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Chapter 1 

Introduction 

One of the most remarkable developments in the recent history of mathe
matics has been the discovery of an intimate connection between the cen
tral objects of study in low-dimensional geometric topology—classical 
knots and links and low-dimensional manifolds themselves—and what 
had heretofore been somewhat exotic algebraic objects—Hopf algebras, 
monoidal categories, and even more abstract-seeming structures. A cor
respondence between geometric and algebraic structures has, of course, 
been central to the development of mathematics, at least since Descartes 
provided the world with the coordinate plane. 

The connection disclosed by the rise of "quantum topology" is, how
ever, of a different character from that classically known. The classi
cal connection is mediated by algebras of (possibly quite generalized) 
functions, so tha t the correspondence between geometric and algebraic 
objects is contravariant, as, for example, the correspondence between 
manifolds and algebras of smooth functions, or between affine schemes 
and commutative rings. In the connections between topology and alge
bra which have come to light since the discovery of the Jones polynomial, 
the topological objects (usually parts or relative versions of the primary 
objects of interest) are themselves the elements of an algebraic object. 
Topological information is then wrung from this algebraic object by 
representing it in other algebraic objects of the same type. 

7 



8 Functorial Knot Theory 

Another feature of these recent developments is the difference be
tween the role categories and functors have usually played since their 
discovery and the role they now play in quantum topology. Rather 
than serving a foundational role, as a clean way of encoding "natural" 
constructions of one kind of mathematical object from another, cat
egories in quantum topology stand as algebraic objects in their own 
right. This difference has not always been generally understood, even 
by quite brilliant mathematicians working in related areas, as the follow
ing personal anecdote involving the late Moshe Flato illustrates. One 
evening at a Joint Summer Research Conference in the early 1990's 
Nicholai Reshetikhin and I button-holed Flato, and explained at length 
Shum's coherence theorem and the role of categories in "quantum knot 
invariants". Flato was persistently dismissive of categories as a "mere 
language". I retired for the evening, leaving Reshetikhin and Flato to 
the discussion. At the next morning's session, Flato tapped me on the 
shoulder, and, giving a thumbs-up sign, whispered, "Hey! Viva les cat
egories! These new ones, the braided monoidal ones." 

It is the purpose of this book to lay out clearly and in one place much 
of the scattered lore concerning the categories most intimately related 
with classical knot theory, and to relate these categories both to knot 
polynomials, which were the original motivation for their study, and to 
the theory of Vassiliev invariants. No claim is made that this t reatment 
is exhaustive of the current state of knowledge, but it is the author 's 
hope tha t it will prove useful to students and established researchers 
alike. One area specifically not touched in this work (though some of 
the requisite definitions are mentioned as examples) is the connection 
between the theory of monoidal categories and the known algebraic con
structions of topological quantum field theories. We have also steered 
clear of any areas in which the universal constructions charateristic of 
category theory in its foundational role are needed, as for example lim
its or colimits of diagrams. By doing this, we emphasize the algebraic 
nature of the subject at hand. 

Par t I lays out the fundamentals of "functorial knot theory", recall
ing the necessary facts and theorems from both category theory and 
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knot theory, and even providing proofs of some "folk theorems" which 
are universally assumed. Par t II shows tha t Vassiliev theory, at least in 
its combinatorial guise, falls within the scope of functorial knot theory, 
and thus understood can be viewed as a species of algebraic deformation 
theory. Par t I is intended to be fairly self-contained, with only standard 
topics in first year graduate courses as prerequisites. Par t II assumes 
some familiarity with algebraic deformation theory (in particular, Ger
stenhaber [23, 24] and Gerstenhaber and Schack [25]) and homological 
algebra (see, for example, Weibel [57]). 





Part I 

Knots and Categories 





Chapter 2 

Basic Concepts 

In this chapter we introduce basic concepts from low-dimensional topol
ogy and category theory which will be required in this study. We will 
begin with concepts from classical knot theory, and then turn to cat
egorical structures. Whenever possible, we will illustrate categorical 
notions with both of classically known "categories-as-foundations" ex
amples, and with more recent "categories-as-algebra" examples, these 
latter being chosen to emphasize the close connection between the cat
egorical concept and low-dimensional topology. 

Throughout this study, unless otherwise specified, terms like "man
ifold" , "map", "embedding" and "homotopy" will refer to the piecewise 
linear (PL) version of the concept. Due to various classical smoothing 
and triangulation theorems, it would generally be a mat ter of indiffer
ence if the smooth versions were being used. Although there are some 
concepts, such as framed links, which are more natural in the smooth 
setting, we prefer the PL setting to avoid some niceties involving restric
tions on germs near boundaries which are needed to develop the theory 
of smooth tangles. We will address these in Chapter 8. In the earlier 
chapters we will a t tempt to point out the adjustments which would be 
needed in the smooth setting, either in asides or in footnotes. 

Throughout this work the unit interval [0,1] C M is denoted I. 

13 



14 Functorial Knot Theory 

2.1 Knots, Links and Tangles 

Knots and links, tha t is to say, compact 1-submanifolds of M3 or S3 , 
play a remarkably important role in the theory of smooth or piecewise 
linear 3- and 4-manifolds, and in a variety of other parts of mathematics 
and the sciences. 

When equipped with a framing (or in the presence of orientations, a 
smooth field of normal vectors), they provide the da ta for the attaching 
of 2-handles to B 4 . Theorems of Kirby [35] show that every compact 
oriented 3-manifold arises as the boundary of a 4-dimensional handle-
body with only 0- and 2-handles, and provides a calculus of "moves" to 
relate any two presentations of the same (diffeomorphic) 3-manifold(s). 
Similarly, the 2-handle structure turns out to be central to the properties 
of smooth 4-manifolds. 

Many properties of singularities of complex plane curves are inti
mately related to the "link" of the singularity, tha t is, the intersection 
of the curve with the bounding S 3 of a sufficiently small ball about 
the singularity. Finite families of closed trajectories of 3-dimensional 
dynamical systems can form links of arbitrary complexity. 

Bacterial DNA forms a closed loop, and is thus reasonably modeled 
by a knot. Certain enzyme actions lead to very complex knots. More 
remarkable still, knots and links arise naturally from considerations in 
the quantization of general relativity. 

For all of these reasons, the study of knots and links is of great 
interest, and it behooves us to consider precise definitions: 

Definit ion 2.1 A (classical) knot is an embedding of S 1 into S 3 (or 

A (classical) link is an embedding of FJ"=1 S
1 into S 3 (or M.3), for 

some n £ N. (Note: we include 0, so that there is an "empty link"). 

In all of the applications noted above, and whenever knots and links 
are studied topologically, the important thing is not the embedding 
itself, but its class under a suitable notion of equivalence defined in terms 
of geometric deformations. The naive notions of geometric deformation, 
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homotopy, or even isotopy (that is, homotopy through embeddings) turn 
out to be unsuitable. Therefore we make 

Definit ion 2.2 Two knots or links K\, K2 are ambient isotopic or sim
ply equivalent if there is an isotopy H : S 3 x I -> S 3 (or similarly for 
R3 instead of S3) which carries one to the other. 

More precisely, H is a PL map, satisfying H(—,0) = Id^; H(—,t) 
is a PL-homeomorphism for each t; and 

H(K1(x),l) = K2(x) 

(using K{ to denote the mapping, with implied domain.) 

In this study, it is important to consider also a "relative" or local 
version of knots and links confined to a rectangular solid: 

Definit ion 2.3 A tangle is an embedding T : X —> I3 of a 1-manifold 
with boundary into the rectangular solid I 3 satisfying 

T(dX) = T(X) n dl3 = T(X) n (I2 x {0,1}). 

The relevant notion of equivalence for tangles is then given by 

Definit ion 2.4 Two tangles Tx : Xi -> I 3 and T2 : X2 -> I 3 are 
equivalent or isotopic rel boundary if there exist a PL homeomorphism 
$ : Xi —> X2 and a map H : I 3 X I ->• I 3 satisfying 

1- H\dIiXI — pdI3 

2. H( — ,t) is a PL homeomorphism for all t 

3. H(~,0) = IdI3 

4. H(T1,1) = T2($):X1-+I3 

The following lemma about ambient isotopies in I 3 will be useful in 
what follows: 
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L e m m a 2.5 Given an isotopy H of a closed set F = [e, 1 - e]3 C I3, 
there is an isotopy H of I 3 to itself whose restriction to F is H, and 
whose restriction to dl3 is the trivial isotopy pdlz : dl3 X I —>• dl3. 

proof: Consider triangulations o f F x I and F on which the H is given 
by linear maps of the simplexes. Now, choose triangulations of dl3 X I 
and dl3 subordinate to which the projection is given by linear maps of 
simplexes. Subdivide these triangulations so that the triangulation of 
OF and the triangulation of dl3 are isomorphic by the map given by 
radial projection from the center of I3 . 

Now, I 3 \ F is PL homeomorphic to [dF] x I. Choose a PL homeo-
morphism </>i x <f>2 = 4> '• I 3 \ F —> [dF] X I with the property that 
4>2{dF) = 1 and 4>2(dl3) = 0. Then there is a piecewise smooth isotopy 
S : l3\F x I ->• I 3 \ F given by S{x, t) = (f)'1 (H ty^x), fa(x) • t),fc(x)) 
whose restrictions to dF and dl3 are linear. Now, let E be a PL ap
proximation to S agreeing with S on dF and dl3. The desired isotopy 
is then given by 

H ( x t ) - l H^X^ 'lfxeF 

a 

There are two particularly important auxiliary structures with which 
knots, links and tangles may be equipped: orientations and framings. 
The first may be defined either homologically or combinatorially in the 
PL setting.1 We prefer the combinatorial approach: 

Def in i t ion 2.6 A knot, link or tangle is oriented if every edge is equip
ped with a choice of one of its vertices as "first", in such a way that 
no vertex is chosen as "first^ for both edges with which it is incident. 
We encode this choice diagrammatically by equipping each edge with an 
arrow pointing from the first vertex to the other (last) vertex. 

1Of course in the smooth setting, we could also define orientations in terms of 
orientation on the tangent bundle. 
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Observe tha t it suffices to equip one arrow in each connected com
ponent of a knot, link, or tangle with an arrow to specify completely an 
orientation on it. 

The second notion, that of framing, exists most naturally in the 
smooth setting as a choice of a framing for the normal bundle of the 
(smooth) knot, link, or tangle. We may, however, easily translate it into 
the PL setting as follows: in the presence of the standard orientation on 
the ambient M3, S 3 or I3, and an orientation on the knot, link or tangle, 
the specification of a framing on the normal bundle can be reduced to the 
specification of a field of normal vectors, since a second normal vector 
may be obtained as the cross-product of the unit tangent vector with 
the given normal vector. Using the exponential map of the standard 
metric, we can replace this normal vector field with a thin ribbon, one 
edge of which is the knot, link, or tangle. We can then take this "ribbon" 
version of framed links and translate them into the PL setting: 

Definit ion 2.7 A framing of a (PL) knot, link, or tangle is an exten
sion of the embedding T : M1 -» X 3 (for X3 = S3, M3 or I3) defining 
the knot, link, or tangle to an embedding Tj : M 1 x l -> X 3 such 
that Tf(x,0) = T(x), and (in the case of tangles) if x £ dXl, then 
Tf(x, t) £ I 2 X {0,1} for all t £ I. 

In Chapter 8 we will consider the smooth approach in more detail. 

We can also encode a framing by attaching an integer to each com
ponent of the knot, link, or tangle. In the case of knots and links, this 
integer is simply the linking number of the two boundaries of the ribbon 
(with the orientation on the opposite boundary reversed). 

In the case of tangles, an encoding of framings by integers can be 
given, but either it will be non-canonical and involve a choice of which 
framing is the 0-framing for each interval component, or it will involve 
further restrictions on the intersections of the tangle with dl3. 

In cases where we consider the tangles to be oriented or framed, we 
require that the ambient isotopy in the definition of equivalence respect 
the orientation or framing in the obvious sense. 
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In all cases, of knots, links, or tangles, with or without orientations or 
framings, the abuse of language which ignores the distinction between 
a thing and its equivalence class is commonplace. For example, "the 
unknot" refers to the equivalence class of a planar circle. 

Although the fundamental topological notion of equivalence is that 
of ambient isotopy, or ambient isotopy rel boundary, it is convenient 
in practice to replace this notion with a more combinatorial notion. 
The relevant notion was given in the classic treatise on knot theory, 
Knottentheorie, by K. Reidemeister [44]: 

Definit ion 2.8 Two PL knots, links, or tangles are isotopic by moves 
if they can be related by a sequence of moves of the following form: 

Let A be a closed triangle (in some triangulation in the PL 
structure on M3, S3 , or I 3 as relevant) such that the inter
section of the knot, link or tangle, T, is exactly one or two 
of the closed edges of A. Replace A U T with the closure of 
the edges of A not contained in T. 

We then have 

Propos i t i on 2.9 Two knots (resp. links, tangles) T\ and T2 are equiv
alent if and only if they are isotopic by moves. 

In the case of knots and links, the proof is given in Reidemeister 
[44]. For tangles, Reidemeister's proof together with Lemma 2.5 give 
the desired result. 

One important fact about knots, links and tangles is tha t they can be 
completely characterized up to equivalence by certain planar drawings, 
called "diagrams". A sequence of propositions and definitions make this 
precise: 

Propos i t i on 2.10 Almost every (orthogonal) projection of a knot or 
link K onto a plane is "at-most-two-to-one", in the sense that the in
verse image of any point of the plane contains zero, one or two points 
of K, with only (isolated) transverse double points. We call such a 
projection a regular projection. 
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proof: The PL proof may be found in detail in [44]. We sketch it here. 
Observe tha t the (orthogonal) projections in M3 are parameterized by 
S 2 . "Almost every" then indicates all except a set of measure zero in S2 , 
in particular, all projections except a family parameterized by a curve 
(perhaps with isolated points) in S 2 . 

One must avoid the direction's of the edges (a finite set of points) so 
that many-to-one image points do not arise by the projection of an edge 
to a point. For each pair of edges, the directions of secant lines joining a 
point of one edge to a point of the other form two (topological) disks or 
arcs on S 2 . In the case where they form arcs, we must avoid these arcs 
to ensure transversality of double points, and we must likewise avoid 
directions of secant lines from any vertex to any point for the same 
reason (a finite set of arcs and points). For each pair of edges, one 
must avoid directions of secant lines from a point on one edge to a point 
on the other which also hit other points, to avoid image points with 
multiplicity greater than two. The secant lines themselves fill a closed 
region of M3 in such a way that every point of the region, except those 
on the two edges, lies on exactly one secant line. We must thus avoid 
a curve of directions described by the intersection of the other edges of 
K with the region. • 

In the case of tangles, an analogous result holds, though here we 
wish to consider only projections onto the "back wall" of the cube I3. 
Therefore we consider non-orthogonal projections onto the plane of the 
"back wall" followed by linear scaling into a standard square. 

Of course, information is lost in the process of projection: one no 
longer knows the height of the points above or below the plane of pro
jection. Since we are concerned with knots, links and tangles only up 
to equivalence, most of the lost information is irrelevant: there are am
bient isotopies (or isotopies by moves) which preserve the projection, 
but change the height of the points. What cannot be changed by an 
ambient isotopy that preserves the projection is which of the preimage 
points of a double point lies above the other. 

In fact, it is the case that this information about the preimages of 
each double point is enough to recover the knot or link up to equivalence. 
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Figure 2.1: Examples of Knot Diagrams 

By convention, the information is given by a knot (or link) diagram: 
a drawing of the projection in which the arc containing the lower of 
the two preimages is broken on either side of the double point, as, for 
example, in Figure 2.1. As is standard practice, we refer to these as 
knot diagrams, or simply diagrams, even in the case of links, and refer 
to the double points with the lower preimage indicated by the broken 
arc as crossings. 

We then have 

T h e o r e m 2.11 A knot or link is determined up to equivalence by any 
of its diagrams. 

The double points of a link diagram are called crossings. In the 
case where the link is oriented, we can distinguish two different types 
of crossings: 

Definit ion 2.12 Crossings in an oriented link diagram are positive or 
negative if the over- and under-crossing arcs are oriented as in Figure 

2.2. 

Mnemonically, a crossing is positive if the right-hand rule curling 
from the out-bound over-crossing arc to the out-bound under-crossing 
arc gives a vector pointing up out of the plane of projection. 

This then raises the question of when two diagrams determine the 
same equivalence class of knot of links. The answer is given by the 
classical theorem of Reidemeister [44]: 
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/ \ / \ 

posi t ive crossing negat ive crossing 

Figure 2.2: Crossing Signs 

T h e o r e m 2.13 Two knot diagrams determine equivalent links if and 
only if they are related by a sequence of moves of the forms given in 
Figure 2.3. 

Before giving the proof of Theorem 2.13 we should comment on the 
fact that our set of moves is the original, larger set of combinatorial 
moves given in [44] rather than the smaller set, 17.1, fi.2 and S7.3, which 
is usually given under the name "Reidemeister moves" (cf. for example 
Burde and Zieschang [11]). The moves A.7T.1 and A.7T.2 are usually 
collected together in the phrase "isotopies of the plane of projection". 
Their inclusion, however, is both a convenience in the proof and, once 
the categorical structure of tangles is considered, a necessity for this 
study. 

proof of T h e o r e m 2.13: 

The key to the proof is Reidemeister's other result: tha t ambient isotopy 
is equivalent to isotopy by moves. Consider a move across a triangle: if 
the projection of the triangle is an arc, the projection is unchanged by 
the move; otherwise, the projection of the triangle is itself a triangle. 

To see that equivalence of diagrams under the diagrammatic moves 
implies isotopy by moves of the links is quite easy: each diagram
matic move becomes an isotopy-by-moves of the following form—use 
moves across triangles perpendicular to the plane of projection to ad
just heights until the diagrammatic move can be realized as a single 
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- * * • 

a i 

A.7T.1 

n.2 

A.TT.2 

\ 

/ 

n.3 

Figure 2.3: Reidemeister's Moves 
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Figure 2.4: Subdivisions Useful to Avoid Non-regular Projections 

move across a triangle parallel to the plane of projection. 
For the converse, we would like to proceed by simply considering the 

effect of isotopy by a single move across a triangle on the projection. 
However, before doing so, we must show that we may assume, without 
loss of generality, tha t each move not only begins, but ends, with a 
regular projection. 

Now, if we subdivide any triangle into smaller triangles, the move 
across the triangle can be realized instead as a sequence of moves across 
the smaller triangles. This observation is the key both to the remainder 
of the proof, and to solving the difficulty just mentioned. 

If a move results in a non-regular projection, we can replace it with 
three moves across smaller triangles as in Figure 2.4. The subdivision 
point must be chosen so that the move across the large triangle(s) results 
in regular projections, and near enough to the new arc. Near enough, 
here, means 

1. within a neighborhood bounding the new arc away from the tri
angles of later moves, if the non-regularity is removed by moves 
not involving the new arc, or 

2. so tha t the convex hull of the triangle of the move removing the 
non-regularity and the image of the nearest-neighbor projection 
of its starting arc across the thin triangle(s) does not intersect the 
remainder of the link, if the non-regularity is removed by a move 
involving the new arc. 

In either case, we replace the sequence of moves with a sequence in which 
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the move introducing the non-regularity is replaced by the move(s) 
across the large triangle(s). In the first case, the move(s) across the 
small triangle(s) is (are) made just after the move which removed the 
non-regularity in the original sequence. In the second case, the move 
which removed the non-regularity in the original sequence is replace by 
moves across the other faces of the convex hull of item 2, and subdivi
sions of the thin triangle(s). 

Now, we may assume that all of our moves begin and end with links 
whose projection onto a given plane are regular. Let the complexity of 
a move to be given by the number of edges, vertices and crossings of the 
link whose projection intersect the projection of the interior triangle of 
the move. If the move has a complexity greater than three, or if there 
are no vertices or crossings whose projection lies in the interior of the 
triangle and the move has a complexity greater than one, we can replace 
the move with a sequence of less complex moves across a subdivision of 
the triangle. 

It therefore suffices to show that the result holds for moves of mini
mal complexity: those of complexity 0 and 1 with no vertices or crossings 
in the projection of the interior of the triangle, and those of complexity 
3 involving a vertex or crossing. 

Now, a move of complexity 0 is immediately seen to be one of type 
A.7T.1. A move of complexity 1 is of type Q.l in the case where the edge 
whose projection is interior to the projected triangle is incident with 
the arc being moved, of type A.7T.2 in the case where it crosses the arc 
being moved on the boundary, and of type fi.2 otherwise. 

A move of complexity 3 involving a vertex is of type fi.2 if the arc 
including the vertex does not cross the edge being moved, and of type 
A.7T.2 if it does. 

Finally, a move of complexity 3 involving a crossing is plainly of type 
tt.3. D 

It is easy to incorporate orientation da ta into a knot diagram: one 
need only equip the projection of each component of the link with an 
arrow on one of its arcs 

Using crossing signs, itt is now possible to give a combinatorial def-
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inition of linking number: 

Definit ion 2.14 Given two components A'i, K2 of a link L, the linking 
number lk(Kr, K2) is \{c+ - c_), where c+ (resp. c_) is the number of 
positive (resp. negative) crossings involving one arc of K\ and one arc 
of Ki in some diagram of the link. 

It can be easily verified that this number is invariant under the 
Reidemeister moves, and is thus independent of the choice of diagram. 

What is slightly less clear is that one can incorporate the framing 
information for an oriented framed link in the knot diagram as well: 
perform an ambient isotopy which is trivial outside of a tubular neigh
borhood of the link to make the ribbon parallel to the plane of pro
jection, and pointing right with respect to the orientation vectors. In 
doing this, one may have to introduce kinks into the diagram (by moves 
of the form fLl) . 

The ambient isotopy class of the oriented framed link can then be 
recovered from the resulting knot diagram by mapping the ribbon in 
such a way tha t it lies to the right of the curve when traversing it in 
the direction determined by the orientation. The framing determined 
in this way from a diagram is called the blackboard framing (cf. [36]). 
This process of introducing kinks to "flatten" the ribbon makes clear 
tha t the move fi.l does not preserve the ambient isotopy type of the 
framed link which is recovered from the diagram. 

All of the other Reidemeister moves may readily be seen to pre
serve the equivalence class of oriented links with the blackboard framing. 
Omitting fi.l from the Reidemeister moves give a combinatorial notion 
of equivalence called "regular isotopy" which was used by Kauffman 
[32] in his formulation of the Jones polynomial, the so-called "Kauff
man bracket" (cf. also [29]). 

For our purposes, this combinatorial notion is less useful than a 
reduction to diagrams of ambient isotopy of framed oriented links. For 
this, we need to replace fLl with a substitute move which does respect 
the framing. To do this, we need to examine how the various cases of 
£1.1 change the blackboard framing. Observe that those which introduce 
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l/\ /NJ 
Figure 2.5: The Framed First Reidemeister Move 

positive crossings change the framing (thought of as an integer) by + 1 , 
while those with negative crossings change it by —1. It therefore follows 
tha t any combinations of moves of type Q.l which change the framing 
by 0 must be admitted as moves. 

Now any such sequence of Reidemeister moves which preserves the 
framing can be modified by moves of the types other than $7.1 (by sliding 
curls along the component of the link) in such a way tha t moves of type 
fi.l which increase the framing are paired with moves of type Q.l which 
decrease the framing in small balls (or disks in the projection). By use of 
the simplest "Whitney trick"—the fact tha t moves of types Q..2 and fi.3 
suffice to remove a pair of loops, provided they have opposite crossings, 
and lie on opposite sides of the arc in the projection, all of the various 
cases can be reduced to the single move in Figure 2.5. 

2.2 Categories, Functors, Natural 
Transformations 

We now turn to the basic notions from category theory needed for this 
study. The reader interested in a more thorough t reatment is referred 
to Mac Lane [40], which contains most of the standard elementary defi
nitions and theorems. We repeat those of particular importance for this 
study in this section and the next chapter. 

Definit ion 2.15 (objects -and-arrows) A category C consists of two 
collections Ob(C) and Arr{C), whose elements are called, respectively, 
the objects and arrows ofC together with assignments of objects t a rge t ( / ) 
and source(/) to each arrow f; of an arrow Idx to each object X; and 
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of an arrow denoted fg or g(f), called the composition of f and g, to 
each pair of arrows f, g for which t a rge t ( / ) = source(#), and satisfying 

souvce(Idx) = X 

t a rge t (Jdx) = X 

* "•souvce(J)J — / 

/•fdtargetf/) = / 

% ( / ) ) = % ) ( / ) • 

The arrows of a category are also, particularly in concrete settings, 
referred to at morphisms or maps. At first, we will adhere to calling 
them "arrows", but as we move to setting where the other names are 
common, we will begin to use them interchangeably. 

The coyness of not describing source ( - ) , t a r g e t ( - ) , Id- and compo
sition as functions is traditional (and to some minds necessary) because 
the collections involved are often proper classes.2 The reader who dis
likes bothering about the niceties of set theory may proceed safely: all 
of the categories which will occur in this book, outside of some illus
trative examples in this section, are either small ( that is, both Ob(C) 
and Arr(C) are sets) or essentially small ( that is equivalent~as defined 
below-to a small category). One other notion connected with size in 
the set-theoretic sense should be mentioned: if for every pair of objects 
X, Y, the collection of arrows with source(/) = X and t a rge t ( / ) = Y 
is a set, we say the category is locally small. All categories considered 
herein are locally small. 

Many categorists object to the habit of mind which tries to place all of mathemat
ics on a set-theoretic foundation. After all, when is the last time anyone ever actually 
cared about the e-tree defining an element of a smooth manifold? For the insistently 
set-theory minded, we will dispense with the problems usually raised concerning sizes 
of categories by using a sufficiently strong large-cardinal axiom—Grothenieck's Ax
iom of Universe. Those size problems which do not collapse in the face of this axiom, 
and there are some, do not arise in this study. 
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Definit ion 2.16 For a locally small category C, the set of all arrows 
with source(/) = X and t a rge t ( / ) = Y is denoted Homc(X,Y) or 
simply C(X, Y), and called the hom-set from X to Y. 

