has been reduced to
the form

an

by row operations of type 1 only. Prove that A is symmetric. (It follows that
by exploiting symmetry we can cut the arithmetic almost in half, provided Ak is
nonsingular for k — 1 , . . . , n. This is the case, e.g., if A is positive definite.) D

Exercise 1.7.38 (a) Develop a bordered form of Gaussian elimination analogous to the
bordered form of the Cholesky decomposition algorithm, (b) Suppose A is sparse,
its lower part is stored in a row-oriented envelope, and its upper part is stored in
a column-oriented envelope. Prove that the envelope of L (by rows!) equals the
envelope of the lower part of A, and the envelope of U (by columns) equals the
envelope of the upper part of A. D

Exercise 1.7.39 We have seen that if the leading principal submatrices A^ are nonsingular for
& = !,..., n, then A has an L U decomposition. Prove the following converse. If A is
nonsingular and has an LU decomposition, then Ak is nonsingular for k = 1 , . . . , n.
(Hint: Partition the matrices in the decomposition A = LU.) •

Exercise 1.7.40 Develop algorithms to calculate the LDLT decomposition (Theorem 1.7.31)
of a positive definite matrix: (a) inner-product formulation, (b) outer-product formu-
lation, (c) bordered formulation, (d) Count the operations for each algorithm. You
may find that n3 multiplications are required, twice as many for Cholesky's method.
In this case, show how half of the multiplications can be moved out of the inner loop
to cut the flop count to n3/3. A small amount of extra storage space is needed to
store the intermediate results, (e) Which of the three formulations is the same as the
one suggested by Exercise 1.7.37? D

Exercise 1.7.41 Develop algorithms to calculate the MD~1MT decomposition of a positive
definite matrix (Theorem 1.7.33): (a) inner-product formulation, (b) outer-product
formulation, (c) bordered formulation. Again the flop count is about n3/3 if the
algorithms are written carefully. D

Exercise 1.7.42 Prove the uniqueness part of Theorem 1.7.33. D

Exercise 1.7.43 Let A be a nonsymmetric matrix, (a) Prove that if the leading principal
submatrices of A are all nonsingular, then there exist unique matrices M, D, and U,
such that M is lower triangular, D is diagonal, U is upper triangular, M, D, and U
all have the same entries on the main diagonal, and A = MD~1U. (b) Derive an
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algorithm that computes M, D, and U and stores them over A. (Notice that the array
that holds A does have enough room to store M, D, and £7.) D

Exercise 1.7.44 Let L be a nonsingular, lower-triangular matrix.

(a) Prove that L~l is lower triangular. (Outline: Use induction on n, the dimension
of L. Let M = L~l. Partition L and M in the same way:

where Z/n and Mn are square, and LH and L22 are lower triangular and
nonsingular. Since M = L"1, we have LM = I. Partition this equation,
and use it to deduce that Use the
induction hypothesis to conclude that MH and M^ are lower triangular. This
is just one of numerous ways to organize this proof.)

(b) Prove that the entries on the main diagonal of I/"1 are Thus
I/"1 is unit lower triangular if L is.

D

Exercise 1.7.45 Let L and M be lower-triangular matrices.

(a) Prove that LM is lower triangular.

(b) Prove that the entries on the main diagonal of LM are l11m11, . . . , lnninnn.
Thus the product of two unit lower-triangular matrices is unit lower triangular.

D

Exercise 1.7.46 Prove the upper-triangular analogues of the results in Exercises 1.7.44 and
1.7.45. (The easy way to do this is to take transposes and invoke the lower-triangular
results.) D

Exercise 1.7.47 In this exercise you will extend Exercise 1.7.34, expressing the entire reduc-
tion to triangular form by type 1 operations in the language of matrices. Let A be a
(nonsingular) matrix whose leading principal submatrices are all nonsingular.

(a) Define a matrix MI by

where /n-i denotes the (n — 1) x (n — 1) identity matrix, and mi =
[m2 i , . . . , mni]T. Show that
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(b) The first step of Gaussian elimination without row interchanges transforms A
to

Prove that where MI is as in part (a), and m^i,. • •, mni are
the multipliers for step 1, i.e. mn = an /an.

(c) Let A^k> denote the matrix to which A has been transformed after k steps of
Gaussian elimination. Show that where

The blank areas in the array are zeros, and rrik = [mk+i,k, • • • > mnk]
T ,where

mk+1,k ,• • •. mnk are the multipliers for the k\h step.

Matrices of the form of are sometimes called Gauss transforms,
because they effect the transformations of Gaussian elimination.

(d) After n — 1 steps of Gaussian elimination, A has been transformed to the
upper-triangular matrix A(n-1) = U. Prove that A = LU, where L =
MiM2 • • • Mn-1. By Exercise 1.7.45 L is unit lower triangular.

(e) Prove that the matrix L = MI • • • Mn_i from part (d) has the form

For example, verify that

then use this as the basis of an induction proof.

D

Exercise 1.7.48 Write down a careful proof of the existence of the LU decomposition, based
on parts (a) through (d) of Exercise 1.7.47. n
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Exercise 1.7.49 Consider the Gauss transforms Mi introduced in Exercise 1.7.47. Show that
each such matrix has the form M = I — υwT, where v and w are appropriately
chosen vectors. Since VWT is a matrix of rank 1, matrices of the form / — υWT are
called rank-one updates of the identity matrix. D

Exercise 1.7.50 This exercise introduces the idea of block Gaussian elimination. Let A
be a (nonsingular) matrix whose leading principal submatrices are all nonsingular.
Partition A as

where AH is, say, k x k. Since AU is a leading principal submatrix, it is nonsingular.

(a) Show that there is exactly one matrix M such that

In this equation we place no restriction on the form of Ã22 • The point is that we
seek a transformation that makes the (2,1) block zero. This is a block Gaussian
elimination operation; M is a block multiplier.

Show that the unique M that works is given by and this implies
that

The matrix Ã22 is called the Schur complement of AH in A.

(b) Show that

This is a block LU decomposition.

(c) The leading principal submatrices of A11 are, of course, all nonsingular. Prove
that Ã22 is nonsingular. More generally, prove that all of the leading principal
submatrices of Ã22 are nonsingular.

(d) By part (c), both AH and Ã22 have LU decompositions, say AH — LiU\ and
Ã22 = L2U2- Show that

This is the LU decomposition of A.

(e) After k steps of Gaussian elimination without row interchanges, as discussed
in this section and in Exercise 1.7.47, A has been transformed to
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where is upper triangular. The subsequent Gaussian elimination opera-

tions act on only, ignoring the rest of the matrix. Prove that

( i ) t h e upper-triangular factor o f A11,

(ii) , the Schur complement of AH in A.

D

Exercise 1.7.53 Write a careful induction proof of existence and uniqueness of the LU
decomposition, based on the developments in parts (a) through (d) of the previous
exercise. D

Exercise 1.7.54 (a) Prove that if H is nonsingular and symmetric, then H~l is symmetric,
(b) Prove that the Schur complement Ã22 (1.7.51) is symmetric if A is. This result
generalizes Exercise 1.7.37. D

Exercise 1.7.55 Dongarra, Gustavson, and Karp [19] introduced the interesting concept of
a generic Gaussian elimination algorithm. In this exercise we will develop the idea
in the context of positive definite matrices. Let A be positive definite. Then by
Theorem 1.7.33, A can be written as A = MD~1MT, where M is lower triangular,
D is diagonal and positive definite, and M and D have the same main-diagonal
entries.

(a) Rewrite the equation A = MD~1MT in block form, where

Show that ran = an, p = b, and A — MD~1MT, if we define A =
(A is the Schur complement of on in A.)

(b) Use the result of part (a) to derive an outer-product formulation of the MD~1MT

decomposition. Write a pseudocode algorithm that accesses only the lower half
of A and stores M over A.

Your solution should look something like this:

In practice there should be a check for positivity of akk at an appropriate point,
but we have left it out to avoid clutter. The version shown here is the one
obtained if the Schur complement calculation is done by
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columns. If it is done by rows, the i and j loops should be interchanged:

(c) Count the flops in (1.7.56), and note that there are n3/6 divisions. Show
how to cut the number of divisions down to about n2/2 by introducing one
extra temporary storage array of length n and moving the divisions out of the
innermost loop. Once this has been done, the total flop count is about n3/3, as
one would expect.

(d) Develop an inner-product formulation of the MD~1MT algorithm.

Your solution should look something like this:

Again we have left out the positivity check for simplicity. Again one could
move the divisions out of the inner loop. We have left them in the inner loop to
keep the algorithm as uncluttered as possible. Notice that (1.7.56) and (1.7.58)
are identical, except that the loops are nested differently. It is natural to ask
whether one can obtain a valid MD~1MT decomposition algorithm with the
loop indices in any desired order. The answer turns out to be yes; one need
only choose the ranges of the loop indices carefully. Thus we can write down
a generic MD~1MT algorithm

The blanks can be filled with i, j, and A; in any order. We can refer to the outer-
product formulation (1.7.56) as the A^'i-algorithm, because kji is the order of
the loops. If the j and i loops of (1.7.56) are replaced by (1.7.57), we get the
kij-algorithm. The inner-product formulation (1.7.58) is the ji/c-algorithm.
Since i, j, and k can be placed in any order, there are six basic algorithms. This
is true not only for the MD~1MT decomposition algorithms, but also for the
LDLT and Cholesky decomposition algorithms, since these can be obtained
from the MD~1MT algorithms by a few simple modifications.

(e) Develop the bordered form of the MD ~l MT decomposition. Show that this is
either the ijk-algorithm or the ikj-algorithm, depending whether the forward
substitutions are done in a row-oriented or column-oriented manner.
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(f) We may fill in the loop indices i, j, and k in (1.7.59) in any order, provided
that certain relationships between the variables i, j, k, and n are maintained.
Determine these relationships, assuming (as above) that only the lower half of
the array is used.

Solution: l<k<j<i<n.

(g) Now we have derived all of the variants except jki. Write down the jki-
algorithm, starting from (1.7.59), being careful to get the ranges of the loop
indices right.

(h) Modify your algorithm from part (g) so that it computes the Cholesky decom-
position instead of the MD~1MT decomposition. Instead of computing M,
compute G such that A = GGT (i.e. G - RT). (Outline: You will need to
take the square root of aJJ at the appropriate point to get gJJ . [Put in a positivity
check before the square-root operation.] Then you will also need to put in a
loop that divides a column by gJJ . Notice that this eliminates the need for the
divisions in the inner-most loop.)

D

1.8 GAUSSIAN ELIMINATION WITH PIVOTING

We now begin the second phase of our study of the solution of Ax — b by Gaussian
elimination, in which we drop the assumption that the leading principal submatrices
are nonsingular. We will develop an algorithm that uses elementary row operations
of types 1 and 2 either to solve the system Ax — b or (in theory, at least) to determine
that it is singular. The algorithm is identical to the algorithm that we developed in
Section 1.7, except that at each step a row interchange can be made. Thus we are
now considering Gaussian elimination with row interchanges, which is also known
as Gaussian elimination with pivoting. Let us consider the kth step of the algorithm.
After k — 1 steps, the array that originally contained A has been transformed to the
form
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The Uij are entries that will not undergo any further changes (eventual entries of the
matrix U). The rriij are stored multipliers (eventual entries of the matrix L.) The

are the entries that are still active.

To calculate the multipliers for the kth step, we should divide by . If

we will have to use a type 2 row operation (row interchange) to get

a nonzero entry into the (k, k) position. In fact, even if we may still
choose to do a row interchange.

Consider the following possibility. If is very small, it may be that
should be exactly zero and is nonzero only because of roundoff errors made on
previous steps. If we now calculate multipliers by dividing by this number, we will
surely get erroneous results. For this and other reasons, we will always carry out row
interchanges in such a way as to avoid having a small entry in the ( k , k ) position.
The effects of roundoff errors will be studied in detail in Chapter 2.

Returning to the description of our algorithm, we examine the entries

If all are zero, then A is singular (Exercise 1.8.1). Set a flag to
warn that this is the case. At this point we can either stop or go on to step k + 1. If
not all of be the one whose absolute value is
greatest. Interchange rows m and k, including the stored multipliers. Keep a record
of the row interchange. This is easily done in an integer array of length n. Store the
number m in position k of the array to indicate that at step k, rows k and m were
interchanged. Now subtract the appropriate multiples of the new kth row from rows
k + 1, . . . , n to produce zeros in positions (k + I, k), ..., (n, k). Of course, we
actually store the multipliers mk+1, . . . , mnk in those positions instead of zeros.
This concludes the description of step k.

Exercise 1.8.1 After k — 1 steps of the Gaussian elimination process, the coefficient matrix
has been transformed to the form

where B11 is (k — 1) x (k — 1) and upper triangular. Prove that B is singular if the
first column of B22 is zero. D

The eventual (k, k} entry, by which we divide to form the multipliers, is called
the pivot for step k. The kth row, multiples of which are subtracted from each of
the remaining rows at step k, is called the pivotal row for step k. Our strategy,
which is to make the pivot at step k (i.e., at each step) as far from zero as possible
in order to protect against disasters due to roundoff errors, is called partial pivoting.
(Later on we will discuss complete pivoting, in which both rows and columns are
interchanged.) Notice that the pivots end up on the main diagonal of the matrix U of
the LU decomposition. Also, the choice of pivots implies that all of the multipliers
will satisfy |mij | < 1. Thus in the matrix L of the LU decomposition, all entries
will have absolute values less than or equal to 1.
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After n — 1 steps, the decomposition is complete. One final check must be made:
If A is singular; set a flag. This is the last pivot. It is not used to create
zeros in other rows, but, being the (n, n) entry of U, it is used as a divisor in the
back-substitution process.

Each time we did a row interchange, we interchanged the stored multipliers
associated with those rows as well. Because of this, the effect of the row interchanges
is the same as if the rows of A had been interchanged initially. In other words,
suppose we took a copy of the original matrix A and, without doing any elimination
operations, performed the same sequence of row interchanges as we did during the
Gaussian elimination process. This would yield a matrix A that is just A with the rows
scrambled. If we now carried out Gaussian elimination without row interchanges on
A, we would get exactly the same result as we got when we made the interchanges
during the elimination process. Gaussian elimination without row interchanges yields
an LU decomposition. Thus the result of our new algorithm is an LU decomposition
of A, not of A.

Solving the system Ax = b is the same as solving a system Ax — b, obtained by
interchanging the equations. Since we have saved a record of the row interchanges,
it is easy to permute the entries of b to obtain b. We then solve Ly = b by forward
substitution and Ux = y by back substitution to get the solution vector x.

Example 1.8.2 We will solve the system

by Gaussian elimination with partial pivoting.
In step 1 the pivotal position is (1,1). Since there is a zero there, a row interchange

is absolutely necessary. Since the largest potential pivot is the 2 in the (3,1) position,
we interchange rows 1 and 3 to get

The multipliers for the first step are 1/2 and 0. Subtracting 1/2 the first row from the
second row and storing the multipliers, we have

The pivotal position for the second step is (2,2). Since the 4 in the (3,2) position is
larger than the 2 in the (2,2) position, we interchange rows 2 and 3 (including the
multipliers) to get the 4 into the pivotal position:
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The multiplier for the third step is 1/2. Subtracting 1/2 the second row from the
third row and storing the multiplier, we have

This completes the Gaussian elimination process. Noting that the pivot in the (3,3)
position is nonzero, we conclude that A is nonsingular, and the system has a unique
solution. Encoded in (1.8.3) is the LU decomposition of

which was obtained from A by making appropriate row interchanges. You can check
that A - LU, where

To solve Ax — b, we first transform b to b. Since we interchanged rows 1 and 3 at
step 1, we must first interchange components 1 and 3 of b to obtain [-1, 6, 9]T. At
step 2 we interchanged rows 2 and 3, so we must interchange components 2 and 3 to
get b — [—1, 9, 6]T. We now solve

to get y = [ - 1 , 9, 2]T. Finally we solve

to get x — [1, 2, 1]T. You can easily check that this is correct by substituting it back
into the original equation. D

Exercise 1.8.4 Let

Use Gaussian elimination with partial pivoting (by hand) to find matrices L and U
such that U is upper triangular, L is unit lower triangular with | lij | < 1 for all i > j,
and LU — A, where A can be obtained from A by making row interchanges. Use
your LU decomposition to solve the system Ax = b. D
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Gaussian elimination with partial pivoting works very well in practice, but it is
important to realize that an accurate answer is not absolutely guaranteed. There exist
ill-conditioned systems (Chapter 2) that simply cannot be solved accurately in the
presence of roundoff errors. The most extreme case of an ill-conditioned system is
one whose coefficient matrix is singular; there is no unique solution to such a system.
Our algorithm is supposed to detect this case, but unfortunately it usually will not.
If the coefficient matrix is singular, there will be a step at which all potential pivots

are zero. However, due to roundoff errors on previous steps,
the actual computed quantities will not be exact zeros. Consequently the singularity
of the matrix will not be detected, and the algorithm will march ahead and produce
a nonsensical "solution." An obvious precautionary measure would be to issue a
warning whenever the algorithm is forced to use a very small pivot. Better ways to
detect inaccuracy will be discussed in Chapter 2.

The additional costs associated with row interchanges in the partial-pivoting strat-
egy are not great. There are two costs to consider, that of finding the largest pivot at
each step, and that of physically interchanging the rows. At the kth step, n — k + I
numbers must be compared to find the one that is largest in magnitude. This does
not involve any arithmetic, but it requires the comparison of n — k pairs of numbers.
The total number of comparisons made in the n — 1 steps is therefore

Regardless of the exact cost of making one comparison, the cost of making n2/2
comparisons is small compared with the O(n3) arithmetic cost of the algorithm.
The interchange of rows does not require any arithmetic either, but it takes time
to fetch and store numbers. At each step, at most one row interchange is carried
out. This involves fetching and storing 2n numbers. Since there are n — 1 steps,
the total number of fetches and stores is not more than about In2. Thus the cost
of interchanging rows is also negligible compared with the cost of the arithmetic of
the algorithm. It is fair to say, as a rough approximation, that the cost of Gaussian
elimination with partial pivoting is n3 flops.

Permuting the rows of a matrix is equivalent to multiplying the matrix by a
permutation matrix.

Example 1.8.5 Let A and A be as in Example 1.8.2. Then one easily checks that
A = PA, where

D

A permutation matrix is a matrix that has exactly one 1 in each row and in each
column, all other entries being zero. For example, the matrix P in Example 1.8.5 is
a permutation matrix.
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Exercise 1.8.6 Let A be an n x m matrix, and let A be a matrix obtained from A by scrambling
the rows. Show that there is a unique n x n permutation matrix P such that A = PA.

D

Exercise 1.8.7 Show that if P is a permutation matrix, then PTP - PPT - I. Thus P is
nonsingular, and P"1 = PT. D

We now easily obtain the following result.

Theorem 1.8.8 Gaussian elimination with partial pivoting, applied to an n x n
matrix A produces a unit lower-triangular matrix L such that |lij| < 1, an upper
triangular matrix U, and a permutation matrix P such that

Proof. We have seen that Gaussian elimination with partial pivoting produces L
and U of the required form such that A = LU, where A was obtained from A by
permuting the rows. By Exercise 1.8.6, there is a permutation matrix P such that
A = PA. Thus PA = LU or A = P~1LU = PTLU. D

Exercise 1.8.9 Let A be the matrix in Exercise 1.8.4. Determine matrices P, L, and U with
the properties stated in Theorem 1.8.8, such that A = PTLU. •

Given a decomposition A = PTLU, we can use it to solve a system Ax — b, by
writing PTLUx = b, then solving, successively, PTb = b, Ly = b, and Ux = y.
The step PTb — b, or b — Pb, just amounts to rearranging the entries of b in
accordance with the row interchanges that were carried out during the elimination
process. Thus this process is really no different from the process illustrated at the end
of Example 1.8.2. In practice there is never really any need to build the permutation
matrix P. Keeping a record of the row interchanges is just as good and much more
compact. However, MATLAB will display P for you if you ask it to.

Earlier in the chapter there were quite a few exercises that used MATLAB to solve
systems of linear equations. Whenever the command x=A\b is invoked to solve
the system Ax = b (where A is n x n and nonsingular), MATLAB uses Gaussian
elimination with partial pivoting to solve the system. If you want to see the LU
decomposition, use the MATLAB command lu.

Exercise 1.8.10 Use MATLAB to check the LU decomposition obtained in Example 1.8.2.
Enter the matrix A, then type [ L , U , P ] = l u ( A ) . Once you have L, U, and P,
you can put them back together by typing P' *L*U. (In MATLAB the prime symbol,
applied to a real matrix, means "transpose.") You can also try [K, V] = lu (A) ,
and see what that gives you. Give a matrix equation that relates K to L. For a
description of the lu command, type help lu. •

Exercise 1.8.11 Repeat Exercise 1.8.10 using the matrix from Exercises 1.8.4 and 1.8.9. D
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Programming Gaussian Elimination

Exercise 1.8.12 Write an algorithm that implements Gaussian elimination with partial pivot-
ing. Store L and U over A, and save a record of the row interchanges. D

Your solution to Exercise 1.8.12 should look something like this:

If A is found to be singular, the algorithm sets a flag but does not stop. It finishes the
LU decomposition, but U is singular. The array A now contains the LU decomposi-
tion of A — PA, and the array intch contains a record of the row interchanges (i.e.
an encoding of the permutation matrix P).

The bulk of the work is in the row operations. These can be organized several
ways. If each row operation is executed as a loop, we have

Each time through the outer loop, a complete row operation is performed. However
there is no logical reason why the j loop should be on the inside. Clearly the code
segment

for j = k + 1 , . . . , n
fori = fc + l , . . . ,n (1.8.14)



This algorithm takes as inputs the outputs A and intch from the algorithm Gauss.
The array A contains an LU decomposition, and intch contains a record of the row
interchanges. The array b contains the vector b initially and the solution vector x
afterward.

A main program to drive the subroutines Gauss and Solve might be organized
something like this:

100 GAUSSIAN ELIMINATION AND ITS VARIANTS

performs exactly the same operations, and there is no a priori reason to prefer (1.8.13)
over (1.8.14). If (1.8.13) is used, the algorithm is said to be row oriented, because in
the inner loop the row index i is held fixed. If (1.8.14) is used, the algorithm is said
to be column oriented. In this case the elements aij and aik traverse the jth and kth
columns, respectively, as the row index i is stepped forward.

Which orientation is best depends on the language in which the algorithm is
implemented. If Fortran is used, for example, the column-oriented code is generally
faster, because Fortran stores arrays by columns. As each column is traversed,
elements are taken from consecutive locations in the computer memory.

In order to solve systems of linear equations, we need not only an LU decomposi-
tion routine, but also a routine to permute the b vector and perform forward and back
substitution. Such a routine would look something like this:
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This program allows for the possibility that the user would like to solve several
problems Ax — b(1) Ax = b ( 2 ) . . . , Ax — b(k) with the same coefficient matrix.
The LU decomposition is only done once.

Exercise 1.8.15 Write a Fortran program and subroutines to solve linear systems Ax — b
by Gaussian elimination with partial pivoting. Your subroutines should be column
oriented. Try out your program on the test problems Ax = b and Ax = c, where

After the decomposition your transformed matrix should be

The row interchanges are given by intch = [4, 4, 4, 5, 5]. The solution vectors
are [1, 2, 1, 2, 1]T and [2, 1, 2, 1, 2]T. Once you have your program working this
problem correctly, try it out on some other problems of your own devising. D

Exercise 1.8.16 Write a program in your favorite computer language to solve systems of linear
equations by Gaussian elimination with partial pivoting. Determine whether your
language stores arrays by rows or by columns, and write your subroutines accordingly.
Test your program on the problem from Exercise 1.8.15 and other problems of your
own devising. D

Exercise 1.8.17 Write two versions of your Gaussian elimination program, one that is row
oriented and one that is column oriented. Time them on some big problems (using
randomly-generated coefficient matrices, for example.) Which is faster? Is this what
you expected? D

Some modern languages, for example Fortran-90, allow the programmer to leave
the choice of row-oriented or column-oriented code to the compiler. The row opera-
tions (1.8.13) or (1.8.14) amount to an outer-product update (This is the outer-product
formulation)

where
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Fortran-90 allows matrix operations on arrays or sections of arrays. The submatrix
A is denoted a(k + I : n, k + I : n) in Fortran 90 (just as in MATLAB!), and the
update (1.8.18) is given by

The matmul command performs matrix multiplication. This single instruction tells
the computer to perform 2(n — k)2 flops. It is left to the Fortran-90 compiler to
decide on the order in which the flops are performed. This is certainly more compact
than either (1.8.13) or (1.8.14). It may be faster or slower, depending on how well
the matmul command has been implemented in your compiler on your machine.

Our introduction to row interchanges has focused on the outer-product formulation
of Gaussian elimination. However, row interchanges can easily be incorporated into
other formulations of the LU decomposition algorithm (e.g. inner-product formu-
lation, bordered form) as well. Thus there is a great variety of ways to implement
Gaussian elimination with partial pivoting.

For larger matrices the fastest codes are those that make effective use of cache.
To this end, we should perform Gaussian elimination by blocks. The advantages of
blocking were discussed in the context of matrix multiplication in Section 1.1 and
again in the context of the Cholesky decomposition in Section 1.4. A block Gaussian
elimination algorithm can be built using the ideas discussed in Exercise 1.7.50 and in
the discussion of block variants of Cholesky's method in Section 1.4. Every version
of Gaussian elimination has a block variant. The need to perform row interchanges
complicates the procedures but does not change the basic ideas.

Reliable Fortran routines that perform Gaussian elimination with partial pivoting
can be obtained from the public-domain software packages LINPACK and LAPACK
[1]. The LAPACK codes are organized by blocks. There is also a C version of
LAPACK called CLAPACK.

As we have seen, there are many ways to organize Gaussian elimination with
partial pivoting. There are many more details than have been mentioned here, as one
sees by examining some of the codes from LINPACK or LAPACK.

Exercise 1.8.20 Visit the NETLIB repository on the Worldwide Web (http://www.netlib.org).
Browse the repository and find the LINPACK and LAPACK libraries.

(a) Find the LINPACK subroutine dgefa, which does Gaussian elimination with
partial pivoting in a column-oriented manner. Make a copy of the subroutine
and annotate it, telling what each part does. Notice that most of the work
is done by the subroutines idamax, dscal, and (especially) daxpy. These are
Basic Linear Algebra Subroutines or BLAS. Find the BLAS library to figure
out what these subroutines do.

(b) Find the LAPACK subroutine dgetrf. This does Gaussian elimination using
scalar code (dgetf2) or by blocks, depending on the size of the matrix. If the
elimination is done by blocks, the work is done by level-3 BLAS, subroutines
that perform matrix operations. Which one does the bulk of the work?
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D

-1Calculating A

Your program to solve Ax = b can be used to calculate the inverse of a matrix.
Letting X = A~l, we have AX = I. Rewriting this equation in partitioned form as

where x\,..., xn and e 1 , . . . , en are the columns of X and /, respectively, we find
that the equation AX = I is equivalent to the n equations

Solving these n systems by Gaussian elimination with partial pivoting, we obtain
A-1.

Exercise 1.8.22 Use your program to find A- 1 , where A is the matrix in Exercise 1.8.15. D

How much does it cost to calculate A"1 ? The LU decomposition has to be done
once, at a cost of n3 flops. Each of the n systems in (1.8.21) has to be solved by
forward and back substitution at a cost of 2n2 flops. Thus the total flop count is n3.
A more careful count shows that the job can be done for a bit less.

Exercise 1.8.23 The forward-substitution phase requires the solution of Lyi = e^, i =
1, . . . , n. Some operations can be saved by exploiting the leading zeros in ei (See
Section 1.3). Do a flop count that takes these savings into account, and conclude that
A~l can be computed in about 2n3 flops. n

(Exercise 1.8.24 Modify your Gaussian elimination program so that the forward substitution
segment exploits leading zeros in the right-hand side. You now have a program that
can calculate an inverse in 2n3 flops. •

You may be wondering how this method compares with other methods of calculat-
ing A"1 that you have seen. One method that is sometimes presented in elementary
linear algebra classes starts with an augmented matrix [A \ I] and performs row
operations that transform the augmented matrix to the form [/ | X]. That algorithm
also takes 2n3 flops, if it is organized efficiently. In fact it is basically the same
algorithm as has been proposed here. Another method you may have seen is the
cofactor method, which is summarized by the equation

That method requires the computation of many determinants. If the determinants
are calculated in the classical way (row or column expansion), the cost is more than
n! flops. Since n! grows much more rapidly than n3, the cofactor method is not
competitive unless n is very small.
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By the way, there are ways to compute the determinants in fewer than n\ flops. One
very good way is to calculate an LU decomposition. Then det(A) — ± det(U) —
±uuu-22 • • • unn, where the sign is minus (plus) if and only if an odd (even) number
of row interchanges was made. This method obviously costs n3 flops.

Exercise 1.8.25 Verify that this procedure does indeed yield the determinant of A. D

MATLAB has commands inv and det that will compute the inverse and
determinant for you.

Complete Pivoting

A more cautious pivoting strategy known as complete pivoting deserves at least brief
mention. Both row and column interchanges are allowed. At the first step the entire
matrix is searched. The element of largest magnitude is found and moved to the (1,1)
position by a row interchange and a column interchange. (Note that the effect of
an interchange of columns i and j is to interchange the unknowns xi and Xj.) The
maximal element is then used as a pivot to create zeros below it. The second step is
the same is the first, but it operates on the (n — 1) x (n — 1) submatrix obtained by
ignoring the first row and column, and so on. The complete pivoting strategy gives
extra protection against the bad effects of roundoff errors and is quite satisfactory
both in theory and in practice. Its disadvantage is that it is somewhat more expensive
than partial pivoting. In the first step about n2 pairs of numbers have to be compared
in order to find the largest entry. In the second step, (n — I)2 comparisons are
required, in the third step (n — 2)2, and so on. Thus the total number of comparisons
made during the pivot searches is approximately. Since the
cost of making a comparison is not insignificant, this means that the cost of the pivot
searches is of the same order of magnitude as the cost of the arithmetic. In contrast
the total cost of the pivot searches in the partial-pivoting strategy is O(n2) and is
therefore insignificant if n is large. The extra cost of complete pivoting would be
worth paying if it gave significantly better results. However, it has been found that
partial pivoting works very satisfactorily in practice, so partial pivoting is much more
widely used.

Exercise 1.8.26 Let A be an n x m matrix, and let A be a matrix obtained by shuffling
the columns of A. Express the relationship between A and A as a matrix equation
involving a permutation matrix. D

Exercise 1.8.27 (a) Show that Gaussian elimination with complete pivoting, applied to a
nonsingular matrix A, produces unit lower-triangular L, upper-triangular U, and
permutation matrices P and Q, such that
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(b) What additional properties do L and U satisfy? (c) In solving a system Ax = b
by Gaussian elimination with complete pivoting, an additional final step x = Qx
must be carried out. How should this be done in practice? D

On Competing Methods

A variant of Gaussian elimination that is taught in some elementary linear algebra
textbooks is Gauss-Jordan elimination. In this variant the augmented matrix [A \ b]
is converted to the form [/ | x] by elementary row operations. At the fcth step the
pivot is used to create zeros in column k both above and below the main diagonal.
The disadvantage of this method is that it is more costly than the variants that we
have discussed.

Exercise 1.8.28 (a) Do a flop count for Gauss-Jordan elimination and show that about n3

flops are required, which is 50% more than ordinary Gaussian elimination needs, (b)
Why is Gauss-Jordan elimination more expensive than transformation to the form
[U | y], followed by back substitution? (c) How could the operations in Gauss-Jordan
elimination be reorganized so that only n3 flops are needed to get to the form [I | x] ?

D

Another method for solving Ax = b that was at one time covered in most ele-
mentary linear algebra texts is Cramer's rule, which is closely related to the cofactor
method of calculating A~l. Cramer's rule states that each entry Xi in the solution of
Ax = b is a quotient of two determinants:

where A(i) denotes the matrix obtained from A by replacing its ith column by b. This
truly elegant formula is too expensive to be a practical computational tool, except
when n = 2 or 3, because it requires the computation of determinants.

At the end of Section 1.1 we mentioned Strassen's method [68] and other methods
that multiply two n x n matrices together in fewer than O(n3) flops. For example,
Strassen's method takes O(ns) flops, where s = Iog2 7 2.81. These methods can
be modified so that they compute A~l. Therefore there exist methods that solve
Ax = b in fewer than O(n3) flops. Some of these methods could become important
for large, dense (i.e. not sparse) matrix computations at some future date.

All of the methods that we have discussed so far are direct methods; if they were
executed in exact arithmetic, they would produce the exact solution to Ax = b after
a finite, prespecified sequence of operations. A completely different type of method
is the iterative method, which produces a sequence of successively better approxima-
tions to the solution. For extremely large, sparse matrices, iterative methods are the
best choice. We discuss iterative methods in Chapter 7.
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The Symmetric Case

Consider the problem of solving Ax — 6 when A is symmetric. As in the positive-
definite case, one would hope to halve the flop count by exploiting symmetry. If A
is not positive definite, we can expect to have to do some pivoting, but now pivoting
is complicated by the fact that every row interchange should be accompanied by
a matching column interchange to preserve symmetry. Because of this constraint,
it is not always possible to get a big enough entry into the pivotal position (e.g.,
consider a symmetric matrix whose main-diagonal entries are all zero). The solution
is to perform block Gaussian elimination (cf. Exercise 1.7.50) using a 2 x 2 block
pivot whenever a sufficiently large pivot is not readily available. The most popular
algorithm of this type is the Bunch-Kaufman algorithm, which has a flop count of
n3/3 and spends only O(n2) effort on pivoting. It is discussed along with some of
its competitors in [33, § 4.4], for example.

1.9 SPARSE GAUSSIAN ELIMINATION

If we wish to solve Ax = b, where A is large and sparse, we are well advised to
exploit the structure of A. In Section 1.5 we observed that in the symmetric, positive
definite case, huge savings can be realized by using a simple envelope scheme. More
sophisticated methods can yield even better results, as we saw in Section 1.6. At
several places in this chapter we have mentioned that the best alternative for really
large systems is to use iterative methods (Chapter 7). Nevertheless, there remain
many situations where the best alternative is to perform Gaussian elimination with
pivoting, using some sort of sparse data structure. For example, if we want to solve
Ax = b(i) accurately for i = 1,2,3,.. . , with one coefficient matrix and many right-
hand sides, often the best course is to compute a sparse LU decomposition once and
use it over and over again. Situations like this arise in the solution of large, sparse
eigenvalue problems, for example.

In Section 1.6 we observed that the amount of fill-in incurred during Cholesky's
method depends on how the equations and unknowns are ordered. Reordering is a
form of pivoting. In the positive definite case, there is no danger of hitting a zero
pivot, but we may choose to pivot (i.e. reorder) to keep the Cholesky factor as sparse
as possible. However, each row permutation has to be matched by the identical
column permutation to preserve symmetry. In the nonsymmetric case, the row and
column permutations can be different, because there is no symmetry to preserve.
However, we must choose our permutations so that zero pivots and small pivots are
avoided. Thus there are now two objectives, which are potentially in conflict with
one another: (i) to avoid fill, and (ii) to avoid small pivots. For a discussion of these
issues see [21]. We shall content ourselves with some simple illustrations of fill-in
using MATLAB.

Example 1.9.1 Let A denote the 81x81 sparse matrix generated by the command
A = condif (9 , [ 0 . 2 5 ] ) , using the m-file condif.m shown in Exercise 1.9.3.
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This is the matrix of a discretized convection-diffusion operator, with equations and
unknowns numbered in a natural way. Its spy plot, shown in Figure 1.15 shows
that it is a banded matrix. Its sparsity pattern is symmetric, but the matrix itself is

Fig. 1.15 Small convection-diffusion matrix with original ordering

nonsymmetric. For example, a10,1 = -6 and a1,10 = 4.
MATLAB can calculate sparse LU decompositions. The command [ L, U, P ] =

lu (A) , applied to a sparse matrix A, produces an LU decomposition with partial
pivoting. The output is exactly the same as if A were a full matrix, except that L,
U, and P are stored as sparse matrices. Thus L is unit lower triangular with all
entries satisfying | l i j | < 1, U is upper triangular, P is a permutation matrix, and
PA = LU9

Applying this command to our 81 x 81 matrix, we obtain a sparse LU decomposi-
tion. To observe the fill in the L and U factors simultaneously, we type spy (L+U) .
The result is shown in Figure 1.15. We observe that the band structure is disrupted
slightly by pivoting in early steps. Aside from that, the band is almost completely
filled in. Typing nnz (L+U) , we find that there are 1312 nonzero entries in the sum.

For comparison purposes we now apply a random permutation to the columns of
A:

q = randperm(8l);

Ar = A(:,q); % Reorder the columns only.
spy(Ar)

The result is shown in Figure 1.16. Performing the LU decomposition and typing
spy (L+U) , we find that this time there is substantially greater fill. Thus the
natural ordering is significantly better than a random ordering. If you perform this

9 MATLAB offers a threshold pivoting option that can be used instead of partial pivoting. Use of threshold
pivoting sometimes reduces fill. Type help lu for details.
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Fig. 1.16 Convection-diffusion matrix with random reordering of columns

experiment, you will get different results, because randperm will give you a
different permutation.

For a second comparison, use the column minimum-degree ordering supplied by
MATLAB:

q = colmmd(A);
Am = A( : , q) ;
spy(Am)

The result is shown in Figure 1.17. Performing the LU decomposition and typing

Fig. 1.17 Minimum-degree reordering of columns

spy (L+U) , we find that this column reordering results in slightly less fill than the
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original ordering. On larger versions of this matrix, the column minimum degree
ordering yields even better results. See Exercise 1.9.3.

Since the LU decomposition produces L, U, and P for which PA = LU, you
might find it useful to look at spy (P*A) . Compare this with spy(L+U) for all
three orderings. D

Exercise 1.9.2 MATLAB includes a nonsymmetric, sparse demonstration matrix west 047 9
of dimension 479 x 479, that can be accessed by typing load west0479 in
MATLAB. We type A = west0479 ; to give it an abbreviated name.

(a) Calculate the sparse LU decomposition, recording the time it takes to perform
the operation; for example, tic, [ L , U , P ] = l u ( A ) ; toc. Look at
spy plots of A, PA, and L + U, and make note of how many nonzero entries
L + U has.

(b) Modify A by applying a random permutation to the columns. Then repeat part
(a).

(c) Modify A by applying the column minimum-degree ordering to the columns.
Then repeat part (a).

(d) Compare your results from parts (a)-(c).

(e) If your goal is to solve a linear system Ax = 6, you can use any of the
LU decompositions computed in (a)-(c), together with the appropriate row
and column permutations, to do the job. However, MATLAB does not really
require that you go to all that trouble. The MATLAB command x = A\b
works just as well for sparse matrices as for full matrices. This command
causes MATLAB to compute a sparse LU decomposition of A and use it to
solve the system Ax = b.

Generate a vector b at random (b = randn ( 4 7 9 , 1 ) ; for example), and
have MATLAB solve the system Ax = b by the command x=A\b. Time the
operation, and compare it with the times for the LU decompositions in parts
(a)-(c).

n

Exercise 1.9.3 The MATLAB m-file shown below produces matrices of discretized convection-
diffusion operators of various sizes.

function C = condif(n,c)
% C is a square convection-diffusion matrix
% of order n~2. The user must supply n and
% the convection coefficients c(l:2).
I = speye(n);
N = sparse(l:n-l,2:n,l,n,n);
Fl = 2*1 - (l-c(l))*N - (l+c(l))*N';
F2 = 2*1 - (l-c(2))*N - (l+c(2))*N';
C = kron(I,Fl) + kron(F2,I);
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In Example 1.9.1 we used a small matrix of this type. To get some experience with
a larger sparse matrix, generate a matrix A = condif (n, c) using, say, n = 50
(or larger). This gives a 2500 x 2500 matrix. You can use c = [ 0 . 2 5 ] , as in
Example 1.9.1. Repeat Exercise 1.9.2 using this matrix.

n



2
Sensitivity of Linear

Systems; Effects of
Roundoff Errors

When we solve a system of linear equations, we seldom solve exactly the system we
intended to solve; rather we solve one that approximates it. In a system Ax = b,
the coefficients in A and b will typically be known from some measurements and
will therefore be subject to measurement error. For example, in the electrical circuit
problems introduced in Section 1.2, the entries of the coefficient matrices depend on
the values of the resistances, numbers that are known only approximately in practice.
Thus the A and b with which we work are slightly different from the true A and
b. Additional approximations must be made when the numbers are entered into a
computer; the real or complex entries of A and b must be approximated by numbers
from the computer's finite set of floating point numbers. (However, this error is
usually much smaller than the measurement error.)

Because errors are inevitable, it is important to ask what effect small perturbations
in the coefficients have on the solution of a system. When we change the system
slightly, does this cause only a slight change in the solution or an enormous, unac-
ceptable change? As we shall see, not all systems are alike in this regard; some are
much more sensitive than others. The most important task of this chapter is to study
the sensitivity of linear systems.

A second question is one that was already mentioned in Chapter 1. If we solve
a system by Gaussian elimination on a computer, the result will be contaminated by
the roundoff errors made during the computation. How do these errors affect the
accuracy of the computed solution? We shall see that this question is closely related
to the sensitivity issue.

The most comprehensive work on this subject is N. J. Higham's book, Accuracy
and Stability of Numerical Algorithms [41].

777
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2.1 VECTOR AND MATRIX NORMS

In order to study the effects of perturbations in vectors (such as 6) and matrices (such
as A), we need to be able to measure them. For this purpose we introduce vector and
matrix norms.

Vector Norms

The vectors used in this book are generally n-tuples of real (or complex) numbers.
Recall that the set of all real n-tuples is denoted Rn. It is useful to visualize the
members of R2 as points in a plane or as geometric vectors (arrows) in a plane with
their tails at the origin. Likewise the elements of R3 can be viewed as points or
vectors in space. Any two elements of Rn can be added in the obvious manner to
yield an element of Rn, and any element of Rn can be multiplied by any real number
(scalar) to yield an element of Rn. The vector whose components are all zero will be
denoted 0. Thus the symbol 0 can stand for either a number or a vector. The careful
reader will not be confused by this.

The set of all n-tuples of complex numbers is denoted Cn. In this chapter, as in
Chapter 1, we will restrict our attention to real numbers. However, everything that
we do here can be carried over to complex numbers.

A norm (or vector norm) on Rn is a function that assigns to each x E Rn a
non-negative real number || x ||, called the norm of x, such that the following three
properties are satisfied for all x, y E Rn and all a G R:

Exercise 2.1.4

(a) In the equation || 0 || = 0, what it the nature of each zero (number or vector)?

(b) Show that the equation ||0|| =0 actually follows from (2.1.2). Thus it need
not have been stated explicitly in (2.1.1).

D

Any norm can be used to measure the lengths or magnitudes (in a generalized
sense) of vectors in Rn. In other words, we think of || x || as the (generalized) length
of x. The (generalized) distance between two vectors x and y is || x — y \\.

Example 2.1.5 The Euclidean norm is defined by
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You can easily verify that this function satisfies (2.1.1) and (2.1.2). The triangle
inequality (2.1.3) is not so easy. It follows from the Cauchy-Schwarz inequality,
which we will prove shortly (Theorem 2.1.6). The Euclidean distance between two
vectors x and y is given by

In the cases n = 1,2, and 3, this measure coincides with our usual notion of distance
between points in a line, in a plane, or in space, respectively.

Notice that the absolute value signs in the formula for ||x||2 are redundant, as
for any real number xi. However, for complex numbers it is not

generally true that and the absolute value signs would be needed. Thus
the inclusion of the absolute value signs gives a formula for || x ||2 that is correct for
both real and complex vectors. D

Theorem 2.1.6 (Cauchy-Schwarz inequality) For all x, y 6 Rn

Proof. For every real number t we have

where for
all real t, the quadratic polynomial at2 +bt + c cannot have two distinct real zeros.
Therefore the discriminant satisfies b2 — 4ac < 0. Rewriting this inequality as

and taking square roots, we obtain the desired result. D

Now we are ready to prove that the triangle inequality holds for the Euclidean
norm. Thus the Euclidean norm is indeed a norm.

Theorem 2.1.7 For all x, y e Rn, || x + y ||2 < || x ||2 + || y ||2.

Proof. It suffices to show that
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Applying the Cauchy-Schwarz inequality to the middle term on the right-hand side,
we find that

D

Example 2.1.8 Generalizing Example 2.1.5, we introduce the p-norms. For any real
number p > 1, we define

Again it is easy to verify (2.1.1) and (2.1.2), but not (2.1.3). This is the Minkowski
Inequality, which we will not prove because we are not going to use it. D

The most important p-norm is the 2-norm, which is just the Euclidean norm.

Example 2.1.9 Another important p-norm is the 1-norm

In this case (2.1.3) is not hard to prove; it follows directly from the triangle inequality
for real numbers. n

Exercise 2.1.10 Prove that the 1-norm is a norm. D

Exercise 2.1.11 Let x, y E R2. With respect to the 1-norm, the "distance" between x and y
is || x — y ||1 = | x1 — y1| + | x2 — y2 |. Explain why the 1-norm is sometimes called
the taxicab norm (or Manhattan metric). n

Example 2.1.12 The -norm is defined by

n

Exercise 2.1.13 Prove that the -norm is a norm.

Exercise 2.1.14 Given any norm on R2, the unit circle with respect to that norm is the
set {x € R2 | ||x|| = 1}. Thinking of the members of R2 as points in the plane,
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the unit circle is just the set of points whose distance from the origin is 1. On a
single set of coordinate axes, sketch the unit circle with respect to the p-norm for
p = 1, 3/2, 2, 3, 10, and . D

The analytically inclined reader might like to prove that for all x G Rn, || x || =

Example 2.1.15 Given a positive definite matrix A 6 Rn x n, define the A-norm on
Rn by

In Exercise 2.1.17 you will show that this is indeed a norm. D

Exercise 2.1.16 Show that when A = I, the A-norm is just the Euclidean norm. D

Exercise 2.1.17

(a) Let A be a positive definite matrix, and let R be its Cholesky factor, so that
A = RTR. Verify that for all x C Rn, ||x||A = || Rx||2.

(b) Using the fact that the 2-norm is indeed a norm on Rn, prove that the A-norm
is a norm on Rn.

D

Matrix Norms

The set of real m x n matrices is denoted Rmxn. Like vectors, the matrices in
Rm x n can be added and multiplied by scalars in the obvious manner. In fact the
matrices in }Rmxn can be viewed simply as vectors in Rmn with the components
arranged differently. In the case m = n, the theory becomes richer. Unlike ordinary
vectors, two matrices in Rn x n can be multiplied together (using the usual matrix
multiplication) to yield a product in Rn x n. A matrix norm is a function that assigns
to each A E Rn x n a real number || A ||, called the norm of A, such that the three vector
norm properties hold, as well as one additional property, submultiplicativity, which
relates the norm function to the operation of matrix multiplication. Specifically, for
all A, B E R n X n and all α E R,

Example 2.1.22 The Frobenius norm is defined by
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Because it is the same as the Euclidean norm on vectors, we already know that
it satisfies (2.1.18), (2.1.19), and (2.1.20). The submultiplicativity (2.1.21) can be
deduced from the Cauchy-Schwarz inequality as follows. Let C = AB. Then

. Thus

Applying the Cauchy-Schwarz inequality to the expression we find
that

Thus the Frobenius norm is a matrix norm. D

Exercise 2.1.23 Define || A ||max = max1<i, j<n |a i j | . Clearly this function satisfies (2.1.18),
(2.1.19), and (2.1.20). Show by example that it violates (2.1.21) and is therefore not
a matrix norm. D

Every vector norm on Rn can be used to define a matrix norm on Rn x n in a natural
way. Given a vector norm || • ||v, the matrix norm induced by || • || v is defined by

Theorem 2.1.26 will show that the induced norm is indeed a matrix norm. Another
name for the induced norm is the operator norm.

The induced norm has geometric significance that can be understood by viewing
A as a linear operator that maps Rn into Rn: Each x € Rn is mapped by A to the
vector Ax e Rn. The ratio || Ax ||v/||x||v is the magnification that takes place when
x is transformed to Ax. The number || A ||M is then the maximum magnification that
A can cause.

It is a common practice not to use distinguishing suffixes v and M. One simply
uses the same symbol for both the vector norm and the matrix norm and writes, for
example,

We will adopt this practice. This need not lead to confusion, because the meaning of
the norm can always be deduced from the context.
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Before proving that the induced norm is indeed a matrix norm, it is useful to make
note of the following simple but important fact.

Theorem 2.1.24 A vector norm and its induced matrix norm satisfy the inequality

for all A G Rnxn and x G Rn. This inequality is sharp in the following sense. For
all A G Rnxn there exists a nonzero x G Rn for which equality holds.

Proof. If x = 0, equality holds trivially. Otherwise

Thus || Ax || < || A || || x ||. Equality holds if and only if a: is a vector for which the
maximum magnification is attained. (That such a vector exists is actually not obvious.
It follows from a compactness argument that works because Rn is a finite-dimensional
space. We omit the argument.) D

The fact that equality is attained in (2.1.25) is actually less important than the
(obvious) fact that there exist vectors for which equality is approached as closely as
one pleases.

Theorem 2.1.26 The induced norm is a matrix norm.

Proof. The proof is not particularly difficult. You are encouraged to provide one of
your own before reading on. Only the submultiplicativity property (2.1.21) depends
upon (2.1.25).

Each of the first three norm properties follows from the corresponding property
of the vector norm. To prove (2.1.18), we must show that ||A|| > 0 if A 0. If
A 0, there exists a (nonzero) vector x € Rn for which Ax 0. Since the vector
norm satisfies (2.1.1), we have ||Ax|| > 0 and ||x|| > 0. Thus

To prove (2.1.19), we note that for every x G Rn and every α e R, ||α(Ax) || =
| α | || Ax||. This is because the vector norm satisfies (2.1.2). (Remember: Ax is a
vector, not a matrix.) Thus
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Applying similar ideas we prove (2.1.20).

Finally we prove (2.1.21). Replacing x by Bx in (2.1.25), we have || ABx|| <
|| A || ||Bx|| for any x. Applying (2.1.25) again, we have ||Bx|| < \\B\\ \\x\\. Thus

For nonzero x we can divide both sides by the positive number || x || and conclude
that

D

Exercise 2.1.27

(a) Show that for any nonzero vector x and scalar c, || A(cx) ||/||cx|| = | Ax||/||x||.
Thus rescaling a vector does not change the amount by which it is magnified
under multiplication by A. In geometric terms, the magnification undergone
by x depends only on its direction, not on its length.

(b) Prove that the induced matrix norm satisfies

This alternative characterization is often useful.

D

Some of the most important matrix norms are induced by p-norms. For 1 < p <
, the norm induced by the p-norm is called the matrix p-norm:

The matrix 2-norm is also known as the spectral norm. As we shall see in subsequent
chapters, this norm has great theoretical importance. Its drawback is that it is
expensive to compute; it is not the Frobenius norm.

Exercise 2.1.28

(a) Calculate ||I||F and ||I||2, where I is the n x n identity matrix, and notice
that they are different.
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(b) Use the Cauchy-Schwarz inequality (Theorem 2.1.6) to show that for all A 6
Rnxn ||A||2<||A||F.

D

Other important cases are p — 1 and p = . These norms can be computed
easily.

Theorem 2.1.29

Thus ||A||1 is found by summing the absolute values of the entries in each column
of A and then taking the largest of these column sums. Therefore the matrix 1-norm
is sometimes called the column-sum norm. Similarly, the matrix -norm is called
the row-sum norm.
Proof. We will prove part (a), leaving part (b) as an exercise. We first show that

Therefore for all x ^ 0. From this \\A\\-^ <

. To prove equality, we must simply find an x £ Rn for which

Suppose that the maximum is attained in the rath column of A. Let x be the vector with
a 1 in position m and zeros elsewhere. Then ||x||1 = 1, Ax = [a1m a2m • • • anm]T,
and . Thus

D
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Exercise 2.1.30 Prove part (b) of Theorem 2.1.29. (The argument is generally similar to
that of the proof of part (a), but your special vector x should be chosen to have
components ±1, with the sign of each component chosen carefully.) �

Additional Exercises

Exercise 2.1.31 Show that for all x C Rn

The two outer inequalities are fairly obvious. The inequality || x ||2 <||x||1 becomes
obvious on squaring both sides, the inequality is obtained by
applying the Cauchy-Schwarz inequality (Theorem 2.1.6) to the vectors x and y =

[l, l, • • - , l]T. n

Exercise 2.1.32 Make systematic use of the inequalities from Exercise 2.1.31 to prove that
for all A G Rn X n

and

D

2.2 CONDITION NUMBERS

In this section we introduce and discuss the condition number of a matrix A. This is
a simple but useful measure of the sensitivity of the linear system Ax = b.

Consider a linear system Ax = b, where A is nonsingular and b is nonzero. There
is a unique solution x, which is nonzero. Now suppose we add a small vector δb to
b and consider the perturbed system Ax — b + 8b. This system also has a unique
solution x, which is hoped to be not too far from x. Let 6x denote the difference
between x and x, so that x = x + δx. We would like to say that if 6b is small, then
6x is also small. A more precise statement would involve relative terms: when we
say that 8b is small, we really mean that it is small in comparison with 6; when we
say δx is small, we really mean small compared with x. In order to quantify the size
of vectors, we introduce a vector norm || • ||. The size of 8b relative to b is then given
by ||δb||/ || b ||, and the size of δx relative to x is given by | |δx | |/ | |x | | . We would like
to say that if ||δb||/||b|| is small, then | |δx| |/ | |x | | is also small.

The equations Ax = b and A(x +δx) — b + 8b imply that A8x = 5b, that is,
δx = A~ lδb. Whatever vector norm we have chosen, we will use the induced matrix
norm to measure matrices. The equation 8x = A~ lδb and Theorem 2.1.24 imply
that
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Similarly the equation b = Ax and Theorem 2.1.24 imply ||b|| < || A|| ||x||, or

equivalently

Multiplying inequality (2.2.1) by (2.2.2), we arrive at

which provides a bound for | |5x | | / | | x | | intermsof | | (56 | | / | |& | | . The factor | |A | | | |A~ l ||
is called the condition number of A and denoted K(A) [72]. That is,

With this new notation, we rephrase (2.2.3) as the conclusion of a theorem.

Theorem 2.2.4 Let A be nonsingular, and let x and x = x + dx be the solutions of
Ax = b and Ax = b + δb, respectively. Then

Since (2.2.1) and (2.2.2) are sharp, (2.2.5) is also sharp; that is, there exist b and
8b (and associated x and 6x) for which equality holds in (2.2.5).

Exercise 2.2.6

(a) Show that «(A) = K(A~l).

(b) Show that for any nonzero scalar c, K,(cA) = K,(A).

D

From (2.2.5) we see that if K>(A) is not too large, then small values of || 6b | | / | j b \
imply small values of ||δr ||/||x||. That is, the system is not overly sensitive to
perturbations in b. Thus if K(A) is not too large, we say that A is well conditioned.
If, on the other hand, k(A) is large, a small value of | |δb||/|| b|| does not guarantee
that ||δx||/|| x || will be small. Since (2.2.5) is sharp, we know that in this case there
definitely are choices of b and 5b for which the resulting | | δ x | | / | | x | | is much larger
than the resulting | | δ b | | / | | b | | . In other words, the system is potentially very sensitive
to perturbations in b. Thus if K(A) is large, we say that A is ill conditioned.

Proposition 2.2.7 For any induced matrix norm, (a) ||I|| = 1 and (b) K(A) > 1.

Proof. Part (a) follows immediately from the definition of the induced matrix
norm. To prove part (b), we note that / = AA~l, so 1 = ||I|| — || AA~l || <
|| A|| || A-1 | |=k(A). D

Thus the best possible condition number is 1 . Of course the condition number
depends on the choice of norm. While it is possible to concoct bizarre norms such
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that a given matrix has a large condition number with respect to one norm and a
small condition number with respect to another, we will use mainly the 1-, 2-, and

-norms, which typically give roughly comparable values for the condition numbers
of matrices. We will use the notation

So far we have said that a matrix that has a large condition number is ill conditioned,
but we have not said anything about where the cutoff line between well-conditioned
and ill-conditioned matrices lies. Of course there is no point in looking for a precise
boundary. Furthermore the (fuzzy) boundary depends upon a number of factors,
including the accuracy of the data being used, the precision of the floating point
numbers, and the amount of error we are willing to tolerate in our computed solution.
Suppose, for example, that the components of b are correct to about four decimal
places. We do not know the exact value of 6; in the computation we actually use
b + δb, where || δb||/|| b|| 10~4. If we solve the problem accurately, we get not x
but x + Sx, where an upper bound for || δx | |/|| x \\ is given by (2.2.5).

Now suppose K,(A) < 102. Then by (2.2.5) the worst that can happen is
| |δx||/| | x || 10-2. That is, the error in x is not bigger than about one hundredth
the size of x. In many problems, this much error in the solution is acceptable. By
contrast, if K,(A) 104, then (2.2.5) tells us that it can happen that || 6x \\/\\x \ fa 1;
that is, the error could be as big as the solution itself. In this case we would have
to say that the condition number is unacceptably high. Thus it appears that in this
problem the boundary between well-conditioned and ill-conditioned matrices lies
somewhere in the range 102 to 104.

Sometimes the accuracy of the floating point arithmetic can be the deciding factor.
It may be that we know b with extreme accuracy, but if numbers are only stored to
about seven decimal places accuracy in the computer, then we will be forced to work
with b + 6b, where ||δb||/||b|| 10-7. Then if we have K.(A) 107, we cannot
be sure to get a reasonable answer, even if we solve the system very accurately. On
the other hand a condition number of 103, 104, or even 105 may be small enough,
depending on how accurate we require the solution to be.

We are overdue for an example of an ill-conditioned matrix.

Example 2.2.8 Let . You can easily verify that

Thus

The process of computing K2 (A) is more involved; we are not yet ready to describe it.
However, on this small matrix, MATLAB can easily do the job. Using the command
cond(A) or cond(A,2) , we find that k2 (A) 3.992 x 106.
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This matrix would be considered ill conditioned by most standards. We will
discuss it further in Example 2.2.15. •

Example 2.2.9 The the most famous examples of ill conditioned matrices are the
Hilbert matrices, defined by hij — l/(i + j — 1). If we let Hn denote the n x n
Hilbert matrix, then

for example. These matrices are symmetric, can be shown to be positive definite,
and are increasingly ill conditioned as n is increased. For example, according to
MATLAB, K2(H4) 1.6 x 104 and K 2 (H 8 ) 1.5 x 1010. D

Exercise 2.2.10 In MATLAB you can type A = hilb (7) to get the 7 x 7 Hilbert matrix, for
example. Type help cond to find out how to use MATLAB's condition number
function. Use it to calculate KI (Hn), K 2 ( H n ) > and k (Hn) for n = 3,6, 9, and 12.

D

Geometric Interpretation of the Condition Number

We begin by introducing some new terms. The maximum and minimum magnification
by A are defined by

and

Of course, maxmag(A) is nothing but the induced matrix norm \\A\\.

Exercise 2.2.11 Prove that if A is a nonsingular matrix, then

D

From this exercise it follows easily that K(A) is just the ratio of the maximum
magnification to the minimum magnification.

Proposition 2.2.12

Exercise 2.2.13 Prove Proposition 2.2.12. D
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An ill-conditioned matrix is one for which the maximum magnification is much
larger than the minimum magnification.

If the matrix A is nonzero but singular, then there exists x 0 such that Ax = 0.
Thus minmag(A) = 0, and it is reasonable to say that K(A) = . That is, we view
singularity as the extreme case of ill conditioning. Reversing the viewpoint, we can
say that an ill-conditioned matrix is one that is "nearly" singular.

Since a matrix A is singular if and only if det(A) = 0, it is natural to expect
that the determinant is somehow connected to the condition number. This turns out
to be wrong. There is no useful relationship between the condition number and the
determinant. See Exercise 2.2.14. When it comes to assessing sensitivity of linear
systems, the condition number is useful and the determinant is not.

Exercise 2.2.14

(a) Let a be a positive number, and define

Show that for any induced matrix norm we have
1/α, and K(Aa) = 1. Thus Aa is well conditioned. On the other hand,
det(Aa) = a2, so we can make it as large or small as we please by choosing
a appropriately.

(b) More generally, given any nonsingular matrix A, discuss the condition number
and determinant of a A, where a is any positive real number.

D

Example 2.2.15 Let us take another look at the ill-conditioned matrices

from Example 2.2.8. Notice that

If we use the -norm to measure lengths, the magnification factor || Ax || /||x|| x||

is 1999, which equals 11A \ \ ̂ . T h u s i s a vector that is magnified maximally by

A. Since the amount by which a vector is magnified depends only on its direction and

not on its length, we say that

Equivalently we can say that

is in a direction of maximum magnification by A.

lies in a direction of minimum magnification
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by A"1. Looking now at A~1, we note that

The magnification factor ||-4~1a;|| / | | x | | is 1999, which equals IIA"1^, so

is in a direction of maximum magnification by A~l. Equivalently

and is in a direction of minimum magnification by A. We will use the

vectors in (2.2.16) and (2.2.17) to construct a spectacular example.
Suppose we wish to solve the system

that is, Ax — b, where . Then by (2.2.16) the unique solution is

Now suppose that we solve instead the slightly perturbed system

This is Ax = b + 6b, where , which is in a direction of

maximum magnification by A~l. By (2.2.17), A5x = 6b, where

T h e r e f o r e . Thus t h e nearly identical problems (2.2.18)

and (2.2.19) have very different solutions. D

It is important to recognize that this example was concocted in a special way. The
vector b was chosen to be in a direction of minimum magnification by A"1, so that the
resulting x is in a direction of maximum magnification by A, and equality is attained
in (2.2.2). The vector δb was chosen in a direction of maximum magnification by
A"1, so that equality holds in (2.2.1). As a consequence, equality also holds in
(2.2.5). Had we not made such special choices of b and 6b, the result would have
been less spectacular.

In some applications, for example, numerical solution of partial differential equa-
tions, if the solution is known to be a smooth function, it can be shown that b must
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necessarily lie in a direction of large magnification by A~l. Under that restric-

tion it is impossible to create an example that is anywhere near as spectacular as
Example 2.2.15.

We have seen that if a system is ill conditioned, we can build examples where

||δx||/|| x || is much larger than | |<56| |/ | |6 | | . In fact it can also happen that | |&r| |/ | |a; | |
is much smaller than || 6b ||/|| b \\. Inequality (2.2.5) has a companion inequality

which can be obtained by interchanging the roles of x and 8x with b and 6b, respec-
tively, and which is also sharp.

Exercise 2.2.21 Prove Inequality (2.2.20). Under what conditions does equality hold in

(2.2.20)? D

Example 2.2.22 We use the same ill-conditioned matrix A as in the two recent
examples. By (2.2.17) the system

r 1000 9991 r zi i r -i ]
[ 999 998 J [ x2 J ~ [ 1 J

has as its unique solution. If we now perturb this solution by

we obtain which hardly differs from x at

all. However, using (2.2.16),

which is nowhere near Ax. d

Because of their great sensitivity it is generally futile, even meaningless, to try to
solve ill-conditioned systems in the presence of uncertainty in the data.

Exercise 2.2.23 Let

(a) Calculate^."1 and k (A).

(b) Find 6, 6b, x, and dx such that Ax - b, A(x + 6x] = b + 6b, ||δb|| / H & l l
is small, and || δx|| /|| x|| is large.

(c) Find b, δb, x, and δx such that Ax — b, A(x + δx] = b + δb, ||δx|| /||x||
is small, and ||δb|| /||6|| is large.

D
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Ill Conditioning Caused by Poor Scaling

Some linear systems are ill conditioned simply because they are out of scale. Consider
the following example.

Example 2.2.24 Let e be a small positive number. The system

has the unique s o l u t i o n . You can easily check that if e < 1, then then the

coefficient matrix is ill conditioned with respect to the usual norms. In fact KI (A)
= Kz(A) = Koo(A) = 1/e. This system is subject to everything we have said so
far about ill-conditioned systems. For example, one can find a small perturbation in

b that that causes a large perturbation in x: Just take , for which

H a l l o o / H a l l o o = e ' to §e t > which is far f r o m . Notice that

this perturbation of b is small with respect to | 6|| but not small compared to the
component that was perturbed.

If we multiply the second equation of our system by 1/e, we get a new system

which is perfectly well conditioned. Thus the ill conditioning was just a consequence
of poor scaling. D

Theorem 2.2.25 Let A be any nonsingular matrix, and let a\, a?, ..., an denote its
columns. Then for any i and j,

Proof. Clearly ai = Aei, where e^ is the vector with a one in the ith position and
zeros elsewhere. Thus

and



128 SENSITIVITY OF LINEAR SYSTEMS

D

Theorem 2.2.25 implies that any matrix that has columns that differ by several
orders of magnitude is ill conditioned. The same can be said of rows, since A is ill
conditioned if and only if AT is. (You can easily verify that K (A) = KI (AT}. In
Section 4.2 (Corollary 4.2.2) we will see that /^(A) = K2(AT).) Thus a necessary
condition for a matrix to be well conditioned is that all of its rows and columns be
of roughly the same magnitude. This condition is not sufficient, as the matrices in
Example 2.2.8 and Exercise 2.2.23 show.

If a system is ill conditioned because its rows or columns are badly out of scale, one
must refer back to the underlying physical problem in order to determine whether the
ill conditioning is inherent in the problem or simply a consequence of poor choices of
measurement units. The system in Example 2.2.24 was easy to handle only because
it really consists of two independent problems

[ 1 ] [ x1 ] = [ 1 ] and [ € ] [ x2 ] = [ e ] ,

each of which is well conditioned. In general a more careful analysis is required.
Although the rows and columns of any matrix can easily be rescaled so that all of the
rows and columns have about the same norm, there is no unique way of doing it, nor
is it guaranteed that the resulting matrix is well conditioned. Issues associated with
scaling will be discussed in Section 2.8, but no definite advice will be given. Any
decision about whether to rescale or not, and how to rescale, should be guided by the
underlying physical problem.

For a summary of some of the most important known results on scaling to (nearly)
minimize the condition number, see Higham [41]. A different kind of condition
number that is invariant under row scaling is introduced in Section 2.9.

Another Geometric View of III Conditioning

We have already seen one geometric interpretation of ill conditioning. For those
matrices whose rows and columns are not badly out of scale, a second useful geometric
picture of ill conditioning can be developed. Recall that a matrix is singular if and
only if its columns are linearly dependent (Theorem 1.2.3). We will show that
the columns of an ill-conditioned matrix are "nearly" linearly dependent. This is
consistent with the idea that ill-conditioned matrices are "nearly" singular. Let A
be a nonsingular matrix whose rows and columns are not severely out of scale, and
supposed A has been normalized so that \\A\\ = I. That is, if || A || ̂  1, we multiply
A by the scalar 1/|| A \\ to obtain a new matrix whose norm is 1. We have already seen
that multiplying an entire matrix by a scalar does not change its condition number
(Exercise 2.2.6). This normalization procedure is not essential to our argument, but
it makes it simpler and clearer. Since \\A\\ = maxmag(A), we have
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so minmag(A) < 1. This implies that there is a c € Rn such that || Ac||/|| c|| < 1.
Since the ratio || Ac\\/\\ c\\ depends only on the direction of c and not on the length,
we can choose c so that ||c|| = 1, and consequently || Ac\\ << 1. Letting a1, a 2 , . . . ,
an denote the columns of of A, we have

Thus we see that there is a linear combination of the columns of A that adds up to
something small (Ac). If there were a linear combination that added up exactly to
zero, the columns would be linearly dependent. Since A is nonsingular, this cannot
occur. Since there is a linear combination that adds up to something that is "almost"
zero, we say that the columns of A are "nearly" linearly dependent.

A singular matrix had not only linearly dependent columns but also linearly
dependent rows. This suggests that an ill-conditioned matrix should have rows that
are "nearly" linearly dependent. That this is indeed the case follows from the fact
that A is ill conditioned if and only if AT is.

Example 2.2.26 The matrices from Example 2.2.8 and Exercise 2.2.23 have rows
and columns that are nearly linearly dependent. D

The geometric interpretation of ill conditioning is based on the idea that the rows
of an ill-conditioned matrix are nearly linearly dependent. Consider the case n = 2:

The solution set of each of these equations is a line in the (x i ,x2) plane. The
solution of the system is the point at which the two lines intersect. The first line
is perpendicular to the (row) vector [a11 ,a12], and the second line is perpendicular
to [a21 ,a21]. If A is ill conditioned, then these two vectors are nearly dependent;
that is, they point in nearly the same (or opposite) direction. Therefore the lines
determined by them are nearly parallel, as depicted in Figure 2.1. The point labelled
p is the solution of the system. A small perturbation in b\ (for example) causes a
small parallel shift in the first line. The perturbed line is represented by the dashed
line in Figure 2.1. Since the two lines are nearly parallel, a small shift in one of
them causes a large shift in the solution from point p to point q. In contrast, in the
well-conditioned case, the rows are not nearly dependent, and the lines determined
by the two equations are not nearly parallel. A small perturbation in one or both of
the lines gives rise to a small perturbation in the solution.

Example 2.2.27 Consider the system
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Fig. 2.1 Perturbing an ill-conditioned system
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for which the coefficient matrix is the same as in Example 2.2.8. the slopes of the
two lines are

They are so nearly parallel that they are virtually indistinguishable in the vicinity of
their intersection point. Therefore the intersection point is hard to find. d

The system depicted in Figure 2.1 is actually not very ill conditioned at all. It is
not possible to draw a good picture of a truly ill-conditioned system; the lines would
be so nearly parallel as to be indistinguishable.

It is also useful to visualize the case of three equations in three unknowns. The
solution set of each equation is a plane in three-dimensional space. The plane
determined by the ith equation is perpendicular to the row vector [ai1 ai2 a i 3 ] . Each
pair of planes intersects in a line, and the three planes together have a common
intersection point, which is the solution of the system.

In the ill-conditioned case, the rows of the matrix are nearly linearly dependent, so
one of the rows is nearly a linear combination of the other two rows. For the sake of
argument let us say that the third row of A is nearly a linear combination of the other
two rows. This means that the vector [a031 a32 033] nearly lies in the plane spanned
by [an ai2 ^13] and [a^i 022 023]- Therefore the plane of solutions of the third
equation is nearly parallel to the line of intersection of the first and second planes. In
the vicinity of the solution this line appears nearly to lie in the third plane. Thus the
exact location of the solution is hard to distinguish, and a small perturbation of any
of the planes will cause a large perturbation in the solution.

A better description would treat all equations equally rather than distinguishing
the third equation. Such a description is harder to write, but the situation is not hard to
visualize. Think first of a singular system that has infinitely many solutions; picture
three planes that intersect in a line. Now perturb the picture slightly so that there is
only one intersection point, but the three lines determined by intersecting the planes
in pairs remain nearly parallel. This is the ill-conditioned case.

Estimating the Condition Number

The developments of this section have made clear the importance of the condition
number of a matrix. Obviously we would like to be able to compute, or at least
estimate, this quantity at will. In principle the condition number is not hard to
calculate; one simply finds A~l and then calculates \\A\\ \\A~l \\. (Or, if one is
using MATLAB, one simply types cond(A) .) This is fine if A is not too large.
However, for really large A, we would prefer to save the considerable expense of
computing A~1. For our purposes we do not need to know the condition number
exactly; an order-of-magnitude estimate is good enough. What is needed is an
inexpensive estimate of K(A).

Let us suppose that we have already solved the system Ax = b by Gaussian
elimination, and now we would like to estimate K>(A) in order to help us assess
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the quality of our computed solution. Suppose we choose to estimate KI (A) =
H ^ I I J I A"1 ||r From Theorem 2.1.29 we know that it is easy to compute ||^4.||r
What is more challenging is to get an estimate of || A~* \\1. We begin by noting that
for any nonzero w G Mn

Thus, taking w = b, we have A~lw — x,

This gives an inexpensive lower bound for KI (A). More generally, for any nonzero
w eln,

Since we already have an LU decomposition of A at hand, we can calculate A~l w
by solving Ac — w at a cost of only some 2n2 flops. If w is chosen in a direction of
near maximum magnification by A"1, the estimate

will be quite good. Actually any w chosen at random is likely to have a significant
component in the direction of maximum magnification by A~l and therefore to give
a reasonable estimate in (2.2.28). Since a random w will occasionally give a severe
underestimate of K 1 ( A ) , the cautious operator might like to try several different
choices of w;.

More sophisticated approaches conduct systematic searches for a w that points
nearly in the direction of maximum magnification. The most successful method to
date has been the method of Hager, as modified by Higham (see [41]), which uses
ideas from convex optimization to search for a w that maximizes ||A"1w||1/||w||1.
This method, which usually gives an excellent estimate, is the basis of the condition
number estimators in LAPACK [1] and MATLAB.

Exercise 2.2.29 Recall that in MATLAB you can type A = hilb (3) to get the 3 x 3 Hilbert
matrix HZ, for example. Use MATLAB's condition number estimator condest to
estimate KI (Hn) for n = 3, 6,9, and 12. Compare it with the true condition number,
as computed by cond (A, 1) . Note the excellent agreement. D

Exercise 2.2.30 Try MATLAB's condition number estimator on a larger matrix. For example,
try

m = 42; % Make m larger or smaller, as needed.
A = delsq(numgrid('N',m)); % sparse matrix
size(A) % of dimension (m-2)~2.
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B - full(A); % nonsparse version of A

issparse(B)

tic; cl = condest(A), toe

tic; c2 = cond(B,l), toc

Comment on the speed and accuracy of condest. You might also like to try tic ;
c3 = cond (B, 2) , toc , which computes k2(-B). However, you may find that
this takes too long unless you decrease the size of the problem by decreasing m.
This is a time consuming calculation, because it requires the singular values of B
(Section 4.2). D

MATLAB's condest function has to compute the LU decomposition of the ma-
trix, since it cannot assume that an LU decomposition is available. Thus condest
is less efficient than it would be if the decomposition were assumed available. How-
ever, if the matrix under consideration is sparse, condest will do a sparse LU
decomposition (Section 1.9), thereby saving a lot of work. This explains the good
outcome in Exercise 2.2.30.

2.3 PERTURBING THE COEFFICIENT MATRIX

Up to this point we have considered only the effect of perturbing 6 in the system
Ax = b. We must also consider perturbations of A, as A is also known and
represented only approximately. Thus, let us compare two systems Ax = b and
(A + δ A ) x — b, where || δA ||/|| A \\ is small. Our first task is to establish a condition
that guarantees that the system(A + δ A ) x = b has a unique solution, given that the
system Ax = b does. This is given by the following theorem, which, along with
the subsequent theorems in this section, is valid for any vector norm and its induced
matrix norm and condition number.

Theorem 2.3.1 If A is nonsingular and

then A + δA is nonsingular.

Proof. The hypothesis || δA ||/|| A \\ < l/K,(A) can be rewritten in various ways, for
example, ||δA|| < l/| |A"1 | | and ||δA|| | |A~ l | |< I. We'll use this last form of
the inequality, and we'll prove the contrapositive form of the theorem: If A + δA is
singular, then ||δA|| | |A" 1 | |> 1.

Suppose A + δA is singular. Then, by Theorem 1.2.3, there is a nonzero vector
y such that (A + 5A)y = 0. Reorganizing this equation, we obtain y = — A~ lδAy,
which implies \\y\\ = \ A~ lδAy \\ < \\ A~l \\ \ \ δ A \ \ \\y\\. Since || y \\ > 0, we can
divide both sides of the inequality by || y \\ to obtain 1 < || A"1 1| || δA ||, which is the
desired result. D
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Theorem 2.3.1 demonstrates another important function of the condition number;
it gives us an idea of the distance from A to the nearest nonsingular matrix: If A + δA
is singular, then || δA ||/|| A \\ must be at least 1/K,(A}. It turns out that for the spectral
norm this result is exact: If A + δA is the singular matrix closest to A, in the sense
that | |δA||2 is as small as possible, then ||δA||2/|| A| | 2 is exactly 1/K2(A). We will
prove this in Corollary 4.2.22.

As long as (2.3.2) is satisfied, we are assured that the equation (A + δA)x = b has
a unique solution. Notice that (2.3.2) is hard to satisfy if A is ill conditioned; that is,
it is satisfied only for very small perturbations δA. If, on the other hand, A is well
conditioned, (2.3.2) holds even for relatively large perturbations.

Now let us consider the relationship between the solutions of Ax = b and (A +
δ A ) x = b. Let 8x = x — x, so that x = x + 8x. Under what conditions can we
conclude that | |δx| |/| |x| | is small? We would like an upper bound on \ \ δ x | | / | | x | |
in the spirit of Theorem 2.2.4. We will obtain such a bound eventually, but it
turns out to be easier to bound ||δx||/|| x ||. In most cases there will not be much
difference between \\x\\ and || x ||, so it makes little difference which one we use in
the denominator.

Theorem 2.3.3 Let A be nonsingular, let b 0, and let x and x = x + δx be
solutions of Ax = b and (A + δA)x = b, respectively. Then,

Proof. Rewriting the equation (A + δA)x = b as Ax + A8x + 8Ax — b, using
the equation Ax = b, and reorganizing the resulting equation, we obtain 8x —
-A~16Ax. Thus

Dividing through by \\x\\ and using the definition K(A) = \\A\\ \\ A~l ||, we obtain
the desired result. D

Theorem 2.3.3 shows that once again the condition number of A plays the decisive
role. If K-(A) is not too large, then a small perturbation in A results in a small
perturbation in x, in the sense that || 8x \\/\\ x \\ is small.

It is interesting to note that Theorem 2.3.3 does not rely on nonsingularity of
A + 8A, nor on any assumption to the effect that δA is small. In contrast, the next
theorem, which provides a bound on || δx ||/|| x ||, does make such an assumption.

Theorem 2.3.6 If A is nonsingular, | |δA||/| | A|| < 1/k(A), b 0, Ax = b, and
(A + 8A)(x + 8x) = b, then
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If A is well conditioned and || δA \\/\\ A \\ is sufficiently small, then ||δA \\/\\ A \\ <
I/K(A). In this case the denominator on the right side of (2.3.7) is approximately 1.
Then (2.3.7) states roughly that

which is almost the same as (2.3.4). This shows that if A is well conditioned and
||δA | | / l l A|| is small, then ||δx \\/\\ x \\ is small.

If, on the other hand, A is ill conditioned, then (2.3.7) allows (but does not prove)
that ||δx ||/|| x || could be large, even if || δA \ \ / \ \ A \\ is small.
Proof. The proof of Theorem 2.3.6 is the same as that of Theorem 2.3.3, up to (2.3.5).
Rewriting x as x + 6x in (2.3.5) and using the triangle inequality, we find that

Now rewrite this inequality so that all of the terms involving || δx \\ are on the left-hand
side.

The assumption | |δA| |/ | | A\\ < l/K,(A) guarantees that the factor that multiplies
||δx || is positive, so we can divide by it without reversing the inequality. If we also
divide through by || x ||, we obtain the desired result. D

So far we have considered the effects of perturbing b and A separately. This was
done not out of necessity but from a desire to keep the analysis simple. The combined
effects of perturbations in A and 6 can be expressed in a single inequality, as the next
two theorems show. The first is in the spirit of Theorem 2.3.3, and the second is in
that of Theorem 2.3.6.

Theorem 2.3.8 Let A be nonsingular, and suppose x and x satisfy Ax — b and
Ax = b, respectively, where A — A + δA, x = x + δx ^ 0, and b = b + δb / 0.
Then

Of the terms on the right-hand side, the product term is usually negligible. For

example, if

Theorem 2.3.9 If A is nonsingular, | |<JA| |/ | |A| | < l/K(A), b / 0, Ax = b, and
(A + δ A ) ( x + δx] = b + δb, then
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Example 2.3.11 In Example 1.2.6 we considered an electrical circuit that leads to
the linear system

which we solved to determine the voltages at the nodes of the circuit. If we solve
the system using MATLAB or any other reliable software, we obtain an extremely
accurate solution (See Example 2.4.2 below). It is the accurate solution of the given
system, but what if the entries of A and b are incorrect? The entries of A depend
on the resistances in the circuit, and the one nonzero entry of b depends also on the
voltage of the battery. None of these quantities are known exactly. Theorem 2.3.9
gives us information about the effects of inaccuracies. Suppose, for example, the
resistances and the voltage are known to be in error by less than one one hundredth
of one percent. This means that the relative error is less than 10~4, so, roughly
speaking,

Thus the computed nodal voltages are off by at most one quarter of one percent.
It should be noted that the actual error is likely to be much less than this. Results
obtained using an upper bound like the one in Theorem 2.3.9 tend to be quite
pessimistic. D

Exercise 2.3.12 Prove Theorem 2.3.8. Do it your way, or use the following outline,

(a) Show that

and

(b) Show that

and therefore

(c) Combine the results of (a) and (b) to finish the proof.

Using MATLAB's cond function, we get K% (A) = 12.7. Substituting these values
into (2.3.10), we find that
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D

Exercise 2.3.13 Prove Theorem 2.3.9 by combining elements of the proofs of Theorems 2.2.4
and 2.3.6. D

Geometric pictures of two- and three-dimensional ill-conditioned systems such as
those we developed to visualize the effects of perturbations in b are also useful for
visualizing perturbations in A. Whereas perturbations in b cause parallel shifts of the
lines or planes, perturbations in A cause nonparallel shifts.

2.4 A POSTERIORI ERROR ANALYSIS USING THE RESIDUAL

So far we have been studying the sensitivity of the solution of Ax = b to perturbations
in the data. Now we switch to a related question. If we solve the system Ax = b
using Gaussian elimination or some other method, how do the roundoff (and other)
errors affect the accuracy of the computed solution? Before getting into the details
of floating-point arithmetic and roundoff error analysis, let us pause to make note of
a simple error test that uses the residual and the condition number.

Suppose we have computed a solution of the system Ax = b by any method
whatsoever. Call this computed solution x. Regardless of how we obtained x, we
can easily compute the residual f = b — Ax, which gives a measure of how well x
fits the equations. The fit is good if f is small (more precisely, if || r ||/|| b \\ is small);
f = 0 if and only if x is the true solution of Ax = b.

A tiny residual is reassuring. It guarantees that x is the solution of a system that
is close to Ax — b: If we define 8b = —f, then x is the exact solution of the system
Ax — b + Sb, which is just a slight perturbation of the system Ax = b. Unfortunately
this does not guarantee that x is close to x; we have to take the condition number of
A into account. Writing x = x + 6x, as in Section 2.2, we see that Theorem 2.2.4
gives us an upper bound on the relative error || Sx \\/\\ x \\. Restating Theorem 2.2.4
as a statement about residuals, we have the following result.

Theorem 2.4.1 Let A be nonsingular, let b ̂  0, and let x be an approximation to the
solution of Ax = b. (In other words, let x be any vector whatsoever.) Letf = b — Ax.
Then

From this simple theorem we see that if the residual is tiny and A is well condi-
tioned, then x is an extremely accurate approximation to x. The cost of calculating
f is only about 2n2 flops if A is full and even less if A is sparse. If we also have
an efficient means of calculating or estimating the condition number (as discussed
at the end of Section 2.2), then we may be able to use this theorem to guarantee the
accuracy of our computed solution.

Theorem 2.4.1 is an example of an a posteriori error bound. It is a bound we
obtain after we have solved the problem (i.e. computed x). In contrast, an a priori
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error analysis attempts to determine, before solving a problem, whether the method is
going to produce an accurate solution. A posteriori analyses are generally easier and
more informative than a priori analyses because they can make use of the computed
solution and any other information that was obtained in the course of the computation.
In Section 2.7 we will develop an a priori analysis of the accuracy of the solution of
a linear system by Gaussian elimination in the presence of roundoff errors.

Example 2.4.2 Consider the linear system

from Example 1.2.6. The components of the solution x are the nodal voltages of the
circuit shown in that example. Entering the matrix A and vector b into MATLAB
and using the commands

format long
xhat = A\b

we find that

We write x to indicate that this result is not exactly the true solution, since roundoff
errors occurred during the calculation. To check the accuracy of the result, we
perform the additional operations

rhat = b - A*xhat;
nr = norm(rhat)
ca = cond(A)
errbound = ca*nr/norm(b)

to find that || r ||2 = 1.05 x 10~15, K2(A) = 12.7, and

This shows that our computed solution is very accurate. Roughly speaking, its entries
agree with the correct nodal voltages to at least fourteen decimal places.

This assumes, of course, that the data (A and 6) are correct. However, since A is
well-conditioned, we know from results in Section 2.3 that slight errors in A and b
will perturb the solution only slightly. See Example 2.3.11. D

Exercise 2.4.3 Consider the system
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from Example 1.2.8. The components of the solution are the loop currents in the
electrical circuit in that example. Use MATLAB to solve the system, compute the
residual and condition number, and show that the computed solution is extremely
accurate. •

Exercise 2.4.4 Rework Exercise 1.2.17. Compute the solution using MATLAB. Compute the
residual and condition number, and conclude that the computed solution is extremely
accurate. D

Exercise 2.4.5 If the matrix is large, we prefer to estimate the condition number instead of
trying to compute it exactly. Using MATLAB, solve a system Ax = b, where A is a
large discrete Laplacian operator:

m - 42; % Make m larger or smaller, as needed.

A = delsq(numgrid('N',m));

n - size(A,1)

b = ones(n,l); % l'all ones'' right-hand side.

xhat = A\b;
ca = condest(A)

Compute the residual, and use condest and Theorem 2.4.1 to estimate the error.
Since condest estimates the 1-condition number Ki(A), use 1-norms in your
estimate. D

2.5 ROUNDOFF ERRORS; BACKWARD STABILITY

This section begins with a discussion of floating-point arithmetic and the effects of
roundoff errors. The accuracy of arithmetic operations in the presence of errors
is studied. It is found that a sudden loss of (relative) accuracy can occur when
a cancellation occurs in the addition or subtraction of two numbers. Because of
the threat of cancellation, it is impossible to analyze the errors in a complicated
algorithm like Gaussian elimination in a forward or direct way. Therefore a more
modest approach, backward error analysis, is introduced.

Floating-point Arithmetic

Most scientific computations are performed on computers using floating-point arith-
metic, which is the computer version of scientific notation. We will not define
the term but instead give some examples. The number .123456 x 107 is a six-
digit decimal floating-point number. It has a mantissa .123456 and an exponent
1. It is called a decimal number because the number base is 10 (and of course
the mantissa is interpreted as a base-10 fraction). Because the number has an
exponent, the decimal point can "float" rather than remaining in a fixed posi-
tion. For example, .123456 x 103 = 123.456, .123456 x 108 = 12345600., and
.123456 x 10~2 = .00123456. The advantage of the floating-point representation is
that it allows very large and very small numbers to be represented accurately. Other
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examples of floating-point numbers are .6542 x 1036, a large four-digit decimal
number, and —.71236 x 10~42, a small, five-digit decimal number. A floating-point
number is said to be normalized if the first digit of its mantissa is nonzero. Thus
the examples we have looked at so far are normalized, whereas .0987 x 106 and
— .0012346 x 10~4 are not normalized. With few exceptions, nonzero floating-point
numbers are stored in normalized form.

Each mantissa and each exponent takes up space in the computer's memory. In a
floating-point number system a fixed amount of space is allocated for each number,
so there are limitations to the precision with which numbers can be represented. For
example, if we are using a decimal (base-10) machine that stores four decimal digits,
we cannot represent the number .11112xl05 exactly. We must approximate it by the
nearest floating-point number, which is .1111 x 105. Also, each arithmetic operation
will be accompanied by a roundoff error. Suppose, for example, we multiply the
floating point number .1111 x 101 by .1111 x 102. Multiplying the mantissas and
adding the exponents, we obtain the exact result. .01234321 x 103, which we
normalize to .1234321 x 102. The mantissa of this result has more digits than we can
store, so we must approximate it by the nearest floating-point number .1234 x 102.
This is where the roundoff error occurs.

Since each number's exponent must also be stored within some prescribed amount
of space, there is also a limit to the size of exponents that can be represented. Numbers
that are past a certain threshold cannot be represented in the floating-point system.
If a computation results in a number that is too big to be represented, an overflow is
said to have occurred. For example, if our system can represent numbers up to about
10", an overflow will occur if we try to multiply, say, 1055 by 1050. This undesired
event may cause the computer to stop execution of the program (depending on how
certain compiler flags have been set). If a number that is nonzero but too small to be
represented is computed, an underflow results. For example, if our number system
allows storage of numbers as small as about 10~", and underflow will occur if we
multiply 10~55 by 10~50. A common remedy for underflow is to set the result to
zero. This action is usually (but not always) harmless. With one or two exceptions
we will ignore the possibility of underflow or overflow.

All of our examples use base-10 arithmetic, because that is what we humans
are used to. Hand-held calculators aside, most computers do not use a base-10
representation; a power of two is more convenient architecturally. In the early days
of computing, each manufacturer made its own decisions about the characteristics
of its computers' floating point arithmetic (e.g. number base, how many digits are
allocated to the mantissa and how many to to the exponent). Thus there were
many different floating point systems in use, some better than others. Since the
adoption of the IEEE floating-point standard (ANSI/IEEE Standard 754-1985) in
1985, the situation has improved dramatically. Nowadays all of the inexpensive,
widely-available microprocessors conform to this standard.

Here we will outline some of the basic properties of IEEE arithmetic. For more
details see [15], [41], or [52]. The IEEE standard supports both single precision
and double precision floating-point numbers. In both cases the number base is two.
Single precision numbers are stored in 32-bit words, of which 24 bits are used for
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the mantissa and the other 8 for the exponent. Since 224 « 107, 24 bits are enough
to store approximately seven decimal digits worth of information. In other words,
single precision numbers can be accurate to about seven decimal places. With eight
bits for the exponent it is possible to represent exponents from about —128 to +128.
Since these are exponents of the base 2 (not 10), the range of numbers that can be
represented is from about 2~128 w 10~38 to 2128 « 1038. (These are very coarse
approximations.)

Double precision IEEE floating-point numbers are allocated 64 bits, of which 53
are used for the mantissa and 1 1 for the exponent. Since 253 « 1016 , double precision
numbers can be accurate to about 16 decimal places. Eleven bits of exponent allow
the representation of numbers from about 2~1024 10308 to 21024 10308, an
extremely wide range.

The IEEE floating-point standard also includes useful features for automatic han-
dling of exceptional events such as overflow, underflow, and division by zero. See
[15], [41], or [52].

Computing in the Presence of Errors

Our task is to assess the cumulative effects of roundoff errors on our calculations. To
this end we introduce the notation fl(C) to denote the floating-point result of some
computation C. For example, if we multiply x by y, the result calculated by the
computer will be denoted ft(xy). We can apply this notation to more complicated
expressions as well, as long as the order in which the computations are to be performed
is clear. For example, fl(^"=1 Xiyi) is a perfectly acceptable expression, as long as
we have agreed on the order in which the terms are to be added.

Denoting the exact result of a computation also by the letter C, we have fl(C) =
C + e, where e is the absolute error of the computation. A more useful measure
is the relative error e = e/C, provided that C ^ 0. You can easily verify that the
relative error e satisfies

fl(C) = C7(l + e). (2.5.1)

Example 2.5.2 One example suffices to show that the relative error is more meaning-
ful than the absolute error. Suppose we perform a computation on a 7-digit decimal
machine and get the result fl(C') = .9876572 x 1017, whereas the correct value is
C = .98765432 x 1017. The computed value is clearly a good approximation to
the true value, but the absolute error is e = C — fl(C) = .288 x 1012, which looks
large unless it is compared with C. In the relative error the magnitude of C is au-
tomatically taken into account: e = e/C = .291 x 10~5. Now consider a different
computation in which fl(C) = .9876572 x 10~15 and C = .98765432 x 10~15.
Now e = .288 x 10~20, which appears extremely small until it is compared with C.
By contrast e = e/C — .291 x 10~5, the same as before. That the relative error is
approximately 10~5 is reflected in the fact that C and fl(C) agree in their first five
decimal places. Because of this agreement, the difference between C and fl(C') is
about five powers of 10 smaller that C. That is, the relative error is approximately
10~5. D
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Another point worth mentioning is that the absolute error has the same units as C.
If C is measured in volts (seconds, meters), then e is also measured in volts (seconds,
meters). By contrast the relative error is a dimensionless number; it has no units.

In this text we will normally measure errors in relative terms. The relative error
appears in various guises. For example, the expressions || 6x \\/\\ x ||, || 5b \\/\\ b ||, and
|| 6 A I I / H A ||, with which we worked in Section 2.2, are expressions of relative error.
Also we have already observed that statements about the number of correct digits are
actually vague statements about the relative error. Finally, statements about percent
error are also statements about the relative error: percent error = | relative error | x 100.

In our analysis we will not assume that our machine satisfies the IEEE standard.
Instead we will assume an ideal computer that performs each operation exactly and
then rounds the result to the nearest floating point number. The IEEE standard
satisfies this assumption, so long as no overflows or underflows occur.1 Our analysis
will ignore the possibility of overflow or underflow. Each individual computation
produces a roundoff error that is tiny in the relative sense. We will define the unit
roundoff u to be the largest relative error that can occur in a rounding operation.
The value of u depends on the system. In a system with a mantissa of s decimal
digits, the value of u will be around 10~s, since the rounded value and the original
value agree to s decimal places. A careful analysis (Exercise 2.5.9) shows that
u = ½ x 101"8. For IEEE single precision numbers u = 2~24 ss 6 x 10~8, and
for double precision numbers u = 2~53 w 10~16. Using the form (2.5.1), our ideal
floating-point operations satisfy

Our analysis will take the results (2.5.3) as a starting point. These can give one a
false sense of security. Since the error made in each individual operation is small, one
might think that a great many operations would have to be made before significant
errors could accumulate. Unfortunately this turns out to be false.

To get a realistic idea of what can happen, we need to take account of the fact
that the operands x and y normally have some error in them already. Instead of the
correct values, x and y, the computer works with polluted values x = x(l + ei) and
y = y(l + 62). Instead of calculating xy or fl(xy), the computer calculates fl(zy).
We need to compare fl(xy) with xy. We would like to be able to say that if | ei | -C 1
and 1 62\ <C 1, then fl(xy) = xy(l + e), where |e| -C 1. It turns out that such
a result does hold for multiplication, and there is an analogous result for division.
Unfortunately, addition and subtraction do not always behave so well.

Let us begin with the well behaved operations. The computer multiplies x by y
to get fl(xy) = xy(l + es), where the roundoff error £3 satisfies |es | < u <^ 1 by

'This assumes that the default "round to nearest" rounding mode is being used. The IEEE standard also
supports several other rounding modes. In all modes (2.5.3) continues to hold if we replace u by 2u.
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(2.5.3). Thus

where ε = εx + ε2 + ε3 + εiε2 + εiε2 + ε2ε3 + εiε2ε3. The terms involving products
of two or more εi are negligible because all e; are small. Thus ε « ε1 + ε2 + ε3.
Since | εi \ < 1, | e2 | <C 1, and | e3 | < 1, it also holds that | e | < 1. We conclude
that multiplication is well behaved in the presence of errors in the operands.

In order to analyze division, we begin by recalling from the theory of geometric
series that

Since e2| <C 1, the approximation 1/(1 + e2) ~ 1 — 62, obtained by ignoring
quadratic and higher terms, is good. Thus

Thereforefl(x/2/) = (x/y)(l + e), where e w εi -ε2+63. We conclude that division
is well behaved in the presence of errors.

Our analysis of addition will be a little bit different. We know that the difference
between fl(x + y) and x + y is relatively small, so we will simply compare x + y with
x + y. (We could have done the same in our analyses of multiplication and division.)
This simplifies the analysis slightly and has the advantage of making it clear that any
serious damage that is done is attributable not to the roundoff error from the current
operation but to the errors that had been made previously.

Thus x + y — (x + y}(l + e), where

Given that | ei | <C 1 and | e2 | <C 1, we can say that | e | <C 1 provided that neither x
nor y is large compared with x + y. If, on the other hand, £ or y is large compared
with x + y, then e can and probably will be large. That is, the computed result
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is probably inaccurate. This occurs when (and only when) x and y are are almost
exactly opposites of each other, so that they nearly cancel one another out when they
are added.

An identical analysis holds for subtraction.

Exercise 2.5.4 Show that if x = x(l + ei) and y — y(l + e2), where 11\ \ <?C 1 and | e2 | < 1,
then x — y = (x — y}(l + e), where | e <^C 1 unless x or y is much larger than x — y.

D

If x and y are nearly equal, so that x — y is much smaller than both x and y, then
the computed result x — y can and probably will be inaccurate.

We conclude that both addition and subtraction are well behaved in the presence of
errors, except when the operands nearly cancel one another out. Because cancellation
generally signals a sudden loss of accuracy, it is sometimes called catastrophic
cancellation.

Example 2.5.5 It is easy to see intuitively how cancellation leads to inaccurate
results. Suppose an eight-digit decimal machine is to calculate x — y, where x —
.31415927... x 101 and y = .31415916... x 101. Due to errors in the computation
of x and y, the numbers that are actually stored in the computer's memory are
x = .31415929 ... x 101 and y = .31415914... x 101. Clearly these numbers are
excellent approximations to x and y; they are correct in the first seven decimal places.
That is, the relative errors e\ and e2 are of magnitude about 10~7. Since x and y are
virtually equal, all but one of the seven accurate digits are canceled off when x — y is
formed: x - y = .00000015 x 101 - .15000000 x 10~5. In the normalized result
only the first digit is correct. The second digit is inaccurate as are all of the zeros
that follow it. Thus the computed result is a poor approximation to the true result
x + y — .11... x 10~5. the relative error is about 36 percent. d

This example demonstrates a relatively severe case of cancellation. In fact a whole
range of severities is possible. Suppose, for example, two numbers are accurate to
seven decimal places and they agree with each other in the first three places, then
when their difference is taken, three accurate digits will be lost, and the result will be
accurate to four decimal places.

We have demonstrated not only that cancellation can cause a sudden loss of
relative accuracy, but also that it is the only mechanism by which a sudden loss of
accuracy can occur. The only other way an inaccurate result can occur is by gradual
accumulation of small errors. Although it is possible to concoct examples where this
happens, it is seldom a problem in practice. The small errors that occur are just as
likely to cancel each other out, at least in part, as they are to reinforce one another,
so they tend to accumulate very slowly. Thus as a practical matter we can say that if
a computation has gone bad, there must have been at least one cancellation at some
crucial point. In other words, if no cancellations occur during a computation (and
the original operands were accurate), the result will generally be accurate.

Unfortunately it is usually difficult to verify that no cancellation will occur in
a given computation, and this makes it hard to prove that roundoff errors will not
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spoil the computation. The first attempts at error analysis took the forward or direct
approach, in which one works through the algorithm, attempting to bound the error
in each intermediate result. In the end one gets a bound for the error in the final
result. This approach usually fails, because each time an addition or subtraction is
performed, one must somehow prove either that cancellation cannot occur or that a
cancellation at that point will not cause any damage in the subsequent computations.
This is usually impossible.

Backward Error Analysis

Because of the threat of sudden loss of accuracy through cancellation, the pioneers
of scientific computing were quite pessimistic about the possible effects of roundoff
errors on their computations. It was feared that any attempt to solve, say, a system
of 50 equations in 50 unknowns would yield an inaccurate result. The early attempts
to solve systems of linear equations on computers turned out generally better than
expected, although disasters did sometimes occur. The issues were not well under-
stood until a new approach, called backward error analysis, was developed. The new
approach does not attempt to bound the error in the result directly. Instead it pushes
the effects of the errors back onto the operands.

Suppose, for example, we are given three floating-point numbers x, y, and z,
and we wish to calculate C = (x + y) + z. The computer actually calculates
C = fl(fl(x: + y) + z). Even if the operands are exact, we cannot assert that the
relative error in C is small: fl(x + y) is (probably) slightly in error, so there can
be large relative error in C if cancellation takes place when fl(x + y) is added to z.
However, there is something else we can do. We have

where \ε\ |, |e2 | < u < 1. Define e3 by (1 + ε3) = (1 + εi)(l + ε2), so that
|ε3| ~ |εi +ε2 | < 1. Then C = ( x + y ) ( l + ε 3 ) + z ( l + ε 2 ) - Defining x = z(l+ε3),
y = y(l + e3), and z= z(l + ε2), we have

Notice that x, y, and ~z are extremely close to x, y, and z, respectively. This shows
that C is the exact result of performing the computation (x + y) + z using the slightly
perturbed data x, y, and H. The errors have been shoved back onto the operands.
The same can be done with subtraction, multiplication, division, and (with a bit of
ingenuity) longer computations.

In general suppose we wish to analyze some long computation C(zi,..., zm]
involving m operands or input data z\,...,zm. Instead of trying to show directly
that ft(C(zi,..., zm)) is close to C(z\,..., zm), a backward error analysis attempts
to show that ft(C(zi,..., zm)) is the exact result of performing the computation with
slightly perturbed input data; that is,
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where ~z\,..., zm are extremely close to z\,..., zm. By extremely close we usually
mean that the error is a modest multiple of the unit roundoff u. If such a result holds,
the computation is said to be backward stable.

Of course the analysis does not end here. The backward error analysis has to
be combined with a sensitivity analysis of the problem. If (1) the computation is
backward stable, and (2) we can show that small perturbations in the operands lead
to small perturbations in the results, then we can conclude that our computed result
is accurate.

For example, if our problem is to solve a nonsingular linear system Ax = 6,
then the operands or inputs are the entries of A and 6, and the output is x. We
obtain x from A and b by some specified computation x — C(A, b), for example,
Gaussian elimination with complete pivoting. In this context we normally use the
word algorithm instead of computation. If we perform the computations in exact
arithmetic, we get x exactly, but if we use floating-point arithmetic, we obtain an
approximate solution x = fl((7(A, 6)). In this context the algorithm is backward
stable if there exist A and b that are extremely close to A and 6, respectively, such
that x — C(A,b), that is, Ax = b exactly. Another way to say this is that x satisfies
(A+6A)x = b+Sb exactly for some 8A and 6b such that || 6A ||/|| A || and || 6b ||/|| b \\
are tiny, that is, a small multiple of u.

As we well know by now, backward stability does not imply that x is close to x.
The sensitivity of the problem is given by the condition number of A If the algorithm
is backward stable, and the coefficient matrix is well conditioned, then the computed
solution is accurate. If, on the other hand, the matrix is ill conditioned, the solution
may well be inaccurate, even though the algorithm is backward stable.

The backward approach to error analysis separates clearly the properties of the
problem (e.g. solve Ax = b) from the properties of the algorithm (e.g. Gaussian
elimination with complete pivoting). The sensitivity analysis pertains to the problem,
and the backward error analysis pertains to the algorithm. We say that the problem
is well conditioned if small changes in the input lead to small changes in the results.
Otherwise it is ill conditioned. An algorithm is backward stable if it returns answers
that exactly solve some slightly perturbed problem. It follows that a backward stable
algorithm will be able to solve well-conditioned problems accurately. We will adopt
the attitude that it is unreasonable to expect any algorithm to solve ill-conditioned
problems accurately. Therefore we will judge an algorithm to be satisfactory if it is
backward stable.

The backward approach to error analysis succeeds because it is much less ambi-
tious than the forward approach. The latter attempts to prove that a given algorithm
always produces an accurate result, regardless of the sensitivity of the problem. This
is usually impossible.

Small Residual Implies Backward Stability

If we say that an algorithm is backward stable (with no further qualification), we
mean that it performs in a backward stable manner on all possible sets of input
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data. However, the term can also be used in a much broader sense. If we use an
algorithm, say Gaussian elimination, to solve a particular problem Ax — b (for some
specific choice of A and 6), we will say the the algorithm is backward stable on that
particular problem if it produces an x that is the exact solution of a nearby problem
(A + 6A)x = b + 6b.

For the linear system problem (and many other problems) there is a simple a
posteriori method checking the backward stability of a computation: check the
residual. The problem is to solve Ax = b. Whatever method we use to get a solution
x, we can easily calculate the residual f — b — Ax. As we already noted in Section 2.4,
x is the exact solution of Ax — b + εb, where 6b = —r. If 18b | |/| | b \\ is tiny, then x
is indeed the solution of a nearby system. Thus the algorithm is backward stable on
this problem. To summarize, a tiny residual implies backward stability.

The following exercise draws essentially the same conclusion by a different ap-
proach, in which the residual is associated with a perturbation in A instead of b.

Exercise 2.5.6 Let x be an approximation to the solution of Ax = b, and let f = b — Ax.
Define 6A e Mn x n by 6A = arxT, where

(a) Show that x is the exact solution of (A + 6A)x — b.

(b) Show that || 6A\\2 = | | r | | 2/| |x | | 2 and

D

Thus if ||r||2 is tiny relative to || A | | 2 | | x | | 2 , then the algorithm (whichever algo-
rithm was used) is backward stable for this problem.

Additional Exercises

xercise 2.5.7 Learn more about your computer's arithmetic by running the following
MATLAB programs.

(a) What do you learn from running the following program?

a = 1;

u = 1;
b = a + u;

while b ~= a

u = . 5*u;

b - a + u;

end

u

(b) What does this one tell you?
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a = 1;
while a ~= Inf

a= 10*a
end

To get a more precise result, replace the 10 by a 2. You might find help inf
informative.

(c) What does this one tell you?

a = 1;
while a ~= 0

a= .l*a
end

The outcome of this one is probably different from what you expected, based on
the information given in the text. The IEEE standard allows gradual underflow
through the use of subnormal numbers, once the minimum exponent is reached.

(d) What kind of arithmetic does MATLAB appear to be using? To learn more
about your computer (as used by MATLAB) try help computer, help
isieee, help inf ,and help nan, for example.

D

Exercise 2.5.8 Write Fortran or C programs that perform the same functions as the programs
from Exercise 2.5.7. Make both single and double precision versions and try them
out. D

Exercise 2.5.9

(a) Show that in a base-/? floating-point number system the largest relative gap
between two consecutive normalized numbers occurs between

.1000... O O O x / 3 * and .1000 .. .001 x f.

(The value of the exponent t is irrelevant.) Thus the largest relative error (the
unit roundoff) occurs when one tries to represent the number that lies half way
between these two.

(b) Show that the unit roundoff is | x /91-s, where 0 is the number base, and s is
the number of base-/? digits in the mantissa.

D

2.6 PROPAGATION OF ROUNDOFF ERRORS IN GAUSSIAN
ELIMINATION

Now that we know something about floating-point arithmetic and roundoff errors,
we are ready to analyze the effects of roundoff errors on Gaussian elimination. Our
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formal tool will be backward error analysis, but we defer that to Section 2.7. In this
section we will see that even without backward error analysis we can get some good
insights through the study of well chosen examples.

Gaussian Elimination with Ill-Conditioned Matrices

Our studies of the sensitivity of linear systems have given us ample reason to believe
that there is no point in trying to solve severely ill-conditioned systems. Further
insight can be gained by taking a heuristic look at what happens when one tries to
solve an ill-conditioned system by Gaussian elimination with partial pivoting. We
will assume that the rows and columns of the coefficient matrix are not out of scale.

When we do row operations, we take linear combinations of rows in such a way
that zeros are deliberately created. Since the rows of an ill-conditioned matrix are
nearly linearly dependent, there is the possibility of entire rows being made almost
exactly zero by row operations. This possibility is encouraged by the progressive
introduction of zeros into the array. Let us say that a row is bad if it is nearly a linear
combination of previous rows. Suppose the A;th row of A is the first bad row. After
k — 1 steps of Gaussian elimination we will have subtracted multiples of the first
k — I rows from the kth row in such a way that there are now zeros in the first k — I
positions. If the kth row were exactly a linear combination of the previous rows (and
exact arithmetic were used), the entire kth row would now be zero. (Why?) Since it
is only approximately a linear combination of the previous rows, it will still contain
nonzero entries, but these entries will typically be tiny. They are not only tiny but
but also inaccurate, because they became tiny through cancellation, as multiples of
the earlier rows were subtracted from row k.

One of these tiny, inaccurate entries is the potential pivot in the (fc, k) position.
Because it is small, the A;th row will be interchanged with a lower row that has a larger
entry in its kth position, if such a row exists. In this way the bad rows get shifted
downward. Eventually a step will be reached at which only bad rows remain. At this
point all choices of pivot are tiny and inaccurate. Although the presence of small,
inaccurate numbers is not necessarily disastrous to the computation, the use of one
as a pivot must be avoided if possible. In the present scenario we are forced to use a
tiny, inaccurate pivot. This is used as a divisor in the computation of not-so-small,
inaccurate multipliers, whose error pollutes all subsequent rows. The pivots are also
used as divisors in the last step of the back-substitution process. Each component of
the computed solution is a quotient whose divisor is a pivot. We cannot expect these
quotients to be accurate if the divisors are not.

The above analysis is obviously heuristic and is not claimed to be universally
valid. A different flavor of ill conditioning is exhibited by the Kahan matrix [41].

Example 2.6.1 Consider the ill-conditioned matrix
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which we have discussed previously. Since the rows are nearly linearly dependent,
when a zero is created in the (2,1) position, the entry in the (2, 2) position should
become nearly zero as well. Indeed the multiplier is /2i = -999, and the (2,2) entry
becomes

998 - (.999)(999) = 998 - 998.001 = -.001.

This is indeed small, and the result was obtained by severe cancellation. There is
no error in the result, because it was computed by exact arithmetic. Consider what
happens when five-digit decimal floating-point arithmetic is used. The computation
yields

998.00 - (.99900)(999.00) = 998.00 - 998.00 = 0.

The matrix appears to be singular! D

This example might remind you of a remark that was made in Chapter 1. Not
only can a nonsingular matrix appear singular (as just happened); the reverse can
occur as well and is actually a much more common occurrence. We remarked that
if a Gaussian elimination program attempts to calculate the LU decomposition of
a singular matrix, it almost certainly will not recognize that the matrix is singular:
Certain entries that should become zero in the course of the calculation will turn out
to be nonzero because of roundoff errors. Thus in numerical practice it is impossible
to distinguish between ill-conditioned matrices and singular matrices. In contrast
to the theoretical situation, where there is a clear distinction between singular and
nonsingular, we have instead a continuum of condition numbers, ranging from the
well conditioned to the severely ill conditioned, with no clear dividing line in the
middle. (Exceptions to this picture are certain matrices that are obviously singular,
such as a matrix with a row or column of zeros or two equal rows.)

The next example shows that the distinction between good and bad rows is not
always clear. It can happen that the accuracy of a computation deteriorates gradually
over a number of steps.

Example 2.6.2 We introduced the ill-conditioned Hilbert matrices, defined by hij =
l/(* + J' ~ 1)> in Example 2.2.9. For example,

The rows look very much alike, which suggests ill conditioning. According to

MATLAB, «2(#4) ~ L6 x 1Q4-
Let us see how the ill conditioning manifests itself during Gaussian elimination.

For the first step, there is no need to make a row interchange, since the largest
entry is already in the pivotal position. You can easily check that after one step the
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transformed array is

The second step operates on the submatrix

all of whose entries are smaller than the original matrix entries. Thus each entry has
undergone a small amount of cancellation. Of course these numbers are perfectly
accurate because we calculated them by exact arithmetic. If we had used floating-
point arithmetic, each of the entries would have suffered a slight loss of accuracy due
to the cancellation. Notice that all of the entries of this submatrix are quite close to
1/12; the rows are almost equal.

The potential pivots for the second step are smaller than those for the first step.
Again there is no need for a row interchange, and after the step the transformed
submatrix is

The entries of the submatrix

are even smaller than before; more cancellation has taken place. The potential pivots
for the third step, 1/180 and 1/120, are both quite small. Since the latter is larger, we
interchange the rows (although this has little effect on the outcome). After the third
step, we have

The final pivot is —1/4200, which is even smaller.
Now let us see what happens when the same operations are performed in three-digit

decimal floating-point arithmetic. The original array is

Some of the entries are already slightly in error. On the first step the (4,3) entry (for
example) is modified as follows:
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Comparing it with the correct value 1/12 w .833 x 101, we see that there is a
substantial error in the third digit. The complete result of the first step is

The result of the second step is (ignoring the first row and column)

Significant cancellations have now taken place; most of these numbers have only one
correct digit. For example, the following computation produced the (4, 3) element:

Comparing this result with the correct value 1/120 ~ .833 x 10~2, we see that it has
only one correct digit. The result of the third and final step is

The (4,4) entry —.600 x 10 4 is not even close to the correct value —1/4200 w
-.238 x 1Q-3. •

Exercise 2.6.3 Work through the computations in Example 2.6.2, observing the cancellations
and the accompanying loss of accuracy. Remember that if you wish to use your
calculator to simulate three-digit decimal floating-point arithmetic, it does not suffice
simply to set the display to show three digits. Although only three digits are displayed,
nine or more digits are stored internally. Correct simulation of three-digit arithmetic
requires that each intermediate result be rounded off before it is used in the next
computation. A simple way to do this is to write down each intermediate result and
then enter it back into the calculator when it is needed. D

Exercise 2.6.4 Work Example 2.6.2 using four-digit arithmetic instead of three. You will see
that the outcome is not nearly so bad. •D

Exercise 2.6.5 Use MATLAB to explore the extent of cancellation when Gaussian elimination
is performed on larger Hilbert matrices.

(a) In MATLAB, type A = hilb (7) to get Hj. To get the LU decomposition
with partial pivoting, type [L ,U] = l u ( A ) . Notice that the matrix L is
not itself unit lower triangular, but it can be made unit lower triangular by
permuting the rows. This is because MATLAB's lu command incorporates
the row interchanges in the L matrix. Our real object of interest is the matrix
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U, which is the triangular matrix resulting from Gaussian elimination. Notice
that the further down in U you go, the smaller the numbers become. The ones
at the bottom appear to be zero. To get a more accurate picture, type format
long and redisplay U.

(b) Generate H^ and its LU decomposition. Observe the U matrix using format
long.

D

Exercise 2.6.6 Let z denote the vector whose entries are all ones (Using MATLAB: z =
ones (n, 1) ), and let b = Hnz, where Hn is again the n x n Hilbert matrix. If
we now solve the system Hnx — b for x, we should get z as the solution in theory.
Using MATLAB (xhat = A\b), try solving Hnx = b forn = 4, 8, 12, and 16,
and see what you get. In each case compute the condition number K2(Hn) and the
norm of the difference: || x — z ||2, where x is the computed solution. Calculate the
residual f = b — Hnx, too. •

Exercise 2.6.7 The previous exercise exaggerates somewhat the intractability of Hilbert
matrices. There we saw that already for n = 12 we get a bad solution (assuming
double-precision IEEE arithmetic). Actually, how bad the solution is depends not
only on the matrix, but also on the vector b. Most choices of b will not give nearly such
bad results as those we just saw. Carry out the following computations with n = 12.
Use double precision (which you get automatically from MATLAB) throughout.

(a) Let z denote the vector of ones, as before, and solve the system R\iy = z for
y. Note that \\y\\ is huge.

(b) Define a vector b by b = H^y. In principle b should be the same as z, but in
the presence of roundoff errors it is a little different. Calculate b and || b — z ||2.

(c) Now consider the system HI^X = b. The way b was defined, the solution x
ought to be the same as y. However, our experience from the previous problem
suggests that the computed solution x may be far from y. Go ahead and solve
Hi2X = b and compare the computed x with y. Notice that they agree to
almost two decimal places. This is not nearly as bad as what we saw in the
previous problem. Calculate the relative error ||x — y||2/||y||2.

(d) Calculate the norm of the residual r = b — Ax, and use it and the condition
number to compute an upper bound on the relative error (Theorem 2.4.1). Note
that this bound is very pessimistic compared to the actual relative error.

•

Another family of ill-conditioned matrices is the Lotkin matrices. The n x n
Lotkin matrix is identical to the Hilbert matrix Hn, except that its first row con-
sist entirely of ones. These nonsymmetric matrices are just as ill conditioned as
the Hilbert matrices. To get the 6 x 6 Lotkin matrix in MATLAB type A =
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gallery ( ' lotkin' , 6) . For more information about the gallery of Higham
test matrices, type help gallery. For more information about Lotkin matrices,
type help private/lotkin.

Exercise 2.6.8 Rework each of the following exercises, using Lotkin matrices in place of
Hilbert matrices: (a) Exercise 2.6.5, (b) Exercise 2.6.6, (c) Exercise 2.6.7. •

Why Small Pivots Should Be Avoided

In Section 1.8 we introduced the partial pivoting strategy, in which the pivot for the
kth step is chosen to be the largest in magnitude of the potential pivots in column k.
The justification given at that time was that we wanted to avoid using as a pivot a
small number that would have been zero except for roundoff errors made in previous
steps. Since then we have studied cancellation and ill-conditioned matrices and can
make a more general statement: We wish to avoid using a small pivot because it may
have become small as the result of cancellations in previous steps, in which case it
could be very inaccurate. The dangers of using an inaccurate pivot were stated in the
first part of this section, in connection with ill conditioning.

In the following example we consider a different scenario. We show what can go
wrong if a small pivot is used even though large pivots are available. Here the pivot
is not inaccurate; it ruins the computation simply by being small.

Example 2.6.9 Consider the linear system

This system is well conditioned (K2(A) ~ 30), and we will see that it can be solved
accurately by Gaussian elimination with partial pivoting. But first let us observe what
happens when we use Gaussian elimination without interchanges. We will see that
the use of the exceptionally small (1,1) entry as a pivot destroys the computation.
The computations will be done in four-digit decimal floating-point arithmetic. You
should think of the numbers in (2.6.10) as being exact. You can easily check that the
exact solution is x — [1 1 1]T. The roundoff error effects you are about to observe
are caused not because the small pivot is inaccurate (It is not!), but simply because it
is small.

The multipliers for the first step are

These multiplied by the first row are subtracted from the second and third rows,
respectively. For example, the (2,2) entry is altered as follows: 3.165 is replaced by
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These equations are not exact; four-digit arithmetic was used. Notice that the resulting
entry is much larger than the number it replaced and that the last two digits of 3.165
were lost (rounded off) when a large number was added to (i.e. subtracted from) it.
This type of information loss is called swamping. The small number was swamped
by the large one. You can check that swamping also occurs when the (2,3), (3,2),
and (3,3) entries are modified. In fact three digits are swamped in the (2,3) and
(3,3) positions. At the end of the first step the modified coefficient matrix looks like

.002 1.231 2.471
598.0 I -732.9 -1475.
737.5 I -903.6 -1820.

The second step of Gaussian elimination works with the submatrix

Since this matrix was obtained by subtracting very large multiples of the row
[1.231 2.471] from the much smaller numbers that originally occupied these rows,
the two rows of A are almost exact multiples of [1.231 2.471]. Thus the rows of A
are nearly linearly dependent; that is, A is ill conditioned. You can easily check that
K2(A) ~ 6400, which is huge, considering that four-digit arithmetic is being used.

The multiplier for the second step is /32 = (-903.6)/(-732.9) = 1.233. It is
used only to modify the (3, 3) entry as follows:

Severe cancellation occurs here. This is just an attempt to recover the information
that was lost through swamping in the previous step. Unfortunately, that information
is gone, and consequently the result —1.000 is inaccurate. At the end of the second
step, the LU decomposition is complete:

The forward substitution step yields

Notice that the last three digits of 6.904 were swamped in the computation of y2, and
severe cancellation occurred in the calculation of 7/3. Thus y$ is inaccurate.

The first step of back substitution is
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Being the quotient of two inaccurate numbers, x3 is also inaccurate. Recall that the
correct value is 1.000. You can carry out the rest of the back substitution process and
find that the computed solution is [4.000, -1.012, 2.000]T, which is nothing like
the true solution.

Let us summarize what went wrong, speaking in general terms (and heuristically!).
When a pivot that is much smaller than the other potential pivots is used, large
multipliers will result. Thus very large multiples of the pivotal row will be subtracted
from the remaining rows. In the process the numbers that occupied those rows will
be swamped. The resulting submatrix (the matrix that will be operated on in the next
step) will be ill conditioned because each of its rows is almost exactly a multiple of
the pivotal row. Because of the ill conditioning, there will be cancellations in later
steps. These cancellations are actually just an attempt to uncover the information
that was lost due to swamping, but that information is gone.

Now let us see what happens when we solve (2.6.10) using partial pivoting.
Interchanging rows 1 and 3, we obtain the system

After one step the partially reduced matrix has the form

When you carry out this computation, you can see that the information in the (2,2),
(2,3), (3,2), and (3,3) positions is not swamped. There is, however, a slight
cancellation in the (2,2) and (2,3) positions. The partial pivoting strategy dictates
that we interchange rows 2 and 3. In this way we avoid using the slightly inaccurate
number —.2980 as a pivot. After step 2 the LU decomposition is complete:

Forward substitution yields y = [7.888, 3.693, 1.407]T, and back substitution gives
the computed result

It is a matter of luck that the computed solution agrees with the true solution exactly,
but it is not luck that the computation yielded an accurate result. Accuracy is
guaranteed by the well-conditioned coefficient matrix together with Theorem 2.7.14.

