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Dedication

Anthony Robert Holmes Goodwin (1961–2014)

Our friend and colleague Anthony (Tony) Goodwin completed the Foreword
to this volume in November 2014 but passed away suddenly in December
2014 before he could see its completion.

Tony had been the inspiration for the latest volumes on the Transport
Properties of Fluids as well as for several earlier volumes in the long-running
IUPAC Series on Experimental Thermodynamics. In that series he had been
variously, author, editor and driving-force. His activities within science in
the broad field of Thermodynamics are widely recognised and his role for
the International Union of Pure and Applied Chemistry within the Physical
Chemistry Division and beyond were much appreciated. His work on this
particular volume illustrated vividly his commitment to the completion of a
task undertaken in a timely manner and I know that he would have been
pleased by the adherence of the current editors to his timescale.

Tony Goodwin will be sadly missed but we hope that this volume will
represent one of the reminders of the quality and breadth of his scientific
contribution.

W. A. Wakeham
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Foreword

Monographs concerned with the general field of thermophysics were initi-
ated by Commission 1.2 of the International Union of Pure and Applied
Chemistry (IUPAC) in 1956. Its former Subcommittee on Transport Prop-
erties continued and extended the coverage from 1991. The intention of the
books was that they should summarize the state of knowledge with regard to
experimental and theoretical methods in thermodynamics, thermo-
chemistry and transport properties. The texts have appeared in two series,
the first1,2 reporting methods in thermochemistry. The present volume is the
tenth in the second series.3–11 Many of the texts in the second series have
been concerned with topics in equilibrium thermodynamics; for example,
the first volume was concerned with the experimental calorimetry of non-
reacting systems,3 the fourth monograph was concerned with the calor-
imetry of reacting fluids6 and also provided updates to the first series.1,2 In a
complementary fashion the fifth volume presented the theoretical basis for
equations of state of both fluids and fluid mixtures.7 The sixth and seventh
volumes8,9 were concerned with the measurement of the thermodynamic
properties of single and multiple phases, respectively, and were updates to
the second volume4 reporting measurements of a broader class of thermo-
dynamic properties including techniques with industrial applications for
chemically non-reacting systems. The eighth volume10 was an update of
ref. 7 and included subject matter of importance to the practitioner in-
cluding equations of state for chemically reacting and non-equilibrium
fluids, and others, which have undergone significant developments. It is
noteworthy that this eighth volume was the first published in conjunction
with the International Association of Chemical Thermodynamics (IACT)y,
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which is the successor body to the former Subcommittee on Thermodynamic
Tables of Commission 1.2.

The former Subcommittee on Transport Properties of Commission 1.2,
now known as the International Association for Transport Properties (IATP),z

made its first contribution to the series with the third volume.5 It described
measurements of the transport properties of fluids characterizing the re-
laxation of a fluid from a non-equilibrium state, while another volume,12

also produced under the auspices of IUPAC, discussed the correlation, pre-
diction and estimation of transport properties. Since the publication of
ref. 5, there have been significant developments in the measurement and
theory of non-equilibrium states of matter. First, several new measurement
techniques have been developed and other, older techniques, have received a
new lease of life because of technological developments. Secondly, the ad-
vent of high-performance computing machinery has enabled theoretical
calculations that were not possible hitherto. These considerations led to the
decision by IATP to initiate an update of ref. 5 and ref. 12. However, it was
recognized by IATP that the importance of the non-equilibrium state and its
areas of application have increased during the last two decades so that a
single update would not encompass all that is new and useful in the field of
non-equilibrium thermodynamics. This realization led to the decision to
produce three separate volumes in the Experimental Thermodynamics series
entitled Advances in Transport Properties Vol. IX; Non-Equilibrium Thermo-
dynamics with Applications Vol. X; and another one entitled Applied Transport
Properties Vol. XI. Volume IX, already published,11 deals with the experi-
mental and theoretical developments on transport properties. The current
Vol. X deals with conceptual developments in non-equilibrium thermo-
dynamics and applications. Together with Vol. IX,11 it will provide back-
ground information for the forthcoming Vol. XI.

This volume compliments other recent publications associated with
IUPAC that have covered a range of diverse issues reporting applications of
solubility data,13 to the topical issue of alternate sources of energy,14 heat
capacities of liquids and vapours15 and the application of chemical ther-
modynamics to other matters of current industrial and scientific research
including separation technology, biology, medicine and petroleum in one16

of eleven monographs of an IUPAC series entitled Chemistry for the 21st
Century.17

Anthony R. H. Goodwin
Titular Member of Physical and Bio-Physical Division (I),

Interdivisional Committee on Terminology, Nomenclature and
Symbols (ICTNS) and Commission I.1 on Physicochemical Symbols,

Terminology, and Units of the International Union of Pure and
Applied Chemistry

zhttp://transp.cheng.auth.gr/index.php/iatp/terms
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Prof. Sir William A. Wakeham
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Preface

The field of non-equilibrium thermodynamics originates in the work of Lars
Onsager who gave a more specific formulation of the second law of thermo-
dynamics in 1931, useful beyond the inequality given in equilibrium ther-
modynamics. His formulation, in terms of conjugate thermodynamic fluxes
and forces, has in the last decade been explored on mesoscopic time- and
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length-scales, when surfaces and heterogeneous systems are involved, and
when processes are activated. The theory has furthermore been extended to
describe long-range thermal fluctuations in non-equilibrium systems. This
has considerably extended what has been called the classical line of devel-
opment, starting with the work of Onsager, Meixner, Prigogine, de Groot and
Mazur. The aim of the present book is to show how the important new de-
velopments, can be beneficial in practice. Several chapters have been collected
as an inspiration for further applications in new contexts and new fields.

Non-equilibrium thermodynamics is as versatile as thermodynamics.
Areas of applications can be found everywhere. The theory can be simplified
to more well-known versions when the set of fluxes remain uncoupled.
It becomes indispensable, when the fluxes are coupled, most importantly
to ensure that the symmetry of the matrix of transport coefficients, proven
by Onsager, is obeyed. In order for experimentalists or modellers to make
sure that possible approximations are done consistently, the complete set
of force-flux relations must be known. It is then important to have the
overarching complete theory, the framework where approximations can be
introduced.

Practical problems often pose fruitful questions or challenges to the
theory. It is a hope that experimental verification of theoretical assumptions
and predictions, as well as the development of the theory on the basis
of experiments, can continue to guide us in the work to specify the second
law even further. The regime of small systems away from equilibrium, for
instance, is as of yet practically unexplored.

Dick Bedeaux and Signe Kjelstrup
Norwegian University of Science and Technology

Jan V. Sengers
University of Maryland
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CHAPTER 1

Basis and Scope

DICK BEDEAUX,*a SIGNE KJELSTRUPa AND JAN V. SENGERSb

a Department of Chemistry, Norwegian University of Science and
Technology, 7491 Trondheim, Norway; b Institute for Physical Science and
Technology, University of Maryland, College Park MD 20742, USA
*Email: dick.bedeaux@chem.ntnu.no

1.1 Short Historic Overview
Non-equilibrium thermodynamics describes transport processes in systems
that are not in global equilibrium. The now classical field, which we briefly
review here, resulted from efforts of many scientists to find a more explicit
formulation of the second law of thermodynamics. This had started already
in 1856 with Thomson’s studies of thermoelectricity.1 Onsager is, however,
counted as the founder of the field with his papers published in 1931,2–4

because these put earlier research by Thomson, Boltzmann, Nernst, Duhem,
Jauman and Einstein into a systematic framework. Onsager was given the
Nobel prize in chemistry in 1968 for this work.

The second law is reformulated in terms of the entropy production, s. In
Onsager’s formulation, the entropy production is given by the product sum
of so-called conjugate fluxes,1,y Ji, and forces, Xi, in the system. The second
law then becomes

s¼
X

i

JiXi � 0: (1:1)

Experimental Thermodynamics Volume X: Non-equilibrium Thermodynamics with Applications
Edited by Dick Bedeaux, Signe Kjelstrup and Jan V. Sengers
r International Union of Pure and Applied Chemistry 2016
Published by the Royal Society of Chemistry, www.rsc.org

yIn non-equilibrium thermodynamics it is standard to use the name flux rather than flux
density, as not all of these variables are vectors.

1



The entropy production is per unit of volume. Each flux is taken to be a
linear combination of all forces,

Ji¼
X

j

LijXj: (1:2)

Onsager showed that the reciprocal relations

Lji¼ Lij, (1.3)

apply. They now bear his name. In order to use the theory, one first has
to identify a complete set of extensive independent variables, ai, like, for
instance, the internal energy and the mass densities per unit of volume.
The resulting conjugate fluxes and forces are Ji¼dai/dt and Xi¼ @S/@ai

respectively. Here t is the time and S is the entropy of the system. The
three equations above contain then all information on the non-equilibrium
behaviour of the system. For cases where dai/dt is equal to minus the
divergence of a flux density, this flux density replaces Ji and the gradient of
@S/@ai replaces @S/@ai. For surfaces and contact lines the densities are per
unit of surface area or length, respectively.

Following Onsager, a consistent theory of non-equilibrium processes in
continuous systems was set up in the forties by Meixner5–8 and Prigogine.9

They calculated the entropy production for a number of physical problems.
Prigogine received the Nobel prize for his work on dissipative structures in
systems that are out of equilibrium in 1977, and Mitchell the year after for
his application of the (driving) force concept to transport processes in
biology.10

The most general description of classical non-equilibrium thermo-
dynamics is still the 1962 monograph of de Groot and Mazur11 reprinted in
1985.12 Haase’s book,13 also reprinted,14 contains many results for electro-
chemical systems and systems with temperature gradients. Katchalsky and
Curran developed the theory for biophysical systems.15 Their analysis was
carried further by Caplan and Essig.16 Førland and co-workers gave various
applications in electrochemistry and biology, and they treated frost
heave.17,18 Their book presented the theory in a way suitable for chemists.
Newer books on equilibrium thermodynamics or statistical thermodynamics
often include chapters on non-equilibrium thermodynamics, see, e.g.,
Carey.19 Kondepudi and Prigogine20 presented a textbook which integrated
texts on basic equilibrium and non-equilibrium thermodynamics. Jou et al.21

published a book on extended non-equilibrium thermodynamics. Öttinger
gave a non-equilibrium description which also extends to the nonlinear
regime.22

Non-equilibrium thermodynamics is constantly being applied in new
contexts. Fitts gave an early presentation of viscous phenomena.23 In 1994
Kuiken24 wrote the most general treatment of multicomponent diffusion
and rheology of colloidal systems. Rubı́ and co-workers25–27 used internal
(molecular) degrees of freedom to explore the development towards
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equilibrium within a system. This allows us to deal with chemical reactions
within the framework of non-equilibrium thermodynamics.12,26 Bedeaux
and Mazur28 extended the theory to quantum mechanical systems. Kjelstrup
and Bedeaux29 wrote a book dealing with transport into and across surfaces,
presenting non-equilibrium thermodynamics for heterogeneous systems.
Doi30 used the variational principle of Onsager2,3 at constant temperature to
derive equations of motion for colloids.

A fundamental assumption in non-equilibrium thermodynamics is that of
local equilibrium. In recent years the nature and conditions of local equi-
librium have been investigated with computer simulations. Kjelstrup et al.32

pointed out that there can be local equilibrium in volume elements exposed
to large fields, with as few as 10 particles. We have reasons to expect that the
same holds true in surfaces and in systems at the mesoscale (see Chapter 4).
Non-equilibrium thermodynamics has also been extended to include
thermal non-equilibrium fluctuations as reviewed by Ortiz de Zárate and
Sengers.31 Local equilibrium is no longer valid for hydrodynamic fluctu-
ations, however. Correlations of the densities and temperature are much
larger and longer-ranged in a system exposed, for instance, to temperature
gradients than at equilibrium.31

The linear relations in eqn (1.2) apply to a volume element, which
according to the assumption of local equilibrium, can be very small.
Mesoscopic non-equilibrium thermodynamics has been developed to deal
with shorter space and time scales (cf., Chapters 14 to 16). Integration from
the local to the macroscopic level leads to highly non-linear flux–force
relations. To refer to non-equilibrium thermodynamics as a linear theory
is misleading. Quoting the preface of the Dover edition of de Groot and
Mazur,12 the theory is non-linear for a variety of reasons, because it
includes (i) the presence of convection terms, (ii) quadratic source terms in
the energy equation, (iii) the non-linear character of the equation of state,
and (iv) the dependence of the Onsager coefficients on the state variables,
and so on.

Chemical and mechanical engineering needs theories of transport for
systems with gradients in velocity, pressure, concentrations, and tempera-
ture, see Denbigh33 and Bird et al.34 In isotropic systems there is no coupling
between tensorial (viscous), vectorial (diffusional) and scalar (reactions)
phenomena, so they can usually be dealt with separately.12 Simple vectorial
transport laws have long worked well in engineering, but there is now
an increased effort to be more precise. The need for more accurate flux
equations in the modelling of non-equilibrium processes35 increases the
need for non-equilibrium thermodynamics. The books by Taylor and
Krishna,36 Cussler,37 Demirel,38 and Kjelstrup et al.,29,35 which present
Maxwell–Stefan’s formulation of the flux equations, are important books
in this context. Krishna and Wesselingh39 and Kuiken,24 analysing an
impressive amount of experimental data, have shown that the diffusion
coefficients in the Maxwell–Stefan equations depend less on the
concentrations.
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Non-equilibrium thermodynamics is necessary for a precise description of
all systems that have transport of heat, mass, charge and momentum.29

There is also a need in mechanical and chemical engineering to design
systems that waste less work.35,40–44 Fossil energy sources, as long as they
last, lead to global warming. Better and more efficient use of energy
resources is therefore central. It is, then, not enough to only optimize the
first-law efficiency. One should minimize the entropy production, which
defines the second-law efficiency. The total entropy production should be
used as an appropriate measure of sustainability. Through non-equilibrium
thermodynamics, one can obtain control44 of the local entropy production,
develop more precise descriptions of the transport processes, and improve
the second-law efficiency.35

We believe that we are now in a situation where potential new users are
looking to the field and asking themselves how non-equilibrium thermo-
dynamics possibly can add to the understanding, the description, or the
experimental design of their transport or energy conversion problems. The
present collection of chapters is meant to help such readers, by giving them
inspiration for additional applications, similar to the ones presented here.
We expect that the reader is familiar with the basic elements that are used.
For a pedagogical presentation of non-equilibrium thermodynamics theory
we refer to textbooks, e.g. ref. 29 and 35. For the basis of hydrodynamic
fluctuations, we refer to Ortiz de Zárate and Sengers.31 The seventeen
chapters of this book, will update published works, and give state-of-the art
mini-reviews of the field of non-equilibrium thermodynamics. We have
chosen topics where the theory can add to the present description and open
new lines of research and application.

In the remainder of Chapter 1 we provide the essence of the foundations
for eqn (1.1) to (1.3) and give advice on how to derive the equations and use
them in particular situations.

1.2 The Entropy Production in a Homogeneous
Phase

In order to illustrate the points raised in the end of the previous section, we
repeat how the entropy production in a homogeneous system can be derived
for transport of heat, mass, charge, momentum and chemical reactions,12

aiming to make eqn (1.1) as concrete as possible. A homogeneous system
can be described by the same variable set over its entire extension. The
examples covered by this book extend from coupled transport of heat and
mass, coupled transport of heat, mass and charge and chemical reactions, to
all phenomena present in hydrodynamic flow. We will therefore give
the most general expressions for hydrodynamic flow, before we introduce
simplifying conditions that apply for the other cases.

The start in any case is to write the entropy balance. In the presence of
flow, the best frame of reference is the barycentric (center-of-mass) frame of
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reference. The change in the entropy density in a volume element by net flow
of entropy into the volume element and entropy production inside it is then
given by:

@rðr; tÞsðr; tÞ
@t

¼�= � ½rðr; tÞsðr; tÞvðr; tÞ þ Jsðr; tÞ� þ sðr; tÞ: (1:4)

Here r(r,t) is the mass density, s(r,t) is the specific entropy, v(r,t) is the
barycentric velocity, Js(r,t) is the entropy flux and s(r,t) is the entropy
production. The position vector is denoted r¼ (x,y,z) and t is the time. We
use italic bold symbols for vectors. The entropy density and flux depend on
position as well as time, so we use partial derivatives. The volume element
has a sufficient number of particles to give a statistical basis for thermo-
dynamic calculations, i.e., local equilibrium. The state is given by the
temperature T(r,t), the specific chemical potential, mj(r,t) for n neutral
components and the pressure p(r,t). We suppress the explicit dependence
on (r,t) from now on. It is straightforward to use standard IUPAC symbols
and units for homogeneous systems, see however the special situation for
heterogeneous systems (cf., Chapters 4, 8 and 12).

The explicit expression for s is always found by introducing relevant
balance equations into the Gibbs equation and comparing the resulting
expression with eqn (1.4). This will identify the entropy flux as well as the
entropy production, provided that the Gibbs equation holds, or in other
words, provided that the system is in local equilibrium, see Chapter 4 for a
discussion. The Gibbs equation for a co-moving volume element is

du
dt
¼ T

ds
dt
� p

dð1=rÞ
dt

þ
X

j

mj
dwj

dt
; (1:5)

where u is the specific internal-energy and wj� rj/r are the mass fractions.
The total differentials are time derivatives in the barycentric frame of
reference, which will be defined below.

The balance equation for the mass density of species j is

@rj

@t
¼�= � ðrjvþ J jÞ þMjnjr for j¼ 1; . . . ; n; (1:6)

where Jj¼ rj(vj� v) are the diffusion fluxes in the barycentric frame
of reference, and Mj and vj are the molar mass and the stoichiometric
coefficient of species j in the chemical reaction, respectively. Furthermore,
r(r,t) is the rate of the reaction. The coefficient vj is positive if j is a product
and negative if j is a reactant. For simplicity, we consider only one reaction.12

The reaction Gibbs energy is DrGðr; tÞ¼
P

Mjnjmj. Independent components
are, according to the phase rule, the number of species minus the number of
restrictions between them. A chemical reaction at equilibrium may pose
such a restriction.
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We sum eqn (1.6) over all components and use conservation of mass in the
chemical reaction. This gives the continuity equation

@r
@t
¼�= � rv; (1:7)

where r¼
P

rj and rv¼
P

rjvj. It follows from the definitions that the sum
of all diffusive fluxes Jj¼ rj(vj � v) is zero. The continuity equation for an
arbitrary density, a, is

@ra
@t
þ = � rav¼ r

@a
@t
þ v � =a

� �
� r

da
dt
: (1:8)

The last identity defines the time derivative of a quantity that moves with
the flow, a co-moving quantity. This defines then the derivatives in Gibbs
eqn (1.5).

With the help of eqn (1.8) we can write terms in eqn (1.4) and (1.6)
alternatively as

r
ds
dt
¼�= � Js þ s; (1:9)

r
dwj

dt
¼� = � J j þMjnjr for j¼ 1; . . . ; n: (1:10)

The momentum balance (the equation of motion) in the absence of external
forces is given by

r
dv
dt
¼�=p� = �P; (1:11)

where P is the viscous pressure tensor. The momentum balance enters the
Gibbs equation via the change in internal-energy density. According to the
first law of thermodynamics,12 the change in internal-energy density per unit
of time is equal to:

r
du
dt
¼�= � Jq � p= � v�P : =vþ E � j; (1:12)

where Jq in the absence of external forces is the total heat (energy) flux in the
barycentric frame of reference. The total heat flux across the volume element
is the sum of the measurable heat flux, J 0q, and a latent heat flux (the specific
partial enthalpies, hj, carried by the diffusive fluxes, Jj of the neutral
components)

Jq¼ J 0q þ
Xn

j¼ 1

hj J j: (1:13)

The electric field E¼�=f is minus the derivative of f, the electric potential.
The product E � j is the electrical work per unit of volume. The systems we
consider are electro-neutral. It follows that the electric current density, j,
is independent of the position. The electric current can be externally
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controlled, and is a measure of the relative motion of the charge carriers in
the system.

By introducing all balance equations and definitions in the Gibbs eqn
(1.5), we can identify the terms in eqn (1.4), giving the entropy flux

Js¼
1
T

Jq �
Xn

j¼ 1

mj J j

!
¼ 1

T
J 0q �

Xn

j¼ 1

sj J j; (1:14)

and the entropy production

s¼ Jq � =
1
T
þ
Xn

j¼ 1

J j � �=
mj

T

� �
þ j � E

T
þ r �DrG

T

� �
þP : �=v

T

� �
: (1:15)

In eqn (1.14) sj is the specific partial entropy of component j. By replacing the
total heat flux, Jq, by the measurable heat flux, J 0q, using eqn (1.13), we obtain

s¼ J 0q � =
1
T
þ
Xn

j¼ 1

J j � �
1
T

=mj;T

� �
þ j � E

T
þ r �DrG

T

� �
þP : �=v

T

� �
: (1:16)

Here =mj,T�=mjþ sj=T is the gradient of the chemical potential keeping
the temperature constant. These gradients do not depend on a choice of
standard state. The expressions apply for fluxes which are measured in the
barycentric frame of reference. We also emphasize that:

(1) The results apply to systems in local equilibrium. This need not mean
local chemical equilibrium, which is a special case of local equi-
librium.12,45 The important condition is that Gibbs eqn (1.5) applies,
see Chapter 4 for further comments.

(2) The entropy production contains pairs of fluxes and forces. Each
pair has a so-called conjugate flux and force. We see that the conjugate
flux–force pairs in eqn (1.15) and (1.16) differ. A change in one pair,
will lead to a change in another pair, as is seen by comparing the two
first terms on the right-hand side of eqn (1.15) and (1.16). It is hard to
know the conjugate flux–force pairs without deriving the entropy
production from actual balance equations.

(3) The diffusion fluxes depend on the frame of reference. The total heat
flux depends also on such a reference. The measurable heat flux is,
however, independent of the frame of reference. The measurable heat
flux differs from the reduced heat flux introduced by de Groot and
Mazur by a contribution proportional to the electric current density,
see ref. 43 for a discussion. The electric current density does also not
depend on the frame of reference. De Groot and Mazur12 used charged
and uncharged components; appropriate for systems that are not
electro-neutral. For electro-neutral systems, the number of uncharged
components is smaller and therefore more convenient, cf., Chapter 12.

(4) Chemical potentials and enthalpies are not absolute quantities; they
depend on the choice of a standard state. This can be the state of pure
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components at 0.1 MPa at the temperature in question. The standard
state value of a chemical potential depends on the temperature. The
total heat flux in eqn (1.15) depends on the standard state, while all
fluxes and driving forces in eqn (1.16) are absolute and can be measured.

(5) The different sets of conjugate flux–force pairs are equivalent and
describe the same physical situation. The entropy production is
invariant for transformations and has an absolute value. This property
can be used if a change in variables is needed, cf., Chapter 12.

(6) It is always possible to find driving forces and conjugate fluxes
which are absolute. In eqn (1.16) all forces and fluxes are absolute. The
sum of the diffusive fluxes is zero. This can be used to reduce the
number of conjugate pairs by one, replacing mj by mj� mn everywhere.
A procedure that applies in mechanical equilibrium is discussed in the
next section.

(7) The problem of interest should guide the choice of flux–force pairs to
use. In descriptions of measurements, the measurable heat flux is a
useful variable. In descriptions of molecular simulations, the total
heat flux (which often is the energy flux) is a good variable. In the first
case, we can find the Onsager coefficients from measurements, see the
next section. In the second case, we can only calculate them, as they
depend on the choice of a standard state.

(8) Ross and Mazur46 showed that the contribution to s from the chemical
reaction is also equal to the product of r and the driving force, DrG/T,
when the reaction rate is a non-linear function of the driving force,
provided that the ensemble of particles is nearly Maxwellian. Prigogine
showed that the Gibbs relation was valid for such conditions, see ref. 46.

The separate products in the entropy production do not individually give
pure dissipation of energy. It is the sum that does so. For instance, the electric
power per unit of volume does not necessarily give only an Ohmic contri-
bution to the entropy production; there may also be electric work terms
included in the product. Each product normally contains work terms as well
as energy storage terms. It is their combination which gives the entropy
production rate, and the work that is lost per unit of time, see Chapter 13
for further comments. The entropy production can be used to find the
second-law efficiency of a process.35

De Groot and Mazur11,12 used the affinity, A, of the chemical reaction,
rather than the reaction Gibbs energy. According to Kondepudi and
Prigogine20 (page 111), the reaction Gibbs energy is primarily used in con-
nection with equilibrium states and reversible processes, while De Donder’s
affinity concept is more general. We dispute that there is a principle
difference between the two concepts. The affinity is simply equal to minus the
reaction Gibbs energy. We use the reaction Gibbs energy, because chemists
are more familiar with this concept.

Haase12,13 defined the dissipation function in his monograph, and the
dissipation function is still used in many books.30,31,38 For homogeneous
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systems, Haase defined c¼ TdSirr/dt, where dSirr/dt is the rate of increase of
the entropy due to processes which occur inside a system. For a continuous
system, in which the temperature can vary from point to point, he used the
definition c¼Ts,13 see ref. 13, page 83. This last definition is analogous to
Rayleigh’s dissipation function for hydrodynamic flow.30 For non-isothermal
conditions, neither of the above definitions are correct, see ref. 29 page 56.
Correct linear force–flux relations can only be obtained from the entropy
production and not from the dissipation function.

1.3 Linear Flux–Force Relations
As mentioned in Section 1.1, the linear relation between the fluxes and
forces, refers to a volume element, and not to the overall behaviour of the
system. An expression for the entropy production in the presence of flow
through the element was given in Section 1.2. The barycentric frame of
reference was used, motivated by our wish to include applications where
hydrodynamic flow takes place. As soon as we no longer are interested in
flow, other frames of reference become relevant. We explain here why this is
so (Prigogine’s theorem), and give one other option for a frame of reference
(the laboratory frame of reference), as well as a formulation that is
independent on the frame (the Maxwell–Stefan formulation). We intend to
illustrate how the theory can be adopted to particular needs. The phenom-
enological coefficients may depend on the frame of reference for the fluxes.
They may depend on a standard state as well.

We start with the flux–force relations that derive from eqn (1.16). The
measurable heat flux is independent of the frame of reference and is
therefore convenient from an experimental point of view. All forces and
fluxes in eqn (1.16), except the last two pairs, have a direction and are thus
vectors. The chemical reaction has a scalar flux and force. The viscous
contribution has a tensorial and a scalar force and flux. For isotropic
systems, the (viscous) pressure tensor is symmetric. According to the
Curie’s principle, tensors of different order do not couple. We can thus
discuss the vectorial contributions, and subsequently the reaction rate and
the viscous pressure tensor. We further show how a substitution of flux–
force relations into the balance equations yields differential equations for
the variables.

1.3.1 Vectorial Contributions

The diffusive fluxes are given by Jj¼ rj(vj� v). We introduce these into eqn
(1.16) and obtain:

s¼ J 0q � =
1
T
þ
Xn

j¼ 1

ðvj � vÞ � �
rj

T
=mj;T

� �
þ j � E

T
þ r �DrG

T

� �
þP : �=v

T

� �
:

(1:17)
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For a one-component system, the second term in eqn (1.17) is zero. At least
two components are needed to observe diffusion. The first three terms in
eqn (1.17) contain vectors. In an isotropic system, the linear relations for the
vectorial forces are:

=
1
T
¼ rqq J 0q þ

Xn

j¼ 1

rqjðvj � vÞ þ rqf j;

� rk

T
=mk;T ¼ rkq J 0q þ

Xn

j¼ 1

rkjðvj � vÞ þ rkf j;

1
T

E¼ rfq J 0q þ
Xn

j¼ 1

rfjðvj � vÞ þ rff j:

(1:18)

The Onsager resistivities rij in eqn (1.18) form a symmetric matrix, which is
the inverse of the conductivity matrix Lij in eqn (1.2).

In many cases without flow, the pressure equilibrates fast and we
achieve mechanical equilibrium, =p¼ 0. In that case, the Gibbs–Duhem
equation gives

Xn

k¼ 1

rk

T
=mk;T ¼ 0: (1:19)

It follows that

Xn

k¼ 1

rkq¼
Xn

k¼ 1

rkj ¼
Xn

k¼ 1

rkf¼ 0: (1:20)

Using the Onsager symmetry relations it follows that

Xn

k¼ 1

rqk ¼
Xn

k¼ 1

rjk ¼
Xn

k¼ 1

rfk¼ 0: (1:21)

These identities imply that the barycentric velocity in eqn (1.18) may be
replaced by an arbitrary reference velocity. This is Prigogine’s theorem.12

We chose the laboratory frame of reference so that v¼ 0.
For our further analysis we write eqn (1.18) in the form

=T ¼� 1
l

J 0q �
Xn

j¼ 1

cjq
*
j vj �

P
F

j

" #
;

rk

T
=mk;T ¼�

ckq*
k

T2 =T �
Xn

j¼ 1

Rkjvj � Rkf j;

1
T

E¼ P
FT2 =T þ

Xn

j¼ 1

Rfjvj þ Rff j:

(1:22)
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where the thermal conductivity l, the measurable heats of transfer q*
k,

the Peltier coefficient P and the resistivities for transport at constant
temperature Rjk are defined by

l � 1
T2rqq

; cjq
*
j � �

rqj

rqq
; P � �F

rqf

rff

Rjk � r jk �
rjqrqk

rqq
for j; k¼ 1; :::; n;f:

(1:23)

F is Faraday’s constant. The density of component k is given by ck� rk/Mk.
Superscript * is used for the heat of transfer to emphasize that it is a
transport property. It is related to the thermal diffusion coefficient via a
symmetry relation. It follows from these definitions and eqn (1.20) and (1.21)
that the Rjk matrix is symmetric and that

Xn

j¼ 1

cjq
*
j ¼

Xn

j¼ 1

Rjk ¼
Xn

j¼ 1

Rkj ¼
Xn

j¼ 1

Rjf¼
Xn

j¼ 1

Rfj ¼ 0: (1:24)

The Maxwell–Stefan diffusion coefficients are defined by

Rjk � �cR
xjxk

Djk
; (1:25)

where the mole fractions are defined by xj¼ cj/c and c is the total molar
density, and R is the universal gas constant. The Maxwell–Stefan diffusion
coefficients, Djk, are also symmetric. Eqn (1.24) gives the diagonal coefficients
in terms of the cross coefficients. By using this with eqn (1.22), we obtain

=T ¼� 1
l

J 0q �
Xn�1

j¼ 1

cjq
*
j ðvj � vnÞ �

P
F

j

" #
;

rk

T
=mk;T ¼�

ckq*
k

T2 =T þ cR
Xn

jak

xkxj

Dkj
ðvj � vkÞ � Rkf j;

1
T

E¼ P
FT2 =T þ

Xn�1

j¼ 1

Rfjðvj � vnÞ þ Rff j:

(1:26)

Due to the identities in eqn (1.24), all fluxes are now independent of
the frame of reference. The gradients of the chemical potentials do not
depend on the choice of the standard state. The standard chemical potential
depends only on the temperature. All the constitutive coefficients in
eqn (1.26) are therefore independent of both a choice of standard state
and of a frame of reference for the fluxes. The Maxwell–Stefan diffusion
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coefficients are found to be less dependent on concentrations than
Fick’s diffusion coefficients,24 see also ref. 29, 35 and 36. We can now
emphasize that:

1. The Onsager coefficients (resistivity) in eqn (1.22) depend on the frame
of reference for the fluxes. Choosing eqn (1.26) as the starting point,
they neither depend on a standard state for the driving forces, as all
driving forces in eqn (1.26) are absolute, nor on the frame of reference
chosen for the fluxes.

2. A description exists that makes all variables including the Onsager
coefficients free of choice for frame of reference or standard states. The
example above is such a case. Transformations to other sets of fluxes
and forces, and also to sets that depend on a standard state, can be
done using the invariance of the entropy production.

3. The barycentric frame of reference is convenient for flow problems. At
mechanical equilibrium we are free to choose any other convenient
frame of reference. In the present example, we first chose the labora-
tory frame of reference. We next used the Gibbs–Duhem equation
to obtain a description independent of the choice of the frame of
reference (the Maxwell–Stefan description).

4. The linear force–flux relations obey Onsager symmetry and can be
interpreted for any choice of frame of reference and/or standard state.
Any such dependence should be stated along with their values, as the
interpretation will rest on the choice taken.

5. The number of independent Maxwell–Stefan diffusion coefficients is
equal to the number of independent Fick diffusion coefficients. The
relation between the two sets contains the so-called thermodynamic
factors (the derivatives of the chemical potentials with respect to the
densities) and is discussed in Chapter 5.

The general form of the force–flux relations, eqn (1.18), contains the
barycentric reference velocity as well as the component velocities. A tempting
interpretation of eqn (1.18) is to explain the part connected to v, the co-
moving part, as a reversible contribution to the equation, while the remaining
part is a dissipative part. This interpretation is not correct. The remaining
diffusive parts are not purely dissipative. This was explained below item (8) in
the previous section. Another way to understand this point is to diagonalise
the Onsager resistivity matrix. With m force–flux pairs, there are m positive
eigenvalues and eigenvectors. These are the m independent dissipative pro-
cesses in the system. The resistivity matrix has, because of Onsager symmetry,
m(mþ 1)/2 independent coefficients. The m(m� 1)/2 remaining coefficients
are crucial for the conversion of one kind of energy into another kind of
energy. Above, we took the example of conversion between electric and
chemical energy. Another example is the Soret effect, in which a temperature
gradient causes separation of components (work). The concentration
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gradients represent work stored. The coupling coefficient responsible for this
can be connected to a reversible process. In the important effort to reduce the
entropy production in the process industry such insights may enable wanted
reductions.

1.3.2 Scalar Contributions

There are two scalar contributions in eqn (1.17) for the entropy production.
The first one is due to the reaction and the second one is due to the trace of
the viscous pressure tensor

ss¼ r �DrG
T

� �
þ trP �= � v

T

� �
: (1:27)

The viscous pressure tensor can be written in terms of its trace, which is
scalar, and a symmetric traceless part, which is truly tensorial. The scalar
trace couples in principle to the scalar reaction rate. The coupling coefficient
is negligible, however.24 The scalar flux–force pairs therefore give as flux–
force relations,

r¼ Lrr �
DrG

T

� �
; (1:28)

tr P¼� lvv
= � v

T
� �Zv= � v; (1:29)

where Zv� lvvT�1 is the volume viscosity. The presence of a chemical reaction
away from equilibrium does not violate the assumption of local thermo-
dynamic equilibrium.

1.3.3 Tensorial Contribution

The tensorial contribution to the entropy production is

st¼Pst : �ð=vÞst

T

� �
; (1:30)

where the superscript st indicates the symmetric traceless part of the tensor.
The resulting flux–force relation is

Pst
ab ¼� lss

ðrvÞst
ab

T
¼� lss

2T
@vb
@xa
þ @va
@xb
� 2

3
dab
X

g

@vg
@xg

 !

� �Z @vb
@xa
þ @va
@xb
� 2

3
dab
X

g

@vg
@xg

 !
;

(1:31)

where Z� lss(2T)�1 is the shear viscosity.
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1.3.4 Differential Equations

If we now substitute the flux–force relations into the balance equations, we
obtain differential equations for the variables. The task is elaborate for
multi-component systems. In a one-component system, the continuity eqn
(1.17) for the density remains unaltered. In the absence of an electric field
and a current density, the internal energy change is

r
du
dt
¼ lDT � p= � vþ 2Zð=vÞst : ð=vÞst þ Zvð= � vÞ

2; (1:32)

where D � @2

@x2 þ
@2

@y2 þ
@2

@z2 is the Laplace operator and Zv is the volume

viscosity. By substituting eqn (1.29) and (1.31) into (1.11), we obtain the
Navier–Stokes equation

r
dv
dt
¼� =pþ ZDvþ 1

3
Zþ Zv

� �
== � v; (1:33)

Diffusion and electrical effects have been treated in the
literature.9,11,24,34,36,39

1.4 The Entropy Production in a Heterogeneous
System

1.4.1 The Surface as an Autonomous System

Systems that include surfaces or interfaces are heterogeneous, not homo-
geneous. A heterogeneous system consists of more than one phase. Real
systems are heterogeneous, for instance, because a container is needed for
the fluid of interest, or because a solid phase is in contact with the sur-
roundings. Gibbs invented the chemical potential of a component in a
homogeneous phase and used this variable to define equilibrium conditions
in a heterogeneous system. Between the phases in a heterogeneous system
there is a continuous variation, say in the density of components, cf.,
Figure 1.1. There may even be an accumulation in the surface of one com-
ponent, cf., Figure 1.2.

The transition region between two homogeneous phases, where the
densities differ from those of the adjacent phases, can be defined as the
interface or the surface, see Figure 1.1. The region can also be regarded as a
thermodynamic system. Gibbs described the surface in terms of excess
variables, with respect to the mathematical construct, the dividing surface,
see e.g. ref. 29. The position of the dividing surface is illustrated in
Figure 1.3, and the determination of the excess variable with regard to this
position is illustrated in Figure 1.2. It is well documented29 that thermo-
dynamic relations apply also in the surface, but here for the excess variables.
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This autonomous nature of the surface, the fact that it can be regarded as
an independent thermodynamic system away from equilibrium, has been
questioned,47 since the surface does not exist independent of the adjacent
bulk phases. The surface has, however, unique properties, like the surface
tension. The surface tension of a planar interface in a one-component
system is furthermore a unique function of the surface temperature and
the curvatures, serving therefore as an equation of state for the surface.

Figure 1.1 Variation in the concentration of a component A, cA, going from the gas
(g) to the liquid (l) state. The vertical lines at positions a and b give the
extension of the surface, d¼ b� a. The scale of the x-axis is measured in
nanometres.

Figure 1.2 Variation in the concentration of a component B across the surface.
The excess surface concentration of B is the integral under the curve in
the sketch.
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This supports the view that the surface is an autonomous thermodynamic
system in the Gibbs description. The same can be said about a three-phase
contact line.29

In the extension of classical non-equilibrium thermodynamics for homo-
geneous systems to heterogeneous systems, Kjelstrup and Bedeaux29 treated
the surface and the contact line as autonomous thermodynamic systems, not
only at global equilibrium, but also away from equilibrium. Evidence in sup-
port for their hypothesis has been found, and will be discussed in Chapter 4.
We refer to Chapter 17 for a discussion of the definition of excess densities.

1.4.2 The Entropy Production in a Surface and a
Contact Line

The entropy production in a surface, or even at a contact line, can be derived
following the same pattern as described above, by introducing the balance
equations into the Gibbs equation. The Gibbs equation for the surface or the
line refers then to the surface (line) excess variables defined, as pictured in
Figure 1.3 following Gibbs.29 Along the surface and the line there are now
excess fluxes. The balance equations are written in a discrete form.

We shall not give the general expression for the entropy production in a
typical system here. We hope it is more instructive to consider the examples
that follow from this procedure, and are used in Chapters 8 to 12. These
chapters give results for commonplace phenomena like evaporation,
adsorption, crystallization, membrane transport, and electrode reactions. In
all these cases, there is entropy production in the surface during heat, mass
and charge transport, and chemical reactions. We shall see that the entropy

Figure 1.3 Determination of the position of the equimolar surface of component A.
The vertical line at d is drawn so that the areas between the curve and the
bulk phase concentrations are the same. The surface thickness is again
given by d¼ b� a.
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production and the flux–force relations imposed by this quantity, can be
significant and have a bearing on the whole system performance.

There is an important difference between transport properties of homo-
geneous phases, and surfaces or contact lines. The difference arises because
of the lower symmetry level of surfaces and contact lines. Many homo-
geneous phases, like for instance fluids, are isotropic. They are symmetric
for rotation, translation and parity. From the Curie principle it then follows
that processes of a different tensorial character do not couple directly in the
force–flux relations. Thus heat and diffusive fluxes, which are vectorial, do
not couple to chemical reactions, which are scalar. A surface can only be
isotropic for rotation, translation and parity in the plane of the surface. It
follows that the normal components of heat and diffusive fluxes are scalar,
and therefore do couple to chemical reactions in the interfacial region. This
implies, for instance, that we can drive a chemical reaction at a membrane
surface by temperature or chemical-potential differences across the surface.
This is of great practical importance. Similarly, one can drive transport
across the membrane by a reaction in the membrane. Similar properties are
true for contact lines.

1.5 Scope
This book will review progress obtained the last decade on efforts to
extend classical non-equilibrium thermodynamics. Much has been done to
substantiate the basic assumptions, and this is reviewed in Chapters 2 to 4.
The theory is now very well founded. The fluctuation-dissipation theorem
is elucidated for equilibrium (Chapter 2). We shall see that the difference
between local and global equilibrium can be found in the nature of the
fluctuations. While the fluctuations are short-ranged in global equilibrium,
they become long-ranged away from equilibrium. Progress on this issue
is reviewed in Chapter 3. State-of-the-art knowledge on the validity of the
hypothesis of local equilibrium is reviewed in Chapter 4.

We proceed to present studies of various bulk systems away from
equilibrium (Chapter 5 to 7). Diffusion is frequently the rate-limiting step in
a chemical process. A formula, derived using the Onsager relations, for the
quantitative prediction of binary and ternary Fick diffusion coefficients is
reported in Chapter 5. An important computational technique, which can
be used to obtain transport coefficients, is non-equilibrium molecular
dynamics simulations. The technique, which mimics an experimental situ-
ation, gives an essential tool, compared with other methods, cf., Chapter 6.
Biological or chemical structures can be maintained in a system by supply
of energy and exchange of products with the outside. A chemical example of
this non-equilibrium self-assembly is described in Chapter 7.

The entropy production can now be given also for surfaces and contact
lines, following Gibbs’ procedure using excess thermodynamic variables. For
surfaces, the flux–force relations impose dynamic boundary conditions on
phase transitions. This is described for the liquid–vapor transition in
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Chapter 8, for the liquid–solid transition in Chapter 10, and for gas
adsorption in Chapter 9. The porous media, discussed in Chapter 9, repre-
sent a challenge, with external as well as internal interfaces. It is concluded
that the surface can be favourably dealt with as a separate thermodynamic
system in all these cases with absence of equilibrium across the phase
boundary. Non-equilibrium thermodynamics brings a new systematic tool to
deal with these processes, adding new knowledge to them. Non-equilibrium
thermodynamics for contact lines is still in its infancy, as reported in
Chapter 8, and so are complex interfaces, see Chapter 17.

The book discusses three applications of the theory relevant to the
industry. The coupling of transport processes becomes substantial at
membrane surfaces, as discussed in Chapter 11. This is essential for
membrane distillation processes. Chapter 12 explains how a detailed
modelling of electrochemical cells can be done, including the coupled
transport phenomena at the electrode surfaces.

The process industry may, in a not too distant future, have to give annual
reports not only on the products that they produce, but also on their annual
lost exergy or entropy production. The public sector can favour such a
development, by giving benefits to those who limit their entropy production,
or reduce the energy dissipation as heat. Chapter 13 on entropy production
minimization with optimal control theory can be seen as an effort to create
awareness on these issues, and inspire developments in neighbouring fields
like control theory.44 This book, as well as the references cited in this
chapter, give guidelines that are needed to understand the nature of the
entropy production and can therefore help to avoid it.

The linear regime of the theory covers many applications, but many cen-
tral processes like chemical reactions, are non-linear. Non-equilibrium
thermodynamics has been extended in recent years to include such
processes. Non-linear flux–force relations are found by going first to a
mesoscopic scale in time and space. This development is described in the
end of the book in Chapter 14 to 16, first in general terms in Chapter 14,
then for nucleation (Chapter 15), and finally for biological processes
(Chapter 16). It is the hope that all these chapters can lay the foundations for
further applications and for experiments.
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CHAPTER 2

Fluctuating Hydrodynamics
and Fluctuation–Dissipation
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2.1 Introduction
The method of fluctuating hydrodynamics for dealing with fluctuations
in systems in thermodynamic equilibrium was originally developed by
Landau and Lifshitz,1–3 with relevant subsequent contributions by Fox and
Uhlenbeck.4,5 Fluctuating hydrodynamics was initially formulated for one-
component fluid systems3,4 and later extended, among other developments,
to binary mixtures,6 chemical reactions,7 nematic liquid crystals8 and, as
further elucidated in Chapter 3, to systems out of equilibrium.

The central idea of fluctuating hydrodynamics is to consider as stochastic
variables the fluxes that appear in the expression of the entropy production.
As discussed in Chapters 1 and 4, entropy production (dissipation) in ther-
modynamic systems is related to the transfer of energy and/or momentum
between degrees of freedom. Such a transfer is generically associated with
molecular collisions or interactions, which are intrinsically random
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processes. Hence, it seems natural to assume that fluxes are, from a more
fundamental perspective, stochastic variables reflecting the random nature
of molecular motion. The next important ingredient in fluctuating hydro-
dynamics is the assumption that the linear flux–force relations (Section 1.3)
continue to be valid, on average, in the presence of fluctuations. In practice,
this means that eqn (1.2) for any flux Ji is modified into:

Ji¼
X

j

LijXj þ dJi; (2:1)

where one distinguishes between systematic parts, that continue to be given
by eqn (1.2) in terms of the thermodynamic forces Xj and the phenomeno-
logical coefficients Lij, and random or fluctuating parts, dJi. In the more
general case, dJi(t) are functions of time t so that, in the language of van
Kampen,9 the random fluxes are a set of stochastic processes. Hence, instead
of considering a single value for a thermodynamic flux at each time, one
treats Ji(t) as consisting of a systematic part plus an (infinite) set of possible
values of a random part. As further illustrated below, if instead of eqn (1.2),
eqn (2.1) is substituted into the corresponding balance laws, one obtains,
rather than regular differential equations, a set of stochastic differential
equations that describe the evolution of the thermodynamic variables under
the influence of random fluxes. The equations of non-equilibrium thermo-
dynamics then transform into a Langevin-like set of stochastic differential
equations, where the fluctuating fluxes play the role of random forces. The
goal of fluctuating hydrodynamics is to deduce the statistical properties of
the thermodynamic variables, such as their mean values or correlations from
the statistical properties of the random fluxes. For a system in thermo-
dynamic equilibrium, the first two moments of the Gaussian probability
distribution of the random fluxes are:2,3

dJiðtÞh i¼ 0;

dJiðtÞdJjðt0Þ
� �

¼ kBðLij þ LjiÞ dðt� t0Þ ¼ 2kBLij dðt� t0Þ:
(2:2)

where eqn (1.3) has been used. The first part of eqn (2.2) states that, by
definition, the mean value of the random fluxes must be zero, so that the
linear flux–force relations continue to be valid on average. The second part of
eqn (2.2) is called the fluctuation–dissipation theorem (FDT). It basically
states that the intensity (squared) of the fluctuations is determined by the
same coefficients Lij that control the entropy production (dissipation), with
kB being Boltzmann’s constant. In the FDT (2.2), it is assumed that, as a
consequence of the randomness of the molecular motion, the fluctuations
in the fluxes at two different times are uncorrelated; in the language of
stochastic-process theory,9,10 the random fluxes, dJi(t), are a set of Markov
processes.

In fluids, the systems considered by non-equilibrium thermodynamics are
spatially extended. Then the fluxes (both the systematic and the random
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part) become fields Ji(r,t) that depend also on the position r. In addition, the
phenomenological coefficients Lij(r) may also be dependent on the location.
The FDT in these cases is formulated by assuming that random fluxes at
different spatial points are uncorrelated, so that

hdJi(r,t) dJj(r0,t0)i¼ 2kBLij(r) d(r� r0) d(t� t0). (2.3)

One sees, either from eqn (2.2) or (2.3), that in a global-equilibrium state the
values of the random fluxes have a multivariate spatiotemporal Gaussian
probability distribution. Hence, eqn (2.2) or (2.3) completely specify the
functional probability of the random fluxes, because one can obtain all
moments of the distribution from the second moments. It should be noted
that the FDT (i.e., normal Gaussian distribution of fluctuating fluxes) has
only been rigorously derived from statistical physics11–13 for fluctuations in
systems that are in equilibrium. Extension of the FDT to non-equilibrium
steady states will be discussed in Chapter 3.

The FDT is traditionally rationalized on the following chain of arguments:
First, the spatial correlations hdJi(r,t) dJj(r0,t0)i in eqn (2.3) are expressed with
arbitrary undetermined prefactors. Next, the fluctuations of the thermo-
dynamic variables are calculated by substituting eqn (2.1) into the corres-
ponding balance laws. Finally, the prefactors are determined by the
requirement that the entropy must be a maximum, so that the equal-time
(static) correlation functions among the fluctuating variables have entropy as
a probability generating functional.9,12 We shall return to this issue at the
end of Section 2.4.1.

2.2 Fluctuating Hydrodynamics for a
One-component Fluid

In the previous section we introduced the general formulation of fluctuating
hydrodynamics for any thermodynamic system. To be more specific, we
consider now a homogeneous phase of a one-component fluid. The relevant
balance laws for this problem were presented in Chapter 1: balance of mass,
eqn (1.7), balance of momentum, eqn (1.11), and balance of energy,
eqn (1.12), in which we now neglect the term with the electric field (non-
conducting and non-polarizable fluid). Fluctuating hydrodynamics in the
presence of electric fields is a subject that still needs to be developed. Thus,
we identify as the two thermodynamic fluxes associated with this problem,
the heat flux Jq(r,t) and the viscous pressure tensor P(r,t). Indeed in the
entropy production (eqn (1.15)), these are the only two terms that remain
when all the diffusion fluxes, the electric current and the reaction rate are set
to zero. The (deterministic) linear flux–force relations for this problem were
also presented in Chapter 1. Following eqn (2.1), we now have to set up the
corresponding fluctuating versions. For the heat flux, the deterministic
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version is eqn (1.18), so that in terms of the experimentally preferred thermal
conductivity l, defined in (1.23), we now obtain:

Jq¼ lT2 =
1
T

� �
þ dJq; (2:4)

where T is the temperature and dJq(r,t) the random heat flux. Since we
consider in this section a one-component fluid, we note that there is no
distinction between the heat flux and the measurable heat flux, like in eqn
(1.13), and there are no diffusion fluxes (i.e., the only one existing com-
ponent velocity equals the centre of mass velocity, v1¼ v). We further notice
that, as already mentioned in Chapter 1, in non-equilibrium thermo-
dynamics the spatiotemporal derivatives are global, and it is not needed to
indicate which variables are held constant; it is implicitly assumed that they
are time and/or the other spatial coordinates.

Eqn (2.4) is the stochastic version of the classical Fourier law for heat
conduction. Next, applying the generic FDT (2.3) to the particular case of the
random heat flux, we have for an equilibrium system:14,15

dJq;aðr; tÞ dJq;bðr0; t0Þ
� �

¼ 2kBT2
0l dab dðr � r0Þ dðt� t0Þ; (2:5)

where the subscripts a,b span the three spatial coordinates: a,bA{x,y,z}, and
where T0 denotes the uniform temperature that characterizes an equilibrium
system. As in Chapter 1, we assume the system to be isotropic, so that the
thermal conductivity matrix is a constant l times the unit tensor. For l in
eqn (2.5) the corresponding equilibrium value should be adopted.

The second flux of this problem, i.e., the viscous pressure tensor, was
separated into two parts P¼ 1/3(TrP)1þPst in the linear flux–force re-
lations of Chapter 1. The corresponding linear relations were then eqn (1.29)
for the trace and eqn (1.31) for the traceless part. In fluctuating hydro-
dynamics both are usually combined into a single equation:3,15

Pab¼�Zv dab r � v� Z
@vb
@xa
þ @va
@xb
� 2

3
dab = � v

� �
þ dPab; (2:6)

where Z is the shear viscosity, Zv the bulk viscosity, v(r,t) the fluid flow velocity,
and where dPab(r,t) are the components of the random viscous pressure
tensor. In eqn (2.6) the notation xa indicates the three spatial coordinates:
{xx¼ x, xy¼ y, xz¼ z}. As customary in non-equilibrium thermodynamics, it is
not explicitly indicated that the other two spatial variables as well as the time
are held constant in partial spatial derivatives. Eqn (2.6) is just the stochastic
version of the classical Newton’s viscosity law. Next, applying the generic FDT
(2.3) to the particular case of the random viscous pressure, we have:3,16

hdPabðr; tÞ dPmvðr0; t0Þi ¼ 2kBT0

�
Z damdbv þ davdbm
� �

þ Zv �
2
3
Z

� �
dabdmv

	
dðr � r0Þdðt� t0Þ;

(2:7)

where the subscripts m,v also span the three spatial coordinates: m,vA{x,y,z}.
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In many practical applications the fluid flow is divergence free, = � m¼ 0. In
these cases the linear flux–force relation for the viscous stress matrix, eqn
(2.6), becomes simpler and the associated FDT reduces to:15

hdPab(r,t) dPmv(r0,t0)i¼ 2kBT0Z(damdbvþ davdbm) d(r� r0)d(t� t0), (2.8)

without any contribution from the bulk viscosity Zv.
Next, we substitute the stochastic linear relations, eqn (2.4) and (2.6), into

the corresponding balance laws, eqn (1.11) for the momentum balance and
eqn (1.12) for the energy balance. This procedure then yields the fluctuating
hydrodynamics equations for a one-component fluid, namely:

dr
dt
¼�r= � v; (2:9a)

r
dv
dt
¼�=pþ Zr2vþ 1

3
Zþ Zv

� �
=ð= � vÞ � = � dP; (2:9b)

r
du
dt
¼ lr2T � p = � v� = � dJq; (2:9c)

where, following the nomenclature of Chapter 1, r(r,t) is the mass density,
p(r,t) the pressure and u(r,t) the specific internal energy. In eqn (2.9) it is
further assumed that the transport coefficients (thermal conductivity and
viscosities) are constant, independent of position. Eqn (2.9a) simply repro-
duces the balance of mass, eqn (1.7). Notice that in eqn (2.9c) viscous
heating is neglected in the energy balance (eqn (1.12)). This is the term
with a double contraction of the viscous pressure matrix and the velocity
derivatives matrix. This term is of second order in the fluxes, so that, in
non-equilibrium thermodynamics at the linear level, it may be neglected. It
is convenient to convert eqn (2.9c) for the specific energy into an equation
for the temperature by using the thermodynamic relations

du¼T dsþ p
dr
r2 ; T ds¼ cp dT þ aT

r
dp;

where a is the thermal expansion coefficient, cp the specific heat capacity at
constant pressure, and s(r,t) the specific entropy. Then one has:

rcp
dT
dt
þ aT

dp
dt
¼ lr2T � = � dJq: (2:9d)

In addition, the thermodynamic equation of state r¼ r(p,T) is needed.
Hence, eqn (2.9a to d) represent a set of five coupled stochastic partial dif-
ferential equations for five unknowns: the three velocity components and a
pair of thermodynamic fields: p(r,t) and T(r,t), for instance. The two random
fluxes act as forcing terms and, in the language of stochastic processes
theory,9,10 they are Gaussian white noise with intensity given by eqn (2.5)
and (2.7).
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2.3 Fluctuating Hydrodynamics for a Binary Mixture
In this section we present the fluctuating hydrodynamics equations for a
fluid mixture of two nonreacting and nonconducting components so that,
initially, there are two mass densities and two diffusion fluxes. However, the
two diffusion fluxes, J1 and J2, are not independent since, as pointed out
after eqn (1.7), J1þ J2¼ 0. Hence, eqn (1.16) for the entropy production
simplifies to:

s¼ J 0q � =
1
T

� �
þ J1 � �

1
T

=Tm
� 	

þP : �=v
T

� �
; (2:10)

where, in the absence of any electric current and of any chemical reaction, a
single independent diffusion flux appears. For the sake of shortening no-
tation, we use m¼ m1� m2 in eqn (2.10) where m1 and m2 are the specific
chemical potentials of the two components, so that rTm represents the
gradient at constant temperature of the chemical potential difference (see
Chapter 1). One concludes from eqn (2.10) that in a binary mixture, in
addition to the (measurable) heat flux and the viscous pressure tensor, we
need to consider one extra thermodynamic flux: the diffusion J1 which is a
vector flux. Since there is no coupling between the viscous pressure matrix
and the two vector fluxes, the stochastic version of the pressure tensor is the
same as for a one-component fluid, i.e., eqn (2.6). Similarly, the FDT for the
random viscous pressure matrix continues to be given by eqn (2.7) above in
the general case, or by eqn (2.8) for divergence-free flows.

As elaborated in Section 1.3.1, diffusion and heat fluxes are coupled,
which complicates the formulation of the stochastic version of the associ-
ated linear flux–force relations and the corresponding FDT. Additional
complications arise from the fact that in Chapter 1 the linear flux–force
relations were formulated in terms of velocities (no diffusion fluxes) and set
up in the inverse way: forces as a function of fluxes, instead of fluxes as a
function of forces. Anyway, setting n¼ 2 and j¼ 0 in eqn (1.26), in the ab-
sence of any electrical resistances, we obtain in terms of Maxwell–Stefan
diffusivities D12:

=T ¼� 1
l

J 0q � c1q*
1ðv1 � v2Þ

h i
;

r1

T
=Tm1¼�

c1q*
1

T2 =T � cR
x1x2

D12
ðv1 � v2Þ;

r2

T
=Tm2¼�

c2q*
2

T2 =T � cR
x1x2

D21
ðv2 � v1Þ:

(2:11)

In eqn (2.11) rk is the mass density, xk the mole fraction, ck¼ rk/Mk with
Mk being the molar mass, q*

k the measurable heat of transfer, and vk

the velocity of component k. Of course, the three eqn (2.11) are not in-
dependent; since the second and the third add to zero, as required by the
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Gibbs–Duhem eqn (1.19). By subtracting the second and the third eqn (2.11)
we obtain,

=Tðm1 � m2Þ
T

¼ =Tm
T
¼� rc1q*

1

r1r2T2 =T � cR
r2x1x2

r2
1r

2
2D12

J1; (2:12a)

while we can rewrite the first as

J 0q¼�l=T þ c1q*
1

r
r1r2

J1: (2:12b)

In eqn (2.12) we used v1¼ vþ J1/r1, v2¼ v� J1/r2 and eqn (1.24). Eqn (2.12)
are, for a binary mixture, the two independent linear flux–force relations.
Solving for the two vector fluxes appearing in eqn (2.10) we arrive at

J 0q¼�l 1þ
c1q*

1

� �2

lT2

D12

x1x2cR

!
=T � c1q*

1
r1r2D12

rcx1x2

=Tm
RT

;

J1¼�c1q*
1
r1r2D12

rcx1x2

=T
RT2 �

r2
1r

2
2D12

r2cx1x2

=Tm
RT

:

(2:13)

Note how the Onsager relation (eqn (1.3)) also holds when inverting the
linear flux laws of Chapter 1, so as to formulate it according to eqn (1.2).
Instead of the chemical-potential gradient, in hydrodynamics one more
commonly uses the concentration gradient. They are related by

=Tm¼
@m
@w

� �

T;p
=w:

We neglect baro-diffusion here, consistent with having neglected the pres-
sure gradient term in the Gibbs–Duhem eqn (1.19). In the expression above,
w¼ r1/r is the concentration of component 1 in weight fraction. Next, sub-
stitution of the above expression into eqn (2.12) yields, in terms of the
common transport coefficients,3 Fick diffusivity D (not to be confused with
the Stefan–Maxwell diffusivity D12) and thermal diffusion ratio kT,

J 0q¼�l=T þ kT
@m
@w

� �

T;p
J1;

J1¼�rD =wþ kT

T
=T

� 	
:

(2:14)

Comparison of eqn (2.12) and (2.14) enables us to identify the relationship
between the transport coefficients more commonly used in hydrodynamics
and the transport coefficients of Chapter 1, namely

rc1q*
1

r1r2
¼ kT

@m
@w

� �

T;p
; rDT ¼ r2

1r
2
2D12

r2cRx1x2

@m
@w

� �

T;p
: (2:15)

Fluctuating Hydrodynamics and Fluctuation–Dissipation Theorem 27



From eqn (2.15),

rD
kT

T
¼ c1q*

1

T2

r1r2D12

rcRx1x2
:

Hence, eqn (2.12) and (2.14) are indeed consistent. We note that, making use
of eqn (1.24), the first of eqn (2.15) may be rewritten in a more symmetric
way, as the product of a thermodynamic factor times the difference of heats
of transport:

kT¼
q*

1

M1
� q*

2

M2

� 	
@m
@w

� ��1

T;p
;

which is the starting point of many thermodiffusion theories.17,18

Now, we can set up the stochastic version of the linear flux–force relations
(2.13). Using eqn (2.14), we obtain

J 0q¼�l 1þ DeD

a

� �
=T þ DT

kTa
eD=w

� 	
þ dJ 0q; (2:16a)

J1¼�rD =wþ kT

T
=T

� 	
þ dJ1; (2:16b)

where, following the general guidelines of Section 2.1, we introduce a
random (measurable) heat flux dJ0q(r,t) and a random diffusion flux dJ1(r,t).
Note that the random contribution dJ2(r,t) to the diffusion flux of the second
component equals �dJ1(r,t), since the requirement that the two diffusion
fluxes add to zero holds in general, not only for the average values. Fur-
thermore, in eqn (2.16) we introduced the thermal diffusivity a¼ l/rcp, and
the dimensionless Dufour effect ratio:

eD¼
k2

T

cpT
@m
@w

� �

T;p
¼

r2 c1q*
1

� �2

cpTr2
1r

2
2

@w
@m

� �

p;T
¼ D12

D

c1q*
1

� �2

rcRcpT2x1x2
: (2:17)

Next, following again the general guidelines from eqn (2.3), we obtain
from eqn (2.13) the FDT for a binary mixture in equilibrium as6,15,19

dJ 0q;aðr; tÞ dJ 0q;bðr0; t0Þ
D E

¼ 2kBT2
0l 1þ DeD

a

� �
dab dðr � r0Þ dðt� t0Þ; (2:18a)

dJ 0q;aðr; tÞ dJ1;bðr0; t0Þ
D E

¼ 2kBT0rDkT dab dðr � r0Þ dðt� t0Þ; (2:18b)

dJ1;aðr; tÞ dJ1;bðr0; t0Þ
� �

¼ 2kBT0rD
@w
@m

� �

T;p
dab dðr � r0Þ dðt� t0Þ; (2:18c)

where all thermophysical properties are to be evaluated at their respective
equilibrium values. The fluctuating hydrodynamics equations for a binary
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mixture are obtained by substitution of the stochastic linear flux–force
relations into the balance laws. Regarding momentum balance, the only flux
involved is the viscous pressure matrix, so that the fluctuating Navier–Stokes
equation for a binary mixture is the same as for a one-component fluid, i.e.,
eqn (2.9b).

For the mass balance, there are initially two equations in eqn (1.6),
namely, for the two partial mass densities, r1 and r2. In practice, one often
adopts as the independent variable only one of the partial densities, say r1,
and the total mass density r. The balance law for the total density r is the
same as eqn (2.9a) for a one-component fluid. In many cases, the weight
fraction w¼ r1/r, whose balance law is given by eqn (1.10), is used as the
concentration variable. In summary, for mass balance in fluctuating
hydrodynamics of a binary mixture one has to consider, in addition to eqn
(2.9a),

dw
dt
¼D r2wþ kT

T
r2T

� 	
� 1
r

= � dJ1; (2:19)

obtained upon substitution of the fluctuating linear relation, eqn (2.16b),
into eqn (1.10).

The relevant energy balance law is eqn (1.12) which contains the total
heat flux. Since the linear flux–force relations, eqn (2.12), are in terms of
the measurable heat flow, we need first to express the right-hand side of
eqn (1.12) in terms of J0q,

r
du
dt
¼�= � J 0q �

X2

j¼ 1

hj J j

!
� p = � v;

where hj are the specific partial enthalpies and we have again neglected
viscous heating as was done for a one-component fluid. Next, we use eqn
(1.5) to switch from internal energy to entropy as variable, so that:

r T
ds
dt
þ p
r2

dr
dt
þ
X2

j¼ 1

mj
dwj

dt

 !
¼�= � J 0q þ

X2

j¼ 1

hj J j

!
� p= � v:

By using total mass balance, eqn (1.7), and partial mass balances, eqn (1.10),
the above expression simplifies to:

rT
ds
dt
¼�= � J 0q þ

X2

j¼ 1

ðmj � hjÞ= � J j �
X2

j¼ 1

J j � =hj;

which, when further transformed by casting it in the form of eqn (1.4), was
indeed used to identify the entropy flux and the entropy production in eqn
(1.14) and (1.15) (recall that mj¼ hj�Tsj, with sj the specific partial entro-
pies). However, for our present purpose, we may neglect the last term in the
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right-hand side of the equation above, since it is, like viscous heating, of
second order in the fluxes. Hence, we finally obtain:

rT
ds
dt
¼�= � J 0q � T

X
sj= � J j ¼�= � J 0q þ T

X2

j¼ 1

@mj

@T

� �

p;w
= � J j;

which is the working equation for the energy balance in terms of the same
fluxes used to set up the linear flux–force relations. Of course, for practical
use, as in eqn (2.9d) for a one-component fluid, it is convenient to switch
from entropy to measurable variables: temperature, pressure, etc., by using
thermodynamic relations. For a binary mixture, we have

Tds¼ cp dT þ aT
r

dp� T
@m
@T

� �

p;w
dw:

Using the equation above in the energy balance, with eqn (1.10), we obtain

rcp
dT
dt
þ aT

dp
dt
¼�= � J 0q; (2:20)

which explains why J0q is referred to as the measurable heat flux. Next, sub-
stituting the stochastic linear flux–force relation (2.16a) into the expression
(2.20) above, we obtain the fluctuating hydrodynamics equation for the
energy balance

dT
dt
þ aT
rcp

dp
dt
¼ðaþ DeDÞr2T þ DT

kT
eDr2w � 1

rcp
= � dJ 0q: (2:21)

Notice that, when eD¼ 0, the stochastic heat equation for a binary mixture is
the same as for a one-component fluid, eqn (2.9d). As anticipated, eqn (2.17)
gives a quantitative measure of the relevance of the Dufour effect.

This completes the formulation of the fluctuating hydrodynamics equa-
tions for a binary mixture. In summary, compared with a one-component
fluid, one has an extra thermodynamic variable, the concentration w, and an
extra random diffusion flux dJ1. The FDT couples the random diffusion flux
and the random (measurable) heat flux, whose correlations are now given by
eqn (2.18). The FDT for the random stress matrix is the same as for a one-
component fluid, eqn (2.7) or (2.8). The fluctuating hydrodynamics equation
for the total mass balance is eqn (2.9a) and for the momentum balance eqn
(2.9b), which are the same as for a one-component fluid. In addition, one has
eqn (2.19) for the partial density balance and eqn (2.21) for the energy bal-
ance. Because of the Dufour effect, the latter is slightly different from the
fluctuating-energy balance for a one-component fluid.

2.4 Some Examples

2.4.1 Temperature Fluctuations at Constant Pressure

A deterministic stationary solution of the fluctuating hydrodynamics eqn
(2.9) for a one-component fluid in equilibrium is: v(r,t)¼ 0, r(r,t)¼ r0,
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p(r,t)¼ p0 and T(r,t)¼T0, where r0, p0 and T0 are the equilibrium density,
pressure and temperature, independent of r and t, and related by an
equation of state r0¼ r(p0,T0). Due to random thermal forcing, spontaneous
fluctuations around this equilibrium system will appear. The spatiotemporal
evolution of these fluctuations can be studied by substituting
r(r,t)¼ r0þ dr(r,t), T(r,t)¼T0þ dT(r,t), p(r,t)¼ p0þ dp(r,t) and
v(r,t)¼ 0þ dv(r,t) into all the derivatives contained in the fluctuating
hydrodynamics eqn (2.9), so as to obtain

dðdrÞ
dt
¼ @ðdrÞ

@t
þ dv � =ðdrÞ¼ �r= � dv; (2:22a)

r
dðdvÞ

dt
¼�=ðdpÞ þ Zr2ðdvÞ þ Zv þ

1
3
Z

� �
=ð= � dvÞ � = � dP; (2:22b)

rcp
dðdTÞ

dt
þ aT

dðdpÞ
dt
¼ lr2ðdTÞ � = � dJq: (2:22c)

Eqn (2.22) represent the most general fluctuating hydrodynamics equations
for a one-component fluid in equilibrium. Since fluctuations are small, eqn
(2.22) can be linearized in the fluctuating thermodynamic variables, i.e.,
replacing material time derivatives by partial time derivatives. They then can
be readily solved by applying full spatiotemporal Fourier transforms, so as to
obtain the spectrum of the fluctuations. The calculations are rather
straightforward and have been presented in the literature,4,15 leading to the
well-known Rayleigh–Brillouin spectrum for the fluctuations.

For many applications one can use a Boussinesq approximation, namely
assume that the equation of state can be approximated by r¼ r0� ar0(T�T0),
or dr¼�ar0dT, assuming that the isothermal compressibility is negligibly
small, and fluctuations in pressure are thermodynamically independent of
temperature or density fluctuations. This approximation is referred to as the
Boussinesq approximation20,21 in the context of fluids subjected to tem-
perature gradients. The Boussinesq approximation is generally good for
liquids that can sustain large temperature differences (fluctuations) with
negligible small associated (through the equation of state) pressure differ-
ences. The Boussinesq approximation is not good for gases. A full rigorous
discussion of the Boussinesq approximation22 requires switching to di-
mensionless variables and a series expansion in some small parameters. As
discussed in the relevant literature,20,22 one obtains

0¼= � dv, (2.23a)

r0
dðdvÞ

dt
¼� =ðdpÞ þ Zr2ðdvÞ � = � dP; (2:23b)

r0cp
dðdTÞ

dt
¼ lr2ðdTÞ � = � dJq: (2:23c)
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In the Boussinesq approximation, the (fluctuating) flow is divergence free,
eqn (2.23a). Furthermore, the temperature fluctuations are uncoupled from
pressure fluctuations, and only nonlinearly coupled to velocity fluctuations
through their appearance in material derivatives. However, since fluctu-
ations are small, one can linearize in the fluctuating fields, in which case
temperature fluctuations can be directly obtained from eqn (2.23c). Indeed,
upon applying a full spatiotemporal Fourier transform to (linearized) eqn
(2.23c) one obtains:

dTðo; qÞ¼
�iqadJq;aðo; qÞ
r0cpðioþ aq2Þ ; (2:24)

where o is the frequency and q the wave vector of the fluctuations, and
summation over repeated indices is understood. To deduce the correlation
function of the temperature fluctuations, one needs the correlation function
of the random force appearing in the right-hand side of eqn (2.23c), which is
obtained by applying Fourier transforms to the corresponding FDT, eqn
(2.5). Introducing the notation F1(o,q)¼�i(r0cp)�1qadJq,a(o,q), one arrives
at:14–16

F*
1ðo; qÞ F1ðo0; q0Þ

� �
¼ 2kBlT2

r2c2
p

q2ð2pÞ4dðo� o0Þ dðq� q0Þ; (2:25)

where the subscript 0 has been dropped from both the equilibrium density
r0 and the equilibrium temperature T0 in the prefactor of the FDT, eqn (2.5).
From eqn (2.25) one sees that the correlation function of the temperature
fluctuations will be proportional to delta functions in frequency and wave
vector, namely:

hdT*(o,q) dT(o0,q0)i¼ S(o,q)(2p)4 d(o�o0)d(q� q0), (2.26)

where S(o,q) is a structure factor representing the spectrum of the tem-
perature fluctuations at a given wave vector. Fluctuations with different
frequencies or wave vectors are uncorrelated. The structure factor depends
only on the magnitude q of the wave vector q, meaning that the spectrum is
spatially isotropic. From eqn (2.24) and making use of eqn (2.25) and (2.26),
one obtains the explicit expression:

Sðo; qÞ¼ kBT2

rcp

2aq2

o2 þ a2q4 : (2:27)

Eqn (2.27) represents a single Lorentzian centred at o¼ 0, known as
Rayleigh line in the frequency spectrum. The Boussinesq approximation is
applicable when the Rayleigh line and the Brillouin lines are well separated.

Next, applying double inverse Fourier transforms in the two frequencies to
eqn (2.26) we obtain

hdT*(q,t) dT(q0,t0)i¼ S(q,|t� t0|)(2p)3 d(q� q0), (2.28)
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with S(q,t) being the time correlation function of temperature fluctuations.
From eqn (2.27)

Sðq; tÞ¼ kBT2

rcp
expð�aq2tÞ; (2:29)

and we see that temperature fluctuations in equilibrium decay diffusively
with a single decay rate aq2 that is proportional to the square of the wave
number. Finally, applying inverse Fourier transforms to eqn (2.28) in the two
wave vectors and setting t¼ t0, we obtain the real-space equal-time correl-
ation of temperature fluctuations in equilibrium, namely:

dT*ðr; tÞ dTðr0; tÞh i¼ kBT2

rcp
dðr � r0Þ; (2:30)

that is proportional to a delta function, so that density fluctuations in
equilibrium at two different spatial points are uncorrelated, and equal-time
fluctuations are spatially short-ranged.

To conclude this section, it is interesting to consider fluctuations at the
same spatial location. The value of the delta function when r¼ r0 is the in-
verse of the volume of one fluid element (or point) V�1. With the Boussinesq-
like incompressible assumption adopted in this section, fluctuations in the
(internal) energy density are du¼ cpdT, and the fluctuations in the total en-
ergy U contained in an element of volume V are dU¼ VrcpdT. Hence, setting
r¼ r0 in eqn (2.30) we obtain

hðdUÞ2i¼ V 2r2c2
p

kBT2

rcp

1
V
¼Cp kBT2;

where Cp¼ rVcp is the total heat capacity. Of course, one recognizes above
(for the particular case of an incompressible system) the expression for the
energy fluctuations in the canonical ensemble, as presented in any textbook
on classical statistical physics.2 This result confirms the consistency of
fluctuating hydrodynamics and the fluctuation–dissipation theorem.

2.4.2 Concentration Fluctuations at Large Lewis Number

The fluctuating hydrodynamics equations for a binary mixture are eqn
(2.9a,b), (2.19) and (2.21). Similarly to the case of a one-component fluid,
a deterministic stationary solution is: v(r,t)¼ 0, r(r,t)¼ r0, p(r,t)¼ p0,
w(r,t)¼w0 and T(r,t)¼T0, where r0, p0 w0 and T0 are the equilibrium density,
pressure, concentration and temperature, independent of r and t, and re-
lated by an equation of state r0¼ r(p0,T0,w0). Again, due to random thermal
forcing, spontaneous fluctuations around these equilibrium values will
appear. The spatiotemporal evolution of these fluctuations can be studied,
in general, by substituting r(r,t)¼ r0þ dr(r,t), T(r,t)¼T0þ dT(r,t), p(r,t)¼
p0þ dp(r,t), w(r,t)¼w0þ dw(r,t) and v(r,t)¼ 0þ dv(r,t) into all the derivatives
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contained in the fluctuating hydrodynamics equations for a binary mixture,
so as to obtain:

dðdrÞ
dt
¼�rð= � dvÞ; (2:31a)

r
dðdvÞ

dt
¼�=ðdpÞ þ Zr2ðdvÞ þ Zv þ

1
3
Z

� �
=ð= � dvÞ � = � dP; (2:31b)

dðdwÞ
dt

¼D r2ðdwÞ þ kT

T
r2ðdTÞ

� 	
� 1
r

= � dJ1; (2:31c)

dðdTÞ
dt
þ aT
rcp

dðdpÞ
dt
¼ðaþ DeDÞr2ðdTÞ þ DT

kT
eDr2ðdwÞ � 1

rcp
= � dJ 0q: (2:31d)

This is a system of six coupled partial stochastic differential equations.
While upon linearization in the fluctuating fields and application of Fourier
transforms eqn (2.31) can be analytically solved in general,6,19 in many
practical applications the following approximations apply:

1. A Boussinesq-like approximation,20,21 similar to the one adopted in
Section 2.4.1 for a one-component fluid. This approximation trans-
forms the total mass balance (2.31a) into a divergence-free flow con-
dition, and uncouples pressure from the heat eqn (2.31d).

2. Neglecting the Dufour effect: eD¼ 0. Although Dufour effect is im-
portant for gases, because of the presence of a c�1

p term in eqn (2.17), it
can be neglected in most liquid mixtures.23

3. Considering the large Lewis-number limit.24 The Lewis number is
Le¼ a/D, which is indeed large for many liquid mixtures. In the limit
Le-N, any coupling between the concentration fluctuations and the
temperature fluctuations vanishes.24,25 Moreover, since a large Lewis
number also implies that velocity fluctuations decay much faster than
temperature and concentration fluctuations, the time derivative in the
left-hand side of eqn (2.31b) can also been neglected. In some refer-
ences,26 this approximation is referred to as large-Schmidt-number
approximation.

With the approximations listed above the fluctuating hydrodynamics equations
for fluctuations around an equilibrium state of a binary mixture simplify to:

0¼= � dm, (2.32a)

0¼�=(dp)þ Zr2(dm) � = � dP, (2.32b)

dðdwÞ
dt

¼ @ðdwÞ
@t
þ ðdv � =Þdw¼Dr2ðdwÞ � 1

r
= � dJ1; (2:32c)
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dðdTÞ
dt

¼ @ðdTÞ
@t
þ ðdv � =ÞdT ¼ ar2ðdTÞ � 1

rcp
= � dJ 0q: (2:32d)

Notice that eqn (2.32d) for the temperature fluctuations is uncoupled from
(2.32c) for the concentration fluctuations, while both are only nonlinearly
coupled to eqn (2.32b) for the velocity fluctuations through the material time
derivative. However, since fluctuations are small, nonlinear terms can be
neglected, transforming eqn (2.32) into a set of linear stochastic partial
differential equations, that can be readily solved.

For instance, we can consider (2.32c) for the concentration fluctuations,
which has exactly the same structure as eqn (2.23c) for the temperature
fluctuations in a one-component fluid. Hence, the correlation function of
the concentration fluctuations in a binary mixture in equilibrium has a
similar structure to that found in eqn (2.26) to (2.30) for the temperature
fluctuations in a one-component fluid. In particular, one has

hdw*(o,q) dw(o0,q0)i¼C(o,q)(2p)4 d(o�o0) d(q� q0), (2.33)

where C(o,q) is now the structure factor representing the spectrum of the
concentration fluctuations at a given wave vector. The explicit expression for
C(o,q) can easily be obtained from the (linearized) eqn (2.32c) and the FDT
for the random diffusion flux, eqn (2.18c):

Cðo; qÞ¼ kBT
r

@w
@m

� �

T;p

2Dq2

o2 þ D2q4 : (2:34)

and the corresponding time-correlation function

Cðq; tÞ¼ kBT
r

@w
@m

� �

T;p
expð�Dq2tÞ: (2:35)

Hence, the concentration fluctuations decay diffusively with decay rate Dq2.
Finally, just as with the temperature fluctuations in a one-component fluid,
the equal-time concentration fluctuations in a binary mixture are spatially
short-ranged:

hdw*ðr; tÞ dwðr0; tÞi¼ kBT
r

@w
@m

� �

T;p
dðr � r0Þ: (2:36)

To end this section, we note that eqn (2.34) to (2.36) reproduce what would
be obtained from taking approximations 1 to 3 above in the full spectrum as
calculated from eqn (2.31) and including all the couplings. For simplicity, we
preferred to take the limit in the working equations before any detailed
calculation.

2.5 Alternative Approaches
As reviewed by other authors,27,28 there exists an alternative method to
fluctuating hydrodynamics for dealing with thermal fluctuations in
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equilibrium systems, namely, the arbitrary-initial-condition method. This
method was pioneered by Mountain et al.29,30 and has been adopted in the
well-known books of Berne and Pecora,31 Boon and Yip,32 and Hansen and
McDonald.33 It consists in solving deterministic (with no random contri-
butions) linearized hydrodynamic equations with arbitrary initial con-
ditions. For instance,30 for concentration fluctuations in a binary mixture,
one considers the deterministic version of eqn (2.31c), linearize it in the
fluctuating fields and Fourier transform in space, so as to obtain:

@ðdwÞ
@t

¼�Dq2 dw; (2:37)

which can be readily solved for dw(t) as a function of an arbitrary initial value
dw(0). One then multiplies the solution dw(t) of eqn (2.37) by dw(0), averages
over all initial conditions, and obtains the dynamic hdw(t)dw(0)i correlation
function as a function of the static hdw2(0)i correlations, namely:

hdw(t)dw(0)i¼ hdw2(0)i exp(�Dq2t). (2.38)

Some other authors34 multiply eqn (2.37) itself by an arbitrary initial con-
dition, and then average over fluctuations, arriving at evolution equations
for the dynamic correlations that are then solved, leading to the same eqn
(2.38). Next, to complete the calculation by the Mountain29 method one
needs expressions for the static correlations hdw2(0)i, which are obtained
from equilibrium statistical physics (thermodynamic fluctuation theory)
and yield

hdw2ð0Þi¼ kBT
r

@w
@m

� �

T;p
: (2:39)

The two approaches, fluctuating hydrodynamics and arbitrary initial
conditions, are fully equivalent for fluctuations in equilibrium systems, and
eqn (2.38) and (2.39) exactly reproduce eqn (2.35) above. However, unlike the
Mountain approach, only fluctuating hydrodynamics can be extended to
fluctuations in systems in non-equilibrium states, as will be shown in
Chapter 3. In the Mountain method, eqn (2.39) is no longer valid outside
equilibrium. The presence of gradients, due to mode-coupling phenomena
at the linear level that are not present in equilibrium, leads to equal-time
fluctuations that are substantially enhanced with respect to their equi-
librium values. The arbitrary initial-condition approach29 cannot be ex-
tended to non-equilibrium fluctuations because there is not, in general, an
accepted expression for the ‘‘entropy’’, from which the proper alternative to
eqn (2.39) can be deduced. However, as demonstrated in Chapter 3, adopting
a local version of the FDT (2.18c) allows a natural extension of fluctuating
hydrodynamics to deal with non-equilibrium systems.

The emphasis of this chapter has been on the basic theoretical
background of fluctuating hydrodynamics and its connection with non-
equilibrium thermodynamics, stressing the aspects more useful for the
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interpretation of light-scattering experiments.31–33 Before concluding we
should mention, however, that numerical simulation of fluctuating-hydro-
dynamics problems has become a very active field of research.26,35–40

Numerical simulations are useful in understanding the nature of thermal
fluctuations, particularly for complex systems,26 where a full theory in-
corporating all physically relevant issues, like boundary conditions,36 non-
linear terms,37,40 spatial variability of thermophysical properties, etc.,
becomes increasingly difficult.
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CHAPTER 3

Thermal Fluctuations in
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3.1 Introduction
This chapter will be concerned with thermal fluctuations in fluids and fluid
mixtures that are in a quiescent (i.e., non-convective and non-turbulent)
steady non-equilibrium state. There is a qualitative difference between
thermal fluctuations in fluids in equilibrium and out of equilibrium.
Temperature and concentration fluctuations in fluids in thermodynamic
equilibrium are generally uncorrelated at hydrodynamic length scales, as
reviewed in Section 2.4 of Chapter 2. On the other hand, in non-equilibrium
states these fluctuations exhibit an algebraic dependence on the distance
variable r and become long ranged on hydrodynamic scales.

Non-equilibrium thermodynamics is based on a local-equilibrium
assumption, which implies that at each point in space and time the local
thermodynamic properties are related by the same thermodynamic relations
as for a fluid in equilibrium. The evidence for the validity and applicability of
this local-equilibrium assumption for the thermodynamic properties is
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reviewed in Chapter 4. While the local-equilibrium assumption remains
valid for the fluctuation–dissipation theorem (FDT) in systems out of
equilibrium, local equilibrium no longer holds for the non-equilibrium
temperature and concentration correlation functions. This failure is obvious
for fluids undergoing thermal convection or turbulence, but also occurs
in quiescent non-equilibrium states far away from any hydrodynamic
instability. That is, in the presence of a temperature gradient or a concen-
tration gradient, the correlation functions always exhibit a non-equilibrium
enhancement, which becomes long ranged on hydrodynamic scales. Hence,
buoyancy and finite-size effects need to be included to specify the wave-
number dependence of non-equilibrium correlation functions.

To elucidate the nature of non-equilibrium fluctuations we shall specif-
ically consider in this chapter thermal fluctuations in fluids and fluid
mixtures in the presence of a stationary temperature gradient, which is the
most studied case so far. Reviews of the subject have been presented by two
of us some time ago.1,2 Some interesting subsequent developments will be
included in the present chapter.

3.2 Non-equilibrium Enhancement of Thermal
Fluctuations

We consider a one-component fluid located between two horizontal plates
separated by a distance L and subject to a stationary temperature gradient of
magnitude rT¼ (T1�T2)/L, where T1 and T2 are the temperatures of the
upper and lower plates, respectively, as indicated schematically in Figure 3.1.
We adopt a Cartesian coordinate system with the z-axis in the vertical
direction, i.e., opposite to the direction of the gravitational acceleration
vector g. The stability of this configuration, often referred to as the Rayleigh–
Bénard problem, is controlled by the Rayleigh number

Ra¼ aL4g � =T
na

; (3:1)

where a is the thermal expansion coefficient, a the thermal diffusivity, and n
the kinematic viscosity (related to the shear viscosity Z and the density r by
n¼ Z/r). For normal fluids (aZ0), the Rayleigh number is negative when the
fluid layer is heated from above (T1ZT2) and positive when heated from

Figure 3.1 Schematic representation of a fluid layer in a temperature gradient
(T1�T2)/L.
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below (T1 rT2). The fluid layer is in a quiescent state with zero fluid velocity
provided that

RarRac, (3.2)

where Rac is the critical Rayleigh number associated with the onset of
convection.3 In this chapter we shall only consider quiescent states for which
condition (3.2) is satisfied.

As in Chapter 2, we consider here temperature fluctuations associated
with the Rayleigh line in the fluctuation spectrum, which can be
observed experimentally with light scattering4 or with shadowgraphy.5,6 To
obtain the relevant equations for the fluctuations, we need to consider
T(r,t)¼T0(r)þ dT(r,t), r(r,t)¼ r0(r)þ dr(r,t) and v(r,t)¼ 0þ dv(r,t), where the
fluctuating contributions dT(r,t), dr(r,t) and dv(r,t) depend on the location
vector r and the time t. Unlike in equilibrium fluctuating hydrodynamics,
the local equilibrium temperature T0(r) and the local equilibrium density
r0(r) now also depend on the position r. As in equilibrium, to derive the
temperature fluctuations we may continue to use the Boussinesq
approximation

dr¼�ar0dT, (3.3)

which gave eqn (2.23c) for the temperature fluctuations. Since rT0a0, the
equation for the temperature fluctuations now becomes

rcp
@dT
@t
þ dv � =T0

� �
¼ l=2dT � = � dJq; (3:4)

where cp is the isobaric specific heat capacity, l the thermal conductivity and
dJq the fluctuating heat flux.

We note that the advective term in the material time derivative in eqn
(2.23c) causes a coupling between the temperature fluctuations and the
velocity fluctuations through the appearance of dv � rT0 in eqn (3.4). The
general phenomenon that a gradient causes a coupling between two
hydrodynamic modes, in this case between the heat mode and a viscous
mode, is the fundamental reason why fluctuations in non-equilibrium states
are qualitatively different from fluctuations in equilibrium states. Hence, to
determine the magnitude and time dependence of the non-equilibrium (NE)
temperature fluctuations, we must supplement eqn (3.4) with the corres-
ponding equation for the velocity fluctuations, which is given in the Bous-
sinesq approximation by eqn (2.23b):

r
@dv
@t
¼�rdpþ Zr2dv� = � dP; (3:5)

where dP is the fluctuating pressure tensor. Here we consider temperature
fluctuations at constant pressure and we may substitute dp¼ 0 in eqn (3.5).
Instead of temperature fluctuations at constant pressure, one may consider
fluctuations of the entropy density s at constant pressure that are related to
the temperature fluctuations by ds¼ (cp/T)dT. We see from eqn (3.4) that the
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temperature fluctuations only couple with transverse velocity fluctuations
dvz in the direction of the temperature gradient: A convenient procedure in
fluctuating hydrodynamics to obtain an equation for these wall-normal
velocity fluctuations is to apply a double rotational to eqn (3.5):1

r
@r2vz

@t
¼ Zr2ðr2dvzÞ � ð= � = � = � dPÞz; (3:6)

where (= �= �= � dP)z is the z component of = �= �= � dP and where the
divergence-free flow condition (2.23a) has been used.