If we do write the structure given in Definition 2.15 in terms of sets 
and functions we have 

source : Arr(C) —> 06(C) 

target : Arr(C) — • Ob(C) 

Id : 06(C) — • Arr(C) 

- ( - ) : Arr(C) x0b(c) Arr(C) — • 06(C) 

satisfying the functional equations given element-wise in the definition. 
It will be observed that both source and target split Id, and thus Id 

is a bijection between 06(C) and its image. As we are concerned only 
with the structure of the category, not with the identity of its objects or 
arrow in some external ideal universe, this bijection allows us to forget 
the objects entirely: we can consider the identity maps themselves as 
the objects. Doing so gives an alternative definition of category which 
is sometimes more convenient: 

Definit ion 2.17 (arrows-only) A category C is a collection C whose 
elements are called "arrows", equipped with two unary operations source 
and target and a partially defined operation denoted by the null in
fix, with the property that fg is defined if and only if target (/) = 
source(g) , and satisfying 

source(source(/)) = source(/) 

target (source(/)) = source(/) 

source(target(/)) = target (/) 

target (target (/)) = target (/) 

source( / ) / = / 
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/target (/) = / 
[f9]h = f[gh] 

E x a m p l e 2.18 S e t s : Objects are all sets in your favorite model of 
your favorite set-theory; arrows are all set-functions; source is domain; 
target is codomain; Idx for any set X is the identity function on X; 
and composition is composition of set-functions. 

E x a m p l e 2.19 E s p : Objects are all topological spaces; arrows are all 
continuous maps; source is domain; target is codomain; Idx for any 
space X is the identity function on X; and composition is composition 
of continuous maps. 

E x a m p l e 2 .20 K — m o d : Fix a ring K. Objects are all K modules; 
arrows are all K-linear maps; source is domain; target is codomain; Idx 
is the identity map on X; and composition is composition of K-linear 
maps. 

Examples of this sort can be multiplied ad infinitum: take as objects 
all examples of some mathematical structure, and as arrows all maps 
preserving (some part of) the structure, . . . . In these cases it is most 
convenient to use the objects-and-arrows definition. This is not always 
the case. Consider 

E x a m p l e 2.21 G: Fix a group (or monoid) G. Consider its elements 
as arrows with composition defined by the group law, and source and 
target given by the the constant map to e, the identity element. 

More important for this study are: 

E x a m p l e 2.22 Tang (resp. Otang , Fr tangj : Consider as arrows all 
equivalence classes of tangles (resp. oriented tangles, framed oriented 
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tangles). source(T) (resp. target (T)) is the linear embedding of a dis
joint union of copies of I which is constant in the first two coordinates 
and intersects T at each point of I2 X {0} (resp. I2 X {1}) in the same 
set of points as T with (resp. the same set with the same orientation, 
the same set with the same orientation and framing). The composition 
of two tangles T\,T2 has as underlying 1-manifold the union of the un
derlying 1-manifolds of T% andTi with the points of the boundary lying 
in the face containing the common source/target identified. The com
position T1T2 is then defined by the map on this underlying 1-manifold 
given as a composition of T\ Tj T2, with the map 73 : I 3 J T l 3 —> I 3 given 
by 

(x, y, z) 1—>• (x, y, —) for elements of the first summand 

z + 1 
(x, y, z) H-» (x, y, —-—) for elements of the second summand, 

with the connected components PL homeomorphic to I reparameterized 
to preserve the condition at the boundary. 

It requires a little work to verify tha t this actually gives rise to 
a category. The conditions involving only source and target , but not 
composition, are immediate. To verify the other conditions, observe first 
tha t the two sides of the equations are certainly not equal by construc
tion until we pass to equivalence classes. It is necessary to construct a 
PL (smooth) ambient isotopy rel boundary to verify the equations. 

The required isotopies are constant in the first two coordinates of I 3 

and in all coordinates in a neighborhood of dl3. In the third coordinate 
they are given in a set F of the form [e, 1 — e]3 by (smoothings of) the PL 
maps shown schematically in Figure 2.6. The extension of this isotopy 
given by Lemma 2.5 then gives an isotopy which preserves the condition 
on the boundary. 

E x a m p l e 2 .23 n-Cobord: As objects, take oriented smooth (n — 1)-
manifolds. As arrows, let Homn_Q0\30r(^(M, N) be the set of all equiv
alence classes of oriented n-manifolds with boundary X equipped with 
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associativity 

right identity 

left identity 

Fi gure 2.6: Isotopies Giving Identity and Associativity Conditions in 
Categories of Tangles 
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a diffeomorphism 4> : -M]\N —>• dX, where —M denotes M with its 
orientation reversed, and where (X, <f>) is equivalent to (Y, ip) when there 
exists a diffeomorphism 0 : X —> Y such that @(<f)) = ip. 

Composition is given by "gluing" the source of one cobordism to the 
target of another and giving the resulting manifold the unique smooth 
structure for which charts in the interior of each manifold are charts 
and the bicollar neighborhood of the "gluing locus" obtained by gluing 
collar neighborhoods of the boundary components has the product smooth 
structure. It is clear that Id^q = N x I with the obvious diffeomorphism 
of —N\JN with d(N X I) as structure map. 

A number of auxiliary notions arise almost immediately from the 
definition of categories. Those needed in this study include 

Def in i t ion 2 .24 An arrow f in a category is an isomorphism if it is 
invertible in the sense that there exists an arrow g such that 

source ( / ) = target (g) and t a r g e t ( / ) = source(^), 

and satisfying fg = s ource ( / ) and gf = target ( / ) . 

The reader will recall tha t in objects-and-arrows terminology 

s o u r c e ( / ) 

is the identity arrow on source( / ) , and similarly for targets . 
For the purposes of this study, it is important to observe that the 

axioms of categories (in either formulation) are axioms of what Freyd 
has called an "essentially algebraic theory": the operations can be or
dered in such a way that the domain of each operation is described 
by equations in earlier operations. (For objects-and-arrows, one has a 
two-sorted theory, while for arrow-only one has a one-sorted theory.) 

Thought of in this way, there are a number of constructions of cat
egories which immediately present themselves. One can present cate
gories by generators and relations (for example, the category generated 
by a single arrow / subject to the relation s o u r c e ( / ) = target ( / ) is 
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the additive monoid of N regarded as a category). It is also clear tha t 
the disjoint union of two (or an indexed family of) categories is again 
a category in an obvious way, and tha t the cartesian product of two 
(or an indexed family of) categories is a category with component-wise 
operations (either use the arrows-only formalism, or take disjoint unions 
or products of the sets of objects and of arrow separately.3). Likewise, 
given a category one can define subcategories as subsets of the arrows 
closed under the operations. 

One particular type of subcategory bears mention: 

Definit ion 2.25 Given a set of objects (or equivalently source arrows) 
S in a category C, the full subcategory on S, full(S), is the subcategory 
of C consisting of all arrows whose source and target both are elements 
ofS. 

Another construction of one category from a given category is pre
sented by the fact that the axioms admit a symmetry: reverse source 
and target, and reverse the order of composition. Given a category C, 
the category with the same arrows, but with the source and target op
erations switched and the order of composition reversed is called the 
opposite category, and is denoted Cop. 

There is then an obvious notion of homomorphism of categories: 

Definit ion 2.26 (arrows-only) A functor F from a category C to a 
category V (denoted F : C —t V) is an assignment of an arrow F(f) ofV 
to each arrow f of C, which preserves source, target , and composition 
in the sense that 

source(F(/)) = F(source(/)) 

target (F(/)) = F(target(/)) 

F(fg) = F(f)F(g) 

Again, for folks who worry about set-theoretic size issues, we will use the Axiom 
of Universe to side-step the issue, and use sets of objects and arrows, albeit in a 
larger model of set-theory. 
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Of course, this provides another example of categories: C a t , which 
has as objects all (small) categories, and as arrows all functors, with the 
obvious source, target, identity, and composition operations. 

E x a m p l e 2.27 Underlying or "Forgetful" functors Consider our abun
dant supply of categories: sets equipped with some structure as objects, 
and maps which preserve the structure as arrows (e.g., rings and ring-
homomorphisms). Now, consider only part of the structure (e.g. addi
tive abelian group and abelian group homomorphisms). There is then 
a functor which takes each object to itself (with some of its structure 
forgotten) and each structure-preserving map to the same map (which 
necessarily preserves the part of the structure not forgotten). Thus, "ad
ditive group of" may be thought of as a functor from the category of rings 
to the category of abelian groups. 

If one forgets all of the structure, one obtains the "underlying set" 
functor. 

E x a m p l e 2 .28 Group homomorphisms Considering groups G and H 
as categories, functors from G to H are precisely group homomorphisms 
from G to H. 

E x a m p l e 2.29 Structure functors for disjoint unions Given an indexed 
family of categories {Cj}3^j, the disjoint union U j e j C j is a category 
with the obvious source, target, identities and compositions. The in
clusions ij : Cj —>• UjejCj are functors. Likewise, given functors 
Fj : Cj —> V, there is a (unique) functor F : JJ e jCj —> V such that 
F{tj)=Fj for all j . 

E x a m p l e 2.30 Structure functors for products Given an indexed fam
ily of categories {Cj}j£j, the product Ylj^jCj is a category with com
ponentwise source, target, identities and compositions. The projections 
nj '• TljejCj —> Cj are functors. Likewise, given functors Fj : V —̂  Cj, 
there is a (unique) functor F : V —>• Ylje J Cj such that TTJ (F) = Fj for 
all j . 



2. Basic Concepts 35 

E x a m p l e 2.31 (Co)homology groups Consider the category Esp , with 
topological spaces as objects, and continuous functions as arrows. Then 
the assignments U H->- Hi(U) (ith homology group), (resp. U i-> Hl(U) 
(ith cohomology group)) have corresponding assignments on arrows which 
give functors from Esp to A b , the category of abelian groups and group 
homomorphisms (resp. A b o p , its opposite category). 

E x a m p l e 2.32 (Co)homology groups Consider the category E s p 2 ; with 
pairs U D V of topological spaces as objects, and continuous functions 
on the larger space which preserve the smaller space as arrows. Then the 
assignments (U D V) ^ Ht(U,V) (resp. (U D V) H-> /P([7, V),) have 
corresponding assignments on arrows which give functors from E s p 2 to 
A b , the category of abelian groups and group homomorphisms (resp. 
A b o p , its opposite category). 

The cohomological cases of the last two examples are often phrased 
in terms of a "contravariant functor". As we will have cause to use this 
notion, we make 

Definit ion 2.33 A contravariant functor from C to V is a functor from 
C toV°P. 

Once it is observed tha t [Vfop]op = X, and tha t the same da ta which 
describes a functor from C to V describes a functor from C°v to V°p, 
we see tha t a contravariant functor from C to V can equally well be 
regarded as a functor from C°v to V. 

One of the remarkable features of category theory is tha t , as in 
homotopy theory, there is a good notion of maps between maps: 

Definit ion 2 .34 Let F and G be functors from C toV. Then a natural 
transformation <f> from F to G (denoted <f> : F =>• G) is an assignment 
to each object X of C of an arrow <J>x : F(X) -> G(X) ofV, satisfying 

4>xG(f) = F{f)<l>Y 

for every arrow f : X —>• Y of C. 
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It is easy to see that if F, G and H are functors from C to V, and 
4> '• F =>• G and ip : G => H are natural transformations, then <f>ip, given 
by [<f>ip]x = (frxTpx, is a natural transformation from F to H. Thus, 
we have not merely a hom-set of functors from C to V, but a "hom-
category" of functors from C to V and natural transformations between 
them. 

This is the first example of something quite important to this study: 
categories in which the hom-sets have an additional structure. We will 
take up this notion in Chapter 10. 

E x a m p l e 2.35 If two group homomorphisms f,g : G —> H are con
jugate, the assignment of the conjugating element (arrow) in H to the 
unique object of G is a natural transformation from f to g (regarded as 
functors). 

E x a m p l e 2.36 Consider the category E s p 2 of Example 2.32. 
There are two obvious functors Pi, P2 '• E s p 2 —> Esp which assign to 
the pair the ambient space and the subspace, respectively. 

The assignment to each pair of the map induced on homology by the 
inclusion is a natural transformation from Hi{P2) to Hi{P{). 

Similarly, assignment to each pair (U, V) of the canonical map from 
Hi(U) to Hi(U,V) is a natural transformation from Hi{P\) to Hi (the 
latter referring to relative homology). 

Finally, the assignment to pairs (U, V) of the connecting homomor
phisms <f> : Hi(U, V) -¥ Hi-i(V) is a natural transformation from Hi to 

H,-_i(P2). 

When every component arrow of a natural transformation is of a 
particular type (e.g., an isomorphism) we refer to the natural trans
formation as a "natural <name of type of a r r o w > " (e.g., a natural 
isomorphism). 

The analogy with homotopy theory suggests the following analogue 
of homotopy equivalence (though it can be motivated by other purely 
category-theoretic considerations): 
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Definit ion 2 .37 inequiva lence of categories between C andV is a pair 
of functors F : C —>• V, G : V —>• C and a pair of natural isomorphisms 
<t>:FG^ Idc and xp:GF=> Idv. 

By abuse of language we say a functor F : C —» V is an equivalence 
of categories if there exist G, 4> and ij) as above. We say two categories C 
and V are equivalent if there exists an equivalence of categories between 
them. 

It is an easy exercise (which involves the behavior of natural trans
formations under composition of functors) to see that equivalence of 
categories is indeed an equivalence relation. 

Finally, we mention one of the more pleasant features of category 
theory: we can summarize equations between various compositions of 
arrows by using diagrams of nodes labeled by objects of the category 
joined by oriented edges (arrows!) labeled by arrows of the category. 
Such a diagram is said to commute if for every pair of paths along the 
arrows of the diagram with the same starting and ending points, the 
(iterated) compositions of the arrows along the two paths are equal. 

We will follow the convention that the presentation of a diagram 
as if it were a statement asserts that the diagram commutes, and the 
presentation of a diagram with variables representing objects (or maps) 
as if it were a statement asserts that all instantiations of the diagram 
commute. For example, the definition of a natural transformation may 
be rephrased as follows: 

A natural transformation between the functors F,G : C —» V is an 
assignment to each object X of C of an arrow 4>x '• F{X) —> G(X) such 
that the condition of Figure 2.7 holds. 
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F(X) 

G(X) 

G(f) 

Figure 2.7: A Naturality Square 



Chapter 3 

Monoidal Categories, 
Functors and Natural 
Transformations 

We now turn to the consideration of the most elementary natural exam
ples of "categories with structure." Tha t is, we will now study categories 
equipped with additional operations given by functors or natural t rans
formations, and satisfying additional axioms in terms of these; and those 
functors and natural transformations which respect, or are adapted to 
the structures in some reasonable way. 

We refer to the components of any natural transformations in the 
specification of a type of "category with structure" (or "functor with 
structure") as structure maps. Thus far we have scrupulously observed 
the use of "arrow" as the sole name for the elements of a category (in the 
arrows-only formalism). As we pass to more and more engagement with 
concrete examples, we will more and more use the suggestive names of 
"morphism" or "map" to refer to arrows in a category. 

Definit ion 3.1 A monoidal category C is a category C equipped with 
a functor <g> : C x C —> C and an object I, together with natural isomor
phisms a : ®(® X lc) => ®(lc X <g>), p : ®I => l c and A : J® => !<;, 

39 
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satisfying the pentagon and triangle coherence conditions of Figure 3.1 
and the bigon (pj = Xj) coherence condition (cf. [40]).1 Similarly, a 
semigroupal category is a category equipped with only ® and a, satis
fying the pentagon of Figure 3.1. A monoidal (semigroupal) category is 
strict if all of its structure maps are identity maps. 

Monoidal categories are quite common "in nature" as the next few 
examples will show, and, of course, any monoidal category is a fortiori 
a semigroupal category. The weaker notion is defined principally as a 
convenience for our later examinations of deformation theory. 

E x a m p l e 3.2 (Sets, X, {*}, a, p, A) is a monoidal category, where x is 
cartesian product, C*A,B,C is given by ((a, 6), c) i—̂  (a, (6, c)), p& is given 
by (a, *)»->• a and XA is given by (*, a) H-»- a. 

The coherence conditions (pentagon and triangles) can readily be 
verified for Example 3.2. For example, the pentagon is given by 

(((a,6),c),d)h-> {{a,b),(c,d))^ (a, (6, (c,d))) = 

(((a,b),c),d)i-> ((a,(b,d)),d)^ (a,((b,c),d))^ (a, (b, (c,d))). 

Similarly, the naturality of the structure maps is easy to verify. For 
example, in the case of p, if / : A —> B is any set function, then the 
two legs of the naturality square are given on elements by (a, *) H-» 
( / ( a ) , *) *-> / (« ) and (a, *) ^ a ^ / ( a ) . 

This example may be extended to similar examples for any mathe
matical structure which can be defined component-wise (e.g. topological 
spaces, groups, smooth manifolds, rings) and the appropriate maps all 
admit "cartesian" monoidal structures. 

E x a m p l e 3.3 (Sets, ]J, 0, a, p, X) is a monoidal category, where ]J is 
disjoint union, and a, p and X all map elements to themselves, regarded 
as elements in the "other" set. 

*It can be shown that the bigon condition is redundant, but we leave it as an 
exercise to the reader to show that we can "Let bigons be bygones." 
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{A ® B) ® (C ® D) 

{(A®B)®C)®D A®{B®C)®D)) 

a® D A® a 

{A®(B®C))®D - A ® {(B ® C) ® D) 

(A®I)®B -* A®(I®B) 

p®B A®\ 

A®B 

Figure 3.1: Coherence Conditions for Monoidal Categories 
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In this case, there is nothing to check to see tha t the coherence 
conditions hold, while naturality is almost as immediate. 

Again, this example will extend to give similar examples for any 
mathematical structure which is given trivially on a disjoint union in 
terms of the structures on the summand (e.g., topological spaces, smooth 
manifolds). Similar examples exist for any type of algebraic structure 
which can be given by generators and relations: the monoidal product 
is given by using the disjoint union of the underlying sets of two ob
jects as a set of generators and imposing the relations which exist in the 
summands. As a particular case, we have: 

E x a m p l e 3.4 ( G r p s , *, 1, a, p, A) is a monoidal category, where * is 
the free product, 1 is the trivial group, and a, p and A are given on 
generators (elements of the groups whose free product is taken) by the 
map of the same name in the previous example targeted at the set of 
generators. 

The next two examples are of particular importance to us: 

E x a m p l e 3.5 Let K be a field. Then 

(K-v.s.,®,a,p,\) 

and 

(K-v.s.f.d,, ®K, K, a, p, A), 

are monoidal categories, where K—v.s. and K—v.s.f.d are the cate
gories of K-vectorspaces and K-linear maps, and of finite dimensional 
K-vectorspaces and K-linear maps, respectively, and where <S>K is the 
tensor product over K (universal target for bilinear maps), au,v,w ? s 

given on the usual spanning set by (u®v)®w H-> U (g) (v <g) w) and p and 
A are right and left scalar multiplication, respectively. 

Since to check the equality of linear maps, it suffices to check them 
on a spanning set, the verification tha t the associativity is coherent 
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in Example 3.5 is given by a calculation formally identical to tha t for 
Example 3.2, but applied to parenthesized iterated tensor products of 
elements rather than parenthesized n-tuples of elements. 

Definit ion 3.6 A bialgebra over a field K is an algebra A, equipped 
with algebra homomorphisms A : A ®K A —> A and e : A —> K, which 
satisfy the conditions 

<XA,A,A{[& <8> A](A)) = [A <g> A](A) (coassociativity), 

A([e ® A](A)) = IdA (left counitalness), 

and 

p([A X e](A)) = MA (right counitalness). 

(Observe that A(&K A is a K-algebra with multiplication given on a basis 
by [x <S> y] • [w <S> z] — x • w <S> y • z.) 

Aside: we include a, A and p, which are usually suppressed, because we 
have not yet introduced the theorem which justifies their exclusion. 

E x a m p l e 3.7 Let A be a bialgebra over a field K with 

n(a) 

A(a) = ^ a ' 2 ® a ' / . 

Then (A — mod, <SIK, K, a, p,X), is a monoidal category, where 
A — m o d is the category of K-finite dimensional A-modules, and the 
structure maps are as in the previous example, with X ®K Y given an 
A-module structure by 

n(a) 

a • {x ® y) = Y, a[ • s ® a" • y 
! = 1 

and K given an A-module structue by a- k = e(a)k, where the null infix 
is multiplication in K. 
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The important thing to observe is tha t the structure maps of Exam
ple 3.5 are necessarily module homomorphisms when tensor products 
and K are given /l-module structures as specified. Coherence and nat-
urality are then simply restrictions of the corresponding properties in 
K — v .s . . In Chapter 4 we provide numerous examples of bialgebras. 

E x a m p l e 3.8 Tang (resp. Otang , Frtang^) is a monoidal category 
when equipped with the empty tangle as I and <g> given as follows: for 
any two tangles T\, T2, Ti<g>T2 has as underlying 1-manifold the disjoint 
union of the underlying 1-manifolds of T\ and T^. T\ <8> I2 is then the 
mapping of this 1-manifold the composition of T\ JJ T2 with the map 
72 : I 3 U H3 -> H3 given by 

x 
(x, y, z) \-t ( —, y, z) for elements of the first summand, and 

x + 1 
(x, y, z) H-> (—-—, y, z) for elements of the second summand. 

The structure of this example will considered in detail in Chapter 7. 

E x a m p l e 3.9 n-cobord is a monoidal category with ® given on both 
objects and maps by disjoint union and with the empty (n — \)-manifold 
as I. The structure maps are given by trivial cobordisms (products with 
1) with attaching maps induced by the identity at the source, and the 
coherence map from the monoidal structure of Example 3.3 at the target. 

One might wonder why two other obvious triangles relating the as-
sociator a and the unit transformations A and p — namely, 

<XA,B,rIdA ® PB = PA®B 

and 

OiI,B,C^B®C — ^B <8> C 

— are omitted from the definition. It turns out they are a consequence 
of the given coherence conditions. We will later need: 
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L e m m a 3.10 In any monoidal category, and for any objects A, B, and 

C, the equations aA,B,lId,A <8> PB = PA®B and O>I^B,C^B®C = ^B <8> C 

hold. 

proof: We give the proof of the first only. The other follows from the 
same proof applied to the monoidal category obtained by reversing the 
order of <S>, inverting a to obtain an new associator, and reversing the 
roles of A and p. 

Consider the case of the pentagon with initial vertex 

[[[A®B]®I]®I]. 

This pentagon can be filled with 

• two naturality squares for a, one including the middle arrow of the 
three-arrow side of the pentagon, the other including the second 
arrow of the two-arrow side, and both having CXA,B,I

 a s the other 
instance of a parallel to the given arrow in the pentagon, 

• an instance of the triangle coherence condition for the objects 
A (g) B and / containing the first edge of the two-arrow side of the 
pentagon, and one edge of the second naturality square above, 

• a prolongation of the triangle coherence condition whose edges are 
formed by the third-arrow of the three arrow side of the pentagon 
and one arrow from each of the naturality squares, and 

• a prolongation of the desired triangle by right monoidal product 
with Idj. 

It then follows (once suitable maps have been inverted) that the 
pentagon, the two naturality squares and the other two triangles just 
described give a commutative filling of the prolongation of the desired 
triangle. 

The desired triangle can then be shown to commute by filling it with 
the prolongation just shown to commute and three naturality squares 
for p~l. 
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The reader is encouraged to write out all of the diagram fillings just 
described. • 

Because categorical structures can be preserved "on the nose", pre
served up to (natural) isomorphism, or even up to a natural transforma
tion in one direction or the other, there are a variety of different types 
of functors "preserving" a monoidal structure: 

Definit ion 3.11 A lax monoidal functor F : C —» V between two mon
oidal categories C and V is a functor F between the underlying cate
gories, equipped with a natural transformation 

F:F(-)®F(-)-+F(-®-) 

and a map Fj : I —>• F(I), satisfying the hexagon and two squares of 
Figure 3.2. 

An oplax monoidal functor F : C —»• V between two monoidal 
categories C and V is a functor F between the underlying categories, 
equipped with a natural transformation 

F : F ( - ® - ) - • F ( - ) ® F ( - ) 

and a map FQ : F(I) —> / , satisfying the hexagon and two squares of 
Figure 3.3. 

A strong monoidal functor F : C —> V between two monoidal 
categories C and V is a functor F between the underlying categories, 
equipped with a natural isomorphism 

F : F ( - ® - ) - > F ( - ) ® F ( - ) 

and an isomorphism FQ : F(I) —t I, satisfying the hexagon and two 
squares of Figure 3.3. 

A strict monoidal functor is a strong monoidal functor for which all 
components of F and Fo are identity maps . 

Lax, oplax, strong and strict semigroupal functors are defined simi
larly. 



3. Monoidal Categories, Functors and Natural Transformations 47 

We refer to the components of the natural transformations and maps 
specified in these definitions, and to their inverses (if any), as structure 
maps. Likewise, a map which is obtained from some other map / by 
forming an iterated monoidal product of / with identity maps for various 
objects is called a prolongation of / . Sometimes by abuse of terminology 
prolongations of structure maps are themselves refered to as structure 
maps. 

We will also refer to a diagram obtained by applying the same it
erated monoidal product with identity maps to every map of a given 
diagram as a prolongation of the given diagram. 

It is, of course, a matter of taste whether one defines strong monoid
al functors as oplax monoidal functors with invertible structure maps, 
as here and in [63], or as lax monoidal functors with invertible structure 
maps. 

E x a m p l e 3 .12 The underlying functor from A — m o d to K — v . s . for 
any K-bialgebra is a strict monoidal functor. 

E x a m p l e 3 .13 When equipped with structure maps induced by inclu
sions of generators and the universal property of free groups, the free-
group functor from (Sets , TJ,...) to (Grps, * , . . . ) becomes a strong mon
oidal functor. 

And, an example which will be important later: 

E x a m p l e 3 .14 Let A be a K-algebra. Consider the one-object, one-
map monoidal category 1̂  with object * = I and the obvious monoidal 
category structure. Then the assignment * H-> A and Id* H-> Id A , with 
structure maps F : F(*) <g> F(*) —> F(* <g) *) = m : A® A ^ A and 
FQ : I —> F(I) = 1 : K —>• A is a lax monoidal functor from 1_ to K — v . s . 

Conversely, every lax monoidal functor from 1 to K — v . s . is of this 
form. 

It is an amusing exercise, left to the reader, to verify both of the 
statements in the last example. 
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We will be particularly interested in examples of strong monoidal 
functors whose source is one of our categories of tangles. Theorems 
which show these to be remarkably easy to construct will occupy much 
of the balance of this work, though at present we are not in a position 
to present any examples. 

Strong monoidal functors from n-cobord to C—v.s. or to the cat
egory of Hilbert spaces with a suitable monoidal structure turn out to 
be equivalent to topological quantum field theories as defined by Atiyah 
[3]. 