•

Exercise 2.6.13 Work through the details of the computations performed in Example 2.6.9.
D
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2.7 BACKWARD ERROR ANALYSIS OF GAUSSIAN ELIMINATION

A major operation in many algorithms, including Gaussian elimination, is the accu-
mulation of sums

There are many ways to add n numbers together. For example, if we have four
numbers, we can add them in the "natural" way: first we add w\ to W2, then we add
on wz, then u>4, that is, ((wi + w^} + 1^3) + 104, or we can apply this process to any
reordering of wi,..., w^. Another possibility is to add w\ to w-2, add w% to w±, then
add the two intermediate sums, that is, (w\ + w^} + (u>s + w^).

If we accumulate a sum in different ways using floating-point arithmetic, we will
get different results, because the different ways have different roundoff errors. The
relative differences in the computed sums will usually be tiny, but they can be large
if there is a cancellation in the end (the summands add "nearly" to zero).

Our first task is to show that if a sum is accumulated in floating-point arithmetic,
the computation is always backward stable, regardless of the manner in which the
sum was accumulated. As before, we will let u be the unit roundoff. We will use
the notation O(u2} to denote terms of order u2. These are tiny terms that can be
neglected. For example, (1 + ai)(l + 0:2) — (1 + /3), where /3 = ai + a? + 010:2-
If | ai | ~ u and | a? \ ~ u, then 0:10:2 = O(u2), and we write β = α1 + α2 + O(u2).

Proposition 2.7.1 Suppose we compute the sum using floating-point arith-

metic with unit roundoff u. Then

where γj < (n — l)u + O(u2), regardless of the order in which the terms are
accumulated.

Proof. The proof is by induction on n. The proposition is trivially true when n = 1.
Now let ra be any positive integer. We shall show that the proposition holds for
n = m, assuming that it holds forn < m, that is, for all sums of fewer than m terms.

Suppose we have reached the point in our computation of at which we
are within one addition of being done. At this point we will have accumulated two
sums, one being the sum of, say, k of the Wj and the other being the sum of the
other m — k. It might be that k = 1 or k = m — 1. In any event, 1 < k < m — 1.
For notational convenience relabel the terms so that the terms in the first sum are
uh . . . . . Wk. Then the two sums that we have so far are
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Since each of these sums has fewer than m terms, we have, by the induction hypoth-
esis,

and

where

regardless of the order in which each of these sums was accumulated. Since k — 1 <
m — 2 and m — k — 1 < m — 2, we have

\aj\<(m- 2)w + O(u2) for j = 1, . . . ,m.

Adding the two sums together, we have

(3 is the roundoff error of the current addition and satisfies \/3\ < u by (2.5.3). Let
7j =atj+0 + aj/3, so that (1 + 7,-) = (1 + otj)(l + /3). Then

We have thus shown that

where 1 7j | < (m - l)u + O(w2). This completes the proof. D

The numbers 7, in Proposition 2.7.1 can be termed relative backward errors.
There are at least three reasons why the inequalities (7^ | < (n — l)u + O(u2)
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grossly overestimate \ j j \ . First of all, the factor n — 1 reflects the fact that each
summand participates in at most n — 1 additions and is therefore subjected to at most
n — I roundoff errors. 7^ is approximately the sum of all the roundoff errors that
occur in sums involving Wj (recall γ~ αj + β). The exact number of roundoff
errors that each term suffers depends on the method of summation and is, on average,
much less than n — I. (You can clarify this for yourself by working Exercise 2.7.24.)
Thus most 7^ are sums of many fewer than n — 1 roundoffs.

Secondly, u is an upper bound on each roundoff error. A typical round off will
be significantly less than u. Finally, and most importantly, when roundoff errors are
added together, they sometimes reinforce one another and they sometimes (partially)
cancel each other out. Bounds like \γj < (n — l)w -f O(u2) have to take into
account the worst possible (and highly unlikely) case, where all roundoff errors are
maximal and reinforce one another.

For these reasons, the 7^ are more likely to be much closer to u than (n — l)u, so
the factor (n — 1) can be ignored in practice. Thus we consider Proposition 2.7.1 to
be proof that the accumulation of sums is backward stable, regardless of how large n
is.

Backward Stability of Forward and Back Substitution

Let G be a nonsingular, lower-triangular matrix, and let b be a nonzero vector. Then
we can solve the system Gy = b in about n2 flops by forward substitution. Our
next theorem shows that the forward substitution algorithm is backward stable. First
we introduce some simplifying notation. Given an n x m matrix (or, in particular,
a vector) C with ( i , j ) entry Cy, we define \C\, the absolute value of C, to be the
n x m matrix whose ( i , j ) entry is \Cij \. Also, given two n x m matrices C and
F, we will write C < F if and only if dj < fij for all i and j. With these new
definitions, we can now make the following statement.

Theorem 2.7.2 Let G be a nonsingular, lower-triangular matrix, and let b 0. If the
system Gy = b is solved by any variant of forward substitution using floating-point
arithmetic, then the computed solution y satisfies

where SG satisfies

This inequality means that 1 6 g i j \ < 2nu\ gij \ + O(u2) for all i and j. Thus the term
O(u2} in (2.7.4) stands for an n x n matrix, each of whose entries is of order u2.

This is not the tightest possible result. For a more careful argument that gets rid
of the factor 2, see [41].
Proof. Once we have yi,..., yi-i, we compute
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in principle. In practice we use the computed quantities yl5 . . . , y j_i and make
further rounding errors, so

The numerator is just a sum of i terms, but before we can do any additions, we have
to do the multiplications. We have fl(pyy^) = <?ij2/j(l + &ij), where la^- | < u
by (2.5.3). Once we have the products, we can accumulate the numerator. Different
variants of forward substitution will do this in different ways. Since it is a sum of i
terms, Proposition 2.7.1 guarantees that no matter how it is done,

where 17^ | < (i — l)u + O(u2) for j = 1,. . . , i. Once this is done, we obtain yi

by a division, which introduces one more rounding error:

where | fa \ <u.
We are aiming for the final result (2.7.3), in which all of the errors have been

pushed back onto G and, in particular, not onto b. To obtain this effect we divide
numerator and denominator in (2.7.5) by (1 + 7w)(l + A) to get rid of the error terms
that multiply b. If we define e through the equations

we then have

This last equation can be rewritten as

Since this holds for all i, we can write it as a single matrix equation

where 6G is the lower- triangular matrix defined by δg i j = e^gij for i > j. To
complete the proof we just have to show that | e^- 1 < 2nu + O ( u ) for all i and j.
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Referring back to (2.7.6), we see that we need to deal with the factor 1/(1 + γii).
Since γii — O(u), we have

Thus, when j < i,

and

By a similar analysis we get that | eii \ < iu + O(u2} < 2nu + O(u2). �Exercise 2.7.8 Check that (2.7.7) is valid for i = 1. �

Corollary 2.7.9 Under the conditions of Theorem 2.7.2 the computed solution y
satisfies

where

Proof. The bound (2.7.10) follows directly from (2.7.4), using the properties proved
in Exercise 2. 7. 11. �

Exercise 2.7.11

(a) Show that if | C \ < \ F \ (elementwise), then || C \\^ < \\ F || .

(b) Show that || 0|| = || C|| .

D

The properties established in Exercise 2.7.11 hold also for the matrix 1-norm and
the Frobenius norm. Corollary 2.7.9 holds for any norm that satisfies these properties.

We have already noted that the factor 2 in the bounds (2.7.4) and (2.7.10)) can be
eliminated. The factor n can also be ignored, just as in Proposition 2.7.1.

Corollary 2.7.9 shows that forward substitution is normwise backward stable; that
is, the computed solution y is the exact solution of a nearby problem (G + 8G)y — b,
where \\SG \\J\\ G^ is tiny.

Theorem 2.7.2 is actually a much stronger result. It states not just that || 6G \\ is
tiny relative to \\G\\, but each element perturbation 6gij is tiny relative to gij , the
element it is perturbing. This property is called componentwise backward stability.



162 SENSITIVITY OF LINEAR SYSTEMS

Exercise 2.7.12 Construct an example of 2 x 2 matrices G and SG such that || δG ||/||G ||
is tiny but | δg i j \/\Qij \ is not tiny for at least one component (i, j). �

Theorems essentially identical to Theorem 2.7.2 and Corollary 2.7.9 hold for back
substitution applied to upper-triangular systems. We see no need to state these results.

Backward Error of Gaussian Elimination

Gaussian elimination is sometimes backward stable, sometimes not, depending on
circumstances. The basic results are the following two theorems, which are statements
about Gaussian elimination without pivoting. However, both of these results are
applicable to Gaussian elimination with row and column interchanges, since the
latter is equivalent to Gaussian elimination without interchanges, applied to a matrix
whose rows and columns were interchanged in advance. Thus these results can be
applied to Gaussian elimination with partial pivoting, complete pivoting, or any other
pivoting strategy.

Theorem 2.7.13 Suppose the LU decomposition of A is computed by Gaussian
elimination in floating-point arithmetic, and suppose no zero pivots are encountered
in the process. Let L and U denote the computed factors. Then

where

and

Theorem 2.7.14 Under the conditions of Theorem 2.7.13, suppose we solve Ax = b
numerically by performing forward substitution with L followed by back substitution
with U in floating-point arithmetic. Then the computed solution x satisfies

where

and

We will defer the proofs of these results until after we have discussed their
implications.2

2These theorems have been stated in the form in which they will be proved. They are not the best possible
results; a factor of 2 can be removed from each of the bounds.
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Looking at either of these Theorems, we see that whether or not Gaussian elimina-
tion is backward stable depends upon how big L and U are. If || L ||^ || Û|| is only
a modest multiple of || A ||^, then we can conclude that || δA||^/|| A||^ is a modest
multiple of the unit roundoff, and the operation is backward stable. (As before, we
ignore the factor n.) If, on the other hand, || L || ||Û ||^ is much larger than || A H^,
then we can draw no such conclusion. In this case the computation is probably not
backward stable.

Let us first consider Gaussian elimination without pivoting. The use of small
pivots can result in large multipliers, which are entries of L. Thus | L^^ can be
arbitrarily large. The large multipliers cause large multiples of some rows to be
added to other rows, with the effect that || U H^ is also large. These effects are seen
in Example 2.6.9. There we demonstrated how the unnecessary use of small pivots
can destroy the accuracy of Gaussian elimination. See Exercise 2.7.25 as well. We
conclude that Gaussian elimination without pivoting is unstable.

Now consider partial pivoting. This guarantees that all of the multipliers lij have
modulus less than or equal to 1 and has the tendency of keeping the norm of L from
being too large. In fact || L [^ < n. Thus, to guarantee backward stability, we need

only show that H a l l o o / H a l l o o cannot be too large. Unfortunately there exist matrices

for which H a l l o o / H a l l o o « 2n~1. An example is given in Exercise 2.7. 26. Because
2n~1 is enormous even for modest values of n (e.g. 2n~l > 1029 when n = 100),
we cannot claim that Gaussian elimination with partial pivoting is unconditionally
backward stable, except when n is quite small.

Despite this bad news, partial pivoting is now and will continue to be widely used.
For example, it is the main method for solving Ax — b in MATLAB and LAPACK.
Years of testing and experience have shown that the type of element growth exhibited
by the matrix in Exercise 2.7.26 is extremely rare in practice. Typically we see

MIL
Hence, for practical purposes, Gaussian elimination with partial pivoting is consid-
ered to be a stable algorithm and is used with confidence.

A statistical explanation of the good behavior of partial pivoting is given by
Trefethen and Bau [71]. See also Exercise 2.1.21.

Since partial pivoting might occasionally perform badly, one would like to have a
way of checking whether one's results are good or not. Fortunately such tests exist.
One such test would be simply to compute the ratio

If this is not too large, the computation was backward stable. An even simpler test,
once x has been computed, is to calculate the residual f = b — Ax. As we have
remarked before, Ax = b + 8b, where 6b = —r. (See also Exercise 2.5.6.) Thus a
small residual implies backward stability.

Another test is simply to compute the backward error in the LU decomposition:
E — LU — A. If || E || is tiny, the computation was backward stable. However, this
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test is expensive. The computation of LU costs O(n3) flops, even if the triangular
form of the matrices is taken into account (Exercise 2.7.28).

Example 2.7.15 Using MATLAB we computed the LU decomposition (with partial
pivoting) of the 12 x 12 Hilbert matrix (A = hi lb(12); [L ,U] = l u ( A ) ; )
and then computed E = LU - A. We found that H - E H ^ / H A]^ « 2.7 x 1(T17.
Also, I I L I I ^ w 5.6, l l t / l l^ * 3.1, and ||L|U| U \\J\\ A ̂  » 5.6. All of these
results signal stability. This shows that the poor results obtained in Exercises 2.6.7
and (especially) 2.6.6 are due entirely to the ill conditioning of the Hilbert matrix,
not to instability of the algorithm. In those exercises you also computed residuals
and found that they are tiny. This also demonstrates backward stability. •

Exercise 2.7.16

(a) Perform the computations indicated in Example 2.7.15 for Hilbert matrices of
dimension 12, 24, and 48. Notice that we have stability in every case.

(b) Repeat part (a) using Lotkin Matrices (A = gallery ( ' lotkin' , n) ).

•

Complete pivoting is better behaved than partial pivoting. Element growth of
the type exhibited by partial pivoting in Exercise 2.7.26 is impossible. In the worst
known cases | |U\\/ \ \ A\\ = O(n). It is also true that ||Loo|| < n, as for partial
pivoting. Thus Gaussian elimination with complete pivoting is considered to be a
backward stable algorithm.

In spite of the theoretical superiority of complete pivoting over partial pivoting, the
latter is much more widely used. The reasons are simple: 1.) Partial pivoting works
well in practice, and it is significantly less expensive. 2.) Inexpensive a posteriori
stability tests exist.

Theorem 2.7.14 is also important for Gaussian elimination in sparse matrices.
Here there are conflicting objectives: one wishes not only to perform the elimination
in a stable manner, but also to keep fill-in as small as possible. One might therefore
pursue a strategy that does not always select the largest possible pivots. The stability
of the decomposition can be monitored by checking the size of the entries of L and
U as they are produced.

For symmetric, positive definite systems a result like Theorem 2.7.14 holds for
Cholesky's method with L and U replaced by RT and R, respectively. It can
also be shown that \\RT \\F\\R\\p cannot be large relative to | |A| |_p. Therefore
Cholesky's method is unconditionally backward stable. You can work out the details
in Exercise 2.7.29.

In summary, Gaussian elimination with partial or complete pivoting and Cholesky's
method for positive definite systems are stable in practice. For partial pivoting this
assertion is based upon years of experience; for Cholesky's method it is an iron-clad
fact. The factors of n that appear in the theorems are gross overestimates and can be
ignored. In practice we get a computed solution x satisfying (A + SA)x — b, where
|| 8A H / l l A || « Cu, with C a modest multiple of 1. Thus the total effect of roundoff
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errors is not much greater than that of the initial roundoff errors in the representation
of A. These errors are usually much smaller than the original measurement errors in
A and b. These considerations lead to a useful rule of thumb.

Rule of Thumb 2.7.17 Suppose the linear system Ax — b is solved by Gaussian
elimination with partial or complete pivoting (or by Cholesky 's method in the positive
definite case). If the entries of A and b are accurate to about s decimal places and
K(A) ~ 10*, where t < s, then the entries of the computed solution are accurate to
about s — t decimal places.

"Proof." We intended to solve Ax = 6, but our computed solution x satisfies a
perturbed equation (A + 5A)x = b + 6b, where 6 A is the sum of measurement error,
initial rounding error, and the effect of roundoff errors made during the computation,
and δb is the sum of measurement error and initial rounding error. We assume that
measurement error dominates. Since the entries of A and b are accurate to about s
decimal places,

Preparing to apply Theorem 2.3.9, we note that

Thus Theorem 2.3.9 gives roughly

where x = x+δx. That is, the entries of x are accurate to about 5—t decimal places, �

Proofs of Theorems 2.7.13 and 2.7.14

Proof of Theorem 2.7.13. We begin by recalling (cf. (1.7.22) and (1.7.24)) that if
A = LU, then L and U are given by the formulas

and

All versions of Gaussian elimination perform the computations indicated in (2.7.18)
and (2.7.19), but different versions organize the computations differently.
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Let us first consider the computation of l i j . In practice the computed values /^
and ûkj are used, and further roundoff errors occur. Thus the computed lij satisfies

Different versions of Gaussian elimination accumulate the sum in the numerator in
different ways. Proposition 2.7.1 shows that no matter how it is done,

where [7^ | < (j' — l)w + O(u2). The quantities a/t and 0 are the roundoff errors
associated with the multiplications and the division, respectively, and they satisfy
| ak | < u and | /? | < u.

Proceeding just as in the proof of Theorem 2.7.2, we divide the numerator and
denominator in (2.7.20) by (1 + 7i/)(l + /3) to remove the error from the a^ term.
This move is not strictly necessary, but it yields a more elegant result. We then
simplify the resulting equation by consolidating the errors. Define 8ik by

Recalling that we have, for k < j,

dik = ak + lik - 7ij +O(u2), and

Similarly,

Thus

In terms of 5^, (2.7.20) becomes

Multiplying through by û j j ( l + δ6 i j } and rewriting the resulting expression so that all
of the error terms are consolidated into a single term e^, we have
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for i > j (because we started from (2.7.18), which holds only for i > j), where

Since |δik \ < 2nu + O(u2},

for i > j.
We obtained (2.7.21) and (2.7.22) for i > j by starting from (2.7.18). The same

results can be obtained for i < j by performing a similar analysis starting from
(2.7.19). Thus (2.7.21) and (2.7.22) hold for all i and j. Writing (2.7.21) as a matrix

equation, we have

Writing (2.7.22) as a matrix inequality, we have

The bound on H^H^ follows immediately from the bound on |.E|, using the

properties of the matrix -norm established in Exercise 2.7.11. d

Exercise 2.7.23 Starting from (2.7.19), demonstrate that (2.7.21) and (2.7.22) hold for i < j.
D

Proof of Theorem 2.7.14. In the forward substitution phase we compute y such that

(L + SL}y = b, where

by Theorem 2.7.2. In the back substitution phase we compute x such that (U +

6U)x = y, where

by the upper-triangular analogue of Theorem 2.7.2. Thus x satisfies exactly

Multiplying out the product of matrices and using the fact (Theorem 2.7.13) that

LÛ = A + E, where | E < 2nu \L\\U\+ O(n2), we have

where
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Applying the upper bounds that we have for E, δL, and δÛ, we obtain

The bound on ||δA||^ follows immediately from this bound. D

Additional Exercises

Exercise 2.7.24 In Proposition 2.7.1 we showed that summation is backward stable, regardless
of the order. In the notation of Proposition 2.7.1 the backward errors jj are bounded
by 17j | < (n — l}u + O(u2). In this exercise we obtain tighter bounds on 7^ | for

two specific orders of summation of

(a) First we consider the "obvious" order, reversed for notational convenience.
Show that if we perform the computation in the order

in floating-point arithmetic, then

(Look at small cases like n = 3 and n — 4, and observe the pattern.)

(b) Now consider summing by pairs. Calculate w\ + wz, w^ + w*, w5 + WQ, and
so on. If there is an odd term, just let it sit. Now you have a new list, which
you can sum by pairs. Keep summing by pairs until you have a single sum.
This is easiest to discuss when n is a power of 2, say n = 2k. In this case, how
many additions does each term participate in? Express your answer in terms
of n. Show that if we carry out this process in floating-point arithmetic, we
have

This is an excellent result, as Iog2 n grows much more slowly than n.

D

Exercise 2.7.25 In this exercise you will assess the backward stability of Gaussian elimination

by calculating backward error in the LU decomposition: E = LU — A. Write a
MATLAB program that does Gaussian elimination without pivoting, for example

A = randn(n);

L = zeros(n); U = zeros(n);

for k = l:n

U(k,k:n) = a(k,k:n) - L(k,1:k-l)*U(1:k-l,k:n);
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L ( k + l : n , k ) = ( a ( k + l : n , k ) - . . .
L ( k + l : n , l : k - l ) * U ( l : k - l / k ) ) / U ( k , k ) ;

end
L = L + eye(n) ;

(a) Calculate the LU decomposition of random matrices (A = randn (n) ; ) for
several choices of n (e.g. n = 40, 80, 160), and note I I ^ U ^ , H a l l o o * and the
norm of the backward error: || E H^ = || LU — A ||^. On the same matrices
do Gaussian elimination with partial pivoting ( [L, U] = l u ( A ) ; ) and cal-
culate the same quantities. Notice that partial pivoting decreases the backward
error and the norms of L and U, but the performance of Gaussian elimination
without pivoting is usually not conspicuously bad. That is, usually Gaussian
elimination without pivoting is able to calculate the LU decomposition (of a
random matrix) more or less stably.

(b) To demonstrate the weakness of Gaussian elimination without pivoting, give
it a matrix for which at least one of the pivots is guaranteed to be small.
The easiest way to do this is to use matrices whose (1,1) entry is tiny. Re-
peat the experiments from part (a) using matrices for which an is tiny. For
example,take A = randn(n) ; A ( l , l ) = 50*eps*A(l, 1) ;. MAT-
LAB 's machine epsilon eps equals 2w, twice the unit roundoff. For these
experiments n need not be large. Try several choices of n, but n = 2 is already
big enough.

D

Exercise 2.7.26 Let An denote the n x n matrix whose form is illustrated by

Show that if Gaussian elimination with partial pivoting is used, then An can be
reduced to upper-triangular form without row interchanges, and the resulting matrix
UhasUnn = 2n-1.Thus ||U||00/||A||00 = 2n-1/n. D

Exercise 2.7.27 It is pointed out in [71] that the LU decomposition of a random matrix is
anything but random. If A = LU, then U = L~1A. We have stability if || U \\ is not
too much larger than \\A\\, and this will be the case if || L~l \\ is not large. In other
words, a necessary condition for instability is that || L~l \\ be large. In this exercise
we will see by experiment that Gaussian elimination with partial pivoting tends to
return matrices for which L~l is not large.

(a) Write a MATLAB program that generates random unit lower-triangular matri-
ces with entries between 1 and - 1 . For example, you can start with the identity
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matrix (L = eye (n) ) and then fill in the lower triangular part. The com-
mand L (i, j ) = 2 * rand-1 gives a random number uniformly distributed
in [—1,1]. Calculate the norm of L"1 for several such matrices with n = 40,
80, and 160.

(b) Now generate the LU factors of random n x n matrices by

A = randn(n);
[ L , U , P ] = l u ( A ) ;

MATLAB's lu command does Gaussian elimination with partial pivoting.
This way of using it produces a truly unit lower-triangular matrix L; the row
interchanges are incorporated into the permutation matrix P. Calculate 11L~ l \ \
for several matrices generated in this way with n = 40, 80, and 160. Contrast
your results with those of part (a).

(c) Extend your code from part (b) so that it computes not only || L~l \\ but also
|| M~l ||, where M is generated from L by reversing the signs of the pivots:
M = 2I-L.

D

Exercise 2.7.28 Show that if L e ln and U e Rnxn are full lower and upper triangular,
2
3respectively, the flop count for computing the product LU is f n3. •

Exercise 2.7.29 Here we prove the backward stability of Cholesky's method in detail. Let A
be a positive definite matrix, and let R denote its Cholesky factor computed by some
variant of Cholesky's method in floating-point arithmetic. Assume that square roots
are calculated accurately:

(a) Using the proof of Theorem 2.7.13 as a model, prove that A + E — RTR,
where

and

(b) The trace of a matrix B 6 Rnxn is Use the Cauchy-
Schwarz inequality to prove that (Notice that equality
is attained when B — I. More commonly | tr(I?) | w || B ||F.)

(c) Prove that if A + E = RTR, then \\R\\2
F = ti(A + E] = tr(A) + tr(£).

(This holds regardless of whether or not R is triangular.) Thus

(d) Substituting this last inequality into the result of part (a), show that
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and, if 2n3/2w < 1,

For realistic values of n and u we generally have 2n3/2u <§C 1, so the denom-
inator in this expression is about 1. (Consider, e.g., the huge value n = 106

and IEEE double precision's u « 10~16.) Furthermore, the factor 2n3/2 in the
numerator is based on a pessimistic worst-case analysis and can be ignored.
Thus we have, in practice,

where C is a modest multiple of 1, not n3/2. Thus Cholesky's method for
positive definite matrices is stable.

D

2.8 SCALING

In a linear system Ax = 6, any equation can be multiplied by any nonzero constant
without changing the solution of the system. Such an operation is called a row scaling
operation. A similar operation can be applied to a column of A. In contrast to row
scaling operations, column scaling operations do change the solution.

Exercise 2.8.1 Show that if the nonsingular linear system Ax — b is altered by multiplication
of its jth column by c 0, then the solution is altered only in the jth component,
which is multiplied by 1/c. •

Scaling operations can be viewed as changes of measurement units, suppose the
entries of the jth column of A are masses expressed in grams, and Xj is an acceleration
measured in meters/sec2. Multiplication of the ^th column by 1/1000 is the same
as changing the units of its entries from grams to kilograms. At the same time Xj is
multiplied by 1000, which is the same as changing its units from meters/second2 to
millimeters/second2.

A discussion of scaling operations is made necessary by the fact that these op-
erations affect the numerical properties of the system. This discussion has been
placed near the end of the chapter because in most cases rescaling is unnecessary and
undesirable; usually an appropriate scaling is determined by the physical units of the
problem. Consider for example the electrical circuit problem in Example 1.2.6. In
the linear system derived there, all entries of the coefficient matrix have the same
units (I/ohm), all components of the solution have the same units (volts), and all
components of the right-hand side have the same units (amperes). One could rescale
this system so that, for example, one of the unknowns is expressed in millivolts while
the others remain in volts, but this should not be done without a good reason. In most
cases it is best not to rescale.
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Let us look at some examples that illustrate some of the effects of scaling.

Example 2.8.2 The first example shows that a small pivot cannot be "cured" by
multiplying its row by a large number. Consider the system

which was obtained from the system (2.6.10) of Example 2.6.9 by multiplying the
first row by 1000. We used (2.6. 10) to illustrate the damaging effects of using a small
number as a pivot. Now that the first row has been multiplied by 1000, the (1, 1)
entry is no longer small. It is now the largest entry in the first column. Let us see
what happens when it is used as a pivot.

Using four-digit decimal arithmetic, the multipliers for the first step are

Comparing these with (2.6.11), we see that they are 1000 times smaller than before.
In step 1 the (2,2) entry is altered as follows:

Comparing this with (2.6.12), we see that in spite of the smaller pivot, the outcome
is the same as before. This time the number 3.165 is swamped by the large entry
1231. Notice that this computation is essentially identical with (2.6.12). The result is
exactly the same, including the roundoff errors. You can check that when the (2,3),
(3,2), and (3,3) entries are modified, swamping occurs just as before, and indeed
the computations are essentially the same as before and yield exactly the same result.
Thus, after the first step, the modified coefficient matrix is

The submatrix for the second step is

which is exactly the same as before. If we continue the computation, we will have the
same disastrous outcome. This time swamping occurred not because large multiples
of the first row were subtracted from the other rows, but because the first row itself is
large.

How could this disaster have been predicted? Looking at the coefficient matrix,
we can see that it is ill conditioned: the rows (and the columns) are out of scale.
It is interesting that we have two different explanations for the same disaster. With
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the original system we blamed a small pivot; with the rescaled system we blame ill
conditioning. �

This example illustrated an interesting theorem of F. L. Bauer. Suppose we solve
the system Ax = b by Gaussian elimination, using some specified sequence of row
and column interchanges, on a computer that uses base β floating-point arithmetic.
If the system is then rescaled by multiplying the rows and columns by powers of 0
and solved again using the same sequence of row and column interchanges, the result
will be exactly the same as before, including roundoff errors. All roundoff errors at
all steps are the same as before. In our present example β = 10; multiplying the first
row by 103 has no effect on the arithmetic. It is not hard to prove Bauer's theorem;
you might like to do so as an exercise or at least convince yourself that it is true. The
examples that follow should help.

Bauer's theorem has an interesting consequence. If the scaling factors are always
chosen to be powers of/3, then the only way rescaling affects the numerical properties
of Gaussian elimination is by changing the choices of pivot. If scaling factors that
are not powers of 0 are used, there will be additional roundoff errors associated with
the rescaling, but it remains true that the principal effect of rescaling is to alter the
pivot choices.

Example 2.8.3 Let us solve the system

using three-digit decimal floating-point arithmetic without row or column inter-
changes. The exact solution is x = [I, 2]T. The multiplier is /2i = .277/.003 =
92.3, and u22 = -138 - (92.3)(.217) = .138 - 20.0 = -19.9, so the computed LU
decomposition is

The forward substitution gives yi = .437 and y2 = .553 - (92.3)(.437) = .553 -
40.3 = -39.7. Finally the back substitution gives x2 = (-39.7)/(-19.9) = 1.99
andx! = .437- (.217)(1.99)]/(.003) = (.437 - .432)/(.003) = (.005)/(.003) =
1.67. Thus the computed solution is x = [1.67, 1.99]T, whose first component is
inaccurate. D

Exercise 2.8.5

(a) Calculate K (A), where A is the coefficient matrix of (2.8.4). Observe that A
is well conditioned.

(b) Perform Gaussian elimination on (2.8.4) with the rows interchanged, using
three-digit decimal floating-point arithmetic, and note that an accurate solution
is obtained. (Remember to round each intermediate result to three decimal
places before using it in the next calculation.)
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D

Example 2.8.6 Now let us solve

which was obtained by multiplying the first row of (2.8.4) by 102. Now the (1,1)
entry is the largest entry in the first column. Again we use three-digit decimal
arithmetic and no row or column interchanges. By Bauer's theorem the outcome
should be the same as in Example 2.8.3. Let us check that it is. The multiplier is
/2i = .277/.300 = .923, and u22 = -138 - (.923)(21.7) = .138 - 20.0 = -19.9,
so the computed LU decomposition is

The forward substitution gives yi = 43.7 and y2 = -553 - (.923)(43.7) = .553 -
40.3 = -39.7. Finally the back substitution yields x2 = (-39.7)/(-19.9) = 1.99
andx! = 43.7 - (21.7)(1.99)]/(.300) - (43.7 - 43.2)/(.300) - (.500)/(.300) =
1.67. Thus the computed solution is again x — [1.67, 1.99]T. All intermediate
results are identical to those in Example 2.8.3, except for powers of 10. D

Exercise 2.8.8

(a) Calculate K^A), where A is the coefficient matrix of (2.8.7). A is ill
conditioned (relative to three-digit decimal arithmetic) because its rows (and
columns) are out of scale.

(b) Perform Gaussian elimination on (2.8.7) with the rows interchanged, using
three-digit decimal arithmetic. Note that, as guaranteed by Bauer's theorem,
the computations and outcome are identical to those in part (b) of Exercise 2.8.5.
Thus an ill-conditioned coefficient matrix does not absolutely guarantee an
inaccurate result. (However, if the partial-pivoting strategy had been used, the
row interchange would not have been made, and the outcome would have been
bad.)

D

Exercise 2.8.9 Solve (2.8.7) by Gaussian elimination with the columns interchanged, using
three-digit decimal arithmetic. This is the complete pivoting strategy. Note that a
good result is obtained. D

Example 2.8.10 Now let us solve

which was obtained from (2.8.7) by multiplying the second column by 1/100. The
exact solution is therefore x = [1, 200]T. The (1,1) entry is now the largest
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entry in the matrix. Again we use three-digit decimal arithmetic and no row or
column interchanges (which is the choice that both the partial and complete pivoting
strategies would make). By Bauer's theorem the outcome should be the same as
in Examples 2.8.3 and 2.8.6. The multiplier is /2i = -277/.300 = .923, and
u22 = .00138 - (.923)(.217) = .00138 - .200 = -.199, so the computed LU
decomposition is

The forward substitution gives j/i = 43.7 and y2 = .553 - (.923)(43.7) = .553 -
40.3 = -39.7. Finally the back substitution yields x2 = (-39.7)/(-.199) = 199.,
and Xl = 43.7 - (.217)(199.)]/(.300) = (43.7 - 43.2)/(.300) = (.500)/(.300) =

1.67. Thus the computed solution is x = [1.67, 199.]T. All computations were
identical to those in Examples 2.8.3 and 2.8.6.

Although the computed solution x = [1.67, 199.]T has an inaccurate first com-
ponent, it should not necessarily be viewed as a bad result. The inaccurate entry
is much smaller than the accurate one, and in fact H a l l o o / H a l l o o = -005, where
6x = x — x. This is an excellent outcome for three-digit decimal arithmetic. The
small value of | | δ x | | / | | x||^ is guaranteed by the well-conditioned coefficient ma-

trix, together with the fact that the computed L and U do not have large entries (cf.
Theorems 2.7.14 and 2.3.6).

It is easy to imagine situations in which the computed result x = [1.67 199.]T is
acceptable. Suppose for example that x\ and x<i represent voltages expressed in the
same units. If all that matters is the voltage difference, then the result is okay, since
the computed difference x2 — x\ — 197.33 differs from the correct difference 199
by only about one percent. D

Exercise 2.8.12

(a) Calculate K00(A), where A is the coefficient matrix of (2.8.11).

(b) Perform Gaussian elimination on (2.8.11) with the rows interchanged, using
three-digit decimal arithmetic.

(c) Perform Gaussian elimination on (2.8.11) with the columns interchanged, using
three-digit decimal arithmetic.

D

2.9 COMPONENTWISE SENSITIVITY ANALYSIS

In this chapter we have taken the oldest and simplest approach to sensitivity analysis,
in which everything is measured by norms. It is called normwise sensitivity analysis,
and it is accompanied by normwise backward error analysis. This style of error
analysis has been very successful, but there are some situations in which a different
type of analysis, componentwise sensitivity analysis, is more appropriate. In the
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normwise analysis, 6A is considered a small perturbation of A if | |<L4| |/ | | .A | | is
small. This criterion does not force all of the ratios \6dij \l\a^; |, which are the
perturbations of the components, to be small.

Example 2.9.1 Suppose

Then

We have H^H^/H A)^ < 10~5, but this does not force |<5o2i |/ |a 2 i | to be small.
Obviously this can happen to any entry for which | a^-1 <C || A \\. O

In componentwise sensitivity analysis, perturbations are considered small only if
the perturbation in each component is small relative to that component, that is,

is small. Since we often encounter matrices with zero entries, we prefer the following
reformulation, in which a,ij does not appear in the denominator: The perturbation
6 A is componentwise e-small with respect to A if there is a positive e <C 1 such that

Notice that under this condition, if a^ = 0, then δaij = 0. Thus sparse matrices stay
sparse and sparsity patterns are preserved under perturbations of this type.

Recall the following notation, which we introduced in Section 2.7. If B is a matrix
(or vector) with (i, j) entry bi3•., then | B \ is the matrix with the same dimensions whose
(i, j) entry is | bij \. We write | B \ < \ C \ to mean that 16^ | < | Cij \ for all i and j.
With these notational conventions we can rewrite the condition (2.9.2) as

In the componentwise sensitivity analysis we can ask the same sort of questions as
we do in the normwise analysis. For example, if Ax = b and (A + δA) (x + δx) — b,
what is the largest 6x can be relative to xl Before considering this and related
questions, we pause to establish some basic facts about the matrix absolute value
notation and matrix inequalities.

Exercise 2.9.4

(a) Show that if A = BC, then | A | < | B \ \ C \. (This is a matrix inequality.) In
particular, | Ax \ < \ A \ \ x \ .

(b) (Review) Show that if y = \x\, then ||y||^ = H x j l ^ .

�
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If A £ Mn x n is nonsingular, we can build various other nxn matrices from A, for
example, \A\, A'1, \A-11, and K = A~l \\A\. This last one appears in various
error bounds, as we shall see, and we use it to define a new type of condition number,
the Skeel condition number of A:

Now we are ready to prove some theorems. The first is the componentwise
analogue of Theorem 2.2.4

Theorem 2.9.5 Let A e Enxn be nonsingular, let b 6 En be nonzero, and let x be
the unique solution of Ax — b. Suppose x — x + 6x is the solution of Ax = b + 6b,
where

Then

and

Exercise 2.9.8 Prove Theorem 2.9.5 as follows (or do it your own way).

(a) Prove that 16x \ < \ A'1 \ \ Sb\ and | b\ < \A\ \ x \. Then deduce (2.9.6).

(b) Deduce (2.9.7) from (2.9.6).

D

Now consider this componentwise analogue of Theorems 2.3.3 and 2.3.6.

Theorem 2.9.9 Let A 6 Enxn be nonsingular, let b G Mn be nonzero, and let x be
the unique solution of Ax — b. Suppose x = x + dx satisfies (A + 8A}x = b, where

Then

and

If e skeel(A) < 1, then also
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Exercise 2.9.13 Prove Theorem 2.9.9 as follows (or do it your own way).

(a) Prove that 6x = -A'1δAx and \6x\ < [A" 1] \6A\ |x|. Then deduce
(2.9.10).

(b) Deduce (2.9.11) from (2.9.10).

(c) Multiply (2.9.11) through by H x j l ^ , apply the triangle inequality to break
H a l l o o into two parts, and deduce (2.9.12), remembering to point out where
you are using the added hypothesis e skeel(A) < 1.

D

Componentwise Backward Error Analysis

Componentwise sensitivity analysis can be combined with componentwise backward

stability analysis, whenever the latter is successful. One example of componentwise

backward stability that we have already encountered is the forward substitution

algorithm for solving triangular systems. Theorem 2.7.2 states that if we solve the

triangular system Gy = b by forward substitution using floating-point arithmetic, then

the computed solution y satisfies (G 4- 8G}y — b, where 1 8G \ < 2nu\ G \ 4- 0(w2).

This is a componentwise backward stability result, since it says that each component

of 6G is tiny relative to the corresponding component of G. As a practical matter

we have \SG\ < Cu\G , where C is a modest multiple of 1. We can now apply

Theorem 2.9.9 with e — Cu, to conclude that y is accurate (in the sense that

/ \ \ y l loo i§ tmy) if the Skeel condition number skeel(G) is not too large.

Iterative Refinement

Another process that yields componentwise backward stability is iterative refinement.

This is an old procedure that was originally used to improve the accuracy of solutions
to ill-conditioned systems. Let x denote an approximation to the solution of the

system Ax = 6, and let f be the associated residual: f = b — Ax. The approximation

x may have been obtained by Gaussian elimination, for example. If we could solve the

residual system Az = f exactly, then the vector x — x + z would be the exact solution

of Ax — b, as you can easily check. If we did obtain x by Gaussian elimination,
then an LU decomposition is available, so we can solve Az = f inexpensively. Of

course the computed solution z is not exact. If A is somewhat ill conditioned, it may

be far from exact. Nevertheless it is not unreasonable to hope that x + z will be an

improvement over x. If this is the case, then perhaps we can improve the solution

even more by calculating the residual associated with x + z and repeating the process.

In fact we can repeat it as many times as we wish. This gives the following iterative

refinement algorithm.
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Iterative Refinement Algorithm
for k = I,...,m

Set flag indicating failure.

This is called an iterative algorithm because the number of steps or iterations
to be performed is not known in advance. The iterations are terminated as soon as
the corrections become sufficiently small. Any iterative algorithm should have an
upper bound on the number of iterations it is willing to attempt before abandoning
the process as a failure. In (2.9.14) that number is denoted by m. Notice that in order
to carry out this procedure, we must save copies of A and b to use in the computation
of the residuals.

Up until about 1980 it was thought that (2.9.14) cannot hope to succeed unless
the residuals are calculated in extended-precision arithmetic. This means that if we
are using single-precision arithmetic, the step r b — Ax should be done in double
precision. The reason for this is that severe cancellation occurs when Ax is subtracted
from b. The smaller f becomes, the worse the cancellation is. The objective of the
extended-precision computation is to preserve as many significant digits as possible
in the face of this cancellation.

If iterative refinement is carried out in this way and the system is not too badly
conditioned (say K( A) < 1/u), (2.9.14) actually does converge to the true solution of
Ax = b. Thus iterative refinement can be used to solve the problem to full precision
(|| x — x || « w). There is a catch, however. The system that is solved so precisely
is the one whose coefficient matrix A and right-hand-side vector b are exactly what
is stored in the computer. Because of measurement and representation errors, the
stored A and b are mere approximations to the true data for the physical problem that
we are trying to solve. If the problem is ill conditioned, the exact solution of Ax — b
can be a very unsatisfactory approximation to the solution of the problem we really
wish to solve.

Around 1980 it was realized that iterative refinement is useful even if the residuals
are not computed with extended precision arithmetic. Full precision (|| x — x \\ w u)
cannot be attained, but some improvement in accuracy is possible. Furthermore,
iterative refinement has a good effect on the backward error. Skeel [61] showed that
if the system is not too badly conditioned and not too badly out of scale, then one
step of iterative refinement is usually enough to ensure a componentwise backward
stable solution. See [41] or [61] for details.

Componentwise backward stability means that the computed solution satisfies
(A + 6A)x = 6, where \6A\ < Cu\A\, with C not too big. This can then be
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combined with Theorem 2.9.9 to get the bound

This is sometimes significantly better than bounds that can be obtained using the
normwise error analysis, because skeel(A) can be much smaller than K00(A) (See
Exercise 2.9.15). The greatest advantage comes with matrices that are ill-conditioned
simply because the rows are out of scale. The Skeel condition number skeel(A) is
insensitive to row scaling, so it remains small while the normwise condition number
KOO (A) becomes large in proportion to the badness of the scaling.

There are inexpensive methods for estimating skeel(A) that work on the same
principal as condition estimators for KI (A). See [41].

Exercise 2.9.15

(a) Show that for every nonsingular matrix A, skeel(A) < K00(A).

(b) Show that if D is a nonsingular diagonal matrix, then |DA\ — \D\ \A\ and
IDf 1 = JD-1!.

(c) Show that the Skeel condition number is invariant under row scaling; that is,
skeel(DA) = skeel(A) for all nonsingular diagonal matrices D.

(d) From part (a) we know that the ratio K A)/skeel(A) is always at least one.
Show by example that it can be made arbitrarily large.

•

Exercise 2.9.16

(a) Prove that if A is nonsingular, A + 5A is singular, and 16A\ < c\A\, then
e skeel(A) > 1 (cf. Theorem 2.3.1).

(b) Prove that if A is nonsingular and j d A \ < e\A\, where e skeel(A) < 1, then
A + 6A is nonsingular.

(c) Discuss the relationship between the result in part (b) and Theorem 2.3.1. Is
one stronger than the other?

D
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The Least Squares Problem

In this chapter we study the least squares problem, which arises repeatedly in scientific
and engineering computations. After describing the problem in Section 3.1, we
immediately begin to develop the tools that we need to solve the problem: rotators,
reflectors, and the QR decomposition, in Section 3.2. In Section 3.3 we show how
to use a QR decomposition to solve the least squares problem. In Section 3.4 we
introduce the Gram-Schmidt orthonormalization process, demonstrate its relationship
to the QR decomposition, and study some of its computational variants. In the interest
of getting to the algorithms quickly, we have postponed discussion of some important
theoretical issues to Section 3.5. Section 3.6 addresses the important question of
updating the QR decomposition when a row or column is added to or deleted from
the data matrix.

3.1 THE DISCRETE LEAST SQUARES PROBLEM

A task that occurs frequently in scientific investigations is that of finding a straight
line that "fits" some set of data points. Typically we have a fairly large number of
points (ti,yi), i = 1, . . . , n, collected from some experiment, and often we have
some theoretical reason to believe that these points should lie on a straight line. Thus
we seek a linear function p(t) = a0 + ait such that p(ti) = yi, i = 1, . . . , n. In
practice of course the points will deviate from a straight line, so it is impossible to
find a linear p(i) that passes through all of them. Instead we settle for a line that fits
the data well, in the sense that the errors

181
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are made as small as possible.
It is generally impossible to find a p for which all of the numbers | yi — p(ti)\ are

simultaneously minimized, so instead we seek a p that strikes a good compromise.
Specifically, let r = [ri, • • •, rn]

T denote the vector of residuals n = yi— p(ti}. We
can solve our problem by choosing a vector norm || • || and taking our compromise
function to be that p for which ||r || is made as small as possible. Of course the
solution depends on the choice of norm. For example, if we choose the Euclidean
norm, we minimize the quantity

whereas if we choose the 1-norm or the co-norm, we minimize respectively the
quantities

The problem of finding the minimizing p has been studied for a variety of norms,
including those we have just mentioned. By far the nicest theory is that based on the
Euclidean norm, and it is that theory that we will study in this chapter. To minimize
|| r ||2 is the same as to minimize

Thus we are minimizing the sum of the squares of the residuals. For this reason the
problem of minimizing || r ||2 is called the least squares problem.1

The choice of the 2-norm can be justified on statistical grounds. Suppose the
data fail to lie on a straight line because of errors in the measured y^. If the errors
are independent and normally distributed with mean zero and variance cr2, then the
solution of the least squares problem is the maximum likelihood estimator of the true
solution.

A straight line is the graph of a polynomial of first degree. Sometimes it is
desirable to fit a data set with a polynomial of higher degree. For example, it might
be useful to approximate the data of Figure 3.1 by a polynomial of degree 2. If we
decide to approximate our data by a polynomial of degree < ra — 1, then the task is
to seek p(t) = ao + ait + a2t2 + • • • + am-itm~l such that

^t is called the discrete least squares problem because a finite (discrete) data set (ti, yi) is being approx-
imated. The continuous least squares problem, in which a continuum of data points is approximated, will
be discussed briefly in Section 3.5.
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Fig. 3.1 Data that can be approximated well by a quadratic polynomial

Since the number of data points is typically large and the degree of the polynomial
fairly low, it will usually be the case that n ^> m. In this case it is too much to ask
for a p that satisfies (3.1.1) exactly, but for the moment let us act as if that were our
goal. The set of polynomials of degree < m — 1 is a vector space of dimension m.
If 0i, 02, • • •, 0m is a basis of this space, then each polynomial p in the space can be
expressed in the form

for some unique choice of coefficients x\, x-2, ..., xm. The obvious basis is
ø i ( t ) - 1, 2 ( t ) = t, 0s(i) = t2, ..., <j>m(t) = tm~l, but there are many others,
some of which may be better from a computational standpoint. See Example 4.4.15.

Substituting the expression (3.1.2) into the equations (3.1.1), we obtain a set of n
linear equations in the m unknowns #1 , . . . , xm:

which can be written in matrix form as

If n > m, as is usually the case, this is an overdetermined system; that is, it has more
equations than unknowns. Thus we cannot expect to find an x that satisfies (3.1.3)
exactly. Instead we might seek an x for which the sum of the squares of the residuals
is minimized.
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It is easy to imagine further generalizations of this problem. For example, the
functions øi, . . . , øm could be taken to be trigonometric or exponential or some
other kind of functions. More generally we can consider the overdetermined system

where A 6 Mn x m , n > m, and b 6 Rn. The least squares problem for the system
(3.1.4) is to find x E Em for which ||r||2 is minimized, where r — b — Ax is the
vector of residuals, with the help of the orthogonal matrices introduced in the next
section, we will develop algorithms for solving the least squares problem (3.1.4),
which includes (3.1.3) as a special case.

Exercises

Exercise 3.1.5 Consider the following data.

(a) Set up an overdetermined system of the form (3.1.3) for a straight line passing
through the data points. Use the standard basis polynomials </>i(t) = 1,
02 (* )=*•

(b) Use MATLAB to calculate the least-squares solution of the system from part
(a). This is a simple matter. Given an overdetermined system Ax — b, the
MATLAB command x = A\b computes the least squares solution. Recall
that this is exactly the same command as would be used to tell MATLAB
to solve a square system Ax = b by Gaussian elimination.2 Some useful
MATLAB commands:

t = 1: .5:3; t = t' ; s = ones (5 ,1 ) ; A = [s t];

We already know that MATLAB uses Gaussian elimination with partial pivot-
ing in the square case. In the next two sections you will find out what MATLAB
does in the overdetermined case.

(c) Use the MATLAB plot command to plot the five data points and your least
squares straight line. Type help plot for information about using the plot
command.

(d) Use MATLAB to compute || r ||2, the norm of the residual.

D

Exercise 3.1.6 Repeat Exercise 3.1.5, but this time compute the best least squares polynomial
of degree < 2. Notice that in this case the norm of the residual is smaller. This is

2In the square case A is expected to be nonsingular. In the overdetermined case it is expected to have full
rank. Rank will be discussed in Section 3.3 and in subsequent sections.
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to be expected; the space of quadratic polynomials contains the space of linear
polynomials, so the quadratic fit should be better or in any case no worse than the
linear polynomial fit. D

Exercise 3.1.7 Repeat Exercise 3.1.5, but this time compute the best least squares polynomial
of degree < 4. The space of quartic polynomials has dimension 5. Thus we have
n = m = 5; the system is not overdetermined. The solution interpolates the data
exactly (except for roundoff errors). Plot the data points and the solution on the same
set of axes. Make the spacing between points small enough that the curve appears
smooth. Sample code.

tt = 1: .01:3;
p4 = x ( l ) + x ( 2 ) * t t + x ( 3 ) * t t . ~ 2 + x ( 4 ) * t t . ~ 3 +x (5 ) *tt . ~4 ;
plot ( . . . , t t ,p4, 'k- ' , . . . )

In the same plot include your least squares linear and quadratic polynomials from
the previous two exercises. Notice that the latter are much less oscillatory than the
fourth-degree interpolant is. They seem to represent the trend of the data better, D

Exercise 3.1.8 Set up and solve a system of equations for the best least squares fit to the
data of Exercise 3.1.5 from the space spanned by the three functions 0i(£) = 1,

* = e"*. D

Exercise 3.1.9 Consider the following data.

(a) Set up a system of three equations in three unknowns that could be solved to
find the unique quadratic polynomial that interpolates the data. (As you may
know, this is just one of several ways to solve this problem.)

(b) Solve the system using MATLAB to find the interpolant.

(c) Set up a system of three equations in three unknowns that could be solved to
find the unique linear combination of the functions 0i (t) — 1, 02 (t) — e*, and
03 (t} — e~l that interpolates the data.

(d) Solve the system using MATLAB to find this other interpolant.

(e) Plot the two interpolants on the same set of axes.

D

3.2 ORTHOGONAL MATRICES, ROTATORS, AND REFLECTORS

In this section we will develop powerful tools for solving the least squares problem.
As these tools will also be used heavily in the chapters that follow, this is one of the
most important sections of the book.
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As we did in the first two chapters, we will restrict our attention to real vectors
and matrices. However, the entire theory can be carried over to the complex case,
and this is done in part in exercises at the end of the section. The results of those
exercises will be used in Chapter 5.

We begin by introducing an inner product in Rn. Given two vectors x =
[xi , . . . , xn]

T and y = [y\ , . . . , yn]
T in En, we define the inner product of x and y,

denoted ( x , y ) by

Although the inner product is a real number, it can also be expressed as a matrix
product:

The inner product has the following properties, which you can easily verify:

(x,x) > 0 with equality if and only if x = 0.

for all x, xi,x%, y, yi,y2 € Rn and all 0.1,0.?, G EL
Note also the close relationship between the inner product and the Euclidean norm:

The Cauchy-Schwarz inequality (Theorem 2.1.6) can be stated more concisely in
terms of the inner product and the Euclidean norm: For every x, y 6 En,

When n — 2 (or 3) the inner product coincides with the familiar dot product from
analytic geometry. Recall that if x and y are two nonzero vectors in a plane and 9 is
the angle between them, then

It is not unreasonable to employ this formula to define the angle between two vectors
in En. Note first that (3.2.1) guarantees that {x, j/)/| |rc||2 | |y ||2 always lies between
— 1 and 1, so it is the cosine of some angle. We now define the angle between
(nonzero) x and y £ Mn to be

If x = 0 or y — 0, we define 9 — K/2 radians. Two vectors x and y are said to be
orthogonal if the angle between them is Tr/2 radians. Clearly x and y are orthogonal
if and only if (x, y) = 0.
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The angle between two vectors in, say, E100 is just as real as the angle between
two vectors in a plane. In fact x and y span a two-dimensional subspace of K.
This subspace is nothing but a copy of E2, that is, a plane. Viewed in this plane, x
and y have an angle between them. It is this angle that is produced by the formula
(3.2.2).

Orthogonal Matrices

A matrix Q 6 Enxn is said to be orthogonal if QQT = I. This equation says that
Q has an inverse, and Q~l — QT. Since a matrix always commutes with its inverse,
we have QTQ = I as well. For square matrices the equations

are all equivalent, and any one of them could be taken as the definition of an orthogonal
matrix.

Exercise 3.2.3 (a) Show that if Q is orthogonal, then Q~l is orthogonal, (b) Show that if
Qi and Q2 are orthogonal, then Q\Qi is orthogonal. D

Exercise 3.2.4 Show that if Q is orthogonal, then det(Q) = ±1. d

Exercise 3.2.5 Recall that a permutation matrix is a matrix that has exactly one 1 in each
row and in each column, all other entries being zero. In Section 1.8 we introduced
permutation matrices as a way to represent row interchanges in Gaussian elimination.
Show that every permutation matrix is orthogonal. d

Theorem 3.2.6 IfQ e Enxn is orthogonal, then for all x, y <E En,

Proof, (a) (Qx,Qy) = (Qy}T(Qx) = yTQTQx = yTIx = yTx = ( x , y ) .
(b) Set x = y in part (a) and take square roots. d

Part (b) of the theorem says that Qx and x have the same length. Thus orthogonal
transformations preserve lengths. Combining parts (a) and (b), we see that

Thus the angle between Qx and Qy is the same as the angle between x and y. We
conclude that orthogonal transformations preserve angles.

In the least squares problem for an overdetermined system we wish to find x
such that || b — Ax ||2 is minimized. Theorem 3.2.6, part (b), shows that for every
orthogonal matrix Q, \\b — Ax ||2 = || Qb — QAx j|2. Therefore the solution of the
least squares problem is unchanged when A and 6 are replaced by QA and Qb,
respectively. We will eventually solve the least squares problem by finding a Q for
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which QA has a very simple form, from which the solution of the least squares
problem will be easy to determine.

Exercise 3.2.7 Prove the converse of part (a) of Theorem 3.2.6: If Q satisfies (Qx, Qy) —
(x, y] for all x and y in En, then Q is orthogonal. (The condition of part (b) also
implies that Q is orthogonal, but this is harder to prove.) D

Exercise 3.2.8 Show that if Q is orthogonal, then || Q ||2 - 1, || Q~l ||2 = 1, and «2(Q) = 1-
thus Q is perfectly conditioned with respect to the 2-condition number. This suggests
that orthogonal matrices will have good computational properties. D

There are two types of orthogonal transformations that are widely used in matrix
computations: rotators and reflectors. Along with Gaussian elimination operations,
these are fundamental building blocks of matrix computations. All matrix computa-
tions built upon rotators and/or reflectors, as described in this section, are normwise
backward stable. This claim will be discussed later in this section and in Exer-
cises 3.2.70-3.2.73.

We will introduce rotators first because they are simpler.

Rotators

Consider vectors in the plane E2. The operator that rotates each vector through a
fixed angle 9 is a linear transformation, so it can be represented by a matrix. Let

be this matrix. Then Q is completely determined by its action on the two vectors

, because

Since the action of Q is to rotate each vector through the angle 6, clearly (see
Figure 3.2)

Thus

A matrix of this form is called a rotator or rotation.
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Fig. 3.2 Rotation through angle 9

Exercise 3.2.9 Verify that every rotator is an orthogonal matrix with determinant 1. What
does the inverse of a rotator look like? What transformation does it represent? D

Rotators can be used to create zeros in a vector or matrix. For example, if

is a vector with x% ̂  0, let us see how to find a rotator

\ V 1
such that QTx has a zero in its second component: QTx = M: for some y. Now

QTx =

which has the form if and only if

Thus θ can be taken to be arctan(x2/£i) or any other angle satisfying tan 9 = x<ijx\.
But notice that we can determine Q without calculating 9 itself; we need only cos 9 and
sin 9. Clearly the choice cos 9 — x\ and sin 9 = x2 would satisfy (3.2.10). However,
this choice generally violates the basic trigonometric identity cos2 9 + sin2 9 — 1.
Therefore we take instead
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obtained by dividing our original choice by Now the basic
trigonometric identity is satisfied, and there is a unique 9 6 [0, 2r) for which (3.2.11)
holds.

Exercise 3.2.12 We have iust shown that for every x e R2 there exists a rotator O such that

(a) Give the geometric interpretation of this fact.

(b) Showthatifcos#andsin#aregivenby(3.2.11),then

D

Now let us see how we can use a rotator to simplify a matrix

We have seen that there is a rotator Q such that

where Define r^ and r^2 by

and let

Then QTA — R. This shows that we can transform A to an upper triangular matrix
by multiplying it by the orthogonal matrix QT'. As we shall soon see, it is possible to
carry out such a transformation not just for 2-by-2 matrices, but for all A 6 Enxn.
That is, for every A € Enxn there is an orthogonal matrix Q e Enxn and an upper
triangular matrix R e Mnxn such that QTA - R.

A transformation of this type can be used to solve a system of linear equations
Ax = b. Multiplying on the left by QT, we transform the system to the equivalent
system QTAx = QTb, or Rx = c, where c = QTb. It is a simple matter to calculate
c, given b. Then x can be obtained by solving the upper triangular system Rx — c
by back substitution.

Another useful viewpoint is reached by rewriting the equations QTA = R as

This shows that A can be expressed as a product QR, where Q is orthogonal and
R is upper triangular. The QR decomposition, as it is called, can be used in much
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the same way as an LU decomposition to solve a linear system Ax — b. If we
have a QR decomposition of A, we can rewrite the system as QRx = b. Letting
c = Rx, we can find c by solving Qc = b. This doesn't cost much; Q is orthogonal,
so c = QTb. We can then obtain x by solving Rx = c by back substitution.
The computations required here are no different from those required by the method
outlined in the previous paragraph. Thus we have actually derived a single method
from two different points of view.

Example 3.2.13 We will use a QR decomposition to solve the system

First we require Q such that . We use (3.2.11) with x\ = 1 and

x2 = 1 to get Then

and

Solving Qc = b, we have

Finally we solve Rz = c by back substitution and get z2 = 1 and z\ — —\.

Exercise 3.2.14 Use a Qi? decomposition to solve the linear system

D
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We now turn our attention to n x n matrices. A plane rotator is a matrix of the
form

All of the entries that have not been filled in are zeros. Thus a plane rotator looks like
an identity matrix, except that one pair of rows and columns contains a rotator. Plane
rotators are used extensively in matrix computations. They are sometimes called
Givens rotators or Jacobi rotators, depending on the context3. We will usually drop
the adjective "plane" and refer simply to rotators.

Exercise 3.2.16 Prove that every plane rotator is orthogonal and has determinant 1. n

Exercise 3.2.17 Let Q be the plane rotator (3.2.15). Show that the transformations x -> Qx
and x —> QTx alter only the ith and jth entries ofx and that the effect on these entries

is the same as that of the 2-by-2 rotators

the vector D

From Exercise 3.2.17 and (3.2.11) we see that we can transform any vector x to
one whose j'th entry is zero by applying the plane rotator QT, where

(If Xi = Xj — 0, take c = 1 and s = 0.)

3Rotators applied as described in this section are Givens rotators. Jacobi rotators are discussed in
Section 6.6, especially Exercise 6.6.46
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It is also important to note the effect of a rotator on a matrix. Let A G Rnxm, and
consider the transformations A —> QA and A -» QTA, where Q is as in (3.2.15).
It follows easily from Exercise 3.2.17 that these transformations alter only the ith
and jth rows of A. Transposing these results, we see that for B G Emxn the
transformations B —» BQ and B —>• £?(3T alter only the ith and jth columns of B.

Exercise 3.2.19

(a) Show that the ith and jth rows of QA are linear combinations of the ith and
jth rows of A.

(b) Show that the zth and jth columns of BQ are linear combinations of the ith
and jth columns of B.

D

The geometric interpretation of the action of a plane rotator is clear. All vectors
lying in the XiXj plane are rotated through an angle 9. All vectors orthogonal to
the XiXj plane are left fixed. A typical vector x is neither in the XiXj plane nor
orthogonal to it but can be expressed uniquely as a sum x = p -f jr1, where p is in the
XiXj plane, and p1- is orthogonal to it. The plane rotator rotates p through an angle
9 and leaves pL fixed.

Theorem 3.2.20 Let A G IRnXn. Then there exists an orthogonal matrix Q and an
upper triangular matrix R such that A = QR.

Proof. We will sketch a proof in which Q is taken to be a product of rotators. A
more detailed proof using reflectors will be given later. Let Qi\ be a rotator acting
on the xix-2 plane, such that Q^i makes the transformation

Then has a zero in the (2,1) position. Similarly we can find a plane rotator
Qzi, acting in the xix% plane, such that has a zero in the (3,1) position.
This rotator does not disturb the zero in the (2,1) position because leaves the
second row of A unchanged. Continuing in this manner, we create rotators Q±\,
<5si, • • • , Qni> such t h a t A has zeros in the entire first column, except
for the (1,1) position.

Now we go to work on the second column. Let Q^i be a plane rotator acting in
the x^x?, plane, such that the (3,2) entry of is zero. This rotator
does not disturb the zeros that were created previously in the first column. (Why
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not?) Continuing on the second column, let Q^, Q 5 2 , . . . , Qni be rotators such that
A has zeros in columns 1 and 2 below the main diagonal.

Next we take care of the third column, fourth column, and so on. In all we create
rotators Q2i, Qsi, • • •, Qni, Qs2, • • •, Qn,n-i. such that

is upper triangular. Let Q = Q^iQzi • • -Qn,n-i- Then Q, being a product of
orthogonal matrices, is itself orthogonal, and R = QTA; that is, A = QR. D

The proof of Theorem 3.2.20 is constructive; it gives us an algorithm for computing
Q and R.

Exercise 3.2.21 Show that the algorithm sketched in the proof of Theorem 3.2.20 takes O(n3)
flops to transform A to R.4 D

Exercise 3.2.22 A mathematically precise proof of Theorem 3.2.20 would use induction on
n. Sketch an inductive proof of Theorem 3.2.20. D

Reflectors

We begin with the case n = 2, just as we did for rotators. Let £ be any line in R2

that passes through the origin. The operator that reflects each vector in R2 through
the line £ is a linear transformation, so it can be represented by a matrix. Let us
determine that matrix. Let v be a nonzero vector lying in £. Then every vector that
lies in £ is a multiple of v. Let u be a nonzero vector orthogonal to £. Then {u, v}
is a basis of R , so every x G R can be expressed as a linear combination of u and
v: x = au + J3v. The reflection of x through £ is — au + /3v (see Figure 3.3), so
the matrix Q of the reflection must satisfy Q(au + J3v] = —au + /3v for all a and
/3. For this it is necessary and sufficient that

Without loss of generality we can assume that u was chosen to be a unit vector:
IHI2 = i.

Consider the matrix P — UUT. P does not have the desired properties, but it
brings us closer to our goal. We have
and Pv = (UUT}V = U(UTV] — 0, because u and v are orthogonal. With a little
thought we can produce a Q with the desired properties by combining P and the
identity matrix. Indeed let Q — I — IP. Then Qu = u — 2Pu = —u and
Qv = v — 2Pv — v. To summarize, the matrix Q e Rnxn that reflects vectors

4If you count carefully, you will find that 2n3 -f O(n2) flops are needed. The number of multiplications
is about twice the number of additions. However, there are clever ways to implement rotators so that
the number of multiplications is halved. Rotators implemented in this special way are called fast Givens
rotations or simply fast rotators. See [33] and other references cited there for a discussion of fast rotators.
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Fig. 3.3 Reflection through a line

through the line £ is given by Q = I — 2uuT, where u is a unit vector orthogonal to
£.

Now we are ready to consider n-by-n reflectors.

Theorem 3.2.23 Let u G En with || u | 2 = 1, and define P G Mnxn fry P = UUT.
TTzen

faj Pu = u.

(b) Pv = Q if (u, v) = 0.

(c) P2 - P.

(4> PT - P.

Remark 3.2.24 A matrix satisfying P2 = P is called a projector or idempotent. A
projector that is also symmetric (PT = P) is called an orthoprojector. The matrix
P = UUT has rank 1, since its range consists of multiples of u. Thus the properties
of P can be summarized by saying that P is a rank-1 orthoprojector. d

Exercise 3.2.25 Prove Theorem 3.2.23. a

Theorem 3.2.26 Let u 6 En wi/fc ||u||2 = 1, and define Q e Enxn by Q =
/ — 2uuT. Then
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(b) Qv = v if (u, v} = 0.

(c) Q — QT (Q is symmetric).

(d) QT = Q"1 (Q is orthogonal).

(e) Q~~l = Q (Q is an involution).

Exercise 3.2.27 Prove Theorem 3.2.26. D

Matrices Q = I— 1uuT (\\ u\\2 = I) are called reflectors or Householder transfor-
mations, after A. S. Householder, who first employed them in matrix computations.
Reflectors, like Gauss transforms (Exercise 1.7.49), are rank-one updates of the
identity matrix. See Exercise 3.2.64.

The set 'H — {v € En | (u, v) = 0} is an (n — 1)-dimensional subspace of Mn

known as a hyperplane. The matrix Q maps each vector x to its reflection through
the hyperplane H. This can be visualized by thinking of the case n = 3, in which H
is just an ordinary plane through the origin.

In Theorems 3.2.23 and 3.2.26, u was taken to be a unit vector. This is a convenient
choice for the statements and proofs of those theorems, but in computations it is
usually more convenient not to normalize the vector. The following theorem makes
it possible to skip the normalization.

Proposition 3.2.28 Let u be a nonzero vector in E.n, and define j — 2/||u||2 and
Q = I — ̂ /UUT . Then Q is a reflector satisfying

(a) Qu = —u.

(b) Qv = v if (u, v) = 0.

Proof. Let u = u/\\u\\2. Then ||u|| = 1, and it is a simple matter to check that
Q = I — 2uuT. Properties (a) and (b) follow easily. D

Exercise 3.2.29 Fill in the details of the proof of Proposition 3.2.28. D

Theorem3.2.30 Let x, y e En with x ^ y but \\x\\2 = \\y\\2. Then there is a
unique reflector Q such that Qx = y.

Proof. We will not prove uniqueness because it is not important to our development
(but see Exercise 3.2.63). To establish the existence of Q we must find u such that
(7 — JUUT)X = y, where To see how to proceed, consider the case
n = 2, which is depicted in part (a) of Figure 3.4. Let £ denote the line that bisects
the angle between x and y. The reflection of x through this (and only this) line is y.
Thus we require a vector u that is orthogonal to £. It appears that u = x — y, or any
multiple thereof, is the right choice.

Let u = x — y, and Q = I — ̂ UUT. To prove that Qx = y we first
decompose x into a sum:
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Fig. 3.4 Reflecting x to y.

By part (a) of Proposition 3.2.28, Q(x — y) = y — x. Part (b) of Figure 3.4 suggests
that x + y is orthogonal to u. To check that this is so, we simply compute the inner
product:

because 11x | |2 = | |y|2 .
x + y. Finally

>. It follows by part (b) of Proposition 3.2.28 that Q(x + y} =

It follows easily from this theorem that reflectors can be used to create zeros in
vectors and matrices.

Corollary 3.2.31 Let x £ En be any nonzero vector. Then there exists a reflector Q
such that
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Proof. Let y = [—r, 0, . . . , 0]T, where r — ±||a;||2. By choosing the sign
appropriately we can guarantee that x ^ y. Clearly ||x||2 = | |y||2- Thus by
Theorem 3.2.30, there is a reflector Q such that Qx = y. D

Let us take a look at the construction suggested in this proof. The reflector is
Q = I — JUUT, where

and Any multiple of this u will generate the same reflector. It turns
out to be convenient to normalize u so that its first entry is 1. Thus we will take

instead. We still have but now we are referring to the rescaled u
(3.2.32). It is a simple matter to calculate u and 7. We require that r — ±|| x ||2, but
we did not specify the sign. In theory either choice can be used (so long as x ^ y),
but in practice the easiest course is to choose r so that its sign is the same as that of
xi. This ensures that cancellation does not occur in the computation of r + x\. It
also guarantees that when we normalize u by dividing by r + x\, we do not divide
by zero, nor do we generate dangerously large entries in u.

Exercise 3.2.33 Show that if r = ±|| x ||2 is chosen so that r and x\ have the same sign, then
all entries of u in (3.2.32) satisfy | Ui \ < I. •

The calculation of 7 is even easier than it looks. Notice that

,2
n_

But regardless of which sign was chosen for r, so

Before we summarize this computation, let us point out one other potential danger.
In order to calculate r, we need Since squaring doubles
the exponent, an overflow can occur if some of the entries are very large. Likewise
underflows can occur if some of the entries are very small. Obviously we must avoid
overflows; underflows can also occasionally be dangerous.
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Example 3.2.34 Consider the calculation of || x ||2, where

on a computer that underflows at 10~". Any number smaller than that is set to zero.
Now each of which is set to zero by the
machine. Thus the computed norm is This is in error by almost five
percent, as the true value of the norm is d

Problems with overflows and underflows in the calculation of 11 x \ \ 2 can be avoided
by the folio wing simple procedure: Let ft = H a l l o o = maxi<j<n \X{ \. If (3 = 0,then
||z||2 = o. Otherwise let x = (l//3)z. Then
This scaling procedure eliminates any practical possibility of overflow because | X{ \ <
I for all i. Underflows are still possible, but they occur only when some terms are
so much smaller than the largest term (— 1) that the error incurred by ignoring them
is well below the computer's unit roundoff. Thus these underflows are harmless and
can safely be set to zero.

Exercise 3.2.35 Use the scaling procedure outlined above to calculate the norm of the vector
x of Example 3.2.34. D

Exercise 3.2.36 The danger of underflows and overflows exists not only in the calculation of
reflectors , but in the calculation of rotators as well. Modify the computation (3.2.18)
so that the danger of overflows or harmful underflows is eliminated. D

The procedure for calculating Q such that Qx — y, where

incorporating the scaling procedure to calculate || x ||2, is summarized in (3.2.37). To
keep the description brief we have used the MATLAB-like notation X{:j to denote
entries i through j of vector x.

Given x € Mn, this algorithm calculates r, 7, and u such that Q = (/ — JUUT)
is a reflector for which Qx = [—r 0 • • • 0]T. If x = 0, 7 is set to zero, giving
Q = I. Otherwise, 7 and u are produced, and u is stored over x. Since m is
known to be 1, the operation x\ <— 1 could be skipped, depending on how the
output is to be used.
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You can readily see that cancellation cannot occur in this algorithm: The sum
involves positive numbers only, and we have arranged the computation

so that cancellation does not occur in the sum r + x\. Therefore the computed r, 7,
and u are accurate.

Exercise 3.2.38 Check that the total work to execute Algorithm (3.2.37) is O(n). D

Algorithm (3.2.37) does not calculate Q explicitly, but then Q is seldom needed;
it suffices to save 7 and u. For example, when reflectors are used to compute the QR
decomposition of a matrix, we need to multiply each reflector Q by a matrix B that
is a submatrix of the matrix that is undergoing a transformation to upper-triangular
form. Let us see how we can compute QB economically. Suppose Q 6 Enxn, and
B € Enxm. We have QB = (I - ^uuT)B = B - -yuuTB, so the main task is
to calculate the product ^uuTB. There are good and bad ways to do this. The first
good thing we can do is absorb the scalar 7 into one of the vectors. Let VT = ^UT ,
so that QB = B - uvTB.

Exercise 3.2.39 The amount of work required to compute UVTB depends dramatically upon
the order in which the operations are performed. Suppose, as above, that u G En,
v e R n , and£€ Enxrn.

(a) Show that if we compute (uvT)B, the intermediate result is an n x n matrix,
and the total computation requires about 2n2m flops.

(b) Show that if we compute u(vTB), the intermediate result is a 1 x m matrix,
and the total computation requires about 3nm flops. This arrangement clearly
requires much less storage space and arithmetic than the arrangement of part
(a).

(c) Show that the computation QB — B — UVTB requires about 4nm flops in all
if it is done in the economical way.

(d) How many flops are needed to compute QB if Q is stored in the conventional
way as an n x n matrix?

n

From this exercise we see that the economical approach to computing QB is to
compute B — u(vTB}. The operations are summarized in the following algorithm.

Algorithm to calculate QB and store it over B, where B E Rnxm and Q =
(I — ~JUUT}. An auxiliary vector v € Rn is used.

The total flop count is about 4nm, which is dramatically less expensive than assem-
bling Q explicitly and multiplying Q by B in the conventional manner. This saving is
possible because the reflector Q is a rank-one update of the identity (Exercise 3.2.64).
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Algorithm (3.2.40) can be implemented as either column-oriented or row-oriented
code, depending upon the loop order in the two matrix-matrix multiplications. If
column-oriented code is chosen, the auxiliary vector v can be replaced by a single
auxiliary scalar, and the flop count can be lowered marginally, by careful organization.
However, these modifications will not necessarily result in faster code.

e 3.2.41

(a) Find a reflector Q that maps the vector [3, 4, 1, 3, 1]T to a vector of the form
[—r, 0, 0, 0, 0]T. You need not rescale x Write Q two ways: (i) in the form
/ - 7uwT and (ii) as a completely assembled matrix.

(b) Leto= [0, 2, 1, —1, 0]T. Calculate Qa two different ways: (i) the efficient
way, using / — JUUT, and (ii) using the assembled matrix Q.

D

QR Decomposition by Reflectors

Theorem 3.2.20 states that every A 6 Enxn can be expressed as a product A —
QR, where Q is orthogonal and R is upper triangular. We used rotators to prove
Theorem 3.2.20, but we promised a second proof based on reflectors. We are now
ready for that proof.
Proof of Theorem 3.2.20 using reflectors. The proof is by induction on n. When
n — 1, take Q = [1] and R = [an] to get A — QR. Now we will take an arbitrary
n > 2 and show that the theorem holds for n-by-n matrices if it holds for (n — l)-by-
(n — 1) matrices. Let Qi € Enxn be a reflector that creates zeros in the first column
of A:

Recalling that Qi is symmetric, we see that has the form

By the induction hypothesis A2 has a QR decomposition: . where Q2 is
orthogonal and R2 is upper triangular. Define by
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Then obviously is orthogonal, and

This matrix is upper triangular; let us call it R. Let i Then Q is orthogo-
nal, and QTA = R. Therefore A = QR. D

This proof can be turned into an algorithm for constructing Q and R. Step 1
calculates a reflector Ql = I — jiu^u^T to perform the task (3.2.42) and then
uses Qi to make the transformation (3.2.43). In practice we need not form Q\
explicitly; we can just save — TI, 71, and u^, which were calculated by (3.2.37) with
x taken to be the first column of A. There is no need to transform the first column to
the form [—TI 0 • • • 0]T, as shown in (3.2.43), at least the zeros need not be stored.
We can store —TI = rn in the (1,1) position, and the rest of the first column can be
used to store u^. Since u[ = 1, there is no need to store it, and there is just enough
room for the rest of u^ in the rest of the first column of A. The transformation is
achieved simply by dividing each of 021, ... ani by TI + an. The rest of A can be
transformed as indicated in (3.2.43). This is done by applying reflector Qi to the
submatrix of A consisting of columns 2 through n, using algorithm (3.2.40). This is
the expensive part of the computation. Since m = n — 1 columns are involved here,
the total flop count for step 1 is about 4n2. Since the cost of building the reflector
O(n), we ignore it.

The rest of the algorithm consists of reducing Ã to upper triangular form. Com-
paring (3.2.43) with (3.2.44), we see that the first row and column remain unchanged
after step 1, so they can be ignored. Step 2 is identical to step 1, except that it operates
on Â to convert it to the form

In practice we use use the zero part of the first column to store u^2\ The cost of
step 2 is about 4(n — I)2 flops, since it is identical to step 1, except that it acts on
an (n — 1) x (n — 1) matrix. Step 3 is identical to step 2, except that it acts on the
smaller matrix A3. The cost of the third step is about 4(n — 2)2 flops.
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After n — 1 steps the matrix has been transformed to upper triangular form.
The array that originally held A now holds R and the vectors u^, . . . , u^n~l\
stripped of their leading 1's. Another array holds 71, . . . , 7n-i- Clearly R =
Qn-iQn-i --QiA, where Qi = I - jlU^u^T,

and in general

where Ij_i denotes the identity matrix of dimension i — 1. Letting

we have and finally A = QR. As
we shall see, there is no need to assemble Q explicitly.

The algorithm can be summarized as follows.

Algorithm to calculate the QR decomposition of A G R l X n using reflectors

We have used the MATLAB-like notation a j - . m to denote the submatrix consist-
ing of the intersection of rows i through j with columns A; through m. 7n functions
as a flag. If jn or any other 7; is zero, A is singular. (Why?)

Recalling that the flop count for step one is 4n2, for step two is 4(n — I)2, and so on,
we see that the total flop count for (3.2.45) is about 4n2+4(n-l)2+4(n-2)2H w
4n3/3, twice that of an LU decomposition.

Most of the work is in the operations a^-.n^+i-.n ^~ Qk a>k:n,k+i:m which should
be organized as indicated in (3.2.40). These operations can be done in a column-
oriented or row-oriented way.

There are also block variants of the algorithm that are suitable for application to
large matrices. These delay the application of the reflectors. Once a certain number
of reflectors have been constructed, the whole batch is applied at once in a way that is
rich in matrix-matrix multiplications. These operations can be organized into blocks
for efficient use of high-speed cache memory and parallel processors. The main idea
is worked out in Exercises 3.2.67 and 3.2.68. The LAPACK [1] routine DGEQRF is
a Fortran implementation of the QR decomposition by blocks.
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Let us see how the QR decomposition, as calculated using reflectors, can be used
to solve the system of linear equations Ax — b. This is admittedly an expensive way
to solve a linear system, but it is a good illustration because the operations are similar
to those that we will use to solve least squares problems for overdetermined systems
in Section 3.3. Since A = QR, our task is to solve QRx — b. Letting c — Rx,
we must first solve Qc = b for c. Then we can solve Rx = c for x. First of all
c = QTb = Qn-i • • • QzQib, so we can apply the reflectors Qi, Qz, . . . , Qn-i to
6 successively to obtain c. Naturally we use (3.2.40) with m = 1. Finally we solve
Rx — c for x by back substitution.

Applying Qi costs 4n flops. Applying Q-z costs only 4(n — 1) flops because it is
really only an (n — 1) x (n — 1) reflector; it does not touch the first entry of Qib.
Similarly Q^ does not touch the first two entries of QzQib, and the cost of applying
it is 4(n — 2) flops. The total cost of calculating c is therefore 4n + 4(n — 1) + 4(n —
2) + • • • w 2n2. This is the same as it would have cost to calculate c = QTb if Q
had been available explicitly. The cost of solving for x by back substitution is about
n2 flops. Thus these steps are inexpensive, compared with the cost of computing the
QR decomposition.

Uniqueness of the QR Decomposition

For nonsingular matrices the QR decomposition theorem can be strengthened to in-
clude the uniqueness of Q and R. This fact is of considerable theoretical importance.

Theorem 3.2.46 Let A G Enxn be nonsingular. There there exist unique Q, R €
Enxn such that Q is orthogonal, R is upper triangular with positive main-diagonal
entries, and A = QR.

Proof. By Theorem 3.2.20, where is orthogonal and is upper
triangular, but R does not necessarily have positive main-diagonal entries. Since A
is nonsingular, R must also be nonsingular, so its main-diagonal entries are nonzero,
at least. Let D be the diagonal matrix given by

Then D = DT = D~l is orthogonal. Let . Then Q
is orthogonal, R is upper triangular with TU — dafa > 0, and A — QR. This
establishes existence.

Uniqueness can be proved using the same ideas (see Exercise 3.2.47). For variety
we will take a different approach, which exploits an interesting connection between
the Q R and Cholesky decompositions. Supposed = Q\R\ = QiR<2, where Qi and
Qi are orthogonal, and R\ and R<z are upper triangular with positive main-diagonal
entries. ATA is a positive definite matrix, and
Thus RI is the Cholesky factor of AT A. The same arguments can be applied to R<z, so
R<z is also the Cholesky factor of A. By uniqueness of the Cholesky decomposition,
Ri=R2. Finally D
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Exercise 3.2.47 This exercise leads to another uniqueness proof for Theorem 3.2.46.

(a) Suppose B E Mnxn is both orthogonal and upper triangular. Prove that B
must be a diagonal matrix whose main-diagonal entries are ±1.

(b) Suppose QiRi = QiRi, where Qi and Qi are both orthogonal, and R\ and
R-2 are both upper triangular and nonsingular. Show that there is a diagonal
matrix D with main diagonal entries ±1 such that R% — DR\ and Q\ = Q^D.

D

Exercise 3.2.48

( a ) L e t . Find a r e f l e c t o r a n d a n upper triangular . such that

Assemble and simplify it.

(b) Compare your solution from part (a) with the QR decomposition of the same
matrix (obtained using a rotator) in Example 3.2.13. Find a diagonal matrix D
with main diagonal entries ±1 such that

D

fcxercise 3.2.49 The MATLAB command qr performs the QR decomposition of a matrix.
In the interest of keeping the output uncomplicated, MATLAB delivers the assembled
Q matrix. Try out the following MATLAB commands, for example.

n = 7
A = randn(n)
[ Q , R ] - q r (A)

Q'*Q
norm(eye(n) -Q '*Q)
norm(A-Q*R)

Notice that MATLAB does not bother to make the main-diagonal entries of .R positive,
since this is not essential for most applications. A number of other ways to use the
qr command will be discussed in the coming section. For further information type
help qr. D

Stability of Computations with Rotators and Reflectors

The numerical properties of both rotators and reflectors are excellent. A detailed anal-
ysis was carried out by Wilkinson [81, pp. 126-162]. See also [41]. We will content
ourselves with a brief summary. Some details are worked out in Exercises 3.2.70-
3.2.73.
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Suppose we wish to convert A to QA, where Q is either a rotator determined by
(3.2.18) or a reflector determined by (3.2.37). In the case of the reflector, (3.2.40)
should be used to calculate QA. In both cases Wilkinson has shown that

where ||£?||2/||A||2 is tiny. In other words, the computed result is the exact result of
applying Q to a matrix that is a very slight perturbation of A. That is, the computation
of QA is normwise backward stable.]

The stability is preserved under repeated applications of rotators and/or reflec-
tors. Consider, for example, the computation of QzQiA. First of all, ft(QiA} =
Qi(A + Ei). Thus

where Since
||£||2<||£7i||2 + ||E2||2,wecanassertthat||JS||2/||A||2istiny.

Many of the algorithms in this book consist of repeated modifications of a matrix
by reflectors or rotators. The two QR decomposition algorithms discussed in this
section are of this type, and so are many of the eigenvalue algorithms that are discussed
in subsequent chapters. The preceding remarks imply that all algorithms of this type
are normwise backward stable.

The Complex Case

The following exercises develop the complex analogues of the results obtained in this
section. The inner product on Cn is defined by

where the bar denotes complex conjugation. C l e a r l y w h e r e y*
denotes the conjugate transpose of y.

Exercise 3.2.50 Show that the inner product on Cn satisfies the following properties.

D

The complex analogues of orthogonal matrices are unitary matrices. A matrix
U € cnxn is unitary if UU* = /, where [7* is the conjugate transpose of U.
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Equivalent statements are U*U = I and U* = U~l. Notice that the orthogonal
matrices are just the real unitary matrices.

Exercise 3.2.51

(a) Show that if U is unitary, then U~l is unitary.

(b) Show that is U\ and C/2 are unitary, then U\ U% is unitary.

n

Exercise 3.2.52 Show that if U is unitary, then | det(C7) | = 1. D

Exercise 3.2.53 Show that if U e Cnxn is unitary and x, y G Cn, then

(a) (Ux,Uy) = ( x , y ) .

(b) \\Ux\L = \\x\L.

(c) \\U\\2 = \\U~i \\2 = K2(U) = 1.

Thus unitary matrices preserve the 2-norm and the inner product.

Exercise 3.2.54 (Complex Rotators) Given a nonzero define U G C2x2 by

Verify that

(a) U is unitary.

(b) det(C7) = 1.

D

The extension to complex plane rotators in Cnxn is obvious.

Exercise 3.2.55 (Complex Reflectors) Let u G Cn with || u ||2 = 1, and define Q G Cnxn

by Q = I - 2uu*. Verify that

(a) Qu = —u.

(b) Qv = v if ( u , v ) =0.

(c) Q = Q* (Q is Hermitian).

(d) Q* - Q-1 (Q is unitary).
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(e) Q~l = Q (Q is an involution).

D

Exercise 3.2.56

(a) Prove that if x, y 6 Cn, x ^ y, || x ||2 — \\y ||2, and ( x , y ) is real, then there
exists a complex reflector Q such that Qx = y.

(b) Let x £ Cn be a nonzero vector. Express x\ in polar form as x\ = re10 (with
0 = 0 if xi = 0). Let r = \\x\\2e

ie and y = [-T 0 • • • 0]T. Show that
|| a; || = || y ||, x ^ y, and (x, y) is real. Write an algorithm that determines a
reflector Q such that Qx = y. This is the complex analogue of (3.2.37).

D

Exercise 3.2.57 Show that for every A € Cnxn there exist unitary Q and upper triangular R
such that A — QR. Write a constructive proof using either rotators or reflectors. D

If ^4 is nonsingular, then R can be chosen so that its main-diagonal entries are
(real and) positive, in which case Q and R are unique. This is the complex analogue
of Theorem 3.2.46.

Theorem 3.2.58 Let A £ <£nxn fre nonsingular. There there exist unique Q, R G
Cnxn such that Q is unitary, R is upper triangular with real, positive main-diagonal
entries, and A — QR.

Exercise 3.2.59 Prove Theorem 3.2.58. D

Exercise 3.2.60 Let A 6 (£nxn be nonsingular. Suppose where Q and Q
are unitary, and R and R are upper triangular.

1. Show that , where D is a unitary, diagonal matrix.

2. Show that the jth column of is a multiple of the jth column of Q for
j = l , - . . , n .

D

Exercise 3.2.61 MATLAB will happily compute QR decompositions of complex matrices.
Try the following commands, for example.

n = 4
A = randn(n) + i*randn(n)
[ Q , R ] = q r (A)

Q'
Q'*Q
norm(eye (n ) -Q '*Q)
norm(A-Q*R)

MATLAB does not bother to make the main-diagonal entries of R positive or even
real. Notice that Q' is the conjugate transpose of Q. d
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Exercise 3.2.62 Let u e Cn with || u ||2 = 1. Then I - 71111* is unitary if 7 = 2 or 0. Find
the set of all 7 e C for which / — 'yuu* is unitary. D

Additional Exercises

Exercise 3.2.63 Show that if Qx - y, where Q = I - -yuuT e Enxn, then u must be a
multiple of x — y. Since all multiples of x — y generate the same reflector, this
establishes the uniqueness part of Theorem 3.2.30. D

Exercise 3.2.64 Some of the most important transforming matrices are rank-one updates of
the identity matrix.

(a) Recall that the rank of a matrix is equal to the number of linearly independent
columns. Prove that A G Rnxn has rank one if and only if there exist nonzero
vectors u, v G Mn such that A = UVT. To what extent is there flexibility in the
choice of u and vl

(b) A matrix of the form G = I — UVT is called a rank-one update of the identity
for obvious reasons. Prove that if G is singular, then Gx = 0 if and only if x
is a multiple of u. Prove that G is singular if and only if VTU — 1.

(c) Show that if G = I — UVT is nonsingular, then G~l has the form I — fluvT.
Give a formula for /3.

(d) Prove that if G is orthogonal, then u and v are proportional, i.e. v — pu for
some nonzero scalar p. Show that if \u\\2 = 1, then p = 2.

(e) Show that if G = / - UVT and W € Enxm, then GW can be computed in
about 4nm flops if the arithmetic is done in an efficient way.

(f) Consider the task of introducing zeros into a vector: Given x £
to find a G — I — UVT such that

l, we want

for some nonzero /3. Show that G performs the transformation (3.2.65) if and
only if

andei = [1, 0, • • - , 0]T.

(g) In (3.2.65) β can be chosen freely. In this section we have already seen how
to choose β, u, and v to build a reflector to do this task. Now consider another
possibility, assuming x\ ^ 0. Take β = x\ and v — e\. What form must u
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now have, if (3.2.66) is to be satisfied? Show that the resulting G is a Gauss
transform (cf. Exercise 1.7.47).

D

Exercise 3.2.67 . This exercise shows how to accumulate reflectors so that they can be applied
in a batch using operations that are rich in matrix-matrix multiplications.

(a)Let G = I + WYT, where W, Y e Rnxj. Show that
where w\, ..., Wj and yi, . . . , yj are column vectors.

Thus G is a rank j update of the identity.

(b) Let G be as in part (a), with 1 <C j < n, and let B e Enxm. Show that
the product GB can be calculated in about 4njm flops if the operations are
organized carefully. What size matrix-matrix products and sums are performed
in the process? (The bigger they are, the more efficiently we can use the
computer's cache.) How many flops would it take to compute GB if G were
stored as an n x n matrix in the standard way?

(c) Show that if Q = I-juuTSindG = I + WYT,thenQG = I + WYT + uvT,
where v = —j(u + YWTu). How many flops does it take to computer? Show
that

(d) Prove that any product of j elementary reflectors can be expressed in the form
I + WYT, where W, Y <E Rnxj'. Use induction on j.

(e) Let G be a product of j elementary reflectors. How many flops are needed to
compute GB, where B G Rnxm, if G is applied as a series of j reflectors, one
after the other? How does this compare with the cost of applying G in the form
I + WYT1 How many additional flops are needed to construct / + WYT

via the operations indicated in part (c)? (This shows that the extra work is
insignificant if j <C n but can become significant if j is made too large.)

(f) State briefly how (3.2.45) would have to be modified so that the reflectors are
applied in batches of j.

(g) Give a simple expression for G~l, if G = I + WYT is orthogonal.

D

Exercise 3.2.68 The LAPACK [1] routines use a slightly different representation than the
one developed in the previous exercise. Suppose Q = QjQj-i • • • Qi is a product
of reflectors . Proceeding more or less as in the previous exercise,
prove by induction on j that Q — I - ULUT, where U = [HI •• • Uj] e Enx j , and
L 6 M-?XJ is lower triangular. How can Q"1 be represented? D

Exercise 3.2.69 Show that every 2-by-2 reflector has the form , where c2 4- s2 = 1.

How does the reflector act on the unit vectors
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Contrast the action of Q with that of the r o t a t o r D r a w a picture.

By examining your picture, determine the line through which the vectors are reflected
by Q. Assuming c > 0 and s > 0, show that this line has slope tan(#/2), where
d = arccosc — arcsins. D

Exercise 3.2.70 This and subsequent exercises demonstrate the backward stability of multi-
plication by rotators, reflectors, and other orthogonal transformations. We begin with
matrix multiplication in general. Let V e Enxn and x e En.

(a) Suppose we calculate fl(Vx) on an ideal computer (Section 2.5) with unit
roundoffs. Using (2.5.3) and Proposition 2.7.1, show that fl(Vrc) = Vx + b,
where b is tiny; specifically, the i\h component of b satisfies

where (7^- < nu + O(u2}.

(b) Continuing from part (a), show that |6| < 7] V||x|, where 7 = max) 7^-1,
and ||6||x < ||y ||1||a;||1(nu +O(u2)).

(c) Show that ft(Vx) = V(x + Sx), where 5x (= V~lb} satisfies || &x\\J\\ x \\^ <
Kll(V}(nu + O(u2}}.

(d) Let A e Rnxn. Using the result of part (c), show that ft(VA) = V(A + E),
where I I E I d / H AHi < Ki(V)(nu + O(u2}}.

We conclude that multiplication by V is backward stable if V is well conditioned.
Orthogonal matrices are the ultimate well-conditioned matrices. n

Exercise 3.2.71 Use inequalities from Exercise 2.1.32 to prove parts (a) and (b). Then use
these inequalities along with the result of Exercise 3.2.70 to work part (c).

(a) For all Ee Rnxn and nonzero A e Enxn, || £||2/|| A||2 < n ||E||i/|| A||r

(b) For all nonsingular V G Rnxn , «i(V) < nK2(V).

(c) Show that if Q 6 Enxn is orthogonal, then fl(QA) = Q(A + E), where

Of course, the factor n3 is very pessimistic. Thus multiplication by orthogonal
matrices is backward stable. D

Exercise 3.2.72 How can the results of Exercises 3.2.70 and 3.2.71 be improved in the case
when Q (or V) is a plane rotator? D
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Exercise 3.2.73 The product Qx, where is a reflector. In
practice there will be slight errors in the computed 7 and v, but we will ignore those
errors for simplicity. In principle Qx — y, where y — x — ^(VTX)V.

(a) Let p — IVTX. Using (2.5.3) and Proposition 2.7.1, show that fl(p) = p + fi,
where \j3\ < 2(n + l)u\\x\\2/\\v\\2 + O(u2).

(b) R(Qx) = fl(y) = fl(a: — ft(p)v). Show that the ith component satisfies
fl(yi) =2 /» + di,where|d»| < (2n + 7)u\\x\\2 +O(u2).

(c) Show that fl(Qx) = Q(x+8x), where

(d) Suppose A 6 Enxn, and we calculate QA by applying the reflector Q to one
column of A at a time. Show that fl(QA) = Q(A+E), where

D

3.3 SOLUTION OF THE LEAST SQUARES PROBLEM

Consider an overdetermined system

Our task is to find x e Em such that || r ||2 = || b — Ax ||2 is minimized. So far we do
not know whether or not this problem has a solution. If it does have one, we do not
know whether the solution is unique. These fundamental questions will be answered
in this section. We will settle the existence question affirmatively by constructing a
solution. The solution is unique if and only if A has full rank.

Let Q € Mnxn be any orthogonal matrix, and consider the transformed system

Let s be the residual for the transformed system. Then s — QTb — QTAx —
QT(b — Ax) = QTr. Since QT is orthogonal, ||s||2 = \\r\\2- Thus, for a given
x, the residual of the transformed system has the same norm as the residual for the
original system. Therefore x € Rm minimizes || r ||2 if and only if it minimizes || s || 2;
that is, the two overdetermined systems have the same least squares solution(s).

It seems reasonable to try to find an orthogonal Q e Rnxn for which the system
(3.3.2) has a particularly simple form [31]. In the previous section we learned
that given a square matrix A there exists an orthogonal Q such that QTA = R,
where R is upper triangular. Thus the linear system Ax = b can be transformed to
QTAx = QTb (Rx — c), which can easily be solved by back substitution. The same
approach works for the least squares problem, but first we need a QR decomposition
theorem for nonsquare matrices.
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Theorem 3.3.3 Let A 6 Rn x m , n > m. Then there exist Q € Rnxn and R <E

Enxm, such that Q is orthogonal and where R 6 Rmxm is upper

triangular, and A = QR.

Proof. Let A = [AÃ] e Mn x n , where i e Rnx(n-m) is chosen arbitrarily. Then
by Theorem 3.2.20 there exist Q, R 6 Rnxn such that Q is orthogonal, R is upper
triangular, and A = Q#. We now partition R: R = [R T], where R € Enxm. Then

A = QR. Since £ is upper triangular, R has the f o r m , where R e Rmxm is

upper triangular. D

Since this QR decomposition is obtained by retaining a portion of an n-by-n QR
decomposition, any algorithm that computes a square QR decomposition can easily
be modified to compute an n-by-m QR decomposition. In practice there is no need
to choose a matrix A to augment A, since that portion of the matrix is thrown away
in the end anyway. One simply operates on A alone and quits upon running out of
columns, that is, after m steps. For example, Algorithm (3.2.45) can be adapted to
n-by-m matrices by changing the upper limit on the loop indices to m and deleting
the last instruction, which is irrelevant in this case. Q is produced implicitly as a
product of m reflectors: Q = Q\Qi • • • Qm-

Exercise 3.3.4 Show that the flop count for a QR decomposition of an n-by-m matrix using
reflectors is approximately 2nm2 — 2m3/3. (Thus if n » m, the flop count is about
2nm2.) D

The QR decomposition of Theorem 3.3.3 may or may not be useful for solving the
least squares problem, depending upon whether or not A has full rank. Recall that the
rank of a matrix is the number of linearly independent columns, which is the same as
the number of linearly independent rows. The matrix A 6 Rnxm (n > m) has/w//
rank if its rank is m; that is, if its columns are linearly independent. In Theorem 3.3.3
the equation A = QR implies that rank(A) < rank(.R).5 On the other hand the
equation R = QTA implies that rank(,R) < rank(A). Thus rank(.R} = rank(A),
and A has full rank if and only if R does. Clearly rank(.R) = rank(.R), and R has
full rank if and only if it is nonsingular. Thus R is nonsingular if and only if A has
full rank.

Full-Rank Case

Now consider an overdetermined system Ax — b for which A has full rank. Using
the QR decomposition, we can transform the system to the form QTAx — QTb, or

5 We recall from elementary linear algebra that rank(ST) < rank(T) for any matrices 5 and T for which
the product ST is denned. As an exercise, you might like to prove this result yourself.
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R x = c , where c = QTb. W r i t i n g , w e c a n express t h e

residual s — c — Rx as

Thus

Since the term is independent of x, || s ||2 is minimized exactly when

is minimized. Obviously with equality if and only if .Rx = c. Since
A has full rank, R is nonsingular. Thus the system Rx = c has a unique solution,
which is then the unique minimizer of \s\\. We summarize these findings as a
theorem.

Theorem 3.3.6 Let A 6 Rnxm and b e E.n, n > m, and suppose A has full rank.
Then the least squares problem for the overdetermined system Ax = b has a unique
solution, which can be found by solving the nonsingular system Rx — c, where

and Q € Mn x n are as in Theorem 3.3.3.

Exercise 3.3.7 Work this problem by hand. Consider the overdetermined system

whose coefficient matrix obviously has full rank.

(a) Before you do anything else, guess the least squares solution of the system.

(b) Calculate a QR decomposition of the coefficient matrix, where Q is a 2 x 2
rotator, and R is 2 x 1. Use the QR decomposition to calculate the least
squares solution. Also deduce the norm of the residual (without calculating
the residual directly).

D

When you solve a least squares problem on a computer, the QR decomposition
will normally be calculated using reflectors, in which case Q is stored as a product
of reflectors Q\Qi • • • Qm- Thus the computation c — QTb — Qm • • -Qib is
accomplished by applying reflectors to b using (3.2.40). Recalling that each reflector
does a bit less work than the previous one, we find that the total flop count for this
step is about 4n + 4(n — 1) + 4(n — 2) + • • • + 4(n — m + 1) « 4nm — 2m2.
The equation Rx — c can be solved by back substitution at a cost of ra2 flops. It is
also advisable to compute | d||2 (2(n — m) flops), as this is the norm of the residual
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associated with the least squares solution (see (3.3.5)). Therefore || d\\2 is a measure
of goodness of fit. Comparing these flop counts with the result of Exercise 3.3.4, we
see that the most expensive step is the computation of the QR decomposition.

Exercise 3.3.8 It is a well-known fact from algebra that every nonzero polynomial of degree
< m — 1 is zero at at most ra — 1 distinct points. Use this fact to prove that the matrix
in (3.1.3) has full rank. D

Exercise 3.3.8 demonstrates that the least squares problem by a polynomial of
degree < m — 1, with ra < n, always has a unique solution that can be computed by
the QR decomposition method.

Exercise 3.3.9 Write a pair of Fortran subroutines to solve the least squares problem for the
overdetermined system Ax = b, where A e Enxm, n > m, and A has full rank.

The first subroutine uses reflectors to carry out a QR decomposition, A = QR,

where Q E Mn x n is a product of reflectors: Q - QiQ-2 • • • Qm, and €

Mn x m , where R is ra-by-m and upper triangular. All of these operations should be
carried out in a single n-by-m array plus one or two auxiliary vectors. If R has any
zero pivots, the subroutine should set an error flag to indicate that A does not have
full rank.

The second subroutine uses the QR decomposition to find x. First c = QTb =
QmQm-i • • • Qi bis calculated by apply ing the reflectors successively. An additional
one-dimensional array in needed for b. This array can also be used for c (and
intermediate results). The solution x is found bv solving Rx = c bv back substitution,

where The solution should calculate II d IL, which is the Euclidean norm
" "

of the residual.
Use your subroutines to solve the following problems.

(a) Find the least squares quadratic polynomial for the data

(The correct solution is 4>(t) = 1 + t + t2, which fits the data exactly.)

(b) Find the least squares linear polynomials for the two sets of data

using the basis (/>i(i) = 50, ^(t) = t — 1065. Notice that the QR decompo-
sition only needs to be done once. Plot your solutions and the data points.
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(C)

Examine rn, r^, r^z, and r^. You will find that some of them are nearly
zero, which suggests that the matrix might not have full rank. In fact its rank is
2. This problem illustrates the fact that your program is unlikely to detect rank
deficiency. While two of the TH should equal zero in principle, roundoff errors
have made them all nonzero in practice. On the brighter side, you will notice
that the "solution" that our program returned does fit the equations remarkably
well. In fact it is (up to roundoff error) a solution. As we shall see, the least
squares problem for a rank-deficient matrix has infinitely many solutions, of
which your program calculated one.

D

Exercise 3.3.10 MATLAB's qr command, which we introduced in Exercise 3.2.49, can
also be used to compute QR decompositions of non-square matrices.

(a) Try out the following commands, for example.

n = 6
m = 3
A = randn(n,m)
[ Q , R ] = q r (A)

Q'*Q
norm(eye (m) -Q' *Q)
norm(A-Q*R)

In the interest of convenience, MATLAB returns Q in assembled form.

(b) Write a short MATLAB script (m-file) that solves least squares problems using
the qr command. (The submatrix R can be accessed by writing R (1: m, 1: m)
or R (1: m, : ), for example.) Use your script to solve the least squares prob-
lems in parts (a) and (b) of Exercise 3.3.9.

This is not the simplest way to solve least squares problems using MATLAB.
Recall from Exercise 3.1.5 that the command x = A\b works as well. This
gives you a simple way to check your work.

n

Rank-Deficient Case

While most least squares problems have full rank, it is obviously desirable to be able
to handle problems that are not of full rank as well. Most such problems can be
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solved by a variant of the QR method called the QR decomposition with column
pivoting, which we will discuss here. A more reliable (and more expensive) method
based on the singular value decomposition will be discussed in Chapter 4.

If A does not have full rank, the basic QR method breaks down in principle
because R is singular; at least one of its main-diagonal entries rn, . . . , rmm is
zero. The QR decomposition with column pivoting makes column interchanges so
that the zero pivots are moved to the lower right hand corner of R. The resulting
decomposition is suitable for solving the rank-deficient least squares problem.

Our initial development will ignore the effects of roundoff errors. At step 1 the
2-norm of each column of A is computed. If the jih column has the largest norm,
then columns 1 and j are interchanged. The rest of step 1 is the same as before; a
reflector that transforms the first column to the form [—r\, 0, • • •, 0]T is determined.
This reflector is then applied to columns 2 through m. Since | r\ \ equals the 2-norm
of the first column, the effect of the column interchange is to make | r\ \ as large as
possible. In particular, r\ ^ 0 unless ^4 = 0.

The second step operates on the submatrix obtained by ignoring the first row and
column. Otherwise it is identical to the first step, except that when the columns are
interchanged, the full columns should be swapped, not just the portions that lie in the
submatrix. This implies that the effect of the column interchange is the same as that
of making the corresponding interchange before the QR decomposition is begun.

If the matrix has full rank, the algorithm terminates after m steps. The result is
a decomposition A = QR, where A is a matrix obtained from A by permuting the

c o l u m n s . w h e r e R is upper triangular and nonsingular. If A does not

have full rank, there will come a step at which we are forced to take TI — 0. That will
happen when and only when all of the entries of the remaining submatrix are zero.
Suppose this occurs after r steps have been completed. Letting Qi € Enxn denote
the reflector used at step i, we have

where RH is r x r, upper triangular, and nonsingular. Its main diagonal entries
are —TI, —r2, . . . , — rr, which are all nonzero. Clearly rank(^) = r. Letting
Q[ = QiQz • • • Qr, we see that QT = QrQr-i • • • Qi, QTA = R, and A = QR.
Since rank(A) = rank(A) = rank(R), we have rank(A) = r. We summarize these
findings as a theorem.

Theorem 3.3.11 Let A e Rnxm with rank(A) = r > 0. Then there exist matrices
A, Q, and R, such that A is obtained from A by permuting its columns, Q £ Enxn is

orthogonal, is nonsingular and upper

triangular, and

Let us see how we can use this decomposition to solve the least squares problem.
Given x 6 Mm, let x denote the vector obtained from x by making the same sequence
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of interchanges to its entries as were made to the columns of A in transforming A
to A. Then so the problem of minimizing || b — Ax\\2 is the same as
that of minimizing An application of QT to the overdetermined system

transforms it to the form

where The residual for this transformed system is

whose norm is

Clearly there is nothing we can do with the term We minimize ||s||2 by
minimizing This term can never be negative, but there are
many choices of x for which it is zero. Each of these is a solution of the least
squares problem for the overdetermined system

To see how to compute these x, recall that RH is nonsingular. Thus for any choice
of there exists a unique such that

Since RU is upper triangular, can be calculated by back substitution. Then

is a solution to the least squares problem

for Ax = b. We have thus established the following theorem.

Theorem 3.3.12 Let A G MnXTO and b 6 En, n > m. Then the least squares
problem for the overdetermined system Ax — b always has a solution. If rank(A) <
m, there are infinitely many solutions.

Not only have we proved this theorem, we have also established an algorithm that
can be used to calculate any solution of the least squares problem. Thus we have
solved the problem in principle.

In practice we often do not know the rank of A. Then part of the problem is to
determine the rank. This task is complicated by roundoff errors. After r steps of the
QR decomposition with column pivoting, A will have been transformed to the form

where RU 6 Erxr is nonsingular. If rank(A) = r, then in principle R^ = 0
(telling us that the rank is r), and the algorithm terminates. In practice R^i will have
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been contaminated by rounding errors and will not be exactly zero. Our criterion
for determining the rank must take this into account. Thus, for example, we might
decide that R22 is "numerically zero" if the norm of its largest column is less than
e|| A ||, where e is some small parameter depending on the machine precision and the
accuracy of the data. This approach generally works well. Unfortunately it is not
100 percent reliable. There exist matrices of the form

that are "nearly" rank deficient, for which none of the | TI \ is extremely small. A class
of examples due to Kahan is given in [48, p. 31] and also in Exercise 4.2.21. The
near rank deficiency of these matrices would not be detected by our simple criterion.
A more reliable approach to the detection of rank deficiency is to use the singular
value decomposition (Chapter 4).

A few other implementation details need to be mentioned. At each step we need
to know the norms of the columns of the remaining submatrix. If these calculations
are not done in an economical manner, they can add substantially to the cost of the
algorithm.

Exercise 3.3.13 Show that if the norms of the columns are computed in the straightforward
manner at each step, the total cost of the norm computations is about nra2 — |m3

flops. How does this compare with the cost of the rest of the algorithm? D

Fortunately the cost can be decreased substantially for steps 2, 3 , . . . , ra by using
information from previous steps rather than recomputing the norms from scratch.
For example, let us see how we can get the norm information for the second step by
using the information from the first step. Let v\, v<i, . . . , vm denote the squares of
the norms of the columns of A (calculated at a cost of 2nm flops). We work with the
squares for convenience. For notational simplicity let us assume that v\ is the largest
(or that the column interchange for step 1 has already been made). After step 1 we
have

Since Qi is orthogonal, it preserves the lengths of vectors. Therefore the norms of
the columns of Q\A are the same as those of the columns of A. For the second step
we need the squares of the norms of the columns of the submatrix
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These can clearly be obtained by the operations

This costs a mere 2(m — 1) flops instead of the 2(n — l)(ra — 1) flops that would
have been required to calculate the squared norms from scratch.

Since the calculation of 2-norms is required, there is some danger of overflow or
underflow. This danger can be virtually eliminated by rescaling the entire problem
in advance. For example, one can calculate v — max | aij | and multiply all of the
entries of A and b by 1 /v . The cost of this scaling operation is O(nm). If this scaling
operation is done, it is not necessary to perform scaling operations in the calculation
of the reflectors (3.2.37).

Finally we make some observations concerning column interchanges. We have
already noted that each column swap requires the interchange of the entire columns.
Of course the norm information has to be interchanged too. It is also necessary to
keep a record of the interchanges, since the computed solution x is the least squares
solution of the permuted system Ax = b. To get the solution x of the original problem,
we must apply the inverse permutation to the entries of x. This is accomplished by
performing the interchanges in the reverse order.

Exercise 3.3.14 Show that after the QR decomposition with column pivoting, the main-
diagonal entries of R11 satisfy | TI \ > \ r-2 \ > • • • > | rr | . D

Exercise 3.3.15 To get MATLAB's qr command to calculate a QR decomposition with
column pivoting, simply invoke the command with three output arguments:

[ Q , R , P ] = qr (A)

This gives the Q and R factors plus a permutation matrix P such that AP = QR. The
effect of the permutation matrix (applied on the right!) is to scramble the columns.
Perform the following sequence of MATLAB commands.

A = randn ( 5 , 3 )
A = A*diag( [1 3 9] )
[Q ,R ,P] = qr(A)

What was the point of the diag command? What does the permutation matrix P
tell you? D

3.4 THE GRAM-SCHMIDT PROCESS

In this section we introduce the idea of an orthonormal set, a new formulation of the
QR decomposition, and the Gram-Schmidt process for orthonormalizing a linearly
independent set. The main result is that performing a Gram-Schmidt orthonor-
malization is equivalent to calculating a QR decomposition. It follows that the
Gram-Schmidt process can be used to solve least squares problems.
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A set of vectors qi, q^, ..., Qk 6 Mn is said to be orthonormal if the vectors are
pairwise orthogonal, and each vector has Euclidean norm 1; that is,

Example 3.4.1 Let 61,62,..., en be the columns of the identity matrix:

It is evident that e\, e<z, • • •, en form an orthonormal set. In fact, they form an
orthonormal basis, since they are also a basis of En. From now on we will call e\,
6 2 , . . . , en the standard basis of En, and the notation e i , . . . , en will be reserved for
this basis. n

Theorem 3.4.2 Let Q G Enxn. Then Q is an orthogonal matrix if and only if its
columns (rows) form an orthonormal set.

Proof. Let qi, <?2, - . . , qn denote the columns of Q. Then

Thus the entries of QTQ are the inner products ( q j , q i ) . Clearly QTQ = I if and
only if <?i, q2, ..., qn form an orthonormal set. The analogous theorem for the rows
follows from considering the product QQT or from the simple observation that QT

is orthogonal if and only if Q is. d

Exercise 3.4.3

(a) Let A € Rn x m , and let ei, . . . , em denote the standard basis of Em. Verify
that the ith column of A is Aei,i = 1, . . . ,m. Thus A — [Aei Ae? • • • Aem}.
This simple observation will be used repeatedly.

(b) Use the observation of part (a) together with the inner product preserving
property of orthogonal matrices to obtain a second proof that the columns of
an orthogonal matrix are orthonormal.

D

Using Theorem 3.4.2 as a guide, we introduce a new class of nonsquare matrices
that possess some of the properties of orthogonal matrices. The matrix Q 6 Mn x m ,
n > m will be called isometric (or an isometry) if its columns are orthonormal.
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Exercise 3.4.4 Prove that Q G Enxm is isometric if and only if QTQ = / (in Emxm). D

The result of this exercise does not imply that QT is Q*1. Only square matrices
can have inverses. It is also not true that QQT is the identity matrix.

Exercise 3.4.5 Let Q 6 Enxm (n > m) be an isometry with columns qi, qi,..., qm.

(a) Show that QQTv = 0 if v is orthogonal to qi, q2,..., qm.

(b) Show that QQTqi = qi, i = l , . . . ,m. Therefore QQT behaves like the
identity matrix on a proper subspace of En.

(c) Show that (QQT)2 = QQT. Thus QQT is a projector. In fact it is an
orthoprojector. (See Remark 3.2.24.)

D

Exercise 3.4.6 Show that if Q e Rnxm is an isometry, then

(a) (Qx, Qy) = (x, y) for all x, y <E Em,

(b) \\Qx\\2 = || a; ||2 for alls 6 Em.

(Notice that the norm and inner product on the left-hand side of these equations are
from En, not Em.) D

Thus isometries preserve inner products, norms, and angles. The converse of both
parts of Exercise 3.4.6 holds as well.6

The Condensed QR Decomposition

The QR Decomposition Theorem for nonsquare matrices can be restated more ele-
gantly in terms of an isometry.

Theorem 3.4.7 Let A 6 Enxm, n > m. Then there exist matrices such
that is an isometry, R 6 ]^TOXW is upper triangular, and

Proof. Ifn = m, this is just Theorem 3.2.20. Ifn > m, we know from Theorem 3.3.3
that there exist matrices Q e Enxn and R € Enxm such that Q is orthogonal,

is upper triangular, and A = QR. Let

6The name isometry comes from the norm-preserving property: An isometric operator is one that preserves
the metric (i.e. the norm in this case).
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be the matrix consisting of the first ra column of Q. Clearly is isometric. Let
Q G Mnx(n-m) be ̂  ^ n _ m columns of Q Then

That is, Since have the desired properties, the proof is complete.
D

If A has full rank, Theorem 3.4.7 can be strengthened to include the uniqueness
of

Theorem 3.4.8 Let A G Enxm, n > m, and suppose rank(A) = m. Then there
exist unique and R G Emxm, such that is isometric, R is upper
triangular with positive entries on the main diagonal, and

The proof is similar to that of Theorem 3.2.46 and is left as an exercise.

Exercise 3.4.9 Prove Theorem 3.4.8. D

In the full-rank case the decomposition of Theorem 3.4.7 or Theorem 3.4.8 can
be used to solve the least squares problem for the overdetermined system Ax = b.
Let You can easily check that this vector is the same as the vector c of
Theorem 3.3.6, and the least squares problem can be solved by solving by
back substitution. When we use this type of QR decomposition, we do not get the
norm of the residual in the form || d||2.

A Bit of Review

Before we discuss the Gram-Schmidt process, we should review some of the elemen-
tary facts about subspaces of En. Recall that a subspace of En is a nonempty subset
S of En that is closed under the operations of addition and scalar multiplication.
That is, S is a subspace of En if and only if whenever v, w G S and c G E, then
v + w E S and cv G S. Given vectors v\,..., vm G En, a linear combination of vi,
..., vm is a vector of the form ciVi + c^v-2 H h cmvm, where ci, C 2 , . . . , cm G E.
The numbers ci, . . . , cm are called the coefficients of the linear combination. In
sigma notation a linear combination looks like The span of vi,...,vm,
denoted span { i , . . . , vm}, is the set of all linear combinations of v i, . . . , vm. It
is clear that span{i>i,. . . , vm} is closed under the operations of addition and scalar
multiplication; that is, it is a subspace of En.

We have already used terms such as linear independence and basis, but let us now
take a moment to review their precise meaning. The vectors vi,..., vm are linearly
independent if the equation c-^v\ + c^v^ + • • • + cmvm = 0 has no solution other
than GI = C2 — • • • — cm = 0. In other words, the only linear combination of vi,
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... ,vm that equals zero is the one whose coefficients are all zero. If the set vi, ...,
vm is not linearly independent, then it is called linearly dependent.

Every orthonormal set is linearly independent: Let q\,..., qm be an orthonormal
set, and suppose c\q\ + c-zqz H h cmqm = 0. Taking inner products of both sides
of this equation with QJ, we find that

Since (qi,qj) = 0 except when i — j, and (qj,Qj) = 1, this equation collapses to
Cj — 0. This is true for all j, so c\ =02 — • • • = cm — 0. Thus q\, ..., qm

are linearly independent. Of course the converse is false; there are lots of linearly
independent sets that are not orthonormal.

Exercise 3.4.10 Give examples of sets of two vectors in E2 that are

(a) orthonormal. (Think of something other than ei, e2.)

(b) linearly independent but not orthogonal (hence not orthonormal).

(c) linearly dependent.

D

Exercise 3.4.11 Prove that the vectors v\, ..., vm are linearly independent if and only if
none of them can be expressed as a linear combination of the others; in symbols,
Vj & s p a n { v i , . . . , v j - i , v j + i , . . . , v m } f o T J = l , . . . , ra . D

Let <S be a subspace of En, and let v\,..., vm E <S. Then clearly

We say the v\, ..., vm span <S if span{t;i,..., vm} = S. This means that every
member of S can be expressed as a linear combination of v i, . . . , vm; we say that
vi, . . . , vm form a spanning set for S. A basis of S is a spanning set that is linearly
independent. If v\, ..., vm are linearly independent, then they form a basis of
spanjvi, . . . ,vm}, since they are a spanning set by definition. Recall from your
elementary linear algebra course that every subspace of En has a basis; in fact it has
many bases. Any two bases of <S have the same number of elements. This number is
called the dimension of 5. Thus, for example, ifvi,...,vm are linearly independent,
then span jv i , . . . , vm} has dimension m.

The Classical Gram-Schmidt Process

The Gram-Schmidt process is an algorithm that produces orthonormal bases. Let S
be a subspace of En, and let v\, v-z, .. -, vm be a basis of S. The Gram-Schmidt
process takes v\, . . . , vm as input and uses them to produce orthonormal vectors q\,
..., qm that form a basis of S. Thus S = span{vi ,...,vm} — span{qi,..., qm}.
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In fact, more is true: The vectors also satisfy

These relationships are important.
We are given linearly independent vectors v\, ..., vm 6 En, and we seek or-

thonormal qi, ... ,qm satisfying (3.4.12). In order to satisfy spanjgi} = span{i>i}
we must choose q\ to be a multiple of v\. Since we also require \\q\ ||2 = 1, we

define q± = (l/rn)i>i, where rn — \\vi ||2. We know that rn ^ 0 because i>i,
. . . , vm are linearly independent, so v\ ^ 0. The equation q\ = (l/rn)i>i im-
plies that <?i e span{t>i}; hence span{#i} C span{t>i}. Conversely, the equation

^i = ^n9i implies v\ G span{gi}, and therefore span{υi} C span{qi}. Thus
span{υi} = span{qi}.

The second step of the algorithm is to find qi such that q2 is orthogonal to q\,

\\qz\\2 — 1, and span{gi,g2} = span{fi,f2}. We will use Figure 3.5 as a guide. In

Fig. 3.5 Construction of q^.

this figure the space span {υi, υ2 } is represented by the plane of the page. We require
q2 such that (q1, q<2 is an orthonormal set that spans this plane. The figure suggests that
we can produce a vector that lies in the plane and is orthogonal to q\ by subtracting
just the right multiple of q\ from υ2. We can then obtain g2 by multiplying by the

appropriate scaling factor. Thus let

where ri2 is a scalar that should be chosen to that

Exercise 3.4.14 Demonstrate that the vector given by (3.4.13) satisfies if and

o n l y i f r i 2 = (v2,qi). D

Taking ri2 = (v2, q\), we have , It is clear that , for if this were
not the case, we would have i>2 = r^qi G span{#i}. But the linear independence
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of υi and v-i implies that . Let , and
define Then clearly \\q2 \\2 — 1, and (51,^2) = 0. It is intuitively
clear from Figure 3.5 that span{qi,q2} — spanj^i,^2}, and we can easily prove
that it is so. First q\ G spanf^i} C span{t>i,i>2}. Also q2 G span {gi,υ2} =
spanj{υ!, v2}. Since qi, qz G span{υ,υ^2}, we have spanjgi,^} C spa.n{vi,t>2}.
Conversely, v\ G spanjgi} C span {q1,q2}, and
span{g!,q2}. Since υi,υ2 G span{qi,q2}, we have span{vi,U2} C span{qi,g2}.
Thus span{<qi, q2) = span{υi, v2}-

Now consider the kth step. Suppose we have found orthonormal vectors qi, q-2,
..., qk-\ such that span{gi,..., qi} = span{υi,..., υ i} , i = 1,..., A; — 1. Let us
see how to determine q^. By analogy with (3.4.13) we seek q^ of the form

that is orthogonal to qi, ..., qk-i- The equations ,
imply that

Since (QJ , q i ) =0 when i ^ j, and (qi,qi) — 1, these equations reduce to

Conversely, if r^ are defined by (3.4.16), then is orthogonal to q\,..., q^-\.
As in the case k = 2, it is easy to show that , Otherwise we would have

But the linear independence of 1*1,. . . , Vk
implies that . Let

and define

Then clearly || qk ||2 = 1 and (qk, q^ = 0, i = 1, . . . , k - 1.
It is also easy to verify that span{gi, . . . , qk} = span{t>i, . . . , Vk}- See Exer-

cises 3.4.38 and 3.4.39.
Equations 3.4.16, 3.4.15, 3.4.17, and 3.4.18 express the kth step of the classical

Gram-Schmidt process. Performing this step for k — 1, . . . , m produces qi , . . . , qm.
The algorithm is summarized below.
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Classical Gram-Schmidt Algorithm. Given linearly independent vi,v2, . •.,
vm, this algorithm produces orthonormal q\, q-2,..., qm such that span{ q\,..., qi}
= span{wi, . . . , Vi} for i — 1 , . . . , m. q\,..., qm are stored over v\,..., vm-

Gram-Schmidt equals QR

The promised connection with the QR decomposition follows directly from the
Gram-Schmidt equations. Combining (3.4.15) and (3.4.18), and solving for Vk, we
obtain

or

These can be packed into a single matrix equation

Defining
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we see that V has full rank, Q is isometric, R is upper triangular with positive entries
on the main diagonal (by (3.4.17)), and

Thus Q and R are the unique factors of V guaranteed by Theorem 3.4.8.
This proves that the Gram-Schmidt process provides another means of calculating

a QR decomposition: Given a matrix V € Enxm (n > m) of full rank, let 1*1,.. . ,vm

denote the columns of V. Carry out the Gram-Schmidt procedure on v\,... ,vm to
produce an orthonormal set q\, ..., qm and the coefficients r^. Then define Q
and R by (3.4.21) to get the QR decomposition of V. Conversely, any method
for computing the QR decomposition can be used to orthogonalize vectors: Let
Vi, . . . , vm denote a linearly independent set that is to be orthonormalized. Define
V = [vi ••• vm] e Enxm and use reflectors, rotators, or any other means to
produce the unique QR decomposition of V guaranteed by Theorem 3.4.8. Let qi,
..., qm denote the columns of the resulting isometry Q. Then by the uniqueness of
the QR decomposition, q\, ..., qm are exactly the vectors that would be produced
by the Gram-Schmidt process. Thus we have the main result of this section: The
Gram-Schmidt orthogonalization is the same as the QR decomposition.