To solve eqn (3.4) and (3.6) we need the correlation functions for the
fluctuating fluxes dJq and dP. Since these are noise correlations produced by
molecular collisions occurring at distances over which any spatial depend-
ence of the average temperature T0 is still negligibly small, we assume that
these noise correlations are given by the local-equilibrium versions of the
FDT. Hence, we assume that eqn (2.5) and (2.8) continue to be valid in
nonequilibrium, but with the temperature T to be identified with the local
temperature T0:

dJq;aðr; tÞ dJq;bðr0; t0Þ
� �

¼ 2kBT2
0l dðr � r0Þdðt� t0Þ; (3:7)

hdPa,b(r,t) dPm,n(r0,t0)i¼ 2kBT0Z(da,mdb,nþ da,ndb,m)d(r� r0)d(t� t0), (3.8)

where kB is Boltzmann’s constant. In practice, the local equilibrium tem-
perature T0 and the transport coefficients l and Z in the prefactor in eqn (3.7)
and (3.8) may be approximated by their average value in the fluid layer. In
the subsequent equations, thermodynamic and transport properties without
a subscript 0 are to be identified with their local-equilibrium values at the
average local temperature, i.e., at the center of the fluid layer.

If one applies a spatiotemporal Fourier transformation to eqn (3.4) and
(3.6) and to the resulting correlation functions an inverse Fourier transfor-
mation, as was done in Section 2.4.1 for the equilibrium correlation func-
tions, one readily obtains1

dTðq; tÞdTðq; 0Þh i¼ kBT2

rcp
ð1þ ATÞ expð�aq2tÞ � Av expð�nq2tÞ
� �

; (3:9)

where the NE amplitudes AT and Av are given by

AT¼
cp

Tðn2 � a2Þ
n
a
ðqJrT0Þ2

q6 ; Av¼
cp

Tðn2 � a2Þ
ðqJrT0Þ2

q6 : (3:10)

Here q is the magnitude of the wave vector q of the fluctuations and qJ the
magnitude of its component qJ in the horizontal x–y plane, i.e.,
perpendicular to the temperature gradient. From eqn (3.9) we see that the
NE temperature fluctuations contain a contribution from a heat mode
decaying exponentially as a function of the correlation time t with an
exponential decay rate aq2 and from a viscous mode with decay rate nq2.
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The amplitudes of the NE contributions in eqn (3.10) reach their maximum
values for q¼ qJ, i.e., when the heat mode couples with the transverse
viscous mode along the direction of the temperature gradient, so that

AT¼
cp

Tðn2 � a2Þ
n
a
ðrT0Þ2

q4 ; An¼
cp

Tðn2 � a2Þ
ðrT0Þ2

q4 : (3:11)

Eqn (3.9) is the nonequilibrium extension of the time-dependent equi-
librium correlation function given by eqn (2.29) in Chapter 2.

The equations above for the NE temperature fluctuations were originally
discovered by Kirkpatrick et al.7 Ronis and Procaccia8 suggested that they
could be obtained by extending Landau’s fluctuating hydrodynamics to
nonequilibrium states, a suggestion that was implemented by several in-
vestigators.9–13 Light-scattering experiments of Sengers and collaborators
have confirmed the validity of eqn (3.9) with considerable accuracy.14–16

As an example, we show in Figure 3.2 the NE amplitudes AT and An as a
function of (rT0)2/q4. The symbols indicate the experimental amplitudes
obtained for liquid toluene at an average temperature of 40 1C. The lines
represent the amplitudes calculated from the available thermal-property
data for toluene at 40 1C without any adjustable parameters. It was verified
that the effect of any temperature dependence of the thermophysical prop-
erties over the height of the fluid layer was negligibly small, justifying
identification of the properties with their average value at the center of the
fluid layer.15 Results from more recent shadowgraph experiments will be
discussed in Section 3.3. All these experiments have confirmed the validity of
extending the fluctuation–dissipation theorem to non-equilibrium states.

In this chapter we shall be especially interested in the total intensity of the
NE fluctuations that follows from eqn (3.9) by taking t¼ 0:

dTðqÞh i2¼ kBT2

rcp
1þ

cp

Tnðn þ aÞ
qJrT0ð Þ2

q6

� �
: (3:12)

Thus, for any non-zero value of the temperature gradient rT0, the tem-
perature fluctuations will exhibit a NE enhancement that for small wave
numbers will diverge as q�4.

As discussed in Section 2.4.2 of Chapter 2, in binary mixtures one will
encounter not only temperature fluctuations, but also concentration
fluctuations. Extension of the theory to binary mixtures in the presence of a
temperature gradient was first implemented by Law and Nieuwoudt.17 In
mixtures, not only the temperature fluctuations, but also the concentration
fluctuations will exhibit pronounced NE enhancements. Both types of NE
fluctuations have been observed experimentally with an intensity again
diverging as q�4.16,18 In general there will also be a coupling between the
concentration and temperature fluctuations.16

An important parameter is the Lewis number Le which is the ratio of the
thermal diffusivity a governing the decay of the temperature fluctuations,
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and the mass diffusion coefficient D governing the decay of the concen-
tration fluctuations:

Le¼ a
D
: (3:13)

A significant simplification occurs when the Lewis number is large, in
which case the coupling between the heat and concentration modes and,
hence, between temperature and concentration fluctuations, disappears and
the concentration fluctuations become dominant.19 As in Chapter 2, we
write the concentration as w(r,t)¼w0(r,t)þ dw(r,t), where w(r,t) is the weight
fraction of one of the components and w0(r,t) its local equilibrium value but
now with rw0a0. Then eqn (2.32c) for large values of Le becomes:

r
@dw
@t
þ dv � rw0

� �
¼ rDr2dw�r � dJ1; (3:14)

Figure 3.2 Nonequilibrium fluctuation amplitudes AT and An as a function of
(rT0)2/q4 for liquid toluene at 40 1C. The symbols indicate experimental
values and the lines represent the theoretical prediction from fluctuating
hydrodynamics.
Copyright (1992) by The American Physical Society.15
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where dJ1 is the fluctuating diffusion flux (see eqn (2.16b)). To solve eqn
(3.14) we need the correlation function for the fluctuations dJ1, for which we
adopt again the local-equilibrium version of the FDT consistent with eqn
(2.18c):

dJ1;aðr; tÞ dJ1;bðr0; t0Þ
� �

¼ 2kBTrD
@w
@m

� 	

T;p
dðr � r0Þdðt� t0Þ; (3:15)

where (@w/@m)T,p is the osmotic compressibility. For the correlation function
of the fluctuating pressure tensor we can continue using eqn (3.8). Just as the
intensity of the NE temperature fluctuations eqn (3.10) follows from eqn
(3.4) for the temperature fluctuations, we now obtain the intensity of the
concentration fluctuations from eqn (3.14)

dwðqÞh i2¼ kBT
r

@w
@m

� 	

T;p
1þ 1

nD
@w
@m

� 	�1

T;p

ðqJrw0Þ2

q6

" #
: (3:16)

A convenient experimental procedure for establishing a concentration
gradient rw0 is applying a temperature gradient rT0 to the fluid mixture
which induces a concentration gradient through the Soret effect:16,18,20–22

rw0¼�w0(1�w0)STrT0, (3.17)

where ST is the appropriate Soret coefficient. The validity of eqn (3.16) has
also been confirmed experimentally.20,22 The theory has recently been ex-
tended to ternary mixtures by Ortiz de Zárate et al.23

Several investigators have also studied concentration fluctuations in the
presence of transient concentration gradients in isothermal liquid mixtures
induced by free diffusion.24–27 The theory developed above pertains to NE
fluctuations in stationary states. Nevertheless, these transient experiments
have also confirmed that the NE concentration fluctuations vary as q�4. The
question of when spatial and temporal variations of the gradient will cause
deviations of the stationary solution given by eqn (3.12) and (3.16) requires
further research.28

It is interesting to compare the NE fluctuations with critical fluctuations
in fluids. The intensity of the critical fluctuations is known to vary with
the wave number q as29–31 q�2þZcDq�2 (Zc¼ 0.033). Hence, in real space the
critical fluctuations will vary as26 r�1þZcDr�1. On the other hand, the
dependence of the NE fluctuations on q�4 implies that in real space the NE
fluctuations will depend linearly on r, so that the correlations extend over the
entire system.32 Hence, the NE fluctuations are having a major impact on
further developments in nonequilibrium statistical physics. The NE fluctu-
ations cannot increase indefinitely as q-0. At small wave numbers, the
intensity of the NE will be suppressed by gravity and by the limited size of the
system. In addition, the NE fluctuations are inducing NE forces that need to
be relaxed. The remainder of this chapter will be devoted to a discussion of
these remarkable features associated with NE fluctuations.
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3.3 Gravity Effects
The fact that gravity will suppress the NE fluctuations at small wave numbers
was originally predicted by Segrè et al.33,34 Gravity induces a pressure
gradient in the Navier–Stokes eqn (1.33)

=p¼ rg¼ r0 1� a T0 � T0ð Þgẑ½ �; (3:18)

where r0 and T0 are the average density and temperature in the center of the
fluid layer and where ẑ is the unit vector in the z-direction. As a consequence,
eqn (3.6) for the velocity fluctuations becomes35

r
@r2vz

@t
¼ Zr2ðr2dvzÞ þ ag

@2dT
@x2 þ

@2dT
@y2

� 	
� ð= � = � = � dPÞz: (3:19)

In this section we consider the solution of eqn (3.4) for the temperature
fluctuations in conjunction with eqn (3.19) for the velocity fluctuations for a
fluid layer heated from above, i.e., for negative values of the Rayleigh
number Ra. If a small adiabatic contribution (aT/cp)g to the temperature
gradient is neglected, one finds for Rar0 that the intensity (3.12) of the
temperature fluctuations in a one-component fluid changes into1,33,35

dTðqÞh i2¼ kBT2

rcp
1þ

cpðrT0Þ2L4

Tðn þ aÞ
~q2
J

~q6 � Ra ~q2
J


 �
" #

; (3:20)

where ~q¼ qL and ~qJ¼ qJ L are dimensionless wave numbers. When q¼ qJ,
eqn (3.20) reduces to

dTðqÞh i2¼ kBT2

rcp
1þ

cpðrT0Þ2L4

Tðn þ aÞ
1

ð~q4 � RaÞ

" #
: (3:21)

For large values of the wave number ~q4 � Raj j the NE enhancement of the
fluctuations will indeed be proportional to ~q�4 in agreement with eqn (3.12),
but for ~q4 � Raj j the NE enhancement will reach a finite limit. The crossover
will occur at a wave number6,33

qcr¼
ag rT0j j
na

� 	1=4

: (3:22)

As an example we show in Figure 3.3 the intensity S(q)¼hdT(q)i2,
given by eqn (3.21), relative to the local equilibrium value SE(q)¼ kBT2/rcp

as a function of the wave number q¼ qJ, predicted for toluene with a
temperature gradient of rT0¼ 200 K � cm�1.33 For large wave numbers the
intensity increases as q�4 with decreasing wave number and then crosses
over to a finite value as q-0. Note that the NE enhancements of the
fluctuations in the fluid layer exceed values more than 106 times the local-
equilibrium value for these fluctuations.
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For a binary mixture in the large Lewis-number approximation, eqn (3.16)
changes (for q¼ qJ) into1,6,21,25,34,36,37

dwðqÞh i2¼ kBT
r

@w
@m

� 	

T;p
1þ @w

@m

� 	�1

T;p

ðrw0Þ2L4

nD

~q2
J

~q6 � cRa Le ~q2
J


 �
" #

: (3:23)

In eqn (3.23) c is the separation ratio which is the ratio of the density
gradient produced by the concentration gradient and the density gradient
produced by the gradient: c¼ brw0/arT0, where b is the solutal expansion
coefficient. The crossover from a ~q�4 behavior for large wave numbers to a
constant limiting value for small q now occurs at a wave number6,34,37

qcr¼
bg rw0j j
nD

� 	1=4

: (3:24)

The crossover from a q�4 behavior for large wave numbers to a limiting
value at smaller wave numbers has been observed experimentally both with
light scattering20,21,25 and shadowgraphy.24,26,27,38–40 In Figure 3.4 we show
the results of early light-scattering measurements obtained by Vailati and
Giglio20 for a liquid mixture of anilineþ cyclohexane. To get a large value of
the Soret coefficient, the experiments were conducted at a temperature 10 K

Figure 3.3 Nonequilibrium enhancement of the temperature fluctuations predicted
for toluene in a temperature gradient of rT0¼ 200 K � cm�1. The dashed
line indicates the dependence on q�4 in the absence of gravity. The solid
curve represents the actual wave number dependence in the presence of
gravity.
Reprinted with permission from Physica A.33
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above the critical phase-separation temperature Tc of the solution. The data
do show the predicted crossover from an initial increase proportional to q�4

to a finite limiting value of the intensity of the fluctuations, which indeed
becomes of the order of 106 times the local-equilibrium value. Not sur-
prisingly, these huge NE fluctuations have been referred to as ‘‘giant’’ fluc-
tuations in the literature.24,38,41,42

3.4 Finite-size Effects
As a consequence of their very long-ranged nature, the NE fluctuations
extend over the entire spatial extent L of the fluid layer. Hence, to obtain
a complete representation of the NE fluctuations one needs to obtain the
solution of the equations for the fluctuations subject to the appropriate
boundary conditions. For the temperature fluctuations one considers per-
fectly conducting walls, so that

dT¼ 0 at z¼ 0, L. (3.25)

Figure 3.4 Intensity of light scattered by a mixture of aniline and cyclohexane as a
function of the scattering wave number q¼ qJ reported by Vailati and
Giglio.20 Symbols indicate experimental intensities obtained with
rT0¼ 163 K � cm�1. The solid curve represents a fit to eqn (3.23) with
rw0 given by eqn (3.17).
Copyright (1996) by The American Physical Society.20
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For the velocity fluctuations one considers either stress-free or rigid-
boundary conditions.43 The advantage of stress-free boundary conditions
is that one can obtain an exact analytic solution of the fluctuating-
hydrodynamics equations. For an incompressible fluid, the stress-free
boundary conditions become

dvz ¼ 0;
d2vz

dz2 ¼ 0 at z¼ 0; L: (3:26)

If we solve eqn (3.4) and (3.19) for the NE temperature fluctuations in a
one-component fluid subject to the boundary conditions (3.25) and (3.26),
we find35

dTðqÞh i2¼ kBT2

rcp
1þ

cpðrT0Þ2L4

Tðn þ aÞ
~SNEðqÞ

" #
; (3:27)

with

~SNEðqÞ¼
~q2
J

L
2
X1

N¼ 1

sin ðNpz=lÞ sin ðNpz0=LÞ
~q2
J þ N2p2


 �3�Ra ~q2
J

: (3:28)

Here ~SNEðqÞ is a normalized NE enhancement representing the modifi-
cation of the NE enhancement of the fluctuations due to the combined
gravity and finite-size effects. Eqn (3.27) is valid not only when the fluid layer
is heated from above, but also when heated from below, since the finite-size
effects stabilize the system as long as condition (3.2) is satisfied.

In Figure 3.5 we show this normalized ~SNE for q¼ qJ as a function of the
dimensionless wave number ~q¼ qL for three different values of the Rayleigh
number. For any value of the Rayleigh number, eqn (3.28) implies a cross-
over from a ~q�4 behavior for large ~q to a ~q2 behavior for very small ~q. For
negative Rayleigh numbers, i.e., when the fluid layer is heated from above,
the enhancement exhibits a crossover from a ~q�4 behavior at large ~q to a
gravitationally induced plateau at intermediate wave numbers, as discussed
in the preceding section, to ultimately a ~q2 behavior for very small ~q. The
curve for Ra¼ 0 indicates the behavior to be expected in the absence of
gravity (g¼ 0). For positive values of the Rayleigh number, gravity enhances
the fluctuations causing a divergence of the NE fluctuations at a critical
Rayleigh number Rac and a critical wave number qc.1,35,44

For a comparison with experiments it is advisable to consider the more
realistic rigid boundary condition obtained by replacing eqn (3.26) with43

dvz ¼ 0;
dvz

dz
¼ 0 at z¼ 0; L: (3:29)

In this case it is not possible to get an analytic solution, but a solution in a
Galerkin approximation has been obtained by Ortiz de Zárate and Sengers.45

The equivalent of eqn (3.27) and Figure 3.5 in this approximation can be
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found in ref. 45. The theory has been extended to binary fluid mixtures by
Ortiz de Zárate et al.46,47

Early attempts to measure NE temperature fluctuations induced by a
temperature gradient at larger wave numbers than accessible in traditional
light-scattering experiments have been reported by Ahlers and collabor-
ators.48,49 They used a shadowgraph apparatus, originally developed to
measure convection cells above the Rayleigh–Bénard instability,50 but im-
proved so as also to probe the NE fluctuations below the Rayleigh–Bénard
instability.5 A detailed quantitative comparison with the theoretical predic-
tion was hampered by the fact that the experiments were performed in fluids
close to the critical point, where the Rayleigh number becomes a rapidly
varying function of temperature. In addition, corrections due to finite ex-
posure times were needed. Nevertheless, the data are consistent qualitatively
with the prediction from fluctuating hydrodynamics. In addition, they gave
valuable information on the decay rate of the NE fluctuations close to the
Rayleigh–Bénard instability.49

Subsequently, a beautiful new shadowgraph instrument was developed
by Vailati et al.6 as part of a gradient-driven fluctuations experiment
(GRADFLEX) project of the European Space Agency in collaboration with the
National Aeronautics and Space Administration of the USA.6 With this
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Figure 3.5 Normalized contribution ~SNEð~qÞ representing the modification of the NE
temperature fluctuations due to gravity and finite-size effects as a func-
tion of the wave number calculated from eqn (3.28). The dotted curve
corresponds to Ra¼�5000 when the fluid layer is heated from below,
the dashed curve corresponds to Ra¼ 0 (g¼ 0), and the solid curve
corresponds to Ra¼ 600 close to the convective instability.
Reprinted with permission from Physica A.35
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instrument it became possible to investigate the NE fluctuations at negative
Rayleigh numbers far away from any convective instability. Experiments
were performed both on earth and at low gravity during a satellite mission.51

The results obtained from the GRADFLEX experiment for liquid CS2 are
shown in Figure 3.6.52 One sees that in the earth-based experiments the
intensity of the NE fluctuations again exhibits the crossover from a q�4

behavior for large wave numbers to a plateau value at smaller wave numbers,
just as the observations discussed in the previous section. The wave
numbers covered in the earth-based experiments are not yet small enough to
see the final limiting q2 behavior at smaller q. However, at microgravity the
NE fluctuations become so large that also the crossover to the limiting q2

behavior at smaller q is clearly seen in the range of wave numbers covered in
the experiment. These experimental results provide a dramatic confirmation
of the effect of gravity and finite size on the NE fluctuations predicted by
fluctuating hydrodynamics.

We note that gravity and finite-size effects will also modify the time de-
pendence of the NE fluctuations, which no longer will be a simple sum of
two exponentials as given in eqn (3.9).1,26,47,49,53,54 This feature requires
further research and is not addressed in the present chapter.

Fluctuating hydrodynamics also predicts an enhancement of the velocity
fluctuations in fluids in the presence of a velocity gradient, i.e., in laminar
flow.55,56 The NE velocity fluctuations also exhibit a crossover from a q�4

behavior for large q to a q2 behavior as q-0.57–61 However, the magnitude of
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Figure 3.6 Log–log plot of the NE enhancement of the fluctuations in liquid CS2 as a
function of qL. The symbols indicate the experimental data obtained
from the GRADFLEX instrument at rT0¼ 17.9 K � cm�1 (squares), at
rT0¼ 34.5 K � cm�1 (triangles), and at rT0¼ 101 K � cm�1, in micro-
gravity (upper curves) and on earth. The curves represent the theoretical
prediction from fluctuating hydrodynamics.45

Copyright (2011) by The American Physical Society.52
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the NE velocity fluctuations is substantially smaller than those of the NE
temperature and concentration fluctuations.59

3.5 Fluctuation-induced Nonequilibrium Forces
Generally, when thermal fluctuations are large and long ranged, they are
expected to create fluctuation induced forces in the fluid.62 They are fre-
quently referred to as Casimir or Casimir-like forces, since they have some
similarity with forces induced by electromagnetic fluctuations discovered by
Casimir.63 A common example of Casimir forces in fluids are those induced
by critical fluctuations, which were originally predicted by Fisher and de
Gennes64 and which have been investigated extensively in the literature.65–67

One finds a scale-dependent force per unit area, to be denoted as a critical
Casimir pressure pc, which is given by68

pc¼
kBT
L3 Y

L
x

� 	
; (3:30)

where Y is a finite-size scaling function with x being the correlation length
of the critical fluctuations.

As discussed in Section 3.2, the NE fluctuations are much larger and long
ranged than critical fluctuations Hence, one should expect that the NE
fluctuations will induce NE Casimir pressures even more significant than
critical Casimir pressures, as recently pointed out by Kirkpatrick et al.42,69

To elucidate the nature of the NE Casimir pressure, we consider the
pressure as a function of the conserved thermodynamic quantities, the mass
density r and the energy density e, to be distinguished from the specific
energy u in Chapters 1 and 2. The fluctuating pressure p(rþ dr,eþ de) is
then a function of the fluctuating mass density rþ dr and the fluctuating
energy density eþ de. Upon expanding p(rþ dr,eþ de) in terms of dr and
de we obtain

pðrþ dr; eþ deÞ¼ pðr; eÞ þ @p
@r

� 	

e
drþ @p

@e

� 	

r
de

þ 1
2

@2p
@r2

� 	

e
ðdrÞ2 þ 2

@2p
@r@e

� 	
drdeþ @2p

@e2

� 	

r
ðdeÞ2

" #
:

(3:31)

As was discussed in Section 3.2, the equations for the NE temperature
fluctuations in the preceding sections (and confirmed experimentally) were
obtained in the Boussinesq approximation dr¼�ar0dT in accordance with
eqn (3.3) and with zero linear pressure fluctuation

dp¼ @p
@r

� 	

e
drþ @p

@e

� 	

r
de¼ 0: (3:32)
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From eqn (3.3) and (3.32) we deduce that

de¼� @e
@r

� 	

p
dr¼ @e

@r

� 	

p
ar0dT : (3:33)

If we substitute eqn (3.3) and (3.33) into the expansion (3.31) for the
pressure and then take the average of the temperature fluctuations, we
obtain a NE contribution to the pressure given by

pNEðrÞ¼ �
1
2
a2r2 @p

@e

� 	

r

@2e
@r2

� 	

p
ðdTðrÞÞ2
� �

NE: (3:34)

In eqn (3.34) we only retain the NE contribution h(dT(r))2iNE to the tem-
perature fluctuations, since the equilibrium contribution is already con-
tained in the local equilibrium value of the pressure. With the help of some
thermodynamic relations,70 eqn (3.34) can be converted into

pNEðzÞ¼
rcpðg� 1Þ

2T
1� 1

acp

@cp

@T

� 	

p
þ 1
a2

@a
@T

� 	

p

" #
ðdTðzÞÞ2
� �

NE; (3:35)

where g is the ratio of the isochoric and isobaric specific heat capacities.69

We note that the fluctuation induced NE pressure depends on the co-
ordinate z in the direction of the temperature gradient.

The intensity h(dT(z))2iNE of the NE temperature fluctuations can be readily
obtained from eqn (3.27) by taking z0 ¼ z in eqn (3.28) and integrating
eqn (3.2) over the wave vector qJ. We thus obtain for the NE contribution to
the temperature fluctuations

ðdTðzÞÞ2
� �

NE¼
kBT3

48praðn þ aÞ Fðz; RaÞ (3:36)

with

Fðz; RaÞ¼ 48
ð

d~qJ

X1

N ¼ 1

~q3
J sin2 ðNpz = LÞ

~q2
J þ N2p2


 �3�Ra ~q2
J

: (3:37)

The NE fluctuation induced pressure pNE(z) is obtained by substituting
eqn (3.36) into eqn (3.35):69

pNEðzÞ¼
cpkBT2ðg� 1Þ
96paðn þ aÞ 1� 1

acp

@cp

@T

� 	

p
þ 1
a2

@a
@T

� 	

p

" #
Fðz; RaÞL rT0

T

� 	2

:

(3:38)

We note that for a fixed value of the temperature gradient rT0, the NE
Casimir pressure increases with the distance L. Since rT¼DT/L, for a fixed
temperature across the fluid layer, the NE fluctuation induced pressure will
vary as L�1, still a much slower variation than the L�3 variation of the critical
Casimir pressure given by eqn (3.30).
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The fluctuation induced NE pressure depends on the coordinate z through
the function F(z; Ra), as shown in Figure 3.7. To estimate the order of
magnitude of the NE Casimir pressures, we consider the effective value of
the fluctuation induced NE pressures in the fluid layer by replacing F(z;Ra) in
eqn (3.38) by its average

Fðz; RaÞh iz ¼
1
L

ðL

0
dz Fðz; RaÞ: (3:39)

The resulting values for this effective NE pressure pNE(L)¼hpNE(z)iz are
shown in Figure 3.8 for n-heptane for temperature differences of DT¼ 10 K
and DT¼ 25 K. The left panel shows the NE pressure when the fluid layer is
heated from above and the right panel when heated from below. We see
from this figure that the NE pressure pNE(L) at L¼ 10�4 m is of the order of
10�3 Pa or larger, which may be compared with a critical Casimir pressure of
the order of 10�9 Pa at this distance.69 Thus, NE Casimir pressures are orders
of magnitude larger than critical Casimir pressures.42,69 When the fluid is
heated from below, the average NE pressure first decreases with increasing

Figure 3.7 Amplitude F(z; Ra) of the fluctuation induced NE pressure for free
boundaries, given by eqn (3.36) as a function of ~z¼ z = L for three values
of the Rayleigh number. The solid curve is for Ra¼ 0 (g¼ 0), dashed
curve for negative Ra¼�3000, and dotted curve for positive Ra¼ 570
close to the convective instability.
Copyright (2014) by The American Physical Society.69
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plate separation L, but ultimately rises again so as to diverge as the critical
Rayleigh number is approached.

As mentioned above, the actual NE Casmir pressures are functions of z, as
shown in Figure 3.7, and thus induces a NE pressure gradient. Such an
induced NE pressure gradient violates mechanical equilibrium and needs to
be relaxed. In the absence of any particles in the fluid, this gradient will
cause a rearrangement of the local-equilibrium (LE) density profile so that
r(z)¼ rLE(z)þ rNE(z; L). However, the induced NE pressure gradient is suf-
ficiently large so that it may affect the movement of microparticles in the
fluid.69 In principle, the presence of an induced NE pressure or NE density
distribution is a violation of the assumption of local equilibrium. Since the
NE pressures are of the order of Pa or less, they are still minuscule compared
to normal fluid pressures of MPa. Hence, the assumption of local equi-
librium remains valid for normal applications of nonequilibrium thermo-
dynamics except, perhaps, very close to the convective instability. However,
local equilibrium is no longer valid when considering forces on micro-
particles in the presence of a gradient.

Just as with the NE temperature fluctuations, also the NE concentration
fluctuations in fluid mixtures will induce NE pressures. The fluctuation in-
duced pressures in fluid mixtures may be even more interesting than those
in one-component fluids. From eqn (3.12) and (3.16), we see that the ratio of
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Figure 3.8 Average NE pressure pNE¼hpNE(z)iz as a function of the distance L
between the plates for n-heptane at an average temperature of 25 1C at
a temperature difference of DT¼ 10 K (dashed curve) and DT¼ 25 K
(solid thick curve). The left panel shows the average NE pressure
when the fluid layer is heated from above with the thin lines indicating
the asymptotic behavior for small and large L. The right panel shows
the average NE pressure when the fluid layer when heated from below.
The vertical lines indicate the value of the plate separation Lc at which
the critical Rayleigh number is reached for each DT.
Copyright (2014) by The American Physical Society.69
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the NE contribution to the fluctuations in fluids and fluid mixtures is es-
sentially determined by a(nþ a)/nDDLe, which is large for most liquid so-
lutions. Furthermore, by inducing a concentration gradient through the
Soret effect in accordance with eqn (3.17), it should be possible to induce a
substantial concentration gradient with much smaller temperature differ-
ences than needed to create similar Casimir pressures in a one-component
fluid. This is a topic of continuing research.

Finally we note from nonequilibrium statistical physics that69

pNE¼ kNL(rT)2, (3.40)

where kNL is a non-linear Burnett coefficient.71 The time-dependent correl-
ation functions of the non-linear Burnett coefficients are known to diverge,
so that kNL consists of a bare molecular contribution kð0ÞNL and a divergent

contribution kð1ÞNLL proportional to L.71–73 Thus, apart from a contribution at a
molecular scale, we obtain

pNE¼ kð1ÞNLLðrTÞ2: (3:41)

On comparing eqn (3.38) with eqn (3.41), we see that we have determined
the contribution from the long-range NE fluctuations to a Burnett co-
efficient. Most interestingly, we conclude that a transport coefficient like kNL

not only diverges, but also depends on gravity and finite-size effects. These
features, though to a lesser extent, even apply to linear transport coefficients.
Long-range hydrodynamic fluctuations are responsible for the so-called
long-time tails70,74 in the time-dependent correlation functions for the
linear transport coefficients which also depend on gravity75 and finite-size
effects.76 The ubiquitous presence of long-range hydrodynamics has im-
portant implication for the theory of transport phenomena.41,77 As explained
in Chapter 1, to obtain the hydrodynamic equations, one supplements the
balance laws with linear relationships between fluxes and forces. The fact
that the Onsager coefficients in these linear relations themselves become
dependent on the solution of the hydrodynamic equations is sometimes
referred to as renormalization of the transport coefficients.78,79

Attempts have been made to extend linear nonequilibrium thermo-
dynamics by treating the entropy as a function of the classical variables and
of the dissipative fluxes, but assuming that this dependence is still local in
space.80 Since the fluctuations extend over the entire system, the validity of
such a locality assumption is questionable.

3.6 Conclusions
Fluctuating hydrodynamics has been confirmed experimentally, not only for
equilibrium states, but also for nonequilibrium states.

Thermal fluctuations in nonequilibrium states always exhibit a strong NE
enhancement.
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Fluctuations in nonequilibrium are always long ranged, encompassing the
entire system.

Fluctuations in nonequilibrium are affected by gravity.
Thermal fluctuations in nonequilibrium states are affected by the finite

size of the system.
Fluctuations in nonequilibrium induce large NE Casimir forces.
Fluctuations cause a renormalization of the Onsager coefficients.
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49. J. Oh, J. M. Ortiz de Zárate, J. V. Sengers and G. Ahlers, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2004, 69, 021106.
50. J. R. de Bruyn, E. Bodenswchatz, S. W. Morris, S. P. Trainoff, Y. Hu,

D. S. Cannell and G. Ahlers, Rev. Sci. Instrum., 1996, 67, 2043.
51. A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell and

M. Giglio, Nat. Commun., 2011, 2, 280.
52. C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio and

D. S. Cannell, Phys. Rev. Lett., 2011, 106, 244502.
53. C. J. Takacs, G. Nikolaenko and D. S. Cannell, Phys. Rev. Lett., 2008,

100, 234502.
54. F. Croccolo, H. Bataller and F. Scheffold, J. Chem. Phys., 2012,

137, 234202.
55. J. Lutsko and J. W. Dufty, Phys. Rev. A: At., Mol., Opt. Phys., 1985,

32, 3040.
56. J. Lutsko and J. W. Dufty, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,

2002, 65, 041206.
57. J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys., 2008, 77, 026306.
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CHAPTER 4

Local Equilibrium in
Non-equilibrium
Thermodynamics

SIGNE KJELSTRUP* AND DICK BEDEAUX

Department of Chemistry, Norwegian University of Science and
Technology, 7491 Trondheim, Norway
*Email: signe.kjelstrup@ntnu.no

4.1 Introduction
Thermodynamic equations apply to systems in global equilibrium.1–10 They
apply evidently to homogeneous systems, but also to systems of lower
dimensionality; surfaces and contact lines. The same equations hold
between the variables everywhere throughout the volume, the area or the
line. Most natural and industrial systems are, however, not in global
equilibrium. In order to use thermodynamic equations away from global
equilibrium, we need to assume that each volume element, area element or
line element is in local thermodynamic equilibrium or just local equilibrium.
Any classical thermodynamic modelling of systems away from global
equilibrium will therefore use the hypothesis of local equilibrium (from now
on also referred to as the hypothesis).

Assuming that the hypothesis is true, we can use normal thermodynamic
relations between the variables for any volume, surface and line element.
Away from global equilibrium the variables depend on time and position.
The hypothesis of local equilibrium is explicitly stated as a basic assumption
in classical non-equilibrium thermodynamics.7–10 It is always used for
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thermodynamic modelling of irreversible processes.1–6 For the homo-
geneous phases it forms the basis of the continuum hypothesis, which
allows us to replace thermodynamic quantities by corresponding thermo-
dynamic fields which are continuous functions of space and time. For
heterogeneous systems, the fields are no longer continuous at surfaces and
contact lines, and the hypothesis of local equilibrium must be formulated
with Gibbs excess variables. In this Chapter we first review results from
molecular dynamics simulations and from mesoscopic systems, which
support the use of the hypothesis in homogeneous (Section 4.2.2) and
heterogeneous systems (Section 4.2.3); work that has been done to
strengthen the basis of classical non-equilibrium thermodynamics.7–10

Following the stated definitions, we can write, for instance, the Gibbs
equation for systems of all dimensionalities. For a homogeneous (three-
dimensional) system at location r¼ (x,y,z) and time t, we have

uðr; tÞ¼Tðr; tÞsðr; tÞ � pðr; tÞ þ
X

j

mjðr; tÞcjðr; tÞ: (4:1)

The intensive variables are here the temperature T, the pressure p and the
chemical potentials mj. The summation is carried out over all independent
components. In order to be able to deal with all three types of system on the
same footing, the densities of the internal energy u, entropy s or components
cj are given per unit of volume,y following ref. 7. In global equilibrium, the
dependence on r and t disappears for homogeneous systems.

For a surface (a two-dimensional system) the corresponding Gibbs
equation is

usðr; tÞ¼Tsðr; tÞssðr; tÞ þ gðr; tÞ þ
X

j

ms
jðr; tÞGjðr; tÞ; (4:2)

where r¼ (x,y) is now a position along the surface. The energy-, entropy- and
particle-densities as well as the surface tension, g, are excess variables per
unit of surface area, defined according to Gibbs, as was explained in Chapter
1. Their values depend on the choice of the dividing surface. We return to
that dependence in Section 4.3. Superscript s denotes a property particular
to the surface. The equation indicates that the temperature and chemical
potentials are unique to the surface and are not necessarily equal to the
temperatures and chemical potentials near the surface in the adjacent
phases. A surface, which obeys eqn (4.2), is therefore autonomous, cf. Section
1.4. The properties of the surface then do not depend on the temperatures
and chemical potentials near the surface in the adjacent phases. This
property has been questioned, e.g. in ref. 11, for surfaces away from
equilibrium. We have confirmed the validity for surfaces, cf. Section 4.2.3,
and will review this evidence below.

yAccording to IUPAC standard, the symbols u, s and c are reserved for specific quantities. Such
quantities are not relevant here.
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The corresponding equation for a contact line (a one-dimensional
system) is

ucðr; tÞ¼Tcðr; tÞscðr; tÞ þ gcðr; tÞ þ
X

j

mc
j ðr; tÞGc

j ðr; tÞ; (4:3)

where r¼ x is now a position along the line. Superscript c denotes the contact
line between three coexisting phases. The line tension is gc. Excess densities
are used, in units per m of line length. The systems described by eqn (4.1)
to (4.3) differ in dimensionality, but they can all be regarded as macroscopic
in the sense that variables enter with their thermodynamic limit value.

We review direct evidence and criteria for local equilibrium in the first
part of Section 4.2.

In the second part of Section 4.2, we address descriptions on the mesoscopic
level. These fall into three categories. Rubı́ and co-workers12–14 have pioneered
a method, called mesoscopic non-equilibrium thermodynamics, which intro-
duces internal degrees of freedom, cf. Chapters 14 to 16. Small systems can
also be handled with the ensemble construction of Hill,15,16 but this work has
not yet been carried to the non-equilibrium regime. Lebon and co-workers3

defined an extension of the local-equilibrium hypothesis, by introducing
fluxes as variables in the Gibbs equation. In their theory of extended
irreversible thermodynamics,2,3 intensive variables obtain new definitions.

The internal variables of mesoscopic non-equilibrium thermodynamics7,12–14

cannot be controlled from the outside. A central example of such a variable
is the probability density of a chemical reaction, cf. Chapters 14 to 16. Can we
use the hypothesis of local equilibrium for this variable along the reaction
coordinate? If so, in which form, and can it be defended? Results from the last
two decades are used to substantiate the answers to these questions.

In order to understand why a property holds true, it is also often useful to
construct and examine a model that violates the hypothesis. The square-
gradient theory, a popular density functional theory, introduces density
gradients as non-local properties of the thermodynamic model. It is
remarkable that local equilibrium is valid for Gibbs excess variables that are
found by integration over the density profiles.18–20 We review the evidence
for these cases in Section 4.3. We shall finally discuss in Section 4.4 how the
hypothesis can be actively used to predict unknowns.

4.2 Validating the Hypothesis of Local Equilibrium
In this section, we review results which support the hypothesis of local
equilibrium for homogeneous phases and surfaces.

4.2.1 Criteria and Tools

Some criteria have been formulated to test the validity of the hypothesis.
For gases, a length criterion has been used; stating that the characteristic
size of a volume element should be larger than the mean free path in all
directions.21 Such a comparable length is not available for liquids, where the
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correlation length away from the critical point is of the same order as the
diameter of a molecule, but proposals for alternative length criteria21 seem
to be larger than necessary.22,23 Independent of the aggregate state, a
Maxwell velocity distribution is nevertheless expected.7 It follows also that
any of the velocity components can be used to compute the temperature of
the volume element.

In this situation, when geometry and particle density are so important for
an answer to the questions raised in the introduction, non-equilibrium
molecular dynamics (NEMD) is indispensable. It provides a tool for in-
vestigation of the thermodynamic behaviour of particles. NEMD can be used
to study bulk systems and interfaces. A special advantage of the method is that
interfaces can be formed spontaneously in the system, by proper choice of
boundary conditions, without prior knowledge of surface properties. This
makes an unbiased investigation of interfaces possible. Volumes of different
sizes can be compared with NEMD, and deviations from the thermodynamic
limit can be determined. Simulation results can be compared to experimental
results.24 A source of error is often the choice of the interaction potential. The
cut-off distance in this potential, for instance, is critical for reproduction of
experimental results.

The diffuse interface model or the square-gradient model18–20 is a tool for
prediction of equilibrium properties of surfaces. This tool has now become
useful in studies of systems far away from global equilibrium, cf. Section 4.4.

4.2.2 Homogeneous Phases

Ciccotti and co-workers24,25 addressed the issue of local equilibrium
already in the 1980s. They modelled liquid argon in temperature gradients
amounting to 1.8 � 109 K �m�1, or with shear rates amounting to 1.14 � 1011 s�1.
These are gradients which are difficult to realize in the laboratory. The
volume element contained an average of about 32 Lennard-Jones-like
particles. This volume can probably be counted as being macroscopic, in
view of the results obtained. Particle fluctuations in such a volume should be
within a few percent, and this was found. Fourier’s law applied to the system
when exposed to a temperature gradient. Systems under shear obeyed
Newton’s law. In both cases, the hypothesis of local equilibrium was verified
by computing the same values for the density and potential energy in a
volume element in a field as for the same element in global equilibrium.

Hafskjold and Ratkje22 confirmed the findings of Tenenbaum et al.25 for a
Lennard-Jones-like system in a temperature gradient. The value of the
enthalpy, pressure and potential energy were the same when the local
volume element was in global equilibrium, and when it was exposed to a
large gradient, cf. Figure 4.1. Linear laws and Onsager’s reciprocal relations
were established for transport of heat and mass. The local temperature
fluctuation was of the same order of magnitude as the maximum tempera-
ture difference across a volume element. The velocity distribution in a
control volume (around 32 particles) was Maxwellian within 1 % deviation.
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Maxwell distributions were found in good approximation for all com-
ponents of Xu et al.26 who studied the dissociation of fluorine to fluor atoms
at chemical equilibrium in a temperature gradient. The peak of the velocity
distribution shifted proportional to the thermal driving force, as proposed
by de Groot and Mazur,7 showing a net velocity, but no violation of local
equilibrium. The distributions are shown in Figure 4.2.

Hafskjold and co-workers27,28 gave further confirmations of the hypoth-
esis for non-ideal Lennard-Jones particles,27 and for ionic systems.28 Bresme
and co-workers28–31 and Røsjorde et al.32 confirmed linear relationships for
fluxes and forces during polarization of water in a temperature gradient.
Water was polarized by a temperature gradient of 108 K �m�1 in the liquid
phase to create an electric field of 106 V �m�1. Kjelstrup et al.23 reviewed the
efforts to elucidate these questions up to the year 2008, and concluded that
the hypothesis of local equilibrium was obeyed in homogeneous phases
when:

a. The volume element had more than 10 to 18 particles23

b. The system was exposed to thermal fields of up to about 108 K �m�1 in
the liquid and 109 K �m�1 in the gas phase

Figure 4.1 Potential energy (squares), enthalpy (circles) and pressure (triangles) in a
two-component Lennard-Jones spline system exposed to a temperature
gradient, (empty points) compared to corresponding values at global
equilibrium (filled points). The particle diameter s1 is shown. B.
Hafskjold and S. Kjelstrup Ratkje, J. Stat. Phys., 1995, 78, 463.22 Figure 8.
With kind permission from Springer Science and Business Media.
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c. The velocity distribution was Maxwellian with a peak shifted in re-
sponse to the driving force26

d. Linear flux–force relations applied

We now know that when volume elements become smaller than those
needed to produce data in the thermodynamic limit, we can also find a
thermodynamic description from the method of Hill,15 see Schnell and co-
workers.16,33–35 An extension of eqn (4.1) to (4.3) by the method of Hill could
possibly also extend the validity of the hypothesis. Also the effect on the
hypothesis of an extension of the linear flux relations to the non-linear
domain, remains to be further investigated, see Section 4.2.4.

4.2.3 Surfaces

The first validation of the hypothesis of local equilibrium for surfaces was
reported by Røsjorde et al.36 The surface was described in terms of excess
variables. For a one-component system, the surface in local equilibrium was
fully characterised by the temperature dependence of the interfacial tension.
The equation of state (4.4) was first verified by equilibrium simulations.
In the computer experiment of Røsjorde et al.36 with one-component

Figure 4.2 Velocity distributions of reactant (F2) and product (F) of the dissociation
reaction in a temperature gradient. The distributions are Maxwellian
within 1 %, but slightly shifted to the left according to J. Xu, S. Kjelstrup
and D. Bedeaux, Phys. Chem. Chem. Phys., 2006, 8, 2017.25

Reproduced by permission of the PCCP Owner Societies.
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Lennard-Jones spline particles, the surfaces were allowed to form spon-
taneously in a large box under a temperature gradient up to 3 � 108 K �m�1.
The interfacial tension and the temperature were computed in this situation
and fitted to the function:

g¼ g0
Tc � T

Tc

� �2v

; (4:4)

where v¼ 0.63 is a universal critical exponent, and c stands for critical, see
Figure 4.3. The same relationship (4.4) was found also in non-equilibrium;
confirming the hypothesis, see Figure 4.3. Ge et al.37 confirmed the results
for a Lennard-Jones interaction potential with a longer tail, changing the
factor g0 and the critical temperature Tc of eqn (4.4). Similar results were
obtained by Xu et al.39 Simon et al.38 verified the same result with a chain
model of n-octane. The length of a molecule was five times larger than the
layer thickness used in the sampling of data, and there were on average only
8 molecules in the volume element. The molecule was modelled with
rotational and vibrational degrees of freedom. The temperature was calcu-
lated as usual in molecular dynamics from the kinetic energy of particles
within the surface boundaries. The same surface temperature was found for
in-plane velocity components of the flat surface as well as components

Figure 4.3 The interfacial tension as a function of temperature of a one-component
Lennard-Jones spline system according to J. Ge, S. Kjelstrup, D. Bedeaux,
J.-M. Simon and B. Rousseau,37 Phys. Rev. E, 2007, 75, 061604, Figure 7.
Copyright 2007 by The America Physical Society. The interfacial tension
and temperature are measured relative to their critical values. We see
that results from global equilibrium (EMD) coincide with results from
non-equilibrium simulations (NEMD).
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perpendicular to the surface in the interfacial region,36 confirming the
autonomous nature of the surface. The authors were able to distinguish
the surface temperature from the adjacent liquid and vapour temperatures
in the calculations.39 Table 4.1 shows that the temperature can jump into the
surface and across it by several degrees, even in the absence of mass
transport. In the presence of mass transport, the jumps become even larger.
Interestingly, the formulas for transfer coefficients from kinetic theory gave
better fits to the results from the simulations when the surface temperature
was used, rather than the gas temperature.39 The table values give indirect
support to the idea of the surface as an autonomous system and to the
hypothesis of local equilibrium.

To create a stationary interface in a gradient using non-equilibrium mo-
lecular dynamics simulations is often computer-time consuming. Errors can
arise in the analysis if the system is not given enough time to respond to the
boundary conditions. This can become critical for obtaining good results
with two or more components, where particles in the liquid phase have
to interchange with the gas-phase particles to arrive at the stationary
state. Inzoli et al.40 studied two-component Lennard-Jones systems in this
situation, and were able to confirm the validity of the hypothesis. Their re-
sults, shown in Figure 4.4, gave information on thermodynamic properties
of the surface under temperature gradients, identical to the information
obtainable at global equilibrium, thereby supporting the hypothesis. The
concentration variation of the surface excess entropy was found. The heat
capacity is equal to minus the second derivative of the interfacial tension.
Given the analytic form of eqn (4.4), it is negative.

In studies of n-butane adsorption on and into zeolites, linear flux–force
relations were confirmed for a wide range of conditions.41 All studies com-
bined have shown that the surface is in local equilibrium when

e. The area element has more than 10 atoms
f. The surface is exposed to thermal fields up to 109 K �m�1

Table 4.1 Temperatures calculated from molecular dynamics simulations of one
component in a thermal field.39 The temperatures TH and TL, at the end
and in the middle of the symmetric simulation box, were controlled.
Results are reported for the absence and presence of a mass flux J for
overall density c. The temperatures of the liquid and the vapour close to
their interface are T l and T g, and T s is the temperature of the surface.

c/mol �m�3 TH/K TL/K J/mol �m�2 � s�1 T l/K T g/K T s/K

8300 136.4 93.0 0 93.6 101.7 94.3
10 400 161.2 99.2 0 101.8 110.7 103.3
16 600 161.2 99.2 0 106.3 134.4 113.8
12 500 198.4 93.0 0 99.2 115.9 101.6
8300 136.4 93.0 6670 95.6 103.3 96.8
10 400 148.8 86.8 26 700 96.5 110.0 99.0
16 600 173.6 86.8 40 000 103.9 148.4 116.7
12 500 148.8 80.6 20 000 90.8 107.3 92.6
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g. The kinetic temperature calculated from one velocity component is the
same for all velocity components x,y,z

h. Linear flux–force relations apply

The fact that the equation of state for the surface is the same, whether or not
one applies a gradient to the system, makes it possible to circumvent extra
equilibrium simulations. Non-equilibrium simulations can also give this
information, see Section 4.4.

4.2.4 Mesoscopic Systems

The subject of mesoscopic equilibrium thermodynamics is concerned
with equilibrium thermodynamics at intermediate length scales, i.e. scales
between microscopic and macroscopic scales. Mesoscopic non-equilibrium
thermodynamics can be understood as non-equilibrium thermodynamics at
intermediate length scales. Hydrodynamic fluctuations are interesting
phenomena at intermediate length scales cf. Chapter 3. These are described
without introduction of new variables. In mesoscopic non-equilibrium
thermodynamics we introduce internal degrees of freedom in order to de-
scribe the system on either the smaller length or time scales. We mentioned
above the most prominent example of system with an internal variable,
namely the chemical reaction. It has long been standard in chemical
reaction kinetics to introduce a coordinate to measure the progress of the
reaction. Along this coordinate, one pictures an activation energy barrier,

Figure 4.4 The interfacial tension of a two-component Lennard-Jones spline
mixture as a function of temperature. Data are shown for mole fractions
x1 of the light component. Points represent calculations away from
global equilibrium. I. Inzoli, S. Kjelstrup, D. Bedeaux and J.-M. Simon,
Chem. Eng. Sci., 2011, 66, 4533, Figure 2.40

With kind permission from Elsevier.
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leading to the concept of an activated (slow) process. The internal variable in
this picture is the probability density along the coordinate axis to find the
reacting mixture. The transport across the barrier, first proposed by Eyring
and used by Kramers,42 has later been adopted in many other processes. The
macroscopic flux–force relations obtained for these systems are clearly
nonlinear. From the results in Sections 4.2.2 to 4.2.3, it is therefore not
obvious that the system is in local equilibrium.

The hypothesis has nevertheless been taken as a premise for mesoscopic
non-equilibrium thermodynamics. For mesoscopic systems, the validity of
the hypothesis of local equilibrium means that we write the Gibbs entropy
postulate for internal variables, see Rubı́ and co-workers.13,14,43–46 For an
isolated system with one degree of freedom (a chemical reaction in an
isolated box), a small change in the entropy density is due to a change in the
probability density c(g) along the reaction coordinate gz by:

ds¼� 1
T

ð1

0
mðgÞdcðgÞdg: (4:5)

At equilibrium, ds¼ 0. Given that c(g) is normalised, it follows that the
chemical potential is independent of g. Using @c(g)/@t¼�@r(g)/@g, we find
for the entropy production along the g-coordinate

sðgÞ¼ �rðgÞ 1
T
@mðgÞ
@g

; (4:6)

where r is the rate of the chemical reaction. All variables along the g-
coordinate also depend on the time. The partial derivatives here and below
imply that either g or t are kept constant. The corresponding linear law is

rðgÞ¼ �lðgÞ 1
T
@m
@g
: (4:7)

We recognize the bilinear form in the entropy production and the linear law,
characteristic of classical non-equilibrium thermodynamics. The properties
are the same as for classical thermodynamics, but do now apply to a sub-
macro (meso) level.

The construction makes it clear that a direct test of eqn (4.5) to (4.7) is
difficult, if not impossible. Unlike what we have described in Sections 4.2.2
and 4.2.3, only indirect proof of the hypothesis can therefore be obtained.
Indirect proof is constituted by the many well-known formulas one can
derive with mesoscopic non-equilibrium thermodynamics, like for instance
nucleation theory,14 the Butler–Volmer equation,46 equations for molecular
motors, etc.47 The law of mass action in these cases45–47 is always obtained
from eqn (4.6) by integrating over the activation energy barrier, see also
Chapters 14 to 16.

zWe use the symbol g for the reaction coordinate, following ref. 7. It should not be confused with
the same symbol for the surface tension.

70 Chapter 4



4.2.5 Local versus Global Equilibrium: Molecular
Fluctuations

We have seen above that the situation at local equilibrium is very much the
same as in global equilibrium: The normal thermodynamic equations apply.
A natural question is therefore: is there distinction between the two states?
The answer is connected to molecular fluctuations. Fluctuations of densities
and temperatures are very different in local and global equilibrium.

In global equilibrium, fluctuations in extensive variables have their
equilibrium values, characterized by Gaussian white noise. Their correl-
ations can be calculated from the probability of fluctuations around equi-
librium, or from the fluctuation–dissipation theorem which regards random
contributions to a fluctuating thermodynamic flux.

A local form of the fluctuation–dissipation theorem remains valid when
the system is driven away from global equilibrium.17 These parts of the
fluctuations are Gaussian, as those in global equilibrium are. In addition,
the system obtains long-range correlations, which are not present in global
equilibrium.17 The long-range correlations will therefore characterise a state in
local equilibrium in a system far from global equilibrium. The correlations in
such a system can be several orders of magnitude larger than in global
equilibrium.17,48 The systems described above in Section 4.2.1 showing
Maxwell distributions26 are too small for observation of long-range correl-
ations. Ortiz de Zárate et al.49 predicted that long-range correlations become
observable for systems near 1 mm.

Correlations in local equilibrium are central to all energy converting
processes. One may expect that they are particularly important for coupling
of phenomena, and therefore for a possible decrease of energy losses. It is
important to understand their origin and nature, and we refer the reader to
Chapter 3 for more information.

4.3 Local Equilibrium and Density Functional Theory
Density functional theory is a sophisticated tool used in many fields. Its
essence can be captured by van der Waals square-gradient theory, in which
contributions proportional to the square of the density gradients are
added to the Helmholtz energy density. From the equation of state, the
Gibbs energy density and other thermodynamic properties are constructed.
An equation of state for the pressure tensor can thus be constructed, relevant
for a description of the liquid–vapour interface in terms of density gradient
variables. All thermodynamic properties become non-local functions of the
densities involved by these constructions.

With non-local variables involved, one may rightly question the meaning
of local equilibrium in an interfacial region. In order to do so, the local
entropy production and the resulting linear laws were first con-
structed.18–20,50,51 In the next step, profiles were integrated across the
interfacial region, to obtain Gibbs excess densities. These are the variables
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that enter eqn (4.2). The value of an excess density depends in principle on
the choice made for the dividing surface. Therefore the square-gradient
model was used to find several sets of thermodynamic properties for various
choices of the dividing surface. The surface temperature is, however, in-
dependent of this choice, like the interfacial tension of a flat surface is. The
temperature must be the same, wherever we choose to locate the dividing
surface (it is gauge invariant). In order to be able to verify gauge invariance,
the surface temperature was calculated for a one-component system in
several ways, for instance:9

1. From the standard thermodynamic relation T s¼ (hs� ms)/ss for an
equimolar surface

2. From the same relation as in (1) but with variables for the surface of
tension

3. From the interfacial tension, calculated from the surface equation of
state T s¼T s(g)

4. From the definition of the interfacial tension using the van der Waals
square-gradient model, using in the end T s¼T s(g)

Table 4.2 shows results for temperatures calculations, for vapour
pressures deviating from the vapour pressure at saturation by (1 or �2) %
(cases PG98, PG99, and PG102 in Table 4.2) and for temperatures deviating
from the equilibrium temperature of the vapour pressure by (1 or �2) %
(cases TL98, TL99, and TL102 in Table 4.1). More results for other conditions
were also reported.9,18,20 We see that the temperatures are the same within
the accuracy of the numerical calculation, 0.01 K, see Table 4.2. This is a
remarkable finding for a model which in the outset is non-local. The fact
that local equilibrium holds true for the surface independent of the choice of
the set of excess variables is a strong indication of its autonomous nature. It
means that, provided we follow Gibbs, we can construct a two-dimensional
thermodynamic system from a non-local model and expect it to be in local
equilibrium, independent of the presence of an external field. The same was
documented for a two-component system.20 Magnanelli et al. confirmed the

Table 4.2 The surface temperature T s (in K) as calculated by methods 1 to 4 (see
text) for a surface exposed to three chemical potential differences PG98,
P99 and P102 and three temperature differences TL98, TL 99 and TL102
(see text). The table was adapted from ref. 9, 18 and 50.

Method
T s/K
1 2 3 4

PG98 560.6651 560.6650 560.6651 560.6651
PG99 561.1563 561.1563 561.1563 561.1563
PG102 562.6421 562.6420 562.6421 562.6421
TL98 553.1456 553.1451 553.0787 553.0804
TL99 557.3527 557.3525 557.3364 557.3369
TL102 570.4054 570.4043 570.3482 570.3541
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hypothesis with temperature-dependent variables in the square-gradient
model.51

We have seen from Table 4.2 that the analytical method is very
precise.18,50,51 Thanks to that precision, it was also possible to conclude that
it is not correct to take the surface temperature equal to the liquid or the
vapour temperature in the layer next to the surface (the liquid and vapour
temperatures at the surface are the extrapolated temperatures from the
bulk phase), see also Table 4.1. This supports the idea of eqn (4.2), that
the surface has its own temperature, which can differ from that of the
surroundings.

4.4 Predicting Properties from the Hypothesis of
Local Equilibrium

From the collected evidence reviewed above, the hypothesis of local
equilibrium appears true, even under very large gradients. It can then be an
advantage to invert the situation. Rather than checking the validity, one may
take it for granted and find new results.

This was done by Bedeaux and Ytrehus in 199052 in a description of
sublimation and condensation of water vapour below 0 1C. By defining the
entropy production in terms of surface excess properties, their flux–force
relations were able to reproduce the results from kinetic theory. Since then,
Römer et al.53 have also actively used simulation results from non-
equilibrium conditions to find equations of state for the system in question.
This was done, for instance, for water as modelled with the SPC/E and TIP4P/
2005 models.53

The autonomous nature of the surface enables predictions. Using the
assumption of local equilibrium in the surface, it was predicted9,18,50,51 that
the surface temperature was accessible, away from global equilibrium, from
knowledge of the molar density difference across the surface. The simple,
useful formulae proposed for the concentration difference and the internal
energy difference (both per unit of volume) were:

cl � cg¼ cl
eqðT

sÞ � cg
eqðT

sÞ;

ul � ug ¼ ul
eqðTsÞ � ul

eqðTsÞ:
(4:8)

Similar formulas can be written for other variables. The formulae states that
a concentration, c, difference measured away from equilibrium can be used
with information from equilibrium to find the actual temperature of the
surface. All the relations of Gibbs for the surface can be derived by active use
of the assumption of local equilibrium.

This statement was later generalized by Savin et al.54 in the most far-
reaching predictions made for surfaces so far. The authors pointed out first
that a calculation of excess densities depends on the choice of the dividing
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interface, and this fact can be seen as an ambiguity because certain
measurements, for instance of the interfacial tension of a flat surface,
should not depend on such a choice. The authors went on to show that this
gauge invariance implies local equilibrium. By characterizing different
gauges in terms of the excess mass density, rather than the position of the
dividing surface, a gauge transformation in a one-component system was
written as an expansion around the equimolar surface (cs¼ 0):

ssðTs; csÞ¼ ssðTs; 0Þ þ Ds
Dc

cs: (4:9)

For this gauge, we also know that

ssðTs; 0Þ¼ � dg
dTs : (4:10)

On the other hand, the Clapeyron equation for global equilibrium says that

Ds
Dc
¼� dm

dT
: (4:11)

By comparing eqn (4.9) to (4.11) we see that the assumption of local equi-
librium is consistent with the Clapeyron equation. This is remarkable, as the
last equation is derived in classical thermodynamics for constant chemical
potential throughout the system. It is now a consequence of the gauge
invariance, stating that eqn (4.11) also applies when the surface is exposed to
an external field, and with values of variable jumps that arise from the field.

This finding has several implications: The concept of ‘‘dynamic interfacial
tension’’ becomes obsolete, as any interfacial tension must obey the
equation of state. The surface variables (for instance, the temperature) can
be time-dependent, however. The eqn (4.8) first given by Johannessen and
Bedeaux,9,50 have a parallel with other variables.54

Contact lines have not been investigated from this perspective so far. It is
clear that the general conclusions above are also applicable to contact lines.
The contact line in a non-equilibrium one-component system must have the
triple temperature in order to obey local equilibrium. It would be a major
achievement if this could be verified.

4.5 Conclusions and Perspectives
To summarize this chapter, let us answer again: how do we know that the
hypothesis of local equilibrium is valid? In the first place, we know this
because expected sensible results are produced from this hypothesis. Local
equilibrium applies with all probability on the macroscopic level for
homogeneous phases, interfaces, and contact lines. It is also likely on the
mesoscopic level, because we can derive results from this hypothesis which
agree with experiments. The law of mass action45 and the Butler–Volmer
equation46 are examples of such results. In the second place, we can cite a
series of results from non-equilibrium molecular dynamics simulations that
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agree with the hypothesis.22–32 Even under extreme conditions with gradi-
ents larger than 108 K �m�1 in the liquid and 109 K �m�1 in the vapour phase,
local equilibrium holds true.

The evidence for local equilibrium in a surface, obtained from work that
uses density functional theory, is convincing, because the hypothesis is not
made a priori, but is brought out by proper definitions of variables, and use
of Gibbs excess densities.20,50,51

Thanks to these results, we are now in a position to actively use the
hypothesis for predictive purposes.53,54 With the hypothesis of local equi-
librium on the meso-scale, one can predict new properties. The biological
ion pump for Ca21-ions,44 may for instance also be a heat pump. Equally
interesting is the insight offered by the work54 that variable jumps, like those
in the well-known Clausius–Clapeyron formulae, can be seen as a con-
sequence of local equilibrium in the interface, away from global equilibrium.
Such knowledge can be useful in the modelling of interface transport.

Hill introduced an ensemble of replicas of the small system, and con-
structed thermodynamic relations for one replica from the ensemble.15

Using his method, one can show that systems down to a few particles
have definable thermodynamic properties. The concept of local equilibrium
has not been studied in this context. But one consequence is seen already: it
appears that a small system need not be macroscopic in order to be in local
equilibrium. What is important is only to be able to account for finite-size
effects.16 The hypothesis of local equilibrium was stated for continuous
descriptions, eqn (4.1) to (4.3). A continuous description is obtained by
averaging the microscopic description over volume, area or line element. For
a discussion of this, see for instance Section 2.1.2 in ref. 17, the magnitude
of these elements is chosen so large that they can be considered to be
macroscopic. Macroscopic thermodynamic relations can then be used, ac-
cording to the hypothesis of local equilibrium. But also in the case of small
systems15,16 we expect the hypothesis of local equilibrium to be true. The
thermodynamic relations will differ from the ones given for the thermo-
dynamic limit, however.
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CHAPTER 5

Diffusion in Liquids:
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5.1 Introduction
Mass transfer plays an important role in many industrial and environmental
processes. For engineers, the precise calculation of mass transfer is essential
to design processes. Since mass transfer is usually limited by diffusion, the
quantitative description of diffusion, especially in liquids, has been a chal-
lenge to scientists for decades. In recent years, our qualitative and quanti-
tative understanding of diffusion in liquids has substantially improved. In
this development, non-equilibrium thermodynamics has played a key role.
In this chapter, we summarize the current state-of-the-art for studying
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diffusion in liquids by experiments, molecular dynamics, and engineering
models.

Physically, mass transfer is the movement of molecules in a mixture.
Commonly, this movement is divided into a convective and a diffusive part:
Convection describes the movement of the mixture as a whole, where each
species moves with the same reference velocity. Diffusion refers to the relative
movement to this reference velocity. Hence, the magnitude of the diffusive
flux depends on the chosen velocity reference frame. Taylor and Krishna1

provide a detailed overview on common reference frames and their transfor-
mations. Important reference frames in practice are the molar average vel-
ocity, the volume average velocity, and the barycentric reference velocity.

Different types of diffusion are distinguished:

� Mutual diffusion (also named inter-diffusion) describes the net trans-
port of all molecules of species i relative to the reference velocity.
Mutual diffusion is thus the quantity of interest in practice to describe
mass transfer. Mutual diffusion is induced by chemical-potential gra-
dients due to, e.g., concentration, temperature, external force fields,
and pressure.2

� Self-diffusion (also named intra-diffusion) describes the movement of
individual molecules due to Brownian motion without any driving
force. In binary mixtures, self- and mutual diffusion coefficients of
species i coincide for the limit of zero concentration since the indi-
vidual molecule is then equivalent to all molecules of species i.

In the modelling of diffusion, the relevant transport coefficient is the
so-called diffusion coefficient which relates the driving forces to the diffusive
flux. Diffusion coefficients of liquids are typically in the order of 1 � 10�9

m2 � s�1. Diffusion coefficients depend on concentrations, pressure as well as
temperature. In this chapter, we focus on the concentration dependence of
diffusion in liquids. Poling et al.2 provide an overview on the temperature
dependence. Even today, the exact form of the dependence of diffusion co-
efficients on concentration and temperature is still unknown. This difficulty
applies especially for multicomponent systems. Therefore, the prediction of
diffusion coefficients is still a challenging task.

For the mathematical description of multicomponent mutual diffusion,
two approaches are used: the phenomenological generalized Fick’s law and
the physically motivated Maxwell–Stefan (MS) equations.

In the molar reference frame, M, generalized Fick’s law employs the
mole fraction gradient =xk as driving force and relates it to the diffusive flux
JM

i as follows:1

JM
i ¼�ct

Xn�1

k¼ 1

DM
ik =xk; i¼ 1; . . . ; n� 1: (5:1)

Here, ct is the total molar concentration, n is the number of species in the
system, and DM

ik are the Fick diffusion coefficients. The diagonal elements DM
ii
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are the main diffusion coefficients describing the influence of the mole-
fraction gradient =xi of component i on its own diffusive flux. The off-
diagonal elements DM

ij are the cross diffusion coefficients describing the
influence of the mole fraction gradient =xj of component j on the diffusive
flux of component i. The off-diagonal elements DM

ij can also be negative.
Usually, the main contribution to the diffusive flux is provided by the di-
agonal elements, since DM

ii 4DM
ij . The entire, usually non-symmetric, matrix

DM is always positive definite.
The MS equations1,3 are physically motivated and can be derived from the

thermodynamics of irreversible processes.4 They are an example of an
Onsager reciprocal relation. In the MS equations, the chemical-potential
gradient as driving force is balanced by the friction forces between the
moving molecules:

� 1
RT

=mi¼
Xn

j¼ 1;j a i

xjðvi � vjÞ
� ij

: (5:2)

In eqn (5.2), R is the gas constant, T the absolute temperature and mi the
chemical potential of component i at pressure p and temperature T. (vi� vj)
is the difference between the average velocities of components i and j,
leading to friction forces. In eqn (5.2), Ðij are the MS diffusion coefficients,
representing inverse friction coefficients. The MS diffusion coefficients are
always symmetric: Ðij¼Ðji.

The MS equations can be reformulated into a form analogous to gener-
alized Fick’s law in the molar reference frame:5

JM¼�ct B�1C=x. (5.3)

Here, JM and x are the conjunctions of the diffusive fluxes JM
i and the mole

fractions xi, respectively. The elements of the matrix B are given by

Bii¼
xi

� in
þ

Xn

k¼ 1;ia k

xk

� ik
and Bij ¼�xi

1
� ij
� 1
� in

� �
: (5:4)

The matrix C is the so-called matrix of thermodynamic factors. It contains
thermodynamic information of the system and its elements are defined by

Gij ¼ dij þ xi
@ ln gi

@xj

� �

p;T ;S

: (5:5)

Here, dij denotes the Kronecker delta and gi denotes the activity coefficient of
component i. The differentiation of the activity coefficient is carried out at
constant temperature and pressure, and at constant mole fraction of all

other components except the n-th one, so that
Pn

i¼ 1
xi¼ 1 during the differ-

entiation (indicated by the symbol S).6,7 Usually, the thermodynamic factor
C is not symmetric.
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By comparing eqn (5.1) and (5.3), an expression for the relation between
MS and Fick diffusion coefficients can be derived:1

DM¼B�1C. (5.6)

Although the MS equations provide a thermodynamically sound basis for the
calculation of diffusion, their application is often limited in practice: on the
one hand, the direct measurement of the chemical-potential gradient =mi is
practically impossible; on the other hand, the calculation of the thermo-
dynamic factor with today’s excess Gibbs energy (GE)-models and equations
of state still introduces large uncertainties.1 This dilemma has existed since
the derivation of the MS equations 150 years ago. Recent approaches8 to
calculate the thermodynamic factor from Molecular Dynamics (MD) seem to
be promising and are discussed in Section 5.3.

A comparison between the approach of Fick and MS shows the following
important characteristics:

� While Fick diffusion coefficients depend on the velocity reference
frame, MS diffusivities do not.

� The MS approach separates thermodynamic effects from binary mo-
lecular interactions, whereas Fick’s approach lumps both effects into
the diffusion coefficient (see eqn (5.6)).

� While the MS diffusivity matrix is symmetric, the Fick diffusivity matrix
is not. Hence, n(n� 1)/2 MS diffusivities are sufficient whereas (n� 1)2

Fick diffusivities are needed to describe an n-component mixture.
Therefore, for n42, the Fick diffusivities are not independent.

� MS diffusivities are typically found to be less concentration-dependent
than Fick diffusivities.1 The increased concentration dependence of the
Fick diffusivities results from the concentration dependence of the
thermodynamic factor (see eqn (5.6)).

� Although the MS approach is physically based, the phenomenological
approach of Fick is better suited to practical applications since only
concentrations and not chemical potentials are directly measurable.

The reliable application of both the MS and the Fick approach depends on
the knowledge of accurate values of their diffusion coefficients. In principle,
three methods are available to obtain diffusion coefficients, which are dis-
cussed in the following sections of this chapter:

� Experimental investigations are the most significant source for dif-
fusion coefficients. However, experiments are time-consuming and ex-
pensive. Several experiments are already required for a binary mixture
due to the concentration (and temperature) dependence of the diffu-
sivities. For multicomponent systems, the measurement effort scales
with (n� 1)2. Therefore, only a limited number of multicomponent
systems have been investigated experimentally. Selected experimental
methods are discussed in Section 5.2.
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� Molecular Dynamics (MD) simulations have been successfully applied
to compute accurate diffusion coefficients. Still, MD simulations are
time-consuming and require reliable force fields. An overview on MD
simulations is given in Section 5.3.

� Engineering models allow the semi-empirical prediction of diffusion
coefficients from other physical properties. Their aim is to reduce the
required data to a minimal amount, e.g., to the diffusion coefficients of
the binary subsystems for a prediction of multicomponent diffusion
coefficients. However, these models still contain large uncertainties.
Nonetheless, recent research has led to considerable improvements in
prediction accuracy. An overview of engineering models is given in
Section 5.4.

5.2 Experimental Methods
Several methods exist for the measurement of mutual and self-diffusion
coefficients. Table 5.1 provides an overview of current experimental
methods. It is based on the compilation of Woolf et al.,9 complemented by
recent methods.

For each measurement method, Table 5.1 lists typical measurement
temperatures and pressure ranges, as well as measurement durations.
Additionally, the minimum number of independent measurements is pro-
vided which is required to determine the full ternary diffusion coefficient
matrix in a ternary mixture. Since diffusion coefficients depend strongly on
temperature, all techniques require careful temperature control. As is com-
mon for liquids, pressure plays a minor role in comparison to temperature.10

In the following, we present a brief introduction to the established
measurement techniques. An excellent longer introduction has already been
presented by Woolf et al.9

In the diaphragm measurement technique, two mixed phases of equal vol-
ume but different concentrations are separated by a porous membrane.11

The concentration difference must fulfil two criteria: on the one hand,
it should be small, such that the diffusion coefficient can be assumed to
be constant. On the other hand, it has to be high enough to allow for a
sufficient accuracy of the measurement of the concentration difference.9

The diffusion coefficient is determined from the change of concentration in
the two phases over time. The major disadvantage of this technique is the
required calibration with a similar system of known diffusion coefficient due
to the unknown system-dependent transport properties of the membrane.
An advantage of this technique is the possibility to measure self- as well as
mutual diffusion coefficients. This technique has already been shown to be
even feasible for systems with more than three components.12

The conductance method is used to measure binary mutual diffusion co-
efficients, but it is restricted to electrolyte solutions.9 Two methods exist for
generating a concentration gradient between two solutions: either the so-
lution of lower concentration is layered above the higher concentrated
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Table 5.1 Measurement techniques for mutual and self-diffusion coefficients, expanded from Woolf et al.9

Diffusion type
Accuracy

Temperature
range

Pressure
range

Experiment
duration

Min. no. of experiments
for ternary systemsSelf Mutual

Diaphragm cell | | 0.5 to 1 % o400 K r400 MPa 42 days 2
Conductance | 0.2 % E298 K E0.1 MPa 42 days 2
Taylor dispersion | E1 % r600 K r100 MPa o1 h 2
NMR | E1 to 2 % r700 K r100 MPa o1 h —
Gouy | o0.1 % E298 K E0.1 MPa 1 to 2 days 2
Rayleigh | o0.1 % E298 K E0.1 MPa 1 to 2 days 2
DLS | E0.8 to 10 %22 283 to 323 K22 E0.1 MPa E1 h83 a

Raman | E0.2 to 5 %25,27 r350 K27 r40 MPa84 o1 h 1
Microfluidic | E 1 to 2 %31 r400 K34 E 0.1 MPa o1 h 1 in situ

2 in-/offline
aOnly eigenvalues of Fick diffusion matrix.24
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solution or the concentration of the lower solution is increased by injecting
additional electrolyte. Electrodes near the bottom and the top of the diffusion
cell measure conductivities, which are first converted to concentrations and
then to the diffusion coefficient. Though the measurement of ternary dif-
fusion coefficients is possible, multiple measurements are required.13

The Taylor dispersion technique features a simple experimental setup,
short measurement times, and comparatively low sample consumption.
The diffusion takes place in a capillary, which ensures laminar flow.
A sample is injected into a solution of different concentration flowing
through the capillary. The interaction of axial convection and radial dif-
fusion transforms the injected step profile into a Gaussian profile. At the
outlet of the capillary, a detector measures the time-dependent concen-
tration profile. From the variance of the Gaussian profile, the mutual dif-
fusion coefficient is calculated. Detailed guidelines for the measurement of
ternary diffusion coefficients have been presented in ref. 14–16.

NMR spectroscopy is primarily used for the measurement of self-diffusion
coefficients. A small sample is exposed to a magnetic-field, eventually with a
gradient. In this setup, a radio frequency pulse or a series of pulses is dir-
ected on the sample and the echo is analysed. Due to transverse relaxation
and absorption by responding diffusing nuclei, the amplitude of the spin-
echo declines. The diffusion coefficient can be determined from the amp-
litude of the echo.9 While the accuracy of conventional NMR measurements
is moderate, it was recently further improved.17 NMR measurements are
feasible for multicomponent mixtures, as long as the frequencies of different
species are distinguishable.18

In the setup of the Gouy interferometric method, a vertical diffusion cell,
layering two liquids above each other, is used. To observe concentration
changes, monochromatic light is directed to the diffusion zone at different
positions in axial direction.9,19 The developing fringe patterns behind the
diffusion cell are recorded and transferred to spatially resolved refractive
indices. In binary mixtures, the spatially resolved refractive indices are
converted to concentration profiles from which the mutual diffusion co-
efficient is determined. For the measurement of ternary diffusion
coefficients, at least two independent measurements are required.20 The
Rayleigh interferometric method is similar to the Gouy interferometric
method. However, the monochromatic light is directed to the measurement
cell as well as to a reference cell.9

In dynamic light scattering (DLS) measurements of mutual diffusion co-
efficients, a laser is directed to the diffusion cell and the scattered light is
detected, usually under a 901 angle.21,22 DLS analyzes microscopic fluctu-
ations and can thus be conducted in homogeneous samples, i.e., without a
macroscopic concentration gradient. DLS is especially well suited for
macromolecules due to good scattering properties.23 With regard to the data
reduction, an autocorrelation function is fitted to the time-dependent
intensity of the scattered light. For ternary systems, only the eigenvalues of
the diffusion coefficient matrix are determined.24
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5.2.1 1D Raman Spectroscopy Diffusion Measurement

In 1D Raman spectroscopy diffusion measurements, two solutions of dif-
ferent concentrations containing all components are layered on top of each
other.25,26 Even though the data analysis does not require a sharp initial
interface, the resulting diffusion coefficient improves, if the concentration
gradient at the interphase is sharpened.27 The diffusion process is observed
in situ by spatially resolved Raman spectroscopy: a laser is used as a
monochromatic light source and traverses the diffusion cell in the direction
of diffusion, while the Raman scattering is observed perpendicular to the
direction of diffusion with a spectrometer and a CCD-chip (see Figure 5.1

Figure 5.1 (Top) Schematic set-up of 1D Raman spectroscopy diffusion measure-
ment. (Bottom) Typical profiles of the mole fractions x along the cell
height l over time.
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(top)).25 This technique is suitable for organic as well as aqueous solutions
with Raman active species.

The CCD-chip collects spatially resolved Raman spectra over time. From
this information, spatially and temporally resolved concentration profiles
(see Figure 5.1 (bottom)) can be obtained via the Beer–Lambert law.28

This results in a high information content per experiment; multi-
component diffusion coefficients can be obtained from only one experiment,
since spectroscopy resolves the individual concentration profile of each
species.29

5.2.2 Microfluidic Diffusion Measurement

Advantages of microfluidics are, in general, small dimensions accompanied
by small volumes and operation in the laminar regime.30 Shorter diffusion
lengths offer the advantage of shorter diffusion times.31 Kamholz et al.32

presented fundamental work on diffusion in microfluidics. This measure-
ment technique is often based on two liquid phases co-flowing in a micro-
fluidic device: see Figure 5.2 (top). Diffusion occurs perpendicular to the flow
and is negligible in axial direction for Peclet numbers Pe4100. The mass
transfer has been described in more detail by Häusler et al.31 and can be
modelled for binary mixtures as

@�c
@Fo

¼ pð�zÞ @
2�c
@�z2 : (5:7)

with dimensionless concentration �c, Fourier number Fo¼Dt � L�2 with D as
Fick diffusion coefficient, t as mean retention time at each axial position,
and L as channel half width. �z is the distance in the direction of diffusion,
scaled by the channel half width, pð�zÞ is the axial velocity distribution, scaled
by its mean velocity.

The diffusion coefficients are determined from the concentration profiles.
Each concentration profile depends on its corresponding contact time (see
Figure 5.2 (bottom)). At zero contact time, no change of concentration oc-
curs, whereas after a very large time, concentrations are almost homo-
genous. Hence, both cases provide no information on the diffusion
coefficient. Therefore, an optimal contact time exists. Häusler et al.31 showed
that the optimal contact time, represented by the Fourier number, is in the
range Fo¼ 0.3 to Fo¼ 0.4.

Three basic concepts exist for the analysis of these concentrations profiles:

� Concentrations are measured in situ with spectroscopic methods, e.g.,
fluorescence33 or Raman spectroscopy.34 This offers the potential for
the evaluation of concentration-dependent diffusion coefficients.

� A detection unit measures the constant concentrations inline at the
outlet, e.g., a conductivity meter or an UV-VIS spectrometer.31 This set-
up produces less information than spatially resolved measurements
due to the spatially integrated concentration measurements.
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� The two outlets are sampled and offline analysis allows for the con-
centration determination with any analytical system, e.g., UV/VIS.35 This
concept is feasible for all types of concentrations and components due
to the unlimited choice of analytical systems.

The feasibility of multicomponent-diffusion measurements has been
shown.35 While offline analyses require multiple independent measurements
to obtain multicomponent or concentration-dependent diffusion coefficients,
only one in situ Raman spectroscopy experiment would be sufficient.

5.3 The Use of Molecular Dynamics to Compute
Diffusivities

In this section, we provide an overview of the use of Molecular Dynamics
(MD) to compute self- and mutual diffusion coefficients in liquid mixtures.

Figure 5.2 (Top) Directions of mass transport in a microfluidic diffusion experi-
ment. Change of concentration is indicated by fading gray colour.
(Bottom) Change of concentration c in the microfluidic diffusion experi-
ment with axial position l for the system c-hexaneþmethylbenzeneþ
methanol at 25 1C.
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We focus on equilibrium MD and briefly discuss the use of non-equilibrium
MD. This section concludes with a discussion on how to compute the matrix
of thermodynamic factors from MD simulations.

5.3.1 Molecular Dynamics

Molecular Dynamics (MD) is a computational technique to study properties
of a collection (ensemble) of many particles (atoms, molecules). The central
idea is that atoms/molecules interact with each other; these interactions
either follow from quantum mechanics or a parameterized functional
form (the so-called force field). The forces on atoms/molecules that follow
from these interactions are used to integrate Newton’s second law (force
equals mass times acceleration) numerically. In this way, a trajectory of all
the atoms and molecules in the system is obtained. Essentially, the result
of an MD simulation is a ‘‘movie’’ that shows how all atoms and molecules
move around as a function of time. From such a ‘‘movie’’, average prop-
erties of the system can be computed: (1) static (thermodynamic) prop-
erties, e.g., the average total energy, average total pressure of the system;
and (2) dynamic properties (properties related to the time evolution of
the system), e.g., diffusivity, heat conductivity, and viscosity. MD simu-
lations thus produce time averages, in sharp contrast to Monte Carlo
simulations that provide configurational averages for a system of inter-
acting particles.36

There are many excellent textbooks on the MD technique,36–39 and several
open-source software packages for MD are available online.40–43 Instead of
providing a detailed description of the MD technique, below we briefly
outline some of the characteristics of MD that are needed in order to
understand how MD can be used to compute diffusivities of typical liquid
systems:

� The use of a parameterized functional form for interactions between
atoms and molecules (force field) is necessary to access the time-scale
required to study diffusion in liquids. Typical force fields consist of
both intramolecular interactions (interactions inside a molecule such
as bond-stretching and bond-bending) and intermolecular interactions
(interactions between molecules, such as Lennard-Jones and electro-
static interactions). In many cases, the intermolecular interactions can
be described by pair potentials (so that the total energy can be ex-
pressed as a summation over all particle pairs).

� The system of interacting particles is contained inside the so-called
simulation box which has a certain volume. To minimize the effect of
the boundaries of the system, usually periodic boundary conditions are
applied in combination with the nearest image convention. This is il-
lustrated in Figure 5.3. Making the system larger reduces finite-size
effects, but increases the required CPU time (the computational cost
usually scales linearly with the total number of particles in the system).
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Typically, in MD simulations the number of particles varies between
102 and 107, depending on the complexity of the used force field and the
time scale that needs to be accessed.

� The time step Dt to integrate the equations of motion for the system
numerically is set by the steepness of the interaction potential. Typi-
cally, Dt¼ 10�15 s¼ 10�3 ps. Due to this small time step, timescales of
typically 1 ms are accessible with MD. This is possible by using modern
computers, but the macroscopic timescale (seconds) is clearly beyond
reach of today’s technology.

� If no thermostat is used, MD conserves the total energy E which is the
sum of kinetic and potential (interaction) energy. The temperature
of the system is related to the kinetic energy of the system via the
equipartition theorem: the kinetic energy equals kBT/2 per degree of
freedom in the system (T is the absolute temperature and kB is the
Boltzmann constant). As the volume of the simulation box and the
number of particles are also constant, computed averages correspond

Figure 5.3 Schematic representation of periodic boundary conditions. A system is
surrounded by copies of itself so there are no artificial walls in the
system. If a particle leaves the central simulation box, it enters on the
other side. According to the nearest image convention (assuming pair-
wise interactions), only the nearest images of two particles interact (as an
example: the solid line shows the nearest neighbours of a particle pair,
while the dotted lines show the same particle pair in several other
periodic images, not being nearest neighbours.
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to the microcanonical ensemble. It is also possible to perform
MD simulations in other ensembles by using a thermostat or barostat,
e.g., the canonical (constant temperature, volume, and number of
particles) and the isobaric–isothermal ensemble (constant tempera-
ture, pressure, and number of particles). The latter is especially con-
venient, as in experiments temperature and pressure are often
constant too. The so-called grand-canonical ensemble (constant tem-
perature, volume, and chemical potential, but a fluctuating number of
particles) is much harder to realize in MD. We return to this issue in
Section 5.3.4.

� Differences in Gibbs or Helmholtz energies can be computed from MD
trajectories as well. The chemical potential of component i follows via
Widom’s test particle method

mi¼
@F
@Ni

� �

T;V ;Nj a i

¼�kBT ln exp �DUi

kBT

� �

N;V ;T

* +
(5:8)

in which F is the Helmholtz energy, Ni is the number of molecules of
component i, and DUi is the energy change if an additional molecule of
species i would be inserted at a random position in the system. The
brackets h� � �iN,V,T denote an average in the canonical ensemble and an
average over all random positions of the test particle. For dense liquids,
this method often fails as DUi is often very large due to overlaps with
other molecules in the systems. Improvements of Widom’s test particle
method use a more gradual insertion of the test particle in the system
thereby avoiding overlaps. Examples of this are methods where an
additional coupling parameter switches on/off interactions between the
test particle and the surrounding molecules.44

5.3.2 Computing Diffusivities from Equilibrium Molecular
Dynamics

At equilibrium, the self-diffusivity of component i in a three-dimensional
isotropic system follows from the mean square displacement of particles of
this component36

Di;self ¼
1

6Ni
lim

m!1

1
m � Dt

XNi

l¼ 1

rl;iðtþm � DtÞ � rl;iðtÞ
�� ��2

* +
(5:9)

in which Ni is the number of molecules of component i, Dt is the time-step
used in the MD simulation to integrate the equations of motion, and rl,i(t) is
the position of the l-th molecule of component i in the system at time t. The
brackets denote an average over t. It is important to note that eqn (5.9)
considers an average of displacements of individual molecules, i.e., correl-
ation between the motion of different molecules are irrelevant when
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calculating the self-diffusivity of a component. One takes advantage of the
fact that on average, the mean square displacements of all molecules of the
same species are identical. Alternatively, one can integrate the velocity auto-
correlation function to obtain Di,self:

Di;self ¼
1

3Ni

ð1

0
dt0

XNi

l¼ 1

ðvl;iðtÞ � vl;iðtþ t0ÞÞ
* +

(5:10)

in which vl,i(t) is the velocity of the l-th molecule of component i in the
system at time t. For large t0, the velocity auto-correlation function usually
decays to zero very slowly and therefore it is often difficult to set the inte-
gration limit in eqn (5.10). Therefore, we prefer the use of eqn (5.9). In
practice, one plots the logarithm of the average mean square displacement
PNi

l¼ 1
rl;iðtþm � DtÞ � rl;iðtÞ
�� ��2

� �	
Ni versus ln(m) and identifies the linear re-

gime, from which Di,self can be computed. It is also important that in this
regime the mean square displacement is sufficiently large, e.g., of the order
of the size of the simulation box squared. The method in principle requires
the storage of the full trajectory of all the molecules in the system. The use of
coarse graining significantly reduces the computation time and the amount
of data that needs to be stored, and therefore it is often used in MD
simulations.36,45

Calculating mutual diffusion coefficients from equilibrium MD simu-
lations is a bit more complicated. Expressions for the Maxwell–Stefan
diffusivities can be obtained by applying the so-called linear response
theory.46 The central idea of this theory is that a disturbance created in a
system by a weak external perturbation decays in the same way as a dis-
turbance caused by a spontaneous fluctuation in the system caused by the
thermal motion of the molecules. Therefore, one can compute transport
coefficients from the decay of spontaneous fluctuations of observable
microscopic properties of the system, while the system is at equilibrium
(i.e., no gradients in temperature, concentration etc. in the system). The
resulting transport equations are called Green–Kubo relations and they can
be derived for many transport properties, e.g., mutual diffusion co-
efficients, electric and thermal conductivities, shear viscosity, and bulk
viscosity. For a detailed derivation of the transport equations for fluids, we
refer the reader to the excellent textbook of Morriss and Evans.46 For de-
riving the equations for mutual diffusion, we would also refer the reader to
ref. 47 and 48. As the thermodynamic driving force for isothermal mass
transfer is a chemical-potential gradient, the mutual diffusion coefficients
computed from equilibrium MD simulations are Maxwell–Stefan (MS)
diffusivities. There are no expressions for Fick diffusivities from the mo-
lecular motion of the molecules without additional terms regarding in-
formation on how a concentration gradient can be converted to a gradient
in chemical potential.
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In practice, one first computes the so-called Onsager coefficients Lij from
the trajectory of the molecules,49,50

Lij ¼
1

6N
lim

m!1

1
m � Dt

�
XNi

l¼ 1

ðrl;iðtþm � DtÞ � rl;iðtÞÞ
 !*

�
XNj

k¼ 1

ðrk;jðtþm � DtÞ � rk;jðtÞÞ
 !+ (5:11)

in which i and j refer to the different species in the liquid mixture. Analogous
to eqn (5.10), this equation can also be formulated in term of velocity cor-
relation functions:

Lij ¼
1

3N

ð1

0
dt0

XNi

l¼ 1

vl;iðtÞ �
XNj

k¼ 1

vk;jðtþ t0Þ
* +

: (5:12)

The key difference between eqn (5.11) and (5.9) is that eqn (5.11) con-
siders the motion of the centre of mass of all molecules of a certain species,
rather than the motion of individual molecules. Therefore, to compute
Onsager coefficients is much harder than to compute self-diffusivities, as
one cannot average over the trajectories of individual molecules. Note that
the integration of eqn (5.12) is difficult due to long-time tails of the cor-
relation function. Therefore, it is preferred to use eqn (5.11) instead.46,50 In
practice, MD simulations of at least 100 ns are needed to compute Lij, while
usually a few nanoseconds is sufficient to compute self-diffusivities.51–53

The matrix K is symmetric, i.e., Lij¼Lji and the Onsager coefficients
are constrained by

P
i

MiLij ¼ 0, in which Mi is the molar mass of com-

ponent i.49 The MS diffusivities directly follow from the Onsager co-
efficients Lij and Lii. In binary systems, the MS diffusivity Ð12 is related to
the Onsager coefficients by49

� 12¼
x2

x1
L11 þ

x1

x2
L22 � 2L12: (5:13)

For ternary systems and systems with more than three components, the
resulting expressions are more complex and we refer the reader to Krishna
and van Baten, and Liu et al.49,54

5.3.3 Non-equilibrium Molecular Dynamics to Compute
Mutual Diffusion Coefficients

Besides the Green–Kubo approach that requires equilibrium MD simu-
lations, it is also possible to perform MD simulation out of equilibrium
and compute transport coefficients from the fluxes and driving forces
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(that can both be measured in the MD simulation). These so-called
non-equilibrium MD simulations (NEMD) are often very similar in spirit to
actual physical experiments.46,55–63 For computing transport diffusivities,
there are roughly two types of approaches to compute transport diffusivities
using NEMD:

� Boundary-driven NEMD. One can construct the MD simulation in
such a way that there is a concentration gradient present in the sys-
tem. One can either study how this concentration gradient vanishes as
a function of time, or it can be maintained by exchanging molecules of
different species between various locations in the simulation box, or
by coupling of various locations of the system to grand-canonical
reservoirs. In the latter methods, one can calculate the fluxes and
concentration gradients, from which Fick and/or Maxwell–Stefan dif-
fusivities follow.