Crucial to the construction of our deformation theories are the co
herence theorem of Mac Lane [39] and a non-symmetric variant of the 
coherence theorem of Epstein [21], which we will soon s ta te in the most 
convenient form for our purposes. 

Definit ion 3.15 For any set S, S \. MonCat (resp. S \. SGCat) is 
the category whose objects are (small) monoidal (resp. semigroupal) 
categories equipped with a map from S to their set of objects, and whose 
arrows are strict monoidal functors whose object maps commute with 
the map from S. 

S \, LaxSGFun (resp. S I OplaxSGFun, S I StrongSGFun) 
is the category whose objects are lax (resp. oplax, strong) semigroupal 
functors between a pair of semigroupal categories, the source of which 
is equipped with a map from S to its set of arrows, and whose arrows 
are pairs of strict monoidal functors forming commuting squares and 
commuting with the map from S. 

Observe that S \. MonCat, (resp. S | SGCat, S I LaxSGFun, 
S I OplaxSGFun and S I StrongSGFun) is a category of models 
of an essentially algebraic theory, and thus by general principles has 
an initial object. We refer to this initial object as the free monoid
al category (resp. semigroupal category, lax semigroupal functor, oplax 
semigroupal functor, strong semigroupal functor) onS. 

Definit ion 3.16 A formal diagram in the theory of monoidal categories 
(resp. semigroupal categories) is a diagram in the free monoidal (resp. 
semigroupal) category on S for some set S. 
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A formal diagram in the theory of lax (resp. oplax, strong) semi-
groupal functors is a diagram in the target category of the free lax (resp. 
oplax, strong) semigroupal functor on S for some set S. 

The coherence theorem of Mac Lane [39] may then be stated as 

T h e o r e m 3.17 Every formal diagram in the theory of monoidal cate
gories commutes. Consequently, any diagram which is the image of a 
formal diagram under a (strict monoidal) functor commutes. 

Mac Lane's result is the first coherence theorem proven for categories 
with structure, and its proof is characteristic of proofs of all subsequent 
coherence theorems. Similar techniques have been used by Epstein [21], 
Kelly and Laplaza [34], Freyd and Yetter [22], and Shum [48, 49], among 
others, to prove coherence theorems for other categorical structures. In 
Chapter 9 we give Shum's result, with proof. As a warm up, we now 
prove Mac Lane's theorem: 
proof: As in all such results, we must begin with a syntactical con
struction of the free object in question, in this case the free monoidal 
category ^"(5) on a set 5 . 

As objects, we take all non-empty fully parenthesized words on the 
set 5 , permitting the inclusion of empty pairs of parentheses. The mon
oidal product is given by concatenating two objects inside another set 
of parentheses. The monoidal identity is (). Arrows are named by all 
formal composites of formal prolongations of the maps of the forms 

• Idu : u —>• u 

• OiUtVtW : ((uv)w) -> (u(vw)) 

• au?v,w • {U(VW)) - • ((UV)W) 

• K • {()u) - ) • u 

• K1 = «->• (Qu) 

• pu : (u()) -> u 
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• Pu1 : U ~ > («()) 

for u,v,w fully parenthesized words on the set S. 
Two formal composites are equivalent when they are equivalent un

der the equivalence relation which is closed under pre-composition, post-
composition and prolongation, and which is generated by all instances 
of the pentagon, triangles and bigon, all squares which give naturality 
conditions for the maps names, all triangles which make x and x~l in
verses for x any instance of a, A, or p, and all squares which interchange 
maps to give all instances of the functoriality of the monoidal product 
involving two prolongations of structure maps. 

The monoidal product of two maps / : x —>• y and g : z —> w is given 

by 

/ <8> 9 = [f ® Idz][Idy ®g] = [Idx ® g][f <g> Idw] 

where the monoidal products with identity maps are the formal prolon
gations in our description of maps, and the second equality is one of the 
squares which provide the functoriality of the monoidal product. 

Now, it is immediate by construction tha t the monoidal category 
F(S) just described, together with the inclusion of the set S into the set 
of objects, is the initial object in S I MonCat. Wha t is not immediately 
clear is how to provide a more compact description of the arrows in 
F(S). Note tha t ^(S) is a groupoid. 

We claim that the connected components of ^(S) are in one-to-one 
correspondence with words (including the empty word) on the set S, and 
that between any two objects in the same connected components there is 
a unique map. Note that proof of these claims will suffice to prove Mac 
Lane's theorem. To each fully parenthesized word w on S we associate a 
(possibly empty) T(w) word on S by deleting all parentheses. Similarly, 
to each word v on S we associate a canonical fully parenthesized word: 
the completely right parenthezised word R(y). 

Now for jany fully parenthesized word w, construct a canonical map 
cw : w —> R(T(w)) as follows: compose all instances of prolongations 
of A and p, removing empty parentheses from left to right, and iterate 
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until all empty parentheses are removed; then apply prolongations of a 
beginning with the outermost applicable instance, and proceeding from 
left to right if there is more than one outermost instance, until a fully 
right parenthesized word is obtained as the target. It will be useful to 
name the initial factor vw of cw obtained by composing prolongations 
of the unit transformations and a second factor j w obtained as the 
composite of prolongations of a . Thus cw = jw(vw). 

For any two objects w and v with T(w) = T(i>), the composite 
cwc~x : w —> v shows that the objects lie in the same connected compo
nent. 

Conversely, any pair of objects with T(w) / T(u) cannot lie in the 
same connected component since all of the (prolongations of) generating 
maps satisfy T(source( / ) ) = T ( t a r g e t ( / ) ) . 

Now, we must show that there is only one map from any object in a 
connected component to another. Plainly, this map must be cwc~l. In 
fact, it suffices to show that cw is the unique map from w to R(Y(w)), 
since if <f> : w —> v is any map from w to v, then (f>cv must equal cw (since 
it is a map from w to R(T(w))), and thus cv equalizes <f> and cwc~l. But 
maps which are equalized in a groupoid are already equal. 

If we consider an arbitrary formal composite <f> naming a map from 
w to R(T(w)), it plainly suffices to show that the triangle fct = cs 

commutes for / : s —> t any of the formal prolongations of structure 
maps occuring in </>. Moreover, since the category is a groupoid, it 
suffices to consider only one of each pair of inverse maps. 

For / : w —>• v a prolongation of A or p, we have fvv = vw immedi
ately from the naturality of A and p and the functoriality of ®. 

For prolongations of a, it will be necessary to introduce a syntactic 
"rank" for parenthesized words which is always reduced in passing from 
the source to the target of prolongations of A, p or a, since we will want 
to proceed by induction on the rank. 

Let l(w) be the length of w as a word on 5 T J { / } when the paren
theses are removed, and define rk(w) inductively by 

• rk(s) = 0 for all s e S 
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• rk(I) = 1 

• rk((vw)) = rk(v) + rk(w) + l(v) + 1 for v, w parenthesized words 

onSU{/}. 

Note that applying a prolongation of A or p reduces rk by at least 
1, while applying a prolongation of a reduces the rank by the length of 
the first tensorand of the triple tensor product to which a is applied. It 
thus follows tha t the reduced completely right-parenthesized object in 
each connected component is of minimal rank in the component. Thus, 
there is nothing to show if the source is of minimal rank (or differs from 
an object of minimal rank by a single application of a prolongation of a 
structure map). 

For / a prolongation of a we have two distinct cases: tha t where one 
(or more) of the three tensorands to which a applies is a parenthesized 
word of / ' s (only) and tha t in which none of them are. 

In the first case, it suffices by the naturality of a to consider those 
instances in which the parenthesized word of / ' s is simply / . We can 
then fill the desired triangle fcw — cv with three triangles: two of the 
same type, but with prolongations of A or p in place of / , and a third 
which is a prolongation of the triangle coherence condition or of one of 
the triangles of Lemma 3.10. 

In the second case, we may assume by the naturality of a and the 
functoriality of <8> that the word to which the / applies is reduced (has 
no instance of / ) . This case, in turn, reduces to four subcases: 

Subcase a) The instance of a in / is the outermost (or left-most of two 

or more outermost) instances of a applicable to w. 

Here there is nothing to do: / is the initial factor of cw. 

Subcase b) The instance of a in / is an outermost, but not the left-most 
outermost, instance of a. 

Here the result follows from the functoriality of <g). 

Subcase c) The instance of a in / applies to a tensorand of the outermost 
instance of a. 
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By the naturality of the outermost instance of a, this reduces to an 
application to a word of lower rank, and thus will follow from the other 
cases by induction on the rank. 

Subcase d) The instance of a in / overlaps with the outermost instance 
of a so that the two from the initial legs of an instance of the pentagon. 

Here we complete the pentagon, and observe that the triangles for 
all of the arrows of the pentagon other than / follow either directly from 
another case, or by induction on the rank of the source. 

Thus we have proved Mac Lane's coherence theorem. • 

The same proof carries the weaker result: 

T h e o r e m 3.18 Every formal diagram in the theory of semigroupal cat
egories commutes. Consequently, any diagram which is the image of a 
formal diagram under a (strict semigroupal) functor commutes. 

Epstein [21] proves a coherence theorem only for lax semigroupal 
functors between symmetric semigroupal categories, but the same proof 
will carry the result: 

T h e o r e m 3.19 Every formal diagram in the theory of lax (resp. oplax, 
strong) semigroupal functors commutes. Consequently, any diagram 
which is a functorial image of such a formal diagram under a (strict 
monoidal) functor commutes. 

These coherence theorems are the basis for a very useful notion and 
notational convention: throughout our discussion of categorical defor
mation theory in Par t II, we will use padded composition operators \ ]. 
These operators are an embodiment of the coherence theorems of Mac 
Lane [39] and Epstein [21] . 

Deflnit ion 3 .20 Given a monoidal category C (resp. a semigroupal 
functor (whether lax, oplax or strong) F : X —> C), and a sequence of 
maps fi,..., fn in C such that the source of / j + 1 is isomorphic (resp. 
maps) to the target of fi by a composition of prolongations of structure 
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maps (i.e. by a formal diagram with underlying diagram a chain of 
composable maps), we let 

|~/l, • • •) fn] 

denote the composite a0fiaif2 .. .an_ifnan, where the a; 's are compos
ites of prolongations of structure maps and the following hold: 

1. The source of ao is reduced (no tensorands of I) and completely 
left-parenthesized (resp. reduced and completely left-parenthesized 
and free from images of monoidal products under F in the lax case, 
and free from products both of whose factors are images under F 
in the oplax and strong cases). 

2. The target of an is reduced and completely right-parenthesized (resp. 
reduced and completely right-parenthesized and free from products 
both of whose factors are images under F in the lax case, and free 
from images of monoidal products under F in the oplax and strong 
cases). 

3. The composite is well-defined. 

The fact that this defines a well-defined map is a consequence of the 
coherence theorems. 

Observe tha t [ ] may not be well-defined in the event tha t there 
are "accidental coincidences". This may be avoided by replacing the 
category (ies) with monoidally equivalent categories in which there are 
no "accidental coincidences", specifically by forming free monoidal cate
gories generated by the given ones, and adjoining a natural isomorphism 
between the old monoidal product and the new. We will not bother with 
this here, since in our applications there is another way to remove the 
potential ambiguity. The reader who is interested may undertake the 
construction as an exercise after reading Chapter 9, where similar syn
tactical constructions occur. 

In our circumstance, the maps in the sequences to which the padded 
composition operator is applied will always be components of natural 
transformations with a particular structure: 
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Definit ion 3.21 Given a monoidal category C (resp. a monoidal func
tor F : C —> V), a natural transformation is C-paracoherent (resp. 
F-paracoherent,) if its source and target functors are iterated prolonga
tions of the structure functors <8>, / , and \Q (resp. <£>, F, I, Lj, and lv), 
where I is regarded as a functor from the trivial one object category. 

In the case where the maps in the sequence are specified not merely 
as maps, but as components of particular paracoherent natural trans
formations, their sources and targets are given an explicit structure as 
images of iterated prolongations of structure functors. We may thus re
quire that the "padding" maps given in terms of the structural natural 
transformations be (components of) natural transformations between 
the appropriate functors. 

Regardless of whether we avoid ambiguity by modifying the category 
or by restricting the use of [ ] to sequences of paracoherent natural 
transformations, a number of elementary properties of the operators 
may be deduced in the case of monoidal categories or strong monoidal 
functors. In all cases the proofs follow by applying either Mac Lane's 
or Epstein's coherence theorem. The reader is left to discern what 
modifications are necessary in the lax and oplax cases. 

L e m m a 3.22 

r/i---/ni = rr/i---Mr/*+i---/nii. 
L e m m a 3.23 

r / i . . . «7<8> / . . . / „ l = \fi...g...fn\ = \h...I®g...fn-\. 

L e m m a 3.24 

r/i---/ni = r / i . . . rA. . . / / i . . . /„ i . 
L e m m a 3.25 

\h...g®h.. . / „ ] = \h...\g-\®h...fn\ = \fl...g® \h] . . . / „ ! . 
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L e m m a 3.26 If (f>x1,...,xn
 ? s a C-paracoherent natural transformation 

(resp. F-paracoherent natural transformation, for F a strong monoidal 
functor), then so is 4>x1,...,i,...,xn, where I is inserted in the ith position, 
and similarly if I is inserted in the ith position for all i € T C { 1 , . . .n}. 
Moreover, in this latter case \<f>...] is a paracoherent natural transfor
mation from the fully left-parenthesized product (resp. F of the fully 
left-parenthesized product) of Xn .. .Xik to the fully right-parenthesized 
product of Xil .. .Xik (resp. the fully right-parenthesized product of 
F{Xn)...F(Xlk)), where 

{h,...,ik} = {l,...,n}\T 

and ii < 12 < .. .in-

From these lemmas we deduce a final lemma: 

L e m m a 3.27 If ^A,B,CAA,B,C • [A®B]<giC -> A®[B®C] are natural 
transformations, then 

\[<t>A,i,i ® B]IPA,I,B] = \ipA,i,By>A,i,i <S> B]] 

and 

\[A®<I>IIIIB]II>A,I,B] = \ipA,Ifi[A®4>I,I,BW 

proof: First, apply Lemma 3.22. Then use the naturality of \I^A,I,B] '• 
A® B —>• A® B and the source and target da ta for </>A,I,I

 a n d 4>I,I,B, 

as given by Lemma 3.26. • 

Finally, we make 

Definit ion 3.28 A monoidal natural transformation is a natural trans
formation 4> : F => G between monoidal functors which satisfies 

GA,B{^A®B) = <t>A ®4>B{FA,B) 

and F0 — G0(<f>i). A semigroupal natural transformation between semi-

groupal functors is defined similarly. 
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and 

Definit ion 3.29 A monoidal equivalence between monoidal categories 
C and V is an equivalence of categories in which the functors F : C —>• V 
and G : V —> C are equipped with the structure of monoidal functors, 
and the natural isomorphisms cf> : FG => Idc and i/> : GF => Idv 
are both monoidal natural transformations. If there exists a monoid
al equivalence between C and V, we say that C and V are monoidally 
equivalent. 
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F(a) 
F{[A®B}®Cy 

F. A®B,C 

F{A®B)®F{C) 

FA,B ® F{C) 

[F(A) ® F{B)] ® F{C)-

- F(A®[B®C\) 

F. A,B®C 

F(A)®F(B®C) 

F{A) ® F B , C 

- F{A)®[F(B)®F{C)] 

F(X) 
F(I®A)- " F{A) 
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F(I) ® F{A)-
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I®F{A) 
F0 ® F{A) 

F(p) 
F(A®I} F{A) 

FA,I 

F{A)®F{iy 

P 

F{A)®I 

F(A) ® F0 

ure 3.2: Coherence Conditions for a Lax Monoidal Functor 
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F(a) 

F([A®B]®C)-

^A®B,C 

F{A®B)®F{C) 

FA,B ® F(C) 

[F{A) ® F(B)] ® F{CY 

-*• F(A®[B®C]) 

FA,B®C 

F(A)®F(B®C) 

F{A)®FB>C 

- F{A)®[F{B)®F{C)} 

FA,_ 

F{\) 
F(A®iy F(A) 

A 

Fi, 

F(A)®F{I) F(A)®I 
F{A) ® FO 

F(P) 
F(I®A) - F{A) 

F{I)®F{A) - I®F{A) 
F0 ® F{A) 

Figure 3.3: Coherence Conditions for an Oplax Monoidal Functor 





Chapter 4 

A Digression on Algebras 

In order to introduce promptly the important Examples 3.7 and 3.12, 
we were obliged to make a definition of bialgebras (Definition 3.6) which 
was unusual, both in tha t it included a category theoretic nicety usually 
omitted by virtue of Theorem 3.17, and in tha t it does not invoke the 
notion of coalgebra. 

In this chapter, we recall the usual approach to algebras, coalgebras, 
bialgebras and Hopf algebras. We will now suppress the writing of 
structure maps for the monoidal structure on K — v . s . by Theorem 
3.17. 

Definit ion 4.1 A (unital) A'-algebra, for K a field, is a vector space 
A over K equipped with linear maps m : A <S>K A —>• A, called the 
multiplication , and 1 : K —> A, called the unit and satisfying 

61 
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A® A® A-

A® m 

A® A 

A® A 

•*- A 

and 

A ® K 

A®1 

A -+- K ® A 

IdA 
I® A 

-A® A 
m 

Observe tha t by virtue of the universal property o f® , this is equiv
alent to the elementary definition of algebra as a A'-vectorspace with 
a unital ring structure whose addition coincides with the vectorspace 
addition, and whose multiplication is A'-bilinear (cf. e.g. [4]). Any 
reader unfamiliar with the definition just given, who was consequently 
puzzled by the suggested exercise after Example 3.14, should certainly 
now undertake the exercise. 

This definition, on the other hand, has the virtue tha t it generalizes 
nicely to monoidal categories other than K—v.s. (the generalized notion 
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is usually called a monoid in the monoidal category, using the name in 
the case of (Sets , X , . . . ) ) . Consequently, an analogous definition can 
be made in K — v .s . o p , but then interpreted as a definition in K — v . s . 
"dual to" the definition of algebra: 

Definit ion 4.2 A (counital) A'-coalgebra, over a field K, is a vec-
torspace A over K equipped with linear maps A : A —> A ®^- A, called 
the comultiplication, and e : A —> K, called the counit, and satisfying 

A® A® A-+-
A® A 

<A 

A® A 

A® A-*~ A 

and 

A® K A -«- K® A 

A( 
Id, 

e® A 

A®A-* A *-A®A 
A A 
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As is the case with the more familiar algebras, coalgebras are quite 
plentiful: 

E x a m p l e 4 .3 Consider any vector space V with a specified basis B. V 
has a coalgebra structure given on the basis elements by A(6) = b ® 6 
and e(b) = 1. 

Elements of any coalgebra on which A and e are given by the for
mulas of the previous example are called grouplike elements for reasons 
which will become clear in connection with our examples of bialgebras 
given below. 

A very general construction of coalgebras exists, which arises often in 
their application to combinatorial and topological problems: suppose we 
are given a category with coproducts and an initial object, 0, such that 
every object admits at most finitely many expressions as a coproduct of 
two other objects. Then for any collection of objects, or more properly 
isomorphism classes, A, which is "closed under summand", tha t is such 
tha t A — A\ \\ A2 and A £ A implies Ai, Ai £ A, the vectorspace V4 
with basis A has a natural coalgebra structure given by 

A(A)= J2 Ai®A2 
A=A1\JA2 

and 

, . . . _ / 1 if A = 0 
€ l A j _ \ 0 if A ^ O . 

E x a m p l e 4.4 Let T denote the collection of isomorphism classes of fi
nite graphs, including the empty graph. Then Vr has a coalgebra struc
ture given by the construction above. 

Similar examples can be constructed using operations with proper
ties similar to coproducts, as, for example: 
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E x a m p l e 4.5 Let C denote the collection of all isotopy classes of tame 

links in R3 including the empty link 0. Then Vc has a coalgebra structure 

given by 

A(A)= Y, L^L2 

L=Li+L2 

and 

(A\-f 1 lf A = 0 

e[A) - \ 0 if A / 0 

where + denotes separated union of links. 

Definit ion 4.6 A A'-algebra homomorphism (resp. A'-coalgebra ho-
momorphismj from one algebra (resp. coalgebra) A to another B is a 
K-linear map h : A —» B such that 

mB(h ® h) = h(m,A) and h{lj\) = l g 

(resp. 

[h (8) h] (AA) = AB (h) and eA = eB {h) ) 

hold. 

We can now replace Definition 3.6 with a definition tha t makes the 
symmetries of the notion of bialgebra clear: 

Definit ion 4.7 A bialgebra over a field K is a K-vectorspace equipped 
with a K-algebra structure m : A <g) A -> A, 1 : K —> A, and a K-
coalgebra structure A : A -> A ® A, e : A —> K, and satisfying any (and 
thus all) of the following equivalent conditions: 

1. A and e are K-algebra homomorphisms 
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2. m and 1 are K-coalgebra homomorphisms (K has an obvious (triv
ial) coalgebra structure, while a coalgebra structure on A® A can 
be found by dualizing the construction of the algebra structure on 
A® A mentioned in Definition 3.6.). 

Thus, it can be seen that the conditions defining a bialgebra are 
self-dual. They reduce, in fact, to two self-dual diagrams relating the 
unit and counit, a pair of dual diagrams relating the unit and comulti-
plication and the counit and multiplication, and the diagram of Figure 
4.1. Writing out the other three diagrams is left as an (easy) exercise 
for the reader. 

A ® tw® A 
A® A® A® A *- A® A® A® A 

Figure 4.1: The Relationships of the Multiplication and Comultiplica-

tion in a Bialgebra 

A homomorphism of bialgebras is then defined in the obvious way. 

E x a m p l e 4.8 Let G be a group. Then the group algebra K[G] is a 
bialgebra when equipped with the comultiplication and counit given on 
the basis of elements of G by 

A(#) = 5 ® a 

e(g) = 1. 
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The coproduct and counit formulae appropriate to the bialgebra 
structure on group algebras is the reason for the name "grouplike" 
applied to those elements of any coalgebra which have coproduct and 
counit given by the same prescription. 

E x a m p l e 4.9 Let g he a Lie algebra, and let [/(g) he its universal en
veloping algebra. Then [/(g) is a bialgebra when equipped with the co-
multiplication and counit given on the elements of g (which generate 
[/(g) as a unital algebra) by 

A(7) = 7 ® 1 + 1® 7 

6(7) = 0. 

A rather important class of examples can be derived from those in 
Example 4.9 by algebraic deformation in the manner of Gerstenhaber 
and Schack (cf. [23, 24, 25]), although they arose historically as de
formations in a less precise sense. These are, of course, the so-called 
"quantized universal enveloping algebras" (QUEAs), which were dis
covered independently by Drinfel'd [16] and Jimbo [28]. 

More precisely, following Reshetikhin [45]: 

Definit ion 4.10 The QUEA [/g(g) is the algebra with generators Xf 
and Hi for i = 1 , . . . , r, where r is the rank of g, and with relations: 

[Hz,H3] = 0, [Hj,X?] = ±(aj,ai)X? 

r x + sinh(fa) 

and for i ^ j 

Ec-1)* I) i~ 2 (xf)fcxf(x±rfc = o, 
fc=0 V / q, 
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, (aT; ,Qi) 

where q = e , g,- = q 2 t and the on are roots, with ( —, —) denoting 
the usual scalar product on the roots satisfying Aij = (a,-, af)(aj, a3) for 
[Aij] the Cartan matrix of Q. 

The algebra thus defined admits a bialgebra structure given by 

A{Ht) = Hl®l + l®Hl 

A(Xf) = X±®q^ +q~^® X? 

and 

e(Hi) = 0, e(Xf) = 0. 

The construction of coalgebras given above can be used to construct 
bialgebras by applying it to the algebra freely generated by the collec
tion of combinatorial objects. For example, K[T] and K[C] each have 
bialgebra structures given on generators by the coalgebra structures of 
Examples 4.4 and 4.5 respectively. 

Several additional structures on a bialgebra will correspond to ad
ditional useful structures on the monoidal category A-mod: 

Def in i t ion 4 .11 A Hopf algebra H is a bialgebra equipped with a linear 
map S : H —> S called the antipode, which satisfies the relations of 
Figure 4-2. 

The bialgebras of Examples 4.8, 4.9, and 4.10 are Hopf algebras. In 
the first, the antipode is given on the elements of G by S(g) = g~l. In 
the second, the antipode is given on elements of g by S(j) = —j. In the 
third, the antipode is given by 5(if,-) = -Hi and S{Xf) = -qrXfqr, 

where r = \ J2aeA+ ^*> f ° r A+ the positive roots of 0 and Ha given by 
Ha = YA=I Hi whenever a = YA=I «;• 

Also, following Drinfel'd [17] we make 

Definit ion 4.12 A bialgebra A is quasi-triangular (resp. triangular,) if 
it is equipped with a unit R G A® A satisfying 
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tw(A(a)) = RA(a)R~1 

(A®IdA){R) = R13R23 

and 

(IdA®A)(R) = R13R12 

(resp. such a unit with RtwA,A{R) = 1 0 1,). 

Here, Rn = R <8> 1, #23 = 1 <2> -R, and for R = J2i ai ® &»'> #13 = 

The bialgebras of Examples 4.8 and 4.9 are triangular Hopf algebras 
with R= 1(8)1, while the bialgebras of Example 4.10 are quasi-triangular 
Hopf algebras. For the present, the exact definition of R for the Hopf 
algebras of Example 4.10 does not concern us. The reader is referred to 
Reshetikhin [45] for a construction. 

In fact, the Hopf algebras of Example 4.10 satisfy an additional 
condition: 

Definit ion 4 .13 A ribbon Hopf algebra is a quasi-triangular Hopf 
algebra (A, R) equipped with a central unit v satisfying 

v2 = uS(u), S(v) = v, e(v) = 1, 

and 

A{v) = {twAA(R)R)-\v®v) 

where u = -([5 ® IdA]{twA,A{R)))• 

Each of these definitions may seem a little arcane until it is observed 
that each corresponds to a perfectly reasonable structure on the category 
of modules over A with the monoidal structure induced by ®K • We will 
introduce the relevant structures in the next chapter. 
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Figure 4.2: Defining Conditions for an Antipode 



Chapter 5 

More About Monoidal 
Categories 

We will be concerned with monoidal categories with additional struc
ture. 

