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ix

The last thing one knows when writing a 
book is what to put first.

—Blaise Pascal
Pensées, 1670

The third edition of Linear Algebra: A Modern Introduction preserves the approach and
features that users found to be strengths of the previous editions. However, I have
added some new material to make the book useful to a wider audience, and I have also
freshened up the exercises.

I want students to see linear algebra as an exciting subject and to appreciate its
tremendous usefulness. At the same time, I want to help them master the basic con-
cepts and techniques of linear algebra that they will need in other courses, both in
mathematics and in other disciplines. I also want students to appreciate the interplay
of theoretical, applied, and numerical mathematics that pervades the subject.

This book is designed for use in an introductory one- or two-semester course
sequence in linear algebra. First and foremost, it is intended for students, and I have
tried my best to write the book so that students not only will find it readable but also
will want to read it. As in the first and second editions, I have taken into account the
reality that students taking introductory linear algebra are likely to come from a variety
of disciplines. In addition to mathematics majors, there are apt to be majors from engi-
neering, physics, chemistry, computer science, biology, environmental science,
geography, economics, psychology, business, and education, as well as other students
taking the course as an elective or to fulfill degree requirements. Accordingly, the book
balances theory and applications, is written in a conversational style yet is fully rigorous,
and combines a traditional presentation with concern for student-centered learning.

There is no such thing as a single-best learning style. In any class, there will be
some students who work well independently and others who work best in groups;
some who prefer lecture-based learning and others who thrive in a workshop setting,
doing explorations; some who enjoy algebraic manipulations, some who are adept at
numerical calculations (with and without a computer), and some who exhibit strong
geometric intuition. In this book, I continue to present material in a variety of ways—
algebraically, geometrically, numerically, and verbally—so that all types of learners can
find a path to follow. I have also attempted to present the theoretical, computational,
and applied topics in a flexible yet integrated way. In doing so, it is my hope that all
students will be exposed to the many sides of linear algebra.

This book is compatible with the recommendations of the Linear Algebra
Curriculum Study Group. From a pedagogical point of view, there is no doubt that for

See The College Mathematics
Journal 24 (1993), 41–46.
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most students concrete examples should precede abstraction. I have taken this approach
here. I also believe strongly that linear algebra is essentially about vectors and that
students need to see vectors first (in a concrete setting) in order to gain some geometric
insight. Moreover, introducing vectors early allows students to see how systems of linear
equations arise naturally from geometric problems. Matrices then arise equally naturally
as coefficient matrices of linear systems and as agents of change (linear transformations).
This sets the stage for eigenvectors and orthogonal projections, both of which are best
understood geometrically. The darts that appear on the cover of this book symbolize
vectors and reflect my conviction that geometric understanding should precede compu-
tational techniques.

I have tried to limit the number of theorems in the text. For the most part, results
labeled as theorems either will be used later in the text or summarize preceding work.
Interesting results that are not central to the book have been included as exercises or
explorations. For example, the cross product of vectors is discussed only in explo-
rations (in Chapters 1 and 4). Unlike most linear algebra textbooks, this book has no
chapter on determinants. The essential results are all in Section 4.2, with other inter-
esting material contained in an exploration. The book is, however, comprehensive for
an introductory text. Wherever possible, I have included elementary and accessible
proofs of theorems in order to avoid having to say, “The proof of this result is beyond
the scope of this text.” The result is, I hope, a work that is self-contained.

I have not been stingy with the applications: There are many more in the book than
can be covered in a single course. However, it is important that students see the impressive
range of problems to which linear algebra can be applied. I have included some modern
material on coding theory that is not normally found in an introductory linear algebra
text. There are also several impressive real-world applications of linear algebra and one
item of historical, if not practical, interest, presented as self-contained “vignettes.”

I hope that instructors will enjoy teaching from this book. More important, I hope
that students using the book will come away with an appreciation of the beauty, power,
and tremendous utility of linear algebra and that they will have fun along the way.

What’s New in the Third Edition
The overall structure and style of Linear Algebra: A Modern Introduction remain the
same in the third edition.

Here is a summary of the new material:

• Chapter 1 has been extensively reorganized. The introduction to modular
arithmetic and finite linear algebra has been moved to Section 1.1. Section 1.4 now
contains only applications: code vectors and a new subsection on force vectors, as
they arise in physics and engineering.

• Linear economic models, a topic of importance in business and economics,
has been added as an application in Chapters 2 and 3.

• A new vignette on Lewis Carroll’s “condensation method” for evaluating
determinants has been added to Chapter 4.

• There are over 400 new or revised exercises.
• Pictures of Carl Gustav Jacobi, Charles Dodgson (Lewis Carroll), and Jessie

MacWilliams have been added to their biographical sketches.
• I have made numerous small changes in wording to improve the clarity or

accuracy of the exposition.

x Preface

See pages 13, 50

See pages 113, 241

See page 295
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• Online homework assignments can now be done using Enhanced WebAssign,
which contains exercises keyed to the book.

• Exercises, with solutions, are now available for the Appendices on the instruc-
tors’ companion website for the book. This will facilitate the use of the book for those
instructors who include material from the appendices in their courses.

• All existing ancillaries have been updated and many placed on the companion
website.

Features

Clear Writing Style

The text is written is a simple, direct, conversational style. As much as possible, I have
used “mathematical English” rather than relying excessively on mathematical nota-
tion. However, all proofs that are given are fully rigorous, and Appendix A contains an
introduction to mathematical notation for those who wish to streamline their own
writing. Concrete examples almost always precede theorems, which are then followed
by further examples and applications. This flow—from specific to general and back
again—is consistent throughout the book.

Key Concepts Introduced Early

Many students encounter difficulty in linear algebra when the course moves from the
computational (solving systems of linear equations, manipulating vectors and matri-
ces) to the theoretical (spanning sets, linear independence, subspaces, basis, and
dimension.) This book introduces all of the key concepts of linear algebra early, in a
concrete setting, before revisiting them in full generality. Vector concepts such as dot
product, length, orthogonality, and projection are first discussed in Chapter 1 in the
concrete setting of �2 and �3 before the more general notions of inner product,
norm, and orthogonal projection appear in Chapters 5 and 7. Similarly, spanning sets
and linear independence are given a concrete treatment in Chapter 2 prior to their
generalization to vector spaces in Chapter 6. The fundamental concepts of subspace,
basis, and dimension appear first in Chapter 3 when the row, column, and null
spaces of a matrix are introduced; it is not until Chapter 6 that these ideas are given a
general treatment. In Chapter 4, eigenvalues and eigenvectors are introduced and
explored for 2 � 2 matrices before their n � n counterparts appear. By the beginning
of Chapter 4, all of the key concepts of linear algebra have been introduced, with
concrete, computational examples to support them. When these ideas appear in full
generality later in the book, students have had time to get used to them and, hence,
are not so intimidated by them.

Emphasis on Vectors and Geometry

In keeping with the philosophy that linear algebra is primarily about vectors, this
book stresses geometric intuition. Accordingly, the first chapter is about vectors, and
it develops many concepts that will appear repeatedly throughout the text. Concepts
such as orthogonality, projection, and linear combination are all found in Chapter 1,
as is a comprehensive treatment of lines and planes in �3 that provides essential
insight into the solution of systems of linear equations. This emphasis on vectors,

Preface xi

See page xvi

See page xv
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geometry, and visualization is found throughout the text. Linear transformations are
introduced as matrix transformations in Chapter 3, with many geometric examples,
before general linear transformations are covered in Chapter 6. In Chapter 4, eigen-
values are introduced with “eigenpictures” as a visual aid. The proof of Perron’s
Theorem is given first heuristically and then formally, in both cases using a geomet-
ric argument. The geometry of linear dynamical systems reinforces and summarizes
the material on eigenvalues and eigenvectors. In Chapter 5, orthogonal projections,
orthogonal complements of subspaces, and the Gram-Schmidt Process are all pre-
sented in the concrete setting of �3 before being generalized to �n and, in Chapter 7,
to inner product spaces. The nature of the singular value decomposition is also
explained informally in Chapter 7 via a geometric argument. Of the more than
300 figures in the text, over 200 are devoted to fostering a geometric understanding of
linear algebra.

Explorations

The introduction to each chapter is a guided exploration (Section 0) in which stu-
dents are invited to discover, individually or in groups, some aspect of the upcoming
chapter. For example,“The Racetrack Game” introduces vectors,“Matrices in Action”
introduces matrix multiplication and linear transformations, “Fibonacci in (Vector)
Space” touches on vector space concepts, and “Taxicab Geometry” sets up generalized
norms and distance functions. Additional explorations found throughout the book
include applications of vectors and determinants to geometry, an investigation of
3 � 3 magic squares, a study of symmetry via the tilings of M. C. Escher, an intro-
duction to complex linear algebra, and optimization problems using geometric
inequalities. There are also explorations that introduce important numerical consid-
erations and the analysis of algorithms. Having students do some of these explo-
rations is one way of encouraging them to become active learners and to give them
“ownership” over a small part of the course.

Applications

The book contains an abundant selection of applications chosen from a broad range
of disciplines, including mathematics, computer science, physics, chemistry, engi-
neering, biology, business, economics, psychology, geography, and sociology. Note-
worthy among these is a strong treatment of coding theory, from error-detecting
codes (such as International Standard Book Numbers) to sophisticated error-
correcting codes (such as the Reed-Muller code that was used to transmit satellite
photos from space). Additionally, there are five “vignettes” that briefly showcase some
very modern applications of linear algebra: the Codabar System, the Global Position-
ing System (GPS), robotics, Internet search engines, and digital image compression.

Examples and Exercises

There are over 400 examples in this book, most worked in greater detail than is cus-
tomary in an introductory linear algebra textbook. This level of detail is in keeping
with the philosophy that students should want (and be able) to read a textbook.
Accordingly, it is not intended that all of these examples be covered in class; many can
be assigned for individual or group study, possibly as part of a project. Most examples
have at least one counterpart exercise so that students can try out the skills covered in
the example before exploring generalizations.

xii Preface

See pages 1, 142, 445, 552

See pages 89, 90, 91, 407, 409

See pages 57, 545

See pages 60, 127, 232, 367, 630

See pages 32, 297, 478, 533, 566, 570
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There are over 2000 exercises, more than in most textbooks at a similar level.
Answers to most of the computational odd-numbered exercises can be found in the
back of the book. Instructors will find an abundance of exercises from which to select
homework assignments. (Suggestions are given in the online Instructor’s Guide.) The
exercises in each section are graduated, progressing from the routine to the challenging.
Exercises range from those intended for hand computation to those requiring the use of
a calculator or computer algebra system, and from theoretical and numerical exercises
to conceptual exercises. Many of the examples and exercises use actual data compiled
from real-world situations. For example, there are problems on modeling the growth of
caribou and seal populations, radiocarbon dating of the Stonehenge monument, and
predicting major league baseball players’ salaries. Working such problems reinforces the
fact that linear algebra is a valuable tool for modeling real-life problems.

Additional exercises appear in the form of a review after each chapter. In each set,
there are 10 true/false questions designed to test conceptual understanding, followed
by 19 computational and theoretical exercises that summarize the main concepts and
techniques of that chapter.

Biographical Sketches and Etymological Notes

It is important that students learn something about the history of mathematics and
come to see it as a social and cultural endeavor as well as a scientific one. Accordingly,
the text contains short biographical sketches about many of the mathematicians who
contributed to the development of linear algebra. I hope that these will help to put a
human face on the subject and give students another way of relating to the material.
The online Instructor’s Guide suggests ways of expanding some of these biographical
notes into writing projects.

I have found that many students feel alienated from mathematics because the ter-
minology makes no sense to them—it is simply a collection of words to be learned.
To help overcome this problem, I have included short etymological notes that give
the origins of many of the terms used in linear algebra. (For example, why do we
use the word normal to refer to a vector that is perpendicular to a plane?)

Margin Icons

The margins of the book contain several icons whose purpose is to alert the reader in
various ways. Calculus is not a prerequisite for this book, but linear algebra has many
interesting and important applications to calculus. The icon denotes an example
or exercise that requires calculus. (This material can be omitted if not everyone in the
class has had at least one semester of calculus. Alternatively, they can be assigned as
projects.) The icon denotes an example or exercise involving complex numbers.
(For students unfamiliar with complex numbers, Appendix C contains all the back-
ground material that is needed.) The icon indicates that a computer algebra system
(such as Maple, Mathematica, or MATLAB) or a calculator with matrix capabilities
(such as the TI-89, TI-Nspire, HP-48gII, HP-50g, Casio 9850GC+, or Sharp EL-
9200C) is required—or at least very useful—for solving the example or exercise.

In an effort to help students learn how to read and use this textbook most ef-
fectively, I have noted various places where the reader is advised to pause. These
may be places where a calculation is needed, part of a proof must be supplied, a
claim should be verified, or some extra thought is required. The icon
appears in the margin at such places; the message is “Slow down. Get out your
pencil. Think about this.”
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Technology

This book can be used successfully whether or not students have access to technology.
However, calculators with matrix capabilities and computer algebra systems are now
commonplace and, properly used, can enrich the learning experience as well as help
with tedious calculations. In this text, I take the point of view that students need
to master all of the basic techniques of linear algebra by solving by hand examples that
are not too computationally difficult. Technology may then be used (in whole or in
part) to solve subsequent examples and applications and to apply techniques that rely
on earlier ones. For example, when systems of linear equations are first introduced, de-
tailed solutions are provided; later, solutions are simply given, and the reader is
expected to verify them. This is a good place to use some form of technology. Likewise,
when applications use data that make hand calculation impractical, use technology.
All of the numerical methods that are discussed depend on the use of technology.

With the aid of technology, students can explore linear algebra in some exciting
ways and discover much for themselves. For example, if one of the coefficients of a
linear system is replaced by a parameter, how much variability is there in the solu-
tions? How does changing a single entry of a matrix affect its eigenvalues? This book
is not a tutorial on technology, and in places where technology can be used, I have not
specified a particular type of technology. The student companion website that
accompanies this book offers an online appendix called Technology Bytes that gives
instructions for solving a selection of examples from each chapter using Maple,
Mathematica, and MATLAB. By imitating these examples, students can do further
calculations and explorations using whichever CAS they have and exploit the power
of these systems to help with the exercises throughout the book, particularly those
marked with the icon. The website also contains data sets and computer code in
Maple, Mathematica, and MATLAB formats keyed to many exercises and examples in
the text. Students and instructors can import these directly into their CAS to save
typing and eliminate errors.

Finite and Numerical Linear Algebra

The text covers two aspects of linear algebra that are scarcely ever mentioned to-
gether: finite linear algebra and numerical linear algebra. By introducing modular
arithmetic early, I have been able to make finite linear algebra (more properly, “linear
algebra over finite fields,” although I do not use that phrase) a recurring theme
throughout the book. This approach provides access to the material on coding theory
in Sections 1.4, 3.7, 5.5, 6.7, and 7.5. There is also an application to finite linear games
in Section 2.4 that students really enjoy. In addition to being exposed to the applica-
tions of finite linear algebra, mathematics majors will benefit from seeing the material
on finite fields, because they are likely to encounter it in such courses as discrete
mathematics, abstract algebra, and number theory.

All students should be aware that in practice, it is impossible to arrive at exact so-
lutions of large-scale problems in linear algebra. Exposure to some of the techniques
of numerical linear algebra will provide an indication of how to obtain highly accu-
rate approximate solutions. Some of the numerical topics included in the book are
roundoff error and partial pivoting, iterative methods for solving linear systems and
computing eigenvalues, the LU and QR factorizations, matrix norms and condition
numbers, least squares approximation, and the singular value decomposition. The
inclusion of numerical linear algebra also brings up some interesting and important
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issues that are completely absent from the theory of linear algebra, such as pivoting
strategies, the condition of a linear system, and the convergence of iterative methods.
This book not only raises these questions but also shows how one might approach
them. Gerschgorin disks, matrix norms, and the singular values of a matrix, discussed
in Chapters 4 and 7, are useful in this regard.

Appendices

Appendix A contains an overview of mathematical notation and methods of proof,
and Appendix B discusses mathematical induction. All students will benefit from
these sections, but those with a mathematically oriented major may wish to pay
particular attention to them. Some of the examples in these appendices are uncom-
mon (for instance, Example B.6 in Appendix B) and underscore the power of the
methods. Appendix C is an introduction to complex numbers. For students familiar
with these results, this appendix can serve as a useful reference; for others, this sec-
tion contains everything they need to know for those parts of the text that use com-
plex numbers. Appendix D is about polynomials. I have found that many students
require a refresher about these facts. Most students will be unfamiliar with
Descartes’ Rule of Signs; it is used in Chapter 4 to explain the behavior of the eigen-
values of Leslie matrices. Exercises to accompany the four appendices can be found
on the book’s website.

Short answers to most of the odd-numbered computational exercises are given at
the end of the book. Exercise sets to accompany Appendixes A, B, C, and D are avail-
able on the companion website, along with their odd-numbered answers.

Ancillaries

The following supplements are all available free of charge to instructors who adopt
Linear Algebra: A Modern Introduction (Second Edition). The Student Solutions
Manual and Study Guide can be purchased by students, either separately or shrink-
wrapped with the textbook. Companion Website has password-protected sections for
students and instructors.

Student Solutions Manual and Study Guide
ISBN-10: 0-538-73771-9;
ISBN-13: 978-0-538-73771-5
Includes detailed solutions to all odd-numbered exercises and selected even-
numbered exercises; section and chapter summaries of symbols, definitions, and
theorems; and study tips and hints. Complex exercises are explored through a
question-and-answer format designed to deepen understanding. Challenging and
entertaining problems that further explore selected exercises are also included.

Solution Builder
www.cengage.com/solutionbuilder
Provides full instructor solutions to all exercises in the text, including those in the
explorations and chapter reviews, in convenient online format. Solution Builder
allows instructors to create customized, secure PDF printouts of solutions matched
exactly to the exercises assigned for class. Available to adopters by signing up at the
web address listed above.
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Instructor’s Guide
www.cengage.com/math/poole, instructor companion website
This online guide, written by Douglas Shaw and Michael Prophet, enhances the text
with valuable teaching resources such as group work projects, teaching tips, interesting
exam questions, examples and extra material for lectures, and other items designed to
reduce the instructor’s preparation time and make linear algebra class an exciting and
interactive experience. For each section of the text, the Instructor’s Guide includes
suggested time and emphasis, points to stress, questions for discussion, lecture mate-
rials and examples, technology tips, student projects, group work with solutions,
sample assignments, and suggested test questions.

ExamView® electronic test bank
ISBN-10: 0-538-73770-0; ISBN-13: 978-0-538-73770-8

ExamView testing software allows instructors to quickly create, deliver, and
customize tests for class in print and online formats, and features automatic grading.
Includes over 500 true/false, multiple choice, and free response questions based on
the text. All test items are also provided in PDF and Microsoft® Word formats for
instructors who opt not to use the software component.

Enhanced WebAssign
An easy-to-use online teaching and learning system that provides assignable home-
work, automatic grading, interactive assistance for students, and course management
control for instructors. With hundreds of exercises keyed to the text, students get
problem-solving practice that clarifies linear algebra, builds skills, and boosts
conceptual understanding. Enhanced WebAssign’s simple, user-friendly interface lets
instructors quickly create a course, enroll students, select problems for an assignment,
and control the number of answer attempts students are allowed. A feature-rich grade-
book helps manage class grades, set grade curves, assign deadlines, and export results
to an offline spreadsheet. For more information, visit www.webassign.net/brookscole.

Companion Website for Linear Algebra: A Modern Introduction
www.cengage.com/math/poole
Contains additional online materials to accompany the text for students and instruc-
tors. Exercises to accompany the book’s appendices can be found here, along with
selected answers. The Technology Bytes appendix offers CAS instructions for Maple,
Mathematica, and MATLAB for solving examples from each chapter. Downloadable
CAS data sets in Maple, Mathematica, and MATLAB formats provide direct
computer code for working exercises and examples from the text in a CAS. The 
Instructor’s Guide, static versions of the ExamView test items, and other useful
resources are also accessible here for instructors only.
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xix

“Would you tell me, please,
which way I ought to go from here?”
“That depends a good deal on where
you want to get to,” said the Cat.

—Lewis Carroll 
Alice’s Adventures in 

Wonderland, 1865

This text was written with flexibility in mind. It is intended for use in a one- or
two-semester course with 36 lectures per semester. The range of topics and appli-
cations makes it suitable for a variety of audiences and types of courses. However,
there is more material in the book than can be covered in class, even in a two-
semester course. After the following overview of the text are some brief suggestions
for ways to use the book. The online Instructor’s Guide has more detailed sugges-
tions, including teaching notes, recommended exercises, classroom activities and
projects, and additional topics.

An Overview of the Text

Chapter 1:  Vectors

The racetrack game in Section 1.0 serves to introduce vectors in an informal way. (It’s also
quite a lot of fun to play!) Vectors are then formally introduced from both an algebraic
and a geometric point of view. The operations of addition and scalar multiplication and
their properties are first developed in the concrete settings of �2 and �3 before being gen-
eralized to �n. Modular arithmetic and finite linear algebra are also introduced. Section
1.2 defines the dot product of vectors and the related notions of length, angle, and or-
thogonality. The very important concept of (orthogonal) projection is developed here; it
will reappear in Chapters 5 and 7. The exploration “Vectors and Geometry” shows how
vector methods can be used to prove certain results in Euclidean geometry. Section 1.3 is
a basic but thorough introduction to lines and planes in �2 and �3. This section is crucial
for understanding the geometric significance of the solution of linear systems in Chapter
2. Note that the cross product of vectors in �3 is left as an exploration. The chapter con-
cludes with two applications: force vectors and code vectors. Most students will enjoy the
application to the Universal Product Code (UPC) and International Standard Book
Number (ISBN). The vignette on the Codabar system used in credit and bank cards is an
excellent classroom presentation that can even be used to introduce Section 1.4.

See page 1

See page 32

See page 48

See pages 56, 57, 60

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter 2:  Systems of Linear Equations

The introduction to this chapter serves to illustrate that there is more than one way to
think of the solution to a system of linear equations. Sections 2.1 and 2.2 develop the
main computational tool for solving linear systems: row reduction of matrices
(Gaussian and Gauss-Jordan elimination.) Nearly all subsequent computational
methods in the book depend on this. The Rank Theorem appears here for the first
time; it shows up again, in more generality, in Chapters 3, 5, and 6. Section 2.3 is very
important; it introduces the fundamental notions of spanning sets and linear inde-
pendence of vectors. Do not rush through this material. Section 2.4 contains six
applications from which instructors can choose depending on the time available and
the interests of the class. The vignette on the Global Positioning System provides
another application that students will enjoy. The iterative methods in Section 2.5 will
be optional for many courses but are essential for a course with an applied/numerical
focus. The three explorations in this chapter are related in that they all deal with
aspects of the use of computers to solve linear systems. All students should at least be
made aware of these issues.

Chapter 3:  Matrices

This chapter contains some of the most important ideas in the book. It is a long
chapter, but the early material can be covered fairly quickly, with extra time allowed
for the crucial material in Section 3.5. Section 3.0 is an exploration that introduces
the notion of a linear transformation: the idea that matrices are not just static objects
but rather a type of function, transforming vectors into other vectors. All of the basic
facts about matrices, matrix operations, and their properties are found in the first two
sections. The material on partitioned matrices and the multiple representations of
the matrix product is worth stressing, because it is used repeatedly in subsequent
sections. The Fundamental Theorem of Invertible Matrices in Section 3.3 is very
important and will appear several more times as new characterizations of invertibility
are presented. Section 3.4 discusses the very important LU factorization of a matrix.
If this topic is not covered in class, it is worth assigning as a project or discussing in a
workshop. The point of Section 3.5 is to present many of the key concepts of linear
algebra (subspace, basis, dimension, and rank) in the concrete setting of matrices
before students see them in full generality. Although the examples in this section are
all familiar, it is important that students get used to the new terminology and, in
particular, understand what the notion of a basis means. The geometric treatment of
linear transformations in Section 3.6 is intended to smooth the transition to general
linear transformations in Chapter 6. The example of a projection is particularly
important because it will reappear in Chapter 5. The vignette on robotic arms is a
concrete demonstration of composition of linear (and affine) transformations. There
are five applications from which to choose in Section 3.7. Either Markov chains or the
Leslie model of population growth should be covered so that it can be used again in
Chapter 4 where their behavior will be explained.

Chapter 4:  Eigenvalues and Eigenvectors

The introduction Section 4.0 presents an interesting dynamical system involving
graphs. This exploration introduces the notion of an eigenvector and foreshadows
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the power method in Section 4.5. In keeping with the geometric emphasis of the
book, Section 4.1 contains the novel feature of “eigenpictures” as a way of visualizing
the eigenvectors of 2 � 2 matrices. Determinants appear in Section 4.2, motivated by
their use in finding the characteristic polynomials of small matrices. This “crash
course” in determinants contains all the essential material students need, including
an optional but elementary proof of the Laplace Expansion Theorem. The vignette
“Lewis Carroll’s Condensation Method” presents a historically interesting, alternative
method of calculating determinants that students may find appealing. The explo-
ration “Geometric Applications of Determinants” makes a nice project that contains
several interesting and useful results. (Alternatively, instructors who wish to give
more detailed coverage to determinants may choose to cover some of this exploration
in class.) The basic theory of eigenvalues and eigenvectors is found in Section 4.3, and
Section 4.4 deals with the important topic of diagonalization. Example 4.29 on
powers of matrices is worth covering in class. The power method and its variants,
discussed in Section 4.5, are optional, but all students should be aware of the method,
and an applied course should cover it in detail. Gerschgorin’s Disk Theorem can be
covered independently of the rest of Section 4.5. Markov chains and the Leslie model
of population growth reappear in Section 4.6. Although the proof of Perron’s
Theorem is optional, the theorem itself (like the stronger Perron-Frobenius Theorem)
should at least be mentioned because it explains why we should expect a unique pos-
itive eigenvalue with a corresponding positive eigenvector in these applications. The
applications on recurrence relations and differential equations connect linear algebra
to discrete mathematics and calculus, respectively. The matrix exponential can be
covered if your class has a good calculus background. The final topic of discrete linear
dynamical systems revisits and summarizes many of the ideas in Chapter 4, looking
at them in a new, geometric light. Students will enjoy reading how eigenvectors can
be used to help rank sports teams and websites. This vignette can easily be extended
to a project or enrichment activity.

Chapter 5:  Orthogonality

The introductory exploration,“Shadows on a Wall,” is mathematics at its best: it takes
a known concept (projection of a vector onto another vector) and generalizes it in a
useful way (projection of a vector onto a subspace—a plane), while uncovering some
previously unobserved properties. Section 5.1 contains the basic results about or-
thogonal and orthonormal sets of vectors that will be used repeatedly from here on.
In particular, orthogonal matrices should be stressed. In Section 5.2, two concepts
from Chapter 1 are generalized: the orthogonal complement of a subspace and the
orthogonal projection of a vector onto a subspace. The Orthogonal Decomposition
Theorem is important here and helps to set up the Gram-Schmidt Process. Also note
the quick proof of the Rank Theorem. The Gram-Schmidt Process is detailed in
Section 5.3, along with the extremely important QR factorization. The two explo-
rations that follow outline how the QR factorization is computed in practice and how
it can be used to approximate eigenvalues. Section 5.4 on orthogonal diagonalization
of (real) symmetric matrices is needed for the applications that follow. It also con-
tains the Spectral Theorem, one of the highlights of the theory of linear algebra. The
applications in Section 5.5 include dual codes, quadratic forms, and graphing qua-
dratic equations. I always include at least the last of these in my course because it
extends what students already know about conic sections.
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Chapter 6:  Vector Spaces

The Fibonacci sequence reappears in Section 6.0, although it is not important that
students have seen it before (Section 4.6). The purpose of this exploration is to show
that familiar vector space concepts (Section 3.5) can be used fruitfully in a new
setting. Because all of the main ideas of vector spaces have already been introduced in
Chapters 1–3, students should find Sections 6.1 and 6.2 fairly familiar. The emphasis
here should be on using the vector space axioms to prove properties rather than rely-
ing on computational techniques. When discussing change of basis in Section 6.3, it
is helpful to show students how to use the notation to remember how the construc-
tion works. Ultimately, the Gauss-Jordan method is the most efficient here. Sections
6.4 and 6.5 on linear transformations are important. The examples are related to
previous results on matrices (and matrix transformations). In particular, it is impor-
tant to stress that the kernel and range of a linear transformation generalize the null
space and column space of a matrix. Section 6.6 puts forth the notion that (almost) all
linear transformations are essentially matrix transformations. This builds on the
information in Section 3.6, so students should not find it terribly surprising. However,
the examples should be worked carefully. The connection between change of basis
and similarity of matrices is noteworthy. The exploration “Tilings, Lattices, and the
Crystallographic Restriction” is an impressive application of change of basis. The con-
nection with the artwork of M. C. Escher makes it all the more interesting. The appli-
cations in Section 6.7 build on previous ones and can be included as time and interest
permit.

Chapter 7:  Distance and Approximation

Section 7.0 opens with the entertaining “Taxicab Geometry” exploration. Its
purpose is to set up the material on generalized norms and distance functions (met-
rics) that follows. Inner product spaces are discussed in Section 7.1; the emphasis
here should be on the examples and using the axioms. The exploration “Vectors and
Matrices with Complex Entries” shows how the concepts of dot product, symmetric
matrix, orthogonal matrix, and orthogonal diagonalization can be extended from
real to complex vector spaces. The following exploration, “Geometric Inequalities
and Optimization Problems,” is one that students typically enjoy. (They will have
fun seeing how many “calculus” problems can be solved without using calculus at
all!) Section 7.2 covers generalized vector and matrix norms and shows how the con-
dition number of a matrix is related to the notion of ill-conditioned linear systems
explored in Chapter 2. Least squares approximation (Section 7.3) is an important
application of linear algebra in many other disciplines. The Best Approximation
Theorem and the Least Squares Theorem are important, but their proofs are intu-
itively clear. Spend time here on the examples—a few should suffice. Section 7.4 pre-
sents the singular value decomposition, one of the most impressive applications of
linear algebra. If your course gets this far, you will be amply rewarded. Not only does
the SVD tie together many notions discussed previously; it also affords some new
(and quite powerful) applications. If a CAS is available, the vignette on digital image
compression is worth presenting; it is a visually impressive display of the power of
linear algebra and a fitting culmination to the course. The further applications in
Section 7.5 can be chosen according to the time available and the interests of the
class.
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How to Use the Book
Students find the book easy to read, so I usually have them read a section before I cover
the material in class. That way, I can spend class time highlighting the most important
concepts, dealing with topics students find difficult, working examples, and discussing
applications. I do not attempt to cover all of the material from the assigned reading in
class. This approach enables me to keep the pace of the course fairly brisk, slowing
down for those sections that students typically find challenging.

In a two-semester course, it is possible to cover the entire book, including a reason-
able selection of applications. For extra flexibility, you might omit some of the topics (for
example, give only a brief treatment of numerical linear algebra), thereby freeing up time
for more in-depth coverage of the remaining topics, more applications, or some of the
explorations. In an honors mathematics course that emphasizes proofs, much of the
material in Chapters 1–3 can be covered quickly. Chapter 6 can then be covered in con-
junction with Sections 3.5 and 3.6, and Chapter 7 can be integrated into Chapter 5.
I would be sure to assign the explorations in Chapters 1, 4, 6, and 7 for such a class.

For a one-semester course, the nature of the course and the audience will deter-
mine which topics to include. Three possible courses are described below. The basic
course, described first, has fewer than 36 hours suggested, allowing time for extra
topics, in-class review, and tests. The other two courses build on the basic course but
are still quite flexible.

A Basic Course

A course designed for mathematics majors and students from other disciplines is out-
lined below. This course does not mention general vector spaces at all (all concepts
are treated in a concrete setting) and is very light on proofs. Still, it is a thorough
introduction to linear algebra.
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Section Number of Lectures

1.1 1
1.2 1–1.5
1.3 1–1.5
2.1 0.5–1
2.2 1–2
2.3 1–2
3.1 1–2
3.2 1
3.3 2
3.5 2

Section Number of Lectures

3.6 1–2
4.1 1
4.2 2
4.3 1
4.4 1–2
5.1 1–1.5
5.2 1–1.5
5.3 0.5
5.4 1
7.3 2

Because the students in a course such as this one represent a wide variety of dis-
ciplines, I would suggest using much of the remaining lecture time for applications.
In my course, I do code vectors in Section 1.4, which students really seem to like, and
at least one application from each of Chapters 2–5. Other applications can be as-
signed as projects, along with as many of the explorations as desired. There is also suf-
ficient lecture time available to cover some of the theory in detail.

Total: 23–30 lectures
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A Course with a Computational Emphasis

For a course with a computational emphasis, the basic course outlined on the previous
page can be supplemented with the sections of the text dealing with numerical linear
algebra. In such a course, I would cover part or all of Sections 2.5, 3.4, 4.5, 5.3, 7.2, and
7.4, ending with the singular value decomposition. The explorations in Chapters 2 
and 5 are particularly well suited to such a course, as are almost any of the applications.

A Course for Students Who Have Already 
Studied Some Linear Algebra

Some courses will be aimed at students who have already encountered the basic prin-
ciples of linear algebra in other courses. For example, a college algebra course will
often include an introduction to systems of linear equations, matrices, and deter-
minants; a multivariable calculus course will almost certainly contain material on
vectors, lines, and planes. For students who have seen such topics already, much early
material can be omitted and replaced with a quick review. Depending on the back-
ground of the class, it may be possible to skim over the material in the basic course up
to Section 3.3 in about six lectures. If the class has a significant number of mathe-
matics majors (and especially if this is the only linear algebra course they will take),
I would be sure to cover Sections 1.4, 6.1–6.5, 7.1, and 7.4 and as many applications as
time permits. If the course has science majors (but not mathematics majors), I would
cover Sections 1.4, 6.1, and 7.1 and a broader selection of applications, being sure to
include the material on differential equations and approximation of functions. If
computer science students or engineers are prominently represented, I would try to
do as much of the material on codes and numerical linear algebra as I could.

There are many other types of courses that can successfully use this text. I hope
that you find it useful for your course and that you enjoy using it.

xxiv To the Instructor
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xxv

“Where shall I begin, please your
Majesty?” he asked.
“Begin at the beginning,” the King 
said, gravely, “and go on till you come
to the end: then stop.”

—Lewis Carroll
Alice’s Adventures in 

Wonderland, 1865

Linear algebra is an exciting subject. It is full of interesting results, applications to
other disciplines, and connections to other areas of mathematics. The Student Solu-
tions Manual and Study Guide contains detailed advice on how best to use this book;
following are some general suggestions.

Linear algebra has several sides: There are computational techniques, concepts, and
applications. One of the goals of this book is to help you master all of these facets of
the subject and to see the interplay among them. Consequently, it is important that
you read and understand each section of the text before you attempt the exercises in
that section. If you read only examples that are related to exercises that have been
assigned as homework, you will miss much. Make sure you understand the defini-
tions of terms and the meaning of theorems. Don’t worry if you have to read some-
thing more than once before you understand it. Have a pencil and calculator with you
as you read. Stop to work out examples for yourself or to fill in missing calculations.
The icon in the margin indicates a place where you should pause and think
over what you have read so far.

Answers to most odd-numbered computational exercises are in the back of the
book. Resist the temptation to look up an answer before you have completed a ques-
tion. And remember that even if your answer differs from the one in the back, you
may still be right; there is more than one correct way to express some of the solutions.
For example, a value of can also be expressed as and the set of all scalar

multiples of the vector is the same as the set of all scalar multiples of .

As you encounter new concepts, try to relate them to examples that you know.
Write out proofs and solutions to exercises in a logical, connected way, using com-
plete sentences. Read back what you have written to see whether it makes sense. Better
yet, if you can, have a friend in the class read what you have written. If it doesn’t make
sense to another person, chances are that it doesn’t make sense, period.

You will find that a calculator with matrix capabilities or a computer algebra sys-
tem is useful. These tools can help you to check your own hand calculations and are
indispensable for some problems involving tedious computations. Technology also

c 6
1
dc 3

1>2 d
12>2,1>12
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�
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xxvi To the Student

enables you to explore aspects of linear algebra on your own. You can play “what if?”
games: What if I change one of the entries in this vector? What if this matrix is of a
different size? Can I force the solution to be what I would like it to be by changing
something? To signal places in the text or exercises where the use of technology is
recommended, I have placed the icon in the margin. The companion website that
accompanies this book contains computer code working out selected exercises from
the book using Maple, Mathematica, and MATLAB, as well as Technology Bytes, an
appendix providing much additional advice about the use of technology in linear
algebra.

You are about to embark on a journey through linear algebra. Think of this book
as your travel guide. Are you ready? Let’s go!

CAS
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Here they come pouring out of the
blue. Little arrows for me and for
you.

—Albert Hammond and 
Mike Hazelwood

Little Arrows
Dutchess Music/BMI, 1968

1. 0 Introduction:  The Racetrack Game
Many measurable quantities, such as length, area, volume, mass, and temperature,
can be completely described by specifying their magnitude. Other quantities, such as
velocity, force, and acceleration, require both a magnitude and a direction for their
description. These quantities are vectors. For example, wind velocity is a vector
consisting of wind speed and direction, such as 10 km/h southwest. Geometrically,
vectors are often represented as arrows or directed line segments.

Although the idea of a vector was introduced in the 19th century, its usefulness in
applications, particularly those in the physical sciences, was not realized until the
20th century. More recently, vectors have found applications in computer science,
statistics, economics, and the life and social sciences. We will consider some of these
many applications throughout this book.

This chapter introduces vectors and begins to consider some of their geometric
and algebraic properties. We will also consider one nongeometric application where
vectors are useful. We begin, though, with a simple game that introduces some of the
key ideas. [You may even wish to play it with a friend during those (very rare!) dull
moments in linear algebra class.]

The game is played on graph paper. A track, with a starting line and a finish line,
is drawn on the paper. The track can be of any length and shape, so long as it is wide
enough to accommodate all of the players. For this example, we will have two players
(let’s call them Ann and Bert) who use different colored pens to represent their cars
or bicycles or whatever they are going to race around the track. (Let’s think of Ann
and Bert as cyclists.)

Ann and Bert each begin by drawing a dot on the starting line at a grid point on
the graph paper. They take turns moving to a new grid point, subject to the following
rules:

1. Each new grid point and the line segment connecting it to the previous grid point
must lie entirely within the track.

2. No two players may occupy the same grid point on the same turn. (This is the
“no collisions” rule.)

3. Each new move is related to the previous move as follows: If a player moves
a units horizontally and b units vertically on one move, then on the next move

1
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2 Chapter 1 Vectors

he or she must move between a � 1 and a � 1 units horizontally and between 
b � 1 and b � 1 units vertically. In other words, if the second move is c units
horizontally and d units vertically, then �a � c� � 1 and �b � d� � 1. (This is the
“acceleration/deceleration” rule.) Note that this rule forces the first move to be 
1 unit vertically and/or 1 unit horizontally.

A player who collides with another player or leaves the track is eliminated. The
winner is the first player to cross the finish line. If more than one player crosses
the finish line on the same turn, the one who goes farthest past the finish line is the
winner.

In the sample game shown in Figure 1.1, Ann was the winner. Bert accelerated too
quickly and had difficulty negotiating the turn at the top of the track.

To understand rule 3, consider Ann’s third and fourth moves. On her third move,
she went 1 unit horizontally and 3 units vertically. On her fourth move, her options
were to move 0 to 2 units horizontally and 2 to 4 units vertically. (Notice that some
of these combinations would have placed her outside the track.) She chose to move
2 units in each direction.

Start Finish
A B

Figure 1. 1
A sample game of racetrack

Problem 1 Play a few games of racetrack.
Problem 2 Is it possible for Bert to win this race by choosing a different sequence

of moves?
Problem 3 Use the notation [a, b] to denote a move that is a units horizontally

and b units vertically. (Either a or b or both may be negative.) If move [3, 4] has just
been made, draw on graph paper all the grid points that could possibly be reached on
the next move.

Problem 4 What is the net effect of two successive moves? In other words, if you
move [a, b] and then [c, d], how far horizontally and vertically will you have moved
altogether?

The Irish mathematician William
Rowan Hamilton (1805–1865)
used vector concepts in his study
of complex numbers and their
generalization, the quaternions.
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Section 1.1 The Geometry and Algebra of Vectors 3

Problem 5 Write out Ann’s sequence of moves using the [a, b] notation. Suppose
she begins at the origin (0, 0) on the coordinate axes. Explain how you can find the
coordinates of the grid point corresponding to each of her moves without looking at
the graph paper. If the axes were drawn differently, so that Ann’s starting point was not
the origin but the point (2, 3), what would the coordinates of her final point be?

Although simple, this game introduces several ideas that will be useful in our
study of vectors. The next three sections consider vectors from geometric and alge-
braic viewpoints, beginning, as in the racetrack game, in the plane.

The Geometry and Algebra of Vectors

Vectors in the Plane

We begin by considering the Cartesian plane with the familiar x- and y-axes. A vector
is a directed line segment that corresponds to a displacement from one point A to
another point B; see Figure 1.2.

The vector from A to B is denoted by ; the point A is called its initial point, or
tail, and the point B is called its terminal point, or head. Often, a vector is simply
denoted by a single boldface, lowercase letter such as v.

The set of all points in the plane corresponds to the set of all vectors whose tails
are at the origin O. To each point A, there corresponds the vector a � to each vec-
tor a with tail at O, there corresponds its head A. (Vectors of this form are sometimes
called position vectors.)

It is natural to represent such vectors using coordinates. For example, in 
Figure 1.3, A � (3, 2) and we write the vector a � � [3, 2] using square brackets.
Similarly, the other vectors in Figure 1.3 are

The individual coordinates (3 and 2 in the case of a) are called the components of the
vector. A vector is sometimes said to be an ordered pair of real numbers. The order is
important since, for example, [3, 2] � [2, 3]. In general, two vectors are equal if and
only if their corresponding components are equal. Thus, [x, y] � [1, 5] implies that
x � 1 and y � 5.

It is frequently convenient to use column vectors instead of (or in addition to)

row vectors. Another representation of [3, 2] is (The important point is that the c 3
2
d .

b � 3�1, 3 4   and  c � 32, �1 4
OA

!

OA
!
;

AB
!

y

A

B

x

Figure 1. 2

y

B

A

C

x

c

a
b

O

Figure 1. 3

The word vector comes from the
Latin root meaning “to carry.” A
vector is formed when a point is
displaced—or “carried off”—a
given distance in a given direction.
Viewed another way, vectors
“carry” two pieces of information:
their length and their direction.

When writing vectors by hand,
it is difficult to indicate boldface.
Some people prefer to write for
the vector denoted in print by v,
but in most cases it is fine to use
an ordinary lowercase v. It will
usually be clear from the context
when the letter denotes a vector.

v
!

The word component is derived
from the Latin words co, meaning
“together with,” and ponere, mean-
ing “to put.” Thus, a vector is “put
together” out of its components.

The Cartesian plane is named 
after the French philosopher and
mathematician René Descartes
(1596–1650), whose introduction
of coordinates allowed geometric
problems to be handled using 
algebraic techniques.
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4 Chapter 1 Vectors

Example 1. 1

components are ordered.) In later chapters, you will see that column vectors are some-
what better from a computational point of view; for now, try to get used to both
representations.

It may occur to you that we cannot really draw the vector [0, 0] � from the
origin to itself. Nevertheless, it is a perfectly good vector and has a special name: the
zero vector. The zero vector is denoted by 0.

The set of all vectors with two components is denoted by �2 (where � denotes
the set of real numbers from which the components of vectors in �2 are chosen).
Thus, [�1, 3.5], and are all in �2.

Thinking back to the racetrack game, let’s try to connect all of these ideas to vec-
tors whose tails are not at the origin. The etymological origin of the word vector in the
verb “to carry” provides a clue. The vector [3, 2] may be interpreted as follows: Start-
ing at the origin O, travel 3 units to the right, then 2 units up, finishing at P. The
same displacement may be applied with other initial points. Figure 1.4 shows two
equivalent displacements, represented by the vectors and .CD

!
AB

!

3 53, 4 4312, p 4 ,
OO

!

y

C

D
P

A

B

O
x

Figure 1. 4

We define two vectors as equal if they have the same length and the same direc-
tion. Thus, in Figure 1.4. (Even though they have different initial and ter-
minal points, they represent the same displacement.) Geometrically, two vectors are
equal if one can be obtained by sliding (or translating) the other parallel to itself until
the two vectors coincide. In terms of components, in Figure 1.4 we have A � (3, 1)
and B � (6, 3). Notice that the vector [3, 2] that records the displacement is just the
difference of the respective components:

Similarly,

and thus as expected.
A vector such as with its tail at the origin is said to be in standard position.

The foregoing discussion shows that every vector can be drawn as a vector in standard
position. Conversely, a vector in standard position can be redrawn (by translation) so
that its tail is at any point in the plane.

If A � (�1, 2) and B � (3, 4), find and redraw it (a) in standard position and
(b) with its tail at the point C � (2, �1).

Solution We compute [3 � (�1), 4 � 2] � [4, 2]. If is then translated
to where C � (2, �1), then we must have D � (2 � 4, �1 � 2) � (6, 1). (See
Figure 1.5.)

CD
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AB
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!AB
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CD
!
� 3�1 � 1�4 2 , 1 � 1�1 2 4 � 33, 2 4AB
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� 33, 2 4 � 36 � 3, 3 � 1 4
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!
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When vectors are referred to by
their coordinates, they are being
considered analytically.

�2 is pronounced “r two.”
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Section 1.1 The Geometry and Algebra of Vectors 5

New Vectors from Old

As in the racetrack game, we often want to “follow” one vector by another. This leads
to the notion of vector addition, the first basic vector operation.

If we follow u by v, we can visualize the total displacement as a third vector,
denoted by u � v. In Figure 1.6, u � [1, 2] and v � [2, 2], so the net effect of follow-
ing u by v is

[1 � 2, 2 � 2] � [3, 4]

which gives u � v. In general, if u � [u1, u2] and v � [v1, v2], then their sum u � v is
the vector

u � v � [u1 � v1, u2 � v2]

It is helpful to visualize u � v geometrically. The following rule is the geometric
version of the foregoing discussion.

x

y

A(�1, 2)

B(3, 4)

[4, 2]
D(6, 1)

C(2, �1)

Figure 1. 5

x

y

1

2

2

2
u

v

u � v

3

4

u

v

Figure 1. 6
Vector addition
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6 Chapter 1 Vectors

Figure 1. 8
The parallelogram
determined by u and v

The Parallelogram Rule Given vectors u and v in �2 (in standard position), their sum u � v is the vector
in standard position along the diagonal of the parallelogram determined by u and
v. (See Figure 1.9.)

v

vu

u

u � v

x

y

Figure 1. 9
The parallelogram rule

If u � [3, �1] and v � [1, 4], compute and draw u � v.

Solution We compute u � v � [3 � 1, �1 � 4] � [4, 3]. This vector is drawn
using the head-to-tail rule in Figure 1.10(a) and using the parallelogram rule in
Figure 1.10(b).

Example 1. 2

By translating u and v parallel to themselves, we obtain a parallelogram, as
shown in Figure 1.8. This parallelogram is called the parallelogram determined by u
and v. It leads to an equivalent version of the head-to-tail rule for vectors in standard
position.

The Head-to-Tail Rule Given vectors u and v in �2, translate v so that its tail coincides with the head
of u. The sum u � v of u and v is the vector from the tail of u to the head of v.
(See Figure 1.7.)

v

vu

u � v

Figure 1. 7
The head-to-tail rule

v

vu

u
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Section 1.1 The Geometry and Algebra of Vectors 7

2v

�2v
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Figure 1. 11
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v
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u � v

(a)

x

y

v

u

u � v

(b)

Figure 1. 10

Example 1. 3

The second basic vector operation is scalar multiplication. Given a vector v and
a real number c, the scalar multiple cv is the vector obtained by multiplying each
component of v by c. For example, 3[�2, 4] � [�6, 12]. In general,

cv � c [v1, v2] � [cv1, cv2]

Geometrically, cv is a “scaled” version of v.

If v � [�2, 4], compute and draw 2v, v, and �2v.

Solution We calculate as follows:

These vectors are shown in Figure 1.11.

�2v � 3�21�2 2 , �214 2 4 � 34, �8 41
2 v � 3 12 1�2 2 , 1

2 14 2 4 � 3�1, 2 42v � 321�2 2 , 214 2 4 � 3�4, 8 4
1
2
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8 Chapter 1 Vectors

2v �2v

v

� v1
2

Figure 1. 12

x

y

A

B
a

b

b � a

Figure 1. 14

v

�v u

u � (�v)

v

u

u � v

Figure 1. 13
Vector subtraction

The term scalar comes from the
Latin word scala, meaning “lad-
der.” The equally spaced rungs on
a ladder suggest a scale, and in vec-
tor arithmetic, multiplication by a
constant changes only the scale (or
length) of a vector. Thus, constants
became known as scalars.

Observe that cv has the same direction as v if c � 0 and the opposite direction if
c � 0. We also see that cv is �c � times as long as v. For this reason, in the context of vec-
tors, constants (that is, real numbers) are referred to as scalars. As Figure 1.12 shows,
when translation of vectors is taken into account, two vectors are scalar multiples of
each other if and only if they are parallel.

A special case of a scalar multiple is (�1)v, which is written as �v and is called
the negative of v. We can use it to define vector subtraction: The difference of u and
v is the vector u � v defined by

u � v � u � (�v)

Figure 1.13 shows that u � v corresponds to the “other” diagonal of the parallelo-
gram determined by u and v.

If u � [1, 2] and v � [�3, 1], then u � v � [1 � (�3), 2 � 1] � [4, 1].

The definition of subtraction in Example 1.4 also agrees with the way we calcu-
late a vector such as . If the points A and B correspond to the vectors a and b in
standard position, then b � a, as shown in Figure 1.14. [Observe that the head-
to-tail rule applied to this diagram gives the equation a � (b � a) � b. If we had
accidentally drawn b � a with its head at A instead of at B, the diagram would have
read b � (b � a) � a, which is clearly wrong! More will be said about algebraic
expressions involving vectors later in this section.]

Vectors in �3

Everything we have just done extends easily to three dimensions. The set of all ordered
triples of real numbers is denoted by �3. Points and vectors are located using three
mutually perpendicular coordinate axes that meet at the origin O. A point such as
A � (1, 2, 3) can be located as follows: First travel 1 unit along the x-axis, then move
2 units parallel to the y-axis, and finally move 3 units parallel to the z-axis. The corre-
sponding vector a � [1, 2, 3] is then as shown in Figure 1.15.

Another way to visualize vector a in �3 is to construct a box whose six sides are deter-
mined by the three coordinate planes (the xy-, xz-, and yz-planes) and by three planes
through the point (1,2,3) parallel to the coordinate planes.The vector [1,2,3] then corre-
sponds to the diagonal from the origin to the opposite corner of the box (see Figure 1.16).
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!
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Section 1.1 The Geometry and Algebra of Vectors 9

The “componentwise” definitions of vector addition and scalar multiplication are
extended to �3 in an obvious way.

Vectors in �n

In general, we define �n as the set of all ordered n-tuples of real numbers written as
row or column vectors. Thus, a vector v in �n is of the form

The individual entries of v are its components; vi is called the ith component.
We extend the definitions of vector addition and scalar multiplication to �n in the

obvious way: If u � [u1, u2, . . . , un] and v � [v1, v2, . . . , vn], the ith component of
u � v is ui � vi and the ith component of cv is just cvi.

Since in �n we can no longer draw pictures of vectors, it is important to be able to
calculate with vectors. We must be careful not to assume that vector arithmetic will be
similar to the arithmetic of real numbers. Often it is, and the algebraic calculations we
do with vectors are similar to those we would do with scalars. But, in later sections,
we will encounter situations where vector algebra is quite unlike our previous experi-
ence with real numbers. So it is important to verify any algebraic properties before
attempting to use them.

One such property is commutativity of addition: u � v � v � u for vectors u and
v. This is certainly true in �2. Geometrically, the head-to-tail rule shows that both
u � v and v � u are the main diagonals of the parallelogram determined by u and v.
(The parallelogram rule also reflects this symmetry; see Figure 1.17.)

Note that Figure 1.17 is simply an illustration of the property u � v � v � u. It is
not a proof, since it does not cover every possible case. For example, we must also in-
clude the cases where u � v, u � �v, and u � 0. (What would diagrams for these
cases look like?) For this reason, an algebraic proof is needed. However, it is just as
easy to give a proof that is valid in �n as to give one that is valid in �2.

The following theorem summarizes the algebraic properties of vector addition
and scalar multiplication in �n. The proofs follow from the corresponding properties
of real numbers.

3v1, v2, . . . , vn 4  or ≥ v1
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u � v � v � u
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10 Chapter 1 Vectors

Theorem 1. 1 Algebraic Properties of Vectors in �n

Let u, v, and w be vectors in �n and let c and d be scalars. Then

a. u � v � v � u Commutativity

b. (u � v) � w � u � (v � w) Associativity

c. u � 0 � u

d. u � (�u) � 0

e. c(u � v) � cu � cv Distributivity

f. (c � d)u � cu � du Distributivity

g. c(du) � (cd)u

h. 1u � u

Remarks
• Properties (c) and (d) together with the commutativity property (a) imply

that 0 � u � u and �u � u � 0 as well.
• If we read the distributivity properties (e) and (f) from right to left, they say

that we can factor a common scalar or a common vector from a sum.

Proof We prove properties (a) and (b) and leave the proofs of the remaining
properties as exercises. Let u � [u1, u2, . . . , un], v � [v1, v2, . . . , vn], and w �
[w1, w2, . . . , wn].

(a) u � v � [u1, u2, . . . , un] � [v1, v2, . . . , vn]

� [u1 � v1, u2� v2, . . . , un � vn]

� [v1 � u1, v2� u2, . . . , vn � un]

� [v1, v2, . . . , vn] � [u1, u2, . . . , un]

� v � u

The second and fourth equalities are by the definition of vector addition, and the
third equality is by the commutativity of addition of real numbers.

(b) Figure 1.18 illustrates associativity in �2. Algebraically, we have

The fourth equality is by the associativity of addition of real numbers. Note the care-
ful use of parentheses.

� u � 1v � w 2� 3u1, u2, . . . , un 4 � 1 3v1, v2, . . . , vn 4 � 3w1, w2, . . . , wn 4 2� 3u1, u2, . . . , un 4 � 3v1 � w1, v2 � w2, . . . , vn � wn 4� 3u1 � 1v1 � w1 2 , u2 � 1v2 � w2 2 , . . . , un � 1vn � wn 2 4� 3 1u1 � v1 2 � w1, 1u2 � v2 2 � w2, . . . , 1un � vn 2 � wn 4� 3u1 � v1, u2 � v2, . . . , un � vn 4 � 3w1, w2, . . . , wn 41u � v 2 � w � 1 3u1, u2, . . . , un 4 � 3v1, v2, . . . , vn 4 2 � 3w1, w2, . . . , wn 4

The word theorem is derived from
the Greek word theorema, which in
turn comes from a word meaning
“to look at.” Thus, a theorem is
based on the insights we have
when we look at examples and
extract from them properties that
we try to prove hold in general.
Similarly, when we understand
something in mathematics—the
proof of a theorem, for example—
we often say, “I see.”

(u � v) � w � u � (v � w)

v � w
w

v

u � v

u

Figure 1. 18
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By property (b) of Theorem 1.1, we may unambiguously write u � v � w with-
out parentheses, since we may group the summands in whichever way we please. By
(a), we may also rearrange the summands—for example, as w � u � v—if we choose.
Likewise, sums of four or more vectors can be calculated without regard to order or
grouping. In general, if v1, v2, . . . , vk are vectors in �n, we will write such sums with-
out parentheses:

The next example illustrates the use of Theorem 1.1 in performing algebraic
calculations with vectors.

Let a, b, and x denote vectors in �n.
(a) Simplify 3a � (5b � 2a) � 2(b � a).
(b) If 5x � a � 2(a � 2x), solve for x in terms of a.

Solution We will give both solutions in detail, with reference to all of the properties
in Theorem 1.1 that we use. It is good practice to justify all steps the first few times
you do this type of calculation. Once you are comfortable with the vector properties,
though, it is acceptable to leave out some of the intermediate steps to save time and
space.

(a) We begin by inserting parentheses.

(a), (e)

(b)

(f)

(b), (h)

(b)

(f)

(a)

(b)

(f), (h)

You can see why we will agree to omit some of these steps! In practice, it is acceptable
to simplify this sequence of steps as 

or even to do most of the calculation mentally.

� �a � 7b

� 13a � 2a � 2a 2 � 15b � 2b 2 3a � 15b � 2a 2 � 21b � a 2 �  3a � 5b � 2a � 2b � 2a

�  7b � a

�  7b � 1�1 2a�  7b � 11 � 2 2a�  7b � 1a � 2a 2� 17b � a 2 � 2a

� 1a � 15 � 2 2b 2 � 2a

� 1a � 15b � 2b 2 2 � 2a

� 1 1a � 5b 2 � 2b 2 � 2a

� 11a � 5b 2 � 12b � 2a 2� 1 13 � 1�2 2 2a � 5b 2 � 12b � 2a 2� 1 13a � 1�2a 2 2 � 5b 2 � 12b � 2a 2� 13a � 1�2a � 5b 2 2 � 12b � 2a 2 3a � 15b � 2a 2 � 21b � a 2 � 13a � 15b � 2a 2 2 � 21b � a 2

v1 � v2 � # # # � vk

Section 1.1 The Geometry and Algebra of Vectors 11

Example 1. 5
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12 Chapter 1 Vectors

(b) In detail, we have

(e)

(g)

(a), (b)

(b), (d)

(f), (c)

(h)

(b), (f)

(d)

(c)

Again, we will usually omit most of these steps.

Linear Combinations and Coordinates

A vector that is a sum of scalar multiples of other vectors is said to be a linear combi-
nation of those vectors. The formal definition follows.

Definition A vector v is a linear combination of vectors v1, v2, . . . , vk if there
are scalars c1, c2, . . . , ck such that v � c1v1 � c2v2 � 	 	 	 � ckvk. The scalars c1, c2, . . . ,
ck are called the coefficients of the linear combination.

The vector is a linear combination of and since

Remark Determining whether a given vector is a linear combination of other
vectors is a problem we will address in Chapter 2.

In �2, it is possible to depict linear combinations of two (nonparallel) vectors
quite conveniently.

Let u � and v � We can use u and v to locate a new set of axes (in the same

way that e1 � and e2 � locate the standard coordinate axes). We can usec0
1
dc1

0
d c1

2
d .c3

1
d

3 £ 1

0

�1

§ � 2 £ 2

�3

1

§ � £ 5

�4

0

§ � £ 2

�2

�1

§
£ 5

�4

0

§ ,£ 2

�3

1

§ ,£ 1

0

�1

§ ,£ 2

�2

�1

§

x �  3a

0 � x �  3a

1a � 1�a 2 2 � x � 11 � 2 2aa � 1�a � x 2 � a � 2a

�a � 11 2x � 2a

�a � 15 � 4 2x �  2a

�a � 15x � 4x 2 �  2a � 0

1�a � 5x 2 � 4x �  2a � 14x � 4x 215x � a 2 � 4x � 12a � 4x 2 � 4x

 5x � a �  2a � 4x

 5x � a �  2a � 12 # 2 2x 5x � a �  2a � 212x 2 5x � a �  21a � 2x 2

Example 1. 6

Example 1. 7
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these new axes to determine a coordinate grid that will let us easily locate linear
combinations of u and v.

As Figure 1.19 shows, w can be located by starting at the origin and traveling 
�u followed by 2v. That is,

We say that the coordinates of w with respect to u and v are �1 and 2. (Note that
this is just another way of thinking of the coefficients of the linear combination.) 
It follows that

(Observe that �1 and 3 are the coordinates of w with respect to e1 and e2.)

Switching from the standard coordinate axes to alternative ones is a useful idea. It
has applications in chemistry and geology, since molecular and crystalline structures
often do not fall onto a rectangular grid. It is an idea that we will encounter repeat-
edly in this book.

Binary Vectors and Modular Arithmetic

We will also encounter a type of vector that has no geometric interpretation—at least
not using Euclidean geometry. Computers represent data in terms of 0s and 1s (which
can be interpreted as off/on, closed/open, false/true, or no/yes). Binary vectors are
vectors each of whose components is a 0 or a 1. As we will see in Section 1.4, such
vectors arise naturally in the study of many types of codes.

In this setting, the usual rules of arithmetic must be modified, since the result of
each calculation involving scalars must be a 0 or a 1. The modified rules for addition
and multiplication are given below.

The only curiosity here is the rule that 1 � 1 � 0. This is not as strange as it appears;
if we replace 0 with the word “even” and 1 with the word “odd,” these tables simply

# 0 1

0 0 0

1 0 1

�

0

1

0 1

0 1

1 0

w � � c 3
1
d � 2 c 1

2
d � c�1

3
d

w � �u � 2v

Section 1.1 The Geometry and Algebra of Vectors 13

y

x

�u

u

w
2v

v

Figure 1. 19

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14 Chapter 1 Vectors

summarize the familiar parity rules for the addition and multiplication of even and
odd integers. For example, 1 � 1 � 0 expresses the fact that the sum of two odd inte-
gers is an even integer. With these rules, our set of scalars {0, 1} is denoted by �2 and
is called the set of integers modulo 2.

In �2, 1 � 1 � 0 � 1 � 1 and 1 � 1 � 1 � 1 � 0. (These calculations illustrate the parity
rules again: The sum of three odds and an even is odd; the sum of four odds is even.)

With �2 as our set of scalars, we now extend the above rules to vectors. The set of
all n-tuples of 0s and 1s (with all arithmetic performed modulo 2) is denoted by 
The vectors in are called binary vectors of length n.

The vectors in are [0, 0], [0, 1], [1, 0], and [1, 1]. (How many vectors does 
contain, in general?)

Let u � [1, 1, 0, 1, 0] and v � [0, 1, 1, 1, 0] be two binary vectors of length 5. Find 

Solution The calculation of takes place in so we have

It is possible to generalize what we have just done for binary vectors to vectors whose
components are taken from a finite set {0, 1, 2, . . . , k} for k 
 2. To do so, we must first
extend the idea of binary arithmetic.

The integers modulo 3 is the set �3 � {0, 1, 2} with addition and multiplication given
by the following tables:

Observe that the result of each addition and multiplication belongs to the set
{0, 1, 2}; we say that �3 is closed with respect to the operations of addition and multi-
plication. It is perhaps easiest to think of this set in terms of a 3-hour clock with 0, 1,
and 2 on its face, as shown in Figure 1.20.

The calculation 1 � 2 � 0 translates as follows: 2 hours after 1 o’clock, it is 
0 o’clock. Just as 24:00 and 12:00 are the same on a 12-hour clock, so 3 and 0 are
equivalent on this 3-hour clock. Likewise, all multiples of 3—positive and negative—
are equivalent to 0 here; 1 is equivalent to any number that is 1 more than a multiple
of 3 (such as �2, 4, and 7); and 2 is equivalent to any number that is 2 more than a

# 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

�

0

1

2

0 1 2

0 1 2

1 2 0

2 0 1

�  0
�  0 � 1 � 0 � 1 � 0

u # v �  1 # 0 � 1 # 1 � 0 # 1 � 1 # 1 � 0 # 0

�2,u # v

u # v.

�n
2�2

2

�n
2

�n
2.

Example 1. 8

We are using the term length dif-
ferently from the way we used it in
�n. This should not be confusing,
since there is no geometric notion
of length for binary vectors.

Example 1. 9

Example 1. 10

Example 1. 11
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Section 1.1 The Geometry and Algebra of Vectors 15

multiple of 3 (such as �1, 5, and 8). We can visualize the number line as wrapping
around a circle, as shown in Figure 1.21.

0

12

Figure 1. 20
Arithmetic modulo 3

. . . , �3, 0, 3, . . .

. . . , 1, 2, 5, . . . . . . , �2, 1, 4, . . .

Figure 1. 21

To what is 3548 equivalent in Z3?

Solution This is the same as asking where 3548 lies on our 3-hour clock. The key is
to calculate how far this number is from the nearest (smaller) multiple of 3; that is,
we need to know the remainder when 3548 is divided by 3. By long division, we find that

so the remainder is 2. Therefore, 3548 is equivalent to 2 in �3.

In courses in abstract algebra and number theory, which explore this concept in
greater detail, the above equivalence is often written as 3548 � 2 (mod 3) or 3548 � 2
(mod 3), where � is read “is congruent to.” We will not use this notation or termi-
nology here.

In �3, calculate 2 � 2 � 1 � 2.

Solution 1 We use the same ideas as in Example 1.12. The ordinary sum is 2 � 2 �
1 � 2 � 7, which is 1 more than 6, so division by 3 leaves a remainder of 1. Thus, 2 �
2 � 1 � 2 � 1 in �3.

Solution 2 A better way to perform this calculation is to do it step by step entirely in �3.

Here we have used parentheses to group the terms we have chosen to combine. We could
speed things up by simultaneously combining the first two and the last two terms:

�  1

12 � 2 2 � 11 � 2 2 �  1 � 0

�  1

�  2 � 2

� 11 � 1 2 � 2

�  1 � 1 � 2

 2 � 2 � 1 � 2 � 12 � 2 2 � 1 � 2

3548 � 3 # 1182 � 2,

Example 1. 12

Example 1. 13
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16 Chapter 1 Vectors

Repeated multiplication can be handled similarly. The idea is to use the addition and
multiplication tables to reduce the result of each calculation to 0, 1, or 2.

Extending these ideas to vectors is straightforward.

In let u � [2, 2, 0, 1, 2] and v � [1, 2, 2, 2, 1]. Then

Vectors in are referred to as ternary vectors of length 5.

In general, we have the set �m � {0, 1, 2, . . . , m � 1} of integers modulo m (cor-
responding to an m-hour clock, as shown in Figure 1.22). A vector of length n whose
entries are in �m is called an m-ary vector of length n. The set of all m-ary vectors of
length n is denoted by �m

n.

�5
3

�  1

�  2 � 1 � 0 � 2 � 2

u # v �  2 # 1 � 2 # 2 � 0 # 2 � 1 # 2 � 2 # 1

�5
3,Example 1. 14

0m  1
m  2

1

2

3

Figure 1. 22
Arithmetic modulo m

Exercises 1. 1

1. Draw the following vectors in standard position 
in �2:

(a) (b)

(c) (d)

2. Draw the vectors in Exercise 1 with their tails at the
point (1, �3).

3. Draw the following vectors in standard position 
in �3:

(a) a � [0, 2, 0] (b) b � [3, 2, 1]
(c) c � [1, �2, 1] (d) d � [�1, �1, �2]

4. If the vectors in Exercise 3 are translated so that their
heads are at the point (1, 2, 3), find the points that
correspond to their tails.

5. For each of the following pairs of points, draw the
vector Then compute and redraw as a vector
in standard position.

(a) A � (1, �1), B � (4, 2)
(b) A � (0, �2), B � (2, �1)

(c) A � B �

(d) A � B � 116, 1
2 2113, 1

3 2 , 112, 3 212, 32 2 ,
AB

!
AB

!
.

d � c 3

�2
dc � c�2

3
d

b � c 2
3
da � c 3

0
d

6. A hiker walks 4 km north and then 5 km northeast.
Draw displacement vectors representing the hiker’s
trip and draw a vector that represents the hiker’s net
displacement from the starting point.

Exercises 7–10 refer to the vectors in Exercise 1. Compute
the indicated vectors and also show how the results can be
obtained geometrically.

7. a � b 8. b � c

9. d � c 10. a � d

Exercises 11 and 12 refer to the vectors in Exercise 3.
Compute the indicated vectors.

11. 2a � 3c 12. 2c � 3b � d

13. Find the components of the vectors u, v, u � v, and
u � v, where u and v are as shown in Figure 1.23.

14. In Figure 1.24, A, B, C, D, E, and F are the vertices of a
regular hexagon centered at the origin.

Express each of the following vectors in terms of
a � and b � :

(a) (b)

(c) (d)

(e) (f) BC
!
� DE

!
� FA

!
AC

!
CF

!
AD

!
BC

!
AB

! OB
!

OA
!
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x

y

60�

30� 1�1

�1

1

u

v

Figure 1. 23

y

x

C B

E

D A

F

O

Figure 1. 24

In Exercises 15 and 16, simplify the given vector expression.
Indicate which properties in Theorem 1.1 you use.

15. 2(a � 3b) � 3(2b � a)

16. �3(a � c) � 2(a � 2b) � 3(c � b)

In Exercises 17 and 18, solve for the vector x in terms of the
vectors a and b.

17. x � a � 2(x � 2a)

18. x � 2a � b � 3(x � a) � 2(2a � b)

In Exercises 19 and 20, draw the coordinate axes relative to u
and v and locate w.

19.

20.

In Exercises 21 and 22, draw the standard coordinate axes on
the same diagram as the axes relative to u and v. Use these to
find w as a linear combination of u and v.

u � c�2

3
d , v � c 2

1
d , w � �u � 2v

u � c 1

�1
d , v � c 1

1
d , w � 2u � 3v

21.

22.

23. Draw diagrams to illustrate properties (d) and (e) of
Theorem 1.1.

24. Give algebraic proofs of properties (d) through (g) of
Theorem 1.1.

In Exercises 25–28, u and v are binary vectors. Find u � v
and in each case.

25. 26.

27.

28.

29. Write out the addition and multiplication tables for �4.

30. Write out the addition and multiplication tables for �5.

In Exercises 31–43, perform the indicated calculations.

31. 32.

33. 34.

35. 36.

37.

38.

39. 40.

41. 42.

43.

In Exercises 44–55, solve the given equation or indicate that
there is no solution.

44. 45.

46. 47.

48. 49.

50. 51.

52. 53.

54. 55.

56. (a) For which values of a does x � a � 0 have a solu-
tion in �5?

(b) For which values of a and b does x � a � b have a
solution in �6?

(c) For which values of a, b, and m does x � a � b
have a solution in �m?

57. (a) For which values of a does ax � 1 have a solution in �5?
(b) For which values of a does ax � 1 have a solution in �6?
(c) For which values of a and m does ax � 1 have a

solution in �m?

6x � 3 � 1 in �84x � 5 � 2 in �6

2x � 3 � 2 in �58x � 9 in �11

6x � 5 in �83x � 4 in �6

3x � 4 in �52x � 1 in �5

2x � 1 in �42x � 1 in �3

x � 5 � 1 in �6x � 3 � 2 in �5

32, 0, 3, 2 4 # 1 33, 1, 1, 2 4 � 33, 3, 2, 1 4 2  in �4
4 and in �4

5

32, 1, 2 4 # 32, 2, 1 4  in �3
332, 1, 2 4 � 32, 0, 1 4  in �3

3

2100 in �11816 � 4 � 3 2  in �9

13 � 4 2 13 � 2 � 4 � 2 2  in �5

2 � 1 � 2 � 2 � 1 in �3, �4, and �5

313 � 3 � 2 2  in �42 # 3 # 2 in �4

3 � 1 � 2 � 3 in �4212 � 1 � 2 2  in �3

2 # 2 # 2 in �32 � 2 � 2 in �3

u � 31, 1, 0, 1, 0 4 , v � 30, 1, 1, 1, 0 4u � 31, 0, 1, 1 4 , v � 31, 1, 1, 1 4 v � £11
1

§u � £11
0

§ ,u � c0
1
d , v � c1

1
du # v

u � c�2

3
d , v � c 2

1
d , w � c 2

9
d

u � c 1

�1
d , v � c 1

1
d , w � c 2

6
d
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18 Chapter 1 Vectors

Length and Angle:  The Dot Product
It is quite easy to reformulate the familiar geometric concepts of length, distance,
and angle in terms of vectors. Doing so will allow us to use these important and
powerful ideas in settings more general than �2 and �3. In subsequent chapters,
these simple geometric tools will be used to solve a wide variety of problems arising
in applications—even when there is no geometry apparent at all!

The Dot Product

The vector versions of length, distance, and angle can all be described using the
notion of the dot product of two vectors.

Definition If

then the dot product of u and v is defined by

In words, is the sum of the products of the corresponding components of u
and v. It is important to note a couple of things about this “product” that we have just
defined: First, u and v must have the same number of components. Second, the dot
product is a number, not another vector. (This is why is sometimes called
the scalar product of u and v.) The dot product of vectors in �n is a special and im-
portant case of the more general notion of inner product, which we will explore in
Chapter 7.

Compute when 

Solution

Notice that if we had calculated in Example 1.15, we would have computed

That in general is clear, since the individual products of the components
commute. This commutativity property is one of the properties of the dot product
that we will use repeatedly. The main properties of the dot product are summarized
in Theorem 1.2.

u # v � v # u

v # u � 1�3 2 # 1 � 5 # 2 � 2 # 1�3 2 � 1

v # u

u # v � 1 # 1�3 2 � 2 # 5 � 1�3 2 # 2 � 1

u � £ 1

2

�3

§  and v � £�3

5

2

§ .u # v

u # vu # v

u # v

u # v � u1v1 � u2v2 � # # # � unvn

u # v

u � ≥ u1

u2

o
un

¥   and  v � ≥ v1

v2

o
vn

¥

Example 1. 15
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Section 1.2 Length and Angle: The Dot Product 19

Let u, v, and w be vectors in �n and let c be a scalar. Then

a. Commutativity

b. Distributivity

c.
d.

Proof We prove (a) and (c) and leave proof of the remaining properties for the
exercises.

(a) Applying the definition of dot product to and , we obtain

where the middle equality follows from the fact that multiplication of real numbers is
commutative.

(c) Using the definitions of scalar multiplication and dot product, we have

Remarks
• Property (b) can be read from right to left, in which case it says that we can

factor out a common vector u from a sum of dot products. This property also has
a “right-handed” analogue that follows from properties (b) and (a) together:

• Property (c) can be extended to give (Exercise 58). This
extended version of (c) essentially says that in taking a scalar multiple of a dot
product of vectors, the scalar can first be combined with whichever vector is more
convenient. For example,

With this approach we avoid introducing fractions into the vectors, as the original
grouping would have.

• The second part of (d) uses the logical connective if and only if. Appendix A
discusses this phrase in more detail, but for the moment let us just note that the
wording signals a double implication—namely,

and

Theorem 1.2 shows that aspects of the algebra of vectors resemble the algebra of
numbers. The next example shows that we can sometimes find vector analogues of
familiar identities.

if u # u � 0, then u � 0

if u � 0, then u # u � 0

112 3�1, �3, 24 2 # 36, �4, 04 � 3�1, �3, 24 # 112 36, �4, 04 2 � 3�1, �3, 24 # 33, �2, 04 � 3

u # 1cv 2 � c 1u # v 21v � w2 # u � v # u � w # u.

� c 1u # v 2� c 1u1v1 � u2v2 � p � unvn 2� cu1v1 � cu2v2 � p � cunvn

1cu 2 # v � 3cu1, cu2, . . . , cun 4 # 3v1, v2, . . . , vn 4

� v # u

� v1u1 � v2u2 � p � vnun

u # v � u1v1 � u2v2 � p � unvn

v # uu # v

u # u 
 0  and  u # u � 0 if and only if u � 0
1cu 2 # v � c 1u # v 2u # 1v � w2 � u # v � u # w
u # v � v # u
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20 Chapter 1 Vectors

Prove that for all vectors u and v in �n.

Solution

(Identify the parts of Theorem 1.2 that were used at each step.)

Length

To see how the dot product plays a role in the calculation of lengths, recall how
lengths are computed in the plane. The Theorem of Pythagoras is all we need.

In �2, the length of the vector is the distance from the origin to the point

(a, b), which, by Pythagoras’ Theorem, is given by as in Figure 1.25.

Observe that a2 � b2 � . This leads to the following definition.

Definition The length (or norm) of a vector in �n is the nonneg-
ative scalar defined by

In words, the length of a vector is the square root of the sum of the squares of its
components. Note that the square root of is always defined, since by
Theorem 1.2(d). Note also that the definition can be rewritten to give ,
which will be useful in proving further properties of the dot product and lengths of
vectors.

Theorem 1.3 lists some of the main properties of vector length.

Let v be a vector in �n and let c be a scalar. Then

a.

b.

Proof Property (a) follows immediately from Theorem 1.2(d). To show (b), we have

using Theorem 1.2(c). Taking square roots of both sides, using the fact that
for any real number c, gives the result.1c 2 � 0c 0

7 cv 7 2 � 1cv 2 # 1cv 2 � c21v # v 2 � c2 7 v 7 2
7 cv 7 � 0c 0 7 v 77 v 7 � 0 if and only if v � 0

7 32, 3 4 7 � 222 � 32 � 113

7 v 7 2 � v # v
v # v 
 0v # v

7 v 7 � 1v # v � 1v2
1 � v2

2 � p � v2
n

7v 7 v � ≥ v1

v2

o
vn

¥
v # v

2a2 � b2,

v � ca
b
d

� u # u � 21u # v 2 � v # v

� u # u � u # v � u # v � v # v

� u # u � v # u � u # v � v # v

1u � v 2 # 1u � v 2 � 1u � v 2 # u � 1u � v 2 # v

1u � v 2 # 1u � v 2 � u # u � 21u # v 2 � v # vExample 1. 16

Example 1. 17

x

y

b

a

��v�� � �a2 � b2

v � [  ]ab

Figure 1. 25

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 1.2 Length and Angle: The Dot Product 21

A vector of length 1 is called a unit vector. In �2, the set of all unit vectors can be
identified with the unit circle, the circle of radius 1 centered at the origin (see 
Figure 1.26). Given any nonzero vector v, we can always find a unit vector in the same
direction as v by dividing v by its own length (or, equivalently, multiplying by 
We can show this algebraically by using property (b) of Theorem 1.3 above:
If then

and u is in the same direction as v, since is a positive scalar. Finding a unit vec-
tor in the same direction is often referred to as normalizing a vector (see Figure 1.27).

1> 7 v 77u 7 � 7 11> 7 v 7 2v 7 � 01> 7 v 7 0 7 v 7 � 11> 7 v 7 2 7 v 7 � 1

u � 11> 7v 7 2v,

1> 7v 7 2 .

Example 1. 18
In �2, let e1 � and e2 � . Then e1 and e2 are unit vectors, since the sum of the

squares of their components is 1 in each case. Similarly, in �3, we can construct unit
vectors

Observe in Figure 1.28 that these vectors serve to locate the positive coordinate axes
in �2 and �3.

e1 � £ 10
0

§ ,  e2 � £ 01
0

§ ,  and  e3 � £ 00
1

§
c0
1
dc1

0
d

1�1

�1

1

x

y

Figure 1. 26
Unit vectors in �2

v1
��v��

v

1

Figure 1. 27
Normalizing a vector

x

y

e2

e1

Figure 1. 28
Standard unit vectors in �2 and �3

z

x y

e3

e2e1
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Theorem 1. 5

Theorem 1. 4

vu

u � v

Figure 1. 29
The Triangle Inequality

22 Chapter 1 Vectors

In general, in �n, we define unit vectors e1, e2, . . . , en, where ei has 1 in its ith com-
ponent and zeros elsewhere. These vectors arise repeatedly in linear algebra and are
called the standard unit vectors.

Normalize the vector 

Solution so a unit vector in the same direction
as v is given by

Since property (b) of Theorem 1.3 describes how length behaves with respect to
scalar multiplication, natural curiosity suggests that we ask whether length and vec-
tor addition are compatible. It would be nice if we had an identity such as

but for almost any choice of vectors u and v this turns out to be false. [See
Exercise 52(a).] However, all is not lost, for it turns out that if we replace the � sign
by �, the resulting inequality is true. The proof of this famous and important
result—the Triangle Inequality—relies on another important inequality—the
Cauchy-Schwarz Inequality—which we will prove and discuss in more detail in
Chapter 7.

The Cauchy-Schwarz Inequality

For all vectors u and v in �n,

See Exercises 71 and 72 for algebraic and geometric approaches to the proof of this
inequality.

In �2 or �3, where we can use geometry, it is clear from a diagram such as 
Figure 1.29 that for all vectors u and v. We now show that this
is true more generally.

The Triangle Inequality

For all vectors u and v in �n, 7u � v 7 � 7u 7 � 7 v 7

7u 7 � 7 v 77u � v 7 �

0u # v 0 � 7u 7 ˛ 7 v 7

7u 7 � 7v 7 , 7u � v 7 �

£ 2

�1

3

§ � £ 2>114

�1>114

3>114

§u � 11> 7v 7 2v � 11>114 2
7 v 7 � 122 � 1�1 2 2 � 32 � 114,

v � £ 2

�1

3

§ .Example 1. 19
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Section 1.2 Length and Angle: The Dot Product 23

Proof Since both sides of the inequality are nonnegative, showing that the square of
the left-hand side is less than or equal to the square of the right-hand side is equiva-
lent to proving the theorem. (Why?) We compute

By Example 1.9

By Cauchy-Schwarz

as required.

Distance

The distance between two vectors is the direct analogue of the distance between two
points on the real number line or two points in the Cartesian plane. On the number
line (Figure 1.30), the distance between the numbers a and b is given by �a � b�. (Tak-
ing the absolute value ensures that we do not need to know which of a or b is larger.)
This distance is also equal to and its two-dimensional generalization is
the familiar formula for the distance d between points (a1, a2) and (b1, b2)—namely,
d � 1 1a1 � b1 2 2 � 1a2 � b2 2 2.1 1a � b 2 2,

� 1 7u 7 � 7v 7 22� 7u 7 2 � 2 7u 7 ˛ 7v 7 � 7v 7 2� 7u 7 2 � 2 0u # v 0 � 7v 7 2� u # u � 21u # v 2 � v # v

7u � v 7 2 � 1u � v 2 # 1u � v 2

Figure 1. 30
d � �a � b � � ��2 � 3� � 5

In terms of vectors, if and then d is just the length of a � b,

as shown in Figure 1.31. This is the basis for the next definition.

b � c b1

b2

d ,a � c a1

a2

d

a2 � b2

(b1, b2)

(a1, a2)

a1 � b1

d

Figure 1. 31

d � 1 1a1 � b1 2 2 � 1a2 � b2 2 2 � 7 a � b 7
x

y
(a1, a2)

a

a � b

b

(b1, b2)

Definition The distance d(u, v) between vectors u and v in �n is defined by

d1u, v 2 � 7u � v 7

0 3�2

a b

�

�
I I I I II I I I I ������������������������������
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24 Chapter 1 Vectors

Find the distance between and 

Solution We compute 

Angles

The dot product can also be used to calculate the angle between a pair of vectors.
In �2 or �3, the angle between the nonzero vectors u and v will refer to the angle �
determined by these vectors that satisfies 0 � � � 180° (see Figure 1.32).

d1u, v 2 � 7u � v 7 � 1 112 2 2 � 1�1 2 2 � 12 � 14 � 2

u � v � £12

�1

1

§ , so

v � £ 0

2

�2

§ .u � £12

1

�1

§

In Figure 1.33, consider the triangle with sides u, v, and u � v, where � is the angle
between u and v. Applying the law of cosines to this triangle yields

Expanding the left-hand side and using several times, we obtain

which, after simplification, leaves us with From this we obtain
the following formula for the cosine of the angle � between nonzero vectors u and v.
We state it as a definition.

Definition For nonzero vectors u and v in �n,

Compute the angle between the vectors u � [2, 1, �2] and v � [1, 1, 1].

cos u �
u # v7u 7 7 v 7

u # v � 7u 7 ˛ 7v 7  cos u.

7u 7 2 � 21u # v 2 � 7v 7 2 � 7u 7 2 � 7v 7 2 � 2 7u 7 ˛ 7v 7  cos u

7v 7 2 � v # v

7u � v 7 2 � 7u 7 2 � 7 v 7 2 � 2 7u 7 ˛ 7 v 7  cos u

u � v

u

v

Figure 1. 33

Example 1. 21

v

u u

v

uv

u

v

Figure 1. 32
The angle between u and v

Example 1. 20
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Section 1.2 Length and Angle: The Dot Product 25

Solution We calculate 

and Therefore, cos � � so

� � cos�1 � 1.377 radians, or 78.9°.

Compute the angle between the diagonals on two adjacent faces of a cube.

Solution The dimensions of the cube do not matter, so we will work with a cube
with sides of length 1. Orient the cube relative to the coordinate axes in �3, as shown
in Figure 1.34, and take the two side diagonals to be the vectors [1, 0, 1] and [0, 1, 1].
Then angle � between these vectors satisfies

from which it follows that the required angle is ��3 radians, or 60�.

cos u �
1 # 0 � 0 # 1 � 1 # 1

1212
�

1

2

11>313 2 1>313,13.7v 7 � 212 � 12 � 12 �19 � 3,

7u 7 � 122 � 12 � 1�2 2 2 �u # v � 2 # 1 � 1 # 1 � 1�2 2 # 1 � 1,

Example 1. 22

y
x

[1, 0, 1][0, 1, 1]

z

Figure 1. 34

(Actually, we don’t need to do any calculations at all to get this answer. If we draw
a third side diagonal joining the vertices at (1, 0, 1) and (0, 1, 1), we get an equilateral
triangle, since all of the side diagonals are of equal length. The angle we want is one
of the angles of this triangle and therefore measures 60�. Sometimes a little insight
can save a lot of calculation; in this case, it gives a nice check on our work!)

Remarks
• As this discussion shows, we usually will have to settle for an approximation

to the angle between two vectors. However, when the angle is one of the so-called spe-
cial angles (0�, 30�, 45�, 60�, 90�, or an integer multiple of these), we should be able to
recognize its cosine (Table 1.1) and thus give the corresponding angle exactly. In all
other cases, we will use a calculator or computer to approximate the desired angle by
means of the inverse cosine function.

Table 1. 1 Cosines of Special Angles

� 0� 30� 45� 60� 90�

cos �
10

2
� 0

11

2
�

1

2

12

2
�

1

12

13

2

14

2
� 1
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26 Chapter 1 Vectors

• The derivation of the formula for the cosine of the angle between two vectors
is valid only in �2 or �3, since it depends on a geometric fact: the law of cosines. In
�n, for n � 3, the formula can be taken as a definition instead. This makes sense, since

the Cauchy-Schwarz Inequality implies that so ranges from

�1 to 1, just as the cosine function does.

Orthogonal Vectors

The concept of perpendicularity is fundamental to geometry. Anyone study-
ing geometry quickly realizes the importance and usefulness of right angles. We
now generalize the idea of perpendicularity to vectors in �n, where it is called
orthogonality.

In �2 or �3, two nonzero vectors u and v are perpendicular if the angle � between

them is a right angle—that is, if � � ��2 radians, or 90°. Thus, cos 90° � 0,

and it follows that . This motivates the following definition.

Definition Two vectors u and v in �n are orthogonal to each other if

Since for every vector v in �n, the zero vector is orthogonal to every
vector.

In �3, u � [1, 1, �2] and v � [3, 1, 2] are orthogonal, since 3 � 1 � 4 � 0.

Using the notion of orthogonality, we get an easy proof of Pythagoras’ Theorem,
valid in �n.

Pythagoras’ Theorem

For all vectors u and v in �n, if and only if u and v are
orthogonal.

Proof From Example 1.16, we have for all vectors
u and v in �n. It follows immediately that if and only if

See Figure 1.35.

The concept of orthogonality is one of the most important and useful in linear
algebra, and it often arises in surprising ways. Chapter 5 contains a detailed treatment
of the topic, but we will encounter it many times before then. One problem in which
it clearly plays a role is finding the distance from a point to a line, where “dropping a
perpendicular” is a familiar step.

u # v � 0.
7v 7 27u 7 2 �7u � v 7 2 �
7v 7 221u # v 2 �7u 7 2 �7u � v 7 2 �

7v 7 27u 7 2 �7u � v 7 2 �

u # v �

0 # v � 0

u # v � 0.

u # v � 0

u # v7u 7 ˛ 7 v 7 �

u # v7u 7 ˛ 7v 7` u # v7u 7 ˛ 7v 7 ` � 1,

The word orthogonal is derived
from the Greek words orthos,
meaning “upright,” and gonia,
meaning “angle.” Hence, orthogo-
nal literally means “right-angled.”
The Latin equivalent is rectangular.

Example 1. 23

v

v

u

u � v

Figure 1. 35
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Projections

We now consider the problem of finding the distance from a point to a line in the
context of vectors. As you will see, this technique leads to an important concept: the
projection of a vector onto another vector.

As Figure 1.36 shows, the problem of finding the distance from a point B to a
line � (in �2 or �3) reduces to the problem of finding the length of the perpendicular
line segment or, equivalently, the length of the vector If we choose a point A
on �, then, in the right-angled triangle �APB, the other two vectors are the leg and
the hypotenuse is called the projection of onto the line �. We will now look
at this situation in terms of vectors.

AB
!

AP
!

AB
!
.

AP
!PB

!
.PB

Consider two nonzero vectors u and v. Let p be the vector obtained by dropping
a perpendicular from the head of v onto u and let � be the angle between u and v, as
shown in Figure 1.37. Then clearly , where is the unit vector
in the direction of u. Moreover, elementary trigonometry gives and

we know that cos � � Thus, after substitution, we obtain

This is the formula we want, and it is the basis of the following definition for vec-
tors in �n.

Definition If u and v are vectors in �n and , then the projection of
v onto u is the vector proju(v) defined by

An alternative way to derive this formula is described in Exercise 73.

proju1v 2 � a u # v
u # u
bu

u  0

� a u # v
u # u
bu

� a u # v7u 7 2 bu

a 17u 7 bua u # v7u 7 ˛ 7v 7 bp � 7v 7
u # v7u 7 ˛ 7v 7 . 7v 7  cos u,7p 7 �11> 7u 7 2uû �p � 7p 7 ûp

v

u

Figure 1. 37
The projection of v onto u

�

P

B

Figure 1. 36
The distance from a point to a line

�

A

P

B
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28 Chapter 1 Vectors

Remarks
• The term projection comes from the idea of projecting an image onto a wall

(with a slide projector, for example). Imagine a beam of light with rays parallel to
each other and perpendicular to u shining down on v. The projection of v onto u is
just the shadow cast, or projected, by v onto u.

• It may be helpful to think of proju(v) as a function with variable v. Then the
variable v occurs only once on the right-hand side of the definition. Also, it is helpful
to remember Figure 1.38, which reminds us that proju(v) is a scalar multiple of the
vector u (not v).

• Although in our derivation of the definition of proju(v) we required v as well
as u to be nonzero (why?), it is clear from the geometry that the projection of the 

zero vector onto u is 0. The definition is in agreement with this, since 
0u � 0.

• If the angle between u and v is obtuse, as in Figure 1.38, then proju(v) will be in
the opposite direction from u; that is, proju(v) will be a negative scalar multiple of u.

• If u is a unit vector then proju(v) � . (Why?)

Find the projection of v onto u in each case.

(a) (b)

(c)

Solution

(a) We compute and so

(b) Since e3 is a unit vector,

(c) We see that Thus,

�
311 � 12 2

4
£ 1

1

12

§
proju1v 2 � 1u # v 2u � a 1

2
� 1 �

3

12
b £ 1>2

1>2
1>12

§ �
311 � 12 2

2
£ 1>2

1>2
1>12

§
7u 7 � 1 1

4 � 1
4 � 1

2 � 1.

proje3
1v 2 � 1e3

# v 2e3 � 3e3 � £00
3

§
proju1v 2 � a u # v

u # u
bu �

1

5
c 2
1
d � c 2>5

1>5 d
u # u � c2

1
d # c2

1
d � 5,u # v � c2

1
d # c�1

3
d � 1

v � £ 12
3

§  and u � £ 1>2
1>2

1>12

§
v � £ 12

3

§  and u � e3v � c�1

3
d  and u � c2

1
d

1u # v 2u
a u # 0

u # u
bu �

Example 1. 24

proju(v)

v

u

Figure 1. 38

�

�
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Exercises 1. 2

In Exercises 1–6, find 

1. 2.

3. 4.

5.

6.

In Exercises 7–12, find for the given exercise, and give a
unit vector in the direction of u.

7. Exercise 1 8. Exercise 2 9. Exercise 3

10. Exercise 4 11. Exercise 5 12. Exercise 6

In Exercises 13–16, find the distance d(u, v) between u and
v in the given exercise.

13. Exercise 1 14. Exercise 2

15. Exercise 3 16. Exercise 4

17. If u, v, and w are vectors in �n, n 
 2, and c is a
scalar, explain why the following expressions make
no sense:

(a) (b)
(c) (d)

In Exercises 18–23, determine whether the angle between
u and v is acute, obtuse, or a right angle.

18. 19.

20. u � [5, 4, �3], v � [1, �2, �1]

21. u � [0.9, 2.1, 1.2], v � [�4.5, 2.6, �0.8]

22. u � [1, 2, 3, 4], v � [�3, 1, 2, �2]

23. u � [1, 2, 3, 4], v � [5, 6, 7, 8]

In Exercises 24–29, find the angle between u and v in the
given exercise.

24. Exercise 18 25. Exercise 19 26. Exercise 20

u � £ 2

�1

1

§ , v � £ 1

�2

�1

§u � c 2
1
d , v � c 1

�3
d

c # 1u � w 2u # 1v # w2 u # v � w7u # v 7
CAS

CAS

7u 7
v � 3�2.29, 1.72, 4.33, �1.54 4u � 31.12, �3.25, 2.07, �1.83 4 ,u � 31, 12, 13, 0 4 , v � 34, �12, 0, �5 4

u � £ 1.5

0.4

�2.1

§ , v � £ 3.0

5.2

�0.6

§CASu � £12
3

§ , v � £23
1

§
u � c 2

�3
d , v � c 9

6
du � c�1

2
d , v � c3

1
du # v.
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CAS

CAS

CAS

CAS

27. Exercise 21 28. Exercise 22 29. Exercise 23

30. Let A � (�3, 2), B � (1, 0), and C � (4, 6). Prove that
�ABC is a right-angled triangle.

31. Let A � (1, 1, �1), B � (�3, 2, �2), and C � (2, 2, �4).
Prove that �ABC is a right-angled triangle.

32. Find the angle between a diagonal of a cube and an
adjacent edge.

33. A cube has four diagonals. Show that no two of them
are perpendicular.

In Exercises 34–39, find the projection of v onto u. Draw a
sketch in Exercises 34 and 35.

34. A parallelogram has diagonals determined by the
vectors 

Show that the parallelogram is a rhombus (all sides of
equal length) and determine the side length.

35. The rectangle ABCD has vertices at A � (1, 2, 3),
B � (3, 6, �2), and C = (0, 5, �4). Determine the
coordinates of vertex D.

36. An airplane heading due east has a velocity of 200
miles per hour. A wind is blowing from the north at 
40 miles per hour. What is the resultant velocity of the
airplane?

37. A boat heads north across a river at a rate of 4 miles per
hour. If the current is flowing east at a rate of 3 miles
per hour, find the resultant velocity of the boat.

38. Ann is driving a motorboat across a river that is 2 km
wide. The boat has a speed of 20 km/h in still water, and
the current in the river is flowing at 5 km/h. Ann heads
out from one bank of the river for a dock directly across
from her on the opposite bank. She drives the boat in a
direction perpendicular to the current.

(a) How far downstream from the dock will Ann land?
(b) How long will it take Ann to cross the river?

39. Bert can swim at a rate of 2 miles per hour in still
water. The current in a river is flowing at a rate of 1
mile per hour. If Bert wants to swim across the river to
a point directly opposite, at what angle to the bank of
the river must he swim?

d1 � £ 22
0

§ , and d2 � £ 1

�1

3

§

CASCAS

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Exercises 40–45, find the projection of v onto u. Draw a
sketch in Exercises 40 and 41.

40. 41.

42. 43.

44.

45.

Figure 1.39 suggests two ways in which vectors 
may be used to compute the area of a triangle.
The area A of

u � £ 3.01

�0.33

2.52

§ , v � £ 1.34

4.25

�1.66

§
u � c0.5

1.5
d , v � c2.1

1.2
d

u � ≥ 1

�1

1

�1

¥ , v � ≥ 2

�3

�1

�2

¥u � £ 2>3
�2>3
�1>3 § , v � £ 2

�2

2

§
u � c    3>5

�4>5 d , v � c 1
2
du � c 1

�1
d , v � c 3

�1
d
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In Exercises 48 and 49, find all values of the scalar k for
which the two vectors are orthogonal.

48. 49.

50. Describe all vectors that are orthogonal

to .

51. Describe all vectors that are orthogonal

to .

52. Under what conditions are the following true for
vectors u and v in �2 or �3?

(a) �u + v� � �u� � �v� (b) �u + v� � �u� � �v�

53. Prove Theorem 1.2(b).

54. Prove Theorem 1.2(d).

In Exercises 55–57, prove the stated property of distance
between vectors.

55. d(u, v) � d(v, u) for all vectors u and v

56. d(u, w) � d(u, v) � d(v, w) for all vectors u, v, and w

57. d(u, v) � 0 if and only if u � v

58. Prove that u c v � c(u v) for all vectors u and v in �n

and all scalars c.

59. Prove that �u � v� 
 �u� � �v� for all vectors u and
v in �n. [Hint: Replace u by u � v in the Triangle
Inequality.]

60. Suppose we know that u v � u w. Does it follow
that v � w? If it does, give a proof that is valid in �n;
otherwise, give a counterexample (that is, a specific set
of vectors u, v, and w for which u v � u w but
v  w).

61. Prove that (u � v) (u � v) � �u�2 � �v�2 for all vec-
tors u and v in �n.

62. (a) Prove that �u � v�2 � �u � v�2 � 2�u�2 � 2�v�2

for all vectors u and v in �n.
(b) Draw a diagram showing u, v, u � v, and u � v

in �2 and use (a) to deduce a result about 
parallelograms.

63. Prove that for all

vectors u and v in �n.

�
1

4
7u � v 7 2u # v �

1

4
7u � v 7 2

#

##

##

##

u � ca
b
d v � cx

y
d

u � c3
1
d v � cx

y
d

u � £ 1

�1

2

§ , v � £ k 2

k

�3

§u � c2
3
d , v � c k � 1

k � 1
d

v

u
(a)

v � proju(v)

v

u
(b)

Figure 1. 39

the triangle in part (a) is given by 

and part (b) suggests the trigonometric form of the

area of a triangle:A � (We can use the

identity to find sin �.)

In Exercises 46 and 47, compute the area of the triangle with
the given vertices using both methods.

46. A � (1, �1), B � (2, 2), C � (4, 0)

47. A � (3, �1, 4), B � (4, �2, 6), C � (5, 0, 2)

sinu � 21 � cos2 u

1
2 7u 7 7v 7 sin u

1
2 7u 7 7v � proju1v 2 7 ,

CAS

CAS
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64. (a) Prove that �u � v� � �u � v� if and only if u and v
are orthogonal.

(b) Draw a diagram showing u, v, u � v, and u � v
in �2 and use (a) to deduce a result about paral-
lelograms.

65. (a) Prove that u � v and u � v are orthogonal in �n if
and only if �u� � �v�.

(b) Draw a diagram showing u, v, u � v, and u � v in
�2 and use (a) to deduce a result about parallelo-
grams.

66. If �u� � 2, �v� � and u v � 1, find �u � v�.

67. Show that there are no vectors u and v such that �u� � 1,
�v� � 2, and u v � 3.

68. (a) Prove that if u is orthogonal to both v and w, then
u is orthogonal to v � w.

(b) Prove that if u is orthogonal to both v and w, then
u is orthogonal to sv � t w for all scalars s and t.

69. Prove that u is orthogonal to v � proju(v) for all
vectors u and v in �n, where u  0.

70. (a) Prove that proju(proju(v)) � proju(v).
(b) Prove that proju(v � proju(v)) � 0.
(c) Explain (a) and (b) geometrically.

71. The Cauchy-Schwarz Inequality �u v� � �u� �v� is
equivalent to the inequality we get by squaring both
sides: (u v)2 � �u�2 �v�2.

(a) In �2, with and , this becomes

Prove this algebraically. [Hint: Subtract the left-hand
side from the right-hand side and show that the
difference must necessarily be nonnegative.]
(b) Prove the analogue of (a) in �3.

1u1v1 � u2v2 22 � 1u2
1 � u2

2 2 1v2
1 � v 2

2 2
v � c v1

v2

du � cu1

u2

d#
#

#

#13 ,
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72. Another approach to the proof of the Cauchy-Schwarz
Inequality is suggested by Figure 1.40, which shows
that in �2 or �3, Show that this is
equivalent to the Cauchy-Schwarz Inequality.

7proju1v 2 7 � 7v 7 .

proju(v)

v

u

Figure 1. 40

73. Use the fact that proju(v) � cu for some scalar c, to-
gether with Figure 1.41, to find c and thereby derive
the formula for proju(v).

cu

v

u

v � cu

Figure 1. 41

74. Using mathematical induction, prove the following
generalization of the Triangle Inequality:

for all n 
 1.

7 v1 � v2 � # # # � vn 7 � 7 v1 7 � 7 v2 7 � # # # � 7 vn 7
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Vectors and Geometry
Many results in plane Euclidean geometry can be proved using vector techniques.
For example, in Example 1.24, we used vectors to prove Pythagoras’ Theorem. In this
exploration, we will use vectors to develop proofs for some other theorems from
Euclidean geometry.

As an introduction to the notation and the basic approach, consider the following
easy example.

Give a vector description of the midpoint M of a line segment 

Solution We first convert everything to vector notation. If O denotes the origin and
P is a point, let p be the vector In this situation, a � b � m � and

b � a (Figure 1.42).
Now, since M is the midpoint of we have

so

1. Give a vector description of the point P that is one-third of the way from A to
B on the line segment Generalize.

2. Prove that the line segment joining the midpoints of two sides of a triangle is
parallel to the third side and half as long. (In vector notation, prove that 
in Figure 1.43.)

3. Prove that the quadrilateral PQRS (Figure 1.44), whose vertices are the mid-
points of the sides of an arbitrary quadrilateral ABCD, is a parallelogram.

4. A median of a triangle is a line segment from a vertex to the midpoint of the
opposite side (Figure 1.45). Prove that the three medians of any triangle are concur-
rent (i.e., they have a common point of intersection) at a point G that is two-thirds
of the distance from each vertex to the midpoint of the opposite side. [Hint: In
Figure 1.46, show that the point that is two-thirds of the distance from A to P is given
by (a � b � c). Then show that is two-thirds of the distance from B to
Q and two-thirds of the distance from C to R.] The point G in Figure 1.46 is called the
centroid of the triangle.

1
3 1a � b � c 21

3

1
2 AB

!
PQ

!
�

AB.

m � a � 1
2 1b � a 2 � 1

2 1a � b 2m � a � AM
!
� 1

2AB
!
� 1

2 1b � a 2AB,
OA

!
�OB

!
�AB

!
�

OM
!
,OB

!
,OA

!
,OP

!
.

AB.

32

m
M

b � a

a

b

A

B

O

Figure 1. 42
The midpoint of AB

A B

C

P Q

Figure 1. 43

Example 1. 25
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A B
R

P

K

Q

C

Figure 1. 50
The circumcenter

A B
O

C

Figure 1. 51

A

B

Q

S

D

C

R

Z

P

Figure 1. 52

5. An altitude of a triangle is a line segment from a vertex that is perpendicular
to the opposite side (Figure 1.47). Prove that the three altitudes of a triangle are
concurrent. [Hint: Let H be the point of intersection of the altitudes from A and B in
Figure 1.48. Prove that is orthogonal to .] The point H in Figure 1.48 is called
the orthocenter of the triangle.

6. A perpendicular bisector of a line segment is a line through the midpoint of the
segment, perpendicular to the segment (Figure 1.49). Prove that the perpendicular
bisectors of the three sides of a triangle are concurrent. [Hint: Let K be the point of in-
tersection of the perpendicular bisectors of and in Figure 1.50. Prove that is
orthogonal to .] The point K in Figure 1.50 is called the circumcenter of the triangle.AB

! RK
!

BCAC

AB
!

CH
!

A

B

C
D R

Q

S

P

Figure 1. 44

A

C

M

B

Figure 1. 45
A median

A

B

C
P

R

Q

G

Figure 1. 46
The centroid

Figure 1. 47
An altitude

A B

C

H

Figure 1. 48
The orthocenter

A B

Figure 1. 49
A perpendicular bisector

7. Let A and B be the endpoints of a diameter of a circle. If C is any point on the
circle, prove that �ACB is a right angle. [Hint: In Figure 1.51, let O be the center of the
circle. Express everything in terms of a and c and show that is orthogonal to 

8. Prove that the line segments joining the midpoints of opposite sides of a
quadrilateral bisect each other (Figure 1.52).

BC
!
. 4AC

!

33
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Example 1. 26

x

y

�

Figure 1. 53
The line 2x � y � 0

x

y

n � [  ]

x

2
1

�

Figure 1. 54
A normal vector n

The Latin word norma refers to a
carpenter’s square, used for draw-
ing right angles. Thus, a normal
vector is one that is perpendicular
to something else, usually a plane.

Lines and Planes
We are all familiar with the equation of a line in the Cartesian plane. We now want to
consider lines in �2 from a vector point of view. The insights we obtain from this
approach will allow us to generalize to lines in �3 and then to planes in �3. Much of
the linear algebra we will consider in later chapters has its origins in the simple geom-
etry of lines and planes; the ability to visualize these and to think geometrically about
a problem will serve you well.

Lines in �2 and �3

In the xy-plane, the general form of the equation of a line is ax � by � c. If b  0, then
the equation can be rewritten as y � �(a/b)x � c/b, which has the form y � mx � k.
[This is the slope-intercept form; m is the slope of the line, and the point with coordi-
nates (0, k) is its y-intercept.] To get vectors into the picture, let’s consider an example.

The line � with equation 2x � y � 0 is shown in Figure 1.53. It is a line with slope �2
passing through the origin. The left-hand side of the equation is in the form of a dot

product; in fact, if we let and then the equation becomes n � x � 0.

The vector n is perpendicular to the line—that is, it is orthogonal to any vector x that
is parallel to the line (Figure 1.54)—and it is called a normal vector to the line. The
equation n � x � 0 is the normal form of the equation of �.

Another way to think about this line is to imagine a particle moving along the
line. Suppose the particle is initially at the origin at time t � 0 and it moves along
the line in such a way that its x-coordinate changes 1 unit per second. Then at t � 1
the particle is at (1, �2), at t � 1.5 it is at (1.5, �3), and, if we allow negative values
of t (that is, we consider where the particle was in the past), at t � �2 it is (or was) at

x � c x
y
d ,n � c 2

1
d

34 Chapter 1 Vectors
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Section 1.3 Lines and Planes 35

(�2, 4). This movement is illustrated in Figure 1.55. In general, if x � t, then y � �2t,
and we may write this relationship in vector form as 

What is the significance of the vector It is a particular vector parallel

to �, called a direction vector for the line. As shown in Figure 1.56, we may write the
equation of � as x � td. This is the vector form of the equation of the line.

If the line does not pass through the origin, then we must modify things
slightly.

d � c 1

�2
d ?

c x
y
d � c t

�2t
d � t c 1

�2
d

Example 1. 27

x

y

�

t � �2

t � 0

t � 1

t � 1.5

Figure 1. 55

x

y

d � [    ]1
�2

�

Figure 1. 56
A direction vector d

Consider the line � with equation 2x � y � 5 (Figure 1.57). This is just the line from
Example 1.26 shifted upward 5 units. It also has slope �2, but its y-intercept is the
point (0, 5). It is clear that the vectors d and n from Example 1.26 are, respectively, a
direction vector and a normal vector for this line too.

Thus, n is orthogonal to every vector that is parallel to �. The point P � (1, 3) is
on �. If X � (x, y) represents a general point on �, then the vector x � p is
parallel to � and n � (x � p) � 0 (see Figure 1.58). Simplified, we have n � x � n � p.
As a check, we compute

Thus, the normal form n � x � n � p is just a different representation of the general
form of the equation of the line. (Note that in Example 1.26, p was the zero vector, so
n � p � 0 gave the right-hand side of the equation.)

n # x � c 2
1
d # c x

y
d � 2x � y  and  n # p � c 2

1
d # c 1

3
d � 5

PX
!
�
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36 Chapter 1 Vectors

x

y

�

n

d

Figure 1. 57
The line 2x � y � 5

x

y

�

n

x � p

P

X

Figure 1. 58
n � (x � p) � 0

These results lead to the following definition.

Definition The normal form of the equation of a line � in �2 is

n � (x � p) � 0 or n � x � n � p

where p is a specific point on � and n  0 is a normal vector for �.

The general form of the equation of � is ax � by � c, where is a nor-
mal vector for �.

Continuing with Example 1.27, let us now find the vector form of the equation
of �. Note that, for each choice of x, x � p must be parallel to—and thus a multiple
of—the direction vector d. That is, x � p � td or x � p � td for some scalar t. In
terms of components, we have

(1)

or x � 1 � t
(2)y � 3 � 2t

Equation (1) is the vector form of the equation of �, and the componentwise equa-
tions (2) are called parametric equations of the line. The variable t is called a parameter.

How does all of this generalize to �3? Observe that the vector and parametric
forms of the equations of a line carry over perfectly. The notion of the slope of a line
in �2—which is difficult to generalize to three dimensions—is replaced by the more
convenient notion of a direction vector, leading to the following definition.

Definition The vector form of the equation of a line � in �2 or �3 is

x � p � td

where p is a specific point on � and d  0 is a direction vector for �.
The equations corresponding to the components of the vector form of the

equation are called parametric equations of �.

c x
y
d � c 1

3
d � t c 1

�2
d

n � c a
b
d

The word parameter and the corre-
sponding adjective parametric
come from the Greek words para,
meaning “alongside,” and metron,
meaning “measure.” Mathemati-
cally speaking, a parameter is a
variable in terms of which other
variables are expressed—a new
“measure” placed alongside
old ones.
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Section 1.3 Lines and Planes 37

We will often abbreviate this terminology slightly, referring simply to the general,
normal, vector, and parametric equations of a line or plane.

Find vector and parametric equations of the line in �3 through the point P � (1, 2, �1),

parallel to the vector 

Solution The vector equation x � p � td is

The parametric form is x � 1 � 5t

y � 2 �  t

z � �1 � 3t

Remarks
• The vector and parametric forms of the equation of a given line � are not

unique—in fact, there are infinitely many, since we may use any point on � to deter-
mine p and any direction vector for �. However, all direction vectors are clearly mul-
tiples of each other.

In Example 1.28, (6, 1, 2) is another point on the line (take t � 1), and is
another direction vector. Therefore,

gives a different (but equivalent) vector equation for the line. The relationship
between the two parameters s and t can be found by comparing the parametric
equations: For a given point (x, y, z) on �, we have

x � 1 � 5t � 6 � 10s

y � 2 �  t � 1 � 2s

z � �1 � 3t � 2 �  6s

implying that

�10s � 5t � 5

2s � t � �1

�6s � 3t � 3

Each of these equations reduces to t � 1 � 2s.

£xy
z

§ � £61
2

§ � s £ 10

�2

6

§
£ 10

�2

6

§

£ xy
z

§ � £ 1

2

�1

§ � t £ 5

�1

3

§

d � £ 5

�1

3

§ .
Example 1. 28
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Example 1. 29

n

Figure 1. 59
n is orthogonal to infinitely many
vectors

P

X

n

x � p
�

Figure 1. 60
n � (x � p) � 0

• Intuitively, we know that a line is a one-dimensional object. The idea of
“dimension” will be clarified in Chapters 3 and 6, but for the moment observe that
this idea appears to agree with the fact that the vector form of the equation of a line
requires one parameter.

One often hears the expression “two points determine a line.” Find a vector equation
of the line � in �3 determined by the points P � (�1, 5, 0) and Q � (2, 1, 1).

Solution We may choose any point on � for p, so we will use P (Q would also be
fine).

A convenient direction vector is (or any scalar multiple of this).
Thus, we obtain

x � p � td

Planes in �3

The next question we should ask ourselves is, How does the general form of the equa-
tion of a line generalize to �3? We might reasonably guess that if ax � by � c is the
general form of the equation of a line in �2, then ax � by � cz � d might represent a
line in �3. In normal form, this equation would be n � x � n � p, where n is a normal
vector to the line and p corresponds to a point on the line.

To see if this is a reasonable hypothesis, let’s think about the special case of the

equation ax � by � cz � 0. In normal form, it becomes n � x � 0, where 

However, the set of all vectors x that satisfy this equation is the set of all vectors or-
thogonal to n. As shown in Figure 1.59, vectors in infinitely many directions have this
property, determining a family of parallel planes. So our guess was incorrect: It
appears that ax � by � cz � d is the equation of a plane—not a line—in �3.

Let’s make this finding more precise. Every plane � in �3 can be determined by
specifying a point p on � and a nonzero vector n normal to � (Figure 1.60). Thus, if
x represents an arbitrary point on �, we have n � (x � p) � 0 or n � x � n � p. If

and then, in terms of components, the equation becomes

ax � by � cz � d (where d � n � p).

Definition The normal form of the equation of a plane � in �3 is

n � (x � p) � 0 or n � x � n � p

where p is a specific point on � and n  0 is a normal vector for �.

The general form of the equation of � is ax � by � cz � d, where is
a normal vector for �.

n � £ ab
c

§

x � £ xy
z

§ ,n � £ ab
c

§

n � £ ab
c

§ .

� £�1

5

0

§ � t £ 3

�4

1

§
d � PQ

!
� £ 3

�4

1

§
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Note that any scalar multiple of a normal vector for a plane is another normal
vector.

Find the normal and general forms of the equation of the plane that contains the

point P � (6, 0, 1) and has normal vector 

Solution With and we have so

the normal equation n � x � n � p becomes the general equation x � 2y � 3z � 9.

Geometrically, it is clear that parallel planes have the same normal vector(s).
Thus, their general equations have left-hand sides that are multiples of each other. So,
for example, 2x � 4y � 6z � 10 is the general equation of a plane that is parallel to
the plane in Example 1.30, since we may rewrite the equation as x � 2y � 3z � 5—
from which we see that the two planes have the same normal vector n. (Note that the
planes do not coincide, since the right-hand sides of their equations are distinct.)

We may also express the equation of a plane in vector or parametric form. To do
so, we observe that a plane can also be determined by specifying one of its points P
(by the vector p) and two direction vectors u and v parallel to the plane (but not par-
allel to each other). As Figure 1.61 shows, given any point X in the plane (located

3 # 1 � 9,2 # 0 �1 # 6 �n # p �x � £ xy
z

§ ,p � £ 60
1

§
n � £ 12

3

§ .
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Example 1. 30

su

x � p � su � tvtv

v

u

x

X
P

p

O

Figure 1. 61
x � p � su � t v

by x), we can always find appropriate multiples su and tv of the direction vectors such
that x � p � su � tv or x � p � su � tv. If we write this equation componentwise,
we obtain parametric equations for the plane.

Definition The vector form of the equation of a plane � in �3 is
x � p � su � t v

where p is a point on � and u and v are direction vectors for � (u and v are non-
zero and parallel to �, but not parallel to each other).

The equations corresponding to the components of the vector form of the
equation are called parametric equations of �.
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40 Chapter 1 Vectors

Find vector and parametric equations for the plane in Example 1.30.

Solution We need to find two direction vectors. We have one point P � (6, 0, 1) in
the plane; if we can find two other points Q and R in �, then the vectors and 
can serve as direction vectors (unless by bad luck they happen to be parallel!). By trial
and error, we observe that Q � (9, 0, 0) and R � (3, 3, 0) both satisfy the general equa-
tion x � 2y � 3z � 9 and so lie in the plane. Then we compute

which, since they are not scalar multiples of each other, will serve as direction vectors.
Therefore, we have the vector equation of �,

and the corresponding parametric equations,

x � 6 � 3s � 3t

y � 3t

z � 1 � s � t

[What would have happened had we chosen R � (0, 0, 3)?]

Remarks
• A plane is a two-dimensional object, and its equation, in vector or parametric

form, requires two parameters.
• As Figure 1.59 shows, given a point P and a nonzero vector n in �3, there are

infinitely many lines through P with n as a normal vector. However, P and two non-
parallel normal vectors n1 and n2 do serve to locate a line � uniquely, since � must
then be the line through P that is perpendicular to the plane with equation x � p �
sn1 � tn2 (Figure 1.62). Thus, a line in �3 can also be specified by a pair of equations

a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

one corresponding to each normal vector. But since these equations correspond to a
pair of nonparallel planes (why nonparallel?), this is just the description of a line as
the intersection of two nonparallel planes (Figure 1.63). Algebraically, the line con-
sists of all points (x, y, z) that simultaneously satisfy both equations. We will explore
this concept further in Chapter 2 when we discuss the solution of systems of linear
equations.

Tables 1.2 and 1.3 summarize the information presented so far about the equa-
tions of lines and planes.

Observe once again that a single (general) equation describes a line in �2 but a
plane in �3. [In higher dimensions, an object (line, plane, etc.) determined by a single
equation of this type is usually called a hyperplane.] The relationship among the

£ xy
z

§ � £ 60
1

§ � s £ 3

0

�1

§ � t £�3

3

�1

§

u � PQ
!
� q � p � £ 3

0

�1

§  and v � PR
!
� r � p � £�3

3

�1

§

PR
!

PQ
!

Example 1. 31

n2

n1

P

�

Figure 1. 62
Two normals determine a line

n1

n2

�1

�2�

Figure 1. 63
The intersection of
two planes is a line

�

�
I I I I II I I I I ������������������������������

�

�
I I I I II I I I I �������������������������������
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Section 1.3 Lines and Planes 41

dimension of the object, the number of equations required, and the dimension of the
space is given by the “balancing formula”:

(dimension of the object) � (number of general equations) � dimension of the space

The higher the dimension of the object, the fewer equations it needs. For exam-
ple, a plane in �3 is two-dimensional, requires one general equation, and lives in
a three-dimensional space: 2 � 1 � 3. A line in �3 is one-dimensional and so needs
3 � 1 � 2 equations. Note that the dimension of the object also agrees with the num-
ber of parameters in its vector or parametric form. Notions of “dimension” will be
clarified in Chapters 3 and 6, but for the time being, these intuitive observations will
serve us well.

We can now find the distance from a point to a line or a plane by combining the
results of Section 1.2 with the results from this section.

Find the distance from the point B � (1, 0, 2) to the line � through the point

A � (3, 1, 1) with direction vector 

Solution As we have already determined, we need to calculate the length of
where P is the point on � at the foot of the perpendicular from B. If we label v �
then projd(v) and (see Figure 1.64). We do the necessary
calculations in several steps.

Step 1: v � AB
!
� b � a � £ 10

2

§ � £ 31
1

§ � £�2

�1

1

§
PB

!
� v � projd1v 2AP

!
�

AB
!
,

PB
!
,

d � £�1

1

0

§ .

Table 1. 2 Equations of Lines in �2

Normal Form General Form Vector Form Parametric Form

n � x � n � p ax � by � c x � p � td x � p1 � td1

y � p2 � td2

Table 1. 3 Lines and Planes in �3

Normal Form General Form Vector Form Parametric Form

Lines a1x � b1y � c1z � d1 x � p � td
a2x � b2y � c2z � d2

Planes ax � by � cz � d x � p � su � tv

z � p3 � su3 � tv3

y � p2 � su2 � tv2

x � p1 � su1 � tv1n # x � n # p
z � p3 � td3

y � p2 � td2n2
# x � n2

# p2

x � p1 � td1n1
# x � n1

# p1� �
�

Example 1. 32

�

�

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



42 Chapter 1 Vectors

Step 2: The projection of v onto d is

Step 3: The vector we want is

Step 4: The distance d(B, �) from B to � is

Using Theorem 1.3(b) to simplify the calculation, we have

Note
• In terms of our earlier notation, d(B, �) � d(v, projd(v)).

� 1
2122

� 1
219 � 9 � 4

7 v � projd1v 2 7 � 1
2 ß £�3

�3

2

§ ß
7 v � projd1v 2 7 � ß £�3

2

�3
2

1

§ ß

v � projd1v 2 � £�2

�1

1

§ � £�1
2
1
2

0

§ � £�3
2

�3
2

1

§
� £�1

2
1
2

0

§
� 1

2 £�1

1

0

§
� a 1�1 2 # 1�2 2 � 1 # 1�1 2 � 0 # 11�1 2 2 � 1 � 0

b £�1

1

0

§
 projd1v 2 � a d # v

d # d
bd

�

A

P

B

v

d

v � projd(v)

projd(v)

Figure 1. 64
d1B, � 2 � 7 v � projd1v 2 7
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Section 1.3 Lines and Planes 43

In the case where the line � is in �2 and its equation has the general form
ax � by � c, the distance d(B, �) from B � (x0, y0) is given by the formula

(3)

You are invited to prove this formula in Exercise 39.

Find the distance from the point B � (1, 0, 2) to the plane � whose general equation
is x � y � z � 1.

Solution In this case, we need to calculate the length of where P is the point on
� at the foot of the perpendicular from B. As Figure 1.65 shows, if A is any point on

� and we situate the normal vector of � so that its tail is at A, then we

need to find the length of the projection of onto n. Again we do the necessary
calculations in steps.

AB
!

n � £ 1

1

�1

§
PB

!
,

d1B, / 2 �
�ax0 � by0 � c �

2a2 � b2

Example 1. 33

�

n

A

B

projn(AB)

P

Figure 1. 65

d1B, � 2 � 7projn1AB
!2 7

Step 1: By trial and error, we find any point whose coordinates satisfy the equation
x � y � z � 1. A � (1, 0, 0) will do.

Step 2: Set

Step 3: The projection of v onto n is

� �2
3 £ 1

1

�1

§ � £�2
3

�2
3
2
3

§
� a 1 # 0 � 1 # 0 � 1 # 2

1 � 1 � 1�1 2 2 b £ 1

1

�1

§
 projn1v 2 � a n # v

n # n
bn

v � AB
!
� b � a � £ 10

2

§ � £ 10
0

§ � £ 00
2

§
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44 Chapter 1 Vectors

Step 4: The distance d(B, �) from B to � is

In general, the distance d(B, �) from the point B � (x0, y0, z0) to the plane whose
general equation is ax � by � cz � d is given by the formula

(4)

You will be asked to derive this formula in Exercise 40.

d1B, � 2 �
�ax0 � by0 � cz0 � d �

2a2 � b2 � c 2

� 2
313

� 2
3 ß £ 1

1

�1

§ ß
7projn1v 2 7 � ��2

3 � ß £ 1

1

�1

§ ß

Exercises 1. 3

In Exercises 1 and 2, write the equation of the line passing
through P with normal vector n in (a) normal form and
(b) general form.

1. 2.

In Exercises 3–6, write the equation of the line passing
through P with direction vector d in (a) vector form and
(b) parametric form.

3. 4.

5. 6.

In Exercises 7 and 8, write the equation of the plane passing
through P with normal vector n in (a) normal form and
(b) general form.

7. 8. P � 1�3, 1, 2 2 , n � £ 10
5

§P � 10, 1, 0 2 , n � £32
1

§

P � 1�3, 1, 2 2 , d � £ 10
5

§P � 10, 0, 0 2 , d � £ 1

�1

4

§
P � 13, �3 2 , d � c�1

1
dP � 11, 0 2 , d � c�1

3
d

P � 12, 1 2 , n � c 3

�4
dP � 10, 0 2 , n � c3

2
d

In Exercises 9 and 10, write the equation of the plane passing
through P with direction vectors u and v in (a) vector form
and (b) parametric form.

9.

10.

In Exercises 11 and 12, give the vector equation of the line
passing through P and Q.

11. P � (1, �2), Q � (3, 0)

12. P � (4, �1, 3), Q � (2, 1, 3)

In Exercises 13 and 14, give the vector equation of the plane
passing through P, Q, and R.

13. P � (1, 1, 1), Q � (4, 0, 2), R � (0, 1, �1)

14. P � (1, 0, 0), Q � (0, 1, 0), R � (0, 0, 1)

15. Find parametric equations and an equation in vector
form for the lines in �2 with the following equations:

(a) y � 3x � 1 (b) 3x � 2y � 5

P � 14, �1, 3 2 , u � £ 11
0

§ , v � £�1

1

1

§
P � 10, 0, 0 2 , u � £21

2

§ , v � £�3

2

1

§
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Section 1.3 Lines and Planes 45

16. Consider the vector equation x � p � t(q � p), where
p and q correspond to distinct points P and Q in �2

or �3.

(a) Show that this equation describes the line segment
as t varies from 0 to 1.

(b) For which value of t is x the midpoint of
and what is x in this case?

(c) Find the midpoint of when P � (2, �3) and
Q � (0, 1).

(d) Find the midpoint of when P � (1, 0, 1) 
and Q � (4, 1, �2).

(e) Find the two points that divide in part (c) into
three equal parts.

(f) Find the two points that divide in part (d) into
three equal parts.

17. Suggest a “vector proof” of the fact that, in  �2, two
lines with slopes m1 and m2 are perpendicular if and
only if m1m2 � �1.

18. The line � passes through the point P � (1, �1, 1) and

has direction vector d For each of the

following planes �, determine whether � and � are
parallel, perpendicular, or neither:

(a) 2x � 3y � z � 1 (b) 4x � y � 5z � 0
(c) x � y � z � 3 (d) 4x � 6y � 2z � 0

19. The plane �1 has the equation 4x � y � 5z � 2. For
each of the planes � in Exercise 18, determine whether
�1 and � are parallel, perpendicular, or neither.

20. Find the vector form of the equation of the line in �2

that passes through P � (2, �1) and is perpendicular
to the line with general equation 2x � 3y � 1.

21. Find the vector form of the equation of the line in �2

that passes through P � (2, �1) and is parallel to the
line with general equation 2x � 3y � 1.

22. Find the vector form of the equation of the line in �3

that passes through P � (�1, 0, 3) and is perpendicular
to the plane with general equation x � 3y � 2z � 5.

23. Find the vector form of the equation of the line in �3

that passes through P � (�1, 0, 3) and is parallel to
the line with parametric equations

24. Find the normal form of the equation of the plane that
passes through P � (0, �2, 5) and is parallel to the
plane with general equation 6x � y � 2z � 3.

z � �2 � t
y �  2 � 3t
x �  1 � t

� £ 2

3

�1

§ .

PQ

PQ

PQ

PQ

PQ,
PQ

25. A cube has vertices at the eight points (x, y, z), where
each of x, y, and z is either 0 or 1. (See Figure 1.34.)

(a) Find the general equations of the planes that
determine the six faces (sides) of the cube.

(b) Find the general equation of the plane that con-
tains the diagonal from the origin to (1, 1, 1) and
is perpendicular to the xy-plane.

(c) Find the general equation of the plane that
contains the side diagonals referred to in
Example 1.22.

26. Find the equation of the set of all points that are
equidistant from the points P � (1, 0, �2) and
Q � (5, 2, 4).

In Exercises 27 and 28, find the distance from the point Q to
the line �.

27. Q � (2, 2), � with equation 

28. Q � (0, 1, 0), � with equation 

In Exercises 29 and 30, find the distance from the point Q to
the plane �.

29. Q � (2, 2, 2), � with equation x � y � z � 0

30. Q � (0, 0, 0), � with equation x � 2y � 2z � 1

Figure 1.66 suggests a way to use vectors to locate the point 
R on � that is closest to Q.

31. Find the point R on � that is closest to Q in Exercise 27.

32. Find the point R on � that is closest to Q in Exercise 28.

£xy
z

§ � £11
1

§ � t £�2

0

3

§
cx
y
d � c�1

2
d � t c 1

�1
d

�

P

O

Q

R

p

r

Figure 1. 66
r � p � PR

!
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46 Chapter 1 Vectors

Figure 1.67 suggests a way to use vectors to locate the point R
on � that is closest to Q.

In Exercises 43–44, find the acute angle between the planes
with the given equations.

43. x � y � z � 0 and 2x � y � 2z � 0

44. 3x � y � 2z � 5 and x � 4y � z � 2

In Exercises 45–46, show that the plane and line with the
given equations intersect, and then find the acute angle of
intersection between them.

45. The plane given by x � y � 2z � 0 and the line 
given by

46. The plane given by 4x � y � z � 6 and the line 

given by 

Exercises 47–48 explore one approach to the problem of find-
ing the projection of a vector onto a plane. As Figure 1.69
shows, if � is a plane through the origin in �3 with normal
vector n, and v is a vector in �3, then p � proj�(v) is a
vector in � such that v � cn � p for some scalar c.

x � t

y � 1 � 2t

z � 2 � 3t

x � 2 � t

y � 1 � 2t

z � 3 � t

r

p

Q

O

P

R

�

Figure 1. 67

r � p � PQ
!
� QR

! 180 �

n1 n2

�1

�2

�

Figure 1. 68

� p � v � cn

n
v

cn

Figure 1. 69
Projection onto a plane

33. Find the point R on � that is closest to Q in Exercise 29.

34. Find the point R on � that is closest to Q in Exercise 30.

In Exercises 35 and 36, find the distance between the parallel
lines.

35.

36.

In Exercises 37 and 38, find the distance between the parallel
planes.

37. 2x � y � 2z � 0 and 2x � y � 2z � 5

38. x � y � z � 1 and x � y � z � 3

39. Prove equation (3) on page 43.

40. Prove equation (4) on page 44.

41. Prove that, in �2, the distance between parallel lines
with equations c1 and c2 is given by

42. Prove that the distance between parallel planes with
equations d1 and d2 is given by

If two nonparallel planes �1 and �2 have normal vectors n1

and n2 and � is the angle between n1 and n2, then we define

0d1 � d2 07n 7 .

n # x �n # x �

0c1 � c2 07n 7 .

n # x �n # x �

£xy
z

§ � £ 1

0

�1

§ � s £11
1

§  and £xy
z

§ � £01
1

§ � t £11
1

§
cx
y
d � c1

1
d � s c�2

3
d  and cx

y
d � c5

4
d � t c�2

3
d

the angle between �1 and �2 to be either � or 180� � �,
whichever is an acute angle. (Figure 1.68)
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Section 1.3 Lines and Planes 47

47. Using the fact that n is orthogonal to every vector in �
(and hence to p), solve for c and thereby find an expres-
sion for p in terms of v and n.

48. Use the method of Exercise 43 to find the projection of

v � £  1

 0

�2

§

onto the planes with the following equations:

(a) x � y � z � 0 (b) 3x � y � z � 0

(c) x � 2z � 0 (d) 2x � 3y � z � 0

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



48

The Cross Product
It would be convenient if we could easily convert the vector form x � p � su � tv of
the equation of a plane to the normal form . What we need is a process
that, given two nonparallel vectors u and v, produces a third vector n that is orthog-
onal to both u and v. One approach is to use a construction known as the cross prod-
uct of vectors. Only valid in �3, it is defined as follows:

Definition The cross product of and is the vector u � v
defined by

A shortcut that can help you remember how to calculate the cross product of two
vectors is illustrated below. Under each complete vector, write the first two compo-
nents of that vector. Ignoring the two components on the top line, consider each
block of four: Subtract the products of the components connected by dashed lines
from the products of the components connected by solid lines. (It helps to notice that
the first component of u � v has no 1s as subscripts, the second has no 2s, and the
third has no 3s.)

u2v3 � u3v2

u3v1 � u1v3

u1v2 � u2v1

v1

v2

v3

v1

v2

u1

u2

u3

u1

u2

u � v � £u2v3 � u3v2

u3v1 � u1v3

u1v2 � u2v1

§
v � £ v1

v2

v3

§u � £u1

u2

u3

§

n # x � n # p
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The following problems briefly explore the cross product.

1. Compute u � v.

(a) (b)

(c) (d)

2. Show that e1 � e2 � e3, e2 � e3 � e1, and e3 � e1 � e2.
3. Using the definition of a cross product, prove that u � v (as shown in Figure 1.70)

is orthogonal to u and v.
4. Use the cross product to help find the normal form of the equation of the plane.

(a) The plane passing through P � (1, 0, �2), parallel to and 

(b) The plane passing through P � (0, �1, 1), Q � (2, 0, 2), and R � (1, 2, �1)
5. Prove the following properties of the cross product:

(a) v � u � �(u � v) (b) u � 0 � 0
(c) u � u � 0 (d) u � k v � k(u � v)
(e) u � ku � 0 (f) u � (v � w) � u � v � u � w

6. Prove the following properties of the cross product:
(a) (b)

(c)

7. Redo Problems 2 and 3, this time making use of Problems 5 and 6.
8. Let u and v be vectors in �3 and let � be the angle between u and v.

(a) Prove that sin �. [Hint: Use Problem 6(c).]
(b) Prove that the area A of the triangle determined by u and v (as shown in Fig-

ure 1.71) is given by

(c) Use the result in part (b) to compute the area of the triangle with vertices 
A � (1, 2, 1), B � (2, 1, 0), and C � (5, �1, 3).

A � 1
2 7u � v 7

7u � v 7 � 7u 7 ˛ 7 v 7
7u � v 7 2 � 7u 7 2 7 v 7 2 � 1u # v 2 2 u � 1v � w 2 � 1u # w 2v � 1u # v 2wu # 1v � w 2 � 1u � v 2 # w

v � £ 3

�1

2

§u � £01
1

§

u � £ 11
1

§ , v � £ 12
3

§u � £�1

2

3

§ , v � £ 2

�4

�6

§
u � £ 3

�1

2

§ , v � £01
1

§u � £01
1

§ , v � £ 3

�1

2

§

v

u

u � v

Figure 1. 70

v

u

Figure 1. 71

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



aa

b

q

b

r

Figure 1. 74
The resultant of two forces

Applications

Force Vectors

We can use vectors to model force. For example, a wind blowing at 30 km/h in a west-
erly direction or the Earth’s gravity acting on a 1 kg mass with a force of 9.8 newtons
downward are each best represented by vectors since they each consist of a magnitude
and a direction.

It is often the case that multiple forces act on an object. In such situations, the net
result of all the forces acting together is a single force called the resultant, which is
simply the vector sum of the individual forces (Figure 1.72). When several forces act
on an object, it is possible that the resultant force is zero. In this case, the object is
clearly not moving in any direction and we say that it is in equilibrium. When an ob-
ject is in equilibrium and the force vectors acting on it are arranged head-to-tail, the
result is a closed polygon (Figure 1.73).

r

f1

f2

Figure 1. 72
The resultant of two forces

Ann and Bert are trying to roll a rock out of the way. Ann pushes with a force of 20 N
in a northerly direction while Bert pushes with a force of 40 N in an easterly direction.

(a) What is the resultant force on the rock?
(b) Carla is trying to prevent Ann and Bert from moving the rock. What force must

Carla apply to keep the rock in equilibrium?

Solution (a) Figure 1.74 shows the position of the two forces. Using the parallelo-
gram rule, we add the two forces to get the resultant r as shown. By Pythagoras’

f2

f2

f1

f1

f3

f3

Figure 1. 73
Equilibrium

Force is defined as the product of
mass and acceleration due to grav-
ity (which, on Earth, is 9.8 m/s2).
Thus, a 1 kg mass exerts a down-
ward force of 1 kg � 9.8 m/s2 or
9.8 kg •m/s2. This unit of measure-
ment is a newton (N). So the force
exerted by a 1 kg mass is 9.8 N.

Example 1. 34

50 Chapter 1 Vectors
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Section 1.4 Applications 51

Theorem, we see that . For the direction of
r, we calculate the angle between r and Bert’s easterly force. We find that 

so .
(b) If we denote the forces exerted by Ann, Bert, and Carla by a, b, and c, respec-

tively, then we require a � b � c � 0. Therefore c � �(a � b) � �r, so Carla
needs to exert a force of 44.72 N in the direction opposite to r.

Often, we are interested in decomposing a force vector into other vectors whose
resultant is the given vector. This process is called resolving a vector into compo-
nents. In two dimensions, we wish to resolve a vector into two components. How-
ever, there are infinitely many ways to do this; the most useful will be to resolve the
vector into two orthogonal components. (Chapters 5 and 7 explore this idea more
generally.) This is usually done by introducing coordinate axes and by choosing
the components so that one is parallel to the x-axis and the other to the y-axis.
These components are usually referred to as the horizontal and vertical compo-
nents, respectively. In Figure 1.75, f is the given vector and fx and fy are its
horizontal and vertical components.

u � 26.57�sin u � 20>�r� � 0.447,
u

�r� � 2202 � 402 � 22000 � 44.72 N

ffy

fx x

y

Figure 1. 75
Resolving a vector into components

Ann pulls on the handle of a wagon with a force of 100 N. If the handle makes an
angle of 20˚ with the horizontal, what is the force that tends to pull the wagon for-
ward and what force tends to lift it off the ground?

Solution Figure 1.76 shows the situation and the vector diagram that we need to
consider.

Example 1. 35

Figure 1. 76

f

20°

fy

fx
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52 Chapter 1 Vectors

We see that

and

Thus, and . So the wagon
is pulled forward with a force of approximately 93.97 N and it tends to lift off the
ground with a force of approximately 34.20 N.

We solve the next example using two different methods. The first solution considers
a triangle of forces in equilibrium; the second solution uses resolution of forces into
components.

7 fy 7 � 10010.3420 2 � 34.207 fx 7 � 10010.9397 2 � 93.97

7 fy 7 � 7 f 7  sin20�7 fx 7 � 7 f 7  cos20�

60° 45°

Figure 1. 77

Example 1. 36

Solution 1 We assume that the painting is in equilibrium. Then the two wires must
supply enough upward force to balance the downward force of gravity. Gravity exerts
a downward force of 5 � 9.8 � 49 N on the painting, so the two wires must
collectively pull upward with 49 N of force. Let f1 and f2 denote the tensions in the
wires and let r be their resultant (Figure 1.78). It follows that since we are in
equilibrium.

7 r 7 � 49

Figure 1.77 shows a painting that has been hung from the ceiling by two wires. If the
painting has a mass of 5 kg and if the two wires make angles of 45 and 60 degrees with
the ceiling, determine the tension in each wire.
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Section 1.4 Applications 53

Using the law of sines, we have

so

Therefore, the tensions in the wires are approximately 35.87 N and 25.36 N.

Solution 2 We resolve f1 and f2 into horizontal and vertical components, say, f1 � h1 � v1

and f2 � h2 � v2, and note that, as above, there is a downward force of 49 N 
(Figure 1.79).

It follows that

Since the painting is in equilibrium, the horizontal components must balance, as
must the vertical components. Therefore, , from
which it follows that

Substituting the first of these equations into the second equation yields

Thus, so the tensions in the hires are
approximately 35.87 N and 25.36 N, as before.

Code Vectors

Throughout history, people have transmitted information using codes. Sometimes
the intent is to disguise the message being sent, such as when each letter in a word is
replaced by a different letter according to a substitution rule. Although fascinating,
these secret codes, or ciphers, are not of concern here; they are the focus of the field
of cryptography. Rather, we will concentrate on codes that are used when data must be
transmitted electronically.

A familiar example of such a code is Morse code, with its system of dots and
dashes. The advent of digital computers in the 20th century led to the need to trans-
mit massive amounts of data quickly and accurately. Computers are designed to
encode data as sequences of 0s and 1s. Many recent technological advancements

�f1� � 12�f2� � 1.4142125.36 2 � 35.87,

13�f2�
12

�
�f2�
12

� 49,     or �f2� �
4912

1 � 13
� 25.36

�f1� �
2�f2�
12

� 12�f2�     and
13�f1�

2
�

�f2�
12

� 49

�h1� � �h2� and �v1� � �v2� � 49

�h2� � �f2� cos 45° �
�f2�
12

, �v2� � �f2� sin 45° �
�f2�
12

�h1� � �f1� cos 60° �
�f1�
2

, �v1� � �f1� sin 60° �
13�f1�

2
,

�f1� �
�r� sin 45°

sin 105�
�

4910.7071 2
 0.9659

� 35.87 and �f2� �
�r� sin 30°

sin 105�
�

4910.5 2
0.9659

� 25.36

�f1�
sin 45�

�
�f2�

sin 30�
�

�r�
sin 105�

r = f1 + f2

f1

f2

30°

60°

45°

45°

Figure 1. 78

f1
v1

h1 h2

v2

49 N

f2

60° 45°

Figure 1. 79
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54 Chapter 1 Vectors

depend on codes, and we encounter them every day without being aware of them:
Satellite communications, compact disc players, the universal product codes (UPC)
associated with the bar codes found on merchandise, and the international standard
book numbers (ISBN) found on every book published today are but a few examples.

In this section, we will use vectors to design codes for detecting errors that may
occur in the transmission of data. In later chapters, we will construct codes that can 
not only detect but also correct errors. The vectors that arise in the study of codes are
not vectors in �n but vectors in �n

2 or, more generally, �n
m. We first encountered such

vectors in Section 1.1. Since computers represent data in tems of 0s and 1s (which can
be interpreted as off/on, closed/open, false/true, or no/yes), we begin by considering
binary codes, which consist of vectors with entries in �2.

In practice, we have a message (consisting of words, numbers, or symbols) that we
wish to transmit. We begin by encoding each “word” of the message as a binary
vector.

Definition A binary code is a set of binary vectors (of the same length) called
code vectors. The process of converting a message into code vectors is called
encoding, and the reverse process is called decoding.

As we will see, it is highly desirable that a code have other properties as well, such
as the ability to spot when an error has occurred in the transmission of a code vector
and, if possible, to suggest how to correct the error.

Suppose that we have already encoded a message as a set of binary code vectors.
We now want to send the binary code vectors across a channel (such as a radio
transmitter, a telephone line, a fiber optic cable, or a CD laser). Unfortunately, the
channel may be “noisy” (because of electrical interference, competing signals, or dirt
and scratches). As a result, errors may be introduced: Some of the 0s may be changed
to 1s, and vice versa. How can we guard against this problem?

We wish to encode and transmit a message consisting of one of the words up, down, left,
or right. We decide to use the four vectors in as our binary code, as shown in Table 1.4.

If the receiver has this table too and the encoded message is transmitted without error,
decoding is trivial. However, let’s suppose that a single error occurred. (By an error, we
mean that one component of the code vector changed.) For example, suppose we sent the
message “down” encoded as [0, 1] but an error occurred in the transmission of the first
component and the 0 changed to a 1. The receiver would then see [1, 1] instead and de-
code the message as “right.” (We will only concern ourselves with the case of single errors
such as this one. In practice, it is usually assumed that the probability of multiple errors is
negligibly small.) Even if the receiver knew (somehow) that a single error had occurred,
he or she would not know whether the correct code vector was [0, 1] or [1, 0].

�2
2

The modern theory of codes
originated with the work of the
American mathematician and
computer scientist Claude Shannon
(1916–2001), whose 1937 thesis
showed how algebra could play a
role in the design and analysis of
electrical circuits. Shannon would
later be instrumental in the forma-
tion of the field of information
theory and give the theoretical
basis for what are now called error-
correcting codes.
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Example 1. 37

Table 1. 4
Message up down left right

Code [0, 0] [0, 1] [1, 0] [1, 1] 
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Section 1.4 Applications 55

But suppose we sent the message using a code that was a subset of —in other
words, a binary code of length 3, as shown in Table 1.5.

�3
2

This code can detect any single error. For example, if “down” was sent as [0, 1, 1]
and an error occurred in one component, the receiver would read either [1, 1, 1] or
[0, 0, 1] or [0, 1, 0], none of which is a code vector. So the receiver would know that
an error had occurred (but not where) and could ask that the encoded message be re-
transmitted. (Why wouldn’t the receiver know where the error was?)

The code in Table 1.5 is an example of an error-detecting code. Until the 1940s,
this was the best that could be achieved. The advent of digital computers led to the
development of codes that could correct as well as detect errors. We will consider these
in Chapters 3, 6, and 7.

The message to be transmitted may itself consist of binary vectors. In this case,
a simple but useful error-detecting code is a parity check code, which is created by 
appending an extra component—called a check digit—to each vector so that the par-
ity (the total number of 1s) is even.

If the message to be sent is the binary vector [1, 0, 0, 1, 0, 1], which has an odd num-
ber of 1s, then the check digit will be 1 (in order to make the total number of 1s in the
code vector even) and the code vector will be [1, 0, 0, 1, 0, 1, 1].

Note that a single error will be detected, since it will cause the parity of the code
vector to change from even to odd. For example, if an error occurred in the third
component, the code vector would be received as [1, 0, 1, 1, 0, 1, 1], whose parity is
odd because it has five 1s.

Let’s look at this concept a bit more formally. Suppose the message is the binary
vector b � [b1, b2, . . . , bn] in Then the parity check code vector is v � [b1, b2, . . . ,
bn, d] in where the check digit d is chosen so that

or, equivalently, so that

where 1 � [1, 1, . . . , 1], a vector whose every component is 1. The vector 1 is called a
check vector. If vector v� is received and , then we can be certain that
an error has occurred. (Although we are not considering the possibility of more than
one error, observe that this scheme will not detect an even number of errors.)

Parity check codes are a special case of the more general check digit codes, which
we will consider after first extending the foregoing ideas to more general settings.

1 # v¿ � 1

1 # v � 0

b1 � b2 � p � bn � d � 0 in �2

�n�1
2 ,

�n
2.

Table 1. 5
Message up down left right

Code [0, 0, 0] [0, 1, 1] [1, 0, 1] [1, 1, 0] 

The term parity comes from the
Latin word par, meaning “equal”
or “even.” Two integers are said to
have the same parity if they are
both even or both odd.

Example 1. 38

�

�
I I I I II I I I I ������������������������������
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56 Chapter 1 Vectors

Example 1. 39

Codes using m-ary vectors are called m-ary codes. The next example is a direct
extension of Example 1.39 to ternary codes.

Let b � [b1, b2, . . . , bn] be a vector in Then a check digit code vector may be
defined by v � [b1, b2, . . . , bn, d] (in ), with the check digit d chosen so that

(where the check vector 1 � [1, 1, . . . , 1] is the vector of 1s in ); that is, the check
digit satisfies

For example, consider the vector u � [2, 2, 0, 1, 2]. The sum of its components is
2 � 2 � 0 � 1 � 2 � 1, so the check digit must be 2 (since 1 � 2 � 0). Therefore, the
associated code vector is v � [2, 2, 0, 1, 2, 2].

While simple check digit codes will detect single errors, it is often important
to catch other common types of errors as well, such as the accidental interchange,
or transposition, of two adjacent components. (For example, transposing the second
and third components of v in Example 1.39 would result in the incorrect vector
v� � [2, 0, 2, 1, 2, 2].) For such purposes, other types of check digit codes have been
designed. Many of these simply replace the check vector 1 by some other carefully
chosen vector c.

The Universal Product Code, or UPC (Figure 1.80), is a code associated with the bar
codes found on many types of merchandise.

The black and white bars that are scanned by a laser at a store’s checkout counter
correspond to a 10-ary vector u � [u1, u2, . . . , u11, d] of length 12. The first 11 com-
ponents form a vector in that gives manufacturer and product information; the
last component d is a check digit chosen so that in �10, where the check
vector c is the vector [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1]. That is, after rearranging,

where d is the check digit. In other words, the check digit is chosen so that the 
left-hand side of this expression is a multiple of 10.

For the UPC shown in Figure 1.80, we can determine that the check digit is 6,
performing all calculations in �10:

The check digit d must be 6 to make the result of the calculation 0 in �10.
(Another way to think of the check digit in this example is that it is chosen so that
will be a multiple of 10.)c # u

�  4 � d

�  310 2 � 4 � d

�  310 � 4 � 2 � 0 � 0 � 4 2 � 17 � 9 � 7 � 2 � 9 2 � d

c # u �  3 # 0 � 7 � 3 # 4 � 9 � 3 # 2 � 7 � 3 # 0 � 2 � 3 # 0 � 9 � 3 # 4 � d

31u1 � u3 � u5 � u7 � u9 � u11 2 � 1u2 � u4 � u6 � u8 � u10 2 � d � 0

c # u � 0
�11

10

b1 � b2 � p � bn � d � 0 in �3

�n�1
3

1 # v � 0

�n�1
3

�n
3.

Example 1. 40

Figure 1. 80
A Universal Product Code
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Section 1.4 Applications 57

The Universal Product Code will detect all single errors and most transposition
errors in adjacent components. To see this last point, suppose that the UPC in
Example 1.40 were incorrectly written as u� � [0, 7, 4, 2, 9, 7, 0, 2, 0, 9, 4, 6], with the
fourth and fifth components transposed. When we applied the check vector, we
would have 4  0 (verify this!), alerting us to the fact that there had been an
error. (See Exercises 29 and 30.)

The 10-digit International Standard Book Number (ISBN-10) code is another widely used
check digit code. It is designed to detect more types of errors than the Universal Product
Code and, consequently, is slightly more complicated. Yet the basic principle is the same.

The code vector is a vector in The first nine components give country, pub-
lisher, and book information; the tenth component is the check digit. Suppose the
ISBN-10 for a book is 0-534-34450-X. It is recorded as the vector

where the check “digit” is the letter X.
For the ISBN-10 code, the check vector is the vector c � [10, 9, 8, 7, 6, 5, 4, 3, 2, 1],

and we require that 0 in �11. Let’s determine the check digit for the vector b in
this example. We must compute

where d is the check digit. We begin by performing all of the multiplications in �11.
(For example, 1, since 45 is 1 more than the closest smaller multiple of 11—
namely, 44. On an 11-hour clock, 45 o’clock is 1 o’clock.) The simplified sum is

and adding in �11 leaves us with 1 � d. The check digit d must now be chosen so that the
final result is 0; therefore, in �11, d � 10. (Equivalently, d must be chosen so that will be
a multiple of 11.) But since it is preferable that each component of an ISBN-10 be a single
digit, the Roman numeral X is used for 10 whenever it occurs as a check digit, as it does here.

The ISBN code will detect all single errors and adjacent transposition errors (see
Exercises 33–35).

Remark: The ISBN-10 code has been used since 1970. However, since 2007, most
books have also been identified with a 13-digit ISBN code. This ISBN-13 code is compati-
ble with the 13-digit European Article Number code (EAN-13) and uses a check digit
scheme similar to the UPC. Specifically, an ISBN-13 code is a vector in �13

10 where the last
digit is the check digit and the check vector is [1, 3, 1, 3, . . .,3, 1] in �13

10. Like its UPC cousin,
the ISBN-13 code will detect all single errors but not all adjacent transposition errors.

c # b

0 � 1 � 2 � 6 � 7 � 9 � 5 � 4 � 0 � d

9 # 5 �

c # b � 10 # 0 � 9 # 5 � 8 # 3 � 7 # 4 � 6 # 3 � 5 # 4 � 4 # 4 � 3 # 5 � 2 # 0 � d

c # b �

b � 30, 5, 3, 4, 3, 4, 4, 5, 0, X 4
�10

11.

c # u ¿ �

Example 1. 41

Exercises 1. 4

Force Vectors

In Exercises 1–6, determine the resultant of the given forces.

1. f1 acting due north with a magnitude of 12 N and 
f2 acting due east with a magnitude of 5 N

2. f1 acting due west with a magnitude of 15 N and 
f2 acting due south with a magnitude of 20 N

3. f1 acting with a magnitude of 8 N and f2 acting at an
angle of 60o to f1 with a magnitude of 8 N

�

�
I I I I II I I I I �������������������������������
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58 Chapter 1 Vectors

10 kg

30°

Figure 1. 81

4. f1 acting with a magnitude of 4 N and f2 acting at an
angle of 135o to f2 with a magnitude of 6 N

5. f1 acting due east with a magnitude of 2 N, f2 acting
due west with a magnitude of 6 N, and f3 acting at an
angle of 60o to f1 with a magnitude of 4 N

6. f1 acting due east with a magnitude of 10 N, f2 acting
due north with a magnitude of 13 N, f3 acting due
west with a magnitude of 5 N, and f4 acting due south
with a magnitude of 8 N

7. Resolve a force of 10 N into two forces perpendicular
to each other so that one component makes an angle
of 60o with the 10 N force.

8. A 10 kg block lies on a ramp that is inclined at an angle
of 30o (Figure 1.81). Assuming there is no friction, what
force, parallel to the ramp, must be applied to keep the
block from sliding down the ramp?

11. A sign hanging outside Joe’s Diner has a mass of 50 kg
(Figure 1.83). If the supporting cable makes an angle
of 60o with the wall of the building, determine the
tension in the cable.

9. A tow truck is towing a car. The tension in the tow
cable is 1500 N and the cable makes a 45o with the
horizontal, as shown in Figure 1.82. What is the verti-
cal force that tends to lift the car off the ground?

f = 1500 N

45°

Figure 1. 82

10. A lawn mower has a mass of 30 kg. It is being pushed
with a force of 100 N. If the handle of the lawn mower
makes an angle of 45o with the ground, what is the
horizontal component of the force that is causing the
mower to move forward?

30°

60°

JOE’S DINER

Figure 1. 83

12. A sign hanging in the window of Joe’s Diner has a
mass of 1 kg. If the supporting strings each make an
angle of 45o with the sign and the supporting hooks
are at the same height (Figure 1.84), find the tension in
each string.

45°

f1 f2

45°

OPEN FOR BUSINESS

Figure 1. 84

13. A painting with a mass of 15 kg is suspended by two
wires from hooks on a ceiling. If the wires have lengths
of 15 cm and 20 cm and the distance between the
hooks is 25 cm, find the tension in each wire.

14. A painting with a mass of 20 kg is suspended by two
wires from a ceiling. If the wires make angles of 30o

and 45o with the ceiling, find the tension in each wire.

Code Vectors

In Exercises 15 and 16, find the parity check code vector for
the binary vector u.

15. u � [1, 0, 1, 1] 16. u � [1, 1, 0, 1, 1]

In Exercises 17–20, a parity check code vector v is given.
Determine whether a single error could have occurred in the
transmission of v.

17. v � [1, 0, 1, 0] 18. v � [1, 1, 1, 0, 1, 1]

19. v � [0, 1, 0, 1, 1, 1] 20. v � [1, 1, 0, 1, 0, 1, 1, 1]
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Section 1.4 Applications 59

Exercises 21–24 refer to check digit codes in which the check
vector is the vector c � [1, 1, . . . , 1] of the appropriate
length. In each case, find the check digit d that would be
appended to the vector u.

21. u � [1, 2, 2, 2] in 22. u � [3, 4, 2, 3] in 

23. u � [1, 5, 6, 4, 5] in 24. u � [3, 0, 7, 5, 6, 8] in

25. Prove that for any positive integers m and n, the
check digit code in with check vector c � 1 �
[1, 1, . . . , 1] will detect all single errors. (That is, prove
that if vectors u and v in differ in exactly one entry,
then

In Exercises 26 and 27, find the check digit d in the given
Universal Product Code.

26. [0, 5, 9, 4, 6, 4, 7, 0, 0, 2, 7, d]

27. [0, 1, 4, 0, 1, 4, 1, 8, 4, 1, 2, d]

28. Consider the UPC [0, 4, 6, 9, 5, 6, 1, 8, 2, 0, 1, 5].

(a) Show that this UPC cannot be correct.
(b) Assuming that a single error was made and that

the incorrect digit is the 6 in the third entry, find
the correct UPC.

29. Prove that the Universal Product Code will detect all
single errors.

30. (a) Prove that if a transposition error is made in the
second and third entries of the UPC [0, 7, 4, 9, 2,
7, 0, 2, 0, 9, 4, 6], the error will be detected.

(b) Show that there is a transposition involving two
adjacent entries of the UPC in part (a) that would
not be detected.

c # u  c # v. 2 �n
m

�n
m

�6
9�5

7

�4
5�4

3

(c) In general, when will the Universal Product Code
not detect a transposition error involving two
adjacent entries?

In Exercises 31 and 32, find the check digit d in the given
International Standard Book Number (ISBN-10).

30. [0, 3, 8, 7, 9, 7, 9, 9, 3, d]

31. [0, 3, 9, 4, 7, 5, 6, 8, 2, d]

32. Consider the ISBN-10 [0, 4, 4, 9, 5, 0, 8, 3, 5, 6].

(a) Show that this ISBN-10 cannot be correct.
(b) Assuming that a single error was made and that

the incorrect digit is the 5 in the fifth entry, find
the correct ISBN-10.

34. (a) Prove that if a transposition error is made in the
fourth and fifth entries of the ISBN-10 [0, 6, 7, 9,
7, 6, 2, 9, 0, 6], the error will be detected.

(b) Prove that if a transposition error is made in any
two adjacent entries of the ISBN-10 in part (a), the
error will be detected.

(c) Prove, in general, that the ISBN-10 code will
always detect a transposition error involving two
adjacent entries.

35. Consider the ISBN-10 [0, 8, 3, 7, 0, 9, 9, 0, 2, 6].
(a) Show that this ISBN-10 cannot be correct.
(b) Assuming that the error was a transposition error

involving two adjacent entries, find the correct
ISBN-10.

(c) Give an example of an ISBN-10 for which a trans-
position error involving two adjacent entries will
be detected but will not be correctable.
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Every credit card and ATM card is uniquely identified by a 16-digit number that
represents a check digit code. As in the examples in this section, the first 15 digits are
assigned by the bank issuing the card, whereas the last digit is a check digit
determined by a formula that uses modular arithmetic.

All the major banks use a system called Codabar to assign the check digit. It is a
slight variation on the method of the Universal Product Code and is based on an
algorithm devised by IBM computer scientist Hans Peter Luhn in the 1950s.

Suppose that the first 15 digits of your card are

5412 3456 7890 432

and that the check digit is d. This corresponds to the vector

x � [5, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 4, 3, 2, d]

in . The Codabar system uses the check vector c � [2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
2, 1], but instead of requiring that c � x � 0 in �10, an extra calculation is added to in-
crease the error-detecting capability of the code. Let h count the number of digits in odd
positions that are greater than 4. In this example, these digits are 5, 5, 7, and 9, so h � 4.

It is now required that c � x � h � 0 in �10. Thus, in the example, we have, rear-
ranging and working modulo 10,

c � x � h � (2 � 5 � 4 � 2 � 1 � 2 � 2 � 3 � 4 � 2 � 5 � 6 � 2 � 7 � 8 � 2 � 9
� 0 � 2 � 4 � 3 � 2 � 2 � d) � 4

� 2 (5 � 1 � 3 � 5 � 7 � 9 � 4 � 2) � (4 � 2 � 4 � 6 � 8 � 0
� 3 � d) � 4

� 2 (6) � 7 � d � 4

� 3 � d

Thus, the check digit d for this card must be 7, so the result of the calculation is 0 in �10.
The Codabar system is one of the most efficient error-detecting methods. It will detect

all single-digit errors and most other common errors such as adjacent transposition errors.

�10
16

60
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Chapter Review 61

Key Definitions and Concepts

algebraic properties of vectors, 10
angle between vectors, 24
binary vector, 13
Cauchy-Schwarz Inequality, 22
cross product, 48
direction vector, 35
distance between vectors, 23
dot product, 18
equation of a line, 36
equation of a plane, 38–39

head-to-tail rule, 6
integers modulo m (�m), 14–16
length (norm) of a vector, 20
linear combination of

vectors, 12
normal vector, 34, 38
m-ary vector 16
orthogonal vectors, 26
parallel vectors, 8
parallelogram rule, 6

projection of a vector onto
a vector, 27

Pythagoras’ Theorem, 26
scalar multiplication, 7
standard unit vectors, 22
Triangle Inequality, 22
unit vector, 21
vector, 3
vector addition, 5
zero vector, 4

1. Mark each of the following statements true or false:

(a) For vectors u, v, and w in �n, if u � w � v � w,
then u � v.

(b) For vectors u, v, and w in �n, if u � w � v � w, then
u � v.

(c) For vectors u, v, and w in �3, if u is orthogonal 
to v, and v is orthogonal to w, then u is orthogonal
to w.

(d) In �3, if a line � is parallel to a plane �, then a di-
rection vector d for � is parallel to a normal vector
n for �.

(e) In �3, if a line � is perpendicular to a plane �,
then a direction vector d for � is a parallel to a
normal vector n for �.

(f) In �3, if two planes are not parallel, then they
must intersect in a line.

(g) In �3, if two lines are not parallel, then they must
intersect in a point.

(h) If v is a binary vector such that v � v � 0, then
v � 0.

(i) In �5, if ab � 0 then either a � 0 or b � 0.
(j) In �6, if ab � 0 then either a � 0 or b � 0.

2. If , and the vector 4u � v is drawn

with its tail at the point (10, �10), find the coordi-
nates of the point at the head of 4u � v.

3. If , and 2x � u = 3(x � v), solve

for x.

u � c�1

  5
d , v � c3

2
d

u � c�1

  5
d , v � c3

2
d

Review Questions

4. Let A, B, C, and D be the vertices of a square centered
at the origin O, labeled in clockwise order. If a �
and b � , find in terms of a and b.

5. Find the angle between the vectors [�1, 1, 2] and
[2, 1, �1].

6. Find the projection of onto .

7. Find a unit vector in the xy-plane that is orthogonal

to .

8. Find the general equation of the plane through the
point (1, 1, 1) that is perpendicular to the line with
parametric equations

9. Find the general equation of the plane through the
point (3, 2, 5) that is parallel to the plane whose gen-
eral equation is 2x � 3y � z � 0.

10. Find the general equation of the plane through the
points A(1, 1, 0), B(1, 0, 1), and C(0, 1, 2).

11. Find the area of the triangle with vertices A(1, 1, 0),
B(1, 0, 1), and C(0, 1, 2).

z � �1 � t

y �  3 � 2t

x �  2 � t

£12
3

§
u � £   1

�2

  2

§v � £11
1

§
BC

!
OB

! OA
!
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62 Chapter 1 Vectors

12. Find the midpoint of the line segment between 
A � (5, 1, �2) and B � (3, �7, 0).

13. Why are there no vectors u and v in �n such that
, , and u � v � �7?

14. Find the distance from the point (3, 2, 5) to the plane
whose general equation is 2x � 3y � z � 0.

15. Find the distance from the point (3, 2, 5) to the line
with parametric equations x � t, y � 1 � t, z � 2 � t.

7v 7 � 37u 7 � 2

16. Compute 3 � (2 � 4)3(4 � 3)2 in �5.

17. If possible, solve 3(x � 2) � 5 in �7.

18. If possible, solve 3(x � 2) � 5 in �9.

19. Compute [2, 1, 3, 3] � [3, 4, 4, 2] in .

20. Let u = [1, 1, 1, 0] in . How many binary vectors v
satisfy u � v � 0?

�2
4

�5
4
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The world was full of equations . . . .
There must be an answer for
everything, if only you knew how to
set forth the questions.

—Anne Tyler
The Accidental Tourist

Alfred A. Knopf, 1985, p. 235

2. 0 Introduction:  Triviality
The word trivial is derived from the Latin root tri (“three”) and the Latin word via
(“road”). Thus, speaking literally, a triviality is a place where three roads meet. This
common meeting point gives rise to the other, more familiar meaning of trivial—
commonplace, ordinary, or insignificant. In medieval universities, the trivium con-
sisted of the three “common” subjects (grammar, rhetoric, and logic) that were taught
before the quadrivium (arithmetic, geometry, music, and astronomy). The “three
roads” that made up the trivium were the beginning of the liberal arts.

In this section, we begin to examine systems of linear equations. The same system
of equations can be viewed in three different, yet equally important, ways—these will
be our three roads, all leading to the same solution. You will need to get used to this
threefold way of viewing systems of linear equations, so that it becomes common-
place (trivial!) for you.

The system of equations we are going to consider is

Problem 1 Draw the two lines represented by these equations. What is their point
of intersection?

Problem 2 Consider the vectors and Draw the coordinate 

grid determined by u and v. [Hint: Lightly draw the standard coordinate grid first and
use it as an aid in drawing the new one.]

Problem 3 On the u-v grid, find the coordinates of

Problem 4 Another way to state Problem 3 is to ask for the coefficients x and y for
which xu � yv � w. Write out the two equations to which this vector equation is
equivalent (one for each component). What do you observe?

Problem 5 Return now to the lines you drew for Problem 1. We will refer to the
line whose equation is 2x � y � 8 as line 1 and the line whose equation is x � 3y � �3
as line 2. Plot the point (0, 0) on your graph from Problem 1 and label it P0. Draw a

w � B 8

�3
R .

v � B 1

�3
R .u � B2

1
R

x � 3y � �3

 2x � y � 8
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64 Chapter 2 Systems of Linear Equations

horizontal line segment from P0 to line 1 and label this new point P1. Next draw a
vertical line segment from P1 to line 2 and label this point P2. Now draw a horizontal
line segment from P2 to line 1, obtaining point P3. Continue in this fashion, drawing
vertical segments to line 2 followed by horizontal segments to line 1. What appears to
be happening?

Problem 6 Using a calculator with two-decimal-place accuracy, find the (approx-
imate) coordinates of the points P1, P2, P3, . . . , P6. (You will find it helpful to first
solve the first equation for x in terms of y and the second equation for y in terms of x.)
Record your results in Table 2.1, writing the x- and y-coordinates of each point
separately.

The results of these problems show that the task of “solving” a system of linear
equations may be viewed in several ways. Repeat the process described in the prob-
lems with the following systems of equations:

Are all of your observations from Problems 1–6 still valid for these examples? Note
any similarities or differences. In this chapter, we will explore these ideas in more detail.

Introduction to Systems of Linear Equations
Recall that the general equation of a line in �2 is of the form

and that the general equation of a plane in �3 is of the form

Equations of this form are called linear equations.

Definition A linear equation in the n variables x1, x2, . . . , xn is an equation
that can be written in the form

where the coefficients a1, a2, . . . , an and the constant term b are constants.

The following equations are linear:

Observe that the third equation is linear because it can be rewritten in the form x1 �
5x2 � x3 � 2x4 � 3. It is also important to note that, although in these examples (and
in most applications) the coefficients and constant terms are real numbers, in some
examples and applications they will be complex numbers or members of �p for some
prime number p.

12x �
p

4
y � a sin

p

5
b z � 1   3.2x1 � 0.01x2 � 4.6

3x � 4y � �1    r � 1
2 s � 15

3 t � 9    x1 � 5x2 � 3 � x3 � 2x4

a1x1 � a2x2 � p � anxn � b

ax � by � cz � d

ax � by � c

x � 2y � 5  x � 3y � 10  x � y � 3      2x � y � 3
1a 2  4x � 2y � 0  1b 2  3x � 2y � 9  1c 2 x � y � 5  1d 2 x � 2y � 4

Table 2. 1
Point x y

P0 0 0

P1

P2

P3

P4

P5

P6

Example 2. 1
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Section 2.1 Introduction to Systems of Linear Equations 65

The following equations are not linear:

Thus, linear equations do not contain products, reciprocals, or other functions of the
variables; the variables occur only to the first power and are multiplied only by con-
stants. Pay particular attention to the fourth example in each list: Why is it that the
fourth equation in the first list is linear but the fourth equation in the second list is not?

A solution of a linear equation a1x1 � a2x2 � � anxn � b is a vector
[s1, s2, . . . , sn] whose components satisfy the equation when we substitute x1 � s1,
x2 � s2, . . . , xn � sn.

(a) [5, 4] is a solution of 3x � 4y � �1 because, when we substitute x � 5 and y �
4, the equation is satisfied: 3(5) � 4(4) � �1. [1, 1] is another solution. In general,
the solutions simply correspond to the points on the line determined by the given
equation. Thus, setting x � t and solving for y, we see that the complete set of solu-
tions can be written in the parametric form [t, � t]. (We could also set y equal to
some parameter—say, s—and solve for x instead; the two parametric solutions would
look different but would be equivalent. Try this.)

(b) The linear equation x1 � x2 � 2x3 � 3 has [3, 0, 0], [0, 1, 2], and [6, 1, �1] as
specific solutions. The complete set of solutions corresponds to the set of points in
the plane determined by the given equation. If we set x2 � s and x3 � t, then a para-
metric solution is given by [3 � s � 2t, s, t]. (Which values of s and t produce the three
specific solutions above?)

A system of linear equations is a finite set of linear equations, each with the same
variables. A solution of a system of linear equations is a vector that is simultaneously
a solution of each equation in the system. The solution set of a system of linear equa-
tions is the set of all solutions of the system. We will refer to the process of finding the
solution set of a system of linear equations as “solving the system.”

The system

has [2, 1] as a solution, since it is a solution of both equations. On the other hand,
[1, �1] is not a solution of the system, since it satisfies only the first equation.

Solve the following systems of linear equations:

x � y � 3   2x � 2y � 4  x � y � 3

1a 2 x � y � 1   1b 2 x � y � 2   1c 2 x � y � 1

x � 3y � 5

 2x � y � 3

3
4

1
4

p

12x �
p

4
y � sinap

5
zb � 1    sinx1 � 3x2 � 2x3 � 0

xy � 2z � 1    x1
2 � x2

3 � 3    
x
y

� z � 2

Example 2. 2

Example 2. 3

Example 2. 4

�

�
I I I I II I I I I ������������������������������

�

�
I I I I II I I I I ������������������������������

�
�

I I I I II I I I I ������������������������������
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66 Chapter 2 Systems of Linear Equations

Solution
(a) Adding the two equations together gives 2x � 4, so x � 2, from which we find
that y � 1. A quick check confirms that [2, 1] is indeed a solution of both equations.
That this is the only solution can be seen by observing that this solution corresponds
to the (unique) point of intersection (2, 1) of the lines with equations x � y � 1 and
x � y � 3, as shown in Figure 2.1(a). Thus, [2, 1] is a unique solution.

(b) The second equation in this system is just twice the first, so the solutions are the
solutions of the first equation alone—namely, the points on the line x � y � 2. These
can be represented parametrically as [2 � t, t]. Thus, this system has infinitely many
solutions [Figure 2.1(b)].

(c) Two numbers x and y cannot simultaneously have a difference of 1 and 3. Hence, this
system has no solutions. (A more algebraic approach might be to subtract the second
equation from the first, yielding the absurd conclusion 0 � �2.) As Figure 2.1(c) shows,
the lines for the equations are parallel in this case.

y

x

(c)

2

4

�4

�2

2 4�4 �2

y

x

(b)

2

4

�4

�2

2 4�4 �2

y

x

(a)

2

4

�4

�2

2 4�4 �2

Figure 2. 1

A system of linear equations is called consistent if it has at least one solution. A sys-
tem with no solutions is called inconsistent. Even though they are small, the three sys-
tems in Example 2.4 illustrate the only three possibilities for the number of solutions
of a system of linear equations with real coefficients. We will prove later that these
same three possibilities hold for any system of linear equations over the real numbers.

A system of linear equations with real coefficients has either

(a) a unique solution (a consistent system) or
(b) infinitely many solutions (a consistent system) or
(c) no solutions (an inconsistent system).

Solving a System of Linear Equations

Two linear systems are called equivalent if they have the same solution sets. For
example,

are equivalent, since they both have the unique solution [2, 1]. (Check this.)

x � y � 3    y � 1

x � y � 1    and    x � y � 1

�

�
I I I I II I I I I �������������������������������
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Section 2.1 Introduction to Systems of Linear Equations 67

Our approach to solving a system of linear equations is to transform the given
system into an equivalent one that is easier to solve. The triangular pattern of the
second example above (in which the second equation has one less variable than the
first) is what we will aim for.

Solve the system

Solution Starting from the last equation and working backward, we find successively
that z � 2, y � 5 � 3(2) � �1, and x � 2 � (�1) � 2 � 3. So the unique solution is
[3, �1, 2].

The procedure used to solve Example 2.5 is called back substitution.
We now turn to the general strategy for transforming a given system into an

equivalent one that can be solved easily by back substitution. This process will be
described in greater detail in the next section; for now, we will simply observe it in
action in a single example.

Solve the system

Solution To transform this system into one that exhibits the triangular structure of
Example 2.5, we first need to eliminate the variable x from equations 2 and 3. Observe
that subtracting appropriate multiples of equation 1 from equations 2 and 3 will do
the trick. Next, observe that we are operating on the coefficients, not on the variables,
so we can save ourselves some writing if we record the coefficients and constant terms
in the matrix

where the first three columns contain the coefficients of the variables in order, the final
column contains the constant terms, and the vertical bar serves to remind us of the
equal signs in the equations. This matrix is called the augmented matrix of the system.

There are various ways to convert the given system into one with the triangular
pattern we are after. The steps we will use here are closest in spirit to the more general
method described in the next section. We will perform the sequence of operations on
the given system and simultaneously on the corresponding augmented matrix. We
begin by eliminating x from equations 2 and 3.

C1 �1 �1

3 �3 2

2 �1 1

3 2

16

9

Sx � y � z � 2

3x � 3y � 2z � 16

2x � y � z � 9

£ 1 �1 �1

3 �3 2

2 �1 1

3 2

16

9

§

2x � y � z � 9

3x � 3y � 2z � 16

x � y � z � 2

 5z � 10

y � 3z � 5

x � y � z � 2

Example 2. 5

Example 2. 6

The word matrix is derived from
the Latin word mater, meaning
“mother.” When the suffix -ix is
added, the meaning becomes
“womb.” Just as a womb surrounds
a fetus, the brackets of a matrix
surround its entries, and just as the
womb gives rise to a baby, a matrix
gives rise to certain types of func-
tions called linear transformations.
A matrix with m rows and n
columns is called an matrix
(pronounced “m by n”). The plural
of matrix is matrices, not
“matrixes.”

m � n
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68 Chapter 2 Systems of Linear Equations

Subtract 3 times the first equation Subtract 3 times the first row from the 
from the second equation: second row:

Subtract 2 times the first equation Subtract 2 times the first row from the 
from the third equation: third row:

Interchange equations 2 and 3: Interchange rows 2 and 3:

This is the same system that we solved using back substitution in Example 2.5, where
we found that the solution was [3, �1, 2]. This is therefore also the solution to the
system given in this example. Why? The calculations above show that any solution of
the given system is also a solution of the final one. But since the steps we just performed
are reversible, we could recover the original system, starting with the final system.
(How?) So any solution of the final system is also a solution of the given one. Thus, the
systems are equivalent (as are all of the ones obtained in the intermediate steps
above). Moreover, we might just as well work with matrices instead of equations,
since it is a simple matter to reinsert the variables before proceeding with the back
substitution. (Working with matrices is the subject of the next section.)

Remark Calculators with matrix capabilities and computer algebra systems can
facilitate solving systems of linear equations, particularly when the systems are large
or have coefficients that are not “nice,” as is often the case in real-life applications. As
always, though, you should do as many examples as you can with pencil and paper
until you are comfortable with the techniques. Even if a calculator or CAS is called
for, think about how you would do the calculations manually before doing anything.
After you have an answer, be sure to think about whether it is reasonable.

Do not be misled into thinking that technology will always give you the answer
faster or more easily than calculating by hand. Sometimes it may not give you the an-
swer at all! Roundoff errors associated with the floating-point arithmetic used by cal-
culators and computers can cause serious problems and lead to wildly wrong answers
to some problems. See Exploration: Lies My Computer Told Me for a glimpse of the
problem. (You’ve been warned!)

C1 �1 �1

0 1 3

0 0 5

3 2

5

10

Sx � y � 2z � 2

x � y � 3z � 5

x � y � 5z � 10

C1 �1 �1

0 0 5

0 1 3

3 2

10

5

Sx � y � 2z � 2

x � y � 5z � 10

x � y � 3z � 5

C1 �1 �1

0 0 5

2 �1 1

† 2

10

9

Sx � y � z � 2

5z � 10

2x � y � z � 9

�
�

I I I I II I I I I ������������������������������
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Section 2.1 Introduction to Systems of Linear Equations 69

In Exercises 1–6, determine which equations are linear equa-
tions in the variables x, y, and z. If any equation is not linear,
explain why not.

1. 2. x2 � y2 � z2 � 1

3.

4. 2x � xy � 5z � 0 5. 3 cos x � 4y � z �

6. (cos3)x � 4y � z �

In Exercises 7–10, find a linear equation that has the same
solution set as the given equation (possibly with some restric-
tions on the variables).

7. 2x � y � 7 � 3y 8.

9. 10. log10 x � log10 y � 2

In Exercises 11–14, find the solution set of each equation.

11. 3x � 6y � 0 12. 2x1 � 3x2 � 5

13. x � 2y � 3z � 4 14. 4x1 � 3x2 � 2x3 � 1

In Exercises 15–18, draw graphs corresponding to the given
linear systems. Determine geometrically whether each system
has a unique solution, infinitely many solutions, or no solu-
tion. Then solve each system algebraically to confirm your
answer.

15. x � y � 0 16. x � 2y � 7
2x � y � 3 3x � y � 7

17. 3x � 6y � 3 18. 0.10x � 0.05y � 0.20
�x � 2y � 1 �0.06x � 0.03y � �0.12

In Exercises 19–24, solve the given system by back 
substitution.

19. x � 2y � 1 20. 2u � 3v � 5
y � 3 2v � 6

21. x � y � z � �0 22. x1 � 2x2 � 3x3 � 0

2y � z � �1 x�5x2 � 2x3 � 0
x � 2y � 3z � �1 4x3 � 0

23. x1 � x2 � x3 � x4 � 1 24. x � 3y � z � �5
x x2 � x3 � x4 � 0 y � 2z � �1

x x3 � x4 � 0
x4 � 1

1

x
�

1

y
�

4

xy

x2 � y2

x � y
� 1

13

13

x�1 � 7y � z � sinap
9
bx � py � 23 5z � 0

Exercises 2. 1

The systems in Exercises 25 and 26 exhibit a “lower triangu-
lar” pattern that makes them easy to solve by forward substi-
tution. (We will encounter forward substitution again in
Chapter 3.) Solve these systems.

25.�3 x � y � z � �2 26. � x1 � x2 �x3 � �1

�2x � y � z � �3 � x1 � x2 � x3 � �5

�3x � 4y � z � �10 x1 � 2x2 � x3 � �7

Find the augmented matrices of the linear systems in
Exercises 27–30.

27. x � y � 0 28. 2x1 � 3x2 � x3 � 1
2x � y � 3 �x1 � 22 � x3 � 0

�x1 � 2x2 � 2x3 � 0

29. �x � 5y � �1 30. �a � 2b � c � d � 2
�x � y � �5 �a � b � c � 3d � 1
2x � 4y � �4

In Exercises 31 and 32, find a system of linear equations that
has the given matrix as its augmented matrix.

31.

32.

For Exercises 33–38, solve the linear systems in the given
exercises.

33. Exercise 27 34. Exercise 28

35. Exercise 29 36. Exercise 30

37. Exercise 31 38. Exercise 32

39. (a) Find a system of two linear equations in the vari-
ables x and y whose solution set is given by the
parametric equations x � t and y � 3 � 2t.

(b) Find another parametric solution to the system in
part (a) in which the parameter is s and y � s.

40. (a) Find a system of two linear equations in the vari-
ables x1, x2, and x3 whose solution set is given by
the parametric equations x1 � t, x 2 � 1 � t, and
x3 � 2 � t.

(b) Find another parametric solution to the system in
part (a) in which the parameter is s and x3 � s.

£ 1 �1 0 3 1

1 1 2 1 �1

0 1 0 2 3

3 24
0

S
£01

2

1

�1

�1

1

0

1

3 11
1

S

3
2

1
2
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70 Chapter 2 Systems of Linear Equations

Direct Methods for Solving Linear Systems
In this section, we will look at a general, systematic procedure for solving a system of
linear equations. This procedure is based on the idea of reducing the augmented ma-
trix of the given system to a form that can then be solved by back substitution. The
method is direct in the sense that it leads directly to the solution (if one exists) in a
finite number of steps. In Section 2.5, we will consider some indirect methods that
work in a completely different way.

Matrices and Echelon Form

There are two important matrices associated with a linear system. The coefficient
matrix contains the coefficients of the variables, and the augmented matrix (which
we have already encountered) is the coefficient matrix augmented by an extra column
containing the constant terms.

For the system

the coefficient matrix is

and the augmented matrix is

Note that if a variable is missing (as y is in the second equation), its coefficient 0 is
entered in the appropriate position in the matrix. If we denote the coefficient matrix
of a linear system by A and the column vector of constant terms by b, then the form
of the augmented matrix is [A | b].

£ 2 1 �1

1 0 5

�1 3 �2

3 31
0

§

£ 2 1 �1

1 0 5

�1 3 �2

§
�x � 3y � 2z � 0

x � 5z � 1

2x � y � z � 3

In Exercises 41–44, the systems of equations are nonlinear.
Find substitutions (changes of variables) that convert each
system into a linear system and use this linear system to help
solve the given system.

41.

3

x
�

4

y
� 1

2

x
�

3

y
� 0

42. x2 � 2y2 � 6
x2 � y2 � 3

43. tan x � 2 sin y � cos z � �2
tan x � sin y � cos z � �2
tan x � sin y � cos z � �1

44. �2a) � 2(3b) � 1
3(2a) � 4(3b) � 1
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Example 2. 7

Example 2. 8

The word echelon comes from
the Latin word scala, meaning
“ladder” or “stairs.” The French
word for “ladder,” échelle, is also
derived from this Latin base. A
matrix in echelon form exhibits
a staircase pattern.

Section 2.2 Direct Methods for Solving Linear Systems 71

In solving a linear system, it will not always be possible to reduce the coefficient
matrix to triangular form, as we did in Example 2.6. However, we can always achieve
a staircase pattern in the nonzero entries of the final matrix.

Definition A matrix is in row echelon form if it satisfies the following
properties:

1. Any rows consisting entirely of zeros are at the bottom.
2. In each nonzero row, the first nonzero entry (called the leading entry) is in a

column to the left of any leading entries below it.

Note that these properties guarantee that the leading entries form a staircase pat-
tern. In particular, in any column containing a leading entry, all entries below the
leading entry are zero, as the following examples illustrate.

The following matrices are in row echelon form:

If a matrix in row echelon form is actually the augmented matrix of a linear sys-
tem, the system is quite easy to solve by back substitution alone.

Assuming that each of the matrices in Example 2.7 is an augmented matrix, write out
the corresponding systems of linear equations and solve them.

Solution We first remind ourselves that the last column in an augmented matrix is
the vector of constant terms. The first matrix then corresponds to the system

(Notice that we have dropped the last equation 0 � 0, or 0x1 � 0x2 � 0, which is
clearly satisfied for any values of x1 and x2.) Back substitution gives x2 � �2 and then
2x1 � 1 � 4(�2) � 9, so x1 � The solution is [ �2].

The second matrix has the corresponding system

The last equation represents 0x1 � 0x2 � 4, which clearly has no solutions. Therefore,
the system has no solutions. Similarly, the system corresponding to the fourth matrix
has no solutions. For the system corresponding to the third matrix, we have

 0 � 4

x2 � 5

x1 � 1

9
2 ,9

2 .

�x2 � 2

 2x1 � 4x2 � 1

≥ 0 2 0 1 �1 3

0 0 �1 1 2 2

0 0 0 0 4 0

0 0 0 0 0 5

¥£ 1 1 2 1

0 0 1 3

0 0 0 0

§£ 1 0 1

0 1 5

0 0 4

§£ 2 4 1

0 �1 2

0 0 0

§
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72 Chapter 2 Systems of Linear Equations

so x1 � 1 � 2(3) � x2 � �5 � x2. There are infinitely many solutions, since we may
assign x2 any value t to get the parametric solution [�5 � t, t, 3].

Elementary Row Operations

We now describe the procedure by which any matrix can be reduced to a matrix in
row echelon form. The allowable operations, called elementary row operations,
correspond to the operations that can be performed on a system of linear equations
to transform it into an equivalent system.

Definition The following elementary row operations can be performed on a
matrix:

1. Interchange two rows.
2. Multiply a row by a nonzero constant.
3. Add a multiple of a row to another row.

Observe that dividing a row by a nonzero constant is implied in the above defini-
tion, since, for example, dividing a row by 2 is the same as multiplying it by 
Similarly, subtracting a multiple of one row from another row is the same as adding a
negative multiple of one row to another row.

We will use the following shorthand notation for the three elementary row
operations:

1. Ri 4 Rj means interchange rows i and j.
2. kRi means multiply row i by k.
3. Ri � kRj means add k times row j to row i (and replace row i with the result).

The process of applying elementary row operations to bring a matrix into row
echelon form, called row reduction, is used to reduce a matrix to echelon form.

Reduce the following matrix to echelon form:

Solution We work column by column, from left to right and from top to bottom.
The strategy is to create a leading entry in a column and then use it to create zeros
below it. The entry chosen to become a leading entry is called a pivot, and this phase
of the process is called pivoting. Although not strictly necessary, it is often convenient
to use the second elementary row operation to make each leading entry a 1.

≥ 1 2 �4 �4 5

2 4 0 0 2

2 3 2 1 5

�1 1 3 6 5

¥

1
2 .

x3 � 3

x1 � x2 � 2x3 � 1

Example 2. 9
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Section 2.2 Direct Methods for Solving Linear Systems 73

We begin by introducing zeros into the first column below the leading 1 in the
first row:

The first column is now as we want it, so the next thing to do is to create a
leading entry in the second row, aiming for the staircase pattern of echelon form.
In this case, we do this by interchanging rows. (We could also add row 3 or row 4 to
row 2.)

The pivot this time was �1. We now create a zero at the bottom of column 2, using
the leading entry �1 in row 2:

Column 2 is now done. Noting that we already have a leading entry in column 3, we
just pivot on the 8 to introduce a zero below it. This is easiest if we first divide
row 3 by 8:

Now we use the leading 1 in row 3 to create a zero below it:

With this final step, we have reduced our matrix to echelon form.

Remarks
• The row echelon form of a matrix is not unique. (Find a different row eche-

lon form for the matrix in Example 2.9.)

¡
R4�29R3 ≥ 1 2 �4 �4 5

0 �1 10 9 �5

0 0 1 1 �1

0 0 0 0 24

¥

¡
1
8 R3 ≥ 1 2 �4 �4 5

0 �1 10 9 �5

0 0 1 1 �1

0 0 29 29 �5

¥

¡
R4�3R2 ≥ 1 2 �4 �4 5

0 �1 10 9 �5

0 0 8 8 �8

0 0 29 29 �5

¥

¡
R2 4 R3 ≥ 1 2 �4 �4 5

0 �1 10 9 �5

0 0 8 8 �8

0 3 �1 2 10

¥

≥ 1 2 �4 �4 5

2 4 0 0 2

2 3 2 1 5

�1 1 3 6 5

¥ ¡ ≥ 1 2 �4 �4 5

0 0 8 8 �8

0 �1 10 9 �5

0 3 �1 2 10

¥
R2 � 2R1

R3 � 2R1

R4 � R1
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74 Chapter 2 Systems of Linear Equations

Theorem 2. 1

• The leading entry in each row is used to create the zeros below it.
• The pivots are not necessarily the entries that are originally in the posi-

tions eventually occupied by the leading entries. In Example 2.9, the pivots were 1,
�1, 8, and 24. The original matrix had 1, 4, 2, and 5 in those positions on the
“staircase.”

• Once we have pivoted and introduced zeros below the leading entry in a
column, that column does not change. In other words, the row echelon form emerges
from left to right, top to bottom.

Elementary row operations are reversible—that is, they can be “undone.” Thus, if
some elementary row operation converts A into B, there is also an elementary row
operation that converts B into A. (See Exercises 15 and 16.)

Definition Matrices A and B are row equivalent if there is a sequence of
elementary row operations that converts A into B.

The matrices in Example 2.9,

are row equivalent. In general, though, how can we tell whether two matrices are row
equivalent?

Matrices A and B are row equivalent if and only if they can be reduced to the same
row echelon form.

Proof If A and B are row equivalent, then further row operations will reduce B (and
therefore A) to the (same) row echelon form.

Conversely, if A and B have the same row echelon form R, then, via elementary
row operations, we can convert A into R and B into R. Reversing the latter sequence
of operations, we can convert R into B, and therefore the sequence A R B
achieves the desired effect.

Remark In practice, Theorem 2.1 is easiest to use if R is the reduced row echelon
form of A and B, as defined on page 79. See Exercises 17 and 18.

Gaussian Elimination

When row reduction is applied to the augmented matrix of a system of linear
equations, we create an equivalent system that can be solved by back substitution. The
entire process is known as Gaussian elimination.

SS

≥ 1 2 �4 �4 5

2 4 0 0 2

2 3 2 1 5

�1 1 3 6 5

¥   and  ≥ 1 2 �4 �4 5

0 �1 10 9 �5

0 0 1 1 �1

0 0 0 0 24

¥
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Gaussian Elimination

Section 2.2 Direct Methods for Solving Linear Systems 75

1. Write the augmented matrix of the system of linear equations.
2. Use elementary row operations to reduce the augmented matrix to row 

echelon form.
3. Using back substitution, solve the equivalent system that corresponds to the 

row-reduced matrix.

Remark When performed by hand, step 2 of Gaussian elimination allows quite
a bit of choice. Here are some useful guidelines:

(a) Locate the leftmost column that is not all zeros.

(b) Create a leading entry at the top of this column. (It will usually be easiest if you
make this a leading 1. See Exercise 22.)
(c) Use the leading entry to create zeros below it.

(d) Cover up the row containing the leading entry,and go back to step (a) to repeat the pro-
cedure on the remaining submatrix. Stop when the entire matrix is in row echelon form.

Solve the system

Solution The augmented matrix is

We proceed to reduce this matrix to row echelon form, following the guidelines given
for step 2 of the process. The first nonzero column is column 1. We begin by creating

£ 0 2 3

2 3 1

1 �1 �2

3 8

5

�5

§
x1 � x2 � 2x3 � �5

 2x1 � 3x2 � x3 � 5

 2x2 � 3x3 � 8
Example 2. 10

Carl Friedrich Gauss (1777–1855) is generally considered to be one of the three greatest
mathematicians of all time, along with Archimedes and Newton. He is often called the “prince
of mathematicians,” a nickname that he richly deserves. A child prodigy, Gauss reportedly 
could do arithmetic before he could talk. At the age of 3, he corrected an error in his father’s
calculations for the company payroll, and as a young student, he found the formula n(n � 1)�2
for the sum of the first n natural numbers. When he was 19, he proved that a 17-sided polygon
could be constructed using only a straightedge and a compass, and at the age of 21, he proved,
in his doctoral dissertation, that every polynomial of degree n with real or complex coefficients
has exactly n zeros, counting multiple zeros—the Fundamental Theorem of Algebra.

Gauss’ 1801 publication Disquisitiones Arithmeticae is generally considered to be the foun-
dation of modern number theory, but he made contributions to nearly every branch of
mathematics as well as to statistics, physics, astronomy, and surveying. Gauss did not publish
all of his findings, probably because he was too critical of his own work. He also did not like
to teach and was often critical of other mathematicians, perhaps because he discovered—but
did not publish—their results before they did.

The method called Gaussian elimination was known to the Chinese in the third cen-
tury B.C. but bears Gauss’ name because of his rediscovery of it in a paper in which he solved
a system of linear equations to describe the orbit of an asteroid.
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76 Chapter 2 Systems of Linear Equations

a leading entry at the top of this column; interchanging rows 1 and 3 is the best way
to achieve this.

We now create a second zero in the first column, using the leading 1:

We now cover up the first row and repeat the procedure. The second column is
the first nonzero column of the submatrix. Multiplying row 2 by will create a
leading 1.

We now need another zero at the bottom of column 2:

The augmented matrix is now in row echelon form, and we move to step 3. The cor-
responding system is

and back substitution gives then , and 
finally . We write the solution in vector
form as

(We are going to write the vector solutions of linear systems as column vectors from
now on. The reason for this will become clear in Chapter 3.)

£ 01
2

§
x1 � �5 � x2 � 2x3 � �5 � 1 � 4 � 0

x2 � 3 � x3 � 3 � 2 � 1x3 � 2,

x3 � 2

x2 � x3 � 3

x1 � x2 � 2x3 � �5

¡
R3 �2R2 £ 1 �1 �2

0 1 1

0 0 1

† �5

3

2

§
£ 1 �1 �2

0 5 5

0 2 3

† �5

15

8

§ ¡
1
5R2 £ 1 �1 �2

0 1 1

0 2 3

† �5

3

8

§
1
5

¡
R2 �2R1 £ 1 �1 �2

0 5 5

0 2 3

† �5

15

8

§
£ 0 2 3

2 3 1

1 �1 �2

3 8

5

�5

§ ¡
R14R3 £ 1 �1 �2

2 3 1

0 2 3

3�5

5

8

§

Example 2. 11 Solve the system

�w � x � y � �3

 2w � 2x � y � 3z � 3

w � x � y � 2z � 1
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Section 2.2 Direct Methods for Solving Linear Systems 77

Solution The augmented matrix is

which can be row reduced as follows:

The associated system is now

which has infinitely many solutions. There is more than one way to assign parame-
ters, but we will proceed to use back substitution, writing the variables corresponding
to the leading entries (the leading variables) in terms of the other variables (the free
variables).

In this case, the leading variables are w and y, and the free variables are x and z.
Thus, y � 1 � z, and from this we obtain

If we assign parameters x � s and z � t, the solution can be written in vector 
form as

Example 2.11 highlights a very important property: In a consistent system, the
free variables are just the variables that are not leading variables. Since the number of
leading variables is the number of nonzero rows in the row echelon form of the
coefficient matrix, we can predict the number of free variables (parameters) before
we find the explicit solution using back substitution. In Chapter 3, we will prove that,
although the row echelon form of a matrix is not unique, the number of nonzero
rows is the same in all row echelon forms of a given matrix. Thus, it makes sense to
give a name to this number.

≥ w

x

y

z

¥ � ≥ 2 � s � t

s

1 � t

t

¥ � ≥ 2

0

1

0

¥ � s ≥ 1

1

0

0

¥ � t ≥�1

0

1

1

¥

� 2 � x � z

� 1 � x � 11 � z 2 � 2z

w � 1 � x � y � 2z

y � z � 1

w � x � y � 2z � 1

¡
R3�2R2 £ 1 �1 �1 2

0 0 1 �1

0 0 0 0

3 11
0

§
£ 1 �1 �1 2

2 �2 �1 3

�1 1 �1 0

3 1

3

�3

§ ¡

R2�2R1

R3�R1 £ 1 �1 �1 2

0 0 1 �1

0 0 �2 2

3 1

1

�2

§

£ 1 �1 �1 2

2 �2 �1 3

�1 1 �1 0

3 1

3

�3

§
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78 Chapter 2 Systems of Linear Equations

Wilhelm Jordan (1842–1899) was
a German professor of geodesy
whose contribution to solving
linear systems was a systematic
method of back substitution
closely related to the method
described here.

Theorem 2. 2

Definition The rank of a matrix is the number of nonzero rows in its row
echelon form.

We will denote the rank of a matrix A by rank(A). In Example 2.10, the rank of
the coefficient matrix is 3, and in Example 2.11, the rank of the coefficient matrix is
2. The observations we have just made justify the following theorem, which we will
prove in more generality in Chapters 3 and 6.

The Rank Theorem

Let A be the coefficient matrix of a system of linear equations with n variables. If
the system is consistent, then

Thus, in Example 2.10, we have 3 � 3 � 0 free variables (in other words, a unique
solution), and in Example 2.11, we have 4 � 2 � 2 free variables, as we found.

Solve the system

Solution When we row reduce the augmented matrix, we have

leading to the impossible equation 0 � 5. (We could also have performed R3 � R2 as the
second elementary row operation, which would have given us the same contradiction
but a different row echelon form.) Thus, the system has no solutions—it is inconsistent.

Gauss-Jordan Elimination

A modification of Gaussian elimination greatly simplifies the back substitution phase
and is particularly helpful when calculations are being done by hand on a system with

2
3

¡
R3�2R2 £ 1 �1 2

0 1 �1

0 0 0

† 3

�2

5

§
¡

1
3R2 £ 1 �1 2

0 1 �1

0 2 �2

3 3

�2

1

§
£ 1 �1 2

1 2 �1

0 2 �2

3 3

�3

1

§ ¡
R2�R1 £ 1 �1 2

0 3 �3

0 2 �2

3 3

�6

1

§
 2x2 � 2x3 � 1

x1 � 2x2 � x3 � �3

x1 � x2 � 2x3 � 3

number of free variables � n � rank1A 2

Example 2. 12
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Gauss-Jordan
Elimination

For a short proof that the reduced
row echelon form of a matrix is
unique, see the article by Thomas
Yuster, “The Reduced Row Echelon
Form of a Matrix Is Unique: A
Simple Proof,” in the March 1984
issue of Mathematics Magazine
(vol. 57, no. 2, pp. 93–94).

Example 2. 13

Section 2.2 Direct Methods for Solving Linear Systems 79

infinitely many solutions. This variant, known as Gauss-Jordan elimination, relies
on reducing the augmented matrix even further.

Definition A matrix is in reduced row echelon form if it satisfies the follow-
ing properties:

1. It is in row echelon form.
2. The leading entry in each nonzero row is a 1 (called a leading 1).
3. Each column containing a leading 1 has zeros everywhere else.

The following matrix is in reduced row echelon form:

For 2 � 2 matrices, the possible reduced row echelon forms are

where * can be any number.
It is clear that after a matrix has been reduced to echelon form, further elemen-

tary row operations will bring it to reduced row echelon form. What is not clear
(although intuition may suggest it) is that, unlike the row echelon form, the reduced
row echelon form of a matrix is unique.

In Gauss-Jordan elimination, we proceed as in Gaussian elimination but reduce
the augmented matrix to reduced row echelon form.

1. Write the augmented matrix of the system of linear equations.
2. Use elementary row operations to reduce the augmented matrix to reduced

row echelon form.
3. If the resulting system is consistent, solve for the leading variables in terms of

any remaining free variables.

Solve the system in Example 2.11 by Gauss-Jordan elimination.