� External-field-driven NEMD. One can artificially create a chemical-
potential gradient by adding a force to molecules of a certain species.
As a consequence, the average velocities of different species will differ.
The Maxwell–Stefan diffusivities can be calculated from these velocity
differences.46

For both types of approaches, there are many variations possible on the al-
gorithm, and there are variants available for other transport properties like
viscosity and heat conductivity. For a detailed overview, we refer the reader to
ref. 37, 39, 46 and 50 and references to the original articles in these. A more
detailed description of NEMD algorithms is also available in Chapter 6 of
this book. When performing NEMD simulations, one should always take
care of the following:

� As MD simulations deal with systems that are very small compared to
macroscopic systems, gradients in NEMD are much larger than in ex-
periments. Therefore, one should always extrapolate the computed
transport coefficient to zero driving force.

� As in NEMD simulations the system is not in equilibrium, heat will be
dissipated as a consequence. In order for the system to be in a steady
state, this heat needs to be removed by a thermostat. It is important to
verify that the thermostat does not cause any artifacts. An example of
this is the formation of ‘‘traffic lanes’’ of different species in external
field driven NEMD that can either be enhanced or suppressed by the
choice of the thermostat.46,60

For various systems and transport properties it has been reported in the
literature that equilibrium MD and NEMD yield very similar values of the
transport coefficients. It is not clear a priori which approach is compu-
tationally more efficient.
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5.3.4 Thermodynamic Factor from Simulations

The thermodynamic factor (eqn (5.5)) requires the knowledge of the activity
coefficient gi, which is directly related to the chemical potential mi by

mi¼
@G
@Ni

� �

T ;p;Nj a i

¼ m0
i ðT ; pÞ þ RT lnðxigiÞ: (5:14)

in which m0
i ðT ; pÞ is the chemical potential of the pure component i at T,p.

Calculation of gi from mi requires m0
i ðT ; pÞ, and both can be computed from

Gibbs energy calculations, see for example the work by Sadowski and co-
workers.64 The chemical potential mi is exactly the same as the partial molar
Gibbs energy gi. Therefore, the elements of the matrix of thermodynamic
factors Gij correspond to a second derivative of the Gibbs energy G with re-
spect to the composition of the system. In principle, one could use any ap-
proach to compute the Helmholtz or Gibbs energy (e.g., Widom’s test
particle method) and take the derivative of mi with respect to composition to
obtain Gij. Such an indirect approach has been used by Vrabec and co-
workers for systems of water and various alcohols.65 One could avoid errors
introduced by numerical differentiation of gi(xi) by using an activity co-
efficient model to fit gi(xi).

1,7

It is also possible to use a more direct approach to obtain Gij, without
using a differentiation of numerically obtained results. As Gij involves the
second derivative of the Gibbs energy with respect to the number of par-
ticles, in terms of Widom’s test particle method this would correspond to the
simultaneous insertion of two test particles. Balaji and co-workers have
developed the so-called permuted Widom test particle method that uses
combinatorics to compute these second derivatives of G directly from a
single simulation.66,67

Alternatively, the elements of the matrix of thermodynamic factors can be
computed from the Kirkwood–Buff (KB) approach.48,52,53,68–70 This approach
relates thermodynamic properties to fluctuations in the number of particles
in the grand-canonical ensemble, i.e., an ensemble where the temperature,
volume, and chemical potential of each species is constant and the number
of particles of each component fluctuates. For a system of volume V, in this
ensemble, the so-called KB coefficients GV

ij are defined as

GV
ij ¼ V

NiNj

 �

� Nih i Nj

 �

Nih i Nj

 � �

Vdij

Nih i
(5:15)

in which Ni is the number of molecules of species i inside V, the brackets
h. . .i denote ensemble averages in the grand-canonical ensemble, and dij is
the Kronecker delta. The thermodynamic factors directly follow from the KB
coefficients Gij, see ref. 52, 53, 69 and 70 for the resulting expressions. The
grand-canonical ensemble can be realized in Monte Carlo simulations,36 but
its efficiency critically relies on the insertion and removal of molecules to
and from the system. For large molecules and dense liquid systems, these
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insertions and removals are often not very efficient as nearly always there
is an overlap between an inserted molecule and molecules already present
in the system, resulting in poor statistics. Specialized algorithms are in
principle available to facilitate molecule transfers36,71–73 but still these
approaches are computationally expensive.

An ensemble in which T and p are constant and particle numbers fluctuate
can also be realized in MD simulations by considering a small subsystem of
volume V inside a large simulation box (which contains a constant number
of particles), see Figure 5.4. The fluctuations in the number of particles in-
side the small subsystem result from the thermal motion of the molecules
inside the system,8 instead of changing the total number of molecules inside
the simulation box (as is done in Monte Carlo simulations in the grand-
canonical ensemble). It is crucial however to take into account the smallness
of the subsystem: for a subsystem of volume V, one can show that the dif-
ference between GV

ij and its value in the thermodynamic limit (denoted
by G1ij ) scales as 1/V(1/d) in which d is the dimensionality of the system.8

Figure 5.4 Schematic illustration of the small subsystem approach. A small sub-
system of the volume (circle) is embedded in the simulation box
(square). As the small subsystem can exchange particles and energy
with the surroundings, it can be considered as a grand-canonical reser-
voir. KB coefficients can be computed from particle fluctuations inside
according to eqn (5.15). An identical approach is to integrate the radial
distribution function (eqn (5.17)). As explained in the main text, macro-
scopic properties can be obtained by extrapolating to the thermody-
namic limit.
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Alternatively, one can compute GV
ij of a finite system by integration of the

radial distribution function gij(r) over volume. In the 1950s, Kirkwood and
Buff derived the resulting expression for an infinitely large system68

G1ij ¼ lim
V!1

GV
ij ¼ 4p

ð1

0
½gijðr0Þ � 1�r02 dr0: (5:16)

This expression is only valid for infinite systems.74 This aspect has been
overlooked in many MD studies, even though by definition MD deals with
systems that are not infinitely large. Simon, Krüger, and co-workers have
shown that for d¼ 3 the correct KB integral for a finite system equals

GV
ij ¼ 4p

ð2r

0
½gijðr0Þ � 1� 1� 3r0

4r
þ r03

16r3

� �
r02 dr0 (5:17)

in which r is the radius of a sphere of volume V. It is important to note that
this expression is identical to eqn (5.15). In the limit of V-N, eqn (5.17)
reduces to eqn (5.16). A simple truncation of the integration of eqn (5.16)
does not result in a well-defined physical property. Extrapolation of GV

ij to
1/r-0 results in Gij in the thermodynamic limit.

Vlugt, Bardow, and co-workers have used the small-subsystem approach to
compute thermodynamic factors of binary and ternary liquid systems of
acetone, methanol, tetrachloromethane, and chloroform at room tempera-
ture and pressure.50,52–54 In addition, the thermodynamic factors were used to
compute Fick diffusivities from MS diffusivities obtained by equilibrium MD
simulations. In the vast majority of cases, results for Gij and Fick diffusivities
were in excellent agreement with experimental data and the small-subsystem
approach turned out to be a convenient way for determining thermodynamic
factors directly from equilibrium MD. The thermodynamic factor for these
systems obtained from MD simulations is in better agreement with the one
derived from experimental VLE data than the thermodynamic factor computed
by using the COSMO-SAC method.70 This is not surprising, as COSMO ap-
proaches do not take the precise details of the long-range liquid structure into
account explicitly, while this is included (by definition) in MD simulations.

5.4 Engineering Models for Predicting Diffusivities
To save time and costs, it is desirable to predict diffusion coefficients from
simple molecular information or physical properties. However, several
challenges have to be addressed:

� The prediction of Fick diffusion coefficients is difficult, due to their
empirical character. Therefore, only few approaches exist.2,75

� The prediction of MS diffusion coefficients is more common, since the
MS approach separates thermodynamic effects from binary molecular
interactions.7 However, additional, often significant, uncertainties are
introduced in the calculation of the thermodynamic factor (see eqn (5.6)).
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A common approach to predict diffusion coefficients in concentrated so-
lutions is to apply mixing rules: typically, these mixing rules combine dif-
fusion coefficients at infinite dilution which are much easier to predict.7,76,77

Thus, only these diffusion coefficients at infinite dilution have to be deter-
mined experimentally, by MD simulations, or again by prediction.

In this section, first, predictive models for diffusion coefficients at infinite
dilution are presented, before predictive models for diffusion coefficients in
concentrated solutions are introduced.

5.4.1 Prediction of Binary Diffusion Coefficients
at Infinite Dilution

One of the most fundamental predictive equations for diffusion coefficients
at infinite dilution is the Stokes–Einstein equation:

DxA!0
AB ¼ kBT

6pZBrA
: (5:18)

Here, the binary diffusion coefficient DxA!0
AB of component A infinitely dilu-

ted in the solvent B is computed from the viscosity of the solvent ZB and the
radius of the solute molecules rA. The Stokes–Einstein equation can be de-
rived from hydrodynamic theory and is therefore physically based.10 It is
strictly applicable only for macroscopic systems in which diluted, spherical
macromolecules are solved in smaller solvent molecules.2

Nevertheless, the Stokes–Einstein equation serves as a framework for
several models with the same structural concept: DpT/Z. The most prom-
inent example for such a model is the Wilke–Chang equation:2

DxA!0
AB ¼

7:4 � 10�8 FðMB=g �mol�1Þ
� 0:5ðT=KÞ

ðZB=mPa � sÞðVA=cm3 �mol�1Þ0:6
: (5:19)

Here, F is an association factor of the solvent B (which equals 1 if the
molecules are not associated), MB is the molar mass of the solvent B, T is the
temperature, ZB is the viscosity of the solvent B, and VA is the molar volume
of the solute A.

Further modifications of the Wilke–Chang equation and additional
models for the prediction of diffusion coefficients at infinite dilution are
reported by Poling and Prausnitz.2

5.4.2 Prediction of Concentration-dependent Binary
Diffusion Coefficients

The diffusion coefficients at infinite dilution are usually interpolated to
determine concentration-dependent binary diffusion coefficients. The most
prominent examples for the prediction of MS diffusion coefficients of con-
centrated binary mixtures are the equations by Vignes78 and Darken79.
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The Vignes equation interpolates the diffusion coefficients at infinite
dilution:

� ij ¼ � xi!0
ij

� �xj
�

xj!0
ji

� �xi
: (5:20)

While the equation has been derived empirically, it applies very well for ideal
or nearly ideal mixtures.2

The Darken equation

� ij ¼ xiDj;self þ xjDi;self (5:21)

combines the self-diffusion coefficients Di,self and Dj,self in the concentrated
solution for the estimation of the mutual MS diffusion coefficient.
This equation can be derived by assuming that velocity correlations between
different molecules are small.80 Since self-diffusion coefficients in concen-
trated solutions are scarcely available, Krishna and van Baten49 suggest a
mixing rule using more common diffusion coefficients at infinite dilution
instead:

Di;self ¼
Xn

j¼ 1

wjD
wj!0
i;self : (5:22)

There are more models that can predict concentration-dependent dif-
fusion coefficients using information on the viscosity of the mixture (see
ref. 2). However, this requirement severely limits their applicability.

5.4.3 Multicomponent Extensions of the Darken and
Vignes Equations

Wesselingh and Krishna76 proposed a generalized Vignes equation for mul-
ticomponent mixtures:

� ij ¼ � xi!0
ij

� �xj
�

xj!0
ji

� �xi Yn

k¼ 1;k a i;j

� xk!1
ij

� �xk
: (5:23)

Here, the diffusion coefficients � xk!1
ij describe the friction between com-

ponents i and j when both are diluted in component k. Since these diffusion
coefficients are not available experimentally, they have to be estimated.81

Recently, Liu, Bardow, and Vlugt51 derived a physically motivated model for
this diffusion coefficient:

� xk!1
ij ¼

Dxk!1
i;self Dxk!1

j;self

Dxk!1
k;self

: (5:24)

The derivation is based on the assumption that velocity correlations between
different molecules are small. The required self-diffusion coefficient � xk!1

k;self
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can be calculated by predictive models such as the Wilke–Chang equation.49

Therefore, the prediction of � ij based on pure component and binary mix-
ture data at infinite dilution is possible. The combination of eqn (5.23) and
(5.24) is called the Vignes–LBV equation.51

Liu, Bardow, and Vlugt51 derived a multicomponent Darken-like equation
from statistical mechanics. Assuming again negligible velocity cross-
correlations, the following relation results:

� ij ¼
Di;self Dj;self

Dmix
(5:25)

with
1

Dmix
¼
Xn

i¼ 1

xi

Di;self
: (5:26)

The equation reduces to the binary Darken equation for two component
mixtures and satisfies well-defined limits for multicomponent mixtures.
Again, the MS self-diffusion coefficients in the concentrated solution Di,self

have to be estimated. Motivated by eqn (5.26), Liu, Bardow, and Vlugt
propose the following mixing rule to estimate the Di,self from the self-
diffusion coefficients at infinite dilution D

xj!1
i;self :

1
Di;self

¼
Xn

j¼ 1

xj

D
xj!1
i;self

: (5:27)

The combination of eqn (5.25) and (5.26) is called the predictive Darken–
LBV equation. For more details about the derivation we refer the reader to
ref. 54.

The equations have been shown to hold well for fluids described by a
Weeks–Chandler–Anderson (WCA) potential.82 For systems with strong
interactions (with no WCA potential), additional cross-correlations have to
be considered for the evaluation of the diffusion coefficients.

Figure 5.5 shows literature values as well as computational results of
diffusion coefficients calculated with the Vignes– and the Darken–LBV
equations for the binary system benzeneþ cyclohexane. Both calculations
are based only on the self-diffusion coefficients at the boundaries of the
system x-0 and x-1, respectively. Although the Vignes equation repro-
duces the correct curvature of the concentration dependence of the diffusion
coefficients, it lacks accuracy. In contrast, the predictive Darken–LBV
equation is able to reproduce the literature data quite well.

Table 5.2 shows mean square deviations of the diffusion coefficients
between literature data and calculations with the Vignes–LBV and the
predictive Darken–LBV equations, respectively, for the ternary system
methylbenzeneþ chlorobenzeneþbromobenzene. Again, the superior per-
formance of the predictive Darken–LBV equation is apparent.
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5.5 Conclusions
Wherever mass transport occurs, diffusion is important. For the determin-
ation of diffusion coefficients, we highlighted three methods and their re-
cent developments:

� Experimental methods provide accurate values for diffusion co-
efficients. While established methods require high experimental effort,
recent improvements allow for reduced costs and time.

� Equilibrium Molecular Dynamics show good results for MS diffusion
coefficients as well as for the thermodynamic factor. This offers the
possibility for a fully predictive determination of Fick diffusion co-
efficients from force-field models.

Figure 5.5 Comparison of literature values and predictions of the Vignes– and the
predictive Darken–LBV equations. Absolute values of the diffusion co-
efficients for the binary system benzeneþ cyclohexane.

Table 5.2 Comparison of literature values and predictions of the
Vignes– and the predictive Darken–LBV equations.
Relative mean square deviations of the diffusion
coefficients for the ternary system methylbenzeneþ
chlorobenzeneþbromobenzene.

Relative Mean
Square Deviation Vignes–LBV

Predictive
Darken–LBV

D11 0.0463 0.0110
D12 0.2475 0.0729
D21 0.2094 0.0580
D22 0.0535 0.0029
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� Engineering models are preferred for the rapid calculation of diffusion
coefficients. The newly introduced models by Liu, Bardow and Vlugt
have a physically sound basis and improve prediction accuracies of MS
diffusion coefficients.

For all three methods, the full potential of these recent developments has
not been fully explored and we expect further progress towards a quantitative
understanding of diffusion in liquids.
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31. E. Häusler, P. Domagalski, M. Ottens and A. Bardow, Chem. Eng. Sci.,

2012, 72, 45.
32. A. E. Kamholz, E. A. Schilling and P. Yager, Biophys. J., 2001, 80, 1967.
33. A. E. Kamholz and P. Yager, Biophys. J., 2001, 80, 155.
34. Y. Lin, X. Yu, Z. Wang, S.-T. Tu and Z. Wang, Anal. Chim. Acta, 2010,

667, 103.
35. C. Blesinger, S. E. Yalcin, C. Pauls and A. Bardow, mFlu-12 Proceedings,

3rd European Conference on Microfluidics, Heidelberg, 2012.
36. D. Frenkel and B. Smit, Understanding Molecular Simulation: from Algo-

rithms to Applications, Academic Press, San Diego, 2002.
37. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon

Press, Oxford, 1987.
38. M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation,

Oxford University Press, Oxford, 2010.
39. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge

University Press, Cambridge, 2004.
40. http://lammps.sandia.gov, 2014.
41. S. Plimpton, J. Comput. Phys., 1995, 117, 1.
42. http://www.gromacs.org, 2014.
43. B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, J. Chem. Theory

Comput., 2008, 4, 435.
44. A. Torres-Knoop, S. P. Balaji, T. J. H. Vlugt and D. Dubbeldam, J. Chem.

Theory Comput., 2014, 10, 942.

102 Chapter 5



45. D. Dubbeldam, D. C. Ford, D. E. Ellis and R. Q. Snurr, Mol. Simul., 2009,
35, 1084.

46. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium
Liquids, Cambridge University Press, Cambridge, 2008.

47. D. R. Wheeler and J. Newman, J. Phys. Chem. B, 2004, 108, 18353.
48. M. Schoen and C. Hoheisel, Mol. Phys., 1984, 53, 1367.
49. R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939.
50. X. Liu, S. K. Schnell, J.-M. Simon, P. Krüger, D. Bedeaux, S. Kjelstrup,
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CHAPTER 6

Non-equilibrium Molecular
Dynamics
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6.1 Introduction
Non-equilibrium molecular dynamics (NEMD) simulations provide a
powerful tool to investigate non-equilibrium phenomena from a micro-
scopic perspective by taking into account the position and momenta of in-
dividual particles. External or fictitious fields can be employed to induce
energy or mass fluxes and the concomitant temperature and chemical-
potential and density gradients. In this chapter we discuss NEMD methods
to drive mass, momentum and energy fluxes, and displacement currents. We
also review the application of NEMD algorithms to compute thermophysical
properties, rationalize transport mechanisms and uncover novel non-
equilibrium coupling phenomena.

Several NEMD methods were developed in the 1970’s. These developments
have been discussed in excellent reviews and monographs.1–3 Non-
equilibrium simulations have traditionally complemented the equilibrium
computations of transport coefficients based on the time-correlation for-
malism and the Green–Kubo (GK) equations.4 The latter rely on the analysis
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of spontaneous fluctuations. The signal-to-noise ratio associated with the GK
approach can decrease significantly in computations of collective properties,
such as the thermal conductivity or viscosity. This has been a problem in the
past, as it was difficult to compute long correlation times with enough
statistics. NEMD provides an alternative to reduce the signal-to-noise ratio
through the use of external or fictitious fields. Further, it has been used to
investigate stationary states and coupling phenomena, such as thermo-
diffusion. Non-equilibrium thermodynamics (NET) provides the formalism
to describe these coupling phenomena and to understand how they modify
the transport properties.5 In turn, NEMD simulations, which do not make
assumptions about coupling equations, can be used to validate the NET
hypotheses.6 Moreover, by varying the force field details (e.g., the mass ratio
in a binary mixture or the intermolecular interactions) it is possible to
establish a direct connection between the non-equilibrium coupling effects
and the atomic and molecular properties.7–9

NEMD has become an ideal tool to investigate problems where the ap-
plication of macroscopic approaches such as NET or kinetic theory is lim-
ited. This is the case for nanoscopic systems, activated processes or systems
very far from equilibrium. Shockwaves and crack propagation provide good
examples of problems that challenge traditional non-equilibrium and kin-
etic theories. These issues were recognized shortly after the development of
the first NEMD algorithms.1

Current NEMD simulation methods can be employed to investigate tran-
sient and stationary states. The former involves the simulation of the system
relaxation towards equilibrium, e.g., the relaxation of a hot molecule with
time. The relaxation can be fitted to continuum equations (e.g., the heat
diffusion equation), enabling a route to estimate transport coefficients.10,11

Early simulations of stationary states relied on the use of boundary regions,
either to modify the energy of the particles in contact with the regions or to
impart momentum.12 It was recognized in early works that the use of
boundary regions located at the edges of the simulation box is not com-
patible with the use of standard periodic boundary-conditions in the
direction of the flux. An alternative setup for the boundary-conditions has
been introduced more recently that results in a system that is fully periodic,
and hence compatible with the boundary-conditions used in most computer
simulations.13,14 Moreover, the boundary-condition problem can be cir-
cumvented by using fictitious fields in the equations of motion (synthetic
algorithms).2 The latter approach provides a route to perform NEMD
preserving the homogeneity/periodicity of the system of interest. In contrast,
Boundary-Driven methods use boundary regions operated by inducing
explicit gradients (temperature, density, concentration, etc.) inside the
simulation box. This feature can be exploited to investigate a whole range of
thermodynamic states in a single simulation.15

Non-equilibrium algorithms are not general, in the sense that different
strategies are employed to compute specific transport properties: thermal
transport, mass transport, etc. Often non-equilibrium thermodynamics and
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the GK approach play an important role in the design of the algorithms or in
the interpretation of the results.

This chapter is structured as follows. We start by providing a background
on computer simulations and linear response theory. A detailed discussion
of the available NEMD algorithms follows viz. synthetic, Boundary-Driven
and transient. We devote the final part of the chapter to discuss the ap-
plicability of NEMD to quantify thermophysical properties and to investigate
coupled phenomena. We focus our discussion on fluids and fluid mixtures.
However, we note that many of the computational approaches discussed
here are applicable to solids too.

6.2 Background
In this section, we provide a succinct review of the main concepts related to
equilibrium molecular dynamics and transport-coefficients calculation
within the linear response theory. The reader is referred to excellent
monographs on computer simulations for a full discussion of molecular
dynamics simulations.16–18

6.2.1 Molecular Dynamics

Molecular dynamics (MD) simulations were first performed by Alder and
Wainwright.19 They rely on the solution of Newton’s equation of motion of N
particles. The potential energy, U, of the particles can be expressed as a sum
of pair, uij, triplet, uijk, and higher-order terms,

Uðr1; r2; . . . rNÞ¼
1
2

X

i;j

uijðri; rjÞ þ
1
6

X

i;j;k

uijkðri; rj; rkÞ þ � � � ; (6:1)

where ri is the vector corresponding to the position of particle i. Often, the
interactions are approximated at the pair level by using effective potentials,
such as the truncated Lennard-Jones potential (LJ), which is zero for dis-
tances rij¼ |ri� rj| greater than some prescribed cut-off and otherwise
equal to

uijðri; rjÞ¼ uijðrijÞ¼ 4eij
sij

rij

� �12

�
sij

rij

� �6� �
; (6:2)

where eij and sij are the interaction strength and particle diameter, re-
spectively. The LJ potential provides a good representation of simple liquids,
and it is widely used to model dispersion interactions of complex fluids and
materials. To avoid a discontinuity in the force at the cut-off, the force can be
smoothed to zero as described in ref. 16.

The particles’ positions are evolved using the N(N� 1)/2 independent
forces that can be derived from the pair potential, fij¼ @uij/@ri. In order to
minimize the impact that the small system sizes investigated in MD (NB10
to 105) have on structural and thermodynamic properties, the simulations
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are performed by using periodic boundary-conditions, whereby a central box
is surrounded by an infinite array of replicas (see Figure 6.1). The use of
boundary-conditions has to be combined with simulations of systems that
are not too small. Lateral box lengths smaller than 10s, where s is the
diameter of the largest atom in the simulation can result in the ‘‘periodic
error’’. In such small boxes the thermodynamic properties, e.g., pressure or
surface tension, can differ significantly from the thermodynamic limit
values.20,21

Typically, the centre of mass of the simulation box is kept constant so that
the barycentric frame of reference is a natural choice for molecular dynamics
simulation methods. However, this is not always the case, especially when a
net mass flow or current is present.

The equations of motion in MD simulations are usually integrated nu-
merically by using the Verlet algorithm or its variants. This algorithm can
also be employed in conjunction with Boundary-Driven NEMD, while more
sophisticated equations of motion have been developed to drive, e.g., a heat
flux by using synthetic methods (see Section 6.3.1).

6.2.2 Transport Coefficients and Linear Response

Linear response theory22 provides a powerful approach to quantify mech-
anical and thermal transport coefficients and to design non-equilibrium
algorithms.2 The GK approach furnishes a link between the linear non-
equilibrium response and the time-dependent equilibrium fluctuations.

Figure 6.1 (Left) Illustration of periodic boundary-conditions in a two-dimensional
system. The central simulation box has been highlighted. The arrows
indicate the displacement of particles outside the central box and how
they re-enter the box through the surrounding images boxes. (Right)
Illustration of Lees–Edwards boundary-conditions employed in compu-
tations of planar Couette flow. The horizontal arrows pointing in oppos-
ite directions indicate the direction of the velocity in the upper and lower
parts of the simulation box. The x and y axes are defined along the
horizontal and vertical directions, respectively.
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To exemplify the GK approach, we consider a system of Nc components in
which there is transfer of mass and heat. The flux–force relations are then
(as described in the previous chapters)

J i¼� Liq
rT
T2 �

XNc�1

k¼ 1

Lik
rTðmk � mNc

Þ
T

; i¼ 1 . . . Nc � 1

J 0q¼� Lqq
rT
T2 �

XNc�1

k¼ 1

Lqk
rTðmk � mNc

Þ
T

;

(6:3)

where Ji is the mass flux of component i in the barycentric frame of reference

PNc

j¼ 1
J j ¼ 0

!
, T is the temperature, mi the chemical potential of component i,

J 0q the measurable heat flux in the barycentric frame of reference, and Lij¼ Lji

are the Onsager coefficients. The subscript T in the gradient (rT) indicates
that the gradient is taken at constant temperature. The GK method relies on
the computation of autocorrelation functions, for instance, the Onsager
coefficients related to the mutual diffusion of components i and j can be
obtained by,23,24

Lij ¼
1

3kBV

ð1

0
J iðtÞ � J jð0Þ
D E

dt¼ 1
3kBV

ð1

0
mi

XNi

k¼ 1

vk;iðtÞ �mj

XNj

l¼ 1

vl;jð0Þ
* +

dt;

(6:4)

where V is the volume of the simulation box, kB is the Boltzmann constant, t
is the time, mj is the mass of component j and vl,j is the velocity of molecule l
of component j in the barycentric frame of reference. The factor of 3 applies
to three-dimensional systems. The total number of molecules of component
j is Nj. These Onsager coefficients can be related to the Maxwell–Stefan or
Fick diffusivities.25 For a thorough discussion on how the different diffusion
coefficients are related, we refer to the previous chapter. We would like to
point out that the Fick diffusion coefficients will depend on the choice of the
frame of reference, and they are also non-symmetric. The Maxwell–Stefan
diffusivities are, on the other hand, both independent on the frame of ref-
erence and symmetric.

One can also access the Fick diffusion coefficients by considering the
generalized Fick’s law of diffusion (in the average molar frame of refer-
ence)25 for a constant temperature

J i¼� c
XNc�1

j¼ 1

Dijrxj; (6:5)

where Ji is the molar flux of component i, Dij is the Fick diffusivity, c is the
total molar concentration and xj is the molar fraction of component j. Non-
equilibrium simulation approaches for inter-diffusion make use of eqn (6.5)

Non-equilibrium Molecular Dynamics 109



by computing the mass fluxes of the different components, arising from an
imposed molar fraction gradient.

The GK approach to calculate the thermal conductivity, l, relies on the
autocorrelation function of the heat flux,

l¼
Lqq

T2 ¼
V

3kBT2

ð1

0
J 0qðtÞ � J 0qð0Þ
D E

dt; (6:6)

where, J 0q, in the notation of de Groot and Mazur,5 is the reduced (or
measurable) heat flux, and Lqq, the Onsager coefficient. The factor of 3 ap-
plies again to three-dimensional systems. We note that alternative GK
equations can be obtained using other definitions of the heat-flux, which do
include enthalpic terms.

In simulations, the heat flux is often obtained from the microscopic
equation for the flux of internal energy, JU, which was derived by Irving and
Kirkwood.26 For zero barycentric velocity, pair wise interactions, and a local
volume V, we have,

JU ¼
1
V

XN2V

i¼ 1

1
2

miv
2
i vi þ ui vi þ

1
2

XN

jai

ðvi � f ijÞ rij

" #
; (6:7)

where vi, is the velocity of particle i, fij is the force of particle j on i, rij¼ ri� rj

and ui¼
1
2

XN

jai¼ 1

uijðrijÞ
!

is the potential energy of particle i. The heat flux

is related to the internal energy flux through, J 0q¼ JU �
PNc�1

i¼ 1
ðhi � hNcÞJ i,

where hi is the partial specific enthalpy of component i. For a stationary state
Ji¼ 0 and therefore J 0q¼ JU . Several approaches have been developed to
compute the internal-energy flux given in eqn (6.7). The method of planes is
particularly suitable for inhomogeneous fluids.27 Eqn (6.7) has also been
extended to perform simulations of molecules by using rigid-body dynamics
algorithms,28,29 and to take into account long-range interactions arising in
charged and polar systems.30–32

When more than one component is present in the system of interest, the
computation of transport coefficients requires special attention, as cross
effects arising from the coupling of different fluxes are possible. One of such
effects was observed by Ludwig in 185633 and later investigated by Soret.34

The Ludwig–Soret effect can be predicted and understood by using NET and
the linear flux–force (LFF) relations. For a binary mixture,5

J1¼� L1q
rT
T2 � L11

rTðm1 � m2Þ
T

(6:8)

J 0q¼� Lqq
rT
T2 � Lq1

rTðm1 � m2Þ
T

; (6:9)
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Applying the Gibbs–Duhem equation to the gradient of chemical poten-
tials we get, rTðm1 � m2Þ¼w�1

2 ð@m1=@w1ÞT;Prw1, where w1 and w2 are
the mass fractions of component 1 and 2, respectively. The mass flux can
then be rewritten in terms of the thermal diffusion coefficient,
DT¼ L1q(rw1w2T2)�1 and the diffusion coefficient, D¼ L11(rw2T)�1(@m1/
@w1)T,P, to get, J1¼�rw1w2DTrT� rDrw1, where r is the density.
The Soret coefficient, ST, is defined when J1¼ 0 and given by
ST¼DTD�1¼�ðw1 w2Þ�1ðrw1=rTÞ

��
J1 ¼ 0.

The coefficients in the LFF relations eqn (6.8) are connected to transport
coefficients. For example (as in eqn (6.6)), Lqq¼ lT2 is connected to the
thermal conductivity, while the cross-coefficients, L1q¼ Lq1, are related to the
Soret and Dufour coefficients.5 These coefficients can be computed with
appropriate GK equations (see, e.g., ref. 6). It is important to note that the
heat flux, J 0q, does not contain the partial enthalpies. These enthalpic terms
must be considered in order to compute the measurable heat flux correlation
functions needed in the GK approach (see eqn (6.6) and ref. 6). Neglecting
the enthalpic contributions can lead to large overestimations of the thermal
conductivity. The partial enthalpies can be computed by using equilibrium35

and non-equilibrium approaches.36

The GK approach can be used to compute the shear viscosity, Z,37

Z¼ V
kBT

ð1

0
PxyðtÞ � Pxyð0Þ
� �

dt; (6:10)

via the computation of the off-diagonal components, Pxy, of the pressure
tensor, P,

PV ¼
XN

i¼1

pipi

mi
� 1

2

XN

iaj¼1

rijf ij; (6:11)

where pi is the momentum of particle i. The pressure tensor is needed to
define the Hamiltonian employed in fictitious non-equilibrium methods for
viscous-flow computations.38,39

6.3 Non-equilibrium Molecular Dynamics
Simulations

Non-equilibrium molecular dynamics simulations offer a direct approach to
quantify transport coefficients and coupled phenomena. NEMD approaches
can be subdivided in synthetic, Boundary-Driven and transient methods.
The first two approaches drive the system to the stationary state while in
the latter the transport coefficients are computed by inspecting the relax-
ation of the system towards equilibrium. These different methods are
discussed below.
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6.3.1 Synthetic NEMD

Synthetic NEMD (S-NEMD) is a direct extension of the ideas contained in the
linear response theory. S-NEMD relies on the introduction of a fictitious field
into the equations of motion and, hence, it has little relation to an experi-
mental setup. The equations of motion are consistent with the system’s
homogeneity and with the use of periodic boundary-conditions, which rep-
resents an advantage of the method.

The background of the S-NEMD approach is as follows.2,40 For a general
flux, Ji, of a conserved quantity (energy, mass or momentum) the linear
transport coefficient, Lij, can be defined by, Ji¼

P
jLijXj, which follows the

linear phenomenological equations defined in the NET theory, where Xj is
the thermodynamic force, e.g., a thermal gradient. S-NEMD operates by first
identifying the GK relation defining the transport coefficient of interest (see
Section 6.2.2). A fictitious external field Fe is then ‘‘invented’’ and coupled
to the system of interest. The S-NEMD method relies on the calculation of
the average response of a phase space current, B, under the influence of
the fictitious field. The linear response theory states the average of B is
defined by,2

BðtÞh i¼ � V
kBT

ðt

0
dt0 fðt� t0Þ � Feðt0Þ; (6:12)

where f(t)¼hB(t) � J(0)i is the equilibrium time correlation function of B and
J, the field Fe acts over time t, and J is one of the currents appearing in the
GK equations (e.g., the mass flux or the measurable heat flux). Eqn (6.12) can
be used to obtain the non-equilibrium steady-state response of the current B
(again this could be the mass flux for diffusion or the heat flux for the
thermal conductivity), while the equilibrium result for the transport co-
efficient is recovered in the limit of zero field Fe, Lii¼ lim

Fe!0
lim
t!1

JaðtÞh i=Fe

where Ja is the flux (e.g., the heat flux) in the direction a of the field Fe whose
magnitude is given by Fe. For a system subjected to the external perturb-
ation, the non-Hamiltonian equations of motion can be written as,2

_ri¼ pi=mi þ Ci � FeðtÞ and _pi¼ f i þ Di � FeðtÞ, where ri, pi, fi and mi are the
position, momentum of, force on, and mass of particle i, and the dot denotes
a time derivative. Fe(t) is the fictitious field and Ci and Di are tensors that
describe the coupling of the field and the system. The dissipative flux, J, is
defined by,

_H0¼
XN

i¼ 1

Di �
pi

mi
� Ci � f i

� �
FeðtÞ¼ � VJ � FeðtÞ; (6:13)

where _H0 is the rate of change of internal energy due to the field. The Ci and
Di are chosen (see ref. 2) to ensure that B corresponds to the flux of interest,
e.g., the mass fluxes if the diffusion coefficient is required. The transport
coefficient, Lii (see above), which corresponds to the limit of a vanishing
external force can then be obtained from a linear fitting using a few
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simulations at varying, small, fields. The reason why the S-NEMD method is
more efficient at calculating transport coefficients than the equilibrium GK
is that it produces a higher signal-to-noise ratio.

The S-NEMD method has been implemented to compute diffusion co-
efficients, shear viscosities and thermal conductivities. Because the self-
diffusion coefficient is a single-particle property, equilibrium GK compu-
tations are preferred over S-NEMD ones. The latter can be advantageous to
compute mutual diffusion coefficients. The computation of shear viscosities
otherwise on the use of special boundary-conditions; the so-called Lees–
Edwards (LE) boundary-conditions (see Figure 6.1),41 which have been
widely employed to investigate Couette flow. We have shaded grey the LE
unit cell (see Figure 6.1). The periodic images located above and below the
central layer move with velocities vx and �vx, respectively. These velocities
define the strain rate g¼ @vx/@y. If a particle leaves the unit cell (dark particle
in Figure 6.1) it will be replaced by its periodic image (light particle in
Figure 6.1). However, unlike in a regular MD simulation, the image will
in general have a different velocity and position relative to its cell’s origin.
This discontinuity of particle velocities and positions drives the system into
a linear streaming situation, which can be exploited in Boundary-Driven
NEMD simulations. The advantage of using S-NEMD is that it circumvents
the problem associated with the time delay between the boundaries’ motion
and the shearing of the fluid, which is determined by the speed of sound of
the fluid and, hence, precludes the investigation of time-dependent flows. By
introducing the DOLLS algorithm, a solution to this problem was devised by
Hoover et al.38 Later Evans and Morris introduced a modification for the
equations of motion of the momenta, this is the so called SLLOD algorithm.2

The equations of motion for the latter are given by: _qi¼ pi

	
mi þ qi � ru

and _pi¼ f i � pi � ru, where u is the streaming velocity. The corres-
ponding linear response of the pressure tensor is given by,
PðtÞh i¼ � ðV=kBTÞ

Ð t
0dt0 Pðt� t0Þ � Pðt0Þh i : ruðt0Þ, and the shear viscosity (eqn

(6.10)) follows from, Z¼ lim
t!1

lim
g!0
� PxyðtÞ
� �

=g

 �

.

The S-NEMD computation of the thermal conductivities requires the
definition of a fictitious field whereby hot particles are driven with the field,
while cold particles are driven against the field.2 This method predicts
thermal conductivities consistent with those obtained by using Boundary-
Driven methods, although instabilities in the S-NEMD heat-flow algorithm
have been found for relatively large systems (N 4 900 particles) and large
fictitious fields.42,43

6.3.2 Boundary-Driven NEMD

Boundary-Driven NEMD (BD-NEMD) methods emulate a real experiment. An
external perturbation is imposed to the system, by adding energy or applying
an external force in a region of the simulation box. It was noted in the first
BD-NEMD implementations of shear viscosities that the existence of
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unidirectional fluxes is incompatible with the periodic boundary-
conditions.12 This issue was resolved by setting up reflecting walls,12,44 such
that the particles undergo elastic collisions. It is also possible to simulate an
atomistic wall in direct contact with the fluid.45 The existence of an explicit
wall may be a desirable feature in computer simulations of friction or in
computations of thermal resistances, where the focus might be the quanti-
fication of interfacial transport coefficients. However, the wall might be an
undesirable feature if bulk transport coefficients are required. This problem
can be solved with appropriate boundary-conditions, which preserve the
periodicity of the simulation box and eliminate the need for confining
walls.13,14 Figure 6.2 shows a typical setup used in BD-NEMD simulations of
heat transport.6,46–51

6.3.2.1 BD-NEMD Algorithms for the Computation of Heat
Transport

Many BD-NEMD simulations rely on the setup represented in Figure 6.2.
A stationary heat flux can be achieved by adding and withdrawing kinetic
energy from specific regions defined in the middle and the edges of the
simulation box. Because this process is performed without modifying the
configurational energy, the change in kinetic energy is equivalent to a
change in the system’s internal energy. This was the initial simulation setup
by Hafskjold et al.13,52 in their Heat-Exchange algorithm (HEX). Particles in
‘‘hot’’ and ‘‘cold’’ regions, R, are thermostatted by adding/withdrawing a
specific amount of internal energy, DU. Because the potential energy re-
mains constant after the thermostatting process (no change in particle co-
ordinates), the change in internal energy, DU, is equal to the change in

Figure 6.2 (Left) Snapshot of a simulation box containing water that illustrates the
boundary-conditions employed in BD-NEMD simulations of heat trans-
port. The regions in the centre and edges of the box are employed to add/
withdraw energy or thermostat the molecules at specific temperatures.
The dashed lines represent the position of slabs used to compute the
local properties and l denotes a specific slab in the cell.
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kinetic energy, DEk The velocities of the particles, vi,b, are rescaled at regular
time intervals according to, vi,a¼ (1 þ a) vi,b þ b, where b is defined by

b¼� a
XN

i¼ 1

mivi;b

 !
=
XN

i¼ 1

mi; (6:14)

and a and b are connected to DU through DU ¼
P
i2R

mi½ð1þ aÞvi;b þ b�2�
�

miv2
i;bÞ=2. This defines a quadratic equation for a, with the sum running over

all the atoms lying in the hot or cold regions, R, and the subscripts ‘‘b’’ and
‘‘a’’ refer to the velocities before and after the rescaling. The HEX algorithm
does not work when the region R contains less than 2 particles, hence lim-
iting the applicability of the algorithm to high densities. For simple fluids,
molten salts and simple molecular fluids, the HEX algorithm generates the
stationary state (constant heat flux) in a few hundred picoseconds. The
stationary heat flux can then be calculated by using the microscopic eqn (6.7)
and the continuity equation,

JU ¼ � DUh i
2 dt A

; 0; 0
 �

; (6:15)

where angular brackets denote an ensemble average, dt is the time interval
between rescaling events, A the cross sectional area of the simulation box and
the thermal gradient is applied along the x direction. The factor of 2 takes into
account the existence of two fluxes inside the simulation box, and the positive
and negative signs refer to the average change in internal energy in the hot
and cold regions, respectively. This and other NEMD methods discussed
below generate thermal gradients preserving mechanical equilibrium,rP¼ 0.
This makes it possible to calculate equations of state using a single simulation
by calculating the local temperature and density in the simulation cell.15

Reverse Non-equilibrium Molecular Dynamics (RNEMD) is a modification
of the HEX algorithm that uses the same boundary-conditions discussed
above.46 The thermal gradient results from the exchange of the velocity
vector of atoms lying in cold and hot regions. The exchange involves atoms
with the lowest and highest speeds. The resulting heat flux can be quantified
with eqn (6.15). The RNEMD has been extended to simulate molecular
fluids,53 non-periodic systems,54 and mesoscopic models.49

In many heat-transfer problems it is convenient to set the temperature of
the thermostatting regions to predefined values. In this approach the vel-
ocities of the atoms/molecules inside the hot and cold regions are rescaled
to obtain the desired temperatures.56 A simple rescaling by a factor,
a¼

ffiffiffiffiffiffiffiffiffiffiffi
Kt=K

p
, can be employed, where Kt is the target kinetic energy and K

the instantaneous kinetic energy. The linear momentum must be reset
after each rescaling. The velocity-rescaling algorithm55 provides a good
approach to control the temperature and momentum. The target kinetic
energy, Kt, is drawn from the canonical distribution function,
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PðKtÞ dKt / K
Nf =2�1
t e�bKt dKt, where Nf, is the number of degrees of freedom,

f, of the thermostatted molecules and b¼ 1/(kBT). The corresponding heat
flux in the stationary state can then be obtained from eqn (6.15) and,

DUh i¼ 1
2

XN2TL

i¼ 1

miv
2
i

 !

a

�
XN2TL

i¼ 1

miv
2
i

 !

b

" #* +
; (6:16)

where the sums run over all the particles lying in either the hot or the cold
Thermostatting Layers (TL) and ‘‘a’’ and ‘‘b’’ refer to the kinetic energy be-
fore and after the velocity rescaling. This thermostatting approach has been
used to investigate both atomic and molecular fluids.6,15,56

One common feature of all the algorithms discussed above is that the
dynamics of the atoms/molecules outside the thermostatting regions is
Newtonian. Also, once a thermal gradient has been set up, the local tem-
perature in a particular slab l (see Figure 6.2) of the simulation box can be

calculated by using the equipartition principle, Nf kB Tl ¼
PN2l

i¼ 1
miv2

i , where Nf

is the number of degrees of freedom of the particles lying in the slab l.
Figure 6.3 shows a representative temperature profile for water obtained
with BD-NEMD using the thermostatting algorithm. The profile is well de-
fined and appears to be linear. However, we note that deviations from lin-
earity are always present, since the thermal conductivity depends on the
local temperatures and densities.15 We show in Figure 6.3 one example of
the internal-energy-flux computation in the stationary state, where we
compare results from the microscopic and continuity approaches, eqn (6.7)
and (6.15), respectively. The results in Figure 6.3 show that the microscopic

Figure 6.3 (Left) Temperature profile of the SPC/E water model obtained with BD-
NEMD using the thermostatting NEMD algorithm. (Right) Heat-flux of
the MCFM water model.136 Symbols represent computations with the
heat-flux microscopic expression (eqn (6.7)) and the horizontal dashed
lines show the continuity equation result (eqn (6.15)). Lz is the box length
in the direction of the thermal gradient.
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eqn (6.7) is accurate for the density gradients obtained in representative BD-
NEMD simulations of dense fluids.

6.3.2.2 BD-NEMD Algorithms for the Computation of Mass
Transport

The BD-NEMD algorithms for the simulation of a mass flux follow an ap-
proach similar to that explained for heat flow. In the mass-exchange (MEX)
algorithm,57 particles are exchanged between reservoirs inside the simu-
lation cell in order to create a concentration gradient and a mass flux. Al-
ternatively, in the Dual Control Volume Grand Canonical Molecular
Dynamics (DCV-GCMD) approach the chemical potential is fixed to specific
values in different regions of the simulation cell.58 The algorithms are dis-
cussed in more detail below.

The MEX algorithm allows the investigations of heat and mass coupled
transport. High- and low-concentration regions are defined in the simu-
lation cell and particles of different components are swapped between these
regions, hence generating mass fluxes through the system. The swapping is
performed ensuring that both energy and momentum are conserved. When
a particle, labelled s, with velocity v0s and mass m0s is swapped, the velocity
after swapping (vs) of that particle is set to,

vs¼ð1þ aÞ m0s
ms

� �1=2

v0s þ b; (6:17)

where ms is the mass after swapping. The velocities of all the other particles
ias in each region, are rescaled according to, vi¼ð1þ aÞv0i þ b, where the
velocity shift, b, is now given by,

b¼ �aðpþ DpÞ þ Dp
M

; (6:18)

where M ¼
P

m0i is the total mass in the region under consideration,

p¼
P

m0iv
0
i the momentum and Dp¼ððmsm0sÞ

1=2 �m0sÞv0s. The energy con-
servation in each region leads to a quadratic equation for a,

að2þ aÞEK þ ð1þ aÞb � ðpþ DpÞ þ 1
2
b2M þ Dfs¼ 0; (6:19)

where EK¼
P

m0iv
2
i

� �
=2 and Dfs is the change in potential energy associated

with the particle swapping. The stationary mass flux for component k can be
obtained from (assuming transport takes place along the x-direction),

Jk¼
Dmk

2Dt A
; 0; 0

 �
; (6:20)

where Dt is the time between two particle swaps, A the cross-sectional area
perpendicular to the x-direction, and Dmk is the change in mass of species k
due to the swapping (Dmk¼mk for regions where particles of type k are in-
serted and Dmk¼�mk where they are removed).
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The DCV-GCMD method58 is a hybrid MD/Monte Carlo (MC) approach.
The boundaries of the system are fixed at different chemical potentials,
hence inducing a chemical-potential gradient. Each time-step, a specified
number of MC steps are performed to insert or delete particles according to
a grand-canonical Monte Carlo scheme. Particles of species i are inserted
into a control volume with chemical potential mc

i and the insertion is
accepted if,

Nc
i exp � mc

i

kBT
� ln

V c

L3
i

�
DUp;i

kBT

� �
� x; (6:21)

where Vc is the volume of the control volume, Nc
i is the number of particles

of species i in the control volume, Li the de Broglie wavelength, DUp,i the
change in potential energy associated with the creation of a particle of type
i, and x is a random number drawn from a uniform distribution (0,1).
Created particles are then given velocities drawn from a Maxwell–
Boltzmann distribution. A similar criterion is employed to accept particle
deletion. The resulting mass flux is obtained by computing the net move-
ment of particles in the box, or from the difference in the number of
insertions/deletions in the two control volumes. The number of MC steps
performed per MD step, typically (10 to 50), is a critical parameter to
maintain the correct steady state.58,59 Several authors59 have discussed the
advantages of Equilibrium Molecular Dynamics and Synthetic-NEMD ap-
proaches over the DCV-GCMD to study diffusion in micropores.60

6.3.2.3 BD-NEMD Algorithms for the Computation of Viscosity

In synthetic methods such as SLLOD, a shear rate is imposed on the system,
and the resulting steady-state stress is measured. Alternatively, the stress or
momentum flux can be imposed and the resulting shear rate computed.61–63

This approach belongs to the general RNEMD technique, and therefore
avoids the computation of the momentum flux. Following the general
Boundary-Driven approach, the simulation box is divided into two regions,
which are used to exchange momenta. At pre-defined time intervals, par-
ticles are swapped between these layers, hence generating a momentum flux.
The swapping involves particles with the smallest and largest momentum
components. When the steady state is reached, the rate of momentum
transfer equals the momentum flowing back through the fluid by friction. By
summing the total momentum, Px, transferred up to time t in the simu-
lation, the momentum flux, jz, can be calculated, jz¼ Px/(2tA), where A is the
cross-sectional area of the simulation box. The velocity profile, vx, can be
calculated directly, and the viscosity obtained from Z¼�jz(@vx/@z)�1. High
momentum fluxes lead to non-linear velocity profiles and violations of the
linear equations for the viscosity. Infrequent swapping may lead to non-
stationary velocity profiles. Tenney and Maginn64 have solved some of these
issues.
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6.3.3 Thermophoretic Forces and Soret Coefficient

The Soret coefficient of binary mixtures consisting of particles of similar size
can be obtained from BD-NEMD simulations by computing the derivative,
dw1/dT that appears in the Soret coefficient (see Section 6.2.2). When the
weight fraction of the solute is significantly lower than that of the solvent,
(e.g., in aerosol, dilute colloidal suspensions) the computation of concen-
tration profiles is affected by statistical accuracy, and the direct computation
of the thermophoretic-force offers a more precise alternative.65 Under the
influence of a thermal gradient, a particle will feel a thermophoretic force,
FT, which induces a drift velocity. For a single particle, the drift velocity can
be approximated by66 vT¼�DTrT, where DT is the particle thermal diffusion
coefficient. When the inertial effects can be neglected, the drag force is
approximated by FD¼ zvT, where z is the friction coefficient. The balance of
the thermophoretic force and drag forces, FD¼�FT, along with the Stokes–
Einstein equation for the self-diffusion coefficient, can be used to obtain an
equation for the thermal diffusion factor of a single particle,65

aT¼
�FT

kB
dT
dz

� � ; (6:22)

where FT is the force on the particle along the vector defining the direction
of the thermal gradient setup in the z-direction. Eqn (6.22) connects the
thermophoretic force, with the thermal diffusion factor, aT, and the Soret
coefficient, ST¼ aT/T.5 Eqn (6.22) represents a good approximation in sus-
pensions involving solutes much heavier/larger than the solvent. The ther-
mophoretic-force approach can also be employed to investigate binary
fluids, but in this case the forces of both components must be included to
quantify the Soret coefficient.67

The thermophoretic-force method discussed above is technically very
simple to implement and exploits the same Boundary-Driven NEMD simu-
lation setup shown in Figure 6.2. Two solute particles can be simulated at
the same time. Each solute is tethered in space to its initial equilibrium
position, via a harmonic restraint with a predefined force constant. Typically
the initial position will be at a central point between the hot and cold
thermostats. Once the system has reached the stationary state, the ensemble
average of the solute position can be computed, and the thermophoretic
force, FT, extracted from Hooke’s law, FT¼�KDz, where K is the force con-
stant and Dz the displacement from the equilibrium position. This method
has been used to investigate nanoparticles in solution,65 binary mixture
models,67 and biomolecules.68

6.3.4 Transient Non-equilibrium Molecular Dynamics

One of the first implementations of Transient NEMD (TNEMD) focused on
modelling cooling experiments of proteins.69 The TNEMD method has been
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extended to compute the thermal conductivity and conductance of nano-
particles and nanoparticle–fluid interfaces.11,70 Figure 6.4 illustrates how
the TNEMD method works. The fluid or material of interest is initially
heated to a target temperature, T1, and equilibrated for a short time, typically
(50 to 100) ps, while the surrounding solvent is thermostatted at a different
temperature, T2. The relaxation time required to evolve from T1 to T2 is
determined by the thermal diffusivity, a¼ l/rcp, where r and cp and l are the
mass density, the isobaric heat capacity and thermal conductivity of the
solute, respectively. The relaxation curve can be fitted to the heat-diffusion
equation by using different boundary-conditions that assume the cooling is
controlled by the thermal conductance (G) only (model A in Figure 6.4), or
the thermal conductivity of the solute only (model B). More sophisticated
models have been explored,11,70 that take into account both the thermal
conductance (G) of the interface and the thermal conductivity (l) of the
solute (model C). For nanoscale solutes, both G and l contribute towards the
temperature relaxation as can be assessed through the Biot number, Bi¼GR/
l where R defines the curvature of the solute of interest. For nanoscale
solutes, BiB1, and heat-diffusion models that incorporate both G and l
must be considered.

The TNEMD approach has also been employed to investigate the relax-
ation of bulk fluids and solids using the BD-NEMD boundary-conditions
(see Figure 6.2),32 as well as two regions spanning the whole simulation
cell, which are maintained at different temperatures.71 These simulations
have provided reasonable estimates of the thermal conductivity. One ad-
vantage of the TNEMD approach is that the analysis requires a short
simulation time, (50 to 500) ps, and therefore it can be used in very large
systems. Often l and G are assumed to be independent of the temperature,
hence the transport properties obtained from this approach must be in-
terpreted as an average over the temperature range sampled during the
relaxation process.

Transient approaches have also been developed to quantify the diffusivity
of molecules in pores.23 This approach is based on the use of Fick’s
second law,

@c
@t
¼D

@2c
@y2 ; (6:23)

where c(y,t) is the concentration as a function of time and position, D the
diffusion coefficient, and y is the spatial direction where the concentration
varies. By using appropriate boundary-conditions for the concentration,
numerical or analytical equations for c(y,t) can be obtained, making possible
the estimation of D. A disadvantage of this approach, and in general of all
the TNEMD methods, is that several simulations must be performed to
obtain acceptable statistics. Furthermore, the simulations are not always in
the linear regime, making the application of Fick’s law questionable.23 Fi-
nally, D, is assumed to be a constant; hence the diffusion coefficient must be
interpreted as an effective coefficient.
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Figure 6.4 (Left) Snapshot of an alkane nanoparticle in water, illustrating the initial conditions for the TNEMD method, where the
nanoparticle and solvent are initially equilibrated at temperatures T1 and T2. (Middle) Temperature relaxation of the
nanoparticle as a function of time. Dashed line (model A), dotted line (model B) and dash-dotted line model C.
The instantaneous temperature computed during the simulation is represented by the fluctuating line (Right) Sketch
illustrating the different relaxation models, A, B, and C employed to fit the temperature relaxation of the nanoparticle.11
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Arya et al.72 have introduced a transient approach for the viscosity,
which monitors the decay of a Maxwellian velocity profile introduced in an
equilibrated system. This approach exploits the solution of the Navier–
Stokes equation for the decay of an initial Gaussian velocity profile.
The TNEMD provides satisfactory results for the viscosity of argon and
n-butane.

6.4 NEMD Applications
NEMD simulations open a route to quantify the transport coefficients of
pure fluids and mixtures and to test the theoretical basis of NET, particularly
the validity of the Onsager reciprocal relations and the hypothesis of local
equilibrium. We discuss in the following the applicability of the NEMD
technique to address these questions.

6.4.1 Verification of Local-equilibrium and Onsager
Reciprocal Relations (ORR)

NEMD has been employed to verify the linearity of the flux–force relations in
systems involving transport of heat and mass. The Onsager reciprocal re-
lations (ORR), Lij ¼ Lji, and the local-equilibrium hypothesis have also been
examined. These relations are fundamental in the development of the NET
theory, hence their verification is an important objective. The ORR have been
found to hold in cross thermo-transport problems. Simulations of heat and
mass transport in the Ar/Kr mixture,73 showed that the cross coefficients
quantifying the Soret and the Dufour effects are equal within the uncertainty
of the computations. Similar conclusions have been achieved by using
synthetic and BD-NEMD simulations,57,74 and GK computations.75

The local-equilibrium hypothesis in Non-equilibrium Thermodynamics is
discussed in Chapter 4. This hypothesis states that the Gibbs relation for
the entropy is valid for small volume elements in the system of interest.
Hence, the equations of state and transport coefficients obtained under non-
equilibrium conditions should agree with the equilibrium ones. This idea
has been successfully verified in NEMD,15,74 despite the very large thermal
gradients employed in BD-NEMD B1010 K �m�1, thus showing the local
response remains in the linear regime.15 This fact is not so surprising. In the
local-equilibrium state the gradients of the thermodynamic quantities
should be small. For thermal transport the inequality, |rT(r)| T�1(r) L{1,
should be fulfilled,76 where L is the mean free path. For dense fluids L is of
the order of an atom diameter. Considering gradients of 1010 K �m�1, TB102

K and LB10�10 m it is clear that most NEMD simulations fulfil the in-
equality above, and therefore conform to the local-equilibrium state. This
makes it possible to compute the equation of state or the thermal con-
ductivity along an isobar by using a single BD-NEMD simulation (see
Figure 6.5).15,30,56
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6.4.2 NEMD Computation of Transport Coefficients in Bulk
Fluids and Interfaces

6.4.2.1 Viscosity

It was mentioned in the introduction how the low signal-to-noise ratio in-
herent in GK methods means very lengthy simulations are required to achieve
well converged integrals for the Onsager coefficients. The shear viscosity co-
efficient has the added problem that the time scales of the fluctuations as-
sociated to its microscopic fluxes are very large, and so the correlation times
that must to be considered can be much longer than those of other transport
coefficients (e.g., diffusion coefficient or thermal conductivity).

As one would expect, the first NEMD simulations of shear viscosity were
performed for simple liquids. The shear viscosity of more complex molecular
fluids has been calculated via both equilibrium and NEMD methods and
compared to experiment over a wide range of thermodynamic conditions.77–79

Initial discrepancies between NEMD and equilibrium methods near the triple
point were related to the errors associated with the long-time tails in GK
method.80 Recently, the shear-viscosity calculations have been performed in a
wide range of complex fluids; from relatively simple low-viscosity liquids such
as water,81–83 to complex liquids (nano-composite polymer melts).84 The
agreement between simulations and experiments is very satisfactory for fluids
involving fairly different chemical compositions (see Figure 6.6-Top).

6.4.2.2 Thermal Conductivities

NEMD simulations have been applied to quantify the thermal conductivity
(TC) of a wide range of fluids: atomic, molecular, polar and charged, as well

Figure 6.5 (Left) Equation of state of TIP4P/2005 water obtained from BD-NEMD
(filled symbols), equilibrium simulations (diamonds)56 and experimen-
tal data for water from the National Institute of Standards and Technol-
ogy (NIST).142 (Right) Local thermal conductivity of a supercritical fluid
of diatomic molecules obtained from BD-NEMD (line) and GK equi-
librium computations (symbols).15 The temperature, T*, and thermal
conductivity, l* are given in Lennard-Jones reduced units.16
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as fluid mixtures. Early computations focused on the hard-sphere (HS)
model,85 by using equilibrium simulations. The simulation results showed
excellent agreement with the Enskog-theory predictions. These works

Figure 6.6 Correlation plots of the simulated (NEMD and GK computations) and
experimental viscosities (Top) and thermal conductivities (Bottom), for
simple and molecular fluids; molten salts (NaCl, KCl), small molecules
(CO2, HCl, CO), organic molecules (butane, hexane, cyclohexane, ben-
zene, octane), room temperature ionic liquids (see text for details), water
and water clathrates. Representative data taken from the references cited
in the text are shown.
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highlighted the importance of collective effects in determining the decay of
the autocorrelation functions. The thermal conductivity of soft-repulsive
models has also been investigated by NEMD.86 The Lennard-Jones potential
has been the subject of intense investigation both in the liquid phase and
near supercritical conditions.6,46,51,74,75,87–93 Generally, the TC of simple li-
quids is well predicted with this model and the NEMD approach.

The computation of thermal conduction has been extended to charged
fluids by using a variety of forcefields.30,94,95 These studies are very difficult
to perform experimentally given the high temperatures required in the
molten salt regime. The equivalence of the NEMD and GK routes has been
established96 and the relevance of thermoelectric effects in determining the
thermal conductivity has been highlighted.97

The simulation of molecular fluids, particularly organic molecules, is
important in the oil industry. In addition to the investigation of small
molecules (CO2,98,99 HCl,28 CO100) the TC of organic molecules and their
mixtures has been investigated via NEMD or GK methods.48,53,101–105 Some
of these works have highlighted the relevance of the rotational contribution
to the thermal conductivity of molecular fluids.98,106,107 Ionic liquids of
different compositions have also been computed by using RNEMD. The
force-fields tend to underestimate the thermal conductivities.107

The computation of the thermal conductivity of water deserves special
attention. There have been a large number of investigations at standard
conditions,31,53,87,102,105,108–111 as well as at extreme pressures in the GPa
range.112 The TC of water features an anomalous increase with temperature.
This behaviour was first reproduced in NEMD simulations of the MCFM
water model,109 and more recently in an extensive NEMD investigation of the
SPC/E and TIP4P/2005 water models, which also confirmed the existence of
maxima in the TC.56 The TC is well reproduced in the liquid region but
deviates significantly at near ambient conditions as well as low densities.
The origin of this overestimation, which extends into the supercooled re-
gime,108 is still unclear. One important aspect in the computations of the TC
of water is the treatment of the electrostatic interactions. It has been noted
that the use of cut-off based techniques gives TCsB10 % lower than those
obtained by using the Ewald method.32

The TC of aqueous solutions, containing acetone,113 DMSO,114 alkali
halide solutions,115 and clathrates116,117 has also been considered. The
simulation models account well for the TC decrease with increasing salt
concentration, although the TCs are over predicted, a feature that is con-
nected to the over prediction of the TC of pure water.

We show in Figure 6.6-Bottom a correlation plot that compiles simu-
lation and experimental TCs. Current force fields predict well the TC of
simple liquids, molten salts and small molecules. Deviations between
simulation and experiments are observed in organic molecules, while
current classical force fields significantly overestimate the TC of water at
near ambient (lexp¼ 0.61 W �K�1 �m�1) and super-cooled (not shown)108

conditions.
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6.4.2.3 Interfacial Transport

NEMD simulations are playing an important role in quantifying the thermal
conductance, G, of fluid–material interfaces, a problem of relevance in heat-
management problems. The RNEMD method has been employed to com-
pute the thermal conductance of hydrophobic–water interfaces,102 finding in
general good agreement with experiments.118 Extension of these investi-
gations to curved interfaces with nm curvatures has provided new physical
insights. It was first shown in ref. 11 that G can decrease with interfacial
curvature. This observation has been confirmed in TNEMD simulations of
oxide nanoparticles119 and protein–water interfaces70 and by theoretical
analyses.120,121 BD-NEMD has also been employed to quantify the thermal
resistance of nanoparticle–solvent interfaces,54,122 and liquid–vapour inter-
faces, providing quantitative data to test the accuracy of the kinetic theory.123

NEMD approaches have also been used to investigate transport in nano-
pores124 by combining simulations with NET. Studies on model nanopores
range from simulations of model slit pores125 to more complex systems,
such as polymer-grafted126 and charged nanopores.127 NEMD techniques
have been employed to investigate electric field-driven DNA translocation
through nanopores,128 and to quantify the efficiency of mass separation in
thermophoretic devices.45

6.4.3 Coupling Phenomena

The existence of concurrent fluxes in a system, e.g., heat and mass, leads to
coupled phenomena. The Soret (thermodiffusion and thermophoresis) and
Dufour and Peltier effects (charge transport) are well known, and are actively
being investigated in energy-conversion problems. We discuss below simu-
lation studies of coupling effects.

6.4.3.1 Thermophoresis and Thermoelectric Coupling

Multicomponent systems in the presence of a temperature gradient tend to
exhibit cross coupling effects between the heat flux and the relative mass
flux of the various components. This is the Ludwig–Soret effect. Mass/heat
flux coupling has been extensively investigated for a wide range of systems.
The first works focused on simple binary systems (Ar/Kr mixture).73,74,129

The Soret coefficients were computed both via NEMD and GK methods. Good
agreement was found with experimental data.73,74,90,129 In a recent NEMD
simulation, the impact of size and mass asymmetry on the TC was analysed
systematically.6 The study validated previous ideas that suggested that the
cross coupling modifies the thermal conductivity by at most a few percent.5

Over the years there have been numerous simulations examining the key
variables determining the Soret coefficient in simple binary mixtures. The
Soret coefficient may feature a sign change as a result of changing thermo-
dynamic conditions. This sign inversion has been observed both
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experimentally and in simulations. Simulations of simple Lennard-Jones
systems indicate that the key variables influencing the Soret coefficient are the
molar fraction, thermodynamic state, mass and size ratio of the two spe-
cies.6,7,130 These studies have highlighted the relevance of cross interactions
in determining the sign inversion of the Soret effect too. Cross-coupling
simulations have been extended to complex molecular mixtures.48,107

NET predicts the existence of coupling effects in charged fluids, such as
molten salts.5 It has been shown that Coulomb interactions inhibit the
thermal separation of ions, although it is possible to polarize a charged fluid
if the Coulombic interactions are sufficiently screened.30 On the practical
side, the equation for the measurable heat flux must be used (see Section
6.2.2), and cross coefficients must be considered in the computation of TCs.
The coupling between the thermal gradient and the electric-charge fluctu-
ations add non-negligible contributions to the TC. It has been found that
neglecting coupling effects can lead to large overestimations of the TC of
MgO and Mg2SiO4 molten salts.97 Although such coupling effects seem to
play a smaller role in other molten salts, such as NaCl.96

6.4.3.2 Thermal Orientation and Thermo-mechanical Coupling

Shortly after the discovery of liquid crystals, Lehman131 found that the dir-
ector of a cholesteric liquid crystal undergoes rotation under the application
of a thermal gradient parallel to the cholesteric axis. This type of thermo-
mechanical coupling effect has been rationalized by using flux–force linear
phenomenological relations.132 The coupling between the thermal gradient
and the angular velocity of the liquid crystal director is determined by the
Leslie coefficient, which has been quantified by using GK and NEMD
simulations.133,134 The coefficient is found to be two orders of magnitude
smaller than the heat conductivity and the twist viscosity,135 hence very long
simulations are required to obtain accurate results.

Recently the response of water to a thermal gradient was investigated
using BD-NEMD and NET.136 It was found that the application of a thermal
gradient could induce polarization in water. This physical effect, thermo-
molecular orientation (TMO), can be rationalized by using NET. It arises
from the coupling of polarization and heat fluxes,136 which results in a po-
larization field (E) that depends linearly the thermal gradient,

E¼ 1� 1
er

� �
Lpq

Lpp

rT
T
; (6:24)

where er is the relative permittivity.
It follows from this equation that the strength of the TMO effect is de-

termined by the relative permittivity, the thermal gradient, the temperature
and the ratio of coefficients, Lpq/Lpp, where the coefficient in the numerator
controls the degree of coupling of the polarization and the heat flux, and the
coefficient in the denominator is connected to the Debye relaxation time.137
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NEMD simulations have played an instrumental role in determining
the magnitude of this ratio. Fields of the order of (103 to 105) V �m�1 can
be generated with large thermal gradients of the order of (106 to 108)
K �m�1,110,137–138 which are achievable using micro and nanoheaters.139,140

The TMO effect has been observed in NEMD simulations of non-polar fluids
consisting of anisotropic molecules, providing a link with the Soret effect in
fluid mixtures.100,141

6.5 Conclusions
We have discussed in this chapter the diverse approaches available to per-
form NEMD simulations and the application of NEMD to quantify transport
properties (diffusion, thermal conductivity and viscosity) of simple and
complex fluids as well as their interfaces. NEMD provides in general a higher
signal-to-noise ratio than GK and therefore enables the computation of co-
efficients with higher accuracy, especially in those cases where the correl-
ation functions feature long-time tails and poor convergence. Otherwise,
many simulations have shown the equivalence of NEMD and GK methods.
However, the comparison of these two approaches requires careful con-
sideration in multicomponent systems, since the existence of coupling effects
might contribute to the transport properties such as the thermal conductivity
(TC). While BD-NEMD methods provide direct access to the TC including the
coupling effects, the GK approach requires the computation of several auto/
cross correlation functions, which must be carefully defined. NET provides
the necessary expressions to combine the different correlations and quantify
the transport properties. Computer simulations of transport coefficients for a
wide variety of fluids show in general good agreement with the available
experiments, while significant deviations have been reported for the TC of
water. The origin of these deviations, either forcefield, algorithmic or a
combination of the two, is still unclear. Further work to improve our ability to
compute the transport properties of polar and ionic fluids is needed.

Considerable effort has been devoted to study the consistency of the dif-
ferent NEMD approaches. The equivalence of homogeneous (synthetic) and
BD-NEMD methods is now well established. Homogeneous approaches that
use fictitious fields in ‘‘non-Newtonian’’ equations of motion avoid the use
of walls, and, hence, are fully consistent with the use of periodic boundary-
conditions. These methods provide a direct connection to linear response
theory, and require previous knowledge of the correlation functions defining
the transport property of interest. BD-NEMD methods on the other hand,
emulate real experimental situations, the particle dynamics away from the
boundaries is Newtonian, and they do not rely on the use of correlation
functions. By construction, BD-NEMD approaches operate with explicit vel-
ocity, temperature and/or density gradients. These gradients can be analysed
locally making it possible the computation of transport coefficients over a
wide range of thermodynamic states within a single simulation, provided
that the system response is in the linear regime. This represents a definite
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advantage of Boundary-Driven methods. We have further discussed Tran-
sient NEMD methods, which rely on a hybrid molecular-continuum ap-
proach, since the estimation of the transport coefficients is performed by
fitting the simulated relaxation response to continuum diffusion equations.
These methods have been shown to be suitable for the computation of
interfacial properties (e.g., interfacial conductance).

One important aspect of NEMD methods is the possibility of testing
fundamental questions, such as the Onsager reciprocal relations or the local
equilibrium hypothesis, which are two of the pillars of the NET theory.
Simulations generally support the validity of these, and therefore NET.
NEMD has also been employed to uncover novel physical effects, such as
thermal orientation, a coupling phenomenon that can be studied in detail
taking advantage of stationary NEMD simulations.

It is clear from our discussion that NEMD algorithms need to be specif-
ically developed to quantify transport properties or investigate specific
coupling phenomena. It is expected that NEMD will play an increasing
role in the investigation of coupled effects, working alongside experiments
to rationalize experimental results and uncover new non-equilibrium phe-
nomena that can potentially be used for novel energy-conversion approaches.
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CHAPTER 7

Non-equilibrium Molecular
Self-assembly

GER KOPER* AND WOUTER HENDRIKSEN

Department of Chemical Engineering, Delft University of Technology,
The Netherlands
*Email: G.J.M.Koper@tudelft.nl

7.1 Introduction
Structure formation in fluids is often too complex to allow for a full-fledged
thermodynamic description. The classical approach to solution thermo-
dynamics would be to capture such deviations from ideality in terms of
activity coefficients or osmotic virial coefficients.1 These coefficients in
principle can be rationalized by considering the molecular interactions
between the solute as modulated by the solvent as is done by the McMillan–
Mayer theory.2 Strong non-idealities leading to large values for these co-
efficients are usually the result of more interesting chemical dissociation
and association processes. For instance, activities in the case of ionic
dissociation are almost completely described by what is known as the Van’t
Hoff factor and the degree of dissociation, and to a minor extent by the
electrostatic interactions between the ions.3 Similarly, this is true for the
association processes. This chapter will focus on the weak processes
that give rise to aggregation while the molecules keep their identity and
interact, for instance through Van der Waals forces or hydrogen bonding.
Strong processes such as polymerization involving covalent bonds are not
considered here.

Experimental Thermodynamics Volume X: Non-equilibrium Thermodynamics with Applications
Edited by Dick Bedeaux, Signe Kjelstrup and Jan V. Sengers
r International Union of Pure and Applied Chemistry 2016
Published by the Royal Society of Chemistry, www.rsc.org

134



Weak association occurs in almost all mixtures, even in so-called simple
solutions. In actual fact, weak association is often the precursor of phase
separation which becomes more prominent the closer the mixture ap-
proaches the limiting temperature or concentration (pressure is generally
not a relevant variable). It usually gives rise to ‘‘soft’’ clusters of solute
molecules, as can be detected by light-scattering techniques,4 or crystals
when a solid phase is near. The structure of the clusters highly depends on
the nature of the solute molecules as well as on the solvent, and can either
be ramified or compact with ill-defined aggregation numbers, or they can
exhibit explicit structures such as spherical micelles or threadlike micelles,
see Figure 7.1. Linear aggregates are the typical intermediates between a
random structure yet with a clear organization. The formation of relatively
well-defined clusters is what is presently called molecular self-assembly, the
creation of soft matter in complex liquids.5

Even if self-assembly itself is a kinetic process, and hence involves
non-equilibrium processes, it is generally believed that there are striking
differences depending on whether self-assembly occurs under equilibrium
or non-equilibrium conditions. The spontaneously formed morphologies for
equilibrium self-assembly show different dynamics and response than those
for non-equilibrium self-assembly, sustained through the continuous
pumping of energy into the system. An example of the first kind can be
found in the use of chemically designed systems to provide specific func-
tionalities that allow for a rich variety of thermodynamic phases as a route to
tune their self-assembly and material properties.6,7 An example of the sec-
ond kind from Nature is the microtubule network, which is found in all
eukaryotic cells that are involved in mitosis, cell motility, intracellular
transport, and the maintenance of cell shape. This network is a non-covalent
polymer network and assembles upon consumption of guanosine triphos-
phate (GTP), but depolymerises fast when the bound guanosine di-
phosphate (GDP) is lost. Inspired by processes in Nature, such as transient
self-assembly, dynamic instability and ability to reconfigure, new systems
have been developed.8–10 The self-assembling structures are generated
through chemical reactions by supply of energy to these uphill conversions,
determining the temporal properties of these structures. Alternatively,
driving fields, such as light, can be used to convert energy into molecular
motion.11

Figure 7.1 Various aggregate structures, from left to right: ramified, compact,
linear, spherical micellar and wormlike micellar.

Non-equilibrium Molecular Self-assembly 135



The emergence of new, so-called ‘‘dissipative structures’’, can be
understood theoretically and can be traced back to the pioneering work of
Prigogine on dissipative self-sustained structures, see for instance the
book by Nicolis and Prigogine.12 However, despite the work carried out
relating these structures to dynamic systems, chaos theory, non-
equilibrium phase transitions, etc., a fundamental, general theoretical
framework to understand non-equilibrium molecular self-assembly is still
missing.

In equilibrium self-assembly, the structures and morphologies that can be
obtained are constrained by the underlying thermodynamics of the system.
Therefore, the possibility to design or tailor particular structures, relies es-
sentially on the proper design of the system. One needs to modify the
physical constituents to obtain desired morphologies. On the other hand, in
non-equilibrium self-assembly, the external input might tune the properties
of the emerging, self-assembled domains.13 As a result, this scenario in
principle offers more flexibility to generate different kinds of structures.
Moreover, these structures, sustained in steady state by the external supply
of energy, can exhibit adaptive behaviour that offers the possibility to de-
velop smart, highly responsive materials.

In general, the self-assembled systems out of equilibrium have stronger
adaptability than their equilibrium counterparts, because they can change
in response to modifications of the applied external fields that sustain
them. Under certain conditions they can self-heal, such as when an ex-
ternal force returns to its initial state, the corresponding self-assembled
structures react by returning to their previous configurations. However,
since the response is dynamic, different scenarios can be explored,
providing further malleability to self-assembly. In some cases, the driving
force could lead to two or more competing structures. Under those con-
ditions, if variations with respect to a given driving force are small, the
system will relax to the same type of structures, while under a large add-
itional forcing it can lead the system to accommodate the second, allowed
configuration. This will be discussed in Section 7.4. The energy con-
sumption of these dissipative structures also provides a natural connection
with the ability of living systems to self-replicate. However, the control of
self-assembly to produce structures that self-replicate requires careful
tuning and control of ambient conditions.14

In this chapter we will discuss the fundamentals of molecular self-
assembly in Section 7.2, and explain how this corresponds to out-of-
equilibrium fuelled self-assembly in Section 7.3. The important effect of
bi-stability and autocatalysis are discussed and related to the dynamic
behaviour for natural out-of-equilibrium systems in Sections 7.4 and 7.5.
Finally, the role of non-equilibrium thermodynamics is discussed in re-
lation to self-assembly and future applications of the presented approach
in Section 7.6.
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7.2 General Principles

7.2.1 Equilibrium

From a formal point of view, molecular self-assembly can be regarded as an
infinite chain of successive association equilibria as

S1 þ S1$S2

S2 þ S1$S3

..

.

Sn�1 þ S1$Sn

Sn þ S1$Snþ1

..

.

8
>>>>>>>><

>>>>>>>>:

; (7:1)

where Sn denotes an aggregate of n species. The set of equations implicitly
contains the more general equilibria Snþ Sm$Sn1m (n, m¼ 1, 2,. . .).
When all these species are in chemical equilibrium, their chemical poten-
tials (per molecule) are identical and for sufficiently low mole fractions one
may write

mn¼ m�on þ
kBT

n
ln

xn

n
¼ m1 ðn¼ 1; 2; . . .Þ; (7:2)

in which kB is Boltzmann’s constant and T is temperature. The mole
fractions xn for molecules in aggregate Sn are constrained by the total
amount of species xt as

X1

n¼ 1

xn¼ xt: (7:3)

Once the standard chemical potentials m�on are specified, the set of eqn (7.1) to
(7.3) can be solved, albeit most of the time only numerically. For instance,
for linear aggregates with n� 1 bonds in a chain of n molecules, the standard
chemical potentials are defined as

m�on ¼ m�o1 þ 1� 1
n

� �
B ðn¼ 1; 2; . . .Þ; (7:4)

with B the bond Gibbs energy.15 For many common aggregates, such
as sphere-like micelles, wormlike micelles and vesicles, approximate forms
for the chemical potentials have been derived by Nagarajan and
Ruckenstein.16,17

Many types of aggregates, in particular the globular ones such as
micelles, have a rather well defined aggregation number N, typical values are
50 to 100, so that for these structures the chain of equilibria in eqn (7.1)
reduces to

NS1�! �
K

SN ; (7:5)
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see Figure 7.2a. The behaviour of this model is determined by two par-
ameters only, the aggregation number, N, and the equilibrium constant,y

K, that describe the equilibrium, eqn (7.5), between monomers and
aggregates as

xN¼N(Kx1)N. (7.6)

Together with mass conservation, this model can be numerically solved, see
Figure 7.2b for an example.15

As long as the total mole fraction xt remains below the critical aggregation
concentration (cac), no aggregates are formed and the monomer mole
fraction follows the total mole fraction. Beyond this cac, the monomer mole
fraction remains virtually constant at the cac value and the remainder of the
total mole fraction of monomers is aggregated. The cac is related to the

Figure 7.2 Schematic representation of self-assembly of monomers into aggregates
(a) graphical example of monomer x1, and (b) aggregate mole fraction xN

as a function of total mole fraction xt; xc is the critical mole fraction of
the self-assembly process, N¼ 30.

yThe conventional definition of association equilibrium, adopted here, deviates from the IUPAC
convention. We follow literature convention15 here to avoid confusion.

138 Chapter 7



chemical potential of the free monomers and of the monomers in
aggregates by

xc¼K�N/(N�1) B K�1 for Nc1, (7.7a)

where the equilibrium constant is given by

K¼ exp � m�oN � m�o1
� ��

ðkBTÞ
� �

(7:7b)

in terms of the standard chemical potentials introduced by eqn (7.2).

7.2.2 Gibbs Energy of Formation

In the hypothetical initial, non-self-assembled state, the chemical potential
of the monomers (considered dilute) is given by

mt ¼ m�o1 þ kBT ln xt: (7:8)

Hence, the molar Gibbs energy of formation1 DfG of the self-assembled state
with respect to the non-self-assembled state (the methodology to actually
evaluate the Gibbs energies of formation is relatively unknown, see the
discussion by Gerhartl18 for an example) is given by

Df G¼ x1m1 þ xNmN � xtmt � kBT ln 1� xN 1� 1
N

� �	 

: (7:9)

Here the last term accounts for the change in the solvent entropy due to the
change in mole fractions of monomers and aggregates; when considered at
low monomer concentrations, it can be absorbed in the aggregate chemical
potential. In Figure 7.3 the Gibbs energy of formation is plotted versus the
conversion of monomers for a specific value of the total monomer mole
fraction xt. The conversion x is defined such that x1¼ xt(1� x) and xN¼ xtx,
and as such gives the fraction of monomers that have been converted into
aggregates.

7.2.3 Gibbs Energy of Reaction, the Thermodynamic
Driving Force

The Gibbs energy of reaction DrG is the slope of the Gibbs energy of for-
mation versus conversion, see Figure 7.3.

DrG¼NðmN�m1Þ¼ kBT ln
xN

NðKx1ÞN

 !
: (7:10)

It vanishes at the point xeq where equilibrium is reached, see Figure 7.4.
In addition, it provides for the driving force towards equilibrium when the
system is away from it. We have expressed the Gibbs energy of reaction per
aggregate rather than per monomer.
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7.2.4 Conversion Rate

The set of kinetic equations belonging to the chain of successive equilibria,
given by eqn (7.1), forms a set of Becker–Döring equations19 as have been
formulated by Aniansson and Wall20

S1 þ S1Ð
~k2

~k02

S2

S2 þ S1Ð
~k3

~k03

S3

..

.

Sn�1 þ S1Ð
~kn

~k0n

Sn

..

.

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

)

d
dt

x1¼�2~k2x2
1 þ 2~k02x2

þ
X1

m¼ 3

�~kmxm�1x1 þ ~k0mxm
� �

..

.

d
dt

xn¼ ~knx1xn�1 � ~k0nxn

�~knþ1xnx1 þ ~k0nþ1xnþ1

..

.

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

; (7:11)

with for each aggregate size n¼ 2, 3,. . . forward and backward rate
coefficients ~kn and ~k0n respectively; t represents time. From experimental
observations, as well as from an analysis of the equilibrium-size distri-
bution,21 it is known that there is a significant amount of monomer still
present and coexisting with a large amount of aggregated material. Typically,
it is quite sharply peaked around the aggregation number, N, as discussed
above. There is little material in aggregated form with aggregation numbers

Figure 7.3 Graphical example of Gibbs energy of formation for the self-assembled
state as a function of the conversion x. The equilibrium conversion xeq
where the slope, the reaction Gibbs energy, vanishes is indicated. The
formation Gibbs energy difference between the between the initial state
and the equilibrium state is the maximum work W that is available by the
self-assembly process.
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between about 5 and N or much larger than N. Thus, the range of aggregate
sizes for which significant amounts of monomer are present divides natur-
ally into two regions: firstly a region of small aggregates, dominated by the
monomer form, but including a small number of dimers, trimers, and so on;
and secondly a region centred on the most probable aggregate size, at which
the size distribution has its maximum. These two regions are separated by a
region of extremely low concentration of aggregates. The kinetics deter-
mining how such a system approaches equilibrium itself falls into two
stages. Initially, the matter in each of these two regions self-equilibrates and
then, over a much longer timescale, molecules are transferred from one
region to the other, until the two regions eventually reach global equi-
librium. This latter process has been modelled by a contraction of the full
Becker–Döring scheme, eqn (7.11), into the simple rate equation22 of
monomers into aggregates that for the present situation reads

r � r1 � rN ¼ k1xN
1 � kN

xN

N
; (7:12)

with forward and backward rate constants k1 and kN, respectively (rate
constants differ from those in eqn (7.11) because of the contraction pro-
cedure). By solving eqn (7.12) for stationarity, one easily verifies that the rate
constants satisfy

k1

kN
¼KN : (7:13)

With the definitions of the chemical potentials in eqn (7.2), the conversion
rate defined by eqn (7.12) can be written in terms of the driving force given
by eqn (7.10) as

r¼ k1xN
1 1� exp �NðmN � m1Þ

kBT

	 
� �
¼ k1xN

1 1� exp �DrG
kBT

	 
� �
: (7:14)

The final exponential form of reaction rate in terms of the driving force is
what is found typically for chemical reactions and can be found in many text
books.23,24 It has been derived from Mesoscopic Non-equilibrium Thermo-
dynamics (MNET),25 see also Chapter 14.

In Figure 7.4 the relationship of the formation rate as a function of the
driving thermodynamic force is presented. It exhibits – as expected – a
striking nonlinearity not unlike that of an electrical diode or electrode.

7.2.5 Work: Available and Lost

The available work from the self-assembly reaction is given by the Gibbs
energy of reaction, see also Figure 7.3. The rate at which the conversion takes
place determines the rate at which this work can be delivered, so that

W_ ¼�rDrG. (7.15)

Under conditions where there is no coupling, this work is lost to the en-
vironment as there are no means to use it. It then is dissipated in the form of
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heat. With a coupled electrochemical reaction, however, (some of) this work
can be useful, see Chapter 12.

As mentioned above, see eqn (7.14), the theoretical framework provided by
MNET, see Chapter 14, has been used to describe the dynamics of self-
assembly25 and to identify the relevant entropy production; it can be used,
for example, to understand the energetics associated to the self-assembly
process under generic non-equilibrium conditions. The change in entropy
during the self-assembly process is closely linked to the reduction in phase
space.26 Therefore, there is a clear connection between MNET and the
complementary theoretical treatments that focus on quantifying the rate at
which this configuration space decreases during self-assembly. The latter
does not identify the relevant fluxes and forces controlling self-assembly,
while the expression for the entropy production provided25 by MNET can be
used to quantify such shrinkage, hence connecting more clearly the intrinsic
dissipative process with the theory of dynamical systems. Moreover, MNET
does not only allow a proper understanding of self-assembly kinetics; its
thermodynamic basis provides also a natural basis to describe consistently
thermal fluctuations and correlations in such kinetic processes.27 It is also
required to understand coupling with other processes, such as an electro-
chemical process that uses the work produced by the self-assembly or
thermal driving forces as we shall elaborate more on in Section 7.6.

7.3 Fuelled Self-assembly
The simple self-assembly process described in the previous section has only
one stationary state, which is the equilibrium state. Its behaviour is fully

Figure 7.4 Graphical example of the relationship between formation rate and
thermodynamic force for self-assembling systems.
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described in terms of the ‘‘equilibrium constant’’ K that is related to the rate
coefficients defined by eqn (7.13) and the aggregation number N. Driving
such a system out of equilibrium by a constant supply of monomers might
reveal more interesting dynamics. The aim is to reach a steady state other
than the equilibrium state and, hence, monomers have to be taken out of the
system as well.

In Figure 7.5 an out-of-equilibrium self-assembly experiment is sketched,
where at a given constant feed rate, rt, monomers are formed from pre-
monomers, i.e. parts that form a monomer upon association. Subsequently,
there are two decay channels from monomers back to pre-monomers: dir-
ectly, with rate rL1, and indirectly through the self-assembly step with rate
rLN. The direct rate depends on the population of the monomer state x1 and
is given by

rL1¼ k0x1, (7.16)

whereas the indirect rate depends on the population of the self-assembled
state xN as

rLN¼ kxN (7.17)

with rate constants k and k0.
The indirect channel is coupled to the self-assembly process, for which the

rate is given by eqn (7.12). The continuous formation of new monomers
drives the self-assembly out of equilibrium. The monomer formation re-
action and the subsequent destruction may be assumed to be controlled by
external reactions, hence the name fuelled self-assembly. At low feed rates,

Figure 7.5 Schematic representation of a dual channel out-of-equilibrium self-
assembly process. See the text for further details.