Definit ion 5.1 A braided monoidal category is a monoidal category 
equipped with a monoidal natural isomorphism a : ® => ®{tw), called 
the braiding , where tw : C xC —»• C xC is the "twist functor" (tw(f, g) = 
(g,f)) and a satisfies the two relations of Figure 5.1. In Figure 5.1 the 
sign indicating inversion or non-inversion of a must be chosen consis
tently throughout. 

A braided monoidal category is a symmetric monoidal category if 
the components of a satisfy O~B,A{<TA,B) = 1.4®£ f°T oil objects A and 
B, in which case the braiding is called the symmetry . 

Examples 3.2, 3.3, 3.4 and 3.5 are all symmetric monoidal cate
gories, with fairly obvious structure maps, while Example 3.7 may be 
symmetric, braided, or neither, depending on whether the bialgebra A 
is triangular, quasi-triangular, or neither. 

The following example explains the name "braided" monoidal cate
gory: 

71 
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A®{B®C) 

(B®A)®C 

a ±1 

a 

(B®C)®A 

B®(C®A) 

B®a±1 

B®{A®C) 

Figure 5.1: The Hexagon 

Definit ion 5.2 The n-strand Artin braid group, Bn, is the group 

^([c^Ayen) 

where A is the "big diagonal", that is 

A = {(z1,...,zn)\3i ^ j s.t. zz = Zj}, 

and the symmetric group &n acts by permuting the coordinates. 

Observe that the elements of [C1 \ A ] / 6 n may be identified with n-
element subsets of C. Also note that B0 and Bi are both trivial groups. 

The identification of the elements of [C1 \ A]/&n as subsets of the 
plane presents a nice geometric interpretation of elements in Bn tha t 
accounts for the name and connects the braid groups with our category 
of tangles: 

Fix a base-point, say the subset B = { r r r + • n+l ' 2 ' ' ' • ' n+l + 2 J ' a n " 

consider a representative p of an element [p] in Bn (with this base-point). 
For each t G I, p(t) is a subset of the plane. We may then "graph" these 
subsets in C x I, giving rise to a family of n disjoint arcs intersecting 
each level C X {t} in an n-element set. Observe that a homotopy in 
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[C" \ A ] / 6 n corresponds to a level-preserving isotopy of the family of 
curves (as a 1-submanifold with boundary). It is an easy technical 
lemma to show that such a level-preserving isotopy is a restriction of an 
ambient isotopy rel boundary, which is, moreover, trivial outside R X I 
for some rectangle R. 

The 1-submanifold constructed in this way is called a geometric 
braid. We have almost shown that geometric braids are a special case 
of tangles. All tha t remains is to observe tha t there exists a homotopy 
in [C1 \ A ] / 6 n (and consequently an ambient isotopy rel boundary in 
C x i ) which contracts the entire space into the cube [ l + il] X I, while 
fixing a neighborhood of B X I. 

The equivalence relation on braids is a priori weaker than tha t on 
tangles. However, we have: 

T h e o r e m 5.3 (Ar t in [2]) If two geometric braids are ambient iso
topic rel boundary, then they are ambient isotopic by a level-preserving 
isotopy. 

T h e o r e m 5.4 (Ar t in [2]) The group Bn admits a presentation by gen
erators and relations of the following form: 

(<Ti,.. .on-\ | OiOi+xOi = ai+iazai+i for i = 1 , . . .n - 2; 

aio-j = o-jo-i for \i- j\> 1). 

Now, in terms of this presentation it is easy to see that there is a 
group homomorphism 0n>TO : Bn x Bm —• Bn+m given on generators by 

(/>n,m(o~i, 1) = CTj <£ n i T O( l ,<7j) = O j + n -

Observe tha t this is enough, since 

1. Bn x Bm is generated by the elements of the forms (<7;, 1) and 
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2. all relations involving generators of only one of the two forms are 
given by the relations from Bn (resp. Bm) on the first (resp. 
second) coordinates of elements of the first (resp. second) form, 

3. a complete set of relations for a product is given on generators 

of the forms (x,l) and (1, y) by relations from the two groups as 

in the previous item and all relations of the form (x,l)(l,y) = 

( 1 , ! / ) ( M ) , 

4. the map described above preserves all of the relations of the pre
vious two items. 

E x a m p l e 5.5 The category Braids given by 

Ofc(Braids) = N 

with maps given by 

Braids (n, m) = < „ ., 
y Bn if n = m 

with composition given by the group laws in each braid group, admits a 
strict monoidal structure given on objects by n <g> m = n + m and on 
maps by (3 <%> 7 = <f>nt7n([3,y), where (3 : n —> n and y : m -> m, with 
1 = 0. Moreover, this monoidal structure is equipped with a braiding 
given in terms of geometric braids by the maps <7„jm which pass the first 
n strands of n + m behind the last m. (Equivalently, it suffices to specify 
that (Ti,! = o-i e Braids(2 ,2) — B2.) 

The following theorem of Joyal and Street [30] then fully justifies 
the name: 

T h e o r e m 5.6 The braided monoidal category freely generated by a sin
gle object is monoidally equivalent to Braids . 
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proof: We have already observed above that Braids is a braided mon
oidal category. Now, every object of Braids is a monoidal product 
of copies of 1 (taking 0 as the empty monoidal product); the monoid
al structure is strict; and it is clear that all maps are compositions of 
prolongations of a. Thus Braids is generated as a braided monoidal 
category by 1, and there is a unique strict monoidal functor B : F ( l ) —> 
Braids, where F ( l ) is the free braided monoidal category generated by 
1. 

Thus we wish to show that there is a strong monoidal functor 

S : Braids - • F ( l ) 

and natural isomorphisms rj : BS => 1 F ( I ) a n d £ : SB =>• lBraids-
At the level of objects, S is given by mapping n to the fully left-

parenthesized monoidal product of n l ' s in F ( l ) . On maps, S is given 
by mapping an n-strand braid o~i1 ... o~im to a composite of the form 

\SiS2 ...Sm). 

where Sj is a left-parenthesized monoid product of ij — 1 copies of Id\, 
a copy of o~\t\ and n — ij — 1 more copies of Id\. 

It is immediate by construction that SB = lBraidsi s o tha t e may 
be taken to be the identity natural transformation. It is easy to verify 
that the structural natural transformations for 5 as a monoidal functor 
and the components of rj are given by coherence maps from Mac Lane's 
coherence theorem. • 

One thing which can be immediately observed is tha t every braided 
monoidal category admits a second braided monoidal structure with the 
same underlying monoidal category, namely, the one obtained by taking 
[C TB,A]_ 1 : A®B —» B®A. From this point of view, symmetric monoidal 
categories are those for which the two monoidal structures coincide. 

Of course, as often has been observed, in category theory one cannot 
expect or demand coincidence, only isomorphism. Thus it is reasonable 
to consider braided monoidal categories equipped with an isomorphism 
in a suitable sense between these two braided monoidal structures. Thus 
we make: 
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Definit ion 5.7 A braided monoidal category (V, ®, 7, a, p, A, a) is bal
anced if it is equipped with a natural automorphism 6 : l y =>• ly called 
the balancing or twist map satisfying 

and 

#4(g>B = O - B . A ^ . B ^ A ®0B))-

Notice tha t the second condition may be rewritten as 

[O-B,A}~1{QA®B) = o-AtB{0A ®0B). 

In Chapter 12 we will give another characterization of braided mon
oidal categories in terms of a "multiplication" on a monoidal category. 

Another concept familiar from the case of categories of vector-spaces 
is the notion of a dual object. 

Definit ion 5.8 A right (resp. left) dual to an object X in a monoidal 
category V = (V, (S>, I, a, \,p) is an object X* (resp. *X) equipped with 
maps e : X ® X* ->• I and r/ : I -» X* <g) X (resp. e :* X ® X —> I and 
h : I —> X ® *X) such that the composites 

X "1 X ® / X-^ X <g> (X* <g> X) "41 (X (8) X*) ® X e-^4 / x X A X 

and 

X* XA I®X* ^ * {X*®X)®X* 4 X*®(X®X*) X-^P X*®I 4 X* 

(resp. 

XXA I®Xh-^ (X®*X)®X ^X®(*X®X)X^X®I^X 

and 

*x 41 *x®i*x4h*x®(x®*x) U1 (*x®x)®*x e®-7 i®*x A*x) 
are identity maps. 
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Notice that in the case of a symmetric monoidal category 

(V,®,I,a,p, X,o), 

a right dual to any object is canonically a left dual by taking e = ae 
and h = r\o. 

This type of duality is an abstraction from the sort of duality which 
exists in categories of finite dimensional vector-spaces. It is not hard 
to show tha t the canonical isomorphism from the second dual of a 
vector-space to the space generalizes to give canonical isomorphisms 
k :* (X*) —> X and n : (*X)* —> X. In general, however, there may not 
even be any maps from X** or **X to X (cf. [22]). In cases where every 
object admits a right (resp. left) dual, it is easy to show tha t a choice of 
right (resp. left) dual for every object extends to a contravariant func
tor, whose application to maps will be denoted / * (resp. * / ) , and tha t 
the canonical maps noted above become natural isomorphisms between 
the compositions of these functors and the identity functor. Likewise, 
it is easy to show tha t (A <g> B)* is canonically isomorphic to B* ® A*, 
and similarly for left duals. 

In the case of a braided monoidal category every right dual is also 
a left dual, but in general the left dual structure is non-canonical (cf. 
[22]). In symmetric monoidal categories, we return to the familiar: right 
duals are canonically left duals. In non-symmetric braided monoidal 
categories it is possible to provide a canonical left dual structure on all 
right duals only in the presence of additional structure on the category: 
the category must be balanced and the balancing be related to the 
duality structure in a natural way. 

Definit ion 5.9 A braided monoidal category C is ribbon (or tortile) if 
all objects admit right duals, and it is equipped with a balancing 6 : lc => 
lc, which moreover satisfies 

®A* = 8*A-

Definit ion 5.10 A symmetric monoidal category C is rigid if all objects 
admit (right) duals. 
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X** _ ^ *(X*) 

(tx1)* 

' ' T 

(*X)* X 
K 

Figure 5.2: Two-Sided Dual Condition 

Definit ion 5.11 A monoidal category is sovereign if it is equipped with 
a choice for each object X of a right dual X* and a left dual *X, and a 
natural isomorphism (j>x • X* —>• *X satisfying the condition of Figure 
5.2. 

We then have the following theorem, which is due to Deligne [15] 
(cf. also [61], where a more detailed proof may be found): 

T h e o r e m 5.12 Every ribbon category is a sovereign category when e-
quipped with the left-duals obtained by letting *X = X* with structure 
given by e = o~~le and h = nu, and conversely. 

sketch of proof: The proof is reduced to a sequence of lemmas. 
Throughout, we use Mac Lane's coherence theorem to justify the sup
pression of all instances of monoidal structure maps. 

L e m m a 5.13 The identity maps on the right duals are components of a 
natural isomorphism from the right dual functor to the left dual functor 
(with the given structure maps). 

sketch of proof of L e m m a 5.13: This amounts to saying that the 
functors *(—) and (—)* are equal. This is immediate by construction 
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for objects, but must be checked for maps. The reader familiar with 
the diagrams tha t can be used to represent maps in braided monoidal 
categories can easily recover the proof given in [61]. Briefly, one first 
shows that 

*f = [*X ® hx][ex ® X*]f* 

by using the naturality of a (twice) and the right duality structure of 
( —)* (once). One then uses the left duality structure to obtain the 
desired result. • 

L e m m a 5.14 Any natural isomorphism cf> : X* —> *X is induced by a 
natural automorphism of the identity functor 9 : X —> X, and conversely 
any natural automorphism of the identity functor induces a natural iso
morphism from { — )* to *{ — )• 

proof of L e m m a 5.14 This is immediate from the previous lemma 
and the dinaturality properties of e and rj. Given <f>, 0 is given by 

Ox = [vx ®X][cf>x®X® X]aXtX[e ® X], 

while given 0, cf> is given by 

4>x = [h® X*}c7lx.[0x ®X*® *X][ex ® *X]. 

a 

L e m m a 5.15 A natural isomorphism <f> : X* —>* X provides a sovereign 
category structure for the right and left dual structures given in the 
statement of the theorem if and only if the corresponding natural au
tomorphism 6 : Idc => Idc satisfies the balancing axioms of Definition 
5.7. 

sketch of proof of L e m m a 5.15 
The proof tha t the balancing condition implies sovereignty is done 

by calculating the two composites in the diagram obtained from tha t 
of Figure 5.2 by inverting both vertical maps. By using the naturality 
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conditions on the braiding and the dinaturality of the structure maps 
for the right duals, it follows that Kxkx

l equals 

[h-x ® C*)TX ® <nx-);ex)-][fx ® (X*)*]. 

(Recall that for any object Y, *Y — Y*.) Observing that 8j = Idi, it 
follows from the naturality of 6 that 

Kxkx1 = 

[h-x ® (*X)TX ®V(XWX)'][0'X®W ® *(X*)][e.x ®*(X*)]. 

Similarly, recalling the definition of <f> in terms of 8 and the definition 
of (—)* on maps, one can use the triangle condition and dinaturality of 
the unit and counit of the structure maps for (—)* and the naturality 
and invertibility of the braiding to show that 

4>xcj)x* -

[h.x O P O T * ® <r(x*);ex)*][0*x ® 0{<xy ® *{X*)} 

[a2® *(X*)][e.x® *(X*)]. 

It thus follows that if 6 satisfies the balancing axiom 

QA®B = [&A <S> 8B]O-A,BO-B,A, 

then <f> defined in the theorem gives a sovereign structure on the category 
for the given right duals and left duals obtained by "twisting" with the 
braiding. 

The key to the reverse implication is to consider in detail the con
dition that 4> be a monoidal natural transformation. Let 

bx,Y- (x®y)*^y*®x* 

be the canonical isomorphism which makes (—)* into a monoidal functor. 
In this case, the condition that b be the structure maps for the monoidal 
functor is equivalent to the condition 
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r}x®Y[b 0 X <g> Y] = rjY[Y* ® 77x <g> X*] 

and a similar condition relating e and 6 _ 1 . 
Composing both sides of this equation with a and applying the nat-

urality of a to both sides shows tha t 

hx®v[X ®Y ®B] = hx[X®hY® *X][X ® Y ® CT2], 

and a similar calculation for the condition on e and e shows tha t the 
structure map for *(—) as a monoidal functor is ba~2. The condition 
that (j> be a monoidal natural transformation becomes 

b[4> <%>(()] = cf>ba~2 

or equivalently, 

t>X,Y[<t>X ® 4>Y}v2bx
l
Y = <fix®Y-

Now recalling the definition of 0 in terms of <f>, and calculating ^ ® y 
by substituting the left-hand side of the last equation for 4>x®Y, apply
ing the defining property of b and using the naturality and invertibility 
of the braiding, we obtain the balancing condition for 6 as defined in 
terms of <f>. 

Thus we establish the lemma and the theorem. • • 

In the case of categories of modules over a bialgebra A, the struc
tures discussed in this chapter correspond to the additional structures 
discussed at the end of the previous chapter. We state without proof: 

T h e o r e m 5.16 If A is a bialgebra over K, then the following implica
tions hold for the category A - m o d with the induced monoidal structure 
of Example 3.7: 

1. If A is a Hopf algebra , then A - m o d has right (and left) duals. 
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2. If A is triangular , then A-mod is symmetric. 

3. If A is quasi-triangular, then A-mod is braided. 

4- If A is ribbon, then A-mod is ribbon (tortile). 

In the first and last cases, the module structure on on the dual space 
is induced by [a • f](b) = f(S(a) • b). In the last three, the braiding 
is given by x ® y H-> R • [y ® x]. In the last, the balancing map 9 is 
multiplication by v. 

If one considers the dual setting, and deals with categories of comod-
ules, a similar result holds, once the algebraic notions are also dualized. 
In this case one also has a converse by way of "Tannaka-Krein" recon
struction (cf. [47, 54]). 



Chapter 6 

Knot Polynomials 

The original discovery of the interplay between monoidal category the
ory and classical knot theory was motivated by a desire to better un
derstand Laurent-polynomial valued invariants of knots and links dis
covered by Jones [29], HOMFLY [42] (cf. also Przytycki and Traczek 
[43]), Brandt , Lickorish and Millet [10], and Kauffman [32]. 

Although the actual constructions given by the authors cited vary 
greatly in detail, the description of the invariants can be reduced to 
combinatorial relations known as skein relations.1 To describe a link 
invariant by skein relations, we let C (resp. £ / ) be the free i?-module 
with the ambient isotopy classes of classical links (resp. framed links) 
as its basis. A skein relation is then specified by giving a formal linear 
combination of tangles (resp. framed tangles), usually with two inputs 
and two outputs , but in any event with the same intersection with the 
boundary of the cube. Any skein relation specifies a submodule of £ (or 
Cf) by taking as generators all linear combinations of ambient isotopy 
classes of links whose summands admit representatives which contain 

Some researchers, notably Przytycki and Hoste have taken the notion of skein 
relations very seriously, and have developped a species of algebraic topology based 
on considering the space linear combinations of ambient isotopy classes of links in 
a 3-manifold modulo (a) given skein relation(s) as an invariant of the space. Alas, 
discussion of these interesting developments is beyond the scope of this present work. 
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the tangles of the summands inside some given cube but are identical 
outside the given cube, with the coefficients of the corresponding tangles 
from the skein relation. 

A skein relation (or family of skein relations) then defines an R-
valued invariant of links (or framed links) if the quotient module is free 
of rank 1. (One can always normalize so tha t the equivalence class of 
the unknot is identified with 1 £ R-) 

The existence theorems for the Jones and HOMFLY polynomials 
may then be stated as 

T h e o r e m 6.1 (Jones) Let R = Z[i,tz ,t~?], then the skein relation 

irlT+ - i t r _ + (t? - rl2)T0 

determines a unique R-valued ambient isotopy invariant of classical 
links. 

and 

T h e o r e m 6.2 (HOMFLY,P-T) Let R = Z[x, x _ 1 , z, z'1], then the skein 
relation 

xT+ — x~lT_ + ZTQ 

determines a unique R-valued ambient isotopy invariant of classical 
links. 

In each of the theorem the tangles T+, T_ and To are two strand 
tangles with both strands oriented downward, with T+ being the positive 
crossing, T_ the negative crossing, and To having no crossings, when 
each is projected onto the back wall of the cube containing the tangle. 
(See Figure 2.2 for our convention concerning crossing signs.) 

The original discovery of Jones [29] and the constructions of Ocneanu 
and of Freyd and Yetter for the HOMFLY polynomial [42] all rely upon 
the following theorems to reduce the construction of an ambient isotopy 
invariant of classical links to the construction of a suitable family of 
representations of Artin's braid groups: 
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T h e o r e m 6.3 (Alexander [1]) Every ambient isotopy class of oriented 
links can be represented by a closed braid, that is, by a link obtained 
from a geometric braid with all strands oriented downward by joining 
corresponding strands at the top and bottom of the geometric braid by a 
family of non-intersecting arcs all lying in a plane. 

T h e o r e m 6.4 (Markov [41], Birman [9]) Two braids, (3\ £ Bm and 
02 € Bn, have isotopic closures if one can be obtained from the other by 
a sequence of moves of the following types: 

j3 <—>• j{3j~ for some 7 in the same braid group as 0 

0^[0® l]^1 

where (3 £ Bn and the notations are as in the previous chapter. 

In Jones's original work [29] and Ocneanu's construction of the 
HOMFLY polynomial [42], the skein relation passes easily to a rela
tion on a family of linear representations of the braid groups, and a 
family of traces on the representations satisfying suitable properties ab
stracted from the second move in Markov's Theorem gives rise to the 
link invariant. 

In the construction of Freyd and Yetter of the HOMFLY polynomial 
[42], the skein relation, together with the second Markov move, generate 
a submodule of the direct sum of the group algebras of the braid groups, 
and it is shown tha t the quotient module is cyclic of rank one, and tha t 
any two conjugate braids have the same image in the quotient. 

Neither of these approaches is successful in accounting for the in
variants of Brandt, Lickorish and Millet [10], or Kauffman [32], because 
the skein relations for these invariants (which use unoriented diagrams) 
involve a fourth tangle, T ^ , whose projection is crossing free, but has 
the two top inputs (and two bottom inputs) connected to each other by 
an arc. The monoidal categories of tangles discussed in the next chapter 
were first defined by the author [59] in response to this difficulty.2 

2 Categories of tangles were discovered independently and slightly later by Turaev 
[53]. 





Chapter 7 

Categories of Tangles 

We now return to our topological motivation for introducing the par
ticular concepts from category theory. Not only do tangles, oriented 
tangles and framed tangles form categories with composition given by 
"paste-and-rescale"; in fact, they form ribbon categories. 

Just as we had defined the composition of two arrows in Tang, 
OTang or FrTang by attaching two copies of the cube I 3 bottom-face 
to top-face and rescaling, we can use the same pasting and rescaling 
procedure along the second coordinate to define a monoidal structure 
on any of these categories. 

To discuss the structure maps, it is helpful to generalize slightly the 
notion of geometric braid introduced in connection with the Artin braid 
groups: 

Definit ion 7.1 A geometric tangle is a geometric braid if it is the im
age of a map of the form T : { 1 , . . . , n}xl —>• I 3 satisfyingp3(T(i, t)) = t. 

L e m m a 7.2 In any o /Tang , OTang or FrTang, any arrow that ad
mits a representative whose underlying geometric tangle is a geometric 
braid is an isomorphism. 

proof: Given an arrow with a representative geometric braid, the in
verse arrow is given by the mirror image in a horizontal plane with the 
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orientations (if any) reversed. It is easy to verify (using ambient iso-
topies corresponding to Reidemeister moves of type f2.2 in the projection 
onto the back wall) tha t these arrows are inverses in Tang and OTang. 
For FrTang one must also note that the mirror-imaged framing twists 
undo those in the given tangle. D 

In fact, all of the structural natural isomorphisms in the categories 
of tangles are of this form. 

The monoidal structure on any of our categories of tangles is then 
given by 

Definit ion 7.3 Monoidal structures on categories of tangles 

The monoidal product T\ ® T2 of two tangles T\, Tt is given by the 
map induced on the disjoint union of the underlying 1-manifolds, by the 
composition of T\ \JT2 with the map 73 : I 3 ] J I 3 —>• I 3 given by 

x 
(x, y, z) 1—>• ( —, y, z) for elements of the first summand, and 

x + 1 
(x, y, z) I—> (—-—, y, z) for elements of the second summand 

with orientations and framings (if any) given in the obvious manner. 

I is the empty subset of I. 
The structural natural transformations have components given by 

those geometric braids with all component maps constant in the y-coor-
dinate, which are shown schematically in Figure 7.1. 

The two directions around the pentagon and triangle coherence con
ditions are shown schematically in Figure 7.2. It is easy to see tha t 
there are ambient isotopies which implement the equality between the 
two directions around each coherence diagram. 

In fact, we can say more. 

Propos i t i on 7.4 The categories Tang, OTang and FrTang are all 
ribbon categories when equipped with the braiding, twist map and du
alities given as follows: The braiding O~A,B is given by composing the 
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Figure 7.1: Structural Natural Transformations for Categories of Tan
gles 
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pentagon 

triangle 

Figure 7.2: Coherence Conditions for Categories of Tangles 
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Figure 7.3: Inclusion Inducing the Braiding 

map IdA\\IdB : A X I]\ B X I -> I3JJII3 u>i£/i ifte level-preserving PL 
inclusion of l3]}!3 into I 3 shown in Figure 7.3. The twist map 6A 

is given by composing the map naming IdA with a level-preserving PL 
homeomorphism from I 3 to itself that rotates the bottom level through 
360° clockwise (full clockwise twist). Right dual objects are given by 
reflection in the x-coordinate, with orientations reversed in the case of 
OTang and FrTang, with structure maps rjA and eA given by compos
ing the map naming IdA with the PL inclusion of I 3 into I3 shown in 
Figure 7.4-

proof: Tha t the maps given as units and counits for right duals satisfy 
the required equations (and thus that the given objects are right duals) 
follows immediately from isotopies which are instances of Reidemeister's 
move A.7r. 1 when viewed in projection onto the back wall (I X 1 XI C I 3 ) . 

The naturality condition for a can be verified using isotopies tha t 
are generated by composing the isotopy implementing the condition 
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Figure 7.4: Inclusions Inducing the Unit and Counit for Right-Dual 
Objects 
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defining identity maps in categories of tangles with one of the inclusion 
of Figure 7.5. 

The hexagonal coherence condition for the braiding is induced by 
an isotopy which "straightens" the crossings (viewed front to back). 

Once it is observed that all full twists are ambient isotopic rel bound
ary, it is easy to see that the defining condition of a balancing holds: a 
full twist on each tensorand followed by two instances of the braiding 
accomplishes a full twist on the tensor product, as shown schematically 
in Figure 7.6. 

Similarly, it is easy to see that a full clockwise twist applied to an 
object's dual is the dual of a full clockwise twist applied to the object, 
verifying the condition relating the balancing and duality. • 
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Figure 7.5: Inclusion Inducing Naturality Isotopies for Braiding 
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Figure 7.6: Schematic of Balancing for Categories of Tangles 





Chapter 8 

Smooth Tangles and PL 
Tangles 

Thus far we have handled everything in the PL setting, even going so 
far as to translate the more naturally smooth notion of framings for 
knots, links and tangles into that setting. Now tha t we have sufficient 
categorical machinery set up, we wish to take time to see tha t the two 
approaches give rise to equivalent formulations of tangle theory. By 
smooth, we mean C°°, although similar proofs to those given below 
would give corresponding results for Ck with k > 1. 

Our method will be to construct a number of different categories of 
tangles and framed tangles, and show that they are all ribbon equiva
lent to one another (that is, monoidally equivalent by a monoidal functor 
which preserves the braiding and balancing - duals come along for free). 
Tang, OTang and FrTang will, of course denote the PL versions con
structed in the previous chapter. As in the PL case, we assume when 
dealing with framed tangles that both the underlying manifold of the 
tangle and the target I 3 are oriented. 

The key to this chapter is to introduce categories of piecewise smooth 
tangles, oriented tangles and framed tangles, which can be readily re
lated to the categories of the last chapter and to categories constructed 
by smooth methods. In fact, the categories T a n g p S , O T a n g P 5 and 
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F r T a n g P S are defined in exactly the same way as those of the previous 
chapter, but with piecewise linear inclusions and isotopies replaced by 
piecewise smooth ones. To make this more precise, we make: 

Definit ion 8.1 A piecewise smooth map is a continuous map for which 
there exists a triangulation of the source such that the restriction of the 
map to each simplex is C°° . 