Solution The reduction proceeds as it did in Example 2.11 until we reach the echelon form:

£ 1 �1 �1 2

0 0 1 �1

0 0 0 0

3 11
0

§

c 1 0

0 1
d , c 1 *

0 0
d , c 0 1

0 0
d , and c 0 0

0 0
d

E1 2 0 0 �3 1 0

0 0 1 0 4 �1 0

0 0 0 1 3 �2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

U

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



80 Chapter 2 Systems of Linear Equations

We now must create a zero above the leading 1 in the second row, third column. We
do this by adding row 2 to row 1 to obtain

The system has now been reduced to

It is now much easier to solve for the leading variables:

If we assign parameters x � s and z � t as before, the solution can be written in vector
form as

Remark From a computational point of view, it is more efficient (in the sense
that it requires fewer calculations) to first reduce the matrix to row echelon form
and then, working from right to left, make each leading entry a 1 and create zeros
above these leading 1s. However, for manual calculation, you will find it easier to
just work from left to right and create the leading 1s and the zeros in their columns
as you go.

Let’s return to the geometry that brought us to this point. Just as systems of linear
equations in two variables correspond to lines in �2, so linear equations in three vari-
ables correspond to planes in �3. In fact, many questions about lines and planes can
be answered by solving an appropriate linear system.

Find the line of intersection of the planes x � 2y � z � 3 and 2x � 3y � z � 1.

Solution First, observe that there will be a line of intersection, since the normal vec-
tors of the two planes—[1, 2, �1] and [2, 3, 1]—are not parallel. The points that lie
in the intersection of the two planes correspond to the points in the solution set of the
system

Gauss-Jordan elimination applied to the augmented matrix yields

 2x � 3y � z � 1

x � 2y � z � 3

≥ w

x

y

z

¥ � ≥ 2 � s � t

s

1 � t

t

¥

w � 2 � x � z    and    y � 1 � z

y � z � 1

w � x � � z � 2

£ 1 �1 0 1

0 0 1 �1

0 0 0 0

3 21
0

§

Example 2. 14
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Section 2.2 Direct Methods for Solving Linear Systems 81

Replacing variables, we have

We set the free variable z equal to a parameter t and thus obtain the parametric equa-
tions of the line of intersection of the two planes:

In vector form, the equation is

See Figure 2.2.

Let , , , and . Determine whether the lines

and intersect and, if so, find their point of intersection.

Solution We need to be careful here. Although t has been used as the parameter in
the equations of both lines, the lines are independent and therefore so are their
parameters. Let’s use a different parameter—say, s—for the first line, so its equation 

becomes x � p � su. If the lines intersect, then we want to find an that

satisfies both equations simultaneously. That is, we want x � p � su � q � t v or
su � tv � q � p.

Substituting the given p, q, u, and v, we obtain the equations

whose solution is easily found to be s � t � The point of intersection is therefore3
4 .5

4 ,

s � t � 2

s � t � 2

s � 3t � �1

x � £ xy
z

§

x � q � tvx � p � tu

v � £ 3

�1

�1

§u � £ 11
1

§q � £ 02
1

§p � £ 1

0

�1

§

£ xy
z

§ � £�7

5

0

§ � t £�5

3

1

§
z � t

y � 5 � 3t

x � �7 � 5t

y � 3z � 5

x � � 5z � �7

¡

R1�2R2

�R2 c 1 0 5

0 1 �3
2�7

5
d

c 1 2 �1

2 3 1
2 3
1
d ¡

R2�2R1 c 1 2 �1

0 �1 3
2 3

�5
d

Example 2. 15

y
x

z

20
20

40

Figure 2. 2
The intersection of two planes
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82 Chapter 2 Systems of Linear Equations

Theorem 2. 3

See Figure 2.3. (Check that substituting t � in the other equation gives the same
point.)

Remark In �3, it is possible for two lines to intersect in a point, to be parallel, or
to do neither. Nonparallel lines that do not intersect are called skew lines.

Homogeneous Systems

We have seen that every system of linear equations has either no solution, a unique
solution, or infinitely many solutions. However, there is one type of system that
always has at least one solution.

Definition A system of linear equations is called homogeneous if the constant
term in each equation is zero.

In other words, a homogeneous system has an augmented matrix of the form 
[A | 0]. The following system is homogeneous:

Since a homogeneous system cannot have no solution (forgive the double negative!),
it will have either a unique solution (namely, the zero, or trivial, solution) or infinitely
many solutions. The next theorem says that the latter case must occur if the number
of variables is greater than the number of equations.

If [A | 0] is a homogeneous system of m linear equations with n variables, where
m � n, then the system has infinitely many solutions.

Proof Since the system has at least the zero solution, it is consistent. Also,
rank(A) � m (why?). By the Rank Theorem, we have

So there is at least one free variable and, hence, infinitely many solutions.

Note Theorem 2.3 says nothing about the case where m 
 n. Exercise 44 asks
you to give examples to show that, in this case, there can be either a unique solution
or infinitely many solutions.

number of free variables � n � rank1A 2 
 n � m 7 0

�x � 5y � 2z � 0

 2x � 3y � z � 0

3
4

£ xy
z

§ � £ 1

0

�1

§ � 5
4 £ 11

1

§ � £ 9
4
5
4
1
4

§
z

y

x

1

1
1

Figure 2. 3
Two intersecting lines
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Section 2.2 Direct Methods for Solving Linear Systems 83

Linear Systems over �p

Thus far, all of the linear systems we have encountered have involved real numbers,
and the solutions have accordingly been vectors in some �n. We have seen how other
number systems arise—notably, �p.When p is a prime number, �p behaves in many re-
spects like �; in particular, we can add, subtract, multiply, and divide (by nonzero
numbers). Thus, we can also solve systems of linear equations when the variables and
coefficients belong to some �p. In such instances, we refer to solving a system over �p.

For example, the linear equation x1 � x2 � x3 � 1, when viewed as an equation
over �2, has exactly four solutions:

(where the last solution arises because 1 � 1 � 1 � 1 in �2).

When we view the equation x1 � x2 � x3 � 1 over �3, the solutions are

(Check these.)
But we need not use trial-and-error methods; row reduction of augmented ma-

trices works just as well over �p as over �.

Solve the following system of linear equations over �3:

Solution The first thing to note in examples like this one is that subtraction and
division are not needed; we can accomplish the same effects using addition and mul-
tiplication. (This, however, requires that we be working over �p, where p is a prime;
see Exercise 60 at the end of this section and Exercise 57 in Section 1.1.)

We row reduce the augmented matrix of the system, using calculations modulo 3.

¡

R1�R2

R3�2R2 £ 1 0 1

0 1 0

0 0 2

3 22
2

§
£ 1 2 1

1 0 1

0 1 2

3 02
1

§ ¡
R2�2R1 £ 1 2 1

0 1 0

0 1 2

3 02
1

§

x2 � 2x3 �  1

x1 � x3 �  2

x1 � 2x2 � x3 �  0

£ 10
0

§ , £ 01
0

§ , £ 00
1

§ , £ 22
0

§ , £ 02
2

§ , £ 20
2

§ , £ 11
2

§ , £ 12
1

§ , £ 21
1

§
£ x1

x2

x3

§
£ x1

x2

x3

§ � £ 10
0

§ , £ x1

x2

x3

§ � £ 01
0

§ , £ x1

x2

x3

§ � £ 00
1

§ ,  and £x1

x2

x3

§ � £ 11
1

§

� and �p are examples of fields.
The set of rational numbers � and
the set of complex numbers � are
other examples. Fields are covered
in detail in courses in abstract
algebra.

Example 2. 16
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84 Chapter 2 Systems of Linear Equations

Thus, the solution is x1 � 1, x2 � 2, x3 � 1.

Solve the following system of linear equations over �2:

Solution The row reduction proceeds as follows:

Therefore, we have

Setting the free variable x4 � t yields

x3 � x4 � 0

x2 � x4 � 0

x1 � x4 � 1

¡

R2�R3

R4�R3 E1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 0

0 0 0 0

5 100
0

0

U
¡

R2 4 R3

R1 � R2

R5 � R2 E1 0 0 1

0 1 1 0

0 0 1 1

0 0 1 1

0 0 0 0

5 100
0

0

U

E1 1 1 1

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

5 110
0

1

U ¡

R2�R1

R5�R1 E1 1 1 1

0 0 1 1

0 1 1 0

0 0 1 1

0 1 1 0

5 100
0

0

U

x1 � x4 � 1

x3 � x4 � 0

x2 � x3 � 0

x1 � x2 � 1

x1 � x2 � x3 � x4 � 1

¡

R1�R3

2R3 £ 1 0 0

0 1 0

0 0 1

3 12
1

§

Example 2. 17
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Section 2.2 Direct Methods for Solving Linear Systems 85

Since t can take on the two values 0 and 1, there are exactly two solutions:

Remark For linear systems over �p, there can never be infinitely many
solutions. (Why not?) Rather, when there is more than one solution, the number
of solutions is finite and is a function of the number of free variables and p. (See
Exercise 59.)

≥ 1

0

0

0

¥   and  ≥ 0

1

1

1

¥

≥ x1

x2

x3

x4

¥ � ≥ 1 � t

t

t

t

¥ � ≥ 1

0

0

0

¥ � t ≥ 1

1

1

1

¥

Exercises 2. 2

In Exercises 1–8, determine whether the given matrix is in
row echelon form. If it is, state whether it is also in reduced
row echelon form.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–14, use elementary row operations to reduce
the given matrix to (a) row echelon form and (b) reduced
row echelon form.

≥ 2 1 3 5

0 0 1 �1

0 0 0 3

0 0 0 0

¥≥ 1 2 3

1 0 0

0 1 1

0 0 1

¥
£ 0 0 1

0 1 0

1 0 0

§£ 1 0 3 �4 0

0 0 0 0 0

0 1 5 0 1

§
£ 0 0 0

0 0 0

0 0 0

§c 0 1 3 0

0 0 0 1
d

£ 7 0 1 0

0 1 �1 4

0 0 0 0

§£ 1 0 1

0 0 3

0 1 0

§
9. 10.

11. 12.

13. 14.

15. Reverse the elementary row operations used in
Example 2.9 to show that we can convert

into ≥ 1 2 �4 �4 5

0 �1 10 9 �5

0 0 1 1 �1

0 0 0 0 24

¥

£�2 6 �7

3 �9 10

1 �3 3

§£ 3 �2 �1

2 �1 �1

4 �3 �1

§
c 2 �4 �2 6

3 �6 2 6
d£ 3 5

5 �2

2 4

§

c 3 2

1 4
d£ 0 0 1

0 1 1

1 1 1

§
�

�
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86 Chapter 2 Systems of Linear Equations

16. In general, what is the elementary row operation that
“undoes” each of the three elementary row operations
Ri 4 Rj, kRi, and Ri � kRj?

In Exercises 17 and 18, show that the given matrices are row
equivalent and find a sequence of elementary row operations
that will convert A into B.

17.

18.

19. What is wrong with the following “proof” that every
matrix with at least two rows is row equivalent to a
matrix with a zero row?

Perform R2 � R1 and R1 � R2. Now rows 1 and 2
are identical. Now perform R2 � R1 to obtain a
row of zeros in the second row.

20. What is the net effect of performing the following
sequence of elementary row operations on a matrix
(with at least two rows)?

21. Students frequently perform the following type of cal-
culation to introduce a zero into a matrix:

However, is not an elementary row opera-
tion. Why not? Show how to achieve the same result
using elementary row operations.

22. Consider the matrix Show that any of

the three types of elementary row operations can be
used to create a leading 1 at the top of the first col-
umn. Which do you prefer and why?

23. What is the rank of each of the matrices in Exercises 1–8?

24. What are the possible reduced row echelon forms of
3 � 3 matrices?

A � c 3 2

1 4
d .

3R2 � 2R1

c 3 1

2 4
d ¡

3R2�2R1 c 3 1

0 10
d

R2 � R1, R1 � R2, R2 � R1, �R1

A � £ 2 0 �1

1 1 0

�1 1 1

§ , B � £ 3 1 �1

3 5 1

2 2 0

§
A � c 1 2

3 4
d , B � c 3 �1

1 0
d

≥ 1 2 �4 �4 5

2 4 0 0 2

2 3 2 1 5

�1 1 3 6 5

¥ In Exercises 25–34, solve the given system of equations using
either Gaussian or Gauss-Jordan elimination.

25. 26.

27. 28.

29.

30.

31.

32.

33.

34.

In Exercises 35–38, determine by inspection (i.e., without
performing any calculations) whether a linear system with
the given augmented matrix has a unique solution, infinitely
many solutions, or no solution. Justify your answers.

35. 36.

37. 38.

39. Show that if ad � bc 0, then the system

has a unique solution.

cx � dy � s

ax � by � r



£ 1 2 3 4 5

6 5 4 3 2

7 7 7 7 7

3 61
7

§£ 1 2 3 4

5 6 7 8

9 10 11 12

3 00
0

§
£ 3 �2 0 1

1 2 �3 1

2 4 �6 2

3 1

�1

0

§£ 0 0 1

0 1 3

1 0 1

3 21
1

§

a � 4b � 8c � 15d � 93
a � 3b � 6c � 10d � 65
a � 2b � 3c � 4d � 30
a � b � c � d � 10

w � x � z � 2
x � y � �1

w � x � y � z � 0
w � x � 2y � z � 1

�y � 12z �  1
12y �  3z � �12

12x � y �  2z �  1

1
3 x1 � 2x3 � 4x5 � 8

1
6 x1 � 1

2 x2 � 3x4 � x5 � �1

1
2 x1 � x2 � x3 � 6x4 � 2

x1 � 3x2 � 4x3 � 8x4 � �4

 2x1 � 6x2 � x3 � 2x4 � �1

�x1 � 3x2 � 2x3 � 4x4 � 2

 2r � 5s � �1
 4r � s � 7
 2r � s � 3

 2w � 3x � y � z � 2 2x1 � 4x2 � 6x3 � 0
 2w � x � y � z � 1�x1 � 2x2 � x3 � 0
 3w � 3x � y � 1x1 � 3x2 � 2x3 � 0

�x � y � z � �1 4x1 � x2 � x3 � 4
  2x � y � z �     1 2x1 � x2 � x3 � 0

x � 2y � �1x1 � 2x2 � 3x3 � 9
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Section 2.2 Direct Methods for Solving Linear Systems 87

In Exercises 40–43, for what value(s) of k, if any, will the
systems have (a) no solution, (b) a unique solution, and
(c) infinitely many solutions?

40. 41.

42. 43.

44. Give examples of homogeneous systems of m linear
equations in n variables with m � n and with m � n
that have (a) infinitely many solutions and (b) a
unique solution.

In Exercises 45 and 46, find the line of intersection of the
given planes.

45. 3x � 2y � z � �1 and 2x � y � 4z � 5

46. 4x � y � z � 0 and 2x � y � 3z � 4

47. (a) Give an example of three planes that have a com-
mon line of intersection[(Figure 2.4).

(b) Give an example of three planes that intersect in
pairs but have no common point of intersection
(Figure 2.5).

Figure 2. 5

Figure 2. 4

kx � y � z � �22x � y � 4z � k2

x � ky � z � 1x � 4y � z � k

x � y � kz � 1x � y � z � 2

kx � y � 12x � 2y � 4

x � ky � 1kx � y � �2

(c) Give an example of three planes, exactly two of
which are parallel (Figure 2.6).

(d) Give an example of three planes that intersect in a
single point (Figure 2.7).

In Exercises 48 and 49, determine whether the lines x �
p � su and x � q � tv intersect and, if they do, find their
point of intersection.

48.

49.

50. Let and Describe 

all points Q � (a, b, c) such that the line through Q
with direction vector v intersects the line with
equation x � p � su.

51. Recall that the cross product of vectors u and v is a
vector u � v that is orthogonal to both u and v. (See
Exploration: The Cross Product in Chapter 1.) If

u � £u1

u2

u3

§   and  v � £ v1

v2

v3

§

v � £ 21
0

§ .p � £ 12
3

§ , u � £ 1

1

�1

§ ,
p � £ 31

0

§ , q � £�1

1

�1

§ , u � £ 10
1

§ , v � £ 23
1

§
p � £�1

2

1

§ , q � £ 22
0

§ , u � £ 1

2

�1

§ , v � £�1

1

0

§
Figure 2. 7

Figure 2. 6
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88 Chapter 2 Systems of Linear Equations

show that there are infinitely many vectors

that simultaneously satisfy and and
that all are multiples of

52. Let and 

Show that the lines x � p � su and x � q � tv are
skew lines. Find vector equations of a pair of parallel
planes, one containing each line.

In Exercises 53–58, solve the systems of linear equations over
the indicated �p.

53.

54.

x � z � 1
y � z � 0

x � y � 1 over �2

x � y � 2
x � 2y � 1 over �3

v � £ 0

6

�1

§ .p � £ 11
0

§ , q � £ 0

1

�1

§ , u � £ 2

�3

1

§ ,
u � v � £u2v3 � u3v2

u3v1 � u1v3

u1v2 � u2v1

§
v # x � 0u # x � 0

x � £ x1

x2

x3

§
55.

56.

57.

58.

59. Prove the following corollary to the Rank Theorem:
Let A be an m � n matrix with entries in �p. Any
consistent system of linear equations with coefficient
matrix A has exactly pn�rank(A) solutions over �p.

60. When p is not prime, extra care is needed in solving
a linear system (or, indeed, any equation) over �p.
Using Gaussian elimination, solve the following system
over �6. What complications arise?

 4x � 3y � 2
 2x � 3y � 4

x1 � 3x3 � 2
 2x1 � 2x2 � x4 � 1

x1 � 2x2 � 4x3 � 3
x1 � 4x4 � 1 over �5

x � 4y � 1
 3x � 2y � 1 over �7

x � 4y � 1
 3x � 2y � 1 over �5

x � z � 1
y � z � 0

x � y � 1 over �3
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Lies My Computer Told Me
Computers and calculators store real numbers in floating-point form. For example,
2001 is stored as 0.2001 � 104, and �0.00063 is stored as �0.63 � 10�3. In general,
the floating-point form of a number is �M � 10k, where k is an integer and the
mantissa M is a (decimal) real number that satisfies 0.1 � M � 1.

The maximum number of decimal places that can be stored in the mantissa depends
on the computer, calculator, or computer algebra system. If the maximum number of
decimal places that can be stored is d, we say that there are d significant digits. Many cal-
culators store 8 or 12 significant digits; computers can store more but still are subject to
a limit. Any digits that are not stored are either omitted (in which case we say that the
number has been truncated) or used to round the number to d significant digits.

For example, p � 3.141592654, and its floating-point form is 0.3141592654 �
101. In a computer that truncates to five significant digits, p would be stored as
0.31415 � 101 (and displayed as 3.1415); a computer that rounds to five significant
digits would store p as 0.31416 � 101 (and display 3.1416). When the dropped digit
is a solitary 5, the last remaining digit is rounded so that it becomes even. Thus,
rounded to two significant digits, 0.735 becomes 0.74 while 0.725 becomes 0.72.

Whenever truncation or rounding occurs, a roundoff error is introduced, which
can have a dramatic effect on the calculations. The more operations that are per-
formed, the more the error accumulates. Sometimes, unfortunately, there is nothing
we can do about this. This exploration illustrates this phenomenon with very simple
systems of linear equations.

1. Solve the following system of linear equations exactly (that is, work with
rational numbers throughout the calculations).

2. As a decimal, � 1.00125, so, rounded to five significant digits, the system
becomes

Using your calculator or CAS, solve this system, rounding the result of every calcula-
tion to five significant digits.

x � 1.0012y � 1

x � y � 0

801
800

x � 801
800y �  1

x � y �  0

CAS

89
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3. Solve the system two more times, rounding first to four significant digits and
then to three significant digits. What happens?

4. Clearly, a very small roundoff error (less than or equal to 0.00125) can result
in very large errors in the solution. Explain why geometrically. (Think about the
graphs of the various linear systems you solved in Problems 1–3.)

Systems such as the one you just worked with are called ill-conditioned. They are
extremely sensitive to roundoff errors, and there is not much we can do about it. We
will encounter ill-conditioned systems again in Chapters 3 and 7. Here is another
example to experiment with:

Play around with various numbers of significant digits to see what happens, starting
with eight significant digits (if you can).

Partial Pivoting
In Exploration: Lies My Computer Told Me, we saw that ill-conditioned linear sys-
tems can cause trouble when roundoff error occurs. In this exploration, you will dis-
cover another way in which linear systems are sensitive to roundoff error and see that
very small changes in the coefficients can lead to huge inaccuracies in the solution.
Fortunately, there is something that can be done to minimize or even eliminate this
problem (unlike the problem with ill-conditioned systems).

1. (a) Solve the single linear equation 0.00021x � 1 for x.

(b) Suppose your calculator can carry only four significant digits. The equa-
tion will be rounded to 0.0002x � 1. Solve this equation.

The difference between the answers in parts (a) and (b) can be thought of as the
effect of an error of 0.00001 on the solution of the given equation.

2. Now extend this idea to a system of linear equations.
(a) With Gaussian elimination, solve the linear system

using three significant digits. Begin by pivoting on 0.400 and take each
calculation to three significant digits. You should obtain the “solution” x �
�1.00, y � 1.01. Check that the actual solution is x � 1.00, y � 1.00. This is
a huge error—200% in the x value! Can you discover what caused it?

(b) Solve the system in part (a) again, this time interchanging the two equa-
tions (or, equivalently, the two rows of its augmented matrix) and pivoting
on 75.3. Again, take each calculation to three significant digits. What is the
solution this time?

The moral of the story is that, when using Gaussian or Gauss-Jordan elimination
to obtain a numerical solution to a system of linear equations (i.e., a decimal approx-
imation), you should choose the pivots with care. Specifically, at each pivoting step,
choose from among all possible pivots in a column the entry with the largest absolute
value. Use row interchanges to bring this element into the correct position and use it to
create zeros where needed in the column. This strategy is known as partial pivoting.

 75.3x � 45.3y � 30.0

 0.400x � 99.6y � 100

 1.731x � 2.693y � 2.001

 4.552x � 7.083y � 1.931
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3. Solve the following systems by Gaussian elimination, first without and then
with partial pivoting. Take each calculation to three significant digits. (The exact
solutions are given.)

(a) (b)

Exact solution: Exact solution:

Counting Operations: An Introduction 
to the Analysis of Algorithms
Gaussian and Gauss-Jordan elimination are examples of algorithms: systematic pro-
cedures designed to implement a particular task—in this case, the row reduction of
the augmented matrix of a system of linear equations. Algorithms are particularly
well suited to computer implementation, but not all algorithms are created equal.
Apart from the speed, memory, and other attributes of the computer system on which
they are running, some algorithms are faster than others. One measure of the so-called
complexity of an algorithm (a measure of its efficiency, or ability to perform its task in
a reasonable number of steps) is the number of basic operations it performs as a
function of the number of variables that are input.

Let’s examine this proposition in the case of the two algorithms we have for solv-
ing a linear system: Gaussian and Gauss-Jordan elimination. For our purposes, the
basic operations are multiplication and division; we will assume that all other opera-
tions are performed much more rapidly and can be ignored. (This is a reasonable as-
sumption, but we will not attempt to justify it.) We will consider only systems of
equations with square coefficient matrices, so, if the coefficient matrix is , the
number of input variables is n. Thus, our task is to find the number of operations per-
formed by Gaussian and Gauss-Jordan elimination as a function of n. Furthermore,
we will not worry about special cases that may arise, but rather establish the worst case
that can arise—when the algorithm takes as long as possible. Since this will give us an
estimate of the time it will take a computer to perform the algorithm (if we know how
long it takes a computer to perform a single operation), we will denote the number of
operations performed by an algorithm by T(n). We will typically be interested in
T(n) for large values of n, so comparing this function for different algorithms will
allow us to determine which will take less time to execute.

1. Consider the augmented matrix

3A � b 4 � £ 2 4 6

3 9 6

�1 1 �1

3 8

12

1

§

n � n

£xy
z

§ � £ 0.00

�1.00

1.00

§cx
y
d � c5.00

1.00
d

 5x � y � 5z � 6
�3x � 2.09y � 6z � 3.91�10.2x � 1.00y � �50.0
 10x � 7y � 70.001x � 0.995y � 1.00
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Abu Ja’far Muhammad ibn Musa
al-Khwarizmi (c. 780–850) was a
Persian mathematician whose book
Hisab al-jabr w’al muqabalah
(c. 825) described the use of Hindu-
Arabic numerals and the rules of
basic arithmetic. The second word
of the book’s title gives rise to the
English word algebra, and the
word algorithm is derived from
al-Khwarizmi’s name.
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92

Count the number of operations required to bring to the row echelon
form

(By “operation” we mean a multiplication or a division.) Now count the number
of operations needed to complete the back substitution phase of Gaussian elimi-
nation. Record the total number of operations.

2. Count the number of operations needed to perform Gauss-Jordan
elimination—that is, to reduce to its reduced row echelon form

(where the zeros are introduced into each column immediately after the leading 1 is
created in that column). What do your answers suggest about the relative efficiency of
the two algorithms?

We will now attempt to analyze the algorithms in a general, systematic way. Sup-
pose the augmented matrix arises from a linear system with n equations and n
variables; thus, is n � (n � 1):

We will assume that row interchanges are never needed—that we can always create a
leading 1 from a pivot by dividing by the pivot.

3. (a) Show that n operations are needed to create the first leading 1:

(Why don’t we need to count an operation for the creation of the leading 1?) Now
show that n operations are needed to obtain the first zero in column 1:

≥ 1 * p *
0 * p *

o o ∞ o
an1 an2

p ann

4 **
o

bn

¥

≥ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

4 b1

b2

o
bn

¥ ¡ ≥ 1 * p *
a21 a22

p a2n

o o ∞ o
an1 an2

p ann

4 *b2

o
bn

¥

3A � b 4 � ≥ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

4 b1

b2

o
bn

¥
3A � b 4 3A � b 4

£ 1 0 0

0 1 0

0 0 1

3�1

1

1

§
3A � b 4

£ 1 2 3

0 1 �1

0 0 1

3 40
1

§
3A � b 4
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(Why don’t we need to count an operation for the creation of the zero itself?) When
the first column has been “swept out,” we have the matrix

Show that the total number of operations needed up to this point is n � (n � 1)n.

(b) Show that the total number of operations needed to reach the row eche-
lon form

is

which simplifies to

(c) Show that the number of operations needed to complete the back substi-
tution phase is

(d) Using summation formulas for the sums in parts (b) and (c) (see
Exercises 51 and 52 in Section 2.4 and Appendix B), show that the total
number of operations, T(n), performed by Gaussian elimination is

Since every polynomial function is dominated by its leading term for large values of
the variable, we see that T(n) � for large values of n.

4. Show that Gauss-Jordan elimination has T(n) � total operations if we
create zeros above and below the leading 1s as we go. (This shows that, for large sys-
tems of linear equations, Gaussian elimination is faster than this version of Gauss-
Jordan elimination.)

1
2 n3

1
3 n3

T 1n 2 � 1
3 n3 � n2 � 1

3 n

1 � 2 � p � 1n � 1 2
n2 � 1n � 1 2 2 � p � 22 � 12

� p � 32 � 1 # 2 4 � 1

3n � 1n � 1 2n 4 � 3 1n � 1 2 � 1n � 2 2 1n � 1 2 4 � 3 1n � 2 2 � 1n � 3 2 1n � 2 2 4
≥ 1 * p *

0 1 p *
o o ∞ o
0 0 p 1

4 **
o
*

¥

≥ 1 * p *
0 * p *
o o ∞ o
0 * p *

4 **
o
*

¥

�

�
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Spanning Sets and Linear Independence
The second of the three roads in our “trivium” is concerned with linear combinations
of vectors. We have seen that we can view solving a system of linear equations as ask-
ing whether a certain vector is a linear combination of certain other vectors. We ex-
plore this idea in more detail in this section. It leads to some very important concepts,
which we will encounter repeatedly in later chapters.

Spanning Sets of Vectors

We can now easily answer the question raised in Section 1.1: When is a given vector a
linear combination of other given vectors?

(a) Is the vector a linear combination of the vectors and 

(b) Is a linear combination of the vectors and 

Solution
(a) We want to find scalars x and y such that

Expanding, we obtain the system

whose augmented matrix is

(Observe that the columns of the augmented matrix are just the given vectors; notice
the order of the vectors—in particular, which vector is the constant vector.)

The reduced echelon form of this matrix is

(Verify this.) So the solution is x � 3, y � 2, and the corresponding linear combina-
tion is

3 £10
3

§ � 2 £�1

1

�3

§ � £12
3

§

£ 1 0

0 1

0 0

3 32
0

§

£ 1 �1

0 1

3 �3

3 12
3

§
 3x � 3y � 3

y � 2

x � y � 1

x £10
3

§ � y £�1

1

�3

§ � £12
3

§

£�1

1

�3

§ ?£10
3

§£23
4

§
£�1

1

�3

§ ?£10
3

§£12
3

§
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Theorem 2. 4

(b) Utilizing our observation in part (a), we obtain a linear system whose augmented
matrix is

which reduces to

revealing that the system has no solution. Thus, in this case, is not a linear com-

bination of and 

The notion of a spanning set is intimately connected with the solution of linear
systems. Look back at Example 2.18. There we saw that a system with augmented ma-
trix [A | b] has a solution precisely when b is a linear combination of the columns of
A. This is a general fact, summarized in the next theorem.

A system of linear equations with augmented matrix [A | b] is consistent if and
only if b is a linear combination of the columns of A.

Let’s revisit Example 2.4, interpreting it in light of Theorem 2.4.

(a) The system

has the unique solution x � 2, y � 1. Thus,

See Figure 2.8(a).

(b) The system

has infinitely many solutions of the form x � 2 � t, y � t. This implies that

for all values of t. Geometrically, the vectors and are all parallel and

so all lie along the same line through the origin [see Figure 2.8(b)].

c2
4
dc1

2
d , c�1

�2
d ,

12 � t 2 c1
2
d � t c�1

�2
d � c2

4
d

 2x � 2y � 4

x � y � 2

2 c1
1
d � c�1

1
d � c1

3
d

x � y � 3

x � y � 1

£�1

1

�3

§ .£10
3

§ £23
4

§
£ 1 0

0 1

0 0

3 5

3

�2

§
£ 1 �1

0 1

3 �3

3 23
4

§
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(c) The system

has no solutions, so there are no values of x and y that satisfy

In this case, and are parallel, but does not lie along the same line

through the origin [see Figure 2.8(c)].

We will often be interested in the collection of all linear combinations of a given
set of vectors.

Definition If S � {v1, v2, . . . , vk} is a set of vectors in �n, then the set of all
linear combinations of v1, v2, . . . , vk is called the span of v1, v2, . . . , vk and is de-
noted by span(v1, v2, . . . , vk) or span(S). If span(S) � �n, then S is called a span-
ning set for �n.

Show that �2 � span

Solution We need to show that an arbitrary vector can be written as a linear 

combination of and that is, we must show that the equation 

can always be solved for x and y (in terms of a and b), regardless of the

values of a and b.

y c1
3
d � ca

b
d x c 2

�1
d �c 1

3
d ;c 2

�1
d c a

b
da c 2

�1
d , c 1

3
d b .

c1
3
dc�1

�1
dc1

1
d

x c1
1
d � y c�1

�1
d � c1

3
d

x � y � 3

x � y � 1
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x

y

�3

�2

�1

1

2

3

4

5

1 2 3�1�2

(a)

x

y

�3

�2

�1

1

2

3

4

5

1 2 3�1�2

(c)

x

y

�3

�2

�1

1

2

3

4

5

1 2 3�1�2

(b)

Figure 2. 8
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The augmented matrix is and row reduction produces 

at which point it is clear that the system has a (unique) solution. (Why?) If we con-
tinue, we obtain

from which we see that x � (3a � b)�7 and y � (a � 2b)�7. Thus, for any choice of
a and b, we have

(Check this.)

Remark It is also true that �2 � span If, given we can 

find x and y such that then we also have 

In fact, any set of vectors that contains a spanning set for �2 will also be

a spanning set for �2 (see Exercise 20).
The next example is an important (easy) case of a spanning set. We will encounter

versions of this example many times.

Let e1, e2, and e3 be the standard unit vectors in �3. Then for any vector we have

Thus, �3 � span(e1, e2, e3).
You should have no difficulty seeing that, in general, �n � span(e1, e2, . . . , en).

When the span of a set of vectors in �n is not all of �n, it is reasonable to ask for
a description of the vectors’ span.

Find the span of and (See Example 2.18.)£�1

1

�3

§ .£ 10
3

§

£ xy
z

§ � x £ 10
0

§ � y £ 01
0

§ � z £ 00
1

§ � xe1 � ye2 � ze3

£ xy
z

§ ,

0 c 5
7
d � c a

b
d .

x c 2

�1
d � y c 1

3
d�x c 2

�1
d � y c 1

3
d � c a

b
d ,

c a
b
d ,a c 2

�1
d , c 1

3
d , c 5

7
d b :

a 3a � b

7
b c 2

�1
d � a a � 2b

7
b c1

3
d � ca

b
d

¡
1
7 R2 c�1 3

0 1
2 b1a � 2b 2 >7 d ¡

R1�3R2 c�1 0

0 1
2 1b � 3a 2 >71a � 2b 2 >7 d
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�1 3
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b
d ¡

R1 4 R2 c�1 3
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Solution Thinking geometrically, we can see that the set of all linear combinations of

and is just the plane through the origin with and as direction

vectors (Figure 2.9). The vector equation of this plane is 

which is just another way of saying that is in the span of and 

Suppose we want to obtain the general equation of this plane. There are several
ways to proceed. One is to use the fact that the equation ax � by � cz � 0 must be
satisfied by the points (1, 0, 3) and (�1, 1, �3) determined by the direction vectors.
Substitution then leads to a system of equations in a, b, and c. (See Exercise 17.)

Another method is to use the system of equations arising from the vector
equation:

If we row reduce the augmented matrix, we obtain

Now we know that this system is consistent, since is in the span of and

by assumption. So we must have z � 3x � 0 (or 3x � z � 0, in more standard

form), giving us the general equation we seek.

Remark A normal vector to the plane in this example is also given by the cross
product

Linear Independence

In Example 2.18, we found that Let’s abbreviate this equa-

tion as 3u � 2v � w. The vector w “depends” on u and v in the sense that it is a 
linear combination of them. We say that a set of vectors is linearly dependent if one

3 £ 10
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Theorem 2. 5

of them can be written as a linear combination of the others. Note that we also have
u � � v � w and v � � u � w. To get around the question of which vector to
express in terms of the rest, the formal definition is stated as follows:

Definition A set of vectors v1, v2, . . . , vk is linearly dependent if there are
scalars c1, c2, . . . , ck, at least one of which is not zero, such that

A set of vectors that is not linearly dependent is called linearly independent.

Remarks
• In the definition of linear dependence, the requirement that at least one of the

scalars c1, c2, . . . , ck must be nonzero allows for the possibility that some may be zero.
In the example above, u, v, and w are linearly dependent, since 3u � 2v � w � 0 and,
in fact, all of the scalars are nonzero. On the other hand,

so and are linearly dependent, since at least one (in fact, two) of the

three scalars 1, �2, and 0 is nonzero. (Note that the actual dependence arises simply
from the fact that the first two vectors are multiples.) (See Exercise 44.)

• Since 0v1 � 0v2 0vk � 0 for any vectors v1, v2, . . . , vk, linear depen-
dence essentially says that the zero vector can be expressed as a nontrivial linear com-
bination of v1, v2, . . . , vk. Thus, linear independence means that the zero vector can be
expressed as a linear combination of v1, v2, . . . , vk only in the trivial way: c1v1 �
c2v2 ckvk � 0 only if c1 � 0, c2 � 0, . . . , ck � 0.

The relationship between the intuitive notion of dependence and the formal defi-
nition is given in the next theorem. Happily, the two notions are equivalent!

Vectors v1, v2, . . . , vm in �n are linearly dependent if and only if at least one of the
vectors can be expressed as a linear combination of the others.

Proof If one of the vectors—say, v1—is a linear combination of the others, then
there are scalars c2, . . . , cm such that v1 � c2v2 cmvm. Rearranging, we obtain
v1 � c2v2 cmvm � 0, which implies that v1, v2, . . . , vm are linearly dependent,
since at least one of the scalars (namely, the coefficient 1 of v1) is nonzero.

Conversely, suppose that v1, v2, . . . , vm are linearly dependent. Then there are
scalars c1, c2, . . . , cm, not all zero, such that c1v1 � c2v2 cmvm � 0. Suppose 
c1 0. Then

and we may multiply both sides by 1�c1 to obtain v1 as a linear combination of the
other vectors:

v1 � � a c2

c1
b v2 � p � a cm

c1
b vm

c1v1 � �c2v2 � p � cmvm


� p �

� p �
� p �

� p �

� p �

c4
1
dc2

6
d , c1

3
d ,

c2
6
d � 2 c1

3
d � 0 c4

1
d � c0

0
d

c1v1 � c2v2 � p � ckvk � 0

1
2

3
2

1
3

2
3
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Note It may appear as if we are cheating a bit in this proof. After all, we cannot
be sure that v1 is a linear combination of the other vectors, nor that c1 is nonzero.
However, the argument is analogous for some other vector vi or for a different scalar
cj. Alternatively, we can just relabel things so that they work out as in the above proof.
In a situation like this, a mathematician might begin by saying, “without loss of gen-
erality, we may assume that v1 is a linear combination of the other vectors” and then
proceed as above.

Any set of vectors containing the zero vector is linearly dependent. For if 0, v2, . . . , vm

are in �n, then we can find a nontrivial combination of the form c10 � c2v2

cm vm � 0 by setting c1 � 1 and c2 � c3 cm � 0.

Determine whether the following sets of vectors are linearly independent:

(a) and (b) and 

(c) and (d) and 

Solution In answering any question of this type, it is a good idea to see if you can
determine by inspection whether one vector is a linear combination of the others. A
little thought may save a lot of computation!

(a) The only way two vectors can be linearly dependent is if one is a multiple of
the other. (Why?) These two vectors are clearly not multiples, so they are linearly
independent.

(b) There is no obvious dependence relation here, so we try to find scalars c1, c2, c3

such that

The corresponding linear system is

and the augmented matrix is

Once again, we make the fundamental observation that the columns of the coefficient
matrix are just the vectors in question!

£ 1 0 1

1 1 0

0 1 1

3 00
0

§
c2 � c3 � 0

c1 � c2 � 0

c1 � c3 � 0

c1 £11
0

§ � c2 £01
1

§ � c3 £10
1

§ � £00
0

§

£14
2

§£12
0

§ , £ 1

1

�1

§ ,£�1

0

1

§£ 1

�1

0

§ , £ 0

1

�1

§ ,
£10

1

§£11
0

§ , £01
1

§ ,c�1

2
dc1

4
d

� p �
� p �
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Theorem 2. 6

The reduced row echelon form is

(check this), so c1 � 0, c2 � 0, c3 � 0. Thus, the given vectors are linearly independent.

(c) A little reflection reveals that

so the three vectors are linearly dependent. [Set up a linear system as in part (b) to
check this algebraically.]

(d) Once again, we observe no obvious dependence, so we proceed directly to reduce
a homogeneous linear system whose augmented matrix has as its columns the given
vectors:

If we let the scalars be c1, c2, and c3, we have

from which we see that the system has infinitely many solutions. In particular, there
must be a nonzero solution, so the given vectors are linearly dependent.

If we continue, we can describe these solutions exactly: c1 � �3c3 and c2 � 2c3.
Thus, for any nonzero value of c3, we have the linear dependence relation

(Once again, check that this is correct.)

We summarize this procedure for testing for linear independence as a theorem.

Let v1, v2, . . . , vm be (column) vectors in �n and let A be the n�m matrix 
[v1 v2 vm] with these vectors as its columns. Then v1, v2, . . . , vm are linearly
dependent if and only if the homogeneous linear system with augmented matrix
[A | 0] has a nontrivial solution.

Proof v1, v2, . . . , vm are linearly dependent if and only if there are scalars c1, c2, . . . ,
cm, not all zero, such that c1v1 � c2v2 cmvm � 0. By Theorem 2.4, this is equiv-

alent to saying that the nonzero vector is a solution of the system whose
augmented matrix is [v1 v2 vm � 0].p

≥ c1

c2

o
cm

¥
� p �

# # #

�3c3 £12
0

§ � 2c3 £ 1

1

�1

§ � c3 £14
2

§ � £00
0

§
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c1 � 3c3 � 0

¡

R1 � R2

R3 � R2

�R2
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0

§£ 1 1 1

2 1 4
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§ ¡
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0

§
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§
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Theorem 2. 7

The standard unit vectors e1, e2, and e3 are linearly independent in �3, since the sys-
tem with augmented matrix [e1 e2 e3 | 0] is already in the reduced row echelon form

and so clearly has only the trivial solution. In general, we see that e1, e2, . . . , en will be
linearly independent in �n.

Performing elementary row operations on a matrix constructs linear combina-
tions of the rows. We can use this fact to come up with another way to test vectors for
linear independence.

Consider the three vectors of Example 2.23(d) as row vectors:

[1, 2, 0], [1, 1, �1], and [1, 4, 2]

We construct a matrix with these vectors as its rows and proceed to reduce it to eche-
lon form. Each time a row changes, we denote the new row by adding a prime symbol:

From this we see that

or, in terms of the original vectors,

[Notice that this approach corresponds to taking c3 � 1 in the solution to Exam-
ple 2.23(d).]

Thus, the rows of a matrix will be linearly dependent if elementary row opera-
tions can be used to create a zero row. We summarize this finding as follows:

Let v1, v2, . . . , vm be (row) vectors in �n and let A be the m�n matrix with

these vectors as its rows. Then v1, v2, . . . , vm are linearly dependent if and only if
rank(A) � m.

Proof Assume that v1, v2, . . . , vm are linearly dependent. Then, by Theorem 2.2,
at least one of the vectors can be written as a linear combination of the others. We

≥ v1

v2

o
vm

¥

�3 31, 2, 0 4 � 2 31, 1, �1 4 � 31, 4, 2 4 � 30, 0, 0 4
0 � Rfl

3 � Rœ
3 � 2Rœ

2 � 1R3 � R1 2 � 21R2 � R1 2 � �3R1 � 2R2 � R3

¡
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3�Rœ
3�2Rœ

2 £ 1 2 0

0 �1 �1

0 0 0
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§ ¡
Rœ
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Theorem 2. 8

relabel the vectors, if necessary, so that we can write vm � c1v1 � c2v2 � �
cm�1vm�1. Then the elementary row operations Rm � c1R1, Rm � c2R2, . . . ,
Rm � cm�1Rm�1 applied to A will create a zero row in row m. Thus, rank(A) � m.

Conversely, assume that rank(A) � m. Then there is some sequence of row oper-
ations that will create a zero row. A successive substitution argument analogous to
that used in Example 2.25 can be used to show that 0 is a nontrivial linear combina-
tion of v1, v2, . . . , vm. Thus, v1, v2, . . . , vm are linearly dependent.

In some situations, we can deduce that a set of vectors is linearly dependent with-
out doing any work. One such situation is when the zero vector is in the set (as in Ex-
ample 2.22). Another is when there are “too many” vectors to be independent. The
following theorem summarizes this case. (We will see a sharper version of this result
in Chapter 6.)

Any set of m vectors in �n is linearly dependent if m � n.

Proof Let v1, v2, . . . , vm be (column) vectors in �n and let A be the n � m matrix
[v1 v2 vm] with these vectors as its columns. By Theorem 2.6, v1, v2, . . . , vm are lin-
early dependent if and only if the homogeneous linear system with augmented
matrix [A | 0] has a nontrivial solution. But, according to Theorem 2.6, this will
always be the case if A has more columns than rows; it is the case here, since number
of columns m is greater than number of rows n.

The vectors and are linearly dependent, since there cannot be more

than two linearly independent vectors in �2. (Note that if we want to find the actual
dependence relation among these three vectors, we must solve the homogeneous
system whose coefficient matrix has the given vectors as columns. Do this!) 

c 3
1
dc 1

3
d , c 2

4
d ,

p

p
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Example 2. 26

Exercises 2. 3

In Exercises 1–6, determine if the vector v is a linear combi-
nation of the remaining vectors.

1.

2.

3.

4. v � £ 3

1

�2

§ , u1 � £ 11
0

§ , u2 � £ 01
1

§
v � £ 12

3

§ , u1 � £ 11
0

§ , u2 � £ 01
1

§
v � c 1

2
d , u1 � c�1

3
d , u2 � c 2

�6
d

v � c 1
2
d , u1 � c 1

�1
d , u2 � c 2

�1
d 5.

6.

u3 � £ 1.2

�2.3

4.8

§
v � £ 2.2

4.0

�2.2

§ , u1 � £ 1.0

0.5

�0.5

§ , u2 � £ 2.4

1.2

3.1

§ ,
u3 � £ 10

1

§
v � £ 12
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§ , u1 � £ 11
0

§ , u2 � £ 01
1

§ ,
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In Exercises 7 and 8, determine if the vector b is in the span
of the columns of the matrix A.

7.

8.

9. Show that 

10. Show that 

11. Show that 

12. Show that 

In Exercises 13–16, describe the span of the given vectors
(a) geometrically and (b) algebraically.

13. 14.

15. 16.

17. The general equation of the plane that contains the
points (1, 0, 3), (�1, 1, �3), and the origin is of the
form ax � by � cz � 0. Solve for a, b, and c.

18. Prove that u, v, and w are all in span(u, v, w).

19. Prove that u, v, and w are all in span(u, u � v, u �
v � w).

20. (a) Prove that if u1, . . . , um are vectors in �n, S �
{u1, u2, . . . , uk}, and T � {u1, . . . , uk, uk�1, . . . ,
um}, then span(S) � span(T). [Hint: Rephrase
this question in terms of linear combinations.]

(b) Deduce that if �n � span(S), then �n � span(T)
also.

21. (a) Suppose that vector w is a linear combination of
vectors u1, . . . , uk and that each ui is a linear com-
bination of vectors v1, . . . , vm. Prove that w is a
linear combination of v1, . . . , vm and therefore
span(u1, . . . , uk) � span(v1, . . . , vm).

£ 1

0
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§ , £�1
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0

§ , £ 0
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1

§£ 12
0
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§
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4
dc 2
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2
d

�3 � span° £ 11
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§ , £�1
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§ ¢ .

�3 � span° £ 10
1

§ , £ 11
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§ , £ 01
1

§ ¢ .

�2 � span a c 2

�1
d , c�1

2
d b .

�2 � span a c 1
1
d , c 1

�1
d b .

A � £ 1 2 3

4 5 6

7 8 9

§ , b � £ 10

11

12

§
A � c 1 2

3 4
d , b � c 5

6
d

104 Chapter 2 Systems of Linear Equations

(b) In part (a), suppose in addition that each vj is also
a linear combination of u1, . . . , uk. Prove that
span(u1, . . . , uk) � span(v1, . . . , vm).

(c) Use the result of part (b) to prove that

[Hint: We know that �3 � span(e1, e2, e3).]

Use the method of Example 2.23 and Theorem 2.6 to deter-
mine if the sets of vectors in Exercises 22–31 are linearly in-
dependent. If, for any of these, the answer can be determined
by inspection (i.e., without calculation), state why. For any
sets that are linearly dependent, find a dependence relation-
ship among the vectors.

22. 23.

24. 25.

26. 27.

28.

29.

30.

31.

In Exercises 32–41, determine if the sets of vectors in the
given exercise are linearly independent by converting the
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Applications
There are too many applications of systems of linear equations to do them justice in
a single section. This section will introduce a few applications, to illustrate the diverse
settings in which they arise.

Allocation of Resources

A great many applications of systems of linear equations involve allocating limited
resources subject to a set of constraints.

A biologist has placed three strains of bacteria (denoted I, II, and III) in a test tube,
where they will feed on three different food sources (A, B, and C). Each day 2300 units
of A, 800 units of B, and 1500 units of C are placed in the test tube, and each bac-
terium consumes a certain number of units of each food per day, as shown in
Table 2.2. How many bacteria of each strain can coexist in the test tube and consume
all of the food?

Section 2.4 Applications 105

(b) If vectors u, v, and w are linearly independent, will
u � v, v � w, and u � w also be linearly indepen-
dent? Justify your answer.

44. Prove that two vectors are linearly dependent if and
only if one is a scalar multiple of the other. [Hint: Sep-
arately consider the case where one of the vectors is 0.]

45. Give a “row vector proof” of Theorem 2.8.

46. Prove that every subset of a linearly independent set is
linearly independent.

47. Suppose that S � {v1, . . . , vk, v} is a set of vectors in
some �n and that v is a linear combination of v1, . . . ,
vk. If S� � {v1, . . . , vk}, prove that span(S) � span(S�).
[Hint: Exercise 21(b) is helpful here.]

48. Let {v1, . . . , vk} be a linearly independent set of
vectors in �n, and let v be a vector in �n. Suppose that
v � c1v1� c2v2 � � ck vk with Prove that
{v, v2, . . . , vk} is linearly independent.

c1  0.p

vectors to row vectors and using the method of Example 2.25
and Theorem 2.7. For any sets that are linearly dependent,
find a dependence relationship among the vectors.

32. Exercise 22 33. Exercise 23

34. Exercise 24 35. Exercise 25

36. Exercise 26 37. Exercise 27

38. Exercise 28 39. Exercise 29

40. Exercise 30 41. Exercise 31

42. (a) If the columns of an n�n matrix A are linearly in-
dependent as vectors in �n, what is the rank of A?
Explain.

(b) If the rows of an n�n matrix A are linearly inde-
pendent as vectors in �n, what is the rank of A?
Explain.

43. (a) If vectors u, v, and w are linearly independent, will
u � v, v � w, and u � w also be linearly indepen-
dent? Justify your answer.

Table 2. 2
Bacteria Bacteria Bacteria
Strain I Strain II Strain III

Food A 2 2 4
Food B 1 2 0
Food C 1 3 1

Example 2. 27
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Solution Let x1, x2, and x3 be the numbers of bacteria of strains I, II, and III,
respectively. Since each of the x1 bacteria of strain I consumes 2 units of A per day,
strain I consumes a total of 2x1 units per day. Similarly, strains II and III consume a
total of 2x2 and 4x3 units of food A daily. Since we want to use up all of the 2300 units
of A, we have the equation

Likewise, we obtain equations corresponding to the consumption of B and C:

Thus, we have a system of three linear equations in three variables. Row reduction of
the corresponding augmented matrix gives

Therefore, x1 � 100, x2 � 350, and x3 � 350. The biologist should place 100 bacteria
of strain I and 350 of each of strains II and III in the test tube if she wants all the food
to be consumed.

Repeat Example 2.27, using the data on daily consumption of food (units per day)
shown in Table 2.3. Assume this time that 1500 units of A, 3000 units of B, and 4500
units of C are placed in the test tube each day.

£ 2 2 4

1 2 0

1 3 1

3 2300

800

1500

§ ¡ £ 1 0 0

0 1 0

0 0 1

3 100

350

350

§
x1 � 3x 2 � x3 �  1500
x1 � 2x2 �   800

2x1 � 2x2 � 4x3 � 2300
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Example 2. 28

Table 2. 3
Bacteria Bacteria Bacteria
Strain I Strain II Strain III

Food A 1 1 1
Food B 1 2 3
Food C 1 3 5

Solution Let x1, x2, and x3 again be the numbers of bacteria of each type. The aug-
mented matrix for the resulting linear system and the corresponding reduced echelon
form are

We see that in this case we have more than one solution, given by

Letting x3 � t, we obtain x1 � t, x2 � 1500 � 2t, and x3 � t. In any applied problem,
we must be careful to interpret solutions properly. Certainly the number of bacteria

x2 � 2x3 � 1500

x1 � x3 � 0

£ 1 1 1

1 2 3

1 3 5

3 1500

3000

4500

§ ¡ £ 1 0 �1

0 1 2

0 0 0

3 0

1500

0

§
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cannot be negative. Therefore, t 
 0 and 1500 � 2t 
 0. The latter inequality implies
that t � 750, so we have 0 � t � 750. Presumably the number of bacteria must be a
whole number, so there are exactly 751 values of t that satisfy the inequality. Thus, our
751 solutions are of the form 

one for each integer value of t such that 0 � t � 750. (So, although mathematically
this system has infinitely many solutions, physically there are only finitely many.)

Balancing Chemical Equations

When a chemical reaction occurs, certain molecules (the reactants) combine to form
new molecules (the products). A balanced chemical equation is an algebraic equation
that gives the relative numbers of reactants and products in the reaction and has the
same number of atoms of each type on the left- and right-hand sides. The equation is
usually written with the reactants on the left, the products on the right, and an arrow
in between to show the direction of the reaction.

For example, for the reaction in which hydrogen gas (H2) and oxygen (O2) com-
bine to form water (H2O), a balanced chemical equation is

indicating that two molecules of hydrogen combine with one molecule of oxygen to
form two molecules of water. Observe that the equation is balanced, since there are
four hydrogen atoms and two oxygen atoms on each side. Note that there will never
be a unique balanced equation for a reaction, since any positive integer multiple of
a balanced equation will also be balanced. For example, 6H2 � 3O2 ¡ 6H2O is also
balanced. Therefore, we usually look for the simplest balanced equation for a given
reaction.

While trial and error will often work in simple examples, the process of balancing
chemical equations really involves solving a homogeneous system of linear equations,
so we can use the techniques we have developed to remove the guesswork.

The combustion of ammonia (NH3) in oxygen produces nitrogen (N2) and water.
Find a balanced chemical equation for this reaction.

Solution If we denote the numbers of molecules of ammonia, oxygen, nitrogen, and
water by w, x, y, and z, respectively, then we are seeking an equation of the form

Comparing the numbers of nitrogen, hydrogen, and oxygen atoms in the reactants
and products, we obtain three linear equations:

Rewriting these equations in standard form gives us a homogeneous system of three
linear equations in four variables. [Notice that Theorem 2.3 guarantees that such a

 Oxygen:   2x � z

 Hydrogen:  3w � 2z

 Nitrogen:   w � 2y

wNH3 � xO2 ¡ yN2 � zH2O

2H2 � O2 ¡ 2H2O

£ x1

x2

x3

§ � £ t

1500 � 2t

t

§ � £ 0

1500

0

§ � t £ 1

�2

1

§
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system will have (infinitely many) nontrivial solutions.] We reduce the correspond-
ing augmented matrix by Gauss-Jordan elimination.

Thus, w � z, x � z, and y � z. The smallest positive value of z that will produce
integer values for all four variables is the least common denominator of the fractions

and —namely, 6—which gives w � 4, x � 3, y � 2, and z � 6. Therefore, the bal-
anced chemical equation is

Network Analysis

Many practical situations give rise to networks: transportation networks, communi-
cations networks, and economic networks, to name a few. Of particular interest are
the possible flows through networks. For example, vehicles flow through a network of
roads, information flows through a data network, and goods and services flow
through an economic network.

For us, a network will consist of a finite number of nodes (also called junctions or
vertices) connected by a series of directed edges known as branches or arcs. Each
branch will be labeled with a flow that represents the amount of some commodity
that can flow along or through that branch in the indicated direction. (Think of cars
traveling along a network of one-way streets.) The fundamental rule governing flow
through a network is conservation of flow:

At each node, the flow in equals the flow out.

Figure 2.10 shows a portion of a network, with two branches entering a node and two
leaving. The conservation of flow rule implies that the total incoming flow, f1 � f2

units, must match the total outgoing flow, 20 � 30 units. Thus, we have the linear
equation f1 � f2 � 50 corresponding to this node.

We can analyze the flow through an entire network by constructing such equa-
tions and solving the resulting system of linear equations.

Describe the possible flows through the network of water pipes shown in Figure 2.11,
where flow is measured in liters per minute.

Solution At each node, we write out the equation that represents the conservation of
flow there. We then rewrite each equation with the variables on the left and the con-
stant on the right, to get a linear system in standard form.

¡

f3 � f4 � 20 Node D:  f4 � 20 � f3

f2 � f3 � 25 Node C :  f2 � f3 � 5 � 30

f1 � f2 � 10 Node B:  f1 � f2 � 10

f1 � f4 � 15 Node A: 15 � f1 � f4

4NH3 � 3O2 ¡ 2N2 � 6H2O

1
3

1
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1
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3w   �2z � 0

2x � z � 0

¡ £ 1 0 �2 0

3 0 0 �2
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Figure 2. 10
Flow at a node: f1 � f2 � 50
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Using Gauss-Jordan elimination, we reduce the augmented matrix:

(Check this.) We see that there is one free variable, f4, so we have infinitely many so-
lutions. Setting f4 � t and expressing the leading variables in terms of f4, we obtain

These equations describe all possible flows and allow us to analyze the network. For
example, we see that if we control the flow on branch AD so that t � 5 L/min, then
the other flows are f1 � 10, f2 � 0, and f3 � 25.

We can do even better: We can find the minimum and maximum possible flows
on each branch. Each of the flows must be nonnegative. Examining the first and sec-
ond equations in turn, we see that t � 15 (otherwise f1 would be negative) and t � 5
(otherwise f2 would be negative). The second of these inequalities is more restrictive
than the first, so we must use it. The third equation contributes no further restrictions
on our parameter t, so we have deduced that 0 � t � 5. Combining this result with
the four equations, we see that

We now have a complete description of the possible flows through this network.

 0 � f4 � 5

 20 � f3 � 25

 0 � f2 � 5

 10 � f1 � 15

f4 � t

f3 �  20 � t

f2 �  5 � t

f1 �  15 � t

≥ 1 0 0 1

1 �1 0 0

0 1 1 0

0 0 1 �1

4 15

10

25

20

¥ ¡ ≥ 1 0 0 1

0 1 0 1

0 0 1 �1

0 0 0 0

4 15

5
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0

¥
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Electrical Networks

Electrical networks are a specialized type of network providing information about
power sources, such as batteries, and devices powered by these sources, such as light
bulbs or motors. A power source “forces” a current of electrons to flow through the
network, where it encounters various resistors, each of which requires that a certain
amount of force be applied in order for the current to flow through it.

The fundamental law of electricity is Ohm’s law, which states exactly how much
force E is needed to drive a current I through a resistor with resistance R.

110 Chapter 2 Systems of Linear Equations

Ohm’s Law
or E � RI

 force � resistance � current

Force is measured in volts, resistance in ohms, and current in amperes (or amps, for
short). Thus, in terms of these units, Ohm’s law becomes “volts � ohms � amps,” and
it tells us what the “voltage drop” is when a current passes through a resistor—that is,
how much voltage is used up.

Current flows out of the positive terminal of a battery and flows back into the
negative terminal, traveling around one or more closed circuits in the process. In a
diagram of an electrical network, batteries are represented by (where the 

positive terminal is the longer vertical bar) and resistors are represented by .
The following two laws, whose discovery we owe to Kirchhoff, govern electrical net-
works. The first is a “conservation of flow” law at each node; the second is a
“balancing of voltage” law around each circuit.

Kirchhoff’s Laws Current Law (nodes)
The sum of the currents flowing into any node is equal to the sum of the currents
flowing out of that node.

Voltage Law (circuits)
The sum of the voltage drops around any circuit is equal to the total voltage
around the circuit (provided by the batteries).

Figure 2.12 illustrates Kirchhoff ’s laws. In part (a), the current law gives I1 � I2 � I3

(or I1 � I2 � I3 � 0, as we will write it); part (b) gives 4I � 10, where we have used
Ohm’s law to compute the voltage drop 4I at the resistor. Using Kirchhoff ’s laws, we can
set up a system of linear equations that will allow us to determine the currents in an
electrical network.

Determine the currents I1, I2, and I3 in the electrical network shown in Figure 2.13.

Solution This network has two batteries and four resistors. Current I1 flows through
the top branch BCA, current I2 flows across the middle branch AB, and current I3

flows through the bottom branch BDA.
At node A, the current law gives I1 � I3 � I2, or

(Observe that we get the same equation at node B.)

I1 � I2 � I3 � 0

Example 2. 31
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Next we apply the voltage law for each circuit. For the circuit CABC, the voltage
drops at the resistors are 2I1, I2, and 2I1. Thus, we have the equation

Similarly, for the circuit DABD, we obtain

(Notice that there is actually a third circuit, CADBC, if we “go against the flow.” In this
case, we must treat the voltages and resistances on the “reversed” paths as negative.
Doing so gives 2I1 � 2I1 � 4I3 � 8 � 16 � �8 or 4I1 � 4I3 � �8, which we observe
is just the difference of the voltage equations for the other two circuits. Thus, we can
omit this equation, as it contributes no new information. On the other hand, includ-
ing it does no harm.)

We now have a system of three linear equations in three variables:

Gauss-Jordan elimination produces

Hence, the currents are I1 � 1 amp, I2 � 4 amps, and I3 � 3 amps.

Remark In some electrical networks, the currents may have fractional values or
may even be negative. A negative value simply means that the current in the corre-
sponding branch flows in the direction opposite that shown on the network diagram.

The network shown in Figure 2.14 has a single power source A and five resistors. Find
the currents I, I1, . . . , I5. This is an example of what is known in electrical engineer-
ing as a Wheatstone bridge circuit.

£ 1 �1 1

4 1 0

0 1 4

3 0

8

16

§ ¡ £ 1 0 0

0 1 0

0 0 1

3 14
3

§
I2 � 4I3 � 16

 4I1 � I2 � 8
I1 � I2 � I3 � 0

I2 � 4I3 � 16

4I1 � I2 � 8
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Solution Kirchhoff ’s current law gives the following equations at the four nodes:

For the three basic circuits, the voltage law gives

(Observe that branch DAB has no resistor and therefore no voltage drop; thus, there
is no I term in the equation for circuit ABEDA. Note also that we had to change signs
three times because we went “against the current.” This poses no problem, since we
will let the sign of the answer determine the direction of current flow.)

We now have a system of seven equations in six variables. Row reduction gives

(Use your calculator or CAS to check this.) Thus, the solution (in amps) is I � 7, I1 �
I5 � 3, I2 � I4 � 4, and I3 � �1. The significance of the negative value here is that
the current through branch CE is flowing in the direction opposite that marked on
the diagram.

Remark There is only one power source in this example, so the single 10-volt
battery sends a current of 7 amps through the network. If we substitute these values

G
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 Circuit CDEC:  I2 � 2I5 � 2I3 � 0

 Circuit BCEB:  2I1 � 2I3 � I4 � 0

 Circuit ABEDA:  I4 � 2I5 � 10

 Node E :  I3 � I4 � I5 � 0

 Node D:  I � I2 � I5 � 0

 Node C:  I1 � I2 � I3 � 0

 Node B:  I � I1 � I4 � 0
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into Ohm’s law, E � RI, we get 10 � 7R or R � Thus, the entire network behaves
as if there were a single -ohm resistor. This value is called the effective resistance (Reff)
of the network.

Linear Economic Models

An economy is a very complex system with many interrelationships among the vari-
ous sectors of the economy and the goods and services they produce and consume.
Determining optimal prices and levels of production subject to desired economic
goals requires sophisticated mathematical models. Linear algebra has proven to be a
powerful tool in developing and analyzing such economic models.

In this section, we introduce two models based on the work of Harvard econo-
mist Wassily Leontief in the 1930s. His methods, often referred to as input-output
analysis, are now standard tools in mathematical economics and are used by cities,
corporations, and entire countries for economic planning and forecasting.

We begin with a simple example.

The economy of a region consists of three industries, or sectors: service, electricity,
and oil production. For simplicity, we assume that each industry produces a single
commodity (goods or services) in a given year and that income (output) is generated
from the sale of this commodity. Each industry purchases commodities from the
other industries, including itself, in order to generate its output. No commodities are
purchased from outside the region and no output is sold outside the region. Further-
more, for each industry, we assume that production exactly equals consumption
(output equals input, income equals expenditure). In this sense, this is a closed econ-
omy that is in equilibrium. Table 2.4 summarizes how much of each industry’s out-
put is consumed by each industry.

10
7

10
7 .
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Wassily Leontief (1906–1999) was
born in St. Petersburg, Russia. He
studied at the University of Leningrad
and received his Ph.D. from the Uni-
versity of Berlin. He emigrated to the
United States in 1931, teaching at
Harvard University and later at New
York University. In 1932, Leontief
began compiling data for the monu-
mental task of conducting an input-
output analysis of the United States
economy, the results of which were
published in 1941. He was also an
early user of computers, which he
needed to solve the large-scale linear
systems in his models. For his pio-
neering work, Leontief was awarded
the Nobel Prize in Economics in 1973.

Example 2. 33

Table 2. 4
Produced by (output)

Service Electricity Oil

Service 1/4 1/3 1/2

Electricity 1/4 1/3 1/4

Oil 1/2 1/3 1/4

Consumed by
(input)

From the first column of the table, we see that the service industry consumes 1/4
of its own output, electricity consumes another 1/4, and the oil industry uses 1/2 of
the service industry’s output. The other two columns have similar interpretations.
Notice that the sum of each column is 1, indicating that all of the output of each
industry is consumed.

Let x1, x2, and x3 denote the annual output (income) of the service, electricity, and
oil industries, respectively, in millions of dollars. Since consumption corresponds to
expenditure, the service industry spends x1 on its own commodity, x2 on
electricity, and x3 on oil. This means that the service industry’s total annual expen-
diture is x1 � x2� x3. Since the economy is in equilibrium, the service industry’s1
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expenditure must equal its annual income x1. This gives the first of the following
equations; the other two equations are obtained by analyzing the expenditures of the
electricity and oil industries.

Service: x1 � x2� x3 � x1

Electricity: x1 � x2� x3 � x2

Oil: x1 � x2� x3 � x3

Rearranging each equation, we obtain a homogeneous system of linear equations,
which we then solve. (Check this!)

x1 � x2� x3 � 0

x1 � x2� x3 � 0

x1 � x2� x3 � 0

Setting x3 � t, we find that x1 � t and x2 � t. Thus, we see that the relative outputs of
the service, electricity, and oil industries need to be in the ratios x1 : x2 : x3 � 4 : 3 : 4
for the economy to be in equilibrium.

Remarks
• The last example illustrates what is commonly called the Leontief closed model.
• Since output corresponds to income, we can also think of x1, x2, and x3 as the

prices of the three commodities.

We now modify the model in Example 2.33 to accommodate an open economy, one
in which there is an external as well as an internal demand for the commodities that
are produced. Not surprisingly, this version is called the Leontief open model.

Consider the three industries of Example 2.33 but with consumption given by 
Table 2.5. We see that, of the commodities produced by the service industry, 20% are
consumed by the service industry, 40% by the electricity industry, and 10% by the oil
industry. Thus, only 70% of the service industry’s output is consumed by this econ-
omy. The implication of this calculation is that there is an excess of output (income)
over input (expenditure) for the service industry. We say that the service industry is
productive. Likewise, the oil industry is productive but the electricity industry is
nonproductive. (This is reflected in the fact that the sums of the first and third
columns are less than 1 but the sum of the second column is equal to 1). The excess
output may be applied to satisfy an external demand.
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Table 2. 5
Produced by (output)

Service Electricity Oil

Service 0.20 0.50 0.10

Electricity 0.40 0.20 0.20

Oil 0.10 0.30 0.30

Consumed by
(input)
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For example, suppose there is an annual external demand (in millions of dollars)
for 10, 10, and 30 from the service, electricity, and oil industries, respectively. Then,
equating expenditures (internal demand and external demand) with income (out-
put), we obtain the following equations:

output internal demand external demand

Service x1 � 0.2x1 � 0.5x2 � 0.1x3 � 10

Electricity x2 � 0.4x1 � 0.2x2 � 0.2x3 � 10

Oil x3 � 0.1x1 � 0.3x2 � 0.3x3 � 30

Rearranging, we obtain the following linear system and augmented matrix:

�0.1x1 � 0.3x2 � 0.7x3 � 30
�0.4x1 � 0.8x2 � 0.2x3 � 10 S

0.8x1 � 0.5x2 � 0.1x3 � 10
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£ 0.8 �0.5 �0.1 10

�0.4 0.8 �0.2 3 10

�0.1 �0.3 0.7 30

§
Row reduction yields

from which we see that the service, electricity, and oil industries must have an annual
production of $61.74, $63.04, and $78.70 (million), respectively, in order to meet
both the internal and external demand for their commodities.

We will revisit these models in Section 3.7.

Finite Linear Games

There are many situations in which we must consider a physical system that has only a
finite number of states. Sometimes these states can be altered by applying certain processes,
each of which produces finitely many outcomes. For example, a light bulb can be on or off
and a switch can change the state of the light bulb from on to off and vice versa. Digital
systems that arise in computer science are often of this type. More frivolously, many
computer games feature puzzles in which a certain device must be manipulated by various
switches to produce a desired outcome. The finiteness of such situations is perfectly suited
to analysis using modular arithmetic, and often linear systems over some �p play a role.
Problems involving this type of situation are often called finite linear games.

£ 1 0 0 61.74

0 1 0 † 63.04

0 0 1 78.70

§

A row of five lights is controlled by five switches. Each switch changes the state (on or
off) of the light directly above it and the states of the lights immediately adjacent to
the left and right. For example, if the first and third lights are on, as in Figure 2.15(a),
then pushing switch A changes the state of the system to that shown in Figure 2.15(b).
If we next push switch C, then the result is the state shown in Figure 2.15(c).

CAS
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A B C D E

(a)

A B C D E

(b)

A B C D E

(c)

Figure 2. 15

Suppose that initially all the lights are off. Can we push the switches in some order
so that only the first, third, and fifth lights will be on? Can we push the switches in
some order so that only the first light will be on?

Solution The on/off nature of this problem suggests that binary notation will be helpful
and that we should work with �2. Accordingly, we represent the states of the five lights by
a vector in where 0 represents off and 1 represents on. Thus, for example, the vector

corresponds to Figure 2.15(b).
We may also use vectors in to represent the action of each switch. If a switch

changes the state of a light, the corresponding component is a 1; otherwise, it is 0.
With this convention, the actions of the five switches are given by

The situation depicted in Figure 2.15(a) corresponds to the initial state

followed by

a � E110
0

0

U

s � E101
0

0

U

a � E110
0

0

U, b � E111
0

0

U, c � E011
1

0

U, d � E001
1

1

U, e � E000
1

1

U
�5

2

E011
0

0

U
�5

2,

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



It is the vector sum (in )

Observe that this result agrees with Figure 2.15(b).
Starting with any initial configuration s, suppose we push the switches in the order

A, C, D, A, C, B. This corresponds to the vector sum s � a � c � d � a � c � b. But
in addition is commutative, so we have

where we have used the fact that 2 � 0 in �2. Thus, we would achieve the same result
by pushing only B and D—and the order does not matter. (Check that this is correct.)
Hence, in this example, we do not need to push any switch more than once.

So, to see if we can achieve a target configuration t starting from an initial configu-
ration s, we need to determine whether there are scalars x1, . . . , x5 in �2 such that

In other words, we need to solve (if possible) the linear system over �2 that corre-
sponds to the vector equation

In this case, s � 0 and our first target configuration is

The augmented matrix of this system has the given vectors as columns:

We reduce it over �2 to obtain

E1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

0 0 0 0 0

5 011
1

0

U

E1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

5 101
0

1

U

t � E101
0

1

U
x1a � x2b � p � x5e � t � s � t � s

s � x1a � x2b � p � x5e � t

� s � b � d
s � a � c � d � a � c � b � s � 2a � b � 2c � d

�5
2,

s � a � E011
0

0

U
�5

2
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Thus, x5 is a free variable. Hence, there are exactly two solutions (corresponding to
x5 � 0 and x5 � 1). Solving for the other variables in terms of x5, we obtain

So, when x5 � 0 and x5 � 1, we have the solutions

respectively. (Check that these both work.)

Similarly, in the second case, we have

The augmented matrix reduces as follows:

showing that there is no solution in this case; that is, it is impossible to start with all
of the lights off and turn only the first light on.

E1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

5 100
0

0

U ¡ E1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

0 0 0 0 0

5 011
1

1

U

t � E100
0

0

U

Ex1

x2

x3

x4

x5

U � E011
1

0

U  and  Ex1

x2

x3

x4

x5

U � E101
0

1

U
x4 �  1 � x5

x3 �  1

x2 �  1 � x5

x1 �   � x5
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Example 2.35 shows the power of linear algebra. Even though we might have
found out by trial and error that there was no solution, checking all possible ways to
push the switches would have been extremely tedious. We might also have missed the
fact that no switch need ever be pushed more than once.

Example 2. 36 Consider a row with only three lights, each of which can be off, light blue, or dark blue.
Below the lights are three switches, A, B, and C, each of which changes the states of
particular lights to the next state, in the order shown in Figure 2.16. Switch A changes
the states of the first two lights, switch B all three lights, and switch C the last two

�

�
I I I I II I I I I �������������������������������
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lights. If all three lights are initially off, is it possible to push the switches in some order
so that the lights are off, light blue, and dark blue, in that order (as in Figure 2.17)?

Solution Whereas Example 2.35 involved �2, this one clearly (is it clear?) involves
�3. Accordingly, the switches correspond to the vectors

in and the final configuration we are aiming for is (Off is 0, light blue is 1,

and dark blue is 2.) We wish to find scalars x1, x2, x3 in �3 such that

(where xi represents the number of times the ith switch is pushed). This equation
gives rise to the augmented matrix [a b c | t], which reduces over �3 as follows:

Hence, there is a unique solution: x1 � 2, x2 � 1, x3 � 1. In other words, we must push
switch A twice and the other two switches once each. (Check this.)

£ 1 1 0

1 1 1

0 1 1

3 01
2

§ ¡ £ 1 0 0

0 1 0

0 0 1

3 21
1

§
x1a � x2b � x3c � t

t � £ 01
2

§ .�3
3,

a � £ 11
0

§ , b � £ 11
1

§ , c � £ 01
1

§

Section 2.4 Applications 119

Exercises 2. 4

Allocation of Resources

1. Suppose that, in Example 2.27, 400 units of food A,
600 units of B, and 600 units of C are placed in the test
tube each day and the data on daily food consumption
by the bacteria (in units per day) are as shown in
Table 2.6. How many bacteria of each strain can
coexist in the test tube and consume all of the food?

2. Suppose that in Example 2.27, 400 units of food A,
500 units of B, and 600 units of C are placed in 
the test tube each day and the data on daily food

Table 2. 6
Bacteria Bacteria Bacteria
Strain I Strain II Strain III

Food A 1 2 0
Food B 2 1 1
Food C 1 1 2

Off

Light blueDark blue

Figure 2. 16

A B C A B C

?

Figure 2. 17

consumption by the bacteria (in units per day) are 
as shown in Table 2.7. How many bacteria of each

�

�
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strain can coexist in the test tube and consume all 
of the food?

3. A florist offers three sizes of flower arrangements con-
taining roses, daisies, and chrysanthemums. Each
small arrangement contains one rose, three daisies,
and three chrysanthemums. Each medium arrange-
ment contains two roses, four daisies, and six chrysan-
themums. Each large arrangement contains four
roses, eight daisies, and six chrysanthemums. One
day, the florist noted that she used a total of 24 roses,
50 daisies, and 48 chrysanthemums in filling orders
for these three types of arrangements. How many
arrangements of each type did she make?

4. (a) In your pocket you have some nickels, dimes, and
quarters. There are 20 coins altogether and exactly
twice as many dimes as nickels. The total value of the
coins is $3.00. Find the number of coins of each type.

(b) Find all possible combinations of 20 coins (nickels,
dimes, and quarters) that will make exactly $3.00.

5. A coffee merchant sells three blends of coffee. A bag
of the house blend contains 300 grams of Colombian
beans and 200 grams of French roast beans. A bag of the
special blend contains 200 grams of Colombian beans,
200 grams of Kenyan beans, and 100 grams of French
roast beans. A bag of the gourmet blend contains 100
grams of Colombian beans, 200 grams of Kenyan beans,
and 200 grams of French roast beans. The merchant has
on hand 30 kilograms of Colombian beans, 15 kilo-
grams of Kenyan beans, and 25 kilograms of French
roast beans. If he wishes to use up all of the beans, how
many bags of each type of blend can be made?

6. Redo Exercise 5, assuming that the house blend contains
300 grams of Colombian beans, 50 grams of Kenyan
beans, and 150 grams of French roast beans and the
gourmet blend contains 100 grams of Colombian beans,
350 grams of Kenyan beans, and 50 grams of French
roast beans. This time the merchant has on hand 30 kilo-
grams of Colombian beans, 15 kilograms of Kenyan
beans, and 15 kilograms of French roast beans. Suppose
one bag of the house blend produces a profit of $0.50,
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one bag of the special blend produces a profit of $1.50,
and one bag of the gourmet blend produces a profit of
$2.00. How many bags of each type should the merchant
prepare if he wants to use up all of the beans and maxi-
mize his profit? What is the maximum profit?

Balancing Chemical Equations

In Exercises 7–14, balance the chemical equation for each
reaction.

7. FeS2 � O2 ¡ Fe2O3 � SO2

8. CO2 � H2O ¡ C6H12O6 � O2 (This reaction takes
place when a green plant converts carbon dioxide and
water to glucose and oxygen during photosynthesis.)

9. C4H10 � O2 ¡ CO2 � H2O (This reaction occurs
when butane, C4H10, burns in the presence of oxygen
to form carbon dioxide and water.)

10. C7H6O2 � O2 ¡ H2O � CO2

11. C5H11OH � O2 ¡ H2O � CO2 (This equation rep-
resents the combustion of amyl alcohol.)

12. HClO4 � P4O10 ¡ H3PO4 � Cl2O7

13. Na2CO3 � C � N2 ¡ NaCN � CO

14. C2H2Cl4 � Ca(OH)2 ¡ C2HCl3 � CaCl2 � H2O

Network Analysis

15. Figure 2.18 shows a network of water pipes with flows
measured in liters per minute.

(a) Set up and solve a system of linear equations to find
the possible flows.

(b) If the flow through AB is restricted to 5 L/min, what
will the flows through the other two branches be?

(c) What are the minimum and maximum possible
flows through each branch?

(d) We have been assuming that flow is always positive.
What would negative flow mean, assuming we
allowed it? Give an illustration for this example.

20

30
f2

f1

10 f3

A

B

C

Figure 2. 18

Table 2. 7
Bacteria Bacteria Bacteria
Strain I Strain II Strain III

Food A 1 2 0
Food B 2 1 3
Food C 1 1 1

CAS
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16. The downtown core of Gotham City consists of
one-way streets, and the traffic flow has been 
measured at each intersection. For the city block
shown in Figure 2.19, the numbers represent the 
average numbers of vehicles per minute entering and
leaving intersections A, B, C, and D during business
hours.

(a) Set up and solve a system of linear equations to find
the possible flows f1, . . . , f4.

(b) If traffic is regulated on CD so that f4 � 10 vehicles
per minute, what will the average flows on the other
streets be?

(c) What are the minimum and maximum possible
flows on each street?

(d) How would the solution change if all of the direc-
tions were reversed?
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f1

f4

f2 f3

10 20

10 15

10

15 15

5

A B

D C

Figure 2. 19

(a) Set up and solve a system of linear equations to find
the possible flows f1, . . . , f5.

(b) Suppose DC is closed. What range of flow will need
to be maintained through DB?

(c) From Figure 2.20 it is clear that DB cannot be closed.
(Why not?) How does your solution in part (a) show
this?

(d) From your solution in part (a), determine the min-
imum and maximum flows through DB.

18. (a) Set up and solve a system of linear equations to
find the possible flows in the network shown in
Figure 2.21.

(b) Is it possible for f1 � 100 and f6 � 150? (Answer
this question first with reference to your solution
in part (a) and then directly from Figure 2.21.)

(c) If f4 � 0, what will the range of flow be on each of
the other branches?

17. A network of irrigation ditches is shown in Figure 2.20,
with flows measured in thousands of liters per day.

f7f6

f1 f2200 100

150200

A B C

D E F

150 200100

100 100100

f3 f4 f5

Figure 2. 21

f2

f4

f1

f3

f5

100

200150

150

C D

A

B

Figure 2. 20

Electrical Networks

For Exercises 19 and 20, determine the currents for the given
electrical networks.

19. I1I1

I3I3

C

8 volts

D

13 volts

1 ohm

1 ohm

4 ohms

I2 I2

A B
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20.

21. (a) Find the currents I, I1, . . . , I5 in the bridge circuit
in Figure 2.22.

(b) Find the effective resistance of this network.
(c) Can you change the resistance in branch BC (but

leave everything else unchanged) so that the cur-
rent through branch CE becomes 0?

I1I1

I3I3

C

5 volts

D

8 volts

2 ohms

1 ohm

4 ohms

I2 I2

A B
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Reff �
1

1

R1

�
1

R2

R1 R2

I

E

(a)

Figure 2. 23
Resistors in series and in parallel

I

E

R2

R1

I2

I1

(b)

22. The networks in parts (a) and (b) of Figure 2.23
show two resistors coupled in series and in parallel,
respectively. We wish to find a general formula for the
effective resistance of each network—that is, find Reff

such that E � ReffI.

(a) Show that the effective resistance Reff of a network
with two resistors coupled in series [Figure 2.23(a)]
is given by

(b) Show that the effective resistance Reff of a
network with two resistors coupled in parallel
[Figure 2.23(b)] is given by

Reff � R1 � R2

I4

I I

I3 I5

I1
I2

1 ohm 2 ohms

2 ohms 1 ohm

1 ohm

C

A

14 volts

E
B D

Figure 2. 22

Linear Economic Models

23. Consider a simple economy with just two industries:
farming and manufacturing. Farming consumes 1/2 of
the food and 1/3 of the manufactured goods. Manu-
facturing consumes 1/2 of the food and 2/3 of the
manufactured goods. Assuming the economy is closed
and in equilibrium, find the relative outputs of the
farming and manufacturing industries.

24. Suppose the coal and steel industries form a closed
economy. Every $1 produced by the coal industry 
requires $0.30 of coal and $0.70 of steel. Every $1 
produced by steel requires $0.80 of coal and $0.20 of
steel. Find the annual production (output) of coal and
steel if the total annual production is $20 million.

25. A painter, a plumber, and an electrician enter into a
cooperative arrangement in which each of them agrees
to work for themselves and the other two for a total of
10 hours per week according to the schedule shown in
Table 2.8. For tax purposes, each person must establish
a value for their services. They agree to do this so that
they each come out even—that is, so that the total
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26. Four neighbors, each with a vegetable garden, agree to
share their produce. One will grow beans (B), one will
grow lettuce (L), one will grow tomatoes (T), and one
will grow zucchini (Z). Table 2.9 shows what fraction
of each crop each neighbor will receive. What prices
should the neighbors charge for their crops if each
person is to break even and the lowest-priced crop has
a value of $50?
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interdependent. For every dollar’s worth of services
they produce, each department uses a certain amount
of the services produced by the other departments and
itself, as shown in Table 2.10. Suppose that, during the
year, other city departments require $1 million in
Administrative services, $1.2 million in Health
services, and $0.8 million in Transportation services.
What does the annual dollar value of the services
produced by each department need to be in order to
meet the demands?

Table 2. 8
Supplier

Painter Plumber Electrician

Painter 2 1 5
Consumer Plumber 4 5 1

Electrician 4 4 4

Table 2. 9
Producer

B L T Z

B 0 1/4 1/8 1/6
Consumer L 1/2 1/4 1/4 1/6

T 1/4 1/4 1/2 1/3
Z 1/4 1/4 1/8 1/3

27. Suppose the coal and steel industries form an open
economy. Every $1 produced by the coal industry 
requires $0.15 of coal and $0.20 of steel. Every $1 
produced by steel requires $0.25 of coal and $0.10 of
steel. Suppose that there is an annual outside demand
for $45 million of coal and $124 million of steel.
(a) How much should each industry produce to satisfy

the demands?
(b) If the demand for coal decreases by $5 million

per year while the demand for steel increases by
$6 million per year, how should the coal and steel
industries adjust their production?

28. In Gotham City, the departments of Administration
(A), Health (H), and Transportation (T) are

Table 2. 10
Department

A H T

A $0.20 0.10 0.20
Buy H 0.10 0.10 0.20

T 0.20 0.40 0.30

Finite Linear Games

29. (a) In Example 2.35, suppose all the lights are initially
off. Can we push the switches in some order so
that only the second and fourth lights will be on?

(b) Can we push the switches in some order so that
only the second light will be on?

30. (a) In Example 2.35, suppose the fourth light is
initially on and the other four lights are off. Can
we push the switches in some order so that only
the second and fourth lights will be on?

(b) Can we push the switches in some order so that
only the second light will be on?

31. In Example 2.35, describe all possible configurations
of lights that can be obtained if we start with all the
lights off.

32. (a) In Example 2.36, suppose that all of the lights
are initially off. Show that it is possible to
push the switches in some order so that the
lights are off, dark blue, and light blue, in that order.

(b) Show that it is possible to push the switches in
some order so that the lights are light blue, off, and
light blue, in that order.

(c) Prove that any configuration of the three lights can
be achieved.

33. Suppose the lights in Example 2.35 can be off, light
blue, or dark blue and the switches work as described

amount paid out by each person equals the amount
they receive. What hourly rate should each person
charge if the rates are all whole numbers between $30
and $60 per hour?
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in Example 2.36. (That is, the switches control the same
lights as in Example 2.35 but cycle through the colors as
in Example 2.36.) Show that it is possible to start with
all of the lights off and push the switches in some order
so that the lights are dark blue, light blue, dark blue,
light blue, and dark blue, in that order.

34. For Exercise 33, describe all possible configurations
of lights that can be obtained, starting with all the
lights off.

35. Nine squares, each one either black or white, are
arranged in a 3�3 grid. Figure 2.24 shows one possible

how the state changes work. (Touching the square
whose number is circled causes the states of the
squares marked * to change.) The object of the game
is to turn all nine squares black. [Exercises 35 and 36
are adapted from puzzles that can be found in the
interactive CD-ROM game The Seventh Guest
(Trilobyte Software/Virgin Games, 1992).]

(a) If the initial configuration is the one shown in
Figure 2.24, show that the game can be won and
describe a winning sequence of moves.

(b) Prove that the game can always be won, no matter
what the initial configuration.

36. Consider a variation on the nine squares puzzle. The
game is the same as that described in Exercise 35 
except that there are three possible states for each
square: white, grey, or black. The squares change as
shown in Figure 2.25, but now the state changes follow
the cycle white S grey S black S white. Show how
the winning all-black configuration can be achieved
from the initial configuration shown in Figure 2.26.
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CAS

Figure 2. 24
The nine squares
puzzle

2 3

4 6

7 8

1

5

9

arrangement. When touched, each square changes its
own state and the states of some of its neighbors
(black S white and white S black). Figure 2.25 shows

Figure 2. 25
State changes for the nine squares puzzle
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*
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Figure 2. 26
The nine squares puzzle
with more states
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Miscellaneous Problems

In Exercises 37–53, set up and solve an appropriate system of
linear equations to answer the questions.

37. Grace is three times as old as Hans, but in 5 years she
will be twice as old as Hans is then. How old are they
now?

38. The sum of Annie’s, Bert’s, and Chris’s ages is 60.
Annie is older than Bert by the same number of years
that Bert is older than Chris. When Bert is as old as
Annie is now, Annie will be three times as old as Chris
is now. What are their ages?

The preceding two problems are typical of those found in
popular books of mathematical puzzles. However, they have
their origins in antiquity. A Babylonian clay tablet that sur-
vives from about 300 B.C. contains the following problem.
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39. There are two fields whose total area is 1800 square
yards. One field produces grain at the rate of bushel
per square yard; the other field produces grain at the
rate of bushel per square yard. If the total yield is
1100 bushels, what is the size of each field?

Over 2000 years ago, the Chinese developed methods for
solving systems of linear equations, including a version of
Gaussian elimination that did not become well known in
Europe until the 19th century. (There is no evidence that
Gauss was aware of the Chinese methods when he developed
what we now call Gaussian elimination. However, it is clear
that the Chinese knew the essence of the method, even
though they did not justify its use.) The following problem is
taken from the Chinese text Jiuzhang suanshu (Nine Chap-
ters in the Mathematical Art), written during the early
Han Dynasty, about 200 B.C.

40. There are three types of corn. Three bundles of the first
type, two of the second, and one of the third make 39
measures. Two bundles of the first type, three of the
second, and one of the third make 34 measures. And
one bundle of the first type, two of the second, and
three of the third make 26 measures. How many mea-
sures of corn are contained in one bundle of each type? 

41. Describe all possible values of a, b, c, and d that
will make each of the following a valid addition
table. [Problems 41–44 are based on the article
“An Application of Matrix Theory” by Paul Glaister in
The Mathematics Teacher, 85 (1992), pp. 220–223.]

1
2

2
3

44. Generalizing Exercise 42, find conditions on the en-
tries of a 3�3 addition table that will guarantee that
we can solve for a, b, c, d, e, and f as previously.

45. From elementary geometry we know that there 
is a unique straight line through any two points 
in a plane. Less well known is the fact that there is a
unique parabola through any three noncollinear 
points in a plane. For each set of points below, find 
a parabola with an equation of the form y � ax2 �
bx � c that passes through the given points. (Sketch
the resulting parabola to check the validity of your 
answer.)

(a) (0, 1), (�1, 4), and (2, 1)
(b) (�3, 1), (�2, 2), and (�1, 5)

46. Through any three noncollinear points there also
passes a unique circle. Find the circles (whose general
equations are of the form x2 � y2 � ax � by � c � 0)
that pass through the sets of points in Exercise 45. (To
check the validity of your answer, find the center and
radius of each circle and draw a sketch.)

The process of adding rational functions (ratios of polyno-
mials) by placing them over a common denominator is
the analogue of adding rational numbers. The reverse
process of taking a rational function apart by writing it as
a sum of simpler rational functions is useful in several
areas of mathematics; for example, it arises in calculus when
we need to integrate a rational function and in discrete
mathematics when we use generating functions to solve re-
currence relations. The decomposition of a rational function
as a sum of partial fractions leads to a system of linear
equations. In Exercises 47–50, find the partial fraction
decomposition of the given form. (The capital letters denote
constants.)

47.

48.

49.

50.

�
Cx � D

x 2 � x � 1
�

Ex � F

x 2 � 1
�

Gx � H1x 2 � 1 2 2 �
Ix � J1x 2 � 1 2 3

x 3 � x � 1

x 1x � 1 2 1x 2 � x � 1 2 1x 2 � 1 2 3 �
A

x
�

B

x � 1

�
A

x � 1
�

Bx � C

x 2 � 1
�

Dx � E

x 2 � 4

x � 11x � 1 2 1x 2 � 1 2 1x 2 � 4 2
x2 � 3x � 3

x3 � 2x2 � x
�

A

x
�

B

x � 1
�

C1x � 1 2 2
3x � 1

x2 � 2x � 3
�

A

x � 1
�

B

x � 3
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1b 2 �

c

d

a

3

4

b

6

5

1a 2 �

c

d

a

2

4

b

3

5

42. What conditions on w, x, y, and z will guarantee that
we can find a, b, c, and d so that the following is a valid
addition table? 

�

c

d

a

w

y

b

x

z

43. Describe all possible values of a, b, c, d, e, and f
that will make each of the following a valid addition
table. 1b 2 �

d

e

f

a

1

3

4

b

2

4

5

c

3

5

6

1a 2 �

d

e

f

a

3

5

4

b

2

4

3

c

1

3

1
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Following are two useful formulas for the sums of powers of
consecutive natural numbers:

and

The validity of these formulas for all values of n 1 (or
even n 0) can be established using mathematical induc-
tion (see Appendix B). One way to make an educated guess
as to what the formulas are, though, is to observe that we can
rewrite the two formulas above as 






12 � 22 � p � n2 �
n1n � 1 2 12n � 1 2

6

1 � 2 � p � n �
n1n � 1 2

2
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respectively. This leads to the conjecture that the sum of pth
powers of the first n natural numbers is a polynomial of
degree p � 1 in the variable n.

51. Assuming that 1 � 2 � � n � an2 � bn � c,
find a, b, and c by substituting three values for n and
thereby obtaining a system of linear equations in a,
b, and c.

52. Assume that 12 � 22 � � n2 � an3 � bn2 � cn � d.
Find a, b, c, and d. [Hint: It is legitimate to use n � 0.
What is the left-hand side in that case?]

53. Show that 13 � 23 � � n3 � (n(n � 1)	2)2.p

p

p

1
2 n2 � 1

2 n  and   1
3 n3 � 1

2 n2 � 1
6 n
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The Global Positioning System (GPS) is used in a variety of situations for determin-
ing geographical locations. The military, surveyors, airlines, shipping companies,
and hikers all make use of it. GPS technology is becoming so commonplace that
some automobiles, cellular phones, and various handheld devices are now equipped
with it.

The basic idea of GPS is a variant on three-dimensional triangulation: A point on
Earth’s surface is uniquely determined by knowing its distances from three other
points. Here the point we wish to determine is the location of the GPS receiver, the
other points are satellites, and the distances are computed using the travel times of
radio signals from the satellites to the receiver.

We will assume that Earth is a sphere on which we impose an xyz-coordinate sys-
tem with Earth centered at the origin and with the positive z-axis running through
the north pole and fixed relative to Earth.

For simplicity, let’s take one unit to be equal to the radius of Earth. Thus Earth’s
surface becomes the unit sphere with equation x2 � y2 � z2 � 1. Time will be
measured in hundredths of a second. GPS finds distances by knowing how long it
takes a radio signal to get from one point to another. For this we need to know the
speed of light, which is approximately equal to 0.47 (Earth radii per hundredths of
a second).

Let’s imagine that you are a hiker lost in the woods at point (x, y, z) at some time t.
You don’t know where you are, and furthermore, you have no watch, so you don’t
know what time it is. However, you have your GPS device, and it receives
simultaneous signals from four satellites, giving their positions and times as shown in
Table 2.11. (Distances are measured in Earth radii and time in hundredths of a second
past midnight.)

127

This application is based on the
article “An Underdetermined
Linear System for GPS” by Dan
Kalman in The College Mathemat-
ics Journal, 33 (2002), pp. 384–390.
For a more in-depth treatment of
the ideas introduced here, see
G. Strang and K. Borre, Linear
Algebra, Geodesy, and GPS
(Wellesley-Cambridge Press, MA,
1997).

Table 2. 11 Satellite Data

Satellite Position Time

1 (1.11, 2.55, 2.14) 1.29
2 (2.87, 0.00, 1.43) 1.31
3 (0.00, 1.08, 2.29) 2.75
4 (1.54, 1.01, 1.23) 4.06
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Let (x, y, z) be your position, and let t be the time when the signals arrive. The goal
is to solve for x, y, z, and t. Your distance from Satellite 1 can be computed as follows.
The signal, traveling at a speed of 0.47 Earth radii/10�2 sec, was sent at time 1.29 and
arrived at time t, so it took t � 1.29 hundredths of a second to reach you. Distance
equals velocity multiplied by (elapsed) time, so

d � 0.47(t � 1.29)

We can also express d in terms of (x, y, z) and the satellite’s position (1.11, 2.55, 2.14)
using the distance formula:

Combining these results leads to the equation

(x � 1.11)2 � (y � 2.55)2 � (z � 2.14)2 � 0.472(t � 1.29)2 (1)

Expanding, simplifying, and rearranging, we find that equation (1) becomes

2.22x � 5.10y � 4.28z � 0.57t � x2 � y2 � z2 � 0.22t2 � 11.95

Similarly, we can derive a corresponding equation for each of the other three satel-
lites. We end up with a system of four equations in x, y, z, and t:

2.22x � 5.10y � 4.28z � 0.57t � x2 � y2 � z2 � 0.22t2 � 11.95

5.74x � 2.86z � 0.58t � x2 � y2 � z2 � 0.22t2 � 9.90

2.16y � 4.58z � 1.21t � x2 � y2 � z2 � 0.22t2 � 4.74

3.08x � 2.02y � 2.46z � 1.79t � x2 � y2 � z2 � 0.22t2 � 1.26

These are not linear equations, but the nonlinear terms are the same in each equation.
If we subtract the first equation from each of the other three equations, we obtain a
linear system:

3.52x � 5.10y � 1.42z � 0.01t � 2.05

�2.22x � 2.94y � 0.30z � 0.64t � 7.21

0.86x � 3.08y � 1.82z � 1.22t � �10.69

The augmented matrix row reduces as

£ 3.52 �5.10 �1.42 �0.01

�2.22 �2.94 0.30 �0.64

0.86 �3.08 �1.82 �1.22

3 �2.05

�7.21

�10.69

§¡ £ 1 0 0 0.36

0 1 0 0.03

0 0 1 0.79

3 2.97

0.81

5.91

§

d � 1 1x � 1.11 2 2 � 1y � 2.55 2 2 � 1z � 2.14 2 2
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from which we see that
x � 2.97 � 0.36t

y � 0.81 � 0.03t (2)

z � 5.91 � 0.79t

with t free. Substituting these equations into (1), we obtain

(2.97 � 0.36t � 1.11)2 � (0.81 � 0.03t � 2.55)2

� (5.91 � 0.79t � 2.14)2 � 0.472(t � 1.29)2

which simplifies to the quadratic equation 

0.54t2 � 6.65t � 20.32 � 0

There are two solutions:

t � 6.74 and t � 5.60

Substituting into (2), we find that the first solution corresponds to (x, y, z) � (0.55,
0.61, 0.56) and the second solution to (x, y, z) � (0.96, 0.65, 1.46). The second solu-
tion is clearly not on the unit sphere (Earth), so we reject it. The first solution
produces x2 � y2 � z2 � 0.99, so we are satisfied that, within acceptable roundoff
error, we have located your coordinates as (0.55, 0.61, 0.56).

In practice, GPS takes significantly more factors into account, such as the fact that
Earth’s surface is not exactly spherical, so additional refinements are needed involv-
ing such techniques as least squares approximation (see Chapter 7). In addition, the
results of the GPS calculation are converted from rectangular (Cartesian) coordinates
into latitude and longitude, an interesting exercise in itself and one involving yet
other branches of mathematics.
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Carl Gustav Jacobi (1804–1851) was
a German mathematician who made
important contributions to many
fields of mathematics and physics,
including geometry, number theory,
analysis, mechanics, and fluid
dynamics. Although much of his
work was in applied mathematics,
Jacobi believed in the importance of
doing mathematics for its own sake.
A fine teacher, he held positions at
the Universities of Berlin and
Königsberg and was one of the most
famous mathematicians in Europe.

Example 2. 37

Iterative Methods for Solving Linear Systems
The direct methods for solving linear systems, using elementary row operations, lead
to exact solutions in many cases but are subject to errors due to roundoff and other
factors, as we have seen. The third road in our “trivium” takes us down quite a differ-
ent path indeed. In this section, we explore methods that proceed iteratively by succes-
sively generating sequences of vectors that approach a solution to a linear system. In
many instances (such as when the coefficient matrix is sparse—that is, contains many
zero entries), iterative methods can be faster and more accurate than direct methods.
Also, iterative methods can be stopped whenever the approximate solution they gen-
erate is sufficiently accurate. In addition, iterative methods often benefit from inaccu-
racy: Roundoff error can actually accelerate their convergence toward a solution.

We will explore two iterative methods for solving linear systems: Jacobi’s method
and a refinement of it, the Gauss-Seidel method. In all examples, we will be consid-
ering linear systems with the same number of variables as equations, and we will
assume that there is a unique solution. Our interest is in finding this solution using
iterative methods.

Consider the system

Jacobi’s method begins with solving the first equation for x1 and the second equation
for x2, to obtain

(1)

We now need an initial approximation to the solution. It turns out that it does not
matter what this initial approximation is, so we might as well take x1 � 0, x2 � 0. We
use these values in equations (1) to get new values of x1 and x2:

Now we substitute these values into (1) to get 

(written to three decimal places). We repeat this process (using the old values of x2

and x1 to get the new values of x1 and x2), producing the sequence of approximations
given in Table 2.12.

x2 �
7 � 3 # 5

7

5
� 1.829

x1 �
5 � 1.4

7
� 0.914

x2 �
7 � 3 # 0

5
�

7

5
� 1.400

x1 �
5 � 0

7
�

5

7
� 0.714

x2 �
7 � 3x1

5

x1 �
5 � x2

7

 3x1 � 5x2 � �7

 7x1 � x2 �  5
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Section 2.5 Iterative Methods for Solving Linear Systems 131

Table 2. 12
n 0 1 2 3 4 5 6

x1 0 0.714 0.914 0.976 0.993 0.998 0.999

x2 0 1.400 1.829 1.949 1.985 1.996 1.999

Table 2. 13
n 0 1 2 3

x1

x2

The Gauss-Seidel method is named
after C. F. Gauss and Philipp Ludwig
von Seidel (1821–1896). Seidel
worked in analysis, probability
theory, astronomy, and optics.
Unfortunately, he suffered from
eye problems and retired at a young
age. The paper in which he described
the method now known as Gauss-
Seidel was published in 1874. Gauss,
it seems, was unaware of the
method!

Before we consider Jacobi’s method in the general case, we will look at a
modification of it that often converges faster to the solution. The Gauss-Seidel method
is the same as the Jacobi method except that we use each new value as soon as we can.
So in our example, we begin by calculating x1 � (5 � 0)/7 � � 0.714 as before, but
we now use this value of x1 to get the next value of x2:

We then use this value of x2 to recalculate x1, and so on. The iterates this time are
shown in Table 2.14.

We observe that the Gauss-Seidel method has converged faster to the solution.
The iterates this time are calculated according to the zigzag pattern shown in
Table 2.15.

x2 �
7 � 3 # 5

7

5
� 1.829

5
7

The successive vectors are called iterates, so, for example, when n � 4,

the fourth iterate is We can see that the iterates in this example are

approaching which is the exact solution of the given system. (Check this.)

We say in this case that Jacobi’s method converges.

Jacobi’s method calculates the successive iterates in a two-variable system accord-
ing to the crisscross pattern shown in Table 2.13.

c 1
2
d ,

c 0.993

1.985
d .

c x1

x2

d

Table 2. 14
n 0 1 2 3 4 5

x1 0 0.714 0.976 0.998 1.000 1.000

x2 0 1.829 1.985 1.999 2.000 2.000

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Gauss-Seidel method also has a nice geometric interpretation in the case of
two variables. We can think of x1 and x2 as the coordinates of points in the plane. Our
starting point is the point corresponding to our initial approximation, (0, 0). Our first
calculation gives x1 � so we move to the point ( 0) � (0.714, 0). Then we
compute x2 � � 1.829, which moves us to the point ( ) � (0.714, 1.829).
Continuing in this fashion, our calculations from the Gauss-Seidel method give rise
to a sequence of points, each one differing from the preceding point in exactly one co-
ordinate. If we plot the lines 7x1 � x2 � 5 and 3x1 � 5x2 � �7 corresponding to the
two given equations, we find that the points calculated above fall alternately on the
two lines, as shown in Figure 2.27. Moreover, they approach the point of intersection
of the lines, which corresponds to the solution of the system of equations. This is
what convergence means!

64
35

5
7 ,64

35

5
7 ,5

7 ,
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Table 2. 15
n 0 1 2 3

x1

x2

Figure 2. 27
Converging iterates

x1

x2

0.2 0.4 0.6 0.8 1 1.2

0.5

1

�1

�0.5

1.5

2

The general cases of the two methods are analogous. Given a system of n linear
equations in n variables,

(2)

we solve the first equation for x1, the second for x2, and so on. Then, beginning with
an initial approximation, we use these new equations to iteratively update each

an1x1 � an2x2 � p � annxn � bn

o
a21x1 � a22x2 � p � a2nxn � b2

a11x1 � a12x2 � p � a1nxn � b1
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variable. Jacobi’s method uses all of the values at the kth iteration to compute the
(k � 1)st iterate, whereas the Gauss-Seidel method always uses the most recent value
of each variable in every calculation. Example 2.39 later illustrates the Gauss-Seidel
method in a three-variable problem.

At this point, you should have some questions and concerns about these iterative
methods. (Do you?) Several come to mind: Must these methods converge? If not,
when do they converge? If they converge, must they converge to the solution? The
answer to the first question is no, as Example 2.38 illustrates.

Apply the Gauss-Seidel method to the system

with initial approximation 

Solution We rearrange the equations to get

The first few iterates are given in Table 2.16. (Check these.)

The actual solution to the given system is Clearly, the iterates in

Table 2.16 are not approaching this point, as Figure 2.28 makes graphically clear in an 
example of divergence.

c x1

x2

d � c 2
1
d .

x2 �  5 � 2x1

x1 �  1 � x2

c 0
0
d .

 2x1 � x2 �  5

x1 � x2 �  1
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Example 2. 38

Table 2. 16
n 0 1 2 3 4 5

x1 0 1 4 �2 10 �14

x2 0 3 �3 9 �15 33 Figure 2. 28
Diverging iterates

42�4 �2

2

4

6

8

10

�4

�2

x1

x2

�

�
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Theorem 2. 9

Theorem 2. 10

So when do these iterative methods converge? Unfortunately, the answer to this
question is rather tricky. We will answer it completely in Chapter 7, but for now we
will give a partial answer, without proof.

Let A be the n � n matrix

We say that A is strictly diagonally dominant if

That is, the absolute value of each diagonal entry a11, a22, . . . , ann is greater than the
sum of the absolute values of the remaining entries in that row.

If a system of n linear equations in n variables has a strictly diagonally dominant
coefficient matrix, then it has a unique solution and both the Jacobi and the
Gauss-Seidel method converge to it.

Remark Be warned! This theorem is a one-way implication. The fact that a sys-
tem is not strictly diagonally dominant does not mean that the iterative methods
diverge. They may or may not converge. (See Exercises 15–19.) Indeed, there are
examples in which one of the methods converges and the other diverges. However, if
either of these methods converges, then it must converge to the solution—it cannot
converge to some other point.

If the Jacobi or the Gauss-Seidel method converges for a system of n linear
equations in n variables, then it must converge to the solution of the system.

Proof We will illustrate the idea behind the proof by sketching it out for the case of
Jacobi’s method, using the system of equations in Example 2.37. The general proof is
similar.

Convergence means that “as iterations increase, the values of the iterates get closer
and closer to a limiting value.” This means that x1 and x2 converge to r and s, respec-
tively, as shown in Table 2.17.

We must prove that is the solution of the system of equations. In

other words, at the (k � 1)st iteration, the values of x1 and x2 must stay the same as at

c x1

x2

d � c r
s
d

0ann 0 7 0an1 0 � 0an2 0 � p � 0an,n�1 0o
0a22 0 7 0a21 0 � 0a23 0 � p � 0a2n 00a11 0 7 0a12 0 � 0a13 0 � p � 0a1n 0

A � ≥ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

¥
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Table 2. 17
n k k � 1 k � 2

x1 r r r

x2 s s s pp

pp

pp

Example 2. 39

Figure 2. 29
A heated metal plate

50�

0�

100�

the kth iteration. But the calculations give x1 � (5 � x2)/7 � (5 � s)�7 and x2 �
(7 � 3x1)�5 � (7 � 3r)�5. Therefore,

Rearranging, we see that

Thus, x1 � r, x2 � s satisfy the original equations, as required.

By now you may be wondering: If iterative methods don’t always converge to the
solution, what good are they? Why don’t we just use Gaussian elimination? First, we
have seen that Gaussian elimination is sensitive to roundoff errors, and this sensitiv-
ity can lead to inaccurate or even wildly wrong answers. Also, even if Gaussian elimi-
nation does not go astray, we cannot improve on a solution once we have found it. For
example, if we use Gaussian elimination to calculate a solution to two decimal places,
there is no way to obtain the solution to four decimal places except to start over again
and work with increased accuracy.

In contrast, we can achieve additional accuracy with iterative methods simply by
doing more iterations. For large systems, particularly those with sparse coefficient
matrices, iterative methods are much faster than direct methods when implemented
on a computer. In many applications, the systems that arise are strictly diagonally
dominant, and thus iterative methods are guaranteed to converge. The next example
illustrates one such application.

Suppose we heat each edge of a metal plate to a constant temperature, as shown in
Figure 2.29.

3r � 5s � �7
 7r � s �  5

5 � s

7
� r  and  

7 � 3r

5
� s

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To apply this property in an actual example requires techniques from calculus. As
an alternative, we can approximate the situation by overlaying the plate with a grid,
or mesh, that has a finite number of interior points, as shown in Figure 2.31.

136 Chapter 2 Systems of Linear Equations

Figure 2. 30

P

The temperature at each interior point P on a plate is the average of the tempera-
tures on the circumference of any circle centered at P inside the plate (Figure 2.30).

Eventually the temperature at the interior points will reach equilibrium, where the
following property can be shown to hold:

Figure 2. 31
The discrete version of the heated
plate problem

50�

50�

0� 0�

100�

100�

100�

t1

t2 t3

The discrete analogue of the averaging property governing equilibrium tempera-
tures is stated as follows:

The temperature at each interior point P is the average of the temperatures at the
points adjacent to P.

For the example shown in Figure 2.31, there are three interior points, and each is
adjacent to four other points. Let the equilibrium temperatures of the interior points
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be t1, t2, and t3, as shown. Then, by the temperature-averaging property, we have

(3)

or

Notice that this system is strictly diagonally dominant. Notice also that equa-
tions (3) are in the form required for Jacobi or Gauss-Seidel iteration. With an initial
approximation of t1 � 0, t2 � 0, t3 � 0, the Gauss-Seidel method gives the following
iterates.

Iteration 1:

Iteration 2:

Continuing, we find the iterates listed in Table 2.18. We work with five-significant-
digit accuracy and stop when two successive iterates agree within 0.001 in all
variables.

Thus, the equilibrium temperatures at the interior points are (to an accuracy of
0.001) t1 � 74.108, t2 � 46.430, and t3 � 61.607. (Check these calculations.)

By using a finer grid (with more interior points), we can get as precise informa-
tion as we like about the equilibrium temperatures at various points on the plate.

t3 �
100 � 100 � 0 � 44.141

4
� 61.035

t2 �
69.531 � 57.031 � 0 � 50

4
� 44.141

t1 �
100 � 100 � 28.125 � 50

4
� 69.531

t3 �
100 � 100 � 0 � 28.125

4
� 57.031

t2 �
62.5 � 0 � 0 � 50

4
� 28.125

t1 �
100 � 100 � 0 � 50

4
� 62.5

� t2 � 4t3 �  200

�t1 � 4t2 � t3 �  50

 4t1 � t2 �  250

t3 �
100 � 100 � 0 � t2

4

t2 �
t1 � t3 � 0 � 50

4

t1 �
100 � 100 � t2 � 50

4
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Table 2. 18
n 0 1 2 3 7 8

t1 0 62.500 69.531 73.535 74.107 74.107

t2 0 28.125 44.141 46.143 46.429 46.429

t3 0 57.031 61.035 61.536 61.607 61.607p

p

p

p

�

�
I I I I II I I I I ������������������������������
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138 Chapter 2 Systems of Linear Equations

Exercises 2. 5

In Exercises 1–6, apply Jacobi’s method to the given system.
Take the zero vector as the initial approximation and work
with four-significant-digit accuracy until two successive
iterates agree within 0.001 in each variable. In each case,
compare your answer with the exact solution found using
any direct method you like.

1. 2.

3.

4.

5.

6.

In Exercises 7–12, repeat the given exercise using the Gauss-
Seidel method. Take the zero vector as the initial approxima-
tion and work with four-significant-digit accuracy until
two successive iterates agree within 0.001 in each variable.
Compare the number of iterations required by the Jacobi and
Gauss-Seidel methods to reach such an approximate solution.

7. Exercise 1 8. Exercise 2

9. Exercise 3 10. Exercise 4

11. Exercise 5 12. Exercise 6

In Exercises 13 and 14, draw diagrams to illustrate the con-
vergence of the Gauss-Seidel method with the given system.

13. The system in Exercise 1

14. The system in Exercise 2

In Exercises 15 and 16, compute the first four iterates, using
the zero vector as the initial approximation, to show that the
Gauss-Seidel method diverges. Then show that the equations
can be rearranged to give a strictly diagonally dominant
coefficient matrix, and apply the Gauss-Seidel method to

�x3 � 3x4 � 1
�x2 � 3x3 � x4 � 1

�x1 � 3x2 � x3 � 0
 3x1 � x2 � 1

x2 � 3x3 � 1
x1 � 4x2 � x3 � 1

 3x1 � x2 � 1

�x1 � x2 � 10x3 � 18
x1 � 10x2 � x3 � 13

 20x1 � x2 � x3 � 17

x1 � 3.5x2 � �1
 4.5x1 � 0.5x2 � 1

x1 � x2 � 1x1 � 5x2 � �4
 2x1 � x2 � 5 7x1 � x2 � 6

obtain an approximate solution that is accurate to
within 0.001.

15. 16.

17. Draw a diagram to illustrate the divergence of the
Gauss-Seidel method in Exercise 15.

In Exercises 18 and 19, the coefficient matrix is not strictly
diagonally dominant, nor can the equations be rearranged to
make it so. However, both the Jacobi and the Gauss-Seidel
method converge anyway. Demonstrate that this is true of
the Gauss-Seidel method, starting with the zero vector as the
initial approximation and obtaining a solution that is
accurate to within 0.01.

18.

19.

20. Continue performing iterations in Exercise 18 to
obtain a solution that is accurate to within 0.001.

21. Continue performing iterations in Exercise 19 to
obtain a solution that is accurate to within 0.001.

In Exercises 22–24, the metal plate has the constant temper-
atures shown on its boundaries. Find the equilibrium
temperature at each of the indicated interior points by
setting up a system of linear equations and applying either
the Jacobi or the Gauss-Seidel method. Obtain a solution
that is accurate to within 0.001.

22.

0�

0�

5� 5�

40�

40�

40�

t1

t2 t3

�2x1 � 2x2 � 4x3 � �90
x1 � 4x2 � 4x3 � 102

 5x1 � 2x2 � 3x3 � �8

x1 � 3x2 � �7
�4x1 � 5x2 �  14

6x1 � x2 � 2x3 � 1
2x2 � 4x3 � 13x1 � 2x2 � 1

x1 � 4x2 � 2x3 � 2x1 � 2x2 � 3

CAS
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Section 2.5 Iterative Methods for Solving Linear Systems 139

23.

24.

In Exercises 25 and 26, we refine the grids used in Exercises
22 and 24 to obtain more accurate information about the
equilibrium temperatures at interior points of the plates.
Obtain solutions that are accurate to within 0.001, using
either the Jacobi or the Gauss-Seidel method.

25.

26.

20�

20�

100�

100�

0�

0�

40�

40�

0� 20�20�0�

t1

t5

t9

t13

t2

t6

t10

t14

t3

t7

t11

t15

t4

t8

t12

t16

40� 40� 100� 100�

0�

0�

0�

5� 5� 5�

40�

40�

40�

40�

t1

t2

t4

t3

t5 t6

0�

40�

20�

100�

40� 100�

0� 20�

t1 t2

t3 t4

0�

100�

0�

100�

100� 100�

0� 0�

t1 t2

t3 t4

Exercises 27 and 28 demonstrate that sometimes, if we are
lucky, the form of an iterative problem may allow us to use a
little insight to obtain an exact solution.

27. A narrow strip of paper 1 unit long is placed along a
number line so that its ends are at 0 and 1. The paper
is folded in half, right end over left, so that its ends are
now at 0 and  Next, it is folded in half again, this
time left end over right, so that its ends are at and 
Figure 2.32 shows this process. We continue folding
the paper in half, alternating right-over-left and left-
over-right. If we could continue indefinitely, it is clear
that the ends of the paper would converge to a point.
It is this point that we want to find.

(a) Let x1 correspond to the left-hand end of the paper
and x2 to the right-hand end. Make a table with the
first six values of [x1, x2] and plot the corresponding
points on x1, x2 coordinate axes.

(b) Find two linear equations of the form x2 � ax1 � b
and x1 � cx2 � d that determine the new values
of the endpoints at each iteration. Draw the corre-
sponding lines on your coordinate axes and show
that this diagram would result from applying the
Gauss-Seidel method to the system of linear equa-
tions you have found. (Your diagram should resem-
ble Figure 2.27 on page 132.)

(c) Switching to decimal representation, continue ap-
plying the Gauss-Seidel method to approximate the
point to which the ends of the paper are converging
to within 0.001 accuracy.

(d) Solve the system of equations exactly and compare
your answers.

28. An ant is standing on a number line at point A. It
walks halfway to point B and turns around. Then it
walks halfway back to point A, turns around again,
and walks halfway to point B. It continues to do this
indefinitely. Let point A be at 0 and point B be at 1.
The ant’s walk is made up of a sequence of overlap-
ping line segments. Let x1 record the positions of
the left-hand endpoints of these segments and x2

their right-hand endpoints. (Thus, we begin with
x1 � 0 and x2 � Then we have x1 � and x2 �
and so on.) Figure 2.33 shows the start of the ant’s
walk.

(a) Make a table with the first six values of [x1, x2] and
plot the corresponding points on x1, x2 coordinate
axes.

(b) Find two linear equations of the form x2 � ax1 � b
and x1 � cx2 � d that determine the new values of the
endpoints at each iteration. Draw the corresponding

1
2,1

4
1
2 .

1
2 .1

4

1
2 .
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140 Chapter 2 Systems of Linear Equations

1. Mark each of the following statements true or false:

(a) Every system of linear equations has a solution.
(b) Every homogeneous system of linear equations has

a solution.
(c) If a system of linear equations has more variables

than equations, then it has infinitely many
solutions.

(d) If a system of linear equations has more equations
than variables, then it has no solution.

Review Questions

(e) Determining whether b is in span(a1, . . . , an) is
equivalent to determining whether the system
[A � b] is consistent, where A � [a1 an].

(f) In �3, span(u, v) is always a plane through the origin.
(g) In �3, if nonzero vectors u and v are not parallel,

then they are linearly independent.
(h) In �3, if a set of vectors can be drawn head to tail,

one after the other so that a closed path (polygon)
is formed, then the vectors are linearly dependent.

p

lines on your coordinate axes and show that this dia-
gram would result from applying the Gauss-Seidel
method to the system of linear equations you have
found. (Your diagram should resemble Figure 2.27
on page 132.)

(c) Switching to decimal representation, continue
applying the Gauss-Seidel method to approximate
the values to which x1 and x2 are converging to
within 0.001 accuracy.

(d) Solve the system of equations exactly and compare
your answers. Interpret your results.

Figure 2. 32
Folding a strip of paper

0 1

0 1q

0 1q~ !

Figure 2. 33
The ant’s walk

0 1q~ !

0 1q~ !

0 1q~ !ç

Key Definitions and Concepts

augmented matrix, 67
back substitution, 67
coefficient matrix, 70
consistent system, 66
convergence, 131–132
divergence, 133
elementary row operations, 72
free variable, 77
Gauss-Jordan elimination, 79
Gauss-Seidel method, 130

Gaussian elimination, 74
homogeneous system, 82
inconsistent system, 66
iterate, 131
Jacobi’s method, 130
leading variable (leading 1), 77–79
linear equation, 63
linearly dependent vectors, 99
linearly independent

vectors, 99

pivot, 72
rank of a matrix, 78
Rank Theorem, 78
reduced row echelon form, 79
row echelon form, 71
row equivalent matrices, 74
span of a set of vectors, 96
spanning set, 96
system of linear

equations, 64
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(i) If a set of vectors has the property that no two
vectors in the set are scalar multiples of one
another, then the set of vectors is linearly
independent.

(j) If there are more vectors in a set of vectors than
the number of entries in each vector, then the set
of vectors is linearly dependent.

2. Find the rank of the matrix .

3. Solve the linear system

x � y � 2z � 4
x � 3y � z � 7

2x � y � 5z � 7

4. Solve the linear system

3w � 8x � 18y � z � 35
w � 2x � 4y � 11
w � 3x � 7y � z � 10

5. Solve the linear system

2x � 3y � 4
x � 2y � 3

over �7.

6. Solve the linear system

3x � 2y � 1
x � 4y � 2

over �5.

7. For what value(s) of k is the linear system with

augmented matrix inconsistent?

8. Find parametric equations for the line of intersection
of the planes x � 2y � 3z � 4 and 5x � 6y � 7z � 8.

9. Find the point of intersection of the following lines, if
it exists.

and

10. Determine whether is in the span of

and .£ 1

2

�2

§ £ 11
3

§£ 3

5

�1

§
£xy

z

§ � £ 5

�2

�4

§ � t £�1

1

1

§£xy
z

§ � £12
3

§ � s £ 1

�1

2

§

c k 2

1 2k
` 1
1
d

≥ 1 �2 0 3

3 �1 1 3

3 4 2 �3

0 �5 �1 6

 2

4

2

2

¥
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11. Find the general equation of the plane spanned by

and .

12. Determine whether , , are linearly
independent.

13. Determine whether �3 � span(u, v, w) if:

(a) u � , v � , w �

(b) u � , v � , w �

14. Let a1, a2, a3 be linearly independent vectors in �3, and
let A � [a1 a2 a3]. Which of the following statements
are true?

(a) The reduced row echelon form of A is I3.
(b) The rank of A is 3.
(c) The system [A | b] has a unique solution for any

vector b in �3.
(d) (a), (b), and (c) are all true.
(e) (a) and (b) are both true, but not (c).

15. Let a1, a2, a3 be linearly dependent vectors in �3, not all
zero, and let A � [a1 a2 a3]. What are the possible val-
ues of the rank of A?

16. What is the maximum rank of a 5 � 3 matrix? What is
the minimum rank of a 5 � 3 matrix?

17. Show that if u and v are linearly independent vectors,
then so are u � v and u � v.

18. Show that span(u, v) � span(u, u � v) for any vectors
u and v.

19. In order for a linear system with augmented matrix
[A | b] to be consistent, what must be true about the
ranks of A and [A | b]?

20. Are the matrices and

row equivalent? Why or why not?

£1 0 �1

1 1 1

0 1 3

§£ 1 1 1

2 3 �1

�1 4 1

§

£ 0

�1

1

§£�1

0

1

§£ 1

�1

0

§
£ 01

1

§£ 10
1

§£ 11
0

§

£ 3

9

�2

§£ 1

�1

�2

§£ 2

1

�3

§
£ 32

1

§£ 11
1

§
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We [Halmos and Kaplansky]
share a philosophy about linear
algebra: we think basis-free, we
write basis-free, but when the
chips are down we close the office
door and compute with matrices
like fury.

—Irving Kaplansky
In Paul Halmos: Celebrating 

50 Years of Mathematics 
J. H. Ewing and F. W. Gehring,

eds. Springer-Verlag, 1991, p. 88

3. 0 Introduction:  Matrices in Action

In this chapter, we will study matrices in their own right. We have already used
matrices—in the form of augmented matrices—to record information about and to
help streamline calculations involving systems of linear equations. Now you will see
that matrices have algebraic properties of their own, which enable us to calculate with
them, subject to the rules of matrix algebra. Furthermore, you will observe that ma-
trices are not static objects, recording information and data; rather, they represent
certain types of functions that “act” on vectors, transforming them into other vectors.
These “matrix transformations” will begin to play a key role in our study of linear
algebra and will shed new light on what you have already learned about vectors and
systems of linear equations. Furthermore, matrices arise in many forms other than
augmented matrices; we will explore some of the many applications of matrices at the
end of this chapter.

In this section, we will consider a few simple examples to illustrate how matri-
ces can transform vectors. In the process, you will get your first glimpse of “matrix
arithmetic.”

Consider the equations

(1)

We can view these equations as describing a transformation of the vector 

into the vector If we denote the matrix of coefficients of the right-hand

side by F, then , and we can rewrite the transformation as

or, more succinctly, y � Fx. (Think of this expression as analogous to the functional
notation y � f(x) you are used to: x is the independent “variable” here, y is the de-
pendent “variable,” and F is the name of the “function.”)

c y1

y2

d � c 1 2

0 3
d c x1

x2

d
F � c 1 2

0 3
dy � c y1

y2

d . x � c x1

x2

dy2 � 3x2

y1 � x1 � 2x2

142
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Section 3.0 Introduction: Matrices in Action 143

Thus, if then the equations (1) give

We can write this expression as 

Problem 1 Compute Fx for the following vectors x:

(a) (b) (c) (d)

Problem 2 The heads of the four vectors x in Problem 1 locate the four corners of
a square in the x1x2 plane. Draw this square and label its corners A, B, C, and D, cor-
responding to parts (a), (b), (c), and (d) of Problem 1.

On separate coordinate axes (labeled y1 and y2), draw the four points determined
by Fx in Problem 1. Label these points A�, B�, C�, and D�. Let’s make the (reasonable)
assumption that the line segment is transformed into the line segment , and
likewise for the other three sides of the square ABCD. What geometric figure is repre-
sented by A�B�C�D�?

Problem 3 The center of square ABCD is the origin What is the center of

A�B�C�D�? What algebraic calculation confirms this?
Now consider the equations

(2)

that transform a vector into the vector We can abbreviate this

transformation as z � Gy, where

Problem 4 We are going to find out how G transforms the figure A�B�C�D�. Com-
pute Gy for each of the four vectors y that you computed in Problem 1. [That is,
compute z � G(Fx). You may recognize this expression as being analogous to the
composition of functions with which you are familiar.] Call the corresponding
points A�, B�, C �, and D�, and sketch the figure A�B�C �D � on z1z2 coordinate axes.

Problem 5 By substituting equations (1) into equations (2), obtain equations for
z1 and z2 in terms of x1 and x2. If we denote the matrix of these equations by H, then
we have z � Hx. Since we also have z � GFx, it is reasonable to write

H � GF

Can you see how the entries of H are related to the entries of F and G?
Problem 6 Let’s do the above process the other way around: First transform the

square ABCD, using G, to obtain figure A*B*C*D*. Then transform the resulting
figure, using F, to obtain A**B**C**D**. [Note: Don’t worry about the “variables”

G � c 1 �1

�2 0
d
z � c z1

z2

d .y � c y1

y2

d
z2 � �2y1

z1 � y1 � y2

0 � c 0
0
d .

A¿B¿AB

x � c�1
1
dx � c�1

�1
dx � c 1

�1
dx � c 1

1
d

c 0
3
d � c 1 2

0 3
d c�2

1
d .

y1 � �2 � 2 # 1 � 0

y2 � 3 # 1 � 3
  or  y � c 0

3
d

x � c�2

1
d ,
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144 Chapter 3 Matrices

Although numbers will usually be
chosen from the set � of real
numbers, they may also be taken
from the set � of complex num-
bers or from �p, where p is prime.

Technically, there is a distinction
between row/column matrices
and vectors, but we will not be-
labor this distinction. We will,
however, distinguish between row
matrices/vectors and column
matrices/vectors. This distinction
is important—at the very least—
for algebraic computations, as we
will demonstrate.

x, y, and z here. Simply substitute the coordinates of A, B, C, and D into equations (2)
and then substitute the results into equations (1).] Are A**B**C**D** and A�B�C�D�
the same? What does this tell you about the order in which we perform the transfor-
mations F and G?

Problem 7 Repeat Problem 5 with general matrices

That is, if equations (1) and equations (2) have coefficients as specified by F and G,
find the entries of H in terms of the entries of F and G. The result will be a formula
for the “product” H � GF.

Problem 8 Repeat Problems 1–6 with the following matrices. (Your formula from
Problem 7 may help to speed up the algebraic calculations.) Note any similarities or
differences that you think are significant.

Matrix Operations
Although we have already encountered matrices, we begin by stating a formal defini-
tion and recording some facts for future reference.

Definition A matrix is a rectangular array of numbers called the entries, or
elements, of the matrix.

The following are all examples of matrices:

The size of a matrix is a description of the numbers of rows and columns it has. A
matrix is called m � n (pronounced “m by n”) if it has m rows and n columns. Thus,
the examples above are matrices of sizes 2 � 2, 2 � 3, 3 � 1, 1 � 4, 3 � 3 and 1 � 1,
respectively. A 1 � m matrix is called a row matrix (or row vector), and an n � 1
matrix is called a column matrix (or column vector).

We use double-subscript notation to refer to the entries of a matrix A. The entry of
A in row i and column j is denoted by aij. Thus, if

then a13 � �1 and a22 � 5. (The notation Aij is sometimes used interchangeably with
aij.) We can therefore compactly denote a matrix A by [aij] (or [aij]m�n if it is impor-
tant to specify the size of A, although the size will usually be clear from the context).

A � c 3 9 �1

0 5 4
d

c 1 2

0 3
d ,  c15 �1 0

2 p 1
2

d ,  £ 2

4

17

§ ,  31 1 1 1 4 ,  £ 5.1 1.2 �1

6.9 0.2 4.4

�7.3 9.2 8.5

§ ,  37 4

1c 2 F � c 1 1

1 2
d , G � c 2 �1

�1 1
d   1d 2 F � c 1 �2

�2 4
d , G � c 2 1

1 1
d

1a 2 F � c 0 �1

1 0
d , G � c 2 0

0 3
d   1b 2 F � c 1 1

1 2
d , G � c 2 1

1 1
d

F � c f11 f12

f21 f22

d ,  G � c g11 g12

g21 g22

d ,  and  H � ch11 h12

h21 h22

d
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With this notation, a general m � n matrix A has the form

If the columns of A are the vectors a1, a2, . . . , an, then we may represent A as

If the rows of A are A1, A2, . . . , Am, then we may represent A as

The diagonal entries of A are a11, a22, a33, . . . , and if m � n (that is, if A has the same
number of rows as columns), then A is called a square matrix. A square matrix whose
nondiagonal entries are all zero is called a diagonal matrix. A diagonal matrix all of
whose diagonal entries are the same is called a scalar matrix. If the scalar on the
diagonal is 1, the scalar matrix is called an identity matrix.

For example, let

The diagonal entries of A are 2 and 4, but A is not square; B is a square matrix of size
2 � 2 with diagonal entries 3 and 5; C is a diagonal matrix; D is a 3 � 3 identity ma-
trix. The n � n identity matrix is denoted by In (or simply I if its size is understood).

Since we can view matrices as generalizations of vectors (and, indeed, matrices
can and should be thought of as being made up of both row and column vectors),
many of the conventions and operations for vectors carry through (in an obvious
way) to matrices.

Two matrices are equal if they have the same size and if their corresponding
entries are equal. Thus, if A � [aij]m�n and B � [bij]r�s, then A � B if and only if m � r
and n � s and aij � bij for all i and j.

Consider the matrices

Neither A nor B can be equal to C (no matter what the values of x and y), since A and
B are 2 � 2 matrices and C is 2 � 3. However, A � B if and only if a � 2, b � 0, c � 5,
and d � 3.

Consider the matrices

R � 31 4 3 4   and  C � £ 1

4

3

§

A � c a b

c d
d ,  B � c 2 0

5 3
d ,  and  C � c 2 0 x

5 3 y
d

A � c 2 5 0

�1 4 1
d ,  B � c 3 1

4 5
d ,  C � £ 3 0 0

0 6 0

0 0 2

§ ,  and  D � £ 1 0 0

0 1 0

0 0 1

§

A � ≥ A1

A2

o
Am

¥
A � 3a1 a2

p an 4
A � ≥ a11 a12

p a1n

a21 a22
p a2n

o o ∞ o
am1 am2

p amn

¥

Section 3.1 Matrix Operations 145

Example 3. 1

Example 3. 2
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Despite the fact that R and C have the same entries in the same order, R Z C since 
R is 1 � 3 and C is 3 � 1. (If we read R and C aloud, they both sound the same:
“one, four, three.”) Thus, our distinction between row matrices/vectors and column
matrices/vectors is an important one.

Matrix Addition and Scalar Multiplication

Generalizing from vector addition, we define matrix addition componentwise. If A �
[aij] and B � [bij] are m � n matrices, their sum A � B is the m � n matrix obtained
by adding the corresponding entries. Thus,

[We could equally well have defined A � B in terms of vector addition by specifying
that each column (or row) of A � B is the sum of the corresponding columns (or
rows) of A and B.] If A and B are not the same size, then A � B is not defined.

Let

Then

but neither A � C nor B � C is defined.

The componentwise definition of scalar multiplication will come as no surprise.
If A is an m � n matrix and c is a scalar, then the scalar multiple cA is the m � n
matrix obtained by multiplying each entry of A by c. More formally, we have

[In terms of vectors, we could equivalently stipulate that each column (or row) of
cA is c times the corresponding column (or row) of A.]

For matrix A in Example 3.3,

The matrix (�1)A is written as �A and called the negative of A. As with vectors, we
can use this fact to define the difference of two matrices: If A and B are the same size,
then

A � B � A � 1�B2

2A � c 2 8 0

�4 12 10
d ,  1

2 A � c 1
2 2 0

�1 3 5
2

d ,  and  1�12A � c�1 �4 0

2 �6 �5
d

cA � c 3aij 4 � 3caij 4

A � B � c�2 5 �1

1 6 7
d

A � c 1 4 0

�2 6 5
d ,  B � c�3 1 �1

3 0 2
d ,  and  C � c 4 3

2 1
d

A � B � 3aij � bij 4
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For matrices A and B in Example 3.3,

A matrix all of whose entries are zero is called a zero matrix and denoted by O (or
Om�n if it is important to specify its size). It should be clear that if A is any matrix and
O is the zero matrix of the same size, then

and

Matrix Multiplication

The Introduction in Section 3.0 suggested that there is a “product” of matrices that is
analogous to the composition of functions. We now make this notion more precise.
The definition we are about to give generalizes what you should have discovered in
Problems 5 and 7 in Section 3.0. Unlike the definitions of matrix addition and scalar
multiplication, the definition of the product of two matrices is not a componentwise
definition. Of course, there is nothing to stop us from defining a product of matrices
in a componentwise fashion; unfortunately such a definition has few applications and
is not as “natural” as the one we now give.

Definition If A is an m � n matrix and B is an n � r matrix, then the product
C � AB is an m � r matrix. The (i, j) entry of the product is computed as
follows:

Remarks
• Notice that A and B need not be the same size. However, the number of

columns of A must be the same as the number of rows of B. If we write the sizes of A,
B, and AB in order, we can see at a glance whether this requirement is satisfied. More-
over, we can predict the size of the product before doing any calculations, since the
number of rows of AB is the same as the number of rows of A, while the number of
columns of AB is the same as the number of columns of B, as shown below:

m � n n � r m � r

A B AB�

Same

Size of AB

cij � ai1b1j � ai2b2j � p � ainbnj

A � A � O � �A � A

A � O � A � O � A

A � B � c 1 4 0

�2 6 5
d � c�3 1 �1

3 0 2
d � c 4 3 1

�5 6 3
d
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• The formula for the entries of the product looks like a dot product, and in-
deed it is. It says that the (i, j) entry of the matrix AB is the dot product of the ith row
of A and the jth column of B:

Notice that, in the expression cij � ai1b1j � ai2b2j � � ainbnj, the “outer subscripts”
on each ab term in the sum are always i and j whereas the “inner subscripts” always
agree and increase from 1 to n. We see this pattern clearly if we write cij using sum-
mation notation:

Compute AB if

Solution Since A is 2 � 3 and B is 3 � 4, the product AB is defined and will be a 
2 � 4 matrix. The first row of the product C � AB is computed by taking the dot
product of the first row of A with each of the columns of B in turn. Thus,

c11 � 1(�4) � 3(5) � (�1)(�1) � 12

c12 � 1(0) � 3(�2) � (�1)(2) � �8

c13 � 1(3) � 3(�1) � (�1)(0) � 0

c14 � 1(�1) � 3(1) � (�1)(6) � �4

The second row of C is computed by taking the dot product of the second row of A
with each of the columns of B in turn:

c21 � (�2)(�4) � (�1)(5) � (1)(�1) � 2

c22 � (�2)(0) � (�1)(�2) � (1)(2) � 4

c23 � (�2)(3) � (�1)(�1) � (1)(0) � �5

c24 � (�2)(�1) � (�1)(1) � (1)(6) � 7

Thus, the product matrix is given by

(With a little practice, you should be able to do these calculations mentally without
writing out all of the details as we have done here. For more complicated examples, a
calculator with matrix capabilities or a computer algebra system is preferable.)

AB � c12 �8 0 �4

2 4 �5 7
d

A � c 1 3 �1

�2 �1 1
d   and  B � £�4 0 3 �1

5 �2 �1 1

�1 2 0 6

§

cij � a
n

k�1

aikbkj

p

≥ b11
p b1j

p b1r

b21
p b2j

p b2r

o o o
bn1

p bnj
p bnr

¥Ea11 a12
p a1n

o o o
ai1 ai2

p ain

o o o
am1 am2

p amn

U
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Before we go further, we will consider two examples that justify our chosen
definition of matrix multiplication.

Ann and Bert are planning to go shopping for fruit for the next week. They each want
to buy some apples, oranges, and grapefruit, but in differing amounts. Table 3.1 lists
what they intend to buy. There are two fruit markets nearby—Sam’s and Theo’s—and
their prices are given in Table 3.2. How much will it cost Ann and Bert to do their
shopping at each of the two markets?
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Table 3. 1
Apples Grapefruit Oranges

Ann 6 3 10
Bert 4 8 5

Table 3. 2
Sam’s Theo’s

Apple $0.10 $0.15
Grapefruit $0.40 $0.30
Orange $0.10 $0.20

Solution If Ann shops at Sam’s, she will spend

If she shops at Theo’s, she will spend

Bert will spend

at Sam’s and

at Theo’s. (Presumably, Ann will shop at Sam’s while Bert goes to Theo’s.)
The “dot product form” of these calculations suggests that matrix multiplication

is at work here. If we organize the given information into a demand matrix D and a
price matrix P, we have

The calculations above are equivalent to computing the product

Thus, the product matrix DP tells us how much each person’s purchases will cost at
each store (Table 3.3).

DP � c6 3 10

4 8 5
d £0.10 0.15

0.40 0.30

0.10 0.20

§ � c2.80 3.80

4.10 4.00
d

D � c 6 3 10

4 8 5
d   and  P � £ 0.10 0.15

0.40 0.30

0.10 0.20

§

410.15 2 � 810.30 2 � 510.20 2 � $4.00

410.10 2 � 810.40 2 � 510.10 2 � $4.10

610.15 2 � 310.30 2 � 1010.20 2 � $3.80

610.10 2 � 310.40 2 � 1010.10 2 � $2.80

Example 3. 7

Table 3. 3
Sam’s Theo’s

Ann $2.80 $3.80
Bert $4.10 $4.00
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Theorem 3. 1

Consider the linear system

(1)

Observe that the left-hand side arises from the matrix product

so the system (1) can be written as

or Ax � b, where A is the coefficient matrix, x is the (column) vector of variables, and
b is the (column) vector of constant terms.

You should have no difficulty seeing that every linear system can be written in the
form Ax � b. In fact, the notation [A | b] for the augmented matrix of a linear system
is just shorthand for the matrix equation Ax � b. This form will prove to be a
tremendously useful way of expressing a system of linear equations, and we will ex-
ploit it often from here on.

Combining this insight with Theorem 2.4, we see that Ax � b has a solution if
and only if b is a linear combination of the columns of A.

There is another fact about matrix operations that will also prove to be quite use-
ful: Multiplication of a matrix by a standard unit vector can be used to “pick out” or

“reproduce” a column or row of a matrix. Let and consider the

products Ae3 and e2A, with the unit vectors e3 and e2 chosen so that the products
make sense. Thus,

Notice that Ae3 gives us the third column of A and e2A gives us the second row of A.
We record the general result as a theorem.

Let A be an matrix, ei a standard unit vector, and ej an standard
unit vector. Then

a. ei A is the ith row of A and
b. Aej is the jth column of A.

n � 11 � mn � m

� 30  5  �1 4
Ae3 � c 4 2 1

0 5 �1
d £ 00

1

§ � c 1

�1
d   and  e2A � 30 1 4 c 4 2 1

0 5 �1
d

A � c4 2 1

0 5 �1
d

£ 1 �2 3

�1 3 1

2 �1 4

§ £x1

x2

x3

§ � £ 5

1

14

§
£ 1 �2 3

�1 3 1

2 �1 4

§ £x1

x2

x3

§
 2x1 � x2 � 4x3 � 14

�x1 � 3x2 � x3 � 1

x1 � 2x2 � 3x3 � 5
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Proof We prove (b) and leave proving (a) as Exercise 41. If a1, . . . , an are the columns
of A, then the product Aej can be written

We could also prove (b) by direct calculation:

since the 1 in ej is the jth entry.

Partitioned Matrices

It will often be convenient to regard a matrix as being composed of a number of
smaller submatrices. By introducing vertical and horizontal lines into a matrix, we
can partition it into blocks. There is a natural way to partition many matrices, par-
ticularly those arising in certain applications. For example, consider the matrix

It seems natural to partition A as

where I is the 3 � 3 identity matrix, B is 3 � 2, O is the 2 � 3 zero matrix, and C is 2 � 2.
In this way, we can view A as a 2 � 2 matrix whose entries are themselves matrices.

When matrices are being multiplied, there is often an advantage to be gained by
viewing them as partitioned matrices. Not only does this frequently reveal underlying
structures, but it often speeds up computation, especially when the matrices are large
and have many blocks of zeros. It turns out that the multiplication of partitioned ma-
trices is just like ordinary matrix multiplication.

We begin by considering some special cases of partitioned matrices. Each gives
rise to a different way of viewing the product of two matrices.

Suppose A is m � n and B is n � r, so the product AB exists. If we partition B in
terms of its column vectors, as B � [b1 b2 br], then

AB � A 3b1
b2
 p 
br 4 � 3Ab1 
 Ab2 
 p 
Abr 4
p



� c I B

O C
dE1 0 0 2 �1

0 1 0 1 3

0 0 1 4 0

0 0 0 1 7

0 0 0 7 2

U

A � E1 0 0 2 �1

0 1 0 1 3

0 0 1 4 0

0 0 0 1 7

0 0 0 7 2

U

� Da1j

a2j

o
amj

TE0o1
o
0

UAej � ≥ a11
p a1j

p a1n

a21
p a2j

p a2n

o o o
am1

p amj
p amn

T
Aej � 0a1 � 0a2 � p � 1a j � p � 0an � aj
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This result is an immediate consequence of the definition of matrix multiplication.
The form on the right is called the matrix-column representation of the product.

If

then

Therefore, AB � [Ab1 Ab2] � . (Check by ordinary matrix multiplication.)

Remark Observe that the matrix-column representation of AB allows us to
write each column of AB as a linear combination of the columns of A with entries
from B as the coefficients. For example,

(See Exercises 23 and 26.)

Suppose A is m � n and B is n � r, so the product AB exists. If we partition A in
terms of its row vectors, as

then

Once again, this result is a direct consequence of the definition of matrix multiplica-
tion. The form on the right is called the row-matrix representation of the product.

Using the row-matrix representation, compute AB for the matrices in Example 3.9.

AB � ≥ A1

A2

o
Am

¥ B � ≥ A1B

A2B

o
AmB

¥

A � ≥ A1

A2

o
Am

¥

c13

2
d � c1 3 2

0 �1 1
d £41

3

§ � 4 c1
0
d � c 3

�1
d � 3 c2

1
d

c 13

2






5

�2
d


Ab1 � c 1 3 2

0 �1 1
d £ 41

3

§ � c 13

2
d   and  Ab2 � c 1 3 2

0 �1 1
d £�1

2

0

§ � c 5

�2
d

A � c 1 3 2

0 �1 1
d   and  B � £ 4 �1

1 2

3 0

§
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Solution We compute

Therefore, as before.

The definition of the matrix product AB uses the natural partition of A into rows
and B into columns; this form might well be called the row-column representation of
the product. We can also partition A into columns and B into rows; this form is called
the column-row representation of the product.

In this case, we have

so (2)

Notice that the sum resembles a dot product expansion; the difference is that the indi-
vidual terms are matrices, not scalars. Let’s make sure that this makes sense. Each term
aiBi is the product of an m � 1 and a 1 � r matrix. Thus, each aiBi is an m � r matrix—
the same size as AB. The products aiBi are called outer products, and (2) is called the
outer product expansion of AB.

Compute the outer product expansion of AB for the matrices in Example 3.9.

Solution We have

The outer products are 

and a3B3 � c 2
1
d 33 0 4 � c 6 0

3 0
d

a2B2 � c 3

�1
d 31 2 4 � c 3 6

�1 �2
d ,a1B1 � c 1

0
d 34 �1 4 � c 4 �1

0 0
d ,

A � 3a1
a2
a3 4 � c 1
 3
2

0
�1
1
d   and  B � £B1

B2

B3

§ � £ 4 �1

1 2

3 0

§

AB � 3a1
a2
 p 
an 4 ≥ B1

B2

o
Bn

¥ � a1B1 � a2B2 � p � anBn

A � 3a1 
 a2 
 p 
 an 4   and  B � ≥ B1

B2

o
Bn

¥

AB � cA1B

A2B
d � c 13 5

2 �2
d ,

� 32  �2 4
A1B � 31 3 2 4 £ 4 �1

1 2

3 0

§ � 313 5 4   and  A2B � 30 �1 1 4 £ 4 �1

1 2

3 0

§
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(Observe that computing each outer product is exactly like filling in a multiplication
table.) Therefore, the outer product expansion of AB is

We will make use of the outer product expansion in Chapters 5 and 7 when we
discuss the Spectral Theorem and the singular value decomposition, respectively.

Each of the foregoing partitions is a special case of partitioning in general. A ma-
trix A is said to be partitioned if horizontal and vertical lines have been introduced,
subdividing A into submatrices called blocks. Partitioning allows A to be written as a
matrix whose entries are its blocks.

For example,

are partitioned matrices. They have the block structures

If two matrices are the same size and have been partitioned in the same way, it is clear
that they can be added and multiplied by scalars block by block. Less obvious is the
fact that, with suitable partitioning, matrices can be multiplied blockwise as well. The
next example illustrates this process.

Consider the matrices A and B above. If we ignore for the moment the fact that their
entries are matrices, then A appears to be a 2 � 2 matrix and B a 2 � 3 matrix. Their
product should thus be a 2 � 3 matrix given by

But all of the products in this calculation are actually matrix products, so we need to
make sure that they are all defined. A quick check reveals that this is indeed the case,
since the numbers of columns in the blocks of A (3 and 2) match the numbers of rows
in the blocks of B. The matrices A and B are said to be partitioned conformably for
block multiplication.

Carrying out the calculations indicated gives us the product AB in partitioned form:

A11B11 � A12B21 � I3B11 � A12I2 � B11 � A12 � £ 4 3

�1 2

1 �5

§ � £2 �1

1 3

4 0

§ � £6 2

0 5

5 �5

§

� cA11B11 � A12B21 A11B12 � A12B22 A11B13 � A12B23

A21B11 � A22B21 A21B12 � A22B22 A21B13 � A22B23

d
AB � cA11 A12

A21 A22

d cB11 B12 B13

B21 B22 B23

d

A � cA11 A12

A21 A22

d   and  B � cB11 B12 B13

B21 B22 B23

d

A � E100
0

0

0

1

0

0

0

0

0

1

0

0

2

1

4

1

7

�1

3

0

7

2

U  and  B � E 4 3 1 2 1

�1 2 2 1 1

1 �5 3 3 1

1 0 0 0 2

0 1 0 0 3

U

a1B1 � a2B2 � a3B3 � c 4 �1

0 0
d � c 3 6

�1 �2
d � c 6 0

3 0
d � c 13 5

2 �2
d � AB
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(When some of the blocks are zero matrices or identity matrices, as is the case here,
these calculations can be done quite quickly.) The calculations for the other five
blocks of AB are similar. Check that the result is

(Observe that the block in the upper left corner is the result of our calculations above.)
Check that you obtain the same answer by multiplying A by B in the usual way.

Matrix Powers

When A and B are two n � n matrices, their product AB will also be an n � n matrix. A
special case occurs when A � B. It makes sense to define A2 � AA and, in general, to
define Ak as

Ak � AA A

k factors

if k is a positive integer. Thus, A1 � A, and it is convenient to define A0 � In.
Before making too many assumptions, we should ask ourselves to what extent

matrix powers behave like powers of real numbers. The following properties follow
immediately from the definitions we have just given and are the matrix analogues of
the corresponding properties for powers of real numbers.

If A is a square matrix and r and s are nonnegative integers, then 

1. ArAs � Ar+s

2. (Ar ) s � Ars

In Section 3.3, we will extend the definition and properties to include negative integer
powers.

(a) If then

and, in general,

The above statement can be proved by mathematical induction, since it is an
infinite collection of statements, one for each natural number n. (Appendix B gives a

An � c 2n�1 2n�1

2n�1 2n�1 d   for all n 
 1

A2 � c1 1

1 1
d c1 1

1 1
d � c2 2

2 2
d , A3 � A2A � c2 2

2 2
d c1 1

1 1
d � c4 4

4 4
d

A � c1 1

1 1
d ,

¶ p

E605
1

7

2

5

�5

7

2

1

2

3

0

0

2

1

3

0

0

2

12

9

23

20

U
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brief review of mathematical induction.) The basis step is to prove that the formula
holds for n � 1. In this case,

as required.
The induction hypothesis is to assume that

for some integer k 
 1. The induction step is to prove that the formula holds for n �
k � 1.Using the definition of matrix powers and the induction hypothesis,we compute

Thus, the formula holds for all n 
 1 by the principle of mathematical induction.

(b) If then Continuing,

we find

and

Thus, B5 � B, and the sequence of powers of B repeats in a cycle of four:

The Transpose of a Matrix

Thus far, all of the matrix operations we have defined are analogous to operations on
real numbers, although they may not always behave in the same way. The next oper-
ation has no such analogue.

c0 �1

1 0
d , c�1 0

0 �1
d , c 0 1

�1 0
d , c1 0

0 1
d , c0 �1

1 0
d , p

B4 � B3B � c 0 1

�1 0
d c 0 �1

1 0
d � c 1 0

0 1
d

B3 � B2B � c�1 0

0 �1
d c 0 �1

1 0
d � c 0 1

�1 0
d

B2 � c 0 �1

1 0
d c 0 �1

1 0
d � c�1 0

0 �1
d .B � c0 �1

1 0
d ,

� c21k�12�1 21k�12�1

21k�12�1 21k�12�1 d
� c2k 2k

2k 2k d
� c2k�1 � 2k�1 2k�1 � 2k�1

2k�1 � 2k�1 2k�1 � 2k�1 d
Ak�1 � AkA � c2k�1 2k�1

2k�1 2k�1 d c1 1

1 1
d

Ak � c2k�1 2k�1

2k�1 2k�1 d

A1 � c21�1 21�1

21�1 21�1 d � c20 20

20 20 d � c1 1

1 1
d � A
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Definition The transpose of an m � n matrix A is the n � m matrix AT

obtained by interchanging the rows and columns of A. That is, the ith column of
AT is the ith row of A for all i.

Let

Then their transposes are

The transpose is sometimes used to give an alternative definition of the dot prod-
uct of two vectors in terms of matrix multiplication. If

then

A useful alternative definition of the transpose is given componentwise:

In words, the entry in row i and column j of AT is the same as the entry in row j and
column i of A.

The transpose is also used to define a very important type of square matrix: a
symmetric matrix.

Definition A square matrix A is symmetric if AT � A—that is, if A is equal to
its own transpose.

Let

A � £ 1 3 2

3 5 0

2 0 4

§   and  B � c 1 2

�1 3
d

1AT 2 ij � Aji  for all i and j

� uTv

� 3u1 u2
p un 4 ≥ v1

v2

o
vn

¥
u # v � u1v1 � u2v2 � p � unvn

u � ≥ u1

u2

o
un

¥   and  v � ≥ v1

v2

o
vn

¥

AT � £ 1 5

3 0

2 1

§ ,  BT � c a c

b d
d ,  and  CT � £ 5

�1

2

§
A � c 1 3 2

5 0 1
d ,  B � c a b

c d
d ,  and  C � 35 �1 2 4Example 3. 14
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Figure 3. 1
A symmetric matrix

Then A is symmetric, since AT � A; but B is not symmetric, since BT �

A symmetric matrix has the property that it is its own “mirror image” across its
main diagonal. Figure 3.1 illustrates this property for a 3 � 3 matrix. The correspond-
ing shapes represent equal entries; the diagonal entries (those on the dashed line) are
arbitrary.

A componentwise definition of a symmetric matrix is also useful. It is simply the
algebraic description of the “reflection” property.

A square matrix A is symmetric if and only if Aij � Aji for all i and j.

c1 �1

2 3
d  B.
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Let

In Exercises 1–16, compute the indicated matrices (if
possible).

1. 2.

3. 4.

5. 6. B2

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. Give an example of a nonzero 2 � 2 matrix A such
that A2 � O.

18. Let Find 2 � 2 matrices B and C such

that AB � AC but B Z C.

A � c2 1

6 3
d .

1I2 � A 2 2A3

DA � ADBTCT � 1CB2T EFFE

F 1AF 2E 1AF 2 BTBD � BC

AB

B � CTB � C

2D � 5AA � 2D

F � c�1

2
dE � 34 2 4 ,D � c 0 �3

�2 1
d ,

C � £1 2

3 4

5 6

§ ,B � c4 �2 1

0 2 3
d ,A � c 3 0

�1 5
d ,

19. A factory manufactures three products (doohickies,
gizmos, and widgets) and ships them to two ware-
houses for storage. The number of units of each prod-
uct shipped to each warehouse is given by the matrix

(where aij is the number of units of product i sent to
warehouse j and the products are taken in alphabetical
order). The cost of shipping one unit of each product
by truck is $1.50 per doohickey, $1.00 per gizmo, and
$2.00 per widget. The corresponding unit costs to ship
by train are $1.75, $1.50, and $1.00. Organize these
costs into a matrix B and then use matrix multiplica-
tion to show how the factory can compare the cost of
shipping its products to each of the two warehouses by
truck and by train.

20. Referring to Exercise 19, suppose that the unit cost of
distributing the products to stores is the same for each
product but varies by warehouse because of the dis-
tances involved. It costs $0.75 to distribute one unit
from warehouse 1 and $1.00 to distribute one unit
from warehouse 2. Organize these costs into a matrix
C and then use matrix multiplication to compute the
total cost of distributing each product.

A � £200 75

150 100

100 125

§

Exercises 3. 1
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In Exercises 21–22, write the given system of linear equations
as a matrix equation of the form Ax � b.

21.

22.

In Exercises 23–28, let

and

23. Use the matrix-column representation of the product
to write each column of AB as a linear combination of
the columns of A.

24. Use the row-matrix representation of the product to
write each row of AB as a linear combination of the
rows of B.

25. Compute the outer product expansion of AB.

26. Use the matrix-column representation of the product
to write each column of BA as a linear combination of
the columns of B.

27. Use the row-matrix representation of the product to
write each row of BA as a linear combination of the
rows of A.

28. Compute the outer product expansion of BA.

In Exercises 29 and 30, assume that the product AB makes
sense.

29. Prove that if the columns of B are linearly dependent,
then so are the columns of AB.

30. Prove that if the rows of A are linearly dependent, then
so are the rows of AB.

In Exercises 31–34, compute AB by block multiplication,
using the indicated partitioning.

31. A � £ 10
0

�1

1

0

0

0

2

0

0

3

§ ,  B � ≥ 2

�1

0

0

3

1

0

0

0

0

1

1

¥

B � £ 2 3 0

1 �1 1

�1 6 4

§
A � £ 1 0 �2

�3 1 1

2 0 �1

§
x2 � x3 � �1

x1 � x2 � �2
�x1 � 2x3 �  1

2x1 � x2 � 5x3 �  4
x1 � 2x2 � 3x3 �  0
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32.

33.

34.

35. Let 

(a) Compute 
(b) What is A2001? Why?

36. Let Find, with justification,

B2011.

37. Let Find a formula for An (n 
 1) and

verify your formula using mathematical induction.

38. Let 

(a) Show that 

(b) Prove, by mathematical induction, that

An � for n 
 1

39. In each of the following, find the 4 � 4 matrix A � [aij]
that satisfies the given condition:

(a) (b)

(c) (d)

40. In each of the following, find the 6 � 6 matrix A � [aij]
that satisfies the given condition:

(a) (b)

(c)

41. Prove Theorem 3.1(a).

aij � b1 if 6 � i � j � 8

0 otherwise

aij � b1 if 0 i � j 0 � 1

0 if 0 i � j 0 7 1
aij � bi � j if i � j

0 if i 7 j

aij � sina 1i � j � 1 2p
4

baij � 1i � 1 2 j aij � j � iaij � 1�1 2 i�j

c cos nu �sin nu

sin nu cos nu
d

A2 � c cos 2u �sin 2u

sin 2u cos 2u
d .

A � c cos u �sin u

sin u cos u
d .

A � c 1 1

0 1
d .

B � ≥ 1

12
�

1

12

1

12

1

12

¥ .

A2, A3, . . . , A7.

A � c 0 1

�1 1
d .

A � ≥ 1

0

0

0

0

1

0

0

0

0

1

0

1

2

3

4

¥ ,  B � ≥ 1

0

0

1

2

1

0

1

3

4

1

1

1

1

1

�1

¥
A � ≥ 1

3

1

0

2

4

0

1

1

0

�1

1

0

1

1

�1

¥ ,  B � ≥ 1

0

0

0

0

1

0

0

0

1

0

1

1

0

�1

0

¥
A � c 2

4

3

5

1

0

0

1
d ,  B � ≥ 0

0

1

�2

1

0

5

3

0

1

4

2

¥
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Theorem 3. 2

Matrix Algebra
In some ways, the arithmetic of matrices generalizes that of vectors. We do not expect
any surprises with respect to addition and scalar multiplication, and indeed there are
none. This will allow us to extend to matrices several concepts that we are already
familiar with from our work with vectors. In particular, linear combinations, span-
ning sets, and linear independence carry over to matrices with no difficulty.

However, matrices have other operations, such as matrix multiplication, that vec-
tors do not possess. We should not expect matrix multiplication to behave like multi-
plication of real numbers unless we can prove that it does; in fact, it does not. In this
section, we summarize and prove some of the main properties of matrix operations
and begin to develop an algebra of matrices.

Properties of Addition and Scalar Multiplication

All of the algebraic properties of addition and scalar multiplication for vectors
(Theorem 1.1) carry over to matrices. For completeness, we summarize these proper-
ties in the next theorem.

Algebraic Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be matrices of the same size and let c and d be scalars. Then

a. A � B � B � A Commutativity

b. (A � B) � C � A � (B � C) Associativity

c. A � O � A
d. A � (�A) � O
e. c(A � B) � cA � cB Distributivity

f. (c � d)A � cA � dA Distributivity

g. c(dA) � (cd)A
h. 1A � A

The proofs of these properties are direct analogues of the corresponding proofs of
the vector properties and are left as exercises. Likewise, the comments following
Theorem 1.1 are equally valid here, and you should have no difficulty using these
properties to perform algebraic manipulations with matrices. (Review Example 1.5
and see Exercises 17 and 18 at the end of this section.)

The associativity property allows us to unambiguously combine scalar multiplica-
tion and addition without parentheses. If A, B, and C are matrices of the same
size, then

and so we can simply write 2A � 3B � C. Generally, then, if A1, A2, . . . , Ak are matri-
ces of the same size and c1, c2, . . . , ck are scalars, we may form the linear combination

We will refer to c1, c2, . . . , ck as the coefficients of the linear combination. We can now
ask and answer questions about linear combinations of matrices.

c1A1 � c2A2 � p � ckAk

12A � 3B2 � C � 2A � 13B � C2

160 Chapter 3 Matrices
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Let and 

(a) Is a linear combination of A1, A2, and A3?

(b) Is a linear combination of A1, A2, and A3?

Solution
(a) We want to find scalars c1, c2, and c3 such that c1A1 � c2A2 � c3A3 � B. Thus,

The left-hand side of this equation can be rewritten as

Comparing entries and using the definition of matrix equality, we have four linear
equations

Gauss-Jordan elimination easily gives

(check this!), so c1 � 1, c2 � �2, and c3 � 3. Thus, A1 � 2A2 � 3A3 � B, which can be
easily checked.
(b) This time we want to solve

Proceeding as in part (a), we obtain the linear system

c2 � c3 �  4

�c1 � c3 �  3

c1 � c3 �  2

c2 � c3 �  1

c1 c 0 1

�1 0
d � c2 c 1 0

0 1
d � c3 c 1 1

1 1
d � c 1 2

3 4
d

≥ 0 1 1

1 0 1

�1 0 1

0 1 1

4 14
2

1

¥ ¡ ≥ 1 0 0

0 1 0

0 0 1

0 0 0

4 1

�2

3

0

¥
c2 � c3 �  1

�c1 � c3 �  2

c1 � c3 �  4

c2 � c3 �  1

c c2 � c3 c1 � c3

�c1 � c3 c2 � c3

d
c1 c 0 1

�1 0
d � c2 c 1 0

0 1
d � c3 c 1 1

1 1
d � c 1 4

2 1
d

C � c 1 2

3 4
d

B � c 1 4

2 1
d

A3 � c 1 1

1 1
d .A1 � c 0 1

�1 0
d , A2 � c 1 0

0 1
d ,Example 3. 16
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Row reduction gives

We need go no further: The last row implies that there is no solution. Therefore, in
this case, C is not a linear combination of A1, A2, and A3.

Remark Observe that the columns of the augmented matrix contain the entries
of the matrices we are given. If we read the entries of each matrix from left to right
and top to bottom, we get the order in which the entries appear in the columns of
the augmented matrix. For example, we read A1 as “0, 1, �1, 0,” which corresponds to
the first column of the augmented matrix. It is as if we simply “straightened out” the
given matrices into column vectors. Thus, we would have ended up with exactly the
same system of linear equations as in part (a) if we had asked

We will encounter such parallels repeatedly from now on. In Chapter 6, we will
explore them in more detail.

We can define the span of a set of matrices to be the set of all linear combinations
of the matrices.

Describe the span of the matrices A1, A2, and A3 in Example 3.16.

Solution One way to do this is simply to write out a general linear combination of
A1, A2, and A3. Thus,

(which is analogous to the parametric representation of a plane). But suppose we

want to know when the matrix is in span(A1, A2, A3). From the representa-

tion above, we know that it is when

for some choice of scalars c1, c2, c3. This gives rise to a system of linear equations
whose left-hand side is exactly the same as in Example 3.16 but whose right-hand side

c c2 � c3 c1 � c3

�c1 � c3 c2 � c3

d � cw x

y z
d

cw x

y z
d

� c c2 � c3 c1 � c3

�c1 � c3 c2 � c3

d
c1A1 � c2A2 � c3A3 � c1 c 0 1

�1 0
d � c2 c 1 0

0 1
d � c3 c 1 1

1 1
d

Is ≥ 1

4

2

1

¥  a linear combination of ≥ 0

1

�1

0

¥ , ≥ 1

0

0

1

¥ ,  and  ≥ 1

1

1

1

¥ ?

≥ 0 1 1

1 0 1

�1 0 1

0 1 1

4 12
3

4

¥ ¡
R4�R1 ≥ 0 1 1

1 0 1

�1 0 1

0 0 0

∞ 12
3

3

¥
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is general. The augmented matrix of this system is

and row reduction produces

(Check this carefully.) The only restriction comes from the last row, where clearly we
must have w � z � 0 in order to have a solution. Thus, the span of A1, A2, and A3 con-

sists of all matrices for which w � z. That is, span(A1, A2, A3) �

Note If we had known this before attempting Example 3.16, we would have seen

immediately that is a linear combination of A1, A2, and A3, since it has

the necessary form (take w � 1, x � 4, and y � 2), but cannot be a lin-

ear combination of A1, A2, and A3, since it does not have the proper form (1 Z 4).

Linear independence also makes sense for matrices. We say that matrices
A1, A2, . . . , Ak of the same size are linearly independent if the only solution of the
equation

(1)

is the trivial one: c1 � c2 � � ck � 0. If there are nontrivial coefficients that satisfy
(1), then A1, A2, . . . , Ak are called linearly dependent.

Determine whether the matrices A1, A2, and A3 in Example 3.16 are linearly
independent.

Solution We want to solve the equation c1A1 � c2A2 � c3A3 � O. Writing out the
matrices, we have

This time we get a homogeneous linear system whose left-hand side is the same as in
Examples 3.16 and 3.17. (Are you starting to spot a pattern yet?) The augmented
matrix row reduces to give

≥ 0 1 1

1 0 1

�1 0 1

0 1 1

4 00
0

0

¥ ¡ ≥ 1 0 0

0 1 0

0 0 1

0 0 0

4 00
0

0

¥

c1 c 0 1

�1 0
d � c2 c 1 0

0 1
d � c3 c 1 1

1 1
d � c 0 0

0 0
d

p
c1A1 � c2A2 � p � ckAk � O

C � c 1 2

3 4
dB � c 1 4

2 1
d

b cw x

y w
d r.cw x

y z
d

≥ 0 1 1

1 0 1

�1 0 1

0 1 1

4 wx
y

z

¥ ¡ ≥ 1 0 0

0 1 0

0 0 1

0 0 0

4 1
2 x � 1

2 y

�1
2 x � 1

2 y � w
1
2 x � 1

2 y

w � z

¥

≥ 0 1 1

1 0 1

�1 0 1

0 1 1

4 wx
y

z

¥
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Theorem 3. 3

Thus, c1 � c2 � c3 � 0, and we conclude that the matrices A1, A2, and A3 are linearly
independent.

Properties of Matrix Multiplication

Whenever we encounter a new operation, such as matrix multiplication, we must be
careful not to assume too much about it. It would be nice if matrix multiplication be-
haved like multiplication of real numbers. Although in many respects it does, there
are some significant differences.

Consider the matrices

Multiplying gives

Thus, AB Z BA. So, in contrast to multiplication of real numbers, matrix multiplica-
tion is not commutative—the order of the factors in a product matters!

It is easy to check that (do so!). So, for matrices, the equation

A2 � O does not imply that A � O (unlike the situation for real numbers, where the
equation x2 � 0 has only x � 0 as a solution).

However gloomy things might appear after the last example, the situation is not
really bad at all—you just need to get used to working with matrices and to constantly
remind yourself that they are not numbers. The next theorem summarizes the main
properties of matrix multiplication.

Properties of Matrix Multiplication

Let A, B, and C be matrices (whose sizes are such that the indicated operations can
be performed) and let k be a scalar. Then

a. A(BC) � (AB)C Associativity

b. A(B � C) � AB � AC Left distributivity

c. (A � B)C � AC � BC Right distributivity

d. k(AB) � (kA)B � A(kB)
e. Im A � A � AIn if A is m � n Multiplicative identity

Proof We prove (b) and half of (e). We defer the proof of property (a) until
Section 3.6. The remaining properties are considered in the exercises.

A2 � c 0 0

0 0
d

� c 2 4

1 2
d

AB � c 2 4

�1 �2
d c 1 0

1 1
d � c 6 4

�3 �2
d   and  BA � c 1 0

1 1
d c 2 4

�1 �2
d

A � c 2 4

�1 �2
d   and  B � c 1 0

1 1
d
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Theorem 3. 4

(b) To prove A(B � C) � AB � AC, we let the rows of A be denoted by Ai and the
columns of B and C by bj and cj. Then the jth column of B � C is bj � cj (since addi-
tion is defined componentwise), and thus

Since this is true for all i and j, we must have A(B � C) � AB � AC.
(e) To prove AIn � A, we note that the identity matrix In can be column-
partitioned as

where ei is a standard unit vector. Therefore,

by Theorem 3.1(b).

We can use these properties to further explore how closely matrix multiplication
resembles multiplication of real numbers.

If A and B are square matrices of the same size, is (A � B)2 � A2 � 2AB � B2?

Solution Using properties of matrix multiplication, we compute

by left distributivity

by right distributivity

Therefore, (A � B)2 � A2 � 2AB � B2 if and only if A2 � BA � AB � B2 � A2 �
2AB � B2. Subtracting A2 and B2 from both sides gives BA � AB � 2AB. Subtracting
AB from both sides gives BA � AB. Thus, (A � B) 2 � A2 � 2AB � B2 if and only if A
and B commute. (Can you give an example of such a pair of matrices? Can you find
two matrices that do not satisfy this property?)

Properties of the Transpose

Properties of the Transpose

Let A and B be matrices (whose sizes are such that the indicated operations can be
performed) and let k be a scalar. Then

a. (AT )T � A b. (A � B)T � AT � BT

c. (kA)T � k(AT ) d. (AB)T � BTAT

e. (Ar )T � (AT ) r for all nonnegative integers r

� A2 � BA � AB � B2

� 1A � B 2A � 1A � B 2B1A � B 2 2 � 1A � B 2 1A � B 2

� A

� 3a1
a2
 p 
an 4AIn � 3Ae1
Ae2
 p
Aen 4
In � 3e1
 e2
 p 
en 4

� 1AB � AC 2 ij� 1AB 2 ij � 1AC 2 ij� Ai
# bj � Ai

# cj

3A1B � C 2 4 ij � Ai
# 1bj � cj 2

Section 3.2 Matrix Algebra 165

Example 3. 20

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Proof Properties (a)–(c) are intuitively clear and straightforward to prove (see Exercise
30). Proving property (e) is a good exercise in mathematical induction (see Exercise 31).
We will prove (d), since it is not what you might have expected. [Would you have sus-
pected that (AB)T � ATBT might be true?]

First, if A is m � n and B is n � r, then BT is r � n and AT is n � m. Thus, the product
BTAT is defined and is r � m. Since AB is m � r, (AB)T is r � m, and so (AB)T and BTAT

have the same size. We must now prove that their corresponding entries are equal.
We denote the ith row of a matrix X by rowi (X) and its jth column by col j (X).

Using these conventions, we see that

(Note that we have used the definition of matrix multiplication, the definition of the
transpose, and the fact that the dot product is commutative.) Since i and j are arbi-
trary, this result implies that (AB)T � BTAT.

Remark Properties (b) and (d) of Theorem 3.4 can be generalized to sums and
products of finitely many matrices:

assuming that the sizes of the matrices are such that all of the operations can be per-
formed. You are asked to prove these facts by mathematical induction in Exercises 32
and 33.

Let

Then so a symmetric matrix.

We have

so

and

Thus, both BBT and BTB are symmetric, even though B is not even square! (Check
that AAT and ATA are also symmetric.)

BTB � £ 4 2

�1 3

0 1

§ c 4 �1 0

2 3 1
d � £ 20 2 2

2 10 3

2 3 1

§
BBT � c 4 �1 0

2 3 1
d £ 4 2

�1 3

0 1

§ � c 17 5

5 14
d

BT � £ 4 2

�1 3

0 1

§
A � AT � c 2 5

5 8
d ,AT � c 1 3

2 4
d ,

A � c 1 2

3 4
d   and  B � c 4 �1 0

2 3 1
d

� Ak
T p A2

TA1
T

1A1 � A2 � p � Ak 2T � A1
T � A2

T � p � Ak
T  and  1A1A2

p Ak 2T

� rowi1BT 2 # colj1AT 2 � 3BTAT 4 ij� colj1AT 2 # rowi1BT 2� rowj1A 2 # coli1B 23 1AB 2T 4 ij � 1AB 2 ji
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Theorem 3. 5

The next theorem says that the results of Example 3.21 are true in general.

a. If A is a square matrix, then A � AT is a symmetric matrix.
b. For any matrix A, AAT and ATA are symmetric matrices.

Proof We prove (a) and leave proving (b) as Exercise 34. We simply check that 

(using properties of the transpose and the commutativity of matrix addition). Thus,
A � AT is equal to its own transpose and so, by definition, is symmetric.

1A � AT 2T � AT � 1AT 2T � AT � A � A � AT

Section 3.2 Matrix Algebra 167

In Exercises 1–4, solve the equation for X, given that A �

and

1.

2.

3.

4.

In Exercises 5–8, write B as a linear combination of the other
matrices, if possible.

5.

6.

7.

8.

A3 � £ 1 0 1

0 1 0

1 0 1

§ ,A2 � £ 1 1 1

1 0 1

1 1 1

§ ,
B � £ 6 �2 5

�2 8 6

5 6 6

§ ,  A1 � £ 1 0 0

0 1 0

0 0 1

§ ,
A3 � c 1 1 1

0 0 0
dA2 � c�1 2 0

0 1 0
d ,

B � c 3 1 1

0 1 0
d ,  A1 � c 1 0 �1

0 1 0
d ,

A3 � c 1 �1

1 1
d

B � c 2 �1

�3 2
d ,  A1 � c 1 0

0 1
d ,  A2 � c 0 1

1 0
d ,

B � c 2 5

0 3
d ,  A1 � c 1 2

�1 1
d ,  A2 � c 0 1

2 1
d

21A � B � 2X 2 � 31X � B 221A � 2B 2 � 3X

3X � A � 2B

X � 2A � 3B � O

B � c�1 0

1 1
d .c 1 2

3 4
d

In Exercises 9–12, find the general form of the span of the
indicated matrices, as in Example 3.17.

9. span(A1, A2) in Exercise 5

10. span(A1, A2, A3) in Exercise 6

11. span(A1, A2, A3) in Exercise 7

12. span(A1, A2, A3, A4) in Exercise 8

In Exercises 13–16, determine whether the given matrices are
linearly independent.

13.

14.

15.

16.

£�1 1 �1

0 0 �4

0 0 0

§
£ 1 �1 2

0 2 6

0 0 1

§ , £ 2 1 3

0 4 9

0 0 5

§ , £ 1 2 1

0 3 5

0 0 �1

§ ,
£ 0 1

5 2

�1 0

§ , £ 1 0

2 3

1 1

§ , £�2 �1

0 1

0 2

§ , £�1 �3

1 9

4 5

§
c 1 2

3 4
d , c 5 6

7 8
d , c 1 1

1 1
d

c 1 2

3 4
d , c 4 3

2 1
d

A4 � £ 0 �1 0

�1 1 1

0 1 0

§
Exercises 3. 2
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168 Chapter 3 Matrices

17. Prove Theorem 3.2(a)–(d).

18. Prove Theorem 3.2(e)–(h).

19. Prove Theorem 3.3(c).

20. Prove Theorem 3.3(d).

21. Prove the half of Theorem 3.3(e) that was not proved
in the text.

22. Prove that, for square matrices A and B, AB � BA if
and only if (A � B)(A � B) � A2 � B2.

In Exercises 23–25, if find conditions on a, b,

c, and d such that AB � BA.

23. 24. 25.

26. Find conditions on a, b, c, and d such that

commutes with both and

27. Find conditions on a, b, c, and d such that

commutes with every 2 � 2 matrix.

28. Prove that if AB and BA are both defined, then AB and
BA are both square matrices.

A square matrix is called upper triangular if all of the en-
tries below the main diagonal are zero. Thus, the form of an
upper triangular matrix is

where the entries marked * are arbitrary. A more formal
definition of such a matrix A � [aij ] is that aij � 0 if i � j.

29. Prove that the product of two upper triangular n � n
matrices is upper triangular.

30. Prove Theorem 3.4(a)–(c).

31. Prove Theorem 3.4(e).

32. Using induction, prove that for all n 
 1,
(A1 � A2 � � An)T � � � �

33. Using induction, prove that for all n 
 1,
(A1 A2 An)T �

34. Prove Theorem 3.5(b).

AT
1.AT

2
pAT

n
p

AT
n.pAT

2AT
1

p

E* * p * *
0 * p * *
0 0 ∞ o o
o o * *
0 0 p 0 *

U

B � c a b

c d
d

c 0 0

0 1
d .c 1 0

0 0
d B � c a b

c d
d

A � c 1 2

3 4
dA � c 1 �1

�1 1
dA � c 1 1

0 1
d

B � c a b

c d
d ,

35. (a) Prove that if A and B are symmetric n � n matrices,
then so is A � B.

(b) Prove that if A is a symmetric n � n matrix, then
so is kA for any scalar k.

36. (a) Give an example to show that if A and B are
symmetric n � n matrices, then AB need not be
symmetric.

(b) Prove that if A and B are symmetric n � n matrices,
then AB is symmetric if and only if AB � BA.

A square matrix is called skew-symmetric if AT � �A.

37. Which of the following matrices are skew-symmetric?

(a) (b)

(c) (d)

38. Give a componentwise definition of a skew-symmetric
matrix.

39. Prove that the main diagonal of a skew-symmetric
matrix must consist entirely of zeros.

40. Prove that if A and B are skew-symmetric n � n
matrices, then so is A � B.

41. If A and B are skew-symmetric 2 � 2 matrices, under
what conditions is AB skew-symmetric?

42. Prove that if A is an n � n matrix, then A � AT is
skew-symmetric.

43. (a) Prove that any square matrix A can be written as
the sum of a symmetric matrix and a skew-
symmetric matrix. [Hint: Consider Theorem 3.5
and Exercise 42.]

(b) Illustrate part (a) for the matrix 

The trace of an n � n matrix A � [aij ] is the sum of the en-
tries on its main diagonal and is denoted by tr(A). That is,

44. If A and B are n � n matrices, prove the following
properties of the trace:

(a) tr(A � B) � tr(A) � tr(B)
(b) tr(kA) � ktr(A), where k is a scalar

45. Prove that if A and B are n � n matrices, then
tr(AB) � tr(BA).

46. If A is any matrix, to what is tr(AAT) equal?

47. Show that there are no 2 � 2 matrices A and B such
that AB � BA � I2.

tr 1A 2 � a11 � a22 � p � ann

A � £ 1 2 3

4 5 6

7 8 9

§ .

£ 0 1 2

�1 0 5

2 5 0

§£ 0 3 �1

�3 0 2

1 �2 0

§
c 0 �1

1 0
dc 1 2

�2 3
d
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Example 3. 22

Example 3. 23

The Inverse of a Matrix
In this section, we return to the matrix description Ax � b of a system of linear equa-
tions and look for ways to use matrix algebra to solve the system. By way of analogy,
consider the equation ax � b, where a, b, and x represent real numbers and we want
to solve for x. We can quickly figure out that we want x � b�a as the solution, but we
must remind ourselves that this is true only if a Z 0. Proceeding more slowly, assum-
ing that a Z 0, we will reach the solution by the following sequence of steps:

(This example shows how much we do in our head and how many properties of
arithmetic and algebra we take for granted!)

To imitate this procedure for the matrix equation Ax � b, what do we need? We
need to find a matrix A� (analogous to 1�a) such that A�A � I, an identity matrix
(analogous to 1). If such a matrix exists (analogous to the requirement that a Z 0),
then we can do the following sequence of calculations:

(Why would each of these steps be justified?)
Our goal in this section is to determine precisely when we can find such a matrix

A�. In fact, we are going to insist on a bit more: We want not only A�A � I but also
AA� � I. This requirement forces A and A� to be square matrices. (Why?)

Definition If A is an n � n matrix, an inverse of A is an n � n matrix A� with
the property that

where I � In is the n � n identity matrix. If such an A� exists, then A is called
invertible.

If then is an inverse of A, since

Show that the following matrices are not invertible:

(a) (b)

Solution
(a) It is easy to see that the zero matrix O does not have an inverse. If it did, then there
would be a matrix O� such that OO� � I � O�O. But the product of the zero matrix
with any other matrix is the zero matrix, and so OO� could never equal the identity

B � c1 2

2 4
dO � c0 0

0 0
d

AA¿ � c2 5

1 3
d c 3 �5

�1 2
d � c1 0

0 1
d  and A¿A � c 3 �5

�1 2
d c2 5

1 3
d � c1 0

0 1
d

A¿ � c 3 �5

�1 2
dA � c 2 5

1 3
d ,

AA¿ � I  and  A¿A � I

Ax � b 1 A¿ 1Ax 2 � A¿b 1 1A¿A 2x � A¿b 1 Ix � A¿b 1 x � A¿b

ax � b 1
1

a
1ax 2 �

1

a
1b 2 1 a 1

a
1a 2 b x �

b

a
1 1 # x �

b

a
1 x �

b

a

�

�
I I I I II I I I I ������������������������������

�

�
I I I I II I I I I ������������������������������
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Theorem 3. 6

matrix I. (Notice that this proof makes no reference to the size of the matrices and so
is true for n � n matrices in general.)

(b) Suppose B has an inverse The equation BB� � I gives

from which we get the equations

Subtracting twice the first equation from the third yields 0 � �2, which is clearly ab-
surd. Thus, there is no solution. (Row reduction gives the same result but is not really
needed here.) We deduce that no such matrix B� exists; that is, B is not invertible.
(In fact, it does not even have an inverse that works on one side, let alone two!)

Remarks
• Even though we have seen that matrix multiplication is not, in general, com-

mutative, A� (if it exists) must satisfy A�A � AA�.
• The examples above raise two questions, which we will answer in this section:

(1) How can we know when a matrix has an inverse?
(2) If a matrix does have an inverse, how can we find it?

• We have not ruled out the possibility that a matrix A might have more than
one inverse. The next theorem assures us that this cannot happen.

If A is an invertible matrix, then its inverse is unique.

Proof In mathematics, a standard way to show that there is just one of something is
to show that there cannot be more than one. So, suppose that A has two inverses—
say, A� and A�. Then

Thus,

Hence, A� � A�, and the inverse is unique.

Thanks to this theorem, we can now refer to the inverse of an invertible matrix.
From now on, when A is invertible, we will denote its (unique) inverse by A�1 (pro-
nounced “A inverse”).

Warning Do not be tempted to write A�1 � There is no such operation as

“division by a matrix.” Even if there were, how on earth could we divide the scalar 1 by the

1

A
!

A¿ � A¿I � A¿ 1AA– 2 � 1A¿A2A– � IA– � A–

AA¿ � I � A¿A  and  AA– � I � A–A

 2x � 4z �  1

 2w � 4y �  0

x � 2z �  0

w � 2y �  1

c1 2

2 4
d cw x

y z
d � c1 0

0 1
d

B¿ � cw x

y z
d .
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Theorem 3. 8

Theorem 3. 7

Section 3.3 The Inverse of a Matrix 171

matrix A? If you ever feel tempted to “divide” by a matrix, what you really want to do is
multiply by its inverse.

We can now complete the analogy that we set up at the beginning of this section.

If A is an invertible n � n matrix, then the system of linear equations given by 
Ax � b has the unique solution x � A�1b for any b in �n.

Proof Theorem 3.7 essentially formalizes the observation we made at the beginning
of this section. We will go through it again, a little more carefully this time. We are
asked to prove two things: that Ax � b has a solution and that it has only one solution.
(In mathematics, such a proof is called an “existence and uniqueness” proof.)

To show that a solution exists, we need only verify that x � A�1b works. We check
that

So A�1b satisfies the equation Ax � b, and hence there is at least this solution.
To show that this solution is unique, suppose y is another solution. Then Ay � b,

and multiplying both sides of the equation by A�1 on the left, we obtain the chain of
implications

Thus, y is the same solution as before, and therefore the solution is unique.

So, returning to the questions we raised in the Remarks before Theorem 3.6, how
can we tell if a matrix is invertible and how can we find its inverse when it is invert-
ible? We will give a general procedure shortly, but the situation for 2 � 2 matrices is
sufficiently simple to warrant being singled out.

If then A is invertible if ad � bc Z 0, in which case

If ad � bc � 0, then A is not invertible.

The expression ad � bc is called the determinant of A, denoted det A. The formula

for the inverse of (when it exists) is thus times the matrix obtained

by interchanging the entries on the main diagonal and changing the signs on the
other two entries. In addition to giving this formula, Theorem 3.8 says that a 2 � 2
matrix A is invertible if and only if det A Z 0. We will see in Chapter 4 that the deter-
minant can be defined for all square matrices and that this result remains true,
although there is no simple formula for the inverse of larger square matrices.

Proof Suppose that det A � ad � bc Z 0. Thenc a b

c d
d c d �b

�c a
d � cad � bc �ab � ba

cd � dc �cb � da
d � cad � bc 0

0 ad � bc
d � det A c1 0

0 1
d

1

det A
ca b

c d
d

A�1 �
1

ad � bc
c d �b

�c a
dA � c a b

c d
d ,

A�11Ay 2 � A�1b 1 1A�1A 2y � A�1b 1 Iy � A�1b 1 y � A�1b

A1A�1b 2 � 1AA�1 2b � Ib � b
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Similarly,

Since det A Z 0, we can multiply both sides of each equation by 1�det A to obtain

and

[Note that we have used property (d) of Theorem 3.3.] Thus, the matrix

satisfies the definition of an inverse, so A is invertible. Since the inverse of A is unique,
by Theorem 3.6, we must have

Conversely, assume that ad � bc � 0. We will consider separately the cases where
a Z 0 and where a � 0. If a Z 0, then d � bc�a, so the matrix can be written as

where k � c�a. In other words, the second row of A is a multiple of the first. Referring

to Example 3.23(b), we see that if A has an inverse then

and the corresponding system of linear equations

has no solution. (Why?)
If a � 0, then ad � bc � 0 implies that bc � 0, and therefore either b or c is 0.

Thus, A is of the form

In the first case, Similarly, cannot

have an inverse. (Verify this.)
Consequently, if ad � bc � 0, then A is not invertible.

c0 b

0 d
dc0 0

c d
d cw x

y z
d � c 0 0

* *
d  c1 0

0 1
d .

c 0 0

c d
d   or  c 0 b

0 d
d

kax � kbz �  1

kaw � kby �  0

ax � bz �  0

aw � by �  1

c a b

ka kb
d cw x

y z
d � c1 0

0 1
d

cw x

y z
d ,

A � c a b

c d
d � c a b

ac>a bc>a d � c a b

ka kb
d

A�1 �
1

det A
c d �b

�c a
d

1

det A
c d �b

�c a
d

a 1

det A
c d �b

�c a
d b ca b

c d
d � c1 0

0 1
d

ca b

c d
d a 1

det A
c d �b

�c a
d b � c1 0

0 1
d

c d �b

�c a
d ca b

c d
d � det A c1 0

0 1
d
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Theorem 3. 9

Section 3.3 The Inverse of a Matrix 173

Find the inverses of and if they exist.

Solution We have det A � 1(4) � 2(3) � �2 Z 0, so A is invertible, with

(Check this.)
On the other hand, det B � 12(�5) � (�15)(4) � 0, so B is not invertible.

Use the inverse of the coefficient matrix to solve the linear system

Solution The coefficient matrix is the matrix whose inverse we com-

puted in Example 3.24. By Theorem 3.7, Ax � b has the unique solution x � A�1b.

Here we have thus, the solution to the given system is

Remark Solving a linear system Ax � b via x � A�1b would appear to be a good
method. Unfortunately, except for 2 � 2 coefficient matrices and matrices with 
certain special forms, it is almost always faster to use Gaussian or Gauss-Jordan elim-
ination to find the solution directly. (See Exercise 13.) Furthermore, the technique of
Example 3.25 works only when the coefficient matrix is square and invertible, while
elimination methods can always be applied.

Properties of Invertible Matrices

The following theorem records some of the most important properties of invertible
matrices.

a. If A is an invertible matrix, then A�1 is invertible and

b. If A is an invertible matrix and c is a nonzero scalar, then cA is an invertible
matrix and

c. If A and B are invertible matrices of the same size, then AB is invertible and1AB2�1 � B�1A�1

1cA2�1 �
1
c

A�1

1A�1 2�1 � A

x � c�2 1
3
2 �1

2

d c 3

�2
d � c�8

11
2

d
b � c 3

�2
d ;

A � c1 2

3 4
d ,

 3x � 4y � �2

x � 2y �  3

A�1 �
1

�2
c 4 �2

�3 1
d � c�2 1

3
2 �1

2

d
B � c 12 �15

4 �5
d ,A � c 1 2

3 4
dExample 3. 24

Example 3. 25

�

�
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d. If A is an invertible matrix, then AT is invertible and

e. If A is an invertible matrix, then An is invertible for all nonnegative inte-
gers n and

Proof We will prove properties (a), (c), and (e), leaving properties (b) and (d) to be
proven in Exercises 14 and 15.

(a) To show that A�1 is invertible, we must argue that there is a matrix X such that

But A certainly satisfies these equations in place of X, so A�1 is invertible and A is an
inverse of A�1. Since inverses are unique, this means that (A�1)�1 � A.

(c) Here we must show that there is a matrix X such that

The claim is that substituting B�1A�1 for X works. We check that

where we have used associativity to shift the parentheses. Similarly, (B�1A�1)(AB) � I
(check!), so AB is invertible and its inverse is B�1A�1.

(e) The basic idea here is easy enough. For example, when n � 2, we have

Similarly, (A�1) 2A2 � I. Thus, (A�1) 2 is the inverse of A2. It is not difficult to see that
a similar argument works for any higher integer value of n. However, mathematical
induction is the way to carry out the proof.

The basis step is when n � 0, in which case we are being asked to prove that A0 is
invertible and that

This is the same as showing that I is invertible and that I �1 � I, which is clearly true.
(Why? See Exercise 16.)

Now we assume that the result is true when n � k, where k is a specific nonnega-
tive integer. That is, the induction hypothesis is to assume that Ak is invertible and that

The induction step requires that we prove that Ak+1 is invertible and that
(Ak+1)�1 � (A�1)k+1. Now we know from (c) that Ak+1 � AkA is invertible, since A and
(by hypothesis) Ak are both invertible. Moreover,

by the induction hypothesis

by property (c)

� 1Ak�1 2�1

� 1AAk 2�1

� 1Ak 2�1A�1

1A�1 2 k�1 � 1A�1 2 kA�1

1Ak 2�1 � 1A�1 2 k

1A0 2�1 � 1A�1 20

A21A�1 22 � AAA�1A�1 � AIA�1 � AA�1 � I

1AB 2 1B�1A�1 2 � A1BB�1 2A�1 � AIA�1 � AA�1 � I

1AB2X � I � X1AB2
A�1X � I � XA�1

1An 2�1 � 1A�1 2n
1AT 2�1 � 1A�1 2T
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Therefore, An is invertible for all nonnegative integers n, and (An)�1 � (A�1) n by the
principle of mathematical induction.

Remarks
• While all of the properties of Theorem 3.9 are useful, (c) is the one you should

highlight. It is perhaps the most important algebraic property of matrix inverses. It is
also the one that is easiest to get wrong. In Exercise 17, you are asked to give a coun-
terexample to show that, contrary to what we might like, (AB)�1 Z A�1B�1 in general.
The correct property, (AB)�1 � B�1A�1, is sometimes called the socks-and-shoes
rule, because, although we put our socks on before our shoes, we take them off in the
reverse order.

• Property (c) generalizes to products of finitely many invertible matrices: If A1,
A2, . . . , An are invertible matrices of the same size, then A1A2 An is invertible and

(See Exercise 18.) Thus, we can state:

The inverse of a product of invertible matrices is the product of their inverses in
the reverse order.

• Since, for real numbers, we should not expect that, for square

matrices, (A � B)�1 � A�1 � B�1 (and, indeed, this is not true in general; see
Exercise 19). In fact, except for special matrices, there is no formula for (A � B)�1.

• Property (e) allows us to define negative integer powers of an invertible
matrix:

If A is an invertible matrix and n is a positive integer, then A�n is defined by

With this definition, it can be shown that the rules for exponentiation, ArAs � Ar�s

and (Ar )s � Ars, hold for all integers r and s, provided A is invertible.

One use of the algebraic properties of matrices is to help solve equations involv-
ing matrices. The next example illustrates the process. Note that we must pay partic-
ular attention to the order of the matrices in the product.

Solve the following matrix equation for X (assuming that the matrices involved are
such that all of the indicated operations are defined):

A�11BX 2�1 � 1A�1B3 2 2

A�n � 1A�1 2n � 1An 2�1

1

a � b


1
a

�
1

b
,

1A1A2
p An 2�1 � An

�1 p A2
�1A1

�1

p
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Solution There are many ways to proceed here. One solution is

(Can you justify each step?) Note the careful use of Theorem 3.9(c) and the expansion
of (A�1B3) 2. We have also made liberal use of the associativity of matrix multiplica-
tion to simplify the placement (or elimination) of parentheses.

Elementary Matrices

We are going to use matrix multiplication to take a different perspective on the row
reduction of matrices. In the process, you will discover many new and important in-
sights into the nature of invertible matrices.

If

we find that

In other words, multiplying A by E (on the left) has the same effect as interchanging
rows 2 and 3 of A. What is significant about E? It is simply the matrix we obtain by
applying the same elementary row operation, R2 R3, to the identity matrix I3. It
turns out that this always works.

Definition An elementary matrix is any matrix that can be obtained by per-
forming an elementary row operation on an identity matrix.

Since there are three types of elementary row operations, there are three corre-
sponding types of elementary matrices. Here are some more elementary matrices.

Let

and E3 � ≥ 1 0 0 0

0 1 0 0

0 0 1 0

0 �2 0 1

¥E1 � ≥ 1 0 0 0

0 3 0 0

0 0 1 0

0 0 0 1

¥ ,  E2 � ≥ 0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

¥ ,

4

EA � £ 5 7

8 3

�1 0

§
E � £ 1 0 0

0 0 1

0 1 0

§   and  A � £ 5 7

�1 0

8 3

§

1 X � B�4AB�3

1 IXI � B�4AB�3I

1 B�1BXAA�1 � B�1B�3AB�3AA�1

1 BXA � B�3AB�3A

1 1BX 2A � B�31A�1 2�1B�31A�1 2�1

1 1BX 2A � 3 1A�1B3 2 1A�1B3 2 4�1

1 3 1 1BX 2A 2�1 4�1 � 3 1A�1B3 2 2 4�1

A�11BX 2�1 � 1A�1B3 2 2 1 1 1BX 2A 2�1 � 1A�1B3 2 2
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Theorem 3. 10

Each of these matrices has been obtained from the identity matrix I4 by applying a
single elementary row operation. The matrix E1 corresponds to 3R2, E2 to R1 R3,
and E3 to R4 � 2R2. Observe that when we left-multiply a 4 � n matrix by one of these
elementary matrices, the corresponding elementary row operation is performed on
the matrix. For example, if

then

and

Example 3.27 and Exercises 24–30 should convince you that any elementary row
operation on any matrix can be accomplished by left-multiplying by a suitable
elementary matrix. We record this fact as a theorem, the proof of which is omitted.

Let E be the elementary matrix obtained by performing an elementary row opera-
tion on In. If the same elementary row operation is performed on an n � r matrix A,
the result is the same as the matrix EA.

Remark From a computational point of view, it is not a good idea to use ele-
mentary matrices to perform elementary row operations—just do them directly.
However, elementary matrices can provide some valuable insights into invertible
matrices and the solution of systems of linear equations.

We have already observed that every elementary row operation can be “undone,”
or “reversed.” This same observation applied to elementary matrices shows us that
they are invertible.

Let

Then E1 corresponds to R2 R3, which is undone by doing R2 R3 again. Thus,
E1

�1 � E1. (Check by showing that E1
2 � E1E1 � I.) The matrix E2 comes from 4R2,

44

E1 � £ 1 0 0

0 0 1

0 1 0

§ , E2 � £ 1 0 0

0 4 0

0 0 1

§ ,  and  E3 � £ 1 0 0

0 1 0

�2 0 1

§

E 3A � ≥ a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 � 2a21 a42 � 2a22 a43 � 2a23

¥
E 2A � ≥ a31 a32 a33

a21 a22 a23

a11 a12 a13

a41 a42 a43

¥ ,E1A � ≥ a11 a12 a13

3a21 3a22 3a23

a31 a32 a33

a41 a42 a43

¥ ,

A � ≥ a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

¥

4
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Theorem 3. 12

Theorem 3. 11

which is undone by performing R2. Thus,

which can be easily checked. Finally, E3 corresponds to the elementary row opera-
tion R3 � 2R1, which can be undone by the elementary row operation R3 � 2R1. So,
in this case,

(Again, it is easy to check this by confirming that the product of this matrix and E3, in
both orders, is I.)

Notice that not only is each elementary matrix invertible, but its inverse is another
elementary matrix of the same type. We record this finding as the next theorem.

Each elementary matrix is invertible, and its inverse is an elementary matrix of the
same type.

The Fundamental Theorem of Invertible Matrices

We are now in a position to prove one of the main results in this book—a set of equiv-
alent characterizations of what it means for a matrix to be invertible. In a sense, much
of linear algebra is connected to this theorem, either in the development of these
characterizations or in their application. As you might expect, given this introduc-
tion, we will use this theorem a great deal. Make it your friend!

We refer to Theorem 3.12 as the first version of the Fundamental Theorem, since
we will add to it in subsequent chapters. You are reminded that, when we say that a set
of statements about a matrix A are equivalent, we mean that, for a given A, the state-
ments are either all true or all false.

The Fundamental Theorem of Invertible Matrices: Version 1

Let A be an n � n matrix. The following statements are equivalent:

a. A is invertible.
b. Ax � b has a unique solution for every b in �n.
c. Ax � 0 has only the trivial solution.
d. The reduced row echelon form of A is In.
e. A is a product of elementary matrices.

E3
�1 � £ 1 0 0

0 1 0

2 0 1

§

E 2
�1 � £ 1 0 0

0 1
4 0

0 0 1

§
1
4
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Proof We will establish the theorem by proving the circular chain of implications

(a) (b) We have already shown that if A is invertible, then Ax � b has the
unique solution x � A�1b for any b in �n (Theorem 3.7).

(b) (c) Assume that Ax � b has a unique solution for any b in �n. This implies,
in particular, that Ax � 0 has a unique solution. But a homogeneous system Ax � 0
always has x � 0 as one solution. So in this case, x � 0 must be the solution.

(c) (d) Suppose that Ax � 0 has only the trivial solution. The corresponding
system of equations is

and we are assuming that its solution is

In other words, Gauss-Jordan elimination applied to the augmented matrix of the
system gives

Thus, the reduced row echelon form of A is In.

(d) (e) If we assume that the reduced row echelon form of A is In, then A can be
reduced to In using a finite sequence of elementary row operations. By Theorem 3.10,
each one of these elementary row operations can be achieved by left-multiplying by an
appropriate elementary matrix. If the appropriate sequence of elementary matrices is
E1, E2, . . . , Ek (in that order), then we have

According to Theorem 3.11, these elementary matrices are all invertible. Therefore, so
is their product, and we have

Again, each Ei
�1 is another elementary matrix, by Theorem 3.11, so we have written

A as a product of elementary matrices, as required.

(e) (a) If A is a product of elementary matrices, then A is invertible, since
elementary matrices are invertible and products of invertible matrices are invertible.