Non-equilibrium Molecular Self-assembly 143



the monomer mole fraction x1 remains low, below the cac, and, hence, there
is no population of the self-assembled state. Therefore, the decay rate is
solely via the direct channel as visualized in Figure 7.6. For larger feed rates,
the self-assembled state is fully occupied and only a minority of the mono-
mers – with mole fraction close to the cac – are still in the free monomer
state. As a consequence, the larger part of the decay is through the indirect
channel and the fraction that follows the direct channel is negligible, see
Figure 7.6. The actual cross-over takes place around the critical aggregation
concentration and is controlled by the relative rate factor

Kr ¼ rðcÞL1
1

rðcÞLN

þ 1

rðcÞ1

 !
(7:18)

where rðcÞL1 is the direct rate, see eqn (7.16), rðcÞLN the indirect rate, eqn (7.17),

and rðcÞ1 the forward aggregation rate, all at the cac as indicated by the
superscript (c).

The result, as sketched in Figure 7.6, albeit reminiscent of the equilibrium
behaviour illustrated by Figures 7.3 and 7.4, is only achieved when the sys-
tem is out of equilibrium. The true equilibrium state of the model is
where there are only pre-monomers and no monomers or aggregates at all.
This state is attained at vanishing feed rates. With finite feed rates, a non-
equilibrium stationary state sets in, of which the characteristics are de-
scribed above. Importantly, the chemical potentials have values that differ
significantly from those in equilibrium. In actual fact, work is delivered at
a rate exactly given by eqn (7.15) with a non-vanishing Gibbs energy of
reaction; it will vanish in equilibrium only.

Figure 7.6 Direct and indirect rate fractions in the dual channel dissipative self-
assembly process as a function of the relative feed rate rt=ðk1xN

c Þ.
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Recently, we have shown the out-of-equilibrium formation of active ma-
terials8,28 that exhibits a behaviour that is very reminiscent of what is de-
scribed above, see Figure 7.7. In this system, the pre-monomer is a low
molecular weight gelator N,N0-dibenzoyl-(L)-cystine (DBC) containing two
carboxylate groups per molecule that reacts with alkylating fuels to form a
neutral ester. The monomer is formed by removing the charge of the carb-
oxylate, by forming the ester, and hence allows for the molecular self-
assembly process and eventually gelation. The leakage reaction from
monomer back to pre-monomer takes place when the ester undergoes
spontaneous hydrolysis in aqueous environments leading to the formation
of a charged carboxylate and an alcohol waste product. The hydrolysis of
the ester group is dependent on the pH, and occurs faster at more basic
conditions. During a reaction cycle, the pre-monomer reacts with the com-
mercially available strong methylating agent dimethylsulfate (DMS,
(CH3)2SO4) under basic conditions. With the batch-wise addition of DMS to
buffered solutions, the pre-monomer results in its transient methylation,
yielding increasing monomer levels.

The monomers self-assemble into fibres with a monodisperse 8 nm
diameter and multiple micrometres in length. Typically, 20 minutes after
addition of the fuel, the monomer concentration will reach the Critical
Gelation Concentration (CGC), where the formation of fibres leads to
macroscopic, semi-transparent gel materials. Over time, the monomers
hydrolyse back to pre-monomers, leading to the breakdown of fibres and the
dissolution of these gels. The viscoelastic behaviour of the gel as measured
during the reaction cycle, see Figure 7.7b, reveals dynamics that are rem-
iniscent of what is displayed in Figure 7.6. Importantly, in the experiment

Figure 7.7 (a) Chemically fuelled transient self-assembly. In a reaction cycle, pre-
monomers DBC react with methylating agent DMS to give monomers
that subsequently self-assemble into fibrous aggregates. The formed
monomers can hydrolyse both in the assembled and free state to revert
to the original pre-monomer. Overall, one full cycle produces methanol
and monomethylsulfate as waste products. (b) Elastic behaviour, as
measured by variation of the storage modulus, of the reaction fluid
that clearly indicates the development of a gel upon aggregation of
monomers into fibres.
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the decay rate from the self-assembled state to the pre-monomer state is
much less than what results from the model described above. This is largely
due to the fact that in linear aggregates the terminating monomers are less
tightly bound to the aggregates than those in between.

7.4 Bi-stability
Micellar systems that catalyse their own formation have attracted con-
siderable scientific interest.22,29–32 In particular, the example reported by
Bachmann, Luisi, and Lang in 199229 attracted quite some attention largely
because of their hypothesis of ‘‘autopoietic self-replication’’ of micelles and
their discussion with respect to the basic chemical mechanisms at the origin
of Life.29 It was claimed that the biphasic alkaline hydrolysis of an ester
shows highly nonlinear kinetics that could be attributed to the effect of
micellar autocatalysis. In this reaction, ethyl caprylate (EC), which is prac-
tically immiscible with water, undergoes alkaline hydrolysis when placed in
contact with an underlying aqueous solution. The reaction yields amphi-
philic sodium caprylate, which is known to form anionic micelles in aqueous
media. Many attempts have been made to model this reaction until in 1997
Buhse et al. revealed that the behaviour was not so much due to auto-
catalysis, but rather arose from a transport phenomenon of EC-swollen
micelles to the aqueous phase which sped up the hydrolysis reaction
significantly.32

Nevertheless, there are many reports in the literature where bistable
behaviour is claimed for associating molecular systems, see for instance
the short overview in the paper by Ball and Haymet.30 A relatively clear-cut
experiment was reported by these authors30 in which the charge-transfer
interactions of drug molecules were studied. The conductivity of an
aqueous iodine solution was measured while a solution of the amphiphilic
drug amiodarone was added. In the reverse experiment, the conductivity of
the amiodarone solution was followed as iodine solution was added. The
conductivity curves provide clear evidence of bi-stability: the forward and
reverse curves do not coincide. Similar results were obtained for the al-
kaline hydrolysis of C-4 to C-8 ethyl alkanoates.33 Another, relatively recent,
example involves the Krafft temperature, i.e. the temperature at which a
micellar solution of given concentration forms micelles.34 Such a transi-
tion can be followed by conductivity measurements, and also here the
forward and reverse scans to find the temperature do not provide over-
lapping curves. In these experiments, significant time intervals of 30
minutes or more were built in to equilibrate the system. Unfortunately, no
dependence on equilibration time was reported for these systems. Such
information would aid in assessing the non-equilibrium character of these
solutions.

A kinetic bi-stability can be demonstrated in a Continuously Stirred Tank
Reservoir (CSTR), as shown by Buhse et al. for the above discussed biphasic
surfactant system31 and further discussed by Ball and Haymet.30 We shall
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here give a more intuitive presentation based on graphical analysis. Let us
first review the CSTR, an idealized vessel where it is assumed that the con-
tents are ideally mixed at all times. A solution of monomers is fed at a given
volumetric rate Q and in order to maintain a constant volume V of liquid in
the vessel, the content is discarded at the same rate. The important char-
acteristic of a CSTR is its residence time of which the inverse is the
refreshment rate

k0¼
Q
V
: (7:19)

Stationary states are reached after waiting out a few times the
residence time.

For the bi-stability experiment, let us assume a CSTR that initially is solely
filled with solvent and that its feed consists of a solution of monomer mole
fraction x0. As long as the reactor content has not reached the cac, the actual
monomer mole fraction x1 in the reactor increases with time t according to

dx1

dt
¼ k0ðx0 � x1Þ for x0 � xc; (7:20)

where the first term accounts for the feed and the second term for the dis-
charge. Once the monomer concentration is sufficient, the self-assembly
reaction proceeds. Typically, there is a slow and non-catalysed process that
runs whether aggregates are already present or not; for simplicity its rate is
modelled as being first order, k1x. A second, faster process does involve
autocatalysis and, hence, must involve aggregates. The backward reaction,
where aggregates disassemble into monomers is neglected here under
the assumption that its time scale is too large compared to the residence
time. A simple model rate would be k3x(x0 � x)2 which involves the presence
of two aggregates and one additional monomer. Other forms of rate are
equally permissible, though. The overall reaction rate equation now takes
the form

dx1

dt
¼ k0ðx0 � x1Þ � k1x1 � k3x1ðx0 � x1Þ2 for k0t� 1: (7:21)

Graphically, the rate can be represented as in Figure 7.8a, where the feed rate
is represented by the straight line and the chemical reaction is represented
by the other line with a clear maximum and a small but nonzero rate when
the monomer mole fraction in the reactor equals that of the feed. Crossings
of these two lines indicate stationary states, i.e., it is where the overall
reaction rate vanishes. The outer two crossings are stable stationary states
and the middle one is not stable as one may easily verify by considering the
mole fraction dependence of the rate. The bi-stability is best visualized in
Figure 7.8b, where the stationary-state mole fraction of the reactor is given as
a function of the feed rate. There are two branches: one at low feed rates,
where the monomer mole fraction is low and aggregation takes place, and
one at high rates, where there is no significant aggregation. The region
in-between exhibits hysteresis as is typical for bi-stability.
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7.5 Autocatalysis
The bi-stability example with the CSTR discussed above, Section 7.4, clearly
illustrates that multi-stability, i.e., the occurrence of more than one stable
stationary state, can be achieved with self-assembling molecular systems
provided that the formation reaction is autocatalytic. The situation was
different for the fuelled self-assembly, Section 7.3, which involved a regular
aggregate formation reaction and did not exhibit multi-stability. Despite the
obvious non-linearity of the aggregate formation rate there is only one sta-
tionary state. It is clear, however, that if the aggregate formation rate
equation for this example was autocatalytic this system would also show
multi-stability. As discussed above, bi-stability has been found in self-
assembling reactions, but so far these have not been related to autocatalysis.
The bi-stability in the ethyl caprylate example discussed above was due to a
phase transfer step and for the other two examples, which involved hyster-
esis in concentration and temperature respectively, no molecular mech-
anism was provided.

The question then arises whether molecular self-assembly itself can be
autocatalytic. So far, the starting point for a theoretical analysis has been the
set of Becker–Döring (BD) equations,19 which assumes the formation of
aggregates to pass through a sequence of step-wise monomer additions or
removals. The model has recently acquired some renewed interest for the
archetypal molecular self-assembly system of micellar solutions.21 The result
of a detailed analysis is that – given the presence of one stationary state

Figure 7.8 Graphical example of bi-stability in a continuously stirred tank reactor.
(a) Analysis of rate equation in linear part (red) and nonlinear
part lpar;black) where the closed circles indicate stable stationary points
and the open circle an unstable one; rates scaled by k0x0. (b) Relative
stationary monomer mole fraction as a function of feed rate. Hysteresis
between two stable modes is indicated by arrows. Parameters chosen are
k1¼ 0.05 s�1 and k3¼ 4.5 s�1; see eqn (7.21).
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identified as the equilibrium state – the kinetics as described by the BD-
equations is not capable of properly describing the kinetics of experimental
systems. Already long before the seminal work of Aniansson and Wall on the
same model,20 it was known that the dynamics of micelle formation involves
two characteristic time scales: a short time scale associated with the ex-
change of free monomers and monomers in aggregates and a long time scale
associated with the break-up and formation of a whole aggregate. The
problem that has been identified recently is that the model predictions for
the ratio of the long and the short time scale appears to be too large.21 In a
subsequent analysis, the same authors discuss an extension of the model
where the condition of step-wise monomer addition is relaxed. In particular,
the break-up of aggregates in two halves as well as the formation of super-
aggregates consisting of twice the average amount of monomers is allowed.
It is the formation of super-aggregates that brings the separation of the short
and long-time scale within the experimentally accessible range.35 The
authors conclude by the statement: ‘‘Implicit in our model is that the for-
mation of micelles in a supersaturated solution proceeds by accretion of
monomers to a proper micelle to form a super-micelle followed by fission of
the super-micelle to two proper micelles; the formation of micelles is cata-
lysed by micelles.’’

Fusion and fission have been experimentally observed in micellar systems,
for instance, involving the non-ionic surfactant Triton X-100.36,37 It is de-
ployed in systems where various reactants for a chemical reaction are
transported by swollen micelles to react upon fusion. Also theoretically,
fusion and fission have been assessed35,38 and, apart from accelerating the
formation kinetics, no information is available on autocatalytic effects.
A simple effective rate equation, as obtained by contraction of the Becker–
Döring equations, such as eqn (7.12), is hence not known for such a case.
The suggestion for a catalytic rate equation as made by writing eqn (7.21) for
the demonstration of kinetic bi-stability was in actual fact inspired by the
idea that two aggregates and monomers would coalesce into one super-
aggregate that upon further growth would split into three proper aggregates.
A similar approach can be found in the modelling of the dynamic instability
for microtubules.39 For these systems, more is known about the actually
occurring phenomena40,41 in relation to their dynamic behaviour, albeit that
many more factors contribute that are difficult to control. More experimental
work is required to uncover the actual mechanisms responsible for auto-
catalytic behaviour in natural and synthetic systems.

7.6 Role of Non-equilibrium Thermodynamics for
Self-assembly

The Second Law of Thermodynamics provides a general framework for the
assessment of the efficiency of a process. For the examples discussed here, it
would state that the entropy produced during the process in a stationary
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state can be related to the difference in entropies of the input stream and the
output stream. For the example of the fuelled self-assembly in Section 7.3, an
earlier analysis has led to the conclusion that the dissipation is largely due to
the reactions driving the self-assembly out of equilibrium.25 A similar con-
clusion is expected for the case where the reaction is carried out in a CSTR,
see Section 7.4, as friction-loss values are typically orders of magnitude less
than those connected to chemical energy changes.

The formalism of non-equilibrium thermodynamics allows for the iden-
tification of the various contributions to the entropy production. The ex-
amples here feature a set of coupled reactions25 and the more general
expression for the available and – in the absence of utilization – lost
work reads

_W ¼�
X

k

rkDrGk; (7:22)

where the sum includes all reactions. For the fuelled self-assembly,
the summation would include a reaction driving the self-assembly, the self-
assembly process itself and the leakage reaction. The reactions in general
will be coupled and it is important to realize that for any conjugate set of
reaction rates and Gibbs energies of reactions, the expression (7.22) will
hold.24 As for chemical reactions, the relation between self-assembly rate
and the Gibbs energy of reaction can be non-linear, see eqn (7.14). As shown
explicitly for chemical reactions, this does not impose any limitation to the
validity of the non-equilibrium thermodynamics formalism.42 In particular,
we showed the validity of eqn (7.14).25 The work needed to maintain the non-
equilibrium structure is drawn from the coupling of reactions, at the cost of
some of the energy supply.

The coupling between fluxes and forces that contribute to entropy pro-
duction becomes even more interesting when heat and mass transfer as well
as electrochemical reactions are involved, see Chapter 12. As surmised be-
fore, the work lost in the self-assembly process could actually be put to some
use in an electrochemical device. As an example, the hydrolysis occurring in
the fuelled self-assembly process is readily performed electrochemically.
This would open the route to store and retrieve energy from self-assembling
systems. The associated coupling of reactions will be non-linear in character
and as such only very few examples are worked out and none in detail.42–44

7.7 Conclusion
In this chapter we have discussed the principles of molecular self-assembly
processes and some systematic approaches to run these processes out of
equilibrium. It was found with regular aggregate-formation kinetics that a
single stationary state is obtained that is reminiscent of the equilibrium
steady state, albeit that entropy is produced. Multiple stationary states are
possible when aggregate formation is partially autocatalytic. So far, very few,
if any, experimental model systems have been reported that exhibit this kind
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of behaviour although it is to be expected that some well-known systems
showing fusion and fission of aggregates might demonstrate multi-stability.

The quantification of the lost work in terms of a non-linear relation be-
tween reaction rate and thermodynamic driving forces is one of the main
contributions of this chapter regarding the non-equilibrium thermodynamic
analysis. Further possibilities for thermodynamic analysis have been dis-
cussed for more complete systems involving self-assembly.
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19. R. Becker and W. Döring, Ann. Phys., 1935, 24, 719.
20. E. A. G. Aniansson, S. N. Wall, M. Almgren, H. Hoffmann, I. Kielmann,

W. Ulbricht, R. Zana, J. Lang and C. Tondre, J. Phys. Chem., 1976,
80, 905.

21. I. M. Griffiths, C. D. Bain, C. J. W. Breward, D. M. Colegate, P. D. Howell
and S. L. Waters, J. Colloid Interface Sci., 2011, 360, 662.

22. P. V. Coveney and J. A. D. Wattis, Proc. R. Soc. London, Ser. A, 1996,
452, 2079.

23. S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics, Dover
publications, New York, 1984.

24. D. Kondepudi and I. Prigogine, Modern Thermodynamics, From Heat
Engines to Dissipative Structures, Wiley, New York, 1998.

25. G. J. M. Koper, J. Boekhoven, W. E. Hendriksen, J. H. van Esch,
R. Eelkema, I. Pagonabarraga, J. M. Rubı́ and D. Bedeaux, Int. J. Ther-
mophys., 2013, 34, 1229.

26. R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University
Press, USA, 2001.

27. I. Pagonabarraga, A. Perez Madrid and J. M. Rubı́, Phys. A, 1997, 237, 205.
28. J. Boekhoven, Multicomponent and Dissipative Self-Assembly Approaches,

Thesis, Delft University of Technology, Delft, the Netherlands, 2012.
29. P. A. Bachmann, P. L. Luisi and J. Lang, Nature, 1992, 357, 57.
30. R. Ball and A. D. J. Haymet, Phys. Chem. Chem. Phys., 2001, 3, 4753.
31. T. Buhse, V. Pimienta, D. Lavabre and J. C. Micheau, J. Phys. Chem. A,

1997, 101, 5215.
32. T. Buhse, R. Nagarajan, D. Lavabre and J. C. Micheau, J. Phys. Chem. A,

1997, 101, 3910.
33. C. Roque, V. Pimienta, D. Lavabre and J. C. Micheau, J. Phys. Chem. A,

2001, 105, 5877.
34. J. Z. Manojlovic, Therm. Sci., 2012, 16, S631.
35. I. M. Griffiths, C. J. W. Breward, D. M. Colegate, P. J. Dellar, P. D. Howell

and C. D. Bain, Soft Matter, 2013, 9, 853.
36. Y. Rharbi, M. A. Winnik and K. G. Hahn, Langmuir, 1999, 15, 4697.
37. Y. Rharbi, M. Li, M. A. Winnik and K. G. Hahn, J. Am. Chem. Soc., 2000,

122, 6242.
38. A. K. Shchekin, M. S. Kshevetskiy and O. S. Pelevina, Colloid J., 2011,

73, 406.
39. R. Padinhateeri, A. B. Kolomeisky and D. Lacoste, Biophys. J., 2012,

102, 1274.
40. A. Desai and T. J. Mitchison, Annu. Rev. Cell Dev. Biol., 1997, 13, 83.

152 Chapter 7



41. P. Maddox, A. Straight, P. Coughlin, T. J. Mitchison and E. D. Salmon,
J. Cell Biol., 2003, 162, 377.

42. J. M. Rubı́, D. Bedeaux, S. Kjelstrup and I. Pagonabarraga, Int. J. Ther-
mophys., 2013, 34, 1214.

43. T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics,
Springer-Verlag, New York, 1989.

44. H. Qian and D. A. Beard, Biophys. Chem., 2005, 114, 213.

Non-equilibrium Molecular Self-assembly 153



CHAPTER 8

Non-equilibrium
Thermodynamics for
Evaporation and Condensation
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Technology, 7491 Trondheim, Norway; b Process and Energy Laboratory,
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8.1 Non-equilibrium Theories for Phase Transitions
The common phase transitions that take place everywhere, in nature as well
as in industry, are well described and studied under equilibrium conditions.
In practice, they take place under non-equilibrium conditions. It is well
known that the interface can pose an additional resistance to transport. The
Kapitza resistance for heat transfer1 is one such example. Phase transitions
have nevertheless been modelled in the engineering literature2,3 with the
assumption of continuity in the temperature and chemical potentials, i.e.,
equilibrium, at the interface. To understand and describe phase transitions
under realistic conditions is of central importance, since the phenomenon is
so commonplace. In this chapter we review efforts that use non-equilibrium
thermodynamics, kinetic theory, experiments, molecular dynamics simu-
lations as well as the van der Waals square gradient theory. This is done for
pure fluids and binary mixtures with focus on the liquid–vapour transition.
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Whenever mass is transferred from the liquid to the gas phase, or vice
versa, there is an accompanying measurable heat flux arising from the dif-
ference in enthalpy between the two phases. The total heat flux, Jq, and the
mass flux, J, may be controlled from the outside e.g. through temperature
differences and by changing the pressure. In a stationary state of pure
fluid evaporation, for example, the total heat flux is composed of the
measurable heat flux J 0gq (or J 0lq) and the latent heat Hg (or Hl) carried by
the mass flux. Superscripts g and l refer to vapour (gas) and liquid, re-
spectively. When heat and mass flow from the vapour to the liquid in a
stationary state, the components of the total heat and mass fluxes normal to
the surface, are continuous. It then follows from energy conservation in a
pure fluid4 that:

Jq¼ J 0gq þ HgJ ¼ J 0lq þ H lJ: (8:1)

But this is not the only equation that links the measurable heat fluxes to the
mass flux at the interface. The second law requires that the measurable heat
fluxes and the mass flux through and into a surface are also coupled in the
sense that one flux depends on the main driving force of the other flux, and
vice versa. This coupling, described by non-equilibrium thermodynamics3–6

arises from microscopic reversibility of molecular fluctuations, a property
that is reflected in the Onsager relations. Such coupling takes place at
interfaces also in pure (one-component) fluids, unlike the situation in
homogeneous phases, and must not be violated.

In the rest of this chapter we will only consider transport of heat and mass
through a flat surface. All fluxes and gradients will be assumed to be normal
to this surface. The description therefore contains only these normal com-
ponents, which are scalar. This is the reason why we will further use non-
bold italic symbols for the fluxes.

Actual values of transfer resistivities are needed in order to compute
concentration and temperature profiles at the interface during phase
transformations. Beyond the famous results from the kinetic theory of
gases,5–9 not much is known about such coefficients. But serious experi-
mental efforts have documented temperature jumps at the interface,10–15

and transfer resistivities, as defined by non-equilibrium thermodynamics,
have been calculated from these.16–18 Non-equilibrium molecular dynamics
simulations (cf., also Chapter 6) can also supply such information, and have
been used in studies of Lennard-Jones particles.19–24 Studies of molecules
with realistic particle interaction potentials are few, however.21

Square gradient theory is the first approximation to density functional
theory, first formulated for single-component systems by van der Waals25

and extended to mixtures by Cahn and Hilliard.26 It was extended to the non-
equilibrium domain by Bedeaux and co-workers for single-component sys-
tems,27–29 and by Glavatskiy and Bedeaux for mixtures.30–34 The theory was
used to study the effect of surface curvature35,36 on the resistivities, and
extended to temperature-dependent influence parameters.37 The square
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gradient theory offers rapid access to transfer resistivities via the so-called
integral relations. These relations, derived by Bedeaux and co-workers for
single and multicomponent fluids,30,38,39 can be used to compute the
transfer resistivities, once the local resistivities, the concentration and
the partial-enthalpy profiles through the surface at equilibrium are known.
The local resistivities, the concentration and the partial-enthalpy profiles
can be found from molecular dynamics simulations21,24 or modelled in the
context of the square gradient theory.29,33,35,36 An extension of the square
gradient analysis to calculate the interfacial transfer resistivities for a one-
component fluid with classical density functional theory was found.40

In this chapter we review the experimental and computational findings for
the non-equilibrium liquid–vapour transition of one or two components. We
discuss first the entropy production in the heterogeneous systems, before we
define the transfer resistivities. We shall see that non-equilibrium thermo-
dynamics can provide information about the resistivity that is special for this
theory, namely the coupling resistivity. The sign and the order of magnitude
of the coupling coefficient are related to the enthalpy change of the phase
transition and to local thermal resistivities.

At the end we comment on a new area of application, transport phe-
nomena in and around the three-phase contact line.

8.2 Heterogeneous Systems. Entropy Production at
Surfaces

A heterogeneous system is made up by several homogeneous phases sep-
arated by interfaces or surfaces. We use the names surface and interface
interchangeably. The thermodynamic description of an interface in equi-
librium was given by Gibbs.41 He introduced the surface excess variables,
which are obtained by first extrapolating the corresponding variable in the
adjacent phases until the dividing surface and by next integrating the dif-
ference over the surface thickness (the so-called surface of discontinuity).
Chapter 17 and ref. 4 give a precise definition. This mathematical construct
describes the interface as a two-dimensional system. For surfaces which are
not in equilibrium, one can introduce not only excess densities, but also
excess fluxes along the surface. For an extensive discussion, see ref. 42 and
43. This allows for an extension of classical non-equilibrium thermo-
dynamics from homogeneous to heterogeneous systems, in other words, an
extension to surfaces.4 In the construction, we assume that the surface itself
is always in local equilibrium, cf., Chapter 4 for definitions and supporting
evidence, and ref. 44 for implications. The surface will in general not be in
equilibrium with the adjacent homogeneous phases, however. This means,
for instance, that the values of the temperature and chemical potentials of
the surface can differ from the values next to the surface. The last values can
also differ from one another.4 The assumption of local equilibrium and the
two-dimensional description enable us to obtain a discrete formulation of
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the excess entropy production in the surface, and to obtain correct boundary
conditions in the modelling of transport phenomena. In order to find the
entropy production in the surface we follow the prescription outlined in
Chapter 1.

Consider first the transport of heat and mass in a one-component fluid
through an interface, e.g., the evaporation of pure water. The evaporation
can, for instance, take place from a funnel as pictured in Figure 8.1. Fluid is
supplied at a constant rate to the bottom of the funnel, while vapour is
withdrawn at the top at the same rate. The pressure is constant in the
container. The flux of fluid through the interface, J, is constant in stationary
evaporation or condensation. The fluid flux is relative to the position of the
surface. The temperature can be measured in the direction perpendicular to
the surface both in the vapour and in the liquid.

Figure 8.1 Sketch of experimental setup to measure temperature profiles during
evaporation. Vapour is withdrawn from the cell at the same rate as liquid
is supplied. The thermocouple can be lowered to measure temperatures
near the surface of the evaporating liquid. There is a curvature of the
meniscus in the funnel container for the liquid, but the surface can be
regarded as flat on a molecular scale.
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The general expression for the entropy production has two terms for heat
and two terms for mass transport into and out of the interface:4

ss¼ J 0lq
1

Ts �
1
T l

� �
þ J 0gq

1
Tg �

1
Ts

� �
� J l msðTsÞ � mlðTsÞ

Ts

� �
� Jg mgðTsÞ � msðTsÞ

Ts

� �
:

(8:2)

Here T is the temperature and m is the chemical potential. The superscript s
denotes the surface. The entropy production is a product sum of each
variable flux and its conjugate driving force. A practical frame of reference
for the mass flux is the equimolar surface.4

In a stationary state Jl¼ Jg¼ J, and the last two terms can be contracted.
We can also eliminate one of the heat fluxes using eqn (8.1). For this pur-
pose, we use the Gibbs–Helmholtz relation

@ðm=TÞ
@ð1=TÞ

����
p

¼H; (8:3)

for the liquid as well as the vapour, and obtain to linear order in the
chemical driving forces

1
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1
T l

� �
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(8:4)

Here p is the pressure. With these relations the entropy production reduces
to two terms:

ss¼ J 0gq
1

Tg �
1
T l

� �
� J

mgðT lÞ � mlðT lÞ
T l

� �
� J 0gqDl;g

1
T

� �
� J

Dl;gmðT lÞ
T l

� �
; (8:5)

when we eliminate the measurable heat flux in the liquid. The symbol D
indicates a difference and is defined in both cases by the second equality.
The chemical-potential difference across the interface must be evaluated at
the temperature of the adjacent liquid. This is required to keep the entropy
production invariant. The surface temperature and chemical potential have
disappeared as variables in eqn (8.5). This can be explained by the station-
ary-state condition. In this state there is no net exchange of surface energy
and mass with the adjacent liquid or the vapour (the surface Gibbs energy
and the excess mass are constant). As a consequence, the surface tempera-
ture and chemical potential are not needed in the description of stationary
evaporation or condensation. Both variables can differ from the values in the
adjacent phases when the system is not in equilibrium!
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We can alternatively choose to eliminate the heat flux in the vapour phase.
This gives:

ss¼ J 0lq
1

Tg �
1
T l

� �
� J

mgðTgÞ � mlðTgÞ
Tg

� �
� J 0lqDl;g

1
T

� �
� J

Dl;gmðTgÞ
Tg

� �
: (8:6)

The standard state for the liquid is pure liquid at pressure p¼ p0¼ 105 Pa.
The chemical potential of the pure liquid in equilibrium with an ideal
vapour at the liquid temperature is

mlðTÞ¼ mg;0ðTÞ þ RT ln
p*ðTÞ

p0
: (8:7)

where p*(T) is the pressure of the vapour in equilibrium with the liquid at
temperature T and R is the gas constant. This pressure is referred to as the
vapour pressure of the liquid or the saturation pressure. The chemical po-
tential of an ideal vapour at the temperature T and at the real pressure, p, is:

mgðTÞ¼ mg;0ðTÞ þ RT ln
p
p0
: (8:8)

By subtracting eqn (8.8) from eqn (8.7), we find:

Dl;gmðTÞ
T

¼R ln
p

p*ðTÞ : (8:9)

The temperature to use in eqn (8.5) is T l, and in eqn (8.6) we use T g. Eqn
(8.9) assumes the gas to be ideal. For a non-ideal gas, one must replace the
pressure by the fugacity. The curvature of the meniscus in Figure 8.1 is too
small to have an impact on the chemical potential. By introducing these
relations into the entropy production, eqn (8.5) and (8.6), we obtain two
equivalent forms:

ss¼ J 0gqDl;g
1
T

� �
� J R ln

p
p*ðT lÞ

� �
¼ J 0lqDl;g

1
T

� �
� J R ln

p
p*ðTgÞ

� �
: (8:10)

The liquid evaporates at constant temperature if the vapour pressure of the
liquid is larger than the vapour pressure of the vapour. When it is lower,
there is condensation. A temperature difference may also give rise to evap-
oration or condensation. Some temperature conditions may give rise to a
vapour which is supersaturated with respect to the liquid. The interaction of
these phenomena is described by the flux equations and the dynamic
boundary conditions.

8.3 Symmetry Rules
Transports at interfaces (or contact lines) obey different symmetry rules than
transport processes in homogeneous phases. The Curie principle says that
tensors of different order do not couple. For transport of heat and mass
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through a surface, only the components normal to the surface are relevant.
This leads immediately to special possibilities for coupling.4

The coupling between heat and mass fluxes at interfaces4 differs from the
coupling in the homogeneous phases. Unlike in the homogeneous phases,
the coupling coefficients for heat and mass transport are large for phase
transitions.4 This will be brought out in the remaining part of the chapter.
Also, there are new possibilities for coupling which we will bring out in detail
in Chapter 12. The fluxes in the expressions for the entropy production
above are the scalar normal components of vectors. These scalars can couple
to other scalars. The scalar driving force of a chemical reaction does not
couple to vectorial fluxes in the homogeneous phase, but a scalar chemical
driving force in a surface can couple to the scalar normal component of
vectorial fluxes to the surface. This applies to electrochemical reactions as
well, also outside the range of linearity in the flux–force relations.45 The
jump in the electric potential and its coupling to transport of heat and mass
are discussed in Chapter 12. In this chapter, we describe coupling between
scalar components of the mass and heat fluxes.

The flux equations for the surface predict jumps in intensive variables
across or into the surface, and define in this manner dynamic boundary
conditions, essential for integration of variables through the surface or for
the modelling of phase transitions.

8.4 Evaporation or Condensation in a Pure Fluid

8.4.1 Interfacial Transfer Resistivities

Once the entropy production is obtained, we can write constitutive relations.
We choose the force–flux representation, and obtain from eqn (8.5), where
the measurable heat flux in the vapour is used:

Dl;g
1
T

� �
¼ rs;g

qq J 0gq þ rs;g
qm J;

�
Dl;gmðT lÞ

T l ¼ rs;g
mq J 0gq þ rs;g

mm J:

(8:11)

The coefficients rs;g
ij are interface resistivities of the surface or transfer

resistivities. As stated above, the component flux is relative to the position of
the dividing surface. Equivalently we obtain from eqn (8.6), where the
measurable heat flux in the liquid is used:

Dl;g
1
T

� �
¼ rs;l

qq J 0lq þ rs;l
qm J;

�
Dl;gmðTgÞ

Tg ¼ rs;l
mq J 0lq þ rs;l

mm J:

(8:12)

Again the coefficients rs;l
ij are interface resistivities of the surface or transfer

resistivities. The extra superscript of the transfer resistivities refers to the
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measurable heat flux used in their definition. Onsager relations apply, so
rs;g

qm ¼ rs;g
mq and rs;l

qm¼ rs;l
mq. Both sets apply to the whole surface. By using the

relation between the measurable heat fluxes given in eqn (8.1), the resis-
tivities in eqn (8.12) can be found from the resistivities in eqn (8.11), see eqn
(8.13). In the stationary state, there are therefore only three independent
transfer resistivities for the description of heat and mass transport across a
surface.y

It is common1–3 in the analysis of evaporation and condensation to set the
temperatures and chemical potentials equal on both sides of the surface
(and in the surface). The liquid and the vapour phases are then in equi-
librium at the surface, and Clausius–Clapeyron’s equation applies. To as-
sume equilibrium across the surface during evaporation or condensation
means that the resistivities in eqn (8.11) and (8.12) are negligible, however
see also Chapter 4. When the interface resistivities are sizable, jumps in
temperatures and chemical potentials will develop at the surface.

Since the descriptions are alternative representations of the entropy pro-
duction, the coefficients are related. From the energy balance, eqn (8.1), and
the Onsager relations we obtain4

rs;l
qq ¼ rs;g

qq ¼ rs
qq;

rs;l
qm¼ rs;l

mq¼ rs;g
qm � DvapHrs

qq¼ rs;g
mq � DvapHrs

qq;

rs;l
mm¼ rs;g

mm � 2DvapHrs;g
mq � ðDvapHÞ2rs

qq:

(8:13)

Here DvapH�Hg�Hl is the enthalpy of evaporation. The temperature, the
pressure and the mass flux can be measured. In order to relate the equations
to measurements, it is convenient to write the flux–force relations in the
following form:

Dl;gT ¼� 1
ls;g J 0gq � q*s;g J

	 

;

�
Dl;gmðT lÞ

T l ¼ q*s;g Dl;gT
T lTg � rs;g

mm � rs;g
qq ðq*s;gÞ2

	 

J:

(8:14)

The thermal conductivity at zero mass flux and the heat of transfer at the
vapour side of the surface are defined by

ls;g � �
J 0gq

Dl;gT

" #

J¼ 0

¼ 1
T lTgrs;g

qq
and q*s;g�

J 0gq
J

 !

Dl;gT ¼ 0

¼�
rs;g

qm

rs;g
qq
: (8:15)

yIn ref. 4–6 and 16 we absorbed a common factor T l in these interface resistivities.
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The symbol q* is commonly used for a heat of transfer. In the absence of a
mass flux the heat of transfer can also be found from the known temperature
and chemical potential differences:

q*s;g ¼�
TgDl;gmðT lÞ

Dl;gT

� �

J¼ 0

; (8:16)

where we used the Onsager relation. Using the measurable heat flux on the
liquid side one may alternatively write the flux–force relations in the
following form

Dl;gT ¼� 1

ls;l J 0lq � q*s;lJ
	 


;

�
Dl;gmðTgÞ

Tg ¼ q*s;l Dl;gT
T lTg � rs;l

mm � rs;l
qq q*s;l� �2

	 

J:

(8:17)

where the thermal conductivity at zero mass flux and the heat of transfer at
the liquid side of the surface are defined by

ls;l � �
J 0lq

Dl;gT

" #

J¼ 0

¼ 1

T lTgrs;l
qq

and q*s;l�
J 0lq
J

 !

Dl;gT ¼ 0

¼�
rs;l

qm

rs;l
qq

: (8:18)

In the absence of a mass flux, the heat of transfer can alternatively be found
from the known temperatures and chemical potentials:

q*s;l¼�
T lDl;gmðTgÞ

Dl;gT

� �

J¼ 0

; (8:19)

where we used the Onsager relation. When the chemical and the thermal
forces are such that J¼ 0. In this situation, which applies to eqn (8.16) as
well, the surface is in Soret equilibrium. In a homogeneous phase of a one-
component fluid, the entropy production is equal to the product of the
measurable heat flux and the gradient of the inverse temperature. In this
case, with only one flux–force term, there is no coupling coefficient between
the measurable heat flux and the mass flux. The situation changes at the
surface, where the measurable heat flux and the component flux are in-
dependent variables. The fluxes across the interface relative to the position
of the surface are then coupled.

Bedeaux et al.,5,6 Johannessen et al.39 and Kjelstrup et al.46 used these
equations to discuss the possibility of an inverted temperature profile in
front of the surface of an evaporating liquid.
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8.4.2 Interfacial Transfer Resistivities from Kinetic Theory

Considerable work has been done on evaporation and condensation, using
the kinetic theory of gases, cf., ref. 4–9 and references therein. The transfer
resistivities of eqn (8.11) are, according to kinetic theory:

rs;g
qq ¼

ffiffiffi
p
p

4cg
eqðTsÞRðTsÞ2vmpðTsÞ

1þ 104
25p

� �
;

rs;g
qm ¼ rs;g

mq ¼
ffiffiffi
p
p

8Tscg
eqðTsÞvmpðTsÞ

1þ 16
5p

� �
;

rs;g
mm ¼

2R
ffiffiffi
p
p

cg
eqðTsÞvmpðTsÞ

1
s
þ 1
p
� 23

32

� �
:

(8:20)

Here vmpðTsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RTs=M

p
is the most probable thermal velocity and M is the

molar mass. The condensation coefficient, s, is defined as the fraction of
incident particles which, after collision with the liquid surface, are absorbed
by the liquid. The transfer resistivities are surface properties and must de-
pend on surface variables only. The surface temperature is such a variable.
The temperature therefore refers to the surface, and the molar gas density
cg

eqðTsÞ refers to a density in equilibrium with the liquid at the surface
temperature. These choices gave better agreement with results from mo-
lecular dynamics simulations of a phase transition of particles with a rela-
tively short-range Lennard-Jones spline potential.22

The expressions are most appropriate for hard spheres near the triple
point. The number of moles of particles that collide with the liquid surface is
proportional to the mean thermal velocity, vmp, times the molar density in
the gas, cg. The pre-factor is characteristic for the quantity transported, and
follows from a comparison with the flux–force relation. Experimental values
of s between 0.1 and 1 have been reported.47 The actual value is somewhat
controversial. In an ideal gas the most probable thermal velocity is equal toffiffiffiffiffiffiffiffi

6=5
p

times the speed of sound. Only the transfer resistivity rs;g
mm depends on

the condensation coefficient. Once rs;g
mm is known, there is thus a unique way

to find the condensation coefficient by fitting. Polyatomic gases have also
been described by kinetic theory,9 but similarly convenient expressions are
not available. The heat of transfer of the surface becomes

q*s;g¼� 5
2

5pþ 16
25pþ 104

� �
RTs; (8:21)

and the thermal conductivity at zero mass flux is

ls;g ¼
100

ffiffiffi
p
p

cg
eqðTsÞRvmpðTsÞ

25pþ 104
: (8:22)

Neither of these coefficients depends on the condensation coefficient. We
see that kinetic theory predicts a negative sign for the heat of transfer, q*s,g.
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From eqn (8.15) we know that the coefficient has the order of magnitude of
an enthalpy. This indicates that the coupling coefficient for heat and mass
transfer at interfaces is substantially larger at the surface than in the
homogeneous liquid or gas mixtures. This will be further confirmed in the
analysis below.

8.4.3 The Sign and Magnitude of the Heats of Transfer at
the Surface

We shall see how we can use non-equilibrium thermodynamics to obtain
more information on the sign and magnitude of the heat of transfer.4 This
will be accomplished by invoking the more general representation of the
entropy production eqn (8.2). In the analysis above we used the stationary
nature of the problem to reduce the number of independent flux–force pairs
to two. Alternatively one can use all four force flux-pairs that derive from eqn
(8.2). The full force–flux matrix has 16 terms. In this matrix, we proceed by
neglecting the coupling of forces and fluxes on different sides of the surface.
One rational for this assumption could be that this interaction is smaller
than interactions on the same side. It follows that

1
Ts �

1
T l¼Rs;l

qq J 0lq þ Rs;l
qm J;

� msðTsÞ � mlðTsÞ
Ts ¼Rs;l

mq J 0lq þ Rs;l
mm J;

1
Tg �

1
Ts¼Rs;g

qq J 0gq þ Rs;g
qm J;

� mgðTsÞ � msðTsÞ
Ts ¼Rs;g

mq J 0gq þ Rs;g
mm J;

(8:23)

where we used J l¼ Jg¼ J. The coefficients Rs;l
ij and Rs;g

ij are transfer resis-
tivities. The forces in eqn (8.11) and (8.12) are the differences in the inverse
temperature and chemical potential difference across the whole surface,
Dl,g(1/T) and Dl,gm(T l)/T l or Dl,gm(T g)/T g, respectively. The force–flux re-
lations (8.11) and (8.12) do not contain the temperature and chemical
potential of the surface, like eqn (8.23) does. They contain, in view of the
Onsager relation, only 3 independent resistivities. Eqn (8.23) contains, in
view of the Onsager relations, 6 independent resistivities. The resistivities
in eqn (8.11) and (8.12) can be expressed in terms of the resistivities in
eqn (8.23).

The heats of transfer, q*l and q*g, in pure fluids are zero by definition. We
assume that q*s,l¼ q*l and q*s,g¼ q*g. It follows that:

Rs;l
qm¼Rs;l

mq¼�Rs;l
qqq*l¼ 0 and Rs;g

qm ¼Rs;g
mq ¼�Rs;g

qq q*g ¼ 0: (8:24)
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Eqn (8.23) therefore reduces to

1
Ts �

1
T l ¼Rs;l

qq J 0lq; � msðTsÞ � mlðTsÞ
Ts ¼Rs;l

mm J;

1
Tg �

1
Ts ¼Rs;g

qq J 0gq; � mgðTsÞ � msðTsÞ
Ts ¼Rs;g

mm J:

(8:25)

Addition of inverse temperature differences gives

1
Tg �

1
T l ¼Rs;l

qq J 0lq þ Rs;g
qq J 0gq¼ Rs;l

qq þ Rs;g
qq

	 

J 0gq þ Rs;l

qqDvapH J: (8:26)

Addition of chemical-potential differences gives

� mgðTsÞ � mlðTsÞ
Ts ¼ Rs;l

mm þ Rs;g
mm

	 

J¼

� mgðT lÞ � mlðT lÞ
T l � @

@ð1=TÞ
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T
� ml

T

� �

T ¼ T l

� �
1

Ts �
1
T l

� �
¼

� mgðT lÞ � mlðT lÞ
T l � Rs;l

qqDvapH J 0lq¼

� mgðT lÞ � mlðT lÞ
T l � Rs;l

qqDvapH J 0gq � Rs;l
qq DvapH
� �2

J:

(8:27)

It follows that

� mgðT lÞ � mlðT lÞ
T l ¼Rs;l

qqDvapH J 0gq þ Rs;l
mm þ Rs;g

mm þ Rs;l
qqðDvapHÞ2

	 

J: (8:28)

By comparing eqn (8.26) and (8.28) with eqn (8.11), using (8.9), we
conclude that

rs;g
qq ¼Rs;l

qq þ Rs;g
qq ; rs;g

qm ¼ rs;g
mq ¼Rs;l

qqDvapH;

rs;g
mm ¼Rs;l

mm þ Rs;g
mm þ Rs;l

qqðDvapHÞ2:
(8:29)

SinceRs;l
qq, Rs;g

qq and DvapH are positive, q*s,g is negative! This gives an in-
dependent confirmation of the result from kinetic theory. The absolute size
of the heat of transfer is given by the fraction of the thermal resistivity that is
located on the liquid side of the surface times the heat of evaporation, DvapH.
It is clear that q*s,g is negative, large and has no relation to the transported
heats in the liquid and the vapour, which both are zero.

It follows from eqn (8.20) that the alternative set of coefficients obey

rs;l
qq ¼ rs;g

qq ¼Rs;l
qq þ Rs;g

qq ; rs;l
qm¼ rs;l

mq¼�Rs;g
qq DvapH;

rs;l
mm¼Rs;l

mm þ Rs;g
mm þ Rs;g

qq ðDvapHÞ2:
(8:30)
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From the definitions (8.15) and (8.18) and the relations (8.29) and (8.30),
we obtain

q*s;g�
J 0gq
J

 !

Dl;gT ¼ 0

¼�
rs;g

qm

rs;g
qq
¼�

Rs;l
qq

Rs;l
qq þ Rs;g

qq

DvapH; (8:31)

q*s;l�
J 0lq
J

 !

Dl;gT ¼ 0

¼�
rs;l

qm

rs;l
qq

¼
Rs;g

qq

Rs;l
qq þ Rs;g

qq

DvapH: (8:32)

The heat of transfer that refers to the heat flux on the liquid side is positive.
A general relation which follows from eqn (8.1) and these definitions of
heats of transfer is4

q*s;g � q*s;l¼�DvapH (8:33)

We see that the sign of the enthalpy of the phase transformation decides the
sign(s) of the heat of transfer, and that its magnitude is a fraction of the
enthalpy of the phase change. The relation (8.33) means that it is not pos-
sible to neglect both heats of transfer in the modelling of phase transitions.
That will violate the energy balance. It may also violate the Onsager sym-
metry and thus the second law. Assuming that one of the heats of transfer is
neglected, the other must then be associated with all of the enthalpy of
evaporation. According to eqn (8.31) or (8.32) this requires that one of the
resistivities Rs;l

qq or Rs;g
qq is negligible, which is unlikely. Van der Ham et al.48

studied distillation of nitrogen and oxygen in a cryogenic distillation column
using the equations above. The neglect of coupling coefficients at the
interface led to an error of 11 % in the nitrogen flux and an error of 39 % in
the heat flux on the liquid side. Clearly, the habit to neglect these coefficients
should change.

Considering eqn (8.20) only, kinetic theory seems to be concerned solely
with the transfer resistivities on the vapour side of the surface. This is not
correct. The above analysis shows that kinetic theory uses boundary con-
ditions that refer to the whole surface.

8.4.4 Square Gradient Theory, Integral Relations for
Interface Transfer Coefficients

The equilibrium square gradient theory gives analytical expressions for the
variation in thermodynamic functions through the interfacial region (along
the x-axis, and in time t). It was originally introduced by van der Waals, see
ref. 25 and references therein. The expressions are, as the name says,
functions of the density and density gradient squared. In addition to the
contribution from, e.g., the van der Waals equation of state (AW), the
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Helmholtz energy, A, obtains a contribution from the gradient of the molar
density, c, as follows:

Aðx; tÞ¼ AWðcðx; tÞ;Tðx; tÞÞ þ m
2cðx; tÞ

@cðx; tÞ
@x

� �2

: (8:34)

The influence parameter m was independent of density and temperature in
van der Waals’ first formulation. The set of thermodynamic equations,
consistent with this, is solved for the condition of a minimum in the
Helmholtz energy for a given total number of particles. This gives the molar
density profile for 1- and 2-phase pure fluids. From standard thermo-
dynamic relations it is then possible to derive expressions for thermo-
dynamic variables of interest.27,30 This gives equilibrium profiles of all
thermodynamic functions. From the profile of the pressure parallel to the
surface we calculate the surface tension. This calculation can be used to
calibrate the value of the influence parameter m. It is chosen such that it
gives the correct interfacial tension at some typical temperature.

Away from equilibrium, the expressions for the thermodynamic variables
remain valid and give the time- and position-dependent profiles of these
variables. For an extensive discussion we refer the reader to ref. 27–29 for
pure fluids and ref. 30–34 for mixtures. The expressions give, e.g., the en-
thalpy profile which is needed in eqn (8.35). The excess variables obtained
from these functions obey local equilibrium,28,31 cf., Chapter 4. The square
gradient description itself is, as one can see from eqn (8.34), inherently non-
local and does consequently not satisfy local equilibrium.

In order to calculate the transfer resistivities for single components and
planar interfaces, Johannessen and Bedeaux introduced integral relations.38

The expressions given below give the inverse temperature and chemical-
potential differences across the surface of discontinuity41 located between 0
and d. In order to obtain the resistivities across the dividing surface one
must subtract the values for the homogeneous phases, as extrapolated to the
dividing surface. We refer the reader to ref. 38 for a discussion of this. The
integral relations for the transfer resistivities are:

rg
qq¼

ðd

0
rqqðxÞdx;

rg
mq¼

ðd

0
rqqðxÞðHg�HðxÞÞdx;

rg
mm¼

ðd

0
rqqðxÞðHg�HðxÞÞ2dx:

(8:35)

The integrands contain the local resistivity to heat transfer, rqq(x), times
a function of the enthalpy which varies through the interface. Non-
equilibrium molecular dynamics simulations are able to provide the local
resistivity to heat transfer. In Figure 8.2 it is given for n-octane according to
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Simon et al.21 The enthalpy profile is obtained from the square gradient
model; solved under equilibrium conditions. The local resistivity has also
been modelled in the context of the square gradient theory.27–34 The integral
relations were extended to mixtures and to curved surfaces by Glavatskiy and
Bedeaux.30 In the square gradient analysis, one uses a contribution pro-
portional to the square of the density gradient. The location of this peak is
important.21–23,36 Molecular dynamics results for a pure component21 indi-
cate that the peak shifts away from the equimolar surface towards the vapour
side. The curvature dependence of the transfer resistivities depends strongly
on the location of this peak.36

8.4.5 Coefficients from Simulations, Experiments and
Square Gradient Theory

In non-equilibrium molecular dynamics simulations (NEMD) the computer
is used to solve Newton’s equations for a many particle system, cf., Chapter
11. It was verified by Røsjorde et al.19,20 (Lennard-Jones spline particles) and
by Simon et al.21 ( a model of n-octane) that the surface temperature was the
same function of the surface tension, in stationary state simulations and in
equilibrium simulations. This implies that the surface is in local equi-
librium (cf., Chapter 4).

NEMD has been used to determine the transfer resistivities of a pure fluid
of Lennard-Jones particles.19–22 The Lennard-Jones spline potential was

Figure 8.2 The thermal resistivity variation across a vapour (left)–liquid (right)
interface computed for n-octane according to Simon et al.21 The peak
in the resistivity is located on the vapour side of the equimolar surface.
Reprinted with permission from J. Phys. Chem.21
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rather short range (the cut-off diameter is 1.7 times the molecular diameter,
s). The resulting transfer resistivities agreed well with the values predicted
by kinetic theory, see Figure 8.3. This was to be expected, as kinetic theory
applies to hard spheres. For a longer range Lennard-Jones spline potential,
with a cut-off diameter 2.5s, Ge et al.23 found that the main coefficients did
not deviate much from kinetic theory. The coupling coefficient or the heat of
transfer was, however, about three times larger than the value from kinetic
theory. The potential minimum and the particle diameter were equal to the
values with the smaller cut-off, meaning that the increase in the coupling
coefficient can be associated with the longer-range of the interaction
potential.

The values of the transfer resistivities found from NEMD simulations for
Lennard-Jones systems and from kinetic theory lead to discontinuities in the
temperature at the surface of a few tenths of a degree rather than a few
degrees. As shown by Bedeaux and Kjelstrup,16 it is necessary to have much
larger interfacial resistivities in order to explain the temperature differences
of several degrees observed by Fang and Ward,10,11 Phillips and co-
workers12–14 and Badam et al.15

Figure 8.3 The interfacial transfer resistivity rg
mq for coupling between heat and mass

in a one-component system. The resistivity is plotted as a function of the

corresponding state (CS) interfacial tension gCS � g r2=3
c kBTc

	 
�1
, where

the subscript c indicates the value at the critical point. Results repre-
sented by triangles (from Xu et al.22) have a cut-off radius of 1.7s in the
potential, where s is the molecular diameter. Results denoted ‘‘This
work’’ (from Ge et al.23) represent a potential with cut-off radius 2.5s.
The results from kinetic theory (KT) are shown for comparison.
Reprinted with permission from Phys. Rev. E.23
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Additional insight was obtained from the square gradient theory.25–33 A
peak in the thermal resistivity rqq(x) in the interfacial region, cf., Figure 8.2,
was chosen in agreement with the NEMD results.21 With knowledge of this
peak, the overall interfacial transfer resistivities were found from eqn (8.35).
Wilhelmsen et al.36 used these formulae to find the dependence of the
transfer resitivities on surface curvature in pure fluids and mixtures, see
Figure 8.4. The surface curvature had a considerable impact on the transfer
resistivities for heat and mass transfer in nanometre-sized bubbles
and droplets. The heat of transfer behaved similarly, for single and two-
component fluids. It depended heavily on the position of the peak.

The few findings for single-fluid evaporation or condensation can be
summarized as follows: kinetic theory seems to predict the thermal transfer
resistivities well, for particles with short as well as long-range interactions.
Kinetic theory considerably underestimates the transfer resistivities for
coupling, when the particle interactions are long-range. The heats of transfer
of the surface can be estimated as a fraction of the enthalpy of evaporation.
The results from square gradient theory find that the heats of transfer are
rather insensitive to surface curvature. They do, however, depend on the
position of the peak resistance of the thermal resistivity, rqq(x), relative to the

Figure 8.4 The heat of transfer, divided by the enthalpy of hexane, in a hexane–
cyclohexane mixture calculated using square gradient theory and the
integral relations. Values are shown for droplets and bubbles as a
function of interface curvature 1/Rn. Zero means a flat surface. The
thermal resistivity rqq(x) has a peak near the equimolar surface (solid
line), on the gas side (dashed line) or on the liquid side (dash-dotted
line) of the surface.
Reprinted with permission from Phys. Chem. Chem. Phys.36 Similar
results were obtained for a one-component system.
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equimolar surface. Experiments indicate that the transfer resistivities can be
large compared to predictions from kinetic theory.

8.5 Evaporation or Condensation in Two-component
Fluids

In a two-component system, the surface position is conveniently given by the
equimolar surface of one of the two components. This component is called
the solvent from now on. The other component is then the solute. The
names are, of course, most appropriate when the overall concentration of
the solvent exceeds the concentration of the solute. The equimolar surface of
the solvent serves as the frame of reference for the mass fluxes. The solvent
flux Jw is then always constant through the surface. The w is short for water,
which is a typical solvent. The solute flux is, in general, not constant through
the surface due to adsorption of solute at the dividing surface:

dGsol

dt
¼ J l

sol � Jg
sol: (8:36)

Adsorption of solute in the surface Gsol reduces the surface tension. In a
stationary state, the concentration of solute and its absorption in the surface
are everywhere constant, so that not only Jw, but also Jsol, is constant
throughout the system. The analysis in this chapter is restricted to this case.

As in the one-component system, the measurable heat flux from the liquid
into the surface, J 0lq, is not the same as the measurable heat flux out of the
surface into the gas, J 0gq, because the component enthalpies differ from
phase to phase. The total heat flux is the measurable heat flux plus the
enthalpy carried by the solvent and the solute fluxes. In the stationary state Jq

is constant throughout the system and:

Jq¼ J 0gq þ Hg
w Jw þ Hg

sol Jsol¼ J 0lq þ H l
w Jw þ H l

sol Jsol: (8:37)

The entropy production for the liquid–vapour interface in the stationary two-
component system is equal to:

ss¼ J 0lqDl;s
1
T

� �
þ J 0gqDs;g

1
T

� �
þ Jsol �

Dl;gmsol;TðTsÞ
Ts

� �
þ Jw �

Dl;gmw;TðTsÞ
Ts

� �
:

(8:38)

The chemical potential differences are evaluated at temperature T s. The heat
flux in the liquid can be eliminated using eqn (8.37). Following the pro-
cedure outlined in Section 8.3, this results in

ss¼ J 0gqDl;g
1
T

� �
þ Jsol �

Dl;gmsol;TðT lÞ
T l

" #
þ Jw �

Dl;gmw;TðT lÞ
T l

" #
: (8:39)

where the chemical-potential differences are now evaluated at the tem-
perature of the liquid, T l. For an ideal vapour we can again use eqn (8.7) to

Non-equilibrium Thermodynamics for Evaporation and Condensation 171



(8.9), to express the chemical-potential differences in the partial pressures.
The force conjugate to Jw is therefore:

�
Dl;gmw;TðT lÞ

T l ¼�R ln
pw

p*wðT lÞ ; (8:40)

and the force conjugate to Jsol is:

�
Dl;gmsol;TðT lÞ

T l ¼�R ln
psol

p*solðT lÞ : (8:41)

For each component, the partial pressure is divided by the partial pressure of
the saturated vapour at the temperature of the liquid, Tl. When the vapour is
not ideal, we must use the fugacity instead of the pressure. Expressions for
activity coefficients in non-ideal gas and in liquid mixtures can be found in
Perry.49

The force–flux equations that can be derived from eqn (8.39) are:

Dl;g
1
T

� �
¼ rs;g

qq J 0gq þ rs;g
qs Jsol þ rs;g

qw Jw;

�
Dl;gmsol;TðT lÞ

T l ¼ rs;g
sq J 0gq þ rs;g

ss Jsol þ rs;g
sw Jw;

�
Dl;gmw;TðT lÞ

T l ¼ rs;g
wq J 0gq þ rs;g

ws Jsol þ rs;g
ww Jw:

(8:42)

In order to simplify the definition of the heats of transfer and of the co-
transfer coefficient, it is convenient to also write the fluxes in terms of the
forces. This gives

J 0gq¼ ls;g
qq Dl;g

1
T

� �
þ ls;g

qs �
Dl;gmsol;TðT lÞ

T l

" #
þ ls;g

qw �
Dl;gmw;TðT lÞ

T l

" #
;

Jsol¼ ls;g
sq Dl;g

1
T

� �
þ ls;g

ss �
Dl;gmsol;TðT lÞ

T l

" #
þ ls;g

sw �
Dl;gmw;TðT lÞ

T l

" #
;

Jw¼ ls;g
wqDl;g

1
T

� �
þ ls;g

ws �
Dl;gmsol;TðT lÞ

T l

" #
þ ls;g

ww �
Dl;gmw;TðT lÞ

T l

" #
:

(8:43)

where the l-matrix of transfer conductivities is the inverse of the r-matrix. In
addition to the heat of transfer of the solvent, we define the heat of transfer
for the solute:

q*s;g
w �

J 0gq
Jw

 !

DT ¼Dmsol ¼ 0

¼
ls;g
qw

ls;g
ww
;

q*s;g
sol �

J 0gq
Jsol

 !

DT ¼Dmw ¼ 0

¼
ls;g
qw

ls;g
ss
:

(8:44)
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We also define the co-transfer coefficient:

ts;g
sol�

Jsol

Jw

� �

DT ¼Dmsol ¼ 0
¼ ls;g

sw

ls;g
ww
: (8:45)

By introducing the heats of transfer and the co-transfer coefficient, the linear
relations (8.43) become:

J 0gq ¼ ls;g
qq Dl;g

1
T

� �
� q*s;g

sol ls;g
ss

Dl;gmsol;TðT lÞ
T l � q*s;g

w ls;g
ww

Dl;gmw;TðT lÞ
T l ;

Jsol¼ q*s;g
sol ls;g

ss Dl;g
1
T

� �
� ls;g

ss

Dl;gmsol;TðT lÞ
T l � ts;g

sol ls;g
ww

Dl;gmw;TðT lÞ
T l ;

Jw ¼ q*s;g
w ls;g

wwDl;g
1
T

� �
� ts;g

sol ls;g
ww

Dl;gmsol;TðT lÞ
T l � ls;g

ww

Dl;gmw;TðT lÞ
T l :

(8:46)

These equations govern evaporation and condensation of a binary
mixture.

Kinetic theory also gives expressions for transfer resistivities in two-
component systems. We will not give the rather complicated expressions
here, but refer the reader to ref. 4. Molecular dynamics simulations were
done by Inzoli et al.24 for a two-component fluid mixture with short-ranged
Lennard-Jones spline potentials. The particles had the same diameter and
mass, but their potential depths differed by a factor 0.8. The resistivities for
heat and mass transfer were determined. The coupling coefficients for heat
and mass transfer were significant. The results for the heats of transfer,
defined with the heat flux on the liquid side, as well as results using the heat
flux on the gas side, are shown as functions of the interfacial tension in
Figure 8.5 for the two components. The differences in the corresponding
values obeyed eqn (8.33).

Phillips and coworkers measured the transfer resistivities for mix-
tures.12–14 For a discussion of this work, see ref. 17 and 18.

Also, the square gradient theory was used to calculate transfer resistivities
for binary mixtures.33,36 Three amplitudes were chosen. If they were chosen
such that the predictions of kinetic theory for the diagonal transfer resis-
tivities were reproduced, the coupling coefficients differed from kinetic
theory not only in size, but also in sign.

Evidence from molecular dynamics simulations24 gave good agreement
with rs;g

qq from kinetic theory for short-range potentials. The remaining
transfer resistivities did not compare well with the results of kinetic theory,
however. Models using the square gradient model reinforced this picture.
Further NEMD simulations are therefore needed to bring more clarity. Such
simulations should clearly not only be done for short-range potential
interactions, but also for longer ranges.
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8.6 Thermodynamic Properties of a Contact Line
In order to give a solid foundation of the description of the motion of the
three-phase contact line, a non-equilibrium thermodynamic description of
the contact line was developed.50 It was postulated that during its motion the
contact line is a separate thermodynamic system. For this contact line one
can define excess masses, momentum and energy densities for which con-
servation laws are given. Also excess fluxes along the line are defined. These
quantities depend on the choice of the dividing surfaces between the phases.
These dividing surfaces should be chosen such that they cross each other
through the same contact line. There are many such choices. We will not go
into the mathematical details. We only observe that the experimental
properties of the contact line are independent of the specific choice. It is
clear that the physics of the contact line cannot depend on the precise lo-
cation we choose, as this location is only a mathematical construct. The
same is true for the choice of the location of the dividing surfaces.

The Gibbs equation was formulated for the contact line and on the basis
of this law the excess entropy production density along the line was con-
structed. This identifies the conjugate thermodynamic forces and fluxes for
the contact line. Linear laws relating these quantities were then given.

An important aspect in the description of the motion of the contact line is
that excess densities develop along the surfaces between the phases near the
contact line. This leads to apparent slip of the bulk fluids along the dividing
surfaces. An advantage is that the velocity field is no longer singular near the
contact line as is the consequence when no slip boundary conditions are

Figure 8.5 The heats of transfer for the liquid side and the gas side heat fluxes, as a
function of the surface tension, in a two-component Lennard-Jones
mixture.24 Results are shown for component 1 (filled symbols) and 2
(open symbols).
Reprinted with permission of Chem. Eng. Sci.24
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used. We refer the reader to the work of Shikhmurzaev51 for a detailed
discussion of this. For a treatment of the non-equilibrium thermodynamics
of the contact line we refer the reader to ref. 50.

8.7 Concluding Remarks
We have seen above that the coupling resistivity for transfer of heat and
mass across an interface can be very substantial. The size of the resulting
heat of transfer has the same order of magnitude as the enthalpy of the
phase change. Unlike the situation in homogeneous phases, the coupling
cannot be neglected. As a consequence, it is not sufficient to use simple
transport laws, like Fourier’s law, to model transport of heat across surfaces.
As we discussed, a neglect of the coupling resistivities violates the first law.
The neglect can lead to large errors in particular in the heat flux at the
surface.48 These results will have a bearing on the dynamic modelling of
phase transitions.

Molecular dynamics results show that kinetic theory predicts the resist-
ivity to heat transfer correctly. The coupling resistivities for heat and mass
transfer are found to differ substantially from kinetic theory predictions for
long range interaction potentials, however. They can be substantially larger
and even have different signs. Experiments favour larger values of the
transfer resistivities. While some coefficients are known for surfaces, almost
nothing is known for contact lines.

Given the general nature of the phenomenon and the large discrepancy
between experiments and theory, there is a need for more knowledge on
these issues. The results above may to some degree also apply to the solid–
liquid transition, adsorption and membrane transport studies,52 see Chap-
ters 10 and 11. In view of the large errors possibly made in present day’s
modelling of interface heat fluxes, more knowledge is needed. We will wel-
come more NEMD simulations studies with a variety of long-range poten-
tials. Such studies, in combination with density functional theories and
further experiments, should provide more insight.
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9.1 Introduction to Adsorption Phenomena
Many natural or industrial processes involve adsorption steps where mass
and heat transfer take place at surfaces. For example, in a simple picture of
heterogeneous catalysis, reactants located in a fluid phase are first adsorbed
on the solid surface, the adsorbent (see Figure 9.1), and then moved to
catalytic sites inside or on the material. Later, the products move to a place
on the surface where they desorb. It is common to distinguish between
physisorption and chemisorption. The latter implies a chemical reaction
between the surface and the adsorbate. In general, large energetic effects are
involved in chemisorption; larger than for physisorption. Although there are
many similarities, this chapter will be restricted to physisorption.

The adsorption process at the scale of a particle on a porous solid is il-
lustrated in Figure 9.1. It is normally divided in successive steps. First, the
adsorbate in the fluid phase moves towards the interface, where it adsorbs.
When adsorbed on the external surface of the solid, the particles move or are
stuck at particular sites. Depending on the interaction energy with the
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surface, they can desorb back to the fluid phase or be trapped into open
channels. Being trapped, they diffuse inside the channel. On the macro-
scopic scale, we distinguish between three steps, i.e., the transport in the
fluid phase, the crossing of the interface, and the transport inside the porous
solid. All these processes can be described by non-equilibrium thermo-
dynamics (NET). The aim of this Chapter is to illustrate how NET can be
applied to help understand adsorption kinetics for a gas in contact with a
microporous material. As an example we use results obtained with molecular
dynamics simulations of adsorption of n-butane on the zeolite silicalite-1.

We review briefly the kinetics of adsorption and its challenges in this
section. The system n-butane in contact with silicalite-1 will be described
under equilibrium conditions. In Section 9.2, the NET equations will be
given. They are used in Section 9.3 to describe the transport of heat and mass
in zeolites by using molecular dynamics simulations of processes inside the
crystal and across the external surface. In particular it will be shown how
systematic use of NET can lead to new insights in adsorption kinetics.

9.1.1 State-of-the-art

Experimentally, adsorption kinetics is treated by considering that the limit-
ing step is diffusion of the adsorbate on the surface of the adsorbent. The
mass transfer through the gas phase and in the interface is not considered
per se. For simple geometries (infinite membranes, spheres, etc.) of the ad-
sorbent structure, exact analytical solutions of Fick’s law are well known,1

and the analysis of uptake curves leads directly to Fick’s diffusion coefficients
of the adsorbed component, i.e., the intra-crystalline diffusion coefficient.

Values of the diffusion coefficients of n-alkane chains, adsorbed on zeolite
of MFI type are shown in Figure 9.2. They were measured with the transient

solidfluid

interface

adsorbentadsorbate

Adsorbed
phase

Figure 9.1 Schematic representation of an adsorption process between a fluid
phase and a porous solid.
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method; the zero length column (ZLC) method. The results were compared
with self-diffusion coefficients obtained under equilibrium conditions from
quasi-elastic neutron scattering (QENS) and with results from molecular
dynamics simulations. It appears that the values of the diffusion coefficients
depend strongly on the method used.2,3 In general, the values obtained from
analysis of the adsorption kinetics (from ZLC) are much smaller than those
obtained from equilibrium methods. In Figure 9.2, they are two orders of
magnitude smaller, and even smaller, if compared with results from equi-
librium molecular dynamics. The discrepancies have been explained by
crystal defaults, surface effects, non-isothermal conditions, etc., that are
known to have large impacts on the kinetics.3,4

Transport phenomena in the gas phase are well known. Intra-crystalline
heat and mass transfer is known to some extent. Little attention has been
paid until now to heat and mass transfer through the surface. One of the
reasons is that analyses of surfaces are hardly accessible by experiments.4 A
possibility to study systematically the surface during adsorption kinetics is
offered by molecular simulations. Molecular simulations have been very
powerful in the study of equilibrium of adsorbed phases. In particular

Figure 9.2 Diffusion coefficients of chains of n-alkanes adsorbed in a MFI type
zeolite at 300 K from different techniques: zero length column (m) ZLC,
quasi-elastic neutron scattering (þ) QENS, and equilibrium molecular
dynamics (J) MD. Large discrepancies in the values are visible.
Reported by H. Jobic.2 Copyright (2000) by Elsevier.2 Reproduced with
permission.
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Monte-Carlo (MC) simulations in the Gibbs ensemble5,6 have been used to
compute isotherms. To get access to transport coefficients, like the diffusion
coefficients given in Figure 9.2, equilibrium molecular dynamics simu-
lations (MD)6,7 have been used. However, few molecular simulations have
focussed on interface transfer coefficients.8–12 The role and effect of the
surface on the adsorption kinetics will be illustrated here by simulation data
from a simple system: n-butane on silicalite-1.

9.1.2 Adsorption of n-Butane on Silicalite-1: The Equilibrium
State

Consider the silicalite-1 crystal in contact with a gas phase of n-butane.
Silicalite-1 is a pure siliceous zeolite of MFI type. It has an orthorhombic
Pnma crystallographic structure with lattice parameters a¼ 2.0022 nm,
b¼ 1.9899 nm and d¼ 1.3383 nm.13 It exhibits straight channels in the y-(b)-
direction and zig-zag channels in the x-(a) and z-(d) directions. Crystals of
dimension Lx¼ 2a, Ly¼ 3b, Lz¼ 3d were simulated with periodic boundary
conditions (PBC) in x- and z-directions, at the crystal limits. In the
y-direction gas volumes were added such that infinite slabs were simulated.
PBC were also applied in the y-direction at the gas limits. In order to mimic
adsorption experiments, the number of n-butane molecules in the gas was
varied. In the molecular dynamics simulations, the system evolved by itself
until equilibrium was reached. A thermostat was applied to the gas phase to
maintain a constant temperature during the adsorption.10,11 Atomic models
were used for the zeolite, and n-butane was modelled as four united atoms of
methyl and methylene groups. Intramolecular and intermolecular Lennard-
Jones potentials were applied, such that all the atoms were allowed to move.
The simulated system is illustrated in Figure 9.3. More simulation details
can be found in ref. 8 and 14.

In these simulations it was possible to study equilibrium as well as non-
equilibrium conditions. The loading, c, i.e., the number of molecules ad-
sorbed per unit cell, and the gas pressure, p, according to the ideal-gas
law, were calculated from knowledge of the number of molecules located
in the adsorbed phase and the gas phase. In Figure 9.4 the computed iso-
therm, c¼ f(p), has been compared with experimental results and with
Monte-Carlo calculations.8,14,15 The agreement is good, indicating that the
phase-equilibrium conditions were well reproduced.

A heat of adsorption, DHads, of �55 kJ �mol�1, has been obtained, also in
excellent agreement with experiments.8 The interaction energy between the
crystal and the n-butane molecule along the y-direction is shown in
Figure 9.5. The interaction potential is periodic, following the periodicity of
the crystal. The analysis of the external surface gave a surface thickness
around 1.2 nm. Changes in energy and/or loading were well reproduced by
the simulation under equilibrium conditions. This is a prerequisite for
studying non-equilibrium systems.
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Figure 9.3 Instantaneous configurations of an infinite membrane of silicalite-1 zeo-
lite in contact with a gas of n-butane from molecular dynamics simu-
lations at 300 K. The pore openings are oriented towards the straight
channels. Silica atoms are shown in layers, with oxygen atoms between.
The methyl and methylene groups of the butane are light grey. In (a) the
butane molecules are localized in the gas phase and the zeolite is empty.
This is the initial configuration of the simulation. After reaching equi-
librium conditions (b), butane molecules are adsorbed on the external
surface and in the pores of the zeolite. Periodic boundary conditions are
applied in all directions. To maintain the temperature at 300 K a thermo-
stat is applied at the boundaries of the gas phases (in the rectangles).

Figure 9.4 Adsorption isotherm from our molecular dynamics with explicit
surfaces,8 from experiments of Sun et al.,15 and Monte-Carlo simulations
obtained by Vlugt et al.16 at 300 K.
Copyright (2004) by Taylor and Francis.8 Reproduced with permission.

182 Chapter 9



9.2 Adsorption Process: Non-equilibrium
Description

When a system is shifted from equilibrium to non-equilibrium conditions,
thermodynamic quantities like temperature, T, or chemical potential, m,
are no longer uniform in the system. As a response to the shift, the system
tends to reach another equilibrium state by exchange of mass, heat or
momentum, with the surroundings or within itself. There are irreversible
processes, and entropy is produced in the system, dSirr40. The entropy
production, dSirr/dt, quantifies the energy dissipated as heat, or the lost
work during the time interval dt. In non-equilibrium thermodynamics the
total entropy production of a system can be written as an integral over the
entire volume where there is local entropy production, s. Except under
stationary-state conditions, the value of s evolves with time t, like other
variables. In the case of the adsorption of n-butane on silicalite-1, de-
scribed in Section 9.1, the total entropy production is the sum of

Figure 9.5 Profile of the potential energy between the silicalite and the molecules of
n-butane at 300 K along the y-direction. Inside the crystal the profile of
the energy is periodic, corresponding to the crystallographic periodicity
of the straight and zig-zag channels and their intersections. In the figure
are shown the crystallographic limits of the crystal (bold vertical lines)
and the position of the external surfaces (dashed vertical lines), surface
thickness is estimated to be around 1.2 nm.11 For the units along the
x-axis, 1 Ångstrom¼ 0.1 nm.
Copyright (2007) by Elsevier.11 Reproduced with permission.
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contributions from the gas phase, the adsorbed phase inside the crystal
pores and from the interface:

dSirr

dt
¼
ðV c

scdV þ
ðOs

ssdOþ
ðV g

sgdV ; (9:1)

where V and O are, respectively, the volume and the surface area. Super-
scripts c, g and s refer to the crystal phase, the gas phase and the interface,
respectively. In the following description, we consider transport along the
x-direction perpendicular to the surface, and consider the system to be
homogeneous in the other directions, y and z. It has the same area, O,
whatever the x-position. Under these conditions the entropy production
reduces to:

dSirr

dt
¼O

ðLc

scdxþ ss þ
ðLg

sgdx

" #
; (9:2)

where Lc and Lg are thicknesses of the crystal- and gas phase in the
x-direction. Non-equilibrium thermodynamics (NET) implies17 that each
local contribution to the entropy production is a sum of products of ther-
modynamic forces, Xi , and fluxes Ji. The mass flux of the adsorbate is
measured relative to the frame of reference given by the crystal lattice and
surface, i.e., not the centre-of-mass frame of reference. With transport of one
component, n-butane, and heat, the expression for s is:

s¼ J 0qXq þ JXm; (9:3)

Here J 0q and J are the x-components of the measurable heat flux and of the
mass flux at time t. Following NET, the heat and mass flux can be written as
the sum of products of Onsager’s transport conductivities, Lij, and thermo-
dynamic forces, Xi:

J 0q¼ LqqXq þ LqmXm;

J¼ LmqXq þ LmmXm:
(9:4)

Here Lqq and Lmm are direct coefficients, while Lqm and Lmq are characteristic
of the coupling between heat and mass fluxes. It follows from Onsager’s
reciprocal relations that the conductivity matrix is symmetric, Lqm¼ Lmq. It
is practical for stationary states to express the thermodynamic forces as the
product of resistivities, rij, and fluxes:

Xq¼ rqq J 0q þ rqm J;

Xm¼ rmq J 0q þ rmm J:
(9:5)

Like for the Lij coefficients, rqq and rmm are the direct resistivities, while rqm

and rmq are characteristic of the coupling between heat and mass fluxes; by
symmetry rqm¼ rmq.
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Both in experiments and in MD simulations, it is common to consider
stationary conditions. This has the added advantage that the entropy pro-
duction for the surface simplifies. Here we restrict ourselves to that case. The
entropy production, eqn (9.3) can be written introducing the expression of
the thermodynamic forces. For the crystal and gas phases we have:

sðxÞ¼ J 0qðxÞ
d

dx
1

TðxÞ

� �
� JðxÞ 1

TðxÞ
d

dx
mðxÞ½ �T ; (9:6)

where subscript T means that the chemical potential, m, of the adsorbate
should be differentiated keeping the temperature constant. For the surface,
we have

ss¼ J 0g;cq
1

Tg;c �
1

Tc;g

� �
� J

mg;cðTc;gÞ � mc;gðTc;gÞ
Tc;g

� �
;

¼ J 0c;gq
1

Tg;c �
1

Tc;g

� �
� J

mg;cðTg;cÞ � mc;gðTg;cÞ
Tg;c

� �
:

(9:7)

In the first expression, the heat flux in the gas phase is used, while the heat flux
in the crystal is used in the second one. The expressions are equivalent, but
they lead to different sets of surface resistivity coefficients. The choice of using
one instead of the other is mainly dictated by practical considerations, i.e., the
possibility to have access more accurate data. Superscript g,c means the gas
phase close to the crystal, and c,g means the crystal close to the gas phase.

We see that the entropy production of the interface does not contain
properties of the surface.

The equivalence of the expressions can be shown using the fact that the
total heat flux, Jq, and the mass flux are the same on both sides of the
surface. The measurable heat fluxes are connected at stationary state by:

Jq¼ J 0g;cq þ Hg;cJ¼ J 0c;gq þ Hc;gJ; (9:8)

where Hi,j is the partial molar enthalpy of the component in phase i near
phase j.

9.2.1 The Gas and the Crystal Phase

With the equality rmq¼ rqm, we can write the fluxes in eqn (9.6) in a stationary
state as

J 0q¼�l
dT
dx
þ q*J;

J¼� 1
rmmT

d
dx

mT �
q*

rmmT2

dT
dx

:

(9:9)
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In these expressions, l is the thermal conductivity and q*, is the measurable
heat of transfer; it gives the amount of heat transferred under constant
temperature due to a mass flux:

q*¼
J 0q
J

� �

Xq ¼ 0
¼�

rqm

rqq
; (9:10)

and

l¼�
J 0q

ðdT=dxÞ

� �

J¼ 0
¼ 1

T2rqq
: (9:11)

The adsorbate interacts strongly with the crystal. The thermal conductance
of a crystal is in general large compared to that of a fluid, and the crystal
therefore contributes significantly to the transport of heat through a porous
material. As a consequence, during adsorption, the temperature of the ma-
terial is often considered constant. Transfer of heat will then be due to the
mass flux and the heat of transfer, cf., the last term of eqn (9.9). The mass
flux can alternatively be expressed in terms of the Fick’s diffusion coefficient,
D and the thermal diffusion coefficient, DT:18

J¼�D
dc
dx
� cDT

dT
dx

; (9:12)

where the loading c of the adsorbate was defined before. At constant tem-
perature the expression reduces to Fick’s first law of diffusion. We find:

D¼ 1
rmmT

dm
dc

� �

T
;

DT¼
q*

crmmT2 :

(9:13)

The ratio DT/D is called the Soret coefficient, sT. For a zero mass flux, the
coefficient expresses the change in concentration as a function of a change
in temperature:

sT¼
DT

D
¼� 1

c
dc
dx

�
dT
dx

� �

Jk ¼ 0
¼ q*

RT2G
; G¼ 1

RT
dm

d ln c

� �

T
; (9:14)

where G is the thermodynamic factor defined by the last equality and R is
the gas constant. The Maxwell–Stefan theory19,20 gives the diffusivity
DMS¼D/G. The expression applies for diffusion of one component. See
ref. 20 for a generalisation to n components.

The above description is well defined for the gas phase. For the crystal
phase, the density is not uniform when we are looking at sizes smaller than a
unit cell.21 Thermodynamic variables are only defined for length scales
larger than the unit cell. In this case and with many other adsorbents, a
description using the variation of the chemical potential is highly
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preferential to a description using the concentration variation. The first
choice is therefore the natural choice for describing interface transport.

9.2.2 The Crystal–Gas Interface

From eqn (9.7) we obtain the force–flux relationships. When the measurable
heat flux in the gas is used as a variable we have:

1
Tg;c �

1
Tc;g

� �
¼ rs

qq J 0g;cq þ rs;g
qm J;

mg;c
k ðTc;gÞ � mc;g

k ðTc;gÞ
Tc;g

� �
¼ rs;g

mq J 0g;cq þ rs;g
mm J:

(9:15)

Alternatively, when the measurable heat flux of the crystal side is used,
we find:

1
Tg;c �

1
Tc;g

� �
¼ rs

qq J 0c;gq þ rs;c
qm J;

mg;c
k ðTg;cÞ � mc;g

k ðTg;cÞ
Tg;c

� �
¼ rs;c

mq J 0c;gq þ rs;c
mm J:

(9:16)

Superscript s,c of the surface resistivities refers to the use of the measurable
heat flux in the gas close to the crystal, while s,c refers to the use of the
measurable heat flux in the crystal close to the gas phase. The fluxes can be
written in the following way by using the gas value of the measurable
heat flux:

J 0g;cq ¼�lsðTg;c � Tc;gÞ þ q*s;gJ;

J¼� q*s;g

Rs;g
mm Tg;cTc;g

ðTg;c � Tc;gÞ � 1
Tc;gRs;g

mm
mg;cðTc;gÞ � mc;gðTc;gÞ½ �;

(9:17)

with ls¼ðrs
qqTg;cTc;gÞ�1; q*s;g¼� rs;g

qm =rs
qq and Rs;g

mm ¼ rs;g
mm rs;g

qq � rs;g
qm rs;g

mq

� �
=rs

qq:

With the measurable heat flux on the crystal side we have likewise:

J 0c;gq ¼�lsðTg;c � Tc;gÞ þ q*s;cJ;

J¼� q*s;c

Rs;c
mmTg;cTc;g

ðTg;c � Tc;gÞ � 1
Tg;cRs;c

mm
ms;gðTg;cÞ � ms;cðTg;cÞ½ �;

(9:18)

with q*s;c¼� rs;c
qm =rs

qq and Rs;c
mm ¼ rs;c

mm rs;c
qq � rs;c

qm rs;c
mq

� �
=rs

qq:

The formulations are equivalent and can be used to derive relations be-
tween coefficients.

Non-equilibrium Thermodynamics Applied to Adsorption 187



9.3 Molecular Dynamics Simulation of Adsorption
We proceed to illustrate the force–flux relations for the case of adsorption
using molecular dynamics simulations. All results have been found with
n-butane silicalite-1. The presentation has three parts. The first presents
results for the adsorbed phase within the pore structure, using eqn (9.10)
to (9.14), the second gives resistivities of the interface from eqn (9.17) and
(9.18). In the third part, the dynamic adsorption process will be simulated
and discussed in view of the previous results. The results presented in Sec-
tion 9.3 are mainly taken from ref. 8, 10–12 and 22. More details can be
found in these articles and references therein.

9.3.1 Mass and Heat Flux in the Crystal in Stationary State

The system consisted of a crystal of 36 unit cells of silicalite-1, see Figure 9.6.
The crystal dimensions were Lx¼ 2a, Ly¼ 6b, Lz¼ 3d, cf., Section 9.1.2.
Periodic boundary conditions were applied to mimic transport in an infinite
crystal. After an equilibration period, mass and/or heat fluxes were applied
to the system in the b-direction. The flux was obtained by exchanging n-
butane molecules and/or kinetic energy between the centre of the simulation
box and its boundaries. These zones are visualized in rectangles in

Figure 9.6 Instantaneous configurations from molecular dynamics simulations at
400 K of an infinite crystal of the zeolite silicalite-1 where n-butane
molecules (grey) are adsorbed (3.89 m.u.c.). The rectangles are buffer
zones where n-butane molecules are forced to move from the centre to
the boundaries of the simulation box, this is illustrated by curved top
arrows. This procedure creates an excess of density in the boundaries
and a mass flux of butane takes place from the boundaries to the centre,
obeying Fick’s law of diffusion (large top arrows). Alternatively, by
exchange of kinetic energy (bottom curved arrows), a heat flux is created
(large bottom arrows) in agreement with the Fourier’s law.
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Figure 9.6. This is a typical non-equilibrium procedure, where buffer zones
are used to create artificially an external flux. As a response, the system creates
an internal flux, completing a non-equilibrium loop, which obeys the transport
laws of the system. Stationary internal fluxes of heat and mass were obtained
by imposing constant external fluxes of heat and mass. Only the total heat flux,
Jq, can be held constant, not the measurable heat fluxes, J 0q.

The average temperature of the simulation varied in the range (360 to 400) K.
The amount of adsorbed n-butane varied from 2 to 6 molecules per unit
cell (m.u.c.). The temperature and density profiles obtained with a mass flux
(a) and a heat flux (b) are shown in Figure 9.7. The profiles are symmetric
with respect to the centre of the box because of the set-up. Data from the two
half-boxes were averaged and only half of the box is shown. In the presence
of a mass flux, the temperature profile is flat (Figure 9.7a) while the loading
varies in a linear way inside the crystal. Results for the Fick diffusion co-
efficient, D, see eqn (9.12), are shown in Figure 9.8a at a temperature of
360 K. The value of D increases with increasing loading. In general, the
mobility of a molecule decreases as the density increases, but this diffusion
coefficient reflects both the mobility of the adsorbed phase in the zeolite
lattice and the thermodynamic property of the system, as expressed by the
thermodynamic factor, G, eqn (9.14). The value of G was calculated as a
function of loading and temperature from the isotherm (cf., Figure 9.4) using
the expression G¼ (d ln p/d ln c)T where p is the gas pressure. The G values
are shown in Figure 9.8b. The theoretical value at saturation is infinite. The
thermodynamic factor show an increase with the loading, which can help
explain the variation in D.

When exposed to a constant heat flux, see Figure 9.7b, the system ob-
tained linear profiles of the density and temperature. The slopes were non-
zero, and were used to extract the thermal conductivity and the Soret co-
efficient, sT, from eqn (9.11) and (9.14). The results are plotted in Figures 9.9
and 9.10. The thermal conductivity was nearly independent of the loading
and of the temperature. We obtained the average value 1.46� 0.07
W �m�1 �K�1 in good agreement with experimental data on silicate ma-
terial.23 Silicalite-1 is a good thermal conductor, and the result can be ex-
plained by heat transfer almost solely through the crystal.

The sT-values presented in Figures 9.10a and b decrease as the loading and
the temperature increase, in agreement with the inverse trend of D and ac-
cording to eqn (9.14). The thermal diffusion effect is also commonly quan-
tified by the heat of transfer, eqn (9.10). The heat of transfer, q*, gives the
amount of heat necessary to maintain a uniform temperature, when mass is
transported though the system. The dimension is J �mol�1.

The total heat flux, Jq, is used to define the total heat of transfer or
the energy of transfer, Q*. The measurable heat flux is replaced by the
total heat flux in eqn (9.10). The coefficients are related via the partial
molar enthalpy, Q*¼ q*þH, see eqn (9.8). The set of coefficients are
shown in Figure 9.11 for 360 K, as a function of the loading. The q*-value
increases slightly, while Q* is roughly constant. Both are near 9 kJ �mol�1
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(H is around �1.5 kJ �mol�1). This means that thermal effects associated
with the heat of transfer can be significant, although they are often
neglected.

Figure 9.7 Temperature and density profiles, under constant mass flux (a) and heat
flux (b). The position on the x-axis gives the distance from the centre of
the crystal. Straight lines are fitted to the linear parts of the curves.
Copyright (2008) by the American Chemical Society.22 Reproduced with
permission.
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9.3.2 Mass and Heat Flux across the Interface in a Stationary
State

When a molecule is crossing the surface from the gas to the pores the partial
molar enthalpy changes significantly. The thin surface is a zone where mass
and heat fluxes couple strongly. To study this effect, explicit surfaces were
simulated and subjected to heat and mass fluxes. Fluxes were generated
following the same procedure as for the pure crystal, cf., Section 9.3.1, by
exchange of n-butane molecules and kinetic energy between buffer zones
located at the boundaries of the gas phase and in the centre of the zeolite,12

see Figure 9.12. The crystal surfaces were mostly flat. Textured surfaces with

Figure 9.8 Fick’s diffusion coefficient at 360 K (a) and thermodynamic factor for
different temperatures (b) as function of loading.
Copyright (2008) by the American Chemical Society.22 Reproduced with
permission.
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half zig-zag channels were also studied.12 A comparison was made with a flat
surface.