Exercise 3.4.22

(a) Let υi = [ 3, -3, 3, -3]T, v2 = [1, 2, 3, 4]T, and S = spar{vl,v2} €
E4. Apply the Gram-Schmidt process to *S to obtain an orthonormal basis of
S. Save the coefficients r^.

(b) Let

Use the result of part (a) to build an isometric Q e R4 x 2 and an upper triangular
Re M2 x2 such that V = QR.

n

The Modified Gram-Schmidt Process

Since the Gram-Schmidt process yields a QR decomposition, it can, in principle,
be used to solve least squares problems. Unfortunately the classical Gram-Schmidt
process turns out to be numerically unstable; small roundoff errors can sometimes
cause the computed vectors to be far from orthogonal. Perhaps surprisingly, a slight
modification of the algorithm suffices to make it stable.
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In the computation of the classical Gram-Schmidt process calculates all of the
coefficients r^ at once, then makes the update

all at once. The modified Gram-Schmidt process computes the coefficients one at a
time. As soon as rik = (vk,Qi) has been computed, it is used to update Vk-

Now is orthogonal to q\. Next the coefficient r^k is computed using instead

of Vk. That is, we take Then we do another update:

to get a vector that is orthogonal to both q\ and q^. Now is used instead

of Vk to compute r3k, and so on. After k — I such updates, we have

which is orthogonal to q\,..., Qk-i • We then obtain qk by normalizing Thus
the kth step of the modified Gram-Schmidt process looks like this:

We have placed tildes on the qi and r^ because it is (perhaps) not immediately
clear that the vectors and coefficients produced by this algorithm are (in exact arith-
metic) the same as those produced by the classical Gram-Schmidt process. In Ex-
ercises 3.4.40 and 3.4.41 you will show that, in the absence of roundoff errors, the
modified and classical Gram-Schmidt processes produce exactly the same output.

Exercise 3.4.24 This exercise refers to (3.4.23). Assume that are orthonormal
to begin with.

(a) Show that is orthogonal to

(b) Show that is orthogonal to both

(c) Prove by induction on j that is orthogonal to

(d) Prove that is an orthonormal set.

Therefore, by induction on k, the modified Gram-Schmidt process produces an
orthonormal set. D
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When the modified Gram-Schmidt process is implemented as a computer program,

all of the vectors as well as the beginning and ending vectors
υk and qk, can be stored in the same place. The algorithm then looks as follows.

Modified Gram-Schmidt Algorithm. Given linearly independent v\,vi,...,
vm, this algorithm produces orthonormal q\, q - z , . . . , qm such that span{ q\,..., qi}
= span{f;i,..., Vi} for i = I , . . . , m. q\,..., qm are stored over v\,... ,vm-

Comparing this with the Classical Gram-Schmidt algorithm (3.4.19), we see that the
only difference is that the two i loops in (3.4.19) have been condensed to a single
loop in (3.4.25). It is thus obvious that the two algorithms have exactly the same flop
count.

The classical and modified Gram-Schmidt algorithms produce the same output in
principle but behave differently in practice because they compute the coefficients r^
differently:

The two methods are identical up through the computation of q^, so we have to go at
least to <?3 to see the difference. To get #3, we first compute

We shall call r^Qi the component of v3 in the direction of q^. This is exactly the
multiple of q2 which when subtracted from υ3 yields a vector that is orthogonal to q<i.
In order to remove this component successfully, we need to compute the coefficient

r2s accurately. In principle v% and have the same component in

the direction of q?, and it makes no difference whether we compute r^z — {^3, #2)

or This is so because q\ is orthogonal to q^\ the extra term 7*13(71
should (in theory) contribute nothing to the computation of the coefficient. However,
in practice the vectors q\ and (?2 are not exactly orthogonal, because of roundoff errors,
so the term 7*13(71 does have a slight component in the direction of q^. Furthermore,
roundoff errors are made in the subtraction of 7*13(71 from 113. The vector of roundoff
errors also has a slight component in the direction of q^. The classical Gram-Schmidt
process is oblivious to these errors. In contrast, the modified process, by working

with instead of v3, takes these errors into account and corrects for them in the
computation of . This happens again in the computation of 94, (75, and so on.
As a consequence, in the presence of roundoff errors, the modified Gram-Schmidt
process produces vectors that are more nearly orthogonal than those produced by the
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classical process. The following exercise provides a dramatic example, and more
examples are given below.

Exercise 3.4.26 Let

where e <C 1. Note that these vectors are very nearly linearly dependent. Suppose e
is so small that e2 < u, where u is the unit roundoff error. Then fl(l + e2) = 1.

(a) Use the classical Gram-Schmidt process to orthogonalize these vectors, making
the approximation 1 + e2 = 1. Although a computer would make additional
rounding errors, you may do the rest of the computations exactly for simplicity.
Not that the computed q2 and q3 satisfy (q2,qz) = 1/2. They are far from
orthogonal.

(b) Repeat part (a) using the modified Gram-Schmidt process, and note that the
computed g2 and #3 satisfy (#2,93) = 0. Since and

we see that the modified Gram-Schmidt algorithm has
done a decent job of producing orthonormal vectors from these highly ill
conditioned starting vectors. The whole difference is in the computation of
^23-

D

Efficacy of Least-Squares Solvers

Because of the good numerical properties of reflectors and rotators, the QR decom-
position method using either of these types of transformations solves the least squares
problem (full rank case) with as much accuracy as we could hope for. It turns out that
the modified Gram-Schmidt method solves least squares problems equally accurately
[7]. As Exercise 3.4.43 shows, the modified Gram-Schmidt method has a slightly
higher flop count than the QR decomposition using reflectors.

Efficacy of Orthonormalizers

The Gram-Schmidt procedure was originally presented as an algorithm for orthonor-
malizing vectors. Only after the connection with the QR decomposition had been
made did we begin to view it as a method for solving the least squares problem.
We can also reverse our viewpoint and view the QR decomposition algorithm using
reflectors as a method for orthonormalizing vectors. If we want to use that algorithm
for this task, additional work needs to be done: The orthogonal matrix Q is provided
implicitly, as a product of reflectors. If we want the orthonormal vectors, we need
to assemble Q. It turns out that this additional work doubles the flop count of the
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algorithm, giving it a higher flop count than the modified Gram-Schmidt method (See
Exercise 3.4.44). Of course, one should never forget that the flop count gives only a
rough idea of the cost of the algorithm. The main message is that the costs of running
these various algorithms do not differ by much.

In the face of roundoff errors we cannot expect our algorithms to produce vectors
that are exactly orthogonal. At best we can hope that | (qi,Qj) \ < cu for i ^ j, where
cu is a modest multiple of the unit roundoff u. We will find it convenient to have a
measure of deviation from orthonormality. The vectors qi, ..., qm are orthonormal
if and only if the matrix Q — [qi • • • qm} is isometric. This means QTQ = Im

or, equivalently, Im — QTQ = 0. If the vectors are not orthonormal, but deviate
only slightly from orthonormality, then the matrix Im — QTQ will be close to zero,
and conversely. We therefore take || Im — QTQ ||2 as our measure of deviation from
orthonormality.

The excellent numerical properties of reflectors guarantee that they do a good job
at orthonormalization. The vectors produced generally satisfy

a modest multiple of the unit roundoff. We could not hope to do better. In contrast
the vectors produced by the modified Gram-Schmidt algorithm deviate from orthog-
onality roughly in proportion with a condition number associated with the vectors
vi, ..., vm. Specifically, let V — [ v\ • • • vm ] G Mnxm. The condition number of
a nonsquare matrix with linearly independent columns can be defined by

The vectors produced by the modified Gram-Schmidt process satisfy

See [7] and [41]. Intuitively K,(V) is large whenever vi, ..., vm are nearly linearly
dependent. Thus if the modified Gram-Schmidt algorithm is applied to vectors that
are nearly linearly dependent, the resulting vectors can deviate significantly from
orthogonality.

Example 3.4.27 Let V be the 30 x 20 matrix defined by i = 1 , . . . , 30,

j = 1 , . . . , 20, where PJ = j/20. Matrices with entries of the form are called
Vandermonde matrices. According to MATLAB, ^(V] ~ 3 x 1013, indicating that
the columns of V are nearly dependent. Using MATLAB, we orthonormalized the
columns of V by three different methods and obtained the following results.
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We see that the vectors produced by the classical process were nowhere near orthonor-
mal, but the modified Gram-Schmidt process did fairly well. Since k 2 ( V ] ~« 3xl013

and u ~, 10~16 (IEEE double-precision), we expect that || Im — QTQ ||2 would be
roughly 3 x 10~3 in this case. In fact it was a bit smaller. The best results were from
the QR decomposition by reflectors, for which we obtained || Jm — QTQ ||2 « 19w.

D

Reorthogonalization

Suppose K2(V] is large but not too large, say 1 <C Ki(V] <C l/u. Thenw/^F) <C 1,
and we expect the modified Gram-Schmidt process to return vectors that satisfy
\\Im — QTQ\\2 ^ 1' i-e- mat are not to° far fr°m orthonormal. That is what
happened in Example 3.4.27. If these are not yet close enough to orthonormal for our
purposes, there is nothing to stop us from applying the orthonormalization process
again. That is, if denotes the output from our first orthonormalization, we can use

as the input for a second run of the modified Gram-Schmidt algorithm. Since is
nearly an isometry, it must be very well conditioned
Thus the output of the second run will satisfy That
is, the vectors will be as close to orthonormal as we could hope for. In summary,
reorthogonalization works, and generally one reorthogonalization is enough. Of
course, reorthogonalization doubles the flop count.

If one is committed to reorthogonalization from the outset, then a better reorthog-
onalization procedure would get each vector right to begin with. At step k one
transforms Vk to , which should be orthogonal to qi, ..., qk-i- In practice
one can check whether it is or not by calculating the inner products for
i = 1,... ,k — 1. But if one is going to take the time to make these (or similar)
computations, then one might as well use them to make further corrections to
In other words, one might as well do the orthogonalization twice at each step. Our
observations from the previous paragraph suggest that two passes should be enough
to make <7fc orthogonal to qi, ..., qk-\ to full machine precision. Here is a simple
but effective modified Gram-Schmidt algorithm with reorthogonalization:

Modified Gram-Schmidt with Reorthogonalization. Given linearly indepen-
dent v i, v-2,..., vm, this algorithm produces orthonormal qi,q%,..., qm such
that span{gi,..., qi} = span{t>i, . . . , Vi} for i = 1 , . . . , m. qi, ..., qm are
stored over v\,..., vm •
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This is the same as (3.4.25), except that the orthogonalization loop is done twice. The
second time through, each coefficient a is added to the appropriate rik to maintain
the relationship V = QR. If we apply this algorithm to the matrix in Example 3.4.27,
we obtain the excellent result ||/m - QTQ\\ w 1.0 x 10~15 ~ 9u.

Exercise 3.4.29 Use several different methods to orthogonalize the columns of the 7 x 7
Hilbert matrix (V = hilb ( m ) ) . In each case check the effectiveness of the proce-
dure by computing || Im — QTQ ||2 (norm (eye (m) -Q' *Q)). Check the residual
|| V - QR\\2 as well. This exercise is easier than it looks. Just make MATLAB
m-files implementing algorithms (3.4.19), (3.4.25), and (3.4.28). They are all quite
similar.

(a) Classical Gram-Schmidt.

(b) Modified Gram-Schmidt. Did you get what you would expect (that is, what I
told you to expect), in light of the values of u and K2 (V")?

(c) Modified Gram-Schmidt (3.4.25) applied twice.

(d) Modified Gram-Schmidt with reorthogonalization (3.4.28).

(e) QR decomposition with reflectors. (For this one just use MATLAB's qr
command: [ Q , R ] = q r ( V , 0 ) . )

•

Exercise 3.4.30 Repeat Exercise 3.4.29 using the 12 x 12 Hilbert matrix. •

Exercise 3.4.31 One possibility we have not yet considered is classical Gram-Schmidt with
reorthogonalization. Try the following variants on both the 7x7 and 12 x 12 Hilbert
matrices.

(a) Classical Gram-Schmidt (3.4.19) applied repeatedly until full machine preci-
sion is reached.

(b) Classical Gram Schmidt with reorthogonalization, in the spirit of (3.4.28). This
variant works surprisingly well.

•

Additional Exercises

Exercise 3.4.32 In this exercise we discuss various ways the classical Gram-Schmidt algo-
rithm can be implemented in MATLAB. However, the points illustrated here can be
applied to other algorithms and other modern computing languages, for example, the
newer versions of Fortran (Fortran 90 and later). In the classical Gram-Schmidt al-
gorithm (3.4.19) we calculate the inner products r^ «— (vk,Vi). Suppose the vectors
are packed into a matrix V = [ v\ • • • vm ]. One way to accumulate the inner product
in MATLAB is
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r ( i i , k k ) = 0;
for jj = l:n

r ( i i , k k ) = r ( i i , k k ) + v( j j , k k ) * v ( j j , i i ) ;
end

In the early days of computing, this was the usual way to code this task. Modern
computing languages, including MATLAB, have higher level instructions that make
the task easier. In MATLAB (and Fortran 90) the kth column of V can be written as
V ( : , k ) or V (1: n, k), and the inner product can be executed as a matrix product:

r ( i i , k k ) = v ( : , i i ) ' * v ( : , k k ) ;

This code is simpler, and it also runs much faster in MATLAB.7

(a) In (3.4.19) the instruction that computes r^ is embedded in a loop that calcu-
lates Tik for i = 1,. . . , k — 1. These entries can be accessed as a single vector
a s r ( l : k - l , k ) . Show how to replace the loop by a single matrix product.

(b) The second i loop in (3.4.19) updates the vector Vk. Write this in three different
ways using MATLAB: (i) using two nested loops (the "old-fashioned" way),
(ii) using a single i loop to update the vector (more or less as it is written in
(3.4.19)), and (iii) as a single matrix operation:

v( : ,k) = v ( : , k ) + . . . .

This gives the most compact, elegant, and also fastest code.

(c) To what extent can these ideas be applied to the modified Gram-Schmidt
algorithm as formulated in (3.4.25)? A form of modified Gram-Schmidt that
is more amenable to elegant coding is introduced in the following Exercise.

D

Exercise 3.4.33 We presented the modified Gram-Schmidt algorithm (3.4.25) in such a
way that it resembles the classical algorithm (3.4.19) as much as possible. This
organization is different from what one usually sees. Usually, as soon as q\ is
available, the coefficients ri2, . . . , r\m are computed, and the component rijQi is

subtracted from V j , j = 1 , . . . , m. This gives vectors , all of which are

orthogonal to qi. Then q-z is computed by normalizing the vector

the vectors are orthogonalized against q^, and so on.

(a) Write out this algorithm in pseudocode.

7 However, you will not notice the difference for this small bit of code unless n is made quite large.
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Solution:

(b) Show that this algorithm is identical to the modified Gram-Schmidt process
(3.4.25), except for the order in which the operations are performed. (In
particular, the two algorithms have the same roundoff errors.)

(c) Write a MATLAB version of (3.4.34). Express each of the j loops as a single
matrix operation. (For example, the vectors Vk+i,... ,vm can be accessed at
once as V( : , k+1 :m).)

•

Exercise 3.4.35 In Chapter 1 we saw that the various ways of calculating the LU decompo-
sition can be derived by partitioning the equation A — LU in different ways. It is
natural to try to do the same thing with the QR decomposition. Consider a decom-
position V = QR, where V - [vi • • • vk} € M.nxk, n > fc, and V has full rank;
Q = [q1 ... qk] g Rn x f c is an isometry; and is upper triangular with
positive entries on the main diagonal. Partition the matrices as

Derive an algorithm to calculate q^» given q\,..., qk-i • You may take the following
steps:

(a) Use the equation V = QR in partitioned form to derive a formula for qkrkk in
terms of known quantities and s.

(b) The condition that qk is orthogonal to q\,..., g^-i can be written as
Use this equation to derive a formula for s.

(c) Show that qk and r^k are uniquely determined by q^kk and the conditions
| |g j fc | | 2 = landr f c j f c > 0.

(d) Parts (a), (b), and (c) can be combined to yield an algorithm to calculate qk,
given qi, . . . , %-i- Show that this is exactly the classical Gram-Schmidt
algorithm.

D
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Exercise 3.4.36 Let V, Q, and R be as in the previous exercise, and consider the partition

(a) Use this partition to derive an algorithm for calculating Q and R.

(b) Show that this algorithm is exactly the modified Gram-Schmidt process in the
form (3.4.34).

One can also derive a block modified Gram-Schmidt algorithm by this method. D

Exercise 3.4.37 State and prove a complex version of Theorem 3.4.2. D

Exercise 3.4.38 In this exercise you will show that the subspace equalities

hold in the Gram-Schmidt process.

1. Use (3.4.15) and (3.4.18) to show that^ £ span{gi,... ,^-1,^}-

2. Show that if spanjgi, . . . ,qk-i} — span{t>i, . . . ,Vk-i}, then

3. Verify (3.4.20), and conclude that vk G span{^i,. . . , qk}.

4. Using the observations from parts (a), (b), and (c), prove by induction on k
that span {qi,...,qk} = spanjvi , . . . ,vk}.

D

Exercise 3.4.39 Another way to demonstrate the subspace equalities is to make use of the
QR decomposition. Let v\,..., vm and q\,..., qm be two linearly independent sets
of vectors, let V = [vi ... vm] € Mn x m , and let Q = [qi ... qm] € Knxm .

(a) Show that if V - QR, where R e Rm x m is upper triangular, then

(b) (Review) Show that if R is upper triangular and nonsingular, then R~l is also
upper triangular.

(c) Show that if V = QR, where R is upper triangular and nonsingular, then

(d) From (a) and (c), deduce that the vectors produced by the Gram-Schmidt
process satisfy
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(e) Conversely, show that if

then there is a nonsingular, upper triangular matrix R G Rmxm such that
V = QR.

D

Exercise 3.4.40 (Modified Gram-Schmidt = Classical Gram Schmidt)

(a) Referring to the modified Gram-Schmidt step (3.4.23), show that for A; = 1,
. . . , m,

(b) The modified Gram-Schmidt algorithm breaks down at step k if
Assuming that v\, . . . , vm are linearly independent, prove by induction on A;
that

(c) Let and

Then is isometric, and R is upper triangular with positive entries on the
main diagonal. Show that Conclude that the vectors and
coefficients rij produced by the modified Gram-Schmidt process are identical
to those produced by the classical Gram-Schmidt process.

D

Exercise 3.4.41 In Exercise 3.4.40 you invoked the uniqueness of the QR decomposition to
prove that the two forms of the Gram-Schmidt algorithm are equivalent in principle.
This is a convenient approach. Of course, one can also prove the result directly.
Prove by induction on k that for k = 1 , . . . , m,

D

Exercise 3.4.42 When one computes a QR decomposition in practice, one does not usually
bother to force the main-diagonal elements of R to be positive. In this case the
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columns of Q may differ from the Gram-Schmidt vectors, but it is not hard to show
that the difference is trivial: Let v\, ..., vm be linearly independent vectors, and
let V = [vi • • • vm}. Suppose V = QR, where Q e Rnxm is an isometry and
R 6 Rmxm is upper triangular but does not necessarily have positive main-diagonal
entries. Let q\, ..., qm denote the columns of Q, and let denote the
vectors obtained from v1 , . . . , vm by the Gram-Schmidt process. Show that qi — ±qi
for i = 1 , . . . , m. D

Exercise 3.4.43 Show that the modified Gram-Schmidt algorithm takes about 2nm2 flops to
orthonormalize m vectors in En. Compare this figure with the cost of performing a
QR decomposition using reflectors in two cases: (i) n ^> m and (ii) n = m. •

Exercise 3.4.44 If we want to use the QR decomposition by reflectors as a method to
orthonormalize vectors, we need to assemble the matrix Q, which is a product of m
reflectors: Q = QiQ2 • • • Qm.

(a) Clearly q± = Qe1 = Q\Qi • • • Qme\. Taking into consideration the form of
the reflectors Q2, • • • •. Qm, show that qi — Q\e\. Thus it costs 4n flops to
compute qi.

(b) Generalizing part (a), show that qi — Q\- • -Qi&i for i — 1,. . . , m. How
many flops does this require?

(c) Show that the operation of computing qi,.. .,qm costs 2nm2 — m2 flops in
all, which is as much as the QR decomposition cost to begin with.

•

Exercise 3.4.45 Let A E Rnxm,n > m, and suppose rank (A) — r. Let A be any matrix
obtained from A by permuting the columns in such a way that the first r columns are
linearly independent. Prove that there exist unique Q e Rnxr and R € R rxm such
that Q is an isometry, R = \R R], R e R rx r is upper triangular with positive entries
on the main diagonal, and A — QR. D

Exercise 3.4.46 Let vi, . . . , vm e Rn and w\, . . . , wm € Rn be two linearly independent
sets of vectors, and let V = [VI ... vm] e Rn x mand W = [wi ... wm] e Rnxm.
Show that span{vi , . . . ,Vi} = span{w1,. . . , Wi] for i = 1, . . . ,m if and only if
there exists a nonsingular, upper triangular matrix R 6 ]^mxm such that V = WR.

•

3.5 GEOMETRIC APPROACH TO THE LEAST SQUARES PROBLEM

In this section we introduce a few basic concepts and prove some fundamental
theorems that yield a clear geometric picture of the least squares problem. The tools
developed here will also be used later on in the book. It is traditional and possibly
more logical to place this material at the beginning of the chapter, but that arrangement
would have caused an unnecessary delay in the introduction of the algorithms.
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Let S be any subset of Rn. The orthogonal complement of 5, denoted S -
(pronounced S perp), is defined to be the set of vectors in Rn that are orthogonal to
S. That is,

S = {x G Rn | (x, y ) = Q for all y G S}.

The set S is nonempty since it contains at least the vector 0.

Exercise 3.5.1 Show that S - is a subspace of Rn; that is,

(a) show that the sum of two members of S - is also in S , and

(b) show that every scalar multiple of a member of S is also a member of S - .

D

Exercise 3.5.2 Let q\, . . . , qn be an orthonormal basis of Rn, and let
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You can easily verify that S1 + S2 is a subspace of En. If U = Si + S2, then every
u G U can be expressed as a sum u = si + 82, where si 6 5i and «2 G £2- The
sum U = Si + $2 is said to be a direct sum if for every w G U the decomposition
u = si + 82 is unique. Direct sums are denoted Si © S2. Theorem 3.5.3 states that
for any subspace S, En is the direct sum of S and S :

Exercise 3.5.4 Let Si and S2 be subspaces of Rn.

(a) Prove that Si + S2 is a subspace of Rn.

(b) Prove that Si + S2 is a direct sum if and only if Si D S2 = {0}.

D

Exercise 3.5.5 Let vi = [1, 0, 0]T, u2 = [0, 1, 1]T, and5 = span{vi,u2} C E3.

(a) Find (a basis for) <$-*-.

(b) Find (a basis for) a subspace ZY of E3 such that

•

Exercise 3.5.6 Let S be a subspace of En, and let U - S±. Show that UL - S. In other
words, S^ =S. •

Let A e Enxm. Then A can be viewed as a linear transformation mapping Em

into En: The vector a; 6 Ew is mapped to Ax 6 En. Two fundamental subspaces
associated with a linear transformation are its null space (also known as the kernel)
and its range. The null space of A, denoted N(A), is a subspace of Em defined by

The range of A, denoted is a subspace of En defined by

Exercise 3.5.7

(a) Show that "" is a subspace of Em.

(b) Show that is a subspace of En.

•

Exercise 3.5.8 Show that the rank of A is the dimension of •

Lemma 3.5.9 Let A <E Rnxm. Then for all x E Rm and y € Rn
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Proof. (Ax,y) = yT(Ax) = (yTA)x = (ATy)Tx - (x,ATy}. D

Note that the inner product on the left is the inner product on En, while that on
the right is the inner product in ETO.

The matrix AT G Em x n can be viewed as a linear transformation mapping En into
ETO. Thus it has a null space and a range . There is an
important relationship between these spaces and the corresponding spaces associated
with A.

Theorem 3.5.10

Proof. If y G U(A}^, then (Ax,y} = 0 for all x e Em, so by Lemma 3.5.9,
(x,ATy) = 0 for all x € Rm. Thus in particular we can take x — ATy and
get (ATy, ATy} = 0, which implies , ATy = 0, and
Therefore , The reverse inclusion, is left as an
exercise for you. •

Exercise 3.5.11 Prove that, •

Applying the result of Exercise 3.5.6, we see that an alternative statement of
Theorem 3.5.10 is . Since (AT)T = A, the roles of A and AT can
be reversed in Theorem 3.5.10 to yield the following corollary.

Corollary 3.5.12

An equivalent statement is Finally

In the important special case in which A 6 Enxn is symmetric, we have

Exercise 3.5.13

(a) The column space of A is defined to be the subspace of En spanned by the
columns of A. Obviously the dimension of the column space is just the rank
of A. Prove that the column space of A is T3,(A).

(b) The row space of A is defined to be the subspace of Rm spanned by the rows
of A. Prove that the row space of A is just . Use the equation Ax — 0;
do not use Theorem 3.5.10 or Corollary 3.5.12.

(c) Obviously the column space of A is the same as the row space of AT. Use
this observation, along with the results of parts (a) and (b), to obtain a second
proof of Theorem 3.5.10 and Corollary 3.5.12.

•
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The Discrete Least Squares Problem

Let A G Enxm and 6 G En, n > m, and consider the least squares problem for the
overdetermined system Ax = &.8 The problem is to find x G Em such that

The set of all Aw such that w G Rm is 7£(A), so this problem is obviously closely
related to that of finding y G R ( A ) such that

The next theorem shows that this problem has a unique solution, and it gives a simple
characterization of the solution. First we have to prove a lemma.

Lemma 3.5.14 (Pythagorean Theorem) Let u and v be orthogonal vectors in Kn.
Then

Proof.
•

Theorem 3.5.15 Let S be a subspace of R.n, and let b G Rn. Then there exists a
unique y G S such that

y is the unique element in S such that b — y G <S~L. In other words, y is the orthogonal
projection ofb into S.

Exercise 3.5.17 We all learned in school that the shortest distance from a point to a straight
line is along the perpendicular. Theorem 3.5.15 generalizes this simple fact. Draw
a picture that illustrates Theorem 3.5.15 in the case when the dimension of S is 1.
Then the vectors in S all lie in a line. The shortest distance from a point (the tip of
6) to a straight line (S) is along the perpendicular (b — y). •

Proof of Theorem 3.5.15. By Theorem 3.5.3 there exist unique elements y G S and
z G S^ such that b — y + z. y is the orthogonal projection of b into S. Notice
that b — y — z G S^~. There can be no other w G S such that b — w G S^,
because then the decomposition b = w + (b — w} would violate the uniqueness part
of Theorem 3.5.3. To see that y satisfies (3.5.16), let s G S, and consider
Since b — s — (b — y) + (y — s), where b — y € S^ and y — s G S, we have by
Lemma 3.5.14

8In least squares problems we typically have n 3> m. However, the results that follow are also valid for
n < m.
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As s runs through S, the term remains constant, while the term
varies but remains strictly positive, except that it equals zero when y — s. Thus

and hence also || b — s ||2, is minimized when and only when s = y. •

Now let us see what Theorem 3.5.15 tells us about the least squares problem.
Taking S — 'R-(A), we find that there is a unique y £ 'R-(A) such that || b — y ||2 =

Any x e Rm that satisfies Ax = y will be a

solution to the least squares problem for the system Ax — b. Since y € R ( A ) , there
must be at least one such x. This proves that the least squares problem always has at
least one solution—a fact that we already proved in Section 3.3 by other means.

Exercise 3.5.18

(a) Suppose x 6 Mm satisfies Ax = y. Show t h a t i f and only if

(b) Show that the least squares problem has a unique solution if and only if

•

We now have two necessary and sufficient conditions for uniqueness of a solution
to the least squares problem. In Section 3.3 we saw that the solution is unique if and
only if A has full rank, and now we see that it is unique if and only if
These two conditions must therefore be equivalent. In the following exercise you are
asked to prove directly that they are.

Exercise 3.5.19 Let A € Rnxm . Prove that rank(A) = m if and only if •

The part of Theorem 3.5.15 that characterizes the minimizing vector yields the
following corollary.

Corollary 3.5.20 Let x e Rm. Then if and only if

Combining this corollary with Theorem 3.5.10, we see that x solves the least
squares problem if and only if b — Ax € Af(AT); that is, AT(Ax — b) =0.
Rewriting this last equation, we obtain the following important result.

Theorem 3.5.21 Letx 6 Mm. Then x solves the least squares problem for the system
Ax = b if and only if

The matrix ATA is in Mmxm , and the vector ATb is in Rm, so (3.5.22) is a system
of m linear equations in m unknowns. Since these are the equations that hold when
6 — Ax is normal (meaning orthogonal) to , they are known as the normal
equations.
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The coefficient matrix of the normal equations is positive semidefinite; that is, it
is symmetric, and xT(ATA)x > 0 for all x € Rm. If rank(A) = m, then ATA is
positive definite.

Exercise 3.5.23 Work this problem by hand. Consider the overdetermined system

which we considered previously in Exercise 3.3.7. Solve the least-squares problem
again, but this time do it by setting up and solving the normal equations. •

Exercise 3.5.24

(a) Prove that AT A is positive semidefinite.

(b) Suppose A e Mn x m with n < m. Show that A7'A is not positive definite.

(c) Suppose A G Rnxm with n > m. Show that ATA is positive definite if and
only if A has full rank. (We already covered the case n = m in Theorem 1.4.4.)

•

In the full-rank case (with n > m) the unique solution of the least squares problem
can be found by constructing the normal equations (3.5.22) and solving this positive
definite system by Cholesky's method. Indeed, up until about 1970 this was the
standard technique for solving least squares problems. Its advantages are that it is
simple and inexpensive. The system that has to be solved is m x m, and m is usually
small. The biggest expense is that of computing the coefficient matrix AT A.

The disadvantage of the normal equations approach is that it is sometimes less
accurate than the QR approach. Critical information can be lost when ATA is
formed.

Example 3.5.25 Let

where e > 0 is small. Clearly A has full rank, and

which is positive definite. However, if e is small enough that e2 is less than the unit

roundoff u, then the computed AT A will be , which is singular. •

In spite of its inferior numerical properties, the normal equation approach is still
sometimes used to solve least squares problems. It can be used safely whenever A is
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well conditioned. This issue will be covered in more detail in Section 4.4, in which
we discuss the sensitivity of the least squares problem.

Exercise 3.5.26

(a) Let B e Rnxw be any matrix such that U(B] = H(A}. Show that x is a
solution of the least squares problem for the overdetermined system Ax = b if
and only if BT Ax = BTb.

(b) Show that H(A) = U(B) if and only if there exists a nonsingular C G Rmxm

such that A = BC.

D

The most obvious instance of the situation in Exercise 3.5.26 is the case B = A,
for which the system BTAx = BTb is just the system of normal equations (3.5.22).
Another instance stems from the QR decomposition A — QR, where Q G Mn x m is
an isometry and R G Rmxm is upper triangular (Theorem 3.4.7). If A has full rank,
then R is nonsingular, and by part (b) of Exercise 3.5.26, H( A) = R ( Q ] • Therefore,
by part (a), the unique solution of the least squares problem satisfies

QTAx = QTb. (3.5.27)

Exercise 3.5.28

(a) Show that the system (3.5.27) is exactly the system that is solved, in the guise
Rx = c, when the least squares problem is solved by the QR decomposition
method.

(b) Suppose we solve the normal equations ATAx = ATb using a Cholesky
decomposition ATA = RTR. In this approach the last step is to solve an
upper triangular system Rx = y by back substitution. Prove that this system
is exactly the same as the system Rx = c that arises in the QR decomposition
method. (However, the two methods arrive at this system by radically different
approaches.)

D

Exercise 3.5.29 (Derivation of the normal equations using calculus). The function

is a differentiate function of m variables. It has a minimum only when V/ =
(df/dxi,..., df/dxm}T = 0. Calculate V/, and note that the equations V/ = 0
are just the normal equations. •
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The Continuous Least Squares Problem

We introduced the discrete least squares problem by considering the problem of
approximating a discrete point set {(ti,yi) \ i = 1, . . . , n} by a simple curve such
as a straight line. In the continuous least squares problem the discrete point set is
replaced by continuous data {(£, /(i)) | t 6 [a, b}}. Thus, given a function / defined
on some interval [a, b], we seek a simple function </> (e.g. a linear polynomial) such
that (j) approximates / well on [a, b]. The goodness of approximation is measured,
not by calculating a sum of squares, but by calculating the integral of the square of
the error:

The continuous least squares problem is solved by minimizing this integral over
whichever set of functions 0 we are allowing as approximations of /. for example, if
the approximating function is to be a first-degree polynomial, we minimize (3.5.30)
over the set of functions {0 | </>(£) = OQ + ait; ao, ai 6 M}. More generally, if the
approximating function is to be a polynomial of degree less than m, we minimize
(3.5.30) over the set of functions

The set Pm-i is an m-dimensional vector space of functions. Still more generally
we can let S be any m-dimensional vector space of functions defined on [a, b] and
minimize (3.5.30) over S.

We can solve the continuous least squares problem by introducing an inner product
and a norm for functions and utilizing the geometric ideas introduced in this section.
The inner product of two functions / and g on [a, b] is defined by

This inner product enjoys the same algebraic properties as the inner product on Mn.
For example, (/, g) = (gj), and (/i + /2, g) = {/i, g) + (/2, g}. Two functions /
and g are said to be orthogonal if (/, g) = 0. The norm of / is defined by

Notice that the norm and inner product are related by Furthermore
(3.5.30) can be expressed in terms of the norm as || / — 0|| . Thus the continuous
least squares problem is to find 0 6 <S such that

We proved Theorem 3.5.15 only for subspaces of Mn, but it is valid for function spaces
as well. See, for example, [70, Theorem II.7.2]. Thus the continuous least squares
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problem (3.5.31) has a unique solution, which is characterized by f — 0 6 S^; that
is,

Let < / > ! , . . . , 0m be a basis for S. Then for some unknown coeffi-
cients x\,..., xm. Substituting this expression for 0 into (3.5.32), setting ψ= </>;,
and applying some of the basic properties of inner products, we obtain

This is a system of m linear equations in m unknowns, which can be written as a
matrix equation

where

The matrix C is clearly symmetric. In fact, it is positive definite, so (3.5.34) can be
solved by Cholesky's method to yield the solution of the continuous least squares
problem.

Exercise 3.5.35 With each nonzero y = [yi • • • ym ]T Rm associate the nonzero function
Prove that yTCy = ( ψ , ψ ) . Combining this with the fact that

( ψ , ψ ) > 0, we conclude that C is positive definite. D

The next exercise shows that the equations (3.5.34) are analogous to the normal
equations of the discrete least squares problem.

Exercise 3.5.36 Find vi,..., vm G Mm for which the normal equations (3.5.22) have the
form

Thus the normal equations have the same general form as (3.5.33). �

Exercise 3.5.37 Find the polynomial 0(t) = xi + x?t of degree 1 that best approximates
f ( t ) = t2 in the least squares sense on [0,1]. Check your answer by verifying that
/ — 0 is orthogonal to <S — (a0 + ait \ a0, a\ G E}. �

Exercise 3.5.38 Let [a, 6] = [0,1], S = Pm-i, and let 0 i , . . . , 0m be the basis of Pm-i
defined by 0i(£) = 1, 02(i) = *, ф( t ] = t2, ..., фm(i) = tm~l. Calculate the
matrix C that would appear in (3.5.34) in this case. Note that C is just the m x m
member of the family of Hilbert matrices introduced in Section 2.2. This is the
context in which the Hilbert matrices first arose. •
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In Section 2.2 the Hilbert matrices served as an example of a family of ill-
conditioned matrices Hm £ Rmxm, m = 1,2,3,..., whose condition numbers get
rapidly worse with increasing m. Now we can observe, at least intuitively, that the ill
conditioning originates with the basis </>i(£) = 1, <fo(£) = *» <t>3(i) = t2, .... If you
plot the functions tk on [0,1], you will see that with increasing k they look more and
more alike. That is, they come closer and closer to being linearly dependent. Thus
the basis 4>i, ..., 0m is (in some sense) ill conditioned and becomes increasingly
ill conditioned as m is increased. This ill conditioning is inherited by the Hilbert
matrices.

3.6 UPDATING THE QR DECOMPOSITION

There are numerous applications in which the data matrix is updated repeatedly. For
example, in a signal processing application, each row of the matrix corresponds to
measurements made at a given time. Each time new measurements come in, a new
row is added. Now suppose we have solved a least-squares problem (to estimate the
trajectory of an object, say) at a particular time, but now we want to solve the problem
again, incorporation additional data that has just arrived. To solve the first problem
we computed a QR decomposition. Must we now compute a new QR decomposition
from scratch, or can we somehow update the old one? It turns out that we can update
the old QR decomposition much more cheaply than we can compute a new one from
scratch.

Adding a Row

Supposed £ M n x m ,n > m, rank(A) = ra, and we have a decomposition A = QR,
where Q 6 Enxn is orthogonal, and # € Rnxm is upper triangular. That is, the
upper m x ra block of R is upper triangular, and the rest of R is zero. Now let

, and ZT is a new row, which we wish

to insert somewhere among the rows of A. (It might seem simpler just to adjoin ZT at
the bottom of the matrix A, but, as we shall show, it is no harder to insert it anywhere
in the matrix.) Let us figure out how to derive the QR decomposition from
the QR decomposition of A.

We begin by partitioning Q in the same way as we have partitioned A. Then the
QR decomposition takes the form
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It follows immediately that

This is nearly a QR decomposition. The only problem is that is Hessenberg,

not triangular. We just need to transform it to upper triangular form. We have

There is a plane rotator acting on rows 1 and 2 such t h a t h a s a zero

where TH was. This transformation obviously does not destroy any of the zeros that
were already present in the matrix. Once we have annihilated TU, we can annihilate
r22 by applying a plane rotator that acts on rows 2 and 3. This does not disturb
any zeros that were already present. In particular, the zero in the ru position stays
zero because r21 = 0. The next step is to apply a rotator , acting on rows 3 and
4 that annihilates r^s. If we continue in this manner for m steps, we obtain an upper
triangular matrix

i xm

Letting

we have , with orthogonal and upper
triangular.

The cost of producing R is quite low. There are m plane rotators, each acting on
rows of effective length m or less. Thus the flop count is clearly O(m2). You can
easily check that it is 3m2 + O(m), to be more precise. Depending on the application,
we may or may not wish to update Q. If we do wish to make that update and we
have Q stored explicitly, we can obtain by applying m plane rotators on the right.
This costs 6nm + O(m) flops. Recalling that the cost of a QR decomposition from
scratch is around 2nm2 flops, we see that the update is much cheaper, especially the
update of R.
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Exercise 3.6.2

(a) Show that about 3m2 flops are needed to produce R.

(b) Show that Q can be obtained from Q in about 6nm flops if Q is stored explicitly.

D

Exercise 3.6.3 The heart of the procedure that we have just outlined is to reduce the matrix

to upper triangular form. Reformulate the algorithm so that the matrix that is to be
reduced to triangular form is

Show how to return this matrix to upper triangular form by a sequence of m plane
rotators. d

Exercise 3.6.4 Suppose we have a condensed QR decomposition A = QR, where Q e En x m

is isometric and R G Emxm is upper triangular. Develop a procedure for updating
this decomposition when a row is adjoined to A. Make sure you get the dimensions
of the matrices right. (You'll have to throw something away in the end.) d

The procedure we have just outlined also serves as a method for updating the
Cholesky decomposition. If we use the normal equations to solve the least-squares
problem, we need the Cholesky decomposition of ATA, i.e. AT A = RTR. If we
now add a row to A, we need the Cholesky decomposition of the updated matrix
ATA. It is easy to show that the Cholesky factor R is the same as the matrix R in
the decomposition A = QR (cf. proof of Theorem 3.2.46 and Exercise 3.5.28). The
updating procedure that we have outlined above (and, in particular, in Exercise 3.6.4),
does not require knowledge of the orthogonal matrix Q (or Q), so it can be used to
update the Cholesky factor in 3m2 flops.

Exercise 3.6.5 Let M e Em x m be a positive definite matrix, and let R be its Cholesky factor.
Let z 6 Em, and let M = M + ZZT. Since the matrix ZZT has rank one, M is called
a rank-one update of M.

(a) Show that M is positive definite.

(b) Let R be the Cholesky factor of M. Outline a procedure for obtaining R from
R and z in O(m2) flops.

d
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Deleting a Row

If we are constantly adding new rows of data to a matrix, we might also sometimes
wish to delete old, "out-of-date" rows. We thus consider the problem of updating the
QR decomposition when we have deleted a row. This procedure is commonly known

as downdating. Suppose we have the decomposition

and we seek the QR decomposition of We can essentially reverse the

process we used for adding a row. However, the reversed process requires knowledge
of Q and generally requires more work. A downdating procedure that acts only on
R and makes no use of Q is outlined in Exercises 3.6.12 through 3.6.15.

The objective is to transform Q essentially to the form

as in (3.6.1). Let

where the row WT is in the same position as the row that is to be removed from
A. We need to transform WT to the form [76 • • • 0] (where [7] = 1). Let Un

be a plane rotator acting on positions n and n + 1 such that wTUn has a zero in
its last ((n + l)st) position. Then let Un-i be a rotator acting on positions n — 1
and n such that wTUnUn-i has zeros in its last two positions. Continuing in this
way we produce plane rotators Un-2, • • -Ui such that wTUnUn-i • • • U\ has the
form [70 • • • 0]. If we apply this sequence of rotators to Q, we obtain a matrix
<J = <§[/„...[/! of the form

The first column, apart from the 7, is necessarily zero because the matrix is orthogonal
and therefore has orthonormal rows.

Let Then so
let us examine R. R is an (n + 1) x m matrix whose top ra rows form an upper
triangular matrix and whose last n + 1 — m rows are zero. Now consider how R
is altered when we apply The plane rotators . The first rotators,

have no effect at all on R, because they operate on rows that are
identically zero. The first to have any effect is which acts on rows m and m + 1.
Row m has one nonzero element, namely fmm. When is applied, this nonzero
entry is combined with the zero in position (m + 1, m) to produce a nonzero entry in
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that position. This is clearly the only new nonzero entry produced by this operation.
Similarly, application of acts on rows m — 1 and m and creates a new nonzero
entry in position (m, m — 1) (and nowhere else), because is nonzero. The
pattern is now clear. Application of produces new nonzero entries in
positions (m + 1, m), (m, m — 1) , . . . , (2,1), and nowhere else. This means that R
has upper Hessenberg form. Thus we can partition R as

where VT is the first row of .R, and R is upper triangular. Combining this with (3.6.6),
we have

Focusing on the top block, we have AI = OvT + QiR — QiR. Now looking at the
bottom block, we have A2 = QvT + Q^R. Putting these blocks together, leaving out

the middle row, and letting , we obtain

Since the rows of Q are orthonormal, Q is an orthogonal matrix. Thus we now have
the QR decomposition of A.

Exercise 3.6.7 How much does this downdating procedure cost. . .

(a) ... if only R is wanted?

(b) ... if Q is wanted?

•

Exercise 3.6.8 Why does the downdating procedure take more work than the updating
procedure? •

Since this procedure requires knowledge of the orthogonal matrix Q, we cannot use
it for downdating the Cholesky decomposition AT A = RTR, when a row is removed
from A. Fortunately a procedure for downdating the Cholesky decomposition does
exist. It is quite economical (O(m2)), but it is more delicate, involving the use of
hyperbolic transformations. See, for example, [33, §12.5.4] and Exercises 3.6.12
through 3.6.15.
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Adding a Column

Consider an experiment in which a large number of individuals, e.g. fruit flies or
guinea pigs, are measured in various ways, e.g. wingspan, weight, length of ears. If
m characteristics are measured for each of n individuals, the data can be assembled
in an n x m matrix A in which each row corresponds to an individual and each
column corresponds to a characteristic. We may be able to learn something about
our population by solving some least squares problems using this data. If we want
to add a characteristic to our study, we must add a column to the matrix A. Suppose
we have a QR decomposition of A. If we adjoin a column to A, can we obtain the
QR decomposition of the new matrix efficiently by updating the QR decomposition
of 4?

Let A — [ AI A-2 ] and A = [ A1 z A^ ], where z is the column that is
to be adjoined. We have a decomposition A = QR, with Q e Enxn orthogonal and
R € Enxm upper triangular. Partitioning R conformably with A, we have

Let us see how to update this decomposition to obtain the QR decomposition of A.
If we let w — QTz = Q~lz, then

We have disturbed the triangular form of R; our task is to restore it. Suppose w is the
kth column. To obtain triangular form we must annihilate the bottom n — k entries
of w. Let Un be a plane rotator acting on rows n and n — 1 such that Unw has a zero
in the nth position. Let Un-i be a plane rotator on rows n — 1 and n — 2 such that
Un-iUnw has a zero in position n — 1. The zero that was created on the previous
step remains untouched. Continuing in this fashion, we can produce plane rotators
I7 n _2, . . . , Uk+i such that Uk+i • • • Unw has zeros in positions k + 1, . . . , n. Let

It is easy to check that R has upper triangular form. The rotators to not alter RI at all.
They do affect R?,, but only to the extent that thev fill out R to a full upper-triangular
matrix. Let This is our desired decomposition.

Exercise 3.6.9 Verify that R is an upper-triangular matrix. •

Unfortunately this updating procedure is not particularly economical. The opera-
tion w = QTz already costs 2n2 flops, and it requires knowledge of Q. If n > m2, it
is not worthwhile. The MATLAB command qrinsert implements this procedure.

Deleting a Column

Now suppose we wish to delete a characteristic from our sample. This corresponds
to deleting a column from A. How do perform the update, or perhaps we should
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say downdate, in this case? Fortunately it turns out that removing a column is much
cheaper than adding one.

Let A — [ AI z AI ] and A — [ A\ A2 ]. Suppose we have the de-
composition A — QR, and we would like the QR decomposition of A. Let
R — [ RI w R-2 }• Removing a column from the equation A = QR, we
obtain

This is not quite a QR decomposition, because the "/?" matrix is not upper triangular.
For example, if we remove the third column from a 7 x 5 upper triangular matrix, we
obtain a matrix of the form

It is upper Hessenberg but can be reduced to triangular form by two rotators,
acting on rows 3 and 4, followed by , acting on rows 4 and 5. More generally, in
(3.6.10), if the row w that was removed from R was the kth row, ra — k + 1 plane
rotators, will be needed to return the matrix to triangular form. Letting

we have our QR decomposition
of A

This procedure can be carried out without knowledge of the orthogonal matrix
Q, so it also serves as a means of downdating the Cholesky decomposition of ATA,
when a column is removed from A. The cost of obtaining R from R depends on
which column is removed. In the worst case (first column is removed) m rotators
are needed, and they operate on columns of effective length m or less. Therefore the
flop count is O(m2). In the best case (last column is removed) no flops are needed.

This procedure is implemented in the MATLAB command qrdelete.

Exercise 3.6.11

(a) Suppose the kth column is deleted from A. Show that the cost of producing R
is about 3(m — k)2 flops.

(b) Show that the cost of computing Q from Q is about 6n(m — k] flops if Q is
given explicitly.

•
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Additional Exercises

Exercise 3.6.12 A 2 x 2 matrix H is called a hyperbolic transformation if is has the form

where c > 0 and

The set of all (c, s) that satisfy (3.6.13) is a hyperbola in the c-s plane. For any pair
(c, s) satisfying (3.6.13) there is a number a such that c = cosh a and 5 = sinh a.

(a) Show that every hyperbolic transformation H is nonsingular. Find the deter-
minant of H. What is H~ll Note that H~1 is also hyperbolic.

(b) Let Show that if H is hyperbolic, then HT JH = J. Of

course, H = H1, but it turns out be be useful to write the identity in terms of
the transpose.

(c) Show that if with |a| > |b|, then there is a unique hyperbolic

transformation H such that

Obtain formulas (resembling (3.2.11)) for c and s in terms of a and b.9 The
condition c2 — s2 = 1 does not put any bound on c and s; they can be arbitrarily
large. (Graphically, the hyperbola is an unbounded figure.) It follows that
hyperbolic transformations can be ill conditioned and lack the unconditional
stability of rotators. See Exercise 3.6.16.

(d) We can embed hyperbolic transformations in larger matrices, just as we did for
rotators. Let

where c > 0 and c2 — s2 = 1. Suppose the rows and columns in which
the hyperbolic transformation is embedded are i and j (i < j). Let J be

9If | a | = 1 6 1 , there is no hyperbolic transformation that can transform b to zero. If |a | < |b|, a different
type of hyperbolic transformation can do the job. Since we will not need that type of transformation, we
do not introduce it here.



 

s=[ft.]= 

any diagonal matrix with the entries 1 and - I  in positions (i, i) and ( j ,  j ) ,  
respectively. Show that H T J H  = J .  (Again the transpose is unnecessary. 
However, this identity also holds for products of matrices of this type, and then 
the transpose really is needed.) Show that if S = H S ,  then ST J S  = ST J S .  
Show that S and S differ only in the ith and j th  rows. 

0 

- - 
T l l  TI2 . . .  
0 F22 . . .  
0 0 ... . 

21 z2 . . *  - 

Exercise 3.6.14 In this exercise we show how to use hyperbolic transformations to downdate 
the Cholesky decomposition. Let 

and suppose A has rank m. Suppose we have R E E X m x m ,  the Cholesky factor of 
ATA, and we would like to obtain R E Rmxm, the Cholesky factor of ATA. 

(a) Let 

For  this purpose we wil l use nyperbolie  tra nsformation s

(b) Using the fact that At a si positive difinte demonstrat that r211 - z12
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The entry z\ has been annihilated. The entry z-2 differs from £2, but it is, in
general, nonzero.

(c) Show that.

(d) In Exercise 3.6.15 we will show that \f-2i \ > \z^ |, and appropriate corre-
sponding inequalities hold at all subsequent steps. Assuming these inequal-
ities to be true, sketch an algorithm that applies a sequence of m hyper-
bolic transformations HI,. .., Hm to 5, thereby transforming it to a matrix

S — Sm = Hm • • • HI S of the f o r r r , where R is upper triangular

and has positive main-diagonal entries. Show that ATA — ST JS = RTR.
Thus R is the Cholesky factor of ATA.

(d) Show that this downdating procedure requires about 3m2 flops in all.

D

Exercise 3.6.15 After k steps of the algorithm sketched in the previous exercise, we have
transformed S to the form

where RU is k x k. We have , where J is as defined in the previous
exercise. Let A = [ A^ A^ ], where A^ has k columns.

(a) Show that and deduce that
RU and RIZ are blocks of the Cholesky factor of ATA.

(b) Show that __ . Show that the matrix
is the Schur complement of A^TA^ in ATA and

is positive definite. Here we essentially are retreading ground covered in
Section 1.4, especially Exercise 1.4.58 and surrounding material.

(c) Use the positive definiteness of to prove that the (1,1)
entry of R^, which we call fk+i,k+i and the leading entry of which we
call zjfe+i, satisfy (ffc+i^+i | > \Zk+i \- Thus we can set up the hyperbolic
rotator Hk+i for the (k + l)st step.

D

Exercise 3.6.16 In this exercise we show that hyperbolic transformations can be arbitrarily ill
conditioned.

(a) Let L be a huge positive number (as huge as you please). Find two positive
numbers c and s such that c > L, s > L, and c2 — s2 = I. Then
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is a hyperbolic transformation with large norm. Show that ||H||^ = ||H 1||00

= c + s > 2L and ̂ (H) > 4L2.

( b ) L e t . Show that H v = ( c + s ) v a n d H w =

(c — s)w. The vectors v and w are special vectors called eigenvectors of H.
We will study eigenvectors in Chapters 5 and 6. Show that H~lw = (c + s}w.

(c) Using results of part (b), show that || H\\2 > (c + s), HH'11|2 > (c + s),and
«2 (H) > (c + s)2. In Chapter 5 we will find that all three of these inequalities
are in fact equations.

(d) Let H be the hyperbolic transformation the maps

j

where | a \ > \ b \ . Under what conditions on a and b will H be ill conditioned?

•

In light of the fact that hyperbolic transformations can be ill conditioned, we ought
to be suspicious about the stability of any algorithm that uses them. It turns out that
the downdating procedure used in Exercise 3.6.14 works well as long as ATA is
"safely" positive definite, meaning well conditioned. However, if we do something
reckless, such as removing so many rows that the rank of A becomes less than m, we
can expect the algorithm to fail.
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4
The Singular Value

Decomposition (SVD)

The QR decomposition is a fine tool for solving least squares problems when the
coefficient matrix is known to have full rank. However, if the matrix does not
have full rank, or if the rank is unknown, a more powerful tool is needed. One
such tool is the QR decomposition with column pivoting, which we discussed in
Section 3.3. In this chapter we introduce an even more powerful tool, the singular
value decomposition (SVD). This may be the most important matrix decomposition
of all, for both theoretical and computational purposes.

We begin the chapter by introducing the SVD and showing that it can take a
variety of forms. Then, in Section 4.2, we establish the connection between singular
values and the norm and condition number of a matrix. We also show how to use the
SVD to detect the (numerical) rank of matrix in the presence of roundoff errors and
other uncertainties in the data, we show that rank-deficient matrices are in some sense
scarce, and we show how to compute the distance to the nearest rank-deficient matrix.
In Section 4.3 we show how to use the SVD to solve least squares problems, even if
the coefficient matrix does not have full rank. We also introduce the pseudoinverse,
an interesting generalization of the inverse of a matrix. Finally, in Section 4.4, we
analyze the sensitivity of the least squares problem in the full-rank case, making use
of results proved in Section 4.2.

This chapter says nothing about how to compute the SVD. That will have to wait
until we have established the connection between singular values and eigenvalues.

We will continue to focus on real matrices. However, all of the developments of
this chapter can be extended to complex matrices in a straightforward way.

261
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4.1 INTRODUCTION

Let A € Rnxm, where n and m are positive integers. We make no assumption about
which of n and m is larger. Recall that the range of A is the subspace of Mn defined
by K(A) = {Ax \ x <E Em}. The rank of A is the dimension o f K ( A ) .

Theorem 4.1.1 (SVD Theorem) Let A e Enxm be a nonzero matrix with rank r.
Then A can be expressed as a product

where U € Enxn and V € Mm x m are orthogonal, andEeRnXm is a nonsquare
"diagonal" matrix

To prove this theorem, work Exercise 4.1.17. The decomposition (4.1.2) is called
the singular value decomposition of A. We will usually use the abbreviation SVD.
The discussion of many aspects of the SVD will have to be deferred until after we
have have discussed eigenvalues and eigenvectors. For example, Theorem 4.1.1 says
nothing about the uniqueness of the decomposition. It turns out that it U and V are
not uniquely determined, but they have some partial uniqueness properties that we
will be able to discuss later. The entries a\,..., ar of S are uniquely determined, and
they are called the singular values of A. The columns of U are orthonormal vectors
called right singular vectors of A, and the columns of V are called left singular
vectors for reasons that will become apparent. The transpose of A has the SVD
AT = VXTUT.

Once we have discussed eigenvalues and eigenvectors, we will be able to provide
a second proof of the SVD theorem, and we will develop algorithms for computing
the SVD. See Section 5.9

Two matrices A, B 6 Enxm are said to be equivalent if there exist nonsingular
matrices X e Mnxn and Y € Mmxm such that A = XBY. If the matrices X and Y
are orthogonal, then A and B are said to be orthogonally equivalent. Theorem 4.1.1
shows that every A E Rn X m is orthogonally equivalent to a diagonal matrix.

Other Forms of the SVD Theorem

The SVD has a simple geometric interpretation, which is a consequence of the
following restatement of the SVD theorem.
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Theorem 4.1.3 (Geometric SVD Theorem) Let A G Rnxm be a nonzero matrix
with rank r. Then Em has an orthonormal basis vi,..., vm, En has an orthonormal
basis HI , . . . , un, and there exist a\ > o^ > • • • > 0> > 0 such that

Exercise 4.1.5 Show that all of the equations (4.1.4) follow from the SVD A = UYVT

(and its transpose), where u\,..., un and v\,..., vm are the columns of U and V,
respectively. •

Exercise 4.1.6 Show that the equations in the left half of (4.1.4) imply the matrix equation
AV = t/E, the equations in the right half of (4.1.4) imply ATU = V£T, and either
one of these implies the SVD A = UZVT. D

Think of A as a linear transformation that maps vectors x € Em to vectors
Ax € En. Theorem 4.1.3 shows that Em and En have orthonormal bases such that
A maps the ith basis vector in Em to a multiple of the ith basis vector in En (and
AT acts similarly). From elementary linear algebra we know that if we choose bases
in Em and En, then we can represent this or any linear transformation by a matrix
with respect to these bases. Theorem 4.1.3 says simply that the diagonal matrix E is
the matrix of the transformation A with respect to the orthonormal bases v\ ..., vm

and u i , . . . , un (and ST is the matrix of the transformation AT). The action of A is
depicted in a simple way by the following diagram.

A similar diagram holds for AT. If we set the two diagrams side by side, we obtain
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which serves as a pictorial representation of the SVD Theorem.
The SVD displays orthonormal bases for the four fundamental subspaces R ( A ) ,

N(A), H(AT}, andN(AT). It is clear from (4.1.7) that

From these representations we see that
we proved these equations by other means in Theorem 3.5.10.

Another immediate consequence of (4.1.8) is the following fact, which can also
be deduced by more elementary means. We record it here for future reference.

Corollary 4.1.9 Let A e R n X m . Then d i m ( R ( A ) ) + 6im(M(A)) = m.

The next theorem gives a more condensed version of the SVD.

Theorem 4.1.10 (Condensed SVD Theorem) Let A e Rn x m be a nonzero matrix
of rank r. Then there exist such that U and V
are isometrics, is a diagonal matrix with main-diagonal entries σi > ... >σr> > 0,
and

Exercise 4.1.11 Prove Theorem 4.1.10 by writing the SVD A = UT,VT block form in an
appropriate way and then chopping off the unneeded blocks. D

Finally we present one more useful form of the SVD.

Theorem 4.1.12 Let A e Enxm be a nonzero matrix with rank r. Let σ , . . . , ay be
the singular values of A, with associated right and left singular vectors v\,..., vr

and u\,..., ur, respectively. Then

Exercise 4.1.13 Let Prove Theorem 4.1.12 by showing that B = A.
(Show that Avi — Bvi for i = 1,..., m.) mi

Exercise 4.1.14 Obtain a second proof of Theorem 4.1.12 by partitioning the decomposition
from Theorem 4.1.10 in an appropriate way. �

Exercise 4.1.15 Let
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By inspection, write down the SVD in the condensed form of Theorem 4.1.10 and in
the form given by Theorem 4.1.12. How do the two compare? n

Exercise 4.1.16 In MATLAB you can use the command svd to compute either the singular
values or the singular value decomposition of a matrix. Type help svd to find
out how to use this command. Use MATLAB's svd command to check your result
from the previous exercise. •

Exercise 4.1.17 In this exercise you will prove Theorem 4.1.1 by induction on r, the rank of
A.

(a) Suppose A e Rnxm has rank 1. Let m e Rn be a vector in U(A) such that
|| ui ||2 = 1. Show that every column of A is a multiple of u\. Show that A
can be written in the form where v\ e Em, ||t>i ||2 — 1. and
ai > 0.

(b) Continuing from part (a), demonstrate that there is an orthogonal matrix U €
IRnXn whose first column is u^. (For example, U can be a reflector that maps
the unit vector e.\ to u\.} Similarly there is an orthogonal V € £mxm whose
first column is v^. Show that A = UZVT, where S e Rnxm has only one
nonzero entry, a\, in position (1,1). Thus every matrix of rank 1 has an SVD.

(c) Now suppose A 6 £nxm has rank r > 1. Let i>i be a unit vector in the
direction of maximum magnification by A, i.e. || v\ ||2 = 1, and || Av\ ||2 =
max||w|| =1 ||Au||2. Let a\ — | |Awi||2 = || A||2, and let . Let

U 6 Mnxn and V € Emxm be orthogonal matrices with first column ui and
vi, respectively. Let A = UTAV, so that A = UAVT. Show that A has the
form

where z 6 Rm~l and A e K("-i)x(m-i)<

(d) Show that the vector 2 in (4.1.18) must be zero. You may do this as follows:

L e t S h o w that Then

show that this inequality forces z = 0. Thus

(e) Show that A has rank r — 1. By the induction hypothesis A has an SVD
. Let σ2 > σ3 > • • • >σrr denote the positive main-diagonal

entries of Show that σ\ > σ- Embed the SVD in larger
matrices to obtain an SVD of A. Then use the equation A = UAVT to obtain
an SVD of A.

�
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4.2 SOME BASIC APPLICATIONS OF SINGULAR VALUES

Relationship to Norm and Condition Number

In Section 2.1 we defined the spectral norm to be the norm induced by the Euclidean
vector norm:

The discussion in Section 2.1 was restricted to square matrices, but this definition
makes sense for nonsquare matrices as well. Geometrically || A\\% represents the
maximum magnification that can be undergone by any vector x G Mm when acted on
by A. In light of (4.1.7) (and Exercise 4.1.17), it should not be surprising that \\A\\2

equals the maximum singular value of A.

Theorem 4.2.1 Let A G Rnxm have singular values av > C72 > ... > 0. Then

\\A\\2 = *i.

Proof. We must show that First notice that since Av\ =

0-1 Ul,

so Now we must show that no other vector is magnified

by more than a\.
Let x G Mm. Then x can be expressed as a linear combination of the right

singular vectors of A: x = c\v\ + c^v^ + • • • + cmvm. Since vi,..., vm are
orthonormal, Now Ax = c\Av\ + • • • + crAvr +
• • • + cmAvm = aiCiUi + • • • + arcrur + 0 + • • • + 0, where r is the rank of A.
Since HI , . . . , ur are also orthonormal, , Thus

D

Since A and AT have the same singular values, we have the following corollary.

Corollary 4.2.2 || A||2 = \\AT\\2.

>e 4.2.3 Recall that the Frobenius matrix norm is defined by

Show that (Hint: Show that if B = UC, where
U is orthogonal, then ||B\\F = \\C\\F.) D

Now suppose A is square, say A G Enxn, and nonsingular. The spectral condition
number of A is defined to be
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Let us see how k2 (A) can be expressed in terms of the singular values of A. Since
A has rank n, it has n strictly positive singular values, and its action is described
completely by the following diagram:

It follows that the corresponding diagram for A~l is

In terms of matrices we have A = UΣVT and A'1 = V^Σ-1U'1 = VΣ~1UT.
Either way we see that the singular values of A, in descending order, are

Applying Theorem 4.2.1 to A~l, we conclude that
. These observations imply the following theorem.

Theorem 4.2.4 Let A e Rn x n be a nonsingular matrix with singular values a\ >
... > <jn > 0. Then

Another expression for the condition number that was given in Chapter 2 is

where

This gives a slightly different view of the condition number. From Theorem 4.2.1 we
know that maxmag(A) = a\. It must therefore be true that minmag(A) = an.

Exercise 4.2.5 Prove that minmag(A) = an. Show that the minimum magnification is
obtained by taking x — vn. D
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In Section 3.4 we observed that the equation

can be used to extend the definition of K2 to certain nonsquare matrices. Specifically,
if A 6 Enxm, n > m, and rank(^4) = m, then minmag(A) > 0, and we can take
(4.2.6) as the definition of the condition number of A. If A is nonzero but does not
have full rank, then (still assuming n > m) minmag(yl) = 0, and it is reasonable to
define Kz(A) — oo. With this convention the following theorem holds, regardless of
whether or not A has full rank.

Theorem 4.2.7 Let A G Enxm, n > m be a nonzero matrix with singular values
o~i > o~2 > • • • > σm >Q. (Here we allow some σi equal to zero if rank(A) < m.)
Then maxmag(A) = σI, minmag(A) = σm, and Kz(A) = σ\/σm.

The proof is left as an easy exercise for you.

Exercise 4.2.8 MATLAB's command cond computes the condition number ^(A). This
works for both square and nonsquare matrices. Generate a random 3x3 matrix (A
= randn (3 ) ) and use MATLAB to compute K2 (A) three different ways: (i) using
cond, (ii) taking the ratio of largest to smallest singular value, and (iii) computing
||A||2 | | A - 1 | | ( n o r m ( A ) *norm(inv(A) ) ). D

The next two theorems establish other important results, which are also easy to
prove.

Theorem 4.2.9 Let A 6 En x m with n > m. Then and

K2(ATA} = K2(A)2.

Recall that ATA is the coefficient matrix of the normal equations (3.5.22), which
can be used to solve the least-squares problem. Theorem 4.2.9 shows that the normal
equations can be seriously ill conditioned even if the matrix A is only mildly ill
conditioned. For example, if K2(A) « 103, then K2(ATA) w 106.

Exercise 4.2.10

(a) Use the SVD of A to deduce the SVD of ATA and prove Theorem 4.2.9.

(b) Let M € Knxn be positive definite, and let R be the Cholesky factor of M, so
that M = RTR. Show that

D

The results of the next theorem will be used in the analysis of the sensitivity of
the least squares problem in Section 4.4.

Theorem 4.2.11 Let A 6 Rnxm, n > m, rank(A) = m, with singular values
a\ > ... > <rm > 0. Then
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The matrix (ATA)~1AT is called the pseudoinverse of A. A(ATA) 1 is the
pseudoinverse of AT. Pseudoinverses will be discussed in greater generality in the
next section.

Exercise 4.2.12 Let A be as in Theorem 4.2.11 with SVD A = UEFT.

(a) Determine the singular value decompositions of the matrices

in terms of the SVD of A. Use the orthogonality of U and V whenever possible.
Pay attention to the dimensions of the various matrices.

(b) Use the results of part (a) to prove Theorem 4.2.11.

a

Numerical Rank Determination

In the absence of roundoff errors and uncertainties in the data, the singular value
decomposition reveals the rank of the matrix. Unfortunately the presence of errors
makes rank determination problematic. For example, consider the matrix

A is obviously of rank 2, as its third column is the sum of the first two. However, if we
fail to notice this relationship and decide to use, say, MATLAB to calculate its rank,
we have to begin by storing the matrix in the computer. This simple act will result
in roundoff errors that destroy the relationship between the columns. Technically
speaking, the perturbed matrix has rank 3. If we now use MATLAB's svd command
to compute the singular values of A, using IEEE standard double precision floating
point arithmetic, we obtain

Since there are three nonzero singular values, we must conclude that the matrix has
rank 3. However, we cannot fail to notice that one of the singular values is tiny, on
the order of the unit roundoff for IEEE double precision. Perhaps we should consider
it a zero. For this reason we introduce the notion of numerical rank.

Roughly speaking, a matrix that has k "large" singular values, the others being
"tiny," has numerical rank k. For the purpose of determining which singular values
are "tiny," we need to introduce a threshold or tolerance e that is roughly on the level
of uncertainty in the data in the Matrix. For example, if the only errors are roundoff
errors, as in the above example, we might take e = 10u||A||, where u is the unit
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roundoff error. We then say that A has numerical rank k if A has k singular values
that are substantially larger than e, and all other singular values are smaller than e,
that is,

MATLAB has a rank command, which computes the numerical rank of the
matrix. When applied to the matrix A above, it yields the answer 2. MATLAB's
rank command uses a default threshold, which can be overridden by the user. For
more information type help rank in MATLAB.

Sometimes it is not possible to specify the numerical rank exactly. For example,
imagine a 2000 x 1000 matrix with singular values σj = (.9)J, j = 1, . . . , 1000.
Then σ\ = .9 and σ1000 = 1.75 x 10~46, so the numerical rank is definitely less than
1000. However, it is impossible to specify the numerical rank exactly, because there
are no gaps in the singular values. For example

If e =10~12, say, it might be reasonable to say that the numerical rank is approxi-
mately 260, but it is certainly not possible to specify it exactly.

The following exercises and theorem provide justification for the use of singular
values to define the numerical rank of a matrix. We begin with an exercise that shows
that a small perturbation in a matrix that is not of full rank can (and typically will)
increase the rank. Here we refer to the exact rank, not the numerical rank.

Exercise 4.2.14 Let A e Enxm with rank r < min{n, m}. Use the SVD of A to show that
for every e > 0 (no matter how small), there exists a full-rank matrix Ae e Rnxm

such that || A - Ae ||2 < e. D

The nonnegative number || A — A€ ||2 is a measure of the distance between the
matrices A and Ae. Exercise 4.2.14 shows that every rank-deficient matrix has full-
rank matrices arbitrarily close to it. This suggests that matrices of full rank are
abundant. This impression is strengthened by the next theorem and its corollary.

Theorem 4.2.15 Let A G Enxm with rank(A) = r > 0. Let A = UΣVT be the
SVD of A, with singular values σi > σ2 > • • • > σr > 0. For k = 1, . . . ,r —1, define
Ak = U^kVT, where Sfc G En x m is the diagonal matrixdiag{ai,..., ak, 0 . . . , 0}.
Then rank(Ak) = k, and

That is, of all matrices of rank k or less, Ak is closest to A.

Proof. It is obvious thatrank(Afc) = k. Since A - Ak = U(Y> — Ek)VT, it is clear
that the largest singular value of A — Ak is ak+i • Therefore || A — Ak ||2 = &k+i • It
remains to be shown only that for any other matrix B of rank k or less, || A — B \\ >

ffc+i-
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Given any such B, note first that J\f(B) has dimension at least m — k, for
dim(JV(B)) = m - dim(K(B)) = m - rank(B) > m - fc by (4.1.9). Also,
the space span{t>i , . . . ,Vk+i} has dimension k + 1. (As usual, vi, ..., vm denote
the columns of V.) Since J\T(B] and span{i>i, . . . , Vk+i} are two subspaces of Em,
the sum of whose dimensions exceeds m, they must have a nontrivial intersection.
Let x be a nonzero vector in N(B] D span{t>i,.. . , t^+i}. We can and will assume
that \\x\\2 = 1. Since x € spanjvi, . . . ,Vk+i}, there exist scalars ci, . . . , c^+i
such that x — cit>i + • • • + Cfc+ii^+i. Because v\, . . . , VA;+I are orthonormal,

, Thus

Since HI, ..., WA;+I are also orthonormal,

Therefore

D

Corollary 4.2.16 Suppose A e Enxm has full rank. Thus rank(A) = r, where
r = min{n, ra}. Let a\ > • • • > ar be the singular values of A. Let B € ]Rnxm

satisfy \\ A — B ||2 < ar. Then B also has full rank.

Exercise 4.2.17 Deduce Corollary 4.2.16 from Theorem 4.2.15. D

Exercise 4.2.18 In the first part of the proof of Theorem 4.2.15, we used the SVD of A, Ak,
and A — A^ in the form given by Theorem 4.1.1. Write down the other forms of the
SVD of Ak and A - Ak: (a) Diagram (4.1.7), (b) Theorem 4.1.10, (c) Theorem 4.1.12.

D

From Corollary 4.2.16 we see that if A has full rank, then all matrices sufficiently
close to A also have full rank. From Exercise 4.2.14 we know that every rank-
deficient matrix has full-rank matrices arbitrarily close to it. By Corollary 4.2.16,
each of these full-rank matrices is surrounded by other matrices of full rank. In
topological language, the set of matrices of full rank is an open, dense subset of
Rnxm Its compiement, the set of rank-deficient matrices, is therefore closed and
nowhere dense. Thus, in a certain sense, almost all matrices have full rank.

If a matrix does not have full rank, any small perturbation is almost certain to
transform it to a matrix that does have full rank. It follows that in the presence of
uncertainty in the data, it is impossible to calculate the (exact, theoretical) rank of a
matrix or even detect that it is rank deficient. This is a generalization of the assertion,
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made in Chapters 1 and 2, that it is (usually) impossible to determine whether a
square matrix is singular.

Nevertheless, it is reasonable to call a matrix numerically rank deficient if it is
very close to a rank-deficient matrix, since it could have been rank deficient except
for a small perturbation, as was the case for the perturbed version of (4.2.13). Let e
be some positive number that represents the magnitude of the data uncertainties in
the matrix A. If there exist matrices B of rank k such that || A — B ||2 < e and, on
the other hand, for every matrix C of rank < k — 1 we have || A — C ||2 > e, then
it makes sense to say that the numerical rank of A is k. From Theorem 4.2.15 we
know that this condition is satisfied if and only if

This justifies the use of singular values to determine numerical rank.

Exercise 4.2.19 Use MATLAB to generate a random matrix. For example, the command A =
randn ( 4 0 , 1 7 ) ; produces a 40 x 17 matrix of independent identically distributed
random numbers with mean zero and variance 1 . Use MATLAB 's svd command to
determine the singular values of A. Notice that (unless you are really (un)lucky), all
of the singular values are large. Repeat the experiment several times. Try matrices
of various sizes. This shows that a matrix chosen at random (nearly always) has full
rank. D

Exercise 4.2.20 Use MATLAB to generate a random 8x6 matrix with rank 4. For example,
you can proceed as follows.

A = randn ( 8 , 4 ) ;
A ( : , 5 : 6 ) = A ( : , 1 : 2 ) + A ( : , 3 : 4 ) ;
[ Q / R ] = qr (randn (6) ) ;

A = A*Q;

The first command produces a random 8x4 matrix (of rank 4) . The second command
adjoins two columns to A by adding columns 1 and 2 to columns 3 and 4, respectively.
Now A is 8 x 6 and still has (numerical) rank 4. The third line generates a 6 x 6
random orthogonal matrix Q by performing a QR decomposition of a random 6x6
matrix. The last line recombines the columns of A by multiplying on the right by Q.
The resulting matrix has numerical rank 4.

(a) Print out A on your computer screen. Can you tell by looking at it that it has
(numerical) rank 4?

(b) Use MATLAB 's svd command to obtain the singular values of A. How many
are "large?" How many are "tiny?" (Use the command format short e
to get a more accurate view of the singular values. Type help format for
more information on the various output formats that are available.)

(c) Use MATLAB 's rank command to confirm that the numerical rank is 4.

(d) Use the rank command with a low enough threshold that it returns the value
6. (Type help rank for information about how to do this.)
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D

Exercise 4.2.21 The Kahan matrix Rn(θ) is an n x n upper triangular matrix depending on
a parameter 9. Let c = cos θ and s = sin θ. Then

If # and n are chosen so that s is close to 1 and n is modestly large, then none of
the main diagonal entries is extremely small. It thus appears that the matrix is far
from rank deficient, but in this case appearances are deceiving. Consider A = Rn(Q)
when n = 90 and 0 = 1.2 radians.

(a) Show that the largest main-diagonal entry of A is 1 and the smallest is greater
than .001.

(b) To generate A in MATLAB and find its singular values, type

A = gal lery( 'kahan',90,1.2,0);
sig = s v d ( A ) ;

Examine <TI, 0*39, and ago (It's not zero; try format short e). What is
the numerical rank of A! Type rank (A) to get MATLAB's opinion.

(c) Type A = gallery ( 'kahan' , 90,1. 2 , 25) ; to get a slightly perturbed
version of the Kahan matrix. (Type help private/kahan for more de-
tails.) Repeat part (b) for this perturbed matrix. Then get a QR decomposition
with column pivoting: [Q, R, E] = qr (A) ; . Note that permutation ma-
trix E is the identity matrix: dif = norm (eye ( 9 0 ) -E) , so no pivoting
was done. Examine R(9Q, 90), and deduce that the QR decomposition with
column pivoting failed to detect the numerical rank deficiency of A.

The Kahan matrix is just one of many matrices in Higham's gallery of test matrices
for MATLAB. Type help gallery for a complete list. n

Orthogonal Decompositions

The QR decomposition with column pivoting gives AE = QR or equivalently
A — QRET, where E is a permutation matrix, a special type of orthogonal matrix.
The SVD gives A — UΣVT. Both are examples of orthogonal decompositions
A = YTZT, where Y and Z are orthogonal, and T has a simple form. The
QR decomposition is much cheaper to compute than the SVD. However, the SVD
always reveals the numerical rank of the matrix, whereas the QR decomposition may
sometimes fail to do so, as we have seen in Exercise 4.2.21. Therefore there has
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been considerable interest in producing an orthogonal decomposition that is cheap
to compute yet reveals the rank of the matrix. Particularly noteworthy are the ULV
and URV decompositions, which have the attractive feature that they can be updated
inexpensively if A is modified by a matrix of rank one, as happens in signal processing
applications. See [33, §12.5.5] for details.

Distance to Nearest Singular Matrix

We conclude this section by considering the implications of Theorem 4.2.15 for
square, nonsingular matrices. Let A e Enxn be nonsingular, and let As denote
the singular matrix that is closest to A, in the sense that || A — As ||2 is as small as
possible. In Theorem 2.3.1 we showed that

for any induced matrix norm, and we mentioned that for the 2-norm, equality holds.
We now have the tools to prove this.

Corollary 4.2.22 Let A e Enxn be nonsingular. (Thus A has singular values
σ1 > °2 > • • • > σn > 0-) Let As be the singular matrix that is closest to A, in the
sense that \\ A — As ||2 is as small as possible. Then \\A — As\\ = σn, and

These results are immediate consequences of Theorems 4.2.1, 4.2.4, and 4.2.15.
In words, the distance from A to the nearest singular matrix is equal to the smallest
singular value of A, and the "relative distance" to the nearest singular matrix is equal
to the reciprocal of the condition number.

Additional Exercises

Exercise 4.2.23 Formulate and prove an expression for the Frobenius condition number

Kp(A) for nonsingular A e Rn x n in terms of the singular values of A. D

Exercise 4.2.24 Let A e Rn x m with singular values σ1 > • • • > σm and right singular
vectors v\, ..., vm. We have seen that || Ax | |2/|| x ||2 is maximized when x = vi
and minimized when x = vm. More generally show that for k = 1, . . . , m

D
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Exercise 4.2.25

(a) Let A G R2 x 2 with singular values σ1 > σ2 > 0. Show that the set
{Ax | | |x||2 = 1} (the image of the unit circle) is an ellipse in E2 whose
major and minor semiaxes have lengths a\ and a<i, respectively.

(b) Let A e Enxm, n > m, rank(A) = m. Show that the set {Ax \ | |x||2 = 1}
is an m-dimensional hyperellipsoid with semiaxes σI, σ2, . . . , σm. Notice
that the lengths of the longest and shortest semiaxes are maxmag(A) and
minmag(A), respectively.

D

4.3 THE SVD AND THE LEAST SQUARES PROBLEM

Let A e En x m, r = rank(A), and b e En, and consider the system of equations

with unknown x 6 Em. If n > m, then the system is overdetermined, and we cannot
expect to find an exact solution. Thus we will seek an x such that || b — Ax ||2 is
minimized. This is exactly the least squares problem, which we studied in Chapter 3.
There we found that if n > m and rank(A) — m, the least squares problem has a
unique solution. If rank (A) < m, the solution is not unique; there are many x for
which || b — Ax\\2 is minimized. Even if n < m, it can happen that (4.3.1) does
not have an exact solution, so we include that case as well. Thus we will make no
assumption about the relative sizes of n and m.

Because the solution of the least squares problem is sometimes not unique, we
will consider the following additional problem: of all the x G Rm that minimize
|| b — Ax\\2, find the one for which || x \2 is minimized. As we shall see, this problem
always has a unique solution.

Initially we shall assume A and b are known exactly, and all computations are
carried out exactly. Once we has settled the theoretical issues, we will discuss the
practical questions.

Suppose we have the exact SVD A = UZVT, where U e Rn x n and V e Rm x m

are orthogonal, and

with σi > • • • > σr > 0. Because U is orthogonal,

Letting c = UTb and y = VTx, we have
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It is clear that this expression is minimized when and only when

Notice that when r < m, yr+i, • • • ,ym do not appear in (4.3.2). thus they have
no effect on the residual and can be chosen arbitrarily. Among all the solutions so
obtained, \\y ||2 is clearly minimized when and only when yr+i — • • • = ym = 0.
Since x — Vy and V is orthogonal, || £ ||2 = \ \ y \ \ 2 - Thus \\x\\2 is minimized when
and only when || y ||2 is. This proves that the least squares problem has exactly one
minimum norm solution.

It is useful to repeat the development using partitioned matrices. Let

where Then

so

This is minimized when and only when that is, yi = Ci/ai, i = 1 , . . . , r.
We can choose z arbitrarily, but we get the minimum norm solution by taking z = 0.
The norm of the minimal residual is ||d||2. This solves the problem completely in
principle. We summarize the procedure:

Practical Considerations

In practice we do not know the exact rank of A. It is best to use the numerical rank,
which we discussed in Section 4.2. All "tiny" singular values should be set to zero.

We have solved the least squares problem under the assumption that we have the
matrices U and V at hand. However, you can easily check that the calculation of
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c uses only the first r columns of U, where, in practice, r is the numerical rank.
If only the minimum-norm solution is wanted, only the first r columns of V are
needed. While the numerical rank is usually not known in advance, it can never
exceed min{n, m}, so at most min{n, m) columns of U and V are needed.

If n 3> m, the computation of U can be expensive, even if we only compute the
first m columns. In fact the computation of U can be avoided completely. U is the
product of many reflectors and rotators that are generated in the computation of the
SVD (discussed in Section 5.9). Since U is needed only so that we can compute
c = UTb, we can simply update b instead of assembling U. As each rotator or
reflector Ui is generated, we make the update In the end, b will have been
transformed into c. This is much less expensive than computing U explicitly just
to get c = UTb. In the process, we get not only c, but also d, from which we can
compute the residual || d ||2 inexpensively. If several least squares problems with the
same A but different right-hand sides b^, b^,... are to be solved, the updates must
be applied to all of the b^ at once, since the Ui will not be saved.

No matter how the calculations are organized, the SVD is an expensive way to
solve the least squares problem. Its principal advantage is that it gives a completely
reliable means of determining the numerical rank for rank-deficient least squares
problems.

The Pseudoinverse

The pseudoinverse, also known as the Moore-Penrose generalized inverse, is an
interesting generalization of the ordinary inverse. Although only square nonsingular
matrices have inverses in the ordinary sense, every A £ Rn x m has a pseudoinverse.
Just as the solution of a square nonsingular system Ax = b can be expressed in terms
of A~* as x = A"1 b, the minimum-norm solution to a least squares problem with
coefficient matrix A e ^nxm

 can be expressed in terms of the pseudoinverse A^ as
x = A*b.

Given A e ^nxm

 wjm rank r^ tne action of A is completely described by the
diagram

where v\,..., vm and u\,..., un are complete orthonormal sets of right and left
singular vectors, respectively, and σ1 > σ2 > • • • > σr > 0 are the nonzero singular
values of A. In matrix form,
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We wish to define the pseudoinverse A† € R m X n so that it is as much like a
true inverse as possible. Therefore we must certainly require . for
% = 1,. . . , r. A reasonable choice for A†ur+1, . . . , A

†un is to make them zero.
Thus we define the pseudoinverse of A to be the matrix A† Є R m X n that is uniquely
specified by the diagram

We see immediately that rank (A†) = rank(A), u\,..., un and v\,..., vm are right
and left singular vectors of A^, respectively, and are the nonzero
singular values. The restricted operators A : spanjvi , . . . , vr} —> spanjwi , . . . , ur}
and A^ : span{ui,. . ., ur} -> span{i>i,..., vr} are true inverses of one another.

What does A^ look like as a matrix? You can answer this question in the simplest
case by working the following exercise.

Exercise 4.3.4 Show that if

then

D

To see what A^ looks like in general, simply note that the equations

can be expressed as a single matrix equation A^U = VE^, where S^ is as given in
Exercise 4.3.4. Thus, since U is orthogonal,

This is the SVD of A^ in matrix form. If we let U and V denote the first r columns
of U and V, respectively, we can rewrite (4.3.5) in the condensed form
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as in Theorem 4.1.10. Equation (4.3.6) gives us a means of calculating A† by
computing the SVD of A. However, there is seldom any reason to compute the
pseudoinverse; it is mainly a theoretical tool. In this respect the pseudoinverse plays
a role much like that of the ordinary inverse.

It is easy to make the claimed connection between the pseudoinverse and the least
squares problem.

Theorem 4.3.7 Let A e Rnxm and b 6 En, and let x € Em be the minimum-norm
solution of

Then x = A^b.

Proof. By (4.3.3),

D

The pseudoinverse is used in the study of the sensitivity of the rank-deficient least
squares problem. See [7].

Exercise 4.3.8 Show that if D

Exercise 4.3.9 Work this exercise using pencil and paper. You might like to use MATLAB
to check your work. Let

(a) Find the SVD of A. You may use the condensed form given by Theorem 4.1.10
or Theorem 4.1.12.

(b) Calculate^.

(c) Calculate the minimum norm solution of the least-squares problem for the
overdetermined system Ax = b.

(d) Find a basis for M(A).

(e) Find all solutions of the least-squares problem.

D
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Exercise 4.3.10 MATLAB's pinv command returns the pseudoinverse of a matrix. Use
the pinv command to find the pseudoinverse of

Use MATLAB's svd command to find the singular values of AA† and A†A. Explain
why these results are what you would expect. D

Exercise 4.3.11 (Pseudoinverses of full-rank matrices)

(a) Show that if A G Enxm, n > m, and rank(A) = m, then A^ = (AT A)~l AT

(cf. Theorem 4.2.11 and Exercise 4.2.12). Compare this result with the normal
equations (3.5.22).

(b) Show that if A € Enxm, n < m, and rank(A) = n, then A* = AT(ATA}~1.

D

Additional Exercises

Exercise 4.3.12 Study the effects of treating very small nonzero singular values as nonzeros
in the solution of the least squares problem. D

Exercise 4.3.13 Suppose A <E Enxm, n < ra, and rank(A) = n.

(a) Show that in this case the minimum-norm least squares problem is actually a
constrained minimization problem.

(b) This problem can be solved by an SVD. Show that it can also be solved by
an LQ decomposition: A = LQ, where is
nonsingular and lower triangular, and Q Є Rm x m is orthogonal.

(c) How does one calculate an LQ decomposition? Sketch an algorithm for
calculating the LQ decomposition and solving the constrained minimization
problem.

D

Exercise 4.3.14

(a) Let A e Rn x m and B = A^ <E Ewxn. Show that the following four relation-
ships hold:

(b) Conversely, show that if A and B satisfy (4.3.15), then B = A^. Thus equations
(4.3.15) characterize the pseudoinverse. In many books these equations are
used to define the pseudoinverse.

D
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4.4 SENSITIVITY OF THE LEAST SQUARES PROBLEM

In this section we discuss the sensitivity of the solution of the least squares problem
under perturbations of A and b. For simplicity we consider only the full-rank case
with n > m. See [7] for more general results.

Given A e Enxm and b 6 En, with n > m and rank(A) = m, there is a unique
x G Em such that

If we now perturb A and b slightly, the solution x will be altered. We will consider
the question of how sensitive x is to perturbations in A and b. We will also consider
the sensitivity of the residual r = b — Ax. The sensitivity analysis can be combined
with backward error analyses to provide an assessment of the accuracy of various
methods for solving the least squares problem.

From Section 3.5 it is clear that we can think of the solution of the least squares
problem as a two-stage process. First we find a y € Tl(A] whose distance from b is
minimal:

Then the least squares solution x 6 Em is found by solving the equation Ax = y
exactly. Because A has full rank, the solution is unique. Even though A e Rnxm

and y e En, the matrix equation Ax = y is effectively a system of m equations in
m unknowns, for y lies in the m-dimensional subspace 1Z(A), and A : Em — >• 7Z(A}
can be viewed as a mapping of one m-dimensional space into another.

Exercise 4.4.1 The m-dimensional nature of the system can be revealed by a judicious change
of coordinate system.

(a) Show that the QR decomposition does just this. How is the vector y deter-
mined? How is the system Ax — y solved?

(b) Repeat part (a) using the SVD in place of the QR decomposition.

n

Let r = b — y = b — Ax. This is the residual of the least squares problem. By
Theorem 3.5.15, r is orthogonal to Tl(A}. In particular, 6, y, and r form a right
triangle, as illustrated in Figure 4.1. The angle 0 between b and y is the smallest

Fig. 4.1 Right triangle formed by b, y, and r
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angle between b and an element of R( A) . It is clear that

These equations and Figure 4.1 will prove useful in our sensitivity analysis.

The Effect of Perturbations of b

At first we will examine the effects of perturbations of b only. Given a perturbation
δb, let y + δy denote the element of H(A) that is closest to b + 6b, and let x — x + 6x
be the exact solution of Ax = y + 6y. Then x is the minimizer of || (6 + δb) — A w | | 2 .
We would like to be able to say that if ||δb||2/||b||2 is small, then ||δx||2/||x||2 is
also small. As we shall see, there are two reasons why this might fail to be the case.
The first is that || δy ||2/|| y ||2 might fail to be small. To see this, refer to Figure 4.1
and consider what happens when b is orthogonal or nearly orthogonal to R(A) . Then
y is either zero or very small. It is clear that a small perturbation of b in a direction
parallel to 7l(A) will cause a perturbation δy that is large relative to ||y||2. The
second problem is that even if || δy | |2/||y ||2 is small, || δx||2/||a;||2 can be large if
the linear system Ax = y is ill conditioned. Any error bound for || δx ||2/|| x ||2 must
reflect both of these factors. In the next exercise you will derive such a bound.

Exercise 4.4.4

(a) Defining δr = δb — δy, we have δb = δy + δr. Show that 8r is orthogonal to
δy. Deduce that ||δy ||2 < ||δb||2.

(b) Show that, provided cos 0^0,

(c) Show that || y| |2 < maxmag(A)||:r ||2, \ \ δ y \ \ 2 > minmag(A)|| S x \ \ 2 , and

(d) Conclude that

a

Inequality (4.4.5) shows that if 9 is not close to π/2, that is, if b is not nearly
orthogonal to the range of A, a small perturbation in b results in a small perturbation
in y. Of course, if 0 is close to π/2, we can have a disaster. But this almost never
happens in real problems; the angle θ, like || r ||2, is a measure of how well the least
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squares solution fits the data. It will not be close to π/2 unless all of the vectors
in R(A) approximate b very poorly. Thus, as long as the problem is formulated so
that the least squares solution fits the data reasonably well, (4.4.5) will give a useful

bound on | | (fy | | 2 /| |y | | 2 .
Inequality (4.4.6) shows the effect of ^(A). This is really no different from the

inequality (2.2.5), which we derived during the discussion of the sensitivity of square
linear systems.

Inequality (4.4.7) combines the two effects. We see that if KZ (A] is not large, and
cos 0 is not close to zero, then a small perturbation in b results in a small perturbation
mx.

Inequality (4.4.7) can also be derived using the normal equations (3.5.22). We will
work through this second derivation as preparation for the discussion of the effects
of perturbations of A. Here we will make use of some of our elementary results on
singular values.

From Theorem 3.5.21 we know that the solution of the least squares problem
satisfies the normal equations

The solution of the perturbed problem satisfies the perturbed normal equations

Subtracting (4.4.8) from (4.4.9), we find that (ATA)5x = ATδb, or

Thus ||δx||2 < | | ( A T A ) l A T | | 2 \ \ 6 b \ \ 2 . By Theorem 4.2.11, || (ATA)-1AT\\2 =
where am is the smallest singular value of A, so

On the other hand, we see from (4.4.3) that | |& | | 2 cos# = ||y||2 = H-A^I^ <
| |A| | 2 | |a: | | 2=σi| |z | | 2 .Thus

Multiplying (4.4.10) by (4.4.11), and recalling that K2 (A) = σ/σm (Theorem 4.2.4),
we get (4.4.7).

The Effect of Perturbations of A

Unfortunately perturbations of A have a more severe effect than perturbations of b.
As the following Theorem shows, the sensitivity of x to perturbations of A depends,
in part, on the square of the condition number of A. Our approach will be to state the
theorem, discuss its implications, then prove it.
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Theorem 4.4.12 Let A G Rnxm, b G Mn, n > m, andrank(A) = m. Let x G ETO

be the unique solution of

Let 9 denote the angle between b and Ax, and assume θ π/2. Let δ6 A G Mnxm,
Sb G En, eA = | |<5A||2/||4||2, eb = | |<5&| | 2 / | |&| | 2 , and e = max{eA,eb}. Assume
e <C 1, and in particular, GA < l/K2(A). Let x = x + Sx G Mm be the unique
solution of

Let r — b — Ax and f = r + Sr = (b + Sb} — (A + 6A)x. Then

Then

In both of the bounds the term 0(e2) stands for terms that contain factors e^ or
and are negligible. If we take eA = 0 in (4.4.13), we obtain (4.4.7), except for

an inessential factor 2.
The most striking feature of (4.4.13) is that it depends on the square of n^(A}.

This is not surprising if one considers that a perturbation in A causes a perturbation
in K(A) that turns out to be (at worst) proportional to k2 (-4) • Thus a perturbation CA
can cause a change of magnitude K2(A)e A in y (= Ax G 7R(A)), which can in turn
cause a change of magnitude K2(A^e in x.

The presence of k2 (A)2 in (4.4.13) means that even if A is only mildly ill condi-
tioned, a small perturbation in A can cause a large change in x. An exception is the
class of problems for which the least squares solution fits the data exactly; that is,
r = 0. Then tan B — 0 as well, and the offending term disappears. While a perfect
fit is unusual, a good fit is not. If the fit is good, tan 0 will be small and will partially
cancel out the factor ^2 (A) 2 .

Since we measure the size of residuals relative to 6, it is reasonable to measure
the change in the residual relative to ||6||2, as we have done in (4.4.14). Notice
that (4.4.14) depends on «2(A), not «2(^4)2. This means that the residual, and the
goodness of fit, is generally much less sensitive to perturbations than the least squares
solution is.

Keeping the condition number under control. From Theorem 4.4.12 it is
clear that it is important to avoid having to solve least squares problems for which
the coefficient matrix is ill conditioned. This is something over which you have
some control. For the purpose of illustration, consider the problem of fitting a set
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of data points by a polynomial of low degree. Then the system to be solved has the
form (3.1.3); the coefficient matrix is determined by the point abscissae ti, t2, ...,
tn and the basis functions 0i, 02, . . . , 0m. In principle any basis for the space of
approximating polynomials can be used. However, the choice of basis affects the
condition number of the system.

Example 4.4.15 Suppose we need to find the least squares first-degree polynomial
for a set of seven points whose abscissae are

The obvious choice of basis for the first-degree polynomials is 0i (t) = 1 and
</>2 (t) = t. Let us contrast the behavior of this basis with that of the more carefully
constructed basis Using (3.1.3) we find that the two
bases give rise to the coefficient matrices

respectively. According to MATLAB, the condition numbers are ̂ (A) « 104 and
K2(A) « 1.67. It is not hard to see why A is so much better than A. The abscissae are
concentrated in the interval [1.01,1.07], on which the function 02 varies very little;
it looks a lot like 0i. Consequently the two columns of A are nearly equal, and A
is (mildly) ill conditioned. By contrast the basis was chosen with the interval
[1.01,1.07] in mind. is centered on the interval and varies from —0.9 to +0.9,
while remains constant. As a consequence the columns of A are not close to being
linearly dependent. (In fact they are orthogonal.) The factor 30 in the definition of

guarantees that the second column of A has roughly the same magnitude as the
first column, so the columns are not out of scale. Thus A is well conditioned. D

In general one wants to choose functions that are not close to being linearly
dependent on the interval of interest. Then the columns of the resulting A will not
be close to being linearly dependent. Consequently A will be well conditioned.

Accuracy of techniques for solving the least squares problem. A stan-
dard backward error analysis [41] (or Exercises 3.2.70- 3.2.73) shows that the QR
decomposition method using reflectors or rotators is norm wise backward stable. Thus
the computed solution is the exact minimizer of a perturbed function
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where the perturbations are of the same order of magnitude as the unit roundoff u.
This means that this method works as well as we could hope. The computed solution
and residual satisfy (4.4.13) and (4.4.14) with 6A « e& ~ u.

As Bjorck has shown (see, e.g., [7]), the modified Gram-Schmidt method is about
as accurate as the QR decomposition by reflectors.

The method of normal equations has somewhat different characteristics. Suppose
ATA and ATb have been calculated exactly, and the system ATAx = ATb has
been solved by Cholesky's method. From Section 2.7 (especially Exercise 2.7.29)
we know that the computed solution is the exact solution of a perturbed equation
(ATA + E)x = ATb, where \\E\\2/\\ A

TA\\2 is a modest multiple of u. It follows
from Theorem 2.3.6 that ||<5o;||2/||a;||2 is roughly K2(A

TA)u. By Theorem 4.2.9,
K2(ATA) = K2(A)2. Given that the factor K2(A)2 also appears in (4.4.13), it looks
as if the normal equations method is about as accurate as the other methods. However,
in problems with a small residual, the K2(A)2 tan# term in (4.4.13) is diminished.
In these cases the other methods will be more accurate.

This analysis has assumed that AT A and ATb have been computed accurately. In
practice significant errors can occur in the computation of ATA, as was shown in
Example 3.5.25. Furthermore, if cos# is near zero, cancellations will occur in the
calculation of ATb and result in large relative errors.

Exercise 4.4.16 This exercise demonstrates that the QR method is superior to the normal
equations method when the condition number is bad. It also shows how a change of
basis can improve the condition number. Consider the following data.

(a) Set up an over-determined system Ax = b for a linear polynomial. Use the
basis 0i (t) = 1, 02 (i) = t. Using MATLAB, find the condition number of A.
Find the least-squares solution by the QR decomposition method (e.g. x=A\b
in MATLAB). Calculate the norm of the residual.

(b) Obtain the normal equations ATAx = ATb. Find the condition number of
the coefficient matrix. Solve the normal equations. Calculate the norm of the
residual (|| 6 - Ax||2).

(c) Compare your solutions from parts (a) and (b). Plot the two polynomials and
the data points on a single graph.
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(d) Now set up a different over-determined system for the same data using
the basis . Find the condition
number of A. Find the least-squares solution by the QR decomposition method.
Calculate the norm of the residual.

(e) Obtain the normal equations ATAx = ATb. Find the condition number of
the coefficient matrix. Solve the normal equations. Calculate the norm of the
residual (\\b — Ax\\2).

(f) Compare your solutions from parts (d) and (e). This time they are identical (to
15 decimal places if you care to check). What polynomial do these solutions
represent? You might want to plot it just to make sure you've worked the
problem correctly. If you do make a plot, you will see that your line looks
identical to the one computed using the QR decomposition in part (a). That one
was correct to only about eight decimal places, whereas the solutions computed
using the well-conditioned matrices are correct to machine precision, but of
course the difference does not show up in a plot (and wouldn't matter in most
applications either).

D

Proof of Theorem 4.4.12 First of all, the perturbed problem has a unique solu-
tion, since A + 8A has full rank. This is a consequence of Corollary 4.2.16.

Rather than proving the theorem in full generality, we will examine the case in
which only A is perturbed; that is, 8b = 0. This will simplify the manipulations
somewhat without altering the spirit of the proof. The complete proof is left as an
exercise.

Furthermore, we shall make the assumption which is
considerably more restrictive than the hypothesis that was given in the statement of
the theorem. With a more careful argument we could remove this restriction.

The solution x = x + Sx of the perturbed least squares problem must satisfy the
perturbed normal equations

Subtracting the unperturbed normal equations AT Ax = ATb and making some
routine manipulations, we find that

or
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Taking norms of both sides and using the fact that ||BT||2 = ||B||2 for any B
(Corollary 4.2.2), we obtain the inequality

As usual, let a\ and crm denote the largest and smallest singular values of A, re-
spectively. Then \\A\\^ = a\, ||<L4||7 = crie^, and from Theorem 4.2.11 we know
that Furthermore, by (4.4.2)
and (4.4.3), || r||2 = | |&||2sin0 = ||Ar||2tan(9 < 0"i||aj||2 tan#. Applying these
results, making the substitution K<2.(A) — v\/am, and moving all terms involving
|| 6x ||2 to the left-hand side of the inequality, we obtain

If , then the coefficient of || 6x ||2 is at least 1/2. Therefore

This is (4.4.13) in the case Q, = 0.
To obtain the bound (4.4.14) on the residual, we note first that since r + 6r =

b - (A + 6A)(x + 8x) and r = b - Ax,

Using (4.4.17), and noting that by (4.4.13) ||<JA||2 ||<fa||2 = O(e2), we obtain

Since _ A l s o ,
by Theorem 4.2.11, Therefore

This is just (4.4. 14) in the case eb = 0.

Exercise 4.4.18 Work out a complete proof of Theorem 4.4. 12 with eA > 0 and Cb > 0.



5
Eigenvalues and

Eigenvectors I

Eigenvalues and eigenvectors turn up in stability theory, theory of vibrations, quantum
mechanics, statistical analysis, and many other fields. It is therefore important to
have efficient, reliable methods for computing these objects. The main business of
this chapter is to develop such algorithms, culminating in the powerful and elegant
QR algorithm.1

Before we embark on the development of algorithms, we take the time to illustrate
(in Section 5.1) how eigenvalues and eigenvectors arise in the analysis of systems of
differential equations. The material is placed here entirely for motivational purposes.
It is intended to convince you, the student, that eigenvalues are important. Section 5.1
is not, strictly speaking, a prerequisite for the rest of the chapter.

Section 5.1 also provides an opportunity to introduce MATLAB's eig command.
When you use eig to compute the eigenvalues and eigenvectors of a matrix, you
are using the QR algorithm.

5.1 SYSTEMS OF DIFFERENTIAL EQUATIONS

Many applications of eigenvalues and eigenvectors arise from the study of systems
of differential equations.

'The QR algorithm should not be confused with the QR decomposition, which we studied extensively in
Chapter 3. As we shall see, the QR algorithm is an iterative procedure that performs QR decompositions
repeatedly.

289
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Fig. 5.7 Solve for the time-varying loop currents.

Example 5.1.1 The electrical circuit in Figure 5.1 is the same as the one that was
featured in Example 1.2.8, except that two inductors and a switch have been added.
Whereas resistors resist current, inductors resist changes in current. If we are studying
constant, unvarying currents, as in Example 1.2.8, we can ignore the inductors, since
their effect is felt only when the currents are changing. However, if the currents are
varying in time, we must take the inductances into account.

Once the switch in the circuit is closed, current will begin to flow. The loop
currents are functions of time: xi = Xi(t). Just as before, an equation for each loop
can be obtained by applying Kirchhoff's voltage law: the sum of the voltage drops
around the loop must be zero. The voltage drop across an inductor is proportional to
the rate of change of the current. The constant of proportionality is the inductance.
Thus if the current flowing through an inductor is x ( t ) amps at time t seconds, and the
inductance is m henries, the voltage drop across the inductor at time t is mx(t] volts,
where x denotes the time derivative (amperes/second). Because of the presence
of derivative terms, the resulting loop equations are now differential equations. Thus
we have a system of two differential equations (one for each loop) in two unknowns
(the loop currents).

Let us write down the two equations. First consider the first loop. As you will
recall, the voltage drop across the 5 Ωi resistor in the direction indicated by the arrow
for the first loop is 5(xi — x%) volts. The voltage drop across the 1 henry inductor is

volts. Summing these voltage drops, together with the voltage drops across the
other resistors in loop 1, we obtain the equation

Similarly, in loop 2,

These are exactly the same as the equations we obtained in Example 1.2.8, except for
the derivative terms. Rearranging these equations and employing matrix notation,
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we can rewrite the system as

Suppose the switch is closed at time zero. Then we can find the resulting currents
by solving the system (5.1.2) subject to the initial conditions

As we shall see, we can solve this problem with the help of eigenvalues and eigen-
vectors. D

The system of differential equations in Example 5.1.1 has the general form =
Ax — b, where

A larger electrical circuit will lead to a larger system of equations of the same
or similar form. For example, in Exercise 5.1.21 we consider a system of eight
differential equations. The form is again but now A is an 8 x 8 matrix.
In general we will consider systems of n differential equations, in which the matrix
A isn x n.

Homogeneous Systems

An important step in solving a system of the form is to solve the
related homogeneous system obtained by dropping the forcing term b
(corresponding to the battery in Example 5.1.1). Thus we consider the problem of
solving

where A is an n x n matrix. Equation (5.1.4) is shorthand for

A common approach to solving linear differential equations is to begin by looking
for solutions of a particularly simple form. Therefore let us seek solutions of the
form
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where g ( t ) is a nonzero scalar (real or complex valued) function of £, and v is a
nonzero constant vector. The time- varying nature of x(t) is expressed by g ( t ) , while
the vector nature of x(t) is expressed by v. Substituting form (5.1.5) into (5.1.4), we
obtain the equation

or equivalently

Since v and Av are constant vectors, (5.1.6) implies that must be constant.
That is, there exists a (real or complex) constant A such that

A. (5.1.7)
9

In addition (5.1.6) implies

A nonzero vector v for which there exists a A such that Av = λv is called an
eigenvector of A. The number A is called the eigenvalue of A associated with v. So
far we have shown that if x ( t ) is a solution of (5.1.4) of the form (5.1.5), then v must
be an eigenvector of A, and g (t) must satisfy the differential equation (5.1.7), where A
is the eigenvalue of A associated with v. The general solution of the scalar differential
equation (5.1.7) is g ( t ) — cext, where c is an arbitrary constant. Conversely, if v is
an eigenvector of A with associated eigenvalue A, then

is a solution of (5.1.4), as you can easily verify. Thus each eigenvector of A gives
rise to a solution of (5.1.4). If A has enough eigenvectors, then every solution of
(5.1 .4) can be realized as a linear combination of these simple solutions. Specifically,
suppose A (which is n x ri) has a set of n linearly independent eigenvectors v \ , . . . ,
vn with associated eigenvalues AI, . . . , An. Then for any constants ci, . . . , cn,

is a solution of (5.1.4). Since vi, . . . , vn are linearly independent, (5.1.8) turns out
to be the general solution of (5.1.4); that is, every solution of (5.1.4) has the form
(5.1.8). See Exercise 5. 1.26.

An n x n matrix that possesses a set of n linearly independent eigenvectors is
said to be a semisimple or nondefective matrix. In the next section we will see that
in some sense "most" matrices are semisimple. Thus for "most" systems of the form
(5.1.4), the general solution is (5.1.8).

It is easy to show (Section 5.2) that A is an eigenvalue of A if and only if A is a
solution of the characteristic equation det(A7 - A) = 0. For each eigenvalue A a
corresponding eigenvector can be found by solving the equation (XI — A)v = 0. For
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small enough (e.g. 2-by-2) systems of differential equations it is possible to solve the
characteristic equation exactly and thereby solve the system.

Example 5.1.9 Find the general solution of

The coefficient matrix is , whose characteristic equation is

Therefore the eigenvalues are AI = 1 and A2 = 5. Solving the equation (AI — A)v =
0 twice, once with A = AI and once with A = A2, we find (nonunique) solutions

Since these two (= ri) vectors are obviously linearly independent, we conclude that
the general solution of the system is

D

Exercise 5.1.11 Check the details of Example 5.1.9. D

The computations in Example 5.1.9 were quite easy because the matrix was only
2 x 2 , and the eigenvalues turned out to be integers. In a more realistic problem
the system would bigger, and the eigenvalues would be irrational numbers that we
would have to approximate. Imagine trying to solve a system of the form x — Ax
with, say, n — 200. We would need to find the 200 eigenvalues of a 200 x 200
matrix. Just trying to determine the characteristic equation (a polynomial equation of
degree 200) is a daunting task, then we have to solve it. What is more, the problem of
finding the zeros of a polynomial, given the coefficients, turns out to be ill conditioned
whenever there are clustered roots, even when the underlying eigenvalue problem is
well conditioned (Exercises 5.1.24 and 5.1.25). Clearly we need a better method. A
major task of this chapter is to develop one.
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Nonhomogeneous Systems

We now consider the problem of solving the nonhomogeneous system

where 6 is a nonzero constant vector. Since b is invariant in time, it is reasonable to
try to find a solution that is invariant in time: x(t] — z, where z is a constant vector.
Substituting this form into (5.1.12), we have dx/dt = 0, so 0 = Az — 6, i.e. Az — b.
Assuming A is nonsingular, we can solve the equation Az — b to obtain a unique
time-invariant solution z.

Once we have z in hand, we can make the following simple observation. If y(t) is
any solution of the homogeneous problem then the sum x(t) — y (t) + z is
a solution of the nonhomogeneous system. Indeed x = y + Q = Ay — A(x — z} =
Ax — Az = Ax — b, so Moreover, if y ( t ) is the general solution
of the homogeneous problem, then x(t] = y ( t ) + z is the general solution of the
nonhomogeneous problem.

Example 5.1.13 Let us solve the nonhomogeneous differential equation

This is just (5.1.2) from Example 5.1.1. The two components of the solution, subject
to the initial conditions (5.1.3), represent the two loop currents in the electrical circuit
in Figure 5.1.

We must find a time-invariant solution and the general solution of the homogeneous
problem, then add them together. First of all, the time-invariant solution must satisfy

This is exactly the system we had to solve in Example 1.2.8. The solution is
Zl = 30/47 = 0.6383 and z2 = 54/47 = 1.1489. Recall that these numbers
represent the loop currents in the circuit if inductances are ignored.

Now let us solve the homogeneous system

We can proceed as in Example 5.1.9 and form the characteristic equation 0 =
det(A/ — A) = A2 + 17A + 47, but this time the solutions are not integers. Applying
the quadratic formula, we find that the solutions are The
rounded eigenvalues are AI = —13.5249 and A2 = —3.4751. We can now substitute
these values back into the equation (A/ — A)v = 0 to obtain eigenvectors. This is
tedious by hand because the numbers are long decimals.
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An easier approach is to let MATLAB do the work. Using MATLAB's eig
command, we obtain the (rounded) eigenvectors

Thus the general solution to the homogeneous problems is

Adding this to the time-invariant solution of the nonhomogeneous problem, we obtain
the general solution of the nonhomogeneous problem:

To obtain the particular solution that gives the loop currents in the circuit, assuming
the switch is closed at time zero, we must apply the initial condition (5.1.3), x(0) = 0.
Making this substitution in (5.1.14), we obtain

which can be seen to be a system of two linear equations that we can solve for c\ and
02. Doing so (using MATLAB) we obtain

Using this solution we can determine what the loop currents will be at any time.
We bring this example to a close by considering the long-term behavior of the

circuit. Examining (5.1.14), we see that the exponential functions e-
13.5249t and

e-3.475it J-JQ^ ten(j to zero as £ _>. ^ since the exponents are negative. This is a
consequence of both eigenvalues AI = —13.5249 and A2 = —3.4751 being negative.
In fact the convergence to zero is quite rapid in this case. After a short time, the
exponential functions become negligible and the solution is essentially constant:

. In other words, after a brief transient phase, the circuit settles

down to its steady state. Figure 5.2 shows a plot of the loop currents as a function of
time during the first second after the switch has been closed. Notice that after just
one second the currents are already quite close to their steady-state values. D

A larger circuit is studied in Exercise 5.1.21. More interesting circuits can be built
by inserting some capacitors and thereby obtaining solutions that oscillate in time.
Of course, mass-spring systems also exhibit oscillatory behavior.

Dynamics of Simple Mass-Spring Systems

Figure 5.3 depicts a cart attached to a wall by a spring. At time zero the cart is at
rest at its equilibrium position x = 0. At that moment a steady force of 2 newtons
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Fig. 5.2 Loop currents as a function of time

Fig. 5.3 Single cart and spring



SYSTEMS OF DIFFERENTIAL EQUATIONS 297

is applied, pushing the cart to the right and stretching the spring. In Section 1.2 we
studied this same system (Figure 1.3) and found that the new equilibrium position is
x = 0.5 meter. That is, the force moves the cart one half meter to the right. Now
we will ask the more specific question of how the cart gets from its old equilibrium
position to the new one. The solution of the static problem does not depend on the
mass of the cart, but the dynamic problem does. The rolling friction also matters.
Let us say that the mass of the cart is 1 kilogram. We'll make the linear assumption
that the rolling friction is proportional to the velocity: newtons, where k is
a proportionality constant with units kg/s.

The physical principle that we will apply is Newton's second law, f= ma, in the
form a = f/m: the acceleration of the cart is equal to the sum of the forces on the
cart divided by the cart's mass. The choice m — 1 simplifies things. The three forces
on the cart are the external force +2 N, the restoring force of the spring — 4 x ( t ) N,
and the rolling friction . We recall also that the acceleration is , the second
derivative of displacement with respect to time. Thus Newton's second law gives the
differential equation

which we can solve subject to the initial conditions to find x. It
turns out that the nature of the motion depends heavily on the value of k.

The differential equation (5.1.15) is simple enough that we can solve it as it stands
using standard techniques from a first course in differential equations. However,
we will follow a different course. The differential equation is of second order; that
is, it involves a second derivative. We will convert it to a system of two first-order
differential equations by a standard technique. Let £i(£) = x(t) and x2(t} = x(t).
Then we can rewrite the differential equation as Combining
this with the trivial differential equation we obtain the following system
and initial condition:

This system has the general form x = Ax — b, just as our system in the electrical
circuit example did, and it can be solved by the same means. A system of this type
is solved in Exercise 5.1.22.

A system of three masses attached by springs is considered in Exercise 5.1.23. In
that problem Newton's second law is applied to each of the carts to obtain a system
of three second-order differential equations, which is then rewritten as a system of
six first-order differential equations.

Stability of Linear and Nonlinear Systems

In stability theory the behavior of systems as t —> is studied. In Example 5.1.13
we noted that as t —> the loop currents tend to their equilibrium or steady-state
values. This is so because the exponents in the general solution (5.1.14) are negative,
which is in turn a consequence of the eigenvalues being negative. It holds regardless
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of the values of the constants c\ and c2, which means that it holds for all solutions.
Thus if the loop currents are somehow perturbed away from their equilibrium values,
they will return to those values. This is stable behavior.

The system in Example 5.1.9, on the other hand, behaves quite differently. There
the eigenvalues are positive, so the exponents in the general solution (5.1.10) are
positive and become large as t —> . Consequently all solutions become large as
time increases. The only exception is the steady-state solution 0, obtained by setting
c\ = 02 = 0. If the system is initially in this equilibrium state but then is somehow
perturbed away from it, it will not return to that state. It will blow up, because all
nonzero solutions blow up. This is unstable behavior.

In general we can assess the stability of homogeneous linear systems (5.1.4) by
examining the general solution (5.1.8). (In the nonhomogeneous case we just add a
constant.) If all of the eigenvalues Xk are real and negative, then all solutions will
satisfy x(t) —> 0 as t —> . On the other hand, if at least one of the eigenvalues
is positive, then there will be solutions that satisfy ||x(t)|| —> as t —> . In
the former case the system is said to be asymptotically stable; in the latter case it is
unstable.

As we shall see, eigenvalues need not always be real numbers. Even if A is
real, some or all of its eigenvalues can be complex. What happens then? Say

, which grows if
a.k > 0 and decays if ao^ < 0. Since ak — Re(λk) (the real part of λ k ) , we conclude
that (5.1.4) is asymptotically stable if all eigenvalues of A satisfy Re(A^) < 0, and
it is unstable if one or more of the eigenvalues satisfies Re(λk) > 0. We have come
to this conclusion under the assumption that A is a semisimple matrix. However, the
conclusion turns out to be valid for all A.

Notice that complex eigenvalues signal oscillations in the solution, since they give
rise to sine and cosine terms. The frequency of oscillation of the kth term is governed
by βk — Im(Afc). See Exercises 5.1.22 and 5.1.23 for examples of systems that have
complex eigenvalues and therefore exhibit oscillatory behavior.

Now consider a nonlinear system of n first-order differential equations

or, in vector notation,

A vector is called an equilibrium point of (5.1.16) if since then the con-
stant function is a solution. An equilibrium point x is called asymptotically
stable if there is a neighborhood N of x, such that for every solution of (5.1.16) for
which x(t) € N for some t, it must happen that Physically
this means that a system whose state is perturbed slightly from an equilibrium point
will return to that equilibrium point. We can analyze the stability of each equilibrium
point by linearizing (5.1.16) about that point.
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Specifically, consider a multivariate Taylor expansion of / centered on x:

for i — 1 , . . . , n. In vector notation we have the more compact expression

£\ f

where d f / d x is the Jacobian matrix, whose (i, j} entry is fi/ xj. For x near x, the
quadratic and higher terms are very small. Also f (x) = 0,. It
is thus reasonable to expect that for x near x the solutions of (5.1.16) are approximated
well by solutions of

This is a linear system with coefficient matrix From our discussion of
stability of linear systems we know that all solutions of (5.1.17) satisfy x — x —> 0
as t —> oo if all eigenvalues of satisfy Re(A&) < 0. We conclude that x is an
asymptotically stable equilibrium point of (5.1.16) if all eigenvalues of the Jacobian

have negative real parts.

Exercise 5.1.18 The differential equation of a damped pendulum is

where ki and k2 are positive constants, and 9 is the angle of the pendulum from its
vertical resting position. This differential equation is nonlinear because sin 0 is a
nonlinear function of 9. Introducing new variables x\ = 9 and x2 = 0, rewrite the
second-order differential equation as a system of two first-order differential equations
in xi and x2. Find all equilibrium points of the system, and note that they correspond
to 9 = 0, 0 = n?r, n = 0, ±1, ±2, Calculate the Jacobian of the system and
show that the equilibrium points 9 = n?r are asymptotically stable for even n and
unstable for odd n. Interpret your result physically. D

Additional Exercises

Exercise 5.1.19 Suppose A is nonsingular and has linearly independent eigenvectors vi,...,
vn. Let V be the nonsingular n x n matrix whose columns are vi, ... ,vn.

(a) Show that (5.1.8) can be rewritten as x ( t ) = VeAtc, where c is a column vector,
A.t is the diagonal matrix diag{Ai£, . . . , \nt}, and eM is its matrix exponential:

_ ,Qrt 0 , . . . ,e n j.
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(b) Show that the general solution of x = Ax — b has the form x(t} = z + VeAtc,
where z satisfies Az — b.

(c) To solve the initial value problem x = Ax — b with initial condition x(0) = x,
we need to solve for the constants in the vector c. Show that c can be obtained
by solving the system Vc — x — z. Since V is nonsingular, this system has a
unique solution.

D

Exercise 5.1.20 Using MATLAB, work out the details of Example 5.1.13. The MATLAB
command [V,D]=eig(A) returns (if possible) a matrix V whose columns are
linearly independent eigenvectors of A and a diagonal matrix D whose main diagonal
entries are the eigenvalues of A. Thus V and D are the same as the matrices V and
A of the previous exercise. You may find the results of the previous exercise helpful
as you work through this exercise. Here are some sample plot commands:

t = 0:.02:1;
x = z*ones(size(t));
for j=l:2; x = x + V(:,j)*c(j)*exp(t*D (j,j)) ; end
plot(t,x(l,:),t,x(2,:),'--')

title('Loop Currents')

xlabel('time in seconds')

ylabel('current in amperes')
print

Remember that for more information on the usage of these commands, you can type
help plot, help print, etc. •

Exercise 5.1.21 In working through this exercise, do not overlook the advice given in the
previous two exercises. The circuit in Figure 5.4 is the same as the one that appeared
in Exercise 1.2.19, except that some inductors have been added around the edges.
All of the resistances are 1 fi, and all of the inductances are 1 H. Notice the unusual
numbering of the loops. Initially the loop currents are all zero, because the switch is
open. Suppose the switch is closed at time 0.