1

A � 1Ek
p E 2E1 2�1In � 1Ek

p E 2E1 2�1 � E1
�1E 2

�1 p Ek
�1

Ek
p E2E1A � In

1

3A 0 0 4 � ≥ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

4 00
o
0

¥ ¡ ≥ 1 0 p 0

0 1 p 0

o o ∞ o
0 0 p 1

4 00
o
0

¥ � 3 In 0 0 4

xn �  0

∞
x2 �  0

x1 �  0

a11x1 � a12x2 � p � a1nxn � 0

a21x1 � a22x2 � p � a2nxn � 0

o
an1x1 � an2x2 � p � annxn � 0

1

1

1

1a 2 1 1b 2 1 1c 2 1 1d 2 1 1e 2 1 1a 2
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Theorem 3. 13

“Never bring a cannon on stage in
Act I unless you intend to fire it by
the last act.” –Anton Chekhov

If possible, express as a product of elementary matrices.

Solution We row reduce A as follows:

Thus, the reduced row echelon form of A is the identity matrix, so the Fundamental
Theorem assures us that A is invertible and can be written as a product of elementary
matrices. We have E4E3E2E1A � I, where

are the elementary matrices corresponding to the four elementary row operations
used to reduce A to I. As in the proof of the theorem, we have

as required.

Remark Because the sequence of elementary row operations that transforms A
into I is not unique, neither is the representation of A as a product of elementary
matrices. (Find a different way to express A as a product of elementary matrices.)

The Fundamental Theorem is surprisingly powerful. To illustrate its power, we
consider two of its consequences. The first is that, although the definition of an in-
vertible matrix states that a matrix A is invertible if there is a matrix B such that both
AB � I and BA � I are satisfied, we need only check one of these equations. Thus, we
can cut our work in half !

Let A be a square matrix. If B is a square matrix such that either AB � I or BA � I,
then A is invertible and B � A�1.

Proof Suppose BA � I. Consider the equation Ax � 0. Left-multiplying by B, we have
BAx � B0. This implies that x � Ix � 0. Thus, the system represented by Ax � 0 has the
unique solution x � 0. From the equivalence of (c) and (a) in the Fundamental Theo-
rem, we know that A is invertible. (That is, A�1 exists and satisfies AA�1 � I � A�1A.)

If we now right-multiply both sides of BA � I by A�1, we obtain

(The proof in the case of AB � I is left as Exercise 41.)

The next consequence of the Fundamental Theorem is the basis for an efficient
method of computing the inverse of a matrix.

BAA�1 � IA�1 1 BI � A�1 1 B � A�1

A � 1E4E 3E 2E1 2�1 � E1
�1E 2

�1E 3
�1E 4

�1 � c 0 1

1 0
d c 1 0

2 1
d c 1 �1

0 1
d c 1 0

0 �3
d

E1 � c 0 1

1 0
d ,  E2 � c 1 0

�2 1
d ,  E3 � c 1 1

0 1
d ,  E4 � c 1 0

0 �1
3

d

¡
R1�R2 c 1 0

0 �3
d ¡�1

3R2 c 1 0

0 1
d � I2

A � c 2 3

1 3
d ¡

R14R2 c 1 3

2 3
d ¡

R2�2R1 c 1 3

0 �3
d

A � c2 3

1 3
d
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Theorem 3. 14 Let A be a square matrix. If a sequence of elementary row operations reduces A to
I, then the same sequence of elementary row operations transforms I into A�1.

Proof If A is row equivalent to I, then we can achieve the reduction by left-
multiplying by a sequence E1, E2, . . . , Ek of elementary matrices. Therefore, we have
Ek E2E1A � I. Setting B � Ek E2E1 gives BA � I. By Theorem 3.13, A is invertible
and A�1 � B. Now applying the same sequence of elementary row operations to I is
equivalent to left-multiplying I by Ek E2E1 � B. The result is

Thus, I is transformed into A�1 by the same sequence of elementary row operations.

The Gauss-Jordan Method for Computing the Inverse

We can perform row operations on A and I simultaneously by constructing a “super-
augmented matrix” [A � I ]. Theorem 3.14 shows that if A is row equivalent to I
[which, by the Fundamental Theorem (d) (a), means that A is invertible], then
elementary row operations will yield

If A cannot be reduced to I, then the Fundamental Theorem guarantees us that A is
not invertible.

The procedure just described is simply Gauss-Jordan elimination performed on an
n � 2n, instead of an n � (n � 1), augmented matrix. Another way to view this pro-
cedure is to look at the problem of finding A�1 as solving the matrix equation AX � In

for an n � n matrix X. (This is sufficient, by the Fundamental Theorem, since a right
inverse of A must be a two-sided inverse.) If we denote the columns of X by x1, . . . , xn,
then this matrix equation is equivalent to solving for the columns of X, one at a time.
Since the columns of In are the standard unit vectors e1, . . . , en, we thus have n systems
of linear equations, all with coefficient matrix A:

Since the same sequence of row operations is needed to bring A to reduced row
echelon form in each case, the augmented matrices for these systems, [A � e1] , . . . ,
[A � en], can be combined as

We now apply row operations to try to reduce A to In, which, if successful, will simul-
taneously solve for the columns of A�1, transforming In into A�1.

We illustrate this use of Gauss-Jordan elimination with three examples.

Find the inverse of

if it exists.

A � £1 2 �1

2 2 4

1 3 �3

§

3A � e1 e2
p en 4 � 3A � In 4

Ax1 � e1, . . . , Axn � en

3A � I 4 ¡ 3 I � A�1 4
3

Ek
p E2E1I � BI � B � A�1

p

pp
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Solution Gauss-Jordan elimination produces

Therefore,

(You should always check that AA�1 � I by direct multiplication. By Theorem 3.13,
we do not need to check that A�1A � I too.)

Remark Notice that we have used the variant of Gauss-Jordan elimination that
first introduces all of the zeros below the leading 1s, from left to right and top to
bottom, and then creates zeros above the leading 1s, from right to left and bottom to
top. This approach saves on calculations, as we noted in Chapter 2, but you may find
it easier, when working by hand, to create all of the zeros in each column as you go.
The answer, of course, will be the same.

Find the inverse of

if it exists.

A � £ 2 1 �4

�4 �1 6

�2 2 �2

§

A�1 � £ 9 � 3
2 �5

�5 1 3

�2 1
2 1

§
£ 1 0 0

0 1 0

0 0 1

3 9 �3
2 �5

�5 1 3

�2 1
2 1

§¡
R1�2R2

£ 1 2 0

0 1 0

0 0 1

3�1 1
2 1

�5 1 3

�2 1
2 1

§¡

R1�R3

R2�3R3

£ 1 2 �1

0 1 �3

0 0 1

3 1 0 0

1 �1
2 0

�2 1
2 1

§¡
R3�R2

£ 1 2 �1

0 1 �3

0 1 �2

3 1 0 0

1 �1
2 0

�1 0 1

§¡
1�1

2 2R2

£ 1 2 �1

0 �2 6

0 1 �2

3 1 0 0

�2 1 0

�1 0 1

§¡

R2�2R1

R3�R1

3A � I 4 � £ 1 2 �1

2 2 4

1 3 �3

3 1 0 0

0 1 0

0 0 1

§
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Solution We proceed as in Example 3.30, adjoining the identity matrix to A and
then trying to manipulate [A � I] into [I � A�1 ].

At this point, we see that it is not possible to reduce A to I, since there is a row of zeros
on the left-hand side of the augmented matrix. Consequently, A is not invertible.

As the next example illustrates, everything works the same way over �p, where 
p is prime.

Find the inverse of

if it exists, over �3.

Solution 1 We use the Gauss-Jordan method, remembering that all calculations are
in �3.

Thus, and it is easy to check that, over �3, AA�1 � I.

Solution 2 Since A is a 2 � 2 matrix, we can also compute A�1 using the formula
given in Theorem 3.8. The determinant of A is

in �3 (since 2 � 1 � 0). Thus, A�1 exists and is given by the formula in Theorem 3.8.
We must be careful here, though, since the formula introduces the “fraction” 1�det A

det A � 210 2 � 212 2 � �1 � 2

A�1 � c 0 2

2 1
d ,

c 1 0

0 1
2 0 2

2 1
d¡

R1�2R2

c 1 1

0 1
2 2 0

2 1
d¡

R2�R1

c 1 1

2 0
2 2 0

0 1
d¡

2R1

3A � I 4 � c 2 2

2 0
2 1 0

0 1
d

A � c2 2

2 0
d

£ 1 2 �1

0 1 �3

0 0 0

3 1 0 0

2 1 0

�5 �3 1

§¡
R3�3R2

£ 2 1 �4

0 1 �2

0 3 �6

3 1 0 0

2 1 0

1 0 1

§¡

R2�2R1

R3�R1

3A � I 4 � £ 2 1 �4

�4 �1 6

�2 2 �2

3 1 0 0

0 1 0

0 0 1

§
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and there are no fractions in �3. We must use multiplicative inverses rather than
division.

Instead of 1�det A � 1�2, we use 2�1; that is, we find the number x that satisfies
the equation 2x � 1 in �3. It is easy to see that x � 2 is the solution we want: In �3,
2�1 � 2, since 2(2) � 1. The formula for A�1 now becomes

which agrees with our previous solution.

A�1 � 2�1 c 0 �2

�2 2
d � 2 c0 1

1 2
d � c0 2

2 1
d
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In Exercises 1–10, find the inverse of the given matrix (if it
exists) using Theorem 3.8.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10. where neither a, b, c, nor d is 0

In Exercises 11 and 12, solve the given system using the
method of Example 3.25.

11. 12.

13. Let and 

(a) Find A�1 and use it to solve the three systems
Ax � b1, Ax � b2, and Ax � b3.

(b) Solve all three systems at the same time by row re-
ducing the augmented matrix [A � b1 b2 b3] using
Gauss-Jordan elimination.

(c) Carefully count the total number of individual
multiplications that you performed in (a) and in
(b). You should discover that, even for this 2 � 2
example, one method uses fewer operations.

b3 � c2
0
d .A � c1 2

2 6
d , b1 � c3

5
d , b2 � c�1

2
d ,x1 � 2x2 �  5 5x � 3y �  2

x1 � x2 �  2 2x � y � �1

c1>a 1>b
1>c 1>d d ,
ca �b

b a
d

c 3.55 0.25

8.52 0.60
dc�1.5 �4.2

0.5 2.4
d

c 1>22 �1>22

1>22 122
dc 34 3

5
5
6

2
3

d
c 0 1

1 0
dc3 4

6 8
d

c 1 2

3 4
dc4 7

1 2
d

For larger systems, the difference is even more
pronounced, and this explains why computer
systems do not use one of these methods to solve
linear systems.

14. Prove Theorem 3.9(b).

15. Prove Theorem 3.9(d).

16. Prove that the n � n identity matrix In is invertible and
that � In.

17. (a) Give a counterexample to show that (AB)�1 Z
A�1B�1 in general.

(b) Under what conditions on A and B is (AB)�1 �
A�1B�1? Prove your assertion.

18. By induction, prove that if A1, A2, . . . , An are invertible
matrices of the same size, then the product A1A2

p An

is invertible and (A1A2 An)�1 � A n
�1

19. Give a counterexample to show that (A � B)�1 Z
A�1 � B�1 in general.

In Exercises 20–23, solve the given matrix equation for X.
Simplify your answers as much as possible. (In the words of
Albert Einstein, “Everything should be made as simple as pos-
sible, but not simpler.”) Assume that all matrices are invertible.

20. 21.

22. 23.

In Exercises 24–30, let

C � £ 1 2 �1

1 1 1

2 1 �1

§ ,  D � £ 1 2 �1

�3 �1 3

2 1 �1

§
A � £ 1 2 �1

1 1 1

1 �1 0

§ ,  B � £ 1 �1 0

1 1 1

1 2 �1

§ ,
ABXA�1B�1 � I � A1A�1X 2�1 � 1AB�1 2�11AB2 2 AXB � 1BA22XA�1 � A3

A�1
1 .A�1

2
pp

I �1
n
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Section 3.3 The Inverse of a Matrix 185

In each case, find an elementary matrix E that satisfies the
given equation.

24. 25. 26.

27. 28. 29.

30. Is there an elementary matrix E such that EA � D?
Why or why not?

In Exercises 31–38, find the inverse of the given elementary
matrix.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39 and 40, find a sequence of elementary matrices
E1, E2, . . . , Ek such that Ek E2E1A � I. Use this sequence to
write both A and A�1 as products of elementary matrices.

39. 40.

41. Prove Theorem 3.13 for the case of AB � I.

42. (a) Prove that if A is invertible and AB � O, then
B � O.

(b) Give a counterexample to show that the result in
part (a) may fail if A is not invertible.

43. (a) Prove that if A is invertible and BA � CA, then
B � C.

(b) Give a counterexample to show that the result in
part (a) may fail if A is not invertible.

44. A square matrix A is called idempotent if A2 � A.
(The word idempotent comes from the Latin idem,
meaning “same,” and potere, meaning “to have power.”
Thus, something that is idempotent has the “same
power” when squared.)

(a) Find three idempotent 2 � 2 matrices.
(b) Prove that the only invertible idempotent n � n

matrix is the identity matrix.

45. Show that if A is a square matrix that satisfies the
equation A2 � 2A � I � O, then A�1 � 2I � A.

46. Prove that if a symmetric matrix is invertible, then its
inverse is symmetric also.

A � c 2 4

1 1
dA � c 1 0

�1 �2
d

p

£1 0 0

0 1 c

0 0 1

§ , c  0£1 0 0

0 c 0

0 0 1

§ , c  0

£0 0 1

0 1 0

1 0 0

§£1 0 0

0 1 �2

0 0 1

§
c 1 0

�1
2 1
dc0 1

1 0
d

c1 2

0 1
dc3 0

0 1
d

ED � CEC � DEC � A

EA � CEB � AEA � B

47. Prove that if A and B are square matrices and AB is
invertible, then both A and B are invertible.

In Exercises 48–63, use the Gauss-Jordan method to find the
inverse of the given matrix (if it exists).

48. 49.

50. 51.

52. 53.

54. 55.

56. 57.

58.

59. 60. over �2

61. over �5 62. over �3

63. over �7

Partitioning large square matrices can sometimes make their
inverses easier to compute, particularly if the blocks have
a nice form. In Exercises 64–68, verify by block multiplica-
tion that the inverse of a matrix, if partitioned as shown, is
as claimed. (Assume that all inverses exist as needed.)

64. cA B

O D
d�1

� cA�1 �A�1BD�1

O D�1 d

£1 5 0

1 2 4

3 6 1

§
£2 1 0

1 1 2

0 2 1

§c4 2

3 4
d

c0 1

1 1
d≥ 1 0 0 0

0 1 0 0

0 0 1 0

a b c d

¥
≥ 12 0 212 0

�412 12 0 0

0 0 1 0

0 0 3 1

¥
≥ 0 �1 1 0

2 1 0 2

1 �1 3 0

0 1 1 �1

¥£0 a 0

b 0 c

0 d 0

§
£a 0 0

1 a 0

0 1 a

§£ 1 1 0

1 1 1

0 1 1

§
£1 �1 2

3 1 2

2 3 �1

§£ 2 0 �1

1 5 1

2 3 0

§
c 1 a

�a 1
dc 3 �4

�6 8
d

c�2 4

3 �1
dc 1 2

3 4
d
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186 Chapter 3 Matrices

65.

66.

67.

68. � where P � (A � BD�1C)�1,

Q � �PBD�1, R � �D�1CP, and S � D�1

� D�1CPBD�1

cP Q

R S
d ,cA B

C D
d�1

� c �1BD�1C 2�1 1BD�1C 2�1BD�1

D�1C 1BD�1C 2�1 D�1 � D�1C 1BD�1C 2�1BD�1d
cO B

C D
d�1

c I B

C I
d�1

� c 1I � BC 2�1 �1I � BC 2�1B

�C 1I � BC 2�1 I � C 1I � BC 2�1B
d

cO B

C I
d�1

� c�1BC 2�1 1BC 2�1B

C 1BC 2�1 I � C 1BC 2�1B
d In Exercises 69–72, partition the given matrix so that you

can apply one of the formulas from Exercises 64–68, and
then calculate the inverse using that formula.

69.

70. The matrix in Exercise 58

71. 72. £ 0 1 1

1 3 1

�1 5 2

§≥ 0 0 1 1

0 0 1 0

0 �1 1 0

1 1 0 1

¥

≥ 1 0 0 0

0 1 0 0

2 3 1 0

1 2 0 1

¥

The LU Factorization

Just as it is natural (and illuminating) to factor a natural number into a product of
other natural numbers—for example, 30 � 2 . 3 . 5—it is also frequently helpful to fac-
tor matrices as products of other matrices. Any representation of a matrix as a prod-
uct of two or more other matrices is called a matrix factorization. For example,

is a matrix factorization.
Needless to say, some factorizations are more useful than others. In this section,

we introduce a matrix factorization that arises in the solution of systems of linear
equations by Gaussian elimination and is particularly well suited to computer imple-
mentation. In subsequent chapters, we will encounter other equally useful matrix fac-
torizations. Indeed, the topic is a rich one, and entire books and courses have been
devoted to it.

Consider a system of linear equations of the form Ax � b, where A is an n � n
matrix. Our goal is to show that Gaussian elimination implicitly factors A into a
product of matrices that then enable us to solve the given system (and any other
system with the same coefficient matrix) easily.

The following example illustrates the basic idea.

Let

A � £ 2 1 3

4 �1 3

�2 5 5

§

c 3 �1

9 �5
d � c 1 0

3 1
d c 3 �1

0 �2
d

Example 3. 33
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Row reduction of A proceeds as follows:

(1)

The three elementary matrices E1, E2, E3 that accomplish this reduction of A to
echelon form U are (in order):

Hence,

E3E2E1A � U

Solving for A, we get

Thus, A can be factored as

A � LU

where U is an upper triangular matrix (see the exercises for Section 3.2), and L is unit
lower triangular. That is, L has the form

with zeros above and 1s on the main diagonal.

The preceding example motivates the following definition.

Definition Let A be a square matrix. A factorization of A as A � LU, where L
is unit lower triangular and U is upper triangular, is called an LU factorization
of A.

Remarks
• Observe that the matrix A in Example 3.33 had an LU factorization because

no row interchanges were needed in the row reduction of A. Hence, all of the elemen-
tary matrices that arose were unit lower triangular. Thus, L was guaranteed to be unit

L � ≥ 1 0 p 0

* 1 p 0

o o ∞ o
* * p 1

¥

� £ 1 0 0

2 1 0

�1 �2 1

§U � LU

A � E1
�1E2

�1E3
�1U � £ 1 0 0

2 1 0

0 0 1

§ £ 1 0 0

0 1 0

�1 0 1

§ £ 1 0 0

0 1 0

0 �2 1

§U

E1 � £ 1 0 0

�2 1 0

0 0 1

§ ,  E2 � £ 1 0 0

0 1 0

1 0 1

§ ,  E3 � £ 1 0 0

0 1 0

0 2 1

§

A � £ 2 1 3

4 �1 3

�2 5 5

§ ¡

R2�2R1

R3�R1 £ 2 1 3

0 �3 �3

0 6 8

§ ¡
R3�2R2

2 1 3£ 0 �3 �3

0 0 2

§ � U
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The LU factorization was introduced
in 1948 by the great English
mathematician Alan M. Turing
(1912–1954) in a paper entitled
“Rounding-off Errors in Matrix
Processes” (Quarterly Journal of
Mechanics and Applied Mathematics,
1 (1948), pp. 287–308). During
World War II, Turing was
instrumental in cracking the
German “Enigma” code. However,
he is best known for his work in
mathematical logic that laid the
theoretical groundwork for the
development of the digital computer
and the modern field of artificial
intelligence. The “Turing test” that
he proposed in 1950 is still used
as one of the benchmarks in
addressing the question of whether
a computer can be considered
“intelligent.”
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Theorem 3. 15

lower triangular because inverses and products of unit lower triangular matrices are
also unit lower triangular. (See Exercises 29 and 30.)

If a zero had appeared in a pivot position at any step, we would have had to swap
rows to get a nonzero pivot. This would have resulted in L no longer being unit lower
triangular. We will comment further on this observation below. (Can you find a ma-
trix for which row interchanges will be necessary?)

• The notion of an LU factorization can be generalized to nonsquare matrices
by simply requiring U to be a matrix in row echelon form. (See Exercises 13 and 14.)

• Some books define an LU factorization of a square matrix A to be any factor-
ization A � LU, where L is lower triangular and U is upper triangular.

The first remark above is essentially a proof of the following theorem.

If A is a square matrix that can be reduced to row echelon form without using any
row interchanges, then A has an LU factorization.

To see why the LU factorization is useful, consider a linear system Ax � b, where
the coefficient matrix has an LU factorization A � LU. We can rewrite the system
Ax � b as LUx � b or L(Ux) � b. If we now define y � Ux, then we can solve for x in
two stages:

1. Solve Ly � b for y by forward substitution (see Exercises 25 and 26 in Section 2.1).
2. Solve Ux � y for x by back substitution.

Each of these linear systems is straightforward to solve because the coefficient matri-
ces L and U are both triangular. The next example illustrates the method.

Use an LU factorization of to solve Ax � b, where .

Solution In Example 3.33, we found that

As outlined above, to solve Ax � b (which is the same as L(Ux) � b), we first solve 

Ly � b for . This is just the linear system

Forward substitution (that is, working from top to bottom) yields

y1 � 1, y2 � �4 � 2y1 � �6, y3 � 9 � y1 � 2y2 � �2

�y1 � 2y2 � y3 � 9

2y1 � y2 � �4

y1 � 1

y � £ y1

y2

y3

§
A � £ 1 0 0

2 1 0

�1 �2 1

§ £ 2 1 3

0 �3 �3

0 0 2

§ � LU

b � £ 1

�4

9

§A � £ 2 1 3

4 �1 3

�2 5 5

§
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Thus and we now solve Ux � y for . This linear system is

and back substitution quickly produces

Therefore, the solution to the given system Ax � b is .

An Easy Way to Find LU Factorizations

In Example 3.33, we computed the matrix L as a product of elementary matrices. For-
tunately, L can be computed directly from the row reduction process without our
needing to compute elementary matrices at all. Remember that we are assuming that
A can be reduced to row echelon form without using any row interchanges. If this is
the case, then the entire row reduction process can be done using only elementary
row operations of the form Ri � kRj. (Why do we not need to use the remaining
elementary row operation, multiplying a row by a nonzero scalar?) In the operation
Ri � kRj, we will refer to the scalar k as the multiplier.

In Example 3.33, the elementary row operations that were used were, in order,

R2 � 2R1 (multiplier � 2)

R3 � R1 � R3 �(�1)R1 (multiplier � �1)

R3 � 2R2 � R3 � (�2)R2 (multiplier � �2)

The multipliers are precisely the entries of L that are below its diagonal! Indeed,

and L21 � 2, L31 � �1, and L32 � �2. Notice that the elementary row operation
Ri � kRj has its multiplier k placed in the (i, j) entry of L.

Find an LU factorization of

A � ≥ 3 1 3 �4

6 4 8 �10

3 2 5 �1

�9 5 �2 �4

¥

L � £ 1 0 0

2 1 0

�1 �2 1

§

x � £ 1
2

3

�1

§
2x1 � 1 � x2 � 3x3 � 1 so that x1 � 1

2

�3x2 � �6 � 3x3 � �9 so that x2 � 3, and

x3 � �1,

2x3 � �2

�3x2 � 3x3 � �6

 2x1 � x2 � 3x3 � 1

x � £ x1

x2

x3

§y � £ 1

�6

�2

§
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Solution Reducing A to row echelon form, we have

The first three multipliers are 2, 1, and �3, and these go into the subdiagonal entries
of the first column of L. So, thus far,

The next two multipliers are and 4, so we continue to fill out L:

The final multiplier, �1, replaces the last * in L to give

Thus, an LU factorization of A is

as is easily checked.

A � ≥ 3 1 3 �4

6 4 8 �10

3 2 5 �1

�9 5 �2 �4

¥ � ≥ 1 0 0 0

2 1 0 0

1 1
2 1 0

�3 4 �1 1

¥ ≥ 3 1 3 �4

0 2 2 �2

0 0 1 4

0 0 0 �4

¥ � LU

L � ≥ 1 0 0 0

2 1 0 0

1 1
2 1 0

�3 4 �1 1

¥

L � ≥ 1 0 0 0

2 1 0 0

1 1
2 1 0

�3 4 * 1

¥
1
2

L � ≥ 1 0 0 0

2 1 0 0

1 * 1 0

�3 * * 1

¥

¡
R4� 1�12R3 ≥ 3 1 3 �4

0 2 2 �2

0 0 1 4

0 0 0 �4

¥ � U

¡
R3�1

2R2

R4�4R2 ≥ 3 1 3 �4

0 2 2 �2

0 0 1 4

0 0 �1 �8

¥
≥ 3 1 3 �4

0 2 2 �2

0 1 2 3

0 8 7 �16

¥R2�2R1

R3�R1

R4�(�3)R1A � ≥ 3 1 3 �4

6 4 8 �10

3 2 5 �1

�9 5 �2 �4

¥
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Remarks
• In applying this method, it is important to note that the elementary row op-

erations Ri � kRj must be performed from top to bottom within each column (using
the diagonal entry as the pivot), and column by column from left to right. To
illustrate what can go wrong if we do not obey these rules, consider the following row
reduction:

This time the multipliers would be placed in L as follows: L32 � 2, L21 � 1. We would
get

but . (Check this! Find a correct LU factorization of A.)
• An alternative way to construct L is to observe that the multipliers can be

obtained directly from the matrices obtained at the intermediate steps of the row
reduction process. In Example 3.33, examine the pivots and the corresponding
columns of the matrices that arise in the row reduction

The first pivot is 2, which occurs in the first column of A. Dividing the entries of
this column vector that are on or below the diagonal by the pivot produces

The next pivot is �3, which occurs in the second column of A1. Dividing the entries
of this column vector that are on or below the diagonal by the pivot, we obtain

The final pivot (which we did not need to use) is 2, in the third column of U. Divid-
ing the entries of this column vector that are on or below the diagonal by the pivot,
we obtain

If we place the resulting three column vectors side by side in a matrix, we have

which is exactly L once the above-diagonal entries are filled with zeros.

£ 1

2 1

�1 �2 1

§

1

2
£

2

§ � £
1

§

11�32 £�3

6

§ � £ 1

�2

§

1

2
£ 2

4

�2

§ � £ 1

2

�1

§

A � £ 2 1 3

4 �1 3

�2 5 5

§ S A1 � £ 2 1 3

0 �3 �3

0 6 8

§ S £ 2 1 3

0 �3 �3

0 0 2

§ � U

A  LU

L � £ 1 0 0

1 1 0

0 2 1

§
A � £ 1 2 2

1 1 1

2 2 1

§ ¡
R3�2R2 £ 1 2 2

1 1 1

0 0 �1

§ ¡ £R2�R1

1 2 2

0 �1 �1

0 0 �1

§ � U
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Theorem 3. 16

In Chapter 2, we remarked that the row echelon form of a matrix is not unique.
However, if an invertible matrix A has an LU factorization A�LU, then this factoriza-
tion is unique.

If A is an invertible matrix that has an LU factorization, then L and U are unique.

Proof Suppose A � LU and A � L1U1 are two LU factorizations of A. Then LU �
L1U1, where L and L1 are unit lower triangular and U and U1 are upper triangular. In
fact, U and U1 are two (possibly different) row echelon forms of A.

By Exercise 30, L1 is invertible. Because A is invertible, its reduced row echelon
form is an identity matrix I by the Fundamental Theorem of Invertible Matrices.
Hence U also row reduces to I (why?) and so U is invertible also. Therefore,

Hence,

But is unit lower triangular by Exercise 29, and U1U
�1 is upper triangular.

(Why?) It follows that is both unit lower triangular and upper trian-
gular. The only such matrix is the identity matrix, so and . It
follows that L � L1 and U � U1, so the LU factorization of A is unique.

The PT LU Factorization

We now explore the problem of adapting the LU factorization to handle cases where
row interchanges are necessary during Gaussian elimination. Consider the matrix

A straightforward row reduction produces

which is not an upper triangular matrix. However, we can easily convert this into
upper triangular form by swapping rows 2 and 3 of B to get

Alternatively, we can swap rows 2 and 3 of A first. To this end, let P be the elementary
matrix

£ 1 0 0

0 0 1

0 1 0

§

U � £ 1 2 �1

0 3 3

0 0 5

§

A S B � £ 1 2 �1

0 0 5

0 3 3

§
A � £ 1 2 �1

3 6 2

�1 1 4

§

U1U
�1 � IL1

�1L � I
L1

�1L � U1U
�1

L1
�1L

1L1
�1L 2 I � I1U1U

�1 2   so  L1
�1L � U1U

�1

L1
�11LU 2U �1 � L1

�11L1U1 2U �1  so  1L1
�1L 2 1UU �1 2 � 1L1

�1L1 2 1U1U
�1 2
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Example 3. 36

Theorem 3. 17

corresponding to interchanging rows 2 and 3, and let E be the product of the
elementary matrices that then reduce PA to U (so that E�1 � L is unit lower triangu-
lar). Thus EPA � U, so A � (EP)�1U � P�1E�1U � P�1LU.

Now this handles only the case of a single row interchange. In general, P will be the
product of all the row interchange matrices (where P1 is
performed first, and so on.) Such a matrix P is called a permutation matrix. Observe
that a permutation matrix arises from permuting the rows of an identity matrix in
some order. For example, the following are all permutation matrices:

Fortunately, the inverse of a permutation matrix is easy to compute; in fact, no calcu-
lations are needed at all!

If P is a permutation matrix, then P�1 � PT.

Proof We must show that PTP � I. But the ith row of PT is the same as the ith
column of P, and these are both equal to the same standard unit vector e, because P is
a permutation matrix. So

This shows that diagonal entries of PTP are all 1s. On the other hand, if , then
the jth column of P is a different standard unit vector from e—say . Thus, a typical
off-diagonal entry of PTP is given by

Hence PTP is an identity matrix, as we wished to show.

Thus, in general, we can factor a square matrix A as A � P�1LU � PTLU.

Definition Let A be a square matrix. A factorization of A as A � PTLU, where
P is a permutation matrix, L is unit lower triangular, and U is upper triangular, is
called a PTLU factorization of A.

Find a PTLU factorization of .

Solution First we reduce A to row echelon form. Clearly, we need at least one row
interchange.

¡
R24R3 £ 1 2 3

0 �3 �2

0 0 6

§
A � £ 0 0 6

1 2 3

2 1 4

§ ¡
R14R2 £ 1 2 3

0 0 6

2 1 4

§ ¡
R3�2R1 £ 1 2 3

0 0 6

0 �3 �2

§
A � £ 0 0 6

1 2 3

2 1 4

§

1PTP 2 ij � 1ith row of PT 2 1 jth column of P 2 � eTe¿ � e # e¿ � 0

e¿
j  i

1PTP 2 ii � 1ith row of PT 2 1ith column of P 2 � eTe � e # e � 1

c 0 1

1 0
d , £ 0 0 1

1 0 0

0 1 0

§ , ≥ 0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

¥

P1,P2, . . . , PkP � Pk
p P2P1
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Theorem 3. 18

We have used two row interchanges ( and then ), so the required
permutation matrix is

We now find an LU factorization of PA.

Hence L21 � 2, and so

The discussion above justifies the following theorem.

Every square matrix has a PTLU factorization.

Remark Even for an invertible matrix, the PTLU factorization is not unique. In
Example 3.36, a single row interchange also would have worked, leading to
a different P. However, once P has been determined, L and U are unique.

Computational Considerations

If A is , then the total number of operations (multiplications and divisions)
required to solve a linear system Ax � b using an LU factorization of A) is ,
the same as is required for Gaussian elimination (See the Exploration “Counting
Operations,” in Chapter 2.) This is hardly surprising since the forward elimination phase
produces the LU factorization in steps, whereas both forward and backward
substitution require steps. Therefore, for large values of n, the term is dom-
inant. From this point of view, then, Gaussian elimination and the LU factorization are
equivalent.

However, the LU factorization has other advantages:

• From a storage point of view, the LU factorization is very compact because we
can overwrite the entries of A with the entries of L and U as they are computed. In
Example 3.33, we found that

This can be stored as

£ 2 �1 3

2 �3 �3

�1 �2 2

§
A � £ 2 1 3

4 �1 3

�2 5 5

§ � £ 1 0 0

2 1 0

�1 �2 1

§ £ 2 1 3

0 �3 �3

0 0 2

§ � LU

n3>3� n2>2 � n3>3
T 1n 2 � n3>3n � n

R1 4 R3

A � PTLU � £ 0 0 1

1 0 0

0 1 0

§ £ 1 0 0

2 1 0

0 0 1

§ £ 1 2 3

0 �3 �2

0 0 6

§
PA � £ 0 1 0

0 0 1

1 0 0

§ £ 0 0 6

1 2 3

2 1 4

§ � £ 1 2 3

2 1 4

0 0 6

§ ¡
R2�2R1 £ 1 2 3

0 �3 �2

0 0 6

§ � U

P � P2P1 � £ 1 0 0

0 0 1

0 1 0

§ £ 0 1 0

1 0 0

0 0 1

§ � £ 0 1 0

0 0 1

1 0 0

§
R2 4 R3R1 4 R2
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with the entries placed in the order (1,1), (1,2), (1,3), (2,1), (3,1), (2,2), (2,3), (3,2),
(3,3). In other words, the subdiagonal entries of A are replaced by the corresponding
multipliers. (Check that this works!)

• Once an LU factorization of A has been computed, it can be used to solve as
many linear systems of the form Ax � b as we like. We just need to apply the method
of Example 3.34, varying the vector b each time.

• For matrices with certain special forms, especially those with a large number
of zeros (so-called“sparse”matrices) concentrated off the diagonal, there are methods
that will simplify the computation of an LU factorization. In these cases, this method
is faster than Gaussian elimination in solving Ax � b.

• For an invertible matrix A, an LU factorization of A can be used to find A�1, if
necessary. Moreover, this can be done in such a way that it simultaneously yields a
factorization of A�1. (See Exercises 15–18.)

Remark If you have a CAS (such as MATLAB) that has the LU factorization built
in, you may notice some differences between your hand calculations and the
computer output. This is because most CAS’s will automatically try to perform
partial pivoting to reduce round-off errors. (See the Exploration “Partial Pivoting,” in
Chapter 2.) Turing’s paper is an extended discussion of such errors in the context of
matrix factorizations.

This section has served to introduce one of the most useful matrix factorizations.
In subsequent chapters, we will encounter other equally useful factorizations.
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Exercises 3. 4

In Exercises 1–6, solve the system Ax � b using the given LU
factorization of A.

1.

2.

3.

4.

� £ 2 �4 0

0 5 4

0 0 2

§ , b � £ 2

0

�5

§
A � £ 2 �4 0

3 �1 4

�1 2 2

§ � £ 1 0 0
3
2 1 0

�1
2 0 1

§
� £ 2 1 �2

0 4 �6

0 0 �7
2

§ , b � £�3

1

0

§
A � £ 2 1 �2

�2 3 �4

4 �3 0

§ � £ 1 0 0

�1 1 0

2 �5
4 1

§
A � c 4 �2

2 3
d � c 1 0

1
2 1
d c 4 �2

0 4
d , b � c 0

8
d

A � c�2 1

2 5
d � c 1 0

�1 1
d c�2 1

0 6
d , b � c 5

1
d 5.

6.

In Exercises 7–12, find an LU factorization of the given matrix.

7. 8. c 2 �4

3 1
dc 1 2

�3 �1
d

� ≥ 1 4 3 0

0 3 5 2

0 0 �2 0

0 0 0 1

¥ , b � ≥ 1

�3

�1

0

¥
A � ≥ 1 4 3 0

�2 �5 �1 2

3 6 �3 �4

�5 �8 9 9

¥ � ≥ 1 0 0 0

�2 1 0 0

3 �2 1 0

�5 4 �2 1

¥
� ≥ 2 �1 0 0

0 �1 5 �3

0 0 1 0

0 0 0 4

¥ , b � ≥ 1

2

2

1

¥
A � ≥ 2 �1 0 0

6 �4 5 �3

8 �4 1 0

4 �1 0 7

¥ � ≥ 1 0 0 0

3 1 0 0

4 0 1 0

2 �1 5 1

¥
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9. 10.

11.

12.

Generalize the definition of LU factorization to nonsquare
matrices by simply requiring U to be a matrix in row echelon
form. With this modification, find an LU factorization of the
matrices in Exercises 13 and 14.

13.

14.

For an invertible matrix with an LU factorization A � LU,
both L and U will be invertible and A�1 � U�1L�1. In
Exercises 15 and 16, find L�1, U�1, and A�1 for the given
matrix.

15. A in Exercise 1 16. A in Exercise 4

The inverse of a matrix can also be computed by solving sev-
eral systems of equations using the method of Example 3.34.
For an matrix A, to find its inverse we need to solve
AX � In for the matrix X. Writing this equation as

, using the matrix-column
form of AX, we see that we need to solve n systems of linear
equations: . Moreover,
we can use the factorization A � LU to solve each one of
these systems.

In Exercises 17 and 18, use the approach just outlined to find
A�1 for the given matrix. Compare with the method of Exer-
cises 15 and 16.

17. A in Exercise 1 18. A in Exercise 4

� en� e2, . . . , AxnAx1 � e1, Ax2

A 3x1  x2
p xn 4 � 3e1  e2

p en 4n � n
n � n

≥ 1 2 0 �1 1

�2 �7 3 8 �2

1 1 3 5 2

0 3 �3 �6 0

¥
£ 1 0 1 �2

0 3 3 1

0 0 0 5

§

≥ 2 2 2 1

�2 4 �1 2

4 4 7 3

6 9 5 8

¥
≥ 1 2 3 �1

2 6 3 0

0 6 �6 7

�1 �2 �9 0

¥
£ 2 2 �1

4 0 4

3 4 4

§£ 1 2 3

4 5 6

8 7 9

§
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In Exercises 19–22, write the given permutation matrix as a
product of elementary (row interchange) matrices.

19. 20.

21. 22. ≥ ¥
In Exercises 23–25, find a PTLU factorization of the given
matrix A.

23. 24.

25.

26. Prove that there are exactly n! permutation
matrices.

In Exercises 27–28, solve the system Ax � b using the given
factorization A � PTLU. Because PPT � I, PTLUx � b can
be rewritten as LUx � Pb. This system can then be solved
using the method of Example 3.34.

27.

28.

� £ 4 1 2

0 �1 1

0 0 2

§ � PTLU, b � £ 16

�4

4

§
A � £ 8 3 5

4 1 2

4 0 3

§ � £ 0 1 0

0 0 1

1 0 0

§ £ 1 0 0

1 1 0

2 �1 1

§
� £ 2 3 2

0 1 �1

0 0 �5
2

§ � PTLU, b � £ 11
5

§
A � £ 0 1 �1

2 3 2

1 1 �1

§ � £ 0 1 0

1 0 0

0 0 1

§ £ 1 0 0

0 1 0
1
2 �1

2 1

§

n � n

A � ≥ 0 �1 1 3

�1 1 1 2

0 1 �1 1

0 0 1 1

¥
A � ≥ 0 0 1 2

�1 1 3 2

0 2 1 1

1 1 �1 0

¥A � £ 0 1 4

�1 2 1

1 3 3

§

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

≥ 0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

¥
≥ 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

¥£ 0 0 1

1 0 0

0 1 0

§
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29. Prove that a product of unit lower triangular matrices
is unit lower triangular.

30. Prove that every unit lower triangular matrix is
invertible and that its inverse is also unit lower
triangular.

An LDU factorization of a square matrix A is a factoriza-
tion A � LDU, where L is a unit lower triangular matrix,
D is a diagonal matrix, and U is a unit upper triangular
matrix (upper triangular with 1s on its diagonal). In
Exercises 31 and 32, find an LDU factorization of A.

31. A in Exercise 1 32. A in Exercise 4

33. If A is symmetric and invertible and has an LDU
factorization, show that U � LT.

34. If A is symmetric and invertible and A � LDLT (with L
unit lower triangular and D diagonal), prove that this
factorization is unique. That is, prove that if we also
have A � L1D1L1

T (with L1 unit lower triangular and D1

diagonal), then L � L1 and D � D1.

Subspaces,  Basis,  Dimension,  and Rank
This section introduces perhaps the most important ideas in the entire book. We have
already seen that there is an interplay between geometry and algebra: We can often
use geometric intuition and reasoning to obtain algebraic results, and the power of
algebra will often allow us to extend our findings well beyond the geometric settings
in which they first arose.

In our study of vectors, we have already encountered all of the concepts in this
section informally. Here, we will start to become more formal by giving definitions
for the key ideas. As you’ll see, the notion of a subspace is simply an algebraic
generalization of the geometric examples of lines and planes through the origin. The
fundamental concept of a basis for a subspace is then derived from the idea of direc-
tion vectors for such lines and planes. The concept of a basis will allow us to give a
precise definition of dimension that agrees with an intuitive, geometric idea of the
term, yet is flexible enough to allow generalization to other settings.

You will also begin to see that these ideas shed more light on what you already
know about matrices and the solution of systems of linear equations. In Chapter 6, we
will encounter all of these fundamental ideas again, in more detail. Consider this
section a “getting to know you” session.

A plane through the origin in �3 “looks like” a copy of �2. Intuitively, we would
agree that they are both “two-dimensional.” Pressed further, we might also say that
any calculation that can be done with vectors in �2 can also be done in a plane
through the origin. In particular, we can add and take scalar multiples (and, more
generally, form linear combinations) of vectors in such a plane, and the results are
other vectors in the same plane. We say that, like �2, a plane through the origin is
closed with respect to the operations of addition and scalar multiplication. (See
Figure 3.2.)

But are the vectors in this plane two- or three-dimensional objects? We might
argue that they are three-dimensional because they live in �3 and therefore have three
components. On the other hand, they can be described as a linear combination of just
two vectors—direction vectors for the plane—and so are two-dimensional objects
living in a two-dimensional plane. The notion of a subspace is the key to resolving
this conundrum.

y

x

z

2u � v
v

2uu

Figure 3. 2
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Theorem 3. 19

Definition A subspace of �n is any collection S of vectors in �n such that:

1. The zero vector 0 is in S.
2. If u and v are in S, then u � v is in S. (S is closed under addition.)
3. If u is in S and c is a scalar, then cu is in S. (S is closed under scalar

multiplication.)

We could have combined properties (2) and (3) and required, equivalently, that S be
closed under linear combinations:

Every line and plane through the origin in �3 is a subspace of �3. It should be clear
geometrically that properties (1) through (3) are satisfied. Here is an algebraic proof
in the case of a plane through the origin. You are asked to give the corresponding
proof for a line in Exercise 9.

Let p be a plane through the origin with direction vectors v1 and v2. Hence,p�
span(v1,v2). The zero vector 0 is in p, since 0 � 0v1 � 0v2. Now let

be two vectors in p. Then

Thus, u � v is a linear combination of v1 and v2 and so is in p.
Now let c be a scalar. Then

which shows that cu is also a linear combination of v1 and v2 and is therefore inp. We
have shown thatp satisfies properties (1) through (3) and hence is a subspace of �3.

If you look carefully at the details of Example 3.37, you will notice that the fact
that v1 and v2 were vectors in �3 played no role at all in the verification of the prop-
erties. Thus, the algebraic method we used should generalize beyond �3 and apply in
situations where we can no longer visualize the geometry. It does. Moreover, the
method of Example 3.37 can serve as a “template” in more general settings. When we
generalize Example 3.37 to the span of an arbitrary set of vectors in any �n, the result
is important enough to be called a theorem.

Let v1, v2, . . . , vk be vectors in �n. Then span(v1, v2, . . . , vk) is a subspace of �n.

Proof Let S � span(v1, v2, . . . , vk). To check property (1) of the definition, we simply
observe that the zero vector 0 is in S, since 0 � 0v1 � 0v2 � � 0vk.p

cu � c 1c1v1 � c2v2 2 � 1cc1 2v1 � 1cc2 2v2

u � v � 1c1v1 � c2v2 2 � 1d1v1 � d2v2 2 � 1c1 � d1 2v1 � 1c2 � d2 2v2

u � c1v1 � c2v2 and v � d1v1 � d2v2

then c1u1 � c2u2 � p � ckuk is in S.

If u1, u2, . . . , uk are in S and c1, c2, . . . , ck are scalars,
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Now let

be two vectors in S. Then

Thus, u � v is a linear combination of v1, v2, . . . , vk and so is in S. This verifies prop-
erty (2).

To show property (3), let c be a scalar. Then

which shows that cu is also a linear combination of v1, v2, . . . , vk and is therefore
in S. We have shown that S satisfies properties (1) through (3) and hence is a subspace
of �n.

We will refer to span(v1, v2, . . . , vk) as the subspace spanned by v1, v2, . . . , vk. We
will often be able to save a lot of work by recognizing when Theorem 3.19 can be
applied.

Show that the set of all vectors that satisfy the conditions x � 3y and z � �2y

forms a subspace of �3.

Solution Substituting the two conditions into yields

Since y is arbitrary, the given set of vectors is span and is thus a subspace of

�3, by Theorem 3.19.

Geometrically, the set of vectors in Example 3.38 represents the line through the

origin in �3 with direction vector £ 3

1

�2

§ .

° £ 3

1

�2

§ ¢
£ 3y

y

�2y

§ � y £ 3

1

�2

§
£xy

z

§
£xy

z

§

� 1cc1 2v1 � 1cc2 2v2 � p � 1cck 2vk

cu � c 1c1v1 � c2v2 � p � ckvk 2
� 1c1 � d1 2v1 � 1c2 � d2 2v2 � p � 1ck � dk 2vk

u � v � 1c1v1 � c2v2 � p � ckvk 2 � 1d1v1 � d2v2 � p � dkvk 2
u � c1v1 � c2v2 � p � ckvk  and  v � d1v1 � d2v2 � p � dkvk
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Determine whether the set of all vectors that satisfy the conditions x � 3y � 1

and z � �2y is a subspace of �3.

Solution This time, we have all vectors of the form

The zero vector is not of this form. (Why not? Try solving ) Hence,

property (1) does not hold, so this set cannot be a subspace of �3.

Determine whether the set of all vectors where y � x2, is a subspace of �2.

Solution These are the vectors of the form —call this set S. This time 

belongs to S (take x � 0), so property (1) holds. Let and be in S.

Then

which, in general, is not in S, since it does not have the correct form; that is, �
(x1 � x2)

2. To be specific, we look for a counterexample. If

then both u and v are in S, but their sum is not in S since 5 Z 32. Thus,

property (2) fails and S is not a subspace of �2.

Remark In order for a set S to be a subspace of some �n, we must prove that prop-
erties (1) through (3) hold in general. However, for S to fail to be a subspace of �n, it is
enough to show that one of the three properties fails to hold. The easiest course is usu-
ally to find a single, specific counterexample to illustrate the failure of the property.
Once you have done so, there is no need to consider the other properties.

Subspaces Associated with Matrices

A great many examples of subspaces arise in the context of matrices. We have already
encountered the most important of these in Chapter 2; we now revisit them with the
notion of a subspace in mind.

u � v � c3
5
d

u � c1
1
d   and  v � c2

4
d

x2
2 x1

2

u � v � c x1 � x2

x1
2 � x2

2 d
v � c x2

x2
2 du � c x1

x1
2 d

0 � c 0
0
dc x

x2 d
cx
y
d ,

£3y � 1

y

�2y

§ � £00
0

§ .
£3y � 1

y

�2y

§

£xy
z

§
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Definition Let A be an matrix.

1. The row space of A is the subspace row(A) of �n spanned by the rows of A.
2. The column space of A is the subspace col(A) of �m spanned by the columns

of A.

Consider the matrix

(a) Determine whether is in the column space of A.

(b) Determine whether is in the row space of A.
(c) Describe row(A) and col(A).

Solution
(a) By Theorem 2.4 and the discussion preceding it, b is a linear combination of the
columns of A if and only if the linear system Ax � b is consistent. We row reduce
the augmented matrix as follows:

Thus, the system is consistent (and, in fact, has a unique solution). Therefore, b is in
col(A). (This example is just Example 2.18, phrased in the terminology of this
section.)

(b) As we also saw in Section 2.3, elementary row operations simply create linear
combinations of the rows of a matrix. That is, they produce vectors only in the row
space of the matrix. If the vector w is in row(A), then w is a linear combination of the

rows of A, so if we augment A by w as it will be possible to apply elementary row

operations to this augmented matrix to reduce it to form using only elemen-

tary row operations of the form Ri � kRj , where i � j—in other words, working from

top to bottom in each column. (Why?)
In this example, we have

¡
R4�9R2 ≥ 1 �1

0 1

0 0

0 0

¥¡

R3�3R1

R4�4R1 ≥ 1 �1

0 1

0 0

0 9

¥c A
w
d � ≥ 1 �1

0 1

3 �3

4 5

¥

c A¿
0
dc A

w
d ,

£ 1 �1

0 1

3 �3

3 12
3

§ ¡ £ 1 0

0 1

0 0

3 32
0

§

w � 34 5 4
b � £ 12

3

§
A � £1 �1

0 1

3 �3

§

m � n
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Theorem 3. 21

Theorem 3. 20

Therefore, w is a linear combination of the rows of A (in fact, these calculations show
that —how?), and thus w is in row(A).

(c) It is easy to check that, for any vector the augmented matrix 

reduces to

in a similar fashion. Therefore, every vector in �2 is in row(A), and so row(A) � �2.
Finding col(A) is identical to solving Example 2.21, wherein we determined that

it coincides with the plane (through the origin) in �3 with equation 3x � z � 0. (We
will discover other ways to answer this type of question shortly.)

Remark We could also have answered part (b) and the first part of part (c) by
observing that any question about the rows of A is the corresponding question about
the columns of AT. So, for example, w is in row(A) if and only if wT is in col(AT ). This
is true if and only if the system ATx � wT is consistent. We can now proceed as in
part (a). (See Exercises 21–24.)

The observations we have made about the relationship between elementary row
operations and the row space are summarized in the following theorem.

Let B be any matrix that is row equivalent to a matrix A. Then row(B) � row(A).

Proof The matrix A can be transformed into B by a sequence of row operations.
Consequently, the rows of B are linear combinations of the rows of A; hence, linear
combinations of the rows of B are linear combinations of the rows of A. (See Exer-
cise 21 in Section 2.3.) It follows that row(B) row(A).

On the other hand, reversing these row operations transforms B into A. There-
fore, the above argument shows that row(A) row(B). Combining these results, we
have row(A) � row(B).

There is another important subspace that we have already encountered: the set of
solutions of a homogeneous system of linear equations. It is easy to prove that this
subspace satisfies the three subspace properties.

Let A be an matrix and let N be the set of solutions of the homogeneous
linear system Ax � 0. Then N is a subspace of �n.

Proof [Note that x must be a (column) vector in �n in order for Ax to be defined and
that 0 � 0m is the zero vector in �m.] Since A0n � 0m, 0n is in N. Now let u and v be in
N. Therefore, Au � 0 and Av � 0. It follows that

A1u � v 2 � Au � Av � 0 � 0 � 0

m � n

�

�

≥ 1  0

0  1

0  0

0  0

¥
c A

w
dw � 3x y 4 ,w � 4 31 �1 4 � 9 30 1 4
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Theorem 3. 22

Hence, u � v is in N. Finally, for any scalar c,

and therefore cu is also in N. It follows that N is a subspace of �n.

Definition Let A be an matrix. The null space of A is the subspace of �n

consisting of solutions of the homogeneous linear system Ax � 0. It is denoted 
by null(A).

The fact that the null space of a matrix is a subspace allows us to prove what in-
tuition and examples have led us to understand about the solutions of linear systems:
They have either no solution, a unique solution, or infinitely many solutions.

Let A be a matrix whose entries are real numbers. For any system of linear
equations Ax � b, exactly one of the following is true:

a. There is no solution.
b. There is a unique solution.
c. There are infinitely many solutions.

At first glance, it is not entirely clear how we should proceed to prove this theo-
rem. A little reflection should persuade you that what we are really being asked to
prove is that if (a) and (b) are not true, then (c) is the only other possibility. That is,
if there is more than one solution, then there cannot be just two or even finitely many,
but there must be infinitely many.

Proof If the system Ax � b has either no solutions or exactly one solution, we are
done. Assume, then, that there are at least two distinct solutions of Ax � b—say, x1

and x2. Thus,

with x1 Z x2. It follows that

Set x0 � x1 � x2. Then x0 Z 0 and Ax0 � 0. Hence, the null space of A is nontrivial,
and since null(A) is closed under scalar multiplication, cx0 is in null(A) for every
scalar c. Consequently, the null space of A contains infinitely many vectors (since it
contains at least every vector of the form cx0 and there are infinitely many of these).

Now, consider the (infinitely many) vectors of the form x1 � cx0, as c varies through
the set of real numbers. We have

Therefore, there are infinitely many solutions of the equation Ax � b.

Basis

We can extract a bit more from the intuitive idea that subspaces are generalizations
of planes through the origin in �3. A plane is spanned by any two vectors that are

A1x1 � cx0 2 � Ax1 � cAx0 � b � c0 � b

A1x1 � x2 2 � Ax1 � Ax2 � b � b � 0

Ax1 � b  and  Ax2 � b

m � n

A1cu 2 � c 1Au 2 � c0 � 0
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parallel to the plane but are not parallel to each other. In algebraic parlance, two such
vectors span the plane and are linearly independent. Fewer than two vectors will not
work; more than two vectors is not necessary. This is the essence of a basis for a
subspace.

Definition A basis for a subspace S of �n is a set of vectors in S that

1. spans S and
2. is linearly independent.

In Section 2.3, we saw that the standard unit vectors e1, e2, . . . en in �n are linearly
independent and span �n.Therefore, they form a basis for �n, called the standard basis.

In Example 2.19, we showed that Since and are

also linearly independent (as they are not multiples), they form a basis for �2.

A subspace can (and will) have more than one basis. For example, we have just seen

that �2 has the standard basis and the basis However, we

will prove shortly that the number of vectors in a basis for a given subspace will
always be the same.

Find a basis for S � span(u, v, w), where

Solution The vectors u, v, and w already span S, so they will be a basis for S if they
are also linearly independent. It is easy to determine that they are not; indeed, w �
2u � 3v. Therefore, we can ignore w, since any linear combinations involving u, v,
and w can be rewritten to involve u and v alone. (Also see Exercise 47 in Section 2.3.)
This  implies that S � span (u, v, w) � span (u, v), and since u and v are certainly lin-
early independent (why?), they form a basis for S. (Geometrically, this means that u,
v, and w all lie in the same plane and u and v can serve as a set of direction vectors for
this plane.)

u � £ 3

�1

5

§ , v � £21
3

§ ,  and  w � £ 0

�5

1

§

e c 2

�1
d , c1

3
d f .e c1

0
d , c0

1
d f

c1
3
dc 2

�1
d�2 � spana c 2

�1
d , c1

3
d b .
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Find a basis for the row space of

Solution The reduced row echelon form of A is

By Theorem 3.20, row(A) � row(R), so it is enough to find a basis for the row space
of R. But row(R) is clearly spanned by its nonzero rows, and it is easy to check that the
staircase pattern forces the first three rows of R to be linearly independent. (This is a
general fact, one that you will need to establish to prove Exercise 33.) Therefore, a
basis for the row space of A is

We can use the method of Example 3.45 to find a basis for the subspace spanned
by a given set of vectors.

Rework Example 3.44 using the method from Example 3.45.

Solution We transpose u, v, and w to get row vectors and then form a matrix with
these vectors as its rows:

Proceeding as in Example 3.45, we reduce B to its reduced row echelon form

and use the nonzero row vectors as a basis for the row space. Since we started with
column vectors, we must transpose again. Thus, a basis for span(u, v, w) is

Remarks
• In fact, we do not need to go all the way to reduced row echelon form—row ech-

elon form is far enough. If U is a row echelon form of A, then the nonzero row vectors

• £10
8
5

§ , £ 0

1

�1
5

§ ¶

£1 0 8
5

0 1 �1
5

0 0 0

§
B � £3 �1 5

2 1 3

0 �5 1

§

5 31 0 1 0 �1 4 , 30 1 2 0 3 4 , 30 0 0 1 4 4 6

R � ≥ 1 0 1 0 �1

0 1 2 0 3

0 0 0 1 4

0 0 0 0 0

¥

A � ≥ 1 1 3 1 6

2 �1 0 1 �1

�3 2 1 �2 1

4 1 6 1 3

¥
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of U will form a basis for row(A) (see Exercise 33). This approach has the advantage of
(often) allowing us to avoid fractions. In Example 3.46, B can be reduced to

which gives us the basis

for span(u, v, w).
• Observe that the methods used in Example 3.44, Example 3.46, and the Remark

above will generally produce different bases.

We now turn to the problem of finding a basis for the column space of a matrix
A. One method is simply to transpose the matrix. The column vectors of A become
the row vectors of AT, and we can apply the method of Example 3.45 to find a basis
for row(AT ). Transposing these vectors then gives us a basis for col(A). (You are asked
to do this in Exercises 21–24.) This approach, however, requires performing a new set
of row operations on AT.

Instead, we prefer to take an approach that allows us to use the row reduced form
of A that we have already computed. Recall that a product Ax of a matrix and a vector
corresponds to a linear combination of the columns of A with the entries of x as co-
efficients. Thus, a nontrivial solution to Ax � 0 represents a dependence relation
among the columns of A. Since elementary row operations do not affect the solution
set, if A is row equivalent to R, the columns of A have the same dependence relationships
as the columns of R. This important observation is the basis (no pun intended!) for the
technique we now use to find a basis for col(A).

Find a basis for the column space of the matrix from Example 3.45,

Solution Let ai denote a column vector of A and let ri denote a column vector of the
reduced echelon form

We can quickly see by inspection that r3 � r1 � 2r2 and r5 � �r1 � 3r2 � 4r4. (Check
that, as predicted, the corresponding column vectors of A satisfy the same depen-
dence relations.) Thus, r3 and r5 contribute nothing to col(R). The remaining column

R � ≥ 1 0 1 0 �1

0 1 2 0 3

0 0 0 1 4

0 0 0 0 0

¥

A � ≥ 1 1 3 1 6

2 �1 0 1 �1

�3 2 1 �2 1

4 1 6 1 3

¥

• £ 3

�1

5

§ , £ 0

�5

1

§ ¶

U � £3 �1 5

0 �5 1

0 0 0

§
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vectors, r1, r2, and r4 , are linearly independent, since they are just standard unit vec-
tors. The corresponding statements are therefore true of the column vectors of A.

Thus, among the column vectors of A, we eliminate the dependent ones (a3 and a5),
and the remaining ones will be linearly independent and hence form a basis for col(A).
What is the fastest way to find this basis? Use the columns of A that correspond to the
columns of R containing the leading 1s. A basis for col(A) is

Warning Elementary row operations change the column space! In our example,
col(A) Z col(R), since every vector in col(R) has its fourth component equal to 0 but
this is certainly not true of col(A). So we must go back to the original matrix A to get
the column vectors for a basis of col(A). To be specific, in Example 3.47, r1, r2, and r4

do not form a basis for the column space of A.

Find a basis for the null space of matrix A from Example 3.47.

Solution There is really nothing new here except the terminology. We simply have to
find and describe the solutions of the homogeneous system Ax � 0. We have already
computed the reduced row echelon form R of A, so all that remains to be done in
Gauss-Jordan elimination is to solve for the leading variables in terms of the free
variables. The final augmented matrix is

If

then the leading 1s are in columns 1, 2, and 4, so we solve for x1, x2, and x4 in terms of
the free variables x3 and x5. We get x1 � �x3 � x5, x2 � �2x3 � 3x5, and x4 � �4x5.
Setting x3 � s and x5 � t, we obtain

Thus, u and v span null(A), and since they are linearly independent, they form a basis
for null(A).

x � Ex1

x2

x3

x4

x5

U � E �s � t

�2s � 3t

s

�4t

t

U � sE�1

�2

1

0

0

U � t E 1

�3

0

�4

1

U � su � t v

x � Ex1

x2

x3

x4

x5

U
3R � 0 4 � ≥ 1 0 1 0 �1

0 1 2 0 3

0 0 0 1 4

0 0 0 0 0

4 00
0

0

¥

5a1, a2, a46 � μ ≥ 1

2

�3

4

¥ , ≥ 1

�1

2

1

¥ , ≥ 1

1

�2

1

¥ ∂
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Theorem 3. 23

Following is a summary of the most effective procedure to use to find bases for
the row space, the column space, and the null space of a matrix A.

1. Find the reduced row echelon form R of A.
2. Use the nonzero row vectors of R (containing the leading 1s) to form a basis

for row(A).
3. Use the column vectors of A that correspond to the columns of R containing

the leading 1s (the pivot columns) to form a basis for col(A).
4. Solve for the leading variables of Rx � 0 in terms of the free variables, set the

free variables equal to parameters, substitute back into x, and write the result
as a linear combination of f vectors (where f is the number of free variables).
These f vectors form a basis for null(A).

If we do not need to find the null space, then it is faster to simply reduce A to row
echelon form to find bases for the row and column spaces. Steps 2 and 3 above remain
valid (with the substitution of the word “pivots” for “leading 1s”).

Dimension and Rank

We have observed that although a subspace will have different bases, each basis has
the same number of vectors. This fundamental fact will be of vital importance from
here on in this book.

The Basis Theorem

Let S be a subspace of �n. Then any two bases for S have the same number of
vectors.

Proof Let � {u1, u2, . . . , ur} and � {v1, v2, . . . , vs} be bases for S. We need to prove
that r � s. We do so by showing that neither of the other two possibilities, r � s or
r � s, can occur.

Suppose that r � s. We will show that this forces to be a linearly dependent set
of vectors. To this end, let

(1)

Since is a basis for S, we can write each vi as a linear combination of the elements uj:

(2)

Substituting the equations (2) into equation (1), we obtain

� p � cs1as1u1 � p � asrur 2 � 0c11a11u1 � p � a1rur 2 � c21a21u1 � p � a2rur 2
vs � as1u1 � as2u2 � p � asrur

o
v2 � a21u1 � a22u2 � p � a2rur

v1 � a11u1 � a12u2 � p � a1rur

B

c1v1 � c2v2 � p � csvs � 0

C

CB
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Sherlock Holmes noted, “When
you have eliminated the impossi-
ble, whatever remains, however
improbable, must be the truth”
(from The Sign of Four by Sir
Arthur Conan Doyle).
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Regrouping, we have

Now, since is a basis, the uj’s are linearly independent. So each of the expressions in
parentheses must be zero:

This is a homogeneous system of r linear equations in the s variables c1, c2, . . . , cs. (The
fact that the variables appear to the left of the coefficients makes no difference.) Since
r � s, we know from Theorem 2.3 that there are infinitely many solutions. In partic-
ular, there is a nontrivial solution, giving a nontrivial dependence relation in equa-
tion (1). Thus, is a linearly dependent set of vectors. But this finding contradicts the
fact that was given to be a basis and hence linearly independent. We conclude that 
r � s is not possible. Similarly (interchanging the roles of and ), we find that r � s
leads to a contradiction. Hence, we must have r � s, as desired.

Since all bases for a given subspace must have the same number of vectors, we can
attach a name to this number.

Definition If S is a subspace of �n, then the number of vectors in a basis for S
is called the dimension of S, denoted dim S.

Remark The zero vector 0 by itself is always a subspace of �n. (Why?) Yet any set
containing the zero vector (and, in particular, {0}) is linearly dependent, so {0} cannot
have a basis. We define dim {0} to be 0.

Since the standard basis for �n has n vectors, dim �n � n. (Note that this result agrees
with our intuitive understanding of dimension for n � 3.)

In Examples 3.45 through 3.48, we found that row(A) has a basis with three vectors,
col(A) has a basis with three vectors, and null(A) has a basis with two vectors. Hence,
dim (row(A)) � 3, dim (col(A)) � 3, and dim (null(A)) � 2.

A single example is not enough on which to speculate, but the fact that the row
and column spaces in Example 3.50 have the same dimension is no accident. Nor is
the fact that the sum of dim (col(A)) and dim (null(A)) is 5, the number of columns
of A. We now prove that these relationships are true in general.

CB
C

C

c1a1r � c2a2r � p � csasr �  0
o    

c1a12 � c2a22 � p � csas2 �  0

c1a11 � c2a21 � p � csas1 �  0

B

� p � 1c1a1r � c2a2r � p � csasr 2ur � 0

1c1a11 � c2a21 � p � csas1 2u1 � 1c1a12 � c2a22 � p � csas2 2u2
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Theorem 3. 25

Theorem 3. 24 The row and column spaces of a matrix A have the same dimension.

Proof Let R be the reduced row echelon form of A. By Theorem 3.20, row(A) �
row(R), so 

Let this number be called r.
Now col(A) Z col(R), but the columns of A and R have the same dependence re-

lationships. Therefore, dim (col(A)) � dim (col(R)). Since there are r leading 1s, R
has r columns that are standard unit vectors, e1, e2, . . . , er. (These will be vectors in �m

if A and R are m � n matrices.) These r vectors are linearly independent, and the
remaining columns of R are linear combinations of them. Thus, dim (col(R)) � r. It
follows that dim (row(A)) � r � dim (col(A)), as we wished to prove.

Definition The rank of a matrix A is the dimension of its row and column
spaces and is denoted by rank(A).

For Example 3.50, we can thus write rank(A) � 3.

Remarks
• The preceding definition agrees with the more informal definition of rank

that was introduced in Chapter 2. The advantage of our new definition is that it is
much more flexible.

• The rank of a matrix simultaneously gives us information about linear
dependence among the row vectors of the matrix and among its column vectors. In
particular, it tells us the number of rows and columns that are linearly independent
(and this number is the same in each case!).

Since the row vectors of A are the column vectors of AT, Theorem 3.24 has the
following immediate corollary.

For any matrix A,

Proof We have

Definition The nullity of a matrix A is the dimension of its null space and is
denoted by nullity(A).

� rank1A2� dim 1row1A2 2 rank1AT 2 � dim 1col1AT 2 2
rank1AT 2 � rank1A2

�  number of leading 1s of R

�  number of nonzero rows of R

 dim 1row 1A 2 2 �  dim 1row 1R 2 2
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The rank of a matrix was first de-
fined in 1878 by Georg Frobenius
(1849–1917), although he defined 
it using determinants and not as we
have done here. (See Chapter 4.)
Frobenius was a German 
mathematician who received his
doctorate from and later taught
at the University of Berlin. Best
known for his contributions to
group theory, Frobenius used
matrices in his work on group
representations.
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Theorem 3. 26

In other words, nullity(A) is the dimension of the solution space of Ax � 0, which
is the same as the number of free variables in the solution. We can now revisit the
Rank Theorem (Theorem 2.2), rephrasing it in terms of our new definitions.

The Rank Theorem

If A is an matrix, then

Proof Let R be the reduced row echelon form of A, and suppose that rank(A) � r.
Then R has r leading 1s, so there are r leading variables and n � r free variables in the
solution to Ax � 0. Since dim (null(A)) � n � r, we have

Often, when we need to know the nullity of a matrix, we do not need to know the
actual solution of Ax � 0. The Rank Theorem is extremely useful in such situations,
as the following example illustrates.

Find the nullity of each of the following matrices:

Solution Since the two columns of M are clearly linearly independent, rank(M) � 2.
Thus, by the Rank Theorem, nullity(M) � 2 � rank(M) � 2 � 2 � 0.

There is no obvious dependence among the rows or columns of N, so we apply
row operations to reduce it to

We have reduced the matrix far enough (we do not need reduced row echelon form
here, since we are not looking for a basis for the null space). We see that there are only
two nonzero rows, so rank(N) � 2. Hence, nullity(N) � 4 � rank(N) � 4 � 2 � 2.

The results of this section allow us to extend the Fundamental Theorem of
Invertible Matrices (Theorem 3.12).

£2 1 �2 �1

0 2 1 3

0 0 0 0

§

N � £2 1 �2 �1

4 4 �3 1

2 7 1 8

§
M � ≥ 2 3

1 5

4 7

3 6

¥   and

� n

 rank1A2 � nullity1A2 � r � 1n � r 2

rank1A2 � nullity1A2 � n

m � n
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Theorem 3. 27 The Fundamental Theorem of Invertible Matrices: Version 2

Let A be an matrix. The following statements are equivalent:

a. A is invertible.
b. Ax � b has a unique solution for every b in �n.
c. Ax � 0 has only the trivial solution.
d. The reduced row echelon form of A is In.
e. A is a product of elementary matrices.
f. rank(A) � n
g. nullity(A) � 0
h. The column vectors of A are linearly independent.
i. The column vectors of A span �n.
j. The column vectors of A form a basis for �n.
k. The row vectors of A are linearly independent.
l. The row vectors of A span �n.
m. The row vectors of A form a basis for �n.

Proof We have already established the equivalence of (a) through (e). It remains to
be shown that statements (f) to (m) are equivalent to the first five statements.

(f) 3 (g) Since rank(A) � nullity(A) � n when A is an matrix, it follows from
the Rank Theorem that rank(A) � n if and only if nullity(A) � 0.

(f) (d) (c) (h) If rank(A) � n, then the reduced row echelon form of A has
n leading 1s and so is In. From (d) (c) we know that Ax � 0 has only the trivial so-
lution, which implies that the column vectors of A are linearly independent, since Ax
is just a linear combination of the column vectors of A.

(h) (i) If the column vectors of A are linearly independent, then Ax � 0 has only
the trivial solution. Thus, by (c) (b), Ax � b has a unique solution for every b in
�n. This means that every vector b in �n can be written as a linear combination of the
column vectors of A, establishing (i).

(i) (j) If the column vectors of A span �n, then col(A) � �n by definition,
so rank(A) � dim (col(A)) � n. This is (f), and we have already established that
(f) (h). We conclude that the column vectors of A are linearly independent and so
form a basis for �n, since, by assumption, they also span �n.

(j) (f) If the column vectors of A form a basis for �n, then, in particular, they are
linearly independent. It follows that the reduced row echelon form of A contains n
leading 1s, and thus rank(A) � n.

The above discussion shows that (f) (d) (c) (h) (i) (j) (f) 3 (g).
Now recall that, by Theorem 3.25, rank(AT ) � rank(A), so what we have just proved
gives us the corresponding results about the column vectors of AT. These are then
results about the row vectors of A, bringing (k), (l), and (m) into the network of
equivalences and completing the proof.

Theorems such as the Fundamental Theorem are not merely of theoretical inter-
est. They are tremendous labor-saving devices as well. The Fundamental Theorem
has already allowed us to cut in half the work needed to check that two square matri-
ces are inverses. It also simplifies the task of showing that certain sets of vectors are
bases for �n. Indeed, when we have a set of n vectors in �n, that set will be a basis for
�n if either of the necessary properties of linear independence or spanning set is true.
The next example shows how easy the calculations can be.

111111

1

1

1

1
1

1
111

n � n

n � n
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The nullity of a matrix was defined
in 1884 by James Joseph Sylvester
(1814–1887), who was interested in
invariants—properties of matrices
that do not change under certain
types of transformations. Born in
England, Sylvester became the
second president of the London
Mathematical Society. In 1878,
while teaching at Johns Hopkins
University in Baltimore, he
founded the American Journal of
Mathematics, the first mathematical
journal in the United States.
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Theorem 3. 28

Show that the vectors

form a basis for �3.

Solution According to the Fundamental Theorem, the vectors will form a basis for
�3 if and only if a matrix with these vectors as its columns (or rows) has rank 3. We
perform just enough row operations to determine this:

We see that A has rank 3, so the given vectors are a basis for �3 by the equivalence of
(f) and (j).

The next theorem is an application of both the Rank Theorem and the Funda-
mental Theorem. We will require this result in Chapters 5 and 7.

Let A be an matrix. Then:

a. rank(ATA) � rank(A)
b. The n � n matrix ATA is invertible if and only if rank(A) � n.

Proof
(a) Since ATA is , it has the same number of columns as A. The Rank Theorem
then tells us that

Hence, to show that rank(A) � rank(ATA), it is enough to show that nullity(A) � nul-
lity(ATA). We will do so by establishing that the null spaces of A and ATA are the same.

To this end, let x be in null(A) so that Ax � 0. Then ATAx � AT0 � 0, and thus
x is in null(ATA). Conversely, let x be in null(ATA). Then ATAx � 0, so xTATAx �
xT0 � 0. But then

and hence Ax � 0, by Theorem 1.2(d). Therefore, x is in null(A), so null(A) �
null(ATA), as required.

(b) By the Fundamental Theorem, the matrix ATA is invertible if and only if
rank(ATA) � n. But, by (a) this is so if and only if rank(A) � n.

Coordinates

We now return to one of the questions posed at the very beginning of this section:
How should we view vectors in �3 that live in a plane through the origin? Are they
two-dimensional or three-dimensional? The notions of basis and dimension will help
clarify things.

n � n

1Ax 2 # 1Ax 2 � 1Ax 2T1Ax 2 � xTATAx � 0

rank1A2 � nullity1A2 � n � rank1ATA2 � nullity1ATA2
n � n

m � n

A � £1 �1 4

2 0 9

3 1 7

§ ¡ £1 �1 4

0 2 1

0 0 �7

§

£ 12
3

§ , £�1

0

1

§ ,  and  £ 49
7

§
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Theorem 3. 29

A plane through the origin is a two-dimensional subspace of �3, with any set of
two direction vectors serving as a basis. Basis vectors locate coordinate axes in the
plane/subspace, in turn allowing us to view the plane as a “copy” of �2. Before we
illustrate this approach, we prove a theorem guaranteeing that “coordinates” that
arise in this way are unique.

Let S be a subspace of �n and let be a basis for S. For every
vector v in S, there is exactly one way to write v as a linear combination of the basis
vectors in :

Proof Since is a basis, it spans S, so v can be written in at least one way as a linear
combination of v1, v2, . . . , vk. Let one of these linear combinations be

Our task is to show that this is the only way to write v as a linear combination of
v1, v2, . . . , vk. To this end, suppose that we also have

Then

Rearranging (using properties of vector algebra), we obtain

Since is a basis, v1, v2, . . . , vk are linearly independent. Therefore,

In other words, c1 � d1, c2 � d2, . . . , ck � dk, and the two linear combinations are
actually the same. Thus, there is exactly one way to write v as a linear combination of
the basis vectors in 

Definition Let S be a subspace of �n and let be a basis for
S. Let v be a vector in S, and write v � c1v1 � c2v2 � p � ckvk. Then c1, c2, . . . , ck

are called the coordinates of v with respect to , and the column vector

is called the coordinate vector of v with respect to .

Let be the standard basis for �3. Find the coordinate vector of

with respect to E.

v � £27
4

§
E � 5e1, e2, e36

B

3v 4B � ≥ c1

c2

o
ck

¥
B

B � 5v1, v2, . . . , vk6
B.

1c1 � d1 2 � 1c2 � d2 2 � p � 1ck � dk 2 � 0

B

1c1 � d1 2v1 � 1c2 � d2 2v2 � p � 1ck � dk 2vk � 0

c1v1 � c2v2 � p � ckvk � d1v1 � d2v2 � p � dkvk

v � d1v1 � d2v2 � p � dkvk

v � c1v1 � c2v2 � p � ckvk

B

v � c1v1 � c2v2 � p � ckvk

B

B � 5v1, v2, . . . , vk6
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Solution Since v � 2e1 � 7e2 � 4e3,

It should be clear that the coordinate vector of every (column) vector in �n with
respect to the standard basis is just the vector itself.

In Example 3.44, we saw that and are three vec-

tors in the same subspace (plane through the origin) S of �3 and that is a
basis for S. Since w � 2u � 3v, we have

See Figure 3.3.

3w 4B � c 2

�3
d

B � 5u, v6w � £ 0

�5

1

§u � £ 3

�1

5

§ , v � £ 21
3

§ ,

3v 4E � £27
4

§
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Figure 3. 3
The coordinates of a vector with
respect to a basis

In Exercises 1–4, let S be the collection of vectors in �2

that satisfy the given property. In each case, either prove that
S forms a subspace of �2 or give a counterexample to show
that it does not.

1. 2.

3. 4.

In Exercises 5–8, let S be the collection of vectors in �3

that satisfy the given property. In each case, either prove that
S forms a subspace of �3 or give a counterexample to show
that it does not.

5. 6. z � 2x, y � 0x � y � z

£xy
z

§
xy 
 0y � 2x

x 
 0, y 
 0x � 0

cx
y
d 7. 8.

9. Prove that every line through the origin in �3 is a sub-
space of �3.

10. Suppose S consists of all points in �2 that are on the
x-axis or the y-axis (or both). (S is called the union of
the two axes.) Is S a subspace of �2? Why or why not?

In Exercises 11 and 12, determine whether b is in col(A) and
whether w is in row(A), as in Example 3.41.

11.

12. A � £ 1 1 �1

1 3 0

3 �1 �5

§ , b � £ 12
1

§ , w � 31 �3 �3 4
A � c 1 0 �1

1 1 1
d , b � c 3

2
d , w � 3�1 1 1 4

�x � y � � �y � z �x � y � z � 1

Exercises 3. 5

w � 2u � 3v�3v

2u u

v
x

y

z
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216 Chapter 3 Matrices

13. In Exercise 11, determine whether w is in row(A),
using the method described in the Remark following
Example 3.41.

14. In Exercise 12, determine whether w is in row(A)
using the method described in the Remark following
Example 3.41.

15. If A is the matrix in Exercise 11, is in null(A)?

16. If A is the matrix in Exercise 12, is in null(A)?

In Exercises 17–20, give bases for row(A), col(A), and null(A).

17. 18.

19.

20.

In Exercises 21–24, find bases for row(A) and col(A) in the
given exercises using AT.

21. Exercise 17 22. Exercise 18

23. Exercise 19 24. Exercise 20

25. Explain carefully why your answers to Exercises 17
and 21 are both correct even though there appear to be
differences.

26. Explain carefully why your answers to Exercises 18
and 22 are both correct even though there appear to
be differences.

In Exercises 27–30, find a basis for the span of the given vectors.

27. 28.

29. 32 �3 1 4 , 31 �1 0 4 , 34 �4 1 4
£ 11

1

§ , £ 21
0

§ , £ 01
1

§ , £ 12
2

§£ 1

�1

0

§ , £�1

0

1

§ , £ 0

1

�1

§

A � £ 2 �4 0 2 1

�1 2 1 2 3

1 �2 1 4 4

§
A � £ 1 1 0 1

0 1 �1 1

0 1 �1 �1

§
A � £ 1 1 �1

1 5 1

1 �1 �2

§A � c 1 0 �1

1 1 1
d

v � £ 7

�1

2

§
v � £�1

3

�1

§

30.

For Exercises 31 and 32, find bases for the spans of the vectors
in the given exercises from among the vectors themselves.

31. Exercise 29 32. Exercise 30

33. Prove that if R is a matrix in echelon form, then a basis
for row(R) consists of the nonzero rows of R.

34. Prove that if the columns of A are linearly indepen-
dent, then they must form a basis for col(A).

For Exercises 35–38, give the rank and the nullity of the
matrices in the given exercises.

35. Exercise 17

36. Exercise 18

37. Exercise 19

38. Exercise 20

39. If A is a 3 � 5 matrix, explain why the columns of A
must be linearly dependent.

40. If A is a 4 � 2 matrix, explain why the rows of A must
be linearly dependent.

41. If A is a 3 � 5 matrix, what are the possible values of
nullity(A)?

42. If A is a 4 � 2 matrix, what are the possible values of
nullity(A)?

In Exercises 43 and 44, find all possible values of rank(A) as
a varies.

43. 44.

Answer Exercises 45–48 by considering the matrix with the
given vectors as its columns.

45. Do form a basis for �3?

46. Do form a basis for �3?

47. Do form a basis for �4?≥ 1

1

1

0

¥ , ≥ 1

1

0

1

¥ , ≥ 1

0

1

1

¥ , ≥ 0

1

1

1

¥
£ 1

�1

2

§ , £�2

1

�5

§ , £ 11
4

§
£11

0

§ , £10
1

§ , £01
1

§

A � £ a 2 �1

3 3 �2

�2 �1 a

§A � £ 1 2 a

�2 4a 2

a �2 1

§

33 1 �1 0 4 , 30 �1 2 �1 4 , 34 3 8 3 4
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48. Do form a basis for �4?

49. Do form a basis for ?

50. Do form a basis for ?

In Exercises 51 and 52, show that w is in span( ) and find
the coordinate vector .

51.

52.

In Exercises 53–56, compute the rank and nullity of the given
matrices over the indicated �p.

53. over �2 54. over �3

55. over �5

56. over �7≥ 2 4 0 0 1

6 3 5 1 0

1 0 2 2 5

1 1 1 1 1

¥
£1 3 1 4

2 3 0 1

1 0 4 0

§
£1 1 2

2 1 2

2 0 0

§£1 1 0

0 1 1

1 0 1

§

B � • £ 31
4

§ , £ 51
6

§ ¶ , w � £ 13
4

§
B � • £ 12

0

§ , £ 1

0

�1

§ ¶ , w � £ 16
2

§
3w 4B B

�3
3£ 11

0

§ , £ 01
1

§ , £ 10
1

§
�2

3£ 11
0

§ , £ 01
1

§ , £ 10
1

§
≥ 1

1

1

1

¥ , ≥ 1

�1

1

1

¥ , ≥ 1

1

�1

1

¥ , ≥ 1

1

1

�1

¥ 57. If A is , prove that every vector in null(A) is
orthogonal to every vector in row(A).

58. If A and B are matrices of rank n, prove that AB
has rank n.

59. (a) Prove that rank(AB) � rank(B). [Hint: Review
Exercise 29 in Section 3.1.]

(b) Give an example in which rank(AB) � rank(B).

60. (a) Prove that rank(AB) � rank(A). [Hint: Review
Exercise 30 in Section 3.1 or use transposes and
Exercise 59(a).]

(b) Give an example in which rank(AB) � rank(A).

61. (a) Prove that if U is invertible, then rank(UA) �
rank(A). [Hint: A � U�1 (UA).]

(b) Prove that if V is invertible, then rank(AV ) �
rank(A).

62. Prove that an matrix A has rank 1 if and only if
A can be written as the outer product uvT of a vector u
in �m and v in �n.

63. If an m � n matrix A has rank r, prove that A can be
written as the sum of r matrices, each of which has
rank 1. [Hint: Find a way to use Exercise 62.]

64. Prove that, for m � n matrices A and B, rank (A � B) �
rank(A) � rank(B).

65. Let A be an n � n matrix such that A2 � O. Prove that
rank(A) � n�2. [Hint: Show that col(A) � null(A) and
use the Rank Theorem.]

66. Let A be a skew-symmetric n � n matrix.
(See page 168)

(a) Prove that xT Ax � 0 for all x in �n.
(b) Prove that I � A is invertible. [Hint: Show that

null(I � A) � {0}.]

m � n

n � n

m � n

Introduction to Linear Transformations
In this section, we begin to explore one of the themes from the introduction to this
chapter. There we saw that matrices can be used to transform vectors, acting as a type
of “function” of the form w � T(v), where the independent variable v and the de-
pendent variable w are vectors. We will make this notion more precise now and look
at several examples of such matrix transformations, leading to the concept of a linear
transformation—a powerful idea that we will encounter repeatedly from here on.
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We begin by recalling some of the basic concepts associated with functions. You will
be familiar with most of these ideas from other courses in which you encountered func-
tions of the form f : � S � [such as f(x) � x2] that transform real numbers into real num-
bers. What is new here is that vectors are involved and we are interested only in functions
that are “compatible” with the vector operations of addition and scalar multiplication.

Consider an example. Let

Then

This shows that A transforms v into 

We can describe this transformation more generally. The matrix equation

gives a formula that shows how A transforms an arbitrary vector in �2 into the

vector in �3. We denote this transformation by TA and write

(Although technically sloppy, omitting the parentheses in definitions such as this one
is a common convention that saves some writing. The description of TA becomes

with this convention.)
With this example in mind, we now consider some terminology. A transformation

(or mapping or function) T from �n to �m is a rule that assigns to each vector v in �n

a unique vector T(v) in �m. The domain of T is �n, and the codomain of T is �m. We
indicate this by writing T : �n S �m. For a vector v in the domain of T, the vector T(v)
in the codomain is called the image of v under (the action of) T. The set of all possi-
ble images T(v) (as v varies throughout the domain of T) is called the range of T.

In our example, the domain of TA is �2 and its codomain is �3, so we write 

TA: �2 S �3. The image of is What is the range ofw � TA1v 2 � £ 1

3

�1

§ .v � c 1

�1
d

TA c xy d � £ x

2x � y

3x � 4y

§

TA a c xy d b � £ x

2x � y

3x � 4y

§
£ x

2x � y

3x � 4y

§
c x
y
d

£ 1 0

2 �1

3 4

§ c x
y
d � £ x

2x � y

3x � 4y

§
w � £ 1

3

�1

§ .
Av � £ 1 0

2 �1

3 4

§ c 1

�1
d � £ 1

3

�1

§
A � £ 1 0

2 �1

3 4

§   and  v � c 1

�1
d
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TA? It consists of all vectors in the codomain �3 that are of the form

which describes the set of all linear combinations of the column vectors and

of A. In other words, the range of T is the column space of A! (We will have

more to say about this later—for now we’ll simply note it as an interesting observa-
tion.) Geometrically, this shows that the range of TA is the plane through the origin in
�3 with direction vectors given by the column vectors of A. Notice that the range of
TA is strictly smaller than the codomain of TA.

Linear Transformations

The example TA above is a special case of a more general type of transformation
called a linear transformation. We will consider the general definition in Chapter 6,
but the essence of it is that these are the transformations that “preserve” the vector
operations of addition and scalar multiplication.

Definition A transformation T : �n S �m is called a linear transformation if

1. T(u � v) � T(u) � T(v) for all u and v in �n and
2. T(cv) � cT(v) for all v in �n and all scalars c.

Consider once again the transformation T : �2 S �3 defined by

Let’s check that T is a linear transformation. To verify (1), we let

Then

� £ x1

2x1 � y1

3x1 � 4y1

§ � £ x2

2x2 � y2

3x2 � 4y2

§ � T c x1

y1

d � T c x2

y2

d � T1u 2 � T1v 2
� £ x1 � x2

2x1 � 2x2 � y1 � y2

3x1 � 3x2 � 4y1 � 4y2

§ � £ x1 � x212x1 � y1 2 � 12x2 � y2 213x1 � 4y1 2 � 13x2 � 4y2 2 §
T1u � v 2 � T a c x1

y1

d � c x2

y2

d b � T a c x1 � x2

y1 � y2

d b � £ x1 � x2

21x1 � x2 2 � 1y1 � y2 2
31x1 � x2 2 � 41y1 � y2 2 §

u � c x1

y1

d   and  v � c x2

y2

d
T c x

y
d � £ x

2x � y

3x � 4y

§

£ 0

�1

4

§
£ 12

3

§
TA c xy d � £ x

2x � y

3x � 4y

§ � x £ 12
3

§ � y £ 0

�1

4

§

Section 3.6 Introduction to Linear Transformations 219

Example 3. 55

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 3. 30

To show (2), we let and let c be a scalar. Then

Thus, T is a linear transformation.

Remark The definition of a linear transformation can be streamlined by com-
bining (1) and (2) as shown below.

T : �n S �m is a linear transformation if

In Exercise 53, you will be asked to show that the statement above is equivalent to the
original definition. In practice, this equivalent formulation can save some writing—
try it!

Although the linear transformation T in Example 3.55 originally arose as a matrix
transformation TA, it is a simple matter to recover the matrix A from the definition of
T given in the example. We observe that

so T � TA, where (Notice that when the variables x and y are lined

up, the matrix A is just their coefficient matrix.)
Recognizing that a transformation is a matrix transformation is important, since,

as the next theorem shows, all matrix transformations are linear transformations.

Let A be an matrix. Then the matrix transformation TA : �n S �m

defined by

is a linear transformation.

TA1x 2 � Ax  1for x in �n 2
m � n

A � £ 1 0

2 �1

3 4

§ .
T c x

y
d � £ x

2x � y

3x � 4y

§ � x £ 12
3

§ � y £ 0

�1

4

§ � £ 1 0

2 �1

3 4

§ c x
y
d

for all v1, v2 in �n and scalars c1, c2T 1c1v1 � c2v2 2 � c1T 1v1 2 � c2T 1v2 2

� c £ x

2x � y

3x � 4y

§ � cT c x
y
d � cT1v 2

� £ cx

21cx 2 � 1cy 2
31cx 2 � 41cy 2 § � £ cx

c 12x � y 2
c 13x � 4y 2 §

T1cv 2 � T a c c x
y
d b � T a c cx

cy
d b

v � c x
y
d
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Proof Let u and v be vectors in �n and let c be a scalar. Then

and

Hence, TA is a linear transformation.

Let F : �2 S �2 be the transformation that sends each point to its reflection in the 
x-axis. Show that F is a linear transformation.

Solution From Figure 3.4, it is clear that F sends the point (x, y) to the point (x, �y).
Thus, we may write

We could proceed to check that F is linear, as in Example 3.55 (this one is even easier
to check!), but it is faster to observe that

Therefore, where so F is a matrix transformation. It

now follows, by Theorem 3.30, that F is a linear transformation.

Let R : �2 S �2 be the transformation that rotates each point 90° counterclockwise
about the origin. Show that R is a linear transformation.

Solution As Figure 3.5 shows, R sends the point (x, y) to the point (�y, x). Thus,
we have

Hence, R is a matrix transformation and is therefore linear.

Observe that if we multiply a matrix by standard basis vectors, we obtain the
columns of the matrix. For example,

We can use this observation to show that every linear transformation from �n to
�m arises as a matrix transformation.

£ a b

c d

e f

§ c 1
0
d � £ ac

e

§   and  £ a b

c d

e f

§ c 0
1
d � £ b

d

f

§

R c x
y
d � c�y

x
d � x c 0

1
d � y c�1

0
d � c 0 �1

1 0
d c x

y
d

A � c 1 0

0 �1
d ,F c x

y
d � A c x

y
d ,

c x

�y
d � x c 1

0
d � y c 0

�1
d � c 1 0

0 �1
d c x

y
d

F c x
y
d � c x

�y
d

TA1cv 2 � A1cv 2 � c 1Av 2 � cTA1v 2TA1u � v 2 � A1u � v 2 � Au � Av � TA1u 2 � TA1v 2
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y

x

(x, y)
(1, 2)

(1, �2)
(x, �y)

Figure 3. 4
Reflection in the x-axis

y

x

�y x

(x, y)

(�y, x)

90�

Figure 3. 5
A 90° rotation

Example 3. 57
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Theorem 3. 31 Let T : �n S �m be a linear transformation. Then T is a matrix transformation.
More specifically, T � TA, where A is the matrix

Proof Let e1, e2, . . . , en be the standard basis vectors in �n and let x be a vector in �n.
We can write x � x1e1 � x2e2 � � xnen (where the xi’s are the components of x). We
also know that T(e1), T(e2), . . . , T(en) are (column) vectors in �m. Let A �
[T(e1) T(e2) T(en)] be the m � n matrix with these vectors as its columns. Then

as required.

The matrix A in Theorem 3.31 is called the standard matrix of the linear trans-
formation T.

Show that a rotation about the origin through an angle u defines a linear transforma-
tion from �2 to �2 and find its standard matrix.

Solution Let Ru be the rotation. We will give a geometric argument to establish
the fact that Ru is linear. Let u and v be vectors in �2. If they are not parallel, then 
Figure 3.6(a) shows the parallelogram rule that determines u � v. If we now apply Ru ,
the entire parallelogram is rotated through the angle u, as shown in Figure 3.6(b). But the
diagonal of this parallelogram must be Ru(u) � Ru(v), again by the parallelogram rule.
Hence, Ru(u � v) � Ru(u) � Ru(v). (What happens if u and v are parallel?)

� 3T 1e1 2
T 1e2 2
 p 
T 1en 2 4 ≥ x1

x2

o
xn

¥ � Ax

� x1T 1e1 2 � x2T 1e2 2 � p � xnT 1en 2T 1x 2 � T 1x1e1 � x2e2 � p � xnen 2
 p 



p

A � 3T 1e1 2
T 1e2 2
 p 
T 1en 2 4m � n
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Example 3. 58

x

y

u

u � v

v

(a)

Ru (u)

Ru (v)

Ru (u � v)

x

y

(b)

Figure 3. 6

Similarly, if we apply Ru to v and c v, we obtain Ru(v) and Ru(c v), as shown in
Figure 3.7. But since the rotation does not affect lengths, we must then have
Ru(cv) � cRu(v), as required. (Draw diagrams for the cases 0 � c � 1, �1 � c � 0,
and c � �1.)

�

�
I I I I II I I I I �������������������������������

�

�
I I I I II I I I I ������������������������������
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x

y

Ru (cv)
Ru (v)

cv
v

Figure 3. 7

x

y

(cos u, sin u)

(1, 0)

sin u

1

cos u

u

Figure 3. 8
R�(e1)

Therefore, Ru is a linear transformation. According to Theorem 3.31, we can find
its matrix by determining its effect on the standard basis vectors e1 and e2 of �2. Now,

as Figure 3.8 shows,

We can find similarly, but it is faster to observe that must be perpen-

dicular (counterclockwise) to and so, by Example 3.57,
(Figure 3.9).

Therefore, the standard matrix of Ru is c cos u �sin u

sin u    cos u
d .

Ru c01 d � c�sin u

  cos u
dRu c10 d

Ru c 01 dRu c 01 d
Ru c 10 d � c cos u

sin u
d .

x

y

(cos u, sin u)

(�sin u, cos u)

u
u

e1

e2

Figure 3. 9
R�(e2)

The result of Example 3.58 can now be used to compute the effect of any rotation.
For example, suppose we wish to rotate the point (2, �1) through 60° about the
origin. (The convention is that a positive angle corresponds to a counterclockwise
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rotation, while a negative angle is clockwise.) Since cos 60° � 1�2 and sin 60° �
we compute

Thus, the image of the point (2, �1) under this rotation is the point ((2 � )�2,
(2 � 1)�2) � (1.87, 1.23), as shown in Figure 3.10.

(a) Show that the transformation P : �2 S �2 that projects a point onto the x-axis is
a linear transformation and find its standard matrix.
(b) More generally, if / is a line through the origin in �2, show that the transforma-
tion P/ : �2 S �2 that projects a point onto / is a linear transformation and find its
standard matrix.

Solution (a) As Figure 3.11 shows, P sends the point (x, y) to the point (x, 0). Thus,

It follows that P is a matrix transformation (and hence a linear transformation) with 

standard matrix 

(b) Let the line / have direction vector d and let v be an arbitrary vector. Then P/ is
given by projd(v), the projection of v onto d, which you’ll recall from Section 1.2 has
the formula

Thus, to show that P/ is linear, we proceed as follows:

Similarly, P/ (c v) � cP/ (v) for any scalar c (Exercise 52). Hence, P/ is a linear
transformation.

� a d # u

d # d
bd � a d # v

d # d
bd � P/1u 2 � P/1v 2

� a d # u

d # d
�

d # v

d # d
bd

� a d # u � d # v

d # d
bd

P/1u � v 2 � a d # 1u � v 2
d # d

bd

projd1v 2 � a d # v

d # d
bd

c1 0

0 0
d .

P cx
y
d � c x

0
d � x c1

0
d � y c0

0
d � c1 0

0 0
d cx

y
d

13
13

� c 12 � 13 2 >21213 � 1 2 >2 d
R60 c 2

�1
d � c cos 60° �sin 60°

sin 60°   cos 60°
d c 2

�1
d � c 1>2 �13>2

13>2 1>2 d c 2

�1
d
13>2,
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x

y

(2, �1)

60�

Figure 3. 10
A 60° rotation

Example 3. 59

x

y

(x, y)

(x, 0)

Figure 3. 11
A projection
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To find the standard matrix of P/, we apply Theorem 3.31. If we let 

then

and

Thus, the standard matrix of the projection is

As a check, note that in part (a) we could take d � e1 as a direction vector for the

x-axis. Therefore, d1 � 1 and d2 � 0, and we obtain as before.

New Linear Transformations from Old

If T : �m S �n and S : �n S �p are linear transformations, then we may follow T by
S to form the composition of the two transformations, denoted S � T. Notice that, in
order for S � T to make sense, the codomain of T and the domain of S must match (in
this case, they are both �n) and the resulting composite transformation S � T goes
from the domain of T to the codomain of S (in this case, S � T : �m S �p). Figure 3.12
shows schematically how this composition works. The formal definition of composi-
tion of transformations is taken directly from this figure and is the same as the corre-
sponding definition of composition of ordinary functions:

Of course, we would like S � T to be a linear transformation too, and happily we
find that it is. We can demonstrate this by showing that S � T satisfies the definition of
a linear transformation (which we will do in Chapter 6), but, since for the time being
we are assuming that linear transformations and matrix transformations are the same
thing, it is enough to show that S � T is a matrix transformation. We will use the no-
tation [T ] for the standard matrix of a linear transformation T.

1S � T 2 1v 2 � S 1T 1v 2 2

A � c1 0

0 0
d ,

A �
1

d1
2 � d2

2 c d1
2 d1d2

d1d2 d2
2 d � c d1

2>1d1
2 � d2

2 2 d1d2>1d1
2 � d2

2 2
d1d2>1d1

2 � d2
2 2 d2

2>1d1
2 � d2

2 2 d
P/1e2 2 � a d # e2

d # d
bd �

d2

d1
2 � d 2

2 c d1

d 2

d �
1

d1
2 � d 2

2 c d1d 2

d 2
2 d

P/1e1 2 � a d # e1

d # d
bd �

d1

d1
2 � d2

2 c d1

d2

d �
1

d1
2 � d 2

2 c d1
2

d1d2

d
d � c d1

d2

d ,
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�m �n �p

T S

S � T

v
T(v)

S(T(v)) � (S � T)(v)

Figure 3. 12
The composition of transformations
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Theorem 3. 32 Let T : �m S �n and S : �n S �p be linear transformations. Then S � T : �m S �p

is a linear transformation. Moreover, their standard matrices are related by

Proof Let [S] � A and [T ] � B. (Notice that A is p � n and B is n � m.) If v is a vector
in �m, then we simply compute

(Notice here that the dimensions of A and B guarantee that the product AB makes
sense.) Thus, we see that the effect of S � T is to multiply vectors by AB, from which
it follows immediately that S � T is a matrix (hence, linear) transformation with
[S � T ] � [S][T ].

Isn’t this a great result? Say it in words: “The matrix of the composite is the prod-
uct of the matrices.” What a lovely formula!

Consider the linear transformation T : �2 S �3 from Example 3.55, defined by

and the linear transformation S : �3 S �4 defined by

Find S � T : �2 S �4.

Solution We see that the standard matrices are

so Theorem 3.32 gives

It follows that

1S � T 2 c x1

x2

d � ≥ 5 4

3 �7

�1 1

6 3

¥ c x1

x2

d � ≥ 5x1 � 4x2

3x1 � 7x2

�x1 � x2

6x1 � 3x2

¥

3S � T 4 � 3S 4 3T 4 � ≥ 2 0 1

0 3 �1

1 �1 0

1 1 1

¥ £ 1 0

2 �1

3 4

§ � ≥ 5 4

3 �7

�1 1

6 3

¥

3S 4 � ≥ 2 0 1

0 3 �1

1 �1 0

1 1 1

¥   and  3T 4 � £ 1 0

2 �1

3 4

§

S £ y1

y2

y3

§ � ≥ 2y1 � y3

3y2 � y3

y1 � y2

y1 � y2 � y3

¥

T c x1

x2

d � £ x1

2x1 � x2

3x1 � 4x2

§

1S � T 2 1v 2 � S 1T 1v 2 2 � S 1Bv 2 � A1Bv 2 � 1AB 2v

3S � T 4 � 3S 4 3T 4

Example 3. 60
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(In Exercise 29, you will be asked to check this result by setting

and substituting these values into the definition of S, thereby calculating 
directly.)

Find the standard matrix of the transformation that first rotates a point 90° counter-
clockwise about the origin and then reflects the result in the x-axis.

Solution The rotation R and the reflection F were discussed in Examples 3.57 and

3.56, respectively, where we found their standard matrices to be and

It follows that the composition has for its matrix

(Check that this result is correct by considering the effect of F � R on the standard 
basis vectors e1 and e2. Note the importance of the order of the transformations:
R is performed before F, but we write F � R. In this case, R � F also makes sense. Is
R � F � F � R?)

Inverses of Linear Transformations

Consider the effect of a 90° counterclockwise rotation about the origin followed by a
90° clockwise rotation about the origin. Clearly this leaves every point in �2 un-
changed. If we denote these transformations by R90 and R�90 (remember that a nega-
tive angle measure corresponds to clockwise direction), then we may express this as
(R90 � R�90)(v) � v for every v in �2. Note that, in this case, if we perform the
transformations in the other order, we get the same end result: (R�90 � R90)(v) � v for
every v in �2.

Thus, R90 � R�90 (and R�90 � R90 too) is a linear transformation that leaves every
vector in �2 unchanged. Such a transformation is called an identity transformation.
Generally, we have one such transformation for every �n—namely, I : �n S �n such
that I(v) � v for every v in �n. (If it is important to keep track of the dimension of
the space, we might write In for clarity.)

So, with this notation, we have R90 � R�90 � I � R�90 � R90. A pair of transforma-
tions that are related to each other in this way are called inverse transformations.

Definition Let S and T be linear transformations from �n to �n. Then S and T
are inverse transformations if S � T � In and T � S � In.

3F � R 4 � 3F 4 3R 4 � c 1 0

0 �1
d c 0 �1

1 0
d � c 0 �1

�1 0
d

F � Rc 1 0

0 �1
d .3F 4 � 3R 4 � c 0 �1

1 0
d

1S � T 2 c x1

x2

d
£ y1

y2

y3

§ � T c x1

x2

d � £ x1

2x1 � x2

3x1 � 4x2

§
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Example 3. 61
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Theorem 3. 33

Remark Since this definition is symmetric with respect to S and T, we will say
that, when this situation occurs, S is the inverse of T and T is the inverse of S. Fur-
thermore, we will say that S and T are invertible.

In terms of matrices, we see immediately that if S and T are inverse transforma-
tions, then [S][T ] � [S � T ] � [I] � I, where the last I is the identity matrix. (Why
is the standard matrix of the identity transformation the identity matrix?) We
must also have [T ][S] � [T � S] � [I] � I. This shows that [S] and [T ] are inverse
matrices. It shows something more: If a linear transformation T is invertible, then its
standard matrix [T ] must be invertible, and since matrix inverses are unique, this
means that the inverse of T is also unique. Therefore, we can unambiguously use the
notation T �1 to refer to the inverse of T. Thus, we can rewrite the above equations as
[T ][T �1] � I � [T �1][T ], showing that the matrix of T �1 is the inverse matrix of
[T ]. We have just proved the following theorem.

Let T : �n S �n be an invertible linear transformation. Then its standard matrix
[T ] is an invertible matrix, and

Remark Say this one in words too: “The matrix of the inverse is the inverse of
the matrix.” Fabulous!

Find the standard matrix of a 60° clockwise rotation about the origin in �2.

Solution Earlier we computed the matrix of a 60° counterclockwise rotation about
the origin to be

Since a 60° clockwise rotation is the inverse of a 60° counterclockwise rotation, we can
apply Theorem 3.33 to obtain

(Check the calculation of the matrix inverse. The fastest way is to use the 2 � 2 short-
cut from Theorem 3.8. Also, check that the resulting matrix has the right effect on the
standard basis in �2 by drawing a diagram.)

Determine whether projection onto the x-axis is an invertible transformation, and if
it is, find its inverse.

Solution The standard matrix of this projection P is which is not invertible

since its determinant is 0. Hence, P is not invertible either.

c 1 0

0 0
d ,

3R�60 4 � 3 1R60 2�1 4 � c 1>2 �13>2
13>2 1>2 d�1

� c 1>2 13>2
�13>2 1>2 d

3R60 4 � c 1>2 �13>2
13>2 1>2 d

3T �1 4 � 3T 4�1
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Example 3. 62

Example 3. 63
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Remark Figure 3.13 gives some idea why P in Example 3.63 is not invertible. The
projection “collapses” �2 onto the x-axis. For P to be invertible, we would have to have
a way of “undoing” it, to recover the point (a, b) we started with. However, there are
infinitely many candidates for the image of (a, 0) under such a hypothetical “inverse.”
Which one should we use? We cannot simply say that P�1 must send (a, 0) to (a, b),
since this cannot be a definition when we have no way of knowing what b should be.
(See Exercise 42.)

Associativity

Theorem 3.3(a) in Section 3.2 stated the associativity property for matrix multipli-
cation: A(BC) � (AB)C. (If you didn’t try to prove it then, do so now. Even with all
matrices restricted 2 � 2, you will get some feeling for the notational complexity in-
volved in an “elementwise” proof, which should make you appreciate the proof we are
about to give.)

Our approach to the proof is via linear transformations. We have seen that every 
m � n matrix A gives rise to a linear transformation TA : �n S �m; conversely, every
linear transformation T : �n S �m has a corresponding m � n matrix [T ]. The two
correspondences are inversely related; that is, given A, [TA] � A, and given T, T[T ] � T.

Let R � TA, S � TB, and T � TC. Then, by Theorem 3.32,

We now prove the latter identity. Let x be in the domain of T (and hence in the domain
of both R � (S � T) and (R � S) � T—why?). To prove that R � (S � T) � (R � S) � T, it is
enough to prove that they have the same effect on x. By repeated application of the
definition of composition, we have

as required. (Carefully check how the definition of composition has been used four
times.)

This section has served as an introduction to linear transformations. In Chapter 6,
we will take a more detailed and more general look at these transformations. The
exercises that follow also contain some additional explorations of this important
concept.

� ˛1R � S 2 1T 1x 2 2 � 1 1R � S 2 � T 2 1x 2� R 1S 1T 1x 2 2 21R � 1S � T 2 2 1x 2 � R1 1S � T 2 1x 2 2

A1BC 2 � 1AB 2C  if and only if  R � 1S � T 2 � 1R � S 2 � T
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(a, b)

(a, b�)

(a, 0)

(a, b��)

Figure 3. 13
Projections are not invertible

Exercises 3. 6

1. Let TA : �2 S �2 be the matrix transformation corre-

sponding to Find TA (u) and TA (v),

where and v � c 3

�2
d .u � c 1

2
d

A � c 2 �1

3 4
d . 2. Let TA : �2 S �3 be the matrix transformation corre-

sponding to . Find TA (u) and

TA (v), where and .v � c 3

�2
du � c 1

2
d

A � £ 3 �1

1 2

1 4

§

�

�
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�

�
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In Exercises 3–6, prove that the given transformation is a
linear transformation, using the definition (or the Remark
following Example 3.55).

3. 4.

5. 6.

In Exercises 7–10, give a counterexample to show that the
given transformation is not a linear transformation.

7. 8.

9. 10.

In Exercises 11–14, find the standard matrix of the linear
transformation in the given exercise.

11. Exercise 3 12. Exercise 4

13. Exercise 5 14. Exercise 6

In Exercises 15–18, show that the given transformation
from �2 to �2 is linear by showing that it is a matrix
transformation.

15. F reflects a vector in the y-axis.

16. R rotates a vector 45° counterclockwise about the
origin.

17. D stretches a vector by a factor of 2 in the x-component
and a factor of 3 in the y-component.

18. P projects a vector onto the line y � x.

19. The three types of elementary matrices give rise to five
types of 2 � 2 matrices with one of the following forms:

Each of these elementary matrices corresponds to a linear
transformation from �2 to �2. Draw pictures to illustrate
the effect of each one on the unit square with vertices at
(0, 0), (1, 0), (0, 1), and (1, 1).

c 1 k

0 1
d  or c 1 0

k 1
d

c 0 1

1 0
d

c k 0

0 1
d  or c 1 0

0 k
d

T c x
y
d � c x � 1

y � 1
dT c x

y
d � c xy

x � y
d

T c x
y
d � c �x �

�y �
dT c x

y
d � c y

x2 d

T £ xy
z

§ � £ x

x � y

x � y � z

§T £ xy
z

§ � c x � y � z

2x � y � 3z
d

T c x
y
d � £ x � 2y

�x

3x � 7y

§T c x
y
d � c x � y

x � y
d
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In Exercises 20–25, find the standard matrix of the given
linear transformation from �2 to �2.

20. Counterclockwise rotation through 120° about the
origin

21. Clockwise rotation through 30° about the origin

22. Projection onto the line y � 2x

23. Projection onto the line y � �x

24. Reflection in the line y � x

25. Reflection in the line y � �x

26. Let / be a line through the origin in �2, P/ the linear
transformation that projects a vector onto /, and F/
the transformation that reflects a vector in /.

(a) Draw diagrams to show that F/ is linear.
(b) Figure 3.14 suggests a way to find the matrix of F/,

using the fact that the diagonals of a parallelogram
bisect each other. Prove that F/ (x) � 2P/ (x) � x,
and use this result to show that the standard
matrix of F/ is

(where the direction vector of / is ).

(c) If the angle between / and the positive x-axis is u,
show that the matrix of F/ isc cos 2u sin 2u

sin 2u �cos 2u
d

d � c d1

d2

d
1

d1
2 � d 2

2 c d1
2 � d 2

2 2d1d2

2d1d2 �d1
2 � d 2

2 d

x

y

P�(x)

F�(x)

�

x

Figure 3. 14

In Exercises 27 and 28, apply part (b) or (c) of Exercise 26 to
find the standard matrix of the transformation.

27. Reflection in the line y � 2x
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28. Reflection in the line 

29. Check the formula for S � T in Example 3.60, by
performing the suggested direct substitution.

In Exercises 30–35, verify Theorem 3.32 by finding the
matrix of S � T (a) by direct substitution and (b) by matrix
multiplication of [S][T].

30.

31.

32.

33.

34.

35.

In Exercises 36–39, find the standard matrix of the compos-
ite transformation from �2 to �2.

36. Counterclockwise rotation through 60°, followed by
reflection in the line y � x

37. Reflection in the y-axis, followed by clockwise rotation
through 30°

38. Clockwise rotation through 45°, followed by projec-
tion onto the y-axis, followed by clockwise rotation
through 45°

39. Reflection in the line y � x, followed by counterclock-
wise rotation through 30°, followed by reflection in the
line y � �x

In Exercises 40–43, use matrices to prove the given state-
ments about transformations from �2 to �2.

40. If Ru denotes a rotation (about the origin) through the
angle u, then Ra � Rb � Ra�b.

T £ x1

x2

x3

§ � £ x1 � x2

x2 � x3

x1 � x3

§ , S £ y1

y2

y3

§ � £ y1 � y2

y2 � y3

�y1 � y3

§
T £ x1

x2

x3

§ � c x1 � 2x2

2x2 � x3

d , S c y1

y2

d � £ y1 � y2

y1 � y2

�y1 � y2

§
T £ x1

x2

x3

§ � c x1 � x2 � x3

2x1 � x2 � x3

d , S c y1

y2

d � c 4y1 � 2y2

�y1 � y2

d
T c x1

x2

d � c x2

�x1

d , S c y1

y2

d � £ y1 � 3y2

2y1 � y2

y1 � y2

§
T c x1

x2

d � c x1 � 2x2

�3x1 � x2

d , S c y1

y2

d � c y1 � 3y2

y1 � y2

d
T c x1

x2

d � c x1 � x2

x1 � x2

d , S c y1

y2

d � c 2y1

�y2

d

y � 13x
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41. If u is the angle between lines / and m (through the
origin), then Fm � F/ � R�2u. (See Exercise 26.)

42. (a) If P is a projection, then P � P � P.

(b) The matrix of a projection can never be invertible.

43. If /, m, and n are three lines through the origin, then 
Fn � Fm � F/ is also a reflection in a line through the
origin.

44. Let T be a linear transformation from �2 to �2 (or
from �3 to �3). Prove that T maps a straight line to a
straight line or a point. [Hint: Use the vector form of
the equation of a line.]

45. Let T be a linear transformation from �2 to �2 (or
from �3 to �3). Prove that T maps parallel lines to
parallel lines, a single line, a pair of points, or a single
point.

In Exercises 46–51, let ABCD be the square with vertices
(�1, 1), (1, 1), (1, �1), and (�1, �1). Use the results in
Exercises 44 and 45 to find and draw the image of ABCD
under the given transformation.

46. T in Exercise 3

47. D in Exercise 17

48. P in Exercise 18

49. The projection in Exercise 22

50. T in Exercise 31

51. The transformation in Exercise 37

52. Prove that P/ (cv) � cP/ (v) for any scalar c
[Example 3.59(b)].

53. Prove that T : �n S �m is a linear transformation if
and only if

for all v1, v2 in �n and scalars c1, c2.

54. Prove that (as noted at the beginning of this section)
the range of a linear transformation T : �n S �m is
the column space of its matrix [T ].

55. If A is an invertible 2 � 2 matrix, what does the
Fundamental Theorem of Invertible Matrices assert
about the corresponding linear transformation TA in
light of Exercise 19?

T 1c1v1 � c2v2 2 � c1T 1v1 2 � c2T 1v2 2
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In 1981, the U.S. Space Shuttle Columbia blasted off equipped with a device called the
Shuttle Remote Manipulator System (SRMS). This robotic arm, known as Canadarm,
has proved to be a vital tool in all subsequent space shuttle missions, providing strong,
yet precise and delicate handling of its payloads (see Figure 3.15).

Canadarm has been used to place satellites into their proper orbit and to retrieve
malfunctioning ones for repair, and it has also performed critical repairs to the shut-
tle itself. Notably, the robotic arm was instrumental in the successful repair of the
Hubble Space Telescope. Since 1998, Canadarm has played an important role in the
assembly of the International Space Station.

Figure 3. 15
Canadarm

A robotic arm consists of a series of links of fixed length connected at joints where
they can rotate. Each link can therefore rotate in space, or (through the effect of the
other links) be translated parallel to itself, or move by a combination (composition) of
rotations and translations. Before we can design a mathematical model for a robotic
arm, we need to understand how rotations and translations work in composition. To
simplify matters, we will assume that our arm is in �2.
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In Section 3.6, we saw that the matrix of a rotation R about the origin through an

angle u is a linear transformation with matrix [Figure 3.16(a)]. If

, then a translation along v is the transformation

[Figure 3.16(b)].

T 1x 2 � x � v  or, equivalently,  T c x
y
d � c x � a

y � b
dv � c a

b
d c cos u �sin u

sin u cos u
d

y

x
v

x

T(x) � x � v

(b) Translation

Figure 3. 16

y

x

R(x) x

u

(a) Rotation
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Unfortunately, translation is not a linear transformation, because T(0)  0. However,
there is a trick that will get us around this problem. We can represent the vector

as the vector in �3. This is called representing x in homogeneous coor-

dinates. Then the matrix multiplication

represents the translated vector T(x) in homogeneous coordinates.
We can treat rotations in homogeneous coordinates too. The matrix multiplication

represents the rotated vector R(x) in homogeneous coordinates. The composition T � R
that gives the rotation R followed by the translation T is now represented by the product

(Note that R � T  T � R.)
To model a robotic arm, we give each link its own coordinate system (called a

frame) and examine how one link moves in relation to those to which it is directly
connected. To be specific, we let the coordinate axes for the link Ai be Xi and Yi , with
the Xi-axis aligned with the link. The length of Ai is denoted by ai , and the angle

1 0 a£ 0 1 b

0 0 1

§    cos u �sin u 0£ sin u   cos u 0

 0   0 1

§ � £ cos u �sin u a

sin u cos u b

 0    0 1

§

£ cos u �sin u 0

sin u   cos u 0

0  0 1

§ £ xy
1

§ � £ x cos u � y sin u

x sin u � y cos u

1

§

1 0 a£ 0 1 b

0 0 1

§ £ xy
1

§ � £ x � a

y � b

1

§
£ xy

1

§x � c x
y
d
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between Xi and Xi�1 is denoted by . The joint between Ai and Ai�1 is at the point
(0, 0) relative to Ai and (ai�1, 0) relative to Ai�1. Hence, relative to Ai�1, the coordinate

system for Ai has been rotated through and then translated along 

(Figure 3.17). This transformation is represented in homogeneous coordinates by
the matrix

Ti � £ cos ui �sin ui ai�1

sin ui    cos ui 0

0   0 1

§

c ai�1

0
dui

ui
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Figure 3. 17

ai � 1

Ai � 1

Ai � 2

Ai

y i

x i

xi � 1

yi � 1

u i

To give a specific example, consider Figure 3.18(a). It shows an arm with three
links in which A1 is in its initial position and each of the other two links has been
rotated 45° from the previous link. We will take the length of each link to be 2 units.
Figure 3.18(b) shows A3 in its initial frame. The transformation

causes a rotation of 45° and then a translation by 2 units. As shown in 3.18(c), this
places A3 in its appropriate position relative to A2’s frame. Next, the transformation

is applied to the previous result. This places both A3 andA2 in their correct position
relative to A1, as shown in Figure 3.18(d). Normally, a third transformation T1 (a
rotation) would be applied to the previous result, but in our case, T1 is the identity
transformation because A1 stays in its initial position.

Typically, we want to know the coordinates of the end (the “hand”) of the robotic
arm, given the length and angle parameters—this is known as forward kinematics.
Following the above sequence of calculations and referring to Figure 3.18, we see that

T2 � £ cos 45 �sin 45 2

sin 45   cos 45 0

0   0 1

§ � £ 1>12 �1>12 2

1>12   1>12 0

0    0 1

§

T3 � £ cos 45 �sin 45 2

sin 45   cos 45 0

0   0 1

§ � £ 1>12 �1>12 2

1>12   1>12 0

0    0 1

§
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we need to determine where the point (2, 0) ends up after T3 and T2 are applied. Thus,
the arm’s hand is at

which represents the point in homogeneous coordinates. It is
easily checked from Figure 3.18(a) that this is correct.

The methods used in this example generalize to robotic arms in three dimen-
sions, although in �3 there are more degrees of freedom and hence more variables.
The method of homogeneous coordinates is also useful in other applications, notably
computer graphics.

12�22, 2�22 2
� £ 2�22

2�22

1

§
T2T3 £ 20

1

§ � £ 1>12 �1>12 2

1>12    1>12 0

0     0 1

§ 2 £ 20
1

§ � £ 0 �1 2�12

1 0 12

0 0 1

§ £ 20
1

§
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Figure 3. 18

(a) A three-link chain

A1

A2

A3

x1

y1

u 2

x3

u 3
x 2

(b) A3 in its initial frame

A3

x3

y3

(c) T3 puts A3 in A2’s initial frame

A2

A3

x2

y2

A1

A2

A3

x1

y1

(d) T2T3 puts A3 in A1’s initial frame
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Applications

Markov Chains

A market research team is conducting a controlled survey to determine people’s pref-
erences in toothpaste. The sample consists of 200 people, each of whom is asked to try
two brands of toothpaste over a period of several months. Based on the responses
to the survey, the research team compiles the following statistics about toothpaste
preferences.

Of those using Brand A in any month, 70% continue to use it the following
month, while 30% switch to Brand B; of those using Brand B in any month, 80% con-
tinue to use it the following month, while 20% switch to Brand A. These findings are
summarized in Figure 3.19, in which the percentages have been converted into deci-
mals; we will think of them as probabilities.
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0.70 0.80

0.30

0.20

A B

Figure 3. 19

Figure 3.19 is a simple example of a (finite) Markov chain. It represents an evolv-
ing process consisting of a finite number of states. At each step or point in time, the
process may be in any one of the states; at the next step, the process can remain in its
present state or switch to one of the other states. The state to which the process moves
at the next step and the probability of its doing so depend only on the present state
and not on the past history of the process. These probabilities are called transition
probabilities and are assumed to be constants (that is, the probability of moving from
state i to state j is always the same).

In the toothpaste survey described above, there are just two states—using Brand A
and using Brand B—and the transition probabilities are those indicated in
Figure 3.19. Suppose that, when the survey begins, 120 people are using Brand A and
80 people are using Brand B. How many people will be using each brand 1 month
later? 2 months later?

Solution The number of Brand A users after 1 month will be 70% of those initially
using Brand A (those who remain loyal to Brand A) plus 20% of the Brand B users
(those who switch from B to A):

Similarly, the number of Brand B users after 1 month will be a combination of those
who switch to Brand B and those who continue to use it:

0.301120 2 � 0.80180 2 � 100

0.701120 2 � 0.20180 2 � 100

Andrei A. Markov (1856–1922)
was a Russian mathematician
who studied and later taught at
the University of St. Petersburg.
He was interested in number
theory, analysis, and the theory
of continued fractions, a recently
developed field that Markov
applied to probability theory.
Markov was also interested in
poetry, and one of the uses to
which he put Markov chains was
the analysis of patterns in poems
and other literary texts.
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We can summarize these two equations in a single matrix equation:

Let’s call the matrix P and label the vectors and (Note

that the components of each vector are the numbers of Brand A and Brand B users,
in that order, after the number of months indicated by the subscript.) Thus, we have
x1 � Px 0.

Extending the notation, let xk be the vector whose components record the distri-
bution of toothpaste users after k months. To determine the number of users of each
brand after 2 months have elapsed, we simply apply the same reasoning, starting with
x1 instead of x 0. We obtain

from which we see that there are now 90 Brand A users and 110 Brand B users.

The vectors xk in Example 3.64 are called the state vectors of the Markov chain,
and the matrix P is called its transition matrix. We have just seen that a Markov chain
satisfies the relation

From this result it follows that we can compute an arbitrary state vector iteratively
once we know x 0 and P. In other words, a Markov chain is completely determined by
its transition probabilities and its initial state.

Remarks
• Suppose, in Example 3.64, we wanted to keep track of not the actual numbers

of toothpaste users but, rather, the relative numbers using each brand. We could con-
vert the data into percentages or fractions by dividing by 200, the total number of
users. Thus, we would start with

to reflect the fact that, initially, the Brand A–Brand B split is 60%–40%. Check by  

direct calculation that which can then be taken as x1 (in agreement  

with the 50–50 split we computed above). Vectors such as these, with nonnegative
components that add up to 1, are called probability vectors.

• Observe how the transition probabilities are arranged within the transition
matrix P. We can think of the columns as being labeled with the present states and the
rows as being labeled with the next states:

Present

A B

Next
A 
B
c 0.70 0.20

0.30 0.80
d

Px0 � c 0.50

0.50
d ,

x0 � c 120
200
80

200

d � c 0.60

0.40
d

xk�1 � Pxk  for k � 0, 1, 2, . . .

x2 � Px1 � c 0.70 0.20

0.30 0.80
d c 100

100
d � c 90

110
d

x1 � c 100

100
d .x0 � c 120

80
d

c0.70 0.20

0.30 0.80
d c120

80
d � c100

100
d
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Note also that the columns of P are probability vectors; any square matrix with this
property is called a stochastic matrix.

We can realize the deterministic nature of Markov chains in another way. Note
that we can write

and, in general,

This leads us to examine the powers of a transition matrix. In Example 3.64, we
have

What are we to make of the entries of this matrix? The first thing to observe is that P 2

is another stochastic matrix, since its columns sum to 1. (You are asked to prove this
in Exercise 14.) Could it be that P 2 is also a transition matrix of some kind? Consider
one of its entries—say, (P 2)21 � 0.45. The tree diagram in Figure 3.20 clarifies where
this entry came from.

There are four possible state changes that can occur over 2 months, and these
correspond to the four branches (or paths) of length 2 in the tree. Someone who ini-
tially is using Brand A can end up using Brand B 2 months later in two different ways
(marked * in the figure): The person can continue to use A after 1 month and then
switch to B (with probability 0.7(0.3) � 0.21), or the person can switch to B after
1 month and then stay with B (with probability 0.3(0.8) � 0.24). The sum of these
probabilities gives an overall probability of 0.45. Observe that these calculations are
exactly what we do when we compute (P 2)21.

It follows that (P 2)21 � 0.45 represents the probability of moving from state 1
(Brand A) to state 2 (Brand B) in two transitions. (Note that the order of the sub-
scripts is the reverse of what you might have guessed.) The argument can be general-
ized to show that

(P k )ij is the probability of moving from state j to state i in k transitions.

In Example 3.64, what will happen to the distribution of toothpaste users in the
long run? Let’s work with probability vectors as state vectors. Continuing our calcu-
lations (rounding to three decimal places), we find

x6 � c 0.403

0.597
d , x7 � c 0.402

0.598
d , x8 � c 0.401

0.599
d , x9 � c 0.400

0.600
d , x10 � c 0.400

0.600
d ,

x3 � Px2 � c 0.70 0.20

0.30 0.80
d c 0.45

0.55
d � c 0.425

0.575
d , x4 � c 0.412

0.588
d , x5 � c 0.406

0.594
d ,

x0 � c 0.60

0.40
d , x1 � c 0.50

0.50
d , x2 � Px1 � c 0.70 0.20

0.30 0.80
d c 0.50

0.50
d � c 0.45

0.55
d ,

P 2 � c 0.70 0.20

0.30 0.80
d c 0.70 0.20

0.30 0.80
d � c 0.55 0.30

0.45 0.70
d

xk � P kx0  for k � 0, 1, 2, . . .

x2 � Px1 � P 1P x0 2 � P 2x0
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Figure 3. 20

The word stochastic is derived
from the Greek adjective
stokhastikos, meaning “capable of
aiming” (or guessing). It has come
to be applied to anything that is
governed by the laws of probability
in the sense that probability makes
predictions about the likelihood of
things happening. In probability
theory, “stochastic processes” form
a generalization of Markov chains.
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and so on. It appears that the state vectors approach (or converge to) the vector 

implying that eventually 40% of the toothpaste users in the survey will be using 
Brand A and 60% will be using Brand B. Indeed, it is easy to check that, once this dis-
tribution is reached, it will never change. We simply compute

A state vector x with the property that Px � x is called a steady state vector. In
Chapter 4, we will prove that every Markov chain has a unique steady state vector. For
now, let’s accept this as a fact and see how we can find such a vector without doing any
iterations at all.

We begin by rewriting the matrix equation Px � x as Px � Ix, which can in turn
be rewritten as (I � P)x � 0. Now this is just a homogeneous system of linear
equations with coefficient matrix I � P, so the augmented matrix is [I � P � 0]. In
Example 3.64, we have

which reduces to

So, if our steady state vector is then x2 is a free variable and the parametric

solution is

If we require x to be a probability vector, then we must have

Therefore, and so in agreement with our 

iterative calculations above. (If we require x to contain the actual distribution, then 

in this example we must have x1 � x2 � 200, from which it follows that )

A psychologist places a rat in a cage with three compartments, as shown in Figure 3.21.
The rat has been trained to select a door at random whenever a bell is rung and to
move through it into the next compartment.

(a) If the rat is initially in compartment 1, what is the probability that it will be in
compartment 2 after the bell has rung twice? three times?

(b) In the long run, what proportion of its time will the rat spend in each
compartment?

Solution Let P � [pij ] be the transition matrix for this Markov chain. Then

p21 � p31 � 1
2 , p12 � p13 � 1

3 , p32 � p23 � 2
3 , and p11 � p22 � p33 � 0

x � c 80

120
d .

x � c 0.4

0.6
d ,x1 � 2

5 � 0.4,x2 � t � 3
5 � 0.6

1 � x1 � x2 � 2
3 t � t � 5

3 t

x1 � 2
3 t,  x2 � t

x � cx1

x2

d ,
c 1 �2

3

0 0
2 0
0
d

3 I � P � 0 4 � c 1 � 0.70 �0.20

�0.30 1 � 0.80
2 0
0
d � c 0.30 �0.20

�0.30 0.20
2 0
0
d

c0.70 0.20

0.30 0.80
d c0.4

0.6
d � c0.4

0.6
d

c0.4

0.6
d ,
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(Why? Remember that pij is the probability of moving from j to i.) Therefore,

and the initial state vector is

(a) After one ring of the bell, we have

Continuing (rounding to three decimal places), we find

and

Therefore, after two rings, the probability that the rat is in compartment 2 is �
0.333, and after three rings, the probability that the rat is in compartment 2 is

� 0.389. [Note that these questions could also be answered by computing (P 2 ) 21

and (P3 ) 21.]

7
18

1
3

x3 � Px2 � £ 0 1
3

1
3

1
2 0 2

3
1
2

2
3 0

§ £ 1
3
1
3
1
3

§ � £ 2
9
7

18
7

18

§ � £ 0.222

0.389

0.389

§

x2 � Px1 � £ 0 1
3

1
3

1
2 0 2

3
1
2

2
3 0

§ £ 012
1
2

§ � £ 1
3
1
3
1
3

§ � £ 0.333

0.333

0.333

§

x1 � Px0 � £ 0 1
3

1
3

1
2 0 2

3
1
2

2
3 0

§ £ 10
0

§ � £ 012
1
2

§ � £ 00.5

0.5

§
x0 � £ 10

0

§
P � £0 1

3
1
3

1
2 0 2

3
1
2

2
3 0

§
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(b) This question is asking for the steady state vector x as a probability vector. As we
saw above, x must be in the null space of I � P, so we proceed to solve the system

Hence, if then x3 � t is free and x1 � x2 � t. Since x must be a proba-

bility vector, we need 1 � x1 � x2 � x3 � Thus, t � and

which tells us that, in the long run, the rat spends of its time in compartment 1 and 
of its time in each of the other two compartments.

Linear Economic Models

We now revisit the economic models that we first encountered in Section 2.4 and
recast these models in terms of matrices. Example 2.33 illustrated the Leontief closed
model. The system of equations we needed to solve was

x1 � x2� x3 � x1

x1 � x2� x3 � x2

x1 � x2� x3 � x3

In matrix form, this is the equation Ex � x, where

The matrix E is called an exchange matrix and the vector x is called a price vector. In
general, if E = [eij ], then eij represents the fraction (or percentage) of industry j’s
output that is consumed by industry i and xi is the price charged by industry i for its
output.

In a closed economy, the sum of each column of E is 1. Since the entries of E are
also nonnegative, E is a stochastic matrix and the problem of finding a solution to the
equation

(1)

is precisely the same as the problem of finding the steady state vector of a Markov
chain! Thus, to find a price vector x that satisfies , we solve the equivalent
homogeneous equation . There will always be infinitely many solutions;
we seek a solution where the prices are all nonnegative and at least one price is
positive.

1I � E 2x � 0
Ex � x

Ex � x

E � £ 1>4 1>3 1>2
1>4 1>3 1>4
1>2 1>3 1>4 §  and x � £ x1

x2

x3

§
1
4

1
3

1
2

1
4

1
3

1
4

1
2

1
3

1
4

3
8

1
4

x � £ 1
4
3
8
3
8

§
3
8

8
3 t.

2
3 t,x � £x1

x2

x3

§ ,
3 I � P � 0 4 � £ 1 �1

3 �1
3

�1
2 1 �2

3

�1
2 �2

3 1

3 00
0

§ ¡ £ 1 0 �2
3

0 1 �1

0 0 0

3 00
0

§
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The Leontief open model is more interesting. In Example 2.34, we needed to solve the
system

x1� 0.2x1 � 0.5x2 � 0.1x3 � 10

x2� 0.4x1 � 0.2x2 � 0.2x3 � 10

x3� 0.1x1 � 0.3x2 � 0.3x3 � 30

In matrix form, we have

(2)

where

The matrix C is called the consumption matrix, x is the production vector, and d is
the demand vector. In general, if C � [cij ], x = [xi], and d = [di], then cij represents
the dollar value of industry i’s output that is needed to produce one dollar’s worth of
industry j’s output, xi is the dollar value (price) of industry i’s output, and di is the
dollar value of the external demand for industry i ’s output. Once again, we are inter-
ested in finding a production vector x with nonnegative entries such that at least one
entry is positive. We call such a vector x a feasible solution.

Determine whether there is a solution to the Leontief open model determined by the
following consumption matrices:

(a) (b)

Solution (a) We have

so the equation becomes

In practice, we would row reduce the corresponding augmented matrix to determine
a solution. However, in this case, it is instructive to notice that the coefficient matrix 
I � C is invertible and then to apply Theorem 3.7. We compute

Since d1, d2, and all entries of (I � C)�1 are nonnegative, so are x1 and x2 . Thus, we
can find a feasible solution for any nonzero demand vector.

c x1

x2

d � c 3>4 �1>3
�1>2 2>3 d�1 c d1

d2

d � c 2 1

3>2 9>4 d c d1

d2

d

c 3>4 �1>3
�1>2 2>3 d c x1

x2

d � c d1

d2

d
1I � C 2x � d

I � C � c 1 0

0 1
d � c 1>4 1>3

1>2 1>3 d � c 3>4 �1>3
�1>2 2>3 d

C � c 1>2 1>2
1>2 2>3 dC � c 1>4 1>3

1>2 1>3 d

C � £ 0.2 0.5 0.1

0.4 0.2 0.2

0.1 0.3 0.3

§ , x � £ x1

x2

x3

§ , d � £ 10

10

30

§
x � Cx � d or 1I � C 2x � d
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Theorem 3. 34

(b) In this case,

so that

Since all entries of (I � C)�1 are negative, this will not produce a feasible solution for
any nonzero demand vector d.

Motivated by Example 3.66, we have the following definition. (For two m � n
matrices A � [aij] and B = [bij], we will write if for all i and j. Similarly,
we may define and so on. A matrix A is called nonnegative if
and positive if .)

Definition A consumption matrix C is called productive if I � C is invertible
and .

We now give three results that give criteria for a consumption matrix to be
productive.

Let C be a consumption matrix. Then C is productive if and only if there exists a pro-
duction vector such that .

Proof Assume that C is productive. Then I � C is invertible and . Let

Then and . Thus, or, equiva-
lently, .

Conversely, assume that there exists a vector such that . Since
and , we have by Exercise 35. Furthermore, there must exist a

real number with such that . But then

By induction, it can be shown that for all . (Write out the de-
tails of this induction proof.) Since , approaches 0 as n gets large.
Therefore, as and hence . Since , we must have

as .
Now consider the matrix equation1I � C 2 1I � C � C2 � p � Cn�1 2 � I � C n

n S qC n S O
x 7 0C nx S 0n S q, lnx S 0

ln0 6 l 6 1
n 
 00 � C nx 6 ln x

C 2x � C1Cx 2 � C1lx 2 � l1Cx 2 6 l1lx 2 � l2x

Cx 6 lx0 6 l 6 1l

x 7 0C  OC 
 O
x 7 Cxx 
 0

x 7 Cx
x � Cx 7 01I � C 2x � j 7 0x � 1I � C 2�1j 
 0

j � ≥ 1

1



1

¥
1I � C 2�1 
 O

x 7 Cxx 
 0

1I � C 2�1 
 O

A 7 O
A 
 OA 7 B, A � B,

aij 
 bijA 
 B

x � 1I � C 2�1d � c�4 �6

�6 �6
dd

I � C � c 1>2 �1>2
�1>2 2>3 d      and 1I � C 2�1 � c�4 �6

�6 �6
d
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COROLLARY 3. 36

COROLLARY 3. 35

As , , so we have

Therefore, is invertible, with its inverse given by the infinite matrix series
. Since all the terms in this series are nonnegative, we also have

Hence, C is productive.

Remarks
• The infinite series is the matrix analog of the geometric

series . You may be familiar with the fact that, for 
.

• Since the vector Cx represents the amounts consumed by each industry, the
inequality means that there is some level of production for which each
industry is producing more than it consumes.

• For an alternative approach to the first part of the proof of Theorem 3.34, see
Exercise 42 in Section 4.6.

Let C be a consumption matrix. If the sum of each row of C is less than 1, then 
C is productive.

Proof If

then Cx is a vector consisting of the row sums of C. If each row sum of C is less than
1, then the condition is satisfied. Hence, C is productive.

Let C be a consumption matrix. If the sum of each column of C is less than 1, then 
C is productive.

Proof If each column sum of C is less than 1, then each row sum of CT is less than 1.

Hence, CT is productive, by Corollary 3.35. Therefore, by Theorems 3.9(d) and 3.4,

It follows that too and, thus, C is productive.
You are asked to give alternative proofs of Corollaries 3.35 and 3.36 in Exercise 52 of
Section 7.2.

It follows from the definition of a consumption matrix that the sum of column 
j is the total dollar value of all the inputs needed to produce one dollar’s worth of
industry j ’s output—that is, industry j ’s income exceeds its expenditures. We say that
such an industry is profitable. Corollary 3.36 can therefore be rephrased to state that
a consumption matrix is productive if all industries are profitable.

1I � C 2�1 
 O

1 1I � C 2�1 2T � 1 1I � C 2T 2�1 � 1IT � CT 2�1 � 1I � CT 2�1 
 O

x 7 Cx

x � ≥ 1

1



1

¥

x 7 Cx

1 � x � x2 � p � 1> 11 � x 2 |x| 6 1,1 � x � x2 � p
I � C � C2 � p

1I � C 2�1 � I � C � C2 � p 
 O

I � C � C2 � p
I � C

1I � C 2 1I � C � C2 � p 2 � I � O � I

C n S On S q
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The word corollary comes from 
the Latin word corollarium, which
refers to a garland given as a re-
ward. Thus, a corollary is a little
extra reward that follows from a
theorem.
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Population Growth

One of the most popular models of population growth is a matrix-based model, first
introduced by P. H. Leslie in 1945. The Leslie model describes the growth of the female
portion of a population, which is assumed to have a maximum lifespan. The females
are divided into age classes, all of which span an equal number of years. Using data
about the average birthrates and survival probabilities of each class, the model is then
able to determine the growth of the population over time.

A certain species of German beetle, the Vollmar-Wasserman beetle (or VW beetle, for
short), lives for at most 3 years. We divide the female VW beetles into three age classes
of 1 year each: youths (0–1 year), juveniles (1–2 years), and adults (2–3 years). The
youths do not lay eggs; each juvenile produces an average of four female beetles; and
each adult produces an average of three females.

The survival rate for youths is 50% (that is, the probability of a youth’s surviving
to become a juvenile is 0.5), and the survival rate for juveniles is 25%. Suppose
we begin with a population of 100 female VW beetles: 40 youths, 40 juveniles, and
20 adults. Predict the beetle population for each of the next 5 years.

Solution After 1 year, the number of youths will be the number produced during
that year:

The number of juveniles will simply be the number of youths that have survived:

Likewise, the number of adults will be the number of juveniles that have survived:

We can combine these into a single matrix equation

or Lx 0�x1, where x0� is the initial population distribution vector and x1�

is the distribution after 1 year. We see that the structure of the equation is exactly the
same as for Markov chains: xk�1 � Lxk for k � 0, 1, 2, . . . (although the interpretation
is quite different). It follows that we can iteratively compute successive population
distribution vectors. (It also follows that xk � Lk x 0 for k � 0, 1, 2, . . . , as for Markov
chains, but we will not use this fact here.)

We compute

x3 � Lx2 � £ 0 4 3

0.5 0 0

0 0.25 0

§ £ 110

110

5

§ � £ 455

  55

  27.5

§
x2 � Lx1 � £ 0 4 3

0.5 0 0

0 0.25 0

§ £ 220

20

10

§ � £ 110

110

5

§

£220

20

10

§£40

40

20

§
£ 0  4  3

0.5 0  0

0  0.25 0

§ £ 40

40

20

§ � £ 220

20

10

§
40 � 0.25 � 10

40 � 0.5 � 20

40 � 4 � 20 � 3 � 220
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P. H. Leslie, “On the Use of
Matrices in Certain Population
Mathematics,” Biometrika 33
(1945), pp. 183–212.
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Figure 3. 22

Therefore, the model predicts that after 5 years there will be approximately
951 young female VW beetles, 151 juveniles, and 57 adults. (Note: You could argue
that we should have rounded to the nearest integer at each step—for example, 28
adults after step 3—which would have affected the subsequent iterations. We elected
not to do this, since the calculations are only approximations anyway and it is much
easier to use a calculator or CAS if you do not round as you go.)

The matrix L in Example 3.67 is called a Leslie matrix. In general, if we have a
population with n age classes of equal duration, L will be an n � n matrix with the
following structure:

Here, b1, b2, . . . are the birth parameters (bi � the average numbers of females pro-
duced by each female in class i) and s1, s2, . . . are the survival probabilities (si � the
probability that a female in class i survives into class i � 1).

What are we to make of our calculations? Overall, the beetle population appears
to be increasing, although there are some fluctuations, such as a decrease from 250 to
225 from year 1 to year 2. Figure 3.22 shows the change in the population in each of
the three age classes and clearly shows the growth, with fluctuations.

L � F
b1 b2 b3

p bn�1 bn

s1 0 0 p 0 0

0 s2 0 p 0 0

0 0 s3
p 0 0

o o o ∞ o o
0 0 0 p sn�1 0

V

x5 � Lx4 � £ 0 4 3

0.5 0 0

0 0.25 0

§ £ 302.5

227.5

  13.75

§ � £ 951.2

151.2

  56.88

§
x4 � Lx3 � £ 0 4 3

0.5 0 0

0 0.25 0

§ £ 455

  55

  27.5

§ � £ 302.5

227.5

  13.75

§
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If, instead of plotting the actual population, we plot the relative population in
each class, a different pattern emerges. To do this, we need to compute the fraction of
the population in each age class in each year; that is, we need to divide each distribu-
tion vector by the sum of its components. For example, after 1 year, we have

which tells us that 88% of the population consists of youths, 8% is juveniles, and 4% is
adults. If we plot this type of data over time, we get a graph like the one in Figure 3.23,
which shows clearly that the proportion of the population in each class is approaching
a steady state. It turns out that the steady state vector in this example is

That is, in the long run, 72% of the population will be youths, 24% juveniles, and 4%
adults. (In other words, the population is distributed among the three age classes in
the ratio 18:6 :1 .) We will see how to determine this ratio exactly in Chapter 4.

Graphs and Digraphs

There are many situations in which it is important to be able to model the interrela-
tionships among a finite set of objects. For example, we might wish to describe
various types of networks (roads connecting towns, airline routes connecting cities,
communication links connecting satellites, etc.) or relationships among groups or
individuals (friendship relationships in a society, predator-prey relationships in an

£0.72

0.24

0.04

§

1

250
x1 �

1

250
£220

20

10

§ � £0.88

0.08

0.04

§
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ecosystem, dominance relationships in a sport, etc.). Graphs are ideally suited to
modeling such networks and relationships, and it turns out that matrices are a useful
tool in their study.

A graph consists of a finite set of points (called vertices) and a finite set of
edges, each of which connects two (not necessarily distinct) vertices. We say that
two vertices are adjacent if they are the endpoints of an edge. Figure 3.24 shows an
example of the same graph drawn in two different ways. The graphs are the “same”
in the sense that all we care about are the adjacency relationships that identify the
edges.

We can record the essential information about a graph in a matrix and use
matrix algebra to help us answer certain questions about the graph. This is particu-
larly useful if the graphs are large, since computers can handle the calculations very
quickly.

Definition If G is a graph with n vertices, then its adjacency matrix is the 
n � n matrix A [or A(G)] defined by

Figure 3.25 shows a graph and its associated adjacency matrix.

aij � b1  if there is an edge between vertices i and j

0  otherwise

248 Chapter 3 Matrices

The term vertex (vertices is the
plural) comes from the Latin verb
vertere, which means “to turn.” In
the context of graphs (and geome-
try), a vertex is a corner—a point
where an edge “turns” into a dif-
ferent edge.

A B

C D

A DCB

Figure 3. 24
Two representations of the same
graph

v1 v2

v4 v3

Figure 3. 25
A graph with adjacency matrix A

A � ≥ 0 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

¥

Remark Observe that the adjacency matrix of a graph is necessarily a 
symmetric matrix. (Why?) Notice also that a diagonal entry aii of A is zero unless
there is a loop at vertex i. In some situations, a graph may have more than one edge
between a pair of vertices. In such cases, it may make sense to modify the 
definition of the adjacency matrix so that aij equals the number of edges between
vertices i and j.

We define a path in a graph to be a sequence of edges that allows us to travel from
one vertex to another continuously. The length of a path is the number of edges it
contains, and we will refer to a path with k edges as a k-path. For example, in the
graph of Figure 3.25, v1v3v2v1 is a 3-path, and v4v1v2v2v1v3 is a 5-path. Notice that the
first of these is closed (it begins and ends at the same vertex); such a path is called a
circuit. The second uses the edge between v1 and v2 twice; a path that does not include
the same edge more than once is called a simple path.

�

�
I I I I II I I I I ������������������������������
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We can use the powers of a graph’s adjacency matrix to give us information about
the paths of various lengths in the graph. Consider the square of the adjacency matrix
in Figure 3.25:

What do the entries of A2 represent? Look at the (2, 3) entry. From the definition of
matrix multiplication, we know that

The only way this expression can result in a nonzero number is if at least one of the
products a2kak3 that make up the sum is nonzero. But a2kak3 is nonzero if and only if
both a2k and ak3 are nonzero, which means that there is an edge between v2 and vk as
well as an edge between vk and v3. Thus, there will be a 2-path between vertices 2 and
3 (via vertex k). In our example, this happens for k � 1 and for k � 2, so

which tells us that there are two 2-paths between vertices 2 and 3. (Check to see that
the remaining entries of A2 correctly give 2-paths in the graph.) The argument we
have just given can be generalized to yield the following result, whose proof we leave
as Exercise 72.

If A is the adjacency matrix of a graph G, then the (i, j) entry of Ak is equal to the
number of k-paths between vertices i and j.

�  2
�  1 # 1 � 1 # 1 � 1 # 0 � 0 # 0

1A2 223 � a21a13 � a22a23 � a23a33 � a24a43

1A2 223 � a21a13 � a22a23 � a23a33 � a24a43

A2 � ≥ 3 2 1 0

2 3 2 1

1 2 2 1

0 1 1 1

¥
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Example 3. 68 How many 3-paths are there between v1 and v2 in Figure 3.25?

Solution We need the (1, 2) entry of A3, which is the dot product of row 1 of A2 and
column 2 of A. The calculation gives

so there are six 3-paths between vertices 1 and 2, which can be easily checked.

1A3 212 � 3 # 1 � 2 # 1 � 1 # 1 � 0 # 0 � 6

In many applications that can be modeled by a graph, the vertices are ordered
by some type of relation that imposes a direction on the edges. For example,
directed edges might be used to represent one-way routes in a graph that models a
transportation network or predator-prey relationships in a graph modeling an
ecosystem. A graph with directed edges is called a digraph. Figure 3.26 shows an
example.

An easy modification to the definition of adjacency matrices allows us to use
them with digraphs.

v1 v2

v4 v3

Figure 3. 26
A digraph

�

�
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Definition If G is a digraph with n vertices, then its adjacency matrix is the 
n � n matrix A [or A(G)] defined by

Thus, the adjacency matrix for the digraph in Figure 3.26 is

Not surprisingly, the adjacency matrix of a digraph is not symmetric in general.
(When would it be?) You should have no difficulty seeing that Ak now contains the
numbers of directed k-paths between vertices, where we insist that all edges along a
path flow in the same direction. (See Exercise 72.) The next example gives an applica-
tion of this idea.

A � ≥ 0 1 0 1

0 0 0 1

1 0 0 0

1 0 1 0

¥

aij � b1 if there is an edge from vertex i to vertex j

0 otherwise

Five tennis players (Djokovic, Federer, Nadal, Roddick, and Safin) compete in a
round-robin tournament in which each player plays every other player once. The
digraph in Figure 3.27 summarizes the results. A directed edge from vertex i to vertex
j means that player i defeated player j. (A digraph in which there is exactly one
directed edge between every pair of vertices is called a tournament.)

The adjacency matrix for the digraph in Figure 3.27 is

where the order of the vertices (and hence the rows and columns of A) is determined
alphabetically. Thus, Federer corresponds to row 2 and column 2, for example.

Suppose we wish to rank the five players, based on the results of their matches. One
way to do this might be to count the number of wins for each player. Observe that the
number of wins each player had is just the sum of the entries in the corresponding row;
equivalently, the vector containing all the row sums is given by the product Aj, where

j � E111
1

1

U

A � E0 1 0 1 1

0 0 1 1 1

1 0 0 1 0

0 0 0 0 1

0 0 1 0 0

U

Example 3. 69

D

R N

FS

Figure 3. 27
A tournament
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In our case, we have

which produces the following ranking:

First: Djokovic, Federer (tie)

Second: Nadal

Third: Roddick, Safin (tie)

Are the players who tied in this ranking equally strong? Djokovic might argue that
since he defeated Federer, he deserves first place. Roddick would use the same type of
argument to break the tie with Safin. However, Safin could argue that he has two 
“indirect” victories because he beat Nadal, who defeated two others; furthermore,
he might note that Roddick has only one indirect victory (over Safin, who then
defeated Nadal).

Since in a group of ties there may not be a player who defeated all the others in the
group, the notion of indirect wins seems more useful. Moreover, an indirect victory
corresponds to a 2-path in the digraph, so we can use the square of the adjacency ma-
trix. To compute both wins and indirect wins for each player, we need the row sums
of the matrix A � A2, which are given by

Thus, we would rank the players as follows: Djokovic, Federer, Nadal, Safin, Roddick.
Unfortunately, this approach is not guaranteed to break all ties.

� E0 1 2 2 3

1 0 2 2 2

1 1 0 2 2

0 0 1 0 1

1 0 1 1 0

U E111
1

1

U � E876
2

3

U
1A � A2 2 j � •E0 1 0 1 1

0 0 1 1 1

1 0 0 1 0

0 0 0 0 1

0 0 1 0 0

U � E0 0 2 1 2

1 0 1 1 1

0 1 0 1 2

0 0 1 0 0

1 0 0 1 0

U μ E111
1

1

U

Aj � E0 1 0 1 1

0 0 1 1 1

1 0 0 1 0

0 0 0 0 1

0 0 1 0 0

U E111
1

1

U � E332
1

1

U

Error-Correcting Codes

Section 1.4 discussed examples of error-detecting codes. We turn now to the problem
of designing codes that can correct as well as detect certain types of errors. Our
message will be a vector x in for some k, and we will encode it by using a matrix�k

2
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transformation T : for some n � k. The vector T(x) will be called a code
vector. A simple example will serve to illustrate the approach we will take, which is a
generalization of the parity-check vectors in Example 1.37.

�n
2�k

2 S

252 Chapter 3 Matrices

Example 3. 70 Suppose the message is a single binary digit: 0 or 1. If we encode the message by
simply repeating it twice, then the code vectors are [0, 0] and [1, 1]. This code can
detect single errors. For example, if we transmit [0, 0] and an error occurs in the
first component, then [1, 0] is received and an error is detected, because this is not
a legal code vector. However, the receiver cannot correct the error, since [1, 0]
would also be the result of an error in the second component if [1, 1] had been
transmitted.

We can solve this problem by making the code vectors longer—repeating the
message digit three times instead of two. Thus, 0 and 1 are encoded as [0, 0, 0] and
[1, 1, 1], respectively. Now if a single error occurs, we cannot only detect it but also
correct it. For example, if [0, 1, 0] is received, then we know it must have been the
result of a single error in the transmission of [0, 0, 0], since a single error in [1, 1, 1]
could not have produced it.

Note that the code in Example 3.70 can be achieved by means of a matrix

transformation, albeit a particularly trivial one. Let and define T : �2

by T(x) � Gx. (Here we are thinking of the elements of �2 as 1 � 1 matrices.) The
matrix G is called a generator matrix for the code.

To tell whether a received vector is a code vector, we perform not one but two par-

ity checks. We require that the received vector satisfies c1 � c2 � c3. We can

write these equations as a linear system over �2:

(1)

If we let then (1) is equivalent to Pc � 0. The matrix P is called a

parity check matrix for the code. Observe that 

To see how these matrices come into play in the correction of errors, suppose

we send 1 as but a single error causes it to be received as£11
1

§ � 31 1 1 4T,

PG � c 0
0
d � O.

P � c 1 1 0

1 0 1
d ,

c1 � c2

c1 � c3

  or  
c1 � c2 � 0

c1 � c3 � 0

c � £ c1

c2

c3

§

�3
2SG � £ 11

1

§
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Theorem 3. 37

c� � We compute

so we know that c� cannot be a code vector. Where is the error? Notice that Pc� is the
second column of the parity check matrix P—this tells us that the error is in the sec-
ond component of c� (which we will prove in Theorem 3.37 below) and allows us to
correct the error. (Of course, in this example we could find the error faster without
using matrices, but the idea is a useful one.)

To generalize the ideas in the last example, we make the following definitions.

Definitions If k � n, then any n � k matrix of the form where A is

an (n � k) � k matrix over �2, is called a standard generator matrix for an (n, k)
binary code T : Any (n � k) � n matrix of the form 
where B is an (n � k) � k matrix over �2, is called a standard parity check matrix.
The code is said to have length n and dimension k.

Here is what we need to know: (a) When is G the standard generator matrix for
an error-correcting binary code? (b) Given G, how do we find an associated standard
parity check matrix P? It turns out that the answers are quite easy, as shown by the
following theorem.

If is a standard generator matrix and P � [B In�k] is a standard par-

ity check matrix, then P is the parity check matrix associated with G if and only if
A � B. The corresponding (n, k) binary code is (single) error-correcting if and only
if the columns of P are nonzero and distinct.

Before we prove the theorem, let’s consider another, less trivial example that illus-
trates it.

Suppose we want to design an error-correcting code that uses three parity check equa-
tions. Since these equations give rise to the rows of P, we have n � k � 3 and k � n � 3.
The message vectors come from so we would like k (and therefore n) to be as large as
possible in order that we may transmit as much information as possible. By Theorem 3.37,
the n columns of P need to be nonzero and distinct, so the maximum occurs when they
consist of all the 23 � 1 � 7 nonzero vectors of � One such candidate is

P � £1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

§
�3

2.�n�k
2

�k
2,

G � c Ik

A
d

P � 3B In�k 4 ,�n
2.�k

2 S

G � c Ik

A
d ,

Pc¿ � c 1 1 0

1 0 1
d £ 10

1

§ � c 1
0
d  0

31 0 1 4T.
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This means that

and thus, by Theorem 3.37, a standard generator matrix for this code is

As an example of how the generator matrix works, suppose we encode x �
to get the code vector

If this vector is received, it is seen to be correct, since Pc � 0. On the other hand, if
is received, we compute

which we recognize as column 3 of P. Therefore, the error is in the third component
of c�, and by changing it we recover the correct code vector c. We also know that the
first four components of a code vector are the original message vector, so in this case
we decode c to get the original x � 30 1 0 1 4T.

Pc¿ � C1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

S G
0

1

1

1

0

1

0

W � C0

1

1

S
c¿ � 30 1 1 1 0 1 0 4T

c � Gx � 30 1 0 1 0 1 0 4T30 1 0 1 4T

G � G
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1

1 0 1 1

0 1 1 1

W

A � £1 1 0 1

1 0 1 1

0 1 1 1

§

254 Chapter 3 Matrices

The code in Example 3.71 is called the (7, 4) Hamming code. Any binary code
constructed in this fashion is called an (n, k) Hamming code. Observe that, by con-
struction, an (n, k) Hamming code has n � 2n�k � 1.

Proof of Theorem 3. 37 (Throughout this proof we denote by ai the ith column of a
matrix A.) With P and G as in the statement of the theorem, assume first that they are
standard parity check and generator matrices for the same binary code. Therefore, for
every x in PGx � 0. In terms of block multiplication,

3B  I 4 c I

A
d x � 0  for all x in �2

k

�k
2,
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Equivalently, for all x in , we have

or

If we now take x � ei, the ith standard basis vector in we see that

Therefore, B � A.
Conversely, it is easy to check that if B � A, then PGx � 0 for every x in (see

Exercise 92).
To see that such a pair determines an error-correcting code if the columns of P are

nonzero and distinct, let x be a message vector in and let the corresponding code
vector be c � Gx. Then Pc � 0. Suppose there has been an error in the ith compo-
nent, resulting in the vector c�. It follows that c� � c � ei. We now compute

which pinpoints the error in the ith component.
On the other hand, if pi � 0, then an error in the ith component will not be

detected (i.e., Pc� � 0), and if pi � pj, then we cannot determine whether an error
occurred in the ith or the jth component (Exercise 93).

The main ideas of this section are summarized below.

1. For n � k, an n � k matrix G and an (n � k) � n matrix P (with entries in �2)
are a standard generator matrix and a standard parity check matrix, respec-
tively, for an (n, k) binary code if and only if, in block form,

for some (n � k) � k matrix A over �2.
2. G encodes a message vector x in as a code vector c in via c � Gx.
3. G is error-correcting if and only if the columns of P are nonzero and distinct.

A vector c� in is a code vector if and only if Pc� � 0. In this case, the corre-
sponding message vector is the vector x in consisting of the first k compo-
nents of c�. If Pc�  0, then c� is not a code vector and Pc� is one of the columns
of P. If Pc� is the ith column of P, then the error is in the ith component of c�
and we can recover the correct code vector (and hence the message) by
changing this component.

�k
2

�n
2

�n
2�k

2

G � c Ik

A
d   and  P � 3A In�k 4

Pc¿ � P 1c � ei 2 � Pc � Pei � 0 � pi � pi

�k
2

�k
2

bi � Bei � Aei � ai  for all i

�k
2,

Bx � Ax

Bx � Ax � 1B � A 2x � 1BI � IA 2x � 3B  I 4 c I

A
d x � 0

�k
2
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explicit construction for the optimal
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Markov Chains

In Exercises 1–4, let be the transition ma- 

trix for a Markov chain with two states. Let be

the initial state vector for the population.

1. Compute x1 and x2.

2. What proportion of the state 1 population will be in
state 2 after two steps?

3. What proportion of the state 2 population will be in
state 2 after two steps?

4. Find the steady state vector.

In Exercises 5–8, let be the transition matrix

for a Markov chain with three states. Let be the

initial state vector for the population.

5. Compute x1 and x2.

6. What proportion of the state 1 population will be in
state 1 after two steps?

7. What proportion of the state 2 population will be in
state 3 after two steps?

8. Find the steady state vector.

9. Suppose that the weather in a particular region
behaves according to a Markov chain. Specifically,
suppose that the probability that tomorrow will be
a wet day is 0.662 if today is wet and 0.250 if today
is dry. The probability that tomorrow will be a dry
day is 0.750 if today is dry and 0.338 if today is wet.
[This exercise is based on an actual study of rainfall
in Tel Aviv over a 27-year period. See K. R. Gabriel
and J. Neumann, “A Markov Chain Model for Daily
Rainfall Occurrence at Tel Aviv,” Quarterly Journal of
the Royal Meteorological Society, 88 (1962), pp. 90–95.]

(a) Write down the transition matrix for this Markov
chain.

(b) If Monday is a dry day, what is the probability that
Wednesday will be wet?

(c) In the long run, what will the distribution of wet
and dry days be?

x0 � £ 120

180

90

§
P � £ 1

2
1
3

1
3

0 1
3

2
3

1
2

1
3 0

§

x0 � c 0.5

0.5
dP � c 0.5 0.3

0.5 0.7
d 10. Data have been accumulated on the heights of

children relative to their parents. Suppose that the
probabilities that a tall parent will have a tall, medium-
height, or short child are 0.6, 0.2, and 0.2, respectively;
the probabilities that a medium-height parent will
have a tall, medium-height, or short child are 0.1, 0.7,
and 0.2, respectively; and the probabilities that a short
parent will have a tall, medium-height, or short child
are 0.2, 0.4, and 0.4, respectively.

(a) Write down the transition matrix for this Markov
chain.

(b) What is the probability that a short person will
have a tall grandchild?

(c) If 20% of the current population is tall, 50% is of
medium height, and 30% is short, what will the
distribution be in three generations?

(d) If the data in part (c) do not change over time,
what proportion of the population will be tall, of
medium height, and short in the long run?

11. A study of piñon (pine) nut crops in the American
southwest from 1940 to 1947 hypothesized that 
nut production followed a Markov chain. [See
D. H. Thomas, “A Computer Simulation Model of
Great Basin Shoshonean Subsistence and Settlement
Patterns,” in D. L. Clarke, ed., Models in Archaeology
(London: Methuen, 1972).] The data suggested that
if one year’s crop was good, then the probabilities that
the following year’s crop would be good, fair, or poor
were 0.08, 0.07, and 0.85, respectively; if one year’s
crop was fair, then the probabilities that the following
year’s crop would be good, fair, or poor were 0.09,
0.11, and 0.80, respectively; if one year’s crop was
poor, then the probabilities that the following year’s
crop would be good, fair, or poor were 0.11, 0.05, and
0.84, respectively.

(a) Write down the transition matrix for this Markov
chain.

(b) If the piñon nut crop was good in 1940, find the
probabilities of a good crop in the years 1941
through 1945.

(c) In the long run, what proportion of the crops will
be good, fair, and poor?

12. Robots have been programmed to traverse the maze
shown in Figure 3.28 and at each junction randomly
choose which way to go.

Exercises 3. 7
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(a) Construct the transition matrix for the Markov
chain that models this situation.

(b) Suppose we start with 15 robots at each junction.
Find the steady state distribution of robots.
(Assume that it takes each robot the same amount
of time to travel between two adjacent junctions.)

13. Let j denote a row vector consisting entirely of 1s. Prove
that a nonnegative matrix P is a stochastic matrix if
and only if jP � j.

14. (a) Show that the product of two 2 � 2 stochastic
matrices is also a stochastic matrix.

(b) Prove that the product of two n � n stochastic
matrices is also a stochastic matrix.

(c) If a 2 � 2 stochastic matrix P is invertible, prove that
P�1 is also a stochastic matrix.

Suppose we want to know the average (or expected) number
of steps it will take to go from state i to state j in a Markov
chain. It can be shown that the following computation 
answers this question: Delete the jth row and the jth column
of the transition matrix P to get a new matrix Q. (Keep 
the rows and columns of Q labeled as they were in P.) The 
expected number of steps from state i to state j is given by 
the sum of the entries in the column of (I � Q)�1 labeled i.

15. In Exercise 9, if Monday is a dry day, what is the
expected number of days until a wet day?

16. In Exercise 10, what is the expected number of genera-
tions until a short person has a tall descendant?

17. In Exercise 11, if the piñon nut crop is fair one year, what
is the expected number of years until a good crop occurs?

18. In Exercise 12, starting from each of the other junc-
tions, what is the expected number of moves until a
robot reaches junction 4?
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Linear Economic Models

In Exercises 19–26, determine which of the matrices are ex-
change matrices. For those that are exchange matrices, find a
nonnegative price vector that satisfies equation (1).

19. 20.

21. 22.

23. 24.

25. 26.

In Exercises 27–30, determine whether the given consump-
tion matrix is productive.

27. 28.

29. 30.

In Exercises 31–34, a consumption matrix C and a demand
vector d are given. In each case, find a feasible production
vector x that satisfies equation (2).

31.

32.

33.

34.

35. Let A be an matrix, . Suppose that
for some x in , . Prove that .x 7 0x 
 0�nAx 6 x

A 
 On � n

, d � C1.1

3.5

2.0

SC � C0.1 0.4 0.1

0 0.2 0.2

0.3 0.2 0.3

S
, d � C3

2

4

SC � C0.5 0.2 0.1

0 0.4 0.2

0 0 0.5

S
c 2
1
dC � c 0.1 0.4

0.3 0.2
d , d �

c 1
3
dC � c 1>2 1>4

1>2 1>2 d , d �

D0.2 0.4 0.1 0.4

0.3 0.2 0.2 0.1

0 0.4 0.5 0.3

0.5 0 0.2 0.2

TC0.35 0.25 0

0.15 0.55 0.35

0.45 0.30 0.60

S
C0.20 0.10 0.10

0.30 0.15 0.45

0.15 0.30 0.50

Sc 0.2 0.3

0.5 0.6
d

C0.50 0.70 0.35

0.25 0.30 0.25

0.25 0 0.40

SC0.3 0 0.2

0.3 0.5 0.3

0.4 0.5 0.5

S
C1>2 1 0

0 0 1>3
1>2 0 2>3SC1>3    0 0

1>3 3>2 0

1>3 �1>2 1

S
c 0.1 0.6

0.9 0.4
dc 0.4 0.7

0.6 0.4
d

c 1>3 2>3
1>2 1>2 dc 1>2 1>4

1>2 3>4 d
1 2

3 4

Figure 3. 28

CAS
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36. Let A, B, C, and D be matrices and x and y
vectors in . Prove the following inequalities:

(a) If and , then
.

(b) If and , then .

Population Growth

37. A population with three age classes has a Leslie matrix

If the initial population vector is

x0 � compute x1, x2, and x3.

38. A population with four age classes has a Leslie matrix

If the initial population

vector is compute x1, x2, and x3.

39. A certain species with two age classes of 1 year’s dura-
tion has a survival probability of 80% from class 1 to
class 2. Empirical evidence shows that, on average,
each female gives birth to five females per year. Thus,
two possible Leslie matrices are

(a) Starting with compute x1, . . . , x10 in
each case.

(b) For each case, plot the relative size of each age class
over time (as in Figure 3.23). What do your graphs
suggest?

40. Suppose the Leslie matrix for the VW beetle is L �

Starting with an arbitrary x 0, deter-

mine the behavior of this population.

41. Suppose the Leslie matrix for the VW beetle is

Investigate the effect of varying

the survival probability s of the young beetles.

L � £ 0 0  20

s 0  0

0 0.5 0

§ .
£0 0 20

0.1 0 0

0 0.5 0

§ .

x 0 � c 10

10
d ,

L1 � c 0 5

0.8 0
d   and  L2 � c 4 1

0.8 0
d

x0 � ≥ 10

10

10

10

¥ ,

L � ≥ 0 1 2 5

0.5 0 0 0

0 0.7 0 0

0 0 0.3 0

¥ .

£100

100

100

§ ,
L � £1 1 3

0.7 0 0

0 0.5 0

§ .

Ax 7 Bxx 
 0, x  0A 7 B

AC 
 BD 
 O
C 
 D 
 OA 
 B 
 O

�n
n � n 42. Woodland caribou are found primarily in the western

provinces of Canada and the American northwest.
The average lifespan of a female is about 14 years.
The birth and survival rates for each age bracket are
given in Table 3.4, which shows that caribou cows do
not give birth at all during their first 2 years and give
birth to about one calf per year during their middle
years. The mortality rate for young calves is very high.
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CAS

Table 3. 4
Age Birth Survival

(years) Rate Rate

0–2 0.0 0.3
2–4 0.4 0.7
4–6 1.8 0.9
6–8 1.8 0.9
8–10 1.8 0.9

10–12 1.6 0.6
12–14 0.6 0.0
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The numbers of woodland caribou reported in
Jasper National Park in Alberta in 1990 are shown in
Table 3.5. Using a CAS, predict the caribou population

Table 3. 5 Woodland Caribou
Population in Jasper
National Park,  1990

Age
(years) Number

0–2 10
2–4 2
4–6 8
6–8 5
8–10 12

10–12 0
12–14 1

Source: World Wildlife Fund Canada
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for 1992 and 1994. Then project the population for the
years 2010 and 2020. What do you conclude? (What
assumptions does this model make, and how could it
be improved?)

Graphs and Digraphs

In Exercises 43–46, determine the adjacency matrix of the
given graph.

43.

44.

45.

46.

In Exercises 47–50, draw a graph that has the given adja-
cency matrix.

47. 48. ≥ 0 1 0 1

1 1 1 1

0 1 0 1

1 1 1 0

¥≥ 0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

¥

v1 v2 v3

v4 v5

v1

v2 v3 v4 v5

v1 v2

v4 v3

v1 v2

v4 v3

49. 50.

In Exercises 51–54, determine the adjacency matrix of the
given digraph.

51.

52.

53.

54. v1 v2

v4 v3

v5

v1

v5
v2

v4 v3

v1

v3

v4 v2

v1 v2

v4 v3

E0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 0 0

1 1 1 0 0

UE0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

U
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(b) Which species is a direct source of food for the
most other species? How does A show this?

(c) If a eats b and b eats c, we say that a has c as an in-
direct source of food. How can we use A to deter-
mine which species has the most indirect food
sources? Which species has the most direct and
indirect food sources combined?

(d) Suppose that pollutants kill the plants in this food
web, and we want to determine the effect this
change will have on the ecosystem. Construct a
new adjacency matrix A* from A by deleting the
row and column corresponding to plants. Repeat
parts (a) to (c) and determine which species are
the most and least affected by the change.

(e) What will the long-term effect of the pollution be?
What matrix calculations will show this?

71. Five people are all connected by e-mail. Whenever
one of them hears a juicy piece of gossip, he or she
passes it along by e-mailing it to someone else in the
group according to Table 3.6.

(a) Draw the digraph that models this “gossip net-
work” and find its adjacency matrix A.

In Exercises 55–58, draw a digraph that has the given adja-
cency matrix.

55. 56.

57. 58.

In Exercises 59–66, use powers of adjacency matrices to 
determine the number of paths of the specified length 
between the given vertices.

59. Exercise 48, length 2, v1 and v2

60. Exercise 50, length 2, v1 and v2

61. Exercise 48, length 3, v1 and v3

62. Exercise 50, length 4, v2 and v2

63. Exercise 55, length 2, v1 to v3

64. Exercise 55, length 3, v4 to v1

65. Exercise 58, length 3, v4 to v1

66. Exercise 58, length 4, v1 to v4

67. Let A be the adjacency matrix of a graph G.

(a) If row i of A is all zeros, what does this imply
about G?

(b) If column j of A is all zeros, what does this imply
about G?

68. Let A be the adjacency matrix of a digraph D.

(a) If row i of A2 is all zeros, what does this imply
about D?

(b) If column j of A2 is all zeros, what does this imply
about D?

69. Figure 3.29 is the digraph of a tournament with six
players, P1 to P6. Using adjacency matrices, rank the
players first by determining wins only and then by
using the notion of combined wins and indirect wins,
as in Example 3.69.

70. Figure 3.30 is a digraph representing a food web in a
small ecosystem. A directed edge from a to b indicates
that a has b as a source of food. Construct the adja-
cency matrix A for this digraph and use it to answer the
following questions.

(a) Which species has the most direct sources of food?
How does A show this?

E0 1 0 0 1

0 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 1 0 0 0

UE0 0 1 0 1

1 0 0 1 0

0 0 0 0 1

1 0 1 0 0

0 1 0 1 0

U
≥ 0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

¥≥ 0 1 0 0

1 0 0 1

0 1 0 0

1 0 1 1

¥
P2 P3

P6 P5

P4P1

Figure 3. 29
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Figure 3. 30
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(b) Define a step as the time it takes a person to e-mail
everyone on his or her list. (Thus, in one step, gos-
sip gets from Ann to both Carla and Ehaz.) If Bert
hears a rumor, how many steps will it take for
everyone else to hear the rumor? What matrix
calculation reveals this?

(c) If Ann hears a rumor, how many steps will it take
for everyone else to hear the rumor? What matrix
calculation reveals this?

(d) In general, if A is the adjacency matrix of a
digraph, how can we tell if vertex i is connected to
vertex j by a path (of some length)?

[The gossip network in this exercise is reminiscent
of the notion of “six degrees of separation” (found in
the play and film by that name), which suggests that
any two people are connected by a path of acquain-
tances whose length is at most 6. The game “Six
Degrees of Kevin Bacon” more frivolously asserts
that all actors are connected to the actor Kevin Bacon
in such a way.]

72. Let A be the adjacency matrix of a graph G.

(a) By induction, prove that for all n 
 1, the (i, j)
entry of An is equal to the number of n-paths
between vertices i and j.

(b) How do the statement and proof in part (a) have
to be modified if G is a digraph?

73. If A is the adjacency matrix of a digraph G, what does
the (i, j) entry of AAT represent if i Z j?

A graph is called bipartite if its vertices can be subdivided
into two sets U and V such that every edge has one endpoint
in U and the other endpoint in V. For example, the graph
in Exercise 46 is bipartite with U � and
V � In Exercises 74–77, determine whether a
graph with the given adjacency matrix is bipartite.

74. The adjacency matrix in Exercise 47

5v4, v56. 5v1, v2, v36

Section 3.7 Applications 261

75. The adjacency matrix in Exercise 50

76. The adjacency matrix in Exercise 49

77.

78. (a) Prove that a graph is bipartite if and only if its ver-
tices can be labeled so that its adjacency matrix
can be partitioned as

(b) Using the result in part (a), prove that a bipartite
graph has no circuits of odd length.

Error-Correcting Codes

79. Suppose we encode the four vectors in by repeating
the vector twice. Thus, we have

Show that this code is not error-correcting.

80. Suppose we encode the binary digits 0 and 1 by
repeating each digit five times. Thus,

Show that this code can correct double errors.

What is the result of encoding the messages in Exercises 
81–83 using the (7, 4) Hamming code of Example 3.71?

81. 82. 83.

When the (7, 4) Hamming code of Example 3.71 is used,
suppose the messages c � in Exercises 84–86 are received.
Apply the standard parity check matrix to c � to determine

x � ≥ 1

1

1

1

¥x � ≥ 0

1

1

1

¥x � ≥ 1

1

0

0

¥

 1 S 31, 1, 1, 1, 1 4 0 S 30, 0, 0, 0, 0 4
31, 1 4 S 31, 1, 1, 1 431, 0 4 S 31, 0, 1, 0 430, 1 4 S 30, 1, 0, 1 430, 0 4 S 30, 0, 0, 0 4

�2
2

A � c O B

BT O
d

F
0 0 1 0 1 1

0 0 1 0 1 1

1 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

1 1 0 1 0 0

V
Table 3. 6

Sender Recipients

Ann Carla, Ehaz
Bert Carla, Dana
Carla Ehaz
Dana Ann, Carla
Ehaz Bert
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whether an error has occurred and correctly decode c � to
recover the original message vector x.

84.

85.

86.

87. The parity check code in Example 1.37 is a code

(a) Find a standard parity check matrix for this
code.

(b) Find a standard generator matrix.
(c) Apply Theorem 3.37 to explain why this code is

not error-correcting.

88. Define a code using the standard generator
matrix

(a) List all four code words.

G � E1 0

0 1

1 0

0 1

1 1

U
�2

2 S �5
2

�6
2 S �7

2.

c¿ � 30 0 1 1 1 1 0 4Tc¿ � 31 1 0 0 1 1 0 4Tc¿ � 30 1 0 0 1 0 1 4T
262 Chapter 3 Matrices

(b) Find the associated standard parity check matrix
for this code. Is this code (single) error-correcting?

89. Define a code using the standard generator
matrix

(a) List all eight code words.
(b) Find the associated standard parity check matrix

for this code. Is this code (single) error-correcting?

90. Show that the code in Example 3.70 is a (3, 1)
Hamming code.

91. Construct standard parity check and generator matri-
ces for a (15, 11) Hamming code.

92. In Theorem 3.37, prove that if B � A, then PGx � 0
for every x in

93. In Theorem 3.37, prove that if pi � pj, then we cannot
determine whether an error occurs in the ith or the jth
component of the received vector.

�k
2.

G � F
1 0 0

0 1 0

0 0 1

1 0 0

1 1 0

1 1 1

V
�3

2 S �6
2

Key Definitions and Concepts
basis, 204
Basis Theorem, 208
column matrix (vector), 144
column space of a matrix, 201
composition of linear

transformations, 225
coordinate vector with respect to a

basis, 214
diagonal matrix, 145
dimension, 209
elementary matrix, 176
Fundamental Theorem of Invertible

Matrices, 178, 212
identity matrix, 145
inverse of a square matrix, 169
inverse of a linear

transformation, 227
linear combination of matrices, 160

linear dependence/independence
of matrices, 163

linear transformation, 219
LU factorization, 187
matrix, 144
matrix addition, 146
matrix factorization, 186
matrix multiplication, 147
matrix powers, 155
negative of a matrix, 146
null space of a matrix, 203
nullity of a matrix, 210
outer product, 153
partitioned matrices (block

multiplication), 151, 154
permutation matrix, 193
properties of matrix algebra, 160,

164, 165, 173

rank of a matrix, 210
Rank Theorem, 211
representations of matrix

products, 152–154
row matrix (vector), 144
row space of a matrix, 201
scalar multiple of a

matrix, 146
span of a set of

matrices, 162
square matrix, 145
standard matrix of a linear

transformation, 222
subspace, 198
symmetric matrix, 157
transpose of a matrix, 157
zero matrix, 147
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1. Mark each of the following statements true or false:

(a) For any matrix A, both AAT and ATA are defined.

(b) If A and B are matrices such that AB � O and
A  O, then B � O.

(c) If A, B, and X are invertible matrices such that
XA � B, then X � A�1B.

(d) The inverse of an elementary matrix is an elemen-
tary matrix.

(e) The transpose of an elementary matrix is an
elementary matrix.

(f) The product of two elementary matrices is an
elementary matrix.

(g) If A is an m � n matrix, then the null space of A is
a subspace of �n.

(h) Every plane in �3 is a two-dimensional subspace
of �3.

(i) The transformation T : �2 S �2 defined by
T(x) � �x is a linear transformation.

(j) If T : �4 S �5 is a linear transformation, then
there is a 4 � 5 matrix A such that T(x) � Ax for
all x in the domain of T.

In Exercises 2–7, let and .

Compute the indicated matrices, if possible.

2. A2B 3. ATB2 4. BTA�1B

5. (BBT)�1 6. (BTB)�1

7. The outer product expansion of AAT

8. If A is a matrix such that , find A.

9. If and X is a matrix such that

, find X.AX � £�1 �3

5 0

3 �2

§
A � £ 1 0 �1

2 3 �1

0 1 1

§
A�1 � c 1>2 �1

�3>2 4
d

B � c 2 0 �1

3 �3 4
dA � c 1 2

3 5
d

Review Questions

10. If possible, express the matrix as a prod-
uct of elementary matrices.

11. If A is a square matrix such that A3 � O, show that
(I � A)�1 � I � A � A2.

12. Find an LU factorization of .

13. Find bases for the row space, column space, and null

space of .

14. Suppose matrices A and B are row equivalent. Do they
have the same row space? Why or why not? Do A and
B have the same column space? Why or why not?

15. If A is an invertible matrix, explain why A and AT must
have the same null space. Is this true if A is a nonin-
vertible square matrix? Explain.

16. If A is a square matrix whose rows add up to the zero
vector, explain why A cannot be invertible.

17. Let A be an m � n matrix with linearly independent
columns. Explain why ATA must be an invertible
matrix. Must AAT also be invertible? Explain.

18. Find a linear transformation T : �2 S �2 such that

19. Find the standard matrix of the linear transformation
T : �2 S �2 that corresponds to a counterclockwise
rotation of 45° about the origin followed by a projec-
tion onto the line y � �2x.

20. Suppose that T : �n S �n is a linear transformation
and suppose that v is a vector such that but
T 2(v) � 0 (where .) Prove that v and T(v)
are linearly independent.

T 2 � T ° T
T 1v 2  0

T c 1
1
d � c 2

3
d  and T c 1

�1
d � c 0

5
d .

A � £ 2 �4 5 8 5

1 �2 2 3 1

4 �8 3 2 6

§
A � £ 1 1 1

3 1 1

2 �1 1

§
A � c 1 2

4 6
d
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Almost every combination of
the adjectives proper, latent,
characteristic, eigen and secular,
with the nouns root, number
and value, has been used in the
literature for what we call a
proper value.

—Paul R. Halmos
Finite Dimensional Vector Spaces

(2nd edition)
Van Nostrand, 1958, p. 102

4. 0 Introduction:  A Dynamical System on Graphs

We saw in the last chapter that iterating matrix multiplication often produces inter-
esting results. Both Markov chains and the Leslie model of population growth exhibit
steady states in certain situations. One of the goals of this chapter is to help you
understand such behavior. First we will look at another iterative process, or dynami-
cal system, that uses matrices. (In the problems that follow, you will find it helpful to
use a CAS or a calculator with matrix capabilities to facilitate the computations.)

Our example involves graphs (see Section 3.7). A complete graph is any graph in
which every vertex is adjacent to every other vertex. If a complete graph has n vertices,
it is denoted by Kn. For example, Figure 4.1 shows a representation of K4.

Problem 1 Pick any vector x in �4 with nonnegative entries and label the vertices
of K4 with the components of x, so that v1 is labeled with x1, and so on. Compute the
adjacency matrix A of K4 and relabel the vertices of the graph with the corresponding
components of Ax. Try this for several vectors x and explain, in terms of the graph,
how the new labels can be determined from the old labels.

Problem 2 Now iterate the process in Problem 1. That is, for a given choice of x,
relabel the vertices as described above and then apply A again (and again, and again)
until a pattern emerges. Since components of the vectors themselves will get quite
large, we will scale them by dividing each vector by its largest component after each
iteration. Thus, if a computation results in the vector

we will replace it by

1
4 ≥ 4

2

1

1

¥ � ≥ 1

0.5

0.25

0.25

¥

≥ 4

2

1

1

¥

264

v1 v2

v4 v3

Figure 4. 1
K4

CAS
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Section 4.1 Introduction to Eigenvalues and Eigenvectors 265

Note that this process guarantees that the largest component of each vector will now
be 1. Do this for K4, then K3 and K5. Use at least ten iterations and two-decimal-place
accuracy. What appears to be happening?

Problem 3 You should have noticed that, in each case, the labeling vector is
approaching a certain vector (a steady state label!). Label the vertices of the complete
graphs with this steady state vector and apply the adjacency matrix A one more time
(without scaling). What is the relationship between the new labels and the old ones?

Problem 4 Make a conjecture about the general case Kn. What is the steady state
label? What happens if we label Kn with the steady state vector and apply the adja-
cency matrix A without scaling?

Problem 5 The Petersen graph is shown in Figure 4.2. Repeat the process in
Problems 1 through 3 with this graph.

We will now explore the process with some other classes of graphs to see if they
behave the same way. The cycle Cn is the graph with n vertices arranged in a cyclic
fashion. For example, C5 is the graph shown in Figure 4.3.

Problem 6 Repeat the process of Problems 1 through 3 with cycles Cn for various
odd values of n and make a conjecture about the general case.

Problem 7 Repeat Problem 6 with even values of n. What happens?

A bipartite graph is a complete bipartite graph (see Exercises 74–78 in Section 3.7)
if its vertices can be partitioned into sets U and V such that every vertex in U is
adjacent to every vertex in V, and vice versa. If U and V each have n vertices, then the
graph is denoted by Kn,n. For example, K3,3 is the graph in Figure 4.4.

Problem 8 Repeat the process of Problems 1 through 3 with complete bipartite
graphs Kn,n for various values of n. What happens?

By the end of this chapter, you will be in a position to explain the observations
you have made in this Introduction.

Introduction to Eigenvalues and Eigenvectors
In Chapter 3, we encountered the notion of a steady state vector in the context of two
applications: Markov chains and the Leslie model of population growth. For a
Markov chain with transition matrix P, a steady state vector x had the property that
Px � x; for a Leslie matrix L, a steady state vector was a population vector x satisfying
Lx � rx, where r represented the steady state growth rate. For example, we saw that

In this chapter, we investigate this phenomenon more generally. That is, for a square ma-
trix A, we ask whether there exist nonzero vectors x such that Ax is just a scalar multiple
of x. This is the eigenvalue problem, and it is one of the most central problems in linear
algebra. It has applications throughout mathematics and in many other fields as well.

Definition Let A be an n � n matrix. A scalar l is called an eigenvalue of A if
there is a nonzero vector x such that Ax � lx. Such a vector x is called an eigen-
vector of A corresponding to l.

c0.7 0.2

0.3 0.8
d c0.4

0.6
d � c0.4

0.6
d   and  £0 4 3

0.5 0 0

0 0.25 0

§ £18

6

1

§ � 1.5 £18

6

1

§

Figure 4. 2

Figure 4. 3

Figure 4. 4

The German adjective eigen means
“own” or “characteristic of.” Eigen-
values and eigenvectors are charac-
teristic of a matrix in the sense that
they contain important informa-
tion about the nature of the
matrix. The letter l (lambda), the
Greek equivalent of the English
letter L, is used for eigenvalues
because at one time they were also
known as latent values. The prefix
eigen is pronounced “EYE-gun.”
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266 Chapter 4 Eigenvalues and Eigenvectors

Show that is an eigenvector of and find the corresponding

eigenvalue.

Solution We compute

from which it follows that x is an eigenvector of A corresponding to the eigenvalue 4.

Show that 5 is an eigenvalue of and determine all eigenvectors corre-

sponding to this eigenvalue.

Solution We must show that there is a nonzero vector x such that Ax � 5x. But this
equation is equivalent to the equation (A � 5I )x � 0, so we need to compute the null
space of the matrix A � 5I. We find that

Since the columns of this matrix are clearly linearly dependent, the Fundamental
Theorem of Invertible Matrices implies that its null space is nonzero. Thus, Ax � 5x
has a nontrivial solution, so 5 is an eigenvalue of A. We find its eigenvectors by com-
puting the null space:

Thus, if is an eigenvector corresponding to the eigenvalue 5, it satisfies

or so these eigenvectors are of the form

That is, they are the nonzero multiples of (or, equivalently, the nonzero multiples

of ).

The set of all eigenvectors corresponding to an eigenvalue l of an n � n matrix A
is just the set of nonzero vectors in the null space of A � lI. It follows that this set of
eigenvectors, together with the zero vector in �n, is the null space of A � lI.

c1
2
d c 1

2

1
d

x � c 12 x2

x2

d
x1 � 1

2 x2,x1 � 1
2 x2 � 0,

x � cx1

x2

d
3A � 5I 0 0 4 � c�4 2

4 �2
2 0
0
d ¡ c 1 �1

2

0 0
2 0
0
d

A � 5I � c 1 2

4 3
d � c 5 0

0 5
d � c�4 2

4 �2
d

A � c 1 2

4 3
d

Ax � c3 1

1 3
d c1

1
d � c4

4
d � 4 c1

1
d � 4x

A � c 3 1

1 3
dx � c 1

1
dExample 4. 1

Example 4. 2
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Definition Let A be an n � n matrix and let l be an eigenvalue of A. The col-
lection of all eigenvectors corresponding to l, together with the zero vector, is
called the eigenspace of l and is denoted by El.

Therefore, in Example 4.2,

Show that l� 6 is an eigenvalue of and find a basis for its eigen-

space.

Solution As in Example 4.2, we compute the null space of A � 6I. Row reduction
produces

from which we see that the null space of A � 6I is nonzero. Hence, 6 is an eigenvalue
of A, and the eigenvectors corresponding to this eigenvalue satisfy x1 � x2 � 2x3 � 0,
or x1 � �x2 � 2x3. It follows that

In �2, we can give a geometric interpretation of the notion of an eigenvector. The
equation Ax � lx says that the vectors Ax and x are parallel. Thus, x is an eigenvector
of A if and only if A transforms x into a parallel vector [or, equivalently, if and only if
TA(x) is parallel to x, where TA is the matrix transformation corresponding to A] .

Find the eigenvectors and eigenvalues of geometrically.

Solution We recognize that A is the matrix of a reflection F in the x-axis (see
Example 3.56). The only vectors that F maps parallel to themselves are vectors parallel

to the y-axis (i.e., multiples of ), which are reversed (eigenvalue �1), and vectors

parallel to the x-axis (i.e., multiples of ), which are sent to themselves (eigenvalue 1)

(see Figure 4.5). Accordingly, l � �1 and l � 1 are the eigenvalues of A, and the
corresponding eigenspaces are

E�1 � spana c0
1
d b   and  E1 � spana c1

0
d b

c1
0
dc0

1
d

A � c1 0

0 �1
d

E6 � • £�x2 � 2x3

x2

x3

§ ¶ � • x2 £�1

1

0

§ � x3 £ 20
1

§ ¶ � span° £�1

1

0

§ , £ 20
1

§ ¢

A � 6I � £ 1 1 �2

�3 �3 6

2 2 �4

§ ¡ £1 1 �2

0 0 0

0 0 0

§

A � £ 7 1 �2

�3 3 6

2 2 2

§
E5 � e t c 1

2
d f .
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Example 4. 3

Example 4. 4
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x

y

�3

�2

1

2

3

�3 �2 �1 1 32

x

F(y)

F(x)

y

F(e1) � e1

F(e2) � �e2

e2

Figure 4. 5
The eigenvectors of a reflection

4

3

1

2

4

1 32
x

y

y

x
Ax

Ay

Figure 4. 6

Another way to think of eigenvectors geometrically is to draw x and Ax head-to-
tail. Then x will be an eigenvector of A if and only if x and Ax are aligned in a straight
line. In Figure 4.6, x is an eigenvector of A but y is not.

If x is an eigenvector of A corresponding to the eigenvalue l, then so is any
nonzero multiple of x. So, if we want to search for eigenvectors geometrically, we need
only consider the effect of A on unit vectors. Figure 4.7(a) shows what happens when

we transform unit vectors with the matrix of Example 4.1 and display

the results head-to-tail, as in Figure 4.6. We can see that the vector is an 

eigenvector, but we also notice that there appears to be an eigenvector in the second

quadrant. Indeed, this is the case, and it turns out to be the vector c�1>12

1>12
d .

x � c 1>12

1>12
dA � c3 1

1 3
d

The discussion is based on the
article “Eigenpictures: Picturing
the Eigenvector Problem” by
Steven Schonefeld in The College
Mathematics Journal 26 (1996),
pp. 316–319.
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In Figure 4.7(b), we see what happens when we use the matrix 

There are no eigenvectors at all!
We now know how to find eigenvectors once we have the corresponding eigenval-

ues, and we have a geometric interpretation of them—but one question remains:
How do we first find the eigenvalues of a given matrix? The key is the observation that
l is an eigenvalue of A if and only if the null space of A � lI is nontrivial.

Recall from Section 3.3 that the determinant of a 2 � 2 matrix is the

expression det A � ad � bc, and A is invertible if and only if det A is nonzero. Fur-
thermore, the Fundamental Theorem of Invertible Matrices guarantees that a matrix
has a nontrivial null space if and only if it is noninvertible—hence, if and only if its
determinant is zero. Putting these facts together, we see that (for 2 � 2 matrices at
least) l is an eigenvalue of A if and only if det(A � lI ) � 0. This fact characterizes
eigenvalues, and we will soon generalize it to square matrices of arbitrary size. For the
moment, though, let’s see how to use it with 2 � 2 matrices.

Find all of the eigenvalues and corresponding eigenvectors of the matrix A �

from Example 4.1.

Solution The preceding remarks show that we must find all solutions l of the equa-
tion det(A � lI ) � 0. Since

we need to solve the quadratic equation l2 � 6l� 8 � 0. The solutions to this equa-
tion are easily found to be l� 4 and l� 2. These are therefore the eigenvalues of A.

 det 1A � lI 2 � det c3 � l 1

1 3 � l
d � 13 � l2 13 � l2 � 1 � l2 � 6l � 8

c 3 1

1 3
d

A � c a b

c d
d

A � c 1 1

�1 1
d .
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4�4

�4

4

x

y

(a)

Figure 4. 7

2�2

�2

2

x

y

(b)

Example 4. 5
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To find the eigenvectors corresponding to the eigenvalue , we compute the
null space of A � 4I. We find

from which it follows that is an eigenvector corresponding to if and

only if . Hence, the eigenspace

Similarly, for , we have

so is an eigenvector corresponding to if and only if or

. Thus, the eigenspace

Figure 4.8 shows graphically how the eigenvectors of A are transformed when
multiplied by A: an eigenvector x in the eigenspace E4 is transformed into 4x, and an
eigenvector y in the eigenspace E2 is transformed into 2y. As Figure 4.7(a) shows, the
eigenvectors of A are the only vectors in �2 that are transformed into scalar multiples
of themselves when multiplied by A.

E2 � e c�y2

y2

d f � e y2 c�1

1
d f � span a c�1

1
d b .y1 � �y2

y1 � y2 � 0l � 2y � c y1

y2

d
3A � 2I ƒ 0 4 � c 1 1

1 1
2 0
0
d S c 1 1

0 0
2 0
0
d

l � 2

span a c 1
1
d b .

E4 � e c x2

x2

d f � e x2 c 11 d f �x1 � x2 � 0 or x1 � x2

l � 4x � cx1

x2

d
3A � 4I ƒ 0 4 � c�1 1

1 �1
2 0
0
d S c 1 �1

0 0
2 0
0
d
l � 4

270 Chapter 4 Eigenvalues and Eigenvectors

x

y
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3
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Ay � 2y

Ax � 4x

x

Figure 4. 8
How A transforms eigenvectors
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Remark You will recall that a polynomial equation with real coefficients (such as
the quadratic equation in Example 4.5) need not have real roots; it may have complex
roots. (See Appendix C.) It is also possible to compute eigenvalues and eigenvectors
when the entries of a matrix come from �p, where p is prime. Thus, it is important to
specify the setting we intend to work in before we set out to compute the eigenvalues
of a matrix. However, unless otherwise specified, the eigenvalues of a matrix whose
entries are real numbers will be assumed to be real as well.

Interpret the matrix in Example 4.5 as a matrix over �3 and find its eigenvalues in that
field.

Solution The solution proceeds exactly as above, except we work modulo 3. Hence,
the quadratic equation l2 � 6l � 8 � 0 becomes l2 � 2 � 0. This equation is the
same as l2 � �2 � 1, giving l� 1 and l� �1 � 2 as the eigenvalues in �3. (Check
that the same answer would be obtained by first reducing A modulo 3 to obtain

and then working with this matrix.)

Find the eigenvalues of (a) over � and (b) over the complex numbers �.

Solution We must solve the equation

(a) Over �, there are no solutions, so A has no real eigenvalues.

(b) Over �, the solutions are l� i and l� �i. (See Appendix C.)

In the next section, we will extend the notion of determinant from 2 � 2 to
n � n matrices, which in turn will allow us to find the eigenvalues of arbitrary square
matrices. (In fact, this isn’t quite true—but we will at least be able to find a polyno-
mial equation that the eigenvalues of a given matrix must satisfy.)

0 � det 1A � lI 2 � det c�l �1

1 �l
d � l2 � 1

A � c 0 �1

1 0
d

c0 1

1 0
d
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Example 4. 6

Example 4. 7

a + bi

Exercises 4. 1

In Exercises 1–6, show that v is an eigenvector of A and find
the corresponding eigenvalue.

1.

2.

3. A � c�1 1

6 0
d , v � c 1

�2
d

A � c 2 3

3 2
d , v � c 2

�2
d

A � c 0 3

3 0
d , v � c 1

1
d 4.

5.

6. A � £ 1 3 �1

1 2 0

1 1 1

§ , v � £�2

1

1

§
A � £ 3 0 0

0 1 �2

1 0 1

§ , v � £ 2

�1

1

§
A � c 4 �2

5 �7
d , v � c 2

10
d

�

�
I I I I II I I I I ������������������������������
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In Exercises 7–12, show that l is an eigenvalue of A and find
one eigenvector corresponding to this eigenvalue.

7.

8.

9.

10.

11.

12.

In Exercises 13–18, find the eigenvalues and eigenvectors of
A geometrically.

13. (reflection in the y-axis)

14. (reflection in the line y � x)

15. (projection onto the x-axis)

16. (projection onto the line through the

origin with direction vector )

17. (stretching by a factor of 2 horizontally

and a factor of 3 vertically)

18. (counterclockwise rotation of 90°

about the origin)

A � c 0 �1

1 0
d

A � c 2 0

0 3
d

c 453
5

dA � c 16
25

12
25

12
25

9
25

d
A � c 1 0

0 0
d

A � c 0 1

1 0
d

A � c�1 0

0 1
d

A � £ 3 1 �1

0 1 2

4 2 0

§ , l � 3

A � £ 1 0 2

�1 1 1

2 0 1

§ , l � �1

A � c 0 4

�1 5
d , l � 4

A � c 0 4

�1 5
d , l � 1

A � c 2 2

2 �1
d , l � �2

A � c 2 2

2 �1
d , l � 3
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In Exercises 19–22, the unit vectors x in �2 and their images
Ax under the action of a 2 � 2 matrix A are drawn head-to-
tail, as in Figure 4.7. Estimate the eigenvectors and eigenval-
ues of A from each “eigenpicture.”

19.

20.

2

6

�6

�2
x

y

2�2

�2

2

x

y
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21.

22.

In Exercises 23–26, use the method of Example 4.5 to find all
of the eigenvalues of the matrix A. Give bases for each of the
corresponding eigenspaces. Illustrate the eigenspaces and the
effect of multiplying eigenvectors by A as in Figure 4.8.

23. 24.

25. 26.

In Exercises 27–30, find all of the eigenvalues of the matrix
A over the complex numbers �. Give bases for each of the
corresponding eigenspaces.

27. 28. A � c 1 �2

1 1
dA � c 1 1

�1 1
d

A � c 2 1

�1 2
dA � c 2 5

0 2
d

A � c 0 2

8 6
dA � c 4 �1

2 1
d

2�2

�2

2

x

y

2�2

�2

2

x

y
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29. 30.

In Exercises 31–34, find all of the eigenvalues of the matrix A
over the indicated �p.

31. 32.

33. 34.

35. (a) Show that the eigenvalues of the 2 � 2 matrix

are the solutions of the quadratic equation 
l2 � tr(A)l� det A � 0, where tr(A) is the trace
of A. (See page 168.)

(b) Show that the eigenvalues of the matrix A in
part (a) are

( )

(c) Show that the trace and determinant of the matrix A
in part (a) are given by

tr(A) � l1 � l2 and det A � l1l2

where l1 and l2 are the eigenvalues of A.

36. Consider again the matrix A in Exercise 35. Give
conditions on a, b, c, and d such that A has

(a) two distinct real eigenvalues,
(b) one real eigenvalue, and
(c) no real eigenvalues.

37. Show that the eigenvalues of the upper triangular
matrix

are l� a and l� d, and find the corresponding
eigenspaces.

38. Let a and b be real numbers. Find the eigenvalues and
corresponding eigenspaces of

over the complex numbers.