Stationary total heat- and mass-fluxes were simulated, and temperature
and loading profiles were determined. Figure 9.13 gives the temperature
profile in the presence of a heat flux. The temperatures were constant in the
crystal, here about 360 K, and they were increased progressively until 520 K
was reached in the gas buffer zone. A large jump of 20 K can be seen at the
interface. This reveals a large interface resistivity to heat transfer, large
compared to the same property of the gas phase and of the zeolite phase.
The interface resistivity to heat transfer is plotted in Figure 9.14 as a function
of the gas pressure for different surface temperatures. The value of rs

qq
strongly depends on the pressure and weakly on the temperature. For all
temperatures, the value decreases as the gas pressure increased. In order to
compare the values of rs

qq with the zeolite thermal conductivity given above,
(lE1.5 W �m�1 �K�1), we estimated11 the zeolite resistivity using a surface
thickness, Ls, of 1.2 � 10�9 m and the expression rs

qq¼ Ls=T2l. We obtained
rs

qqE6 � 10�15 m2 � s � J�1 �K�1 which is two to three orders of magnitude
smaller than the surface resistivity plotted in Figure 9.14. This gives an ex-
planation for the large temperature jump at the interface. An analysis of the
density of the adsorbed gas at the external surface,12 showed that the large
surface excess resistivity was located to the gas side of the surface. The re-
sistivity on the zeolite side of the surface was one to two orders of magnitude
lower than the resistivity on the gas side. This distribution may be largely
temperature independent, explaining the trend in Figure 9.14. The surface
heat conductivity, however, depended on the temperature, see eqn (9.17).
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Figure 9.9 Thermal conductivity at mean temperature Tm and loading cM.
Copyright (2008) by the American Chemical Society.22 Reproduced with
permission.
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It follows that a decrease in temperature in the gas under constant pressure
favours transport of heat through the surface.

Values of Rs
mm, calculated from eqn (9.17) at constant temperature, are

shown in Figure 9.15 as a function of the pressure in the gas phase. Con-
trolled is the measurable heat flux at the gas side (a) or at the zeolite side (b).
Similar results are shown for three temperatures. The value of Rs

mm decreases
slightly with increasing pressure. No clear temperature dependence was
found. The zig-zag textured surface12 (not shown here) had a smaller mass

Figure 9.10 Soret coefficients calculated at 360 K for different loadings (a) and at
the loading of 3.89 m.u.c. for different average temperatures Tm (b). The
lines are a guide to the eye, highlighting the decreasing trend of the
coefficient.
Copyright (2008) by the American Chemical Society.22 Reproduced with
permission.
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resistivity, meaning that surface roughness may favour mass diffusion into
the crystal. No roughness effect was seen in the heat resistivity. Like for
the thermal conductivity, we could estimate a mass resistivity using the dif-
fusion coefficients for gas in the zeolite, from Rs

mm¼GRLs=Dc. The result was
2 � 10�4 J � s �m2 �K�1 �mol�2, one order of magnitude smaller than the surface
value. This means that the surface acts not only as a heat resistance, but also
as a mass resistance when compared to the zeolite and the gas phases.

The measurable heats of transfer are shown in Figure 9.16 for both heat
fluxes used in their determination. In each case, the value decreases slightly
as the pressure increases. They depended weakly on the temperature. With

Figure 9.11 Total (Q*) and measurable heat of transfer (q*) as a function of the
loading at 360 K. Linear fits are shown, despite the large dispersion of
data. The slope of q* is slightly positive while it is nearly zero for Q*.
Copyright (2008) by the American Chemical Society.22 Reproduced with
permission.

Figure 9.12 Instantaneous configurations from molecular dynamics simulations of
an infinite membrane of the zeolite silicalite-1 in contact with a gas of
n-butane (grey). The butane molecules are located in the gas phase and
are adsorbed on the external surface and inside the pores of the zeolite.
The rectangles are buffer zones where n-butane molecules and kinetic
energy are exchanged to create a mass or a total heat flux.
Copyright (2009) by Elsevier.12 Reproduced with permission.
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Figure 9.13 Temperature profiles for different quantities of n-butane molecules.
The layer number is counted from the centre of the crystal. Each layer
has a thickness close to 0.1 nm. The position of the crystal boundary is
indicated by a vertical line, and the vertical dashed lines give the limits
of the buffer zone. The temperature is nearly uniform in the crystal, in
the gas phase it increases progressively while a jump can be seen at the
surface boundary.
Copyright (2009) by Elsevier.12 Reproduced with permission.

Figure 9.14 Surface resistivity to heat transport as a function of the gas pressure,
p, at three different surface temperatures. The standard pressure is
p0¼ 105 Pa.
Copyright (2009) by Elsevier.12 Reproduced with permission.
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the heat flux in the gas, the value is about 5 kJ �mol�1. The corresponding
value with the heat flux in the crystal as a reference is 60 kJ �mol�1.
The difference is the expected enthalpy of adsorption DadsH¼Hc,g�Hg,cE
�55 kJ �mol�1. This means that the coupling of heat and mass fluxes at the
surface of the zeolite is strong. The effect of this coupling on the adsorption
or desorption kinetics is the topic of the following section.

9.3.3 Interface Phenomena during Adsorption Uptake

When molecules are adsorbed, heat is released into the system, i.e., physi-
sorption is an exothermic phenomenon. During adsorption, this heat is

Figure 9.15 Surface resistance to mass transfer as a function of pressure, (a) with
the measurable heat flux taken at the gas side and (b) with the heat flux
taken at the zeolite side.
Copyright (2009) by Elsevier.12 Reproduced with permission.
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spreading inside the porous material and its temperature rises. The material
cools down to the ambient temperature by radiation or by heat conduction
to the surrounding gas. If the characteristic time of the temperature
equilibration is smaller than the characteristic time of the adsorption kin-
etics, the adsorption process can be assumed to be isothermal, otherwise it
is a non-isothermal process.24,25 In the latter case, Ruthven et al. have
mentioned the role played by the surface as a heat resistance.26,27 They have
also explained that a higher temperature in the zeolite can delay the ad-
sorption kinetics. Only a few authors analysed their experiments taking into
account such non-isothermal conditions.24–28 Although isothermal con-
ditions are justified in many cases, it is important to verify that this is indeed
the case, in order to produce reliable results.

Figure 9.16 Heat transfer as a function of the pressure, (a) with the measurable heat
flux taken at the gas side and (b) with the heat flux taken at the zeolite
side.
Copyright (2009) by Elsevier.12 Reproduced with permission.
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To better illustrate non-isothermal effects, molecular dynamics simu-
lations were performed, mimicking the adsorption kinetics of n-butane into
the silicalite-1, see Figure 9.3.10,11 The gas was thermostatted at 300 K, such
that heat could only be released from the zeolite by transport through the
surface and then through the gas phase.10,11 A typical uptake curve is plotted
in Figure 9.17. The figure shows that the process has two stages. It starts with

Figure 9.17 (a) Uptake curve for adsorption of n-butane molecules into silicalite-1.
(b) Evolution of the loading as a function of the zeolite temperature. The
evolution of the temperature and the loading are strongly correlated.
Copyright (2007) by Taylor and Francis.10 Reproduced with permission.
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a fast regime of 0.2 ns where about 95% of the system’s capacity for n-butane
is filled up, see the very left part of Figure 9.17a. During this process the
temperature increased by up to 70 K. The loading was completed in a second
slow stage that took about 25 ns (the remaining part of Figure 9.17a). In this
stage, the temperature relaxed toward its equilibrium value (300 K). From
these two stages it was possible to calculate diffusion coefficients, as is
commonly done to analyse experiments, using a simple expression of the
integral of the diffusion equation for infinite membrane:1

1� cðtÞ
cð1Þ

� �
¼ exp �Dp2t

L2

� �
; (9:19)

with t and L the time elapsed and the thickness of the membrane, respect-
ively. We obtained a value of D¼ 4.6 � 10�8 m2 � s�1 for the first stage and
D¼ 4.110 � 10�10 �m2 � s�1 for the later stage. Compared with the diffusion
coefficient from the zeolite, Figure 9.8(a), we obtained good agreement with
the first stage result, while the result was two orders of magnitude smaller
for the second one. The difference was similar to the difference observed
experimentally between the ZLC- and QENS methods, see Figure 9.2. These
results clearly suggest that the first stage can be governed by the intra-
crystalline diffusion. The role of the surface as an explanation of this
discrepancy will be discussed below.

As can be seen from Figure 9.17b, the loading and the zeolite temperature
are strongly correlated during adsorption. The two mentioned stages are
now clearly visible; they can be characterized by a straight line with a positive
slope in the first stage, and line with a negative slope in the second stage.
The variation take place until equilibrium is reached. These results can be
taken as signs of the presence of two different transport regimes.

Temperature profiles obtained during the second stage are shown in
Figure 9.18 as a function of time. Results for half the simulation box are
shown. The zeolite is on the left-hand side in this figure and the gas is on the
right-hand side. Despite large local fluctuations, the temperatures in the gas
and in the crystal phases were rather uniform, while at the surface they
exhibited large temperature jumps up to 70 K at the beginning of this second
stage. These jumps decreased as the system evolved, until equilibrium where
they vanished. This behaviour can be explained by an interface heat resist-
ance which is much larger than the heat resistance of the zeolite crystal, as
was described in the preceding sections.

The use of non-equilibrium thermodynamics to describe transport in this
heterogeneous system sheds new light on non-isothermal adsorption kin-
etics. The following discussion is based on the expressions of the heat and
mass fluxes given in eqn (9.17) and (9.18). In these expressions q*s is posi-
tive, so that a mass flux will contribute to the heat flux with a term that has
the same direction as the mass flux. In the first stage, a massive mass flux is
directed into the crystal, on average 45 000 mol �m�2 � s�1. The contribution
to the heat flux is proportional to this, and will completely dominate the
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Fourier type term. It also agrees with the observed increase in the tem-
perature difference across the surface. At 362 K, q*s,cE60 kJ �mol�1 and
Rs

mmE0.003 J �K�1 �m�2 � s�1. For a temperature difference of 70 K,
the contribution of the temperature difference to the mass flux (thermal
diffusion) on the crystal side is 13 000 mol �m�2 � s�1 and about
1000 mol �m�2 � s�1 to the mass flux at the gas side. These values are much
lower than the net mass flux, which indicates that during this first stage the
mass flux is rather governed by the difference in the chemical potential
across the surface, the second term in eqn (9.17) and (9.18). Intra-crystalline
diffusion may still govern the kinetics of the first stage.

During the second stage the mass flux is on average reduced by three
orders of magnitude, to around 20 mol �m�2 � s�1. The heat flux is directed
out of the crystal, and the surface-temperature difference decreases until
equilibrium. Compared with the mass flux contribution from the tempera-
ture difference calculated above, whichever way it is calculated, we see that
the net mass flux is smaller by two to three orders of magnitude. The second
stage can therefore be characterized by two contributions which nearly
balance each other, i.e., the term with the temperature difference (thermal

Figure 9.18 Temperature profile along the system for different periods of simu-
lations (they refer to the time axis of Figure 9.17a. The surface zone is
delimited by the two vertical lines between 2.4 nm and 36 nm. The
crystal and the gas phases are located respectively on the left-hand side
and on the right-hand side of the surface. The profile shows a large
temperature jump across the surface, up to 70 K.
Copyright (2007) by Elsevier.11 Reproduced with permission.
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diffusion) and with the chemical-potential difference (diffusion) across the
surface. In addition to the surface heat conductivity, the thermal diffusion
properties of the surface perfectly control the influx of molecules into the
zeolite. As the temperature difference decreases by conduction (or by radi-
ation), the balance breaks and a small influx can take place. This regime can
last until equilibrium is reached. These results illustrate the dominant role
of the external surface during adsorption/desorption.

These results have been obtained on systems of nanometre size. In order
to predict the behaviour of much larger systems, the transport equations eqn
(9.8) must be integrated using the computed resistivities as input data. This
procedure was followed by Schnell et al.29 in a study of the transport of n-
butane across a silicalite-1 membrane, 50 mm thick. Also in this case, tem-
perature jumps were observed according to the non-equilibrium description
that we presented in Section 9.2. This means that the surface might well play
a role for the total transport properties when adsorption or desorption
phenomena take place even on large scales. Data are presently lacking to
make a systematic evaluation. Surface transport properties are commonly
neglected in chemical engineering applications. This study shows that the
assumption should be reconsidered.

9.4 Conclusion
The adsorption of mass and the accompanying heat flux in porous systems
can be described with non-equilibrium thermodynamics. The example of
n-butane adsorption in the zeolite silicalite-1 was used to illustrate the
importance of the surface for the adsorption kinetics. Transport coefficients
of the adsorbed phase and of the external surface were presented. They re-
vealed a strong coupling coefficient between heat and mass fluxes, charac-
terized by a heat of transfer which is of the order of the adsorption enthalpy.
This coupling can explain that adsorption becomes non-isothermal in a non-
stationary situation. In a first short stage the kinetics was governed by a
variation in the chemical potential across the system. At the same time, the
zeolite heated up due to the strong exothermic enthalpy of adsorption. In the
second stage the influx was much smaller. There is then nearly a balance
between diffusion and thermal diffusion.

The role of thermal diffusion has not been mentioned so far in the lit-
erature by others, and we have here seen that it is central to understand non-
isothermal adsorption. The results elucidate the exothermic properties of
the adsorption and the high interface resistivity to heat transfer mentioned
by Ruthven et al.26,27 The system reaches equilibrium by release of heat; the
kinetics are not controlled by diffusion, because we are in a non-diffusive
regime. The equations presented here for the interface could explain the
large variation in experimental diffusion coefficients reported in the litera-
ture (cf. Figure 9.2). We have shown that the origin of the difference can be
related to the heat evolution at the surface. In larger crystals, with lower
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surface-to-volume ratio, the importance of the slow regime may be reduced,
and give more reliable experimental results assuming isothermal conditions.
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CHAPTER 10

Non-equilibrium
Thermodynamics of Aqueous
Solution–Crystal Interfaces

F. EL_IF GENCEL_I GÜNER

_Istanbul Teknik Üniversitesi Kimya Mühendisliği Bölümü, 34469,
_Istanbul, Turkey
Email: gencelie@itu.edu.tr; egenceli@hotmail.com

10.1 Introduction
Crystallisation is the process of formation of solid crystals in a solution, melt
or more rarely, deposition directly from a gas. It can be natural or artificial.1

Crystallisation is also a chemical solid–liquid separation technique, in which
mass transfer of a solute from the liquid solution to a pure solid crystalline
phase occurs. Industrially, crystallisation occurs in a crystallizer.

Several methods are applied in industry to achieve crystallisation either
from melt or solutions. For melt and mostly for solution crystallisation,
cooling below the saturation temperature is the applied way to induce
crystallisation. In order to provoke crystallisation, the system is brought to a
condition away from that prescribed by solid–liquid equilibrium: the system
is said to be supersaturated with respect to the crystallizing compound. In
cooling crystallisation on a heat-exchanger surface, the super-saturation
generally reaches a higher value compared to the bulk super-saturation.
Thus the formation of a scale layer on the heat exchanger surface becomes
inevitable.

Experimental Thermodynamics Volume X: Non-equilibrium Thermodynamics with Applications
Edited by Dick Bedeaux, Signe Kjelstrup and Jan V. Sengers
r International Union of Pure and Applied Chemistry 2016
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Scaling is an important limiting factor for the heat transfer in cooling
processes. The higher the heat fluxes are that can be maintained before the
scale layer is deposited, the higher is the production rate that can be
achieved. In order to lower operation costs in industrial crystallizers and to
achieve crystallisation process intensification, scale prevention on cooled
surfaces is extremely important. Prevention of scaling may be possible by
understanding its mechanism better, developing more knowledge about the
nucleation and growth conditions on the cooled wall and focusing on the
transport processes at the interface between the scale layer that grows upon
the cooling surface and the solution.

For a moment consider only the flat parts of the growth layers on a crystal
surface and disregard steps and kinks and surface integration phenomena.
It can then be expected that coupled heat and mass transfer effects, when
calculated with the Onsager equations, in principle will be noticeable and
will lead to a temperature jump at the liquid-crystal interface.2 (The ex-
ception is regular thermal conduction at zero mass flux or regular concen-
tration diffusion at uniform temperature.) In thermodynamic descriptions of
the dynamic phase transition of pure components or multicomponent
mixtures, it is commonly assumed that the temperature and chemical po-
tential are continuous functions through the interface, in spite of the fact
that the Kapitza resistance for simple heat transport has been known for a
long time.3 For instance, both the fugacity model4 and the film model,5

which are central in the modelling of phase transitions, assume that there is
continuity in the temperature and the chemical potential profile across the
interface. On the other hand, kinetic theory5 predicts a jump in the tem-
perature, and kinetic theory can now be supported by molecular dynamics
simulations of hard spheres.6 Badam et al.7 have also measured a tem-
perature jump across the vapour–liquid interface, depending on the rate of
evaporation and on the heat transfer rate.

The purpose of this chapter is to help build a knowledgebase for interface
transfer coefficients, enabling us to deal with phase transitions in a more
precise way. Thus we review recent experimental works on MgSO4 � 7H2O
crystallisation from MgSO4 aqueous solution8 and ice crystallisation from
pure water9 on cold surfaces. For growing crystals, measurements of the
temperature jump at the interface were investigated. Based on these find-
ings, coupled heat and mass-flux equations from non-equilibrium thermo-
dynamics were defined for crystal growth, to describe the temperature jump
at the interface of the growing crystal, and the distribution ratio of heat of
crystallisation between the crystal layer and the solution was calculated.

10.2 Crystallisation System
The present crystallisation system is made up of several homogeneous
phases separated by interfaces or surfaces. In that sense, the system can be
said to be heterogeneous. The crystallisation itself is, in the terminology
common in the field, of a homogeneous type, however. For the growing
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crystal on a cooled metal surface the following thermodynamic phases can
be distinguished; the homogeneous solution phase, crystal phase, metal
phase, and the interfaces between the homogeneous phases: which are the
solid–solid interface between the crystal and metal, and the liquid–solid
interface between the liquid and crystal.

In a macroscopic description, not only the homogenous phases, but also
the interface (between the solution and the crystal) is a separate thermo-
dynamic phase. This applies at equilibrium, but according to Chapter 4 also
away from global equilibrium. The thermodynamic properties of the inter-
face is, in both cases, given by the values of the excess densities of Gibbs,10

see Chapter 1 (Section 1.5) for further explanations. Excess concentrations
can be obtained from the integral of the concentration above (or below) the
values of the nearby phases. The location of the equimolar interface is defined
such that the surplus of moles of the component on one side of the interface
is equal to the deficiency of moles of the component on the other side of
the interface. Calculation and determination of the location of this plane (for
excess surface concentration, excess internal energy, excess enthalpy, the
surface tension and the excess entropy) is explained elsewhere.2,11

A first attempt to use non-equilibrium thermodynamics in the description
of crystallisation was made by Ratkje and Flesland12 in their studies of freeze
concentration of ice from an aqueous solution. That study did not take
into account the heterogeneous nature of the problem, however, which is
essential.13 General expressions for the excess entropy production rate of an
interface were already derived a long time ago14–16 for curved interfaces that
were allowed to move in space and change their curvature. Such an analysis
is rather complicated, and simplifications are required. In any case, the
expression for the entropy production in the surface predicts a jump in in-
tensive variables, like the temperature, across the surface. Badam et al.7

measured such a temperature jump across the liquid vapour interface and
showed the importance of coupling of heat and mass transport, see also
Chapters 8 and 9. The aim of the present chapter is to review experimental
results that document a temperature jump across the liquid–solid interface
during crystallisation.

We shall take advantage of the results of Kjelstrup and Bedeaux,17 and use
their description of coupled transport equations for a planar liquid–vapour
interface to derive similar expressions for the liquid–solid transition. It
can be documented that this is the only way to describe properly the
simultaneous transport of heat and mass, in a way that is consistent with
the second law of thermodynamics.8

10.3 Experimental

10.3.1 Experimental Set-ups and Procedures

In a crystallisation system, the temperature profile and the transport of heat
and mass through an interface was considered. Due to their sizable
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enthalpies (39.5 kJ �mol�1 and 6.01 kJ �mol�1, respectively), MgSO4 aqueous
solution–MgSO4 � 7H2O crystal and water–ice transformations were chosen
and tested in two different experimental set-ups. Experimental conditions
for both cases are tabulated in Table 10.1. Further details on these experi-
ments can be found elsewhere.8,9

For both cases crystal growths took place on the cold surfaces as
schematically shown in Figure 10.1. Differences for each case are noted with
an asterisk.

Table 10.1 Experimental conditions.

MgSO4 � 7H2O
crystallisation8 Ice crystallisation9

Liquid composition 29.72 wt % MgSO4 18.2 MO ultra-pure H2O
Tfeed to crystallizer 37 1C 20 1C
Solution Tsaturation 35.7 1C18 0 1C9

Nucleation via Seeding Primary

Temperature measurement
Cooling side

(Tc
in, Tc

out)
ASL F250-PT100 ASL F250-PT100
Accuracy: � 0.01 1C Accuracy:� 0.01 1C
Resolution: � 0.001 1C Resolution:� 0.001 1C
Measurement rate: Every 2 s Measurement rate: Every 1 s

Bulk ASL F250-PT100 TLC
T (distance from

cryst. surf.):
Brand: Hallcrest SH1LCRR-

10C25W
T1 (1.7 mm) Working range:�7 1C to þ 7 1C
T2 (6.7 mm) Measurement rate: Every 1 s
T3 (11.7 mm)

Accuracy: � 0.01 1C
Resolution: � 0.001 1C
Measurement rate: Every 2 s
TLCa TLCb

Brand: Brand:
Hallcrest R33C1W Hallcrest SH1LCRR-10C25W

Working range: 33 to 34 1C Working range:� 7 1C to þ 7 1C
Measurement rate: Every 2 s Measurement rate: Every 2 s

Bulk concentration
measurement

ICP-AES/Ion
Chromatography

Error: � 2.5 %
Density measurement
Error � 0.15 wt %

C (distance from
cryst. surf.):

C1 (1.7 mm)
C2 (6.7 mm)
C3 (11.7 mm)

aThermochromatic Liquid Crystal under MgSO4 � 7H2O crystal.
bThermochromatic Liquid Crystal behind ice crystal.
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In two different experimental set-ups, MgSO4 solution (at 37 1C) and pure
water (at room temperature) were fed into their own crystallizers and
stabilized for 10 minutes. When uniform temperature profiles were
achieved, the solutions were cooled down indirectly through the crystal-
lizer’s bottom metal wall (for the MgSO4 case this wall was covered with a
TLC-Thermochromatic Liquid Crystal sheet). Under steady-state conditions
and in the presence of any crystals, the temperature profiles and the heat
fluxes from the liquid into the coolant were continuous. When the solutions
were cooled below their own saturation temperatures, crystallisation on
the cold surface was initiated via (i) seeding in the MgSO4 � 7H2O case,
(ii) primary nucleation for the ice case. As both crystallisation processes are
exothermic and generated heat into the system, the temperature profiles and
heat fluxes were not continuous anymore. A temperature jump was seen at
the locations where crystals nucleate and grow. The crystallisation on the
cooled surface was visualized by the naked eye and by digital pictures. The

Cooling liquid

Ts

Tℓ

Metal wall

Interface

+d TLC

d w

d s

+T3, +C3

+T2, +C2

+T1, +C1

c

J’q

J’q

+

J

JkΔHCrystal layer

++TLC (vertical)

+TLC (horizontal)

Tc
in Tc

out

+d 3

+d 2

+d 1

J’q

Figure 10.1 Magnified view of the crystallisation surface. (Figure is not drawn
proportional to the original.) k: fraction of the enthalpy of crystal-
lisation carried out via the cooled surface. T‘: Liquid side temperature
of the interface. The symbol (Ell) is short for liq. T s: Crystal side
temperature of the interface. 1only for the MgSO4 � 7H2O system.
11only for the ice system.
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temperature jumps in the interface due to nucleation and growth of
MgSO4 � 7H2O and ice crystals were confirmed by calculations using the
values of TLC and temperature sensor measurements.8,9

10.3.2 Data Analysis and Investigations on Interface
Temperature Jumps

10.3.2.1 MgSO4 � 7H2O Crystallisation Case

10.3.2.1.1 Data Analysis. Measuring the difference between cooling
liquid inlet and outlet temperature difference (Tc

in�Tc
out), and using the

metal wall (dw), TLC (dTLC) and crystal layer (ds) thicknesses, coolant heat
flux and the crystal side temperature of the interface (T s) were calculated
via Fourier’s law. The liquid side temperature of the interface is notified
by T ‘ and it was determined by linear extrapolation from the temperature
sensor readings (T 1, T 2, T 3) located in the bulk (d1, d2, d3) to the interface
thickness. TLC temperature values for crystal-growing areas and crystal-
free areas were extracted from the pictures. The thickness of the salt
crystal (ds) growing into the liquid direction and the mass flux (J) of the
crystals were estimated using different approaches all of which overlap
perfectly well with each other. These approaches were: using image analy-
sis for measuring the crystal size changes in time, weighing the crystal
amount at the end of the experiment, and doing concentration measure-
ment in the beginning and at the end of the experiment.

10.3.2.1.2 Temperature Investigations at the Interface. Due to the trans-
parency of MgSO4 � 7H2O crystals, it was not possible to determine the
crystal borders on the post-processing temperature images. Thus, the tem-
perature profiles of the TLC surface for the crystal-covered areas were de-
tected and compared to the one of crystal-free area. The part of the heat of
crystallisation evolved in the crystal side is transferred both under and
near the borders of the crystal on the TLC.

Before stationary-state conditions were established, it was possible to have
warmer or colder temperature readings under the crystals compared to the
surrounding. This is due to the dynamic nature of the crystallisation process
in which molecules or ions dissolve and absorb on the crystal surface sim-
ultaneously during growth. It should be noted that the heat generated from
the crystallisation did not only conduct under the crystal itself, but also
evolved in the horizontal direction of the TLC. The TLC temperature reading
collected near the crystal borders did thus not represent the temperature
reading for the crystal-free area. Based on these facts, the use of single crystal
values in the temperature-data collection from TLC readings was avoided.
Instead, representative temperature readings were collected for the same
moment in time from two different areas, with and without crystals. By using
crystal-group average temperature values, these little variations due to
the optical properties and heat distribution in the horizontal direction of
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the TLC are minimized and included in the accuracy of � 0.03 1C. In
Figure 10.2(a) a photo for the crystal-free area and in (b) its post-processing
temperature image is presented. The averaged TLC temperature reading for
crystal-free areas for this moment is determined as 33.60 1C. For the same
moment, an area covered with crystals and its post-processing temperature
image is also presented in Figure 10.2(c) and (d), respectively, with an
average temperature reading value of 33.75 1C.8

The temperature readings and the results were obtained following the
procedure described in the 10.3.2.1.1 Data analysis section. For the entire
experiment the temperature jumps across the interface T‘�Ts were all
calculated to be 0.2 1C.8

During the whole experiment the coolant outlet temperature was higher
than the coolant inlet temperature, the measured and calculated wall tem-
peratures were equal to each other, and the crystal-free area on TLC tem-
perature measurements was constant. The crystal shapes, furthermore, had
no impact on the TLC post-processing temperature image, which allowed us
to use the temperature readings under the crystals. All these facts support
the soundness of our experiment.

Figure 10.2 Picture of crystal-free (a) and crystal-covered (c) areas on the TLC
surface and their post-processing temperature images (b), (d). 1 pixel
is 65 mm.
Reprinted with permission from Cryst. Growth Des.8
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10.3.2.2 Ice Crystallisation Case

10.3.2.2.1 Data Analysis. The transparency property of water and ice
crystals were used to follow the temperature profiles of the TLC tempera-
ture readings for both crystal and liquid layers. The ice-surface tempera-
ture (T s) was derived from the linear extrapolation from the TLC sheet
readings under the ice layer. The water-side temperature (T ‘) was directly
read from the TLC sheet readings on the liquid side of ice interface.

The ice thickness (ds) growing into the water direction, the ice growth rate
and the mass flux (J) of the crystals were estimated from the experimental
photos. The heat flux from the liquid side was calculated by using TLC data
readings and Fourier’s law.

10.3.2.2.2 Temperature Investigations at the Interface. Pure water was
cooled below its freezing temperature and primary ice nucleation (0 s) on
the cold surface was initiated. When the ice crystallisation process started
to generate and release heat into the system, the temperature profile and
heat flux became discontinuous. The ice grew with curvature at both ends
of the heat exchanger. A curvature arose because in the set-up, the area of
the bottom heat exchanger is smaller than the area of the bottom of the
crystallizer.9

Crystallisation is a dynamic process in which molecules desorb and ad-
sorb on the crystal surface simultaneously and in a sub-pixel size range. For
this reason, and due to minor noise in the CCD pixel recordings, recordings
of single pixel values from TCL reading were not pursued. Instead, repre-
sentative temperature readings were collected by averaging the temperature
data horizontally in an area of interest (AOI) for each vertical position per-
pendicular to the heat-exchange surface. This approach minimized small
variations due to image noise and micro-plume effects due to convection,
giving an accuracy of � 0.01 1C.9 Figure 10.3 (I and II) shows TLC images,
magnified AOI and horizontally averaged temperature data for different
vertical locations of these AOI for experimental moments 56 and 66 seconds
after nucleation occurred.

The ice crystal growth on the cooled surface and the corresponding colour
changes were visible to the naked eye and in the digital images.
A temperature jump across the interface due to growth of ice crystals was
confirmed by calculations of temperatures deduced from the TLC. For two
experimental moments, having different ice growth rates, the temperature
jumps across the interfaces T‘�Ts were calculated to be 1.27 1C and 1.68 1C
for the 56 s and 66 s experimental moments, respectively. Ice values are far
higher than for the MgSO4 � 7H2O crystallisation case with 0.2 1C, but then
the heat of crystallisation is also higher for water. During the entire ex-
periment, the coolant outlet temperature had higher values than the coolant
inlet temperature. The ice-side interface temperature (T s) value was also near
the ice freezing temperature of 0.00 1C. These observations support the
soundness of the measurements and conclusions.
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10.4 Heat and Mass Transport, and the Entropy
Production Equations for Crystallisation

As shown in the previous section, the experimental7–9 and new computa-
tional18,19 evidence for a temperature jump across the interface during phase
transformation, as well as the possibility of a surface temperature being
different from that of the temperature of the surroundings, bring forward a
need for a new theoretical description.20,21 The systematic theory of non-
equilibrium thermodynamics is indispensable in this context.2 The surface is
considered as a separate thermodynamic system, with its own excess variables,
following Gibbs.10 The excess entropy production of the surface will then
define dynamic boundary conditions, i.e., fluxes and forces at the interface.

In order to analyse crystal growth on the cold surfaces, the heat and mass
transfer equations were defined from the entropy production for three
different regions (see Figure 10.1), i.e., at points solid (s), liquid (‘) and
interface (i) to obtain the temperature, concentration and heat and mass flux
profiles. The details of these derivations for the crystal and the liquid layer
can be found elsewhere.8 Here we will only elaborate the derivations for the
interface.

Figure 10.3 TLC images, magnified AIO’s, T distribution in AOI’s of 56 s and 66 s
experimental moments. 1 pixel is 20 mm.
Reprinted with permission from Chem. Phys. Lett.9
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10.4.1 Interface (i)

The interface is the thin layer between the crystal and the liquid layers. In the
crystallisation system, it is the most interesting layer since crystallisation
takes place at the interface. The layer is defined as a two-dimensional
thermodynamic system by excess densities.

As experimentally proven above, an extrapolation of the measured tem-
perature profiles both from the crystal side and from the liquid side up to
their contact point (the interface) shows a temperature discontinuity across
the solid–liquid interface. The interface position was chosen as the equi-
molar surface of the crystal. The heat and mass transport and the entropy
production equations for the interface are defined in Table 10.2.

Eqn (10.1) shows that the enthalpy of crystallisation (DHcryst.) is shared
between the crystal and the liquid layers. It can partly be transported into the
crystal J 0sq 4 0 and partly be going back into the mother liquid J 0‘q o 0 . The
relative fraction of the enthalpy of crystallisation carried by the mass fluxes
(J) at uniform temperature is given by the so-called heats of transfer, cf.,
eqn (10.8b) below.8

Table 10.2 Mass and heat transport, and entropy production equations for the
interface layer at steady state (i).a,b

Heat and Mass transport for ‘i’
Energy conservation for

one-dimensional
transport:

J 0sq þ J � Hs¼ J 0‘q þ J � Hl

J 0sq¼ J 0‘q þ J � DHcryst:H;

J � ðHs � HlÞ¼ J 0‘q þ J 0sq o 0: (10.1)

Entropy production for ‘i’
At steady state interface

entropy production
consists:

– heat conduction
term in to the
interface,

– heat conduction
term out of the
interface,

– mass transport term
across the interface.2

si¼ J 0sqDi;s
1
T

� �
þ J 0‘qD‘;i

1
T

� �
� J

1

T i D‘;smTðT iÞ (10.2)

Eliminating T i from eqn
(10.2): si¼ J 0sqD‘;s

1
T

� �
� J

1
T ‘

D‘;s mT ðT‘Þ; (10.4a)c

si¼ J 0‘qDs;‘
1
T

� �
� J

1
Ts Ds;‘ mTðTsÞ: (10.4b)d

amT: Chemical potential evaluated at constant temperature (J �K�1).
bDHcryst.: Enthalpy of crystallization (J �mol�1).
cUsed for MgSO4 crystallisation calculations.
dUsed for ice crystallisation calculations.
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The entropy production equation given in eqn (10.2) is valid for crystal
growth. Subscript i,s means that the difference is taken between the salt and
the interface, subscript ‘,i means a difference between the interface and the
solution; while ‘,s means across the interface (i.e., between crystal and the
solution). As the mass flux of the crystal into and out of the surface is
constant, the chemical driving force (mT) into and out of the surface were
combined. Since J 0sq a J 0‘q , the other terms in eqn (10.2) cannot be combined
in a similar way. The expression describes all energy dissipated as heat at the
interface.8

To have the driving force depend on the interface or surface temperature
is not desired as it is not convenient. Thus, the surface temperature and one
of the heat fluxes could be eliminated from eqn (10.2) by introducing the
energy balance into the entropy production and by using the identity given
in eqn (10.3):

1
T i D‘;smTðT iÞ¼ 1

T i msðT iÞ � m‘ðT iÞ
� �

¼ 1
T‘

msðT ‘Þ � m‘ðT ‘Þ þ ðHs � H‘Þ 1
T i �

1
Ts

� �� �
; (10:3)

where H is the enthalpy (J �mol�1).
The entropy production for the interface could be rewritten as presented

in Table 10.2 in eqn (10.4a) and (10.4b), dependent either on the liquid or
crystal temperatures at the surface, respectively. These relations will be used
in MgSO4 and ice crystallisation cases correspondingly.

The thermodynamic driving forces for transport of heat and mass from
the entropy production are given both for MgSO4 and ice cases as seen in
Table 10.3.

For MgSO4 crystallisation, the activity of the crystal in the liquid is given
at the liquid temperature near the surface, at T ‘. Since the activity of the
crystal is more difficult to obtain, the activity of the liquid that would have
been in equilibrium with the crystal at the temperature T ‘ is taken in eqn
(10.5a). The activity is calculated from the saturation curve using the Pitzer
Model.22 For the ice crystallisation case, the chemical force in terms of ac-

tivities or in terms of vapour pressures aw ¼
pw

p*
w

� �
is presented in eqn (10.6).

On the s-side, there is pure ice. Therefore ps
w is the vapour pressure

of water in equilibrium with ice at the temperature of the ice. On the ‘-side
there is pure water. The vapour pressure of the ‘-phase is the vapour pres-
sure of the water, also taken at the temperature of the ice TS. Superscript *
indicates the pure-phase vapour pressure. The chemical driving force is the
degree of super-saturation calculated at TS. A ratio larger than unity may lead
to crystallisation, but not for all conditions. Whether crystallisation may take
place or not, depends also on the value of T S with respect to T ‘, and the heat
of transfer. The vapour pressures of water are known as function of
temperature.23
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10.4.2 Equations of Transport for Crystal Growth

For the surface there is a linear relation between the thermodynamic
forces and the conjugate fluxes. In the steady state, force-flux relations
can be written for the MgSO4 crystallisation case between the interface
(i) and the crystal side (s); and for ice crystallisation case between the
interface (i) and the liquid side (‘), as shown in Table 10.4 eqn (10.7a) and
(10.7b). These equations express that there are jumps in the intensive
variables like the temperature and the chemical potential at the surface
and that T iaT s,T ‘. This fact, which is also proven experimentally above,
is normally not taken into account in the description of phase
transitions.24,25

In eqn (10.7a) (and 10.7b), Ri;s
qq and Ri;s

mm (Ri;‘
qq and Ri;‘

mm) are the two
main interface resistivities to heat and mass transfer, respectively; and Ri;s

qm

and Ri;s
qm (Ri;‘

qm and Ri;‘
mq) are the coupling resistivities for the interface. According

to Onsager, Ri;s
qm¼Ri;s

mq (and Ri;‘
qm¼Ri;‘

mq) are equal. The ‘‘heat of transfer’’ for
the crystal side of the surface (q*i,s) and liquid side of the surface (q*i,‘) are
defined by the coefficient ratios expressed in eqn (10.8a) and (10.8b),
respectively.

The stationary state heat flux equations for the crystal and liquid sides are
defined in eqn (10.9a) and (10.9b). By substituting eqn (10.1) into eqn
(10.7a), using eqn (10.3), the relations between the resistivities2,26 for the salt
side and the liquid side heat flux can be obtained, see the case of evapor-
ation in Chapter 8, eqn (8.13). Eqn (10.10) is derived from eqn (10.8a) and
(10.8b) which shows that the assumption of zero cross coefficients violates

Table 10.3 Thermodynamic driving forces for MgSO4 and ice cases.

MgSO4 crystallisation

D‘;s
1
T

� �
¼ 1

T ‘
� 1

Ts ¼
Ds;‘T
T‘Ts �

Ds;‘T

ðT‘Þ2
¼� D‘;sT

ðT ‘Þ2
;

� 1
T ‘

D‘;sDmTðT ‘Þ¼ � RT ‘

T ‘
ln

asðT ‘Þ
a‘ðT ‘Þ ¼ � Rln

asðT‘Þ
a‘ðT ‘Þ :

(10.5a)

Ice crystallisation

Ds;‘
1
T

� �
¼ 1

T ‘
� 1

Ts ¼
D‘;sT
T iTo � �

Ds;‘T

Tsð Þ2
;

� 1
Ts Ds;‘DmT ðTsÞ¼ � 1

Ts msðTsÞ � m‘ðTsÞ
� �

;
(10.5b)

� 1
Ts Ds;‘DmTðTsÞ¼Rln

as
wðTsÞ

a‘wðTsÞ ¼Rln

p‘wðTsÞ
p*

wðTsÞ
pi

wðTsÞ
p*

wðTsÞ

¼Rln
p‘wðTsÞ
ps

wðTsÞ :

(10.6)
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thermodynamic laws.2 The derivation presented in eqn (10.10) is similar to
the one for evaporation in Chapter 8 eqn (8.33).

q*i;s � q*i;‘¼DHcryst:: (10.10)

10.4.3 Determination of Transfer Resistivities

10.4.3.1 MgSO4 � 7H2O Crystallisation Case

The heat of transfer for the salt side divided by the enthalpy of crystal-
lisation (q*i,s/DH) was calculated for the entire experiment. For
MgSO4 � 7H2O crystallisation, it was reported that typically 70 to 80 % of the
heat of crystallisation was transferred into the solid side, whereas 20 to
30 % of this latent heat was transferred back in to the liquid side with a
uniform temperature.8 This is significant information, which shows the
error one can make by assuming that all the heat of crystallisation is
transferred into the cold side (i.e., to the salt side), as is generally practiced
in crystallisation calculations.24,25 In this case, the error may not seem
very big, however it is case dependent, and might well be larger in other
systems.

The description allows also for calculation of Rmm, the interface mass re-
sistivity, using eqn (10.7a) and the coupling coefficients Rqm¼Rmq. By taking
advantage of the Onsager equations, there is a new alternative to resolve the
difficulty of finding the temperature jump in the absence of a heat flux. The
interface resistivity coefficients for heat transfer (Rqq) and mass transfer (Rmm)
are calculated as 2.1 � 10�7 m2 �K�1 �W�1 and 1.26 � 103 J �m2 � s �K�1 mol�2,
respectively. The coupling resistivity coefficients (Rqm¼Rmq) then become
�3.88 � 10�3 m2 � s �K�1 �mol�1.

The minimum chemical driving force, or degree of super-saturation at the
temperature near the phase boundary that is needed to overcome the tem-
perature jump before crystallisation can take place is now possible to

Table 10.4 Equations of transport for crystal growth.

MgSO4 crystallisation Ice crystallisation

�D‘;sðTÞ
ðT‘Þ2

¼Ri;s
qq J 0sq þ Ri;s

qm J;

(10.7a)

�Ds;‘ðTÞ
ðTsÞ2

¼Ri;‘
qq J 0‘q þ Ri;‘

qm J;

(10.7b)� 1
T ‘

D‘;smTðT‘Þ¼Ri;s
mq J 0sq þ Ri;s

mm J: Rln
p‘wðTsÞ
ps

wðTsÞ ¼Ri;‘
mq J 0‘q þ Ri;‘

mm J:

q*i;s �
J 0sq
J

 !

Ts ¼T‘

¼�
Ri;s

qm

Ri;s
qq

: (10.8a) q*i;‘ �
J 0‘q
J

 !

Ts ¼T‘

¼�
Ri;‘

qm

Ri;‘
qq

: (10.8b)

J 0sq¼�
1

Ri;s
qq

Ds;iðTÞ
ðT‘Þ2

þ q*;sJ: (10.9a) J 0‘q¼�
1

Ri;‘
qq

Ds;‘ðTÞ
ðTsÞ2

þ q*;‘J: (10.9b)
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calculate. From eqn (10.7a) for no mass flux (J¼ 0) the criterion to have
MgSO4 � 7H2O crystallisation is:

Ds;‘ Tð Þ
T ‘

� 0:5 � 10�4DmTðT‘Þ: (10:11)

Such a relation is essential to prevent scale formation on cold surfaces.
As seen in eqn (10.12), a relation between the coolant-side heat flux and

mass flux can be derived from eqn (10.7a). By using this relation, just by
regulating the coolant heat flux, it is possible to control the salt mass flux
(i.e. salt scale layer).

J¼� 1
T ‘

DmTðT‘Þ 1

Ri;s
mm
�

Ri;s
mq

Ri;s
mm

J 0sq: (10:12)

Eqn (10.12) predicts that a bigger heat flux on the salt side promotes crys-
tallisation. In other words, when the cooling rate is larger, the growth rate of
the crystals increases proportionally. Mass transfer onto the crystal surface
becomes, however, more difficult if Ds,‘(T) becomes too large. In this case J 0sq
is reduced at the cost of J 0‘q .8

It is also possible to derive relations between diffusion coefficient (DAB)
and mass resistivity (Rmm) and the thermal conductivity coefficient (l) and
heat resistivity (Rqq), as seen in eqn (10.13) and (10.14). The details of these
derivations, in which Dz, R and C refer to distance from the crystal surface,
ideal gas constant and concentration, respectively, are elaborated in the
work of Genceli et al.8

DAB¼
DzR

Ri;s
mmC‘

: (10:13)

l¼ Dz

Ri;s
qqðT ‘Þ2

: (10:14)

10.4.3.2 Ice Crystallisation Case

In Figure 10.3 (I-b and II-b), above the ice surfaces, one can see a cloudy
bright region. In this layer, the density of water was gradually reduced in the
direction of the heat-exchanger. In Figures 10.4 (I-c to II-c) a waving trend of
temperature above T ‘ value can be seen for some pixels. We interpreted this
as due to the effect of the heat production at the interface; i.e., the effect of
q*,‘. Thus, plumes were created by the rapid growth, contributing to the
stirring of the liquid layer.

The coupling coefficient ratio of the resistivity to heat transfer at zero ice
growth is formulated in eqn (10.7b). The heat of transfer for the liquid
(water) side and solid (ice) side divided by the enthalpies of crystallisation
(q*‘
�
DH and q*s=DH, respectively) for different experimental moments are

presented in Table 10.5. It was calculated that typically 30 % of the released
heat of crystallisation is transferred back into the water side. Under the
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same conditions, the latent heat transferred to the ice side was 70 %.
Similar to the situation for MgSO4 � 7H2O crystallisation case, the error one
can make by assuming that all the heat of crystallisation is transferred to
the ice side, has the same order of magnitude. The heat of transfer should
not be neglected.

The resistivity to heat transfer (Ri;‘
qq) was calculated for the last moment

before ice nucleation started (J¼ 0). By taking advantage of the Onsager
set of equations, it is possible to find the temperature jump in the absence
of a heat flux. Using the equality of the coupling coefficients (Rqm ¼ Rmq) in
eqn (10.7b), Values of the interface mass resistivity (Rmm) were calculated for
four different experimental moments.

By using the heat transfer resistivity and the coupling coefficient in eqn
(10.7b), for J¼ 0, we finally obtained the condition for the minimum
chemical driving force, (i.e., degree of super-saturation) at the temperature
near the phase boundary that is needed to overcome the temperature jump
before ice crystallisation can take place.

D‘;sðTÞ
Ts � 0:2 � 10�5DmTðTsÞ: (10:15)

The relation presented in eqn (10.15) is quite significant for explanation of
and possible prevention of scale formation on cold surfaces. It explains that
crystallisation may be hindered not only by activation energy, but also by a
thermal force acting in an unfavourable way.

10.5 Concluding Remarks
The evidence for a temperature jump between the solid and the liquid side of
an interface during crystallisation has been reviewed. So far this has been

Table 10.5 Values of transfer resistivity and enthalpy distribution for two moments
of ice experiment.

Experimental moment
unit56 s 66 s

T‘�Ts 1.273 1.676 1C

Ri;‘
qq 1.18 � 10�7 1.18 � 10�7 m2 �K�1 �W�1

Ri;‘
mm 0.23 0.26 J �m2 � s �K�1 �mol�2

Ri;‘
qm¼Ri;‘

mq �2.01 � 10�4 �2.23 � 10�4 m2 � s �K�1 �mol�1

Ri;s
qq 1.18 � 10�7 1.18 � 10�7 m2 �K�1 �W�1

Ri;s
mm 6.91 7.21 J �m2 � s �K�1 �mol�2

Ri;s
qm¼Ri;s

mq �9.10 � 10�4 �9.33 � 10�4 m2 � s �K�1 �mol�1

q*‘
�
DH �0.28 �0.32 —

q*s=DH 0.72 0.68 —
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found for growth of epsomite from MgSO4 aqueous solutions and of ice from
pure water on a cold surface. Crystal growth is a common-place phenom-
enon and the thermodynamic arguments derived for these crystallisation
examples will apply to any solid–liquid phase transition. The observations
mean also that the common assumption used in the modelling of phase
equilibria, that the temperature profile is continuous though the interface,
cannot apply in many cases. Crystallisation is mostly an exothermic process,
and one would expect that the heat released at the interface during growth is
distributed to both the liquid and the solid phases, also at (near) isothermal
conditions. The measurements presented in this work confirm this argu-
ment. For epsomite and ice crystal growth around 30 % of the heat of
crystallisation is transferred back into the liquid side. Such a distribution
cannot be modelled with Fourier’s law only, similar to the situation for
liquid–vapour transitions2,7,10,14–16,18–21,27 (see Chapter 8). The coupling of
fluxes of heat and mass is large at interfaces, meaning that the theory of
irreversible thermodynamics is needed.2 For both cases, values of the
interface transfer resistivity were determined and the minimum chemical
driving force at the temperature near the phase boundaries that is needed to
overcome the temperature jump before crystallisation can take place was
calculated. By taking advantage of these relations, it may be possible to
control the crystal mass flux (i.e., the scale layer) by just regulating the
coolant heat flux.

This knowledge gained can therefore improve on film or fugacity models
for the interface, change current modelling of phase transitions and even-
tually help prevention of crystal growth at unwanted locations in process
industry saving considerable capital and operational costs.
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CHAPTER 11

Membrane Transport
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11.1 Introduction
Membrane technology is becoming increasingly important as a separation
technology.1–5 In current mass and heat membrane transport modelling,
equilibrium between the membrane and the two adjacent fluid phases is
assumed. This assumption implies that the relevant transport variables,
such as temperature or chemical potential, are continuous functions at the
membrane boundaries. However, it has become increasingly clear that the
membrane interface adjacent to the bulk phase of liquid or vapour can pose
a separate resistance to transport.6–12 This fact can be related to the variation
in intensive variables across the interface. For instance, a rapid enthalpy
drop may introduce an excess resistance to heat and mass transfer, as it has
been found for water transport across a membrane.8,9 One aim of this
chapter is to present a more detailed examination of the membrane function
if the equilibrium assumption is removed. As Kjelstrup and Bedeaux13

have shown, the treatment of an interface as a separate system in terms
of non-equilibrium thermodynamics offers a possibility to circumvent the
assumption of zero driving forces at interfaces. This chapter also aims to
investigate the importance of this possibility for a membrane system.

Because of the novelty of the concept of a membrane interface as a ther-
modynamically separate system, values of the interfacial resistivity co-
efficients are mostly not available in the literature for transport processes in
membranes. In general, these coefficients are expressions of the thermal
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conductivity, diffusion coefficient and the heat of transfer, among others,
for the membrane interface. In some cases the resistivity coefficients for
the surfaces are modelled with reference to the membrane values, and the
interfacial coefficients are varied to adjust the model predictions with the
experimental data. Some attempts to estimate experimentally the interfacial
resistivities have also been done. Non-equilibrium molecular dynamics
simulations and the kinetic theory of gases have also been used to determine
the interface resistivity coefficients. Nevertheless, an effort should be put
into a more exact determination of these coefficients to bring the application
of non-equilibrium thermodynamics to membrane systems further.

It has been documented in the literature on membrane transport pro-
cesses that, for instance, a temperature difference across a membrane is able
to drive a mass flux. This phenomenon, which is called Soret effect, indicates
that thermal and diffusive transport processes can be coupled.14–16 Coupling
means that a mass flux is caused by a temperature difference, and that a heat
flux can be originated by a chemical-potential difference alone. However,
most of the models used do not consider the possible coupling of the mass
flux to the heat flux in a membrane process. Another purpose of this chapter
is to describe systematically these reciprocal effects under the framework of
non-equilibrium thermodynamics.

11.2 Non-equilibrium Thermodynamics Description
of Heat and Mass Transport across a Membrane
System

We use the framework of non-equilibrium thermodynamics and the dividing
surface as presented in Section 1.4, Chapter 4 and used in Chapter 8 to
derive transport equations for mass and heat processes in a membrane
system. It is the aim of the present chapter to derive and solve equations for
heat and mass transport across a membrane bounded by two fluid phases.
In particular, some relevant experimental conditions will be studied to gain
insight into two membrane processes: gas permeation and pervaporation.
Pervaporation is a membrane separation process in which one or more
components of a liquid mixture permeate selectively through a dense
membrane while they partially evaporate. The objective is to give a new basis
for analysis of experimental results where heat and mass transport occurs in
a membrane system.

The main part of a membrane system is the membrane cell, which is
basically composed of the membrane separating two fluid phases, i.e., feed
and permeate. The region between the feed phase and the membrane de-
fines one of the membrane surfaces, while the region between the mem-
brane and the permeate phase defines the other membrane surface. Thus,
two dividing surfaces in a membrane cell can be defined: the feed–
membrane interface and the membrane–permeate interface. Both surfaces
are indicated by superscript s. The feed and permeate homogeneous phases
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next to the membrane are indicated by superscript l (left) and r (right), re-
spectively, and the membrane is indicated by superscript m. The width of
the interfaces is much smaller than the width of the membrane. To give an
idea, a typical membrane thickness can be of the order of several microns,
while the interface thickness can be of the order of nanometres. The non-
equilibrium thermodynamics approach allows for relatively thin surfaces to
be treated as being two dimensional, while thicker layer can be treated as
three-dimensional systems.

In the non-equilibrium thermodynamics description of a membrane sys-
tem, the membrane and two adjacent surfaces are considered as a hetero-
geneous system, as shown schematically in Figure 11.1. In the simplest
description, there are three subsystems: the three-dimensional membrane
and its two-dimensional interfaces. In addition, the approach is so versatile
that the feed and permeate phases can be easily included in the description,
if necessary, by increasing the number of subsystems. We consider the
transport of heat and mass through this heterogeneous system. In the
interfaces, transport processes are driven by differences in temperature and
chemical potential. In the membrane, transport processes are driven by
gradients in temperature and chemical potential. For mathematical sim-
plicity, the transport is considered to be one-dimensional, in the direction
perpendicular to the membrane. Furthermore, if stationary state operation
is assumed, all the properties are dependent only on the coordinate x across
the membrane. Moreover, the mass flux and the total heat flux through the
system are constant in stationary-state conditions.

One key quantity which appears in the description is the enthalpy differ-
ence across the different interfaces. It is convenient to distinguish between
the incoming and outgoing sides of each layer as shown in Figure 11.1.
The measurable heat flux at the outgoing side of each surface differs from
the heat flux on the incoming side of the surface, but they are related by

qJ’l ,m

membrane (m) permeate (r)feed (l)

mass flux

measurable
heat flux

S S

qJ‘m,l
qJ‘m,r

qJ‘r ,m

Ji

Figure 11.1 A schematic illustration of the system. The mass flux, Ji, is constant in
the stationary state, while the measurable heat flux, J 0q, depends on the
position in the system.
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the definition of the energy flux:13 Jq¼ J 0q þ Hi Ji: Here, Jq is the total heat flux,
J 0q is the measurable heat flux, Hi and Ji are the partial molar enthalpy and
the molar flux, respectively, of the permeate component, which is denoted by
i. At stationary-state conditions, the constant nature of the total heat flux at
the interfaces allows us to relate the incoming and outgoing measurable
heat flux in each surface.

As stated above, the notation is based on the three phases (l, m, and r)
adjacent to the surfaces (s). A single superscript is used to indicate the
relevant subsystem. When a double superscript is used, the first gives the
subsystem, and the second gives the nearest subsystem. That is, the first
superscript indicates the phase on one side of the surface and the second
superscript indicates the adjacent phase. We refer to the original literature
for terminology.13

At the feed/membrane interface, the incoming heat flux, J 0l;mq , is related to
the outgoing heat flux, J 0m;l

q , as follows:

J 0l;mq � J 0m;l
q ¼ JiðHm � H lÞ¼ JiDl;mH; (11:1)

where Dl,mH is the enthalpy change at the interface. At the membrane/per-
meate interface, the incoming heat flux, J 0m;r

q , is related to the outgoing heat
flux, J 0r;mq , as follows:

J 0m;r
q � J 0r;mq ¼ JiðHr � HmÞ¼ JiDm;rH; (11:2)

where Dm,rH is the enthalpy change at the interface. Constant enthalpy in
each phase is assumed in eqn (11.1) and (11.2). To clarify the notation, the
measurable heat flux from the incoming side across the surface at the
membrane feed side is denoted by J 0l;mq , whereas the measurable heat flux
from the outgoing side across the surface at the membrane feed side is
denoted by J 0m;l

q . Besides, each jump is written as the value to the right minus
the value to the left. This choice gives the jumps across the interfaces the
same sign as the gradients in the homogeneous phases for increasing or
decreasing variables. Then, the subscripts of D refer to the two locations
between which the difference is taken. As it shown above, Dl,mH is the en-
thalpy of the permeate component in phase l minus the enthalpy of the
permeate component at phase m, whereas Dm,rH is the enthalpy of the
permeate component in phase m minus the enthalpy of the permeate
component at phase r. Eqn (11.1) and (11.2) indicate that the enthalpy
changes at the interfaces create a discontinuity in the measurable heat flux
at the membrane boundaries. This discontinuity in the heat flux at the
interfaces can lead to jumps in the temperature and the chemical potential
across each of the interfaces. When the enthalpy change is large and the
thermal conductivity is low at a given interface, it is expected than the
temperature and chemical potential jumps are significant. Thus, thermal
and chemical equilibrium cannot be assumed between the membrane and
the corresponding adjacent fluid phase.
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In general, the membrane is a multicomponent homogeneous system,
which is composed of the permeate components and the membrane polymer
(in most cases, the membranes are polymeric). The polymer can be con-
sidered as the solvent, and the permeate components are the solutes. As the
polymer is in excess compared to the other components, the former can be
used as a frame of reference. The entropy production for the coupled
transport of heat and mass can be obtained as the sum of the product of the
thermodynamic driving forces and conjugate fluxes. For simplicity, we
consider a single-component transport process where there are then two
independent driving forces in the membrane phase, one thermal driving
force and one diffusional driving force. The generalization to a multi-
component system is straightforward. Accordingly, the entropy production
results in

sm¼ J 0mq
d

dx
1
T

� �
� Ji

1
T

dmi;T

dx
; (11:3)

where J 0mq is the measurable heat flux in the membrane, Ji is the molar flux
of the permeate component, and T is the temperature. The chemical po-
tential of the permeate component, mi, should be differentiated at constant
temperature, giving dmi,T. We will consider transport along the x-axis
only. The driving forces can be written in local-linear form by using the
resistivity coefficients, rm

ij , as functions of the thermodynamics fluxes as
follows:

d
dx

1
T

� �
¼ rm

qq J 0mq þ rm
qi Ji; (11:4)

� 1
T

dmi;T

dx
¼ rm

iq J 0mq þ rm
ii Ji: (11:5)

According to Onsager reciprocal relations, rm
qi ¼ rm

iq , see Chapter 1. The
resistivity coefficients for coupling of fluxes i and j, rm

ij , are related to the
measurable quantities in the following way:

rm
qq¼

1
lmT2 ; (11:6)

rm
qi ¼�rm

qq q*m
i ; (11:7)

rm
ii ¼

1
Dm

i T

@mi;T

@ci

� �
; (11:8)

where lm is the thermal conductivity of the membrane phase, q*m
i is the heat

of transfer of the permeate component, ci is the concentration of the per-
meate component, and Dm

i is the diffusion coefficient of the permeate
component. The chemical potential of the permeate component, mi, should
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be differentiated at constant temperature. With these variables, the trans-
port equations take the following form:

dT
dx
¼� 1

lm J 0mq � q*m
i Ji

� �
; (11:9)

dmi;T

dx
¼ q*m

i

lmT
J 0mq �

1
Dm

i

@mi;T

@ci

� �
Ji: (11:10)

For a surface with heat and single-component mass transport, two equations
are available for the entropy production:13

ss¼ J 0qD
1
T

� �
� Ji

Dmi;T

T
¼ JqD

1
T

� �
� JiD

mi

T

� �
: (11:11)

The difference between these two expressions has been described in detail in
the literature.13,17 Briefly, the expression to the right of the first equality sign
gives fluxes and corresponding driving forces which can be experimentally
determined. It can be used to analyze experimental and computational re-
sults. In contrast, the second equality sign is suitable for integration across
the membrane, when the fluxes are constant. It can be solved for calcula-
tions of variable profiles at stationary state conditions by using data avail-
able in the literature. In each case, the expression of the entropy production
defines the relevant thermodynamic fluxes and forces for the surface. When
the first expression is applied to the feed/membrane interface, the excess
entropy production can be written as:

ss¼ J 0l;mq Dl;s
1
T

� �
þ J 0m;l

q Ds;m
1
T

� �
þ Ji �

1
Ts Dl;smi;T

� �
þ Ji �

1
Ts Ds;mmi;T

� �
:

(11:12)

We can choose to eliminate either J 0l;mq or J 0m;l
q because they are interlinked

by the energy balance, see eqn (11.1). Moreover, as the surface temperature
Ts is normally not known, it is appropriate to use the temperature at the
incoming side of the surface, Tl,m, or the temperature at the outgoing side of
the surface, Tm,l. If we assume feed conditions are known from experiments
and we want to calculate the temperature and the chemical-potential dif-
ference over the interface, the entropy production reduces to:

ss¼ J 0m;l
q Dl;m

1
T

� �
þ Ji �

1
T l;m Dl;mmi;T

� �
: (11:13)

The driving forces can be written in terms of the thermodynamics fluxes by
using the resistivity coefficients of the interface, rs

ij:

Dl;m
1
T

� �
¼ rs

qq J 0m;l
q þ rs

qi Ji; (11:14)

�
Dl;mmi;TðT l;mÞ

T l;m ¼ rs
iq J 0m;l

q þ rs
ii Ji: (11:15)
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According to the Onsager reciprocal relations, rs
qi¼ rs

iq. The resistitivites rs
ij

can be related to transport parameters for the interface as follows:

rs
qq¼

1

lsðT l;mÞ2
; (11:16)

rs
qi¼� rs

qqq*s
i ; (11:17)

rs
ii¼

1
Ds

i T l;m

@mi;T

@cs
i

� �
; (11:18)

where ls is the interfacial thermal conductivity, q*s
i is the interfacial heat of

transfer of the permeate component, and Ds
i is the diffusion coefficient of

the permeate component across the interface. With these variables, the
transport equations for heat and mass of a single component over the sur-
face have the following form:

Dl;mT ¼� 1
ls J 0m;l

q � q*s
i Ji

� �
; (11:19)

Dl;mmi;TðT l;mÞ¼ q*s
i

lsTm;l J 0m;l
q � 1

Ds
i

@mi;T

@cs
i

� �
Ji: (11:20)

It is important to note that the chemical potential is defined at Tl,m, which is
the temperature on the left-hand side of the interface. The equations will be
similar for the membrane/permeate interface.

Although some attempts have been made to estimate experimentally8 or
theoretically10,18 the interfacial resistivities, expressions or data for the
thermal conductivity, diffusion coefficient and the heat of transfer for the
interface are mostly not available in the literature. In practice, they can be
modelled with reference to the membrane resistivity values. Thus, interfacial
conductivities ls and Ds

i can be modelled as fractions of the corresponding
membrane conductivity as follows:

dsls¼ 1
y
lm; (11:21)

dsDs
i ¼

1
d

Dm
i ; (11:22)

where ds is the interface thickness, y and d are the thermal-conductivity
scaling factor and the diffusional scaling factor, respectively. Their meaning
is how much the interfacial resistivity is different from the membrane
resistivity of the same thickness as the interface. Therefore, when y¼ 1 or
d¼ 1, the interfacial layer has the same resistivity the corresponding part of
the membrane and thus no excess resistance. Larger values of y or d indicate
that the interface has excess resistance. There is some debate about the
magnitude of the interfacial resistivity. Monroe et al.8 claim that the inter-
face has a similar resistivity to mass transfer per unit of thickness as the
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membrane, meaning that the scaling factor for mass transfer is close to
unity. In contrast, there are other evidences10,12,18 that show that surface has
an additional resistance, and therefore the values of these coefficients
should be greater than one.

One key quantity which appears in this description is the heat of transfer,
the ratio between the heat flux and the mass flux when the temperature
difference is zero. According to the Onsager symmetry of the coefficients in
flux–force relations, this quantity is also responsible for the mass flux due to
the temperature gradient. Following Kjelstrup and Bedeaux,13 the heat of
transfer for the whole feed/membrane surface can be estimated as:

q*s
i ¼�kDl;mH; (11:23)

where k is a scaling factor with a value between 0 and 1. The value given by
kinetic theory of gases is 0.2 for a liquid–vapour transition. As Glavatskiy
et al.12 have pointed out, the enthalpy difference determines the sign of
the thermo-diffusive effect. Moreover, the sign of k is decisive for the sign of
the mass flux. A similar expression can be used for the heat of transfer in the
membrane/permeate interface.

11.3 Applications

11.3.1 Single-component Pervaporation

Pervaporation is a membrane separation process in which one or more
components of a liquid mixture permeate selectively through a dense
membrane while they partially evaporate. Although the main driving force
on a component going through pervaporation is the chemical-potential
gradient, obtained by partial-pressure reduction on the permeate side, a
temperature gradient may also contribute. In addition, the phase transition
from liquid to vapour might well be rate limiting for the overall process, in
the case that large enthalpies of evaporation are involved. These facts gave a
motivation to apply non-equilibrium thermodynamics to study the perva-
poration transport in a membrane.

Recently, Kuhn et al.6 studied the mass and heat transport processes in
the pervaporation of pure water in a zeolite-type membrane using the
framework of non-equilibrium thermodynamics. The membrane was com-
posed of a NaA-type zeolite deposited on an asymmetric a-alumina support.
Kuhn et al. divided the transport of water through the zeolite membrane into
five steps: (1) diffusion from the bulk to the liquid/zeolite interface, (2)
transfer across the liquid/zeolite surface, (3) diffusion in the zeolite layer, (4)
transfer across zeolite/support surface, (5) diffusion into the bulk permeate
through the support pores. Therefore, they considered a multilayer mem-
brane system composed of five subsystems: the three-dimensional bulk feed,
zeolite and support, and two-dimensional interfaces, i.e., the liquid/zeolite
surface and the zeolite/support surface.
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We continue by giving the mass and heat transport equations for each
subsystem. The heat and mass transport in the zeolite can be described by
using eqn (11.9) and (11.10). Eqn (11.10) can be rewritten by considering an
effective diffusivity Deff

im that describes the interaction between the mem-
brane and the permeating component:

1
RT

dmi;T

dx
¼ q*m

i

RT2

dT
dx
� Ji

cm
i Deff

im

; (11:24)

where cm
i is the concentration of component i in the zeolite, and R is the gas

constant.
Under the framework of the dusty-gas model, the mass transport in the

support can be described by a combination of Knudsen diffusion and vis-
cous flow. As the viscous flow is not molecular diffusion, it has no coupling
effects. Following Kuhn et al.6, by using eqn (11.10) together with some as-
sumptions, the drop of the pressure p over the support can be written as

dp
dx
¼

Ji �
ci;poreDeff

isupq*sup
i

RT2

dT
dx

ci;poreDeff
i sup

p
þ e
t

ci;pored2
p

32Z

; (11:25)

where ci,pore is the concentration of component i in the support pores, Deff
isup is

the effective diffusion coefficient of component i in the support, e is the
support porosity, t is the support tortuosity, Z is the viscosity and dp is the
diameter of the support pores. Eqn (11.9) and (11.25) describe the coupled
heat and mass transport in the porous support.

Eqn (11.19) can be applied directly to calculate the temperature difference
across the liquid/zeolite interface. Similarly, eqn (11.20) could be used to
determine the chemical-potential difference across the interface. However,
instead of the chemical potential, it is convenient to use the activity a, which
is a measurable quantity and is defined as

miðai;TÞ¼ m0
i ðTÞ þ RT ln aiðTÞ; (11:26)

where m0
i is the chemical potential at the reference state, which is a function of

temperature and ai is the activity of component i, which is defined as the ratio
of the fugacity fi of component i at local conditions and the fugacity f 0

i at the
reference state ai¼ fi

�
f 0
i . For the reference state, the fugacity of liquid water in

equilibrium with its vapour at local temperature can be chosen. Hence, the
difference in the chemical potential at constant temperature of water over the
surface can be written in terms of the activity difference as follows

Dl;mmi;TðT l;mÞ¼RT l;m ln
am;l

i ðT l;mÞ
al;m

i ðT l;mÞ

 !
: (11:27)

Here, it is should be pointed out that the activity of water at the right-hand
side of the surface is considered at T l,m, am;l

i ðT l;mÞ, instead of at the local
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temperature T m,l, am;l
i ðTm;lÞ. The subtle difference between the expressions is

described in detail in the literature.13 Using the Gibbs–Helmholtz relation
combined with eqn (11.26), the activity of water at the right-hand side of the
surface defined at T l,m, am;l

i ðT l;mÞ, can be corrected to the activity of water at

the local temperature, am;l
i ðTm;lÞ, by

R ln
am;l

i ðTm;lÞ
am;l

i ðT l;mÞ

 !
¼ Hm

i � H0
i

� � Dl;mT
T l;mTm;l ; (11:28)

where Hm
i and H0

i are the partial molar enthalpies of water in the zeolite, and
at the reference state, respectively. Following Kuhn et al.,6 by combining eqn
(11.20), (11.27) and (11.28), the water activity difference over the liquid/
zeolite interface can be estimated as

RT l;m ln
am;l

i ðTm;lÞ
al;m

i ðT l;mÞ

 !
¼ q*s

i

lsTm;l J 0m;l
q � 1

Ds
i

@mi;T

@cs
i

� �
Ji þ Hm

i � H0
i

� �Dl;mT
Tm;l :

(11:29)

Therefore, eqn (11.19) and (11.29) can be used to model the mass and heat
transport processes across the liquid/zeolite interface. Similar equations can
be derived to calculate the differences in temperature and activity across the
zeolite/support interface.

In the calculations, Kuhn et al.6 considered a membrane with a zeolite
layer thickness of 2 mm deposited on a three-layer asymmetric a-alumina
layer, at a feed temperature of 348 K, assuming a water flux of
0.15 mol �m�2 � s�1. The solution procedure is described as follows. First, the
only contribution to the transport in the liquid boundary layer was assumed
to be Fourier-type heat conduction. By using hydrodynamics expressions, the
thickness of the liquid boundary layer at the membrane feed side was esti-
mated to be 28.4 mm. This value allowed for calculating of the temperature
profile across this layer. Next, eqn (11.19) and (11.29) were used to model the
heat and water transport across the liquid/zeolite interface, allowing the
calculation of the temperature and activity jumps across this surface. Next,
by using eqn (11.9) and (11.24) the temperature and activity gradients can be
estimated in the zeolite. From the temperature and activity gradients the
temperature and activity profiles were obtained. Next, the temperature and
activity jumps across the zeolite/support interface were estimated using eqn
(11.19) and (11.29) in a convenient form. Finally, temperature and activity
gradients in the support were estimated by using eqn (11.9) and (11.25). The
asymmetric a-alumina layer is considered as the support. This procedure
yielded the temperature and activity profiles in the complete membrane
system, including liquid film and support layers. To elucidate the influence
of the coupling and surface effects on mass and heat transport, Kuhn et al.6

also solved the model equations, neglecting the surface and coupling effects.
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Figures 11.2 and 11.3 give an enlargement of the temperature and activity
profiles, respectively, in the zeolite and at the liquid/zeolite and zeolite/
support surfaces. The profiles illustrate the impact of taking the surface
effects and the coupling between mass and heat transport into account.
Figure 11.2 shows a temperature difference over the membrane system of
1.3 K. Neglecting the coupling effects, results in more than a three-fold lower
total temperature difference (0.4 K). The largest temperature drop is ob-
served at the interfaces. Moreover, it is observed that there is a discontinuity
in the temperature at the liquid/zeolite and zeolite/support interfaces. The
temperature drop at the surfaces dominates the temperature drop over the
zeolite layer. At both surfaces a drop in temperature is observed, despite
the fact that at the feed side an exothermic process occurs. Approximately
70 % of the temperature drop over the entire system is generated at the
surfaces. It was found that the liquid/zeolite surface has a higher contri-
bution than the zeolite/support surface. Figure 11.3 shows that at liquid/
zeolite and zeolite/support interfaces, the activity increases with, respect-
ively, 11 % and 6 % of the total difference. The activity difference over the
system is similar for the two models. The discontinuities are also observed in
the activity profile, albeit much smaller than for the temperature. The
positive jumps in activity at the interfaces reveal that there is a molar flux
across the surfaces against the activity difference. This means that, at the
interfaces, the mass transport is driven by the temperature gradient.

Figure 11.2 Temperature profiles across the zeolite layer and the surfaces calculated
by using the non-equilibrium model with coupling and surface effects
(solid line), and the model without coupling and surface effects (dashed
line). The vertical dashed lines indicate the liquid/zeolite interface and
the zeolite/support interface.
Reprinted with permission of J. Membr. Sci.6
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11.3.2 Gas Permeation

In a membrane reactor, a chemical reaction and the separation of the re-
sulting products can be performed in one process step. Membrane reactors
can be porous and dense. Porous membranes can be zeolite-based mem-
branes,19 while the palladium membrane is a typical example of a dense
membrane.20 Palladium is especially selective towards transport of hydro-
gen. In a palladium reactor hydrogen is transported as hydrogen atoms in
the palladium, and as hydrogen molecules in the gas phases on each side of
the membrane. The heat of adsorption is significant, including the splitting
of molecular hydrogen and adsorption at the surface. This dissociative ad-
sorption is likely to influence the mass flux. Although it is known that sur-
face effects can hinder the process, many of the existing models for
hydrogen permeation neglect the effect of the membrane surface. Further-
more, while it is known how the temperature affects a chemical reaction,
little is known how a temperature gradient affects the reaction rate. With a
thin membrane and large heat sinks and sources at the interfaces, such
gradients may be large. In addition, the coupling of chemical reactions to
fluxes of heat and mass is possible in principle, but has not been described
in detail for a membrane reactor system before. These reasons gave Skorpa
et al.21 a motivation to apply non-equilibrium thermodynamics to study the
transport in a palladium membrane.

Following Skorpa et al.,21 consider a palladium membrane separating two
gas phases composed of pure H2 gas. For simplicity, hydrogen is transported

Figure 11.3 Profile of the activity of water across the zeolite layer and the surfaces
calculated by using the non-equilibrium model with coupling and
surface effects (solid line), and the model without coupling and surface
effects (dashed line). The vertical dashed lines indicate the liquid/
zeolite interface and the zeolite/support interface.
Reprinted with permission of J. Membr. Sci.6
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from gas phase to gas phase, and one-dimensional transport in the direction
perpendicular to the membrane, are assumed. The membrane is considered
to be a homogeneous system, and the region between the gas phases and
the palladium defines the two membrane surfaces. Hence, they studied the
heat and hydrogen transport processes in a multilayer membrane system
composed by three subsystems: the three-dimensional palladium mem-
brane, and two-dimensional interfaces, i.e., the feed gas/palladium surface
and the palladium/permeate gas surface. The hydrogen diffusion process in
the gas phase layer external to the membrane surfaces is not addressed in
their paper.

Prior to membrane transport, hydrogen is adsorbed at the feed membrane
surface. The molecular hydrogen is converted into atomic hydrogen in
the adsorption process. This dissociative adsorption is written by Skorpa
et al.21 as

H2(g)$2H(ads). (11.30)

The Gibbs-energy difference for the dissociative adsorption at the feed
membrane side can be defined as:

Dl;mG¼ 2mm;l
H � ml;m

H2
: (11:31)

In the stationary state, as there is no accumulation of gas in the system,
the relation between the flux of atomic hydrogen through the membrane, JH,
and the flux of molecular hydrogen, JH2 , is given by JH¼ 2JH2 . The total heat
flux through the system is also constant, given by eqn (11.1)

J 0l;mq ¼ J 0m;l
q þ JH2Dl;mH; (11:32)

where Dl;mH¼ 2Hm;l
H � H l;m

H2
is the heat of dissociative adsorption in the

membrane at the feed side. Constant enthalpy in each layer and symmetric
enthalpy effects at both interfaces were assumed. The entropy production for
the feed/membrane surface can be obtained by combining eqn (11.13) and
(11.31):

ss¼ J 0l;mq Dl;m
1
T

� �
þ JH2 �

1
Tm;l Dl;mG

� �
; (11:33)

where J 0l;mq is the heat flux evaluated at the left side of the surface. Fur-
thermore, Dl,mG is evaluated at the temperature in the membrane close to
the surface at the feed side, T m,l. The flux–force equations derived from the
entropy productions are similar to eqn (11.14) and (11.15):

Dl;m
1
T

� �
¼ rs

qq J 0l;mq þ rs
qm JH2 ; (11:34)

�Dl;mG
Tm;l ¼ rs

mq J 0l;mq þ rs
mm JH2 : (11:35)
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The corresponding force–flux relations for the membrane/permeate
interface can be derived in a similar manner. The direct coefficients for
the resistivity in the surfaces were estimated by multiplying the values of
the resistivity coefficient in the rate-determining phase next to the surface
with the surface thickness ds. Hence, as the rate-determining layer
for the resistance to gas transfer is the membrane, the mass-resistivity
coefficient in the surface rs

mm is obtained from rm
mm as rs

mm¼ dsrm
mm. For the

resistivity to heat transport, rs
qq, the gas phase next to the surface (feed or

permeate) will be rate determining, as the membrane is a well conducting
metal. The resistivity in the membrane is neglected. Thus, the heat-resistivity
coefficient in the surface rs

qq is obtained from rg
qq as rs

qq¼ dsrg
qq, where rg

qq is
the heat-resistivity coefficient in the gas phase adjacent to the membrane.
This latter resistivity coefficient was calculated following a procedure
described by Johannessen and Jordal.22 Finally, the coupling resistivity co-
efficient in the surface rs

qm is estimated by combining eqn (11.19) and (11.23)
with the value of k¼ 0.2.

The entropy production for transport of heat and atomic hydrogen in the
membrane is given by the general eqn (11.3). Following Skorpa et al.,21 if
the measurable heat flux across the membrane is assumed to be constant,
the integration of eqn (11.3) gives the following expression:

dmsm¼ J 0mq Dm
1
T

� �
þ JH2 �

2
Tm DmmH;T

� �
; (11:36)

where dm is the membrane thickness and Dm means the difference between
the right and left side in the membrane phase. The authors contend that
this assumption results in a calculation error of less than 2 % for the
entropy balance. Accordingly, the force–flux equations for the membrane
phase are

Dm
1
T

� �
¼ rm

qq J 0mq þ rm
qm JH2 ; (11:37)

� 2
T
DmmH;T ¼ rm

mq J 0mq þ rm
mm JH2 : (11:38)

The thermal resistivity coefficient rm
qq is related to the thermal conductivity in

the membrane phase as given in eqn (11.6). The gas concentration in the
membrane is related to the gas pressure in the gas phases by Sieverts’ law.
Thus, the mass resistivity coefficient rm

mm can be estimated from the mem-
brane permeability coefficient Pm as:

rm
mm¼

ðq*mÞ2

lmT
�

R ln pr
H2

.
pl

H2

� �

Pm pl
H2

� �0:5� pr
H2

� �0:5
h i : (11:39)
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The coupling resistivity coefficient rm
qm is related to the heat of transfer in the

membrane phase q*m
H as eqn (11.7) reflects. As the enthalpy of the com-

ponent to a good approximation is constant in the membrane, it is expected
that q*m

H is small. This fact permits us to consider that the value of rm
qm is zero.

This means that there is no coupling between the heat and gas fluxes in the
membrane. Following Skorpa et al.,21 as the surface has a high resistivity,
they increase the value of the set of resistivity coefficients by a factor a¼ 10
or 100. The values of the resistivity coefficients both in the surfaces and in
the membrane are listed in Table 11.1.

The effect of coupling and thermal driving forces on the membrane per-
formance was investigated by using a typical set of operating conditions for a
7.2 mm thick membrane.23 Eqn (11.34) and (11.35) describe the heat and gas
transport in the feed/membrane surface, and similar equations describe the
transport in the membrane/permeate surface. The transport in the mem-
brane is described by eqn (11.37) and (11.38). Thus, we have heat and mass
transport equations for each layer. The solution procedure consists of
the integration of the transport equations across each layer, and obtaining
JH2 , J 0l;mq and temperature and hydrogen activity in the membrane close to
the surface at each side. This was done numerically.

Figure 11.4 shows the temperature profile across the membrane calcu-
lated for isothermal conditions with a set of surface resistivity coefficients
corresponding to a factor a¼ 10. The results show that the temperature
jumps at the membrane surfaces are insignificant because the DT is
less than 0.001 K. Similarly, the jumps in the chemical potential are
not important, because the DG calculated at the surface are�8.46 J �mol�1

and�9.13 J �mol�1 with and without coupling, respectively. The effect of
coupling on the hydrogen fluxes is also negligible.

Despite the small coupling effects, it is interesting to note that the
heat flux varies largely between the membrane and its enclosing phases.
The measurable heat flux in the membrane, J 0mq , is positive and large,
23.24 kJ �m�2 � s�1. At the feed side, the measurable heat flux, J 0l;mq ,

Table 11.1 Estimated resistivity coefficients. Superscript s and
m denotes surface and membrane, respectively.
Reprinted with permission of J. Membr. Sci.21

Coefficients Value Units

rs
qq 9 � 10�13 m2 � s � J�1 �K�1

rs
qm 1.6 � 10�8 m2 � s �mol�1 �K�1

rs
mm 4.3 � 10�3 J �m2 � s �mol�2 �K�1

rm
qq 2.7 � 10�8 m � s � J�1 �K�1

rm
qm 0 m � s �mol�1 �K�1

rm
mm 3.79 � 106 J �m � s �mol�2 �K�1
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is�6.28 kJ �m�2 � s�1, meaning that heat is transported away from the
membrane feed side. At the permeate side, the measurable heat flux, J 0r;mq ,
is also�6.28 kJ �m�2 � s�1, meaning that heat is transported towards
the membrane permeate side. The discontinuity is due to the enthalpy of
dissociative adsorption at the surfaces. These results mean that in order to
maintain isothermal conditions, the feed side must be continuously cooled
to remove this heat, while on the permeate side we need to supply this
amount of heat.

By using the model equations, calculations predict that heating at
the permeate side will increase the flux of hydrogen. Thus, the overall
temperature differences needed for enhancing the gas flux by 10 % and 25 %
were found to be 27.3 K and 72.5 K, respectively, with an initial feed tem-
perature of 673 K. Similarly, an overall temperature difference of�176.5 K
will stop the hydrogen flux. This effect is called Soret equilibrium. Thus,
cooling the permeate side gives a negative temperature gradient and a
decrease in the gas flux.

In order to gain insight into the contribution from coupling of the gas
fluxes, the hydrogen fluxes can be expressed as functions of all resistivities
and all gradients throughout the system, and divided into direct terms and
coupling terms.21 The model predictions, which are given in Figure 11.5,
show that the fraction of the flux caused by the direct terms is constant in
spite of temperature changes in the system. Variation with temperature is
observed for the total flux, and it is caused by coupling terms. Thus,

Feed Membrane Permeate

0.0

0.5

1.0

T 
/K

673.0K 673.0 K

No Coupling
Coupling

–0.5

–1.0

–1.5

1.5
× 10–3

Figure 11.4 Temperature profile across the membrane for identical feed and per-
meate temperatures.
Reprinted with permission of J. Membr. Sci.21
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application of a temperature gradient gives a significant contribution to the
overall mass transfer across the membrane.

Skorpa et al.21 claim that the heat fluxes in the various phases using their
non-equilibrium approach differ by orders of magnitude from fluxes that
would have been obtained by only using the energy balance in combination
with Fick’s and Fourier’s laws. Therefore, a description without heat and
mass coupling can give a serious error in models where the energy balance is
fundamental. Conversely, if experimental data are interpreted with a set of
equations without coupling effects for determination of transport prop-
erties, the determined properties may be incorrect.

11.3.3 Two-component Pervaporation

Coupled heat and mass transport equations to model the pervaporation
of a binary mixture in a membrane have been derived based on non-
equilibrium thermodynamics by Villaluenga and Kjelstrup.7 The system is
basically composed of the membrane and two adjacent solutions: feed and
permeate mixtures. Hence, there are two components (A and B) in the feed
and permeate mixtures, whereas in the membrane one really has three
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Figure 11.5 Hydrogen flux caused by the direct terms (main) and total hydrogen flux
(total) through the membrane as a function of the overall temperature
difference.
Reprinted with permission of J. Membr. Sci.21
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components (A, B plus the polymer membrane C), so the natural frame of
reference for transport in the membrane system is the membrane itself.
Moreover, two dividing surfaces can be defined in the system: the liquid
feed/membrane interface and the membrane/vapour permeate interface.
In order to analyse the variation in the temperature and the chemical po-
tentials close to and at the interfaces, the heterogeneous system can be
divided into three different subsystems: the feed/membrane interface, the
membrane, and the membrane/permeate interface. The membrane is
considered as a homogeneous system, whereas the two interfaces are
considered as surfaces. The equations for the transport of heat and mass in
each subsystem can be derived from the corresponding entropy
production rate.

For the feed membrane interface, the excess entropy production in the left
side or feed-side of the membrane surface can be written as:

ss¼ J 0lq Dl;m
1
T

� �
þ JA �

Dl;mmA;TðTm;lÞ
Tm;l

" #
þ JB �

Dl;mmB;TðTm;lÞ
Tm;l

" #
; (11:40)

where J 0lq is the measurable heat flux in the feed, and Ji is the molar flux of
component i (i¼A, B). We refer to the original literature for terminology.7,13

The transport equations derived from the expression of the entropy
production are:

Dl;mT ¼� 1
ls J 0lq � JAq*s

A � JBq*s
B

� �
; (11:41)

Dl;mmA;TðTm;lÞ
Tm;l ¼� q*s

A

T l;mTm;l Dl;mT � Rs
AA JA � Rs

AB JB; (11:42)

Dl;mmB;TðTm;lÞ
Tm;l ¼� q*s

B

T l;mTm;l Dl;mT � Rs
BA JA � Rs

BB JB: (11:43)

The thermal conductivity ls in the interface can be estimated with reference
to the membrane value by using eqn (11.21). The interfacial heat of transfers
q*s

i can be calculated as a fraction of the enthalpy change Dl,mHi in the
surface according eqn (11.23). As there is a phase transition occurring in the
membrane, because the components are in the liquid state in the feed and in
the gas state in the permeate, the Dl,mHi includes the sorption enthalpy
and the enthalpy of the phase transition. Following Villaluenga and
Kjelstrup,7 the resistivity coefficients for component fluxes are defined as

Rs
ij ¼ rs

ij � rs
iqrs

qj

.
rs

qq. The values of the surface resistivity coefficients Rs
ij are

not available in the literature because of the novelty of the concept of the
membrane interface as a separate system. Moreover, the estimation of
the required surface resistivity parameters is not straightforward. In short,
the resistivity coefficients were estimated indirectly from molecular dy-
namics simulation data and gas kinetic-theory values. We refer the reader to
the original paper for details. One task was varying the surface resistivity
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parameters to adjust the results of the model to the experiment results. For
the membrane/permeate surface, the heat and mass transport equations can
be derived in a similar manner.

In the membrane phase, there are three independent driving forces: one
thermal and two component driving forces. Hence, the entropy production
results in

sm¼ J 0mq
d

dx
1
T

� �
� JA

1
T

dmA;T

dx
� JB

1
T

dmB;T

dx
; (11:44)

where J 0mq is the measurable heat flux in the membrane. The force–flux
equations derived from the entropy production, by choosing as variables
some measurable coefficients, can be written as follows:

dT
dx
¼� 1

lm J 0mq � q*;m
A JA � q*;m

B JB

� �
; (11:45)

cA

T

dmA;T

dx
¼� cAq*;m

A

T2

dT
dx
� Rm

AA

cA
JA �

Rm
AB

cB
JB; (11:46)

cB

T

dmB;T

dx
¼� cBq*;m

B

T2

dT
dx
� Rm

BA

cA
JA �

Rm
BB

cB
JB: (11:47)

In the absence of better information, the heat of transfer of water and
ethanol in the membrane were estimated from reported data on thermo-
osmosis of mixtures of water and methanol in polymeric membranes.16

Following Villaluenga and Kjelstrup,7 the resistivity coefficients for com-

ponent fluxes are defined as Rm
ij ¼ rm

ij � rm
iq rm

qj

.
rm

qq. The values of the resistivity

coefficients Rm
ij were estimated by using reported values of the component

diffusion coefficients and concentration in the membrane. The values of the
resistivity coefficients both in the surfaces and in the membrane are listed in
Table 11.2.

The model equations were solved by using thermodynamic data and
transport data for a binary mixture of water and ethanol, which is typically

Table 11.2 Estimated resistivity coefficients. Superscript s and m denotes
surface and membrane, respectively. Reprinted with permission of
J. Non-Equilib. Thermodyn.7

Coefficients Value Units

Rs
AA 1 � 10�5 J �m2 � s �mol�2 �K�1

Rs
AB 8 � 10�4 J �m2 � s �mol�2 �K�1

Rs
BB 3 � 10�4 J �m2 � s �mol�2 �K�1

Rm
AA 2 � 10�13 J � s �m�5 �K�1

Rm
AB �2.1 � 1013 J � s �m�5 �K�1

Rm
BB 3 � 1016 J � s �m�5 �K�1
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encountered in the dehydration of ethanol.24 For convenience, the activity
was used instead of the chemical potential. The solution procedure consists
of the integration of the transport equations across each subsystem, and
obtaining temperature and component activities in the membrane close to
the surface at each side. For the sake of simplicity the system is considered
to be in a stationary state. Thus, the water (component A) and ethanol
(component B) fluxes are also constant through the system. Further, as
the total heat flux, Jq, is constant throughout the system, the following
expressions between the measurable heat fluxes in each subsystem can be
obtained:

J 0lq ¼ J 0mq þ JADl;mHA þ JBDl;mHB; (11:48)

J 0mq ¼ J 0rq þ JADm;rHA þ JBDm;rHB; (11:49)

where J 0lq is the measurable heat flux in the feed side, J 0mq is the measurable
heat flux in the membrane, and J 0rq is the measurable heat flux in the per-
meate side. The measurable heat fluxes only can change at the interfaces,
where the water and ethanol undergoes an enthalpy change.