Thus, any PL map is piecewise smooth. Conversely, 

T h e o r e m 8.2 If F : X -> Y is a piecewise smooth embedding where 
Y = R3 (resp. a piecewise smooth tangle with PL source and target), 
and X is a surface, then F can be approximated by a PL embedding F 
which is, moreover, piecewise smooth ambient isotopic (resp. ambient 
isotopic rel boundary) to F. 

As one technique of proof for these approximation theorems involves 
lemmas we will need later to prove some results about categories of 
framed tangles, we will not rely on any "big theorems" of differential 
topology. Instead, we will give a rather hands-on account using only 
elementary facts from differential topology found in standard texts (e.g. 
Guilleman and Pollack [27] or Spivak [50]). One not-so-big theorem, 
which would be very convenient — the result of Alexander which states 
that any homeomorphism or diffeomorphism which fixes an open region 
is ambient isotopic to the identity — will not be available to us, since 
we need relative versions in a cube. The inversions which give the proof 
of Alexander's result do not respect the cube. 

Definit ion 8.3 A smooth ramp function from (a, b) to (c, d) is a smooth 

function <fi : M —)• M satisfying 

• <fi is weakly monotone 

• 4>(a) = b 

• 4>(c) — d 
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• 4>'{x) = 0 for all x G7 (a, c). 

A smooth bump function for [a, b] C (c, d) with inner value y and outer 
value z is a smooth function (3 such that 

• f3(x) = y for all x £ [a, b] 

• (3(x) = z for all x ^ (c, d) 

• /3 is monotone on [c, a] 

• j3 is monotone on [b,c]. 

For our purposes, it is desirable to observe tha t there are families of 
ramp functions and bump functions which vary smoothly in the param
eters a, b, c, d or a, 6, c, d, y, z. More precisely, 

Propos i t i on 8.4 There exists a smooth function 

<&(a, 6, c, d, x) (resp. B(a, b, c, d, y, z, x)) 

such that for fixed a, &, c, d (resp. a, 6, c, d, y, z j f/ie function cf>{x) = 
Q(a,b,c,d,x) for a < c fresp. /3(x) = B(a,b,c,d,y,z,x) for c < a < 
b < d) is a smooth ramp function from (a, 6) io (c, d) (resp. a smooth 
bump function for [a, b] C (c, of) m'£/i inner ua/ue y and owier ua/ue z). 

proof: We begin by defining $ ( 0 , 0 , 1 , 1 , x) to be the standard smooth 
ramp function <p(x), found for example in Spivak [50]: let 

Then 

„ ( l ) = J?/(«/(»-<)<, 
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Now, let $(a,b,c,d,x) = (d - & M f f f ) + b. Plainly $ has all the 
desired properties. 

Now, define B by 

\ ®(b,y,d,z,x) if x > ^ p . 

Again, it is immediate that the function has the desired properties. • 

Moreover, 

T h e o r e m 8.5 If H is a piecewise smooth ambient isotopy rel boundary 
between PL tangles F and G, then H can be approximated by a PL 
ambient isotopy rel boundary. 

proof: Now, a piecewise smooth (resp. PL) ambient isotopy rel bound
ary is given by a piecewise smooth (resp. PL) map (f> : I X I 3 —Y I 3 such 
that for all t <f>t(—) = <f>(t, —) has a piecewise smooth (resp. PL) inverse, 
a n d 4>t\gi3 = IddI3. 

It is easy to see that (f> is a piecewise smooth (resp. PL) ambient 
isotopy if and only if (p\, <j>) : I X I3 —> I X I 3 is a piecewise smooth (resp. 
PL) homeomorphism. 

First, observe that the e-neighborhood lemma of [27] applies to em
bedded compact closed submanifolds with boundary as well as to em
bedded compact submanifolds.1 Thus, we can apply the e-neighborhood 
theorem to each of the (finitely many) simplexes r of a triangulation 
with respect to which (pi, <p) is piecewise smooth, to obtain a neighbor
hood of each simplex of radius eT on which the image of the normal 
bundle retracts by the nearest-neighbor map onto the simplex. 

Let e be the minimum of the eT's. For any simplex r let T£ denote 
the e neighborhood of the image of r under (pi, 0) , and let Nr be the 
image of the regular neighborhood of r under (pi,4>). Now, choose a 

'The stronger version in which the bound is given on a non-compact submanifold 
by a continuous positive function can be applied to the smooth embedding of an open 
neighborhood of the manifold with boundary, then e chosen to be the minimum of 
this function on the compact closed submanifold. 
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subdivision of the triangulation such that every "secant simplex" s, tha t 
is, every linear simplex s whose vertices are the images under (pi,</>) 
of vertices of a simplex a of the subdivision, lies in Te C\ NT, where 
T is the simplex of the original triangulation in which a lies. Now, let 
$ : I x I3 —>• I X I3 be the map obtained by linearly mapping each simplex 
of the subdivision to the corresponding secant simplex. First, observe 
tha t since (pi,<f>) is linear in its first coordinate, the first coordinate of 
ty is also p i , so that we have <]/ = (pi, ip). Likewise, (p\, <f>) restricted to 
I X dl3 is the identity, and thus linear. Thus \P agrees with (pi,<f>) on 
the boundary. 

We need to show tha t *£> is invertible. It is immediate by construction 
that W is surjective. To see tha t it is one-to-one, we proceed considering 
the skeleta of the subdivision. It is immediate tha t \P is one-to-one on 
the 0-skeleton (vertices) since (pi,^>) is one-to-one. On higher skeleta, it 
is immediate that the restriction of \P to any simplex of the subdivision 
is one-to-one, so we only need see that the images of simplexes intersect 
only when one is the face of another. Suppose we had an intersection 
not of this form. The two points with the same image cannot lie in 
the image of the same simplex of the original triangulation, since the 
secant simplexes all lie in the e-neighorhood, and thus retract onto the 
image of the simplex under (pi,</>). Likewise, they cannot lie in images 
of different simplexes, since then they would have to lie in the image 
of the regular neighborhood of each, and thus lie in a common face, 
leading to the previous contradiction. 

Thus ip such tha t ty — (p l t ip) is the desired PL ambient isotopy rel 
boundary. • 

It therefore follows tha t the obvious inclusion of sets of PL tangles 
into sets of piecewise smooth tangles descends to a map on equivalence 
classes, which plainly induces functors 

J : T a n g ->• T a n g P S 

J : O T a n g -> O T a n g P S 
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J : FrTang ->• F r T a n g P S . 

In fact, the same approximation theorems show tha t these functors 
are actually isomorphisms of categories. The fact that the structure 
maps for the piecewise smooth categories are represented by PL tangles 
then shows that these are ribbon equivalences as well. 

The first difficulty in the program of showing smooth categories of 
tangles to be equivalent to their corresponding PL version comes from 
the fact that although PL and piecewise smooth embeddings will "glue" 
end-to-end with no more da ta than the points (signed or framed as 
needed) at which they are to be glued, one must do more work to glue 
smooth embeddings end-to-end. 

This is resolved by another approximation theorem by which any 
piecewise smooth map, smooth at its boundary, can be approximated 
by smooth maps. We can glue to get a piecewise smooth embedding, 
which is smooth except near each gluing point, then locally approximate 
by new smooth embeddings near these points to define the composition. 
Similarly, smooth embeddings which are smooth ambient isotopic (rel 
boundary) are a fortiori piecewise smooth ambient isotopic (rel bound
ary), but by the approximation theorem the converse holds. 

Thus, in the case of tangles and oriented tangles, we are in the same 
position as we were for relating the PL and piecewise smooth categories: 
there are functors 

L : TangCoo —> T a n g P 5 

L : OTangCOo -4 O T a n g P 5 

which are, in fact, isomorphisms of ribbon categories. 
Even for "framed tangles" the same situation applies, but for reasons 

which will become clear, we will now revert to Shum's name of "ribbon 
tangles" [48] for the smooth version of our PL and piecewise smooth 
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tangles, and denote the category by R ibTang^oo . Thus by the same 
argument, there is an isomorphism of ribbon categories 

L : RibTang C oo ->• F r T a n g F 5 . 

The reason for our name change is that the arrows in this cate
gory are smooth embeddings of "ribbons", tha t is, of manifolds with 
boundary of the form X X I, where X is a disjoint union of components 
diffeomorphic to S1 and I. In the smooth setting, we can use framed 
tangle to describe precisely what it sounds like: a tangle equipped with 
a framing of the normal bundle. 

We denote the category of smooth framed tangles in this sense by 
FrTang C oo. The one equivalence (and it is only an equivalence, not an 
isomorphism) which does not follow from an approximation theorem is 

T h e o r e m 8.6 FrTang^co is ribbon equivalent to R i b T a n g c oo. 

proof: First, recall tha t the underlying manifolds and ambient I 3 are 
oriented, and thus the specification of a framing of the normal bundle of 
the tangle can be reduced to the specification of a normal vectorfield on 
the tangle. In specifying this normal vectorfield, we are really specifying 
a map from a one-jet neighborhood (in M2) of the underlying manifold 
of the tangle. 

To describe this more precisely, we can follow Goryunov [26] in re
garding framed knots, links and tangles not as ordinary knots, links or 
tangles with additional structure, but as equivalence classes of mappings 
from open annular neighborhoods U of S1 or disjoint unions of such (and 
of the same with open rectangular neighborhoods C/ of I = I x {0} C I x M 
in the case of tangles) into M3 (or I 3 in the case of tangles). We interrupt 
the proof briefly to recall the relevant definitions: 

Def in i t ion 8.7 Given an oriented space X of the form S1, 1, {*}, or 
a disjoint union of such spaces (all of the same dimension), a ribbon 
neighborhood of the space is an oriented space of the form U = X x 
( - a , a) (a > 0). We identify X with ! ® { 0 } c f / . 2 

We prefer the suggestive "ribbon neighborhoods" to the more classical "open 
bicollar neighborhoods". 
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Observe tha t any mapping g : U —»• M induces a mapping Tg from 
i*(TMi+1) to T(M). (Here i is the inclusion of X into U, and although 
the observation holds for more general target manifolds with boundary, 
in our case M is M3, I 3 or I2.) 

For ease in the link and tangle settings, we may specify in advance 
a countable (ordered) family of disjoint circles and intervals 

{ S i , . . .Sjt,. • . , I i , . . .1 / , • •.} 

and consider mappings from disjoint neighborhoods of finite unions of 
families of components, which are initial segments of the components of 
each type. 

Definit ion 8.8 Two mappings g{ : £/,- —>• M.3 (resp. gi : Ui —> I3) i — 1, 2 
are equivalent if the Ui's are ribbon neighborhoods of the same disjoint 
union of circles (resp. disjoint union of circles and intervals) X and 
the mappings Tgi : i*(TM.2) —> TIR3 coincide on X. 

Observe tha t an equivalence class of embeddings of a ribbon neigh
borhood specifies a framed link, since we can take the vectorfield to 
be the image of the unit normal vectorfield to the underlying mani
fold under Tg. Conversely, any framing (given by its "first" vectorfield) 
specifies an equivalence class of mappings from ribbon neighborhoods 
to I 3 — namely, that equivalence class for which the normal vectorfield 
is the image under Tg of the unit normal vectorfield to the underlying 
manifold. 

Actually, a little work is needed here: we need to know that there 
is an embedding of a ribbon neighborhood for which any given normal 
vectorfield is the image of the unit normal vectorfield. This, however, 
is easy: apply the exponential map associated to the Euclidean metric 
on I 3 to obtain a map from a ribbon neighborhood. Now, linearly scale 
the parameterization normal to the tangle to obtain a map g for which 
the image of the unit normal vectors are the given tangent vectors. It 
only remains to restrict g to a smaller ribbon neighborhood on which it 
is an embedding. 
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By the immersion theorem (cf., for example Guilleman and Pollack 
[27]), the map is an immersion on some neighborhood of the tangle, 
and by compactness this may be chosen to be a ribbon neighborhood. 
Similarly, we can restrict to a ribbon neighborhood on which the map it 
one-to-one, since otherwise we can construct sequences of points {xn} 
and {yn} such that 

• %n T~ Vn 

• g{xn) = g{yn) 

• d(xn,X) < \ 

• d(yn,X)< i 

where X is the underlying manifold of the tangle, and distance is mea
sured in the ribbon neighborhood. Restricting to the final subsequences 
which lie in some X X [—-, - ] , by compactness we may assume w.l.o.g. 
tha t both sequences are convergent. Now, it is plain by construction 
that the limits x and y lie in the tangle (g(X)), and tha t g(x) = g{y). 
However this is a contradiction, since either x / y, violating the em
bedding condition in the definition of tangles, or x = y, in which case 
the sequences converging to them violate the fact that immersions are 
local embeddings. 

proof of T h e o r e m 8.6 cont inued: 
This being said, it is clear how to obtain a functor 

T : RibTangCoo —>• FrTangCc*. 

Whether on objects or on arrows, simply take the equivalence class 
represented by the map. (One needs to observe, since ribbon tangles 
were defined via maps from X X I, tha t the definition of smoothness for 
maps on manifolds with boundary allows us to extend this to a map 
on an open neighborhood of this, which by compactness of X may be 
assumed to be of the form X X ( - a , 1 + a) , and tha t all such extensions, 
when restricted to X X (—a, a) , are equivalent in the sense above.) 
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We thus need to construct a functor in the reverse direction and the 
appropriate natural isomorphisms to establish the theorem. Most of the 
work has already been done in the preceding discussion. The only real 
problem is how to choose a particular neighborhood on which to define 
the map, and then rescale so that mapping of normal vectors on the 
tangle is unchanged, but the embedding is defined on X x I. The only 
crucial thing about this choice is the choice on objects, since we have 

L e m m a 8.9 If g±,g2 : X X 1 —> I3 are ribbon tangles satisfying 

• 9i\xx{o} = 92\xx{o} 

• SlldXxI = 92\dXxl 

• T9i\xx{o} = Tg2\xx{o} 

then g\ and g2 are ambient isotopic rel boundary. 
The same statement holds when the ribbon tangles are replaced with 

maps g\, g2 : S X I —> I 2 and the second condition is dropped. 

We will defer the proof of Lemma 8.9 until we are done proving 
Theorem 8.6. 

On objects, given a (normal) vectorfield vs on a finite set of points 
S in (0, l ) 2 C I2, we need to specify an embedding of 5 X I for which 
the image of the unit tangent vector at (s, 0) is vs. Now, for each point 
in 5 , let ds = \ m'm(d(s, <9l2), d(s, S \ {s})), and define the embedding 
9v by 

(s, i) ^ s+ -j^4>a(t) 
Ks 

where <f>s is a smooth monotone increasing function with the properties 

• &(0) = 0 

• #(o) = i. 
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We will actually construct functions satisfying this kind of require
ments in the proof of Lemma 8.12 where additional requirements will 
be needed, so we defer the construction until then. 

The functor R : FrTang^cx, -¥ RibTang C oo is then given on objects 
by mapping signed sets of points to the embeddings just constructed. 

On arrows, we will use the same construction, but with <j>a(t) re
placed with a smooth non-negative function (f>(x,t) satisfying 

• <i>(x,0) = 0 

• !£M) = 1 
• If s G dX, then 4>(s, i) = TT̂ TT as above 

• (x, t) H->- x + ^(x, t) is an embedding. 

To avoid some difficulties later, first perform an ambient isotopy 
rel boundary so that the tangle intersects a ^-neighborhood of dl3 in a 
family of vertical line segments (any parameterization will do). 

To see tha t such cj>(x, t) exist first apply the e-neighborhood theorem 
[27] to the tangle. Now, let 

Xe = X\Ne(dX) 

where Ne is the e-neighborhood in I3, and replace e with 

= d(xt, di3) e 
£ 3 - 3 ' 

Let 1? = min(#, e). We can now form a neighborhood of X as follows: 
let XE be the closed s neighborhood of the tangle X, and let Ns be the 
closed neighborhood of s = (x, y, z) of the form Pds (x, y) X (B^(z) U I) . 
Let S(x) be defined by 

5(x) = sup{ m 11 < m implies x + tv x £ X£\j[jNs} 
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and let d(x) be any smooth function chosen so that d(s) = S(s) for 
s e dX, and 0 < d(x) < 5(x) for all i £ l 

Now, by construction, the exponential map (x, v) ^r x-\-v restricted 
to {(x,v) \x £ X, v is normal to X, ||y|| < d{x) } is an embedding. 
The ribbon map constructed is simply the composite of this embedding 
with the embedding (x,t) i-> (x,y^(x:t)) from X X I to N(X), where 
<f>(x,t) is a smooth function satisfying 

• <f>(x,0) = 0 

• f£(*,0) = l 

• If s G dX, then <f>(s,t) 

• ^(a;.i) = S -
Again, the construction in Lemma 8.12 will provide the necessary 

function. 
Now, by Lemma 8.9 any different choices of 5, e and 5(x) will give 

ambient isotopic ribbons. It is trivial to see that composition, identities, 
<8>, / and all of the structure maps are preserved. Thus we have the 
desired ribbon functor R. 

It is immediate from the construction that TR = /^FrTang oo • 
To construct the required natural isomorphism 

ip : RT => /dRibTangCoo , 

let H be the ambient isotopy provided by the isotopy of the second 
statement of Lemma 8.9 from an object h : S X I -> I2 to the map 
naming the object T(R(h)) constructed above. The component iph of 
the natural isomorphism is then named by 

iph(x,t,T) = (H(h(x,t),T),r) 

and its inverse named by 

77̂ 77, as above 

(x,t,T)^(H(h(x,t),l-r),T). 
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Both the inverse and naturality conditions follow immediately from 
the application of the lemma. Thus, once we establish the lemma, the 
theorem is proven. • 

proof of L e m m a 8.9 We proceed by constructing a sequence of four 
ambient isotopies, of which the first two adjust the embeddings along 
the source and target so that the map on tangent spaces coincides there 
as well, and the third of which shrinks the ribbon tangle close enough 
to the edges where the tangent maps coincide, so that the fourth can 
complete the desired isotopy using 

L e m m a 8.10 There exists an e > 0 such that if 

ib(x,y) = (x + a(x,y),y+b(x,y),c(x,y) + - ) 

is an embedding of I2 in I 3 and 

\^\) l^n l̂ -p l^a^l) l^x|i l ^ n l^yb \^y\i \^y\ ^ ^ 

then T/> is ambient isotopic to the map (x,y) <—> ( a ; , y , | ) . Moreover, the 
isotopy may be chosen so that all points where a = b = c = 0 are fixed. 

proof: First, observe tha t there exist 8, r\ > 0 such tha t T/> extends to 
an embedding of [-8,1 + 8]2 into [-77,1 + rj]3. Now, choose a smooth 
function cj) : [-77,1 + r/]3 x I -> I such that 

• 4>\N\I = 0 for N a neighborhood of d[—77,1 + T/]3, 

• ^IMX[C,I] = 1 f ° r some 0 < c < 1 and M a neighborhood of I 2 x { ^ } , 

• </H[-rj,i+T}]3x[o,fc] = P[-7j,i+r,p for some 0 < k < c. 

(We can construct the desired <f> as a product of smooth bump func
tions in each of the first three variables x,y, z and a smooth ramp func
tion in the fourth variable t.) 

Now, let 
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/i = max( max |—— (a;, y, z, t)\, 1), 
a G {x,y,z} Oa 

(x,y,z,t) e [—n,i + ij]3 x I 

and let v > 0 be chosen so that the ^-neighborhood of I 2 x {-} in the 
square metric is contained in M. 

Consider the homotopy given by 

H((x,y,z),t) = 

(cj)(x,y,z,t)a(x,y) + x, 

<f>(x, y, z, t)b(x, y) + y, <f>(x, y, z, t)c(x, y) + z) 

For fixed t, we have 

4>xa + 4>ax + 1 4>xb + (j>bx 4>xc + 4>cx 

4>ya + 4>ay 4>yb + 4>by + 1 <f>yc + <pcy 

(f>za + 4>az <f>zb+4>bz 4>zc+ cf>cz + 1 

It is an easy exercise to show tha t if r is the real root of 

6x3 + 6x2 + 3x - 1, 

then any real matrix whose entries each differ from the identity matrix 
by less than r is invertible. (It happens tha t \> r > \-) 

It therefore follows that if we choose e to be m i n ( ^ , z / ) , then Ht 
is a diffeomorphism for all t (by the inverse function theorem). But 
Ho = Id[_nil+r]]; H{(x,y,\),\) = i>(x,y); and H\N X I is trivial. • 

To adjust the tangents along the source and target , we construct 
ambient isotopies as follows: choose disjoint neighborhoods of each com
ponent of the source (resp. target) in I3 , and coordinates on each neigh
borhood so tha t the following conditions are satisfied: 

• the embedding of the source (resp. target) component has the 
identity map as ^-coordinate 

T(Ht) = 
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• its extension to an embedding of (—e, 1 + e) also lies linearly in 
the z direction 

• the yz-plane lies in the top (resp. bottom) face of I 3 

• the intersection of the spine of the ribbon tangle lies along the 
x-axis in such a way that the neighborhood (or a smaller one) is 
identified with ( - e , 1 + e) X M X [0, e). 

Then we apply the ambient isotopy of the following lemma to the neigh
borhood of each boundary component: 

L e m m a 8.11 Let b : [-e, 1 + e] X [0, e] ->• M3 such that b(z, 0) = (0, 0, z) 
and b(0, x) = (x ,0 ,0 ) , and the image of b lies entirely in the closed 
positive or negative half-space with respect to the z-coordinate. Assume 
w.l.o.g. that the image lies in the positive half-space. Then there is 
an isotopy Ht of the half-space which fixes the complement of [0, | ) X 
(—N,N) X (—f,l + §), fixes the boundary of the half-space, and such 
that if v is a unit vector normal to the z-axis and tangent to the image 
ofb, then T(Hi)(v) = (1 ,0 ,0) . 

proof: Now, let m(z) be the slope of the vector normal to the z-axis 
and tangent to the image of b at (0, 0, z). Let 

fi(x,y,z,t) = 

B(0,l,-e-)l+
€-,l,0,z)B(-l,l,-N,N,l,0,y) 

$(^l,^,0,x)§(0,0,l,l,t)m(z), 

where N is to be chosen later. 
Define an isotopy by 

H((x,y,z)tt)=( X y+ / [* ' ]'Z't)x z) 
V I + fj,(x,y,z,t)2 ^l + n(x,y,z,t)2 

Now, observe that for any fixed t we have 
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T(H t ) 

1 xfxpix ximv x/ifiz 
( l + M 2 ) * ( l + M 2 ) ^ (1 + M 2 ) ' (1 + M2) 

( I + M 2 ) * ( i+^2) i 

( i+^2) i (l+A!2)! (i+/i2)i 

0 

( i+^ 2 ) i ( I + M 2 ) J 

This is invertible if and only if the xy-minor is, but the determinant 
of this minor is given by 

1 x(l + /i2) - x2fifix 

(1 + ^ * (! + M2)2 ' 

By construction, \i is bounded above and below by 

± M = ± max |m(^) | , 

1 + //2 is bounded below by 0, and \LX is bounded above and below by 
plus and minus 

max | $ ' ( 7 , l , ^ , 0 , a ; ) | M 
*e[(f,f]' V ' 2 ' n 

respectively, for any choice of N. Now, we can choose N so that the 
maximum value of \/iy\ is arbitrarily small. Thus, by choosing N suffi
ciently large, we can make the determinant arbitrarily close to —r, 

(1 + ^ ) 2 

which is bounded away from zero by — r . Thus, by the inverse 
(1+M 2 )2 

function theorem, each Ht is a diffeomorphism. 
The fact tha t the isotopy fixes the desired regions is immediate by 

construction. • 

After applying the isotopies provided by this lemma to straighten 
the 1-jet neighborhood of the source and target of one ribbon tangle 
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to match the other, we wish to apply an ambient isotopy which will 
shrink the ribbon along itself until it lies in a very small neighborhood 
of the union of the source, target and spine in which the ambient isotopy 
provided by Lemma 8.10 will complete the proof. 

To construct the desired ambient isotopy and complete the proof of 
the approximation theorems used in the proof of Theorems 8.5 and 8.6, 
we prove: 

L e m m a 8.12 Let 0 < e < 1, and let X be any smooth manifold and 
b : X —> I be any smooth function bounded below by e. Then there exists 
an isotopy hb : X X [—e, 1 + e] X I —>• X x [—e, 1 + e] from the identity 
map to a map Sb(x,z) satisfying 

• sb(x,0) = (x,0) 

• Sb(x, 1) = (x,b(x)) 

• si,(x,z) = (x,Q for some £ 

• ^-(x,z) = 1 for all x and all z G [-£, | ] U [ 1 - | , l + | ]U[ l + f , 1+e] 

• "9 i^( x ' z) — ^ for a^ n ^ 2, all x and all 

^ e [ - e , | ] u [ l - | , l + | ] U [ l + | , l + e], 

and 3<5 > 0 such that 

• hb(x,p,t) = (x,p) for all t £ [0,5) 

• hb(x,p,t) = sb(x,p) for all £ (1 - 8,1]. 

proof: Let j3 be a smooth bump function for [|, 1 - | ] C ( | , 1 - | ) with 
inner value 0 and outer value 1. 

Then 

pr 
aa(r)= I 1 - a(3{p)dp 

Jo 

for a G [0,1) is a smooth monotone increasing function which satisfies 
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• MO) = o 

• M ( - o o , f ] u [ l - f , o o ) = 1 

• c r i" ) | ( _ 0 O i | ] u [ 1 _ | i O o ) = 0 for n > 2. 

Moreover, if we let £(a) — <ra(l), then £(0) = 1; £ is smooth and strictly 
decreasing; and limo-n £(a) < ^ , since 1 - <fi(j>) < f(p), where 

f ( v ) - l 1 i fp G [ 0 , | ) U ( 1 - f . l ] 
n p ) \ o i f p G [ | , i _ | ] 

Now, let a(£) denote the inverse function, and let 

ipb(x,p) = $(5, 0 , 1 - 5 , a(b(x),p). 

Then %>[o,i](^,P, 0 = {xia^b{x,t)ip)) ls the restriction of the desired hb 
t o X x [ 0 , ' l ] . 

A similar construction using a smooth bump function 6 for 

e 2c, . e 5ex 

[ l + 3 , l + y ] C ( l + - , l + - ) 

with inner value 1 and outer value 0, and ra{r) — 1 + J-f 1 + a0{p)dp 
gives ilb,[i,i+e.]{xiPi 0> with the necessary properties to be the restriction 
of hb to X X [1,1 + e]. 