A � c a b

�b a
d

A � ca b

0 d
d

a � d ; 1 1a � d 2 2 � 4bcl � 1
2

A � ca b

c d
d

A � c1 4

4 0
d  over �5A � c3 1

4 0
d  over �5

A � c2 1

1 2
d  over �3A � c1 0

1 2
d  over �3

A � c 4 1 � 2i

1 � 2i 0
dA � c1 i

i 1
d

a + bi

a + bi
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Determinants
Historically, determinants preceded matrices—a curious fact in light of the way
linear algebra is taught today, with matrices before determinants. Nevertheless, deter-
minants arose independently of matrices in the solution of many practical problems,
and the theory of determinants was well developed almost two centuries before
matrices were deemed worthy of study in and of themselves. A snapshot of the his-
tory of determinants is presented at the end of this section.

Recall that the determinant of the 2 � 2 matrix is

We first encountered this expression when we determined ways to compute the
inverse of a matrix. In particular, we found that

The determinant of a matrix A is sometimes also denoted by , so for the 2 � 2

matrix we may also write

Warning This notation for the determinant is reminiscent of absolute value no-

tation. It is easy to mistake the notation for determinant, for the

notation for the matrix itself. Do not confuse these. Fortunately, it will usually 
be clear from the context which is intended.

We define the determinant of a 1 � 1 matrix A � [a] to be

(Note that we really have to be careful with notation here: does not denote the
absolute value of a in this case.) How then should we define the determinant of a 
3 � 3 matrix? If you ask your CAS for the inverse of

the answer will be equivalent to

where � � aei � afh � bdi � bfg � cdh � ceg. Observe that

� a 2 e f

h i
2 � b 2 d f

g i
2 � c 2 d e

g h
2� a1ei � fh 2 � b 1di � fg 2 � c 1dh � eg 2¢ � aei � afh � bdi � bfg � cdh � ceg

A�1 �
1

¢
£ ei � fh ch � bi bf � ce

fg � di ai � cg cd � af

dh � eg bg � ah ae � bd

§
A � £a b c

d e f

g h i

§
�a �

 det A � 0a 0 � a

ca11 a12

a21 a22

d ,2 a11 a12

a21 a22

2 ,
0A 0 � 2 a11 a12

a21 a22

2 � a11a22 � a12a21

A � ca11 a12

a21 a22

d �A �

ca11 a12

a21 a22

d�1

�
1

a11a22 � a12a21
c a22 �a12

�a21 a11

d
 det A � a11a22 � a12a21

A � ca11 a12

a21 a22

d
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and that each of the entries in the matrix portion of A�1 appears to be the determi-
nant of a 2 � 2 submatrix of A. In fact, this is true, and it is the basis of the definition
of the determinant of a 3 � 3 matrix. The definition is recursive in the sense that the
determinant of a 3 � 3 matrix is defined in terms of determinants of 2 � 2 matrices.

Definition Let Then the determinant of A is the scalar

(1)

Notice that each of the 2 � 2 determinants is obtained by deleting the row and col-
umn of A that contain the entry the determinant is being multiplied by. For example,
the first summand is a11 multiplied by the determinant of the submatrix obtained by
deleting row 1 and column 1. Notice also that the plus and minus signs alternate in
equation (1). If we denote by Aij the submatrix of a matrix A obtained by deleting row
i and column j, then we may abbreviate equation (1) as

For any square matrix A, det Aij is called the (i, j)-minor of A.

Compute the determinant of

Solution We compute

With a little practice, you should find that you can easily work out 2 � 2 determinants
in your head. Writing out the second line in the above solution is then unnecessary.

Another method for calculating the determinant of a 3 � 3 matrix is analogous to
the method for calculating the determinant of a 2 � 2 matrix. Copy the first two
columns of A to the right of the matrix and take the products of the elements on the six

� 512 2 � 31�1 2 � 21�1 2 � 5

� 510 � 1�2 2 2 � 313 � 4 2 � 21�1 � 0 2det A � 5 2 0 2

�1 3
2 � 1�3 2 2 1 2

2 3
2 � 2 2 1 0

2 �1
2

A � £5 �3 2

1 0 2

2 �1 3

§

� a
3

j�1

1�1 2 1�ja1j det A1j

det A � a11 det A11 � a12 det A12 � a13 det A13

 det A � 0A 0 � a11 2 a22 a23

a32 a33

2 � a12 2 a21 a23

a31 a33

2 � a13 2 a21 a22

a31 a32

2
A � £a11 a12 a13

a21 a22 a23

a31 a32 a33

§ .
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diagonals shown below. Attach plus signs to the products from the downward-sloping
diagonals and attach minus signs to the products from the upward-sloping diagonals.

(2)

This method gives

In Exercise 19, you are asked to check that this result agrees with that from equa-
tion (1) for a 3 � 3 determinant.

Calculate the determinant of the matrix in Example 4.8 using the method shown in (2).

Solution We adjoin to A its first two columns and compute the six indicated
products:

Adding the three products at the bottom and subtracting the three products at the
top gives

as before.

Warning We are about to define determinants for arbitrary square matrices.
However, there is no analogue of the method in Example 4.9 for larger matrices. It is
valid only for 3 � 3 matrices.

Determinants of n � n Matrices

The definition of the determinant of a 3 � 3 matrix extends naturally to arbitrary
square matrices.

Definition Let A � [aij] be an n � n matrix, where n 
 2. Then the determi-
nant of A is the scalar

(3)
� a

n

j�1

1�1 21�ja1j det A1j

det A � 0A 0 � a11 det A11 � a12 det A12 � p � 1�1 21�na1n det A1n

 det A � 0 � 1�12 2 � 1�2 2 � 0 � 1�10 2 � 1�9 2 � 5

£5 �3 2

1 0 2

2 �1 3

§
0 �10 �9

5 �3

1 0

2 �1

0 �12 �

a11a22a33 � a12a23a31 � a13a21a32 � a31a22a13 � a32a23a11 � a33a21a12

£a11 a12 a13

a21 a22 a23

a31 a32 a33

§
� � �

a11 a12

a21 a22

a31 a32

�

276 Chapter 4 Eigenvalues and Eigenvectors

� � �

� � �

Example 4. 9

0 �10 �9

0 �12 �2
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Theorem 4. 1

It is convenient to combine a minor with its plus or minus sign. To this end, we define
the (i, j)-cofactor of A to be

With this notation, definition (3) becomes

(4)

Exercise 20 asks you to check that this definition correctly gives the formula for the
determinant of a 2 � 2 matrix when n � 2.

Definition (4) is often referred to as cofactor expansion along the first row. It is
an amazing fact that we get exactly the same result by expanding along any row (or
even any column)! We summarize this fact as a theorem but defer the proof until the
end of this section (since it is somewhat lengthy and would interrupt our discussion
if we were to present it here).

The Laplace Expansion Theorem

The determinant of an n � n matrix A � [aij], where n 
 2, can be computed as

(5)

(which is the cofactor expansion along the ith row) and also as

(6)

(the cofactor expansion along the jth column).

Since Cij � (�1)i�j det Aij, each cofactor is plus or minus the corresponding minor,
with the correct sign given by the term (�1)i�j. A quick way to determine whether the
sign is � or � is to remember that the signs form a “checkerboard” pattern:

E� � � � p
� � � � p
� � � � p
� � � � p
o o o o ∞

U

� a
n

i�1

aij Cij

det A � a1jC1j � a2jC 2j � p � anjCnj

� a
n

j�1

aij Cij

det A � ai1Ci1 � ai2Ci2 � p � ainCin

 det A � a
n

j�1

a1j C1j

Cij � 1�1 2 i�j det Aij
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Compute the determinant of the matrix

by (a) cofactor expansion along the third row and (b) cofactor expansion along the
second column.

Solution
(a) We compute

(b) In this case, we have

Notice that in part (b) of Example 4.10 we needed to do fewer calculations than
in part (a) because we were expanding along a column that contained a zero entry—
namely, a22; therefore, we did not need to compute C22. It follows that the Laplace
Expansion Theorem is most useful when the matrix contains a row or column with
lots of zeros, since, by choosing to expand along that row or column, we minimize the
number of cofactors we need to compute.

Compute the determinant of

Solution First, notice that column 3 has only one nonzero entry; we should there-
fore expand along this column. Next, note that the �/� pattern assigns a minus sign

A � ≥ 2 �3 0 1

5 4 2 0

1 �1 0 3

�2 1 0 0

¥

� 5

� 31�1 2 � 0 � 8

� �1�3 2 2 1 2

2 3
2 � 0 2 5 2

2 3
2 � 1�1 2 2 5 2

1 2
2det A � a12C12 � a22C22 � a32C32

� 5

� 21�6 2 � 8 � 313 2� 2 2�3 2

0 2
2 � 1�1 2 2 5 2

1 2
2 � 3 2 5 �3

1 0
2det A � a31C31 � a32C32 � a33C33

A � £ 5 �3 2

1 0 2

2 �1 3

§
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Example 4. 10

Pierre Simon Laplace (1749–1827)
was born in Normandy, France,
and was expected to become a
clergyman until his mathematical
talents were noticed at school.
He made many important
contributions to calculus,
probability, and astronomy. He was
an examiner of the young Napoleon
Bonaparte at the Royal Artillery
Corps and later, when Napoleon was
in power, served briefly as Minister
of the Interior and then Chancellor
of the Senate. Laplace was granted
the title of Count of the Empire in
1806 and received the title of
Marquis de Laplace in 1817.

Example 4. 11
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to the entry a23 � 2. Thus, we have

We now continue by expanding along the third row of the determinant above 
(the third column would also be a good choice) to get

(Note that the �/� pattern for the 3 � 3 minor is not that of the original matrix but
that of a 3 � 3 matrix in general.)

The Laplace expansion is particularly useful when the matrix is (upper or lower)
triangular.

Compute the determinant of

Solution We expand along the first column to get

(We have omitted all cofactors corresponding to zero entries.) Now we expand along
the first column again:

Continuing to expand along the first column, we complete the calculation:

 det A � 2 # 3 # 1 2 5 2

0 �1
2� 2 # 3 # 1 # 151�12 � 2 # 0 2 � 2 # 3 # 1 # 5 # 1�12 � �30

 det A � 2 # 3 3 1 6 0

0 5 2

0 0 �1

3

 det A � 2 4 3 2 5 7

0 1 6 0

0 0 5 2

0 0 0 �1

4

A � E2 �3 1 0 4

0 3 2 5 7

0 0 1 6 0

0 0 0 5 2

0 0 0 0 �1

U

� �2111 2 � �22
� �21�21�8 2 � 5 2det A � �2a�2 2�3 1

�1 3
2 � 2 2 1

1 3
2b

� �2 3 2 �3 1

1 �1 3

�2 1 0

3� 01C13 2 � 2C23 � 01C33 2 � 01C43 2det A � a13C13 � a23C23 � a33C33 � a43C43
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Theorem 4. 3

Theorem 4. 2

Example 4.12 should convince you that the determinant of a triangular matrix is the
product of its diagonal entries. You are asked to give a proof of this fact in Exercise 21.
We record the result as a theorem.

The determinant of a triangular matrix is the product of the entries on its main
diagonal. Specifically, if A � [aij] is an n � n triangular matrix, then

Note In general (that is, unless the matrix is triangular or has some other special
form), computing a determinant by cofactor expansion is not efficient. For example,
the determinant of a 3 � 3 matrix has 6 � 3! summands, each requiring two multipli-
cations, and then five additions and subtractions are needed to finish off the calcula-
tions. For an n � n matrix, there will be n! summands, each with n � 1 multiplications,
and then n! �1 additions and subtractions. The total number of operations is thus

Even the fastest of supercomputers cannot calculate the determinant of a moder-
ately large matrix using cofactor expansion. To illustrate: Suppose we needed to cal-
culate a 50 � 50 determinant. (Matrices much larger than 50 � 50 are used to store
the data from digital images such as those transmitted over the Internet or taken by a
digital camera.) To calculate the determinant directly would require, in general, more
than 50! operations, and 50! � 3 � 1064. If we had a computer that could perform a
trillion (1012 ) operations per second, it would take approximately 3 � 1052 seconds,
or almost 1045 years, to finish the calculations. To put this in perspective, consider that
astronomers estimate the age of the universe to be at least 10 billion (1010 ) years.
Thus, on even a very fast supercomputer, calculating a 50 � 50 determinant by co-
factor expansion would take more than 1030 times the age of the universe!

Fortunately, there are better methods—and we now turn to developing more
computationally effective means of finding determinants. First, we need to look at
some of the properties of determinants.

Properties of Determinants

The most efficient way to compute determinants is to use row reduction. However,
not every elementary row operation leaves the determinant of a matrix unchanged.
The next theorem summarizes the main properties you need to understand in order
to use row reduction effectively.

Let A � [aij] be a square matrix.

a. If A has a zero row (column), then det A � 0.
b. If B is obtained by interchanging two rows (columns) of A, then det B � �det A.
c. If A has two identical rows (columns), then det A � 0.
d. If B is obtained by multiplying a row (column) of A by k, then det B � k det A.
e. If A, B, and C are identical except that the ith row (column) of C is the sum of

the ith rows (columns) of A and B, then det C � det A � det B.
f. If B is obtained by adding a multiple of one row (column) of A to another row

(column), then det B � det A.

T 1n 2 � 1n � 1 2n! � n! � 1 7 n!

det A � a11a22
p ann
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Proof We will prove (b) as Lemma 4.14 at the end of this section. The proofs of
properties (a) and (f) are left as exercises. We will prove the remaining properties in
terms of rows; the corresponding proofs for columns are analogous.

(c) If A has two identical rows, swap them to obtain the matrix B. Clearly, B � A, so
det B � det A. On the other hand, by (b), det B � �det A. Therefore, det A � �det A,
so det A � 0.

(d) Suppose row i of A is multiplied by k to produce B; that is, bij � kaij for j � 1, . . . , n.
Since the cofactors Cij of the elements in the ith rows of A and B are identical (why?),
expanding along the ith row of B gives

(e) As in (d), the cofactors Cij of the elements in the ith rows of A, B, and C are identi-
cal. Moreover, cij � aij � bij for j � 1, . . . , n. We expand along the ith row of C to
obtain

Notice that properties (b), (d), and (f) are related to elementary row operations.
Since the echelon form of a square matrix is necessarily upper triangular, we can
combine these properties with Theorem 2 to calculate determinants efficiently. (See
Exploration: Counting Operations in Chapter 2, which shows that row reduction of
an n � n matrix uses on the order of n3 operations, far fewer than the n! needed for
cofactor expansion.) The next examples illustrate the computation of determinants
using row reduction.

Compute det A if

(a)

(b)

Solution
(a) Using property (f) and then property (a), we have

 det A � 3 2 3 �1

0 5 3

�4 �6 2

3 �
R3�2R1 3 2 3 �1

0 5 3

0 0 0

3 � 0

A � ≥ 0 2 �4 5

3 0 �3 6

2 4 5 7

5 �1 �3 1

¥
A � £ 2 3 �1

0 5 3

�4 �6 2

§

 det C �a
n

j�1

cij Cij �a
n

j�1

1aij � bij 2Cij �a
n

j�1

aij Cij �a
n

j�1

bij Cij � det A � det B

 det B � a
n

j�1

bij Cij � a
n

j�1

kaij Cij � ka
n

j�1

aij Cij � k det A
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Theorem 4. 4

(b) We reduce A to echelon form as follows (there are other possible ways to do this):

Remark By Theorem 4.3, we can also use elementary column operations in the
process of computing determinants, and we can “mix and match” elementary row
and column operations. For example, in Example 4.13(a), we could have started by
adding column 3 to column 1 to create a leading 1 in the upper left-hand corner. In
fact, the method we used was faster, but in other examples column operations may
speed up the calculations. Keep this in mind when you work determinants by hand.

Determinants of Elementary Matrices

Recall from Section 3.3 that an elementary matrix results from performing an ele-
mentary row operation on an identity matrix. Setting A � In in Theorem 4.3 yields
the following theorem.

Let E be an n � n elementary matrix.

a. If E results from interchanging two rows of In, then det E � �1.
b. If E results from multiplying one row of In by k, then det E � k.
c. If E results from adding a multiple of one row of In to another row, then

det E � 1.

Proof Since det In � 1, applying (b), (d), and (f) of Theorem 4.3 immediately gives
(a), (b), and (c), respectively, of Theorem 4.4.

Next, recall that multiplying a matrix B by an elementary matrix on the left per-
forms the corresponding elementary row operation on B. We can therefore rephrase
(b), (d), and (f) of Theorem 4.3 succinctly as the following lemma, the proof of which
is straightforward and is left as Exercise 43.

� 3 # 1 # 1�1 2 # 15 # 1�13 2 � 585

�

R3�4R2

R4�2R2

3 4 1 0 �1 2

0 �1 2 �9

0 0 15 �33

0 0 0 �13

4
�

R3�2R1

R4�5R1

�3 4 1 0 �1 2

0 2 �4 5

0 4 7 3

0 �1 2 �9

4 �
R24R4

�1�3 2 4 1 0 �1 2

0 �1 2 �9

0 4 7 3

0 2 �4 5

4
det A � 4 0 2 �4 5

3 0 �3 6

2 4 5 7

5 �1 �3 1

4 �
R14R2

� 4 3 0 �3 6

0 2 �4 5

2 4 5 7

5 �1 �3 1

4 �R1>3
�3 4 1 0 �1 2

0 2 �4 5

2 4 5 7

5 �1 �3 1

4
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The word lemma is derived from
the Greek verb lambanein, which
means “to grasp.” In mathematics,
a lemma is a “helper theorem”
that we “grasp hold of” and use
to prove another, usually more
important, theorem.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 4. 7

Theorem 4. 6

Section 4.2 Determinants 283

Lemma 4. 5 Let B be an n � n matrix and let E be an n � n elementary matrix. Then

We can use Lemma 4.5 to prove the main theorem of this section: a characteriza-
tion of invertibility in terms of determinants.

A square matrix A is invertible if and only if det A 0.

Proof Let A be an n � n matrix and let R be the reduced row echelon form of A.
We will show first that det A 0 if and only if det R 0. Let E1, E2, . . . , Er be the 
elementary matrices corresponding to the elementary row operations that reduce 
A to R. Then

Taking determinants of both sides and repeatedly applying Lemma 4.5, we obtain

By Theorem 4.4, the determinants of all the elementary matrices are nonzero. We
conclude that det A 0 if and only if det R 0.

Now suppose that A is invertible. Then, by the Fundamental Theorem of Invertible
Matrices, R � In, so det R � 1 0. Hence, det A 0 also. Conversely, if det A 0,
then det R 0, so R cannot contain a zero row, by Theorem 4.3(a). It follows that
R must be In (why?), so A is invertible, by the Fundamental Theorem again.

Determinants and Matrix Operations

Let’s now try to determine what relationship, if any, exists between determinants and
some of the basic matrix operations. Specifically, we would like to find formulas for
det(kA), det(A � B), det(AB), det(A�1), and det(AT ) in terms of det A and det B.

Theorem 4.3(d) does not say that det(kA) � k det A. The correct relationship
between scalar multiplication and determinants is given by the following theorem.

If A is an n � n matrix, then

You are asked to give a proof of this theorem in Exercise 44.
Unfortunately, there is no simple formula for det(A � B), and in general,

det(A � B) det A � det B. (Find two 2 � 2 matrices that verify this.) It therefore
comes as a pleasant surprise to find out that determinants are quite compatible with
matrix multiplication. Indeed, we have the following nice formula due to Cauchy.



det1kA2 � kn det A






1det Er 2 p 1det E2 2 1det E1 2 1det A 2 � det R

Er
p E2E1A � R





det1EB2 � 1det E 2 1det B2

�

�
I I I I II I I I I ������������������������������

�

�
I I I I II I I I I ������������������������������

�

�
I I I I II I I I I ������������������������������
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Theorem 4. 8 If A and B are n � n matrices, then

Proof We consider two cases: A invertible and A not invertible.
If A is invertible, then, by the Fundamental Theorem of Invertible Matrices, it can

be written as a product of elementary matrices—say,

Then AB � E1E2
p EkB, so k applications of Lemma 4.5 give

Continuing to apply Lemma 4.5, we obtain

On the other hand, if A is not invertible, then neither is AB, by Exercise 47 in
Section 3.3. Thus, by Theorem 4.6, det A � 0 and det(AB) � 0. Consequently,
det(AB) � (det A)(det B), since both sides are zero.

Applying Theorem 4.8 to and we find that

and that det A � 4, det B � 3, and det(AB) � 12 � � (det A)(det B), as claimed.
(Check these assertions!)

The next theorem gives a nice relationship between the determinant of an invertible
matrix and the determinant of its inverse.

4 # 3

AB � c12 3

16 5
d

B � c 5 1

2 1
d ,A � c 2 1

2 3
d

det1AB2 � det1E1E2
p Ek 2det B � 1det A2 1det B2

det1AB2 � det1E1E2
p EkB2 � 1det E1 2 1det E2 2 p 1det Ek 2 1det B2

A � E1E2
p Ek

det1AB2 � 1det A2 1det B2
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Augustin Louis Cauchy (1789–1857) was born in Paris and studied engineering but switched to
mathematics because of poor health. A brilliant and prolific mathematician, he published
over 700 papers, many on quite difficult problems. His name can be found on many theorems
and definitions in differential equations, infinite series, probability theory, algebra, and
physics. He is noted for introducing rigor into calculus, laying the foundation for the branch
of mathematics known as analysis. Politically conservative, Cauchy was a royalist, and in 1830
he followed Charles X into exile. He returned to France in 1838 but did not return to his post
at the Sorbonne until the university dropped its requirement that faculty swear an oath of
loyalty to the new king.
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Theorem 4. 10

Theorem 4. 9 If A is invertible, then

Proof Since A is invertible, AA�1 � I, so det(AA�1 ) � det I � 1. Hence,
(det A)(det A�1 ) � 1, by Theorem 4.8, and since det A 0 (why?), dividing by
det A yields the result.

Verify Theorem 4.9 for the matrix A of Example 4.14.

Solution We compute

so

Remark The beauty of Theorem 4.9 is that sometimes we do not need to know
what the inverse of a matrix is, but only that it exists, or to know what its determinant
is. For the matrix A in the last two examples, once we know that det A � 4 0, we
immediately can deduce that A is invertible and that det without actually
computing A�1.

We now relate the determinant of a matrix A to that of its transpose AT. Since the
rows of AT are just the columns of A, evaluating det AT by expanding along the first
row is identical to evaluating det A by expanding along its first column, which the
Laplace Expansion Theorem allows us to do. Thus, we have the following result.

For any square matrix A,

Cramer’s Rule and the Adjoint

In this section, we derive two useful formulas relating determinants to the solution of
linear systems and the inverse of a matrix. The first of these, Cramer’s Rule, gives a
formula for describing the solution of certain systems of n linear equations in n vari-
ables entirely in terms of determinants. While this result is of little practical use
beyond 2 � 2 systems, it is of great theoretical importance.

We will need some new notation for this result and its proof. For an n � n matrix
A and a vector b in �n, let Ai(b) denote the matrix obtained by replacing the ith
column of A by b. That is,

Column i

Ai 1b 2 � 3a1
p b p an 4T

det A � det AT

A�1 � 1
4



det A�1 � a 3

4
b a 1

2
b � a�

1

4
b a�

1

2
b �

3

8
�

1

8
�

1

4
�

1

det A

A�1 � 1
4 c 3 �1

�2 2
d � c 3

4 �1
4

�1
2

1
2

d



det1A�1 2 �
1

det A
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Example 4. 15

Gabriel Cramer (1704–1752) was
a Swiss mathematician. The rule
that bears his name was published
in 1750, in his treatise Introduction
to the Analysis of Algebraic Curves.
As early as 1730, however, special
cases of the formula were known
to other mathematicians,
including the Scotsman Colin
Maclaurin (1698–1746), perhaps
the greatest of the British
mathematicians who were the
“successors of Newton.”
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Theorem 4. 11 Cramer’s Rule

Let A be an invertible n � n matrix and let b be a vector in �n. Then the unique
solution x of the system Ax � b is given by

Proof The columns of the identity matrix I � In are the standard unit vectors e1,
e2, . . . , en. If Ax � b, then

Therefore, by Theorem 4.8,

Now

as can be seen by expanding along the ith row. Thus, (det A)xi � det(Ai (b)), and the
result follows by dividing by det A (which is nonzero, since A is invertible).

Use Cramer’s Rule to solve the system

Solution We compute

� 3

By Cramer’s Rule,

x1 �
det 1A11b 2 2

det A
�

6

6
� 1  and  x2 �

det 1A21b 2 2
det A

�
3

6
�

1

2

det A � 2 1 2

�1 4
2 � 6,  det 1A11b 2 2 � 2 2 2

1 4
2 � 6,  and  det 1A21b 2 2 � 2 1 2

�1 1
2

�x1 � 4x2 � 1

x1 � 2x2 � 2

 det Ii 1x 2 � 7
1 0 p x1

p 0 0

0 1 p x2
p 0 0

o o ∞ o o o
0 0 p xi

p 0 0

o o o ∞ o o
0 0 p xn�1

p 1 0

0 0 p xn
p 0 1

7 � xi

1det A 2 1det Ii1x 2 2 � det1AIi1x 2 2 � det 1Ai1b 2 2
� 3a1

p b p an 4 � Ai1b 2AIi 1x 2 � A 3e1
p x p en 4 � 3Ae1

p Ax p Aen 4

xi �
det1Ai 1b 2 2

det A
  for i � 1, . . . , n
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Remark As noted previously, Cramer’s Rule is computationally inefficient for all
but small systems of linear equations because it involves the calculation of many de-
terminants. The effort expended to compute just one of these determinants, using
even the most efficient method, would be better spent using Gaussian elimination to
solve the system directly.

The final result of this section is a formula for the inverse of a matrix in terms of
determinants. This formula was hinted at by the formula for the inverse of a 3 � 3
matrix, which was given without proof at the beginning of this section. Thus, we have
come full circle.

Let’s discover the formula for ourselves. If A is an invertible n � n matrix, its in-
verse is the (unique) matrix X that satisfies the equation AX � I. Solving for X one
column at a time, let xj be the jth column of X. That is,

Therefore, Axj � ej, and by Cramer’s Rule,

However,

i th column

T

which is the ( j, i)-cofactor of A.
It follows that xij � (1�det A)Cji, so A�1 � X � (1�det A)[Cji] � (1�det A)[Cij]

T.
In words, the inverse of A is the transpose of the matrix of cofactors of A, divided by
the determinant of A.

The matrix

is called the adjoint (or adjugate) of A and is denoted by adj A. The result we have
just proved can be stated as follows.

3Cji 4 � 3Cij 4T � ≥C11 C21
p Cn1

C12 C22
p Cn2

o o ∞ o
C1n C2n

p Cnn

¥

 det 1Ai1ej 2 2 � 6
a11 a12

p 0 p a1n

a21 a22
p 0 p a2n

o o ∞ o † o
aj1 aj 2

p 1 p ajn

o o † o ∞ o
an1 an 2

p 0 p ann

6 � 1�1 2 j�idet Aji � Cji

xij �
det 1Ai1ej 2 2

det A

xj � Ex1j

o
xij

o
xnj

U

Section 4.2 Determinants 287

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Lemma 4. 13

Theorem 4. 12 Let A be an invertible n � n matrix. Then

Use the adjoint method to compute the inverse of

Solution We compute det A � �2 and the nine cofactors

The adjoint is the transpose of the matrix of cofactors—namely,

Then

which is the same answer we obtained (with less work) in Example 3.30.

Proof of the Laplace Expansion Theorem

Unfortunately, there is no short, easy proof of the Laplace Expansion Theorem. The
proof we give has the merit of being relatively straightforward. We break it down into
several steps, the first of which is to prove that cofactor expansion along the first row
of a matrix is the same as cofactor expansion along the first column.

Let A be an n � n matrix. Then

(7)a11C11 � a12C12 � p � a1nC1n � det A � a11C11 � a21C21 � p � an1Cn1

A�1 �
1

det A
adj A � �

1

2
£�18 3 10

10 �2 �6

4 �1 �2

§ � £ 9 �3
2 �5

�5 1 3

�2 1
2 1

§

adj A � £�18 10 4

3 �2 �1

10 �6 �2

§ T

� £�18 3 10

10 �2 �6

4 �1 �2

§

C31 � � 2 2 �1

2 4
2 � 10 C32 � � 2 1 �1

2 4
2 � �6 C33 � � 2 1 2

2 2
2 � �2

C21 � � 2 2 �1

3 �3
2 � 3 C22 � � 2 1 �1

1 �3
2 � �2   C23 � � 2 1 2

1 3
2 � �1

C11 � � 2 2 4

3 �3
2 � �18   C12 � � 2 2 4

1 �3
2 � 10 C13 � � 2 2 2

1 3
2 � 4

A � £1 2 �1

2 2 4

1 3 �3

§

A�1 �
1

det A
adj A
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Lemma 4. 14

Proof We prove this lemma by induction on n. For n � 1, the result is trivial. Now
assume that the result is true for (n � 1) � (n � 1) matrices; this is our induction hy-
pothesis. Note that, by the definition of cofactor (or minor), all of the terms contain-
ing a11 are accounted for by the summand a11C11. We can therefore ignore terms
containing a11.

The ith summand on the right-hand side of equation (7) is ai1Ci1 � ai1(�1) i�1

det Ai1. Now we expand det Ai1 along the first row:

The jth term in this expansion of det Ai1 is a1j (�1)1�j�1 det A1i,1j, where the notation
Akl,rs denotes the submatrix of A obtained by deleting rows k and l and columns
r and s. Combining these, we see that the term containing ai1a1 j on the right-hand side
of equation (7) is

What is the term containing ai1a1 j on the left-hand side of equation (7)? The
factor a1j occurs in the jth summand, a1 j C1 j � a1 j (�1)1�j det A1 j . By the induction
hypothesis, we can expand det A1j along its first column:

The ith term in this expansion of det A1 j is ai1(�1)(i�1)�1 det A1i , 1 j , so the term con-
taining ai1a1 j on the left-hand side of equation (7) is

which establishes that the left- and right-hand sides of equation (7) are equivalent.

Next, we prove property (b) of Theorem 4.3.

Let A be an n � n matrix and let B be obtained by interchanging any two rows
(columns) of A. Then

det B � �det A

a1j 1�1 2 1�jai11�1 2 1i�12�1 det A1i,1j � 1�1 2 i�j�1ai1a1j det A1i,1j

6
a21

p a2, j�1 a2, j�1
p a2n

a31
p a3, j�1 a3, j�1

p a3n

o ∞ o o † o
ai1

p ai, j�1 ai, j�1
p ain

o † o o ∞ o
an1

p an, j�1 an, j�1
p ann

6

ai11�1 2 i�1a1j 1�1 21�j�1 det A1i,1j � 1�1 2 i�j�1ai1a1j det A1i,1j

6
a12 a13

p a1j
p a1n

o o ∞ o † o
ai�1,2 ai�1,3

p ai�1, j
p ai�1,˛n

ai�1,2 ai�1,3
p ai�1, j

p ai�1,˛n

o o † o ∞ o
an2 an3

p anj
p an,˛n

6
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Proof Once again, the proof is by induction on n. The result can be easily checked
when n � 2, so assume that it is true for (n � 1) � (n � 1) matrices. We will prove
that the result is true for n � n matrices. First, we prove that it holds when two adja-
cent rows of A are interchanged—say, rows r and r � 1.

By Lemma 4.13, we can evaluate det B by cofactor expansion along its first col-
umn. The ith term in this expansion is (�1)1� ibi1 det Bi1. If i r and i r � 1, then
bi1 � ai1 and Bi1 is an (n � 1) � (n � 1) submatrix that is identical to Ai1 except that
two adjacent rows have been interchanged.

Thus, by the induction hypothesis, det Bi1 � �det Ai1 if i r and i r � 1.
If i � r, then bi1 � ar�1,1 and Bi1 � Ar�1, 1.

Row i S

Therefore, the rth summand in det B is

Similarly, if i � r � 1, then bi1 � ar1, Bi1 � Ar1, and the (r � 1)st summand in det B is

In other words, the rth and (r � 1)st terms in the first column cofactor expansion of
det B are the negatives of the (r � 1)st and rth terms, respectively, in the first column
cofactor expansion of det A.

Substituting all of these results into det B and using Lemma 4.13 again, we obtain

� �det A

� �a
n

i�1

1�1 2 i�1ai1 det Ai1

� a
n

i�1  
ir,r�1

1�1 2 i�1ai11�det Ai1 2 � 1�1 2 1r�12�1ar�1,1 det Ar�1,1 � 1�1 2 r�1ar1 det Ar1

� a
n

i�1  
ir,r�1

1�1 2 i�1bi1 det Bi1 � 1�1 2 r�1br1 det Br1 � 1�1 2 1r�12�1br�1,1 det Br�1,˛1

 det B � a
n

i�1

1�1 2 i�1bi1 det Bi1

1�1 2 1r�12�1br�1,1 det Br�1,1 � 1�1 2 rar1 det Ar1 � �1�1 2 r�1ar1 det Ar1

1�1 2 r�1br1 det Br1 � 1�1 2 r�1ar�1,1 det Ar�1,1 � �1�1 2 1r�12�1ar�1,1 det Ar�1,1

6
a11 a12

p a1n

o o o
ar�1,1 ar�1,2

p ar�1,n

ar1 ar2
p arn

o o o
an1 an2

p ann

6


8
a11 a12

p a1n

o o o
ai1 ai2

p ain

o o o
ar�1,1 ar�1,2

p ar�1,n

ar1 ar2
p arn

o o o
an1 an2

p ann

8
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This proves the result for n � n matrices if adjacent rows are interchanged. To see
that it holds for arbitrary row interchanges, we need only note that, for example,
rows r and s, where r � s, can be swapped by performing 2(s � r) � 1 interchanges of
adjacent rows (see Exercise 67). Since the number of interchanges is odd and each one
changes the sign of the determinant, the net effect is a change of sign, as desired.

The proof for column interchanges is analogous, except that we expand along
row 1 instead of along column 1.

We can now prove the Laplace Expansion Theorem.

Proof of Theorem 4. 1 Let B be the matrix obtained by moving row i of A to the top,
using i � 1 interchanges of adjacent rows. By Lemma 4.14, det B � (�1) i�1 det A. But
b1 j � aij and B1 j � Aij for j � 1, . . . , n.

Thus,

which gives the formula for cofactor expansion along row i.
The proof for column expansion is similar, invoking Lemma 4.13 so that we can

use column expansion instead of row expansion (see Exercise 68).

A Brief History of Determinants

As noted at the beginning of this section, the history of determinants predates that of
matrices. Indeed, determinants were first introduced, independently, by Seki in 1683
and Leibniz in 1693. In 1748, determinants appeared in Maclaurin’s Treatise on Alge-
bra, which included a treatment of Cramer’s Rule up to the 4 � 4 case. In 1750, Cramer
himself proved the general case of his rule, applying it to curve fitting, and in 1772,
Laplace gave a proof of his expansion theorem.

The term determinant was not coined until 1801, when it was used by Gauss.
Cauchy made the first use of determinants in the modern sense in 1812. Cauchy, in
fact, was responsible for developing much of the early theory of determinants, includ-
ing several important results that we have mentioned: the product rule for determi-
nants, the characteristic polynomial, and the notion of a diagonalizable matrix.
Determinants did not become widely known until 1841, when Jacobi popularized
them, albeit in the context of functions of several variables, such as are encountered in
a multivariable calculus course. (These types of determinants were called “Jacobians”
by Sylvester around 1850, a term that is still used today.)

� 1�1 2 i�1
a

n

j�1

1�1 21�jaij det Aij � a
n

j�1

1�1 2 i�jaij det Aij

det A � 1�1 2 i�1 det B � 1�1 2 i�1
a

n

j�1

1�1 21�jb1j det B1j

 det B � 7
ai1

p aij
p ain

a11
p a1j

p a1n

o o o
ai�1,1

p ai�1, j
p ai�1,n

ai�1,1
p ai�1, j

p ai�1,n

o o o
an1

p anj
p ann

7
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A self-taught child prodigy,
Takakazu Seki Kōwa (1642–1708)
was descended from a family of
samurai warriors. In addition
to discovering determinants,
he wrote about diophantine
equations, magic squares, and
Bernoulli numbers (before
Bernoulli) and quite likely made
discoveries in calculus.
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By the late 19th century, the theory of determinants had developed to the stage
that entire books were devoted to it, including Dodgson’s An Elementary Treatise on
Determinants in 1867 and Thomas Muir’s monumental five-volume work, which
appeared in the early 20th century. While their history is fascinating, today determi-
nants are of theoretical more than practical interest. Cramer’s Rule is a hopelessly
inefficient method for solving a system of linear equations, and numerical methods
have replaced any use of determinants in the computation of eigenvalues. Determi-
nants are used, however, to give students an initial understanding of the characteris-
tic polynomial (as in Sections 4.1 and 4.3).
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Gottfried Wilhelm von Leibniz (1646–1716) was born in Leipzig and studied law, theology,
philosophy, and mathematics. He is probably best known for developing (with Newton,
independently) the main ideas of differential and integral calculus. However, his
contributions to other branches of mathematics are also impressive. He developed the notion
of a determinant, knew versions of Cramer’s Rule and the Laplace Expansion Theorem before
others were given credit for them, and laid the foundation for matrix theory through work he
did on quadratic forms. Leibniz also was the first to develop the binary system of arithmetic.
He believed in the importance of good notation and, along with the familiar notation for
derivatives and integrals, introduced a form of subscript notation for the coefficients of a
linear system that is essentially the notation we use today.

Compute the determinants in Exercises 1–6 using cofactor
expansion along the first row and along the first column.

1. 2.

3. 4.

5. 6.

Compute the determinants in Exercises 7–15 using cofactor
expansion along any row or column that seems convenient.

7. 8. 3 1 2 3

�4 0 4

�3 �2 �1

33 5 2 2

�1 1 2

3 0 0

3
3 1 2 3

4 5 6

7 8 9

33 1 2 3

2 3 1

3 1 2

3
3 1 1 0

0 1 1

1 0 1

33 1 �1 0

�1 0 1

0 1 �1

3
3 1 0 �2

3 3 2

0 �1 1

33 1 0 3

5 1 1

0 1 2

3 9. 10.

11. 12.

13. 14.

15. 4 0 0 0 a

0 0 b c

0 d e f

g h i j

4
4 3 �2 0 1

1 3 0 �1

0 2 2 4

3 1 0 0

44 1 �1 0 3

2 5 2 6

0 1 0 0

1 4 2 1

4
3 0 a 0

b c d

0 e 0

33 a b 0

0 a b

a 0 b

3
3 0 0  sin u

sin u cos u tan u

�cos u sin u �cos u

33�4 1 3

2 �2 4

1 �1 0

3
Exercises 4. 2
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In Exercises 16–18, compute the indicated 3 � 3 determinants
using the method of Example 4.9.

16. The determinant in Exercise 6

17. The determinant in Exercise 8

18. The determinant in Exercise 11

19. Verify that the method indicated in (2) agrees with
equation (1) for a 3 � 3 determinant.

20. Verify that definition (4) agrees with the definition of
a 2 � 2 determinant when n � 2.

21. Prove Theorem 4.2. [Hint : A proof by induction
would be appropriate here.]

In Exercises 22–25, evaluate the given determinant using
elementary row and/or column operations and Theorem 4.3
to reduce the matrix to row echelon form.

22. The determinant in Exercise 1

23. The determinant in Exercise 9

24. The determinant in Exercise 13

25. The determinant in Exercise 14

In Exercises 26–34, use properties of determinants to
evaluate the given determinant by inspection. Explain
your reasoning.

26. 27.

28. 29.

30. 31.

32. 33.

34. 4 1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

4
4 0 2 0 0

�3 0 0 0

0 0 0 4

0 0 1 0

44 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

4
3 4 1 3

�2 0 �2

5 4 1

33 1 2 3

0 4 1

1 6 4

3
3 2 3 �4

1 �3 �2

�1 5 2

33 0 0 1

0 5 2

3 �1 4

3
3 3 1 0

0 �2 5

0 0 4

33 1 1 1

3 0 �2

2 2 2

3

Find the determinants in Exercises 35–40, assuming that

35. 36.

37. 38.

39.

40.

41. Prove Theorem 4.3(a). 42. Prove Theorem 4.3(f).

43. Prove Lemma 4.5. 44. Prove Theorem 4.7.

In Exercises 45 and 46, use Theorem 4.6 to find all values of k
for which A is invertible.

45.

46.

In Exercises 47–52, assume that A and B are n � n matrices
with det A � 3 and det B � �2. Find the indicated
determinants.

47. 48. 49.

50. 51. 52.

In Exercises 53–56, A and B are n � n matrices.

53. Prove that det(AB) � det(BA).

54. If B is invertible, prove that det(B�1AB) � det(A).

55. If A is idempotent (that is, A2 � A), find all possible
values of det(A).

56. A square matrix A is called nilpotent if Am � O for
some m � 1. (The word nilpotent comes from the
Latin nil, meaning “nothing,” and potere, meaning

det1AAT 2det13BT 2det12A2 det1B�1A2det 1A2 2det 1AB2

A � £ k k 0

k2 4 k2

0 k k

§
A � £ k �k 3

0 k � 1 1

k �8 k � 1

§

3 a b c

2d � 3g 2e � 3h 2f � 3i

g h i

3
3 2c b a

2f e d

2i h g

3
3 a � g b � h c � i

d e f

g h i

33 d e f

a b c

g h i

3
3 3a �b 2c

3d �e 2f

3g �h 2i

33 2a 2b 2c

d e f

g h i

3
3 a b c

d e f

g h i

3 � 4
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“to have power.” A nilpotent matrix is thus one that
becomes “nothing”—that is, the zero matrix—when
raised to some power.) Find all possible values of
det(A) if A is nilpotent.

In Exercises 57–60, use Cramer’s Rule to solve the given
linear system.

57. 58.

59. 60.

In Exercises 61–64, use Theorem 4.12 to compute the inverse
of the coefficient matrix for the given exercise.

61. Exercise 57 62. Exercise 58

63. Exercise 59 64. Exercise 60

65. If A is an invertible n � n matrix, show that adj A is
also invertible and that

66. If A is an n � n matrix, prove that

67. Verify that if r � s, then rows r and s of a matrix can
be interchanged by performing 2(s � r) � 1 inter-
changes of adjacent rows.

68. Prove that the Laplace Expansion Theorem holds for
column expansion along the jth column.

69. Let A be a square matrix that can be partitioned as

A � c P Q

O S
d

det1adj A2 � 1det A2n�1

1adj A2�1 �
1

det A
A � adj 1A�1 2

x � y � 3z � 1

x � y � z � 2y � z � 1

x � y � z � 1 2x � y � 3z � 1

x � 3y � �1x � y � 2

 2x � y � 5x � y � 1
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where P and S are square matrices. Such a matrix is
said to be in block (upper) triangular form. Prove that

[Hint: Try a proof by induction on the number of
rows of P.]

70. (a) Give an example to show that if A can be parti-
tioned as

where P, Q, R, and S are all square, then it is not
necessarily true that

(b) Assume that A is partitioned as in part (a) and
that P is invertible. Let

Compute det (BA) using Exercise 69 and use the
result to show that

[The matrix S � RP�1Q is called the Schur com-
plement of P in A, after Issai Schur (1875–1941),
who was born in Belarus but spent most of his life
in Germany. He is known mainly for his funda-
mental work on the representation theory of
groups, but he also worked in number theory,
analysis, and other areas.]

(c) Assume that A is partitioned as in part (a), that 
P is invertible, and that PR � RP. Prove that

det A � det1PS � RQ 2

det A � det P det1S � RP�1Q2
B � c P �1 O

�RP �1 I
d

det A � 1det P2 1det S 2 � 1det Q2 1det R2
A � cP Q

R S
d

det A � 1det P2 1det S 2
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In 1866, Charles Dodgson—better known by his pseudonym Lewis Carroll—
published his only mathematical research paper. In it, he described a “new and brief
method” for computing determinants, which he called “condensation.” Although not
well known today and rendered obsolete by numerical methods for evaluating determi-
nants, the condensation method is very useful for hand calculation. When calculators or
computer algebra systems are not available, many students find condensation to be their
method of choice. It requires only the ability to compute 2 � 2 determinants.

We require the following terminology.

Definition If A is an n � n matrix with , the interior of A, denoted
int(A), is the matrix obtained by deleting the first row, last
row, first column, and last column of A.

We will illustrate the condensation method for the 5 � 5 matrix

Begin by setting A0 equal to the 6 � 6 matrix all of whose entries are 1. Then, we set
A1 � A. It is useful to imagine A0 as the base of a pyramid with A1 centered on top of
A0. We are going to add successively smaller and smaller layers to the pyramid until
we reach a 1 � 1 matrix at the top—this will contain det A . (Figure 4.9)

A � E 2 3 �1 2 0

1 2 3 1 �4

2 �1 2 1 1

3 1 �1 2 �2

�4 1 0 1 2

U

1n � 2 2 � 1n � 2 2 n 
 3

A5

A4

A3

A2

A1

A0

Figure 4. 9

Charles Lutwidge Dodgson (1832–
1898) is much better known by his
pen name, Lewis Carroll, under
which he wrote Alice’s Adventures
in Wonderland and Through the
Looking Glass. He also wrote several
mathematics books and collections
of logic puzzles.
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This vignette is based on the article
“Lewis Carroll’s Condensation
Method for Evaluating Determinants”
by Adrian Rice and Eve Torrence in
Math Horizons, November 2006,
pp. 12–15. For further details of
the condensation method, see David
M. Bressoud, Proofs and Confirma-
tions: The Story of the Alternating Sign
Matrix Conjecture, MAA Spectrum
Series (Cambridge University Press,
1999).
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Next, we “condense” A1 into a 4 � 4 matrix whose entries are the determinants of
all 2 � 2 submatrices of A1:

A¿2

2 3 1

�4 1
2 2 1 �1

1 0
2 2�1 2

0 1
2 2 2 �2

1 2
2

2 2 �1

3 1
2 2�1 2

1 �1
2 2 2 1

�1 2
2 2 1 1

2 �2
2

2 1 2

2 �1
2 2 2 3

�1 2
2 2 3 1

2 1
2 2 1 �4

1 1
2

2 2 3

1 2
2 2 3 �1

2 3
2 2�1 2

3 1
2 2 2 0

1 �4
2

� ≥ 1 11 �7 �8

�5 7 1 5

5 �1 5 �4

7 1 �1 6

¥A¿2 �

2 5 �1

7 1
2 2�1 5

1 �1
2 2 5 �4

�1 6
2

2�5 7

5 �1
2 2 7 1

�1 5
2 2 1 5

5 �4
2

2 1 11

�5 7
2 2 11 �7

7 1
2 2�7 �8

1 5
2

� £ 62 60 �27

�30 36 �29

12 �4 26

§ ,A¿3 �

Now we divide each entry of by the corresponding entry of int(A0) to get matrix
A2. Since A0 is all 1s, this means .

We repeat the procedure, constructing from the 2 � 2 submatrices of A2 and then
dividing each entry of by the corresponding entry of int(A1), and so on. We obtain:A¿3

A¿3
A2 � A¿2

A¿2

As can be checked by other methods, det A � 478. In general, for an n � n matrix A,
the condensation method will produce a 1 � 1 matrix An containing det A.

Clearly, the method breaks down if the interior of any of the Ai s contains a zero,
since we would then be trying to divide by zero to construct Ai�1. However, careful
use of elementary row and column operations can be used to eliminate the zeros so
that we can proceed.

A3 � £ 62>2 60>3 �27>1
�30>�1 36>2 �29>1

12>1 �4>�1 26>2 § � £ 31 20 �27

30 18 �29

12 4 13

§ ,

230 18

12 4
2 2 18 �29

4 13
2

231 20

30 18
2 2 20 �27

18 �29
2

� c�42 �94

�96     350
d ,

A¿4 �

A5 � 38604>18 4 � 3478 4A¿5 � c `�6 �94

96 70
` d � 38604 4 ,

A4 � c�42>7 �94>1
�96> 1�1 2 350>5 d � c�6 �94

96 70
d ,
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Geometric Applications of Determinants
This exploration will reveal some of the amazing applications of determinants to
geometry. In particular, we will see that determinants are closely related to area and
volume formulas and can be used to produce the equations of lines, planes, and
certain other curves. Most of these ideas arose when the theory of determinants was
being developed as a subject in its own right.

The Cross Product

Recall from Exploration: The Cross Product in Chapter 1 that the cross product

of and is the vector u � v defined by

If we write this cross product as (u2v3 � u3v2)e1 � (u1v3 � u3v1)e2 � (u1v2 � u2v1)e3,
where e1, e2, and e3 are the standard basis vectors, then we see that the form of this
formula is

if we expand along the first column. (This is not a proper determinant, of course,
since e1, e2, and e3 are vectors, not scalars; however, it gives a useful way of remem-
bering the somewhat awkward cross product formula. It also lets us use properties of
determinants to verify some of the properties of the cross product.)

Now let’s revisit some of the exercises from Chapter 1.

u � v � det £ e1 u1 v1

e2 u2 v2

e3 u3 v3

§

u � v � £u2v3 � u3v2

u3v1 � u1v3

u1v2 � u2v1

§
v � £ v1

v2

v3

§u � £u1

u2

u3

§
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1. Use the determinant version of the cross product to compute u � v.

2. If and show that

3. Use properties of determinants (and Problem 2 above, if necessary) to prove
the given property of the cross product.

Area and Volume

We can now give a geometric interpretation of the determinants of 2 � 2 and 3 � 3
matrices. Recall that if u and v are vectors in �3, then the area A of the parallelogram
determined by these vectors is given by (See Exploration: The Cross
Product in Chapter 1.)

4. Let and Show that the area A of the parallelogram

determined by u and v is given by

[Hint: Write u and v as and ]

5. Derive the area formula in Problem 4 geometrically, using Figure 4.10 as a
guide. [Hint: Subtract areas from the large rectangle until the parallelogram remains.]
Where does the absolute value sign come from in this case?

£ v1

v2

0

§ .£u1

u2

0

§
A � `det cu1 v1

u2 v2

d `
v � c v1

v2

d .u � cu1

u2

d
A � � u � v �.

1g 2  u # 1v � w 2 � 1u � v 2 # w  1the triple scalar product identity 21e 2  u � 1v � w 2 � u � v � u � w  1f 2  u # 1u � v 2 � 0 and v # 1u � v 2 � 0

1c 2  u � u � 0  1d 2  u � kv � k 1u � v 21a 2  v � u � �1u � v 2  1b 2  u � 0 � 0

u # 1v � w 2 � det £u1 v1 w1

u2 v2 w2

u3 v3 w3

§
w � £w1

w2

w3

§ ,u � £u1

u2

u3

§ , v � £ v1

v2

v3

§ ,
1c 2 u � £�1

2

3

§ , v � £ 2

�4

�6

§   1d 2 u � £ 11
1

§ , v � £ 12
3

§
1a 2 u � £ 01

1

§ , v � £ 3

�1

2

§   1b 2 u � £ 3

�1

2

§ , v � £ 01
1

§

x

y

(c, d)
(a, b)

a a � c

d

b � d

Figure 4. 10
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6. Find the area of the parallelogram determined by u and v.

Generalizing from Problems 4–6, consider a parallelepiped, a three-dimensional
solid resembling a “slanted” brick, whose six faces are all parallelograms with oppo-
site faces parallel and congruent (Figure 4.11). Its volume is given by the area of its
base times its height.

7. Prove that the volume V of the parallelepiped determined by u, v, and w is
given by the absolute value of the determinant of the 3 � 3 matrix [u v w] with u,
v, and w as its columns. [Hint: From Figure 4.11 you can see that the height h can be
expressed as where u is the angle between u and v � w. Use this fact to
show that and apply the result of Problem 2.]

8. Show that the volume V of the tetrahedron determined by u, v, and w
(Figure 4.12) is given by

[Hint: From geometry, we know that the volume of such a solid is (area of the
base)(height).]

Now let’s view these geometric interpretations from a transformational point of
view. Let A be a 2 � 2 matrix and let P be the parallelogram determined by the vec-
tors u and v. We will consider the effect of the matrix transformation TA on the area
of P. Let TA(P) denote the parallelogram determined by TA(u) � Au and TA(v) � Av.

9. Prove that the area of TA(P) is given by �det A�(area of P).

10. Let A be a 3 � 3 matrix and let P be the parallelepiped determined by the
vectors u, v, and w. Let TA(P) denote the parallelepiped determined by TA(u) � Au,
TA(v) � Av, and TA(w) � Aw. Prove that the volume of TA(P) is given by �det A �
(volume of P).

The preceding problems illustrate that the determinant of a matrix captures what
the corresponding matrix transformation does to the area or volume of figures upon
which the transformation acts. (Although we have considered only certain types of fig-
ures, the result is perfectly general and can be made rigorous. We will not do so here.)

V � 1
3

V � 1
6 0u # 1v � w 2 0

V � 0u # 1v � w 2 0h � �u�cos u,

1a 2 u � c 2
3
d , v � c�1

4
d   1b 2 u � c 3

4
d , v � c 5

5
d

h

v×w

θ
u

w

v

Figure 4. 11

u

w

v

Figure 4. 12
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Lines and Planes

Suppose we are given two distinct points (x1, y1) and (x2, y2) in the plane. There is a
unique line passing through these points, and its equation is of the form

Since the two given points are on this line, their coordinates satisfy this equation.
Thus,

The three equations together can be viewed as a system of linear equations in the
variables a, b, and c. Since there is a nontrivial solution (i.e., the line exists), the
coefficient matrix

cannot be invertible, by the Fundamental Theorem of Invertible Matrices. Conse-
quently, its determinant must be zero, by Theorem 4.6. Expanding this determinant
gives the equation of the line.

The equation of the line through the points (x1, y1) and (x2, y2) is given by

11. Use the method described above to find the equation of the line through the
given points.

12. Prove that the three points (x1, y1), (x2, y2), and (x3, y3) are collinear (lie on
the same line) if and only if

13. Show that the equation of the plane through the three noncollinear points 
(x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) is given by

What happens if the three points are collinear? [Hint: Explain what happens when
row reduction is used to evaluate the determinant.]

4 x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

4 � 0

† x1 y1 1

x2 y2 1

x3 y3 1

† � 0

1a 2 12, 3 2  and 1�1, 0 2     1b 2 11, 2 2  and 14, 3 2

3 x y 1

x1 y1 1

x2 y2 1

3 � 0

£ x y 1

x1 y1 1

x2 y2 1

§

ax2 � by2 � c � 0

ax1 � by1 � c � 0

ax � by � c � 0
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14. Prove that the four points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4) are
coplanar (lie in the same plane) if and only if

Curve Fitting

When data arising from experimentation take the form of points (x, y) that can be
plotted in the plane, it is often of interest to find a relationship between the variables
x and y. Ideally, we would like to find a function whose graph passes through all of the
points. Sometimes all we want is an approximation (see Section 7.3), but exact results
are also possible in certain situations.

15. From Figure 4.13 it appears as though we may be able to find a parabola
passing through the points A(�1, 10), B(0, 5), and C(3, 2). The equation of such a
parabola is of the form y � a � bx � cx2. By substituting the given points into this
equation, set up a system of three linear equations in the variables a, b, and c. Without
solving the system, use Theorem 4.6 to argue that it must have a unique solution.

Then solve the system to find the equation of the parabola in Figure 4.13.

16. Use the method of Problem 15 to find the polynomials of degree at most 2
that pass through the following sets of points.

(a) A(1, �1), B(2, 4), C(3, 3) (b) A(�1, �3), B(1, �1), C(3, 1)

17. Generalizing from Problems 15 and 16, suppose a1, a2, and a3 are distinct
real numbers. For any real numbers b1, b2, and b3, we want to show that there is a
unique quadratic with equation of the form y � a � bx � cx2 passing through the
points (a1, b1), (a2, b2), and (a3, b3). Do this by demonstrating that the coefficient
matrix of the associated linear system has the determinant

which is necessarily nonzero. (Why?)

18. Let a1, a2, a3, and a4 be distinct real numbers. Show that

For any real numbers b1, b2, b3, and b4, use this result to prove that there is a unique
cubic with equation y � a � bx � cx2 � dx3 passing through the four points (a1, b1),
(a2, b2), (a3, b3), and (a4, b4). (Do not actually solve for a, b, c, and d.)

4 1 a1 a1
2 a1

3

1 a2 a2
2 a2

3

1 a3 a3
2 a3

3

1 a4 a4
2 a4

3

4 � 1a2 � a1 2 1a3 � a1 2 1a4 � a1 2 1a3 � a2 2 1a4 � a2 2 1a4 � a3 2  0

3 1 a1 a1
2

1 a2 a2
2

1 a3 a3
2

3 � 1a2 � a1 2 1a3 � a1 2 1a3 � a2 2

4 x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

4 � 0

y

x

A

B

C2

4

6

8

12

�2 2 4 6

Figure 4. 13

301

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



19. Let a1, a2, . . . , an be n real numbers. Prove that

where ß1� i � j�n (aj � ai) means the product of all terms of the form (aj � ai), where
i � j and both i and j are between 1 and n. [The determinant of a matrix of this form
(or its transpose) is called a Vandermonde determinant, named after the French
mathematician A. T. Vandermonde (1735–1796).]

Deduce that for any n points in the plane whose x-coordinates are all distinct,
there is a unique polynomial of degree n � 1 whose graph passes through the given
points.

5 1 a1 a1
2 p a1

n�1

1 a2 a2
2 p a2

n�1

1 a3 a3
2 p a3

n�1

o o o ∞ o
1 an an

2 p an
n�1

5 � q
1�i 6 j�n

1aj � ai 2
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Eigenvalues and Eigenvectors of n � n Matrices
Now that we have defined the determinant of an n � n matrix, we can continue our
discussion of eigenvalues and eigenvectors in a general context. Recall from Section 4.1
that l is an eigenvalue of A if and only if A � lI is noninvertible. By Theorem 4.6, this
is true if and only if det(A � lI ) � 0. To summarize:

The eigenvalues of a square matrix A are precisely the solutions l of the equation

When we expand det(A � lI ), we get a polynomial in l, called the characteristic
polynomial of A. The equation det(A � lI ) � 0 is called the characteristic equation

of A. For example, if its characteristic polynomial is

If A is n � n, its characteristic polynomial will be of degree n. According to the Fun-
damental Theorem of Algebra (see Appendix D), a polynomial of degree n with real
or complex coefficients has at most n distinct roots. Applying this fact to the charac-
teristic polynomial, we see that an n � n matrix with real or complex entries has at
most n distinct eigenvalues.

Let’s summarize the procedure we will follow (for now) to find the eigenvalues
and eigenvectors (eigenspaces) of a matrix.

Let A be an n � n matrix.

1. Compute the characteristic polynomial det(A � lI ) of A.
2. Find the eigenvalues of A by solving the characteristic equation det(A �lI ) � 0

for l.
3. For each eigenvalue l, find the null space of the matrix A � lI. This is the

eigenspace El, the nonzero vectors of which are the eigenvectors of A corre-
sponding to l.

4. Find a basis for each eigenspace.

Find the eigenvalues and the corresponding eigenspaces of

A � £0 1 0

0 0 1

2 �5 4

§

 det 1A �lI 2 � 2 a �l b

c d �l
2 � 1a �l2 1d �l2 � bc � l2 � 1a � d 2l� 1ad � bc 2

A � c a b

c d
d ,

det1A � lI 2 � 0
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Solution We follow the procedure outlined above. The characteristic polynomial is

To find the eigenvalues, we need to solve the characteristic equation det(A � lI) � 0
for l. The characteristic polynomial factors as �(l � 1)2(l � 2). (The Factor
Theorem is helpful here; see Appendix D.) Thus, the characteristic equation is
�(l� 1)2(l� 2) � 0, which clearly has solutions l� 1 and l� 2. Since l� 1 is a
multiple root and l� 2 is a simple root, let us label them l1 � l2 � 1 and l3 � 2.

To find the eigenvectors corresponding to l1 � l2 � 1, we find the null space of

Row reduction produces

(We knew in advance that we must get at least one zero row. Why?) Thus, is

in the eigenspace E1 if and only if x1 � x3 � 0 and x2 � x3 � 0. Setting the free vari-
able x3 � t, we see that x1 � t and x2 � t, from which it follows that

To find the eigenvectors corresponding to l3 � 2, we find the null space of A � 2I
by row reduction:

So is in the eigenspace E2 if and only if and Setting the

free variable x3 � t, we have

E2 � • £ 1
4t
1
2t

t

§ ¶ � • t £ 1
4
1
2

1

§ ¶ � span° £ 1
4
1
2

1

§ ¢ � span° £ 12
4

§ ¢
x2 � 1

2 x3.x1 � 1
4 x3x � £x1

x2

x3

§
3A � 2I 0 0 4 � £�2 1 0

0 �2 1

2 �5 2

3 00
0

§ ¡ £ 1 0 � 1
4

0 1 �1
2

0 0 0

3 00
0

§

E1 � • £ tt
t

§ ¶ � • t £11
1

§ ¶ � span° £11
1

§ ¢

x � £x1

x2

x3

§
3A � I 0 0 4 � £�1 1 0

0 �1 1

2 �5 3

3 00
0

§ ¡ £ 1 0 �1

0 1 �1

0 0 0

3 00
0

§
A � 1I � £�1 1 0

0 �1 1

2 �5 4 � 1

§ � £�1 1 0

0 �1 1

2 �5 3

§

� �l3 � 4l2 � 5l � 2

� �l1l2 � 4l � 5 2 � 1�2 2� �l 2�l 1

�5 4 � l
2 � 2 0 1

2 4 � l
2

det 1A � lI 2 � 3�l 1 0     

0 �l 1

2 �5 4 � l

3
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where we have cleared denominators in the basis by multiplying through by the least 
common denominator 4. (Why is this permissible?)

Remark Notice that in Example 4.18, A is a 3 � 3 matrix but has only two distinct
eigenvalues. However, if we count multiplicities, A has exactly three eigenvalues (l� 1
twice and l� 2 once). This is what the Fundamental Theorem of Algebra guarantees.
Let us define the algebraic multiplicity of an eigenvalue to be its multiplicity as a root
of the characteristic equation. Thus, l� 1 has algebraic multiplicity 2 and l� 2 has
algebraic multiplicity 1.

Next notice that each eigenspace has a basis consisting of just one vector. In other
words, dim E1 � dim E2 � 1. Let us define the geometric multiplicity of an eigenvalue
l to be dim El, the dimension of its corresponding eigenspace. As you will see in
Section 4.4, a comparison of these two notions of multiplicity is important.

Find the eigenvalues and the corresponding eigenspaces of

Solution The characteristic equation is

Hence, the eigenvalues are l1 � l2 � 0 and l3 � �2. Thus, the eigenvalue 0 has alge-
braic multiplicity 2 and the eigenvalue �2 has algebraic multiplicity 1.

For l1 � l2 � 0, we compute

from which it follows that an eigenvector in E0 satisfies x1 � x3. Therefore,

both x2 and x3 are free. Setting x2 � s and x3 � t, we have

For l3 � �2,

3A � 1�2 2 I 0 0 4 � 3A � 2I 0 0 4 � £ 1 0 1

3 2 �3

1 0 1

3 00
0

§ ¡ £ 1 0 1

0 1 �3

0 0 0

3 00
0
§

E 0 � • £ t

s

t

§ ¶ � • s £ 01
0

§ � t £ 10
1

§ ¶ � span° £ 01
0

§ , £ 10
1

§ ¢
x � £x1

x2

x3

§
3A � 0I 0 0 4 � 3A 0 0 4 � £�1 0 1

3 0 �3

1 0 �1

3 00
0
§ ¡ £ 1 0 �1

0 0 0

0 0 0

3 00
0

§

� �l1l2 � 2l2 � �l21l � 2 2
0 � det1A � lI 2 � †�1 � l     0    1

   3 �l �3

   1     0 �1 � l

† � �l `�1 � l    1

   1 �1 � l
`

A � £�1 0 1

3 0 �3

1 0 �1

§
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Theorem 4. 16

Theorem 4. 15

so x3 � t is free and x1 � �x3 � �t and x2 � 3x3 � 3t. Consequently,

It follows thatl1 �l2 � 0 has geometric multiplicity 2 andl3 � �2 has geometric
multiplicity 1. (Note that the algebraic multiplicity equals the geometric multiplicity
for each eigenvalue.)

In some situations, the eigenvalues of a matrix are very easy to find. If A is a
triangular matrix, then so is A � lI, and Theorem 4.2 says that det(A � lI ) is just
the product of the diagonal entries. This implies that the characteristic equation of
a triangular matrix is

from which it follows immediately that the eigenvalues are l1 � a11, l2 � a22, . . . ,
ln � ann. We summarize this result as a theorem and illustrate it with an example.

The eigenvalues of a triangular matrix are the entries on its main diagonal.

The eigenvalues of

are l1 � 2, l2 � 1, l3 � 3, and l4 � �2, by Theorem 4.15. Indeed, the characteristic
polynomial is just (2 � l)(1 � l)(3 � l)(�2 � l).

Note that diagonal matrices are a special case of Theorem 4.15. In fact, a diagonal
matrix is both upper and lower triangular.

Eigenvalues capture much important information about the behavior of a matrix.
Once we know the eigenvalues of a matrix, we can deduce a great many things without
doing any more work. The next theorem is one of the most important in this regard.

A square matrix A is invertible if and only if 0 is not an eigenvalue of A.

Proof Let A be a square matrix. By Theorem 4.6, A is invertible if and only if
det A 0. But det A 0 is equivalent to det(A � 0I ) 0, which says that 0 is not a
root of the characteristic equation of A (i.e., 0 is not an eigenvalue of A).

We can now extend the Fundamental Theorem of Invertible Matrices to include
results we have proved in this chapter.



A � ≥ 2 0 0 0

�1 1 0 0

3 0 3 0

5 7 4 �2

¥

1a11 � l2 1a22 � l2 p 1ann � l2 � 0

E�2 � • £�t

3t

t

§ ¶ � • t £�1

3

1

§ ¶ � span° £�1

3

1

§ ¢
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Theorem 4. 18

Theorem 4. 17 The Fundamental Theorem of Invertible Matrices: Version 3

Let A be an n � n matrix. The following statements are equivalent:

a. A is invertible.
b. Ax � b has a unique solution for every b in �n.
c. Ax � 0 has only the trivial solution.
d. The reduced row echelon form of A is In.
e. A is a product of elementary matrices.
f. rank(A) � n
g. nullity(A) � 0
h. The column vectors of A are linearly independent.
i. The column vectors of A span �n.
j. The column vectors of A form a basis for �n.
k. The row vectors of A are linearly independent.
l. The row vectors of A span �n.
m. The row vectors of A form a basis for �n.
n. det A 0
o. 0 is not an eigenvalue of A.

Proof The equivalence (a) (n) is Theorem 4.6, and we just proved (a) (o) in
Theorem 4.16.

There are nice formulas for the eigenvalues of the powers and inverses of a matrix.

Let A be a square matrix with eigenvalue l and corresponding eigenvector x.

a. For any positive integer n, ln is an eigenvalue of An with corresponding
eigenvector x.

b. If A is invertible, then 1�l is an eigenvalue of A�1 with corresponding eigenvector x.
c. If A is invertible, then for any integer n, ln is an eigenvalue of An with corre-

sponding eigenvector x.

Proof We are given that Ax � lx.

(a) We proceed by induction on n. For n � 1, the result is just what has been given.
Assume the result is true for n � k. That is, assume that, for some positive integer k,
Ak x � lk x. We must now prove the result for n � k � 1. But

by the induction hypothesis. Using property (d) of Theorem 3.3, we have

Thus, Ak�1x � lk�1x, as required. By induction, the result is true for all integers n 
 1.

(b) You are asked to prove this property in Exercise 13.

(c) You are asked to prove this property in Exercise 14.

The next example shows one application of this theorem.

A1lkx 2 � lk1Ax 2 � lk1lx 2 � lk�1x

Ak�1x � A1Akx 2 � A1lkx 2

33



Section 4.3 Eigenvalues and Eigenvectors of n � n Matrices 307

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 4. 20

Theorem 4. 19

Compute 

Solution Let and then what we want to find is A10 x. The

eigenvalues of A are l1 � �1 and l2 � 2, with corresponding eigenvectors 

and That is,

(Check this.) Since {v1, v2} forms a basis for �2 (why?), we can write x as a linear com-
bination of v1 and v2. Indeed, as is easily checked, x � 3v1 � 2v2.

Therefore, using Theorem 4.18(a), we have

This is certainly a lot easier than computing A10 first; in fact, there are no matrix
multiplications at all!

When it can be used, the method of Example 4.21 is quite general. We summarize
it as the following theorem, which you are asked to prove in Exercise 42.

Suppose the n � n matrix A has eigenvectors v1, v2, . . . , vm with corresponding
eigenvalues l1, l2, . . . , lm. If x is a vector in �n that can be expressed as a linear
combination of these eigenvectors—say,

then, for any integer k,

Warning The catch here is the “if” in the second sentence. There is absolutely no
guarantee that such a linear combination is possible. The best possible situation
would be if there were a basis of �n consisting of eigenvectors of A; we will explore
this possibility further in the next section. As a step in that direction, however, we
have the following theorem, which states that eigenvectors corresponding to distinct
eigenvalues are linearly independent.

Let A be an n � n matrix and let l1,l2, . . . ,lm be distinct eigenvalues of A with cor-
responding eigenvectors v1, v2, . . . , vm. Then v1, v2, . . . , vm are linearly independent.

Akx � c1l1
kv1 � c2l2

kv2 � p � cmlm
k vm

x � c1v1 � c2v2 � p � cmvm

� 31�1 210 c 1

�1
d � 21210 2 c1

2
d � c 3 � 211

�3 � 212 d � c2051

4093
d� 31l1

10 2v1 � 21l2
10 2v2

A10x � A1013v1 � 2v2 2 � 31A10v1 2 � 21A10v2 2
Av1 � �v1  and  Av2 � 2v2

v2 � c 1
2
d . v1 � c 1

�1
dx � c 5

1
d ;A � c0 1

2 1
d

c0 1

2 1
d 10 c5

1
d .
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Proof The proof is indirect. We will assume that v1, v2, . . . , vm are linearly dependent
and show that this assumption leads to a contradiction.

If v1, v2, . . . , vm are linearly dependent, then one of these vectors must be express-
ible as a linear combination of the previous ones. Let vk�1 be the first of the vectors vi

that can be so expressed. In other words, v1, v2, . . . , vk are linearly independent, but
there are scalars c1, c2, . . . , ck such that

(1)

Multiplying both sides of equation (1) by A from the left and using the fact that Avi �
livi for each i, we have

(2)

Now we multiply both sides of equation (1) by lk�1 to get

(3)

When we subtract equation (3) from equation (2), we obtain

The linear independence of v1, v2, . . . , vk implies that

Since the eigenvalues li are all distinct, the terms in parentheses (li � lk�1),
i � 1, . . . , k, are all nonzero. Hence, c1 � c2 � � ck � 0. This implies that

which is impossible, since the eigenvector vk�1 cannot be zero. Thus, we have a con-
tradiction, which means that our assumption that v1, v2, . . . , vm are linearly dependent
is false. It follows that v1, v2, p , vm must be linearly independent.

vk�1 � c1v1 � c2v2 � p � ckvk � 0v1 � 0v2 � p � 0vk � 0

p

c11l1 � lk�1 2 � c21l2 � lk�1 2 � p � ck1lk � lk�1 2 � 0

0 � c11l1 � lk�1 2v1 � c21l2 � lk�1 2v2 � p � ck1lk � lk�1 2vk

lk�1vk�1 � c1lk�1v1 � c2lk�1v2 � p � cklk�1vk

� c1l1v1 � c2l2v2 � p � cklkvk

� c1Av1 � c2Av2 � p � ckAvk

lk�1vk�1 � Avk�1 � A1c1v1 � c2v2 � p � ckvk 2
vk�1 � c1v1 � c2v2 � p � ckvk
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In Exercises 1–12, compute (a) the characteristic polynomial
of A, (b) the eigenvalues of A, (c) a basis for each eigenspace
of A, and (d) the algebraic and geometric multiplicity of each
eigenvalue.

1. 2.

3. 4.

5. 6. A � £ 1 1 �1

0 2 0

�1 1 1

§A � £ 1 2 0

�1 �1 1

0 1 1

§
A � £ 1 1 0

1 0 1

0 1 1

§A � £ 1 1 0

0 �2 1

0 0 3

§
A � c 1 �9

1 �5
dA � c 1 3

�2 6
d

7. 8.

9. 10.

11. A � ≥ 1 0 0 0

0 1 0 0

1 1 3 0

�2 1 2 �1

¥
A � ≥ 2 1 1 1

0 1 2 3

0 0 3 3

0 0 0 2

¥A � ≥ 3 1 0 0

�1 1 0 0

0 0 1 4

0 0 1 1

¥
A � £ 1 0 3

2 �2 2

3 0 1

§A � £ 4 0 1

2 3 2

�1 0 2

§
Exercises 4. 3
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12.

13. Prove Theorem 4.18(b).

14. Prove Theorem 4.18(c). [Hint: Combine the proofs of
parts (a) and (b) and see the fourth Remark following
Theorem 3.9 (page 175).]

In Exercises 15 and 16, A is a 2 � 2 matrix with eigenvec-

tors and corresponding to eigenvalues

and l2 � 2, respectively, and 

15. Find A10x.

16. Find Ak x. What happens as k becomes large (i.e.,
k S q)?

In Exercises 17 and 18, A is a 3 � 3 matrix with eigenvectors

and corresponding to eigen-

values l1 � � l2 � and l3 � 1, respectively, and

17. Find A20 x.

18. Find Ak x. What happens as k becomes large (i.e.,
k S q)?

19. (a) Show that, for any square matrix A, AT and A have
the same characteristic polynomial and hence the
same eigenvalues.

(b) Give an example of a 2 � 2 matrix A for which AT

and A have different eigenspaces.

20. Let A be a nilpotent matrix (that is, Am � O for some
m � 1). Show that l� 0 is the only eigenvalue of A.

21. LetAbeanidempotentmatrix(that is,A2 �A).Showthat
l� 0 andl� 1 are the only possible eigenvalues of A.

22. If v is an eigenvector of A with corresponding eigen-
value l and c is a scalar, show that v is an eigenvector
of A � cI with corresponding eigenvalue l� c.

23. (a) Find the eigenvalues and eigenspaces of

A � c3 2

5 0
d

x � £21
2

§ .
1
3,1

3 ,

v3 � £ 11
1

§v1 � £10
0

§ , v2 � £11
0

§ ,

x � c 5
1
d .l1 � 1

2

v2 � c 1
1
dv1 � c 1

�1
d

A � ≥ 1 1 1 0

4 1 0 1

0 0 �1 1

0 0 2 0

¥
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(b) Using Theorem 4.18 and Exercise 22, find the eigen-
values and eigenspaces of A�1, A � 2I, and A � 2I.

24. Let A and B be n � n matrices with eigenvalues l and
m, respectively.

(a) Give an example to show that l� m need not be
an eigenvalue of A � B.

(b) Give an example to show that lm need not be an
eigenvalue of AB.

(c) Suppose l and m correspond to the same eigen-
vector x. Show that, in this case, l� m is an eigen-
value of A � B and lm is an eigenvalue of AB.

25. If A and B are two row equivalent matrices, do they
necessarily have the same eigenvalues? Either prove
that they do or give a counterexample.

Let p(x) be the polynomial

The companion matrix of p(x) is the n � n matrix

(4)

26. Find the companion matrix of p(x) � x2 � 7x � 12 and
then find the characteristic polynomial of C( p).

27. Find the companion matrix of p(x) � x3 � 3x2 �
4x � 12 and then find the characteristic polynomial
of C( p).

28. (a) Show that the companion matrix C( p) of p(x) �
x2 � ax � b has characteristic polynomial 
l2 � al� b.

(b) Show that if l is an eigenvalue of the companion

matrix C( p) in part (a), then is an eigenvector

of C( p) corresponding to l.

29. (a) Show that the companion matrix C( p) of p(x) �
x3 � ax2 � bx � c has characteristic polynomial
�(l3 � al2 � bl� c).

(b) Show that if l is an eigenvalue of the companion

matrix C( p) in part (a), then is an eigenvector

of C( p) corresponding to l.

£l2

l

1

§

cl
1
d

C 1p 2 � E�an�1 �an�2
p �a1 �a0

1 0 p 0 0

0 1 ∞ o o
0 0 p 0 0

0 0 p 1 0

U

p1x 2 � xn � an�1x
n�1 � p � a1x � a0
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Section 4.3 Eigenvalues and Eigenvectors of n � n Matrices 311

30. Construct a nontriangular 2 � 2 matrix with eigen-
values 2 and 5. [Hint: Use Exercise 28.]

31. Construct a nontriangular 3 � 3 matrix with eigen-
values �2, 1, and 3. [Hint: Use Exercise 29.]

32. (a) Use mathematical induction to prove that, for
n 
 2, the companion matrix C( p) of p(x) � x n �
an�1x n�1 � % � a1 x � a0 has characteristic 
polynomial (�1) np(l). [Hint: Expand by 
cofactors along the last column. You may find 
it helpful to introduce the polynomial q(x) �
( p(x) � a0)�x.]

(b) Show that if l is an eigenvalue of the companion
matrix C( p) in equation (4), then an eigenvector
corresponding to l is given by

If p(x) � x n � an�1x n�1 � p � a1x � a0 and A is a square
matrix, we can define a square matrix p(A) by

An important theorem in advanced linear algebra says that
if cA(l) is the characteristic polynomial of the matrix A,
then cA(A) � O (in words, every matrix satisfies its charac-
teristic equation). This is the celebrated Cayley-Hamilton
Theorem, named after Arthur Cayley (1821–1895),
pictured below, and Sir William Rowan Hamilton (see
page 2). Cayley proved this theorem in 1858. Hamilton
discovered it, independently, in his work on quaternions, a
generalization of the complex numbers.

p1A2 � An � an�1A
n�1 � p � a1A � a0I

El
n�1

ln�2

o
l

1

U

33. Verify the Cayley-Hamilton Theorem for A �

That is, find the characteristic polynomial cA(l) of A
and show that cA(A) � O.

34. Verify the Cayley-Hamilton Theorem for A �

The Cayley-Hamilton Theorem can be used to calculate
powers and inverses of matrices. For example, if A is a 2 � 2
matrix with characteristic polynomial cA(l) � l2 � al� b,
then A2 � aA � bI � O, so

and

It is easy to see that by continuing in this fashion we can
express any positive power of A as a linear combination
of I and A. From A2 � aA � bI � O, we also obtain
A(A � aI ) � �bI, so

provided b 0.

35. For the matrix A in Exercise 33, use the Cayley-
Hamilton Theorem to compute A2, A3, and A4 by
expressing each as a linear combination of I and A.

36. For the matrix A in Exercise 34, use the Cayley-
Hamilton Theorem to compute A3 and A4 by express-
ing each as a linear combination of I, A, and A2.

37. For the matrix A in Exercise 33, use the Cayley-
Hamilton Theorem to compute A�1 and A�2 by
expressing each as a linear combination of I and A.

38. For the matrix A in Exercise 34, use the Cayley-
Hamilton Theorem to compute A�1 and A�2 by
expressing each as a linear combination of I, A, and A2.

39. Show that if the square matrix A can be partitioned as

where P and S are square matrices, then the character-
istic polynomial of A is cA(l) � cP (l)cS (l). [Hint: Use
Exercise 69 in Section 4.2.]

A � c P Q

O S
d



A�1 � �
1

b
A �

a

b
I

� 1a2 � b 2A � abI

� �a1�aA � bI 2 � bA

� �aA2 � bA

A3 � AA2 � A1�aA � bI 2A2 � �aA � bI

£ 1 1 0

�1 0 1

�2 1 0

§ .

c1 �1

2 3
d .

©
 B

et
tm

an
n/

 C
OR

BI
S
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312 Chapter 4 Eigenvalues and Eigenvectors

Similarity and Diagonalization
As you saw in the last section, triangular and diagonal matrices are nice in the sense
that their eigenvalues are transparently displayed. It would be pleasant if we could
relate a given square matrix to a triangular or diagonal one in such a way that they
had exactly the same eigenvalues. Of course, we already know one procedure for con-
verting a square matrix into triangular form—namely, Gaussian elimination. Unfor-
tunately, this process does not preserve the eigenvalues of the matrix. In this section,
we consider a different sort of transformation of a matrix that does behave well with
respect to eigenvalues.

Similar Matrices

Definition Let A and B be n � n matrices. We say that A is similar to B if
there is an invertible n � n matrix P such that P �1AP � B. If A is similar to B,
we write A � B.

Remarks
• If A � B, we can write, equivalently, that A � PBP �1 or AP � PB.
• Similarity is a relation on square matrices in the same sense that “less than or

equal to” is a relation on the integers. Note that there is a direction (or order) implicit
in the definition. Just as a � b does not necessarily imply b � a, we should not assume
that A � B implies B � A. (In fact, this is true, as we will prove in the next theorem,
but it does not follow immediately from the definition.)

• The matrix P depends on A and B. It is not unique for a given pair of similar ma-
trices A and B. To see this, simply take A � B � I, in which case I � I, since P�1IP � I for
any invertible matrix P.

Let and Then A � B, since

c1 2

0 �1
d c1 �1

1 1
d � c 3 1

�1 �1
d � c1 �1

1 1
d c 1 0

�2 �1
d

B � c 1 0

�2 �1
d .A � c 1 2

0 �1
dExample 4. 22

40. Let l1, l2, . . . , ln be a complete set of eigenvalues (rep-
etitions included) of the n � n matrix A. Prove that

[Hint: The characteristic polynomial of A factors as

Find the constant term and the coefficient of ln�1 on
the left and right sides of this equation.]

det1A � lI 2 � 1�1 2n1l�l1 2 1l�l2 2 p 1l�ln 2
 tr1A 2 � l1 � l2 � p � ln

 det1A 2 � l1l2
p ln  and

41. Let A and B be n � n matrices. Prove that the sum of all
the eigenvalues of A � B is the sum of all the eigenval-
ues of A and B individually. Prove that the product of all
the eigenvalues of AB is the product of all the eigenval-
ues of A and B individually. (Compare this exercise with
Exercise 24.)

42. Prove Theorem 4.19.
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Theorem 4. 22

Theorem 4. 21

Thus, AP � PB with (Note that it is not necessary to compute P �1.

See the first Remark on the previous page.)

Let A, B, and C be n � n matrices.

a. A � A
b. If A � B, then B � A.
c. If A � B and B � C, then A � C.

Proof (a) This property follows from the fact that I �1AI � A.

(b) If A � B, then P �1AP � B for some invertible matrix P. As noted in the first
Remark on the previous page, this is equivalent to PBP �1 � A. Setting Q � P �1, we
have Q�1BQ � (P �1)�1BP �1 � PBP �1 � A. Therefore, by definition, B � A.

(c) You are asked to prove property (c) in Exercise 30.

Remark Any relation satisfying the three properties of Theorem 4.21 is called an
equivalence relation. Equivalence relations arise frequently in mathematics, and
objects that are related via an equivalence relation usually share important properties.
We are about to see that this is true of similar matrices.

Let A and B be n � n matrices with A � B. Then

a. det A � det B
b. A is invertible if and only if B is invertible.
c. A and B have the same rank.
d. A and B have the same characteristic polynomial.
e. A and B have the same eigenvalues.

Proof We prove (a) and (d) and leave the remaining properties as exercises. If A � B,
then P �1AP � B for some invertible matrix P.

(a) Taking determinants of both sides, we have

(d) The characteristic polynomial of B is

with the last step following as in (a). Thus, det(B � lI ) � det(A � lI ); that is, the
characteristic polynomials of B and A are the same.

� det 1P�11A � lI 2P2 � det 1A � lI 2� det 1P�1AP � P�11lI 2P2� det 1P�1AP � lP�1IP 2det 1B � lI 2 � det 1P�1AP � lI 2
� a 1

det P
b 1det A2 1det P2 � det A

 det B � det1P�1AP2 � 1det P�1 2 1det A2 1det P2

P � c1 �1

1 1
d .
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Theorem 4. 23

Remark Two matrices may have properties (a) through (e) (and more) in common

and yet still not be similar. For example, and both have de-

terminant 1 and rank 2, are invertible, and have characteristic polynomial (1 � l)2

and eigenvalues l1 � l2 � 1. But A is not similar to B, since P�1AP � P�1IP � I B
for any invertible matrix P.

Theorem 4.22 is most useful in showing that two matrices are not similar, since 
A and B cannot be similar if any of properties (a) through (e) fails.

(a) and are not similar, since det A � �3 but det B � 3.

(b) and are not similar, since the characteristic polyno-

mial of A is l2 � 3l� 4 while that of B is l2 � 4. (Check this.) Note that A and B do
have the same determinant and rank, however.

Diagonalization

The best possible situation is when a square matrix is similar to a diagonal matrix. As
you are about to see, whether a matrix is diagonalizable is closely related to the eigen-
values and eigenvectors of the matrix.

Definition An n � n matrix A is diagonalizable if there is a diagonal matrix D
such that A is similar to D—that is, if there is an invertible n � n matrix P such that
P�1AP � D.

is diagonalizable since, if and then

P�1AP � D, as can be easily checked. (Actually, it is faster to check the equivalent
statement AP � PD, since it does not require finding P �1.)

Example 4.24 begs the question of where matrices P and D came from. Observe
that the diagonal entries 4 and �1 of D are the eigenvalues of A, since they are the
roots of its characteristic polynomial, which we found in Example 4.23(b). The origin
of matrix P is less obvious, but, as we are about to demonstrate, its entries are
obtained from the eigenvectors of A. Theorem 4.23 makes this connection precise.

Let A be an n � n matrix. Then A is diagonalizable if and only if A has n linearly
independent eigenvectors.

More precisely, there exist an invertible matrix P and a diagonal matrix D such
that P �1AP � D if and only if the columns of P are n linearly independent eigen-
vectors of A and the diagonal entries of D are the eigenvalues of A corresponding
to the eigenvectors in P in the same order.

D � c 4 0

0 �1
d ,P � c 1 3

1 �2
dA� c1 3

2 2
d

B � c 1 1

3 �1
dA � c 1 3

2 2
d

B � c 2 1

1 2
dA � c 1 2

2 1
d



B � c 1 1

0 1
dA � c 1 0

0 1
d
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Example 4. 23

Example 4. 24

�

�
I I I I II I I I I ������������������������������
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Proof Suppose first that A is similar to the diagonal matrix D via P �1AP � D or,
equivalently, AP � PD. Let the columns of P be p1, p2, . . . , pn and let the diagonal
entries of D be l1, l2, . . . , ln. Then

(1)

or (2)

where the right-hand side is just the column-row representation of the product PD.
Equating columns, we have

which proves that the column vectors of P are eigenvectors of A whose corresponding
eigenvalues are the diagonal entries of D in the same order. Since P is invertible, its
columns are linearly independent,by the Fundamental Theorem of Invertible Matrices.

Conversely, if A has n linearly independent eigenvectors p1, p2, . . . , pn with corre-
sponding eigenvalues l1, l2, . . . , ln, respectively, then

This implies equation (2) above, which is equivalent to equation (1). Consequently, if
we take P to be the n � n matrix with columns p1, p2, . . . , pn, then equation (1) be-
comes AP � PD. Since the columns of P are linearly independent, the Fundamental
Theorem of Invertible Matrices implies that P is invertible, so P �1AP � D ; that is, A
is diagonalizable.

If possible, find a matrix P that diagonalizes

Solution We studied this matrix in Example 4.18, where we discovered that it has
eigenvalues l1 � l2 � 1 and l3 � 2. The eigenspaces have the following bases:

Since all other eigenvectors are just multiples of one of these two basis vectors, there
cannot be three linearly independent eigenvectors. By Theorem 4.23, therefore, A is
not diagonalizable.

If possible, find a matrix P that diagonalizes

A � £�1 0 1

3 0 �3

1 0 �1

§

 For l3 � 2, E2 has basis £12
4

§ .
 For l1 � l2 � 1, E1 has basis £11

1

§ .

A � £0 1 0

0 0 1

2 �5 4

§

Ap1 � l1p1, Ap2 � l2p2, . . . , Apn � lnpn

Ap1 � l1p1, Ap2 � l2p2, . . . , Apn � lnpn

3Ap1 Ap2
p Apn 4 � 3l1p1 l2p2

p lnpn 4
A 3p1 p2

p pn 4 � 3p1 p2
p pn 4 ≥ l1 0 p 0

0 l2
p 0

o o ∞ o
0 0 p ln

¥
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Example 4. 25

Example 4. 26

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 4. 24

Solution This is the matrix of Example 4.19. There, we found that the eigenvalues of
A are l1 � l2 � 0 and l3 � �2, with the following bases for the eigenspaces:

It is straightforward to check that these three vectors are linearly independent. Thus,
if we take

then P is invertible. Furthermore,

as can be easily checked. (If you are checking by hand, it is much easier to check the
equivalent equation AP � PD.)

Remarks
• When there are enough eigenvectors, they can be placed into the columns of

P in any order. However, the eigenvalues will come up on the diagonal of D in the
same order as their corresponding eigenvectors in P. For example, if we had chosen

then we would have found

• In Example 4.26, you were asked to check that the eigenvectors p1, p2, and p3

were linearly independent. Was it necessary to check this? We knew that {p1, p2} was
linearly independent, since it was a basis for the eigenspace E0. We also knew that the
sets {p1, p3} and {p2, p3} were linearly independent, by Theorem 4.20. But we could not
conclude from this information that {p1, p2, p3} was linearly independent. The next
theorem, however, guarantees that linear independence is preserved when the bases of
different eigenspaces are combined.

Let A be an n � n matrix and let l1, l2, . . . , lk be distinct eigenvalues of A. If Bi is
a basis for the eigenspace then (i.e., the total collection
of basis vectors for all of the eigenspaces) is linearly independent.

B � B1´B2 ´ p ´BkEli
,

P�1AP � £0 0 0

0 �2 0

0 0 0

§
P � 3p1  p3  p2 4 � £ 0 �1 1

1 3 0

0 1 1

§

P�1AP � £0 0 0

0 0 0

0 0 �2

§ � D

P � 3p1  p2  p3 4 � £ 0 1 �1

1 0 3

0 1 1

§

 For l3 � �2, E�2 has basis p3 � £�1

3

1

§ .
 For l1 � l2 � 0, E 0 has basis p1 � £ 01

0

§  and p2 � £ 10
1

§ .
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Lemma 4. 26

Theorem 4. 25

Proof Let for i � 1, . . . , k. We have to show that

is linearly independent. Suppose some nontrivial linear combination of these vectors
is the zero vector—say,

(3)
Denoting the sums in parentheses by x1, x2, . . . xk, we can write equation (3) as

(4)

Now each xi is in (why?) and so either is an eigenvector corresponding to li or
is 0. But, since the eigenvalues li are distinct, if any of the factors xi is an eigenvector,
they are linearly independent, by Theorem 4.20. Yet equation (4) is a linear depen-
dence relationship; this is a contradiction. We conclude that equation (3) must be
trivial; that is, all of its coefficients are zero. Hence,B is linearly independent.

There is one case in which diagonalizability is automatic: an n � n matrix with
n distinct eigenvalues.

If A is an n � n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof Let v1, v2, . . . , vn be eigenvectors corresponding to the n distinct eigenvalues 
of A. (Why could there not be more than n such eigenvectors?) By Theorem 4.20,
v1, v2, . . . , vn are linearly independent, so, by Theorem 4.23, A is diagonalizable.

The matrix

has eigenvalues l1 � 2,l2 � 5, and l3 � �1, by Theorem 4.15. Since these are three dis-
tinct eigenvalues for a 3 � 3 matrix, A is diagonalizable, by Theorem 4.25. (If we actually
require a matrix P such that P�1AP is diagonal,we must still compute bases for the eigen-
spaces, as in Example 4.19 and Example 4.26 above.)

The final theorem of this section is an important result that characterizes diagonaliz-
able matrices in terms of the two notions of multiplicity that were introduced following
Example 4.18. It gives precise conditions under which an n � n matrix can be diagonal-
ized,even when it has fewer than n eigenvalues,as in Example 4.26.We first prove a lemma
that holds whether or not a matrix is diagonalizable.

If A is an n � n matrix, then the geometric multiplicity of each eigenvalue is less
than or equal to its algebraic multiplicity.

A � £2 �3 7

0 5 1

0 0 �1

§

Eli

x1 � x2 � p � xk � 0

1c11v11 � p � c1n1
v1n1
2 � 1c21v21 � p � c2n2

v2n2
2 � p � 1ck1vk1 � p � cknk

vknk
2 � 0

B � 5v11, v12, . . . , v1n1
, v21, v22, . . . , v2n2

, . . . , vk1, vk2, . . . , vknk
6Bi � 5vi1, vi2, . . . , vini˛

6
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Example 4. 27

�

�
I I I I II I I I I ������������������������������

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 4. 27

318 Chapter 4 Eigenvalues and Eigenvectors

Proof Suppose l1 is an eigenvalue of A with geometric multiplicity p; that is,
dim p. Specifically, let have basis {v1, v2, . . . , vp}. Let Q be any invertible
n � n matrix having v1, v2, . . . , vp as its first p columns—say,

or, as a partitioned matrix,

Let

where C is p � n.
Since the columns of U are eigenvectors corresponding to l1, AU � l1U. We

also have

from which we obtain CU � Ip , CV � O, DU � O, and DV � In�p . Therefore,

By Exercise 69 in Section 4.2, it follows that

(5)

But det(Q�1AQ � lI ) is the characteristic polynomial of Q�1AQ, which is the same
as the characteristic polynomial of A, by Theorem 4.22(d). Thus, equation (5) implies
that the algebraic multiplicity of l1 is at least p, its geometric multiplicity.

det1Q�1AQ � lI 2 � 1l1 � l2p det1DAV � lI 2
Q�1AQ � cC

D
dA 3U V 4 � cCAU CAV

DAU DAV
d � c l1CU CAV

l1DU DAV
d � cl1Ip CAV

O  DAV
d

c Ip O

O In�p

d � In � Q�1Q � cC
D
d 3U V 4 � cCU CV

DU DV
d

Q�1 � cC
D
d

Q � 3U V 4
Q � 3v1

p vp vp�1
p vn 4

B1 �El1
El1

�

�

�
I I I I II I I I I ������������������������������

The Diagonalization Theorem

Let A be an n � n matrix whose distinct eigenvalues are l1,l2, . . . ,lk. The following
statements are equivalent:

a. A is diagonalizable.
b. The union B of the bases of the eigenspaces of A (as in Theorem 4.24) contains

n vectors.
c. The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.

Proof (a) 1 (b) If A is diagonalizable, then it has n linearly independent eigenvec-
tors, by Theorem 4.23. If ni of these eigenvectors correspond to the eigenvalue li, then

contains at least ni vectors. (We already know that these ni vectors are linearly in-
dependent; the only thing that might prevent them from being a basis for is that
they might not span it.) Thus, B contains at least n vectors. But, by Theorem 4.24,
B is a linearly independent set in �n; hence, it contains exactly n vectors.

Eli

Bi
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(b) 1 (c) Let the geometric multiplicity of li be di � dim and let the algebraic
multiplicity of li be mi. By Lemma 4.26, di � mi for i � 1, . . . , k. Now assume that
property (b) holds. Then we also have

But m1 � m2 � p � mk � n, since the sum of the algebraic multiplicities of the eigen-
values of A is just the degree of the characteristic polynomial of A—namely, n.

It follows that d1 � d2 � p � dk � m1 � m2 � p � mk, which implies that

(6)

Using Lemma 4.26 again, we know that mi � di 
 0 for i � 1, . . . , k, from which we
can deduce that each summand in equation (6) is zero; that is, mi � di for i � 1, . . . , k.
(c) 1 (a) If the algebraic multiplicity mi and the geometric multiplicity di are equal
for each eigenvalue li of A, then B has d1 � d2 � p � dk � m1 � m2 � p � mk � n
vectors, which are linearly independent, by Theorem 4.24. Thus, these are n linearly
independent eigenvectors of A, and A is diagonalizable, by Theorem 4.23.

(a) The matrix from Example 4.18 has two distinct eigenvalues,

l1 � l2 � 1 and l3 � 2. Since the eigenvalue l1 � l2 � 1 has algebraic multiplicity 2 
but geometric multiplicity 1, A is not diagonalizable, by the Diagonalization Theo-
rem. (See also Example 4.25.)

(b) The matrix from Example 4.19 also has two distinct eigen-

values, l1 � l2 � 0 and l3 � �2. The eigenvalue 0 has algebraic and geometric
multiplicity 2, and the eigenvalue �2 has algebraic and geometric multiplicity 1.
Thus, this matrix is diagonalizable, by the Diagonalization Theorem. (This agrees
with our findings in Example 4.26.)

We conclude this section with an application of diagonalization to the computa-
tion of the powers of a matrix.

Compute A10 if

Solution In Example 4.21, we found that this matrix has eigenvalues l1 � �1 and

l2 � 2, with corresponding eigenvectors and It follows (from

any one of a number of theorems in this section) that A is diagonalizable and
P �1AP � D, where

P � 3v1 v2 4 � c 1 1

�1 2
d   and  D � c�1 0

0 2
d

v2 � c 1
2
d .v1 � c 1

�1
d

A � c 0 1

2 1
d .

A � £�1 0 1

3 0 �3

1 0 �1

§

A � £ 0 1 0

0 0 1

2 �5 4

§

1m1 � d1 2 � 1m2 � d2 2 � p � 1mk � dk 2 � 0

n � d1 � d2 � p � dk � m1 � m2 � p � mk

Eli
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Example 4. 28

Example 4. 29
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Solving for A, we have A � PDP �1, which makes it easy to find powers of A. We
compute

and, generally, An � PDnP �1 for all n 
 1. (You should verify this by induction.
Observe that this fact will be true for any diagonalizable matrix, not just the one in
this example.)

Since

we have

Since we were only asked for A10, this is more than we needed. But now we can simply
set n � 10 to find

A10 � ≥ 21�1 210 � 210

3

1�1 211 � 210

3
21�1 211 � 211

3

1�1 212 � 211

3

¥ � c342 341

682 683
d

� ≥ 21�1 2n � 2n

3

1�1 2n�1 � 2n

3
21�1 2n�1 � 2n�1

3

1�1 2n�2 � 2n�1

3

¥
� c 1 1

�1 2
d c 1�1 2n 0

0 2n d c 23 �1
3

1
3

1
3

d
An � PDnP�1 � c 1 1

�1 2
d c 1�1 2n 0

0 2n d c 1 1

�1 2
d�1

Dn � c�1 0

0 2
d n � c 1�1 2n 0

0 2n d

A2 � 1PDP�1 2 1PDP�1 2 � PD 1P�1P 2DP�1 � PDIDP�1 � PD2P�1
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In Exercises 1–4, show that A and B are not similar matrices.

1.

2.

3.

4. A � £ 1 0 2

0 1 2

1 1 4

§ , B � £ 1 0 3

1 2 2

1 0 3

§
A � £ 2 1 4

0 2 3

0 0 4

§ , B � £ 1 0 0

�1 4 0

2 3 4

§
A � c 1 2

3 4
d , B � c 2 �5

�2 4
d

A � c4 1

3 1
d , B � c1 0

0 1
d In Exercises 5–7, a diagonalization of the matrix A is given

in the form P�1AP � D. List the eigenvalues of A and bases
for the corresponding eigenspaces.

5.

6.

�C3 0 0

0 1 0

0 0 0

S
£ 2

3
1
3

1
3

0 �1 0

�1
3

1
3

1
3

§ £ 2 1 1

0 1 0

2 0 1

§ £ 1 0 �1

0 �1 0

1 1 2

§
c 2 �1

�1 1
d c5 �1

2 2
d c1 1

1 2
d � c4 0

0 3
d

Exercises 4. 4

�

�
I I I I II I I I I �������������������������������
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7. �

In Exercises 8–15, determine whether A is diagonalizable
and, if so, find an invertible matrix P and a diagonal
matrix D such that P �1AP � D.

8. 9.

10. 11.

12. 13.

14. 15.

In Exercises 16–23, use the method of Example 4.29 to
compute the indicated power of the matrix.

16. 17.

18. 19.

20. 21.

22. 23.

In Exercises 24–29, find all (real) values of k for which A is
diagonalizable.

24. 25.

26. 27. A � £ 1 0 k

0 1 0

0 0 1

§A � c k 1

1 0
d

A � c 1 k

0 1
dA � c 1 1

0 k
d

£1 1 0

2 �2 2

0 1 1

§ k£ 3 1 1

0 1 0

1 1 3

§ k

£1 1 1

0 �1 0

0 0 �1

§ 2002£ 1 0 1

1 0 1

1 0 1

§ 8

c0 3

1 2
d kc 0 �3

�1 2
d�5

c�1 6

1 0
d 10c�5 8

�4 7
d 5

A � ≥ 2 0 0 4

0 2 0 0

0 0 �2 0

0 0 0 �2

¥A � ≥ 1 1 1 1

1 1 0 2

0 0 2 1

0 0 0 1

¥
A � £ 1 2 1

�1 0 1

1 1 0

§A � £ 1 0 0

1 1 3

3 0 1

§
A � £ 1 0 1

0 1 1

1 1 0

§A � £ 1 2 0

0 1 2

0 0 2

§
A � c�3 4

�1 1
dA � c 1 2

2 1
d

£6 0 0

0 �2 0

0 0 �2

§
£ 1

8
1
8

1
8

�1
4

3
4 �1

4
5
8 �3

8 �3
8

§ £1 3 3

2 0 2

3 3 1

§ £3 0 1

2 1 0

3 �1 �1

§ 28. 29.

30. Prove Theorem 4.21(c).

31. Prove Theorem 4.22(b).

32. Prove Theorem 4.22(c).

33. Prove Theorem 4.22(e).

34. If A and B are invertible matrices, show that AB and
BA are similar.

35. Prove that if A and B are similar matrices, then
tr(A) � tr(B). [Hint: Find a way to use Exercise 45
from Section 3.2.]

In general, it is difficult to show that two matrices are simi-
lar. However, if two similar matrices are diagonalizable, the
task becomes easier. In Exercises 36–39, show that A and B
are similar by showing that they are similar to the same
diagonal matrix. Then find an invertible matrix P such that
P�1AP � B.

36.

37.

38.

39.

40. Prove that if A is similar to B, then AT is similar to BT.

41. Prove that if A is diagonalizable, so is AT.

42. Let A be an invertible matrix. Prove that if A is diago-
nalizable, so is A�1.

43. Prove that if A is a diagonalizable matrix with only one
eigenvalue l, then A is of the form A � lI. (Such a
matrix is called a scalar matrix.)

44. Let A and B be n � n matrices, each with n distinct 
eigenvalues. Prove that A and B have the same eigen-
vectors if and only if AB � BA.

45. Let A and B be similar matrices. Prove that the alge-
braic multiplicities of the eigenvalues of A and B are
the same.

A � £ 1 0 2

1 �1 1

2 0 1

§ , B � £�3 �2 0

6 5 0

4 4 �1

§
A � £ 2 1 0

0 �2 1

0 0 1

§ , B � £ 3 2 �5

1 2 �1

2 2 �4

§
A � c 5 �3

4 �2
d , B � c�1 1

�6 4
d

A � c 3 1

0 �1
d , B � c 1 2

2 1
d

A � £ 1 1 k

1 1 k

1 1 k

§A � £ 1 k 0

0 2 0

0 0 1

§
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Iterative Methods for Computing Eigenvalues
At this point, the only method we have for computing the eigenvalues of a matrix is
to solve the characteristic equation. However, there are several problems with this
method that render it impractical in all but small examples. The first problem is that
it depends on the computation of a determinant, which is a very time-consuming
process for large matrices. The second problem is that the characteristic equation is a
polynomial equation, and there are no formulas for solving polynomial equations of
degree higher than 4 (polynomials of degrees 2, 3, and 4 can be solved using the qua-
dratic formula and its analogues). Thus, we are forced to approximate eigenvalues in
most practical problems. Unfortunately, methods for approximating the roots of a
polynomial are quite sensitive to roundoff error and are therefore unreliable.

Instead, we bypass the characteristic polynomial altogether and take a different
approach, approximating an eigenvector first and then using this eigenvector to find
the corresponding eigenvalue. In this section, we will explore several variations on
one such method that is based on a simple iterative technique.

The Power Method

The power method applies to an n � n matrix that has a dominant eigenvalue l1—
that is, an eigenvalue that is larger in absolute value than all of the other eigenvalues.
For example, if a matrix has eigenvalues �4, �3, 1, and 3, then �4 is the dominant
eigenvalue, since 4 � ��4� � ��3� 
 �3� 
 �1�. On the other hand, a matrix with
eigenvalues �4, �3, 3, and 4 has no dominant eigenvalue.

The power method proceeds iteratively to produce a sequence of scalars that con-
verges to l1 and a sequence of vectors that converges to the corresponding eigenvec-
tor v1, the dominant eigenvector. For simplicity, we will assume that the matrix A is
diagonalizable. The following theorem is the basis for the power method.

In 1824, the Norwegian mathe-
matician Niels Henrik Abel (1802–
1829) proved that a general fifth-
degree (quintic) polynomial equa-
tion is not solvable by radicals; that
is, there is no formula for its roots
in terms of its coefficients that uses
only the operations of addition,
subtraction, multiplication, divi-
sion, and taking nth roots. In a
paper written in 1830 and pub-
lished posthumously in 1846, the
French mathematician Evariste
Galois (1811–1832) gave a more
complete theory that established
conditions under which an arbi-
trary polynomial equation can be
solved by radicals. Galois’s work
was instrumental in establishing
the branch of algebra called group
theory; his approach to polynomial
equations is now known as Galois
theory.

46. Let A and B be similar matrices. Prove that the geo-
metric multiplicities of the eigenvalues of A and B are
the same. [Hint: Show that, if B � P �1AP, then every
eigenvector of B is of the form P �1v for some eigen-
vector v of A.]

47. Prove that if A is a diagonalizable matrix such that
every eigenvalue of A is either 0 or 1, then A is idem-
potent (that is, A2 � A).

48. Let A be a nilpotent matrix (that is, Am � O for some
m � 1). Prove that if A is diagonalizable, then A must
be the zero matrix.

49. Suppose that A is a 6 � 6 matrix with characteristic
polynomial .cA1l2 � 11 � l2 11 � l2212 � l23

(a) Prove that it is not possible to find three linearly
independent vectors v1, v2, v3 in �6 such that
Av1 � v1, Av2 � v2, and Av3 � v3.

(b) If A is diagonalizable, what are the dimensions of
the eigenspaces E�1, E1, and E2?

50. Let .

(a) Prove that A is diagonalizable if
and is not diagonalizable if

.

(b) Find two examples to demonstrate that if
, then A may or may not be

diagonalizable.
1a � d 22 � 4bc � 0

4bc 6 0
1a � d 2 2 �4bc 7 0

1a � d 2 2 �

A � ca b

c d
d
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Section 4.5 Iterative Methods for Computing Eigenvalues 323

Theorem 4. 28 Let A be an n � n diagonalizable matrix with dominant eigenvalue l1. Then there ex-
ists a nonzero vector x0 such that the sequence of vectors xk defined by

approaches a dominant eigenvector of A.

Proof We may assume that the eigenvalues of A have been labeled so that

Let v1, v2, . . . , vn be the corresponding eigenvectors. Since v1, v2, . . . , vn are linearly in-
dependent (why?), they form a basis for �n. Consequently, we can write x0 as a linear
combination of these eigenvectors—say,

Now x1 � Ax0, x2 � Ax1 � A(Ax0) � A2 x0, x3 � Ax2 � A(A2 x0) � A3 x0, and, generally,

As we saw in Example 4.21,

(1)

where we have used the fact that l1 0.
The fact that l1 is the dominant eigenvalue means that each of the fractions 

l2 �l1, l3 �l1, . . . , ln �l1, is less than 1 in absolute value. Thus,

all go to zero as k S q. It follows that

(2)

Now, since l1 0 and v1 0, xk is approaching a nonzero multiple of v1 (that is, an
eigenvector corresponding to l1) provided c1 0. (This is the required condition on
the initial vector x0: It must have a nonzero component c1 in the direction of the dom-
inant eigenvector v1.)

Approximate the dominant eigenvector of using the method of Theo-

rem 4.28.

Solution We will take as the initial vector. Then

We continue in this fashion to obtain the values of xk in Table 4.1.

x2 � Ax1 � c 1 1

2 0
d c 1

2
d � c 3

2
d

x1 � Ax0 � c 1 1

2 0
d c 1

0
d � c 1

2
d

x0 � c 1
0
d

A � c 1 1

2 0
d





xk � Ak
˛x0 S l1

kc1v1  as k S q

a l2

l1

b k

, a l3

l1

b k

, . . . , a ln

l1

b k



� l1
k a c1v1 � c2a l2

l1

b k

v2 � p � cna ln

l1

b k

vnbAkx0 � c1l1
kv1 � c2l2

kv2 � p � cnln
kvn

xk � Akx0  for k 
 1

x0 � c1v1 � c2v2 � p � cnvn

0l1 0 7 0l2 0 
 0l3 0 
 p 
 0ln 0
x1 � Ax0, x2 � Ax1, x3 � Ax2, . . . , xk � Axk�1, . . .

Example 4. 30

�

�
I I I I II I I I I ������������������������������
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324 Chapter 4 Eigenvalues and Eigenvectors

Figure 4.14 shows what is happening geometrically. We know that the eigenspace
for the dominant eigenvector will have dimension 1. (Why? See Exercise 46.) There-
fore, it is a line through the origin in �2. The first few iterates xk are shown along with
the directions they determine. It appears as though the iterates are converging on the 

line whose direction vector is To confirm that this is the dominant eigenvector

we seek, we need only observe that the ratio rk of the first to the second component of
xk gets very close to 1 as k increases. The second line in the body of Table 4.1 gives
these values, and you can see clearly that rk is indeed approaching 1. We deduce that a

dominant eigenvector of A is

Once we have found a dominant eigenvector, how can we find the corresponding
dominant eigenvalue? One approach is to observe that if an xk is approximately a
dominant eigenvector of A for the dominant eigenvalue l1, then

It follows that the ratio lk of the first component of xk�1 to that of xk will approach l1

as k increases. Table 4.1 gives the values of lk, and you can see that they are approach-
ing 2, which is the dominant eigenvalue.

xk�1 � Axk � l1xk

c1
1
d .
c1
1
d .

Table 4. 1
k 0 1 2 3 4 5 6 7 8

xk

rk – 0.50 1.50 0.83 1.10 0.95 1.02 0.99 1.01

lk – 1.00 3.00 1.67 2.20 1.91 2.05 1.98 2.01

c 171
170
dc 85

86
dc43

42
dc21

22
dc11

10
dc5

6
dc3

2
dc1

2
dc1

0
d

x

y

x0

x2

x1

x3

10

1

2

3

4

5

6

7

0
2 3 4 5 6 7

Figure 4. 14
�

�
I I I I II I I I I �������������������������������
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There is a drawback to the method of Example 4.30: The components of the iter-
ates xk get very large very quickly and can cause significant roundoff errors. To avoid
this drawback, we can multiply each iterate by some scalar that reduces the magni-
tude of its components. Since scalar multiples of the iterates xk will still converge to a
dominant eigenvector, this approach is acceptable. There are various ways to accom-
plish it. One is to normalize each xk by dividing it by (i.e., to make each iterate a
unit vector). An easier method—and the one we will use—is to divide each xk by the
component with the maximum absolute value, so that the largest component is
now 1. This method is called scaling. Thus, if mk denotes the component of xk with
the maximum absolute value, we will replace xk by yk � (1�mk)xk.

We illustrate this approach with the calculations from Example 4.30. For x0, there
is nothing to do, since m0 � 1. Hence,

We then compute as before, but now we scale with m1 � 2 to get

Now the calculations change. We take

and scale to get

The next few calculations are summarized in Table 4.2.

You can now see clearly that the sequence of vectors yk is converging to a

dominant eigenvector. Moreover, the sequence of scalars mk converges to the corre-
sponding dominant eigenvalue l1 � 2.

c1
1
d ,

y2 � a 1

1.5
b c1.5

1
d � c1

0.67
d

x2 � Ay1 � c1 1

2 0
d c0.5

1
d � c1.5

1
d

y1 � a 1

2
b x1 � a 1

2
b c 1

2
d � c 0.5

1
d

x1 � c 1
2
d

y0 � x0 � c1
0
d

7 xk 7

Table 4. 2
k 0 1 2 3 4 5 6 7 8

xk

yk

mk 1 2 1.5 2 1.83 2 1.95 2 1.99

c 1
0.99
dc 0.99

1
dc 1

0.98
dc 0.95

1
dc 1

0.91
dc 0.83

1
dc 1

0.67
dc 0.5

1
dc 1

0
d

c 1.99

1.98
dc 1.98

2
dc 1.95

1.91
dc 1.91

2
dc 1.83

1.67
dc 1.67

2
dc 1.5

1
dc 1

2
dc 1

0
d
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Use the power method to approximate the dominant eigenvalue and a dominant
eigenvector of

Solution Taking as our initial vector

we compute the entries in Table 4.3.

You can see that the vectors yk are approaching and the scalars mk are

approaching 16. This suggests that they are, respectively, a dominant eigenvector and
the dominant eigenvalue of A.

Remarks
• If the initial vector x0 has a zero component in the direction of the dominant

eigenvector v1 (i.e., if c � 0 in the proof of Theorem 4.28), then the power method will

£ 0.50

1.00

�0.50

§
x0 � £ 11

1

§
A � £ 0 5 �6

�4 12 �12

�2 �2 10

§

326 Chapter 4 Eigenvalues and Eigenvectors

The Power Method Let A be a diagonalizable n � n matrix with a corresponding dominant eigen-
value l1.

1. Let x0 � y0 be any initial vector in �n whose largest component is 1.
2. Repeat the following steps for k � 1, 2, . . . :

(a) Compute xk � Ayk�1.
(b) Let mk be the component of xk with the largest absolute value.
(c) Set yk � (1�mk)xk.

For most choices of x0, mk converges to the dominant eigenvalue l1 and yk con-
verges to a dominant eigenvector.

Example 4. 31

Table 4. 3
k 0 1 2 3 4 5 6 7

xk

yk

mk 1 6 �19.33 17.31 16.25 16.05 16.01 16.00

£ 0.50

1  
�0.50

§£ 0.50

1  
�0.50

§£ 0.50

1  
�0.50

§£ 0.50

1  
�0.50

§£ 0.50

1  
�0.52

§£ 0.48

1  
�0.60

§£�0.17

�0.67

1

§£11
1

§
£ 8.00

16.00

�8.00

§£ 8.01

16.01

�8.01

§£ 8.03

16.05

�8.04

§£ 8.12

16.25

�8.20

§£ 8.62

17.31

�9.00

§£ �9.33

�19.33

11.67

§£�1

�4

6

§£11
1

§

This method, called the power method, is summarized below.
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not converge to a dominant eigenvector. However, it is quite likely that during the cal-
culation of the subsequent iterates, at some point roundoff error will produce an xk

with a nonzero component in the direction of v1. The power method will then start to
converge to a multiple of v1. (This is one instance where roundoff errors actually help!)

• The power method still works when there is a repeated dominant eigenvalue,
or even when the matrix is not diagonalizable, under certain conditions. Details may
be found in most modern textbooks on numerical analysis. (See Exercises 21–24.)

• For some matrices the power method converges rapidly to a dominant eigen-
vector, while for others the convergence may be quite slow. A careful look at the proof
of Theorem 4.28 reveals why. Since �l2 �l1� 
 �l3 �l1� 
 
 �ln �l1�, if �l2 �l1� is
close to zero, then (l2 �l1 ) k, . . . , (ln �l1)

k will all approach zero rapidly. Equation (2)
then shows that xk � Ak x0 will approach rapidly too.

As an illustration, consider Example 4.31. The eigenvalues are 16, 4, and 2, so
l2�l1 � 4�16 � 0.25. Since 0.257 � 0.00006, by the seventh iteration we should have
close to four-decimal-place accuracy. This is exactly what we saw.

• There is an alternative way to estimate the dominant eigenvalue l1 of a
matrix A in conjunction with the power method. First, observe that if Ax � l1x, then

The expression R(x) � ((Ax) x)�(x x) is called a Rayleigh quotient. As we compute
the iterates xk, the successive Rayleigh quotients R(xk) should approach l1. In fact, for
symmetric matrices, the Rayleigh quotient method is about twice as fast as the scal-
ing factor method. (See Exercises 17–20.)

The Shifted Power Method and the Inverse Power Method

The power method can help us approximate the dominant eigenvalue of a matrix, but
what should we do if we want the other eigenvalues? Fortunately, there are several
variations of the power method that can be applied.

The shifted power method uses the observation that, if l is an eigenvalue of A,
then l � a is an eigenvalue of A � aI for any scalar a (Exercise 22 in Section 4.3).
Thus, if l1 is the dominant eigenvalue of A, the eigenvalues of A � l1I will be 0,
l2 � l1, l3 � l1, . . . , ln � l1. We can then apply the power method to compute
l2 � l1, and from this value we can find l2. Repeating this process will allow us to
compute all of the eigenvalues.

Use the shifted power method to compute the second eigenvalue of the matrix A �

from Example 4.30.

Solution In Example 4.30, we found that l1 � 2. To find l2, we apply the power
method to

We take but other choices will also work. The calculations are summarized

in Table 4.4.

x0 � c 1
0
d , A � 2I � c�1 1

2 �2
d

c 1 1

2 0
d

##

1Ax 2 # x

x # x
�
1l1x 2 # x

x # x
�
l11x # x 2

x # x
� l1

lk
1c1v1

p
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John William Strutt (1842–1919),
Baron Rayleigh, was a British
physicist who made major
contributions to the fields of
acoustics and optics. In 1871, he
gave the first correct explanation
of why the sky is blue, and in 1895,
he discovered the inert gas argon,
for which discovery he received
the Nobel Prize in 1904. Rayleigh
was president of the Royal Society
from 1905 to 1908 and became
chancellor of Cambridge
University in 1908. He used
Rayleigh quotients in an 1873
paper on vibrating systems and
later in his book The Theory of
Sound.
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Our choice of x0 has produced the eigenvalue �3 after only two iterations. There-
fore, l2 � l1 � �3, so l2 � l1 � 3 � 2 � 3 � �1 is the second eigenvalue of A.

Recall from property (b) of Theorem 4.18 that if A is invertible with eigenvalue l,
then A�1 has eigenvalue 1�l. Therefore, if we apply the power method to A�1, its
dominant eigenvalue will be the reciprocal of the smallest (in magnitude) eigenvalue of
A. To use this inverse power method, we follow the same steps as in the power
method, except that in step 2(a) we compute xk � A�1 yk�1. (In practice, we don’t
actually compute A�1 explicitly; instead, we solve the equivalent equation Axk � yk�1

for xk using Gaussian elimination. This turns out to be faster.)

Use the inverse power method to compute the second eigenvalue of the matrix A �

from Example 4.30.

Solution We start, as in Example 4.30, with To solve Ax1 � y0,

we use row reduction:

Thus, so Then we get x2 from Ax2 � y1:

Hence, and, by scaling, we get Continuing, we get the

values shown in Table 4.5, where the values mk are converging to �1. Thus, the small-
est eigenvalue of A is the reciprocal of �1 (which is also �1). This agrees with our
previous finding in Example 4.32.

y2 � c 1

�1
d .x2 � c 0.5

�0.5
d ,
3A 0 y1 4 � c 1 1

2 0
2 0
1
d ¡ c 1 0

0 1
2 0.5

�0.5
d

y1 � c 0
1
d .x1 � c 0

1
d ,

3A 0 y0 4 � c 1 1

2 0
2 1
0
d ¡ c 1 0

0 1
2 0
1
d

x0 � y0 � c 1
0
d .

c1 1

2 0
d
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Table 4. 4
k 0 1 2 3 4

xk

yk

mk 1 2 �3 �3 �3

c�0.5

1
dc�0.5

1
dc�0.5

1
dc�0.5

1
dc1

0
d

c 1.5

�3
dc 1.5

�3
dc 1.5

�3
dc�1

2
dc1

0
d
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Table 4. 5
k 0 1 2 3 4 5 6 7 8 9

xk

yk

mk 1 1 0.5 1.5 �0.83 �1.1 �0.95 �1.02 �0.99 �1.01

c�0.50

1
dc�0.51

1
dc�0.49

1
dc�0.52

1
dc�0.45

1
dc�0.6

1
dc�0.33

1
dc 1

�1
dc1

0
dc 0

1
d

c 0.5

�1.01
dc 0.5

�0.99
dc 0.5

�1.02
dc 0.5

�0.95
dc 0.5

�1.1
dc 0.5

�0.83
dc�0.5

1.5
dc 0.5

�0.5
dc 0

1
dc1

0
d

The Shifted Inverse Power Method

The most versatile of the variants of the power method is one that combines the two
just mentioned. It can be used to find an approximation for any eigenvalue, provided
we have a close approximation to that eigenvalue. In other words, if a scalar a is given,
the shifted inverse power method will find the eigenvalue l of A that is closest to a.

If l is an eigenvalue of A and a l, then A � aI is invertible if a is not an eigen-
value of A and 1�(l � a) is an eigenvalue of (A � aI )�1. (See Exercise 45.) If a is
close to l, then 1�(l� a) will be a dominant eigenvalue of (A � aI )�1. In fact, if a
is very close to l, then 1�(l � a) will be much bigger in magnitude than the next
eigenvalue, so (as noted in the third Remark following Example 4.31) the conver-
gence will be very rapid.

Use the shifted inverse power method to approximate the eigenvalue of

that is closest to 5.

Solution Shifting, we have

Now we apply the inverse power method with

We solve (A � 5I)x1 � y0 for x1:

3A � 5I 0 y0 4 � £�5 5 �6

�4 7 �12

�2 �2 5

3 11
1

§ ¡ £ 1 0 0

0 1 0

0 0 1

3�0.61

�0.88

�0.39

§
x0 � y0 � £ 11

1

§
A � 5I � £�5 5 �6

�4 7 �12

�2 �2 5

§

A � £ 0 5 �6

�4 12 �12

�2 �2 10

§
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Table 4. 6
k 0 1 2 3 4 5 6 7

xk

yk

mk 1 �0.88 �0.69 �0.89 �0.95 �0.98 �0.99 �1.00

£0.50

1.00

0.50

§£0.50

1.00

0.50

§£0.50

1.00

0.50

§£0.51

1.00

0.50

§£0.53

1.00

0.50

§£0.59

1.00

0.51

§£0.69

1.00

0.45

§£11
1

§
£�0.50

�1.00

�0.50

§£�0.50

�0.99

�0.50

§£�0.50

�0.98

�0.49

§£�0.49

�0.95

�0.48

§£�0.47

�0.89

�0.44

§£�0.41

�0.69

�0.35

§£�0.61

�0.88

�0.39

§£11
1

§

We owe this theorem to the
Russian mathematician 
S. Gerschgorin (1901–1933), who
stated it in 1931. It did not receive
much attention until 1949, when it
was resurrected by Olga Taussky-
Todd in a note she published in the
American Mathematical Monthly.

This gives

We continue in this fashion to obtain the values in Table 4.6, from which we deduce
that the eigenvalue of A closest to 5 is approximately 5 � 1�m7 � 5 � 1�(�1) � 4,
which, in fact, is exact.

The power method and its variants represent only one approach to the computa-
tion of eigenvalues. In Chapter 5, we will discuss another method based on the QR
factorization of a matrix. For a more complete treatment of this topic, you can con-
sult almost any textbook on numerical methods.

Gerschgorin’s Theorem

In this section, we have discussed several variations on the power method for ap-
proximating the eigenvalues of a matrix. All of these methods are iterative, and the
speed with which they converge depends on the choice of initial vector. If only we had
some “inside information” about the location of the eigenvalues of a given matrix,
then we could make a judicious choice of the initial vector and perhaps speed up the
convergence of the iterative process.

Fortunately, there is a way to estimate the location of the eigenvalues of any
matrix. Gerschgorin’s Disk Theorem states that the eigenvalues of a (real or complex)
n � n matrix all lie inside the union of n circular disks in the complex plane.

Definition Let be a (real or complex) n � n matrix, and let ri denote
the sum of the absolute values of the off-diagonal entries in the ith row of A; that
is, The ith Gerschgorin disk is the circular disk Di in the complex

plane with center aii and radius ri. That is,

Di � 5z in � : �z � aii � � ri6
ri � a

ji

|aij.|

A � 3aij 4

  and  y1 �
1

m1
x1 � �

1

0.88
£�0.61

�0.88

�0.39

§ � £ 0.69

1

0.45

§x1 � £�0.61

�0.88

�0.39

§ ,  m1 � �0.88,

a + bi

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sketch the Gerschgorin disks and the eigenvalues for the following matrices:

(a) (b) 

Solution (a) The two Gerschgorin disks are centered at 2 and �3 with radii 1 and
2, respectively. The characteristic polynomial of A is l2 � l � 8, so the eigenvalues
are

Figure 4.15 shows that the eigenvalues are contained within the two Gerschgorin
disks.

(b) The two Gerschgorin disks are centered at 1 and 3 with radii ��3� � 3 and 2,
respectively. The characteristic polynomial of A is so the eigenvalues are

Figure 4.16 plots the location of the eigenvalues relative to the Gerschgorin disks.

l � 14 ; 1 1�4 2 2 � 419 2 2 >2 � 2 ; i25 � 2 � 2.23i, 2 � 2.23i

l2 � 4l � 9,

l � 1�1 ;112 � 41�8 2 2 >2 � 2.37, �3.37

A � c1 �3

2 3
dA � c2 1

2 �3
d
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Olga Taussky-Todd (1906–1995) was born in Olmütz in the Austro-Hungarian Empire
(now Olmuac in the Czech Republic). She received her doctorate in number theory from the
University of Vienna in 1930. During World War II, she worked for the National Physical
Laboratory in London, where she investigated the problem of flutter in the wings of super-
sonic aircraft. Although the problem involved differential equations, the stability of an aircraft
depended on the eigenvalues of a related matrix. Taussky-Todd remembered Gerschgorin’s
Theorem from her graduate studies in Vienna and was able to use it to simplify the otherwise
laborious computations needed to determine the eigenvalues relevant to the flutter problem.

Taussky-Todd moved to the United States in 1947, and ten years later she became the first
woman appointed to the California Institute of Technology. In her career, she produced over
200 publications and received numerous awards. She was instrumental in the development of
the branch of mathematics now known as matrix theory.
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Theorem 4. 29 Gerschgorin’s Disk Theorem

Let A be an n � n (real or complex) matrix. Then every eigenvalue of A is contained
within a Gerschgorin disk.

Proof Let l be an eigenvalue of A with corresponding eigenvector x. Let xi be
the entry of x with the largest absolute value—and hence nonzero. (Why?) Then
Ax � lx, the ith row of which is 

Rearranging, we have

because . Taking absolute values and using properties of absolute value (see
Appendix C), we obtain

because .
This establishes that the eigenvalue l is contained within the Gerschgorin disk

centered at aii with radius ri.

ƒ xj ƒ � ƒ xi ƒ  for j  i

ƒ l � aii ƒ � † aji

aijxj

xi

† � ` a
ji

aij xj `
ƒ xi ƒ

�

a
ji

ƒaij xj ƒ

ƒ xi ƒ
�

a
ji

ƒaij ƒ ƒ xj ƒ

ƒ xi ƒ
� a

ji

ƒaij ƒ � ri

xi  0

1l � aii 2xi � a
ji

aijxj  or  l � aii �

a
ji

aij xj

x
i

3ai1  ai2 p  ain 4 ≥ x1

x2

o
xn

¥ � lxi  or  a
n

j�1

aij xj � lxi
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As Example 4.35 suggests, the eigenvalues of a matrix are contained within its
Gerschgorin disks. The next theorem verifies that this is so.

�

�
I I I I II I I I I �������������������������������
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Remarks
• There is a corresponding version of the preceding theorem for Gerschgorin

disks whose radii are the sum of the off-diagonal entries in the ith column of A.
• It can be shown that if k of the Gerschgorin disks are disjoint from the other

disks, then exactly k eigenvalues are contained within the union of these k disks. In
particular, if a single disk is disjoint from the other disks, then it must contain exactly
one eigenvalue of the matrix. Example 4.35(a) illustrates this.

• Note that in Example 4.35(a), 0 is not contained in a Gerschgorin disk; that is,
0 is not an eigenvalue of A. Hence, without any further computation, we can deduce
that the matrix A is invertible by Theorem 4.16. This observation is particularly use-
ful when applied to larger matrices, because the Gerschgorin disks can be determined
directly from the entries of the matrix.

Consider the matrix . Gerschgorin’s Theorem tells us that the eigen-

values of A are contained within three disks centered at 2, 6, and 8 with radii 1, 1, and
2, respectively. See Figure 4.17(a). Because the first disk is disjoint from the other
two, it must contain exactly one eigenvalue, by the second Remark after Theorem
4.29. Because the characteristic polynomial of A has real coefficients, if it has com-
plex roots (i.e., eigenvalues of A), they must occur in conjugate pairs. (See Appendix
D.) Hence there is a unique real eigenvalue between 1 and 3, and the union of the
other two disks contains two (possibly complex) eigenvalues whose real parts lie be-
tween 5 and 10.

On the other hand, the first Remark after Theorem 4.29 tells us that the same
three eigenvalues of A are contained in disks centered at 2, 6, and 8 with radii , 1, and
, respectively. See Figure 4.17(b). These disks are mutually disjoint, so each contains

a single (and hence real) eigenvalue. Combining these results, we deduce that A has
three real eigenvalues, one in each of the intervals [1, 3], [5, 7], and [7.5, 8.5].
(Compute the actual eigenvalues of A to verify this.)

1
2

5
2

A � £ 2 1 0
1
2 6 1

2

2 0 8

§
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In Exercises 1–4, a matrix A is given along with an iterate
x5 , produced as in Example 4.30.
(a) Use these data to approximate a dominant eigenvector
whose first component is 1 and a corresponding dominant
eigenvalue. (Use three-decimal-place accuracy.)
(b) Compare your approximate eigenvalue in part (a) with
the actual dominant eigenvalue.

1.

2.

3.

4.

In Exercises 5–8, a matrix A is given along with an iterate
xk , produced using the power method, as in Example 4.31.
(a) Approximate the dominant eigenvalue and eigenvector
by computing the corresponding mk and yk . (b) Verify that
you have approximated an eigenvalue and an eigenvector
of A by comparing Ayk with mkyk .

5.

6.

7.

8.

In Exercises 9–14, use the power method to approximate the
dominant eigenvalue and eigenvector of A. Use the given
initial vector x0 , the specified number of iterations k, and
three-decimal-place accuracy.

9.

10. A � c�6 4

8 �2
d , x0 � c 1

0
d , k � 6

A � c 14 12

5 3
d , x0 � c 1

1
d , k � 5

A � £ 1 2 �2

1 1 �3

0 �1 1

§ , x10 � £ 3.415

2.914

�1.207

§
A � £ 4 0 6

�1 3 1

6 0 4

§ , x8 � £ 10.000

0.001

10.000

§
A � c 5 2

2 �2
d , x10 � c 5.530

1.470
d

A � c 2 �3

�3 10
d , x5 � c�3.667

11.001
d

A � c 1.5 0.5

2.0 3.0
d , x5 � c 60.625

239.500
d

A � c 2 1

1 1
d , x5 � c 144

89
d

A � c 7 4

�3 �1
d , x5 � c 7811

�3904
d

A � c 1 2

5 4
d , x5 � c 4443

11109
d

11.

12.

13.

14.

In Exercises 15 and 16, use the power method to approxi-
mate the dominant eigenvalue and eigenvector of A to two-
decimal-place accuracy. Choose any initial vector you like
(but keep the first Remark on page 326 in mind!) and apply
the method until the digit in the second decimal place of the
iterates stops changing.

15. 16.

Rayleigh quotients are described in the fourth Remark on
page 327. In Exercises 17–20, to see how the Rayleigh
quotient method approximates the dominant eigenvalue
more rapidly than the ordinary power method, compute the
successive Rayleigh quotients R(xi) for i � 1, . . . , k for the
matrix A in the given exercise.

17. Exercise 11 18. Exercise 12

19. Exercise 13 20. Exercise 14

The matrices in Exercises 21–24 either are not diagonaliz-
able or do not have a dominant eigenvalue (or both). Apply
the power method anyway with the given initial vector x0 ,
performing eight iterations in each case. Compute the exact
eigenvalues and eigenvectors and explain what is happening.

21. 22.

23.

24. A � £ 0 0 0

0 5 1

0 0 5

§ , x0 � £ 11
1

§
A � £ 4 0 1

0 4 0

0 0 1

§ , x0 � £ 11
1

§
A � c 3 1

�1 1
d , x0 � c 1

1
dA � c 4 1

0 4
d , x0 � c 1

1
d

A � £ 12 6 �6

2 0 �2

�6 6 12

§A � £ 4 1 3

0 2 0

1 1 2

§

A � £ 3 1 0

1 3 1

0 1 3

§ , x0 � £ 11
1

§ , k � 6

A � £ 9 4 8

4 15 �4

8 �4 9

§ , x0 � £ 11
1

§ , k � 5

A � c 3.5 1.5

1.5 �0.5
d , x0 � c 1

0
d , k � 6

A � c 7 2

2 3
d , x0 � c 1

0
d , k � 6

Exercises 4. 5CAS
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In Exercises 25–28, the power method does not converge to
the dominant eigenvalue and eigenvector. Verify this, using
the given initial vector x0 . Compute the exact eigenvalues
and eigenvectors and explain what is happening.

25.

26.

27.

28.

In Exercises 29–32, apply the shifted power method to
approximate the second eigenvalue of the matrix A in the
given exercise. Use the given initial vector x0 , k iterations,
and three-decimal-place accuracy.

29. Exercise 9 30. Exercise 10

31. Exercise 13 32. Exercise 14

In Exercises 33–36, apply the inverse power method to
approximate, for the matrix A in the given exercise, the eigen-
value that is smallest in magnitude. Use the given initial vec-
tor x0 , k iterations, and three-decimal-place accuracy.

33. Exercise 9 34. Exercise 10

35. Exercise 7,

36. Exercise 14

In Exercises 37–40, use the shifted inverse power method
to approximate, for the matrix A in the given exercise, the
eigenvalue closest to a.

37. Exercise 9, a� 0 38. Exercise 12, a� 0

39. Exercise 7, a� 5 40. Exercise 13, a� �2

Exercise 32 in Section 4.3 demonstrates that every polyno-
mial is (plus or minus) the characteristic polynomial of its
own companion matrix. Therefore, the roots of a polynomial
p are the eigenvalues of C( p). Hence, we can use the meth-
ods of this section to approximate the roots of any polyno-
mial when exact results are not readily available. In
Exercises 41–44, apply the shifted inverse power method to
the companion matrix C( p) of p to approximate the root of
p closest to a to three decimal places.

41. p(x) � x2 � 2x � 2, a� 0

x0 � £ 1

1

�1

§ , k � 5

A � £ 1 �1 0

1 1 0

1 �1 1

§ , x0 � £ 11
1

§
A � £�5 1 7

0 4 0

7 1 �5

§ , x0 � £ 11
1

§
A � c 2 1

�2 5
d , x0 � c 1

1
d

A � c�1 2

�1 1
d , x0 � c 1

1
d
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42. p(x) � x2 � x � 3, a� 2

43. p(x) � x3 � 2x2 � 1, a� 0

44. p(x) � x3 � 5x2 � x � 1, a� 5

45. Let l be an eigenvalue of A with corresponding eigen-
vector x. If a l and a is not an eigenvalue of A,
show that 1�(l� a) is an eigenvalue of (A � aI )�1

with corresponding eigenvector x. (Why must A � aI
be invertible?)

46. If A has a dominant eigenvalue l1, prove that the
eigenspace is one-dimensional.

In Exercises 47–50, draw the Gerschgorin disks for the given
matrix.

47. 48.

49.

50.

51. A square matrix is strictly diagonally dominant if the
absolute value of each diagonal entry is greater than
the sum of the absolute values of the remaining entries
in that row. (See Section 2.5.) Use Gerschgorin’s Disk
Theorem to prove that a strictly diagonally dominant
matrix must be invertible. [Hint: See the third Remark
after Theorem 4.29.]

52. If A is an n � n matrix, let denote the maximum of
the sums of the absolute values of the rows of A; that is,

(See Section 7.2.) Prove

that if l is an eigenvalue of A, then .

53. Let l be an eigenvalue of a stochastic matrix A (see
Section 3.7). Prove that . [Hint: Apply
Exercise 52 to AT.]

54. Prove that the eigenvalues of are

all real, and locate each of these eigenvalues within a
closed interval on the real line.

A � ≥ 0 1 0 0

2 5 0 0
1
2 0 3 1

2

0 0 3
4 7

¥
ƒ l ƒ � 1

ƒ l ƒ � ‘ A ‘

‘ A ‘ � max
1� i�n

a an
j�1

ƒ aij ƒ b .

‘ A ‘

≥ 2 1
2 0 0

1
4 4 1

4 0

0 1
6 6 1

6

0 0 1
8 8

¥
≥ 4 � 3i i 2 �2

i �1 � i 0 0

1 � i �i 5 � 6i 2i

1 �2i 2i �5 � 5i

¥
£ 2 �i 0

1 2i 1 � i

0 1 �2i

§£ 1 1 0
1
2 4 1

2

1 0 5

§
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Theorem 4. 30

Theorem 4. 31

Applications and the Perron-Frobenius Theorem
In this section, we will explore several applications of eigenvalues and eigenvectors.
We begin by revisiting some applications from previous chapters.

Markov Chains

Section 3.7 introduced Markov chains and made several observations about the tran-
sition (stochastic) matrices associated with them. In particular, we observed that if P
is the transition matrix of a Markov chain, then P has a steady state vector x. That is,
there is a vector x such that Px � x. This is equivalent to saying that P has 1 as an
eigenvalue. We are now in a position to prove this fact.

If P is the n � n transition matrix of a Markov chain, then 1 is an eigenvalue of P.

Proof Recall that every transition matrix is stochastic; hence, each of its columns
sums to 1. Therefore, if j is a row vector consisting of n 1s, then jP � j. (See Exercise 13
in Section 3.7.) Taking transposes, we have

which implies that jT is an eigenvector of PT with corresponding eigenvalue 1. By
Exercise 19 in Section 4.3, P and PT have the same eigenvalues, so 1 is also an eigen-
value of P.

In fact, much more is true. For most transition matrices, every eigenvalue l satis-
fies �l� � 1 and the eigenvalue 1 is dominant; that is, if l 1, then �l� � 1. We need the
following two definitions: A matrix is called positive if all of its entries are positive,
and a square matrix is called regular if some power of it is positive. For example,

is positive but is not. However, B is regular, since B2 =

is positive.

Let P be an n � n transition matrix with eigenvalue l.

a.
b. If P is regular and l 1, then �l� � 1.

Proof As in Theorem 4.30, the trick to proving this theorem is to use the fact that PT

has the same eigenvalues as P.

(a) Let x be an eigenvector of PT corresponding to l and let xk be the component of
x with the largest absolute value m. Then �xi� � �xk� � m for i � 1, 2, . . . , n. Compar-
ing the kth components of the equation PTx � lx, we have

p1kx1 � p2kx2 � p � pnkxn � lxk


�l� � 1

c 11 3

6 2
d

B � c 3 1

2 0
dA � c 3 1

2 2
d



PTjT � 1 ˛jP 2T � jT
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Section 4.6 Applications and the Perron-Frobenius Theorem 337

(Remember that the rows of PT are the columns of P.) Taking absolute values, we
obtain

(1)

The first inequality follows from the Triangle Inequality in �, and the last equality
comes from the fact that the rows of PT sum to 1. Thus, �l�m � m. After dividing by
m, we have �l� � 1, as desired.

(b) We will prove the equivalent implication: If �l� � 1, then l � 1. First, we show
that it is true when P (and therefore PT) is a positive matrix. If �l� � 1, then all of the
inequalities in equations (1) are actually equalities. In particular,

Equivalently,

(2)

Now, since P is positive, pik � 0 for i � 1, 2, . . . , n. Also, m � �xi� 
 0 for i � 1, 2, . . . , n.
Therefore, each summand in equation (2) must be zero, and this can happen only if
�xi� � m for i � 1, 2, . . . , n. Furthermore, we get equality in the Triangle Inequality in
� if and only if all of the summands are positive or all are negative; in other words,
the pik xi ’s all have the same sign. This implies that

where j is a row vector of n 1s, as in Theorem 4.30. Thus, in either case, the eigenspace
of PT corresponding to l is El � span( jT ).

But, using the proof of Theorem 4.30, we see that jT � PT jT � ljT, and, compar-
ing components, we find that l� 1. This handles the case where P is positive.

If P is regular, then some power of P is positive—say, Pk. It follows that Pk�1 must 
also be positive. (Why?) Since lk and lk�1 are eigenvalues of Pk and Pk�1, respectively,
by Theorem 4.18, we have just proved that lk � lk�1 � 1. Therefore, lk(l� 1) � 0,
which implies that l� 1, since l� 0 is impossible if �l� � 1.

We can now explain some of the behavior of Markov chains that we observed in
Chapter 3. In Example 3.64, we saw that for the transition matrix

and initial state vector the state vectors xk converge to the vector 

a steady state vector for P (i.e., Px � x). We are going to prove that for regular c0.4

0.6
d , x �x0 � c 0.6

0.4
d ,
P � c0.7 0.2

0.3 0.8
d

x � ≥m

m

o
m

¥ � mjT     or x � ≥�m

�m

o
�m

¥ � �mjT

p1k1m � 0x1 0 2 � p2k1m � 0x2 0 2 � p � pnk1m � 0xn 0 2 � 0

p1k 0x1 0 � p2k 0x2 0 � p � pnk 0xn 0 � p1km � p2km � p � pnkm

� 1p1k � p2k � p � pnk 2m � m

� p1km � p2km � p � pnkm

� p1k 0x1 0 � p2k 0x2 0 � p � pnk 0xn 0� 0p1kx1 0 � 0p2kx2 0 � p � 0pnkxn 0�l 0m � 0l 0 0xk 0 � 0lxk 0 � 0p1kx1 � p2kx2 � p � pnkxn 0

�

�
I I I I II I I I I ������������������������������
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Lemma 4. 32

Markov chains, this always happens. Indeed, we will prove much more. Recall that the
state vectors xk satisfy xk � Pk x0 . Let’s investigate what happens to the powers Pk as P
becomes large.

The transition matrix has characteristic equation

so its eigenvalues are l1 � 1 and l2 � 0.5. (Note that, thanks to Theorems 4.30 and
4.31, we knew in advance that 1 would be an eigenvalue and the other eigenvalue
would be less than 1 in absolute value. However, we still needed to compute l2.) The
eigenspaces are

So, taking we know that From the method

used in Example 4.29 in Section 4.4, we have

Now, as k S q, (0.5)k S 0, so

(Observe that the columns of this “limit matrix” are identical and each is a steady

state vector for P.) Now let be any initial probability vector (i.e., a � b � 1).

Then

Not only does this explain what we saw in Example 3.64, it also tells us that the state

vectors xk will converge to the steady state vector for any choice of x0!

There is nothing special about Example 4.37. The next theorem shows that this
type of behavior always occurs with regular transition matrices. Before we can pre-
sent the theorem, we need the following lemma.

Let P be a regular n � n transition matrix. If P is diagonalizable, then the dominant
eigenvalue l1 � 1 has algebraic multiplicity 1.

x � c 0.4

0.6
d

xk � Pkx0 S c 0.4 0.4

0.6 0.6
d c a

b
d � c 0.4a � 0.4b

0.6a � 0.6b
d � c 0.4

0.6
d

x0 � c a
b
d

Dk S c 1 0

0 0
d     and  Pk S c 2 1

3 �1
d c 1 0

0 0
d c 2 1

3 �1
d�1

� c 0.4 0.4

0.6 0.6
d

Pk � QDkQ�1 � c 2 1

3 �1
d c 1k 0

0 10.5 2 k d c 2 1

3 �1
d�1

Q�1PQ � c 1 0 

0 0.5
d � D.Q � c2 1

3 �1
d ,

E1 � span a c 2
3
d b      and  E0.5 � span a c 1

�1
d b

0 � det 1P � lI 2 � 2 0.7 � l 0.2

0.3 0.8 � l
2 � l2 � 1.5l � 0.5 � 1l� 1 2 1l� 0.5 2

P � c0.7 0.2

0.3 0.8
d
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Section 4.6 Applications and the Perron-Frobenius Theorem 339

Theorem 4. 33

Proof The eigenvalues of P and PT are the same. From the proof of Theo-
rem 4.31(b), l1 � 1 has geometric multiplicity 1 as an eigenvalue of PT. Since P is di-
agonalizable, so is PT, by Exercise 41 in Section 4.4. Therefore, the eigenvalue l1 � 1
has algebraic multiplicity 1, by the Diagonalization Theorem.

Let P be a regular n � n transition matrix. Then as k S q, Pk approaches an
n � n matrix L whose columns are identical, each equal to the same vector x.
This vector x is a steady state probability vector for P.

Proof To simplify the proof, we will consider only the case where P is diagonalizable.
The theorem is true, however, without this assumption.

We diagonalize P as Q�1PQ � D or, equivalently, P � QDQ�1, where

From Theorems 4.30 and 4.31, we know that each eigenvalue li either is 1 or satisfies
�li � � 1. Hence, as k S q, approaches 1 or 0 for i � 1, . . . , n. It follows that Dk ap-
proaches a diagonal matrix—say, D*—each of whose diagonal entries is 1 or 0. Thus,
Pk � QDkQ�1 approaches L � QD*Q�1. We write

Observe that

Therefore, each column of L is an eigenvector of P corresponding to l1 � 1. To see
that each of these columns is a probability vector (i.e., L is a stochastic matrix), we
need only observe that, if j is the row vector with n 1s, then

since Pk is a stochastic matrix, by Exercise 14 in Section 3.7. Exercise 13 in Section 3.7
now implies that L is stochastic.

We need only show that the columns of L are identical. The ith column of L is just
Lei, where ei is the ith standard basis vector. Let v1, v2, . . . , vn be eigenvectors of P
forming a basis of �n, with v1 corresponding to l1 � 1. Write

for scalars c1, c2, . . . , cn. Then, by the boxed comment following Example 4.21,

By Lemma 4.32, for , so, by Theorem 4.31(b), �lj � � 1 for . Hence,
as k S q, for . It follows that

Lei � lim
kSq

Pkei � c1v1

j  1lk
j S 0

j  1j  1lj  1

Pkei � c11
kv1 � c2l2

kv2 � p � cnln
kvn

ei � c1v1 � c2v2 � p � cnvn

jL � j lim
kSq

Pk � lim
kSq

jPk � lim
kSq

j � j

PL � P lim
kSq

Pk � lim
kSq

PPk � lim
kSq

Pk�1 � L

lim
kSq

Pk � L

li
k

D � ≥ l1 0 p 0

0 l2
p 0

o o ∞ o
0 0 p ln

¥
See Finite Markov Chains by J. G.
Kemeny and J. L. Snell (New York:
Springer-Verlag, 1976).

We are taking some liberties with
the notion of a limit. Nevertheless,
these steps should be intuitively
clear. Rigorous proofs follow from
the properties of limits, which you
may have encountered in a calcu-
lus course. Rather than get side-
tracked with a discussion of ma-
trix limits, we will omit the proofs.
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Theorem 4. 34

In other words, column i of L is an eigenvector corresponding to l1 � 1. But we have
shown that the columns of L are probability vectors, so Lei is the unique multiple x of
v1 whose components sum to 1. Since this is true for each column of L, it implies that
all of the columns of L are identical, each equal to this vector x.

Remark Since L is a stochastic matrix, we can interpret it as the long range transi-
tion matrix of the Markov chain. That is, Lij represents the probability of being in
state i, having started from state j, if the transitions were to continue indefinitely. The
fact that the columns of L are identical says that the starting state does not matter, as
the next example illustrates.

Recall the rat in a box from Example 3.65. The transition matrix was

We determined that the steady state probability vector was

Hence, the powers of P approach

from which we can see that the rat will eventually spend 25% of its time in compart-
ment 1 and 37.5% of its time in each of the other two compartments.

We conclude our discussion of regular Markov chains by proving that the steady
state vector x is independent of the initial state. The proof is easily adapted to cover
the case of state vectors whose components sum to an arbitrary constant—say, s. In
the exercises, you are asked to prove some other properties of regular Markov chains.

Let P be a regular n � n transition matrix, with x the steady state probability vector
for P, as in Theorem 4.33. Then, for any initial probability vector x0, the sequence
of iterates xk approaches x.

Proof Let

x0 � ≥ x1

x2

o
xn

¥

L � £ 1
4

1
4

1
4

3
8

3
8

3
8

3
8

3
8

3
8

§ � £0.250 0.250 0.250

0.375 0.375 0.375

0.375 0.375 0.375

§
x � £ 1

4
3
8
3
8

§
P � £0 1

3
1
3

1
2 0 2

3
1
2

2
3 0

§
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Section 4.6 Applications and the Perron-Frobenius Theorem 341

where x1 � x2 � p � xn � 1. Since xk � Pkx0, we must show that Pk x0 � x. Now,

by Theorem 4.33, the long range transition matrix is and Pk � L.

Therefore,

Population Growth

We return to the Leslie model of population growth, which we first explored in
Section 3.7. In Example 3.67 in that section, we saw that for the Leslie matrix

iterates of the population vectors began to approach a multiple of the vector

In other words, the three age classes of this population eventually ended up in the
ratio 18:6 :1 . Moreover, once this state is reached, it is stable, since the ratios for the
following year are given by

and the components are still in the ratio 27:9 :1 .5 � 18:6 :1 . Observe that 1.5 repre-
sents the growth rate of this population when it has reached its steady state.

We can now recognize that x is an eigenvector of L corresponding to the eigen-
value l � 1.5. Thus, the steady state growth rate is a positive eigenvalue of L, and an
eigenvector corresponding to this eigenvalue represents the relative sizes of the age
classes when the steady state has been reached. We can compute these directly, with-
out having to iterate as we did before.

Find the steady state growth rate and the corresponding ratios between the age classes
for the Leslie matrix L above.

Solution We need to find all positive eigenvalues and corresponding eigenvectors of
L. The characteristic polynomial of L is

det1L � lI 2 � 3�l 4 3

0.5 �l    0

0 0.25 �l

3 � �l3 � 2l � 0.375

Lx � £ 0 4 3

0.5 0 0

0 0.25 0

§ £ 18

6

1

§ � £ 27

  9

  1.5

§ � 1.5x

x � £ 18

6

1

§
L � £0 4 3

0.5 0 0

0 0.25 0

§

� 1x1 � x2 � p � xn 2x � x

� x1x � x2x � p � xn x

� 3x x p x 4 ≥ x1

x2

o
xn

¥
 lim
kSq

Pkx0 � 1 lim
kSq

Pk 2x0 � Lx0

lim
kSq

L � 3x x p x 4lim
kSq

Example 4. 39
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Theorem 4. 35

so we must solve �l3 � 2l� 0.375 � 0 or, equivalently, 8l3 � 16l� 3 � 0. Factor-
ing, we have

(See Appendix D.) Since the second factor has only the roots (�3 � )�4 � �0.19
and (�3 � )�4 � �1.31, the only positive root of this equation is 
The corresponding eigenvectors are in the null space of L � 1.5I, which we find by
row reduction:

Thus, if is an eigenvector corresponding to l� 1.5, it satisfies x1 � 18x3 and

x2 � 6x3. That is,

Hence, the steady state growth rate is 1.5, and when this rate has been reached, the age
classes are in the ratio 18:6 :1 , as we saw before.

In Example 4.39, there was only one candidate for the steady state growth rate: the
unique positive eigenvalue of L. But what would we have done if L had had more than
one positive eigenvalue or none? We were also apparently fortunate that there was a
corresponding eigenvector all of whose components were positive, which allowed us
to relate these components to the size of the population. We can prove that this situ-
ation is not accidental; that is, every Leslie matrix has exactly one positive eigenvalue
and a corresponding eigenvector with positive components.

Recall that the form of a Leslie matrix is

(3)

Since the entries sj represent survival probabilities, we will assume that they are all
nonzero (otherwise, the population would rapidly die out). We will also assume that
at least one of the birth parameters bi is nonzero (otherwise, there would be no births
and, again, the population would die out). With these standing assumptions, we can
now prove the assertion we made above as a theorem.

Every Leslie matrix has a unique positive eigenvalue and a corresponding eigen-
vector with positive components.

L � F
b1 b2 b3

p bn�1 bn

s1 0 0 p 0 0

0 s2 0 p 0 0

0 0 s3
p 0 0

o o o ∞ o o
0 0 0 p sn�1 0

V

E1.5 � • £18x3

6x3

x3

§ ¶ � span° £18

6

1

§ ¢
x � £x1

x2

x3

§
3L � 1.5I 0 0 4 � £�1.5 4  3

0.5 �1.5 0 

0   0.25 �1.5

3 00
0

§ ¡ £ 1 0 �18

0 1 �6

0 0 0

3 00
0

§
l � 3

2 � 1.5.15
15

12l � 3 2 14l2 � 6l � 1 2 � 0
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Section 4.6 Applications and the Perron-Frobenius Theorem 343

Proof Let L be as in equation (3). The characteristic polynomial of L is

(You are asked to prove this in Exercise 16.) The eigenvalues of L are therefore the
roots of f(l). Since at least one of the birth parameters bi is positive and all of the sur-
vival probabilities sj are positive, the coefficients of f(l) change sign exactly once. By
Descartes’s Rule of Signs (Appendix D), therefore, f(l) has exactly one positive root.
Let us call it l1.

By direct calculation, we can check that an eigenvector corresponding to l1 is

(You are asked to prove this in Exercise 18.) Clearly, all of the components of x1 are
positive.

In fact, more is true. With the additional requirement that two consecutive birth
parameters bi and bi�1 are positive, it turns out that the unique positive eigenvalue
l1 of L is dominant ; that is, every other (real or complex) eigenvalue l of L satisfies
�l� � l1. (It is beyond the scope of this book to prove this result, but a partial proof is
outlined in Exercise 27 for readers who are familiar with the algebra of complex num-
bers.) This explains why we get convergence to a steady state vector when we iterate
the population vectors: It is just the power method working for us!

The Perron-Frobenius Theorem

In the previous two applications, Markov chains and Leslie matrices, we saw that the
eigenvalue of interest was positive and dominant. Moreover, there was a correspond-
ing eigenvector with positive components. It turns out that a remarkable theorem
guarantees that this will be the case for a large class of matrices, including many of the
ones we have been considering. The first version of this theorem is for positive
matrices.

First, we need some terminology and notation. Let’s agree to refer to a vector as
positive if all of its components are positive. For two m � n matrices A � [aij] and
B � [bij], we will write A 
 B if aij 
 bij for all i and j. (Similar definitions will apply
for A � B, A � B, and so on.) Thus, a positive vector x satisfies x � 0. Let us define
�A� � [�aij�] to be the matrix of the absolute values of the entries of A.

x1 � F
1

s1>l1

s1s2>l1
2

s1s2s3>l1
3

o
s1s2s3

p sn�1>l1
n�1

V

� 1�1 2nf 1l 2� 1�1 2n1ln � b1l
n�1 � b2s1l

n�2 � b3s1s2l
n�3 � p � bns1s2

p sn�1 2cL1l 2 � det1L � lI 2

Oskar Perron (1880–1975) was a
German mathematician who did
work in many fields of mathemat-
ics, including analysis, differential
equations, algebra, geometry, and
number theory. Perron’s Theorem
was published in 1907 in a paper
on continued fractions.
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Theorem 4. 36 Perron’s Theorem

Let A be a positive n � n matrix. Then A has a real eigenvalue l1 with the following
properties:

a. l1 � 0
b. l1 has a corresponding positive eigenvector.
c. If l is any other eigenvalue of A, then �l� � l1.

Intuitively, we can see why the first two statements should be true. Consider the case
of a 2 � 2 positive matrix A. The corresponding matrix transformation maps the first
quadrant of the plane properly into itself, since all components are positive. If we re-
peatedly allow A to act on the images we get, they necessarily converge toward some
ray in the first quadrant (Figure 4.18). A direction vector for this ray will be a positive
vector x, which must be mapped into some positive multiple of itself (say, l1), since
A leaves the ray fixed. In other words, Ax � l1x, with x and l1 both positive.

Proof For some nonzero vectors x, Ax 
 lx for some scalar l. When this happens,
then A(kx) 
 l(kx) for all k � 0; thus, we need only consider unit vectors x. In
Chapter 7, we will see that A maps the set of all unit vectors in �n (the unit sphere)
into a “generalized ellipsoid.” So, as x ranges over the nonnegative vectors on this unit
sphere, there will be a maximum value of l such that Ax 
 lx. (See Figure 4.19.)
Denote this number by l1 and the corresponding unit vector by x1.

344 Chapter 4 Eigenvalues and Eigenvectors
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Section 4.6 Applications and the Perron-Frobenius Theorem 345

We now show that Ax1 � l1x1. If not, then Ax1 � l1x1, and, applying A again, we
obtain

where the inequality is preserved, since A is positive. (See Exercise 40 and Section 3.7
Exercise 36.) But then y � (1��Ax1 �)Ax1 is a unit vector that satisfies Ay � l1y, so
there will be some l2 � l1 such that Ay 
 l2y. This contradicts the fact that l1 was
the maximum value with this property. Consequently, it must be the case that Ax1 �
l1x1; that is, l1 is an eigenvalue of A.

Now A is positive and x1 is positive, so l1x1 � Ax1 � 0. This means that l1 � 0
and x1 � 0, which completes the proof of (a) and (b).

To prove (c), suppose l is any other (real or complex) eigenvalue of A with corre-
sponding eigenvector z. Then Az � lz, and, taking absolute values, we have

(4)

where the middle inequality follows from the Triangle Inequality. (See Exercise 40.)
Since �z� � 0, the unit vector u in the direction of �z� is also positive and satisfies
Au 
 �l�u.By the maximality of l1 from the first part of this proof,we must have �l� �l1.

In fact, more is true. It turns out that l1 is dominant, so �l� � l1 for any eigenvalue
l l1. It is also the case that l1 has algebraic, and hence geometric, multiplicity 1.
We will not prove these facts.

Perron’s Theorem can be generalized from positive to certain nonnegative matri-
ces. Frobenius did so in 1912. The result requires a technical condition on the matrix.
A square matrix A is called reducible if, subject to some permutation of the rows and
the same permutation of the columns, A can be written in block form as

where B and D are square. Equivalently, A is reducible if there is some permutation
matrix P such that

(See page 193.) For example, the matrix

is reducible, since interchanging rows 1 and 3 and then columns 1 and 3 produces

E7 2 1 3 0

1 2 4 5 5

0 0 2 1 3

0 0 6 2 1

0 0 1 7 2

U

A � E2 0 0 1 3

4 2 1 5 5

1 2 7 3 0

6 0 0 2 1

1 0 0 7 2

U
PAPT � c B C

O D
d

c B C

O D
d



A 0z 0 � 0A 0 0z 0 
 0Az 0 � 0lz 0 � 0l 0 0z 0

A1Ax1 2 7 A1l1x1 2 � l11Ax1 2
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Theorem 4. 37

(This is just PAPT, where

Check this!)
A square matrix A that is not reducible is called irreducible. If Ak � O for some 

k, then A is called primitive. For example, every regular Markov chain has a primitive 
transition matrix, by definition. It is not hard to show that every primitive matrix is
irreducible. (Do you see why? Try showing the contrapositive of this.)

The Perron-Frobenius Theorem

Let A be an irreducible nonnegative n � n matrix. Then A has a real eigenvalue l1

with the following properties:

a. l1 � 0
b. l1 has a corresponding positive eigenvector.
c. If l is any other eigenvalue of A, then �l� � l1. If A is primitive, then this

inequality is strict.
d. If l is an eigenvalue of A such that �l� � l1, then l is a (complex) root of the

equation ln � � 0.
e. l1 has algebraic multiplicity 1.

The interested reader can find a proof of the Perron-Frobenius Theorem in many
texts on nonnegative matrices or matrix analysis. The eigenvalue l1 is often called the
Perron root of A, and a corresponding probability eigenvector (which is necessarily
unique) is called the Perron eigenvector of A.

Linear Recurrence Relations

The Fibonacci numbers are the numbers in the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . ,
where, after the first two terms, each new term is obtained by summing the two terms
preceding it. If we denote the nth Fibonacci number by fn, then this sequence is com-
pletely defined by the equations f0 � 0, f1 � 1, and, for n 
 2,

This last equation is an example of a linear recurrence relation. We will return to the
Fibonacci numbers, but first we will consider linear recurrence relations somewhat
more generally.

fn � fn�1 � fn�2

l1
n

P � E0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

U
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See Matrix Analysis by R. A. Horn
and C. R. Johnson (Cambridge,
England: Cambridge University
Press, 1985).
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Section 4.6 Applications and the Perron-Frobenius Theorem 347

Definition Let (xn) � (x0, x1, x2, . . .) be a sequence of numbers that is defined
as follows:

1.
2. For all are

scalars.

If ck 0, the equation in (2) is called a linear recurrence relation of order k. The
equations in (1) are referred to as the initial conditions of the recurrence.

Thus, the Fibonacci numbers satisfy a linear recurrence relation of order 2.

Remarks
• If, in order to define the nth term in a recurrence relation, we require the

(n � k)th term but no term before it, then the recurrence relation has order k.
• The number of initial conditions is the order of the recurrence relation.
• It is not necessary that the first term of the sequence be called x0. We could

start at x1 or anywhere else.
• It is possible to have even more general linear recurrence relations by allowing

the coefficients ci to be functions rather than scalars and by allowing an extra, isolated
coefficient, which may also be a function. An example would be the recurrence

We will not consider such recurrences here.

Consider the sequence (xn) defined by the initial conditions x1 � 1, x2 � 5 and the re-
currence relation xn � 5xn�1 � 6xn�2 for n 
 2. Write out the first five terms of this
sequence.

Solution We are given the first two terms. We use the recurrence relation to calculate
the next three terms. We have

so the sequence begins 1, 5, 19, 65, 211, . . . .

x5 � 5x4 � 6x3 � 5 # 65 � 6 # 19 � 211

x4 � 5x3 � 6x2 � 5 # 19 � 6 # 5 � 65

x3 � 5x2 � 6x1 � 5 # 5 � 6 # 1 � 19

xn � 2xn�1 � n2xn�2 �
1

n
xn�3 � n



n 
 k, xn � c1xn�1 � c2xn�2 � p � ckxn�k, where c1, c2, . . . , ck

x0 � a0, x1 � a1, . . . , xk�1 � ak�1, where a0, a1, . . . , ak�1 are scalars.

Leonardo of Pisa (1170–1250), pictured left, is better known by his nickname, Fibonacci,
which means “son of Bonaccio.” He wrote a number of important books, many of which have
survived, including Liber abaci and Liber quadratorum. The Fibonacci sequence appears as
the solution to a problem in Liber abaci: “A certain man put a pair of rabbits in a place
surrounded on all sides by a wall. How many pairs of rabbits can be produced from that 
pair in a year if it is supposed that every month each pair begets a new pair which from the
second month on becomes productive?” The name Fibonacci numbers was given to the terms
of this sequence by the French mathematician Edouard Lucas (1842–1891).

Example 4. 40
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Clearly, if we were interested in, say, the 100th term of the sequence in Exam-
ple 4.40, then the approach used there would be rather tedious, since we would have
to apply the recurrence relation 98 times. It would be nice if we could find an explicit
formula for xn as a function of n. We refer to finding such a formula as solving the re-
currence relation. We will illustrate the process with the sequence from Example 4.40.

To begin, we rewrite the recurrence relation as a matrix equation. Let

and introduce vectors for n 
 2. Thus,

and so on. Now observe that, for n 
 2, we have

Notice that this is the same type of equation we encountered with Markov chains and
Leslie matrices. As in those cases, we can write

We now use the technique of Example 4.29 to compute the powers of A.
The characteristic equation of A is

from which we find that the eigenvalues are l1 � 3 and l2 � 2. (Notice that the form
of the characteristic equation follows that of the recurrence relation. If we write the
recurrence as xn � 5xn�1 � 6xn�2 � 0, it is apparent that the coefficients are exactly
the same!) The corresponding eigenspaces are

Setting we know that Then A � PDP �1 and

It now follows that

c xn

xn�1

d � xn � An�2x2 � c 3n�1 � 2n�1 �213n�1 2 � 312n�1 2
3n�2 � 2n�2 �213n�2 2 � 312n�2 2 d c 51 d � c 3n � 2n

3n�1 � 2n�1 d
� c 3k�1 � 2k�1 �213k�1 2 � 312k�1 2

3k � 2k �213k 2 � 312k 2 d
� c 3 2

1 1
d c 3k 0

0 2k d c 1 �2

�1 3
d

Ak � PDkP�1 � c 3 2

1 1
d c 3k 0

0 2k d c 3 2

1 1
d�1

P�1AP � D � c3 0

0 2
d .P � c3 2

1 1
d ,
E3 � span a c 3

1
d b     and  E2 � span a c 2

1
d b

l2 � 5l � 6 � 0

xn � Axn�1 � A2˛xn�2 � p � An�2˛x2

Axn�1 � c 5 �6

1 0
d c xn�1

xn�2

d � c 5xn�1 � 6xn�2

xn�1

d � c xn

xn�1

d � xn

x4 � c x4

x3

d � c 65

19
d ,c19

5
d , x3 � c x3

x2

d �x2 � c x2

x1

d � c 5
1
d ,xn � c xn

xn�1

d
A � c5 �6

1 0
d
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Section 4.6 Applications and the Perron-Frobenius Theorem 349

from which we read off the solution xn � 3n � 2n. (To check our work, we could plug
in n � 1, 2, . . . , 5 to verify that this formula gives the same terms that we calculated
using the recurrence relation. Try it!)

Observe that xn is a linear combination of powers of the eigenvalues. This is nec-
essarily the case as long as the eigenvalues are distinct [as Theorem 4.38(a) will make
explicit] . Using this observation, we can save ourselves some work. Once we have
computed the eigenvalues l1 � 3 and l2 � 2, we can immediately write

where c1 and c2 are to be determined. Using the initial conditions, we have

when n � 1 and

when n � 2. We now solve the system

for c1 and c2 to obtain c1 � 1 and c2 � �1. Thus, xn � 3n � 2n, as before.
This is the method we will use in practice. We now illustrate its use to find an

explicit formula for the Fibonacci numbers.

Solve the Fibonacci recurrence f0 � 0, f1 � 1, and fn � fn�1 � fn�2 for n 
 2.

Solution Writing the recurrence as fn � fn�1 � fn�2 � 0, we see that the characteris-
tic equation is l2 � l� 1 � 0, so the eigenvalues are

It follows from the discussion above that the solution to the recurrence relation has
the form

for some scalars c1 and c2.
Using the initial conditions, we find

and

Solving for c1 and c2, we obtain c1 � 1� and c2 � �1� Hence, an explicit
formula for the nth Fibonacci number is

(5)fn �
1

15
a 1 � 15

2
b n

�
1

15
a 1 � 15

2
b n

15.15

1 � f1 � c1l1
1 � c2l2

1 � c1 a 1 � 15

2
b � c2 a 1 � 15

2
b

0 � f0 � c1l1
0 � c2l2

0 � c1 � c2

fn � c1l1
n � c2l2

n � c1 a 1 � 15

2
b n

� c2 a 1 � 15

2
b n

l1 �
1 � 15

2
     and  l2 �

1 � 15

2

 9c1 �  4c2 � 5

 3c1 �  2c2 � 1

5 � x2 � c13
2 � c22

2 � 9c1 � 4c2

1 � x1 � c13
1 � c22

1 � 3c1 � 2c2

xn � c13
n � c22

n

Example 4. 41

Jacques Binet (1786–1856) made
contributions to matrix theory,
number theory, physics, and as-
tronomy. He discovered the rule
for matrix multiplication in 1812.
Binet’s formula for the Fibonacci
numbers is actually due to Euler,
who published it in 1765; however,
it was forgotten until Binet pub-
lished his version in 1843. Like
Cauchy, Binet was a royalist, and
he lost his university position
when Charles X abdicated in 1830.
He received many honors for his
work, including his election, in
1843, to the Académie des
Sciences.
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Theorem 4. 38

Formula (5) is a remarkable formula, because it is defined in terms of the irra-
tional number yet the Fibonacci numbers are all integers! Try plugging in a few
values for n to see how the terms cancel out to leave the integer values fn. Formula
(5) is known as Binet’s formula.

The method we have just outlined works for any second order linear recurrence
relation whose associated eigenvalues are all distinct. When there is a repeated eigen-
value, the technique must be modified, since the diagonalization method we used
may no longer work. The next theorem summarizes both situations.

Let xn � axn�1 � bxn�2 be a recurrence relation that is satisfied by a sequence (xn).
Let l1 and l2 be the eigenvalues of the associated characteristic equation l2 �
al� b � 0.

a. If l1 l2, then xn � for some scalars c1 and c2.
b. If l1 � l2 � l, then xn � c1l

n � c2nl
n for some scalars c1 and c2.

In either case, c1 and c2 can be determined using the initial conditions.

Proof (a) Generalizing our discussion above, we can write the recurrence as xn �
Axn�1, where

Since A has distinct eigenvalues, it can be diagonalized. The rest of the details are left
for Exercise 53.

(b) We will show that xn � c1l
n � c2nl

n satisfies the recurrence relation xn � axn�1 �
bxn�2 or, equivalently,

(6)

if l2 � al� b � 0. Since

substitution into equation (6) yields

But, since l is a double root of l2 � al� b � 0, we must have a2 � 4b � 0 and l�
a�2, using the quadratic formula. Consequently, al � 2b � a2�2 � 2b � �4b�2 �
2b � 0, so

xn � axn�1 � bxn�2 � c2l
n�21al � 2b 2 � c2l

n�210 2 � 0

� c2l
n�21al � 2b 2� c1l
n�210 2 � c2nl

n�210 2 � c2l
n�21al � 2b 2� c1l

n�21l2 � al� b2 � c2nl
n�21l2 � al� b2� c2l

n�21al� 2b2� b 1n � 2 2ln�2 2� c11ln � aln�1 � bln�2 2 � c21nln � a 1n � 1 2ln�1

� b 1c1l
n�2 � c21n � 2 2ln�2 2xn � axn�1 � bxn�2 � 1c1l

n � c2nl
n 2 � a 1c1l

n�1 � c21n � 1 2ln�1 2
xn�1 � c1l

n�1 � c21n � 1 2ln�1 and  xn�2 � c1l
n�2 � c21n � 2 2ln�2

xn � axn�1 � bxn�2 � 0

xn � c xn

xn�1

d      and  A � c a b

1 0
d

c1l
n
1 � c2l

n
2

15
15
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Section 4.6 Applications and the Perron-Frobenius Theorem 351

Theorem 4. 39

Suppose the initial conditions are x0 � r and x1 � s. Then, in either (a) or (b)
there is a unique solution for c1 and c2. (See Exercise 54.)

Solve the recurrence relation x0 � 1, x1 � 6, and xn � 6xn�1 � 9xn�2 for n 
 2.

Solution The characteristic equation is l2 � 6l� 9 � 0, which has l� 3 as a dou-
ble root. By Theorem 4.38(b), we must have xn � c13

n � c2n3n � (c1 � c2n)3n. Since
1 � x0 � c1 and 6 � x1 � (c1 � c2)3, we find that c2 � 1, so

The techniques outlined in Theorem 4.38 can be extended to higher order recurrence
relations. We state, without proof, the general result.

Let xn � am�1xn�1 � am�2 xn�2 � p � a0 xn�m be a recurrence relation of order
m that is satisfied by a sequence (xn ). Suppose the associated characteristic
polynomial

factors as where m1 � m2 � p � mk � m.
Then xn has the form

Systems of Linear Differential Equations

In calculus, you learn that if x � x(t) is a differentiable function satisfying a differen-
tial equation of the form x� � kx, where k is a constant, then the general solution is
x � Ce kt, where C is a constant. If an initial condition x(0) � x0 is specified, then, by
substituting t � 0 in the general solution, we find that C � x0. Hence, the unique so-
lution to the differential equation that satisfies the initial condition is

Suppose we have n differentiable functions of t—say, x1, x2, . . . , xn—that satisfy a
system of differential equations

We can write this system in matrix form as x� � Ax, where

Now we can use matrix methods to help us find the solution.

x1t 2 � ≥ x11t 2
x21t 2

o
xn1t 2 ¥ , x¿ 1t 2 � ≥ xœ

11t 2
xœ

21t 2
o

xœ
n1t 2 ¥ ,    and A � ≥ a11 a12

p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

¥
xœ

n � an1x1 � an 2x2 � p � ann xn

 o
xœ

2 � a21x1 � a22x2 � p � a2nxn

xœ
1 � a11x1 � a12x2 � p � a1nxn

x � x0e
kt

� 1ck1lk
n � ck2nlk

n � ck3n
2lk

n � p � ckmk
nmk�1lk

n 2xn � 1c11l1
n � c12nl1

n � c13n
2l1

n � p � c1m1
nm1�1l1

n 2 � p

1l � l1 2m11l � l2 2m2 p 1l � lk 2mk,

lm � am�1l
m�1 � am�2l

m�2 � p � a0

xn � 11 � n 23n

Example 4. 42
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First, we make a useful observation. Suppose we want to solve the following sys-
tem of differential equations:

Each equation can be solved separately, as above, to give

where C1 and C2 are constants. Notice that, in matrix form, our equation x� � Ax has
a diagonal coefficient matrix

and the eigenvalues 2 and 5 occur in the exponentials e 2t and e 5t of the solution. This
suggests that, for an arbitrary system, we should start by diagonalizing the coefficient
matrix, if possible.

Solve the following system of differential equations:

Solution Here the coefficient matrix is and we find that the eigenval-

ues are l1 � 4 and l2 � �1, with corresponding eigenvectors and

respectively. Therefore, A is diagonalizable, and the matrix P that does

the job is

We know that

Let x � Py (so that x� � Py�) and substitute these results into the original equation
x� � Ax to get Py� � APy or, equivalently,

This is just the system

whose general solution is

y1 � C1e
4t

y2 � C 2e
�t     or y � c C1e

4t

C 2e
�t d

yœ
2 � �y2

yœ
1 �  4y1

y¿ � P�1APy � Dy

P�1AP � c4 0

0 �1
d � D

P � 3v1 v2 4 � c2 �1

3 1
d

v2 � c�1

1
d , v1 � c 2

3
dA � c 1 2

3 2
d ,

xœ
2 �  3x1 � 2x2

xœ
1 � x1 � 2x2

A � c2 0

0 5
d

x2 � C2e
5t

x1 � C1e
2t

xœ
2 � 5x2

xœ
1 � 2x1
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Theorem 4. 40

To find x, we just compute

so x1 � 2C1e
4t � C2e

�t and x2 � 3C1e
4t � C2e

�t. (Check that these values satisfy the
given system.)

Remark Observe that we could also express the solution in Example 4.43 as

This technique generalizes easily to n � n systems where the coefficient matrix is
diagonalizable. The next theorem, whose proof is left as an exercise, summarizes the
situation.

Let A be an n � n diagonalizable matrix and let be such that

Then the general solution to the system x� � Ax is

The next example involves a biological model in which two species live in the
same ecosystem. It is reasonable to assume that the growth rate of each species de-
pends on the sizes of both populations. (Of course, there are other factors that govern
growth, but we will keep our model simple by ignoring these.)

If x1(t) and x2 (t) denote the sizes of the two populations at time t, then and
are their rates of growth at time t. Our model is of the form

where the coefficients a, b, c, and d depend on the conditions.

Raccoons and squirrels inhabit the same ecosystem and compete with each other for
food, water, and space. Let the raccoon and squirrel populations at time t years be
given by r(t) and s(t), respectively. In the absence of squirrels, the raccoon growth
rate is r�(t) � 2.5r(t), but when squirrels are present, the competition slows the rac-
coon growth rate to r�(t) � 2.5r(t) � s(t). The squirrel population is similarly
affected by the raccoons. In the absence of raccoons, the growth rate of the squirrel
population is s�(t) � 2.5s(t), and the population growth rate for squirrels when they
are sharing the ecosystem with raccoons is s�(t) � �0.25r(t) � 2.5s(t). Suppose that

x œ
21t 2 � cx11t 2 � dx21t 2x œ
11t 2 � ax11t 2 � bx 21t 2xœ

21t 2 x œ
11t 2

x � C1e
l1t v1 � C2e

l2t v2 � p � Cnelnt vn

P�1AP � ≥ l1 0 p 0

0 l2
p 0

o o ∞ o
0 0 p ln

¥
P � 3v1 v2

p vn 4

x � C1e
4t c 2

3
d � C2e

�t c�1

1
d � C1e

4tv1 � C2e
�tv2

x � Py � c 2 �1

3 1
d c C1e

4t

C2e
�t d � c 2C1e

4t � C2e
�t

3C1e
4t � C2e

�t d
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initially there are 60 raccoons and 60 squirrels in the ecosystem. Determine what hap-
pens to these two populations.

Solution Our system is x� � Ax, where

The eigenvalues of A are l1 � 3 and l2 � 2, with corresponding eigenvectors v1 �

and By Theorem 4.40, the general solution to our system is

(7)

The initial population vector is so, setting t � 0 in equa-

tion (7), we have

Solving this equation, we find C1 � 15 and C2 � 45. Hence,

from which we find r(t) � �30e 3t � 90e 2t and s(t) � 15e 3t � 45e 2t. Figure 4.20 shows
the graphs of these two functions, and you can see clearly that the raccoon population
dies out after a little more than 1 year. (Can you determine exactly when it dies out?)

We now consider a similar example, in which one species is a source of food for
the other. Such a model is called a predator-prey model. Once again, our model will
be drastically oversimplified in order to illustrate its main features.

x1t 2 � 15e3t c�2

1
d � 45e 2t c 2

1
d

C1 c�2

1
d � C2 c21 d � c60

60
d

x10 2 � c r 10 2
s 10 2 d � c 60

60
d ,

x1t 2 � C1e
3tv1 � C2e

2tv2 � C1e
3t c�2

1
d � C2e

2t c 2
1
d

v2 � c2
1
d .c�2

1
d

x � x1t 2 � c r 1t 2
s 1t 2 d     and A � c 2.5 �1.0

�0.25 2.5
d
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Raccoon and squirrel populations
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Section 4.6 Applications and the Perron-Frobenius Theorem 355

Robins and worms cohabit an ecosystem. The robins eat the worms, which are their
only source of food. The robin and worm populations at time t years are denoted by
r(t) and w(t), respectively, and the equations governing the growth of the two popu-
lations are

(8)

If initially 6 robins and 20 worms occupy the ecosystem, determine the behavior of
the two populations over time.

Solution The first thing we notice about this example is the presence of the extra
constants, �12 and 10, in the two equations. Fortunately, we can get rid of them
with a simple change of variables. If we let r(t) � x(t) � 10 and w(t) � y(t) � 12, then
r�(t) � x�(t) and w�(t) � y�(t). Substituting into equations (8), we have

(9)

which is easier to work with. Equations (9) have the form x� � Ax, where A �

Our new initial conditions are

so

Proceeding as in the last example, we find the eigenvalues and eigenvectors of A.
The characteristic polynomial is l2 � 1, which has no real roots. What should we do?
We have no choice but to use the complex roots, which are l1 � i and l2 � �i. The 

corresponding eigenvectors are also complex—namely, and By 

Theorem 4.40, our solution has the form

From we get

whose solution is C1 � �2 � 4i and C2 � �2 � 4i. So the solution to system (9) is

What are we to make of this solution? Robins and worms inhabit a real world—
yet our solution involves complex numbers! Fearlessly proceeding, we apply Euler’s
formula

eit � cos t � i sin t

x1t 2 � 1�2 � 4i 2eit c1
i
d � 1�2 � 4i 2e�it c 1

�i
d

C1 c1i d � C2 c 1

�i
d � c�4

8
d

x10 2 � c�4

8
d ,

x1t 2 � C1e
itv1 � C2e

�itv2 � C1e
it c 1

i
d � C2e

�it c 1

�i
d

v2 � c 1

�i
d .v1 � c1

i
d

x10 2 � c�4
8
d .x 10 2 � r 10 2 � 10 � 6 � 10 � �4    and  y 10 2 � w 10 2 � 12 � 20 � 12 � 8

c 0 1

�1 0
d .

y¿1t 2 � �x 1t 2x¿1t 2 � y 1t 2

w ¿1t 2 � �r 1t 2 � 10

r¿1t 2 � w 1t 2 � 12

Example 4. 45a + bi
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(Appendix C) to get e�it � cos(�t) � i sin(�t) � cos t � i sin t. Substituting, we have

This gives x(t) � �4 cos t � 8 sin t and y(t) � 8 cos t � 4 sin t. Putting everything in
terms of our original variables, we conclude that

and w 1t 2 � y 1t 2 � 12 � 8 cos t � 4 sin t � 12

r 1t 2 � x 1t 2 � 10 � �4 cos t � 8 sin t � 10

� c�4 cos t � 8 sin t

8 cos t � 4 sin t
d

� � c 1�2 cos t � 4 sin t 2 � i 14 cos t � 2 sin t 214 cos t � 2 sin t 2 � i 12 cos t � 4 sin t 2 d
� c 1�2 cos t � 4 sin t 2 � i 1�4 cos t � 2 sin t 214 cos t � 2 sin t 2 � i 1�2 cos t � 4 sin t 2 d

x1t 2 � 1�2 � 4i 2 1cos t � i sin t 2 c 1
i
d � 1�2 � 4i 2 1cos t � i sin t 2 c 1

�i
d
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Section 4.6 Applications and the Perron-Frobenius Theorem 357

So our solution is real after all! The graphs of r(t) and w(t) in Figure 4.21 show that
the two populations oscillate periodically. As the robin population increases, the
worm population starts to decrease, but as the robins’ only food source diminishes,
their numbers start to decline as well. As the predators disappear, the worm popula-
tion begins to recover. As its food supply increases, so does the robin population,
and the cycle repeats itself. This oscillation is typical of examples in which the eigen-
values are complex.

Plotting robins, worms, and time on separate axes, as in Figure 4.22, clearly
reveals the cyclic nature of the two populations.

We conclude this section by looking at what we have done from a different point
of view. If x � x(t) is a differentiable function of t, then the general solution of the
ordinary differential equation x� � ax is x � ce at, where c is a scalar. The systems of
linear differential equations we have been considering have the form x� � Ax, so if we
simply plowed ahead without thinking, we might be tempted to deduce that the
solution would be x � ce At, where c is a vector. But what on earth could this mean?
On the right-hand side, we have the number e raised to the power of a matrix. This
appears to be nonsense, yet you will see that there is a way to make sense of it.

Let’s start by considering the expression e A. In calculus, you learn that the func-
tion e x has a power series expansion

that converges for every real number x. By analogy, let us define

The right-hand side is just defined in terms of powers of A, and it can be shown that
it converges for any real matrix A. So now e A is a matrix, called the exponential of A.
But how can we compute e A or e At? For diagonal matrices, it is easy.

Compute e Dt for

Solution From the definition, we have

The matrix exponential is also nice if A is diagonalizable.

� c e4t 0

0 e�t d
� c 1 � 14t 2 � 1

2! 14t 2 2 � 1
3! 14t 2 3 � p 0

0 1 � 1�t 2 � 1
2! 1�t 2 2 � 1

3! 1�t 2 3 � p d
� c 1 0

0 1
d � c 4t 0

0 �t
d � 1

2! c 14t 2 2 0

0 1�t 2 2 d � 1
3! c 14t 2 3 0

0 1�t 2 3 d � p

e Dt � I � Dt �
1Dt 2 2

2!
�
1Dt 2 3

3!
� p

D � c 4 0

0 �1
d .

e A � I � A �
A2

2!
�

A3

3!
� p

e x � 1 � x �
x2

2!
�

x3

3!
� p

Example 4. 46
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Theorem 4. 41

Compute e A for

Solution In Example 4.43, we found the eigenvalues of A to be l1 � 4 and l2 � �1,

with corresponding eigenvectors and respectively. Hence, with

we have Since A � PDP �1, we

have Ak � PDkP �1, so

We are now in a position to show that our bold (and seemingly foolish) guess at
an “exponential” solution of x� � Ax was not so far off after all!

Let A be an n � n diagonalizable matrix with eigenvalues l1, l2, . . . , ln. Then the
general solution to the system x� � Ax is x � eAtc, where c is an arbitrary constant
vector. If an initial condition x(0) is specified, then c � x(0).

Proof Let P diagonalize A. Then A � PDP �1, and, as in Example 4.47,

Hence, we need to check that x� � Ax is satisfied by x � PeDtP �1c. Now, everything is
constant except for eDt, so

(10)

If D � ≥ l1 0 p 0

0 l2
p 0

o o ∞ o
0 0 p ln

¥
x¿ �

dx

dt
�

d

dt
1Pe DtP�1c 2 � P

d

dt
1e Dt 2P�1c

e At � PeDtP�1

�
1

5
c 2e4 � 3e�1 2e4 � 2e�1

3e4 � 3e�1 3e4 � 2e�1 d
� c 2 �1

3 1
d c e4 0

0 e�1 d c 2 �1

3 1
d�1

� Pe DP�1

� P a I � D �
D 2

2!
�

D 3

3!
� p bP�1

� PIP�1 � PDP�1 �
1

2!
PD 2P�1 �

1

3!
PD 3P�1 � p

e A � I � A �
A2

2!
�

A3

3!
� p

P�1AP � D � c4 0

0 �1
d .P � 3v1 v2 4 � c2 �1

3 1
d , v2 � c�1

1
d ,v1 � c2

3
d

A � c 1 2

3 2
d .
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Section 4.6 Applications and the Perron-Frobenius Theorem 359

then

Taking derivatives, we have

Substituting this result into equation (10), we obtain

as required.
The last statement follows easily from the fact that if x � x(t) � e Atc, then

since eO � I. (Why?)

In fact, Theorem 4.41 is true even if A is not diagonalizable, but we will not prove this.
Computation of matrix exponentials for nondiagonalizable matrices requires the
Jordan normal form of a matrix, a topic that may be found in more advanced linear
algebra texts.

Ideally, this short digression has served to illustrate the power of mathematics to
generalize and the value of creative thinking. Matrix exponentials turn out to be very
important tools in many applications of linear algebra, both theoretical and applied.

Discrete Linear Dynamical Systems

We conclude this chapter as we began it—by looking at dynamical systems. Markov
chains and the Leslie model of population growth are examples of discrete linear
dynamical systems. Each can be described by a matrix equation of the form

xk�1 � Axk

x 10 2 � e A #0c � eOc � Ic � c

x¿ � PDe DtP�1c � PDP�1Pe DtP�1c � 1PDP�1 2 1Pe DtP�1 2c � Ae Atc � Ax

� De Dt

� ≥ l1 0 p 0

0 l2
p 0

o o ∞ o
0 0 p ln

¥ ≥ el1 t 0 p 0

0 el2 t p 0

o o ∞ o
0 0 p eln t

¥
� ≥ l1e

l1 t 0 p 0

0 l2e
l2 t p 0

o o ∞ o
0 0 p lneln t

¥

d

dt
1e Dt 2 � G

d

dt
˛1el1 t 2 0 p 0

0
d

dt
1el2 t 2 p 0

o o ∞ o

0 0 p d

dt
˛1e ln t 2

W

eDt � ≥ el1t 0 p 0

0 el2t p 0

o o ∞ o
0 0 p elnt

¥

For example, see Linear Algebra
by S. H. Friedberg, A. J. Insel, and
L. E. Spence (Englewood Cliffs,
NJ: Prentice-Hall, 1979).

a + bi
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where the vector xk records the state of the system at“time”k and A is a square matrix.As
we have seen, the long-term behavior of these systems is related to the eigenvalues and
eigenvectors of the matrix A. The power method exploits the iterative nature of such
dynamical systems to approximate eigenvalues and eigenvectors, and the Perron-
Frobenius Theorem gives specialized information about the long-term behavior of a
discrete linear dynamical system whose coefficient matrix A is nonnegative.

When A is a matrix, we can describe the evolution of a dynamical system
geometrically. The equation is really an infinite collection of equations.
Beginning with an initial vector x0, we have:

The set {x0, x1, x2, } is called a trajectory of the system. (For graphical purposes, we
will identify each vector in a trajectory with its head so that we can plot it as a point.)
Note that .

Let . For the dynamical system , plot the first five points in

the trajectories with the following initial vectors:

(a) (b) (c) (d)

Solution (a) We compute ,

, . These are plotted in Figure 4.23, and the points are

connected to highlight the trajectory. Similar calculations produce the trajectories 
marked (b), (c), and (d) in Figure 4.23.

x4 � Ax3 � c0.3125

0
dc0.625

0
d x3 � Ax2 �x2 � Ax1 � c 1.25

0
d ,x1 � Ax0 � c2.5

0
d

x0 � c�2

4
dx0 � c4

4
dx0 � c 0

�5
dx0 � c5

0
d

xk�1 � AxkA � c 0.5 0

0 0.8
d

xk � Ak x0

p
o

x3 � Ax2

x2 � Ax1

x1 � Ax0

xk�1 � Axk

2�2
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Section 4.6 Applications and the Perron-Frobenius Theorem 361

In Example 4.48, every trajectory converges to 0. The origin is called an attractor
in this case. We can understand why this is so from Theorem 4.19. The matrix A in

Example 4.48 has eigenvectors and corresponding to its eigenvalues 0.5 and 

0.8, respectively. (Check this.) Accordingly, for any initial vector

we have

Because both (0.5)k and (0.8)k approach zero as k gets large, xk approaches 0 for any
choice of x0. In addition, we know from Theorem 4.28 that because 0.8 is the domi-
nant eigenvalue of A, xk will approach a multiple of the corresponding eigenvector 

as long as (the coefficient of x0 corresponding to ). In other words,

all trajectories except those that begin on the x-axis (where ) will approach the
y-axis, as Figure 4.23 shows.

Discuss the behavior of the dynamical system corresponding to the

matrix .

Solution The eigenvalues of A are 0.5 and 0.8 with corresponding eigenvectors 

and , respectively. (Check this.) Hence for an initial vector

we have

Once again the origin is an attractor, because xk approaches 0 for any choice of x0.
If , the trajectory will approach the line through the origin with direction 

vector . Several such trajectories are shown in Figure 4.24. The vectors x0 where 

are on the line through the origin with direction vector , and the corre-

sponding trajectory in this case follows this line into the origin.

c1
1
dc2 � 0

c�1

1
dc2  0

xk � Akx0 � c110.5 2 k c 1
1
d � c210.8 2 k c�1

1
d

x0 � c1 c 11 d � c2 c�1

1
d ,c�1

1
d c1

1
d

A � c 0.65 �0.15

�0.15 0.65
d xk�1 � Axk

c2 � 0

c 0
1
dc2  0c0

1
d

xk � Akx0 � c110.5 2k c1
0
d � c210.8 2k c0

1
d

x0 � c c1

c2

d � c1 c10 d � c2 c01 d
c0
1
dc1

0
d

Example 4. 49
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Discuss the behavior of the dynamical systems corresponding to the
following matrices:

(a) (b)

Solution (a) The eigenvalues of A are 5 and 3 with corresponding eigenvectors 

and , respectively. Hence for an initial vector , we have

As k becomes large, so do both 5k and 3k. Hence, xk tends away from the origin. Because

the dominant eigenvalue of 5 has corresponding eigenvector , all trajectories

for which will eventually end up in the first or the third quadrant. Trajectories

with start and stay on the line whose direction vector is . See

Figure 4.25(a).

(b) In this example, the eigenvalues are 1.5 and 0.5 with corresponding eigenvectors

and , respectively. Hence,

xk � c111.5 2 k c 1
1
d � c210.5 2 k c�1

1
d     if x0 � c1 c 11 d � c2 c�1

1
d

c�1

1
dc1

1
d

c�1

1
dy � �xc1 � 0

c1  0

c1
1
d

xk � Akx0 � c15
k c 1

1
d � c23

k c�1

1
d

x0 � c1 c 11 d � c2 c�1

1
dc�1

1
d c1

1
d

A � c 1 0.5

0.5 1
dA � c4 1

1 4
d

xk�1 � Axk

�4 �2

2

�4

�2

42

4

y

x

Figure 4. 24
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Section 4.6 Applications and the Perron-Frobenius Theorem 363

If , then as . But if , then

and such trajectories asymptotically approach the line . See Figure 4.25(b).

In Example 4.50(a), all points that start out near the origin become increasingly
large in magnitude because for both eigenvalues; 0 is called a repeller. In
Example 4.50(b), 0 is called a saddle point because the origin attracts points in some
directions and repels points in other directions. In this case, and .

The next example shows what can happen when the eigenvalues of a real 
matrix are complex (and hence conjugates of one another).

Plot the trajectory beginning with for the dynamical systems 

corresponding to the following matrices:

(a) (b)

Solution The trajectories are shown in Figure 4.26(a) and (b), respectively. Note
that (a) is a trajectory spiraling into the origin, whereas (b) appears to follow an
elliptical orbit.

A � c 0.2 �1.2

0.6 1.4
dA � c 0.5 �0.5

0.5 0.5
d

xk�1 � Axkx0 � c 4
4
d

2�2
�l2� 7 1�l1� 6 1

�l� 7 1

y � x

xk � c111.5 2 k c 1
1
d � c210.5 2 k c�1

1
d � c111.5 2 k c 1

1
d     as k S q

c1  0k S qxk � c210.5 2 k c�1

1
d S c 0

0
dc1 � 0

20�20

�20

20

�10

10

�10 10

(a) (b)

�4 �2

2

�4

�2

42

4

x

y y

x

Figure 4. 25
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Theorem 4. 42

The following theorem explains the spiral behavior of the trajectory in Exam-
ple 4.51(a).

Let . The eigenvalues of A are , and if a and b are not

both zero, then A can be factored as

where and is the principal argument of .

Proof The eigenvalues of A are

by Exercise 35(b) in Section 4.1. Figure 4.27 displays , r, and . It follows that

Remark Geometrically, Theorem 4.42 implies that when ,

the linear transformation is the composition of a rotation R �

through the angle u followed by a scaling with factor r

(Figure 4.28). In Example 4.51(a), the eigenvalues are so 

, and hence the trajectories all spiral inward toward 0.
The next theorem shows that, in general, when a real matrix has complex 

eigenvalues, it is similar to a matrix of the form . For a complex vector

x � c z

w
d � c a � bi

c � di
d � c a

b
d � c c

d
d i

c a �b

b a
d 2�2

12>2 � 0.707 6 1

r � �l� �l � 0.5 ;  0.5i

S � c r 0

0 r
dc cos u �sinu

sinu cosu
d T 1x 2 � Ax

A � c a �b

b a
d  O

A � c a �b

b a
d � r c a>r �b>r

b>r a>r d � c r 0

0 r
d c cosu �sinu

sinu cosu
d ua � bi

l � 1
2 12a ; 141�b2 2 2 � 1

2 12a ;  22b22�1 2 � a ; �b �i � a ; bi

a � biur � �l� � 2a2 � b2

A � c a �b

b a
d � c r 0

0 r
d c cosu �sinu

sinu   cosu
d

l � a ; biA � c a �b

b a
d
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Section 4.6 Applications and the Perron-Frobenius Theorem 365

Theorem 4. 43

we define the real part, Re x, and the imaginary part, Im x, of x to be

Let A be a real matrix with a complex eigenvalue (where )
and corresponding eigenvector x. Then the matrix is invertible
and

Proof Let so that Re and Im . From , we have

Equating real and imaginary parts, we obtain

Now , so

To show that P is invertible, it is enough to show that u and v are linearly inde-
pendent. If u and v were not linearly independent, then it would follow that 
for some (nonzero complex) scalar k, because neither u nor v is 0. Thus,

Now, because A is real, implies that

so is an eigenvector corresponding to the other eigenvalue .
But

x � 11 � ki 2u � 11 � ki 2u
l � a � bix � u � vi

Ax � Ax � Ax � lx � lx

Ax � lx

x � u � vi � u � kui � 11 � ki 2u
v � ku

� AP

P c a �b

b a
d � 3u v 4 ca �b

b a
d � 3au � bv �bu � av 4 � 3Au Av 4 � A 3u v 4P � 3u v 4 Au � au � bv    and Av � �bu � av

� au � avi � bui � bv � 1au � bv 2 � 1�bu � av 2 iAu � Avi � Ax � lx � 1a � bi 2 1u � vi 2 Ax � lxx � vx � ux � u � vi

A � P c a �b

b a
dP�1

P � 3Re x    Im x 4 b  0l � a � bi2�2

Re x � c a
b
d � c Rez

Rew
d     and    Im x � c c

d
d � c Imz

Imw
d

x

Rx

u

Rotation

Scaling Ax � SRx

y

x Figure 4. 28
A rotation followed by a scaling
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because u is a real vector. Hence, the eigenvectors x and of A are both nonzero
multiples of u and therefore are multiples of one another. This is impossible because
eigenvectors corresponding to distinct eigenvalues must be linearly independent by
Theorem 4.20. (This theorem is valid over the complex numbers as well as the real
numbers.)

This contradiction implies that u and v are linearly independent and hence P is
invertible. It now follows that

Theorem 4.43 serves to explain Example 4.51(b). The eigenvalues of

are . For , a corresponding eigenvector is

From Theorem 4.43, it follows that for and , we

have

For the given dynamical system , we perform a change of variable. Let 

Then

so

Now C has the same eigenvalues as A (why?) and . Thus, the dynam-
ical system simply rotates the points in every trajectory in a circle about
the origin by Theorem 4.42.