Figure 11.6 shows the temperature profile in the complete membrane
system, including liquid feed solution and permeate vapour mixture.
A linear variation is found across the membrane in the temperature and
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Figure 11.6 Temperature profile across the feed liquid phase, the membrane and
the permeate phase. The vertical dashed lines indicate, from left to
right, the liquid/membrane interface and the membrane/permeate
interface.
Reprinted with permission of J. Non-Equilib. Thermodyn.7
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sizable effects for the temperature at the interfaces. Moreover, model pre-
dictions show that the largest temperature drop is observed at the feed/
membrane interface, because 71 % of the temperature drop over the system
is generated at this surface. The temperature drop at the membrane/
permeate interface is only 5 % of the total difference. The temperature dif-
ference over the membrane is 24 % of the total difference. These facts in-
dicate that temperature polarization occurring in a pervaporation process
may be caused to a larger extent by surface effects.

Figures 11.7 and 11.8 show water and ethanol activity profiles, respect-
ively, across the feed liquid solution, the membrane and the permeate
vapour mixture. Unlike the temperature behaviour, the largest activity dif-
ference over the entire system is found over the membrane itself. A positive
jump of 6 % in the activity of water at the feed/membrane interface is found,
the activity shows a drop of 3 % at the membrane/permeate interface, while
the activity decreases with 91 % over the membrane. The activity of ethanol
decreases 14 % at the feed/membrane interface, there is a decrease of 81 %
over the membrane, whereas the activity decreases 5 % at the membrane/
permeate interface. Consequently, model predictions show that the activity
variations at the feed/membrane and membrane/permeate interfaces are not
negligible, indicating that chemical equilibriums cannot be assumed at both
sides of the membrane.
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Figure 11.7 Water activity profile across the feed liquid phase, the membrane and
the permeate phase. The vertical dashed lines indicate, from left to
right, the liquid/membrane interface and the membrane/permeate
interface.
Reprinted with permission of J. Non-Equilib. Thermodyn.7
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11.4 Concluding Remarks
Non-equilibrium thermodynamics has been applied to describe transport
processes in three different membrane systems considered as heterogeneous
systems. The common features of the selected examples of transport phe-
nomena in membranes are basically two-fold. The fact that the membrane
interface adjacent to the bulk phase of liquid or vapour pose a separate re-
sistance to mass and heat transport. Fluxes and forces of different nature are
coupled both in the bulk phases and at the surfaces of the membrane.

The values of the resistivity coefficients for membrane surfaces are not
known for most of the transport processes in membranes, mainly due to the
novelty of the concept of the membrane interface as a separate system. As
the model predictions depend on the surface resistivities, it is fundamental
to address the experimental or theoretical estimation of these coefficients for
membrane–interface systems. An effort should be put into a more exact
determination of these coefficients for membrane surfaces, to bring the
application of non-equilibrium thermodynamics further.

It should be noted that the systematic treatment of membrane systems in
terms of non-equilibrium thermodynamics offers a possibility to study other
transport processes in membranes, such as membrane distillation, mem-
brane reactors, thermo-osmosis, electro-osmosis, gas permeation, among
others.
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Figure 11.8 Ethanol activity profile across the feed liquid phase, the membrane and
the permeate phase. The vertical dashed lines indicate, from left to
right, the liquid/membrane interface and the membrane/permeate
interface.
Reprinted with permission of J. Non-Equilib. Thermodyn.7
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J. Membr. Sci., 2006, 274, 116.
17. S. Kjelstrup and A. Røsjorde, J. Phys. Chem. B, 2005, 109, 9020.
18. I. Inzoli, J. M. Simon, S. Kjelstrup and D. Bedeaux, J. Colloid Interface Sci.,

2007, 313, 563.
19. J. Coronas and J. Santamarı́a, Top. Catal., 2004, 29, 29.
20. S. Yun and S. Oyama, J. Membr. Sci., 2011, 375, 28.
21. R. Skorpa, M. Voldsund, M. Takla, S. K. Schnell, D. Bedeaux and

S. Kjelstrup, J. Membr. Sci., 2012, 394–395, 131.
22. E. Johannessen and K. Jordal, Energy Convers. Manage., 2005, 46, 1059.
23. S. K. Gade, P. M. Thoen and D. J. Way, J. Membr. Sci., 2008, 316, 112.
24. B. Bolto, M. Hoang and Z. Xie, Chem. Eng. Process., 2011, 50, 227.

Membrane Transport 243



CHAPTER 12

Electrochemical Energy
Conversion

SIGNE KJELSTRUP* AND DICK BEDEAUX

Department of Chemistry, Norwegian University of Science and
Technology, 7491 Trondheim, Norway
*Email: signe.kjelstrup@ntnu.no

12.1 Non-equilibrium Thermodynamics in the
Electrochemical Literature

Electrochemical energy conversion is central in any future vision of the
world’s energy technology, because a modern society needs electric power in
so many contexts. Electrochemical energy conversion in, say, batteries, fuel
cells or electrolysis cells, has a higher efficiency than many other power
producing or consuming energy technologies, and one should understand
why in order to take full advantage of it. The conversion takes place on a
scale where the reaction Gibbs energy is typically is around �100 kJ �mol�1

and gives a voltage of order of magnitude 1 V (cf., eqn 12.1). There is for
instance more to gain by considering also Gibbs energies of mixing, like in
the mixing of salt water and fresh water,1,2 or by converting industrial waste
heat into electricity.3 Doing so, we can exploit also the smaller Gibbs energy
changes provided by renewable energy sources. This type of electrochemical
energy conversions can best be described by NET. In particular formation
cells may benefit from a more precise description by NET. This chapter will
give examples of equations for both applications.

The broad lines in the development of non-equilibrium thermodynamics
(NET) were reviewed in Chapter 1. Classical NET was applied early to

Experimental Thermodynamics Volume X: Non-equilibrium Thermodynamics with Applications
Edited by Dick Bedeaux, Signe Kjelstrup and Jan V. Sengers
r International Union of Pure and Applied Chemistry 2016
Published by the Royal Society of Chemistry, www.rsc.org
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electrochemical systems. Works by Katchalsky and coworkers4,5 and Haase6

were central. Electrokinetic phenomena in membranes were treated by
Laksminarayanaiah,7 Mickulecki,8 Staverman,9 and Førland et al.,10 while Ito
et al.11 and Richter et al.12,13 studied molten salt electrolytes in electrochemical
cells. Concentration cells with and without membranes were used to test
concepts and approximations.14–16 The Onsager relations were verified,14 the
Nernst–Planck assumption was found to be good for cation-exchange mem-
branes,15 and the liquid-junction contribution to the cell potential was well
predicted from the equations.16 Membranes exposed to differences in con-
centration, pressure and temperature were systematically studied by several
groups.7–11,17–21 Continuous and discrete formulations were developed.5,6,10

Several books on electrochemistry have presented NET and used Onsager
relations, but have not yet taken systematic advantage of the theory, see e.g.
ref. 22. This is not surprising as a description has been lacking of the cou-
pled phenomena at the electrode surfaces, the most important locations for
energy conversion. The heterogeneity of the electrochemical cell and the
electrode surface was first addressed in NET in 1996 for the linear re-
gime.23–26 The theory was later extended to deal with nonlinear regimes, by
including mesoscale (internal) variables.27,28 To introduce mesoscale vari-
ables, was suggested already by Prigogine and Mazur,29 but the idea gained
momentum through the works of Rubı́ and coworkers.27,30,31 The Butler–
Volmer equation was derived in this manner by taking the density of the
reacting mixture along the reaction coordinate as internal variable.27 Linear
flux-force relations like eqn (1.3) will apply, but then on the scale of the internal
variables. Support for this approach in electrochemistry has been obtained by
the method of the general equation for non-equilibrium reversible–irreversible
coupling (GENERIC),32 see Chapter 17 for a description of this method.

The purpose of the chapter is to show how NET can be systematically used
to derive formulae for energy conversion, building on some recent
works.25,26 We shall see how the entropy production can be actively used to
obtain the electric-potential profile under reversible and irreversible con-
ditions in Sections 12.4 and 12.5. This property can also be used to define
the surface overpotential, see Section 12.6. NET provides a common ther-
modynamic basis for the Nernst and Butler–Volmer equations, including
Peltier/Seebeck and Soret/Dufour effects.33 This is shown in Sections 12.7
and 12.8. With the development of the theory to deal with electrode
surfaces,23–26 the possibility is there to find, not only the electric-potential
jump at the surfaces, but also accompanying concentration and temperature
variations at the surfaces and in the electrolyte. In order to illustrate the
application of the theory, we use a formation cell example presented in
Section 12.3, as well as concentration cells and thermoelectric devices
generated from this. We start with an overall view of electrochemical energy
conversion in Section 12.2.

Hydrodynamic effects can also be important in electrochemistry; in
measurements as well as in technical cells in operation. Such effects can also
be given a NET framework.34 This represents another branch of NET, outside
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the scope here. We start with the common overall description of electro-
chemical cells to explain what NET can help solve.

12.2 Thermodynamic Properties of a Total Cell
An electrochemical cell in global equilibrium is a dead cell. We are inter-
ested in the energy conversion that takes place before this state is reached, a
conversion which is driven by the positive entropy change that takes place in
the cell and in the surroundings (the second law of thermodynamics). The
overall energy available for work is the Gibbs-energy change of the cell, DG at
constant pressure and temperature (p and T). At reversible conditions, the
electromotive force, Ej-0, is:

Ej!0¼�
1

nF
DG¼� 1

nF
½DH � TDS�; (12:1)

where F is Faraday’s constant, and n is the number of electrons transferred
in the reaction. The symbol j is the electric current density. The Gibbs-energy
change has a contribution from the enthalpy change, DH, and the entropy
change, DS. The heat transferred reversibly from the surroundings
(abbreviated sur) to the system (abbreviated syst) is the entropy change in
the system, qsyst,rev¼TDS¼�qsur,rev Under reversible conditions (j-0), the
entropy change in the system and in the surroundings cancel and there is no
entropy production. The enthalpy difference is normally large and negative
(order of magnitude �100 kJ �mol�1) and contributes much to E. This is
illustrated in Figure 12.1.

–TΔS/nF

Et
Ej=0

E

Rj

η

–TΔS

–ΔG

–ΔH

Figure 12.1 Thermodynamic properties (to the left) and corresponding cell poten-
tials and potential losses in a battery or fuel cell (to the right). The
thermo-neutral potential (right), Et, is represented by the negative
reaction enthalpy (left), �DH. Part of this energy is needed to compen-
sate for the entropy change at a given pressure and temperature, �TDS
(white part of column), leaving us with the maximum available work,
�DG (left) represented by the reversible potential, Ej¼0. Away from
reversible conditions, the cell potential, E (grey part of column with
dark stripes), is equal to the reversible potential minus potential drops
due to ohmic resistance, Rj (uniformly grey part of column), and
overpotential, Z (black part of column with white stripes).
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But waste heat can be converted to electric energy directly, if the cell re-
action has a positive entropy change. In that case |DG|4|DH| because
TDS40. In a salt power plant,1,2 DH is negligible, and the entropy of mixing
salt water and fresh water is the only source of Ej¼0.

During operation, the electric potential is reduced to

E¼ Ej¼0 – Z – Rj, (12.2)

where R is the total electric resistance of the whole cell and Z is the sum
of electrode overpotentials. The cell power is Ej. When ja0 there is
heat production from these and other irreversible processes. The net
entropy change in the system plus surroundings, the entropy production
for a one-dimensional system of cross-sectional area O, obtains for in-
stance contributions from Joule heat, Rj2 (R is the total electric resistance)
and the (positive) electrode overpotentials, Zj. The major contributions to
the total power loss is in fact given by Rj2þ Zj, so the total entropy change
due to irreversible prosesses, dSirr, per unit of time, dt, to a first
approximation, is:

dSirr

dt
¼ O

T0
ðRj2 þ ZjÞ40: (12:3)

Here T0 is the temperature of the surroundings.25 The reversible heat
production plus this heat production gives the total heat production, which
can be measured in the surroundings.33 The entropy production in the
system and surroundings is always larger than zero for a spontaneous
process.25

In order to lower the entropy production and increase system efficiency
(see Chapter 13), information about local conditions is needed. Where can
we locate power losses and what causes them? How can they be made
smaller? Non-equilibrium thermodynamics can be used to gain insight into
the origin of power losses (entropy production), through a more precise
description of eqn (12.3). Through NET we can also answer questions like:
will a difference in temperature between the anode and the cathode promote
or reduce the potential jump across the cell?

The total entropy production, dSirr/dt, for a system of length l in a steady
state can also be obtained by integration along the system. At steady state it
is equal to the net entropy flow out of the system:

dSirr

dt
¼O

ðl

0
sðxÞdx¼O Jo

s � Ji
s

� �
� 0: (12:4)

We have here assumed that all transport processes take place in the x-
direction (cf., Chapter 1). The contributions to the total entropy production
come from s(x). We can use this quantity actively, as we shall see below, to
find the electric-potential profile of the cell. We can also use eqn (12.4) to
test that a thermodynamic model for any local layer of the cell agrees with
the second law of thermodynamics. In a situation where the energy effi-
ciency for power use and power production is in world-wide focus, it may
pay to give dSirr/dt more attention (see also Chapter 13).
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12.3 A Formation Cell Example
We shall now see, from an example, how NET can be used to derive a sim-
ultaneous set of profiles for all intensive variables across a cell, enabling us
to calculate the electric work and lost work everywhere. Consider the for-
mation cell with an electrode reversible to Na1 and a Ag(s)|AgCl(s) electrode
reversible to Cl�. The electrolyte is an aqueous solution of NaCl(aq). With
standard notation we write for the formation cell:

Nað1Þ j NaClðaqÞ j AgClðsÞ j AgðsÞ: (12:5)

where l, aq and s are short for liquid, aqueous solution and solid aggregate
states. Each homogeneous phase and each interface are now separate
thermodynamic subsystems, a three- or two-dimensional one, respectively,
see Section 1.4 for definitions. The vertical bar in eqn (12.5) is standardly
used to indicate separate phases. The left hand side electrode reaction is:

Na(l)-Na1 (aq)þ e�. (12.6)

One mole of Na1 moves from a uniform sodium electrode (e.g., a stirred
amalgam) into the electrolyte per mole of electrons (one Faraday) passing
the external circuit from left to right. At the surface of the chloride layer that
faces the electrolyte, we have:

AgCl(s)-Cl�(aq)þAg1(s). (12.7)

This is followed by

Ag1(s)þ e�-Ag(s). (12.8)

One mole of Cl� is produced in the electrolyte, while one mole of silver ions
is produced in the chloride, close to this surface. The silver ions are trans-
ported to the surface between the chloride layer and the silver. The overall
electrode reaction is the sum of eqn (12.6–12.8). The overall cell reaction of
eqn (12.5) is:

Na(l)þAgCl(s)-Na1(aq)þCl�(aq)þAg(s). (12.9)

One mole of Ag(s) and of NaCl(aq) are produced while one mole of Na(l) and
AgCl(s) are consumed per Faraday passing the cell. The electrolyte is elec-
troneutral, so the concentrations of the sodium and the chloride ions are the
same at every position in the electrolyte. When a sodium ion enters the
electrolyte from the electrode surface, it is therefore quickly accompanied by
a chloride ion which is coming into the electrolyte from the AgCl surface.

The overall performance of such a system is described by eqn (12.1) and
(12.2). Details on each surface can be added by applying the Nernst equation,
eqn (12.26) below. The electrode surface is the location where most of the
energy conversion takes place.

The heat production that can be associated with the energy conversion in
the surface is in general not described in the literature. We shall here see
how both effects can be captured in the same set of equations with NET.25,26
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We shall give a local description of the formation cell (12.5), and of the two
concentration cells with identical electrodes, either reversible to Na1, or to
Cl�. In particular, we shall explain and give details of the electric-potential,
concentration profiles and temperature profile.

12.4 Entropy Production in Three- and
Two-dimensional Subsystems

The electrochemical system is always heterogeneous. The electrolyte and the
bulk electrode materials are often relatively uniform and thick. This is
why we regard them as homogeneous three-dimensional subsystems. The
thinner electrode interfaces can be regarded as two-dimensional systems.
When described by excess variables, the surface can be regarded as a two-
dimensional autonomous system. We refer the reader to Section 1.4 for a
definition of Gibbs excess densities of a surface, and for a discussion of the
autonomous nature of the surface, see also Chapter 4.

The purpose of Section 12.4 is to give and discuss expressions for the
entropy production (12.9) in the three and two-dimensional subsystems of
the example cell. The notation and symbols are the same as used in ref. 25
and 26, see Figure 12.2 for more explanations.

Figure 12.2 Terminology used to describe processes in electrochemical cells
according to Kjelstrup and Bedeaux.25,26 The anode, electrolyte and
cathode phases are indicated with superscripts a, e and c, respectively.
The electrode surfaces are indicated with superscripts s,a and s,c for the
anode and cathode, respectively. A difference D with subscript i,j means
that the difference is taken between the last (j) and the first (i) phase.
A difference symbol with subscript k means that the difference is taken
across a homogeneous phase (k). Locations are indicated by super-
scripts (i,j), where the phase is denoted i, and the adjacent phase is j.
The difference symbol D will also be used for chemical reactions
(see text for explanation).
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Kedem and Katchalsky4,5 proposed to use operationally defined variables
in the description of electrochemical cells, motivated by the practical con-
sideration that they are directly linked to measurements. The flux of NaCl,
the electric current density and the heat fluxes can all be measured and
controlled independently and are such variables. It is nevertheless more
common to use as variables the fluxes of charged particles and describe
changes in terms of these. The charged particle variables relevant, e.g., for
the cell (12.5), are the electrons, the sodium and the chloride ions. We give
the entropy production for the various parts of the cell with both sets. We
proceed to compare the two descriptions, and show that they lead to dif-
ferent perceptions of the origin of electric power.

12.4.1 Operationally Defined Variables

Consider first the homogeneous parts of the formation cell as illustrated in
Figure 12.2. The entropy production in a uniform sodium electrode, phase a,
is given by10,25

sa¼� J 0aq
1

T2

@T
@x
� j

1
T
@f
@x

: (12:10)

The variables depend in general on x,y,z,t. In the partial derivatives here and
below the other three are kept constant. The entropy production has con-
tributions from two flux-force pairs, cf. Chapter 1. We have replaced the
electric field in eqn (1.16) by the negative gradient in the electric potential f,
E¼�@f/@x. The chosen fluxes are the measurable heat flux J 0aq and the
electric current density across the metal. Similar expressions to eqn (12.10)
apply to the pure, solid phases of Ag and AgCl.

The entropy production in the electrolyte has likewise three terms from
eqn (1.16):

se¼� J 0eq
1

T2

@T
@x
� Je

NaCl
1
T
@

@x
me

NaCl;T � j
1
T
@f
@x

: (12:11)

The contributions are from the measurable heat flux across the electrolyte
and its conjugate thermal driving force, the flux of NaCl relative to water and
the negative gradient in the chemical potential of NaCl over the temperature,
and the electric current density and the negative gradient in the electric
potential in this material. The measureable heat flux was defined as the total
heat flux minus the latent heat (the enthalpy) carried by the components, see
ref. 25 for further definition, or Chapter 1, eqn (1.13). The chemical-potential
gradient should be evaluated at constant temperature, hence the subscript T.
The electric potential will be related to the Maxwell potential in Section
12.5 below.

The entropy production in the surface of the Na1-reversible electrode has
contributions from two heat fluxes, the first pointing into the surface on the
left-hand side, the other pointing out of the surface on the right-hand side.
A term containing the chemical-potential jump of NaCl at constant
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temperature appears in the absence of equilibrium for adsorption of NaCl at
the electrode surface (this term was not included in ref. 25). In a stationary
state, the reaction rate, rs,a, is uniquely related to the electric current density,
in general by rs,a¼ j/nF, where n is the number of electrons involved in the
reaction. In our case n¼ 1. This gives25

ss;a¼ J 0a;eq Da;s
1
T

� �
þ J 0e;aq Ds;e

1
T

� �
� Je;a

NaCl
1

Ts;a Ds;emNaCl;T

� j
1

Ts;a Da;efþ
DnGs;a

F

� �
;

(12:12)

where all sub- and super-scripts were defined in Figure 12.2. There is
consumption of metal in the electrode and formation of NaCl in the
electrolyte next to the metal per unit of charge passing the external circuit.
The Gibbs-energy change, DnGs,a, has contributions from these changes in
the neutral components (cf., ref. 25 and eqn (12.21)). Subscript n on the
difference symbol refer to the neutral components. Their combination gives
the electric potential drop, Da,ef, at reversible conditions, see Section 12.5.

The entropy production in the surface at the AgCl(s)|Ag(s)-electrode is
likewise:

ss;c¼ J 0e;cq De;s
1
T

� �
þ J 0c;eq Ds;c

1
T

� �
� Je;c

NaCl
1

Ts;c De;smNaCl;T

� j
1

Ts;c De;cfþ
DnGs;c

F

� � (12:13)

There is a change in the NaCl content in the electrolyte per unit of charge
passing the external circuit due to the electrode reaction and migration of
chloride ions from the interface to the electrolyte. The Gibbs-energy change,
DnGs,c, in eqn (12.13) reflects the changes in Ag, AgCl and NaCl, cf., eqn
(12.21).

It is practical to choose the same frame of reference for all fluxes involved
in a cell. A natural frame of reference for processes in an electrochemical cell
is the equimolar surface of one of the components in one of the electrodes.
The surface of discontinuity of the cathode surface, say, will extend from the
electrolyte phase into the Ag phase, see Chapter 17 for a definition of excess
variables. The entropy production under isothermal conditions for the
various parts of the cell is obtained from the above eqn (12.10) to (12.13) by
setting the thermal driving forces equal to zero. The entropy production due
to NaCl transport in an isothermal solution, in terms of operationally de-
fined variables is, for instance, given by the second term in eqn (12.11).

We see that the number of fluxes at a surface becomes larger than in a
bulk phase, mainly because the discrete description gives fluxes into and out
of the surface. Elimination of dependent fluxes, like rs,a, is best done in the
entropy production. The independent set of fluxes that appears in eqn
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(12.12) and (12.13) follows the recommendation of Kedem and Katchalsky
for bulk systems.4,5

12.4.2 Ionic Fluxes as Variables

Since the properties of charged constituents are more common, we write the
entropy production at isothermal conditions also for contributions from the
electron flux, the sodium and chloride ion fluxes and the chemical reaction
rate. For the electrolyte phase we have:

se¼� Je
Naþ

1
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@

@x
~me

Naþ � Je
Cl�

1
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@

@x
~me

Cl� ; (12:14)

where the driving forces are expressed in terms of electrochemical-
potential gradients. The electrochemical potential was defined by Guggenheim
(see ref. 4) as the combination of the particle chemical potential and the
Maxwell potential. For the two ions here, we have

~me
Naþ ¼ me

Naþ þ Fc; ~me
Cl� ¼ me

Cl� � Fc: (12:15)

where c is the Maxwell potential. Eqn (12.14) is equivalent to eqn (12.11) for
isothermal conditions. A similar expression can be written for the electron.
For the isothermal electrode surfaces, we obtain
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Da;s~me�

Ts;a � Je;a
Naþ

Ds;e~mNaþ

Ts;a � Je;a
Cl�
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Cl�
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Ts;c � Jc;e
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Ts;c � rs;c

Ts;c DrGs;c:

(12:16)

These equations are equivalent to eqn (12.12) and (12.13). The change in
Gibbs energy is the reaction Gibbs energy of eqn (12.6) and (12.7) combined
with (12.8), and the difference symbol has subscript r. The expressions from
eqn (12.6) and (12.7) are:

DrGs;a¼� ma;e
Na þ me;a

Naþ þ ma;e
e� ;

DrGs;c¼� ms;c
AgCl þ me;c

Cl� þ mc;e
Ag � mc;e

e� :
(12:17)

12.4.3 Relations Between Variables

Compare next the two descriptions of the same phenomena by the different
variable sets. The entropy production is the same, so the fluxes of the two
descriptions are related.

We have for the anode surface:

�Ja;e
e� ¼ j=F ¼ rs;a¼ Je;a

Naþ � Je;a
Cl� ; (12:18)
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and

Je;a
Naþ ¼ Je;a

NaCl þ te;a
Naþ j=F;

Je;a
Cl� ¼ Je;a

NaCl � te;a
Cl� j=F;

(12:19)

where transport number of the ions have been introduced. The transport
number of an ion is the fraction of the electric current carried by that ion,
giving tNaþ þ tCl� ¼ 1: When eqn (12.18) and (12.19) and the analogous
equations for the cathode surface are introduced in (12.16) and the result is
compared to eqn (12.12) and (12.13), we find the relations between the in-
tensive variables:

Ffa¼ Fca � ma
e� ; Ffc¼ Fcc � mc

e� ;

Ffe¼ Fce þ te
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e
Naþ � te

Cl�m
e
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(12:20)

The reaction Gibbs energies for the neutral-component description in
Section 12.4.1 become:

DnGs;a¼� ma;e
Na þ te;a

NaClm
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NaCl;
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Naþm
e;c
NaCl:

(12:21)

where te
Cl� ¼ 1� te

Naþ . Eqn (12.21a) accounts for the change in sodium and
salt content at the anode, while (12.21b) accounts for the changes at the
cathode. The relation between the Gibbs-energy difference DrG

s,a (or DrG
s,c)

and the corresponding operationally defined reaction Gibbs energy DnGs,a

(or DnGs,c) is similar to the relation between the corresponding potentials,
cf., eqn (12.20)

DrGs;a¼DnGs;a þ ma;e
e� þ te

Naþm
e;a
Naþ � te

Cl�m
e;a
Cl� ;

DrGs;c¼DnGs;c � te
Naþm

e;c
Naþ þ te

Cl�m
e;c
Cl� � mc;e

e� :
(12:22)

By introducing eqn (12.21) into eqn (12.22), we obtain eqn (12.17).

12.5 The Surface Potential Jump in the Reversible
Limit

Before we examine the cell in operation, we consider the reversible limit. In
this limit, j-0, the cell is isothermal and we measure the cell emf, Ej¼0, cf.,
Figure 12.1. Under isothermal conditions, only the last two terms remain in
eqn (12.12) and (12.13). The expression for the entropy production and the
condition ss,i¼ 0 will give information about the electrode potential jumps.
These jumps depend on the variables used, however, see Section 12.4. The
cell potential can thus be interpreted in terms of operationally defined po-
tential differences, or equivalently in terms of Maxwell potential differences.
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In both cases there are, in principle, contributions from the electrode sur-
faces and from the electrolyte. The two alternatives give:

Df¼Da;efþ Defþ De;cf;

Dc¼Da;ecþ Decþ De;cc:
(12:23)

The first equation gives the measured cell potential, also called E above.
The second gives the difference in the Maxwell potential of the cell. The
descriptions are related. We use eqn (12.20) for the conducting leads in the
anode and cathode, and obtain:

Df ¼ Dc – Dme�. (12.24)

The last term, the chemical-potential difference of electrons in the metallic
leads, is considered to be negligible. The measured cell potential can under
these conditions be understood as the Maxwell-potential difference. The
physical interpretation is, however, particular for the set of variables used.

With operationally defined variables, we write the potential drop of the
electrode surfaces in terms of changes in the chemical potentials of
the neutral components in the surface. The change in chemical energy gives
the electric potential change directly from eqn (12.12) and (12.13) for ss,i¼ 0:
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(12:25)

The chemical potential of a neutral component is measured with respect to a
standard state, which can be the state of pure components at 0.1 MPa. Each
term in eqn (12.25) can then be calculated.

In the second scenario, the Maxwell-potential jumps at the electrode are
derived from the Nernst equation DcþDrG/F¼ 0.22,35,36
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(12:26)

In order to calculate the chemical potential of a charged particle, we need yet
another standard state; that of an ion in a solution. A difference in single-ion
chemical potentials is not measurable.

12.6 The Overpotential at Isothermal Conditions
The bilinear form of the entropy production applies to linear as well
as nonlinear processes.37 Eqn (12.12) and (12.13) apply in the presence of
sizable current densities. In this situation, the electrode processes are not
reversible, however. The last parentheses can be seen as effective
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electrochemical driving forces. The effective driving force is the over-
potential of the electrode.22–24,27 With operationally defined variables, we
obtain the overpotential as:

Zs;a¼ Da;efþ
1
F
DnGs;a

����

����: (12:27a)

From the alternative description, we obtain

Zs;a¼ Da;ecþ
1
F
DrGs;a

����

����: (12:27b)

The electrode overpotential was used already in eqn (12.2) and (12.3). It is
defined as a positive quantity, cf. eqn (12.3). The overpotential is in both
cases (12.27a) and (12.27b) equal to the difference in the electrochemical
potential of the products and reactants.27 In general, Z¼ Dr ~G

�� ��=nF, where n is
the number of electrons involved in the electrode reaction (n¼ 1 in our case).
The expression (12.27b) was given by Newman.22 He did not make the link to
the entropy production, however. The expression (12.3) described the en-
tropy production in terms of overpotential and Ohmic-potential drops. In
order to obtain a more precise description of the total entropy production in
this equation, the full expression of the local entropy production must be
used and integrated out for all parts of the cell.

The overpotential can be determined from impedance measurements
in set-ups with two equal electrodes and a reference electrode.35,38 The
potential drop between one electrode and the currentless reference can
be measured when the current density between the working and counter
electrodes is j. The overpotential is (in the absence of temperature gradients)
related to the ohmic resistance of the electrode surface;

Zs,a¼ jRs,a. (12.28a)

Under isothermal conditions, and equilibrium for adsorption at the inter-
face, one obtains the Butler-Volmer equation from mesoscopic non-equi-
librium thermodynamics.27,32

j¼ j0[exp((1 � a)Zs,a F/RT) � exp(�aZs,a/RT)]. (12.28b)

Subscript 0 means the equilibrium exchange value of the current density,
and a is the transfer factor, used to indicate the position of the activation
energy barrier.

Transport phenomena of different tensorial order do not couple (the Curie
principle).28 Therefore, there is no coupling between vectorial phenomena
(transports of heat, mass and charge) and scalar phenomena (like chemical
reactions) in a homogeneous phase. The surface has its own symmetry
properties, however, with other possibilities for coupling. The relevant flux
into or through an electrochemical surface is the scalar component per-
pendicular to the surface. This means that the scalar component of heat and
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mass fluxes can couple, not only to each other, but also to the electro-
chemical reaction. These coupling effects can be large,25 see also Chapter 8.

In the general case, we obtain for the anode surface a set of four fluxes
linearly related to the forces. The overpotential, which will give the last force,
will therefore be coupled to two thermal forces and one chemical driving
force. The thermal forces derive from the surface temperature being differ-
ent from that of the adjacent materials. The chemical driving force relates to
a possible lack of equilibrium of NaCl between the electrolyte and the sur-
face. While not all forces are likely to be large, they may be large when the
electrode materials conduct less well and the current density is high. These
effects have not yet been explored experimentally, but the theoretical re-
sults23–25 are supported by GENERIC.32

12.7 Transport Processes in the Electrolyte
We have so far discussed the electric potential profile across the cell under
reversible conditions, without giving any flux-force relations.

When applied to the electrode surface, NET gives dynamic boundary
conditions, essential for integration of variables through the surface. The
boundary conditions contain jumps in the intensive variables of the system;
the most important jump here being the electric-potential jump. In prin-
ciple, also jumps in other intensive variables like the chemical potential or
the temperature, may count.

The main purpose of the entropy production is to provide the flux-force
relations which determine these jumps. The coupling of the fluxes is central.
This section considers transport processes in the electrolyte under iso-
thermal conditions. In the final Section 12.8, we allow for temperature
gradients and surface phenomena in the linear regime.

12.7.1 Transport Numbers and Transference Coefficients

Consider an aqueous solution of NaCl bounded by two electrodes. The time-
dependence of the salt concentration ce

NaCl in a formation- or concentration
cell satisfies

@

@t
ce

NaClðx; tÞ¼ � @

@x
Je

NaClðx; tÞ: (12:29)

Here Je
NaCl is the salt flux in the electrolyte. The positive direction of transport

is from left to right. By integrating this equation across the thickness of the
electrolyte, from x¼ 0 to x¼ de , we obtain
ðde

0

@

@t
ce

NaClðx; tÞdx¼� Je
NaClðde; tÞ þ Je

NaClð0; tÞ¼ Je;a
NaClðtÞ � Je;c

NaClðtÞ: (12:30)

The equation describes that the accumulation of salt in the electrolyte per
unit of cross-sectional area is the difference of the salt fluxes at the two
electrodes. In a concentration cell, the difference is zero. In the formation cell,
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the integrated salt content in the electrolyte increases with j/F moles of NaCl
per unit of time and per unit of cross-sectional area. The increase in the salt
content in the electrolyte is therefore:

@

@t
ce

NaClðx; tÞ¼ � @

@x
Je

NaClðx; tÞ¼ j
deF

: (12:31)

Eqn (12.29) to (12.31) imply that the salt concentration is independent of the
position and depends on the time, while the salt flux is independent of time
and depends on the position.

The relation between the ion fluxes and the salt flux depends, however, on
the boundary conditions (the electrodes). When both electrodes are revers-
ible to Cl�, the component flux of NaCl is everywhere defined by the flux of
Na1. When both are reversible to Na1, the flux of NaCl is everywhere defined
by the (negative) flux of Cl�:

Je
NaCl¼ Je

Naþ Concentration cell; Cl�-reversible electrodes; (12:32)

Je
NaCl¼ Je

Cl� Concentration cell; Naþ-reversible electrodes: (12:33)

In the formation cell, the fluxes are position dependent, cf., eqn (12.31), and
eqn (12.32) and (12.33) do not apply. The relation between the salt and ion
fluxes is always as given by eqn (12.19) meaning that possible position
dependent terms in the ionic fluxes must cancel.

The transport number of an ion is the fraction of the electric current
carried by the ion. The transport numbers of cations and anions can
therefore be defined without reference to the boundaries:
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: (12:34)

The transport numbers do not depend on the position.
The transference coefficient of a neutral component is defined by the ratio

of the component flux with the electric current density:
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NaClðx; tÞ
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� �

@me
NaClðx;tÞ=@x¼ @T=@x¼ 0

: (12:35)

Such a definition can also be used e.g. for water. Constant chemical potential
and temperature mean that the salt concentration is uniform or independ-
ent of the position in the electrolyte. Unlike the transport number, the
transference coefficient can depend on the boundaries, e.g. the electrode
that supplies the current. The transference coefficient can be related to the
transport numbers. For the concentration cells, we have from eqn (12.32) to
(12.33):4

te
NaCl¼ te

Naþ for Cl�-reversible electrodes; (12:36)

te
NaCl¼� te

Cl� for Naþ-reversible electrodes: (12:37)
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We see from eqn (12.36) and (12.37) how the transference coefficient
changes when the set of electrodes to measure it has changed.

In order to determine the transference coefficient for the formation cell,
we start with the gradient of the transference coefficient. We find from eqn
(12.31) and (12.35):
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The electroneutrality condition gives; ce
Naþðx; tÞ¼ ce

Cl�ðx; tÞ¼ ce
NaClðx; tÞ. It

follows that
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In the formation cell25,26 Je
Naþðx; tÞa te

Naþ j=F and Je
Cl�ðx; tÞa te

Cl� j=F. The salt
flux is given by

Je
NaCl¼ te
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Naþ þ te

Naþ Je
Cl� : (12:40)

In combination with eqn (12.18), we find as extension of eqn (12.19)

Je
Cl� ¼ Je

NaCl � te
Cl� j=F and Je

Naþ ¼ Je
NaCl þ te

Naþ j=F: (12:41)

In the formation cell, the natural boundary conditions are

Je
Cl�ð0; tÞ¼ 0¼ Je

Naþðde; tÞ: (12:42)

This means that

Je
NaClð0; tÞ¼ te

Cl� j=F and Je
NaClðde; tÞ¼ � te

Naþ j=F: (12:43)

These boundary conditions in combination with eqn (12.31) give the pos-
ition-dependent salt flux:
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This expression is new in the description of electrochemical cells.25,26 The
position-dependent transference coefficient becomes:
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NaClðxÞ¼ �
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Naþ þ 1� x
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Cl� : (12:45)

The average transference coefficient of the dissolved salt NaCl formed in the
electrolyte of a formation cell is equal to �0:5 te

Naþ � te
Cl�

	 

. The average ap-

pears in the Planck potential, cf., Section 12.7.3. At the anode and cathode
surface in the formation cell we obtain:

te;a
NaCl¼ te

Cl� and te;c
NaCl¼� te

Naþ : (12:46)

These relations will be used in the expression for the reaction Gibbs energies
(12.25), see also eqn (12.64) and (12.65). We have earlier incorrectly inter-
changed the interpretations (12.46).25

258 Chapter 12



12.7.2 The Electrolyte Contribution to the Measured Cell
Potential

Each flux in the entropy production is a linear combination of all conjugate
forces. The flux equations that follow from eqn (12.11) for isothermal
conditions are
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1
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T
@f
@x

:

(12:47)

The Onsager coefficients Lij with superscript e for electrolyte (cf., Figure 12.2)
are transport coefficients in a symmetric matrix of coefficients. The electric
resistivity of the electrolyte is re¼T=Le

ff. Simple laws of transport, like Fick’s
or Ohm’s law, are not sufficient, because the coupling coefficients are of the
same order of magnitude as the diagonal coefficients. The coupling co-
efficient enters the definition of the transference coefficient:

te
NaCl¼ F
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mf
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ff
: (12:48)

In the reversible limit j-0 we find, using the symmetry of the coefficient
matrix (the Onsager relation), the contribution from the electrolyte to the
potential gradient
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me

NaCl: (12:49)

The effects of boundary conditions (electrodes) on the transference co-
efficient can now be compared. When both electrodes are reversible to the
Na1 ion, the ideal contribution from the electrolyte is, with eqn (12.37)
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2RT
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When the electrodes are reversible to the Cl� ion and eqn (12.36) applies, the
ideal contribution from the electrolyte is:
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For the formation cell, we obtain from eqn (12.45) and (12.49):
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(12:52)

In the integration of eqn (12.52), we assumed that dme
NaCl=dx¼Deme

NaCl=de.
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12.7.2.1 Numerical Considerations

The expressions for the electrolyte contribution to the cell potential describe
the maximum electric energy that can be obtained from charge transfer
across an electrolyte under various boundary conditions. The expressions
(12.50) and (12.51) describe contributions to the electric potential of a
concentration cell. In such cells, the electrodes are identical, and do not add
to the cell potential.

The magnitude of the potential contributions from the electrolyte in the
examples given here, eqn (12.50) to (12.52), is only some mV. By introducing
the transport number of Na1 equal to 0.396, and the transport number of
Cl� equal to 0.604 in eqn (12.52), we obtain 12 mV for a tenfold increase in
concentration across the cell at 300 K. The contributions from eqn (12.50)
and (12.51) are somewhat larger.

A membrane electrolyte can significantly increase the potential contri-
bution from the electrolyte. With a transport number of a cation near 1, the
concentration cell potential (12.51) becomes �120 mV for the same con-
centration gradient and temperature. This is the case in the reverse
electrodialysis cell,1 see Figure 12.3. The unit cell contains one cation-
conducting and one anion-conducting membrane in series. The gradient in
the chemical potential of NaCl across one membrane can contribute 120 mV
to the cell potential with electrodes of Ag|AgCl. A membrane potential dif-
ference of some 100 mV is small compared to an electric potential in V of a
formation cell. But by adding several of the unit cells, pictured in
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+
+
+
+
+
+

-
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Unit cell,
reverse 
electro-
dialysis

River Water

Sea Water

Cl-

Na+

Figure 12.3 The unit cell of a reverse electrodialysis cell used in a saline power
plant adapted from ref. 1. By allowing only cations/anions through
every second membrane, one can generate charge transport from the
difference in chemical potential of NaCl between sea water and river
water.
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Figure 12.3, into a series of cells, one can reach a sizable potential from
this renewable energy source. Membrane costs are still detrimental.
The contribution to the cell potential from the electrolyte in a formation cell,
eqn (12.52), is smaller when both ions carry charge. In aqueous solutions of
KCl, in so-called salt bridges, where both ions contribute equally to the
charge transport, the contribution is near 0 mV.25

12.7.3 The Planck Potential

The entropy production (12.14) together with (12.15) is the starting point to
obtain ionic flux-force relations:

JNaþ ¼ � Lþþ
@ðmNaþ þ FcÞ

@x
� Lþ�

@ðmCl� � FcÞ
@x

;

JCl� ¼ � L�þ
@ðmNaþ þ FcÞ

@x
� L��

@ðmCl� � FcÞ
@x

:

(12:53)

The Onsager coefficients, Lij, have been related to the ion concentration and
mobility:

Lþþ ¼ cNaCluNaþ ; L�þ ¼ L�þ ¼ 0; L�� ¼ cNaCluCl� : (12:54)

The concentrations of the ions are equal to the salt concentration. These
expressions give the Nernst-Planck flux equations for the ions:

JNaþ ¼ � cNaCluNaþ
@ðmNaþ þ FcÞ

@x
;

JCl� ¼ � cNaCluCl�
@ðmCl� � FcÞ

@x
:

(12:55)

The Maxwell-potential gradient for a concentration cell is found by setting
Je

Naþ ¼ Je
Cl� :

@

@x
c¼� ðuNaþ � uCl�Þ

2FðuNaþ � uCl�Þ
uNaþ

@

@x
mNaþ � uCl�

@

@x
mCl�

� �
: (12:56)

The chemical potentials of the ions obey

me
Naþ ¼ me

Cl� ¼
1
2
me

NaCl: (12:57)

By introducing (12.57) into (12.56), we obtain

@

@x
c¼� ðuNaþ � uCl�Þ

2FðuNaþ � uCl�Þ
@

@x
me

NaCl: (12:58)

Expression (12.58), named after Planck,39 was obtained already in 1890. The
condition Je

Naþ ¼ Je
Cl� , used to derive eqn (12.58), is not appropriate for a

formation cell, however, as both ionic fluxes are zero when j¼ 0, cf., eqn
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(12.43). It follows from (12.20) and the relation between the transport
numbers, that

Def¼Decþ
1

2F
te

Naþ � te
Cl�

	 

DemNaCl: (12:59)

In view of (12.52), we then have for the formation cell

Dec¼ 0. (12.60)

The Maxwell potential across the electrolyte of a formation cell is constant!
This is remarkable, since the condition applies whether or not a concentration
gradient exists in the electrolyte. The result follows from the invariance of the
entropy production to the variable set and the assumptions used.

12.8 The Measured Cell Potential
We have shown above how one can make use of the entropy production to
find the jumps in electric potential at interfaces and across the electrolyte of
a cell. We proceed to combine the contributions of the system single parts to
the measurable cell potential, before we study electrochemical cells for non-
zero electric currents.

12.8.1 A Formation Cell with a Concentration Gradient

Return to the example of the formation cell, and consider first the de-
scription in terms of measurable properties, Df; j;DemNaCl; and Je

NaCl. The
cell potential is of interest, first with the restriction j-0. The cell potential is
found by adding potential jumps, as we cross the cell:

Df ¼ Da,ef þ Def þ De,cf. (12.63)

In Figure 12.1 this sum was given the symbol E, which is common in elec-
trochemistry. The reaction Gibbs energies of the neutral components and
the transference coefficients, eqn (12.46), give the electrode potential jumps:

Da;ef¼
1
F

ma;e
Na � te

Cl�m
e;a
NaCl

	 

; (12:64)

De;cf¼
1
F

ms;c
AgCl � mc;e

Ag � te
Naþm

e;c
NaCl

� �
: (12:65)

By adding to these the contribution from the electrolyte, eqn (12.52),
we find:

Df¼ 1
F

ma;e
Na � te

Cl�m
e;a
NaCl þ ms;c

AgCl � mc;e
Ag � te

Naþm
e;c
NaCl þ

1
2

te
Naþ � te

Cl�
	 


DemNaCl

� �

¼ 1
F

ma;e
Na þ ms;c

AgCl � mc;e
Ag �

1
2

me;a
NaCl þ me;c

NaCl

	 
� �
: (12:66)

262 Chapter 12



All quantities in this equation can be determined by experiments and a
proper choice of standard states. The expression reduces to the Gibbs energy
of reaction (12.9), but only if the electrolyte is stirred:

Df¼Da;efþ De;cf¼
1
F

ma;e
Na þ ms;c

AgCl � mc;e
Ag � me

NaCl

h i
; (12:67)

We used here the fact that the ionic transport numbers add to unity.
In terms of Maxwell-potential differences, the cell potential E is also

equal to:

Df¼Dc� Dme� ¼Da;ecþ De;cc� Dme�

¼ 1
F

ma;e
Na þ ms;c

AgCl � mc:e
Ag �

1
2

me;a
NaCl þ me;c

NaCl

	 
� � (12:68)

This right-hand side was derived with the assumptions of

� zero coupling terms in eqn (12.54),
� Nernst-Einstein, that the electric and diffusional mobility of the ions

are the same,
� a negligible difference in the chemical potential of electrons.

In this case we obtain the reaction Gibbs energy as given directly by eqn
(12.9). The assumptions used can, however, not be tested by experiments.

Consider next the concentration cells, with two sodium-reversible or two
chloride-reversible electrodes. The measured cell potential of these cells can
be expressed in terms of electrochemical potential differences. We obtain,
using eqn (12.20)5,21,25

For Naþ reversible electrodes: FDf¼ FDef¼D~mNaþ ; (12:69)

For Cl� reversible electrodes: FDf¼ FDef¼� D~mCl� : (12:70)

The equations above apply for j¼ 0. In order to solve the dynamic problem,
one must solve the flux equations for each layer of the cell. Such equations
are given below for the non-isothermal formation cell.

12.8.2 A Non-isothermal Formation Cell

Heat is often well conducted in metal electrodes and in many electrolytes,
but an electrochemical cell need not have a uniform temperature. The
temperature can become important in two ways; as a variable for the prop-
erties involved, and as a gradient or a thermal driving force. We continue to
describe the cell potential when the cell is exposed to a temperature gradi-
ent. The possible temperature variation in the transport coefficients shall be
neglected, however.
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12.8.2.1 The Homogeneous Anode Phase

The flux-force relations that result from eqn (12.10) are

J 0aq ¼� La
qq

1
T2

@T
@x
� La

qf
1
T
@f
@x

;

j¼� La
fq

1
T2

@T
@x
� La

ff
1
T
@f
@x

:

(12:71)

The Peltier coefficient is defined by

PaðxÞ � F
J 0aq

j

 !

@T=@x¼ 0

¼ F
La

qf

La
ff
� �TðxÞ Sa;e

Na þ S*a
e�

	 

: (12:72)

The Peltier coefficient is given by the entropy of sodium and the transported
entropy of electrons, S*a

e� . The electric-potential gradient for j¼ 0, is obtained
with the Onsager relation:

@f
@x

� �

j!0
¼� 1

F
PaðxÞ
TðxÞ

@T
@x
¼ 1

F
Sa;e

Na þ S*a
e�

	 
 @T
@x

: (12:73)

Upon integration, we have for j ¼ 0:

Daf¼
1
F

Sa;e
Na þ S*a

e�
	 


DaT : (12:74a)

The Seebeck coefficient of the anode is defined by

Za
S �

Daf
DaT

¼ 1
F

Sa;e
Na þ S*a

e�
	 


: (12:74b)

The transported entropies of electrons or holes are small, (1 to 20)
J �K�1 �mol�1, when compared to thermodynamic entropies of metal or salts,
like in eqn (12.73). Semiconductors of the n and p-type are nevertheless used
for thermoelectric-power generation, see Figure 12.4. Research on semi-
conductors is carried out to increase their ability to convert waste heat into
electricity.

12.8.2.2 The Electrolyte

The linear flux-force relations resulting from eqn (12.11) are

J 0eq ¼� Le
qq

1
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1
T
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NaCl;T � Le
ff

1
T
@f
@x

:

(12:75)
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The chemical potential is differentiated at constant temperature, see the
discussion in Chapter 8. The transference coefficient, te

NaClðxÞ, was given by
eqn (12.45) for the formation cell. The definition of the position-dependent
Peltier coefficient is, in analogy with (12.45):

PeðxÞ� F
J 0eq

j

 !

@T=@x¼ @me
NaCl=@x¼ 0

¼ F
Le

qf

Le
ff

� TðxÞ �te
NaClðxÞS

e
NaCl þ

x
de

te
NaþS*e

Naþ � 1� x
de

� �
te

Cl�S*e
Cl�

� �
:

(12:76)

The Peltier coefficient is given by the entropy of NaCl and the transported
entropies of the ions. The transported entropies enter the analysis as inte-
gration constants at the surfaces, just as the transport numbers did in the
expression for transference coefficient of the salt.

By using these equations, we can define Soret equilibrium setting Je
NaCl¼ 0

and j¼ 0. Doing this, we can eliminate the electric driving force in eqn
(12.75b) and find the gradient in chemical potential as a function of the
gradient in temperature. We shall not use this condition here, but rather solve
the last equation for a known difference in chemical potential and tempera-
ture. The contribution to the cell potential from the electrolyte becomes:

Def¼
1

2F
te
Naþ � te

Cl�
	 


Deme
NaCl;T

þ 1
2F

te
Naþ � te

Cl�
	 


Se
NaCl þ te

NaþS*;e
Naþ � te

Cl�S*;e
Cl�

� �
DeT :

(12:77)

Figure 12.4 Sketch of a thermoelectric element (left) and a module of elements
(right), used for conversion of heat Q into electricity. High temperature
is indicated in red, low in blue. Charge is conducted in n or p-type
semiconductors which have different transported entropies. This gener-
ates a potential across a series of n and p-type semiconductors.
M.T. Børset is acknowledged for the figure.
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In the last expression, the difference Deme
NaCl;T is evaluated at Te,c.25 The

transported entropies were taken to be independent of the temperature.
The pre-factor of DeT is the Seebeck coefficient of the electrolyte.

12.8.2.3 Numerical Considerations

Large Seebeck coefficients have been observed for electrode reactions
which involve gases and/or complex formation of ions.33,40,41 Selected
Seebeck coefficients with aqueous electrolytes, measured in the last cen-
tury,42–48 are given in Table 12.1. They all have larger Seebeck coefficients
than semiconductor pairs have. The highest value, �4.17 mV �K�1, was
found for a cell with complexing agents.48 Ionic liquids with low tem-
perature melting points may provide a possibility to convert low-tempera-
ture heat into electricity.49 Electrochemical cells with ionic liquids can be
found to match high- as well as low-temperature sources. Not only can
industrial waste heat be used, but geothermal and solar heat sources are
also relevant. The second contribution to eqn (12.77) can soon be com-
parable to the first contribution when large temperature differences are
available. Similar to the situation for reverse electrodialysis cells,
Figure 12.3, one may consider stacking unit cells.

12.8.2.4 The Anode Surface

Consider the entropy production in the anode surface, with the condition
Ds,emNaCl,T¼ 0. The flux equations become:

J 0a;eq ¼ Ls;a
aa Da;s

1
T

� �
þ Ls;a

ae Ds;e
1
T

� �
� Ls;a

af
1

Ts;a Da;efþ
DnGs;a

F

� �
;

J 0e;aq ¼ Ls;a
ea Da;s

1
T
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þ Ls;a

ee Ds;e
1
T

� �
� Ls;a

ef
1

Ts;a Da;efþ
DnGs;a

F

� �
;

j¼ Ls;a
faDa;s

1
T

� �
þ Ls;a

feDs;e
1
T

� �
� Ls;a

ff
1

Ts;a Da;efþ
DnGs;a

F

� �
;

(12:78)

Table 12.1 Selected Seebeck coefficients, Sc, for aqueous electrolytes at 298 K.

Reference Electrodes Electrolyte in water Sc/mV �K�1

Levin and Bonilla42 Ag(s)|AgCl(s) KCl 0.73
Breck and Agar43 3 % Cd amalgam CdSO4 0.81
Breck et al.44 Quinhydrone HCl � 0.61
Haase and Hoch45 Ag(s)|AgCl(s) KCl 0.83
Kamata et al.46 Ag(s) AgNO3 � 0.78
Quickenden and Veron47 Pt(s) K4Fe(CN)6 1.60
Kuzminsky et al.48 Cu(s) Cu(dipy)2Cl, LiBF4 � 4.17
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where the Gibbs energy change due to neutral components was given by
(12.21). The Peltier coefficients for the bulk phases at the anode surface are
transference coefficients for heat:

Pa;e � F
J 0a;eq

j

 !

Da;sT ¼Ds;eT ¼Ds;emNaCl ¼ 0

¼ F
Ls;a

af

Ls;a
ff
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e�

	 

;
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J 0e;aq

j

 !

Da;sT ¼Ds;eT ¼Ds;emNaCl ¼ 0

¼ F
Ls;a

ef

Ls;a
ff
� �Te;ate

Cl� Se;a
NaCl þ S*a;e

Cl�
	 


:

(12:79)

We have Pa,e¼Pa (0) and Pe,a¼Pe (0), cf., eqns (12.72) and (12.76). The
transported entropy of the electron can be neglected in sums. By using the
Onsager relations, the potential difference across the anode surface becomes:

Da;ef¼�
1
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� �
:

(12:80)

The main contribution to the surface-potential drop is given by the reaction
Gibbs energy. The entropy of Na and NaCl refer to different temperatures. In
the first equality the expression contains the temperature of the surface,
while in the second equality the expression contains the temperature of the
anode near the electrolyte (for Na) and of the electrolyte near the anode (for
NaCl). In the derivation of the final result, we used the temperature de-
pendence of the chemical potential. For constant temperature, the ex-
pression reduces to the one given in eqn (12.68).

12.8.2.5 The Cathode Surface

The chemical reaction in the cathode surface produces Cl� in the electrolyte,
while Ag1 conducts charge in AgCl. The Peltier coefficients are:

Pe;c � F
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j
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(12:81)

Electrochemical Energy Conversion 267



The contribution to the cell potential is accordingly:
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1
F

DnGs;c þPe;c

Te;c De;sT þPc;e

Tc;e Ds;cT
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(12:82)

Entropies and transported entropies were again taken constant in the inte-
gration. The total cell potential can now be found by adding the parts.

12.9 Conclusion and Perspective
We have seen in this chapter how the cell-potential profile can be deter-
mined for reversible conditions, directly from the entropy production. The
entropy production defines also the flux equations, to be used to describe a
cell in operation. Equations have been given for the bulk phases and the
electrode surfaces. The flux equations of the surfaces can be regarded as
dynamic boundary conditions. The energy dissipated as heat in the sur-
rounding can be quantified by the cell’s entropy production, by integrating
across all parts of the cell. This will be the way to obtain a more precise
expression for the total entropy production in eqn (12.3).

We have shown how to find flux equations for all parts of an electro-
chemical cell, to be used for non-zero current density. Local temperature
gradients may not be large in a cell made of good conductors. But the use of
porous gas electrodes, ceramic electrolytes, semiconductors and large cur-
rent densities, may change this situation. The sets of equations give a pos-
sibility to model heat and mass fluxes that arise from varying and large
electric currents and find simultaneous solutions of several variable profiles.
For sizable current densities, one then can find temperature and concen-
tration profiles in addition to electric potential profiles. Such profiles have
so far been obtained for the polymer fuel cell.25

While the sum of the surface-potential drops can be in the order of
magnitude of 1 V in a formation cell, they give a zero contribution in con-
centration cells. But concentration cells can have a contribution from the
electrolyte, which also may play a role. Even if this potential difference is an
order of magnitude smaller than the potential of a formation cell, it may play
a role in renewable energy technology. Concentration cells can, like the
name says, exploit concentration differences, but also waste heat. This is
done in reverse electrodialysis plants or in thermoelectric generators, re-
spectively, or possibly in combinations of the two. The theory predicts that
gas electrodes or complex formers may be beneficial to thermoelectric
generators. Such cells may offer alternatives to generators that are now
using semiconductors. Concentration cells or thermoelectric cells cannot be
precisely described without non-equilibrium thermodynamics. When
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operationally defined variables are used, one is also able to control as-
sumptions made in the theory by experiment, cf., Section 12.8.1.
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CHAPTER 13

Entropy Production
Minimization with Optimal
Control Theory

ØIVIND WILHELMSEN,* EIVIND JOHANNESSEN AND
SIGNE KJELSTRUP

Department of Chemistry, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway
*Email: oivind.wilhelmsen@ntnu.no

13.1 Introduction
Consumption of oil, coal, gas and other energy sources has more than
doubled the last fifty years on a world-wide basis. During the same time,
atmospheric CO2 levels have increased with more than 20 %.1 More energy-
efficient processes in the industry are vital to change these trends.

Several measures of process energy efficiency have been proposed in the
literature. Most of them compare to the energy input needed in state-of-the-
art technologies,2 so-called optimal energy-management.3 These studies
benchmark the energy input required and assess potentials for reductions
of the energy input. However, as emphasized in ref. 2, these methods do
not provide information on the amount and localization of the inefficiencies
of the process. The only way to obtain such information is to determine the
entropy production everywhere. This can give a detailed description of how
and where energy is dissipated as heat, information which constitutes the
basis for optimization. The systematic theory of non-equilibrium thermo-
dynamics gives therefore the foundation of entropy-production-minimization
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procedures.5 Non-equilibrium thermodynamics becomes the core theory,
when a local (even molecular) description is sought of an energy converting
processes. This is because the dissipated energy (the entropy production) is
explicitly formulated in this theory in terms of fluxes and forces (gradients in,
e.g., pressure, temperature and composition). In this chapter, we explain how
to find the state of minimum entropy production using optimal control the-
ory.4 The trivial minimum of zero entropy production is only of theoretical
interest, as the processes in the industry always occur in a finite amount of
time and in process equipment of finite size. Optimal control theory is the
ideal tool to identify the most efficient operation of process equipment, where
constraints in operating time or equipment size are taken into account.

The issue of process operation with minimum entropy production, was first
raised from the mechanical-engineering point of view by Bejan.5 Among
physicists, the school of finite-time thermodynamics has been pioneering in
research of these issues, using the method of endoreversible machines.6–8

This chapter will present insight gained from work on entropy production
minimization from a chemical engineering point of view.9,10 We shall present
the hypotheses of Equipartition of Entropy Production (EoEP) and Equiparti-
tion of Forces (EoF) as possible approximations to this most energy-efficient
state of operation of an industrial process unit (Section 13.5.1).8,11–15 EoEP has
also been found to apply in nature.16 So-called ‘‘highways in state space’’ for
states with minimum entropy production have been observed in chemical
reactors17–20 and in distillation columns.20 This concept will be further dis-
cussed in Section 13.5.2. Entropy production minimization has been applied
to distillation columns,6,21,22 exothermic and endothermic reactors,1,12,17,23–28

heat exchangers29,30 and even to processes for paper production.31 Based on
the experience from these works, guidelines to energy-efficient design and
operation can be formulated, as we will show in Section 13.5.3. Underlying
these results is the fact there exist a state of minimum entropy production
which can serve as an aim for energy-efficient design and operation.

We first explain how the entropy production is related to energy efficiency
(Section 13.2) and illustrate this with a simple example (Section 13.3). The
systematic methodology to find the state of minimum entropy production
with optimal-control theory is then given in Section 13.4. Important results
for states with minimum entropy production gained over the last decades
will be presented in Section 13.5 before concluding remarks and suggestions
for future work will be given in Section 13.6.

13.2 Minimum Entropy Production and Energy
Efficiency

The first, ZI, and the second, ZII, law efficiencies are defined in thermo-
dynamics as:20

ZI¼�
w
q

and ZII¼

w
wid

if wid o 0

wid

w
if wid 4 0

:

8
><

>:
(13:1)
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Here, q is heat added to the system, w is the work done on the system and
subscript id refers to the ideal (reversible) limit. The process can either be
work-producing (w and wido0) or work-consuming (w and wid40). The
first-law efficiency gives a useful estimate of the ability of a process to
produce work and can be computed from the energy balance only. In some
cases, however, it gives a misleading picture of energy efficiency. Consider,
for instance, a perfect Carnot heat engine, which uses the temperature
difference between a hot thermal reservoir at temperature, Th and a cold
reservoir at temperature Tc to produce work. By substituting w and q from
the Carnot cycle, one obtains, ZI¼ 1�Tc/Th. In the case where Th - Tc, the
first-law efficiency goes to zero and the formula does hence not make
sense. The second-law efficiency is related to the thermodynamic limit of a
process, and gives a picture of how close to an ideal performance a given
technology is. Since the Carnot engine is a reversible engine, its second-
law efficiency is unity for all values of Th and Tc. For real engines, the ef-
ficiency is less than one and measures the distance away from this
ideal limit.

By energy efficiency we will in this chapter use the second-law efficiency.
The second law of thermodynamics says that all irreversible processes pro-
duce entropy. All real processes are irreversible, and the entropy production
is an indicator of how much of the work put into or extracted from the
process dissipates to heat through irreversibilities. The difference between
the real and the ideal work is called the lost work, and is related to the total
entropy production for a process, (dS/dt)irr, through the Gouy–Stodola
theorem:

wlost ¼w� wid¼T0
dS
dt

� �

irr
: (13:2)

Here, T0 is the temperature of the environment and wlost is the lost work,
which is always positive according to the second law. The second-law effi-
ciency then becomes:

ZII¼

wid þ T0ðdS=dtÞirr
wid

if wid o 0

wid

wid þ T0ðdS=dtÞirr
if wid 4 0

8
>><

>>:
: (13:3)

We observe from the last equation that when the ideal work is fixed, mini-
mization of the entropy production is equivalent to maximization of the
second-law efficiency. For many process units, it is more practical to use
other constraints. In a chemical reactor, or in a distillation column, the
amount and quality of the produced quantity are relevant constraints. This
means that the equivalence between minimization of the entropy production
and maximization of the second-law efficiency is lost.8,20 Eqn (13.2), how-
ever, reveals that the total entropy production is the true source of irrever-
sibilities, and is therefore the natural choice as objective function for
minimization and measure of energy efficiency.
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13.3 The Entropy Production in a Simple Expansion
Process

A second-law analysis offers a systematic way to evaluate and compare
technologies. At the center of such an analysis is the total entropy pro-
duction, which can have contributions from heat and mass transfer, flow,
chemical reactions and other transport phenomena. To obtain some intu-
ition of what entropy production is, and why it should be minimized, we will
first visit the well-known example of isothermal expansion of an ideal gas
(Figure 13.1).

A container is filled with n moles of an ideal gas with pressure, P(t),
temperature, T0, and volume, V(t), which depends on the time, t. The con-
tainer is equipped with a piston and the gas expands isothermally against an
external pressure, Pext. Heat, dq, is added to the gas and the work, dw, is
done one the gas during a time interval, dt. In standard text-books on
thermodynamics, this process is reversible. In that case, the external pres-
sure equals the pressure inside the container at all times, and the process
occurs infinitely slowly. The work produced by the gas is then given by minus
the area under the solid lines in Figure 13.2. This is the ideal work, i.e., the
maximum work this process can produce with the given conditions (the
reversible process). Since all real processes occur in a finite duration of time,
they produce less work than wid. We assume that the external pressure can
be used to control the movement of the piston, and that the volume and
pressure of the chamber follow the differential equations:

dV
dt
¼� f

P2 ðPext � PÞ , dP
dt
¼ f

nRT0
ðPext � PÞ: (13:4)

dw

dq

Ideal gas
p(t), T0 , V(t), N

pext(t), T0

Figure 13.1 Heat is supplied to an ideal gas to perform work through a piston in an
isothermal expansion process.
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Here, f is a constant which describes the friction between the piston and the
container walls, n is the number of moles of gas and R is the universal gas
constant. Consider first a step-wise process where the gas expands in K steps,
with the external pressure being constant in each step, but changing be-
tween the steps. The work produced with the optimal choice of external
pressure and expansion time for each step, is given by minus the shaded areas
in Figures 13.2 a to d for 1, 3, 5, and 15 steps, respectively. The ideal work is
equal to minus the area below the solid lines. The lost work equals the area
between the shaded area and the solid line. Since we know the differential
equation describing the motion of the piston, we can find the total entropy
production.20

For the step-wise process, the total entropy production times T0, is equal
to the lost work in the process, confirming the Gouy–Stodola theorem (eqn
(13.2)). Details can be found in ref. 20. In this example, the entropy pro-
duction is the source of the lost work, arising from friction between the
piston and the container wall. We are not restricted to step-wise processes in
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Figure 13.2 Optimal external pressure as function of volume. The grey rectangles
represent the step-wise processes which give the smallest entropy
production with 1 (a), 3 (b), 5 (c) and 15 (d) steps. The reversible
process is given by the solid lines and the pressure which gives
minimum entropy production by the dashed lines. Along the y-axis,
10 bar¼ 1 MPa.
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general, and the interesting question is how we can control the external
pressure to produce as little entropy as possible during a predefined time
interval. This problem can be formulated as an optimal-control problem and
solved analytically for the process to give its state of minimum entropy pro-
duction.20 The resulting pressure versus volume curves (dashed lines in
Figure 13.2) are always below the reversible limit (solid lines). Moreover, the
optimal configuration in this process is characterized by constant entropy
production.

Reversible processes are hypothetical limiting processes, not achievable in
practice. The state of minimum entropy production represents therefore a
more practical limit for the energy efficiency, since constraints in time and/or
space are taken into account. By comparing Figures 13.2 a to d, we see that as
the number of steps increases, the optimal configuration becomes more and
more similar to the state of minimum entropy production (dashed lines). In
the limit of infinitely many steps, the optimal choice of external pressures
equals the solution obtained from optimal control theory.

For more complicated processes than this example, concepts such as
work, ideal work and lost work are less intuitive. Consider, for instance, a
chemical reactor. The chemical reactor either consumes work or produces
work, depending on whether heat is added (endothermic reactor) or
removed (exothermic reactor). It can be shown that to minimize the work
required, or to maximize the work produced in the chemical reactor is
equivalent to minimization of the entropy production with fixed inlet and
outlet streams.20 The main purpose of chemical reactors is, of course, to
produce chemicals. Nevertheless, when less entropy is produced in the re-
actor, more work is available for other parts of the process, and the process
plant can be operated with higher energy efficiency.

13.4 Identification of the State of Minimum Entropy
Production

For most processes, the state of minimum entropy production cannot be
found in analytical terms; it must be found numerically. In the chemical
process industry, chemical reactors, heat exchangers and distillation col-
umns are central process units.1,6,17,18,20,27,28,30,32–35 We give an overview of
the insight gained from entropy-production-minimization studies of these
units. The chemical reactor, with its highly non-linear physical processes
will be our main example. Experience from distillation columns and heat
exchangers will also be discussed.

The state with minimum entropy production can be determined following
the systematic procedure below:

1. Formulate the balance equations for mass, energy and momentum of
the process.

2. Derive a consistent local entropy production based on the equations
from Step 1 and find proper flux equations from the entropy production.
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3. Formulate the optimal control problem and the boundary conditions.
4. Find the state of minimum entropy production numerically by:

a. Creating a good initial guess, e.g., by a numerical optimization.
b. Solving the boundary value problem stated in Step 3.

The procedure can be used for any process unit, but we will use the chemical
reactor as example, which can be described by a system of ordinary differ-
ential equations. The example is then restricted to one dimension which
typically is either the spatial axis or the time axis.

13.4.1 Step 1: Conservation Equations of the Process Unit

Chemical reactors often have a tubular design similar to the sketch in
Figure 13.3, where a mixture of, for instance, gases flows in the positive
z-direction through a bed of catalyst pellets. The gases typically react at the
surface of the catalyst and form the desired product. The diameter of the tube is
D, the length is L and xj is the degree of reaction j. Heat is transferred from the
outside of the chemical reactor at a temperature, Ta(z), where subscript a means
ambient. Due to strong turbulence in the catalyst bed, the mixture is well mixed
perpendicular to the flow direction. A one-dimensional plug-flow model is then
a sufficient description. The mole balances, (eqn (13.5)), are linearly dependent
and can be redefined in terms of the degree of reaction (eqn (13.6)).
A mathematical model of the process unit should be given in terms of balance
equations for moles/mass, energy and momentum, which at steady-state are:

dFi

dz
¼OrB

XNr

j¼ 1

nj;irj i¼ 1; . . . ;Nc; (13:5)

dxj

dz
¼ OrB

F0
A

rj j¼ 1; . . . ;Nr; (13:6)

dT
dz
¼

pDJq þ OrB

XNr

j

½rjð�DrHjÞ�

XNc

i

½FiCp;i�
; (13:7)

z

Ta(z)

T(z)

P(z)

ηj(z)

0 L

D

Figure 13.3 Illustration of the chemical reactor.
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dP
dz
¼� 150m

D2
k

ð1� EÞ2

E3 þ 1:75r0v0

Dk

1� E
E3

� �
v; (13:8)

where the degree of reaction is defined as:

xj ¼
moles of component A consumed by reaction j

moles of component A at the inlet
: (13:9)

Here, Fi is the molar flow rate of component i, O is the cross-sectional area of
the chemical reactor, rB is the catalyst density, rj is the rate of reaction j, and nj,i

is the stoichiometric coefficient of component i in reaction j. Nr is the number
of reactions, Nc the number of components, and superscript 0 refers to the
inlet. Furthermore, Jq is the heat flux through the reactor wall, DrHj is the
enthalpy of reaction j and Cp,i is the heat capacity of component i. In eqn (13.8),
m is the gas viscosity, r0 is the gas density at the inlet, v0 is the gas velocity at the
inlet, v is the gas velocity, E is the porosity and Dk the pellet diameter. Com-
ponent A is a reference component which participates in all the reactions.
A more detailed explanation of these equations can be found in ref. 20.

13.4.2 Step 2: Deriving the Local Entropy Production

De Groot and Mazur derived a general expression for the local entropy
production.36 Models are, however, often averaged in space and time, or
formulated with a different set of variables, which means that the expression
for the local entropy production changes with the model. We show how to
derive the local entropy production for the example above using an approach
which is also applicable to other cases. The starting point for the derivation
is the total entropy balance at steady-state:

dS
dt

� �

irr
¼

XNc

i¼ 1

FiSi

 !
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�
XNc
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FiSi

 !
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�
ðL

0
pD
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d
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i¼ 1

FiSi

dz
� pD

Jq
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0
BBBB@

1
CCCCA

dz¼
ðL

0
sdz:

(13:10)

Here, Si is the partial molar entropy of component i. The left-hand side is the
total entropy production, which equals the entropy flow out (Term 1) minus
the entropy flow in (Term 2) minus a term from the entropy transferred
across the reactor wall (Term 3). From this, we recognize the local entropy
production, s, inside the integral. Next, the total differential of the entropy
flow can be used to find the expression for s:

s¼
XNc

i¼ 1

Fi
@Si

@T

� �

P;Fi

dT
dz
þ Fi

@Si

@P

� �

T ;Fi

dP
dz
þ @FiSi

@Fi

� �

T ;P;Fj a i

dFi

dz

" #
� pD

Jq

Ta
;

(13:11)
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where S¼
PNc

i¼ 1
FiSi is the total entropy. We assume ideal-gas law:

Si¼ Si;0 � R ln
P
P0

xi

� �
: (13:12)

Here, P0 is the reference pressure and Si,0 the reference partial molar entropy
of component i. This gives the following partial derivatives of the total
entropy with respect to temperature, pressure and molar flow rates:
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(13:13)

By using eqn (13.5), (13.7), (13.8), and (13.13) in eqn (13.11), we obtain after
rearrangements and simplifications (more details can be found in ref. 20):

s¼OrB

XNr

j¼ 1

rj �
DrGj

T

� �� �
þ pDJqD

1
T
þ Ov � 1

T
dP
dz

� �
: (13:14)

Here, DrGj is the Gibbs energy of reaction j and D 1/T¼ 1/T� 1/Ta is the
inverse temperature difference across the reactor wall. The first term on the
right-hand side is the entropy produced by reactions, the second term is
called the thermal entropy production and the third term is entropy pro-
duced by pressure gradients or viscous flow.

13.4.3 Step 3: The Optimal Control Theory Formulation

The previous two subsections contain the necessary information to formu-
late the state of minimum entropy production as an optimal-control prob-
lem following Pontryagin et al.4,37 The advantage of optimal control theory
compared to a purely numerical optimization,33,38 is that optimal control
theory gives the necessary conditions for a minimum. This means that a
minimum can be found robustly and definitely with higher accuracy. We
follow standard notation in optimal control theory,37 and define a set of state
variables, y(z). These are governed by differential equations (eqn (13.6) to
(13.8)), which restrict the trajectories over which the system can evolve.
Furthermore, we have one control variable, namely the temperature outside
the chemical reactor at z, Ta(z). We now want to minimize the total entropy
produced in the chemical reactor (eqn (13.10)), with the functional argument
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given by eqn (13.14). Common in optimal control theory is to introduce a
Hamiltonian:

H ¼ sþ lT
dT
dz
þ lP

dP
dz
þ
XNr

j¼ 1

lxj

dxj

dz
: (13:15)

Here, l(z), are Lagrange multipliers. The necessary conditions for a min-
imum are then given by Pontryagins’ minimum principle:4,37

dT
dz
¼ dH

dlT

dlT

dz
¼� dH

dT

dxj

dz
¼ dH

dlxj

dlxj

dz
¼� dH

dxj
j¼ 1; . . . ;Nr:

dP
dz
¼ dH

dlP

dlP

dz
¼� dH

dP

(13:16)

In addition, when there are no constraints on the control variables, the
derivative of the Hamiltonian with respect to the control variables should
be zero:

dH
dTa
¼ 0 for all z 2 ½0; L�: (13:17)

This algebraic restriction provides an expression for the optimal tempera-
ture outside the chemical-reactor wall as function of the state variables and
the multiplier functions. If the Hamiltonian does not depend explicitly on z,
it is autonomous. In such cases the Hamiltonian is constant along z. For an
autonomous system, the Hamiltonian is zero at the optimal reactor length. If
state variables are free at the end points of the reactor, and the reactor length
is fixed, it means that the multiplier functions at the end of the reactor must
be zero. The boundary conditions for the optimal control problem are
summarized in Table 13.1.

13.4.4 Step 4: Numerical Solution of the Problem

The optimal control theory formulation for the chemical reactor is difficult
to solve numerically, since it forms a coupled system of non-linear differ-
ential equations where boundary conditions are given at both ends. It has,
however, successfully been solved, first by Johannessen and Kjelstrup.27

Table 13.1 Possible boundary conditions for the optimal control problem.

Description H(z) x(z) at ends l(z)

Fixed reactor length, fixed end-state Constant Fixed (—)
Fixed reactor length, free end-state Constant (—) 0
Free reactor length, fixed end-state 0 Fixed (—)
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The algorithm they used has subsequently been applied to many systems.
In these works, the boundary-value problem was preceded by a numerical
optimization by sequential quadratic programming on a relatively small grid
(40 non-uniform grid points) to provide an initial guess for the boundary-
value problem solver.20,33 The boundary-value problem was then solved with
a collocation method. The computational time of the cases solved in lit-
erature is today in the order of seconds/minutes.1,17,18,27,28

13.5 Key Results from the Literature

13.5.1 Equipartition of the Entropy Production and Forces

Johannessen and Kjelstrup formulated the hypothesis for the state of min-
imum entropy production in 2005.17 The hypothesis was put in a wider context
later.18 It reads:

Equipartition of entropy production, but also equipartition of forces, are good
approximations to the state of minimum entropy production in the parts of an
optimally controlled system that have sufficient freedom to equilibrate internally.

When all driving forces are controlled, equipartition of entropy production
can be proven mathematically.18,39 The hypothesis has, however, been found
to apply also when the number of driving forces is larger than the number of
controlled variables. The hypothesis has also been found to apply to pro-
cesses which are intrinsically non-linear, e.g., chemical reactions and ra-
diative heat transfer.1 It is only possible to prove equipartition of entropy
production (EoEP) in a strict mathematical sense for linear processes,18,39 as
we will see below, or for special cases of non-linear processes.7 The strict
conditions for the mathematical proof are therefore rather limiting for ap-
plication of the hypothesis, as many transport phenomena are non-linear,
with chemical reactions and radiative heat transfer as important examples.
A final answer to the surprising fact that EoEP is observed in large parts of
chemical reactors being far from equilibrium has thus not been found. For
this reason, we recapitulate the proof. To show when EoEP and EoF hold
strictly mathematically, we first reformulate the optimal control problem for
the chemical reactor with one reaction in terms of vectors and matrices
denoted by bold letters/symbols. We have the state variable vector,
y¼ [T,P,x1]T, the control vector, u¼ [Ta], the fluxes, J and the forces, x:

Jðy;u; xðy;uÞÞ¼ Jq; v; r1
� �T and xðy;uÞ¼ 1

T
� 1

Ta

� �
; � 1

T
dP
dz

� �
;
�DrG1

T

� �� �T

:

(13:18)

The balance equations can now be written in a compact form:

dy
dz
¼AðyÞCJðy;u; xðy;uÞÞ; (13:19)

Entropy Production Minimization with Optimal Control Theory 281



where A and C for the chemical reactor are the following coefficient matrices:

A¼

1
XNc

i¼ 1

½FiCp;i�
0 �DrH1

XNc

i¼ 1
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0 � f
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0 0
1
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0

BBBBBBBB@

1
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0 O 0
0 0 OrB

0
@

1
A: (13:20)

The Hamiltonian is then:

H(y, u, l)¼ x(y, u)TCJ(y, u, x(y, u)) þ kTA(y)CJ(y, u, x(y, u)). (13.21)

Here, the first term corresponds to the local entropy production, which is a
product of fluxes and forces according to classical non-equilibrium ther-
modynamics. Many models fit into the general formulation above, for in-
stance heat exchangers, distillation columns and membrane processes. If we
assume that we can control all the forces independently, the necessary
conditions for a minimum (eqn (13.16)) become:

@H
@x

� �

y;k
¼ðCJðy; xÞÞT þ ðxT þ kTAðyÞÞ @ðCJðy; xÞÞ

@x

� �
¼ 0: (13:22)

Solving eqn (13.22) for kTA and introducing this into the Hamiltonian shows,
for an autonomous problem, that the following quantity should be constant
through the process:

Hs¼�ðCJðy; xÞÞT @ðCJðy; xÞÞ
@x

� ��1

ðCJðy; xÞÞ: (13:23)

Where Hs is called the Spirkl–Ries quantity39 because Spirkl and Ries first
proved the above result. It has no simple meaning unless the force–flux
relations are linear. Then, J(x,y)¼ L(y)x, and the derivative in the Spirkl–Ries
constant is CL(y). We can then show that the Spirkl–Ries quantity reduces to
the local entropy production, and EoEP is exactly valid. Next, if the con-
ductivity matrix L, and the coefficient matrix, A, do not depend on y, i.e., are
constant, equipartition of entropy production is the same as equipartition of
forces. It is evident from the derivations above that the mathematical con-
ditions for EoEP are strict, and even stricter for EoF. But the hypothesis by
Johannessen and Kjelstrup applies to far more general cases. Wilhelmsen
et al.1 studied a chemical reactor with highly non-linear reactions and a
radiative heat flux through the reactor-wall, finding EoEP and EoF as good
approximations to the state of minimum entropy production (Figure 13.4).

Figure 13.4 shows how the entropy production varies through the steam
reforming reactor for production of hydrogen, in cases where the heat flux
has contributions from convection and radiation. The entropy production of
the reference case (solid line), where the entropy production is not min-
imum, is less constant inside the reactor than cases which correspond to
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minima in the total entropy production, except near the end-points. The
dashed and dash-dotted lines represent cases with different boundary con-
ditions, but they all follow EoEP well. Clearly EoEP is not exactly obeyed, but
it gives a good approximation to the state of minimum entropy production,
confirming the hypothesis.

13.5.2 Highways in State Space

‘‘State space’’ means the space spanned by state variables such as the tem-
perature, pressure and degrees of conversion. For the chemical reactor, the
relation between the degree of conversion, x, and the temperature in the
process unit at minimum entropy production has been seen to follow a band
in state space. As the solution to the optimization problem is obtained with
very different boundary conditions, one cannot expect that all results lie on a
line. It is thus surprising that the results are located at a band of very limited
extension in state space. This band was called a highway in state space,17,18

resembling a path for efficient driving of cars (efficient process operation).
One such highway is illustrated by the thick bottom line in Figure 13.5.
In addition, the solutions with minimum entropy production are crowding
in on the highway in state space, just as cars crowd in on a real highway. The
highway represents the most energy-efficient way to travel a long distance in
state space. Numerical evidence for ‘‘highways’’ in state space have been
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Figure 13.4 The local entropy production for the reference case (solid line), the
optimal cases with fixed T0 (dashed line) and free T0 (dash-dot line).
Along the x-axis, the label is z/m and along the y-axis, the label is
J/K�1 �m � s�1.
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found for endothermic and exothermic chemical reactors and diabatic dis-
tillation columns with minimum entropy production.20 Knowledge about
highways is useful for energy-efficient operation, as the highways show how
to run processes energy efficiently, even with changing inlet conditions.

How much of a solution that is covered by the highway, depends on the
distance of the starting point from the highway, as illustrated by the lines
crowding in on the highway in Figure 13.5. The existence of the highway is
non-trivial, and it has some peculiar properties. Along the highway, the
entropy production is approximately constant for process intensities which
are not too high. This means that EoEP is a good approximation to the state of
minimum entropy production along the highway.

By investigating the origin of contributions to the entropy production,
more insight can be gained. For the solid lines, which crowd into the
highway from left to right in Figure 13.5, the local entropy production is
dominated by contributions from chemical reactions (see below eqn (13.14)
for explanation), and the chemical reactor can be said to operate in a reaction
mode. Along the highway, however, the thermal contributions dominate
the local entropy production, and the chemical reactor can be said to be in a
heat exchange mode. As discussed in previous work,19 the highway represents
the optimal solution for over 90 % of the reactor length for all the cases

Figure 13.5 The optimal temperature profiles as functions of degree of reaction for
several inlet conditions. The highway is exemplified by the thick bottom
line.
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shown in Figure 13.5, even if the extent of the highway is rather limited in
state space.

Not all systems have highways. The discussion so far has been restricted to
one-dimensional plug-flow models. Whether this concept also applies to
more dimensions, remains to be seen. For some systems, such as heat ex-
changers, no highways in state space have been found. In chemical reactors,
the highway seems to be associated with a trade-off between thermal and
reactive contributions to the local entropy production. This is confirmed by
the ratios between the thermodynamic fluxes along the highway as discussed
by Wilhelmsen.1 The systems where highways have been observed have in
common that local equilibrium compositions exist. The equilibrium com-
positions relate to a chemical reaction, such as in the chemical reactors,
or to phase equilibria, such as in the distillation column. The main contri-
butions to irreversible phenomena in heat exchangers are thermal and
viscous entropy production,30 where the viscous entropy production is
much fixed by the flow rate. The origin of the highway is still unaccounted
for. Moreover, is it possible to formulate the highway in mathematical
terms? Degenerate classes of optimal control theory solutions, called turn-
pikes, have similar properties as the highway and may help elucidate the
concept.40

13.5.3 Rules of Thumb for Energy-efficient Process Design

The discussions in the previous sections, about EoF, EoEP and highways in
state space, indicate that solutions with minimum entropy productions have
some common properties. These properties can now be exploited to give
guidance to design of process equipment which leads to energy-efficient
operation. We have seen that the contribution to the entropy production
from heat transfer is often the largest source of dissipation, both in chemical
reactors, heat exchangers and distillation columns.1,17,22,30,32,34,41 The first
step in a strategy to increase the energy efficiency in these systems should
thus be to make the heat transfer as efficient as possible. This can be linked
to the statement made by Leites et al.42 in their first commandment: The
driving force of a process must approach zero at all points in a reactor, at all
times. A thermal driving force can be made small by increasing the heat
transfer coefficients or the surface area. The interesting question beyond
that becomes: what can be done, once the heat transfer has been made as
efficient as possible?

In all optimal reactor solutions presented in the literature,1,17–19,27,28 the
optimal solutions enter first a reaction mode at the inlet, before it proceeds
into a heat transfer mode of operation in the central part (See Figure 13.5).

It follows for single tubular reactors of length L, that a (close to) adiabatic
inlet section, L1, is an advantage for the total entropy production. Further-
more, the next part, L2, can best be characterized by equipartition of the
entropy production, in some cases also by equipartition of the forces. In
other words, finding the optimal solution for a system, translates into a
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procedure where one considers a scheme with separate units, like that il-
lustrated in Figure 13.6. The reactor part of the system consists of two
subunits, an adiabatic pre-reactor and a tubular reactor with heat transfer.
To complete the system analysis, a heat exchanger is added in front of the
adiabatic reactor as in Scheme 1. This system can now be used to account for
the trade-off between the contributions to the entropy production, including
also the contribution to the entropy production from heat exchange upfront
of the reactor system.

The purpose of the heat exchanger (the first item in Scheme 1) is to bring
the reacting mixture to the optimal initial temperature. The purpose of the
adiabatic reactor, the next unit, is to operate the chemical reactor in reaction
mode. Whether it pays, in terms of entropy production, to use Scheme 1 with
the reactor in the heat-transfer mode of operation, or to transfer to more
discrete units, as illustrated in Scheme 2 in Figure 13.6, depends on
the relative values of the heat transfer coefficients. When the heat-transfer
coefficients across the reactor tube wall are very low, it is better to use
dedicated heat exchangers for heat transfer. It will then be beneficial to split
the operation in heat-transfer mode (taken care of by the tubular reactor in
Scheme 1) by separate sets of one or more adiabatic reactor stages with
interstage heating/cooling, as illustrated in Scheme 2 of Figure 13.6. Two or
more heat exchanger–adiabatic reactor pairs may be cost effective and en-
ergy efficient as well. This shows that a complex optimal control problem can
be reduced, if not avoided, and that the process of finding an energy-efficient
reactor design can be simplified significantly. As an example, de Koeijer
et al. found the second-law optimal path of a four-bed SO2 converter with
intercoolers.33

Rules of thumb for energy-efficient design should also be devised for other
process equipment to make the accumulated insight from research on en-
tropy production minimization easily accessible to the industry.

Heat exchanger

Scheme 1:

Scheme 2:

Adiabatic reactor Tubular reactor

Heat exchanger Adiabatic reactor Heat exchanger Adiabatic reactor

Figure 13.6 Process configurations for energy-efficient reactor design.
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13.6 Conclusions and Future Challenges
We discussed the link between the entropy production of a process and
the second-law efficiency. The Gouy–Stodola theorem, which contains the
entropy production as the fundamental source of energy dissipation, was
explained. Next, we presented an approach to systematically formulate and
find the state of minimum entropy production with optimal control theory,
using a tubular chemical reactor as example.

Important results and insight about states with minimum entropy
production from the last decades show how energy-efficient operation and
design in the process industry can be obtained.

– Equipartition of Forces (EoF) and Equipartition of Entropy Production
(EoEP) cannot be proven in a strict mathematical sense, but are for
most cases very good approximations to the state of minimum entropy
production, even for highly non-linear processes.

– Some systems have states with minimum entropy production which
follow a highway in state space. The entropy production is relatively
constant along the highway. The highway has so far been observed only
for systems where at least one state-variable has the possibility to
equilibrate.

– Entropy production minimization can give rules of thumb for energy-
efficient design for chemical reactor systems.

Important future work within the field of entropy production minimization
will be to further clarify why and when EoF and EoEP are good approxi-
mations to this state of operation. The reason why highways emerge
should be found. Highly non-linear examples are needed for these in-
vestigations. Moreover, the examples should be followed by a mathemat-
ical analysis to gain further insight into the theorems. Rules of thumb
should be developed for systems other than chemical reactors, such as
absorption and membrane processes. Properties of states with minimum
entropy production have only been discussed for one-dimensional optimal
control problems. Mathematical tools exist that can handle minima con-
strained also by partial differential equations. More complex systems,
beyond the one-dimensional, should be investigated. Such systems may
have different properties than we have seen so far for one-dimensional
averaged systems.
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CHAPTER 14

Mesoscopic Non-equilibrium
Thermodynamics
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14.1 Introduction
Systems in equilibrium strictly follow the laws of thermodynamics. Despite
the disordered motion of large numbers of molecules, the systems can be
characterized by a few variables accounting for average properties. Ther-
modynamics also applies to systems outside equilibrium, in the local
equilibrium regime in which the volume elements are considered small
thermodynamic systems in equilibrium, as described in Chapter 4. This
hypothesis is basic in the classical formulation of non-equilibrium ther-
modynamics,1 which is restricted to the linear domain of fluxes and ther-
modynamic forces.