(a) Write down a system of nine equations for the nine unknown loop currents.
All except the ninth equation involve derivatives.

(b) Solve the ninth equation for xg in terms of other loop currents, and use this
expression to eliminate XQ from the other equations. Obtain thereby a system
of eight differential equations x = Ax — b with initial condition x(0) = 0.

(c) Solve the system Az = b to obtain a steady-state solution of the differential
equation. Compute the steady-state value of the loop current z$ also. (Check-
point: zi = 0.3 amperes.)

(d) Get the eigenvalues and eigenvectors of A, and use them to construct the
general solution of the homogeneous equation z = Az.

(e) Deduce the solution of the initial value problem x — Ax — b, x(0) = 0.
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Fig. 5.4 Solve for the time-varying loop currents.
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(f) On separate graphs plot the loop currents x\(t] and x8(t) for 0 < t < 6
seconds. (Checkpoint: Do these look realistic?)

(g) Once the switch is closed, about how long does it take for all of the loop
currents to be within (i) ten percent of their final values? (ii) one percent?

•

Exercise 5.1.22 Consider a cart attached to a wall by a spring, as shown in Figure 5.5. At

Fig. 5.5 Solve for the motion of the cart.

time zero the cart is at rest at its equilibrium position x = 0. At that moment a steady
force of 12 newtons is applied, pushing the cart to the right. Assume that the rolling
friction is —A; x(t) newtons. Do parts (a) through (d) by hand.

(a) Set up a system of two first-order differential equations of the form x = Ax — b
for xi(t) = x(t) and x2(t) = x(t).

(b) Find the steady-state solution of the differential equation.

(c) Find the characteristic equation of A and solve it by the quadratic formula to
obtain an expression (involving k) for the eigenvalues of A.

(d) There is a critical value of k at which the eigenvalues of A change from real
to complex. Find this critical value.

(e) Using MATLAB, solve the initial value problem for the cases (i) k = 2, (ii)
k = 6, (iii) k = 10, and (iv) k — 14. Rather than reporting your solutions,
simply plot x\ (t) for 0 < t < 3 for each of your four solutions on a single
set of axes. (Do not overlook the help given in Exercises 5.1.19 and 5.1.20.)
Comment on your plots (e.g. rate of decay to steady state, presence or absence
of oscillations).

(f) What happens when k = 0?

D
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Fig. 5.6 Solve for the motion of the carts.

Exercise 5.1.23 Consider a system of three carts attached by springs, as shown in Figure 5.6.
The carts are initially at rest. At time zero the indicated forces are applied, causing the
carts to move toward a new equilibrium. Let x\, x%, and #3 denote the displacements
of the carts, and let #4, £5, and XQ denote their respective velocities. Suppose the
coefficients of rolling friction of the three carts are ki,k2, and k3, respectively.

(a) Apply Newton's second law to each cart to obtain a system of three second-
order differential equations for the displacements #1, x2, and £3. You may
find it useful to review Example 1.2.10.

(b) Introducing the velocity variables £4, x5, and XQ, rewrite your system as a
system of six first-order differential equations. Write your system in the form
x — Ax — b.

(c) Find the steady-state solution of the system.

(d) Solve the initial value problem under each of the conditions listed below. In
each case plot x\, x2, and £3 on a single set of axes for 0 < t < 20, and
comment on the plot.

(1) ki = I,k2 = 0, and k3 =0.

(2) ki = I,k2 =8, and k3 =8.

(3) ki =8,k2= 8, and k3 = 8.

•

Exercise 5.1.24 Let , the 2x2 identity matrix,

(a) Show that the characteristic equation of A is

The eigenvalues are obviously AI = 1 and A2 = 1.
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(b) We now perturb one coefficient of the characteristic polynomial slightly and
consider the equation

where e < 1. Solve the equation for the roots

(c) Show that when are one million times
bigger than e.

(d) Sketch the graphs of the original and perturbed polynomials (using some e
bigger than 10~12, obviously), and give some indication of why the roots are
so sensitive to the e perturbation.

This shows that the problem of finding the roots of a polynomial equation can be ill
conditioned. Difficulties arise any time there are multiple roots or tightly clustered
roots. The more roots there are in the cluster, the worse the situation is. In contrast, the
eigenvalue problem for the identity matrix is well conditioned. Small perturbations
in the entries of A cause small changes in the eigenvalues. This is true not only for
the identity matrix but for any symmetric matrix, regardless of whether or not the
eigenvalues are clustered, as we shall show in Section 6.5 (Corollary 6.5.8). •

Exercise 5.1.25 Figure out what the following MATLAB commands do. For example, type
help poly in MATLAB to find out what poly does.

A = eye(2)

lam = eig(A)

c = poly(A)

roots(c)

format long
A2 = A + 200*eps*randn(2)
Iam2 = eig(A2)
eigdif = norm(Iam2-lam)
c2 = c + [0 200*eps*randn(l,2)]

roots2 = roots(c2)

rootdif = norm(roots2-lam)

Run this code several times. The results will vary because random numbers are being
used. Explain what the output shows. •

Exercise 5.1.26 In this exercise we show that (5.1.8) is the general solution of (5.1.4).

(a) Show that for any x 6 Cn there exist (unique) c i , . . . , cn such that the function
x(t) of (5.1.8) satisfies z(0) = x.

(b) It is a basic fact of the theory of differential equations that for a given x e Cn,
the initial value problem dx/dt = Ax, x(0) = x, has exactly one solution (see
any text on differential equations). Use this fact together with the result of part
(a) to show that every solution of (5.1.4) has the form (5.1.8).

D
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5.2 BASIC FACTS ABOUT EIGENVALUES AND EIGENVECTORS

In most scientific and engineering applications that require eigenvalue computations,
the matrix has real entries. Nevertheless, as we shall soon see, the natural setting for
the study of eigenvalues is the field of complex numbers. Thus let A G Cnxn. A
vector v G Cn is called an eigenvector of A if v ^ 0 and Av is a multiple of v\ that
is, there exists a A G C such that

Av = \v. (5.2.1)

The scalar A is called the eigenvalue of A associated with the eigenvector v. Similarly
v is called an eigenvector of A associated with the eigenvalue A. The pair (A, v) is
called an eigenpair of A. Whereas each eigenvector has a unique eigenvalue associ-
ated with it, each eigenvalue is associated with many eigenvectors. For example, if v
is an eigenvector of A associated with the eigenvalue A, then every nonzero multiple
of v is also an eigenvector of A associated with A.

The set of all eigenvalues of A is called the spectrum of A.
Frequently we will wish to work with eigenvectors with unit norm. This is

always possible, for given any eigenvector v of A, the vector is
also an eigenvector of A associated with the same eigenvalue, and . This
normalization process can be carried out using any vector norm.

Exercise 5.2.2 Show that A is nonsingular if and only if 0 is not an eigenvalue of A. (Thus
we could add another line to the list in Theorem 1.2.3.) •

In the previous section we mentioned that A is an eigenvalue of A if and only if it
is a root of the characteristic equation. Let us now see why this is true. The equation
(5.2.1) can be rewritten as Av — \Iv or (XI — A)v — 0, where / is the n x n
identity matrix. Thus if v is an eigenvector with eigenvalue A, then v is a nonzero
solution of the homogeneous matrix equation (XI — A)v = 0. Therefore, by part (b)
of Theorem 1.2.3, the matrix (XI — A) is singular. Hence, by part (e) of the same
theorem, det(A/ — A) — 0. Since each step of this argument can be reversed, we
have established the following theorem.

Theorem 5.2.3 A is an eigenvalue of A if and only if

As we mentioned previously, (5.2.4) is called the characteristic equation of A.
Because of the form of the equation, determinants will play a prominent role in
this section. Although it is a useful theoretical device, the determinant is of little
value for actual computations. Consequently determinants will appear only rarely in
subsequent sections of the book.

It is not hard to see that det(A/ — A) is a polynomial in A of degree n. It is called
the characteristic polynomial of A.
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Exercise 5.2.5

(a) Show that the characteristic polynomial of

is A2 — 5A — 2, a polynomial of degree 2.

(b) Show that the characteristic polynomial of

is A3 — 5 A2 + A + 1, a polynomial of degree 3.

D

Exercise 5.2.6 Let

(a) Show that the characteristic polynomial of B is (A — 1) (A — 2) and the eigen-
values are 1 and 2. Thus B has two distinct eigenvalues.

(b) Show that the characteristic polynomial of C is (A — 1)(A — 1) and the eigen-
values are 1 and 1. Thus C does not have two distinct eigenvalues. It does have
two eigenvalues if you count the eigenvalue 1 twice. The eigenvalue 1 is said
to have algebraic multiplicity two, since it appears twice in the factorization of
the characteristic polynomial of C.

•

Every nth degree polynomial equation has n complex roots, so A has n eigen-
values, some of which may be repeated. If A is a real matrix, the characteristic
polynomial has real coefficients. But the zeros of a real polynomial are not neces-
sarily real, so a real matrix can have complex, non-real, eigenvalues. This is why it
makes sense to work with complex numbers from the beginning. Notice, however,
that if a real matrix has complex eigenvalues, they must occur in complex conjugate
pairs; that is, if A = a + @i (a, ft € M) is an eigenvalue of A € Rnxn , then so is the
complex conjugate

Exercise 5.2.7 Prove the above assertion in two different ways:

(a) First verify the following two basic facts about complex conjugates. If z\ =

(b) Let A G Mnxn . Let A be a complex eigenvalue of A and let v be an associated
eigenvector. Let v denote the vector obtained by taking complex conjugates of
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the entries of v. Show that v is an eigenvector of A with associated eigenvalue

(c) Letp(A) = a0+aiA + a 2A 2H HanAn be a polynomial with real coefficients
OQ, . . . , an. Show that for any Conclude that
p(z) = 0 if and only if

D

Now is a good time to mention one other important point about real matrices.
Let A € Enxn and suppose it has a real eigenvalue A. Then in the homogeneous
equation (XI — A)v = 0, the coefficient matrix AJ — A is real. The fact that XI — A
is singular implies that the equation (XI — A)v = 0 has nontrivial real solutions. We
conclude that every real eigenvalue of a real matrix has a real eigenvector associated
with it.

Exercise 5.2.8 Let A <E Cnxn.

(a) Use the characteristic equation to show that A and AT have the same eigen-
values.

(b) Show that A is an eigenvalue of A if and only if is an eigenvalue of A*. (A*
denotes the complex conjugate transpose of A.)

D

There are some types of matrices for which the eigenvalues are obvious. The
following theorem will prove very useful later on.

Theorem 5.2.9 Let T £ Cnxn be a (lower- or upper-) triangular matrix. Then the
eigenvalues ofT are the main-diagonal entries tu, ..., tnn.

Proof. The determinant of a triangular matrix R is r\\TII • • • rnn, the product of the
main-diagonal entries. Since T is triangular, so is XI—T. Therefore the characteristic
equation of T is 0 = det(A/ — T) = (X - in) (A - £22) • • • (A - tnn), whose roots
are obviously £ n , . . . , tnn.

For a second proof see Exercise 5.2.19. D

The following generalization of Theorem 5.2.9 is also quite useful.

Theorem 5.2.10 Let Abe a block triangular matrix, say

Then the set of eigenvalues of A, counting algebraic multiplicity, equals the union of
the sets of eigenvalues of AH, A^2, • • •, Amm.
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Proof. Because λI - A is block triangular, det(λI - A) = det(λ/ - AH) det(λI -
A22) • • • det(λ/ — Amm). Thus the set of roots of the characteristic polynomial of
A equals the union of the roots of the characteristic polynomials for AH, A22, • • •,
Amrn. n

Although A has been depicted as block upper triangular, the result is obviously
valid for block lower-triangular matrices as well.

A second proof, which does not, however, yield the multiplicity information, is
outlined in Exercise 5.2.20.

Theorem 5.2.11 Let v\, ..., Vk be eigenvectors of A associated with distinct eigen-
values λI, . . . , λk. Then vi, ..., v^ are linearly independent.

Proof. See any text on linear algebra, or work through Exercise 5.2.21. D

Recall from the previous section that a matrix A G Cn x n is semisimple or nonde-
fective if there exists a set of n linearly independent eigenvectors of A. A matrix that
is not semisimple is called defective.

Corollary 5.2.12 If A G Cn x n has n distinct eigenvalues, then A is semisimple.

If we pick a matrix "at random," its characteristic equation is almost certain to
have distinct roots. After all, the occurrence of repeated roots is an exceptional event.
Thus a matrix chosen "at random" is almost certain to be semisimple. This is the
basis of the claim made in the previous section that "most" matrices are semisimple.
In addition it is not hard to show that every defective matrix has semisimple matrices
arbitrarily close to it. Given a defective matrix (which must necessarily have some
repeated eigenvalues), a slight perturbation suffices to split the repeated eigenvalues
and yield a semisimple matrix (Exercise 5.4.32). In the language of topology, the set
of semisimple matrices is dense in the set of all matrices.

A defective matrix must have at least one repeated eigenvalue. However, the
presence of repeated eigenvalues does not guarantee that the matrix is defective.

Exercise 5.2.13 Find all eigenvalues and eigenvectors of the identity matrix / G Cn x n.
Conclude that (if n > 1) the identity matrix has repeated eigenvalues but is not
defective. n

So far we do not even know that defective matrices exist. The next exercise takes
care of that.

Exercise 5.2.14

(a) The matrix has only the eigenvalue zero. (Why?) Show that it does

not have two linearly independent eigenvectors.

(b) Find a 2 x 2 matrix that has only the eigenvalue zero but does have two linearly
independent eigenvectors. (There is only one such matrix.)
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(c) Show that the matrix

c 1

c

is defective. A matrix of this form is called a Jordan block.

(d) Show that the matrix

is defective if x ^ 0 and semisimple if x = 0.

D

Equivalence of Eigenvalue Problems and Polynomial Equations

We have seen that finding the eigenvalues of A is equivalent to finding the roots
of the polynomial equation det(λJ — A) — 0. Therefore, if we have a way of
finding the roots of an arbitrary polynomial equation, then in principle we can find
the eigenvalues of an arbitrary matrix. The next theorem shows that the converse is
true as well: If we have a way of finding the eigenvalues of an arbitrary matrix, then
in principle we can find the zeros of an arbitrary polynomial.

An arbitrary polynomial of degree n has the form q(λ) = bo + biλ + b2λ2 +
+bnλ

n, with bn ^ 0. If we divide all coefficients of q ( λ ) by bn, we obtain a new
polynomial p ( λ ) = ao + a1λ + a2λ 2 + + lλn (ak = bk/bn) that has same zeros
and is monic; that is, its leading coefficient is an = 1. Since we can always replace
the polynomial equation q(X) = 0 by the equivalent equation p ( λ ) = 0, it suffices to
consider monic polynomials. Given a monic polynomial, we define the companion
matrix of p to be the n x n matrix

This matrix has 1's on the subdiagonal, the opposites of the coefficients of p in the
first row, and zeros elsewhere.

Theorem 5.2.16 Let p(X) = a0 + aiA + 0-2 A2 -f • • • + lAn be a monic polynomial
of degree n, and let A be its companion matrix (5.2.15). Then the characteristic
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polynomial of A is p. Thus the roots of the equation p ( λ ) = 0 are the eigenvalues of
A2

Proof. See Exercise 5.2.23. D

Necessity of Iterative Methods

Thanks to Theorem 5.2.16 we see that the eigenvalue problem and the problem of
finding roots of a polynomial equation are equivalent. Although the algorithms that
we will develop make no direct use of this equivalence, it does have an important
theoretical implication. The polynomial root-finding problem is an old one that has
attracted the interest of many great minds. In particular, early in the nineteenth
century, Neils Henrik Abel was able to prove that there is no general formula3 for the
roots of a polynomial equation of degree n if n > 4. (See, e.g., [37].) It follows that
there is no general formula for the eigenvalues of an n x n matrix if n > 4.

Numerical methods can be divided into two broad categories—direct and iterative.
A direct method is one that produces the result in a prescribed, finite number of
steps. All versions of Gaussian elimination for solving Ax — b are direct methods,
and so are all of the methods that we developed in Chapter 3 for solving the least
squares problem. By contrast an iterative method is one that produces a sequence of
approximants that (hopefully) converges to the true solution of the problem. Each
step or iteration of the algorithm produces a new approximant. In principle the
sequence of approximants is infinite, but in practice we cannot run the algorithm
forever. We stop once we have produced an approximant that is sufficiently good
that we are willing to accept it as the solution. The number of iterations that will be
needed to reach this point is usually not known in advance, although it can often be
estimated.

Abel's theorem shows there are no direct methods for solving the general eigen-
value problem, for the existence of a finite, prespecified procedure would imply the
existence of a (perhaps very complicated) formula for the solutions of an arbitrary
polynomial equation. Therefore all eigenvalue algorithms are iterative.

Convergence Issues

In the next section we will study some of the simplest iterative methods. Each of
these produces a sequence of vectors qi, q2, q3, ... that (usually) converges to an
eigenvector v as j —>• oo; that is, QJ —>• v as j —>• oo. For each iterative method
that we introduce, we must concern ourselves with whether or not (or under what

2 MATLAB has a command called roots that makes use of this correspondence. If x is a vector containing
the coefficients of the polynomial p, the command roots (x) returns the roots of the equation p(\) = 0.
MATLAB does it as follows. The coefficients are normalized to make the polynomial monic. Then the
companion matrix is formed. Finally the eigenvalues of the companion matrix are computed by the QR
algorithm. These are the desired roots.
3 We allow formulas that involve addition, subtraction, multiplication, division, and the extraction of roots.
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conditions) it really does converge to an eigenvector. First of all, what do we
mean when we write qj —>• vl We mean that each component of QJ converges
to the corresponding component of v as j ->• oo. You can easily check that this
componentwise convergence holds if and only if \\qj — f H^ —> Qor\\qj —v\\l -» 0
or \\QJ — v ||2 —> 0, as j —>• oo.4 We will make extensive use of norms in our
discussion of the convergence of iterative methods. In principle it does not matter
which norm we use, as all norms on Cn are equivalent. This is so because Cn has
finite dimension; see [70, Theorem II.3.1] or any other text on functional analysis.

Although the yes or no question of convergence is important, the rate of con-
vergence is even more important. A convergent iterative method is of no practical
interest if it takes millions of iterations to produce a useful result. Convergence rates
will be discussed in the coming section in connection with the iterative methods
introduced there.

A Variety of Iterative Methods

As we have already indicated, the methods to be introduced in the next section
generate sequences of vectors. In subsequent sections of this chapter we will develop
more sophisticated methods that generate sequences of matrices A\, AI, A5,
such that each matrix in the sequence has the same eigenvalues as the original matrix
A, and the matrices converge to a simple form such as upper-triangular form, from
which the eigenvalues can be read. In Chapter 6 we will introduce yet another class
of iterative methods that generate sequences of subspaces of Cn. By the middle of
Chapter 6 it will be clear that all of these methods, whether they generate vectors,
matrices, or subspaces, are intimately related.

Additional Exercises

Exercise 5.2.17 Let A e Rnxm have SVD A = UZVT. The right singular vectors are vi,
... ,t>m , the columns of V; the left singular vectors are u\,... ,un, the columns of U.
Show that vi,..., vm are linearly independent eigenvectors of ATA, and w i , . . . , un

are linearly independent eigenvectors of AAT, associated with eigenvalues
where r is the rank of A. D

Exercise 5.2.18 Let A be an eigenvalue of A, and consider the set

which consists of all eigenvectors associated with A, together with the zero vector.

(a) Show that if v\ € S\ and v2 G <S\, then vi + v2 G S\.

(b) Show that if v € S\ and c € C, then cv e S\.

4Our discussion of vector norms in Section 2.1 was restricted to norms on Rn. However, that entire
discussion can be carried over to the complex setting.
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Thus S\ is a subspace of Cn. It is called the eigenspace of A associated with A. Even
if A is not an eigenvalue, we can still defined the space <S\, but in this case S\ = {0}.
Clearly A is an eigenvalue of A if and only if S ^ {0}. D

Exercise 5.2.19 This exercise gives a second proof that the main-diagonal entries of a triangu-
lar matrix are its eigenvalues. Let T be a triangular matrix. For the sake of argument
let us assume that it is upper triangular. Let JJL be a complex number.

(a) Suppose n = ta for some i. We will show that µ, is an eigenvalue by producing
an eigenvector associated with µ. That is, we will produce a nonzero v £ Cn

such that (µI — T)v — 0. It may be the case that µ, = tii for several different
i. Let j be the smallest index for which µ — tjj. Thus µ tii for all i < j.
Show that if j = 1, then (µ - T)CI = 0, where ex = [1, 0, • • •, 0]T. If
j ^ 1, partition T as follows:

where TH is (j — 1) x (j — 1), x € CJ \ and so on. Prove that there is a
unique vector v of the form

where 2 6 C^"1, such that (µI — T)v = 0. Thus p, is an eigenvalue of T.

(b) Show that if µ tii for all i, and v G Cn satisfies (µ/ - T)v - 0, then v = 0.
(Do not invoke determinants; just prove the result directly from the equation.)
Thus µ is not an eigenvalue of T.

D

Exercise 5.2.20 Let A 6 Cnxn be a block triangular matrix:

where and € C*x*, j + k = n.

(a) Let A be an eigenvalue of A\\ with eigenvector v. Show that there exists a

w G C* such that is an eigenvector of A with associated eigenvalue A.

(b) Let A be an eigenvalue of A^i with associated eigenvector w, and suppose A is
not also an eigenvector of A\I. Show that there is a unique v G Cj such that

is an eigenvector of A with associated eigenvalue A.

An € Cjxj
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(c) Let A be an eigenvalue of A with associated eigenvector . Show that

either w is an eigenvector of A22 with associated eigenvalue A of v is an
eigenvector of A^\ with associated eigenvalue A. (Hint: Either w 0 or
w = 0. Consider these two cases.)

(d) Combining parts (a), (b), and (c), show that A is an eigenvalue of A if and only
if it is an eigenvalue of A11 or A22-

D

Exercise 5.2.21 Prove Theorem 5.2. 11 by induction on A;. You might like to make use of the
following outline. First show that the theorem is true for A; = 1. Then suppose k
is arbitrary and show that if the theorem holds for sets of k — 1 vectors (induction
hypothesis), then it must also hold for sets of A; vectors. Suppose

To establish independence of vi, . . . , Vk , you need to show that c\ = c% = • • • = Ck =
0. Apply (A—Xkl) to both sides of (5.2.22). Simplify the result by using the equations
AVJ — XjVj for j — 1, . . . , k, and note that one term is eliminated from the left-hand
side. Use the induction hypothesis to conclude that c\ = c2 = • • • = Ck-i = 0.
Point out clearly how you are using the distinctness of the eigenvalues here. Finally,
go back to (5.2.22) and show that Ck = 0. D

Exercise 5.2.23 Parts (a) and (b) of this exercise provide two independent proofs of Theo-
rem 5.2.16. Letp(A) = ao + «iA + a2A2 + • • • + lAn, and let A be its companion
matrix (5 .2. 15).

(a) Let A G C be an eigenvalue of A with associated eigenvector v. Write down
and examine the equation Av — Xv. Demonstrate that v must be a multiple of
the vector

A
1

and A must satisfy p(X) — 0. Conversely, show that if p(X) = 0, then A is an
eigenvalue of A with eigenvector v given by (5.2.24). Thus the eigenvalues of
A are exactly the zeros of p.

(b) For j = 1,... ,n, let XjW = X3 + an-i\
3~l + • • • + an_j+iA + an-j.

Thus Xj is a rnonic polynomial of degree j, and Xn — P- Let Aj be the
companion matrix of Xj • Pro ve by induction on j that det( XI — Aj;) = X?(A),
j = 1, . . . , n. Hint: Expand the last column of the determinant det(AJ — Aj}
to obtain the recurrence

D
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5.3 THE POWER METHOD AND SOME SIMPLE EXTENSIONS

Let A G Cnxn. To avoid complicating the analysis we assume that A is semisimple.
This means that A has a set of n linearly independent eigenvectors vi, . . . ,vn, which
must then form a basis for Cn. Let λI, . . . , An denote the eigenvalues associated
with v\, . . . , vn, respectively. Let us assume that the vectors are ordered so that
I |λI | > |λ2 | > • • • > | An |. If | λI | > | λ2 |, λI is called the dominant eigenvalue
and v\ is called a dominant eigenvector of A.

If A has a dominant eigenvalue, then we can find it and an associated dominant
eigenvector by the power method. The basic idea is to pick a vector q and form the
sequence

To calculate this sequence it is not necessary to form the powers of A explicitly. Each
vector in the sequence can be obtained by multiplying the previous vector by A, e.g.
Ai+lq = A(A'q). It is easy to show that the sequence converges, in a sense, to a
dominant eigenvector, for almost all choices of q. Since v\ , . . . , vn form a basis for
Cn, there exist constants c\, . . . , cn such that

So far we do not know vi, . . . , vn, so we do not know what c\, . . . , cn are
either. However, it is clear that for practically any choice of q, c\ will be nonzero
(Exercise 5.3.43). The argument that follows is valid for every q for which c\ ^ 0.
Multiplying q by A, we have

Similarly

and in general

Since AI dominates the other eigenvalues, the component of A>q in the direction of
vi becomes steadily greater relative to the other components as j increases. This can
be made clearer by rewriting (5.3.1) as

The fact that every multiple of an eigenvector is also an eigenvector means that the
magnitude of an eigenvector is unimportant; only the direction matters. Therefore
the factor in (5.3.2) is, in principle, unimportant. Thus, instead of the sequence
(Aiq), let us consider the rescaled sequence (<7j), w h e r e . From (5.3.2)
it is clear that qj — >• c\v \ as j — »• oo. Indeed, for any vector norm,
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Here we have used the fact that | Aj | < | A2 | for i — 3, . . . , n. Letting C =
I £2 1 1| 1*2 || + ---- \-\cn\ \\vn\\, we have

Since | AI | > A2 |, it follows that | \2/^i \ — > 0 asj — > oo. Thus \\QJ — c\v\ \\ — >• 0.
This means that for sufficiently large j, QJ is a good approximation to the dominant
eigenvector c\v\. The number \\qj — c\v\\\ gives a measure of the error in this
approximation. From (5.3.3) we see that, roughly speaking, the magnitude of the
error is decreased by a factor | A2 / AI | with each iteration. Therefore the ratio | \z / \i \
is an important indicator of the rate of convergence.

The convergence behavior exhibited by the power method is called linear conver-
gence. In general a sequence (xj) that converges to x is said to converge linearly if
there is a number r satisfying 0 < r < 1, such that

This means that ||xj+i — x \\ w r\\Xj — x\\ for sufficiently large j.5 The number r
is called the convergence ratio or contraction number of the sequence. The power
method generally exhibits linear convergence with convergence ratio r = \ \2/^i \
(Exercise 5. 3. 44).

In practice the sequence is inaccessible because we do not know
AI in advance. On the other hand, it is impractical to work with A^q itself because
|| Ajq || ->• oo if | AI | > 1 and || Ajq \\ -» 0 if | AI < 1. In order to avoid overflow or
underflow and to recognize when the iterates are converging, we must employ some
kind of scaling. Thus we let qo = q and define

where <TJ+I is some convenient scaling factor. The exact choice of scale factor is
unimportant, since we are interested in the directions of the vectors, not the lengths.
A simple and convenient strategy is to take cr^+i to be that entry of Aqj that is largest
in absolute value. The effect of this choice is that the largest component of each qj is
1 , and the sequence converges to a dominant eigenvector whose largest component
is 1.

Iterations of the power method are relatively inexpensive. The cost of multiplying
the n x n matrix A by qj is 2n2 flops. The normalizing operations require only O(n)
work, as you can easily verify, so the total cost of a power iteration is about 2n2 flops.
Thus m iterations will cost 2n2m flops. This count assumes that A is not a sparse
matrix. If A is sparse, the cost of calculating Aqj will be considerably less than 2n2

flops. For example, if A has five nonzero entries in each row, the cost of computing
Aqj is only about lOn flops.

5 Some authors also allow r = 1, but it seems preferable to think of that case as representing slower than
linear convergence. A sequence that satisfies (5.3.4) with r — 1 converges very slowly indeed.
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Our development of the power method has assumed that the matrix is semisimple.
This turns out not to be crucial; essentially the same conclusions can be drawn for
defective matrices.

Example 5.3.5 We will use the power method to calculate a dominant eigenvector
of

rr\

If we start with the vector <jr0 = [ 1 1 ] , then on the first step we have Ago =

[10 3 ] . Dividing by the scale factor a\ = 10, we get qi - [ 1 0.3 ]. Then

Aqi = [ 9.3 1.6 ]T,ff2 = 9.3, and 52 = [ 1 0.172034 ]T. Subsequent iterates
are listed in Table 5.1. Only the second component of each QJ is listed because the

Table 5.1 Iterates of power method

first component is always 1. We see that after 10 iterations the sequence of vectors
(QJ) has converged to six decimal places. Thus (to six decimal places)

The sequence &j converges to the dominant eigenvalue AI = 9.140055. D

In Example 5.3.5 and also in Exercises 5.3.7, 5.3.10, and 5.3.11, the iterates
converge reasonably rapidly. This is so because in each case the ratio | \i/\i \ is
fairly small. For most matrices this ratio is not so favorable. Not-uncommonly

is very close to 1, in which case convergence is slow. See Exercise 5.3.9.

Exercise 5.3.6 Calculate the characteristic polynomial of the matrix of Example 5.3.5, and
use the quadratic formula to find the eigenvalues. Calculate the dominant eigenvector
as well, and verify that the results of Example 5.3.5 are correct. Calculate the ratios
of errors || qj+\ — v\ \\f\\ qj — v\ ||, j — 0, 1 , 2 , . . . , and note that they agree very
well with the theoretical convergence ratio | A2/Ai |. Why is the agreement so good?
Would you expect the agreement to be as good if A were 3 x 3 or larger? D
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Exercise 5.3.7 Let

(a) Use the power method with qo = [ 1 1 ] to calculate the dominant eigen-
value and eigenvector of A. Tabulate QJ and &j at each step. Iterate until the
QJ and &j have converged to at least six decimal places.

(b) Now that you have calculated the eigenvector v, calculate the ratios

to find the observed rate of convergence. Using the characteristic equation,
solve for the eigenvalues and calculate the ratio | A2/Ai |, which gives the
theoretical rate of convergence. How well does theory agree with practice in
this case?

D

Exercise 5.3.8 Work this problem b y hand. L e t . Carry o u t t h e power method
rr\

with starting vector qQ = [ a b ] , where a > 0, b > 0, and a ^ b. Explain why
the sequence fails to converge. Why does the convergence argument given above fail
in this case? D

Exercise 5.3.9 Work this problem by hand. Only at the very last step will you need a calculator.

(a) Find the eigenvalues of A and associated eigenvectors.

(b) Carry out power iterations starting with q0 = [ I 1 ] . Derive a general
expression for qj.

(c) How may iterations are required in order to obtain \\qj — v\ ||00/||t'i H^ <
ID"6?

D

Exercise 5.3.10 Let

(a) Using MATLAB, apply the power method to A, starting with

Do at least ten iterations. Here are some sample MATLAB commands.

A = [ 1 1 1 ; - 1 9 2 ; 0 - 1 2 ]
q = ones(3,1)
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iterate(:,1) = q;
for j = 1:10
q = A*q;
[bgst,index] = max(abs(q));

sigma(j+l) = q(index(1));
q = q/sigma(j+1);

iterate(:,j+1) = q;
end
iterate

sigma

If you store some of these (or similar) commands in a file named, say, power.m,
then each time you type the command power, MATLAB will execute that
sequence of instructions. The numbers are stored to much greater accuracy
than what is normally displayed on the screen. If you wish to display more
digits, type format long.

(b) Use the command [ V , D ] = e ig(A) to get the eigenvalues and eigenvec-
tors of A. Compare the dominant eigenvalue from D with the scale factors
that you computed in part (a).

(c) Locate a dominant eigenvector from V and rescale it appropriately, so that you
can compare it with the iterates from part (a). Calculate the ratios

\\Qj+i ~v\\2/\\<lj ~v\\2 f™J = 1, 2, 3 , . . . .

(d) Using D from part (b), calculate the ratio | \-2/\\ \ and compare it to the ratios
computed in part (b).

D

Exercise 5.3.11 Repeat Exercise 5.3.10 using the matrix

-4 -1 2

What is different here? The ratios of errors are more erratic. Compute

and compare these values with | A2/Ai |. Why would you expect these to be close?
D

Exercise 5.3.12 Repeat Exercise 5.3.10 using the matrix

What happened this time? D
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Inverse Iteration and the Shift-and-lnvert Strategy

We continue to assume that A G Cn x n is semisimple with linearly independent
eigenvectors vi,..., vn and associated eigenvalues λI , . . . , An, arranged in order of
descending magnitude. If A is nonsingular, we can apply the power method to A~l.
This is the inverse power method or inverse iteration. (By contrast, the power method
applied to A is sometimes called direct iteration.)

Exercise 5.3.13 Suppose A e Cn x n is nonsingular. Then all eigenvalues of A are nonzero.
Show that if v is an eigenvector of A with associated eigenvalue A, then v is also an
eigenvector of A~l with associated eigenvalue A"1. n

From Exercise 5.3.13 we see that A~l has linearly independent eigenvectors

vn, vn-i, ...vi with eigenvalues ( i-e-
| A n _i | > | An |) and we start with a vector q = cnvn + • • • + c\v\ for which cn ^ 0,
then the inverse power iterates will converge to a multiple of vn, an eigenvector
associated with the smallest eigenvalue of A. The convergence ratio is
| A n / A n _ i |, so convergence will be fast when | A n _i | ^> | An |. This suggests that
we shift the eigenvalues so that the smallest one is very close to zero. To understand
how this works, we need only the following simple result.

Exercise 5.3.14 Let A G Cn x n, and let p G C. Show that if v is an eigenvector of A with
eigenvalue A, then v is also an eigenvector of A — pi with eigenvalue A — p. d

From Exercise 5.3.14 we see that if A has eigenvalues AI , . . . , An, then A — pi
has eigenvalues AI — p, A2 — p , . . . , An — p. The scalar p is called a shift. If the shift
is chosen so that it is a good approximation to An, then | A n _ i — p | 3 > | A n — p|, and
inverse iteration applied to A — pi will converge rapidly to a multiple of vn. Actually
there is nothing special about An; the shift p can be chosen to approximate any one of
the eigenvalues of A. If p is a good enough approximation to A; that A; — p is much
smaller than any other eigenvalue of A — pi, then (for almost any starting vector q)
inverse iteration applied to A — pi will converge to a multiple of the eigenvector Vi.
The convergence ratio is | (A{ — p}/(\k ~ P) » where \k — p is the second smallest
eigenvalue of A — pi. the closer p is to A;, the swifter the convergence will be.

Shifts can be used in conjunction with direct iteration as well, but they are not
nearly so effective in that context. The combination of shifting and inverse iteration
works well because there exist shifts for which one eigenvalue of the shifted matrix
is much smaller than all other eigenvalues. In contrast, there (usually) do not exist
shifts for which one eigenvalue is much larger than all other eigenvalues.

To get rapid convergence, we shift first and then apply inverse iteration. This is
called the shift-and-invert strategy. It is one of the most important ideas for eigenvalue
computations.
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Exercise 5.3.15 Work this problem by hand. Diagonal matrices such as

have particularly simple eigensystems.

(a) Find the eigenvalues and eigenvectors of A.

(b) Find the eigenvalues of A — pi and (A — pi}'1, where p — 0.99. Perform
both direct and inverse iteration on A — pi, starting with q0 = [ 1 1 1 ]T. To
which eigenvector does each sequence converge? Which converges faster?

(c) Perform inverse iteration with values (i) p = 2.00 and (ii) p — 3.00, using the
same starting vector. To which eigenvectors do these sequences converge?

D

Let us consider some of the practical aspects of inverse iteration. The iterates will
satisfy

but there is no need to calculate (A — pl}~1 explicitly. Instead one can solve the
linear system and then set where <jj+i
equals the component of that is largest in magnitude. If the system is to be
solved by Gaussian elimination, then the LU decomposition of A — pi has to be done
only once. Then each iteration consists of forward substitution, back substitution, and
normalization. For a full n x n matrix the cost is n3 flops for the LU decomposition
plus 2n2 flops per iteration.

Example 5.3.16 Let us apply inverse iteation with a shift to the matrix

We know from Example 5.3.5 that 9 is a good approximation to an eigenvalue of
A. Even if we did not know this, we might expect as much from the dominant 9
in the (1,1) position of the matrix. Thus it is reasonable to use the shift p = 9.

Starting with qQ = [ 1 1 ] , we solve the system to get

[ 8.0 1.0 }T. We then rescale by taking CTI = 8 to get qi = [ 1.0 0.125 ]T.

Solving we get . Thus a^ = 7.125,

and qi = [ 1.0 0.140351 ] . Subsequent iterates are listed in Table 5.2. As in
Table 5.1, we have listed only the second component of qj because the first component

is always 1. After five iterations we have the eigenvector v\ — [ 1.0 0.140055 ]
correct to six decimal places. The good choice of shift gave much faster convergence
than we had in Example 5.3.5. The scale factors converge to an eigenvalue of
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(second component)

3
4
5

7.140351
7.140449
7.140055

0.140449
0.140055
0.140055

Table 5.2 Iterates of inverse power method

(A - 9/)-1: (A! - 9)"1 = 7.140055. Solving for AI, we obtain AI = 9.140055.
Another way to obtain the eigenvalue is to compute the Rayleigh quotient, which will
be discussed below. D

Exercise 5.3.17 Let A =

(a) Use inverse iteration with p = 8 and qo = [ 1 1 ] to calculate an eigenvalue
and eigenvector of A. (On this small problem it may be easiest simply to
calculate B = (A — SI}~l and perform direct iterations with B.)

(b) Now that you have calculated an eigenvector v, calculate the ratios

for j — 0, 1, 2, . . . , to find the observed rate of convergence. Solve for the
eigenvalues using the characteristic equation or MATLAB and calculate the
theoretical convergence rate | (Ai — 8)/(A2 — 8) |. How well does theory agree
with practice?

D

Exercise 5.3.18 Let A =

(a) Using MATLAB, apply inverse iteration to A with shift p = 9, starting with
go = [ 1 1 1 ]T. For simplicity, just form B = (A - 9/)"1 (B =
inv (A-9 *eye (3 ) ) in MATLAB) and iterate with B. Some of the com-
mands shown in Exercise 5.3.10 may be useful here. Use format long to
view more digits of your iterates. Do at least ten iterations.

(b) Use [ V , D ] = e ig(A) to get the true dominant eigenvector. Calculate the
errors \\QJ — v\\2 and ratios \\QJ+I — v\\2/\\qj — v\\2 for j = 1, 2, 3, . . . .
Compute the theoretical convergence rate (from the known eigenvalues) and
compare it with these ratios. Notice that we have faster convergence than we
had when we applied the power method to this same matrix in Exercise 5.3.10.

D
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Exercise 5.3.19 The matrix west0479 is a sparse 479 x 479 matrix that is supplied with
MATLAB. We used this matrix previously in Exercises 1.6.3 and 1.9.2. Some useful
commands are

load west0479
A = west0479; % Just to get a short abbreviation.
issparse(A) % =1 for sparse, = 0 for dense matrices.
size(A)
nnz(A) % number of nonzeros of A
disp(A)
spy(A)

(a) It is known that A has an eigenvalue near p = 15 + 35i. Use inverse iteration
with shift p to calculate this eigenvalue. (Solution: X - 17.548546093831 +
34.23782295750(H.) More useful commands:

n = 479;
shift = 15 + 35i;
[ L , U , P ] = lu(A - sh i f t*speye(n)) ;
q = ones(n,1) ;
for j = l:itnum

q = P*q;
q = L\q;
q = U\q;
[bgst,index] = max(abs(q));
sigma(j+l) - q(index(1));
q = q/sigma(j+1);

end

Add some commands of your own to obtain the desired output

(b) Explain the function of the four commands involving L, U,and P in part (a).
How do they help make the algorithm economical?

(c) When the matrix is large and sparse, the speed of the algorithm depends heavily
upon how it is implemented. Run three different implementations of inverse
iteration, keeping track of the execution time:

(i) Use the implementation shown in part (a).

(ii) Let B = A - shif t*speye (n) and use q = B\q to do the inverse
iteration. This lazy implementation forces MATLAB to redo the sparse
LU decomposition on each iteration.

(iii) Let C = full ( inv(B) ) , where B is as before, and use q = C*q
to do the iteration. (Type spy (C) to verify that C is not at all sparse.)

Time, say, 20 iterations by each method. Also determine separately the time it
takes to compute the sparse LU decomposition and the time it takes to compute
the inverse. Discuss your results. More sample code:

tl = cputime;
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[L,U,P] = lu(A - shift*speye(n));

t2 - cputime;

decomp_time = t2 - tl

D

Exercise 5.3.20 This exercise is similar to the previous one, except that it features a scalable
family of matrices. The MATLAB command delsq generates sparse matrices
associated with discretized Laplacian ("del squared") operators on various regions.
For example, try

m = 32
A = delsq(numgrid('S' ,m) ) ;
issparse(A)
size(A)

This produces a 900 x 900 matrix. You can make a larger or smaller matrix by
adjusting the size of m. In general the matrix A has dimension (m — 2)2. We said
more about this family in Exercise 1.6.4.

(a) This matrix is symmetric and positive definite. Its largest eigenvalue is near
8. Use inverse iteration with shift p — 8 to estimate this eigenvalue to five
decimal places accuracy. (The solution depends on m.) Borrow code from
Exercise 5.3.19, part (a).

(b) Repeat part (c) of Exercise 5.3.19 using a delsq matrix. Make m large
enough that you get impressive results, but not so large that you die of old age
before the results come back.

D

Inverse Iteration with Exact Shifts

The introduction of shifts allows us to find any eigenvector, not just those associated
with the largest and smallest eigenvalues. However, in order to find a given eigen-
vector, we must have a good approximation to the associated eigenvalue to begin
with. It follows that a good application for inverse iteration is to find eigenvectors
associated with eigenvalues that have been computed by some other means. Using
the computed eigenvalue as a shift, we typically obtain an excellent eigenvector in
just one or two iterations. We call this inverse iteration with an exact shift. It is an
important application of inverse iteration.

Exercise 5.3.21 An oracle tells you that A = 17.548546093831 + 34.237822957500z is an
eigenvalue of the matrix west0479 from MATLAB. Perform one step of inverse
iteration, using this computed eigenvalue as a shift, to get an estimate v of an asso-
ciated eigenvector. Borrow MATLAB code from Exercise 5.3.19. To get an idea of
the quality of this estimated eigenvector, calculate the residual || Av — Xv ||2/|| v ||2.
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A residual of zero would indicate a perfect eigenpair. If you work this problem cor-
rectly, you will get an impressively small residual. (Warning: A small residual does
not absolutely guarantee an accurate eigenvector. See the discussion of sensitivity of
eigenvalues and eigenvectors in Section 6.5.) D

Inverse iteration with exact shifts works amazingly well when one considers the
circumstances. If p is an eigenvalue of A, then A — pi is singular, so (A — pl}~1

does not exist. How can we possibly do inverse iteration with this shift? Well, in
practice p is (almost) never exactly an eigenvalue; there is (almost) always some
error. Therefore A — pi is (almost) always nonsingular. Furthermore, recall from
Chapter 2 that in numerical practice it is impossible to distinguish between singular
and nonsingular matrices. Therefore, even if A — pi is singular, we will (almost)
never be able to detect the fact. Therefore the method (almost) never breaks down in
practice.

However, if p is nearly an eigenvalue, this means that A — pi is nearly singular;
that is, it is ill conditioned (Exercise 5.3.47). One might reasonably fear that the
ill condition of A — pi would spoil the computation, since at each step a system of
the form (A — pl)qj+i = QJ must be solved. Fortunately the ill conditioning turns
out not to be a problem in this context. Consider a single step (A — pl}qi = QQ.
If p is nearly an eigenvalue of A, then qi is already very close to an eigenvector of
A, if the system has been solved exactly. But suppose instead that the system was
solved by Gaussian elimination with partial pivoting. Then we know from Chapter 2
(Theorem 2.7.14 and ensuing discussion) that the computed qi actually satisfies a
perturbed system (A + 6A — pl)qi = qo, where 6A is normally tiny relative to A.
Since 6A is tiny, p should also be a good approximation to an eigenvalue of A + 8A,
so qi should be nearly an eigenvector of A + 6 A, which should then also be close to
an eigenvector of A. Thus inverse iteration should be effective.

Whether or not all this is true depends upon whether the small perturbation in A
really does cause only small perturbations of the eigenvalue and eigenvector. This
depends in turn on condition numbers for the eigenvalue and eigenvector, which are
independent of the condition number of A — pi. Thus the effectiveness of inverse
iteration does not depend on the condition number of A — pi. We will discuss
condition numbers for eigenvalues and eigenvectors in Section 6.5.

The Rayleigh Quotient

In using inverse iteration to calculate an eigenvector of A, there is no reason why one
could not use a different shift at each step. This might be useful in situations in which
the eigenvalue is not known in advance. If qj is close enough to an eigenvector,
it should somehow be possible to use qj to obtain an estimate of the associated
eigenvalue. This estimate could then be used as the shift for the next iteration. In
this way, we would get an improved shift, hence an improved convergence ratio, for
each iteration.

Suppose q G Cn approximates an eigenvector of A. How can we use q to estimate
the associated eigenvalue? Our approach will be to minimize a residual. If q is
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exactly an eigenvector, then there exists exactly one number p for which

This number is the eigenvalue. If q is not an eigenvector, then there is no value of p
for which (5.3.22) is satisfied. Equation (5.3.22) is in fact an overdetermined system
of n equations in the single unknown p. Letting r denote the residual, r = Aq — pq,
we can find the value of p for which the 2-norm || r ||2 assumes a minimum. In the
case when q is an eigenvector, the minimizing p is exactly the associated eigenvalue.
It therefore seems reasonable that if q merely approximates an eigenvector, then the
minimizing p should at least yield a good estimate of the associated eigenvalue.

The choice of the 2-norm means that the minimization problem is a least squares
problem, so we can solve it by any of the techniques developed in Chapter 3. Thus we
can use a QR decomposition or the normal equations, for example. It is simplest to
use the normal equations. In Chapter 3 we restricted our attention to real matrices, but
all of the developments of that chapter can be carried over to the complex setting. The
only modification that must be made is that whenever a transpose, say BT, occurs,
it must be replaced by the conjugate transpose B*. This is the matrix obtained
by transposing B and then taking complex conjugates of all entries. Making this
modification to Theorem 3.5.21, we find that the normal equations for the complex
overdetermined system Cz = b are C*Cz — C*b. Rewriting (5.3.22) as

we see that the role of C is played by g, that of z is played by p, and that of b is
played by Aq. Thus the normal equations for (5.3.23) are

Actually there is only one normal equation in this case, because there is only one
unknown. Its solution is

q*q

This number is called the Rayleigh quotient of q with respect to A. We have just
proved the following theorem.

Theorem 5.3.24 Let A 6 Cnxn and q 6 Cn. The unique complex number that
minimizes \\ Aq — pq ||2 is the Rayleigh quotient p = q*Aq/q*q.

In particular, if q is an eigenvector of A, then the Rayleigh quotient equals the
associated eigenvalue. This is a consequence of Theorem 5.3.24, but it is also
perfectly obvious from the form of the Rayleigh quotient.

Two other proofs of Theorem 5.3.24 are pursued in Exercise 5.3.48.
The next theorem shows that the Rayleigh quotient of q does indeed approximate

an eigenvalue if q approximates an eigenvector. In the theorem the vectors are
normalized so that they have Euclidean norm 1 . This simplifies both the statement
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and the proof of the theorem, but it is a matter of convenience, not necessity. Notice
that if || q ||2 = 1, the Rayleigh quotient has the simpler form p — q*Aq.

Theorem 5.3.25 Let A e Cnxn and let v be an eigenvector of A with associated
eigenvalue X. Assume \\v\\2 = 1. Let q G Cn with \\q\\2 = 1, and let p = q*Aq be
the Rayleigh quotient of q. Then

Proof. Since Av = \v and \\v\\2 = 1, A = v*Av. Thus A - p — v*Av -
q*Aq = v*Av - v*Aq + v*Aq - q* Aq — v*A(v - q) + (v - q)*Aq. Therefore
1^ - P\ < \v*A(v - q)\ + \(v - q)*Aq\. By the Cauchy-Schwarz inequality (3.2.1),
\v*A(v-q)\ < |H|2||A(t;-g)||2 = \\A(v - q) ||2, and by Theorem 2.1.24,

Thus \v*A(v-q)\ < \\A\\2\\v - q\\2. Similarly | (v - q}* Aq\ < \\ A\\2\\v - q\\2.
The assertion of the theorem follows. D

Thus if || v — q\\2 < e, then | A — p\ < 2||^4||2e. This can be expressed briefly by
saying that if 11?; - q\\2 = O(e), then |A - p\ = O(e).

Rayleigh Quotient Iteration

Rayleigh quotient iteration is that variant of inverse iteration in which the Rayleigh
quotient of each qj is computed and used as the shift for the next iteration. Thus a
step of Rayleigh quotient iteration is as follows:

where o-j+i is any convenient scaling factor.
Because a different shift is used at each step, it is difficult to analyze the global

convergence properties of Rayleigh quotient iteration. The algorithm is not guar-
anteed to converge to an eigenvector, but experience suggests that it seldom fails.
When it does converge, it generally converges rapidly. The next example illustrates
the swift convergence of Rayleigh quotient iteration.

Example 5.3.26 Consider once again the matrix

9 1
1 2 j

rr>

We used Rayleigh quotient iteration starting with <?o — [ 1 1 ] to calculate an
eigenvector of A. The results are listed in Table 5.3. Again we have normalized the
iterates so that the first component is 1. You can easily check that q5 is an eigenvector
with associated eigenvalue p5, correct to fourteen decimal places. Notice the rapid
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j
0
1
2
3
4
5

qj
(second component)

1.00000000000000
-0.27272727272727
0.22155834654310
0.13955130581106
0.14005494476317
0.14005494464026

Pi

6.50000000000000
8.00769230769231
9.09484426192450
9.14005316814698
9.14005494464026
9.14005494464026

Table 5.3 Rayleigh quotient iteration

convergence: q2 has no correct digits, q3 has (essentially) three correct digits, and q4

has nine correct digits. D

Exercise 5.3.27 Calculate the ratios || qj+i - v \\/\\ qj - v ||, j - 0, 1, 2, 3, from Table 5.3,
where v = q$ = the eigenvector. Notice that the ratios decrease dramatically with
increasing j . D

Exercise 5.3.27 shows that the rate of convergence observed in Example 5.3.26 is
better than linear. This is to be expected since the convergence ratio depends on a
ratio of shifted eigenvalues that improves from one step to the next.

Let us take a closer look at the convergence rate of Rayleigh quotient iteration.
(However, what follows should not be mistaken for a rigorous analysis.) Let (qj) be
a sequence of vectors generated by Rayleigh quotient iteration. We shall simplify the
analysis by assuming that || qj ||2 = 1 for all j. Clearly we may choose to normalize
so that this is the case. Suppose qj ->• Vi as j — >• oo. Then also ||vi||2 — 1-
Assume further that the associated eigenvalue \i is not a multiple eigenvalue, and let
\k denote the closest eigenvalue to A; with k ^ i. Since the jth step of Rayleigh
quotient iteration is just a power iteration with matrix (A — Pjl}~1 , we know that

where TJ is the ratio of the two eigenvalues of (A — Pjl)~l of largest absolute value.
By Theorem 5.3.25 the Rayleigh quotients PJ converge to A;. Once PJ is close
enough to A{, the two largest eigenvalues of (A — Pjl}~1 will be (A; — PJ}~I and
(Ajt - Pj)-1. Thus

By Theorem 5.3.25, | A; — PJ \ < 2\\A\\2 \\Vi — qj ||2. Also, since PJ « Aj, we can
make the approximation | \k — Pj\ ~ | A^ — Aj | . Thus
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where C — 2\\ A\\2/\ \k - \i |. Substituting this estimate of r,- into (5.3.28), we
obtain the estimate

Thus the error after j + 1 iterations is proportional to the square of the error after
j iterations. Another way to express this is to say that if \\Vi — qj ||2 = O(c), then
\\Vi — qj+i ||2 = O(e2). If e is small, then e2 is tiny. A sequence whose convergence
rate satisfies (5.3.29) is said to converge quadratically. More specifically, we say that
qj — >• v quadratically as j — >• oo if there exists a nonzero constant C such that

The estimates that we have made above indicate that Rayleigh quotient iteration
typically converges quadratically when it does converge.

A rule of thumb that one sometimes hears is this: quadratic convergence means
that the number of correct digits doubles with each iteration. This is true if (7 w 1 in
(5.3.29) and (5.3.30), for if qj agrees with Vi to Sj decimal places, then || Vi — qj ||2 w
lQ-*i. Thus, by (5.3.29) with C « 1, \\Vi - qj+i ||2 w 10"2^; that is, qj+1 agrees
with Vi to about 2sj decimal places. Even if C $ 1, the rule of thumb is valid in the
limit. If C w 10*, then \\Vi — qj+i ||2 « 10i-2Sj;. Thus qj+i agrees with Vi to about
2sj — t decimal places. As Sj grows, t becomes increasingly insignificant. Once Sj
is large enough, t can be ignored.

In Example 5.3.26 the rate of convergence appears to be better than quadratic,
since the number of correct digits roughly triples with each iteration. This is not
an accident, rather it is a consequence of the special form of the matrix. Note
that in this example A is a real symmetric matrix. For matrices of this type, the
Rayleigh quotient approximates the eigenvalue better than Theorem 5.3.25 would
indicate. In Section 5.4 we will see (Exercise 5.4.33) that for symmetric matrices, if
||u-7||2 =0(e) , then|A-p| = 0(e2). (The notation is that of Theorem 5.3.25.)
Using this estimate instead of Theorem 5.3.25 to estimate TJ, we find that

This is called cubic convergence. More precisely, qj —> v cubically as j —>• oo if
there is a constant (7^0 such that

In this case the number of correct digits roughly triples with each iteration.

Exercise 5.3.32 In Example 5.3.26, the computations were performed using IEEE standard
double-precision floating point arithmetic, which gives about sixteen decimal digits
accuracy. If the computations had been done in quadruple precision arithmetic.
About how may correct digits would you expect the iterate q$ to have? D
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Quite a lot can be said about Rayleigh quotient iteration in the symmetric case
that cannot be said in general. Not only is the convergence cubic when it occurs,
it is also known that Rayleigh quotient iteration converges for almost all choices of
starting vector. Of course the eigenvector that is reached depends on the choice of
starting vector. Unfortunately there is no simple characterization of this dependence.
See [54, Chapter 4] for details.

Rayleigh quotient iteration can be expensive. Since a different shift is used at each
iteration, a new LU decomposition is needed at each step. This costs O(n3) flops per
iteration for a full matrix and thus makes the method too expensive. However, there
are some classes of matrices for which Rayleigh quotient iteration is economical.
For example, a matrix A is said to have upper Hessenberg form if a^ = 0 whenever
i > j + 1. This means that the matrix has the nearly triangular form

Exercise 5.3.33 Let A be an upper Hessenberg matrix.

(a) Show that an LU decomposition of A (with partial pivoting) can be accom-
plished in about n2 flops. What special form does L have in this case?

(b) Show that a QR decomposition of A can be accomplished by applying a
sequence of n — 1 plane rotators to A. Show that the total flop count is O(n2),
assuming the factor Q is not assembled but left as a product of rotators.

(c) If Q were assembled, what special form would it have?

a

Exercise 5.3.33 shows that we can apply Rayleigh quotient iteration to an upper
Hessenberg matrix at a cost of only O(n2) flops per iteration, which is relatively
economical. Hessenberg matrices will play an important role in this chapter. In
Section 5.5 we will see that the eigenvalue problem for an arbitrary matrix can be
reduced to that of finding the eigenvalues (and eigenvectors, if desired) of a related
upper Hessenberg matrix. We can use Rayleigh quotient iteration to attack the
Hessenberg matrix at reasonable cost. However, we will not focus on Rayleigh
quotient iteration. Instead we will develop a more powerful algorithm, the QR
algorithm, which is based on the QR decomposition. Rayleigh quotient iterations
takes place implicitly within (certain versions of) the QR algorithm.

Exercise 5.3.34 Let A — . Write a simple MATLAB script to perform Rayleigh
[ -2 1 J

quotient iteration on A.

(a) Use QO = [ 1 1 ] as a starting vector. Iterate until the limit of machine
precision is reached. (Use format long to display 15 digits.) Notice that
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the iterates converge to a different eigenvector than in Exercises 5.3.7 and
5.3.17. Notice also that once the iterates get close to the limit, the number
of correct digits roughly doubles with each iteration. This is true of both the
iteration vector and the Rayleigh quotient. Thus both converge quadratically.

(b) Repeat part (a) with the starting vector g0 = [ 1 0 ] . This time the iterates
converge to the same eigenvector as in Exercises 5.3.7 and 5.3.17.

D

Exercise 5.3.35 Work this problem by hand. Consider the real, symmetric matrix

0 1
1 0 j

(a) Apply Rayleigh quotient iteration to A with starting vector q0 = [ 1 0 ] .
This is an exceptional case in which Rayleigh quotient iteration fails to con-
verge.

(b) Calculate the eigenvalues and eigenvectors by some other means and show that
(i) the iterates qo, qi, qz, ... exactly bisect the angle between the two linearly
independent eigenvectors and (ii) the Rayleigh quotients po, pi, p%, ... lie
exactly half way between the two eigenvalues. Thus the sequence "cannot
decide" which eigenvector to approach.

D

Exercise 5.3.36 Let

Use Rayleigh quotient iteration with various starting vectors to calculate three linearly
independent eigenvectors and the associated eigenvalues. You can use the MATLAB
script you wrote for Exercise 5.3.34. D

Additional Exercises

Exercise 5.3.37 Each of the following sequences of positive numbers converges to zero.
For each sequence (a,-), determine whether (a.j) converges (i) slower than lin-
early (i.e. limj-j.oo aj+i/Oj — 1), (ii) linearly (i.e. 0 < lim^oo aj+i/a,j = r <
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(d) ID"3, 10~6, lO-9, 10~12, 10~15, . . .

(e) 0.9, 0.81, 0.729, (0.9)4, (0.9)5,...

(f) 10-1,10-3,10~9,10-27,10-81,...

Notice that quadratic and cubic convergence are qualitatively better than linear con-
vergence. However, linear convergence can be quite satisfactory if the convergence
ratio r is small enough. Convergence that is slower than linear is very slow. D

Exercise 5.3.38 The intent of this exercise is to show that quadratic convergence is nearly
as good as cubic convergence. Suppose algorithm X produces a sequence (QJ) such
that || QJ — V{ | = a,j —>• 0 quadratically. Define a new algorithm Y for which one
step consists of two steps of algorithm X. Then algorithm Y produces a sequence
QJ for which \\qj — Vi\\ — bj = a<2j. Prove that bj ->• 0 quartically, that is,

. Thus the convergence of method Y is faster than cubic.
D

Exercise 5.3.39 Suppose QJ ->• v linearly with convergence ratio r. Show that on each
iteration the number of correct decimal digits increases by about m = — Iog10 r. (A
rigorous argument is not required.) Thus the rate of increase in the number of correct
digits is constant. D

Exercise 5.3.40 The residents of Pullburg shop for groceries exactly once a week at one of
three markets, named 1,2, and 3. They are not faithful customers; they switch stores
frequently. For i, j = 1, 2, 3, let Pij be a number between 0 and 1 that represents
the fraction of people who shopped at store j in a given week who will switch to
store i in the following week. This can also be interpreted as the probability that a
given customer will switch from store j to store i from one week to the next. These
numbers can be arranged into a matrix P. Suppose the values of the pij for Pullburg
are

Since p23 = .31, 31 percent of the people who shop at store 3 in a given week will
switch to store 2 in the following week. Fifty-five percent of the people who shopped
in store 3 will return to store 3 the following week, and so on. Notice that the sum of
the entries in each column of P is one.

(a) A matrix P 6 En x n whose entries are nonnegative and whose column sums are
all 1 is called a stochastic matrix. If Pullburg had n stores, the probabilities p^
would form an n x n matrix. Show that regardless of what the probabilities are,
the resulting P e Enxn must be a stochastic matrix. Show that wTP = WT,
where WT = [1, 1, • • •, 1 ], and 1 is an eigenvalue of P. (We call WT a left
eigenvector of P.) The Perron-Frobenius theory of non-negative matrices [42],
[46] guarantees that, if all (or "enough") of the p^ are strictly positive, then 1
is the dominant eigenvalue of P.
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(b) Let qk G M3 be a vector whose three components represent the fraction of
people in Pullburg who shopped at stores 1, 2, and 3, respectively, in week k.
For example, if q20 = [ 0.24 0.34 0.42 ]T, then 24% of the population
shopped in store 1, 34% in store 2, and 42% in store 3 during week 20. Show
that

for all k. The sequence (qk] is called a Markov chain. Equation (5.3.41) shows
that we can compute a Markov chain by applying the power method with the
transition matrix P and scaling factor 1.

(c) Assuming that at week 1 one third of the population shopped at each store,
calculate the fraction that visited stores 1, 2, and 3 in subsequent weeks by
executing the Markov process (5.3.41) repeatedly. Use MATLAB to do the
calculations. What is the long-term trend?

(d) How could you have determined the long-term trend without executing the
Markov process? Use MATLAB's eig command to determine the long-term
trend without executing the Markov process.

(e) Calculate the ratio |A2/Ai | to determine the rate at which the weekly state
vectors qk approach the limiting value.

D

Exercise 5.3.42 Stochastic matrices, introduced in the previous exercise, provide an example
of a class of matrices for which the dominant eigenvalue tends to be significantly
larger than the others.

(a) Generate a 20 x 20 random stochastic matrix. For example,

P = r and(20) ;
P = P* inv (d iag ( sum(P ,1 ) ) ) ;

The first command (rand, not randn) generates a matrix with random (non-
negative) entries uniformly distributed in [0,1]. The second command rescales
each column by dividing it by its column sum. Check that the matrix really is
stochastic. Compute the eigenvalues and the ratio

(b) Starting from a random starting vector q = rand ( 2 0 , 1 ) , compute enough
iterates of the Markov chain (qj) to observe that it converges reasonably
quickly.

D

Exercise 5.3.43 This exercise is intended to convince you that if a vector q is chosen at
random, then in the expansion
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the coefficient c\ is almost certain to be nonzero.

(a) Picture the situation in R2. Let v\ and v% be any two linearly independent
vectors in R2. The set of all vectors q — c\v\-\- c^v 2 such that c\ — 0 is just
the subspace span^}. Sketch this subspace and note that it is a very small
subset of E2 . A vector chosen at random is almost certain not to lie in it.

(b) Repeat part (a) in E3.

In general any proper subspace is a very small subset of the larger space in which it
lies. D

Exercise 5.3.44 Show that the sequence generated by the power method
converges linearly to G\VI with convergence ratio r — |il\\ |, provided that | AI | >
|λ2 | > |λ 3 | ,ci ^0, andc2 0.6 D

Exercise 5.3.45 What happens if the power method is applied with a starting vector q —
c\v\ + C2V2 + • • • + cnvn for which GI = 0 . . .

(a) ... assuming the arithmetic is done exactly?

(b) ... assuming roundoff errors are made?

D

Exercise 5.3.46 Suppose the power method is applied to A e <£nxn

 using some scaling
strategy that produces a sequence (QJ) that converges to a dominant eigenvector.
Prove that the sequence of scale factors (CTJ) converges to the dominant eigenvalue.

D

Exercise 5.3.47 Let A G Cn x n be a matrix with eigenvalues A and ^ such that A ^ /j,.
Suppose that p is not an eigenvalue of A.

(a) Show that \\A — pl\\ > | λ — p\, where ||•|| denotes any induced matrix norm.

(b) Show that n(A — pi] > | λ — p \ / \ µ — p\, where K denotes the condition
number with respect to any induced matrix norm.

(c) Let (PJ) be a sequence of shifts such that PJ -> µ. Prove that k( A — pjl) -> oo
as j -> oo.

D

Exercise 5.3.48 Prove Theorem 5.3.24 two different ways.

(a) Use a complex QR decomposition of q G Cn x l to prove that the Rayleigh
quotient minimizes || Aq — pq\\2- (The factor Q in the QR decomposition
satisfies Q*Q = I.)

6It is possible to construct examples (satisfying | A2 | = | AS |) that violate (5.3.4). These examples do,
however, satisfy (5.3.3). See Exercise 5.3.11.



334 EIGENVALUES AND EIGENVECTORS I

(b) Letting p = a + /3i, the function

is a smooth function in the two real variables a and fi. Use differential calculus
to show that / is minimized if and only if p = a + /3i is the Rayleigh quotient.

D

Exercise 5.3.49 Let where a, b € E and 6 ^ 0 . Perform Rayleigh quotient

iteration with starting vector q$ = [ c d ] , where c, d G E, and c2 + d2 = 1.
Analyze the problem. D

5.4 SIMILARITY TRANSFORMS

Two matrices A, B € (£nxri
 are saj^ ^o j-^ simnar if there exists a nonsingular

SeC n X n suchthat
B^S^AS. (5.4.1)

Equation (5.4.1) is called a similarity transformation, and 5 is called the transforming
matrix. Obviously equation (5.4.1) is equivalent to

AS = SB. (5.4.2)

This form is often easier to use.
As we shall see, similar matrices have the same eigenvalues, and their eigenvectors

are related in a simple way. Some of the most important eigenvalue algorithms employ
a sequence of similarity transformations to reduce a matrix to a simpler form. That is,
they replace the original matrix by a similar one whose eigenvalues are either obvious
or easily determined. This section prepares us for those algorithms by setting out
some of the basic facts about similarity transformations. In the process we will
cover some important material on special classes of matrices such as symmetric and
orthogonal matrices and their complex counterparts.

Theorem 5.4.3 Similar matrices have the same eigenvalues.

Proof. Suppose A and B are similar. Then there is a nonsingular S such that B =
S~1AS. To show that A and B have the same eigenvalues, it suffices to show that
they have the same characteristic polynomial. Now XI — B — S~1XIS — S~1AS =
S-l(XI-A)S,sodet(\I-B) = det(5~1) det(AJ-A) det(S) = det(XI-A). To
get this last equality we are using the facts that multiplication of complex numbers is
commutative and det(5-1) det(S') = 1. Thus A and B have the same characteristic
polynomial. D

This proof shows that the similarity transformation preserves the algebraic
multiplicity of the eigenvalue. That is, if p is a root of order k of the equation
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det(AJ - A) - 0, then it is also a root of det(λ/ - B] = 0 of order k. The next
theorem shows how the eigenvector is transformed.

Theorem 5.4.4 Suppose B = S~1AS. Then v is an eigenvector of A with eigenvalue
X if and only if S~lv is an eigenvector of B with associated eigenvalue A.

Proof. Suppose Au = λv. Then B(S-lv) = S^ASS'^v = S'^Av = S~ lλv =
λ ( S ~ l v ) . Thus B(S-lv) = X(S~lv). Conversely, if B(S~lv) = λ ( S ~ 1 v ) , one
easily deduces that Av = λv by a similar argument. n

Exercise 5.4.5 Let D be any diagonal matrix. Find a set of n linearly independent eigenvectors
of D, thereby demonstrating that D is semisimple. n

The next theorem demonstrates that a matrix is semisimple if and only if it is
similar to a diagonal matrix.

Theorem 5.4.6 Let A G Cn x n be a semisimple matrix with linearly independent
eigenvectors v\, v%, . . . ,vn and eigenvalues λi, λ%, . . . , Xn. Define a diagonal matrix
D and a nonsingular matrix V by D — diag{λi, . . . , λn}and V = [ v\ • • • vn ].
Then V~1AV — D. Conversely, suppose A satisfies V~1AV = D, where D is
diagonal and V is nonsingular. Then the columns of V are n linearly independent
eigenvectors of A, and the main-diagonal entries ofD are the associated eigenvalues.
In particular, A is semisimple.

Exercise 5.4.7 Prove Theorem 5.4.6. Work with the simpler equation AV = VB instead of
B = V~1AV.

(a) Suppose A is semisimple, and D and V are as described. Show that the
equations Av i = Vi\i, i = 1, . . . , n, imply AV — VD.

(b) Conversely, show that the equation AV = VD implies Avi = ViX

n

Theorem 5.4.6 is about semisimple matrices. With considerable additional effort,
we could obtain an extension of Theorem 5.4.6 that is valid for all matrices. See the
discussion of the Jordan canonical form in [29], [42], or [46].

Theorem 5.4.6 tells us that we can solve the eigenvalue problem completely if we
can find a similarity that transforms A to diagonal form. Unfortunately the proof is
not constructive; it does not show us a way to construct D and V without knowing
the eigenvalues and eigenvectors in advance. The theorem does, however, suggest a
simple form toward which we might work. For example, we might try to construct a
sequence of similar matrices A — AQ, A\ , A<2, . . . , that converges to diagonal form.

It turns out that we will be able to carry out such a program for certain classes of
matrices, but in general it is too ambitious. For one thing, it cannot succeed if the
matrix is defective. Even if the matrix is semisimple, the eigenvector matrix V can be
ill conditioned, which is almost as bad. Similarity transformations by ill-conditioned
matrices can cause disastrous growth of errors.



336 EIGENVALUES AND EIGENVECTORS I

Geometric View of Semisimple Matrices

Recall from elementary linear algebra that every matrix A 6 cnxn can be viewed
as a linear transformation whose action is to map x G Cn to Ax 6 Cn. If A
is semisimple, then its action on Cn is easily pictured. A has a set of n linearly
independent eigenvectors vi,..., vn, which form a basis for Cn. Every x G Cn can
be expressed as a linear combination x = c\v\ + • • • + cnvn. The action of A on
each CiVi is simply to multiply it by the scalar A^, and the action of A on x is just a
sum of such simple actions: Ax = \\G\VI + \zC2V2 + • • • + Xncnvn.

Theorem 5.4.6 is actually just a restatement of this fact in matrix form. We
will attempt to clarify this without going into detail. Recall again from elementary
linear algebra that a linear transformation A : Cn —> Cn can be represented in
numerous ways. Given any basis of Cn, there is a unique matrix that represents A
with respect to that basis. Two matrices represent the same linear transformation
(with respect to different bases) if and only if they are similar. Thus a similarity
transformation amounts just to a change of basis, that is, a change of coordinate
system. Theorem 5.4.6 says that if A is semisimple, then there exists a coordinate
system in which it is represented by a diagonal matrix. This coordinate system has
eigenvectors of A as its coordinate axes.

Unitary Similarity Transformations

In Chapter 3 we introduced orthogonal matrices and noted that they have numerous
desirable properties. The complex analogue of the orthogonal matrix is the unitary
matrix, which was also introduced in Chapter 3. Recall that a matrix U £ Cnxn

is unitary if U*U = I, that is, U* = U~1. The class of unitary matrices contains
the (real) orthogonal matrices. In Exercises 3.2.51 through 3.2.59 you showed that:
(1) The product of unitary matrices is unitary. (2) The inverse of a unitary matrix
is unitary. (3) The complex inner product ( x , y ) = y*x and Euclidean norm are
preserved by unitary matrices; that is, (Ux, Uy) = (x, y) and || Ux ||2 = || x ||2 for all
x,y € Cn. (4) Rotators and reflectors have complex analogues. (5) Every A e Cnxn

can be expressed as a product A = QR, where Q is unitary and R is upper triangular.
You also showed (Exercise 3.4.37) that a matrix U € Cnxn is unitary if and only
if its columns are orthonormal. Of course the orthonormality is with respect to the
complex inner product.

Two matrices A, B 6 Cnxn are unitarily similar if there is a unitary matrix
U e cnxn such that B - U~1AU. since U~l = U*, the similarity can also be
expressed as B = U*AU. If A, B, and U are all real, then U is orthogonal, and A
and B are said to be orthogonally similar. Unitary similarity transformations have
some nice properties not possessed by similarity transformations in general.

Exercise 5.4.8

(a) Show that if U is unitary, then || U ||2 = 1 and K2(U) = 1.
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(b) Show that if A and B are unitarily similar, then || -E? ||2 = || A ||2 and ̂ (A) =
K*(B).

(c) Suppose B — U*AU, where U is unitary. Show that if A is perturbed slightly,
then the resulting perturbation in B is of the same magnitude. Specifically,

D

This exercise shows that any errors that a matrix may contain will not be amplified
by subsequent unitary similarity transformations. The same cannot be said of arbitrary
similarity transformations (Exercises 5.4.27 and 5.4.28).

The results in Exercise 5.4.8 are related to results from Section 3.2, in which
we showed that algorithms built using well-conditioned transformation matrices, in
particular rotators and reflectors, are normwise backward stable. Those results are
valid for unitary matrices as well. Thus all algorithms that consist of a sequence
of transformations by unitary matrices (and in particular the complex analogues of
reflectors and plane rotators) are normwise backward stable.

In addition to their favorable error propagation properties, unitary similarity trans-
formations also preserve certain desirable matrix structures. For example, consider
the following theorem. (For other examples see Exercises 5.4.35 to 5.4.41.)

Theorem 5.4.9 IfA = A* and A is unitarily similar to B, then B — B*.

Proof. Since B = U*AU for some unitary 17, we have B* = (U* AU}* =
U*A*U** = U*AU = B. D

Exercise 5.4.10 Show by example that the conclusion of Theorem 5.4.9 does not hold for
general similarity transformations. d

Recall that a matrix that satisfies A = A* is called Hermitian. In words, The-
orem 5.4.9 states that the Hermitian property is preserved under unitary similarity
transformations. If we take all of the matrices in Theorem 5.4.9 to be real, we see
that if A is real and symmetric and B is orthogonally similar to A, then B is also
symmetric. In other words, the symmetry property is preserved under orthogonal
similarity transformations. Eigenvalue problems for which the coefficient matrix is
symmetric occur frequently in applications. Since symmetric and Hermitian matri-
ces have special properties that make them easier to handle than general matrices, it
is useful to have at a hand a class of similarity transformations that preserve these
properties.

The next result, Schur's theorem, is the most important result of this section. It
states that every (square) matrix is unitarily similar to a triangular matrix.

Theorem 5.4.11 (Schur's Theorem) Let A 6 Cnxn. Then there exists a unitary
matrix U € Cnxn and an upper-triangular matrix T 6 Cnxn such that T = U*AU.

We can equally well write A = UTU*. This is a Schur decomposition of A.
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Proof. The proof is by induction on n. The result is trivial for n = 1. Now let us
show that it holds for n = k, given that it holds for n = k - 1. Let A e Ck x k. Let A
be an eigenvalue of A and v an associated eigenvector, chosen so that || v \\2 = 1. Let
f/i be any unitary matrix that has v as its first column. There are many such matrices:
just take any orthonormal basis of Ck whose first member is v, and let U\ be the
matrix whose columns are the members of the basis. Let W G Ckx(k-1) denote the
submatrix of Ui consisting of columns 2 through k, so that U\ — [ v W ]. Since
the columns of W are orthogonal to v, W*v = 0. Let A\ — U*AUi. Then

Since Av = Xv, it follows that v * Av = X and W*Av = XW*v = 0. Let A =
W*AW. Then^i has the form

A £ C^ 1 ^ X ( A ; !), so by the induction hypothesis there exists a unitary matrix t/2

and an upper-triangular matrix f such that T = U$AU<2. Define U2 e C
kxk by

Then C/2 is unitary, and

which is upper triangular. Let us call this matrix T, and let U — UiU?. Then
D

The main-diagonal entries of T are the eigenvalues of A. Thus, if we can find
the unitary similarity transformation U that transforms A to upper triangular form,
then we have the eigenvalues of A. Unfortunately the proof of Schur's theorem
is non-constructive; it does not give us a recipe for computing U without knowing
eigenvectors in advance. Nevertheless it gives us reason to hope that we will be able
to create an algorithm that produces a sequence of unitarily similar matrices A — AQ ,
AI, A?, ... that converges to upper-triangular form. Indeed there is an algorithm
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that does essentially this, namely, the QR algorithm, which we will introduce in
Section 5.6.

It follows easily from the equation T = U*AU that the first column of U is
necessarily an eigenvector of A (regardless of how we may choose to compute U and
T). Indeed, rewrite the equation as AU — UT, then compare first columns. The
first column of AU is Au\, where u\ denotes the first column of U. This must equal
the first column of UT, which is u\tn. Thus Au\ = u\tn, which means that u\ is
an eigenvector of A with associated eigenvalue tu. In general the other columns of
U are not eigenvectors of A. The extraction of the other eigenvectors requires a bit
more work. See Exercise 5.4.31 and Section 5.8.

Schur's theorem is comparable in spirit to Theorem 5.4.6, which states, in part,
that every semisimple matrix is similar to a diagonal matrix. Schur's theorem is more
modest in the sense that the triangular form is not as simple and elegant as the diagonal
form of Theorem 5.4.6. On the other hand, Schur's theorem is valid for all matrices,
not just the semisimple ones. Moreover, the unitary similarity transformations of
Schur's theorem are well behaved from a numerical standpoint.

A class of matrices for which Schur's theorem and Theorem 5.4.6 overlap is that
of Hermitian matrices. If A is Hermitian, the matrix T = U* AU is not only upper
triangular but Hermitian as well (Theorem 5.4.9). This obviously implies that T is
diagonal. This result is known as the spectral theorem for Hermitian matrices.

Theorem 5.4.12 (Spectral Theorem for Hermitian Matrices) Suppose A G Cn x n

is Hermitian. Then there exists a unitary matrix U G Cn x n and a diagonal matrix
D G Enxn such that D = U*AU. The columns ofU are eigenvectors and the
main-diagonal entries ofD are eigenvalues of A.

We can equally well write A = UDU*. This is a spectral decomposition of A.
That the columns of U are eigenvectors follows from the last part of Theorem 5.4.6.

The diagonal matrix is real because D — D*. This proves that the eigenvalues of a
Hermitian matrix are real.

Corollary 5.4.13 The eigenvalues of a Hermitian matrix are real. In particular, the
eigenvalues of a real symmetric matrix are real.

Corollary 5.4.14 Every Hermitian matrix in Cnxn has a set ofn orthonormal eigen-
vectors. In particular, every Hermitian matrix is semisimple.

There are other classes of matrices for which spectral theorems analogous to
Theorem 5.4.12 hold. A matrix is called skew Hermitian if A* = —A. We are
already familiar with the unitary matrices, which satisfy A* = A~l or, equivalently,
A* A = AA* — /. A matrix is normal if A* A = AA*. Spectral theorems for these
classes of matrices are discussed in Exercises 5.4.39 through 5.4.41.

The class of normal matrices is of interest for at least two reasons. For one thing, it
contains all Hermitian, skew-Hermitian, and unitary matrices, so every property that
holds for normal matrices holds for these classes of matrices as well. Furthermore,
this is exactly the class of matrices for which a spectral theorem holds; the following
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theorem states that a matrix is unitarily similar to a diagonal matrix if and only if it
is normal.

Theorem 5.4.15 (Spectral Theorem for Normal Matrices) Let A e Cnxn. Then
A is normal if and only if there exists a unitary matrix U € Cnxn and a diagonal
matrix D e Cnxn such that D = U*AU.

This theorem is proved in Exercise 5.4.41.

Corollary 5.4.16 (a) Let A e Cnxn be normal. Then A has a set ofn orthonor-
mal eigenvectors.

(b) Conversely, if A € Cnxn
 nas a set ofn orthonormal eigenvectors, then A is

normal.

Exercise 5.4.17 Verify Corollary 5.4.16. D

Corollary 5.4.18 (a) Every normal matrix is semisimple.

(b) Every skew-Hermitian matrix has a set of n orthonormal eigenvectors. In
particular, every skew-Hermitian matrix is semisimple.

(c) Every unitary matrix has a set ofn orthonormal eigenvectors. In particular,
every unitary matrix is semisimple.

Real Matrices

If we want to solve the general eigenvalue problem, we have to be prepared to deal
with complex numbers, even if the matrix is real. There is, however, one important
class of real matrices for which we can solve the entire eigenvalue problem without
going outside of the real number system, namely the symmetric matrices.

Theorem 5.4.19 (Spectral Theorem for Real Symmetric Matrices) Suppose A G
Enxn 15 symmetric. Then there exists an orthogonal matrix U £ Enxn and a
diagonal matrix D e Enxn such that D = UTAU.

Proof. The proof is by induction on n. It is the same as the proof of Schur's theorem,
except that the matrices are real and we can exploit symmetry. Therefore we just
sketch the proof.

Let A be any eigenvalue of A. Since A is real, it has a real eigenvector v, which may
be chosen so that \\v\\2 = 1, associated with it. Let U\ be a real orthogonal matrix
whose first column is v, and let A\ — Uf AUi. Then A\ is real and symmetric, and
(as in the proof of Schur's theorem)

" A
0

0

0 ••• 0 "

A
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Since A eR^n 1)x(n *) is symmetric, we can assume inductively that there is an
orthogonal matrix U^ and a diagonal matrix D such that . Let

and U - Ui U2. Then U is orthogonal and D = UTAU. D

Exercise 5.4.20 Writedown a detailed proof of Theorem 5.4.19. D

Corollary 5.4.21 Let ,A E Rnxn be symmetric. Then A has a set of n real, or-
thonormal eigenvectors.

When working with nonsymmetric matrices, we must be prepared to deal with
complex numbers. Nevertheless it usually pays to delay their introduction for as long
as possible, since complex arithmetic is much slower than real arithmetic. It turns out
that we can bring a matrix nearly to triangular form without using complex numbers.

A matrix T G Rnxn is called quasi-triangular if it has the block upper triangular
form

where each main diagonal block is either 1 x 1 or 2 x 2, and each 2x2 block has
complex eigenvalues. Thus the 1 x 1 blocks carry the real eigenvalues of T, and the
2x2 blocks carry the complex conjugate pairs. It is a simple matter to compute the
eigenvalues of a 2 x 2 matrix. One simply applies the quadratic formula (carefully)
to its characteristic polynomial. The Winter-Murnaghan Theorem, also known as the
Real Schur Theorem states that every matrix in Rn x n is orthogonally similar to a
quasi-triangular matrix.

Theorem 5.4.22 (Wintner-Murnaghan) Let A G Rnxn. Then there exist an
orthogonal matrix U G Rn x n and a quasi-triangular matrix T e Mn x n such that
T = UTAU.

The proof is like that of Schur's theorem, except that the dimension has to be
reduced by two whenever we encounter a pair of complex eigenvalues. See Exer-
cise 5.4.47 or Exercise 6.1.11.

If A is symmetric, the Wintner-Murnaghan Theorem reduces to Theorem 5.4.19.
Other classes of real matrices for which the Wintner-Murnaghan Theorem simplifies
nicely are the skew-symmetric (AT = —A), orthogonal (AT = A~l), and normal
(ATA = AAT} matrices. See Exercises 5.4.48 through 5.4.51.
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Additional Exercises

Exercise 5.4.23 MATLAB's command [V,D] = eig(A) produces a diagonal D whose
main-diagonal entries are the eigenvalues of A. The associated eigenvectors are the
columns of V. The matrices satisfy AV = VD. Normally V is nonsingular, and
we have D = V~1AV, as in Theorem 5.4.6. However, this is impossible if A is not
semisimple. Try out MATLAB's eig command on the defective matrix

0 0 2

Comment on the output. D

Exercise 5.4.24 The geometric multiplicity of an eigenvalue is defined to be the dimension
of the associated eigenspace {v 6 Cn | Av = Xv}. Show that a similarity transfor-
mation preserves the geometric multiplicity of each eigenvalue. D

Exercise 5.4.25 Let A be a semisimple matrix. How are the geometric and algebraic
multiplicities related? Recall that the algebraic multiplicity of an eigenvalue A is
equal to the multiplicity of A as a root of the characteristic equation. D

Exercise 5.4.26 Suppose A is similar to B. Show that if A is nonsingular, then B is also
nonsingular, and A~1 is similar to B~l. D

Exercise 5.4.27 Let S — , where a is a real parameter.

(a) Let A = _ , and B = S~1AS. Calculate B and conclude that || B \\
[ U 1 J

can be made arbitrarily large by taking a large. (The same is true of || B ||2.
We work with the co-norm for convenience.)

I" 1 0 1 e f 1 1 1
( b ) L e t A = n , a n d < L 4 = - . - . Notice that || SA^ /\\A ^ = e.

Let B = S~1AS and B + 6B = S~l(A + 6A)S. Calculate B and 6B, and
show that l l ^ - B l l o o / H - B l l o o can be made arbitrarily large by taking a large.
Notice that this example is even more extreme than that of part (a), since
|| B || is (asymptotically) proportional to a2, not a.

D

Exercise 5.4.28 Suppose B = S~1AS and B + SB = S~l(A + 6A)S. Show that
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where | • || denotes any matrix norm, and K denotes the condition number associated
with that norm. Notice that the results of parts (b) and (c) of Exercise 5.4.8 are special
cases of these results. D

Exercise 5.4.29 Let v € Cn be any nonzero vector. Show how to build a (complex) reflector
whose first column is a multiple of v. Such a reflector could play the role of U\ in
the proof of Schur's theorem. D

Exercise 5.4.30 Show that in Schur's theorem . . .

(a) T can be chosen so that the eigenvalues of A appear in any desired order on
the main diagonal of T.

(b) U can be chosen so that its first column equals any desired eigenvector of A
for which \\v\\2 = I. (Hint: Show that in the proof of Schur's theorem, the
first column of U\ equals the first column of U.)

D

Exercise 5.4.31 Let T 6 Cnxn be an upper-triangular matrix with distinct eigenvalues.
Sketch an algorithm that calculates a set of n linearly independent eigenvectors of T
by finding solutions of equations of the form (XI — T)v = 0. About how many flops
does the whole operation require? What difficulties can arise when the eigenvalues
are not distinct? This exercise will be worked out in Section 5.8. n

Exercise 5.4.32 Let A 6 Cnxn be a defective matrix. Use Schur's theorem to show that for
every e > 0, there is a semisimple matrix A6 6 Cnxn such that \\A — Ae ||2 < e.
Thus the set of semisimple matrices is dense in Cn x n . D

Exercise 5.4.33 In Section 5.3 it was claimed that for real symmetric matrices, the Rayleigh
quotient gives a particularly good approximation to the associated eigenvalue. In this
exercise we verify that claim for Hermitian matrices. Let A G Cnxn be Hermitian,
and let q 6 Cn be a vector satisfying || q ||2 = 1 that approximates an eigenvector v
of A. Assume that ||v||2 = 1 as well. By Corollary 5.4.14, A has n orthonormal
eigenvectors v\ , . . . , vn, with associated eigenvalues AI , . . . , An. We can choose vi ,
. . . , v n in such a way that vi = v. The approximate eigenvector q can be expressed
as a linear combination ofvi,...,vn: q = c\v\ + • • • + cnvn.

(a)

(b) Show that £)£=2 | ck | < ||i>i - q\\l-

(c) Derive an expression for the Rayleigh quotient p — q*Aq in terms of the
coefficients a and the eigenvalues \i .

(d) Show that where

Thus if || ui -q\\2 = O(e),then|Ai - p\ = O(e2). D
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Exercise 5.4.34 Use Rayleigh quotients to obtain a second proof that the eigenvalues of a
Hermitian matrix are real (cf. Exercise 1.4.63). D

Exercise 5.4.35 Recall that a Hermitian matrix is called positive definite if for all nonzero
x 6 Cn, x* Ax > 0. Prove that if A is positive definite and B is unitarily similar to
A, then B is also positive definite. D

Exercise 5.4.36 Use Rayleigh quotients to prove that the eigenvalues of a positive definite
matrix are positive. The next exercise indicates a second way to prove this. D

Exercise 5.4.37 Let A e Cnxn be a Hermitian matrix. Use Theorem 5.4.12 and the result of
Exercise 5.4.35 to prove that A is positive definite if and only if all of its eigenvalues
are positive. D

Exercise 5.4.38 A Hermitian matrix A G Cnxn is positive semidefinite if x*Ax > 0 for
all x G Cn. Formulate and prove results analogous to those of Exercises 5.4.35 to
5.4.37 for positive semidefinite matrices. D

Exercise 5.4.39 A matrix A £ Cnxn is skew Hermitian if A* = -A.

(a) Prove that if A is skew Hermitian and B is unitarily similar to A, then B is
also skew Hermitian.

(b) What special form does Schur's theorem (5.4.11) take when A is skew Hermi-
tian?

(c) Prove that the eigenvalues of a skew Hermitian matrix are purely imaginary;
that is, they satisfy A = — A. Give two proofs, one based on Schur's theorem
and one based on the Rayleigh quotient.

D

Exercise 5.4.40

(a) Prove that if A is unitary and B is unitarily similar to A, then B is also unitary.

(b) Prove that a matrix T 6 Cnxn that is both upper triangular and unitary must be
a diagonal matrix. (You will prove a more general result in Exercise 5.4.41.)

(c) What special form does Schur's theorem (5.4.11) take when A is unitary?

(d) Prove that the eigenvalues of a unitary matrix satisfy A = A"1. Equivalently;
A A = 1 or | A | = 1; that is, the eigenvalues lie on the unit circle in the complex
plane. Give two proofs.

D

Exercise 5.4.41 A matrix A € Cnxn is normal if A A* = A* A.

(a) Prove that all Hermitian, skew-Hermitian, and unitary matrices are normal.
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Prove that if A is normal and B is unitarily similar to A,  then B is also normal. 

Prove that a matrix T E C n x n  that is both upper triangular and normal must 
be a diagonal matrix. (Hint: Use induction on n. Write T in the partitioned 
form 

then write down the equation TT* = T'T in partitioned form and deduce that 
s = 0 and ? is also (triangular and) normal.) 

Prove that every diagonal matrix is normal. 

Prove Theorem 5.4.15: A is normal if and only if A is unitarily similar to a 
diagonal matrix. 

0 

Exercise 5.4.42 Let D E Cnxn be a diagonal matrix. Show that . . . 
(a) D is Hermitian if and only if its eigenvalues are real. 

(b) D is positive semidefinite if and only if its eigenvalues are nonnegative. 

(c) D is positive definite if and only if its eigenvalues are positive. 

(d) D is skew Hermitian if and only if its eigenvalues lie on the imaginary axis of 
the complex plane. 

(e) D is unitary if and only if its eigenvalues lie on the unit circle of the complex 
plane. 

0 

Exercise 5.4.43 Let A E Cnxn be a normal matrix. Show that. . . 
(a) A is Hermitian if and only if its eigenvalues lie on the real axis. 

(b) A is positive semidefinite if and only if its eigenvalues are nonnegative. 

(c) A is positive definite if and only if its eigenvalues are positive. 

(d) A is skew Hermitian if and only if its eigenvalues lie on the imaginary axis. 

(e) A is unitary if and only if its eigenvalues lie on the unit circle. 

Exercise 5.4.44 Verify that the results of Exercise 5.4.33 can be carried over verbatim to 
normal matrices. Thus the good approximation properties of the Rayleigh quotient 

0 hold for normal matrices in general, not just Hermitian matrices. 
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Exercise 5.4.45 Let A 6 Mn x m . Then ATA and AAT are real symmetric matrices, so each
has a spectral decomposition as guaranteed by Theorem 5.4.19. For example, there
is an orthogonal matrix W e Rmxm and a diagonal matrix A € Emxm such that
ATA = WA.WT. How are the spectral decompositions of ATA and AAT related to
the singular value decomposition A = f/SFT? D

Exercise 5.4.46 Show that if A € Cnxn is normal, then its eigenvectors are singular vectors,
and the eigenvalues and singular values are related by aj — \ X3; |, j = 1 , . . . , n,
if ordered by decreasing magnitude. In particular, if A is positive definite, its
eigenvalues are the same as its singular values. D

Exercise 5.4.47 Prove Theorem 5.4.22 (Wintner-Murnaghan) by induction on n, using the
same general strategy as in the proof of Schur's theorem. Let A be an eigenvalue of
the matrix A G Mnxn . If A is real, reduce the problem exactly as in Schur's Theorem.
Now let us focus on the complex case. Suppose Av = Xv, where v = x + iy, x,
y G En, A = a + i/3, a, £ G M, and 0^0.

(a) Show that AZ = ZB, where Z - [ x y ] and Show

that the eigenvalues of B are A and

(b) Show that the matrix Z has rank two (full rank). In other words, x and y are
linearly independent. (Show that if they are not independent, then x and y
must satisfy Ax = Xx and Ay — Xy, and A must be real.)

(c) Consider a condensed QR decomposition (Theorem 3.4.7) Z — VR, where
V G Rnx2 has orthonormal columns, and R G R2x2 is upper triangular. Show
that AV - VC, where C is similar to B.

(d) Show that there exists an orthogonal matrix U\ G Enxn whose first two
columns are the columns of V. Let A\ = UfAUi. Show that A\ has the form

where ieE (n-2)x(n-2).

(e) Apply the induction hypothesis to A to complete the proof.

(f) Write out a complete and careful proof of the Wintner-Murnaghan Theorem.

Remarks: The equation AZ = ZB implies that the columns of Z span an invariant
subspace of A. We will discuss invariant subspaces systematically in Section 6.1.
Part (b) shows that this subspace has dimension 2. Part (c) introduces an orthonormal
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basis for the space. We note finally that the eigenvalues and the 2 x 2 blocks can be
made to appear in any order on the main diagonal of T. D

Exercise 5.4.48 A matrix A € Rnxn is skew symmetric if AT = -A. Thus a skew-symmetric
matrix is just a skew-Hermitian matrix that is real. In particular, the eigenvalues of a
skew-symmetric matrix are purely imaginary (Exercise 5.4.39).

(a) Show that if A e Enxn is skew symmetric and n is odd, then A is singular.

(b) What does a 1 x 1 skew-symmetric matrix look like? What does a 2 x 2
skew-symmetric matrix look like?

(c) What special form does Theorem 5.4.22 take when A is skew symmetric? Be
as specific as you can.

D

Exercise 5.4.49 The trace of a matrix A G Cnxn, denoted tr(A), is defined to be the sum of
the main diagonal entries:

(a) Show that for C, D e Cnxn, tr(C + D} = tr(C') + tr(D).

(b) Show that for C G Cnxm and D € Cmxn, tr(OD) = tr(DC).

(c) Show that where || • ||F denotes the Frobenius
norm (Example 2.1.22).

(d) Suppose A G Cnxn is normal, and consider the partition

where AH and A^i are square matrices. Show that \\Azi \\F = ||^i2||p"
(Hint: Write the equation A* A — A A* in partitioned form, and take the trace
of the (1,1) block.)

D

Exercise 5.4.50

(a) Suppose T e Cnxn is normal and has the block-triangular form

where TU and T22 are square matrices. Show that Ti2 = 0, and TH and T22

are normal.

(b) Suppose T e Cnxn is normal and has the block-triangular form
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with square blocks on the main diagonal. Use induction on k and the result
of part (a) to prove that T is block diagonal and the main-diagonal blocks are
normal.

D

Exercise 5.4.51 We now return our attention to real matrices.

(a) Let Show that A is normal if and only if either A is

symmetric or A has the form

(b) In the symmetric case A has real eigenvalues. Find the eigenvalues of

(c) What special form does Theorem 5.4.22 take when A € Enxn is normal?
Make use of the result from Exercise 5.4.50.

D

Exercise 5.4.52 Every orthogonal matrix is normal, so the results of Exercise 5.4.51 are valid
for all orthogonal matrices.

(a) What does a 1 x 1 orthogonal matrix look like?

(b)Give necessary and sufficent conditions on a and b such that the matrix

is orthogonal.

(c) What special form does Theorem 5.4.22 take when A is orthogonal? Be as
specific as you can.

D

Exercise 5.4.53

(a) Show that if A and B are similar matrices, then tr(A) = tr(#). (Hint: Apply
part (b) of Exercise 5.4.49 with C = S~l and D = AS.)

(b) Show that the trace of a matrix equals the sum of its eigenvalues.

D

Exercise 5.4.54 Prove that the determinant of a matrix equals the product of its eigenvalues.
D
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Exercise 5.4.55 Use MATLAB's help facility to find out about the commands schur
and rsf2csf . Use them to find the forms of Schur (Theorem 5.4.11) and Winter-
Murnaghan (Theorem 5.4.22) for the matrix

D

5.5 REDUCTION TO HESSENBERG AND TRIDIAGONAL FORMS

The results of the previous section encourage us to seek algorithms that reduce a
matrix to triangular form by similarity transformations, as a means of finding the
eigenvalues of the matrix. On theoretical grounds we know that there is no algorithm
that accomplishes this task in a finite number of steps; such an algorithm would
violate Abel's classical theorem, cited in Section 5.2. It turns out, however, that
there are finite algorithms, that is, direct methods, that bring a matrix very close to
upper-triangular form.

Recall that an n x n matrix A is called upper Hessenberg if a^ = 0 whenever
i > j + I. Thus an upper Hessenberg matrix has the form

In this section we will develop an algorithm that uses unitary similarity trans-
formations to transform a matrix to upper Hessenberg form in ^-n3 flops. This
algorithm does not of itself solve the eigenvalue problem, but it is extremely impor-
tant nevertheless because it reduces the problem to a form that can be manipulated
inexpensively. For example, you showed in Exercise 5.3.33 that both the LU and
QR decompositions of an upper Hessenberg matrix can be computed in O(n2) flops.
Thus Rayleigh quotient iteration can be performed at a cost of only 0(n2) flops per
iteration.

The reduction to Hessenberg form is especially helpful when the matrix is Her-
mitian. Since unitary similarity transformations preserve the Hermitian property, the
reduced matrix is not merely Hessenberg, it is tridiagonal. That is, it has the form
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Tridiagonal matrices can be manipulated very inexpensively. Moreover, the symme-
try of the matrix can be exploited to reduce the cost the reduction to tridiagonal form
to a modest 4/3n3 flops.

Exercise 5.5.1 Let A € Cnxn be tridiagonal.

(a) Show that the cost of an LU decomposition of A (with or without pivoting) is
O(n) flops.

(b) Show that the cost of a QR decomposition of A is O(ri) flops, provided the
matrix Q is not assembled explicitly.

D

Reduction of General Matrices

The algorithm that reduces a matrix to upper Hessenberg form is quite similar to the
algorithm that performs a QR decomposition using reflectors. It accomplishes the
task in n — 2 steps. The first step introduces the desired zeros in the first column, the
second step takes care of the second column, and so on.

Let us proceed with the first step. Partition A as

Let Qi be a (real or complex) reflector such that
|2), and let

0T

Let

which has the desired zeros in the first column. This operation is just like the first
step of the QR decomposition algorithm, except that it is less ambitious. Instead of
transforming all but one entry to zero in the first column, it leaves two entries nonzero.
The reason for the diminished ambitiousness is that now we must complete a similarity
transformation by multiplying on the right by . Letting and
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recalling that , we have

Because of the form of Qi, this operation does not destroy the zeros in the first
column. If we had been more ambitious, we would have failed at this point.

The second step creates zeros in the second column of A\, that is, in the first
column of Â\. Thus we pick a reflector Qi G C^n~2^x (n~2) in just the same way as
the first step, except that A is replaced by A\. Let

Then

We complete the similarity transformation by multiplying on the right by
Because the first two columns of Q% are equal to the first two columns of the identity
matrix, this operation does not alter the first two columns of A3/2. Thus

The third step creates zeros in the third column, and so on. After n — 2 steps
the reduction is complete. The result is an upper Hessenberg matrix that is unitarily
similar to A: B = Q*AQ, where

If A is real, then all operations are real, Q is real and orthogonal, and B is orthogonally
similar to A.
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A computer program to perform the reduction can be organized in exactly the
same way as a QR decomposition by reflectors is. For simplicity we will restrict our
attention to the real case. Most of the details do not require discussion because they
were already covered in Section 3.2. The one way in which the present algorithm is
significantly different from the QR decomposition is that it involves multiplication by
reflectors on the right as well as the left. As you might expect, the right multiplications
can be organized in essentially the same way as the left multiplications are. If we need
to calculate CQ, where Q = I—JUUT is a reflector, we can write CQ — C — jCuuT.
Thus we can compute v — C(ju) and then CQ = C — VUT. This is just a variant of
algorithm (3.2.40).

Real Householder Reduction to Upper Hessenberg Form

This algorithm takes as input an array that contains A G Rnxn. It returns an
upper Hessenberg matrix B = QTAQ, whose nonzero elements are in their natural
positions in the array. The portion of the array below the subdiagonal is not set to zero.
It is used to store the vectors Uk, used to generate the reflectors
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where is the (n — A;) x (n — k) reflector used at step k. The leading 1 in u^ is
not stored. The scalar 7^ (k = 1, . . . , n — 2) is stored in a separate array 7. Thus the
information needed to construct the orthogonal transforming matrix Q is available.

There are many ways to reorganize the computations in (5.5.2). In particular, there
are block variants suitable for parallel computation and efficient use of high-speed
cache memory. The Hessenberg reduction codes in LAPACK [1] use blocks.

Exercise 5.5.3 Count the flops in (5.5.2). Show that the left multiplication part costs about
|n3 flops, the right multiplication part costs about 2n3 flops, and the rest of the cost
of the reflector setups is O(n2). Thus the total cost is about flops. Why do the
right multiplications require more flops than the left multiplications do? D

Suppose we have transformed A G Enxn to upper Hessenberg form B = QTAQ
using (5.5.2). Suppose further that we have found some eigenvectors of B and we
would now like to find the corresponding eigenvectors of A. For each eigenvector v
of B, Qv is an eigenvector of A. Since

we can easily calculate Qv by applying n - 2 reflectors in succession using (3.2.40)
repeatedly. In fact we can process all of the eigenvectors at once. If we have m of
them, we can build an n x m matrix V whose columns are the eigenvectors, then we
can compute QV — QiQ2 • • • Qn-2V, by applying (3.2.40) n — 2 times. The cost
is about 2n2m flops for m vectors.

If we wish to generate the transforming matrix Q itself, we can do so by computing
Q = QI = Q1Q2-- Qn-2I, by applying (3.2.40) n - 2 times.

The Symmetric Case

If A is Hermitian, then the matrix B produced by (5.5.2) is not merely Hessenberg, it
is tridiagonal. Furthermore it is possible to exploit the symmetry of A to reduce the
cost of the reduction to |n3 flops, less than half the cost of the non-symmetric case.
In the interest of simplicity we will restrict our attention to the real symmetric case.
We begin with the matrix

on bT

b A

In the first step of the reduction we transform A to A\ = QiAQi, where

an —TL 0 • • • 0

We save a little bit here by not performing the computation bTQi, which duplicates
the computation Qib.
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The bulk of the effort in this step is expended in the computation of the symmetric
submatrix . We must do this efficiently if we are to realize significant
savings. If symmetry is not exploited, it costs about 4n2 flops to calculate and
another 4n2 flops to calculate , as you can easily verify. Thus the entire
computation of A\ costs about 8n2 flops. It turns out that we can cut this figure in
half by carefully exploiting symmetry.

Qi is a reflector given in the form Thus

The terms in this expression admit considerable simplification if we introduce the
auxiliary vector v = —γAu. We have — γÂuuT = VUT, —γUU T Â = UVT, and
"y2uuTÂuuT = —JUUTVUT. Introducing the scalar a = —^UTV, we can rewrite
this last term as 2auuT. Thus

The final manipulation is to split the last term into two pieces in order to combine
one piece with the term VUT and the other with uvT. In other words, let w = v + an.
Then

This equation translates into the code segment

which costs four flops per updated array entry. By symmetry we need only update
the main diagonal and lower triangle. Thus the total number of flops in this segment
i s 4 ( n — l)n/2 « 2n2. This does not include the cost of calculating w. First of all,
the computation v = —γAu costs about 2n2 flops. The computation a = — ̂ UTV
costs about In flops, as does the computation w = v + cm. Thus the total flop count
for the first step is about 4n2, as claimed.

The second step of the reduction is identical to the first step, except that it acts on
the submatrix AI . In particular, (unlike the nonsymmetric reduction) it has no effect
on the first row of AI . Thus the flop count for the second step is about 4(n — I)2 flops.
After n — 2 steps the reduction is complete. The total flop count is approximately
4(n2 + (n - I)2 + (n - 2)2 + •••)« f n3.
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Reduction of a Real Symmetric Matrix to Tridiagonal Form

This algorithm accesses only the main diagonal and lower triangle of A. It stores
the main-diagonal entries of the tridiagonal matrix B in a one-dimensional array d
(di = ba, i — 1,... ,n) and the off-diagonal entries in a one-dimensional array s
(Si = &i+i,i = &i,i+i, i = 1,. • • ,n — 1). The information about the reflectors used
in the similarity transformation is stored exactly as in (5.5.2).

Additional Exercises

Exercise 5.5.5 Write a Fortran subroutine that implements (5.5.2).

Exercise 5.5.6 Write a Fortran subroutine that implements (5.5.4).

Exercise 5.5.7 MATLAB's hess command transforms a matrix to upper Hessenberg form.
To get just the upper Hessenberg matrix, type B = hess (A) . To get both the
Hessenberg matrix and the transforming matrix (fully assembled), type [Q, B] =
h e s s ( A ) .

(a) Using MATLAB, generate a random 100 x 100 (or larger) matrix and reduce
it to upper Hessenberg form:

n = 100
A = randn(n) ; % or A = randn(n) + i*randn(n);
[Q ,B] = hess (A) ;

(b) Use Rayleigh quotient iteration to compute an eigenpair of B, starting from a
random complex vector. For example,
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q = randn(n,l) + i*randn(n,1);

q = q/norm(q);

rayquo = q'*B*q;

qq = (B - rayquo*eye(n))\q;

and so on. Once you have an eigenvector qofB, transform it to an eigenvector
v = Qq of A. Your last Rayleigh quotient is your eigenvalue.

(c) Give evidence that your Rayleigh quotient iteration converged quadratically.

(d) Check that you really do have an eigenpair of A by computing the residual
norm \\Av — Xv\\2.

D

Exercise 5.5.8 The first step of the reduction to upper Hessenberg form introduces the needed
zeros into the vector b, where

r T

We used a reflector to do the task, but there are other types of transformations
that we could equally well have used. Sketch an algorithm that uses Gaussian
elimination with partial pivoting to introduce the zeros at each step. Don't forget that
each transformation has to be a similarity transformation. Thus we get a similarity
transformation to Hessenberg form that is, however, nonunitary. This is a good
algorithm that has gone out of favor. The old library EISPACK includes it, but it has
been left out of LAPACK. D

5.6 THE QR ALGORITHM

For many years now the most widely used algorithm for calculating the complete set of
eigenvalues of a matrix has been the QR algorithm of Francis [25] and Kublanovskaya
[45]. The present section is devoted to a description of the algorithm, and in the
section that follows we will show how to implement the algorithm effectively. The
explanation of why the algorithm works is largely postponed to Section 6.2. You can
read Sections 6.1 and 6.2 right now if you prefer.

Consider a matrix A G Cnxn whose eigenvalues we would like to compute. For
now let us assume that A is nonsingular, a restriction that we will remove later. The
basic QR algorithm is very easy to describe. It starts with AQ — A and generates a
sequence of matrices ( Aj ) by the following prescription:

That is, Am-i is decomposed into factors Qm and Rm such that Qm is unitary and
Rm is upper triangular with positive entries on the main diagonal. These factors are
uniquely determined (Theorem 3.2.46). The factors are then multiplied back together
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in the reverse order to produce Am. You can easily verify that Am = Q*mAm-\Qm.
Thus Am is unitarily similar to Am-\.

Exercise 5.6.2

(a) Show that Am = Q^Am^Qm.

(b) Show that Am - RmAm-iR^.

Notice that part (a) is valid, regardless of whether or not A is singular. In contrast,
part (b) is valid if and only if A is nonsingular. (Why?) D

Since all matrices in the sequence (Aj) are similar, they all have the same eigenval-
ues. In Section 6.2 we will see that the QR algorithm is just a clever implementation
of a procedure known as simultaneous iteration, which is itself a natural, easily
understood extension of the power method. As a consequence, the sequence (Aj)
converges, under suitable conditions, to upper-triangular form

where the eigenvalues appear in order of decreasing magnitude on the main diagonal.
(As we shall see, this is a gross oversimplification of what usually happens, but there
is no point in discussing the details now.)

From now on it will be important to distinguish between the QR decomposition
and the QR algorithm. The QR algorithm is an iterative procedure for finding
eigenvalues. It is based on the QR decomposition, which is a direct procedure
related to the Gram-Schmidt process. A single iteration of the QR algorithm will be
called a QR step or QR iteration.

Each QR step performs a unitary similarity transformation. We noted in Sec-
tion 5.4 that numerous matrix properties are preserved under such transformations,
including the Hermitian property. Thus if A is Hermitian, then all iterates Aj will be
Hermitian, and the sequence (Aj) will converge to diagonal form.

If Am-i is real, then Qm, Rm, and Am are also real. Thus if A is real, the basic
QR algorithm (5.6.1) will remain within the real number system.

Example 5.6.3 Let us apply the basic QR algorithm to the real symmetric matrix

whose eigenvalues are easily seen to be AI = 9 and A2 = 4. Letting AQ = A, we
have AQ = QiRi, where
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Thus

Notice that A\ is real and symmetric, just as A0 is. Notice also that A\ is closer to
diagonal form than A0 is, in the sense that its off-diagonal entries are closer to zero.
Moreover, the main-diagonal entries of A\ are closer to the eigenvalues. On subse-
quent iterations the main-diagonal entries of Aj give progressively better estimates
of the eigenvalues, until after ten iterations they agree with the true eigenvalues to
seven decimal places. D

Exercise 5.6.4 Let triangular R± such that such that A0 = Q\R\. Calculate A\ = R\Q\. Notice that
AI is closer to upper-triangular form than A0 is, and the main-diagonal entries of A\
are closer to the eigenvalues of A than those of A0 are. D

The assumption that A is nonsingular guarantees that every matrix in the sequence
(Aj) is nonsingular. This fact allows us to specify the decomposition Am_i =
QmRm uniquely by requiring that the main-diagonal entries of Rm be positive. Thus
the QR algorithm, as described above, is well defined. However, it is not always
convenient in practice to arrange the computations so that each Rm has positive main-
diagonal entries. It is therefore reasonable to ask how the sequence (Aj) is affected
if this requirement is dropped. Exercise 5.6.24 shows that nothing bad happens.
Whether the requirement is enforced or not makes no significant difference in the
progress of the algorithm. Therefore, in actual implementations of the QR algorithm
we will not require that the main-diagonal entries of each Rm be positive.

There are two reasons why the basic QR algorithm (5.6.1) is too inefficient for
general use. First, the cost of each QR step is high. Each QR decomposition costs
|n3 flops, and the matrix multiplication that follows also costs 0(n3) flops. This is
a very high price to pay, given that we expect to have to perform quite a few steps.
The second problem is that convergence is generally quite slow; a very large number
of iterations is needed before Am is sufficiently close to triangular form that we are
willing to accept its main-diagonal entries as eigenvalues of A. Thus we need to
make QR steps less expensive, and we need to accelerate the convergence somehow,
so that fewer QR iterations are needed.

QR Algorithm with Hessenberg Matrices

The cost of QR iterations can be reduced drastically by first reducing the matrix to
Hessenberg form. This works because the upper Hessenberg form is preserved by
the QR algorithm, as the following theorem shows.

Theorem 5.6.5 Let Am-i be a nonsingular upper Hessenberg matrix, and suppose
Am is obtained from Am-\ by one QR iteration (5.6.1). Then Am is also in upper
Hessenberg form.
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Proof. The equation Am-i = QmRm can be rewritten as . By
Exercise 1.7.44, R^1 is upper triangular. You can easily show (Exercise 5.6.6) that
the product of an upper Hessenberg matrix with an upper triangular matrix, in either
order, is upper Hessenberg. Therefore Qm is an upper Hessenberg matrix. But then
Am = RmQm must also be upper Hessenberg. d

Exercise 5.6.6 Suppose H G Cnxn is upper Hessenberg and R € Cnxn is upper triangular.
Prove that both RH and HR are upper Hessenberg. D

In Theorem 5.6.5 we assumed once again that the matrix is nonsingular. It would
be nice to drop this requirement. Unfortunately Theorem 5.6.5 is not strictly true in
the singular case. The problem is that in that case there is extra freedom (i.e. more
serious loss of uniqueness) in the construction of the QR decomposition, which
makes it possible to build a Qm and an Rm for which the resulting Am is not upper
Hessenberg (see Exercise 5.6.25). Fortunately this is not a serious problem. As we
shall now show, it is always possible to construct the Q and R factors in such a way
that Hessenberg form is preserved. In fact, if one carries out the QR decomposition
in the most straightforward, obvious way, that's what happens.

Suppose A is an upper Hessenberg matrix on which we wish to carry out a QR
step. We can transform A to upper triangular form by using n — 1 rotators to transform
the n — 1 subdiagonal entries to zero. For what follows you might find it useful to
refer back to the material on rotators in Section 3.2. If you find it helpful to think
only in terms of the real case, then do so by all means.

We begin by finding a (complex) rotator Qi acting in the 1-2 plane such that Q* A
has a zero in the (2, 1) position (Exercise 3.2.54). This rotator alters only the first and
second rows of the matrix. Next we find a rotator Q% acting in the 2-3 plane such that
Q^QiA has a zero in the (3, 2) position. alters only the second and third rows
of Q\A. Since the intersection of these rows with the first column consists of zeros,
these zeros will not be destroyed by the transformation; they will be recombined to
create new zeros. In particular, the zero in the (2,1) position, which was created by
the previous rotator, is preserved. Next we find Q3, a rotator in the 3-4 plane, such
that A has a zero in position (4, 3). You can easily check that this rotator
does not destroy the zeros that were created previously or any other zeros below the
main diagonal.

Continuing in this manner, we transform A to an upper triangular matrix R given
by

Letting

we have R = Q*Aor A — QR, where Q is unitary and R is upper triangular.
Now we must calculate A\ = RQ to complete a step of the QR algorithm. By

(5.6.7)
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so all we need to do is multiply R on the right by the rotators Qi, Q^, ..., Qn-\
successively. Since Q\ acts in the 1-2 plane, it recombines the first and second
columns of the matrix. Since both of these columns consist of zeros after the first
two positions, these zeros will not be destroyed by Qi. The only zero that can (and
almost certainly will) be destroyed is the one in the (2,1) position. Similarly Q2,
which acts on columns 2 and 3, can destroy only the zero in the (3, 2) position, and
so on. Thus the transformation from R to AI can create new nonzero entries below
the main diagonal only in positions (2,1), (3,2), . . . , (n, n — 1). We conclude that
AI is an upper Hessenberg matrix.

Exercise 5.6.8 Show that the matrix Q defined by (5.6.7) is upper Hessenberg. (Start with
the identity matrix and build up Q by applying the rotators one at a time.) This,
together with Exercise 5.6.6, gives a second way of seeing that AI — RQ is upper
Hessenberg. D

The construction that we have just worked through produces an AI that is in
upper Hessenberg form, regardless of whether A is nonsingular or not. Thus, for all
practical purposes, we can say that the QR algorithm preserves upper Hessenberg
form. This observation will be strengthened by Exercise 5.6.28 below. By the way,
the construction can also be carried out using (2 x 2) reflectors in place of plane
rotators. Whichever we use, the construction also yields the following result.

Theorem 5.6.9 A QR step applied to an upper Hessenberg matrix requires not more
than O(n2} flops.

Proof. The construction outlined above transforms Am-\ to Am by applying n — 1
rotators on the left followed by n — 1 rotators on the right. The cost of applying each
of these rotators (or reflectors) is O(n) flops. Thus the total flop count is O(n2). The
exact count depends on the details of the implementation. D

We have now fairly well solved the problem of the cost ofQR steps. To summarize,
we begin by reducing the matrix to upper Hessenberg form at a cost of O(n3) flops.
While this is expensive, it only has to be done once, because upper Hessenberg form
is preserved by the QR algorithm. The QR iterations are then relatively inexpensive,
each one costing only O(n2) flops.

The situation is even better when the matrix is Hermitian, since the Hermitian
Hessenberg form is tridiagonal. The fact that the QR algorithm preserves both the
Hermitian property and the upper Hessenberg form implies that the tridiagonal Her-
mitian form is preserved by the QR steps. Such QR steps are extremely inexpensive.

Exercise 5.6.10 Show that a QR iteration applied to a Hermitian tridiagonal matrix requires
only O(ri) flops. D
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Accelerating the Convergence of the QR Algorithm

Consider a sequence (Aj) of iterates of the QR algorithm, where every Am is in

upper Hessenberg form, and let denote the (i, j] entry of Am. Thus

Let AI, λ2, . . . , \n denote the eigenvalues of A, ordered so that | λ! | > | λ2 \ >
'" > |A n | . In Section 6.2 we will see that (most of) the subdiagonal entries

converge to zero as ra —>• oo. More precisely, | Aj | > | AJ+I |, then
linearly, with convergence ratio | A ^ + i / A j |, asm —> oo. Thus we can improve the rate
of convergence by decreasing one or more of the ratios | A j + i / A j |, i = 1,..., n — 1.
An obvious way to do this is to shift the matrix.

The shifted matrix A — pi has eigenvalues AI — p, A2 — p, . . . , An — p. if we
renumber the eigenvalues so that | AI — p\ > | A2 — p\ > ••• > | An — p\, then the
ratios associated with A — pi are | (Aj+i — p]/(\i — p) |, i — 1,. . . , n — 1. The one
ratio that can be made really small is | (An — p)/(An_i — p) |, which we can make
as close to zero as we please (provided An ^ A n _i) by choosing p very close to An.

We do not mean to imply here that p has to approximate the particular eigenvalue
that is named \n. If we can find a p that approximates any one of the eigenvalues well,
then that eigenvalue will be called An after the renumbering has been done. Thus if
we can find a p that is an excellent approximation of any one of the eigenvalues, we

can gain by applying the QR algorithm to A — pi instead of A. The entry
will converge to zero very quickly. Once it is sufficiently small, it can be considered
to be zero for practical purposes, and adding the shift back on, we have

By Theorem 5.2.10 is an eigenvalue of A; indeed , the eigenvalue
closest to p. The remaining eigenvalues of A are eigenvalues of Am, so we might
as well economize by performing subsequent iterations on this smaller matrix. If we
can find a p that approximates an eigenvalue of Am well, then we can extract that
eigenvalue quickly by performing QR iterations on Am — pi. Once that eigenvalue
has been found, we can go after the next eigenvalue, operating on an even smaller
matrix, and so on. Continuing in this fashion, operating on smaller and smaller
matrices, we eventually find all of the eigenvalues of A. This process, through which
the size of the matrix is reduced each time an eigenvalue is found, is called deflation.
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The catch to this argument is that we need good approximations to the eigenvalues.
Where can we obtain these approximations? Suppose we begin by performing several
QR iterations with no shift. After a number of iterations the matrices will begin to
approach triangular form, and the main-diagonal entries will begin to approach the
eigenvalues. In particular, will approximate An, the eigenvalue of A of least
modulus. It is therefore reasonable to take at some point and perform
subsequent iterations on the shifted matrix Am — pi. In fact we can do better than
that. With each step we get a better approximation to \n. There is no reason why
we should not update the shift frequently in order to improve the convergence rate.
In fact we can choose a new shift at each step if we want to. This is exactly what is
done in the shifted QR algorithm:

where at each step pm-i is chosen to approximate whichever eigenvalue is emerging
at the lower right-hand corner of the matrix.

Exercise 5.6.12 Show that if Am-\ and Am are related as in (5.6.11), then Am =
QmAm-iQm- Thus Am_i and Am are unitarily similar. D

We have tentatively decided that the choice is good. This is called
the Rayleigh quotient shifting strategy or, simply, Rayleigh quotient shift, because
dnn~ can be viewed as a Rayleigh quotient. See Exercise 5.6.26.

Since the shifts ultimately converge to An, the convergence ratios

tend to zero, provided Xn ^ An_i. Therefore the convergence is faster than linear.
In Section 6.2 we will show that the QR algorithm with the Rayleigh quotient shift
carries out Rayleigh quotient iteration implicitly as a part of its action. From this
it follows that the convergence is quadratic. If the matrix is Hermitian (or, more
generally, normal) the convergence is cubic.