To determine a trajectory of the dynamical system in Example 4.51(b), we itera-
tively apply the linear transformation . The transformation
can be thought of as the composition of a change of variable (x to y), followed by the
rotation determined by C, followed by the reverse change of variable (y back to x). We
will encounter this idea again in the application to graphing quadratic equations in
Section 5.5 and, more generally, as “change of basis” in Section 6.3. In Exercise 96 of
Section 5.5, you will show that the trajectory in Example 4.51(b) is indeed an ellipse,
as it appears to be from Figure 4.26(b).

To summarize then: If a real matrix A has complex eigenvalues ,
then the trajectories of the dynamical system spiral inward if
(0 is a spiral attractor), spiral outward if (0 is a spiral repeller), and lie on a
closed orbit if (0 is an orbital center).�l� � 1

�l� 7 1
�l� 6 1xk�1 � Axk

l � a ; bi2�2

T 1x 2 � Ax � PCP�1x

yk�1 � C yk

�0.8 ;  0.6i � � 1

yk�1 � xk�1 � Axk � P�1APyk � C yk

Pyk�1 � xk�1 � Axk � APyk

xk � Pyk 1or, equivalently, yk � P�1xk 2xk�1 � Axk

A � PCP�1    and P�1AP � C

C � c 0.8 �0.6

0.6 0.8
dP � c�1 �1

1 0
d

x � c�1�i

1
d � c�1

1
d � c�1

0
d i

l � 0.8 � 0.6i0.8 ;  0.6iA � c 0.2 �1.2

0.6 1.4
d

A � P c a �b

b a
dP�1

x
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In any competitive sports league, it is not necessarily a straightforward process to
rank the players or teams. Counting wins and losses alone overlooks the possibility
that one team may accumulate a large number of victories against weak teams, while
another team may have fewer victories but all of them against strong teams. Which
of these teams is better? How should we compare two teams that never play one
another? Should points scored be taken into account? Points against?

Despite these complexities, the ranking of athletes and sports teams has become
a commonplace and much-anticipated feature in the media. For example, there are
various annual rankings of U.S. college football and basketball teams, and golfers and
tennis players are also ranked internationally. There are many copyrighted schemes
used to produce such rankings, but we can gain some insight into how to approach
the problem by using the ideas from this chapter.

To establish the basic idea, let’s revisit Example 3.69. Five tennis players play one
another in a round-robin tournament. Wins and losses are recorded in the form of a
digraph in which a directed edge from i to j indicates that player i defeats player j. The
corresponding adjacency matrix A therefore has if player i defeats player j and
has otherwise.

We would like to associate a ranking ri with player i in such a way that 
indicates that player i is ranked more highly than player j. For this purpose, let’s

ri 7 rj

A � E0 1 0 1 1

0 0 1 1 1

1 0 0 1 0

0 0 0 0 1

0 0 1 0 0

U
aij � 0

aij � 1

367

1

4 3

25
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require that the ri’s be probabilities (that is, for all i, and
) and then organize the rankings in a ranking vector

Furthermore, let’s insist that player i’s ranking should be proportional to the sum of
the rankings of the players defeated by player i. For example, player 1 defeated players
2, 4, and 5, so we want 

where a is the constant of proportionality. Writing out similar equations for the other
players produces the following system:

Observe that we can write this system in matrix form as

Equivalently, we see that the ranking vector r must satisfy . In other words,
r is an eigenvector corresponding to the matrix A!

Furthermore, A is a primitive nonnegative matrix, so the Perron-Frobenius The-
orem guarantees that there is a unique ranking vector r. In this example, the ranking
vector turns out to be

so we would rank the players in the order 1, 2, 3, 5, 4.
By modifying the matrix A, it is possible to take into account many of the com-

plexities mentioned in the opening paragraph. However, this simple example has
served to indicate one useful approach to the problem of ranking teams.

r � E0.29

0.27

0.22

0.08

0.14

U

Ar �
1
a

r

Er1

r2

r3

r4

r5

U � aE0 1 0 1 1

0 0 1 1 1

1 0 0 1 0

0 0 0 0 1

0 0 1 0 0

U Er1

r2

r3

r4

r5

U      or r � aAr

r5 � ar3

r4 � ar5

r3 � a1r1 � r4 2r2 � a1r3 � r4 � r5 2r1 � a1r2 � r4 � r5 2
r1 � a1r2 � r4 � r5 2

r � Er1

r2

r3

r4

r5

U
r1 � r2 � r3 � r4 � r5 � 1

0 � ri � 1

368
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369

The same idea can be used to understand how an Internet search engine such as
Google works. Older search engines used to return the results of a search unordered.
Useful sites would often be buried among irrelevant ones. Much scrolling was often
needed to uncover what you were looking for. By contrast, Google returns search re-
sults ordered according to their likely relevance. Thus, a method for ranking websites
is needed.

Instead of teams playing one another, we now have websites linking to one an-
other. We can once again use a digraph to model the situation, only now an edge from
i to j indicates that website i links to (or refers to) website j. So whereas for the sports
team digraph, incoming directed edges are bad (they indicate losses), for the Internet
digraph, incoming directed edges are good (they indicate links from other sites). In
this setting, we want the ranking of website i to be proportional to sum of the rank-
ings of all the websites that link to i.

Using the digraph on page 367 to represent just five websites, we have

for example. It is easy to see that we now want to use the transpose of the adjacency

matrix of the digraph. Therefore, the ranking vector r must satisfy and will

thus be the Perron eigenvector of AT. In this example, we obtain

so a search that turns up these five sites would list them in the order 5, 4, 3, 1, 2.
Google actually uses a variant of the method described here and computes the rank-

ing vector via an iterative method very similar to the power method (Section 4.5).

AT � E0 0 1 0 0

1 0 0 0 0

0 1 0 0 1

1 1 1 0 0

1 1 0 1 0

U      and r � E0.14

0.08

0.22

0.27

0.29

U
ATr �

1
a

r

r4 � a1r1 � r2 � r3 2
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Markov Chains

Which of the stochastic matrices in Exercises 1–6 are regular?

1. 2.

3. 4.

5. 6.

In Exercises 7–9, P is the transition matrix of a regular
Markov chain. Find the long range transition matrix L of P.

7. 8.

9.

10. Prove that the steady state probability vector of a
regular Markov chain is unique. [Hint: Use Theo-
rem 4.33 or Theorem 4.34.]

Population Growth

In Exercises 11–14, calculate the positive eigenvalue and a
corresponding positive eigenvector of the Leslie matrix L.

11. 12.

13. 14.

15. If a Leslie matrix has a unique positive eigenvalue l1,
what is the significance for the population if l1 � 1?
l1 � 1? l1 � 1?

16. Verify that the characteristic polynomial of the Leslie
matrix L in equation (3) is

[Hint: Use mathematical induction and expand
det(L � lI ) along the last column.]

� p � bns1s2
p sn�1 2cL1l 2 � 1�1 2n1ln � b1l

n�1 � b2s1l
n�2 � b3s1s2l

n�3

L � £ 1 5 3
1
3 0 0

0 2
3 0

§L � £ 0 7 4

0.5 0 0

0 0.5 0

§
L � c 1 1.5

0.5 0
dL � c 0 2

0.5 0
d

P � £0.2 0.3 0.4

0.6 0.1 0.4

0.2 0.6 0.2

§
P � C 1

2
1
3

1
6

1
2

1
2

1
3

0 1
6

1
2

SP � c 13 1
6

2
3

5
6

d

£0.5 1 0

0.5 0 1

0 0 0

§£0.1 0 0.5

0.5 1 0

0.4 0 0.5

§
£ 1

2 0 1
1
2 0 0

0 1 0

§c 13 1
2
3 0
d

c1 1
2

0 1
2

dc0 1

1 0
d

17. If all of the survival rates si are nonzero, let

Compute P �1LP and use it to find the characteristic
polynomial of L. [Hint: Refer to Exercise 32 in
Section 4.3.]

18. Verify that an eigenvector of L corresponding to l1 is

[Hint: Combine Exercise 17 above with Exercise 32 in
Section 4.3 and Exercise 46 in Section 4.4.]

In Exercises 19–21, compute the steady state growth rate of
the population with the Leslie matrix L from the given exer-
cise. Then use Exercise 18 to help find the corresponding
distribution of the age classes.

19. Exercise 19 in Section 3.7

20. Exercise 20 in Section 3.7

21. Exercise 24 in Section 3.7

22. Many species of seal have suffered from commercial
hunting. They have been killed for their skin, blubber,
and meat. The fur trade, in particular, reduced some
seal populations to the point of extinction. Today, the
greatest threats to seal populations are decline of fish
stocks due to overfishing, pollution, disturbance of
habitat, entanglement in marine debris, and culling by
fishery owners. Some seals have been declared endan-
gered species; other species are carefully managed.
Table 4.7 gives the birth and survival rates for the
northern fur seal, divided into 2-year age classes.
[The data are based on A. E. York and J. R. Hartley,
“Pup Production Following Harvest of Female North-
ern Fur Seals,” Canadian Journal of Fisheries and
Aquatic Science, 38 (1981), pp. 84–90.]

x1 � G
1

s1>l1

s1s2>l1
2

s1s2s3>l1
3

o
s1s2s3

p sn�1>l1
n�1

W

P � E1 0 0 p 0

0 s1 0 p 0

0 0 s1s2
p 0

o o o ∞ o
0 0 0 p s1s2

p sn�1

U

Exercises 4. 6

CAS

CAS
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Section 4.6 Applications and the Perron-Frobenius Theorem 371

(a) Construct the Leslie matrix L for these data and
compute the positive eigenvalue and a correspond-
ing positive eigenvector.

(b) In the long run, what percentage of seals will be in
each age class and what will the growth rate be?

Exercise 23 shows that the long-run behavior of a population
can be determined directly from the entries of its Leslie matrix.

23. The net reproduction rate of a population is defined as

where the bi are the birth rates and the sj are the
survival rates for the population.

(a) Explain why r can be interpreted as the average
number of daughters born to a single female over
her lifetime.

r � b1 � b2s1 � b3s1s2 � p � bns1s2
p sn�1

(b) Show that r � 1 if and only if l1 � 1. (This repre-
sents zero population growth.) [Hint: Let

Show that l is an eigenvalue of L if and only if
g(l) � 1.]

(c) Assuming that there is a unique positive eigen-
value l1, show that r � 1 if and only if the popula-
tion is decreasing and r � 1 if and only if the pop-
ulation is increasing.

A sustainable harvesting policy is a procedure that allows a
certain fraction of a population (represented by a population
distribution vector x) to be harvested so that the population
returns to x after one time interval (where a time interval is
the length of one age class). If h is the fraction of each age
class that is harvested, then we can express the harvesting
procedure mathematically as follows: If we start with a
population vector x, after one time interval we have Lx;
harvesting removes hLx, leaving

Sustainability requires that

24. If l1 is the unique positive eigenvalue of a Leslie
matrix L and h is the sustainable harvest ratio, prove
that h � 1 � 1�l1.

25. (a) Find the sustainable harvest ratio for the wood-
land caribou in Exercise 42 in Section 3.7.

(b) Using the data in Exercise 42 in Section 3.7, reduce
the caribou herd according to your answer to
part (a). Verify that the population returns to its
original level after one time interval.

26. Find the sustainable harvest ratio for the seal in
Exercise 22. (Conservationists have had to harvest
seal populations when overfishing has reduced the
available food supply to the point where the seals are
in danger of starvation.)

27. Let L be a Leslie matrix with a unique positive eigen-
value l1. Show that if l is any other (real or complex)
eigenvalue of L, then |l| � l1. [Hint: Write l�
r(cos u� i sin u) and substitute it into the equation
g(l) � 1, as in part (b) of Exercise 23. Use De Moivre’s
Theorem and then take the real part of both sides. The
Triangle Inequality should prove useful.]

11 � h 2Lx � x

Lx � hLx � 11 � h 2Lx

g1l2 �
b1

l
�

b2s1

l2 �
b3s1s2

l3 � p �
bns1s2

p sn�1

ln

Table 4. 7
Age (years) Birth Rate Survival Rate

0–2 0.00 0.91
2–4 0.02 0.88
4–6 0.70 0.85
6–8 1.53 0.80

8–10 1.67 0.74
10–12 1.65 0.67
12–14 1.56 0.59
14–16 1.45 0.49
16–18 1.22 0.38
18–20 0.91 0.27
20–22 0.70 0.17
22–24 0.22 0.15
24–26 0.00 0.00

CAS

a + bi
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372 Chapter 4 Eigenvalues and Eigenvectors

The Perron-Frobenius Theorem

In Exercises 28–31, find the Perron root and the correspond-
ing Perron eigenvector of A.

28. 29.

30. 31.

It can be shown that a nonnegative n � n matrix is irre-
ducible if and only if (I � A) n�1 � O. In Exercises 32–35,
use this criterion to determine whether the matrix A is irre-
ducible. If A is reducible, find a permutation of its rows and
columns that puts A into the block form

32. 33.

34. 35.

36. (a) If A is the adjacency matrix of a graph G, show
that A is irreducible if and only if G is connected.
(A graph is connected if there is a path between
every pair of vertices.)

(b) Which of the graphs in Section 4.0 have an
irreducible adjacency matrix? Which have a
primitive adjacency matrix?

37. Let G be a bipartite graph with adjacency matrix A.

(a) Show that A is not primitive.
(b) Show that if l is an eigenvalue of A, so is �l.

[Hint: Use Exercise 78 in Section 3.7 and partition
an eigenvector for l so that it is compatible with
this partitioning of A. Use this partitioning to find
an eigenvector for �l.]

38. A graph is called k-regular if k edges meet at each ver-
tex. Let G be a k-regular graph.

(a) Show that the adjacency matrix A of G
has l� k as an eigenvalue. [Hint: Adapt 
Theorem 4.30.]

A � E0 1 0 0 0

0 0 0 0 1

1 0 0 0 1

0 0 1 0 0

0 0 0 1 1

UA � E0 1 0 0 0

0 0 1 0 1

1 0 1 0 1

0 0 1 1 0

1 0 0 0 0

U
A � ≥ 0 0 1 0

0 0 1 1

1 0 0 0

1 1 0 0

¥A � ≥ 0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

¥
c B C

O D
d

A � £ 2 1 1

1 1 0

1 0 1

§A � £ 0 1 1

1 0 1

1 1 0

§
A � c 1 3

2 0
dA � c 2 0

1 1
d

(b) Show that if A is primitive, then the other eigen-
values are all less than k in absolute value. (Hint:
Adapt Theorem 4.31.)

39. Explain the results of your exploration in Section 4.0
in light of Exercises 36–38 and Section 4.5.

In Exercise 40, the absolute value of a matrix is
defined to be the matrix .
40. Let A and B be n � n matrices, x a vector in �n, and c a

scalar. Prove the following matrix inequalities:

(a) (b)
(c) (d)

41. Prove that a 2 � 2 matrix A � is reducible

if and only if a12 � 0 or a21 � 0.

42. Let A be a nonnegative, irreducible matrix such 
that is invertible and Let

and v1 be the Perron root and Perron eigenvector 
of A.

(a) Prove that . [Hint: Apply Exercise 22
in Section 4.3 and Theorem 4.18(b).]

(b) Deduce from (a) that .

Linear Recurrence Relations

In Exercises 43–46, write out the first six terms of the
sequence defined by the recurrence relation with the given
initial conditions.

43.

44.

45.

46.

In Exercises 47–52, solve the recurrence relation with the
given initial conditions.

47.

48.

49.

50.

51.

52. The recurrence relation in Exercise 45. Show that your
solution agrees with the answer to Exercise 45.

53. Complete the proof of Theorem 4.38(a) by showing
that if the recurrence relation xn � axn�1 � bxn�2 has

b0 � 0, b1 � 1, bn � 2bn�1 � 2bn�2 for n 
 2

a0 � 4, a1 � 1, an � an�1 � an�2>4 for n 
 2

y1 � 1, y2 � 6, yn � 4yn�1 � 4yn�2 for n 
 3

x0 � 0, x1 � 1, xn � 4xn�1 � 3xn�2 for n 
 2

x0 � 0, x1 � 5, xn � 3xn�1 � 4xn�2 for n 
 2

b0 � 1, b1 � 1, bn � 2bn�1 � bn�2 for n 
 2

y0 � 0, y1 � 1, yn � yn�1 � yn�2 for n 
 2

a1 � 128, an � an�1>2 for n 
 2

x0 � 1, xn � 2xn�1 for n 
 1

v1 7 Av1

0 6 l1 6 1

l1

1I � A 2�1 
 O.I � A

c a11 a12

a21 a22
d0AB 0 � 0A 0 0B 00Ax 0 � 0A 0 0x 0 0A � B 0 � 0A 0 � 0B 00cA 0 � 0c 0 0A 0

|A| � 3 |aij| 4 A � 3aij 4

a + bi
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Section 4.6 Applications and the Perron-Frobenius Theorem 373

distinct eigenvalues l1 l2, then the solution will be
of the form

[Hint: Show that the method of Example 4.40 works in
general.]

54. Show that for any choice of initial conditions x0 � r
and x1 � s, the scalars c1 and c2 can be found, as stated
in Theorem 4.38(a) and (b).

55. The Fibonacci recurrence fn � fn�1 � fn�2 has the asso-
ciated matrix equation xn � Axn�1, where

(a) With f0 � 0 and f1 � 1, use mathematical induc-
tion to prove that

for all n 
 1.
(b) Using part (a), prove that

for all n 
 1. [This is called Cassini’s Identity,
after the astronomer Giovanni Domenico Cassini
(1625–1712). Cassini was born in Italy but, on the
invitation of Louis XIV, moved in 1669 to France,
where he became director of the Paris Observa-
tory. He became a French citizen and adopted the
French version of his name: Jean-Dominique
Cassini. Mathematics was one of his many interests
other than astronomy. Cassini’s Identity was pub-
lished in 1680 in a paper submitted to the Royal
Academy of Sciences in Paris.]

(c) An 8 � 8 checkerboard can be dissected as shown
in Figure 4.29(a) and the pieces reassembled to
form the 5 � 13 rectangle in Figure 4.29(b).

fn�1fn�1 � fn
2 � 1�1 2n

An � c fn�1 fn

fn fn�1

d
xn � c fn

fn�1

d  and A � c 1 1

1 0
d

xn � c1l1
n � c2l2

n



(a)

Figure 4. 29

(b)

Figure 4. 30

Figure 4. 31
The five ways to tile a 1 � 3 rectangle

The area of the square is 64 square units, but the
rectangle’s area is 65 square units! Where did the
extra square come from? [Hint: What does this
have to do with the Fibonacci sequence?]

56. You have a supply of three kinds of tiles: two kinds of
1 � 2 tiles and one kind of 1 � 1 tile, as shown in Fig-
ure 4.30.

Let tn be the number of different ways to cover a
1 � n rectangle with these tiles. For example,
Figure 4.31 shows that t3 � 5.

(a) Find t1, . . . , t5.
(Does t0 make any sense? If so, what is it?)

(b) Set up a second order recurrence relation for tn.
(c) Using t1 and t2 as the initial conditions, solve the

recurrence relation in part (b). Check your answer
against the data in part (a).

57. You have a supply of 1 � 2 dominoes with which to
cover a 2 � n rectangle. Let dn be the number of
different ways to cover the rectangle. For example,
Figure 4.32 shows that d3 � 3.

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



374 Chapter 4 Eigenvalues and Eigenvectors

64.

65. A scientist places two strains of bacteria, X and Y, in a
petri dish. Initially, there are 400 of X and 500 of Y.
The two bacteria compete for food and space but do
not feed on each other. If x � x(t) and y � y(t) are the
numbers of the strains at time t days, the growth rates
of the two populations are given by the system

(a) Determine what happens to these two populations
by solving the system of differential equations.

(b) Explore the effect of changing the initial popula-
tions by letting x(0) � a and y(0) � b. Describe what
happens to the populations in terms of a and b.

66. Two species, X and Y, live in a symbiotic relationship.
That is, neither species can survive on its own and each
depends on the other for its survival. Initially, there are
15 of X and 10 of Y. If x � x(t) and y � y(t) are the
sizes of the populations at time t months, the growth
rates of the two populations are given by the system

Determine what happens to these two populations.

In Exercises 67 and 68, species X preys on species Y. The sizes
of the populations are represented by x � x(t) and y � y(t).
The growth rate of each population is governed by the system
of differential equations x� � Ax � b, where

and b is a constant vector. Determine what happens

to the two populations for the given A and b and initial con-
ditions x(0). (First show that there are constants a and b
such that the substitutions x � u � a and y � v � b convert
the system into an equivalent one with no constant terms.)

67.

68.

69. Let x � x(t) be a twice-differentiable function and
consider the second order differential equation

(11)

(a) Show that the change of variables y � x� and z �
x allows equation (11) to be written as a system
of two linear differential equations in y and z.

x– � ax¿ � bx � 0

A � c�1 1

�1 �1
d , b � c 0

40
d , x10 2 � c 10

30
d

A � c 1 1

�1 1
d , b � c�30

�10
d , x10 2 � c 20

30
d

x � cx
y
d

y¿ � 0.4x � 0.2y

x¿ � �0.8x � 0.4y

y¿ � �0.2x � 1.5y

x¿ � 1.2x � 0.2y

z¿ � 3x � z,  z 10 2 � 4
y¿ � x � 2y � z,  y 10 2 � 3
x¿ � x � 3z,  x 10 2 � 2

Figure 4. 32
The three ways to cover a 2 � 3 rectangle with 1 � 2
dominoes

(a) Find d1, . . . , d5.
(Does d0 make any sense? If so, what is it?)

(b) Set up a second order recurrence relation for dn.
(c) Using d1 and d2 as the initial conditions, solve the

recurrence relation in part (b). Check your answer
against the data in part (a).

58. In Example 4.41, find eigenvectors v1 and v2 corre-

sponding to and With

verify formula (2) in Section 4.5. That is,

show that, for some scalar c1,

Systems of Linear Differential Equations

In Exercises 59–64, find the general solution to the given
system of differential equations. Then find the specific
solution that satisfies the initial conditions. (Consider
all functions to be functions of t.)

59.

60.

61.

62.

63.

z¿ � x � y,   z 10 2 � �1
y¿ � x � z,  y 10 2 � 0
x¿ � y � z,  x 10 2 � 1

yœ
2 � y1 � y2,  y210 2 � 1

yœ
1 � y1 � y2,  y110 2 � 1

xœ
2 � x1 � x2,  x210 2 � 0

xœ
1 � x1 � x2,  x110 2 � 1

y¿ � �x � 2y,  y 10 2 � 1
x¿ �  2x � y,  x 10 2 � 1

y¿ � 2x � 2y,  y 10 2 � 5
x¿ � x � 3y,  x 10 2 � 0

dy
dxa + bi

lim
kSq

xk

l1
k � c1v1

xk � c fk

fk�1

d , l2 �
1 � 15

2
.l1 �

1 � 15

2

�

�
I I I I II I I I I �������������������������������
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adjoint of a matrix, 287
algebraic multiplicity of an

eigenvalue, 305
characteristic equation, 303
characteristic polynomial, 303
cofactor expansion, 277
Cramer’s Rule, 285–286
determinant, 274–276

diagonalizable matrix, 314
eigenvalue, 265
eigenvector, 265
eigenspace, 267
Fundamental Theorem of Invertible

Matrices, 307
geometric multiplicity of an

eigenvalue, 305

Gerschgorin disk, 330
Gerschgorin’s Disk Theorem, 332
Láplace Expansion Theorem, 277
power method (and its variants),

322–330
properties of determinants, 280–285
similar matrices, 312

Key Definitions and Concepts

Chapter Review 375

(b) Show that the characteristic equation of the
system in part (a) is l2 � al� b � 0.

70. Show that there is a change of variables that converts
the nth order differential equation

into a system of n linear differential equations whose
coefficient matrix is the companion matrix C( p) of the
polynomial p(l) � ln � an�1l

n�1 � p � a1l� a0.
[The notation x (k) denotes the kth derivative of x. See
Exercises 26–32 in Section 4.3 for the definition of a
companion matrix.]

In Exercises 71 and 72, use Exercise 69 to find the general
solution of the given equation.

71. 72.

In Exercises 73–76, solve the system of differential equations
in the given exercise using Theorem 4.41.

73. Exercise 59 74. Exercise 60

75. Exercise 63 76. Exercise 64

Discrete Linear Dynamical Systems

In Exercises 77–84, consider the dynamical system
.

(a) Compute and plot .

(b) Compute and plot .

(c) Using eigenvalues and eigenvectors, classify the origin as
an attractor, repeller, saddle point, or none of these.
(d) Sketch several typical trajectories of the system.

77. 78. A � c 0.5 �0.5

0 0.5
dA � c2 1

0 3
d

x0, x1, x2, x3 for x0 � c1
0
dx0, x1, x2, x3 for x0 � c1

1
dxk�1 � Axk

x– � 4x¿ � 3x � 0x– � 5x¿ � 6x � 0

x 1n2 � an�1x
1n�12 � p � a1x¿ � a0 � 0

79. 80.

81. 82.

83. 84.

In Exercises 85–88, the given matrix is of the form

. In each case, A can be factored as the

product of a scaling matrix and a rotation matrix. Find the
scaling factor r and the angle of rotation. Sketch the first
four points of the trajectory for the dynamical system

with and classify the origin as a spiral

attractor, spiral repeller, or orbital center.

85. 86.

87. 88.

In Exercises 89–92, find an invertible matrix P and a

matrix C of the form such that .

Sketch the first six points of the trajectory for the dynamical

system with and classify the origin as

a spiral attractor, spiral repeller, or orbital center.

89. 90.

91. 92. A � c0 �1

1 23
dA � c 1 �1

1 0
d

A � c 2 1

�2 0
dA � c0.1 �0.2

0.1 0.3
d

x0 � c 1
1
dxk�1 � Axk

A � PCP �1C � c a �b

b a
d

A � c�23>2 �1>2
1>2 �23>2 dA � c 1 23

�23 1
d

A � c 0 0.5

�0.5 0   
dA � c 1 �1

1 1
d

x0 � c 1
1
dxk�1 � Axk

u

A � ca �b

b a
d

A � c 0 �1.5

1.2 3.6
dA � c 0.2 0.4

�0.2 0.8
d

A � c0.1 0.9

0.5 0.5
dA � c 1.5 �1

�1 0
d

A � c�4 2

1 �3
dA � c 2 �1

�1 2
d
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376 Chapter 4 Eigenvalues and Eigenvectors

Review Questions

1. Mark each of the following statements true or false:

(a) For all square matrices A, det(�A) � �det A.
(b) If A and B are n � n matrices, then det(AB) �

det (BA).
(c) If A and B are n � n matrices whose columns

are the same but in different orders, then
det B � �det A.

(d) If A is invertible, then det(A�1) � det AT.
(e) If 0 is the only eigenvalue of a square matrix A,

then A is the zero matrix.
(f) Two eigenvectors corresponding to the same

eigenvalue must be linearly dependent.
(g) If an n � n matrix has n distinct eigenvalues, then

it must be diagonalizable.
(h) If an n � n matrix is diagonalizable, then it must

have n distinct eigenvalues.
(i) Similar matrices have the same eigenvectors.
(j) If A and B are two n � n matrices with the same

reduced row echelon form, then A is similar to B.

2. .

(a) Compute det A by cofactor expansion along any
row or column.

(b) Compute det A by first reducing A to triangular
form.

3. .

4. Let A and B be 4 � 4 matrices with det A � 2 and
. Find det C for the indicated matrix C:

(a) C � (AB)�1 (b) C = A2B(3AT)

5. If A is a skew-symmetric n � n matrix and n is odd,
prove that det A � 0.

6. Find all values of k for which 

In Questions 7 and 8, show that x is an eigenvector of A and
find the corresponding eigenvalue.

7.

8. x � £ 3

�1

2

§ , A � £ 13 �60 �45

�5 18 15

10 �40 �32

§
x � c 1

2
d , A � c 3 1

4 3
d

† 1 �1 2

1 1 k

2 4 k2

† � 0.

det B � �1
4

If † a b c

d e f

g h i

† � 3, find † 3d 2e � 4f f

3a 2b � 4c c

3g 2h � 4i i

†

Let A � £ 1 3 5

3 5 7

7 9 11

§

9.

(a) Find the characteristic polynomial of A.
(b) Find all of the eigenvalues of A.
(c) Find a basis for each of the eigenspaces of A.
(d) Determine whether A is diagonalizable. If A is

not diagonalizable, explain why not. If A is diago-
nalizable, find an invertible matrix P and a diago-
nal matrix D such that .

10. If A is a 3 � 3 diagonalizable matrix with eigenvalues
�2, 3, and 4, find det A.

11. If A is a 2 � 2 matrix with eigenvalues ,

and corresponding eigenvectors ,

find

12. If A is a diagonalizable matrix and all of its eigenvalues
satisfy , prove that An approaches the zero ma-
trix as n gets large.

In Questions 13–15, determine, with reasons, whether A is
similar to B. If A ~ B, give an invertible matrix P such that
P�1 AP � B.

13.

14.

15.

16. Let Find all values of k for which:

(a) A has eigenvalues 3 and �1.
(b) A has an eigenvalue with algebraic multiplicity 2.
(c) A has no real eigenvalues.

17. If A3 � A, what are the possible eigenvalues of A?

18. If a square matrix A has two equal rows, why must A
have 0 as one of its eigenvalues?

19. If x is an eigenvector of A with eigenvalue , show
that x is also an eigenvector of . What is
the corresponding eigenvalue?

20. If A is similar to B with P�1AP � B and x is an eigen-
vector of A, show that P�1x is an eigenvector of B.

A2 � 5A � 2I
l � 3

A � c 2 k

0 1
d .

A � £ 1 1 0

0 1 1

0 0 1

§ , B � £ 1 1 0

0 1 0

0 0 1

§
A � c 2 0

0 3
d , B � c 3 0

0 2
d

A � c 4 2

3 1
d , B � c 2 2

3 2
d

ƒ l ƒ 6 1

A�5 c 3
7
d . v2 � c 1

�1
dv1 � c 1

1
d ,l1 � 1

2, l2 � �1

P �1AP � D

Let A � £�5 �6 3

3 4 �3

0 0 �2

§ .

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



. . . that sprightly Scot of Scots,
Douglas, that runs a-horseback up
a hill perpendicular—

—William Shakespeare
Henry IV, Part I
Act II, Scene IV

5. 0 Introduction:  Shadows on a Wall
In this chapter, we will extend the notion of orthogonal projection that we encoun-
tered first in Chapter 1 and then again in Chapter 3. Until now, we have discussed
only projection onto a single vector (or, equivalently, the one-dimensional subspace
spanned by that vector). In this section, we will see if we can find the analogous for-
mulas for projection onto a plane in �3. Figure 5.1 shows what happens, for example,
when parallel light rays create a shadow on a wall. A similar process occurs when a
three-dimensional object is displayed on a two-dimensional screen, such as a com-
puter monitor. Later in this chapter, we will consider these ideas in full generality.

To begin, let’s take another look at what we already know about projections. In
Section 3.6, we showed that, in �2, the standard matrix of a projection onto the line

through the origin with direction vector is

Hence, the projection of the vector v onto this line is just Pv.

Problem 1 Show that P can be written in the equivalent form

(What does u represent here?)
Problem 2 Show that P can also be written in the form P � uuT, where u is a unit

vector in the direction of d.
Problem 3 Using Problem 2, find P and then find the projection of

onto the lines with the following unit direction vectors:

Problem 4 Using the form P � uuT, show that (a) PT � P (i.e., P is symmetric)
and (b) P 2 � P (i.e., P is idempotent).

1a 2  u � c 1>12

�1>12
d   1b 2  u � c 453

5

d    1c 2  u � c�3
5
4
5

d
v � c 3

�4
d

P � c cos2 u cos u sin u

cos u sin u sin2 u
d

P �
1

d1
2 � d2

2 c d1
2 d1d2

d1d2 d2
2 d � c d1

2> 1d1
2 � d2

2 2 d1d2> 1d1
2 � d2

2 2
d1d2> 1d1

2 � d2
2 2 d2

2> 1d1
2 � d2

2 2 d
d � cd1

d2

d

377

Figure 5. 1
Shadows on a wall are projections

�
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378 Chapter 5 Orthogonality

Problem 5 Explain why, if P is a 2 � 2 projection matrix, the line onto which it
projects vectors is the column space of P.

Now we will move into �3 and consider projections onto planes through the
origin. We will explore several approaches.

Figure 5.2 shows one way to proceed. If p is a plane through the origin in �3 with
normal vector n and if v is a vector in �3, then p � projp (v) is a vector in p such that
v � cn � p for some scalar c.

� p � v � cn

n
v

�cn

Figure 5. 2
Projection onto a plane

Problem 6 Using the fact that n is orthogonal to every vector in p, solve 
v � cn � p for c to find an expression for p in terms of v and n.

Problem 7 Use the method of Problem 6 to find the projection of

onto the planes with the following equations:

Another approach to the problem of finding the projection of a vector onto a
plane is suggested by Figure 5.3. We can decompose the projection of v onto p into
the sum of its projections onto the direction vectors for p. This works only if the
direction vectors are orthogonal unit vectors. Accordingly, let u1 and u2 be direction
vectors for p with the property that7u1 7 � 7u2 7 � 1  and  u1

# u2 � 0

1a 2  x � y � z � 0  1b 2  x � 2z � 0  1c 2  2x � 3y � z � 0

v � £ 1

0

�2

§

u2

u1
p1

p2

p � p1 � p2

v

�

Figure 5. 3
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Section 5.1 Orthogonality in �n 379

By Problem 2, the projections of v onto u1 and u2 are

respectively. To show that p1 � p2 gives the projection of v onto p, we need to show
that v � (p1 � p2 ) is orthogonal to p. It is enough to show that v � (p1 � p2 ) is
orthogonal to both u1 and u2. (Why?)

Problem 8 Show that u1
# (v � (p1 � p2 )) � 0 and u2

# (v � (p1 � p2 )) � 0. [Hint:
Use the alternative form of the dot product, xTy � x # y, together with the fact that u1

and u2 are orthogonal unit vectors.]

It follows from Problem 8 and the comments preceding it that the matrix of the
projection onto the subspace p of �3 spanned by orthogonal unit vectors u1 and u2 is

(1)

Problem 9 Repeat Problem 7, using the formula for P given by equation (1). Use
the same v and use u1 and u2, as indicated below. (First, verify that u1 and u2 are
orthogonal unit vectors in the given plane.)

Problem 10 Show that a projection matrix given by equation (1) satisfies proper-
ties (a) and (b) of Problem 4.

Problem 11 Show that the matrix P of a projection onto a plane in �3 can be
expressed as

for some 3 � 2 matrix A. [Hint: Show that equation (1) is an outer product expansion.]
Problem 12 Show that if P is the matrix of a projection onto a plane in �3, then

rank(P) � 2.

In this chapter, we will look at the concepts of orthogonality and orthogonal pro-
jection in greater detail. We will see that the ideas introduced in this section can be
generalized and that they have many important applications.

Orthogonality in �n

In this section, we will generalize the notion of orthogonality of vectors in �n from
two vectors to sets of vectors. In doing so, we will see that two properties make the
standard basis {e1, e2, . . . , en} of �n easy to work with: First, any two distinct vectors

P � AAT

1c 2   2x � 3y � z � 0 with u1 � £ 1>13

�1>13

1>13

§  and u2 � £ 2>16

1>16

�1>16

§
1b 2  x � 2z � 0 with u1 � £ 2>15

0

1>15

§  and u2 � £ 01
0

§
1a 2  x � y � z � 0 with u1 � £�2>16

1>16

1>16

§  and u2 � £ 0

1>12

�1>12

§

P � u1u1
T � u2u2

T

p1 � u1u1
Tv  and  p2 � u2u2

Tv
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Theorem 5. 1

in the set are orthogonal. Second, each vector in the set is a unit vector. These
two properties lead us to the notion of orthogonal bases and orthonormal bases—
concepts that we will be able to fruitfully apply to a variety of applications.

Orthogonal and Orthonormal Sets of Vectors

Definition A set of vectors {v1, v2, . . . , vk} in �n is called an orthogonal set if
all pairs of distinct vectors in the set are orthogonal—that is, if

The standard basis {e1, e2, . . . , en} of �n is an orthogonal set, as is any subset of it. As
the first example illustrates, there are many other possibilities.

Show that {v1, v2, v3} is an orthogonal set in �3 if

Solution We must show that every pair of vectors from this set is orthogonal. This is
true, since

Geometrically, the vectors in Example 5.1 are mutually perpendicular, as 
Figure 5.4 shows.

One of the main advantages of working with orthogonal sets of vectors is that
they are necessarily linearly independent, as Theorem 5.1 shows.

If {v1, v2, . . . , vk} is an orthogonal set of nonzero vectors in �n, then these vectors
are linearly independent.

Proof If c1, . . . , ck are scalars such that c1v1 � p � ckvk � 0, then

or, equivalently,

(1)

Since {v1, v2, . . . , vk} is an orthogonal set, all of the dot products in equation (1)
are zero, except vi

# vi. Thus, equation (1) reduces to

ci1vi
# vi 2 � 0

c11v1
# vi 2 � p � ci1vi

# vi 2 � p � ck1vk
# vi 2 � 0

1c1v1 � p � ckvk 2 # vi � 0 # vi � 0

v1
# v3 � 211 2 � 11�1 2 � 1�1 2 11 2 � 0

v2
# v3 � 011 2 � 11�1 2 � 11 2 11 2 � 0

v1
# v2 � 210 2 � 111 2 � 1�1 2 11 2 � 0

v1 � £ 2

1

�1

§ ,  v2 � £ 01
1

§ ,  v3 � £ 1

�1

1

§

vi
# vj � 0  whenever  i  j  for i, j � 1, 2, . . . , k

380 Chapter 5 Orthogonality

Example 5. 1

z

y

x

v3 v2

v1

Figure 5. 4
An orthogonal set of vectors
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Section 5.1 Orthogonality in �n 381

Now, vi
# vi 0 because vi 0 by hypothesis. So we must have ci � 0. The fact that

this is true for all i � 1, . . . , k implies that {v1, v2, . . . , vk} is a linearly independent set.

Remark Thanks to Theorem 5.1, we know that if a set of vectors is orthogonal,
it is automatically linearly independent. For example, we can immediately deduce
that the three vectors in Example 5.1 are linearly independent. Contrast this approach
with the work needed to establish their linear independence directly!

Definition An orthogonal basis for a subspace W of �n is a basis of W that is
an orthogonal set.

The vectors

from Example 5.1 are orthogonal and, hence, linearly independent. Since any three
linearly independent vectors in �3 form a basis for �3, by the Fundamental Theorem
of Invertible Matrices, it follows that {v1, v2, v3} is an orthogonal basis for �3.

Remark In Example 5.2, suppose only the orthogonal vectors v1 and v2 were
given and you were asked to find a third vector v3 to make {v1, v2, v3} an orthogonal
basis for �3. One way to do this is to remember that in �3, the cross product of two
vectors v1 and v2 is orthogonal to each of them. (See Exploration: The Cross Product
in Chapter 1.) Hence we may take

Note that the resulting vector is a multiple of the vector v3 in Example 5.2, as it must be.

Find an orthogonal basis for the subspace W of �3 given by

Solution Section 5.3 gives a general procedure for problems of this sort. For now, we
will find the orthogonal basis by brute force. The subspace W is a plane through the
origin in �3. From the equation of the plane, we have x � y � 2z, so W consists of
vectors of the form

£ y � 2z

y

z

§ � y £11
0

§ � z £�2

0

1

§

W � • £xy
z

§  : x � y � 2z � 0¶

v3 � v1 � v2 � £ 2

1

�1

§ � £ 01
1

§ � £ 2

�2

2

§

v1 � £ 2

1

�1

§ ,  v2 � £ 01
1

§ ,  v3 � £ 1

�1

1

§



Example 5. 2

Example 5. 3
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Theorem 5. 2

It follows that and are a basis for W, but they are not orthogo-

nal. It suffices to find another nonzero vector in W that is orthogonal to either one of
these.

Suppose is a vector in W that is orthogonal to u. Then x � y � 2z � 0,

since w is in the plane W. Since u # w � 0, we also have x � y � 0. Solving the linear
system

we find that x � �z and y � z. (Check this.) Thus, any nonzero vector w of the form

will do. To be specific, we could take . It is easy to check that {u, w} is an

orthogonal set in W and, hence, an orthogonal basis for W, since dim W � 2.

Another advantage of working with an orthogonal basis is that the coordinates of
a vector with respect to such a basis are easy to compute. Indeed, there is a formula
for these coordinates, as the following theorem establishes.

Let {v1, v2, . . . , vk} be an orthogonal basis for a subspace W of �n and let w be any
vector in W. Then the unique scalars c1, . . . , ck such that

are given by

Proof Since {v1, v2, . . . , vk} is a basis for W, we know that there are unique scalars
c1, . . . , ck such that w � c1v1 � p � ckvk (from Theorem 3.29). To establish the
formula for ci, we take the dot product of this linear combination with vi to obtain

since vj
# vi � 0 for j i. Since vi 0, vi

# vi 0. Dividing by vi
# vi, we obtain the

desired result.


� ci 1vi
# vi 2� c11v1
# vi 2 � p � ci1vi

# vi 2 � p � ck1vk
# vi 2w # vi � 1c1v1 � p � ckvk 2 # vi

ci �
w # vi

vi
# vi

  for i � 1, . . . , k

w � c1v1 � p � ckvk

w � £�1

1

1

§
w � £�z

z

z

§
x � y � 0

x � y � 2z � 0

w � £xy
z

§
v � £�2

0

1

§u � £11
0

§
382 Chapter 5 Orthogonality
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Section 5.1 Orthogonality in �n 383

Find the coordinates of with respect to the orthogonal basis 

of Examples 5.1 and 5.2.

Solution Using Theorem 5.2, we compute

Thus,

(Check this.) With the notation introduced in Section 3.5, we can also write the above
equation as

Compare the procedure in Example 5.4 with the work required to find these
coordinates directly and you should start to appreciate the value of orthogonal bases.

As noted at the beginning of this section, the other property of the standard basis
in �n is that each standard basis vector is a unit vector. Combining this property with
orthogonality, we have the following definition.

Definition A set of vectors in �n is an orthonormal set if it is an orthogonal
set of unit vectors. An orthonormal basis for a subspace W of �n is a basis of W
that is an orthonormal set.

Remark If S � {q1, . . . , qk} is an orthonormal set of vectors, then qi
# qj � 0 for

i j and . The fact that each qi is a unit vector is equivalent to qi
# qi � 1.

It follows that we can summarize the statement that S is orthonormal as

Show that S � {q1, q2} is an orthonormal set in �3 if

q1 � £ 1>13

�1>13

1>13

§   and  q2 � £ 1>16

2>16

1>16

§

qi
# qj � b0 if i  j

1 if i � j

7qi 7 � 1

3w 4B � £ 1
6
5
2
2
3

§
w � c1v1 � c2v2 � c3v3 � 1

6 v1 � 5
2 v2 � 2

3 v3

c3 �
w # v3

v3
# v3

�
1 � 2 � 3

1 � 1 � 1
�

2

3

c2 �
w # v2

v2
# v2

�
0 � 2 � 3

0 � 1 � 1
�

5

2

c1 �
w # v1

v1
# v1

�
2 � 2 � 3

4 � 1 � 1
�

1

6

B � 5v1, v2, v36w � £12
3

§Example 5. 4

Example 5. 5

�

�
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Theorem 5. 3

Solution We check that

If we have an orthogonal set, we can easily obtain an orthonormal set from it: We
simply normalize each vector.

Construct an orthonormal basis for �3 from the vectors in Example 5.1.

Solution Since we already know that v1, v2, and v3 are an orthogonal basis, we nor-
malize them to get

Then {q1, q2, q3} is an orthonormal basis for �3.

Since any orthonormal set of vectors is, in particular, orthogonal, it is linearly in-
dependent, by Theorem 5.1. If we have an orthonormal basis, Theorem 5.2 becomes
even simpler.

Let {q1, q2, . . . , qk} be an orthonormal basis for a subspace W of �n and let w be
any vector in W. Then

and this representation is unique.

Proof Apply Theorem 5.2 and use the fact that qi
# qi � 1 for i � 1, . . . , k.

Orthogonal Matrices

Matrices whose columns form an orthonormal set arise frequently in applications, as
you will see in Section 5.5. Such matrices have several attractive properties, which we
now examine.

w � 1w # q1 2q1 � 1w # q2 2q2 � p � 1w # qk 2qk

q3 �
1

‘ v3 ‘
v3 �

1

13
£ 1

�1

1

§ � £ 1>13

�1>13

1>13

§
q2 �

1

‘ v2 ‘
v2 �

1

12
£ 01

1

§ � £ 0

1>12

1>12

§
q1 �

1

‘ v1 ‘
v1 �

1

16
£ 2

1

�1

§ � £ 2>16

1>16

�1>16

§

q2
# q2 � 1>6 � 4>6 � 1>6 � 1

q1
# q1 � 1>3 � 1>3 � 1>3 � 1

q1
# q2 � 1>118 � 2>118 � 1>118 � 0

384 Chapter 5 Orthogonality
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Section 5.1 Orthogonality in �n 385

Theorem 5. 5

Theorem 5. 4 The columns of an matrix Q form an orthonormal set if and only if
QTQ � In.

Proof We need to show that

Let qi denote the ith column of Q (and, hence, the ith row of QT). Since the (i, j)
entry of QTQ is the dot product of the ith row of QT and the jth column of Q, it
follows that

(2)

by the definition of matrix multiplication.
Now the columns Q form an orthonormal set if and only if

which, by equation (2), holds if and only if

This completes the proof.

If the matrix Q in Theorem 5.4 is a square matrix, it has a special name.

Definition An n � n matrix Q whose columns form an orthonormal set is
called an orthogonal matrix.

The most important fact about orthogonal matrices is given by the next theorem.

A square matrix Q is orthogonal if and only if Q�1 � QT.

Proof By Theorem 5.4, Q is orthogonal if and only if QTQ � I. This is true if and
only if Q is invertible and Q�1 � QT, by Theorem 3.13.

Show that the following matrices are orthogonal and find their inverses:

Solution The columns of A are just the standard basis vectors for �3, which are
clearly orthonormal. Hence, A is orthogonal and

A�1 � AT � £ 0 0 1

1 0 0

0 1 0

§

A � £ 0 1 0

0 0 1

1 0 0

§   and  B � c cos u �sin u

sin u cos u
d

1QTQ 2 ij � b0 if i  j

1 if i � j

qi
# qj � b0 if i  j

1 if i � j

1QTQ 2 ij � qi
# qj

1QTQ 2 ij � b0 if i  j

1 if i � j

m � n

Orthogonal matrix is an unfortu-
nate bit of terminology. “Ortho-
normal matrix” would clearly be a
better term, but it is not standard.
Moreover, there is no term for a
nonsquare matrix with orthonor-
mal columns.

Example 5. 7
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Theorem 5. 6

For B, we check directly that

Therefore, B is orthogonal, by Theorem 5.5, and

Remark Matrix A in Example 5.7 is an example of a permutation matrix, a ma-
trix obtained by permuting the columns of an identity matrix. In general, any n � n
permutation matrix is orthogonal (see Exercise 25). Matrix B is the matrix of a rota-
tion through the angle u in �2. Any rotation has the property that it is a length-
preserving transformation (known as an isometry in geometry). The next theorem
shows that every orthogonal matrix transformation is an isometry. Orthogonal
matrices also preserve dot products. In fact, orthogonal matrices are characterized by
either one of these properties.

Let Q be an n � n matrix. The following statements are equivalent:

a. Q is orthogonal.
b. 7Qx 7� 7x 7 for every x in �n.
c. Qx # Qy � x # y for every x and y in �n.

Proof We will prove that (a) (c) (b) (a). To do so, we will need to make use
of the fact that if x and y are (column) vectors in �n, then x # y � xTy.

(a) (c) Assume that Q is orthogonal. Then QTQ � I, and we have

(c) (b) Assume that Qx # Qy � x # y for every x and y in �n. Then, taking y � x,
we have Qx # Qx � x # x, so .

(b) (a) Assume that property (b) holds and let qi denote the ith column of Q.
Using Exercise 63 in Section 1.2 and property (b), we have

for all x and y in �n. [This shows that (b) (c).]
Now if ei is the ith standard basis vector, then qi � Qei. Consequently,

Thus, the columns of Q form an orthonormal set, so Q is an orthogonal matrix.

qi
# qj � Qei

# Qej � ei
# ej � b0 if i  j

1 if i � j

1

� Qx # Q y

� 1
4 1 7Qx � Q y 7 2 � 7Qx � Qy 7 2 2� 1
4 1 7Q 1x � y 2 7 2 � 7Q 1x � y 2 7 2 2x # y � 1
4 1 7 x � y 7 2 � 7 x � y 7 2 2

1
7Qx 7 � 1Qx # Qx � 1x # x � 7 x 71

Qx # Qy � 1Qx 2TQy � xTQTQ y � xTIy � xTy � x # y

1

111

B�1 � BT � c   cos u sin u

�sin u cos u
d

� c cos2 u � sin2 u �cos u sin u � sin u cos u

�sin u cos u � cos u sin u sin2 u � cos2 u
d � c 1 0

0 1
d � I

BTB � c   cos u sin u

�sin u cos u
d c cos u �sin u

sin u   cos u
d

386 Chapter 5 Orthogonality

The word isometry literally means
“length preserving,” since it is de-
rived from the Greek roots isos
(“equal”) and metron (“measure”).
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Theorem 5. 8

Theorem 5. 7

Looking at the orthogonal matrices A and B in Example 5.7, you may notice that
not only do their columns form orthonormal sets—so do their rows. In fact, every
orthogonal matrix has this property, as the next theorem shows.

If Q is an orthogonal matrix, then its rows form an orthonormal set.

Proof From Theorem 5.5, we know that Q�1 � QT. Therefore,

so QT is an orthogonal matrix. Thus, the columns of QT—which are just the rows of
Q—form an orthonormal set.

The final theorem in this section lists some other properties of orthogonal
matrices.

Let Q be an orthogonal matrix.

a. Q�1 is orthogonal.
b. det Q � �1
c. If l is an eigenvalue of Q, then �l� � 1.
d. If Q1 and Q2 are orthogonal n�n matrices, then so is Q1Q2.

Proof We will prove property (c) and leave the proofs of the remaining properties as
exercises.

(c) Let l be an eigenvalue of Q with corresponding eigenvector v. Then Qv � lv,
and, using Theorem 5.6(b), we have

Since , this implies that �l� � 1.

Remark Property (c) holds even for complex eigenvalues. The matrix 

is orthogonal with eigenvalues i and �i, both of which have absolute value 1.

c 0 �1

1 0
d

7 v 7  0

7 v 7 � 7Q v 7 � 7lv 7 � 0l 0 7 v 7

1QT 2�1 � 1Q�1 2�1 � Q � 1QT 2T

In Exercises 1–6, determine which sets of vectors are
orthogonal.

1. 2.

3. 4. £ 12
3

§ , £ 4

1

–2

§ , £ –2

6

�1

§£ 3

1

�1

§ , £�1

2

1

§ , £ 2

�2

4

§
£ 4

2

�2

§ , £ 10
2

§ , £–2

5

1

§£�3

1

2

§ , £ 24
1

§ , £ 1

�1

2

§

Exercises 5. 1

5.

6. ≥ 1

0

1

–1

¥ , ≥ –1

1

0

–1

¥ , ≥ 1

1

1

0

¥ , ≥ 0

–1

1

1

¥
≥ 2

3

�1

4

¥ , ≥�2

1

�1

0

¥ , ≥�4

�6

2

7

¥

a + bi
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388 Chapter 5 Orthogonality

In Exercises 7–10, show that the given vectors form an ortho-
gonal basis for �2 or �3. Then use Theorem 5.2 to express
w as a linear combination of these basis vectors. Give the
coordinate vector of w with respect to the basis 
B� of �2 or of �3.

7.

8.

9.

10.

In Exercises 11–15, determine whether the given orthogonal
set of vectors is orthonormal. If it is not, normalize the
vectors to form an orthonormal set.

11. 12.

13. 14.

15.

In Exercises 16–21, determine whether the given matrix is
orthogonal. If it is, find its inverse.

16. 17.

18.

19.

20. ≥ 1
2 �1

2
1
2

1
2

1
2

1
2

1
2 �1

2

�1
2

1
2

1
2

1
2

1
2

1
2 �1

2
1
2

¥
£ cos u sin u �cos u �sin2 u

cos2 u sin u �cos u sin u

sin u 0 cos u

§
£ 1

2
1
3

2
5

1
2 �1

3
2
5

�1
2 0 4

5

§
c 1>12 1>12

�1>12 1>12
dc 0 1

1 0
d

≥ 1>2
1>2

�1>2
1>2 ¥ , ≥ 0

16>3
�11>16

�1>16

¥ , ≥ 13>2
�13>6
13>6

�13>6 ¥ , ≥ 0

0

1>12

1>12

¥
≥ 1

2
1
2

�1
2
1
2

¥ , ≥ 0
1
3
2
3
1
3

¥ , ≥ 1
2

�1
6
1
6

�1
6

¥£ 1
3
2
3
2
3

§ , £ 2
3

�1
3

0

§ , £ 1

2

�5
2

§
c 121

2

d , c 1
2

�1
2

dc 354
5

d , c�4
5
3
5

d

v1 � £ 11
1

§ , v2 � £ 2

�1

–1

§ , v3 � £ 0

1

�1

§ ; w � £ 12
3

§
v1 � £ 1

0

�1

§ , v2 � £ 12
1

§ , v3 � £ 1

�1

1

§ ; w � £ 11
1

§
v1 � c 3

1
d , v2 � c–2

6
d ; w � c 1

2
d

v1 � c 4

�2
d , v2 � c 1

2
d ; w � c 1

�3
dB � 5v1, v2, v365v1, v26 3w4B 21.

22. Prove Theorem 5.8(a).

23. Prove Theorem 5.8(b).

24. Prove Theorem 5.8(d).

25. Prove that every permutation matrix is orthogonal.

26. If Q is an orthogonal matrix, prove that any matrix
obtained by rearranging the rows of Q is also
orthogonal.

27. Let Q be an orthogonal 2 � 2 matrix and let x and y
be vectors in �2. If u is the angle between x and y,
prove that the angle between Qx and Qy is also u.
(This proves that the linear transformations defined by
orthogonal matrices are angle-preserving in �2, a fact
that is true in general.)

28. (a) Prove that an orthogonal 2 � 2 matrix must have
the form

where is a unit vector.

(b) Using part (a), show that every orthogonal 
2 � 2 matrix is of the form

where 0 � u� 2p.
(c) Show that every orthogonal 2 � 2 matrix corre-

sponds to either a rotation or a reflection in �2.
(d) Show that an orthogonal 2 � 2 matrix Q corre-

sponds to a rotation in �2 if det Q � 1 and a
reflection in �2 if det Q � �1.

In Exercises 29–32, use Exercise 28 to determine whether the
given orthogonal matrix represents a rotation or a reflection.
If it is a rotation, give the angle of rotation; if it is a reflec-
tion, give the line of reflection.

29. 30.

31. 32. c�3
5 �4

5

�4
5

3
5

dc �1>2 13>2
13>2 1>2 d

c �1>2 13>2
�13>2 �1>2 dc 1>12 �1>12

1>12 1>12
d

c cos u �sin u

sin u cos u
d   or  c cos u sin u

sin u �cos u
d

c a
b
d
c a �b

b a
d   or  c a b

b �a
d

≥ 1 0 0 �1>16

0 �2>3 1>12 �1>16

0 �2>3 1>12 �1>16

0 �1>3 0 �1>12

¥
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Section 5.2 Orthogonal Complements and Orthogonal Projections 389

33. Let A and B be orthogonal matrices.

(a) Prove that .
(b) Use part (a) to prove that, if det A � det B � 0,

then A � B is not invertible.

34. Let x be a unit vector in �n. Partition x as

Let

Prove that Q is orthogonal. (This procedure gives a
quick method for finding an orthonormal basis for �n

Q � £ x1 yT

y I � a 1

1 � x1

b yyT
§

x � ≥ x1

x2

o
xn

¥ � cx1

y
d

A1AT � BT 2B � A � B

n � n with a prescribed first vector x, a construction that is
frequently useful in applications.)

35. Prove that if an upper triangular matrix is orthogonal,
then it must be a diagonal matrix.

36. Prove that if , then there is no matrix A
such that for all x in �n.

37. Let B� be an orthonormal basis for �n.

(a) Prove that, for any x and y in �n,

(This identity is called Parseval’s Identity.)

(b) What does Parseval’s Identity imply about the
relationship between the dot products and
[x]B [y]B?# x # y

� 1x # vn 2 1y # vn 2x # y � 1x # v1 2 1y # v1 2 � 1x # v2 2 1y # v2 2 � p

5v1, p , vn67Ax 7 � 7 x 7 m � nn 7 m

Orthogonal Complements and 
Orthogonal Projections
In this section, we generalize two concepts that we encountered in Chapter 1. The no-
tion of a normal vector to a plane will be extended to orthogonal complements, and
the projection of one vector onto another will give rise to the concept of orthogonal
projection onto a subspace.

Orthogonal Complements

A normal vector n to a plane is orthogonal to every vector in that plane. If the plane
passes through the origin, then it is a subspace W of �3, as is span(n). Hence, we have
two subspaces of �3 with the property that every vector of one is orthogonal to every
vector of the other. This is the idea behind the following definition.

Definition Let W be a subspace of �n. We say that a vector v in �n is orthogo-
nal to W if v is orthogonal to every vector in W. The set of all vectors that are
orthogonal to W is called the orthogonal complement of W, denoted W�. That is,

If W is a plane through the origin in �3 and / is the line through the origin perpen-
dicular to W (i.e., parallel to the normal vector to W), then every vector v on / is or-
thogonal to every vector w in W; hence, / � W�. Moreover, W consists precisely of
those vectors w that are orthogonal to every v on /; hence, we also have W � /�.
Figure 5.5 illustrates this situation.

W� � 5v in �n : v # w � 0  for all w in W 6
Example 5. 8

W� is pronounced “W perp.”

v

w

W

�

Figure 5. 5
/ � W� and W � /�
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Theorem 5. 10

Theorem 5. 9

390 Chapter 5 Orthogonality

In Example 5.8, the orthogonal complement of a subspace turned out to be an-
other subspace. Also, the complement of the complement of a subspace was the orig-
inal subspace. These properties are true in general and are proved as properties (a)
and (b) of Theorem 5.9. Properties (c) and (d) will also be useful. (Recall that the in-
tersection A ¨ B of sets A and B consists of their common elements. See Appendix A.)

Let W be a subspace of �n.

a. W� is a subspace of �n.
b. (W�)� � W
c. W ¨ W� � {0}
d. If W � span(w1, . . . , wk), then v is in W� if and only if v # wi � 0 for all

i � 1, . . . , k.

Proof (a) Since 0 # w � 0 for all w in W, 0 is in W�. Let u and v be in W� and let 
c be a scalar. Then

Therefore,

so u � v is in W�.
We also have

from which we see that cu is in W�. It follows that W� is a subspace of �n.

(b) We will prove this property as Corollary 5.12.

(c) You are asked to prove this property in Exercise 23.

(d) You are asked to prove this property in Exercise 24.

We can now express some fundamental relationships involving the subspaces
associated with an m � n matrix.

Let A be an m � n matrix. Then the orthogonal complement of the row space of
A is the null space of A, and the orthogonal complement of the column space of A
is the null space of AT:

Proof If x is a vector in �n, then x is in (row(A))� if and only if x is orthogonal to
every row of A. But this is true if and only if Ax � 0, which is equivalent to x being in
null(A), so we have established the first identity. To prove the second identity, we
simply replace A by AT and use the fact that row(AT ) � col(A).

Thus, an m � n matrix has four subspaces: row(A), null(A), col(A), and null(AT ).
The first two are orthogonal complements in �n, and the last two are orthogonal

1row 1A 2 2� �  null1A 2   and  1col1A 2 2� �  null1AT 2

1cu 2 # w � c 1u # w 2 � c 10 2 � 0

1u � v 2 # w � u # w � v # w � 0 � 0 � 0

u # w � v # w � 0  for all w in W
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Section 5.2 Orthogonal Complements and Orthogonal Projections 391

complements in �m. The m � n matrix A defines a linear transformation from �n into
�m whose range is col(A). Moreover, this transformation sends null(A) to 0 in �m.
Figure 5.6 illustrates these ideas schematically. These four subspaces are called the
fundamental subspaces of the m � n matrix A.

Find bases for the four fundamental subspaces of

and verify Theorem 5.10.

Solution In Examples 3.45, 3.47, and 3.48, we computed bases for the row space,
column space, and null space of A. We found that row(A) � span(u1, u2, u3), where

Also, null(A) � span(x1, x2 ), where

To show that (row(A))� � null(A), it is enough to show that every ui is orthogonal to 
each xj, which is an easy exercise. (Why is this sufficient?)

x1 � E�1

�2

1

0

0

U,  x2 � E 1

�3

0

�4

1

U
u1 � 31 0 1 0 �1 4 ,  u2 � 30 1 2 0 3 4 ,  u3 � 30 0 0 1 4 4

A � ≥ 1 1 3 1 6

2 �1 0 1 �1

�3 2 1 �2 1

4 1 6 1 3

¥

TA

row(A) col(A)

null(A) null(AT)

�n �m

0 0

Figure 5. 6
The four fundamental subspaces

Example 5. 9
�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The column space of A is col(A) � span(a1, a2, a3), where

We still need to compute the null space of AT. Row reduction produces

So, if y is in the null space of AT, then y1 � �y4, y2 � �6y4, and y3 � �3y4.
It follows that

and it is easy to check that this vector is orthogonal to a1, a2, and a3.

The method of Example 5.9 is easily adapted to other situations.

Let W be the subspace of �5 spanned by

Find a basis for W�.

Solution The subspace W spanned by w1, w2, and w3 is the same as the column
space of

A � E 1 �1 0

�3 1 �1

5 2 4

0 �2 �1

5 3 5

U

w1 � E 1

�3

5

0

5

U,  w2 � E�1

1

2

�2

3

U,  w3 � E 0

�1

4

�1

5

U

null1AT 2 � μ ≥ �y4

�6y4

�3y4

y4

¥ ∂ � span± ≥�1

�6

�3

1

¥ ≤

3AT 0 0 4 � E1 2 �3 4

1 �1 2 1

3 0 1 6

1 1 �2 1

6 �1 1 3

5 000
0

0

U ¡ E1 0 0 1

0 1 0 6

0 0 1 3

0 0 0 0

0 0 0 0

5 000
0

0

U

a1 � ≥ 1

2

�3

4

¥ ,  a2 � ≥ 1

�1

2

1

¥ ,  a3 � ≥ 1

1

�2

1

¥
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Therefore, by Theorem 5.10, W� � (col(A))� � null(AT ), and we may proceed as in
the previous example. We compute

Hence, y is in W� if and only if y1 � �3y4 � 4y5, y2 � �y4 � 3y5, and y3 � �2y5. It
follows that

and these two vectors form a basis for W�.

Orthogonal Projections

Recall that, in �2, the projection of a vector v onto a nonzero vector u is given by

Furthermore, the vector perpu(v) � v � proju(v) is orthogonal to proju(v), and we
can decompose v as

as shown in Figure 5.7.
If we let W � span(u), then w � proju(v) is in W and w� � perpu(v) is in W�. We

therefore have a way of “decomposing” v into the sum of two vectors, one from W and
the other orthogonal to W—namely, v � w � w�. We now generalize this idea to �n.

Definition Let W be a subspace of �n and let {u1, . . . , uk} be an orthogonal basis
for W. For any vector v in �n, the orthogonal projection of v onto W is defined as

The component of v orthogonal to W is the vector

Each summand in the definition of projW(v) is also a projection onto a single vec-
tor (or, equivalently, the one-dimensional subspace spanned by it—in our previous
sense). Therefore, with the notation of the preceding definition, we can write

projW 1v 2 � proju1
1v 2 � p � projuk

1v 2

perpW 1v 2 � v � projW 1v 2
projW1v 2 � a u1

# v

u1
# u1
bu1 � p � a uk

# v

uk
# uk
buk

v � proju1v 2 � perpu1v 2
proju1v 2 � a u # v

u # u
bu

W� � e ˛E�3y4 � 4y5

�y4 � 3y5

�2y5

y4

y5

U u � span˛• ˛E�3

�1

0

1

0

U, E�4

�3

�2

0

1

U μ

3AT 0 0 4 � £ 1 �3 5 0 5

�1 1 2 �2 3

0 �1 4 �1 5

3 00
0

§ ¡ £ 1 0 0 3 4

0 1 0 1 3

0 0 1 0 2

3 00
0

§
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perpu(v)

proju(v)

u

v

Figure 5. 7
v � proju(v) � perpu(v)
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Since the vectors ui are orthogonal, the orthogonal projection of v onto W is the sum
of its projections onto one-dimensional subspaces that are mutually orthogonal. Fig-
ure 5.8 illustrates this situation with 
and

As a special case of the definition of projW(v), we now also have a nice geometric
interpretation of Theorem 5.2. In terms of our present notation and terminology,
that theorem states that if w is in the subspace W of �n, which has orthogonal basis
{v1, v2, . . . , vk}, then

Thus, w is decomposed into a sum of orthogonal projections onto mutually orthog-
onal one-dimensional subspaces of W.

The definition above seems to depend on the choice of orthogonal basis; that is, a
different basis { } for W would appear to give a “different” projW(v) and
perpW (v). Fortunately, this is not the case, as we will soon prove. For now, let’s be
content with an example.

Let W be the plane in �3 with equation x � y � 2z � 0, and let . Find the

orthogonal projection of v onto W and the component of v orthogonal to W.

Solution In Example 5.3, we found an orthogonal basis for W. Taking

we have

u1
# u1 � 2  u2

# u2 � �3

u1
# v � 2   u2

# v � �2

u1 � £11
0

§   and  u2 � £�1

1

1

§

v � £ 3

�1

2

§

uœ
kuœ

1, . . . ,

� projv1
1w 2 � p � projvk

1w 2w � a w # v1

v1
# v1
b v1 � p � a w # vk

vk
# vk
b vk

p2 � proju2
1v 2 . p1 � proju1

1v 2 ,p � projW 1v 2 ,W � span1u1, u2 2 ,
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W

v

u1

u2

p p1

p2

Figure 5. 8
p � p1 � p2

Example 5. 11
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Theorem 5. 11

Section 5.2 Orthogonal Complements and Orthogonal Projections 395

Therefore,

and

It is easy to see that projW (v) is in W, since it satisfies the equation of the plane. It
is equally easy to see that perpW (v) is orthogonal to W, since it is a scalar multiple of

the normal vector to W. (See Figure 5.9.)£ 1
�1

2
§

perpW 1v 2 � v � projW 1v 2 � £ 3

�1

2

§ � £ 5
3
1
3

�2
3

§ � £ 4
3

�4
3
8
3

§
� 2

2 £ 11
0

§ � 2
3 £�1

1

1

§ � £ 5
3
1
3

�2
3

§
 projW 1v 2 � a u1

# v

u1
# u1
bu1 � a u2

# v

u2
# u2
bu2

The next theorem shows that we can always find a decomposition of a vector with
respect to a subspace and its orthogonal complement.

The Orthogonal Decomposition Theorem

Let W be a subspace of �n and let v be a vector in �n. Then there are unique 
vectors w in W and w� in W� such that

Proof We need to show two things: that such a decomposition exists and that it is
unique.

To show existence, we choose an orthogonal basis {u1, . . . , uk} for W. Let 
w � projW (v) and let w� � perpW (v). Then

w � w� � projW 1v 2 � perpW 1v 2 � projW 1v 2 � 1v � projW 1v 2 2 � v

v � w � w�

W

v

projW(v)

perpW(v)

Figure 5. 9
v � projW (v) � perpW (v)
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Corollary 5. 12

Clearly, w � projW (v) is in W, since it is a linear combination of the basis vectors
u1, . . . , uk. To show that w� is in W�, it is enough to show that w� is orthogonal to
each of the basis vectors ui, by Theorem 5.9(d). We compute

since ui
# uj � 0 for j i. This proves that w� is in W� and completes the existence

part of the proof.
To show the uniqueness of this decomposition, let’s suppose we have another de-

composition v � w1 � where w1 is in W and is in W�.Then w � w� � w1 � so

But since w � w1 is in W and � w� is in W� (because these are subspaces), we
know that this common vector is in W ¨ W� � {0} [using Theorem 5.9(c)]. Thus,

so w1 � w and � w1.

Example 5.11 illustrated the Orthogonal Decomposition Theorem. When W is
the subspace of �3 given by the plane with equation x � y � 2z � 0, the orthogonal 

decomposition of with respect to W is v � w � w�, where

The uniqueness of the orthogonal decomposition guarantees that the definitions
of projW (v) and perpW (v) do not depend on the choice of orthogonal basis. The
Orthogonal Decomposition Theorem also allows us to prove property (b) of Theo-
rem 5.9. We state that property here as a corollary to the Orthogonal Decomposition
Theorem.

If W is a subspace of �n, then 1W� 2� � W

w � projW 1v 2 � £ 5
3
1
3

�2
3

§   and  w� � perpW 1v 2 � £ 4
3

�4
3
8
3

§
v � £ 3

�1

2

§
w�

1

w � w1 � w1
� � w� � 0

w�
1

w � w1 � w1
� � w�

w�
1 ,w�

1w�
1 ,



� ui
# v � ui

# v � 0

� ui
# v � 0 � p � a ui

# v

ui
# ui
b 1ui

# ui 2 � p � 0

� a uk
# v

uk
# uk
b 1ui

# uk 2
� ui

# v � a u1
# v

u1
# u1
b 1ui

# u1 2 � p � a ui
# v

ui
# ui
b 1ui

# ui 2 � p

� ui
# a v � a u1

# v

u1
# u1
bu1 � . . . � a uk

# v

uk
# uk
buk b� ui

# 1v � projW 1v 2 2ui
# w� � ui

# perpW 1v 2
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Theorem 5. 13

Corollary 5. 14

Proof If w is in W and x is in W�, then w # x � 0. But this now implies that w is in
(W�)�. Hence, W (W�)�. To see that we actually have equality here, suppose the
contrary. Then there is a vector v in (W�)� that is not in W. By Theorem 5.11, we can
write v � w � w� for (unique) vectors w in W and w� in W�. But now

so w� � 0. Therefore, v � w � w� � w, and thus v is in W—which is a contradic-
tion. We conclude that (W�)� � W, as required.

There is also a nice relationship between the dimensions of W and W�, expressed in
Theorem 5.13.

If W is a subspace of �n, then

Proof Let {u1, . . . , uk} be an orthogonal basis for W and let {v1, . . . , vl} be an or-
thogonal basis for W�. Then dim W � k and dim W� � l. Let B �

. We claim that B is an orthogonal basis for �n.
We first note that, since each ui is in W and each vj is in W�,

Thus, B is an orthogonal set and, hence, is linearly independent, by Theorem 5.1.
Next, if v is a vector in �n, the Orthogonal Decomposition Theorem tells us that v �
w � w� for some w in W and w� in W�. Since w can be written as a linear combina-
tion of the vectors ui and w� can be written as a linear combination of the vectors vj, v
can be written as a linear combination of the vectors in B. Therefore,B spans �n also
and so is a basis for �n. It follows that k � l � dim �n, or

As a lovely bonus, when we apply this result to the fundamental subspaces of a
matrix, we get a quick proof of the Rank Theorem (Theorem 3.26), restated here as
Corollary 5.14.

The Rank Theorem

If A is an m � n matrix, then

Proof In Theorem 5.13, take W � row(A). Then W� � null(A), by Theorem 5.10,
so dim W � rank(A) and dim W� � nullity(A). The result follows.

Note that we get a counterpart identity by taking W � col(A) [and therefore
W� � null(AT )]:

rank1A 2 � nullity1AT 2 � m

rank1A2 � nullity1A2 � n

dim W � dim W� � n

ui
# vj � 0  for i � 1, . . . , k and j � 1, . . . , l

v1, . . . , vl6 5u1, . . . , uk,

dim W � dim W � � n

0 � v # w� � 1w � w� 2 # w� � w # w� � w� # w� � 0 � w� # w� � w� # w�

�
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Sections 5.1 and 5.2 have illustrated some of the advantages of working with
orthogonal bases. However, we have not established that every subspace has an or-
thogonal basis, nor have we given a method for constructing such a basis (except in
particular examples, such as Example 5.3). These issues are the subject of the next
section.

398 Chapter 5 Orthogonality

Exercises 5. 2

In Exercises 1–6, find the orthogonal complement W� of W
and give a basis for W�.

1.

2.

3.

4.

5.

6.

In Exercises 7 and 8, find bases for the row space and null
space of A. Verify that every vector in row(A) is orthogonal
to every vector in null(A).

7.

8.

In Exercises 9 and 10, find bases for the column space of
A and the null space of AT for the given exercise. Verify
that every vector in col(A) is orthogonal to every vector 
in null(AT).

9. Exercise 7 10. Exercise 8

A � ≥ 1 1 0 1 � 1

�2 0 4 0 2

2 2 �2 3 1

2 4 2 5 1

¥
A � ≥ 1 �1 3

5 2 1

0 1 �2

�1 �1 1

¥

W � • £ xy
z

§  : x � 2t, y � –t, z �
1

2
t¶

W � • £xy
z

§  : x � t, y � �t, z � 3t¶
W � • £ xy

z

§  : –x � 3y � 5z � 0¶
W � • £xy

z

§  : x � y � z � 0¶
W � e c x

y
d  : 3x � 2y � 0 f

W � e cx
y
d  : 2x � y � 0f

In Exercises 11–14, let W be the subspace spanned by the
given vectors. Find a basis for W�.

11.

12.

13.

14.

In Exercises 15–18, find the orthogonal projection of v onto
the subspace W spanned by the vectors ui. (You may assume
that the vectors ui are orthogonal.)

15.

16.

17.

18. v � ≥ 4

�2

–3

2

¥ , u1 � ≥ 1

1

0

1

¥ , u2 � ≥ 0

1

1

–1

¥ , u3 � ≥ –1

0

1

1

¥
v � £12

3

§ , u1 � £ 2

�2

1

§ , u2 � £�1

1

4

§
v � £ 12

3

§ , u1 � £ 11
1

§ , u2 � £ 1

�1

0

§
v � c 7

�4
d , u1 � c 1

1
d

w1 � E 3

2

0

–1

4

U, w2 � E 1

2

–2

0

1

U, w3 � E 3

–2

6

�2

5

U
w1 � ≥ 2

�1

6

3

¥ , w2 � ≥�1

2

�3

�2

¥ , w3 � ≥ 2

5

6

1

¥
w1 � ≥ 1

�1

1

1

¥ , w2 � ≥ 0

1

2

3

¥
w1 � £ 2

1

�2

§ , w2 � £40
1

§
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Section 5.3 The Gram-Schmidt Process and the QR Factorization 399

In Exercises 19–22, find the orthogonal decomposition of
v with respect to W.

19.

20.

21.

22.

23. Prove Theorem 5.9(c).

24. Prove Theorem 5.9(d).

25. Let W be a subspace of �n and v a vector in �n. Suppose
that w and w� are orthogonal vectors with w in W and

v � ≥ 2

1

5

3

¥ , W � span ± ≥ 1

�1

1

0

¥ , ≥ 0

1

1

1

¥ ≤
v � £ 4

�2

3

§ , W � span° £ 12
1

§ , £ 1

�1

1

§ ¢
v � £ 4

�2

3

§ , W � span° £ 12
1

§ ¢
v � c 2

�2
d , W � spana c1

3
d b

that v � w � w�. Is it necessarily true that w� is in W�?
Either prove that it is true or find a counterexample.

26. Let {v1, . . . , vn} be an orthogonal basis for �n and let
W � span(v1, . . . , vk). Is it necessarily true that W� �
span(vk+1, . . . , vn)? Either prove that it is true or find a
counterexample.

In Exercises 27–29, let W be a subspace of �n, and let x be a
vector in �n.

27. Prove that x is in W if and only if projW (x) � x.

28. Prove that x is orthogonal to W if and only if
projW (x) � 0.

29. Prove that projW (projW (x)) � projW (x).

30. Let be an orthonormal set in �n, and
let x be a vector in �n.

(a) Prove that

(This inequality is called Bessel’s Inequality.)

(b) Prove that Bessel’s Inequality is an equality if and
only if x is in span(S).

7x 7 2 
 �x # v1�2 � �x # v2�2 � p � �x # vk�2

S � 5v1, p , vk6

The Gram-Schmidt Process 
and the QR Factorization
In this section, we present a simple method for constructing an orthogonal (or or-
thonormal) basis for any subspace of �n. This method will then lead us to one of the
most useful of all matrix factorizations.

The Gram-Schmidt Process

We would like to be able to find an orthogonal basis for a subspace W of �n. The idea
is to begin with an arbitrary basis {x1, . . . , xk} for W and to “orthogonalize” it one
vector at a time. We will illustrate the basic construction with the subspace W from
Example 5.3.

Let W � span(x1, x2 ), where

Construct an orthogonal basis for W.

Solution Starting with x1, we get a second vector that is orthogonal to it by taking
the component of x2 orthogonal to x1 (Figure 5.10).

x1 � £ 11
0

§   and  x2 � £�2

0

1

§
Example 5. 12
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Theorem 5. 15

400 Chapter 5 Orthogonality

v2

x1

x2

W
projx1

(x2)

Figure 5. 10
Constructing v2 orthogonal to x1

Algebraically, we set v1 � x1, so

Then {v1, v2} is an orthogonal set of vectors in W. Hence, {v1, v2} is a linearly inde-
pendent set and therefore a basis for W, since dim W � 2.

Remark Observe that this method depends on the order of the original basis 

vectors. In Example 5.12, if we had taken and , we would have

obtained a different orthogonal basis for W. (Verify this.)
The generalization of this method to more than two vectors begins as in Exam-

ple 5.12. Then the process is to iteratively construct the components of subsequent
vectors orthogonal to all of the vectors that have already been constructed. The
method is known as the Gram-Schmidt Process.

The Gram-Schmidt Process

Let {x1, . . . , xk} be a basis for a subspace W of �n and define the following:

Then for each i � 1, . . . , k, {v1, . . . , vi} is an orthogonal basis for Wi. In particular,
{v1, . . . , vk} is an orthogonal basis for W.

� a vk�1
# xk

vk�1
# vk�1

b vk�1, Wk � span1x1, . . . , xk 2
vk � xk � a v1

# xk

v1
# v1
b v1 � a v2

# xk

v2
# v2
b v2 � p    

o

v3 � x3 � a v1
# x3

v1
# v1
b v1 � a v2

# x3

v2
# v2
b v2,  W3 � span1x1, x2, x3 2

v2 � x2 � a v1
# x2

v1
# v1
b v1, W2 � span1x1, x2 2v1 � x1, W1 � span1x1 2

x2 � £11
0

§x1 � £�2

0

1

§

� £�2

0

1

§ � a�2

2
b £ 11

0

§ � £�1

1

1

§
� x2 � a x1

# x2

x1
# x1
b x1

v2 � perpx1
1x2 2 � x2 � projx1

1x2 2

�

�
I I I I II I I I I �������������������������������
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Section 5.3 The Gram-Schmidt Process and the QR Factorization 401

Jörgen Pedersen Gram
(1850–1916) was a Danish actuary
(insurance statistician) who was
interested in the science of mea-
surement. He first published the
process that bears his name in
an 1883 paper on least squares.
Erhard Schmidt (1876–1959) was
a German mathematician who
studied under the great David
Hilbert and is considered one of
the founders of the branch of
mathematics known as functional
analysis. His contribution to the
Gram-Schmidt Process came in a
1907 paper on integral equations,
in which he wrote out the details
of the method more explicitly than
Gram had done.

Stated succinctly, Theorem 5.15 says that every subspace of �n has an orthogonal
basis, and it gives an algorithm for constructing such a basis.

Proof We will prove by induction that, for each i � 1, . . . , k, {v1, . . . , vi} is an or-
thogonal basis for Wi.

Since v1 � x1, clearly {v1} is an (orthogonal) basis for W1 � span(x1). Now assume
that, for some i � k, {v1, . . . , vi} is an orthogonal basis for Wi. Then

By the induction hypothesis, {v1, . . . , vi} is an orthogonal basis for span(x1, . . . , xi) �
Wi. Hence,

So, by the Orthogonal Decomposition Theorem, vi�1 is orthogonal to Wi. By defini-
tion, v1, . . . , vi are linear combinations of x1, . . . , xi and, hence, are in Wi. Therefore,
{v1, . . . , vi�1} is an orthogonal set of vectors in Wi�1.

Moreover, vi�1 0, since otherwise , which in turn implies
that xi�1 is in Wi. But this is impossible, since Wi � span(x1, . . . , xi) and {x1, . . . , xi�1}
is linearly independent. (Why?) We conclude that {v1, . . . , vi�1} is a set of i � 1 lin-
early independent vectors in Wi�1. Consequently, {v1, . . . , vi�1} is a basis for Wi�1,
since dim Wi�1 � i � 1. This completes the proof.

If we require an orthonormal basis for W, we simply need to normalize the
orthogonal vectors produced by the Gram-Schmidt Process. That is, for each i, we
replace vi by the unit vector .

Apply the Gram-Schmidt Process to construct an orthonormal basis for the subspace
W � span(x1, x2, x3) of �4, where

Solution First we note that {x1, x2, x3} is a linearly independent set, so it forms a basis
for W. We begin by setting v1 � x1. Next, we compute the component of x2 orthogo-
nal to W1 � span(v1):

� ≥ 3
2
3
2
1
2
1
2

¥
� ≥ 2

1

0

1

¥ � 124 2 ≥ 1

�1

�1

1

¥
v2 � perpW1

1x2 2 � x2 � a v1
# x2

v1
# v1
b v1

x1 � ≥ 1

�1

�1

1

¥ ,  x2 � ≥ 2

1

0

1

¥ ,  x3 � ≥ 2

2

1

2

¥

qi � 11> 7 vi 7 2vi

xi�1 � projWi
1xi�1 2

vi�1 � xi�1 � projWi
1xi�1 2 � perpWi

1xi�1 2
vi�1 � xi�1 � a v1

# xi�1

v1
# v1
b v1 � a v2

# xi�1

v2
# v2
b v2 � p � a vi

# xi�1

vi
# vi
b vi
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For hand calculations, it is a good idea to “scale” v2 at this point to eliminate fractions.
When we are finished, we can rescale the orthogonal set we are constructing to obtain
an orthonormal set; thus, we can replace each vi by any convenient scalar multiple
without affecting the final result. Accordingly, we replace v2 by

We now find the component of x3 orthogonal to

using the orthogonal basis {v1, }:

Again, we rescale and use .

We now have an orthogonal basis {v1, } for W. (Check to make sure that
these vectors are orthogonal.) To obtain an orthonormal basis, we normalize each
vector:

Then {q1, q2, q3} is an orthonormal basis for W.

q3 � a 17 vœ
3 7 b vœ

3 � a 1

16
b ≥�1

0

1

2

¥ � ≥�1>16

0

1>16

2>16

¥ � ≥�16>6
0

16>6
16>3 ¥

q2 � a 17 vœ
2 7 b vœ

2 � a 1

215
b ≥ 3

3

1

1

¥ � ≥ 3>215

3>215

1>215

1>215

¥ � ≥ 315>10

315>10

15>10

15>10

¥
q1 � a 17 v1 7 b v1 � a 1

2
b ≥ 1

�1

�1

1

¥ � ≥ 1>2
�1>2
�1>2

1>2 ¥
vœ

2, vœ
3

vœ
3 � 2v3 � ≥�1

0

1

2

¥
� ≥�1

2

0
1
2

1

¥
� ≥ 2

2

1

2

¥ � 114 2 ≥ 1

�1

�1

1

¥ � 115
20 2 ≥ 3

3

1

1

¥
v3 � perpW2

1x3 2 � x3 � a v1
# x3

v1
# v1
b v1 � a vœ

2
# x3

vœ
2
# vœ

2

b vœ
2

vœ
2

W2 � span1x1, x2 2 � span1v1, v2 2 � span1v1, vœ
2 2

vœ
2 � 2v2 � ≥ 3

3

1

1

¥
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One of the important uses of the Gram-Schmidt Process is to construct an orthog-
onal basis that contains a specified vector. The next example illustrates this application.

Find an orthogonal basis for �3 that contains the vector

Solution We first find any basis for �3 containing v1. If we take

then {v1, x2, x3} is clearly a basis for �3. (Why?) We now apply the Gram-Schmidt
Process to this basis to obtain

and finally

Then {v1, } is an orthogonal basis for �3 that contains v1.

Similarly, given a unit vector, we can find an orthonormal basis that contains it by
using the preceding method and then normalizing the resulting orthogonal vectors.

Remark When the Gram-Schmidt Process is implemented on a computer, there
is almost always some roundoff error, leading to a loss of orthogonality in the vec-
tors qi. To avoid this loss of orthogonality, some modifications are usually made. The
vectors vi are normalized as soon as they are computed, rather than at the end, to
give the vectors qi, and as each qi is computed, the remaining vectors xj are modified
to be orthogonal to qi. This procedure is known as the Modified Gram-Schmidt
Process. In practice, however, a version of the QR factorization is used to compute
orthonormal bases.

The QR Factorization

If A is an m � n matrix with linearly independent columns (requiring that m 
 n),
then applying the Gram-Schmidt Process to these columns yields a very useful fac-
torization of A into the product of a matrix Q with orthonormal columns and an

vœ
3vœ

2,

vœ
3 � £�3

0

1

§
v3 � x3 � a v1

# x3

v1
# v1
b v1 � a vœ

2
# x3

vœ
2
# vœ

2

b vœ
2 � £ 00

1

§ � 1 3
14 2 £ 12

3

§ � 1�3
35 2 £�1

5

�3

§ � £�3
10

0
1

10

§ ,
v2 � x2 � a v1

# x2

v1
# v1
b v1 � £ 01

0

§ � 1 2
14 2 £ 12

3

§ � £�1
7
5
7

�3
7

§ ,  vœ
2 � £�1

5

�3

§

x2 � £ 01
0

§   and  x3 � £ 00
1

§

v1 � £ 12
3

§
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Theorem 5. 16

upper triangular matrix R. This is the QR factorization, and it has applications to the
numerical approximation of eigenvalues, which we explore at the end of this section,
and to the problem of least squares approximation, which we discuss in Chapter 7.

To see how the QR factorization arises, let a1, . . . , an be the (linearly independent)
columns of A and let q1, . . . , qn be the orthonormal vectors obtained by applying the
Gram-Schmidt Process to A with normalizations. From Theorem 5.15, we know that,
for each i � 1, . . . , n,

Therefore, there are scalars r1i, r2i, . . . , rii such that

That is,

which can be written in matrix form as

Clearly, the matrix Q has orthonormal columns. It is also the case that the diago-
nal entries of R are all nonzero. To see this, observe that if rii � 0, then ai is a linear
combination of q1, . . . , qi�1 and, hence, is in Wi�1. But then ai would be a linear com-
bination of a1, . . . , ai�1, which is impossible, since a1, . . . , ai are linearly independent.
We conclude that rii 0 for i � 1, . . . , n. Since R is upper triangular, it follows that it
must be invertible. (See Exercise 23.)

We have proved the following theorem.

The QR Factorization

Let A be an m � n matrix with linearly independent columns. Then A can be fac-
tored as A � QR, where Q is an m � n matrix with orthonormal columns and R is
an invertible upper triangular matrix.

Remarks
• We can also arrange for the diagonal entries of R to be positive. If any rii � 0,

simply replace qi by �qi and rii by �rii.
• The requirement that A have linearly independent columns is a necessary one.

To prove this, suppose that A is an m � n matrix that has a QR factorization, as in The-
orem 5.16. Then, since R is invertible, we have Q � AR�1. Hence, rank(Q) � rank(A),
by Exercise 61 in Section 3.5. But rank(Q) � n, since its columns are orthonormal and,
therefore, linearly independent. So rank(A) � n too, and consequently the columns of
A are linearly independent, by the Fundamental Theorem.



A � 3a1 a2
p an 4 � 3q1 q2

p qn 4 ≥ r11 r12
p r1n

0 r22
p r2n

o o ∞ o
0 0 p rnn

¥ � QR

an � r1nq1 � r2nq2 � p � rnnqn

o
a2 � r12q1 � r22q2

a1 � r11q1

ai � r1i q1 � r2i q2 � p � rii qi  for i � 1, . . . , n

Wi � span1a1, . . . , ai 2 � span1q1, . . . , qi 2
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• The QR factorization can be extended to arbitrary matrices in a slightly
modified form. If A is m � n, it is possible to find a sequence of orthogonal matrices
Q1, . . . , Qm�1 such that Qm�1

p Q2Q1A is an upper triangular m � n matrix R. Then
A � QR, where Q � (Qm�1

p Q2Q1)
�1 is an orthogonal matrix. We will examine this

approach in Exploration: The Modified QR Factorization.

Find a QR factorization of

Solution The columns of A are just the vectors from Example 5.13. The orthonormal
basis for col(A) produced by the Gram-Schmidt Process was

so

From Theorem 5.16, A � QR for some upper triangular matrix R. To find R, we
use the fact that Q has orthonormal columns and, hence, QTQ � I. Therefore,

We compute

� £ 2 1 1>2
0 15 315>2
0 0 16>2 §

R � QTA � £ 1>2 �1>2 �1>2 1>2
315>10 315>10 15>10 15>10

�16>6 0 16>6 16>3 § ≥
1 2 2

�1 1 2

�1 0 1

1 1 2

¥
QTA � QTQR � IR � R

Q � 3q1 q2 q3 4 � ≥ 1>2 315>10 �16>6
�1>2 315>10 0

�1>2 15>10 16>6
1>2 15>10 16>3 ¥

q1 � ≥ 1>2
�1>2
�1>2

1>2 ¥ ,  q2 � ≥ 315>10

315>10

15>10

15>10

¥ ,  q3 � ≥�16>6
0

16>6
16>3 ¥

A � ≥ 1 2 2

�1 1 2

�1 0 1

1 1 2

¥
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Exercises 5. 3

In Exercises 1–4, the given vectors form a basis for �2 or �3.
Apply the Gram-Schmidt Process to obtain an orthogonal
basis. Then normalize this basis to obtain an orthonormal
basis.

1. x1 � c 1
1
d , x2 � c 1

2
d

2.

3. x1 � £ 1

�1

�1

§ , x2 � £ 03
3

§ , x3 � £ 32
4

§
x1 � c 1

3
d , x2 � c 2

–2
d

Example 5. 15
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4.

In Exercises 5 and 6, the given vectors form a basis for a
subspace W of �3 or �4. Apply the Gram-Schmidt Process
to obtain an orthogonal basis for W.

5.

6.

In Exercises 7 and 8, find the orthogonal decomposition of v
with respect to the subspace W.

7. , W as in Exercise 5

8. , W as in Exercise 6

Use the Gram-Schmidt Process to find an orthogonal basis
for the column spaces of the matrices in Exercises 9 and 10.

9. 10.

11. Find an orthogonal basis for �3 that contains the

vector .

12. Find an orthogonal basis for �4 that contains the
vectors

≥ 2

1

0

�1

¥   and  ≥ 1

0

3

2

¥

£ 31
5

§

≥ 1 2 –1

1 0 –1

1 1 1

1 1 5

¥£ 0 1 1

1 0 1

1 1 0

§

v � ≥ 1

4

0

2

¥
v � £ 4

�4

3

§

x1 � ≥ 1

2

–2

1

¥ , x2 � ≥ 1

1

0

2

¥ , x3 � ≥ 1

8

1

0

¥
x1 � £ 11

0

§ , x2 � £ 34
2

§

x1 � £ 11
1

§ , x2 � £ 01
1

§ , x3 � £ 00
1

§
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In Exercises 13 and 14, fill in the missing entries of Q
to make Q an orthogonal matrix.

13.

14.

In Exercises 15 and 16, find a QR factorization of the matrix
in the given exercise.

15. Exercise 9 16. Exercise 10

In Exercises 17 and 18, the columns of Q were obtained by
applying the Gram-Schmidt Process to the columns of A.
Find the upper triangular matrix R such that A � QR.

17.

18.

19. If A is an orthogonal matrix, find a QR factorization
of A.

20. Prove that A is invertible if and only if A � QR, where
Q is orthogonal and R is upper triangular with
nonzero entries on its diagonal.

In Exercises 21 and 22, use the method suggested by
Exercise 20 to compute A�1 for the matrix A in the given
exercise.

21. Exercise 9 22. Exercise 15

23. Let A be an m � n matrix with linearly independent
columns. Give an alternative proof that the upper
triangular matrix R in a QR factorization of A must
be invertible, using property (c) of the Fundamental
Theorem.

24. Let A be an m � n matrix with linearly independent
columns and let A � QR be a QR factorization of A.
Show that A and Q have the same column space.

A � ≥ 1 3

2 4

�1 �1

0 1

¥ , Q � ≥ 1>16 1>13

2>16 0

�1>16 1>13

0 1>13

¥
A � £ 2 8 2

1 7 �1

�2 �2 1

§ , Q � £ 2
3

1
3

2
3

1
3

2
3 �2

3

�2
3

2
3

1
3

§

Q � ≥ 1>2 2>114 * *
1>2 1>114 * *
1>2 0 * *
1>2 �3>114 * *

¥
Q � £ 1>12 1>13 *

0 1>13 *
�1>12 1>13 *

§
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The Modified QR Factorization
When the matrix A does not have linearly independent columns, the Gram-Schmidt
Process as we have stated it does not work and so cannot be used to develop a gener-
alized QR factorization of A. There is a modification of the Gram-Schmidt Process
that can be used, but instead we will explore a method that converts A into upper tri-
angular form one column at a time, using a sequence of orthogonal matrices. The
method is analogous to that of LU factorization, in which the matrix L is formed
using a sequence of elementary matrices.

The first thing we need is the “orthogonal analogue” of an elementary matrix; that
is, we need to know how to construct an orthogonal matrix Q that will transform a
given column of A—call it x—into the corresponding column of R—call it y. By
Theorem 5.6, it will be necessary that . Figure 5.11 suggests a way
to proceed: We can reflect x in a line perpendicular to x � y. If

is the unit vector in the direction of x � y, then is orthogonal to u, and

we can use Exercise 26 in Section 3.6 to find the standard matrix Q of the reflection
in the line through the origin in the direction of u�.

1. Show that .

2. Compute Q for

We can generalize the definition of Q as follows. If u is any unit vector in �n, we
define an n � n matrix Q as

Q � I � 2uuT

1a 2  u � c 354
5

d   1b 2  x � c 5
5
d , y � c 1

7
d

Q � c 1 � 2d1
2 �2d1d 2

�2d1d2 1 � 2d 2
2 d � I � 2uuT

u� � c�d2

d1

d
u � a 17x � y 7 b 1x � y 2 � cd1

d2

d
7x 7 � 7Qx 7 � 7 y 7
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Such a matrix is called a Householder matrix (or an elementary reflector).

3. Prove that every Householder matrix Q satisfies the following properties:

(a) Q is symmetric. (b) Q is orthogonal. (c) Q 2 � I

4. Prove that if Q is a Householder matrix corresponding to the unit vector
u, then

5. Compute Q for and verify Problems 3 and 4.

6. Let x y with and set . Prove that the
corresponding Householder matrix Q satisfies Qx � y. [Hint: Apply Exercise 57 in
Section 1.2 to the result in Problem 4.]

7. Find Q and verify Problem 6 for

We are now ready to perform the triangularization of an m � n matrix A, column
by column.

8. Let x be the first column of A and let

Show that if Q1 is the Householder matrix given by Problem 6, then Q1A is a matrix
with the block form

where A1 is (m � 1)�(n � 1).

If we repeat Problem 8 on the matrix A1, we use a Householder matrix P2 such that

where A2 is (m � 2)�(n � 2).

9. Set . Show that Q2 is an orthogonal matrix and that

Q2Q1A � £* * *
0 * *
0 0 A2

§
Q2 � c1 0

0 P2

d
P2A1 � c* *

0 A2

d

Q1A � c* *
0 A1

d

y � ≥ 7x 70

o
0

¥

x � £ 12
2

§   and  y � £ 30
0

§

u � 11> 7x � y 7 2 1x � y 27x 7 � 7 y 7

u � £ 1

�1

2

§
Q v � e�v if v is in span1u 2

v if v # u � 0
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Alston Householder (1904–1993)
was one of the pioneers in the field
of numerical linear algebra. He was
the first to present a systematic
treatment of algorithms for solving
problems involving linear systems.
In addition to introducing the
widely used Householder transfor-
mations that bear his name, he was
one of the first to advocate the sys-
tematic use of norms in linear alge-
bra. His 1964 book The Theory of
Matrices in Numerical Analysis is
considered a classic.
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10. Show that we can continue in this fashion to find a sequence of orthogonal
matrices Q1, . . . , Qm�1 such that Qm�1

p Q2Q1A � R is an upper triangular m � n
matrix (i.e., rij � 0 if i � j).

11. Deduce that A � QR with Q � Q1Q2
p Qm�1 orthogonal.

12. Use the method of this exploration to find a QR factorization of

Approximating Eigenvalues
with the QR Algorithm
One of the best (and most widely used) methods for numerically approximating the
eigenvalues of a matrix makes use of the QR factorization. The purpose of this explo-
ration is to introduce this method, the QR algorithm, and to show it at work in a few
examples. For a more complete treatment of this topic, consult any good text on nu-
merical linear algebra. (You will find it helpful to use a CAS to perform the calcula-
tions in the problems below.)

Given a square matrix A, the first step is to factor it as A � QR (using whichever
method is appropriate). Then we define A1 � RQ.

1. First prove that A1 is similar to A. Then prove that A1 has the same eigen-
values as A.

2. If , find A1 and verify that it has the same eigenvalues as A.

Continuing the algorithm, we factor A1 as A1 � Q1R1 and set A2 � R1Q1. Then we
factor A2 � Q2R2 and set A3 � R2Q2, and so on. That is, for k 
 1, we compute Ak �
QkRk and then set Ak�1 � RkQk.

3. Prove that Ak is similar to A for all k 
 1.

4. Continuing Problem 2, compute A2, A3, A4, and A5, using two-decimal-place
accuracy. What do you notice?

It can be shown that if the eigenvalues of A are all real and have distinct absolute
values, then the matrices Ak approach an upper triangular matrix U.

5. What will be true of the diagonal entries of this matrix U?

6. Approximate the eigenvalues of the following matrices by applying the QR
algorithm. Use two-decimal-place accuracy and perform at least five iterations.

7. Apply the QR algorithm to the matrix . What happens?
Why?

A � c 2 3

�1 �2
d

1c 2  £ 1 0 �1

1 2 1

�4 0 1

§   1d 2  £ 1 1 �1

0 2 0

�2 4 2

§
1a 2  c 2 3

2 1
d 1b 2  c 1 1

2 1
d

A � c1 0

1 3
d

1a 2 A � c 3 9 1

�4 3 2
d   1b 2 A � £ 1 3 3 2

2 �4 1 1

2 �5 �1 �2

§
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8. Shift the eigenvalues of the matrix in Problem 7 by replacing A with
B � A � 0.9I. Apply the QR algorithm to B and then shift back by subtracting 0.9
from the (approximate) eigenvalues of B. Verify that this method approximates the
eigenvalues of A.

9. Let and . First show that

for all k 
 1. Then show that

[Hint: Repeatedly use the same approach used for the first equation, working from
the“inside out.”] Finally, deduce that (Q0Q1

p Qk )(Rk
p R1R0) is the QR factorization

of .Ak�1

1Q0Q1
p Qk 2 1Rk

p R1R0 2 � A1Q0Q1
p Qk�1 2 1Rk�1

p R1R0 2
Q0Q1

p Qk�1Ak � AQ0Q1
p Qk�1

R0 � RQ0 � Q

410

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Orthogonal Diagonalization of Symmetric Matrices

We saw in Chapter 4 that a square matrix with real entries will not necessarily have real

eigenvalues. Indeed, the matrix has complex eigenvalues i and �i. We also

discovered that not all square matrices are diagonalizable. The situation changes
dramatically if we restrict our attention to real symmetric matrices. As we will show in
this section, all of the eigenvalues of a real symmetric matrix are real, and such a
matrix is always diagonalizable.

Recall that a symmetric matrix is one that equals its own transpose. Let’s begin by
studying the diagonalization process for a symmetric 2 � 2 matrix.

If possible, diagonalize the matrix .

Solution The characteristic polynomial of A is l2 � l� 6 � (l� 3)(l� 2), from
which we see that A has eigenvalues l1 � �3 and l2 � 2. Solving for the correspond-
ing eigenvectors, we find

respectively. So A is diagonalizable, and if we set , then we know that

.

However, we can do better. Observe that v1 and v2 are orthogonal. So, if we nor-
malize them to get the unit eigenvectors

and then take

we have Q�1AQ � D also. But now Q is an orthogonal matrix, since {u1, u2} is an
orthonormal set of vectors. Therefore, Q�1 � QT, and we have QTAQ � D. (Note that
checking is easy, since computing Q�1 only involves taking a transpose!)

The situation in Example 5.16 is the one that interests us. It is important enough
to warrant a new definition.

Definition A square matrix A is orthogonally diagonalizable if there exists an
orthogonal matrix Q and a diagonal matrix D such that QTAQ � D.

We are interested in finding conditions under which a matrix is orthogonally
diagonalizable. Theorem 5.17 shows us where to look.

Q � 3u1 u2 4 � c 1>15 2>15

�2>15 1>15
d

u1 � c 1>15

�2>15
d   and  u2 � c 2>15

1>15
d

P�1AP � c�3 0

0 2
d � D

P � 3v1 v2 4
v1 � c 1

�2
d   and  v2 � c 2

1
d

A � c1 2

2 �2
d

c 0 �1

1 0
d
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Theorem 5. 18

Theorem 5. 17 If A is orthogonally diagonalizable, then A is symmetric.

Proof If A is orthogonally diagonalizable, then there exists an orthogonal ma-
trix Q and a diagonal matrix D such that QTAQ � D. Since Q�1 � QT, we have QTQ �
I � QQT, so

But then

since every diagonal matrix is symmetric. Hence, A is symmetric.

Remark Theorem 5.17 shows that the orthogonally diagonalizable matrices are
all to be found among the symmetric matrices. It does not say that every symmetric
matrix must be orthogonally diagonalizable. However, it is a remarkable fact that this
indeed is true! Finding a proof for this amazing result will occupy us for much of the
rest of this section.

We next prove that we don’t need to worry about complex eigenvalues when work-
ing with symmetric matrices with real entries.

If A is a real symmetric matrix, then the eigenvalues of A are real.

Recall that the complex conjugate of a complex number z � a � bi is the number
� a � bi (see Appendix C). To show that z is real, we need to show that b � 0. One

way to do this is to show that z � , for then bi � �bi (or 2bi � 0), from which it
follows that b � 0.

We can also extend the notion of complex conjugate to vectors and matrices by,
for example, defining to be the matrix whose entries are the complex conjugates of
the entries of A; that is, if A � [aij], then � . The rules for complex conjugation
extend easily to matrices; in particular, we have � for compatible matrices
A and B.

Proof Suppose that l is an eigenvalue of A with corresponding eigenvector v. Then
Av � lv, and, taking complex conjugates, we have � But then

since A is real. Taking transposes and using the fact that A is symmetric, we have

Therefore,

or

Now if , then , so

vTv � 1a1
2 � b1

2 2 � p � 1an
2 � bn

2 2  0

v � £ a1 � b1i

o
an � bni

§v � £ a1 � b1i

o
an � bni

§1l � l 2 1 ˛vTv 2 � 0.

l1 ˛vTv 2 � vT1lv 2 � vT1Av 2 � 1 ˛vTA2v � 1lv˛

T 2v � l1 ˛vTv 2
vTA � vTAT � 1Av 2T � 1lv 2T � lv˛

T

Av � Av � Av � lv � lv

lv.Av

BAAB
3aij 4A

A

z
z

AT � 1QDQT 2T � 1QT 2TDTQT � QDQT � A

QDQT � QQTAQQT � IAI � A
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Theorem 5. 19

since v 0 (because it is an eigenvector). We conclude that l � � 0, or l � .
Hence, l is real.

Theorem 4.20 showed that, for any square matrix, eigenvectors corresponding to
distinct eigenvalues are linearly independent. For symmetric matrices, something
stronger is true: Such eigenvectors are orthogonal.

If A is a symmetric matrix, then any two eigenvectors corresponding to distinct
eigenvalues of A are orthogonal.

Proof Let v1 and v2 be eigenvectors corresponding to the distinct eigenvalues
l1 l2 so that Av1 � l1v1 and Av2 � l2v2. Using AT � A and the fact that x # y � xTy
for any two vectors x and y in �n, we have

Hence, (l1 � l2)(v1
# v2) � 0. But l1 � l2 0, so v1

# v2 � 0, as we wished to show.

Verify the result of Theorem 5.19 for

Solution The characteristic polynomial of A is �l3 � 6l2 � 9l � 4 � �(l � 4) #
(l� 1) 2, from which it follows that the eigenvalues of A are l1 � 4 and l2 � 1. The
corresponding eigenspaces are

(Check this.) We easily verify that

from which it follows that every vector in E4 is orthogonal to every vector in E1.
(Why?)

Remark Note that . Thus, eigenvectors corresponding to the

same eigenvalue need not be orthogonal.

£�1

0

1

§ # £�1

1

0

§ � 1

£ 11
1

§ # £�1

0

1

§ � 0  and  £ 11
1

§ # £�1

1

0

§ � 0

E4 � span° £ 11
1

§ ¢   and  E1 � span° £�1

0

1

§ , £�1

1

0

§ ¢

A � £2 1 1

1 2 1

1 1 2

§



� v1
T1l2v2 2 � l21v1

Tv2 2 � l21v1
# v2 2� 1v1

TAT 2v2 � 1v1
TA2v2 � v1

T1Av2 2l11v1
# v2 2 � 1l1v1 2 # v2 � Av1

# v2 � 1Av1 2Tv2



ll
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Theorem 5. 20

We can now prove the main result of this section. It is called the Spectral Theo-
rem, since the set of eigenvalues of a matrix is sometimes called the spectrum of the
matrix. (Technically, we should call Theorem 5.20 the Real Spectral Theorem, since
there is a corresponding result for matrices with complex entries.)

The Spectral Theorem

Let A be an n � n real matrix. Then A is symmetric if and only if it is orthogonally
diagonalizable.

Proof We have already proved the “if” part as Theorem 5.17. To prove the “only if”
implication, we proceed by induction on n. For n � 1, there is nothing to do, since a
1 � 1 matrix is already in diagonal form. Now assume that every k � k real symmet-
ric matrix with real eigenvalues is orthogonally diagonalizable. Let n � k � 1 and let
A be an n � n real symmetric matrix with real eigenvalues.

Let l1 be one of the eigenvalues of A and let v1 be a corresponding eigenvector.
Then v1 is a real vector (why?) and we can assume that v1 is a unit vector, since other-
wise we can normalize it and we will still have an eigenvector corresponding to
l1. Using the Gram-Schmidt Process, we can extend v1 to an orthonormal basis
{v1, v2, . . . , vn} of �n. Now we form the matrix

Then Q1 is orthogonal, and

� cl1
 *
0 
A1

d � B

� ≥ v1
T

v2
T

o
vn

T

¥ 3l1v1 Av2 p  Avn 4
Q1

TAQ1 � ≥ v1
T

v2
T

o
vn

T

¥ A 3v1 v2 p  vn 4 � ≥ v1
T

v2
T

o
vn

T

¥ 3Av1 Av2 p  Avn 4
Q1 � 3v1 v2 

p  vn 4
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In a lecture he delivered at the University of Göttingen in 1905, the German mathematician
David Hilbert (1862–1943) considered linear operators acting on certain infinite-dimensional
vector spaces. Out of this lecture arose the notion of a quadratic form in infinitely many
variables, and it was in this context that Hilbert first used the term spectrum to mean a
complete set of eigenvalues. The spaces in question are now called Hilbert spaces.

Hilbert made major contributions to many areas of mathematics, among them integral
equations, number theory, geometry, and the foundations of mathematics. In 1900, at the
Second International Congress of Mathematicians in Paris, Hilbert gave an address entitled
“The Problems of Mathematics.” In it, he challenged mathematicians to solve 23 problems
of fundamental importance during the coming century. Many of the problems have been
solved—some were proved true, others false—and some may never be solved. Nevertheless,
Hilbert’s speech energized the mathematical community and is often regarded as the most
influential speech ever given about mathematics.

Spectrum is a Latin word meaning
“image.” When atoms vibrate, they
emit light. And when light passes
through a prism, it spreads out
into a spectrum—a band of
rainbow colors. Vibration
frequencies correspond to the
eigenvalues of a certain operator
and are visible as bright lines in
the spectrum of light that is
emitted from a prism. Thus, we
can literally see the eigenvalues of
the atom in its spectrum, and for
this reason, it is appropriate that
the word spectrum has come to be
applied to the set of all eigenvalues
of a matrix (or operator).
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since (l1v1) � l1 � l1(v1
# v1) � l1 and (l1v1) � l1 � l1(vi

# v1) � 0
for i 1, because {v1, v2, . . . , vn} is an orthonormal set.

But

so B is symmetric. Therefore, B has the block form

and A1 is symmetric. Furthermore, B is similar to A (why?), so the characteristic poly-
nomial of B is equal to the characteristic polynomial of A, by Theorem 4.22. By Exer-
cise 39 in Section 4.3, the characteristic polynomial of A1 divides the characteristic
polynomial of A. It follows that the eigenvalues of A1 are also eigenvalues of A and,
hence, are real. We also see that A1 has real entries. (Why?) Thus, A1 is a k � k real
symmetric matrix with real eigenvalues, so the induction hypothesis applies to it.
Hence, there is an orthogonal matrix P2 such that is a diagonal matrix—say,
D1. Now let

Then Q2 is an orthogonal (k � 1)�(k � 1) matrix, and therefore so is Q � Q1Q2.
Consequently,

which is a diagonal matrix. This completes the induction step, and we conclude that,
for all n 
 1, an n � n real symmetric matrix with real eigenvalues is orthogonally
diagonalizable.

Orthogonally diagonalize the matrix

Solution This is the matrix from Example 5.17. We have already found that the
eigenspaces of A are

E4 � span° £11
1

§ ¢   and  E1 � span° £�1

0

1

§ , £�1

1

0

§ ¢

A � £2 1 1

1 2 1

1 1 2

§

� cl1 0

0   D1

d
� cl1 0

0   P2
TA1P2

d
� c 1 0

0  P2
T d cl1 0

0   A1

d c 1 0

0  P2

dQTAQ � 1Q1Q2 2TA1Q1Q2 2 � 1Q2
TQ1

T 2A1Q1Q2 2 � Q2
T1Q1

TAQ1 2Q2 � Q2
TBQ2

Q2 � c 1 0

0  P2

d
PT

2A1P2

B � cl1 0

0   A1

d
BT � 1Q1

TAQ1 2T � Q1
TAT1Q1

T 2T � Q1
TAQ1 � B


1vT

i v1 2vT
i1vT

1v1 2vT
1
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We need three orthonormal eigenvectors. First, we apply the Gram-Schmidt Process to

to obtain

The new vector, which has been constructed to be orthogonal to , is still in E1

(why?) and so is orthogonal to . Thus, we have three mutually orthogonal 

vectors, and all we need to do is normalize them and construct a matrix Q with these
vectors as its columns. We find that

and it is straightforward to verify that

The Spectral Theorem allows us to write a real symmetric matrix A in the form
A � QDQT, where Q is orthogonal and D is diagonal. The diagonal entries of D
are just the eigenvalues of A, and if the columns of Q are the orthonormal vectors
q1, . . . , qn, then, using the column-row representation of the product, we have

This is called the spectral decomposition of A. Each of the terms is a rank 1
matrix, by Exercise 62 in Section 3.5, and is actually the matrix of the projec-
tion onto the subspace spanned by qi. (See Exercise 25.) For this reason, the spectral
decomposition

is sometimes referred to as the projection form of the Spectral Theorem.

A � l1q1q1
T � l2q2q2

T � p � lnqnqn
T

qiqi
T

li qi qi
T

� l1q1q1
T � l2q2q2

T � p � lnqnqn
T

� 3l1q1  
p

  lnqn 4 £q1
T

o
qn

T

§
A � QDQT � 3q1  

p
  qn 4 £l1

p 0

o ∞ o
0 p ln

§ £q1
T

o
qn

T

§

QTAQ � £4 0 0

0 1 0

0 0 1

§
Q � £ 1>13 �1>12 �1>16

1>13 0 2>16

1>13 1>12 �1>16

§
£11

1

§
£�1

0

1

§
£�1

0

1

§   and  £�1
2

1

�1
2

§
£�1

0

1

§   and  £�1

1

0

§
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Find the spectral decomposition of the matrix A from Example 5.18.

Solution From Example 5.18, we have:

Therefore,

so

which can be easily verified.
In this example, l2 � l3, so we could combine the last two terms �

to get

The rank 2 matrix � is the matrix of a projection onto the two-
dimensional subspace (i.e., the plane) spanned by q2 and q3. (See Exercise 26.)

Observe that the spectral decomposition expresses a symmetric matrix A explic-
itly in terms of its eigenvalues and eigenvectors. This gives us a way of constructing a
matrix with given eigenvalues and (orthonormal) eigenvectors.

Finda2 � 2matrixwitheigenvaluesl1 �3andl2 ��2andcorrespondingeigenvectors

v1 � c3
4
d   and  v2 � c�4

3
d

q3q3
Tq2q2

T

£ 2
3 �1

3 �1
3

�1
3

2
3 �1

3

�1
3 �1

3
2
3

§
l3q3q3

Tl2q2q2
T

� 4 £ 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

§ � £ 1
2 0 �1

2

0 0 0

�1
2 0 1

2

§ � £ 1
6 �1

3
1
6

�1
3

2
3 �1

3
1
6 �1

3
1
6

§
A � l1q1q1

T � l2q2q2
T � l3q3q3

T

q3q3
T � £�1>16

2>16

�1>16

§ 3�1>16 2>16 �1>16 4 � £ 1>6 �1>3 1>6
�1>3 2>3 �1>3

1>6 �1>3 1>6 §
q2q2

T � £�1>12

0

1>12

§ 3�1>12 0 1>12 4 � £ 1>2 0 �1>2
0 0 0

�1>2 0 1>2 §
q1q1

T � £ 1>13

1>13

1>13

§ 31>13 1>13 1>13 4 � £ 1>3 1>3 1>3
1>3 1>3 1>3
1>3 1>3 1>3 §

q1 � £ 1>13

1>13

1>13

§ ,  q2 � £�1>12

0

1>12

§ ,  q3 � £�1>16

2>16

�1>16

§
l1 �  4, l2 �  1, l3 � 1
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Solution We begin by normalizing the vectors to obtain an orthonormal basis
{q1, q2}, with

Now, we compute the matrix A whose spectral decomposition is

It is easy to check that A has the desired properties. (Do this.)

� c�1
5

12
5

12
5

6
5

d
� 3 c 9

25
12
25

12
25

16
25

d � 2 c 16
25 �12

25

�12
25

9
25

d
� 3 c 354

5

d 335 4
5 4 � 2 c�4

5
3
5

d 3�4
5

3
5 4

A � l1q1q1
T � l2q2q2

T

q1 � c 354
5

d   and  q2 � c�4
5
3
5

d
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Orthogonally diagonalize the matrices in Exercises 1–10 
by finding an orthogonal matrix Q and a diagonal 
matrix D such that QTAQ � D.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. A � ≥ 3 0 0 1

0 2 0 0

0 0 2 0

1 0 0 3

¥A � ≥ 1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

¥
A � £ 2 –1 –1

–1 2 –1

–1 –1 2

§A � £ 1 0 �1

0 1 0

�1 0 1

§
A � £ 1 0 2

0 1 4

2 4 2

§A � £5 0 0

0 1 3

0 3 1

§
A � c 6 2

2 3
dA � c 1 12

12 0
d

A � c 1 –2

–2 1
dA � c4 1

1 4
d

11. If b 0, orthogonally diagonalize .

12. If b 0, orthogonally diagonalize .

13. Let A and B be orthogonally diagonalizable n � n
matrices and let c be a scalar. Use the Spectral
Theorem to prove that the following matrices are
orthogonally diagonalizable:

(a) A � B (b) cA (c) A2

14. If A is an invertible matrix that is orthogonally diago-
nalizable, show that A�1 is orthogonally diagonalizable.

15. If A and B are orthogonally diagonalizable and AB �
BA, show that AB is orthogonally diagonalizable.

16. If A is a symmetric matrix, show that every eigenvalue
of A is nonnegative if and only if A � B2 for some
symmetric matrix B.

In Exercises 17–20, find a spectral decomposition of the
matrix in the given exercise.

A � £a 0 b

0 a 0

b 0 a

§

A � ca b

b a
d

Exercises 5. 4
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17. Exercise 1 18. Exercise 2

19. Exercise 5 20. Exercise 8

In Exercises 21 and 22, find a symmetric 2 � 2 matrix with
eigenvalues l1 and l2 and corresponding orthogonal 
eigenvectors v1 and v2.

21.

22.

In Exercises 23 and 24, find a symmetric 3 � 3 matrix with
eigenvalues l1, l2, and l3 and corresponding orthogonal 
eigenvectors v1, v2, and v3.

23.

v3 �

24.

v3 � £ –1

�1

2

§
l1 � 1, l2 � 2, l3 � 2, v1 � £ 11

1

§ , v2 � £ 1

�1

0

§ ,
£�1

1

2

§
l1 � 1, l2 � 2, l3 � 3, v1 � £11

0

§ , v2 � £ 1

�1

1

§ ,

l1 � 2, l2 � �2, v1 � c 1
3
d , v2 � c�3

1
d

l1 � �1, l2 � 2, v1 � c1
1
d , v2 � c 1

�1
d

Section 5.5 Applications 419

25. Let q be a unit vector in �n and let W be the subspace
spanned by q. Show that the orthogonal projection of
a vector v onto W (as defined in Sections 1.2 and 5.2)
is given by

and that the matrix of this projection is thus qqT.
[Hint: Remember that, for x and y in �n, x # y � xTy.]

26. Let {q1, . . . , qk} be an orthonormal set of vectors in �n

and let W be the subspace spanned by this set.

(a) Show that the matrix of the orthogonal projection
onto W is given by

(b) Show that the projection matrix P in part (a) is
symmetric and satisfies P 2 � P.

(c) Let be the n � k matrix whose
columns are the orthonormal basis vectors of W.
Show that P � QQT and deduce that rank(P) � k.

27. Let A be an n � n real matrix, all of whose eigenvalues
are real. Prove that there exist an orthogonal matrix Q
and an upper triangular matrix T such that QTAQ � T.
This very useful result is known as Schur’s Triangular-
ization Theorem. [Hint: Adapt the proof of the Spec-
tral Theorem.]

28. Let A be a nilpotent matrix (see Exercise 56 in
Section 4.2). Prove that there is an orthogonal
matrix Q such that QT AQ is upper triangular with
zeros on its diagonal. [Hint: Use Exercise 27.]

Q � 3q1  p  qk 4
P � q1q1

T � p � qkqk
T

projW 1v 2 � 1qqT 2v

Applications

Dual Codes

There are many ways of constructing new codes from old ones. In this section, we
consider one of the most important of these.

First, we need to generalize the concepts of a generator and a parity check matrix
for a code. Recall from Section 3.7 that a standard generator matrix for a code is an 
n � m matrix of the form

and a standard parity check matrix is an (n � m) � n matrix of the form

Observe that the form of these matrices guarantees that the columns of G are lin-
early independent and the rows of P are linearly independent. (Why?) In proving
Theorem 3.37, we showed that G and P are associated with the same code if and only

P � 3B  In�m 4
G � c Im

A
d
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if A � B, which is equivalent to requiring that PG � O. We use these properties as
the basis for the following definition.

Definition For n � m, an n � m matrix G and an (n � k) � n matrix P (with
entries in �2) are a generator matrix and a parity check matrix, respectively, for
an (n, k) binary code C if the following conditions are all satisfied:

1. The columns of G are linearly independent.
2. The rows of P are linearly independent.
3. PG � O

Notice that property (3) implies that every column v of G satisfies Pv � 0 and
so is a code vector in C. Also, a vector y is in C if and only if it is obtained from the
generator matrix as y � Gu for some vector u in In other words, C is the column
space of G.

To understand the relationship between different generator matrices for the same
code, we only need to recall that, just as elementary row operations do not affect the
row space of a matrix (by Theorem 3.20), elementary column operations do not af-
fect the column space. For a matrix over �2, there are only two relevant operations:
interchange two columns (C1) and add one column to another column (C2). (Why
are these the only two elementary column operations on matrices over �2?)

Similarly, elementary row operations preserve the linear independence of the rows
of P. Moreover, if E is an elementary matrix and c is a code vector, then

It follows that EP is also a parity check matrix for C. Thus, any parity check matrix
can be converted into another one by means of a sequence of row operations: inter-
change two rows (R1) and add one row to another row (R2). We are interested in
showing that any generator or parity check matrix can be brought into standard
form. There is one other definition we need. We will call two codes C1 and C2 equiv-
alent if there is a permutation matrix M such that

In other words, if we permute the entries of the vectors in C1 (all in the same way), we
can obtain C2. For example,

are equivalent via the permutation matrix . Permuting the entries of

code vectors corresponds to permuting the rows of a generator matrix and permuting
the columns of a parity check matrix for the code. (Why?)

M � £0 0 1

1 0 0

0 1 0

§
C1 � • £ 00

0

§ , £ 10
0

§ , £ 10
1

§ , £ 00
1

§ ¶   and  C2 � • £ 00
0

§ , £ 01
0

§ , £ 11
0

§ , £ 10
0

§ ¶

5Mx : x in C16 � C2

1EP 2c � E 1Pc 2 � E0 � 0

�n
2.
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We can bring any generator matrix for a code into standard form by means of op-
erations C1, C2, and R1. If R1 has not been used, then we have the same code; if R1
has been used, then we have an equivalent code. We can bring any parity check ma-
trix for a code into standard form by means of operations R1, R2, and C1. If C1 has
not been used, then we have the same code; if C1 has been used, then we have an
equivalent code.

The following examples illustrate these points.

(a) Bring the generator matrix

into standard form and find an associated parity check matrix.

(b) Bring the parity check matrix

into standard form and find an associated generator matrix.

Solution (a) We can bring the generator matrix G into standard form as follows:

(Do you see why it is not possible to obtain standard form without using R1?) Hence,
A � [1 0], so

is an associated parity check matrix, by Theorem 3.37.

(b) We use elementary row operations to bring P into standard form, keeping in mind
that we want to create an identity matrix on the right—not on the left, as in Gauss-Jordan
elimination. We compute

Thus, , so, by Theorem 3.37, an associated generator matrix is

Remark In part (a), it is instructive to verify that G and G� generate equiva-
lent, but not identical, codes. Check that this is so by computing and

.
We now turn our attention to the main topic of this section, the notion of a dual

code.

5G¿x : x in �2
26 5Gx : x in �2

26
G � c I

A
d � ≥ 1 0

0 1

1 1

1 0

¥
A � c1 1

1 0
d

P � c 1 0 0 1

0 1 1 1
d ¡

R14R2 c 0 1 1 1

1 0 0 1
d ¡

R1�R2 c 1 1 1 0

1 0 0 1
d � 3A I 4 � P¿

P � 3A I 4 � 31 0 1 4
G � £1 0

1 0

0 1

§ ¡
R24R3 £1 0

0 1

1 0

§ � c I

A
d � G¿

P � c1 0 0 1

0 1 1 1
d

G � £1 0

1 0

0 1

§
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Definition Let C be a set of code vectors in The orthogonal complement
of C is called the dual code of C and is denoted C�. That is,

The dot product in behaves like the dot product in �n, with one important
exception: Property (d) of Theorem 1.2 is no longer true. In other words, in a

nonzero vector can be orthogonal to itself ! As an example, take in Then

x # x � 1 � 1 � 0.

Find the dual code of the code C in Example 5.21(b).

Solution The code C is

[Alternatively, . Check that this really does give the
same code.]

To find C�, we need those vectors in �4
2 that are orthogonal to all four vectors in

C. Since there are only 16 vectors altogether in �4
2, we could proceed by trial and

error—but here is a better method. Let T be in C�. Since y # c � 0
for each c in C, we have four equations, one of which we can ignore, since it just says
0 � 0. The other three are

Solving this system, we obtain

(Check this.) It follows that y1 � y3 � y4 and y2 � y3, so

C� � μ ≥ y3 � y4

y3

y3

y4

¥ ∂ � μ y3 ≥ 1

1

1

0

¥ � y4 ≥ 1

0

0

1

¥ ∂ � μ ≥ 0

0

0

0

¥ , ≥ 1

1

1

0

¥ , ≥ 1

0

0

1

¥ , ≥ 0

1

1

1

¥ ∂

£0 1 1 0

1 0 1 1

1 1 0 1

3 00
0

§ ¡ £1 0 1 1

0 1 1 0

0 0 0 0

3 00
0

§
y1 � y2 � y4 � 0
y1 � y3 � y4 � 0

y2 � y3 � 0

y � 3y1 y2 y3 y4 4
C � 5c in �4 : Pc � 06 � null1P2

� eG c0
0
d , G c0

1
d , G c1

0
d , G c1

1
d f � μ ≥ 0

0

0

0

¥ , ≥ 0

1

1

0

¥ , ≥ 1

0

1

1

¥ , ≥ 1

1

0

1

¥ ∂
C � 5Gx : x in �2

26

�2
2.x � c1

1
d �n

2,
�n

2

C� � 5x in �2
n : c # x � 0  for all c in C 6

�n
2.
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Theorem 5. 21

We now examine the relationship between the generator and parity check matri-
ces of a code and its dual.

If C is an (n, k) binary code with generator matrix G and parity check matrix P,
then C� is an (n, n � k) binary code such that

a. GT is a parity check matrix for C�.
b. PT is a generator matrix for C�.

Proof By definition, G is an n � k matrix with linearly independent columns, P is an
(n � k) � n matrix with linearly independent rows, and PG � O. Therefore, the rows
of GT are linearly independent, the columns of PT are linearly independent, and

This shows that GT is a parity check matrix for C� and PT is a generator matrix for C�.
Since PT is n � (n � k), C� is an (n, n � k) code.

Find generator and parity check matrices for the dual code C� from Example 5.22.

Solution There are two ways to proceed. We will illustrate both approaches.

Method 1: According to Theorem 5.21(b), a generator matrix G� for C� is given by

This matrix is in standard form with , so a parity check matrix for C� is

by Theorem 3.37.
Method 2: Using Theorem 5.21(a) and referring to Example 5.21(b), we obtain a

parity check matrix P� for C� as follows:

This matrix is not in standard form, so we use elementary row operations to convert
it to

P� � c 1 0 1 1

0 1 1 0
d ¡ c 0 1 1 0

1 1 0 1
d � 3A I 4 � P1

�

P� � GT � ≥ 1 0

0 1

1 1

1 0

¥ T

� c1 0 1 1

0 1 1 0
d

P � � 3A I 4 � c 0 1 1 0

1 1 0 1
d

A � c0 1

1 1
d

G� � PT � c1 0 0 1

0 1 1 1
d T � ≥ 1 0

0 1

0 1

1 1

¥

GTPT � 1PG2T � OT � O
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Now we can use Theorem 3.37 to obtain a generator matrix G� for C�:

Let C be the code with generator matrix

List the vectors in C and C�.

Solution The code C is

(Note that C is a double repetition code that encodes vectors from �2
2 as vectors in �4

2

by writing the entries twice. See Exercise 79 in Section 3.7.) Using Theorem 5.21, we
find the parity check matrix P� for C� to be

Thus, P� has the form where A � I, so a generator matrix G� for C� is

Hence, C� has the same generator matrix as C, so C� � C !

A code C with the property that C� � C is called self dual. We can check that the
code in Example 5.24 is self dual by showing that every vector in C is orthogonal to
all the vectors in C, including itself. (Do this.)

You may have noticed that in the self dual code in Example 5.24, every vector in
C has an even number of 1s. We will prove that this is true for every self dual code.
The following definition is useful.

G� � c I

A
d � ≥ 1 0

0 1

1 0

0 1

¥ � G

3A  I 4 ,
P� � GT � ≥ 1 0

0 1

1 0

0 1

¥ T

� c1 0 1 0

0 1 0 1
d

C � 5Gx : x in �4
26 � μ ≥ 0

0

0

0

¥ , ≥ 1

0

1

0

¥ , ≥ 0

1

0

1

¥ , ≥ 1

1

1

1

¥ ∂

G � ≥ 1 0

0 1

1 0

0 1

¥

G� � c I

A
d � ≥ 1 0

0 1

0 1

1 1

¥
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Theorem 5. 22

Definition Let x be a vector in The weight of x, denoted w(x), is the
number of 1s in x.

For example, w([1 1 0 1 0 0 1]T) � 4. If we temporarily think of x as a
vector in �n, then we can give the following alternative descriptions of w(x). Let 1 de-
note the vector (of the same length as x) all of whose entries are 1. Then w(x) � x # 1 and
w(x) � x # x. We can now prove the following interesting facts about self dual codes.

If C is a self dual code, then:

a. Every vector in C has even weight.
b. 1 is in C.

Proof (a) A vector x in has even weight if and only if w(x) � 0 in �2. But

since C is self dual.

(b) Using property (a), we have 1 # x � w(x) � 0 in �2 for all x in C. This means that
1 is orthogonal to every vector in C, so 1 is in C� � C, as required.

Quadratic Forms

An expression of the form

is called a quadratic form in x and y. Similarly,

is a quadratic form in x, y, and z. In words, a quadratic form is a sum of terms, each
of which has total degree two in the variables. Therefore, 5x 2 � 3y 2 � 2xy is a qua-
dratic form, but x 2 � y 2 � x is not.

ax2 � by 2 � cz2 � dxy � exz � fyz

ax2 � by2 � cxy

w1x 2 � x # x � 0

�n
2

�n
2.
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F. Jessie MacWilliams (1917–1990) was one of the pioneers of coding theory. She received her
B.A. and M.A. from Cambridge University in 1938–39, following which she studied in the
United States at Johns Hopkins University and Harvard University. After marrying and
raising a family, MacWilliams took a job as a computer programmer at Bell Laboratories in
Murray Hill, New Jersey, in 1958, where she became interested in coding theory. In 1961, she
returned to Harvard for a year and obtained a Ph.D.

Her thesis contains one of the most powerful theorems in coding theory. Now known as
the MacWilliams Identities, this theorem relates the weight distribution (the number of
codewords of each possible weight) of a linear code to the weight distribution of its dual
code. The MacWilliams Identities are widely used by coding theorists, both to obtain new
theoretical information about error-correcting codes and to determine the weight
distributions of specific codes.

MacWilliams is perhaps best known for her book The Theory of Error-Correcting Codes
(1977), written with N. J. A. Sloane of Bell Labs. This book is often referred to as the “bible
of coding theory.” In 1980, MacWilliams gave the inaugural Emmy Noether Lecture of the
Association for Women in Mathematics.
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We can represent quadratic forms using matrices as follows:

and

(Verify these.) Each has the form xTAx, where the matrix A is symmetric. This obser-
vation leads us to the following general definition.

Definition A quadratic form in n variables is a function f : �n S � of the
form

where A is a symmetric n � n matrix and x is in �n. We refer to A as the matrix
associated with f.

What is the quadratic form with associated matrix ?

Solution If , then

Observe that the off-diagonal entries a12 � a21 � �3 of A are combined to give the
coefficient �6 of x1x2. This is true generally. We can expand a quadratic form in n
variables xTAx as follows:

Thus, if i j, the coefficient of xi xj is 2aij.

Find the matrix associated with the quadratic form

Solution The coefficients of the squared terms go on the diagonal as aii, and the
coefficients of the cross-product terms xi xj are split between aij and aji. This gives

A � £ 2 3 �3
2

3 �1 0

�3
2 0 5

§
x2

i

f 1x1, x2, x3 2 � 2x1
2 � x2

2 � 5x3
2 � 6x1x2 � 3x1x3



xTAx � a11x1
2 � a22x2

2 � p � annxn
2 � a

i 6 j

2aijxixj

f 1x 2 � xTAx � 3x1 x2 4 c 2 �3

�3 5
d c x1

x2

d � 2x1
2 � 5x2

2 � 6x1x2

x � cx1

x2

d
A � c 2 �3

�3 5
d

f 1x 2 � xTAx

ax2 � by2 � cz2 � dxy � exz � fyz � 3x y z 4 £ a d>2 e>2
d>2 b f>2
e>2 f>2 c

§ £xy
z

§
ax2 � by 2 � cxy � 3x y 4 c a c>2

c>2 b
d cx

y
d
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so

as you can easily check.

In the case of a quadratic form f(x, y) in two variables, the graph of z � f(x, y) is
a surface in �3. Some examples are shown in Figure 5.12.

Observe that the effect of holding x or y constant is to take a cross section of the
graph parallel to the yz or xz planes, respectively. For the graphs in Figure 5.12, all of
these cross sections are easy to identify. For example, in Figure 5.12(a), the cross
sections we get by holding x or y constant are all parabolas opening upward, so
f(x, y) 
 0 for all values of x and y. In Figure 5.12(c), holding x constant gives parabo-
las opening downward and holding y constant gives parabolas opening upward,
producing a saddle point.

f 1x1, x2, x3 2 � 3x1 x2 x3 4 £ 2 3 �3
2

3 �1 0

�3
2 0 5

§ £x1

x2

x3

§
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Graphs of quadratic forms f(x, y)
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(d) z � 2x2
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Theorem 5. 23

What makes this type of analysis quite easy is the fact that these quadratic forms
have no cross-product terms. The matrix associated with such a quadratic form is a
diagonal matrix. For example,

In general, the matrix of a quadratic form is a symmetric matrix, and we saw in Sec-
tion 5.4 that such matrices can always be diagonalized. We will now use this fact to
show that, for every quadratic form, we can eliminate the cross-product terms by
means of a suitable change of variable.

Let f(x) � xTAx be a quadratic form in n variables, with A a symmetric n � n ma-
trix. By the Spectral Theorem, there is an orthogonal matrix Q that diagonalizes A;
that is, QTAQ � D, where D is a diagonal matrix displaying the eigenvalues of A. We
now set

Substitution into the quadratic form yields

which is a quadratic form without cross-product terms, since D is diagonal. Further-
more, if the eigenvalues of A are l1, . . . , ln, then Q can be chosen so that

If then, with respect to these new variables, the quadratic form
becomes

This process is called diagonalizing a quadratic form. We have just proved the fol-
lowing theorem, known as the Principal Axes Theorem. (The reason for this name
will become clear in the next subsection.)

The Principal Axes Theorem

Every quadratic form can be diagonalized. Specifically, if A is the n � n symmet-
ric matrix associated with the quadratic form xTAx and if Q is an orthogonal
matrix such that QTAQ � D is a diagonal matrix, then the change of variable 
x � Qy transforms the quadratic form xTAx into the quadratic form yTDy,
which has no cross-product terms. If the eigenvalues of A are l1, . . . , ln and

, then

xTAx � yTDy � l1y1
2 � p � lnyn

2

y � 3y1  p  yn 4T

yTDy � l1y1
2 � p � lnyn

2

y � 3y1  p  yn 4T,

D � £l1
p 0

o ∞ o
0 p ln

§

� yTDy

� yTQTAQ y

xTAx � 1Q y 2TA1Q y2
x � Qy  or, equivalently,  y � Q�1x � QTx

2x2 � 3y2 � 3x y 4 c2 0

0 �3
d cx

y
d
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Find a change of variable that transforms the quadratic form

into one with no cross-product terms.

Solution The matrix of f is

with eigenvalues l1 � 6 and l2 � 1. Corresponding unit eigenvectors are

(Check this.) If we set

then QTAQ � D. The change of variable x � Qy, where

converts f into

The original quadratic form xTAx and the new one yTDy (referred to in the Princi-
pal Axes Theorem) are equal in the following sense. In Example 5.27, suppose we want

to evaluate f(x) � xTAx at . We have

In terms of the new variables,

so

exactly as before.
The Principal Axes Theorem has some interesting and important consequences.

We will consider two of these. The first relates to the possible values that a quadratic
form can take on.

Definition A quadratic form f(x) � xTAx is classified as one of the following:

1. positive definite if f(x) � 0 for all x 0
2. positive semidefinite if f(x) 
 0 for all x
3. negative definite if f(x) � 0 for all x 0
4. negative semidefinite if f(x) � 0 for all x
5. indefinite if f(x) takes on both positive and negative values





f 1y1, y2 2 � 6y1
2 � y 2

2 � 611>15 2 2 � 1�7>15 2 2 � 55>5 � 11

c y1

y2

d � y � QTx � c 2>15 1>15

1>15 �2>15
d c�1

3
d � c 1>15

�7>15
d

f 1�1, 3 2 � 51�1 22 � 41�1 2 13 2 � 213 22 � 11

x � c�1

3
d

f 1y 2 � f 1y1, y2 2 � 3y1 y2 4 c6 0

0 1
d c y1

y2

d � 6y1
2 � y2

2

x � cx1

x2

d   and  y � c y1

y2

d
Q � c 2>15 1>15

1>15 �2>15
d   and  D � c 6 0

0 1
d

q1 � c 2>15

1>15
d   and  q2 � c 1>15

�2>15
d

A � c5 2

2 2
d

f 1x1, x2 2 � 5x1
2 � 4x1x2 � 2x2

2
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Theorem 5. 24

A symmetric matrix A is called positive definite, positive semidefinite, negative
definite, negative semidefinite, or indefinite if the associated quadratic form
f(x) � xTAx has the corresponding property.

The quadratic forms in parts (a), (b), (c), and (d) of Figure 5.12 are positive
definite, negative definite, indefinite, and positive semidefinite, respectively. The Prin-
cipal Axes Theorem makes it easy to tell if a quadratic form has one of these properties.

Let A be an n � n symmetric matrix. The quadratic form f(x) � xTAx is

a. positive definite if and only if all of the eigenvalues of A are positive.
b. positive semidefinite if and only if all of the eigenvalues of A are nonnegative.
c. negative definite if and only if all of the eigenvalues of A are negative.
d. negative semidefinite if and only if all of the eigenvalues of A are nonpositive.
e. indefinite if and only if A has both positive and negative eigenvalues.

You are asked to prove Theorem 5.24 in Exercise 49.

Classify f(x, y, z) � 3x2 � 3y2 � 3z2 � 2xy � 2xz � 2yz as positive definite, negative
definite, indefinite, or none of these.

Solution The matrix associated with f is

which has eigenvalues 1, 4, and 4. (Verify this.) Since all of these eigenvalues are pos-
itive, f is a positive definite quadratic form.

If a quadratic form f(x) � xTAx is positive definite, then, since f(0) � 0, the
minimum value of f(x) is 0 and it occurs at the origin. Similarly, a negative definite qua-
dratic form has a maximum at the origin. Thus, Theorem 5.24 allows us to solve certain
types of maxima/minima problems easily, without resorting to calculus. A type of
problem that falls into this category is the constrained optimization problem.

It is often important to know the maximum or minimum values of a quadratic
form subject to certain constraints. (Such problems arise not only in mathematics but
also in statistics, physics, engineering, and economics.) We will be interested in
finding the extreme values of f(x) � xTAx subject to the constraint that x � 1. In
the case of a quadratic form in two variables, we can visualize what the problem
means. The graph of z � f(x, y) is a surface in �3, and the constraint x � 1 restricts
the point (x, y) to the unit circle in the xy-plane. Thus, we are considering those
points that lie simultaneously on the surface and on the unit cylinder perpendicular
to the xy-plane. These points form a curve lying on the surface, and we want the high-
est and lowest points on this curve. Figure 5.13 shows this situation for the quadratic
form and corresponding surface in Figure 5.12(c).

77 77

£ 3 �1 �1

�1 3 �1

�1 �1 3

§
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Theorem 5. 25

In this case, the maximum and minimum values of f(x, y) � 2x2 � 3y 2 (the high-
est and lowest points on the curve of intersection) are 2 and �3, respectively, which
are just the eigenvalues of the associated matrix. Theorem 5.25 shows that this is
always the case.

Let f(x) � xTAx be a quadratic form with associated n � n symmetric matrix A.
Let the eigenvalues of A be l1 
 l2 
 p 
 ln. Then the following are true, subject
to the constraint x � 1:

a. l1 
 f(x) 
 ln

b. The maximum value of f(x) is l1, and it occurs when x is a unit eigenvector cor-
responding to l1.

c. The minimum value of f(x) is ln, and it occurs when x is a unit eigenvector cor-
responding to ln.

Proof As usual, we begin by orthogonally diagonalizing A. Accordingly, let Q be an
orthogonal matrix such that QTAQ is the diagonal matrix

Then, by the Principal Axes Theorem, the change of variable x � Qy gives xTAx �
yTDy. Now note that y � QTx implies that

since QT � Q�1. Hence, using x # x � xTx, we see that � � �
x � 1. Thus, if x is a unit vector, so is the corresponding y, and the values of xTAx

and yTDy are the same.
77 2xTx1yTy7 y 7yTy � 1QTx 2T1QTx 2 � xT1QT 2TQTx � xTQQTx � xTx

D � £l1
p 0

o ∞ o
0 p ln

§

77
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Figure 5. 13
The intersection of z � 2x2 � 3y2 with the
cylinder x 2 � y 2 � 1

y

z

x
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(a) To prove property (a), we observe that if y � [y1
p yn]T, then

Thus, f(x) � l1 for all x such that x � 1. The proof that f(x) 
 ln is similar.
(See Exercise 59.)

(b) If q1 is a unit eigenvector corresponding to l1, then Aq1 � l1q1 and

This shows that the quadratic form actually takes on the value l1, and so, by prop-
erty (a), it is the maximum value of f(x) and it occurs when x � q1.

(c) You are asked to prove this property in Exercise 60.

Find the maximum and minimum values of the quadratic form f(x1, x2) �
4x1x2 � subject to the constraint and determine values of x1 and x2

for which each of these occurs.

Solution In Example 5.27, we found that f has the associated eigenvalues l1 � 6 and
l2 � 1, with corresponding unit eigenvectors

Therefore, the maximum value of f is 6 when x1 � 2� and x2 � 1� . The mini-
mum value of f is 1 when x1 � 1� and x2 � �2� . (Observe that these extreme
values occur twice—in opposite directions—since �q1 and �q2 are also unit eigen-
vectors for l1 and l2, respectively).

Graphing Quadratic Equations

The general form of a quadratic equation in two variables x and y is

where at least one of a, b, and c is nonzero. The graphs of such quadratic equations
are called conic sections (or conics), since they can be obtained by taking cross sec-
tions of a (double) cone (i.e., slicing it with a plane). The most important of the conic
sections are the ellipses (with circles as a special case), hyperbolas, and parabolas.
These are called the nondegenerate conics. Figure 5.14 shows how they arise.

It is also possible for a cross section of a cone to result in a single point, a straight
line, or a pair of lines. These are called degenerate conics. (See Exercises 81–86.)

The graph of a nondegenerate conic is said to be in standard position relative to
the coordinate axes if its equation can be expressed in one of the forms in Figure 5.15.

ax2 � by2 � cxy � dx � ey � f � 0

1515
1515

q1 � c 2>15

1>15
d   and  q2 � c 1>15

�2>15
d

x2
1 � x2

2 � 1,2x2
2

5x2
1 �

f 1q1 2 � q1
TAq1 � q1

Tl1q1 � l11q1
Tq1 2 � l1

77� l1

� l1 7 y 7 2� l11y1
2 � y2

2 � p � yn
2 2� l1y1

2 � l1y2
2 � p � l1yn

2

� l1y1
2 � l2y2

2 � p � lnyn
2

f 1x 2 � xTAx � yTD y
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Figure 5. 14
The nondegenerate conics

EllipseCircle Parabola Hyperbola

Figure 5. 15
Nondegenerate conics in standard position
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x
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b

� 1, a, b � 0�
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x

y

y � ax2, a � 0

x

y

y � ax2, a 	 0

x

y
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x
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Hyperbola

Parabola
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b2 � 1; a, b 7 0
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If possible, write each of the following quadratic equations in the form of a conic in
standard position and identify the resulting graph.

(a) 4x2 � 9y 2 � 36 (b) 4x 2 � 9y 2 � 1 � 0 (c) 4x 2 � 9y � 0

Solution (a) The equation 4x2 � 9y2 � 36 can be written in the form

so its graph is an ellipse intersecting the x-axis at (�3, 0) and the y-axis at (0, �2).

(b) The equation 4x2 � 9y2 � 1 � 0 can be written in the form

so its graph is a hyperbola, opening up and down, intersecting the y-axis at (0, � ).

(c) The equation 4x2 � 9y � 0 can be written in the form

so its graph is a parabola opening upward.

If a quadratic equation contains too many terms to be written in one of the forms
in Figure 5.15, then its graph is not in standard position. When there are additional
terms but no xy term, the graph of the conic has been translated out of standard
position.

Identify and graph the conic whose equation is

Solution We begin by grouping the x and y terms separately to get

or

Next, we complete the squares on the two expressions in parentheses to obtain

or

We now make the substitutions x� � x � 3 and y� � y � 2, turning the above equa-
tion into 1x¿ 22 � 21y¿ 22 � 8  or  

1x¿ 22
8

�
1y¿ 22

4
� 1

1x � 3 22 � 21y � 2 22 � 8

1x2 � 6x � 9 2 � 21y2 � 4y � 4 2 � �9 � 9 � 8

1x2 � 6x 2 � 21y2 � 4y 2 � �9

1x2 � 6x 2 � 12y2 � 8y 2 � �9

x2 � 2y2 � 6x � 8y � 9 � 0

y �
4

9
x2

1
3

y2

1
9

�
x2

1
4

� 1

x2

9
�

y2

4
� 1

Example 5. 30

Example 5. 31
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This is the equation of an ellipse in standard position in the x�y� coordinate system,
intersecting the x�-axis at (�2 , 0) and the y�-axis at (0, �2). The origin in the x�y�
coordinate system is at x � 3, y � �2, so the ellipse has been translated out of stan-
dard position 3 units to the right and 2 units down. Its graph is shown in Figure 5.16.

12
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Figure 5. 16
A translated ellipse

x�

y�

x

y

�2 2 4 6

2

�4

�2
(3, �2)

If a quadratic equation contains a cross-product term, then it represents a conic
that has been rotated.

Identify and graph the conic whose equation is

Solution The left-hand side of the equation is a quadratic form, so we can write it in
matrix form as xTAx � 6, where

In Example 5.27, we found that the eigenvalues of A are 6 and 1, and a matrix Q that
orthogonally diagonalizes A is

Observe that det Q � �1. In this example, we will interchange the columns of this
matrix to make the determinant equal to �1. Then Q will be the matrix of a rotation,
by Exercise 28 in Section 5.1. It is always possible to rearrange the columns of an
orthogonal matrix Q to make its determinant equal to �1. (Why?) We set

instead, so that

QTAQ � c1 0

0 6
d � D

Q � c 1>15 2>15

�2>15 1>15
d

Q � c 2>15 1>15

1>15 �2>15
d

A � c5 2

2 2
d

5x2 � 4xy � 2y2 � 6

Example 5. 32
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The change of variable x � Qx� converts the given equation into the form (x�)TDx� � 6

by means of a rotation. If , then this equation is just

which represents an ellipse in the x�y� coordinate system.

To graph this ellipse, we need to know which vectors play the roles of

and in the new coordinate system. (These two vectors locate the positions

of the x� and y� axes.) But, from x � Qx�, we have

and

These are just the columns q1 and q2 of Q, which are the eigenvectors of A! The fact
that these are orthonormal vectors agrees perfectly with the fact that the change of
variable is just a rotation. The graph is shown in Figure 5.17.

You can now see why the Principal Axes Theorem is so named. If a real symmet-
ric matrix A arises as the coefficient matrix of a quadratic equation, the eigenvectors
of A give the directions of the principal axes of the corresponding graph.

It is possible for the graph of a conic to be both rotated and translated out of stan-
dard position, as illustrated in Example 5.33.

Identify and graph the conic whose equation is

Solution The strategy is to eliminate the cross-product term first. In matrix form,
the equation is xTAx � Bx � 4 � 0, where

The cross-product term comes from the quadratic form xTAx, which we diagonalize
as in Example 5.32 by setting x � Qx�, where

Then, as in Example 5.32,

But now we also have

Bx � BQx¿ � c� 28

15
�

4

15
d c 1>15 2>15

�2>15 1>15
d c x¿

y¿
d � �4x¿ � 12y¿

xTAx � 1x¿ 2TDx¿ � 1x¿ 22 � 61y¿ 22
Q � c 1>15 2>15

�2>15 1>15
d

A � c 5 2

2 2
d   and  B � c� 28

15
�

4

15
d

5x 2 � 4xy � 2y 2 �
28

15
x �

4

15
y � 4 � 0

Qeœ
2 � c 1>15 2>15

�2>15 1>15
d c 0

1
d � c 2>15

1>15
d

Qeœ
1 � c 1>15 2>15

�2>15 1>15
d c 1

0
d � c 1>15

�2>15
d

eœ
2 � c0

1
d eœ

1 � c1
0
d

1x¿ 22 � 61y¿ 22 � 6  or  
1x¿ 22

6
� 1y¿ 22 � 1

x¿ � cx¿
y¿
d
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Figure 5. 17
A rotated ellipse
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Example 5. 33
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Thus, in terms of x� and y�, the given equation becomes

To bring the conic represented by this equation into standard position, we need to
translate the x�y� axes. We do so by completing the squares, as in Example 5.31. We have

or

This gives us the translation equations

In the x �y � coordinate system, the equation is simply

which is the equation of an ellipse (as in Example 5.32). We can sketch this ellipse by
first rotating and then translating. The resulting graph is shown in Figure 5.18.

The general form of a quadratic equation in three variables x, y, and z is

where at least one of a, b, . . . , f is nonzero. The graph of such a quadratic equation is
called a quadric surface (or quadric). Once again, to recognize a quadric we need to

ax 2 � by 2 � cz2 � dxy � exz � fyz � gx � hy � iz � j � 0

1x– 22 � 61y – 22 � 6

x– � x¿ � 2  and  y – � y ¿ � 1

1x¿ � 2 22 � 61y ¿ � 1 22 � 6

1 1x¿ 22 � 4x¿ � 4 2 � 61 1y ¿ 22 � 2y ¿ � 1 2 � �4 � 4 � 6 � 6

1x¿ 22 � 61y ¿ 22 � 4x¿ � 12y ¿ � 4 � 0
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Figure 5. 18
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Figure 5. 19
Quadric surfaces
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put it into standard position. Some quadrics in standard position are shown in
Figure 5.19; others are obtained by permuting the variables.

Identify the quadric surface whose equation is

Solution The equation can be written in matrix form as xTAx � 36, where

We find the eigenvalues of A to be 18, 9, and �9, with corresponding orthogonal
eigenvectors

respectively. We normalize them to obtain

and form the orthogonal matrix

Note that in order for Q to be the matrix of a rotation, we require det Q � 1, which is
true in this case. (Otherwise, det Q � �1, and swapping two columns changes the
sign of the determinant.) Therefore,

and, with the change of variable x � Qx�, we get xTAx � (x�)Dx� � 36, so

From Figure 5.19, we recognize this equation as the equation of a hyperboloid of one
sheet. The x�, y�, and z� axes are in the directions of the eigenvectors q1, q2, and q3,
respectively. The graph is shown in Figure 5.20.

181x¿ 22 � 91y¿ 22 � 91z¿ 22 � 36  or  
1x¿ 22

2
�
1y¿ 22

4
�
1z¿ 22

4
� 1

QTAQ � D � £18 0 0

0 9 0

0 0 �9

§

Q � 3q1 q2 q3 4 � £ 2
3

1
3

2
3

2
3 �2

3 �1
3

1
3

2
3 �2

3

§

q1 � £ 2
3
2
3
1
3

§ ,  q2 � £ 1
3

� 2
3
2
3

§ ,  and  q3 � £ 2
3

� 1
3

� 2
3

§

£22
1

§ ,  £ 1

�2

2

§ ,  and  £ 2

�1

�2

§

A � £ 5 8 10

8 11 �2

10 �2 2

§
5x2 � 11y2 � 2z2 � 16xy � 20xz � 4yz � 36

Example 5. 34
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Dual Codes

In Exercises 1–4, G is a generator matrix for a code C. Bring
G into standard form and determine whether the corre-
sponding code is equal to C.

1. 2.

3. 4.

In Exercises 5–8, P is a parity check matrix for a code C.
Bring P into standard form and determine whether the
corresponding code is equal to C.

5. 6. P � c1 1 0 1

1 1 1 1
dP � 31 1 0 4

G � E1 1

1 1

1 0

0 0

1 0

UG � ≥ 0 0 0

1 0 1

0 1 1

1 1 1

¥

G � E1 0 1

1 0 0

0 1 1

1 1 0

0 0 1

UG � £ 1 0

1 1

1 0

§

7.

8.

In Exercises 9–12, find the dual code C� of the code C.

9.

10.

11. C � μ ≥ 0

0

0

0

¥ , ≥ 0

1

0

0

¥ , ≥ 0

1

0

1

¥ , ≥ 0

0

0

1

¥ ∂
C � • £ 00

0

§ , £ 11
0

§ , £ 00
1

§ , £ 11
1

§ ¶
C � • £ 00

0

§ , £ 01
0

§ ¶

P � c0 1 0 1

1 0 0 1
d

P � £0 1 1 1 0

1 1 0 0 1

0 0 1 1 1

§
Exercises 5. 5

Figure 5. 20
A hyperboloid of one sheet in
nonstandard position

y�

y

z�

z

x�

x

We can also identify and graph quadrics that have been translated out of standard
position using the “complete-the-squares method” of Examples 5.31 and 5.33. You
will be asked to do so in the exercises.
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12.

In Exercises 13–16, either a generator matrix G or a parity
check matrix P is given for a code C. Find a generator matrix
G� and a parity check matrix P� for the dual code of C.

13. 14.

15. 16.

17. Find generator and parity check matrices for the dual
of the (7, 4) Hamming code in Example 3.71.

The even parity code En is the subset of consisting of all
vectors with even weight. The n-times repetition code Repn

is the subset of consisting of just the two vectors 0 and 1
(all zeros and all 1s, respectively).

18. (a) Find generator and parity check matrices for E3

and Rep3.
(b) Show that E3 and Rep3 are dual to each other.

19. Show that En and Repn are dual to each other.

20. If C and D are codes and C D, show that D� C�.

21. Show that if C is a code with a generator matrix, then
(C�)� � C.

22. Find a self dual code of length 6.

Quadratic Forms

In Exercises 23–28, evaluate the quadratic form f(x) � xTAx
for the given A and x.

23.

24.

25. A � c 3 �2

�2 4
d , x � c1

6
d

A � c5 1

1 �1
d , x � cx1

x2

d
A � c2 3

3 4
d , x � cx

y
d

��

�n
2

�n
2

P � £ 1 0 1 1 0

0 1 0 0 1

0 0 1 0 1

§P � c 1 1 1 0

0 1 0 1
d

G � E1 0

0 1

1 0

1 1

0 1

UG � ≥ 1 1

1 1

1 0

0 1

¥

C � e E000
0

0

U, E011
0

1

U, E100
1

0

U, E111
1

1

U u
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26.

27.

28.

In Exercises 29–34, find the symmetric matrix A associated
with the given quadratic form.

29. 30.

31. 32.

33.

34.

Diagonalize the quadratic forms in Exercises 35–40 by
finding an orthogonal matrix Q such that the change of
variable x � Qy transforms the given form into one with no
cross-product terms. Give Q and the new quadratic form.

35. 36.

37.

38.

39.

40.

Classify each of the quadratic forms in Exercises 41–48 as
positive definite, positive semidefinite, negative definite,
negative semidefinite, or indefinite.

41. 42.

43. 44.

45.

46. 47.

48.

49. Prove Theorem 5.24.

50. Let be a symmetric 2 � 2 matrix. Prove

that A is positive definite if and only if a � 0 and
det A � 0. [Hint:

.]

51. Let B be an invertible matrix. Show that A � BTB is
positive definite.

a a x �
b

a
y b 2

� a d �
b2

a
b y 2

ax2 � 2bxy � dy 2 �

A � ca b

b d
d

�x2 � y2 � z2 � 2xy � 2xz � 2yz

x 2
1 � x2

2 � x 2
3 � 4x1x2x 2

1 � x 2
2 � x3

2 � 2x1x3

2x 2
1 � 2x 2

2 � 2x3
2 � 2x1x2 � 2x1x3 � 2x2x3

x2 � y2 � 4xy�2x2 � 2y2 � 2xy

x2
1 � x2

2 � 2x1x2x2
1 � 2x2

2

2xy � 2xz � 2yz

x2 � z2 � 2xy � 2yz

x 2
1 � x 2

2 � 3x 2
3 � 4x1x2

7x 2
1 � x 2

2 � x 2
3 � 8x1x2 � 8x1x3 � 16x2x3

x2 � 8xy � y22x 2
1 � 5x2

2 � 4x1x2

2x2 � 3y2 � z2 � 4xz

5x2
1 � x2

2 � 2x2
3 � 2x1x2 � 4x1x3 � 4x2x3

x2
1 � x 2

3 � 8x1x2 � 6x2x33x2 � 3xy � y2

x1x2x1
2 � 2x2

2 � 6x1x2

A � £2 2 0

2 0 1

0 1 1

§ , x � £12
3

§
A � £ 1 0 �3

0 2 1

�3 1 3

§ , x � £ 2

�1

1

§
A � £ 1 0 �3

0 2 1

�3 1 3

§ , x � £xy
z

§
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52. Let A be a positive definite symmetric matrix. Show
that there exists an invertible matrix B such that A �
BTB. [Hint: Use the Spectral Theorem to write A �
QDQT. Then show that D can be factored as CTC for
some invertible matrix C.]

53. Let A and B be positive definite symmetric n � n
matrices and let c be a positive scalar. Show that the
following matrices are positive definite.

(a) cA (b) A2 (c) A � B
(d) A�1 (First show that A is necessarily invertible.)

54. Let A be a positive definite symmetric matrix. Show
that there is a positive definite symmetric matrix B
such that A � B2. (Such a matrix B is called a square
root of A.)

In Exercises 55–58, find the maximum and minimum values
of the quadratic form f(x) in the given exercise, subject to the
constraint � 1, and determine the values of x for which
these occur.

55. Exercise 42 56. Exercise 44

57. Exercise 45 58. Exercise 46

59. Finish the proof of Theorem 5.25(a).

60. Prove Theorem 5.25(c).

Graphing Quadratic Equations

In Exercises 61–66, identify the graph of the given equation.

61. 62.

63. 64.

65. 66.

In Exercises 67–72, use a translation of axes to put the conic
in standard position. Identify the graph, give its equation in
the translated coordinate system, and sketch the curve.

67.

68.

69. 70.

71.

72.

In Exercises 73–76, use a rotation of axes to put the conic in
standard position. Identify the graph, give its equation in the
rotated coordinate system, and sketch the curve.

73. 74.

75. 76. 3x2 � 2xy � 3y2 � 84x2 � 6xy � 4y2 � 5

4x2 � 10xy � 4y2 � 9x2 � xy � y2 � 6

2y2 � 3x2 � 18x � 20y � 11 � 0

2y2 � 4x � 8y � 0

x2 � 10x � 3y � �139x2 � 4y2 � 4y � 37

4x2 � 2y2 � 8x � 12y � 6 � 0

x2 � y2 � 4x � 4y � 4 � 0

x � �2y23x2 � y2 � 1

2x2 � y2 � 8 � 0x2 � y � 1 � 0

x2 � y2 � 4 � 0x2 � 5y2 � 25

7x 7
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In Exercises 77–80, identify the conic with the given equa-
tion and give its equation in standard form.

77.

78.

79.

80.

Sometimes the graph of a quadratic equation is a straight
line, a pair of straight lines, or a single point. We refer to
such a graph as a degenerate conic. It is also possible that
the equation is not satisfied for any values of the variables, in
which case there is no graph at all and we refer to the conic
as an imaginary conic. In Exercises 81–86, identify the
conic with the given equation as either degenerate or
imaginary and, where possible, sketch the graph.

81. 82.

83. 84.

85.

86.

87. Let A be a symmetric 2 � 2 matrix and let k be a
scalar. Prove that the graph of the quadratic equation
xTAx � k is

(a) a hyperbola if k 0 and det A � 0
(b) an ellipse, circle, or imaginary conic if k 0 and

det A � 0
(c) a pair of straight lines or an imaginary conic if

k 0 and det A � 0
(d) a pair of straight lines or a single point if k � 0

and det A 0
(e) a straight line if k � 0 and det A � 0

[Hint: Use the Principal Axes Theorem.]

In Exercises 88–95, identify the quadric with the given equa-
tion and give its equation in standard form.

88.

89.

90.

91.

92.

93.

94.

95.
12y � 12z � 6
11x2 � 11y2 � 14z2 � 2xy � 8xz � 8yz � 12x �

2012z � 15

10x 2 � 25y 2 � 10z 2 � 40xz � 2012x � 50y �

x2 � y2 � 2z2 � 4xy � 2xz � 2yz � x � y � z � 0

16x2 � 100y2 � 9z2 � 24xz � 60x � 80z � 0

2xy � z � 0

�x2 � y2 � z2 � 4xy � 4xz � 4yz � 12

x2 � y2 � z2 � 4yz � 1

4x2 � 4y2 � 4z2 � 4xy � 4xz � 4yz � 8








2x 2 � 2xy � 2y 2 � 212x � 212y � 6 � 0

x 2 � 2xy � y 2 � 212x � 212y � 0

x2 � 2xy � y2 � 03x2 � y2 � 0

x2 � 2y2 � 2 � 0x2 � y2 � 0

x 2 � 2xy � y 2 � 412x � 4 � 0

2xy � 212x � 1 � 0

6x2 � 4xy � 9y2 � 20x � 10y � 5 � 0

3x 2 � 4xy � 3y 2 � 2812x � 2212y � 84 � 0
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96. Let A be a real matrix with complex eigenvalues
such that and . Prove that every

trajectory of the dynamical system lies on an
ellipse. [Hint: Theorem 4.43 shows that if v is an eigenvec-
tor corresponding to , then the matrix

is invertible and P � 3Re v  Im v 4 l � a � bi

xk�1 � Axk

ƒ l ƒ � 1b  0l � a ; bi
2 � 2

Chapter Review 443

. Set B � (PPT)�1. Show that the 

quadratic defines an ellipse for all k � 0,
and prove that if x lies on this ellipse, so does Ax.]

xTBx � k

A � P c a �b

b a
dP�1

Key Definitions and Concepts
fundamental subspaces

of a matrix, 391
Gram-Schmidt Process, 400
orthogonal basis, 381
orthogonal complement

of a subspace, 389
orthogonal matrix, 385

orthogonal projection, 393
orthogonal set of vectors, 380
Orthogonal Decomposition

Theorem, 395
orthogonally diagonalizable 

matrix, 411
orthonormal basis, 383

orthonormal set of vectors, 383
properties of orthogonal

matrices, 386–387
QR factorization, 404
Rank Theorem, 397
spectral decomposition, 416
Spectral Theorem, 414

Review Questions

1. Mark each of the following statements true or false:

(a) Every orthonormal set of vectors is linearly
independent.

(b) Every nonzero subspace of �n has an orthogonal
basis.

(c) If A is a square matrix with orthonormal rows,
then A is an orthogonal matrix.

(d) Every orthogonal matrix is invertible.
(e) If A is a matrix with det A � 1, then A is an

orthogonal matrix.
(f) If A is an m � n matrix such that (row(A))� � �n,

then A must be the zero matrix.
(g) If W is a subspace of �n and v is a vector in �n

such that projW(v) � 0, then v must be the zero
vector.

(h) If A is a symmetric, orthogonal matrix, then A2 � I.
(i) Every orthogonally diagonalizable matrix is

invertible.
(j) Given any n real numbers , there exists

a symmetric n � n matrix with as its
eigenvalues.

2. Find all values of a and b such that 

is an orthogonal set of vectors.• £ 12
3

§ , £ 4

1

�2

§ , £ ab
3

§ ¶
l1, p , ln

l1, p , ln

3. Find the coordinate vector with

respect to the orthogonal basis

4. The co-
ordinate vector of a vector v with respect to an 

orthonormal basis is .

5. Show that is an

orthogonal matrix.

6. If is an orthogonal matrix, find all possible

values of a, b, and c.

7. If Q is an orthogonal n � n matrix and is
an orthonormal set in �n, prove that 
is an orthonormal set.

5Q v1, p , Q vk65v1, p , vk6
c 1>2 a

b c
d
£ 6>7 2>7 3>7

�1>15 0 2>15

4>715 �15>715 2>715

§
If v1 � c3>5

4>5 d , find all possible vectors v.

3v 4B � c�3

1>2 dB � 5v1, v26 of �2

B � • £ 10
1

§ , £ 1

1

�1

§ , £�1

2

1

§ ¶  of �3

3v 4B of v � £ 7

�3

2

§
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8. If Q is an n � n matrix such that the angles
and are equal for all vectors x and

y in �n, prove that Q is an orthogonal matrix.

In Questions 9–12, find a basis for W �.

9. W is the line in �2 with general equation 
2x � 5y � 0

10. W is the line in �3 with parametric equations 

11.

12.

13. Find bases for each of the four fundamental subspaces of

14. Find the orthogonal decomposition of

with respect to

15. (a) Apply the Gram-Schmidt Process to

W � span μ ≥ 0

1

1

1

¥ , ≥ 1

0

1

�1

¥ , ≥ 3

1

�2

1

¥ ∂

v � ≥ 1

0

�1

2

¥

A � ≥ 1 �1 2 1 3

�1 2 �2 1 �2

2 1 4 8 9

3 �5 6 �1 7

¥

W � span μ ≥ 1

1

1

1

¥ , ≥ 1

�1

1

2

¥ ∂
W � span• £ 1

�1

4

§ , £ 0

1

�3

§ ¶
x � t

y � 2t

z � �t

�1x, y 2�1Q x, Q y 2
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to find an orthogonal basis for 

(b) Use the result of part (a) to find a QR factorization

of

16. Find an orthogonal basis for �4 that contains the

vectors 

17. Find an orthogonal basis for the subspace

18. Let 

(a) Orthogonally diagonalize A.
(b) Give the spectral decomposition of A.

19. Find a symmetric matrix with eigenvalues l1 � l2 � 1,
l3 � �2 and eigenspaces

20. If is an orthonormal basis for �n and

prove that A is a symmetric matrix with eigenvalues
and corresponding eigenvectors
.v1, v2, p , vn

c1, c2, p , cn

A � c1v1v1
T � c2v2v2

T � p � cnvnvn
T

5v1, v2, p , vn6
E1 � span ° £ 11

0

§ , £ 11
1

§ ¢ , E� 2 � span ° £ 1

�1

0

§ ¢

A � £ 2 1 �1

1 2 1

�1 1 2

§ .
W � μ ≥ x1

x2

x3

x4

¥ : x1 � x2 � x3 � x4 � 0 ∂  of �4.

≥ 1

0

2

2

¥  and ≥ 0

1

1

�1

¥ .

A � ≥ 1 1 0

1 1 1

1 1 1

1 0 1

¥ .

W � span5x1, x2, x36.
x1 � ≥ 1

1

1

1

¥ , x2 � ≥ 1

1

1

0

¥ , x3 � ≥ 0

1

1

1

¥
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445

Algebra is generous; she often gives
more than is asked of her.

—Jean le Rond d’Alembert
(1717–1783)

In Carl B. Boyer
A History of Mathematics

Wiley, 1968, p. 481

6. 0 Introduction:  Fibonacci in (Vector) Space
The Fibonacci sequence was introduced in Section 4.6. It is the sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

of nonnegative integers with the property that after the first two terms, each term
is the sum of the two terms preceding it. Thus 0 � 1 � 1, 1 � 1 � 2, 1 � 2 � 3,
2 � 3 � 5, and so on.

If we denote the terms of the Fibonacci sequence by f0, f1, f2, . . . , then the entire
sequence is completely determined by specifying that

f0 � 0, f1 � 1 and fn � fn�1 � fn�2 for n 
 2

By analogy with vector notation, let’s write a sequence x0, x1, x2, x3, . . . as

x � [x0, x1, x2, x3, . . . )

The Fibonacci sequence then becomes

f � [f0, f1, f2, f3, . . . ) � [0, 1, 1, 2, . . . )

We now generalize this notion.

Definition A Fibonacci-type sequence is any sequence x = [x0, x1, x2, x3, . . . )
such that x0 and x1 are real numbers and xn � xn�1 � xn�2 for n 
 2.

For example, is a Fibonacci-type
sequence.

Problem 1 Write down the first five terms of three more Fibonacci-type sequences.
By analogy with vectors again, let’s define the sum of two sequences x � [x0, x1,

x2, . . . ) and y � [y0, y1, y2, . . . ) to be the sequence

If c is a scalar, we can likewise define the scalar multiple of a sequence by

cx � 3cx0, cx1, cx2, . . . 2
x � y � 3x0 � y0, x1 � y1, x2 � y2, . . . 2

31, 12, 1 � 12, 1 �  212, 2 �  312, . . . 2
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446 Chapter 6 Vector Spaces

Problem 2 (a) Using your examples from Problem 1 or other examples, compute
the sums of various pairs of Fibonacci-type sequences. Do the re-
sulting sequences appear to be Fibonacci-type?

(b) Compute various scalar multiples of your Fibonacci-type sequences
from Problem 1. Do the resulting sequences appear to be Fibonacci-
type?

Problem 3 (a) Prove that if x and y are Fibonacci-type sequences, then so is x � y.

(b) Prove that if x is a Fibonacci-type sequence and c is a scalar, then
cx is also a Fibonacci-type sequence.

Let’s denote the set of all Fibonacci-type sequences by Fib. Problem 3 shows that,
like �n, Fib is closed under addition and scalar multiplication. The next exercises
show that Fib has much more in common with �n.

Problem 4 Review the algebraic properties of vectors in Theorem 1.1. Does Fib
satisfy all of these properties? What Fibonacci-type sequence plays the role of 0? For a
Fibonacci-type sequence x, what is �x? Is �x also a Fibonacci-type sequence?

Problem 5 In �n, we have the standard basis vectors e1, e2, . . . , en. The Fibonacci
sequence f � [0, 1, 1, 2, . . . ) can be thought of as the analogue of e2 because its first
two terms are 0 and 1. What sequence e in Fib plays the role of e1?

What about e3, e4, . . . ? Do these vectors have analogues in Fib?
Problem 6 Let x � [x0, x1, x2, . . . ) be a Fibonacci-type sequence. Show that x is a

linear combination of e and f.
Problem 7 Show that e and f are linearly independent. (That is, show that if

ce � df � 0, then c � d � 0.)
Problem 8 Given your answers to Problems 6 and 7, what would be a sensible

value to assign to the “dimension” of Fib? Why?
Problem 9 Are there any geometric sequences in Fib? That is, if

[1, r, r 2, r 3, . . . )

is a Fibonacci-type sequence, what are the possible values of r?
Problem 10 Find a“basis”for Fib consisting of geometric Fibonacci-type sequences.
Problem 11 Using your answer to Problem 10, give an alternative derivation of

Binet’s formula [formula (5) in Section 4.6]:

for the terms of the Fibonacci sequence f � [f0, f1, f2, . . . ). [Hint: Express f in terms of
the basis from Problem 10.]

The Lucas sequence is the Fibonacci-type sequence

l � [l0, l1, l2, l3, . . . ) � [2, 1, 3, 4, . . . )

Problem 12 Use the basis from Problem 10 to find an analogue of Binet’s formula
for the nth term ln of the Lucas sequence.

Problem 13 Prove that the Fibonacci and Lucas sequences are related by the identity

[Hint: The Fibonacci-type sequences f� � [1, 1, 2, 3, . . . ) and f� � [1, 0, 1, 1, . . . )
form a basis for Fib. (Why?)]

In this Introduction, we have seen that the collection Fib of all Fibonacci-type
sequences behaves in many respects like �2, even though the “vectors” are actually
infinite sequences. This useful analogy leads to the general notion of a vector space
that is the subject of this chapter.

fn�1 � fn�1 � ln  for n 
 1

fn �
1

15
a 1 � 15

2
b n

�
1

15
a 1 � 15

2
b n

The Lucas sequence is named after
Edouard Lucas (see page 347).

�

�
I I I I II I I I I �������������������������������

�

�
I I I I II I I I I ������������������������������
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Vector Spaces and Subspaces
In Chapters 1 and 3, we saw that the algebra of vectors and the algebra of matrices are
similar in many respects. In particular, we can add both vectors and matrices, and we
can multiply both by scalars. The properties that result from these two operations
(Theorem 1.1 and Theorem 3.2) are identical in both settings. In this section, we use
these properties to define generalized “vectors” that arise in a wide variety of exam-
ples. By proving general theorems about these “vectors,” we will therefore simultane-
ously be proving results about all of these examples. This is the real power of algebra:
its ability to take properties from a concrete setting, like �n, and abstract them into a
general setting.

Definition Let V be a set on which two operations, called addition and scalar
multiplication, have been defined. If u and v are in V, the sum of u and v is denoted
by u � v, and if c is a scalar, the scalar multiple of u by c is denoted by cu. If the
following axioms hold for all u, v, and w in V and for all scalars c and d, then V is
called a vector space and its elements are called vectors.

1. u � v is in V. Closure under addition

2. u � v � v � u Commutativity

3. (u � v) � w � u � (v � w) Associativity

4. There exists an element 0 in V, called a zero vector, such that u � 0 � u.
5. For each u in V, there is an element �u in V such that u � (�u) � 0.
6. cu is in V. Closure under scalar multiplication

7. c(u � v) � cu � cv Distributivity

8. (c � d)u � cu � du Distributivity

9. c(du) � (cd)u
10. 1u � u

Remarks
• By “scalars” we will usually mean the real numbers. Accordingly, we should

refer to V as a real vector space (or a vector space over the real numbers). It is also pos-
sible for scalars to be complex numbers or to belong to �p, where p is prime. In these
cases, V is called a complex vector space or a vector space over �p, respectively. Most of
our examples will be real vector spaces, so we will usually omit the adjective “real.” If
something is referred to as a “vector space,” assume that we are working over the real
number system.

In fact, the scalars can be chosen from any number system in which, roughly
speaking, we can add, subtract, multiply, and divide according to the usual laws of
arithmetic. In abstract algebra, such a number system is called a field.

• The definition of a vector space does not specify what the set V consists of.
Neither does it specify what the operations called “addition” and “scalar multi-
plication” look like. Often, they will be familiar, but they need not be. See Example 6.6
and Exercises 5–7.

We will now look at several examples of vector spaces. In each case, we need to
specify the set V and the operations of addition and scalar multiplication and to
verify axioms 1 through 10. We need to pay particular attention to axioms 1 and 6

The German mathematician
Hermann Grassmann (1809–
1877) is generally credited with
first introducing the idea of a
vector space (although he did
not call it that) in 1844. Unfortu-
nately, his work was very difficult
to read and did not receive the
attention it deserved. One person
who did study it was the Italian
mathematician Giuseppe Peano
(1858–1932). In his 1888 book
Calcolo Geometrico, Peano
clarified Grassmann’s earlier
work and laid down the axioms
for a vector space as we know
them today. Peano’s book is also
remarkable for introducing
operations on sets. His notations
´, and � (for “union,”“inter-
section,” and “is an element of”)
are the ones we still use, although
they were not immediately
accepted by other mathemati-
cians. Peano’s axiomatic defini-
tion of a vector space also had
very little influence for many
years. Acceptance came in 1918,
after Hermann Weyl (1885–
1955) repeated it in his book
Space, Time, Matter, an intro-
duction to Einstein’s general
theory of relativity.

¨,
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(closure), axiom 4 (the existence of a zero vector in V), and axiom 5 (each vector in
V must have a negative in V).

For any n 
 1, �n is a vector space with the usual operations of addition and scalar
multiplication. Axioms 1 and 6 follow from the definitions of these operations, and
the remaining axioms follow from Theorem 1.1.

The set of all 2 � 3 matrices is a vector space with the usual operations of matrix
addition and matrix scalar multiplication. Here the “vectors” are actually matrices.
We know that the sum of two 2 � 3 matrices is also a 2 � 3 matrix and that multi-
plying a 2 � 3 matrix by a scalar gives another 2 � 3 matrix; hence, we have closure.
The remaining axioms follow from Theorem 3.2. In particular, the zero vector 0 is the
2 � 3 zero matrix, and the negative of a 2 � 3 matrix A is just the 2 � 3 matrix �A.

There is nothing special about 2 � 3 matrices. For any positive integers m and n,
the set of all m � n matrices forms a vector space with the usual operations of matrix
addition and matrix scalar multiplication. This vector space is denoted Mmn.

Let �2 denote the set of all polynomials of degree 2 or less with real coefficients.
Define addition and scalar multiplication in the usual way. (See Appendix D.) If

are in �2, then

has degree at most 2 and so is in �2. If c is a scalar, then

is also in �2. This verifies axioms 1 and 6.
The zero vector 0 is the zero polynomial—that is, the polynomial all of whose

coefficients are zero. The negative of a polynomial p(x) � a0 � a1x � a2x
2 is the poly-

nomial �p(x) � �a0 � a1x � a2x
2. It is now easy to verify the remaining axioms. We

will check axiom 2 and leave the others for Exercise 12. With p(x) and q(x) as above,
we have

where the third equality follows from the fact that addition of real numbers is
commutative.

� q1x 2 � p1x 2� 1b0 � b1x � b2x
2 2 � 1a0 � a1x � a2x

2 2� 1b0 � a0 2 � 1b1 � a1 2x � 1b2 � a2 2x2

� 1a0 � b0 2 � 1a1 � b1 2x � 1a2 � b2 2x2

p1x 2 � q1x 2 � 1a0 � a1x � a2x
2 2 � 1b0 � b1x � b2x

2 2

cp1x 2 � ca0 � ca1x � ca2x
2

p 1x 2 � q 1x 2 � 1a0 � b0 2 � 1a1 � b1 2x � 1a2 � b2 2x2

p1x 2 � a0 � a1x � a2x
2  and  q1x 2 � b0 � b1x � b2x

2
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Example 6. 1

Example 6. 2

Example 6. 3
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Section 6.1 Vector Spaces and Subspaces 449

In general, for any fixed n 
 0, the set �n of all polynomials of degree less than or
equal to n is a vector space, as is the set � of all polynomials.

Let � denote the set of all real-valued functions defined on the real line. If f and g are
two such functions and c is a scalar, then f � g and cf are defined by

In other words, the value of f � g at x is obtained by adding together the values of f
and g at x [Figure 6.1(a)]. Similarly, the value of cf at x is just the value of f at x mul-
tiplied by the scalar c [Figure 6.1(b)]. The zero vector in � is the constant function f0

that is identically zero; that is, f0 (x) � 0 for all x. The negative of a function f is the
function �f defined by (�f )(x) � �f(x) [Figure 6.1(c)].

Axioms 1 and 6 are obviously true. Verification of the remaining axioms is left as
Exercise 13. Thus, � is a vector space.

1 f � g 2 1x 2 � f 1x 2 � g 1x 2   and  1cf 2 1x 2 � cf 1x 2
Example 6. 4

x

(a)

y

(x, 0)

(x, f (x))

(x, g(x))

(x, f (x) � g(x))

f � gg

f

Figure 6. 1
The graphs of (a) f, g, and f � g, (b) f, 2f, and �3f, and (c) f and �f

y

x

(x, 2 f (x))

(x, �3 f (x))

(x, f (x))

(x, 0)

2 f

�3f

f

(b)

y

x

(x, f (x))

(x, �f (x))

(x, 0)

f

�f

(c)

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Example 6.4, we could also have considered only those functions defined on
some closed interval [a, b] of the real line. This approach also produces a vector space,
denoted by �[a, b].

The set � of integers with the usual operations is not a vector space. To demon-
strate this, it is enough to find that one of the ten axioms fails and to give a specific in-
stance in which it fails (a counterexample). In this case, we find that we do not have
closure under scalar multiplication. For example, the multiple of the integer 2 by the
scalar is which is not an integer. Thus, it is not true that cx is in � for
every x in � and every scalar c (i.e., axiom 6 fails).

Let V � �2 with the usual definition of addition but the following definition of scalar
multiplication:

Then, for example,

so axiom 10 fails. [In fact, the other nine axioms are all true (check this), but we do
not need to look into them, because V has already failed to be a vector space. This
example shows the value of looking ahead, rather than working through the list of
axioms in the order in which they have been given.]

Let �2 denote the set of all ordered pairs of complex numbers. Define addition and
scalar multiplication as in �2, except here the scalars are complex numbers. For
example,

and

Using properties of the complex numbers, it is straightforward to check that all ten
axioms hold. Therefore, �2 is a complex vector space.

In general, �n is a complex vector space for all n 
 1.

If p is prime, the set � (with the usual definitions of addition and multiplication by
scalars from �p) is a vector space over �p for all n 
 1.

n
p

11 � i 2 c 1 � i

2 � 3i
d � c 11 � i 2 11 � i 211 � i 2 12 � 3i 2 d � c 2

�1 � 5i
d

c 1 � i

2 � 3i
d � c�3 � 2i

4
d � c�2 � 3i

6 � 3i
d

1 c 2
3
d � c 2

0
d  c 2

3
d

c c x
y
d � c cx

0
d

113 2 12 2 � 2
3 ,1

3
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Section 6.1 Vector Spaces and Subspaces 451

Theorem 6. 1

Before we consider further examples, we state a theorem that contains some use-
ful properties of vector spaces. It is important to note that, by proving this theorem
for vector spaces in general, we are actually proving it for every specific vector space.

Let V be a vector space, u a vector in V, and c a scalar.

a. 0u � 0
b. c0 � 0
c. (�1)u � �u
d. If cu � 0, then c � 0 or u � 0.

Proof We prove properties (b) and (d) and leave the proofs of the remaining prop-
erties as exercises.

(b) We have

by vector space axioms 4 and 7. Adding the negative of c0 to both sides produces

which implies

by axioms 5 and 3

by axiom 5

by axiom 4

(d) Suppose cu � 0. To show that either c � 0 or u � 0, let’s assume that c 0. (If
c � 0, there is nothing to prove.) Then, since c 0, its reciprocal 1�c is defined, and

by axiom 10

by axiom 9

by property (b)

We will write u � v for u � (�v), thereby defining subtraction of vectors. We will
also exploit the associativity property of addition to unambiguously write u � v � w
for the sum of three vectors and, more generally,

for a linear combination of vectors.

Subspaces

We have seen that, in �n, it is possible for one vector space to sit inside another one,
giving rise to the notion of a subspace. For example, a plane through the origin is a
subspace of �3. We now extend this concept to general vector spaces.

c1u1 � c2u2 � p � cnun

� 0

�
1

c
0

�
1

c
1cu 2

� a 1

c
c bu

u �  1u





� c0

� c0 � 0

0 � c0 � 1c0 � 1�c0 2 2
c0 � 1�c0 2 � 1c0 � c0 2 � 1�c0 2

c0 � c 10 � 0 2 � c0 � c0
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Theorem 6. 2

Definition A subset W of a vector space V is called a subspace of V if W is
itself a vector space with the same scalars, addition, and scalar multiplication as V.

As in �n, checking to see whether a subset W of a vector space V is a subspace of
V involves testing only two of the ten vector space axioms. We prove this observation
as a theorem.

Let V be a vector space and let W be a nonempty subset of V. Then W is a subspace
of V if and only if the following conditions hold:

a. If u and v are in W, then u � v is in W.
b. If u is in W and c is a scalar, then cu is in W.

Proof Assume that W is a subspace of V. Then W satisfies vector space axioms 1 to
10. In particular, axiom 1 is condition (a) and axiom 6 is condition (b).

Conversely, assume that W is a subset of a vector space V, satisfying condi-
tions (a) and (b). By hypothesis, axioms 1 and 6 hold. Axioms 2, 3, 7, 8, 9, and 10 hold
in W because they are true for all vectors in V and thus are true in particular for those
vectors in W. (We say that W inherits these properties from V.) This leaves axioms 4
and 5 to be checked.

Since W is nonempty, it contains at least one vector u. Then condition (b) and
Theorem 6.1(a) imply that 0u � 0 is also in W. This is axiom 4.

If u is in V, then, by taking c � �1 in condition (b), we have that �u � (�1)u is
also in W, using Theorem 6.1(c).

Remark Since Theorem 6.2 generalizes the notion of a subspace from the con-
text of �n to general vector spaces, all of the subspaces of �n that we encountered in
Chapter 3 are subspaces of �n in the current context. In particular, lines and planes
through the origin are subspaces of �3.

We have already shown that the set �n of all polynomials with degree at most n is a
vector space. Hence, �n is a subspace of the vector space � of all polynomials.

Let W be the set of symmetric n � n matrices. Show that W is a subspace of Mnn.

Solution Clearly, W is nonempty, so we need only check conditions (a) and (b) in
Theorem 6.2. Let A and B be in W and let c be a scalar. Then AT � A and BT � B, from
which it follows that

Therefore, A � B is symmetric and, hence, is in W. Similarly,

so cA is symmetric and, thus, is in W. We have shown that W is closed under addition
and scalar multiplication. Therefore, it is a subspace of Mnn, by Theorem 6.2.

1cA 2T � cAT � cA

1A � B 2T � AT � BT � A � B

452 Chapter 6 Vector Spaces
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Section 6.1 Vector Spaces and Subspaces 453

Let � be the set of all continuous real-valued functions defined on � and let � be
the set of all differentiable real-valued functions defined on �. Show that � and � are
subspaces of �, the vector space of all real-valued functions defined on �.

Solution From calculus, we know that if f and g are continuous functions and c is a
scalar, then f � g and cf are also continuous. Hence, � is closed under addition and
scalar multiplication and so is a subspace of �. If f and g are differentiable, then so are
f � g and cf. Indeed,

So � is also closed under addition and scalar multiplication, making it a subspace
of �.

It is a theorem of calculus that every differentiable function is continuous. Con-
sequently, � is contained in � (denoted by � ( �), making � a subspace of �. It is
also the case that every polynomial function is differentiable, so � ( � , and thus �
is a subspace of �. We therefore have a hierarchy of subspaces of �, one inside the
other:

� � � � � � �

This hierarchy is depicted in Figure 6.2.

1 f � g 2 ¿ � f ¿ � g ¿  and  1c f 2 ¿ � c 1 f ¿ 2

Example 6. 11

Example 6. 12

�
�

�

�

Figure 6. 2
The hierarchy of subspaces of �

dy
dx

dy
dx

There are other subspaces of � that can be placed into this hierarchy. Some of
these are explored in the exercises.

In the preceding discussion, we could have restricted our attention to functions
defined on a closed interval [a, b]. Then the corresponding subspaces of �[a, b]
would be �[a, b], �[a, b], and �[a, b].

Let S be the set of all functions that satisfy the differential equation

(1)

That is, S is the solution set of equation (1). Show that S is a subspace of �.

f – � f � 0

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Solution S is nonempty, since the zero function clearly satisfies equation (1). Let
f and g be in S and let c be a scalar. Then

which shows that f � g is in S. Similarly,

so cf is also in S.
Therefore, S is closed under addition and scalar multiplication and is a subspace

of �.

The differential equation (1) is an example of a homogeneous linear differential
equation. The solution sets of such equations are always subspaces of �. Note that in
Example 6.12 we did not actually solve equation (1) (i.e., we did not find any specific
solutions, other than the zero function). We will discuss techniques for finding solu-
tions to this type of equation in Section 6.7.

As you gain experience working with vector spaces and subspaces, you will notice
that certain examples tend to resemble one another. For example, consider the vector
spaces �4, �3, and M22. Typical elements of these vector spaces are, respectively,

Any calculations involving the vector space operations of addition and scalar multi-
plication are essentially the same in all three settings. To highlight the similarities, in
the next example we will perform the necessary steps in the three vector spaces side
by side.

(a) Show that the set W of all vectors of the form

is a subspace of �4.

(b) Show that the set W of all polynomials of the form a � bx � bx2 � ax3 is a
subspace of �3.

(c) Show that the set W of all matrices of the form is a subspace of M22.c a b

�b a
d

≥ a

b

�b

a

¥

u � ≥ a

b

c

d

¥ ,  p 1x 2 � a � bx � cx2 � dx3,  and  A � ca b

c d
d

� 0

� c0

� c 1 f – � f 21cf 2 – � cf � cf – � cf

� 0

� 0 � 0

� 1 f – � f 2 � 1g – � g 21 f � g 2 – � 1 f � g 2 � 1 f – � g – 2 � 1 f � g 2
454 Chapter 6 Vector Spaces
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In the words of Yogi Berra, “It’s
déjà vu all over again.”
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Section 6.1 Vector Spaces and Subspaces 455

Solution
(a) W is nonempty because it con-
tains the zero vector 0. (Take a � b �
0.) Let u and v be in W—say,

Then

so u � v is also in W (because it has
the right form).

Similarly, if k is a scalar, then

so ku is in W.
Thus, W is a nonempty subset of

�4 that is closed under addition and
scalar multiplication. Therefore, W is
a subspace of �4, by Theorem 6.2.

ku � ≥ ka

kb

�kb

ka

¥

� ≥ a � c

b � d

�1b � d 2
a � c

¥
u � v � ≥ a � c

b � d

�b � d

a � c

¥

and  v � ≥ c

d

�d

c

¥u � ≥ a

b

�b

a

¥
(b) W is nonempty because it con-
tains the zero polynomial. (Take a �
b � 0.) Let p(x) and q(x) be in W—say,

and

Then

so p(x) � q(x) is also in W (because it
has the right form).

Similarly, if k is a scalar, then

so kp(x) is in W.
Thus, W is a nonempty subset of

�3 that is closed under addition and
scalar multiplication. Therefore, W is
a subspace of �3 by Theorem 6.2.

kp1x 2 � ka � kbx � kbx2 � kax3

� 1a � c 2x3

� 1b � d 2x2

� 1b � d 2xp1x 2 � q1x 2 � 1a � c 2
q1x 2 � c � dx � dx2 � cx3

p1x 2 � a � bx � bx2 � ax3

(c) W is nonempty because it con-
tains the zero matrix O. (Take a � b �
0.) Let A and B be in W—say,

and

Then

so A � B is also in W (because it has
the right form).

Similarly, if k is a scalar, then

so kA is in W.
Thus, W is a nonempty subset of

M22 that is closed under addition and
scalar multiplication. Therefore, W is
a subspace of M22, by Theorem 6.2.

kA � c ka kb

�kb ka
d

A � B � c a � c b � d

�1b � d 2 a � c
d

B � c c d

�d c
d

A � c a b

�b a
d

Example 6.13 shows that it is often possible to relate examples that, on the surface,
appear to have nothing in common. Consequently, we can apply our knowledge of �n

to polynomials, matrices, and other examples. We will encounter this idea several
times in this chapter and will make it precise in Section 6.5.

If V is a vector space, then V is clearly a subspace of itself. The set {0}, consisting of
only the zero vector, is also a subspace of V, called the zero subspace. To show this, we
simply note that the two closure conditions of Theorem 6.2 are satisfied:

The subspaces {0} and V are called the trivial subspaces of V.

0 � 0 � 0  and  c0 � 0  for any scalar c

Example 6. 14
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An examination of the proof of Theorem 6.2 reveals the following useful fact:

If W is a subspace of a vector space V, then W contains the zero vector 0 of V.

This fact is consistent with, and analogous to, the fact that lines and planes are sub-
spaces of �3 if and only if they contain the origin. The requirement that every
subspace must contain 0 is sometimes useful in showing that a set is not a subspace.

Let W be the set of all 2 � 2 matrices of the form

Is W a subspace of M22?

Solution Each matrix in W has the property that its (1, 2) entry is one more than its
(1, 1) entry. Since the zero matrix

does not have this property, it is not in W. Hence, W is not a subspace of M22.

Let W be the set of all 2 � 2 matrices with determinant equal to 0. Is W a subspace of
M22? (Since det O � 0, the zero matrix is in W, so the method of Example 6.15 is of
no use to us.)

Solution Let

Then det A � det B � 0, so A and B are in W. But

so det(A � B) � 1 0, and therefore A � B is not in W. Thus, W is not closed under
addition and so is not a subspace of M22.

Spanning Sets

The notion of a spanning set of vectors carries over easily from �n to general vector
spaces.

Definition If S � {v1, v2, . . . , vk} is a set of vectors in a vector space V, then the
set of all linear combinations of v1, v2, . . . , vk is called the span of v1, v2, . . . , vk and
is denoted by span(v1, v2, . . . , vk) or span(S). If V � span(S), then S is called a
spanning set for V and V is said to be spanned by S.



A � B � c 1 0

0 1
d

A � c 1 0

0 0
d   and  B � c 0 0

0 1
d

O � c 0 0

0 0
d

c a a � 1

0 b
d
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Section 6.1 Vector Spaces and Subspaces 457

Show that the polynomials 1, x, and x2 span �2.

Solution By its very definition, a polynomial p(x) � a � bx � cx2 is a linear combi-
nation of 1, x, and x2. Therefore, �2 � span(1, x, x2 ).

Example 6.17 can clearly be generalized to show that �n � span(1, x, x2, . . . , xn).
However, no finite set of polynomials can possibly span �, the vector space of
all polynomials. (See Exercise 44 in Section 6.2.) But, if we allow a spanning set to
be infinite, then clearly the set of all nonnegative powers of x will do. That is,
� � span(1, x, x2, . . .).

Show that M23 � span(E11, E12, E13, E21, E22, E23), where

(That is, Eij is the matrix with a 1 in row i, column j and zeros elsewhere.)

Solution We need only observe that

Extending this example, we see that, in general, Mmn is spanned by the mn matri-
ces Eij, where i � 1, . . . , m and j � 1, . . . , n.

In �2, determine whether r(x) � 1 � 4x � 6x2 is in span( p(x), q(x)), where

Solution We are looking for scalars c and d such that cp(x) � dq(x) � r(x). This
means that

Regrouping according powers of x, we have

Equating the coefficients of like powers of x gives

c � 3d �  6
�c � d � �4

c � 2d �  1

1c � 2d 2 � 1�c � d 2x � 1c � 3d 2x2 � 1 � 4x � 6x2

c 11 � x � x2 2 � d12 � x � 3x2 2 � 1 � 4x � 6x2

p1x 2 � 1 � x � x2  and  q1x 2 � 2 � x � 3x2

c a11 a12 a13

a21 a22 a23

d � a11E11 � a12E12 � a13E13 � a21E21 � a22E22 � a23E23

E21 � c0 0 0

1 0 0
d   E22 � c0 0 0

0 1 0
d   E23 � c0 0 0

0 0 1
d

E11 � c1 0 0

0 0 0
d   E12 � c0 1 0

0 0 0
d   E13 � c0 0 1

0 0 0
d

Example 6. 17

Example 6. 18

Example 6. 19
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which is easily solved to give c � 3 and d � �1. Therefore, r(x) � 3p(x) � q(x), so
r(x) is in span(p(x), q(x)). (Check this.)

In �, determine whether sin 2x is in span(sin x, cos x).

Solution We set c sin x � d cos x � sin 2x and try to determine c and d so that this
equation is true. Since these are functions, the equation must be true for all values of
x. Setting x � 0, we have

from which we see that d � 0. Setting x �p�2, we get

giving c � 0. But this implies that sin 2x � 0(sin x) � 0(cos x) � 0 for all x, which is
absurd, since sin 2x is not the zero function. We conclude that sin 2x is not in
span(sin x, cos x).

Remark It is true that sin 2x can be written in terms of sin x and cos x. For
example, we have the double angle formula sin 2x � 2 sin x cos x. However, this is not
a linear combination.

In M22, describe the span of and 

Solution Every linear combination of A, B, and C is of the form

This matrix is symmetric, so span(A, B, C) is contained within the subspace of sym-
metric 2 � 2 matrices. In fact, we have equality; that is, every symmetric 2 � 2 matrix is

in span(A, B, C). To show this, we let be a symmetric 2 � 2 matrix. Setting

and solving for c and d, we find that c � x � z, d � z, and e � �x � y � z. Therefore,

(Check this.) It follows that span(A, B, C) is the subspace of symmetric 2 � 2 matrices.

c x y

y z
d � 1x � z 2 c 1 1

1 0
d � z c 1 0

0 1
d � 1�x � y � z 2 c 0 1

1 0
d

c x y

y z
d � c c � d c � e

c � e d
d

c x y

y z
d

� c c � d c � e

c � e d
d

cA � dB � eC � c c 1 1

1 0
d � d c 1 0

0 1
d � e c 0 1

1 0
d

C � c 0 1

1 0
d .A � c 1 1

1 0
d , B � c 1 0

0 1
d ,

c sin1p>2 2 � d cos1p>2 2 � sin1p 2   or  c 11 2 � d 10 2 � 0

c sin 0 � d cos 0 � sin 0  or  c 10 2 � d 11 2 � 0
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Theorem 6. 3

As was the case in �n, the span of a set of vectors is always a subspace of the vector
space that contains them. The next theorem makes this result precise. It generalizes
Theorem 3.19.

Let v1, v2, . . . , vk be vectors in a vector space V.

a. span(v1, v2, . . . , vk) is a subspace of V.
b. span(v1, v2, . . . , vk) is the smallest subspace of V that contains v1, v2, . . . , vk .

Proof (a) The proof of property (a) is identical to the proof of Theorem 3.19, with
�n replaced by V.

(b) To establish property (b), we need to show that any subspace of V that contains
v1, v2, . . . , vk also contains span(v1, v2, . . . , vk). Accordingly, let W be a subspace of V
that contains v1, v2, . . . , vk. Then, since W is closed under addition and scalar multi-
plication, it contains every linear combination c1v1 � c2v2 � p � ckvk of v1, v2, . . . ,
vk. Therefore, span(v1, v2, . . . , vk) is contained in W.