In the mesoscale domain, the limitation to linear laws is removed and
non-linear kinetic laws are obtained. In this chapter we discuss the case of
an activated chemical reaction, with and without fluctuations, and the re-
laxation of dipole orientation in an electric field. The methodology is rele-
vant for Chapters 15 and 16. Chapter 15 discusses the application to
nucleation. Chapter 16 discusses the application to biological systems and
derives the non-linear kinetic laws characteristic of biochemical processes
for enzyme catalysis through the Michaelis–Menten mechanism, energy
transduction in proteins and the stretching of DNA molecules. Mesososcopic
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non-equilibrium thermodynamics provides a general framework for the
study of small-scale biological systems far from equilibrium.

An analysis based on the solution of the Boltzmann equation for reactive
gases by means of a Chapman–Enskog expansion enables one to describe
the transition towards non-equilibrium states.2 The zeroth-order term in the
expansion is the Gaussian equilibrium distribution. The first-order term is a
function of the difference between the chemical potentials, the affinity, and
temperatures of the initial and final states. It turns out that for large values
of the affinity, when the reaction rate is given in terms of fugacity or the law
of mass action, the entropy production is given by the product of the re-
action rate and the Gibbs energy of the reaction. This is shown in the paper
by Ross and Mazur,2 where they show that the despite these deviations in
activated processes the system is in local equilibrium.

How far these forces can move the system away from equilibrium depends
not only on the values of the force but also on the nature of the irreversible
process. For some transport processes, such as heat conduction or mass
diffusion, local equilibrium, see Chapter 4, typically holds even when the
systems are subjected to large or even very large gradients. Experiments
performed with a nano-motor moving along a carbon nano-tube, under the
influence of a temperature difference generated by an electrical current,
show that, despite the very large gradients coming into play, of the order of
1 K �nm�1, the relation between force and gradient is still linear.3 This lin-
earity is also observed in simulations on the orientation of non-polar mol-
ecules induced by a temperature gradient.4 In these cases, linearity does not
necessarily imply closeness to equilibrium.

On the other hand, for activated processes such as chemical reactions,
nucleation or adsorption processes, in which the rates are given by Arrhe-
nius laws, linearity breaks down at very small values of the affinity which
seems to imply that local equilibrium is lost almost immediately. However,
Ross and Mazur showed that the dynamics associated to activated processes
is compatible with local equilibrium.2

For an equilibrium system, the probability distribution of the relevant
variables is related to the thermodynamic potential, which in turns coincides
with the minimum work needed to establish the state of the system.5 In far-
from-equilibrium situations, however, the probability must be determined
from master equations or kinetic equations of the Fokker–Planck type.6 The
latter has the form of a diffusion equation for the probability, valid when the
stochastic process is Gaussian. For this type of noise, the stochastic variable
varies in a small amount for short time intervals, as in a diffusion process.
The connection between mesoscopic dynamics and thermodynamics7 can be
established through the derivation of the Fokker–Planck equation from a
diffusion process of the probability compatible with the statistical formu-
lation of the second law.8 This new approach overcomes the restriction of
linearity inherent to non-equilibrium thermodynamics.9

Non-equilibrium thermodynamics provides a theoretical framework to
explain the collective behaviour of systems out of equilibrium. It is based on
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the assumption that equilibrium thermodynamic relations hold locally,
together with the conservation laws for the corresponding physical quan-
tities. Such an approach, based on the local use of Gibbs equality, allows
expressing the local entropy production, introduced in Section 1.2 in
Chapter 1, of a system in terms of a product sum of the conjugate thermo-
dynamic fluxes and forces. Fluxes are then considered as a linear combin-
ation of all the relevant forces that are compatible by symmetry.

Non-equilibrium thermodynamics is then restricted to the linear response
domain in which the response of the system is linear in the perturbation
exerted to remove it from equilibrium. Moreover, this theory yields a
macroscopic description in terms of average values not accounting for the
presence of fluctuations. Whereas the linear approximation holds for
transport processes such as heat conduction and mass diffusion, even in the
presence of large gradients, it is not appropriate to describe activated pro-
cesses in which the system enters rapidly in the non-linear domain. Small
systems, such as single molecules in a thermal bath, in which fluctuations
and non-linearities can be very important, are beyond the scope of this
theory. Nonetheless, it is possible to build on the well-established formu-
lation of non-equilibrium thermodynamics to provide a thermodynamic
basis to macroscopic non-linear kinetic processes.

In this Chapter we will describe the foundations of mesoscopic non-
equilibrium thermodynamics (MNET). In Section 14.2 we analyse the theo-
retical foundations of MNET and how it can be used to describe the kinetics
of mesoscopic systems. Section 14.3 will describe in detail the use of MNET
to study chemical kinetics on thermodynamically consistent grounds. This
paradigmatic example is illustrative because one can discuss all the con-
ceptual key aspects of MNET and at the same time it is relevant, since
chemical kinetics deviates significantly from linear laws assumed in non-
equilibrium thermodynamics. We will also emphasize the analogy between
the thermodynamic and kinetic perspectives that share a common under-
lying thermodynamic background on which MNET is based. Section 14.4
discusses a qualitatively different system described by MNET to emphasize
the generality of the framework. Section 14.5 considers how to include
thermal fluctuations in the framework of MNET, such a contribution is
particularly relevant when dealing with mesoscopic systems. The chapter
shows that activated processes are not incompatible with a formulation of
the fluctuation–dissipation theorem based on local equilibrium, showing
how MNET can shed light in fundamental questions associated with non-
equilibrium Statistical Physics. The chapter closes with a conclusion Section.

14.2 Statistical Non-equilibrium Thermodynamics of
Mesoscopic Systems

Non-equilibrium thermodynamics assumes local equilibrium, i.e., that
thermodynamic variables defined locally in space can be interpreted as in
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global thermodynamic equilibrium, and that the entropy production of any
isolated system is always non-negative, see Chapter 4.

In standard non-equilibrium thermodynamics local variables are defined
as a function of space and time. Mesoscopic non-equilibrium thermo-
dynamics assumes an extended space that also accounts for additional in-
ternal variations of the system. This additional variable space can account,
e.g., for conformational states a large molecule can go through, as shown in
Figure 14a, or intermediate states when a chemical reaction takes place, or
the orientation of an asymmetric molecule. One then includes these add-
itional states into the phase space that the system explores and assumes
that the principles on which non-equilibrium thermodynamics is based
apply now also to this new extended space. This approach naturally
accounts on the same footing for the fluxes of the relevant variables (e.g.,
mass, momentum or energy) in real space coupled with processes in which
the species, at a given position, can change their internal configuration.
Mesoscopic non-equilibrium thermodynamics assumes local equilibrium
for these additional variables and that they relax in shorter time scales.
Such an approach offers a natural means to develop a thermodynamically
consistent framework for the dynamics of small systems at a
mesoscopic scale.

At the mesoscopic level, the state of the system can be characterized, in
general, through the knowledge of the probability density of the relevant
coordinate, P(g,t), which depends on g and the time t, instead of the local
spatial densities or concentrations as done in standard non-equilibrium
thermodynamics. We use the coordinate g to describe the non-equilibrated
degrees of freedom that characterize the different mesoscopic states or
configurations in which the system of interest can be found. Accordingly, the
bounds of this coordinate will depend on the nature of the internal degrees
of freedom. They can refer, e.g., to the velocity of a particle, the orientation of
a spin, the size of a macromolecule; and in general any coordinate whose
value defines the state of the system in phase space. For the sake of brevity,
the relevant formulae in this section will not specify which non-internal
variables are kept constant.

If we want to put forward a statistical description, a natural starting point
is the statistical expression of the entropy of the system in terms of its
probability, P(g,t), which can be expressed in terms of the Gibbs entropy
postulate1,10

S¼ Seq � kB

ð
Pðg; tÞ ln

Pðg; tÞ
PeqðgÞ

dg; (14:1)

where Seq denotes the entropy when the system in g-space is in equilibrium,
and kB stands for Boltzmann constant. The equilibrium probability density,
Peq(g), can be related to the minimum reversible work required to create that
state5 through the expression

Peq¼ P0;eqexpð�bDWðgÞÞ; (14:2)
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where P0,eq stands for the equilibrium probability distribution at a reference
configuration with respect to which the minimum reversible work is com-
puted, and b¼ 1/kBT corresponds to the relevant inverse thermal energy,
where T stands for the temperature of the system. Generally, the minimum
work can in general be expressed as

DW ¼
X

i

yiDYi (14:3)

where yi is a set of intensive parameters and Yi their conjugated extensive
variables. This general form stands for mechanical, chemical, electrical,
magnetic, surface work, etc. performed on the system.11 For example, for the
case of a chemical reaction that we will analyze in detail, the relevant in-
tensive parameter is the affinity of the chemical reaction, the difference in
chemical potential between products and reactants, and the variation of the
extensive parameter corresponds to the variation of number of reactant
molecules. The expression of the minimum reversible work (14.3) reduces to
the different thermodynamic potentials. For instance, for the case of con-
stant temperature, volume and number of particles, the minimum work
coincides with the Helmholtz energy. The statistical mechanics definition of
the entropy is therefore crucial to connect thermodynamics with both the
mesoscopic description in terms of the probability distribution P(g,t) and the
equilibrium behaviour of the system.

The dynamics of the mesoscopic degrees of freedom can be analyzed from
the statistical mechanics definition of the entropy. Taking variations in eqn
(14.1), one obtains

dS¼�kB

ð
dPðg; tÞ ln

Pðg; tÞ
PeqðgÞ

dg: (14:4)

and we can use conservation of the probability to write the continuity
equation

@Pðg; tÞ
@t

¼� @Jðg; tÞ
@g

; (14:5)

where J(g,t) stands for the current in the space of mesoscopic coordinates.
In order to derive an explicit expression for the mesoscopic current, we

take the time derivative in eqn (14.4) and use the continuity equation, eqn
(14.5), to eliminate the probability time derivative. After a partial integration,
one can identify the mesoscopic entropy production, s, from the evolution
equation of the entropy11

s¼� kB

ð
Jðg; tÞ @

@g
ln

Pðg; tÞ
PeqðgÞ

� �
dg; (14:6)

which is expressed in the form of current-force pairs, the latter being the
gradients in the space of mesoscopic variables. We will now assume a
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linear dependence between current and force and establish the linear
relationship

Jðg; tÞ¼ �kBLðg; Pðg; tÞÞ @
@g

ln
Pðg; tÞ
PeqðgÞ

� �
; (14:7)

where L(g, P(g, t)) is an Onsager coefficient,1 which in general depends on the
probability interpreted as a state variable in the thermodynamic sense and
on the mesoscopic coordinate g.

The kinetic equation follows by substituting eqn (14.7) into eqn (14.5):

@Pðg; tÞ
@t

¼ @

@g
DðgÞPeqðgÞ

@

@g
Pðg; tÞ
PeqðgÞ

� �
; (14:8)

where the diffusion coefficient, D(g), is defined as

DðgÞ � kBLðg; Pðg; tÞÞ
Pðg; tÞ : (14:9)

As usually assumed in non-equilibrium thermodynamics, we consider that
the Onsager coefficients are in good approximation proportional to P (g, t).
Accordingly, the relevant diffusion coefficient no longer depends on P (g, t).
Eqn (14.9), which in view of eqn (14.2), can also be written as

@Pðg; tÞ
@t

¼ @

@g
DðgÞ @Pðg; tÞ

@g
þ DðgÞ

kBT
@DWðg; tÞ

@g
Pðg; tÞ

� �
: (14:10)

This equation has the form of a Fokker–Planck equation for the evolution of
the probability density in g-space. Hence, MNET provides a systematic and
consistent framework to provide thermodynamic understanding to kinetic
equations for the probability distribution of mesoscopic systems.

Under the conditions for which the minimum work is given by the Gibbs
energy G, DW�DG¼DH�TDS, where H is the enthalpy, this equation
transforms into the Fokker–Planck equation for a system in the presence of a
Gibbs energy barrier:

@Pðg; tÞ
@t

¼ @

@g
DðgÞ @Pðg; tÞ

@g
þ DðgÞ

kBT
@DGðg; tÞ

@g
Pðg; tÞ

� �
: (14:11)

Therefore, it is consistent to consider kinetic equations for mesoscopic
systems in which the barriers are not restricted to being purely energetic.
For instance, geometric constrictions lead to entropic barriers,12 and their
effects can also be described in such a kinetic framework.

MNET provides a general formalism able to analyze the dynamics of
mesoscopic systems away from equilibrium from the knowledge of the
equilibrium probability and once the relevant variables that characterize
their phase space are identified. In this way, by knowing the equilibrium
thermodynamic potential of a system, one can derive the corresponding
kinetic equation.
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Since the mesoscopic entropy production can be given a thermodynamic
interpretation, it is possible to identify a generalized chemical potential in
phase space variables. We may assume that the evolution of these degrees of
freedom is described by a diffusion process and formulate the corres-
ponding Gibbs equation

dS¼� 1
T

ð
mðgÞdPðg; tÞdg; (14:12)

which resembles the corresponding law proposed in non-equilibrium ther-
modynamics for a diffusion process in terms of the mass density of particles.
Here m(g) plays the role of a generalized chemical potential conjugate to the
distribution function P(g, t). Comparing eqn (14.12) with the general ex-
pression for the change of the entropy, provided by eqn (14.4), yields the
expression of the generalized chemical potential

mðg; tÞ¼ kBT ln
Pðg; tÞ
PeqðgÞ

þ meq; (14:13)

where we have used the fact that, since in equilibrium dSeq¼ 0, we can refer
the generalized chemical potential to its equilibrium value, meq, using the
fact that eqn (14.12) in equilibrium vanishes,

dSeq¼�
1
T

ð
meqdPðg; tÞdg¼ 0: (14:14)

Alternatively, exploiting eqn (14.2), we can rewrite the generalized chemical
potential in terms of the minimum reversible work,

mðg; tÞ¼ kBT ln
Pðg; tÞ
P0;eq

þ DW : (14:15)

In this reformulation, the ‘‘thermodynamic force’’ driving this general dif-
fusion process is T�1 @m/@g, and the entropy production is given by

sðg; tÞ¼ � 1
T

ð
Jðg; tÞ @mðg; tÞ

@g
dg: (14:16)

This expression coincides with the entropy production of a diffusion
process over a potential landscape in the space of the mesoscopic coordin-
ates. This landscape is conformed by the values of the equilibrium energy
associated with each configuration g. The treatment of a diffusion process in
the framework of non-equilibrium thermodynamics can then be extended to
the case in which the relevant quantity is a probability density instead of a
mass density. This fact shows the close connection between entropy and
stochastic dynamics. We will exploit this analogy in the next section to de-
scribe how MNET can be exploited to provide a thermodynamically con-
sistent basis for the dynamics of activated processes, and in particular,
chemical reactions.
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14.3 Mesoscopic Non-equilibrium Thermodynamics
for Activated Processes

The general framework put forward in the previous section can be exploited
to describe activated processes, such as chemical reactions. This approach
will allow us to develop a theory for the thermodynamics that can account
for non-linear flux-force relations, and the general underlying structure of
such a theoretical framework.

To this end, one can imagine a chemical reaction as a diffusion process in
this new, extended, internal space. The diffusion takes place in an energy
landscape where the minima correspond to the different reactants and
products involved, as shown in Figure 14.1a. Figure 14.1b shows graphically
the fact that as the reactants advance gradually along the internal coordinate
they convert gradually into the appropriate products at the end of the
process.

For concreteness, let us consider the case of a simple chemical reaction

2A$A2, (14.17)

where we introduce an additional coordinate, g, which identifies the
internal states that the reactant has to go through to become product (or
vice-versa). The local state of the system can be characterized by the con-
centration, c(r, g, t), which generalizes the concept of the local density of
reactants and products at position r and time t. g is a scalar and dimen-
sionless bound coordinate. Without loss of generality, it can be taken to
vary between the value g¼ 0, which corresponds to the reactant, and g¼ 1,
which identifies the product. Figure 14.1b shows graphically how the
identity of the species along this internal coordinate describes the internal
restructuring of the reactants as they become products. This description is
complementary to the one developed in Section 14.2 and it can be viewed as
a generalization of the general formalism provided by MNET to fields, with
a general spatio-temporal dependence.13 Since we need to account for the
fact that chemically reacting species diffuse in space, we consider in this
section quantities per unit mass, and hence introduce the mass, m, of the
product molecule A2, as a reference quantity. Due to this choice, the con-
centration c(r, g, t) is dimensionless and integrates out to unity when inte-
grated over g.

Accordingly, a local thermodynamic description of the reaction process
expresses the local specific entropy, s(r, t), as

sðr; tÞ¼ � kB

m

ð1

0
cðr; g; tÞ lnðcðr; g; tÞÞdg¼

ð1

0
cðr; g; tÞsðr; g; tÞdg: (14:18)

This expression for the specific entropy identifies the Gibbs entropy as a
function of the internal state of the system,

sðr; g; tÞ¼ � kB

m
ln cðr; g; tÞ; (14:19)
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from which other thermodynamic quantities for each internal, local con-
figuration, can be derived. For example, the chemical potential m for each
conformation can be expressed

mðr; g; tÞ¼ kBTðr; tÞ
m

ln cðr; g; tÞ þ hðr; g; tÞ; (14:20)

where h(r, g, t) refers to the local specific enthalpy in configuration space,
without lost of generality. For the example of the chemical reaction, the local
specific enthalpy can be understood as the effective energy associated to the

Figure 14.1 A chemical reactions can be treated as a diffusion process through a
Gibbs energy barrier that separates the initial and final states of the
reaction, which corresponds to the minima of the potential. (a) Trans-
formations of the molecules of a chemical cycle viewed as a diffusion
process in an energy landscape. The configurations that identify the
transformation from one species to another are described by means of a
set of reaction coordinates. The figure depicts an example where three
cyclic chemical reactions take place among three different species, A, B
and C. The minima of the Gibbs energy correspond to the regions along
the internal coordinate that identify these species. The chemical re-
actions between these species can be described in terms of two internal
coordinates, g1 and g2, due to their cyclic nature. (b) Along a chemical
reaction, the molecular structure of a substance transforms progres-
sively until it reaches its final conformation.
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configurational changes the reactants have to go through to become prod-
ucts. Therefore, we can expect it will be characterized by a maximum for
an intermediate internal state, g0, corresponding to the transition state in
chemical kinetics. Figure 14.2 shows a qualitative profile for the enthalpy,
characterized by a pronounced maximum associated to the transition state
and by a difference between the enthalpy of reactants and products, which
acts as a thermodynamic driving force for the chemical reaction. Consistent
with non-equilibrium thermodynamics, the local temperature T(r, t) is in-
dependent of the configuration of the species as they evolve along the
internal space. This fact assumes that internal configurations have reached
quasi-equilibrium with the local temperature. For simplicity’s sake, we will
assume the temperature is constant.

The local expression for the Gibbs equation, one of the basis of non-
equilibrium thermodynamics, reads now

Tðr; tÞdsðr; tÞ¼ dhðr; tÞ �
ð1

0
mðr; g; tÞdcðr; g; tÞdg; (14:21)

which can be used to identify the corresponding variation of the entropy in
the internal state by using eqn (14.20). Mass conservation implies

@cðr; g; tÞ
@t

¼�r � Jðr; g; tÞ � @rðr; g; tÞ
@g

; (14:22)

where J(r, g, t) stands for the mass flux to neighbouring spatial positions and
r(r, g, t) corresponds to the flux of mass along the internal coordinate.

As shown in ref. 14, on which this section is based and which constitutes a
more complete and thorough discussion of the MNET description of
chemical reactions in spatially varying thermal and concentration gradients,
it is possible to derive an expression for the local entropy production by

Figure 14.2 Partial enthalpy, concentration of the reacting species and mass flux
along the internal coordinate g. (a) The enthalpy exhibits a maximum at
an intermediate configuration g0, that separates the region in the
internal coordinate space that can be associated to reactants, gog0,
with the one associated to products, g4g0. (b) The structure of the
enthalpy correlates with the concentration profiles. (c) The inhomo-
geneous profile of the species concentration along the internal space is
not incompatible with the quasi-steady regime in which the mass flux
along the internal coordinate is essentially constant. Only at the
boundaries of the internal space does the flux go to zero because
species do not leak out of this internal space.
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taking the time derivative of the Gibbs relation, eqn (14.21). Disregarding
thermal processes for simplicity’s sake, assuming that the temperature is
constant, and using the entropy balance equation and mass conservation,
eqn (14.22), we arrive at

sðr; g; tÞ¼ � 1
T

ð1

0
rðr; g; tÞ @mðr; g; tÞ

@g
dg� 1

T

ð1

0
Jðr; g; tÞ � rmðr; g; tÞdg: (14:23)

This expression constitutes the basis to derive phenomenological re-
lations between thermodynamic fluxes and forces. These relations allow us
to close the previous balance equations, and indicate that processes taking
place in space and along the internal coordinates have to be treated on equal
footing.10 For the current example, we can derive a close expression for the
mass conservation law, eqn (14.22). Assuming the Curie principle, we dis-
regard coupling between variables with different tensorial order. Therefore,
we arrive at

J(r, g, t)¼�L(r, g, t)Dm(r, g, t),

rðr; g; tÞ¼ �Lgðr; g; tÞ @
@g

mðr; g; tÞ
T

; (14:24)

where, as usual, we assume a local relation in time, position and internal
conformation. In the previous equations L(r, g, t) and Lg(r, g, t) stand for the
Onsager coefficients, corresponding to the diffusive fluxes in space and
along the internal space, respectively. The kinetic coefficients in principle
depend on position and/or internal configuration.

Inserting the derived linear relations into the mass conservation relation,
eqn (14.22), we obtain the dynamic equation for the concentration of
reacting species,

@cðr; g; tÞ
@t

¼r � Lðr; g; tÞrmðr; g; tÞ þ @

@g
Lgðr; g; tÞ @

@g
mðr; g; tÞ

T
; (14:25)

which accounts for the change of reactants and products both due to
the chemical reaction and to spatial inhomogeneities in their
concentrations.

If we integrate the mass balance equation over the internal coordinate, we
can identify the mass balance for reactants and products, Since the chemical
reaction is characterized by a maximum in the partial enthalpy, h(r, g, t),
large compared to kBT as depicted in Figure 14.2, we can identify the
reactants with the ensemble of internal configurations, 0ogog0, and
products with those configurations where g0ogo1. Moreover, if the shape of
h(r, g, t) is peaked around g0, as shown in Figure 14.2, the reaction rate along
the internal coordinate, r(r, g, t), is small and one can assume that reactants
and products equilibrate fast compared with the transport from reactant to
product. Therefore, a quasi-stationary state develops where the reaction flux
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is independent of the internal configuration. In good approximation one can
then write

r(r, g, t)¼ r(r, t)y(g)y(g� 1), (14.26)

where y stands for the Heaviside function. The quasi-steady flux vanishes at
the ends of the internal space, consistent with mass conservation, as shown
in Figure 14.2. Consistently, the derivative of the reaction rate with respect to
g gives two contributions proportional to a delta function near the end of the
reaction coordinate, inside the domain. These contributions correspond to
the rate at which reactants transform into products. As a result, integrating
the derivative with respect to g gives the contribution � r(r, g, t). It is also
possible to obtain an explicit expression for the flux along the internal co-
ordinate. Using eqn (14.20) and (14.24) and the expression for the quasi-
steady flux, eqn (14.26), we can arrive at

rðr; tÞ¼ �Dðr; rðr; tÞÞrðr; tÞ exp½�bmhðr; g; tÞ� @
@g

exp½bmmðr; g; tÞ�; (14:27)

where we have introduced the density of the reaction complex in state g,
r(r, g, t), and the local mass density, r(r, t). We assume that the total con-
centration of species along the internal coordinate adds up to unity, so that
r(r, g, t)¼ r(r, t)c(r, g, t). In eqn (14.27), as usual, we have related the Onsager
coefficient, L(r, g, r(r, g, t)), to a diffusion coefficient D along the internal
coordinate

Dðr; rðr; g; tÞÞ � kBLgðr; g; rðr; g; tÞÞ
mrðr; g; tÞ : (14:28)

As noted earlier, we have assumed that the Onsager coefficient L(r, g, r(r, g, t))
is, in good approximation, proportional to r(r, g, t) and therefore the dif-
fusion coefficient no longer depends on r(r, g, t).

Since the flow along the internal coordinate is essentially homogeneous in
the quasi-stationary regime, we can integrate the previous expression for the
flux, eqn (14.27), to arrive at a simpler expression,

rðr; tÞ¼ � Dðr; rðr; tÞÞrðr; tÞ exp½bmmðr; 1; tÞ� � exp½bmmðr; 0; tÞ�
ð1

0
exp½bmhðr; g; tÞ�dg

; (14:29)

where reactant and product concentrations enter through the chemical
potential. From the expression of the chemical potential in the internal
space, eqn (14.20), one arrives at the more explicit relation for the
reaction flux

rðr; tÞ¼�Dðr;rðr; tÞÞrðr; tÞcðr;1; tÞexp½bmhðr;1; tÞ�� cðr;0; tÞexp½bmmðr;0; tÞ�
ð1

0
exp½bmhðr;g; tÞ�dg

:

(14:30)
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While eqn (14.30) shows explicitly the dependence of the reaction rate on
the concentrations of reactants and products, eqn (14.29) asserts more
clearly the thermodynamic meaning of the diffusion process along the in-
ternal coordinate associated to the compositional change that reactants
suffer during the chemical reaction. As shown in Figure 14.1, the chemical
reaction is characterized by the presence of energy barriers as reactants
become products. In the context of the simple reaction, eqn (14.17), in which
the internal space is one dimensional, the change to products will be
controlled by the region around the value of the internal coordinate, g0,
where the effective energy exhibits its barrier. If this barrier is large com-
pared to the thermal energy, kBT, reactants and products equilibrate to
the local condition independently as the chemical reaction evolves. One
can then assume that at each spatial position the chemical potential of
species associated to reactants (characterized by 0ogog0) and those asso-
ciated to the chemical reaction products (characterized by g0ogo1) will
have an essentially constant chemical potential, even if the chemical
potential for reactants and products will be different (since this difference
is the thermodynamic force driving the chemical reaction). One can
therefore asume

mðr; g; tÞ¼ mðr; 0; tÞyðg0 � gÞ þ mðr; 1; tÞyðg� g0Þ¼ mAðr; 0; tÞyðg0 � gÞ

þ mA2
ðr; 1; tÞyðg� g0Þ;

(14:31)

where we have identified the chemical potential at g¼ 0 with that of react-
ants and the chemical potential at the other end of the internal space do-
main, g¼ 1, with that of products. The deviations from local equilibrium in
each attraction basin (or interval in the internal space, as defined by the
corresponding maxima in the internal space enthalpy) are negligible. How-
ever, it is worth noting that the uniformity of the chemical potential in these
two attraction basins does not imply that reactant or product concentrations
are correspondingly uniform. The concentration along the internal space is
highly inhomogeneous, and this variation reflects the cost of changing
conformation and identity of the reacting species, as quantified by the en-
thalpy, as shown in Figure 14.2. Accordingly, we can obtain the concen-
tration of reactants as products integrating the local concentration along the
internal space in the corresponding region,

c2Aðr; tÞ¼
ðg0

0
cðr; g; tÞdg; cA2ðr; tÞ¼

ð1

g0

cðr; g; tÞdg: (14:32)

Eqn (14.20) provides the local relation between the concentration of
reacting species and the chemical potential in the internal space. Therefore,
using the local equilibrium assumption, eqn (14.31), which gives us an ex-
plicit expression for the chemical potential of reactants and products, we can
arrive at an explicit relation between the corresponding concentration of
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reactants and products and the enthalpy of the reacting species. The local
relation in the internal space reads

cðr; g; tÞ¼ exp½bm mAðr; tÞ � hðr; g; tÞð Þ�yðg0 � gÞ þ exp½bmðmA2
ðr; tÞ

� hðr; g; tÞÞ�yðg� g0Þ;
(14:33)

which leads to

c2Aðr; tÞ¼ cðr; 0; tÞ
ðg0

0
exp½bmðhðr; 0; tÞ � hðr; g; tÞÞ�dg;

cA2ðr; tÞ¼ cðr; 1; tÞ
ð1

g0

exp½bmðhðr; 1; tÞ � hðr; g; tÞÞ�dg: (14:34)

These expressions are useful because they explicitly relate the reactant and
product concentrations to the values of the concentration at the ends of the
internal space. This relation allows connecting the concentration of react-
ants and products along the internal space with the local values required to
describe spatial fluxes. It is this connection that provides the means to de-
scribe on the same footing spatially varying transport processes and the
fluxes along the internal space.

We can then take advantage of the expressions for the concentration
of species along the internal space, eqn (14.33), and the corresponding
expressions for the concentrations of reactants and products, eqn (14.34),
and insert them into the expression for the reaction flux, eqn (14.30). In this
way, we can rewrite the reaction flux as

rðr; tÞ¼ Dðr; tÞrðr; tÞ
ð1

0
exp½bmhðr;g; tÞ�dg

c2Aðr; tÞðg0

0
exp½�bmhðr;g; tÞ�dg

0
BB@ � cA2ðr; tÞð1

g0

exp½�bmhðr;g; tÞ�dg

1
CCCA;

(14:35)

which has the form of the usual law of mass action for a chemical
reaction

rðr; tÞ¼ kþðr; tÞc2
Aðr; tÞ � k ðr; tÞcA2ðr; tÞ; (14:36)

where we have taken into account the stoichiometry of the chemical re-
action, eqn (14.17), that implies c2A¼ c2

A. k1 and k� stand for the reaction
rates corresponding to the forward and backward reactions of eqn (14.17).
Comparing eqn (14.35) and (14.36) allows us to identify the reaction con-
stants in terms of the diffusion process of the reacting species along the
internal space
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kþðr; tÞ¼ Dðr; tÞrðr; tÞ
ð1

0
exp½bmhðr; g; tÞ�dg

ðg0

0
exp½�bmhðr; g0; tÞ�dg0

;

k�ðr; tÞ¼ Dðr; tÞrðr; tÞ
ð1

0
exp½bmhðr; g; tÞ�dg

ð1

g0

exp½�bmhðr; g0; tÞ�dg0
; (14:37)

The description of the reaction process in terms of MNET provides a
consistent description of chemical kinetics from non-equilibrium thermo-
dynamics. The fact that reacting species evolve in a composition space in
which there are typically energy barriers, leads to a non-linear relation be-
tween thermodynamic fluxes (the reaction flux) and the thermodynamic
force that drives the chemical reaction (the difference in chemical potential
between reactants and products, or Gibbs energy of the reaction,
DGðr; tÞ¼ mA2

ðr; tÞ � mAðr; tÞ. This non-linear dependence is spelled out
in eqn (14.29) and indicates that there is no contradiction between non-
equilibrium thermodynamics and non-linear constitutive relations. This
thermodynamic description allows us to rewrite eqn (14.37) as

r(r, t)¼�kBLg[1� exp(�bmDG(r, t))], (14.38)

which indicates clearly the thermodynamic underlying structure behind
chemical kinetics. Eqn (14.38) is a generally valid expression for the reaction
rate; only the specific expression for the Gibbs energy will differ depending
whether the system is ideal or not. The non-ideality can be expressed, for
example, in terms of an activity coefficient, f (c(r, g, t)), which generalizes the
chemical potential to

mðr; g; tÞ¼ kBTðr; tÞ
m

ln f ðcðr; g; tÞÞcðr; g; tÞ þ hðr; g; tÞ:

The derivation of the law of mass action, eqn (14.36), is not functionally
affected because the affinity only modifies the expression of the relevant
diffusion coefficient, which reads now

Dðr; tÞ � kBLgðr; g; tÞ
mrðr; g; tÞ 1þ @ ln f ðcðr; g; tÞÞ

@ ln cðr; g; tÞ

� �
:

Therefore, the non-ideal nature of the chemically reacting species can be
absorbed into the reaction rates, eqn (14.37), without affecting the law of
mass action.9 This fact indicates the robustness and the thermodynamic
foundation of this central law of chemical kinetics. In the example we have
worked out, this non-linearity emerges from the slow evolution of species in
the presence of enthalpic barriers, but a number of different systems can be
brought under this same description.

The derivation has also shown that the non-linear relation between fluxes
and thermodynamic forces is not inconsistent with the usual description of
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chemical reactions based on the law of mass action. Rather, the approach
from MNET provides a thermodynamic perspective to such kinetic laws.
In particular, MNET shows how the reaction coefficients depend on the
enthalpy associated to the chemical reaction and that these coefficients
have an Arrhenius-like expression. Therefore, the law of mass action is
not restricted to ideal systems. MNET shows that the non-ideality remains
encoded in the expression of the reaction rates. The extension to coupled
equations9 and cycle reactions15 is straightforward and the same approach
has allowed providing a unified thermodynamic description of the non-
equilibrium behaviour of molecular motors.16

14.4 Other Internal Variables
While in the previous sections we have focused on the description of
chemical reactions, the general idea of including additional variables that
enlarge the thermodynamic space is very flexible and fruitful. This general
idea has been applied to understand a wide variety of systems, ranging from
Langmuir adsorption kinetics17 to the inertia contribution in the dynamics
of gas molecules or to biophysical processes. MNET has proved very fruitful
to describe energy transduction in biological processes.18 The energy dissi-
pation in biological pumps and the impact of their lack of efficiency are
characterized through slipping.19 MNET naturally accounts for the nature of
mesoscopic and small scale systems. This fact has been exploited, in a bio-
physical context, to propose a unified thermodynamic and kinetic description
of single molecule processes20 or the description of molecular motors.16 The
ability to derive kinetic equations from a thermodynamically consistent ap-
proach has made it possible to derive well-known kinetic expressions, such as
the Butler–Volmer and Nernst equations,21 or analyze basic principles, such
as the origin of the fluctuation-dissipation theorem in the presence of energy
barriers.22 MNET has also provided a consistent framework to derive kinetic
equations for transport processes where barriers have an entropic, rather than
an energetic nature,23 a situation of interest when dealing with the kinetics
and transport of systems under strong confinement.

As an enlightening simple example, we consider the situation in which the
molecules of a given system are characterized by a dipole of magnitude p per
unit of mass.1 In the presence of an orienting external field, say an electric
field of magnitude E, the dipoles, of mass m, tend to orient along the electric
field and the equilibrium density distribution of dipoles has the form

reqðjÞ¼C exp½bmpE cosj�; (14:39)

where f represents the angle that the dipole makes with the applied field
and C stands for a constant associated to the normalization of req. For this
system, the minimum work, introduced generically in eqn (14.3), reads
DW¼mpED(sin f), which identifies sin f as the relevant intensive variable
and the applied electric field E as its conjugated extensive variable. We can
take advantage of the fact that the chemical potential in equilibrium is
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constant, and by combining eqn (14.20) and (14.39) identify the relevant
enthalpy

hðjÞ¼ �pE cosj� kBT
m

ln sinjþ h0; (14:40)

where h0 is a reference value of the enthalpy. From eqn (14.40) we can
identify the relevant chemical potential that controls the dynamics of
dipoles in the presence of an external electric field

mðj; tÞ¼ kBT
m

ln
rðj; tÞ
sinj

� pE cosjþ h0: (14:41)

If we consider the dipole orientation, j, as the internal space that char-
acterizes the different conformations in which dipoles can evolve, we can
write down a constitutive relation between the flux of dipoles in this internal
space and the inhomogeneities in chemical potential. This can be expressed
as gradients of eqn (14.41) whenever the dipole density distribution deviates
from its equilibrium shape, eqn (14.39). The expression for the chemical
potential is analogous to eqn (14.20) for the chemical potential including the
dynamics along the internal variable, in the absence of spatial dependence.
Therefore, the entropy production for this system will be formally equivalent
to eqn (14.23). Accordingly, the constitutive relation for the corresponding
diffusive flux, eqn (14.28), now reads

Jðj; tÞ¼ �Lðj; rðj; tÞÞ @mðj; tÞ
@j

: (14:42)

Inserting the chemical potential in orientation space, eqn (14.41), in the
expression for the corresponding flux, and using the continuity equation in
the internal space

@rðj; tÞ
@t

¼� @Jðj; tÞ
@j

; (14:43)

leads to

@rðj; tÞ
@t

¼ @

@j
sinj D

@

@j
rðj; tÞ
sinj

þ nrðj; tÞpE

� �� �
; (14:44)

where we have introduced the mobility, n(f,r(f,t)), and corresponding dif-
fusion coefficient D in orientation space

nðj; rðj; tÞÞ¼ Lðj; rðj; tÞÞ
rðj; tÞ ; Dðj; rðj; tÞÞ¼ kBT

m
nðj; rðj; tÞÞ: (14:45)

In the previous expressions we have used again the fact that usually the
mobility and diffusion coefficients have a weaker dependence on density than
the kinetic coefficients directly associated to the phenomenological laws.

Eqn (14.44) describes the relaxation and diffusion of dipoles in the
presence of an electric field, and was derived first by Debye.24,25 This
evolution equation is of the Fokker–Planck type. In general, MNET provides
Fokker–Planck equations in the relevant internal space. This general
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structure has been exploited to analyze the study of non-equilibrium pro-
cesses with a thermodynamically sound basis in a variety of systems; it has
been used, e.g., to analyze colloidal rheology.26 As we will describe in the next
section, there is a deeper connection that relates dynamics of this kind to the
Fokker–Planck equation for probability densities and indicates that MNET is
a consistent theory to describe the dynamics of mesoscopic systems.

14.5 Fluctuating Mesoscopic Non-equilibrium
Thermodynamics

In non-equilibrium thermodynamics one can include additive random
fluxes that satisfy the fluctuation-dissipation theorem. These additional
fluxes, based on local equilibrium, allow deriving, for example, the fluctu-
ating hydrodynamic equations of a liquid proposed by Landau and Lifshitz,5

as described in Chapter 2.
MNET shares its general structure with that of standard non-equilibrium

thermodynamics. Therefore, one can naturally account for the effect of
hydrodynamic fluctuations in the dynamics beyond linear constitutive re-
lations in non-equilibrium thermodynamics. Following the method pro-
posed in non-equilibrium thermodynamics to include hydrodynamic
fluctuations, as described in Chapter 2, we can assume that there is local
equilibrium in the linear laws in the parameter space that includes the in-
ternal variables and derive from them the effective, corresponding, random
fluxes. From these local, random fluxes along the internal configurational
space, we can deduce the effective random fluxes associated to the relevant
spatial variables, e.g., reactant and product concentrations in a chemical
reaction, when the internal variables are integrated.

We will now derive the corresponding fluctuating fluxes in the case of a
chemical reaction, building on the description put forward in Section 14.3.
Again, the generalization to other cases of internal variables is straight-
forward. In the model chemical reaction analyzed in Section 14.3, species
diffuse in space and undergo a chemical reaction. Associated with these
processes, in MNET one has fluxes of species in space and fluxes along
the internal coordinate that quantify the chemical process. According to
the concepts underlying fluctuating hydrodynamics, one considers add-
itional contributions to the corresponding fluxes that reflect the
random nature of molecular motion, and are described mathematically as
stochastic variables.12 This fact implies that the species densities are also
stochastic variables. The phenomenological relations, eqn (14.24), are then
generalized to

Jðr; g; tÞ¼ �Lðr; g; tÞr mðr; g; tÞ
T

þ dJrðr; g; tÞ;

rðr; g; tÞ¼ �Lgðr; g; tÞ @
@g

mðr; g; tÞ
T

þ drrðr; g; tÞ; (14:46)
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which identify the random fluxes corresponding to spatial diffusion,
dJr(r,g,t), and to the diffusion along the internal space, drr(r,g,t), that ac-
counts for the chemical reaction. In order to specify appropriately the evo-
lution under the action of these random fluxes, we have to specify completely
the stochastic properties of these random fluxes, and not only their first
moment. In equilibrium, these random fluxes are generated by a set of
Gaussian stochastic processes. For such processes, only their first and sec-
ond moments are required to specify them completely, as described in
Chapter 2. Due to spatial isotropy, the first moments of these random fluxes
are zero, while their second moments have an amplitude that ensure that the
Fluctuation-Dissipation theorems (FDT), as discussed in Chapter 2, are
fulfilled.5

hdJri¼ hdrri¼ 0

hdJr
aðr; g; tÞdJr

aðr0; g0; t0Þi ¼ 2kBLðr; g; tÞdabdðr � r0Þdðg� g0Þdðt� t0Þ;

hdrr(r, g, t)drr(r0, g0, t0)i¼ 2kBLg(r, g, t)d(r – r0)d(g – g0)d(t – t0) (14.47)

In these equations the delta functions express the fact that all these random
fluxes correlate locally and do not have any memory. Due to the different
vectorial nature of the diffusive fluxes in real space and the diffusion random
fluxes along the internal space, there are no correlations between these
two fluxes

hdrr(r, g, t)dJr(r, g, t)i¼ 0 (14.48)

In general, one needs to identify all random fluxes associated with the
relevant variables and take into account that random fluxes of the same
tensorial character will in general be coupled. Therefore, MNET provides a
general framework that accounts for all potential coupling between the dy-
namics along internal space and spatial processes. The amplitudes in eqn
(14.47) and (14.48) are proportional to the Onsager coefficients. These co-
efficients determine in particular the relaxation to equilibrium when the
system is perturbed from its global equilibrium state. Since the Onsager or
kinetic coefficients depend, in principle, on the state of the system, in eqn
(14.47) and (14.48) these coefficients must be evaluated in the reference
equilibrium state.

Although the initial formulation of fluctuating hydrodynamics was pro-
posed for systems in global equilibrium, the same conceptual approach has
been successfully generalized to out of equilibrium systems, with the only
assumption that the same relations and structure of the random fluxes can
be now applied assuming local equilibrium.12 Chapter 3 describes the po-
tential of this description to understand the origin of long-range spatial
correlations in non-equilibrium steady states. We can follow the same ap-
proach and assume that local equilibrium holds in the internal space. Once
the properties of the random fluxes have been specified, one can introduce
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eqn (14.46) into eqn (14.22). These equations are then conservation laws for
the fluctuating densities that determine completely their dynamics. In par-
ticular, since the random fluxes enter additively, the average behaviour of
the densities is not affected by the random fluxes; these will only affect the
correlations of the fluctuating densities. In Section 14.3 we have seen how
the law of mass action emerges naturally from the diffusion of species along
the internal state. Analogously, we can follow the same procedure to identify
what is the effective stochastic flux for reactants and products if we integrate
out the internal variables. To this end, using the fact that fluctuating fluxes
enter additively, we can express the instantaneous fluctuating flux along the
internal coordinate, using eqn (14.27) as

rðr; tÞ¼ �Dðr; tÞrðr; tÞ exp½�bmhðr; g; tÞ� @
@g

exp½bmmðr; g; tÞ� þ drrðr; g; tÞ:

(14:49)

In the quasi-steady regime, where the flux is essentially uniform along the
internal space, we can integrate eqn (14.49) to arrive at

rðr; tÞ¼ �Dðr; tÞrðr; tÞ exp½bmmðr; 1; tÞ� � exp½bmmðr; 0; tÞ�
ð1

0
exp½bmhðr; g; tÞ�dg

þ d~rrðr; tÞ; (14:50)

where d~rrðr; tÞ stands for the net fluctuating reacting flux associated with the
chemical reaction. Its stochastic properties can be derived from those of the
underlying, local random fluxes as given in eqn (14.47). The net fluctuating
reacting flux depends linearly on drr(r, g, t), namely,

d~rrðr; tÞ �

ð1

0
exp½bmhðr; g; tÞ�drrðr; g; tÞdg
ð1

0
exp½bmhðr; g; tÞ�dg

; (14:51)

and it is therefore also a Gaussian stochastic process with zero mean. Its
second moment, can be expressed as

hd~rrðr; tÞd~rrðr0; t0Þi ¼
ð1

0

ð1

0
exp½bmðhðr; g; tÞ þ hðr0; g0; t0ÞÞ�hdrrðr; g; tÞdrrðr0; g0; t0Þidgdg0

ð1

0
exp½bmhðr; g; tÞ�dg

� �2 :
(14:52)

Using eqn (14.47), we can obtain

hd~rrðr; tÞd~rrðr0; t0Þi ¼ 2Dðr; tÞrðr; tÞ
ð1

0
exp½bmhðr; g; tÞ�dg

� �2

ð1

0
exp 2bmhðr; g; tÞ½ �cðr; g; tÞdg

(14:53)
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in terms of the concentrations of the reacting species along the internal
space. Eqn (14.33) and (14.34) allow us to express these concentrations in
terms of those of the reactants and products,

cðr; g; tÞ¼ c2A
exp½�bmhðr; g; tÞ�

ð1

0
exp½�bmhðr; g; tÞ�dg

yðg0 � gÞ

þ cA2

exp½�bmhðr; g; tÞ�
ð1

0
exp½�bmhðr; g; tÞ�dg

yðg� g0Þ:
(14:54)

This expression allows us to rewrite the correlations of the fluctuating
fluxes as

d~rrðr; tÞd~rrðr0t0Þh i¼ 2 kþðr; tÞc2A

ðg0

0
exp½bmhðr; g; tÞ�dg

ð1

0
exp½bmhðr; g; tÞ�dg

2
664

þ k�ðr; tÞcA2

ðg0

0
exp½bmhðr; g; tÞ�dg

ð1

0
exp½bmhðr; g; tÞ�dg

3

775dðr � r0Þdðt� t0Þ

(14:55)

in terms of the forward and backward reaction rates obtained in Section 14.3,
eqn (14.37). If the diffusion along the internal coordinate is characterized by
the presence of an energy barrier, as we have assumed by identifying g0, then
the fractions appearing in eqn (14.54) contribute mostly from the region of
conformational changes around that value. Accordingly, we can obtain

d~rrðr; tÞd~rrðr0t0Þh i¼ 2 kþðr; tÞc2A þ k�ðr; tÞcA2½ �dðr � r0Þdðt� t0Þ: (14:56)

In Section 14.3 we showed that chemical kinetics can be expressed also in
terms of the Gibbs energy difference between reactants and products as the
(non-linear) driving force. Accordingly, we can rewrite eqn (14.55) as

hd~rrðr; tÞd~rrðr0; t0Þi ¼ kBLg½1� expð�bmDGðr; tÞÞ�dðr � r0Þdðt� t0Þ: (14:57)

The correlation of the random chemical fluxes, eqn (14.55), coincides with
the expression derived by Keizer27 from a kinetic approach of fluctuating
chemical kinetics. The derivation from MNET emphasizes the relevance of
the underlying thermodynamic structure of the system and allows for ex-
pressing the correlations in eqn (14.56), which stresses again the fact that
the amplitude of the correlations is a function of the difference in chemical
potential between reactants and products.

This description of fluctuations in MNET can be generalized to other types
of chemical reactions and to study the coupling of chemical reactions to
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spatial gradients in non-equilibrium steady states. In the first analysis that
described how to describe fluctuations in MNET, the approach was already
extended to a set of coupled chemical reactions.9 Fluctuating MNET puts the
fluctuating chemical-reaction fluxes on the same footing as any other fluc-
tuating flux (here we have mentioned explicitly the case of the diffusive
fluxes). This approach has been used to study the nature of (long-range)
correlations of a reacting binary mixture subject to a temperature gradient.28

It is insightful to compare the initial expression for the correlation of
reacting fluxes along the internal space, eqn (14.46), and the expression in
terms of the overall reaction fluxes, eqn (14.55). The first expression satisfies
detailed balance as the species change their conformation as they advance
along the reaction. The correlation of the net random reaction fluxes, as
given in eqn (14.55), on the other hand does not have the expected form
satisfying detailed balance. This change shows that coarse graining can lead
to a violation of the fluctuation-dissipation theorem. MNET shows that by
identifying the appropriate phase space that accounts for all the relevant
dynamic variables, fluctuation-dissipation theorems based on local equi-
librium do hold.

The theorem which holds in g-space fails due to the increased coarsening
of the description. When the dynamics are analyzed in terms of diffusion in
the reaction coordinate, the system progressively passes from one state to
the other, which supports the assumption of local equilibrium in g-space
and consequently makes the formulation of mesoscopic non-equilibrium
thermodynamics possible. However, when we describe the system over time
intervals longer that the characteristic time over which the particles can
explore the energy variations along the internal space, we are only capturing
the activated process, which is not near equilibrium and accordingly, the
fluctuation-dissipation theorem, does not hold.

This is a fundamental feature of non-equilibrium statistical dynamics and
it is found in many systems where activated dynamics of one form or another
are present. Glass dynamics constitutes a paradigmatic example. Even the
standard reference system analyzed by Kramers, a particle diffusing in a
bistable potential, defined in g-space, will experience this same difference in
the description of the fluctuating fluxes depending whether one follows the
diffusion of a particle along the degree of freedom or one directly focuses on
the jump kinetics between the two potential minima.29

14.6 Conclusions
Thermodynamics furnishes a multi-scale description of many-particle sys-
tems: a global description adequate for equilibrium systems, a local de-
scription for systems in local equilibrium1 and a mesoscopic description for
systems in local equilibrium at the mesoscale.30

In this chapter, we have shown how to extend the use of thermodynamic
concepts into the mesoscopic domain where fluctuations and non-linearities
play an important role. The probabilistic interpretation of thermodynamics
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together with probability conservation laws can be used to obtain kinetic
equations for the mesoscopic degrees of freedom. The approach we have
presented starts from the mesoscopic equilibrium behaviour and adds all
the dynamic details compatible with the second law of thermodynamics and
with the conservation laws and symmetries of the system. From the know-
ledge of the equilibrium properties of a system, it is straightforward to ob-
tain Fokker–Planck equations for its dynamics. The coefficients entering the
dynamic equations can be obtained from experiments or microscopic
theories.

We have shown that the existence of local equilibrium depends on the set
of variables used to characterize the system. When an activated process is
described not just in terms of the initial and final states but through its
reaction coordinate, local equilibrium holds. Increasing the dimensionality
of the space of thermodynamic variables, by including as many dimensions
as non-equilibrated degrees of freedom, leads to local equilibrium in the
enlarged space and allows the use of non-equilibrium thermodynamics at
shorter time scales in which fluctuations are still present. We can thus
conclude that many kinetic processes, such as nucleation,31 chemical re-
actions10 or active transport,32 which have been assumed to be far away from
equilibrium because of their intrinsic non-linear nature, take place at local
equilibrium when a finer description is adopted. MNET opens the way to
study their dynamics in terms of kinetic equations of the Fokker–Planck type.

Mesoscopic non-equilibrium thermodynamics provides a systematic
method to establish such a link between thermodynamics and randomness,
obtaining the stochastic dynamics of a system directly from its equilibrium
properties. A wide variety of situations can be studied under the framework
of this theory, including non-linear transport in the presence of potential
barriers, activated processes, slow relaxation phenomena, and basic pro-
cesses in biomolecules, such as translocation and stretching. For example,
Chapter 15 shows the potential of MNET to understand nucleation pro-
cesses. The many possibilities of MNET to describe basic mechanisms in
small biological systems are discussed in Chapter 16.
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13. A. Pérez-Madrid and J. M. Rubı́, Physica A, 2001, 298, 177.
14. D. Bedeaux, I. Pagonabarraga, J. M. Ortiz de Zárate, J. V. Sengers and
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15.1 Introduction
Matter appears in Nature in different physical states called phases. The
transformation between these phases constitutes one of the most amazing
phenomena that surround us and that we are all familiar with. The con-
densation of steam into clouds or liquid drops, the formation of ice or the
boiling of water, are just common examples of phase transitions that
are important in a wide variety of scientific and technological fields.
The mechanism that controls the initiation and the fate of most phase
transitions is called nucleation, and tries to explain the formation of the first
embryos or nucleus of the new phase in the initial metastable phase.1–6

Nucleation triggers most first order phase transitions such as conden-
sation (i.e. the formation of a liquid from a supersaturated vapour),
crystallization, cavitation and boiling (the formation of vapour bubbles in an
overstretched or superheated liquid). Given the ubiquitous occurrence of
phase transitions, nucleation is crucial in a wide scope of scientific and
technological fields that range from nuclear events to the formation of
planets and galaxies. Fascinating examples include the development of new
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materials, atmospheric phenomena like precipitation, haze and aerosol
formation, the stability of pharmacological compounds, many protein
aggregation-induced diseases like cataracts, Alzheimer or sickle cell anemia,
the self-assembly of viral capsids, the cryopreservation of food, the damage
by cavitation in pumps and propellers, or the explosive vaporization of
liquefied gases. This widespread occurrence has stirred an intense and
longstanding interest in the study of nucleation since the first investigations
of Fahrenheit on metastability in the eighteen century.7 However, nucleation
remains one of the few fundamental classical problems that it is not com-
pletely understood. The reason resides in the intrinsic non-equilibrium
nature of the problem.

To better understand the peculiarities of this phenomenon, let us focus on
one of the most familiar manifestations of nucleation: the formation of ice.
Ice is the thermodynamically most stable phase of water at normal pressure
below 0 1C. However, it is possible to keep liquid water undercooled at
temperatures below zero degrees for long times in a metastable state. The
transformation of liquid water into ice starts by the formation by thermal
fluctuations of small aggregates of liquid molecules forming tiny crystal-like
clusters. The generation of these clusters is favoured by the energy gain
associated to the fact that ice is the most stable phase (i.e. it has a lower
chemical potential). But it also involves an energetic cost associated to
the formation of an interface between the incipient solid phase and the
metastable liquid. The competition between these two terms originates an
energetic barrier that has to be surmounted for the new phase to appear (see
Figure 15.1), and that constitutes the ultimate reason of the long term
prevalence of metastable phases. For very small crystals, the surface penalty
dominates, and they tend to dissolve back into the liquid phase. In very large
crystals, the bulk energy gain overcomes the surface penalty and favours
their spontaneous growth. Therefore, there exist a special size of these
incipient crystallites, called the critical size or the critical cluster that
signals the frontier between growth and decay of the new phase. Clusters
of the new phase have to reach at least this critical size to trigger the
formation of the new phase, and this critically-sized cluster constitutes the
embryo and most important entity in the process of phase transformation.
The energy required in its formation is known as the nucleation barrier,
and the rate at which critical-sized clusters are formed is called nucleation
rate, and its prediction constitutes one of the major goals of nucleation
theories.

For more than a century, our understanding of nucleation has been
dominated by the ‘‘Classical Nucleation Theory’’ (CNT), developed by the
pioneering works of Volmer and Weber,8 Farkas,9 Becker and Döring,10

Frenkel,3 and Zeldovich,11 among others. This classical picture provides a
reasonable and simplified picture of nucleation that can be used to make
straightforward predictions of rates for any substance. For many years, CNT
was thought to be enough to describe nucleation. But the development in
the last decades of accurate experimental techniques to measure nucleation
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rates revealed the severe limitations of this classical picture and stirred a
renewed interest in the field. Non-classical theories, including phenom-
enological, kinetic or density functional techniques have been developed
with the aim of overcoming the limitations of CNT.1,6,12 Despite significant
advances in our comprehension of the qualitative mechanisms of nucle-
ation, we are still very far from being able to predict accurately and quan-
titatively the occurrence of this phenomenon, not even for the simplest case
of condensation of a noble gas as Argon, where the discrepancies between
theory and experiments can reach more than 20 orders of magnitude!13

One of the main difficulties in the study of nucleation stems from its in-
trinsic non-linear, non-equilibrium and nano/mesoscopic nature. That is
why non-equilibrium thermodynamics constitutes the appropriate frame-
work to deal with this problem. In particular, in this chapter we will see how
mesoscopic non-equilibrium thermodynamics (MNET),14,15 described in
Chapter 14, can provide a proper description of the kinetics of nucleation
phenomena and shed light on many of the controversies and limitations
surrounding CNT.

For simplicity, we will focus most of our discussion on the particular case
of condensation of single component vapours, since crystallization or other
instances of nucleation offer additional complications more often related
to the thermodynamic rather than to the non-equilibrium aspects of the
problem.

Figure 15.1 Plot of the Gibbs energy landscape for cluster formation according to
Classical Nucleation Theory, DGCNT(n), resulting from the addition of
bulk and surface contributions. The reaction coordinate is in this case
the number of molecules in a cluster n. The maximum height of the
barrier or nucleation barrier, DG*, is located at a special value of the size
known as critical size n*.
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The chapter is organized as follows. First, in Section 15.2, we briefly review
the classical description of the kinetics and thermodynamics of nucleation.
Section 15.3 is then devoted to the derivation of the kinetic equation de-
scribing nucleation in the framework of MNET. This equation will be later
used in Section 15.4 as the basis to develop a novel and efficient technique to
analyze experiments and simulations of nucleation and extract all relevant
parameters. Next, we will see how the same ideas can be extended and used
to describe the influence of non-isothermal (Section 15.5) and pressure ef-
fects (Section 15.6) or the presence of thermal or velocity gradients (Section
15.7). Finally, a brief discussion of the main conclusions and perspectives
will close this chapter.

15.2 Kinetics and Thermodynamics of Nucleation:
Classical Nucleation Theory

As mentioned in the introduction, nucleation theories aim at describing
the formation of the first clusters of the new phase that, when exceeding
a certain critical size, trigger the phase transformation. In the classical
nucleation theory of condensation, the formation of these clusters is con-
sidered as a sort of chemical reaction where clusters containing n molecules
can grow or shrink by the addition or loss of individual molecules.
Accordingly, the population or number density f(n,t) of clusters of a given
size n at time t is described by the following master equation:

@f ðn; tÞ
@t

¼ kþðn� 1Þf ðn� 1; tÞ þ k�ðnþ 1Þf ðnþ 1; tÞ � kþðnÞf ðn; tÞ

� k�ðnÞf ðn; tÞ;
(15:1)

where k1(n) and k�(n) are, respectively, the rate of attachment and
detachment of individual molecules to a cluster of size n. The rate of
attachment can be properly described by kinetic theory of gases as

kþðnÞ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBTm
p AðnÞ, i.e. the rate of collisions of gas molecules of mass m

at pressure p to a cluster of surface area A(n). But it is more difficult to es-
timate accurately the evaporation rates. That is the reason why it is common
to resort to detailed balance considerations to re-express k�(n) in terms of the
known rate of attachment k1(n) and the equilibrium distribution feq(n) as

k�ðnþ 1Þ¼
feqðnÞ

feqðnþ 1Þ kþðnÞ¼ kþðnÞe�
DGðnÞ�DGðnþ1Þ

kBT ; (15:2)

where DG(n) is the reversible work of formation of a cluster of n molecules at
constant pressure p and temperature T, which are the usual conditions at
which nucleation takes place. In this way we have converted a complicated
kinetic problem into a thermodynamic problem of evaluating the proper
Gibbs energy of formation of a cluster. This is still not an easy question,
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since the clusters of interest for nucleation are unstable and contain only a
few molecules. Nevertheless, in the context of CNT these clusters are mod-
elled as tiny spherical objects with a sharp interface and having the same
properties as the homogeneous bulk phase. With these simplifying as-
sumptions, that are the core of the so-called capillarity approximation, it is
then straightforward to express the Gibbs energy of formation of a cluster of
n molecules as the sum of a volume and interfacial terms

DG(n)¼ nDm þ sA(n), (15.3)

where Dm is the difference in chemical potentials between the new and the
metastable phase (i.e. between the liquid and the vapour phase in the case of
condensation), s is the surface tension of a flat interface of the liquid, and
A(n) is the surface area of the spherical droplet containing n molecules. The
competition between these two terms gives rise to a barrier, with a maximum
located at the critical size n* and a height that defines the nucleation barrier
DG*�DG(n*) (see Figure 15.1). Further assuming that the vapour is ideal
and the liquid incompressible with a volume per molecule vl, one gets very
simple explicit expressions for these two quantities

DG*
CNT¼

16p
3

v2
l s

3

Dm2 ; (15:4)

n*¼ 32p
3

v2
l s

3

Dm3 : (15:5)

It is important to emphasize that, given the small nature of the nucleating
clusters, the proper thermodynamic work of formation depends on the
external control variables and can lead to interesting surprises and finite size
effects in the case of closed systems.4,16,17,52,53

The previous discussion solves the equilibrium part of the problem.
However, nucleation is intrinsically a kinetic problem. In the context of CNT,
the kinetics of nucleation and the nucleation rate is commonly obtained by
either summing up the set of master equations eqn (15.1) or by approxi-
mating it into a continuous Fokker–Planck-like equation. In the following
section, we will show how this equation can be rigorously derived in the
framework of MNET.

15.3 Nucleation Kinetics using MNET
The main distinctive characteristic of nucleation is that it is an activated
process: a free energy barrier has to be surmounted to form a large enough
cluster that can then grow spontaneously. Many non-equilibrium processes
in Nature bear this activated character, whose defining trait is a highly
nonlinear response to the driving forces. This nonlinear aspect makes
conventional non-equilibrium thermodynamics, described in Chapter 1,
inapplicable to describe accurately activated processes.
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In this section, we will see how MNET, introduced in Chapter 14,
constitutes an ideal framework to derive the proper kinetic equations de-
scribing nucleation phenomena. As indicated in Chapter 14, MNET is a
powerful, systematic and simple theory to describe the kinetics of non-
equilibrium processes occurring at a mesoscopic scale in terms of arbitrary
coordinates or degrees of freedom. It combines the systematic rules of
non-equilibrium thermodynamics (NET) with the flexibility of Statistical
Mechanics in describing the state of any system in terms of its probability
distribution.

Let us assume that the state of the system can be fully specified by a
single or, in general, a set of variables or coordinates that will be denoted
by g. These coordinates can represent the orientation of a spin, the length
of a chain, the velocity of Brownian particle, or in the case of nucleation
the radius or number of molecules of a cluster, as shown in Figure 15.1.
In MNET, the out of equilibrium evolution of the system is then conceived
as a kind of diffusion over the equilibrium landscape DW(g), that represents
the minimum reversible work required to create that state of the system
(see Figure 15.2a). This thermodynamic potential landscape dictates
the equilibrium distribution, according to the standard Boltzmann’s
expression

feqðgÞB e�
DWðgÞ

kBT : (15:6)

The key point of MNET is the connection between Statistical Mechanics
and NET, established through the statistical mechanics definition of the
entropy given by Gibbs’ entropy postulate15,18

dS¼� kB

ð
df ðg; tÞ ln

f ðg; tÞ
feqðg; tÞdg; (15:7)

where f(g,t) represents the probability that the system is at state g at time t.
In general, the evolution in time of this probability is governed by the con-
tinuity equation

@f ðg; tÞ
@t

¼� @

@g
Jðg; tÞ; (15:8)

where J(g,t) is a generalized current or density flux in g-space that has to
be specified. By taking the time derivative of eqn (15.7), inserting eqn
(15.8), and making an integration by parts, one obtains the entropy
production

sS¼
dS
dt
¼� kB

ð
Jðg; tÞ @

@g
ln

f ðg; tÞ
feqðg; tÞ

� �
dg; (15:9)

which has the usual form of a product of a current, J(g,t), and a generalized

thermodynamic force �kB
@
@g ln f ðg; tÞ

feqðg; tÞ

� �
, expressed in terms of the vari-

ations of the probability with respect to the equilibrium distribution.
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Following the standard procedure of NET, we assume a linear phenom-
enological relation between the flux and the force

Jðg; tÞ¼ � kBLðg; f ðgÞÞ @
@g

ln
f ðg; tÞ

feqðg; tÞ

� �
; (15:10)

by introducing the phenomenological coefficient L(g,f(g)), which may in
general depend on the state of the system. By substituting this expression
for the current into the continuity equation, eqn (15.8), we obtain
the Fokker–Planck equation governing the evolution of the probability
density

@f ðg; tÞ
@t

¼ @

@g
DðgÞfeqðg; tÞ @

@g
f ðg; tÞ

feqðg; tÞ

� �� �
; (15:11)

where

Dðg; tÞ � kBLðg; f ðgÞÞ
f ðg; tÞ ; (15:12)

is a generalized diffusion coefficient. The Fokker–Planck equation can be
alternatively written as

@f ðg; tÞ
@t

¼ @

@g
DðgÞe�bDWðgÞ @

@g
f ðg; tÞebDWðgÞ
� �� �

; (15:13)

where b¼ (kBT)�1, or as

@f ðg; tÞ
@t

¼ @

@g
DðgÞ @f ðg; tÞ

@g
þ DðgÞ

kBT
@DWðgÞ
@g

f ðg; tÞ
� �

; (15:14)

that clearly evidences the drift-diffusion nature of this equation. The first
term represents the diffusion, and the second term the drift due to a ther-

modynamic force � @DWðgÞ
@g

.

The general form of this equation makes it applicable to a wide variety of
non-equilibrium problems that include for instance chemical reactions,
entropic transport or the dynamics of single biomolecules.15 Let us par-
ticularize it for the case of nucleation, using the number of molecules in a
cluster n, as our reaction coordinate. As described in the introduction, nu-
cleation can be viewed as a diffusion process over a free energy landscape. In
the case of nucleation at constant pressure, temperature and number of
molecules, the proper thermodynamic potential or minimum reversible
work DW(n) is the Gibbs energy of formation of a cluster of a given size DG(n)
(see Figure 15.1). With this prescription in eqn (15.14), the corresponding
kinetic equation for the evolution of the population of clusters becomes

@f ðn; tÞ
@t

¼ @

@n
kþðnÞ @f ðn; tÞ

@n
þ kþðnÞ

kBT
@DGðnÞ
@n

f ðn; tÞ
� �

: (15:15)
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The previous expression constitutes the classical Frenkel–Zeldovich
equation that is the basis of the study of nucleation kinetics,3 where
the diffusivity coefficient in size space D(n)� k1(n) is just the rate of at-
tachment of molecules to a cluster of size n. It is remarkable that this
equation was also derived by Lothe using a similar procedure inspired by
NET.19

It is worth emphasizing that, using MNET, it is possible to derive de-
scriptions of the kinetics of nucleation using alternative variables or reaction
coordinates. For instance, one could use the radius of the cluster instead of
the number of molecules, or a global order parameter describing the global
degree of crystallization, such as the one used by Frenkel and coworkers in
their simulations.20,21 More refined and elaborated descriptions in terms of
a density functional, resembling Dynamical Density Functional Theory, or
using a hydrodynamic description in terms of density and velocity fields, can
also be successfully implemented, as reviewed in ref. 54.

With these Fokker–Plank-like equations, one obtains a complete time
dependent description of nucleation that accounts for transient effects and
the potential influence of an initial distribution of pre-existing clusters.
Careful analysis of transient and non-stationary effects in nucleation can be
found in ref. 1, 5 and 22. However, for most practical purposes and in ex-
periments, the quantity of central interest is the steady-state nucleation rate,
that in the case of a significantly high nucleation barrier, is given by the
simple expression

JCNT¼
N1

V
kþðn*ÞZe�bDG*; (15:16)

where N1 is the total number of monomers, V is the volume, and

Z¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DG00ðn*Þj j
2pkBT

s

; (15:17)

is the Zeldovich factor, a correction associated with the local curvature at the
top of the barrier that accounts for the possibility that nearly critical-sized
clusters dissociate back to the solution.

The steady state nucleation rate adopts the standard expression of an
activated process, depending exponentially on the height of the nucleation
barrier, i.e. the work of formation of critical-sized clusters. These critical
clusters are unstable objects made typically by a few molecules, and its
formation is a rare event of stochastic nature. That is the reason why the
accurate evaluation of nucleation rates, critical cluster sizes and nucleation
barriers, is challenging not only in experiments but also in molecular
simulations. Nevertheless, the activated nature of the process and its
conception as a generalized diffusion process over a thermodynamic po-
tential landscape in the framework of MNET has opened the door to novel
analysis and simulation techniques, described in the following section.
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15.4 Novel Simulation Techniques to Study
Nucleation

One of the main advantages of having recast the kinetics of nucleation into
the general framework of stochastic and activated processes is the possibility
of using the vast knowledge acquired in these fields to develop novel tech-
niques to analyze nucleation.

In particular, one of the important concepts in the theory of stochastic
processes is the mean first-passage time (MFPT) that for activated processes
is ultimately related to the steady-state rate of barrier crossing.23 In a general
one-dimensional case, the MFPT t(g0;a,b) is defined as the average time re-
quired for a system initially at g0 to leave the region [a,b] for the first time
(see Figure 15.2). Its value depends on the nature of the boundary

Figure 15.2 Schematic representation of (a) the minimum reversible work land-
scape DW(g) of a general activated process and (b) its corresponding
mean first passage time t(b) as a function of the location of the
absorbing boundary b. The inflection point of t(b) signals the top of
the barrier (i.e. the critical size), and the inverse of its plateau provides
the steady-state nucleation rate.
Adapted from ref. 24.
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conditions. For nucleation, the variable g will represent, for instance, the
number of molecules n of the largest cluster in the system and the proper
boundary conditions are reflecting at size n1 (typically, n1¼ 1) and absorbing
at size nb. In that case, the explicit expression of the MFPT becomes

tðnbÞ�tðn0; n1; nbÞ¼
ðnb

n0

1
DðyÞdy ebDGðyÞ

ðnb

n1

dz e�bDGðzÞ; (15:18)

where by using the notation t(nb) we want to emphasize that we will focus on
the behavior of the MFPT in terms of nb for a fixed starting size n0. This
behavior exhibits two important characteristics for sufficiently high acti-
vation barriers bDG*c1. First, t(n*), i.e. the average time required to reach
the critical size for the first time, is related to the steady state nucleation rate
as J¼ 1/(2t(n*)), where the factor 1/2 reflects the fact that clusters at the top
of the barrier have a 50 % chance of falling to either side. Second, the critical
cluster size is very approximately located at the inflection point of the curve
t(nb), as shown by Figure 15.2.

More importantly, for sufficiently high barriers, the MFPT in eqn (15.18)
can be evaluated analytically using the steepest descent approximation,
yielding24

tðnbÞ¼
tJ

2
ð1þ erf ½ðn� n*Þc�Þ; (15:19)

where n* is the critical cluster size, erfðxÞ¼ 2
Ð x

0 e�x2
dx=

ffiffiffi
p
p

is the error
function, c¼ Z

ffiffiffi
p
p

is the local curvature around the top of the barrier, and
tJ¼ 1/(JV) is the inverse of the steady-state nucleation rate. This simple
expression offers an accurate and simple way to obtain all relevant kinetic
information of a nucleation phenomenon, namely the nucleation rate J,
critical cluster size n*, and Zeldovich factor Z, by simple evaluating the
MFPT as a function of cluster size and then fitting it to eqn (15.19). This
procedure can be implemented in different types of molecular simulations
(e.g. Molecular Dynamics (MD), Brownian Dynamics, Kinetic Monte
Carlo. . .) as well as in experiments. It has been in fact extensively used
in the recent literature to study different aspects of condensation,25

homogeneous26 and heterogeneous crystallization27 or cavitation28,29 in a
wide variety of systems.

In a simulation, the MFPT can be evaluated in practice by monitoring the
size of the largest cluster present in the system and the time ti(n) at which
this largest cluster reaches each particular size n for the first time. The mean
first passage time t(n) for any size n is then obtained by averaging ti(n) over R
realizations of the simulations with different initial configurations, namely:

tðnÞ¼
PR

i¼ 1
tiðnÞ=R. Figure 15.3 shows one example obtained in a MD simu-

lation of the condensation of Lennard-Jones argon at T¼ 70 K, using R¼ 200
independent realizations. The resulting curve can be very accurately fitted by
eqn (15.19), providing accurate values of J, n* and Z.
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However, one can even go one step further and use the MFPT to re-
construct the full Gibbs energy landscape of cluster formation DG(n) directly
from a dynamic simulation or experiment. The ingredients required to ac-
complish that are just two: the MFPT, t(n), and the steady state probability
distribution for the largest cluster, Pst(n) that can be simply obtained by
making a histogram of the size of the largest cluster accumulated in
all simulation runs at a given set of fixed conditions (see Figure 15.4).
Combining these two ingredients, it is possible to reconstruct the Gibbs
energy landscape of cluster formation for any interval of sizes n1rnrb, by
calculating first30

BðnÞ¼ � 1
PstðnÞ

ðb

n
Pstðn0Þdn0 � tðbÞ � tðnÞ

tðbÞ

� �
; (15:20)

and then using the expression

bDGðnÞ¼ bDGðn1Þ þ ln
BðnÞ
Bðn1Þ

� �
�
ðn

n1

dn0

Bðn0Þ: (15:21)

In the previous equations n1 is a reference size, typically n1¼ 1, and b
represents an absorbing boundary up to which we sample both Pst(n) and
t(n). The details of the derivation of eqn (15.20) and (15.21) starting from the
Fokker–Planck eqn (15.15), can be found in ref. 30. As an example,
Figure 15.4 shows the MFPT, t(n), the steady state cluster size distribution
Pst(n) and free energy of cluster formation DG(n) reconstructed using

Figure 15.3 Mean first passage time as a function of the cluster size n obtained in
MD simulations of condensation of Lennard-Jones argon at tempera-
ture T¼ 50 K. N¼ 343 atoms were simulated inside a cubic container of
volume V¼ (18 nm)3. The results were obtained with 200 repetitions
and have been fitted to eqn (15.19) (red dashed line), to obtain accurate
values of the nucleation rate J, critical cluster size n* and Zeldovich
factor Z indicated in the inset.
Figure adapted from ref. 24.
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Figure 15.4 (a) Mean first-passage times t(n) and (b) steady-state probability distri-
bution Pst(n) as function of the largest cluster size n obtained from 300
realizations of MD simulations with N¼ 343 Lennard-Jones argon
atoms in a volume V¼ (11 nm)3 at T¼ 70 K. (c) Kinetic reconstruction
of the free energy of formation of the largest cluster obtained from the
MD simulations using eqn (15.20) and (15.21) (symbols), compared to
�ln Pst(n) (dashed line), which would be the standard way to get the
free-energy landscape from a given equilibrium probability distribution
Peq(n).
Reprinted with permission from ref. 30. Copyright 2008 American
Chemical Society.
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eqn (15.20) and (15.21) from a simulation of LJ condensation at T¼ 70 K. It is
worth emphasizing that the energy landscape reconstructed using this
technique has been shown to agree with the results obtained with more
sophisticated methods such as umbrella sampling.31

With these novel techniques, it has been possible to obtain complete
thermodynamic and kinetic information of different nucleation phenom-
ena, as well as to unveil several controversial aspects of nucleation such as
the proper definition of liquid clusters in the context of condensation,32 the
validity of CNT at extreme conditions,33 or the importance of non-isothermal
effects and pressure of carrier gas described in the following two sections.

15.5 Non-isothermal Nucleation
The advantages of treating nucleation in the context of non-equilibrium
thermodynamics become more evident in the case of dealing with additional
influences or couplings in the process. NET offers a systematic framework
where these influences can be properly and rigorously incorporated in the
dynamic description of the problem. Perhaps the best example is the ac-
counting of non-isothermal effects in nucleation.

The formation of a liquid drop in a metastable vapour or a crystal in a
supercooled liquid involves a significant release of energy, associated to the
latent heat. For very small clusters or at rapid conditions of formation, this
may lead to a significant change in the temperature of the nucleating clus-
ters. The problem is that nucleation is extremely sensitive to the tempera-
ture. More precisely, both the equilibrium vapour pressure and the
evapouration rate depend exponentially on the value of temperature, leading
to huge variations of the nucleation rate with tiny changes of temperature.
For instance, nucleation rates in the condensation of argon change by more
than 25 orders of magnitude upon varying the temperature just by 5 K. Given
the extreme sensitivity of nucleation rates to temperature, non-isothermal
conditions and the unavoidable thermal fluctuations during nucleation were
suggested as a possible explanation of the huge discrepancies between the
predictions of CNT and experiments.34,35

A proper NET framework to account for non-isothermal effects and energy
fluctuations for nucleating clusters was developed in 1966 in a remarkable
work by Feder, Russell, Lothe, and Pound36 that we will now adapt to the
terminology of MNET. The key idea was to incorporate the energy E of the
clusters as a second important variable required for a proper description of
the state of a nucleating cluster. In terms of these two variables, a cluster of
size n can evolve in size-space by the addition or loss of an individual mol-
ecule, and this change of size is accompanied by an increase or decrease of
its energy by an amount related to the latent heat. In addition, a cluster of a
fixed size n can change its energy by collisions with vapour molecules (that
do not end up in the cluster) or other carrier gas molecules present in the
system, as depicted schematically in Figure 15.5. Thus, the evolution in time
of the distribution of clusters characterized in terms of these two variables,
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the number of molecules n and their energy E, will now be dictated by the 2D
continuity equation

@f ðn;E; tÞ
@t

¼� = � J; (15:22)

where J¼ (Jn, JE) is a two dimensional flux composed by the current in size
Jn and in energy space JE. Following the ideas of NET, a linear phenom-
enological relation can be proposed between the generalized flux J and the

thermodynamic force r ln
f ðn;E; tÞ
feqðn;EÞ , yielding

J¼�Dfeq � =
f

feq

� �
; (15:23)

where

D¼ zAðnÞ 1 q
q q2 þ b2

� �
; (15:24)

is a two dimensional generalized diffusion coefficient. In the previous ex-
pression, z¼ p

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT0
p

is the rate of collisions to a cluster of size n, A(n) is
the surface area of the cluster, T0 is the temperature of the heat bath,

q¼ h� kBT0

2
� s

@AðnÞ
@n

; (15:25)

Figure 15.5 Schematic representation of the evolution of a cluster of size n in size
and energy space. Collisions with carrier gas molecules can alter the
energy of the cluster without changing its size. The addition and loss of
a single molecule not only change the cluster size but also its energy by
an amount related to the release or absorption of latent heat.
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is the energy increase upon the addition of a molecule, given by the latent
heat h corrected by the energy spent in increasing the area of the cluster, and

b2¼ cV þ
1
2

kB

� �
kBT2

0 þ
zc

z
cV;c þ

1
2

kB

� �
kBT2

0 ; (15:26)

is the typical amplitude of energy fluctuations due to collisions with their
own vapour molecules (first term) or carrier gas molecules (second term),
with zc¼ pc

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT0
p

the collision frequency of carrier gas molecules,
pc the pressure of the carrier gas, and cV and cV,c the specific heats of the
condensable and carrier gas vapours, respectively. For ideal gases, the last
expression can be simplified to

b2¼ 2k2
BT2

0 1þ Nc

N

ffiffiffiffiffiffi
m
mc

r� �
; (15:27)

where Nc and N are the number of carrier gas and condensable molecules
and m, mc their respective masses. Note that, somehow counter intuitively,
lighter carrier gases are more effective as heat baths, due to their higher
collision frequency.

It is reasonable to assume that equilibration in the energy space will
proceed faster that in size space. By assuming JE¼ 0, and solving for Jn one
obtains a simple expression for the non-isothermal nucleation rate

Jnoniso¼
b2

b2 þ q2 Jiso; (15:28)

in terms of the isothermal nucleation rate Jiso. Thus, non-isothermal effects
essentially depend on the ratio between the energy provided by the latent
heat, q, and the energy that is removed by collisions b. When q/b{1,
nucleation proceeds under nearly isothermal conditions, whereas for q/bc1,
significant deviations are expected, as shown in Figure 15.6.

By assuming that the equilibrium distribution of clusters in size and en-
ergy space was Gaussian, and by locating the saddle point in the effective 2D
barrier towards nucleation, Feder et al. also derived a simple expression for
the change in energy and temperature of the nucleating clusters

DT ¼T0
q

b2 þ q2 � @DGðnÞ
@n

� �
: (15:29)

The previous expression predicts that clusters larger than the critical size,

for which
@DGðnÞ
@n

o 0, tend to be hotter than the bath temperature, whereas

clusters smaller than the critical size tend to be colder. This striking pre-
diction is still the subject of much controversy, having its roots in the still
unsolved issue of the proper definition of temperature and its fluctuations
for small systems.37–44

The importance of non-isothermal effects, the influence of temperature
fluctuations, and the efficiency of different thermostats was tested in ref. 45
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using extensive MD simulations and the accurate analysis techniques de-
scribed in the previous section. The results of these simulations for non-
isothermal nucleation rates and cluster temperatures could be almost
quantitatively explained by the predictions of Feder et al. Somewhat sur-
prisingly, the use of different thermostats did not have a significant influ-
ence on the nucleation rates. More importantly, non-isothermal effects lead
to a significant heating up of the average temperature of the cluster that
can reach tens of degrees for large post-critical clusters. Nevertheless, in
accordance to the predictions of eqn (15.28), they only lead to a decrease of
nucleation rates of at most 2 to 3 orders of magnitude for systems with large
values of the latent heat and in the absence of thermalizing carrier gas
molecules. This decrease of nucleation rates can be considered modest,
compared to the extreme sensitivity of nucleation rates to the bath tem-
perature indicated at the beginning of this section.

Concerning cluster temperatures, the average temperature of all cluster
sizes is always higher than the bath temperature, but its distribution for a
given size is non-Gaussian, with a peak or most probable temperature which
seems to be lower than the bath temperature for subcritical clusters and
hotter for post-critical clusters, in accordance with the predictions of Feder
et al. (see Figure 15.7). It is worth remarking that recent works have em-
phasized the fact that the previous results can also be fitted by an alternative
definition of cluster temperature that makes it coincide with the average
temperature.43,44

Alternative NET studies of non-isothermal effects, focusing on the global
mass and energy balance, rather than on the local energy and size

Figure 15.6 Dependence of the non-isothermal nucleation rate and the normalized
temperature shift according to classical non-isothermal nucleation
theory as a function of the ratio q/b.
Figure adapted from ref. 45.
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Figure 15.7 (a) Cluster temperature distribution for sub-critical (blue circles), crit-
ical (green diamonds), and post-critical (red squares) sized clusters
obtained from MD simulations of LJ argon condensation at S¼ 869 and
T0¼ 50 K. For small cluster sizes, the distribution is non-Gaussian with
a most probable temperature that differs from the mean temperature.
(b) Deviation from the bath temperature of the average (black symbols)
and most probable (coloured symbols) cluster temperatures as a func-
tion of the cluster size n obtained from MD simulations using different
thermostats and number of He carrier gas molecules.
Reproduced with permission from ref. 45. Copyright 2007, American
Institute of Physics.
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distribution of the individual clusters have also been provided, successfully
explaining non-isothermal variations of the nucleation rate in terms of
measurable heat fluxes.46

15.6 The Influence of Carrier Gas Pressure on
Nucleation

One of the most puzzling and controversial issues in the experiments of
nucleation was the role of the carrier gas. This carrier gas was a physically
and chemically inert gas (typically Ar, Xe or He) that was added to the con-
densable species with the main role of getting rid efficiently of the latent
heat released during the nucleation and thus guaranteeing proper iso-
thermal conditions. As such, the pressure pc (measuring the amount of
added gas) of the carrier gas was expected to show no influence on the
measured nucleation rates. However, experimental measurements using
different substances and techniques reported contradictory and puzzling
results: either no effects (typically in nucleation pulse chambers), an in-
crease (in diffusion and sometimes in laminar flow chambers) or a decrease
(mostly in laminar flow chambers) of nucleation rates with the pressure of
the carrier gas.

This puzzling influence of the carrier gas was explained in ref. 47 in terms
of accounting properly for the simplest influence of an inert carrier gas.
First, the formation of a liquid drop in the presence of a carrier gas requires
an extra work associated to the pressure–volume (pV) work against the am-
bient pressure. This leads to a different height of the nucleation barrier

DG*
pV ¼

16p
3

v2
l s

3

Dm2
eff
; (15:30)

due to the pV work that, for an ideal vapour and incompressible liquid, is
accounted for by introducing an effective chemical potential
Dmeff ¼ kBT ln p

peq
þ vlðpþ pc � peqÞ. This yields to a modified nucleation rate

JpV¼Kexpð� bDG*
pVÞ.

The second main influence of the carrier gas is in the thermalization of
the nucleating clusters, whose rate of formation under general non-iso-
thermal conditions was given by eqn (15.28). By combining these two effects,
a simple expression for the influence of the pressure of the carrier gas on the
nucleation rate was derived

JPE

JCNT
¼ b2

b2 þ q2

JpV

JCNT
: (15:31)

These two effects have an opposite influence, leading to a nontrivial de-
pendence of nucleation rate on the pressure of the carrier gas which can be
positive, negative or null, depending on the conditions, as evidenced in
Figure 15.8.
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This prediction was tested against MD simulations of condensation of
Lennard-Jones vapour in the presence of different amounts of carrier gas at
different temperatures, showing a perfect agreement, as illustrated in
Figure 15.8b. Thus the proper accounting of the equilibrium (i.e. pV work)
and non-equilibrium (i.e. non-isothermal) effects of the carrier gas was the
key to solve this controversial issue.

15.7 Nucleation in the Presence of Gradients
The analysis developed in the previous sections has been focused on the
simplest case of homogeneous, isothermal and isotropic nucleation. But the
real process very often occurs in a media which in general has spatial,
thermal or velocity non-homogeneities, which in turn may exert a relevant
influence in the process. One example is the case of polymer crystallization,
which may occur in the presence of strong thermal gradients and mechan-
ical stresses, demanding a study of the process under non-isothermal and
inhomogeneous conditions.

One of the advantages of using MNET to study nucleation is that it is
relatively straightforward to deal with the presence of non-homogeneities,
thus yielding a more realistic model of nucleation and crystallization. In this
section, we will focus on the simplest cases in which the medium may affect
the kinetics, namely the presence of temperature gradients,48 and the impact
of flow and stresses in the nucleation process.49

In the case of homogeneous isotropic nucleation, we can leave spatial de-
pendencies aside as the process occurs identically at any point of the system.
However, when the system is inhomogeneous the conditions controlling
condensation and crystallization vary from point to point of the material, and
therefore a local description of the process must be considered. It is important
to remark that nucleation involves two clearly differentiated length scales.
Nucleation occurs on a mesoscopic scale, while thermodynamic quantities as
pressure, temperature, density, etc. vary on a longer scale and can be con-
sidered as locally uniform for the nucleation events.

Taking these considerations into account, a local description of nucle-
ation using MNET, was developed in ref. 48 and applied to describe nucle-
ation in a temperature gradient. The resulting Fokker–Planck equation
governing the evolution of the cluster distribution function in spatially in-
homogeneous systems, in the diffusion regime, is

@fc

@t
¼r � ðD0rfcÞ þ r � Dth

rT
T

fc

� �

þ @

@n
kþðnÞ @fc

@n
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@fDGðnÞ
@n

fc

 ! !
;

(15:32)

where D0 is the spatial diffusion coefficient, Dth is the thermal diffusion
coefficient and fc(n,x,t) represents the distribution of clusters. The previous
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equation accounts for the effects of diffusion, thermal diffusion and cluster
formation, represented by the three terms on the right hand side,
respectively.

Figure 15.8 (a) Deviation of the nucleation rate from the CNT prediction due to the
full pressure effect, eqn (15.31), as a function of the ratio of carrier gas
over vapour molecules (solid line) arising from the two contributions of
non-isothermal effects (dashed line, eqn (15.28)), and pV work (dash-
dotted line) for argon at 50 K and S ¼ 869. (b) Comparison of MD
simulation results with theoretical prediction of the pressure effect, eqn
(15.31).
Figures adapted from ref. 47.
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Using this equation, it is possible to perform a detailed analysis of the
influence of non-homogeneities and thermal gradients in real experiments
for condensation and polymer crystallization. In the case of condensation in
thermal50 and laminar flow51 diffusion cloud chambers, nucleation turns
out to be not significantly affected by diffusion and thermal diffusion effects,
when experiments are performed at normal conditions. However, in rarefied
media, as in the upper atmosphere or for substances with low equilibrium
vapour pressures, non-isothermal conditions can become extremely rele-
vant. In the case of polymer crystallization, their low thermal conductivities,
which set up very large gradients, and high values of the Soret coefficient
increase the relevance of thermal diffusion leading to important alterations
in real crystallization.

The presence of flows or, in general, stresses in the system constitutes
another situation that can influence the nucleation process. This factor is
particularly relevant in polymer crystallization, which often involves mech-
anical processing of the melt, such as extrusion, shearing or injection.