We then have 

[ (».P) i f p G [ - e , 0 ) 
hb(x,p,t)=< m,[o,i\(x,p,t) i f p e [ 0 , l ] 

{ Vb,[i,i+e](x,p,t) iipe [1,1 + e] 

n 

Finally, 

L e m m a 8.13 If D is a disk (ball) of any dimension of radius r, the 
isotopy of the previous proposition extends to an ambient isotopy Hb of 
X X [—e, 1 + e] X D whose restriction to X X [—e, 1 + e] X {0} is hb, and 
which is trivial on a neighborhood of the boundary of D. 
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proof: Let Hb(x,p, v, t) = h},{x,p, t<f>(l — -^r), u), where <f> is a smooth 
ramp function from (e, 0) to (1 - e, 1) for some 0 < e < \. • 

This, in fact, completes the proof of Lemma 8.9 and with it the proof 
of Theorem 8.6: as indicated above, the ambient isotopy of Lemma 8.9 is 
obtained by composing (in the sense of isotopies) a sequence of ambient 
isotopies. First, we apply those obtained from Lemma 8.11 for each 
component of the source and target by trivial extension to I 3 outside 
of the neighborhoods on which they are defined. Then, we apply the 
ambient isotopy of Lemmas 8.13 and applied to a tubular neighborhood 
of the ribbon tangle for a smooth function chosen so that its graph lies in 
a neighborhood of the source, spine and target of the ribbon tangle small 
enough that the bounds on the embedding and its partial derivatives 
in the hypotheses of Lemma 8.10 apply in a chosen coordinate system, 
and finally we apply the inverse of the corresponding ambient isotopy 
for the other ribbon tangle. • 

Thus, the abuse of language of speaking of "the category of tangles" 
or "the category of framed tangles" without specifying how the category 
in question was constructed from topological da ta is justified to the 
extent tha t all such usages are: up to a structure preserving equivalence 
of categories. 





Chapter 9 

Shum's Theorem 

One of the most remarkable theorems proven in the past two decades 
is Mei-Chi Shum's coherence theorem for ribbon categories [48, 49]. 
For those whose sense of categorical coherence theorems is fixed on the 
classical "all diagrams commute" theorems of Mac Lane [39] and Epstein 
[21], which simply make trivial things that ought to be trivial, it may 
seem strange tha t a categorical coherence theorem should be of great 
importance. 

It has, however, long been known in the Australian school of cate
gory theory tha t the correct general notion of a coherence theorem is a 
characterization up to equivalence of a category with certain structure 
freely generated by a given category (or directed graph). Tha t being 
said, we can state the simplest instance of Shum's theorem: 

T h e o r e m 9.1 The ribbon category freely generated by a single object is 
monoidally equivalent to FrTang. 

When it is remembered tha t the categories of representations of 
quantized universal enveloping algebras (among other categories) are all 
ribbon categories, this theorem provides the explanation of the remark
able connection between Hopf algebra theory and knot theory: given any 
ribbon category C and an object X therein as an image of the generating 
object (say the category of representations of a quasi-triangular Hopf 

117 
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algebra, and a particular representation), the freeness of FrTang in
duces a ribbon functor (monoidal functor preserving the braiding, twist 
and duality) <&x '• FrTang —>• C. In cases in which Home (I, I) is a ring 
R (as, for example, categories of representations of a quasi-triangular 
Hopf algebra), &x then induces an R-valued invariant of framed links. 

All of those values of the HOMFLY [42] and Kauffman [32] polyno
mials which "come from quantum groups" are examples of this type of 
"functorial invariant." Specifically, the values of the HOMFLY poly
nomial in the normalization given in Chapter 6 with x = q~n and 
z = q? — q~2 arise as functorial invariants by mapping the downward 
oriented strand to the fundamental representation oiUq(sln). Similarly, 
there are values of the Kauffman polynomial corresponding to the fun
damental represenyations of quantized universal enveloping algebras for 
simple Lie algebras of types B, C and D. 

Rather than prove Theorem 9.1 directly, we will instead set up the 
machinery to prove the full version of Shum's coherence theorem. In 
general we follow [49], but with some differences necessitated by our 
more geometric definition of tangles: 

Definit ion 9.2 A framed tangle labeled by a category C is a framed 
oriented tangle, each boundary point of which is labeled with an object 
of C, and each component of which is labeled with a map of C. subject 
to the restrictions: 

1. If a component is not a closed curve, then the source (resp. target) 
of its labeling map is the labeling of its first (resp. second) endpoint 
relative to the orientation. 

2. If a component is a closed curve, then its labeling map is an ele

ment of E(C)^U_Aeob(c)C{A,A). 

Definit ion 9.3 Two framed tangles T, T' labeled by C are equivalent if 
there is a 1-1 correspondence between the components ofT and those of 
T' such that the following hold:1 

1 There is a slight inadequacy in the corresponding definition in [49]: it is insuffi-
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1. The underlying framed oriented tangles ofT andT' are equivalent 
via an ambient isotopy rel boundary H : I 3 x I —> I 3 such that 
if H(S,0) is a component of T then H(S, 1) is the corresponding 
component of T". 

2. If c is a component of T which is not a closed curve and c' is 
the corresponding component of T', then the labeling maps (resp. 
the labeling object of the first endpoint with respect to the orienta
tion, the labeling object of the second endpoint with respect to the 
orientation) of c and c' are equal. 

3. If c is a closed component of T and c' is the corresponding com
ponent of T', then the labeling maps are equivalent with respect to 
the equivalence relation = "trace equivalence" on E{C) induced by 

fg = gf-

Def in i t ion 9.4 Given a category C, the category of C-labeled framed 
tangles, denoted F r T a n g / C , has as objects finite framed sets of points 
in (0, l ) 2 , each point of which is equipped with an orientation (i.e. a 
sign) and a label by an object of C. As for tangles, a framing is specified 
by extending the embedding of the finite set S to an embedding of S X I. 

The arrows o / F r T a n g / C are equivalence classes of framed tangles 
labeled by C, with source (resp. target) given by the intersection with 
the face I 2 x {0} (resp. I 2 X {!}) with the induced orientation, framing 
and labeling by objects of C. Identity maps are identity framed tangles 
labeled with identity maps from C. Composition is given by composing 
the underlying framed tangles and composing the labeling maps. 

Observe tha t the restrictions relating the labelings on the source 
and target ensure that the labels of the composition on non-closed com
ponents are well-defined, while the labels of the composition on closed 
components are well-defined up to trace equivalence. 

cient to specify that the underlying framed tangles (or double tangles in Shum's termi
nology) are equivalent - one must specify the correspondence between the components 
as well. To see why, consider the case of a tangle consisting of a 0-framed unlink of 
two components with the components labeled by trace-inequivalent endomorphisms. 
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We then have 

Propos i t i on 9.5 For any category C, the category F r T a n g J C is a rib
bon category. 

proof: Most of the work has already been done in the proof of Propo
sition 7.4. The structure maps for FrTangJC are all given by labeling 
with identity maps all components of a framed tangle representing the 
corresponding structure map of FrTang. All of the coherence condi
tions follow from the corresponding condition in FrTang, so tha t all 
tha t remains is to check naturality for a, a, p, A and 6. In all cases, 
this follows from the same argument as for FrTang, together with an 
application of the rather trivial observation tha t if / : X —>• Y is a map 
in C, then we can use the equation Idxf — fldy to move labeling maps 
past the identity label in the structure map. • 

With this we can now state Shum's coherence theorem [48, 49]: 

T h e o r e m 9.6 Let F(C) be the free ribbon category generated by the 
category C. Then the functor $ : F[C) —> FrTang fC induced by the 
freeness condition is an equivalence of ribbon categories, that is, a mon-
oidal equivalence, both functors of which preserve the braiding, twist, 
dual objects and structure maps for dual objects. 

proof: This takes a bit of work. First we must see tha t our geometri
cally defined category of framed tangles is equivalent to a combinatori-
ally defined version in terms of diagrams, and then, as in Shum [48, 49] 
show that the combinatorial diagrammatic category of tangles is equiv
alent to the syntactically constructed free ribbon category generated by 
C. 

We prove a sequence of lemmas: 

L e m m a 9.7 The category of C-labeled framed tangles FrTang fC is 
monoidally equivalent to its full subcategory FTC, whose objects have 
underlying point sets of the form {(s, | ) | s 6 S} for some set S in the 
family S of finite subsets of I described inductively by 
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• { § }eS 

• If^ZSeS forn odd, then [S \ %] U {f£ff, f£±f} € 5 

• IfT C S eS, thenT eS 

and whose framing ribbons lie to the right along the line {(x, 2)} provided 
the orientation at the point is positive, and to the left along the same 
line provided the orientation at the point is negative, and are of width 
^p2 when the point's x-coordinate is of the form 2n^1. 

Moreover, the inclusion is a strict ribbon functor, that is, a strict 
monoidal functor which strictly preserves the braiding, balancing, dual 
objects and structure maps for duals. 

proof: It is immediate that F T C is itself a ribbon category once it 
is observed that it is closed under <S> and (—)*, and that the obvious 
inclusion functor, which we denote t, is a strict ribbon functor. 

As is often the case when a full subcategory is shown to be equivalent 
to its ambient category, we construct the retraction functor R along with 
the natural isomorphisms which implement the equivalence. Heuristi-
cally, we need to choose for each object of F r T a n g / C an object of the 
full subcategory with the same number of underlying points of each sign 
and object label, and a (framed) geometric tangle (each strand of which 
is labeled with an identity map from C) joining the given object with 
the chosen object of the subcategory. With care, we can do this so tha t 
whenever the object is already in the subcategory, the identity framed 
geometric tangle will be chosen. Specifically, we proceed as follows: 

Lexicographically order the points of I 2 with the x-coordinate dom
inant; tha t is, let (a, b) < (c, d) whenever a < c or both a = c and 
b < d. Likewise, for each cardinality of set in S consider each set as 
a monotonically increasing word of elements of I and lexicographically 
order them. 

Now, for each object X of F r T a n g / C , construct an image object 
R{X) and an isomorphism from X to i(R(X)) as follows: Let X be the 
underlying point-set of X. Consider an element S of S such tha t Sx { |} 
is contained in X, and of maximum cardinality among such. If there is 
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more than one, choose the earliest in the lexicographic order. Let S' = S 

if S is non-empty or {^} if it is empty. Now, let S' = { £ 1 , . . . , £ r } with 
£1 < £2 < • • • < 6- a n d let T = {x0,.. .xr}, where XQ = 0 and xr = 1 

and a:,; = g ' + | i + 1 - Let 

2/i = < 

0 if i = 0 
1 if z = 1 

otherwise 1 

Now, let X% = {(x,y) G X|(a:;,y;) < (x,y) < ( z i + 1 ) y i + 1 ) } . Let 5 " 
denote the set obtained from 5" by iteratively replacing the smallest 
element of S' (or its succeeding sets) lying in {(x, y)\(x{, y,-) < (x,y) < 
(£i+i, Vi+i)} with two elements, as in the second condition defining S, 
until S" = {(^ ,y) G 5"|(a;t',yi) < (x,y) < ( x i + i , y i + 1 ) } is of equal 
cardinality to X{. 

R(X) is then the object of FTC with underlying point set given by 
R(X) = {(x, | ) | x G 5 " } , with labels and orientation given so tha t the 
order of the labels and orientations is the same in X and R(X), where 
in each case we induce an ordering using the lexicographic order on 
I2 . Then there is a geometric braid consisting of straight line segments 
joining X X {0} and R(X) X {1}. This braid is the underlying tangle of 
a C-labeled framed tangle with identity maps for all labels and framing 
ribbons which rotate clockwise by less than a full turn. This map, then, 
is an isomorphism <f>x : X —> i(R(X)). 

The construction of R(X), then, is extended to a functor defining 
R{f) : R{X) -> R{Y) for / : X -> Y G F r T a n g / C by R{f) = 4>x

lf<t>Y 
(observe that the composite of maps in F r T a n g / C is in the full sub
category by fullness). 

Now, by construction R(X ® Y) = R(X) ® R{Y) and R{i{X)) = X , 
and similarly for maps in FTC; and <f> is a monoidal natural isomorphism 
fromX to L(R(X)). 

It follows from the naturality of a in each variable and from the mon
oidal naturality of </>, tha t R(<TA,B) — °~R(A),R(B)- Similarly, it follows 
tha t R{A*) is a right-dual of R(A) (with structure maps given by R{rj) 
and R(e)) and that R(A*) is thus canonically isomorphic to R(A)*. • 
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In a sense, the previous lemma is half of the story. The other half 
is given by the reduction of the syntactically constructed free ribbon 
category on C to a monoidally equivalent full subcategory which will be 
easily seen to be isomorphic(!) to FTC. 

We recall from Shum [48, 49] the syntactical construction of the 
F(C): its objects are the free (/, <g), (—)*) algebra on Ob(C). The ar
rows are described by specifying a graph of generating arrows, freely 
generating a category and quotienting by all instances of the relevant 
relations, specifically, for the graph H(C) whose vertices are Ob(F(C)), 
with directed edges (arrows) of the following types: 

• For each object X, arrows of the following types (with sources and 
targets as indicated): 

o PX 

° Px 
o Xx 

o ~\X 

o Ox: 

o Ox 

0 T]X 

o ex • 

:X®I ->X 

:X -+X®I 

:I®X -> X 

:X -» I®X 

:X -> X 

:X -> X 

:I^X*®X 

X®X* -+ I 

• 

• For each pair of objects X,Y, arrows of the following types: 

o O-X,Y • X ® Y -> Y <g) X 

o &X,Y • Y ® X -^ X ® Y 

For each triple of objects X,Y, Z, arrows of the following types: 

o ®X,Y,Z • [X (8) Y] ® Z -> X ® [Y ® Z] 

o ax,y,z • X ® [Y <g> Z] -> [X ® y ] ® Z 

• For each arrow / : A -> B in C an edge [/] : A ->• B (where A and 
B are regarded as the objects in F(C)) 
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• For each edge e : W -> X G H(C) and each object Z G Ob{F(C)) 
edges of the following types: 

o Z®e : Z®W -> Z®X 

o e®Z:W%Z->X®Z. 

Given an arrow t G H(C), an expansion of £ is £ or any arrow formed 
from t and objects of F(C) by iterated application of the last construc
tion. Let K(C) denote the category freely generated by H(C), tha t is the 
category whose objects the vertices of H(C), whose arrows are all paths 
along edges in H(C), including as paths of length zero at each vertex 
as identity arrows, and whose composition is given by concatenation of 
paths. Relations then impose equivalences between these paths. By an 
expansion of a relation, we mean a relation obtained from the given one 
by replacing each map with a map obtained from the given map and 
objects by iterated application of the last construction (using the same 
objects and iteration scheme for each map in the relation). 

F(C) is then the quotient of K(C) by all relations of the following 
forms and all their expansions: 

• relations which make <g) into a functor: 

(t®W){X®s) = (y<8>s)(t<g>Z) :X®Z->Y®W 

Idx®y = X®IdY = Idx®Y 

• relations which impose naturality of a, a, p, p~, A, A, a, o, 8, 9 

• the pentagon and triangle relations for the monoidal structure 

• the two hexagon relations for the braiding 

• the defining relations for the balancing, and tha t relating the bal
ancing to the duality 
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• relations imposing the conditions that x and x are inverses for 
x — a, p, A, a, 9 

• the defining relations for right duals on r\ and e 

• relations to make the inclusion C —> T{C) into a functor, namely 

[f][9] = [fg] 

and 

[Id A] = IdA. 

where the latter Id& is the length zero path at the object A. 

As Shum observes, the following result is obvious: 

Propos i t i on 9.8 Every map in F[C) is a composition of expansions of 
a, a - 1 , p, p~x, A, A - 1 , a, a - 1 , 9, 9~l, 77, e and images of maps in C. 

The balance of the proof of Shum's coherence theorem consists of 
finding a full subcategory of F(C) which is monoidally equivalent to 
F(C), and is isomorphic as a ribbon category to FTC: 

Shum [49] follows Kelly and Laplaza [34] to introduce a simple notion 
of prime factorization in F(C): An object is prime if it is an object of C 
or is of the form Y* for some object Y. It is then clear that any object 
of F{C) can be expressed uniquely as an iterated monoidal product of 
prime objects (considering I as the empty monoidal product) . 

An object of F(C) is reduced if all of its prime factors are of the form 
A or A* for A 6 C. A map is reduced if it is a composition of expanded 
instances of a, a"1, p, p~r, A, A - 1 , a, <7-1, 9, 9~l, r], e and images of maps 
in C with reduced sources and targets. 

L e m m a 9.9 The full subcategory RFC of reduced objects in F(C) is 
monoidally equivalent to F(C). 
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proof: As always in showing tha t a full subcategory is equivalent to its 
ambient category, we proceed by constructing the image object and the 
isomorphism together. In this case, our objects are defined syntactically 
as elements of the free (<g>, / , ( —)*) algebra on Ob(C). We define the 
isomorphism and its target <f> : X —>• R(X) by composing maps obtained 
recursively as follows: 

1. If X = Y <g> Z, then fa = [fa % Z][R{Y) ® fa] = fa <8> fa 

2. If X = {Y ® Z)*, then fa = uY,zfa*®Y* 

3. If X = Y**, then fa = cyfa 

4. If X = /*, then 0 x is the canonical isomorphism from /* to / 

5. If X = I or X e Ob{C), then fa = Idx 

where uy,z is the canonical isomorphism from (Y <g> Z)* to Z* ® Y* 
induced by the fact that both are right duals to Y <g> Z, and cy is the 
isomorphism from Y** to Y given by the sovereign structure of the 
ribbon category, by considering Y** as the double right dual. 

The target of the composite map just defined is plainly reduced, 
and R(X ®Y) = R(X) <g> R(Y), fa = fa <S> fa, and if X is reduced 
then R(X) = X and 4>x — Idx , all by construction. Thus, the full 
subcategory RFC is monoidally equivalent to F(C). • 

More than tha t , we have 

L e m m a 9.10 Every map in RFC is reduced. 

proof: By Proposition 9.8, any map can be written as a composition 
of expanded instances of structure maps and of images of maps in C. If 
the intermediate objects in the composition were reduced, we would be 
done. However, this need not be the case. 

The trick is iteratively to replace the composition of expanded in
stances with others in such a way that the intermediate objects are 
guaranteed to be "closer" to being reduced. We follow Shum's method 
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of measuring non-reduction with a syntactic "rank" k for objects in 

F{C): 

k{A) = 

k{A*) --

k(I) --

k(n --
([X®Y]*) --

k(X**) --

k{X®Y) = 

= 0 for A e Ob(C) 

= 0 for A € Ob{C) 

= 0 

= 1 

= k(Y*) + k(X*) + 1 

= 3k(X*) + l 

= k(X) + k(Y). 

It is almost immediate by construction that k(RX) < k{X) when
ever X is not already reduced: it suffices to observe that the initial 
factor in each of items 2, 3 and 4 in the definition of <f> are strictly rank 
reducing, and that a monoidal product is reduced if and only if its fac
tors are reduced. From this, it follows that any non-reduced object is 
replaced by an object of lower rank, since one of items 2, 3, or 4 must 
apply to some monoidal factor. 

The replacement step then is given by the observation tha t any 
(expanded) instance of a structure map r : X —> Y may be replaced by 
a composition of the form 

<t>xsi.. .sn<j)yl 

where each of the intermediate objects in the composition has syntactic 
rank less than or equal to the larger of k(R(X)) and k(R(Y)). As Shum 
observes, the fact tha t rank is additive under ® and that R is a monoid
al functor implies tha t it suffices to show this result for non-expanded 
instances of the structure maps. This is left as an exercise for the reader 
(the only non-trivial cases are instances of 77 and e, where the syntactic 
form of the object to which they are applied must be considered), or 
the reader may refer to the proof of Lemma 3.2 in [49]. • 

To prove Shum's coherence theorem, it thus suffices to show 
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L e m m a 9.11 RFC and FTC are isomorphic as ribbon categories. 

proof: To begin, we construct a bijection between the sets of objects: 
First construct a bijection between the sets in S and the elements of 
the free (®, 7)-algebra F®j{g) on one generator g by using the well-
known bijection between binary trees (describing the step of replacing 
one point of an element of S with two to obtain a new element of S) 
and parenthesization schemes, but matching an occurrence of 7 in a leaf 
to the removal of a point from the set of S. (Thus, for example, {|, | } 
corresponds to g <g> (7 <S> g).) 

Now, every object of RFC is given by an element of the free (<g>, / ) -
algebra generated by DIC = Ob(C) U {A*\A e Ob(C)}, and thus may be 
regarded as the labeling of the g's in an underlying element of F®j(g) 
with elements of DIC. 

By replacing A <G Ob(C) with (A, +) and A* for A e Ob(C) with 
(A, —), and using these labels on the corresponding points of the element 
of S corresponding under the bijections described above, we obtain a 
corresponding object of FTC. It is clear that the map from Ob(RFC) 
to Ofr(FTC) just constructed is bijective and preserves both <g> and I. 

On maps, we now use Lemma 9.10 to write any map in RFC as a 
composition of expanded instances of structure maps applied to prime 
objects. Each factor has as source and target a reduced object, which 
has an image in FTC constructed above with the same syntactical struc
ture in terms of the generating objects, their duals, ® and I as the 
corresponding object in RFC. Thus these are the source and target 
of an expanded instance of the corresponding structure maps in F T C . 
Therefore, we have a factorization of functors as shown in Figure 9.1. 

It remains to show tha t the factorization functor just constructed 
is an equivalence of ribbon categories. Observe that the preservation 
properties are immediate from the preservation properties of the inclu
sion of RFC and the universal functor from the free ribbon category. It 
remains only to show 

L e m m a 9.12 Every equation of maps in FTC follows from the rela
tions of ribbon categories. 



9. Shum's Theorem 129 

RFC. ' ~ , F(C) 

FTC 

Figure 9.1: The Functor from RFC to F(C) Induced by Inclusion and 
Freeness Factors through F T C 

proof: Once it is observed that relations which commute maxima, min
ima and crossings ( that is, which modify the relative height of features 
of the tangle without changing the diagram) follow from the functo-
riality of tg>, it suffices to see that the relations given by the framed 
Reidemeister moves are induced by the relations of ribbon categories. 

A.7T.1 is the duality relation on generating objects and their duals. 
A.7T.2 follows from the invertibility of a and its naturality. Q.2 with 
the strands running vertically is simply the invertibility of a, while Q.2 
with the strands running horizontally follows from the vertical version 
and use of A.7T.1 and A.7T.2. Q..3 follows from the hexagon conditions 
on the a and the naturality of a and <r -1. 

The only really troublesome relation is fi.l/. 

For f L l / it is necessary to consider carefully what exactly is encoded 
by the maxima and minima with each orientation. A maximum with 
the left s trand oriented up (resp. down) is an instance of 77 (resp. h), 
the structure map for a right (resp. left) dual. A minimum with the 
left strand oriented down (resp. up) is an instance of e (resp. e), the 
other structure map for a right (resp. left) dual. 

But ex and hx are given in terms of the other structure maps of a 
ribbon category by ex = [X®9x\]ax,x^x and hx = W ^ l j f c ® ^ * ] , 
respectively. 

It then follows by composing with 0J1 ® X = Idl0x, applying the 
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naturality of 9~l and the (inverse of) the coherence condition relating 6 
and a, and the combination of naturality and dinaturality which simu
lates the "Whitney trick", tha t the strand with a positive crossing loop 
on the left is equal to 0 - 1 . Tha t the strand with a positive crossing loop 
on the right has the same value follows from the "Whitney trick" alone. 
• • 

Thus, we have established Shum's coherence theorem. • 

Beyond explaining the connection between knot theory and the rep
resentations of quantum groups, this theorem also justifies the use of 
a very convenient notation for maps in ribbon categories: maps may 
be depicted as framed tangle diagrams with strands labeled by objects, 
with the added feature of points on the strings (possibly including sin
gularities where serval strands meet) labeled by specific maps not gen
erated by the structure maps. The topology of the tangle diagram then 
takes care of all of the equations which follow from the coherence con
ditions, while other equations can be handled by cutting out a part of 
the diagram giving one representation of a map, and replacing it with 
another. 

This sort of notation was first used explicitly as a computational tool 
by the author in [60], though it was developed independently at about 
the same time by Reshetikhin and Turaev [46] for use in the description 
of topological invariants. 



Chapter 10 

A Little Enriched 
Category Theory 

The observation in Chapter 2, tha t given two categories, there is, in fact, 
a category of functors between them, rather than just a set of functors 
between them, suggests the possibility of a more general notion than 
that of category, in which one begins with a "suitable" category, and 
has "hom-objects" taken from that category. 

It turns out tha t the right notion of "suitable" has already been 
given: a symmetric monoidal category. In the exposition below we 
follow, in general, the classic book by Kelly [33], to which the reader is 
referred for a more extensive treatment . 

Definit ion 10.1 Let (V,®,I,a,p,\,o~) be a symmetric monoidal cat
egory. A V enriched category or simply V-category X is a collection 
of objects Ob(X) and an assignment to each pair of objects A, B of an 
object ofV, X(A,B), together with maps in V 

IdA :I->X(A,A) 

for each object A, and 

o = oAiB,c : X(A, B) ® X(B, C) -» X(A, C) 

131 
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for each triple of objects A, B,C, satisfying 

(X{A, B) ® X(B, C)) ® X(C, D) " X{A, B) ® (X(B, C) ® X{C, D)) 

o® Id 

X{A,C)®X(C,D) 

Id( 

X(A,B)®X(B,D) 

X(A,D) 

and 

o o 

X{A,A)®X{A,B) X{A,B) X(A, B) ® X(B, B) 

IdA ® Id Id ® IdB 

I®X(A,B) X(A,B)®I 

For the purposes of this study, the most important classes of exam
ples have special names given in the definitions which follow: 

Def in i t ion 10.2 For R a commutative ring, an i?-linear category is 
an R-mod enriched category, where i ? -mod has the monoidal structure 
given by (®R, I = R,...) 

and 
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Definit ion 10.3 For R a local commutative ring with maximal ideal 
m, a complete i?-linear category is an XR-category, where XR is the 
category ofm-adically complete R-modules with monoidal structure given 
by (®R, I — R,...), where <S>R is the m-adic completion of the algebraic 
tensor product of R-modules. 