In Exercises 1–11, determine whether the given set, together
with the specified operations of addition and scalar multi-
plication, is a vector space. If it is not, list all of the axioms
that fail to hold.

1. The set of all vectors in �2 of the form with the

usual vector addition and scalar multiplication

2. The set of all vectors in �2 with x 
 0, y 
 0 (i.e.,

the first quadrant), with the usual vector addition and
scalar multiplication

3. The set of all vectors in �2 with xy 
 0 (i.e., the

union of the first and third quadrants), with the usual
vector addition and scalar multiplication

4. The set of all vectors in �2 with x 
 y, with the 

usual vector addition and scalar multiplication

5. �2, with the usual addition but scalar multiplication
defined by

c c x
y
d � c cx

y
d

c x
y
d

cx
y
d
c x
y
d

c x
x
d ,

6. �2, with the usual scalar multiplication but addition
defined by

7. The set of all positive real numbers, with addition 
defined by x y � xy and scalar multiplication 
defined by c x � xc

8. The set of all rational numbers, with the usual addi-
tion and multiplication

9. The set of all upper triangular 2 � 2 matrices, with the
usual matrix addition and scalar multiplication

10. The set of all 2 � 2 matrices of the form 

where ad � 0, with the usual matrix addition and
scalar multiplication

11. The set of all skew-symmetric n � n matrices, with the
usual matrix addition and scalar multiplication 
(see page 168).

12. Finish verifying that �2 is a vector space
(see Example 6.3).

13. Finish verifying that � is a vector space
(see Example 6.4).

c a b

c d
d ,

	

	





c x1

y1

d � c x2

y2

d � c x1 � x2 � 1

y1 � y2 � 1
d

Exercises 6. 1
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In Exercises 14–17, determine whether the given set, together
with the specified operations of addition and scalar multi-
plication, is a complex vector space. If it is not, list all of
the axioms that fail to hold.

14. The set of all vectors in �2 of the form with the

usual vector addition and scalar multiplication

15. The set Mmn(�) of all m � n complex matrices, with
the usual matrix addition and scalar multiplication

16. The set �2, with the usual vector addition but scalar

multiplication defined by 

17. �n, with the usual vector addition and scalar 
multiplication

In Exercises 18–21, determine whether the given set, together
with the specified operations of addition and scalar multipli-
cation, is a vector space over the indicated �p. If it is not, list
all of the axioms that fail to hold.

18. The set of all vectors in with an even number of
1s, over with the usual vector addition and scalar
multiplication

19. The set of all vectors in with an odd number of
1s, over with the usual vector addition and scalar
multiplication

20. The set Mmn(�p) of all m � n matrices with entries
from �p, over �p with the usual matrix addition and
scalar multiplication

21. �6, over �3 with the usual addition and multiplication
(Think this one through carefully!)

22. Prove Theorem 6.1(a).

23. Prove Theorem 6.1(c).

In Exercises 24–45, use Theorem 6.2 to determine whether
W is a subspace of V.

24.

25.

26. V � �3, W � • £ a

b

a � b � 1

§ ¶
V � �3, W � • £ a

�a

2a

§ ¶
V � �3, W � • £ a0

a

§ ¶

�2

�2
n

�2

�2
n

c c z1

z2

d � c cz1

cz2

d

c z
z
d ,

a + bi
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27.

28.

29.

30. V � Mnn, W � {A in Mnn : det A � 1}

31. V � Mnn, W is the set of diagonal n � n matrices

32. V � Mnn, W is the set of idempotent n � n matrices

33. V � Mnn, W � {A in Mnn : AB � BA}, where B is a
given (fixed) matrix

34.

35.

36.

37. is the set of all polynomials of degree 3

38.

39.

40.

41.

42. is the set of all integrable functions

43.

44. the set of all functions with
continuous second derivatives

45.

46. Let V be a vector space with subspaces U and W. Prove
that U � W is a subspace of V.

47. Let V be a vector space with subspaces U and W. Give
an example with V � �2 to show that U 	 W need not
be a subspace of V.

48. Let V be a vector space with subspaces U and W.
Define the sum of U and W to be

U � W � {u � w : u is in U, w is in W}

(a) If V � �3, U is the x-axis, and W is the y-axis,
what is U � W ?

(b) If U and W are subspaces of a vector space V,
prove that U � W is a subspace of V.

49. If U and V are vector spaces, define the Cartesian
product of U and V to be

U � V � {(u, v) : u is in U and v is in V}

Prove that U � V is a vector space.

V � �, W � 5 f  in � : lim
xS0

f 1x 2 � q6V � �, W � �122,V � �, W � 5 f  in � : f ¿ 1x 2 
 0 for all x6V � �, W

V � �, W � 5 f  in � : f 10 2 � 06V � �, W � 5 f  in � : f 10 2 � 16V � �, W � 5 f  in � : f 1�x 2 � �f 1x 2 6V � �, W � 5 f  in � : f 1�x 2 � f 1x 2 6V � �, W

V � �2, W � 5a � bx � cx2 : abc � 06V � �2, W � 5a � bx � cx2 : a � b � c � 06V � �2, W � 5bx � cx26

V � M22, W � e c a b

c d
d  : ad 
 bc f

V � M22, W � e c a b

b 2a
d f

V � �3, W � • £ a

b

|a|

§ ¶

dy
dx

dy
dx

dy
dx

dy
dx
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Section 6.2 Linear Independence, Basis, and Dimension 461

50. Let W be a subspace of a vector space V. Prove that
� � {(w, w) : w is in W } is a subspace of V � V.

In Exercises 51 and 52, let and

. Determine whether C is in span(A, B).

51. 52.

In Exercises 53 and 54, let p(x) � 1 � 2x, q(x) � x � x2,
and r(x) � �2 � 3x � x2. Determine whether s(x) is in
span(p(x), q(x), r(x)).

53. s(x) � 3 � 5x � x2 54. s(x) � 1 � x � x2

In Exercises 55–58, let f(x) � sin2x and g(x) � cos2x.
Determine whether h(x) is in span(f(x), g(x)).

C � c 3 �5

5 �1
dC � c 1 2

3 4
d

B � c 1 �1

1 0
d A � c 1 1

�1 1
d

55. h(x) � 1 56. h(x) � cos 2x

57. h(x) � sin 2x 58. h(x) � sin x

59. Is spanned by ?

60. Is spanned by ?

61. Is �2 spanned by 1 � x, x � x 2, 1 � x 2?

62. Is �2 spanned by 1 � x � 2x 2, 2 � x � 2x 2,
�1 � x � 2x 2?

63. Prove that every vector space has a unique zero
vector.

64. Prove that for every vector v in a vector space V,
there is a unique in V such that v � v¿ � 0.v¿

c 0 �1

1 0
dc 1 1

1 1
d ,c 1 1

1 0
d ,c 1 0

1 0
d ,M22

c 0 �1

1 0
dc 1 0

1 1
d ,c 0 1

1 0
d ,c 1 1

0 1
d ,M22

Linear Independence,  Basis,  and Dimension
In this section, we extend the notions of linear independence, basis, and dimension
to general vector spaces, generalizing the results of Sections 2.3 and 3.5. In most
cases, the proofs of the theorems carry over; we simply replace �n by the vector
space V.

Linear Independence

Definition A set of vectors {v1, v2, . . . , vk} in a vector space V is linearly de-
pendent if there are scalars c1, c2, . . . , ck, at least one of which is not zero, such that

A set of vectors that is not linearly dependent is said to be linearly independent.

As in �n, {v1, v2, . . . , vk} is linearly independent in a vector space V if and 
only if

We also have the following useful alternative formulation of linear dependence.

c1v1 � c2v2 � p � ckvk � 0  implies  c1 � 0, c2 � 0, . . . , ck � 0

c1v1 � c2v2 � p � ckvk � 0
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Theorem 6. 4 A set of vectors {v1, v2, . . . , vk} in a vector space V is linearly dependent if and only
if at least one of the vectors can be expressed as a linear combination of the others.

Proof The proof is identical to that of Theorem 2.5.

As a special case of Theorem 6.4, note that a set of two vectors is linearly depen-
dent if and only if one is a scalar multiple of the other.

In �2, the set {1 � x � x 2, 1 � x � 3x 2, 1 � 3x � x 2} is linearly dependent, since

In M22, let

Then A � B � C, so the set {A, B, C} is linearly dependent.

In �, the set {sin2x, cos2x, cos 2x} is linearly dependent, since

Show that the set {1, x, x2, . . . , xn} is linearly independent in �n.

Solution 1 Suppose that c0, c1, . . . , cn are scalars such that

Then the polynomial p(x) � c0 � c1x � c2x
2 � p � cn xn is zero for all values of x. But

a polynomial of degree at most n cannot have more than n zeros (see Appendix D).
So p(x) must be the zero polynomial, meaning that c0 � c1 � c2 � p � cn � 0.
Therefore, {1, x, x2, . . . , xn} is linearly independent.

Solution 2 We begin, as in the first solution, by assuming that

Since this is true for all x, we can substitute x � 0 to obtain c0 � 0. This leaves

c1x � c2x
2 � p � cnxn � 0

p 1x 2 � c0 � c1x � c2x
2 � p � cnxn � 0

c0
# 1 � c1x � c2x

2 � p � cnx
n � 0

cos 2x � cos2x � sin2x

A � c 1 1

0 1
d ,  B � c 1 �1

1 0
d ,  C � c 2 0

1 1
d

211 � x � x2 2 � 11 � x � 3x2 2 � 1 � 3x � x2

dy
dx
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Example 6. 23

Example 6. 24

Example 6. 25
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Section 6.2 Linear Independence, Basis, and Dimension 463

Taking derivatives, we obtain

and setting x � 0, we see that c1 � 0. Differentiating 2c2 x � 3c3 x 2 � p � ncn xn�1 � 0
and setting x � 0, we find that 2c2 � 0, so c2 � 0. Continuing in this fashion, we find
that k!ck � 0 for k � 0, . . . , n. Therefore, c0 � c1 � c2 � p � cn � 0, and {1, x,
x2, . . . , xn} is linearly independent.

In �2, determine whether the set {1 � x, x � x2, 1 � x2} is linearly independent.

Solution Let c1, c2, and c3 be scalars such that

Then

This implies that

the solution to which is c1 � c2 � c3 � 0. It follows that {1 � x, x � x2, 1 � x2} is
linearly independent.

Remark Compare Example 6.26 with Example 2.23(b). The system of equations
that arises is exactly the same. This is because of the correspondence between �2 and
�3 that relates

and produces the columns of the coefficient matrix of the linear system that we have
to solve. Thus, showing that {1 � x, x � x 2, 1 � x 2} is linearly independent is equiv-
alent to showing that

is linearly independent. This can be done simply by establishing that the matrix

has rank 3, by the Fundamental Theorem of Invertible Matrices.

£1 0 1

1 1 0

0 1 1

§
• £11

0

§ , £01
1

§ , £10
1

§ ¶

1 � x 4 £11
0

§ ,  x � x2 4 £01
1

§ ,  1 � x2 4 £10
1

§

c1 � c2 � c3 � 0

c1 � c2 � c3 � 0

c1 � c2 � c3 � 0

1c1 � c3 2 � 1c1 � c2 2x � 1c2 � c3 2x2 � 0

c111 � x 2 � c21x � x2 2 � c311 � x2 2 � 0

c1 � 2c2x � 3c3x
2 � p � ncnx

n�1 � 0

Example 6. 26
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In �, determine whether the set {sin x, cos x} is linearly independent.

Solution The functions f(x) � sin x and g(x) � cos x are linearly dependent if and
only if one of them is a scalar multiple of the other. But it is clear from their graphs
that this is not the case, since, for example, any nonzero multiple of f(x) � sin x has
the same zeros, none of which are zeros of g(x) � cos x.

This approach may not always be appropriate to use, so we offer the following
direct, more computational method. Suppose c and d are scalars such that

Setting x � 0, we obtain d � 0, and setting x � p/2, we obtain c � 0. Therefore, the
set {sin x, cos x} is linearly independent.

Although the definitions of linear dependence and independence are phrased in
terms of finite sets of vectors, we can extend the concepts to infinite sets as follows:

A set S of vectors in a vector space V is linearly dependent if it contains finitely
many linearly dependent vectors. A set of vectors that is not linearly dependent is
said to be linearly independent.

Note that for finite sets of vectors, this is just the original definition. Following is an
example of an infinite set of linearly independent vectors.

In �, show that S � {1, x, x2, . . .} is linearly independent.

Solution Suppose there is a finite subset T of S that is linearly dependent. Let xm be
the highest power of x in T and let xn be the lowest power of x in T. Then there are
scalars cn, cn+1, . . . , cm, not all zero, such that

But, by an argument similar to that used in Example 6.25, this implies that cn �
cn�1 � p � cm � 0, which is a contradiction. Hence, S cannot contain finitely many
linearly dependent vectors, so it is linearly independent.

Bases

The important concept of a basis now can be extended easily to arbitrary vector
spaces.

Definition A subset B of a vector space V is a basis for V if

1. B spans V and
2. B is linearly independent.

cnx
n � cn�1x

n�1 � p � cmxm � 0

c sin x � d cos x � 0

464 Chapter 6 Vector Spaces

Example 6. 27

Example 6. 28
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Section 6.2 Linear Independence, Basis, and Dimension 465

If ei is the ith column of the n � n identity matrix, then {e1, e2, . . . , en} is a basis for �n,
called the standard basis for �n.

{1, x, x2, . . . , xn} is a basis for �n, called the standard basis for �n.

The set is a basis for Mmn, where the
matrices Eij are as defined in Example 6.18. E is called the standard basis for Mmn.

We have already seen that E spans Mmn. It is easy to show that E is linearly inde-
pendent. (Verify this!) Hence, E is a basis for Mmn.

Show that is a basis for �2.

Solution We have already shown that B is linearly independent, in Example 6.26. To
show that B spans �2, let a � bx � cx 2 be an arbitrary polynomial in �2. We must
show that there are scalars c1, c2, and c3 such that

or, equivalently,

Equating coefficients of like powers of x, we obtain the linear system

which has a solution, since the coefficient matrix has rank 3 and, hence,

is invertible. (We do not need to know what the solution is; we only need to know that
it exists.) Therefore,B is a basis for �2.

Remark Observe that the matrix is the key to Example 6.32. We can

immediately obtain it using the correspondence between �2 and �3, as indicated in
the Remark following Example 6.26.

£1 0 1

1 1 0

0 1 1

§

£1 0 1

1 1 0

0 1 1

§
c2 � c3 � c

c1 � c2 � b

c1 � c3 � a

1c1 � c3 2 � 1c1 � c2 2x � 1c2 � c3 2x2 � a � bx � cx2

c111 � x 2 � c21x � x 2 2 � c311 � x 2 2 � a � bx � cx 2

B � 51 � x, x � x2, 1 � x26

E � 5E11, . . . , E1n, E21, . . . , E2n, Em1, . . . , Emn6

Example 6. 29

Example 6. 30

Example 6. 31

Example 6. 32

�

�
I I I I II I I I I �������������������������������
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Theorem 6. 5

Show that is a basis for �.

Solution In Example 6.28, we saw that B is linearly independent. It also spans �,
since clearly every polynomial is a linear combination of (finitely many) powers of x.

Find bases for the three vector spaces in Example 6.13:

Solution Once again, we will work the three examples side by side to highlight the
similarities among them. In a strong sense, they are all the same example, but it will
take us until Section 6.5 to make this idea perfectly precise.

1c 2  W3 � e c a b

�b a
d f1b 2  W2 � 5a � bx � bx2 � ax361a 2  W1 � μ ≥ a

b

�b

a

¥ ∂

B � 51, x, x2, . . .6
466 Chapter 6 Vector Spaces

Example 6. 33

Example 6. 34

(a) Since

we have W1 � span(u, v), where

Since {u, v} is clearly linearly in-
dependent, it is also a basis for W1.

u � ≥ 1

0

0

1

¥   and  v � ≥ 0

1

�1

0

¥

≥ a

b

�b

a

¥ � a ≥ 1

0

0

1

¥ � b ≥ 0

1

�1

0

¥
(b) Since

we have W2 � span(u(x), v(x)),
where

and

Since {u(x), v(x)} is clearly lin-
early independent, it is also a basis
for W2.

v 1x 2 � x � x2

u1x 2 � 1 � x 3

� a 11 � x 3 2 � b 1x � x 2 2a � bx � bx2 � ax3

(c) Since

we have W3 � span(U, V), where

Since {U, V} is clearly linearly in-
dependent, it is also a basis for W3.

U � c1 0

0 1
d   and  V � c 0 1

�1 0
d

c a b

�b a
d � a c 1 0

0 1
d � b c 0 1

�1 0
d

Coordinates

Section 3.5 introduced the idea of the coordinates of a vector with respect to a basis
for subspaces of �n. We now extend this concept to arbitrary vector spaces.

Let V be a vector space and let B be a basis for V. For every vector v in V, there is
exactly one way to write v as a linear combination of the basis vectors in B.

Proof The proof is the same as the proof of Theorem 3.29. It works even if the basisB
is infinite, since linear combinations are, by definition, finite.
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The converse of Theorem 6.5 is also true. That is, if B is a set of vectors in a vec-
tor space V with the property that every vector in V can be written uniquely as a lin-
ear combination of the vectors in B, then B is a basis for V (see Exercise 30). In this
sense, the unique representation property characterizes a basis.

Since representation of a vector with respect to a basis is unique, the next defini-
tion makes sense.

Definition Let be a basis for a vector space V. Let v be a
vector in V, and write v � c1v1 � c2v2 � p � cnvn. Then c1, c2, . . . , cn are called the
coordinates of v with respect to B, and the column vector

is called the coordinate vector of v with respect to B.

Observe that if the basis B of V has n vectors, then is a (column) vector in �n.

Find the coordinate vector of p(x) � 2 � 3x � 5x 2 with respect to the stan-
dard basis of �2.

Solution The polynomial p(x) is already a linear combination of 1, x, and x2, so

This is the correspondence between �2 and �3 that we remarked on after Exam-
ple 6.26, and it can easily be generalized to show that the coordinate vector of a
polynomial

with respect to the standard basis is just the vector

Remark The order in which the basis vectors appear in B affects the order of
the entries in a coordinate vector. For example, in Example 6.35, assume that the

3p 1x 2 4B � Ea0

a1

a2

o
an

U  in �n�1

B � 51, x, x 2, . . . , xn6p 1x 2 � a0 � a1x � a2x
2 � p � anxn  in �n

3p1x 2 4B � £ 2

�3

5

§
B � 51, x, x 26 3p1x 2 4B

3v 4B

3v 4B � ≥ c1

c2

o
cn

¥

B � 5v1, v2, . . . , vn6

Example 6. 35
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standard basis vectors are ordered as Then the coordinate vector of
p(x) � 2 � 3x � 5x2 with respect to B� is

Find the coordinate vector of with respect to the standard basis

of M22.

Solution Since

we have

This is the correspondence between M22 and �4 that we noted before the intro-
duction to Example 6.13. It too can easily be generalized to give a correspondence
between Mmn and �mn.

Find the coordinate vector of p(x) � 1 � 2x � x 2 with respect to the basis
C� {1 � x, x � x 2, 1 � x 2} of �2.

Solution We need to find c1, c2, and c3 such that

or, equivalently,

As in Example 6.32, this means we need to solve the system

whose solution is found to be c1 � 2, c2 � 0, c3 � �1. Therefore,

3p 1x 2 4C � £ 2

0

�1

§
c2 � c3 � �1

c1 � c2 �  2
c1 � c3 �  1

1c1 � c3 2 � 1c1 � c2 2x � 1c2 � c3 2x 2 � 1 � 2x � x 2

c111 � x 2 � c21x � x 2 2 � c311 � x 2 2 � 1 � 2x � x 2

3p 1x 2 4B

3A 4B � ≥ 2

�1

4

3

¥
� 2E11 � E12 � 4E21 � 3E22

A � c2 �1

4 3
d � 2 c1 0

0 0
d � c0 1

0 0
d � 4 c0 0

1 0
d � 3 c0 0

0 1
d

B � 5E11, E12, E21, E226 A � c2 �1

4 3
d3A 4B

3p 1x 2 4B¿ � £ 5

�3

2

§
B¿ � 5x 2, x, 16.
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Example 6. 36

Example 6. 37
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Theorem 6. 6

[Since this result says that p(x) � 2(1 � x) � (1 � x2), it is easy to check that it is
correct.]

The next theorem shows that the process of forming coordinate vectors is com-
patible with the vector space operations of addition and scalar multiplication.

Let be a basis for a vector space V. Let u and v be vectors in V
and let c be a scalar. Then

a.
b.

Proof We begin by writing u and v in terms of the basis vectors—say, as

Then, using vector space properties, we have

and

so

and

An easy corollary to Theorem 6.6 states that coordinate vectors preserve linear
combinations:

(1)

You are asked to prove this corollary in Exercise 31.
The most useful aspect of coordinate vectors is that they allow us to transfer

information from a general vector space to �n, where we have the tools of Chapters 1
to 3 at our disposal. We will explore this idea in some detail in Sections 6.3 and 6.6.
For now, we have the following useful theorem.

3c1u1 � p � ckuk 4B � c1 3u1 4B � p � ck 3uk 4B

3cu 4B � ≥ cc1

cc2

o
ccn

¥ � c ≥ c1

c2

o
cn

¥ � c 3u 4B

3u � v 4B � ≥ c1 � d1

c2 � d2

o
cn � dn

¥ � ≥ c1

c2

o
cn

¥ � ≥ d1

d2

o
dn

¥ � 3u 4B � 3v 4B
cu � 1cc1 2v1 � 1cc2 2v2 � p � 1ccn 2vn

u � v � 1c1 � d1 2v1 � 1c2 � d2 2v2 � p � 1cn � dn 2vn

u � c1v1 � c2v2 � p � cnvn  and  v � d1v1 � d2v2 � p � dnvn

3cu 4B � c 3u 4B3u � v 4B � 3u 4B � 3v 4B
B � 5v1, v2, . . . , vn6

�

�
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Theorem 6. 8

Theorem 6. 7 Let be a basis for a vector space V and let u1, . . . , uk

be vectors in V. Then {u1, . . . , uk} is linearly independent in V if and only if
is linearly independent in �n.

Proof Assume that {u1, . . . , uk} is linearly independent in V and let

in �n. But then we have

using equation (1), so the coordinates of the vector c1u1 � p � ckuk with respect to B
are all zero. That is,

The linear independence of {u1, . . . , uk} now forces c1 � c2 � p � ck � 0, so
is linearly independent.

The converse implication, which uses similar ideas, is left as Exercise 32.

Observe that, in the special case where ui � vi, we have

so and is the standard basis in �n.

Dimension

The definition of dimension is the same for a vector space as for a subspace of �n—
the number of vectors in a basis for the space. Since a vector space can have
more than one basis, we need to show that this definition makes sense; that is, we need
to establish that different bases for the same vector space contain the same number
of vectors.

Part (a) of the next theorem generalizes Theorem 2.8.

Let be a basis for a vector space V.

a. Any set of more than n vectors in V must be linearly dependent.
b. Any set of fewer than n vectors in V cannot span V.

Proof (a) Let {u1, . . . , um} be a set of vectors in V, with m � n. Then . . . ,
is a set of more than n vectors in �n and, hence, is linearly dependent, by Theo-

rem 2.8. This means that {u1, . . . , um} is linearly dependent as well, by Theorem 6.7.

(b) Let {u1, . . . , um} be a set of vectors in V, with m � n. Then S �
is a set of fewer than n vectors in �n. Now span(u1, . . . , um) � V if and only if
span(S) � �n (see Exercise 33). But span(S) is just the column space of the n � m
matrix

so dim(span(S)) � dim(col(A)) � m � n. Hence, S cannot span �n, so {u1, . . . , um}
does not span V.

Now we extend Theorem 3.23.

A � 3 3u1 4B  
p  3um 4B 4

3um 4B65 3u1 4B, . . . ,
3um 4B6 5 3u1 4B,
B � 5v1, v2, . . . , vn6

5 3v1 4B, . . . , 3vn 4B6 � 5e1, . . . , en63vi 4B � ei

vi � 0 # v1 � p � 1 # vi � p � 0 # vn

3uk 4B65 3u1 4B, . . . ,
c1u1 � p � ckuk � 0v1 � 0v2 � p � 0vn � 0

3c1u1 � p � ckuk 4B � 0

c1 3u1 4B � p � ck 3uk 4B � 0

5 3u1 4B, . . . , 3uk 4B6B � 5v1, v2, . . . , vn6
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Theorem 6. 9 The Basis Theorem

If a vector space V has a basis with n vectors, then every basis for V has exactly n
vectors.

The proof of Theorem 3.23 also works here, virtually word for word. However, it
is easier to make use of Theorem 6.8.

Proof Let B be a basis for V with n vectors and let B� be another basis for V with m
vectors. By Theorem 6.8, m � n; otherwise,B� would be linearly dependent.

Now use Theorem 6.8 with the roles of B and B� interchanged. Since B� is a
basis of V with m vectors, Theorem 6.8 implies that any set of more than m vectors in
V is linearly dependent. Hence, n � m, since B is a basis and is, therefore, linearly
independent.

Since n � m and m � n, we must have n � m, as required.

The following definition now makes sense, since the number of vectors in a
(finite) basis does not depend on the choice of basis.

Definition A vector space V is called finite-dimensional if it has a basis con-
sisting of finitely many vectors. The dimension of V, denoted by dim V, is the num-
ber of vectors in a basis for V. The dimension of the zero vector space {0} is defined
to be zero. A vector space that has no finite basis is called infinite-dimensional.

Since the standard basis for �n has n vectors, dim �n � n. In the case of �3, a one-
dimensional subspace is just the span of a single nonzero vector and thus is a line
through the origin. A two-dimensional subspace is spanned by its basis of two
linearly independent (i.e., nonparallel) vectors and therefore is a plane through the
origin. Any three linearly independent vectors must span �3, by the Fundamental
Theorem. The subspaces of �3 are now completely classified according to dimension,
as shown in Table 6.1.

Example 6. 38

Table 6. 1
dim V V

3 �3

2 Plane through the origin
1 Line through the origin
0 {0}

The standard basis for �n contains n � 1 vectors (see Example 6.30), so dim �n �
n � 1.

Example 6. 39
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Theorem 6. 10

The standard basis for Mmn contains mn vectors (see Example 6.31), so 
dim Mmn � mn.

Both � and � are infinite-dimensional, since they each contain the infinite linearly
independent set {1, x, x2, . . .} (see Exercise 44).

Find the dimension of the vector space W of symmetric 2 � 2 matrices (see Exam-
ple 6.10).

Solution A symmetric 2 � 2 matrix is of the form

so W is spanned by the set

If S is linearly independent, then it will be a basis for W. Setting

we obtain

from which it immediately follows that a � b � c � 0. Hence, S is linearly indepen-
dent and is, therefore, a basis for W. We conclude that dim W � 3.

The dimension of a vector space is its “magic number.” Knowing the dimension
of a vector space V provides us with much information about V and can greatly sim-
plify the work needed in certain types of calculations, as the next few theorems and
examples illustrate.

Let V be a vector space with dim V � n. Then:

a. Any linearly independent set in V contains at most n vectors.
b. Any spanning set for V contains at least n vectors.
c. Any linearly independent set of exactly n vectors in V is a basis for V.
d. Any spanning set for V consisting of exactly n vectors is a basis for V.
e. Any linearly independent set in V can be extended to a basis for V.
f. Any spanning set for V can be reduced to a basis for V.

ca b

b c
d � c0 0

0 0
d

a c1 0

0 0
d � b c0 1

1 0
d � c c0 0

0 1
d � c0 0

0 0
d

S � e c1 0

0 0
d , c0 1

1 0
d , c0 0

0 1
d f

ca b

b c
d � a c1 0

0 0
d � b c0 1

1 0
d � c c0 0

0 1
d
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Example 6. 40

Example 6. 41

Example 6. 42
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Section 6.2 Linear Independence, Basis, and Dimension 473

Proof The proofs of properties (a) and (b) follow from parts (a) and (b) of Theo-
rem 6.8, respectively.

(c) Let S be a linearly independent set of exactly n vectors in V. If S does not span V,
then there is some vector v in V that is not a linear combination of the vectors in S.
Inserting v into S produces a set S� with n � 1 vectors that is still linearly independent
(see Exercise 54). But this is impossible, by Theorem 6.8(a). We conclude that S must
span V and therefore be a basis for V.

(d) Let S be a spanning set for V consisting of exactly n vectors. If S is linearly
dependent, then some vector v in S is a linear combination of the others. Throwing v
away leaves a set S� with n � 1 vectors that still spans V (see Exercise 55). But this is
impossible, by Theorem 6.8(b). We conclude that S must be linearly independent and
therefore be a basis for V.

(e) Let S be a linearly independent set of vectors in V. If S spans V, it is a basis for V
and so consists of exactly n vectors, by the Basis Theorem. If S does not span V, then,
as in the proof of property (c), there is some vector v in V that is not a linear combi-
nation of the vectors in S. Inserting v into S produces a set S� that is still linearly
independent. If S� still does not span V, we can repeat the process and expand it into
a larger, linearly independent set. Eventually, this process must stop, since no linearly
independent set in V can contain more than n vectors, by Theorem 6.8(a). When the
process stops, we have a linearly independent set S* that contains S and also spans V.
Therefore, S* is a basis for V that extends S.

(f) You are asked to prove this property in Exercise 56.

You should view Theorem 6.10 as, in part, a labor-saving device. In many
instances, it can dramatically decrease the amount of work needed to check that a set
of vectors is linearly independent, a spanning set, or a basis.

In each case, determine whether S is a basis for V.

(a)

(b)

(c)

Solution (a) Since dim and S contains four vectors, S is linearly depen-
dent, by Theorem 6.10(a). Hence, S is not a basis for �2.

(b) Since dim(M22) � 4 and S contains three vectors, S cannot span M22, by Theo-
rem 6.10(b). Hence, S is not a basis for M22.

(c) Since dim and S contains three vectors, S will be a basis for �2 if it is lin-
early independent or if it spans �2, by Theorem 6.10(c) or (d). It is easier to show that
S is linearly independent; we did this in Example 6.26. Therefore, S is a basis for �2.
(This is the same problem as in Example 6.32—but see how much easier it becomes
using Theorem 6.10!)

Extend {1 � x, 1 � x} to a basis for �2.

Solution First note that {1 � x, 1 � x} is linearly independent. (Why?) Since
dim we need a third vector—one that is not linearly dependent on the first1�2 2 � 3,

1�2 2 � 3

1�2 2 � 3

V � �2, S � 51 � x, x � x 2, 1 � x 26V � M22, S � e c1 0

1 1
d , c0 �1

1 0
d , c1 1

0 �1
d fV � �2, S � 51 � x, 2 � x � x 2, 3x � 2x 2, �1 � 3x � x 26Example 6. 43

Example 6. 44

�

�
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Theorem 6. 11

two. We could proceed, as in the proof of Theorem 6.10(e), to find such a vector using
trial and error. However, it is easier in practice to proceed in a different way.

We enlarge the given set of vectors by throwing in the entire standard basis for �2.
This gives

Now S is linearly dependent, by Theorem 6.10(a), so we need to throw away some
vectors—in this case, two. Which ones? We use Theorem 6.10(f), starting with the first
vector that was added, 1. Since the set {1 � x, 1 � x, 1} is
linearly dependent, so we throw away 1. Similarly, so
{1 � x, 1 � x, x} is linearly dependent also. Finally, we check that {1 � x, 1 � x, x 2} is
linearly independent. (Can you see a quick way to tell this?) Therefore, {1 � x,
1 � x, x2} is a basis for �2 that extends {1 � x, 1 � x}.

In Example 6.42, the vector space W of symmetric 2 � 2 matrices is a subspace of
the vector space M22 of all 2 � 2 matrices. As we showed, dim W � 3 � 4 � dim M22.
This is an example of a general result, as the final theorem of this section shows.

Let W be a subspace of a finite-dimensional vector space V. Then:

a. W is finite-dimensional and dim W � dim V.
b. dim W � dim V if and only if W � V.

Proof (a) Let dim V � n. If W � {0}, then dim(W ) � 0 � n � dim V. If W is
nonzero, then any basis B for V (containing n vectors) certainly spans W, since W is
contained in V. But B can be reduced to a basis B� for W (containing at most n vec-
tors), by Theorem 6.10(f). Hence, W is finite-dimensional and dim(W ) � n � dim V.

(b) If W � V, then certainly dim W � dim V. On the other hand, if dim W � dim
V � n, then any basis B for W consists of exactly n vectors. But these are then n lin-
early independent vectors in V and, hence, a basis for V, by Theorem 6.10(c). There-
fore, V � span(B) � W.

x � 1
2 11 � x 2 � 1

2 11 � x 2 ,1 � 1
2 11 � x 2 � 1

2 11 � x 2 ,
S � 51 � x, 1 � x, 1, x, x 26

474 Chapter 6 Vector Spaces

In Exercises 1–4, test the sets of matrices for linear indepen-
dence in M22. For those that are linearly dependent, express
one of the matrices as a linear combination of the others.

1.

2.

3. e c�1 1

�2 2
d , c3 0

1 1
d , c 0 2

�3 1
d , c�1 0

�1 7
d f

e c 2 4

�3 2
d , c�1 �2

3 1
d , c 1 2

3 7
d f

e c1 1

0 �1
d , c1 �1

1 0
d , c1 0

3 2
d f

4.

In Exercises 5–9, test the sets of polynomials for linear inde-
pendence. For those that are linearly dependent, express one
of the polynomials as a linear combination of the others.

5. {x, 1 � x} in �1

6. {1 � x, 1 � x 2, 1 � x � x 2} in �2

7. {x, 2x � x 2, 3x � 2x 2} in �2

e c 1 �1

1 1
d , c 1 1

1 �1
d , c 1 1

�1 1
d , c�1 1

1 1
d f

Exercises 6. 2

�

�
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Section 6.2 Linear Independence, Basis, and Dimension 475

8. {2x, 1 � x 3, x 2 � x 3, 1 � 2x � x 2} in �3

9. {1 � 2x, 3x � x 2 � x 3, 1 � x 2 � 2x 3, 3 � 2x � 3x 3} in �3

In Exercises 10–14, test the sets of functions for linear inde-
pendence in �. For those that are linearly dependent, express
one of the functions as a linear combination of the others.

10. {1, sin x, cos x} 11. { }

12. { } 13. {1, ln(2x), ln( )}

14. {sin x, sin 2x, sin 3x}

15. If f and g are in the vector space of all functions
with continuous derivatives, then the determinant

is called the Wronskian of f and g [named after the
Polish-French mathematician Jósef Maria Hoëné-
Wronski (1776–1853), who worked on the theory of
determinants and the philosophy of mathematics].
Show that f and g are linearly independent if their
Wronskian is not identically zero (that is, if there is
some x such that W(x) 0).

16. In general, the Wronskian of in is the
determinant

and f1, . . . , fn are linearly independent, provided W(x)
is not identically zero. Repeat Exercises 10–14 using
the Wronskian test.

17. Let {u, v, w} be a linearly independent set of vectors in
a vector space V.

(a) Is {u � v, v � w, u � w} linearly independent?
Either prove that it is or give a counterexample
to show that it is not.

(b) Is {u � v, v � w, u � w} linearly independent?
Either prove that it is or give a counterexample
to show that it is not.

In Exercises 18–25, determine whether the set B is a basis
for the vector space V.

18.

19. V � M22, B � e c 1 0

0 1
d , c 0 �1

1 0
d , c 1 1

1 1
d , c 1 1

1 �1
d f

V � M22, B � e c 1 1

0 1
d , c 0 �1

1 0
d , c 1 1

1 �1
d f

W1x 2 � ∞ f11x 2 f21x 2 p fn1x 2
f œ

11x 2 f œ
21x 2 p f œ

n 1x 2
o o ∞ o

f1
1n�12 1x 2 f 2

1n�12 1x 2 p f n
1n�12 1x 2 ∞
� 1n�12f1, . . . , fn



W 1x 2 � 2 f 1x 2 g 1x 2
f ¿1x 2 g ¿1x 2 2

�112,
x 2ex, e�x

cos2x1, sin2x,

dy
dx

dy
dx

20. V � M22,

21. V � M22,

B�

22.

23.

24.

25.

26. Find the coordinate vector of with

respect to the basis of

27. Find the coordinate vector of with respect

to the basis 

of

28. Find the coordinate vector of p(x) � 2 � x � 3x 2 with
respect to the basis 1 � x, of �2.

29. Find the coordinate vector of p(x) � 2 � x � 3x 2 with
respect to the basis of �2.

30. Let B be a set of vectors in a vector space V with the
property that every vector in V can be written
uniquely as a linear combination of the vectors in B.
Prove that B is a basis for V.

31. Let B be a basis for a vector space V, let u1, . . . , uk

be vectors in V, and let c1, . . . , ck be scalars. Show that

32. Finish the proof of Theorem 6.7 by showing that if
is linearly independent in then

is linearly independent in V.

33. Let be a set of vectors in an
n-dimensional vector space V and letB be a basis for V.
Let S � be the set of coordinate
vectors of with respect to B. Prove that
span � V if and only if span(S) �

In Exercises 34–39, find the dimension of the vector space V
and give a basis for V.

34.

35.

36. V � 5p 1x 2  in �2 : xp¿ 1x 2 � p 1x 2 6V � 5p 1x 2  in �2 : p 11 2 � 06V � 5p 1x 2  in �2 : p 10 2 � 06
�n.um 21u1, . . . ,

um65u1, . . . ,
3um 4B65 3u1 4B, . . . ,5u1, . . . , um65u1, . . . , uk6 �n5 3u1 4B, . . . , 3uk 4B6

c1 3u1 4B � p � ck 3uk 4B.3c1u1 � p � ckuk 4B�

�1 � x 26B � 51, 1 � x,

x 26B � 51 � x,

M22.

B� e c1 0
0 0

d , c 1 1
0 0

d , c 1 1
1 0

d , c 1 1
1 1

d f
A � c1 2

3 4
d M22.B � 5E12, E11, E22, E216A � c1 2

3 4
dV � �2, B � 51, 2 � x, 3 � x 2, x � 2x 26V � �2, B � 52 � 3x � x2, 1 � 2x � 2x 26V � �2, B � 51 � x, 1 � x 2, x � x 26V � �2, B � 5x, 1 � x, 1 � x � x 26 c 1 2

3 2
d fc2 3

3 1
d ,c 1 3

�3 1
d ,c2 1

1 2
d ,e c1 2

2 1
d ,

B � e c 1 0

0 1
d , c 0 �1

1 0
d , c 1 0

�1 1
d , c 1 �1

0 1
d f

dy
dx
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476 Chapter 6 Vector Spaces

37.

38.

39. where 

40. Find a formula for the dimension of the vector space
of symmetric n � n matrices.

41. Find a formula for the dimension of the vector space
of skew-symmetric n � n matrices.

42. Let U and W be subspaces of a finite-dimensional
vector space V. Prove Grassmann’s Identity:

dim(U � W) � dimU � dimW � dim(U � W)

[Hint: The subspace U � W is defined in Exercise 48
of Section 6.1. Let B� {v1, . . . , vk} be a basis for
U � W. Extend B to a basis C of U and a basis D of W.
Prove that C	D is a basis for U � W.]

43. Let U and V be finite-dimensional vector spaces.

(a) Find a formula for dim(U � V) in terms of dim U
and dim V. (See Exercise 49 in Section 6.1.)

(b) If W is a subspace of V, show that dim � �
dim W, where � � {(w, w) : w is in W}.

44. Prove that the vector space � is infinite-dimensional.
[Hint: Suppose it has a finite basis. Show that there is
some polynomial that is not a linear combination of
this basis.]

45. Extend {1 � x, 1 � x � x2} to a basis for �2.

46. Extend to a basis for 

47. Extend to a basis for

48. Extend to a basis for the vector

space of symmetric 2 � 2 matrices.

49. Find a basis for span(1, 1 � x, 2x) in �1.

50. Find a basis for span(1 � 2x, 2x � x 2, 1 � x 2, 1 � x 2)
in �2.

51. Find a basis for span(1 � x, x � x 2, 1 � x 2, 1 � 2x �
x 2) in �2.

52. Find a basis for span

in

53. Find a basis for span(sin2x, cos2x, cos 2x) in �.

M22.c 1 �1

�1 1
d b

c�1 1

1 �1
d ,c0 1

1 0
d ,a c1 0

0 1
d ,

e c1 0

0 1
d , c0 1

1 0
d f

M22.e c1 0

0 1
d , c0 1

1 0
d , c0 �1

1 0
d f

M22.e c0 1

0 1
d , c1 1

0 1
d f

B � c1 1

0 1
dV � 5A in M22 : AB � BA6,V � 5A in M22 : A is skew-symmetric6V � 5A in M22 : A is upper triangular6 54. Let S � be a linearly independent set in a

vector space V. Show that if v is a vector in V that is
not in span(S), then S� � is still linearly
independent.

55. Let S � be a spanning set for a vector
space V. Show that if is in span( ), then
S� � is still a spanning set for V.

56. Prove Theorem 6.10(f).

57. Let be a basis for a vector space V and let
c1, . . . , cn be nonzero scalars. Prove that 
is also a basis for V.

58. Let be a basis for a vector space V. Prove
that

is also a basis for V.

Let be n � 1 distinct real numbers. Define
polynomials by

These are called the Lagrange polynomials associated with
a0, a1, . . . , an. [Joseph-Louis Lagrange (1736–1813) was born
in Italy but spent most of his life in Germany and France.
He made important contributions to such fields as number
theory, algebra, astronomy, mechanics, and the calculus of
variations. In 1773, Lagrange was the first to give the volume
interpretation of a determinant (see Chapter 4).]

59. (a) Compute the Lagrange polynomials associated
with a0 � 1, a1 � 2, a2 � 3.

(b) Show, in general, that

60. (a) Prove that the set of
Lagrange polynomials is linearly independent in

[Hint: Set and use
Exercise 59(b).]

(b) Deduce that B is a basis for 

61. If q(x) is an arbitrary polynomial in it follows
from Exercise 60(b) that

(1)

for some scalars 

(a) Show that for and deduce
that is the
unique representation of q(x) with respect to the
basis B.

q1x 2 � q1a0 2p01x 2 � p � q1an 2pn1x 2i � 0, . . . , n,ci � q 1ai 2c0, . . . , cn.

q 1x 2 � c0p01x 2 � p � cnpn1x 2
�n,

�n.

c0p01x 2 � p � cnpn1x 2 � 0�n.

B � 5p01x 2 , p11x 2 , . . . , pn1x 2 6
pi 1aj 2 � e0 if i  j

1 if i � j

pi 1x 2 �
1x � a0 2 p 1x � ai�1 2 1x � ai�1 2 p 1x � an 21ai � a0 2 p 1ai � ai�1 2 1ai � ai�1 2 p 1ai � an 2

pn1x 2p11x 2 , . . . ,p01x 2 ,a1, . . . , ana0,

5v1, v1 � v2, v1 � v2 � v3, . . . , v1 � p � vn6
5v1, . . . , vn6

5c1v1, . . . , cnvn65v1, . . . , vn6
vn�165v1, . . . ,

v1, . . . , vn�1vn

vn65v1, . . . ,

v6vn,5v1, . . . ,

vn65v1, . . . ,
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Section 6.2 Linear Independence, Basis, and Dimension 477

(b) Show that for any n � 1 points (a0, c0), (a1, c1), . . . ,
(an, cn) with distinct first components, the func-
tion q(x) defined by equation (1) is the unique
polynomial of degree at most n that passes
through all of the points. This formula is known
as the Lagrange interpolation formula. (Com-
pare this formula with Problem 19 in Explo-
ration: Geometric Applications of Determinants
in Chapter 4.)

(c) Use the Lagrange interpolation formula to find the
polynomial of degree at most 2 that passes
through the points

i(i) (1, 6), (2, �1), and (3, �2)
(ii) (�1, 10), (0, 5), and (3, 2)

62. Use the Lagrange interpolation formula to show that if
a polynomial in �n has n � 1 zeros, then it must be
the zero polynomial.

63. Find a formula for the number of invertible matrices
in Mnn(�p). [Hint: This is the same as determining the
number of different bases for (Why?) Count the
number of ways to construct a basis for one vector
at a time.]

�p
n,

�p
n.
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478

Magic Squares
The engraving shown on page 479 is Albrecht Dürer’s Melancholia I (1514). Among
the many mathematical artifacts in this engraving is the chart of numbers that hangs
on the wall in the upper right-hand corner. (It is enlarged in the detail shown.) Such
an array of numbers is known as a magic square. We can think of it as a 4 � 4 matrix

Observe that the numbers in each row, in each column, and in both diagonals have
the same sum: 34. Observe further that the entries are the integers 1, 2, . . . , 16. (Note
that Dürer cleverly placed the 15 and 14 adjacent to each other in the last row, giving
the date of the engraving.) These observations lead to the following definition.

Definition An n � n matrix M is called a magic square if the sum of the en-
tries is the same in each row, each column, and both diagonals. This common sum
is called the weight of M, denoted wt(M). If M is an n � n magic square that con-
tains each of the entries 1, 2, . . . , n2 exactly once, then M is called a classical magic
square.

1. If M is a classical n � n magic square, show that

[Hint: Use Exercise 51 in Section 2.4.]

2. Find a classical 3 � 3 magic square. Find a different one. Are your two exam-
ples related in any way?

wt1M 2 �
n1n2 � 1 2

2

≥ 16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

¥
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3. Clearly, the 3 � 3 matrix with all entries equal to is a magic square with
weight 1. Using your answer to Problem 2, find a 3 � 3 magic square with weight 1,
all of whose entries are different. Describe a method for constructing a 3 � 3 magic
square with distinct entries and weight w for any real number w.

Let Magn denote the set of all n � n magic squares, and let denote the set of all
n � n magic squares of weight 0.

4. (a) Prove that Mag3 is a subspace of M33.
(b) Prove that is a subspace of Mag3.

5. Use Problems 3 and 4 to show that if M is a 3 � 3 magic square with weight w,
then we can write M as

M � M0 � kJ

where M0 is a 3 � 3 magic square of weight 0, J is the 3 � 3 matrix consisting entirely
of ones, and k is a scalar. What must k be? [Hint: Show that M � kJ is in for an
appropriate value of k.]

Let’s try to find a way of describing all 3 � 3 magic squares. Let

be a magic square with weight 0. The conditions on the rows, columns, and diag-
onals give rise to a system of eight homogeneous linear equations in the variables a,
b, . . . , i.

6. Write out this system of equations and solve it. [Note: Using a CAS will facil-
itate the calculations.]

M � £ a b c

d e f

g h i

§
Mag0

3

Mag3
0

Magn
0

1
3
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7. Find the dimension of . Hint: By doing a substitution, if necessary, use
your solution to Problem 6 to show that M can be written in the form

8. Find the dimension of . [Hint: Combine the results of Problems 5 and 7.]

9. Can you find a direct way of showing that the (2, 2) entry of a 3 � 3 magic
square with weight w must be w/3? [Hint: Add and subtract certain rows, columns,
and diagonals to leave a multiple of the central entry.]

10. Let M be a 3 � 3 magic square of weight 0, obtained from a classical 3 � 3
magic square as in Problem 5. If M has the form given in Problem 7, write out an
equation for the sum of the squares of the entries of M. Show that this is the equation
of a circle in the variables s and t, and carefully plot it. Show that there are exactly
eight points (s, t) on this circle with both s and t integers. Using Problem 8, show that
these eight points give rise to eight classical 3 � 3 magic squares. How are these magic
squares related to one another?

Mag3

M � £ s �s � t t

�s � t 0 s � t

�t s � t �s

§
Mag0

3

480
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Change of Basis
In many applications, a problem described using one coordinate system may be
solved more easily by switching to a new coordinate system. This switch is usually
accomplished by performing a change of variables, a process that you have probably
encountered in other mathematics courses. In linear algebra, a basis provides us with
a coordinate system for a vector space, via the notion of coordinate vectors. Choosing
the right basis will often greatly simplify a particular problem. For example, consider
the molecular structure of zinc, shown in Figure 6.3(a). A scientist studying zinc
might wish to measure the lengths of the bonds between the atoms, the angles be-
tween these bonds, and so on. Such an analysis will be greatly facilitated by introduc-
ing coordinates and making use of the tools of linear algebra. The standard basis
and the associated standard xyz coordinate axes are not always the best choice. As Fig-
ure 6.3(b) shows, in this case {u, v, w} is probably a better choice of basis for �3 than
the standard basis, since these vectors align nicely with the bonds between the atoms
of zinc.

(a)

Figure 6. 3

(b)

w

u
v

Change-of-Basis Matrices

Figure 6.4 shows two different coordinate systems for �2, each arising from a different
basis. Figure 6.4(a) shows the coordinate system related to the basis 
while Figure 6.4(b) arises from the basis where

The same vector x is shown relative to each coordinate system. It is clear from the
diagrams that the coordinate vectors of x with respect to B and C are

respectively. It turns out that there is a direct connection between the two coordinate
vectors. One way to find the relationship is to use to calculate

x � u1 � 3u2 � c�1

2
d � 3 c 2

�1
d � c 5

�1
d3x 4B

3x 4B � c1
3
d   and  3x 4C � c 6

�1
d

u1 � c�1

2
d ,  u2 � c 2

�1
d ,  v1 � c1

0
d ,  v2 � c1

1
dC � 5v1, v26, B � 5u1, u26,

Section 6.3 Change of Basis 481
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Then we can find by writing x as a linear combination of v1 and v2. However,
there is a better way to proceed—one that will provide us with a general mechanism
for such problems. We illustrate this approach in the next example.

Using the bases B and C above, find given that 

Solution Since x � u1 � 3u2, writing u1 and u2 in terms of v1 and v2 will give us the
required coordinates of x with respect to C. We find that

and

so

This gives

in agreement with Figure 6.4(b).

This method may not look any easier than the one suggested prior to Example 6.45,
but it has one big advantage: We can now find from for any vector y in �2 with3y 4B3y 4C

3x 4C � c 6

�1
d

� 6v1 � v2

� 1�3v1 � 2v2 2 � 313v1 � v2 2x � u1 � 3u2

u2 � c 2

�1
d � 3 c1

0
d � c1

1
d � 3v1 � v2

u1 � c�1

2
d � �3 c1

0
d � 2 c1

1
d � �3v1 � 2v2

3x 4B � c1
3
d .3x 4C,

3x 4C
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Example 6. 45

u1

u2 x

3u2

�4

�2

2

642�2
x

y

(a)

Figure 6. 4

�4

�2

2

642�2
x

y

v2
v1

6v1

�v2 x

(b)
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Section 6.3 Change of Basis 483

Theorem 6. 12

very little additional work. Let’s look at the calculations in Example 6.45 from a differ-
ent point of view. From x � u1 � 3u2, we have

by Theorem 6.6. Thus,

where P is the matrix whose columns are and This procedure generalizes
very nicely.

Definition Let and be bases for a vector
space V. The n � n matrix whose columns are the coordinate vectors [u1] C, . . . ,
[un]C of the vectors in B with respect to C is denoted by and is called the
change-of-basis matrix from B to C. That is,

Think of B as the “old” basis and C as the “new” basis. Then the columns of
are just the coordinate vectors obtained by writing the old basis vectors in terms of
the new ones. Theorem 6.12 shows that Example 6.45 is a special case of a general
result.

Let and C � {v1, . . . , vn} be bases for a vector space V and let
be the change-of-basis matrix from B to C. Then

a. for all x in V.
b. is the unique matrix P with the property that for all x in V.
c. is invertible and 

Proof (a) Let x be in V and let

That is, x � c1u1 � p � cn un. Then

� PCdB 3x 4B
� 3 3u1 4C  

p  3un 4C 4 £ c1

o
cn

§
� c1 3u1 4C � p � cn 3un 4C3x 4C � 3c1u1 � p � cnun 4C
3x 4B � £ c1

o
cn

§
1PCdB 2�1 � PBdC.PCdB

P 3x 4B � 3x 4CPCdB

PCdB 3x 4B � 3x 4CPCdB

B � 5u1, . . . , un6

PCdB

PCdB � 3 3u1 4C 3u2 4C   
p

   3un 4C 4
PCdB

C � 5v1, . . . , vn6B � 5u1, . . . , un6
3u2 4C.3u1 4C� P 3x 4B� c�3 3

2 �1
d c1

3
d

3x 4C � 3 3u1 4C 3u2 4C 4 c13 d
3x 4C � 3u1 � 3u2 4C � 3u1 4C � 3 3u2 4C
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(b) Suppose that P is an n � n matrix with the property that P[x]B � [x]C for all x
in V. Taking x � ui, the ith basis vector in B, we see that [x]B � [ui]B � ei, so the ith
column of P is

which is the ith column of by definition. It follows that 

(c) Since {u1, . . . , un} is linearly independent in V, the set {[u1]C, . . . , [un]C} is linearly
independent in �n, by Theorem 6.7. Hence, is invertible,
by the Fundamental Theorem.

For all x in V, we have Solving for we find that

for all x in V. Therefore, is a matrix that changes bases from C to B. Thus, by
the uniqueness property (b), we must have 

Remarks
• You may find it helpful to think of change of basis as a transformation (in-

deed, it is a linear transformation) from �n to itself that simply switches from one co-
ordinate system to another. The transformation corresponding to accepts
as input and returns [x]C as output; does just the opposite. Fig-
ure 6.5 gives a schematic representation of the process.

1PCdB 2�1 � PBdC

3x 4BPCdB

1PCdB 2�1 � PBdC.
1PCdB 2�1

3x 4B � 1PCdB 2�1 3x 4C 3x 4B,PCdB 3x 4B � 3x 4C. 3u 4CPCdB � 3 3u1 4C   
p

P � PCdB.PCdB,

pi � Pei � P 3ui 4B � 3ui 4C

484 Chapter 6 Vector Spaces

x

[x]C

[  ]C [  ]B

[x]B

Multiplication
by PB�C

� (PC�B)�1 

Multiplication
by PC�B

�n �n

V

Figure 6. 5
Change of basis

Example 6. 46

• The columns of are the coordinate vectors of one basis with respect to the
other basis. To remember which basis is which, think of the notation as saying
“B in terms of C.” It is also helpful to remember that is a linear combination
of the columns of But since the result of this combination is [x]C, the columns of

must themselves be coordinate vectors with respect to C.

Find the change-of-basis matrices and for the bases and C�
{1 � x, x � x 2, 1 � x 2} of �2. Then find the coordinate vector of p(x) � 1 � 2x � x 2

with respect to C.

Solution Changing to a standard basis is easy, so we find first. Observe that the
coordinate vectors for C in terms of B are

31 � x 4B � £ 11
0

§ ,  3x � x 2 4B � £ 01
1

§ ,  31 � x 2 4B � £ 10
1

§
PBdC

B � 51, x, x 26PBdCPCdB

PCdB

PCdB.
PCdB 3x 4B CdB

PCdB
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(Look back at the Remark following Example 6.26.) It follows that

To find P we could express each vector in B as a linear combination of the vec-
tors in C (do this), but it is much easier to use the fact that by The-
orem 6.12(c). We find that

It now follows that

which agrees with Example 6.37.

Remark If we do not need explicitly, we can find from and
using Gaussian elimination. Row reduction produces

(See the next section on using Gauss-Jordan elimination.)
It is worth repeating the observation in Example 6.46: Changing to a standard

basis is easy. If E is the standard basis for a vector space V and B is any other basis,
then the columns of are the coordinate vectors of B with respect to E, and these
are usually “visible.” We make use of this observation again in the next example.

In M22, let B be the basis {E11, E21, E12, E22} and let C be the basis {A, B, C, D}, where

Find the change-of-basis matrix and verify that for X �c1 2

3 4
d . 3X 4C � PCdB 3X 4BPCdB

A � c 1 0

0 0
d ,  B � c 1 1

0 0
d ,  C � c 1 1

1 0
d ,  D � c 1 1

1 1
d

PEdB

3PBdC 0 3p 1x 2 4B 4 ¡ 3I 0 1PBdC 2�1 3p 1x 2 4B 4 � 3I 0 PCdB 3p 1x 2 4B 4 � 3I 0 3p1x 2 4C 4PBdC

3p 1x 2 4B3p 1x 2 4CPCdB

� £ 2

0

�1

§
� £ 1

2
1
2 �1

2

�1
2

1
2

1
2

1
2 �1

2
1
2

§ £ 1

2

�1

§
3p 1x 2 4C � PCdB 3p 1x 2 4B

PCdB � 1PBdC 2�1 � £ 1
2

1
2 �1

2

�1
2

1
2

1
2

1
2 �1

2
1
2

§
PCdB � 1PBdC 2�1,

CdB,

PBdC � £1 0 1

1 1 0

0 1 1

§

Example 6. 47

�

�
I I I I II I I I I ������������������������������
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Solution 1 To solve this problem directly, we must find the coordinate vectors of B
with respect to C. This involves solving four linear combination problems of the form
X � aA � bB � cC � dD, where X is in B and we must find a, b, c, and d. However,
here we are lucky, since we can find the required coefficients by inspection.

Clearly, E11 � A, E21 � �B � C, E12 � �A � B, and E22 � �C � D. Thus,

so

If then

and

This is the coordinate vector with respect to C of the matrix

as it should be.

Solution 2 We can compute in a different way, as follows. As you will be asked
to prove in Exercise 21, if E is another basis for M22, then �

If E is the standard basis, then and can be found by inspec-
tion. We have

PEdB � ≥ 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

¥   and  PEdC � ≥ 1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

¥
PEdCPEdB1PEdC 2�1PEdB.

PCdEPEdB�PCdB

PCdB

� c1 2

3 4
d � X

�A � B � C � 4D � � c1 0

0 0
d � c1 1

0 0
d � c1 1

1 0
d � 4 c1 1

1 1
d

PCdB 3X 4B � ≥ 1 0 �1 0

0 �1 1 0

0 1 0 �1

0 0 0 1

¥ ≥ 1

3

2

4

¥ � ≥�1

�1

�1

4

¥

3X 4B � ≥ 1

3

2

4

¥
X � c1 2

3 4
d ,

PCdB � 3 3E11 4C  3E21 4C  3E12 4C  3E22 4C 4 � ≥ 1 0 �1 0

0 �1 1 0

0 1 0 �1

0 0 0 1

¥
3E11 4C � ≥ 1

0

0

0

¥ ,  3E21 4C � ≥ 0

�1

1

0

¥ ,  3E12 4C � ≥�1

1

0

0

¥ ,  3E22 4C � ≥ 0

0

�1

1

¥
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(Do you see why?) Therefore,

which agrees with the first solution.

Remark The second method has the advantage of not requiring the computa-
tion of any linear combinations. It has the disadvantage of requiring that we find a
matrix inverse. However, using a CAS will facilitate finding a matrix inverse, so in
general the second method is preferable to the first. For certain problems, though, the
first method may be just as easy to use. In any event, we are about to describe yet a
third approach, which you may find best of all.

The Gauss-Jordan Method for Computing a Change-of-Basis Matrix

Finding the change-of-basis matrix to a standard basis is easy and can be done by in-
spection. Finding the change-of-basis matrix from a standard basis is almost as easy,
but requires the calculation of a matrix inverse, as in Example 6.46. If we do it by
hand, then (except for the 2 � 2 case) we will usually find the necessary inverse by
Gauss-Jordan elimination. We now look at a modification of the Gauss-Jordan
method that can be used to find the change-of-basis matrix between two nonstan-
dard bases, as in Example 6.47.

Suppose and are bases for a vector space V and
is the change-of-basis matrix from B to C. The ith column of P is

so ui � p1iv1 � � pnivn. If E is any basis for V, then

This can be rewritten in matrix form as

3 3v1 4E  
p  3vn 4E 4 £ p1i

o
pni

§ � 3ui 4E
3ui 4E � 3p1iv1 � p � pnivn 4E � p1i 3v1 4E � p � pni 3vn 4Ep

3ui 4C � £ p1i

o
pni

§
PCdB

C � 5v1, . . . , vn6B � 5u1, . . . , un6

� ≥ 1 0 �1 0

0 �1 1 0

0 1 0 �1

0 0 0 1

¥
� ≥ 1 �1 0 0

0 1 �1 0

0 0 1 �1

0 0 0 1

¥ ≥ 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

¥
� ≥ 1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

¥ �1 ≥ 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

¥
PCdB � 1PEdC 2�1PEdB

�

�
I I I I II I I I I ������������������������������
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Theorem 6. 13

which we can solve by applying Gauss-Jordan elimination to the augmented matrix

There are n such systems of equations to be solved, one for each column of but
the coefficient matrix is the same in each case. Hence, we can solve
all the systems simultaneously by row reducing the n � 2n augmented matrix

Since is linearly independent, so is by Theorem 6.7.
Therefore, the matrix C whose columns are has the n � n identity
matrix I for its reduced row echelon form, by the Fundamental Theorem. It follows
that Gauss-Jordan elimination will necessarily produce

where 
We have proved the following theorem.

Let and C � {v1, . . . , vn} be bases for a vector space V. Let
B � and where E is any basis for V.
Then row reduction applied to the n � 2n augmented matrix produces

If E is a standard basis, this method is particularly easy to use, since in that case
and We illustrate this method by reworking the problem in

Example 6.47.

Rework Example 6.47 using the Gauss-Jordan method.

Solution Taking E to be the standard basis for M22, we see that

Row reduction produces

(Verify this row reduction.) It follows that

as we found before.

PCdB � ≥ 1 0 �1 0

0 �1 1 0

0 1 0 �1

0 0 0 1

¥

3C 0 B 4 � ≥ 1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

4 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

¥ ¡ ≥ 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

4 1 0 �1 0

0 �1 1 0

0 1 0 �1

0 0 0 1

¥

B � PEdB � ≥ 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

¥   and  C � PEdC � ≥ 1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

¥

C � PEdC.B � PEdB

3C 0 B 4 S 3I 0 PCdB 4 3C 0 B 4C � 3 3v1 4E  
p  3vn 4E 4 ,3 3u1 4E  

p  3un 4E 4B � 5u1, . . . , un6
P � PCdB.

3C 0 B 4 S 3I 0 P 4
3v1 4E, . . . , 3vn 4E5 3v1 4E, . . . , 3vn 4E6,5v1, . . . , vn6 3 3v1 4E  

p  3vn 4E 0 3u1 4E  
p  3un 4E 4 � 3C 0 B 4

3 3v1 4E  
p  3vn 4E 4 PCdB,

3 3v1 4E  
p

  3vn 4E 0 3ui 4E 4
488 Chapter 6 Vector Spaces
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Section 6.3 Change of Basis 489

In Exercises 1–4:
(a) Find the coordinate vectors and of x with
respect to the bases B and C, respectively.
(b) Find the change-of-basis matrix from B to C.
(c) Use your answer to part (b) to compute and
compare your answer with the one found in part (a).
(d) Find the change-of-basis matrix from C to B.
(e) Use your answers to parts (c) and (d) to compute 
and compare your answer with the one found in part (a).

1.

2.

3.

4.

In Exercises 5–8, follow the instructions for Exercises 1–4
using p(x) instead of x.

5.

6. B�
C�

7. B�
C�

8. B�
C� 51, x, 1 � x � x 26 in �2

51 � x, 1 � x 2, x � x 26,p 1x 2 � 2 � x � 3x 2,

in �251, x, x 26 51 � x � x 2, x � x 2, x 26,p 1x 2 � 1 � x 2,

52x, 36 in �1

51 � x, 1 � x6,p 1x 2 � 3 � 2x,

p 1x 2 � 2 � x, B � 51, x6, C � 5x, 1 � x6 in �1

C � • £ 11
0

§ , £ 01
1

§ , £ 10
1

§ ¶  in �3

x � £ 12
3

§ , B � • £ 01
0

§ , £ 00
1

§ , £ 10
0

§ ¶ ,

C � • £11
1

§ , £01
1

§ , £00
1

§ ¶  in �3

x � £ 1

0

�1

§ , B � • £ 10
0

§ , £ 01
0

§ , £ 00
1

§ ¶ ,

C � e c 1

�1
d , c 0

1
d f  in �2

x � c 3

�4
d , B � e c 1

0
d , c 1

1
d f ,

C � e c1
1
d , c 1

�1
d f  in �2

x � c2
3
d ,B � e c1

0
d , c0

1
d f ,

3x 4B,PBdC

3x 4C,PCdB

3x 4C3x 4B In Exercises 9 and 10, follow the instructions for 
Exercises 1–4 using A instead of x.

9. B� the standard basis,

C�

10.

In Exercises 11 and 12, follow the instructions for
Exercises 1–4 using f(x) instead of x.

11. B�
in span(sin x, cos x)

12. B�
C� in span(sin x, cos x)

13. Rotate the xy-axes in the plane counterclockwise
through an angle u� 60° to obtain new x�y�-axes.
Use the methods of this section to find (a) the 
x�y�-coordinates of the point whose xy-coordinates
are (3, 2) and (b) the xy-coordinates of the point
whose x�y�-coordinates are (4, �4).

14. Repeat Exercise 13 with u� 135°.

15. Let B and C be bases for �2. If and

the change-of-basis matrix from B to C is

find B.

16. Let B and C be bases for �2. If B�
and the change-of-basis matrix

from B to C is

find C.

PCdB � £ 1 0 0

0 2 1

�1 1 1

§
1 � x � x26 5x, 1 � x,

PCdB � c 1 �1

�1 2
d

C � e c1
2
d , c2

3
d f

sin x � cos x65sin x � cos x,
5sin x, sin x � cos x6,f 1x 2 � cos x,

C � 5sin x � cos x, sin x � cos x65sin x � cos x, cos x6,f 1x 2 � 2 sin x � 3 cos x,

C � e c 1 0

0 1
d , c 1 1

0 0
d , c 1 0

1 0
d , c 0 1

1 0
d f  in M22

B � e c 1 1

0 1
d , c 0 1

1 1
d , c 1 0

1 1
d , c 1 1

1 0
d f ,

A � c 1 1

1 1
d ,

e c1 2

0 �1
d , c2 1

1 0
d , c1 1

0 1
d , c1 0

0 1
d f  in M22

A � c4 2

0 �1
d ,

Exercises 6. 3
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490 Chapter 6 Vector Spaces

Example 6. 49

In calculus, you learn that a Taylor polynomial of degree n
about a is a polynomial of the form

where an 0. In other words, it is a polynomial that has
been expanded in terms of powers of x � a instead of powers
of x. Taylor polynomials are very useful for approximating
functions that are “well behaved” near x � a.

The set is a basis for
�n for any real number a. (Do you see a quick way to show
this? Try using Theorem 6.7.) This fact allows us to use the
techniques of this section to rewrite a polynomial as a Taylor
polynomial about a given a.

17. Express p(x) � 1 � 2x � 5x2 as a Taylor polynomial
about a � 1.

B � 51, x � a, 1x � a 22, . . . , 1x � a 2n6


p 1x 2 � a0 � a11x � a 2 � a21x � a 22 � p � an1x � a 2n
18. Express p(x) � 1 � 2x � 5x2 as a Taylor polynomial

about a � �2.

19. Express p(x) � x3 as a Taylor polynomial about a � �1.

20. Express p(x) � x3 as a Taylor polynomial about 

21. Let B, C, and D be bases for a finite-dimensional vec-
tor space V. Prove that

22. Let V be an n-dimensional vector space with basis
Let P be an invertible n � n matrix

and set

for i � 1, . . . , n. Prove that is a basis
for V and show that P � PBdC.

C � 5u1, . . . , un6ui � p1iv1 � p � pnivn

B � 5v1, . . . , vn6.
PDdCPCdB � PDdB

a � 1
2 .

Linear Transformations
We encountered linear transformations in Section 3.6 in the context of matrix trans-
formations from �n to �m. In this section, we extend this concept to linear transfor-
mations between arbitrary vector spaces.

Definition A linear transformation from a vector space V to a vector space W
is a mapping T : V S W such that, for all u and v in V and for all scalars c,

1. T(u � v) � T(u) � T(v)
2. T(cu) � cT(u)

It is straightforward to show that this definition is equivalent to the requirement
that T preserve all linear combinations. That is,

T : V S W is a linear transformation if and only if

for all v1, . . . , vk in V and scalars c1, . . . , ck .

Every matrix transformation is a linear transformation. That is, if A is an m � n
matrix, then the transformation TA : �n S �m defined by

is a linear transformation. This is a restatement of Theorem 3.30.

TA1x 2 � Ax  for x in �n

T 1c1v1 � c2v2 � p � ckvk 2 � c1T 1v1 2 � c2T 1v2 2 � p � ckT 1vk 2
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Section 6.4 Linear Transformations 491

Define T : Mnn S Mnn by T(A) � AT. Show that T is a linear transformation.

Solution We check that, for A and B in Mnn and scalars c,

and

Therefore, T is a linear transformation.

Let D be the differential operator defined by D( f ) � f �. Show that D is a
linear transformation.

Solution Let f and g be differentiable functions and let c be a scalar. Then, from
calculus, we know that

and

Hence, D is a linear transformation.

In calculus, you learn that every continuous function on [a, b] is integrable. The
next example shows that integration is a linear transformation.

Define S : by Show that S is a linear transformation.

Solution Let f and g be in �[a, b]. Then

and

It follows that S is linear.

� cS1 f 2� c
b

a

f 1x 2 dx

� 
b

a

cf 1x 2 dx

S1cf 2 � 
b

a

1cf 2 1x 2 dx

� S1 f 2 � S1g 2� 
b

a

f 1x 2 dx � 
b

a

g 1x 2 dx

� 
b

a

1f 1x 2 � g 1x 2 2 dx

S1 f � g 2 � 
b

a

1 f � g 2 1x 2 dx

S1f 2 � �b
a

f 1x 2dx.�3a, b 4 S �

D 1cf 2 � 1cf 2 ¿ � cf ¿ � cD 1 f 2D 1 f � g 2 � 1 f � g 2 ¿ � f ¿ � g¿ � D 1 f 2 � D 1g 2
D : � S �

T 1cA 2 � 1cA 2T � cAT � cT 1A 2T 1A � B 2 � 1A � B 2T � AT � BT � T 1A 2 � T 1B 2
Example 6. 50

Example 6. 51dy
dx

Example 6. 52dy
dx
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492 Chapter 6 Vector Spaces

Show that none of the following transformations is linear:

(a) T : M22 S � defined by T(A) � det A

(b) T : � S � defined by T(x) � 2x

(c) T : � S � defined by T(x) � x � 1

Solution In each case, we give a specific counterexample to show that one of the
properties of a linear transformation fails to hold.

(a) Let so

But

so T(A � B) T(A) � T(B) and T is not linear.

(b) Let x � 1 and y � 2. Then

so T is not linear.

(c) Let x � 1 and y � 2. Then

Therefore, T is not linear.

Remark Example 6.53(c) shows that you need to be careful when you encounter
the word “linear.” As a function, T(x) � x � 1 is linear, since its graph is a straight line.
However, it is not a linear transformation from the vector space � to itself, since it
fails to satisfy the definition. (Which linear functions from � to � will also be linear
transformations?)

There are two special linear transformations that deserve to be singled out.

(a) For any vector spaces V and W, the transformation T0 : V S W that maps every
vector in V to the zero vector in W is called the zero transformation. That is,

(b) For any vector space V, the transformation I : V S V that maps every vector in V
to itself is called the identity transformation. That is,

(If it is important to identify the vector space V, we may write IV for clarity.) The
proofs that the zero and identity transformations are linear are left as easy exercises.

I 1v 2 � v  for all v in V

T01v 2 � 0  for all v in V

T 1x � y 2 � T 13 2 � 3 � 1 � 4  5 � 11 � 1 2 � 12 � 1 2 � T 1x 2 � T 1y 2
T 1x � y 2 � T 13 2 � 23 � 8  6 � 21 � 22 � T 1x 2 � T 1y 2


T 1A 2 � T 1B 2 � detA � detB � 2 1 0

0 0
2 � 2 0 0

0 1
2 � 0 � 0 � 0

T 1A � B 2 � det 1A � B 2 � 2 1 0

0 1
2 � 1

A � c1 0

0 0
d  and B � c0 0

0 1
d . Then A � B � c1 0

0 1
d ,

Example 6. 54

Example 6. 53

�

�
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Section 6.4 Linear Transformations 493

Theorem 6. 14

Properties of Linear Transformations

In Chapter 3, all linear transformations were matrix transformations, and their 
properties were directly related to properties of the matrices involved. The follow-
ing theorem is easy to prove for matrix transformations. (Do it!) The full proof
for linear transformations in general takes a bit more care, but it is still straight-
forward.

Let T : V S W be a linear transformation. Then:

a. T(0) � 0
b. T(�v) � �T(v) for all v in V.
c. T(u � v) � T(u) � T(v) for all u and v in V.

Proof We prove properties (a) and (c) and leave the proof of property (b) for
Exercise 21.

(a) Let v be any vector in V. Then T(0) � T(0v) � 0T(v) � 0, as required. (Can you
give a reason for each step?)

(c) T(u � v) � T(u � (�1)v) � T(u) � (�1)T(v) � T(u) � T(v)

Remark Property (a) can be useful in showing that certain transformations are
not linear. As an illustration, consider Example 6.53(b). If T(x) � 2x, then T(0) � 20 �
1 0, so T is not linear, by Theorem 6.14(a). Be warned, however, that there are lots
of transformations that do map the zero vector to the zero vector but that are still not
linear. Example 6.53(a) is a case in point: The zero vector is the 2 � 2 zero matrix O,
so T(O) � det O � 0, but we have seen that T(A) � det A is not linear.

The most important property of a linear transformation T : V S W is that T is
completely determined by its effect on a basis for V. The next example shows what
this means.

Suppose T is a linear transformation from �2 to �2 such that

Find and 

Solution Since is a basis for �2 (why?), every vector in �2 is in

span(B). Solving

c1 c11 d � c2 c23 d � c�1

2
d

B � e c1
1
d , c2

3
d f

T c a
b
d .T c�1

2
d

T c 1
1
d � 2 � 3x � x2  and  T c 2

3
d � 1 � x 2
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494 Chapter 6 Vector Spaces

Theorem 6. 15

we find that c1 � �7 and c2 � 3. Therefore,

Similarly, we discover that

so

(Note that by setting a � �1 and b � 2, we recover the solution �11 �

21x � 10x 2.)

The proof of the general theorem is quite straightforward.

Let T : V S W be a linear transformation and let be a spanning
set for V. Then spans the range of T.

Proof The range of T is the set of all vectors in W that are of the form T(v), where v
is in V. Let T(v) be in the range of T. Since B spans V, there are scalars c1, . . . , cn

such that

Applying T and using the fact that it is a linear transformation, we see that

In other words, T(v) is in span(T(B)), as required.

Theorem 6.15 applies, in particular, when B is a basis for V. You might guess that,
in this case, T(B) would then be a basis for the range of T. Unfortunately, this is not
always the case. We will address this issue in Section 6.5.

Composition of Linear Transformations

In Section 3.6, we defined the composition of matrix transformations. The definition
extends to general linear transformations in an obvious way.

T 1v 2 � T 1c1v1 � p � cnvn 2 � c1T 1v1 2 � p � cnT 1vn 2
v � c1v1 � p � cnvn

T 1B2 � 5T 1v1 2 , . . . , T 1vn 2 6 B � 5v1, . . . , vn6

T c�1

2
d �

� 15a � 3b 2 � 1�9a � 6b 2x � 14a � 3b 2x 2

� 13a � 2b 2 12 � 3x � x 2 2 � 1b � a 2 11 � x 2 2� 13a � 2b 2T c 1
1
d � 1b � a 2T c 2

3
d

T c a
b
d � T a 13a � 2b 2 c 1

1
d � 1b � a 2 c 2

3
d b

ca
b
d � 13a � 2b 2 c1

1
d � 1b � a 2 c2

3
d

� �11 � 21x � 10x 2

� �712 � 3x � x 2 2 � 311 � x 2 2� �7T c 1
1
d � 3T c 2

3
d

T c�1

2
d � T a�7 c 1

1
d � 3 c 2

3
d b

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 6.4 Linear Transformations 495

Definition If T : U S V and S : V S W are linear transformations, then the
composition of S with T is the mapping , defined by

where u is in U.

Observe that is a mapping from U to W (see Figure 6.6). Notice also that for
the definition to make sense, the range of T must be contained in the domain of S.

S � T

1S � T 2 1u 2 � S1T 1u 2 2S � T

S(T (u)) � (S � T )(u)

S � T

T (u)
u

T S
U V W

Figure 6. 6
Composition of linear transformations

is read “S of T.”S � T

Theorem 6. 16

Let and be the linear transformations defined by

Find and 

Solution We compute

and

Chapter 3 showed that the composition of two matrix transformations was
another matrix transformation. In general, we have the following theorem.

If T : U S V and S : V S W are linear transformations, then W is a
linear transformation.

S � T : U S

� ax � 1a � b 2x2

1S � T 2 c a
b
d � S aT c a

b
d b � S1a � 1a � b 2x 2 � x 1a � 1a � b 2x 2

� 3x � x 2

1S � T 2 c 3

�2
d � S aT c 3

�2
d b � S13 � 13 � 2 2x 2 � S13 � x 2 � x 13 � x 2

1S � T 2 c a
b
d .1S � T 2 c 3

�2
d

T ca
b
d � a � 1a � b 2x  and  S1p 1x 2 2 � xp 1x 2S : �1 S �2T : �2 S �1Example 6. 56
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496 Chapter 6 Vector Spaces

Proof Let u and v be in U and let c be a scalar. Then

since T is linear

since S is linear

and

since T is linear

since S is linear

Therefore, is a linear transformation.

The algebraic properties of linear transformations mirror those of matrix trans-
formations, which, in turn, are related to the algebraic properties of matrices. For
example, composition of linear transformations is associative. That is, if R, S, and T
are linear transformations, then

provided these compositions make sense. The proof of this property is identical to
that given in Section 3.6.

The next example gives another useful (but not surprising) property of linear
transformations.

Let S : U S V and T : V S W be linear transformations and let I : V S V be the iden-
tity transformation. Then for every v in V, we have

Since and T have the same value at every v in their domain, it follows that 
� T. Similarly, � S.

Remark The method of Example 6.57 is worth noting. Suppose we want to show
that two linear transformations T1 and T2 (both from V to W ) are equal. It suffices to
show that T1(v) � T2(v) for every v in V.

Further properties of linear transformations are explored in the exercises.

Inverses of Linear Transformations

Definition A linear transformation T : V S W is invertible if there is a linear
transformation T� : W S V such that

In this case, T� is called an inverse for T.

T ¿ � T � IV  and  T � T ¿ � IW

I � ST � I
T � I

1T � I 2 1v 2 � T 1I1v 2 2 � T 1v 2

R � 1S � T 2 � 1R � S 2 � T

S � T

� c 1S � T 2 1u 2� cS 1T 1u 2 2� S1cT 1u 2 21S � T 2 1cu 2 � S1T 1cu 2 2
� 1S � T 2 1u 2 � 1S � T 2 1v 2� S1T1u 2 2 � S1T1v 2 2� S1T1u 2 � T1v 2 21S � T 2 1u � v 2 � S 1T 1u � v 2 2

Example 6. 57
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Theorem 6. 17

Remarks
• The domain V and codomain W of T do not have to be the same, as they do

in the case of invertible matrix transformations. However, we will see in the next sec-
tion that V and W must be very closely related.

• The requirement that T� be linear could have been omitted from this defini-
tion. For, as we will see in Theorem 6.24, if T� is any mapping from W to V such that
T� � T � IV and T � T� � IW , then T� is forced to be linear as well.

• If T� is an inverse for T, then the definition implies that T is an inverse for T�.
Hence, T� is invertible too.

Verify that the mappings and defined by

are inverses.

Solution We compute

and

Hence, T � � T � and Therefore, T and T� are inverses of each
other.

As was the case for invertible matrices, inverses of linear transformations are
unique if they exist. The following theorem is the analogue of Theorem 3.6.

If T is an invertible linear transformation, then its inverse is unique.

Proof The proof is the same as that of Theorem 3.6, with products of matrices re-
placed by compositions of linear transformations. (You are asked to complete this
proof in Exercise 31.)

Thanks to Theorem 6.17, if T is invertible, we can refer to the inverse of T. It will
be denoted by T �1 (pronounced “T inverse”). In the next two sections, we will address
the issue of determining when a given linear transformation is invertible and finding
its inverse when it exists.

T � T ¿ � I�1
.I�2

1T � T ¿ 2 1c � dx 2 � T 1T ¿ 1c � dx 2 2 � T c c

d � c
d � c � 1c � 1d � c 2 2x � c � dx

1T ¿ � T 2 c a
b
d � T ¿ aT c a

b
d b � T ¿ 1a � 1a � b 2x 2 � c a1a � b 2 � a

d � c a
b
d

T c a
b
d � a � 1a � b 2x  and  T ¿ 1c � dx 2 � c c

d � c
d

T ¿ : �1 S �2T : �2 S �1Example 6. 58
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498 Chapter 6 Vector Spaces

In Exercises 1–12, determine whether T is a linear
transformation.

1. defined by

2. defined by

3. defined by where B is a
fixed n � n matrix

4. defined by where B
is a fixed n � n matrix

5. defined by 

6. defined by 

7. defined by 

8. defined by T(a � bx � cx 2) � (a � 1) �
(b � 1)x � (c � 1)x 2

9. defined by T(a � bx � cx 2) � a �
b(x � 1) � b(x � 1) 2

10. defined by 

11. defined by 

12. defined by where c is a fixed
scalar

13. Show that the transformations S and T in Exam-
ple 6.56 are both linear.

14. Let be a linear transformation for which

Find and 

15. Let be a linear transformation for which

Find and T c a
b
d .T c�7

9
d

T c 1
1
d � 1 � 2x  and  T c 3

�1
d � x � 2x2

T : �2 S �2

T c a
b
d .T c 5

2
d

T c 1
0
d � £ 12

3

§   and  T c 0
1
d � £�1

1

0

§
T : �2 S �3

T 1 f 2 � f 1c 2 ,T : � S �

T 1 f 2 � 1 f 1x 2 2 2T : � S �

T 1 f 2 � f 1x 2 2T : � S �

T : �2 S �2

T : �2 S �2

T 1A 2 � rank 1A 2T : Mnn S �

T 1A 2 � a11a22
p annT : Mnn S �

T 1A 2 � tr1A 2T : Mnn S �

T 1A 2 � AB � BA,T : Mnn S Mnn

T 1A 2 � AB,T : Mnn S Mnn

T cw x

y z
d � cw � x 1

0 y � z
dT : M22 S M22

T ca b

c d
d � ca � b 0

0 c � d
dT : M22 S M22

16. Let be a linear transformation for which

Find and 

17. Let be a linear transformation for which

Find and 

18. Let be a linear transformation for which

Find and 

19. Let be a linear transformation. Show that
there are scalars a, b, c, and d such that

for all in 

20. Show that there is no linear transformation
such that

21. Prove Theorem 6.14(b).

22. Let be a basis for a vector space V and
let be a linear transformation. Prove that if
T(v1) � v1, T(v2) � v2 then T is the
identity transformation on V.

23. Let be a linear transformation such that
for Show that T must

be the differential operator D.
k � 0, 1, . . . , n.T 1xk 2 � kxk�1

T : �n S �n

 . . . , T 1vn 2 � vn,
T  : VS V
5v1, . . . , vn6

T £ 0

6

�8

§ � �2 � 2x 2

T £ 21
0

§ � 1 � x,  T £ 30
2

§ � 2 � x � x 2,

T  : �3 Sp2

M22.cw x

y z
d

T cw x

y z
d � aw � bx � cy � dz

T : M22 S �

T c a b

c d
d .T c 1 3

4 2
d

T c 1 1

1 0
d � 3,  T c 1 1

1 1
d � 4

T c 1 0

0 0
d � 1,  T c 1 1

0 0
d � 2,

T : M22 S �

T 1a � bx � cx 2 2 .T 14 � x � 3x 2 2T 11 � x 2 2 � 1 � x � x 2

T 11 � x 2 � 1 � x 2,  T 1x � x 2 2 � x � x 2,

T : �2 S �2

T 1a � bx � cx 2 2 .T14 � x � 3x2 2T 11 2 � 1 � x, T 1x 2 � 3 � 2x, and T1x2 2 � 4 � 3x

T : �2 S �1

dy
dx

Exercises 6. 4
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Section 6.5 The Kernel and Range of a Linear Transformation 499

24. Let be vectors in a vector space V and let
be a linear transformation.

(a) If is linearly independent in W,
show that is linearly independent in V.

(b) Show that the converse of part (a) is false.
That is, it is not necessarily true that if

is linearly independent in V, then
is linearly independent in W.

Illustrate this with an example 

25. Define linear transformations S : �2 S M22 and
T : �2 S �2 by

Compute and Can you 

compute ? If so, compute it.

26. Define linear transformations S : �1 S �2 and
T : �2 S �1 by

and

Compute and
Can you compute

? If so, compute it.

27. Define linear transformations S : �n S �n and
T : �n S �n by

Find and [Hint: Remem-
ber the Chain Rule.]

28. Define linear transformations S : �n S �n and
T : �n S �n by

Find and 1T � S 2 1p1x 2 2 .1S � T 2 1p1x 2 2S1p 1x 2 2 � p 1x � 1 2   and  T 1p1x 2 2 � xp¿ 1x 2
1T � S 2 1p1x 2 2 .1S � T 2 1p1x 2 2S1p1x 2 2 � p1x � 1 2   and  T 1p1x 2 2 � p¿ 1x 2

1T � S 2 1a � bx 21S � T 2 1a � bx � cx2 2 .1S � T 2 13 � 2x � x2 2T 1a � bx � cx 2 2 � b � 2cx

S1a � bx 2 � a � 1a � b 2x � 2bx 2

1T � S 2 cx
y
d

1S � T 2 cx
y
d .1S � T 2 c2

1
d

S c a
b
d � c a � b b

0 a � b
d   and  T c c

d
d � c 2c � d

�d
d

T : �2 S �2.
5T 1v1 2 , . . . , T 1vn 2 65v1, . . . , vn6

5v1, . . . , vn65T 1v1 2 , . . . , T 1vn 2 6T : V S W
v1, . . . , vn

dy
dx

dy
dx

In Exercises 29 and 30, verify that S and T are inverses.

29. S : �2 S �2 defined by � and T : �2 S �2

defined by 

30. S : �1 S �1 defined by 
and T : �1 S �1 defined by 

31. Prove Theorem 6.17.

32. Let be a linear transformation such that

(a) Show that is linearly dependent if and
only if �v.

(b) Give an example of such a linear transformation
with 

33. Let be a linear transformation such that

(a) Show that is linearly dependent if and
only if or 

(b) Give an example of such a linear transformation
with 

The set of all linear transformations from a vector space V
to a vector space W is denoted by 	(V, W ). If S and T are
in 	(V, W ), we can define the sum of S and T by

for all v in V. If c is a scalar, we define the scalar multiple cT
of T by c to be

for all v in V. Then and cT are both transformations
from V to W.

34. Prove that and cT are linear transformations.

35. Prove that 	(V, W ) is a vector space with this addi-
tion and scalar multiplication.

36. Let R, S, and T be linear transformations such that the
following operations make sense. Prove that:

(a)
(b) for any scalar cc 1R � S 2 � 1cR 2 � S � R � 1cS 2R � 1S � T 2 � R � S � R � T

S � T

S � T

1cT 2 1v 2 � cT 1v 2
1S � T 2 1v 2 � S 1v 2 � T 1v 2S � T

V � �2.

T 1v 2 � 0.T 1v 2 � v
5v, T 1v 2 6T � T � T.

T : V S V

V � �2.

T 1v 2 �
5v, T 1v 2 6T � T � I.

T : V S V

T 1a � bx 2 � b>2 � 1a � 2b 2x
1�4a � b 2 � 2axS1a � bx 2 �T c x

y
d � c x � y

�3x � 4y
d
c4x � y

3x � y
dS cx

y
d

The Kernel and Range of a Linear Transformation
The null space and column space are two of the fundamental subspaces associated
with a matrix. In this section, we extend these notions to the kernel and range of a
linear transformation.
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500 Chapter 6 Vector Spaces

The word kernel is derived from
the Old English word cyrnel, a
form of the word corn, meaning
“seed” or “grain.” Like a kernel of
corn, the kernel of a linear trans-
formation is its “core” or “seed” in
the sense that it carries informa-
tion about many of the important
properties of the transformation.

Example 6. 59

Example 6. 60

Definition Let T : V S W be a linear transformation. The kernel of T, de-
noted ker(T), is the set of all vectors in V that are mapped by T to 0 in W. That is,

The range of T, denoted range(T), is the set of all vectors in W that are images of
vectors in V under T. That is,

Let A be an m � n matrix and let T � TA be the corresponding matrix transformation
from �n to �m defined by T(v) � Av. Then, as we saw in Chapter 3, the range of T is
the column space of A.

The kernel of T is

In words, the kernel of a matrix transformation is just the null space of the corre-
sponding matrix.

Find the kernel and range of the differential operator D : �3 S �2 defined by
D(p(x)) � p�(x).

Solution Since D(a � bx � cx 2 � dx 3) � b � 2cx � 3dx 2, we have

But b � 2cx � 3dx 2 � 0 if and only if b � 2c � 3d � 0, which implies that b � c �
d � 0. Therefore,

In other words, the kernel of D is the set of constant polynomials.
The range of D is all of �2, since every polynomial in �2 is the image under D (i.e.,

the derivative) of some polynomial in �3. To be specific, if a � bx � cx 2 is in �2, then

a � bx � cx 2 � D aax � a b

2
bx 2 � a c

3
bx 3b

� 5a : a in �6 ker1D 2 � 5a � bx � cx 2 � dx 3 : b � c � d � 06
� 5a � bx � cx 2 � dx 3 : b � 2cx � 3dx 2 � 06 ker1D 2 � 5a � bx � cx 2 � dx 3 : D1a � bx � cx 2 � dx 3 2 � 06

� null1A 2� 5v in �n : Av � 06 ker1T 2 � 5v in �n : T 1v 2 � 06

� 5w in W : w � T 1v 2  for some v in V6 range1T 2 � 5T 1v 2  : v in V6
ker1T 2 � 5v in V : T 1v 2 � 06

dy
dx
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Section 6.5 The Kernel and Range of a Linear Transformation 501

Let be the linear transformation defined by

Find the kernel and range of S.

Solution In detail, we have

Therefore,

Geometrically, ker(S) consists of all those linear polynomials whose graphs have the
property that the area between the line and the x-axis is equally distributed above and
below the axis on the interval [0, 1] (see Figure 6.7).

The range of S is �, since every real number can be obtained as the image under
S of some polynomial in �1. For example, if a is an arbitrary real number, then

so a � S(a).

Let T : M22 S M22 be the linear transformation defined by taking transposes:
T(A) � AT. Find the kernel and range of T.

Solution We see that

But if AT � O, then A � (AT )T � OT � O. It follows that ker(T) � {O}.
Since, for any matrix A in M22, we have A � (AT )T � T(AT ) (and AT is in M22),

we deduce that range(T) � M22.

In all of these examples, the kernel and range of a linear transformation are sub-
spaces of the domain and codomain, respectively, of the transformation. Since we are
generalizing the null space and column space of a matrix, this is perhaps not surpris-
ing. Nevertheless, we should not take anything for granted, so we need to prove that
it is not a coincidence.

� 5A in M22 : A
T � O6 ker1T 2 � 5A in M22 : T 1A 2 � O6


1

0

a dx � 3ax 401 � a � 0 � a

� e�
b

2
� bxf� ea � bx : a � �

b

2
f� ea � bx : a �

b

2
� 0f ker1S 2 � 5a � bx : S1a � bx 2 � 06� a a �

b

2
b � 0 � a �

b

2

� c ax �
b

2
x 2 d

0

1

S1a � bx 2 � 
1

0

1a � bx 2 dx

S 1p 1x 2 2 � 
1

0

p 1x 2 dx

S : �1 S �Example 6. 61

x

y

q 1

b
2

b
2

�

Figure 6. 7

If

then 
1

0

y dx � 0

y � �
b

2
� bx,

Example 6. 62

dy
dx
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Theorem 6. 18

V

T W

ker(T )
range(T )

0
0

Figure 6. 8
The kernel and range of T : V S W

Example 6. 63

Let T : V S W be a linear transformation. Then:

a. The kernel of T is a subspace of V.
b. The range of T is a subspace of W.

Proof (a) Since T(0) � 0, the zero vector of V is in ker(T), so ker(T) is nonempty.
Let u and v be in ker(T) and let c be a scalar. Then T(u) � T(v) � 0, so

and

Therefore, u � v and cu are in ker(T), and ker(T) is a subspace of V.

(b) Since 0 � T(0), the zero vector of W is in range(T), so range(T) is nonempty.
Let T(u) and T(v) be in the range of T and let c be a scalar. Then T(u) � T(v) �
T(u � v) is the image of the vector u � v. Since u and v are in V, so is u � v, and
hence T(u) � T(v) is in range (T). Similarly, cT(u) � T(cu). Since u is in V, so is cu,
and hence cT(u) is in range(T). Therefore, range(T) is a nonempty subset of W that
is closed under addition and scalar multiplication, and thus it is a subspace of W.

Figure 6.8 gives a schematic representation of the kernel and range of a linear
transformation.

T 1cu 2 � cT 1u 2 � c0 � 0

T 1u � v 2 � T 1u 2 � T 1v 2 � 0 � 0 � 0

502 Chapter 6 Vector Spaces

In Chapter 3, we defined the rank of a matrix to be the dimension of its column
space and the nullity of a matrix to be the dimension of its null space. We now extend
these definitions to linear transformations.

Definition Let T : V S W be a linear transformation. The rank of T is the
dimension of the range of T and is denoted by rank(T). The nullity of T is
the dimension of the kernel of T and is denoted by nullity(T).

If A is a matrix and T � TA is the matrix transformation defined by T(v) � Av, then
the range and kernel of T are the column space and the null space of A, respectively,
by Example 6.59. Hence, from Section 3.5, we have

rank1T 2 � rank1A 2   and  nullity1T 2 � nullity1A 2
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Find the rank and the nullity of the linear transformation D : �3 S �2 defined by
D(p(x)) � p�(x).

Solution In Example 6.60, we computed range so

The kernel of D is the set of all constant polynomials: ker(D) � {a : a in �} � {a # 1 : a
in �}. Hence, {1} is a basis for ker(D), so

Find the rank and the nullity of the linear transformation defined by

Solution From Example 6.61, range(S) � � and rank(S) � dim � � 1. Also,

so is a basis for ker(S). Therefore, nullity(S) � dim(ker(S)) � 1.

Find the rank and the nullity of the linear transformation T : M22 S M22 defined by
T(A) � AT.

Solution In Example 6.62, we found that range(T) � M22 and ker(T) � {O}. Hence,

In Chapter 3, we saw that the rank and nullity of an m � n matrix A are related by
the formula rank(A) � nullity(A) � n. This is the Rank Theorem (Theorem 3.26).
Since the matrix transformation T � TA has �n as its domain, we could rewrite the
relationship as

This version of the Rank Theorem extends very nicely to general linear transforma-
tions, as you can see from the last three examples:

Example 6.64

Example 6.65

Example 6.66 rank1T 2 � nullity1T 2 � 4 � 0 � 4 � dim M22

rank1S 2 � nullity1S 2 � 1 � 1 � 2 � dim �1

rank1D 2 � nullity1D 2 � 3 � 1 � 4 � dim �3

rank1A2 � nullity1A2 �  dim �n

rank1T 2 � dim M22 � 4  and  nullity1T 2 � dim5O6 � 0

5�1
2 � x6 � span 1� 1

2 � x 2� 5b 1� 1
2 � x 2  : b in �6 ker1S 2 � e�

b

2
� bx : b in � f

S1p1x 2 2 � 
1

0

p 1x 2dx

S : �1 S �

nullity1D2 �  dim1ker1D2 2 � 1

rank1D2 �  dim �2 � 3

1D2 � �2,

Section 6.5 The Kernel and Range of a Linear Transformation 503

Example 6. 64

Example 6. 65

Example 6. 66

dy
dx

dy
dx
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Theorem 6. 19 The Rank Theorem

Let T : V S W be a linear transformation from a finite-dimensional vector space
V into a vector space W. Then

In the next section, you will see how to adapt the proof of Theorem 3.26 to prove
this version of the result. For now, we give an alternative proof that does not use
matrices.

Proof Let dim V � n and let {v1, . . . , vk} be a basis for ker(T)[so that nullity(T) �
dim(ker(T)) � k]. Since {v1, . . . , vk} is a linearly independent set, it can be extended
to a basis for V, by Theorem 6.28. Let be such a basis.
If we can show that the set C� {T(vk�1), . . . , T(vn)} is a basis for range(T), then we
will have rank(T) � dim(range(T)) � n � k and thus

as required.
Certainly C is contained in the range of T. To show that C spans the range of T, let

T(v) be a vector in the range of T. Then v is in V, and since B is a basis for V, we can
find scalars c1, . . . , cn such that

Since v1, . . . , vk are in the kernel of T, we have T(v1) T(vk) � 0, so

This shows that the range of T is spanned by C.
To show that C is linearly independent, suppose that there are scalars ck�1, . . . , cn

such that

Then T(ck�1vk�1 � p � cnvn) � 0, which means that ck�1vk�1 � p � cnvn is in the
kernel of T and is, hence, expressible as a linear combination of the basis vectors
v1, . . . , vk of ker(T)—say,

But now

and the linear independence of B forces c1 � p � cn � 0. In particular, ck�1 � p �
cn � 0, which means C is linearly independent.

We have shown that C is a basis for the range of T, so, by our comments above, the
proof is complete.

We have verified the Rank Theorem for Examples 6.64, 6.65, and 6.66. In practice,
this theorem allows us to find the rank and nullity of a linear transformation with
only half the work. The following examples illustrate the process.

c1v1 � p � ckvk � ck�1vk�1 � p � cnvn � 0

ck�1vk�1 � p � cnvn � c1v1 � p � ckvk

ck�1T 1vk�1 2 � p � cnT 1vn 2 � 0

� ck�1T 1vk�1 2 � p � cnT 1vn 2� c1T 1v1 2 � p � ckT 1vk 2 � ck�1T 1vk�1 2 � p � cnT 1vn 2T 1v 2 � T 1c1v1 � p � ckvk � ck�1vk�1 � p � cnvn 2� p �

v � c1v1 � p � ckvk � ck�1vk�1 � p � cnvn

rank1T 2 � nullity1T 2 � k � 1n � k 2 � n � dim V

B � 5v1, . . . , vk , vk�1, . . . , vn6

rank1T 2 � nullity1T 2 � dim V

504 Chapter 6 Vector Spaces
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Find the rank and nullity of the linear transformation T : �2 S �3 defined by
T(p(x)) � xp(x). (Check that T really is linear.)

Solution In detail, we have

It follows that

so we have nullity(T) � dim(ker(T)) � 0. The Rank Theorem implies that

Remark In Example 6.67, it would be just as easy to find the rank of T first, since
{x, x2, x3} is easily seen to be a basis for the range of T. Usually, though, one of the two
(the rank or the nullity of a linear transformation) will be easier to compute; the
Rank Theorem can then be used to find the other. With practice, you will become bet-
ter at knowing which way to proceed.

Let W be the vector space of all symmetric 2 � 2 matrices. Define a linear transfor-
mation �2 by

(Check that T is linear.) Find the rank and nullity of T.

Solution The nullity of T is easier to compute directly than the rank, so we proceed
as follows:

Therefore, is a basis for the kernel of T, so nullity(T) � dim(ker(T)) � 1.

The Rank Theorem and Example 6.42 tell us that rank(T) � dim W � nullity(T) �
3 � 1 � 2.

e c1 1

1 1
d f
� e c c c

c c
d f � span a c 1 1

1 1
d b

� e c a b

b c
d  : a � b � c f

� e c a b

b c
d  : 1a � b 2 � 1b � c 2 � 1c � a 2 � 0 f

� e c a b

b c
d  : 1a � b 2 � 1b � c 2x � 1c � a 2x2 � 0 f

 ker1T 2 � e c a b

b c
d  : T c a b

b c
d � 0 f

T c a b

b c
d � 1a � b 2 � 1b � c 2x � 1c � a 2x 2

T  : W S

rank1T 2 � dim �2 � nullity1T 2 � 3 � 0 � 3

� 506� 5a � bx � cx 2 : a � b � c � 06� 5a � bx � cx 2 : ax � bx 2 � cx 3 � 06 ker1T 2 � 5a � bx � cx 2 : T 1a � bx � cx 2 2 � 06
T 1a � bx � cx 2 2 � ax � bx 2 � cx 3
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T

(a) T is one-to-one
V W

T

(b) T is not one-to-one
V W

Figure 6. 9

One-to-One and Onto Linear Transformations

We now investigate criteria for a linear transformation to be invertible. The keys to
the discussion are the very important properties one-to-one and onto.

Definition A linear transformation T : V S W is called one-to-one if T maps
distinct vectors in V to distinct vectors in W. If range(T) � W, then T is called onto.

Remarks
• The definition of one-to-one may be written more formally as follows:

T : V S W is one-to-one if, for all u and v in V,

The above statement is equivalent to the following:

T : V S W is one-to-one if, for all u and v in V,

Figure 6.9 illustrates these two statements.

T 1u 2 � T 1v 2  implies that u � v

u  v implies that T 1u 2  T 1v 2

506 Chapter 6 Vector Spaces

• Another way to write the definition of onto is as follows:

T : V S W is onto if, for all w in W, there is at least one v in V such that

In other words, given w in W, does there exist some v in V such that w � T(v)? If, for
an arbitrary w, we can solve this equation for v, then T is onto (see Figure 6.10).

w � T 1v 2

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 6. 20

Which of the following linear transformations are one-to-one? onto?

(a) T : �2 S �3 defined by 

(b) D : �3 S �2 defined by D(p(x)) � p�(x)

(c) T : M22 S M22 defined by T(A) � AT

Solution (a) Let Then

so 2x1 � 2x2 and x1 � y1 � x2 � y2. Solving these equations, we see that x1 � x2 and

y1 � y2. Hence, so T is one-to-one.

T is not onto, since its range is not all of �3. To be specific, there is no vector

in �2 such that (Why not?)

(b) In Example 6.60, we showed that range(D) � �2, so D is onto. D is not one-to-
one, since distinct polynomials in �3 can have the same derivative. For example,
x 3 x3 � 1, but D(x3) � 3x2 � D(x3 � 1).

(c) Let A and B be in M22, with T(A) � T(B). Then AT � BT, so A � (AT )T �
(BT )T � B. Hence, T is one-to-one. In Example 6.62, we showed that range(T) � M22.
Hence, T is onto.

It turns out that there is a very simple criterion for determining whether a linear
transformation is one-to-one.

A linear transformation T : V S W is one-to-one if and only if ker(T) � {0}.



T c x
y
d � £ 00

1

§ .cx
y
d

cx1

y1

d � cx2

y2

d ,
£ 2x1

x1 � y1

0

§ � £ 2x2

x2 � y2

0

§
T c x1

y1

d � T c x2

y2

d .

T c x
y
d � £ 2x

x � y

0

§
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T

(a) T is onto
V W

range(T )

T

(b) T is not onto
V W

range(T )

Figure 6. 10

Example 6. 69
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Theorem 6. 21

Proof Assume that T is one-to-one. If v is in the kernel of T, then T(v) � 0. But
we also know that T(0) � 0, so T(v) � T(0). Since T is one-to-one, this implies that
v � 0, so the only vector in the kernel of T is the zero vector.

Conversely, assume that ker(T) � {0}. To show that T is one-to-one, let u and v
be in V with T(u) � T(v). Then T(u � v) � T(u) � T(v) � 0, which implies that
u � v is in the kernel of T. But ker(T) � {0}, so we must have u � v � 0 or, equiva-
lently, u � v. This proves that T is one-to-one.

Show that the linear transformation T : �2 S �1 defined by

is one-to-one and onto.

Solution If is in the kernel of T, then

It follows that a � 0 and a � b � 0. Hence, b � 0, and therefore Conse-

quently, and T is one-to-one, by Theorem 6.20.

By the Rank Theorem,

Therefore, the range of T is a two-dimensional subspace of �2, and hence
range(T) � �2. It follows that T is onto.

For linear transformations between two n-dimensional vector spaces, the proper-
ties of one-to-one and onto are closely related. Observe first that for a linear trans-
formation T : V S W, ker(T) � {0} if and only if nullity(T) � 0, and T is onto if and
only if rank(T) � dim W. (Why?) The proof of the next theorem essentially uses the
method of Example 6.70.

Let dim V � dim W � n. Then a linear transformation T : V S W is one-to-one
if and only if it is onto.

Proof Assume that T is one-to-one. Then nullity(T) � 0 by Theorem 6.20 and the
remark preceding Theorem 6.21. The Rank Theorem implies that

Therefore, T is onto.
Conversely, assume that T is onto. Then rank(T) � dim W � n. By the Rank

Theorem,

Hence, ker(T) � {0}, and T is one-to-one.

nullity1T 2 � dim V � rank1T 2 � n � n � 0

rank1T 2 � dim V � nullity1T 2 � n � 0 � n

rank1T 2 � dim �2 � nullity1T 2 � 2 � 0 � 2

ker1T2 � e c0
0
d f ,

ca
b
d � c0

0
d .

0 � T c a
b
d � a � 1a � b 2x

ca
b
d

T c a
b
d � a � 1a � b 2x
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Theorem 6. 24

Corollary 6. 23

Theorem 6. 22

Example 6. 71

In Section 6.4, we pointed out that if T : V S W is a linear transformation, then
the image of a basis for V under T need not be a basis for the range of T. We can now
give a condition that ensures that a basis for V will be mapped by T to a basis for W.

Let T : V S W be a one-to-one linear transformation. If S � {v1, . . . , vk} is a lin-
early independent set in V, then T(S) � {T(v1), . . . , T(vk)} is a linearly indepen-
dent set in W.

Proof Let c1, . . . , ck be scalars such that

Then T(c1v1 � � ckvk) � 0, which implies that c1v1 � � ckvk is in the kernel of
T. But, since T is one-to-one, ker(T) � {0}, by Theorem 6.20. Hence,

But, since {v1, . . . , vk} is linearly independent, all of the scalars ci must be 0. Therefore,
{T(v1), . . . , T(vk)} is linearly independent.

Let dim V � dim W � n. Then a one-to-one linear transformation T : V S W
maps a basis for V to a basis for W.

Proof Let be a basis for V. By Theorem 6.22, � {T(v1), . . . ,
is a linearly independent set in W, so we need only show that spans W.

But, by Theorem 6.15, spans the range of T. Moreover, T is onto, by Theo-
rem 6.21, so range(T) � W. Therefore, spans W, which completes the proof.

Let be the linear transformation from Example 6.70, defined by

Then, by Corollary 6.23, the standard basis for �2 is mapped to a basis
of �1. We find that

It follows that is a basis for �1.

We can now determine which linear transformations T : V S W are invertible.

A linear transformation T : V S W is invertible if and only if it is one-to-one
and onto.

51 � x, x6T 1e1 2 � T c 1
0
d � 1 � x  and  T 1e2 2 � T c 0

1
d � x

T 1E 2 � 5T 1e1 2 , T 1e2 2 6 E � 5e1, e26
T c a

b
d � a � 1a � b 2xT : �2 S �1

T 1B 2T 1B 2 T 1B 2T 1vn 2 6 T 1B 2B � 5v1, . . . , vn6

c1v1 � p � ckvk � 0

pp

c1T 1v1 2 � p � ckT 1vk 2 � 0
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Proof Assume that T is invertible. Then there exists a linear transformation T �1 :
W S V such that

To show that T is one-to-one, let v be in the kernel of T. Then T(v) � 0. Therefore,

which establishes that ker(T) � Therefore, T is one-to-one, by Theorem 6.20.
To show that T is onto, let w be in W and let v � T �1(w). Then

which shows that w is the image of v under T. Since v is in V, this shows that T is onto.
Conversely, assume that T is one-to-one and onto. This means that nullity(T) � 0

and rank(T) � dim W. We need to show that there exists a linear transformation
T � : W S V such that T� � T � IV and T � T� � IW.

Let w be in W. Since T is onto, there exists some vector v in V such that T(v) � w.
There is only one such vector v, since, if v� is another vector in V such that T(v�) � w,
then T(v) � T(v�); the fact that T is one-to-one then implies that v � v�. It therefore
makes sense to define a mapping T� : W S V by setting T�(w) � v.

It follows that

and

It then follows that T� � T � IV and T � T� � IW. Now we must show that T� is a linear
transformation.

To this end, let w1 and w2 be in W and let c1 and c2 be scalars. As above, let
T(v1) � w1 and T(v2) � w2. Then v1 � T�(w1) and v2 � T�(w2) and

Consequently, T� is linear, so, by Theorem 6.17, T� � T �1.

� c1T ¿ 1w1 2 � c2T ¿ 1w2 2� c1v1 � c2v2

� I 1c1v1 � c2v2 2� T ¿ 1T 1c1v1 � c2v2 2 2T ¿ 1c1w1 � c2w2 2 � T ¿ 1c1T 1v1 2 � c2T 1v2 2 2

1T � T ¿ 2 1w 2 � T 1T ¿ 1w 2 2 � T 1v 2 � w

1T ¿ � T 2 1v 2 � T ¿ 1T 1v 2 2 � T ¿ 1w 2 � v

� w

� I 1w 2� 1T � T�1 2 1w 2T 1v 2 � T 1T �11w 2 2
506. 1 v � 0

1 I 1v 2 � 0

T�11T 1v 2 2 � T�110 2 1 1T �1 � T 2 1v 2 � 0

T �1 � T � IV   and  T � T �1 � IW
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Isomorphisms of Vector Spaces

We now are in a position to describe, in concrete terms, what it means for two vector
spaces to be “essentially the same.”

Definition A linear transformation T : V S W is called an isomorphism if it
is one-to-one and onto. If V and W are two vector spaces such that there is an iso-
morphism from V to W, then we say that V is isomorphic to W and write V � W.

Show that and �n are isomorphic.

Solution The process of forming the coordinate vector of a polynomial provides us
with one possible isomorphism (as we observed already in Section 6.2, although
we did not use the term isomorphism there). Specifically, define T : by
T(p(x)) � where is the standard basis for . That is,

Theorem 6.6 shows that T is a linear transformation. If p(x) � a0 � a1x � �
an�1x

n�1 is in the kernel of T, then

Hence, a0 � a1 � p � an�1 � 0, so p(x) � 0. Therefore, ker(T) � {0}, and T is one-
to-one. Since dim is also onto, by Theorem 6.21. Thus, T is an
isomorphism, and 

Show that Mmn and �mn are isomorphic.

Solution Once again, the coordinate mapping from Mmn to �mn (as in Example 6.36)
is an isomorphism. The details of the proof are left as an exercise.

In fact, the easiest way to tell if two vector spaces are isomorphic is simply to
check their dimensions, as the next theorem shows.

�n�1 � �n.
�n�1 � dim �n � n, T

£ a0

o
an�1

§ � T 1a0 � a1x � p � an�1x
n�1 2 � £ 0o

0

§
p

T 1a0 � a1x � p � an�1x
n�1 2 � ≥ a0

a1

o
an�1

¥
�n�1E � 51, x, . . . , xn�163p1x 2 4E, S �n�n�1

�n�1
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Example 6. 72

Example 6. 73

The words isomorphism and
isomorphic are derived from the
Greek words isos, meaning “equal,”
and morph, meaning “shape.”
Thus, figuratively speaking,
isomorphic vector spaces have
“equal shapes.”
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Theorem 6. 25 Let V and W be two finite-dimensional vector spaces (over the same field of scalars).
Then V is isomorphic to W if and only if dim V � dim W.

Proof Let n � dim V. If V is isomorphic to W, then there is an isomorphism 
T : V S W. Since T is one-to-one, nullity(T) � 0. The Rank Theorem then implies
that

Therefore, the range of T is an n-dimensional subspace of W. But, since T is onto,
W � range(T), so dim W � n, as we wished to show.

Conversely, assume that V and W have the same dimension, n. Let B �
be a basis for V and let C� {w1, . . . , wn} be a basis for W. We will define

a linear transformation T : V S W and then show that T is one-to-one and onto. An
arbitrary vector v in V can be written uniquely as a linear combination of the vectors
in the basis B—say,

We define T by

It is straightforward to check that T is linear. (Do so.) To see that T is one-to-one,
suppose v is in the kernel of T. Then

and the linear independence of C forces c1 � p � cn � 0. But then

so ker(T) � {0}, meaning that T is one-to-one. Since dim V � dim W, T is also onto,
by Theorem 6.21. Therefore, T is an isomorphism, and V W.

Show that �n and �n are not isomorphic.

Solution Since dim �n � n n � 1 � dim and �n are not isomorphic, by
Theorem 6.25.

Let W be the vector space of all symmetric 2 � 2 matrices. Show that W is isomorphic
to �3.

Solution In Example 6.42, we showed that dim W � 3. Hence, dim W � dim �3,
so W � �3, by Theorem 6.25. (There is an obvious candidate for an isomorphism 
T : W S �3. What is it?)

�n, �n

�

v � c1v1 � p � cnvn � 0

c1w1 � p � cnwn � T 1v 2 � 0

T 1v 2 � c1w1 � p � cnwn

v � c1v1 � p � cnvn

5v1, . . . , vn6
rank1T 2 � dim V � nullity1T 2 � n � 0 � n
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Remark Our examples have all been real vector spaces, but the theorems we have
proved are true for vector spaces over the complex numbers � or �p, where p is
prime. For example, the vector space M22(�2) of all 2 � 2 matrices with entries from
�2 has dimension 4 as a vector space over �2, and hence M22(�2) � �4

2.
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Exercises 6. 5

1. Let T : M22 S M22 be the linear transformation
defined by

(a) Which, if any, of the following matrices are in
ker(T)?

(i) (ii) (iii)

(b) Which, if any, of the matrices in part (a) are in
range(T)?

(c) Describe ker(T) and range(T).

2. Let be defined by 

(a) Which, if any, of the following matrices are in
ker(T)?

(i) (ii) (iii)

(b) Which, if any, of the following scalars are in
range(T)?

(i) 0 (ii) 5 (iii)

(c) Describe ker(T) and range(T).

3. Let be the linear transformation defined by

(a) Which, if any, of the following polynomials are in
ker(T)?
(i) (ii) (iii)

(b) Which, if any, of the following vectors are in
range(T)?

(i) (ii) (iii)

(c) Describe ker(T) and range(T).

4. Let T : �2 S �2 be the linear transformation defined
by T 1p1x 2 2 � xp¿ 1x 2 .

c0
1
dc1

0
dc0

0
d

1 � x � x 2x � x 21 � x

T 1a � bx � cx2 2 � c a � b

b � c
dT : �2 S �2

�22

c�1 2

0 1
dc 3 �2

2 1
dc 0 1

1 0
d

T 1A 2 � tr1A 2 .T : M22 S �

c3 0

0 �3
dc0 4

2 0
dc 1 2

�1 3
d
T c a b

c d
d � c a 0

0 d
d

dy
dx

(a) Which, if any, of the following polynomials are in
ker(T)?
(i) 2 (ii) (iii)

(b) Which, if any, of the polynomials in part (a) are in
range(T)?

(c) Describe ker(T) and range(T).

In Exercises 5–8, find bases for the kernel and range of the
linear transformations T in the indicated exercises. In each
case, state the nullity and rank of T and verify the Rank
Theorem.

5. Exercise 1 6. Exercise 2

7. Exercise 3 8. Exercise 4

In Exercises 9–14, find either the nullity or the rank of T and
then use the Rank Theorem to find the other.

9. defined by 

10. defined by 

11. defined by where 

B �

12. defined by where

13. defined by 

14. defined by 

In Exercises 15–20, determine whether the linear transfor-
mation T is (a) one-to-one and (b) onto.

15. defined by T c x
y
d � c 2x � y

x � 2y
dT : �2 S �2

T 1A 2 � A � ATT : M33 S M33

T 1p 1x 2 2 � p¿ 10 2T : �2 S �

B � c 1 �1

�1 1
d T1A2 � AB � BA,T : M22 S M22

c 1 �1

�1 1
d T 1A 2 � AB,T : M22 S M22

T 1p1x 2 2 � c p 10 2
p 11 2 dT : �2 S �2

T c a b

c d
d � c a � b

c � d
dT : M22 S �2

1 � xx 2

dy
dx
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16. defined by 

17. defined by 

18. defined by 

19. defined by 

20. defined by 

where W is the vector space of

all symmetric 2 � 2 matrices

In Exercises 21–26, determine whether V and W are 
isomorphic. If they are, give an explicit isomorphism

21. (diagonal 3 � 3 matrices),

22. (symmetric 3 � 3 matrices), (upper
triangular 3 � 3 matrices)

23. (symmetric 3 � 3 matrices), (skew-
symmetric 3 � 3 matrices)

24.

25.

26.

27. Show that T : �n S �n defined by T(p(x)) � p(x) �
p�(x) is an isomorphism.

28. Show that T : �n S �n defined by T(p(x)) � p(x � 2)
is an isomorphism.

29. Show that T : �n S �n defined by 
is an isomorphism.

30. (a) Show that �[0, 1] � �[2, 3]. [Hint: Define T :
�[0, 1] S �[2, 3] by letting T( f ) be the function
whose value at x is for x in
[2, 3].]

1T 1 f 2 2 1x 2 � f 1x � 2 2
T 1p1x 2 2 � xnp a 1

x
b

V � 5A in M22 : tr1A2 � 06, W � �2

V � �, W � �2

V � �2, W � 5p 1x 2  in �3 : p 10 2 � 06
W � Sœ

3V � S3

W � U3V � S3

W � �3V � D3

T : V S W.

c a � b � c b � 2c

b � 2c a � c
d ,

T £ ab
c

§ �T : �3 S W

T £ ab
c

§ � c a � b b � c

a � b b � c
dT : �3 S M22

T 1p 1x 2 2 � c p 10 2
p 11 2 dT : �2 S �2

T 1a �bx �cx2 2� £ 2a � b

a � b � 3c

c � a

§T : �2 S �3

T 1a �bx �cx2 2� £ a � b a � 2c

2a � c b � c
§

T : �2 S M22

dy
dx

a + bi

514 Chapter 6 Vector Spaces

(b) Show that �[0, 1] � �[a, a � 1] for all a.

31. Show that 

32. Show that for all and 

33. Let S : V S W and T : U S V be linear
transformations.

(a) Prove that if S and T are both one-to-one, so is

(b) Prove that if S and T are both onto, so is 

34. Let S : V S W and T : U S V be linear 
transformations.

(a) Prove that if is one-to-one, so is T.
(b) Prove that if is onto, so is S.

35. Let T : V S W be a linear transformation between two
finite-dimensional vector spaces.

(a) Prove that if dim then T cannot be
onto.

(b) Prove that if dim then T cannot be
one-to-one.

36. Let be distinct real numbers.
Define by

Prove that T is an isomorphism.

37. If V is a finite-dimensional vector space and T : V S V
is a linear transformation such that rank(T) �
rank(T 2), prove that range(T)� ker(T) � {0}. [Hint:
T 2 denotes . Use the Rank Theorem to help show
that the kernels of T and T 2 are the same.]

38. Let U and W be subspaces of a finite-dimensional
vector space V. Define T : U � W S V by T(u, w) �
u � w.

(a) Prove that T is a linear transformation.
(b) Show that range(T) � U � W.
(c) Show that ker(T) � U � W. [Hint: See Exercise 50

in Section 6.1.]
(d) Prove Grassmann’s Identity:

dim(U � W) � dimU � dimW � dim(U � W)

[Hint: Apply the Rank Theorem, using results
(a) and (b) and Exercise 43(b) in Section 6.2.]

T � T

T 1p 1x 2 2 � ≥ p 1a0 2
p 1a1 2

o
p 1an 2 ¥

T : �n S �n�1
n � 1a0, a1, . . . , an

V 7 dim W,

V 6 dim W,

S � T
S � T

S � T.
S � T.

c 6 d.a 6 b�3a, b 4 � �3c, d 4�30, 1 4 � �30, 2 4 .
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The Matrix of a Linear Transformation
Theorem 6.15 showed that a linear transformation T : V S W is completely deter-
mined by its effect on a spanning set for V. In particular, if we know how T acts on a
basis for V, then we can compute T(v) for any vector v in V. Example 6.55 illustrated
the process. We implicitly used this important property of linear transformations
in Theorem 3.31 to help us compute the standard matrix of a linear transformation
T : �n S �m. In this section, we will show that every linear transformation between
finite-dimensional vector spaces can be represented as a matrix transformation.

Suppose that V is an n-dimensional vector space, W is an m-dimensional vector
space, and T : V S W is a linear transformation. Let B and C be bases for V and W,
respectively. Then the coordinate vector mapping defines an isomor-
phism R : V S �n. At the same time, we have an isomorphism S : W S �m given by
S(w) � [w]C, which allows us to associate the image T(v) with the vector [T(v)]C in
�m. Figure 6.11 illustrates the relationships.

R1v 2 � 3v 4B

Section 6.6 The Matrix of a Linear Transformation 515

S � T � R
�1

R�1 R S

�n �m

v T (v)V
T

W

[v]B [T (v)]C

Figure 6. 11

Since R is an isomorphism, it is invertible, so we may form the composite mapping

which maps to [T(v)]C. Since this mapping goes from �n to �m, we know
from Chapter 3 that it is a matrix transformation. What, then, is the standard
matrix of S �T � R�1? We would like to find the m � n matrix A such that 

Or, since we require

It turns out to be surprisingly easy to find. The basic idea is that of Theorem 3.31. The
columns of A are the images of the standard basis vectors for �n under S � T � R�1.
But, if is a basis for V, then

d ith entry

� ei

� E0o1
o
0

U
R1vi 2 � 3vi 4BB � 5v1, . . . , vn6

A 3v 4B � 3T1v 2 4C1S � T � R�1 2 1 3v 4B 2 � 3T 1v 2 4C,1S � T � R�1 2 1 3v 4B 2 . A 3v 4B �

3v 4B S � T � R�1 : �n S �m

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 6. 26

so R�1(ei) � vi. Therefore, the ith column of the matrix A we seek is given by

which is the coordinate vector of T(vi) with respect to the basis C of W.
We summarize this discussion as a theorem.

Let V and W be two finite-dimensional vector spaces with bases B and C, respec-
tively, where If T : V S W is a linear transformation, then the 
m � n matrix A defined by

satisfies

for every vector v in V.

The matrix A in Theorem 6.26 is called the matrix of T with respect to the bases B
and C. The relationship is illustrated below. (Recall that TA denotes multiplication
by A.)

Remarks
• The matrix of a linear transformation T with respect to basesB and C is some-

times denoted by Note the direction of the arrow: right-to-left (not left-to-
right,as for T : V S W ).With this notation, the final equation in Theorem 6.26 becomes

Observe that the Bs in the subscripts appear side by side and appear to “cancel” each
other. In words, this equation says, “The matrix for T times the coordinate vector for
v gives the coordinate vector for T(v).”

In the special case where V � W and we write (instead of ).
Theorem 6.26 then states that

• The matrix of a linear transformation with respect to given bases is unique.
That is, for every vector v in V, there is only one matrix A with the property specified
by Theorem 6.26—namely,

(You are asked to prove this in Exercise 39.)

A 3v 4B � 3T 1v 2 4C
3T 4B 3v 4B � 3T 1v 2 4B

3T 4BdB3T 4BB � C,

3T 4CdB 3v 4B � 3T 1v 2 4C
3T 4CdB.

3v 4B ¡
TA

A 3v 4B � 3T 1v 2 4CT  T
v ¡

T

T 1v 2

A 3v 4B � 3T 1v 2 4C
A � 3 3T 1v1 2 4C  3T 1v2 2 4C  p  3T 1vn 2 4C 4

B � 5v1, . . . , vn6.

� 3T 1vi 2 4C� S 1T 1vi 2 21S � T � R�1 2 1ei 2 � S1T 1R�11ei 2 2 2
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• The diagram that follows Theorem 6.26 is sometimes called a commutative
diagram because we can start in the upper left-hand corner with the vector v and get
to [T(v)]C in the lower right-hand corner in two different, but equivalent, ways. If, as
before, we denote the coordinate mappings that map v to and w to [w]C by R and
S, respectively, then we can summarize this “commutativity” by

The reason for the term commutative becomes clearer when V � W and for
then R � S too, and we have

suggesting that the coordinate mapping R commutes with the linear transfor-
mation T (provided we use the matrix version of T—namely, —where it is
required).

• The matrix depends on the order of the vectors in the bases B and
C. Rearranging the vectors within either basis will affect the matrix [See
Example 6.77(b).]

Let T : �3 S �2 be the linear transformation defined by

and let and C� {e2, e1} be bases for and respectively. Find the

matrix of T with respect to B and C and verify Theorem 6.26 for 

Solution First, we compute

Next, we need their coordinate vectors with respect to C. Since

we have

Therefore, the matrix of T with respect to B and C is

� c 1 1 �3

1 �2 0
dA � 3T 4CdB � 3 3T 1e1 2 4C  3T 1e2 2 4C  3T 1e3 2 4C 4

3T 1e1 2 4C � c1
1
d ,  3T 1e2 2 4C � c 1

�2
d ,  3T 1e3 2 4C � c�3

0
d

c 1
1
d � e2 � e1, c�2

1
d � e2 � 2e1, c 0

�3
d � �3e2 � 0e1

T 1e1 2 � c1
1
d ,  T 1e2 2 � c�2

1
d ,  T 1e3 2 � c 0

�3
d

v � £ 1

3

�2

§ .�2,�3B � 5e1, e2, e36
T £xy

z

§ � c x � 2y

x � y � 3z
d

3T 4CdB.
3T 4CdB

TA � T3T4 B
R � T � TA � R

B � C,

S � T � TA � R

3v 4B
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To verify Theorem 6.26 for v, we first compute

Then

and

(Check these.)
Using all of these facts, we confirm that

Let D : �3 S �2 be the differential operator D( p(x)) � p�(x). Let 
and C� {1, x, x 2} be bases for �3 and �2, respectively.

(a) Find the matrix A of D with respect to B and C.

(b) Find the matrix A� of D with respect to and C, where 

(c) Using part (a), compute D(5 � x � 2x3) and D(a � bx � cx 2 � dx3) to verify
Theorem 6.26.

Solution First note that D(a � bx � cx2 � dx 3) � b � 2cx � 3dx 2. (See Exam-
ple 6.60.)

(a) Since the images of the basis B under D are D(1) � 0, D(x) � 1, D(x 2 ) � 2x, and
D(x 3 ) � 3x 2, their coordinate vectors with respect to C are

Consequently,

(b) Since the basis is just B in the reverse order, we see that

� £ 0 0 1 0

0 2 0 0

3 0 0 0

§
A¿ � 3D 4CdB¿ � 3 3D 1x3 2 4C  3D 1x2 2 4C  3D 1x 2 4C  3D 11 2 4C 4B¿

� £ 0 1 0 0

0 0 2 0

0 0 0 3

§
A � 3D 4CdB � 3 3D 11 2 4C  3D 1x 2 4C  3D 1x2 2 4C  3D 1x3 2 4C 4

3D 11 2 4C � £ 00
0

§ ,  3D 1x 2 4C � £ 10
0

§ ,  3D 1x 2 2 4C � £ 02
0

§ ,  3D 1x 3 2 4C � £ 00
3

§

B¿ � 5x3, x2, x, 16.B¿

B � 51, x, x2, x36
A 3v 4B � c1 1 �3

1 �2 0
d £ 1

3

�2

§ � c 10

�5
d � 3T1v 2 4C

3T 1v 2 4C � c�5

10
d
C

� c 10

�5
d

3v 4B � £ 1

3

�2

§
T 1v 2 � T £ 1

3

�2

§ � c�5

10
d
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(This shows that the order of the vectors in the bases B and C affects the matrix of a
transformation with respect to these bases.)

(c) First we compute D(5 � x � 2x3) � �1 � 6x2 directly, getting the coordinate
vector

On the other hand,

so

which agrees with Theorem 6.26. We leave proof of the general case as an exercise.

Since the linear transformation in Example 6.77 is easy to use directly, there is re-
ally no advantage to using the matrix of this transformation to do calculations. How-
ever, in other examples—especially large ones—the matrix approach may be simpler,
as it is very well-suited to computer implementation. Example 6.78 illustrates the
basic idea behind this indirect approach.

Let T : �2 S �2 be the linear transformation defined by

(a) Find the matrix of T with respect to 

(b) Compute T(3 � 2x � x 2 ) indirectly, using part (a).

Solution (a) We see that

so the coordinate vectors are

Therefore,

3T 4E � 3 3T 11 2 4E  3T 1x 2 4E  3T 1x2 2 4E 4 � £1 �1 1

0 2 �4

0 0 4

§
3T 11 2 4E � £ 10

0

§ ,  3T 1x 2 4E � £�1

2

0

§ ,  3T 1x 2 2 4E � £ 1

�4

4

§
T 11 2 � 1,  T 1x 2 � 2x � 1,  T 1x 2 2 � 12x � 1 2 2 � 1 � 4x � 4x 2

E � 51, x, x26.T 1p 1x 2 2 � p 12x � 1 2

A 35 � x � 2x3 4B � £0 1 0 0

0 0 2 0

0 0 0 3

§ ≥ 5

�1

0

2

¥ � £�1

0

6

§ � 3D 15 � x � 2x3 2 4C

35 � x � 2x3 4B � ≥ 5

�1

0

2

¥
3D 15 � x � 2x3 2 4C � 3�1 � 6x2 4C � £�1

0

6

§
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(b) We apply Theorem 6.26 as follows: The coordinate vector of p(x) � 3 � 2x � x2

with respect to E is

Therefore, by Theorem 6.26,

It follows that T(3 � 2x � x 2 ) � 0 1 � 8 x � 4 x 2 � 8x � 4x 2. [Verify this by com-
puting T(3 � 2x � x 2 ) � 3 � 2(2x � 1) � (2x � 1)2 directly.]

The matrix of a linear transformation can sometimes be used in surprising ways.
Example 6.79 shows its application to a traditional calculus problem.

Let � be the vector space of all differentiable functions. Consider the subspace W of
� given by W � span(e 3x, xe 3x, x 2e 3x ). Since the set is linearly
independent (why?), it is a basis for W.

(a) Show that the differential operator D maps W into itself.

(b) Find the matrix of D with respect to B.

(c) Compute the derivative of 5e 3x � 2xe 3x � x 2e 3x indirectly, using Theorem 6.26,
and verify it using part (a).

Solution (a) Applying D to a general element of W, we see that

(check this), which is again in W.

(b) Using the formula in part (a), we see that

so

It follows that

3D 4B � 3 3D 1e3x 2 4B 3D1xe3x 2 4B 3D 1x 2e3x 2 4B 4 � £ 3 1 0

0 3 2

0 0 3

§
3D1e3x 2 4B � £ 30

0

§ ,  3D1xe3x 2 4B � £ 13
0

§ ,  3D1x 2e3x 2 4B � £ 02
3

§
D1e3x 2 � 3e3x,  D 1xe3x 2 � e3x � 3xe3x,  D 1x 2e3x 2 � 2xe3x � 3x 2e3x

D1ae3x � bxe3x � cx 2e3x 2 � 13a � b 2e3x � 13b � 2c 2xe3x � 3cx 2e3x

B � 5e3x, xe3x, x 2e3x6

###

� £ 1 �1 1

0 2 �4

0 0 4

§ £ 3

2

�1

§ � £ 0

8

�4

§
� 3T 4E 3p1x 2 4E3T 13 � 2x � x 2 2 4E � 3T 1p1x 2 2 4E
3p 1x 2 4E � £ 3

2

�1

§
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(c) For f(x) � 5e 3x � 2xe 3x � x 2e 3x, we see by inspection that

Hence, by Theorem 6.26, we have

which, in turn, implies that f �(x) � D( f(x)) � 17e 3x � 4xe 3x � 3x 2e 3x, in agreement
with the formula in part (a).

Remark The point of Example 6.79 is not that this method is easier than direct
differentiation. Indeed, once the formula in part (a) has been established, there is
little to do. What is significant is that matrix methods can be used at all in what
appears, on the surface, to be a calculus problem. We will explore this idea further in
Example 6.83.

Let V be an n-dimensional vector space and let I be the identity transformation on
V. What is the matrix of I with respect to bases B and C of V if B� C (including the
order of the basis vectors)? What if B C?

Solution Let Then I(v1) � v1, . . . , I(vn) � vn, so

and, if B� C,

the n � n identity matrix. (This is what you expected, isn’t it?)
In the case B C, we have

so

the change-of-basis matrix from B to C.

Matrices of Composite and Inverse Linear Transformations

We now generalize Theorems 3.32 and 3.33 to get a theorem that will allow us to eas-
ily find the inverse of a linear transformation between finite-dimensional vector
spaces (if it exists).

� PCdB

3 I 4CdB � 3 3v1 4C p  3vn 4C 4
3 I 1v1 2 4C � 3v1 4C,  . . . ,  3 I 1vn 2 4C � 3vn 4C

� In

� 3e1  e2  p   en 43 I 4B � 3 3 I1v1 2 4B  3 I1v2 2 4B  p   3 I1vn 2 4B 4
3 I 1v1 2 4B � ≥ 1

0

o
0

¥ � e1,  3 I 1v2 2 4B � ≥ 0

1

o
0

¥ � e2,  . . . ,  3 I 1vn 2 4B � ≥ 0

0

o
1

¥ � en

B � 5v1, . . . , vn6. 

3D1 f 1x 2 2 4B � 3D 4B 3 f 1x 2 4B � £ 3 1 0

0 3 2

0 0 3

§ £ 5

2

�1

§ � £ 17

4

�3

§
3 f 1x 2 4B � £ 5

2

�1

§
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Theorem 6. 27 Let U, V, and W be finite-dimensional vector spaces with bases B, C, and D,
respectively. Let T : U S V and S : V S W be linear transformations. Then

Remarks
• In words, this theorem says, “The matrix of the composite is the product of

the matrices.”
• Notice how the “inner subscripts” C must match and appear to cancel each

other out, leaving the “outer subscripts” in the form 

Proof We will show that corresponding columns of the matrices and
are the same. Let vi be the ith basis vector in B. Then the ith column

of is

by two applications of Theorem 6.26. But (why?), so

is the ith column of the matrix Therefore, the ith columns of
and are the same, as we wished to prove.

Use matrix methods to compute for the linear transformations S and T of

Example 6.56.

Solution Recall that and S : �1 S �2 are defined by

Choosing the standard bases and for �2, �1, and �2, respectively, we see that

(Verify these.) By Theorem 6.27, the matrix of S � T with respect to E and E� is

� £ 0 0

1 0

0 1

§ c 1 0

1 1
d � £ 0 0

1 0

1 1

§
3 1S � T 2 4E–dE � 3S 4E–dE¿ 3T 4E¿dE

3T 4E¿dE � c 1 0

1 1
d   and  3S 4E–dE¿ � £ 0 0

1 0

0 1

§
E–E, E¿,

T c a
b
d � a � 1a � b 2x  and  S1a � bx 2 � ax � bx2

T : �2 S �1

1S � T 2 c a
b
d

3S 4DdC 3T 4CdB3S � T 4DdB

3S 4DdC 3T 4CdB.

3S 4DdC 3T 4CdB 3vi 4B � 3S 4DdC 3T 4CdB˛

ei

3vi 4B � ei

� 3S 4DdC 3T 4CdB 3vi 4B� 3S 4DdC 3T1vi 2 4C3 1S � T 2 1vi 2 4D � 3S1T1vi 2 4D3S � T 4DdB

3S 4DdC 3T 4CdB

3S � T 4DdB

DdB.

3S � T 4DdB � 3S 4DdC 3T 4CdB
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Theorem 6. 28

Thus, by Theorem 6.26,

Consequently, which agrees with the solution to

Example 6.56.

In Theorem 6.24, we proved that a linear transformation is invertible if and only
if it is one-to-one and onto (i.e., if it is an isomorphism). When the vector spaces in-
volved are finite-dimensional, we can use the matrix methods we have developed to
find the inverse of such a linear transformation.

Let T : V S W be a linear transformation between n-dimensional vector spaces V
and W and let B and C be bases for V and W, respectively. Then T is invertible if
and only if the matrix is invertible. In this case,

Proof Observe that the matrices of T and T�1 (if it exists) are n � n. If T is invertible,
then T�1 � T � IV. Applying Theorem 6.27, we have

This shows that [T ]CdB is invertible and that 
Conversely, assume that A � [T ]CdB is invertible. To show that T is invertible, it

is enough to show that ker(T) � {0}. (Why?) To this end, let v be in the kernel of T.
Then T(v) � 0, so

which means that is in the null space of the invertible matrix A. By the
Fundamental Theorem, this implies that which, in turn, implies that v � 0,
as required.

In Example 6.70, the linear transformation defined by

was shown to be one-to-one and onto and hence invertible. Find T �1.

T c a
b
d � a � 1a � b 2x

T : �2 S �1

3v4B� 0,
3v4BA 3v 4B � 3T 4CdB 3v 4B � 3T 1v 2 4C � 30 4C � 0

1 3T 4CdB 2�1 � 3T �1 4BdC.

� 3T �1 4BdC 3T 4CdB

In � 3 IV 4B � 3T �1 � T 4B

1 3T 4CdB 2�1 � 3T �1 4BdC

3T 4CdB

1S � T 2 c a
b
d � ax � 1a � b 2x 2,

� £ 0 0

1 0

1 1

§ c a
b
d � £ 0

a

a � b

§
c 1S � T 2 c a

b
d d
E–

� 3 1S � T 2 4E–dE c ab d E
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Solution In Example 6.81, we found the matrix of T with respect to the standard
bases E and for �2 and �1, respectively, to be

By Theorem 6.28, it follows that the matrix of T �1 with respect to and E is

By Theorem 6.26,

This means that

(Note that the choice of the standard basis makes this last calculation virtually
irrelevant.)

The next example, a continuation of Example 6.79, shows that matrices can be
used in certain integration problems in calculus. The specific integral we consider is
usually evaluated in a calculus course by means of two applications of integration by
parts. Contrast this approach with our method.

Show that the differential operator, restricted to the subspace W � span(e3x, xe3x,
x 2e 3x) of �, is invertible, and use this fact to find the integral

Solution In Example 6.79, we found the matrix of D with respect to the basis
of W to be

By Theorem 6.28, therefore, D is invertible on W, and the matrix of D�1 is

3D�1 4B � 1 3D 4B 2�1 � £3 1 0

0 3 2

0 0 3

§�1

� £ 1
3 �1

9
2
27

0 1
3 �2

9

0 0 1
3

§

3D 4B � £3 1 0

0 3 2

0 0 3

§
B � 5e3x, xe3x, x2e3x6

x2e3x dx

T �11a � bx 2 � ae1 � 1b � a 2e2 � c a

b � a
d

� c a

b � a
d

� c 1 0

�1 1
d ca

b
d3T �11a � bx 2 4E � 3T �1 4EdE¿ 3a � bx 4E¿

3T �1 4EdE¿ � 1 3T 4E¿dE 2�1 � c 1 0

1 1
d�1

� c 1 0

�1 1
dE¿

3T 4E¿dE � c1 0

1 1
d

E¿
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Since integration is antidifferentiation, this is the matrix corresponding to integration
on W. We want to integrate the function x 2e 3x whose coordinate vector is

Consequently, by Theorem 6.26,

It follows that

(To be fully correct, we need to add a constant of integration. It does not show up
here because we are working with linear transformations, which must send zero vec-
tors to zero vectors, forcing the constant of integration to be zero as well.)

Warning In general, differentiation is not an invertible transformation. (See
Exercise 22.) What the preceding example shows is that, suitably restricted, it some-
times is. Exercises 27–30 explore this idea further.

Change of Basis and Similarity

Suppose T : V S V is a linear transformation and B and C are two different bases for
V. It is natural to wonder how, if at all, the matrices [T ]B and [T ]C are related. It turns
out that the answer to this question is quite satisfying and relates to some questions
we first considered in Chapter 4.

Figure 6.12 suggests one way to address this problem. Chasing the arrows around
the diagram from the upper left-hand corner to the lower right-hand corner in two
different, but equivalent, ways shows that I � T � T � I, something we already knew,
since both are equal to T. However, if the “upper” version of T is with respect to the

x2e3x dx � 2
27 e3x � 2

9 xe3x � 1
3 x2e3x

� £ 1
3 �1

9
2

27

0 1
3 �2

9

0 0 1
3

§ £ 00
1

§ � £ 2
27

�2
9
1
3

§
� 3D�1 4B 3x 2e3x 4Bc x 2e3x dx d

B

� 3D�11x 2e 3x 2 4B
3x2e3x 4B � £00

1

§
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T
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Figure 6. 12
I � T � T � I
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Theorem 6. 29

basis C and the “lower” version is with respect to B, then T � I � T � T � I is with re-
spect to C in its domain and with respect to B in its codomain. Thus, the matrix of T
in this case is But

and

Therefore,
From Example 6.80, we know that the (invertible) change-of-

basis matrix from C to B. If we denote this matrix by P, then we also have

With this notation,

so

Thus, the matrices and [T]C are similar, in the terminology of Section 4.4.
We summarize the foregoing discussion as a theorem.

Let V be a finite-dimensional vector space with bases B and C and let T : V S V
be a linear transformation. Then

where P is the change-of-basis matrix from C to B.

Remark As an aid in remembering that P must be the change-of-basis matrix
from C to B, and not B to C, it is instructive to look at what Theorem 6.29 says when
written in full detail. As shown below, the “inner subscripts” must be the same (all Bs)
and must appear to cancel, leaving the “outer subscripts,” which are both Cs.

Theorem 6.29 is often used when we are trying to find a basis with respect to
which the matrix of a linear transformation is particularly simple. For example, we
can ask whether there is a basis C of V such that the matrix [T ]C of T : V S V is a
diagonal matrix. Example 6.84 illustrates this application.

Let T : �2 S �2 be defined by

If possible, find a basis C for �2 such that the matrix of T with respect to C is diagonal.

T c x
y
d � c x � 3y

2x � 2y
d

Same Same

Same

3T 4C � P�1 3T 4BP

3T 4B3T 4CdC � P�1 3T 4BdBP  or  3T 4C � P�1 3T 4BP

P 3T 4CdC � 3T 4BdBP

P�1 � 1PBdC 2�1 � PCdB

3I 4BdC � PBdC,
3I 4BdC 3T 4CdC � 3T 4BdB 3I 4BdC.

3T 4BdC � 3T � I 4BdC � 3T 4BdB 3I 4BdC

3T 4BdC � 3I � T 4BdC � 3I 4BdC 3T 4CdC

3T 4BdC.
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Solution The matrix of T with respect to the standard basis E is

This matrix is diagonalizable, as we saw in Example 4.24. Indeed, if

then If we let C be the basis of �2 consisting of the columns of P, then
P is the change-of-basis matrix from C to E. By Theorem 6.29,

so the matrix of T with respect to the basis is diagonal.

Remarks
• It is easy to check that the solution above is correct by computing [T ]C

directly. We find that

Thus, the coordinate vectors that form the columns of [T ]C are

in agreement with our solution above.
• The general procedure for a problem like Example 6.84 is to take the standard

matrix and determine whether it is diagonalizable by finding bases for its eigen-
spaces, as in Chapter 4. The solution then proceeds exactly as in the preceding
example.

Example 6.84 motivates the following definition.

Definition Let V be a finite-dimensional vector space and let T : V S V be a
linear transformation. Then T is called diagonalizable if there is a basis C for V
such that the matrix [T ]C is a diagonal matrix.

It is not hard to show that if B is any basis for V, then T is diagonalizable if and
only if the matrix is diagonalizable. This is essentially what we did, for a special
case, in the last example. You are asked to prove this result in general in Exercise 42.

Sometimes it is easiest to write down the matrix of a linear transformation with
respect to a “nonstandard” basis. We can then reverse the process of Example 6.84
to find the standard matrix. We illustrate this idea by revisiting Example 3.59.

Let / be the line through the origin in �2 with direction vector Find the

standard matrix of the projection onto /.

d � c d1

d2

d .

3T 4B

3T 4E
cT c 1

1
d d
C

� c 4
0
d   and  cT c 3

�2
d d
C

� c 0

�1
d

T c 1
1
d � c 4

4
d � 4 c 1

1
d � 0 c 3

�2
d   and  T c 3

�2
d � c�3

2
d � 0 c 1

1
d � c 3

�2
d

C � e c1
1
d , c 3

�2
d f3T 4C � P�1 3T 4EP � D

PEdC

P�1 3T 4EP � D.

P � c 1 3

1 �2
d   and  D � c 4 0

0 �1
d

3T 4E � c1 3

2 2
d
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Solution Let T denote the projection. There is no harm in assuming that d is a unit
vector (i.e., � � 1), since any nonzero multiple of d can serve as a direction

vector for /. Let so that d and d� are orthogonal. Since d� is also a unit

vector, the set is an orthonormal basis for �2.
As Figure 6.13 shows, T(d) � d and T(d�) � 0. Therefore,3T 1d 2 4D � c 1

0
d   and  3T 1d¿ 2 4D � c 0

0
d

D � 5d, d¿6d¿ � c�d2

d1

dd 2
2d 2

1
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x

y

T(y)

T(d) � d
T(d�) � 0

T(x)

�d�

x

y

Figure 6. 13
Projection onto /

so

The change-of-basis matrix from D to the standard basis E is

so the change-of-basis matrix from E to D is

By Theorem 6.29, then, the standard matrix of T is

which agrees with part (b) of Example 3.59.

� c d 1
2 d1d2

d1d2 d 2
2 d

� c d1 �d2

d2 d1

d c 1 0

0 0
d c d1 d2

�d2 d1

d3T 4E � PEdD 3T 4DPDdE

PDdE � 1PEdD 2�1 � c d1 �d2

d2 d1

d�1

� c d1 d2

�d2 d1

d
PEdD � c d1 �d2

d2 d1

d
3T 4D � c1 0

0 0
d
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Let T : �2 S �2 be the linear transformation defined by

(a) Find the matrix of T with respect to the basis of �2.

(b) Show that T is diagonalizable and find a basis C for �2 such that [T ]C is a diago-
nal matrix.

Solution (a) In Example 6.78, we found that the matrix of T with respect to the
standard basis is

The change-of-basis matrix from B to E is

It follows that the matrix of T with respect to B is

(Check this.)

(b) The eigenvalues of are 1, 2, and 4 (why?), so we know from Theorem 4.25
that is diagonalizable. Eigenvectors corresponding to these eigenvalues are

respectively. Therefore, setting

we have Furthermore, P is the change-of-basis matrix from a basis
C to E, and the columns of P are thus the coordinate vectors of C in terms of E. It
follows that

and [T ]C � D.

C � 51, �1 � x, 1 � 2x � x 26
P�1 3T 4EP � D.

P � £1 �1 1

0 1 �2

0 0 1

§   and  D � £1 0 0

0 2 0

0 0 4

§
£ 10

0

§ , £�1

1

0

§ , £ 1

�2

1

§
3T 4E 3T 4E

� £ 1 0 �3
2

�1 2 5
2

0 0 4

§
� £ 1

2
1
2 0

1
2 �1

2 0

0 0 1

§ £1 �1 1

0 2 �4

0 0 4

§ £1 1 0

1 �1 0

0 0 1

§
3T 4B � P�1 3T 4EP

P � PEdB � £1 1 0

1 �1 0

0 0 1

§
3T 4E � £1 �1 1

0 2 �4

0 0 4

§
E � 51, x, x26

B � 51 � x, 1 � x, x26T 1 p 1x 2 2 � p 12x � 1 2
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Theorem 6. 30

In Exercises 1–12, find the matrix of the linear
transformation T : V S W with respect to the bases B and C
of V and W, respectively. Verify Theorem 6.26 for the vector v
by computing T(v) directly and using the theorem.

1. T : �1 S �1 defined by 
B� C� v � p 1x 2 � 4 � 2x51, x6, T 1a � bx 2 � b � ax,

3T 4CdB

The preceding ideas can be generalized to relate the matrices and 
of a linear transformation T : V S W, where B and are bases for V and C and C�
are bases for W. (See Exercise 44.)

We conclude this section by revisiting the Fundamental Theorem of Invertible
Matrices and incorporating some results from this chapter.

The Fundamental Theorem of Invertible Matrices: Version 4

Let A be an n � n matrix and let T : V S W be a linear transformation whose
matrix with respect to bases B and C of V and W, respectively, is A. The
following statements are equivalent:

a. A is invertible.
b. Ax � b has a unique solution for every b in �n.
c. Ax � 0 has only the trivial solution.
d. The reduced row echelon form of A is In.
e. A is a product of elementary matrices.
f. rank(A) � n
g. nullity(A) � 0
h. The column vectors of A are linearly independent.
i. The column vectors of A span �n.
j. The column vectors of A form a basis for �n.
k. The row vectors of A are linearly independent.
l. The row vectors of A span �n.
m. The row vectors of A form a basis for �n.
n. det A 0
o. 0 is not an eigenvalue of A.
p. T is invertible.
q. T is one-to-one.
r. T is onto.
s. ker(T) � {0}
t. range(T) � W

Proof The equivalence (q) (s) is Theorem 6.20, and (r) (t) is the definition of
onto. Since A is n � n, we must have dim V � dim W � n. From Theorems 6.21 and
6.24, we get (p) (q) (r). Finally, we connect the last five statements to the others
by Theorem 6.28, which implies that (a) (p).3

33

33



3T 4CdB

B¿
3T 4C¿dB¿3T 4CdB
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2. T : �1 S �1 defined by 
B� {1 � x,

3. T : �2 S �2 defined by T( p(x)) � p(x � 2),
B�

v � p1x 2 � a � bx � cx 2

1x � 2 2 26,C � 51, x � 2,51, x, x26,
C � 51, x6, v � p 1x 2 � 4 � 2x1 � x6, T 1a � bx 2 � b � ax,
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14. Consider the subspace W of �, given by 
W � span(

(a) Show that the differential operator D maps W into
itself.

(b) Find the matrix of D with respect to 
(c) Compute the derivative of

indirectly, using Theorem 6.26, and verify that it
agrees with as computed directly.

15. Consider the subspace W of �, given by W � span(
cos x, sin x).

(a) Find the matrix of D with respect to

(b) Compute the derivative of cos x �
sin x indirectly, using Theorem 6.26, and verify

that it agrees with f�(x) as computed directly.

16. Consider the subspace W of �, given by
W � span(cos x, sin x, x cos x, x sin x).

(a) Find the matrix of D with respect to

(b) Compute the derivative of f(x) � cos x � 2x cos x
indirectly, using Theorem 6.26, and verify that it
agrees with f �(x) as computed directly.

In Exercises 17 and 18, T : U S V and S : V S W are linear
transformations and B, C, and D are bases for U, V, and W,
respectively. Compute in two ways: (a) by
finding S � T directly and then computing its matrix and
(b) by finding the matrices of S and T separately and using
Theorem 6.27.

17. T : �1 S �2 defined by S : �2 S �2

defined by 

18. T : �1 S �2 defined by T(p(x)) � p(x � 1),
S : �2 S �2 defined by S(p(x)) � p(x � 1),
B� C�D�

In Exercises 19–26, determine whether the linear transfor-
mation T is invertible by considering its matrix with respect
to the standard bases. If T is invertible, use Theorem 6.28
and the method of Example 6.82 to find 

19. T in Exercise 1 20. T in Exercise 5

21. T in Exercise 3

22. T : �2 S �2 defined by T(p(x)) � p�(x)

23. T : �2 S �2 defined by T(p(x)) � p(x) � p�(x)

T�1.

51, x, x2651, x6,
5e1, e26C � D �

51, x6,B �ca � 2b

2a � b
d ,S ca

b
d �

T1p1x 2 2 � cp 10 2
p 11 2 d ,

3S � T 4DdB

x sin x6.x cos x,sin x,
B � 5cos x,

2e2x
f 1x 2 � 3e2x � e2x

e2x sin x6.e2x cos x,
B � 5e2x,

e2xe2x
e2x,

f ¿1x 2 3e�2xf 1x 2 � e2x �
e�2x6.B � 5e2x,

e�2x 2 .e2x,

Section 6.6 The Matrix of a Linear Transformation 531

dy
dx

dy
dx

dy
dx

4. T : �2 S �2 defined by T( p(x)) � p(x � 2),
B �

5. defined by T( p(x)) �

B�

6. defined by T( p(x)) �

B�

7. defined by

8. Repeat Exercise 7 with 

9. T : M22 S M22 defined by B� C�

{E11,

10. Repeat Exercise 9 with B� and
C�

11. T : M22 S M22 defined by T(A) � AB � BA, where 

B � B� C�

12. T : M22 S M22 defined by B�

C� 

13. Consider the subspace W of �, given by
W � span(sin x, cos x).

(a) Show that the differential operator D maps W into
itself.

(b) Find the matrix of D with respect to

(c) Compute the derivative of f(x) � 3 sin x � 5 cos x
indirectly, using Theorem 6.26, and verify that it
agrees with f �(x) as computed directly.

B � 5sin x, cos x6.

v � A � ca b

c d
d5E11, E12, E21, E226, T 1A 2 � A � AT,

v � A � ca b

c d
d 5E11, E12, E21, E226,c 1 �1

�1 1
d ,

E 116.E 22,E 21,5E 12,
5E 22, E 21, E 12, E 116E12, E21, E226, v � A � ca b

c d
dT 1A 2 � AT,

v � ca
b
d .

v � c�7

7
dC � • £ 10

0

§ , £ 11
0

§ , £ 11
1

§ ¶ ,

B � e c1
2
d , c 3

�1
d f ,T ca

b
d � £a � 2b

�a

b

§ ,
T : �2 S �3

a � bx � cx 2v � p1x 2 �

c 1
1
d f ,C � e c 1

0
d ,5x2, x, 16, c p 10 2

p 11 2 d ,T : �2 S �2

v � p 1x 2 � a � bx � cx2
C � 5e1, e26,51, x, x26, c p 10 2

p 11 2 d ,T : �2 S �2

v � p1x 2 � a � bx � cx2
C � 51, x, x26,1x � 2 226,51, x � 2,

dy
dx

dy
dx
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24. T : M22 S M22 defined by where 

B � 

25. T in Exercise 11 26. T in Exercise 12

In Exercises 27–30, use the method of Example 6.83 
to evaluate the given integral.

27. � (sin x � 3 cos x)dx. (See Exercise 13.)

28. � dx. (See Exercise 14.)

29. � ( cos sin x)dx. (See Exercise 15.)

30. � (x cos x � x sin x) dx. (See Exercise 16.)

In Exercises 31–36, a linear transformation T : V S V is
given. If possible, find a basis C for V such that the matrix

of T with respect to C is diagonal.

31. T : defined by 

32. T : defined by 

33. T : �1 S �1 defined by T(a � bx) � (4a � 2b) �
(a � 3b)x

34. T : �2 S �2 defined by T(p(x)) � p(x � 1)

35. T : �1 S �1 defined by T(p(x)) � p(x) � xp�(x)

36. T : �2 S �2 defined by T(p(x)) � p(3x � 2)

37. Let / be the line through the origin in with direction

vector Use the method of Example 6.85 to

find the standard matrix of a reflection in /.

38. Let W be the plane in with equation x � y �
2z � 0. Use the method of Example 6.85 to find
the standard matrix of an orthogonal projection
onto W. Verify that your answer is correct by using

�3

d � c d1

d2

d . �2

T ca
b
d � ca � b

a � b
d�2 S �2

T ca
b
d � c �4b

a � 5b
d�2 S �2

3T 4C

x � 2e2xe2x

5e�2x

c3 2
2 1

d
T 1A 2 � AB,
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it to compute the orthogonal projection of v onto W,
where

Compare your answer with Example 5.11.
[Hint: Find an orthogonal decomposition of as

using an orthogonal basis for W. See
Example 5.3.]

39. Let T : V S W be a linear transformation between
finite-dimensional vector spaces and let B and C be
bases for V and W, respectively. Show that the matrix
of T with respect to B and C is unique. That is, if A is a
matrix such that for all v in V, then

[Hint: Find values of v that will show
this, one column at a time.]

In Exercises 40–45, let T : V S W be a linear transformation
between finite-dimensional vector spaces V and W. Let B and
C be bases for V and W, respectively, and let

40. Show that nullity(T) � nullity(A).

41. Show that rank(T) � rank(A).

42. If V � W and B� C, show that T is diagonalizable if
and only if A is diagonalizable.

43. Use the results of this section to give a matrix-
based proof of the Rank Theorem (Theorem 6.19).

44. If B� and C� are also bases for V and W, respectively,
what is the relationship between and
Prove your assertion.

45. If dim V � n and dim W � m, prove that 	(V, W ) �
Mmn. (See the exercises for Section 6.4.) [Hint: LetB
and C be bases for V and W, respectively. Show that the
mapping for T in 	(V, W ), defines a
linear transformation 	(V, W ) S Mmn that is an
isomorphism.]

46. If V is a vector space, then the dual space of V is the
vector space V* � 	(V, �). Prove that if V is finite-
dimensional, then V* � V.

� :
3T 4CdB,�1T2 �

3T 4C¿dB¿?3T 4CdB

A � 3T 4CdB.

A � 3T 4CdB.
A 3v 4B � 3T 1v 2 4C

W � W��3 �
�3

v � £ 3
�1

2
§

dy
dx

dy
dx
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Tilings, Lattices, and the
Crystallographic Restriction
Repeating patterns are frequently found in nature and in art. The molecular struc-
ture of crystals often exhibits repetition, as do the tilings and mosaics found in the
artwork of many cultures. Tiling (or tessellation) is covering of a plane by shapes that
do not overlap and leave no gaps. The Dutch artist M. C. Escher (1898–1972) pro-
duced many works in which he explored the possibility of tiling a plane using fanci-
ful shapes (Figure 6.14).

533

Figure 6. 14
M. C. Escher’s “Symmetry Drawing E103”
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In this exploration, we will be interested in patterns such as those in Figure 6.14,
which we assume to be infinite and repeating in all directions of the plane. Such a pat-
tern has the property that it can be shifted (or translated) in at least two directions
(corresponding to two linearly independent vectors) so that it appears not to have
been moved at all. We say that the pattern is invariant under translations and has
translational symmetry in these directions. For example, the pattern in Figure 6.14
has translational symmetry in the directions shown in Figure 6.15.

If a pattern has translational symmetry in two directions, it has translational sym-
metry in infinitely many directions.

1. Let the two vectors shown in Figure 6.15 be denoted by u and v. Show that the
pattern in Figure 6.14 is invariant under translation by any integer linear combination
of u and v—that is, by any vector of the form au � bv, where a and b are integers.

For any two linearly independent vectors u and v in �2, the set of points deter-
mined by all integer linear combinations of u and v is called a lattice. Figure 6.16
shows an example of a lattice.

2. Draw the lattice corresponding to the vectors u and v of Figure 6.15.

Figure 6.14 also exhibits rotational symmetry. That is, it is possible to rotate the
entire pattern about some point and have it appear unchanged. We say that it is
invariant under such a rotation. For example, the pattern of Figure 6.14 is invariant
under a rotation of 120° about the point O, as shown in Figure 6.17. We call O a cen-
ter of rotational symmetry (or a rotation center).

Note that if a pattern is based on an underlying lattice, then any symmetries of the
pattern must also be possessed by the lattice.
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v

u

Figure 6. 16
A lattice

120�

O

Figure 6. 17
Rotational symmetry
M. C. Escher’s “Symmetry Drawing E103”

Figure 6. 15
Invariance under translation
M. C. Escher’s “Symmetry Drawing E103”

M
. C

. “
Es

ch
er

’s 
Sy

m
m

et
ry

 D
ra

w
in

g 
E1

03
” 

©
 2

00
4 

Th
e 

M
. C

. E
sc

he
r C

om
pa

ny
–B

aa
rn

–H
ol

la
nd

. A
ll

rig
ht

s 
re

se
rv

ed
.

M
. C

. “
Es

ch
er

’s 
Sy

m
m

et
ry

 D
ra

w
in

g 
E1

03
” 

©
 2

00
4 

Th
e 

M
. C

. E
sc

he
r C

om
pa

ny
–B

aa
rn

–H
ol

la
nd

. A
ll

rig
ht

s 
re

se
rv

ed
.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3. Explain why, if a point O is a rotation center through an angle u, then it is a
rotation center through every integer multiple of u. Deduce that if 0 � u� 360°, then
360�umust be an integer. (If 360�u� n, we say the pattern or lattice has n-fold rota-
tional symmetry.)

4. What is the smallest positive angle of rotational symmetry for the lattice in
Problem 2? Does the pattern in Figure 6.14 also have rotational symmetry through
this angle?

5. Take various values of u such that 0 � u� 360° and 360�u is an integer. Try
to draw a lattice that has rotational symmetry through the angle u. In particular, can
you draw a lattice with eight-fold rotational symmetry?

We will show that values of u that are possible angles of rotational symmetry for
a lattice are severely restricted. The technique we will use is to consider rotation trans-
formations in terms of different bases. Accordingly, let Ru denote a rotation about the
origin through an angle u and let E be the standard basis for �2. Then the standard
matrix of Ru is

6. Referring to Problems 2 and 4, take the origin to be at the tails of u and v.

(a) What is the actual (i.e., numerical) value of in this case?
(b) Let B be the basis {u, v}. Compute the matrix 

7. In general, let u and v be any two linearly independent vectors in �2 and sup-
pose that the lattice determined by u and v is invariant under a rotation through an
angle u. If show that the matrix of Ru with respect to B must have the
form

where a, b, c, and d are integers.

8. In the terminology and notation of Problem 7, show that 2 cos umust be an
integer. [Hint: Use Exercise 35 in Section 4.4 and Theorem 6.29.]

9. Using Problem 8, make a list of all possible values of u, with 0 � u � 360°,
that can be angles of rotational symmetry of a lattice. Record the corresponding val-
ues of n, where n � 360�u, to show that a lattice can have n-fold rotational symmetry
if and only if n � 1, 2, 3, 4, or 6. This result, known as the crystallographic restriction,
was first proved by W. Barlow in 1894.

10. In the library or on the Internet, see whether you can find an Escher tiling
for each of the five possible types of rotational symmetry—that is, where the smallest
angle of rotational symmetry of the pattern is one of those specified by the crystallo-
graphic restriction.

3Ru 4B � c a b

c d
d

B � 5u, v6,
3Ru 4B.3Ru 4E

3Ru 4E � c cos u �sin u

sin u cos u
d
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Theorem 6. 31

Applications

Homogeneous Linear Differential Equations

In Exercises 69–72 in Section 4.6, we showed that if y � y(t) is a twice-differentiable
function that satisfies the differential equation

(1)

then y is of the form

if l1 and l2 are distinct roots of the associated characteristic equation l2 � al �
b � 0. (The case where l1 � l2 was left unresolved.) Example 6.12 and Exercise 20 in
this section show that the set of solutions to equation (1) forms a subspace of �, the
vector space of functions. In this section, we pursue these ideas further, paying
particular attention to the role played by vector spaces, bases, and dimension.

To set the stage, we consider a simpler class of examples. A differential equation of
the form

(2)

is called a first-order, homogeneous, linear differential equation. (“First-order”
refers to the fact that the highest derivative that is involved is a first derivative, and
“homogeneous” means that the right-hand side is zero. Do you see why the equation
is “linear”?) A solution to equation (2) is a differentiable function y � y(t) that
satisfies equation (2) for all values of t.

It is easy to check that one solution to equation (2) is y � e�at. (Do it.) However,
we would like to describe all solutions—and this is where vector spaces come in. We
have the following theorem.

The set S of all solutions to y� � ay � 0 is a subspace of �.

Proof Since the zero function certainly satisfies equation (2), S is nonempty. Let x
and y be two differentiable functions of t that are in S and let c be a scalar. Then

so, using rules for differentiation, we have

and

Hence, x � y and cy are also in S, so S is a subspace of �.

Now we will show that S is a one-dimensional subspace of � and that {e�at } is a
basis. To this end, let x � x(t) be in S. Then, for all t,

x¿ 1t 2 � ax 1t 2 � 0  or  x¿ 1t 2 � �ax 1t 2

1cy 2 ¿ � a 1cy 2 � cy¿ � c 1ay 2 � c 1y¿ � ay 2 � c # 0 � 0

1x � y 2 ¿ � a1x � y 2 � x¿ � y¿ � ax � ay � 1x¿ � ax 2 � 1y¿ � ay 2 � 0 � 0 � 0

x¿ � ax � 0  and  y¿ � ay � 0

y¿ � ay � 0

y � c1e
l1t � c2e

l2t

y– � ay ¿ � by � 0
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Theorem 6. 32

Define a new function z (t) � x(t)e at. Then, by the Chain Rule for differentiation,

Since z� is identically zero, z must be a constant function—say, z(t) � k. But this
means that

so x(t) � ke�at. Therefore, all solutions to equation (2) are scalar multiples of the
single solution y � e�at. We have proved the following theorem.

If S is the solution space of y� � ay � 0, then dim S � 1 and {e�at } is a basis for S.

One model for population growth assumes that the growth rate of the population
is proportional to the size of the population. This model works well if there are few
restrictions (such as limited space, food, or the like) on growth. If the size of the pop-
ulation at time t is p(t), then the growth rate, or rate of change of the population, is
its derivative p�(t). Our assumption that the growth rate of the population is propor-
tional to its size can be written as

where k is the proportionality constant. Thus, p satisfies the differential equation
p� � kp � 0, so, by Theorem 6.32,

for some scalar c. The constants c and k are determined using experimental data.

The bacterium Escherichia coli (or E. coli, for short) is commonly found in the
intestines of humans and other mammals. It poses severe health risks if it escapes into
the environment. Under laboratory conditions, each cell of the bacterium divides
into two every 20 minutes. If we start with a single E. coli cell, how many will there be
after 1 day?

Solution We do not need to use differential equations to solve this problem, but we
will, in order to illustrate the basic method.

To determine c and k, we use the data given in the statement of the problem. If
we take 1 unit of time to be 20 minutes, then we are given that p(0) � 1 and p(1) � 2.
Therefore,

It follows that k � ln 2, so

After 1 day, t � 72, so the number of bacteria cells will be p(72) � 272 � 4.72 � 1021

(see Figure 6.18).

p 1t 2 � et ln 2 � e ln 2t

� 2t

c � c # 1 � ce k # 0 � 1  and  2 � cek # 1 � ek

p 1t 2 � ce kt

p¿ 1t 2 � kp 1t 2

x 1t 2eat � z 1t 2 � k  for all t

� 0

� ax 1t 2eat � ax 1t 2eat

z¿ 1t 2 � x 1t 2aeat � x¿ 1t 2eat
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Example 6. 87

E. coli is mentioned in Michael
Crichton’s novel The Andromeda
Strain (New York: Dell, 1969), al-
though the “villain” in that novel
was supposedly an alien virus. In
real life, E. coli contaminated the
town water supply of Walkerton,
Ontario, in 2000, resulting in seven
deaths and causing hundreds of
people to become seriously ill.
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Radioactive substances decay by emitting radiation. If m(t) denotes the mass of
the substance at time t, then the rate of decay is m�(t). Physicists have found that the
rate of decay of a substance is proportional to its mass; that is,

where k is a negative constant. Applying Theorem 6.32, we have

for some constant c. The time required for half of a radioactive substance to decay is
called its half-life.

After 5.5 days, a 100 mg sample of radon-222 decayed to 37 mg.

(a) Find a formula for m(t), the mass remaining after t days.

(b) What is the half-life of radon-222?

(c) When will only 10 mg remain?

Solution (a) From m(t) � cekt, we have

so

With time measured in days, we are given that m(5.5) � 37. Therefore,

so

Solving for k, we find

so

Therefore, m(t) � 100e�0.18t.

k �
ln10.37 2

5.5
� �0.18

5.5k � ln10.37 2
e 5.5k � 0.37

100e 5.5k � 37

m 1t 2 � 100e kt

100 � m 10 2 � cek # 0 � c # 1 � c

m 1t 2 � cekt

m¿1t 2 � km 1t 2   or  m¿ � km � 0
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p(t)

t
0 10 20 30 40 50 60 70

72

1 � 1021

0

2 � 1021

3 � 1021

4 � 1021

5 � 1021 4.72 � 1021

Figure 6. 18
Exponential growth 

Example 6. 88
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(b) To find the half-life of radon-222, we need the value of t for which m(t) � 50.
Solving this equation, we find

so

Hence,

and

Thus, radon-222 has a half-life of approximately 3.85 days. (See Figure 6.19.)

(c) We need to determine the value of t such that m(t) � 10. That is, we must solve
the equation

Taking the natural logarithm of both sides yields �0.18t � ln 0.1. Thus,

so 10 mg of the sample will remain after approximately 12.79 days.

The solution set S of the second-order differential equation y � � ay� � by � 0 is
also a subspace of � (Exercise 20), and it turns out that the dimension of S is 2.
Part (a) of Theorem 6.33, which extends Theorem 6.32, is implied by Theorem 4.40.
Our approach here is to use the power of vector spaces; doing so allows us to obtain
part (b) of Theorem 6.33 as well, a result that we could not obtain with our previous
methods.

t �
ln 0.1

�0.18
� 12.79

100e�0.18t � 10  or  e�0.18t � 0.1

t �
ln 2

0.18
� 3.85

�0.18t � ln112 2 � �ln 2

e�0.18t � 0.50

100e�0.18t � 50
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3.85
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Figure 6. 19
Radioactive decay

See Linear Algebra by S. H.
Friedberg, A. J. Insel, and L. E.
Spence (Englewood Cliffs, NJ:
Prentice-Hall, 1979).
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540 Chapter 6 Vector Spaces

Theorem 6. 33 Let S be the solution space of

and let l1 and l2 be the roots of the characteristic equation l2 � al� b � 0.

a. If l1 l2, then is a basis for S.

b. If l1 � l2, then is a basis for S.

Remarks
• Observe that what the theorem says, in other words, is that the solutions of

y � � ay� � by � 0 are of the form

in the first case and

in the second case.
• Compare Theorem 6.33 with Theorem 4.38. Linear differential equations

and linear recurrence relations have much in common. Although the former belong to
continuous mathematics and the latter to discrete mathematics, there are many parallels.

Proof (a) We first show that is contained in S. Let l be any root of the
characteristic equation and let f(t) � elt. Then

from which it follows that

Therefore, f is in S. But, since l1 and l2 are roots of the characteristic equation, this
means that and are in S.

The set is also linearly independent, since if

then, setting t � 0, we have

Next, we set t � 1 to obtain

But since implies that which is clearly impos-
sible if l1 l2. (See Figure 6.20.) We deduce that c1 � 0 and, hence, c2 � 0, so

is linearly independent.
Since dim S � 2, must be a basis for S.

(b) You are asked to prove this property in Exercise 21.

5el1t, el2˛t65el1t, el2˛t6 
el1 � el2,el1 � el2 � 0el1 � el2  0,

c1e
l1 � c1e

l2 � 0  or  c11el1 � el2 2 � 0

c1 � c2 � 0  or  c2 � �c1

c1e
l1t � c2e

l2˛t � 0

5el1t, el2˛t6el2˛tel1t

� 0 # elt � 0

� 1l2 � al�b 2elt

f – � af ¿ � bf � l2elt � alelt � belt

f ¿1t 2 � lelt  and  f –1t 2 � l2elt

5el1t, el2˛t6

y � c1e
l1t � c2te

l1t

y � c1e
l1t � c2e

l2t

5el1t, tel1t65el1t, el2t6

y – � ay¿ � by � 0

x

y

l1 l2

el2

el1

y � ex

Figure 6. 20
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Find all solutions of y � � 5y� � 6y � 0.

Solution The characteristic equation is l2 � 5l � 6 � (l � 2)(l � 3) � 0. Thus,
the roots are 2 and 3, so {e 2t, e 3t } is a basis for the solution space. It follows that the
solutions to the given equation are of the form

The constants c1 and c2 can be determined if additional equations, called bound-
ary conditions, are specified.

Find the solution of y � � 6y� � 9y � 0 that satisfies y(0) � 1, y�(0) � 0.

Solution The characteristic equation is l2 � 6l� 9 � (l� 3) 2 � 0, so �3 is a re-
peated root. Therefore, {e�3t, te�3t } is a basis for the solution space, and the general
solution is of the form

The first boundary condition gives

so y � e�3t � c2te
�3t. Differentiating, we have

so the second boundary condition gives

or

Therefore, the required solution is

Theorem 6.33 includes the case in which the roots of the characteristic equation
are complex. If l� p � qi is a complex root of the equation l2 � al� b � 0, then so
is its conjugate � p � qi. (See Appendices C and D.) By Theorem 6.33(a), the solu-
tion space S of the differential equation y� � ay� � by � 0 has {elt, } as a basis. Now

and

so

It follows that {e pt cos qt, e pt sin qt} is contained in span(elt, ) � S. Since e pt cos qt
and e pt sin qt are linearly independent (see Exercise 22) and dim S � 2, {e pt cos qt,
e pt sin qt} is also a basis for S. Thus, when its characteristic equation has a complex
root p � qi, the differential equation y � � ay� � by � 0 has solutions of the form

y � c1e
pt cos qt � c2e

pt sin qt

elt

ept cos qt �
elt � elt

2
 and ept sin qt �

elt � elt

2i

elt � e 1 p�qi2t � eptei 1�qt2 � ept1cos qt � i sin qt 2elt � e 1p�qi2t � e ptei 1qt2 � e pt1cos qt � i sin qt 2 elt
l

y � e�3t � 3te�3t � 11 � 3t 2e�3t

c2 � 3

0 � y¿ 10 2 � �3e�3 # 0 � c210 � e�3 # 0 2 � �3 � c2

y ¿ � �3e�3t � c21�3te�3t � e�3t 2
1 � y 10 2 � c1e

�3 # 0 � 0 � c1

y � c1e
�3t � c2te

�3t

y � c1e
2t � c2e

3t
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Example 6. 89

Example 6. 90

a + bi
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Find all solutions of y � � 2y� � 4 � 0.

Solution The characteristic equation is l2 � 2l� 4 � 0 with roots The fore-
going discussion tells us that the general solution to the given differential equation is

A mass is attached to the end of a vertical spring (Figure 6.21). If the mass is pulled
downward and released, it will oscillate up and down. Two laws of physics govern this
situation. The first, Hooke’s Law, states that if the spring is stretched (or compressed)
x units, the force F needed to restore it to its original position is proportional to x:

where k is a positive constant (called the spring constant). Newton’s Second Law of
Motion states that force equals mass times acceleration. Since x � x(t) represents dis-
tance, or displacement, of the spring at time t, x� gives its velocity and x � its accelera-
tion. Thus, we have

Since both k and m are positive, so is K � k/m, and our differential equation has the
form x � � Kx � 0, where K is positive.

The characteristic equation is l2 � K � 0 with roots Therefore, the gen-
eral solution to the differential equation of the oscillating spring is

Suppose the spring is at rest (x � 0) at time t � 0 seconds and is stretched as far
as possible, to a length of 20 cm, before it is released. Then

0 � x 10 2 � c1 cos 0 � c2 sin 0 � c1

x � c1 cos 1Kt � c2 sin 1Kt

;i1K.

mx– � �kx or x– � a k
m
b x � 0

F � �kx

y � c1e
t cos 13t � c2e

t sin 13t

1 ; i13.
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Example 6. 91

Example 6. 92

a + bi

a + bi

m

m

0

x

Figure 6. 21

t

x

x � 20 sin �Kt
20

10

�10

�20

2
p 3p

p
�K
2p

�K

�K 2�K

Figure 6. 22
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so x � c2 sin Since the maximum value of the sine function is 1, we must have
c2 � 20 (occurring for the first time when t �p�2 ), giving us the solution

(See Figure 6.22.)
Of course, this is an idealized solution, since it neglects any form of resistance

and predicts that the spring will oscillate forever. It is possible to take damping
effects (such as friction) into account, but this simple model has served to introduce
an important application of differential equations and the techniques we have
developed.

Linear Codes

We now turn our attention to the most important, and most widely used, class of
codes: linear codes. In fact, many of the examples we have already looked at fall into
this category. NASA has made extensive use of linear codes to transmit pictures from
outer space. In 1972, the Mariner 9 spacecraft used a type of linear code called a Reed-
Muller code to transmit black-and-white images of Mars (Figure 6.23). Then, between
1979 and 1981, Voyager 1 and Voyager 2 were able to send back remarkable color pic-
tures of Jupiter and Saturn (reproduced in black and white in Figure 6.24) using a
Golay code, another linear code.

Definition A p-ary linear code is a subspace C of

As usual, our main interest is the case p � 2, the binary linear codes. Checking to
see whether a subset C of is a subspace involves showing that C satisfies the condi-
tions of Theorem 6.32. Since in the only scalars are 0 and 1, checking to see
whether C is closed under scalar multiplication only involves showing that C contains
the zero vector. All that remains is to check that C is closed under addition.

�n2

�n2

�n
p.

x � 20 sin1Kt

1K
1Kt.
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Figure 6. 23
The southern polar cap of Mars

Figure 6. 24
Jupiter’s red spot and the rings of Saturn
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Theorem 6. 34

Are and (binary)

linear codes?

Solution C1 clearly contains the zero vector and is closed under addition, so it is a
linear code. C2 is not closed under addition, since it does not contain

Hence, C2 is not linear.

For the remainder of this section, we will dispense with the adjective “binary,”
since all of the codes we will be considering will be binary codes. If a linear code C is
a k-dimensional subspace of then we say that C is an (n, k) code.

(a) The code C1 in Example 6.93 is a subspace of and has dimension 2, since

is a basis for C1. (In fact, C1 has exactly three different two-element bases. What are
the other two? See Exercise 31.) Hence, C1 is a (4, 2) code.

(b) The (7, 4) Hamming code H introduced in Section 3.7 is a (7, 4) linear code (for-
tunately!), in our new terminology. It is linear because it has a generator matrix G, so its
vectors are all the vectors of the form Gx, where x is in �4

2. But this is just the column
space of the 7 � 4 matrix G and so is a subspace of �7

2. Since the four columns of G are
linearly independent (why?), they form a basis for H. Therefore, H is a (7, 4) code.

(c) The codes

are dual codes. It is easy to see that each of these is a linear code, that dim C � 1, and 
that dim � 2. (Check these claims.) Therefore, C is a (3, 1) code and is a (3, 2)
code. The fact that 3 � 1 � 2 is not an accident, as the next theorem shows.

Let C be an (n, k) linear code.

a. The dual code is an (n, n � k) linear code.
b. C contains 2k vectors, and contains 2n�k vectors.C�

C�

C�C�

C � • £ 00
0

§ , £ 11
1

§ ¶   and  C� � • £ 00
0

§ , £ 11
0

§ , £ 10
1

§ , £ 01
1

§ ¶

μ ≥ 0

0

1

1

¥ , ≥ 1

1

0

0

¥ ∂
�4

2

�n
2,

£ 10
0

§ � £ 10
1

§ � £ 00
1

§

C2 � • £ 00
0

§ , £ 10
0

§ , £ 10
1

§ ¶C1 � μ ≥ 0

0

0

0

¥ , ≥ 0

0

1

1

¥ , ≥ 1

1

0

0

¥ , ≥ 1

1

1

1

¥ ∂
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Example 6. 93

Example 6. 94

�

�
I I I I II I I I I ������������������������������

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Proof (a) Since C is an (n, k) linear code, it is a k-dimensional subspace of Its
dual is the orthogonal complement of C and so is also a subspace of by Theo-
rem 5.9(a). Thus, is a linear code.

Now we can apply Theorem 5.13 to show that

(Note: Theorems 5.9 and 5.13 are true if �n is replaced by This is the case for most
of the nongeometric results about orthogonality.) It follows that is an (n, n � k)
code.

(b) Let {v1, . . . , vk} be a basis for C. Then the vectors in C are all the vectors of the
form

where each ci is either 0 or 1. Therefore, there are two possibilities for c1 and, for each
of these, two possibilities for c2, and so on, making the total number of possibilities
for v

Thus, C contains exactly 2k vectors. Applying this formula to its (n, n � k) dual code,
we see that has 2n�k vectors.

We now construct one of the oldest families of linear codes, the Reed-Muller
codes. As mentioned earlier, this is the type of code that was used by the Mariner
9 spacecraft to transmit pictures of Mars. In order to be transmitted, each photo-
graph had to be broken down into picture elements, or pixels. This was done by
overlaying the photograph with a 700 � 832 pixel grid and then assigning to each
pixel one of 64 shades of gray, ranging from white (0) to black (63). Since 64 � 26,
we can use binary arithmetic to represent each of these shades: white is 000000 and
black is 111111. We can then rewrite these 64 binary numbers as vectors in and
encode them using a code that corrects as many errors as possible. The code that was
chosen for use by Mariner 9 belongs to a large family of codes that are most easily 
defined inductively.

Definition The (first-order) Reed-Muller codes Rn are defined inductively as
follows:

1. For n � 0, R0 � �2 � {0, 1}.
2. For n 
 1, Rn is the subspace of whose basis consists of all vectors of

the form

where u is a basis vector in Rn�1, 0 is the zero vector in and 1 is the vector
of 1s in �2n�1

2 .
�2n�1

2 ,

cu
u
d   and  c 0

1
d

�2n

2

�6
2

C�

2 � 2 � p � 2
k times

� 2k

v � c1v1 � c2v2 � p � ckvk

C�

�n2.

dim C� � n � dim C � n � k

C�

�n2,C�

�n2.

Section 6.7 Applications 545

•
The Reed-Muller codes are named
after the computer scientists Irving
S. Reed and David E. Muller, who
published papers, independently,
about these codes in 1954.

Recall that the binary, or base two,
representation of a number arises
from writing it as a sum of distinct
powers of two. If n � bk 2k � p �
b1 2 � b0, where each bi is 0 or 1,
then in base two n is represented as
n � bi

p b1b0. For example, 25 �
16 � 8 � 1 � 1 24 � 1 23 �
0 22 � 0 2 � 1, so the binary
representation of 25 is 11001.

##
##

#
#

�

�
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Theorem 6. 35

To get a sense of what vectors these codes contain, let’s use the definition to con-
struct R1 and R2. A basis for R0 � �2 is just {1}, so a basis for R1 is

Thus, by closure under addition, R1 must also contain the vectors

It is easy to check that no other vectors can be obtained by addition, so

Similarly, a basis for R2 is

and, by closure under addition, it is easy to check that the 8 � 23 vectors in R2 are

Notice that in R1 every code vector except 0 and 1 has weight 1, and in R2 every
code vector except 0 and 1 has weight 2. This is a general property of the Reed-Muller
codes, and we prove it as part of the next theorem. But first, note that the complement
of a vector x in is the vector obtained by changing all the zeros to 1s and vice
versa. For example,

Observe that where 1 is the vector consisting entirely of 1s.

For n 
 1, the Reed-Muller code Rn is a (2n, n � 1) linear code in which every code
vector except 0 and 1 has weight 2n�1.

Proof We will prove this theorem by induction on n. For n � 1, we have already seen
that R1 � is a (2, 2) � (21, 1 � 1) linear code in which every code vector except 0
and 1 has weight 1 � 21–1. Assume that the result is true for n � k ; that is, assume that
Rk is a (2k, k � 1) linear code in which every code vector except 0 and 1 has weight
2k�1. Now consider Rk�1.

�2
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By construction, Rk�1 has a basis consisting of vectors of the form where u is

in Rk, together with the vector By the induction hypothesis, the vectors u, 0, and 

1 are in hence, the basis vectors for Rk�1 are in Moreover, the dimension of

Rk is k � 1, so there are k � 1 vectors of the form and one more, It follows

that the dimension of Rk�1 is k � 2, and therefore Rk�1 is a (2k�1, k � 2) linear code.
For the final assertion, note that the vectors in Rk�1 are obtained as linear combi-

nations of the basis vectors and so are of the form

where {u1, . . . , uk�1} is a basis for Rk, 0 and 1 are in and each ci is 0 or 1. Suppose
v 0, 1 and let u � c1u1 � p � ck�1uk�1. (Hence, u is in Rk .) If ck+2 � 0, then u 0,
1, so, by the induction hypothesis, u has weight 2k�1. But then v has weight 2 # 2k�1 �
2k. If ck�2 � 1, then v has the form

where u is in Rk. Since

(why?), we have

as required. This completes the induction, and we conclude that the theorem is true
for all n 
 1.

As noted, Mariner 9 required a code with 64 � 26 vectors. By Theorem 6.35, the
Reed-Muller code R5 has dimension 6 over �2. As you will see in the next chapter, it is
also capable of detecting and correcting multiple errors. That is why the Reed-Muller
code was the one that NASA used for the transmission of the Mariner photographs.
Exercises 35–38 explore further aspects of this important class of codes.

w 1v 2 � w 1u 2 � w 1u 2 � 2k

w 1u 2 � 2k � w 1u 2
v � cu

u
d � c 0

1
d � c u

u � 1
d � cu

u
d


�2k

2 ,

v � c1 cu1

u1

d � p � ck�1 cuk�1

uk�1

d � ck�2 c 01 d

c 0
1
d .cu

u
d�2k�1

2 .�2k

2 ;

c 0
1
d . cu

u
d ,
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5.

6.

7.

8.

9.

10.

11. f – � 2f ¿ � 5f � 0, f 10 2 � 1, f 1p>4 2 � 0

y– � 2ky¿ � k2y � 0, k  0, y 10 2 � 1, y 11 2 � 0

y– � k2y � 0, k  0, y10 2 � y¿ 10 2 � 1

x– � 4x¿ � 4x � 0, x 10 2 � 1, x¿ 10 2 � 1

y– � 2y¿ � y � 0, y 10 2 � y 11 2 � 1

g– � 2g � 0, g10 2 � 1, g11 2 � 0

f – � f ¿ � f � 0, f 10 2 � 0, f 11 2 � 1Homogeneous Linear Differential Equations

In Exercises 1–12, find the solution of the differential equa-
tion that satisfies the given boundary condition(s).

1.

2.

3.

4. x– � x¿ � 12x � 0, x 10 2 � 0, x¿ 10 2 � 1

y– � 7y¿ � 12y � 0, y 10 2 � y 11 2 � 1

x¿ � x � 0, x 11 2 � 1

y¿ � 3y � 0, y 11 2 � 2

Exercises 6. 7

dy
dx

�
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17. A mass is attached to a spring, as in Example 6.92. At
time t � 0 second, the spring is stretched to a length of
10 cm below its position at rest. The spring is released,
and its length 10 seconds later is observed to be 5 cm.
Find a formula for the length of the spring at time
t seconds.

18. A 50 g mass is attached to a spring, as in Example 6.92.
If the period of oscillation is 10 seconds,
find the spring constant.

19. A pendulum consists of a mass, called a bob, that 
is affixed to the end of a string of length L (see
Figure 6.26). When the bob is moved from its rest
position and released, it swings back and forth. The
time it takes the pendulum to swing from its farthest
right position to its farthest left position and back to
its next farthest right position is called the period of
the pendulum.

548 Chapter 6 Vector Spaces

Table 6. 2
Population

Year (in millions)

1900 76
1910 92
1920 106
1930 123
1940 131
1950 150
1960 179
1970 203
1980 227
1990 250
2000 281

Source: U.S. Bureau of the Census

Figure 6. 25
Stonehenge
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12.

13. A strain of bacteria has a growth rate that is propor-
tional to the size of the population. Initially, there are
100 bacteria; after 3 hours, there are 1600.

(a) If p(t) denotes the number of bacteria after
t hours, find a formula for p(t).

(b) How long does it take for the population to
double?

(c) When will the population reach one million?

14. Table 6.2 gives the population of the United States at
10-year intervals for the years 1900–2000.

(a) Assuming an exponential growth model, use the
data for 1900 and 1910 to find a formula for p(t),
the population in year t. [Hint: Let t � 0 be 1900
and let t � 1 be 1910.] How accurately does your
formula calculate the U.S. population in 2000?

(b) Repeat part (a), but use the data for the years 1970
and 1980 to solve for p(t). Does this approach give
a better approximation for the year 2000?

(c) What can you conclude about U.S. population
growth?

h– � 4h¿ � 5h � 0, h10 2 � 0, h¿ 10 2 � �1

15. The half-life of radium-226 is 1590 years. Suppose
we start with a sample of radium-226 whose mass is
50 mg.

(a) Find a formula for the mass m(t) remaining after
t years and use this formula to predict the mass
remaining after 1000 years.

(b) When will only 10 mg remain?

16. Radiocarbon dating is a method used by scientists to
estimate the age of ancient objects that were once

living matter, such as bone, leather, wood, or paper. All
of these contain carbon, a proportion of which is car-
bon-14, a radioactive isotope that is continuously
being formed in the upper atmosphere. Since living
organisms take up radioactive carbon along with other
carbon atoms, the ratio between the two forms re-
mains constant. However, when an organism dies,
the carbon-14 in its cells decays and is not replaced.
Carbon-14 has a known half-life of 5730 years, so by
measuring the concentration of carbon-14 in an
object, scientists can determine its approximate age.

One of the most successful applications of radio-
carbon dating has been to determine the age of the
Stonehenge monument in England (Figure 6.25).
Samples taken from the remains of wooden posts were
found to have a concentration of carbon-14 that was
45% of that found in living material. What is the
estimated age of these posts?
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Linear Codes

Which of the codes in Exercises 23–30 are linear codes?

23.

24.

25.

26.

27.

28.

29. The even parity code En (See Exercise 18 in Section 5.5.)

30. The odd parity code On consisting of all vectors in 
with odd weight

31. Find the other two bases for the code C1 in
Example 6.94.

32. (a) If a (9, 4) linear code has generator matrix G and
parity check matrix P, what are the dimensions of
G and P?

(b) Repeat part (a) for an (n, k) linear code.

33. For a linear code C, show that C without
using matrices.

34. If C is an (n, k) linear code that is self dual, prove that
n must be even. [Hint: Use the analogue in of
Theorem 5.13.]

35. Write out the vectors in the Reed-Muller code R3.

36. Define a family of matrices inductively as follows:
G0 � [1] and, for n 
 1,

where 0 is a zero vector and 1 is a vector consisting
entirely of ones.

Gn � cGn�1  0

Gn�1  1
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Figure 6. 26

Let u� u(t) be the angle of the pendulum from
the vertical. It can be shown that if there is no resis-
tance, then when u is small it satisfies the differential
equation

where g is the constant of acceleration due to gravity,
approximately 9.7 m/s2. Suppose that L � 1 m and
that the pendulum is at rest (i.e., u� 0) at time 
t � 0 second. The bob is then drawn to the right at
an angle of u1 radians and released.

(a) Find the period of the pendulum.
(b) Does the period depend on the angle u1 at which

the pendulum is released? This question was
posed and answered by Galileo in 1638. [Galileo
Galilei (1564–1642) studied medicine as a student
at the University of Pisa, but his real interest was
always mathematics. In 1592, Galileo was ap-
pointed professor of mathematics at the Univer-
sity of Padua in Venice, where he taught primarily
geometry and astronomy. He was the first to use a
telescope to look at the stars and planets, and in
so doing, he produced experimental data in sup-
port of the Copernican view that the planets re-
volve around the sun and not the earth. For this,
Galileo was summoned before the Inquisition,
placed under house arrest, and forbidden to pub-
lish his results. While under house arrest, he was
able to write up his research on falling objects and
pendulums. His notes were smuggled out of Italy
and published as Discourses on Two New Sciences
in 1638.]

20. Show that the solution set S of the second-order
differential equation y � � ay� � by � 0 is a subspace
of �.

21. Prove Theorem 6.33(b).

22. Show that e pt cos qt and e pt sin qt are linearly
independent.

u– �
g

L
u � 0
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(a) Write out G1, G2, and G3.
(b) Using induction, prove that for all n 
 0, Gn is a

generator matrix for the Reed-Muller code Rn.

37. Find a parity check matrix for R2.

38. Find a parity check matrix for R3.

550 Chapter 6 Vector Spaces

39. Prove that, for a linear code C, either all the code
vectors have even weight or exactly half of them do.
[Hint: Let E be the set of vectors in C with even
weight and O the set of vectors in C with odd weight.
If O is not empty, let co be in O and consider
O� � {co � e : e in E}. Show that O� � O.]

basis, 464
Basis Theorem, 471
change-of-basis matrix, 483
composition of linear

transformations, 495
coordinate vector, 467
diagonalizable linear

transformation, 527
dimension, 471
Fundamental Theorem of Invertible

Matrices, 530
identity transformation, 492
invertible linear transformation, 496

isomorphism, 511
kernel of a linear

transformation, 500
linear combination of vectors, 451
linear transformation, 490
linearly dependent vectors, 461, 464
linearly independent vectors, 461, 464
matrix of a linear

transformation, 516
nullity of a linear

transformation, 502
one-to-one, 506
onto, 506

range of a linear
transformation, 500

rank of a linear
transformation, 502

Rank Theorem, 504
span of a set of vectors, 456
standard basis, 465
subspace, 452
trivial subspace, 455
vector, 447
vector space, 447
zero subspace, 455
zero transformation, 492

Key Definitions and Concepts

Review Questions

1. Mark each of the following statements true or 
false:

(a) If V � span(v1, . . . , vn), then every spanning set
for V contains at least n vectors.

(b) If {u, v, w} is a linearly independent set of vectors,
then so is {u � v, v � w, u � w}.

(c) M22 has a basis consisting of invertible matrices.
(d) M22 has a basis consisting of matrices whose trace

is zero.
(e) The transformation T : �n � defined by

is a linear transformation.
(f) If is a linear transformation and dim

dim W, then T cannot be both one-to-one
and onto.

(g) If is a linear transformation and
ker(T) � V, then W � {0}.

(h) If �4 is a linear transformation and
nullity(T) � 4, then T is onto.

(i) The vector space V � {p(x) in �4 : p(1) � 0} is
isomorphic to �3.

T : M33 S

T : V S W

V 
T : V S W

T 1x 2 � 7 x 7 S

(j) If is the identity transformation, then
the matrix [I]CdB is the identity matrix for any
bases B and C of V.

In Questions 2–5, determine whether W is a subspace of V.

2.

3.

4.

5.

6. Determine whether {1, cos 2x, 3sin2x} is linearly de-
pendent or independent.

7. Let A and B be nonzero n � n matrices such that A is
symmetric and B is skew-symmetric. Prove that {A, B}
is linearly independent.

V � f, W � 5f in f : f 1x � p2 � f 1x 2  for all x6V � �3, W � 5p1x 2  in �3 : x
3p11>x 2 � p1x 2 6� a � c � b � d f

W � e c a b

c d
d  : a � b � c � dV � M22,

V � �2, W � e c x
y
d  : x 2 � 3y 2 � 0 f

I : V S V
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In Questions 8 and 9, find a basis for W and state the dimen-
sion of W.

8.

9.

10. Find the change-of-basis matrices PCdB and PBdC with
respect to the bases B� {1, 1 � x, 1 � x � x2} and
C � {1 � x, x � x2, 1 � x2} of �2.

In Questions 11–13, determine whether T is a linear
transformation.

11. defined by T(x) � yxTy, where 

12. defined by T(A) � ATA

13. defined by T(p(x)) � p(2x � 1)

14. If is a linear transformation such that 

and

find T(5 � 3x � 2x2).T 11 � x � x2 2 � c 0 �1

1 0
d ,T 11 2 � c 1 0

0 1
d , T 11 � x 2 � c 1 1

0 1
dT : �2 S M22

T : �n S �n

T : Mnn S Mnn

y � c 1
2
dT : �2 S �2

W � 5p 1x 2  in �5 : p 1�x 2 � p 1x 2 6W � e c a b

c d
d  : a � d � b � c f
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15. Find the nullity of the linear transformation
defined by T(A) � tr(A).

16. Let W be the vector space of upper triangular 2 � 2
matrices.

(a) Find a linear transformation such
that ker(T) � W.

(b) Find a linear transformation such
that range(T) � W.

17. Find the matrix [T]CdB of the linear transformation
T in Question 14 with respect to the standard bases
B� {1, x, x 2} of �2 and C� {E11, E12, E21, E22} of M22.

18. Let be a set of vectors in a vector
space V with the property that every vector in V can be
written as a linear combination of in exactly
one way. Prove that S is a basis for V.

19. If and are linear transforma-
tions such that range(T) ker(S), what can be
deduced about 

20. Let be a linear transformation, and let
be a basis for V such that 

is also a basis for V. Prove that T is invertible.T 1vn 2 6 5T 1v1 2 , p ,5v1, p , vn6T : V S V

S � T ?
�

S : V S WT : U S V

v1, p , vn

S � 5v1, p , vn6
T : M22 S M22

T : M22 S M22

T : Mnn S �
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A straight line may be the shortest
distance between two points, but it
is by no means the most
interesting.

—Doctor Who
In “The Time Monster”

By Robert Sloman
BBC, 1972

Although this may seem a
paradox, all exact science is
dominated by the idea
of approximation.

—Bertrand Russell
In W. H. Auden and 

L. Kronenberger, eds.
The Viking Book of Aphorisms

Viking, 1962, p. 263

7. 0 Introduction:  Taxicab Geometry
We live in a three-dimensional Euclidean world, and, therefore, concepts from
Euclidean geometry govern our way of looking at the world. In particular, imagine
stopping people on the street and asking them to fill in the blank in the following
sentence: “The shortest distance between two points is a ______.” They will almost
certainly respond with “straight line.” There are, however, other equally sensible and
intuitive notions of distance. By allowing ourselves to think of “distance” in a more
flexible way, we will open the door to the possibility of having a “distance” between
polynomials, functions, matrices, and many other objects that arise in linear algebra.