How many unshifted QR steps do we need to take before can be accepted
as a good approximation to An? Experience has shown that there is no need to wait
until approximates An well; it is generally safe to start shifting right from the
very first step. The only effect this has is that the initial shifts alter the order of the
eigenvalues so that they do not necessarily emerge in order of increasing magnitude.

Example 5.6.13 Consider again the matrix

of Example 5.6.3, whose eigenvalues are AI = 9andA2 = 4. When the unshifted QR
algorithm is applied to A, the (2,1) entry converges to zero linearly with convergence
ratio | A2/Ai | — 4/9. Now let us try the shifted QR algorithm with the Rayleigh
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quotient shift. Thus we take pQ — 5 and perform a QR step with A — pol, whose
eigenvalues are AI-5 = 4andA2-5 = —1. Theratio|(A2 - po)/(Ai - Po) I = 1/4
is less than 4/9, so we expect to do better with the shifted step. A0 — pol = Q\R\,
where

Thus

Comparing this result with that of Example 5.6.3, we see that with one shifted Q^step
we have made more progress toward convergence than we did with an unshifted step.
Not only is the off-diagonal element smaller; the main-diagonal entries are now quite
close to the eigenvalues. The Rayleigh quotient shift for the next step is p\ w 4.0769.
The eigenvalues of AI — p\I are AI - p\ — 4.9231 and \i— p\ — —0.0769, whose
ratio is 0.0156. We therefore expect that A2 will be substantially better that AI.
Indeed this is the case. Using MATLAB we find that

On the next step the shift is p2 - 4.00001907341357, which gives an even better
ratio, and

Finally

D

ercise 5.6.14 It is easy to write a MATLAB program to execute the QR algorithm
using MATLAB's built-in QR decomposition command; for example, you can use
commands like

shift = A(n,n);
[Q,R] = qr(A-shift*eye(n));
A = R*Q + shift*eye(n)

This is an inefficient implementation, but it is adequate for the purpose of experimen-
tation with small matrices. Let
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as in Exercise 5.6.4.

(a) Using MATLAB, perform four or more steps of the QR algorithm with zero

shift. Show that linearly with convergence ratio
approximately | λ2/\ i \.

(b) Using MATLAB, perform four or more steps of the QR algorithm with the

Rayleigh quotient shift. Give evidence that quadrat-
ically.

(c) Using MATLAB, perform one step of the QR algorithm with shift p =
1.29843788128358 (an eigenvalue).

D

Exercise 5.6.15 The point of this exercise is to show how inefficient the sample code from
the previous exercise is. Run the following MATLAB code, adjusting the matrix size
to fit the speed of your computer.

n = 300;

A = randn(n);

tic; [Q,R] = qr(A); B = R*Q; toe

tic; [V,D] = eig(A); toe

The eig command reduces the matrix to upper Hessenberg form and then performs
approximately 2n implicit double QR iterations (described in Section 5.7) to obtain
the eigenvalues. It then computes a complete set of eigenvectors using methods like
those described in Section 5.8. It does all this in a modest multiple of the time it
takes to do one QR iteration using the inefficient code. D

Example 5.6.16 This example shows that the Rayleigh quotient shifting strategy
does not always work. Consider the real, symmetric matrix

whose eigenvalues are easily seen to be AI = 3 and X% = 1. The Rayleigh quotient
shift is p = 2, which lies half way between the eigenvalues. The shifted matrix
A — pi has eigenvalues ±1, which have the same magnitude. Since A — pi is unitary,
its QR factors are Ql = A- pi and RI = I. Thus AI = RlQl + pi = A. Thus
the QR step leaves A fixed. The algorithm "cannot decide" which eigenvalue to
approach. We have already observed this phenomenon in connection with Rayleigh
quotient iteration (Exercise 5.3.35). d

Because the Rayleigh quotient iteration fails occasionally, a different shift, the
Wilkinson shift, is preferred. The Wilkinson shift is defined to be that eigenvalue of
the trailing 2x2 submatrix



THE QR ALGORITHM 365

that is closer to . It is not difficult to calculate this shift, since the eigenvalues
of a 2 x 2 matrix can be found by the quadratic formula. Because the Wilkinson shift
uses a greater amount of information from Am-1, it is not unreasonable to expect that
it would give a better approximation to the eigenvalue. In the case of real, symmetric
tridiagonal matrices this expectation is confirmed by a theorem that states that the
QR algorithm with the Wilkinson shift always converges. The rate of convergence is
usually cubic or better. For details see [54], which also discusses a number of other
shifting strategies for symmetric matrices. For general matrices there still remain
some very special cases for which the Wilkinson shift fails. An example will be given
below.

For the vast majority of matrices the Wilkinson shift strategy works very well.
Experience has shown that typically only about five to nine QR steps are needed
before the first eigenvalue emerges. While converges to zero rapidly, the
other subdiagonal entries of Am move slowly toward zero. As a consequence, by
the time the first eigenvalue has emerged, some progress toward convergence of
the other eigenvalues has been made. This slow progress continues as subsequent
eigenvalues are extracted. Therefore, on average, the later eigenvalues will emerge
in fewer iterations than the first ones did. It commonly happens that many of the later
eigenvalues emerge after two or fewer steps. The average is in the range of three
to five iterations per eigenvalue. For Hermitian matrices the situation is better; only
some two to three iterations are needed per eigenvalue.

It sometimes happens during the course of QR iterations that one of the subdi-
agonal entries other than the bottom one becomes (practically) zero. In really large
matrices, this is a common event. Whenever it happens, the problem can be reduced;
that is, it can be broken into two smaller problems. Suppose, for example,
Then Am has the form

where Bu € C J X J , .B22 € C f c x f e , j + k = n. Now we can find the eigenvalues of
Bu and £22 separately. This can save a lot of work if the break is near the middle
of the matrix. Since the cost of a Hessenberg QR iteration is O(u2), if we cut n in
half, we divide the cost of a QR iteration by a factor of four.

An upper Hessenberg matrix whose subdiagonal entries are all nonzero is called
an unreduced or proper upper Hessenberg matrix. I prefer the latter term because
the former is illogical. Because every upper Hessenberg matrix that has zeros on
the subdiagonal can be broken into submatrices, it is never necessary to perform a
QR step on a matrix that is not properly upper Hessenberg. This fact is crucial to
the development of the implicit QR algorithm, which will be discussed in the next
section.

Complex Eigenvalues of Real Matrices

Most eigenvalue problems that arise in practice involve real matrices. The fact
that real matrices can have complex eigenvalues exposes another weakness of the
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Rayleigh quotient shift. The Rayleigh quotient shift associated with a real matrix is
necessarily real, so it cannot approximate a non-real eigenvalue well. The Wilkinson
shift, in contrast, can be nonreal, for it is an eigenvalue of a 2 x 2 matrix. Thus this
shifting strategy allows the possibility of approximating complex eigenvalues of real
matrices well.

This brings us to an important point. When working with real matrices, we would
prefer to stay within the real number system as much as possible, the use of complex
shifts would appear to force us into the complex number field. Fortunately we can
avoid complex numbers by implementing the QR algorithm with some care. First
of all, complex eigenvalues of real matrices occur in conjugate pairs. Thus, as soon
as we know one eigenvalue A, we immediately know another, In the interest of
staying within the real number system, we might try to design an algorithm that seeks
these two eigenvalues simultaneously. Such an algorithm would not extract them one
at a time, deflating twice, rather it would extract a real 2x2 block whose eigenvalues
are A and A. How might we build such an algorithm?

The Wilkinson shift strategy computes the eigenvalues of the trailing 2x2 subma-
trix (5.6.17). Assuming Am-i is real, if one eigenvalue of (5.6.17) is complex, then
so is the other; they are complex conjugates pm-i and Since A]m-i — pm~il
is complex, a QR step with shift pm-i will result in a complex matrix Am. However
it can (and will) be shown that if this step is followed immediately by a QR step with
shift , then the resulting Am+i is real again.

In the next section we will develop the double-step QR algorithm, which constructs
Am+i directly from Am-i, bypassing Am. The computation is carried out entirely
in real arithmetic and costs about as much as two ordinary (real) QR steps. The
iterates satisfy instead of The convergence is normally

quadratic, so after a fairly small number of i t e r a t i o n s i s small enough to be
considered zero for practical purposes. Then

where Am € M2x2 has eigenvalues A and which can be computed (carefully) by
the quadratic formula (Exercise 5.6.27). The remaining eigenvalues of Am are all
eigenvalues of Am, so subsequent iterations can operate on the submatrix Am. Thus
a double deflation takes place.

Exceptional Shifts

There are some very special situations in which the Wilkinson shift fails. Consider
the following example.
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Example 5.6.18 Let

The subdiagonal consists entirely of 1's, and there is a 1 in the (1, n) position. All
other entries are zero. This properly upper Hessenberg matrix is unitary, since its
columns form an orthonormal set. Therefore, in the QR decomposition of A, Q = A
and R = I. Thus AI = RQ = A; the QR step goes nowhere. Clearly this will
happen whenever A is unitary. This does not contradict the convergence results cited
earlier. All eigenvalues of a unitary matrix lie on the unit circle of the complex plane,
so the ratios | AJ+i /Xj \ are all 1. This symmetric situation will be broken up by any
nonzero shift. Notice, however that for the matrix (5.6.19) both the Rayleigh quotient
shift and the Wilkinson shift are zero. Thus both of these shifting strategies fail. D

Because of the existence of matrices like the one in Example 5.6.18, the standard
QR programs for the nonsymmetric eigenvalue problem include an exceptional shift
feature. Whenever it appears that the algorithm may not be converging, as indicated
by many steps having passed since the last deflation, one step with an exceptional shift
is taken. The point of the exceptional shift is to break up any unfortunate symmetries
that might be impeding convergence. The exact value of the shift is unimportant; it
could be a random number for example, although it should be of the same magnitude
as elements of the matrix. Exceptional shifts are needed only rarely.

A question that remains open is to find a shifting strategy that normally gives rapid
(e.g. quadratic) convergence and is guaranteed to lead to convergence in every case.

The Singular Case

In our development of the QR algorithm, singular matrices have required special
attention. Since matrices that are exactly singular hardly ever arise in practice, it is
tempting to save some effort by ignoring them completely. However, to do so would
be to risk leaving you with a misconception about the algorithm. If every result were
prefaced by the words, "Assume A is nonsingular," you might get the impression that
the singular case is a nasty one that we hope to avoid at all costs. In fact, just the
opposite is true. The goal of the shifting strategies is to find shifts that are as close
to eigenvalues as possible. The closer p is to an eigenvalue, the closer the shifted
matrix A — pi is to having a zero eigenvalue, that is, to being singular. If a shift that
is exactly an eigenvalue should be chosen, A — pi would be singular. From this point
of view the singular case appears to be very desirable and worthy of special attention.
This is confirmed by the next theorem, which shows that if the QR algorithm is
applied to a properly upper Hessenberg matrix, using an exact eigenvalue as a shift,
then, in principal, just one QR step suffices to extract the eigenvalue. In preparation
for the theorem, you should work the following exercise.
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Exercise 5.6.20 Prove the following two statements.

(a) If A € Cnxn is properly upper Hessenberg, then the first n — 1 columns of A
are linearly independent.

(b) If R € Cnxn is an upper-triangular matrix whose first n — 1 columns are
linearly independent, then the first n — 1 main-diagonal entries, rn, r22, • • •,
rn_i ) n_i must all be nonzero.

D

Theorem 5.6.21 Let A G Cnxn be a singular, properly upper Hessenberg matrix,
and let B be the result of one step of the QR algorithm with shift 0, starting from
A. Then the entire last row of B consists of zeros. In particular, bnn = 0 is an
eigenvalue and can be removed immediately by deflation.

Exercise 5.6.22 Read the first paragraph of the following proof, then complete the proof
yourself using the results from Exercise 5.6.20. D

Proof. B — RQ, where A = QR, Q is unitary, and R is upper triangular. Since A
is singular and Q is nonsingular, R must be singular. This implies that at least one of
the main-diagonal entries TH is zero.

From Exercise 5.6.20, part (a), we know that the first n — 1 columns of A are
linearly independent. Let ai, 02, . . . , an-i denote these columns, and let ri, r2,
. . . , rn_i denote the first n — 1 columns of R. From the equation R = Q*A we see
that TI = Q*a\, r<i — Q*a^, . . . , rn_i = Q*an-\. Since Q* is nonsingular and
ai, a2, . . . , an_i are linearly independent, 7*1, r-2, . . . , rn_i must also be linearly
independent. Therefore, by Exercise 5.6.20, part (b), the first n — 1 main-diagonal
entries of R are nonzero. We have already observed that at least one of the main-
diagonal entries of R must be zero, so rnn = 0. Since R is upper triangular, this
means that the entire last row of R consists of zeros. Since B = RQ, the entire last
row of B must also consist of zeros. D

Corollary 5.6.23 Let A be an eigenvalue of the properly upper Hessenberg matrix
A e Cnxn. Let B be the result of one QR step of the QR algorithm with shift A.
Then the last row of B is [0, • • •, 0, A]. Thus the eigenvalue A can be removed
immediately by deflation.

Theorem 5.6.21 and Corollary 5.6.23 are true in exact arithmetic. In practice,
roundoff errors will cause 6n,n-i to be not quite zero. In most cases bn,n-i will be
far enough from zero to prevent deflation. When this happens, one additional QR
step (with the same shift) is usually enough to allow deflation.

Additional Exercises

Exercise 5.6.24 This exercise shows that in the QR algorithm the requirement that the main
diagonal entries of the R factors be positive is inessential.
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(a) Suppose A is nonsingular and where Q and are unitary
and R and R are upper triangular. Since we have placed no restriction on the
main-diagonal entries of R or R, it can happen that Show
that there is a unitary diagonal matrix D such that Q = QD and R = D*R.
(Hint: Rewrite the equation so that there is a unitary matrix on one
side and an upper-triangular matrix on the other. Then use the fact that a matrix
that is both unitary and upper triangular must be diagonal (Exercise 5.4.40).)

(b) Suppose A is nonsingular. Let A0 — A and AQ = A, and let (Aj) and (Ãj)
be sequences that satisfy

where Qm and are unitary and Rm and are upper triangular. Prove
by induction on m that there is a sequence of unitary diagonal matrices (Dm)
such that Ãm = D^Am-\Dm for all m.

(c) Let denote the ( i , j ) entry of Am and Ãm, respectively, show

that

Exercise 5.6.25 Let

for all i and j, and for all i.

D

which is obviously upper Hessenberg and singular. There is no need to apply the QR
algorithm to this matrix, but we will do so anyway, just to make a point.

(a) Let

Show that AQ = QiRi, and that this is a QR decomposition of AQ. Let
AI — RiQi. Show that AI is not upper Hessenberg.

(b) Produce a different QR decomposition of A0 for which the resulting AI is
upper Hessenberg.

(c) Show where the proof of Theorem 5.6.5 breaks down in the singular case.

Exercise 5.6.26 Let A - (ai<;-) € CT

D

(a) Show that ann — e^Aen, where en denotes the nth standard basis vector. Thus
the shift p — ann is a Rayleigh quotient.
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(b) Let A be upper Hessenberg. Give an informal argument that indicates that en

is approximately an eigenvector of AT if an,n_i is small, the approximation
improving as an,n_i ->• 0.

Thus the Rayleigh quotient shift is the Rayleigh quotient associated with an approx-
imate eigenvector. D

Exercise 5.6.27 This exercise discusses the careful calculation of the eigenvalues of a real
2x2 matrix. Suppose we want to find the eigenvalues of

A straightforward application of the quadratic formula to the characteristic polyno-
mial can sometimes give inaccurate results. We can avoid difficulties by performing
an orthogonal similarity transformation to get A into a special form. Let

be a rotator. Thus c — cos 9 and s — sin 0 for some 9. Let A = QTAQ.

(a) It turns out to be desirable to choose Q so that A satisfies dn = ayi- Show
that if dn = 0,22, then the eigenvalues of A and A are

Show that the eigenvalues are a complex conjugate pair if 0,21 and di2 have
opposite sign. This formula computes the complex eigenvalues with no can-
cellations, so it computes eigenvalues that are as accurate as the data warrants.
A transformation of this type is used by the routines in LAPACK. In part (b)
you will show that such a transformation is always possible. The case of real
eigenvalues is dealt with further in part (c).

(b) Show that

Using the trigonometric identities cos 29 = c2 — s2 and sin 19 = 2sc, show
that dn = 022 if and only if

Show that if a^ + a2i = 0, we achieve dn = 022 by taking
Otherwise, choose 0 so that
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to get the desired result. Let t — tan 9 = s/c. Use half-angle formulas and
other trigonometric identities to show that

Show further that and s = et. An alternative formula for t that
use cot 20 instead of tan 29 (useful when | an — 022 | 3> 10-12 + 0.211) can be
inferred from Exercise 6.6.46.

(c) If the eigenvalues turn out to be real, that is, if 021012 > 0 a second rotator
can be applied to transform A to upper triangular form. To keep the notation
simple, let us drop the hat from A. That is, we assume A already satisfies
on = 022 and 021012 > 0, and we seek a transformation A = QTAQ for
which 021 = 0. Show that the condition on = 022 implies that A has the
simpler form

Show that if 012 = 0, we obtain the desired result by taking c = 0 and s — 1.
Otherwise, show that is a real number, and
gives the desired transformation. Then dn and 022 are the eigenvalues of A.

D

Exercise 5.6.28 Let A e Cnxn be a properly upper Hessenberg matrix with QR decomposi-
tion A - QR.

(a) LetA,Q £ £,nx(n~l> consist of the firstn—1 columns of yl and Q, respectively.
Show that there is a nonsingular, upper-triangular matrix R e c(n-1)x(n-1)
such that Q — AR~l. (Use ideas from the proof of Theorem 5.6.21.)

(b) Use the result of part (a) to show that Q is an upper Hessenberg matrix.

(c) Conclude that B is upper Hessenberg, where B — RQ.

Thus the QR algorithm applied to a properly upper Hessenberg matrix always pre-
serves the upper Hessenberg form, regardless of whether or not the matrix is singular.
This result clearly applies to the shifted QR algorithm as well. D

Exercise 5.6.29 Let A e Cnxn be the matrix of Example 5.6.18.

(a) Let a; 6 C be an eigenvalue of A with associated eigenvector v. Write down
and examine the equation Av = uv. Demonstrate that v must be a multiple of
the vector
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and (jj must be an nth root of unity. (The nth roots of unity are the complex
numbers that satisfy ujn = I. There are n of them, and they are spaced evenly
around the unit circle.) Conversely, show that if w is an nth root of unity,
then u is an eigenvalue of A with eigenvector v given by (5.6.30). Thus the
eigenvalues of A are exactly the nth roots of unity.

(b) It follows from part (a) that the characteristic polynomial of A is \n — 1 (Why?).
Prove this fact independently using the formula det(A/ — A] and induction on
n.

Notice that A is a companion matrix (5.2.15), and compare this exercise with Exer-
cise 5.2.23. n

5.7 IMPLEMENTATION OF THE QR ALGORITHM

In this section we introduce the implicit QR algorithm and discuss practical imple-
mentation details for both the single-step and double-step versions. Our approach is
nonstandard [50], [80]. The usual approach, which invokes the so-called Implicit-Q
Theorem (Theorems 5.7.23 and 5.7.24), has the advantage of brevity. The advantage
of our approach is that it shows more clearly the relationship between the explicit
and implicit versions of the QR algorithm.

The algorithms discussed here apply a sequence of rotators or reflectors to the
matrix under consideration. Therefore they are normwise backward stable (See
Section 3.2). This means that each eigenvalue that they compute is the true eigenvalue
of a matrix A + 6A, where ||(L4||/||A|| is tiny. This does not guarantee that the
computed eigenvalue is close to a true eigenvalue of A unless the eigenvalue is
well conditioned. Condition numbers and sensitivity of eigenvalues are discussed in
Section 6.5.

We shall assume throughout this section that our matrices are real. The extension
to the complex case is routine.

Implicit QR algorithm

A shifted QR step has the form

The resulting matrix A is similar to A by the orthogonal similarity transformation

Notice the notation A in place of A\. In this section we will use the symbol AI to
denote the ith partial result in a single QR step rather than the ith iteration of the QR
algorithm.

We shall assume that A and A are in upper Hessenberg form, and A is properly
upper Hessenberg. If the step (5.7.1) is programmed in a straightforward manner,
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with Q formed as a product of rotators or reflectors, a very satisfactory algorithm
results. It is called the explicit QR algorithm. It has been found, however, that on
rare occasions the operation of subtracting pi from A causes vital information to be
lost through cancellation. The implicit QR algorithm is based on a different way
of carrying out the step. Instead of performing (5.7.1), the implicit QR algorithm
carries out the similarity transformation (5.7.2) directly by applying a sequence of
rotators or reflectors to A. Since the shift is never actually subtracted from A, this
algorithm is more stable. The cost of an implicit QR step turns out to be almost
exactly the same as that of an explicit step, so the implicit algorithm is generally
preferred. Furthermore, the promised double-step QR algorithm is based on the
same ideas.

To see how to perform a QR step implicitly, let us take a close look at how the
explicit algorithm works. As explained in the previous section, A — pi can be reduced
to upper triangular form by a sequence of plane rotators:7

The rotator acts on rows i and i + 1 and annihilates the entry 0^+1^. The trans-
forming matrix Q in (5.7.2) is given by Q = Q\Qi • • -Qn-i- Our approach will be to
generate the rotators Qi one by one and perform the similarity transformation (5.7.2)
by stages: Starting with A0 = A, we generate intermediate results A\, A-2, A 3 , . . .
by

and end with An-\ — A. The trick is to generate the rotators Qi without actually
performing the decomposition (5.7.3) or even forming the matrix A — pi.

We begin with Q\. The job of is to annihilate a2i in A — pi. That is, acts
on the first two rows of A — pi and effects the transformation

Let Since 021 ̂  0, we have a ^ 0. Thus we can define

Then the rotator

does the job. We have the numbers an, a^\, and p on hand, and these are all that are
needed to calculate Qi. In particular, there is no need to transform A to A — pi.

Once we have Qi, we calculate . Let us see what AI looks
like. Multiplication of A on the left by alters only the first two rows. This

7For simplicity we speak of rotators. In every case a reflector would work just as well.
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transformation preserves the upper Hessenberg form of the matrix. (It does not
annihilate 021 unless p happens to be zero.) Multiplication of 4 by Qi on the
right recombines the first two columns. The resulting matrix has the form

where superscripts mark entries that have been altered. This matrix fails to be upper
Hessenberg because the (3,1) entry is nonzero. We call this entry the bulge.

If we were doing an explicit QR step, we would have computed

We would then take to be the rotator acting on rows two and three that effects the
transformation

Thus we need to know x and y (more precisely, we need to know their proportions)
in order to calculate Q2.

Since we are not doing an explicit QR step, we have A\, not RI. Our challenge

is now to determine $2 from A\. Fortunately it turns out that the vector ,

taken from the bulge region of A\, is proportional to That is,

for some nonzero ft. We shall defer the proof until later. Thus the knowledge of

allows us to calculate Q%. Indeed, letting

we have
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The nice thing about is that when we apply it to AI, it annihilates the bulge:
is upper Hessenberg. When we apply Qz on the right to complete the computation
of AI, the second and third columns are recombined, and we obtain

which would be upper Hessenberg, except that it has a new bulge in the (4,2) position.
One can say that the transformation AI —>• A2 chased the bulge from position (3,1)
to (4, 2).

The reader can easily guess how the algorithm proceeds from here. To get AS we
need , which is a rotator acting on rows three and four. It turns out that is
exactly the rotator that effects the transformation

Thus i s again upper Hessenberg, a n d h a s a new bulge in the
(5,3) position.

Each subsequent rotator chases the bulge down and over one position. The matrix
acts on the bottom two rows, annihilating the bulge in position (n,n — 2).

Multiplication by Qn-i on the right does not create a new one. The implicit QR step
is complete. For obvious reasons the implicit QR algorithm is called a bulge-chasing
algorithm.

We have yet to prove that the rotators that chase the bulge are the right rotators
for a QR step. To this end it is convenient to introduce some more notation. For
i = 1 , . . . , n - 1, let & = QiQ2 • • • <3i and (cf. (5.7.3))

Then R = Rn-i- For each i, is the rotator that transforms Ri to RI+I. In
particular, it effects the transformation

We know that AI is upper Hessenberg, except for a bulge in position (3,1). Now
assume inductively that Ai is upper Hessenberg, except for a bulge in position
(i + 2, i). We need to show that
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for some nonzero 6. This will prove that is exactly the transformation that
annihilates the bulge in A{. It follows that Ai+i is almost upper Hessenberg, having
a bulge in position (i + 3, i + 1).

The desired conclusion follows from the equation

which is proved as follows. Since Multi-
plying this equation on the right by (A — pi), using the definition
and the obvious fact A(A — pi] — (A - pi] A, we obtain (5.7.8).

Now rewrite (5.7.8) in partitioned form as

where the (1,1) blocks are i x i. is upper triangular, and. is upper Hessenberg.
Calculating the (2,1) block of the product on each side, we find that

There are many zeros in this equation. Since A is upper Hessenberg, A^\ has only
one nonzero entry, aj+i^, in the upper right-hand corner. Similarly, by the induction

hypothesis Ai is almost Hessenberg, so has only two nonzero entries,

and In particular, only the last column of (5.7.10) is nonzero. Equating last
columns in (5.7.10), we find that

Since A is a proper Hessenberg matrix, both a^+i^ and are nonzero. Thus we
have obtained the desired result.

Exercise 5.7.12 Write a pseudocode algorithm that performs an implicit QR step. D

Exercise 5.7.13 The proper Hessenberg property is crucial to establishing the proportionality
of the vectors in (5.7.11). What happens to an implicit QR step if ai+i^ = 0 for
some il D

Exercise 5.7.14 Consider the following algorithm.

(i) Form (creating a bulge)
(ii) Reduce AI to upper Hessenberg form by an orthogonal

similarity transformation as in Section 5.5.

Show that this algorithm performs an implicit QR step. D
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Symmetric Matrices

The implicit QR step is simplified considerably when A is symmetric (or Hermitian
in the complex case). In this case both A and A are symmetric and tridiagonal.
The intermediate matrices AI, A%, AS, ... are also symmetric. Each fails to be
tridiagonal only in that it has a bulge, which appears both below the subdiagonal and
above the superdiagonal. A good implementation of the implicit QR step will take
full advantage of the symmetry. For example, in the transformation from A to AI ,
it is inefficient to calculate the unsymmetric intermediate result i It is better
to make the transformation from A to directly, exploiting the symmetry of
both matrices to minimize the computational effort.

In a computer program the matrices can be stored very compactly. A one-
dimensional array of length n suffices to store the main diagonal, an array of length
n — 1 can store the subdiagonal (= superdiagonal), and a single additional storage
location can hold the bulge. Each intermediate matrix can be stored over the pre-
vious one, so only one such set of arrays is needed. The imposition of this data
structure not only saves space, it has the added virtue of forcing the programmer to
exploit the symmetry and streamline the computations. The details are worked out
in Exercises 5.7.29 through 5.7.34.

The Double-Step QR Algorithm

Let A 6 Rnxn be a real, properly upper Hessenberg matrix, and consider a pair of
QR steps with shifts p and r, which may be complex:

Since we have A = Q*AQ, where Q — QPQT. If
p and T are both real, then all intermediate matrices in (5.7.15) will be real, as will
A. If complex shifts are used, complex matrices will result. However, if p and r
are chosen so that r — ~p, then A turns out to be real, even though the intermediate
matrices are complex. The following lemma is the crucial result.

Lemma 5.7.16 Let Q — QPQT and R = RTRP, where Qp, QT, Rp, and RT are
given by (5.7.15). Then

Proof. Since < we easily deduce that (A — rI}Qp — QP(A — rl}.
Therefore (A-rl)(A-pi] = (A-rI)QpRp = Qp(A-rI)Rp = QPQTRTRP =
QR. D

Lemma 5.7.17 Suppose r - ~p in (5.7.15). Then

(a) (A-rI)(A-pi) is real.

(b) If p and T are not eigenvalues of A, then the matrices Q and R of Lemma 5.7.16
are real, and the matrix A generated by (5.7.15) is also real.
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Proof, (a)
and are both real, so is real.
(b) Since A —pi and A — rl are both nonsingular, the QR decompositions in (5.7.15)
are unique, provided Rp and RT are taken to have real, positive entries on the main
diagonal. Then Q — QPQT is unitary and R = RTRP is upper triangular with real,
positive entries on the main diagonal. Thus, by Lemma 5.7.16, Q and R are the
unique factors in the QR decomposition of the matrix (A - r!)(A - pi}. But this
matrix is real, so its Q and R factors must also be real. Thus A = Q*AQ = QTAQ
is real. D

Once again we have made the assumption of nonsingularity. The singular case
is troublesome because then Q and R are not uniquely determined. It turns out that
there is nothing to worry about: Q can always be chosen so that it is real. The
resulting A is consequently also real. The algorithm we are about to develop always
produces a real A, regardless of whether or not the shifts are eigenvalues.

Our goal is to make the transformation from the real matrix A directly to the real
matrix A, doing all calculations in real arithmetic. We will begin with an impractical
solution to our problem. Then we will see how to make the algorithm practical.

Here is the impractical approach. First construct the real matrix

Then calculate the real QR decomposition B — QR. Finally, perform the real,
orthogonal similarity transformation A = QTAQ. Let us call this an explicit double
QR step.

Exercise 5.7.19 Use MATLAB to perform an explicit double QR steps on the matrix

Use the eigenvalues of the lower-right-hand 2x2 submatrix as shifts. Iterate until
you have isolated a pair of eigenvalues. Some sample code:

A = [ 1 2 3 4 ; 5 6 7 8 ; 0 9 10 11; 00 -12 13]
n = 4
format long

shift = eig(A(n-l:n,n-l:n))

B = real((A-shift(1)*eye(n))*(A-shift(2)*eye(n)));

[Q,R] = qr(B);

A = Q'*A*Q

What evidence for convergence is there? How many iterations does it take to get a
pair of eigenvalues? What rate of convergence do you observe? D

This procedure is unsatisfactory for several reasons. For one thing, the computa-
tion of B requires that A be multiplied by itself. This costs O(n3) flops, even though
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A is upper Hessenberg. If n is large, we cannot afford to spend n3 flops on each
iteration. But let us imagine, for the sake of argument, that we have the matrix B in
hand. What does B look like?

Exercise 5.7.20

(a) Show that the matrix B of (5.7.18) satisfies by- = 0 if i > j + 2. (We call such
a matrix a 2-Hessenberg matrix.)

(b) Show that b^ ^ 0 if i — j + 2. Thus B improperly 2-Hessenberg.

D

Since B is almost upper triangular, its QR decomposition can be computed
cheaply. In the first column of B, only the first three entries are nonzero. Thus this
column can be transformed to upper triangular form by a reflector that acts only on
the first three rows (or by a pair of plane rotators). Call this reflector
Similarly, since the nonzero part of the second column of B extends only to b^, it
can be converted to upper triangular form by a reflector that acts only on rows
two through four. Continuing in this manner, we obtain upper triangular form after
applying n — 1 such reflectors:

Each reflector acts on three rows, except which acts on only two rows. We
have Q = Q\Qi • • • Qn-i, but obviously we should not multiply the Qi together.
Rather, we should perform the transformation A = QTAQ by stages: Let AQ = A
and

Then A — An-\. Each of the transformations can be done in O(n) flops, since each
reflector acts on only three or fewer rows or columns. Thus the entire transformation
from A to A can be accomplished in O(n2) flops, if we have the Qi.

Now the only question is how to determine the Qi without ever computing B —
(A — rI)(A — pi}. Let us start with Q\. This requires only the first column of B,
which is much cheaper to compute than the entire matrix. The first column has only
three nonzero entries, and these are easily seen to be

These simple computations give us the information we need to determine Qi» which
is the reflector acting on rows 1-3 that effects the transformation
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Since any multiple of this vector is equally good for the determination of Qi, the
nonzero common factor 0,21 is normally divided out.

Once we have Q\, we can use it to calculate , which is not an upper
Hessenberg matrix. Since this transformation recombmes rows 1-3 and columns
1-3, AI has the form

which would be upper Hessenberg, except for a bulge consisting of the three entries

Now we need to determine Q^. The explicit algorithm would require that we
calculate '. Then Q2 is the reflector acting on rows 2-4 that effects the
transformation

We shall prove below (Exercise 5.7.37) that the vectors

are proportional. Thus Q% can be determined from A\ as the reflector that effects the
transformation

Once we have Q^, we can compute The transformation A\ —>•
returns column 1 to upper Hessenberg form. The transformation

then recombines columns 2-4, creating new nonzeros in positions (5,2) and (5,3).
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The bulge has moved down and to the right. This establishes the pattern for the
process. As we shall see (Exercise 5.7.37), Qs is the reflector acting on rows 3-5
that effects the transformation

Thus the transformation AS —> A± pushes the bulge one more column over and down.
Each subsequent transformation chases the bulge further until it finally disappears
off the bottom of the matrix. With A = An-.\, we have completed an implicit double
QR step.

The implicit double QR step is justified in Exercise 5.7.37. Implementation details
are discussed in Exercises 5.7.40 through 5.7.44.

The Implicit-Q Theorem

For future reference, we state here the implicit-Q theorem, which is used in the usual
approach to justifying the implicit QR algorithm. We begin with the strict version of
the theorem.

Theorem 5.7.23 Let A, A, A, Q, and Q e £nxn_ Suppose A and A are proper
upper Hessenberg matrices with positive entries on the subdiagonal, Q and Q are
unitary,

Suppose further that the first columns ofQ and Q are equal. Then

In other words, a unitary similarity transformation to proper upper Hessenberg
form is uniquely determined by its first column. This holds if we insist that the
subdiagonal entries of the resulting proper Hessenberg matrix are all positive. In
practice, we usually do not bother to make those entries positive, so the following,
relaxed version of the theorem is of interest.
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Theorem 5.7.24 Let A, A, A, Q, and Q 6 Cnxn. Suppose A properly upper
Hessenberg, A is upper Hessenberg, Q and Q are unitary,

Suppose further that the first columns ofQ and Q are proportional; that is,
where \ d\ \ = 1. Then A is also properly upper Hessenberg, and there is a unitary
diagonal matrix D such that

The meaning of this is that if the first columns of are essentially the
same, then the entire matrices are essentially the same. After all, the
equation just means that each column of Q is a scalar multiple of the
corresponding column of Q, and the scalar (some dk) has modulus 1. The equation
A — D~1AD means that A is essentially the same as A. We have
where \di \ = \dj \ = 1. In summary, a unitary reduction of A to proper upper
Hessenberg form is (essentially) uniquely determined by the first column of the
transforming matrix.

Proofs of both forms of the implicit-Q theorem are worked out in Exercise 5.7.46.
With the implicit-Q theorem in hand, we can justify the implicit QR step as

follows: Suppose we have (by chasing the bulge) transformed the matrix to proper
upper Hessenberg form. Suppose further that we have gotten the first column of the
transformation matrix right. Then, by the implicit-Q theorem, we must have done a
QR iteration. The details are worked out in Exercises 5.1.41 and 5.7.48.

Additional Exercises

Exercise 5.7.25 To find out how well the QR algorithm works without writing your own
program, just try out MATLAB's eig command, which reduces a matrix to upper
Hessenberg form and then applies the implicit QR algorithm. For example, try

n = 200;
A = randn(n) ;

t = cputime;
lambda = eig(A)

et = cputime - t

Adjust n to suit the speed of your computer D

Exercise 5.7.26 Show that for each i we have

where Ai, , Ri are as in (5.7.4) and (5.7.7). Thus we can view the transformation
as a partial QR iteration based on the partial (or block) QR decompo-

sition We also then have , if Ri is nonsingular. But this is just
a variant of (5.7.8). The advantage of (5.7.8) is that it holds regardless of whether or
not RJ is invertible. d
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Exercise 5.7.27 We used induction to prove that each of the intermediate matrices Ai of
(5.7.4) is upper Hessenberg, except for a bulge. Use the formulas and
AiRi = RiA to prove directly that Ai has this form. Specifically:

(a) From the form of deduce that the bottom n — i — 2 rows of Ai have the
form of an upper Hessenberg matrix.

(b) Prove that the main diagonal entries of the upper triangular matrix from

(5.7.9) are all nonzero. Thus is nonsingular.

(c) Consider the following irregular partition of the equation AiRi = RiA.

in which the meaning of AH is different from before. Now A\\ is i x (i — 1).

A l s o P r o v e
that

Prove that the first i — 1 columns of Ai have the form of an upper Hessenberg
matrix.

(d) Conclude that Ai is upper Hessenberg, except for a bulge at position (i + 2, i).

n

Exercise 5.7.28 Prove that for all i the bulge entry in Ai (5.7.4) is nonzero, and the
rotator Qi is nontrivial. ID

Exercise 5.7.29 Calculate the product

D

Exercise 5.7.30 Consider the symmetric matrix



384 EIGENVALUES AND EIGENVECTORS I

which would be tridiagonal if it did not have the bulge 6 in positions (i + 1, i — 1) and

(i — 1, i +1). Determine a r o t a t o r s u c h that

Define Q{ 6 Enxn by

where Q is embedded in positions i and i + 1. Calculate , and note that
the resulting matrix has a bulge in positions (i + 2, i) and (i, i + 2); the old bulge
is gone. Show that, taking symmetry into account, the transformation from A to

requires the calculation of only six new entries. D

Exercise 5.7.31 We continue to use the notation of Exercise 5.7.30.

(a) Suppose c ^ 0. Show that Q can be chosen so that c > 0. Let t = s/c. Show
that (if c> 0)

(Keep in mind that the letters s, c, and t stand for sine, cosine, and tangent,
respectively. Thus you can use various trigonometric identities such as c2 +
s2 = 1.)

(b) Rewrite the formulas that transform A to entirely in terms of t, omitting
all reference to c and s. In particular, notice how simple the formula for t itself
is.

(c) Now suppose s ^ 0. Show that Q can be chosen so that s > 0. Let k = c/s.
(k stands for kotangent.) Show that (if s > 0)

(d) Rewrite the formulas that transform A to entirely in terms of k,
omitting all reference to c and s. In particular, notice how simple the formula
for k is.

(e) Depending on the relative sizes of 6 and g^i, either t or k can be very large.
There is a slight danger of overflow. However, k and t can't both be large at the
same time. All danger of overflow can be avoided by choosing the appropriate
set of formulas for a given step. Show that if \b\ < \gi-\ |, then |i| < 1,
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t2 < I, and I < 1 + t2 < 2. Show that if | b\ > |&_i |, then | A;| < l,k2 < 1,
and 1 < 1 + k2 < 2.

D

Exercise 5.7.32 Use formulas and ideas from Exercises 5.7.29 and 5.7.31, write an algorithm
that implements an implicit QR step on a symmetric, tridiagonal matrix. Try to
minimize the number of arithmetic operations. The initial rotator, which creates the
first bulge, can be handled in about the same way as the other rotators. D

Numerous ways to organize a symmetric QR step have been proposed. A number
of them are discussed in [54] in the context of the equivalent QL algorithm.

Exercise 5.7.33 (Evaluation of the Wilkinson shift)

(a) Show that the eigenvalues of are the (real) numbers

The Wilkinson shift is that eigenvalue which is closer to e. Thus we take the
positive square root if e > d and the negative square root i f e < d .

(b) Typically g will be small, and the shift will be quite close to e. Thus a stable
way to calculate it is by a formula p — e + 6e, where Se is a small correction
term. Show that p = e + 6e, where

Notice that the calculation of tie always involves the addition of two numbers
of opposite sign. Thus there will always be some loss of accuracy through
cancellation. Fortunately, there is a more accurate way to calculate Se.

(c) Show that

Thus

where p and r are as defined above. In this formulation two positive numbers
are always added.

Note: There is some danger of exaggerating the importance of this computation.
In fact a shift calculated by a naive application of the quadratic formula will work
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almost as well. However, the computation outlined here is no more expensive, so we
might as well use it. D

Exercise 5.7.34 Write a Fortran subroutine that calculates the eigenvalues of a real, symmet-
ric, tridiagonal matrix by the implicit QR algorithm. In order to appreciate cubic
convergence fully, do all of the computations in double precision.

Since the algorithm requires properly tridiagonal matrices, before each iteration
you must check the subdiagonal entries to see whether the problem can be deflated or
reduced. In practice any entry gk that is very close to zero should be regarded as a zero.
Use the following criterion: set <?& to zero whenever g^\ <u(\dk\ + \ dk+i |), where
u is the unit roundoff error. In IEEE double precision arithmetic, u w 10~16. This
criterion guarantees that the error that is made when gk is set to zero is comparable
in magnitude to the numerous roundoff errors that are made during the computation.
In particular, backward stability is not compromised.

Once the matrix has been broken into two or more pieces, the easiest way to keep
track of which portions of the matrix still need to be processed is to work from the
bottom up. Thus you should check the subdiagonal entries starting from the bottom,
and as soon as you find a zero, perform a QR iteration on the bottom submatrix. If
you always work on the bottom matrix first, it will be obvious when you are done.

Take full advantage of symmetry. The only storage area you should need is a
pair of one dimensional arrays for the main diagonal and subdiagonal, and a few
additional single storage locations for temporary variables such as the bulge, tangent,
and cotangent.

The usual choice of shift is the Wilkinson shift, since it guarantees convergence.
However, since we wish to use this program as a learning tool, build in three shift
options: (i) zero shift, (ii) Rayleigh quotient shift, and (iii) Wilkinson shift. Since we
wish to observe the convergence of the algorithm, the subroutine should optionally
print out the matrix at each iteration and also print out how many iterations are
required for each deflation or reduction. Since we wish to observe the convergence
of the eigenvalues, print out the main-diagonal entries to some sixteen decimal places.
Preferably use the exponential format for maximum flexibility. We are interested in
only the magnitude of the subdiagonal entries, so we do not need to see sixteen digits
of the mantissa; two digits are plenty. However, the exponential format is essential.

This subroutine, like all iterative algorithms, must have some limit on the number
of iterations allowed. I suggest that you not allow more than lOOn iterations. (The
limit could be set much lower, say lOn, if only the Wilkinson shift were being used.)
If the iteration limit is reached, the subroutine should set an error flag and return.

Be sure to write clear, structured code, document it with a reasonable number of
comments, and document clearly all the variables that are passed to and from the
subroutine.
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Try out your subroutine on the following two matrices using all three shift options.

Try the above matrix first, since it converges fairly rapidly, even with zero shifts.
The eigenvalues are approximately 16.124, 8.126,4.244,2.208, and 0.297. Print out
the matrix after each iteration and observe the spectacular cubic convergence of the
shifted cases. Now try the 7 x 7 matrix

whose eigenvalues are A^ = 4 sin2 (kir/16), k — 1,. . . , 7. This matrix will cause
problems for the Rayleigh quotient shift. Since this matrix requires many iterations
for the unshifted case, don't print out the matrix after each iteration. Just keep track
of the number of iterations required per eigenvalue.

If you would like to experiment with larger versions of this matrix, the n x n
version has eigenvalues A^ = 4sin2(A;7r/(2n + 2)), k = 1,.. .,n.

You can also test your subroutine's reduction mechanism by concocting some
larger matrices with some zeros on the subdiagonal. for example, you can string
together three or four copies of the matrices given above. D

Exercise 5.7.35 For those who would prefer not to learn Fortran this week, work Exer-
cise 5.7.34 using MATLAB instead. Your code will be slow, but it will be just as
good for instructional purposes. d

Exercise 5.7.36 Show that the computation of the product of two upper Hessenberg matrices
requires O(n3) flops. D

Exercise 5.7.37 This exercise justifies the implicit double QR step. Let B — (A—pI}(A—rI),
let Qi, . . . , Qn-i be the reflectors that convert B to upper triangular form: R =

and

where is an i x i upper triangular matrix, and is a proper 2-Hessenberg
matrix. Thus its first column has nonzeros only in the first three positions.



388 EIGENVALUES AND EIGENVECTORS I

(a) Prove that AiRi = RiA.

(b)Show that if Ai is upper Hessenberg, except for a bulge consisting of the entries
then

for some nonzero scalar 0. (Hint: Accomplish this by partitioning the equation
AiRi = RiA and reasoning as we did in the single-step case.)

(c) Prove by induction on i that Ai is upper Hessenberg, except for a bulge
consisting of the entries

This proves that the bulge-chasing process effects a double QR step. D

Exercise 5.7.39 We continue to use the notation from the previous exercise. Deduce the form
of Ai directly from the equations.

(a) Use the equation to deduce that the bottom n — i — 3 rows of
Ai have the form of an upper Hessenberg matrix.

(b) Prove that the upper triangular matrix defined in (5.7.38) is nonsingular
i f i < n - 2 .

(c) Prove that the first i — 1 columns of Ai have the form of an upper Hessenberg
matrix. (This is the same as part (c) of Exercise 5.7'.27.)

(d) Conclude that Ai is upper Hessenberg, except for a bulge consisting of entries

n

Exercise 5.7.40 Usually the shifts for a double QR step are taken to be the two eigenvalues
of the lower right hand 2x2 submatrix

Then either p and r are real or
(a) Show that if we choose the shifts this way, we have

(b) Show that the first column of B = (A — rl] (A — pi] is proportional to
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This is a good formula to use for computing the initial reflector Q\.

Exercise 5.7.41 Given a nonzero y £ R3, let Q e E3x3 be the reflector such that

D

(a) (Review) Show that Q — I —— ^UUT, where

and 7 = (y\ + T)/T. Thus Q — I — VUT, where v — ^u.

(b) Let B e E3xfc be a submatrix to be transformed by Q. Noting that u\ = 1,
show that the operation B —> QB = B — V(UTB) requires only 5fc multipli-
cations and 5A; additions. (Since Q = QT — I — UVT, operations of the type
C —> CQ can be performed in exactly the same way.)

(c) Show that if the operations are carried out as indicated in part (b), a double
implicit QR step requires only about 5n2 multiplications and 5n2 additions,
that is, 10n2 flops.

D

Exercise 5.7.42 Write a pseudocode algorithm to perform an implicit double QR step using
reflectors. D

Exercise 5.7.43 Write a MATLAB m-file that executes an implicit double QR step. You can
get test examples in various ways in MATLAB. For example, you can build a random
matrix and have MATLAB's hess command transform it to upper Hessenberg
form. Build a sample matrix and save a copy. Iterate with your m-file until you
have isolated a pair of eigenvalues. What evidence of quadratic convergence do you
see? Since MATLAB has an eig command, you can easily check whether your
eigenvalues are correct. n

Exercise 5.7.44 Write a Fortran subroutine that calculates the eigenvalues and eigenvectors
of an upper Hessenberg matrix by the implicit double-step QR algorithm. In order
to appreciate quadratic convergence fully, do all of the computations in double
precision. Since the algorithm requires properly upper Hessenberg matrices, before
each iteration you must check the subdiagonal entries to see whether the problem can
be deflated or reduced. In practice any entry dk+\,k that is very close to zero should
be regarded as a zero. Use the following criterion: set dk+i,k to zero whenever
flfc+i,fc I < u(\dk,k + | f l fc+i ,J fc+i I)' where u is the unit roundoff error. In IEEE

double precision arithmetic, u w 10~16. This criterion guarantees that the error
that is made when ak+i,k is set to zero is comparable in magnitude to the numerous
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roundoff errors that are made during the computation. In particular, backward stability
is not compromised.

Once the matrix has been broken into two or more pieces, the easiest way to keep
track of which portions of the matrix still need to be processed is to work from the
bottom up. Thus you should check the subdiagonal entries starting from the bottom,
and as soon as you find a zero, perform a QR iteration on the bottom submatrix. If
you always work on the bottom matrix first, it will be obvious when you are done.
An isolated 1x1 block is a real eigenvalue. An isolated 2x2 block contains a pair of
complex or real eigenvalues that can be found (carefully) by the quadratic formula.
(See Exercise 5.6.27). Once you get to the top of the matrix, you are done.

Since we wish to observe the quadratic convergence of the algorithm, the subrou-
tine should optionally print out the subdiagonal of the matrix after each iteration. It
should also print out how many iterations are required for each deflation or reduction.

The algorithm should have a limit on the number of steps allowed, and an excep-
tional shift capability should be built in to deal with stubborn cases.

Write clear, structured code, document it with a reasonable number of comments,
and document clearly all of the variables that are passed to and from the subroutine.

Try out your subroutine on the matrix of Example 5.6.18, whose eigenvalues are
cos(2πj/n) + isin(2πj/n), j = 1, . . . ,n. Try several values of n. Also try the
symmetric test matrices of Exercise 5.7.34. Finally, you might like to try the matrix
given in [83], page 370, which has some ill-conditioned eigenvalues. D

Exercise 5.7.45 Let x e Cn x n be a nonzero vector, and let ei G Cn x n be the first standard
unit vector. In many contexts we need to generate nonsingular transforming matrices
G that "introduce zeros" into the vector x, in the sense that G~lx = fie\, where
0 is a nonzero constant. Transformations of this type are the heart of LU and QR
decompositions, for example, and have found extensive use in this section. Show
that G~lx = fiei for some J3 if and only if the first column of G is proportional to x.

D

Exercise 5.7.46 This exercise leads to proofs of both versions of the implicit-Q theorem.
Given a matrix A e <Qnxn

 and a vector x € Cn, we define the Krylov matrix
K(A, x) — Kn(A, x) € Cnxn to be the matrix whose columns are x, Ax, A2x, . . . ,
An~1x. Krylov matrices and the associated Krylov subspaces will play an important
role in Chapters 6 and 7.

(a) Let B G Cnxn be an upper Hessenberg matrix, and let e\ be the first standard
unit vector (first column of the identity matrix). Prove that K(B, e\) is upper
triangular. Prove that if B is properly upper Hessenberg, then K(B,ei) is
nonsingular. Prove that if the subdiagonal entries bj+ij,j — 1, . . . , n — 1 are
all positive, then the main-diagonal entries of K(B, e\] are all positive.

(b) Show that if B = Q~1AQ, then K(A,Qd) = QK(B,e1). Under what
conditions on Q and B can this result be interpreted as a QR decomposition?

(c) Let be unitary matrices that have the same first column ,
and let Suppose A and A are both properly
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upper Hessenberg matrices with a>j+i,j > 0, ay+i j > 0, j — 1 , . . . , n — 1.
Using the result from part (b) and the uniqueness of the QR decomposition,
show that and A = A. This is Theorem 5.7.23, the strict from of the
implicit-Q theorem.

(d) Now relax the conditions. Suppose A is properly upper
Hessenberg, and A is upper Hessenberg. Using the result from part (b) and
the essential uniqueness of the QR decompositions (cf. Exercise 3.2.60), show
that A must also be properly upper Hessenberg, and where D
is a diagonal matrix with diagonal entries d^ satisfying \dk\ — 1- This is
Theorem 5.7.24, the relaxed version of the implicit-Q theorem.

D

Exercise 5.7.47 This exercise gives a more concise introduction to and justification of the
implicit single QR step. The basic idea is that if you do a transformation to upper
Hessenberg form that has the right first column, then you've done a QR step. Define
Qi as in (5.7.5) and (5.7.6). Then < is not upper Hessenberg, as it has a bulge
in the (3,1) position. Let Q?, . . . , Qn-i be orthogonal transformations that return

to upper Hessenberg form by chasing the bulge. Let
and an upper Hessenberg matrix. With the construction of A, the
implicit QR iteration is complete. The explicit QR step is given by A — QTAQ
(5.7.2), where Q is given by the first equation of (5.7.1).

(a) Show that first column of Q is the same as the first column of Q\.

(b) Show that the first column of Q and the first column of Q are both proportional
to the first column of A — pi.

(c) Suppose A is a proper upper Hessenberg matrix. Using Theorem 5.7.24, show
that Q = QD and A = D"1 AD, where D is a diagonal matrix whose main-
diagonal entries satisfy \di\ = 1. Thus the explicit and implicit QR steps
produce essentially the same result. (With a bit more effort, the assumption
that A is properly Hessenberg can be removed.)

D

Exercise: 5.7.48 This exercise gives a concise justification of the implicit double QR step. Let
p and r be shifts that are either real or satisfy f = p. Let B — (A — rI}(A — pi}.
Then B is real, and its first column has only three nonzero entries, which are given by
(5.7.22). Let Q\ be an orthogonal matrix (e.g., a reflector) acting on rows 1-3, whose
first column is a multiple of the first column of B, and let Let Q%,
. . . , Qn-i be orthogonal transformations that return to upper Hessenberg
form by chasing the bulge. Let an upper
Hessenberg matrix. With the construction of A, the implicit double QR iteration is
complete. The explicit double QR step is given by A — QTAQ, where Q is the
orthogonal factor in the decomposition (A — rI}(A — pi) = QR.
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(a) Show that first column of Q is the same as the first column of Q\.

(b) Show that the first column of Q and the first column of Q are both proportional
to the first column of B.

(c) Suppose A is a proper upper Hessenberg matrix. Using Theorem 5.7.24, show
that Q = QD and A = D~1AD, where D is a diagonal matrix whose main-
diagonal entries satisfy \di\ = 1. Thus the explicit and implicit double QR
steps produce essentially the same result. (Again the assumption that A is
properly Hessenberg can be removed with a bit more work.)

D

5.8 USE OF THE QR ALGORITHM TO CALCULATE EIGENVECTORS

In Section 5.3 we observed that inverse iteration can be used to find eigenvectors
associated with known eigenvalues. This is a powerful and important technique. In
this section we will see how the QR algorithm can be used to calculate eigenvalues
and eigenvectors simultaneously. In Section 6.2 it will be shown that this use of
the QR algorithm can be viewed as a form of inverse iteration. We will begin by
discussing the symmetric case, since it is relatively uncomplicated.

Symmetric Matrices

Let A £ Rnxn be symmetric and tridiagonal. The QR algorithm can be used to find
all of the eigenvalues and eigenvectors of A at once. After some finite number of
shifted QR steps, A will have been reduced essentially to diagonal form

D = QTAQ, (5.8.1)

where the main-diagonal entries of D are the eigenvalues of A. If a total of m QR
steps are taken, then Q = Q\- • • Qm, where Qi is the transforming matrix for the itii
step. Each Qi is a product of n — 1 rotators. Thus Q is the product of a large number
of rotators. The importance of Q is that its columns are a complete orthonormal
set of eigenvectors of A, by Spectral Theorem 5.4.12. It is easy to accumulate Q
in the course of performing the QR algorithm, thereby obtaining the eigenvectors
along with the eigenvalues. An additional array is needed for the accumulation of
Q. Calling this array Q also, we set Q = I initially. Then for each rotator Qij
that is applied to A (that is, A «— QjjAQij), we multiply Q by Qij on the right
(Q •*- QQij)- The end result is clearly the transforming matrix Q of (5.8.1).

How much does this transformation procedure cost? Each transformation Q <-
QQij alters two columns of Q. Thus 2n numbers are updated. The exact flop count
depends upon the details of the implementation, but in any event it is O(n). Since
each QR step uses n — 1 rotators, the cost of updating Q for each complete step is
(9(n2) flops. Recalling that the basic cost of a symmetric QR step is O(n) flops,
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we conclude that the accumulation of Q increases the cost by an order of magnitude.
Making the (reasonable) assumption that the total number of QR iterations is O(n),
the total cost of accumulating Q is O(n3) flops, whereas the total cost of the QR
iterations without accumulating Q is O(n2).

An obvious way to decrease the cost of accumulating Q is to decrease the number of
QR iterations. A modest decrease can be achieved by the ultimate shift strategy: First
use QR without accumulating Q to calculate the eigenvalues only. This is cheap, only
O(n) flops per iteration. Then (having saved a copy of A) perform the QR algorithm
over again, accumulating Q, this time using the computed eigenvalues as shifts. With
these excellent shifts, the total number of QR steps needed to reduce the matrix to
diagonal form is reduced, so time is saved by accumulating Q on the second pass.
In principle each QR step should deliver an eigenvalue (Corollary 5.6.23). Because
of roundoff errors, two steps are needed for most eigenvalues, but the number of
iterations is reduced nevertheless. The performance of the algorithm depends upon
the order in which the eigenvalues are applied as shifts. A good order to use is the
order in which the eigenvalues emerged on the first pass.

Exercise 5.8.2 Assuming A; QR iterations are needed for each eigenvalue and taking deflation
into account, show that Q is the product of about | kn2 rotators. (If we use the ultimate
shift strategy, then k is around 2. Otherwise it is closer to 3.) D

Exercise 5.8.3 Outline the steps that would be taken to calculate a complete set of eigenvalues
and eigenvectors of a symmetric (non-tridiagonal) matrix using the QR algorithm.
Estimate the flop count for each step and the total flop count. d

Exercise 5.8.4 Write a Fortran program that calculates the eigenvectors of a symmetric
tridiagonal matrix by the QR algorithm. n

Unsymmetric Matrices

Let A € Cnxn be an upper Hessenberg matrix. If the QR algorithm is used to
calculate the eigenvalues of A, then after some finite number of steps we have
essentially

T = Q*AQ, (5.8.5)

where T is upper triangular. This is the Schur form (Theorem 5.4.11). As in the
symmetric case, we can accumulate the transforming matrix Q. Again we might
consider using the ultimate shift strategy, in which we calculate the eigenvalues
first without accumulating Q, then run the QR algorithm again, using the computed
eigenvalues as shifts, and accumulating Q. In this case the basic cost of a QR step
is O(n2), not O(n), so there is a significant overhead associated with performing the
task in two passes. However, the savings realized by accumulating Q on the second
pass are normally more than enough to offset the overhead.

There is an important difference in the way the QR algorithm is handled, depend-
ing upon whether just eigenvalues are computed or eigenvectors as well. If a zero
appears on the subdiagonal of some iterate, then the matrix has the block-diagonal
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form

If only eigenvalues are needed, then AU and A22 can be treated separately, and Ai2

can be ignored. However, if eigenvectors are wanted, then A\2 cannot be ignored.
We must continue to update it because it eventually forms part of the matrix T, which
is needed for the computation of the eigenvectors. Thus if rows i and j of AU
are altered by some rotator, then the same rotator must be applied to rows i and j
of Ai2. Similarly, if columns i and j of A22 are altered by some rotator, then the
corresponding columns of A±2 must also be updated.

Once we have obtained the form (5.8.5), we are still not finished. Only the first
column of Q is an eigenvector of A. To obtain the other eigenvectors, we must do a
bit more work. It suffices to find the eigenvectors of T, since for each eigenvector v
of T, Qv is an eigenvector of A. Let us therefore examine the problem of calculating
the eigenvectors of an upper-triangular matrix. The eigenvalues of T are tn, t22,
• • •, tnn, which we will assume to be distinct. To find an eigenvector associated with
the eigenvalue £&*., we must solve the homogeneous equation (T — tkkl}v = 0. It is
convenient to make the partition

where Su e Ckxh and vi e C*. Then the equation (T - tkkl)v = 0 becomes

Su and 522 are upper triangular. 822 is nonsingular, because its main-diagonal
entries are tjj — tkk, j = fc + 1, . . . , n, all of which are nonzero. Therefore V2 must
equal zero, and the equations reduce to SuVi = 0. Su is singular, because its (&, k)
entry is zero. Making another partition

where S € C**"1'*^"1), r 6 C*-1, and v e C*"1, the equation 5nui = 0
becomes

The matrix 5 is upper triangular and nonsingular. Taking w to be any nonzero
number, we can solve for by back substitution to obtain an eigenvector.
For example, if we take w = 1, we get the eigenvector
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Exercise 5.8.6 Calculate three linearly independent eigenvectors of the matrix

D

Exercise 5.8.7 How many flops are needed to calculate n linearly independent eigenvectors
of the upper-triangular matrix T 6 Cnxn with distinct eigenvalues? D

The case in which T has repeated eigenvalues is more complicated, since T may
fail to have n linearly independent eigenvectors; that is, T may be defective. The
case of repeated eigenvalues is worded out, in part, in Exercise 5.8.8. Even when
the eigenvalues are distinct, the algorithm we have just outlined can sometimes
give inaccurate results, because the eigenvectors can be ill conditioned. Section 6.5
discusses conditioning of eigenvalues and eigenvectors.

Exercise 5.8.8 Let T be an upper-triangular matrix with a double eigenvalue A = tjj = t^k-
Give necessary and sufficient conditions under which T has two linearly independent
eigenvectors associated with A, and outline a procedure for calculating the eigenvec-
tors. D

If A is a real matrix, we prefer to work within the real number system as much as
possible. Therefore we use the double QR algorithm to reduce A to the form

where Q 6 Mn x n is orthogonal, and T e Mn x n is quasi-triangular. This is the
Wintner-Murnaghan form (Theorem 5.4.22).

Exercise 5.8.9 Sketch a procedure for calculating the eigenvectors of a quasi-triangular matrix
T 6 lRnxn that has distinct eigenvalues. D

Suppose A 6 Rnxn has complex eigenvalues A and A. Since the associated
eigenvectors are complex, we expect that we will have to deal with complex vectors
at some point. In the name of efficiency we would like to postpone the use of complex
arithmetic for as long as possible. It turns out that we can avoid complex arithmetic
right up to the very end. Suppose A — QTQT, where T is the quasi-triangular
Wintner-Murnaghan form. Using the procedure you sketched in Exercise 5.8.9, we
can find an eigenvector v of T associated with A: TV = Xv. Then w — Qv is
an eigenvector of A. Both v and w can be broken into real and imaginary parts:
v = vi + iv-2 and w = w\ + iw<2, where vi,V2,wi, and w^ € Mn. Since Q is real,
it follows easily that w\ = Qv\ and w? = Qv2- Thus the computation of w does
not require complex arithmetic; w\ and w-2 can be calculated individually, entirely
in real arithmetic. Notice also that w = w\ — iw<i is the eigenvector of A associated
with A. Thus the two real vectors w\ and w^ yield two complex eigenvectors.

Exercise 5.8.10 Rework Exercise 5.8.9 so that all calculations are done in real arithmetic. D
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5.9 THE SVD REVISITED

Throughout this section, A will denote a nonzero, real n x m matrix. In Chapter 4 we
introduced the singular value decomposition (SVD) and proved that A has an SVD.
The proof given there (Exercise 4.1.17) does not use the concepts of eigenvalue and
eigenvector. Later on (Exercise 5.2.17) we noticed that singular values and vectors
are closely related to eigenvalues and eigenvectors. In this section we will present
a second proof of the SVD theorem that makes use of the eigenvector connection.
Then we will show how to compute the SVD.

A Second Proof of the SVD Theorem

The following development does not depend on any of the results from Chapter 4.
Recall that A € Enxm has two important spaces associated with it — the null space
and the range, given by

The null space is a subspace of Em, and the range is a subspace of Kn. Recall that
the range is also called the column space of A (Exercise 3.5.13), and its dimension
is called the rank of A. Finally, recall that m = dim(M(A}) + dim(K(A)} This is
Corollary 4.1.9, which can also be proved by elementary means.

The matrices ATA e Rmxm and AAT e Enxn will play an important role in
what follows. Let us therefore explore the properties of these matrices and their
relationships to A and AT.

Exercise 5.9.1 (Review) Prove that ATA and AAT are (a) symmetric and (b) positive
semidefmite. D

Theorem 5.9.2 N(ATA) = M(A).

Proof. It is obvious that M(A) C N(ATA). To prove that M(ATA) C M(A),
suppose x e M(ATA). Then ATAx = 0. An easy computation (Lemma 3.5.9)
shows that (ATAx,x) = (Ax, Ax). Thus 0 = (ATAx,x) = (Ax, Ax) = \\Ax\\l-
Therefore Ax = 0; that is, x G N(A). D

Corollary 5.9.3 N(AAT] =M(AT).

Corollary 5.9.4 rank(ATA) = rank(A) = rank(AT) = rank(AAT).

Proof. By Corollary 4.1.9,rank(A) = m-dim(J\f(A)) and, similarly, rank(AT A) =
m — dim(A/'(ATA)). Thus rank(AT^4) = rank(A). The second equation is a basic
result of linear algebra. The third equation is the same as the first, except that the
roles of A and AT have been reversed. D
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Proposition 5.9.5 Ifv is an eigenvector of ATA associated with a nonzero eigenvalue

X, then Av is an eigenvector ofAAT associated with the same eigenvalue.

Proof. Since A ̂  0, we have Av ^ 0. Furthermore AAT(Av) = A(ATAv) =

A(Xv) = X(Av). D

Corollary 5.9.6 ATA and AAT have the same nonzero eigenvalues, counting mul-

tiplicity.

Proposition 5.9.7 Letv\ andv<i be eigenvectors ofATA. lfv\ andv% are orthogonal,

then Avi and Av^ are also orthogonal.

Exercise 5.9.8 Prove Proposition 5.9.7. HI

Exercise 5.9.9 Let B £ (£mxm be a semisimple matrix with linearly independent eigenvectors

vi, • • . , vm G Cm, associated with eigenvalues AI, . . . , Am £ C. Suppose AI, . . . ,
Ar are nonzero and A r+i, . . . , Am are zero. Show that N(B] = span{t>r+i, . . . ,vm}

and H(B) = span{i>i, . . . ,t>r}. Therefore rank(.E?) = r, the number of nonzero

eigenvalues. D

The matrices ATA and AAT are both symmetric and hence semisimple. Thus
Corollary 5.9.6 and Exercise 5.9.9 yield a second proof that they have the same
rank, which equals the number of nonzero eigenvalues. Since ATA and AAT

are generally not of the same size, they cannot have exactly the same eigenvalues.
The difference is made up by a zero eigenvalue of the appropriate multiplicity. If
rank (AT A] — rank(^4AT) = r, and r < m, then ATA has a zero eigenvalue of
multiplicity ra — r. If r < n, then AAT has a zero eigenvalue of multiplicity n — r.

Exercise 5.9.10 (a) Give an example of a matrix A £ R l x 2 such that A1 'A has a zero

eigenvalue and AAT does not. (b) Where does the proof of Proposition 5.9.5 break
down in the case A = 0? n

By now we are used to the idea that if a matrix is symmetric, then we can find a
complete set of orthonormal eigenvectors. Up to now we have not shown that the
orthogonality is essentially unavoidable.

Proposition 5.9.11 Let B £ Enxn be a symmetric matrix with eigenvectors HI and

Uj associated with eigenvalues Xi and Xj, with Aj ^ Xj. Then Wj and Uj are
orthogonal.

Proof. Applying Lemma 3.5.9 and using A = AT , we have (Aui,Uj) = (ui, AUJ).
Therefore

Taking the difference of the left and right-hand sides of this string of equations, we
have
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Since A; — Aj ^ 0, it must be that (ui,Uj) = 0. D

The following theorem is the same as Theorem 4.1.3, except that one sentence has
been added.

Theorem 5.9.12 (Geometric SVD Theorem) Let A e EnXTO be a nonzero matrix
with rank r. Then Em has an orthonormal basis v\,..., vm, En has an orthonormal
basis HI ,..., un, and there exist a\ > cr2 > ... > ar > 0 such that

Equations (5.9.13) imply that v\, ..., vm are eigenvectors of ATA, u\, ..., un are
eigenvectors ofAAT, and cr\,..., a% are the nonzero eigenvalues ofATA and AAT.

Proof. The final sentence is essentially a rerun of Exercise 5.2.17. You can easily
verify that its assertions are true. This determines how v\, . . . , vm must be chosen.
Let v\, . . . , vm be an orthonormal basis of Em consisting of eigenvectors of ATA.
Corollary 5.4.21 guarantees the existence of this basis. Let AI, . . . , Am be the
associated eigenvalues. Since AT A is positive semidefinite, all of its eigenvalues are
real and nonnegative. Assume vi,..., vm are ordered so that AI > A2 > • • • > Am.
Since r = rank(ATA), it must be that Ar > 0 and Ar+i = • • • = \m = 0. For
i = 1 , . . . , r, define cr; 6 R and u{ € En by

These definitions imply that Avi = GiUi and ||wj||2 = 1, i = l , . . . , r . Proposi-
tion 5.9.7 implies that w i , . . . , ur are orthogonal, hence orthonormal.

It is easy to show that for i — 1,... ,r. Indeed
(Avi,Avi) = (ATAvi, Vi) = (\iVi,Vi) = Aj. It now follows easily that A1 Ui —
o~iVi, for ATUi = (l/o-i)ATAvi = (\i/ai)Vi = o^.

The proof is now complete, except that we have not defined w r+i> . . . , un,
assuming r < n. By Proposition 5.9.5, the vectors wi, . . . , ur are eigenvectors of
AAT associated with nonzero eigenvalues. Since AAT e Mn x n and rank(AAT] —
r, A AT must have a null space of dimension n—r (Corollary 4.1.9). Letw r + i , . . . ,un

be any orthonormal basis of M(AAT). Noting that ur+i,..., un are all eigenvectors
of AAT associated with the eigenvalue zero, we see that each of the vectors w r+i>
. . . , un is orthogonal to each of the vectors u\, ..., ur (Proposition 5.9.11). Thus
w i , . . . , un is an orthonormal basis of En consisting of eigenvectors of AAT. Since
N(AAT] — M(AT), we have ATui = 0 for i = r + I,..., n. This completes the
proof. n

Recall from Chapter 4 that the numbers a\, . . . , ar are called the (nonzero)
singular values of A. These numbers are uniquely determined, since they are the
positive square roots of the nonzero eigenvalues of ATA. The vectors v\,..., vm are
right singular vectors of A, and u\, ..., un are left singular vectors of A. Singular
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vectors are not uniquely determined; they are no more uniquely determined than any
eigenvectors of length 1. Any singular vector can be replaced by its opposite, and if
AT A or AAT happens to have some repeated eigenvalues, an even more serious lack
of uniqueness results.

Computing the SVD

One way to compute the SVD of A is simply to calculate the eigenvalues and
eigenvectors of AT A and AAT. This approach is illustrated in the following example
and exercises. After that we will discuss other, more accurate, approaches, in which
the SVD is computed without forming ATA or AAT explicitly.

Example 5.9.14 Find the singular values and right and left singular vectors of the
matrix

Since ATA is 3 x 3 and AAT is 2 x 2, it seems reasonable to work with the latter.
We easily compute

so the characteristic polynomial is (A-5)(A-8) -4 = A2-13A+36 = (A-9)(A-4),
and the eigenvalues of AAT are AI = 9 and A2 = 4. The singular values of A are
therefore

The left singular vectors of A are eigenvectors of AAT. Solving (\il — AAT}u = 0,
we find that multiples of [1, 2]T are eigenvectors of AAT associated with AI . Then
solving (A2/ — AAT)u = 0, we find that the eigenvectors of AAT corresponding
to A2 are multiples of [2, — 1]T. Since we want representatives with unit Euclidean
norm, we take

(What other choices could have been made?) These are the left singular vectors of
A. Notice that they are orthogonal, as they must be.

We can find the right singular vectors v\, i>2, and v3 by calculating the eigen-
vectors of ATA. However v\ and i;2 are more easily found by the formula V{ —

i = 1,2. Thus
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Notice that these vectors are orthonormal. The third vector must satisfy Av% — 0.
Solving the equation Av = 0 and normalizing the solution, we get

In this case we could have found v% without reference to A by applying the Gram-
Schmidt process to find a vector orthogonal to both v\ and v^. Normalizing the
vector, we would get ±1*3.

Now that we have the singular values and singular vectors of A, we can easily
construct the SVD A = UY,VT with U 6 E2x2 and V € M3x3 orthogonal and
S G M2 x 2 diagonal. We have

You can easily check that A - ITEVT. D

Exercise 5.9.15 Write down the condensed SVD A — IT£VT (Theorem 4.1.10) of the matrix
A in Example 5.9.14. D

Exercise 5.9.16 Let A be the matrix of Example 5.9.14. Calculate the eigenvalues and eigen-
vectors of ATA. Compare them with the quantities calculated in Example 5.9.14.

D

Exercise 5.9.17 Compute the SVD of the matrix A - [ 3 4 ].

Exercise 5.9.18 Compute the SVD of the matrix

D

D

Exercise 5.9.19 (a) Compute the SVD of the matrix

(b) Compute the condensed SVD A = UEVT. D
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Loss of Information through Squaring

Computation of the SVD by solving the eigenvalue problem for ATA or AAT is
also a viable option for larger, more realistic problems, since we have efficient
algorithms for solving the symmetric eigensystem problem. However, this approach
has a serious disadvantage: If A has small but nonzero singular values, they will be
calculated inaccurately. This is a consequence of the "loss of information through
squaring" phenomenon (see Example 3.5.25), which occurs when we compute ATA.

We can get some idea why this information loss occurs by considering an example.
Suppose the entries of A are known to be correct to about six decimal places. If A
has, say, a\ K, 1 and an « 10~3, then an is small compared with a\, but it is still
well above the error level e w 10~5 or 10~6. We ought to be able to calculate an
with some precision, at least two or three decimal places. The entries of AT A also
have about six digits accuracy. Associated with the singular values a\ and 0*17, AT A
has eigenvalues AI = a\ « 1 and \n = a±7 w 10~6. Since Ai7 is of about the same
magnitude as the errors in ATA, we cannot expect to compute it with any accuracy
at all.

Reduction to Bidiagonal Form

We now turn our attention to methods that calculate the SVD by operating directly
on A. It turns out that many of the ideas that we developed for solving eigenvalue
problems can also be applied to the SVD problem. For example, earlier in this chapter
we found that the eigenvalue problem can be made much easier if we first reduce the
matrix to a condensed form, such as tridiagonal or Hessenberg. The same is true of
the SVD problem. The eigenvalue problem requires that the reduction be done via
similarity transformations. For the singular value decomposition A = Ui^VT, it is
clear that similarity transformations are not required, but the transforming matrices
should be orthogonal. Two matrices A, B G ]gnXTO

 are sa^ to be orthogonally
equivalent if there exist orthogonal matrices P G Enxn and Q G Rmxm such that
B = PAQ. We will see that we can reduce any matrix to bidiagonal form by an
orthogonal equivalence transformation, in which each of the transforming matrices
is a product of m or fewer reflectors. The algorithms that we are about to discuss are
appropriate for dense matrices. We will not discuss the sparse SVD problem.

Exercise 5.9.20 Show that if two matrices are orthogonally equivalent, then they have the same
singular values, and there are simple relationships between their singular vectors. D

We continue to assume that we are dealing with a matrix A G Enxm, but we will
now make the additional assumption that n > m. This does not imply any loss of
generality, for if n < m, we can operate on AT instead of A. If the SVD of AT is
AT = UY,VT, then the SVD of A is A = VZTUT.
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A matrix B e Rnxm is said to be bidiagonal if 6^ = 0 whenever i > j or
i < j — 1. This means that B has the form

with nonzero entries appearing only on two diagonals.

Theorem 5.9.21 Let A € Rnxw with n > m. Then there exist orthogonal U 6
E.nXnandV € Rmxn, both products of a finite number of reflectors, and a bidiagonal
B £E.nXm, such that

There is a finite algorithm to calculate U, V, and B.

Proof. We will prove Theorem 5.9.21 by describing the construction. It is quite
similar to both the QR decomposition by reflectors (Section 3.2) and the reduction
to upper Hessenberg form by reflectors (Section 5.5), so we will just sketch the
procedure. The first step creates zeros in the first column and row of A. Let
£> € £«xn be a reflector gych mat

Then the first column of U\ A consists of zeros, except for the (1,1) entry. Now let
[ &n «i2 • • • aim ] denote the first row of U\A, and let Vi be a reflector of
the form

such that

Then the first row of Ui AV\ consists of zeros, except for the first two entries. Because
the first column of Vi is e\, the first column of U\ A is unaltered by right multiplication
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by . Thus has the form

The second step of the construction is identical to the first, except that it acts on
the submatrix A. It is easy to show that the reflectors used on the second step do not
destroy the zeros created on the first step. After two steps we have

The third step acts on the submatrix A, and so on. After m steps we have

Notice that steps m — 1 and m require multiplications on the left only. Let U =
U&---Umimd Then D

Exercise 5.9.22 Carry out a flop count for this algorithm. Assume that U and are not to
be assembled explicitly. Recall from Section 3.2 that if x € Efe and U 6 E fcxk is
a reflector, then the operations x —> Ux and XT ->• xTU each cost about 4fc flops.
Show that the cost of the right multiplications is slightly less than that of the left
multiplications, but for large n and m, the difference is negligible. Notice that the
total flop count is about twice that of a QR decomposition by reflectors. D

Exercise 5.9.23 Explain how the reflectors can be stored efficiently. How much storage space
is required, in addition to the array that contains A initially? Assume that A is to be
overwritten. D

In many applications (e.g. least squares problems) n is much larger than m. In
this case it is sometimes more efficient to perform the reduction to bidiagonal form
in two stages. In the first stage a QR decomposition of A is performed:
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where R e £mxm js UppGr triangular. This requires multiplications by reflectors
on the left hand side of A onlv. In the second stage the relatively small matrix R is
reduced to bidiagonal form All of these matrices are ra x m. Then

Letting

and
The advantage of this arrangement is that the right multiplications are applied to

the small matrix R instead of the large matrix A. They therefore cost a lot less. The
disadvantage is that the right multiplications destroy the upper-triangular form of R.
Thus most of the left multiplications must be repeated on the small matrix R. If the
ratio n/m is sufficiently large, the added cost of the left multiplications will be more
than offset by the savings in the right multiplications. The break-even point is around
n/m — 5/3. If n/m ^> 1, the flop count is cut nearly in half.

The various applications of the SVD have different requirements. Some require
only the singular values, while others require the right or left singular vectors, or
both. If any of the singular vectors are needed, then the matrices U and/or have
to be computed explicitly. Usually it is possible to avoid calculating U, but there
are numerous applications for which is needed. The flop count of Exercise 5.9.22
does not include the cost of computing U or . If U is needed, then there is no point
in doing the preliminary QR decomposition.

Computing the SVD of B

Since B is bidiagonal, it has the form

where is bidiagonal. The problem of finding the SVD of A is thus
reduced to that of computing the SVD of the small bidiagonal matrix .

For notational convenience we now drop the tilde from and let B e Em x m be
a bidiagonal matrix, say
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Exercise 5.9.25 Show that both BBT and BTB are tridiagonal. D

The problem of computing the SVD of B is equivalent to that of finding the
eigenvalues and eigenvectors of the symmetric, tridiagonal matrices BTB and BBT.
There are numerous algorithms that can perform this task. One is the QR algorithm,
which has commanded so much of our attention in this chapter. Others, including
some really good ones, are discussed in Section 6.6. However, we prefer not to form
the products BT B and BBT explicitly, for the same reason that we preferred not to
form A7 A and AAT. Thus the following question arises: Can the known methods
for computing eigensystems of symmetric tridiagonal matrices be reformulated so
that they operate directly on B, thus avoiding formation of the products? It turns
out that the answer is yes for most (all?) of the methods. We will illustrate this
by showing how to implement the QR algorithm on BTB and BBT without ever
forming the products [32]. This is not necessarily the best algorithm for this problem,
but it serves well as an illustration. It is closely related to the QZ algorithm for the
generalized eigenvalue problem, which will be discussed in Section 6.7.

We begin with a definition. We will say that B is a properly bidiagonal matrix if
(in the notation of (5.9.24)) /?» ̂  0 and 7$ ̂  0 for all i.

Exercise 5.9.26 Show that B is properly bidiagonal if and only if both BBT and BTB are
properly tridiagonal matrices, that is, all of their off-diagonal entries are nonzero. D

If B is not properly bidiagonal, the problem of finding its SVD can be reduced to
two or more smaller subproblems. First of all, if some 7*. is zero, then

where Bl e K*x* and B2 € ]R(™-*)x(m- fc) are both bidiagonal. The SVDs of BI
and B-2 can be found separately and then combined to yield the SVD of B. If some
fik is zero, a small amount of work transforms B to a form that can be reduced. The
procedure is discussed in Exercise 5.9.46. If fik is exactly zero, its removal is crucial
to the functioning of the QR algorithm. However, if /3k is merely close to zero, it
need not be removed; the QR algorithm will take care if it automatically.

We can now assume, without loss of generality, that B is a properly bidiagonal
matrix. We can even assume (Exercise.5.9.47) that all of the /3k and 7^ are positive.

The QR Algorithm for the SVD

The basic facts about the QR algorithm, the fact that it is an iterative process, the
benefits of shifting, and so forth, have been laid out in Section 5.6. Our main task
here is to show how to do a QR iteration on BTB or BBT without forming these
products.

We begin by writing down what the iteration would look like if we were willing
to form the products. If we want to take a QR step on both BTB and BBT with a
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shift p, we begin by taking QR decompositions

where are orthogonal and R and S are upper triangular. If we now define
B by

we see immediately from (5.9.28) and (5.9.29) that

and

This means that the transformations are both
shifted QR steps. Thus the transformation (5.9.29) effects the QR steps implicitly.

Our objective now is to perform the transformation (5.9.29), and for this we need
the matrices P and Q. These come from the QR decompositions (5.9.28), for which
we would appear to need BTB — pi and BBT — pi. But we want to avoid this; we
want to generate P and Q without performing the QR decompositions explicitly or
even building BTB or BBT.

Each of P and Q is a product of rotators:

If we have these rotators, we can apply them to B, one after the other, to transform
B to B. The challenge is to find an inexpensive way to generate each rotator as it is
needed, so that we can effect (5.9.29) efficiently. In Section 5.7 we saw how to do
this for the standard eigenvalue problem. A similar development could be pursued
here. Instead we will take the shorter route: We will simply describe the implicit QR
algorithm and then use the implicit-Q theorem to justify it.

First we will make some observations on the form of B. If p in not an eigenvalue
of BBT and BTB, then the upper-triangular matrices S and R in (5.9.28) are both
nonsingular. They can even be normalized so that their main-diagonal entries are
positive. The following exercise shows that in this case, B inherits the proper
bidiagonal form of B.

Exercise 5.9.33 Suppose R and S in (5.9.28) are both nonsingular.

(a) Show that

(b) Using (5.9.28), (5.9.29), and the result from part (a), show that
and

(c) Show that if B is upper triangular, then so is



We can easily compute these two numbers; there is no need to compute the whole
matrix BTB — pi. Let V\ be a rotator (or reflector) in the (1, 2) plane whose first
column is proportional to (5.9.34). Multiply B by V\ on the right. The operation
B -» BV\ alters only the first two columns of B and creates a new nonzero entry (a
"bulge") in the (2,1) position. (Draw a picture!)

Our objective now is to return the matrix to bidiagonal form by chasing the bulge.
As a first step in this direction, find a rotator U\ in the (1, 2) plane such that
has a zero in the (2,1) position. This operation acts on rows 1 and 2 and creates a
new bulge in the (1,3) position. Now let Vi be a rotator acting on columns 2 and 3
such that has a zero in the (1.3) oosition. This creates a bulge in the (3, 2)
position. Applying additional rotators we chase the bulge through
the positions (2,4), (4,3), (3,5), ( 5 , 4 ) , . . . , (m,m —1), and finally off of the matrix
completely. This completes the implicit QR step. The result is a bidiagonal matrix

By appropriate choice of the rotators, we can ensure that all of the entries of B are
nonnegative.

Exercise 5.9.36 (a) Show that each of the rotators V\, V2, ..., Vm-i, U\, U<2, ..., Um-i
in (5.9.35) is a nontrivial rotator (i.e. rotates through an angle other than 0 or 180

(d) Show that if BT is upper Hessenberg, then so is

(e) Show that if B is bidiagonal, then so is

(f) Show that if B is properly bidiagonal, then so is

(g) Show that if diagonal and superdiagonal entries of B are all positive, then
the same is true of B, assuming that R and S are normalized so that their
main-diagonal entries are positive.

D

The results of this exercise all hold and, in particular, is properly bidiagonal, if
p is not an eigenvalue of BTB and BBT. Even if p is an eigenvalue, the conclusions
still hold for the most part. The only difference is that B has a zero in its (m — 1, m)
position; that is, A careful discussion of this case requires some extra
effort, and we will omit it.

Now we can describe the implicit QR step. To get started, all we need is the first
column of From the equation BTB — pi = QR of (5.9.28) and the fact that R is
upper triangular, we see that the first column of Q is proportional to the first column
of BT'B - pi, which is
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degrees), and at the same time deduce that the entries of satisfy i = 1,
. . . , m — 1 and (It can happen that
In fact 7m_i = 0 when and only when p is an eigenvalue of B1 B.) (b) Show
that the rotators can be chosen so that all of the are nonnegative. (c) Show
that the off-diagonal entries of are all nonzero, except possibly the
(m, m — 1) entry. D

Letting

we can rewrite (5.9.35) as

Now we must show that B is (essentially) the same as the matrix B produced by
(5.9.29).8 The desired result is a consequence of the following theorem of "implicit-
Q" type.

Theorem 5.9.39 Let B be nonsingular. Suppose B is bidiagonal, B is properly
bidiagonal, are orthogonal,

and

Suppose further that have essentially the same first column; that is,
, where d\ — ±1. Then there exist orthogonal diagonal matrices D and E

such thai and

In other words, are essentially the same.

Proof. We note first that By
Exercise 5.9.26, are tridiagonal matrices, and the latter is properly
tridiagonal. Applying the relaxed version of the implicit-Q theorem (Theorem 5.7.24)
with playing the roles of A, A, and A, respectively, we find
that there exists an an orthogonal diagonal matrix D such that Q = QD. (That is,

are essentially the same.) Using this equation, we can rewrite (5.9.40) and
(5.9.41) to obtain

Defining C - PB - P(BD), we note that are both QR decom-
positions of C. Therefore, by Exercise 3.2.47, P and P are essentially equal; that is,

8We could even prove more; we could show that the rotators U\, ..., Um-i and V\, ..., Vm-i are
(essentially) the same as PI , . . . , Pm-1 and Q\, ..., Qm-i, respectively, but we will not take the time
to do this.
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there is an orthogonal diagonal matrix E such that It follows immediately
that B = EBD. D

Exercise 5.9.42 Show that if have , for all i, and
in Theorem 5.9.39, then Q = Q, P = P, and B = B. D

To apply Theorem 5.9.39 to our present situation, note that the first column of the
matrix Q — Vi • • • Fm_i of (5.9.37) is the same as the first column of Vi. This is easy
to see if we think of accumulating Q by starting with V\, then multiplying on the right
by V-2, V 3 , . . . , Vm_i, successively. Since each of these is a rotator acting on columns
other than column 1, the first column of Q must be the same as the first column of
Vi. The latter was chosen to be essentially the same as the the first column of the
orthogonal matrix Q of (5.9.28) and (5.9.29). We can now apply Theorem 5.9.39 to
conclude that the matrix B defined by (5.9.29) is essentially the same as the matrix
B defined by (5.9.35) and (5.9.38). Recalling (5.9.30) and (5.9.31), we see that our
bulge-chasing process effects QR iterations on both BTB and BBT. This completes
the justification of the implicit QR step, at least in the case that the shift is not an
eigenvalue.

Exercise 5.9.43 Work out what happens in the case that p is an eigenvalue of BTB and BBT.
You may find the ideas in Exercise 5.6.28 useful. D

Shifts and Deflation

If we set B «— B and perform repeated QR steps with some reasonable choice of
shifts, both BTB and BBT will tend to diagonal form. The main-diagonal entries
will converge to the eigenvalues. If the shifts are chosen well, the (m, m — 1) and
(ra, m) entries of both BTB and BBT will converge very rapidly, the former to
zero and the latter to an eigenvalue. Of course we do not deal with BTB or BBT

directly; we deal with B. The rapid convergence of BTB and BBT translates
into convergence of jm-i to zero and flm to a singular value. Once 7m_i becomes
negligible (e.g. 7m_i < u(/3m-i +/?TO), where u is the unit roundoff), we can deflate
the problem and go to work on the remaining (m — 1) x (m — 1) submatrix. After
m — 1 deflations, we are done.

During the whole procedure, all of the 7* tend slowly toward zero. If at any
point one of them becomes negligible, the problem should be reduced to two smaller
subproblems, as in (5.9.27).

So far, we have not indicated how to choose the shifts. It is worthwhile to start
with a few iterations with p — 0. If B has any tiny singular values, these will emerge
promptly at the bottom, and B can be deflated.9 Once the tiny singular values have
been removed, we should switch to a shifting strategy that causes the remaining

9Recall from Theorem 5.6.21 that a zero eigenvalue of BTB, which corresponds to a zero singular value
of B, will emerge in one iteration. Similarly, eigenvalues that are very close to zero will emerge in just a
few iterations.
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singular values to emerge quickly. To this end, we should try to choose shifts that
approximate eigenvalues of BTB well. For example, it is a simple matter to compute
the lower-right-hand 2x2 submatrix of BTB. It is

We are using the symbol B to refer to the current iterate, not the original matrix. Thus
m refers to the current dimension of the matrix (some deflations may have occurred),
and the (3's and 7's are the current values, not the original ones. We can compute
the two eigenvalues of the matrix (5.9.44) and let the shift p for the next iteration be
that eigenvalue that is closer to This is the Wilkinson shift on BTB. It
is a good choice because it guarantees convergence, and the convergence is rapid in
practice.

Exercise 5.9.45 Write a Fortran (or MATLAB or C or . . . ) program that calculates the
singular values of a bidiagonal matrix B. Test it on the matrix B 6 £mxm given by
Pi = 1 and 7i = 1 for all i. Try various values of m. The singular values of B are

D

Additional Exercises

Exercise 5.9.46 Let B e ]RmXTO have the form (5.9.24). Since B is m x m, we can say that
B has m singular values a\ > 02 > • • • > crm > 0. If rank(B) — r < m, the last
m — r singular values are zero.

(a) Show that /?& = 0 for some k if and only if zero is a singular value of B.

(b) Suppose fa = 0. Show that we can make 7&_i = 0 by a sequence of k — 1
rotators applied to B from the right. The first acts on columns k — 1 and k and
transforms 7&_i to zero. At the same time it produces a new nonzero entry in
position (k — 2, k). The second rotator acts on columns k — 2 and k, annihilates
the (k — 2, k) entry and creates a new nonzero entry in position (k — 3, &).
Subsequent rotators push the extra nonzero entry up the k\h column until it
disappears off the top of the matrix. The resulting bidiagonal matrix has both
#fe = 0and7fc_i -0.

(c) Supposing still that fa = 0, show that we can make 7^ = 0 by a sequence
of m — k rotators applied to B from the left. The procedure is analogous to
the procedure of part (b), except that it pushes the unwanted nonzero entry out
along the fcth row rather than up the fcth column.
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Once the procedures of parts (b) and (c) have been applied, we have βk = 0,
jk_i = 0, and 7fc = 0. The bidiagonal matrix now has the form

where the zero that is shown explicitly is /?&. This is a zero singular value of B. We
can move it to the (m, m) position of the matrix by a row and column interchange,
if we wish. The rest of the SVD can be found by computing the SVDs of B\ and B^
separately and then combining them. D

Exercise 5.9.47 Show that if B is properly bidiagonal, then there exist orthogonal, diagonal
matrices D\ and _D2 (these have entries ±1 on the main diagonal), such that all of
the nonzero entries of DiBD-z are positive. Thus we can assume, without loss of
generality, that all flk and 'jk are positive. d

Exercise 5.9.48 Show that if A e En x n is a symmetric, positive definite matrix, then its
singular values are the same as its eigenvalues, and its right and left singular vectors
and (normalized) eigenvectors are all the same. How is the picture changed if A is
symmetric but indefinite? D

Exercise 5.9.49 Given A € Enxm, consider the symmetric matrix

Show that a simple relationship exists between the singular vectors of A and the
eigenvectors of M. Show how to build an orthogonal basis of En+m consisting of
eigenvectors of M, given the singular vectors of A. In the process, find all of the
eigenvalues of M. (Hint: If (j, is an eigenvalue of M, then so is —/Li.) D

Exercise 5.9.50 Let A <E lnxm and C <E Emxn, and define

Show that µ is an eigenvalue of F if and only if p2 is an eigenvalue of both AC and
CA. Determine the relationship between eigenvectors of M and eigenvectors of AC
and CA. D
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6
Eigenvalues and

Eigenvectors II

The first section of this chapter introduces the important notions of eigenspace
and invariant subspace. The latter concept is particularly important for a deeper
understanding of eigenvalue problems and algorithms. Armed with this new concept,
we are able to explain in Section 6.2 why the QR algorithm works. In the process
we introduce simultaneous iteration, an algorithm that is closely related to QR and
is also useful in its own right for computing eigenvalues and eigenvectors of large,
sparse matrices. Although the importance of simultaneous iteration as a practical
algorithm has declined in recent years, it does nevertheless provide us with a smooth
entry into Sections 6.3 and 6.4, which discuss several algorithms for large, sparse
eigenvalue problems.

The last three sections of the chapter can be read more or less independently.
Section 6.5 discusses the sensitivity of eigenvalues and eigenvectors, and introduces
condition numbers for these objects. Section 6.6 surveys a variety of methods that can
be used as alternatives to the QR algorithm on symmetric matrices. Some of these
methods are superior to QR for symmetric, tridiagonal eigenvalue problems. Finally,
Section 6.7 provides a brief introduction to the generalized eigenvalue problem
Av — λBv and algorithms for solving it.

6.1 EIGENSPACES AND INVARIANT SUBSPACES

Let A 6 Cn x n, let A be any complex number, and consider the set of vectors

Sλ = {v e Cn | Av = Xv}.

You can easily check that S\ is a subspace of Cn.

413
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Exercise 6.1.1 (a) Show that if v\, v% 6 S\, then v\ + v<2 G S\. (b) Show that if v e <S\
and a € C, then av € <S\. Thus S\ is a subspace of Cn. D

Since the equation Av = \v can be rewritten as (XI — A)v = 0, we see that
S\ — M(XI — A], the null space of AJ — A. The space S\ always contains the zero
vector. It contains other vectors if and only if A is an eigenvalue of A, in which case
we call S\ the eigenspace of A associated with A.

The notion of an invariant subspace is a useful generalization of eigenspace. Since
we will want to talk about both real and complex invariant subspaces, we will begin
by introducing some notation to make the presentation more flexible. Let F denote
either the real or complex number field. Thus Fn and Fnxn will denote either En

and Enxn or Cn and Cnxn, depending on the choice of F.
Let A € Fnxn. A subspace S of Fn is said to be invariant under A if Ax G S

whenever x £ S, in other words, AS C S. We will also sometimes bend the language
slightly and say that S is an invariant subspace of A. The spaces {0} and Fn are
both invariant subspaces of A. The next exercise gives some nontrivial examples of
invariant subspaces.

First we recall some notation from Chapter 3. Given #1, x%, ..., Xk 6 Fm,
spanjxi , . . . , Xk} denotes the set of all linear combinations of xi,..., Xk. That is,

Notice that there is now some ambiguity in the meaning of spanjxi , . . . ,£&}. The
coefficients Cj are taken from F. They can be either real or complex, depending on
the context. There was no such ambiguity in Chapter 3, because there we always had

Exercise 6.1.2

(a) Let v G Fn be any eigenvector of A. Show that spanji?} is invariant under A.

(b) Let <S\ be any eigenspace of A (of dimension 1 or greater). Show that <S\ is
invariant under A.

(c) Let vi, ... ,Vk € Fn be any k eigenvectors of A associated with eigenvalues
AI, . . . , Afc. Show that the space S — span{vi,..., Vk} is invariant under A.
It can be shown that if A is semisimple, every invariant subspace has this form.

(d) Let

Find the eigenspaces of A, and find a space S that is invariant under A and is
not spanned by eigenvectors of A.

D
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If we think of A as a linear operator mapping F71 into Fn, then an invariant subspace
can be used to reduce the operator, in the following sense. Suppose <5 is an invariant
subspace under A that is neither {0} nor Fn, and let A denote the restricted operator
that acts on the subspace S, that is,A = A\s. Then A maps S into S. It is clear the
every eigenvector of A is an eigenvector of A, and so is every eigenvalue. Thus we
can obtain information about the eigensystem of A by studying A, an operator that is
simpler than A in the sense that it acts on a lower-dimensional space. The following
sequence of theorems and exercises shows how this reduction can be carried out in
practice. We begin by characterizing invariant subspaces in the language of matrices.

Theorem 6.1.3 Let S be a subspace of¥n with a basis x\, ..., Xk- Thus S —
span{xi,... , £fc}. Let X = [ x\ ••• Xk ] G Fnx/c. Then S is invariant under

A 6 Fnxn if and only if there exists B G ¥kxk such that

Proof. Suppose there is a such that Let 6^ denote the ( i , j ) entry
of B. Equating the jth column of AX with the jth column of we see that

G spanjxi, . . . , Xk} G S. Since AXJ G 5 for j = 1,..., fc, and
xi,... ,Xk span S, it follows that Ax G <S for all x G S. Thus S is invariant under
A. conversely, assume <S is invariant. We must construct B such that
For j = 1, . . . , A;, AXJ G S, so there exist constants b±j, . . . , bkj G F such that
AXJ — xibij +x2b<2j-] (- Xkbkj. Define B G ¥kxk to be the matrix whose (i, j)
entry is bij. Then A [x i ••• Xk] = [xi ••• Xk]B, that is, , (See also
Exercise 6.1.12.) D

Exercise 6.1.4 Let S be an invariant subspace of A with basis x\, . . . , Xk, and let X =
[xi ••• x k ] . By Theorem 6.1.3 there exists B G Wkxk such that AX = X5.

(a) Show that if {> G Ffc is an eigenvector of B with eigenvalue A, then v = Xv
is an eigenvector of A with eigenvalue A. In particular, every eigenvalue of B
is an eigenvalue of A. What role does the linear independence of rci, . . . , Xk
play?

(b) Show that v G S. Thus v is an eigenvector of A \$.

D

Exercise 6.1.5 With A, B, and 5 as in the previous exercise, show that B is a matrix
representation of the linear operator A (5. D

The next theorem shows that whenever we have (a basis for) a nontrivial invariant
subspace, we can make a similarity transformation that breaks the eigenvalue problem
into two smaller problems.

Theorem 6.1.6 Let S be invariant under A G Fnxn. Suppose S has dimension k,
with 1 < k < n, and let x\, ..., Xk be a basis of S. Let Xk+i, ..., xn be any
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n — k vectors such that the vectors x\, ..., xn together form a basis for Fn. Let
Xi=[xi ••• xk], X2 = [xk+1 ••• xn], and X = [xi ••• xn] G Fnxn. Define
B = X~1AX. Then B is block upper triangular:

where BU G Ffcx*. Furthermore AX\ = XiBu.

B is similar to A, so it has the same spectrum. This can be found by computing
the spectra of BU and .622 separately. Thus the eigenvalue problem has been broken
into two smaller problems.

Notice that BU is the same as the matrix that was introduced in Theorem 6.1.3.
If we wish, we can always take xi, . . . , xk to be an orthonormal basis of <S and

choose the additional vectors Xk+i, . . . , xn so that xi, . . . , xn together form an
orthonormal basis of Fn. This can be achieved by the Gram-Schmidt process, for
example. Then X is unitary, and B is unitarily similar to A.
Proof. The equation B = X~1AX is equivalent to AX — XB. The jth column of
this equation is . Since xi, ..., xn are linearly independent, this
sum is the unique representation ofAxj as a linear combination of x\,..., xn. On the
other hand, for j = 1 , . . . , k. Xj lies in the invariant subspace <S = span{xi, . . . , x^},
soAxj lies inS as well. Thus AXJ = c\jX\ + - • -+CkjXk forsomecij, . . . ,Ckj £ Fn.
By uniqueness of the representation of AXJ, we have bij — Ci3for i = 1 , . . . , k, and
more importantly b^ = 0 for i = k + 1 , . . . , n. This holds for j — 1 , . . . , k. In

the p a r t i t i o n t h e block B^i consists precisely of those b^ for

which k 4- 1 < i < n and 1 < j < k. Thus BI\ — 0. This proves that B is block
triangular. The equation AX\ — X\Bn now follows immediately from the obvious
partition of the equation AX = XB. D

See Exercise 6.1.13 for a second proof of this theorem.

Exercise 6.1.7 Prove the converse of Theorem 6.1.6: if B^i = 0, then S is invariant under A.
n

Corollary 6.1.8 Let B = X~1AX, where X = [xi ... xn] € Fnxn is nonsingular.
Then B is upper triangular if and only if all of the spaces

are invariant under A.

Exercise 6.1.9 Prove Corollary 6.1.8. D

Theorem 6.1.6 shows that whenever we find a nontrivial invariant subspace, we
can make a similarity transformation that breaks the eigenvalue problem into two
smaller problems. If we can then find subspaces that are invariant under BU and
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B22, we can break each of them into smaller subproblems. If we can continue
this process indefinitely, we can eventually break the problem down to many small
submatrices of size 1x1 and 2 x 2 , from which we can read off the eigenvalues. It
is thus reasonable to say that finding invariant subspaces is the fundamental task of
eigensystem computations.

Schur's Theorem (Theorem 5.4.11) and its real variant, the Wintner-Murnaghan
Theorem (Theorem 5.4.22) show that the breakdown process described in the previous
paragraph is always possible in principle. We now see (cf. Corollary 6.1.8) that these
are theorems about invariant subspaces.

The QR algorithm achieves the practical task of breaking the matrix down. In
a typical reduction the submatrix B22 is tiny and B\\ is huge. Thus (nearly) all of
the remaining work consists of breaking down B\\. It would be nice to develop an
algorithm that breaks a matrix into submatrices of roughly equal size. This requires
the identification of an invariant subspace of dimension approximately n/2, which
has proved to be a difficult task.1

Additional Exercises

Exercise 6.1.10 If p is an eigenvalue of A, then the eigenspace Sp,(A) — {v G Cn | Av =
IJLV} has dimension at least 1. Often the dimension is exactly 1, but sometimes it is
greater. The geometric multiplicity of the eigenvalue p is defined to be the dimension
of the eigenspace <S^(A). The geometric multiplicity may be different from the
algebraic multiplicity, which is defined to be the number of time p appears as a root
of the characteristic equation. By this we mean the number of times the factor A — p
appears as a factor of the characteristic polynomial det(A/ — A).

(a) Find the algebraic and geometric multiplicities of the eigenvalue A = 2 in each
of the following matrices.

(b) Schur's Theorem (Theorem 5.4.11) guarantees that every matrix A € cnxn

is unitarily similar to an upper triangular matrix T: A = UTU~l. Show that
the algebraic multiplicity of p as an eigenvalue of A is equal to the number of
times p appears on the main diagonal of T.

(c) Show that if A and B are similar matrices, then dim«SM(A) = dim<SM(£?).
Thus the geometric multiplicity of p as an eigenvalue of A is the same as it is
as an eigenvalue of B.

(d) Show that the geometric multiplicity of p is less than or equal to the algebraic
multiplicity. (Work with the upper triangular matrix T, and suppose the alge-

1 However, some headway has been made in this area. See [4].
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braic multiplicity of p is k. We know that in Schur's Theorem we can arrange
the eigenvalues in any order on the main diagonal of T (Exercise 5.4.30). Sup-
pose T is constructed so that its first k main diagonal entries are p. What does
an eigenvector look like? Show that the dimension of the eigenspace cannot
exceed k.)

D

Exercise 6.1.11 (Proof of Wintner-Murnaghan Theorem 5.4.22)

(a) Prove that if A <E Mnxn with n > 3, then there is a subspace <S 6 Mn of
dimension 1 or 2 that is invariant under A. (Consider an eigenvector of A.
Its real and imaginary parts span a subspace of Mn. Show that this space is
invariant and has dimension 1 or 2.)

(b) Using part (a) and Theorem 6.1.6, prove Theorem 5.4.22 by induction on n.

D

Exercise 6.1.12 Letzi,... ,xk e ¥n,X = [xi ••• xk] € Fnxfc,and<S = span{xi,... ,xk} C
Fn. Viewing X as a linear operator mapping ¥k into Fn, the range of X (cf. Sec-
tion 3.5) is defined by U(X] = {Xz \ z e ¥k}.

(a) Show that K(X) = S.

(b) Using the observation from part (a), write a shorter proof of Theorem 6.1.3.

D

Exercise 6.1.13 This exercise derives a second proof of Theorem 6.1.6. Assuming the same
notation as in Theorem 6.1.6, define Y € Wnxn by YT = X~l. Let yx, . . . , yn

denote the columns of Y, and let Y\ = [y\ • • • yk] and Y% = [yk+i • •• yn}-

( a ) Show t h a t a n d

(b) Show that

(c) Use Theorem 6.1.3 and the selected equations from parts (a) and (b) to show
that B-2i — 0, if the columns of X\ span an invariant subspace.

D

Exercise 6.1.14 In the notation of Theorem 6.1.6, let T — span{xjt+i,..., xn}.

(a) Show that T is invariant under A if and only if #12 = 0. Your solution may
resemble the proof of Theorem 6.1.6, or you can use ideas from Exercise 6.1.13.

(b) Suppose T is invariant under A. Show that if is an eigenvector of £22 asso-
ciated with the eigenvalue A, then is an eigenvector of A associated
with eigenvalue A.
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D

Exercise 6.1.15 Suppose the hypotheses of Theorem 6.1.6 are satisfied. Define Y € Fnxn

by YT — X'1, let j/i, . . . , yn denote the columns of Y, let Yi = [y\ • • • yk],
Yz = bfc+i • • • 2/n], and define U = span{yfc+i ,...,yn}.

(a) Show that U is invariant under AT.

(b)Show that if w is an eigenvector o f a s s o c i a t e d with the eigenvalue A, then
is an eigenvector of AT associated with A.

D

Exercise 6.1.16 We repeat Exercise 6.1.15 with one minor alteration. Take F = C and define
Z € Cnxn by Z* = X~l. Let zit ..., zn denote the columns of Z, and define
Z2 = [zk+i ••• zn] and V = &paa\{zk+i, • ..,zn}.

(a) Show that V is invariant under A*.

(b) Show that if w is an eigenvector of associated with the eigenvalue then
w — Z^w is an eigenvector of A* associated with

(c) It is always possible to choose #1 , . . . , xn so that X is unitary, in which case
Z — X. Use these facts to show that if <S is invariant under A, then S1' is
invariant under A*.

D

Exercise 6.1.17 In this exercise we prove directly (without using bases) that S^ is invariant
under A* if S is invariant under A. Recall that the inner product in Cn is defined by

(a) Show that for all x, y € Cn,(Ax,y) = (x,A*y). This is the complex analogue
of Lemma 3.5.9.

(b) Use the result of part (a) to prove directly that if S is invariant under A, then
e?1" is invariant under A*.

(c) Conclude from part (b) that if A is Hermitian (A = A*), then S is invari-
ant under A if and only if S^ is. Relate this result to Exercise 6.1.14 and
Theorem 6. 1.6.

D

Exercise 6.1.18 Let A, B, X e Fnxn with X nonsingular and B = X~[AX. Let xi, . . . ,
xn denote the columns of X . Prove that B is lower triangular if and only if the spaces
span{rcjfc+i , . . . , xn}, k = 1, . . . , n — 1, are all invariant under A. D
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6.2 SUBSPACE ITERATION, SIMULTANEOUS ITERATION, AND THE
QR ALGORITHM

The principal aims of this section are to derive the QR algorithm in a natural, logical
manner and to explain its convergence properties. Along the way we will encounter
subspace iteration and simultaneous iteration, concepts that are also important in
connection with calculation of eigenvalues of large, sparse matrices. We will also
discuss an important duality principle, which states that whenever direct (power)
iteration takes place, inverse iteration automatically takes place at the same time.
This principle will allow us to connect the QR algorithm with inverse iteration and
Rayleigh quotient iteration.

Subspace Iteration

We begin by returning to the power method and recasting it in terms of subspaces.
Given a matrix A 6 (£nxn that has a dominant eigenvalue, we can use the power
method to calculate a dominant eigenvector v\ or a multiple thereof. It does not matter
which multiple we obtain, since each nonzero multiple is as good an eigenvector as
any other. In fact each multiple of v\ is just a representative of the eigenspace
spanj^i}, which is the real object of interest. Likewise, in the power sequence
q, Aq, A2q, A3q, ... each of the iterates Amq can be viewed as a representative of
the space span{Amq}, which it spans. The operation of rescaling a vector amounts to
replacing one representative by another representative of the same one-dimensional
space. Thus the power method can be viewed as a process of iterating on subspaces:
First a one-dimensional subspace S = span{<?} is chosen. Then the iterates

are formed. This sequence converges linearly to the eigenspace T — span{i>i} in the
sense that the angle between AmS and T converges to zero as m -> oo.

It is quite natural to generalize this process to subspaces of dimension greater than
one. Thus we can choose a subspace S of any dimension and form the sequence
(6.2.1). It is perhaps not surprising that this sequence will generally converge to a
space that is invariant under A. Before proceeding, you should work the following
exercise, which reviews a number of concepts and covers the most basic properties
of subspace iteration.

Exercise 6.2.2 Let A € Fnxn, where F = R or C, and let S be a subspace of Fn. then AS is
denned by AS = {Ax \x eS}.

(a) Recall that a nonempty subset U of Fn is a subspace if an only if (i) x\, x<2 £U
=$> x\ + x2 £ U and (ii) a € F and x e U => ax 6 U. Show that if S is a
subspace of Fn, then AS is also a subspace of Fn.

(b) By definition, AmS = {Amx \ x 6 S}. Show that AmS = A(Am~1S).

(c) Show that if S = span{xi,... , xk }, then AS = span{ Ax\,..., Axk }.
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(d) Recall that the null space of A is . Let S be a
subspaceofFn for which SHA/X^.) = {0}. Show that if xi,..., xk is a basis
of S, then Axi,... ,Axk is a basis of AS. Consequently dim(A5) = dim(5).

D

In order to talk about convergence of subspaces, we need to say what we mean by
the distance between two subspaces. However, a detailed discussion would distract us
from our current task, which is to give you an intuitive feel for why the QR algorithm
works. We will therefore just say that the distance between two subspaces S\ and
S2, denoted d (S1 , S£2), is defined to be the sine of the largest principal angle between
them. (Principal angles are defined in [33], for example.) Given a sequence of
subspaces (<5>m) and a subspace T, all of the same dimension, we will say that (<Sm)
converges to T (denoted symbolically by Sm -> 7") provided that d(Sm,T] —> 0
as m —> oo. We are now ready to state the main theorem on the convergence of
subspace iteration.

Theorem 6.2.3 Let A £ Fnxn be semisimple with linearly independent eigenvectors
vi, ..., vn 6 Fn and associated eigenvalues \i, ..., An G F, satisfying | AI | >
|A 2 | > • • • > | An | . Suppose | Xk | > \\k+i \forsomek. LetTk - span{t>i,... ,vk}
and Uk = span{i;jfc+i,. . . , vn}. Let S be any k-dimensional subspace of ¥n such
that <S C\Uk = {0}. Then there exists a constant C such that

Thus AmS —>• Tk linearly with convergence ratio \ \k+i/\k I-

Since Tk is spanned by eigenvectors of A, it is invariant under A. Tk is called the
dominant invariant subspace of A of dimension k. The semisimplicity assumption is
not crucial; a slightly revised version of Theorem 6.2.3 holds for defective matrices.
For a proof see [79].

Exercise 6.2.4

(a) Show that the condition | Xk | > | \k+i \ implies that A/"(A) C Uk-

(b) More generally, show that N(Am] C Uk for all m > 0.

(c) Conclude that AmS has dimension k for all m > 0.

D

It is easy to argue the plausibility of Theorem 6.2.3. Let q be any nonzero vector
in S. We can easily show that the iterates Amq lie (relatively) close and cfoser to Tk
as m increases. Indeed q may be expressed uniquely in the form
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Since , at least one of the coefficients c i , . . . , c/- must be nonzero. Now

The coefficients of the component in Tk increase, or at least do not decrease, as m
increases. In contrast, the coefficients of the component in Uk tend to zero with rate
| \k+i/\k | or better. Thus each sequence (Amq) converges to Tk at the stated rate
or better, and consequently the limit of (Am<S] lies in Tk- The limit cannot be a
proper subspace of Tk because it has dimension k.

The hypothesis S r\Uk = {0} merits some comment. Is this a stringent condition
or is it not? First let us see what it amounts to in the case k — 1. In this case
we have S = span{#}, and U\ = span{^2, • • •, vn}. Clearly S fl U\ = {0}
if and only if q £ U\. This just means that c\ ^ 0 in the unique expansion
q = ciVi + 02^2 + • • • + cnvn. You will recall from Section 5.3 that this is the
condition for convergence of the basic power method to span{t>i}. It is satisfied by
almost every v e Fn. In the language of subspaces, a one-dimensional subspace S
and an (n — 1)-dimensional subspace U\ are almost certain to satisfy S n U\ — {0}.
Fortunately the same is true in general, as long as the sum of the dimensions of S
and Uk does not exceed n.

To get a feel for why this might be so, note first that if the sum of the dimensions
does exceed n, then S and Uk must intersect nontrivially. This is a consequence of
the fundamental relationship

since dim(«S + Uk] < dim(Fn) = n.
In our present situation dim(<5) = k and dim(£/&) = n — k. The dimensions

add to n exactly, so there is enough room in Fn that S and Uk are not forced by
(6.2.5) to intersect nontrivially. If two subspaces are not forced to intersect nontriv-
ially, then they almost certainly will not. Consider the situation in R3. There any
two two-dimensional subspaces (planes through the origin) are required to intersect
nontrivially because the sum of their dimensions exceeds three. In contrast, a plane
and a line are not required to intersect nontrivially, and it is obvious that they al-
most certainly will not. See also Exercise 6.2.33. We conclude that the condition
S fl Uk = {0} of Theorem 6.2.3 is not stringent; it is satisfied by practically any S
chosen at random.

Simultaneous Iteration

In order to carry out subspace iteration in practice, we must choose a basis for S and
iterate on the basis vectors simultaneously. Let be a basis for
S. From Exercises 6.2.2 and 6.2.4 we know that if S n Uk = {0}, then

form a basis for AmS. Thus, in theory, we can simply iterate
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on a basis of S to obtain bases for AS, A2S, A3S and so on. There are two reasons
why it is not advisable to do this in practice: (i) The vectors will have to be rescaled
regularly in order to avoid underflow or overflow, (ii) Each of the sequences

independently converges to the dominant eigenspace span{i>i}

(assuming | AI | > | A2 |). It follows that for large m the vectors
all point in nearly the same direction. Thus they form an ill-conditioned basis of
AmS. In numerical practice, an ill-conditioned basis determines the space poorly; a
small perturbation in one of the basis vectors can make a big change in the space.

Ill-conditioned bases can be avoided by replacing the basis obtained at each step
by a well-conditioned basis for the same subspace. This replacement operation can
also incorporate the necessary rescaling. There are numerous ways to do this, but
the most reliable is to orthonormalize. Thus the following simultaneous iteration
procedure is recommended.

In practice one should use a robust process to perform the orthonormalization. For
example, one could use modified Gram-Schmidt with reorthogonalization or a QR
decomposition by reflectors (See Section 3.4).

The simultaneous iteration procedure (6.2.6) has the agreeable property of iterating
on lower-dimensional subspaces at no extra cost. For i = 1 , . . . , k, let Si denote the
i -dimensional subspace spanned by Then

by the subspace-preserving property (3.4.12) of the Gram-Schmidt procedure. In
general

so s p a n c o n v e r g e s to the invariant subspace spanj^i,. . . ,vi} as

m —> oo, provided that appropriate hypotheses are satisfied. Thus simultaneous
iteration seeks not only an invariant subspace of dimension k, but subspaces of
dimensions 1,2,... ,k — las well.

Although simultaneous iteration is an interesting algorithm in its own right, our
main reason for introducing it here is to use it as a vehicle for the introduction of the
QR algorithm. To that end, let us now consider what happens when simultaneous
iteration is applied to a complete set of orthonormal vectors
We continue to assume that A is semisimple, with linearly independent eigenvec-

tors vi, . . . , vn. For k = 1,... ,n - 1, let Tk =
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span{ui, . . . ,Vk}, andUk = spanj^+i,. . . ,vn}, and assume Sk^Uk = {0} and

| A j f e | > |A*+i| . Then

linearly with convergence ratio | \k+i / A& | as m —>• oo. There are a number of ways
to recognize convergence of the iterates. One way is to carry out a similarity trans-
formation.

Let denote the unitary matrix whose columns are
and let

For large m the space spanned by the first k columns of is very close to the
invariant subspace TV In Theorem 6.1.6 we learned that if these columns exactly
span Tk. then Am has the block upper-triangular form

and the eigenvalues of are AI, . . . , A&. Since the columns do not exactly span
Tk. we do not get a block of zeros, but we have reason to hope that the entries in the
block will be close to zero. It is not unreasonable to expect that at
the same rate as AmSk —>• Tk- This turns out to be true and not hard to prove. See
[79], for example. Thus the sequence (Am) converges to the block upper-triangular
form (6.2.8).

This happens not just for one choice of k, but for all k simultaneously, so the
limiting form is upper triangular. The main-diagonal entries of Am converge to the
eigenvalues AI, A2, . . . , An, in order. These conclusions hold under the assumption
that the strict inequalities | A& | > A&+I | hold for k = 1, . . . , n — 1. Should some
of them fail to hold, the limiting form will be block triangular. This happens most
frequently when A is real and has some pairs of complex conjugate eigenvalues. For
each pair , a 2-by-2 block will emerge in rows and columns i and i + 1.
The eigenvalues of this block are, of course, \i and Ai+i.

The QR algorithm is a variant of subspace iteration that produces the sequence
(Am) directly.

The QR Algorithm

It is easy to recast simultaneous iteration in matrix form. After m iterations we have

the orthonormal vectors which are the columns of . Let Bm+i

be the matrix whose columns are Then . To
complete the step we must orthonormalize . From Section 3.4 we
know that this can be accomplished by a QR decomposition of Bm+i. Thus a step
of simultaneous iteration can be expressed in matrix form as
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Exercise 6.2.10 Write down the matrix form of simultaneous iteration for the case when only
k vectors are used (k < n). What are the dimensions and other properties of the
matrices that are involved? D

Now suppose we begin subspace iteration with the standard basis vectors

that is, Qo = I. Then by (6.2.9) we have AI = #1 =
Q\R\. Letting Qi — Qi, we have

A = QiRi. (6.2.11)

Suppose we are feeling very optimistic about the rate of convergence, and after this
one step we already wish to assess how much progress we have made. One way to do
this is to carry out the unitary similarity transformation
as suggested above (cf. (6.2.7)), and see how close to upper triangular form A\ is.
Since Q*A = RI by (6.2.11), AI can be calculated by

Equations (6.2.11) and (6.2.12) together constitute one step of the QR algorithm.
Finding that AI is not upper triangular, we decide to take another step. But now

we have a choice. We can continue simultaneous iteration with A, or we can work
instead with the similar matrix AI . Recall that similar matrices can be regarded as
representations of the same linear transformation with respect to different coordinate
systems. Thus the choice between A and AI is simply a choice between coordinate
systems. If we stick with the original coordinates, the next step has the form

If we wish to assess our progress toward convergence, we can make the similarity
transformation

Let us see what these transformations look like in the coordinate system of AI.
Because a vector that is represented by the coordinate vector x in the
original system will be represented by in the new system. Therefore the vectors

(the columns of Qi) are transformed to i
(the columns of /). Thus the equation AQi = B^ is equivalent

to AI! = AI, and the QR decomposition is equivalent to a QR
decomposition of AI :

If we now wish to see how much progress we have made in this one step, we can
make the similarity transformation

Since , this transformation can be accomplished via
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Equations (6.2.15) and (6.2.17) constitute a second QR step.

Exercise 6.2.18 Assume (for convenience) A is nonsingular. Therefore B2 is also nonsingular,
so its QR decomposition is unique (Theorem 3.2.58). One expression for the QR
decomposition of B2 is given by (6.2.13). Obtain a second expression by rewriting
the equation in terms of A\ and using (6.2.15). Conclude that the matrices
R-2 given by (6.2.13) and (6.2.15) are the same, and the matrices A^
given by (6.2.14) and (6.2.16) are the same. D

When we continue the process, we have the choice of working in the coordinate
system of A, A\, or A%. If we decide that at each step we will work in the newest
coordinate system, we generate the sequence (Am) by the elegant transformation

This is the basic QR algorithm. As we have just seen, it is nothing but simulta-
neous iteration with a change of coordinate system at each step. To solidify your
understanding of this fact, let us review the meaning of the equations in (6.2.19).

The columns of Am-\ are Am-iei, . . . , Am_ien; that is, they are the result
of one step of simultaneous iteration by Am-i on the standard basis. The decom-
position Am-i = QmRm orthonomalizes these vectors. The columns of Qm are
the orthonormal basis vectors for the next step of simultaneous iteration. The step
RmQm = Am, which is equivalent to simply carries out the
transformation to a new coordinate system. In this coordinate transformation, the
orthonormal basis vectors for the next iteration are transformed to the standard basis
vectors e i , . . . , en.