The description of the process of nucleation in the presence of flows was
carried out in the framework of MNET in ref. 49. The resulting equation, in
the diffusion regime, is

@fc

@t
¼�r � ðfcv0Þ þ r � ðD � rfcÞ þ

@

@n
kþðnÞ @fc

@n
þ b

@fDGðnÞ
@n

fc

 ! !
; (15:33)

where v0 is the stationary velocity profile, and

D¼D0 I� ZB

!
!

p
� rv0

 !02

4

3

5; (15:34)

is the effective diffusion coefficient which becomes modified by the presence
of the flow. In the previous expression, D0 is the diffusion coefficient of the

melt, ZB

!
!¼D0 fc IþmLux

fcT

� �
is the Brownian viscosity, and Lux is the fric-

tion tensor that couples the spatial and velocity currents.49

The main effects that the presence of a shear flow exerts on the nucleation
process can be summarized as follows. On one hand, the flow alters the
transport and consequently the evolution of the growing clusters distri-
bution function, which has implications in the effective nucleation and
growth rate. On the other hand, the presence of a shear flow changes the
spatial diffusion coefficient of the clusters, as shown by eqn (15.34). Since
the rate of addition of molecules to a cluster is roughly proportional to the
diffusivity of the molecules, variations of the diffusion coefficient directly
affect the value of the nucleation rate. Moreover, the presence of the flow
destroys the isotropy of the system and leads to a distinction between growth
rates (and diffusion) in different directions. Typical values of the parameters
controlling this correction imply that this effect is not very important for
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condensation. However, the high viscosity and the peculiarities of polymer
crystallization suggest that the presence of a shear flow may promote drastic
changes in the process, as has been observed experimentally. At a more
microscopic level, shear can also enhance the destruction of clusters.55

15.8 Conclusions
In this chapter we have shown how the application of NET can be very useful
in the description of nucleation phenomena. In particular NET at the
mesoscopic level provides a quite convenient framework to analyze and
describe the kinetics of nucleation in terms of a set of relevant variables or
reaction coordinates, such as the radius or number of molecules of a cluster,
or the global degree of crystallization of a sample. This description, leading
to a generalized Fokker–Planck like equation, has been the basis of novel
techniques to accurately characterize nucleation phenomena in simulations
and experiments. Additionally, one of the main advantages of NET over other
non-equilibrium approaches is the rigorous and simple procedure to in-
corporate coupled effects and external influences, such as non-isothermal
effects, temperature or velocity gradients. The resulting equations have been
invaluable to understand better nucleation phenomena and to shed light on
some of the controversies that still surround it. Important problems, such as
the role of curvature on heat transfer, non-accommodation effects, or
microscopic influences of shear on cluster formation, lie beyond the scope
of the present work. A proper accounting of other equilibrium and non-
equilibrium aspects will be the key to achieve the golden goal of being
capable of having quantitatively accurate predictions of nucleation rates,
thus solving an important problem that has puzzled scientists for centuries.
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CHAPTER 16

Mesoscopic Non-equilibrium
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16.1 Introduction
In this chapter, we discuss the application of mesoscopic non-equilibrium
thermodynamics (see Section 4.2.4 and Chapter 14) to biological systems.
The biological entities within the biological system may span a wide range of
length scales, from proteins to organisms and entire populations, and we
will in this chapter limit the discussion to the molecular length scale. At this
scale, fluctuations are important and we will discuss how the mesoscopic
approach to non-equilibrium thermodynamics is able to capture the sto-
chastic behaviour. Further, chemical reactions are important in biological
systems and we will show how the mesoscopic approach accounts for the
non-linear flux–force relations of chemical reactions. This is an example of
where the classical non-equilibrium thermodynamic methods fail, except
close to equilibrium. The classical non-equilibrium thermodynamic meth-
ods for biological systems, see the pioneering work of Kedem, Katchalsky
and Curran1–4 and the later work of Caplan and Essig,5 assumes linear re-
lations between the thermodynamic fluxes and forces. This assumption may
be acceptable for many transport phenomena under many conditions, but
not for chemical reactions.6 In general, a reaction rate is a non-linear
function of the driving force for the reaction, as inherent in the law of mass
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action. This limits the use of classical non-equilibrium thermodynamic
methods to conditions close to equilibrium.

We will in this chapter show how this limitation can be lifted and discuss
some applications of mesoscopic non-equilibrium thermodynamics to bio-
chemical reactions, to energy conversion in biochemical systems and to
single-molecule stretching experiments, before we conclude the chapter
with a short discussion. The examples will show how mesoscopic non-
equilibrium thermodynamics can be used to study biochemical reactions, to
study coupling effects in biochemical systems and finally how it can be
applied to stochastic systems and single molecules.

Before we discuss the application to biochemical reactions, we exemplify
and introduce the mesoscopic approach by analysing a single chemical re-
action. This example highlights the difference between the mesoscopic and
classical non-equilibrium approaches, and we will build on the results in the
following sections.

16.1.1 The Mesoscopic Approach to Chemical Reactions

Biochemical processes typically consist of several consecutive chemical re-
actions, often in a cycle, and may involve many products and reactants. In
order to introduce the mesoscopic framework, we first consider a simpler
case, where only one reaction is occurring. This allows us to focus on the
main differences between the classical and mesoscopic approaches. The
example we consider here is based on the introductory example in Chapter
14. However we simplify the discussion here and we do not consider explicit
position and/or time-dependence in the following. We refer the reader to
Chapter 14 for a more general discussion.

We consider a single first-order reaction where a species, A, is transformed
into another species, B,

A"B. (16.1)

The entropy production, s, is given by,6

s¼� J
A
T
; (16:2)

where J is the reaction rate, A is the affinity and T the temperature. The affinity
is here given by the chemical potential mi of the two species: A¼ mB� mA. The
corresponding linear law, according to the classical non-equilibrium ther-
modynamic theory, is,6

J¼� l
A
T
; (16:3)

where l is the Onsager coefficient. Experimentally, it was early found7 that
such linear laws are only valid for chemical reactions close to equilibrium,
and that an exponential relation is more general.7 The entropy production in
eqn (16.2) is expressed as a bilinear form and can be expressed as a quadratic
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form by inserting eqn (16.3) into eqn (16.2). This form is valid up to first
order in the Chapman–Enskog expansion of the probability distribution
function. Deviations of this expression are observed when higher order
terms in the expansion are included, i.e., for higher values of the affinity:
when the system is very far from equilibrium.8

In the mesoscopic approach, the reaction is studied on a finer scale by
introducing a mesoscopic coordinate – the reaction coordinate, 0rgr1,
which is assumed to completely describe the state of the reaction. In this
picture, the reaction is described as a flux or diffusion in a potential-energy
landscape, F(g), and the state is described with the probability, P(g), of being
in the state given by g. This is similar to the treatment in chemical reaction
kinetics, where the transition from an initial to a final configuration can
be modelled as a continuous transformation across an activation energy
barrier.9 The situation is illustrated in Figure 16.1.

The chemical potential can be found as a function of the reaction co-
ordinate as,10

m(g)¼RT ln P(g)þF(g), (16.4)

where R is the gas constant and the end-point values are, m(0)¼ mA and
m(1)¼ mB. Time-dependence can be introduced by allowing the different
quantities to explicitly depend on time. For the purpose of this example, we

Figure 16.1 Illustration of the potential energy (F) landscape of an elementary
reaction as a function of the reaction coordinate (g). Arbitrary units are
used for the potential energy and reaction coordinate. The initial
configuration can be found at the plateau to left while the final
configuration to the right. The activated complex is located at the
maximum of the energy. The activation energies for the forward re-
action (Ea) and for the backward reaction (E*

a) are indicated in the
figure. The boundary values for the chemical potentials are also given.
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suppress this explicit time-dependence. On the mesoscopic scale, the en-
tropy production,10

sðgÞ¼ � 1
T

JðgÞ @mðgÞ
@g

� �

T
; (16:5)

identifies the mesoscopic flux as J(g) and the corresponding mesoscopic
force as,

� 1
T

@mðgÞ
@g

� �

T
¼� R

f
@f ðgÞ
@g

� �

T
; (16:6)

where we have introduced the fugacity, f(g)¼ exp(m(g)/RT). Here, and in the
following text, the subscript on the parenthesis enclosing the partial de-
rivatives identifies the variable(s) held constant. The linear flux–force re-
lation that can be inferred from the entropy production on the mesoscopic
scale is then,

JðgÞ¼ � LðgÞR
f ðgÞ

@f ðgÞ
@g

� �

T
¼� D

@f ðgÞ
@g

� �

T
; (16:7)

where L(g) is the mesoscopic Onsager coefficient and D¼ LR/f is interpreted
as a diffusion constant. For the quasi-stationary case where the flux is in-
dependent of g, which is fulfilled for large activation barriers, integration
over the mesoscopic space gives (for constant D),

J¼� D
ð1

0

@f ðgÞ
@g

� �

T
dg¼� Dð f ð1Þ � f ð0ÞÞ; (16:8)

or in terms of the affinity,

J¼D exp(mA/RT)(1� exp(A/RT)). (16.9)

We now see that the linear relation assumed on the mesoscopic scale, leads
to a non-linear flux–force relation on the macroscopic scale. Further, for
small values of the driving force, A/RT{1, the linear relation from classical
non-equilibrium thermodynamics, eqn (16.3), is recovered,

J¼D exp ðmA=RTÞð1� expðA=RTÞÞ

� D exp ðmA=RTÞ � A
RT

� �
¼� l

A
T
;

(16:10)

i.e., the classical result is obtained as a limiting behaviour of the mesoscopic
result.

The mesoscopic expression is also in agreement with a purely kinetic
consideration: In this picture, the reaction rate is given by the concen-
trations of the two species, ci, and the rate constants k1 and k� in the for-
ward and backward directions,

J¼ k1 cA� k� cB. (16.11)
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This rate can be rewritten by introducing the equilibrium concentrations,
ceq

i , (corresponding to J¼ 0) and the chemical potentials given by,
mi¼ m0

i þ RT ln ci,

J¼ k1cA (1� exp(A/RT)). (16.12)

Here, we have assumed that the mixture is ideal. In principle we could use
activities rather than concentrations. In either case, the reaction rate is non-
linear and coincides with the mesoscopic expression. By comparing the re-
action rates close to equilibrium we can also connect the different kinetic
coefficients,

l �R¼ k1cA¼D exp(mA/RT), (16.13)

which shows the relation between the Onsager coefficient, the kinetic co-
efficient and the mesoscopic coefficient.

This example shows how the mesoscopic approach is able to lift the linear
relations in the classical non-equilibrium thermodynamic approach to the
non-linear domain. In the derivation we have assumed a quasi-stationary
state, which is fulfilled for a large activation barrier.

The example also shows that the results from the kinetic approach based
on the law of mass action can be reproduced. In the following section we will
consider applications of the mesoscopic approach to a more realistic and
complex biochemical reaction.

16.2 Biochemical Reactions
Biochemical reactions and enzyme catalysis are often described using a
kinetic approach based on the work of Hill.11,12 In this framework, enzyme
catalysis is described as a cycle reaction and the law of mass action is applied
for each step in the cycle. The resulting reaction rates are then given as non-
linear functions of the kinetic rate constants and the driving forces. Close to
equilibrium, these results reproduce the linear results from classical non-
equilibrium thermodynamics. The entropy production can also be obtained
as a sum of bilinear fluxes and forces.12

As we will show in this section, mesoscopic non-equilibrium thermo-
dynamics can be used to analyse biochemical cycles enzyme catalysis. The
cycle diagrams introduced by Hill simplify the description of the bio-
chemical cycle reactions and are helpful for the mesoscopic description. We
therefore include this description alongside the mesoscopic description. The
advantage of going to the mesoscopic scale compared to the kinetic cycle
approach, is the ability to describe coupling with other driving forces, such
as a thermal driving force,13 in a consistent way.14 This will be further ex-
emplified in the following section, in the context of energy conversion in
biological systems. In the present section we will analyse the well-known
Michaelis–Menten kinetics15,16 as an example of a biochemical reaction.
This kinetic scheme describes a situation with rapid binding of substrate to
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a catalytic site followed by a slower conversion to a product. Because of the
central role played by these equations in biology, their 100 year anniversary
have been recently celebrated.17

16.2.1 Michaelis–Menten Kinetics

The Michaelis–Menten scheme describes the conversion of a substrate (S)
into a product (P), catalysed by an enzyme (E). This can be pictured as in-
volving two main steps: the binding of the substrate to an enzyme–substrate
complex (ES) and the subsequent conversion and release of the product.
A more detailed scheme may involve several steps for the binding, con-
version and release; however, the simplified two-step mechanism is able to
capture the general features of many enzyme-catalysed reactions. The
mechanistic scheme describing this two-step operation is,18

Eþ SÐ
k1

k�1
ESÐ

k2

k�2
Eþ P; (16:14)

where ki and k�i are the rate constants in the forward and backward dir-
ection for reaction i. In the original work of Michaelis and Menten,15,17

the first reaction was assumed to be rapid, and treated as in equilibrium.
The equilibrium constant for dissociation, Kd¼ k�1/k1¼ cEcS/cES, can then
be used together with a mass balance for the amount of the enzyme to relate
the concentrations of the different species involved in the first step. For the
second reaction, the rate in the forward direction was assumed to be much
greater than the rate of the backward reaction which is fulfilled for small k�2

and/or low concentration of the product. The reaction rate (in units of
mol �L�1 � s�1), v, is then given by,

v¼ dcP

dt
¼ vmaxcS

Kd þ cS
; (16:15)

where vmax¼ k2(cESþ cE) is the limiting rate obtained as cS-N. For low
concentrations, vBvmaxcS/Kd, the reaction is second order (due to the
concentration dependence in vmax). For higher concentrations, vBvmax, the
reaction is first order and exhibits saturation as shown in Figure 16.2 (left).

As mentioned above, the diagram method introduced by Hill can be used
to simplify the description of biochemical reaction cycles and the cycle
diagrams are also useful for the mesoscopic description. In Figure 16.2
(right) we show the equivalent cycle diagram description of the Michaelis–
Menten scheme. From this diagram, the reaction rate can be directly
obtained19 following the methodology of Hill12 and making the same as-
sumptions as given above. In the mesoscopic approach, we will use this
diagram to identify boundary conditions for the chemical potentials for the
different reaction coordinates.

In the mesoscopic description, we introduce two reaction coordinates,
one for each of the steps in scheme (16.14) (or equivalently in Figure 16.2
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(right)): g1 for the first step and g2 for the second. The state is then described
by the probability density, P(g1,g2,t), where we allow for a time (t) depend-
ence. The two reactions are uncoupled so that,

P(g1,g2,t)¼ P1(g1,t)P2(g2,t), (16.16)

and the corresponding chemical potential is,

m(g1,g2,t)¼ m1(g1,t)þ m2(g2,t), (16.17)

with,

mi(gi,t)¼RT ln Pi(gi,t)þFi(gi), for i¼ 1,2. (16.18)

The corresponding entropy production is,

s(g1,g2,t)¼ s1(g1,t)þ s2(g2,t), (16.19)

where,

siðgi; tÞ¼ � 1
T

Jiðgi; tÞ @mðgi; tÞ
@gi

� �

t
; (16:20)

and we infer the linear laws as in the example in the introduction,

Jiðgi; tÞ¼ � LiðgiÞR
fiðgiÞ

@fiðgi; tÞ
@gi

� �

t
¼� Di

@fiðgi; tÞ
@gi

� �

t
: (16:21)

Figure 16.2 (Left) Illustration of Michaelis–Menten kinetics. The scaled reaction
rate, v/vmax, is shown (solid line) as a function of the substrate concen-
tration scaled with the dissociation constant, cS/Kd. The linear depend-
ence for low concentrations is shown with the dashed line, and the
saturation (limiting behaviour) for higher concentrations is shown with
the dash-dotted line. The saturation for large concentration is shown in
the inset. (Right) The cycle description of Michaelis–Menten kinetics.
The enzyme may exist in two states, E and ES, and the rate constants for
the different steps are indicated in the figure. The substrate (S) is bound
in the forward E-ES step (rate constant k1) and the product (P) is
released in the forward ES-E step (rate constant k2).
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Following the approach in the introductory example, integration over gi for a
quasi-stationary case with Ji(gi,t)¼ Ji(t) gives,

JiðtÞ¼ �
DiÐ

dgi expðFiðgiÞ=RTÞ exp
mið1; tÞ

RT

� �
� exp

mið0; tÞ
RT

� �� �
: (16:22)

Since we have assumed high activation-energy barriers, Ea,i c RT, we also
approximate the integral over the potential energy as,

exp
Ea;i

RT

� �
¼
ð

dgi expðFiðgiÞ=RTÞ: (16:23)

The boundary conditions can be read directly from the cycle diagram in
Figure 16.2 (right),

m1ð0; tÞ¼ mE þ mS; m1ð1; tÞ¼ mES;

m2ð0; tÞ¼ mES; m2ð1; tÞ¼ mE þ mP:
(16:24)

This gives the fluxes along the two reaction coordinates as,

J1ðtÞ¼ � D1 exp � Ea;1

RT

� �
exp

mESðtÞ
RT

� �
� exp

mEðtÞ þ mSðtÞ
RT

� �� �
;

J2ðtÞ¼ � D2 exp � Ea;2

RT

� �
exp

mEðtÞ þ mPðtÞ
RT

� �
� exp

mESðtÞ
RT

� �� �
;

(16:25)

which describe the kinetics in scheme (16.14). In order to obtain the
Michaelis–Menten kinetics, we consider first the change in concentrations
of substrate, product and the two enzyme states,

dcP

dt
¼ J2ðtÞ;

dcS

dt
¼� J1ðtÞ;

dcES

dt
¼ J1ðtÞ � J2ðtÞ;

dcE

dt
¼� J1ðtÞ þ J2ðtÞ:

(16:26)

The reaction rate is here equal to the rate of formation of the product, J2, and
we see that dcES/dtþdcE/dt¼ 0, such that cESþ cE is conserved and equal to a
constant, say c0. Next we consider the stationary state where J1¼ J2 and
together with the relation between cES and cE we can solve for these two
concentrations and obtain

J1¼
c0I2f 0

ES

I1 þ I2

I1

f 0
ES

f 0
E

þ fS þ
I2

I1
fP

ð fS � fPÞ; (16:27)

where we have introduced the short-hand notation Ii¼Di=
Ð

dgi expðFiðgiÞ=RTÞ
and introduced the fugacities of the substrate and product ( fP and fS) and the
standard-state fugacities of the enzyme ( f 0

ES and f 0
E ). This expression describes

the stationary state reaction rate, without making Michaelis–Menten
approximations.

The first approximation in the Michaelis–Menten scheme corresponds
to I2/I1{1. This can be seen by comparing the activation energies for
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the two reactions. The second approximation corresponds to neglecting
fP compared to fS. The final expression then follows from eqn (16.27),

v¼ J1¼
c0I2f 0

ES

f 0
ES

f 0
E f 0

S
þ cS

cS¼
vmax

Kd þ cS
cS; (16:28)

where we have introduced the concentrations and we identify vmax¼ c0I2f 0
ES

and the (equilibrium) dissociation constant Kd¼ f 0
ES= f 0

E f 0
S

� �
. The final rate in

eqn (16.28) coincides with the kinetic expression for the Michaelis–Menten
rate, see eqn (16.15).

We can rewrite eqn (16.27) by introducing two parameters, b¼ cP/cS and
a¼ I2=I1 � ðD2=D1Þ � e�ðEa;2�Ea;1Þ,

v
vmax

¼ ðcS=KdÞð1� bÞ
ð1þ aÞ þ ðcS=KdÞð1� bÞ þ ð1þ aÞbðcS=KdÞ

: (16:29)

Michaelis–Menten kinetics are recovered when b¼ 0 and a{1 and for

the limiting behaviour we now obtain, vB vmax
1� b

1þ ab

� �
for large cS and v �

vmax cS=Kdð Þ 1� b
1þ a

� �
for small cS. This shows that in the presence of sub-

stantial amounts of the product P (when b is not negligible) or when the
approximation a{1 is not satisfactory, the reaction rate will be reduced,
compared to the reaction rate obtained if eqn (16.28) is satisfied.

The example in this section shows how the mesoscopic approach can be
used to describe the kinetics of biochemical reactions. This approach has
been used to describe more complex cycle reactions14,20 and the main ad-
vantage of going to the mesoscopic framework compared to the kinetic
framework is that coupling to other driving forces can be included in a
consistent way.13,14,16 We elucidate this in the next section in the context of
energy conversion in biochemical systems.

16.3 Energy Conversion in Biochemical
Systems

Biological motors and pumps are in need of non-equilibrium conditions in
order to transform chemical energy into mechanical energy to be able to
transport ions through protein channels. How the mechanism of energy
conversion takes place under those conditions constitutes a basic problem
in physical biology. We will show in this section that a large concentration
gradient of one type of ions may induce motion of another type of ions in a
direction opposed to its gradient. This motion is referred to as active
transport.12,21,22 We will also consider another example of active transport:
the case of a protein pumping ions across a membrane by utilizing the ATP
hydrolysis.
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16.3.1 Energy Conversion and Coupling of Ion
Concentration Gradients

The mechanism whereby ions are transported by exploiting concentration
gradients uses the energy released by the structural change of the enzyme E
(Figure 16.3).12 Ions of type B bind to the enzyme forming the complex EB.
The subsequent binding of an ion A to this complex makes the state of the
protein unstable and transforms into the state E0. In this state, the binding
sites change their position, as indicated in Figure 16.3b) and both ions are
released to the outer side of the membrane. Suppose that the concentrations
of the species are such that: [A]out4[A]in and [B]inc[B]out which implies that

Figure 16.3 Translocation of ions A and B across a protein channel. (a) Black (solid)
arrows indicate the direction of transport of the ions in the spon-
taneous process in which [A]out4[A]in and [B]inc[B]out. When the
translocation follows the protocol given in eqn (16.30), the flip of the
enzyme between the states E and E0 changes the transport direction of
ions A, as indicated by the red dashed arrow. (b) Illustration of the
mechanism. Binding sites for ions (indicated with the circled letters A
and B) changes when the structure of the enzyme transforms from E (on
the left) to E0 (on the right). Initially, in state E, the binding sites are
exposed to the ‘‘inside’’ of the membrane. B binds to the enzyme and
subsequent binding of A makes the enzyme state unstable. The
conformation changes to enzyme state E0 where the binding sites are
exposed to the opposite side (‘‘outside’’) and the ions are released.
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if the motion is spontaneous, B ions go from in to out whereas A ions
move from out to in. When the transport of both types of ions is coupled, A
ions go from in to out, against its concentration gradient. It is then possible
to use a large concentration gradient of B to induce active transport of A
molecules.

The different steps of the process can be expressed by means of the fol-
lowing kinetic transformations:

Bin þ E! EB;

Ain þ EB! AEB;

AEB! AE0B;

AE0B! Aout þ E0B;

E0B! Bout þ E0;

(16:30)

which can be summarized as:

AinþBinþE-AoutþBoutþE0. (16.31)

This equation shows that A ions move against its concentration gradient
using the energy released by the enzyme due to the binding of B ions. The
overall effect is that the presence of a concentration gradient of B induces
active transport of A.

The ion-translocation process can be explained on thermodynamic
grounds by means of mesoscopic non-equilibrium thermodynamics.10 Each
reaction of (16.30) can be described as a diffusion process along a reaction
coordinate, as exemplified in Sections 16.1.1 and 16.2. The entropy pro-
duction on the mesoscopic scale is given by,

Ts¼�
X

i

Ji
@fi

@gi

� �

T
� 0; (16:32)

where the inequality results from the second law expressed locally in
the gi-space. Since the reactions are independent, each reaction current is
given by,

Ji¼�DiDfi, (16.33)

where Di is the diffusion coefficient of the i-th reaction which is positive due
to the positive nature of the entropy production. Each reaction coordinate is
normalized to one. This relation shows that the reaction rate and the fu-
gacity differences have different signs. For forward reactions, as the ones
involved in the conversion process, fugacity differences are thus negative.
From the schemes given in eqn (16.30) or (16.31), and (16.32), one then
infers the inequality,

fAin � fAout4fBout � fBin : (16:34)
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If the right hand side term is positive thus the left hand side is positive too.
This inequality shows that the presence of a concentration difference of B
may change the transport direction of A.

16.3.2 Energy Conversion in Biomolecular Pumps

Energy conversion can also take place, for instance, when a concentration
gradient is established and maintained by a pumping protein utilizing the
energy of a chemical reaction. One specific example of this is the calcium
pumping protein, Ca21-ATPase, which transports calcium ions across vesicle
membranes by coupling the mass transport to a chemical reaction – the
adenosine triphosphate (ATP)-reaction. The Ca21-ATPase belongs to a large
family of membrane transport proteins, the P-type ATPases which all make
use of the hydrolysis of ATP in order to drive vectorial transport. Since these
proteins are embedded in membranes they are effectively embedded in a
surface; and at a surface, the normal component of a vectorial flux (e.g., the
mass flux), will have scalar symmetry and may then couple to the scalar
reaction rate.23,24

The Ca21-ATPase is particularly interesting as experiments indicate that
coupling to a temperature gradient may also be possible.25–27 These effects
needs to be captured by the theoretical model; however, a heat flux is not
readily included in a purely kinetic description of the operation of this
pump. These effects can, on the other hand, be introduced in a mesoscopic
model: A simple mesoscopic model of this protein20,28 has two mesoscopic
coordinates, gr and gd, which describe the state of the ATP-reaction and the
state of the calcium-ion transfer, respectively. In this view, the operation of
the pump can be pictured as a diffusion process on a two-dimensional po-
tential energy landscape. Equivalently, one can consider a two-state Hill
diagram,20 where the two states are connected with three different paths, as
illustrated in Figure 16.4.

By following the framework of mesoscopic non-equilibrium thermo-
dynamics, one can obtain equations that describe the operation of this
protein. In particular the rate of the ATP-reaction, vATP, is obtained as,

vATP¼ � Drr 1� exp �DrGðT inÞ
RT in

� �� �
þ Drd 1� exp

DmCa=2HðT inÞ
RT in

 !" #

�
Drq

R
1

Tout �
1

T in

� �
;

(16:35)

where Drr, Drd and Drq are the generalized diffusion coefficients describing
the process, DrG is the change in Gibbs energy for the reaction and DmCa/2H is
the change in chemical potential energy on exchanging ions (calcium and
hydrogen) across the membrane. Here, the superscript in/out indicates that
the temperature is evaluated at the inside/outside of the membrane. Similar
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expressions were obtained for the flux of calcium ions, JCa, (with generalized
diffusion coefficients Ddr, Ddd and Ddq) and the measurable heat flux, J 0q(with
generalized diffusion coefficients Dqr, Dqd and Dqq).28 These 9 coefficients
describe the operation of the pump.29 For instance, Ddr and Drd describe the
coupling of the reaction and the mass flow, i.e., the active transport, while
Dqr and Dqd describe reversible heat flow, connected to the reaction and
mass flow. The coefficients Drq and Ddq describe how a temperature differ-
ence across the membrane may drive the reaction and transport of ions, and
the remaining coefficients describe the direct coupling between the fluxes
and the corresponding driving forces (e.g., mass transport and the difference
in chemical potential).

For this particular protein, the mesoscopic equations describing the op-
eration have been used to investigate the efficiency of the operation under

Figure 16.4 Cycle description of the Ca21-ATPase pump. The protein can be pic-
tured as existing in two states, labelled X and Y, while the operation is
described using three different cycles, a, b and c. The top picture shows
the binding and release of the species involved in the process, while
the lower picture shows the corresponding cycles: cycle a corresponds
to the ATP-reaction without the movement of ions; cycle b corresponds
to movement of ions between the inside (in) and outside (out) of
the membrane (this can typically correspond to leakage through the
membrane); finally, cycle c corresponds to the normal operation of
the pump – the ATP-reaction proceeds and calcium ions are transported
from the outside to the inside of the membrane.
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laboratory conditions. It was then found30 that the efficiency was relatively
low (o13 %) for the conditions studied. However, this case may be artificially
low due to the experimental conditions and the pump may have a
higher efficiency in vivo.30 Both this study30 and the study of Kjelstrup et al.29

show the usefulness of the mesoscopic framework for interpreting experi-
mental data. Further, this framework can be used as a foundation for design
of new experiments, e.g., by clarifying the experimental conditions29 for
obtaining the coefficients describing the transport. Such coefficients could
be tabulated and used to characterize the different pumps and molecular
machines.

16.4 Single-molecule Stretching
Mesoscopic non-equilibrium thermodynamics can also be used to study the
response of a single molecule to an external force. A typical situation is the
stretching of DNA molecules by means of an optical tweezer. Two facts are
observed in DNA stretching experiments:

(i) The macromolecule is in mechanical equilibrium, consequently in-
ertial effects are negligible. Typical forces exerted on the particles are
of the order of 10 pN.31 When the size of the macromolecule is of the
order of rE10�9 m, the host liquid density is rE103 kg �m�3, and the
viscosity is ZE10�3 kg �m�1 � s�1, one has,

dF
dt
� 100

nN
s
; (16:36)

and,

Fchar

tchar
B

Z2=r
m=e

B
10�9N
10�12s

¼ 103 N
s
; (16:37)

where Fchar is a characteristic force, tchar a characteristic time-scale,
m is the mass of the molecule and e the friction coefficient. Therefore,
variations in time of the force are very small and inertial effects can be
neglected.32

(ii) Fluctuations are important. This conclusion follows from the estimate
of the work done by the applied force: DW¼ FDx. For typical values of
the force FE10 pN, and of the displacement DxE400 nm,31 the work
is DWE10kBT, where kB is Boltzmann’s constant and T the tempera-
ture. This shows that thermal fluctuations whose associated energy is
of the order of kBT play a role in the kinetics. One then needs a
probabilistic description in terms of the probability P(x,t), where x is
the elongation of the macromolecule. The molecule is immersed in a
liquid at rest which acts as a thermal bath. This implies that the noise
is Gaussian and consequently that the evolution of the probability
density is governed by a Smoluchowski equation which is a diffusion
equation for the probability density.
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To obtain this equation, we will use the framework of mesoscopic non-
equilibrium thermodynamics. The starting point is the Gibbs entropy,

S� S0¼� kB

ð
P ln

P
P0

dx; (16:38)

where S0 and P0 are the entropy and the probability distribution of a refer-
ence state. Taking variations of this equation, one obtains,

dS¼
ð
dsdx¼� kB

ð
dP ln

P
P0

dx¼
ð
� m

T
dP

� 	
dx: (16:39)

Here s is the local entropy and m the chemical potential defined in eqn (16.4),
where F¼ V0� Fx consists of the energy barrier of the molecule V0 and the
work done by the external force. If the force is exerted by an optical trap, as
the one in Figure 16.5, it is given by F¼�K(x�Xt) where K is a constant and
Xt the time-dependent position of the center of the trap.

Comparing the integrands of the second and fourth terms of eqn (16.39)
one obtains the local thermodynamic relation,

ds¼� m
T

dP: (16:40)

From this equation one can easily derive the entropy production rate of the
stretching of the molecule,

s¼� 1
T

J
@m
@x

� �

t;T
; (16:41)

Figure 16.5 DNA stretching experiment. One of the ends of the DNA molecule is
attached to a micropipette, as shown in the illustration to the left. The
force is exerted by an optical tweezer, as illustrated to the right. Two
types of experiments can be performed: isometric and isotensional.33 In
the former the length of the molecule is kept fixed and the force may
fluctuate. Just the opposite occurs in the latter. Here ktrap is the force
constant associated with the trap, x is the displacement and F is the
resulting force.
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and subsequently the expression for the current,

J¼� L
T

@m
@x

� �

t;T
: (16:42)

Using this expression together with eqn (16.4) in the probability conservation
law one obtains the Smoluchowski equation for isothermal conditions,

@P
@t

� �

x
¼ @

@x
D

@P
@x

� �

t
þ P

kBT
@F
@x

� �

t

� �
: (16:43)

The role played by the fluctuations can now be analyzed from the solution of
eqn (16.43),

Pðx; tÞ¼ 1

ð2pDtÞ1=2
exp �ðxþ Ftot=eÞ2

2Dt

� �
; (16:44)

where Ftot¼�(@F/@x)t,T. Comparing the forward and backward probabilities
one obtains,34

Pðx; tÞ
Pð�x; tÞ ¼ exp

Ftotx
kBT

� �
: (16:45)

For FtotxckBT, the bead follows the force: P(�x,t){1. When this condition is
not fulfilled, the backward probability can be of the same order as the for-
ward probability: this is the regime of large fluctuations.

When fluctuations are important, the work is a fluctuating quantity. In the
case in which the intrinsic potential is harmonic: V0¼ (1/2)kx2, with k an
elastic constant, the average work is given by,35

e�bW

 �

¼ ðk þ KÞ
½Kð2k þ KÞ�1=2

e�
kðkþKÞ

2ð2kþKÞx
2
eq ; (16:46)

where the equilibrium position of the bead is given by,

xeq¼
K

k þ K
Xt: (16:47)

In the case in which Kck, fluctuations are very small xeqEXt and,

e�bW

 �

¼ e�b
k
2x2

eq ¼ e�DG: (16:48)

Gibbs-energy differences then follow from measurements of the work. In the
case of large fluctuations, when the above inequality is not satisfied, eqn
(16.48) is no longer valid.35

Stretching of a single RNA molecule has also been analysed under the
perspective of mesoscopic non-equilibrium thermodynamics.36 Moreover,
this theory has been applied to analyse the kinetics of molecular motors.37

When and how thermodynamics can be used to describe small-scale bio-
logical systems is discussed by Rubı́ et al.33
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16.5 Discussion
In this article, we have shown how mesoscopic non-equilibrium thermo-
dynamics can be used to study biological systems operating under far--
from-equilibrium conditions. This new approach, that extends the scope of
non-equilibrium thermodynamics to the mesoscopic domain, is able to
completely characterize kinetic processes occurring in small-scale biological
systems.

Classical non-equilibrium thermodynamics carries out an analysis of these
processes in terms of only two states: the initial and the final states. This
coarse graining description only provides linear relationships for the rates in
terms of the chemical-potential differences, giving laws that are only ap-
proximations to the actual biochemical kinetics. In the more detailed scenario
we propose, one assumes that the transformation, instead of being viewed as
a sudden switch, occurs via many small intermediate jumps leading the sys-
tem through a virtual continuum of states. When a non-equilibrium ther-
modynamics scheme is applied, not to the overall transformation, but to these
small steps, the resulting linear contributions to the rate integrate to provide
the observed non-linear behaviour. We have also shown how the mesoscopic
approach can be used to investigate coupling between different fluxes such as
a reaction rate, a mass and a heat flow and the corresponding forces.

The proposed thermodynamic description of the kinetic process is valid
when the intermediate states persist in the time scale considered, and
therefore can be considered as thermodynamic states. The system equilibrates
locally along the reaction coordinate. The transformation can thus be viewed
as a diffusion process over the activation barrier. This situation is encountered
in many biological processes, such as is the ones analyzed in this article.
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CHAPTER 17

Dynamics of Complex
Fluid–Fluid Interfaces
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17.1 Complex Fluid–Fluid Interfaces
Fluid–fluid interfaces are ubiquitous in nature and our everyday existence.
We find them in foam and emulsions in food, pharmaceutical, and personal
care products, or in biological systems such as cells, lung alveoli, and
the tear film on our eyes. Fluid–fluid interfaces are considered complex
when the components forming the interface self-organize into complex
microstructures, after adsorption to the interface. Some examples of typical
microstructures observable in complex fluid–fluid interfaces are two-
dimensional (2D) gels, 2D glasses, 2D liquid crystalline phases, and 2D
emulsions and dispersions.1 Gels and glasses are formed mainly in protein,
polymer, or colloidal particle stabilized interfaces. Anisotropic colloidal
particles and protein fibrils2 are examples of surface active materials which
can form 2D liquid crystalline phases. Two-dimensional emulsions and
dispersions can be formed when mixtures of incompatible surface active
component are present at the interface.

A common characteristic of multiphase systems with complex fluid–fluid
interfaces is that their dynamic behaviour is often dominated by the ther-
modynamic and mechanical properties of their interfaces. For this reason
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such systems can be considered to be soft Interface Dominated Materials
(IDMs). Simple interfaces are (typically) stabilized by low-molecular-weight
surfactants that do not self-organize at the interface. In isothermal multi-
phase systems which contain such interfaces, the surface tension tends to be
the only relevant interfacial parameter affecting flow and deformation. In
soft IDMs with complex interfaces additional surface properties may affect
dynamic behaviour, and these effects may even be much larger than the
effects of surface tension. For example, in dispersions of vesicles3–5 or in
phase-separated biopolymer systems6–12 the dynamics is significantly af-
fected by the bending rigidity of the interface. Stability and flow behaviour of
emulsions and foam in food products,13–16 or dynamic behaviour of
microbubbles in ultrasound diagnostics,17,18 are often significantly affected
by surface shear and dilatational properties. The latter is the resistance of an
interface against all-sided compression.19 The dependence on these mech-
anical surface parameters tends to cause significant nonlinearities in the
response of soft IDMs to applied deformations or temperature and con-
centration gradients. When an IDM is perturbed from its equilibrium state,
this may affect the microstructure of the interface, and as a result surface
properties will change, leading to effects such as strain softening or
strain hardening. Such effects have been observed in polymer stabilized
interfaces,20,21 protein fibril-stabilized interfaces,22–24 air–water interfaces
stabilized by oligosaccharide fatty esters,25,26 and particle-stabilized
interfaces.27–30

Currently, very few models are available which can adequately describe the
effects of deformations on surface structure and surface properties, and the
effects these changes have on the overall dynamics of a multiphase system.1

Non-equilibrium Thermodynamics (NET) can be an important tool to fill this
knowledge gap. Several NET frameworks capable of describing multiphase
systems are currently available. One of the first frameworks to be extended to
multiphase systems was the Classical Irreversible Thermodynamics (CIT)
framework,31–33 by Bedeaux and co-workers, in the late 70s and early 80s of
the previous century.34–37,64 In its original form, the multiphase CIT
framework can deal only with simple viscous interfaces. But when combined
with the theory of internal variables,38 the CIT framework can produce also
constitutive models for complex interfaces displaying nonlinear viscoelastic
behaviour.39

Other frameworks, such as the Extended Irreversible Thermodynamics
(EIT) framework,40,41 or the GENERIC framework42,43 (General Equation for
Non-equilibrium Reversible–Irreversible Coupling), have also been extended
to describe multiphase systems with complex interfaces.44–50 In the former
Maxwell-type equations can be constructed for the surface stress tensor, and
Cattaneo-type equations51 can be constructed for the surface heat and mass
flux vectors. The GENERIC framework is particularly useful for constructing
structural models for the surface-stress tensor, which link nonlinear stress-
deformation behaviour directly to the time evolution of the microstructure
of the interface.48,49
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In this chapter we present an overview of how NET can be used to model
the behaviour of complex fluid–fluid interfaces. We start with a brief dis-
cussion on the definition and choice of surface excess variables, and proceed
with the conservation principles for multiphase systems with surface ex-
cesses associated with their dividing surfaces. We show that the introduction
of surface excess variables in the conservation principles leads to a set of
differential balance equations (often termed jump balances19), for the sur-
face mass density, surface momentum, surface energy, and surface entropy.
We then proceed by discussing how constitutive models can be constructed
for the fluxes appearing in these jump balances; respectively, the CIT, EIT,
and GENERIC frameworks. We conclude with a summary of the most im-
portant results, and an outlook on future directions for this field.

17.2 Surface Excess Variables
Interfaces in multiphase systems are in fact three-dimensional regions of
finite thickness in which the properties of the system change rapidly but
continuously from their value in one bulk phase, to their value in the ad-
joining bulk phase. The two main frameworks for describing interfaces in
multiphase systems are the Gibbs dividing surface model,52 and the phase
field (or diffuse interface) model.53,54 In the former, a two-dimensional
surface, often referred to as a dividing surface, is placed sensibly within the
interfacial region, and all bulk fields are extrapolated up to this dividing
surface. The difference between the actual and extrapolated fields is ac-
counted for by assigning surface excess fields to the interface. In the phase
field model the interface is modelled as a three-dimensional thin layer
in which densities and material properties vary continuously. The choice
between these two approaches is largely (but not exclusively) determined by
the scale of the multiphase system we seek to describe. Problems in which
the characteristic length scales of the system, L, are of the same order of
magnitude as the thickness of the interfacial layers, h, such as bubble co-
alescence phenomena, thin film rupture, multiphase flow in nano- or micro-
devices, or the early stages of phase separation in immiscible polymer
blends, are more conveniently described in terms of the phase field model.
Systems in which the length scales are much larger than the interfacial
thickness, so h/L{1, are typically modelled using the Gibbs dividing surface
approach. The latter will be the focus of this chapter.

17.2.1 Surface Variables for Simple Interfaces

As mentioned above, in the Gibbs dividing surface model the time evolution
of the dividing surface is described by a set of differential equations, or jump
balances, for the system excess variables associated with this surface. The
first step in deriving these balances is to choose the appropriate system
variables to describe the interface. Let us first consider a simple multi-
component system with N components, in which neither the bulk phases
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nor the dividing surfaces have a complex microstructure. For such a system
the state of the bulk phases can be described with the set of fields

fr;m; �u; rð1Þ; . . . ;rðN�1Þg: (17:1)

Here r is the bulk overall mass density, m¼ rv is the bulk momentum
density, v is the bulk velocity, �u is the internal energy per unit volume, and
r(J) (J¼ 1, . . . , N� 1) are the mass densities of the individual components in
the mixture. Each of the bulk variables in eqn (17.1) may have an excess
associated with it. Let us denote this set of surface excess variables as

frs;ms; �us; rs
ð1Þ; . . . ; rs

ðN�1Þg: (17:2)

Here rs is the overall surface mass density, ms¼ rsvs is the surface mo-
mentum density, vs is the surface velocity field, �us is the surface internal
energy per unit area, and rs

ðJÞðJ¼ 1; . . . ;N � 1Þ are the surface mass dens-

ities of component J. With this choice of variables, the number of surface
variables is equal to the number of bulk variables, which for a system at
equilibrium would be a violation of Gibbs’ phase rule. To resolve this issue
we will take a closer look at the definition of the surface excess fields. They
are related to the actual bulk fields by ðc¼ r;m; �u; rðJÞÞ:

cs¼
ð0

�d
ðc� cIÞdz þ

ðd

0
ðc� cIIÞdz: (17:3)

Here z is the coordinate perpendicular to the interface, and 2d denotes the
thickness of the interface. This integral is equal to the shaded regions in
Figure 17.1.

When none of the components adsorb preferentially at the interface, the
profiles for overall mass density, momentum density, and the individual
component densities, will be similar to those depicted on the left-hand side
of Figure 17.1. In this situation the value of the surface excesses associated

Figure 17.1 Density profiles for component J across the interface. The left side
displays a typical profile when this component does not preferentially
accumulate at the interface, and the right side depicts a profile for a
surface-active component.
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with these variables is very sensitive to the choice for the location of the
dividing surface. We may even choose a location where one or more of the
excess variables are identical to zero. For example, we could choose the lo-
cation of the dividing surface such that rs¼ 0. Note that with this particular
choice of the location of the dividing surface, we reduce the number of
surface variables by one, and Gibbs’ phase rule is satisfied.

In view of their sensitivity with respect to the choice of the location of the
dividing surface, densities like the surface mass, momentum, internal en-
ergy, or entropy density have been referred to as ‘‘ambiguous’’ surface
variables.45 When we displace the location of the dividing surface by a dis-
tance ‘, we find a new value for these excess variables, related to the old
value by

cs0 ¼cs þ ‘ðcI � cIIÞ: (17:4)

Öttinger et al.45 have suggested that the choice of the location of the dividing
surface can be viewed as a gauge degree of freedom, and that eqn (17.4) be
viewed as a gauge transformation. We can use the latter equation to con-
struct a set of gauge-invariant variables, in the following way: when in the
gauge rs¼ 0 we displace the location of the dividing surface by a distance ‘,
we obtain a new value for the surface mass density, equal to

rs0 ¼ ‘ðrI � rIIÞ: (17:5)

Similarly, we find a new value for the momentum density (using the fact that
in the gauge rs¼ 0 we also have ms¼ 0)

ms0 ¼ rs0vs0 ¼ ‘ðrIvI � rIIvIIÞ: (17:6)

Eliminating ‘ from eqn (17.6) using eqn (17.5) gives us

vs¼ rIvI � rIIvII

rI � rII : (17:7)

We see that the surface velocity is independent of the particular choice of the
location of the dividing surface, and hence is a gauge-invariant variable. Simi-
larly, we can introduce us¼ �us=rs (the surface internal energy per unit mass),

and os
ðJÞ ¼ rs

ðJÞ

.
rs (the surface mass fraction of component J), which satisfy

us¼ rIuI � rIIuII

rI � rII ; os
ð JÞ ¼

rIoI
ð JÞ � rIIoII

ð JÞ

rI � rII : (17:8)

These values are clearly independent of the particular choice for the dividing
surface. Hence, as an alternative to eqn (17.2) we could introduce a set of
surface variables given by

frs; vs; us;os
ð1Þ; . . . ;os

ðN�1Þg: (17:9)

When one or more components in the system adsorb preferentially at the
interface, their density profile across the interface may look similar to the
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image on the right-hand side of Figure 17.1. In this situation their excess is
fairly insensitive to the exact choice of the location of the dividing surface.
For such systems we typically do not fix the location of the dividing surface
by setting rs¼ 0, since this would require some of the surface densities (and
hence mass fractions) to be negative. Since we generally prefer to work with
positive-valued concentrations, the location of the dividing surface is
typically fixed by setting rs¼ rs

1, where the latter is a constant, chosen
such that all surface densities are positive. Alternatively, the location can be
fixed by setting the surface density of one of the non-adsorbing components
to zero. In both conventions the number of surface variables is reduced by
one, and Gibbs’ phase rule is valid at equilibrium. Note that away from
equilibrium, in an evolving system, we can fix the location of the dividing
surface in this way, only at some reference time t¼ tr. For all times t4tr we
must allow for all surface variables (including the one we set to zero to select a
particular gauge) to change, by both in-plane transport processes, and ex-
change with the bulk phases. Hence for evolving systems we must always work
with the full set of surface variables given in either eqn (17.2) or in eqn (17.9).

17.2.2 Surface Variables for Complex Interfaces

For complex multiphase systems the set of bulk and surface variables
introduced in the previous section may not be adequate to describe the
dynamics of the system. We may need to include scalar, vectorial, and ten-
sorial structural variables in these sets, which describe any changes in the
microstructure of the system, induced by an applied deformation or tem-
perature gradient. Our set of surface variables would then be given by

frs;ms; �us; rs
ð1Þ; . . . ; rs

ðN�1Þ;G
s
1; . . . ;Gs

n; cs
1; . . . ; cs

m;Cs
1; . . . ;Cs

kg: (17:10)

Here Gs
n denote scalar structural variables, cs

m denote vectorial variables, and
Cs

k denote variables of a tensorial nature. Note that the lower-case subscripts
n, m, and k denote the various structural variables needed to describe the
interface, and are not to be confused with variables associated with a specific
component in the mixture (which are denoted with upper-case subscripts).
The vectorial and tensorial variables are all defined on the surface, but are
not restricted to the class of tangential surface vectors and tensors. An ex-
ample of a system for which structural surface variables could be included,
are systems with interfaces stabilized by rigid anisotropic particles. For such
systems it would be sufficient to include an additional scalar variable for the
surface concentration of particles (either a surface density, a surface mass
fraction, or an area fraction), and a single tensorial variable, representing the
average orientation of the particles.39,48–50 Similarly, for polymer stabilized
interfaces we could introduce a scalar variable for the local surface segment
density, and a tensor field describing the orientation and stretching of the
segments. For interfaces stabilized by components forming a single-domain
2D liquid crystalline phase, a vectorial variable representing the director
field could be introduced.55 In systems where the surface-active species form
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a 2D crystalline phase, the (deformed) lattice vectors of the crystal structure
could be included as surface variables. Alternatively, we could include scalar
variables in eqn (17.10), representing al relevant scalar products of the lattice
vectors,56,57 or several tensorial fields equal to the dyadic products of these
vectors. As we will see in Section 17.4, the inclusion of this type of structural
variables in the set of surface variables will lead to additional time-evolution
equations for these variables.39,48–50,55–57

17.3 Conservation Principles for Surface Mass,
Momentum, and Energy

In this section we will discuss the conservation principles for mass, mo-
mentum, and energy for a multicomponent multiphase system with excess
variables associated with its dividing surfaces. These quantities were intro-
duced in Section 1.4 and discussed in Chapter 4. We start with the principle
of conservation of mass. This principle requires that the total mass of a
multiphase system is constant in time. For a multiphase system with mass
associated with the dividing surfaces, we can express this requirement as

d
dt

ð

R
rdV þ

ð

S
rsdO

� �
¼ 0: (17:11)

Here R denotes the domain of the bulk phases of the system, and S denotes
the domain of all dividing surfaces of the system. The symbols dV and dO
denote respectively, volume and area integrations. Evaluating the time de-
rivative on the left-hand side of eqn (17.11), we find that at every position in
the bulk phases the equation of continuity must hold, that is,19

dbr
dt
þ rr � v¼ 0: (17:12)

In this expression we have introduced the bulk material derivative19

dbc
dt
¼ @c
@t
þ ðrcÞ � v: (17:13)

Eqn (17.11) requires at every point on the dividing surface19

dsrs

dt
þ rsrs � vs þ rðv� vsÞ � n½ �½ � ¼ 0: (17:14)

Here we have introduced the surface material derivative, defined as19

dsc
s

dt
¼ @cs

@t
þ ðrsc

sÞ � _y: (17:15)

The velocity _y¼ vs � u is the intrinsic surface velocity, and u is the speed of
displacement of the interface.19 The operator rs denotes the surface gradi-
ent operator, and the double bracket notation in eqn (17.14) is defined as19

½½cn�� ¼cInI þ cIInII: (17:16)
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Here cM (M¼ I,II) is the value of c in phase M, evaluated at the dividing
surface S, and nM is the unit vector normal to S, pointing in the direction
of phase M. Eqn (17.14) is often referred to as the overall jump mass
balance.19 At every point on the dividing surface it describes the time
rate of change of the overall surface mass density, as a result of in-plane
convection, and exchange of mass with the adjoining bulk phases (repre-
sented by the double bracket term). Similarly, we find that for all com-
ponents in the mixture, conservation of mass implies that in the bulk
phase19

r
dboð JÞ

dt
þr � jð JÞ � rð JÞ ¼ 0; (17:17)

where o( J) is the mass fraction of component J in the bulk phase, j( J) is the
mass flux vector for component J, and r( J) is the chemical reaction rate (in kg
per unit volume per second) for component J. At each point on the dividing
surface we must satisfy the jump component mass balance19

rs
dsos

ð JÞ

dt
þrs � js

ð JÞ � rs
ð JÞ þ rðoð JÞ � os

ð JÞÞðv� vsÞ � nþ jð JÞ � n
h ih i

¼ 0; (17:18)

where js
ð JÞ is the surface mass flux vector of component J, and rs

ð JÞ is the rate
per unit area at which component J is converted by surface reactions. The
bulk and surface mass flux vectors are defined as19

jð JÞ ¼ rð JÞðvð JÞ � vÞ; js
ð JÞ ¼ rs

ð JÞðvs
ð JÞ � vsÞ: (17:19)

The jump component mass balance describes the time rate of change of the
surface density of component J, as a result of (in order of appearance in the
equation) in-plane surface diffusion, surface reactions, convective transfer
between the interface and adjoining bulk phases, and diffusive exchange
between bulk and interface.

The principle of conservation of momentum requires that the time rate of
change of momentum of a multiphase system be equal to the body forces
acting on the material in the bulk phases and interfaces, and the stresses
applied on it through its outer boundaries. For the bulk phases this principle
implies that at each point the differential momentum balance must be
satisfied:19

r
dbv
dt
�r � T �

XN

J¼ 1

rð JÞbð JÞ ¼ 0; (17:20)

where T is the stress tensor, and b(J) are the body forces per unit mass acting
on component J. The principle also implies that on the dividing surfaces we
must satisfy the jump momentum balance19

rs dsvs

dt
�rs � Ts �

XN

J¼ 1

rs
ð JÞb

s
ð JÞ þ rðv� vsÞðv� vsÞ � n� T � n½ �½ � ¼ 0: (17:21)
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Here Ts is the surface stress tensor, and bs
ðJÞ are the body forces per unit mass

acting on component J in the interface. It is common to write the stress
tensors in these equations as

T ¼� pI þ r; Ts¼ gP þ rs: (17:22)

where p is the thermodynamic pressure, I is the 3D unit tensor, r is the bulk
extra stress tensor, g is the surface tension, P is the surface projection tensor
(the unit tensor for the tangential surface fields), and rs is the surface extra
stress tensor. Note that in eqn (17.20) to (17.22) we use a sign convention in
which the sign of the bulk stress tensor is chosen to be opposite to that of the
pressure tensor, pI. Substituting eqn (17.22) in eqn (17.21) we obtain

rs dsvs

dt
�rsg� 2gHn�rs � rs �

XN

J¼ 1

rs
ðJÞb

s
ðJÞ

þ rðv� vsÞðv� vsÞ � nþ Pn� r � n½ �½ � ¼ 0;

(17:23)

where H is the curvature of the interface. The jump momentum balance is a
generalized form of the Young–Laplace equation, and describes the time rate
of change of surface momentum as a result of surface tension gradients
(Marangoni stresses), curvature induced stresses, deviatoric stresses, body
forces, and (given by the double bracket term) inertial, hydrostatic, and devia-
toric stresses exerted on the interface by the adjoining bulk phases. The Young–
Laplace equation is frequently used in the analysis of surface dilatational
rheology experiments, performed with droplet tensiometry methods. For complex
fluid–fluid interfaces it is often not appropriate to use this equation to analyse
experiments, and one should use the generalized form given in eqn (17.23).1

The principle of conservation of energy states that the time rate of change
of the sum of the internal and kinetic energy of a multiphase system is equal
to the work performed on the system by the body forces and stresses, plus
the energy transmitted to the system through its outer boundaries, plus the
energy transmitted to the interior of the system through radiation. It implies
that in the bulk phase we must satisfy the differential energy balance19

r
dbu
dt
¼ r : rv� pr � vþ

XN

J¼ 1

jðJÞ � bðJÞ � r � qþ rQ̂; (17:24)

where q is the energy flux vector, and Q̂ is the rate of radiant energy trans-
mission per unit mass to the material in the bulk phases. To satisfy con-
servation of energy we must require also the jump energy balance to hold at
each point on the dividing surface, given by19

rs dsus

dt
¼ rs : rsvs þ grs � vs þ

XN

J¼ 1

js
ðJÞ � b

s
ðJÞ � rs � qs þ rsQ̂s

� rðuþ pv� us þ 1
2

v� vsj j2Þðv� vsÞ � n� ðv� vsÞ � r � nþ q � n
� �� �

:

(17:25)
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Here qs is the surface energy flux vector, v¼ 1/r is the volume per unit mass
of the bulk phase, and Q̂s is the rate of radiant energy transmission per unit
mass to the material in the interfaces. The double colon in the first term on
the right-hand side of eqn (17.25) denotes a double contraction between
tensors.

Finally, to satisfy the second law of thermodynamics, we must impose at
each point in the bulk phase the differential entropy balance,19

r
dbs
dt
¼�r � jS þ re; (17:26)

where s is the entropy per unit mass, jS is the entropy flux vector, and e is the
rate of entropy production per unit mass. At each point on the dividing
surfaces we must satisfy the jump entropy balance,19

rs dsss

dt
¼�rs � js

S þ rses � rðs� ssÞðv� vsÞ � nþ jS � n
� �� �

: (17:27)

Here ss is the surface entropy per unit mass, js
S is the surface entropy flux

vector, and es is the rate of surface entropy production per unit mass. To
satisfy the second law of thermodynamics we must require

eZ0, es
Z0. (17.28)

Now that we have derived the jump balances for the surface mass density,
momentum, energy, and entropy, we will focus our attention on the fluxes
appearing in these balances.

17.4 Constitutive Equations for Surface Fluxes
In this section we will discuss how constitutive equations for the surface
fluxes can be derived using NET frameworks. There are various NET
frameworks available capable of constructing constitutive equations for
surface fluxes, and the procedures to construct these equations are different
for each of them. Here we will limit ourselves to three frameworks: classical
irreversible thermodynamics, extended irreversible thermodynamics, and
GENERIC.

17.4.1 Classical Irreversible Thermodynamics

17.4.1.1 General Form of the Flux–Force Relations

In the classical irreversible-thermodynamic framework we start with an
assumption for the functional dependence of the surface entropy on the
system variables.64 For a multiphase system with complex interfaces we will
assume here that

ss¼ ss us; Ô;os
ð1Þ; . . . ;os

ðN�1Þ;G
s
1; . . . ;Gs

n; cs
1; . . . ; cs

m;Cs
1; . . . ;Cs

k

� �
; (17:29)
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where Ô¼ 1=rs is the area per unit mass. From this assumption we find that
the material time derivative of the surface entropy per unit mass is given by

rs dsss

dt
¼ rs

Ts

dsus

dt
� grs

Ts

dsÔ
dt
� rs

Ts

XN

J¼ 1

ms
ðJÞ

dsos
ðJÞ

dt

�
X

n

rsXs
n

Ts

dsGs
n

dt
�
X

m

rs

Tsws
m �

dscs
m

dt
�
X

k

rs

TsW s
k :

dsCs
k

dt
;

(17:30)

where Ts is the surface temperature, and ms
ðJÞ is the surface chemical po-

tential of component J. The coefficients appearing in the last line of this
expression are defined as

Xs
n � Ts @ss

@Gs
n

� 	

�us;Ô;os
ðJÞ;G

s
pðpa nÞ;cs

m;C
s
k

;

ws
m � Ts @ss

@cs
m

� 	

�us;Ô;os
ðJÞ;G

s
n;c

s
pðpamÞ;Cs

k

;

W s
k � Ts @ss

@Cs
k

� 	

�us;Ô;os
ðJÞ;G

s
n;c

s
m;C

s
pðpa kÞ

:

(17:31)

Substituting eqn (17.30) in the jump entropy balance eqn (17.27), and using
the overall jump mass balance eqn (17.14), the component jump mass bal-
ance eqn (17.18), and the jump energy balance eqn (17.25), we find (as-
suming Q̂s¼ 0, and rs

ðJÞ ¼ 0, for all J)

rses¼ 1
Ts rs : Ds þ trrs

Ts trDs �
X

n

rsXs
n

Ts

dsGs
n

dt
�
X

m

rs

Tsws
m �

dscs
m

dt

�
X

k

rs

TsW s
k :

dsCs
k

dt
� 1

Ts

XN

J¼ 1

js
ðJÞ � d

s
ðJÞ �

1

ðTsÞ2
qs �

XN

J¼ 1

ms
ðJÞ js

ðJÞ

 !
� rsTs

� 1
Ts r ðuþ pvÞ T � Ts

T

� �
� r

X

n

Xs
nG

s
n �

X

m

ws
m � c

s
m �

X

k

W s
k : Cs

k

 ! ""

þ
XN

J¼ 1

Ts ~mðJÞ
T
�

~ms
ðJÞ

Ts

� 	
oðJÞþ

1
2
ðv� vsÞ2 � 1

2
ðvsÞ2 þ 1

2
v2 Ts

T

!
ðv� vsÞ � n

þ q � n T � Ts

T

� �
� ðv� vsÞ � r � nþTs

XN

J¼ 1

jðJÞ � n
~mðJÞ
T
�

~ms
ðJÞ

Ts

� 	##
� 0:

(17:32)

Here the bar over the tensors rs and Ds denotes the symmetric traceless part
of these tensors, Ds is the surface rate of deformation tensor, equal to
1
2
ðP � rsvs þ ½rsvs�T � PÞ, ~ms

ðJÞ ¼ ms
ðJÞ �

1
2
ðvsÞ2 is the velocity modified surface
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chemical potential, ~mðJÞ ¼ mðJÞ �
1
2

v2 is the velocity modified chemical po-

tential of component J in the bulk phase, T is the temperature in the bulk
phase, and the vector ds

ðJÞ � rsms
ðJÞ � bs

ðJÞ.

Eqn (17.32) is a bilinear form consisting of products of fluxes and driving
forces. For the traceless part of the surface extra stress tensor, and its trace,
eqn (17.32), suggests the following functional dependence (using the fact
that fluxes depend only on driving forces of equal tensorial order):

rs¼ rsðDs
;W s

1; . . . ;W s
kÞ; (17:33)

trrs¼ trrsðtrDs; trW s
1; . . . ; trW s

k;G
s
1; . . . ;Gs

nÞ: (17:34)

For the tensors Cs
q (q¼ 1, . . . , k) and scalars Gs

p (p¼ 1, . . . , m) eqn (17.32)
suggests that we choose

rs
dsCs

q

dt
¼ rs

dsCs
q

dt
ðDs;W s

1; . . . ;W s
kÞ; (17:35)

rs
dsGs

p

dt
¼ rs

dsGs
p

dt
ðtrDs; trW s

1; . . . ; trW s
k;G

s
1; . . . ;Gs

nÞ: (17:36)

To satisfy eqn (17.32) the mass and heat flux vectors, and structural vectors
should have the following functional dependence:

js
ðJÞ ¼ js

ðJÞðd
s
ðJÞ;rsTs;ws

mÞ; (17:37)

qs �
XN

J¼ 1

ms
ðJÞj

s
ðJÞ ¼Tsjs

S¼Tsjs
Sðd

s
ðJÞ;rsTs;ws

mÞ; (17:38)

rs
dscs

q

dt
¼ rs

dscs
q

dt
ws

1; . . . ;ws
m;ds

ðJÞ;rsTs
� �

: (17:39)

Using the fact that ms
ðJÞ ¼Hs

ðJÞ � TSs
ðJÞ, where Hs

ðJÞ and Ss
ðJÞ are the partial sur-

face enthalpy and entropy of species J, the term on the left-hand side of eqn

(17.38) can be written as Es þ
PN

J¼ 1
TsSs

ðJÞ js
ðJÞ, where Es¼ qs �

PN

J¼ 1
Hs
ðJÞ js
ðJÞ is often

referred to as the measurable heat flux, which is independent of the chosen
frame of reference.33 The energy flux qs in contrast does depend on the
choice of reference frame.

Expanding these relations up to first order in their arguments, we obtain
for the surface extra stress tensor:

rs¼ 2esDs þ 2
X

k

Ls
kW s

k; (17:40)

trrs¼ edtrDs þ 2
X

k

Ms
ktrW s

k þ
X

n

~Ms
nX

s
n; (17:41)
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where es is the surface shear viscosity, ed is the surface dilatational viscosity,
and Ls

k, Ms
k , and ~Ms

n are scalar coefficients, which may depend on tempera-
ture and composition of the interface. When the dependence on the struc-
tural variables in eqn (17.40) and (17.41) is negligible, and we combine both
equations, we obtain

rs¼ðed � esÞðtrDsÞP þ 2esDs; (17:42)

which is the linear Bousinesq model,19 the surface equivalent of the New-
tonian fluid model. For the structural variables we find up to linear order:

rs dsCs
k

dt
¼ 2Xs

0Ds þ
X

k

Xs
k W s

k; (17:43)

rs
dsGs

p

dt
¼ Y s

0trDs þ
X

k

Y s
k trW s

k þ
X

n

~Y s
nG

s
n; (17:44)

rs
dscs

q

dt
¼
X

m

zs
mws

m þ
X

J

zs
ðJÞd

s
ðJÞ þ zs

TrsTs
: (17:45)

Again, the scalar coefficients Xs
0; Xs

k ; Y s
0 ; Y s

k ; ~Y s
n ; zs

m; zs
ðJÞ, and zs

T , appearing
in these expression may all be a function of temperature and composition of
the interface. For the mass and energy flux vectors we obtain:

js
ðJÞ ¼ �

X

K

Ds
ðJKÞd

s
ðKÞ � as

ðJÞrs ln Ts þ
X

m

bs
ðJÞmws

m; (17:46)

qs �
XN

J¼ 1

ms
ðJÞ js
ðJÞ ¼ �

X

J

as
ðJÞd

s
ðJÞ � lsrs ln Ts þ

X

m

bs
mws

m; (17:47)

where Ds
ðJKÞ denote the components of the N �N diffusion matrix, as

ðJÞ is the
surface thermal diffusion coefficient for component J, and ls is the surface
thermal conductivity. The coefficients bs

ðJÞm and bs
m quantify the coupling of,

respectively, the surface mass and energy flux vectors with the vectorial
structural fields. Note that eqn (17.46) and (17.47) contain couplings between
mass and energy transfer, which are the surface equivalents of the Soret and
Dufour effect. When the Soret effect is negligible, and contributions to the
mass flux stemming from the structural vectors are as well, eqn (17.46) re-
duces to (assuming in addition that forced diffusion is negligible)

js
ðJÞ ¼ �

X

K

Ds
ðJKÞrsms

ðKÞ; (17:48)

which is the surface equivalent of Fick’s law. For a system with uniform
surface composition, with negligible contributions to the surface energy flux
induced by the structural vectors, eqn (17.47) reduces to

qs¼� ls

TsrsTs: (17:49)
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This expression is the surface equivalent of Fourier’s law. Substitution of eqn
(17.48) and (17.49) in eqn (17.32) shows us that Ds

ðJKÞ � 0, and ls
Z0.

Eqn (17.32) allows us also to construct constitutive expressions for the
fluxes describing exchange between the interface and the adjoining bulk
phases. Following along the lines we used for deriving the constitutive
equations for the surface fluxes, we obtain (M, N¼ I,II):

rM � nM � rM vMðvM � vsÞ � nM ¼
XII

N¼ I

fM;N Ts � vN

TN
� vs

Ts

� 	
; (17:50)

qM � nM þ rM
h

uM þ pM vM þ 1
2
ðvMÞ2

i
ðvM � vsÞ � nM � vM � rM � nM

¼� TM � Ts

RM
K

�
X

J

LTM
ðJÞ TM Ts

~mM
ðJÞ

TM
�

~ms
ðJÞ

Ts

 !
;

(17:51)

jM
ðJÞ � nM þ rM

ðJÞðvM � vsÞ � nM ¼� LM
ðJÞ

~mM
ðJÞ

TM
�

~ms
ðJÞ

Ts

 !
� LTM

ðJÞ ðTM � TsÞ: (17:52)

Here fM,N are friction tensors, quantifying the exchange of momentum be-
tween bulk phase and dividing surface, RM

K is the Kapitza resistivity, quan-
tifying the resistance against energy transfer between bulk and interface, LM

ðJÞ
are mass-transfer coefficients for exchange between the bulk and interface
driven by differences in (velocity modified) chemical potential, and LTM

ðJÞ are
mass-transfer coefficients for exchange between bulk and interface, driven
by temperature differences. Note that eqn (17.50) to (17.52) are not only
constitutive equations for the exchange of mass, momentum, and energy
between the bulk phases and the dividing surface, they also act as boundary
conditions, coupling the differential equations for the bulk density, velocity,
and energy fields, with their respective jump balances.

17.4.1.2 Specific Examples of Constitutive Models

As an example of the type of constitutive equations which can be con-
structed within the CIT framework, let us consider an isothermal system,
with uniform composition, and a microstructure described by a single
symmetric tensorial structural variable, Cs. Eqn (17.40) to (17.43) then
reduce to

rs¼ 2esDs þ 2LsW s
; (17:53)

trrs¼ edtrDs þ 2MstrW s; (17:54)

rs dsCs

dt
¼ 2Xs

0Ds þ XsW s: (17:55)
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To proceed we must derive an expression for the tensor W s. To arrive at such
an expression we first expand eqn (17.29) in terms of the structural variable:

ss¼ ss
0 þ

n1

2Ts Cs : Cs þ n2

3Ts trðCs � Cs � CsÞ þ n3

4Ts trðCs � Cs � Cs � CsÞ þ : . . . ;

(17:56)

where ss
0 is the non-structural contribution to the surface entropy per unit

mass, and vi are scalar coefficients. From the definition of the tensor W s in
eqn (17.31) we find

W s � Ts @ss

@Cs

� 	
¼ n1Cs þ n2Cs � Cs þ n3Cs � Cs � Cs þ : . . . (17:57)

By substituting this in eqn (17.53) to (17.55), we obtain the following set of
equations (retaining only terms up to second order in the structural tensor):

rs¼ 2esDs þ 2Lsn1C
s þ 2Lsn2Cs � Cs; (17:58)

trrs¼ edtrDs þ 2Msn1trCs þ 2Msn2ðCs : CsÞ; (17:59)

dsCs

dt
¼ 2X̂s

0Ds þ 1
t1

Cs þ 1
t2

Cs � Cs; (17:60)

where X̂s
0 ¼Xs

0=r
s and 1=ti¼Xsni=rs. We see that the coefficient t1 has units

of time. The first term on the right-hand side of eqn (17.60) describes how an
applied deformation drives the structure of the interface out of equilibrium,
the second term describes the relaxation back to the equilibrium structure.
The last term is a nonlinear correction on the linear relaxation behaviour
described by the second term. The model in eqn (17.58) to (17.60) is expected
to hold only for relatively small departures from equilibrium (deformations
up to about 1 %).39,49 This because it is constructed from linear flux-driving
force relations, and a simple Taylor expansion of the surface entropy in
terms of the structural variables, eqn (17.56). There are various ways in
which we can improve this model. Firstly, we could retain higher-order terms
in the expansion of the surface entropy. Alternatively, we could use func-
tional forms for the surface entropy which have been shown to be more
accurate.49,58 We could also replace the material time derivative in eqn
(17.60) by a frame invariant derivative such as the upper-convected surface
derivative. This equation would then be given by

dsCs

dt
� Cs � ðrsvsÞT � ðrsvsÞ � Cs¼ 2X̂s

0Ds þ 1
t1

Cs þ 1
t2

Cs � Cs: (17:61)

Finally, we can recognize that the scalar coefficients in the model are
functions of the structural variables. For example, the first term on the right-
hand side of eqn (17.61) could be replaced by

2X̂s
0Ds ! 2X̂s

0Dþ X̂s
1CsCs
 �

: Ds; (17:62)
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where D is the fourth-order surface unit tensor. Eqn (17.61) would then
change to:

dsCs

dt
� Cs � ðrsvsÞT � ðrsvsÞ � Cs¼ 2X̂s

0Ds þ X̂s
1ðCs : DsÞCs þ 1

t1
Cs þ 1

t2
Cs � Cs:

(17:63)

Such modifications produce models which can describe experimental data
also at much higher deformations than 1 %.49 In Subsection 17.4.3 we will
show how similar nonlinear models can be constructed in a more straight-
forward manner with the GENERIC framework.

17.4.2 Extended Irreversible Thermodynamics

In the previous section we discussed how constitutive equations can be derived
for complex fluid–fluid interfaces within the CIT framework, and included
internal variables in the set of independent system variables, to account for the
effects of changes in the microstructure of the interface on dynamics of a
system. This leads to models which link the (nonlinear) response of an
interface to a perturbation, directly to changes in its microstructure, induced
by the perturbation. To test such models, we need experimental data on the
time evolution of the microstructure during a deformation. Since most inter-
faces are actually very thin [typically in the range of (1 to 10) nm], obtaining this
information is a nontrivial issue. When probing mechanical properties of
interfaces in a surface rheology experiment, we would need to combine the
rheological experiment with microscopic or (light, neutron, or X-ray) scattering
techniques, to measure rheological response and structural evolution simul-
taneously. Such a combination is referred to as surface rheo-optics,59 and is
still rarely used. So mostly, information on the actual state of the interface
during deformation is not available. In such cases the EIT framework provides
an alternative approach for constructing constitutive models. In this frame-
work again additional scalar, vectorial, and tensorial variables are added to the
set of independent system variables. But rather than including some locally
averaged measures of the microstructure, the EIT framework includes the
fluxes themselves as system variables. So in EIT, eqn (17.10) is replaced by

frs;ms; �us; rs
ð1Þ; . . . ; rs

ðN�1Þ; trr
s; qs; js

ð1Þ; . . . ; js
ðN�1Þ; r

sg: (17:64)

In this example we have chosen the trace of the surface extra stress tensor as a
single scalar variable, the energy and mass flux vectors as vectorial variables,
and the traceless part of the surface extra tensor as a tensorial variable. To
create so-called multimode rheological models we may alternatively choose

frs;ms; �us; rs
ð1Þ; . . . ; rs

ðN�1Þ; trr
s
1; . . . ; trrs

k; qs; js
ð1Þ; . . . ; js

ðN�1Þ; r
s
1; . . . ; rs

kg;
(17:65)

where rs
k represents the kth mode of the surface extra stress tensor. With this

choice of surface variables we can now proceed along the same lines as in the
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previous section, where we discussed constitutive modelling in the CIT
framework. So firstly, we assume that the surface entropy satisfies

ss¼ ss us; bO;os
ð1Þ; . . . ;os

ðN�1Þ; trr
s; qs; js

ð1Þ; . . . ; js
ðN�1Þ; r

s
� �

: (17:66)

Next, we take the surface material time derivative of eqn (17.66), and
substitute it in the jump entropy balance, eqn (17.27). From the resulting
expression for the rate of surface entropy production we can again extract
flux-driving force relations. Up to linear order we then arrive at the following
expressions for the surface extra stress tensor (single mode):44

dsr
s

dt
þ 1
ts

rs¼ 2es

ts
Ds
; (17:67)

which, of course, can be obtained also directly from eqn (17.60) by setting

Cs¼ rs; X̂s
0 ¼ es=ts; t1¼� ts; t2 !1: (17:68)

The parameter ts in eqn (17.67) is the surface shear relaxation time. For the
traceless part of the surface extra stress tensor we obtain

dstrrs

dt
þ 1
td

trrs¼ 2ed

td
trDs; (17:69)

where td is the surface dilatational relaxation time. Eqn (17.67) and (17.69)
constitute the linear surface Maxwell model. In view of its linear nature, this
model is valid only for small deformation rates (typically much smaller than
1 s�1). We can easily extend this model to higher deformation rates by in-
corporating higher order terms in the stress. If we choose

Cs¼ rs; X̂s
0 ¼ es=ts; t1¼� ts; t2¼� as=es; (17:70)

in eqn (17.61), we obtain

dsr
s

dt
� rs � ðrsvsÞT � ðrsvsÞ � rs þ 1

ts
rs þ as

es
rs � rs¼ 2

es

ts
Ds
: (17:71)

This is the surface equivalent of the single-mode Giesekus model60 for the
bulk extra stress tensor. The corresponding expression for the trace of this
tensor is given by

dstrrs

dt
þ 1
td

trrs þ ad

ed
ðtrrsÞ2¼ 2ed

td
trDs: (17:72)

The coefficients as and ad are the surface shear and dilatational mobility
parameters, which satisfy

0ras r1, 0rad r1. (17.73)

In the EIT framework we obtain for the surface energy flux vector (when
mass transfer is negligible):44

dsqs

dt
þ 1
tl

qs¼� ls

tlTsrsTs: (17:74)
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Here tl is the relaxation time associated with surface energy transfer. Eqn
(17.74) is the surface equivalent of the Maxwell–Cattaneo equation51 for the
bulk energy flux vector. When this expression is substituted in the jump
energy balance (17.25), we obtain a hyperbolic partial differential equation,
which predicts a finite speed of propagation of thermal signals, rather than
the infinite speed of propagation which results from using the surface
equivalent of Fourier’s law (17.49).

Eqn (17.74) could alternatively also be obtained with the CIT framework,
starting with eqn (17.45). For an interface with homogeneous surface com-
position, this expression reduces to (choosing cs¼ qs, ẑs¼ zs=rs, and
zs

T=r
s¼� ls=ðtlTsÞ)

dsqs

dt
¼ ẑsws � ls

tlTsrsTs: (17:75)

By expanding the surface entropy in terms of qs, we obtain

ss¼ ss
0 þ

d1

2Ts qs � qs þ d2

4Ts ðq
s � qsÞðqs � qsÞ þ : . . . (17:76)

Here d1 and d2 are scalar coefficients. Using the definition of ws in eqn
(17.31), retaining only terms up to first order in qs, and setting
ẑsd1¼� 1 = tl, we obtain eqn (17.74). We see that when we use fluxes as
structural variables in the CIT framework, we obtain constitutive models
comparable to those derived using EIT. However, in CIT the set of structural
variables is not limited to the fluxes, which may provide more flexibility in
constructing constitutive models.

17.4.3 GENERIC

The General Equation for Non-equilibrium Reversible–Irreversible Coupling
(GENERIC) is a formulation of nonequilibrium thermodynamics in which
the dynamics of a system is described by a single equation, which for
multiphase systems takes the form42,43,45–49,61

dA
dt
¼ A;Ef g þ A;Ef gmintþ½A; S�: (17:77)

Here E is the Hamiltonian of the system, S is its total entropy, and A is an
arbitrary observable of the system (for example, its total mass or total en-
ergy). For multiphase systems A is given by

A¼
ð

R
adV þ

ð

S
asdO; (17:78)

where a is the density of A in the bulk phases, and as is the surface density of
A on the dividing surfaces. The first term on the right-hand side of eqn
(17.77) is the Poisson bracket, which contains reversible contributions to the
time rate of change of A.42,43,61 The second term is the moving interface
normal transfer or ‘‘mint’’ term, and it ensures structural compatibility of
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the GENERIC with the chain rule of functional calculus, when moving
interfaces are present in the system.45–48 The third term on the right-hand
side is the dissipative bracket, which contains the irreversible contributions
to the time rate of change of A.42,43,61

These brackets contain contributions from all surface and bulk variables,
and the specific form of these contributions is restricted by a number of
conditions. The Poisson bracket must satisfy

{A,B}¼�{B,A}, (17.79)

{A,{B,C}} þ {B,{C,A}} þ {C,{A,B}}¼ 0. (17.80)

The latter identity is referred to as the Jacobi identity. Furthermore, the
Poisson and mint bracket must be constructed such that the degeneracy
requirements for the total mass M, the total momentum Mtot, and entropy
are satisfied (for arbitrary B):

{S, B} þ {S, B}mint¼ 0, (17.81)

{Mtot, B} þ {Mtot, B}mint¼ 0, (17.82)

fM;Bg þ fM;Bgmint¼ 0: (17:83)

The total mass and momentum of the system are defined as

M¼
ð

R
rdV þ

ð

S
rsdO; Mtot¼

ð

R
mdV þ

ð

S
msdO: (17:84)

The dissipative bracket satisfies

[A, B]¼ [B, A], (17.85)

[A, A] Z0, (17.86)

[A, E]¼ 0. (17.87)

For systems with a complex microstructure the Hamiltonian and total en-
tropy are often expressed as

E¼
ð

R

m2

2r
þ �uþ �ucðr; �G;CÞ

� �
dV þ

ð

S

ðmsÞ2

2rs þ �us þ �us
cðr

s; �Gs;CsÞ
� �

dO;

(17:88)

S¼
ð

R

h
�sðr; �u; rð1Þ; . . . ;rðN�1ÞÞ þ �scðr; �G;CÞ

i
dV

þ
ð

S

h
�ssðrs; �us; rs

ð1Þ; . . . ; rs
ðN�1ÞÞ þ �ss

cðrs; �Gs;CsÞ
i

dO;

(17:89)
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where �uc and �us
c are the configurational contributions to, respectively, the

bulk internal energy per unit volume, and surface internal energy per unit
surface. The symbols �u and �us now denote the non-configurational con-
tributions to these internal energies. Similarly, �sc and �ss

c are the configur-
ational contributions to, respectively, the entropy per unit volume and
surface entropy per unit area. Note that we have assumed here that the
microstructures of bulk and interface can both be described adequately by
a single scalar variable, and a single tensorial variable. The extension to
systems where multiple scalar (or tensorial) variables are needed is
straightforward.

With these expressions for the Hamiltonian and total entropy, and the
appropriate form of the Poisson, mint, and dissipative brackets (for which in
view of their length we refer the reader to ref. 48 and 49), eqn (17.77) yields a
complete set of partial differential equations for all bulk and surface system
variables, and a complete set of boundary conditions, that couple the
equations for the bulk variables with the jump balance for the associated
surface variable.48,49 With regard to this, GENERIC differs from the CIT and
EIT frameworks. In CIT and EIT we construct constitutive models using the
entropy balance as a guide, which can subsequently be substituted in the
jump balances. Eqn (17.77) to (17.89) generate balance equations in which
the constitutive model is already incorporated, from which, if so desired,
expressions for fluxes can be extracted.

Here we will focus only on the balances we obtain for the structural
variables. For the bulk and surface scalar variables we obtain from eqn
(17.77)

db �G
dt
þ �Gr � v� G : rvþ R1

T
@�fc

@�G
�r � DG � r

1
T
@�fc

@�G

� 	� �
¼ 0; (17:90)

ds �Gs

dt
þ �Gsrs � vs� Gs : rsvs� 2Hvs � Gs � nþ Rs

1

Ts

@�f s
c

@�Gs �rs � Ds
G � rs

1
Ts

@�f s
c

@�Gs

� 	� �

� Us : JGC :
U

T
@�fc

@�G
�Us

Ts

@�f s
c

@�Gs þ
1
T
@�fc

@C
� 1

Ts

@�f s
c

@Cs

� 	� �� �
¼ 0;

(17:91)

For the boundary condition coupling these two equations we find
(M¼ I,II)

UM : JM
GC :

UM

TM

@�f M
c

@�GM �
Us

Ts

@�f s
c

@�Gs þ
1

TM

@�f M
c

@CM �
1

Ts

@�f s
c

@Cs

� 	

¼� �GMðvM � vsÞ � nM þ DM
G � r

1
TM

@�f M
c

@�GM

� 	
� nM ;

(17:92)
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For the structural tensor fields we obtain

dbC
dt
� C � ðrsvÞT � ðrsvÞ � C þ R2 :

1
T
@�fc

@C

� 	
�r � DC

..

.
r 1

T
@�fc

@C

� 	� �
¼ 0;

(17:93)

dsCs

dt
� Cs � ðrsvsÞT � ðrsvsÞ � Cs � 4Hvs � Csnþ Rs

2 :
1

Ts

@�f s
c

@Cs

� 	

�rs � Ds
C
..
.
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1
Ts

@�f s
c

@Cs

� 	� �
� JGC :

U

T
@�fc

@�G
�Us

Ts

@�f s
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@�Gs þ
1
T
@�fc

@C
� 1

Ts

@�f s
c

@Cs

� 	� �� �
¼ 0;

(17:94)

with boundary conditions ðM ¼ I; IIÞ

JM
GC :

UM

TM

@�f M
c

@�GM �
Us

Ts

@�f s
c

@�Gs þ
1

TM

@�f M
c

@CM �
1

Ts

@�f s
c

@Cs

� 	
¼DM

C
..
.
r 1

TM

@�f M
c

@CM

� 	
� nM :

(17:95)

In these expressions �fc¼ �uc � T�sc is the configurational Helmholtz energy
per unit volume, and �f s

c ¼ �us
c � T�ss

c is the surface configurational Helmholtz
energy per unit area. The second-order tensor fields G and Gs describe the
coupling of the scalar variables with the velocity gradient, and are defined as

G¼ g1C þ g2I þ g3C�1 Gs¼ gs
1Cs þ gs

2I þ gs
3ðC

sÞ�1: (17:96)

Here the scalar coefficients gi and gs
i are functions of, respectively, �G and �Gs,

and the scalar invariants of, respectively, C and Cs. The specific functional
form of these coefficients is restricted by the Jacobi identity. The scalar co-
efficients R1 and Rs

1 quantify relaxation processes for, respectively, �G, and �Gs.
The fourth-order tensor fields R2 and Rs

2 describe relaxation processes for,
respectively, C, and Cs. The second-order tensor fields DG and Ds

G quantify
diffusion processes for �G and �Gs. The sixth-order tensor fields DC and Ds

C
describe diffusion processes for C and Cs. The second-order tensors U and
Us are coupling tensors, describing a coupling of the exchange between bulk
and interface of scalar and tensorial variables. Such couplings are, for ex-
ample, important in systems with interfaces stabilized by anisotropic par-
ticles: when a particle diffuses towards the interface, it may have to adapt its
orientation with respect to the interface, before it can adsorb, and hence the
exchange of the scalar and tensorial variable are clearly coupled. Finally, the
fourth order tensor field JGC quantifies the transfer of the scalar and ten-
sorial variable between bulk phase and interface.

We see that the balances for the bulk and surface variables take on a
similar structure, in which the time rate of change of a variable is given by
(in order of appearance in the equations) convective processes, relaxation
processes, and diffusive processes. For the jump balances we have additional
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contributions for diffusive (and convective, in the case of the scalar surface
variable) exchange between the interface and the adjoining bulk phases.
These expressions are coupled with an expression for the surface extra stress
tensor, given by

rs¼ rs
v þ 2Cs � @

�f s
c

@Cs þ Gs @
�f s
c

@�Gs : (17:97)

By selecting appropriate functional forms for the Helmholtz energies, the
relaxation tensors, diffusion tensors, and coupling tensors we can create a
wide range of structural models, which can be compared to experimental
data for the mechanical behaviour of complex interfaces, even at high-
deformation rates (in excess of 100 s�1).49 As an example, let us consider an
interface in which the microstructure can be described by a single
tensor, and for which the surface Helmholtz energy takes the form
�f s
c ¼Tsða1trCs þ a2trðCs � CsÞ þ : . . . Þ. Eqn (17.97) then reduces to (setting

Gs¼ 0)

rs¼ rs
v þ 2a1TsCs þ 4a2TsCs � Cs: (17:98)

Let us also assume that the relaxation tensor is linear in the structural
tensor,

Rs
2abmn ¼

1
tC

damCs
bn; (17:99)

where tC is a relaxation time (note that in general we would choose a fully
symmetrised version of eqn (17.99), and if needed, could include a second
order term in the tensor Cs). If, in addition, we may assume that the de-
formation does not introduce any gradients in the tensor field, and that
there is no exchange of structural information with the bulk phase, then eqn
(17.94) reduces to

dsCs

dt
� Cs � ðrsvsÞT � ðrsvsÞ � Cs � 4Hvs � Csnþ 1

tC
ða1Cs þ a2Cs � CsÞ¼ 0;

(17:100)

which is very similar (but not completely equal) to the result we obtained in
eqn (17.61), using the CIT framework.

This flexibility and generality is one of the strengths of the GENERIC
framework. Through its modular form it can easily be extended to include
additional effects, which are not included in eqn (17.90) to (17.95). For ex-
ample, in some systems we may want to include a coupling between relax-
ation processes of the scalar variable, and relaxation processes for the
tensorial variable, or a coupling between the diffusion processes of these two
variables. Such contributions are straightforward to incorporate in the
GENERIC.61 The framework provides an excellent basis for tests of consist-
ency of thermodynamic models, and widespread use can be recommended.
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17.5 Conclusions and Outlook
In the field of experimental surface rheology we can currently observe a
significant shift from characterization of simple surfactant stabilized inter-
faces, to more complex fluid–fluid interfaces, stabilized by polymers, pro-
teins, protein aggregates, colloidal particles, or mixtures of these
components.1 There seems to be a general unawareness of the nonlinearities
which may occur in the response of these interfaces as a result of applied
deformations, even at very small deformation (rates). A detailed study of
these nonlinearities is impeded by the lack of constitutive models for surface
behaviour. Nonequilibrium thermodynamic frameworks such as the ones we
have discussed here are excellently suited to construct such models, and
with more focus on this particular subfield, NET could play an important
role in the characterization of complex multiphase systems by providing
experimentalists with thermodynamically consistent models for the surface
extra stress tensor. The experimentally observed coupling between surface
stress-deformation behaviour, and mass transfer between the interface and
bulk phase, can also be conveniently and consistently modelled within NET
frameworks.

Here we have compared the CIT framework (with structural variables in-
cluded in the set of system variables), the EIT framework, and GENERIC
framework. For all these frameworks we have illustrated how constitutive
equations can be derived for the surface fluxes (describing transport pro-
cesses along the interface), and the fluxes describing transfer of mass, mo-
mentum, and energy between the interface and its adjoining bulk phases.
The latter equations basically serve as boundary conditions, coupling the
differential equations for the bulk density, momentum, and energy, with the
jump balances for, respectively, surface density, surface momentum, and
surface energy.

The EIT framework is particularly useful when experimental data on the
structural state of the interface is not available (and the dynamics of the
system are such that they can be adequately described using fluxes as system
variables, on all relevant timescales). EIT allows us to derive the surface
equivalent of constitutive models for bulk fluxes, such as the surface
Maxwell or surface Giesekus model for the surface extra stress tensor, or the
Maxwell–Cattaneo model for the surface energy flux vector. For the CIT and
GENERIC frameworks we have primarily focussed on the derivation of
structural models, which couple the response of a system to a perturbation
from its equilibrium state, directly to the changes in the microstructure,
induced by that perturbation. With these approaches we can construct
models for the surface stress tensor which can be applied also at high de-
formation rates. Structural models have so far not found widespread appli-
cation in the field of surface rheology. In contrast, in bulk phase rheology
these models are much more widespread, and have proven to be quite
successful: they have been applied to polymer melts, solutions of branched
polymers, immiscible polymer blends, dispersions of (anisotropic) particles,
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or nematic phases.61–63 When structural data of complex interfaces during
deformation becomes more readily available, the surface structural models
we discussed here may prove to be equally valuable for gaining a better
understanding of the complex nonlinear dynamics of these interfaces.
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42. M. Grmela and H. C. Öttinger, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,

Relat. Interdiscip. Top., 1997, 56, 6620.
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