We will also have call to consider 

Definit ion 10 .4 A topologized category is a category enriched in (Esp, 
x , ! * } , . . . ) . 1 

Definit ion 10.5 A stratified space is a space X equipped with a filtra
tion X = XQ D X\ D X2 D • •.. 2 The set-difference X{ \ Xi+i = S{ 
is called the ith s t ra tum of X. The finite codimension part of a strat
ified space X given by X f i n = yjf±0Xi \ X,-+i is a stratified space with 
filtration Xfn = X{ f lX f i n . A stratified map / : X —> Y is a continuous 
map which respects the filtration in the sense f\x, factors through the 
inclusion of Y{. Stratified spaces and stratified maps then form a mon
oidal category Strat when equipped with the product ® given by letting 
X®Y be the stratified space with underlying topological space X xY and 
strata (X <g>Y)i = UJ = 0 Xj X Y^j, and with unit 1 = { * } D 0 D 0 D . . . . 
(Observe that the obvious associator and unit transformations inherited 
from E s p are stratified maps, and thus provide the necessary structure.) 

Definit ion 10.6 A stratified category is a category enriched in Strat . 

Once one has enriched categories, one needs enriched functors: 

Definit ion 10.7 A V-functor F : X —> y from one V-category X to 
another y is a function F : Ob(X) -> Ob(y), together with an Ob(X)2-
indexed family of arrows in V, 

Unfortunately, the more obvious name of "topological category" has already been 
claimed for a class of generalizations of Esp. 

The reader will observe that we index the filtration in the opposite order from 
that commonly used in intersection cohomology. 
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FA,B:X(A,B)->y(F{A),F(B)), 

satisfying 

X{A,B)®X(B,C)-

FA,B ® FB,c 

y(FA,FB)®y(FB,FC)-

anc 

IdFA 

X{A,A) 

FA,A 

y{FA,FA) 

•*X(A,C) 

FA, 

- y{FA,FC) 

Similarly, one needs enriched natural transformations: 

Definit ion 10.8 A V-natural transformation <f> : F =$• G from one V-
functor F : X —»• y to another G : y —> y is an Ob(X) -indexed family 
of arrows in V, 4>x '• I -> y{F(X), G(X)) satisfying 
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<t>A ® GA,B 
I ® X(A, B) ^ y{FA, GA) ® y(GA, GB) 

X(A,B) y(FA,GB) 

X{A,B)®I + y{FA,FB)®y{FB,GB) 

FA,B 

For the special cases we will use the obvious names: .R-linear func
tors, /2-linear natural transformations, complete i?-linear functors, com
plete .R-linear natural transformations, topologized functors, topolo-
gized natural transformations, stratified functors and stratified natural 
transformations. 

In each case, given an enriched category, functor, or natural t rans
formation, there is a corresponding "underlying" category obtained by 
taking as arrows maps from / to the hom-objects: 

Definit ion 10.9 Given a V-category X, the underlying category X has 
as objects the objects of X, and as hom-sets the sets 

V(I,X(A,B)) 

with identity maps given by the map naming the enriched identity, and 
composition given by 

fg e V( / , X(A, C)) = A/ ( / ® g)oA, B, C 

for f e V{I,X(A,B)) andge V(I,X(B,C)). 
Given a V-functor F : X —> y the underlying functor F : X —>• Y is 

given on objects by the same map, and on arrows by F(f) = fF^^ for 
feV(I,X(A,B)). 
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The components of the underlying natural transformation of a V-
natural transformation are simply the components as given, but now 
regarded as maps in the underlying category of the target of the under
lying functors. 

For any symmetric monoidal category V, we can define an "under
lying" (ordinary) category for any V category as follows: let 1 denote 
the V category with a single object, *, and 1(*,*) = / , the monoid
al identity object in V. The underlying category of a V-category, X, 
is then the category of V-functors and V-natural transformations from 
1 to X. In the cases of interest to us, this amounts to forgetting the 
underlying structure of the "hom-objects" to leave only the underlying 
"hom-set". Similarly, one may construct underlying (ordinary) functors 
and underlying (ordinary) natural transformations. 

For this reason, it is easy to see that in all of the cases above, the 
cartesian product of two such underlying categories X and y can be "en
riched" by putting the natural structure of a V object on the cartesian 
product of the hom-sets to yield a V-category X X y. 

In the case of topological and stratified categories this is a useful 
thing to do. However, for (complete) ^-linear categories, this give the 
"wrong" result: the monoidal product on i?-mod (or XR) is not the 
cartesian product. In particular, the monoidal structure on R — m o d 
itself cannot be lifted to an .R-linear functor from R — m o d x R — m o d 
to R — m o d . 

To consider monoidal structures in the context of (complete) R-
linear categories, it will be necessary to introduce a different product: 

Definit ion 10.10 The Deligne product of two R-linear categories (resp. 
complete R-linear categories) X and y, denoted X E3 y (resp. XMy), 
is the R-linear category with objects Ob(X) X Ob{y), and hom-objects 
given by 

X H y{< A,B>,<C,D>) = X{A, C) ® y(B, D) 

(resp. 



10. A Little Enriched Category Theory 137 

x\ky{< A,B>,<C,D>) = X(A, c)®y(B, D) ) , 

composition given by 

\Id<g>tw®Id][o®o], 

and identities given by 

Id<A,B> = IdA®IdB, 

where ® denotes the m-adic completion of the tensor product over R in 
the case of complete R-linear categories. 





Part II 

Deformations 





Chapter 11 

Introduction 

In Par t II we discuss the deformation theory of monoidal categories 
brought to light by the author in collaboration with Crane [13], and the 
closely related infinitessimal deformation theories for monoidal functors 
and braided monoidal categories. We do not deal with the global as
pects of categorical deformation theory whose invesigation was begun 
independently by Davydov [14] and in the special case of categorifica-
tions of group algebras and their quantum doubles by Crane and the 
author [13]. 

While an algebraist interested in categorical deformation theory in 
its own right may object to this omission, it is in keeping with the focus 
of this work on the categorical structures most intimately related to 
classical knot theory. As will become clear to the reader, the infinites
imal deformation theory of braided monoidal categories is intimately 
connected to the theory of Vassiliev invariants, which we also discuss in 
Par t II. 

The original motivation for the study of categorical deformations, 
however, was not to provide a functorial basi;- for Vassiliev theory. 
Rather, the author, with Crane, was motivated by the search for inter
esting examples of additive "Hopf categories" in the sense of Crane and 
Frenkel [12]. This original program remains incomplete, though recent 
advances in our understanding of categorical deformations, particularly 
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with the discovery of deformation complexes for monoidal functors, and 
long-exact sequences relating various deformation complexes holds out 
hope for its completion. It is also possible tha t additive categories are 
the wrong setting for the theory of Hopf categories, and tha t the use 
of triangulated and derived categories is necessary, with some axioms 
holding only up to quasi-isomorphism (cf. recent work of Lyubashenko 
[38]). 



Chapter 12 

Definitions 

We are concerned herein with the case of categories linear over some 
commutative ring R. As discussed in the previous chapter, the cartesian 
products of categories occurring in the definitions of Chapter 3 should 
be replaced with the product of Definition 10.10. 

Now, given an i2-linear category C, and an R-algebra A, we can form 
a category C <%> A by "extension of scalars": 

Ob(C <g) A) = Ob{C) 

and 

Home®A (X, Y) = Home (X, Y) ®R A 

with composition and (g> on maps extended by bilinearity. If A is an 
m-adically complete local ring, we can similarly construct C§)A, by m-
adically completing the Horn-sets and extending composition and (g> on 
maps by continuity. 

For A = R[e]/ < e n + 1 > we denote C <g> A by C<n). For A = R[[x]] 
we denote C®A by C^°°\ 

Definit ion 12.1 Given an R-linear semigroupal (resp. monoidal, braid
ed monoidal, ribbon) category C, an nth order deformation of the struc-

143 
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ture on the category is a structure of the same type on C^ whose struc
tural functors are the extensions of those for C by bilinearity, and whose 
structural natural transformations reduce modulo e to those of C 

Definit ion 12.2 Given an R-linear semigroupal (resp. monoidal, braid
ed monoidal, ribbon) category C a formal deformation of the structure 
on the category is a structure of the same type on C(°°) whose structural 
functors are the extensions of those for C by bilinearity and continuity, 
and whose structural natural transformations reduce modulo m to those 
ofC. 

Definit ion 12.3 The trivial deformation in either sense above is the 

deformation of C whose structural natural transformations are the im

ages of those in C under extension of scalars. It is denoted C[ • or 

^triv as appropriate. 

Definit ion 12 .4 Two deformations of monoidal categories in either 
sense above are equivalent if there are structural natural transforma
tions that provide the identity functor with the structure of a semigroupal 
(resp. monoidal, braided monoidal, ribbon) functor between the defor
mations and which reduce to identity maps modulo e or m. 

Definit ion 12.5 Given an R-linear lax (resp. oplax, strong) semi
groupal functor F : C -> V, a purely functorial nth order deforma
tion of the structure on the functor is a structure of the same type on 
F^n> : Ct™y —> X>t";v whose structural functors are the extensions of those 
for C by bilinearity, and whose structural natural transformations reduce 
modulo e to those of F, where the source and target have the trivial de
formation of semigroupal structure. 

Definit ion 12.6 Given an R-linear lax (resp. oplax, strong) semi

groupal functor F : C —>• V, a purely functorial formal deformation 
of the structure on the functor is a structure of the same type on F^°°> : 
WHY ~~* ^triv wh°se structural functors are the extensions of those for 
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C by bilinearity and continuity, and whose structural natural transfor
mations reduce modulo e to those of F, where the source and target have 
the trivial deformation of semigroupal structure. 

Definit ion 12.7 Two purely functorial deformations are equivalent if 
there is a semigroupal natural isomorphism between them which reduces 
to the identity natural isomorphism modulo e or m. 

Definit ion 12.8 Fibred deformations are defined similarly, but with
out the condition of triviality for the deformation of the source. Total 
deformations are defined in the same way, but without the condition of 
triviality on source or target. 

Definit ion 12.9 Two fibred (resp. total) deformations are equivalent 
if there are structural natural transformations which provide the identity 
functor (resp. identity functors) of the underlying category (resp. cate
gories) of the source (resp. source and target) of the deformation with 
the structure of a strong semigroupal functor between the deformationed 
semigroupal category structues, and which, moreover, reduce to identity 
maps modulo e or m, provided the triangle (resp. square) of semigroupal 
functors formed by the deformed functors and the identity functor (resp. 
identity functors) equipped with these structure maps commutes up to a 
semigroupal natural isomorphism which, in turn, reduces modulo e or m 
to the identity natural isomorphism. 

Ribbon categories are the principal objects of interest for applica
tions to low-dimensional topology, thanks to Shum's Coherence Theo
rem (Theorem 9.6) and the central role of framed links in 3- and 4-
manifold topology. We will not, however, consider deformation theories 
for monoidal categories with duals. We do not consider such theories, 
because as a practical mat ter we usually begin by deforming a rigid 
symmetric tensor category, and we have: 

T h e o r e m 12.10 Any n order or formal braided monoidal deforma
tion of a rigid symmetric K-linear tensor category C for K any field 
(char k ^ 2) admits a unique tortile structure, and is thus a tortile 
deformation. 
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This result follows from essentially the same proof as the theorem of 
Deligne on braided monoidal deformations of Tannakian categories (cf. 
[61]). 

Most of the deformation theory for braided monoidal categories can 
be constructed from the deformation theory for monoidal categories and 
that for strong monoidal functors by use of the following results of Joyal 
and Street [30]: 

Definit ion 12.11 A multiplication on a monoidal category C is a strong 
monoidal functor (<& : C X C —>• C, 4>, <&o) (usually denoted <£> by abuse of 
notation), together with monoidal natural isomorphisms r : &(Idc, I) =>• 
Idc and I : $ ( / , Idc) =>• Idc. 

T h e o r e m 12.12 In a monoidal category C, a family of arrows 

aA,B : A®B —> B ® A 

is a braiding if and only if the following define a multiplication $ on C: 

$ = <g), $o = pj1, r = p, I = A and 

®(A,A>),(B,B>) = 

[(1 ® a) <g> 1] : (A <g> A') ® (B <g> B') —->• (A <g> 5 ) ® (A' ® 5 ' ) -

Conversely, we have 

T h e o r e m 12.13 For any multiplication $ on a monoidal category C, 
a braiding a for C is defined by the commutative diagram of Figure 
12.1. The multiplication obtained from this braiding via Theorem 12.12 
is isomorphic (in the obvious sense) to $ . If T is any braiding on C and 
the multiplication $ is obtained from T by the construction of Theorem 
12.12, then a = r. 

As is observed in [30], this last result is an analogue of the old 
result of Eckmann and Hilton [20], usually remembered as "A group in 
Groups is an abelian group," although it actually applies to monoids. 
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<?A,B 

A®B 

\®p 

$(/ , A)® $(£ , / ) 

${I®B,A®I) 

•*- B®A 

i ^ „ - i A-1 ®p 

$(B,/)<g>$(/,A) 

$(B®I,I® A) 

$(r, [) 
$ ( 5 , A) 

Figure 12.1: The Braiding Associated to a Multiplication 





Chapter 13 

Deformation Complexes of 
Semigroupal Categories 
and Functors 

We can now conveniently define a cochain complex associated to any 
semigroupal category or semigroupal functor: 

Definition 13.1 The deformation complex of a semigroupal category 
C, ®, a is the cochain complex X*(C), 5 where 

X"(C) = Nat(n®,(g)n) 

and 

n 

H<f>)A0t...,An = \A0<S)<l>Al,...,An]+Yl(-iyi(l>At>,...,Ai-i9Ai,...<An] 

+(-i)n+ir^0,..,An_1®Ani. 

Definition 13.2 The deformation complex of a lax semigroupal func
tor (F : C —> V, F) is the cochain complex 
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( X ' ( F M ) , 

where 

Xn(F) = Nat(n<g>(Fn),F(<g>n)) 

and 

S(<l>)A0,...,An = \F{Ao)®<f>Alt...,An] 
n 

+ ^2(-iy\(t>A0l...,At-.1®A,,...,An] 
s = l 

+ ( - i ) " + i r ^ 0 , . . . , A n _ 1 ® F ( A n ) i . 

Def in i t ion 13 .3 77ie deformation complex of an oplax or strong semi-
groupal functor ( F : C —> V,F) is the cochain complex 

(X'(F),5) 

where 

Xn{F) = N a t ( F ( " ® ) , ® n ( F n ) ) 

and 

&(<!>) Ao,...,An = \F(A0)®</>Au...,An] 
n 

+ "}2(-iy\(f>A0,...,At-1®At,...,An] 
j = l 

+ ( - l ) " + 1 [ ^ 0 , . . . , A n _ 1 ( 8 ) F ( A n ) l . 

The motivation for these definitions can be found in [13] and [63], 
or can be readily discovered by the reader by computing by hand the 
conditions on the term a^ in a first order deformation a ' 0 ' + a^'e 
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of a semigroupal category (C,<8>, a = a^), and on the term F ' 1 ' in 
a purely functorial deformation F^ 0 ' + F^h of a semigroupal functor 
F:C->V,F = F(°\ 

In [13] it is shown tha t 

T h e o r e m 13.4 The first-order deformations of a semigroupal category 
C are classified up to equivalence by H3(C). 

sketch of proof: Consider two first-order deformations a = a + a^'e 
and a = a + a ' ^e of C. Consider also a semigroupal functor whose 
underlying functor is the identity functor and whose structural trans
formation is of the form 

1A®B + <f>A,Be :A®B-^A®B. 

Now, write out the coherence condition for semigroupal functors in 
this case, and look at the degree 1 terms. The resulting equation is 
nothing more than 

• 
In [63] it is shown tha t 

T h e o r e m 13.5 The purely functorial first-order deformations of a semi
groupal functor F : C —» V are classified up to equivalence by H2(F). 

The proof is similar to that of the previous theorem, and may be 
readily reconstructed by the reader, or found in [63]. 

Obstructions to extending nth order deformation to (n + l) s* order 
deformations are discussed in either case in [13] and [63], and we will 
return to this mat ter later. 

First, however, we wish to consider how to use the deformation 
complexes already defined to deal with the cases of fibred and total 
deformations and deformations of braided monoidal categories. 
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Although the degree and type of functoriality properties satisfied by 
the deformation complexes for semigroupal categories and functors is 
an open question, two rather comforting results hold: 

T h e o r e m 13.6 IfC andV are two semigroupally equivalent categories, 
then the deformation complexes X''(C) and X'(C) are isomorphic. 

and 

T h e o r e m 13.7 If F,G : C —> V are semigroupal functors, any semi
groupal natural isomorphism induces an isomorphism between the de
formation complexes X'(F) and X'(G). 

The proofs are rather obvious and are left to the reader. The only 
ticklish bits, once one writes down the obvious maps on the cochain 
groups, are showing that they collectively form a cochain map and show
ing tha t the maps induced in each direction by the equivalence of cate
gories are actually inverse to each other. In both cases the semigroupal 
property of the natural isomorphism or of the natural isomorphisms 
defining the equivalence is crucial. 



Chapter 14 

Some Useful Cochain 
Maps 

The compositions of natural transformations with functors allow us to 
induce two cochain maps whenever we have a semigroupal functor F : 
C —> V (whether lax, oplax, or strong): 

\F{-)\:X\C)^X\F) 

and 

\(-)F.]:X'(V)^X'(F). 

We should note that X'[C) = X'(Idc). The cochain maps just 
defined are, in fact, special cases of more general families of cochain 
maps defined for any composable pair of functors 

namely, 

\G{-)]:X'(F)^X'(G(F)) 

and 
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\{-)F.]:X\G)^X-{G{F)). 

We will not here pursue the use of these more general notions, save 
to note in passing tha t they provide long-exact sequences relating the 
cohomology of a composite functor with the cohomology of its factors 
and some sort of "relative cohomology" which, in the appropriate dimen
sions, will measure the extent to which deformations of the composite 
are not accounted for by the deformations of the factors. 

To consider deformations of braided monoidal categories the follow
ing is also useful: given any A'-linear semigroupal category C, there is a 
"diagonal" cochain map 

A :X'(C) ^X*{C®C) 

given by: 

A(0) = <j)M \Id] + \Id]E<f> . 

These cochain maps allow us to assemble the simpler deformation 
complexes for semigroupal categories and semigroupal functors into com
plexes whose cohomology is related to more general types of deforma
tions. 

Recall the construction of a cone over a cochain map: 

Definit ion 14.1 Given a map of cochain complexes u' : A' —y B*, the 
cone on u* is the cochain complex 

{Cldu)= (B'®A'+\ 

Here we adopt the convention tha t elements of direct sums are writ
ten as row vectors with entries in the summands, and tha t arrays of 
maps act on the right by matrix multiplication (with the action of maps 
in lieu of scalar multiplication). Note tha t this is consistent with our 
notational convention: maps act on the right on elements (improperly) 
thought of as maps, unless parentheses denoting application intervene. 

dB 0 
u —d& 



Chapter 15 

First Order Deformations 

Let us now consider the problem of classifying first order fibred de
formations of semigroupal functors. If we have a lax (resp. oplax, 
strong) semigroupal functor [F, F] : (C ,®,a) —> (V,®,a), and we re
place F(°) = F with f C l + f W e and a<°) = a with a^+a^h for e2 = 0, 
the conditions for the new coherence diagrams to commute become 

5{a^) = 0 

and 

S(FW) + \F(a)] = 0, 

as can be verified readily by computing the e-degree 1 terms going 
around the pentagon and hexagon coherence diagrams. 

It then follows directly tha t the pair [ F ' 1 ) , ^ 1 ) ] is a 2-cocycle in 

(ck(-)vd-\F(-)'})-

Now, consider the condition that two such 2-cocycles [F± ,a\ '] and 

[F^ ,or2 '] are equivalent. Let i*\ : C\ —> V and Fi : Ci —> V denote the 

semigroupal functors from the corresponding deformations (suppressing 

here the naming of structural maps). In particular, there is a structure 
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map which makes -^c®.R[e]/<e2> m t ° a (necessarily strong) semigroupal 
functor and which reduces modulo e to the identity natural transforma
tion. Second, there is a semigroupal natural isomorphism tp from F\ to 
F2O) which reduces modulo e to the identity, where 3 is the identity 
functor on C ® R[t]/ < e2 > made into a semigroupal functor by given 
structure map. 

Denoting the structural map for -f^c®.R[e]/<e2> by id-\-Sl>e and letting 

ij) = id-\- tp^'e, the coherence conditions become 

[F + HA,BtWd + i%e](idF{Am + ^lBe)) = 

[[idF(A) + rf'e] ® [idF{B) + ^e]](F + FQBe) 

and 

[idF(A) <8> [idF(B®c) + 4 , c € ] ] 

{[idF(A®[B®C]) + i{A),B®C€~\(F(a + a<ll,B,C€))) = 

[F(a + a(2A,B,Ce)WidF(A®B) + ^B] ® ic!F(C)] 

Using the bilinearity of composition and <g), the coherence conditions 
on the original maps, and the condition e2 = 0, these readily reduce to 

PW _ pW = t(D _ ^ ( D ) 

and 

a*1) _ a (D = 5 ( t (D) . 

We have thus demonstrated 

T h e o r e m 15.1 T/ie first order fibred deformations of a semigroupal 

functor F : C —>• V are classified up to equivalence by the third cohomol-

ogy of the cone CfF(_}1 = X£bTed(F). 
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A similar analysis replacing \F] : X*(C) ->• X'(F) with 

\F(Pl)] - \(P2)F>] : X'{C) © X'(V) -+ X'(F) 

shows tha t 

T h e o r e m 15.2 The first order total deformations of a semigroupal 

functor F : C —> V are classified up to equivalence by the third co-

homology of the cone C ^ b O W f e ) ^ ! = Xt*otai(F)-

The case of total deformations of a multiplication (or equivalently, 
deformations of a braided monoidal category) presents another subtlety: 
the source and target must be deformed in tandem. 

Propos i t ion 15.3 IfC^n\ <g>, a^ + a^h + ... + a{nhn is an nth-order 
deformation ofC,®,a and 

/?(*) = £y«)Ba(*-o , 
t'=0 

then [CMC]^,0M(S),^ + l3^e + .. .flnhn is an nth-order deformation 
of CMC, <g>E3®, aMa. We call this deformation the diagonal deformation 
of CMC. 

proof: Observe first tha t C M C is defined with respect to the com
mutative ring R, and that [C MR C](n> is canonically isomorphic to 

The diagonal deformation is then simply the R[e]/ < e™ >-linearized 
version of the diagonal semigroupal structure induced on C^n' X C(n) 
by the (deformed) semigroupal structure on C^n'. The formula for the 
/?(fc)'s is derived by simply collecting terms according to their degree in 
e. D 

A similar result holds for formal deformations. 
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Definit ion 15.4 A coarse deformation of a multiplication is a total de
formation of the semigroupal functor such that the deformation of the 
source CMC is the diagonal deformation induced by the deformation of 
the target. A deformation of a multiplication (and thus of a braided 
monoidal category) is a coarse deformation which is equipped with nat
ural isomorphisms as required to make it into a multiplication. 

We will consider the behavior of units in general in Chapter 17, so we 
here confine ourselves to consider the appropriate deformation complex 
for coarse deformations of multiplications: 

Consider the composite cochain map 

^: X'(C) (Hd ) x'(c H c) © x \ c ) r*<pi>hl̂ >*'i x*($). 

An argument similar to that given above for fibred deformations shows 
tha t : 

T h e o r e m 15.5 The first order coarse deformations of a multiplication 
$ : C M C —> C are classified up to equivalence by the third cohomology 
of the cone C% = Xc*oa r se($). 

Since cj> is defined as a composite, something more remains to be said: 
if we consider our cochain complexes as objects in the homotopy cat
egory K+(R) or the derived category D+(R), the octahedral property 
ensures the existence of an exact triangle relating X*oarse(<&), X*o t a l($) 
and C(A,/d), and thus of a long-exact sequence in cohomology. 



Chapter 16 

Obstructions and the Cup 
Product and Pre-Lie 
Structures on X*(F) 

The cochain complex associated to any of the types of semigroupal func
tors shares many of the properties of the Hochschild complex of an 
associative algebra A with coefficients in A, which were described by 
Gerstenhaber [23, 24, 25]. Indeed, in Chapter 21 we will see tha t the 
Hochschild complex, with all of the structure discovered by Gersten
haber. is a special case of our construction. 

In particular, we have two products defined on cochains. The first, 
the cup product, 

- U - : Xn(F) x Xm(F) - • Xn+m{F) , 

is given by 

GuHAl,...An+m = \GAu...,An <8) HAn+u...,An+rn] • 

The second, the composition product, 

( - , - ) : Xn(F) X Xm(F) -> Xn+m-l{F) 
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is given by 

(G,H)Au..,An+m_1 = 

^ ( - l ) " " ' ^ ! ) ® . ..F(At) <g> HAt+u...,At+n <g> F(Ai+n+1) ® 

)(Gr
j41,...,A,,A1+l®-.®^+n,A! + n + 1 , . . . ^ r l + m _ l ) l 

in the case of oplax and strong semigroupal functors, and by 

(G,H)Al,...An+m-i = 

2l^( —1) I \GAu...,At,At+1®...®At+n,At+n+i,...An+m-1) 

F(Aj) ® . ..F{Ai) ® ^,+ 1 , . . . ,A,+n ® ^(A-+n+i) ® 

. . . ® F ( A n + m _ i ) l 
in the case of lax semigroupal functors. 

Propos i t i on 16.1 The product (—, —) comes from a "pre-Lie system", 
in the terminology of Gerstenhaber [23], given by 

{G,H)Au An+m^ = 

[F (Ai ) tg>. ..F(A{) ® HAt+u...iAi+n <g) F (A, - + n + i ) <g> 

• • -® F(An+TO_i)(G'J4 l!...^1)J4,+1(g)...(g)^ i+n)J4!+n+1,...^n+m_1)l 

in the case of oplax and strong semigroupal functors, and by 

{G,H){£ A 

\{GAu...,At,At^...m ) F ( A ! ) ® . . . 
F ( A t ) ® HAt+lt...At+n ® F ( A ! + n + 1 ) (g). . . ® F ( A n + m _ i ) ] 

m £/ie case of lax semigroupal functors, where in either case Xn(F) has 
degree n — 1. 
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proof: First, note tha t the ambiguities of parenthesization in the semi-

groupal products in this definition are rendered irrelevant by the [ ] on 

each term, by virtue of the coherence theorems for semigroupal functors. 

It is obvious that the product is given by a sum of these terms with 

the correct signs for the construction of a Lie bracket from a pre-Lie 

system, so actually the content of the proposition is tha t the ( —, —)W's 

satisfy the definition of a pre-Lie system. That is, for G 6 Xm(F), 

H e Xn{F) and K € X P ( F ) , we have 

U ' ; ' ; \ (G,{H,K)l>-l))M ifi<j<n 

(recall tha t a fc-chain has degree k — 1). 