In this section, you will discover a type of “distance” that is every bit as real as the
straight-line distance you are used to from Euclidean geometry (the one that is a
consequence of Pythagoras’ Theorem). As you’ll see, this new type of “distance” still
behaves in some familiar ways.

Suppose you are standing at an intersection in a city, trying to get to a restaurant
at another intersection. If you ask someone how far it is to the restaurant, that person
is unlikely to measure distance “as the crow flies” (i.e., using the Euclidean version of
distance). Instead, the response will be something like “It’s five blocks away.” Since
this is the way taxicab drivers measure distance, we will refer to this notion of
“distance” as taxicab distance.

Figure 7.1 shows an example of taxicab distance. The shortest path from A to B
requires traversing the sides of five city blocks. Notice that although there is more
than one route from A to B, all shortest routes require three horizontal moves and two
vertical moves, where a “move” corresponds to the side of one city block. (How many
shortest routes are there from A to B?) Therefore, the taxicab distance from A to B is 5.

Idealizing this situation, we will assume that all blocks are unit squares, and we
will use the notation dt (A, B) for the taxicab distance from A to B.

Problem 1 Find the taxicab distance between the following pairs of points:

1e 2  11, 1
2 2  and 1�3

2 , 3
2 2     1f 2  12.5, 4.6 2  and 13.1, 1.5 21c 2  10, 0 2  and 1�4, �3 2     1d 2  1�2, 3 2  and 11, 3 21a 2  11, 2 2  and 15, 5 2     1b 2  12, 4 2  and 13, �2 2

552

A

B

Figure 7. 1
Taxicab distance
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Problem 2 Which of the following is the correct formula for the taxicab distance
dt (A, B) between A � (a1, a2) and B � (b1, b2)?

We can define the taxicab norm of a vector v as

Problem 3 Find for the following vectors:

Problem 4 Show that Theorem 1.3 is true for the taxicab norm.
Problem 5 Verify the Triangle Inequality (Theorem 1.5), using the taxicab norm

and the following pairs of vectors:

Problem 6 Show that the Triangle Inequality is true, in general, for the taxicab
norm.

In Euclidean geometry, we can define a circle of radius r, centered at the origin, as
the set of all x such that Analogously, we can define a taxicab circle of radius
r, centered at the origin, as the set of all x such that 

Problem 7 Draw taxicab circles centered at the origin with the following radii:

Problem 8 In Euclidean geometry, the value of p is half the circumference of a
unit circle (a circle of radius 1). Let’s define taxicab pi to be the number pt that is half
the circumference of a taxicab unit circle. What is the value of pt?

In Euclidean geometry, the perpendicular bisector of a line segment can be
defined as the set of all points that are equidistant from A and B. If we use taxicab dis-
tance instead of Euclidean distance, it is reasonable to ask what the perpendicular
bisector of a line segment now looks like. To be precise, the taxicab perpendicular
bisector of is the set of all points X such that

Problem 9 Draw the taxicab perpendicular bisector of for the following pairs
of points:

As these problems illustrate, taxicab geometry shares some properties with
Euclidean geometry, but it also differs in some striking ways. In this chapter, we will

1c 2  A � 11, 1 2 , B � 15, 3 2     1d 2  A � 11, 1 2 , B � 15, 5 21a 2  A � 12, 1 2 , B � 14, 1 2     1b 2  A � 1�1, 3 2 , B � 1�1, �2 2
AB

dt 1X, A 2 � dt 1X, B 2AB

AB

1a 2  r � 3    1b 2  r � 4    1c 2  r � 1

7x 7 t � r.
7x 7 � r.

1a 2 u � c 3
1
d , v � c 1

2
d   1b 2 u � c 1

�1
d , v � c�2

3
d

1c 2  v � c�3

�6
d     1d 2  v � c 1

2
d

1a 2  v � c 3

�2
d     1b 2  v � c 6

�4
d7v 7 t

7v 7 t � dt1v, 0 2
1c 2   dt 1A, B 2 � �a1 � b1� � �a2 � b2�
1b 2   dt 1A, B 2 � 1�a1� � �b1� 2 � 1�a2� � �b2� 21a 2   dt 1A, B 2 � 1a1 � b1 2 � 1a2 � b2 2
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encounter several other types of distances and norms, each of which is useful in its
own way. We will try to discover what they have in common and use these common
properties to our advantage. We will also explore a variety of approximation prob-
lems in which the notion of “distance” plays an important role.

Inner Product Spaces
In Chapter 1, we defined the dot product u # v of vectors u and v in �n, and we have
made repeated use of this operation throughout this book. In this section, we will use
the properties of the dot product as a means of defining the general notion of an
inner product. In the next section, we will show that inner products can be used to
define analogues of “length” and “distance” in vector spaces other than �n.

The following definition is our starting point; it is based on the properties of the
dot product proved in Theorem 1.2.

Definition An inner product on a vector space V is an operation that assigns
to every pair of vectors u and v in V a real number 8u, v9 such that the following
properties hold for all vectors u, v, and w in V and all scalars c :

1. 8u, v9� 8v, u9
2. 8u, v � w9� 8u, v9� 8u, w9
3. 8cu, v9� c 8u, v9
4. 8u, u9
 0 and 8u, u9� 0 if and only if u � 0

A vector space with an inner product is called an inner product space.

Remark Technically, this definition defines a real inner product space, since it as-
sumes that V is a real vector space and since the inner product of two vectors is a real
number. There are complex inner product spaces too, but their definition is somewhat
different. (See Exploration: Vectors and Matrices with Complex Entries at the end of
this section.)

�n is an inner product space with 8u, v9 � u # v. Properties (1) through (4) were
verified as Theorem 1.2.

The dot product is not the only inner product that can be defined on �n.

Let and be two vectors in �2. Show that

defines an inner product.

8u, v9 � 2u1v1 � 3u2v2

v � c v1

v2

du � cu1

u2

d
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Solution We must verify properties (1) through (4). Property (1) holds because

Next, let We check that

which proves property (2).
If c is a scalar, then

which verifies property (3).
Finally,

and it is clear that 8u, u9� � � 0 if and only if u1 � u2 � 0 (that is, if and only
if u � 0). This verifies property (4), completing the proof that 8u, v9, as defined, is an
inner product.

Example 7.2 can be generalized to show that if w1, . . . , wn are positive scalars and

are vectors in �n, then

(1)

defines an inner product on �n, called a weighted dot product. If any of the weights
wi is negative or zero, then equation (1) does not define an inner product. (See Exer-
cises 13 and 14.)

Recall that the dot product can be expressed as u # v � uTv. Observe that we can
write the weighted dot product in equation (1) as8u, v9 � uTWv

8u, v9 � w1u1v1 � p � wnunvn

u � £u1

o
un

§   and  v � £ v1

o
vn

§

3u2
22u2

1

8u, u9 � 2u1u1 � 3u2u2 � 2u1
2 � 3u2

2 
 0

� c 8u, v9� c 12u1v1 � 3u2v2 28cu, v9 � 21cu1 2v1 � 31cu2 2v2

� 8u, v9 � 8u, w9� 12u1v1 � 3u2v2 2 � 12u1w1 � 3u2w2 2� 2u1v1 � 2u1w1 � 3u2v2 � 3u2w2

8u, v � w9 � 2u11v1 � w1 2 � 3u21v2 � w2 2
w � cw1

w2

d .
8u, v9 � 2u1v1 � 3u2v2 � 2v1u1 � 3v2u2 � 8v, u9
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where W is the n � n diagonal matrix

The next example further generalizes this type of inner product.

Let A be a symmetric, positive definite n � n matrix (see Section 5.5) and let u and v
be vectors in �n. Show that

defines an inner product.

Solution We check that

Also,

and

Finally, since A is positive definite, 8u, u9 � uTAu � 0 for all u 0, so 8u, u9 �
uTAu � 0 if and only if u � 0. This establishes the last property.

To illustrate Example 7.3, let Then

The matrix A is positive definite, by Theorem 5.24, since its eigenvalues are 3 and 8.
Hence, u, v defines an inner product on �2.

We now define some inner products on vector spaces other than �n.

In �2, let p(x) � a0 � a1x � a2x
2 and q(x) � b0 � b1x � b2x

2. Show that

defines an inner product on �2. (For example, if p(x) � 1 � 5x � 3x2 and q(x) �
6 � 2x � x2, then (x), q(x) � 1 # 6 � (�5) # 2 � 3 # (�1) � �7.)

Solution Since �2 is isomorphic to �3, we need only show that the dot product in �3

is an inner product, which we have already established.

98p
8p1x 2 , q1x 2 9 � a0b0 � a1b1 � a2b2

��

8u, v9 � uTAv � 3u1 u2 4 c 4 �2

�2 7
d c v1

v2

d � 4u1v1 � 2u1v2 � 2u2v1 � 7u2v2

A � c 4 �2

�2 7
d .



8cu, v9 � 1cu 2TAv � c 1uTAv 2 � c8u, v9
8u, v � w9 � uTA1v � w 2 � uTAv � uTAw � 8u, v9 � 8u, w9

� ATv # u � 1vTA 2T # u � vTAu � 8v, u98u, v9 � uTAv � u # Av � Av # u

8u, v9 � uTAv

W � £w1
p 0

o ∞ o
0 p wn

§
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Let f and g be in �[a, b] , the vector space of all continuous functions on the closed
interval [a, b] . Show that

defines an inner product on �[a, b] .

Solution We have

Also, if h is in �[a, b] , then

If c is a scalar, then

Finally, � ( f(x))2 dx 
 0, and it follows from a theorem of calculus that, since f

is continuous, � (f(x))2 dx � 0 if and only if f is the zero function. Therefore,

is an inner product on �[a, b] .

Example 7.5 also defines an inner product on any subspace of �[a, b] . For example,
we could restrict our attention to polynomials defined on the interval [a, b] . Suppose
we consider �[0, 1], the vector space of all polynomials on the interval [0, 1]. Then,
using the inner product of Example 7.5, we have

� c x3

3
�

x4

4
d

0

1

�
1

3
�

1

4
�

7

12

8x 2, 1 � x9 � 
1

0

x211 � x 2 dx � 
1

0

1x 2 � x3 2 dx

8 f, g 9 
b

a

8 f, f 9
b

a

8 f, f 9
� c8 f, g 9� c

b

a

f 1x 2g 1x 2 dx

8cf, g 9 � 
b

a

cf 1x 2g 1x 2 dx

� 8 f, g 9 � 8 f, h9� 
b

a

f 1x 2g 1x 2 dx � 
b

a

f 1x 2h1x 2 dx

� 
b

a

1 f 1x 2g 1x 2 � f 1x 2h1x 2 2 dx

8 f, g � h9 � 
b

a

f 1x 2 1g 1x 2 � h1x 2 2 dx

8 f, g 9 � 
b

a

f 1x 2g 1x 2 dx � 
b

a

g 1x 2 f 1x 2 dx � 8g, f 9

8 f, g 9 � 
b

a

f 1x 2g 1x 2 dx
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Theorem 7. 1

Properties of Inner Products

The following theorem summarizes some additional properties that follow from the
definition of inner product.

Let u, v, and w be vectors in an inner product space V and let c be a scalar.

a. 8u � v, w9� 8u, w9� 8v, w9
b. 8u, cv9� c 8u, v9
c. 8u, 09� 80, v9� 0

Proof We prove property (a), leaving the proofs of properties (b) and (c) as
Exercises 23 and 24. Referring to the definition of inner product, we have

by (1)

by (2)

by (1)

Length,  Distance,  and Orthogonality

In an inner product space, we can define the length of a vector, distance between vec-
tors, and orthogonal vectors, just as we did in Section 1.2. We simply have to replace
every use of the dot product u # v by the more general inner product 8u, v9.
Definition Let u and v be vectors in an inner product space V.

1. The length (or norm) of v is
2. The distance between u and v is d(u, v) �
3. u and v are orthogonal if 8u, v9� 0.

Note that is always defined, since 8v, v9
 0 by the definition of inner product, so
we can take the square root of this nonnegative quantity. As in �n, a vector of length 1
is called a unit vector. The unit sphere in V is the set S of all unit vectors in V.

Consider the inner product on �[0, 1] given in Example 7.5. If f(x) � x and g(x) �
3x � 2, find

(a) (b) d( f, g) (c)

Solution (a) We find that

so .7 f 7 � 1 8 f, f 9 � 1>13

8 f, f 9 � 
1

0

f 21x 2 dx � 
1

0

x 2 dx �
x 3

3
d

0

1

�
1

3

8 f, g97 f 7

7v 7
7u � v 7 .7 v 7 � 1 8v, v9.

� 8u, w9 � 8v, w9� 8w, u9 � 8w, v98u � v, w9 � 8w, u � v9
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(b) Since and

we have

Combining these facts, we see that d( f, g) � � 2�
(c) We compute

Thus, f and g are orthogonal.

It is important to remember that the “distance” between f and g in Example 7.6
does not refer to any measurement related to the graphs of these functions. Neither
does the fact that f and g are orthogonal mean that their graphs intersect at right an-
gles. We are simply applying the definition of a particular inner product. However, in
doing so, we should be guided by the corresponding notions in �2 and �3, where the
inner product is the dot product. The geometry of Euclidean space can still guide us
here, even though we cannot visualize things in the same way.

Using the inner product on �2 defined in Example 7.2, draw a sketch of the unit
sphere (circle).

Solution If then 8x, x9� 2x2 � 3y 2. Since the unit sphere (circle) consists

of all x such that � 1, we have

This is the equation of an ellipse, and its graph is shown in Figure 7.2.

1 � 7 x 7 � 1 8x, x9 � 12x2 � 3y2  or  2x 2 � 3y 2 � 1

7x 7x � cx
y
d ,

8 f, g 9 � 
1

0

f 1x 2g 1x 2 dx � 
1

0

x 13x � 2 2 dx � 
1

0

13x 2 � 2x 2 dx � 3x 3 � x 2 4 01 � 0

13.14>3�  4 cx � x2 �
x3

3
d

0

1

�
4

3

8 f � g, f � g 9 � 
1

0

1 f 1x 2 � g 1x 2 2 2 dx � 
1

0

 411 � 2x � x2 2 dx

f 1x 2 � g 1x 2 � x � 13x � 2 2 � 2 � 2x � 211 � x 2d1 f, g 2 � 7 f � g 7 � 1 8 f � g, f � g9
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� 3
1
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� 2� 2
1

1
�

1
�

Figure 7. 2
A unit circle that is an ellipse
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Theorem 7. 2

We will discuss properties of length, distance, and orthogonality in the next sec-
tion and in the exercises. One result that we will need in this section is the generalized
version of Pythagoras’ Theorem, which extends Theorem 1.6.

Pythagoras’ Theorem

Let u and v be vectors in an inner product space V. Then u and v are orthogonal if
and only if

Proof As you will be asked to prove in Exercise 32, we have

It follows immediately that � � if and only if 8u, v9� 0.

Orthogonal Projections and the Gram-Schmidt Process

In Chapter 5, we discussed orthogonality in �n. Most of this material generalizes
nicely to general inner product spaces. For example, an orthogonal set of vectors
in an inner product space V is a set {v1, . . . , vk} of vectors from V such that 8vi, vj9� 0
whenever vi vj. An orthonormal set of vectors is then an orthogonal set of unit
vectors. An orthogonal basis for a subspace W of V is just a basis for W that is an
orthogonal set; similarly, an orthonormal basis for a subspace W of V is a basis for W
that is an orthonormal set.

In �n, the Gram-Schmidt Process (Theorem 5.15) shows that every subspace has
an orthogonal basis. We can mimic the construction of the Gram-Schmidt Process to
show that every finite-dimensional subspace of an inner product space has an or-
thogonal basis—all we need to do is replace the dot product by the more general
inner product. We illustrate this approach with an example. (Compare the steps here
with those in Example 5.13.)

Construct an orthogonal basis for �2 with respect to the inner product

by applying the Gram-Schmidt Process to the basis {1, x, x2 }.

Solution Let x1 � 1, x2 � x, and x3 � x2. We begin by setting v1 � x1 � 1. Next we
compute8v1, v19 � 

1

�1

dx � x d
�1

1

� 2  and  8v1, x29 � 
1

�1

x dx �
x 2

2
d

�1

1

� 0

8 f, g 9 � 
1

�1

f 1x 2g 1x 2 dx



7v 7 27u 7 27u � v 7 27u � v 7 2 � 8u � v, u � v9 � 7u 7 2 � 28u, v9 � 7 v 7 2
7u � v 7 2 � 7u 7 2 � 7v 7 2

�

�
I I I I II I I I I �������������������������������
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Therefore,

To find v3, we first compute

Then

It follows that {v1, v2, v3} is an orthogonal basis for �2 on the interval [�1, 1] . The
polynomials

are the first three Legendre polynomials. If we divide each of these polynomials by
its length relative to the same inner product, we obtain normalized Legendre polyno-
mials (see Exercise 41).

Just as we did in Section 5.2, we can define the orthogonal projection projW (v)
of a vector v onto a subspace W of an inner product space. If {u1, . . . , uk} is an
orthogonal basis for W, then

Then the component of v orthogonal to W is the vector

As in the Orthogonal Decomposition Theorem (Theorem 5.11), projW (v) and
perpW (v) are orthogonal (see Exercise 43), and so, schematically, we have the situa-
tion illustrated in Figure 7.3.

We will make use of these formulas in Sections 7.3 and 7.5 when we consider
approximation problems—in particular, the problem of how best to approximate a

perpW 1v 2 � v � projW 1v 2

projW 1v 2 �
8u1, v98u1, u19u1 � p �

8uk, v98uk, uk9uk

1,  x,  x 2 � 1
3

v3 � x3 �
8v1, x398v1, v19 v1 �

8v2, x398v2, v29 v2 � x2 �
2
3

2
11 2 �

0
2
3

x � x2 �
1

3

8v2, v29 � 
1

�1

x2 dx �
2

3

8v1, x39 � 
1

�1

x 2 dx �
x 3

3
d

�1

1

�
2

3
,  8v2, x39 � 

1

�1

x3 dx �
x4

4
d

�1

1

� 0,

v2 � x2 �
8v1, x298v1, v19 v1 � x �

0

2
11 2 � x
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W

v

projW(v)

perpW(v)
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Adrien Marie Legendre (1752–1833)
was a French mathematician who
worked in astronomy, number
theory, and elliptic functions. He
was involved in several heated
disputes with Gauss. Legendre gave
the first published statement of the
law of quadratic reciprocity in
number theory in 1765. Gauss,
however, gave the first rigorous
proof of this result in 1801 and
claimed credit for the result,
prompting understandable outrage
from Legendre. Then in 1806,
Legendre gave the first published
application of the method of least
squares in a book on the orbits of
comets. Gauss published on the
same topic in 1809 but claimed he
had been using the method since
1795, once again infuriating
Legendre.
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Theorem 7. 3

given function by “nice” functions. Consequently, we will defer any examples until
then, when they will make more sense. Our immediate use of orthogonal projection
will be to prove an inequality that we first encountered in Chapter 1.

The Cauchy-Schwarz and Triangle Inequalities

The proofs of identities and inequalities involving the dot product in �n are easily
adapted to give corresponding results in general inner product spaces. Some of these
are given in Exercises 31–36. In Section 1.2, we stated without proof the Cauchy-
Schwarz Inequality, which is important in many branches of mathematics. We now
give a proof of this result.

The Cauchy-Schwarz Inequality

Let u and v be vectors in an inner product space V. Then

with equality holding if and only if u and v are scalar multiples of each other.

Proof If u � 0, then the inequality is actually an equality, since

If u 0, then let W be the subspace of V spanned by u. Since and

perpW v � v � projW(v) are orthogonal, we can apply Pythagoras’ Theorem to obtain

(2)

It follows that . Now

so we have

Taking square roots, we obtain 
Clearly this last inequality is an equality if and only if . By

equation (2) this is true if and only if perpW (v) � 0 or, equivalently,

v � projW 1v 2 �
8u, v98u, u9u

7projW 1v 2 7 2 � 7 v 7 2�8u, v9� � 7u 7 7 v 7 .
8u, v927u 7 2 � 7 v 7 2  or, equivalently,  8u, v92 � 7u 7 2 7 v 7 2

7projW 1v 2 7 2 � h 8u, v98u, u9u,
8u, v98u, u9ui � a 8u, v98u, u9 b 28u, u9 � 8u, v928u, u9 �

8u, v927u 7 2
7projW 1v 2 7 2 � 7 v 7 2� 7projW 1v 2 7 2 � 7perpW 1v 2 7 27 v 7 2 � 7projW 1v 2 � 1v � projW 1v 2 2 7 2 � 7projW 1v 2 � perpW 1v 2 7 2

projW 1v 2 �
8u, v98u, u9u

�80, v9� � 0 � 7 0 7 7 v 7

�8u, v9� � 7u 7 7 v 7
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This inequality was discovered by
several different mathematicians,
in several different contexts. It is
no surprise that the name of the
prolific Cauchy is attached to it.
The second name associated with
this result is that of Karl Herman
Amandus Schwarz (1843–1921), a
German mathematician who
taught at the University of Berlin.
His version of the inequality that
bears his name was published in
1885 in a paper that used integral
equations to study surfaces of
minimal area. A third name also
associated with this important
result is that of the Russian
mathematician Viktor Yakovlevitch
Bunyakovsky (1804–1889).
Bunyakovsky published the
inequality in 1859, a full quarter-
century before Schwarz’s work on
the same subject. Hence, it is more
proper to refer to the result as the
Cauchy-Bunyakovsky-Schwarz
Inequality.
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Theorem 7. 4

If this is so, then v is a scalar multiple of u. Conversely, if v � cu, then

so equality holds in the Cauchy-Schwarz Inequality.

For an alternative proof of this inequality, see Exercise 44. We will investigate
some interesting consequences of the Cauchy-Schwarz Inequality and related in-
equalities in Exploration: Geometric Inequalities and Optimization Problems, which
follows this section. For the moment, we use it to prove a generalized version of the
Triangle Inequality (Theorem 1.5).

The Triangle Inequality

Let u and v be vectors in an inner product space V. Then

Proof Starting with the equality you will be asked to prove in Exercise 32, we have

by Cauchy-Schwarz

Taking square roots yields the result.

� 1 7u 7 � 7 v 7 2 2� 7u 7 2 � 2 7u 7 7 v 7 � 7 v 7 2� 7u 7 2 � 2 0 8u, v9 0 � 7 v 7 27u � v 7 2 � 7u 7 2 � 28u, v9 � 7 v 7 2
7u � v 7 � 7u 7 � 7v 7

perpW 1v 2 � v � projW 1v 2 � cu �
8u, cu98u, u9 u � cu �

c8u, u98u, u9 u � 0
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In Exercises 1 and 2, let  

1. 8u, v9 is the inner product of Example 7.2. Compute

(a) 8u, v9 (b) (c) d(u, v)

2. 8u, v9 is the inner product of Example 7.3 with

Compute

(a) 8u, v9 (b) (c) d(u, v)

3. In Exercise 1, find a nonzero vector orthogonal to u.

4. In Exercise 2, find a nonzero vector orthogonal to u.

In Exercises 5 and 6, let and 
Compute

(a) (x), q(x)9 (b) (c) d(p(x), q(x))

5. (x), q(x)9 is the inner product of Example 7.4.8p 7 p 1x 2 78p1 � 3x2.
q1x 2 �p 1x 2 � 2 � 3x � x 2

7u 7A � c 4 � 2

� 2 7
d .
7u 7
u � c 2

�1
d  and v � c 3

4
d . 6. (x), q(x)9 is the inner product of Example 7.5 on the

vector space �2 [0, 1].

7. In Exercise 5, find a nonzero vector orthogonal to p(x).

8. In Exercise 6, find a nonzero vector orthogonal to p(x).

In Exercises 9 and 10, let f (x) � sin x and g(x) � sin x �
cos x in the vector space with the inner product
defined by Example 7.5.

9. Compute

(a) (b) (c) d( f, g)

10. Find a nonzero vector orthogonal to f.

11. Let a, b, and c be distinct real numbers. Show that8p1x 2 , q1x 2 9 � p 1a 2q 1a 2 � p 1b 2q1b 2 � p 1c 2q1c 2
7 f 78 f, g 9

� 30, 2p 4

8p
Exercises 7. 1

dy
dx

dy
dx

dy
dx

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



defines an inner product on �2. [Hint: You will need
the fact that a polynomial of degree n has at most n
zeros. See Appendix D.]

12. Repeat Exercise 5 using the inner product of Exer-
cise 11 with a � 0, b � 1, c � 2.

In Exercises 13–18, determine which of the four inner prod-
uct axioms do not hold. Give a specific example in each case.

13. Let and in Define

14. Let and in Define

15. Let and in �2. Define

16. In �2, define 

17. In �2, define 

18. In define 

In Exercises 19 and 20, defines an inner product on 

where and Find a symmetric matrix A

such that 

19.

20.

In Exercises 21 and 22, sketch the unit circle in for the

given inner product, where and 

21.

22.

23. Prove Theorem 7.1(b).

24. Prove Theorem 7.1(c).

In Exercises 25–29, suppose that u, v, and w are vectors in an
inner product space such that

Evaluate the expressions in Exercises 25–28.

25. 8u � w, v � w9
7u 7 � 1,  7 v 7 � 13,  7w 7 � 2

8u, v9 � 1,  8u, w9 � 5,  8v, w9 � 0

8u, v9 � 4u1v1 � u1v2 � u2v1 � 4u2v2

8u, v9 � u1v1 � 1
4 u2v2

v � c v1

v2

d .u � cu1

u2

d �2

8u, v9 � u1v1 � 2u1v2 � 2u2v1 � 5u2v2

8u, v9 � 4u1v1 � u1v2 � u2v1 � 4u2v2

8u, v9 � uTAv.

v � c v1

v2

d .u � cu1

u2

d �2,8u, v9
8A, B9 � det1AB 2 .M22,

8p1x 2 , q1x 2 9 � p 11 2q11 2 .8p1x 2 , q1x 2 9 � p 10 2q10 2 .8u, v9� u1v2 � u2v1.

v � c v1

v2

du � cu1

u2

d u2v2.8u, v9� u1v1 �

�2.v � c v1

v2

du � cu1

u2

d
8u, v9 � u1v1.�2.v � c v1

v2

du � cu1

u2

d
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26.

27.

28.

29. Show that [Hint: How can you use the
properties of inner product to verify that

?]

30. Show that, in an inner product space, there cannot be
unit vectors u and v with 

In Exercises 31–36, is an inner product. In Exercises 31–
34, prove that the given statement is an identity.

31.

32.

33.

34.

35. Prove that if and only if u and v
are orthogonal.

36. Prove that if and only if u
and v are orthogonal.

In Exercises 37–40, apply the Gram-Schmidt Process to the
basis B to obtain an orthogonal basis for the inner product
space V relative to the given inner product.

37. with the inner product in

Example 7.2

38. with the inner product

immediately following Example 7.3

39. V � �2,B� with the inner
product in Example 7.4

40. V � �2 [0, 1],B� with the 
inner product in Example 7.5

41. (a) Compute the first three normalized Legendre 
polynomials. (See Example 7.8.)

(b) Use the Gram-Schmidt Process to find the fourth
normalized Legendre polynomial.

42. If we multiply the Legendre polynomial of degree n by
an appropriate scalar we can obtain a polynomial (x)
such that 

(a) Find and 
(b) It can be shown that satisfies the recurrence

relation

Ln1x 2 �
2n � 1

n
xLn�11x 2 �

n � 1

n
Ln�21x 2

Ln1x 2 L31x 2 .L21x 2 ,L11x 2 ,L01x 2 ,Ln11 2 � 1.
Ln

51, 1 � x, 1 � x � x 26,
51, 1 � x, 1 � x � x 26,

V � �2, B � e c 1
0
d , c 1

1
d f ,

V � �2, B � e c 1
0
d , c 1

1
d f ,

d1u, v 2 � 1 7u 7 2 � 7 v 7 27u � v 7 � 7u � v 78u, v9 � 1
4 7u � v 7 2 � 1

4 7u � v 7 27u 7 2 � 7 v 7 2 � 1
2 7u � v 7 2 � 1

2 7u � v 7 27u � v 7 2 � 7u 7 2 � 28u, v9 � 7 v 7 28u � v, u � v9 � 7u 7 2 � 7 v 7 2
8u,v9 8u, v9 6 �1.

u � v � w � 0

u � v � w.

7 2u � 3v � w 77u � v 782v � w, 3u � 2w9

dy
dx

dy
dx
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for all n 
 2. Verify this recurrence for and 
Then use it to compute and 

43. Verify that if W is a subspace of an inner product
space V and v is in V, then perpW (v) is orthogonal
to all w in W.

44. Let u and v be vectors in an inner product space V.
Prove the Cauchy-Schwarz Inequality for u 0 as
follows:

(a) Let t be a real scalar. Then 
for all values of t. Expand this inequality to obtain

�t u � v, tu � v� 
 0



L51x 2 .L41x 2 L31x 2 .L21x 2
Section 7.1 Inner Product Spaces 565

a quadratic inequality of the form

What are a, b, and c in terms of u and v?
(b) Use your knowledge of quadratic equations and

their graphs to obtain a condition on a, b, and c
for which the inequality in part (a) is true.

(c) Show that, in terms of u and v, your condition in
part (b) is equivalent to the Cauchy-Schwarz
Inequality.

at 2 � bt � c 
 0
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Vectors and Matrices with Complex Entries
In this book, we have developed the theory and applications of real vector spaces, the
most basic example of which is �n. We have also explored the finite vector spaces �n

p

and their applications. The set �n of n-tuples of complex numbers is also a vector
space, with the complex numbers � as scalars. The vector space axioms (Section 6.1)
all hold for �n, and concepts such as linear independence, basis, and dimension carry
over from �n without difficulty.

The first notable difference between �n and �n is in the definition of dot product.

If we define the dot product in �n as in �n, then for the nonzero vector we

have

This is clearly an undesirable situation (a nonzero vector whose length is zero) and
violates Theorems 1.2(d) and 1.3. We now generalize the real dot product to �n in a
way that avoids this type of difficulty.

Definition If are vectors in �n , then the complex

dot product of u and v is defined by

The norm (or length) of a complex vector v is defined as in the real case:
Likewise, the distance between two complex vectors u and v is still

defined as d1u, v 2 � 7u�v 7 .7 v 7 � 1v # v.

u # v � u1v1 � p � unvn

u � £ u1

o
un

§ and v � £ v1

o
vn

§

7 v 7 � 1v # v � 2i2 � 12 � 1�1 � 1 � 10 � 0

v � c i
1
d
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1. Show that, for in �n,

2. Let 

(a) (b) (c) (d) (e) a nonzero vector orthogonal to 
(f) a nonzero vector orthogonal to 

The complex dot product is an example of the more general notion of a complex
inner product, which satisfies the same conditions as a real inner product with two
exceptions. Problem 3 provides a summary.

3. Prove that the complex dot product satisfies the following properties for all
vectors , , and w in �n and all complex scalars.

(a)
(b)
(c)
(d) .

For matrices with complex entries, addition, multiplication by complex scalars,
transpose, and matrix multiplication are all defined exactly as we did for real matri-
ces in Section 3.1, and the algebraic properties of these operations still hold. (See Sec-
tion 3.2.) Likewise, we have the notion of the inverse and determinant of a square
complex matrix just as in the real case, and the techniques and properties all carry
over to the complex case. (See Sections 3.3 and 4.2.)

The notion of transpose is, however, less useful in the complex case than in the
real case. The following definition provides an alternative.

Definition If A is a complex matrix, then the conjugate transpose of A is the
matrix A* defined by

In the preceding definition, refers to the matrix whose entries are the complex
conjugates of the corresponding entries of A; that is, if

4. Find the conjugate transpose A* of the given matrix:

(a) (b)

(c) (d)

Properties of the complex conjugate (Appendix C) extend to matrices, as the next
problem shows.

5. Let A and B be complex matrices, and let c be a complex scalar. Prove the
following properties:

(a) (b)

(c) (d)

(e) 1A 2T � 1AT 2 AB � A BcA � c A

A � B � A � BA � A

A � £ 3i 0 1 � i

1 � i 4 i

1 � i 0 �i

§A � c 2 � i 1 � 3i �2

4 0 3 � 4i
d

A � c 2 5 � 2i

5 � 2i �1
dA � c i 2i

�i 3
d

A � 3aij 4 , then A � 3aij 4 .A

A* � A T

u # u � 0  and  u # u � 0  if and only if u � 0
1c u2 # v � c 1u # v 2   and  u # 1c v 2 � c 1u # v 2u # 1v � w 2 � u # v � u # w
u # v � v # u

vu

v
ud1u, v 27 v 77u 7u # v

u � c i
1
d and v � c 2 � 3i

1 � 5i
d . Find:

7 v 7 � 1 ƒ v 2
1 ƒ � ƒ v2

2 ƒ � p � ƒ v 2
n ƒ .v � £ v1

o
vn

§
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Hermitian matrices are named
after the French mathematician
Charles Hermite (1822–1901).
Hermite is best known for his
proof that the number e is tran-
scendental, but he also was the
first to use the term orthogonal
matrices, and he proved that sym-
metric (and Hermitian) matrices
have real eigenvalues.

The properties in Problem 5 can be used to establish the following properties of
the conjugate transpose, which are analogous to the properties of the transpose for
real matrices (Theorem 3.4).

6. Let A and B be complex matrices, and let c be a complex scalar. Prove the fol-
lowing properties:

(a) (b)
(c) (d)

7. Show that for vectors and in �n, the complex dot product satisfies
(This result is why we defined the complex dot product as we did. It gives

us the analogue of the formula for vectors in �n.)

For real matrices, we have seen the importance of symmetric matrices, especially
in our study of diagonalization. Recall that a real matrix A is symmetric if AT � A. For
complex matrices, the following definition is the correct generalization.

Definition A square complex matrix A is called Hermitian if —that
is, if it is equal to its own conjugate transpose.

8. Prove that the diagonal entries of a Hermitian matrix must be real.

9. Which of the following matrices are Hermitian?

(a) (b)

(c)
(d)

(e) (f)

10. Prove that the eigenvalues of a Hermitian matrix are real numbers. [Hint:
The proof of Theorem 5.18 can be adapted by making use of the conjugate transpose
operation.]

11. Prove that if A is a Hermitian matrix, then eigenvectors corresponding to
distinct eigenvalues of A are orthogonal. [Hint: Adapt the proof of Theorem 5.19
using instead of ]

Recall that a square real matrix Q is orthogonal if The next definition
provides the complex analogue.

Definition A square complex matrix U is called unitary if

Just as for orthogonal matrices, in practice it is not necessary to compute directly.
You need only show that to verify that U is unitary.U*U � I

U�1

U �1 � U*.

Q�1 � QT.

u # v � uT v.u # v � u* v

A � £ 3 0 �2

0 2 1

�2 1 5

§A � £ 0 3 2

�3 0 �1

�2 1 0

§
A � £ 1 1 � 4i 3 � i

1 � 4i 2 i

3 � i �i 0

§
A � c �3 �1 � 5i

1 � 5i 3
d

A � c �1 2 � 3i

2 � 3i 5
dA � c 2 1 � i

1 � i i
d

A* � A

u # v � uT v
u # v � u*v.

vu

1AB 2* � B*A*1cA 2* � cA*
1A � B 2* � A* � B*1A* 2* � A
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12. Which of the following matrices are unitary? For those that are unitary, give
their inverses.

(a) (b)

(c) (d)

Unitary matrices behave in most respects like orthogonal matrices. The following
problem gives some alternative characterizations of unitary matrices.

13. Prove that the following statements are equivalent for a square complex
matrix U:

(a) U is unitary.
(b) The columns of U form an orthonormal set in �n with respect to the complex
dot product.
(c) The rows of U form an orthonormal set in �n with respect to the complex dot
product.
(d) for every x in �n.
(e) for every x and y in �n.

[Hint: Adapt the proofs of Theorems 5.4–5.7.]

14. Repeat Problem 12, this time by applying the criterion in part (b) or part (c)
of Problem 13.

The next definition is the natural generalization of orthogonal diagonalizability
to complex matrices.

Definition A square complex matrix A is called unitarily diagonalizable if
there exists a unitary matrix U and a diagonal matrix D such that

The process for diagonalizing a unitarily diagonalizable n � n matrix A mimics
the real case. The columns of U must form an orthonormal basis for �n consisting of
eigenvectors of A. Therefore, we (1) compute the eigenvalues of A, (2) find a basis for
each eigenspace, (3) ensure that each eigenspace basis consists of orthonormal vec-
tors (using the Gram-Schmidt Process, with the complex dot product, if necessary),
(4) form the matrix U whose columns are the orthonormal eigenvectors just found.
Then U*AU will be a diagonal matrix D whose diagonal entries are the eigenvalues of
A, arranged in the same order as the corresponding eigenvectors in the columns of U.

15. In each of the following, find a unitary matrix U and a diagonal matrix D
such that .

(a) (b)

(c) (d) A � £ 1 0 0

0 2 1 � i

0 1 � i 3

§A � c �1 1 � i

1 � i 0
d

A � c 0 �1

1 0
dA � c 2 i

�i 2
dU*AU � D

U*AU � D

Ux # Uy � x # y
‘Ux ‘ � ‘ x ‘

£ 11 � i 2 >16 0 2>16

0 1 01�1 � i 2 >13 0 1>13

§c  3>5 �4>5
4i>5 3i>5 d

c 1 � i 1 � i

1 � i �1 � i
dc i>12 �i>12

i>12 i>12
d
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See Linear Algebra with Applica-
tions by S. J. Leon (Upper Saddle
River, NJ: Prentice-Hall, 2002).

The matrices in (a), (c), and (d) of the preceding problem are all Hermitian. It
turns out that every Hermitian matrix is unitarily diagonalizable. (This is the
Complex Spectral Theorem, which can be proved by adapting the proof of Theorem
5.20.) At this point you probably suspect that the converse of this result must also be
true—namely, that every unitarily diagonalizable matrix must be Hermitian. But
unfortunately this is false! (Can you see where the complex analogue of the proof of
Theorem 5.17 breaks down?)

For a specific counterexample, take the matrix in part (b) of Problem 15. It is not
Hermitian, but it is unitarily diagonalizable.

It turns out that the correct characterization of unitary diagonalizability is the
following theorem, the proof of which can be found in more advanced textbooks.

A square complex matrix A is unitarily diagonalizable if and only if

A matrix A for which A*A � AA* is called normal.

16. Show that every Hermitian matrix, every unitary matrix, and every skew-
Hermitian matrix (A* � �A) is normal. (Note that in the real case, this result refers
to symmetric, orthogonal, and skew-symmetric matrices, respectively.)

17. Prove that if a square complex matrix is unitarily diagonalizable, then it
must be normal.

Geometric Inequalities and
Optimization Problems
This exploration will introduce some powerful (and perhaps surprising) applications
of various inequalities, such as the Cauchy-Schwarz Inequality. As you will see, certain
maximization/minimization problems (optimization problems) that typically arise in a
calculus course can be solved without using calculus at all!

Recall that the Cauchy-Schwarz Inequality in �n states that for all vectors u and v,

with equality if and only if u and v are scalar multiples of each other. If u �
[x1

p xn ] T and v � [y1
p yn ]T, the above inequality is equivalent to

Squaring both sides and using summation notation, we have

a an
i�1

xiyi b 2

� a an
i�1

xi
2 b a an

i�1

yi
2 b

0x1y1 � p � xnyn 0 � 1x1
2 � p � xn

2 1y1
2 � p � yn

2

0u # v 0 � 7u 7 7 v 7

A*A � AA*

�

�
I I I I II I I I I ������������������������������
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A B

D

C

x y

O

Figure 7. 4

Equality holds if and only if there is some scalar k such that yi � kxi for i � 1, . . . , n.
Let’s begin by using Cauchy-Schwarz to derive a special case of one of the most

useful of all inequalities.

1. Let x and y be nonnegative real numbers. Apply the Cauchy-Schwarz

Inequality to and to show that

(1)

with equality if and only if x � y.

2. (a) Prove inequality (1) directly. [Hint: Square both sides.] (b) Figure 7.4
shows a circle with center O and diameter AB � AC � CB � x � y. The segment 

is perpendicular to Prove that CD � and use this result to deduce 
inequality (1). [Hint: Use similar triangles.]

The right-hand side of inequality (1) is the familiar arithmetic mean (or average)
of the numbers x and y. The left-hand side shows the less familiar geometric mean
of x and y. Accordingly, inequality (1) is known as the Arithmetic Mean–Geometric
Mean Inequality (AMGM). It holds more generally; for n nonnegative variables
x1, . . . , xn, it states

with equality if and only if x1 � x2 � p � xn.

In words, the AMGM Inequality says that the geometric mean of a set of nonnegative
numbers is always less than or equal to their arithmetic mean, and the two are the
same precisely when all of the numbers are the same. (For the general proof, see
Appendix B.)

We now explore how such an inequality can be applied to optimization problems.
Here is a typical calculus problem.

Prove that among all rectangles whose perimeter is 100 units, the square has the
largest area.

Solution If we let x and y be the dimensions of the rectangle (see Figure 7.5), then
the area we want to maximize is given by

We are given that the perimeter satisfies

2x � 2y � 100

A � xy

n1x1x2
p xn �

x1 � x2 � p � xn

n

1xyAB.CD

1xy �
x � y

2

v � c 1y

1x
du � c1x

1y
d
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572

which is the same as x � y � 50. We can relate xy and x � y using the AMGM
Inequality:

Since x � y � 50 is a constant (and this is the key), we see that the maximum value
of A � xy is 502/4 � 625 and it occurs when x � y � 25.

Not a derivative in sight! Isn’t that impressive? Notice that in this maximization
problem, the crucial step was showing that the right-hand side of the AMGM
Inequality was constant. In a similar fashion, we may be able to apply the inequality to
a minimization problem if we can arrange for the left-hand side to be constant.

Prove that among all rectangular prisms with volume 8 m3, the cube has the mini-
mum surface area.

Solution As shown in Figure 7.6, if the dimensions of such a prism are x, y, and z,
then its volume is given by

Thus, we are given that xyz � 8. The surface area to be minimized is

Since this is a three-variable problem, the obvious thing to try is the version of the
AMGM Inequality for n � 3—namely,

Unfortunately, the expression for S does not appear here. However, the AMGM
Inequality also implies that

which is equivalent to S 
 24. Therefore, the minimum value of S is 24, and it
occurs when

(Why?) This implies that x � y � z � 2 (i.e., the rectangular prism is a cube).

3. Prove that among all rectangles with area 100 square units, the square has the
smallest perimeter.

4. What is the minimum value of for x � 0?f 1x 2 � x �
1

x

2xy � 2yz � 2zx

� 2 3164 � 8

� 2 31 1xyz 2 2
 31 12xy 2 12yz 2 12zx 2
S

3
�

2xy � 2yz � 2zx

3

31xyz �
x � y � z

3

S � 2xy � 2yz � 2zx

V � xyz

1xy �
x � y

2
  or, equivalently,  xy � 1

4 1x � y 2 2

z

yx

Figure 7. 6
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5. A cardboard box with a square base and an open top is to be constructed
from a square of cardboard 10 cm on a side by cutting out four squares at the corners
and folding up the sides. What should the dimensions of the box be in order to make
the enclosed volume as large as possible?

6. Find the minimum value of f(x, y, z) � (x � y)(y � z)(z � x) if x, y, and z are
positive real numbers such that xyz � 1.

7. For x � y � 0, find the minimum value of [Hint: A substitu-
tion might help.]

The Cauchy-Schwarz Inequality itself can be applied to similar problems, as the
next example illustrates.

Find the maximum value of the function f(x, y, z) � 3x � y � 2z subject to the
constraint x2 � y2 � z2 � 1. Where does the maximum value occur?

Solution This sort of problem is usually handled by techniques covered in a multi-
variable calculus course. Here’s how to use the Cauchy-Schwarz Inequality. The func-
tion 3x � y � 2z has the form of a dot product, so we let

Then the componentwise form of the Cauchy-Schwarz Inequality gives

Thus, the maximum value of our function is and it occurs when

Therefore, x � 3k, y � k, and z � 2k, so 3(3k) � k � 2(2k) � It follows that
k � 1� and hence

8. Findthemaximumvalueof f(x,y,z)�x�2y�4z subject tox2 �2y 2 �z 2 �1.

9. Find the minimum value of f(x, y, z) � x2 � y2� subject to x � y � z � 10.

10. Find the maximum value of sin u� cos u.

11. Find the point on the line x � 2y � 5 that is closest to the origin.

There are many other inequalities that can be used to solve optimization prob-
lems. The quadratic mean of the numbers x1, . . . , xn is defined as

B
x 2

1 � p � x2
n

n

z2

2

£ xy
z

§ � £ 3>114

1>114

2>114

§
114,

114.

£ xy
z

§ � k £ 31
2

§
114,

13x � y � 2z 2 2 � 132 � 12 � 22 2 1x2 � y 2 � z 2 2 � 14

u � £ 31
2

§   and  v � £ xy
z

§

x �
8

y 1x � y 2 .
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If x1, . . . , xn are nonzero, their harmonic mean is given by

It turns out that the quadratic, arithmetic, geometric, and harmonic means are all
related.

12. Let x and y be positive real numbers. Show that

with equality if and only if x � y. (The middle inequality is just AMGM, so you need
only establish the first and third inequalities.)

13. Find the area of the largest rectangle that can be inscribed in a semicircle of
radius r (Figure 7.7).

14. Find the minimum value of the function

for x, y � 0. [Hint: (x � y)2�xy � (x � y)(1�x � 1�y).]

15. Let x and y be positive real numbers with x � y � 1. Show that the mini-
mum value of

is and determine the values of x and y for which it occurs.25
2 ,

f 1x, y 2 � a x �
1

x
b 2

� a y �
1

y
b 2

f 1x, y 2 �
1x � y 2 2

xy

B
x2 � y2

2



x � y

2

 1xy 


2

1>x � 1>y

n

1>x1 � 1>x2 � p � 1>xn
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Norms and Distance Functions
In the last section, you saw that it is possible to define length and distance in an inner
product space. As you will see shortly, there are also some versions of these two con-
cepts that are not defined in terms of an inner product.

To begin, we need to specify the properties that we want a “length function” to
have. The following definition does this, using as its basis Theorem 1.3 and the
Triangle Inequality.

Definition A norm on a vector space V is a mapping that associates with each
vector v a real number called the norm of v, such that the following properties
are satisfied for all vectors u and v and all scalars c:

1. 
 0, and � 0 if and only if v � 0.

2. �

3. � �

A vector space with a norm is called a normed linear space.

Show that in an inner product space, � defines a norm.

Solution Clearly, 
 0. Moreover,

by the definition of inner product. This proves property (1).
For property (2), we only need to note that

Property (3) is just the Triangle Inequality, which we verified in Theorem 7.4.

We now look at some examples of norms that are not defined in terms of an inner
product. Example 7.13 is the mathematical generalization to �n of the taxicab norm
that we explored in the Introduction to this chapter.

The sum norm s of a vector v in �n is the sum of the absolute values of its compo-
nents. That is, if v � [v1

p vn ] T, then

Show that the sum norm is a norm.

Solution Clearly, s � � p � 
 0, and the only way to achieve equality is
if � p � � 0. But this is so if and only if v1 � p � vn � 0 or, equivalently,
v � 0, proving property (1). For property (2), we see that cv � [cv1

p cvn ]T, so7 cv 7 s � 0cv1 0 � p � 0cvn 0 � 0c 0 1 0v1 0 � p � 0vn 0 2 � 0c 0 7 v 7 s
0vn 00v1 0 0vn 00v1 07 v 7

7 v 7 s � 0v1 0 � p � 0vn 0
7 v 7

7 cv 7 � 1 8cv, cv9 � 1c28v, v9 � 1c21 8v, v9 � 0c 0 7 v 7
1 8v, v9 � 0 3 8v, v9 � 0 3 v � 0

1 8v, v9 1 8v, v97 v 7

7 v 77u 77u � v 7 0c 0 7 v 77 cv 7 7 v 77 v 7
7 v 7 ,
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Finally, the Triangle Inequality holds, because if u � [u1
p un ] T, then

The sum norm is also known as the 1-norm and is often denoted by 1. On �2,
it is the same as the taxicab norm. As Example 7.13 shows, it is possible to have sev-
eral norms on the same vector space. Example 7.14 illustrates another norm on �n.

The max norm m of a vector v in �n is the largest number among the absolute
values of its components. That is, if v � [v1

p vn ] T, then

Show that the max norm is a norm.

Solution Again, it is clear that m 
 0. If m � 0, then the largest of , . . . ,
is zero, and so they all are. Hence, v1 � p � vn � 0, so v � 0. This verifies property (1).
Next, we observe that for any scalar c,

Finally, for u � [u1
p un ] T, we have

(Why is the second inequality true?) This verifies the Triangle Inequality.

The max norm is also known as the q-norm or uniform norm and is often
denoted by q. In general, it is possible to define a norm p on �n by

for any real number p 
 1. For p � 1, 1 � s, justifying the term 1-norm. For
p � 2,

which is just the familiar norm on �n obtained from the dot product. Called the 
2-norm or Euclidean norm, it is often denoted by E . As p gets large, it can be
shown using calculus that p approaches the max norm m. This justifies the use
of the alternative notation q for this norm.

For a vector v in define H to be w(v), the weight of v. Show that it defines a
norm.

7 v 7�n
2,

7 v 7 7 v 77 v 7 7 v 7
7 v 7 2 � 1 0v1 0 2 � p � 0vn 0 2 2 1>2 � 1v1

2 � p � vn
2

7 v 77 v 77 v 7 p � 1 0v1 0 p � p � 0vn 0 p 2 1>p 7 v 77 v 7
�  max 5 0u1 0 , . . . , 0un 0 6 � max 5 0v1 0 , . . . , 0vn 0 6 � 7u 7m � 7 v 7m�  max 5 0u1 0 � 0v1 0 , . . . , 0un 0 � 0vn 0 67u � v 7m �  max 5 0u1 � v1 0 , . . . , 0un � vn 0 6

7 cv 7m � max 5 0cv1 0 , . . . , 0cvn 0 6 � 0c 0max 5 0v1 0 , . . . , 0vn 0 6 � 0c 0 7 v 7m
0vn 00v1 07 v 77 v 7

7 v 7m � max 5 0v1 0 , . . . , 0vn 0 6
7 v 7

7 v 7
� 1 0u1 0 � p � 0un 0 2 � 1 0v1 0 � p � 0vn 0 2 � 7u 7 s � 7 v 7 s� 1 0u1 0 � 0v1 0 2 � p � 1 0un 0 � 0vn 0 27u � v 7 s � 0u1 � v1 0 � p � 0un � vn 0
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Solution Certainly, H � w(v) 
 0, and the only vector whose weight is zero is the
zero vector. Therefore, property (1) is true. Since the only candidates for a scalar c
are 0 and 1, property (2) is immediate.

To verify the Triangle Inequality, first observe that if u and v are vectors in 
then w(u � v) counts the number of places in which u and v differ. [For example, if

then u � v � [1 0 1 0 1]T, so w(u � v) � 3, in agreement with the fact that u
and v differ in exactly three positions.] Suppose that both u and v have zeros in n0 po-
sitions and 1s in n1 positions, u has a 0 and v has a 1 in n01 positions, and u has a 1 and
v has a 0 in n10 positions. (In the example above, n0 � 0, n1 � 2, n01 � 2, and n10 � 1.)
Now

Therefore,

The norm H is called the Hamming norm.

Distance Functions

For any norm, we can define a distance function just as we did in the last section—
namely,

Let and Compute d(u, v) relative to (a) the Euclidean norm,

(b) the sum norm, and (c) the max norm.

Solution Each calculation requires knowing that 

(a) As is by now quite familiar,

(b) ds(u, v) � � � 7

(c) dm(u, v) � � max{ } � 4

The distance function on determined by the Hamming norm is called the
Hamming distance. We will explore its use in error-correcting codes in Section 7.5.
Example 7.17 provides an illustration of the Hamming distance.

�n
2

04 0 , 0�3 07u � v 7m 04 0 � 0�3 07u � v 7 sdE 1u, v 2 � 7u � v 7 E � 142 � 1�3 2 2 � 125 � 5

u � v � c 4

�3
d .

v � c�1

1
d .u � c 3

�2
d

d1u, v 2 � 7u � v 7

7v 7 � w 1u 2 � w 1v 2 � 7u 7 H � 7 v 7 H� 1n1 � n10 2 � 1n1 � n01 2� 1n1 � n10 2 � 1n1 � n01 2 � 2n1

7u � v 7 H � w 1u � v 2 � n10 � n01

w 1u 2 � n1 � n10, w 1v 2 � n1 � n01,  and  w 1u � v 2 � n10 � n01

u � 31 1 0 1 0 4T  and  v � 30 1 1 1 1 4T
�n

2,

7 v 7
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Theorem 7. 5

Find the Hamming distance between

Solution Since we are working over u � v � u � v. But

As we noted in Example 7.15, this is just the number of positions in which u and v
differ. The given vectors are the same ones used in that example; the calculation is
therefore exactly the same. Hence, dH (u, v) � 3.

Theorem 7.5 summarizes the most important properties of a distance function.

Let d be a distance function defined on a normed linear space V. The following
properties hold for all vectors u, v, and w in V:

a. d(u, v) 
 0, and d(u, v) � 0 if and only if u � v.
b. d(u, v) � d(v, u)
c. d(u, w) � d(u, v) � d(v, w)

Proof (a) Using property (1) from the definition of a norm, it is easy to check that
d(u, v) � 
 0, with equality holding if and only if u � v � 0 or, equivalently,
u � v.

(b) You are asked to prove property (b) in Exercise 19.

(c) We apply the Triangle Inequality to obtain

A function d satisfying the three properties of Theorem 7.5 is also called a metric,
and a vector space that possesses such a function is called a metric space. These are
very important in many branches of mathematics and are studied in detail in more
advanced courses.

Matrix Norms

We can define norms for matrices exactly as we defined norms for vectors in �n. After
all, the vector space Mmn of all m � n matrices is isomorphic to �mn, so this is not
difficult to do. Of course, properties (1), (2), and (3) of a norm will also hold in the
setting of matrices. It turns out that, for matrices, the norms that are most useful sat-
isfy an additional property. (We will restrict our attention to square matrices, but it is
possible to generalize everything to arbitrary matrices.)

� 7u � w 7 � d1u, w 2
 7 1u � v 2 � 1v � w 2 7 d1u, v 2 � d1v, w 2 � 7u � v 7 � 7v � w 7
7u � v 7

dH 1u, v 2 � 7u � v 7 H � w 1u � v 2�2,

u � 31 1 0 1 0 4T  and  v � 30 1 1 1 1 4T
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Definition A matrix norm on Mnn is a mapping that associates with each n � n
matrix A a real number , called the norm of A, such that the following properties
are satisfied for all n � n matrices A and B and all scalars c.

1. 
 0 and � 0 if and only if A � O.
2. �
3. � �
4. �

A matrix norm on Mnn is said to be compatible with a vector norm on �n if,
for all n � n matrices A and all vectors x in �n, we have

The Frobenius norm F of a matrix A is obtained by stringing out the entries of the
matrix into a vector and then taking the Euclidean norm. In other words, F is just
the square root of the sum of the squares of the entries of A. So, if A � [aij] , then

(a) Find the Frobenius norm of

(b) Show that the Frobenius norm is compatible with the Euclidean norm.

(c) Show that the Frobenius norm is a matrix norm.

Solution (a)

Before we continue, observe that if and are the row
vectors of A, then and Thus,

Similarly, if and are the column vectors of A, then

It is easy to see that these facts extend to n � n matrices in general. We will use these
observations to solve parts (b) and (c).

(b) Write A � £A1

o
An

§

‘ A ‘F � 1 ‘ a1 ‘ 2
E � ‘ a2 ‘ 2

E

a2 � c�1

4
da1 � c 3

2
d ‘ A ‘F � 1 ‘ A1 ‘ E

2 � ‘ A2 ‘ E
2

‘ A2 ‘ E � 122 � 42.‘ A1 ‘ E � 132 � 1�1 2 2 A2 � 32 4 4A1 � 33 �1 4‘ A ‘ F � 132 � 1�1 2 2 � 22 � 42 � 130

A � c3 �1

2 4
d

7A 7 F � A a
n

i, j�1

a 2
ij

7A 77A 7
7Ax 7 � 7A 7 7x 7

7x 77B 77A 77AB 7 7B 77A 77A � B 70c 0 7A 77 cA 7 7A 77A 7
7A 7
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Then

where the inequality arises from the Cauchy-Schwarz Inequality applied to the dot
products of the row vectors Ai with the column vector x. (Do you see how Cauchy-
Schwarz has been applied?) Hence, the Frobenius norm is compatible with the
Euclidean norm.

(c) Let bi denote the i th column of B. Using the matrix-column representation of the
product AB, we have

by part (b)

which proves property (4) of the definition of a matrix norm. Properties (1) through
(3) are true, since the Frobenius norm is derived from the Euclidean norm, which
satisfies these properties. Therefore, the Frobenius norm is a matrix norm.

For many applications, the Frobenius matrix norm is not the best (or the easiest)
one to use. The most useful types of matrix norms arise from considering the effect
of the matrix transformation corresponding to the square matrix A. This transfor-
mation maps a vector x into Ax. One way to measure the “size” of A is to compare 
and using any convenient (vector) norm. Let’s think ahead. Whatever definition
of we arrive at, we know we are going to want it to be compatible with the vector
norm we are using; that is, we will need

The expression measures the “stretching capability” of A. If we normalize each

nonzero vector x by dividing it by its norm, we get unit vectors and thus7Ax 77 x 7 �
17 x 7 7Ax 7 � g 17 x 7 1Ax 2 g � g A a 17 x 7 x b g � 7A x̂ 7

x̂ �
17x 7 x

7 Ax 77 x 7
7 Ax 7 � 7A 7 7 x 7   or  

7 Ax 77 x 7 � 7A 7   for x  0

7A 77Ax 7 7x 7

� ‘ A ‘ F ‘ B ‘ F

� ‘ A ‘F 1 ‘ b1 ‘ 2
E � p � ‘ bn ‘ 2

E

� 1 ‘ A ‘ 2
F ‘ b1 ‘ 2

E � p � ‘ A ‘ 2
F ‘ bn ‘ 2

E

� 1 ‘ Ab1 ‘ 2
E � p � ‘ Abn ‘ 2

E

‘ AB ‘F � ‘ 3Ab1
p Abn 4 ‘ F

� ‘ A ‘ F ‘ x ‘ E

� 11 ‘ A1 ‘ 2
E � p � ‘ An ‘ 2

E2 ‘ x ‘ E

� 1 ‘ A1 ‘ 2
E ‘ x ‘ 2

E � p � An ‘ 2
E ‘ x ‘ 2

E

� 1 ‘ A1x ‘ 2
E � p � ‘ Anx ‘ 2

E

‘ Ax ‘ E � ß £A1x

o §
Anx

ß
E
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Theorem 7. 6

If x ranges over all nonzero vectors in �n, then ranges over all unit vectors (i.e., the
unit sphere) and the set of all vectors A determines some curve in �n. For example,

Figure 7.8 shows how the matrix affects the unit circle in �2—it maps it

into an ellipse. With the Euclidean norm, the maximum value of is clearly just
half the length of the principal axis—in this case, 4 units. We express this by writing 

� 4.

In Section 7.4, we will see that this is not an isolated phenomenon. That is,

always exists, and there is a particular unit vector y for which is maximum. Now
we prove that defines a matrix norm.

If is a vector norm on �n, then defines a matrix norm on Mnn

that is compatible with the vector norm that induces it.

Proof (1) Certainly, 
 0 for all vectors x, so, in particular, this inequality
is true if � 1. Hence, � 
 0 also. If � 0, then we must have

� 0—and, hence, Ax � 0—for all x with � 1. In particular, Aei � 0 for each
of the standard basis vectors ei in �n. But Aei is just the ith column of A, so we must
have A � O. Conversely, if A � O, it is clear that � 0. (Why?)

(2) Let c be a scalar. Then7 cA 7 � max7x7�1
7 cAx 7 � max7x 7�1

0c 0 7Ax 7 � 0c 0max7x 7�1
7Ax 7 � 0c 0 7A 7

7A 77x 77Ax 7 7A 77Ax 7max7x 7�1
7A 77x 7 7Ax 7

7Ax 7max7x 7�1
7A 7 �7x 7

7Ax 7max7x 7�1
7A 7 �

7Ay 7
max
x
0

7 Ax 77 x 7 � max7 x̂ 7�1
7A x̂ 7

7Ax̂ 7max7 x̂ 7�1

7Ax̂ 7A � c3 2

2 0
dx̂

x̂
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(3) Let B be an n � n matrix and let y be a unit vector for which

Then

(Where does the second inequality come from?) Next, we show that our definition is
compatible with the vector norm [property (5)] and then use this fact to complete
the proof that we have a matrix norm.

(5) If x � 0, then the inequality � is true, since both sides are zero. If
x 0, then from the comments preceding this theorem,

Hence, �

(4) Let z be a unit vector such that � (AB)x 7� Then

by property (5)

by property (5)

This completes the proof that � defines a matrix norm on Mnn that is

compatible with the vector norm that induces it.

Definition The matrix norm in Theorem 7.6 is called the operator norm
induced by the vector norm 

The term operator norm reflects the fact that a matrix transformation arising from a
square matrix is also called a linear operator. This norm is therefore a measure of the
stretching capability of a linear operator.

The three most commonly used operator norms are those induced by the sum
norm, the Euclidean norm, and the max norm—namely,

respectively. The first and last of these turn out to have especially nice formulas that
make them very easy to compute.

7A 7 1 � max7x 7 s�1
7Ax 7 s,  7A 7 2 � max7x 7 E�1

7Ax 7 E,  7A 7q � max7x 7m�1
7Ax 7m

7x 7 . 7A 7
max7 x 7�1
7Ax 77A 7� 7A 7 7B 7� 7A 7 7B 7 7 z 7� 7A 7 7Bz 7� 7A1Bz 2 77AB 7 � 7ABz 7

7ABz 7 .max7x 7�1
77AB 77A 7 7x 7 .7Ax 7

7Ax 77 x 7 � max
x0

7Ax 77 x 7 � 7A 7
7A 7 7x 77Ax 7

� 7A 7 � 7B 7� 7Ay 7 � 7By 7� 7Ay � By 77A � B 7 � 7 1A � B 2y 77A � B 7 � max7x 7�1
7 1A � B 2x 7 � 7 1A � B 2y 7
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Theorem 7. 7 Let A be an n � n matrix with column vectors ai and row vectors Ai for i � 1, . . . , n.

a.

b.

In other words, is the largest absolute column sum, and is the largest
absolute row sum. Before we prove the theorem, let’s look at an example to see how
easy it is to use.

Let

Find and 

Solution Clearly, the largest absolute column sum is in the first column, so

The third row has the largest absolute row sum, so

With reference to the definition we see that the maximum

value of 10 is actually achieved when we take x � e1, for then

For if we take

we obtain

We will use these observations in proving Theorem 7.7.

� max 5 0�2 0 , 0�7 0 , 09 0 6 � 9 � 7A 7q
‘ Ax ‘ m � ß £ 1 �3 2

4 �1 �2

�5 1 3

§ £�1

1

1

§ ß
m

� ß £�2

�7

9

§ ß
m

x � £�1

1

1

§
7A 7q � max7x 7m�1

7Ax 7m,

7Ae1 7 s � 7 a1 7 s � 10 � 7A 7 1
7A 7 1 � max7x 7 s�1

7Ax 7 s ,7A 7q � 7A3 7 s � 0�5 0 � 01 0 � 03 0 � 9

7A 7 1 � 7 a1 7 s � 01 0 � 04 0 � 0�5 0 � 10

7A 7q.7A 7 1
A � £ 1 �3 2

4 �1 �2

�5 1 3

§

7A 7q7A 7 1
7A 7q � max

i�1, . . . , n
5 7Ai 7 s6 � max

i�1, . . . , n
ban

j�1

0aij 0 r
7A 7 1 � max

j�1, . . . , n
5 7 aj 7 s6 � max

j�1, . . . , n
ban

i�1

0aij 0 r
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Proof of Theorem 7. 7 The strategy is the same in the case of both the column sum
and the row sum. If M represents the maximum value, we show that for all
unit vectors x. Then we find a specific unit vector x for which equality occurs. It is im-
portant to remember that for property (a) the vector norm is the sum norm whereas
for property (b) it is the max norm.

(a) To prove (a), let the maximum absolute column sum, and let

Then � p � � 1, so

If the maximum absolute column sum occurs in column k, then with x � ek we
obtain

Therefore, as required.

(b) The proof of property (b) is left as Exercise 32.

In Section 7.4, we will discover a formula for the operator norm although it
is not as computationally feasible as the formula for or 

The Condition Number of a Matrix

In Exploration: Lies My Computer Told Me in Chapter 2, we encountered the notion
of an ill-conditioned system of linear equations. Here is the definition as it applies to
matrices.

Definition A matrix A is ill-conditioned if small changes in its entries can
produce large changes in the solutions to Ax � b. If small changes in the entries of
A produce only small changes in the solutions to Ax � b, then A is called well-
conditioned.

Although the definition applies to arbitrary matrices, we will restrict our atten-
tion to square matrices.

Show that is ill-conditioned.

Solution If we take then the solution to Ax � b is How-

ever, if A changes to

A¿ � c1 1

1 1.0010
d

x � c 1
2
d .b � c 3

3.0010
d ,

A � c 1 1

1 1.0005
d

7A 7q.7A 7 1 7A 7 2,
7A 7 1 � max7x 7 s�1

7Ax 7 s � M � max
j�1, . . . , n

5 7 aj 7 s6,7Aek 7 s � 7 ak 7 s � M

� 1 0x1 0 � p � 0xn 0 2M � 1 # M � M

� 0x1 0M � p � 0xn 0M� 0x1 0 7 a1 7 s � p � 0xn 0 7 an 7 s7Ax 7 s � 7 x1a1 � p � xnan 7 s0xn 00x1 07x 7 s � 1.

M � max
j�1, . . . , n

5 7 aj 7 s6,
7Ax 7 � M
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then the solution changes to (Check these assertions.) Therefore, a relative

change of 0.0005�1.0005 � 0.0005, or about 0.05%, causes a change of (2 � 1)�1 � 1,
or 100%, in x1 and (1 � 2)�2 � �0.5, or �50%, in x2. Hence, A is ill-conditioned.

We can use matrix norms to give a more precise way of determining when a
matrix is ill-conditioned. Think of the change from A to A� as an error A that,
in turn, introduces an error x in the solution x to Ax � b. Then A� � A � A and
x� � x � x. In Example 7.20,

Then, since Ax � b and A�x� � b, we have (A � A)(x � x) � b. Expanding and
canceling off Ax � b, we obtain

Since we are assuming that Ax � b has a solution, A must be invertible. Therefore, we
can rewrite the last equation as

Taking norms of both sides (using a matrix norm that is compatible with a vector
norm), we have

(What is the justification for each step?) Therefore,

The expression is called the condition number of A and is denoted by
cond(A). If A is not invertible, we define cond(A) � q.

What are we to make of the inequality just above? The ratio is a mea-
sure of the relative change in the matrix A, which we are assuming to be small. Simi-
larly, is a measure of the relative error created in the solution to Ax � b
(although, in this case, the error is measured relative to the new solution, x�, not the
original one, x). Thus, the inequality

(1)

gives an upper bound on how large the relative error in the solution can be in terms
of the relative error in the coefficient matrix. The larger the condition number, the
more ill-conditioned the matrix, since there is more “room” for the error to be large
relative to the solution.

7¢x 77x¿ 7 � cond1A2 7¢A 77A 7
7¢x 7 > 7x¿ 7 7¢A 7 > 7A 77A�1 7 7A 7

7¢x 77x¿ 7 � 7A�1 7 7¢A 7 � 1 7A�1 7 7A 7 2 7¢A 77A 7
� 7A�1 7 7¢A 7 7 x¿ 7� 7A�11¢A 2 7 7 x¿ 77¢x 7 � 7�A�11¢A 2x¿ 7 � 7A�11¢A 2x¿ 7

¢x � �A�11¢A2 1x � ¢x 2 � �A�11¢A2x¿

A1¢x 2 � 1¢A 2x � 1¢A 2 1¢x 2 � 0  or  A1¢x 2 � �¢A1x � ¢x 2
¢¢

¢A � c 0 0

0 0.0005
d   and  ¢x � c 1

�1
d

¢
¢¢

¢

x¿ � c 2
1
d .
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Remarks
• The condition number of a matrix depends on the choice of norm. The most

commonly used norms are the operator norms and 
• For any norm, cond(A) 
 1. (See Exercise 45.)

Find the condition number of relative to the q-norm.

Solution We first compute

Therefore, in the q-norm (maximum absolute row sum),

so

It turns out that if the condition number is large relative to one compatible
matrix norm, it will be large relative to any compatible matrix norm. For example, it
can be shown that for matrix A in Examples 7.20 and 7.21, cond1 (A) � 8004,
cond2 (A) � 8002 (relative to the 2-norm), and condF (A) � 8002 (relative to the
Frobenius norm).

The Convergence of Iterative Methods

In Section 2.5, we explored two iterative methods for solving a system of linear equa-
tions: Jacobi’s method and the Gauss-Seidel method. In Theorem 2.9, we stated with-
out proof that if A is a strictly diagonally dominant n � n matrix, then both of these
methods converge to the solution of Ax � b. We are now in a position to prove this
theorem. Indeed, one of the important uses of matrix norms is to establish the con-
vergence properties of various iterative methods.

We will deal only with Jacobi’s method here. (The Gauss-Seidel method can be
handled using similar techniques, but it requires a bit more care.) The key is to
rewrite the iterative process in terms of matrices. Let’s revisit Example 2.37 with this
in mind. The system of equations is

(2)

so A � c 7 �1

3 �5
d   and  b � c 5

�7
d

 3x1 � 5x2 � �7

 7x1 � x2 �  5

condq1A2 � 7A�1 7q 7A 7q � 400112.0005 2 � 8004.

7A 7q � 1 � 1.0005 � 2.0005  and  7A�1 7q � 2001 � ��2000� � 4001

A�1 � c 2001 �2000

�2000 2000
d

A � c 1 1

1 1.0005
d

7A 7q.7A 7 1
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We rewrote equation (2) as

(3)

which is equivalent to

(4)

or, in terms of matrices,

(5)

Study equation (5) carefully: The matrix on the left-hand side contains the diagonal
entries of A, while on the right-hand side we see the negative of the off-diagonal
entries of A and the vector b. So, if we decompose A as

then equation (5) can be written as

or, equivalently,

(6)

since the matrix D is invertible. Equation (6) is the matrix version of equation (3).
It is easy to see that we can do this in general: An n � n matrix A can be written as
A � L � D � U, where D is the diagonal part of A and L and U are, respectively, the
portions of A below and above the diagonal. The system Ax � b can then be written
in the form of equation (6), provided D is invertible—which it is if A is strictly diag-
onally dominant. (Why?) To simplify the notation, let’s let M � �D�1 (L � U) and
c � D�1 b so that equation (6) becomes

(7)

Recall how we use this equation in Jacobi’s method. We start with an initial vector
x0 and plug it into the right-hand side of equation (7) to get the first iterate x1—that
is, x1 � Mx 0 � c. Then we plug x1 into the right-hand side of equation (7) to get the
second iterate x2 � Mx1 � c. In general, we have

(8)

for k 
 0. For Example 2.37, we have

and c � D�1b � c 7 0

0 �5
d�1 c 5

�7
d � c 577

5

d
M � �D�11L � U 2 � � c 7 0

0 �5
d�1 c 0 �1

3 0
d � c 0 1

7
3
5 0

d
xk�1 � Mxk � c

x � Mx � c

x � �D�11L � U2x � D�1b

Dx � �1L � U 2x � b

A � c7 �1

3 �5
d � c0 0

3 0
d � c7 0

0 �5
d � c0 �1

0 0
d � L � D � U

c 7 0

0 �5
d c x1

x 2

d � c 0 1

�3 0
d c x1

x 2

d � c 5

�7
d

�5x 2 � �3x1 � 7

 7x1 � x 2 � 5

x 2 �
7 � 3x1

5

x1 �
5 � x 2

7
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so

and so on. (These are exactly the same calculations we did in Example 2.37, but writ-
ten in matrix form.)

To show that Jacobi’s method will converge, we need to show that the iterates xk

approach the actual solution x of Ax � b. It is enough to show that the error vectors
xk � x approach the zero vector. From our calculations above, Ax � b is equivalent
to x � Mx � c. Using equation (8), we then have

Now we take the norm of both sides of this equation. (At this point, it is not impor-
tant which norm we use as long as we choose a matrix norm that is compatible with
a vector norm.) We have

(9)

If we can show that � 1, then we will have for all k 
 0,
and it follows that approaches zero, so the error vectors xk � x approach the
zero vector.

The fact that strict diagonal dominance is defined in terms of the absolute values
of the entries in the rows of a matrix suggests that the q-norm of a matrix (the oper-
ator norm induced by the max norm) is the one to choose. If A � [aij] , then

(verify this), so, by Theorem 7.7, is the maximum absolute row sum of M.
Suppose it occurs in the kth row. Then

since A is strictly diagonally dominant. Thus, so as we
wished to show.

Compute in Example 2.37 and use this value to find the number of iterations
required to approximate the solution to three-decimal-place accuracy (after round-
ing) if the initial vector is x0 � 0.

7M 7q
7xk � x 7 S 0,7M 7q 6 1,

�
0ak1 0 � p � 0ak, k�1 0 � 0ak, k�1 0 � p � 0akn 00akk 0 6 1

‘ M ‘ q � `�ak1

akk
` � p � `�ak, k�1

akk
` � `�ak, k�1

akk
` � p � `�akn

akk
`

7M 7q
M � ≥ 0 �a12>a11

p �a1n>a11

�a21>a22 0 p �a2n>a22

o o ∞ o
�an1>ann �an2>ann

p 0

¥

7xk � x 7 7 xk�1 � x 7 6 7 xk � x 77M 77 xk�1 � x 7 � 7M 1xk � x 2 7 � 7M 7 7 xk � x 7
� M1x k � x 2xk�1 � x � Mxk � c � 1Mx � c 2

x2 � c0 1
7

3
5 0
d c0.714

1.400
d � c 577

5

d � c0.914

1.829
d

x1 � c0 1
7

3
5 0
d c0

0
d � c 577

5

d � c 577
5

d � c0.714

1.400
d
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Solution We have already computed so 

(implying that Jacobi’s method converges in Example 2.37, as we saw). The approxi-
mate solution xk will be accurate to three decimal places if the error vector xk � x has
the property that each of its components is less than 0.0005 in absolute value.
(Why?) Thus, we need only guarantee that the maximum absolute component of
xk � x is less than 0.0005. In other words, we need to find the smallest value of k such
that

Using equation (9) above, we see that

Now � 0.6 and so

(If we knew the exact solution in advance, we could use it instead of x1. In practice,
this is not the case, so we use an approximation to the solution, as we have done here.)
Therefore, we need to find k such that

We can solve this inequality by taking logarithms (base 10) of both sides. We have

Since k must be an integer, we can therefore conclude that k � 16 will work and
that 16 iterations of Jacobi’s method will give us three-decimal-place accuracy in
this example. (In fact, it appears from our calculations in Example 2.37 that we get
this degree of accuracy sooner, but our goal here was only to come up with an
estimate.)

1 k 7 15.5

1 �0.222k � 0.146 6 �3.301

 log10 1 10.6 2 k11.4 2 2 6 log10 15 � 10�4 2 1 k log10 10.6 2 � log10 11.4 2 6 log10 5 � 4

10.6 2k11.4 2 6 0.0005

7M 7qk 7 x 0 � x 7m � 10.6 2 k11.4 27 x 0 � x 7m � 7 x 0 � x1 7m � 7 x1 7m � g c 0.714

1.400
d g

m

� 1.4,7M 7q
7 xk � x 7m � 7M 7q 7 xk�1 � x 7m � 7M 7q2 7 xk�2 � x 7m � p � 7M 7qk 7 x 0 � x 7m

7xk � x 7m 6 0.0005

7M 7q � 3
5 � 0.6 6 1M � c0 1

7
3
5 0
d ,
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In Exercises 1–3, let and 

1. Compute the Euclidean norm, the sum norm, and the
max norm of u.

2. Compute the Euclidean norm, the sum norm, and the
max norm of v.

3. Compute d(u, v) relative to the Euclidean norm, the
sum norm, and the max norm.

v � £ 2

�2

0

§ .u � £�1

4

�5

§ 4. (a) What does (u, v) measure?
(b) What does (u, v) measure?

In Exercises 5 and 6, let and

5. Compute the Hamming norms of u and v.

6. Compute the Hamming distance between u and v.

7. (a) For which vectors v is ? Explain your
answer.

7v 7 E � 7v 7m
v � 30 1 1 0 1 1 1 4T.

u � 31 0 1 1 0 0 1 4T
dm

ds
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(b) For which vectors v is ? Explain your
answer.

(c) For which vectors v is ? Explain
your answer.

8. (a) Under what conditions on u and v is
? Explain your answer.

(b) Under what conditions on u and v is
? Explain your answer.

(c) Under what conditions on u and v is
? Explain your answer.

9. Show that for all v in �

10. Show that for all v in �

11. Show that for all v in �

12. Show that for all v in

13. Draw the unit circles in relative to the sum norm
and the max norm.

14. By showing that the identity of Exercise 33 in 
Section 7.1 fails, show that the sum norm does not
arise from any inner product.

In Exercises 15–18, prove that defines a norm on the
vector space V.

15.

16.

17.

18.

19. Prove Theorem 7.5(b).

In Exercises 20–25, compute and 

20. 21.

22. 23.

24. 25. A � £ 4 �2 �1

0 �1 2

3 �3 0

§A � £ 0 �5 2

3 1 �3

�4 �4 3

§
A � £ 2 1 1

1 3 2

1 1 3

§A � c 1 5

�2 �1
d

A � c 0 �1

�3 3
dA � c 2 3

4 1
d

7A 7q.7A 7 F, 7A 7 1,
7 f 7 � max

0�x�1
0 f 1x 2 �

V � �30, 1 4 , 7 f 7 � 
1

0

0 f 1x 2 0 dx

V � Mmn, 7A 7 � max
i, j
5 0aij 0 6V � �2, g c a

b
d g � max 5 02a 0 , 03b 0 6

7 7

�2

�n, 7 v 7 E � 1n 7 v 7m.

n 7v 7m.�n, 7v 7 s 7v 7 s.�n, 7v 7 E 7v 7 E.7v 7m�n,

7 v 7m7u � v 7m � 7u 7m �

7 v 7 s7u � v 7 s � 7u 7 s �

7u 7 E � 7v 7 E 7u � v 7 E �

7v 7 s � 7v 7m � 7v 7 E7v 7 s � 7v 7m

dy
dx
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In Exercises 26–31, find vectors x and y with and
such that and 

where A is the matrix in the given exercise.

26. Exercise 20 27. Exercise 21 28. Exercise 22

29. Exercise 23 30. Exercise 24 31. Exercise 25

32. Prove Theorem 7.7(b).

33. (a) If is an operator norm, prove that 
where I is an identity matrix.

(b) Is there a vector norm that induces the 
Frobenius norm as an operator norm? Why 
or why not?

34. Let be a matrix norm that is compatible with a
vector norm Prove that for every eigen-
value of A.

In Exercises 35–40, find and State
whether the given matrix is ill-conditioned.

35. 36.

37. 38.

39. 40.

41. Let 

(a) Find a formula for (A) in terms of k.
(b) What happens to (A) as k approaches 1?

42. Consider the linear system where A is invert-
ible. Suppose an error changes b to 
Let be the solution to the new system; that is,

Let so that represents 
the resulting error in the solution of the system.
Show that

for any compatible matrix norm.

43. Let and 

(a) Compute (A).

(b) Suppose A is changed to How 

large a relative change can this change produce in
the solution to ? [Hint: Use inequality (1)
from this section.]

Ax � b

A¿ � c 10 10

10 11
d .condq

b � c 100

99
d .A � c 10 10

10 9
d

7¢x 77x 7 � cond1A2 7¢b 77b 7
¢xx¿ � x � ¢xAx¿ � b¿.

x¿
b¿ � b � ¢b.¢b

Ax � b,

condq

condq

A � c 1 k

1 1
d .

A � £ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

§A � £ 1 1 1

5 5 6

1 0 0

§
A � c 150 200

3001 4002
dA � c1 0.99

1 1
d

A � c 1 �2

�3 6
dA � c3 1

4 2
d

condq1A2 .cond11A2
l

7A 7 
 0l 07x 7 .7A 7
7 I 7 � 1,7A 7

7A 7q � 7Ay 7m ,7A 7 1 � 7Ax 7 s7 y 7m � 1
7x 7 s � 1
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(c) Solve the systems using A and and determine
the actual relative error.

(d) Suppose b is changed to How large a

relative change can this change produce in the
solution to ? [Hint: Use Exercise 42.]

(e) Solve the systems using b and and determine
the actual relative error.

44. Let and 

(a) Compute (A).

(b) Suppose A is changed to How

large a relative change can this change produce in
the solution to ? [Hint: Use inequality (1)
from this section.]

(c) Solve the systems using A and and determine
the actual relative error.

(d) Suppose b is changed to How large a

relative change can this change produce in the
solution to ? [Hint: Use Exercise 42.]

(e) Solve the systems using b and and determine
the actual relative error.

45. Show that if A is an invertible matrix, then
with respect to any matrix norm.cond1A2 
 1

b¿
Ax � b

b¿ � £11
3

§ .
A¿

Ax � b

A¿ � £ 1 1 1

1 5 0

1 �1 2

§ .cond1

b � £ 12
3

§ .A � £ 1 1 1

2 5 0

1 �1 2

§
b¿

Ax � b

b¿ � c100

101
d .

A¿

Section 7.3 Least Squares Approximation 591

46. Show that if A and B are invertible matrices, then
cond(AB) � cond(A)cond(B) with respect to any
matrix norm.

47. Let A be an invertible matrix and let and be the
eigenvalues with the largest and smallest absolute val-
ues, respectively. Show that

[Hint: See Exercise 34 and Theorem 4.18(b) in
Section 4.3.]

In Exercises 48–51, write the given system in the form 
of equation (7). Then use the method of Example 7.22 to esti-
mate the number of iterations of Jacobi’s method that will be
needed to approximate the solution to three-decimal-place
accuracy. (Use ) Compare your answer with the solu-
tion computed in the given exercise from Section 2.5.

48. Exercise 1, Section 2.5 49. Exercise 3, Section 2.5

50. Exercise 4, Section 2.5 51. Exercise 5, Section 2.5

Exercise 52(c) refers to the Leontief model of an open econ-
omy, as discussed in Sections 2.4 and 3.7.

52. Let A be an matrix such that , where
the norm is either the sum norm or the max norm.
(a) Prove that .
(b) Deduce from (a) that is invertible and

[Hint: See the proof of Theorem 3.34.]

(c) Show that (b) can be used to prove Corollaries
3.35 and 3.36.

1I � A 2�1 � I � A � A2 � A3 � p
I � A

An S O as n S q

�A� 6 1n � n

x0 � 0.

cond 1A2 

�l1�
�ln�

lnl1

CAS

Least Squares Approximation
In many branches of science, experimental data are used to infer a mathematical rela-
tionship among the variables being measured. For example, we might measure the
height of a tree at various points in time and try to deduce a function that expresses the
tree’s height h in terms of time t. Or, we might measure the size p of a population over
time and try to find a rule that relates p to t. Relationships between variables are also of
interest in business; for example, a company producing widgets may be interested in
knowing the relationship between its total costs c and the number n of widgets produced.

In each of these examples, the data come in the form of two measurements: one
for the independent variable and one for the (supposedly) dependent variable. Thus,
we have a set of data points (xi, yi), and we are looking for a function that best approxi-
mates the relationship between the independent variable x and the dependent vari-
able y. Figure 7.9 shows examples in which experimental data points are plotted,
along with a curve that approximately “fits” the data.
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x

y

x

y

x

y

Figure 7. 9
Curves of “best fit”

Roger Cotes (1682–1716) was an
English mathematician who, while
a fellow at Cambridge, edited the
second edition of Newton’s Prin-
cipia. Although he published little,
he made important discoveries in
the theory of logarithms, integral
calculus, and numerical methods.

The method of least squares, which we are about to consider, is attributed to
Gauss. A new asteroid, Ceres, was discovered on New Year’s Day, 1801, but it disap-
peared behind the sun shortly after it was observed. Astronomers predicted when
and where Ceres would reappear, but their calculations differed greatly from those
done, independently, by Gauss. Ceres reappeared on December 7, 1801, almost ex-
actly where Gauss had predicted it would be. Although he did not disclose his meth-
ods at the time, Gauss had used his least squares approximation method, which he
described in a paper in 1809. The same method was actually known earlier; Cotes
anticipated the method in the early 18th century, and Legendre published a paper on
it in 1806. Nevertheless, Gauss is generally given credit for the method of least
squares approximation.

We begin our exploration of approximation with a more general result.
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Theorem 7. 8

The Best Approximation Theorem

In the sciences, there are many problems that can be phrased generally as “What is the
best approximation to X of type Y ?” X might be a set of data points, a function, a vec-
tor, or many other things, while Y might be a particular type of function, a vector be-
longing to a certain vector space, etc. A typical example of such a problem is finding
the vector w in a subspace W of a vector space V that best approximates (i.e., is clos-
est to) a given vector v in V. This problem gives rise to the following definition.

Definition If W is a subspace of a normed linear space V and if v is a vector in
V, then the best approximation to v in W is the vector in W such that

for every vector w in W different from 

In �2 or �3, we are used to thinking of “shortest distance” as corresponding to
“perpendicular distance.” In algebraic terminology, “shortest distance” relates to the
notion of orthogonal projection: If W is a subspace of �n and v is a vector in �n, then
we expect projW (v) to be the vector in W that is closest to v (Figure 7.10).

Since orthogonal projection can be defined in any inner product space, we have
the following theorem.

v.

7v � v 7 6 7v � w 7 v

Section 7.3 Least Squares Approximation 593

W w

v

v � projW(v)

��v � v��

Figure 7. 10
If then

for all w  v‘ v � v ‘ 6 ‘ v � w ‘
v � projW 1v 2 ,

The Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V and if v is a vec-
tor in V, then projW (v) is the best approximation to v in W.

Proof Let w be a vector in W different from projW(v). Then projW(v) � w is also
in W, so v � projW(v) � perpW (v) is orthogonal to projW(v) � w, by Exercise 43 in
Section 7.1. Pythagoras’ Theorem now implies that

� 7 v � w 7 27 v � projW 1v 2 7 2 � 7projW 1v 2 � w 7 2 � 7 1v � projW 1v 2 2 � 1projW 1v 2 � w 2 7 2
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as Figure 7.10 illustrates. However, since w projW(v), so

or, equivalently,

Let and Find the best approximation to v in the

plane W � span(u1, u2) and find the Euclidean distance from v to W.

Solution The vector in W that best approximates v is projW (v). Since u1 and u2 are
orthogonal,

The distance from v to W is the distance from v to the point in W closest to v. But this
distance is just We compute

so

which is the distance from v to W.

In Section 7.5, we will look at other examples of the Best Approximation Theo-
rem when we explore the problem of approximating functions.

Remark The orthogonal projection of a vector v onto a subspace W is defined in
terms of an orthogonal basis for W. The Best Approximation Theorem gives us an
alternative proof that projW (v) does not depend on the choice of this basis, since
there can be only one vector in W that is closest to v—namely, projW(v).

Least Squares Approximation

We now turn to the problem of finding a curve that “best fits” a set of data points. Be-
fore we can proceed, however, we need to define what we mean by “best fit.” Suppose
the data points (1, 2), (2, 2), and (3, 4) have arisen from measurements taken during
some experiment. Also suppose we have reason to believe that the x and y values are
related by a linear function; that is, we expect the points to lie on some line with equa-
tion y � a � bx. If our measurements were accurate, all three points would satisfy this
equation and we would have

2 � a � b # 1    2 � a � b # 2    4 � a � b # 3

7 v � projW 1v 2 7 � 102 � 112
5 2 2 � 124

5 2 2 � 1 720
25 � 1215>5

v � projW 1v 2 � £ 32
5

§ � £ 3

�2
5
1
5

§ � £ 0
12
5

24
5

§
7perpW 1v 2 7 � 7 v � projW 1v 2 7 .

� 2
6 £ 1

2

�1

§ � 16
30 £ 5

�2

1

§ � £ 3

�2
5
1
5

§
 projW 1v 2 � a u1

# v

u1
# u1
bu1 � a u2

# v

u2
# u2
bu2

v � £ 32
5

§ .u1 � £ 1

2

�1

§ , u2 � £ 5

�2

1

§ ,
7 v � projW 1v 2 7 6 7 v � w 7

7 v � projW 1v 2 7 2 6 7 v � projW 1v 2 7 2 � 7projW 1v 2 � w 7 2 � 7 v � w 7 27projW 1v 2 � w 7 2 7 0,

Example 7. 23
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This is a system of three linear equations in two variables:

Unfortunately, this system is inconsistent (since the three points do not lie on a
straight line). So we will settle for a line that comes “as close as possible” to passing
through our points. For any line, we will measure the vertical distance from each data
point to the line (representing the errors in the y-direction), and then we will try to
choose the line that minimizes the total error. Figure 7.11 illustrates the situation.

a �  b � 2

a � 2b � 2

a � 3b � 4

  or  £1 1

1 2

1 3

§ ca
b
d � £22

4

§
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1

x

y

y � a � bx(3, 4)

(2, 2)

(1, 2)

�1 1 65432

6

5

4

3

2

1

�1

3

2

Figure 7. 11
Finding the line that minimizes e2

1 � e2
2 � e2

3

If the errors are denoted by e1, e2, and e3, then we can form the error vector

We want e to be as small as possible, so must be as close to zero as possible. Which
norm should we use? It turns out that the familiar Euclidean norm is the best choice.
(The sum norm would also be a sensible choice, since is the
actual sum of the errors in Figure 7.11. However, the absolute value signs are hard to
work with, and, as you will soon see, the choice of the Euclidean norm leads to some
very nice formulas.) So we are going to minimize

This is where the term “least squares” comes from: We need to find the smallest sum
of squares, in the sense of the foregoing equation. The number is called the least
squares error of the approximation.

7 e 7
7 e 7 � 2e1

2 � e2
2 � e3

2  or, equivalently,  7 e 7 2 � e1
2 � e2

2 � e3
2

7 e 7 s � �e1� � �e2� � �e3�

7 e 7
e � £ e1

e2

e3

§
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From Figure 7.11, we also obtain the following formulas for e1, e2, and e3 in our
example:

Which of the following lines gives the smallest least squares error for the data points
(1, 2), (2, 2), and (3, 4)?

(a) y � 1 � x

(b) y � �2 � 2x

(c)

Solution Table 7.1 shows the necessary calculations.

y � 2
3 � x

e1 � 2 � 1a � b # 1 2   e2 � 2 � 1a � b # 2 2   e3 � 4 � 1a � b # 3 2
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Table 7. 1
y � 1 � x y � 2 � 2x y � � x

e1 2 � (1 � 1) � �0 2 � (�2 � 2) � 2
e2 2 � (1 � 2) � �1 2 � (�2 � 4) � 0
e3 4 � (1 � 3) � �0 4 � (�2 � 6) � 0

02 � (�1) 2 � 02 � �1 22 � 02 � 02 � 4

e 1 2 1 2
3 � 0.81677 113 2 2 � 1�2
3 2 2 � 113 2 2 � 2

3e2
1 � e2

2 � e2
3

 4 � 123 � 3 2 � 1
3

 2 � 123 � 2 2 � �2
3

 2 � 123 � 1 2 � 1
3

2
3

Example 7. 24

x

y
y � 1 � x

y � �2 � 2x

y � s � x
(3, 4)

(2, 2)

(1, 2)

�1 1 65432

6

5

4

3

2

1

�1

Figure 7. 12

We see that the line produces the smallest least squares error among
these three lines. Figure 7.12 shows the data points and all three lines.

y � 2
3 � x
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It turns out that the line in Example 7.24 gives the smallest least
squares error of any line, even though it passes through none of the given points. The
rest of this section is devoted to illustrating why this is so.

In general, suppose we have n data points (x1, y1), . . . , (xn, yn) and a line y � a � bx.
Our error vector is

where ei � yi � (a � bxi ). The line y � a � bx that minimizes � p � is called
the least squares approximating line (or the line of best fit) for the points (x1, y1 ), . . . ,
(xn, yn ). As noted prior to Example 7.24, we can express this problem in matrix form.
If the given points were actually on the line y � a � bx, then the n linear equations

would all be true (i.e., the system would be consistent). Our interest is in the case
where the points are not collinear, in which case the system is inconsistent. In matrix
form, we have

which is of the form Ax � b, where

The error vector e is just b � Ax (check this), and we want to minimize or, equiv-
alently, We can therefore rephrase our problem in terms of matrices as follows.

Definition If A is an m � n matrix and b is in �m, a least squares solution of
Ax � b is a vector in �n such that

for all x in �n.

7b � Ax 7 � 7b � Ax 7x

7 e 7 . 7 e 7 2
A � ≥ 1 x1

1 x2

o o
1 xn

¥ ,  x � c a
b
d ,  b � ≥ y1

y2

o
yn

¥

≥ 1 x1

1 x2

o o
1 xn

¥ c a
b
d � ≥ y1

y2

o
yn

¥

a � bx1 � y1

o
a � bxn � yn

e2
ne2

1

e � £ e1

o
en

§

y � 2
3 � x

Section 7.3 Least Squares Approximation 597

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Theorem 7. 9

Solution of the Least Squares Problem

Any vector of the form Ax is in the column space of A, and as x varies over all vectors
in �n, Ax varies over all vectors in col(A). A least squares solution of Ax � b is there-
fore equivalent to a vector in col(A) such that

for all y in col(A). In other words, we need the closest vector in col(A) to b. By the Best
Approximation Theorem, the vector we want is the orthogonal projection of b onto
col(A). Thus, if is a least squares solution of Ax � b, we have

(1)

In order to find it would appear that we need to first compute projcol(A)(b) and then
solve the system (1). However, there is a better way to proceed.

We know that

is orthogonal to col(A). So, if ai is a column of A, we have

This is true if and only if

which, in turn, is equivalent to

or

This represents a system of equations known as the normal equations for .
We have just established that the solutions of the normal equations for are pre-

cisely the least squares solutions of Ax � b. This proves the first part of the following
theorem.

The Least Squares Theorem

Let A be an m � n matrix and let b be in �m. Then Ax � b always has at least one
least squares solution . Moreover:

a. is a least squares solution of Ax � b if and only if is a solution of the normal
equations ATA � AT b.

b. A has linearly independent columns if and only if ATA is invertible. In this case,
the least squares solution of Ax � b is unique and is given by

x � 1ATA2�1ATb

x
xx

x

x
x

ATAx � ATb

ATb � ATAx � 0

� £ a1
T

o
an

T

§ 1b � Ax 2 � £ a1
T1b � Ax 2

o
an

T1b � Ax 2 § � £ 0o
0

§ � 0

AT1b � Ax 2 � 3a1
p an 4T1b � Ax 2

ai
T1b � Ax 2 � ai

# 1b � Ax 2 � 0

b � Ax � b � projcol1A2 1b 2 � perpcol1A2 1b 2
x,

Ax � projcol1A2 1b 2x

7b � y 7 � 7b � y 7y
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Proof We have already established property (a). For property (b), we note that the n
columns of A are linearly independent if and only if rank(A) � n. But this is true if
and only if ATA is invertible, by Theorem 3.28. If ATA is invertible, then the unique
solution of ATA � AT b is clearly � (ATA)�1 AT b.

Find a least squares solution to the inconsistent system Ax � b, where

Solution We compute

and

The normal equations ATA � AT b are just

which yield The fact that this solution is unique was guaranteed by 

Theorem 7.9(b), since the columns of A are clearly linearly independent.

Remark We could have phrased Example 7.25 as follows: Find the best approxi-
mation to b in the column space of A. The resulting equations give the system Ax � b
whose least squares solution we just found. (Verify this.) In this case, the components
of are the coefficients of that linear combination of the columns of A that produces
the best approximation to b—namely,

This is exactly the result of Example 7.23. Compare the two approaches.

Find the least squares approximating line for the data points (1, 2), (2, 2), and (3, 4)
from Example 7.24.

Solution We have already seen that the corresponding system Ax � b is

£ 1 1

1 2

1 3

§ c a
b
d � £ 22

4

§

1
3 £ 1

2

�1

§ � 8
15 £ 5

�2

1

§ � £ 3

�2
5
1
5

§
x

x � c 1
3
8

15

d .
c 6 0

0 30
d x � c 2

16
dx

ATb � c 1 2 �1

5 �2 1
d £ 32

5

§ � c 2

16
d

ATA � c 1 2 �1

5 �2 1
d £ 1 5

2 �2

�1 1

§ � c 6 0

0 30
d

A � £ 1 5

2 �2

�1 1

§   and  b � £32
5

§
xx
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Example 7. 26
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�
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where y � a � bx is the line we seek. Since the columns of A are clearly linearly inde-
pendent, there will be a unique least squares solution, by part (b) of the Least Squares
Theorem. We compute

Hence, we can solve the normal equations ATA � AT b, using Gaussian elimination
to obtain

So from which we see that b � 1 are the coefficients of the least

squares approximating line:

The line we just found is the line in Example 7.24(c), so we have justified our
claim that this line produces the smallest least squares error for the data points (1, 2),
(2, 2), and (3, 4). Notice that if is a least squares solution of Ax � b, we may com-
pute the least squares error as

Since A � projcol(A)(b), this is just the length of perpcol(A)(b)—that is, the distance
from b to the column space of A. In Example 7.26, we had

so, as in Example 7.24(c), we have a least squares error of

Remark Note that the columns of A in Example 7.26 are linearly independent,
so (ATA)�1 exists, and we could calculate as � (ATA)�1AT b. However, it is almost
always easier to solve the normal equations using Gaussian elimination (or to let your
CAS do it for you!).

It is interesting to look at Example 7.26 from two different geometric points of
view. On the one hand, we have the least squares approximating line with
corresponding errors and as shown in Figure 7.13(a).
Equivalently, we have the projection of b onto the column space of A, as shown in
Figure 7.13(b). Here,

p � projcol1A2 1b 2 � Ax � £ 1 1

1 2

1 3

§ c 2
3

1
d � £ 5

3
8
3

11
3

§
e3 � 1

3 ,e2 � �2
3 ,e1 � 1

3 ,
y � 2

3 � x,

xx

7 e 7 � 22
3 � 0.816.

e � b � Ax � £ 22
4

§ � £ 1 1

1 2

1 3

§ c 2
3

1
d � £ 1

3

�2
3
1
3

§
x

7 e 7 � 7b � Ax 7
x

y � 2
3 � x.

a � 2
3 ,x � c 2

3

1
d ,

3ATA 0 ATb 4 � c 3 6

6 14
2 8

18
d ¡ c 1 0

0 1
2 23
1
d

x

ATA � c 1 1 1

1 2 3
d £ 1 1

1 2

1 3

§ � c 3 6

6 14
d   and  ATb � c 1 1 1

1 2 3
d £ 22

4

§ � c 8

18
d
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and the least squares error vector is [What would Figure 7.13(b) look like
if the data points were collinear?]

Find the least squares approximating line and the least squares error for the points
(1, 1), (2, 2), (3, 2), and (4, 3).

Solution Let y � a � bx be the equation of the line we seek. Then, substituting the
four points into this equation, we obtain

So we want the least squares solution of Ax � b, where

Since the columns of A are linearly independent, the solution we want is

(Check this calculation.) Therefore, we take and producing the least
squares approximating line as shown in Figure 7.14.y � 1

2 � 3
5 x,

b � 3
5 ,a � 1

2

x � 1ATA 2�1ATb � c 123
5

d
A � ≥ 1 1

1 2

1 3

1 4

¥   and  b � ≥ 1

2

2

3

¥

a � b � 1

a � 2b � 2

a � 3b � 2

a � 4b � 3

   or  ≥ 1 1

1 2

1 3

1 4

¥ c a
b
d � ≥ 1

2

2

3

¥

e � £ e1

e2

e3

§ .
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x

y

y � s � x
(3, 4)

(2, 2)

(1, 2)

�1 1 65432

6

5

4

3

2

1

�1

(a)

1

3

2

Figure 7. 13

W � col(A)

p �

b � e

f
h
k

2
2
4

(b)

Example 7. 27
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Since

the least squares error is 

We can use the method of least squares to approximate data points by curves
other than straight lines.

Find the parabola that gives the best least squares approximation to the points (�1, 1),
(0, �1), (1, 0), and (2, 2).

Solution The equation of a parabola is a quadratic y � a � bx � cx2. Substituting
the given points into this quadratic, we obtain the linear system

Thus, we want the least squares approximation of Ax � b, where

A � ≥ 1 �1 1

1 0 0

1 1 1

1 2 4

¥   and  b � ≥ 1

�1

0

2

¥

a � b � c � 1

a � �1

a � b � c � 0

a � 2b � 4c � 2

  or  ≥ 1 �1 1

1 0 0

1 1 1

1 2 4

¥ £ ab
c

§ � ≥ 1

�1

0

2

¥

7 e 7 � 15>5 � 0.447.

e � b � Ax � ≥ 1

2

2

3

¥ � ≥ 1 1

1 2

1 3

1 4

¥ c 123
5

d � ≥� 1
10
3

10

� 3
10
1

10

¥
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x

y

(1, 1)

(2, 2)

(3, 2)

(4, 3)

1 5432

5

4

3

2

1

y � q � Ex

Figure 7. 14
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We compute

so the normal equations are given by

whose solution is

Thus, the least squares approximating parabola has the equation

as shown in Figure 7.15.

y � � 7
10 � 3

5 x � x2

x � £� 7
10

�3
5

1

§
£ 4 2 6

2 6 8

6 8 18

§ x � £ 23
9

§
ATA � £ 4 2 6

2 6 8

6 8 18

§   and  ATb � £ 23
9

§
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x

y

�3 �2 �1 2 31

�1

�2

1

2

3

4
y � �Î � Ex � x2

(�1, 1)

(2, 2)

(0, �1)

(1, 0)

Figure 7. 15
A least squares approximating parabola

One of the important uses of least squares approximation is to estimate constants
associated with various processes. The next example illustrates this application in the
context of population growth. Recall from Section 6.7 that a population that is grow-
ing (or decaying) exponentially satisfies an equation of the form p(t) � cekt, where
p(t) is the size of the population at time t and c and k are constants. Clearly, c � p(0),
but k is not so easy to determine. It is easy to see that

which explains why k is sometimes referred to as the relative growth rate of the popu-
lation: It is the ratio of the growth rate p�(t) to the size of the population p(t).

k �
p¿ 1t 2
p1t 2
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Table 7.2 gives the population of the world at 10-year intervals for the second half of
the 20th century. Assuming an exponential growth model, find the relative growth
rate and predict the world’s population in 2010.

Solution Let’s agree to measure time t in 10-year intervals so that t � 0 is 1950,
t � 1 is 1960, and so on. Since c � p(0) � 2.56, the equation for the growth rate of the
population is

How can we use the method of least squares on this equation? If we take the natural
logarithm of both sides, we convert the equation into a linear one:

Plugging in the values of t and p from Table 7.2 yields the following system (where we
have rounded calculations to three decimal places):

We can ignore the first equation (it just corresponds to the initial condition c �
p(0) � 2.56). The remaining equations correspond to a system Ax � b, with

Since ATA � 55 and AT b � 9.80, the corresponding normal equations are just the
single equation

Therefore, Consequently, the least squares solution has
the form p � 2.56e0.178t (see Figure 7.16).

The world’s population in 2010 corresponds to t � 6, from which we obtain

Thus, if our model is accurate, there will be approximately 7.45 billion people on
Earth in the year 2010. (The U.S. Census Bureau estimates that the global population
will be “only” 6.82 billion in 2010. Why do you think our estimate is higher?)

p16 2 � 2.56e0.178162 � 7.448

k � x � 9.80>55 � 0.178.

55˛x � 9.80

A � E123
4

5

U  and  b � E0.172

0.371

0.555

0.724

0.865

U

 5k � 0.865

 4k � 0.724

 3k � 0.555

 2k � 0.371

k � 0.172

 0.94 � 0.94

�  0.94 � kt

�  ln 2.56 � ln1ekt 2 ln p �  ln12.56ekt 2
p � 2.56ekt
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Table 7. 2
Population

Year (in billions)

1950 2.56
1960 3.04
1970 3.71
1980 4.46
1990 5.28
2000 6.08

Source: U.S. Bureau of the Census, Inter-
national Data Base
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Theorem 7. 10

Least Squares via the QR Factorization

It is often the case that the normal equations for a least squares problem are 
ill-conditioned. Therefore, a small numerical error in performing Gaussian elimina-
tion will result in a large error in the least squares solution. Consequently, in practice,
other methods are usually used to compute least squares approximations.

It turns out that the QR factorization of A yields a more reliable way of comput-
ing the least squares approximation of Ax � b.

Let A be an m � n matrix with linearly independent columns and let b be in �m.
If A � QR is a QR factorization of A, then the unique least squares solution of
Ax � b is

Proof Recall from Theorem 5.16 that the QR factorization A � QR involves an
m � n matrix Q with orthonormal columns and an invertible upper triangular
matrix R. From the Least Squares Theorem, we have

since QTQ � I. (Why?)
Since R is invertible, so is RT, and hence we have

Remark Since R is upper triangular, in practice it is easier to solve R � QT b
directly than to invert R and compute R�1QT b.

x

Rx � QTb  or, equivalently,  x � R�1QTb

1 RTRx � RTQTb

1 RTQTQRx � RTQTb

1 1QR 2TQRx � 1QR 2Tb

ATAx � ATb

x � R�1QTb

x
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Theorem 7. 11

Use the QR factorization to find a least squares solution of Ax � b, where

Solution From Example 5.15,

We have

so we require the solution to R � QT b, or

� 

Back substitution quickly yields

Orthogonal Projection Revisited

One of the nice byproducts of the least squares method is a new formula for the or-
thogonal projection of a vector onto a subspace of �m.

Let W be a subspace of �m and let A be an m � n matrix whose columns form a
basis for W. If v is any vector in �m, then the orthogonal projection of v onto W is
the vector

The linear transformation P : �m S �m that projects �m onto W has A(ATA)�1AT

as its standard matrix.

Proof Given the way we have constructed A, its column space is W. Since the
columns of A are linearly independent, the Least Squares Theorem guarantees that
there is a unique least squares solution to Ax � v given by

x � 1ATA 2�1ATv

projW 1v 2 � A1ATA 2�1ATv

x � £ 4>3
3>2

�4>3 §
£ 7>2

�15>2
�216>3 §x£ 2 1 1>2

0 15 315>2
0 0 16>2 §

x

≥ 2

�3

�2

0

¥ � £ 7>2
�15>2

�216>3 §QTb � £ 1>2 �1>2 �1>2 1>2
315>10 315>10 15>10 15>10

�16>6 0 16>6 16>3 §

£ 2 1 1>2
0 15 315>2
0 0 16>2 §A � QR � ≥ 1>2 315>10 �16>6

�1>2 315>10 0

�1>2 15>10 16>6
1>2 15>10 16>3 ¥

A � ≥ 1 2 2

�1 1 2

�1 0 1

1 1 2

¥   and  b � ≥ 2

�3

�2

0

¥
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By equation (1),

Therefore,

as required. Since this equation holds for all v in �m, the last statement of the theorem
follows immediately.

We will illustrate Theorem 7.11 by revisiting Example 5.11.

Find the orthogonal projection of onto the plane W in �3 with equation 

x � y � 2z � 0, and give the standard matrix of the orthogonal projection transfor-
mation onto W.

Solution As in Example 5.11, we will take as a basis for W the set

We form the matrix

with these basis vectors as its columns. Then

so

By Theorem 7.11, the standard matrix of the orthogonal projection transformation
onto W is

so the orthogonal projection of v onto W is

which agrees with our solution to Example 5.11.

projW 1v 2 � A1ATA 2�1ATv � £ 5
6

1
6 �1

3
1
6

5
6

1
3

�1
3

1
3

1
3

§ £ 3

�1

2

§ � £ 5
3
1
3

�2
3

§
A1ATA 2�1AT � A � £ 1 �1

1 1

0 1

§ c 1
2 0

0 1
3

d c 1 1 0

�1 1 1
d � C 5

6
1
6 �1

3
1
6

5
6

1
3

�1
3

1
3

1
3

S
1ATA 2�1 � c 1

2 0

0 1
3

d
ATA � c 1 1 0

�1 1 1
d £ 1 �1

1 1

0 1

§ � c 2 0

0 3
d

A � £ 1 �1

1 1

0 1

§
• £ 11

0

§ , £�1

1

1

§ ¶

v � £ 3

�1

2

§

projW 1v 2 � A1 1ATA 2�1ATv 2 � 1A1ATA 2�1AT 2vAx � projcol1A2 1v 2 � projW 1v 2
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Remark Since the projection of a vector onto a subspace W is unique, the stan-
dard matrix of this linear transformation (as given by Theorem 7.11) cannot depend
on the choice of basis for W. In other words, with a different basis for W, we have a
different matrix A, but the matrix A(ATA)�1AT will be the same! (You are asked to
verify this in Exercise 43.)

The Pseudoinverse of a Matrix

If A is an n � n matrix with linearly independent columns, then it is invertible, and
the unique solution to Ax � b is x � A�1 b. If m � n and A is m � n with linearly
independent columns, then Ax � b has no exact solution, but the best approximation
is given by the unique least squares solution � (ATA)�1AT b. The matrix (ATA)�1AT

therefore plays the role of an “inverse of A” in this situation.

Definition If A is a matrix with linearly independent columns, then the
pseudoinverse of A is the matrix A� defined by

Observe that if A is m � n, then A� is n � m.

Find the pseudoinverse of

Solution We have already done most of the calculations in Example 7.26. Using our
previous work, we have

The pseudoinverse is a convenient shorthand notation for some of the concepts
we have been exploring. For example, if A is m � n with linearly independent
columns, the least squares solution of Ax � b is given by

and the standard matrix of the orthogonal projection P from �m onto col(A) is

If A is actually a square matrix, then it is easy to show that A� � A�1 (see Exer-
cise 53). In this case, the least squares solution of Ax � b is the exact solution, since

x � A�b � A�1b � x

3P 4 � AA�

x � A�b

A� � 1ATA2�1AT � c 7
3 �1

�1 1
2

d c1 1 1

1 2 3
d � c 4

3
1
3 �2

3

�1
2 0 1

2

d

A � £ 1 1

1 2

1 3

§ .

A� � 1ATA2�1AT

x
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Theorem 7. 12

The projection matrix becomes [P] � AA� � AA�1 � I. (What is the geometric
interpretation of this equality?)

Theorem 7.12 summarizes the key properties of the pseudoinverse of a matrix.
(Before reading the proof of this theorem, verify these properties for the matrix in
Example 7.32.)

Let A be a matrix with linearly independent columns. Then the pseudoinverse
A� of A satisfies the following properties, called the Penrose conditions for A:

a. AA�A � A
b. A�AA� � A�

c. AA� and A�A are symmetric.

Proof We prove condition (a) and half of condition (c) and leave the proofs of the
remaining conditions as Exercises 54 and 55.

(a) We compute

(c) By Theorem 3.4, ATA is symmetric. Therefore, (ATA)�1 is also symmetric, by
Exercise 46 in Section 3.3. Taking the transpose of AA�, we have

Exercise 56 explores further properties of the pseudoinverse. In the next section,
we will see how to extend the definition of A� to handle all matrices, whether or not
the columns of A are linearly independent.

� AA�

� A1ATA2�1AT

� 1AT 2T1 1ATA2�1 2TAT

1AA� 2T � 1A1ATA2�1AT 2T
� AI � A

� A1ATA 2�11ATA 2AA�A � A1 1ATA 2�1AT 2A
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In Exercises 1–3, consider the data points (1, 0), (2, 1), and
(3, 5). Compute the least squares error for the given line.
In each case, plot the points and the line.

1. 2. 3.

In Exercises 4–6, consider the data points (�5, 3), (0, 3),
(5, 2), and (10, 0). Compute the least squares error for the
given line. In each case, plot the points and the line.

4. 5. 6. y � 2 � 1
5 xy � 5

2y � 2 � x

y � �3 � 5
2 xy � �3 � 2xy � �2 � 2x

In Exercises 7–14, find the least squares approximating line
for the given points and compute the corresponding least
squares error.

7. (1, 0), (2, 1), (3, 5)

8. (1, 5), (2, 3), (3, 2)

9. (0, 4), (1, 1), (2, 0)

10. (0, 2), (1, 2), (2, 5)

11. ( ), (0, 1), (5, 2), (10, 4)�5, �1

Exercises 7. 3
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Table 7. 3
h (cm) 20 40 48 60 80 100
b (cm) 14.5 31 36 45.5 59 73.5

L

F

Figure 7. 17

Table 7. 4
F (oz) 2 4 6 8
L (in.) 7.4 9.6 11.5 13.6

12. ( 3), (0, 3), (5, 2), (10, 0)

13. (1, 1), (2, 3), (3, 4), (4, 5), (5, 7)

14. (1, 10), (2, 8), (3, 5), (4, 3), (5, 0)

In Exercises 15–18, find the least squares approximating
parabola for the given points.

15. (1, 1), (2, ), (3, 3), (4, 4)

16. (1, 8), (2, 7), (3, 5), (4, 2)

17. ( 4), ( 7), (0, 3), (1, 0), (2, )

18. ( 2, 0), ( ), (0, ), (1, ), (2, 8)

In Exercises 19–22, find a least squares solution of
by constructing and solving the normal equations.

19.

20.

21.

22.

In Exercises 23 and 24, show that the least squares solution
of Ax � b is not unique and solve the normal equations to
find all the least squares solutions.

23.

24.

In Exercises 25 and 26, find the best approximation to a
solution of the given system of equations.

25. 26.

 2y � z � 0�x � z � 0

�x � y � z � 14 3x � 2y � z � 11

x � y � z � 7� �y � 2z � 6

 2x � 3y � z � 21x � y � z � 2

A � ≥ 0 1 1 0

1 �1 1 �1

1 0 1 0

1 1 1 1

¥ , b � ≥ 5

3

�1

1

¥
A � ≥ 1 1 0 0

1 0 1 1

0 �1 1 1

1 �1 1 0

¥ , b � ≥ 1

�3

2

4

¥

A � ≥ 2 0

1 �1

3 1

�1 2

¥ , b � ≥ 5

1

�1

3

¥
A � ≥ 1 �2

0 �3

2 5

3 0

¥ , b � ≥ 4

1

�2

4

¥
A � £ 3 �2

1 �2

2 1

§ , b � £ 11
1

§
A � £ 3 1

1 1

1 2

§ , b � £ 11
1

§
Ax � b

�9�10�1, �11�

�1�1,�2,

�2

�5, In Exercises 27 and 28, a QR factorization of A is given.
Use it to find a least squares solution of .

27.

28.

29. A tennis ball is dropped from various heights, and the
height of the ball on the first bounce is measured. Use
the data in Table 7.3 to find the least squares approxi-
mating line for bounce height b as a linear function
of initial height h.

R � c16 �16>2
0 1>12

d , b � £ 11
1

§
A � £ 1 0

2 �1

�1 1

§ , Q � £ 1>16 1>12

2>16 0

�1>16 1>12

§ ,
A � £2 1

2 0

1 1

§ , Q � £ 2
3

1
3

2
3 �2

3
1
3

2
3

§ , R � c3 1

0 1
d , b � £ 2

3

�1

§
Ax � b

30. Hooke’s Law states that the length L of a spring is a
linear function of the force F applied to it. (See
Figure 7.17 and Example 6.92.) Accordingly, there
are constants a and b such that

Table 7.4 shows the results of attaching various
weights to a spring.

L � a � bF
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(a) Determine the constants a and b by finding the
least squares approximating line for these data.
What does a represent?

(b) Estimate the length of the spring when a weight of
5 ounces is attached.

31. Table 7.5 gives life expectancies for people born in the
United States in the given years.

(a) Determine the least squares approximating line for
these data and use it to predict the life expectancy
of someone born in 2000.

(b) How good is this model? Explain.

32. When an object is thrown straight up into the air,
Newton’s Second Law of Motion states that its height
s(t) at time t is given by

where is its initial velocity and g is the constant of
acceleration due to gravity. Suppose we take the mea-
surements shown in Table 7.6.

v0

s 1t 2 � s0 � v0˛t � 1
2 gt 2

Section 7.3 Least Squares Approximation 611

34. Table 7.8 shows average major league baseball salaries
for the years 1970–2005.

(a) Find the least squares approximating quadratic for
these data.

(b) Find the least squares approximating exponential
for these data.

(c) Which equation gives the better approximation?
Why?

(d) What do you estimate the average major league
baseball salary will be in 2010 and 2015?

Table 7. 5
Year of Birth 1920 1930 1940 1950 1960 1970 1980 1990
Life Expectancy (years) 54.1 59.7 62.9 68.2 69.7 70.8 73.7 75.4

Source: World Almanac and Book of Facts. New York: World Almanac Books, 1999

Table 7. 6
Time (s) 0.5 1 1.5 2 3
Height (m) 11 17 21 23 18

Table 7. 7
Population

Year (in millions)

1950 150
1960 179
1970 203
1980 227
1990 250
2000 281

Source: U.S. Bureau of the Census

(a) Find the least squares approximating quadratic for
these data.

(b) Estimate the height at which the object was
released (in m), its initial velocity (in m/s), and its
acceleration due to gravity (in m/ ).

(c) Approximately when will the object hit the
ground?

33. Table 7.7 gives the population of the United States at
10-year intervals for the years 1950–2000.

(a) Assuming an exponential growth model of the
form p(t) � where p(t) is the population at
time t, use least squares to find the equation for the
growth rate of the population. [Hint: Let be
1950.]

t � 0

cekt,

s2

(b) Use the equation to estimate the U.S. population
in 2010.

Table 7. 8
Average Salary

Year (thousands of dollars)

1970 29.3
1975 44.7
1980 143.8
1985 371.6
1990 597.5
1995 1110.8
2000 1895.6
2005 2476.6

Source: Major League Baseball Players Association
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35. A 200 mg sample of radioactive polonium-210 is ob-
served as it decays. Table 7.9 shows the mass remaining
at various times.

Assuming an exponential decay model, use least
squares to find the half-life of polonium-210. (See
Section 6.7.)

612 Chapter 7 Distance and Approximation

as a basis for W and repeat the calculations to show
that the resulting projection matrix is the same.

44. Let A be a matrix with linearly independent columns
and let be the matrix of orthogonal
projection onto col(A).

(a) Show that P is symmetric.
(b) Show that P is idempotent.

In Exercises 45–52, compute the pseudoinverse of A.

45. 46.

47. 48.

49. 50.

51. 52.

53. (a) Show that if A is a square matrix with linearly
independent columns, then 

(b) If A is an m � n matrix with orthonormal
columns, what is ?

54. Prove Theorem 7.12(b).

55. Prove the remaining part of Theorem 7.12(c).

56. Let A be a matrix with linearly independent columns.
Prove the following:

(a) for all scalars c Z 0.
(b) if A is a square matrix.
(c) if A is a square matrix.

57. Let n data points (x1, y1 ), . . . , (xn, yn ) be given. Show
that if the points do not all lie on the same vertical
line, then they have a unique least squares approximat-
ing line.

58. Let n data points (x1, y1 ), . . . , (xn, yn ) be given.
Generalize Exercise 57 to show that if at least k � 1 of
x1, . . . , xn are distinct, then the given points have a
unique least squares approximating polynomial of
degree at most k.

1AT 2� � 1A� 2T1A� 2� � A
1cA2� � 11>c 2A�

A�

A� � A�1.

A � ≥ 1 2 0

0 1 �1

1 1 �2

0 0 2

¥A � ≥ 1 0 0

1 0 1

0 1 1

1 1 1

¥
A � c1 2

3 4
dA � c1 1

0 1
d

A � £1 3

3 1

2 2

§A � £ 1 3

�1 1

0 2

§
A � £ 1

�1

2

§A � c1
2
d

P � A1ATA2�1AT

Table 7. 9
Time (days) 0 30 60 90
Mass (mg) 200 172 148 128

36. Find the plane that best fits the data
points (0, 0), (5, 0, 0), (4, 1), (1, 1), and
( ).

In Exercises 37–42, find the standard matrix of the orthogo-
nal projection onto the subspace W. Then use this matrix 
to find the orthogonal projection of v onto W.

37.

38.

39.

40.

41.

42.

43. Verify that the standard matrix of the projection onto
W in Example 7.31 (as constructed by Theorem 7.11)
does not depend on the choice of basis. Take

• £11
0

§ , £13
1

§ ¶

W � span° £ 1

�2

1

§ , £ 1

0

�1

§ ¢ , v � £12
3

§
W � span° £ 1

0

�1

§ , £11
1

§ ¢ , v � £10
0

§
W � span° £ 2

2

�1

§ ¢ , v � £10
0

§
W � span° £11

1

§ ¢ , v � £12
3

§
W � spana c 1

�2
d b , v � c1

1
d

W � spana c1
1
d b , v � c3

4
d

�1, �5, �2
�3,�1,�4,

z � a � bx � cy
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The Singular Value Decomposition
In Chapter 5, we saw that every symmetric matrix A can be factored as A � PDP T,
where P is an orthogonal matrix and D is a diagonal matrix displaying the eigenval-
ues of A. If A is not symmetric, such a factorization is not possible, but as we learned
in Chapter 4, we may still be able to factor a square matrix A as A � PDP �1, where D
is as before but P is now simply an invertible matrix. However, not every matrix is
diagonalizable, so it may surprise you that we will now show that every matrix
(symmetric or not, square or not) has a factorization of the form A � PDQ T, where
P and Q are orthogonal and D is a diagonal matrix! This remarkable result is the sin-
gular value decomposition (SVD), and it is one of the most important of all matrix
factorizations.

In this section, we will show how to compute the SVD of a matrix and then con-
sider some of its many applications. Along the way, we will tie up some loose ends by
answering a few questions that were left open in previous sections.

The Singular Values of a Matrix

For any m � n matrix A, the n � n matrix ATA is symmetric and hence can be or-
thogonally diagonalized, by the Spectral Theorem. Not only are the eigenvalues of
ATA all real (Theorem 5.18), they are all nonnegative. To show this, let l be an eigen-
value of ATA with corresponding unit eigenvector v. Then

It therefore makes sense to take (positive) square roots of these eigenvalues.

Definition If A is an m � n matrix, the singular values of A are the square
roots of the eigenvalues of ATA and are denoted by s1, . . . , sn. It is conventional
to arrange the singular values so that s1 
 s2 
 p 
 sn.

Find the singular values of

Solution The matrix

has eigenvalues l1 � 3 and l2 � 1. Consequently, the singular values of A are s1 �
and s2 � 1l2 � 1.1l1 � 13

ATA � c1 1 0

1 0 1
d £1 1

1 0

0 1

§ � c2 1

1 2
d

A � £1 1

1 0

0 1

§

� vTlv � l1v # v 2 � l 7v 7 2 � l

 0 � 7Av 7 2 � 1Av 2 # 1Av 2 � 1Av 2TAv � vTATAv
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To understand the significance of the singular values of an m � n matrix A, con-
sider the eigenvectors of ATA. Since ATA is symmetric, we know that there is an ortho-
normal basis for �n that consists of eigenvectors of ATA. Let {v1, . . . , vn} be such a basis
corresponding to the eigenvalues of ATA, ordered so that l1 
 l2 
 p 
 ln. From
our calculations just before the definition,

Therefore,

In other words, the singular values of A are the lengths of the vectors Av1, . . . , Avn.
Geometrically, this result has a nice interpretation. Consider Example 7.33 again.

If x lies on the unit circle in �2 (i.e., ), then

which we recognize is a quadratic form. By Theorem 5.25, the maximum and mini-
mum values of this quadratic form, subject to the constraint are l1 � 3 and
l2 � 1, respectively, and they occur at the corresponding eigenvectors of ATA—that

is, when and respectively. Since

for i � 1, 2, we see that and are the maximum
and minimum values of the lengths as x traverses the unit circle in �2.

Now, the linear transformation corresponding to A maps �2 onto the plane in �3

with equation x � y � z � 0 (verify this), and the image of the unit circle under this
transformation is an ellipse that lies in this plane. (We will verify this fact in general
shortly; see Figure 7.18.) So s1 and s2 are the lengths of half of the major and minor
axes of this ellipse, as shown in Figure 7.19.

We can now describe the singular value decomposition of a matrix.

7Ax 7 s2 � 7Av2 7 � 1s1 � 7Av1 7 � 13

7Avi 7 2 � vi
TATAvi � li

x � v2 � c�1>12

1>12
d ,x � v1 � c 1>12

1>12
d

7x 7 � 1,

� 3x1 x 2 4 c 2 1

1 2
d c x1

x2

d � 2x 1
2 � 2x1x 2 � 2x 2

2

7Ax 7 2 � 1Ax 2 # 1Ax 2 � 1Ax 2T1Ax 2 � xTATAx

7x 7 � 1

si � 1li � 7Avi 7li � 7Avi 7 2
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x1

x2

2

2�2

�2

0

s1

s2

Figure 7. 19

multiplication
by A

y

x

2

20�2

�2 y

x

z

Figure 7. 18
The matrix A transforms the unit circle in �2 into an ellipse in �3

�
�
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The Singular Value Decomposition

We want to show that an m � n matrix A can be factored as

where U is an m � m orthogonal matrix, V is an n � n orthogonal matrix, and � is
an m � n “diagonal” matrix. If the nonzero singular values of A are

and sr�1 � sr�2 � � sn � 0, then � will have the block form

, where (1)

and each matrix O is a zero matrix of the appropriate size. (If r � m or r � n, some of
these will not appear.) Some examples of such a matrix � with r � 2 are

(What is D in each case?)
To construct the orthogonal matrix V, we first find an orthonormal basis

{v1, . . . , vn} for �n consisting of eigenvectors of the n � n symmetric matrix ATA. Then

is an orthogonal n � n matrix.
For the orthogonal matrix U, we first note that {Av1, . . . , Avn} is an orthogonal set

of vectors in �m. To see this, suppose that vi is the eigenvector of ATA corresponding
to the eigenvalue li. Then, for i j, we have

since the eigenvectors vi are orthogonal. Now recall that the singular values satisfy
and that the first r of these are nonzero. Therefore, we can normalize 

Av1, . . . , Avr by setting

This guarantees that {u1, . . . , ur} is an orthonormal set in �m, but if r � m it will not
be a basis for �m. In this case, we extend the set {u1, . . . , ur} to an orthonormal basis
{u1, . . . , um} for �m. (This is the only tricky part of the construction; we will describe
techniques for carrying it out in the examples below and in the exercises.) Then we set

U � 3u1
p um 4

ui �
1
si

Avi   for i � 1, . . . , r

si � 7Avi 7
� lj 1vi

# vj 2 � 0

� vi
Tljvj

� vi
TATAvj

1Avi 2 # 1Avj 2 � 1Avi 2TAvj



V � 3v1
p vn 4

© � c 4 0 0

0 3 0
d ,  © � £ 2 0

0 2

0 0

§ ,  © � £ 8 0 0

0 3 0

0 0 0

§ ,  © � ≥ 5 0 0

0 2 0

0 0 0

0 0 0

¥

D � £s1
p 0

o ∞ o
0 p sr

§  
� r

� m�r
© � cDr  O

n�r

O O
d

p
s1 
 s2 
 p 
 sr 7 0

A � U ©V T
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Theorem 7. 13

All that remains to be shown is that this works; that is, we need to verify that with
U, V, and � as described, we have A � U�V T. Since V T � V �1, this is equivalent to
showing that

We know that

and for i � r � 1, . . . , n. Hence,

Therefore,

as required.
We have just proved the following extremely important theorem.

The Singular Value Decomposition

Let A be an m � n matrix with singular values s1 
 s2 
 p 
 sr � 0 and
sr�1 � sr�2 � p � sn � 0. Then there exist an m � m orthogonal matrix U, an
n � n orthogonal matrix V, and an m � n matrix � of the form shown in equation
(1) such that

A factorization of A as in Theorem 7.13 is called a singular value decomposition
(SVD) of A. The columns of U are called left singular vectors of A, and the columns
of V are called right singular vectors of A. The matrices U and V are not uniquely
determined by A, but � must contain the singular values of A, as in equation (1). (See
Exercise 25.)

Find a singular value decomposition for the following matrices:

(a) (b) A � £1 1

1 0

0 1

§A � c1 1 0

0 0 1
d

A � U©V T

� U ©

� 3u1
p um 4 ≥s1

p 0

o ∞ o O

0 p sr

O O

¥
� 3s1u1

p srur 0 p 0 4� 3Av1
p Avr 0 p 0 4� 3Av1
p Avn 4AV � A 3v1
p vn 4

Avi � 0  for i � r � 1, . . . , n

7Avi 7 � si � 0

Avi � siui  for i � 1, . . . , r

AV � U©
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Solution (a) We compute

and find that its eigenvalues are l1 � 2, l2 � 1, and l3 � 0, with corresponding
eigenvectors

(Verify this.) These vectors are orthogonal, so we normalize them to obtain

The singular values of A are s1 � and Thus,

To find U, we compute

and

These vectors already form an orthonormal basis (the standard basis) for �2, so we
have

This yields the SVD

which can be easily checked. (Note that V had to be transposed. Also note that the
singular value s3 does not appear in �.)

A � c 1 1 0

0 0 1
d � c 1 0

0 1
d c12 0 0

0 1 0
d £ 1>12 1>12 0

0 0 1

�1>12 1>12 0

§ � U©V T

U � c1 0

0 1
d

u2 �
1
s2

Av2 �
1

1
c1 1 0

0 0 1
d £00

1

§ � c0
1
d

u1 �
1
s1

Av1 �
1

12
c 1 1 0

0 0 1
d £ 1>12

1>12

0

§ � c 1
0
d

V � £ 1>12 0 �1>12

1>12 0 1>12

0 1 0

§   and  © � c12 0 0

0 1 0
d

s3 � 10 � 0.s2 � 11 � 1,12,

v1 � £ 1>12

1>12

0

§ ,  v2 � £ 00
1

§ ,  v3 � £�1>12

1>12

0

§

£11
0

§ , £00
1

§ , £�1

1

0

§

ATA � £1 1 0

1 1 0

0 0 1

§
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(b) This is the matrix in Example 7.33, so we already know that the singular values are

and corresponding to and So

For U, we compute

and

This time, we need to extend {u1, u2} to an orthonormal basis for �3. There are 
several ways to proceed; one method is to use the Gram-Schmidt Process, as in
Example 5.14. We first need to find a linearly independent set of three vectors that con-
tains u1 and u2. If e3 is the third standard basis vector in �3, it is clear that {u1, u2, e3} is
linearly independent. (Here, you should be able to determine this by inspection, but a
reliable method to use in general is to row reduce the matrix with these vectors as 
its columns and use the Fundamental Theorem.) Applying Gram-Schmidt (with 
normalization) to {u1, u2, e3} (only the last step is needed), we find

so

and we have the SVD

There is another form of the singular value decomposition, analogous to the
spectral decomposition of a symmetric matrix. It is obtained from the SVD by
an outer product expansion and is very useful in applications. We can obtain this
version of the SVD by imitating what we did to obtain the spectral decomposition.

A � £ 1 1

1 0

0 1

§ � £ 2>16 0 �1>13

1>16 �1>12 1>13

1>16 1>12 1>13

§ £13 0

0 1

0 0

§ c 1>12 1>12

�1>12 1>12
d � U©V T

U � £ 2>16 0 �1>13

1>16 �1>12 1>13

1>16 1>12 1>13

§
u3 � £�1>13

1>13

1>13

§

u2 �
1
s2

Av2 �
1

1
£ 1 1

1 0

0 1

§ c�1>12

1>12
d � £ 0

�1>12

1>12

§
u1 �

1
s1

Av1 �
1

13
£ 1 1

1 0

0 1

§ c 1>12

1>12
d � £ 2>16

1>16

1>16

§

© � £13 0

0 1

0 0

§   and  V � c 1>12 �1>12

1>12 1>12
d

v2 � c�1>12

1>12
d .v1 � c 1>12

1>12
ds2 � 1,s1 � 13
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Theorem 7. 14

Accordingly, we have

using block multiplication and the column-row representation of the product. The
following theorem summarizes the process for obtaining this outer product form of
the SVD.

The Outer Product Form of the SVD

Let A be an m � n matrix with singular values s1 
 s2 
 p 
 sr � 0 and sr�1 �
sr�2 � p � sn � 0. Let u1, . . . , ur be left singular vectors and let v1, . . . , vr be right
singular vectors of A corresponding to these singular values. Then

Remark If A is a positive definite, symmetric matrix, then Theorems 7.13 and
7.14 both reduce to results that we already know. In this case, it is not hard to show
that the SVD generalizes the Spectral Theorem and that Theorem 7.14 generalizes the
spectral decomposition. (See Exercise 27.)

The SVD of a matrix A contains much important information about A, as out-
lined in Theorem 7.15, which is crucial.

A � s1u1v1
T � p � srurvr

T

� s1u1v1
T � p � srurvr

T

� 3s1u1
p srur 4 £ v1

T

o
vr

T

§
� 3u1

p ur 4 £s1
p 0

o ∞ o
0 p sr

§ £ v1
T

o
vr

T

§
� 3u1

p ur 4 £s1
p 0

o ∞ o
0 p sr

§ £ v1
T

o
vr

T

§ � 3ur�1
p um 4 3O 4 £ vr�1

T

o
vn

T

§

� 3u1
p ur ur�1

p um 4 ≥s1
p 0

o ∞ o O

0 p sr

O O

¥ F
v1

T

o
vr

T

vr�1
T

o
vn

T

V
A � U©VT � 3u1

p um 4 ≥s1
p 0

o ∞ o O

0 p sr

O O

¥ £ v1
T

o
vn

T

§
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Theorem 7. 15 Let A � U�VT be a singular value decomposition of an m � n matrix A. Lets1, p ,
sr be all the nonzero singular values of A. Then:

a. The rank of A is r.

b. {u1, . . . , ur} is an orthonormal basis for col(A).

c. {ur�1, . . . , um } is an orthonormal basis for null(AT ).

d. {v1, . . . , vr} is an orthonormal basis for row(A).

e. {vr�1, . . . , vn } is an orthonormal basis for null(A).

Proof (a) By Exercise 61 in Section 3.5, we have

(b) We already know that {u1, . . . , ur} is an orthonormal set. Therefore, it is linearly
independent, by Theorem 5.1. Since for i � 1, . . . , r, each ui is in the
column space of A. (Why?) Furthermore,

Therefore, {u1, . . . , ur} is an orthonormal basis for col(A), by Theorem 6.10(c).

(c) Since {u1, . . . , um} is an orthonormal basis for �m and {u1, . . . , ur} is a basis for
col(A), by property (b), it follows that {ur�1, . . . , um} is an orthonormal basis for the
orthogonal complement of col(A). But (col(A))� � null(AT ), by Theorem 5.10.

(e) Since

the set {vr�1, . . . , vn} is an orthonormal set contained in the null space of A. There-
fore, {vr�1, . . . , vn} is a linearly independent set of n � r vectors in null(A). But

by the Rank Theorem, so {vr�1, . . . , vn} is an orthonormal basis for null(A), by Theo-
rem 6.10(c).

(d) Property (d) follows from property (e) and Theorem 5.10. (You are asked to
prove this in Exercise 32.)

The SVD provides new geometric insight into the effect of matrix transforma-
tions. We have noted several times (without proof) that an m � n matrix transforms
the unit sphere in �n into an ellipsoid in �m. This point arose, for example, in our dis-
cussions of Perron’s Theorem and of operator norms, as well as in the introduction to
singular values in this section. We now prove this result.

dim1null1A2 2 � n � r

Avr�1 � p � Avn � 0

r � rank1A2 � dim1col1A2 2
ui � 11>si 2Avi

� rank1© 2 � r

� rank1©V T 2 rank1A 2 � rank1U©V T 2
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Theorem 7. 16 Let A be an m � n matrix with rank r. Then the image of the unit sphere in �n

under the matrix transformation that maps x to Ax is

a. the surface of an ellipsoid in �m if r � n.
b. a solid ellipsoid in �m if r � n.

Proof Let A � U�VT be a singular value decomposition of the m � n matrix A. Let
the left and right singular vectors of A be u1, . . . , um and v1, . . . , vn, respectively. Since
rank(A) � r, the singular values of A satisfy

by Theorem 7.15(a). Let be a unit vector in �n. Now, since V is an orthogonal

matrix, so is V T, and hence V Tx is a unit vector, by Theorem 5.6. Now

so ( x)2 � p � ( x)2 � 1.
By the outer product form of the SVD, we have A � s1u1 � p � srur

Therefore,

where we are letting yi denote the scalar si x.

(a) If r � n, then we must have n � m and

where Therefore, again by Theorem 5.6, since U is

orthogonal. But

which shows that the vectors Ax form the surface of an ellipsoid in �m. (Why?)

(b) If r � n, the only difference in the above steps is that the equation becomes

since we are missing some terms. This inequality corresponds to a solid ellipsoid 
in �m.

a y1

s1
b 2

� p � a yr

sr
b 2

� 1

a y1

s1
b 2

� p � a yn

sn
b 2

� 1v1
Tx 22 � p � 1vn

Tx 22 � 1

7Ax 7 � 7Uy 7 � 7 y 7 ,y � £ y1

o
yn

§ .
� Uy

Ax � y1u1 � p � ynun

vT
i

� y1u1 � p � yrur

� 1s1v1
Tx 2u1 � p � 1srvr

Tx 2ur

Ax � s1u1v1
Tx � p � srurvr

Tx

vT
r .vT

1

vT
nvT

1

V Tx � £ v1
T

o
vn

T

§ x � £ v1
Tx

o
vn

Tx

§
x � £ x1

o
xn

§
s1 
 s2 
 p 
 sr 7 0  and  sr�1 � sr�2 � p � sn � 0
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Describe the image of the unit sphere in �3 under the action of the matrix

Solution In Example 7.34(a), we found the following SVD of A:

Since r � rank(A) � 2 � 3 � n, the second part of Theorem 7.16 applies. The image
of the unit sphere will satisfy the inequality

relative to y1 y2 coordinate axes in �2 (corresponding to the left singular vectors u1

and u2). Since u1 � e1 and u2 � e2, the image is as shown in Figure 7.20.

a y1

12
b 2

� a y2

1
b 2

� 1  or  
y 1

2

2
� y 2

2 � 1

c 1 1 0

0 0 1
d � c 1 0

0 1
d c12 0 0

0 1 0
d £ 1>12 1>12 0

0 0 1

�1>12 1>12 0

§

A � c1 1 0

0 0 1
d
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x

z

y

y2TA

y1
1

1

�1

�1

Figure 7. 20

In general, we can describe the effect of an m � n matrix A on the unit sphere in
�n in terms of the effect of each factor in its SVD, A � U�VT, from right to left. Since
V T is an orthogonal matrix, it maps the unit sphere to itself. The m � n matrix � does
two things: The diagonal entries sr�1 � sr�2 � � sn � 0 collapse n � r of the
dimensions of the unit sphere, leaving an r-dimensional unit sphere, which the
nonzero diagonal entries s1, . . . , sr then distort into an ellipsoid. The orthogonal
matrix U then aligns the axes of this ellipsoid with the orthonormal basis vectors
u1, . . . , ur in �m. (See Figure 7.21.)

Applications of the SVD

The singular value decomposition is an extremely useful tool, both practically and
theoretically. We will look at just a few of its many applications.

p

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Rank Until now, we have not worried about calculating the rank of a matrix from
a computational point of view. We compute the rank of a matrix by row reducing it to
echelon form and counting the number of nonzero rows. However, as we have seen,
roundoff errors can affect this process, especially if the matrix is ill-conditioned. En-
tries that should be zero may end up as very small nonzero numbers, affecting our
ability to accurately determine the rank and other quantities associated with the ma-
trix. In practice, the SVD is often used to find the rank of a matrix, since it is much
more reliable when roundoff errors are present. The basic idea behind this approach is
that the orthogonal matrices U and V in the SVD preserve lengths and thus do not in-
troduce additional errors; any errors that occur will tend to show up in the matrix �.

Let

The matrix B has been obtained by rounding off the entries in A to two decimal
places. If we compute the ranks of these two approximately equal matrices, we find
that rank(A) � 3 but rank(B) � 2. By the Fundamental Theorem, this implies, among
other things, that A is invertible but B is not.

The explanation for this critical difference between two matrices that are approxi-
mately equal lies in their SVDs. The singular values of A are 10, 8, and 0.01, so A has
rank 3. The singular values of B are 10, 8, and 0, so B has rank 2.

In practical applications, it is often assumed that if a singular value is computed
to be close to zero, then roundoff error has crept in and the actual value should be
zero. In this way, “noise” can be filtered out. In this example, if we compute A �
U�VT and replace

then U��VT � B. (Try it!)

Matrix Norms and the Condition Number The SVD can provide simple formulas
for certain expressions involving matrix norms. Consider, for example, the Frobenius
norm of a matrix. The following theorem shows that it is completely determined by
the singular values of the matrix.

© � £ 10 0 0   
0 8 0   
0 0 0.01

§   by  ©¿ � £ 10 0 0

0 8 0

0 0 0

§

A � £8.1650 �0.0041 �0.0041

4.0825 �3.9960 4.0042

4.0825 4.0042 �3.9960

§   and  B � £8.17 0 0

4.08 �4 4

4.08 4 �4

§
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Theorem 7. 17 Let A be an m � n matrix and let s1, . . . ,sr be all the nonzero singular values of A.
Then

The proof of this result depends on the following analogue of Theorem 5.6:

If A is an m � n matrix and Q is an m � m orthogonal matrix, then

(2)

To show that this is true, we compute

Proof of Theorem 7. 17 Let A � U�VT be a singular value decomposition of A. Then,
using equation (2) twice, we have

which establishes the result.

Verify Theorem 7.17 for the matrix A in Example 7.18.

Solution The matrix has singular values 4.5150 and 3.1008. We

check that

which agrees with Example 7.18.

In Section 7.2, we commented that there is no easy formula for the operator 
2-norm of a matrix A. Although that is true, the SVD of A provides us with a very nice
expression for Recall that

where the vector norm is the ordinary Euclidean norm. By Theorem 7.16, for
the set of vectors lies on or inside an ellipsoid whose semi-axes have7Ax 77x 7 � 1,

7A 7 2 � max7x 7�1
7Ax 77A 7 2.

24.51502 � 3.10082 � 130 � 7A 7 F
A � c 3 �1

2 4
d

� 7V©T 7 F2 � 7©T 7 F2 � s1
2 � p � sr

2

� 7©V T 7 F2 � 7 1©V T 2T 7 F27A 7 F2 � 7U©V T 7 F2
� 7A 7 F2� 7 a1 7 2E � p � 7 an 7 2E� 7Qa1 7 2E � p � 7Qan 7 2E7QA 7 F2 � 7 3Qa1

p Qan 4 7 F2
7QA 7 F � 7A 7 F

7A 7 F � 2s1
2 � p � sr

2
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lengths equal to the nonzero singular values of A. It follows immediately that the
largest of these is s1, so

This provides us with a neat way to express the condition number of a (square)
matrix with respect to the operator 2-norm. Recall that the condition number (with
respect to the operator 2-norm) of an invertible matrix A is defined as

As you will be asked to show in Exercise 28, if A � U�V T, then A�1 � V ��1U T.
Therefore, the singular values of A�1 are 1�s1, . . . , 1�sn (why?), and

It follows that so

Find the 2-condition number of the matrix A in Example 7.36.

Solution Since s1 � 10 and s3 � 0.01,

This value is large enough to suggest that A may be ill-conditioned and we should be
wary of the effect of roundoff errors.

The Pseudoinverse and Least Squares Approximation In Section 7.3, we pro-
duced the formula A� � (ATA)�1AT for the pseudoinverse of a matrix A. Clearly, this
formula is valid only if ATA is invertible, as we noted at the time. Equipped with the
SVD, we can now define the pseudoinverse of any matrix, generalizing our previous
formula.

Definition Let A � U�VT be an SVD for an m � n matrix A, where � �

and D is an r � r diagonal matrix containing the nonzero singular values

s1 
 s2 
 p 
 sr � 0 of A. The pseudoinverse (or Moore-Penrose inverse) of A
is the n � m matrix A� defined by

where �� is the n � m matrix

©� � cD�1 O

O O
d

A� � V ©�U T

cD O

O O
d

cond21A 2 �
s1

s3
�

10

0.01
� 1000

cond21A 2 �
s1

sn

7A�1 7 2 � 1>sn,

1>sn 
 p 
 1>s1

cond21A2 � 7A�1 7 2 7A 7 2

7A 7 2 � s1
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E. H. Moore (1862–1932) was an
American mathematician who
worked in group theory, number
theory, and geometry. He was the
first head of the mathematics de-
partment at the University of
Chicago when it opened in 1892. In
1920, he introduced a generalized
matrix inverse that included rectan-
gular matrices. His work did not
receive much attention because of
his obscure writing style.
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Find the pseudoinverses of the matrices in Example 7.34.

Solution (a) From the SVD

we form

Then

(b) We have the SVD

so

and

It is straightforward to check that this new definition of the pseudoinverse general-
izes the old one, for if the m � n matrix A � U�V T has linearly independent columns,
then direct substitution shows that (ATA)�1AT � V ��U T. (You are asked to verify this
in Exercise 50.) Other properties of the pseudoinverse are explored in the exercises.

We have seen that when A has linearly independent columns, there is a unique
least squares solution to Ax � b; that is, the normal equations ATAx � AT b have the
unique solution

When the columns of A are linearly dependent, then ATA is not invertible, so the nor-
mal equations have infinitely many solutions. In this case, we will ask for the solution

of minimum length (i.e., the one closest to the origin). It turns out that this time we
simply use the general version of the pseudoinverse.
x

x � 1ATA 2�1ATb � A�b

x

� c 1>3 2>3 �1>3
1>3 �1>3 2>3 d

A� � V©�UT � c 1>12 �1>12

1>12 1>12
d c 1>13 0 0

0 1 0
d £ 2>16 1>16 1>16

0 �1>12 1>12

�1>13 1>13 1>13

§
©� � c 1>13 0 0

0 1 0
d

A � £ 1 1

1 0

0 1

§ � £ 2>16 0 �1>13

1>16 �1>12 1>13

1>16 1>12 1>13

§ £13 0

0 1

0 0

§ c 1>12 1>12

�1>12 1>12
d � U©V T

A� � V ©�U T � £ 1>12 0 �1>12

1>12 0 1>12

0 1 0

§ £ 1>12 0

0 1

0 0

§ c 1 0

0 1
d � £ 1>2 0

1>2 0

0 1

§
©� � £ 1>12 0

0 1

0 0

§
A � c 1 1 0

0 0 1
d � c 1 0

0 1
d c12 0 0

0 1 0
d £ 1>12 1>12 0

0 0 1

�1>12 1>12 0

§ � U©VT
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One of those who was unaware of
Moore’s work on matrix inverses
was Roger Penrose (b.1931), who
introduced his own notion of a
generalized matrix inverse
in 1955. Penrose has made many
contributions to geometry and
theoretical physics. He is also the 
inventor of a type of nonperiodic
tiling that covers the plane with 
only two different shapes of tile,
yet has no repeating pattern. He has
received many awards, including the
1988 Wolf Prize in Physics, which he
shared with Stephen Hawking. In
1994, he was knighted for services
to science. Sir Roger Penrose is
currently the Emeritus Rouse Ball
Professor of Mathematics at the
University of Oxford.
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Theorem 7. 18 The least squares problem Ax � b has a unique least squares solution of minimal
length that is given by

Proof Let A be an m � n matrix of rank r with SVD A � U�V T (so that A� �
V ��U T ). Let y � V Tx and let c � U T b. Write y and c in block form as

where y1 and c1 are in �r.
We wish to minimize or, equivalently, Using Theorem 5.6

and the fact that U T is orthogonal (because U is), we have

The only part of this expression that we have any control over is y1, so the minimum
value occurs when c1 � Dy1 � 0 or, equivalently, when y1 � D�1c1. So all least squares
solutions x are of the form

Set

We claim that this is the least squares solution of minimal length. To show this, let’s
suppose that

is a different least squares solution (hence, y2 0). Then

as claimed.
We still must show that is equal to A� b. To do so, we simply compute

Find the minimum length least squares solution of Ax � b, where

A � c 1 1

1 1
d   and  b � c 0

1
d

� V©�c � V©�U Tb � A�b

x � V ˛y � V cD�1c1

0
d � V cD�1 O

O O
d c c1

c2

dx

7 x 7 � 7V ˛y˛ 7 � 7 y 7 6 7 y¿ 7 � 7Vy¿ 7 � 7 x¿ 7

x¿ � Vy¿ � V cD�1c1

y2

d
x

x � V ˛y � V cD�1c1

0
d

x � Vy � V cD�1c1

y2

d

� 7 c � ©y 7 2 � g c c1

c2

d � cD O

O O
d c y1

y2

d g 2

� g c c1 � Dy1

c2

d g 2

7b � Ax 7 2 � 7U T1b � Ax 2 7 2 � 7U T1b � U©V Tx 2 7 2 � 7U Tb � U TU©V Tx 7 2
7b � Ax 7 2.7b � Ax 7

y � c y1

y2

d   and  c � c c1

c2

d

x � A�b

x
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Theorem 7. 19

Solution The corresponding equations

are clearly inconsistent, so a least squares solution is our only hope. Moreover, the
columns of A are linearly dependent, so there will be infinitely many least squares
solutions—among which we want the one with minimal length.

An SVD of A is given by

(Verify this.) It follows that

so

You can see that the minimum least squares solution in Example 7.40 satisfies
In a sense, this is a compromise between the two equations we started

with. In Exercise 49, you are asked to solve the normal equations for this problem di-
rectly and to verify that this solution really is the one closest to the origin.

The Fundamental Theorem of Invertible Matrices It is appropriate to conclude
by revisiting the Fundamental Theorem of Invertible Matrices one more time.
Not surprisingly, the singular values of a square matrix tell us when the matrix is
invertible.

The Fundamental Theorem of Invertible Matrices: Final Version

Let A be an n � n matrix and let T : V S W be a linear transformation whose
matrix with respect to bases B and C of V and W, respectively, is A. The
following statements are equivalent:

a. A is invertible.
b. Ax � b has a unique solution for every b in �n.
c. Ax � 0 has only the trivial solution.
d. The reduced row echelon form of A is In.
e. A is a product of elementary matrices.
f. rank(A) � n
g. nullity(A) � 0
h. The column vectors of A are linearly independent.
i. The column vectors of A span �n.
j. The column vectors of A form a basis for �n.
k. The row vectors of A are linearly independent.
l. The row vectors of A span �n.

3T 4CdB

x � y � 1
2 .

x � A�b � c 14 1
4

1
4

1
4

d c 0
1
d � c 141

4

d
A� � V©�U T � c 1>12 1>12

1>12 �1>12
d c 1>2 0

0 0
d c 1>12 1>12

1>12 �1>12
d � c 1>4 1>4

1>4 1>4 d
A � c 1 1

1 1
d � c 1>12 1>12

1>12 �1>12
d c 2 0

0 0
d c 1>12 1>12

1>12 �1>12
d � U©V T

x � y � 1

x � y � 0
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m. The row vectors of A form a basis for �n.
n. det A Z 0
o. 0 is not an eigenvalue of A.
p. T is invertible.
q. T is one-to-one.
r. T is onto.
s. ker(T) � {0}
t. range(T) � W
u. 0 is not a singular value of A.

Proof First note that, by the definition of singular values, 0 is a singular value of A if
and only if 0 is an eigenvalue of ATA.

(a) (u) If A is invertible, so is AT, and hence ATA is as well. Therefore, property (o)
implies that 0 is not an eigenvalue of ATA, so 0 is not a singular value of A.

(u) (a) If 0 is not a singular value of A, then 0 is not an eigenvalue of ATA. There-
fore, ATA is invertible, by the equivalence of properties (a) and (o). But then
rank(A) � n, by Theorem 3.28, so A is invertible, by the equivalence of properties (a)
and (f).

1

1

Section 7.4 The Singular Value Decomposition 629

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Among the many applications of the SVD, one of the most impressive is its use in
compressing digital images so that they can be efficiently transmitted electronically
(by satellite, fax, Internet, or the like). We have already discussed the problem of
detecting and correcting errors in such transmissions. The problem we now wish to
consider has to do with reducing the amount of information that has to be transmit-
ted, without losing any essential information.

In the case of digital images, let’s suppose we have a grayscale picture that is 
340 � 280 pixels in size. Each pixel is one of 256 shades of gray, which we can repre-
sent by a number between 0 and 255. We can store this information in a 340 � 280
matrix A, but transmitting and manipulating these 95,200 numbers is very expensive.
The idea behind image compression is that some parts of the picture are less interest-
ing than others. For example, in a photograph of someone standing outside, there
may be a lot of sky in the background, while the person’s face contains a lot of detail.
We can probably get away with transmitting every second or third pixel in the back-
ground, but we would like to keep all the pixels in the region of the face.

It turns out that the small singular values in the SVD of the matrix A come from
the “boring” parts of the image, and we can ignore many of them. Suppose, then, that
we have the SVD of A in outer product form

Let k � r and define

Then Ak is an approximation to A that corresponds to keeping only the first k singular val-
ues and the corresponding singular vectors. For our 340 � 280 example, we may 
discover that it is enough to transmit only the data corresponding to the first 20 singular
values. Then, instead of transmitting 95,200 numbers, we need only send 20 singular val-
ues plus the 20 vectors u1, . . . , u20 in �340 and the 20 vectors v1, . . . , v20 in �280, for a total of

numbers. This represents a substantial saving!

The picture of the mathematician Gauss in Figure 7.22 is a 340 � 280 pixel image.
It has 256 shades of gray, so the corresponding matrix A is 340 � 280, with entries
between 0 and 255.

It turns out that the matrix A has rank 280. If we approximate A by Ak, as de-
scribed above, we get an image that corresponds to the first k singular values of A.
Figure 7.23 shows several of these images for values of k from 2 to 256. At first, the
image is very blurry, but fairly quickly it takes shape. Notice that A32 already gives a
pretty good approximation to the actual image (which comes from A � A280, as
shown in the upper left-hand corner of Figure 7.23).

Some of the singular values of A are s1 � 49,096, s16 � 22,589, s32 � 10,187,
s64 � 484,s128 � 182,s256 � 5,and s280 � 0.5.The smaller singular values contribute very
little to the image, which is why the approximations quickly look so close to the original.

20 � 20 # 340 � 20 # 280 � 12,420

Ak � s1u1v1
T � p � skukvk

T

A � s1u1v1
T � p � srurvr

T

630

Figure 7. 22

©
 B

et
tm

an
n/

CO
RB

IS

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



631

k � 8 k � 16 k � 32

Orignial, k � r � 280 k � 2 k � 4

k � 64 k � 128 k � 256

Figure 7. 23
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In Exercises 1–10, find the singular values of the given matrix.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–20, find an SVD of the indicated matrix.

11. A in Exercise 3 12.

13. 14.

15. A in Exercise 5 16. A in Exercise 6

17. A in Exercise 7 18. A in Exercise 8

19. A in Exercise 9 20.

In Exercises 21–24, find the outer product form of the SVD
for the matrix in the given exercises.

21. Exercises 3 and 11 22. Exercise 14

23. Exercises 7 and 17 24. Exercises 9 and 19

25. Show that the matrices U and V in the SVD are not
uniquely determined. [Hint: Find an example in which
it would be possible to make different choices in the
construction of these matrices.]

26. Let A be a symmetric matrix. Show that the singular
values of A are:
(a) the absolute values of the eigenvalues of A.
(b) the eigenvalues of A if A is positive definite.

27. (a) Show that, for a positive definite, symmetric
matrix A, Theorem 7.13 gives the orthogonal
diagonalization of A, as guaranteed by the Spectral
Theorem.

A � c 1 1 1

1 1 1
d

A � c 1 �1

1 1
dA � c 0 �2

�3 0
d

A � c�2 0

0 0
d

A � £ 1 0 1

0 �3 0

1 0 1

§A � c 2 0 1

0 2 0
d

A � £ 1 0

0 1

�2 2

§A � £ 0 0

0 3

�2 0

§
A � 33 4 4A � c 3

4
d

A � c12 1

0 12
dA � c 1 1

0 0
d

A � c 3 1

1 3
dA � c 2 0

0 3
d (b) Show that, for a positive definite, symmetric

matrix A, Theorem 7.14 gives the spectral
decomposition of A.

28. If A is an invertible matrix with 
show that is invertible and that is
an SVD of

29. Show that if is an SVD of A, then the left
singular vectors are eigenvectors of

30. Show that A and have the same singular values.

31. Let Q be an orthogonal matrix such that QA makes
sense. Show that A and QA have the same singular
values.

32. Prove Theorem 7.15(d).

33. What is the image of the unit circle in �2 under the
action of the matrix in Exercise 3?

34. What is the image of the unit circle in �2 under
the action of the matrix in Exercise 7?

35. What is the image of the unit sphere in �3 under the
action of the matrix in Exercise 9?

36. What is the image of the unit sphere in �3 under
the action of the matrix in Exercise 10?

In Exercises 37–40, compute (a) and (b) for
the indicated matrix.

37. A in Exercise 3 38. A in Exercise 8

39. 40.

In Exercises 41–44, compute the pseudoinverse of A in
the given exercise.

41. Exercise 3 42. Exercise 8

43. Exercise 9 44. Exercise 10

In Exercises 45–48, find A� and use it to compute the mini-
mal length least squares solution to 

45.

46.

47. A � £ 1 1

1 1

1 1

§ , b � £ 12
3

§
A � c 3 0 0

0 0 2
d , b � c 3

0
d

A � c 1 2

2 4
d , b � c 3

5
d Ax � b.

A�

A � c 10 10 0

100 100 1
dA � c 1 0.9

1 1 
d

cond21A 27A 7 2

AT

AAT.
A � U©V T

A�1.
A�1 � V©�1U T©

SVDA � U©V T,

Exercises 7. 4
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48.

49. (a) Set up and solve the normal equations for the
system of equations in Example 7.40.

(b) Find a parametric expression for the length of a
solution vector in part (a).

(c) Find the solution vector of minimal length and
verify that it is the one produced by the method 
of Example 7.40. [Hint: Recall how to find the
coordinates of the vertex of a parabola.]

50. Verify that when A has linearly independent
columns, the definitions of pseudoinverse in this
section and in Section 7.3 are the same.

51. Verify that the pseudoinverse (as defined in this
section) satisfies the Penrose conditions for A
(Theorem 7.12 in Section 7.3).

52. Show that A� is the only matrix that satisfies the
Penrose conditions for A. To do this, assume that 
A� is a matrix satisfying the Penrose conditions:
(a) AA�A � A, (b) A�AA� � A�, and (c) AA� and A�A
are symmetric. Prove that A� � A�. [Hint: Use the
Penrose conditions for A� and A� to show that
A� � A�AA� and A� � A�AA�. It is helpful to note that
condition (c) can be written as AA� � (A�)TAT and
A�A � AT(A�)T, with similar versions for A�.]

53. Show that (A� )� � A. [Hint: Show that A satisfies the
Penrose conditions for A�. By Exercise 52, A must
therefore be (A� )�.]

54. Show that (A� )T � (AT )�. [Hint: Show that (A� )T

satisfies the Penrose conditions for AT. By Exercise 52,
(A� )T must therefore be (AT )�.]

55. Show that if A is a symmetric, idempotent matrix,
then A� � A.

A � £ 1 0 1

0 1 0

1 0 1

§ , b � £ 11
1

§
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56. Let Q be an orthogonal matrix such that QA makes
sense. Show that (QA)�

� A�QT.

57. Prove that if A is a positive definite matrix with SVD
A � U V T, then U � V.

58. Prove that for a diagonal matrix, the 1-, 2-, and 
-norms are the same.

59. Prove that for any square matrix A, � .
[Hint: is the square of the largest singular value of
A and hence is equal to the largest eigenvalue of ATA.
Now use Exercise 34 in Section 7.2.]

Every complex number can be written in polar form as 
z � where is a nonnegative real number
and u is its argument, with (See Appendix C.)
Thus, z has been decomposed into a stretching factor r and
a rotation factor There is an analogous decomposition
A � RQ for square matrices, called the polar
decomposition.

60. Show that every square matrix A can be factored as
where R is symmetric, positive semidefinite

and Q is orthogonal. [Hint: Show that the SVD can be
rewritten to give

Then show that and have the
right properties.]

Find a polar decomposition of the matrices in 
Exercises 61–64.

61. A in Exercise 3 62. A in Exercise 14

63. 64. A � £ 4 2 �3

�2 2 6

4 �1 6

§A � c 1 2

�3 �1
d

Q � UVTR � U©U T

A � U©V T � U© 1U TU 2V T � 1U©U T 2 1UV T 2
A � RQ,

eiu.

0eiu 0 � 1.
r � 0z 0reiu,

7A 7 22 7A 7q7A 7 17A 7 22q

©

a + bi

Applications

Approximation of Functions

In many applications, it is necessary to approximate a given function by a “nicer”
function. For example, we might want to approximate by a linear func-
tion on some interval [a, b]. In this case, we have a continuous
function f, and we want to approximate it as closely as possible on the interval [a, b]

g 1x 2 � c � dx
f 1x 2 � e x

dy
dx
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by a function g in the subspace �1. The general problem can be phrased as 
follows:

Given a continuous function f on an interval [a, b] and a subspace W of �[a, b],
find the function “closest” to f in W.

The problem is analogous to the least squares fitting of data points, except now we
have infinitely many data points—namely, the points on the graph of the function f.
What should “approximate” mean in this context? Once again, the Best Approxima-
tion Theorem holds the answer.

The given function f lives in the vector space �[a, b] of continuous functions on
the interval [a, b]. This is an inner product space, with inner product

If W is a finite-dimensional subspace of �[a, b], then the best approximation to f in
W is given by the projection of f onto W, by Theorem 7.8. Furthermore, if
is an orthogonal basis for W, then

Find the best linear approximation to on the interval [ 1].

Solution Linear functions are polynomials of degree 1, so we use the subspace 
W � �1[ 1] of �[�1, 1] with the inner product

A basis for �1[�1, 1] is given by {1, x}. Since

this is an orthogonal basis, so the best approximation to f in W is

� 1
2 1e � e�1 2 � 3e�1x � 1.18 � 1.10x

�
e � e�1

2
�

2e�1

2
3

x

�


1

�1

11 # ex 2 dx


1

�1

11 # 1 2 dx

�


1

�1

xex dx


1

�1

x 2 dx

x

g 1x 2 � projW 1e x 2 �
81, e x981, 19 1 �

8x, e x98x, x 9 x
81, x 9 � 

1

�1

x dx � 0

8 f, g9 � 
1

�1

f 1x 2g 1x 2 dx

�1,

�1,f 1x 2 � ex

projW 1 f 2 �
8u1, f 98u1, u19u1 � p �

8uk˛

, f 98uk˛

, uk9uk

5u1, p , uk6
8 f, g 9 � 

b

a

f 1x 2g 1x 2 dx
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where we have used integration by parts to evaluate (Check these calcula-
tions.) See Figure 7.24.


1

�1

xex dx.
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f (x) � ex

g(x) � 1.18 � 1.10x

�1 1 2
x

y

�1

2

3

Figure 7. 24

The error in approximating f by g is the one specified by the Best Approximation
Theorem: the distance between f and g relative to the inner product on
�[�1, 1]. This error is just

and is often called the root mean square error. With the aid of a CAS, we find that the
root mean square error in Example 7.41 is

Remark The root mean square error can be thought of as analogous to the area
between the graphs of f and g on the specified interval. Recall that the area between
the graphs of f and g on the interval [a, b] is given by

(See Figure 7.25.)

Although the equation in the above Remark is a sensible measure of the “error”
between f and g, the absolute value sign makes it hard to work with. The root mean
square error is easier to use and therefore preferable. The square root is necessary to
“compensate” for the squaring and to keep the unit of measurement the same as it
would be for the area between the curves. For comparison purposes, the area between
the graphs of f and g in Example 7.41 is


1

�1

0e x � 1
2 1e � e�1 2 � 3e�1x 0 dx � 0.28


b

a

0 f 1x 2 � g 1x 2 0 dx

7 e x � 112 1e � e�1 2 � 3e�1x 2 7 � B 
1

�1

1e x � 1
2 1e � e�1 2 � 3e�1x 2 2 dx � 0.23

‘ f � g ‘ � B 
1

�1

1 f 1x 2 � g 1x 2 2 2 dx

7 f � g 7

f (x)

g(x)

a b

Figure 7. 25

�

�
I I I I II I I I I ������������������������������
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Find the best quadratic approximation to f(x) � e x on the interval [�1, 1].

Solution A quadratic function is a polynomial of the form g(x) � a � bx � cx2 in
W � �2[�1, 1]. This time, the standard basis {1, x, x 2 } is not orthogonal. However,
we can construct an orthogonal basis using the Gram-Schmidt Process, as we did in
Example 7.8. The result is the set of Legendre polynomials

Using this set as our basis, we compute the best approximation to f in W as g(x) �
projW (e x ). The linear terms in this calculation are exactly as in Example 7.41, so we
only require the additional calculations

and

Then the best quadratic approximation to f(x) � e x on the interval [�1, 1] is

(See Figure 7.26.)

�
3111e�1 � e 2

4
� 3e�1x �

151e � 7e�1 2
4

x 2 � 1.00 � 1.10x � 0.54x2

� 1
2 1e � e�1 2 � 3e�1x �

2
3 1e � 7e�1 2

8
45

1x 2 � 1
3 2

g 1x2 � projW 1e x 2 �
81, e x981, 19 1 �

8x, e x98x, x 9 x �
8x 2 � 1

3 , e x 98x 2 � 1
3 , x 2 � 1

3 9 1x 2 � 1
3 2

8x 2 � 1
3 , x 2 � 1

3 9 � 
1

�1

1x 2 � 1
3 2 2 dx � 

1

�1

1x 4 � 2
3 x 2 � 1

9 2 dx � 8
45

8x 2 � 1
3 , e x9 � 

1

�1

1x 2 � 1
3 2e x dx � 

1

�1

x 2e x dx � 1
3 

1

�1

e x dx � 2
3 1e � 7e�1 2

51, x, x 2 � 1
36
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x
�2 2�1 1

y

1

2

3

4

5
f (x) � ex

g(x) � 1.00 � 1.10x � 0.54x2

Figure 7. 26
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Notice how much better the quadratic approximation in Example 7.42 is than the
linear approximation in Example 7.41. It turns out that, in the quadratic case, the
root mean square error is

In general, the higher the degree of the approximating polynomial, the smaller the
error and the better the approximation.

In many applications, functions are approximated by combinations of sine and
cosine functions. This method is particularly useful if the function being approxi-
mated displays periodic or almost periodic behavior (such as that of a sound wave, an
electrical impulse, or the motion of a vibrating system). A function of the form

(1)

is called a trigonometric polynomial; if an and bn are not both zero, then p(x) is said
to have order n. For example,

is a trigonometric polynomial of order 3.
Let’s restrict our attention to the vector space �[�p, p] with the inner product

The trigonometric polynomials of the form in equation (1) are linear combinations
of the set

The best approximation to a function f in �[�p, p] by a trigonometric polynomial
of order n will therefore be projW ( f ), where W � span(B). It turns out that B is an
orthogonal set and, hence, a basis for W. Verification of this fact involves showing
that any two distinct functions in B are orthogonal with respect to the given inner
product. Example 7.43 presents some of the necessary calculations; you are asked to
provide the remaining ones in Exercises 17–19.

Show that sin jx is orthogonal to cos kx in �[�p,p] for j, k 
 1.

Solution Using a trigonometric identity, we compute as follows: If j k, then

since the cosine function is periodic with period 2p.

� 0

� �1
2 c cos1 j � k 2x

j � k
�

cos1 j � k 2x
j � k

d
�p

p


p

�p

 sin jx cos kx dx � 1
2 
p

�p

3sin1 j � k 2x � sin1 j � k 2x 4 dx



B � 51, cos x, . . . , cos nx, sin x, . . . , sin nx6
8 f, g 9 � 

p

�p

f 1x 2g 1x 2 dx

p1x 2 � 3 � cos x � sin 2x � 4 sin 3x

� b2 sin 2x � p � bn sin nx

p 1x 2 � a0 � a1 cos x � a2 cos 2x � p � an cos nx � b1 sin x

7 e x � g 1x 2 7 � B 
1

�1

1ex � g 1x 2 2 2 dx � 0.04
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If j � k, then

since sin kp� 0 for any integer k.

In order to find the orthogonal projection of a function f in �[�p, p] onto the
subspace W spanned by the orthogonal basis B, we need to know the squares of the
norms of the basis vectors. For example, using a half-angle formula, we have

In Exercise 20, you are asked to show that 8cos kx, cos kx9� p and 81, 19� 2p.
We now have

(2)

where

(3)

for k 
 1. The approximation to f given by equations (2) and (3) is called the nth-order
Fourier approximation to f on [�p, p]. The coefficients a0, a1, . . . , an, b1, . . . , bn

are called the Fourier coefficients of f.

Find the fourth-order Fourier approximation to f(x) � x on [�p,p].

Solution Using formulas (3), we obtain

and for k 
 1, integration by parts yields

ak �
1
p 

p

�p

x cos kx dx �
1
p
c x

k
 sin kx �

1

k 2 cos kx d
�p

p

� 0

a0 �
1

2p 
p

�p

x dx �
1

2p
c x 2

2
d

�p

p

� 0

bk �
8sin kx, f 98sin kx, sin kx 9 �

1
p 

p

�p

f 1x 2  sin kx dx

ak �
8cos kx, f 98cos kx, cos kx 9 �

1
p 

p

�p

f 1x 2  cos kx dx

a0 �
81, f 981, 19 �

1

2p 
p

�p

f 1x 2 dx

projW 1 f 2 � a0 � a1 cos x � p � an cos nx � b1 sin x � p � bn sin nx

� p

� 1
2 c x �

sin 2kx

2k
d

�p

p

� 1
2 
p

�p

11 � cos 2kx 2 dx

8sin kx, sin kx9 � 
p

�p

 sin2 kx dx


p

�p

 sin kx cos kx dx �
1

2k
3sin2 kx 4�pp � 0
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and

It follows that the fourth-order Fourier approximation to f (x) � x on [�p,p] is

Figure 7.27 shows the first four Fourier approximations to f(x) � x on [�p,p].

21sin x � 1
2 sin 2x � 1

3 sin 3x � 1
4 sin 4x 2

�
21�1 2 k�1

k

� d�2

k
if k is even

2

k
if k is odd

�
1
p
c�p cos kp � p cos1�kp 2

k
d

bk �
1
p 

p

�p

x sin kx dx �
1
p
c� x

k
 cos kx �

1

k 2 sin kx d
�p

p
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Jean-Baptiste Joseph Fourier 
(1768–1830) was a French
mathematician and physicist who
gained prominence through his
investigation into the theory of
heat. In his landmark solution of
the so-called heat equation, he
introduced techniques related to
what are now known as Fourier
series, a tool widely used in many
branches of mathematics, physics,
and engineering. Fourier was a
political activist during the French
revolution and became a favorite
of Napoleon, accompanying him
on his Egyptian campaign in 1798.
Later Napoleon appointed Fourier
Prefect of Isère, where he oversaw
many important engineering
projects. In 1808, Fourier was made
a baron. He is commemorated by
a plaque on the Eiffel Tower.

x

y

�p p

n � 1

y � x

x

y

�p p

n � 2

y � x

x

y

�p p

n � 3

y � x

x

y

�p p

n � 4

y � x

Figure 7. 27
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You can clearly see the approximations in Figure 7.27 improving, a fact that can
be confirmed by computing the root mean square error in each case. As the order of
the Fourier approximation increases, it can be shown that this error approaches zero.
The trigonometric polynomial then becomes an infinite series, and we write

This is called the Fourier series of f on [�p,p].

Error-Correcting Codes

Consider the triple repetition code

If one or two errors occur in the transmission of either of these code vectors, the resulting
vector cannot be another vector in C. So C can detect up to two errors. For example, if
errors occur in the first and second entries when c0 is transmitted, then the vector

is received. However, the receiver has no way of correcting the error, since c� would also
result if a single error occurred during the transmission of c1. But any single error can
be corrected, since the resulting vector can have arisen in only one way. For example, if

is received and we know that at most one error has occurred, then the original vector
must have been c0, since c� cannot arise from c1 via a single error.

We will now generalize these ideas. As you will see, the notion of Hamming dis-
tance plays a crucial role in the definition.

Definition Let C be a (binary) code. The minimum distance of C is the small-
est Hamming distance between any two distinct vectors in C. That is,

Clearly, the minimum distance of the triple repetition code C above is 3.

Find the minimum distance of the code

where c0 � ≥ 0

0

0

0

¥ ,  c1 � ≥ 0

1

0

1

¥ ,  c2 � ≥ 1

0

1

0

¥ ,  c3 � ≥ 1

1

1

1

¥
C � 5c0, c1, c2, c36

d1C 2 � min 5dH 1x, y 2  : x  y in C6

c– � £01
0

§

c¿ � £ 11
0

§

C � 5c0, c16 � • £00
0

§ , £11
1

§ ¶

f 1x 2 � a0 � a
q

k�1

1ak cos kx � bk sin kx 2
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Solution We need to compute the Hamming distance between each pair of distinct

vectors. [There are four vectors, so there are pairs.] We find that:

Therefore, d(C) � 2.

It is possible to picture the notions of minimum distance and error correction
geometrically. In the case of the triple repetition code C, we have a subset (actually, a
subspace) of We can represent the vectors in as the vertices of a unit cube, as
shown in Figure 7.28(a). The Hamming distance between any two vectors x and y is
just the number of edges in a shortest path from x to y. The code C corresponds to
two of these vertices, c0 and c1. The fact that d(C) � 3 corresponds to the fact that c0

and c1 are three units apart, as shown in Figure 7.28(b). If a received vector x is within
one unit of either of these code vectors and we know that at most one error has
occurred, we can correctly decode x as the nearest code vector. In Figure 7.28(b), x
would be decoded as c0, and y would be decoded as c1. This agrees with the fact that
C can correct single but not double errors.

�3
2�3

2.

dH 1c1, c2 2 � 4    dH1c1, c3 2 � 2    dH 1c2, c3 2 � 2

dH 1c0, c1 2 � 2    dH 1c0, c2 2 � 2    dH 1c0, c3 2 � 4

a4

2
b � 6
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(a)

c0

x

y

c1

(b)

Figure 7. 28

d

c0

x y

c1

k k

Figure 7. 29

In Exercise 41, you are asked to draw a picture that illustrates the situation in
Example 7.45. In general, we cannot draw pictures of but a Euclidean analogy is
helpful. If a code can correct up to k errors, think of the code vectors as the centers of
spheres of radius k. The code vectors themselves are separated by at least d units.
Then, if a received vector x is inside one of these spheres, it will be decoded as the vec-
tor corresponding to the center of that sphere. In Figure 7.29, x will be decoded as c0.
This process is known as nearest neighbor decoding.

Figure 7.29 suggests that if a code is able to correct k errors, then the “spheres”
centered at the code vectors cannot touch or overlap; that is, we must have d � 2k.
This turns out to be correct, as we now make precise. A code is said to detect k errors
if, for each code vector c and each vector c� obtained by changing up to k of the entries
of c, c� is not a code vector. A code is said to correct k errors if, for each code vector c

�n
2,
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Theorem 7. 20

and each vector c� obtained by changing up to k of the entries of c, nearest neighbor
decoding of c� produces c.

Let C be a (binary) code with minimum distance d.

a. C detects k errors if and only if d 
 k � 1.
b. C corrects k errors if and only if d 
 2k � 1.

Proof (a) Assume that d 
 k � 1 and let c be a vector in C. If up to k errors are in-
troduced into c, then the resulting vector c� has the property that dH (c, c�) � k. But
then c� cannot be a code vector, since if it were, we would have

which is impossible.
Conversely, if C can detect up to k errors, then the minimum distance between

any two code vectors must be greater than k. (Why?) It follows that d 
 k � 1.

(b) Assume that d 
 2k � 1 and let c be a vector in C. As in the proof of property (a),
let c� be a vector such that dH (c, c�) � k. Let b be another vector in C. Then dH (c, b) 

d 
 2k � 1, so, by the Triangle Inequality,

Therefore,

So c� is closer to c than to b, and nearest neighbor decoding correctly decodes c� as c.
Conversely, assume that C can correct up to k errors. We will show that if d �

2k � 1 (i.e., d � 2k), then we obtain a contradiction. To do this, we will find a code
vector c and a vector c� such that dH (c, c�) � k yet nearest neighbor decoding decodes
c� as the wrong code vector b c.

Let b and c be any code vectors in C such that

There is no harm in assuming that these d errors occur in the first d entries of b.
(Otherwise, we can just permute the entries of all the vectors until this is true.) As-
suming that the code vectors in C have length n, we construct a vector c� in as fol-
lows. Make c� agree with b in the first k entries, agree with c in the next d � k entries
(why is d 
 k?), and agree with both b and c in the last n � d entries. In other words,
the entries of c� satisfy

Now dH (c, c�) � k and dH (c�, b) � d � k � k. (Why?) Therefore, dH (c�, b) �
dH (c�, c), so either we have equality and it is impossible to decide whether c� should
be decoded as b or c or the inequality is strict and c� will be incorrectly decoded as b.
In either case, we have shown that C cannot correct k errors, which contradicts our
hypothesis. We conclude that d 
 2k � 1.

cœ
i � cbi  ci if i � 1, . . . , k

˛ci  bi if i � k � 1, . . . , d

bi � ci if i � d � 1, . . . , n

�n
2

dH 1b, c 2 � d � 2k



dH 1c¿, b 2 
 2k � 1 � dH 1c, c¿ 2 
 2k � 1 � k � k � 1 7 dH 1c¿, c 2
dH 1c, c¿ 2 � dH 1c¿, b 2 
 dH 1c, b 2 
 2k � 1

k � 1 � d � dH 1c, c¿ 2 � k
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Theorem 7. 21

In the case of a linear code, we have the following notation: If an (n, k) linear
code has minimum distance d, we refer to it as an (n, k, d) code. For example, the
code in Example 7.45 is a (4, 2, 2) code. Linear codes have the advantage that their
minimum distance can be easily determined. In Exercise 42, you are asked to show
that the minimum distance of a linear code is the same as the minimum weight of a
nonzero code vector. It is also possible to determine d(C) by examining a parity
check matrix for C.

Let C be an (n, k) linear code with parity check matrix P. Then the minimum
distance of C is the smallest integer d for which P has d linearly dependent
columns.

Proof Assume that d(C) � d. The parity check matrix P is an (n � k) � n matrix
with the property that, for any vector x in Px � 0 if and only if x is in C. As you
will be asked to show in Exercise 42, C contains a vector c of weight d. Then Pc is a lin-
ear combination of exactly d columns of P. But, since Pc � 0, this implies that some
set of d columns of P is linearly dependent. On the other hand, suppose some set of
d � 1 columns of P is linearly dependent—say,

Let x be a vector in with 1s in positions i1, . . . , id�1 and zeros elsewhere. Then x is
a vector of weight d � 1 such that Px � 0. Hence, x is a code vector of weight d � 1 �
d � d(C). This is impossible, by Exercise 42, so we deduce that rank (P) � d � 1.

Conversely, assume that any d � 1 columns of P are linearly independent but
some set of d columns of P is linearly dependent. Since Px is a linear combination of
those columns of P corresponding to the positions of the 1s in x, Px 0 for any
vector x of weight d � 1 or less. Therefore, there are no nonzero code vectors of
weight less than d. But some set of d columns of P is linearly dependent, so there ex-
ists a vector x of weight d such that Px � 0. Hence, this x is a code vector of weight d.
By Exercise 42 again, we deduce that d(C) � d.

Show that the Hamming codes all have minimum distance 3.

Solution Recall that the (n, k) Hamming code has an (n � k) � n parity check ma-
trix P whose columns are all of the nonzero vectors of arranged so that the iden-
tity matrix occupies the last n � k columns. For example, the (7, 4) Hamming code
has parity check matrix

We can always find three linearly dependent columns: Just take the columns corre-
sponding to e1, e2, and e1 � e2. (In the matrix above, these would be columns 5, 6,
and 1, respectively.) But any two columns are linearly independent. By Theorem 7.21,
this means the Hamming codes have minimum distance 3.

P � £1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

§
�n�k

2 ,



�n
2

pi1
� pi2

� p � pid�1
� 0

�n
2,

Section 7.5 Applications 643

Some books call such a code an
(n, 2k, d) code or, more generally,
an (n, M, d) code, where n is the
length of the vectors, M is the
number of code vectors, and d is
the minimum distance.

Example 7. 46
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Example 7.46, combined with Theorem 7.20, tells us that the Hamming codes are
all single error–correcting. The other major type of linear code that we have consid-
ered is the family of Reed-Muller codes. These are capable of correcting many errors,
which is one of the reasons they were chosen to transmit photographs from space.

Show that the Reed-Muller code Rn has minimum distance 2n�1 for n 
 1.

Solution By Theorem 6.35, every vector in Rn except 0 and 1 has weight 2n�1. Since
1 has weight 2n, this means that the minimum weight of a nonzero code vector in Rn

is 2n�1. Hence, d(Rn) � 2n�1, by Exercise 42.

Mariner 9 used the Reed-Muller code R5, whose minimum distance is 24 � 16. By
Theorem 1, this code can correct k errors, where 2k � 1 � 16. The largest value of k
for which this inequality is true is k � 7. Thus, R5 not only contains exactly the right
number of code vectors for transmitting 64 shades of gray but also is capable of cor-
recting up to 7 errors, making it quite reliable. This explains why the images trans-
mitted by Mariner 9 were so sharp!
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Example 7. 47

Approximation of Functions

In Exercises 1–4, find the best linear approximation to f on
the interval 

1. 2.

3. 4.

In Exercises 5 and 6, find the best quadratic approximation
to f on the interval 

5. 6.

7. Apply the Gram-Schmidt Process to the basis {1, x} to
construct an orthogonal basis for �1[0, 1].

8. Apply the Gram-Schmidt Process to the basis 
to construct an orthogonal basis for �2 [0, 1].

In Exercises 9–12, find the best linear approximation to f on
the interval [0, 1].

9. 10.

11. 12.

In Exercises 13–16, find the best quadratic approximation
to f on the interval [0, 1].

13. 14.

15. 16.

17. Show that 1 is orthogonal to cos kx and sin kx in
�[�p,p] for k 
 1.

f 1x 2 � sin1px>2 2f 1x 2 � ex

f 1x 2 � 1xf 1x 2 � x3

f 1x 2 � sin1px>2 2f 1x 2 � ex

f 1x 2 � 1xf 1x 2 � x2

51, x, x 26
f 1x 2 � cos1px>2 2f 1x 2 � 0x 0 3�1, 1 4 .
f 1x 2 � sin1px>2 2f 1x 2 � x3

f 1x 2 � x 2 � 2xf 1x 2 � x 2

3�1, 1 4 .
18. Show that cos jx is orthogonal to cos kx in �[�p,p]

for j k, j, k 
 1.

19. Show that sin jx is orthogonal to sin kx in �[�p,p]
for j k, j, k 
 1.

20. Show that and in �[�p,p].

In Exercises 21 and 22, find the third-order Fourier approxi-
mation to f on 

21. 22.

In Exercises 23–26, find the Fourier coefficients a0, ak, and
bk of f on [�p, p].

23.

24.

25. 26.

Recall that a function f is an even function if
for all x; f is called an odd function if for
all x.

27. (a) Prove that if f is an odd function.

(b) Prove that the Fourier coefficients are all zero if
f is odd.

ak


p

�p

f 1x 2 dx � 0

f 1�x 2 � �f 1x 2f 1�x 2 � f 1x 2f 1x 2 � 0x 0f 1x 2 � p � x

f 1x 2 � e�1 if �p � x 6 0

1 if 0 � x � p

f 1x 2 � e 0 if �p � x 6 0

1 if 0 � x � p

f 1x 2 � x2f 1x 2 � 0x 0 3�p,p 4 .
7 cos kx 7 2 � p71 7 2 � 2p





Exercises 7. 5

dy
dx
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28. (a) Prove that if f is an even

function.

(b) Prove that the Fourier coefficients are all zero if
f is even.

Error-Correcting Codes

Find the minimum distance of the codes in Exercises 29–34.

29.

30.

31. The even parity code 

32. The n-times repetition code 

33. The code with parity check matrix where

34. The code with parity check matrix

P � £1 1 0 0

1 1 1 1

1 0 0 1

§

A � ≥ 1 1 0 1 1 0 1

1 0 1 1 1 1 0

0 1 1 1 0 0 0

0 0 0 1 1 1 1

¥
P � 3 I A 4 ,Repn

En

C � μ ≥ 0

0

1

1

¥ , ≥ 1

1

0

0

¥ , ≥ 1

0

1

0

¥ , ≥ 0

1

0

1

¥ ∂
C � • £00

0

§ , £01
0

§ , £11
0

§ ¶

bk


p

�p

f 1x 2 dx � 2 
p

0

f 1x 2 dx
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In Exercises 35 and 36, compute the minimum distance of
the code C and decode the vectors u, v, and w using nearest
neighbor decoding.

35.

36. C has generator matrix

In Exercises 37–40, construct a linear (n, k, d) code or prove
that no such code exists.

37. 38.

39. 40.

41. Draw a picture (similar to Figure 7.28) to illustrate
Example 7.45.

42. Let C be a linear code. Show that the minimum dis-
tance of C is equal to the minimum weight of a
nonzero code vector.

43. Show that for any linear (n, k, d) code.

44. Let C be a linear (n, k, d) code with parity check ma-
trix P. Prove that if and only if every

columns of P are linearly independent.n � k
d � n � k � 1

d � 1 � n � k

n � 8, k � 4, d � 4n � 8, k � 5, d � 5

n � 8, k � 2, d � 8n � 8, k � 1, d � 8

G � G
1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1

W , u � G
1

0

0

0

1

1

0

W , v � G
1

1

1

0

0

0

0

W , w � G
0

0

0

0

1

1

1

W

w � E000
0

1

UC � eE100
1

0

U, E110
0

1

U, E001
0

1

U, E011
1

0

Uu, u � E110
0

0

U, v � E010
0

0

U,

Best Approximation Theorem, 593
Cauchy-Schwarz Inequality, 562
condition number of a matrix, 584
distance, 558
Euclidean norm (2-norm), 576
Frobenius norm, 579
Fundamental Theorem of Invertible

Matrices, 628

Hamming distance, 577
Hamming norm, 577
ill-conditioned matrix, 584
inner product, 554
inner product space, 554
least squares error, 595
least squares solution, 597, 627
Least Squares Theorem, 598

matrix norm, 579
max norm ( -norm, uniform 

norm), 576
norm, 575
normed linear space, 575
operator norm, 582
orthogonal basis, 560
orthogonal projection, 561, 606

q

Key Definitions and Concepts
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orthogonal (set of) vectors, 560
orthonormal basis, 560
orthonormal set of

vectors, 560
pseudoinverse of a matrix, 608, 625

singular value decomposition 
(SVD), 616

singular values, 613
singular vectors, 616
sum norm (1-norm), 575

Triangle Inequality, 563
unit sphere, 558
unit vector, 558
well-conditioned matrix, 584
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Review Questions

1. Mark each of the following statements true or false:

(a) If , then �u, v� � u1v1 �

�u2v2 defines an inner product on �2.

(b) If , then �u, v� � 4u1v1 �

2u1v2 � 2u2v1 � 4u2v2 defines an inner product
on �2.

(c) �A, B� � tr(A) � tr(B) defines an inner product
on M22.

(d) If u and v are vectors in an inner product space
with , and �u, v� � 2, then

.
(e) The sum norm, max norm, and Euclidean norm

on �n are all equal to the absolute value function
when n � 1.

(f) If a matrix A is well-conditioned, then cond(A) is
small.

(g) If cond(A) is small, then the matrix A is well-
conditioned.

(h) Every linear system has a unique least squares
solution.

(i) If A is a matrix with orthonormal columns, then
the standard matrix of an orthogonal projection
onto the column space of A is P � AAT.

(j) If A is a symmetric matrix, then the singular
values of A are the same as the eigenvalues of A.

In Questions 2–4, determine whether the definition gives an
inner product.

2. �p(x), q(x)� � p(0)q(1) � p(1)q(0) for p(x), q(x) in �1

3. �A, B� � tr(ATB) for A, B in M22

4. �f, g� � for f, g in �[0, 1]

In Questions 5 and 6, compute the indicated quantity using
the specified inner product.

5. if �a0 � a1x � a2x
2, b0 � b1x � b2x

2� �
a0b0 � a1b1 � a2b2

‘ 1 � x � x 2 ‘

1 max
0�x�1

f 1x 2 2 1 max
0�x�1

g 1x 2 2

‘ u � v ‘ � 5
‘ u ‘ � 4, ‘ v ‘ � 15

u � cu1

u2

d  and v � c v1

v2

d
u � cu1

u2

d  and v � c v1

v2

d 6. �p(x), q(x)� �

In Questions 7 and 8, construct an orthogonal set of vectors
by applying the Gram-Schmidt Process to the given set of
vectors using the specified inner product.

7. �u, v� � uT Av, where 

8. {1, x, x2} if �p(x), q(x)� 

In Questions 9 and 10, determine whether the definition
gives a norm.

9. for v in �n

10. for p(x) in �1

11. Show that the matrix is

ill-conditioned.

12. Prove that if Q is an orthogonal n � n matrix, then its
Frobenius norm is 

13. Find the line of best fit through the points (1, 2),
(2, 3), (3, 5), and (4, 7).

14. Find the least squares solution of

15. Find the orthogonal projection of onto the

column space of

16. If u and v are orthonormal vectors, show that
is the standard matrix of an orthogo-

nal projection onto span (u, v). [Hint: Show that
for some matrix A.]P � A1ATA 2�1AT

P � uuT � vvT

A � £ 1 1

0 1

1 0

§ .
x � £ 12

3

§
≥ 1 2

1 0

2 �1

0 5

¥ c x1

x2

d � ≥ 1

0

�1

3

¥ .

‘ Q ‘ F � 1n.

A � £ 1 0.1 0.11

0.1 0.11 0.111

0.11 0.111 0.1111

§
‘ p1x 2 ‘ � ƒ p10 2 ƒ � ƒ p11 2 � p10 2 ƒ‘ v ‘ � vTv

� 
1

0

p1x 2q1x 2 dx

A � c 6 4

4 6
de c 1

1
d , c 1

2
d f  if 

�1
0

p1x 2q1x 2 dxd1x, x2 2  if
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In Questions 17 and 18, find (a) the singular values, (b) a
singular value decomposition, and (c) the pseudoinverse of
the matrix A.

17. 18. A � c 1 1 �1

1 1 �1
dA � £ 1 1

0 0

1 �1

§

Chapter Review 647

19. If P and Q are orthogonal matrices for which PAQ is
defined, prove that PAQ has the same singular values
as A.

20. If A is a square matrix for which A2 � O, prove that
(A�)2 � O.
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648

Mathematical Notation 
and Methods of Proof
In this book, an effort has been made to use “mathematical English” as much as pos-
sible, keeping mathematical notation to a minimum. However, mathematical nota-
tion is a convenient shorthand that can greatly simplify the amount of writing we
have to do. Moreover, it is commonly used in every branch of mathematics, so the
ability to read and write mathematical notation is an essential ingredient of mathe-
matical understanding. Finally, there are some theorems whose proofs become
“obvious” if the right notation is used.

Proving theorems in mathematics is as much an art as a science. For the beginner,
it is often hard to know what approach to use in proving a theorem; there are many
approaches,any one of which might turn out to be the best.To become proficient at proofs,
it is important to study as many examples as possible and to get plenty of practice.

This appendix summarizes basic mathematical notation applied to sets. Sum-
mation notation, a useful shorthand for dealing with sums, is also discussed. Finally,
some approaches to proofs are illustrated with generic examples.

Set Notation

A set is a collection of objects, called the elements (or members) of the set. Examples
of sets include the set of all words in this text, the set of all books in your college
library, the set of positive integers, and the set of all vectors in the plane whose equa-
tion is 2x � 3y � z � 0.

It is often possible to list the elements of a set, in which case it is conventional to
enclose the list within braces. For example, we have

Note that ellipses (. . .) denote elements omitted when a pattern is present. (What is
the pattern in the last two examples?) Infinite sets are often expressed using ellipses.
For example, the set of positive integers is usually denoted by � or ��, so

The set of all integers is denoted by �, so

Two sets are considered to be equal if they contain exactly the same elements. The
order in which elements are listed does not matter, and repetitions are not counted. Thus,

� � 5. . . , �2, �1, 0, 1, 2, . . .6
� � �� � 51, 2, 3, . . .6

51, 2, 36,  5a, t, x, z6,  52, 4, 6, . . . , 1006,  ep
4

,
2p

5
,
p

2
,

4p

7
, . . . , 

5p

6
f

Please, sir, I want some more.
—Oliver

Charles Dickens, Oliver Twist

Anyone who understands algebraic 
notation reads at a glance in an
equation results reached
arithmetically only 
with great labour and pains.

—Augustin Cournot
Researches into the Mathematical 
Principles of the Theory of Wealth
Translated by Nathaniel T. Bacon

Macmillan, 1897, p. 4

�

�
I I I I II I I I I �������������������������������

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.
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Appendix A Mathematical Notation and Methods of Proof 649

The symbol � means “is an element of” or “is in,” and the symbol � denotes the
negation—that is, “is not an element of” or “is not in.” For example,

It is often more convenient to describe a set in terms of a rule satisfied by all of its
elements. In such cases, set builder notation is appropriate. The format is

where P represents a property or a collection of properties that the element x must
satisfy. The colon is pronounced “such that.” For example,

is read as “the set of all n such that n is an integer and n is greater than zero.”
This is just another way of describing the positive integers ��. (We could also
write �� � {n � � : n � 0}.)

The empty set is the set with no elements. It is denoted by either � or { }.

5n : n � �, n 7 06
5x : x satisfies P6

5 � ��  but  0 � ��

51, 2, 36 � 52, 1, 36 � 51, 3, 2, 16

Example A. 1

John Venn (1834–1923) was an
English mathematician who studied
at Cambridge University and later
lectured there. He worked primarily
in mathematical logic and is best
known for inventing Venn diagrams.

If every element of a set A is also an element of a set B, then A is called a 
subset of B, denoted A � B. We can represent this situation schematically using 
a Venn diagram, as shown in Figure A.1. (The rectangle represents the universal
set, a set large enough to contain all of the other sets in question—in this case,
A and B.)

Describe in words the following sets:

(a) A � {n : n � 2k, k � �} (b) B � {m�n : m, n � �, n 0}
(c) C � {x � � : 4x 2 � 4x � 3 � 0} (d) D � {x � � : 4x2 � 4x � 3 � 0}

Solution (a) A is the set of numbers n that are integer multiples of 2. Therefore, A
is the set of all even integers.

(b) B is the set of all expressions of the form m�n, where m and n are integers and n
is nonzero. This is the set of rational numbers, usually denoted by �. (Note that this
way of describing � produces many repetitions; however, our convention, as noted
above, is that we include only one occurrence of each element. Thus, this expression
precisely describes the set of all rational numbers.)

(c) C is the set of all real solutions of the equation 4x 2 � 4x � 3 � 0. By factoring or
using the quadratic formula, we find that the roots of this equation are and 
(Verify this.) Therefore,

(d) From the solution to (c) we see that there are no solutions to 4x 2 � 4x � 3 � 0
in � that are integers. Therefore, D is the empty set, which we can express by writing
D � �.

C � 5�1
2 , 3

26
3
2.�1

2



�

�
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(a) {1, 2, 3} � {1, 2, 3, 4, 5}

(b) �� � � � �

(c) Let A be the set of all positive integers whose last two digits are 24 and let B be
the set of all positive integers that are evenly divisible by 4. Then if n is in A, it is of
the form

for some integer k. (For example, 36,524 � 100 � 365 � 24.) But then

so n�4 � 25k � 6, which is an integer. Hence, n is evenly divisible by 4, so it is in B.
Therefore, A � B.

We can show that two sets A and B are equal by showing that each is a subset of
the other. This strategy is particularly useful if the sets are defined abstractly or if it is
not easy to list and compare their elements.

Let A be the set of all positive integers whose last two digits form a number that is
evenly divisible by 4. In the case of a one-digit number, we take its tens digit to be 0.
Let B be the set of all positive integers that are evenly divisible by 4. Show that A � B.

Solution As in Example A.2(c), it is easy to see that A � B. If n is in A, then we can
split off the number m formed by its last two digits by writing

for some integer k. But, since m is divisible by 4, we have m � 4r for some integer r.
Therefore,

so n is also evenly divisible by 4. Hence, A � B.
To show that B � A, let n be in B. That is, n is evenly divisible by 4. Let’s say that

n � 4s, where s is an integer. If m is the number formed by the last two digits of n,
then, as above, n � 100k � m for some integer k. But now

which implies that m is evenly divisible by 4, since s � 25k is an integer. Therefore, n
is in A, and we have shown that B � A.