The global correspondence between the QR algorithm and simultaneous iteration
without coordinate transformations is easy to establish. The matrices Am generated
by (6.2.19) are the same as those generated by (6.2.7), assuming the iterations were
initiated with The Rm of (6.2.19) are the same as those of (6.2.9), and the
Qm of (6.2.19) are related to the of (6.2.9) by

Qm is the matrix of the change of coordinates at step m, and is the accumulated
change of coordinates after m steps.

We have established the equivalence of simultaneous iteration and the QR algo-
rithm by looking at the processes one step at a time. Another way is to examine
the cumulative effect of m steps. In this approach Qm, Rm, and Am are defined by
(6.2.19), with AQ - A, and is denned by (6.2.20). If, in addition, is defined
by

then
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and so on. Clearly we can prove by induction that

Exercise 6.2.23 Suppose Am, Qm, and Rm are defined by (6.2.19), with A0 = A, Qm is
defined by (6.2.20), and Rm is defined by (6.2.21).

(a) Prove that for all m.

(b) Prove (6.2.22) by induction on m, using the result from part (a).

D

Clearly is unitary and is upper triangular. Therefore (6.2.22) is just the
QR decomposition of Am. This means that for all k, the first A; columns of Qm form
an orthonormal basis for the space spanned by the first k columns of Am. But the
columns of Am are just Amei,..., Amen. Thus

That is, the columns of Qm are just the result of m steps of simultaneous iteration,
starting from the standard basis vectors e i , . . . , en.

If you decided to read this section before reading Section 5.6, now is a good time
to go back and read that material. If you have already read Section 5.6, you might
find it useful to review it at this point.

In Section 5.6 we introduced the QR algorithm without motivation and discussed
the modifications that are needed to make the algorithm efficient. The first of these is
to transform the matrix to upper Hessenberg form before beginning the QR iterations.
This is a good idea because (i) Hessenberg form is preserved under QR iterations
and (ii) the cost of a QR iteration is much less for a Hessenberg matrix than for a full
matrix. Thus each of our iterates has the form

We may assume further that each of the subdiagonal entries is nonzero, since
otherwise we could reduce the eigenvalue problem to two smaller problems. Recall
that an upper Hessenberg matrix that satisfies this condition is called a properly upper
Hessenberg matrix.

Since the matrices Am produced by the QR algorithm are identical to those
given by (6.2.7), we can conclude that if | A& > | A^+i | and the subspace condition
Sk^Uk — {0} (Theorem 6.2.3) holds, then Am converges to the block triangular form
(6.2.8). Since all Am are upper Hessenberg, the (n — k) x k block that is converging
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to zero contains only one entry that is not already zero, namely This one entry

therefore gives a rough indication of the distance of span from the

invariant subspace Tk = span{^i,. . . , Vk }• Under the given conditions I
linearly with convergence ratio | \k+i/Xk | as m ->• oo.

A desirable side effect of using properly upper Hessenberg matrices is that the
subspace conditions Sk^Mk — {0}> A; = 1 , . . . , n — 1, are always satisfied (Exer-
cise 6.2.34). This is a very satisfying result from a theoretical standpoint. It implies
that the eigenvalue inequalities | A* | > | \k+i | are all that is needed to guarantee
convergence.

A word of caution about the nature of the convergence is in order. The statement
that (Am] converges to upper-triangular form means simply that the subdiagonal
entries converge to zero as m —» oo. It follows that the main-diagonal entries
converge to eigenvalues, but nothing is implied about the entries above the main
diagonal, which may in fact fail to converge (Exercise 6.2.35). Thus we cannot
assert that there is some upper-triangular U E Fnxn such that \\Am — U \\ —>• 0 as
m —>• oo.

Along with the use of upper Hessenberg matrices, the other major modification
of the QR algorithm is the use of shifts to accelerate convergence. Now that we
have established that the rate of convergence is determined by the ratios | Ajt+i /\k |,
it is clear how shifts can be used. This was discussed in Section 5.6, and there is no
need to repeat that discussion here. Perhaps one point does bear repeating. While it
is clear that shifts are normally extremely beneficial, their use does complicate the
convergence analysis. Nobody has been able to prove that the QR algorithm (with
some specific, evidently successful shifting strategy) always converges.

The generalization of (6.2.22) that holds for the shifted QR algorithm is developed
in Exercise 6.2.36.

Duality in Subspace Iteration

The following duality theorem provides the link between the QR algorithm and
inverse iteration. It shows that whenever direct (subspace) iteration takes place,
inverse (subspace) iteration also takes place automatically.

Theorem 6.2.25 Let A e Fnxn be nonsingular, and let B = (A*)"1. Let S be any
subspace of¥n. Then the two sequences of sub spaces

are equivalent in the sense that they yield orthogonal complements. That is,

Proof. For every x, y 6 Fn, (Amx,Bmy} = y*(B*)mAmx = y*(A~^mAmx =
y*x — ( x , y ) . Thus Amx and Bmy are orthogonal if and only if x and y are
orthogonal. The theorem follows directly from this observation. D
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The second subspace sequence in Theorem 6.2.25 is a sequence of inverse iterates,
since the iteration matrix is the inverse of A*.

Let us first see how Theorem 6.2.25 applies to the unshifted QR algorithm,
which is essentially simultaneous iteration with starting subspaces spanjei , . . . , ek},
k — 1 , . . . , n. After m steps we have

where are the columns of . Since

a n d , Theorem 6.2.25 applied t o

(6.2.26) yields

Of particular interest is the case k — n — I:

Thus the last column of is seen to be the result of single-vector inverse iteration
on A*. It should therefore be possible to cause this column to converge rapidly by
applying shifts to A*. Before we investigate this possibility, let us take time to see
how (6.2.27) can be derived directly from the basic equations of the QR algorithm.
This will reveal some interesting aspects of duality.

The QR sequence (Am) is generated by (6.2.19) with A0 = A. Let Bm —
Note that Lm is lower triangular with positive entries

on the main diagonal. Take conjugate transposes and inverses in (6.2.19) to obtain

with .Bo — B — (A*)~l. This shows that the QR algorithm applied to A is equivalent
to a QL algorithm applied to (A*)~l. The theory and algorithms based on the QL
decomposition are essentially identical to those based on QR. The next two exercises
develop some basic facts about the QL decomposition.

Exercise 6.2.28 Let B 6 Fnxn be nonsingular. Prove that there exist unique matrices Q,
L 6 ]Fnxn

 such that Q is unitary, L is lower triangular with positive entries on the
main diagonal, and B = QL. (You may prove this from scratch or deduce it from
the corresponding theorem about QR decompositions.) n

Exercise 6.2.29 Let B = QL with B = [bi • • • bn] nonsingular, Q = [qi • • • qn] uni-
tary, and L lower triangular. Show that span{qn} = span{6n}, span-f^-i,^} —
span{6n_i, bn}, and in general
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•

Exercise 6.2.29 shows that the QL decomposition is equivalent to a Gram-Schmidt
procedure that orthonormalizes the columns of B from right to left.

Recalling that
Lm---Li. Clearly is lower triangular with positive main-diagonal entries.
Taking conjugate transposes and inverses in (6.2.22), we obtain

Applying the conclusion of Exercise 6.2.29 to this QL decomposition, we find that

This is just (6.2.27) again.
Now let us apply duality to the study of shifts of origin. Specifically, we will

demonstrate that the QR algorithm with Rayleigh quotient shifts is, in part, Rayleigh
quotient iteration. We can accomplish this by examining the cumulative effect of
m steps (Exercise 6.2.39) or by taking a step-at-a-time point of view. The latter is
probably more revealing, so we will take that approach.

Consider a single QR step

where . This is the Rayleigh quotient shift defined in
Section 5.6. Then pm_x is a Rayleigh quotient of . , since . If

I «n,n-i I is small enough, then is a good approximation to an eigenvalue
of It is also easy to see, at least informally, that en is approximately an
eigenvector of (cf. Exercise 5.6.26). Let pi, . . . , pn denote the columns of
Qm. From the equation Am-i — pm-\I = QmRm> it follows that

Applying Theorem 6.2.25 to this equation, we obtain

Since pm_1 is the Rayleigh quotient formed from and en, the equation (6.2.30)
represents a step of Rayleigh quotient iteration. The result is pn, the last column of
Qm-

Now suppose we were to take another step of Rayleigh quotient iteration using
The shift would be , and we would calculate

Using the equation. , we see easily that . If, on the other
hand, we take another QR step, we will operate on the matrix Am and choose the
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shift which is the same as p. This is hardly a coincidence. The
coordinate transformation that maps Am_i to Am also transforms pn to en, so the
computations represent the same computation
in two different coordinate systems. By (6.2.30) with m — I replaced by m, the QR
step on Am calculates (among other things)

This computation is the same as (6.2.31), except that the coordinate system has been
changed. This proves the QR algorithm is, in part, Rayleigh quotient iteration. As a

consequence, (normally) converges to an eigenvalue quadratically, as that is the

usual convergence rate of Rayleigh quotient iteration. At the same time span

the last column of , (normally) converges quadratically to an eigenvector of A*
(cf. Exercise 6.2.39). If A is Hermitian, or even just normal, the convergence is cubic.

Exercise 6.2.32 Verify that
D

Additional Exercises

Exercise 6.2.33 Let S and U be subspaces of Fn of dimension k and n — k, with bases si,
. . . ,Sk and wi, . . . , un-k, respectively. Let B = [si • • • Sk u\ • • • wn-fc] £ Fn x n.
Show that S C\U — {0} if and only if B is nonsingular. (B fails to be nonsingular
when and only when det(B) = 0. This is a very special relationship. If one chooses
n vectors at random from Fn and builds a matrix whose columns are those vectors,
its determinant is almost certain to be nonzero.) d

Exercise 6.2.34 The QR algorithm is essentially simultaneous (subspace) iteration with
starting subspaces Sk — span{ei, . . . , e^}, k = 1, . . . , n — 1. Theorem 6.2.3 states
that subspace iteration converges if | A* | > \ λk+i \ and the subspace condition
Sk^Uk — {0} holds. Recall that Uk — spanji^+i, . . . , vn}, which is a subspace
of Fn of dimension n — k that is invariant under A. In this exercise you will show
that the subspace condition Sk^Uk = {0} is automatically satisfied if A is properly
upper Hessenberg.

(a) Let V be a subspace of Fn that is invariant under A. Show that if v G S, then
Amv e S form = 1, 2, 3, . . ..

(b) Suppose A is properly upper Hessenberg. Let v 6 span{ei, . . . , ek} = Sk be
nonzero. (What does v look like? What can you say about Av? A2v7) Show
that the vectors v, Av, A2v, . . . , An~kv are linearly independent.

(c) Show that v cannot lie in Uk- Hence Sk H Uk = {0}.

n
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Exercise 6.2.35 Normally one would have no interest in applying the QR algorithm to the
matrix

since it is already upper triangular. However, it is a good matrix to illustrate a simple
point about convergence of the QR algorithm. Calculate the QR iterates A — A0,
Ai,A2,.... In each QR decomposition choose Rm so that its main-diagonal entries
are all positive. Note that a^1 does not converge as m —> oo. •

Exercise 6.2.36 Let (Am) be generated by the shifted QR algorithm:

This equation generalizes (6.2.22). Notice that it is also a generalization of
Lemma 5.7.16, which is one of the crucial results in the development of the
double-step QR algorithm.

•

Exercise 6.2.38 We continue the discussion of the shifted QR algorithm from the previous
exercise.

(a) Show that if pm-i is not an eigenvalue of A, then Rm is nonsingular, and

(b) Show that if none of PO, ..., pm-\ is an eigenvalue of A, then is nonsin-
gular, and

•

Exercise 6.2.39 This exercise shows, by the cumulative viewpoint, that the QR algorithm
effects Rayleigh quotient iteration. If m steps of the QR algorithm with Rayleigh
quotient shift are performed, then (6.2.37) holds, where for i = 0 , . . . , m —
1. Apply Theorem 6.2.25 to (6.2.37), or take conjugate transpose inverses, to obtain

information about spar . Show that s p a n i s exactly the space obtained

after m steps of Rayleigh quotient iteration applied to A* with starting vector en. In
particular, be sure to check that each shift is the appropriate Rayleigh quotient for
that step. n
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6.3 EIGENVALUES OF LARGE, SPARSE MATRICES, I

Most large matrices that occur in applications are sparse. That is, the vast majority
of their entries are zeros. If a matrix is sparse enough, it may be worthwhile to store
it in a sparse data structure, which stores only the nonzero entries, together with
information about where each entry belongs in the matrix. If the matrix is extremely
large, there may be no alternative to the sparse data structure, since there may not
be enough storage space to store the matrix in the conventional way. If we want to
find some eigenvalues of such a matrix, we need to use a method that can work with
the sparse data structure. The QR algorithm and other algorithms that use similarity
transformations are inappropriate here, as they cause a great deal of fill-in: after one
QR iteration, the resulting matrix A\ is hardly sparse at all (see Exercise 6.3.24).

Needed are methods that do not alter the matrix. One algorithm that immedi-
ately comes to mind is simultaneous iteration (6.2.6). Here we refer to the basic
simultaneous iteration algorithm, which does not change the coordinate system at
each step. Looking at (6.2.6), we see that the only way the algorithm uses A is to
multiply it by the vectors at each step. The entries of A are never
altered in any way. Even if A is stored in a sparse format, it is a simple matter
to calculate a matrix-vector product Aq (see Exercise 6.3.25). Thus it is a simple
matter to perform simultaneous iteration on a large, sparse matrix. The number of
vectors, A:, that we use in the simultaneous iteration is typically limited by storage
space and computational requirements, so we normally have k <C n, which means
that we can compute at most the few (at most k) eigenvalues of largest modulus and
the associated eigenvectors. Some of the practical details of simultaneous iteration
are studied in the following exercise.

Exercise 6.3.1 Consider the simultaneous iteration algorithm (6.2.6) with k <C n.

(a) Let be the A; orthonormal vectors at the rath iteration of

simultaneous iteration (6.2.6), a n d l e t . This i s
a tall, skinny matrix. Show that

where Rm+\ is a k x A; upper-triangular matrix (cf. (6.2.9) and Exercise 6.2.10).
This is a condensed QR decomposition.

(b) Let Show that the columns
of Qm span an invariant subspace under A if and only if Bm — QmCm = 0,
in which case the eigenvalues of the small matrix Cm are k of the eigenvalues
of A. (In practice we can accept Qm as invariant as soon as || Bm — QmCm Hi
is sufficiently small.)

(c) Show how invariant subspaces of dimension j = 1, 2, ... ,k — I can be
detected by considering leading submatrices of Qm, Bm, and Cm. Once an
invariant subspace of dimension j has been detected, the first j columns of Qm
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can be "locked in," and subsequent iterations can operate on the subset

(d) A step of simultaneous iteration has three stages: (i) computation of Bm,
(ii) condensed QR decomposition of Bm, and (iii) tests for convergence of
invariant subspaces. Estimate the number of flops that each of these stages
requires (See Exercise 6.3.25). About how much storage space is needed in
all? In typical large applications k is small, and the first stage dominates the
computational cost. Show, however, that if k is made large enough, the other
stages will dominate the flop count.

•

Up until about 1980, simultaneous iteration was the most popular method for
computing a few eigenvalues of a large, sparse matrix. A number of refinements and
acceleration techniques were introduced, but ultimately simultaneous iteration was
supplanted by more sophisticated methods, some of which we will describe in this
section.

The Shift-and-lnvert Strategy

Before we leave simultaneous iteration, we will describe the shift-and-invert strategy,
which can be combined with simultaneous iteration to compute interior eigenvalues of
A. As we shall later see, the shift-and-invert strategy can also be used in conjunction
with other algorithms.

Simultaneous iteration computes the eigenvalues of A of largest modulus. What
if that's not what we want? Suppose we would like to compute the eigenvalues in a
certain region near some target value r. If we shift by r, and then take the inverse, we
get a new matrix (A — r/)"1 that has the same eigenvectors and invariant subspaces
as A but different eigenvalues. Each eigenvalue A of A corresponds to an eigenvalue
(A — r)"1 of (A — r/)"1. The largest eigenvalues of (A — r/)"1 correspond to the
eigenvalues of A that are closest to r. We can find these eigenvalues (and associated
invariant subspaces) by applying simultaneous iteration to (A — rl}~1. This is the
shift-and-invert strategy. Of course we don't actually form the inverse matrix; the
inverse of a sparse matrix is not sparse. Instead we compute (once!) a sparse LU
decomposition of A — rl. The computation (A — rl}~1q — p is then effected by
solving for p the equation (A — rl}p — q by forward and back substitution, using the
factors of the LU decomposition. Once we have the LU decomposition in hand, we
can use it over and over again to perform as many computations of type (A — rl)~lq
as we please. A new LU decomposition is not needed unless we change the target
shift r.

The shift-and-invert technique is quite powerful and has found widespread use
over the years. However, there is an important limitation on its applicability. If A is
really large, its sparse LU decomposition, which is typically much less sparse than
A itself, will require a great deal of storage space. If the computer's memory is not
big enough to store the LU decomposition, then we cannot use this technique.
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The Arnold! Process

The Arnoldi process [2] has been around since about 1950, but it did not come
into vogue as a method for computing eigenvalues until the 1970's. Variants of the
Arnoldi process have now supplanted simultaneous iteration as the method of choice
for a wide variety of applications.

Recall that the power method starts with an initial vector q and then computes
(multiples of) the vectors q, Aq, A2q, ..., Akq, — As the algorithm proceeds, it
discards the old iterates. At step k, it has only a multiple of Akq; none of the past
information has been saved. Simultaneous iteration operates on subspaces, but it
works the same way; the information from the past is discarded.

The idea of the Arnoldi process is to retain and use all of the past information.
After k steps we have the k + 1 vectors q, Aq,..., Akq, all of which we have saved.
We then search for good eigenvector approximations in the (k +1)-dimensional space
spanned by these vectors. Now we consider some practical matters.

In practice the vectors q, Aq, ..., Akq usually are an ill-conditioned basis for
the space that they span. The vector A*q points more and more in the direction of
a dominant eigenvector for A as j is increased. Thus the vectors toward the end of
the sequence q, ..., Akq may be pointing in nearly the same direction. To counter
this we can replace these vectors by an orthonormal set q\, ..., qk+i that spans the
same space. This can be achieved by the Gram-Schmidt process with one slight
modification. Suppose we have generated the first k vectors and now we want to
obtain the (k + l)st. If we were working with the original sequence q, Aq, ...,
Ak~lq, we would simply multiply Ak~lq by A to obtain Akq. However, we do
not have the original sequence; we have the orthonormal set qi, . . . , qk, and we
want qk+i- In principle we can obtain q^+i by orthogonalizing Akq against qi,
..., qk using Gram-Schmidt. In practice this is not possible, because we do not
have the vector Akq. Thus we must do something else. Instead of multiplying the
(unavailable) vector Ak~1q by A to obtain Akq, we multiply the (available) vector qk
by A to obtain Aqk. We then orthogonalize Aqk against q\, ..., qk to obtain qk+i-
This is the Arnoldi process.

Now let's add a bit more detail. The first step of the Arnoldi process consists of
the normalization

On subsequent steps we take

where hjk is the Gram-Schmidt coefficient

This is just the right coefficient to make orthogonal to qj. Thus is
orthogonal to q\, ..., qk but does not have norm 1. We complete the step by



435 EIGENVALUES AND EIGENVECTORS II

normalizing That is, we take

It is not hard to show that (in exact arithmetic) this process produces exactly the
same sequence of vectors as the Gram-Schmidt process applied to q, Aq, A2q, . . . ,
Akq. This is partly demonstrated in Exercise 6.3.30.

Equation (6.3.4) is the theoretical Gram-Schmidt formula for hjk • In practice we
can compute hjk by either the classical or the modified Gram-Schmidt process. To
ensure orthogonality of the vectors, we may choose to use reorthogonalization. See
the discussion in Section 3.4. The following algorithm does modified Gram-Schmidt
with reorthogonalization.

Arnold! Process. Given a nonzero starting vector q, this algorithm produces
orthonormal q\, q-2,..., qm such that

In this algorithm the only reference to the matrix is in the line qk+i <— Aqk . Thus
we can apply the algorithm to A as long as we can multiply A by an arbitrary vector.

Before we can show how to use the Arnold! process to compute eigenvalues, we
need to establish a few fundamental relationships. We begin with some notation
and terminology. For any j, the space span {9, Aq, A2q, . . . Ai~lq} is called the jth
Krylov subspace associated with A and q and denoted JCj (A, q).

Proposition 6.3.7 Suppose q, Aq, ..., Am~~lq are linearly independent. Then
JCm(A, q} is invariant under A if and only if q, Aq, . . . , Am~lq, Amq are linearly
dependent.

Exercise 6.3.8 Prove Proposition 6.3.7.

Theorem 6.3.9 Suppose q, Aq, ..., Am~1q are linearly independent, and q\,
qm are generated by the Arnoldi process (6.3.2), (6.3.3), (6.3.4), (6.3.5). Then

D
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(cj hm+i>m — 0 //"and on/y if q, Aq, . . . , Amq are linearly dependent, which
holds in turn if and only if the Krylov subspace /Cm(A, q] is invariant under
A. This justifies the flag in Algorithm 6.3.6.

Theorem 6.3.9 can be proved by induction on k. See Exercise 6.3.30. If you are
not planning to work that exercise right away, you can at least work the following
special case.

Exercise 6.3.10 Prove Theorem 6.3.9 in the case k = 2. (The case k = 1 is trivial.)

(a) Specifically, show that if q and Aq are linearly independent, then <?2 in (6.3.3)
is nonzero. Thus /i2i > 0, and the division in (6.3.5) can be perfomed to
obtain q2. Show that there exist constants C0 and ci, with c\ 0, such that
<?2 = coq + c\Aq. Show further that q\ G JC2(A,q], q^ G K,<z(A,q}, and
hence span{gi,g2} C K,i(A,q}. Conversely, show that q G spanjgi,^},
Aq G span{gi,<?2}, and hence 1C<2(A,q} C spanjgi,^}.

= 0, and(b) Show that if q and Aq are linearly dependent, then <?2 = 0, h^i
span{(?} is invariant under A. In this case q is an eigenvector of A.

Matrix Representations of the Arnold! Process

From (6.3.3) and (6.3.5) we easily deduce that

D

From Theorem 6.3.9 we know that these relationships hold for k — 1,... ,m if q, Aq,
..., Amq are linearly independent. These m -f 1 vector equations can be combined
into a single matrix equation as follows. Define

and
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Since Qm has orthonormal columns, it is an isometry. Hm+im is a non-square
upper-Hessenberg matrix with strictly positive entries on the subdiagonal. From
(6.3.11) we immediately have

for the kth column of (6.3.12) is exactly (6.3.11). This matrix equation summarizes
neatly the relationships between A and the quantities that are generated by the
Arnoldi process. Another useful expression is obtained by rewriting the right-hand
side of (6.3.12). Let Hm denote the square upper Hessenberg matrix obtained by
deleting the bottom row of Hm+ijm. If we separate the last column of Qm+i and
the bottom row of Hm+itTn from the matrix product, we obtain Qm+i-^m+i,m —
QmHm +qm+l [0, • • - , 0, /lm+l,m]- Thus

where em denotes the rath standard basis vector in Ew.

Exercise 6.3.14 Verify equations (6.3.11), (6.3.12), and (6.3.13). D

The following simple result, which is proved in Exercise 6.3.33, will be used in
the next section.

Proposition 6.3.15 Suppose q\, ..., qm+i are orthonormal vectors,

and Hm is an upper Hessenberg matrix with /ij+ij > 0 forj = I,..., m. Although
these may have been obtained by any means whatsoever, suppose they satisfy (6.3.13).
Then q\, ..., qm+i must be exactly the vectors produced by the Arnoldi process with
starting vector q-\_. In other words, given a matrix A, the objects in (6.3.13) are
uniquely determined by the first column of Qm.

If q, Aq, . . . , Amq are linearly independent, then hm+i,m 7^ 0. However, if
they are dependent, we have hm+i,m — 0, and (6.3.13) becomes AQm = QmHm.
We then conclude from Theorem 6.1.3 that the space spanned by the columns of
Qm is invariant under A. (This is consistent with Theorem 6.3.9, since ^(Qm) —
spanjg1!,... ,qm} = )Cm(A,q}.) Furthermore, by Exercise 6.1.4 the eigenvalues
of Hm are eigenvalues of A. If m is not too big, we can easily compute these ra
eigenvalues using, say, the QR algorithm. This begins to show how the Arnoldi
process can deliver eigenvalues.

Our plan is to apply the Arnoldi process to find a few eigenvalues of extremely
large matrices. Each step of the process adds another basis vector qk, which takes
up significant storage space. We also need to store the entries hjk of the Hessenberg
matrix. These storage requirements severely limit the number of steps we will be
able to take. Thus we will typically have to stop after ra steps, where ra -C n.

Nevertheless, there is nothing to stop us from imagining what happens if we take
more steps. If q, Aq, ... An~lq are independent, we can take n steps and end up
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with qi, ..., qn, an orthonormal basis of Cn. If we then try to take one more step,
we will get hn+i,n = 0, since the n + 1 vectors q, Aq,... Anq in the n-dimensional
space Cn must be linearly dependent. Thus (6.3.13) becomes AQn = QnHn.
The square matrix Qn is unitary, Hn is properly upper Hessenberg, and we have
Hn = Q~lAQn. Thus the Arnoldi process, if carried to completion, computes
a unitary similarity transformation to upper Hessenberg form. In Section 5.5 you
learned how to accomplish this same task using reflectors. The process developed
in Section 5.5 is generally preferred over the Arnoldi process for this particular task.
See Exercise 6.3.34.

Now let us return to our main task, which is to obtain information about the
eigenvalues of A by taking only a few steps of the Arnoldi process. We have already
seen that if we get /im+i,m = 0 at some point, then span{qi,. . . , qm} is invariant
under A, and the m eigenvalues of Hm are eigenvalues of A. However, we will
seldom be so lucky as to encounter a small invariant subspace, unless we choose
q very carefully. We'll find out how to do this by the implicitly restarted Arnoldi
process in the next section, but for now let us suppose we do not have such a special
q. Suppose we have built qi, ..., qm, and we do not have hm+i,m — 0- If ^m+i,m
is small, we might reasonably hope that we are close to an invariant subspace and the
eigenvalues of Hm are close to eigenvalues of A. It turns out that even if hm+i,m is
not small, some of the eigenvalues of Hm may be good approximations to eigenvalues
of A.

Theorem 6.3.16 Let Qm, Hm, and /im+i,m be generated by the Arnoldi process,
so that (6.3.13) holds. Let µ be an eigenvalue ofHm with associated eigenvector x,
normalized so that \\x\\2 = I. Let v — Qmx £ Cn (also with \\v\\2 = I). Then

where xm denotes the mth (and last) component ofx.

Exercise 6.3.18 Use (6.3.13) to prove Theorem 6.3.16. n

The vector v introduced in Theorem 6.3.16 is called a Ritz vector of A associated
with the subspace JCm(A, q) = span{</i,..., qm}, so called because it is a Rayleigh-
Ritz-Galerkin approximation to an eigenvector of A (See Exercise 6.3.35). The scalar
H is called the Ritz value associated with v. The pair (µ, v) is called a Ritz pair.

If (µ, v) is an eigenpair of A, then the residual Av — µv is zero. If (µ,, v} is not
an eigenpair, the residual norm || Av — µ,v ||2 will not be zero, but it will be close to
zero if Qu, v} is a good approximation to an eigenpair. Conversely, if || Av — ̂ v ||2
is small, we have reason to expect that (yu, v} is close to an eigenpair of A. It turns
out that the relationship is not so simple: if the eigenpair that is being approximated
is ill conditioned (See Section 6.5), a small residual does not guarantee a good
approximation. Nevertheless, the residual norm does give some indication of the
quality of the approximation: A small residual guarantees that (/^, v) is an exact
eigenpair of a matrix that is close to A, as Exercise 6.3.36 shows. Finally, as we shall
see in Section 6.5, all eigenvalues of normal matrices are well conditioned. Thus if A
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is normal, a small residual guarantees that p, is near an eigenvalue of A. Recall that
the class of normal matrices includes all real, symmetric matrices and other important
classes of matrices.

Theorem 6.3.16 shows that the residual norm of the Ritz pair (µ, v) may be small
even if hm+i)TO is not, if the last entry of the eigenvector x is small. If m is not large,
it is an easy matter to compute the eigenvalues and eigenvectors of Hm and check
the quantities | hm + 1 ,m || xm \ for all eigenvectors x. If any of the residuals is small,
we have reason to hope that we have a good approximation.

Experience has shown that some of the Ritz values will be good approximations
to eigenvalues of A long before m is large enough that hm+1,m becomes small.
Typically the eigenvalues on the periphery of the spectrum are approximated first, as
the following example illustrates. See also Exercise 6.3.26.

Example 6.3.19 Using the following sequence of MATLAB instructions we built a
random complex sparse matrix of dimension 144.

G = numgr id ( 'N ' , 14 ) ;
B = delsq(G);
A = sprandn(B) + i*sprandn(B);

Since this example matrix is only of modest size, we can easily compute its eigen-
values by eigvals = eig(ful l (A) ) . We implemented Algorithm 6.3.6 in
MATLAB and ran it for 40 steps, using the vector of all ones as the starting vector
q, to get 40 orthonormal vectors and a 40 x 40 upper Hessenberg matrix #40. We
computed the eigenvalues and eigenvectors of H^Q using eig . In Figure 6.1 we
have plotted the true eigenvalues as pluses and the eigenvalues of H^Q (Ritz values)
as circles. The left-hand plot shows all of the Ritz values. We observe that many

Fig. 6.1 Eigenvalues and Ritz values of a random sparse matrix

of the eigenvalues on the periphery of the spectrum are well approximated by Ritz
values, while none of the interior eigenvalues are approximated well.

For each of the 40 Ritz pairs we computed the residual norm using the formula
I ^41,40 11 #40 | from Theorem 6.3.16. The eight smallest residuals are listed in Ta-
ble 6.1. In this example ^41,40 ~ 2.4, so the smallness of each of the residuals is
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residual (| h4i,4o || x40 |)
1.1 x l6-°4

1.5 x 10~04

1.4 x 1(T03

1.4 x 1(T03

1.7 x 10-°3

2.3 x 1(T03

6.0 x 10~03

6.4 x 10-°3

true error
1.3 x ID"06

6.0 x 10-°6

2.5 x 10~04

1.2 x 10-°4

7.1 x 10-°5

1.8 x 10-°4

5.9 x 10-°4

1.0 x 10-°3

Table 6.1 Best eight Ritz pair residuals and corresponding Ritz value errors

attributable entirely to smallness of X40, the last component of the eigenvector. Since
we know the true eigenvalues in this case, we can compute the actual errors in the
Ritz values. These are also shown in Table 6.1. In this benign case the errors are
even smaller than the residuals. The eight best Ritz values are plotted, along with all
144 eigenvalues, in the right hand plot in Figure 6.1. •

The reasons for the outer eigenvalues being approximated best are explored in
Exercises 6.3.37 and 6.3.41.

Since the peripheral eigenvalues are found first, the Arnoldi process is not di-
rectly useful for computing interior eigenvalues. However, if the matrix A is not
prohibitively large, the shift-and-invert strategy, which we introduced earlier in this
section, can be combined with Arnoldi for this purpose. If we wish to find interior
eigenvalues near the target r, we can apply the Arnoldi process to (A — rl}~1, whose
peripheral eigenvalues fa = (\i — r)-1 correspond to the eigenvalues Aj that are
closest to T. For each fa that we compute, we easily obtain A; = r + I/ fa. The
eigenvectors of (A — rl}~1 are the same as the eigenvectors of A (Exercise 6.3.29).

The Symmetric Lanczos Process

When A is Hermitian, that is, A = A*, the Arnoldi process takes a much simpler
form. In most Hermitian applications the matrix is in fact real, so let's just assume
that A 6 Mnxn and A = AT. Then all of the eigenvalues are real, and so are the
eigenvectors. More precisely, Rn has an orthonormal basis consisting of eigenvectors
of A. Given a starting vector q G Rnxn, after m steps of the Arnoldi process we
have

where Qm is a real matrix with orthonormal columns, and Tm is a real upper
Hessenberg matrix. The algorithm is simplified because Tm inherits the symmetry
of A

Exercise 6.3.21 Show that is symmetric if A is. Deduce that Tm

is tridiagonal. •
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Since Tm is tridiagonal, most of the tjk in the Arnoldi formula

are zero; there are only two nonzero terms in the sum. If we introduce the notation

we obtain the three-term recurrence

or, normalizing Qk+i,

This special case of the Arnoldi process is called the symmetric Lanczos process [47].

Symmetric Lanczos Process without Reorthogonalization. Given A = AT e
Rn x n and a nonzero starting vector q e Rn, this algorithm produces orthonormal
qi, q2, ..., qm such that span{gi, ...,qk} = span{<?, Aq,..., Ak~lq] for
k = 1,... ,?n.

The coefficient 0:^ is computed as an inner product, just as in the Arnoldi process,
but there is no need to compute Pk-i in this way, because it was already computed
as the scaling factor /3k on the previous step. This is a consequence of symmetry of
TJ-m-

More significant consequences of symmetry are that the algorithm is much cheaper
and has much lower storage requirements, if it is executed without reorthogonaliza-
tion, as shown in (6.3.23). If only eigenvalues are wanted, only the coefficients ak

and {3k need to be saved, as these are nonzero entries of Tm . At each step only the
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two most recently computed vectors are needed; the others can be discarded. Thus
the storage requirement is much less. At the fcth step, only one inner product is
computed instead of k, so the work is much less. For more information about this
way of using the Lanczos process, see the books by Cullum and Willoughby [11].

The principle difficulty of using the symmetric Lanczos process without reorthog-
onalization is that the orthonormality of the qk gradually deteriorates due to roundoff
errors (Exercise 6.3.28.) If, as is usually the case, we are interested in maintaining
orthonormality, then we must keep all the q^ and orthogonalize each new vector
against them (twice). Thus the storage and computation savings are nullified. Notice
that we also need to save all the qk if we want to compute eigenvectors of A.

Additional Exercises

Exercise 6.3.24 Use MATLAB's test matrix west0479 to demonstrate that similarity
transformations can cause a great deal of fill in.

(a) Show that the reduction to upper Hessenberg form fills in the entire upper part
of the matrix. For example,

load west0479

A = west0479;
nnza = nnz(A)
spy(A)

H = hess(full(A) ); % hess operates on full matrices.
nnzh = nnz(H) ;
spy(H)

(b) Apply one iteration of the QR algorithm (with or without shift) to A (not H).
You can do this quickly by using MATLAB's qr command to perform the
QR decomposition. Make a spy plot of the result.

•

Exercise 6.3.25 The sparse data structure used by MATLAB lists the nonzero entries of A
in a list s of length nz. In addition there are two lists of integers row and col,
also of length nz, that specify where each entry belongs in A. For example, if the
seventh entry in the list is s(7) = 1.234 x 105, and row(7) - 45 and co/(7) = 89,
then 045,89 = 1.234 x 105. (A more detailed description was given in Section 1.6.)
Suppose A is stored in this way. Write a pseudocode algorithm that computes
y = Ax, assuming the vector x (and also y) is stored in the conventional way. Your
algorithm should make just one pass through the list s and perform 2nz flops in all.

D

Exercise 6.3.26 Write a MATLAB script that implements the Arnoldi algorithm with re-
orthogonalization. You may use Algorithm 6.3.6 as a pattern if you wish. Use a
random vector (q = randn (n, 1) ) or the vector of all ones (q = ones (n , l ) )
as a starting vector. Use eig to compute the eigenvalues of the Hessenberg ma-
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trix Hm that is generated. These are the Ritz values, some of which may be good
estimates of eigenvalues. To test your code, generate a sparse matrix by

num = 14; % or other appropriate number

G = numgrid('N',num);

B = delsq(G);
A = sprandn(B) + i*sprandn(B);

as in Example 6.3.19. (Use help numgrid, help delsq, and so on for infor-
mation about these functions.) Since this method uses a random number generator,
you will get a different matrix from the one that was used in Example 6.3.19. You
can get a larger or smaller test matrix by making num larger or smaller. (You will
get a matrix of dimension (num — 2)2.) Check the nonzero pattern of A by using
spy. Using a random starting vector or other starting vector of your choice, run the
Arnoldi process for 15, 30, 45, and 60 steps to get Hessenberg matrices of sizes 15,
30, 45, and 60. (Actually you can just do one run, because the smaller Hessenberg
matrices are submatrices that can be extracted from HQQ.) Calculate the Ritz values
for each of the four cases (for example, ritz = eig (h( l :15 , l :15) ) ), and
in each case plot the Ritz values and the true eigenvalues together. For example, you
could use commands like these:

hold off
eigval = eig(full(A));
plot(real(eigval),imag(eigval),'r+')

hold on

plot(real(ritz),imag(ritz),'bo')

Notice that the quality of approximation improves as the number of steps is increased,
and the outer eigenvalues are approximated best. •

Exercise 6.3.27 Repeat Exercise 6.3.26 taking A to be the test matrix west 047 9 .

load west0479
A = west0479;

•

Exercise 6.3.28 This exercise explores the loss of orthogonality in the Arnoldi process
without reorthogonalization. If you have not already done so, write a MATLAB
script that implements the Arnoldi algorithm with reorthogonalization. Modify it
so that the reorthogonalization can be turned on or off, depending on the value of
some switching variable. For each of the following matrices, take 100 Arnoldi
steps without reorthogonalization. Then compute the inner products
2 , . . . , 100. Notice how the orthogonality deteriorates as k increases. Also compute

(with m — 100), which should be zero in theory. Now repeat the
Arnoldi process with reorthogonalization and compute

(a) Use the matrix west0479 .

load west0479

A = west0479;
spy (A)
n = size(A,1)
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(b) Now try a discrete negative Laplacian matrix of dimension 324 (from the
interior of a 20 x 20 square grid). This sparse matrix is symmetric.

A = delsq(numgrid( 'N' ,20) ) ;
n = size (A, 1)

(c) Now, to show that loss of orthogonality does not always occur, try a matrix
like the one from Exercise 6.3.26.

B = delsq(numgrid( 'N' ,20) ) ;

A = sprandn(B) + i*sprandn (B) ;

n = size(A,l)

D

Exercise 6.3.29 Modify your code from Exercise 6.3.26 to do the shift-and-invert Arnoldi
process. This requires only a few modifications. An LU decomposition of (A — rl},
where r is the target shift, needs to be done once at the beginning:

[ L , U ] = lu (A-tau*speye (size (A) ) ) ;

speye is a sparse identity matrix. Then whenever an operation of the form

needs to be done, it can be effected by the operations q = L\ q; q = U\ q;. The
eigenvalues that are computed are eigenvalues of (A — rl)~l, so your code will need
to transform them to eigenvalues of A. From/^ = (A —r)"1, we obtain A = r + l/fj,.
Test your program by using it to calculate the ten eigenvalues of west0479 that
are closest to r = 6 + Oi. Take as many Arnoldi steps as you need to get the
residuals down around 1CP16. Compute the residuals by the inexpensive method of
Theorem 6.3.16. Compare your computed eigenvalues with the "true" eigenvalues
computed by the QR algorithm (lam = eig (full (west0479) ) ; ). Find the
eigenvalues that are closest to 6 by using MATLAB 's sort command:

[dummy,order] = sort(lam-tau);
lam = lam(order);

D

Exercise 6.3.30 Prove Theorem 6.3.9 by induction on k. You might like to proceed as follows.
Assuming that g, Aq, A2q,..., Am~1q are linearly independent, we must show that
spanjgi, . . . ,^} = fck(A:q) for k = l , . . . ,m .

(a) Establish that the case k = 1 holds, i.e. span{g-i} = JCi(A, q).

(b) To establish the general result, let j < m. You must show that if

then span{gi,..., qj+i} = K.J+I (A, q). As part of the induction hypothesis
we have spanj^,.. . ,<?_/} = fcj(A, q), so QJ G JCj(A, q). Thus there exist
constants c0 , . . . , Cj-\ such that
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Show that Cj-i / 0. (You can use span{gi,..., QJ-I} = JCj-i(A, q) here.)
Now multiply (6.3.31) by A to obtain an expression for Aqj, which you can
use in (6.3.3) to show that Thus /ij+i,j > 0, and we can do the
division in (6.3.5) to obtain qj+i. Show that there exist constants do, . . . , dj
such that

Thus qj+i € K.J+I (A, q}. Show that span{#i,..., qj+i} C /C/+i (A, q).

(c) Continuing from part (b), show that dj ^ 0 in (6.3.32). Using (6.3.32)
and the induction hypothesis span{<?i,..., qj} = K.j(A, q), show that A^q €
span{gi, . . . ,qj+i} and hence K-J+I(A, q) C spanj^ i , . . . ,qj+i} . Conclude
that span{<?i,. . . , qj+i} = K.J+I (A, q}. This completes the induction proof of
part (a) of Theorem 6.3.9. Along the way we have proved part (b) as well.

(d) Using relationships developed in the previous parts of this exercise, prove that if
q, Aq, A2q,..., Amq are linearly dependent, then qm+i — 0 and /im+i,m = 0.
Conversely, if q, Aq, A2q,..., Amq are linearly independent, then qm+i ^ 0
and /im+i,m 7^ 0. This was already proved in part (b). Now complete the
proof of Theorem 6.3.9, part (c).

D

Exercise 6.3.33 Prove Proposition 6.3.15 by two methods.

(a) Show that if (6.3.13) is satisfied, then so is (6.3.11), which is equivalent to
(6.3.3) combined with (6.3.5). Show that the coefficients hjk in (6.3.3) are
uniquely determined by the requirement that qk+i be orthogonal to q\,..., q^.
Show that hk+i,k is uniquely determined by the requirements that it be positive
and that || qk+i ||2

 = 1- Prove by induction that all qj are uniquely determined
by gi.

(b) The second approach uses Krylov matrices, which are closely related to Krylov
subspaces. Given A G Cnxn, x e Cn, and j < n, the Krylov matrix
Kj(A, x) € CnXJ is the matrix with columns x, Ax, A2x, ..., A^~lx.

(i) Let Hm be as in (6.3.13); that is, Hm is upper Hessenberg with positive
subdiagonal entries. Show that the Krylov matrix Km(Hm,ei} is upper
triangular and has all of its main-diagonal entries positive.

(ii) Show that if (6.3.13) is satisfied, then AQmy = QmHmy for all y e Cm

satisfying

(iii) Still assuming (6.3.13) and using the result from part (ii), prove by induc-
tion on j that for j — 0, 1, . . . , m — 1. Deduce
thatffm(A,gi) = QmKm(Hm,ei).

(iv) Using the uniqueness of QR decompositions (Theorem 3.4.8), prove that
Qm is uniquely determined by q\.
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The method of part (b) should be compared with that of Exercise 5.7.46, in which
the Implicit-Q Theorem was proved. Proposition 6.3.15 reduces to the Implicit-Q
Theorem in the case m = n. d

Exercise 6.3.34 Count the flops required to transform a matrix to upper Hessenberg form by
running the Arnoldi process to completion (n steps of Algorithm 6.3.6). Count the
cost of the orthogonalization separately from the matrix-vector multiplications Aqk-
If the vectors qk are to be orthonormal to working precision, we must reorthogonalize,
as shown in Algorithm 6.3.6. Show that if we do this, the cost of the orthogonalization
alone is more than the cost of the reduction to upper Hessenberg form using reflectors
(Algorithm 5.5.2). Assuming A is a dense matrix, show that the total cost of the
Arnoldi algorithm is about 6n3 flops. n

Exercise 6.3.35 Let A 6 Cnxn, and let <S be a fc-dimensional subspace of Cn. Then a vector
v G <S is called a Ritz vector of A from S if and only if there is a p, £ C such that the
Rayleigh-Ritz-Galerkin condition

holds, that is, (Av — IJLV, s) = 0 for all s € <S. The scalar n is called the Ritz
value of A associated with v. Let q\, ..., % be an orthonormal basis of S, let
Q=[qi ••• qk],™d\etB = Q*AQeCkxk.

(a) Since v 6 <5, there is a unique x G Ck such that v = Qx. Show that v is a
Ritz vector of A with associated Ritz value ^ if and only if x is an eigenvector
of B with associated eigenvalue p,. In particular, there are k Ritz values of A
associated with S, namely the k eigenvalues of B.

(b) Show that if v is a Ritz vector with Ritz value µ,, then µ, = v*Av/v*v. That is,
µ is the Rayleigh quotient of v. (More generally, we can think of B — Q*AQ
as a k x k matrix Rayleigh quotient.)

(c) Suppose Qm and Hm are generated by applying the Arnoldi process to A.
Show that the eigenvalues of Hm are Ritz values of A associated with the
subspace spanned by the columns of Qm.

n

Exercise 6.3.36 Let (n,v) be an approximate eigenpair of A with \\v\\2 — 1, and let r =
Av — nv (the residual). Let e = ||r||2 and E = — rv*. Show that ( µ , v ) is an
eigenpair of A + E, and \\E\\2 = e. This shows that if the residual norm || r ||2 is
small, then (fi, v) is an exact eigenpair of a matrix that is close to A. Thus (n, v) is a
good approximate eigenpair of A in the sense of backward error. D

Exercise 6.3.37

(a) Given A € Cnxn and a polynomial p(x) — ao + a\x + a^x1 H (- a,jX3', we
define the matrix p(A) € Cnxn by p(A) = a0/ + aiA + a2A

2 H h a,-ylj'.
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Show that a vector v is in the Krylov subspace Km (A, q) if and only if v
can be expressed as p(A)q, where p is a polynomial of degree m — 1 or
less. Thus K.m(A, q) = {p(A)q \ p £ Pm-\}, where Pm-i denotes the set of
polynomials of degree less than or equal to m — 1.

(b) Show that if v is an eigenvector of A with eigenvalue X, then v is an eigenvector
ofp(A) with eigenvaluep(X).

(c) Suppose A is a semisimple matrix with linearly independent eigenvectors v\,
..., vn and associated eigenvalues AI, . . . , An. Then q = c\v\ + c^v^ +
• • • + cnvn, for some scalars ci, . . . , cn, which are not known in advance. If
<? was chosen "at random," then (typically) none of the Ci will be extremely
small, and q will have a significant contribution from each of the eigenvectors.
Let us assume that this is the case, and that \\Vj\\ = 1 for all j. Show that if
v = p(A)q, then

Show that if there is a p e Pm-i such that, for some j, \p(Xj} \ is much larger
\p(Xi) | for all i ^ j, then the Krylov subspace /Cm(A, g) will contain a vector
that is close to the eigenvector Vj. Under these circumstances we normally
would expect that one of the Ritz pairs from )Cm(A: q) will approximate the
eigenpair (Xj,Vj) well.

(d) Suppose Xj is well separated from the other eigenvalues of A. How might
one build a polynomial p(z) = (z — z\)(z — z2) • • • (z — zm-i) such that
\P(^j} I ^ \P(^i} I f°r aU ^• ̂  J1 (Think about the placement of the zeros
Zj.) How would the task be more difficult if Xj were not well separated from
the other eigenvalues of A? For these reasons the Arnoldi process tends to
find eigenvalues on the periphery of the spectrum first, since these are better
isolated from the rest of the eigenvalues. These questions are studied more
closely for symmetric matrices in Exercise 6.3.41.

D

Exercise 6.3.38 In this Exercise you will develop the basic properties of Chebyshev polyno-
mials, which are perhaps the most useful polynomials in approximation theory. In
Exercise 6.3.41 you will use the Chebyshev polynomials to study the rate of conver-
gence of the symmetric Lanczos process. Later on (Exercise 7.8.13), you will use
them in the analysis of the conjugate-gradient algorithm.

For x £ [—1,1], define an auxiliary variable 9 £ [0,7r] by x = cos9. The value
of 9 is uniquely determined by x; in fact 9 = arccosz. Now for m = 0, 1, 2 , . . .
define a function Tm on [—1,1] by

Tm(x) = cosm9.

(a) Show that \Tm(x) | < 1 for all x £ [-1,1], Tm(l) = 1, Tm(-l) = (-l)m,
| Tm(x) | = 1 at m + 1 distinct points in [-1,1], and Tm(x) = 0 at m distinct
points in (—1,1).
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(b) Use the trigonometric identity

to show that

This yields the recursion

(c) Determine T 0 ( X ) and T\(x) directly from the definition, then use (6.3.39) to
calculate T2 (x), TS (x), and T\ (x). Note that each is a polynomial in x and can
therefore be extended in a natural way beyond the interval [—1,1]. Graph the
polynomials T2, TS, and T^ focusing on the interval [—1,1], but notice that
they grow rapidly once x leaves the interval.

(d) Using the recursion (6.3.39), prove by induction on m that for all m, Tm is a
polynomial of degree m. (From part (a) we know that Tm has all m of its zeros
in (—1,1). Therefore Tm must grow rapidly once x leaves that interval.)

(e) Not only does Tm grow rapidly once x leaves [—1,1]. For a given x not in
[—1, l],Tm(x) grows rapidly as a function of m. To show this, we need another
characterization of the Chebyshev polynomials. For x G [l,oo) define an
auxiliary variable t G [0, oo) by x = cosh t. (Recall that cosh t, the hyperbolic
cosine o f t , is defined by cosht = ½(e* + e~1).) For m = 0, 1, 2 , . . . define a
function fm on [1, oo) by

Use the hyperbolic identity

to show that

hence

which is exactly the recursion (6.3.39). Compute directly from the
definition, and prove by induction on m that for all m. Thus

(f) If x > 1, then x = cosh i, where t > 0. Let p = e* > 1. Use (6.3.40) to show
thatTm(x) > \pm. ThusTTO(a;) grows exponentially as a function of m.
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(g) Use MATLAB (which has built-in functions cosh and acosh) to compute
t = cosh""1 x and p = el when x — 1.1. compute Tio(l.l), T2o(l-l), and
T30(l.l). Compare the ratio T3o(l.l)/T20(l.l) with elot. To what can you
attribute the good agreement?

(h) Show that Tm(-x] = (-l)mTm(z) for all m and x. Therefore we have the
same growth of \Tm(x) \ for x e (—00, —1) as for x G (1, oo).

D

Exercise 6.3.41 This exercise makes use of the Chebyshev polynomials, introduced in the
previous exercise, to pursue the theme of Exercise 6.3.37 in greater detail. Let
A G Mnxn be a symmetric matrix with eigenvalues AI > A2 > • • • > An, with
^2 > An. We can obtain polynomials pm with Chebyshev behavior on the interval
[An ,A2J by performing a transformation that maps [An ,A2J onto [—1,1]. These
polynomials will have the property that pm (\i) is large and pm (Xj) is bounded by 1
for j ^ 1.

(a) Show that the transformation

maps [An, A2] onto [—1,1].

(b) Define a polynomial pm 6 Pm by

Show that \pm(\i) | < 1 for i > 2 and

where

Use part (f) of Exercise 6.3.38.

(c) Let vi,..., vn denote orthonormal eigenvectors of A associated with the eigen-
values AI, . . . , An, respectively. Let q be a starting vector for the symmetric
Lanczos algorithm with 115112 = 1, and suppose q = c\v\ + c^v-2 -\ h cnvn

with ci ^ 0. Define by , where pm is as
defined in part (b). Let . Show that there is a
constant C such that
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where p is as in (6.3.42). Thus, for large m, the Krylov subspace km(A, q)
contains a vector that is close to the eigenvector v\.

(d) Adapt the arguments given above to show that for large m, Km (A, q) contains
vectors that are close to vn, the eigenvector associated with An. Assume
AI > An_i > An and cn / 0.

(e) Suppose AI > A2 > AS > An. Form = 1,2,3,..., define a polynomial
Pm € Pm by

Use pm to show that for sufficiently large ra, the Krylov subspace K.m(A, q)
contains vectors that are close to v2- Assume c2 ^ 0.

(f) Suppose A2 > A3 > A4 > An. Construct polynomials that can be used to
show that for sufficiently large m, km(A, q) contains vectors that are close to
vs, assuming c3 ̂  0.

D

Exercise 6.3.43 This exercise is for those who are familiar with the three-term recurrence
(Stieltjes process) for generating orthogonal polynomials. First note that the Lanczos
procedure is governed by a three-term recurrence (6.3.22). Then show that the three-
term recurrence for generating orthogonal polynomials can be viewed as the Lanczos
algorithm applied to a certain linear operator acting on an infinite-dimensional space.
(Note: The recurrence (6.3.39) for the Chebyshev polynomials is a special case.) D

6.4 EIGENVALUES OF LARGE, SPARSE MATRICES, II

This section, which builds on the previous one, introduces some of the most effective
known methods for computing eigenvalues of large matrices, including the implicitly
restarted Arnoldi process and the Jacobi-Davidson method. For more information
see [3].

The Implicitly Restarted Arnoldi Process

The rate at which the Arnoldi process begins to give good approximations to eigen-
pairs depends very much upon the choice of starting vector q. In most cases we
cannot hope to find a good q at the outset; commonly q is chosen at random, due to a
lack of information. However, once we have taken a few Arnoldi steps, we have new
information that we might be able to use to find a new vector q that would have been
a better starting vector. Supposing we can find such a q, might it be worthwhile to
start a new Arnoldi process with q instead of continuing the old one? If so, might it
be worthwhile to restart repeatedly, with a better starting vector each time?



452 EIGENVALUES AND EIGENVECTORS II

Indeed, repeated restarts are worthwhile, and that is exactly what the implicitly
restarted Arnoldi process (IRA) does. After a short Arnoldi run, it restarts with a
new vector, does another short Arnoldi run, restarts again, and so on. Because of the
nature of the process by which new starting vectors are chosen, it turns out not to be
necessary to start each new run from scratch, rather it can be picked up in midstream,
so to speak. For this reason the restarts are called implicit.

After a number of implicit restarts, the process terminates with a low-dimensional
invariant subspace containing the desired eigenvectors. It is then a simple matter to
extract those eigenvectors and the associated eigenvalues.

MATLAB has a function called eigs, which computes a few eigenvalues of a
sparse matrix by IRA. See Exercise 6.4.19. A Fortran implementation of IRA called
ARPACK [49] is available for free.

A major advantage of restarts is that less storage space is needed. If we restrict
ourselves to short Arnoldi runs of length m, say, then we only have to store about
m vectors. Each time we restart, we free up memory. Furthermore, since only a
few vectors are kept, it is not too expensive to reorthogonalize them as necessary to
ensure that they remain truly orthonormal to working precision.

Now that we have the basic idea of the process and have noted some potential
advantages, an obvious question arises: What constitutes a good starting vector? To
begin with an extreme example, suppose we are interested in a certain eigenvector.
Then it would be nice to start the Arnoldi process with that eigenvector. If we are so
lucky as to start with such a q, then the process will terminate in one step with the
eigenvector q\ and an associated eigenvalue. In many cases we are interested in more
than one eigenpair. Suppose we are able to start with a q that is a linear combination
of a small number of eigenvectors, say q = G\VI H \- c^v k with k <C n. Then the
Arnoldi process will terminate in A; or fewer steps with (typically) span{</i,.. ., q^}
equal to the invariant subspace span{vi,..., v^} (see Exercise 6.4.20).

This suggests that we try to build a q that is a linear combination of just a few
desired eigenvectors. To keep the discussion simple, let us assume that A is a
semisimple matrix with linearly independent eigenvectors vi,... ,vn and associated
eigenvalues AI, . . . , An. For definiteness, let us suppose we are looking for the k
eigenvalues of largest modulus and their associated eigenvectors. Let us number the
eigenvalues so that | λI | > | λ2 | > • • • > | An | and assume that | λ& | > | \k+i \-
Then the desired eigenvectors are v\,..., Vk •

Since v\,..., vn form a basis for Cn, we can certainly write, for any q,

for some uniquely determined but unknown c\, 02,..., cn. If we choose q at random,
it is likely to have significant components in the directions of all eigenvectors. That
is, none of the Cj will be zero or exceptionally close to zero. This is far from what
we want. Since the desired eigenvectors are v\, . . . , Vk, We would like to have
cfc+1 = Cfc+2 = • • • = cn = 0. Our task, then, is to find a new vector
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in which have been augmented and have been diminished.
Suppose we take , where p is some polynomial. Then (see Exercise 6.3.37)

If we can choose p so that p(Ai), . . . , p(\k) are large in comparison wit
. . . , p ( X n ) , we will have made progress. This is what the implicitly restarted Arnoldi
process seeks to do.

We now describe an iteration of the implicitly restarted Arnoldi process (IRA). If
we want to find k eigenvalues, we make Arnoldi runs of length m = k + j, where
j is comparable to k. A popular choice is j = k. Starting from the vector q, after
m steps we have generated Qm = [ q\ • • • qm ] with orthonormal columns and
upper Hessenberg Hm such that

as in (6.3.13). Since m is small, we easily compute (by the QR algorithm) the m
eigenvalues of Hm. These are the Ritz values of A associated with the subspace
T^(Qm) = span{<?!,..., qm}. Let us call them µ1, . . . , µTO and order them so that
I P'l I > I A*2 | > • • • > | P-m |- The largest ones, //i, . . . , //£, are estimates of the k
largest eigenvalues of A (the desired eigenvalues), while ̂ k+i,.. -, pm approximate
other (undesired) parts of the spectrum. Although these may be poor approximations,
they at least give us a crude picture of the location of the spectrum of A.

IRA then performs j iterations of the QR algorithm on Hm, using j shifts v\,...,
Vj in the region of spectrum that we want to suppress. The most popular choice is to
take vi = fj,k+i, z/2 = P > k + i , . . . ,Vj = pm. If we make this choice, we are doing the
exact shift variant of IRA. The QR iterations are inexpensive, because m is small.
Their combined effect is a unitary similarity transformation

where

Vm is unitary, Rm is upper triangular, and p is a polynomial of degree j with zeros
v\, . . . , Vj:

as was shown in Exercise 6.7 36. The QR iterations preserve upper Hessenberg
form, so Hm is also upper Hes, enberg. Let Qm = QmVm, and in particular let q\
be the first column of Qm.

The next iteration of IRA consists of another Arnoldi run of m steps, starting from
qi. However, as we have already indicated, we need not start the Arnoldi run from
scratch. To see why this is so, multiply (6.4.2) by Vm on the right, and use (6.4.3) to
obtain

Exercise 6.4.21 shows that the row vector e^Vm has exactly m — j — I leading zeros.
Thus if we drop the last j entries from this vector, we obtain a vector of the form
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, where β is some nonzero scalar. Therefore, if we drop the last j columns from

equation (6.4.5), we obtain or

where we have used to denote the (k +1) st column of to denote

the (k + l,k] entry of Hk+i,k- Define
where 7 is a positive scalar chosen so that || qk+i ||2 = 1-

Exercise 6.4.7 Show that qm+i is orthogonal to qk+i • Use this fact to show that
is nonzero. Thus there exists a 7 > 0 such that . Show

that qk+i is orthogonal to D

Let Then (6.4.6) becomes

which is identical to (6.3.13), except for the hats on the symbols and the m having
been replaced by k. Thus Proposition 6.3.15 implies that the columns of are
exactly the vectors that would be built by the Arnoldi process, starting from qi.

Thus IRA need not start from scratch when building up an Arnoldi sequence
from qi. Instead it can extract (submatrices of and

respectively) and start with step A;. Thus A; — 1 Arnoldi steps are
avoided.

IRA is summarized in the following algorithm.

Implicitly Restarted Arnoldi (IRA) Process. Given A 6 CnXn and a nonzero
starting vector q G IRn, this algorithm produces orthonormal q\, q%, ..., qk
that span an invariant subspace. If an invariant subspace is not found in imax
iterations, the algorithm terminates with an error flag.

In the interest of clarity, some details have been left out of (6.4.9). For example,
in the update of Qm, one would actually update only the first k columns (i.e. Qk «—
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QmKn(:,l : k ) ) , rather than updating the whole matrix and then discarding j
columns.

Furthermore, the convergence test should be more comprehensive; it should test
all of the subdiagonal entries /ij+i,i for i = 1, . . . , m — 1. If any one of them
is effectively zero, then the first i columns of Qk span an invariant subspace of
dimension i. If i < k, then the iterations should continue, but the first i columns of
Qk should be locked in for the remainder of the computation. This saves some work
in the update of Qk •

Once some vectors have been locked in, one might choose to work with m = k + j
columns in addition to the i that have already been locked in, so that a total of m + i
columns are used during the next iteration. This is a good strategy in the sense that
it promotes more rapid convegence. On the other hand, it uses more memory. If k
eigenpairs are sought and we take j = k, then we need to be willing to store as many
as 3fc vectors.

One other convergence promoting strategy deserves mention. It is often helpful to
work with spaces whose dimension is slightly greater than the number of eigenvalues
wanted. For example, if we want s eigenvalues, we might work with spaces of
dimension k = s + 2.

Nothing has been said in (6.4.9) about how the shifts should be chosen. As we
have indicated above, they could be taken to be the j smallest eigenvalues of Hm.
This is a good choice if the largest eigenvalues are sought. If, on the other hand, the
eigenvalues of A that are furthest to the right in the complex plane are wanted, one
can take the shifts to be the j leftmost eigenvalues of Hm, for example. Recall that
we always want to choose shifts that are in the region of the spectrum that we are
trying to suppress.

Carrying this idea further, if one is looking for eigenvalues that are close to
some target r (not on the periphery of the spectrum), one might take as shifts those
eigenvalues of Hm that are furthest from r. However, this strategy works poorly
because it attempts to enhance interior eigenvalues, which the Arnoldi process does
not produce well, while trying to suppress peripheral eigenvalues, which the the
Arnoldi process is best at producing. A much more successful approach is to use
the shift-and-invert strategy, that is, to apply IRA to the shifted, inverted operator
(A — r/)"1. This approach is feasible whenever we have the time and space to
compute the LU decomposition of (A — rl}.

Why IRA Works

We stated above that an IRA iteration replaces the starting vector q by a new starting
vector q = p(A)q, where p is a polynomial chosen to suppress the unwanted eigen-
vectors and enhance the wanted ones. Now we will show that this is so. We begin
with the Arnoldi configuration
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Clearly this equation continues to hold even after insertion of a shift:

where the remainder term is identically zero, except for the
last column. Now consider applying a second shift. We can obtain an expression
for (A - 1/2!)(A - viI}Qm by multiplying (6.4.10) by (A - v2I). The resulting
equation contains an expression (A — v<2l}Qm, which can be eliminated by applying
(6.4.10) with v\ replaced by v2. The resulting expression has two remainder terms
(terms involving EI), which can be combined to yield

where EI = (A — 1/21)EI + Ei(Hm — vil] is identically zero, except in the last
two columns. More generally, we have the following theorem, which is proved in
Exercise 6.4.22.

Theorem 6.4.11 Suppose

where Ej 6 Cn m is identically zero, except in the last j columns.

Now let us recall what IRA does with Qm and Hm. It chooses shifts z/i, . . . , Vj
from the region of the spectrum that is to be suppressed and does j steps of the QR
algorithm on Hm using z/i, . . . , Vj as shifts. This results in ,
where Vm is the unitary factor in the QR decomposition p(Hm) = VmRm, as we
recall from (6.4.3) and (6.4.4). Herep(^) = (z - z/i) • • • (z — i>j}. The transforming
matrix Vm is used to update Qm to Qm = QmVm. If we now apply Theorem 6.4.11,
we obtain

Since we are interested in the first column, we multiply this equation by e\ to get

The left-hand side of this equation is just p(A)q\. On the right-hand side we have
Rmei = ae\, where OL — r\\ ^ 0, because Rm is upper triangular. Therefore the
first term on the right-hand side is just aq\. The second term is zero, because the first
column of Ej is zero. Thus we have

where J3 = a~l. This is exactly what we desired. Since p(z) is zero at v\, ..., Vj,
it follows that p will take on small values near these points and large values away
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from these points. Referring back to (6.4.1), we see that eigenvectors corresponding
to eigenvalues near 1/1, . . . , Vj will be suppressed, while those corresponding to
eigenvalues away from v\,..., Vj will be enhanced.

IRA chooses different shifts on each iteration, but imagine for a moment a version
that does not change the shifts. After i iterations the starting vector will be propor-
tional to p(A}lqi, as we see by applying (6.4.13) i times. Thus IRA is just effecting
the power method driven by p(A). The eigenvectors that correspond to the largest
eigenvalues p(A) of p(A) will be favored.

The power method is subspace iteration with subspaces of dimension 1. Theo-
rem 6.4.14 (below) shows that IRA also effects subspace iterations on higher dimen-
sional spaces. Thus the convergence theory of subspace iteration can be brought to
bear in the analysis of the convergence of IRA. In practice the subspace iterations
are nonstationary, because different shifts are chosen at each step. This improves
the algorithm by making it adaptive, hence flexible, but it makes the convergence
analysis more difficult.

Theorem 6.4.14 Suppose one iteration of IRA transforms q\, ..., qk to q\, ..., qk-
Let p(z) — (z — i/i) • • • (z — Vj), where v\, ..., Vj are the shifts used by IRA. Then

Proof. By Theorem 6.3.9, span{<?i,... ,^} = JCi(A,qi} and
Furthermore (6.4.13) implies that as one

easily checks. d

Exercise 6.4.15 Provide a second proof of Theorem 6.4.14 that uses (6.4.12), exploiting the
special form of the error term Ej. d

Algorithms of Davidson Type

The Arnoldi process builds up subspaces of increasing dimension by adding a vector at
each step. This is done in such a way that at each step the space is a Krylov subspace:
span{qi,... ,qk} = Kk(A,qi). Now we will consider methods that increase the
subspace dimension by one at each step but do not use Krylov subspaces. A wide
variety of algorithms results.

Suppose we have orthonormal vectors q\, ..., qk, and we wish to add qk+i. We
want to pick this vector so that the expanded space is an improvement on the current
space, in the sense that it contains better approximations to eigenvectors. For guidance
we look to the space that we already have in hand. Let Qk = [ Qi ''' Qk ]. as
before, and let In the Arnoldi process this is just the Hessenberg
matrix Hk, but now Bk need not be upper Hessenberg. Since k is not too big, we
can compute its eigenvalues and eigenvectors easily. Let ()LA, x) be some selected
eigenpair (for example, take the largest /^), and let q = Qmx. Then (/i, q) is a Ritz
pair of A associated with the subspace span{gi,..., qk} (see Exercise 6.3.35), and
it can be viewed as an approximation to an eigenpair of A. The norm of the residual
r — Aq — pq gives an indication of the quality of (/z, q) as an approximate eigenpair.
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Several important methods make use of the residual to determine the new subspace
vector qk+i- In each case r is used to determine a second vector s such that
s 0 span{gi,... ,Qk}- Then <j%+i is obtained by orthonormalizing s against <?i,
. . . , qk by the Gram-Schmidt process. The methods differ in how they obtain s from
r.

The simplest possibility is to take s = r. This leads to a method that is equivalent
to the Arnoldi process. See Exercise 6.4.23.

A second possibility is to take s = (D — fil)~1r, where D is the diagonal matrix
that has the same main-diagonal entries as A. This leads to Davidson's method, which
has been used extensively in quantum chemistry calculations. In these applications
the matrices are symmetric and extremely large. They are also strongly diagonally
dominant, which means that the main-diagonal entries are much larger than the entries
off the main diagonal. This property is crucial to the success of Davidson's method.
Notice that the computation of s is quite inexpensive, since (D — nl}~1 is a diagonal
matrix.

A third way of choosing s leads to the Jacobi-Davidson method, which we motivate
as follows. If q is close to an eigenvector of A, then a small correction s can make
q + s an exact eigenvector. Thus

where i> is a small correction to the Ritz value IJL. Furthermore, we may take the
correction to be orthogonal to q, i.e. The Jacobi-Davidson method chooses
s to be an approximation to s. Suppose where e «C 1.
Expanding (6.4.16) we obtain

We expect the term to have a negligible effect on this equation, because
O(e2). The Jacobi-Davidson method takes s and v to be the solution to the equation
obtained by ignoring this term while enforcing the orthogonality condition q*s = 0.
Thus

or

The reader might recognize this as Newton's method. It is also a variant of Rayleigh
quotient iteration (Exercise 6.4.24).

To summarize, the Jacobi-Davidson method obtains a Ritz pair (/^, q) from
span{g1;..., qk}, computes the residual r = Aq — µq, then solves (6.4.17) to obtain
s (and i/). The new vector qk+i is obtained by orthogonalizing s against q\, ..., qk
by some version of Gram Schmidt. The new space span{qi,..., qk+i} contains both
q and s, so it also contains q + s, an excellent approximation to an eigenvector.

What we have just described is known as the "exact" variant of Jacobi-Davidson,
since the equation (6.4.17) is solved exactly. In practice, if A is extremely large, it will
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be impractical to solve (6.4.17). Therefore the Jacobi-Davidson process is usually
used in an "inexact" mode, which is to say that (6.4.17) is solved approximately by
an iterative method such as those discussed in Section 7.9. An accurate solution is
not needed; a very crude approximation is often good enough. The only penalty for
using a poor approximation is that the vector that is added to the space is of reduced
quality. This means that more steps will need to be taken before a sufficiently accurate
approximate eigenpair is obtained. We do not mind taking many steps if the cost of
each step is not too great. There are many variations on this theme and a number of
ways of rewriting the system of equations (6.4.17). For more information see [3] or
the award- winning paper [62].

At each step of the Jacobi-Davidson procedure, we have A; Ritz pairs to choose
from, where k is the current dimension of the space. Which pair we actually choose
for our next step depends upon our objective. If we wish to find the largest eigenvalues
of A, we should choose the largest Ritz value. If, on the other hand, we wish to find
interior eigenvalues near the target value T, it makes sense to choose the Ritz value
that is closest to r. However, in this context it is usually better to work with harmonic
Ritz values instead of the standard Ritz values. See Exercise 6.4.25.

Each step of the Davidson or Jacobi-Davidson algorithm adds a new vector. After
many steps we may wish to dispose of the less promising vectors and keep only a
small subspace that contains the best estimates of eigenvectors, as is done in IRA.
This is easier in the current context than it is in IRA; the subspaces that we are
building are not Krylov subspaces, so we do not need to worry about preserving that
property. We can proceed as follows, for example. Suppose we have m = k + j
orthonormal vectors, the columns of the matrix Q 6 Cn x m

? and we want to discard
j columns and keep a ^-dimensional subspace. Let B = Q*AQ. Compute the
Schur decomposition B = UTU*. U is unitary, and T is upper triangular. The
main diagonal entries of T are the eigenvalues of B, which are Ritz values of A with
respect to the current subspace. These can be made to appear in any order in T.
Suppose we order them so that

where TH 6 <£kxk contains the k "most promising" Ritz values, the ones that we want
to keep. Let and partition Q conformably with T, i.e.

where Then , which implies that theeigenvalues of TU
are the Ritz values of A with respect to the space . If we now keep Qi and
discard Q2, we will have retained the desired Ritz values and a space that contains
their associated Ritz vectors. This process is known as purging.

Exercise 6.4.18 Check the claims of the previous paragraph. In particular, show that
D

In situations where more than one eigenvalue is sought, it will often happen that
some eigenvalues converge before the others do. Then we have an invariant subspace
that we wish to preserve while looking for a larger invariant subspace. It is a simple
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matter to lock in the converged space. We simply move the converged vectors to the
front of our basis (if they are not already there) and keep them there.

Additional Exercises

Exercise 6.4.19 MATLAB's built-in eigs function computes a few eigenvalues of a sparse
(or full) matrix by the implicitly-restarted Arnoldi (IRA) method. In MATLAB type
help eigs to learn how the eigs command works. Use eigs to calculate the
ten eigenvalues of west047 9 closest to r = 6 + Qi. Use a residual tolerance of
10~16. How many iterations did eigs take? Did this method take more or less
work than straight shift-and-invert Arnoldi? D

Exercise 6.4.20 Let i > i , . . . , Vk be eigenvectors of A, and suppose q — c\v\ + • • • + CkVk-

(a) Show that for j = 1, 2, 3 , . . . , we have A^q € span{i>i,..., Vk}- Deduce that
the Krylov subspaces K,m(A, q) lie in span{fi, . . . , Vk} for all m.

(b) Show that JCk(A, q) is invariant under A. Deduce that the Arnoldi process
starting with q will terminate in k steps or fewer with span-j^,..., qm} (m <
k) an invariant subspace contained in spanj^i,..., Vk}.

(c) Let AI , . . . , \k be the eigenvalues of A associated with v\,..., Vk, respectively.
Show that if the \j are all distinct and Cj ^ 0 for all j, then q, Aq, A2q, . . . ,
Ak~1 q are linearly independent, and the Arnoldi process terminates in exactly
k steps with span{^i,..., qk } = JCk (A, q) = spanj^i , . . . ,«*}.

(d) Suppose some of the eigenvalues AI , . . . , A& are equal. Show that if there are
only s distinct eigenvalues, s < k, among AI , . . . , A*, then q can be written as
a linear combination of s or fewer eigenvectors, and the Arnoldi process will
terminate in s steps or fewer.

D

Exercise 6.4.21 Let j be a non-negative integer. A matrix B is called j-Hessenberg if 6^ = 0
Whenever i — k > j. A j-Hessenberg matrix is said to be properly j-Hessenberg if
bij ^ 0 whenever i — k = j.

(a) What are the common names for 0-Hessenberg and 1-Hessenberg matrices?
Give two examples of 2-Hessenberg matrices of dimension 5, one properly
2-Hessenberg and one not.

(b) Show that the product of a properly j-Hessenberg matrix and a properly k-
Hessenberg matrix is a properly (j + fc)-Hessenberg matrix.

(c) Show that if B € Cmxm is properly j-Hessenberg (j < m), then the first
m — j columns of B are linearly independent.

(d) Show that if Hm is properly upper Hessenberg and p is a polynomial of
degree j, say p(z) = (z - v\)(z - 1/2) • • • (z - Vj), then p(Hm) is properly
j-Hessenberg.
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(e) Partition the QR decomposition p(Hm) = VmRm of (6.4.4) as follows:

where Bl € CmXJ', Vi e Cmxj, and #n e CJ'XJ'. From parts (c) and (d),
deduce that the columns of £?i are linearly independent. Show that this implies
that jRn is nonsingular, and

(f) Deduce from part (e) that Vm is a properly j-Hessenberg matrix. Conclude that
the first m — j — 1 entries of the row vector are zero, and the m — jth
entry (which we called J3 in (6.4.6)) is nonzero.

D

Exercise 6.4.22 Prove Theorem 6.4.11 by induction on j:

(a) Show that the theorem holds when j = 1. In this case p(z) = a\(z — vi),
where ai is a nonzero constant.

(b) Show that the theorem holds when j = 2. In this case p(z] = 0.2 (z — v\) (z —
z/2). This step is just for practice; it is not crucial to the proof of the Theorem.

(c) Show that if the theorem holds for polynomials of degree j; — 1, then it holds
for polynomials of degree j.

D

Exercise 6.4.23 Let v be a Ritz vector from span{gi,. . . , (/>}. Then v = c\q\ + • • • + CkQk
for some constants ci, . . . , c&. Typically c& ̂  0. Consider a method that expands
the subspace at each step by picking a Ritz pair (fj,, v) at each step, computing the
residual r = Av — µ,v, and orthonormalizing the residual against the previously
determined vectors. Using induction on k, show that if Ck ^ 0 at each step, then
spanjgi , . . . ,qk} — JCk(A,qi) for all k. Thus this method is equivalent to the
Arnoldi process. What happens if Ck — 0 at some step? CI

Exercise 6.4.24 Let (/u, q) be a Ritz pair of A from some subspace. Show that yu = q*Aq/q*q.
Thus yu is the Rayleigh quotient of q. Show that if s is determined by the Jacobi-
Davidson equation (6.4.17), then q + s = v(A — pl)~lq. Therefore q + s is the
result of one step of Rayleigh quotient iteration with starting vector q. D

Exercise 6.4.25 In this exercise we introduce harmonic Ritz pairs. We use the same notation
as in Exercise 6.3.35. Let r be a complex (target) value that is not an eigenvalue of
A. Then /j, is a harmonic Ritz value of A with target r with respect to the space S if
(/j, — r}~1 is an ordinary Ritz value of (A — rl)~l. From Exercise 6.3.35 we see that
p satisfies this property if and only if (// — r)"1 is an eigenvalue of Q*( A — r!}~lQ.
Although this is a small (k x k} matrix, it can be difficult to evaluate if A is large.
It turns out to be easier to obtain Harmonic Ritz values with respect to a different
space. Let U = (A - rI)S.
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(a) Let u e Cn. Show that u E £/ if and only if there is an x 6 C* such that
u = (A — r!)Qx. Show that the vector x corresponding to a fixed u € U is
uniquely determined.

(b) Show that n is a harmonic Ritz value of A with target r with respect to the
space U if and only if there is a w e ZY such that

and that this holds in turn if and only if there is an x G Ck such that

Let v = Qx. We call v a harmonic Ritz vector associated with the harmonic
Ritz value ^. Notice that v belongs to 5, not U.

(c) Let Y = (A-rl)Q e Cnxfc . Show that /u is a harmonic Ritz value (with r
and U), with associated harmonic Ritz vector v — Qx if and only if

This equation is an example of a generalized eigenvalue problem (see Sec-
tion 6.7). Since the matrices Y*Y and Y*Q are small (k x A;), this problem
can be solved inexpensively.

(d) Show that n is a harmonic Ritz value (with r and U) if and only if p, — r is an
eigenvalue of (Y*Y}(Y*Q)~l and (Y*Q)~l(Y*Y), assuming that (Y*Q)~l

exists.

D

6.5 SENSITIVITY OF EIGENVALUES AND EIGENVECTORS

Since the matrix A whose eigensystem we wish to calculate is never known exactly, it
is important to study how the eigenvalues and eigenvectors are affected by perturba-
tions of A. Thus in this section we will ask the question of how close the eigenvalues
and eigenvectors of A + 6A are to those of A if || 6A \\/\\ A \\ is small. This would
be an important question even if the uncertainty in A were our only concern, but of
course there is also another reason for asking it. We noted in Chapter 3 that any
algorithm that transforms a matrix by rotators or reflectors constructed as prescribed
in Section 3.2 is backward stable. The implicit QR algorithms are of this type. This
means that an implicit QR algorithm determines the exact eigenvalues of a matrix
A + 6 A where ||<L4||/|| A\\ is small. If we can show that the eigenvalues of A + 6 A
are close to those of A, we will know that our answers are accurate. Of course it will
turn out that we cannot always guarantee accurate eigenvalues; the accuracy depends
upon certain condition numbers.
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A related question is that of residuals. Suppose we have calculated an approximate
eigenvalue A and associated eigenvector v, and we wish to know whether they are
accurate. It is natural to calculate the residual r = Av — \v and check whether it is
small. Suppose || r || is small. Does this guarantee that A and v are accurate? As the
following theorem shows, this question also reduces to that of the sensitivity of A.

Theorem 6.5.1 Let A G Cnxn, let v be an approximate eigenvector of A with
||f ||2 — 1, \ an associated approximate eigenvalue, and r the residual: r = Av — Xv.
Then A and v are an exact eigenpair of some perturbed matrix A + 8 A, where

Proof. If you have worked Exercise 6.3.36, then you have already done this. Let
SA - -rv*. Then \\6A\\2 = ||r||2||u||2 = ||r||2, and (A + SA)v - Av - rv*v
= Av — r = Xv. n

Exercise 6.5.2 Verify that || rv * ||2 — || r ||2 | v ||2 for all r, v G Cn. (On the left-hand side of
this equation we have the matrix 2-norm; on the right-hand side we have the vector
2-norm, the Euclidean norm.) D

Sensitivity of Eigenvalues

First of all, the eigenvalues of a matrix depend continuously on the entries of the
matrix. This is so because the coefficients of the characteristic polynomial are con-
tinuous functions of the matrix entries, and the zeros of the characteristic polynomial,
that is, the eigenvalues, depend continuously on the coefficients. See [81] and the
references cited therein.2 This means that we can put as small a bound as we please
on how far the eigenvalues can wander, simply by making the perturbation of the
matrix sufficiently small. But this information is too vague. It would be more useful
to have a number K such that if we perturb the matrix by e, then the eigenvalues are
perturbed by at most KC, at least for sufficiently small e. Then AC would serve as a
condition number for the eigenvalues. It turns out that we can get such a K if the
matrix is semisimple. This is the content of our next theorem, which is due to Bauer
and Fike.

Theorem 6.5.3 Let A e Cnxn be a semisimple matrix, and suppose V~1AV — D,
where V is nonsingular and D is diagonal. Let 6 A G Cnxn be some perturbation of
A, and let fj, be an eigenvalue of A + 6 A. Then A has an eigenvalue A such that

for 1 < p < oo.

This theorem shows that KP(V) (which was defined in Section 2.2) is an overall
condition number for the spectrum of A. We could nondimensionalize (6.5.4) by
dividing both sides by || A | , but that would be an unnecessary complication.

2Two other approaches are outlined in [15] and [73].
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Proof. Let 8D = V~l(6A)V. Then

Since D + 6D is similar to A + 8A, /j, is an eigenvalue of D + 8D. Let x be an
associated eigenvector. If p, happens to be an eigenvalue of A, we are done, so suppose
it is not. Then fj,I — D is nonsingular, and the equation (D + 8D)x — fix can be
rewritten as x = (pi - D)-l(8D)x. Thus||z||p < || (pi - D}~1 \\p\\8D\\p\\x\\p.
Canceling out the factor || x \\p and rearranging, we find that

The matrix (nl — D} l is diagonal with main diagonal entries (JJL — \] 1, where
AI, . . . , \n are the eigenvalues of A. It follows very easily that || (nl — D}~11|2 =
| /z — A p1, where A is the eigenvalue of A that is closest to /z. Thus (6.5.6) can be
rewritten as

Combining this inequality with (6.5.5), we get our result. d

Exercise 6.5.7 Verify the following facts, which were used in the proof of Theorem 6.5.3

(a) Let A be a diagonal matrix with main diagonal entries 81,..., 8n. Verify that
for 1 < p < oo, || A||p = maxi<i<n \6i\.

(b) Verify that || (^1 — D}~1 \\ — \fj, — A]"1, where A is the eigenvalue of the

D

diagonal matrix D that is closest to p,.

The columns of the transforming matrix V are eigenvectors of A, so the condition
number KP (V} is a measure of how far from being linearly dependent the eigenvectors
are: the larger the condition number, the closer they are to being dependent. From
this viewpoint it would seem reasonable to assign an overall condition number of
infinity to the eigenvalues of a defective matrix, since such matrices do not even
have n linearly independent eigenvectors. Support for this viewpoint is given in
Exercise 6.5.32.

If A is Hermitian or even normal, V can be taken to be unitary (cf. Theorems 5.4.12
and 5.4.15). Unitary V satisfy Kz(V] = 1, so the following corollary holds.

Corollary 6.5.8 Let A € Cnxn be normal, let 8 A be any perturbation of A, and let
fj, be any eigenvalue ofA + 8A. Then A has an eigenvalue A such that

Corollary 6.5.8 can be summarized by saying that the eigenvalues of a normal
matrix are perfectly conditioned. If a normal matrix is perturbed slightly, the resulting
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perturbation of the eigenvalues is no greater than the perturbation of the matrix
elements.

A weakness of Theorem 6.5.3 is that it gives a single overall condition number
for the eigenvalues. In fact it can happen that some of the eigenvalues are well
conditioned while others are ill conditioned. This is true for both semisimple and
defective matrices. It is therefore important to develop individual condition numbers
for the eigenvalues. Again we will restrict our attention to the semisimple case; in
fact, we will assume distinct eigenvalues.

Our discussion of individual condition numbers will depend on the notion of left
eigenvectors. Let A be an eigenvalue of A. Then A — XI is singular, so there exists
a nonzero x € Cn such that (A - XI}x — 0, that is,

It is equally true that there is a nonzero y € Cn such that y*(A — XI) = 0, that is,

Any nonzero vector y* that satisfies (6.5.10) is called a left eigenvector of A associated
with the eigenvalue A. Actually we will be somewhat casual with the nomenclature
and refer to y itself as a left eigenvector of A, as if y and y* were the same thing.
Furthermore, to avoid confusion we will refer to any nonzero x satisfying (6.5.9) as
a right eigenvector of A. A left eigenvector of A is just (the conjugate transpose of)
a right eigenvector of A*.

Theorem 6.5.11 Let A 6 Cnxn have distinct eigenvalues AI, A 2 , . . . , An with asso-
ciated linearly independent right eigenvectors x\, ..., xn and left eigenvectors y\,
..., yn. Then

(Two sequences of vectors that satisfy these relationships are said to be biorthogonalj

Proof. Suppose i ^ j. From the equation Axi = XiXi it follows that
On the other hand, Thus

. Since Aj ^ Xj, it must be true that
It remains to be shown that Let's assume that and get

a contradiction. From our assumption and the first part of the proof we see that
for k = 1, . . . , n. The vectors x\,..., xn are linearly independent, so they

form a basis for Cn. Notice that is just the complex inner product ( x k , y i ) ,
so yi is orthogonal to xi,..., xn, hence to every vector in Cn. In particular it is
orthogonal to itself, which implies yi = 0, a contradiction. D

The next theorem establishes the promised condition numbers for individual eigen-
values. Let's take a moment to set the scene. Suppose A e cnxn has n distinct
eigenvalues, and let A be one of them. Let 6A be a small perturbation satisfying
|| 8A ||2 = e. Since the eigenvalues of A are distinct, and they depend continuously
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on the entries of A, we can assert that if e is sufficiently small, A + 6A will have
exactly one eigenvalue A + 6\ that is close to A. In Theorem 6.5.12 we will assume
that all of these conditions hold.

Theorem 6.5.12 Let A G Cnxn have n distinct eigenvalues. Let X be an eigenvalue
with associated right and left eigenvectors x and y, respectively, normalized so that
|| x ||2 = || y ||2 = 1. Let s = y*x. (Then by Theorem 6.5.11 s ^ 0.) Define

Let 6 A be a small perturbation satisfying \ \ 6 A \\2 = e, and let \+8\be the eigenvalue
of A-\- 6 A that approximates A. Then

Thus K is a condition number for the eigenvalue A.3

Theorem 6.5.12 is actually valid for any simple eigenvalue, regardless of whether
or not the matrix is semisimple.
Proof. From Theorem 6.5.3 we know that |δ\\ < Kp(V)e. This says that A is
not merely continuous in A, it is even Lipschitz continuous. This condition can
be expressed briefly by the statement \6X\ = O(e). It turns out that the same
is true of the eigenvector as well: A + δA has an eigenvector x + 6x associated
with the eigenvalue A + 6A, such that 5x = O(e). This depends on the fact that
A is a simple eigenvalue. For a proof see [81, p. 67]. Expanding the equation
(A + 6A)(x + Sx} = (A + δ X ) ( x + 6x) and using the fact that Ax = Xx, we find
that

Left multiplying by y* and using the equation y* A = Ay*, we obtain

and therefore

Taking absolute values and noting that | y * δ A ] x \ < \\y ||2||δA||2||x||2 = e, we are
done. D

The relationship between K and the overall condition number given by Theo-
rem 6.5.3 is investigated in Exercise 6.5.29.

3 A is a simple eigenvalue; that is, its algebraic multiplicity is 1. Therefore x and y are chosen from
one-dimensional eigenspaces. This and the fact that they have norm 1 guarantees that they are uniquely
determined up to complex scalars of modulus 1. Hence s is determined up to a scalar of modulus 1, and
K is uniquely determined; that is, it is well defined.
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Eigenvalue (Aj)
10,1
9,2
8,3
7,4
6,5

Condition number («j)
4.5 x 103

3.6 x 104

1.3 x 105

2.9 x 105

4.3 x 105

Table 6.2 Condition numbers of eigenvalues of matrix A of Example 6.5.15

Exercise 6.5.13 Show that the condition number K always satisfies K > I. D

Exercise 6.5.14 Let A e Cnxn be Hermitian (A* = A), and let x be a right eigenvector
associated with the eigenvalue A.

(a) Show that x is also a left eigenvector of A.

(b) Show that the condition number of the eigenvalue A is K = 1.

This gives a second confirmation that the eigenvalues of a Hermitian matrix are
perfectly conditioned. The results of this exercise also hold for normal matrices. See
Exercise 6.5.29. D

Example 6.5.15 The 10 x 10 matrix

is a scaled-down version of an example from [81, p. 90]. The entries below the
main diagonal and those above the superdiagonal are all zero. The eigenvalues are
obviously 10,9, 8,. . . , 2,1. We calculated the right and left eigenvectors, and thereby
obtained the condition numbers, which are shown in Table 6.2. The eigenvalues are
listed in pairs because they possess a certain symmetry. Notice that the condition
numbers are fairly large, but the extreme eigenvalues are not as ill conditioned as the
ones in the middle of the spectrum. Let At be the matrix that is the same as A, except
that the (10,1) entry is € instead of 0. This perturbation of norm e should cause a
perturbation in λj for which «je is a rough bound. Table 6.3 gives the eigenvalues of
A6 for e = 10~6, as calculated by the QR algorithm. It also shows how much the
eigenvalues deviate from those of A and gives the numbers /c$e for comparison. As
you can see, the numbers K^e give good order-of-magnitude estimates of the actual
perturbations. Notice also that the extreme eigenvalues are still quite close to the
original values, while those in the middle have wandered quite far. We can expect that
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Eigenvalues of A

Eigenvalues of At

Perturbations
Ki€

10,1
10.0027

.9973
.0027
.0045

9,2
8.9740
2.0260
.0260
.0361

8,3
8.0909
2.9091
.0909
.1326

7,4
6.6614
4.3386
.3386
.2931

6,5
6.4192
4.5808
.4192
.4281

Table 6.3 Comparison of eigenvalues of A and A£ for e = 10"

if e is made much larger, some of the eigenvalues will lose their identities completely.
Indeed, for e — 10~5 the eigenvalues of A€, as computed by the QR algorithm, are

Only the two most extreme eigenvalues are recognizable. The others have collided
in pairs to form complex conjugate eigenvalues. We conclude this example with
two remarks. 1.) We also calculated the overall condition number Kz(V) given
by Theorem 6.5.3, and found that it is about 2.5 x 106. This is clearly a gross
overestimate of all of the individual condition numbers. 2.) The ill conditioning
of the eigenvalues of A can be explained in terms of A's departure from normality.
From Corollary 6.5.8 we know that the eigenvalues of a normal matrix are perfectly
conditioned, and it is reasonable to expect that a matrix that is in some sense nearly
normal would have well-conditioned eigenvalues. In Exercise 5.4.41 we found that
a matrix that is upper triangular is normal if and only if it is a diagonal matrix. Our
matrix A appears to be far from normal since it is upper triangular yet far from
diagonal. Such matrices are said to have a high departure from normality. D

Exercise 6.5.16 MATLAB's command condeig is a variant of eig that computes the
condition numbers given by Theorem 6.5.12. Type help condeig for informa-
tion on how to use this command. Use condeig to check the numbers in Table 6.2.

•

Sensitivity of Eigenvectors

In the proof of Theorem 6.5.12 we used the fact that if A has distinct eigenvalues,
then the eigenvectors are Lipschitz continuous functions of the entries of A. This
means that if x is an eigenvector of A, then any slightly perturbed matrix A + 6A
will have an eigenvector x + 6x such that || Sx ||2 « Kxe. Here e = \\6A\\2, and KX

is a positive constant independent of 6A. This is actually not hard to prove using
notions from classical matrix theory and the theory of analytic functions; see Chapter
2 of [81]. Here we will take the existence of KX for granted and study its value, for
KX is a condition number for the eigenvector x.

As we shall see, the computation of condition numbers for eigenvectors is more
difficult than for eigenvalues, both in theory and in practice. We will proceed by
degrees, and we will not attempt to cover every detail. We are guided by [66]. An
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important strength of this approach is that it can be generalized to give condition
numbers for invariant subspaces. See [66].

To begin with, let us assume that our matrix, now called T, is a block upper-
triangular matrix

where the eigenvalues of T are all distinct from A. Thus A is a simple eigenvalue of
T and has a one-dimensional eigenspace spanned by ei = [1, 0, - - - , 0 ] . Suppose
we perturb T by changing only the zero part. Thus we take

i

where || y\\2 is small. Let us suppose that ||<$r||2/||r||2 = ||2/||2/||r||2 = e < 1.
Then, if e is small enough, T + 6T has an eigenvalue A + 5X near A and an associated

e i g e n v e c t o r n e a r e\, which means that || z ||2 is small. Our task is to figure out

just how small || z ||2 is. More precisely, we wish to find a condition number K such
that || z ||2 < K,e.

To this end, we write down the eigenvector equation that must be satisfied by this
eigenpair of T + ST. We have

This can be written as two separate equations, the first of these is a scalar equation
that tells us immediately that

If we use this in the second equation of (6.5.19), we obtain y + Tz — z(\ + WTZ),
which we rewrite as

This is a nonlinear equation that we could solve for z in principle [66]. It is nonlinear
because components of z are multiplied by components of z in the term Z(WTZ).
The nonlinearity would make the equation more difficult to handle, but fortunately
we can ignore it. Since \ \ z \ \ — O(c), we have || Z(WTZ) \\ — O(e2), so this term is
insignificant. Therefore, since T ~ XI is nonsingular, we can multiply (6.5.21) by
(f - X I ) ~ l to obtain

and hence

This result yields immediately the following lemma, which gives a condition number
for the eigenvector ei.
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Lemma 6.5.23 Let T be a block-triangular matrix of the form (6.5.17), where A is
distinct from the eigenvalues of T. Let T + 6T be a perturbation of T of the special
form (6.5.18), where \\ δT ||2/|| T ||2

 = e- Then, if e is sufficiently small, T + 6T has
an eigenvector e\ + δv such that

Thus

is a condition number for the eigenvector e\ with respect to perturbations ofT of the
special form given by (6.5.18).

Proof. Since ||δv||2 = \\z\\2 and ||δT||2 = | | y \ \ z > this result is an immediate
consequence of (6.5.22). D

A couple of remarks are in order. 1.) This analysis also yields an expression
for the perturbation of the eigenvalue A, namely (6.5.20). The relationship between
this expression and the condition number given by Theorem 6.5.12 is explored in
Exercise 6.5.34. 2.) Equation (6.5.20) yields immediately \d\\ < \\w||2||z||2,
which suggests (correctly) that the norm of w affects the sensitivity of the eigenvalue
A. Although w is not mentioned in Lemma 6.5.23, it also affects the sensitivity of the
eigenvector: it determines, in part, how small e must be in order for Lemma 6.5.23 to
be valid. For details see [66]. (In our analysis we obliterated w by replacing Z(WTZ)
by the expression O(e2).)

Now consider a general matrix A with a simple eigenvalue A and corresponding
eigenvector x, normalized so that | |x| |2 = 1. Let δA be a perturbation such that
| |δA| | 2 / | |A | | 2 = e <C 1. Then A + δA has an eigenvector a: + 6x near x. We aim
to derive a bound on ||δx||2/||x||2 = ||δx||2.

Let V be any unitary matrix whose first column is x, and let T — V~1AV. (For
example, we could take the Schur decomposition of A. See Theorem 5.4.11.) Then
T has the form

where f has eigenvalues different from A. Let 5T = V~16AV. Then A + 5A -
V(T + ST}V-\and\\6T\\2/\\T\\2 = | |*A| | 2/| |A| | 2 = e. Writing

we have |^n | < \\6T\\2, \\8T||2 < ||<5T||2, and | |y| |2 < ||£T||2. If e is small

enough, then A + dtu is distinct from all of the eigenvalues of T + ST, and we can
apply Lemma 6.5.23 to the matrix
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The perturbation gives T + ST = T + 6T. We conclude that T + 6T

has an eigenvector e\ + dv such that

Now let 6x = V6v. Since also x = Ve\ (first column of V), we have x +
6x = V(e\ + 6v). Since e\ + 8v is an eigenvector of T + 8T, x + 6x is an
eigenvector of A + 6A. The unitary transformation V preserves Euclidean norms,
and| |y | | 2<pA| | 2 , so

if e is sufficiently small. This result seems to say that we can use

as a condition number for the eigenvector x. Its obvious defect is that it depends
upon 6tu and 6T, quantities that are unknown and unknowable. Since they are small
quantities, we simply ignore them. Thus we take

i

as the condition number of x.
Computation of the condition number (6.5.24) is no simple matter. Not only

is a Schur-like decomposition A = VTV~l required, but we must also compute
|| (T — A/)"11|2. The latter task is the expensive one. In practice we can estimate
this quantity just as one estimates \\A-11|, as discussed at the end of Section 2.2,
and thereby obtain an estimate of the condition number. An estimate is usually good
enough, since we are only interested in the magnitude of the condition number, not its
exact value. A condition number estimator for this problem is included in LAPACK
[1]-

What general conclusions can we draw from the condition number (6.5.24)? If we
use the Schur decomposition A — VTV~1 (Theorem 5.4.11), T is upper triangular
and has the eigenvalues of A, other than A, on its main diagonal. Then (T — A/)"1

is also upper triangular and has main diagonal entries of the form (A* — A)"1, where
\i are the other eigenvalues of A. It follows easily that

This number will be large if A has other eigenvalues that are extremely close to A.
We conclude that if A is one of a cluster of (at least two) tightly packed eigenvalues,
then its associated eigenvector will be ill conditioned.
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Exercise 6.5.26 Show that if U is upper triangular, then Show that

equality holds if U is diagonal. D

If A is normal, then the Schur matrix T is diagonal, and equality holds in (6.5.25).
In this case we also have so the condition number of the eigen-

vector associated with simple eigenvalue A^ is

We emphasize that this is for normal matrices only. In words, if A is normal, the
condition number of the eigenvector associated with Xj is inversely proportional to
the distance from Xj to the next nearest eigenvalue. Exercises 6.5.35 and 6.5.36 study
the sensitivity of eigenvectors of normal matrices.

If A is not normal, then (6.5.27) is merely a lower bound on the condition number.
It is often a good estimate; however, it can sometimes be a severe underestimate,
because the gap in the inequality (6.5.25) can be very large when T is not normal.
We conclude that it is possible for an eigenvector to be ill conditioned even though
its associated eigenvalue is well separated from the other eigenvalues.

Additional Exercises

Exercise 6.5.28 In Exercise 5.3.19 we ascertained that the MATLAB test matrix west0479
has an eigenvalue Aw 17.548546093831+34.237822957500i, and in Exercise 5.3.21
we computed a right eigenvector by one step of inverse iteration. By the same method
we can get a left eigenvector. Therefore we can compute the condition number of A
given by Theorem 6.5.12. Here is some sample code, adapted from Exercise 5.3.19.

load west0479;
A = west0479;
n = 479;
lam = 17.548546093831 +34.2378229575001;
[L,U,P] = lu(A - lam*speye(n));
vright = ones(n,l);
vright = P*vright;
vright = L\vright;
vright = U\vright;
vright = vright/norm(vright);
vleft = ones(n,l);
vleft = U'\vleft;
vleft = L'\vleft;
vleft = P'*vleft;
vleft = vleft/norm(vleft);

(a) This code segment computes a decomposition A — XI = PTLU, where P
is a permutation matrix. (Type help lu for more information.) Show that
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the instructions involving vleft compute a left eigenvector of A (i.e. a right
eigenvector of A*) by one step of inverse iteration.

(b) Add more code to compute || r ||2, where r = Av — Xv is the residual for the
right eigenvector, and compute an analogous residual for the left eigenvector.
Both of the residuals should be tiny.

(c) Add more code to compute the condition number of A given by Theorem 6.5.12.
You should get K « 5 x 105. Thus A is not very well conditioned.

(d) Using your computed values of K and || r ||2, together with Theorems 6.5.1 and
6.5.12, decide how many of the digits in the expression λ~ 17.548546093831+
34.23782295750CH can be trusted.

a

Exercise 6.5.29 Let A € Cnxn have distinct eigenvalues AI, . . . , An with associated right
and left eigenvectors v\,..., vn and w\,..., wn, respectively. By Theorem 6.5.11
we know that w*Vi ^ 0 for all i, so we can assume without loss of generality that
the vectors have been scaled so that This scaling does
not determine the eigenvectors uniquely, but once vi is chosen, then is uniquely
determined and vice versa. Let V 6 Cnxn be the matrix whose ith column is Vi, and
let W* 6 Cnxn be the matrix whose i\h row is

(a) Show that W* =V~l.

(b) Show that the condition number «j associated with the ith eigenvalue is given
by «i = ||v.||2||wi||2.

(c) Show that KI < K2(V] for all i. Thus the overall condition number from
Theorem 6.5.3 (with p = 2) always overestimates the individual condition
numbers.

(d) Show that if A is normal, /q = 1 for all i.

D

Exercise 6.5.30 The Gerschgorin disk theorem is an interesting classical result that has been
used extensively in the study of perturbations of eigenvalues. In this exercise you will
prove the most basic version of the Gerschgorin disk theorem, and in Exercise 6.5.3 1
you will use the Gerschgorin theorem to derive a second proof of Theorem 6.5.3.
We begin by defining the n Gerschgorin disks associated with a matrix A G Cnxn.
Associated with the ith row of A we have the ith off-diagonal row sum

the sum of the absolute values of the entries of the ith row, omitting the main-
diagonal entry. The ith Gerschgorin disk is the set of complex numbers z such that



474 EIGENVALUES AND EIGENVECTORS II

I z — an | < Si. This is a closed circular disk in the complex plane, the set of complex
numbers whose distance from an does not exceed si. The matrix A has n Gerschgorin
disks associated with it, one for each row. The Gerschgorin Disk Theorem states
simply that the eigenvalues of A lie within the union of its n Gerschgorin disks.
Prove this theorem by showing that each eigenvalue A must lie within one of the
Gerschgorin disks: Let A be an eigenvalue of A, and let x ^ 0 be an associated
eigenvector. Let the largest entry of x be the fcth e n t r y : S h o w

that

for all i. Using this equation in the case i = k, taking absolute values, and the using
the triangle inequality and the maximum property of | Xk \, deduce that A lies within
the kth Gerschgorin disk of A. D

Exercise 6.5.31 Apply the Gerschgorin disk theorem to the matrix D + 5D that appears in
the proof of Theorem 6.5.3 to obtain a second proof of the Theorem 6.5.3 for the case
p = 1. For more delicate applications of this useful theorem see [81]. D

Exercise 6.5.32 For small e > 0 and n > 2 consider the n x n matrix

The entries that have been left blank are zeros. Notice that J(0) is a Jordan block,
a severely defective matrix. It has only the eigenvalue 0, repeated n times, with a
one-dimensional eigenspace (cf. Exercise 5.2.14).

(a) Show that the characteristic polynomial of J(e) is An — e. Show that every
eigenvalue of J(e) satisfies |A| = e1/71. Thus they all lie on the circle of
radius e1/" centered on 0. (In fact the eigenvalues are the nth roots of e:
\k =e

1/ne2nik/n,k = l, . . .,n.)

(b) Sketch the graph of the function /n(e) = e1/™ for small e > 0 for a few values
of n, e.g. n = 2, 3, 4. Compare this with the graph of gK(e) — KG for a few
values of K. Show that

(c) Let A = J(0), whose only eigenvalue is 0, and let SA6 = J(e) — J(0). Let µe

be any eigenvalue of A + δA t. Show that there is no real number K such that
\He — 0| < /c||<L4|| for all e > 0. Thus there is no finite condition number
for the eigenvalues of A. (Remark: The eigenvalues of J(e) are continuous in
e but not Lipschitz continuous.)
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(d) Consider the special case n = 17 and e = 10 17. Observe that ||5A||p =

10~17 but the eigenvalues of A + 6A all satisfy | A| = 1/10. Thus the tiny
perturbation 10~17 causes the relatively large perturbation 1/10 in the eigen-
values.

D

Exercise 6.5.33 Let A be the defective matrix

Find left and right eigenvectors of A associated with the eigenvalue 0, and show that
they satisfy y*x = 0. Does this contradict Theorem 6.5.11? D

Exercise 6.5.34 Let T have the form (6.5.17).

(a) Show that T has a left eigenvector of the form [ 1 UT 1, where u T ( T — λ I ] =
T

—W .

(b) Show that \\u\\2 < K, the condition number for A given by Theorem 6.5. 12.

(c) Using (6.5.20) and (6.5.21), show that 6X = uTy + 0(e2), and deduce that

This gives a second proof of Theorem 6.5.12 for perturbations of this special
kind.

D

Exercise 6.5.35 The matrix

is Hermitian, hence normal. Its eigenvalues are obviously e, —e, and 1. Suppose
0 < e <C 1, so that the eigenvalues ±e are poorly separated. Let

Obviously || 6A \\ = O(e). Do the following using pencil and paper (or in your head).

(a) Find the eigenvectors of A associated with the eigenvalues ±e.

(b) Find the eigenvalues of A + SA and note that two of them are of order e. Find
the eigenvectors of A + δA associated with these two eigenvalues, and notice
that they are far from eigenvectors of A.
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(c) Show that the two eigenvectors of part (a) span the same two-dimensional
subspace as the eigenvectors of part (b). This is an invariant subspace of both
A and A + 6A. Although the individual eigenspaces are ill conditioned, the
two-dimensional invariant subspace is well conditioned [66].

D

Exercise 6.5.36 Use MATLAB to investigate the sensitivity of the eigenvectors of the normal
matrix

for small 7. Build a perturbation 6A by

deltaA = [ 0 eps ; eps 0 ]*randn

MATLAB's constant eps is the "machine epsilon," which is twice the unit roundoff
• u. Use MATLAB's eig command to compute the eigenvectors of A + SA for the
three values 7 = 10~9, 10~12, and 10~15 (e.g. gamma = le-9). In each case
compute the distance from the eigenvectors of A + <5 A to the eigenvectors of A. Are
your results generally consistent with (6.5.27)? D

6.6 METHODS FOR THE SYMMETRIC EIGENVALUE PROBLEM

For dense, nonsymmetric eigenvalue problems, the QR algorithm, following reduc-
tion to Hessenberg form, remains supreme. However, in the symmetric case, QR has
serious competition. A rich variety of approaches has been developed and, toward the
end of the 20th century, new faster and more accurate algorithms were discovered and
fine tuned. These include Cuppen's divide-and-conquer algorithm, the differential
quotient-difference algorithm, and the RRR algorithm for computing eigenvectors.

The accuracy issue is interesting and important. Results in Section 6.5 imply that
the eigenvalues of a symmetric matrix are well conditioned in the following sense:
If A + 8 A is a slight perturbation of a symmetric matrix A, say || SA? \\/\\A\\2 = e,
then each eigenvalue n of A + 6A is close to an eigenvalue A of A, in the sense that

Since the QR algorithm is normwise backward stable, it computes the exact eigen-
values of a matrix A + 6A that is very near to A. The approximate eigenvalues
computed by QR satisfy (6.6.1) with e equal to a modest multiple of the computer's
unit roundoffs. This is a good result, but one can imagine doing better. It would be
better if we could get

for all nonzero A. This is a more stringent bound, which says that all nonzero
eigenvalues, whether large or tiny, are computed to full precision. In contrast, the
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bound (6.6.1) implies only that the eigenvalues that are of about the same magnitude
as ||A||2 are computed to full precision; tiny eigenvalues are not necessarily computed
to high relative accuracy. For example, an eigenvalue with magnitude 10~6|| A\\2

could have six digits less precision than the larger eigenvalues. This is in fact what
happens when the QR algorithm is used. Some of the algorithms to be discussed in
this section do better than that; they achieve the stronger bound (6.6.2).

Before discussing newer developments, we will describe briefly a very old method
that continues to attract attention.

The Jacob! Method

The Jacobi method is one of the oldest numerical methods for the eigenvalue problem.
It is older than matrix theory itself, dating back to Jacobi's 1846 paper [44]. Like
most numerical methods, it was little used in the precomputer era. It enjoyed a brief
renaissance in the 1950s, but in the 1960s it was supplanted as the method of choice
by the QR algorithm. Later it attracted renewed interest because of its inherent
parallelism. We will outline the method briefly. The first edition of this book [77]
contained a much more detailed discussion of Jacobi's method, including parallel
Jacobi schemes.

Let us begin by considering a 2 x 2 real symmetric matrix

It is not hard to show that there is a rotator

such that QTAQ is diagonal:

This solves the 2x2 symmetric eigenvalue problem. The details are worked out in
Exercise 6.6.46.

Finding the eigenvalues of a 2 x 2 matrix is not an impressive feat. Now let us see
what we can do with an n x n matrix. Of the algorithms that we will discuss in this
section, Jacobi's method is the only one that does not begin by reducing the matrix
to tridiagonal form. Instead it moves the matrix directly toward diagonal form by
setting off-diagonal entries to zero, one after the other. It is now clear that we can set
any off diagonal entry a^ to zero by an appropriate plane rotator: Just apply in the
(i,j) plane the rotator that diagonalizes

Rotators that accomplish this task are called Jacobi rotators.
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The classical Jacobi method searches the matrix for the largest off-diagonal entry
and sets it to zero. Then it searches again for the largest remaining off-diagonal entry
and sets that to zero, and so on. Since an entry that has been set to zero can be made
nonzero again by a later rotator, we cannot expect to reach diagonal form in finitely
many steps (and thereby violate Abel's Theorem). At best we can hope that the
infinite sequence of Jacobi iterates will converge to diagonal form. Exercise 6.6.52
shows that this hope is realized. Indeed the convergence becomes quite swift, once
the matrix is sufficiently close to diagonal form. This method was employed by
Jacobi [44] in the solution of an eigenvalue problem that arose in a study of the
perturbations of planetary orbits. The system was of order seven because there were
then seven known planets. In the paper Jacobi stressed that the computations (by
hand!) are quite easy. That was easy for him to say, for the actual computations were
done by a student.

The classical Jacobi procedure is quite appropriate for hand calculation but ineffi-
cient for computer implementation. For a human being working on a small matrix it
is a simple matter to identify the largest off-diagonal entry, the hard part is the arith-
metic. However, for a computer working on a larger matrix, the arithmetic is easy;
the search for the largest entry is the expensive part. See Exercise 6.6.51. Because
the search is so time consuming, a class of variants of Jacobi's procedure, called
cyclic Jacobi methods, was introduced. A cyclic Jacobi method sweeps through the
matrix, setting entries to zero in some prespecified order and paying no attention to
the magnitudes of the entries. In each complete sweep, each off-diagonal entry is
set to zero once. For example, we could perform a sweep by columns, which would
create zeros in the order

(2,1), (3 , l ) , . . . , (n , l ) , (3,2), ( 4 , 2 ) , . . . , ( n , 2 ) , . . . , ( n , n - l ) . (6.6.3)

Alternatively one could sweep by rows or by diagonals, for example. We will refer to
the method defined by the ordering (6.6.3) as the special cyclic Jacobi method. One
can show that repeated special cyclic Jacobi sweeps result in convergence to diagonal
form [23]. The analysis is more difficult than it is for classical Jacobi.

We remarked earlier that the classical Jacobi method converges quite swiftly,
once the off-diagonal entries become fairly small. The same is true of cyclic Jacobi
methods. In fact the convergence is quadratic, in the sense that if the off-diagonal
entries are all O(e) after a given sweep, they will be O(e2) after the next sweep.
Exercise 6.6.53 shows clearly, if not rigorously, why this is so.

The accuracy of Jacobi's method depends upon the stopping criterion. Demmel
and Veselic [14] have shown that if the algorithm is run until each a^- is tiny relative to
both a,ii and a,- j, then all eigenvalues are computed to high relative accuracy. That is,
(6.6.2) is achieved. Thus the Jacobi method is more accurate than the QR algorithm.

If eigenvectors are wanted, they can be obtained by accumulating the product of the
Jacobi rotators. A complete set of eigenvectors, orthonormal to working precision,
is produced.

For either task, just computing eigenvalues or computing both eigenvalues and
eigenvectors, the Jacobi method is several times slower than a reduction to tridiagonal
form, followed by the QR algorithm.
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Algorithms for Tridiagonal Matrices

In Section 5.5 we saw how to reduce any real, symmetric matrix to tridiagonal form

by an orthogonal similarity transformation. Without loss of generality, we will
assume that all of the 0j are positive. From there we can reduce the tridiagonal
matrix to diagonal form by the QR algorithm (Sections 5.6 and 5.7), for example.
However, there are several alternatives for this second step.

Factored Forms of Tridiagonal Matrices

If all of the leading principal submatrices of A are nonsingular (for example, if A
is positive definite), then by Theorem 1.7.30, A has a decomposition A = LDLT,
where L is unit lower triangular and D is diagonal. It is a routine matter to compute
this decomposition by Gaussian elimination. When A is tridiagonal, the computation
is especially simple and inexpensive. We will derive it here in a few lines, even
though it is a special case of an algorithm that we already discussed in Chapter 1.
Since A is tridiagonal, L must be bidiagonal, so the equation A = LDLT can be
written more explicitly as

Exercise 6.6.6

(a) Multiply the matrices together on the right hand side of (6.6.5) and equate the
entries on the right and left sides to obtain a system of 2n — 1 equations.

(b) Verify that the entries of L and D are obtained from those of A by the following
algorithm.



480 EIGENVALUES AND EIGENVECTORS II

(c) About how many flops does this algorithm take?

D

The matrix A is determined by the 2n —1 parameters a i , . . . , a n and/3i , . . . ,/3n-i-
If we perform the decomposition A = LDLT, we obtain an equal number of parame-
ters / i , . . . , ln-i and di,..., dn, which encode the same information. Exercise 6.6.6
shows that the second parametrization can be obtained from the first in about 4n
flops. Conversely, we can retrieve a i , . . . , an and J3\,..., @n-i from li,..., /n_i
and di,..., dn with comparable speed. In principle either parametrization is an
equally good representation of A.

In practice, however, there is a difference. The parameters a i , . . . , an and
/?i, . . . , /?n-i determine all eigenvalues of A to high absolute accuracy, but not
to high relative accuracy. That is, if A has some tiny eigenvalues, then small relative
perturbations of the parameters can cause large relative changes in those eigenvalues.
The parameters l\,..., ln-\ and d\,..., dn are better behaved in that regard. In the
positive definite case, they determine all of the eigenvalues ofLDLT, even the tiniest
ones, to high relative accuracy [55, 56]. This property nearly always holds in the
non-positive case as well, although it is not guaranteed. Any factorization LDLT

whose parameters determine the eigenvalues to high relative accuracy is called a
relatively robust representation (RRR) of the matrix.

These observations have the following consequence. If we want to produce highly
accurate algorithms, we should develop algorithms that operate on the factored form
of the matrix. The algorithms presented below do just that. Once a factored form is
obtained, the tridiagonal matrix is never again explicitly formed.

As we have seen, a common operation in eigenvalue computations is to shift the
origin, that is, to replace A by A — pi, where p is a shift. As a first task, let us see
how we can effect a shift on a factored form of A. Say we have A in the factored
form LDLT. Our task is to compute unit lower-bidiagonal L and diagonal D such
that LDLT — pi — LDLT. By comparing entries in this equation, one easily checks
that L and D can be computed by the following algorithm.

Exercise 6.6.9 Show that if LDLT - pi = LDLT, then
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D

A stabler version of the algorithm is obtained by introducing the auxiliary quanti-
ties

with si — —p. One easily checks that

This gives the so-called differential form of the algorithm.

Given L, D, and p, this algorithm produces
LDLT - p.

Obviously the flop count for (6.6.12) is O(n).

xercise 6.6.13

(a) Show that if Sj are defined by (6.6.10) with si — —p, then the recursion
(6.6.11) is valid. (For example, start with and
make a couple of substitutions using the equation )

(b) Verify that (6.6.12) performs the same function as (6.6.8).

D

A useful alternative to the LDLT decomposition is obtained by disturbing the
symmetry of A in a constructive way. It is easy to show that the symmetric, tridiagonal
matrix A of (6.6.4) can be transformed to the form
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where A = diag{δi,..., δn} is a diagonal transforming matrix (Exercise 6.6.54).
Conversely, any matrix of the form

with all 7, > 0 is diagonally similar to a symmetric matrix of the form (6.6.4) with
It might seem like heresy to destroy the symmetry of a

matrix, but it turns out that the form (6.6.15) is often useful.
If the matrix A in (6.6.15) has all leading principal submatrices nonsingular, then

it has an LU decomposition. In the context of eigenvalue computations, the symbol
R is often used instead of C7, so we will speak of an LR decomposition and write
A = LR. The factors have the particularly simple form

The In — 1 parameters encode the same information
as a\,..., an and fa,..., /?n-i, in principle. However, just as in the case of the
LDLT decomposition, the entries of L and R usually determine the eigenvalues to
high relative accuracy, whereas those of A do not. Thus it makes sense to develop
algorithms that operate directly on the parameters never
forming the tridiagonal matrix A explicitly.

Obviously the parameters must be closely related
to the parameters / i , . . . , ln-i and d\,...,dn of the decomposition A = LDLT.
Indeed, it turns out that where the 6j are the entries of
the diagonal matrix A of (6.6.14).

Exercise 6.6.17 Let A = LDLT as in (6.6.5), A = A - 1AA as in (6.6.14), and A = LR as
in (6.6.16).

(a) Show that L = A^LA and R = A-1DLTA.

(b) Deducethat[j = ljSj-i/6j f o r j — 1,... ,n —1 andfj = dj for j — 1,... ,n.

D
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We noted above how to effect a shift of origin on an LDLT decomposition without
explicitly forming the product A ((6.6.12) and Exercise 6.6.13). Naturally we can do
the same thing with an LR decomposition. Suppose we have A = LR in factored
form, and we wish to compute LR such that A — pi = LR without explicitly forming
A. One easily shows (Exercise 6.6.55) that the following algorithm produces L and
R from L, R, and p.

Given L, R, and p, this algorithm produces L and R such that LR = LR — p.

The Slicing or Bisection Method

The slicing method, also known as the bisection or Sturm sequence method, is based
on the notions of congruence and inertia. We begin by noting that for any symmetric
matrix A 6 Enxn and any 5 G Enxn, SAST is also symmetric. Now let A and B
be any two symmetric matrices in Rnxn. We say that B is congruent to A if there
exists a nonsingular matrix S € Enxn such that B - SAST. It is important that S
is nonsingular.

Exercise 6.6.19 Show that (a) A is congruent to A, (b) if B is congruent to A, then A
is congruent to B, (c) if A is congruent to B and B is congruent to C, then A is
congruent to C. In other words, congruence is an equivalence relation. HI

The eigenvalues of a symmetric A e Rnxn are all real. Let v(A), £(A), and 7r(A)
denote the number of negative, zero, and positive eigenvalues of A, respectively. The
ordered triple (i>(A),((A),7r(A)) is called the inertia of A. The key result of our
development is Sylvester's law of inertia, which states that congruent matrices have
the same inertia.

Theorem 6.6.20 (Sylvester's Law of Inertia) Let A, B £ Enxn be symmetric, and
suppose B is congruent to A. Thenv(A] = f ( B ) , ((A] = ((B), and-n(A) = n(B).

For a proof see Exercise 6.6.56. We will use Sylvester's law to help us slice the
spectrum into subsets. Let AI, . . . , An be the eigenvalues of A, ordered so that
\i > \2 > • • • > Xn. Suppose that for any given p G M we can determine the inertia
of A — pi. The number 7r(A — pi) equals the number of eigenvalues of A that are
greater than p. If ?r(A — pi) = i, with 0 < i < n, then
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This splits the spectrum into two subsets. We will see that by repeatedly slicing the
spectrum with systematically chosen values of p, we can determine all the eigenvalues
of A with great precision.

Exercise 6.6.21 Suppose you have a subroutine that can calculate π(A — pi) for any value
of p quickly. Devise an algorithm that uses this subroutine repeatedly to calculate all
of the eigenvalues of A in some specified interval with error less than some specified
tolerance e > 0. d

We now observe that if A is tridiagonal, we do in fact have inexpensive ways to
calculate ir(A — pi) for any p. We need only calculate the decomposition

with Lp unit lower triangular and Dp diagonal, in O(n) flops (Exercise 6.6.6). This
equation is a congruence between A — pi and Dp, so 7t(A — pi) — π(D P } . Since
Dp is diagonal, we find it (Dp) by counting the number of positive elements on its
main diagonal.

If we wish, we can factor A once into LDLT and then use algorithm (6.6.12) to
obtain the desired shifted factorizations without ever assembling any of the matrices
A — pi explicitly. Alternatively, we can transform A to the unsymmetric form A and
compute the decomposition LR. By Exercise 6.6.17, the main diagonal entries of R
are the same as those of D, so this decomposition also reveals the inertia of A. To
obtain decompositions of shifted matrices, we use algorithm (6.6.18}.

In either (6.6.12) or (6.6.18) it can happen that < for some j,
which will lead to a division by zero. This poses no problem; for example, one can
simply replace the zero by an extremely tiny number e (e.g. 10~307) and continue.
This has the same effect as replacing which perturbs the spectrum by a
negligible amount.