Since A � B and B � A, we must have A � B.

m � n � 100k � 4s � 100k � 41s � 25k 2
n � 100k � m � 100k � 4r � 4125k � r 2

n � 100k � m

n � 100k � 24 � 4125k � 6 2
n � 100k � 24

650 Appendix A Mathematical Notation and Methods of Proof

A B

Figure A. 1
A B�

Example A. 2

Example A. 3
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The intersection of sets A and B is denoted by A ¨ B and consists of the elements
that A and B have in common. That is,

Figure A.2 shows a Venn diagram of this case. The union of A and B is denoted by
A ´ B and consists of the elements that are in either A or B (or both). That is,

See Figure A.3.

A ´ B � 5x : x � A  or  x � B6
A � B � 5x : x � A  and  x � B6
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A BA � B

Figure A. 2
A B�

A B

Figure A. 3
A B´

Let A � {n2 : n � ��, 1 � n � 4} and let B � {n � �� : n � 10 and n is odd}. Find 
A ¨ B and A ´ B.

Solution We see that

Therefore, A ¨ B � {1, 9} and A ´ B � {1, 3, 4, 5, 7, 9, 16}.

If A ¨ B � �, then A and B are called disjoint sets. (See Figure A.4.) For exam-
ple, the set of even integers and the set of odd integers are disjoint.

Summation Notation

Summation notation is a convenient shorthand to use to write out a sum such as

where we want to leave out all but a few terms. As in set notation, ellipses (. . .) con-
vey that we have established a pattern and have simply left out some intermediate
terms. In the above example, readers are expected to recognize that we are summing
all of the positive integers from 1 to 100. However, ellipses can be ambiguous. For
example, what should one make of the sum

Is this the sum of all positive integers from 1 to 64 or just the powers of two, 1 � 2 �
4 � 8 � 16 � 32 � 64? It is often clearer (and shorter) to use summation notation
(or sigma notation).

1 � 2 � p � 64?

1 � 2 � 3 � p � 100

A � 512, 22, 32, 426 � 51, 4, 9, 166  and  B � 51, 3, 5, 7, 96
Example A. 4

BA

Figure A. 4
Disjoint sets

� is the capital Greek letter sigma,
corresponding to S (for “sum”).
Summation notation was
introduced by Fourier in 1820 and
was quickly adopted by the
mathematical community.
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We can abbreviate a sum of the form

(1)

as (2)

which tells us to sum the terms ak over all integers k ranging from 1 to n. An alterna-
tive version of this expression is

The subscript k is called the index of summation. It is a “dummy variable” in the sense
that it does not appear in the actual sum in expression (1). Therefore, we can use any
letter we like as the index of summation (as long as it doesn’t already appear somewhere
else in the expressions we are summing). Thus, expression (2) can also be written as

The index of summation need not start at 1. The sum a3 � a4 � p � a99 becomes

although we can arrange for the index to begin at 1 by rewriting the expression as 

ak�2.

The key to using summation notation effectively is being able to recognize patterns.

Write the following sums using summation notation.

(a) 1 � 2 � 4 � p � 64 (b) 1 � 3 � 5 � p � 99 (c) 3 � 8 � 15 � p � 99

Solution (a) We recognize this expression as a sum of powers of 2:

Therefore, the index of summation appears as the exponent, and we have

(b) This expression is the sum of all the odd integers from 1 to 99. Every odd integer is of
the form 2k � 1, so the sum is

(c) The pattern here is less clear, but a little reflection reveals that each term is 1 less than
a perfect square:

� a
10

k�2

1k 2 � 1 2� 122 � 1 2 � 132 � 1 2 � 142 � 1 2 � p � 1102 � 1 2 3 � 8 � 15 � p � 99

� a
49

k�0

12k � 1 2� 12 # 0 � 1 2 � 12 # 1 � 1 2 � 12 # 2 � 1 2 � p � 12 # 49 � 1 2 1 � 3 � 5 � p � 99

a
6

k�0

2k.

1 � 2 � 4 � p � 64 � 20 � 21 � 22 � p � 26

a
97

k�1

a
99

k�3

ak

a
n

i�1

ai

a
1�k�n

ak

a
n

k�1

ak

a1 � a2 � p � an
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Rewrite each of the sums in Example A.5 so that the index of summation starts at 1.

Solution (a) If we use the change of variable i � k � 1, then, as k goes from 0 to 6,
i goes from 1 to 7. Since k � i � 1, we obtain

(b) Using the same substitution as in part (a), we get

(c) The substitution i � k � 2 will work (try it), but it is easier just to add a term corre-
sponding to k � 1, since 12 � 1 � 0. Therefore,

Multiple summations arise when there is more than one index of summation, as
there is with a matrix. The notation

(3)

means to sum the terms aij as i and j each range independently from 1 to n. The sum
in expression (3) is equivalent to either

where we sum first over j and then over i (we always work from the inside out), or

where the order of summation is reversed.

Write out using both possible orders of summation.

Solution

� 11 � 1 � 1 2 � 12 � 4 � 8 2 � 13 � 9 � 27 2 � 56

� 111 � 12 � 13 2 � 121 � 22 � 23 2 � 131 � 32 � 33 2a
3

i�1
a

3

j�1

i j � a
n

i�1

1i1 � i2 � i3 2
a

3

i, j�1

i j

a
n

j�1
a

n

i�1

aij

a
n

i�1
a

n

j�1

aij

a
n

i, j�1

aij

a
10

k�2

1k 2 � 1 2 � a
10

k�1

1k 2 � 1 2
a
49

k�0

12k � 1 2 � a
50

i�1

121i � 1 2 � 1 2 � a
50

i�1

12i � 1 2
a

6

k�0

2k � a
7

i�1

2i�1

Example A. 6

Example A. 7
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How to Solve It is the title of a book
by the mathematician George
Pólya (1887–1985). Since its publi-
cation in 1945, How to Solve It has
sold over a million copies and has
been translated into 17 languages.
Pólya was born in Hungary, but
because of the political situation in
Europe, he moved to the United
States in 1940. He subsequently
taught at Brown and Stanford
Universities, where he did mathe-
matical research and developed a
well-deserved reputation as an
outstanding teacher. The Pólya
Prize is awarded annually by the
Society for Industrial and Applied
Mathematics for major contribu-
tions to areas of mathematics close
to those on which Pólya worked.
The Mathematical Association
of America annually awards
Pólya Lectureships to math-
ematicians demonstrating
the high-quality exposition
for which Pólya was known.

and

Remark Of course, the value of the sum in Example A.7 is the same no matter
which order of summation we choose, because the sum is finite. It is also possible to
consider infinite sums (known as infinite series in calculus), but such sums do not
always have a value and great care must be taken when rearranging or manipulating
their terms. For example, suppose we let

Then

from which it follows that S � �1. This is clearly nonsense, since S is a sum of non-
negative terms! (Where is the error?)

Methods of Proof

The notion of proof is at the very heart of mathematics. It is one thing to know what
is true; it is quite another to know why it is true and to be able to demonstrate its truth
by means of a logically connected sequence of statements. The intention here is not
to try to teach you how to do proofs; you will become better at doing proofs by study-
ing examples and by practicing—something you should do often as you work
through this text. The intention of this brief section is simply to provide a few ele-
mentary examples of some types of proofs. The proofs of theorems in the text will
provide further illustrations of “how to solve it.”

Roughly speaking, mathematical proofs fall into two categories: direct proofs
and indirect proofs. Many theorems have the structure “if P, then Q,” where P (the
hypothesis, or premise) and Q (the conclusion) are statements that are either true or
false. We denote such an implication by P 1 Q. A direct proof proceeds by establish-
ing a chain of implications

leading directly from P to Q.

Prove that any two consecutive perfect squares differ by an odd number. This in-
struction can be rephrased as “Prove that if a and b are consecutive perfect squares,
then a � b is odd.” Hence, it has the form P 1 Q, with P being “a and b are consecu-
tive perfect squares” and Q being “a � b is odd.”

P 1 P1 1 P2 1 p 1 Pn 1 Q

� 1 � 2S

� 1 � 211 � 2 � 4 � p 2S � 1 � 2 � 4 � 8 � p

S � a
q

k�0

2k

� 11 � 2 � 3 2 � 11 � 4 � 9 2 � 11 � 8 � 27 2 � 56

� 111 � 21 � 31 2 � 112 � 22 � 32 2 � 113 � 23 � 33 2a
3

j�1
a

3

i�1

i j � a
n

j�1

11j � 2 j � 3 j 2
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Solution Assume that a and b are consecutive perfect squares, with a � b. Then

for some integer n. But now

so a � b is odd.

� 2n � 1

� n2 � 2n � 1 � n2

a � b � 1n � 1 2 2 � n2

a � 1n � 1 2 2  and  b � n2

Example A. 9

�

�
I I I I II I I I I ������������������������������

There are two types of indirect proofs that can be used to establish a conditional
statement of the form P 1 Q. A proof by contradiction assumes that the hypothesis
P is true, just as in a direct proof, but then supposes that the conclusion Q is false. The
strategy then is to show that this is not possible (i.e., to rule out the possibility that the
conclusion is false) by finding a contradiction to the truth of P. It then follows that Q
must be true.

Let n be a positive integer. Prove that if n2 is even, so is n. (Take a few minutes to try
to find a direct proof of this assertion; it will help you to appreciate the indirect proof
that follows.)

Solution Assume that n is a positive integer such that n2 is even. Now suppose that n
is not even. Then n is odd, so

for some integer k. But if so, we have

so n2 is odd, since it is 1 more than the even number 4k2 � 4k. This contradicts our
hypothesis that n2 is even. We conclude that our supposition that n was not even must
have been false; in other words, n must be even.

n2 � 12k � 1 2 2 � 4k2 � 4k � 1

n � 2k � 1

Closely related to the method of proof by contradiction is proof by contraposi-
tive. The negative of a statement P is the statement “it is not the case that P,” abbrevi-
ated symbolically as ¬P and pronounced “not P.” For example, if P is “n is even,” then
¬P is “it is not the case that n is even”—in other words, “n is odd.”

The contrapositive of the statement P 1 Q is the statement ¬Q 1 ¬P. A conditional
statement P 1 Q and its contrapositive ¬Q 1 ¬P are logically equivalent in the sense that
they are either both true or both false. (For example, if P 1 Q is a theorem, then so is ¬Q
1 ¬P. To see this, note that if the hypothesis ¬Q is true, then Q is false. The conclusion ¬P
cannot be false, for if it were, then P would be true and our known theorem P 1 Q would
imply the truth of Q, giving us a contradiction. It follows that ¬P is true and we have
proved ¬Q 1 ¬P.) Here is a contrapositive proof of the assertion in Example A.9.

�

�
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Let n be a positive integer. Prove that if n2 is even, so is n.

Solution The contrapositive of the given statement is

“If n is not even, then n2 is not even” or “If n is odd, so is n2 ”

To prove this contrapositive, assume that n is odd. Then n � 2k � 1 for some integer k.
As before, this means that n2 � (2k � 1)2 � 4k 2 � 4k � 1 is odd, which completes the
proof of the contrapositive. Since the contrapositive is true, so is the original statement.

656 Appendix A Mathematical Notation and Methods of Proof

Example A. 10

Example A. 11

Figure A. 5

Although we do not require a new method of proof to handle it, we will briefly
consider how to prove an “if and only if” theorem. A statement of the form “P if and
only if Q” signals a double implication, which we denote by P 3 Q. To prove such a
statement, we must prove P 1 Q and Q 1 P. To do so, we can use the techniques
described earlier, where appropriate. It is important to notice that the “if ” part of
P 3 Q is “P if Q,” which is Q 1 P ; the “only if” part of P 3 Q is “P only if Q,” mean-
ing P 1 Q. The implication P 1 Q is sometimes read as “P is sufficient for Q” or “Q
is necessary for P”; Q 1 P is read “Q is sufficient for P” or “P is necessary for Q.”
Taken together, they are P 3 Q, or “P is necessary and sufficient for Q” and vice versa.

A pawn is placed on a chessboard and is allowed to move one square at a time, either hor-
izontally or vertically. A pawn’s tour of a chessboard is a path taken by a pawn, moving as
described, that visits each square exactly once, starting and ending on the same square.
Prove that there is a pawn’s tour of an n � n chessboard if and only if n is even.

Solution [ B ] (“if”) Assume that n is even. It is easy to see that the strategy illus-
trated in Figure A.5 for a 6 � 6 chessboard will always give a pawn’s tour.

[ 1 ] (“only if”) Suppose that there is a pawn’s tour of an n � n chessboard. We
will give a proof by contradiction that n must be even. To this end, let’s assume that n
is odd. At each move, the pawn moves to a square of a different color. The total num-
ber of moves in its tour is n2, which is also an odd number, according to the proof in
Example A.10. Therefore, the pawn must end up on a square of the opposite color
from that of the square on which it started. (Why?) This is impossible, since the pawn
ends where it started, so we have a contradiction. It follows that n cannot be odd;
hence, n is even and the proof is complete.

Some theorems assert that several statements are equivalent. This means that
each is true if and only if all of the others are true. Showing that n statements are 

equivalent requires “if and only if” proofs. In practice,

however, it is often easier to establish a “ring” of n implications that links all of the
statements. The proof of the Fundamental Theorem of Invertible Matrices provides
an excellent example of this approach.

n2 � n

2

n!
2!1n � 2 2 ! �an

2
b �

�

�
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Mathematical Induction
The ability to spot patterns is one of the keys to success in mathematical problem
solving. Consider the following pattern:

The sums are all perfect squares: 12, 22, 32, 42, 52. It seems reasonable to conjecture that
this pattern will continue to hold; that is, the sum of consecutive odd numbers, start-
ing at 1, will always be a perfect square. Let’s try to be more precise. If the sum is n2,
then the last odd number in the sum is 2n � 1. (Check this in the five cases above.) In
symbols, our conjecture becomes

(1)

Notice that formula (1) is really an infinite collection of statements, one for each value
of n 
 1. Although our conjecture seems reasonable, we cannot assume that the pattern
continues—we need to prove it. This is where mathematical induction comes in.

First Principle of Mathematical Induction

Let S(n) be a statement about the positive integer n. If

1. S(1) is true and
2. for all k 
 1, the truth of S(k) implies the truth of S(k � 1)

then S(n) is true for all n 
 1.

Verifying that S(1) is true is called the basis step. The assumption that S(k) is true
for some k 
 1 is called the induction hypothesis. Using the induction hypothesis to
prove that S(k � 1) is then true is called the induction step. Mathematical induction
has been referred to as the domino principle because it is analogous to showing that a
line of dominoes will fall down if (1) the first domino can be knocked down (the basis
step) and (2) knocking down any domino (the induction hypothesis) will knock over
the next domino (the induction step). See Figure B.1.

We now use the principle of mathematical induction to prove formula (1).

1 � 3 � 5 � p � 12n � 1 2 � n2  for all n 
 1

 1 � 3 � 5 � 7 � 9 � 25

 1 � 3 � 5 � 7 � 16

 1 � 3 � 5 � 9

 1 � 3 � 4

 1 � 1

Great fleas have little fleas 
upon their backs to bite ’em,
And little fleas have lesser fleas,
and so ad infinitum.

—Augustus De Morgan
A Budget of Paradoxes

Longmans, Green, and Company,
1872, p. 377

�

�
I I I I II I I I I ������������������������������

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.
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Use mathematical induction to prove that

for all n 
 1.

Solution For n � 1, the sum on the left-hand side is just 1, while the right-hand side
is 12. Since 1 � 12, this completes the basis step.

Now assume that the formula is true for some integer k 
 1. That is, assume that

(This is the induction hypothesis.) The induction step consists of proving that the
formula is true when n � k � 1. We see that when n � k � 1, the left-hand side of for-
mula (1) is

� k2

which is the right-hand side of formula (1) when n � k � 1.
This completes the induction step, and we conclude that formula (1) is true for all

n 
 1, by the principle of mathematical induction.

� 1k � 1 2 2 � 2k � 1

� 1 � 3 � 5 � p � 12k � 1 2 � 12k � 1 2� 1 � 3 � 5 � p � 12k � 1 2 1 � 3 � 5 � p � 121k � 1 2 � 1 2

1 � 3 � 5 � p � 12k � 1 2 � k 2

1 � 3 � 5 � p � 12n � 1 2 � n2

658 Appendix B Mathematical Induction

If the first domino falls, and . . . each domino that falls knocks down the next one, . . . 

then all the dominoes can be made to fall by pushing over the first one.
Figure B. 1

Example B. 1

μ

by the induction
hypothesis

d
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The next example gives a proof of a useful formula for the sum of the first n
positive integers. The formula appears several times in the text; for example, see the
solution to Exercise 51 in Section 2.4.

Prove that

for all n 
 1.

Solution The formula is true for n � 1, since

Assume that the formula is true for n � k; that is,

We need to show that the formula is true when n � k � 1; that is, we must prove that

But we see that

which is what we needed to show.
This completes the induction step, and we conclude that the formula is true for all

n 
 1, by the principle of mathematical induction.

In a similar vein, we can prove that the sum of the squares of the first n positive
integers satisfies the formula

for all n 
 1. (Verify this for yourself.)

12 � 22 � 32 � p � n2 �
n 1n � 1 2 12n � 1 2

6

�
1k � 1 2 3 1k � 1 2 � 1 4

2

�
1k � 1 2 1k � 2 2

2

�
k 2 � 3k � 2

2

�
k 1k � 1 2 � 21k � 1 2

2

�
k 1k � 1 2

2
� 1k � 1 2 1 � 2 � p � 1k � 1 2 � 11 � 2 � p � k 2 � 1k � 1 2

1 � 2 � p � 1k � 1 2 �
1k � 1 2 3 1k � 1 2 � 1 4

2

1 � 2 � p � k �
k 1k � 1 2

2

1 �
111 � 1 2

2

1 � 2 � p � n �
n 1n � 1 2

2
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The basis step need not be for n � 1, as the next two examples illustrate.

Prove that n! � 2n for all integers n 
 4.

Solution The basis step here is when n � 4. The inequality is clearly true in this case,
since

Assume that k! � 2k for some integer k 
 4. Then

by the induction hypothesis

since k 
 4

which verifies the inequality for n � k � 1 and completes the induction step.
We conclude that n! � 2n for all integers n 
 4, by the principle of mathematical

induction.

If a is a nonzero real number and n 
 0 is an integer, we can give a recursive
definition of the power an that is compatible with mathematical induction. We define
a0 � 1 and, for n 
 0,

(This form avoids the ellipses used in the version ) We can now use
mathematical induction to verify a familiar property of exponents.

Let a be a nonzero real number. Prove that aman � am�n for all integers m, n 
 0.

Solution At first glance, it is not clear how to proceed, since there are two variables,
m and n. But we simply need to keep one of them fixed and perform our induction
using the other. So, let m 
 0 be a fixed integer. When n � 0, we have

using the definition a0 � 1. Hence, the basis step is true.
Now assume that the formula holds when n � k, where k 
 0. Then amak � am�k.

For n � k � 1, using our recursive definition and the fact that addition and multipli-
cation are associative, we see that

by definition

by the induction hypothesis

by definition

� am�1k�12� a 1m�k2�1

� am�ka

� 1amak 2aamak�1 � am1aka 2

ama0 � am # 1 � am � am�0

an � aa p a
n times

.

an�1 � ana

7  2 # 2k � 2k�1


  5 # 2k

7 1k � 1 22k

1k � 1 2! � 1k � 1 2k!

4! � 24 7 16 � 24
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Therefore, the formula is true for n � k � 1, and the induction step is complete.
We conclude that aman � am�n for all integers m, n 
 0, by the principle of

mathematical induction.

In Examples B.1 through B.4, the use of the induction hypothesis during the
induction step is relatively straightforward. However, this is not always the case. An
alternative version of the principle of mathematical induction is often more useful.

Second Principle of Mathematical Induction

Let S(n) be a statement about the positive integer n. If

1. S(1) is true and
2. the truth of S(1), S(2), . . . , S(k) implies the truth of S(k � 1)

then S(n) is true for all n 
 1.

The only difference between the two principles of mathematical induction is in the in-
duction hypothesis: The first version assumes that S(k) is true, whereas the second
version assumes that all of S(1), S(2), . . . , S(k) are true. This makes the second prin-
ciple seem weaker than the first, since we need to assume more in order to prove S(k � 1)
(although, paradoxically, the second principle is sometimes called strong induction).
In fact, however, the two principles are logically equivalent: Each one implies the
other. (Can you see why?)

The next example presents an instance in which the second principle of mathe-
matical induction is easier to use than the first. Recall that a prime number is a posi-
tive integer whose only positive integer factors are 1 and itself.

Prove that every positive integer n 
 2 either is prime or can be factored into a prod-
uct of primes.

Solution The result is clearly true when n � 2, since 2 is prime. Now assume that for
all integers n between 2 and k, n either is prime or can be factored into a product of
primes. Let n � k � 1. If k � 1 is prime, we are done. Otherwise, it must factor into a
product of two smaller integers—say,

Since 2 � a, b � k (why?), the induction hypothesis applies to a and b. Therefore,

where the p’s and q’s are all prime. Then

gives a factorization of ab into primes, completing the induction step.
We conclude that the result is true for all integers n 
 2, by the second principle

of mathematical induction.

ab � p1
p pr q1

p qs

a � p1
p pr  and  b � q1

p qs

k � 1 � ab
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Do you see why the first principle of mathematical induction would have been
difficult to use here?

We conclude with a highly nontrivial example that involves a combination of in-
duction and backward induction. The result is the Arithmetic Mean–Geometric
Mean Inequality, discussed in Chapter 7 in Exploration: Geometric Inequalities and
Optimization Problems. The clever proof in Example B.6 is due to Cauchy.

Let x1, . . . , xn be nonnegative real numbers. Prove that

for all integers n 
 2.

Solution For n � 2, the inequality becomes (x � y)�2. You are asked to
verify this in Problems 1 and 2 of the Exploration mentioned above.

If S(n) is the stated inequality, we will prove that S(k) implies S(2k). Assume that
S(k) is true; that is,

for all nonnegative real numbers x1, . . . , xk. Let

Then

by S(2)

by S(k)

which verifies S(2k).
Thus, the Arithmetic Mean–Geometric Mean Inequality is true for n � 2, 4,

8, . . .—the powers of 2. In order to complete the proof, we need to “fill in the gaps.”
We will use backward induction to prove that S(k) implies S(k � 1). Assuming S(k)
is true, let

xk �
x1 � x2 � p � xk�1

k � 1

�
y1 � p � y2k

2k

�

a y1 � y2

2 b � p � a y2k�1 � y2k

2 b
k

�
x1 � x2 � p � xk

k

� k2x1
p xk

� kB a y1 � y2

2
b p a y2k�1 � y2k

2
b

2k2y1
p y2k �

k31y1
p y2k � k31y1y2

p 1y2k�1y2k

x1 �
y1 � y2

2
,  x2 �

y3 � y4

2
,  . . . ,  xk �

y2k�1 � y2k

2

k2x1x2
p xk �

x1 � x2 � p � xk

k

1xy �

2n x1x2
p xn �

x1 � x2 � p � xn

n

662 Appendix B Mathematical Induction

Example B. 6

�

�
I I I I II I I I I ������������������������������

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Then

Equivalently,

or

Taking the (k � 1)th root of both sides yields S(k � 1).
The two inductions, taken together, show that the Arithmetic Mean–Geometric

Mean Inequality is true for all n 
 2.

Remark Although mathematical induction is a powerful and indispensable tool,
it cannot work miracles. That is, it cannot prove that a pattern or formula holds if it
does not. Consider the diagrams in Figure B.2, which show the maximum number of
regions R(n) into which a circle can be subdivided by n straight lines.

x1x2
p xk�1 � a x1 � x2 � p � xk�1

k � 1
b k�1

x1x2
p xk�1 a x1 � x2 � p � xk�1

k � 1
b � a x1 � x2 � p � xk�1

k � 1
b k

�
x1 � x2 � p � xk�1

k � 1

�
kx1 � kx2 � p � kxk�1

k 1k � 1 2
kBx1x2

p xk�1 a x1� x2 � p � xk�1

k � 1
b �

x1 � x2 � p � a x1� x2 � p � xk�1

k � 1
b

k
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R(0) � 1 � 20 R(1) � 2 � 21 R(2) � 4 � 22

Figure B. 2

Based on the evidence in Figure B.2, we might conjecture that R(n) � 2n for n 
 0
and try to prove this conjecture using mathematical induction. We would not succeed,
since this formula is not correct! If we had considered one more case, we would have
discovered that R(3) � 7 8 � 23, thereby demolishing our conjecture. In fact, the
correct formula turns out to be

which can be verified by induction. (Can you do it?)
For other examples in which a pattern appears to be true, only to disappear when

enough cases are considered, see Richard K. Guy’s delightful article “The Strong Law of
Small Numbers” in the American Mathematical Monthly, Vol. 95 (1988), pp. 697–712.

R1n 2 �
n 2 � n � 2

2
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Appendix A

Jean-Robert Argand (1768–1822)
was a French accountant and
amateur mathematician. His
geometric interpretation of complex
numbers appeared in 1806 in a book
that he published privately. He was
not, however, the first to give such
an interpretation. The Norwegian-
Danish surveyor Caspar Wessel
(1745–1818) gave the same version
of the complex plane in 1787, but
his paper was not noticed by the
mathematical community until after
his death.

Im

Re
�2 2 64�4�6

2i

4i

6i

�6i

�4i

�2i

�4 � 3i
3 � 2i

�3 � 2i

1 � 4i

Figure C. 1
The complex plane

664

[The] extension of the number
concept to include the irrational, and
we will at once add, the imaginary, is
the greatest forward step which pure
mathematics has ever taken.

—Hermann Hankel
Theorie der Complexen

Zahlensysteme
Leipzig, 1867, p. 60

Complex Numbers
A complex number is a number of the form a � bi, where a and b are real numbers and
i is a symbol with the property that i2 � �1. The real number a is considered to be a spe-
cial type of complex number, since a � a � 0i. If z � a � bi is a complex number, then
the real part of z, denoted by Re z, is a, and the imaginary part of z, denoted by Im z, is
b. Two complex numbers a � bi and c � di are equal if their real parts are equal and their
imaginary parts are equal—that is, if a � c and b � d. A complex number a � bi can be
identified with the point (a, b) and plotted in the plane (called the complex plane, or the
Argand plane), as shown in Figure C.1. In the complex plane, the horizontal axis is called
the real axis and the vertical axis is called the imaginary axis.

There is nothing “imaginary”
about complex numbers—they are
just as “real” as the real numbers.
The term imaginary arose from the
study of polynomial equations
such as x2 � 1 � 0, whose solu-
tions are not “real” (i.e., real num-
bers). It is worth remembering that
at one time negative numbers were
thought of as “imaginary” too.

Operations on Complex Numbers

The sum of the complex numbers a � bi and c � di is defined as

Notice that, with the identification of a � bi with (a, b), c � di with (c, d), and 
(a � c) � (b � d)i with (a � c, b � d), addition of complex numbers is the same
as vector addition. The product of a � bi and c � di is

� ac � adi � bci � bdi2

1a � bi 2 1c � di 2 � a 1c � di 2 � bi1c � di 2
1a � bi 2 � 1c � di 2 � 1a � c 2 � 1b � d 2 i

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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Since i 2 � �1, this expression simplifies to (ac � bd) � (ad � bc)i. Thus, we have

Observe that, as a special case, a(c � di) � ac � adi, so the negative of c � di is
�(c � di) � (�1)(c � di) � �c � di. This fact allows us to compute the difference
of a � bi and c � di as

Find the sum, difference, and product of 3 � 4i and �1 � 2i.

Solution The sum is

The difference is

The product is

The conjugate of z � a � bi is the complex number

( is pronounced “z bar.”) Figure C.2 gives the geometric interpretation of the
conjugate.

To find the quotient of two complex numbers, we multiply the numerator and the
denominator by the conjugate of the denominator.

Express in the form a � bi.

Solution We multiply the numerator and denominator by Using
Example C.1, we obtain

Below is a summary of some of the properties of conjugates. The proofs follow 
from the definition of conjugate; you should verify them for yourself.

�1 � 2i

3 � 4i
�

�1 � 2i

3 � 4i
# 3 � 4i

3 � 4i
�

5 � 10i

32 � 42 �
5 � 10i

25
�

1

5
�

2

5
i

3 � 4i � 3 � 4i.

�1 � 2i

3 � 4i

z

z � a � bi

� �3 � 10i � 81�1 2 � 5 � 10i

13 � 4i 2 1�1 � 2i 2 � �3 � 6i � 4i � 8i2

13 � 4i 2 � 1�1 � 2i 2 � 13 � 1�1 2 2 � 1�4 � 2 2 i � 4 � 6i

13 � 4i 2 � 1�1 � 2i 2 � 13 � 1 2 � 1�4 � 2 2 i � 2 � 2i

� 1a � c 2 � 1b � d 2 i� 1a � 1�c 2 2 � 1b � 1�d 2 2 i1a � bi 2 � 1c � di 2 � 1a � bi 2 � 1�1 2 1c � di 2

1a � bi 2 1c � di 2 � 1ac � bd 2 � 1ad � bc 2 i

Example C. 1

Re

Im

z � a � bi

z � a � bi

bi

�bi

a

Figure C. 2
Complex conjugates
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Im

Re

�z� � �a2 � b2

z � a � bi
bi

a

b

Figure C. 3

1.
2.
3.
4. If z 0, then 
5. z is real if and only if � z.

The absolute value (or modulus) �z� of a complex number z � a � bi is its dis-
tance from the origin. As Figure C.3 shows, Pythagoras’ Theorem gives

Observe that

Hence,

This gives us an alternative way of describing the division process for the quotient of
two complex numbers. If w and z 0 are two complex numbers, then

Below is a summary of some of the properties of absolute value. (You should try
to prove these using the definition of absolute value and other properties of complex
numbers.)

1. if and only if z � 0.
2.
3.

4. If z 0, then 

5.

Polar Form

As you have seen, the complex number z � a � bi can be represented geometrically
by the point (a, b). This point can also be expressed in terms of polar coordinates
(r, u), where r 
 0, as shown in Figure C.4. We have

so

Thus, any complex number can be written in the polar form

z � r 1cos u � i sin u 2
z � a � bi � r cos u � 1r sin u 2 ia � r cos u  and  b � r sin u

0z � w 0 � 0z 0 � 0w 02 1
z
2 � 10z 0 .

0zw 0 � 0z 0 0w 00z 0 � 0z 00z 0 � 0

w

z
�

w

z
# z

z
�

wz

zz
�

wz0z 0 2


zz � 0z 0 2
zz � 1a � bi 2 1a � bi 2 � a2 � abi � bai � b2i2 � a2 � b2

0z 0 � 0a � bi 0 � 2a 2 � b2

z
1w>z 2 � w> ˛z.

zw � zw
z � w � z � w
z � z
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b
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where and tan u � b�a. The angle u is called an argument of z
and is denoted by arg z. Observe that arg z is not unique: Adding or subtracting any
integer multiple of 2p gives another argument of z. However, there is only one argu-
ment u that satisfies

This is called the principal argument of z and is denoted by Arg z.

Write the following complex numbers in polar form using their principal arguments:

(a) z � 1 � i (b)

Solution (a) We compute

Therefore, Arg and we have

as shown in Figure C.5.

(b) We have

Since w lies in the fourth quadrant, we must have Arg
Therefore,

See Figure C.5.

The polar form of complex numbers can be used to give geometric interpreta-
tions of multiplication and division. Let

Multiplying, we obtain

Using the trigonometric identities

sin1u1 � u2 2 � sin u1 cos u2 � cos u1 sin u2

cos1u1 � u2 2 � cos u1 cos u2 � sin u1 sin u2

� r1r2 3 1cos u1 cos u2 � sin u1 sin u2 2 � i 1sin u1 cos u2 � cos u1 sin u2 2 4z1z2 � r1r21cos u1 � i sin u1 2 1cos u2 � i sin u2 2
z1 � r11cos u1 � i sin u1 2   and  z2 � r21cos u2 � i sin u2 2

w � 2acosa�
p

3
b � i sina�

p

3
b b

z � u� �
p

3
1� �60°2.

r � 0w 0 � 312 � 1�13 2 2 � 14 � 2  and  tan u �
�13

1
� �13

z � 12 a cos
p

4
� i sin 

p

4
b

z � u �
p

4
1� 45° 2 ,

r � 0z 0 � 212 � 12 � 12  and  tan u �
1

1
� 1

w � 1 � 13i

�p � u � p

r � 0z 0 � 2a2 � b2
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Example C. 3

Im

Re
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1

2 œ3

�2

w � 1 � �3i

z � 1 � i

�2

�1

1

�

�
�

Figure C. 5
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we obtain

(1)

which is the polar form of a complex number with absolute value r1r2 and argument
u1 � u2. This shows that

Formula (1) says that to multiply two complex numbers, we multiply their absolute val-
ues and add their arguments. See Figure C.6.

Similarly, using the subtraction identities for sine and cosine, we can show that

(Verify this.) Therefore,

and we see that to divide two complex numbers, we divide their absolute values and sub-
tract their arguments.

As a special case of the last result, we obtain a formula for the reciprocal of a com-
plex number in polar form. Setting z1 � 1 (and therefore u1 � 0) and z2 � z (and
therefore u2 � u), we obtain the following:

See Figure C.7.

Find the product of 1 � i and 1 � i in polar form.

Solution From Example C.3, we have

Therefore,

See Figure C.8.

� 212 c cos a�
p

12
b � i sin a�

p

12
b d

11 � i 2 11 � 13i 2 � 212 c cos ap
4

�
p

3
b � i sin ap

4
�
p

3
b d

1 � i � 12 a cos
p

4
� i sin 

p

4
b  and 1 � 13i � 2 a cos a�p

3
b � i sin a�p

3
b b

13

1
z

�
1
r
1cos u � i sin u 2If z � r 1cos u � i sin u 2  is nonzero, then

2 z1

z2
2 � 0z1 00z2 0   and  arg a z1

z2
b � arg z1 � arg z2

z1

z2
�

r1

r2
3cos1u1 � u2 2 � i sin1u1 � u2 2 4   if z  0

0z1z2 0 � 0z1 0 0z2 0   and  arg1z1z2 2 � argz1 � argz2

z1z2 � r1r2 3cos1u1 � u2 2 � i sin1u1 � u2 2 4
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z1
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z1z2

u2

u1 � u2

Im

Re

Figure C. 6

Im

Re

1
z

1
r

r

u

�u

z

Figure C. 7
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Remark Since (1 � i)(1 � i) � (1 � ) � i(1 � ) (check this), we
must have

and

(Why?) This implies that

We therefore have a method for finding the sine and cosine of an angle such as p/12
that is not a special angle but that can be obtained as a sum or difference of special
angles.

De Moivre’s Theorem

If n is a positive integer and z � r(cos u � i sin u), then repeated use of formula (1)
yields formulas for the powers of z:

In general, we have the following result, known as De Moivre’s Theorem.

   o

z4 � zz 3 � r41cos 4u � i sin 4u 2z 3 � zz 2 � r 31cos 3u � i sin 3u 2z 2 � r 21cos 2u � i sin 2u 2

cos a p
12
b �

1 � 13

212
  and  sin a p

12
b �

13 � 1

212

1 � 13 � 212 sin a�
p

12
b � �212 sin a p

12
b

1 � 13 � 212 cos a�
p

12
b � �212 cos a p

12
b

131313
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32

2

�2

2�2

1 � �3i

1 � i

�2i

�i

i

(1 � i)(1 � �3i) �

(1 � �3) � i(1 � �3)

�

�
�

�
�

Figure C. 8

Abraham De Moivre (1667–1754) was
a French mathematician who made
important contributions to trigonom-
etry, analytic geometry, probability,
and statistics.
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Theorem C. 1

Example C. 5

Im

Re

�2 � 2i

�4 � 4i

�4i 1 � i

�8i

2i

Figure C. 9
Powers of 1 � i

De Moivre’s Theorem

If z � r(cos u� i sin u) and n is a positive integer, then

Stated differently, we have

In words, De Moivre’s Theorem says that to take the nth power of a complex number,
we take the nth power of its absolute value and multiply its argument by n.

Find (1 � i) 6.

Solution From Example C.3(a), we have

Hence, De Moivre’s Theorem gives

See Figure C.9, which shows 1 � i, (1 � i) 2, (1 � i) 3, . . . , (1 � i) 6.

We can also use De Moivre’s Theorem to find nth roots of complex numbers. An
nth root of the complex number z is any complex number w such that

In polar form, we have

so, by De Moivre’s Theorem,

Equating the absolute values, we see that

We must also have

(Why?) Since the sine and cosine functions each have period 2p, these equations
imply that nw and u differ by an integer multiple of 2p; that is,

n� � u � 2kp  or  � �
u � 2kp

n

cos n� �  cos u  and  sin n� � sin u

s n � r  or  s � r 1>n � 2n r

sn1cos n� � i sin n�2 � r 1cos u � i sin u 2
w � s 1cos � � i sin � 2   and  z � r 1cos u � i sin u 2

wn � z

� 810 � i 1�1 2 2 � �8i

� 8 a cos
3p

2
� i sin 

3p

2
b

11 � i 2 6 � 112 2 6 a cos
6p

4
� i sin 

6p

4
b

1 � i � 12 a cos
p

4
� i sin 

p

4
b

0zn 0 � 0z 0 n and arg1zn 2 � n arg z

zn � rn1cos nu � i sin nu 2
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where k is an integer. Therefore,

describes the possible nth roots of z as k ranges over the integers. It is not hard to
show that k � 0, 1, 2, . . . , n � 1 produce distinct values of w, so there are exactly n
different nth roots of z � r(cos u� i sin u). We summarize this result as follows:

Let z � r(cos u� i sin u) and let n be a positive integer. Then z has exactly n dis-
tinct nth roots given by

(2)

for k � 0, 1, 2, . . . , n � 1.

Find the three cube roots of �27.

Solution In polar form, �27 � 27(cos p� i sin p). It follows that the cube roots of
�27 are given by

Using formula (2) with n � 3, we obtain

As Figure C.10 shows, the three cube roots of �27 are equally spaced 2p/3
radians (120°) apart around a circle of radius 3 centered at the origin.

In general, formula (2) implies that the nth roots of z � r(cos u� i sin u) will lie
on a circle of radius r1/n centered at the origin. Moreover, they will be equally spaced
2p/n radians (360/n°) apart. (Verify this.) Thus, if we can find one nth root of z, the
remaining nth roots of z can be obtained by rotating the first root through successive
increments of 2p/n radians. Had we known this in Example C.6, we could have used
the fact that the real cube root of �27 is �3 and then rotated it twice through an
angle of 2p/3 radians (120°) to get the other two cube roots.

˛ � 3 a 1

2
�
13

2
i b �

3

2
�

313

2
i

 271>3 c cos ap � 4p

3
b � i sin ap � 4p

3
b d � 3 a cos

5p

3
� i sin 

5p

3
b

 271>3 c cos ap � 2p

3
b � i sin ap � 2p

3
b d � 31cos p � i sin p 2 � �3

 271>3 c cos
p

3
� i sin 

p

3
d � 3 a 1

2
�
13

2
i b �

3

2
�

313

2
i

1�27 2 1>3 � 271>3 c cos ap � 2kp

3
b � i sin ap � 2kp

3
b d   for k � 0, 1, 2

r˛

1>n c cos a u � 2kp

n
b � i sin a u � 2kp

n
b d

w � r˛

1>n c cos a u � 2kp

n
b � i sin a u � 2kp

n
b d
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Euler’s Formula

In calculus, you learn that the function e z has a power series expansion

that converges for every real number z. It can be shown that this expansion also
works when z is a complex number and that the complex exponential function
ez obeys the usual rules for exponents. The sine and cosine functions also have power
series expansions:

If we let z � ix, where x is a real number, then we have

Using the fact that i 2 � �1, i 3 � �i, i 4 � 1, i 5 � i, and so on, repeating in a cycle of
length 4, we see that

This remarkable result is known as Euler’s formula.

� cos x � i sin x

� a 1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � p b � i a x �

x 3

3!
�

x 5

5!
�

x 7

7!
� � p b

e ix � 1 � ix �
x 2

2!
�

ix 3

3!
�

x 4

4!
�

ix 5

5!
�

x 6

6!
�

ix 7

7!
� � � � p

ez � eix � 1 � ix �
1ix 22
2!

�
1ix 23
3!

� p

 cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� � p

 sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� � p

ez � 1 � z �
z2

2!
�

z3

3!
� p

dy
dx
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Leonhard Euler (1707–1783) was the most prolific mathematician of all time. He has over
900 publications to his name, and his collected works fill over 70 volumes. There are so many
results attributed to him that “Euler’s formula” or “Euler’s Theorem” can mean many different
things, depending on the context.

Euler worked in so many areas of mathematics, it is difficult to list them all. His contributions
to calculus and analysis, differential equations, number theory, geometry, topology, mechanics, and
other areas of applied mathematics continue to be influential. He also introduced much of the
notation we currently use, including , e, i, for summation, for difference, and f(x) for a
function, and was the first to treat sine and cosine as functions.

Euler was born in Switzerland but spent most of his mathematical life in Russia and Germany.
In 1727, he joined the St. Petersburg Academy of Sciences, which had been founded by Catherine 
I, the wife of Peter the Great. He went to Berlin in 1741 at the invitation of Frederick the Great, but
returned in 1766 to St. Petersburg, where he remained until his death. When he was young, he lost
the vision in one eye as the result of an illness, and by 1776 he had lost the vision in the other eye
and was totally blind. Remarkably, his mathematical output did not diminish, and he continued to
be productive until the day he died.
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Theorem C. 2

Example C. 7

Euler’s Formula

For any real number x,

Using Euler’s formula, we see that the polar form of a complex number can be
written more compactly as

For example, from Example C.3(a), we have

We can also go in the other direction and convert a complex exponential back
into polar or standard form.

Write the following in the form a � bi:

(a) eip (b) e 2�ip�4

Solution (a) Using Euler’s formula, we have

(If we write this equation as eip � 1 � 0, we obtain what is surely one of the most
remarkable equations in mathematics. It contains the fundamental operations of
addition, multiplication, and exponentiation; the additive identity 0 and the multi-
plicative identity 1; the two most important transcendental numbers, p and e; and
the complex unit i—all in one equation!)

(b) Using rules for exponents together with Euler’s formula, we obtain

If z � reiu � r(cos u� i sin u), then

(3)

The trigonometric identities

cos1�u 2 � cos u and sin1�u 2 � �sin u

z � r 1cos u � i sin u 2
�

e 212

2
�

e 212

2
i

e 2�ip>4 � e 2e ip>4 � e 2 a cos
p

4
� i sin 

p

4
b � e 2 a 12

2
� i
12

2
b

e ip � cos p � i sin p � �1 � i #  0 � �1

1 � i � 12 a cos
p

4
� i sin 

p

4
b � 12e ip>4

z � r 1cos u � i sin u 2 � reiu

eix � cos x � i sin x
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allow us to rewrite equation (3) as

This gives the following useful formula for the conjugate:

Note Euler’s formula gives a quick, one-line proof of De Moivre’s Theorem:3r 1cos u � i sin u 2 4n � 1reiu 2n � rneinu � rn1cos nu � i sin nu 2
z � re�iu

If z � reiu, then

z � r 1cos1�u 2 � i sin1�u 2 2 � rei 1�u2
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675

Polynomials
A polynomial is a function p of a single variable x that can be written in the form

(1)

where a0, a1, . . . , an are constants called the coefficients of p. With the con-
vention that x0 � 1, we can use summation notation to write p as

The integer n is called the degree of p, which is denoted by writing deg p � n. A
polynomial of degree zero is called a constant polynomial.

Which of the following are polynomials?

(a) (b) (c)

(d) (e) (f)

(g) cos(2 cos�1x) (h) ex

Solution (a) This is the only one that is obviously a polynomial.

(b) A polynomial of the form shown in equation (1) cannot become infinite as 
x approaches a finite value [ p(x) �q], whereas 2 � 1�3x 2 approaches �q as

x approaches zero. Hence, it is not a polynomial.

(c) We have

which is equal to when x 
 0 and to when x � 0. Therefore, this expres-
sion is formed by “splicing together” two polynomials (a piecewise polynomial), but it
is not a polynomial itself.

�12x12x

22x2 � 122x2 � 12 0x 0
lim

xSc

1x
x 2 � 5x � 6

x � 2
ln a 2e5x 3

e 3x b
22x 22 �

1

3x 2
2 � 1

3x � 12x 2

p 1x 2 � a
n

k�0

akx k

1an  0 2 ,
p 1x 2 � a0 � a1x � a2x

2 � p � anxn

Euler gave the most algebraic of the
proofs of the existence of the roots of
[a polynomial] equation. . . . I regard
it as unjust to ascribe this proof
exclusively to Gauss, who merely
added the finishing touches.

—Georg Frobenius, 1907
Quoted on the MacTutor History of

Mathematics archive,
http://www-history.mcs

.st-and.ac.uk/history/

Example D. 1

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.
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(d) Using properties of exponents and logarithms, we have

so this expression is a polynomial.

(e) The domain of this function consists of all real numbers x 2. For these values
of x, the function simplifies to

so we can say that it is a polynomial on its domain.

(f) We see that this function cannot be a polynomial (even on its domain x 
 0),
since repeated differentiation of a polynomial of the form shown in equation (1)
eventually results in zero and does not have this property. (Verify this.)

(g) The domain of this expression is �1 � x � 1. Let u� cos�1 x so that cos u� x. Using
a trigonometric identity, we see that

cos

so this expression is a polynomial on its domain.

(h) Analyzing this expression as we did the one in (f), we conclude that it is not a
polynomial.

Two polynomials are equal if the coefficients of corresponding powers of x are all
equal. In particular, equal polynomials must have the same degree. The sum of two
polynomials is obtained by adding together the coefficients of corresponding pow-
ers of x.

Find the sum of 2 � 4x � x2 and 1 � 2x � x2 � 3x 3.

Solution We compute

where we have “padded” the first polynomial by giving it an x 3 coefficient of zero.

We define the difference of two polynomials analogously, subtracting
coefficients instead of adding them. The product of two polynomials is obtained by
repeatedly using the distributive law and then gathering together corresponding
powers of x.

� 3 � 2x � 3x3

� � 11 � 1�1 2 2x 2 � 10 � 3 2x 3

12 � 4x � x 2 2 � 11 � 2x � x 2 � 3x 3 2 � 12 � 1 2 � 1�4 � 2 2x

12 cos�1 x 2 � cos 2u � 2 cos2 u � 1 � 2x2 � 1

1x

x 2 � 5x � 6

x � 2
�
1x � 2 2 1x � 3 2

x � 2
� x � 3



� ln 2 � 5x 3 � 3x � ln 2 � 3x � 5x 3

 ln a 2e5x 3

e 3x b � ln12e5x 3�3x 2 � ln 2 � ln1e5x 3�3x 2
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Find the product of 2 � 4x � x2 and 1 � 2x � x2 � 3x3.

Solution We obtain

Observe that for two polynomials p and q, we have

If p and q are polynomials with deg q � deg p, we can divide q into p, using long
division to obtain the quotient p/q. The next example illustrates the procedure, which
is the same as for long division of one integer into another. Just as the quotient of two
integers is not, in general, an integer, the quotient of two polynomials is not, in gen-
eral, another polynomial.

Compute 

Solution We will perform long division. It is helpful to write each polynomial with
decreasing powers of x. Accordingly, we have

We begin by dividing x2 into 3x3 to obtain the partial quotient 3x. We then multiply
3x by the divisor x2 � 4x � 2, subtract the result, and bring down the next term from
the dividend (3x3 � x2 � 2x � 1) :

Then we repeat the process with 11x2, multiplying 11 by x2 � 4x � 2 and subtracting
the result from 11x2 � 4x � 1. We obtain

40x � 21
11x 2 � 44x � 22
11x 2 �   4x �   1

3x 3 � 12x 2 � 6x

x 2 � 4x � 2�3x 3 �   x 2 � 2x �     1

3x � 11

3x � 1

x 2 � 4x � 2�3x3 � 12x 2 � 2x � 1
3x 3 � 12x2 � 6x � 1

11x2 � 4x � 1

x 2 � 4x � 2�3x 3 � x 2 � 2x � 1

1 � 2x � x 2 � 3x 3

2 � 4x � x 2 .

deg1pq 2 � deg p � deg q

� 2 � 9x2 � 12x3 � 13x4 � 3x5

� 1�12x4 � x4 2 � 3x5

� 2 � 14x � 4x 2 � 1�2x2 � 8x2 � x2 2 � 16x3 � 4x3 � 2x3 2� 1x2 � 2x3 � x4 � 3x5 2� 12 � 4x � 2x2 � 6x3 2 � 1�4x � 8x2 � 4x3 � 12x4 2� x 211 � 2x � x 2 � 3x 3 2� 211 � 2x � x2 � 3x3 2 � 4x 11 � 2x � x2 � 3x3 212 � 4x � x2 2 11 � 2x � x2 � 3x3 2
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Theorem D. 2

Theorem D. 1

We now have a remainder 40x � 21. Its degree is less than that of the divisor 
x 2 � 4x � 2, so the process stops, and we have found that

or

Example D.4 can be generalized to give the following result, known as the
division algorithm.

The Division Algorithm

If f and g are polynomials with deg g � deg f, then there are polynomials q and r
such that

where either r � 0 or deg r � deg g.

In Example D.4,

In the division algorithm, if the remainder is zero, then

and we say that g is a factor of f. (Notice that q is also a factor of f.) There is a close
connection between the factors of a polynomial and its zeros. A zero of a polynomial
f is a number a such that f(a) � 0. [The number a is also called a root of the polyno-
mial equation f(x) � 0.] The following result, known as the Factor Theorem, estab-
lishes the connection between factors of a polynomial and its zeros.

The Factor Theorem

Let f be a polynomial and let a be a constant. Then a is a zero of f if and only if
x � a is a factor of f(x).

Proof By the division algorithm,

where either r(x) � 0 or deg r � deg(x � a) � 1. Thus, in either case, r(x) � r is a
constant. Now,

f 1a 2 � 1a � a 2q 1a 2 � r � r

f 1x 2 � 1x � a 2q 1x 2 � r 1x 2

f 1x 2 � g 1x 2q 1x 2
and  r 1x 2 � 40x � 21

f 1x 2 � 3x 3 � x 2 � 2x � 1,  g 1x 2 � x2 � 4x � 2,  q1x 2 � 3x � 11,

f 1x 2 � g 1x 2q 1x 2 � r 1x 2

3x 3 � x 2 � 2x � 1

x 2 � 4x � 2
� 3x � 11 �

40x � 21

x 2 � 4x � 2

3x 3 � x 2 � 2x � 1 � 1x 2 � 4x � 2 2 13x � 11 2 � 140x � 21 2
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Theorem D. 3

so f(a) � 0 if and only if r � 0, which is equivalent to

as we needed to prove.

There is no method that is guaranteed to find the zeros of a given polynomial.
However, there are some guidelines that are useful in special cases. The case of a poly-
nomial with integer coefficients is particularly interesting. The following result,
known as the Rational Roots Theorem, gives criteria for a zero of such a polynomial
to be a rational number.

The Rational Roots Theorem

Let

be a polynomial with integer coefficients and let a/b be a rational number writ-
ten in lowest terms. If a/b is a zero of f, then a0 is a multiple of a and an is a multi-
ple of b.

Proof If a�b is a zero of f, then

Multiplying through by bn, we have

(1)

which implies that

(2)

The left-hand side of equation (2) is a multiple of b, so anan must be a multiple of b
also. Since a�b is in lowest terms, a and b have no common factors greater than 1.
Therefore, an must be a multiple of b.

We can also write equation (1) as

and a similar argument shows that a0 must be a multiple of a. (Show this.)

Find all the rational roots of the equation

(3)

Solution If a�b is a root of this equation, then 6 is a multiple of b and �4 is a multi-
ple of a, by the Rational Roots Theorem. Therefore,

a H 5;1, ;2, ;46  and  b H 5;1, ;2, ;3, ;66
6x 3 � 13x 2 � 4 � 0

�a0b
n � a1abn�1 � p � an�1a

n�1b � ana
n

a0b
n � a1abn�1 � p � an�1a

n�1b � �ana
n

a0b
n � a1abn�1 � p � an�1a

n�1b � ana � 0

a 0 � a1 a a

b
b � p � an�1 a a

b
b n�1

� an a a

b
b n

� 0

f 1x 2 � a0 � a1x � p � anx n

f 1x 2 � 1x � a 2q 1x 2
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Forming all possible rational numbers a�b with these choices of a and b, we see that
the only possible rational roots of the given equation are

Substituting these values into equation (3) one at a time, we find that �2, and 
are the only values from this list that are actually roots. (Check these.) As we will see
shortly, a polynomial equation of degree 3 cannot have more than three roots, so
these are not only all the rational roots of equation (3) but also its only roots.

We can improve on the trial-and-error method of Example D.5 in various ways.
For example, once we find one root a of a given polynomial equation f(x) � 0, we
know that x � a is a factor of f(x)—say, f(x) � (x � a)g(x). We can therefore divide
f(x) by x � a (using long division) to find g(x). Since deg g � deg f, the roots of
g(x) � 0 [which are also roots of f(x) � 0] may be easier to find. In particular, if g(x)
is a quadratic polynomial, we have access to the quadratic formula.

Suppose

(We may assume that a is positive, since multiplying both sides by �1 would produce
an equivalent equation otherwise.) Then, completing the square, we have

(Verify this.) Equivalently,

Therefore,

or

Let’s revisit the equation from Example D.5 with the quadratic formula in mind.

Find the roots of 6x3 � 13x2 � 4 � 0.

Solution Let’s suppose we use the Rational Roots Theorem to discover that x � �2
is a rational root of 6x3 � 13x 2 � 4 � 0. Then x � 2 is a factor of 6x3 � 13x 2 � 4, and
long division gives

6x 3 � 13x 2 � 4 � 1x � 2 2 16x 2 � x � 2 2

x �
�b ; 2b2 � 4ac

2a

x �
b

2a
� ;B

b 2 � 4ac

4a2 �
;2b 2 � 4ac

2a

a a x �
b

2a
b 2

�
b 2

4a
� c  or  a x �

b

2a
b 2

�
b2 � 4ac

4a 2

a a x 2 �
b

a
x �

b 2

4a2 b �
b 2

4a
� c

ax 2 � bx � c � 0

1
2�2

3,

;1, ;2, ;4, ; 1
2, ; 1

3, ; 2
3, ; 4

3, ; 1
6
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(Check this.) We can now apply the quadratic formula to the second factor to find
that its zeros are

or, in lowest terms, and Thus, the three roots of equation (3) are and 
as we determined in Example D.5.

Remark The Factor Theorem establishes a connection between the zeros of a
polynomial and its linear factors. However, a polynomial without linear factors may
still have factors of higher degree. Furthermore, when asked to factor a polynomial,
we need to know the number system to which the coefficients of the factors are sup-
posed to belong.

For example, consider the polynomial

Over the rational numbers �, the only possible zeros of p are 1 and �1, by the
Rational Roots theorem. A quick check shows that neither of these actually works, so
p(x) has no linear factors with rational coefficients, by the Factor Theorem. However,
p(x) may still factor into a product of two quadratics. We will check for quadratic fac-
tors using the method of undetermined coefficients.

Suppose that

Expanding the right-hand side and comparing coefficients, we obtain the equations

If a � 0, then c � 0 and d � �b. This gives �b 2 � 1, which has no solutions in �.
Hence, we may assume that a 0. Then c � �a, and we obtain d � b. It now follows
that b 2 � 1, so b � 1 or b � �1. This implies that a 2 � 2 or a2 � �2, respectively, nei-
ther of which has solutions in �. It follows that x 4 � 1 cannot be factored over �. We
say that it is irreducible over �.

However, over the real numbers �, x4 � 1 does factor. The calculations we have
just done show that

(Why?) To see whether we can factor further, we apply the quadratic formula. We see
that the first factor has zeros

x �
�12 ; 3112 2 2 � 4

2
�

�12 ; 1�2

2
�
12

2
1�1 ; i 2 � �

1

12
;

1

12
i

x 4 � 1 � 1x 2 � 12x � 1 2 1x 2 � 12x � 1 2



bd � 1
bc � ad � 0

b � ac � d � 0
a � c � 0

x 4 � 1 � 1x 2 � ax � b 2 1x 2 � cx � d 2

p 1x 2 � x4 � 1

� 2
3 ,�2, 1

2 ,� 2
3 .1

2

� 6
12, � 8

12

�
�1 ; 149

12
�

�1 ; 7

12

x �
�1 ; 212 � 416 2 1�2 2

2 # 6
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Theorem D. 4

which are in � but not in �. Hence, cannot be factored into linear fac-
tors over �. Similarly, cannot be factored into linear factors over �.

Our calculations show that a complete factorization of x4 � 1 is possible over the
complex numbers �. The four zeros of x4 � 1 are

which, as Figure D.1 shows, all lie on the unit circle in the complex plane. Thus, the
factorization of x4 � 1 is

The preceding Remark illustrates several important properties of polynomials.
Notice that the polynomial p(x) � x4 � 1 satisfies deg p � 4 and has exactly four
zeros in �. Furthermore, its complex zeros occur in conjugate pairs; that is, its com-
plex zeros can be paired up as

These last two facts are true in general. The first is an instance of the Fundamental
Theorem of Algebra (FTA), a result that was first proved by Gauss in 1797.

The Fundamental Theorem of Algebra

Every polynomial of degree n with real or complex coefficients has exactly n zeros
(counting multiplicities) in �.

This important theorem is sometimes stated as

“Every polynomial with real or complex coefficients has a zero in �.”

Let’s call this statement FTA�. Certainly, FTA implies FTA�. Conversely, if FTA� is true,
then if we have a polynomial p of degree n, it has a zero a in �. The Factor Theorem
then tells us that x � a is a factor of p(x), so

where q is a polynomial of degree n � 1 (also with real or complex coefficients). We
can now apply FTA� to q to get another zero, and so on, making FTA true. This argu-
ment can be made into a nice induction proof. (Try it.)

It is not possible to give a formula (along the lines of the quadratic formula) for
the zeros of polynomials of degree 5 or more. (The work of Abel and Galois
confirmed this; see page 322.) Consequently, other methods must be used to prove
FTA. The proof that Gauss gave uses topological methods and can be found in more
advanced mathematics courses.

Now suppose that

p 1x 2 � a 0 � a1x � p � anx n

p 1x 2 � 1x � a 2q 1x 2

5a, a6  and  5�a, �a 6

x4 � 1 � 1x � a2 1x � a2 1x � a2 1x � a2
�a �

1

12
�

1

12
i

a � �
1

12
�

1

12
i,  a � �

1

12
�

1

12
i,  �a �

1

12
�

1

12
i,

x 2 � 12x � 1
x 2 � 12x � 1
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Theorem D. 5

is a polynomial with real coefficients. Let be a complex zero of p so that

Then, using properties of conjugates, we have

Thus, is also a zero of p. This proves the following result:

The complex zeros of a polynomial with real coefficients occur in conjugate pairs.

In some situations, we do not need to know what the zeros of a polynomial are—
we only need to know where they are located. For example, we might only need to
know whether the zeros are positive or negative (as in Theorem 4.35). One theorem
that is useful in this regard is Descartes’ Rule of Signs. It allows us to make certain
predictions about the number of positive zeros of a polynomial with real coefficients
based on the signs of these coefficients.

Given a polynomial a0 � a1x � p � an x n, write its nonzero coefficients in order.
Replace each positive coefficient by a plus sign and each negative coefficient by a
minus sign. We will say that the polynomial has k sign changes if there are k places
where the coefficients change sign. For example, the polynomial 2 � 3x � 4x3 � x4 �
7x 5 has the sign pattern

� � � � �

so it has three sign changes, as indicated.

Descartes’ Rule of Signs

Let p be a polynomial with real coefficients that has k sign changes. Then the
number of positive zeros of p (counting multiplicities) is at most k.

In words, Descartes’ Rule of Signs says that a real polynomial cannot have more
positive zeros than it has sign changes.

Show that the polynomial p(x) � 4 � 2x 2 � 7x4 has exactly one positive zero.

Solution The coefficients of p have the sign pattern � � �, which has only one sign
change. So, by Descartes’ Rule of Signs, p has at most one positive zero. But p(0) � 4
and p(1) � �1, so there is a zero somewhere in the interval (0, 1). Hence, this is the
only positive zero of p.

666
a

� p1a 2 � 0 � 0

� a0 � a1a � p � ana
n

p1a 2 � a0 � a1a � p � ana
n � a0 � a1a � p � ana

n

a0 � a1a � p � ana
n � p1a2 � 0

a

Appendix D Polynomials 683

Descartes stated this rule in his
1637 book La Géometrie, but did
not give a proof. Several mathe-
maticians later furnished a proof,
and Gauss provided a somewhat
sharper version of the theorem in
1828.

Example D. 7
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We can also use Descartes’ Rule of Signs to give a bound on the number of nega-
tive zeros of a polynomial with real coefficients. Let

and let b be a negative zero of p. Then b � �c for c � 0, and we have

But

so c is a positive zero of p(�x). Therefore, p(x) has exactly as many negative zeros as
p(�x) has positive zeros. Combined with Descartes’ Rule of Signs, this observation
yields the following:

Let p be a polynomial with real coefficients. Then the number of negative zeros of
p is at most the number of sign changes of p(�x).

Show that the zeros of p(x) � 1 � 3x � 2x2 � x 5 cannot all be real.

Solution The coefficients of p(x) have no sign changes, so p has no positive zeros.
Since p(�x) � 1 � 3x � 2x 2 � x 5 has three sign changes among its coefficients, p has
at most three negative zeros. We note that 0 is not a zero of p either, so p has at most
three real zeros. Therefore, it has at least two complex (non-real) zeros.

p1�x 2 � a0 � a1x � a2x
2 � � p � 1�1 2nanxn

� a0 � a1c � a2c
2 � � p � 1�1 2nanc n

 0 � p1b 2 � a0 � a1b � a2b
2 � p � anbn

p1x 2 � a0 � a1x � a2x
2 � p � anx n
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685

Answers are easy. It’s asking 
the right questions [that’s] hard.

—Doctor Who
“The Face of Evil,”
By Chris Boucher

BBC, 1977

Chapter 1

Exercises 1.1

1.

3. (a), (b)

(c)

�3

z

3

3 3 y
x

z

y
x

3
3

3

�3

�3

x

y

2�2

�2

2

(d)

5. (a)

(b)

x

y

1 3

2

1

�2

�1

2

x

y

1 43

3

2

1

�1
2

y

x

z

3

3

3

�3

�3
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(c)

(d)

7. a � b � [5, 3]

9. d � c � [5, �5]

11. [3, �2, 3]

13.

15. 5a

17. x � 3a

u � v � c 11 � 13 2>211 � 13 2>2 dc 11 � 13 2>2113 � 1 2>2 d ,
u � v �u � c 1>2

13>2 d , v � c�13>2
�1>2 d ,

x
2 4

�4

�2

y

d

�c

x

y

62 4

2

4

a
b

x

y

q

a

a

Z�Z

Z

x

y

2�2

2

19.

21. w � �2u � 4v

25.

27.
29.

31. 0 33. 1

35. 0 37. 2, 0, 3

39. 5 41. [1, 1, 0]

43. 3, 2 45. x � 2

47. No solution 49. x � 3

51. No solution 53. x � 2

55. x � 1, or x � 5

57. (a) All a 0 (b) a � 1, 5
(c) a and m can have no common factors other than 1 

[i.e., the greatest common divisor (gcd) of a and
m is 1].

Exercises 1.2

1. �1 3. 11 5. 2

7. 9. 114, £1>114

2>114

3>114

§15, c�1>15

2>15
d



# 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

� 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

u � v � 30, 1, 0, 0 4 , u # v � 1

u � v � c1
0
d , u # v � 1

y

62 4

�2

2

4

6

y

x
62 4

�2

2
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11.

13. 15.

17. (a) u # v is a scalar, not a vector.

(c) v # w is a scalar and u is a vector.

19. Acute 21. Acute 23. Acute

25. 60° 27. �88.10� 29. �14.34°

31. Since is a right

angle.

33. If we take the cube to be a unit cube (as in Figure 1.34),
the four diagonals are given by the vectors

Since di
# dj 0 for all i j (six possibilities), no two

diagonals are perpendicular.

35.

37. 5 mi/h at an angle of � 53.13˚ to the bank

39. 60˚

41. 43. 45.

47. 49. k � �2, 3

51. v is of the form where k is a scalar.

53. The Cauchy-Schwarz Inequality would be violated.

Exercises 1.3

1. (a) (b) 3x � 2y � 0

3. (a)

(b)

5. (a) (b)
z �  4t
y � �t
x � t£xy

z

§ � t £ 1

�1

4

§
y �  3t
x � 1 � t

cx
y
d � c1

0
d � t c�1

3
d

c3
2
d # cx

y
d � 0

k c b

�a
d ,A � 145>2

£�0.301

0.033

�0.252

§≥ 3
2

�3
2
3
2

�3
2

¥c�3
5
4
5

d

D � 1�2, 1, 1 2


d3 � £�1

1

1

§ , d4 � £ 1

�1

1

§d1 � £11
1

§ , d2 � £ 1

1

�1

§ ,

�BACAB
¡ # AC

¡
� £�4

1

�1

§ # £ 1

1

�3

§ � 0,

16117

16, 31>16, 1>13, 1>12, 0 4
7. (a) (b) 3x � 2y � z � 2

9. (a)

(b)

11.

13.

15. (a)

17. Direction vectors for the two lines are given by 

and The lines are perpendicular

if and only if d1 and d2 are orthogonal. But d1
# d2 � 0

if and only if 1 � m1m2 � 0 or, equivalently,
m1m2 � �1.

19. (a) Perpendicular (b) Parallel
(c) Perpendicular (d) Perpendicular

21.

23.

25. (a)
(b) x � y � 0 (c) x � y � z � 0

27. 29. 31.

33. 35. 37.

43. 45.

Exercises 1.4

1. 13 N at approx N 67.38 E

3. N at an angle of 30˚ to f1

5. 4 N at an angle of 60˚ to f2

7. 5 N at an angle of 60˚ to the given force, N
perpendicular to the 5 N force

9. 75022 N

523

823

�80.4°�78.9°

5
318113>13143, 4

3,
8
3 2 112, 1

2 2213>3312>2x � 0, x � 1, y � 0, y � 1, z � 0, z � 1

£xy
z

§ � £�1

0

3

§ � t £�1

3

�1

§
cx
y
d � c 2

�1
d � t c3

2
d

c 1

m2

d .d2 �c 1

m1

dd1 �

y � �1 � 3t
cx
y
d � c 0

�1
d � t c1

3
dx � t

£xy
z

§ � £11
1

§ � s £ 3

�1

1

§ � t £�1

0

�2

§
cx
y
d � c 1

�2
d � t c2

2
dz � 2s � t

y � s � 2t
x � 2s � 3t

£xy
z

§ � s £21
2

§ � t £�3

2

1

§
£32

1

§ # £xy
z

§ � 2
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11. 980 N

13. � 117.6 N in the 15 cm wire, � 88.2 N in the 20 cm
wire

15. [1, 0, 1, 1, 1]

17. No error

19. No error

21. d � 2

23. d � 0

27. d � 0

31. d � X

33. (b) [0, 4, 4, 9, 9, 0, 8, 3, 5, 6]

35. (b) [0, 3, 8, 7, 0, 9, 9, 0, 2, 6]

Review Questions

1. (a) T (c) F (e) T (g) F (i) T

3. 5. 120° 7.

9. 2x � 3y � z = 7 11.

13. The Cauchy-Schwarz Inequality would be violated.

15. 17. x � 2 19. 3216>3
16>2 £�2>15

1>15

0  
§c 8

11
dx �

17. No solution

19. [7, 3] 21.

23. [5, �2, 1, 1] 25. [2, �7, �32]

323 , 1
3 , �1

3 4
x

y

2�3

�2

2
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Chapter 2

Exercises 2.1

1. Linear 3. Not linear because of the x�1 term

5. Linear 7. 2x � 4y � 7

9. x � y � 4(x, y 0)

11. 13.

15. Unique solution, x � 3, y � �3

x

y

�2 4
�2

�4

2

4

(3, �3)

• £4 � 2s � 3t

s

t

§ ¶e c2t

t
d f



27. 29.

31. 33. [1, 1]

35. [4, �1] 37. No solution

39. (a) (b)

41. Let and The solution is x �

43. Let u � tan x, v � sin y, w � cos z. One solution is 
x � p/4, y � �p/6, z � p/3. (There are infinitely
many solutions.)

Exercises 2.2

1. No 3. Reduced row echelon form

5. No 7. No

9. (a) 11. (b)

13. (b)

15. Perform elementary row operations in the order 
R4 � 29R3, 8R3, R4 � 3R2, R2 4 R3, R4 � R1, R3 � 2R1,
and, finally, R2 � 2R1.

17. One possibility is to perform elementary row
operations on A in the order R2 � 3R1, R1 � 2R2,
R2 � 3R1, R1 4 R2.

19. Hint: Pick a random 2 � 2 matrix and try this—
carefully!

1
2 R2,

£1 0 �1

0 1 �1

0 0 0

§
£1 0

0 1

0 0

§£1 1 1

0 1 1

0 0 1

§

1
3 , y � �1

2 .v �
1
y

.u �
1
x

y � s 4x � 2y � 6
x � 3

2 � 1
2 s 2x � y � 3

 2x � y � z � 1
x � y � 1

y � z � 1

£ 1 5

�1 1

2 4

3 �1

�5

4

§c1 �1

2 1
2 0
3
d
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21. This is really two elementary row operations
combined: 3R2 and R2 � 2R1.

23. Exercise 1: 3; Exercise 3: 2; Exercise 5: 2; Exercise 7: 3

25. 27. 29.

31.

33. No solution

35. Unique solution

37. Infinitely many solutions

39. Hint: Show that if ad � bc 0, the rank of

is 2. (There are two cases: and ) Use
the Rank Theorem to deduce that the given system
must have a unique solution.

41. (a) No solution if k � �1
(b) A unique solution if k �1
(c) Infinitely many solutions if k � 1

43. (a) No solution if k � 1
(b) A unique solution if k �2, 1
(c) Infinitely many solutions if k � �2

45.

49. No intersection

51. The required vectors are the solutions of the

homogeneous system with augmented matrix

By Theorem 3, there are infinitely many solutions. If
u1 0 and u1v2 � u2v1 0, the solutions are given by

But a direct check shows that these are still solutions
even if u1 � 0 and/or u1v2 � u2v1 � 0.

53. 55. 57. c3
3
d£10

0

§c0
2
d

t £u2v3 � u3v2

u3v1 � u1v3

u1v2 � u2v1

§


cu1 u2 u3

v1 v2 v3

2 0
0
d

x � £x 1

x 2

x 3

§
£xy

z

§ � £ 0

�1

1

§ � t £ 9

�10

�7

§




a  0.a � 0

ca b

c d
d

E 24

�10

0

0

0

U � r E 6

�2

1

0

0

U � s E060
1

0

U � t E 12

�6

0

0

1

U
c 2

�1
dt £ 1

1

�1

§£25
1

§
Exercises 2.3

1. Yes 3. No 5. Yes 7. Yes

9. We need to show that the vector equation 

has a solution for all values of a and b.

This vector equation is equivalent to the linear system

whose augmented matrix is Row

reduction yields from which we can

see that there is a (unique) solution.

[Further row operations yield x � (a � b)�2,

y � (a � b)�2.] Hence, �2 �

11. We need to show that the vector equation 

has a solution for all values 

of a, b, and c. This vector equation is equivalent to
the linear system whose augmented matrix is 

Row reduction yields

from which we can see

that there is a (unique) solution. [Further row 
operations yield 

z � ]

Hence,

13. (a) The line through the origin with direction 

vector 

(b) The line with general equation 2x � y � 0

15. (a) The plane through the origin with direction 

vectors 

(b) The plane with general equation 2x � y � 4z � 0

£12
0

§ , £ 3

2

�1

§
c�1

2
d

�3 � span° £10
1

§ , £11
0

§ , £01
1

§ ¢ .

1�a � b � c 2>2.y � 1a � b � c 2>2,
x � 1a � b � c 2>2,

£ 1 1 0

0 1 1

0 0 2

3 a

b

b � c � a

§ ,
£ 1 1 0

0 1 1

1 0 1

3 ab
c

§ .

£01
1

§ � £ab
c

§y £ 11
0

§ � z

x £10
1

§ �

spana c1
1
d , c 1

�1
d b .

c 1 1

0 �2
2 a

b � a
d ,

c 1 1

1 �1
2 a
b
d .

ca
b
dy c 1

�1
d �

x c1
1
d �
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17. Substitution yields the linear system

whose solution is It follows that there are 

infinitely many solutions, the simplest perhaps being
a � �3, b � 0, c � 1.

19.

21. (c) We must show that span(e1, e2, e3) � span(e1, e1 �
e2, e1 � e2 � e3). We know that span(e1, e1 � e2,
e1 � e2 � e3) � �3 � span(e1, e2, e3). From Exer-
cise 19, e1, e2, and e3 all belong to span(e1, e1 � e2,
e1 � e2 � e3). Therefore, by Exercise 21(b),
span(e1, e2, e3) � span(e1, e1 � e2, e1 � e2 � e3).

23. Linearly independent

25. Linearly dependent,

27. Linearly dependent, since the set contains the zero vector

29. Linearly independent

31. Linearly dependent,

43. (a) Yes (b) No

Exercises 2.4

1. x 1 � 160, x 2 � 120, x 3 � 160

3. two small, three medium, four large

5. 65 bags of house blend, 30 bags of special blend,
45 bags of gourmet blend

7.

9.

11.

13.

15. (a) (b)

(c)

(d) Negative flow would mean that water was flowing
backward, against the direction of the arrow.

 10 � f 3 � 30
 0 � f 2 � 20
 0 � f 1 � 20

f 3 � t
f 2 � �10 � t

f 3 � 15f 1 � 15,f1 �  30 � t

Na2CO3 � 4C � N2 ¡ 2NaCN � 3CO

2C5H11OH � 15O2 ¡ 12H2O � 10CO2

2C4H10 � 13O2 ¡ 8CO2 � 10H2O

4FeS2 � 11O2 ¡ 2Fe2O3 � 8SO2

≥ 1

1

3

1

¥≥ 3

�1

1

�1

¥ � ≥�1

3

1

�1

¥ � ≥�1

�1

1

3

¥ �

�£01
2

§ � £21
3

§ � £20
1

§

w � 0u � 1�1 2 1u � v 2 � 1u � v � w 2v � 1�1 2u � 1u � v 2 � 01u � v � w 2u � u � 01u � v 2 � 01u � v � w 2
t £�3

0

1

§ .
�a � b � 3c � 0

a � 3c � 0
17. (a) (b) 200 � f3 � 300

(c) If f3 � s � 0, then f5 � t 
 200 (from the f1 equa-
tion), but f5 � t � 150 (from the f4 equation). This is
a contradiction.

(d) 50 � f3 � 300

19. I1 � 3 amps, I2 � 5 amps, I3 � 2 amps

21. (a) I � 10 amps, I1 � I5 � 6 amps, I2 � I4 � 4 amps,
I3 � 2 amps

(b) ohms

(c) Yes; change it to 4 ohms.

23. Farming : Manufacturing = 2 : 3

25. The painter charges $39/hr, the plumber $42/hr, the
electrician $54/hr.

27. (a) Coal should produce $100 million and steel $160
million.

(b) Coal should reduce production by ≈ $4.2 million and
steel should increase production by ≈ $5.7 million.

29. (a) Yes; push switches 1, 2, and 3 or switches 3, 4, and 5.

(b) No

31. The states that can be obtained are represented by
those vectors

in for which 
(There are 16 such possibilities.)

33. If 0 � off, 1 � light blue, and 2 � dark blue, then the
linear system that arises has augmented matrix

which reduces over �3 to

E1 0 0 0 1

0 1 0 0 2

0 0 1 0 0

0 0 0 1 1

0 0 0 0 0

5 112
2

0

U

E1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

5 212
1

2

U

x1 � x2 � x4 � x5 � 0.�2
5

Ex1

x 2

x 3

x 4

x 5

U

Reff � 7
5

f5 � t
f4 � 150 � t
f3 � s
f2 � 300 � s � t
f1 � �200 � s � t
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This yields the solutions

where t is in �3. Hence, there are exactly three solutions:

where each entry indicates the number of times the
corresponding switch should be pushed.

E112
2

0

U, E022
1

1

U, E202
0

2

U

E112
2

0

U � t E210
2

1

UEx1

x2

x3

x4

x5

U �

35. (a) Push squares 3 and 7.
(b) The 9 � 9 coefficient matrix A is row equivalent to

�2, so for any b in Ax � b has a unique
solution.

37. Grace is 15, and Hans is 5.

39. 1200 and 600 square yards

41. (a) a � 4 � d, b � 5 � d, c � �2 � d, d is arbitrary
(b) No solution

43. (a) No solution
(b) [a, b, c, d, e, f ] � [4, 5, 6, �3, �1, 0] �

f [�1, �1, �1, 1, 1, 1]

45. (a) y � x2 � 2x � 1 (b) y � x2 � 6x � 10

47. A � 1, B � 2

49.

51. a � 1
2 , b � 1

2 , c � 0

A � �1
5 , B � 1

3 , C � 0, D � � 2
15 , E � �1

5

�2
9,

n 0 1 2 3 4 5

x1 0 0.8571 0.9714 0.9959 0.9991 0.9998
x2 0 0.8000 0.9714 0.9943 0.9992 0.9998

Exact solution: x1 � 1, x2 � 1

n 0 1 2 3 4 5 6

x1 0 0.2222 0.2539 0.2610 0.2620 0.2622 0.2623
x2 0 0.2857 0.3492 0.3582 0.3603 0.3606 0.3606

Exact solution (to four decimal places): x1 � 0.2623,
x2 � 0.3606

1. 3.

n 0 1 2 3 4 5 6 7 8

x1 0 0.3333 0.2500 0.3055 0.2916 0.3009 0.2986 0.3001 0.2997
x2 0 0.2500 0.0834 0.1250 0.0972 0.1042 0.0996 0.1008 0.1000
x3 0 0.3333 0.2500 0.3055 0.2916 0.3009 0.2986 0.3001 0.2997

Exact solution: x1 � 0.3, x2 � 0.1, x3 � 0.3

5.

Exercises 2.5

n 0 1 2 3 4

x1 0 0.8571 0.9959 0.9998 1.0000
x2 0 0.9714 0.9992 1.0000 1.0000

After three iterations, the Gauss-Seidel method is
within 0.001 of the exact solution. Jacobi’s method
took four iterations to reach the same accuracy.

7. n 0 1 2 3 4

x1 0 0.2222 0.2610 0.2622 0.2623
x2 0 0.3492 0.3603 0.3606 0.3606

After three iterations, the Gauss-Seidel method is
within 0.001 of the exact solution. Jacobi’s method
took four iterations to reach the same accuracy.

9.
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n 0 1 2 3 4

x1 0 �3 �5 �19 �53
x2 0 �4 �8 �28 �80

If the equations are interchanged and the Gauss-Seidel
method is applied to the equivalent system

we obtain

x1 � 2x2 � 3
 3x1 � 2x2 � 1

15.

n 0 1 2 3 4 5 6 7 8

x1 0 �0.3333 �1.2222 �0.9260 �1.0247 �0.9918 �1.0027 �0.9991 �1.0003
x2 0 �1.3333 �0.8889 �1.0370 �0.9876 �1.0041 �0.9986 �1.0004 �0.9998

After seven iterations, the process has converged to
within 0.001 of the exact solution x1 � 1, x2 � �1.

17.

x1

x2

10 20

10

�10

�20

�30

n 0 1 2 3 4 5 6

x1 0 0.3333 0.2777 0.2962 0.2993 0.2998 0.3000
x2 0 0.1667 0.1112 0.1020 0.1004 0.1000 0.1000
x3 0 0.2777 0.2962 0.2993 0.2998 0.3000 0.3000

After four iterations, the Gauss-Seidel method is within
0.001 of the exact solution. Jacobi’s method took seven
iterations to reach the same accuracy.

11. 13. x2

x1
10.5

1

0.5

692 Answers to Selected Odd-Numbered Exercises

n 0 1 2 3 4 5 6

x1 0 �1.6 14.97 8.550 10.740 9.839 10.120
x2 0 25.9 11.408 14.051 11.615 11.718 11.249
x3 0 �10.35 �9.311 �11.200 �11.322 �11.721 �11.816

19.

n 7 8 9 10 11 12

x1 � 9.989 �10.022 �10.002 �10.005 �10.001 �10.001
x2 �11.187 �11.082 �11.052 �11.026 �11.015 �11.008
x3 �11.912 �11.948 �11.973 �11.985 �11.992 �11.996

After 12 iterations, the Gauss-Seidel method has converged to
within 0.01 of the exact solution x1 � 10, x2 � 11, x3 � �12.
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n 13 14 15 16

x1 �10.0004 �10.0003 �10.0001 �10.0001
x2 �11.0043 �11.0023 �11.0014 �11.0007
x3 0�11.9976 �11.9986 �11.9993 �11.9996

21.

n 0 1 2 3 4 5 6 7 8 9

x1 0 00.0 012.5000 21.875 24.219 24.805 24.951 24.988 24.997 24.999
x2 0 00.0 18.750 21.438 24.609 24.902 24.976 24.994 24.998 24.999
x3 0 50.0 68.750 73.438 74.609 74.902 74.976 74.994 74.998 74.999
x4 0 62.5 71.875 74.219 74.805 74.951 74.988 74.997 74.999 75.000

The exact solution is x1 � 25, x2 � 25, x3 � 75, x4 � 75.

23. The Gauss-Seidel method produces

n 0 1 2 3 4 5 6

t1 0 20.0000 21.2500 22.8125 23.3301 23.6596 23.7732
t2 0 05.0000 11.2500 13.3203 14.6386 15.0926 15.2732
t3 0 21.2500 24.6094 26.9873 27.7303 27.9626 28.0352
t4 0 02.5000 05.8594 08.2373 08.9804 09.2126 09.2852
t5 0 07.1875 14.6289 16.2829 16.7578 16.9036 16.9491
t6 0 23.0469 24.9072 25.3207 25.4394 25.4759 25.4873

25. The Gauss-Seidel method produces the following iterates:

n 7 8 9 10 11 12

t1 23.8093 23.8206 23.8242 23.8252 23.8256 23.8257
t2 15.2824 15.2966 15.3010 15.3024 15.3029 15.3029
t3 28.0579 28.0650 28.0671 28.0678 28.0681 28.0681
t4 09.3079 09.3150 09.3172 09.3178 09.3181 09.3181
t5 16.9633 16.9677 16.9690 16.9695 16.9696 16.9696
t6 25.4908 25.4919 25.4922 25.4924 25.4924 25.4924

n 0 1 2 3 4 5 6

x1 0 0

x2 1 11
32

11
32

3
8

3
8

1
2

1
2

21
64

5
16

5
16

1
4

1
4

27. (a)

x1

x2

0.40.2

0.4

0.8

1.2
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21.

23.
(where ai is the ith column of A)

25. �

27. (where is the ith row 

of A)

29. If bi is the ith column of B, then Abi is the ith column
of AB. If the columns of B are linearly dependent,
then there are scalars c1, . . . , cn (not all zero) such
that c1b1 � p � cnbn � 0. But then c1(Ab1) � p �
cn (Abn) � A(c1b1 � p � cnbn) � A0 � 0, so the
columns of AB are linearly dependent.

31. 33.

35. (a)

(b)

37.

39. (a) (c) ≥ 0 0 0 0

1 1 1 1

2 4 8 16

3 9 27 81

¥≥ 1 �1 1 �1

�1 1 �1 1

1 �1 1 �1

�1 1 �1 1

¥
An � c 1 n

0 1
d

A2001 � c�1 0

0 �1
d

A7 � c 0 1

�1 1
d

A6 � c1 0

0 1
d ,A5 � c1 �1

1 0
d ,A4 � c0 �1

1 �1
d ,

A3 � c�1 0

0 �1
d ,A2 � c�1 1

�1 0
d ,

≥ 1 2 2 0

3 4 5 3

1 0 1 2

0 1 0 �1

¥£ 3 2 0

�1 1 0

0 0 5

§

A iBA � £ 2A1 � 3A2

A1 � A2 � A3

�A1 � 6A2 � 4A3

§
£ 2 �12 �8

�1 6 4

1 �6 �4

§£ 2 3 0

�6 �9 0

4 6 0

§ � £0 0 0

1 �1 1

0 0 0

§
AB � 32a1 � a2 � a3 3a1 � a2 � 6a3 a2 � 4a3 4
c1 �2 3

2 1 �5
d £x1

x2

x3

§ � c0
4
d
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n 0 1 2 3 4 5 6 7

x1 0 0.0 0.250 0.3125 0.3281 0.3320 0.3330 0.3332
x2 1 0.5 0.375 0.3438 0.3360 0.3340 0.3335 0.3334

(c)

(b)
x1 � 2x2 � 1

 2x1 � x2 � 1

[Columns 1, 2, and 3 of this table are the 
odd-numbered columns 1, 3, and 5 from the table
in part (a).] The iterates are converging to 
x1 � x2 � 0.3333.

(d) x1 � x2 � 1
3

Review Questions

1. (a) F (c) F (e) T (g) T (i) F

3. 5. 7. 9. (0, 3, 1)

11. 13. (a) Yes 15.

17. If , then 
. Linear independence of u and v

implies and . Solving this
system, we get . Hence u � v and u � v
are linearly independent.

19. Their ranks must be equal.

Chapter 3

Exercises 3.1

1. 3. Not possible

5. 7.

9. [10] 11.

13. 15.

17.

19.

Column i corresponds to warehouse i, row 1 contains
the costs of shipping by truck, and row 2 contains the
costs of shipping by train.

B � c 1.50 1.00 2.00

1.75 1.50 1.00
d , BA � c 650.00 462.50

675.00 406.25
d

c0 1

0 0
d

c 27 0

�49 125
d£0 0 0

0 0 0

0 0 0

§
c�4 �2

8 4
d

c 3 3

19 27
dc 12 �6 3

�4 12 14
d

c 3 �6

�5 7
d

c1 � c2 � 0
c1 � c2 � 0c1 � c2 � 0

1c 1 � c 2 2v � 0
1c1 � c2 2u �c 11u � v 2 � c 21u � v 2 � 0

1 or 2x � 2y � z � 0

k � �1c6
2
d£ 0

2

�1

§
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Exercises 3.2

1. 3.

5. B � 2A1 � A2 7. Not possible

9.

11.

13. Linearly independent 15. Linearly independent

23. 25.

27.

29. Let and be upper triangular n � n
matrices and let Then, by the definition of an
upper triangular matrix,

and

Now let Then

from which it follows that C is upper triangular.

35. (a) A, B symmetric 
is symmetric

37. Matrices (b) and (c) are skew-symmetric.

41. Either A or B (or both) must be the zero matrix.

43. (b)

47. Hint: Use the trace.

Exercises 3.3

1. 3. Not invertible

5. Not invertible 7.

9. 11. c�5

9
dc a>1a2 � b2 2 b>1a2 � b2 2

�b>1a2 � b2 2 a>1a2 � b2 2 d
c�1.6 �2.8

0.3 1
d

c 2 �7

�1 4
d

£1 3 5

3 5 7

5 7 9

§ � £0 �1 �2

1 0 �1

2 1 0

§£1 2 3

4 5 6

7 8 9

§ �

A � B 1 A � B
AT � BT �1 1A � B2T �

� ai, i�1
# 0 � p � ain

# 0 � 0

�  0 # b1j � 0 # b2j � p  0 # bi�1, j � aii
# 0

� ai, i�1bi�1, j � p � ainbnj

cij � ai1b1j � ai2b2j � p ai, i�1bi�1, j � aiibij

C � AB.

bij � bi�1, j � p � bnj � 0
ai1 � ai2 � p � ai, i�1 � 0

i 7 j.
B � 3bij 4A � 3aij 4a � d, b � c � 0

3b � 2c, a � d � ca � d, c � 0

e c�3b � 4c � 5e b c

0 e 0
d f

e c c1 � c2 � c3 2c2 � c3 �c1 � c3

0 c1 � c2 0
d f �

span1A1, A2, A3 2 �e c w x

2x � 5w x � w
d f

span1A1, A2 2 � e c c1 2c1 � c2

�c1 � 2c2 c1 � c2

d f �

X � c�2
3

4
3

10
3 4

dX � c 5 4

3 5
d 13. (a)

(c) The method in part (b) uses fewer 
multiplications.

17. (b) if and only if

21.

23.

25. 27.

29. 31.

33. 35. 37.

39.

43. (a) If A is invertible, then 

45. Hint: Rewrite as 

47. If AB is invertible, then there exists a matrix X such
that But then too, so A is
invertible (with inverse BX ).

49. 51.

53. Not invertible

55. ,

57.

59.

61. Not invertible 63. £4 6 4

5 3 2

0 6 5

§
≥ 1 0 0 0

0 1 0 0

0 0 1 0

�a>d �b>d �c>d 1>d ¥ , d  0

≥�11 �2 5 �4

4 1 �2 2

5 1 �2 2

9 2 �4 3

¥
a  0£   1>a 0 0

�1>a2   1>a 0

    1>a3 �1>a2 1>a §
c 1> 1a2 � 1 2 �a> 1a2 � 1 2
a> 1a2 � 1 2 1> 1a2 � 1 2 dc 1

10
2
5

3
10

1
5

d
A1BX2 � I1AB2X � I.

A12I � A2 � I.A2 � 2A � I � O

B � C.
C 1AA�1 2 1 BI � CI 11CA2A�1 1 B1AA�1 2 �BA � CA 1 1BA2A�1 �

A � c 1 0

�1 1
d c1 0

0 �2
d , A�1 � c1 0

0 �1
2

d c1 0

1 1
d

£1 0 0

0 1>c 0

0 0 1

§£1 0 0

0 1 2

0 0 1

§c0 1

1 0
d

c 1
3 0

0 1
dE � £ 1 0 0

0 1 2

0 0 1

§
E � £ 1 0 0

0 1 0

�1 0 1

§E � £ 0 0 1

0 1 0

1 0 0

§
X � 1AB2�1BA � A

X � A�11BA22B�1

AB � BA1AB2�1 � A�1B�1

x1 � c 4

�1
2

d , x2 � c�5

2
d , x3 � c 6

�2
d
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69. 71.

Exercises 3.4

1. 3. 5.

7.

9.

11.

13.

15. , ,

19.

21.

23.

25.

27.

31. c 1 0

�1 1
d c�2 0

0 6
d c 1 �1

2

0 1
d£ 4

�1

�2

§
≥�1 1 1 2

0 �1 1 3

0 0 1 1

0 0 0 4

¥≥ 1 0 0 0

0 1 0 0

0 0 1 0

0 �1 0 1

¥≥ 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

¥
£�1 2 1

0 1 4

0 0 �16

§£ 1 0 0

0 1 0

�1 5 1

§£ 0 1 0

1 0 0

0 0 1

§
≥ 0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

¥≥ 0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

¥≥ 0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

¥
£0 1 0

1 0 0

0 0 1

§£0 0 1

0 1 0

1 0 0

§
A�1 � c�5>12 1>12

1>6  1>6 dc�1
2

1
12

0 1
6

dU�1 �c1 0

1 1
dL�1 �

£ 1 0 1 �2

0 3 3 1

0 0 0 5

§£ 1 0 0

0 1 0

0 0 1

§
≥ 1 2 3 �1

0 2 �3 2

0 0 3 1

0 0 0 1

¥≥ 1 0 0 0

2 1 0 0

0 3 1 0

�1 0 �2 1

¥
£ 1 2 3

0 �3 �6

0 0 3

§£ 1 0 0

4 1 0

8 3 1

§
c 1 2

0 5
dc 1 0

�3 1
d

≥ �7

�15

�2

2

¥£�3>2
�2

�1

§c�2

1
d

≥�1 0 1 1

0 1 �1 0

0 1 0 0

1 �1 0 0

¥≥ 1 0 0 0

0 1 0 0

�2 �3 1 0

�1 �2 0 1

¥ Exercises 3.5

1. Subspace 3. Subspace

5. Subspace 7. Not a subspace

11. b is in col(A), w is not in row(A).

15. No

17. is a basis for row(A);

is a basis for col(A); is a basis

for null(A).

19. is a basis 

for row(A); is a basis for col(A);

is a basis for null(A).

21. is a basis for row(A);

is a basis for col(A)

23. is

a basis for row(A); is a basis for
col(A)

25. Both and 
are linearly independent spanning sets for

Both

and are linearly independent spanning

sets for 

27.

29.

31.

35.

37.

39. If A is 3�5, then so there cannot be
more than three linearly independent columns.

41. 3, 4, or 5nullity1A 2 � 2,

rank1A 2 � 3,

rank1A 2 � 3, nullity1A 2 � 1

rank1A 2 � 2, nullity1A 2 � 1

34 �4 1 4 65 32 �3 1 4 , 31 �1 0 4 ,30 0 1 4 65 31 0 0 4 , 30 1 0 4 ,
• £ 1

�1

0

§ , £�1

0

1

§ ¶
col1A 2 � �2.

e c 1
0
d , c 0

1
d f e c 1

1
d , c 0

1
d f5 3a b �a � 2b 4 6.row1A 2 �

31 1 1 4 6 5 31 0 �1 4 ,5 31 0 �1 4 , 30 1 2 4 6
• £ 10

0

§ , £ 01
0

§ , £ 00
1

§ ¶
5 31    1    0    1 4 , 30    1 �1    1 4 , 30    1 �1 �1 4 6e c 1

0
d , c 0

1
d f5 31    0 �1 4 , 31    1    1 4 6

μ ≥�1

1

1

0

¥ ∂
• £ 10

0

§ , £ 11
1

§ , £ 1

1

�1

§ ¶
5 31    0    1    0 4 , 30    1 �1    0 4 , 30    0    0    1 4 6

• £ 1

�2

1

§ ¶e c 1
1
d , c 0

1
d f

5 31    0 �1 4 , 30    1    2 4 6
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43. If then if then
2; for 

45. Yes 47. Yes 49. No

51. w is in span(B) if and only if the linear system with
augmented matrix [B � w] is consistent, which is true
in this case, since

From this reduced row echelon form, it is also clear

that

53.

55.

57. Let be the row vectors of A so that
If x is in null(A), then,

since we also have 0 for m,
by the row-column definition of matrix multiplica-
tion. If r is in row(A), then r is of the form 

Therefore,

59. (a) If a set of columns of AB is linearly independent,
then the corresponding columns of B are linearly
independent (by an argument similar to that needed
to prove Exercise 29 in Section 3.1). It follows that
the maximum number k of linearly independent
columns of AB [i.e., k � ] is not more than
the maximum number r of linearly independent
columns of B [i.e., r � ]. In other words,

61. (a) From Exercise 59(a), rank(UA) rank(A) and
rank(A) � rank((U�1U)A) � rank(U�1(UA))
rank(UA). Hence, rank(UA) � rank(A).

Exercises 3.6

1.

11. 13.

15. 17.

19. stretches or contracts in the x-direction (com-

bined with a reflection in the y-axis if ); c 1 0

0 k
dk 6 0

c k 0

0 1
d

3D 4 � c 2 0

0 3
d3F 4 � c�1 0

0 1
d

c 1 �1 1

2 1 �3
dc 1 1

1 �1
d

T 1u 2 � c 0

11
d , T 1v 2 � c 8

1
d

�
�

rank1B 2 .rank1AB 2 �
rank1B 2rank1AB 2

� c11A1
# x 2 � p � cm1Am

# x 2 � 0

r # x � 1c1A1 � p � cmAm 2 # x

cmAm.c1A1 � p �r �

i � 1, . . . ,Ai
# x �0,Ax �

. . . , Am 2 .row1A 2 � span1A1,
A1, . . . , Am

rank1A 2 � 3, nullity1A 2 � 1

rank1A 2 � 2, nullity1A 2 � 1

3w 4B � c 3

�2
d .

3B 0 w 4 � £1 1

2 0

0 �1

3 16
2

§ ¡ £1 0

0 1

0 0

3 3

�2

0

§

a  �1, 2, rank1A 2 � 3.rank1A 2 �
a � 2,rank1A 2 � 1;a � �1, stretches or contracts in the y-direction (combined

with a reflection in the x-axis if ); is a 

reflection in the line y � x; is a shear in the

x-direction; is a shear in the y-direction. For

example,

21. 23.

25. 27.

31.

33.

35.

37. 39.

45. In vector form, let the parallel lines be given by 
and Their images are

and
Suppose If

is parallel to then the images rep-
resent the same line; otherwise the images represent
distinct parallel lines. On the other hand, if T 1d 2 � 0,

T 1d 2 ,T 1p¿ 2 � T 1p 2 T 1d 2  0.T 1p¿ 2 � tT 1d 2 .T 1p¿ � td 2 �
T 1x¿ 2 �T 1p 2 � tT 1d 2T 1p � td 2 �T 1x 2 �

p¿ � td.x¿ �p � tdx �

c�13>2 �1>2
1>2 �13>2 dc�13>2 1>2

1>2 13>2 d
3S � T 4 � £ 1 0 �1

�1 1 0

0 �1 1

§
3S � T 4 � c 0 6 �6

1 �2 2
d

3S � T 4 � c�8 5

4 1
d

c�3
5

4
5

4
5

3
5

dc 0 �1

�1 0
d

c 1
2 �1

2

�1
2

1
2

dc13>2 1>2
�1>2 13>2 d

y

x

(0, k) (1, k)

(0, 0) (1, 0)

y

x

(0, 1)

(0, 0)

(1, 1)

(1, 0)

y

x

(k, 1) (k � 1, 1)

(0, 0) (1, 0)

y

x

(0, 1)

(0, 0)

(1, 1)

(1, 0)

c 1 0

k 1
d c 1 k

0 1
d c 0 1

1 0
dk 6 0
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1k 7 0 2c 1 k

0 1
d

1k 7 0 2c 1 0

0 k
d
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then the images represent two distinct points if
and single point otherwise.

47.

49.

51.

Exercises 3.7

1. 3. 64%

5. 7.

9. (a) (b) 0.353

(c) 42.5% wet, 57.5% dry

11. (a) P � £ 0.08 0.09 0.11

0.07 0.11 0.05

0.85 0.80 0.84

§
P � c 0.662 0.250

0.338 0.750
d

5
18x1 � £ 150

120

120

§ , x2 � £ 155

120

115

§
x1 � c 0.4

0.6
d , x2 � c 0.38

0.62
d

y

x

y

x

(�E, �T)

(E, T)

y

x

(�2, 3) (2, 3)

(�2, �3) (2, �3)

T 1p¿ 2  T 1p 2 (b) 0.08, 0.1062, 0.1057, 0.1057, 0.1057
(c) 10.6% good, 5.5% fair, 83.9% poor

13. The entries of the vector jP are just the column sums
of the matrix P. So P is stochastic if and only if

15. 4 17. 9.375

19. Yes, 21. No

23. No 25.

27. Productive 29. Not productive

31. 33.

37.

39. (a) For L1, we have 

(b) The first population oscillates between two states,
while the second approaches a steady state.

41. The population oscillates through a cycle of three
states (for the relative population): If the
actual population is growing; if the actual
population goes through a cycle of length 3; and if

the actual population is declining (and
will eventually die out).

43. 45.

47. 49. v1

v5 v2

v4 v3

v2

v1

v3 v4

A � E0 1 1 1 1

1 0 1 0 0

1 1 0 1 0

1 0 1 0 1

1 0 0 1 0

UA � ≥ 0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

¥
0 � s 6 0.1,

s � 0.1,
s � 1,0.1 6

x10 � c10240

10240
d .

x9 � c12800

2048
d ,x8 � c2560

2560
d ,x7 � c 3200

512
d ,

x6 � c 640

640
d ,x5 � c800

128
d ,x4 � c 160

160
d ,x3 � c 200

32
d ,

x1 � c 50

8
d , x2 � c 40

40
d ,

x1 � £ 500

70

50

§ , x2 � £ 720

350

35

§ , x3 � £ 1175

504

175

§
Yes, x � £ 10

6

8

§x � c 10

16
d

Yes, x � £ 10

27

35

§
x � c 1

2
d

jP � j.
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51. 53.

55.

57.

59. 2 61. 3 63. 0 65. 3

67. (a) Vertex i is not adjacent to any other vertices.

69. If we use direct wins only, is in first place;
and tie for second place; and and tie for third
place. If we combine direct and indirect wins, the play-
ers rank as follows: in first place, followed by 

, and 

71. (a)

(b) two steps; all of the off-diagonal entries of the
second row of are nonzero.

(d) If the graph has n vertices, check the (i, j)entry of
the powers for Vertex i is
connected to vertex j by a path of length k if and
only if 1Ak 2 ij  0.

n � 1.k � 1, . . . ,Ak

A � A2

A � E0 0 1 0 1

0 0 1 1 0

0 0 0 0 1

1 0 1 0 0

0 1 0 0 0

U
Ehaz

Bert

Ann

Dana Carla

P1.P5P3,
P4,P6,P2

P5P1P6

P4,P3,P2

v5

v2

v4

v1

v3

v1 v2

v3 v4

A � E0 1 0 1 0

1 0 0 1 0

1 1 0 0 0

1 0 0 0 1

1 0 0 0 0

UA � ≥ 0 1 1 0

0 0 0 0

0 1 0 1

1 0 0 0

¥ 73. counts the number of vertices adjacent to both
vertex i and vertex j.

75. Bipartite 77. Bipartite

79. A single error could change the code vector c2 �
into However, could

also be obtained from the code vector 
via a single error, so the error cannot be corrected.

81. 83.

85. is the second column of P, so the error is 

in the second component of The correct message
vector (from the first four components of the corrected

vector) is therefore 

87. (a)

(b)

(c) The columns of P are not distinct.

89. (a)

71. (a)

(b) not an error-

correcting code.

P � £ 1 0 0 1 0 0

1 1 0 0 1 0

1 1 1 0 0 1

§ ;

F
0

0

0

0

0

0

V , F
0

0

1

0

0

1

V , F
0

1

0

0

1

1

V , F
0

1

1

0

1

0

V , F
1

0

0

1

1

1

V , F
1

0

1

1

1

0

V , F
1

1

0

1

0

0

V , F
1

1

1

1

0

1

V

G � G
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 1 1 1 1 1

W
P � 31 1 1 1 1 1 1 4

≥ 1

0

0

0

¥ .x �

c¿.

Pc¿ � £ 10
1

§

G
1

1

1

1

1

1

1

WG
1

1

0

0

0

1

1

W
c4 � 31, 1, 1, 1 4c¿c¿ � 31, 1, 0, 1 4 .30, 1, 0, 1 4

1AAT 2 ij
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Chapter 4

Exercises 4.1

1.

3.

5.

7. 9. 11.

13.

15.

17.

19.

21.

23. l � 2, E2 � span a c 1
2
d b ; l � 3, E3 � span a c 1

1
d b

v � c 1>12

1>12
d , l � 2; v � c�1>12

1>12
d , l � 0

v � c 1
0
d , l � 1; v � c 0

1
d , l � 2

l � 2, E2 � span a c 1
0
d b ; l � 3, E3 � span a c 0

1
d b

l � 0, E0 � span a c 0
1
d b ; l � 1, E1 � span a c 1

0
d b

span a c 1
0
d b

l � 1, E1 � span a c 0
1
d b ; l � �1, E�1 �

£ 1

1

�1

§c 4
1
dc 2

1
d

Av � £ 6

�3

3

§ � 3v, l � 3

Av � c�3

6
d � �3v, l � �3

Av � c 3
3
d � 3v, l � 3

91. One set of candidates for P and G is

P �

and

G �

Review Questions

1. (a) T (c) F (e) T (g) T (i) T

3. Impossible 5.

7. 9.

11. Because (I � A)(I � A � A2) � I � A3 � I � O � I,
(I � A)�1 � I � A � A2.

13. A basis for row(A) is {[1, �2, 0,�1, 0], [0, 0, 1, 2, 0],

[0, 0, 0, 0, 1]}; a basis for col(A) is 

(or the standard basis for R3); and a basis for null(A) is

.eE210
0

0

U, E 1

0

�2

1

0

Uu
• £ 21

4

§ , £ 52
3

§ , £ 51
6

§ ¶

£ 0 �9

2 4

1 �6

§c 1 3

3 9
d � c 4 10

10 25
d

c 17
83 � 1

83

� 1
83

5
166

d

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 0 1 0 1 1 1

1 0 1 1 0 1 1 0 1 0 1

0 1 0 1 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1 1 1 1

≥ 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0

1 0 1 1 0 1 1 0 1 0 1 0 1 0 0

0 1 0 1 0 0 0 1 0 1 1 0 0 1 0

0 0 0 0 1 1 1 1 1 1 1 0 0 0 1

¥
15. An invertible matrix has a trivial (zero) null space. If A

is invertible, then so is AT, and so both A and AT have
trivial null spaces. If A is not invertible, then A and AT

need not have the same null space. For example, take 

.

17. Because A has n linearly independent columns,
rank(A) � n. Hence rank(ATA) � n by Theorem 3.28.
Because ATA is n�n, this implies that ATA is invert-
ible, by the Fundamental Theorem of Invertible
Matrices. AAT need not be invertible. For 

example, take .

19. c�1>512 �3>512

2>512 6>512
d

A � c 1
0
d

A � c 1 1

0 0
d
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25.

27.

29.

31. 33.

Exercises 4.2

1. 16 3. 0 5. 7. 6

9. 11. 13. 4 15. abdg

17. 0 25. 2 27. 29. 0

31. 0 33. 35. 8 37.

39. 45. 47. 49.

51.

53. det(AB) � (det A)(det B) � (det B)(det A) � det(BA)

55. 0, 1 57.

59. 61.

63. £ 1
2 �1

2 �1

0 1 �1

0 0 1

§
c 12 1

2
1
2 �1

2

dx � �1, y � 0, z � 1

x � 3
2 , y � �1

2

1�2 23n

�3
2�6k  0, 2�8

�4�24

�24

a2b � ab2�12

�18

l � 4l � 1, 2

span a c 1

�1
d bl � 1 � i, E1�i � span a c 1

1
d b ; l � 1 � i, E1�i �

span a c 1

�i
d bl � 1 � i, E1�i � span a c 1

i
d b ; l � 1 � i, E1�i �

x

y

210

1

x 2x

l � 2, E2 � span a c 1
0
d b

x

y

420

4

2 x

2x

y

3y

Exercises 4.3

1. (a) (b)

(c)

(d) The algebraic and geometric multiplicities are all 1.

3. (a)
(b)

(c)

(d) The algebraic and geometric multiplicities are
all 1.

5. (a) (b)

(c)

(d) has algebraic multiplicity 2 and geometric
multiplicity 1; has algebraic and geometric
multiplicity 1.

7. (a)
(b)

(c)

(d) has algebraic multiplicity 3 and geometric
multiplicity 2.

9. (a)
(b)

(c)

(d) and have algebraic and geometric
multiplicity 1; has algebraic multiplicity 2
and geometric multiplicity 1.

l � 2
l � 3l � �1

E3 � span ± ≥ 0

0

2

1

¥ ≤
E2 � span ± ≥ 1

�1

0

0

¥ ≤ ;E�1 � span ± ≥ 0

0

�2

1

¥ ≤ ;

l � �1, 2, 3
l4 � 6l3 � 9l2 � 4l � 12

l � 3

E3 � span° £�1

0

1

§ , £ 01
0

§ ¢
l � 3
�l3 � 9l2 � 27l � 27

l � 1
l � 0

E0 � span° £ 2

�1

1

§ ¢ ; E1 � span° £ 10
1

§ ¢
l � 0, 1�l3 � l2

E3 � span° £ 1

2

10

§ ¢
° £ 10

0

§ ¢ ;E1 � spanE�2 � span° £ 1

�3

0

§ ¢ ;

l � �2, 1, 3
�l3 � 2l2 � 5l � 6

E3 � span a c 3
2
d b ; E4 � span a c 1

1
d bl � 3, 4l2 � 7l � 12
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11. (a)
(b)

(c)

(d) and have algebraic and geometric
multiplicity 1; has algebraic and geometric
multiplicity 2.

15. 17.

23. (a)

(b) (i)

(iii)

27.

35.

37. , A�2 � �
4

25
A �

11

25
IA�1 � �

1

5
A �

4

5
I

A4 � 24A � 55I

A2 � 4A � 5I, A3 � 11A � 20I

£�3 4 �12

1 0 0

0 1 0

§ , �l3 � 3l2 � 4l � 12

E7 � span a c 1
1
d b

l � 0, E0 � span a c 2

�5
d b ; l � 7,

span a c 1
1
d b

l � �1
2 , E�1>2 � span a c 2

�5
d b ; l � 1

5 , E1>5 �

span a c 1
1
d b

l � �2, E�2 � span a c 2

�5
d b ; l � 5, E5 �

£ 212 # 320 � 1 2 >320

2

§c 2�9 � 3 # 210

�2�9 � 3 # 210 d
l � 1
l � 3l � �1

E3 � span ± ≥ 0

0

2

1

¥ ≤
E1 � span ± ≥�2

0

1

3

¥ , ≥�2

2

0

3

¥ ≤ ;

E�1 � span ± ≥ 0

0

0

1

¥ ≤ ;

l � �1, 1, 3

l4 � 4l3 � 2l2 � 4l � 3 Exercises 4.4

1. The characteristic polynomial of A is
but that of B is

3. The eigenvalues of A are and but those
of B are and 

5.

7.

9. Not diagonalizable

11.

13. Not diagonalizable

15.

17.

19.

21.

23.

25. 27.

29. All real values of k

35. If A � B, then there is an invertible matrix P such that
Therefore, we have

using Exercise 45 in Section 3.2.

37. P � c 7 �2

10 �3
d

� tr1APP�1 2 � tr1AI 2 � tr1A 2 tr1B 2 � tr1P�1AP 2 � tr1P�11AP 2 2 � tr1 1AP 2P�1 2B � P�1AP.

k � 0k � 0

£ 15 � 2k�2 � 1�3 2 k 2 >10 12k � 1�3 2 k 2 >5 1�5 � 2k�2 � 1�3 2 k 2 >1012k�1 � 2 1�3 2 k 2 >5 12k � 4 1�3 2 k 2 >5 12k�1 � 2 1�3 2 k 2 >51�5 � 2k�2 � 1�3 2 k 2 >10 12k � 1�3 2 k 2 >5 15 � 2k�2 � 1�3 2 k 2 >10

§

£ 1 0 0

0 1 0

0 0 1

§
c 13k � 31�1 2 k 2 >4 13k�1 � 31�1 2 k 2 >413k � 1�1 2 k 2 >4 13k�1 � 1�1 2 k 2 >4 d
c 35839 �69630

�11605 24234
d

P � ≥ 1 0 0 �1

0 1 0 0

0 0 1 0

0 0 0 1

¥ , D � ≥ 2 0 0 0

0 2 0 0

0 0 �2 0

0 0 0 �2

¥
P � £ 1 1 �1

1 1 1

1 �2 0

§ , D � £ 2 0 0

0 �1 0

0 0 1

§
° £ 0

1

�1

§ , £ 1

0

�1

§ ¢span

l1 � 6, E6 � span° £ 32
3

§ ¢ ; l2 � �2, E�2 �

l1 � 4, E4 � span a c 1
1
d b ; l2 � 3, E3 � span a c 1

2
d bl � 4.l � 1

l � 4,l � 2

l2 � 2l � 1.
l2 � 5l � 1,
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k 0 1 2 3 4 5 6

xk

yk

mk 1 7 7.571 7.755 7.808 7.823 7.827

c1
0.414

dc1
0.413

dc1
0.411

dc1
0.404

dc 1
0.377

dc 1
0.286

dc1
0
d

c7.827

3.240
dc7.823

3.234
dc7.808

3.212
dc7.755

3.132
dc7.571

2.857
dc7

2
dc 1

0
d

k 0 1 2 3 4 5

1 21 16.809 17.011 16.999 17.000mk

£10.727

0.636

§£10.727

0.636

§£10.727

0.636

§£10.728

0.637

§£ 10.714

0.619

§£ 11
1

§yk

£17.000

12.363

10.818

§£16.999

12.363

10.818

§£17.011

12.371

10.824

§£16.809

12.238

10.714

§£21

15

13

§£11
1

§xk

9.

Therefore,

11.

Therefore,

13.

Therefore, l1 � 17, v1 � £ 10.727

0.636

§ .

l1 � 7.827, v1 � c1
0.414

d .

l1 � 18, v1 � c1
0.333

d .

k 0 1 2 3 4 5

xk

yk

mk
1 26 17.692 18.018 17.999 18.000

c 1
0.333

dc 1
0.333

dc 1
0.333

dc 1
0.335

dc 1
0.308

dc 1
1
d

c 18.000

6.000
dc 17.999

6.000
dc 18.018

6.004
dc 17.692

5.923
dc 26

8
dc 1

1
d

39.

49. (b) dimE�1 � 1, dimE1 � 2, dimE2 � 3

Exercises 4.5

1. (a)

(b) l1 � 6

c 1
2.5
d , 6.000

P � £ 1
2 �1

2 0

�3
2 �3

2 1

�5
2 �3

2 0

§ 3. (a)

(b)

5. (a)

7. (a) m8 � 10.000, y8 � £ 10
1

§
m5 � 11.001, y5 � c�0.333

1.000
d

l1 � 13 � 15 2 >2 � 2.618

c 1
0.618

d , 2.618
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15.

17.

19.

21.

Since is converging slowly to

the exact answer.

23.

l1 � l2 � 4, v1 � c1
0
d , mk

l1 � 5, v1 � £10
0.333

§
k 0 1 2 3 4 5 6

7 7.755 7.823 7.828 7.828 7.828 7.828c1
0.414

dc1
0.413

dc1
0.411

dc1
0.404

dc1
0.377

dc1
0.286

dc1
0
dyk

R1xk 2 c7.827

3.240
dc7.823

3.234
dc7.808

3.212
dc7.755

3.132
dc7.571

2.857
dc7

2
dc1

0
dxk

k 0 1 2 3 4 5

16.333 16.998 17.000 17.000 17.000 17.000

£10.727

0.636

§£10.727

0.636

§£10.727

0.636

§£10.728

0.637

§£10.714

0.619

§£11
1

§yk

R1xk 2
£17.000

12.363

10.818

§£16.999

12.363

10.818

§£17.011

12.371

10.824

§£16.809

12.238

10.714

§£21

15

13

§£11
1

§xk

k 0 1 2 3 4 5 6 7 8

1 5 4.8 4.667 4.571 4.500 4.444 4.400 4.364mk

c1
0.333

dc1
0.364

dc1
0.400

dc1
0.444

dc1
0.500

dc1
0.571

dc1
0.667

dc1
0.8
dc1

1
dyk

c4.364

1.455
dc4.400

1.600
dc4.444

1.778
dc4.500

2.000
dc4.571

2.286
dc4.667

2.667
dc4.8

3.2
dc5

4
dc1

1
dxk

k 0 1 2 3 4 5 6 7 8

1 5 4.2 4.048 4.012 4.003 4.001 4.000 4.000mk

£10.750

0

§£10.750

0

§£10.750

0

§£10.750

0.001

§£10.751

0.003

§£10.753

0.012

§£10.762

0.048

§£10.8

0.2

§£11
1

§yk

£4.000

3.000

0.000

§£4.000

3.000

0.000

§£4.001

3.001

0.001

§£4.003

3.003

0.003

§£4.012

3.012

0.012

§£4.048

3.048

0.048

§£4.2

3.2

0.2

§£54
1

§£11
1

§xk
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In this case, and 

Clearly, is converging to 4 and is converging to a

vector in the eigenspace —namely,

25.

The exact eigenvalues are complex (i and ), so the
power method cannot possibly converge to either the
dominant eigenvalue or the dominant eigenvector if we
start with a real initial iterate. Instead, the power method
oscillates between two sets of real vectors.

27.

The eigenvalues are with
corresponding eigenvectors

Since the initial vector has a zero
component in the direction of the dominant eigenvector,
so the power method cannot converge to the dominant
eigenvalue/eigenvector. Instead, it converges to a second
eigenvalue/eigenvector pair, as the calculations show.

x0x0 � 1
2 v2 � 1

2v3,

v1 � £ 1

0

�1

§ , v2 � £12
1

§ , v3 � £10
1

§ .
l1 � �12, l2 � 4, l3 � 2,

�i

£10
0

§ � 0.75 £01
0

§ .E4

ykmk

E4 � span° £10
0

§ , £01
0

§ ¢ .l1 � l2 � 4

k 0 1 2 3 4 5

1 1 1 1�1�1mk

c1
0
dc1

1
dc1

0
dc1

1
dc1

0
dc1

1
dyk

c1
0
dc�1

�1
dc1

0
dc�1

�1
dc1

0
dc1

1
dxk

k 0 1 2 3 4 5

1 4 4 4 4 4mk

£0.516

1

0.516

§£0.531

1

0.531

§£0.562

1

0.562

§£0.625

1

0.625

§£0.750

1

0.750

§£11
1

§yk

£2.063

4.000

2.063

§£2.125

4.000

2.125

§£2.250

4.000

2.250

§£2.500

4.000

2.500

§£34
3

§£11
1

§xk
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29. Apply the power method to c�4 12

5 �15
d .A � 18I �

In this case, there is no dominant eigenvalue. (We
could choose either 18 or for ) How-
ever, the Rayleigh quotient method (Exercises 17–20)
converges to Thus, is the dominant eigen-
value of and is the
second eigenvalue of A.

l2 � �18 � 17 � �1A � 17I,
�18�18.

k 
 2.mk,�18

k 0 1 2 3

1 �19�19�10mk

c�0.8

1
dc�0.8

1
dc�0.8

1
dc 1

1
dyk

c 15.2

�19
dc 15.2

�19
dc 8

�10
dc 1

1
dxk

k 0 1 2 3 4 5

1 0.5 1.056 �1.000�1.000�0.997mk

c�0.800

1
dc�0.800

1
dc�0.801

1
dc�0.789

1
dc 1

�1
dc 1

1
dyk

c 0.800

�1.000
dc 0.800

�1.000
dc 0.798

�0.997
dc�0.833

1.056
dc 0.5

�0.5
dc 1

1
dxk

k 0 1 2 3 4 5

1 �0.500�0.500�0.500�0.500�0.500mk

£�1.000

�0.321

1.000

§£�1.000

�0.518

1.000

§£�1.000

�0.222

1.000

§£�1.000

�0.667

1.000

§£�1.000

0.000

1.000

§£ 1

1

�1

§yk

£ 0.500

0.160

�0.500

§£ 0.500

0.259

�0.500

§£ 0.500

0.111

�0.500

§£ 0.500

0.333

�0.500

§£�0.500

0.000

0.500

§£ 1

1

�1

§xk

Thus, is the dominant eigenvalue of and
is the second eigenvalue of A.

31. Apply the power method to A � 17I � £�8 4 8

4 �2 �4

8 �4 �8

§ .
�19 � 18 � �1l2 �

A � 18I,�19

Thus, the eigenvalue of A that is smallest in magnitude is 

35.

1> 1�1 2 � �1.

Clearly, converges to so the smallest eigenvalue 
of A is 1> 1�0.5 2 � �2.

�0.5,mk

33.

k 0 1 2 3

�18�18�18�0.667R1xk 2 �18�1841mk

£ 1

�0.5

�1

§£ 1

�0.5

�1

§£ 1

�0.5

�1

§£ 11
1

§yk

£�18

9

18

§£�18

9

18

§£ 4

�2

�4

§£ 11
1

§xk
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37. The calculations are the same as for Exercise 33.

39. We apply the inverse power method to A � 5I �

Taking we havex0 � £ 11
1

§ ,£�1 0 6

�1 �2 1

6 0 �1

§ .
Exercises 4.6

1. Not regular 3. Regular

5. Not regular 7.

9.

11. 13.

15. The population is increasing, decreasing, and constant,
respectively.

17.

The characteristic polynomial of L is ( �

19.

21.

25. (a) 29.

31. 33. Reducible

35. Irreducible 43. 1, 2, 4, 8, 16

45. 0, 1, 1, 0, 47.

49.

51. bn �
1

213
3 11 � 13 2n � 11 � 13 2n 4yn � 1n � 1
2 22n

xn � 4n � 1�1 2n�1

3, £ 1
2
1
4
1
4

§
3, c 3

5
2
5

dh � 0.082

l � 1.092, p � G
0.535

0.147

0.094

0.078

0.064

0.053

0.029

W
l � 1.746, p � £ 0.660

0.264

0.076

§
p � bns1s2

p sn�1 2 1�1 2n.b2s1l
n�2 � b3s1s2l

n�3 �
b1l

n�1 �ln

P�1LP � F
b1 b2s1 b3s1s2

p bn�1s1s2
p sn�2 bns1s2

p sn�1

1 0 0 p 0 0

0 1 0 p 0 0

o o o ∞ o o
0 0 0 p 0 0

0 0 0 p 1 0

V.

2, £ 16

4

1

§1, c 2
1
d

L � £ 0.304 0.304 0.304

0.354 0.354 0.354

0.342 0.342 0.342

§
L � c 15 1

5
4
5

4
5

d
k 0 1 2 3

1 �0.500�0.500�0.500mk

£�0.064

1

�0.064

§£ 0.160

1

0.160

§£�0.400

1

�0.400

§£ 11
1

§yk

£ 0.032

�0.500

0.032

§£�0.080

�0.500

�0.080

§£ 0.200

�0.500

0.200

§£ 11
1

§xk

Clearly, converges to so the eigenvalue of A
closest to 5 is 

41. 0.732 43. �0.619

47.

49.

51. Hint: Show that 0 is not contained in any Gerschgorin
disk and then apply Theorem 4.16.

53. Exercise 52 implies that is less than or equal to all of
the column sums of A for every eigenvalue But for a
stochastic matrix, all column sums are 1. Hence
�l� � 1.

l.
�l�

10�10

10

�10

Re

Im

Re

Im

642

2

�2

5 � 1> 1�0.5 2 � 5 � 2 � 3.
�0.5,mk
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Chapter 5

Exercises 5.1

1. Orthogonal 3. Not orthogonal 5. Orthogonal

7. 9. 11. Orthonormal

13.

15. Orthonormal

17. Orthogonal,

19. Orthogonal,

21. Not orthogonal

27.

� cos1�1x, y 2 2�
xTy

2xTx2yTy
�

x # y7x 7 7 y 7
�

xTQTQy

2xTQTQx2yTQTQy

�
1Qx 2TQy

21Qx 2TQx2 1Qy 2TQy

 cos1�1Qx, Qy 2 2 �
1Qx 2 # 1Qy 27Qx 7 7Qy 7

£ cos u sin u cos2 u  sin u

�cos u sin u 0

�sin2 u �cos u sin u cos u

§
c 1>12 �1>12

1>12 1>12
d

£ 1>32>3
2>3 § , £

2>15

�1>15

0

§ , £ 2>315

4>315

�5>315

§
3w 4B � £ 023

1
3

§3w 4B � B 1
2

�1
R

708 Answers to Selected Odd-Numbered Exercises

57. (a)
(b)

(c)

59. The general solution is 
The specific solution is 

61. The general solution is 
The

specific solution is 

63. The general solution is 
The specific

solution is 

65. (a)
Strain X dies out after approximately 

2.93 days; strain Y continues to grow.

67. y(t)
� Species Y dies out when

71.

77. (a) (c) Repeller

79. (a) (c) Neither

81. (a) (c) Saddle point

83. (a) (c) Attractor

85.

87.

89.

91.

orbital center

Review Questions

1. (a) F (c) F (e) F (g) T (i) F

3. �18

P � B1>2 �23>2
1 0

R, C � B 1>2 �23>2
23>2 1>2 R,

P � B�1 �1

1 0
R, C � B0.2 �0.1

0.1 0.2
R, spiral attractor

r � 2, u � �60°, spiral repeller

r � 22, u � 45°, spiral repeller

B1
1
R, B0.6

0.6
R, B0.36

0.36
R, B0.216

0.216
R

B1
1
R, B 0.5

�1
R, B 1.75

�0.5
R, B 3.125

�1.75
R

B1
1
R, B1

1
R, B1

1
R, B1

1
R

B1
1
R, B3

3
R, B9

9
R, B27

27
Rx 1t 2 � C1e

2t � C2e
3t

t � 1.22.
10e t1cos t � sin t 2 � 20.

x 1t 2 � 10e t1cos t � sin t 2 � 10,b � 20;a � 10,

26011t>10.
x 1t 2 � �120e8t>5 � 520e11t>10, y 1t 2 � 240e8t>5 �

�2 � e t.z 1t 2 �

�2 � e t � e�t,y 1t 2 �2 � e�t,x 1t 2 �

C1 � C 2e
t.z1t 2 �C1 � C2e

t � C3e
�t,

x 1t 2 � �C1 � C3e
�t, y 1t 2 �

12e�12 t>4.12e12 t>4 �x21t 2 �12 � 12 2e�12 t>4,
12 2e12 t>4 �12 �x11t 2 �

C2e
�12 t.C1e

12 t �x21t 2 �11 � 12 2C2e
�12 t,

x11t 2 � 11 � 12 2C1e
12 t �

3e4 t.2e�t �y 1t 2 �3e4 t,�3e�t �

x 1t 2 �2C1e
�t � C2e

4 t.y 1t 2 �

C2e
4t,x 1t 2 � �3C1e

�t �

dn �
1

15
c a 1 � 15

2
b n�1

� a 1 � 15

2
b n�1 ddn � dn�1 � dn�2

d1 � 1, d2 � 2, d3 � 3, d4 � 5, d5 � 8 5. Since we have det
by Theorem 4.7

and the fact that n is odd. It follows that 

7.

9. (a)

(c)

11. 13. Not similar 15. Not similar

17.

19. If
A2x � 5Ax � 2x � 32x � 513x 2 � 2x � �4x.

Ax � lx, then 1A2 � 5A � 2I 2x �

0, 1, or �1

B162

158
R

E1 � span£ C 1

�1

0

S ≥, E�2 � span£ C 2

�1

0

S , C1

0

1

S ≥4 � 3l2 � l3

Ax � B 5

10
R � 5x, l � 5

det A � 0.
1�1 2n det A � �det Adet1�A 2 � A � det1AT 2 �AT � �A,
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29. Rotation, u� 45� 31. Reflection,

33. (a) IB � AI �
B � A � A � B

(b) From part (a),

Assume that det (so that det 
) but that A � B is invertible.

Then 0, so 1 �
This is impossible,

so we conclude that cannot be invertible.

Exercises 5.2

1.

3.

5.

7. row(A): {[1 0 1], [0 1 �2]}, null(A):

9.

11. 13.

15. 17.

19. 21. v � £ 7
2

�2
7
2

§ � £ 1
2

0

�1
2

§v � c�2
5

�6
5

d � c 12
5

�4
5

d
£�1

2
1
2

3

§c 323
2

d
μ ≥�4

1

0

3

¥ , ≥�3

0

1

0

¥ ∂• £ 1

�10

�4

§ ¶
μ ≥ 1

0

2

1

¥ , ≥�5

1

�7

0

¥ ∂
null1AT 2 :col1A 2 : μ ≥ 1

5

0

�1

¥ , ≥�1

2

1

�1

¥ ∂ ,

• £ 12
1

§ ¶
£ 03

1

§ ¶• £ 11
0

§ ,B� �W� � • £ xy
z

§  : x � y � 3z � 0¶ ,

• £ 1

1

�1

§ ¶B� �W� � • £ xy
z

§  : x � t, y � t, z � �t¶ ,

W� � e c x
y
d  : x � 2y � 0f ,B� � e c�2

1
d f

A � B
�1det A 2 2.A 2 �det A1�det

det A det B �det1A � B 2 
�det AB �

A � det B � 0

� det A det1A � B 2det B
� det A det1 1A � B 2T 2det B
� det A det1AT � BT 2det B

 det1A � B 2 � det 1A1AT � BT 2B 2
A1AT � BT 2B � AATB � ABTB �

y � 13x 25. No

Exercises 5.3

1.

3.

5. 7.

9.

11.

13.

15.

17.

19.

21.

23. Let . Then . Since Ax
represents a linear combination of the columns of A
(which are linearly independent), we must have x � 0.
Hence, R is invertible, by the Fundamental Theorem.

Exercises 5.4

1. Q � c 1>12 1>12

1>12 �1>12
d , D � c 5 0

0 3
d

Ax � QRx � Q0 � 0Rx � 0

£ 0 1>12 1>12

2>16 �1>16 1>16

1>13 1>13 �1>13

§£ 1>12 �1>16 �1>213

0 2>16 �1>213

0 0 3>213

§
A�1 � 1QR 2�1 � R�1Q�1 � R�1QT �

A � AI

R � £ 3 9 1
3

0 6 2
3

0 0 7
3

§
£12 1>12 1>12

0 3>16 1>16

0 0 2>13

§£ 0 2>16 1>13

1>12 �1>16 1>13

1>12 1>16 �1>13

§
Q � C    1>12 1>13    1>16

0    1>13 �2>16

�1>12 1>13       1>16

S
• £ 31

5

§ , £� 3
35
34
35

�1
7

§ , £�15
34

0
9

34

§ ¶
• £ 01

1

§ , £ 1

�1
2
1
2

§ , £ 2
3
2
3

�2
3

§ ¶
v � £�2

9
2
9
8
9

§ � £ 38
9

�38
9

19
9

§• £ 11
0

§ , £�1
2
1
2

2

§ ¶
£ 0

�1>12

1>12

§q3 �£ 2>16

1>16

1>16

§ ,q2 �

£ 1>13

�1>13

�1>13

§ ,q1 �v1 � £ 1

�1

�1

§ , v2 � £ 21
1

§ , v3 � £ 0

�1

1

§ ;
c�1>12

1>12
dq2 �v1 � c 1

1
d , v2 � c�1>2

1>2 d ; q1 � c 1>12

1>12
d ,

Answers to Selected Odd-Numbered Exercises 709
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3.

5.

7.

9.

11.

13. (a) If A and B are orthogonally diagonalizable, then
each is symmetric, by the Spectral Theorem. There-
fore, A � B is symmetric, by Exercise 35 in Section
3.2, and so is orthogonally diagonalizable, by the
Spectral Theorem.

15. If A and B are orthogonally diagonalizable, then each is
symmetric, by the Spectral Theorem. Since 
AB � BA, AB is also symmetric, by Exercise 36 in 
Section 3.2. Hence, AB is orthogonally diagonalizable,
by the Spectral Theorem.

17.

19.

21. 23.

Exercises 5.5

1. G¿ � £ 1 0

0 1

1 0

§ , C¿ � C

£ 5
3 �2

3 �1
3

�2
3

5
3

1
3

�1
3

1
3

8
3

§c 1
2 �3

2

�3
2

1
2

d
A � £ 5 0 0

0 0 0

0 0 0

§ � £ 0 0 0

0 2 2

0 2 2

§ � £ 0 0 0

0 �1 1

0 1 �1

§
A � c 52 5

2
5
2

5
2

d � c 3
2 �3

2

�3
2

3
2

d

c a � b 0

0 a � b
d � Dc 1>12 1>12

1>12 �1>12
d �

#c a b

b a
dQTAQ � c 1>12 1>12

1>12 �1>12
d

≥ 2 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0

¥D �

Q � ≥ 1>12 0 1>12 0

1>12 0 �1>12 0

0 1>12 0 1>12

0 1>12 0 �1>12

¥ ,

Q � £�1>12 0 1>12

0 1 0

1>12 0 1>12

§ , D � £ 2 0 0

0 1 0

0 0 0

§
Q � £ 1 0 0

0 1>12 �1>12

0 1>12 1>12

§ , D � £ 5 0 0

0 4 0

0 0 �2

§
Q � c 2>16 1>13

1>13 �2>16
d , D � c 2 0

0 �1
d

3. is equivalent to C but

5. is equivalent to C but

7. is equivalent to C but

9.

11.

13.

15.

17.

23. 25. 123

27. �5 29.

31. 33.

35.

37. Q � £ 2>15     2>315 �1>3
0     5>315 2>3

1>15 �4>315 2>3 § , 9y1
2 � 9y2

2 � 9y3
2

Q � c 2>15 1>15

1>15 �2>15
d , y1

2 � 6y2
2

£ 5 1 �2

1 �1 2

�2 2 2

§c 3 �3
2

�3
2 �1

d
c 1 3

3 2
d2x2 � 6xy � 4y2

G� � G
1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1

W, P� � ≥ 1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

1 1 1 0 0 0 1

¥

G� � ≥ 1 0

0 1

1 0

1 1

¥ , P� � c 1 0 1 0

1 1 0 1
d

G� � ≥ 1 0

0 1

1 1

1 1

¥ , P� � c 1 1 1 0

1 1 0 1
d

C� � μ ≥ 0

0

0

0

¥ , ≥ 0

0

1

0

¥ , ≥ 1

0

0

0

¥ , ≥ 1

0

1

0

¥ ∂
C� � c £ 00

0

§ , £ 00
1

§ , £ 10
0

§ , £ 10
1

§s
C¿  C

P¿ � £ 1 1 1 0 0

0 0 0 1 0

0 1 0 0 1

§ , C¿

C¿  CP¿ � 31 0 1 4 , C¿

C¿  CG¿ � ≥ 1 0 0

0 1 0

0 0 1

0 0 0

¥ , C¿
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39.

41. Positive definite 43. Negative definite

45. Positive definite 47. Indefinite

51. For any vector x, we have 
If then 0,

so 0. Since B is invertible, this implies that 0.
Therefore, for all and hence A �
is positive definite.

53. (a) Every eigenvalue of cA is of the form for some
eigenvalue l of A. By Theorem 5.24, so
cl 0, since c is positive. Hence, cA is positive
definite, by Theorem 5.24.

(c) Let Then and since A
and B are positive definite. But then 

so A � B is positive definite.

55. The maximum value of f(x) is 2 when x � �

the minimum value of f(x) is 0 when x � � 

57. The maximum value of f(x) is 4 when x ��

the minimum value of f(x) is 1 when x � 

� or �

61. Ellipse 63. Parabola 65. Hyperbola

67. Circle,

y�

x

x�

y

1 2 3 4 5

1

3

5

2

4

x¿ � x � 2, y¿ � y � 2, 1x¿ 2 2 � 1y¿ 2 2 � 4

£�1>12

1>12

0 
§ .£ 1>12

0 
�1>12

§
£ 1>13

1>13

1>13

§ ;
c 1>12

1>12
d .

c 1>12

�1>12
d ;xTBx 7 0,xTAx �

xT1A � B 2x �
xTBx 7 0,xTAx 7 0x  0.

�

l � 0,
cl

BTBx  0,xTAx 7 0
x �Bx �

7Bx 7 2 �xTAx � 0,7Bx 7 2 
 0.1Bx 2T1Bx 2 � xTAx � xTBTBx �

1y¿ 2 2 � 1z¿ 2 2Q � £ 1>13 1>12 1>16

�1>13 0 2>16

�1>13 1>12 �1>16

§ , 21x¿ 2 2 �

69. Hyperbola,

71. Parabola,

73. Ellipse,

75. Hyperbola,

x

y

x�

y�

�4 4

�4

4

1x¿ 2 2 � 1y¿ 2 2 � 1

y�

x�

x
4�4

y

�4

4

1x¿ 2 2>4 � 1y¿ 2 2>12 � 1

y�

x�

x

y

2�2

2

�2

�4

x¿ � x � 2, y¿ � y � 2, x¿ � �1
2 1y¿ 2 2

x�
x

y, y�

�3 3

�3

3

1y¿ 2 2>9 � 1x¿ � x, y¿ � y � 1
2 , 1x¿ 2 2>4 �
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Chapter 6

Exercises 6.1

1. Vector space

3. Not a vector space; axiom 1 fails.

5. Not a vector space; axiom 8 fails.

7. Vector space 9. Vector space

11. Vector space 15. Complex vector space

77. Ellipse,

79. Hyperbola,

81. Degenerate (two lines)

83. Degenerate (a point)

85. Degenerate (two lines)

89. Hyperboloid of one sheet,

91. Hyperbolic paraboloid,

93. Hyperbolic paraboloid,

95. Ellipsoid,

Review Questions

1. (a) T (c) T (e) F (g) F (i) F

3. 5. Verify that QTQ � I.C   9>2
  2>3

�11>6S
31x– 2 2 � 1y– 2 2 � 21z– 2 2 � 4

x¿ � �131y¿ 2 2 � 131z¿ 2 2z � �1x¿ 2 2 � 1y¿ 2 231z¿ 2 2 � 11x¿ 2 2 � 1y¿ 2 2 �

x
�2 2

y

�2

4

x
�2 2

y

�2

2

x

y

�2 2

�2

2

1x– 2 2 � 1y– 2 2 � 1

1x– 2 2>50 � 1y– 2 2>10 � 1 7. Theorem 5.6(c) shows that if then
Theorem 5.6(b) shows that

consists of unit vectors, because
does. Hence, is an

orthonormal set.

9. 11.

13.

15. (a)

17.

19. C�1
2

3
2 0

3
2 �1

2 0

0 0 1

S
dD�1

1

0

0

T, D 1
2
1
2

�1

0

T, D 1
3
1
3
1
3

�1

Tt
dD11

1

1

T, D 1
4
1
4
1
4

�3
4

T, D�2
3
1
3
1
3

0

Tt
null1AT 2 : dD�5

�3

1

0

T, D�1

2

0

1

Tt
null1A 2 : eE�2

0

1

0

0

U, E�3

�2

0

1

0

U, E�4

�1

0

0

1

Uu
col1A 2 : dD 1

�1

2

3

T, D�1

2

1

�5

Tt
row1A 2 : 5 31  0  2  3  4 4 , 30  1  0  2  1 4 6

c C�1

3

1

S sbB 2

�5
Rr

5Qv1, p ,Qvk65v1, p , vk65Qv1, p , Qvk6Qvi
# Qvj � 0.

vi
# vj � 0,
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17. Not a complex vector space; axiom 6 fails.

19. Not a vector space; axioms 1, 4, and 6 fail.

21. Not a vector space; the operations of addition and
multiplication are not even the same.

25. Subspace 27. Not a subspace

29. Not a subspace 31. Subspace

33. Subspace 35. Subspace

37. Not a subspace 39. Subspace

41. Subspace 43. Not a subspace

45. Not a subspace

47. Take U to be the x-axis and W the y-axis, for example.

Then and are in but

is not.

51. No

53. Yes; for
any scalar t.

55. Yes;

57. No

59. No

61. Yes

Exercises 6.2

1. Linearly independent

3. Linearly dependent;

5. Linearly independent

7. Linearly dependent;

9. Linearly independent

11. Linearly dependent;

13. Linearly dependent; ln

17. (a) Linearly independent
(b) Linearly dependent

19. Basis 21. Not a basis

23. Not a basis 25. Not a basis

27. 29. 3p 1x 2 4B � £ 6

�1

3

§3A 4B � ≥�1

�1

�1

4

¥

1x 2 2 � �2 ln 2 # 1 � 2 # ln12x 21 � sin2 x � cos2 x

3x � 2x2 � 7x � 212x � x2 2
2 c 0 2

�3 1
dc3 0

1 1
d �

c�1 0

�1 7
d � 4 c�1 1

�2 2
d �

h1x 2 � f 1x 2 � g 1x 2s 1x 2 � 13 � 2t 2p 1x 2 � 11 � t 2q 1x 2 � tr 1x 2
c1
0
d � c0

1
d

c1
1
d �U ´ W,c0

1
dc1

0
d
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35. dim

37. dim

39. dim

41.

43. (a) dim(U � V) � dim U � dim V
(b) Show that if is a basis for W, then

is a basis for .

45.

47.

49.

51.

53.

59. (a)

61. (c) (i) (ii)

63.

Exercises 6.3

1.

3.

5.

7.

£ 1 0 0

�1 1 0

0 �1 1

§PBdC�

£1 0 0

1 1 0

1 1 1

§ ,PCdB�3p 1x 2 4B � £ 1

�1

1

§ , 3p 1x 2 4C � £10
1

§ ,
c0 1

1 1
dPBdC�

c�1 1

1 0
d ,PCdB�3p 1x 2 4B � c 2

�1
d , 3p 1x 2 4C � c�3

2
d ,

£1 0 0

1 1 0

1 1 1

§PBdC�

£ 1 0 0

�1 1 0

0 �1 1

§ ,PCdB�3x 4B � £ 1

0

�1

§ , 3x 4C � £ 1

�1

�1

§ ,
c1 1

1 �1
d

PBdC�c 12 1
2

1
2 �1

2

d ,PCdB�3x 4B � c2
3
d , 3x 4C � c 5

2

�1
2

d ,
1pn � 1 2 1p n � p 2 1pn � p 2 2 p 1pn � pn�1 2x 2 � 4x � 53x 2 � 16x � 19

1
2 x2 � 3

2 x � 1p21x 2 �p01x 2 � 1
2 x2 � 5

2 x � 3, p11x 2 � �x2 � 4x � 3,

5sin2 x, cos2 x651 � x, x � x 2651, 1 � x6e c1 0

0 1
d , c0 1

1 0
d , c0 �1

1 0
d , c1 0

0 0
d f51 � x, 1 � x � x2, 16 ¢5 1w1, w1 2 , p , 1wn, wn 2 65w1, p , wn6

1n2 � n 2 >2V � 2, B � e c1 0

0 1
d , c0 1

0 0
d f

V � 3, B � e c1 0

0 0
d , c0 1

0 0
d , c0 0

0 1
d fV � 2, B � 51 � x, 1 � x26
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9.

11.

13. (a)

(b)

15.

17.

19.

Exercises 6.4

1. Linear transformation 3. Linear transformation

5. Linear transformation

7. Not a linear transformation

9. Linear transformation

11. Not a linear transformation

13. We have

and

Therefore, S is linear. Similarly,

� Ta ca
b
d b � Ta c c

d
d b� 1a � 1a � b 2x 2 � 1c � 1c � d 2x 2� 1a � c 2 � 1 1a � c 2 � 1b � d 2 2xT a ca

b
d � c c

d
d b � T c a � c

b � d
d

� x 1cp 1x 2 2 � cxp 1x 2 � cS 1p 1x 2 2S 1cp 1x 2 2 � S 1 1cp 2 1x 2 2 � x 1 1cp 2 1x 2 2� S 1p 1x 2 2 � S 1q 1x 2 2� x 1p 1x 2 � q 1x 2 2 � xp 1x 2 � xq 1x 2S 1p 1x 2 � q 1x 2 2 � S 1 1p � q 2 1x 2 2 � x 1 1p � q 2 1x 2 2

�1 � 31x � 1 2 � 31x � 1 22 � 1x � 1 23�2 � 81x � 1 2 � 51x � 1 22B � e c�1

�1
d , c3

4
d f

c 2 � 213

213 � 2
d � c 5.464

1.464
d

c 13 � 213 2 >21�313 � 2 2 >2 d � c 3.232

�1.598
d

c 1 0

�1 1
dPBd C�

c1 0

1 1
d ,PCdB�3 f 1x 2 4B � c 2

�5
d , 3 f 1x 2 4C � c 2

�3
d ,
≥ 1 2 1 1

2 1 1 0

0 1 0 0

�1 0 1 1

¥PBdC�≥ 1
2 0 �1 �1

2

0 0 1 0

�1 1 1 1
3
2 �1 �2 �1

2

¥ ,

PCdB�3A 4B � ≥ 4

2

0

�1

¥ , 3A 4C � ≥ 5
2

0

�3
9
2

¥ ,

and

Therefore, T is linear.

15.

17.

19. Hint: Let a � T(E11),b � T(E12 ),c � T(E21),d � T(E22 ).

23. Hint: Consider the effect of T and D on the standard
basis for �n.

25.

does not make sense.

27.

29.

Therefore, and so S and T are
inverses.

Exercises 6.5

1. (a) Only (ii) is in ker(T).
(b) Only (iii) is in range(T).

(c)

3. (a) Only (iii) is in ker(T).
(b) All of them are in range(T).
(c)

range(T) � �2tx � tx26,5t �
�c6�ker1T2 � 5a � bx � cx2 : a � �c, b �

ker1T2 � e c0 b

c 0
d f , range1T2 � e ca 0

0 d
d f

T � S � I,S � T � I

cx
y
dc 14x � y 2 � 13x � y 2

�314x � y 2 � 413x � y 2 d �

T a c4x � y

3x � y
d b �T aS cx

y
d b �1T � S 2 cx

y
d �

cx
y
dc41x � y 2 � 1�3x � 4y 2

31x � y 2 � 1�3x � 4y 2 d �

Sa c x � y

�3x � 4y
d b �SaT cx

y
d b �1S � T2 cx

y
d �

p¿ 1x � 1 21 2 2 ¿ �1p 1x �
1S � T2 1p 1x 2 2 � p¿ 1x � 1 2 , 1T � S 2 1p 1x 2 2 �1T � S 2 cx

y
d

1S � T2 c2
1
d � c4 �1

0 6
d , 1S � T2 cx

y
d � c2x �y

0 2x � 2y
d .

a 3a � b � c

2
bx2a � cx �

cx 2 2 �T 14 � x � 3x2 2 � 4 � 3x � 5x2, T 1a � bx �

a a � b

2
bx2a a � 7b

4
bx �

a a � 3b

4
b �T c�7

9
d � 5 � 14x � 8x2, T ca

b
d �

� k 1a � 1a � b 2x 2 � kT a ca
b
d b

T ak ca
b
d b � T c ka

kb
d � 1ka 2 � 1ka � kb 2x
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5. A basis for ker(T) is and a basis for

range(T) is rank(T) � nullity(T)

� 2, and rank(T) � nullity(T) � 4 � dim M22.

7. A basis for ker(T) is and a basis for 

range(T) is rank(T) � 2, nullity(T) �

1, and rank(T) � nullity(T) � 3 � dim �2.

9.

11.

13.

15. One-to-one and onto

17. Neither one-to-one nor onto

19. One-to-one but not onto

21. Isomorphic,

23. Not isomorphic

25. Isomorphic,

31. Hint: Define T : �[0, 1] S �[0, 2] by letting T( f ) be
the function whose value at x is
for x in [0, 2].

33. (a) Let and be in V and let 
Then so 

since S is one-to-one. But now since
T is one-to-one. Hence, is one-to-one.

35. (a) By the Rank Theorem,
If T is onto, then W, so

Therefore,

so nullity (T) � 0, which is impossible. Therefore,
T cannot be onto.

Exercises 6.6

1.

3T14 � 2x 2 4C32 � 4x 4C�c 2

�4
d �c4

2
d �c 0 1

�1 0
d

3T 4CdB 34 � 2x 4B�3T 4CdB � c 0 1

�1 0
d ,

� rank1T 2 � nullity1T 2 � dim V
dim V � nullity1T 2 6 dim W � nullity1T 2dim W.dim1range1T 2 2 �rank1T 2 � range1T 2 �dim V.

rank1T2 � nullity1T2 �S � T
v2,v1 �T 1v2 2 , T 1v1 2 �S1T 1v2 2 2 ,S1T 1v1 2 2 �1S � T2 1v2 2 . 1S � T2 1v1 2 �v2v1

f 1x>2 21T 1 f 2 2 1x 2 �

T 1a � bi 2 � ca
b
d

T £a 0 0

0 b 0

0 0 c

§ � £ab
c

§

rank1T 2 � 1, nullity1T 2 � 2

rank1T 2 � nullity1T 2 � 2

rank1T 2 � nullity1T 2 � 2

e c1
0
d , c0

1
d f ;

51 � x � x26,
e c1 0

0 0
d , c0 0

0 1
d f ;

e c0 1

0 0
d , c0 0

1 0
d f ,

3.

5.

7.

9.

11.

3T 1A2 4C3AB � BA 4C�c c c � b d � a

a � d b � c
d d
C

�

≥ c � b

d � a

a � d

b � c

¥ �≥ a

b

c

d

¥ �≥ 0 �1 1 0

�1 0 0 1

1 0 0 �1

0 1 �1 0

¥
3T 4CdB 3A 4B�≥ 0 �1 1 0

�1 0 0 1

1 0 0 �1

0 1 �1 0

¥ ,3T 4CdB�

3T 1A2 4Cc ca c

b d
d d
C

�

≥ a

c

b

d

¥ �≥ a

b

c

d

¥ �≥ 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

¥
3T 4CdB 3A 4B�≥ 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

¥ ,3T 4CdB�

cT c�7

7
d d
C

£77
7

§
C

�£77
7

§
C

�£00
7

§ �c 2

�3
d �£ 6 4

�3 �2

2 �1

§
3T 4CdB c�7

7
d
B

�£ 6 4

�3 �2

2 �1

§ ,3T 4CdB�

3T 1a � bx � cx2 2 4C� ca � b # 0 � c # 02

a � b # 1 � c # 12 d
C

�

c a

a � b � c
d£ab

c

§ �c1 0 0

1 1 1
d

3T 4CdB 3a � bx � cx2 4B�3T 4CdB � c1 0 0

1 1 1
d , bx � cx2 2 4C3T 1a �c 1x � 2 2 2 2 4C �

3a � b 1x � 2 2 �£ab
c

§ �£ab
c

§ �£1 0 0

0 1 0

0 0 1

§
cx2 4B�3T 4CdB 3a � bx �3T 4CdB � £1 0 0

0 1 0

0 0 1

§ ,
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Chapter 7

Exercises 7.1

1. (a) 0 (b) (c)

3. Any nonzero scalar multiple of

5. (a) �1 (b) (c)

7.

9. (a) p (b) (c)

13. Axiom (4) fails: but 

15. Axiom (4) fails: but 8u, u9 � 0.u � c 0
1
d  0,

8u, u9 � 0.u � c 0
1
d  0,

1p1p
1 � 2x2

126114

v � c3
4
d 177111

13. (b)

(c)

15. (a)

17.

19. Invertible,

21. Invertible,

23. Invertible,
or p�(x)

25. Not invertible 27.

29.

31. 33.

35.

37.

Exercises 6.7

1.

3.

5.

7.

9.

11.

13. (a)
(b) 45 minutes (c) In 9.968 hours

15. (a) where 
32.33 mg remain after 1000 years.

(b) After 3691.9 years

17.

19. (b) No 23. Not linear

25. Not linear 27. Linear

10 cos11Kt 2sin11Kt 2 �x 1t 2 �
5 � 10 cos1101K 2

sin1101K 2
10�4;c � ln2>1590 � 4.36 �m1t 2 � 50e�ct,

p 1t 2 � 100eln 1162 t>3 � 100e0.924t

y 1t 2 � et cos12t 2y 1t 2 � 1 1k � 1 2ekt � 1k � 1 2e�kt 2>2k

y 1t 2 � et � 11 � e�1 2tet

f 1t 2 � a e 115�12>2
e15 � 1

b 3e 11�15 2t>2 � e 11�152t>2 4y 1t 2 � 1 11 � e4 2e 3 t � 1e3 � 1 2e4 t 2 > 1e3 � e4 2y 1t 2 � 2e3t>e3

c 1d1
2 � d2

2 2>1d1
2 � d2

2 2 2d1d2>1d1
2 � d2

2 2
2d1d2>1d1

2 � d2
2 2 1d2

2 � d1
2 2>1d1

2 � d2
2 2 d3T 4E�

C � 51, x6 C � 51 � x, 2 � x6C � e c 1

�1
d , c�4

1
d f

4
5 e2x cos x � 3

5 e2x sin x � C

�3 sin x � cos x � C

p 1x 2 � p¿ 1x 2 �T�11p 1x 2 2 �1b � 2c 2x � cx2
1a � b � 2c 2 �T�11a � bx � cx2 2 �T�11p 1x 2 2 � p 1x � 2 2T�11a � bx 2 � �b � ax

3S � T 4DdB � c�1 �2

1 �1
d

3D 4B � £2 0 0

0 2 1

0 �1 2

§
3D 13 sin x � 5 cos x 2 4B33 cos x � 5 sin x 4B�c5

3
d �

c 3

�5
d �c0 �1

1 0
d3D 4B 33 sin x � 5 cos x 4B�

3D 4B � c0 �1

1 0
d 29. Linear

31.

35.

37.

Review Questions

1. (a) F (c) T (e) F (g) F (i) T

3. Subspace 5. Subspace

7. Let . Then 
. Adding, we have 

c1 � 0 because A is nonzero. Hence and so
. Thus, is linearly independent.

9.

11. Linear transformation

13. Linear transformation 15.

17.

19. is the zero transformation.S � T

≥ 1 0 �1

0 1 �2

0 0 1

1 0 �1

¥
n2 � 1

51, x 2, x 46, dim W � 3

5A, B6c2 � 0
c2B � O,
2c1A � O, so1c1A � c2B 2T � O

c1A � c2B � c1A
T � c2B

T �c1A � c2B � O

31 1 1 1 4
R3 � hH

0

0

0

0

0

0

0

0

XH
0

0

0

0

1

1

1

1

XH
0

0

1

1

0

0

1

1

XH
0

0

1

1

1

1

0

0

XH
0

1

0

1

0

1

0

1

XH
0

1

0

1

1

0

1

0

XH
0

1

1

0

0

1

1

0

XH
0

1

1

0

1

0

0

1

XH
1

0

1

0

1

0

1

0

XH
1

0

1

0

0

1

0

1

XH
1

0

0

1

1

0

0

1

XH
1

0

0

1

0

1

1

0

XH
1

1

0

0

1

1

0

0

XH
1

1

0

0

0

0

1

1

XH
1

1

1

1

0

0

0

0

XH
1

1

1

1

1

1

1

1

Xx

μ ≥ 0

0

1

1

¥ , ≥ 1

1

1

1

¥ ∂ , μ ≥ 1

1

0

0

¥ , ≥ 1

1

1

1

¥ ∂
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17. Axiom (4) fails: is not the zero poly-
nomial, but 

19.

21.

25. �8 27.

29.

Therefore, so, by axiom (4),
w � 0 or u � v � w.

31.

33. Using Exercise 32 and a similar identity for 
we have

Dividing by 2 yields the identity we want.

35.

37. 39.

41. (a)
(b)

Exercises 7.2

1.

3.

5. 7u 7H � 4, 7v 7H � 5

dE1u, v 2 � 170, ds1u, v 2 � 14, dm1u, v 2 � 6

7u 7 E � 142, 7u 7 s � 10, 7u 7m � 5

1715x3 � 3x 2 >212
1>12, 13x>12,1513x2 � 1 2 >212

51, x, x 26e c1
0
d , c0

1
d f

3 28u, v9 � �28u, v93 8u, v9 � 0
3 � 7u 7 2 � 28u, v9 � 7v 7 23 7u 7 2 � 28u, v9 � 7v 7 27u � v 7 � 7u � v 7 3 7u � v 7 2 � 7u � v 7 2

�  2 7u 7 2 � 2 7v 7 2   � 7u 7 2 � 28u, v9 � 7v 7 2� 7u 7 2 � 28u, v9 � 7v 7 27u � v 7 2 � 7u � v 7 2 � 8u � v, u � v9 � 8u � v, u � v9
7u � v 7 2,7u 7 2 � 7v 7 27u 7 2 � 8u, v9 � 8u, v9 � 7v 7 2 �

8u � v, u � v9 � 8u, u9 � 8u, v9 � 8v, u9 � 8v, v9�u � v �
7u � v � w 7 � 0,

�  1 � 3 � 4 � 2 � 10 � 0 � 0
   � 28u, v9 � 28u, w9 � 28v, w9� 8u, u9 � 8v, v9 � 8w, w97u � v � w 7 2 � 8u � v � w, u � v � w916

x

y

�2 2

�2

2

A � c4 1

1 4
d8p1x 2 , p1x 2 9 � 0.

p1x 2 � 1 � x
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7. (a) At most one component of v is nonzero.

9. Suppose Then 

11. Suppose Then for 
n, so

13.

21.

23.

25.

27. 29.

31.

33. (a) By the definition of an operator norm,

35. well-conditioned

37. ill-conditioned

39. moderately 
ill-conditioned

41. (a)

43. (a)
(b) At most 400% relative change

45. Using Exercise 33(a), we have 

49. 51. k 
 10k 
 6

7 I 7 � 1.7AA�1 7 � 7A 7 7A�1 7 
cond1A 2 �condq1A 2 � 40

amax e ` k

k � 1
` � ` 1

k � 1
` , ` 2

k � 1
` fbcondq1A 2 � 1max 5 0k 0 � 1, 26 2 #cond11A 2 � 77, condq1A 2 � 128;

cond11A 2 � condq1A 2 � 400;

cond11A 2 � condq1A 2 � 21;

max7x 7�1
7 x 7 � 1.max7x 7�1

7 Ix 7 � 7 I 7 �
x � £ 10

0

§ , y � £ 1

�1

�1

§
x � £ 00

1

§ , y � £ 11
1

§x � c 0
1
d , y � c�1

1
d

7A 7 F � 2111, 7A 7 1 � 7, 7A 7q � 7

7A 7 F � 131, 7A 7 1 � 6, 7A 7q � 6

7A 7 F � 119, 7A 7 1 � 4, 7A 7q � 6

x

y

�1 1

�1

1

x

y

�1 1

�1

1

� n 0vk 0 � n 7v 7m7v 7 s � 0v1 0 � p � 0vn 0 � 0vk 0 � p � 0vk 0i � 1, . . . ,
0vi 0 � 0vk 07v 7m � 0vk 0 . 7 v 7m.0vk 0 �1v2

k �1v1
2 � p � vk

2 � p � vn
2 


7v 7 E �7v 7m � 0vk 0 .
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Exercises 7.3

1. 3.

5.

7.

9.

11.

13.

15. 17.

19. 21.

23. 25.

27. 29.

31. (a) If we let the year 1920 correspond to then
y � 56.6 � 2.9t ; 79.9 years

33. (a)

35. 139 days

37. 39.

41. 45.

47. 49.

51.

53. (a) If A is invertible, so is and we have 

Exercises 7.4

1. 2, 3 3. 5. 5 7. 2, 3

9. , 2, 0

11.

13. A � c 0 1

1 0
d c 3 0

0 2
d c�1 0

0 �1
d

A � c 1 0

0 1
d c12 0

0 0
d c 1>12 1>12

1>12 �1>12
d15

12, 0

A�1.A�11AT 2�1AT �1ATA 2�1AT �
A� �AT,

A� � £ 2
3 0 �1

3
1
3

1
3 �1 1

3
2
3

�2
3 1 1

3 �1
3

§
A� � c 1 �1

0 1
dA� � c 13 �2

3 �1
6

1
6

1
6

1
6

d
A� � 315 2

5 4£ 5
6

1
3 �1

6
1
3

1
3

1
3

�1
6

1
3

5
6

§ , £ 5
6
1
3

�1
6

§
£ 1

3
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

§ , £22
2

§c 12 1
2

1
2

1
2

d , c 727
2

d
p1t 2 � 150e0.131t

t � 0,

y � 0.92 � 0.73xx � c 5
3

�2
d

£ 42
11
19
11
42
11

§x � ≥   4 � t

�5 � t

�5 � 2t

t

¥
x � c 4

3

�5
6

dx � c 1
5
7
15

d y � 18
5 � 17

10 x � 1
2 x2y � 3 � 18

5 x � x2

y � �1
5 � 7

5 x, 7 e 7 � 0.632

y � 7
10 � 8

25 x, 7 e 7 � 0.447

y � 11
3 � 2x, 7 e 7 � 0.816

y � �3 � 5
2 x, 7 e 7 � 1.225

7 e 7 � 17 � 2.646

7 e 7 � 16>2 � 1.2257 e 7 � 12 � 1.414
15.

17.

19.

21.

(Exercise 3)

23. (Exercise 7) 

33. The line segment [�1, 1]

35. The solid ellipse 

37. (a) (b)

39. (a) 1.95 (b)

41. 43.

45.

47.

61.

63.

Exercises 7.5

1. 3.

5. 7.

9.

11.

13. g 1x 2 � 1
20 � 3

5 x � 3
2 x2

g 1x 2 � 14e � 10 2 � 118 � 6e 2x � 0.87 � 1.69x

g 1x 2 � x � 1
6

51, x � 1
26g 1x 2 � 3

16 � 15
16 x2

g 1x 2 � 3
5 xg 1x 2 � 1

3

c 2 �1

�1 3
d c 0 1

�1 0
d

c12 0

0 0
d c 1>12 1>12

�1>12 1>12
d

A� � c 16 1
6

1
6

1
6

1
6

1
6

d , x � c 1
1
d

A� � c 1
25

2
25

2
25

4
25

d , x � c 0.52

1.04
d
A� � £ 2

5 0

0 1
2

1
5 0

§A� � c 12 0
1
2 0
d

cond21A 2 � 38.117A 7 2 �

cond21A 2 � q7A 7 2 � 12

y1
2

5
�

y2
2

4
� 1

A � 3 £ 01
0

§ 30 1 4 � 2 £ 0

0

�1

§ 31 0 4
3�1>12 1>12 4 0 c 0

1
dA � 12 c 1

0
d 31>12 1>12 4 �

A � c 1 0

0 1
d c15 0 0

0 2 0
d £ 2>15 0 1>15

0 1 0

1>15 0 �2>15

§
A � £ 0 0 1

1 0 0

0 �1 0

§ £ 3 0

0 2

0 0

§ c 0 1

1 0
d

A � c 35 �4
5

4
5

3
5

d c 5
0
d 31 4
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15.

21.

23.

25.

29. 31. 33.

35. if then u decodes as 
v cannot be decoded, and w decodes as 

37. where 0 is the zero vector and 1 is the
vector of all 1s in 

39. A parity check matrix P for such a code is (8 � 5) �
8 � 3�8. Therefore, rank(P) � 3, so any four columns
of P must be linearly dependent. Hence, the smallest
integer d for which there are d linearly dependent
columns satisfies d � 4. By Theorem 7.21, this means
that d(C) � 4, so an (8, 5, 5) linear code does not
exist.

�2
8.

C � 50, 16, c3.
c2,C � 5c1, c2, c3, c46,d1C 2 � 3;

d1C 2 � 3d1C 2 � 2d1C 2 � 1

a0 � p, ak � 0, bk �
21�1 2 k

k

a0 � 1
2 , ak � 0, bk �

1 � 1�1 2 k
kp

p

2
�

4
p
acos x �

cos 3x

9
b570 2x2 � 1.01 � 0.85x � 0.84x21210e �

g 1x 2 � 39e � 105 � 1588 � 216e 2x � Review Questions

1. (a) T (c) F (e) T (g) T (i) T

3. Inner product 5. 7.

9. Not a norm 11.

13. 15.

17. (a)

(b)

(c)

19. The singular values of PAQ are the square roots of the
eigenvalues of

But is similar to because
, and hence it has the same eigenvalues as

. Thus, and A have the same singular values.PAQATA
QT � Q�1

ATAQT1ATA 2QQT1ATA 2Q.
1PAQ 2T1PAQ 2 � QTATPTPAQ �

A� � c 12 0 1
2

1
2 0 �1

2

d
c 1 0

0 1
d£12 0

0 12

0 0

§A � £ 1>12 1>12 0

0 0 1

1>12 �1>12 0

§
12, 12

£ 7
3
2
3
5
3

§y � 1.7x

condq1A 2 � 2432

c�1
2
1
2

de c 1
1
d f ,13
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I’ve got a little list.
—Sir W. S. Gilbert,

“They’ll None Of ’Em Be Missed,”
from The Mikado, 1885

A
Abel, Niels Henrik, 322, 682
Absolute value, 666
Addition

of complex numbers, 664
of matrices, 146
closure under, 198, 447
of polynomials, 676
of vectors, 5, 9, 447

Adjacency matrix, 248, 250
Adjoint (adjugate) of a matrix, 287
Algebraic multiplicity, 305
Algorithm, 91
Al-Khwarizmi, Abu Ja’far Muhammad

ibn Musa, 91
Allocation of resources, 105
Altitude of a triangle, 33
Angle between vectors, 24
Argand, Jean-Robert, 664
Argand plane, 664
Argument of a complex number, 667
Arithmetic mean, 571
Arithmetic Mean–Geometric Mean

Inequality, 571
Associativity, 10, 160, 164, 229, 447
Attractor, 361
Augmented matrix, 67, 70
Axioms

inner product space, 554
vector space, 447

B
Back substitution, 67
Balanced chemical equation, 107
Basis, 204, 464

change of, 481–490
coordinates with respect to,

214, 467
orthogonal, 381, 560

Code(s)
binary, 54
dimension of, 253
dual, 422
equivalent, 420
error-correcting, 251–255, 641
error-detecting, 54–55, 641
Hamming, 254
length of, 253
linear, 543
minimum distance of, 640
parity check, 55
Reed-Muller, 545
vector, 54, 252

Codomain, 218
Coefficient(s)

Fourier, 638
of a linear combination, 12, 160
of a linear equation, 64
matrix, 70
method of undetermined, 681
of a polynomial, 675

Cofactor, 277
Cofactor expansion, 277–280
Column matrix, 144
Column-row representation of a matrix

product, 153
Column space, 201
Column vector, 3, 144
Commutativity, 10, 19, 160, 447
Companion matrix, 310
Complement of a binary vector, 546
Complex dot product, 566
Complex numbers, 664–674

absolute value of, 666
addition of, 664
argument of, 667
conjugate of, 665

orthonormal, 383, 560
standard, 204, 465

Basis Theorem, 208, 471
Best approximation, to a vector, 593
Best Approximation Theorem, 593
Binary code, 54
Binary representation of a number, 545
Binary vector, 54
Binet, Jacques, 349
Binet’s formula, 350, 446
Block, 151
Block multiplication, 154
Block triangular form, 294
Bunyakovsky, Viktor Yakovlevitch, 562

C
c, 453
�n, 450, 566
Carroll, Lewis, 292, 295
Cassini, Giovanni Domenico, 373
Cassini’s identity, 373
Cauchy, Augustin-Louis, 284,

291, 562
Cauchy-Schwarz Inequality, 22, 562
Cayley, Arthur, 311
Cayley-Hamilton Theorem, 311
Centroid of a triangle, 32
Change of basis, 481–490
Characteristic equation, 303
Characteristic polynomial, 303
Check digit, 55
Circuit, 248
Circumcenter of a triangle, 33
Closure

under addition, 198, 447
under linear combinations, 198
under scalar multiplication,

198, 447
Codabar system, 60

720
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Index 721

division of, 665, 668
equality of, 664
imaginary part of, 664
modulus of, 666
multiplication of, 664, 668
negative of, 665
polar form of, 666
powers of, 669–670
principal argument of, 667
real part of, 664
roots of, 670–671

Complex plane, 664
Complex vector space, 447, 566
Component of a vector, 3

orthogonal to a subspace, 393, 561
Composition of linear 

transformations, 225, 495
Condensation method, 295–296
Condition number, 585
Conic sections, 432
Conjugate transpose of a matrix, 567
Conservation of flow, 108
Consistent linear system, 66
Constrained optimization, 430–432,

570–574
Convergence of iterative methods,

131, 323–327, 586–589
Coordinate grid, 13
Coordinate vector, 214, 467
Corollary, 396
Cotes, Roger, 592
Cramer, Gabriel, 285
Cramer’s Rule, 285–286
Cross product, 48–49, 297–298
Crystallographic restriction, 535
Curve fitting, 301–302

D
d, 453
De Moivre, Abraham, 669
De Moivre’s Theorem, 670
Degenerate conic, 432, 442
Degree of a polynomial, 675
Descartes, René, 3, 683
Descartes’ Rule of Signs, 683
Determinant(s), 171

cofactor expansion of, 277–280
of elementary matrices, 282
geometric applications of,

297–302
history of, 291–292
and matrix operations, 283–285
of n � n matrices, 276–280
properties of, 280–282
Vandermonde, 302

Edge of a graph, 248
Eigenspace, 267
Eigenvalue(s), 265

algebraic multiplicity of, 305
dominant, 322
geometric multiplicity of, 305
inverse power method for 

computing, 328–329
power method for computing,

322–327
shifted inverse power method 

for computing, 329–330
shifted power method for

computing, 327–328
Eigenvector(s), 265

dominant, 322
orthogonal, 413

Electrical network, 110–113
Elementary matrix, 176
Elementary reflector, 408
Elementary row operations, 72
Elimination

Gauss-Jordan, 78–82
Gaussian, 74–78

Empty set, 649
Equality

of complex numbers, 664
of matrices, 145
of polynomials, 676
of sets, 649
of vectors, 4

Equation(s)
linear, 64
normal, 598
system of linear, 65

Equilibrium, 50, 113
Equivalence relation, 313
Equivalent codes, 420
Error-correcting code, 251–255, 641
Error-detecting code, 54–55, 641
Error vector, 595
Euclidean norm, 576
Euler, Leonhard, 672
Euler’s formula, 673
Even function, 644
Expansion by cofactors, 277–280
Exponential of a matrix, 357

F
f, 449
Factor Theorem, 678
Factorization

LU, 186–192
modified QR, 407–409
QR, 403–405

Diagonal entries of a matrix, 145
Diagonal matrix, 145
Diagonalizable linear transformation, 527
Diagonalizable matrix, 314

orthogonally, 411
unitarily, 569

Diagonalization, 314–320
orthogonal, 411–418

Diagonalization Theorem, 318
Diagonalizing a quadratic form, 428
Diagonally dominant matrix, 134, 335
Difference

of complex numbers, 665
of matrices, 146
of polynomials, 676
of vectors, 8, 451

Differential equation(s), 351, 374, 454, 536
boundary conditions for, 541
homogeneous, 454, 536–543
initial conditions for, 351, 354,

355, 374
solution of, 536
system of linear, 351–359

Differential operator, 491
Digital image compression, 630–631
Digraph, 249
Dimension, 209, 471

of a code, 253, 544
Direction vector, 35, 39
Disjoint sets, 651
Distance

Hamming, 577
from a point to a line, 41–43
from a point to a plane, 43–44
taxicab, 552
between vectors, 23, 558

Distance functions, 577–578
Distributivity, 10, 19, 160, 164, 447
Division algorithm, 678
Dodgson, Charles Lutwidge, 292, 295
Domain, 218
Dominant eigenvalue, 322
Dominant eigenvector, 322
Dot product, 18

complex, 566
weighted, 555

Dual code, 422
Dual space, 532
Dynamical system, 264, 359–366

trajectory of, 360

E
Echelon form of a matrix

reduced row, 79
row, 71
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722 Index

Fibonacci, 347
Fibonacci numbers, 346, 349–350, 445
Finite-dimensional vector space, 471
Finite linear games, 115–119
Floating point form, 89
Fourier, Jean-Baptiste Joseph, 639, 651
Fourier approximation, 638
Fourier coefficients, 638
Fourier series, 640
Free variable, 77
Frobenius, Georg, 210
Frobenius norm, 579
Fundamental subspaces of a 

matrix, 397
Fundamental Theorem of Algebra, 682
Fundamental Theorem of Invertible

Matrices, 178, 212, 307, 530, 628–629

G
Galilei, Galileo, 549
Galois, Evariste, 322, 682
Gauss, Carl Friedrich, 75, 131, 561,

592, 682
Gauss-Jordan elimination, 78–80
Gauss-Seidel method, 130–137
Gaussian elimination, 74–78
General form of the equation of a 

line, 34, 36, 41
General form of the equation of a

plane, 38, 41
Generator matrix, 253, 420
Geometric mean, 571
Geometric multiplicity, 305
Gerschgorin disk, 330
Gerschgorin’s Disk Theorem, 332
Global Positioning System (GPS),

127–129
Google, 369
Gram, Jörgen Pedersen, 401
Gram-Schmidt Process, 399–403
Graph, 248, 264–265

adjacency matrix of, 248, 250
bipartite, 261,
complete, 264
complete bipartite, 265
connected, 372
cycle, 265
directed (digraph), 249
edges of, 248
k-regular, 372
path in a, 248
Petersen, 265
vertices of, 248

Grassmann, Hermann, 447
Grassmann’s Identity, 476, 514

Invertible linear transformation,
227–228, 496

Invertible matrix, 169
Irreducible matrix, 346
Irreducible polynomial, 681
Isometry, 386
Isomorphism, 511
Iterative method(s)

convergence of, 131, 323–327,
586–589

Gauss-Seidel method, 130–137
inverse power method, 328–329
Jacobi’s method, 130–137
power method, 322–337
shifted inverse power method,

329–330
shifted power method, 327–328

J
Jacobi, Carl Gustav, 130
Jacobi’s method, 130–137
Jordan, Wilhelm, 78

K
Kernel, 500
Kirchhoff ’s Laws, 110

L
Lagrange, Joseph Louis, 476
Lagrange interpolation formula, 477
Lagrange polynomials, 476
Laplace, Pierre Simon, 278
Laplace Expansion Theorem, 277, 291
Lattice, 534
Leading entry, 71
Leading 1, 79
Leading variable, 77
Least squares approximation, 591–592,

594–605
Best Approximation Theorem

and, 593–594
and orthogonal projection,

606–608
and the pseudoinverse of a

matrix, 608–609
via the QR factorization,

605–606
via the singular value

decomposition, 626–628
Least squares approximating line, 597
Least squares error, 595
Least squares solution, 607

of minimal length, 626
Least Squares Theorem, 598
Legendre, Adrien Marie, 561
Legendre polynomials, 561

H
Half-life, 538
Hamilton, William Rowan, 2, 311
Hamming, Richard Wesley, 255
Hamming code, 254
Hamming distance, 577
Hamming norm, 577
Harmonic mean, 574
Head of a vector, 3
Head-to-tail rule, 6
Hermitian matrix, 568
Hilbert, David, 414
Hoëné-Wronski, Jósef Maria, 475
Homogeneous linear differential 

equations, 536–543
Homogeneous linear system, 82
Hooke’s Law, 542
Householder, Alston Scott, 407
Householder matrix, 408
Hyperplane, 40

I
i, 664
Idempotent matrix, 185
Identity matrix, 145
Identity transformation, 227, 492
Ill-conditioned linear system, 90
Ill-conditioned matrix, 584
Image, 218
Imaginary axis, 664
Imaginary conic, 442
Imaginary part of a complex 

number, 664
Inconsistent linear system, 66
Indefinite matrix, 430

quadratic form of, 430
Index of summation, 652
Infinite-dimensional vector 

space, 471
Initial point of a vector, 3
Inner product, 554
Inner product space, 554

and Cauchy-Schwarz and
Triangle Inequalities, 562–563

distance between vectors in, 558
length of vectors in, 558
orthogonal vectors in, 558
properties of, 558

International Standard Book 
Number (ISBN), 57

Intersection of sets, 651
Inverse

of a linear transformation,
227–228, 496

of a matrix, 169
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Leibniz, Gottfried Wilhelm von, 292
Lemma, 282
Length

of a binary vector, 14
of a code, 253
of an m-ary vector, 16
of a path, 248
of a vector, 20, 558

Leonardo of Pisa, 347
Leontief, Wassily, 113
Leontief closed model, 114, 241
Leontief open model, 114, 242
Leslie matrix, 246
Leslie model, 245–247, 341–343
Line, 34–38

of best fit, 597
equation(s) of, 34, 36, 41
least squares approximating, 597

Linear code, 543
Linear combination, 12, 160, 451
Linear dependence, 99, 163, 461
Linear economic models, 113, 241–242
Linear equation(s), 64, 65. See also

Linear system(s).
Linear independence, 99, 163, 461
Linear system(s), 64–68

augmented matrix of, 67, 70
coefficient matrix of, 70
consistent, 66
direct methods for solving, 70–85
equivalent, 66
homogeneous, 82
ill-conditioned, 90
inconsistent, 66
iterative methods for solving,

130–137
over �p, 83–85
solution (set) of, 65

Linear transformation(s), 219, 490
composition of, 225, 495
diagonalizable, 527
identity, 227, 492
inverse of, 227–228, 496
invertible, 227–228, 496
kernel of, 500
matrix of, 222, 516
nullity of, 502
one-to-one, 506
onto, 506
zero, 492

Linearly dependent matrices, 163
Linearly dependent vectors, 99, 461
Linearly independent matrices, 163
Linearly independent vectors, 99, 461

invertible, 169
Leslie, 246
of a linear transformation,

222, 516
multiplication of, 147–148
negative of, 146
negative definite, 430
negative semidefinite, 430
nilpotent, 293
normal, 570
null space of, 203
nullity of, 210
orthogonal, 385
orthogonally diagonalizable,

411
parity check, 253, 420
partitioned, 151–155
permutation, 193
positive, 336
positive definite, 430
positive semidefinite, 430
powers of, 155–156
primitive, 346
productive, 243–244
projection, 224–225, 377, 608
pseudoinverse of, 608, 625
rank of, 78, 210
reduced row echelon form of, 79
reducible, 345
regular, 336
row echelon form of, 71
row equivalent, 74
row space of, 201
scalar, 145
scalar multiple of, 146
similar, 312
singular values of, 613
singular vectors of, 616
size of, 144
skew-symmetric, 168
square, 145
standard, 222
stochastic, 238
strictly diagonally dominant, 134
sum of, 146
symmetric, 157
trace of, 168
transition, 237
transpose of, 157
unit lower triangular, 187
unitarily diagonalizable, 569
unitary, 568
upper triangular, 168
zero, 147

LU factorization, 186–192
Lucas, Edouard, 347, 446

M
m-ary vector, 16
Mmn, 448
Maclaurin, Colin, 285, 291
MacWilliams, Florence Jessie 

Collinson, 425
Magic square, 478

classical, 478
weight of a, 478

Mantissa, 89
Markov, Andrei Andreyevich, 236
Markov chain, 236–241, 336–341
Mathematical induction, 657–663

first principle of, 657
second principle of, 661

Matrix (matrices), 67, 144
addition of, 146
adjacency, 248, 250
adjoint (adjugate), 287
associated with a quadratic 

form, 426
augmented, 67, 70
change-of-basis, 483
characteristic equation of, 303
characteristic polynomial 

of, 303
coefficient, 70
column space of, 201
companion, 310
condition number of, 585
conjugate transpose of, 567
consumption, 242
determinant of, 171, 276–280
diagonal, 145
diagonalizable, 314
difference of, 146
eigenspace of, 267
eigenvalue of, 265
eigenvector of, 265
elementary, 176
entries of, 144
equality of, 145
exchange, 241
exponential of, 357
fundamental subspaces of, 391
generator, 253, 420
Hermitian, 568
idempotent, 185
identity, 145
ill-conditioned, 584
indefinite, 430
inverse of, 169
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Matrix-column representation of a 
matrix product, 152

Matrix factorization, 186. See also 
Singular value decomposition

(SVD).
and diagonalization,
LU, 186–192
modified QR, 407–409
PT LU, 193
QR, 403–405
and Schur’s Triangularization

Theorem, 419
Matrix transformation, 217–221, 490

projection, 224–225, 527–528
reflection, 221, 230,
rotation, 222–224

Mean
arithmetic, 571
geometric, 571
harmonic, 574
quadratic, 573

Median of a triangle, 32
Metric, 578
Metric space, 578
Minimum distance of a binary code, 640
Minimum length least squares 

solution, 626
Minor, 275
Modified QR factorization, 407–409
Modular arithmetic, 13–16
Modulus of a complex number, 666
Moore, Eliakim Hastings, 625
Moore-Penrose inverse, 625
Muir, Thomas, 292
Multiplication

of complex numbers, 664, 668
of matrices, 147–148
of polynomials, 676–677
scalar, 7, 146, 447

Multiplicity of an eigenvalue
algebraic, 305
geometric, 305

N
Nearest neighbor decoding, 641
Negative

of a complex number, 665
of a matrix, 146
of a vector, 8, 447

Negative definite matrix, 430
quadratic form of, 430

Negative semidefinite matrix, 430
quadratic form of, 430

Net reproduction rate, 371
Network, 108

Orthogonal matrix, 385
Orthogonal projection, 393–398, 561
Orthogonal set of vectors, 380, 560
Orthogonal vectors, 26, 558
Orthonormal basis, 383, 560
Orthonormal set of vectors, 383, 560
Outer product, 153
Outer product expansion, 153
Outer product form of the SVD, 619

P
p, 449
pn, 449
Parallelogram rule, 6
Parameter, 36
Parametric equation

of a line, 36, 41
of a plane, 39, 41

Parity, 55
Parity check code, 55
Parity check matrix, 253, 420
Partial fractions, 125
Partial pivoting, 90–91
Partitioned matrix, 151–155
Path(s)

k-, 249
length of, 248
number of, 248–251
simple, 248

Peano, Giuseppe, 447
Penrose, Roger, 626
Penrose conditions, 609
Permutation matrix, 193
Perpendicular bisector, 33
Perron, Oskar, 343
Perron eigenvector, 346
Perron-Frobenius Theorem, 346
Perron root, 346
Perron’s Theorem, 344
Petersen graph, 265
Pivot, 72
Pivoting, 72

partial, 90–91
Plane, 38–41

Argand, 664
complex, 664
equation of, 38, 39, 41

Polar decomposition, 633
Polar form of a complex number, 666
Pólya, George, 654
Polynomial, 675–684

characteristic, 303
degree of, 675
irreducible, 681
Lagrange, 476

Network analysis, 108–109
Newton’s Second Law of Motion, 542
Nilpotent matrix, 293
Node, 108
Nondegenerate conic, 432
Norm of a matrix, 578–584

1-, 582
2-, 582

-, 582
compatible, 579
Frobenius, 579
operator, 582

Norm of a vector, 20, 558, 575
1-, 576
2-, 576

-, 576
Euclidean, 576
Hamming, 577
max, 576
sum, 575
taxicab, 553
uniform, 576

Normal equations, 598
Normal form of the equation of

a line, 34, 36, 41
Normal form of the equation of a

plane, 38, 41
Normal matrix, 570
Normal vector, 34, 38
Normalizing a vector, 21
Normed linear space, 575
Null space, 203
Nullity

of a linear transformation, 502
of a matrix, 210

O
Odd function, 644
Ohm’s Law, 110
One-to-one, 506
Onto, 506
Optimization

constrained, 430–432
geometric inequalities and,

570–574
Orbital center, 366
Ordered n-tuple, 9
Ordered pair, 3
Ordered triple, 8
Orthocenter of a triangle, 33
Orthogonal basis, 381, 560
Orthogonal complement, 389–393
Orthogonal Decomposition 

Theorem, 395–396
Orthogonal diagonalization, 411–418
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Legendre, 561
Taylor, 489
trigonometric, 537
zero of, 678

Population distribution vector, 245
Population growth, 245–247, 341–343
Positive definite matrix, 430

quadratic form of, 430
Positive semidefinite matrix, 430

quadratic form of, 430
Power method, 322–327

inverse, 328–329
shifted, 327–328
shifted inverse, 329–330

Predator-prey model, 354
Principal argument of a complex

number, 667
Principal Axes Theorem, 428
Probability vector, 237
Product

of complex numbers, 664, 678
of matrices, 147–148
of polynomials, 676–677

Projection
orthogonal, 393–398, 561
onto a subspace, 393
onto a vector, 27

Projection form of the Spectral
Theorem, 416

Projection matrix, 224–225, 377, 608
Proof

by contradiction, 655
by contrapositive, 655
direct, 654
indirect, 654
by mathematical induction,

657–663
Pseudoinverse of a matrix, 608, 625
Pythagoras’ Theorem, 26, 560

Q
QR algorithm, 409–410
QR factorization, 403–405

least squares and, 605–606
modified, 407–409

Quadratic equation(s), graphing,
432–440

Quadratic form, 425–426
diagonalization of, 428
indefinite, 430
matrix associated with, 426
negative definite, 430
negative semidefinite, 430
positive definite, 430
positive semidefinite, 430

Schwarz, Karl Herman Amandus, 562
Seidel, Philipp Ludwig, 131
Seki Ko– wa, Takakazu, 291
Self-dual code, 424
Set(s), 648–651

disjoint, 651
elements of, 648
empty, 649
intersection of, 651
subset of, 649
union of, 651

Shannon, Claude Elwood, 54
Similar matrices, 312–314
Simple path, 248
Size of a matrix, 144
Singular values, 613–614
Singular vectors, 602
Singular value decomposition (SVD),

615–622
applications of, 622–628
and condition number, 625
and least squares approximation,

626–628
and matrix norms, 623–625
outer product form of, 619
and polar decomposition, 633
and pseudoinverse, 625–626
and rank, 623

Skew lines, 82
Skew-symmetric matrix, 168
Solution

of a differential equation, 536
least squares, 597
of a linear system, 65
minimum length least squares, 626
of a recurrence relation, 348
of a system of differential

equations, 351–353
Span, 96, 162, 199, 456
Spectral decomposition, 416
Spectral Theorem, 414

projection form of, 416
Spectrum, 414
Spiral attractor, 366
Spiral repeller, 366
Square matrix, 145
Square root of a matrix, 442
Standard basis, 204, 465
Standard generator matrix, 253
Standard matrix, 222
Standard parity check matrix, 253
Standard position, 4
Standard unit vectors, 22
State vector, 237

Quadratic mean, 573
Quadric surface, 437
Quotient of complex numbers, 665, 668

R
�2, 4
�3, 8
�n, 9
Racetrack game, 1–3
Range, 218, 500
Rank

of a linear transformation, 502
of a matrix, 78, 210

Rank Theorem, 78, 211, 397, 504
Ranking vector, 368
Rational Roots Theorem, 679
Rayleigh, Baron, 327
Rayleigh quotient, 327
Real axis, 664
Real part of a complex number, 664
Recurrence relation, 347

solution of, 348
Reduced row echelon form, 79
Reed-Muller code, 545
Reflection, 221, 230
Regular graph, 372
Repeller, 363
Resolving a vector, 51
Robotics, 232–239
Root, of a polynomial equation, 678
Root mean square error, 635
Rotation, 222–224

center of, 534
Rotational symmetry, 534
Roundoff error, 69
Row echelon form, 71
Row equivalent matrices, 74
Row matrix, 144
Row-matrix representation of a 

matrix product, 152
Row reduction, 72
Row space, 201
Row vector, 3, 144

S
Saddle point, 363
Scalar, 8
Scalar matrix, 145
Scalar multiplication, 7, 9, 146, 447

closure under, 198, 447
Scaling, 325
Schmidt, Erhardt, 401
Schur, Issai, 294
Schur complement, 294
Schur’s Triangularization Theorem, 419
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Steady-state vector, 239
Stochastic matrix, 238
Strutt, John William, 327
Subset, 649
Subspace(s), 198, 452

fundamental, 391
spanned by a set of vectors,

198–199, 459
sum of, 460
trivial, 455
zero, 455

Subtraction
of complex numbers, 665
of matrices, 146
of polynomials, 676
of vectors, 8, 451

Sum
of complex numbers, 664
of linear transformations,

499
of matrices, 146
of polynomials, 676
of subspaces, 460
of vectors, 5, 9, 457

Summation notation, 651–654
Sustainable harvesting policy, 371
Sylvester, James Joseph, 212, 291
Symmetric matrix, 157
System of linear differential 

equations, 351–359
System(s) of linear equations. See

Linear system(s).

T
Tail of a vector, 3
Taussky-Todd, Olga, 331
Taxicab circle, 553
Taxicab distance, 552
Taxicab norm, 553
Taxicab perpendicular bisector, 553
Taxicab pi, 553
Taylor polynomial, 489
Terminal point of a vector, 3
Ternary vector, 16
Theorem, 10
Tiling, 533
Tournament, 250
Trace of a matrix, 168
Transformation, 218

linear, 219, 490
matrix, 217–221, 490

Transition matrix, 237
Transition probabilities, 236
Translational symmetry, 534

row, 3, 144
scalar multiplication of, 7, 9, 447
span of, 96, 456
state, 237
steady-state, 239
ternary, 16
unit, 21, 558
zero, 4, 447

Vector form of the equation of
a line, 36, 41

Vector form of the equation of a 
plane, 39, 41

Vector space(s), 447
basis for, 464
complex, 447, 450, 566–567
dimension of, 471
finite-dimensional, 471
infinite-dimensional, 471
isomorphic, 511
subspace of, 452
over Zp, 447, 450

Venn, John, 649
Venn diagram, 649
Vertex of a graph, 244

W
Weight

of a binary vector, 425
of a magic square, 478

Weighted dot product, 555
Well-conditioned matrix, 584
Weyl, Hermann, 447
Wheatstone bridge circuit, 111–112
Wronskian, 475

X
x-axis, 3
xy-plane, 8
xz-plane, 8

Y
y-axis, 3
yz-plane, 8

Z
�2, 14
�2

n, 14
�m , 16
�m

n , 16
z-axis, 8
Zero matrix, 147
Zero of a polynomial, 678
Zero subspace, 455
Zero transformation, 492
Zero vector, 4, 447

Transpose of a matrix, 157
Triangle Inequality, 22, 563, 575
Trigonometric polynomial, 637
Triple scalar product identity, 46, 298
Turing, Alan Mathison, 187

U
Union of sets, 651
Unit circle, 21
Unit lower triangular matrix, 187
Unit sphere, 558
Unit vector, 21, 558
Unitarily diagonalizable matrix, 569
Unitary matrix, 568
Universal Product Code (UPC), 56
Upper triangular matrix, 168

block, 294

V
Vandermonde, Alexandre-Théophile, 302
Vandermonde determinant, 302
Vector(s), 3, 9, 457

addition of, 5, 9, 457
angle between, 24–26
binary, 54
code, 54, 251
column, 3, 144
complex, 447, 450, 566–567
complex dot product of, 566
components of, 3
coordinate, 214, 467
cross product of, 48–49, 297–298
demand, 242
direction, 35, 39
distance between, 23, 558
dot product of, 18
equality of, 3
force, 50–53
inner product of, 554
length of, 20, 558
linear combination of, 12, 451
linearly dependent, 98, 461
linearly independent, 98, 461
m-ary, 56
norm of, 20, 558, 575
normal, 34, 38
orthogonal, 26, 380, 558, 560
orthonormal, 383, 560
parallel, 8
population distribution, 246
price, 241
probability, 237
production, 242
ranking, 367
resultant, 50
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Index of Notation
v vector, 3, 457

vector as directed line segment, 3

vector as ordered n-tuple, 9

�n vector space of ordered n-tuples of real numbers, 9

�2 the integers modulo 2, 14

�2
n binary vectors of length n, 14

�m the integers modulo m, 14

�m
n m-ary vectors of length n, 16

0 zero vector, 4

dot product of vectors, 18

length (norm) of a vector, 20, 558, 575

standard unit (basis) vectors in �n, 22

d(u, v) distance between vectors, 23

proju(v) (orthogonal) projection of v onto u, 27

cross product of vectors, 48

augmented matrix, 67

rank(A) rank of a matrix, 78, 210

span(v1, vk) span of a set of vectors, 96, 456

m � n matrix, 144–145

identity matrix, 145

zero matrix, 147

Ak kth power of a (square) matrix, 155

AT transpose of a matrix, 157

inverse of a matrix, 169

determinant of a matrix, 171, 275-276

row(A) row space of a matrix, 201

col(A) column space of a matrix, 201

null(A) null space of a matrix, 203

B basis, 204, 464

dim V dimension of a vector space, 209, 472

nullity(A) nullity of a matrix, 210

[v]B coordinate vector of v with respect to the basis B,
214, 467

T linear transformation, 219, 490

TA matrix transformation, 220

composition of linear transformations, 225, 495

[T ] standard matrix of a linear transformation, 222

eigenvalue, 265

eigenspace, 267

Cij (i, j)-cofactor of a matrix, 277

El

l

S � T

det A � �A �
A�1

O � Om � n

I � In

A � 3aij 4 � 3aij 4m � n � ≥ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
am1 am2

p amn

¥
v2, p ,

3A 0 b 4u � v

e1, e2, p , en

7 v 7u # v

≥ v1

v2

o
vn

¥
AB
¡

Ai(b) matrix A with column i replaced by b, 285

adj A adjoint of a matrix, 287

C(p) companion matrix of a polynomial, 310

cA( ) characteristic polynomial of matrix A, 303, 311

is similar to B, 312

eigenvalue decomposition (diagonalizable
matrix A), 320

Di ith Gerschgorin disk, 330

fn nth Fibonacci number, 346, 445

e A matrix exponential, 357

orthogonal complement of subspace W, 389

projW(v) orthogonal projection of v onto subspace W, 393

perpW(v) component of v orthogonal to W, 393

spectral decomposition (symmetric matrix A),
411, 416

dual code, 422

w(x) weight of a binary vector, 425

xT Ax quadratic form, 426

Mmn vector space of m � n matrices, 448

�n vector space of polynomials of degree , 449

� vector space of all polynomials, 449

f vector space of functions f : � �, 449

f[a, b] vector space of functions f : [a, b] �, 450

�n vector space of ordered n-tuples of complex numbers, 450, 564

c vector space of continuous functions f : � �, 453

c[a, b] vector space of continuous functions f : [a, b] �, 453

d vector space of differentiable functions f : � �, 453

d[a, b] vector space of differentiable functions f : [a, b] �, 453

change-of-basis matrix, 483

ker(T) kernel of a linear transformation, 500

range(T) range of a linear transformation, 500

V is isomorphic to W, 511

matrix of T with respect to bases B and C, 516

Rn Reed-Muller code, 546

inner product of vectors, 554

complex conjugate of a matrix, 567

conjugate transpose of a matrix, 567

sum norm (� 1-norm), 575

max norm (� -norm), 576

Euclidean norm (� 2-norm), 576

Hamming norm, 577

matrix norm, 579

Frobenius norm, 579

cond(A) condition number of a matrix, 585

least squares solution of Ax � b, 597

A� pseudoinverse of a matrix, 608, 625

singular value, 613

singular value decomposition (SVD), 616

d(C) minimum distance of a binary code, 640

A � U©VT

s

x

�A�F

�A�
�v�H

�v�E 1��v�2 2 q�v�m 1��v�q 2�v�s 1��v�1 2A*

A

8u, v93T 4CdB

V �W

PCdB

S
S

S
S

S
S

� n

C�

A � QDQT

W�

A � PDP�1

A � B

l

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Uploaded by [StormRG]


	Explorations and Vignettes
	Applications�������������������
	Contents���������������
	Preface��������������
	What’s New in the Third Edition��������������������������������������
	Features���������������

	To the Instructor������������������������
	An Overview of the Text������������������������������
	How to Use the Book��������������������������

	To the Student
	Ch 1: Vectors��������������������
	1.0: Introduction: The Racetrack Game��������������������������������������������
	1.1: The Geometry and Algebra of Vectors�����������������������������������������������
	1.2: Length and Angle: The Dot Product���������������������������������������������
	1.3: Lines and Planes����������������������������
	1.4: Applications������������������������
	Chapter Review���������������������

	Ch 2: Systems of Linear Equations����������������������������������������
	2.0: Introduction: Triviality������������������������������������
	2.1: Introduction to Systems of Linear Equations�������������������������������������������������������
	2.2: Direct Methods for Solving Linear Systems�����������������������������������������������������
	2.3: Spanning Sets and Linear Independence�������������������������������������������������
	2.4: Applications������������������������
	2.5: Iterative Methods for Solving Linear Systems��������������������������������������������������������
	Chapter Review���������������������

	Ch 3: Matrices���������������������
	3.0: Introduction: Matrices in Action
	3.1: Matrix Operations�����������������������������
	3.2: Matrix Algebra��������������������������
	3.3: The Inverse of a Matrix�����������������������������������
	3.4: The LU Factorization��������������������������������
	3.5: Subspaces, Basis, Dimension, and Rank�������������������������������������������������
	3.6: Introduction to Linear Transformations��������������������������������������������������
	3.7: Applications������������������������
	Chapter Review���������������������

	Ch 4: Eigenvalues and Eigenvectors�����������������������������������������
	4.0: Introduction: A Dynamical System on Graphs������������������������������������������������������
	4.1: Introduction to Eigenvalues and Eigenvectors��������������������������������������������������������
	4.2: Determinants������������������������
	4.3: Eigenvalues and Eigenvectors of n x n Matrices
	4.4: Similarity and Diagonalization������������������������������������������
	4.5: Iterative Methods for Computing Eigenvalues�������������������������������������������������������
	4.6: Applications and the Perron-Frobenius Theorem���������������������������������������������������������
	Chapter Review���������������������

	Ch 5: Orthogonality��������������������������
	5.0: Introduction: Shadows on a Wall�������������������������������������������
	5.1: Orthogonality in R(n)
	5.2: Orthogonal Complements and Orthogonal Projections�������������������������������������������������������������
	5.3: The Gram-Schmidt Process and the QR Factorization�������������������������������������������������������������
	5.4: Orthogonal Diagonalization of Symmetric Matrices������������������������������������������������������������
	5.5: Applications������������������������
	Chapter Review���������������������

	Ch 6: Vector Spaces��������������������������
	6.0: Introduction: Fibonacci in (Vector) Space�����������������������������������������������������
	6.1: Vector Spaces and Subspaces���������������������������������������
	6.2: Linear Independence, Basis, and Dimension�����������������������������������������������������
	6.3: Change of Basis���������������������������
	6.4: Linear Transformations����������������������������������
	6.5: The Kernel and Range of a Linear Transformation�����������������������������������������������������������
	6.6: The Matrix of a Linear Transformation�������������������������������������������������
	6.7: Applications������������������������
	Chapter Review���������������������

	Ch 7: Distance and Approximation���������������������������������������
	7.0: Introduction: Taxicab Geometry������������������������������������������
	7.1: Inner Product Spaces��������������������������������
	7.2: Norms and Distance Functions����������������������������������������
	7.3: Least Squares Approximation���������������������������������������
	7.4: The Singular Value Decomposition��������������������������������������������
	7.5: Applications������������������������
	Chapter Review���������������������

	Appendix A: Mathematical Notation and Methods of Proof�������������������������������������������������������������
	Set Notation
	Summation Notation
	Methods of Proof

	Appendix B: Mathematical Induction�����������������������������������������
	Appendix C: Complex Numbers����������������������������������
	Operations on Complex Numbers
	De Moivre’s Theorem
	Euler’s Formula

	Appendix D: Polynomials������������������������������
	Answers to Selected Odd-Numbered Exercises�������������������������������������������������
	Index������������
	Index of Notation