Now that we know how to calculate n(A — pi] for any value of p, let us see how
we can systematically determine the eigenvalues of A. A straightforward bisection
approach works very well. Suppose we wish to find all eigenvalues in the interval
(a, 6]. We begin by calculating Tt(A — al) and 7t(A — bl) to find out how many
eigenvalues lie in the interval. If it (A — al) = i and ir(A — bl) = j, then

so there are i — j eigenvalues in the interval. Now let p = (a + b)/2, the midpoint of
the interval, and calculate TT(A — pi). From this we can deduce how many eigenvalues
lie in each of the intervals (a, p] and (p, 6]. More precise information can be obtained
by bisecting each of these subintervals, and so on. Any interval that is found to
contain no eigenvalues can be removed from further consideration. An interval that
contains a single eigenvalue can be bisected repeatedly until the eigenvalue has been
located with sufficient precision. If we know that \k 6 (pi,p2\, where p2 — pi < 2e,
then the approximation A& « (pi + pi}/1 is in error by less than e.
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The LR and Quotient-Difference Algorithms

Another approach to computing the eigenvalues of a symmetric, tridiagonal matrix is
the quotient-difference (qd) algorithm. We begin by introducing the LR algorithm,
which will serve as a stepping stone to the qd algorithm. To this end we transform A
to the nonsymmetric form A = A"1 AA (6.6.15). For notational simplicity, we will
now leave off the tildes and work with the nonsymmetric matrix

If A has all leading principal submatrices nonsingular, then it has an LR decompo-
sition.

If we reverse the order of these factors and multiply them back together, we obtain

a matrix of the same form as A. The transformation from A to .A, which is easily seen
to be a similarity transformation, is one step of the LR algorithm, which is analogous
to the QR algorithm. If we iterate the process, the subdiagonal entries will converge
gradually to zero, revealing the eigenvalues on the main diagonal. Just as for the QR
algorithm, we can accelerate the convergence by using shifts of origin.4

4The LR algorithm can be applied to general matrices or upper Hessenberg matrices, not just tridiagonal
ones. The convergence theory and implementation details are similar to those of the QR algorithm, but
there are a few important differences. For one thing, if an unlucky shift p is chosen, A — pi may fail
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A sequence of LR iterations produces a sequence of similar matrices A = A0, A\,
A-2,As, Each matrix is obtained from the previous one via an LR decomposition.
We arrive at the quotient-difference (qd) algorithm by shifting our attention from the
sequence of matrices (Aj) to the sequence of intervening LR decompositions. Theqd
algorithm jumps from one LR decomposition to the next, bypassing the intermediate
tridiagonal matrix. The advantage of this change of viewpoint is that it leads to more
accurate algorithms since, as we have already mentioned, the spectrum of the matrix
is more accurately encoded by the factored form.

It is not hard to figure out how to jump from one LR decomposition to the next.
Suppose we have a decomposition LR of some iterate A. To complete an LR iteration
in the conventional way, we would form A — RL. To start the next iteration, we
would subtract a shift p from A and perform a new decomposition A — pi — LR.
Our task now is to obtain the L and R directly from L and R (and p) without ever
forming the intermediate matrix A. Equating the matrix entries in the equation
RL — pi = LR, we easily determine (Exercise 6.6.58) that the parameters lj and fj
can be obtained from the lj and TJ by the simple algorithm

This is one iteration of the shifted quotient-difference (qds) algorithm. If it is applied
iteratively, it effects a sequence of iterations of the LR algorithm without ever forming
the "intermediate" tridiagonal matrices. As/n_i —> 0, rn converges to an eigenvalue.

There is a slight difference in the way the shifts are handled. At each iteration we
subtract a shift p, and we do not bother to restore the shift at the end of the iteration.
Instead, we keep track of the accumulated shift. At each iteration we add the new
shift p to the accumulated shift, which we can call p. As each eigenvalue emerges, we
must realize that it is the eigenvalue of a shifted matrix. To get the correct eigenvalue
of the original matrix, we have to add on the accumulated shift p.

To obtain a numerically superior algorithm, we have to rearrange (6.6.26). We
introduce auxiliary quantities Sj = r3• — p — lj-\,j = 1,. . . , n, where IQ = 0. Then
we can write (6.6.26) as

to have an LR decomposition. Even worse, if p is close to an "unlucky" shift, the LR decomposition
will be unstable, introducing unacceptable roundoff errors into the computation. For upper Hessenberg
matrices there are bulge-chasing implicit single and double LR steps analogous to the implicit QR steps.
Pivoting can be introduced to mitigate the instability. However, if the matrix is tridiagonal to begin with,
the pivoting will ruin the tridiagonal form.
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Shifted differential quotient-difference (dqds) iteration

The details are worked out in Exercise 6.6.59.
In the positive-definite case, the algorithm dqds (6.6.27) is extremely stable. One

easily shows that in that case all of the quantities TJ and lj are positive (Exer-
cise 6.6.60). Looking at (6.6.27) in the case p — 0, we see that the Sj are also
necessarily positive. It follows that there are no subtractions in (6.6.27). In the one
addition operation, two positive quantities are added. Therefore there is no cancella-
tion in (6.6.27), every arithmetic operation is done with high relative accuracy (see
Section 2.5), and all quantities are computed to high relative precision. If the process
is repeated to convergence, the resulting eigenvalue will be obtained to high relative
accuracy, regardless of how tiny it is. For numerical confirmation try Exercise 6.6.61.

This all assumes that p = 0 at every step. Even if p is nonzero, we get the
same outcome as long as p is small enough that A — pi is positive definite. In that
case it can be shown [55] that the Sj remain positive, so the addition in (6.6.27) is
still that of two positive numbers. Some cancellation is inevitable when the shift is
subtracted, but whatever is subtracted is no greater than what will be restored when
the accumulated shift is added to a computed eigenvalue in the end. It follows (that
is, it can be shown) that every eigenvalue is computed with high relative accuracy.

Thus we achieve high relative accuracy by using a shifting strategy that always un-
derestimates the smallest eigenvalue among those that have not already been deflated
out. The eigenvalues are found in order, from smallest to largest.

These conclusions should be tempered by the following observation. The eigen-
values that are computed accurately are those of a tridiagonal matrix. If this matrix
was obtained by reduction of some full symmetric matrix T to tridiagonal form, there
is no guarantee that we have computed the eigenvalues of T to high relative accuracy.
The tridiagonal reduction algorithm (5.5.4) is normwise backward stable, but it does
not preserve tiny eigenvalues of T to high relative accuracy.5

Historical Remark: Our order of development of this subject has been almost
exactly the opposite of the historical order. Rutishauser introduced the qd algorithm
(but not the differential form) in 1954 [57, 58] as a method for computing poles
of meromorphic functions. A few years later he placed his parameters in matrices
and introduced the more general LR algorithm [59]. This provided, in turn, the
impetus for the development of the QR algorithm around 1960 [25, 45]. For many

5Of course, all eigenvalues are computed accurately relative to ||T||, by which we mean that each
approximation /z to an eigenvalue A satisfies \n — A|/||T|| w Cu for some C that isn't much bigger
than one.
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years the QR algorithm was seen as the pinnacle of these developments, and in some
senses it is. However, by the early nineties Fernando and Parlett [22, 55] realized
that differential versions of the qd algorithm could be used solve the symmetric
tridiagonal eigenvalue problem (and the related singular value problem) with greater
accuracy than the QR algorithm, thus giving new life to the qd algorithm.

Computing Eigenvectors by Inverse Iteration

Once we have calculated some eigenvalues by bisection or the dqds algorithm, if we
want the corresponding eigenvectors, we can find them by inverse iteration, using
the computed eigenvalues as shifts, as described in Section 5.3. For each eigenvalue
Afc this requires an LDLT (or related) decomposition of A — Ajt/, which costs O(n)
flops, and one or two steps of inverse iteration, also costing O(ri) flops. Thus the
procedure is quite economical.

In exact arithmetic, the eigenvectors of a symmetric matrix are orthogonal. A
weakness of the inverse iteration approach is that it produces (approximate) eigen-
vectors that are not truly orthogonal. In particular, the computed eigenvectors asso-
ciated with a tight cluster of eigenvalues can be far from orthogonal. One remedy
is to apply the Gram-Schmidt process to these vectors to orthonormalize them. This
costs O(nm2) work for a cluster of ra eigenvalues, so it is satisfactory if ra is not
too large. However, for a matrix with huge clusters of eigenvalues, the added cost is
unacceptable. A better remedy is to use twisted factorizations.

Computing Accurate Eigenvectors Using Twisted Factorizations

The super-accurate eigenvalues obtained by dqds can help us to compute super-
accurate, numerically orthogonal eigenvectors, provided we perform inverse iteration
in an appropriate way. Again it is important to work with factored forms (relatively
robust representations) of the matrix rather than the matrix itself. Another key is to
use special factorizations called twisted factorizations.

The RRR algorithm, an algorithm built using these factorizations, takes one step
of inverse iteration, at a cost of O(ri) flops, for each eigenvector. Thus a complete set
of eigenvalues and eigenvectors of a symmetric, tridiagonal matrix can be obtained in
O(n2) flops. More generally, k eigenvalues and corresponding eigenvectors can be
found in O(nk) flops. Since each eigenvector is determined with very high accuracy,
the computed eigenvectors are automatically orthogonal to working precision. Thus
the potentially expensive Gram-Schmidt step mentioned above is avoided. The flop
count O(nk) is optimal in the following sense. Since k eigenvectors are determined
by nk numbers in all, and at least one flop (not to mention fetching, storing, etc.)
must be expended in the computation of each number, there is no way to avoid O(nk)
work.

An implementation of the RRR algorithm is included in LAPACK [ 1]. The details
of the algorithm are complicated. Here we will just indicate some of the basic ideas.



METHODS FOR THE SYMMETRIC EIGENVALUE PROBLEM 489

We assume once again that we have a symmetric, tridiagonal matrix stored in the
factored form LDLT. We have already seen how to obtain that factored form of a
shifted matrix

by (6.6.12). For our further development we need a companion factorization

where U is unit upper bidiagonal:

From Section 1.7 we know that LU decompositions, and hence also LDLT decom-
positions such as (6.6.28), are natural byproducts of Gaussian elimination, performed
in the usual top-to-bottom manner. Our preference for going from top to bottom and
from left to right is simply a prejudice. If one prefers, one can start from the bottom,
using the (n, n) entry as a pivot for the elimination of all of the entries above it in
the nth column, and then move upward and to the left. If one performs Gaussian
elimination in this way, one obtains as a byproduct a decomposition of the form UL,
of which the UDUT decomposition in (6.6.29) is a variant. Thus we expect to be
able to compute the parameters and Uj in (6.6.29) by a bottom-to-top process.
Indeed, one easily checks (Exercise 6.6.62) that the following algorithm does the job.

This is very similar to (6.6.27), the biggest difference being that it works from bottom
to top.

Related to both (6.6.28) and (6.6.29) are the twisted factorizations. The fcth twisted
factorization has the form
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where Dk is diagonal and Nk is "twisted," partly lower and partly upper triangular:

There are n twisted factorizations of LDLT — pi, corresponding to A; = 1, . . . , n.
The twisted factorizations for the cases k = I and k = n are (6.6.29) and (6.6.28),
respectively. It is easy to compute a twisted factorization. The entries /i, . . . , lk-i
are easily seen to be the same as the lj in (6.6.28). Likewise the entries un, • • •, Uk
are the same as in (6.6.29). The diagonal matrix Dk has the form

where di, . . . , dk-i are from (6.6.28), and dk+i, ..., dn are from (6.6.29). The
only entry that cannot be grabbed directly from either (6.6.28) or (6.6.29) is 6k, the
"middle" entry of Dk. Checking the (k, k) entry of the equation (6.6.31), we find
that

and therefore

Referring back to (6.6.12), (6.6.30), and Exercise 6.6.62, we find that 6k can also be
expressed as

This is a more robust formula.

Exercise 6.6.34 Check the assertions of the previous paragraph. D

We now see that we can compute all n twisted factorizations at once. We just need
to compute (6.6.28) and (6.6.29) by algorithms (6.6.12) and (6.6.30), respectively,
saving the auxiliary quantities Sj, PJ, and qj. We use these to compute the 6k in
(6.6.33). This gives us all of the ingredients for all n twisted factorizations for O(n)
flops.

The RRR algorithm uses the twisted factorizations to compute eigenvectors asso-
ciated with well-separated eigenvalues. Using a computed eigenvalue as the shift p,
we compute the twisted factorizations simultaneously, as just described.
In theory the Dk matrix in each factorization should should have a zero entry on the
main diagonal, since LDLT — pi should be exactly singular if p is an eigenvalue.
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Further inspection shows that precisely the entry 6k should be zero. In practice, due
to roundoff errors, none of the 6k will be exactly zero. Although any of the twisted
factorizations can be used to perform a step of inverse iteration, from a numerical
standpoint it is best to use the one for which Specifically, we solve

, where e^ is the fcth standard basis vector. The vector x, or
x/\\ x ||2 if one wishes, is a very accurate eigenvector. The factor 5k is included just
for convenience. In fact, the computation is even easier than it looks. Exercise 6.6.63
shows that x satisfies

which can be solved by "outward substitution" as follows.

This procedure requires n — 1 multiplications and no additions or subtractions. Thus
there are no cancellations, and x is computed to high relative accuracy. For more
details and an error analysis see [17].

For clustered eigenvalues a more complex strategy is needed. Shift the matrix
by p, where p is very near the cluster. Compute a new representation by Algorithm
(6.6.12). This shifted matrix has many eigenvalues near zero. Although the absolute
separation of these eigenvalues is no different than it was before the shift, their relative
separation is now much greater, as they are all now much smaller in magnitude. Of
course their relative accuracy is also much smaller than it was, so they need to be
recomputed or refined. Once they have been recomputed to high relative accuracy,
their eigenvectors can be computed using twisted factorizations, as described above.
These highly accurate eigenvectors are numerically orthogonal to each other as well
as to all of the other computed eigenvectors. This process must be repeated for each
cluster. For details consult [16], [17], and [56].

Cuppen's Divide-and-Conquer Algorithm

As of this writing, the prevailing expert opinion is that Cuppen's algorithm will be
supplanted by the dqds and RRR algorithms. We include here a brief description of
this interesting scheme. The algorithm is implemented in LAPACK [1]. For more
details see [12], [20].

A symmetric, tridiagonal matrix A can be rewritten as A = A + H, where
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and H is a very simple matrix of rank one whose only nonzero entries consist of the
submatrix

in the "middle" of H. This can be done for any choice of i, but our interest is in the
case i « n/2, for which the submatrices A\ and A-Z are of about the same size.

The eigenproblem for A is easier than that for A, since it consists of two separate
problems for A\ and A-z, which can be solved independently, perhaps in parallel.
Suppose we have the eigenvalues and eigenvectors of A. Can we deduce the eigen-
system of A — A + H by a simple updating procedure? As we shall see, the answer
is yes. Cuppen's algorithm simply applies this idea recursively. Here is a thumbnail
sketch of the algorithm: If A is 1 x 1, its eigenvalue and eigenvector are returned.
Otherwise, A is decomposed to A + H as shown above, and the algorithm computes
the eigensystems of A\ and A^ by calling itself. This gives the eigensystem of A.
Then the eigensystem of A = A+H is obtained by the updating procedure (described
below). This simple divide-and-conquer idea works very well. In practice we might
prefer not to carry the subdivisions all the way down to the 1 x 1 level. Instead we
can set some threshold size (e.g. 10 x 10) and compute eigensystems of matrices that
are below that size by the QR algorithm or some other method.

Rank-One Updates

It remains to show how to obtain the eigenvalues and eigenvectors of A from those
of A, where A = A + H and H has rank one.

Exercise 6.6.36 Let H e Rnxn be a matrix of rank one.

(a) Show that there exist nonzero vectors u, v 6 E.n such that H = UVT .

(b) Show that if H is symmetric, then there exist nonzero p 6 M. and w E E.n such
that H = pwwT. Show that w can be chosen so that \\w\\2 = 1, in which case
p is uniquely determined. To what extent is w nonunique?

(c) Let H — pwwT, where \\w\\2 — 1. Determine the complete eigensystem of
H.

D
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Now we can write A = A + pwwT, where \\w\\2 = I. Since we have the entire
eigensystem of A, we have A — QDQT, where Q is an orthogonal matrix whose
columns are eigenvectors, and D is a diagonal matrix whose main-diagonal entries
are eigenvalues of A. Thus

where . We seek an orthogonal Q and diagonal D such that A = QDQT.
If we can find an orthogonal Q and a diagonal D such that then
A = QDQT, where Q = QQ. Thus it suffices to consider the matrix D + pzzT.

The eigenvalues of D are its main-diagonal entries, d\,..., dn, and the associated
eigenvectors are ei, . . . , en, the standard basis vectors of En. The next exercise
shows that it can happen that some of these are also eigenpairs of D + pzzT.

Exercise 6.6.37 Let zi denote the ith component of z. Suppose Zi = 0 for some i.

(a) Show that the ith column of D + pzzT is and the ith row is

(b) Show that di is an eigenvalue of D + pzzT with associated eigenvector e;.

(c) Show that if q G Mn is an eigenvector of D + pzzT with associated eigenvalue
A /: di, then <?j, the ith component of q, is zero.

D

From this exercise we see that if Zi — 0, we get an eigenpair for free. Furthermore
the ith row and column of D + pzzT can be ignored during the computation of the
other eigenpairs. thus we effectively work with a submatrix; that is, we deflate the
problem.

Another deflation opportunity arises if two or more of the di happen to be equal.

Exercise 6.6.38 Suppose d\ = di = • • • = dk- Construct a reflector U such that U(D +
pzzT)UT = D + pzzT, and z has k — 1 entries equal to zero. At what point are you
using the fact that d\ = • • • = d& ? D

Thanks to Exercise 6.6.38, we see that whenever we have k equal di, we can
deflate k — 1 eigenpairs.

Thanks to these deflation procedures, we can now assume without loss of generality
that all of the Z{ are nonzero and the d~i are all distinct. We may also assume, by
reordering if necessary, that d\ < d^ < • • • < dn. It is not hard to see what the
eigenpairs of D + pzzT must look like. Let A be an eigenvalue with associated
eigenvector q. Then (D + pzzT)q = Xq; that is,

It is not hard to show that the scalar zTq is nonzero and that A is distinct from di,d2,
..., dn.
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Exercise 6.6.40

(a) Use (6.6.39) to show that if zTq — 0, then and q is a multiple of e; for
some i. Conclude that Zi = 0, in contradiction to one of our assumptions.

(b) Use the ith row of (6.6.39) to show that if then either zTq = 0 or
Zi — 0. Thus A 7^ di.

n

Since A ^ di for all i, (D — λJ)"1 exists. Multiplying equation (6.6.39) by
(D - A/)"1, we obtain

Multiplying this equation by ZT on the left and then dividing by the nonzero scalar
zTq, we see that

Since (D — A/)"1 is a diagonal matrix, (6.6.42) can also be written as

Every eigenvalue of D + pzzT must satisfy (6.6.43), which is known as the secular
equation. A great deal can be learned about the solutions of (6.6.43) by studying the
function

This is a rational function with the n distinct poles

Exercise 6.6.45 Let / be as in (6.6.44)

(a) Compute the derivative of /. Show that if p > 0 (p < 0), then / is increasing
(resp. decreasing) on each subinterval on which it is defined.

(b) Sketch the graph of / for each of the cases p > 0 and p < 0. Show that the
secular equation /(A) = 0 has exactly one solution between each pair of poles
of/.

(c) Let di < d<2 < • • • < dn denote the solutions of the secular equation. Show
that if p > 0, then di < di < di+i for i = 1,..., n — 1.

(d) Recall from Exercise 5.4.53 that the trace of a matrix is equal to the sum of its
eigenvalues. Applying this fact to the matrix D + pzzT, show that dn < dn + p
if p > 0. (For a more general result see Exercise 6.6.64.)

(e) Show that if p < 0, then dj_i < di < di for i = 2 , . . . , n.
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(f) Using a trace argument as in part (d), show that if p < 0, then d\ + p < d\.
(This is extended in Exercise 6.6.64)

D

Thanks to Exercise 6.6.45, we know that each of the n — 1 intervals (di, dj+i)
contains exactly one eigenvalue of D + pzzT, and the nth eigenvalue is located
in either (dn,dn + p) or (d\ + p,di), depending upon the sign of p. Using this
information, we can solve the secular equation (6.6.43) numerically and thereby
determine the eigenvalues of D + pzzT with as much accuracy as we please. For this
we could employ the bisection method, which was introduced earlier in this section,
for example. However, much faster methods are available. A great deal of effort went
into the development of the solver that is used in the LAPACK [1] implementation
of this algorithm.

Once the eigenvalues of D + pzzT have been found, the eigenvectors can be
obtained using (6.6.41). For each eigenvalue A, an associated eigenvector q is given
by

where c is any nonzero scalar. Thus the components of q are given by

In this brief sketch we have ignored numerous details.

Additional Exercises

Exercise 6.6.46 In this exercise you will show that the matrix

can always be diagonalized by a rotator

a Jacobi rotator.

(a) Show that

(b) Show that if a = d, then QTAQ can be made diagonal by taking
Otherwise, letting
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show that QTAQ is diagonal if and only if

where c = cos 0 and s = sin 6. There is a unique 0 G (—Tr/4, ?r/4) for which
£ = tan 20.

(c) Show that for any 0 € (-7T/4, ?r/4),

and

Conclude that the tangent t = tan 9 of the angle that makes QTAQ diagonal
is given by

where f is as in (6.6.47). Show that c = cos9 and s = sinO can be obtained
from t by

(d) There is a (very slight) chance of overflow in (6.6.47) if a — b is tiny. This can
be eliminated by working with the reciprocal whenever | a — b \ < 1261. Let

Then k = cot 20, where 0 is the angle of the desired rotator. Show that
t = tan 0 is given by

(Rewrite (6.6.48) in terms of k = l/£.)

(e) Show that

D
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Exercise 6.6.50 Use the formulas developed in Exercise 6.6.46 to diagonalize the matrices

Do each computation two ways, once using (6.6.48), and once using (6.6.49). Check
your answers by computing the eigenvalues of the matrices by some other means. D

Exercise 6.6.51 Show that the search for the largest off-diagonal entry of an n x n matrix
costs O(n2) work, while the cost of applying a Jacobi rotator is O(n). Thus, for large
n, the classical Jacobi method expends the vast majority of its effort on the searches.

a

Exercise 6.6.52 Let A = QTAQ, where Q is the Jacobi rotator that sets a^ to zero. Let D
and D be diagonal matrices, and let E and E be symmetric matrices with zeros on the
main diagonal, uniquely determined by the equations A = D + E and A — D + E.

(a) Prove that

Thus the Jacobi rotator transfers w e i g h t f r o m off-diagonal onto main
diagonal entries.

(b) In the classical Jacobi method we always annihilate the off-diagonal entry of
greatest magnitude. Prove that the largest off-diagonal entry always satisfies

Infer that

Thus after m steps of the classical Jacobi method, will have been re-
duced at least by a factor of (1 — 2/N}m. Thus the classical Jacobi method
is guaranteed to converge, and the convergence is no worse than linear. Exer-
cise 6.6.53 will show that the convergence is in fact quadratic.

D

Exercise 6.6.53 Let A E Rnxn be a symmetric matrix with distinct eigenvalues AI, . . . , An,
and let 5 — min{ | Aj — Xj \ i ^ j \. We will continue to use the notation A = D + E
established in Exercise 6.6.52. Suppose that at the beginning of a cyclic Jacobi
sweep, || E \\F = e, where e is small compared with S. then | a^ | < e for all i ^ j.
The elements must stay this small since H - E H ^ in nonincreasing. Suppose further
that || E \\F is small enough that the main-diagonal entries of A are fairly close to the
eigenvalues.

(a) Show that each rotator generated during the sweep must satisfy |s| < 0(e)
and c « 1.

(b) Using the result of part (a), show that once each a^ is set to zero, subsequent
rotations can make it no bigger than O(e2). Thus, at the end of a complete
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sweep, every off-diagonal entry is O(e2). This means that the convergence is
quadratic.

A closer analysis reveals that quadratic convergence occurs even when the eigenvalues
are not distinct. D

Exercise 6.6.54

(a) Compute the matrix A"1 A A, where A is as in (6.6.4), and

with all 6j ^ 0. Show how to choose the 6j so that A"1 A A has the form
(6.6.14). Notice that 5i (or any one of the Sj) can be chosen arbitrarily, after
which all of the other Sj are uniquely determined.

(b) Show that any matrix of the form (6.6.15) with all 7, positive is diagonally
similar to a matrix of the form (6.6.4) with

(c) Check that the decomposition A = LR given by (6.6.16) holds with fj =
otj—lj-i,j = 1, . . . ,n (if we define IQ = 0),and/j = Jj/fj,j = 1, . . . ,n — 1.

D

Exercise 6.6.55 This exercise shows how to apply a shift to a tridiagonal matrix A in factored
form without explicitly forming A. Suppose we have a decomposition A = LR
of the form (6.6.16), and we want to obtain the decomposition of a shifted matrix:
A-pI = LR.

(a) Show that the entries of L and R can be obtained directly from those of L and
R by the algorithm

This is the obvious form of the algorithm.

(b) Introduce auxiliary quantities tj by t\ = —p and ij+i = /., — lj — p —
f j + i — f j + i , j= 1, . . . , n — 1. Show that the algorithm from part (a) can be
rewritten as (6.6.18), which is the differential form of the algorithm. It is more
accurate than the version from part (a).

D

Exercise 6.6.56 In this exercise you will prove Sylvester's law of inertia. Let A, B e Enxn

be symmetric matrices.
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(a) Show that the dimension of the null space of A is equal to the number of
eigenvalues of A that are zero.

(b) Show that if B is congruent to A, then M(A) and N(B] have the same
dimension. Deduce that ((A) = ((B) and i/(A) + 7r(A) = z/(B) + TT(£).

(c) Show that if B is congruent to A, then there exist diagonal matrices D and E
and a nonsingular matrix C such that E — CTDC, the eigenvalues of A are
the main-diagonal entries of D, and the eigenvalues of B are the main-diagonal
entries of E.

(d) Continuing from part (c), the number of positive entries on the main diagonal
of D and E are equal to 7r(A) and 7r(5), respectively, and we would like to
show that these are the same. Let us assume that they are different and show
that this leads to a contradiction. Without loss of generality, assume E has
more positive entries than D does. Show that there is a nonzero vector x such
that

(Hint: These are homogeneous linear equations in n unknowns. How many
equations are there?)

(e) Let x be the nonzero vector from part (d), and let z = Cx. Show that
xTEx > 0, zTDz < 0, and xTEx = zTDz, which yields a contradiction.

(f) Show that (i/(A), C(A),7r(A)) =(i/(5),C(B),7r(B)).

D

Exercise 6.6.57 Show that if A - pi = LR and RL + pi = A, then A = L~1AL. Thus the
LR iteration is a similarity transformation. D

Exercise 6.6.58 Let L and R be as in (6.6.16), let A = RL and A - pi = LR, where L and
R have the same general form as in (6.6.16).

(a) Compute A, L, and R, and verify that the entries of the factors L and R can be
obtained directly from those of L and R by the algorithm (6.6.26).

(b) Show that if /n_i = 0, then rn is an eigenvalue of A and A.

D

Exercise 6.6.59 Let Sj — Tj—p — lj-i,j = 1 , . . . , n, where IQ = 0. Show that in algorithm
(6.6.26)

(a) Sj = fj - lj, j = 1,.. . , n - 1.

(b) sj+i = rj+l - rj+ilj/fj - p = r j + i S j / f j - p, j = 1 , . . . , n - 1.

(c) Confirm that (6.6.26) and (6.6.27) are equivalent in exact arithmetic.

D
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Exercise 6.6.60 Let A be a tridiagonal matrix of the form (6.6.15) with all jj > 0, and suppose
A is diagonally similar to a positive definite matrix. Then A has a decomposition
A — LR of the form (6.6.16). Show that the quantities r\,..., rn in R are all positive
(cf. Exercise 6.6.17). Then show that the entries / i , . . . , /n-i of L are positive as
well. D

Exercise 6.6.61 Consider the 5 x 5 matrix

where m = 123456.

(a) Using MATLAB, multiply L by R to get A explicitly, then use the eig
command to compute the eigenvalues of A. Notice that there are four large
eigenvalues around 123456 and one tiny one. The normwise backward sta-
bility of the QR algorithm (which eig uses) guarantees that the four large
eigenvalues are accurate. The fifth eigenvalue is surely near zero, but there is
no guarantee that eig has computed it accurately in a relative sense.

(b) Prove that the determinant of A is 1. Recall from Exercise 5.4.54 that the
determinant of a matrix is the product of its eigenvalues. Thus det(A) =
λ1λ2λ3λ4λ5. Compute λ1λ2λ3λ4λ5 using the eigenvalues you computed in
part (a), and notice that this product is far from 1. This proves that A5, the tiny
eigenvalue, has not been computed accurately; it is off by a factor of about
a million. To get the correct value, use the equation λ1λ2λ3λ4λ5 = 1 to
solve for A5: AS = l / (λ 1 λ 2 λ 3 λ 4 ) . Since the large eigenvalues are certainly
accurate, and this formula for AS involves only multiplications and divisions
(no cancellations), it gives the correct value of AS to 15 decimal places or so.
Use format long e to view all digits of AS .

(c) Write a MATLAB program that implements the dqds algorithm (6.6.27). Apply
the dqds algorithm with zero shift to the factors of A. If your program is correct,
it will give the correct value of the tiny eigenvalue to about five decimal places
after only one iteration. Perform a second iteration and get the correct tiny
eigenvalue to sixteen decimal places accuracy.

D

Exercise 6.6.62 Show that the equation (6.6.29) implies the following relationships,

(a)

(b)
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(c) The relationships from parts (a) and (b) can be used to construct an algorithm
for computing U and D. However, a better differential form of the algorithm
is obtained by introducing the auxiliary quantities

with pn — dn — p. Show that and

forj = 2 , . . . , n - 1.

(d) Verify that algorithm (6.6.30) produces the parameters that define U and D.

D

Exercise 6.6.63 Consider a twisted factorization as in (6.6.31), with Nk as in
(6.6.32).

(a) Devise an "inward substitution" algorithm to solve systems of the form N^z =
w for z, where w is a given vector. Show that the algorithm is simplified
drastically when w = e&, the fcth standard unit vector; in fact, N^k — ek, so
z — ek.

(b) Show that

(c) Devise an algorithm to solve systems of the form by "outward
substitution."

(d) Show that when y = ek, the algorithm from part (c) reduces to (6.6.35).

D

Exercise 6.6.64 This exercise extends the eigenvalue bounds of Exercise 6.6.45. Prove the
following results using the equation tr(D + pzzT) — tr(D) + ptr(zzT) and the
inequalities proved in Exercise 6.6.44.

(a) If p > 0, then di < di + p for i = 1 , . . . , n.

(b) If p < 0, then di > di + p for i = 1 , . . . , n.

(c) Regardless of the sign of p, there exist positive constants c\, ..., cn such that
c\ + • • • + cn — 1 and di = di + Cip for i = 1 , . . . , n.

D

Exercise 6.6.65 Let

(a) Write A in the form D + pzzT, where D is diagonal.

(b) Graph the function /(A) of (6.6.44) given by this choice of D, p, and z.

(c) Calculate the eigenvalues and eigenvectors of A by performing a rank-one
update.

•
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6.7 THE GENERALIZED EIGENVALUE PROBLEM

Numerous applications give rise to a more general form of eigenvalue problem

where A, B € Cnxn. This problem has a rich theory, and numerous algorithms for
solving it have been devised. This section provides only a brief overview.

Eigenvalue problems of this type can arise from systems of linear differential
equations of the form

These differ from those studied in Section 5.1 by the introduction of the coefficient
matrix B in front of the derivative term. We can solve such problems by essentially the
same methodology as in we used in Section 5.1. First we consider the homogeneous
system

As in Section 5.1, we seek solutions of the homogeneous problem with the simple
form x(t] — g(t}v, where g(t} is a nonzero scalar-valued function of t, and v is a
nonzero vector that is independent of time. Substituting this form into (6.7.2), we
find that

which implies that g/g must be constant. Call the constant A. Then (which
implies g(t] = ceAi), and

This is the generalized eigenvalue problem. Each solution (A, v) yields a solution
extv of (6.7.2). Thus we must solve the generalized eigenvalue problem in order to
solve the homogeneous problem (6.7.2). Apart from that, the solution procedure is
the same as for the problems we discussed in Section 5.1.

Example 6.7.3 The electrical circuit in Figure 6.2 differs from the ones we looked
at in Section 5.1 in that it has an inductor in the interior wire, which is shared by
two loop currents. As before, we can obtain a system of differential equations for
this circuit by applying Kirchhoff 's voltage law: the sum of the voltage drops around
each loop is zero. For the first loop, the voltage drops across the IΩ and 3Ω resistors
are \x\ and 3xi volts, respectively. The voltage drop across the 2 H inductor is 1x\
volts. The drop across the 50 resistor is 5(xi — x2) volts, since the net upward current
in the middle wire is x\ — x^ amps. Similarly, the drop across the 4 H inductor is

volts. Thus the equation for the first loop is

or
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Fig. 6.2 Circuit with inductor shared by two loop currents

Similarly, the equation for the second loop is

Combining the two equations into a single matrix equation, we obtain

which is a system of differential equations of the form as in (6.7.1).6

As a first step toward solving this system, we find a single solution z of (6.7.4).
The simplest solution is a steady-state solution, which can be found by setting the
derivative terms in (6.7.4) to zero. Doing so, we obtain the linear system

Since the coefficient matrix is nonsingular, there is a unique steady-state solution,
which we can determine by solving the system, either by pencil and paper or using
MATLAB. Using MATLAB, we find that

amperes.
The next step is to find the general solution of the homogeneous problem

6The matrices have additional interesting structure. Both A and B are symmetric, B is positive definite
and A is negative definite. Alternatively, we can flip some signs and write the system as .
in which both B and A are positive definite.
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As we have seen above, this requires solving the generalized eigenvalue problem

This is small enough that we could solve it by pencil and paper, but we will use
MATLAB instead. To get MATLAB's eig function to solve the generalized eigen-
value problem Av = λBv, we simply type [V,D] = eig (A, B) . When invoked
in this way, eig uses the QZ algorithm, a generalization of the QR algorithm,
which we will discuss later in this section. The output from [V, D] = eig (A, B)
is a matrix V whose columns are (if possible) linearly independent eigenvectors
and a diagonal matrix D whose main diagonal entries are the associated eigenval-
ues. Together they satisfy AV = BVD. As you can easily check, this means that
AVJ = \jBvj, j — 1 , . . . , n, where Vj denotes the jth column of V, and Aj is
the ( j , j ) entry of D. Using eig in this way to solve our generalized eigenvalue
problem, we obtain the eigenvalues

and associated eigenvectors

Since these vectors are linearly independent, the general solution of the homogeneous
problem is

where c\ and 02 are arbitrary constants. We now obtain the general solution to the
nonhomogeneous problem by adding in the steady-state solution (6.7.5):

Notice that both of the exponential functions decay as t increases. This is so because
both eigenvalues are negative. Therefore, whatever the loop currents may initially be
they will (quickly) settle down to their steady-state values. The system is stable.

Now suppose the switch in the circuit is closed at time zero. Then the subsequent
values of the loop currents are given by the unique solution of the system that satisfy
the initial conditions

Setting t = 0 in (6.7.6) and inserting these initial values, we obtain the linear system

Doing so, we obtain ci = —0.2215 and 02 = —1.9859.
A similar example is considered in Exercise 6.7.42. D
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Basic Properties of the Generalized Eigenvalue Problem

Consider the generalized eigenvalue problem.

This is a generalization of the standard eigenvalue problem, reducing to standard
problem in the case B — I. A nonzero v 6 Cn that satisfies (6.7.7) for some value
of A is called an eigenvector of the ordered pair (A, B), and A is called the associated
eigenvalue. Clearly (6.7.7) holds if and only if (XB — A)v = 0, so A is an eigenvalue
of (A, B) if and only if the characteristic equation

det(A£ - A) = 0

is satisfied. One easily checks that det(λB — A) is a polynomial of degree n or less.
It is called the characteristic polynomial of the pair (A, B). The expression λB — A
is often called a matrix pencil, and one speaks of the eigenvalues, eigenvectors,
characteristic equation, and so forth, of the matrix pencil.

Exercise 6.7.8 Verify that det(λB — A) is a polynomial, and its degree is at most n. D

Most generalized eigenvalue problems can be reduced to standard eigenvalue
problems. For example, if B is nonsingular, the eigenvalues of the pair (A, B) are
just the eigenvalues of B~l A.

Exercise 6.7.9 Suppose B is nonsingular.

(a) Show that v is an eigenvector of (A, B} with associated eigenvalue A if and
only if v is an eigenvector of B~l A with eigenvalue A.

(b) Show that v is an eigenvector of (A, B) with associated eigenvalue A if and
only if Bv is an eigenvector of AB~l with eigenvalue A.

(c) Show that B~l A and AB~l are similar matrices.

(d) Show that the characteristic equation of (A, B) is essentially the same as that
ofB^AandAB-1.

n

From Exercise 6.7.9 we see that if B is nonsingular, the pair (A, B} must have
exactly n eigenvalues, counting multiplicity. If B is singular, the situation is different.
Consider the following example.

Example 6.7.10 Let

and notice that B is singular. You can easily verify that the characteristic equation of
(A, B} is λ — 1 = 0, whose degree is less than the order of the matrices. Evidently
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the pair (A, B) has only one eigenvalue, namely A = 1. As we will see in a moment,
it is reasonable to attribute to (A, B) a second eigenvalue A = . D

Suppose the pair (A, B) has a nonzero eigenvalue A. Then, making the substitution
µ — I/A in (6.7.7) and multiplying through by µ, we obtain

which is the generalized eigenvalue problem for the ordered pair (B, A). We conclude
that the nonzero eigenvalues of (B, A) are the reciprocals of the nonzero eigenvalues
of (A, B). Now suppose B is singular. Then zero is an eigenvalue of (B: A). In light
of the reciprocal relationship we have just noted, it is reasonable to regard oo as an
eigenvalue of (A, B}. We will do just that. With this convention, most generalized
eigenvalue problems have n eigenvalues. There is, however, a class of problems that
is not so well behaved. Let's look at an example.

Example 6.7.11 Let

Then det(A.B — A) = 0 for all A, so every complex number is an eigenvalue. D

Exercise 6.7.12

(a) Let (A, B} be as in Example 6.7.11. Find an eigenvector associated with each
eigenvalue. Find the nullspaces AT (A) a.ndJ\f(B).

(b) Let A and B be any two matrices for which N ( A ) n N ( B ) / {0}. Show that
every complex number is an eigenvalue of the pair (A, B), and every nonzero
v E N(A) n N ( B ) is an eigenvector of (A, B) associated with every A.

D

Any pair (A, B) for which the characteristic polynomial det(λB-A) is identically
zero is said to be singular. The term singular pencil is frequently used. If (A, B) is
not singular, it is said to be regular. Certainly (A, B) is regular whenever A or B is
a nonsingular matrix. As we have just seen, (A, B) is singular whenever N(A) and
N(B) have a nontrivial intersection. It can also happen that a pair is singular even if
M(A)nM(B) = {0}.

Example 6.7.13 Let

Then the pair (A, B} is singular, as det(λB - A) = 0 for all A. Both A and B are
singular matrices; however, N(A) n N(B] = {0}. n
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Exercise 6.7.14 Verify the assertions of Example 6.7.13. D

It can also happen that a pair (A, B) is regular, even though both A and B are
singular matrices.

Example 6.7.15 Let

Then A and B are singular, but (A, B) is a regular pair D

Exercise 6.7.16 Let A and B be as in Example 6.7.15.

(a) Show that both A and B are singular matrices.

(b) Calculate the characteristic polynomial of the pair (A, B}, and conclude that
(A, B) is regular. What are the eigenvalues of (A, B}!

D

For the rest of this section we will restrict our attention to regular pencils. For
more information on singular pencils see [13, 75, 82] and Volume II of [29].

In most applications at least one of A and B is nonsingular. Whenever this is the
case, it is possible to reduce the generalized eigenvalue problem to a standard eigen-
value problem for one of the matrices AB~l, B~1A, BA~l, or A~1B. Although
this is a possibility that should not be ruled out, there are a number of reasons why
it might not be the best course of action. Suppose we compute AB~l. If B is ill
conditioned (in the sense of Chapter 2), the eigenvalues of the computed AB~l can
be poor approximations of the eigenvalues of (A,B), even though some or all of
the eigenvalues of (A, B) are well conditioned (Exercise 6.7.43). A second reason
not to compute AB~l is that A and B might be symmetric. In many applications
it is desirable to preserve the symmetry, and AB~l will typically not be symmetric.
Finally, A and B might be sparse, in which case we would certainly like to exploit
the sparseness. But AB~l will not be sparse, for the inverse of a sparse matrix is
typically not sparse. For these reasons it is useful to develop algorithms that solve
the generalized eigenvalue problem directly.

Equivalence Transformations

We know that two matrices have the same eigenvalues if they are similar, a fact which
is exploited in numerous algorithms. If we wish to develop algorithms in the same
spirit for the generalized problem, we need to know what sorts of transformations we
can perform on pairs of matrices without altering the eigenvalues. It turns out that
an even larger class than similarity transformations works. Two pairs of matrices
(A, B} and are said to be equivalent if there exist nonsingular matrices U and
V such that. . We can write the relationship more briefly
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as In the next exercise you will show that equivalent pairs
have the same eigenvalues.

Exercise 6.7.17 Suppose (A, B) and are equivalent pairs:

(a) Show that A is an eigenvalue of (A, B) with associated eigenvector v if and
only if A is an eigenvalue of with associated eigenvector V"lv.

(b) Show that (A, B} and have essentially the same characteristic equation.

D

Exercise 6.7.18 Investigate the equivalence transformations given by each of the following
pairs of nonsingular matrices, assuming that the indicated inverses exist:
(a) U = B~\ V = I, (b) U = /, V = B'1, (c) U = A~\ V = I, (d) U = /,
V = A~l. D

Computing Generalized Eigensystems: The Symmetric Case

If A,B G Enxn are symmetric matrices, and B is positive definite, the pair (A, B}
is called a symmetric pair. Given a symmetric pair (A, B), B has a Cholesky decom-
position B = RTR, where R is upper triangular. The equivalence transformation
given by U = R~~T and V = .R"1 transforms the generalized eigenvalue problem
Av = XBv to the standard eigenvalue problem R~TAR~1y = Ay, where y = Rv.
Notice that the coefficient matrix A — R~TAR~l is symmetric. This proves that a
symmetric pair has real eigenvalues, and it has n linearly independent eigenvectors.
The latter are not orthogonal in the conventional sense, but they are orthogonal with
respect to an appropriately chosen inner product.

Exercise 6.7.19 The symmetric matrix A = R~TAR~l has orthonormal eigenvectors
vi,..., vn, so R~lvi,..., R~lvn are eigenvectors of (A, B). Prove that these are
orthonormal with respect to the energy inner product (x, y)B = yTBx. D

It is interesting that the requirement that B be positive definite is essential; it is
not enough simply to specify that A and B be symmetric. It can be shown (cf. [54,
p. 304]) that every C e Enxn can be expressed as a product C = AB~l, where
A and B are symmetric. This means that the eigenvalue problem for any C can be
reformulated as a generalized eigenvalue problem Av = XBv, where A and B are
symmetric. Thus one easily finds examples of pairs (A, B) for which A and B are
symmetric but the eigenvalues are complex.

One way to solve the eigenvalue problem for the symmetric pair (A, B} is to per-
form the transformation to R~TAR~1 and use one of the many available techniques
for solving the symmetric eigenvalue problem. This has two of the same drawbacks
as the transformation to AB~l: 1.) If B is ill conditioned, the eigenvalues will not
be determined accurately, and 2.) R~T AR~l does not inherit any sparseness that A
and B might possess. The second drawback is not insurmountable. If B is sparse, its
Cholesky factor R will usually also be somewhat sparse. For example, if B is banded,
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R is also banded. Because of this it is possible to apply sparse eigenvalue methods
such as the Lanczos algorithm (6.3.23) to A = R~TAR~1 at a reasonable cost. The
only way in which this method uses A is to compute vectors Ax for a sequence of
choices of x. For A of the given form we can compute Ax by first solving Ry — x
for y, then computing z — Ay, then solving RTw — z for w. Clearly w = Ax. If R
is sparse, the two systems Ry = x and RTw — z can be solved cheaply.

In many applications both A and B are positive definite. If A is much better
conditioned than B, it might make sense to interchange the roles of A and B and take
a Cholesky decomposition of A.

There are numerous other approaches to solving the symmetric generalized eigen-
value problem. A number of methods for the symmetric standard eigenvalue problem
can be adapted to the generalized problem. For example, both the Jacobi method and
the bisection method, described in Section 6.6, have been adapted to the generalized
problem. See [54] for details and references.

Exercise 6.7.20 If B is symmetric and positive definite, then it has a spectral decomposition
B = VDVT where V is orthogonal and D is diagonal and positive definite. Show
how this decomposition can be used to reduce the symmetric generalized eigenvalue
problem to a standard symmetric problem. D

Exercise 6.7.21 Two pairs (A, B) and (A, B} are said to be congruent if there exists a
nonsingular X € Enxn such that A = XAXT and B = XBXT. Clearly any
two congruent pairs are equivalent, but not conversely. Show that if (^4, B} is
a symmetric pair (and in particular B is positive definite), then (A,B] is also a
symmetric pair. Thus we can retain symmetry by using congruence transformations.
The transformation to a standard eigenvalue problem using the Cholesky factor and
the transformation suggested in Exercise 6.7.20 are both examples of congruence
transformations. D

Computing Generalized Eigensystems: The General Problem

We now consider the problem of finding the eigenvalues of a pair (A, B) that is
not symmetric. We will develop an analogue of the reduction to upper Hessenberg
form and an extension of the QR algorithm. Unfortunately these algorithms do not
preserve symmetry.

Schur's Theorem 5.4.11 guarantees that every matrix in Cnxn is unitarily similar
to an upper triangular matrix. The analogous result for the generalized eigenvalue
problem is

Theorem 6.7.22 (Generalized Schur Theorem) Let A,B e Cnxn. Then there exist
unitary Q, Z 6 Cnxn and upper triangular T, S € Cnxn such that Q* AZ = T and
Q*BZ = S. Thus

A proof is worked out in Exercise 6.7.44.
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The pair (T, S) is equivalent to (A, B), so it has the same eigenvalues. But the
eigenvalues of (T, S) are evident because

If there is a A; for which both Skk and tkk are zero, the characteristic polynomial is
identically zero; that is, the pair is singular. Otherwise the eigenvalues are tkk/Skk,
i = 1, . . . , n. Some of these quotients may be oo.

The numbers Skk and tkk give more information than the ratio Skk/tkk- If both
Skk and tkk are near zero, the pair (A, B) is nearly singular in the sense that it is
close to a singular pair.

Exercise 6.7.23 Use Theorem 6.7.22 to verify the following facts. Suppose (A, B} is a
regular pair. Then the degree of the characteristic polynomial is less than or equal to
n. It is exactly n if and only if B is nonsingular. If B is singular, then the pair (A, B)
has at least one infinite eigenvalue. The degree of the characteristic polynomial is
equal to n minus the number of infinite eigenvalues. D

For real (A, B) there is a real decomposition analogous to the Wintner-Murnaghan
theorem (Theorem 5.4.22). In this variant, Q and Z are real, orthogonal matrices, 5
is upper triangular, and T is quasitriangular.

Reduction to Hessenberg-Triangular Form

Theorem 6.7.22 and its real analogue give us simple forms to shoot for. Perhaps we
can devise an algorithm that produces a sequence of equivalent pencils that converges
to one of those forms. A big step in that direction is to transform the pair (A, B} to
the Hessenberg-Triangular form described in the next theorem.

Theorem 6.7.24 Let A, B e Cnxn. Then there exist unitary Q, Z € Cnxn, upper
Hessenberg H € Cnxn and upper triangular U 6 Cnxn such that

There is a stable, direct algorithm to calculate Q, Z, H, and U in O(n3) flops. If A
and B are real, Q, Z, H, and U can be taken to be real.

Proof. The proof will consist of an outline of an algorithm for transforming (A, B} to
(H, U}. This transformation will be effected by a sequence of reflectors and rotators
applied on the left and right of A and B. Each transformation applied on the left
(right) makes a contribution to Q* (resp. Z). Every transformation applied to A
must also be applied to B and vice versa. We know from Chapter 3 that B can
be reduced to upper triangular form by a sequence of reflectors applied on the left.
Applying this sequence of reflectors to both B and A, we obtain a new (A, B}, for
which B is upper triangular. The rest of the algorithm consists of reducing A to
upper Hessenberg form without destroying the upper triangular form of B. The first
major step is to introduce zeros in the first column of A. This is done one element at a
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time, from bottom to top. First the (n, 1) entry is set to zero by a rotator (or reflector)
acting in the (n, n — 1) plane, applied to A on the left. This alters rows n — 1 and
n of A. The same transformation must also be applied to B. You can easily check
that this operation will introduce one nonzero entry in the lower triangle of B, in the
(n, n - 1) position. This blemish can be removed by the applying the appropriate
rotator to columns n — 1 and nof B. That is, we apply a rotation in the (n, n — 1)
plane to B on the right. Applying the same rotation to A, we do not disturb the zero
that we previously introduced in column 1. We next apply a rotation to rows n — 2
and n — 1 of A in such a way that a zero is produced in position (n — 1,1). Applying
the same rotation to B, we introduce a nonzero in position (n — 1, n — 2). This can be
removed by applying a rotator to columns n — 1 and n — 2. This operation does not
disturb the zeros in the first column of A. Continuing in this manner we can produce
zeros in positions (n — 2,1), (n — 3,1), ... , (3,1). This scheme cannot be used to
produce a zero in position (2,1). In order to do that we would have to apply a rotator
to rows 1 and 2 of A. The same rotator applied to B would produce a nonzero in
position (2,1). We could eliminate that entry by applying a rotator to columns 1 and
2 of B. Applying the same rotator to columns 1 and 2 of A, we would destroy all
of the zeros that we had so painstakingly created in column 1. Thus we must leave
the (2,1) entry of A as it is and move on to column 2. The second major step is to
introduce zeros in column 2 in positions (n, 2), (n — 1, 2), ..., (4, 2) by the same
scheme as we used to create zeros in column 1. You can easily check that none of
the rotators that are applied on the right operate on either column 1 or 2, so the zeros
that have been created so far are maintained. We then proceed to column 3, and so
on. After n — 2 major steps, we are done. n

Exercise 6.7.25 Count the flops required to execute the algorithm outlined in the proof of
Theorem 6.7.24, (a) assuming Q and Z are not to be assembled, (b) assuming Q and
Z are, to be assembled. In either case the count is O(n3). n

The QZ Algorithm

We can now restrict our attention to pairs (A, B) for which A is upper Hessenberg
and B is upper triangular. We can even assume that A is properly upper Hessenberg,
since otherwise the eigenvalue problem can be reduced to subproblems in the obvious
way. We will also assume that B is nonsingular, although this assumption can be
lifted. A form of the implicit QR algorithm called the QZ algorithm [51] can be
used to find the eigenvalues of such pairs.7 Our development will parallel that of the
QR algorithm for the SVD in Section 5.9.

Each step of the QZ algorithm will effectively perform a step of the QR algorithm
on AB~l and B~l A simultaneously. Ultimately we want to do this without forming

7 When MATLAB's eig function is called upon to solve a generalized eigenvalue problem, it reduces the
pair to Hessenberg-triangular form, as described above, then completes the reduction to generalized Schur
form by the QZ algorithm.
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these products or inverting B. Let us begin, however, with a naive version of the
algorithm. If we want to perform QR steps with shift p, we begin by taking the QR
decompositions

where Q and Z are unitary, and R and S are upper triangular. If we now define A
and B by

we see immediately that

and

Thus the transformations are both shifted
QR steps.

If we can perform the transformation (6.7.27), we will have accomplished the QR
steps implicitly, so that is now our objective. For this we need the matrices Q and
Z, and we would like to obtain them without performing the QR decompositions
(6.7.26) or even forming the matrices AB~l and B~1A. Each of Q and Z is a
product of rotators:

If we have these rotators, we can apply them to (A, B}, one after the other, to
transform (A, B} to (A, B). The challenge is to find an inexpensive way to generate
each rotator as it is needed, so that we can effect (6.7.27) efficiently. In Section 5.7
we saw how to do this for the standard eigenvalue problem. We could build a similar
argument here, but instead we will simply describe the implicit QZ algorithm, and
then use the implicit-Q theorem to justify it.

Before we describe the algorithm, we will demonstrate that the QZ transformation
(6.7.27) preserves the Hessenberg-triangular form of the pair. If p is not an eigenvalue
of the pair (A, B}, then the triangular matrices R and S in (6.7.26) are nonsingular.

Exercise 6.7.31 Suppose R and 5 in (6.7.26) are nonsingular.

(a) Show that

and

(b) Show that

(c) Show that if B is upper triangular, then so is B.

(d) Show that if A is (properly) upper Hessenberg, then so is A.
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•

These results all hold if p is not an eigenvalue. Even when p is an eigenvalue, they
remain mostly true. For example, A would be a properly upper Hessenberg matrix,
except that an,n-i — 0 (exposing an eigenvalue). We will skip the discussion of this
case, which requires a bit more effort.

Now we can describe the implicit QZ step. To get started, we need the first
column of Q. From the equation AB~l - pi — QR of (6.7.26) and the fact that R is
upper triangular, we see that the first column of Q is proportional to the first column
of AB~l — pi, which is easily seen to be

We can compute x with negligible effort. Let Qi be a rotator (or reflector) in the (1,2)
plane whose first column is proportional to x. Notice that x2 is certainly nonzero,
which implies that Q1 is a nontrivial rotator. Transform (A, B) to
This transformation recombines the first two rows of each matrix. It does not disturb
the upper Hessenberg form of A, but it does disturb the upper triangular form of B,
creating a bulge in the (2,1) position. (Draw a picture.) Because b11 ^ 0 and Q\ is
a nontrivial rotator, this bulge is certainly nonzero.

The rest of the algorithm consists of returning the pair to Hessenberg-triangular
form by chasing the bulge. Let Z\ be a (nontrivial) rotator acting on columns 1
and 2 that eliminates the bulge; that is, for which is again upper triangular.
Applying the same transformation to A we obtain , which has a bulge in the
(3,1) position. Because a32 0 and Z\ is a nontrivial rotator, this new bulge is
certainly nonzero. It can be eliminated by left multiplication by a nontrivial rotator

acting in the (2,3) plane. This operation deposits a nonzero entry in the (2,1)
position of This entry will not be altered by subsequent transformations.
Applying to B as well, we find that has a bulge (which is certainly
nonzero) in the (3, 2) position. We have now chased the bulge from the (2,1) position
of B over to A and back to the (3, 2) position of B. We can now chase it to the (4,2)
position of A by applying a rotator Z2 on the right, and so on. The pattern is now
clear. The bulge can be chased the rest of the way down the A and B matrices. It
is finally chased away completely by Zn_i, which acts on columns n — 1 and n to
remove the bulge from the (n, n — 1) position of the transformed B matrix without
introducins a bulge in A. This completes the implicit QZ step. We have transformed
(A, B) to , given by

where
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Q and Z are unitary matrices. A is upper Hessenberg, and B is upper triangular.

Exercise 6.7.35 Verify that the subdiagonal entries of A satisfy ak+1,k 0 for k =
1, 2 , . . . , n — 2. (You might also like to show that an,n-i 0 if and only if the
shift p is not an eigenvalue of (A, B].) D

Exercise 6.7.36 Verify that the flop count for an implicit QZ step, including accumulation
of the transforming matrices Q and Z, is O(n2). D

We wish to show that the pair is essentially the same as the pair
given by (6.7.27).8 The following theorem makes this possible.

Theorem 6.7.37 Let A 6 Cnxn, and let B e Cnxn be nonsingular. Suppose B and
B are upper triangular and nonsingular, A is upper Hessenberg, A is properly upper
Hessenberg, are unitary,

Suppose further that Q and Q have essentially the same first columns; that is,
where \di\ — 1. Then there exist unitary, diagonal matrices D and E

such that

In other words, (A, B) is essentially the same as (A, B).

Proof. The matrix AB~l = Q~1AB~1Q is upper Hessenberg, and AB~l =
Q~1AB~1 Q is properly upper Hessenberg. Since Q and Q have essentially the same
first column, we can apply the implicit-Q theorem (Theorem 5.7.24) with AB~l,
AB~l, and AB~l, playing the roles of A, A, and A, respectively, to conclude that
Q = QD for some unitary, diagonal D. Rewriting the "B" parts of (6.7.38) and
(6.7.39) as

and using Q — QD, we have

Defining we see that are both QR
decompositions of F. Therefore, by essential uniqueness of QR decompositions
(Exercise 3.2.60), Z and Z are essentially the same; that is, there is a unitary diagonal
E such that Z = ZE. The other assertions follow. D

furthermore, the rotators Qi,...,Qn-i and Zi, ..., Zn-i are (essentially) the same as the rotators
Q i , . . . , Qn-i and Z\,..., Zn-\, respectively (6.7.30), but we will not prove this.
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To apply the theorem, note that the transforming matrix Q = Q\ • • • Qn-\ of
(6.7.34) has same first column as Qi, since each of the rotators Q^, . . . , Qn-i
acts on columns other than the first. But we chose Q\ so that its first column is
proportional to that of Q of (6.7.26) and (6.7.27), so Q and Q have essentially the
same first column. We can now apply Theorem 6.7.37 to conclude that the pair
(A, B] of (6.7.33) is essentially the same as the pair (A, B] of (6.7.27). Recalling
(6.7.28) and (6.7.29), we see that our implicit QZ step effects QR iterations on both
AB~l and B~1A. This completes the justification of the implicit QZ step, at least
in the case when the shift is not an eigenvalue.

Now suppose we perform a sequence of QZ steps to generate a sequence of
equivalent pairs (Ak,Bk). Then if the shifts are chosen reasonably, the matrices

will converge to upper triangular or quasitriangular
form. Thus Ak — CkBk = B kE k will also converge to quasitriangular form, from
which the generalized eigenvalues are either evident or can be determined easily.

Another question that needs to be addressed is that of choice of shifts. From
what we know about the QR algorithm, we know that it makes sense to take the
shift for the kth step to be an eigenvalue of the lower-right-hand 2-by-2 submatrix
of either . Exercise 6.7.46 shows how to determine these

submatrices without determining explicitly.
Our development has assumed that B is nonsingular. However, the implicit QZ

algorithm works just as well if B is singular. In this case, the pair (A, B) has an
infinite eigenvalue (assuming the pair is regular). There is at least one zero on the
main diagonal of B, which is moved steadily upward by the QZ algorithm until an
infinite eigenvalue can be deflated at the top [78]. Another approach is to deflate
out all the infinite eigenvalues before applying the QZ algorithm. This approach is
developed in Exercise 6.7.47.

We have derived a single-step QZ algorithm. It is also natural to consider a
double-step QZ algorithm analogous to the double-step QR algorithm, to be used
in order to avoid complex arithmetic when A and B are real. Such an algorithm is
indeed possible. It is just like the single-step algorithm, except that the bulges are
fatter.

Exercise 6.7.40 Derive a double-step implicit QZ algorithm. D

Additional Exercises

Exercise 6.7.41 Using MATLAB, check that the calculations in Example 6.7.3 are correct.
Plot the solutions for 0 < t < 5. (You may find it helpful to review Exercises 5.1.19
and 5.1.20.) D

Exercise 6.7.42 In working this exercise, do not overlook the advice in Exercises 5.1.19 and
5.1.20. In Figure 6.3 all of the resistances are 1 Ω and all of the inductances are 1
H, except for the three that are marked otherwise. Initially the loop currents are all
zero, because the switch is open. Suppose the switch is closed at time 0.
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Fig. 6.3 Solve for the time-varying loop currents.

(a) Write down a system of four differential equations for the four unknown loop
currents. Write your system in the matrix form

(b) Solve the system Az = b to obtain a steady-state solution of the differential
equation.

(c) Get the eigenvalues and eigenvectors of A, and use them to construct the
general solution of the homogeneous equation

(d) Deduce the solution of the initial value problem

(e) Plot the loop currents x\ (t), ..., 0:4(t) for 0 < t < 6 seconds. (Checkpoint:
Do these look realistic?)

D

Exercise 6.7.43 Perform the following experiment using MATLAB. Build two matrices A
and B as follows:

n = 4;
M = randn(n) ;
A = M'*M
cond(A)
N = randn(n);
B = N'*N
lam = eig(B);
shift = min(lam) - 10*eps;
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B = B - shif t*eye(n);
cond(B)

These are random positive definite matrices. On average A should be reasonably well
conditioned. However, B has been modified to make it extremely ill conditioned.

(a) Explain why B should be ill conditioned.

(b) Compute the eigenvalues of the pair (A, B} two different ways:

format long e

Ig = eig(A,B);

Ib = eig(A*inv(B));

Either way you get one huge eigenvalue and n — 1 smaller eigenvalues. Com-
pare the two results. Probably they will not agree very well.

(c) Decide which eigenvalues are better by computing some eigenvectors (by
[V,D] = eig (A, B) ,e.g.) and computing each residual norm 11 At> — A-5i>||
twice, once using the Ig "eigenvalue" and once using the Ib "eigenvalue."

D

Exercise 6.7.44 In this exercise you will prove the Generalized Schur theorem, which states
that every pair (A, B) is unitarily equivalent to an upper-triangular pair (T, 5):
Q*(A - XB)Z = T - AS. The proof is by induction on n, the dimension of the
matrices.

(a) Confirm that Theorem 6.7.22 is true when n — 1.

(b) Now suppose we have a problem of size n > 1. We need to reduce it to one of
size n — 1 so that we can use induction. The key is to produce a pair of vectors
v and w e Cn such that || v ||2 = 1, || w ||2 = 1,

where et and J3 are complex scalars. Suppose first that B is nonsingular. Then
the pair (A, B) has n eigenvalues. Let n be any one of the eigenvalues, and
let v be a corresponding eigenvector such that \\v\\2 = 1- Define w to be an
appropriate multiple of Av, and show that (6.7.45) is satisfied for appropriate
choices of a and J3 satisfying /j, = a//3.

(c) Now suppose B is singular. Show that if we choose v so that Bv = 0, then
(6.7.45) is satisfied for appropriate choices of w, a, and fi. (Consider two
cases: Av ^ 0 (infinite eigenvalue) and Av — 0 (singular pencil).)

(d) We have now established that in all cases we can find v and w with unit norm,
such that (6.7.45) holds. Let V and W be unitary matrices whose first columns
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are v and w, respectively. Show that WAV and W*BV are both block
triangular; specifically,

(e) Prove Theorem 6.7.22 by induction on n.

Exercise 6.7.46

(a) Suppose B 'is a nonsingular block triangular matrix

D

Show that B x has the block triangular form

Determine what X must be.

(b) Let B be nonsingular and upper triangular. Show how to calculate the lower-
right-hand k-by-k submatrix of B~l cheaply for k = 1,2,3. Give explicit
formulas.

(c) Let (A, B) have Hessenberg-triangular form. Let M denote the lower-right-
hand 2-by-2 submatrix of B~1A. By making the appropriate partition of
B~l A, show that M depends only on the lower-right-hand 2-by-2 submatrix
of B"1. Derive explicit formulas for the entries of M.

(d) Let (A, B} have Hessenberg-triangular form. Let TV denote the lower-right-
hand 2-by-2 submatrix of AB~l. Show that N depends only on the lower-
right-hand 3-by-3 submatrix of B~*.

D

Exercise 6.7.47 Consider a pair (A, B}, where A is upper Hessenberg, B is upper triangular,
and bjj = 0 for some j. Show that an infinite eigenvalue can be deflated from the
pencil after a finite sequence of rotations.

(a) First outline an algorithm that deflates the infinite eigenvalue at the top of the
pencil: The first rotator acts on B from the right and sets bj^ij-i to zero.
When this rotator is applied to A, it creates a bulge, which can then be removed
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by a rotator applied on the left. This rotator must also be applied to B. Next
another rotator is applied to B on the right to set bj-2,j-2 to zero. This creates
another bulge in A, which can be annihilated by a rotator acting on the left.
Show that we can continue this way until the entry 611 has been set to zero, the
modified B is upper triangular (and 622 — 0 also), and A is upper Hessenberg.
Apply one more rotator on the left to A to set a^i to zero. Now show that an
infinite eigenvalue can be deflated at the top.

(b) Outline an algorithm similar to the one in part (a) that chases the infinite
eigenvalue to the bottom.

If 3 < n/2, the algorithm of part (a) is cheaper; otherwise the algorithm of part (b)
is the more economical. D
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7
Iterative Methods for

Linear Systems

In this chapter we return to the problem of solving a linear system Ax = b, where A is
n x n and nonsingular. This problem can be solved without difficulty, even for fairly
large values of n, by Gaussian elimination on today's computers. However, once n
becomes very large (e.g. several thousand) and the matrix A becomes very sparse (e.g.
99.9% of its entries are zeros), iterative methods become more efficient. This chapter
begins with a section that shows how such large, sparse problems can arise. Then
the classical iterative methods are introduced and analyzed. From there we move
on to a discussion of descent methods, including the powerful conjugate gradient
method for solving positive definite systems. The important idea of preconditioning
is introduced along the way. The conjugate gradient method is just one of a large
family of Krylov subspace methods. The chapter concludes with a brief discussion
of Krylov subspace methods for indefinite and nonsymmetric problems.

We restrict our attention to real systems throughout the chapter. However, virtually
everything said here can be extended to the complex case.

7.1 A MODEL PROBLEM

Large sparse matrices arise routinely in the numerical solution of partial differential
equations (PDE). We will proceed by stages, beginning with a simple ordinary
differential equation (ODE). This is a one-dimensional problem, in the sense that
there is one independent variable, x. Suppose a function f ( x ) is given for 0 < x < 1,
and we wish to find a function u(x) satisfying the ODE

521
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and the boundary conditions

Here T0 and Ti are two given numbers. Boundary value problems of this type arise in
numerous settings. For example, if we wish to determine the temperature distribution
u(x] inside a uniform wall, we must solve such a problem. The numbers T0 and
TI represent the ambient temperatures on the two sides of the wall, and the function
f ( x ) represents a heat source within the wall.

This is a very simple problem. Depending on the nature of /, you may be able to
solve it easily by integrating / a couple of times and using the boundary conditions to
solve for the constants of integration. Let us not pursue this approach; our plan is to
use this problem as a stepping stone to a harder boundary value problem involving a
PDE. Instead, let us pursue an approximate solution by the finite difference method,
as we did in Example 1.2.12.

Let h = l/m be a small increment, where m is some large integer (e.g. 100 or
1000), and mark off equally spaced points Xi on the interval [0,1]. Thus XQ — 0,
xi = h,X2 = 2 / i , . . . , xm — mh = 1, or briefly x^ = ih for i = 0,1, 2 , . . . , m. We
will approximate the solution of (7.1.1) on XQ, x\, . . . , xm. Since (7.1.1) holds at
each of these points, we have

As we noted in Example 1.2.12 (and Exercise 1.2.21), a good approximation for the
second derivative is

Substituting this approximation into the ODE, we obtain, for i = 1,. . . , m — 1,

These are approximations, not equations, but it is not unreasonable to expect that if we
treat them as equations and solve them exactly, we will get good approximations to the
true solution at the mesh points x^. Thus we let HI , . . . , um-\ denote approximations
to •u (z i ) , . . . , u(xm-i] obtained by solving the equations exactly:

We have multiplied through by h2 for convenience. Since XQ = 0 and xm — 1,
it makes sense to define UQ = T0 and um — TI , in agreement with the boundary
conditions (7.1.2). The boundary value UQ is used in (7.1.4) when i = 1, and um is
used when i = m — 1. Equation (7.1.4) is actually a system of m — 1 linear equations
for the m — 1 unknowns u\,..., um_i, so it can be written as a matrix equation



A MODEL PROBLEM 523

where u is now a column vector containing the unknowns,

and

Notice that the boundary values end up in b, since they are known quantities. The
coefficient matrix A is nonsingular (Exercise 7.1.14), so the system has a unique
solution. Once we have solved it, we have approximations to u(x) at the grid points
Xi .

The matrix A has numerous useful properties. It is obviously symmetric. It is
even positive definite (Exercise 7.1.15 or Exercise 7.3.37). It is also extremely sparse,
tridiagonal, in fact. The reason for this is clear: each unknown is directly connected
only to its nearest neighbors.

Such a simple system does not require iterative methods for its solution. This
is the simplest case of a banded matrix. The band is preserved by the Cholesky
decomposition, and the system can be solved in O(m) flops. If Cholesky's method
works, then so does Gaussian elimination without pivoting, which also preserves the
tridiagonal structure. This variant is actually preferable, as it avoids calculating m — 1
square roots. But now let us get to our main task, which is to generate examples of
large sparse systems for which the use of iterative methods is advantageous.

A Model PDE (Two-Dimensional)

Let Ω denote a bounded region in the plane with boundary dΩ, let f ( x , y) be a given
function denned on Ω, and let g(x,y) be defined on dΩ. Consider the problem of
finding a function u(x,y) satisfying the partial differential equation

subject to the boundary condition
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The PDE (7.1.6) is called Poisson's equation. It can be used to model a broad
range of phenomena, including heat flow, chemical diffusion, fluid flow, elasticity,
and electrostatic potential. In a typical heat flow problem u(x,y} represents the
temperature at point (x, y) in a homogeneous post or pillar whose cross-section is
ft. The function g represents the specified temperature on the surface of the post,
and /(x, y) represents a heat source within the post. Since there are two independent
variables, x and y, we call this a two-dimensional problem.

For certain special choices of / and g, the exact solution can be found, but usually
we have to settle for an approximation. Let us consider how we might solve (7.1.6)
numerically by the finite difference method. To minimize complications, we restrict
our attention to the case where Ω = [0,1] x [0,1], the unit square. Let h — 1/m be
an increment, and lay out a computational grid of points in ft with spacing h. The
(i, j)th grid point is (X;,T/J) = (ih,jh], with i,j — 0 , . . . , m. A grid with h = 1/5
is shown in Figure 7.1.

Fig. 7.1 Computational grid with h = 1/5 on Ω = [0,1] x [0,1]

We will approximate the PDE (7.1.6) by a system of difference equations defined
on the grid. The approximation that we used for the ordinary derivative u" (x) can
also be used for the partial derivatives, since a partial derivative is just an ordinary
derivative taken with respect to one variable while the other variable is held fixed.
Thus the approximation (7.1.3) yields the approximation

The y variable is held fixed. Similarly we have for the ^-derivative

Substituting these approximations into (7.1.6), we find that a solution of (7.1.6)
satisfies the approximation
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at the interior grid points i,j = 1, . . . ,m — 1. These are approximations, not
equations, but, again, if we treat them as equations and solve them exactly, we should
get a good approximation of the true solution u(x, y). Consider, therefore, the system
of equations

which becomes, after minor rearrangement,

The shorthand fij = f ( x i , y j ) has been introduced.
Each equation involves five of the unknown values, whose relative location in the

grid is shown in the left-hand diagram of Figure 7.2. The weights with which the

Fig. 7.2 Five-point stencil

five unknowns are combined are shown in the right-and diagram of Figure 7.2. This
is called the, five-point stencil for approximating Poisson's equation.

Boundary values of Uij, which occur in the equations for mesh points that are
adjacent to the boundary, can be determined by the boundary conditions. For example,
equations for the mesh points (i, m — 1) (adjacent to the top boundary) contain the
"unknown" u;,m, which can be specified by the boundary condition Ui>m — g(xi, 1).
With this understanding, (7.1.8) can be seen to be a system of (m — I)2 equations in
the (m- I)2 unknowns Uij,i,j — l , . . . , m —1. If we can solve these equations, we
will have approximations Uij w u ( x i , y j ) to the solution of (7.1.6) with boundary
conditions (7.1.7) at the grid points.

The equations are linear, so they can be written as a matrix equation Au — b.
Before we can do this, we need to decide on the order in which the unknowns mj
should be packed into a single vector u. (The ordering was obvious in the ODE case.)
There is one unknown for each grid point (Figure 7.1). We can order the Uij by
sweeping through the grid by rows, by columns, or by diagonals, for example. Let
us do it by rows. The first row contains u\ti,..., um-iti, the second row contains
ui,2, • • •, Um-i,2, and so on. Thus u will be the column vector defined by
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We use the same ordering to pack the h2 fij (plus boundary terms, where appropriate)
into the vector b. Having decided on an ordering, we can now write the equations
(7.1.8) as a matrix equation Au = b.

Exercise 7.1.9 Determine the form of the matrix A corresponding to the system (7.1.8) and
the ordering of equations and unknowns specified in the previous paragraph. HI

Just as in the one-dimensional (ODE) case, the matrix A is very sparse. Since each
equation in (7.1.8) involves only five of the unknowns, each row of A has at most
five nonzero entries. This is true regardless of the ordering. Again the reason for
the sparseness is obvious: each unknown interacts directly only with its four nearest
neighbors. In the ordering we have chosen (and in every ordering), A has 4's on its
main diagonal. These are the 4's that multiply u^j in the equation corresponding to
the (i, j)th grid point. Each 4 is immediately preceded by and followed by a — 1,
corresponding to terms Uij-i and Wij+i, with exceptions near boundaries. The
— 1's corresponding to Wi-ij and v>i+i,j appear further out in the row, at a distance
of m — 1 from the main diagonal. This is all rather cumbersome to describe but
should be clear to the reader who has worked Exercise 7.1.9. The nonzero entries in
A are not packed so tightly around the main diagonal as they were in the ODE case;
the semi-band width is m. One might hope to achieve a tight packing by changing
the ordering of the unknowns. This would require an ordering that places every grid
point directly after two of its nearest neighbors and directly before the other two,
which is clearly impossible. The ordering we have chosen is about as good as we are
going to get, if minimization of bandwidth is our objective. This is a major difference
between the one-dimensional and two-dimensional cases.

The description of A is simplified if we use block matrix notation. The dimension
of A is n x n, where n = (m — I)2. We can describe it as an (m — 1) x (m — 1)
block matrix, where each of the blocks is (m - 1) x (m — 1), as follows:

where / denotes the (m — 1) x (m — 1) identity matrix, and T is the (m — 1) x (m — 1)
tridiagonal matrix
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This way of writing A shows clearly that it is symmetric. It is also nonsingular
(Exercise 7.1.16) and even positive definite (Exercise 7.1.17). Thus the system
An = b has a unique solution, which approximates the solution of the PDE.

Now let us consider solving the system Au — b. The most obvious difference
between the one and two-dimensional cases is that now the matrix dimension is
much higher. Now we have n = (m — I)2, compared with n — m — 1 in the
one-dimensional case. Thus sheer size can be a problem. For example, if we
choose an interval h — 1/101, corresponding to m = 101, we would have to solve
a system of 100 equations in the one-dimensional case or 10,000 equations in the
two-dimensional case. Our ultimate objective is to solve a PDE. If our approximate
solution is not good enough, we can get a more accurate one by taking a smaller h,
that is, a finer grid. This, of course, increases the size of the system Au — b. It poses
no serious problem in the one-dimensional case. The size of the matrix is O(m),
and so is the solution time by banded Gaussian elimination. If we cut h in half, we
double the work. The situation is much worse in the two-dimensional case. The size
of the matrix is about m2, so cutting h in half quadruples the size of the matrix. For
example, if we take h = 1/201, we have to solve a system of order 40,000.

The size of the system is only part of the problem. There is also the question
of bandwidth, which we have already mentioned. In the one-dimensional case, the
semi-bandwidth is always two, regardless of how big the system is. In the two-
dimensional case, the semi-bandwidth is m, so it increases as we decrease h. Let
us consider the cost of solving Au = b by a banded Cholesky decomposition, as
described in Section 1.5. There we noted that the flop count for solving a system of
dimension n and semi-bandwidth s is about ns2/2. Here we have n = (m — I)2 and
s = m, so ns2/2 « |w4. Thus we see that each time we halve h (doubling m), we
multiply the amount of computational work by a factor of sixteen.

Storage space is also a consideration. The matrix A has fewer than 5n nonzero
entries ( < 5 per row), so it can be stored very compactly. (Indeed there is no real
reason to store A at all; it consists of the numbers 4 and —1, placed in a regular
pattern. If we know the pattern, we know the matrix.) If we want to use Cholesky's
method, we have to compute and store the Cholesky factor, which inherits the band
structure of A but is not nearly so sparse. Whereas the huge majority of the entries
within A's band are zeros, G's band is filled in with nonzeros, which have to be stored.
The required storage space ns w m3. Thus our storage requirement is multiplied by
eight each time we halve h.

Are these costs unavoidable, or is there some way around them? It is not hard to
derive some basic lower bounds on storage and computational requirements. If the
matrix has a very simple form, we may not have to store it at all. However, it seems
inevitable that we will have to store the solution u, which consists of n numbers.
Thus n is a lower bound on the storage requirement. For our two-dimensional model
PDE, n w m2. Compared with this figure, the m3 storage required by Cholesky's
method looks like it might be excessive. This turns out to be true. Almost all of
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the iterative methods that we will discuss in this chapter require at most a modest
multiple of n storage locations.1

Now let us consider computational costs. Each of the n entries of u has to be
computed, and each of these will presumably require at least one flop, so n is also
a lower bound on the computational cost. If we solve our model PDE problem by
Cholesky's method, the flop count is , so here too it looks like there
might be room for improvement. Although it may be too much to hope for a method
that needs only some n flops to solve the problem, we might still hope to find one
that does the job in Cn flops, where C is some constant. It turns out that the best
iterative methods are able to achieve this, at least for highly regular problems like our
model problem. The constant C is typically large, so unless n is fairly
large. Once n is big enough, the iterative method will win.

A Three-Dimensional Problem

We live in a three-dimensional world, or so it appears. Hence many applications have
three independent variables. The three-dimensional analogue of (7.1.6) is the 3-D
Poisson equation

where Ω is a region in R3. To keep the discussion simple, let us take Ω = [0,1]3, the
unit cube. Assume boundary conditions of the form (7.1.7).

Discretization of three-dimensional PDE's like this one leads to very large systems
of equations.

Exercise 7.1.12 Write down a system of equations analogous to (7.1.8) that approximates
the solution of (7.1.11). How many unknowns does your system have? (Assume
h = 1/m.) How many unknowns appear in each equation? D

Exercise 7.1.13 Consider the system of equations derived in the previous exercise. Suppose
the unknowns Uij^k and the fi,j,k are ordered in a systematic way, and the system is
written as a matrix equation Au — b. Just as in the one- and two-dimensional cases,
A is positive definite and banded. What is the semi-bandwidth of Al If we wish
to solve this system by a banded Cholesky decomposition, how much storage space
will be needed? How many flops will it take? D

The previous two exercises demonstrate the difficulties of trying to solve three-
dimensional problems by Gaussian elimination. Even with the fairly modest mesh
size h = 1/100, we get a matrix with dimension n « 106 and semi-bandwidth
s « 104. The solution by Cholesky's method takes | x 1014 flops and requires the
storage of 1010 numbers. Each time h is halved, the flop count goes up by a factor
of 128, and the storage requirement is multiplied by 32. These numbers show that

'One notable exception is the popular GMRES method for nonsymmetric systems. See Section 7.9.
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we very quickly move into the range where iterative methods have the advantage.
Indeed, iterative methods are indispensable to the solution of these problems.

The tendency for computational problems to become much more difficult as the
dimension increases is commonly known as the curse of dimensionality.

Some Final Remarks

It is not the task of this book to study discretizations of PDE; here we have considered
only the most basic technique. For more detailed coverage consult the vast literature,
for example [6, 69].

Our model problem is just the simplest of a large class of elliptic boundary value
problems. More complicated problems arise when one considers irregularly shaped
regions, differential operators with variable coefficients, and other types of boundary
conditions. The iterative methods discussed in this chapter can be brought to bear to
solve a wide variety of these problems.

One class of techniques for solving the model problem (7.1.8) that will not be
discussed in this book is the so-called fast Poisson solvers. These are direct methods
based on the fast Fourier transform, cyclic reduction, or both. They are nearly optimal
for the model problem and other simple problems, but their range of application is
limited. Fast Poisson solvers are sometimes incorporated into preconditioners for
more complicated problems. An overview of fast Poisson solvers is given in [6].

Additional Exercises

Exercise 7.1.14 In this exercise you will show that the matrix A in (7.1.5) is nonsingular. One
characterization of nonsingularity is that if Aw — 0, then w = 0 as well. Suppose,
therefore, that Aw = 0.

(a) Show that the equation Aw = 0 is equivalent to the homogeneous system of
difference equations

with boundary conditions W0 = 0 and wm = 0. Show further that

In words, each interior value Wi is the average of its neighbors.

(b) let µ, = mm{wo,..., wm}. Prove that if Wi = µ, at some interior point, then
Wi-i = Wi+i = µ as well. (It is perhaps easier to show the contrapositive: if
Wi-i > µ, or Wi+i > µ, then Wi > µ,.) Conclude that µ = 0.

(c) Let µ = max{wo, • • •, wm}. Prove that µ = 0.

(d) Prove that A is nonsingular.
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In working this problem you have developed and used a discrete version of the
maximum principle for harmonic functions. D

Exercise 7.1.15 In Exercise 5.4.37 you showed that a symmetric matrix is positive definite if
and only if all of its eigenvalues are positive. Use this fact, Gerschgorin's Theorem
(Exercise 6.5.30), and the result of the previous exercise to prove that the matrix A
in (7.1.5) is positive definite. D

Exercise 7.1.16 Use the methodology of Exercise 7.1.14 to prove that the matrix A in (7.1.10)
(and (7.1.8)) is nonsingular. D

Exercise 7.1.17 Use the methodology of Exercise 7.1.15 to prove that the matrix A in (7.1.10)
(and (7.1.8)) is positive definite. D

7.2 THE CLASSICAL ITERATIVE METHODS

We are interested primarily in sparse matrices, but for the description of the algorithms
we can let A G Enxn be (almost) any nonsingular matrix. The minimal requirement
is that all of the main diagonal entries an be nonzero. Let b £ Rn. Our objective
is to solve the linear system Ax = b or Au = b. In the early chapters we used x to
denote the unknown vector, but in the examples in the previous section we used u.
(This change was made because we had another use for the symbol x.} Now we will
revert to the use of x for the unknown vector, but we will not hesitate to switch back
to u when it seems appropriate.

Iterative methods require an initial guess x(0), a vector in Rn that approximates
the true solution. Once we have x(0), we use it to generate a new guess x(1) which is
then used to generate yet another guess x(2), and so on. In this manner we generate
a sequence of iterates ( x ( k ) ) which (we hope) converges to the true solution x.

In practice we will not iterate forever. Once x^ is sufficiently close to the solution
(as indicated, e.g., by the magnitude of || b — Ax^ ||), we stop and accept x^ as
an adequate approximation to the solution. How soon we stop will depend on how
accurate an approximation we need.

The iterative methods that we are going to study do not require a good initial
guess. If no good approximation to x is known, we can take x^ — 0. Of course, we
should take advantage of a good initial guess if we have one, for then we can get to
the solution in fewer iterations than we otherwise would.

The ability to exploit a good initial guess and the possibility of stopping early if
only a crude approximant is needed are two important advantages of iterative methods
over direct methods like Gaussian elimination. The latter has no way of exploiting
a good initial guess. It simply executes a predetermined sequence of operations and
delivers the solution at the end. If you stop it early, it gives you nothing.
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Jacobi's Method

Each of the methods of this section can be described completely by specifying how a
given iterate x^ is used to generate the next iterate x^k+1^ . Suppose, therefore, that
we have x^ , and consider the following simple idea for improving on it: Use the
ith equation to correct the ith unknown. The ith equation in the system Ax = bis

which can be rewritten (solved for £;) as

since, as we have assumed, aii ^ 0. If we replace x by x^ in (7.2.1), equality will
no longer hold in general. Let us define to be the adjusted value that would
make the ith equation true:

Making this adjustment for i = 1,..., n, we obtain our next iterate x^k+1>. This is
Jacobi's method.

Of course, x^k+1^> is not the exact solution to Ax = b, because the correction
, which "fixes" the ith equation, also affects each of the other equations

in which the unknown Xi appears. The hope is that repeated application of (7.2.2)
for k — 0 ,1 ,2 , . . . will result in convergence to the true solution x.

Example 7.2.3 If we apply Jacobi's method (7.2.2) to the system

with initial guess x(°) = 0, we obtain

which steadily approach the exact solution x = [4, 3, 2, l]T. Any desired accuracy
(limited only by roundoff errors) can be obtained by taking enough steps. For
example, x50) agrees with the true solution to twelve decimal places.
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Notice that the main-diagonal entries of the coefficient matrix are large relative to
the the off-diagonal entries. This aids convergence, as the analysis in the next section
will show. D

Exercise 7.2.4 Let denote the diagonal matrix whose main diagonal entries are the same
as those of A. Show that equation (7.2.2), which defines Jacobi's method, can be
written as a matrix equation

Show further that

where nfc' = b — Ax\k> is the residual after k iterations. D

Exercise 7.2.6 Write a simple computer program that performs Jacobi iterations (7.2.2), and
use it to verify the results shown in Example 7.2.3. Notice how easy this is to program
in Fortran, C, or whatever language. A crude MATLAB code based on either of the
equations derived in Exercise 7.2.4 is particularly easy. D

Exercise 7.2.7 Use the code you wrote for Exercise 7.2.6 to solve the system

by Jacobi's method, starting with x(°) = 0. Observe the iterates x^ and the residuals
rk = b — Ax^. How many iterations does it take to make \\r^ ||2 < 10~5? For
this value of A;, how well does x^ approximate the true solution? D

It is easy to apply Jacobi's method to the model problem (7.1.8). The equation
associated with the (i, j)th grid point is

We use this equation to correct the corresponding unknown, Uij. Solving the equation
for Uij, we have

Given a current iterate w ', we obtain a new iterate u^k+1' byby

As usual, the boundary values of u^k\ which are needed in the computation for
those grid points that are adjacent to the boundary, are determined by the boundary
conditions.
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Notice that execution of Jacobi's method does not require writing the system in
the form Au = b. There is no need to assemble or store the matrix (7.1.10) nor to
pack Uij and fij into long vectors.

Example 7.2.8 Jacobi's method was applied to the model problem with / = 0 and
g given by

The initial guess was u^ = 0. Three different grid s i z e s , w e r e
used. The iterations were continued until the change in u trom one iteration to the
next did not exceed 10~8. More precisely, the iterations were stopped as soon as

The results are shown in Table 7.1 We observe that convergence is slow, and it

h
1/10
1/20
1/40

Matrix
dimension

81
361
1521

Iterations
to convergence

299
1090
3908

Table 7.1 Jacobi's method applied to model problem

becomes slower as the grid is refined. On the positive side, the program was easy to
write and debug. D

Gauss-Seidel Method

Now consider the following simple modification of Jacobi's method. The system to
be solved is Ax — 6, whose ^th equation is

As before, we use the ilh equation to modify the ith unknown, but now we consider
doing the process sequentially. First we use the first equation to compute
then we use the second equation to compute md so on. Bv the time we get
to the Uh equation, we have already computed . In computing

, we could use these newly calculated values, or we could use the old values
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. The Jacob! method uses the old values; Gauss-Seidel uses the new.
That is the only difference. Thus, instead of (7.2.2), Gauss-Seidel performs

where denotes the most up-to-date value for the unknown Xj. More precisely,
we can write a Gauss-Seidel iteration as follows:

There is no need to maintain separate storage locations for everything

is done in a single x array. As soon as has been computed, it is stored in
place of (which will never be needed again) in location xa in the array. Thus
the iteration (7.2.9) takes the form

in practice.
The order in which the corrections are made is important. If they were made in,

say, the reverse order i = n , . . . , 1, the iteration would have a different outcome. We
will always assume that a Gauss-Seidel iteration will be performed in the standard
order i = 1, . . . , n, as indicated in (7.2.10), unless otherwise stated. The question
of orderings is important; more will be said about it in connection with the model
problem (7.1.8).

The fact that we can store each new Xi value immediately in place of the old one
is an advantage of the Gauss-Seidel method over Jacobi. For one thing, it makes the
programming easier. It also saves storage space; Jacobi's method needs to store two
copies of x, since x^ needs to be kept until the computation of x^k+1^ is complete.
If the system we are solving has millions of unknowns, each copy of x will occupy
several megabytes of storage space.

On the other hand, Jacobi's method has the advantage that all of the corrections
(7.2.2) can be performed simultaneously; the method is inherently parallel. Gauss-
Seidel, in contrast, is inherently sequential, or so it seems. As we shall see, parallelism
can be recovered by reordering the equations.

We now investigate the performance of the Gauss-Seidel method by means of
some simple examples.
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Example 7.2.11 If we apply the Gauss-Seidel method to the same small system as
in Example 7.2.3, we obtain, for example,

which are considerably better than the iterates produced by Jacobi's method. Whereas
it takes Jacobi's method 50 iterations to obtain an approximation that agrees with
the true solution to twelve decimal places, Gauss-Seidel achieves the same accuracy
after only 18 iterations. d

Exercise 7.2.12 Given A e Rnxn , define matrices D, E, and F as follows: A = D - E - F,
D is diagonal, E is strictly lower triangular, and F is strictly upper triangular. This
specifies the matrices completely. For example, — E is the strictly lower triangular
part of A.

(a) Show that the Gauss-Seidel iteration (7.2.9) can be written as a matrix equation

(b) The vector x(fc+1) appears in two places in the equation that you derived in
part (a). Solve this equation for x^k+l^ to obtain

(c) Let M = D — E. Thus M is the lower triangular part of A, including the main
diagonal. Show that F = M — A, then verify the formula

where r^k> = b — Ax^k> is the residual.

D

Exercise 7.2.14 Write a simple computer program that performs Gauss-Seidel iterations,
and use it to verify the results shown in Example 7.2.11. For example, a simple
MATLAB code can be built around either of the formulas derived in Exercise 7.2.12,
or a Fortran or C code can be built around (7.2.10). d

Exercise 7.2.15 Use the code you wrote for Exercise 7.2. 14 to solve the system
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by the Gauss-Seidel method, starting with x^ = 0. Observe the iterates x^ and the
residuals r^. How many iterations does it take to make || r^) ||2 < 10~5? For this
value of k, how well does x^ approximate the true solution? How do your results
compare with those of Exercise 7.2.7? D

Now let us see how the Gauss-Seidel method can be applied to the model problem
(7.1.8). The equation associated with the (z, j)th grid point is

We use it to correct Uij. In the spirit of (7.2.10), we write

As we have already noted, the outcome of the Gauss-Seidel iteration depends on the
order in which the corrections are made. For example, one can sweep through the
computational grid by rows (see Figure 7.1), performing the corrections in the order
(1,1), (2,1), . . . , (M - 1,1), (1, 2), (2, 2 ) , . . . , (M - 1, 2 ) , . . . , (M - 1, M - 1).
We will call this the standard row ordering. There is an analogous standard column
ordering. There are also reverse row and column orderings, obtained by reversing
these. Each ordering gives a slightly different outcome. There are many other
orderings that one might consider using.

Example 7.2.17 The Gauss-Seidel method, using the standard row ordering, was
applied to the model problem (7.1.8) under exactly the same conditions as in Ex-
ample 7.2.8. The results are shown in Table 7.2. Comparing with Example 7.2.8,

h
1/10
1/20
1/40

Matrix
dimension

81
361
1521

Iterations
to convergence

160
581

2082

Table 7.2 Standard Gauss-Seidel applied to model problem

we see that the Gauss-Seidel method needs only slightly more than half as many
iterations as the Jacobi method to obtain the same accuracy. It is still fair to say that
the convergence is slow, and there is still the problem that the number of iterations
increases as the grid is made finer. The largest problem considered here is of modest
size. Extrapolating from these results, we can expect Gauss-Seidel will converge
very slowly on really big problems. D

Red-Black and Multicolor Gauss-Seidel

Before moving on to a better method, let us spend a little more time on orderings.
Red-black orderings are illustrated by Figure 7.3. Grid points are alternately labelled
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Fig. 7.3 Computational grid of red and black points

red and black in a checkerboard pattern. A red-black ordering is one in which all
of the red points are updated first, then the black points are updated. Notice that
every red (resp. black) point has as nearest neighbors only black (resp. red) points
(and, in some cases, boundary points). Thus the Gauss-Seidel correction of each red
point depends only on the values of u at black points and vice versa. This implies
that all of the red points can be updated simultaneously. Once the red points have
been done, all of black points can be updated simultaneously. Red-black orderings
restore parallelism. Red-black Gauss-Seidel converges at the same rate as standard
row-ordered Gauss-Seidel on the model problem (7.1.8). Numerical examples will
be given later.

Now consider orderings in the context of the general system Ax = b. The standard
ordering is i = 1,... ,n. Any other ordering can be obtained by applying the standard
ordering to a system Ax — b obtained from Ax = b by rearranging the equations
(and rearranging the unknowns accordingly). Thus the question of orderings can be
translated to a question of permuting the rows and columns of A.

A red-black ordering is one that corresponds to a coefficient matrix with the block
structure

where DI and _D2 are (square) diagonal matrices of roughly the same size. The first
block of rows consists of red equations (with their corresponding red unknowns), and
the second block consists of black equations. All of the unknowns of a given color
can be updated simultaneously.

Obviously most systems do not admit a red-black ordering. Our model problem
(7.1.8) does, and so does its three-dimensional analogue, but many large, sparse
problems that arise in applications do not. In these cases a multicolor ordering
involving more than two colors is often possible. For example, a four-color ordering
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corresponds to a coefficient matrix with the block structure

where DI , . . . , D\ are all diagonal matrices of approximately the same size. All of
the unknowns within a given block or "color class" can be updated simultaneously.

Symmetric Gauss-Seidel

One iteration of symmetric Gauss-Seidel consists of two standard Gauss-Seidel itera-
tions, one in the forward direction followed by one in the reverse direction. Thus the
first half of the iteration is (7.2. 10), and the second half is (7.2. 10) with "i — n, . . . , 1"
in place of the standard ordering.

Exercise 7.2.18 In Exercise 7.2.12 you showed that the Gauss-Seidel iteration can be expressed
in matrix form as (7.2.13).

(a) Derive the analogous formula for the reverse Gauss-Seidel method.

(b) The symmetric Gauss-Seidel iteration consists of a forward Gauss-Seidel step,
transforming x(k) to x(k+½) followed by a reverse Gauss-Seidel step, trans-
forming x^k+^ to x(k+½) . Show that the symmetric Gauss-Seidel iteration
satisfies

(c) Show that / + E(D - E}~1 = D(D - E}~1. Then use this fact together with
the equation from part (b) to show that the symmetric Gauss-Seidel iteration
satisfies

where M = (D - E}D~l (D - F), and N = (D - E)D~1E(D -E)~1F =
ED~1F. Show that M is symmetric if A is.

(d) Show that the M and N determined in part (c) satisfy A = M — N. Then
show that the symmetric Gauss-Seidel iteration satisfies

with this choice of M, where r^ denotes, once again, the residual b — Ax^.

n
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Successive Overrelaxation (SOR)

The process of correcting an equation by modifying one unknown is sometimes called
relaxation. Before the correction, the equation is not quite true; like an assemblage
of parts that does not fit together quite right, it is in a state of tension. The correction
of one variable relaxes the tension. The Gauss-Seidel method performs successive
relaxation. That is, it moves from equation to equation, relaxing one after the other.2

In many cases convergence can be accelerated substantially by overrelaxing. This
means that rather than making a correction for which the equation is satisfied exactly,
we make a somewhat bigger correction. In the simplest case one chooses a relax-
ation factor u > 1 and overcorrects by that factor at each step. This is successive
overrelaxation (SOR):

Comparing (7.2.19) with (7.2.10), we see that SOR collapses to Gauss-Seidel when
u = 1. One could also use a factor co that is less than one, which amounts to
underrelaxation, but this normally slows convergence.

Since SOR is "successive" (like Gauss-Seidel) rather than "simultaneous" (like
Jacobi), it needs to keep only one copy of the vector x.

Not much is gained by applying overrelaxation to the small problem featured in
Examples 7.2.3 and 7.2.11, so let us move directly to the model problem (7.1.8).
Referring to the Gauss-Seidel step (7.2.16), we see that the corresponding SOR step
is

Just as for Gauss-Seidel, the outcome of an SOR iteration depends on the order in
which the updates are made. Commonly used orderings include the standard row
and column orderings and the red-black ordering illustrated by (7.3). One can also
do symmetric SOR (abbreviated SSOR), which consists of alternating forward and
backward standard row (or column) sweeps.

Example 7.2.21 The SOR method, using the standard row ordering, was applied to
the model problem (7.1.8) under exactly the same conditions as in Examples 7.2.8
and 7.2.17. Several values of the relaxation factor a; were tried. The results are

2 In contrast, Jacobi's method performs simultaneous relaxation.
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shown in Table 7.3. Iterations were halted as soon as

The choice w — 1 corresponds to Gauss-Seidel; the numbers in the second row are

uj - 0.8
1.0
1.4
1.6
1.7
1.8
1.9
2.0

h = 1/10
235
160
67
42
57
86
176
00

1/20
845
581
262
151
96
89
180
oo

1/40
3018
2082
955
577
412
252
179
00

Table 7.3 Iterations counts for SOR applied to model problem

identical to those in Table 7.2. We note that underrelaxation (a; = 0.8) is detrimental
and overrelaxation can be very beneficial, particularly if an u; that is close to optimal
is used. For the finest mesh, the iteration count can be cut by a factor of ten or more.
Since SOR steps take only slightly more work than Gauss-Seidel steps, the savings
in iterations translate almost directly into savings in computer time.

From the numbers in Table 7.3 we see that the optimal value of LJ depends on the
mesh size (and in general it depends on the coefficient matrix A). For h = 1/10 the
best (jj is somewhere around 1.6, for h = 1/20 it is around 1.8, and for h = 1/40
it is around 1.9. For most problems the optimal cj is not known, but the numbers in
Table 7.3 suggest that even a crude guess can yield substantial savings. The numbers
also suggest that it is better to overestimate than to underestimate the optimum.
However, SOR diverges when w > 2.

For our model problem the optimal w is known to be

When h = 1/40 it is approximately 1.855. Using this value of w, SOR converges in
137 iterations. D

As an exercise, you can explore the convergence of the red-black SOR and SSOR
methods (Exercise 7.2.23). On the model problem (and many similar ones) red-black
and standard row ordered SOR converge at the same rate. SSOR is somewhat slower
but less sensitive to the choice of the relaxation parameter uj.

The computations reported in Example 7.2.21 were performed by a simple Fortran
program based on (7.2.20). An iteration with the standard row ordering is effected
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by doubly nested loops:

The implementations of red-black SOR and SSOR are only slightly more complicated.
In particular, it was not necessary to form or manipulate the coefficient matrix A or
any related matrix.

In Exercises 7.2.4 and 7.2.12 you derived the matrix formulas (7.2.5) and (7.2.13)
for the Jacobi and Gauss-Seidel iterations, respectively. A similar expression can
be derived for the SOR method (Exercise 7.2.24). These formulas are useful for
analyzing the convergence of the methods, as will be illustrated in Section 7.3. They
are also handy for writing simple MATLAB programs to apply to small examples.
However, it is important to realize that these formulas should not be used for large
problems, as the resulting code would be horribly inefficient. Instead one should
write code as described in the previous paragraph.

Block Iterative Methods

All of the iterative methods that we have derived in this section have block variants.
Suppose the system Ax = b has been subdivided into blocks:

where the main diagonal blocks AH are all square and nonsingular. The entries x^
and bi now refer to subvectors of x and b of the appropriate lengths. A block Jacobi
iteration is just like an ordinary Jacobi iteration, except that it acts on blocks instead
of the matrix entries. Instead of (7.2.2), we have

Block Gauss-Seidel and SOR iterations are derived in similar fashion. In order that
such a block algorithm be efficient, it is necessary that the main diagonal blocks AH
be simple enough that their inverses (or LU decompositions) can be obtained easily.

Consider, for example, the matrix of the model problem (7.1.8), written in the
block form (7.1.10). To apply a block algorithm using this blocking, we need to be
able to LU decompose the tridiagonal matrix T. As we know, this is simple. Each
block corresponds to one row (or line) of unknowns in the computational grid, so
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block algorithms based on this partition are known as line iterations, for example,
line Gauss-Seidel or line SOR.

Red-Black (Gauss-Seidel or SOR) iterations can be viewed as block iterations
based on a 2 x 2 blocking

More generally, a multicolor iteration with q colors is a block iteration based on a
q x q blocking. Here the matrices on the main diagonal are trivial to invert, as they
are diagonal matrices.

Additional Exercises

Exercise 7.2.23 Write programs that solve the model problem (7.1.8) by standard SOR, red-
black SOR, and SSOR. Use each of them to solve the model problem with / = 0 and
g given by

as in Example 7.2.8. Use mesh size h = 1/40. Starting from u^ — 0, record how
many iterations are needed until

Since SSOR iterations take twice as much work as the other iterations, count each
SSOR iteration as two iterations. For each of the three methods try cj = 1.0, 1.1,1.2,
. . . , 1.9. Compare the performance of the three methods. D

Exercise 7.2.24 (Matrix representation of SOR)

(a) In the SOR iteration (7.2.19), show that successive iterates x^ and x^k+1^ are
related by

(b) Write A = D — E — F, as in Exercise 7.2.12. Derive the following expressions
for the relationship between successive SOR iterates x^ and x^k+1^.
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Thus Mx^+1) = N x W + b , where , , a n d
A = M - N.

(c) Show that

where r^ — b — Ax^.

D

Exercise 7.2.26 (Matrix representation of SSOR) This exercise generalizes Exercise 7.2.18

(a) Find the formula analogous to (7.2.25) for an SOR iteration in the reverse
direction.

(b) The symmetric SOR (SSOR) iteration consists of a forward SOR step, trans-
forming x^ to x( k + ½) , followed by a reverse SOR step, transforming x^ k + ½ )
to rc^+1). Show that the SSOR iteration satisfies

(c) Show that Then
use this fact together with the equation from part (b) to show that the SSOR
iteration satisfies

where

and

Show that M is symmetric if A is.

(d) Show that the M and TV determined in part (c) satisfy A - M - N. Then
show that the SSOR iteration satisfies

with this choice of M, where r^ = b — Ax^.

D

Exercise 7.2.27 (Smoothing property of Gauss-Seidel iterations) Consider the linear system
Ax = b, where A is the 10 x 10 version of the tridiagonal matrix (7.1.5) and
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You can easily check that the exact solution to this system is

Starting with x(0) = 0, perform at least four Gauss-Seidel iterations. Since the exact
solution of the system is known, you can calculate the errors e^ = x — x^. Make
plots of the errors; that is, given an error vector e, plot the points (i, a} and connect
them with line segments ("plot(e)" or "plot(l:10,e)" in MATLAB). Notice that the
plot of e(°) is quite jagged, but each successive plot is less so. The plot of e^ is
quite smooth.

Multigrid methods are fast iterative methods that solve problems like (7.1.8)
rapidly by applying smoothing operations and coarse-grid corrections recursively.
Gauss-Seidel is a popular smoothing operator for multigrid algorithms. D

Exercise 7.2.28

(a) Repeat Exercise 7.2.27 using Jacobi iterations in place of Gauss-Seidel. Notice
that the Jacobi method does not smooth the error. Thus the basic Jacobi method
is useless as a multigrid smoothing operator.

(b) The damped Jacobi method with damping factor L/J < 1 is the same as the
ordinary Jacobi method, except that the correction at each step is damped by
the factor w. Thus, instead of x(k+1) = x^ + D~lr^ (cf. Exercise 7.2.4),
damped Jacobi makes the correction

Repeat Exercise 7.2.27 using the Damped Jacobi method with u = 1/2 and
u> = 2/3. The damped Jacobi iteration with 1/2 < uj < 2/3 is an effective
smoother.

D

7.3 CONVERGENCE OF ITERATIVE METHODS

Splittings

We unify the convergence theory of iterative methods by introducing the notion of a
splitting. Given an n x n nonsingular matrix A, a splitting of A is nothing but an
additive decomposition A = M — N, where M is nonsingular. The matrix M is
called the splitting matrix. As we shall later see, it can also be called apreconditioner.

Every splitting gives rise to an iterative method as follows: Use the splitting to
rewrite the system Ax = b in the form MX = NX + b or x = M~lNx + M~lb.
Then define an iteration by either of the equivalent equations
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or

Clearly this scheme requires that M be nonsingular. From a practical standpoint it
is also important that M be "easy to solve," meaning that systems with M as the
coefficient matrix are easy to solve. If the iterates converge to some x, then that x
satisfies MX = NX + b, hence Ax = b. For the sake of rapid convergence, we would
like M ~ A and N ~ 0. From this viewpoint the best choice is M = A, which gives
convergence in one iteration, but this M violates the "easy to solve" requirement.
What is needed is a good compromise: M should approximate A as well as possible
without being too complicated.

All of the iterative methods that we have discussed so far can be induced by
splittings of A. Table 7.4 lists the splitting matrices M associated with the classical
iterations, as determined in Exercises 7.2.4,7.2.12,7.2.24, and 7.2.26. The matrices
D, E, and F refer to the decomposition A = D - E - F, where D, —E, and -F
are the diagonal, lower triangular, and upper triangular parts of A, respectively. In

Table 7.4 Splitting matrices for classical iterations

each case only M has been listed, because N can be inferred from the relationship
N = M - A.

Example 7.3.2 A very simple method that plays a surprisingly big role in convergence
theory is Richardson's method, which is induced by the splitting

where w is a damping factor chosen to make M approximate A as well as
possible. Thus Richardson's iteration is

The properties of Richardson's method are explored in Exercises 7.3.19, 7.3.20,
7.3.22, and 7.3.37. D

Exercise 7.3.3 Suppose we apply Richardson's method to the model problem (7.1.8). What
would be the obvious choice of w to try, given that we want M to approximate
A as well as possible? For this choice of w, with which classical iteration does
Richardson's method coincide? D
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Convergence

We consider an iteration of the form (7.3.1). At each step there is an error e^ =
x — x(k\ which is just the difference between the true solution and its approximant
after k iterations. As we are in the process of solving a problem, we will not know
what e^ is (because x is not yet known), but that does not stop us from talking
about it. For a given splitting A = M — N, we would like to prove that e^ -» 0
as A; —> oo. Moreover, since we cannot wait forever in practice, we would like to
show, if possible, that the e^ become small quickly. The true solution of Ax = b
also satisfies MX = NX + b. Subtracting the equation (7.3.1) from this, we find that
Me(k+i) _ ATeW.Thus

where G = M~1N = I — M~1A. As this equation holds for all k, we have
e(i) = Ge(o)> e(2) = Ge(i) = G2e(o)5 and, in general,

The vector e^ is our initial error; its size depends on the initial guess. Equation
(7.3.4) shows that regardless of what the initial guess was, e(fc) -» OifG f c -> 0. Since
powers of a matrix are what matters, it should not be surprising that the convergence
theory of iterative methods resembles the analysis of the power method for computing
a dominant eigenvector. In particular, the eigenvalues of the iteration matrix play
a crucial role. But now the scenario is somewhat different; we want the iterates to
converge to zero, not to an eigenvector.

Let us assume that the iteration matrix G is semisimple. (For the non-semisimple
case, see Exercise 7.3.27.) This means that G has n linearly independent eigenvectors
vi,v%,... ,vn, which form a basis of Cn. Let AI , A 2 , . . . , An denote the corresponding
eigenvalues of G: Gvi = XiVi, i = 1,... ,n. We will focus on the errors e^
directly rather than the matrices Gk (but see Exercise 7.3.26). Since the eigenvectors
DI, ... ,vn form a basis of Cn, we can express the initial error e^ as a linear
combination of them:

The scalars c\,..., cn are unknown, since e^ is, and they might be complex numbers,
even though e(°) is real. None of this causes any problems for the analysis. Applying
G to (7.3.5), we find that

and in general

Consequently
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where the norm can be any vector norm. Since | A; | —>• 0 if and only if | A» | < 1, we
conclude that || e^ || -» 0 for every initial guess x^ if and only if max | \i \ < 1.

i

Let cr(G) denote the spectrum of G, the set of eigenvalues. The spectral radius,
denoted p(G), is the maximum distance of an eigenvalue from the origin. Thus

Using this new terminology we can restate our conclusion from the previous para-
graph: The iterations converge (for any starting vector) if and only if p(G] < 1.

The spectral radius also gives information about the rate of convergence. If, say,
AI is the eigenvalue of greatest modulus (| AI | = p(G)), we eventually have

since the other tend to zero more quickly than does, so

for sufficiently large k. Thus the convergence is linear with convergence ratio p(G}.
The smaller p(G) is, the faster the iterations converge.

This argument depends on the assumption c\ ^ 0, which holds for almost all
choices of x^. For those (exceedingly rare) vectors that yield c\ = 0, the conver-
gence is typically faster in theory. (Why?)

The approximation (7.3.6) is certainly valid for large k. It does not necessarily
hold for small k.

We have now nearly (cf. Exercise 7.3.27) proved the following Theorem.

Theorem 7.3.7 The iteration (7.3.1) converges to the true solution of Ax = b for
every initial guess x^ if and only if the spectral radius of the iteration matrix
G — I — M~l A is less than one. The convergence is linear. The average convergence
ratio never exceeds p(G}; it equals p(G)for almost all choices ofx^Q>.

In general it is difficult to calculate p(G), but p(G] is known in some special cases.
In particular, for the model problem (7.1.8), p(G] is known for the Richardson, Jacobi,
Gauss-Seidel, and SOR (standard and red-black) iterations. There is not room here
to derive all of these results; fortunately there are some excellent references, for
example, [36], [38], [76], [84]. We will just scratch the surface.

The Jacobi iteration matrix is G — D~l(E + F). For the model problem (7.1.8),
we have G = \(E + ET). In Exercise 7.3.35 it is shown that in this case p(G] =
cos(?r/i), where h, as always, is the mesh size. It is not surprising that p(G) would
depend on/i, particularly in light of the results of Example 7.2.8. Wehavep(G) < 1,
so Jacobi's method is convergent for any h. However, as h —> 0, COS(TT/I) —>• 1,
which implies that the convergence becomes very slow as h is made small. To
get a more quantitative view of the situation, recall the Taylor expansion cos z =
1 - z2/2\ + O(z4), which implies
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Each time h is cut by a factor of 2, the distance between p(G] and 1 is cut by a factor
of about 4. For example, when h = 1/10,1/20, and 1/40, we have p(G] = .9511,
.9877, and .9969, respectively.

It is clear that with a spectral radius like .9969, convergence will be very slow.
Let us estimate how many iterations are needed to reduce the error by a factor of 10.
By (7.3.6) we have

Thus, to shrink the error by a factor of 10, we will need about j iterations, where
p(G}i w 10"1. Applying logarithms and solving for j, we find that

For example, for p = .9969, we get j « 742. That is, about 742 iterations are needed
for each reduction of the error by a factor of 10. If we wish to reduce the error by a
factor of, say, 10~8, we will need about 8 x 742 w 5930 iterations.

In the computation of j, any base of logarithms can be used. Base 10 looks
inviting, but for theoretical work, base e is preferred. The asymptotic convergence
rate of an iterative method, denoted RQQ (G), is defined by

The subscript oo is meant to convey the idea that this number is useful when the
number of iterations is large (i.e. as k -> oo) and not necessarily for small k.

Exercise 7.3.10 Show that l/R00(G) is approximately the number of iterations needed to
reduce the error by a factor of e (once k is sufficiently large). D

When p(G) = 1 we have R00(G) = 0, indicating no convergence. When
p(G] < 1, we have #00 (G) > 0. The smaller p(G] is, the larger #«>(£) will be.
Asp(G)-» 0, wehave-Roo(G)-KX>.

A doubling of RQQ (G) implies a doubling of the convergence rate, in the sense
that only about half as many iterations will be required to reduce the error by a given
factor.

When Jacobi's method is applied to the model problem, the spectral radius is given
by (7.3.8). Using this and the Taylor expansion — log(l — z] — z + ^z2 + |z3 + • • -,
we find that

Stating this result more succinctly, we have .Roo (G) = O(h2}. This means that each
time we cut h in half, we cut R00(G} by a factor of 4, which means, in turn, that
about four times as many iterations will be needed to attain a given accuracy. This
theoretical conclusion is borne out by the numbers in Example 7.2.8.

Exercise 7.3.11 Calculate p(G] and .Roo (G) for Jacobi's method applied to the model problem
(7.1.8) with h = .02 and h — .01. For each of these choices of h, about how many
iterations are required to reduce the error by a factor of 10~3? d
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The numbers in Example 7.2.17 suggest that the Gauss-Seidel method converges
somewhat faster than the Jacobi method does. Indeed this is true for the model
problem and any problem that admits a red-black ordering. Let Gj and GGS de-
note the iteration matrices for Jacobi and red-black Gauss-Seidel, respectively. In
Exercise 7.3.38 you will show that p(Gos] — p(Gj)2. The standard Gauss-Seidel
iteration has the same spectral radius as red-black Gauss-Seidel, because the stan-
dard ordering is a so-called consistent ordering [38], [76], [84]. This means that
one Gauss-Seidel iteration is about as good as two Jacobi iterations; Gauss-Seidel
converges twice as fast as Jacobi. The numbers in Examples 7.2.8 and 7.2.17 bear
this out.

Exercise 7.3.12 Show that if p(GGS) = p(Gj}2, then 1^(0GS) = 2R00(GJ}. D

For the model problem (7.1.8) we have p(Gos) = p(Gj}2 = cos2 πh and
RCG(GGS] — π2h2 + O(h4). Gauss-Seidel is just as bad as Jacobi in the sense
that R (GGS] = O(h2). Each time h is halved, the number of iterations needed is
multiplied by four. Clearly something better is needed.

Example 7.2.21 indicates that the SOR method with a good relaxation factor a;
is substantially better than Gauss-Seidel. Indeed it can be shown that SOR with
the optimal u satisfies R (G) « 2,Trh. This and other results are summarized in

Table 7.5 Convergence rates of classical iterations on model problem (7.1.8)

Table 7.5. Since R (G) = O(h), each halving of h only doubles the number of
iterations required for SOR to achieve a given reduction in error. Thus SOR promises
to perform significantly better than Gauss-Seidel when h is small.

Exercise 7.3.13 For h = .02 and h = .01, estimate R (G) for SOR with optimal u on
the model problem (7.1.8). For both of these h, about how many iterations are
required to reduce the error by a factor of 10~3? Compare your results with those of
Exercise 7.3.11 D

Although SOR is a huge improvement over Jacobi and Gauss-Seidel, it still is not
optimal. Ideally one would like an iterative method for which RQO (G) is independent
of h. Then the number of iterations required to reach a given accuracy would also
be independent of h. If the cost of an iteration is O(n), that is, proportional to the
number of equations, then the cost of solving the system to a given accuracy will
also be O(n), since the number of iterations is independent of n. Multigrid and
domain decomposition techniques [9], [36], [63] achieve this ideal for the model
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problem (7.1.8) and a wide variety of other systems obtained from discretization of
partial differential equations. A discussion of these important techniques is beyond
the scope of this book.

The convergence theory of the classical iterative methods is laid out in [36], [76],
and [84], for example. For the model Poisson problem the theory is complete, and
most of the theory carries over to other positive definite systems that admit a red-
black ordering: The convergence rates of all of the classical iterative methods are
determined by the spectral radius of the Jacobi iteration matrix.

So far we have restricted our attention to simple iterative methods with no memory.
These methods construct x^k+1^ from x^; they make no use of x^"1) or earlier
iterates. An advantage of these methods is that they economize on memory: Old
iterates need not be saved. One might wonder, nevertheless, whether there might
possibly be some gain from saving a few previous iterates and somehow making use of
the information that they contain. They would give an idea of the general trend of the
iterations and might be used to extrapolate to a much better estimate of the solution.
This train of ideas was pursued successfully by Golub and Varga, who invented the
Chebyshev semi-iterative method, also known as Chebyshev acceleration. A related
technique is conjugate gradient acceleration. Both of these acceleration techniques
generate x(k+1) from just x^ anda^"1). A good reference is [38].

Instead of developing acceleration techniques, we will take a different approach.
The conjugate gradient algorithm will be derived as an example of a descent method.
We will see that the convergence of descent algorithms can be enhanced significantly
by use of preconditioners. It turns out that applying the conjugate gradient method
with preconditioner M (as described later in this chapter) is equivalent to applying
conjugate gradient acceleration (as described, e.g. in [38]) to a basic iteration (7.3.1)
with splitting matrix M.

Additional Exercises

Exercise 7.3.14 This and the next few exercises explore the computational costs of the Gauss-
Seidel and SOR methods. The coefficient matrix of the model problem (7.1.8) with
h = 1/ra has n « m2 equations in as many unknowns. We cannot hope to solve
Au — b in fewer than O(m2) flops. In Section 7.1 we observed that banded Gaussian
elimination requires ½m4 flops.

(a) Show that the number of flops required to do one iteration of Gauss-Seidel or
SOR is a small multiple of m2.

(b) Show that the number of Gauss-Seidel iterations needed to decrease the error
by a fixed factor e is approximately Cm2, where C = — (loge e)/?r2.

(c) Estimate the overall flop count for solving Aw = 6 by Gauss-Seidel. How does
this compare to the flop count for banded Gaussian elimination?

(d) Estimate the number of SOR iterations (with optimal u) needed to decrease
the error by a fixed factor e.
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(e) Show that the overall flop count for SOR with optimal w is much less than for
banded Gaussian elimination, if h is sufficiently small.

(f) How does SOR compare with a method that takes O(m2) flops per iteration
and converges in some number of iterations that is independent of hi

D

Exercise 7.3.15 Repeat Exercise 7.3.14 for the three-dimensional model problem (see (7.1.11)
and Exercises 7.1.12 and 7.1.13), bearing in mind that some of the conclusions may
be different. In particular, how do the iterative methods compare to banded Gaussian
elimination? (The spectral radii for the three-dimensional problem are the same as
for the two-dimensional problem.) d

Exercise 7.3.16 The solution of the model problem (7.1.8) is an approximation to the solution
of a boundary value problem. The smaller h is, the better the approximation will be,
and the more worthwhile it will be to solve Au = b accurately. A more careful flop
count will take this into account. If the exact solution of the boundary value problem
is smooth enough, the solution of (7.1.8) will differ from it by approximately Ch2,
where C is a constant. It therefore makes sense to solve Au = b with accuracy ch2,
where c < C.

(a) Rework parts (b) through (e) of Exercise 7.3.14 under the assumption that we
need to do enough iterations to reduce the error by a factor eh2. Show that this
just changes the results by a factor K log m (when m is large).

(b) Calculate logm for m = 100, 10000, 1000000. This is meant to remind you
of how slowly the logarithm grows.

(c) Is the exponent of h important? Suppose we need to reduce the error by a
factor ehs, where s is some number other than 2. Does this change the general
conclusion of the analysis?

Exercise 7.3.17 Consider solving the model problem (7.1.8) with / = 0 and g given by

as in Example 7.2.8, using mesh size h — 1/10.

(a) Referring to Table 7.5, calculate p(G] and R^ (G) for Jacobi's method applied
to this problem. Based on these quantities, about how many iterations should
it take to reduce the error by a factor of 100?
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(b) Write a computer program that tests the theory. A crude MATLAB code will
be good enough. Have the program begin by computing an accurate solution
(error < 10~10) of Au — b by SOR or any other method. Use this as an
"exact solution" against which to compare your Jacobi iterates. Do Jacobi
iterates, starting with u^ = 0. At each step calculate the norm of the error:
||e(*+1)||2 = ||u-u(fk+1)||2 and the ratio ||e(fc+1)||2/||eW||2. Observe the
ratios for 100 steps or so. Are they close to what you would expect?

(c) Observe how many iterations it takes to reduce ||e(*) ||2 from 10"1 to 10~3.
Does this agree well with theory?

(d) The first iterations make more progress toward convergence than subsequent
iterations do. How might this effect be explained?

D

Exercise 7.3.18 Repeat the previous exercise using Gauss-Seidel (standard row ordering)
instead of Jacobi. D

Exercise 7.3.19 (Convergence of Richardson's method) Consider a linear system Ax — b,
where the eigenvalues of A are real and positive. For example, A could be positive
definite. Let AI and An denote the smallest and largest eigenvalues, respectively, of
A. Let Gw — I — ujA denote the iteration matrix of Richardson's method applied to
A.

(a) Show that all of the eigenvalues of G^ are less than one.

(b) Prove that Richardson's method converges if and only if u < 2/An.

( c ) Prove that t h e optimal value o f u (minimizing p(Gu)) i s . More
precisely, show that

(d) Show that if A is symmetric and positive definite, then

where K2(A) denotes the spectral condition number of A (cf. Theorem 4.2.4
and Exercise 5.4.46). Thus (optimal) Richardson's method converges rapidly
when A is well conditioned and slowly when A is ill conditioned.

(e) Show that the convergence rate of (optimal) Richardson's method is
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where K~I = 1/K2(A). Use Taylor expansions to show that R (GaJb) =
2K-1 +O(K~2).

Exercise 7.3.20 Show that any iteration that is generated by a splitting A = M — N can be
expressed as a correction based on the residual r^ = b — Ax^:

In particular, Richardson's iteration can be written as x^k+l^ = x^ + ur^. d

Exercise 7.3.22 (Preconditioners) If we wish to solve a system Ax = b, we can equally well
solve an equivalent system M~1 Ax = M~1b, where M is any nonsingular matrix.
When we use a matrix M in this way, we call it a preconditioner. Preconditioners
will figure prominently in Sections 7.5 and 7.6. Good splitting matrices make good
preconditioners. Verify the following fact: Every iterative method defined by a
splitting A — M — N can be viewed as Richardson's method (with u = 1) applied
to the preconditioned system M~lAx = M~1b. This accounts for the importance
of Richardson's method. d

Exercise 7.3.23 Damping is a way of taming a nonconvergent iteration to get it to converge.
Given a splitting matrix M, which gives the iteration (7.3.21), the corresponding
damped iteration with damping factor uj < 1 is defined by

Clearly the splitting matrix of the damped iteration is We have already seen
two examples of damped iterations: (i) The damped Jacobi method (Exercise 7.2.28),
(ii) Richardson's method.

Show that if M~1A has real, positive eigenvalues, then the damped iteration
associated with M converges if u> is sufficiently small. d

Exercise 7.3.25 In principle one can perform iterations (7.3.24) with u > 1, which would
be extrapolated iterations. This looks like the same idea as SOR, but it is not. Show
that extrapolated Gauss-Seidel is different from SOR. (Note: SOR is a good idea;
extrapolated Gauss-Seidel is not.) d

Exercise 7.3.26 In this and the next exercise, you will analyze the convergence of iterative
methods by examining the matrix powers Gk. In this exercise we assume G is
semisimple. Then G is similar to a diagonal matrix: G = VAV~1, where A =
diag{Ai , . . . , Xn}. The main diagonal entries of A are the eigenvalues of G (and the
columns of V are the corresponding eigenvectors). Show that for all fc,

Thus Gk ->• 0 linearly if p(G) < 1. d
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Exercise 7.3.27 This exercise studies convergence in the case when the iteration matrix G
is defective. Every G has the form G = XJX~l, where J = diag{Ji, . . . , Jp} is
in Jordan canonical form (see, e.g., [42] or [46]). The Jordan blocks Jj are square
matrices of various sizes, each having the form

where A is an eigenvalue of G. Each is upper triangular with A's on the main diagonal,
1 's on the superdiagonal, and zeros elsewhere.

(a) Prove that the powers of a Jordan block have the form

Specifically, has A; + 1 nonzero diagonals (or less, if the dimension of Jl is
less), and the jth diagonal from the main diagonal has entries

(b) Given a non-negative integer j, define a function PJ by Show
that PJ is a polynomial of degree j.

(c) Suppose the Jordan block is m x m, and A / 0. Show that for sufficiently
large k, ', where p is a polynomial of degree m — 1:

(Recall that

(d) Suppose the Jordan block Ji is m x m, and A = 0. Show that for
k > m.

(e) Let m be the size of the largest Jordan block of J associated with an eigenvalue
A satisfying | A | = p(G}. Show that for sufficiently large k, the powers of J
satisfy || Jk \\ = p ( k ) p ( G ) k , where p is a polynomial of degree ma — 1.
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(f) Show that for large k

D

Exercise 7.3.28

(a) The coefficient matrix for the one-dimensional model problem is the tridiagonal
matrix (7.1.5). Show that the associated Jacobi iteration matrix is

(b) We will calculate the spectral radius of H by finding all of its eigenvalues. The
dimension of H is ra — 1. Show that v is an eigenvector of H with eigenvalue
A if and only if the difference equation

holds with boundary conditions

(c) Since the linear, homogeneous difference equation (7.3.29) is of second order,
it has two linearly independent solutions (i.e., it has a two-dimensional solution
space). Show that a geometric progression Vj — z^ (with z ^ 0) is a solution
of (7.3.29) if and only if z is a solution of the characteristic equation

(d) This quadratic equation has two solutions z\ and z^. Show that

and

(e)If the solutions of (7.3.31) satisfy z\ / zi, the general solution of (7.3.29) is
where c\ and c2 are arbitrary constants. Show that in this

case, any nonzero solution that also satisfies the boundary conditions (7.3.30)
must have (i) 02 — —c\, (ii) (iii) z\ — ekni/m, where k is not a
multiple of m (remember the assumption z\ ^ z2). Each choice of k yields



556 ITERATIVE METHODS FOR LINEAR SYSTEMS

an eigenvector of H. We can normalize the eigenvector by choosing c\. Show
that if we take (and h e n c e ) , then the eigenvector v is given
by (iv) Vj = sm(jkK/m}.

(f) Associated with each eigenvector is an eigenvalue. Use (7.3.33) to show that
the eigenvalue associated with z\ = e

fc7™/m is A& = cos(7r/ifc), where
is the mesh size. Show that letting k — 1, . . . , m — 1, we get m — 1 distinct
eigenvalues satisfying 1 > AI > A2 > • • • > Am_i > -1. Since H has at
most m — 1 eigenvalues, these are all of them. (You can easily check that
values of k outside the range 1, . . . , m — 1 and not multiples of m just give
these same eigenvalues over and over again.)

(g) Show that λm-k = — λk for k = 1,... , m — 1. Conclude that the spectral
radius of H is COS(TT/Z,).

D

Exercise 7.3.34 This study of the basic properties of Kronecker products of matrices will
prepare you for the next exercise. Let X and Y be matrices of dimensions a x j3 and
7 x 6 , respectively. Then the Kronecker product or tensor product of X and Y is the
c*7 x /?5 matrix. defined by

(a) Let X, Y, W, and Z be matrices whose dimensions are such that the products
XW and Y Z are defined. Show that the product is defined,
and (Notice the following important
special case. If u and v are column vectors such that Xu and Y v are defined,
then is a (long) column vector such that

(b) Suppose X is m x m and Y is n x n. Suppose A is an eigenvalue of X
with associated eigenvector u, and p, is an eigenvalue of Y with associated
eigenvector?;.

(i) Show that λµ is an eigenvalue of with associated eigenvector

(ii) Let Ik denote the k x k identity matrix. Show that λ + µ is an eigenvalue
of with associated eigenvector

(c) Show that if u\,..., ua is a set of a orthonormal vectors (e.g. eigenvectors),
and v\,..., v/3 is a set of fl orthonormal vectors, then , i = 1,.. ., a,
j = 1,. . . , /3, is a set of aft orthonormal vectors.

D
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Exercise 7.3.35

(a) The coefficient matrix A of the two-dimensional model problem (7.1.8) is
given by (7.1.10). Show that

where A is the one-dimensional model matrix given by (7.1.5).

(b) Show that the Jacobi iteration matrix associated with (7.1.8) is given by

where H is as in Exercise 7.3.28.

(c) Show that the (m — I)2 eigenvalues of G are

(d) Show that p(G) = cos π/I.

D

Exercise 7.3.36 Work out the analogue of Exercise 7.3.35 for the three-dimensional model
problem. Conclude that the iteration matrix for Jacobi's method has spectral radius
cos π/I in this case as well. D

Exercise 7.3.37

(a) Show that the eigenvalues of the tridiagonal matrix A (7.1.5) from the one-
dimensional model problem are

(Hint: This is an easy consequence of results in Exercise 7.3.28. Notice that
Â = 2(1- H).)

(b) Show that the eigenvalues of the coefficient matrix of the two-dimensional
model problem (7.1.8) are

(See Exercise 7.3.35).

(c) Show that if Richardson's method is applied to the model problem (7.1.8), the
optimal w is 1/4 (Exercise 7.3.19). Show that with this value of w, Richardson's
method is the same as Jacobi's method (on this particular problem).



558 ITERATIVE METHODS FOR LINEAR SYSTEMS

(d) Show that k2(A) = cot2 (πh/2) for the model problem (7.1.8). Use this
figure to calculate the convergence rate for Richardson's method with optimal
cj. Show that it agrees with the convergence rate for Jacobi's method calculated
in Exercise 7.3.35.

D

Exercise 7.3.38 Consider a system Ax = b that admits a red-black ordering. Thus (after
reordering, if necessary)

where D\ and D2 are diagonal matrices,

(a) Show that the iteration matrix for Jacobi's method applied to this system is

where

(b) Matrices of the form (7.3.39) have some interesting spectral properties. Show

that if is an eigenvector associated with eigenvalue A, then is

an eigenvector with eigenvalue —A.

(c) Continuing part (b), show that x (if nonzero) is an eigenvector of C1C2, and y
(if nonzero) is an eigenvector of C2C\, with eigenvalue A2.

(d) Conversely, show that if µ is an eigenvalue of, say, C2Ci, then are

eigenvalues of . (Hint: Construct the eigenvectors.)

(e) Show that the red-black Gauss-Seidel iteration matrix for A is

(f) Show that p ( G G s ] = p(Gj)2.

D

Exercise 7.3.40 If the coefficient matrix A is positive definite, it is often advisable to use
splittings A = M — N for which M is also positive definite. Show that the following
methods have (symmetric and) positive definite splitting matrices, assuming A is
positive definite: (a) Richardson, (b) Jacobi, (c) symmetric Gauss-Seidel, (d) SSOR
(0 < cj < 2). D

Exercise 7.3.41 Let A be a symmetric matrix, and consider a splitting A = M — N. If M is
not symmetric, then A = MT — NT is another splitting of A. This exercise shows
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how to use these two splittings together to build one that is symmetric. Consider an
iteration that consists of two half steps, one with splitting matrix M, the other with
splitting matrix MT:

(a) Show that MTx^k+^ = NTM~1Nx^ + (I + NTM~l)b.

(b) Show that / + NTM~l = HM~\ where H = M + NT = M + MT-A =
A + N + NT. Show that A^M"1 N = MT - HM~1A.

(c) Show that if H is nonsingular, then

where . This is the splitting for the
combined iteration.

(d) Show that the splitting matrix M is symmetric. Show that M is positive definite
if His.

(e) Show that the SSOR iteration is of this form (assuming A is symmetric). What
is H in the SSOR case? Show that if A is positive definite, then H is positive
definite if and only if the relaxation factor w satisfies 0 < w < 2.

D

7.4 DESCENT METHODS; STEEPEST DESCENT

We continue to study the linear system Ax = b. From this point on, unless otherwise
stated, we shall assume A is symmetric and positive definite. We begin by showing
that the problem of solving Ax — b can be reformulated as a minimization problem.
We then proceed to a study of methods for solving the minimization problem. Define
a function J : Rn -> R by

Then the vector that minimizes J is exactly the solution of Ax = b.

Theorem 7.4.2 Let A € Rnxn be positive definite, let b e Rn, and define J as in
(7.4.1). Then there is exactly one x e Rn for which

and this x is the solution of Ax — b.
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Proof. The function J is quadratic in the variables yl . . . , yn. We shall discover
its minimum by the simple technique of completing the square. Let x denote the
solution of Ax = b. Then

The term ½xTAx is independent of y, so J(y) is minimized exactly when \(y —
x]TA(y — x] is minimized. Since A is positive definite, we know that this term is
positive unless y — x = 0. Thus it takes its minimum value when and only when
y = x. D

In many problems the function J has physical significance.

Example 7.4.4 In elasticity problems, J(y] denotes the potential energy of the
system in configuration y. The configuration that the system actually assumes at
equilibrium is the one for which the potential energy is minimized. An example is
the simple mass-spring system that was discussed in Example 1.2.10. The matrix A
is called the stiffness matrix. The term \yT Ay is the strain energy, the energy stored
in the springs due to stretching or compression. The term — yTb is the work done by
the system against the external forces, which are represented by the vector 6. Some
details are worked out in Exercise 7.4.18. D

Additional insight is obtained by calculating V J, the gradient of J. Recalling that

and performing the routine computation, we find that

This is just the negative of the residual of y as an approximation to the solution
of Ax = b. Clearly the only point at which the gradient is zero is the solution of
Ax = b. Thus we see (again) that the only vector that can minimize J is the solution
of Ax = b.

Descent methods solve Ax — b by minimizing J. These are iterative methods.
Each descent method begins with an initial guess x^ and generates a sequence of
iterates z(°), x(1), x(2) , x ( 3 ) . . . such that at each step J(x(fc+1)) < J(x^), and
preferably J(x^k+l^} < J(x^). In this sense we get closer to the minimum at
each step. If at some point we have Ax^ = b or nearly so, we stop and accept
x^ as the solution. Otherwise we take another step. The step from x^ to x^k+l^
has two ingredients: (i) choice of a search direction, and (ii) a line search in the
chosen direction. Choosing a search direction amounts to choosing a vector p^ that
indicates the direction in which we will travel to get from x^ to x^k+l\ Several
strategies for choosing p^ will be discussed below. Once a search direction has
been chosen, a;(fc+1) will be chosen to be a point on the line {x^ + ap^ | a G E}.
Thus we will have
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for some real αk. The process of choosing a^ from among all a € R is the line
search. We want to choose o^ in such a way that J(x^k+1^) < J(x^}. One way to
ensure this is to choose αk so that J(x (-k + 1 )) = minα€R J ( x ( k ) + ap ( k )). If otk is
chosen in this way, we say that the line search is exact. Otherwise, we say that it is
inexact.

For some types of functions an exact line search can be a formidable task, but
for quadratic functions like (7.4.1), line searches are trivial. The following theorem
shows that the correct value of a can be obtained from a formula.

Theorem 7.4.5 Let xk+l = x + OikP be obtained by an exact line search.
Then

where r^ = b —

Proof. Let g ( α ) = J ( x ( k ) + α p ( k ) ) . The minimizer of g is αk. A routine computation
shows that g (a) — J(x^) — ap^Tr^k^ + ̂ a2p^TAp^. This is a quadratic poly-
nomial in a whose unique minimum can be found by solving the equation g' (a) = 0.
Since g'(a) = -p(*)V*> + ap^T Ap(k\ we havea^ = pWT

rW /pWTApW.
n

Remark 7.4.6 Notice that ctk — 0 if and only if pk>Tr = 0. We want to
avoid this situation because we would rather have x^k+1^ ^ x^ . The equation
p(k}Tr(k) _ Q just savs j.^ me search direction is orthogonal to the residual. Thus

we would normally want to choose pW so that it is not orthogonal to r^ . This
is always possible unless r^ = 0 (in which case x^ is the solution). If we
always choose p^ so that p(k^>Tr^ ^ 0, we will always have the strict inequality

ja ; (*) . D

Let us now consider some examples of descent methods.

Exercise 7.4.7 In this exercise the initial guess will be denoted x^ for notational simplicity.
Similarly the first search direction will be denoted p(l\ Consider a method in which
the first n search directions p^l\ . . . ,p(n) are taken to be the standard unit vectors
ei, . . . , en, the next n search directions p^n+l\ . . . ,p(2n^ are ei, . . . , en again, so
are p(2n+1) , . . . , p(3n) , and so on. Suppose an exact line search is performed at each
step.

(a) Show that each group of n steps is one iteration of the Gauss-Seidel method.

(b) Show that it can happen that J(x^k+l)) = J(x^) even if x^ ^ x.

(c) Prove that the situation described in part (b) cannot persist for n consecutive
steps. In other words, show that if x^ ^ x, then J(x^k+n^>) < J(x^).

Thus each Gauss-Seidel iteration lowers the potential energy. This idea leads to
a proof that the Gauss-Seidel method applied to a positive definite matrix always
converges. D
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Exercise 7.4.8 Let w be a fixed number. Consider a method that chooses the search directions
as in the previous exercise but takes x^k+1^ = x^ + uctkp^, where a^ is the
increment determined by an exact line search. This method reduces to the previous
method if w = 1. If cj ^ 1, the line search is inexact.

(a) Show that each group of n steps is an iteration of the SOR method with
relaxation factor cj.

(b) Show that if p(*+i)Tr(*) ^ 0, then (i) J(z(fc+1)) < J(z<*)) if 0 < u; < 2,
(ii) J(z(*+1)) = J(z(*>) if w = O o r w = 2, and (iii) J(a;<*+1)) > J(x^) if
a; < 0 or uj > 2.

(c) Show that if z<*> ^ x, then (i) J(x^k+n^ < J(x^) if 0 < uj < 2, (ii)
J(a;(*+n>) = J(z<*>) if u = 0 or w = 2, and (iii) J(z(*+n>) > J(x^) if
w < 0 or u > 2.

This leads to a proof that SOR applied to a positive definite matrix always converges
if and only if 0 < u) < 2. D

As we have observed previously, SOR can beat Gauss-Seidel significantly if cu
is chosen well. This shows that exact line searches are not necessarily better than
inexact searches in the long run.

Steepest Descent

The method of steepest descent takes p^ = r^ and performs exact line searches.
Since r^ = —VJ(x^), the search direction is the direction of steepest descent of
J from the point x^.

To search in the direction of steepest descent is a perfectly natural idea. Un-
fortunately it doesn't work particularly well. Steepest descent is worth studying,
nevertheless, for at least two reasons: (i) It is a good vehicle for introducing the idea
of preconditioning, (ii) Minor changes turn the steepest descent algorithm into the
powerful conjugate-gradient method.

Example 7.4.9 If we apply the steepest descent method to the same small system as
in Example 7.2.3, we obtain

which is only slightly better than we got using Jacobi's method. After 42 iterations,
our approximation agrees with the true solution to twelve decimal places. D

It is a simple matter to program the steepest descent algorithm. Let us consider
some of the implementation issues. It will prove worthwhile to begin by writing
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down a generic descent algorithm. At each step our approximate solution is updated
by

If we are doing exact line searches, we will have calculated αk using the formula
given in Theorem 7.4.5. This requires, among other things, multiplying the matrix A
by the vector p^. The cost of this operation depends on how sparse A is. In many
applications the matrix-vector product is the most expensive step of the algorithm, so
we should try not to do too many of them. We also need the residual r^ — 6 — Ax^,
which seems to require an additional matrix-vector product Ax^. We can avoid this
by using the simple recursion

which is an easy consequence of (7.4.10), to update the residual from one iteration
to the next. Now the matrix-vector product is Ap(k\ which we will have already
calculated as part of the computation of 0:^.

Exercise 7.4.12 Use (7.4.10) to derive (7.4.11). D

Introducing the auxiliary vector qW = ApW, we get a generic descent algorithm
with exact line search.

Prototype Generic Descent Algorithm (exact line search)

All that is needed is a rule for specifying the search direction. We get steepest
descent by setting p^ = r^.

In practice we should stop once the iterates have converged to our satisfaction.
In Section 7.2 we used a criterion involving the difference between two successive
iterates. That criterion can also be used here, but there are other possibilities. For
example, the steepest descent algorithm calculates pTr = rTr = \\r\\2 on each
iteration, which makes it easy to use a stopping criterion based on the norm of the
residual. Whatever criterion we use, we accept x^k+1^ as an adequate approximation
of the solution as soon as the criterion is satisfied. We must also realize that if we
set a tolerance that is too strict, roundoff errors may prevent termination entirely. It
is therefore essential to place a limit I on the number of iterations.

We do not need separate storage locations for x^°\ x^, x^\ and so on; we can
have a single vector variable x, which starts out containing the initial guess, carries
each of the iterates in turn, and ends up containing the final solution x. Similarly,
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a single vector r can be used to store all of the residuals in turn. Initially r can be
used to store the right-hand-side vector b, which appears only in the calculation of
the initial residual r(°). Similar remarks apply to p^, q^, and a^.

Taking these remarks into account we obtain a more refined statement of the
algorithm.

Generic Descent Algorithm (with exact line search) for solving Ax = b. On
entry the initial guess is stored in x, and the vector b is stored in r. The algorithm
returns in x its best estimate of the solution and a flag that indicates whether or
not the specified tolerance was achieved.

Set p <— r to get steepest descent.
The matrix A is used to compute the matrix-vector product Ax in the initial

residual. Aside from that, it is needed to calculate the matrix-vector product Ap once
per iteration. The matrix-vector products are normally performed by a user-supplied
subroutine, which accepts a vector p as input and returns the vector Ap. The details
of the computation depend on the form of A. If A is a dense matrix stored in the
conventional way, one can write a straightforward matrix-vector product algorithm
that takes about n2 flops to do the computation. However, if A is sparse, one should
exploit the sparseness to produce Ap in far fewer than n2 flops.

Suppose, for example, A is the matrix of the model problem (7.1.8). Then each
row of A will have at most five nonzero entries, so each element of the vector Ap
can be calculated in roughly five flops. Thus the entire vector Ap can be calculated
in some 5n flops; the cost is O(ri) instead of O(n2).

Let us consider some of the details of applying steepest descent to the model
problem (7.1.8). Throughout our discussion of descent algorithms, we have treated
the vectors x, r, p, etc. as ordinary column vectors in En. For example, pT =
[PI> Pi, • • • >Pn]> and the inner productpTr in Algorithm 7.4.14 means

In the model problem, it is more natural to store the unknown (which we now call u
rather than x) in a doubly subscripted array Uit3;, i, j — 1 , . . . , m — 1. Each entry mtj
represents an approximation to u(xi,yj), the value of the solution of a PDE at the
grid point (xi , y j ) . Fortunately there is no need to depart from this notation when we
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apply Algorithm 7.4.14 to this problem; we need only interpret the operations in the
algorithm appropriately. All of the vectors are stored as doubly subscripted arrays.
The update u <— u + ap means Uij -f- Uij + apij ,i,j = 1 , . . . , m — 1. The inner
product pTr means

The matrix-vector product q 4— Ap is

As usual, the matrix A is not stored in any way, shape, or form. More implementation
details are given in Exercise 7.4.19.

Example 7.4.16 We applied steepest descent to the model problem under the same
conditions as in Example 7.2.8. The results are summarized in Table 7.6. Comparing

h
1/10
1/20
1/40

Matrix
dimension

81
361
1521

Iterations
to convergence

304
1114
4010

Table 7.6 Steepest descent method applied to model problem

with the table in Example 7.2.8, we observe that the steepest descent algorithm is just
as slow as Jacobi's method. Indeed, the similarity in their performance is striking.

From (7.4.15) we see that cost of the operation q <— Ap is comparable to that of
one Jacobi or Gauss-Seidel iteration. However, steepest descent has the additional
inner products pTr and pTq and the updates u 4— u + ap and r <— r — aq, each of
which takes about n w m2 flops. Thus the work to do one steepest descent iteration
is somewhat higher than that for a Jacobi or Gauss-Seidel iteration. D

Geometric Interpretation of Steepest Descent

The objective of a descent method is to minimize the function J ( y } . From (7.4.3)
we know that J has the form

where x is the solution of Ax = b, and 7 is constant. Since A is symmetric,
there exists an orthogonal matrix U such that UTAU is a diagonal matrix A, by
Theorem 5.4.19. The main diagonal entries of A are the eigenvalues of A, which are
positive. Introducing new coordinates z = UT (y — x} and dropping the inessential
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constant 7 and the factor \, we see that minimizing J(y) is equivalent to minimizing

To get a picture of the function J, consider the 2 x 2 case. Now J is a function of
two variables, so its contours or level surfaces J(z\ , z2) = c are curves in the plane.
From (7.4.17), the contours have the form

which are concentric ellipses centered on the origin. They are ellipses, not hyperbolas,
because the eigenvalues AI and \2 have the same sign.

The orthogonal coordinate transformation z = UT(y — x} preserves lengths and
angles, so the contours of J are also ellipses of the same shape. For example, the
contours of the function J(y] associated with the matrix

f-j-t

are shown in Figure 7.4. The solution x = [ xi £2 ] lies at the center of the
ellipses.

Fig. 7.4 Steepest descent in the 2 x 2 case
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The semiaxes of the ellipses are whose ratio is The
eigenvalues of a positive definite matrix are the same as its singular values, so the
spectral condition number is equal to the ratio of largest to smallest eigenvalue (see
Theorem 4.2.4 and Exercise 5.4.46). Thus the ratio of the semiaxes is We
conclude that the shape of the contours depends on the condition number of A. The
greater the condition number, the more eccentric the ellipses are. Figure 7.4 shows
the well-conditioned case.

The dotted lines in Figure 7.4 represent four steps of the steepest descent algorithm.
From a given point, the search proceeds in the direction of steepest descent, which
is orthogonal to the contour line (the direction of no descent). The exact line search
follows the search line to the point at which J is minimized. J decreases as long as
the search line cuts through the contours. The minimum occurs at the point at which
the search line is tangent to a contour. (After that, J begins to increase.) Since the
next search direction will be orthogonal to the contour at that point, we see that each
search direction is orthogonal to the previous one. Thus the search bounces back and
forth in the canyon formed by the function J(y) and proceeds steadily toward the
minimum.

The minimum is reached quickly if A is well conditioned. In the best case,
AX = A2, the contours are circles, the direction of steepest descent (from any starting
point) points directly to the center, and the exact minimum is reached in one iteration.
If A is well conditioned, the contours will be nearly circular, the direction of steepest
descent will point close to the center, and the method will converge rapidly. If, on
the other hand, A is somewhat ill conditioned, the contours will be highly eccentric
ellipses. From a given point, the direction of steepest descent is likely to point
nowhere near the center; it is not a good search direction. In this case the function J
forms a steep, narrow canyon. The steepest descent algorithm bounces back and forth
in this canyon, taking very short steps, and approaching the minimum with agonizing
slowness. This phenomenon does not require extreme ill conditioning. Even if the
system is only modestly ill conditioned, and well worth solving from the standpoint
of numerical accuracy, the convergence can be very slow.

So far we have been discussing the 2 x 2 case, but the same difficulties arise in
general. In the 3 x 3 case the level sets are ellipsoids in E3, and in general they are
hyperellipsoids in Rn, whose roundness or lack thereof depends upon K2(A}. Each
steepest descent step proceeds in the direction orthogonal to the level hypersurface
and continues to a point of tangency with a hypersurface. If the hyperellipsoids are
highly eccentric, progress will be slow.

The Jacobi, Gauss-Seidel, and Richardson algorithms all can be viewed as descent
algorithms (Exercises 7.4.7 and 7.4.20), and all have difficulty negotiating the steep,
narrow canyon. See, for example, Exercise 7.4.22. You could also refer back to Exer-
cise 7.3.19, in which you showed by other means that the convergence of Richardson's
method is adversely affected by ill conditioning. Even mild ill conditioning is enough
to cause very slow convergence. See Exercise 7.4.24.
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Fig. 7.5 System of three carts

Additional Exercises

Exercise 7.4.18 Suppose a linear spring has stiffness k N/m. Then if we stretch (or compress)
it s meters from its equilibrium position, it exerts a restoring force of ks Newtons. To
compute the work needed to stretch the spring x meters from its equilibrium position,

we integrate the f o r c e : J o u l e s . The work is equal to the strain

energy, the energy stored in the spring due to the deformation. Now consider a system
of three masses and four springs, as shown in Figure 7.5. This is the same system
as we considered in Example 1.2.10. If external forces are applied to the carts as
shown, they will move from their original equilibrium position to a new equilibrium
position.

(a) Each of the springs has stiffness 4 N/m. Show that if the carts 1, 2, and 3 are
displaced by yit y2, and 3/3 meters from their original equilibrium positions
(positive displacements being to the right, for example), the total strain energy
of the four springs is

Joules. Assume that the springs were completely relaxed, neither stretched nor
compressed, initially.3

(b) Show that

Then show that the total strain energy of the four springs is ½y T Ay, where A
rri

is the same matrix as in Example 1.2.10, and y =• [ y \ , y^-, ys f] •

3This assumption simplifies the computation, but it is not essential.
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(c) Show that if external forces are 1, 2 and 3 N to the right, as shown, the
potential energy gained due to work against those forces is — yTb Joules,
where 6 = [1, 2, 3]T.

Thus the total potential energy of the system in configuration y is J(y) — \yT Ay —
yTb. The actual configuration x that the carts assume in the end is the one for which
J is minimized, and that is the one for which Ax = b. D

Exercise 7.4.19 Write a program that applies the method of steepest descent to the model
problem (7.1.8). Use it to solve the model problem with / = 0 and g given by

»
as in Example 7.2.8. Use mesh sizes h = 1/10, h = 1/20, and h = 1/40. Starting
from u^ = 0, record how many iterations are needed until

Compare your results with those of Example 7.4.16. Your numbers should be
comparable to those given in Example 7.4.16, but, since you are using a different
stopping criterion, they will not be exactly the same. Some implementation details
follow.

When (7.1.8) is written as a matrix equation Au = 6, all of the terms associated
with the boundary conditions are included in the right-hand-side vector 6. Therefore,
your program needs to incorporate all of the boundary conditions into b at the start.
Consider, for example, the equation associated with the grid point (x\ ,1/3). We have

Since uo,s belongs to a boundary grid point, its value is given by the boundary
conditions: u0,s = g(xo,y3}. Since this term is not an unknown, it should be moved
to the right-hand side of the equation. Thus the equation takes the form

and

In this way, each bij that is adjacent to a boundary point will include a boundary
term. Each corner point (e.g. b\,1) will include two boundary terms. (Since our test
problem has / = 0, all of the nonzero entries in 6 will be due to boundary terms.)
Once the boundary terms have been loaded into 6, they can be forgotten; they are not
used anywhere else in the program.
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The matrix-vector multiply should be effected by a separate subroutine or proce-
dure, the heart of which is a doubly-nested loop like

If this procedure is to give correct results, the boundary terms must be set to zero.
(Since the boundary conditions have been pushed into the vector b, they do not play
a role in the matrix A.) If your code sets the boundary values pijQ, p;iTn, PQJ, pmj
to zero at the start (and similarly for u) and leaves them zero, the procedure will
function correctly.

You might also find it useful to write a separate inner product procedure to calculate
the inner products needed for the computation of a. mi

Exercise 7.4.20 Show that the steepest descent algorithm is just Richardson's method with
variable damping, and Richardson's method is steepest descent with an inexact line
search. D

Exercise 7.4.21 Show that the level surfaces of the function J(y] — \yT Ay — bTy are
hyperellipsoids in En with semiaxes where AI , . . . , An are the
eigenvalues of A. D

Exercise 7.4.22 Draw a picture like Figure 7.4 that shows the progress of the Gauss-Seidel
method. Draw another picture that shows why Gauss-Seidel converges slowly if A
is ill-conditioned. D

Exercise 7.4.23 Draw a picture that suggests that SOR will outperform Gauss-Seidel if w is
chosen well. d

Exercise 7.4.24 Let A be the matrix of the model problem (7.1.8).

(a) Show that

(See Exercise 7.3.37.)

(b) What relationship do you observe between n^ (A) and known facts about the
convergence rates of the Jacobi and Gauss-Seidel methods?

(c) Calculate ^(A] when h = 1/40, and observe that A is only slightly ill
conditioned in this case.

D
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7.5 PRECONDITIONERS

In the preceding section we observed that the surface that represents the function J is
a steep, narrow canyon if A is not well conditioned. This causes the steepest descent
method (among others) to converge very slowly. A remedy for this problem is to
transform the system Ax = b to an equivalent one Ax = b, for which A is better
conditioned than A is. This procedure is called preconditioning. We can then apply
the descent method to the transformed or preconditioned system.

There are many ways to make such a transformation. For example, let M be
any simple matrix that approximates A, that is, any splitting matrix, but now we
call it a preconditioner. Multiply the equation Ax = b by M~l on the left to
obtain a transformed system Ax = b, where A = M~1A, x = x, and b = M~lb.
Unfortunately, the resulting A is not symmetric. If M is positive definite, we can
make a transfomation that preserves the symmetry by making use of the Cholesky
decomposition M — RTR. Instead of using M~1A, we can use the related matrix
R~TAR~1. Specifically, we can multiply the equation Ax = b on the left by R~T,
and insert the identity matrix R~1R between A and x, to get (R~TAR~l)(Rx) =
R~Tb. This is Ax = b, where A = R~TAR-1, x = Rx, and 6 = R~Tb.

Exercise 7.5.1 Show that A = R~TAR~1 is a positive definite matrix, given that A is. In
particular, A is symmetric. d

The straightforward approach to preconditioning is simply to apply Algorithm
7.4.14 to the transformed system. Every instance of A, r, x, etc. is replaced by a
transformed quantity A, f, x, etc. The algorithm yields x in relatively few iterations,
because A is better conditioned than A is. Then we get the solution to our original
system by x — R~lx.

A more efficient approach is to carry out equivalent operations in the original
coordinate system. If this is done, the entire algorithm can be performed without
ever generating the transformed quantities. As we shall soon see, the big bonus of
this approach is that it makes the computation of R unnecessary. Execution of the
descent method will require only M~l.

It is an easy exercise to write down Algorithm 7.4.14 for the transformed system,
then translate line by line back into the untransformed coordinate system. We start out
with an algorithm in which all of the vectors have tildes on them. Most importantly,
A is used in place of A. Then for each line we figure out an equivalent operation in
the original coordinate system. For example, the line x 4- x + ap can be transformed
to x 4- x + ap by the transformations x = R~lx and p = R~lp. (We do not bother
to introduce a symbol a, because a is a scalar, not a vector. It does not undergo any
coordinate transformation.) The transformation p = R~lp serves as the definition of
p. It is reasonable to define p by the same transformation law as is used for x, as this
allows us to continue to interpret p as the search direction that is taken to get from
one iterate to the next. If we define q by q = RTq, the line q <—Ap transforms to
q <— Ap. If we want r to denote the residual as it always has up to now, the correct
transformation is r = RTr. Then the line f 4— f — aq transforms to r <— r — aq.
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Notice also that so the tildes can be dropped from the
computation of a.

So far the transformation process appears quite boring. We started with Algo-
rithm 7.4.14 in the transformed coordinate system, involving , etc., then defined
p, q, and r in such a way that we could rewrite the equations with the tildes removed.
The result is the original Algorithm 7.4.14, or so it appears at first.

The one thing we still need to discuss is the transformation of the lines Now
let us focus our attention specifically on the steepest descent method. In the original
steepest descent method we had p = r, so preconditioned steepest descent will have

Now here is the important point. When we transform the equation p — r back
to the original coordinate system, we do not get p = r, because p and r obey different
transformation laws.4 Since and , we have p = R~lR~Tr.
Recalling that M = RTR, we see that p — M~lr. With this transformation, the
symbol R disappears from the algorithm. Thus the preconditioned steepest descent
algorithm with preconditioner M is as follows.

Preconditioned Steepest Descent Algorithm (with preconditioner M) for solv-
ing Ax = b. On entry the initial guess is stored in x, and the vector b is stored
in r. The algorithm returns in x its best estimate of the solution and a flag that
indicates whether or not the specified tolerance was achieved.

Algorithm 7.5.2 is identical to Algorithm 7.4.14, except for the lines p «- M~lr.
Indeed, Algorithm 7.5.2 is an instance of Algorithm 7.4.14. The only effect of
applying a preconditioner to the steepest descent algorithm is that the search direction
is changed from r to M~lr.

Exercise 7.5.3 Check all of the details of the foregoing development. Verify that Algo-
rithm 7.5.2 is indeed the correct translation of the steepest descent algorithm for
Ax = b where A = R~TAR~l. D

4There are two transformation laws. In the language of duality, the vectors x and p, which satisfy
z — R~lz, are primal, and the vectors b, r, and q, which satisfy z = RT z, are dual.
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Examples of Preconditioners

Our derivation assumed that M is positive definite. We thus search for preconditioners
among those iterative methods that have positive definite splitting matrices.

Example 7.5.4 Jacobi's method has M = D, the diagonal part of A. This M is
positive definite if A is. The Jacobi preconditioner, which is also known as the
diagonal preconditioner, is particularly easy to apply. The operation p «— M~lr
amounts to pi •<— ri/aa, i = l , . . .n . Unfortunately it is not a very powerful
preconditioner. D

Exercise 7.5.5 Show that the convergence of the steepest descent algorithm on the model
problem (7.1.8) is not accelerated at all by the Jacobi preconditioner. D

In problems for which the main-diagonal entries of the coefficient matrix vary
markedly in magnitude, the Jacobi preconditioner is often effective.

Exercise 7.5.6 Apply the steepest descent algorithm to the system

Starting with x^ = 0, perform three iteration using (a) no preconditioner, (b)
the Jacobi preconditioner. You may do this by hand or, better yet, write a simple
MATLAB script. Note the extreme effectiveness of the preconditioner in this case.
If you are using MATLAB, you might like to compare the condition numbers of A
andi = D-^AD-1/2. D

On small problems like the one in Exercise 7.5.6, there is no harm in forming the
matrix M"1 explicitly and using it to perform the preconditioning step p 4— M~lr.
On big problems it is wasteful to do so. Normally the preconditioning operation is
handled by a subroutine that takes r as input and returns p, and normally the subroutine
does this without forming M or M"1. For example, a Jacobi preconditioning
subroutine will just take each entry of r and divide it by the corresponding main
diagonal entry of A.

The procedure for applying the Jacobi preconditioner is perfectly obvious. Now
let us consider how to apply a more complicated one. Consider any iterative method
that is generated by a splitting matrix M. Recall that the iteration is defined by
Mx(k+1^ = Nx^ + b, where A = M — N. If we perform one iteration to get from
#(°) to a^1), we have

where r(°) = b — Ax^ . This was shown in general in Exercise 7.3.20 and for
special cases in Exercises 7.2.4, 7.2.12, 7.2.18, 7.2.24, and 7.2.26. For example, if
we perform one iteration of SOR, getting from x(°) to x^ , the two iterates are related
by (7.7.5.7), where M = ^D — E. But the SOR iteration is executed by sweeping
through the x vector, correcting the entries one after the other; we never form or even
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think about the matrix M or its inverse. If we start from x^ = 0, then r(°) = b, and
(7.7.5.7) becomes x^ — M~lb. This tells us that when we perform one iteration
on the system Ax = b, starting with x^ = 0, the result is M~lb. (Although we
have the SOR example in mind, the conclusion is valid for any iterative method that
is generated by a splitting.) For the purpose of preconditioning, we want to compute
M-1r, not M~lb. This can be effected by operating on the system Ax = r instead
of Ax = b. In summary, to compute p = M~lr, apply one iteration, starting from
x(°) = 0, to the system Ax = r. The result is p.

We do not envision using SOR as a preconditioner; it's splitting matrix is not
symmetric. A better candidate is SSOR.

Example 7.5.8 In the symmetric case, the splitting matrix for SSOR is

where D and — E are the diagonal and lower triangular parts of A, respectively
(Exercise 7.2.26). As long as 0 < ui < 2, and A is positive definite, M is positive
definite too (Exercise 7.3.40). This M looks complicated. Fortunately it is easy to
apply M~l without actually forming it. We simply perform one SSOR iteration on
the system Ax = r, starting from initial guess zero. Recall that an SSOR iteration
consists of a forward SOR iteration followed by a backward one.

Table 7.7 lists some results from applying steepest descent with the SSOR precon-
ditioner to the model problem (7.1.8) under the same conditions as in Example 7.2.8.
We took h = 1/40 and tried several values for the relaxation factor cj. The iteration

Preconditioner
none

SSOR
SSOR
SSOR
SSOR

LJ
N/A
1.0
1.3
1.6
1.9

Iterations
to convergence

4010
575
327
171
58

Table 7.7 Steepest descent method with SSOR preconditioner

count 4010 for no preconditioner is the same as in Example 7.4.16. We observe
that the SSOR preconditioner delivers a dramatic improvement, regardless of how
(jj is chosen. If u> is chosen well, the results are excellent. Comparing with Exam-
ple 7.2.21, we see that the number of iterations needed here with u> = 1.9 is much
less than for SOR with the optimal u. To be fair, we should point out that the a
steepest descent iteration with SSOR preconditioner requires several times as much
arithmetic as an SOR iteration. Even taking this factor into account, we see that
steepest descent with the SSOR preconditioner is competitive with SOR. D
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The SSOR preconditioner works quite well and is easy to use, so it will figure
prominently in our examples. It is not necessarily the best preconditioner.

Some of the most popular preconditioners (and some of the first to be tried)
are the ILU preconditioners, which are based on incomplete LU decompositions.
Since we are focusing on the positive definite case, we shall restrict our attention to
incomplete Cholesky preconditioners. If A is sparse, its Cholesky factor is normally
much less sparse. A great deal of fill-in occurs during the elimination process. An
incomplete Cholesky decomposition is an approximation A « RTR, where R is
an upper triangular matrix that is much sparser than the true Cholesky factor. For
example, R could have exactly the same sparsity pattern as A. One could produce
such an R by carrying out the ordinary Cholesky decomposition algorithm but not
allowing any fill-in. Numbers that start out zero stay zero. For a better approximation
one can allow partial fill-in. Criteria for deciding which entries are allowed to fill
in can be based on element size or element location, for example. A great many
strategies have been tried. Once an incomplete Cholesky decomposition has been
produced, the product M = RTR can serve as a preconditioner. Application of the
preconditioner requires forward and backward substitution on the extremely sparse
triangular factors.

Other preconditioners are based on multigrid and domain decomposition tech-
niques [9], [36], [63]. When applied to the model problem (7.1.8) and a wide variety
of similar problems, the best of these are optimal, in the sense that they produce a
preconditioned matrix A for which the condition number is bounded: k2(Ã) < K,
where K is independent of the mesh size h. It follows that the number of iterations
needed to achieve a given accuracy is more or less independent of h.

Additional Exercises

Exercise 7.5.9 Write a program that executes the steepest descent algorithm with the SSOR
preconditioner on the model problem (7.1.8). Your preconditioning subroutine should
consist of a pair of nested loops, the second of which looks something like this:

Before entering the first loop, p should be zero (including boundary values).
To test your program, use the same /, g, and u^ as in Exercise 7.4.19. Terminate
iterations when p(k+1)T

r(*+1) < eV°)Tr(0), where e = 10~8 (see Exercise 7.5. 10).
With h = 1/40, try u = 1.7, 1.75, 1.8, 1.85, 1.9, and 1.95. Observe that the
preconditioner performs satisfactorily over this fairly wide range of uj values. D

Exercise 7.5.10 Show that if , the square of the norm of
the residual for the transformed problem. Discuss the pros and cons of a stopping
criterion based on || f || versus || r || . D
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Exercise 7.5.11 Our development of Algorithm 7.5.2 assumes that the splitting matrix is pos-
itive definite. Nevertheless, there is nothing to stop us from running Algorithm 7.5.2
with a nonsymmetric M. In this case we have no justification for the choice of search
direction p = M~1r, but we are still performing a descent algorithm with exact line
searches.

(a) Try using SOR as a preconditioner for steepest descent on the model problem.
How does it compare with SSOR? with no preconditioner?

(b) Try a preconditioner that does m sweeps of SOR instead of one. Try ra = 2,
3, and 4, at least. Notice that as m is increased, the preconditioner gets better.
Of course, it also consumes more time.

D

Exercise 7.5.12 Given a preconditioner or splitting matrix M, show that the preconditioned
steepest descent algorithm is the same as the iteration generated by the splitting
matrix , except that the damping parameter varies from one iteration to the next.
(See Exercises 7.3.20 and 7.3.23.) D

Exercise 7.5.13 Let A and M be positive definite matrices, and let M = RTR. Define
Al = M~1A and A2 = R~T AR~l.

(a) Show that A\ and A^ are similar. That is, A-2 = S~1AiS for some nonsingular
matrix S.

(b) Show that Richardson's method applied to either A\ or A% will converge if the
damping parameter uj is small enough, and the convergence rate is the same
for both. (See Exercise 7.3.19.)

D

7.6 THE CONJUGATE-GRADIENT METHOD

All of the iterative methods that we have discussed to this point are limited by their
lack of memory. Each uses only information about x^ to get to x^k+l\ All
information from earlier iterations is forgotten. The conjugate-gradient (CG) method
[39] is a simple variation on steepest descent that performs better because it has a
memory.

Our approach will be to introduce the algorithm right away, compare and contrast
it with the steepest descent method, and observe how well it performs. Once we have
done that, we will derive the algorithm and study its theoretical properties.

We begin with the basic CG algorithm with no preconditioner, which is shown
in (7.6.1), below. In appearance this algorithm differs only slightly from steepest
descent. The computation of a is organized a bit differently, but this difference
is cosmetic. The line searches are still exact; the CG algorithm is an instance of
Algorithm 7.4.14. Initially p «- r, so the first step is steepest descent. On subsequent
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steps there is a difference. Instead of p «— r, we havep <— r + /3p. The residual or
steepest descent direction still plays an important role in determining the new search
direction, but now the old search direction also matters. This is the one point at which
memory of past iterations is used. This slight change makes a huge difference.

Conjugate-Gradient Algorithm for solving Ax = b. On entry the initial guess
is stored in x, and the vector b is stored in r. The algorithm returns in x its best
estimate of the solution and a flag that indicates whether or not the specified
tolerance was achieved.

Example 7.6.2 We applied the Conjugate-Gradient algorithm to the model problem
under the same conditions as in Example 7.2.8. The results are summarized in
Table 7.8. Comparing with the table in Example 7.4.16, we see that the CG algorithm

h
1/10
1/20
1/40

Iterations
to convergence

29
60
118

Table 7.8 Conjugate-gradient method (with no preconditioner) applied to model problem

is far superior to steepest descent. Indeed its performance is more in line with that of
SOR (Example 7.2.21) or steepest descent preconditioned by SSOR (Example 7.5.8).
An advantage of CG over these other two methods is that it does not involve any u;
whose optimal value must be guessed. D

Why is CG so much better than steepest descent? To keep the discussion simple,
let us make the (inessential) assumption that o;(0) — 0. Then, after j iterations of the
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Thus x^ lies in the space Sj spanned by the j search directions p(°\ . . . ,p^~1^ •
This is true for both algorithms; however, they pick out different search direc-
tions. Of course, they also compute different coefficients a.k- Interestingly, the
two different sets of search directions span the same space. In both cases, Sj =
span{6, Ab, A2b, . . . , A^~lb}, a Krylov subspace. Since steepest descent does exact
line searches, x^ minimizes the energy function J over the j lines x^ + ap^k\
k = Q, . . . ,j — 1. The union of these lines is a tiny subset of Sj. As we shall see,
the CG algorithm does much better. By looking backward just slightly, it manages
to pick out the x^ that minimizes J over the entire space Sj.

Preconditioned Conjugate Gradient Algorithm

The CG algorithm is closely related to steepest descent. Its first step is the same
as steepest descent, and each subsequent search direction depends in part on the
direction of steepest descent. It is therefore reasonable to hope that CG, like steepest
descent, can benefit from preconditioning [10].

The procedure for preconditioning CG is the same as for steepest descent. The
following algorithm results.

Preconditioned Conjugate-Gradient Algorithm (with preconditioner M) for
solving Ax = b. On entry the initial guess is stored in x, and the vector b is
stored in r. The algorithm returns in x its best estimate of the solution and a flag
that indicates whether or not the specified tolerance was achieved.
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We derived (7.6.3) by applying CG to the transformed system . where
We then translated

each expression to an equivalent expression in the original coordinate system. We
introduced a new vector s — M~vr for convenience.

The big advantage of transforming back to original coordinate system is that it
eliminates the need to calculate R. Only M~l appears in Algorithm 7.6.3.

Exercise 7.6.4 Verify that Algorithm 7.6.3 is indeed the correct translation of the conjugate-
gradient algorithm for Ax = 6. d

Algorithm 7.6.3 is yet another instance of Algorithm 7.4.14. In particular, the line
searches are exact.

The cost of executing CG is only slightly greater than that of steepest descent.
Because the computation of the coefficients a and fi has been arranged carefully,
only two inner products need to be computed on each iteration, which is the same
as for steepest descent. All other costs are virtually the same, except that CG has
the additional vector update p 4- s + @p, which costs 2n flops. The storage space
required by CG is 5n, for the vectors x, r, s, p, and q, plus whatever is needed (if any)
to store A and M~l. This compares with 4n for steepest descent and n for SOR.

Example 7.6.5 Table 7.9 shows the results of applying the CG method with the
SSOR preconditioner to the model problem (7.1.8) under the same conditions as
in Example 7.2.8. As in Example 7.5.8, we took h — 1/40 and tried several
values for the relaxation factor uj. The iteration counts are quite low, and they are

Preconditioner
none

SSOR
SSOR
SSOR
SSOR
SSOR
SSOR

CJ

N/A
1.0
1.3
1.6
1.7
1.8
1.9

Iterations
to convergence

118
49
37
28
26
24
28

Table 7.9 Conjugate-Gradient method with SSOR preconditioner

fairly insensitive to the choice of w. Comparing with Example 7.2.21, we see that
preconditioned CG is clearly superior to SOR. D

In Exercise 7.6.6 you will see that the advantage of preconditioned CG increases
as h is made smaller.
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Additional Exercises

Exercise 7.6.6 Write a program that applies the conjugate-gradient algorithm with the SSOR
preconditioner to the model problem (7.1.8). The instructions in Exercises 7.4.19
and 7.5.9 for executing the steps p «— Aq and s «— M~lr are also applicable here.
To test your program, use the same /, g, and u^ as in Exercise 7.4.19. Terminate
iterations when 5(*+i)Tr(*+i) < e

2
s(°)T

r(°), where e = 10~8 (see Exercise7.5.10).

(a) Try out your code under the conditions of Example 7.6.5. You should get
similar, but not identical, results, since you are using a different stopping
criterion.

(b) Consider the model problem with h = 1/160. What is the dimension of the
associated matrix? What is its bandwidth (assuming the natural row ordering)?
Approximately what fraction of the matrix entries are nonzero?

(c) With h = 1/160, try u = 1.7, 1.75, 1.8, 1.85, 1.9, and 1.95. Observe that the
preconditioner performs satisfactorily over this range of uj values.

(d) Apply SOR with h = 1/160 for comparison against preconditioned CG. (Use
your code from Exercise 7.2.23.) Try u = 1.9, 1.95, and 1.962 (optimal for
h = 1/160). Note the sensitivity to the choice of u. How does SOR compare
with CG preconditioned by SSOR?

(e) Choose a value of u, say 1.8 or 1.9, and run your preconditioned CG code with
that chosen u and h - 1/10, 1/20, 1/40, 1/80, and 1/160. Record the number
of iterations %h in each case. Notice that i^ grows as h is decreased, but the
growth is moderate. (Optimally we would like to see no growth. There is still
room for improvement.)

D

Exercise 7.6.7 Try replacing SSOR by SOR as a preconditioner for CG. How does it work?
D

Exercise 7.6.8 A conjugate-gradient routine peg is supplied with MATLAB. Read about
peg in the MATLAB help facilities, and try it out on a discrete Laplacian matrix.
Use commands like the following:

m = 40;
A = delsq(numgrid('N',m+1));
n = size(A,l)
sol = ones(n,l); % x'all ones'' solution vector.
b = A*sol; % right-hand side vector.
tol = le-12; maxit = 1000;
[x,flag,relres,iter] = peg(A,b,tol,maxit);
err = norm(sol-x)
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The matrix A generated here is exactly the matrix of our model problem (7.1.8) with
h = l/m. A "nested dissection" ordering is used [30]. The most common way to
use peg is to supply the matrix A explicitly in MATLAB's sparse matrix format,
and that is what we are doing here. This is far from the most efficient way to use this
matrix or to execute the CG algorithm, but it is convenient and works reasonably well
on moderate-sized problems. Here we are running peg with a residual tolerance
of 10~12, a maximum of 1000 on the number of iterations, and no preconditioner.
Try this out with various values of m, e.g. m = 40, 80, 160, and check how many
iterations are needed in each case. n

Exercise 7.6.9 MATLAB also provides a routine cholinc for computing incomplete
Cholesky preconditioners, (see Section 7.5). Read about cholinc in the MATLAB
help facilities. Repeat Exercise 7.6.8 using a an incomplete Cholesky precondi-
tioner M = RTR based on a drop tolerance of 10~2:

droptol = le-2;
R = cholinc(A,droptol);
spy(A), spy(R), spy(R'+R),
[x,flag,relres,iter] = peg(A,b,tol,maxit,R',R);

Compare your results with those of Exercise 7.6.8. D

Exercise 7.6.10 Repeat Exercise 7.6.9 with fixed m, say m = 80, varying the drop tolerance.
Try, for example, 10°, 10"1, 10~2, and 10~3. Check the effect on the number of
CG iterations needed and the number of nonzeros in the incomplete Cholesky factor.
Compare with the number of zeros in the complete Cholesky factor of A, as computed
by chol. n

Exercise 7.6.11 Repeat Exercises 7.6.8, 7.6.9, and 7.6.10, using Wathen matrices of various
sizes. Type A = gallery ( 'wathen' ,20 ,15) , for example. For a bigger
matrix replace the 20 and 15 by larger numbers. Type help private/wathen
for information about Wathen matrices. d

7.7 DERIVATION OF THE CG ALGORITHM

The conjugate-gradient algorithm is a descent method that performs exact line
searches. To complete the formal definition of the algorithm, we need only specify
how the search directions are chosen. After some preparation we will be in a position
to derive the search directions in a natural way.

In Chapter 3 we introduced the inner product

and used it extensively in our discussion of the least-squares problem. It was the only
inner product we needed at that time, and we spoke of it as if it were the only inner
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product in the world. Now it is time to broaden our view of the concept. Given any
positive definite matrix H we can define the inner product induced by H by

The inner product (7.7.1), which we will now call the standard inner product, is the
inner product induced by /.

The inner product induced by H has the same basic algebraic properties as the
standard inner product. In particular, (x,x)H > Qifx ^ 0. Of course the connection
with the Euclidean norm, does not hold. Instead we can use the
H inner product to induce a different norm

A descent method solves the positive definite system Ax — b by minimizing
J(y) = ^yTAy — yTb. Using our new notation we can rewrite J as

In elasticity problems the term \(y,y}A represents the strain energy stored in the
deformed elastic structure, so the inner product and norm induced by A are commonly
called the energy inner product and energy norm, respectively.

Thinking of y as an approximation to x, the solution of Ax — b, we define the
error e = x — y. Completing the square, as in (7.4.3), we find that

The energy norm of a: is a fixed constant. Thus minimizing J is the same as
minimizing the energy norm of the error.

A method that uses exact line searches minimizes the energy norm of the error
along a line at each step. This is a one-dimensional minimization. Our objective
now is to develop a method that remembers information from past steps so that it can
minimize over higher dimensional subspaces. By the jth step, we hope to minimize
over a j -dimensional subspace.

Regardless of how we choose the search directions, the following relationships
hold. At each step we have x(k+1^ = x^ + &kP^. Starting from x^, j such steps
bring us to

At step k the error is e^ = x — x^k\ Clearly the errors satisfy the recursion
e(k+i) _ e(k) _ akp(k)^ an(j after j steps,

Ideally we would like to have chosen the coefficients ao> • • • > aj-i s° that the energy
norm || e^ \\A is as small as possible. By (7.7.2) this is the same as minimizing
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which amounts to finding the best approximation to e^ from the subspace Sj =

In Chapter 3 we developed the basic characterization theorem (Theorem 3.5.15)
for best approximation in Euclidean space. The shortest distance from a point to a
line is along the perpendicular. More generally, the best approximation to a vector
v from a subspace <S is the unique s e S for which the error v — s is orthogonal
to every vector in S. In that result, approximations are measured with respect to
the Euclidean norm, and orthogonality is reckoned with respect to the standard inner
product. In our present scenario we seek a best approximation with respect to the
energy norm. Fortunately the basic characterization is valid in this context as well,
provided we reckon orthogonality with respect to the energy inner product. Indeed,
the theorem is valid for any inner product and its induced norm.

Let H be any positive definite matrix. If (v, w}H = 0, we say that the vectors v
and w are H-orthogonal and write v _L# w.

Theorem 7.7.3 Let H G Enxn be a positive definite matrix, let v e Rn, and let S
be a subspace ofW1. Then there is a unique s £ S such that

The vector s is characterized by the condition v — s _l_# w for all w G S.

This theorem reduces to Theorem 3.5.15 in the case H = I. It can be proved by
a straightforward generalization of the proof of Theorem 3.5.15.

Applying Theorem 7.7.3 to our current scenario, we see that || e^ \\ A is minimized
when p 6 Sj is chosen so that the error e^ = e^ — p satisfies

Two vectors that are orthogonal with respect to the energy inner product are said to
be conjugate. Our goal now is to develop methods for which the error at each step is
conjugate to all of the previous search directions.

The following proposition shows that part of (7.7.4) is achieved by performing
exact line searches. As usual r(fc+1) denotes the residual 6 — Ax^k+1^.

Proposition 7.7.5 Let x^+1^ = x^ + otkP^ be obtained from an exact line search.
Thenr(k+V _L p<*> and e^+1) ±Ap(k}-

Proof. Successive residuals are related by the recursion r^+1^ = r^ — a^Ap^
(which appears as r <<— r — aq in all of our algorithms). Thus

since ak = {r<*>,p<*>)/(.ApW,pW), by Theorem 7.4.5.
It is easy to check that the error and the residual are connected by the sim-

ple equation Ae^k+l^ = r<*+1>. Therefore {e<*+1>,p(*>)A = (Ae^k+l\p^) =
( r<* + 1 > J p<*>) =0. D
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From the proof it is clear that Proposition 7.7.5 is basically a restatement of
Theorem 7.4.5. Both are special cases of Theorem 7.7.3, as Exercise 7.7.27 shows.

Proposition 7.7.5 is geometrically obvious. The minimum of J on the line x(k) +
αp(k) occurs when the directional derivative of J in the search direction is zero, the
directional derivative is just the dot product of the gradient with the direction, so the
directional derivative is zero exactly when the gradient (in this case, the residual) is
orthogonal to the search direction.

According to Proposition 7.7.5, after the first step we have e^ A P^ • This is
condition (7.7.4) in the case j = 1. It is clear from (1.1 A) that we would like to keep
all subsequent errors conjugate to p(0) . Since the errors are related by the recursion

e(fc+i) _ e(k) _ akp(k)^ we can accomplish this by forcing all subsequent search

directions to be conjugate to p^ . If we pick p^ so that p^ LA p(°) and perform
an exact line search, we get an x^ for which the error satisfies e^ A. A p^. We
thus have e^ LA P^ for i = 0, 1, which is (7.7.4) for j = 2. We can now keep all
subsequent errors conjugate to both p(°) and p^ by making all subsequent search
directions conjugate to p^ and p^ .

By now it is clear that we can achieve (7.7.4) by choosing our search directions in
such a way that p^ LA P^ for all i / j and doing exact line searches. A method
with these characteristics is called a conjugate direction method.

Theorem 7.7.6 If a method employs conjugate search directions and performs exact
line searches, then the errors e^ satisfy (7. 7.4) for all j. Furthermore

where Sj = span{p(0) , . . . ,p^~^ }.

Proof. We prove (7.7.4) by induction on j. For j = 1, (7.7.4) holds because the
line search is exact. Now let j be arbitrary and assume we have e^ LA P^ for
i = 0, ... ,j — 1. We have to show that e^+l^ LA P^ for i = 0, ... , j. Since

e(j+i) = e(j) _ a.p(i\ We have (e^'l\p^)A = (e(j\p(i))A - aj(p(-j\p^)A =

0 — 0 = 0 for i — 0, . . . , j — 1. Thus we need only establish e^+1^ LA P^ • But
this is true because the line search on step j + 1 is exact.

Once we have (7.7.4), the optimality property of e^ follows from Theorem 7.7.3,
as we have already seen. D

Choice of Search Directions

The conjugate gradient method is a conjugate-direction method that chooses search
directions by A-orthogonalizing the residual against all previous search directions.
The first search direction is p^ = r^ . Thus the first step of CG is the same as
the first step of steepest descent. After k steps with conjugate search directions
p(°\ . . . ,p(k\ the CG algorithm chooses
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where the coefficients Cki are chosen so that p(k+l) pW for i = 0 , . . . k. One
easily checks that p(fc+1) ±A P^ is satisfied if and only if

This is just the Gram-Schmidt process applied to the energy inner product.

Exercise 7.7.9 Verify that if p(k+1) is given by (7.7.7), then p(k+l) A p(i) if and only if cki

is given by (7.7.8). O

As long as r(k+1) / 0, meaning the algorithm has not terminated, (7.7.7) yields a
nonzero p(k+1). To see this, note that the connection Ae^k+1^ = r^+1) implies that
(e(*+i) jp(0) = (r(

fc+1),p( i)). Therefore (7.7.4), with j = Jk + 1, implies

It now follows directly from (7.7.7) that

Thus (p(*+i) j r (*+i)) > 0 as long as r(fc+1) / 0. This implies that p(*+1> ^ 0.
It also implies (see Remark 7.4.6) that each CG step results in a strict decrease in
energy: J(x^+1)) < J(x^}.

We will make further use of both (7.7.10) and (7.7.11) later.

Exercise 7.7.12 Verify (7.7.10) and (7.7. 11). D

Exercise 7.7.13 Prove that the conjugate gradient algorithm arrives at the exact solution of
Ax = b in at most n iterations. D

Efficient Implementation

Now that the search directions have been specified, the description of the CG al-
gorithm is formally complete. However, it remains to be shown that the algorithm
can be implemented efficiently. Formulas (7.7.7) and (7.7.8) look like expensive
computations, and it appears that all of the previous search directions need to be
saved. Fortunately it turns out that all of the c^i are zero, except Ckk- Thus only one
coefficient needs to be computed by (7.7.8), and only the most recent search direction
p^ needs to be kept for (7.7.7), which turns into the elegant statement p <— r + ftp
in Algorithm 7. 6.1.

Proving that the c^ are zero requires some preparation. We begin by recalling
some terminology that we introduced in Section 6.3. Given a vector v and a positive
integer j, the Krylov subspace Kj (A, v) is defined by
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Theorem 7.7.14 After j steps of the conjugate-gradient algorithm (with r^ ^ 0 at
each step) we have

Proof. The proof is by induction on j. The theorem is trivially true for j = 0, since
p(°) — r(°). NOW assume that the spaces are equal for j = k, and we will show that
they are also equal for j — k + 1. Our first step is to show that

In light of the induction hypothesis, it suffices to show that r(fc+1) G JCk+2 (A, r^).
Recalling the recurrence r^k+1^ = r^ — otkAp^, we check the status of Ap(k">. By
assumptionpW e Kk+i(A,rW) = span{r<0),... ,Akr^}, so

Furthermore r<*> £ /C*+i(A,r<°>) C JCk+2(A,rW), so

This establishes (7.7.15).
Our next step is to establish

By the induction hypothesis,

so it suffices to show that p(fc+1) £ span{r(0) , . . . , r^+1^ }. But this follows imme-
diately from (7.7.7), using (7.7.17) once again.

Putting (7.7. 16) and (7.7.15) together, we see that the three subspaces of interest are
nested. We can show that they are equal by demonstrating that they all have the same
dimension. Since JCk+2 (A, r^ ) is spanned by a set of k + 2 vectors, its dimension is
at most k 4- 2. If we can show that the dimension of span {p(°\ . . . ,p(k+1^} is exactly
A; + 2, it will follow that all three spaces have dimension k + 2 and are therefore
equal. But we already know that p(°\ . . . ,p(k+1^ are nonzero and orthogonal with
respect to the energy inner product. Therefore they are linearly independent; they
form a basis for span{p(°) , . . . ,p(k+l^ }, whose dimension is therefore k + 2. D

The next result is an immediate consequence of Theorems 7.7.6 and 7.7.14.

Corollary 7.7.18 The error after j steps of the CG algorithm satisfies



DERIVATION OF THE CG ALGORITHM 587

The search directions p(0),..., p(k) form an energy-orthogonal basis of the Krylov
subspace Kk+i (A, r(0)). The residuals r(0),..., r^ also form a basis of the Krylov
subspace, and they also have an orthogonality property.

Corollary 7.7.19 The residuals r(°), r(1), r (2 ),... produced by the CG algorithm
are orthogonal with respect to the standard inner product. Hence

Proof. We need to establish that r(fc+1) _L r < ° > , . . . r<*> for all k. This follows
immediately from (7.7.10), since span{p(0),...,p^ } = span{r (0 ),..., r(/s)}. D

Now we are in a position to prove that CG can be implemented economically.

Theorem 7.7.20 For i = 0 , . . . , k — 1, the coefficients Cki defined by (7.7.8) are zero.

Proof. Referring to (7.7.8), we see that we need to show that (r( ' ,p(l))A = 0
for i = 0 , . . . , k - 1. Since (r(k+l\p(i}} A = (r^k+l\Ap^), it suffices to show
that r(fc+1) _L Ap^ for i < k. We can do this by applying Theorem 7.7.14
twice. We havepW 6 span{p<°>,... j p(<)} = Span{r< 0>, . . . , AM°>}, so Ap& <E

span{Ar(°>,...,A i+M0)} C £i+2(>l,r<0>) - span{r<°>,... ,r(
i+1)}. Since

r(*+i) is orthogonal to r < ° ) , . . . , r^+1> ifi<k, we conclude that r<*+1) JL ApW if
i < k. D

Thanks to Theorem 7.7.20, (7.7.7) reduces to the much simpler expression

where fa = —Ckk- This shows that p(fc+1) can be calculated inexpensively and
that the cost does not grow with k. It shows furthermore that there is no need to
save the old search directions p(°\ ... ,p^k~1\ so the storage requirement does not
grow with k. This is a remarkable fact. We embarked on the derivation of the CG
algorithm with the idea that we would improve on the method of steepest descent by
making use of information from previous steps. We found that by doing so we could
minimize the energy norm of the error over larger and larger subspaces. But now
(7.7.21) demonstrates that we can accomplish this without having to save much. All
the history we need is embodied in p^.

Theorem 7.7.20 relies heavily on the symmetry property A = AT. The importance
of symmetry is easily overlooked, because we have buried A in an inner product.
If A were not symmetric, the energy inner product would not be an inner product,
since we would not have (v, w)A = (w, v)A. If you worked through all the details
of this section, you undoubtedly noticed that we used this property from time to
time, sometimes in the form (Av, w} = (v, Aw}. The ability to group A with either
vector in the inner product is crucial to the development. For example, in the proof
of Theorem 7.7.20 we used the identity (r^k+l^p^)A = (r^k+l^Ap^).

With one more refinement, our development is complete.
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Proposition 7.7.22 The coefficient βk in (7.7.21) is given by

Exercise 7.7.23 Recalling that βk = -ckk, use (7.7.8), (7.4.11), Theorem 7.4.5, and (7.7.11)
to prove Proposition 7.7.22. D

We summarize our development as a prototype CG algorithm.

Prototype Conjugate-Gradient Algorithm

Thanks to (7.7.11) and Proposition 7.7.22, (r^ , r^) appears three times in the
loop. Once it has been computed, it gets used over and over. It can even be used in
the convergence criterion.

It is a simple matter to translate Algorithm 7.7.24 into Algorithm 7.6.1.

Exercise 7.7.25 Derive Algorithm 7.6. 1 from Algorithm 7.7.24. D

Relationship with the Symmetric Lanczos Process

Theorem 7.7.14 shows that the residuals of the CG process form orthogonal bases
for Krylov subspaces: span{r<0> , . . . , r^"1) } = Kj(A, r<°>), j = 1, 2, 3, . . .. This
suggests a connection between the CG algorithm and the Arnoldi process, which
also generates orthogonal bases for Krylov subspaces. Recall that when A is real
and symmetric, the Arnoldi process is called the symmetric Lanczos process. If we
start the symmetric Lanczos process with qi equal to a multiple of r^°^ , then the
vectors qi, q%, q^, ... that it produces will be proportional to r^°\ r^\ r^2), . . . ,
since an orthogonal basis for a sequence of nested spaces is uniquely determined
up to scalar multiples. (This is essentially the same as the uniqueness of QR
decompositions.) Thus the CG and Lanczos processes are producing essentially the
same quantities. The connection between CG and symmetric Lanczos is explored
further in Exercise 7.7.28. Because of this connection, it is possible to obtain
information about the spectrum of A while running the CG algorithm. Of course, if
a preconditioner is used, the information is about the eigenvalues of the transformed
matrix A, not A.
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Additional Exercises

Exercise 7.7.26 Prove Theorem 7.7.3. In other words, show that the proof of Theorem 3.5.15
remains valid in the more general context. D

Exercise 7.7.27 Consider the step x^k+1^ — x^ + otkP^ by an exact line search. Show that
cx.kP^ is the best approximation to e^ from the one-dimensional space spanned by
p(*>. Then apply Theorem 7.7.3 to conclude that e^k+l^ JLA p ( k ) . Thus Proposi-
tion 7.7.5 is a special case of Theorem 7.7.3. d

Exercise 7.7.28 In this exercise you will take a look at the relationships between the CG and
symmetric Lanczos algorithms. Referring to the prototype CG algorithm (7.7.24), the
update x(fc+1) «— #( fe) + otkp^ is of great interest to us since it brings us closer and
closer to the true solution. Notice, however, that it is not essential to the functioning
of the algorithm. Since x^ is not used in the computation of the coefficients o^ and
/3k, we could remove that line from the code, and it would still function perfectly,
producing the sequences of p^ and r^ vectors. Thus the essential updates in
(7.7.24) are r(fe+1) = r^ + akApW andp<fc+1) = r^k+^ + pkP

(k}- This is a pair
of two-term recurrences. In contrast, the Lanczos algorithm runs a single three-term
recurrence. In what follows we will view the vectors p^ and r^ as columns of
matrices, so let us modify the notation, writing Pk+i and r^+i in place of p^ and
r*(*). Define Rm = [ n • • • rm ], and define Pm analogously.

(a) Let qi, q2, #3, ... be the orthonormal vectors produced by the symmetric
Lanczos process, starting with qi, a multiple of r\ = r^. Let Qm =
[ Qi • • • <lm }• Show that Qm — RmDm, where Dm is a nonsingular
diagonal matrix, assuming all TJ are nonzero.

(b) Show that the recurrences p(k+^ = r<*+1> + pkp
(k) , k = 0, ... ,m - 2,

together with p(°) = r^°^ , can be rewritten as a matrix equation Qm = PmUm,
where Um is a bidiagonal, upper-triangular matrix.

(c) Show that the recurrences r^k+l"> = r^ + ctkApW, k = 0 , . . . , ra — 1, can
be rewritten as a matrix equation APm = QmLm + gm+i7TOe^, where Lm is
bidiagonal and lower triangular, and 7m is a scalar.

(c) Multiply the matrix equation from part (c) by Um on the right to obtain the
matrix equation

where Tm = LmUm. Show that Tm is tridiagonal. (The equation Tm =
L-mU-m is an LU decomposition of Tm.)

(d) Show that Tm is symmetric. (Multiply (7.7.29) by on the left and use
orthonormality of the columns of Qm.)

Equation (7.7.29) is exactly the same as (6.3.20), which is the matrix statement of
the three-term recurrence of the symmetric Lanczos process. Thus we have obtained
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the Lanczos recursion from the CG recursions. Conversely, we can obtain the CG
recursions from the Lanczos recursion: Starting from (7.7.29), we can perform an
LU decomposition of TTO, introduce vectors Pm by . and arrive at a
pair of two-term recurrences equivalent to the CG algorithm. D

7.8 CONVERGENCE OF THE CG ALGORITHM

In this section we explore the convergence properties of the CG algorithm. All of the
results given here are stated for the unpreconditioned algorithm. To get analogous
results for the preconditioned CG method, just replace A by the transformed matrix
A = R-TAR-1.

Theorem 7.8.1 The CG algorithm, applied to an n x n positive definite system
Ax = b, arrives at the exact solution in n or fewer steps.

Proof. If we have taken n — 1 steps without getting to x, the nonzero residuals
r(°), . . . , r^71"1) form an orthogonal basis of En, by Corollary 7.7.19. After n steps,

Since r(n) is orthogonal to an entire basis of En, we must have r^ = 0, e^ = 0,
and x^ = x. D

Exercise 7.8.2 Devise two other proofs of Theorem 7.8.1 based on (a) e^ ±A P^, (b)
minimization of energy norm. d

Theorem 7.8.1 holds for any conjugate-direction method that performs exact line
searches. At each step the dimension of the space in which the search is taking
place is reduced by one, because each new search direction is conjugate to all of the
previous ones.

Theorem 7.8.1 is an interesting property, but it is not of immediate practical
importance. Consider, for example, model problem (7.1.8) with h = 1/40. The
dimension of the coefficient matrix is 392 = 1524, so the CG algorithm (ignoring
roundoff errors) is guaranteed to get to the exact solution in 1524 steps or fewer. In
fact we would like to get close in a lot fewer steps than that, and Example 7.6.5 shows
that we can. In that example, the CG algorithm with SSOR preconditioner was able
to get a satisfactory approximation in about 30 iterations.

We will ignore the finite-termination property, by and large, and continue to view
CG as an iterative method. Above all, we want to know how quickly the iterates get
close to x. The following theorem gives some information along those lines.

Theorem 7.8.3 The conjugate gradient errors e^ — x — x^ satisfy
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A proof of Theorem 7.8.3 is outlined in Exercise 7.8.13. It is built on material that
is yet to come in this section and the properties of Chebyshev polynomials developed
in Exercise 6.3.38.

Theorem 7.8.3, like all rigorous error bounds, tends to be pessimistic, because it is
built by stringing together a number of estimates, some of which may be quite crude.
Theorem 7.8.1 shows that for j > n it is certainly very pessimistic. Of course, we
normally expect to stop long before j approaches n.

Even though it is pessimistic, Theorem 7.8.3 does give us useful information
about the performance of CG. The convergence rate is no worse than linear, with
convergence ratio

From this ratio it is clear that we can guarantee rapid convergence by making A
well conditioned. This reinforces the idea, stated initially for the steepest descent
algorithm, that performance can be improved by using a preconditioner that lowers
the condition number of the matrix.

Example 7.8.4 Consider the matrix A of the model problem (7.1.8). In Exer-
cise 7.3.37 you showed that K2(A) = cot2(?r/i/2). Thus and

To make a comparison with the SOR method, we refer to Table 7.5, which states
that SOR with optimal u has linear convergence with ratio p(G) w 1 — 2irh. This
suggests that optimal SOR will converge in about half as many iterations as CG with
no preconditioner. However, it is not fair to compare the two convergence rates too
closely. The rate for SOR is precise, whereas the rate for CG is a crude upper bound.
It would be fairer to say that, at worst, unpreconditioned CG converges at roughly
the same rate as optimal SOR. This conclusion is consistent with what we observed
in Examples 7.2.21 and 7.6.2.

We can expect CG to do much better if we use a preconditioner that effectively
replaces A by a transformed matrix A for which ̂ (A) <C K>2(A). d

Exercise 7.8.5 Use Taylor expansions to verify the approximations made in Example 7.8.4.
D

The proof of Theorem 7.8.3 will make use of the fact that CG minimizes the energy
norm of the error over subspaces of greater and greater dimension (Theorem 7.7.6).
In the remainder of this section, we elaborate on this optimality property and derive
some consequences that allow us to prove Theorem 7.8.3 and other useful properties
of the CG method.

Theorem 7.8.6 The iterates of the CG algorithm satisfy
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Proof. This is basically a restatement of Theorem 7.7.6. Theorem 7.7.14 shows that
the space Sj of Theorem 7.7.6 is none other than the Krylov subspace )Cj(A, r^).
Given p £ Sj, let y = x^ + p € x^ + Sj. Then, since x — y = e^ — p, we see
that minimizing || e^ — p \\A over all p in the subspace Sj is the same as minimizing
II x ~ y \\A over a^ y m tne shifted subspace x^ + Sj. D

The Krylov subspace )Cj(A:r^} is the set of all linear combinations of r^°\
ArW , . . . , A3 '-1 r<°) . Thus a generic member of JCj (A, r<°> ) has the form

where q(z) — c0 + c\z + • • • + GJ-\Z^ l is a polynomial of degree less than
j. Conversely, given any polynomial q of degree less than j, the vector q(A)r^
belongs to fcj (A, r(0)). Let PJ-I denote the space of all polynomials of degree less
thanj. Then

We have noted in Theorem 7. 8.6 that x^ is the optimal member of z (0)+/Cj( A, r(°>)
in a certain sense. Let z denote an arbitrary element of x^ + ICj(A, r^}. Then
z — x(°) + q(A)r(°) for some q 6 PJ-I- Viewing z as an approximation to x, we
consider e = x — z. Then, recalling that r^°^ = Ae^Q\ we have

where p(z) = 1 — zq(z). Note that p 6 Pj and p(0) = 1. Conversely, for any
p G Pj satisfy ing p(0) = 1, there exists q e PJ-I such thatp(z) = 1 — zq(z). Thus
e = x — z for some z E 0^°) + £j(-A, r^) if and only if e = p(A)e^ for some
p 6 Pj satisfying p(0) = 1. This observation allows us to rewrite Theorem 7.8.6 as
follows.

Theorem 7.8.7 Let x^ be the jth iterate of the CG method, and let e^ — x - x^.
Then

where Pj denotes the space of polynomials of degree less than or equal to j.

This theorem enables us to obtain a useful bound on \\e^ \\A in terms of the
eigenvalues of A. To this end, let vi,... ,vn be a complete orthonormal set of
eigenvectors of A. Then DI , . . . , vn is a basis of Mn, so

where c\,..., cn are uniquely determined (but unknown) coefficients. Let AI , . . . , An

denote the eigenvalues associated with i > i , . . . ,vn, respectively. Then p(A}vk =
p(Afc)ffc for all k, so
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Combining this expansion with Theorem 7.8.7, we obtain

To get a result that does not make reference to the unknown coefficients c i , . . . , cn,
notice that

and therefore

Combining this observation with (7.8.8), we obtain the following theorem.

Theorem 7.8.9 Lete^ — x — x^ be the error after j iterations of the CG algorithm
applied to a matrix A with eigenvalues AI , . . . , An. Then

i

where Pj denotes the space of polynomials of degree less than j + 1.

Theorem 7.8.3 follows from Theorem 7.8.9 by taking p to be an appropriately
normalized Chebyshev polynomial. See Exercise 7.8.13.

If we divide both sides of the inequality in Theorem 7.8.9 by || e^ \\A, we obtain

The left-hand side is a ratio that measures how much better x^ approximates x than
#(°) does. In problems for which we have no a priori information about the solution,
the initial guess x^ = 0 is as good as any. In this case we have e^ = x, and the
left-hand side of (7.8.10) becomes \\x — x^ \\A/\\X\\A> which is me relative error
in the approximation of x by x^. Thus the relative error is bounded above by a
quantity that depends only on the eigenvalues of A. This is the "no information"
case. In cases where we have some a priori information about x, we can usually
choose an x^ for which || e^ \\A < \\x\\ A, thereby obtaining a better result.
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Theorem 7.8.9 leads to yet another proof of the finite termination property of CG.
Taking j = n we see that for any p e Pn with p(0) = 1 we have

Nowletp(z) = c(z — AI) • • • (z — An) G Pn, where c is chosen that p(0) = 1. (This
is possible because all of the Xj are nonzero.) For this p the right-hand side of the
(7.8.11) is zero, so e^ = 0, i.e. z(n) = x.

The finite termination property can be sharpened in the following way.

Theorem 7.8.12 Suppose A has only j distinct eigenvalues. Then the CG algorithm
terminates with the exact solution in at most j steps.

Proof. Let Hi,..., p,j be the distinct eigenvalues of A. Let p(z) = c(z — µi) • • • (z —
µ , j ] , where c is chosen so that p(0) = 1. Then p € Pj and p ( λ k ) = 0 for
k = 1,..., n, so e^ = 0 by Theorem 7.8.9. D

Thus termination will take place quite early if the matrix that has only a few
distinct eigenvalues of high multiplicity. More generally, consider a matrix whose
eigenvalues are located in j tight clusters, where j <C n. Choosep(z) — c ( z — µ \ ) ( z —
µ2} • • • (z — µ j ] , where µ i , - • • ,µj are representatives of the j distinct clusters. Since
every eigenvalue λk is close to one of the µ,m, and every p(µm} is zero, max \ p ( λ k ) \

k

will be small. Therefore, by Theorem 7.8.9, II e^ IL will be small. We conclude-* 11 11 ./-i

that if A is a matrix whose eigenvalues lie in j tight clusters, then Xj will be close to
x.

A preconditioner that makes the condition number small is actually pushing the
eigenvalues into a single cluster, as the condition number is just the ratio A n /Ai .
Now our discussion shows that a single cluster is not really needed. A preconditioner
that can push the eigenvalues into a few clusters will also be effective. In particular,
if the eigenvalues are pushed into one cluster with a few outliers, this is no worse
than having a few clusters.

Additional Exercises

Exercise 7.8.13 In this exercise you will prove Theorem 7.8.3. Let the eigenvalues of A be
numbered in the order AI < • • • < An. From Theorem 7.8.9 we see that we can show
that \\e^ \\A is small by finding a polynomial PJ 6 Pj for which Pj(0) = 1, and
p3; ( AI ), PJ (\2), . . . , PJ (An) are all small. One way to ensure that all of the PJ (\m}
are small is to make PJ small on the entire interval [λi, λn]. The best tool for this
task is a shifted, scaled Chebyshev polynomial.

(a) Determine the affine transformation w = ax + ft that maps [Ai, An] onto
[—1,1], with \n -> — 1 and AI —>• 1. Show that this tranformation maps
0->(λn + λ1)/λn-λ1).
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(b) Let

where Tj is the jth Chebyshev polynomial (Exercise 6.3.38). Then evidently
PJ e PJ andpj(O) = 1. Show that

and

(c)Show that if t, > 0 and x — cosht > 1, then el = cosht + siuht =
Show further that if x = («2(A) + 1)/(K2(A) - 1), then

(d) In part (f) of Exercise 6.3.38 we showed that if x > 1, and t > 0 is such
that x = cosht, then Tj(x] > ^{e1}^ for all j. Use this bound with x =
(^(A) + 1)/(«2(A) — 1), together with the identity from part (c), to show
that (for this particular x)

(e) Put the pieces together to prove Theorem 7.8.3.

D

Exercise 7.8.14 In this exercise you will show that the convergence rate of the CG method
is sometimes much better than Theorem 7.8.3 would indicate. Before working this
exercise, you need to have worked Exercise 7.8.13. Suppose the spectrum of A
consists of a tightly packed kernel of eigenvalues plus a few outliers. Let AI, . . . ,
\i denote the outliers, and suppose the remaining eigenvalues are ordered so that
AZ+I < ••• < An. Define a "reduced condition number" k = An/Aj+i. This
is the condition number of the operator obtained by restricting A to the invariant
subspace associated with the non-outlier eigenvalues. If the furthest outlier is far
from the tightly packed core, K will be significantly smaller than ^(A). Let Qi(x] =
c(x — \i}(x — \z) • • • (x — Aj), where c is chosen so that ̂ (0) = 1. For each j define
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Then evidently pi+j G P%+j, Pi+j(0) = 1, Pi+j(\k) = 0 for A; = 1,... ,i, and
\pi-\-j | i s small on [Aj+i, An]. L e t D r a w i n g on techniques

from Exercise 7.8.13, prove that

This shows that after the ith iteration, the convergence rate is governed by K instead
of K2 (A). Thus we have much faster convergence than we would have expected from
looking at K^ (A) alone. D

Exercise 7.8.15 Show that the iterates of the preconditioned CG algorithm with preconditioner
M satisfy

where a(°) = Af-M°>. D

7.9 KRYLOV SUBSPACE METHODS FOR INDEFINITE AND
NONSYMMETRIC PROBLEMS

The CG algorithm is one of a large class of algorithms known as Krylov subspace
methods because they generate sequences of Krylov subspaces. CG was designed
for symmetric, positive-definite matrices. For other types of matrices other Krylov
subspace methods have been developed. In this section we will give a brief overview
of some of the more popular methods. For more information see [5], [26], [34], or
[35].

Let us begin with symmetric, indefinite matrices. First of all, even though the
CG algorithm was designed for positive-definite matrices, it is possible to run CG
on indefinite problems, often successfully. However, the algorithm can occasionally
break down, since the computation of o>k in (7.7.24) requires division by (Ap(k\p^ ) ,
which can be zero if A is indefinite.

It is natural to ask whether there are algorithms for symmetric indefinite matrices
that are like CG but do not break down. Fortunately the answer is yes. The symmetric
Lanczos process (6.3.23), which generates a sequence of Krylov subspaces via the
economical 3-term recurrence
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works for all symmetric matrices, definite or not.5 Thus we can use the Lanczos
process to generate the Krylov subspaces.

But now there is a second question. How do we pick an appropriate approximation
from the Krylov subspace? CG minimizes \\e^ \\A, the energy norm of the error.

Since r^ = Ae^, we have II e^ II4 = e^TAe^ = r^T A~lr^ = IIr^ IL.x,11 M _/i ii 11 ./-i

so CG is also minimizing the A"1-norm of the residual. In the indefinite case,
neither \\x\\A nor H ^ U ^ i is meaningful. The definitions and

make no sense, since the quantities under the square root
signs can be negative. Thus we need another criterion for choosing an approximate
solution. The simplest idea is to choose x^ so that \\r^ ||2, the Euclidean norm
of the residual, is minimized. Just as for CG, the minimization is taken over the
translated Krylov subspace x^ + K,j(A:r^). The resulting algorithm is called
MINRES (MINimum RESidual) [53].

This procedure can also be carried out for nonsymmetric problems. In this case
the Krylov subspaces have to be generated by the Arnoldi process (6.3.6) instead
of the symmetric Lanczos process. The algorithm that does this, choosing x^ to
minimize || r^ ||2 at each step, is called GMRES (Generalized Minimum RESidual)
[60]. The Arnoldi process does not use short recurrences. We see from (6.3.3)
that the computation of each new vector requires all of the previous vectors. Thus
with each step of the algorithm, storage space for one more vector is needed. The
amount of arithmetic per step also increases linearly. These considerations place
severe restrictions on the number of GMRES iterations if A is extremely large.
Therefore it is a common practice to run GMRES in "restart mode." GMRES(m) is
the variant of GMRES that restarts the Arnoldi process every ra iterations, using the
most recent iterate as the new initial guess. In this mode the storage requirement is
held to O(m) vectors. Unfortunately convergence is not guaranteed. It is difficult to
know in advance how big m needs to be in order to ensure success. In spite of its
shortcomings, GMRES has been very popular.

The algorithms that we have discussed so far choose the new iterate at each step
by a minimization criterion. Other algorithms use a criterion based on orthogonal-
ization. Recall that the CG algorithm chooses x^ so that the error e^ is orthogonal
to K,j(A,rW) in the energy inner product, that is, e^ LA K.j(A,r^) (Corol-
lary 7.7.18). This is equivalent to the residual being orthogonal to )Cj(A, r^) in the
standard inner product: rw _L /Q(A,r (°)) (Corollary 7.7.19).

For CG (with positive definite A) the orthogonality property is linked directly to
the minimality of \\e^ \\A and \\r^ \\A-i via Theorem 7.7.3, using the energy inner
product. In the indefinite and nonsymmetric cases this connection breaks down, since
we no longer have the energy inner product at our disposal. This does not stop us

5In Exercise 7.7.28 the connection between the Lanczos and CG recursions was discussed. It was observed
that to get from the Lanczos to the CG recursion an LU decomposition of the tridiagonal matrix T is
needed. In the positive definite case, the LU decomposition always exists, but in the indefinite case it may
not. The CG algorithm breaks down in exactly those situations where the LU decomposition (without
pivoting) fails to exist.
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from building an algorithm that chooses x^ so that the Galerkin condition

is satisfied. The algorithm SYMMLQ [53] operates on symmetric indefinite matrices,
generates Krylov subspaces by the symmetric Lanczos process, and chooses x^ at
each step in such a way that (7.9.1) is satisfied. This criterion does not correspond to
the minimization of r^ in some norm, so SYMMLQ is different from MINRES. The
algorithm can break down occasionally, because it can happen that (7.9.1) has either
no solution or infinitely many solutions. Breakdown at one step does not preclude
moving onto the next step, since the underlying symmetric Lanczos process does not
break down. However, MINRES is generally preferred over SYMMLQ.

Another question that arises naturally is this. In the nonsymmetric case, are
there Krylov subspace methods that use short recurrences, thereby circumventing
the storage and execution time difficulties of GMRES? Perhaps we can build such
a method based on an orthogonality criterion like (7.9.1) instead of a minimization
criterion. It turns out that we can, but we have to give up on orthogonality and settle
for the weaker condition known as biorthogonality. The biconjugate-gradient (BiCG)
algorithm is a generalization of the CG algorithm that generates sequences of dual
vectors , . . . along with the primal vectors.

Prototype BiCG Algorithm

Comparing (7.9.2) with (7.7.24), we see that they are almost identical, except that
(7.9.2) has extra recurrences to generate the dual vectors. If A is symmetric and

for all k, and (7.9.2) collapses to
(7.7.24).

The vectors generated by (7.9.2) satisfy several useful relationships, which are
proved in Exercise 7.9.6. Generalizing Theorem 7.7.14 we have

and the dual relationship
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for all j. In addition the r^ sequence is biorthogonal to the sequence, that
is, if j ^ k. Normally we have If not, the
algorithm breaks down, since it then becomes impossible to compute fik. Restating
the biorthogonality conditions in terms of subspaces, we have the Petrov-Galerkin
conditions

generalizing Corollary 7.7.19. The sequences also satisfy a sort of
biorthogonality condition, namely = 0 if j ^ k.
Normally If not, the algorithm breaks down, since it is then
impossible to compute a.k •

The convergence of BiCG is sometimes erratic. A number of improvements
have been proposed. The algorithm QMR (Quasi Minimum Residual) [27, 28] uses
essentially the BiCG recurrences to generate the Krylov subspaces but uses a criterion
for choosing the approximate solution x^ that is based on a quasi-minimization of
the residual. Because the recurrences can sometimes break down, QMR is also often
used with a "look ahead" feature that circumvents breakdowns.

A feature of BiCG and QMR that is sometimes a drawback is that each step
requires a matrix-vector multiplication by AT. In some applications the definition
of A is so complex (a long subroutine) that it is not clear how to compute AT. In
such situations one needs an algorithm that does not use AT. One such algorithm is
BiCGSTAB (BiCG STABilized) [74], which replaces the AT evaluation by a second
A evaluation and also offers much smoother convergence. There is also a transpose-
free version of QMR. Another popular algorithm of this type is called CGS (CG
Squared) [65].

The algorithms BiCG, QMR, BiCGSTAB, and CGS are all based on short recur-
rences, so the memory and computation requirements per step do not increase as the
algorithm proceeds, in contrast to GMRES.

All of the methods described in this section can be enhanced by the use of precon-
ditioners. In the nonsymmetric case there is no need for a symmetric preconditioner.
Incomplete LU decompositions are popular, but there is no end to the variety of
preconditioners that have been tried.

Of the many iterative methods for solving nonsymmetric systems, there is no clear
best choice.

MATLAB provides implementations of GMRES, BiCG, BiCGSTAB, CGS, and
QMR (without "look ahead"). These are not the most efficient implementations, but
they are convenient.

Exercise 7.9.3 Using the MATLAB m-file condif.m shown in Exercise 1.9.3, generate a
matrix A = condif ( n , c ) . Take n = 50 (or larger) and c = [ 0 . 2 5] .
This 2500 x 2500 nonsymmetric sparse matrix is a discretized convection-diffusion
operator. Try out some of MATLAB's iterative solvers on this matrix. For example,
try

n = 50; c = [.2 5]; A = condif(n,c);

nn = n^2; sol = randn(nn,1); % random solution vector

b = A*sol; % right-hand side vector
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tol = le-12; maxit = 1000;

x = bicg (A, b, tol , maxit)

error = norm(x-sol)

Type help bicg for more information on how to use BiCG. After experimenting
with BiCG, try QMR, BiCGSTAB, CGS, and GMRES. D

Exercise 7.9.4 MATLAB provides a routine luinc that computes incomplete LU decom-
positions to use as preconditioners. Repeat Exercise 7.9.3 using a preconditioner.
For example, try

droptol = le-1;
[M1,M2] = luinc (A, droptol );

spy (A)
spy(Ml+M2)

x = bicg { A, b, tol, maxit, Ml, M2)
error = norm(x-sol)

Try the various iterative methods. How does the preconditioner affect your results?
Try a variety of drop tolerances. How does varying the drop tolerance affect the
sparseness of Ml and M2 and the effectiveness of the preconditioner? D

Exercise 7.9.5 Read more about MATLAB 's iterative solvers. Figure out how to make them
produce (residual) convergence histories. Then print out some convergence histories
on semilog plots. For example, try

[x, f lag, relres , iter , resvecl] = bicg(A,b, tol, maxit, Ml, M2) ;

xl = 1 : size (resvecl , 1) ;

semilogy (xl , resvecl , 'b- '); % makes a blue solid line
Try comparing the convergence histories of BiCG, QMR, and GMRES, for example,
in a single plot. D

Exercise 7.9.6 Consider the BiCG algorithm (7.9.2) with the line p(*+1) <- r^+1) + 0kp
(k)

replaced by an expression of the form (7.7.7) and the dual line
replaced by an analogous expression with coefficients

(a) Suppose the biorthogonality conditions
iff i ^ j hold for i < k and j < k. Show that and

for j < k + I if and only if

(7.9.7)
Thus we will use these values for Cki and from this point on, to ensure
biorthogonality.

(b) Extending Theorem 7.7.14, prove by induction on j that

and
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so long as

(c) Using the recurrences for from (7.9.2), the biorthogonality
from part (a), the subspace equalities from part (b), and the definition of &k
from (7.9.2), prove by induction that = 0 if i ^ j.

(d) Using arguments like those in the proof of Theorem 7.7.20, show that Cki = 0
and if i < k.

(e) Show that where ̂  is as defined in (7.9.2). This completes
the justification of (7.9.2).

n
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Appendix A
Some Sources of Software
for Matrix Computations

High-quality linear algebra software is available for free on the worldwide web. One
of the most important sites is NETLIB:

http://www.netlib.org/

which offers numerical analysis software of all kinds. In particular we mention
LAPACK [1], a large suite of Fortran routines for computations on dense matrices.
There is also a C version called CLAPACK and a parallel version for distributed
memory machines called ScaLAPACK [8]. The older packages LINPACK [18] and
EISPACK [64] are also still available from NETLIB.

Another important site is the Guide to Available Mathematical Software (GAMS)
at the National Institute of Standards and Technology (NIST):

http://gams.nist.gov/

which can help you locate mathematical software of all types.
MATLAB is proprietary software. If MATLAB is not already available to you,

you can buy it from The Math Works at

http://www.mathworks.com/store/

603



This page intentionally left blank 



References

1. E. Anderson et al. LAPACK Users' Guide. SIAM, Philadelphia, Third edition,
1999. http://www.netlib.org/lapack/lug/lapack_lug.html.

2. W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quart. Appl. Math., 9:17-29, 1951.

3. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
Philadelphia, 2000.

4. Z. Bai, J. Demmel, and M. Gu. Inverse free parallel spectral divide and conquer
algorithms for nonsymmetric eigenproblems. Numer. Math, 76:279-308,1997.

5. R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia, 1994.

6. G. A. Birkhoff and R. E. Lynch. Numerical Solution of Elliptic Problems. SIAM
Studies in Applied Mathematics. SIAM, Philadelphia, 1984.

7. A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
1996.

8. L. S. Blackford et al. ScaLAPACK Users' Guide. SIAM, Philadelphia, 1997.
www.netlib.org/scalapack/slug/scalapack_slug.html.

9. T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica,
pages 61-143, 1994.

605



606 REFERENCES

10. P. Concus, G. H. Golub, and D. P. O'Leary. A generalize conjugate gradient
method for the numerical solution of elliptic partial differential equations. In
J. R. Bunch and D. J. Rose, editors, Sparse Matrix Computations, New York,
1976. Academic Press.

11. J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric
Eigenvalue Computations. Birkhaiiser, Boston, 1985.

12. J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal
eigenproblem,. Numer. Math., 36:177-195,1981.

13. J. Demmel and B. Kågstrom. The generalized Schur decomposition of an arbi-
trary pencil A — XB: robust software with error bounds and applications. ACM
Trans. Math. Software, 19:160-201,1993.

14. J. Demmel and K. Veselic. Jacobi's method is more accurate than QR. SIAM J.
Matrix Anal. Appl, 13:1204-1246,1992.

15. J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

16. I. S. Dhillon. A New O(n2} Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem. PhD thesis, University of California, Berkeley,
1997.

17. I. S. Dhillon and B. N. Parlett. Orthogonal eigenvectors and relative gaps.
LAPACK Working Note 154. Submitted to SIAM J. Matrix Anal. Appl., 2000.

18. J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. UNPACK Users'
Guide. SIAM, Philadelphia, 1979.

19. J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine. SIAM Review,
26:91-112,1984.

20. J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the symmetric
eigenvalue problem. SIAM J. Sci. Stat. Comput., 8:sl39-sl54,1987.

21. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, 1986.

22. K. V. Fernando and B. N. Parlett. Accurate singular values and differential qd
algorithms. Numer. Math., 67:191-229,1994.

23. G. E. Forsythe and P. Henrici. The cyclic Jacobi method for computing the
principal values of a complex matrix. Trans. Amer. Math. Soc., 94:1-23, 1960.

24. G. E. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1967.

25. J. G. F. Francis. The QR transformation, parts I and II. Computer J., 4:265-21'2,
332-345, 1961.



REFERENCES 607

26. R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear
systems. Acta Numerica, 1:57-100, 1992.

27. R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for
non-hermitian linear systems. Numer. Math., 60:315-339,1991.

28. R. W. Freund and N. M. Nachtigal. An implementation of the QMR method
based on coupled two-term recurrences. SIAM J. Sci. Comput., 15:313-337,
1994.

29. F. R. Gantmacher. The Theory of Matrices. Chelsea Publishing Co., New York,
1959.

30. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

31. G. H. Golub. Numerical methods for solving linear least squares problems.
Numer. Math., 7:206-216,1965.

32. G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse
of a matrix. SIAM J. Numer. Anal, 2:202-224,1965.

33. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, Third edition, 1996.

34. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadel-
phia, 1997.

35. M. H. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of
equations. Acta Numerica, 6:271-397, 1997.

36. W. Hackbusch. Iterative Solution of Large, Sparse Systems of Equations, vol-
ume 95 of Applied Mathematical Sciences. Springer-Verlag, 1994.

37. C. R. Hadlock. Field Theory and Its Classical Problems. The Carus Mathematical
Monographs. Mathematical Association of America, 1978.

38. L. A. Hageman and D. M. Young. Applied Iterative Methods. Academic Press,
New York, 1981.

39. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Standards, 49:409-436,1952.

40. D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, 2000.

41. N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-
phia, 1996.

42. R. A. Horn and C. A. Johnson. Matrix Analysis. Cambridge University Press,
1985.



608 REFERENCES

43. A. S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell,
New York, 1964. Reprinted by Dover, New York, 1975.

44. C. G. J. Jacobi. Uber ein leichtes Verfahren die in der Theorie der
Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen. /. Reine
Angew. Math., 30:51-94,1846.

45. V. N. Kublanovskaya. On some algorithms for the solution of the complete
eigenvalue problem. USSR Comput. Math, and Math. Phys., 3:637-657,1961.

46. P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press,
Second edition, 1985.

47. C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Nat. Bur. Stand., 45:255-282,
1950.

48. C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs, NJ, 1974.

49. R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users'
Guide: Solution of Large-Scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi Methods. SI AM, Philadelphia, 1998.
http://www.caam.rice.edu/software/ARPACK/index.html.

50. G. S. Minimis and C. C. Paige. Implicit shifting in the QR and related algorithms.
SIAMJ. Matrix Anal. AppL, 12:385-400,1991.

51. C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue
problems. SIAMJ. Numer. Anal., 10:241-256, 1973.

52. M. L. Overton. Numerical Computing with IEEE Floating Point Arithmetic.
SIAM, Philadelphia, 2001.

53. C. Paige and M. Saunders. Solution of sparse indefinite systems of linear equa-
tions. SIAMJ. Numer. Anal., 12:617-629,1975.

54. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood
Cliffs, NJ, 1980. Reprinted by SIAM, Philadelphia, 1997.

55. B. N. Parlett. The new qd algorithm. Acta Numerica, 4:459^91, 1995.

56. B. N. Parlett and I. S. Dhillon. Relatively robust representations of symmetric
tridiagonals. Linear Algebra Appl., 309:121-151,2000.

57. H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Z. angew. Math.
Physik, 5:233-251,1954.

58. H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Number 7 in Mitt.
Inst. angew. Math. ETH. Birkhauser, Basel, 1957.



REFERENCES 609

59. H. Rutishauser. Solution of eigenvalue problems with the LR-transformation.
Nat. Bur. Standards Appl. Math. Series, 49:47-81, 1958.

60. Y. Saad and M. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856—869,
1986.

61. R. D. Skeel. Iterative refinement implies numerical stability for Gaussian elimi-
nation. Math. Comp., 35:817-832,1980.

62. G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi-Davidson iteration method
for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17:401-425,1996.

63. B. F. Smith, P. E. Bj0rstad, and W. D. Gropp. Domain Decomposition: Par-
allel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge
University Press, 1996.

64. B. T. Smith et al. Matrix Eigensystem Routines — EISPACK Guide. Springer-
Verlag, New York, Second edition, 1976.

65. P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAMJ. Sci. Statist. Comput., 10:36-52, 1989.

66. G. W. Stewart. Error and perturbation bounds for subspaces associated with
certain eigenvalue problems. SIAM Review, 15:727-764,1973.

67. G. W. Stewart. Introduction to Matrix Computations. Academic Press, New
York, 1973.

68. V. Strassen. Gaussian elimination is not optimal. Numer. Math, 13:354-356,
1969.

69. J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations.
Chapman and Hall, New York, 1989.

70. A. E. Taylor and D. C. Lay. Introduction to Functional Analysis. Krieger,
Malabar, FL, Second edition, 1986.

71. L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. SIAM, Philadelphia,
1997.

72. A. M. Turing. Rounding-off errors in matrix processes. Quart. J. Appl. Math.,
1:287-308,1948.

73. E. E. Tyrtyshnikov. A Brief Introduction to Numerical Analysis. Birkhauser,
Boston, 1997.

74. H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 13:631-644,1992.



610 REFERENCES

75. P. Van Dooren. The computation of Kronecker's canonical form of a singular
pencil. Linear Algebra Appl., 27:103-141,1979.

76. R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ,
1962.

77. D. S. Watkins. Fundamentals of Matrix Computations. John Wiley and Sons,
New York, First edition, 1991.

78. D. S. Watkins. Performance of the QZ algorithm in the presence of infinite
eigenvalues. SIAM J. Matrix Anal. Appl, 22:364-375,2000.

79. D. S. Watkins and L. Eisner. Convergence of algorithms of decomposition type
for the eigenvalue problem. Linear Algebra Appl., 143:19-47, 1991.

80. D. S. Watkins and L. Eisner. Theory of decomposition and bulge-chasing al-
gorithms for the generalized eigenvalue problem. SIAM J. Matrix Anal. Appl.,
15:943-967,1994.

81. J. H. Wilkinson. The Algebraic Eigenvalue Problem,. Clarendon Press, Oxford
University, 1965.

82. J. H. Wilkinson. Kronecker's canonical form and the QZ algorithm. Linear
Algebra Appl, 28:285-303,1979.

83. J. H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Computation,
Volume II, Linear Algebra. Springer-Verlag, New York, 1971.

84. D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, New
York, 1971.



Index

Abel, N. H., 310, 478
Absolute value of a matrix, 159, 176
Algebraic multiplicity, 306, 417
Ammar-Dillo conjecture, 604
Angle between two vectors, 186
Arnoldi process, 435

implicitly restarted (IRA), 451
Arrowhead matrix, 63
Augmented matrix, 71
Back substitution, 29
Backward error analysis, 145
Backward stability, 146

and residual, 146, 463
componentwise, 161,179
normwise, 161
of Cholesky's method, 164
of forward substitution, 159
of Gaussian elimination, 162
of matrix multiplication, 211
of rotators and reflectors, 206, 211

Band width, 54
Banded matrix, 54
Basis (of a subspace), 224
Bauer's Theorem, 173
Bauer-Fike Theorem, 463
Best approximation theorem, 243, 583
BiCGSTAB, 599
Biconjugate-gradient (BiCG) algorithm, 598
Bidiagonal matrix, 402

proper, 405

Biorthogonal vectors, 465, 599
Bisection method, 483
BLAS, 102
Block Gaussian elimination, 90
Block iteration, 541
Bucky ball, 64
Bulge-chasing algorithm, 375, 380, 407,486, 513
Bunch-Kaufman algorithm, 106
Cache, 10
Cancellation, 144

in Gaussian elimination, 151
Catastrophic cancellation, 144
Cauchy-Schwarz inequality, 113, 186
CGS, 599
Characteristic equation, 305, 505
Characteristic polynomial, 305, 505
Chebyshev acceleration, 550
Chebyshev polynomials, 448

and convergence of CG algorithm, 594
and convergence of Lanczos process, 450

Cholesky decomposition, 34
downdating, 253, 255, 257
updating, 251

Cholesky's method
backward stability, 164
block, 45
bordered form, 43
inner-product form, 36
outer-product form, 42

Cofactor method, 103
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Column scaling, 171
Column space, 242
Companion matrix, 309
Complete pivoting, 104
Componentwise backward stability, 179
Condition number, 121

control of, 284
estimation of, 131
geometric view, 123, 128
of nonsquare matrix, 232
of simple eigenvalue, 466
of simple eigenvector, 471
of square matrix, 121
Skeel, 177

Conductance, 50
Conformable partition, 9
Congruence, 483

of matrix pairs, 509
Conjugate (vectors), 583
Conjugate transpose, 49
Conjugate-gradient (CG) method, 576

and Lanczos process, 588, 590, 597
as acceleration technique, 550
convergence of, 590
derivation, 581
preconditioned, 578

Contraction number, 315
Convection-diffusion operator, 107, 109
Convergence

cubic, 328
linear, 315
quadratic, 328
slower than linear, 315

Convergence rate, asymptotic (R (G)), 548
of classical methods, 549

Convergence ratio, 315
Cramer's rule, 105
Crout reduction, 81
Cubic convergence, 328
Cuppen's algorithm, 491

secular equation, 494
Curse of dimensionality, 529
Cuthill-McKee ordering, reverse, 64
Damped iteration, 553
Damped Jacobi method, 544
Damped pendulum, 299
Davidson's method, 458
Decomposition

Cholesky, 34
LDLT,84,479
LDV, 84
LR, 482
LU, 80
MD~1MT, 85
QR, 190
Schur, 337

singular value, 262
spectral, 339
twisted, 489

Defective matrix, 308
Deflation in the QR algorithm, 361
Departure from normality, 468
Descent method, 560

CG, 576
Gauss-Seidel, 561
preconditioned CG, 578
SOR, 562
steepest, 562

Determinant, computation of, 104
Diagonal matrix, 84
Diagonalization theorem, 335
Differential equations, 289, 502

asymptotically stable, 298
homogeneous linear, 291
nonhomogeneous linear, 294
nonlinear, 298
unstable, 298

Dimension (of a subspace), 224
Direct sum (of subspaces), 241
Direct vs. iterative methods, 310
Distance to nearest

rank-deficient matrix, 270
singular matrix, 274

Divide-and-conquer algorithm, 491
Domain decomposition, 549
Dominant eigenvalue, 314
Doolittle reduction, 81
Downdating QR

deleting a column, 254
deleting a row, 252

Dqds algorithm, 487
Duality in subspace iteration, 428
Eigenpair, 305
Eigenspace, 414
Eigenvalue, 305, 505

condition number, 466
Eigenvalues of normal matrices, 345
Eigenvector, 305, 505

condition number, 471
left, 331,465
right, 465

Elementary row operation, 71
Elimination

Gauss-Jordan, 105
Gaussian, 71

Energy inner product and norm, 582
Envelope of a matrix, 57
Equivalence

of linear systems, 70
of matrices, 262
of matrix pairs (pencils), 507
orthogonal, 262, 401
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Error analysis
backward vs. forward, 145
componentwise, 175
a priori vs. a posteriori, 137

Error, absolute vs. relative, 141
Euclidean norm, 112
Exact shift, 323,367
Exceptional shift, 367
Fast Poisson solver, 529
Fast rotators, 194
Fill-in, 63
Finite difference method, 18, 522, 524
Five-point stencil, 525
Floating-point

arithmetic, 139
IEEE standard, 140

Flop, 3
Fortran-90, 101
Forward substitution, 24

backward stability, 159
block, 30
column oriented, 27
row oriented, 24

Frobenius norm, 115
Full rank, 213
Fundamental subspaces, 241, 264
Galerkin condition, 447, 598

Petrov, 599
Gauss transform, 89, 210
Gauss-Jordan elimination, 105
Gauss-Seidel method, 533

as a descent method, 561
as smoother for multigrid, 544
block, 541
convergence rate, 549
line, 542
orderings, 536
red-black, 537
symmetric, 538

Gaussian elimination
backward stability, 162
block, 90, 102
column oriented, 100
generic, 91
inner-product formulation, 81
row oriented, 100
sparse, 106
with pivoting, 93
with small pivot, 154
without pivoting, 71

Generalized eigenvalue problem, 502, 505
Generalized inverse, Moore-Penrose, 277
Geometric multiplicity, 342, 417
Gerschgorin disk, 473
Givens rotator, 192
GMRES, 597

Gradient, 560
Gram-Schmidt process

and QR decomposition, 227
classical, 226-227
modified, 229
reorthogonalization, 233

Harmonic Ritz value, 461
Hermitian matrix, 49, 337
Hessenberg matrix, 329, 349

j-Hessenberg, 460
2-Hessenberg, 379
proper (unreduced), 365

Hessenberg-triangular form, 510
Hilbert matrix, 123, 150, 248
Householder transformation, 196
Hyperbolic transformation, 256
Hyperplane, 196
Ideal computer, 142
Idempotent, 195
Identity matrix, 12
IEEE floating-point standard, 140
Ill-conditioned matrix, 121
Implicit-Q theorem, 381, 408, 514
Implicitly restarted Arnoldi (IRA), 451
Inductance, 290
Induction, mathematical, 31
Inertia, 483
Inner product, 186,581-582

complex, 206
energy, 582
induced by H, 582
of functions, 247

Invariant subspace, 414
Inverse matrix, 12

computation of, 103
of a sparse matrix, 59
pseudoinverse, 277

Inverse power method (inverse iteration), 319
Invertible matrix, 13
IRA, 451
Isometric matrix (isometry), 221
Iterative refinement, 178
Iterative vs. direct methods, 310
Jacobi rotator, 477, 495
Jacobi's method

damped, 544
for eigenvalue problem, 477
for linear system, 531

block variant, 541
convergence rate, 549

Jacobi-Davidson method, 458
inexact solves, 459
purging, 459

Jacobian matrix, 299
Jordan block, 309, 554
Jordan canonical form, 335, 554
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Kahan matrix, 149, 273
Kernel, 241
Kirchhoff's laws

current, 13
voltage, 15

Kronecker product, 556
Krylov matrix, 390, 446
Krylov subspace methods, 596
Krylov subspace, 436, 585
Lanczos process, 441

connection with CG, 588, 590, 597
LDLT decomposition, 84
LDV decomposition, 84
Least squares problem, 181

and SVD, 275
continuous, 247
discrete, 182, 243
solution in full-rank case, 213
solution in rank-deficient case, 216, 275

Line iteration, 542
Line search, 560

exact vs. inexact, 561
Linear combination, 223
Linear convergence, 315
Linear independence and dependence, 224
Lotkin matrix, 153
LR algorithm, 485
LU decomposition, 80
Manhattan metric, 114
Markov chain, 332
Matrix norm, 115
Matrix pencil (pair), 505

equivalence, 507
symmetric, 508

Maxmag, 123
MD~1MT decomposition, 85
Minimum-degree ordering

column, 108
symmetric, 64

Minmag, 123
MINRES, 597
Monic polynomial, 309
Moore-Penrose generalized inverse, 277
Multicolor ordering, 537
Multigrid, 544, 549

damped Jacobi smoother, 544
Gauss-Seidel smoother, 544

Multiplication
matrix, 6
matrix-vector, 2

Multiplicity
algebraic vs. geometric, 417
algebraic, 306
geometric, 342

NASA Airfoil, 69
Nested-dissection ordering, 69

Newton's second law, 297
Nondefective matrix, 308
Nonsingular matrix, 13
Norm, 112

energy, 582
matrix, 115

p-norm, 118
-norm (row sum), 119

1-norm (column sum), 119
Frobenius, 115
induced, 116
spectral (2-norm), 118

of a function, 247
vector, 112

A-norm, 115
p-norm, 114

-norm, 114
1-norm, 114
Euclidean (2-norm), 112
taxicab (1-norm), 114

Normal equations, 244
Normal matrix, 339
Null space, 241
Ohm's law, 13
Operator norm, 116
Orthogonal complement, 240
Orthogonal decomposition, 273
Orthogonal equivalence, 262,401
Orthogonal matrix, 187
Orthogonal projection (of vector onto subspace),

240
Orthogonality

of functions, 247
of vectors, 186

Orthonormal vectors, 221
Orthoprojector, 195
Overdetermined system, 184
Overflow, 140
Partial pivoting, 94
Partition, conformable, 9
Pencil (pair), 505

equivalence, 507
regular vs. singular, 506
symmetric, 508

Permutation matrix, 97, 187
Perron-Frobenius theory, 331
Petrov-Galerkin conditions, 599
Pivot, 94
Pivoting

complete, 104
partial, 94

Plane rotator, 192
Poisson's equation, 524
Positive definite matrix, 33

complex, 49
Positive semidefinite matrix, 344
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Power method, 314
convergence rate, 315
inverse, 319

Preconditioner, 571
and Richardson's method, 553
as splitting matrix, 544
diagonal (= Jacobi), 573
domain decomposition, 575
incomplete factorization, 575, 581
multigrid, 575
SSOR, 574

Principal submatrix, 43, 72
Projector, 195
Proper Hessenberg matrix, 365
Pseudoinverse, 277
Purging, 459
Pythagorean theorem, 243
QMR, 599
QR algorithm, 356

accelerating convergence by shifting, 361
as Rayleigh quotient iteration, 430
as simultaneous iteration, 426
deflation, 361
exact shift, 367
exceptional shift, 367
implicit vs. explicit, 373
implicit

double step, 377
single step, 372

on Hessenberg matrices, 358
Rayleigh quotient shift, 362
reduction, 365
singular case, 367
Wilkinson shift, 364
with symmetric matrix, 377

QR decomposition, 190
and Gram-Schmidt process, 227
by reflectors, 203
by rotators, 193
complex, 208
condensed, 222
nonsquare, 213
rank-deficient case, 217
uniqueness, 204, 223
with column pivoting, 217

QR iteration (QR step), 357
Quadratic convergence, 328
Quasi-triangular matrix, 341
Quotient-difference (qd) algorithm, 485

differential form, 487
QZ algorithm, 511
Range, 241
Rank, 213, 241
Rank-one update

eigenvalue problem, 492
of identity matrix, 90, 209

Rayleigh quotient iteration, 326
convergence rate, 327
cubic convergence, 328
in QR algorithm, 430
quadratic convergence, 328

Rayleigh quotient, 325
matrix, 447
of normal matrix, 345
shift, 362

Rayleigh-Ritz-Galerkin condition, 447
Red-black ordering, 537
Refinement, iterative, 178
Reflector, 196

backward stability, 206, 211
complex, 207

Regular pencil (pair), 506
Relatively robust representation (RRR), 480
Reorthogonalization, 233
Residual, 137

and backward stability, 146, 463
Richardson's method, 545
Ritz pair, 439
Ritz value, 439, 447

harmonic, 461
Ritz vector, 439, 447
Rotator, 188

backward stability, 206, 211
complex, 207
fast, 194
Givens, 192
Jacobi, 477,495
plane, 192

Roundoff error, 140
Roundoff, unit, 142
Row operation, elementary, 71
Row scaling, 171
Row space, 242
RRR algorithm, 488
Scaling, 171

bad, 127
Schur complement, 48, 90-91, 258
Schur's theorem, 337

generalized, 509, 517
real (Wintner-Murnaghan), 341

Schwarz inequality, 113, 186
Scientific notation, 139
Secular equation, 494
Semiband width, 54
Semisimple matrix, 308
Shift, 319

exact, 323, 367
exceptional, 367
Rayleigh quotient, 362
ultimate, 393
Wilkinson, 364

Shift-and-invert strategy, 319
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and Arnoldi process, 441
and IRA, 455
and subspace iteration, 434

Similar matrices, 334
Similarity, 334

orthogonal and unitary, 336
Simultaneous iteration, 423

on sparse matrices, 433
Singular matrix, 13
Singular pencil (pair), 506
Singular value decomposition (SVD), 262
Singular vectors, 262
Skeel condition number, 177
Skew-Hermitian matrix, 339
Skew-symmetric matrix, 347
Slicing method, 483
SOR method, 539

as a descent method, 562
block, 541
convergence rate, 549
line, 542
red-black, 542
symmetric, 539

Span of a set of vectors, 223
Spanning set (of a subspace), 224
Spectral norm, 118
Spectral radius, 547
Spectral theorem

for Hermitian matrices, 339
for normal matrices, 340
for real symmetric matrices, 340

Spectrum, 305
Splitting matrix (= preconditioner), 544
Spy plot, 65
SSOR, 539
Stability, backward, 146
Standard basis, 221
Steepest descent method, 562

geometric interpretation, 565
preconditioned, 572

Stiffness matrix, 17, 560
Stochastic matrix, 331-332
Strain energy, 33, 51, 560
Strassen's method, 11
Submatrix, principal, 72
Subspace iteration, 420

duality in, 428
Subspace, 223

eigenspace, 414
invariant, 414

Substitution
back, 29

forward, 24
Successive overrelaxation (SOR), 539

block, 541
line, 542
red-black, 542
symmetric, 539

Sum (of subspaces), 240
SVD, 262

and spectral decomposition, 346
computation of, 399
condensed, 264
diagram, 263
geometric, 398
revisited, 396

Swamping, 155, 172
Sylvester's law of inertia, 483

proof, 498
Symmetric Lanczos process, 441
Symmetric matrix, 32
Symmetric SOR, 539
SYMMLQ, 598
Systems of differential equations, 289, 502

asymptotically stable, 298
homogeneous linear, 291
nonhomogeneous linear, 294
nonlinear, 298
unstable, 298

Taxicab norm, 114
Tensor product, 556
Trace, 170, 347
Transpose, 32
Transpose, conjugate, 49
Triangle inequality, 112
Triangular matrix, 23
Tridiagonal matrix, 349
Twisted factorization, 488-489
Ultimate shift strategy, 393
Underflow, 140

gradual, 148
harmful, 199

Unit lower-triangular matrix, 78
Unit roundoff, 142
Unitary matrix, 206, 336
Unreduced Hessenberg matrix, 365
Updating the QR decomposition

adding a column, 254
adding a row, 249

Vandermonde matrix, 232
Vector norm, 112
Well-conditioned matrix, 121
Wilkinson shift, 364
Wintner-Murnaghan theorem, 341

proof, 346, 418
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acosh, 450
airfoil, 69
backslash, 15
bicg, 600
bicgstab, 600
bucky, 64
cgs, 600
chol, 39
cholinc, 581
computer, 148
cond,122
condeig, 468
condest, 132
cosh, 450
cputime, 5
delsq, 68
demo, 5
del, 104
diag, 220
diary, 5
eig, 300, 504
eigs, 452
elmat, 70
eps, 169
eye, 170
format, 153

long e, 500
long, 153
short e, 272

full, 322
gallery, 70
gmres, 600
help, 5
hess, 355
hilb, 123
inf, 148
inv, 59, 104
isieee, 148
issparse, 67
kahan, 273
kron, 109
long, 153
lotkin, 153
lu,98
luinc, 600
m-file, 5
matrix-matrix multiplication, 7
matrix-vector multiplication, 5
more, 53
nan, 148
nnz, 67
norm, 273
numgrid, 68
ones, 153
pcg,580
pinv, 280
plot, 184
poly, 304

577
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print, 300 sort, 445
qmr, 600 sparfun, 64
qr, 205,220 speye, 64
qrdelete, 255 spy, 65
qrinsert, 254 svd, 265
rand, 332 symmmd, 68
randn, 5 syrnrcm, 68

Rrandperm,             6 tic, 68
rank, 270
roots, 304
rsf2csf,349 toephtz, 59

transpose, 98
save, 54 .
schur'349 wathen,70
semicolon, 6 west0479, 67
sermilogy, 600 xlabd) 300

size' 67 ylabel, 300

title, 300
toc, 68

conjugate, 208
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