This is a simple computational check. One must remember tha t 
naturality will allow one to commute the prolongations of K and H in 
verifying the first case. • 

Now, suppose we have an M — 1 s t order deformation 

« = a(0) + a( l ) e + . . . + a(M-l)eM-l_ 

As was shown in [13], the obstruction to extending this to an M 
order deformation is the 4-cochain 

MA,B,C,D — 2-j \aA®B,C,DaA,B,C®D\ 
j + j = M 

0 <i,j < M 

E \[<*A,B,C ® DWA!BQCJAA ® OBICDW • 
* + j + k = M 
0 < i,j,k < M 

The deformation extends precisely when this cochain is a cobound-
ary, in which case « ( M ' may be any solution to 5(a(M)) = C J ( M ) . 

What was heretofore missing was 
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T h e o r e m 16.2 For all M, the obstruction u>(M' is a ^-cocycle. Thus, 
an ( M — l ) s i order deformation extends to an Mth order deformation 
if and only if the cohomology class [u/ '] 6 H4(C) vanishes. 

proof: The proof is essentially computational, and it is thus desirable 
to have briefer notation for many of its key ingredients. 

Given a 3-cochain 4>A,B,C-,
 w e denote the summands of its cobound-

ary by 

do4>A,B,c,D = A® <I>B,C,D 

di4>A,B,C,D = 4>A®B,C,D 

d2(f>A,B,C,D = 4>A,B®C,D 

d3(f>A,B,C,D = <i>A,B,C®D 

d4<f>A,B,C,D = 4>A,B,C ® D 

Similarly, for a 4-cochain ipA,B,C,D we let 

(k^A,B,C,D,E = A® lpB,C,D,E 

d_iipA,B,C,D,E = iiA®B,C,D,E 

d.2^A,B,C,D,E = i>A,B®C,D,E 

(hi>A,B,C,D,E = ^A,B,C®,D,E 

cUi>A,B,C,D,E - 1pA,B,C,D®E 

<hi>A,B,C,D,E = i>A,B,C,D ® E 

(We include the underline stroke only for ease of reading, not out of 
any logical necessity.) 

We then have 

4 

5(<t>U,B,C,D = £ ( - l ) ! + 1 ^ , B , C 7 , D 
i=0 

for 3-cochains cj), and 
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5 

4=0 

for 4-cochains ij). 
In this notation the obstruction cochain coM becomes 

i + j = M i + j + k = M 
0 < i,j < M 0 <i,j,k < M 

while the vanishing of the obstruction UJ(N) (for N < M) becomes 

Y, \d4a^d2a^d0a^] . 
i + j + k = N 
0 < i,j,k < N 

We wish to show tha t 

E(-i)<+1a.4% ),ClD,B = °-
t = 0 

Observe tha t w'1) = 0 and 5{a^) = 0, so we may proceed by 
induction under the assumption that u>(N) and a ( N ) satisfy 

for N < M. 
It is convenient to picture the summands of the left-hand side in 

terms of compositions of maps along the boundaries of faces of the "as-
sociahedron" (or 3-dimensional Stasheff polytope) [52] given in Figure 
16.1. 

Suppose we have an (M — l)st order deformation of a semigroupal 
category with structure map. Observe that each summand 

0 = SaW + J") 

i + j = N 
0 < i, j < N 
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A[[BC][DE]] 

A[B[[CD]E]] 

[[AB][CD]]E 

Figure 16.1: The Associahedron 

8 JM> 

essentially represents the sum of all composites with total degree M 
along the three-edge directed path minus the sum of all composites 
with total degree M along the two-edge directed path on the boundary 
of one of the pentagonal faces. (Here, degree refers to the power of e 
whose coefficient is given by the composite.) 

This is "essentially" the content of each summand, but one must 
remember that the context [ ] is not contentless—the summands are 
actually composites of the differences just described with various struc
ture maps (prolongations of a '0)) with the property that all sources are 
[[[A <g> B] <S> C] <g> D] ® E and all targets are A®[B®[C ®[D® E]]]. 

The odd-index summands correspond to the pentagonal faces on the 
bottom of the associahedron as shown in Figure 16.1, while the even-
index summands correspond to those on the top. The square faces of 
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the associahedron correspond to families of naturality squares, one for 
each possible pair of degrees. 

In fact, it will suffice to compute [$i + ^3 + <95](w(M'): 

L e m m a 16 .3 Suppose for all N < M we have 5(a^)+ w(7V) = 0. 
Then 

[ 2 i + 03 + 05] ( " ( M ) ) = 

i + j + k = M 
0 < i,j,k < M 

- Y \d^dAa^d^d2a^d^d0oi(k)d3d2a^d^d^a^3od0a
(n)] . 

i + j + k + l + m + n = M 
0 < i,j, k,l,m,n < M 

Before proving this lemma, we should note why this lemma suffices 
to complete the proof of the theorem: the lemma and calculation by 
which it is derived are precisely dual to a corresponding statement and 
derivation concerning 

[do + d2 + d4](u(M)). The value derived for this 
last expression is 

Yl [d^xa^d^a^d^dsa^] 

i + j + k = M 
0 < i,j,k < M 

Y \M4a{l)d2d4a^d2d2aWd0d4aV%d2aWd0d0aW} . 
i + j + k + l + m + n = M 

0 < i,j, k,l,m,n < M 

Once coincidences of different names for the same map (all of which 
may be read off from the associahedron) are taken into account, this 
expression differs from that computed in the lemma only in the third 
and fourth factors of the composites in the second summation. The 
terms, however, may be matched one-to-one by swapping the indices k 
and / into pairs that are equal by virtue of naturality, thus completing 
the proof. 
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Thus, it suffices to prove Lemma 16.3. 

proof of L e m m a 16.3 
We begin by computing part of the sum: 

£ IMi^^dscy^] 
i + j = M 

0 < i,j < M 

£ \d5d4a^d5d2a^d5d0aW] 
i + j + k = M 
0 < i,j,k < M 

+ £ ^ a ^ c W ^ l 
i + j = M 

0 < i, j < M 

i-y j + k = M 
0 < i,j, k < M 

Again, it is important to recall the meaning of the context [ ] : 
all of the summands here are maps from [[[A <S> B] <S> C] ® D] ® E to 
A (gi [B ® [C <g) [D <g> E]]], involving implied structure maps from the 
undeformed category as factors (of the form d_idja(°> for various i and 

j)-
Now, observe that 95c?3 = c^c^, these two expressions being names 

for the same edge of the associahedron, but viewed from different faces. 
Since all of the indices occurring in either of these two expressions are 
less than M, we may use the hypothesized vanishing condition to replace 
each occurrence of either with summands corresponding to paths around 
the other face of the associahedron. In this way we obtain 

|& + &](«(M)) = 
£ [858^33840^83820^83000^1 

i + j + k + l = M 
0 < i 

0 < k + I 

[&+&](^M)) = 
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i + j + k = M 
0 < i 

J2 \d5d4a^d5d2a^d5d0a^] 
i + j + k = M 
0 < i,j,k < M 

i + j = M 
0 < i,j < M 

+ J2 \d5dia{']idadiaWdadtaWdzdoaW] 
i+j+k+l=M 

0 < i 
0 < k + I 

J2 \d5d4^
l) dsdidW dsdoaW d g . W ' d g S o c ^ l , 

i + j + k + l + m = M 
i + 3 + k < M 
0 < l,m < M 

where the constraint 0 < k + I in the fifth summation follows since 
i + j < M, and all indices are non-negative. 

Now, the first and fifth summations cancel, and we may collect the 
second with the fourth and the third with the sixth to obtain 

J2 IfhdiaMdadiaWdadaaW] 
i + j + k = M 
0 < i,j, k < M 

J2 \d5d4a
{i)d5d2a^d5d0a

(k) dsd2a
{-l)d^d0a^}. 

i + j + k + l + m = M 
0 < i,j,k,l,m < M 

In terms of the associahedron, this last expression is essentially the 
difference of all composites of total index M (of maps with indices less 
than M) along the two directed paths around the third and fifth faces. 

We should also observe (as it will be needed as an analogue of the 
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vanishing condition in the next step) that an essentially identical calcu
lation shows that for N < M we have 

0 = [ds + dzMaW+uW) 

i + j + k = N 
0 < i,j,k < N 

i + j + k + l + m = N 
0 < i,j,k,l,m < N 

So we now have 

i + j + k = M 
0 < i,j,k < M 

J2 \d5d4a{i)d5d2a^85doa{h)%,d2a^ d^d0a^] 
i + j + k + l + m = M 

0 < i,j,k, l,m < M 

i + j = M 
0 < i,j < M 

J2 \dldia^dld2a^dldoa{k)]. 
i + j + k = M 
0 < i,j,k < M 

Now, note that <95<9i = d_id4 and d^di = d_1d2, while by the nat-
urality of oA0' and its prolongations we have [$36*3] = [^4^3] and 
f^i^o] = [505o]. Also observe that the k = 0 terms (for corresponding 
i,j) of the first and fourth sums are identical, and thus cancel, giving 
us 
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£ Idsd^dsd^d&aW] 
i + j + k = M 
0 < i,j, k < M 

0 < k 

Y, IMta^&haW^doaW^aWdadoaW] 

0 < i,j, k,l,m < M 

+ £ {d^a^d^a^} 
i + j = M 

0 < j , j < M 

£ Idsdia^dzd^dvdoa^]. 
i + j + k = M 
0 < i,j, k < M 

0 < fc 

Again we will use vanishing conditions (the hypothesized one for 
single face, and the one noted above for the pair of faces) to rewrite the 
first and last sums, giving 

\d5 + d3 + d1](u>M) = 

J2 \d5dia{i) d^dta^ d^aW ^f lbaO] 
i + j + k + l = M 
0 < i,j,k,l < M 

0 < k,l 

+ J2 IdidiaWdjyfoaWdtdaaW] 
i + j + k = M 
0 < i,j, k < M 

0 < k 

£ r5554a ( , ' )5552a^)a5^a( fc)a3a2a<')a3aoa (m)l 

0 < i, j , k,l,m < M 

+ £ r&ftaWg^a^l 
j + j = M 

0 <i,j < M 
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+ Y. IdsdKxMdzdKxWdadsaWdodoaW] 
i + j + k + I = M 
0 < i,j,k,l < M 

0 < k,l 

- Yl \d5d4a^d5d2a^d5d0a(k^d2aW^d0aWd0doaW] 
i + j + k + l + m + n = M 

0 < i,j, k,l,m,n < M 
0 < n 

Applying naturality squares shows tha t the first and fifth sums are 
equal and thus cancel. Collecting the second and fourth sums and the 
third and sixth then gives the desired result. • • 

We now turn to the question of obstructions for fibred and total de
formations of monoidal functors, and for deformations of multiplications 
on monoidal categories (or equivalently, of braided monoidal categories). 

Since fibred deformations and deformations of multiplications are 
special cases of total deformations, defined by restricting the deforma
tion of the target to be trivial or the deformation of the source to be 
the diagonal deformation induced by the deformation of the target, re
spectively, it suffices to consider obstructions in the case of total defor
mations. We begin by giving an explicit formula for these obstructions, 
and then show that they are closed. 

Recall tha t the appropriate deformation complex for total deforma
tions of a strong monoidal functor (or oplax semigroupal functor) 

F : C -> V,<f>: F ( - ® - ) => F(-) 0 F(-) 

is 

xU*i(F) = qF{pi)]_l{P2)F,] = x-(F)®x-^(C)(BX-+1(v) 

with coboundary given by 

SF 0 0 
\F(-)) -5C 0 . 

-\(-)F.] 0 -8v 
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Thus, a cochain will have coboundary which vanishes in each of 
the second and third coordinates if and only if its second and third 
coordinates are cocycles in X'+1(C) and X*+1(V), respectively. Simi
larly, it is easy to see tha t the obstruction cochain for a total deforma
tion must have as second and third coordinates the obstructions for the 
deformations of the source and target category, respectively. 

Thus, we are left to consider the value of the first coordinate of the 
obstruction, and the value of the first coordinate of the coboundary. 
Consider the hexagonal coherence diagram for oplax monoidal functors 
given in Figure 3.3, with the maps replaced by their deformed versions. 

Calculating the difference of the degree n terms of the two directions 
around the diagram gives 

E r*£Uc[*!& ® nc)]a(*(AmB)tF{c)], 
i+j+k=n 

where a and a are the associators for C and V, respectively. This must 
vanish for n = 1 for first order total deformations: the vanishing is 
simply the cocycle condition in X*ot ^(F). For a deformation to extend 
to an Nth order deformation this quantity must vanish for all n < N, 
and indeed in addition to the vanishing of the corresponding second and 
third coordinates, this condition is sufficient. Separating out the terms 
in which the index (n) occurs, we find that the vanishing conditions are 
precisely the condition tha t [«^W,aW,aW] cobounds [Q^,u^n\ o^], 
where 

i + j + k = n 
i, j , k < n 

E \*%B,c[n!B ® nc)w;{A)tF(Bmc) 
i + j + k — n 

i, j , k < n 
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and u>(n> and o'n ' are the obstructions to the extension of the deforma
tions of the source and target categories, respectively. 

All that remains to show is that the first coordinate of the cobound-
ary of \Q.(n\u>(n\ o(n)] vanishes. We leave the details of the proof to 
the reader. The method is identical to that applied in the case of the 
obstructions for deformations of a semigroupal category, except that the 
associahedron must be replaced with the diagram given in Figure 16.2. 
In Figure 16.2 we have suppressed all object and arrow labels except for 
the objects on the inner pentagon which are written with the null infix 
in place of <g) to save space.1 The labels can be recovered by labeling 
all radial maps with prolongations of $ and all maps parallel to those 
between the labeled objects with prolongations of (functorial images of) 
a. All hexagons are prolongations of the coherence hexagon for semi
groupal functors, and all squares, except the diamond-shaped one in 
the top center, are naturality squares. The diamond is a functoriality 
square. 

xThe diagram of Figure 16.2 was given the name "the Chinese lantern" due to 
its resemblance to a paper lantern when it is drawn in perspective as the edges of 
a 3-dimensional polytope with the innermost and outermost pentagons a parallel 
horizontal faces. 
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Figure 16.2: The "Chinese Lantern" 





Chapter 17 

Units 

Thus far we have dealt exclusively with deformations of semigroupal cat
egories and functors. We now turn to the question of how deformations 
of the product structure are related to the presence of a unit object. We 
will deal first with the question of deformations of monoidal categories 
as such, then to deformations of monoidal functors. Finally, we will 
consider the additional condition involving the unit in the definition of 
a multiplication on a monoidal category. 

One reason we have waited this long to consider units is the fact 
tha t the condition needed to ensure tha t a semigroupal deformation is 
a monoidal deformation is vacuous: 

T h e o r e m 17.1 Every semigroupal deformation of a monoidal category 
(C,<8>,I,a,p,\) becomes a monoidal category when equipped with unit 
transformations p and A given by 

i 

AA = £ A ( ; V 
i 

E CO i 

i 
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where 

i+j=n 

P(B]= E r / $ > y ) ® * ] i . 

j/(«) ; I —} I is any family of maps satisfying i>(°) = A/ = p j , and 

proof: Note that the conditions defining A and p can be read off the 
triangle coherence condition on a, A, and p (see Figure 3.1) in the cases 
B = I and A = I, respectively. 

We must verify the triangle condition on a, A, and p in general. 
Writing this condition out degree by degree, we find tha t it is equiv

alent to 

E r[«£!/,/®£p®i/(*)®fl]i = 
i+k=N 

E \4]I,B[A<S>^},BU<S>^<S>B]] 
i+j+k=N 

for all N. 
It is thus clear that for any u = J2i v^e1 it suffices to show tha t 

r«!!3,/®si= E \«Z,B[A®PI,IB]] 

i+j=N 

for all N. Tha t is, 

\af]j®B] = \aAiIiB[A®^i,i,B]]-

Inverting j3 and writing out term by term, this condition becomes 
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Denote the LHS of this equation by U^g. 
Now, any semigroupal deformation satisfies 

E \aA®B,C,DaA,B,C®D\ 
i+j=N 

E \[<*%,c®D]a%^D[A®a%tD]\ = 0. 
t+j+fc=7V 

Specializing to the case where the middle two objects are / (and 
recalling the effect of |~ ]) , we have 

i+j=N 

J2 \[*Z,i®B]a^I:B[A®a\%B}] = 0. 

Applying Lemma 3.27 to the last two factors of each summand of 
the left-hand side allows us to rewrite this as 

E \°%,B<*%J,] - E \[°%,i ® B][A ® aWfl]aW ifll = 0. 
i+j=N h+j+k-N 

Rewriting to collect terms according to the last factor gives 

E 
i+j=N 

a 
(0 
A,I,B E[« (A) , 

A,I,I 
>B][A> a 

h+k= 

(k) 
I,I,B a A,LB o, 

but this is simply 

E ^,W%1 = o. 
i+j=N 
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Now, proceeding by induction, observe tha t UA°'B vanishes by the 
triangle coherence condition for the undeformed category. Suppose we 
have shown that UAB vanishes for all i < N. Then UA B vanishes since 

the preceding equation reduces to \UA BaAI B] = 0> aAiB = aA,l,B, 
and all of the padding maps are invertible. • 

We now turn to the question of deformations of monoidal functors. 
In the case of strong monoidal functors, the situation is quite favorable. 

T h e o r e m 17.2 If (F : C -)• V, <&, F0) is a strong monoidal functor, 
then every semigroupal deformation of F extends uniquely to a defor
mation as a monoidal functor. 

proof: Consider the diagram in Figure 17.1. The maps denoted with 
tildes ( ~ ) are structure maps for some given total deformation of F 
with chosen monoidal deformation structures for the source and target 
categories. 

Observe tha t the outside of the diagram commutes by the coher
ence condition for monoidal functors; the top center square commuted 
by naturality of a for any map F0; the top center triangle commutes 
by the triangle condition; the bottom center triangle commutes by the 
triangle condition and the functoriality of F; and the two squares near 
the bottom commute by the naturality of F. 

This means that the top left and top right regions (which are functo
rial images of the two coherence conditions on F0) are the only regions 
whose commutativity is in doubt. Now, it follows from the naturality 
and invertibility of F0 and /, tha t letting 

F0 = lF(i)[F(I) ® F-^JiFCxrfplrfl ® FJIJ1 

gives a map for which the top right region commutes for any A with 
B = I. It thus follows in this case that the entire diagram commutes 
when beginning at the bottom left. By the invertibility of $ , it follows 
tha t the top left region commutes in this case. But F(I) is isomorphic to 
7, and thus - <S> F(I) is faithful. Therefore for any A, the given map F0 
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satisfies the coherence condition for monoidal functors involving right 
unit transformations. 

The same argument shows that if F0 is any map which makes the 
top left region commute in the case of A = / , it makes the top right 
region commute for any B, and thus satisfies the coherence condition 
for monoidal functors involving left unit transformations. • 

[F{A)®F(I)]®F(B) F{A)®[F(I)®F(B)} 

[F(A) <g> F0] ® F(B) 

F(A) <g> [F0 ® F(B)] 

[F(A)®I]®F{B)—r-~ F(A)®[I®F{B)] 

*A,I®F{B) \ F ( A ) 

F(p)®J(B^(A)®F{Bl^^) 

F{A)®F{I®B) F(A®I)®F(B) 
$A, 

®A®I,B 

F(p®B)^F(A®B\ 

F([A®I]®B) 
F(a) 

$A,I®B 

F{A®\) 

F{A®[I®B}) 

Figure 17.1: Diagram Relating Unit Conditions for Strong Monoidal 
Functors 

The final conditions involving units which must be considered are the 
conditions in the definition of a multiplication on a monoidal category. 
This condition, however, is trivially satisfied by any deformation, since 
the isomorphism giving the structure of the given multiplication still 
provides the necessary structure after deformation. 





Chapter 18 

Extrinsic Deformations of 
Monoidal Categories 

Thus far we have been considering what might be called "intrinsic" 
deformations of monoidal categories, monoidal functors and braided 
monoidal categories. We now wish to turn to a more general type of 
deformation: deformations which take place in the context of a larger 
ambient category. 

A priori we can consider embeddings of the monoidal category C into 
an arbitrary category. Such an approach faces substantial difficulties, 
since the natural transformations must be natural not only with respect 
to the maps in C, but also with respect to their own components. We 
therefore consider the case of a strict monoidal inclusion. 

We begin with the observation: 

Propos i t i on 18.1 Let i : C —>• X be a strict monoidal (resp. braided, 
ribbon) inclusion. Let full(C) be the full-subcategory generated by C. 
Then full(C) is a monoidal (resp. braided, ribbon) category when equip
ped with the same structure maps as C (that is, the restriction of the 
structure maps of X). 

We can then make 
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Definit ion 18.2 An extrinsic deformation of a monoidal (resp. braid
ed) category C is a strict monoidal (resp. braided) inclusion t : C —>• X, 
together with a deformation of' X'. Two extrinsic deformations are equal 
if the restrictions of the deformations of X to the full-subcategory gen
erated by C are equal. Two extrinsic deformations are equivalent if the 
restrictions of the deformations of X to the full-subcategory generated 
by C are monoidally (resp. braided) equivalent. 

What is important for our approach to Vassiliev theory, which we 
will begin in the next chapter, is the fact tha t extrinsic deformations of 
a monoidal (resp. braided) category can be organized into a category. 

Definit ion 18.3 Given an R-linear monoidal (resp. braided) category 
C, the category of nth order extrinsic deformations of C, which we de
note Extrn(C), has as objects all nth order extrinsic deformations of C. 
Given two extrinsic deformations 

(t:C^X,^°\...,^) 

and 

(where ip(k) and ip(k) are the cocycles in the appropriate deformation 
complex), a map from (i,tf) to (C,<p) is an R[e]/ < e" y-linear strict 
monoidal (resp. braided) functor 

$ : full(i(C))(n> -> full(C(C)) (n ) , 

where both the source and target are equipped with the deformed monoid

al (resp. braided) structure, which reduces modulo e to a strict monoidal 

functor $o satisfying 

$o(0 = C-

Extroo(C) is defined similarly. 



18. Extrinsic Deformations of Monoidal Categories 183 

What is important to note here is that E x t r n ( C ) and E x t r ^ C ) 
have initial objects. This follows from a general argument of a type we 
have already seen: whether monoidal or braided, once a ground ring 
and a category C are fixed, the extrinsic deformations turn out to be 
models of an essentially algebraic theory (possibly with infinitely many 
constants and equations to capture the structure of the ring and C, but 
this is of no consequence to the argument), while our maps are simply 
homomorphisms of models of this theory. 

Observe tha t intrinsic deformations are precisely those extrinsic de
formations for which t : C —> X = Idc : C —>• C. Likewise, extrinsic 
deformations for a fixed i : C —> X are classified by the appropriate 
deformation complex for the monoidal (resp. braided) category full(C). 

The initial object is then a "free" deformation of C. In the next 
section we will see that the free braided deformation of the free rigid 
symmetric .R-linear monoidal category is related in an important way 
to the theory of i?-linear Vassiliev invariants. 





Chapter 19 

Vassiliev Invariants, 
Framed and Unframed 

It is usual to discuss Vassiliev theory in terms of unframed oriented knots 
and links (cf. [8], [51], [55]). We will, however, for the most part remain 
in the setting most natural for functorial invariants (and incidentally 
most closely connected to 3- and 4-manifold topology), tha t of framed 
links. Until we reduce the subject to its combinatorial content, we will 
here switch briefly from the PL to the smooth setting. 

Recall our discussion of Goryunov's approach to framed links as 
equivalence classes of embeddings of ribbon neighborhoods in Chapter 
8. In order to discuss Vassiliev theory, we now drop the requirement 
that the mappings be embeddings. 

The space of possibly-singular framed links is the space of all C°° 
mappings of ribbon neighborhoods of disjoint unions of circles (topol-
ogized with the topology of uniform convergence on compacta of the 
map and all its derivatives) modulo this equivalence relation. Fix a pair 
A, B of equivalence classes of maps from ribbon neighborhoods of germ 
neighborhoods of signed sets of points to a germ neighborhood of I2. 
The space of possibly-singular framed tangles with source A and target 
B is the space of all C°° mappings of ribbon neighborhoods of disjoint 
unions of circle and intervals which intersect the boundary of I 3 only 
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in boundary points of the underlying ribbon neighborhood, which are 
mapped by a map equivalent to A to the top face and a map equiv
alent to B to the bottom face. We denote the former by Q}Y and the 
latter by Q/(A, B). We will either of these spaces by 0 / when no con
fusion is possible or when it is a mat ter of indifference which is meant. 
The subspace of equivalence classes of mappings of neighborhoods of 
S\ U . . . U Sk is the space of possibly-singular framed links of k compo
nents, and will be denoted Qf(k). Now consider the subspaces Olk C £llf 
and Oj(A,B) C Qf(A,B) of all (equivalence classes of) mappings such 
tha t Tg is an embedding. 

Def in i t ion 19 .1 A (non-singular) framed link (resp. framed tangle) 
is a connected component of Of. A connected component of Of(k) = 
Ojf)Qf(k) is a (non-singular) framed link of k components. A connected 
component of 0(A, B) is a (non-singular) smooth tangle with source A 
and target B. 

Observe that this agrees with the smooth version of our previous 
definition. 

First, note that we will often drop the adjective "non-singular" to 
match the usual usage in knot theory (as in earlier chapters). Second, 
the designation of these maps as non-singular implicitly identifies the 
element ofQf\Of as singular. We denote the discriminant locus Qf\Of 
by Tij. As observed in Goryunov [26], the discriminant is the union of 
two hypersurfaces (interpreted in the appropriate infinite dimensional 
sense), one on which the framing degenerates, denoted S'r, and one on 
which the disjoint union of circles is not embedded, denoted E'J. 

The minimal degenerations of each type are illustrated in Figure 
19.1. In the top part of Figure 19.1 the diagonal line indicates the fram
ing curve (the edge of the ribbon obtained by applying the exponential 
map for the standard metric to the framing vectors), while in the bottom 
part we suppress indication of the framing. We denote the subspace of 
S / in which there are exactly n degenerations of either type by £_/>, so 
Of — S/ ; 0- Then letting fi/,,- = fi/\ ( U ' C Q U / J ) , Qf becomes a stratified 
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space. (This is true for both Q}j and 0/(.A, B), and by intersecting with 
Qj(k) we obtain a stratification of this space as well.) 

As in Goryunov [26], we coorient the finite codimensional s t ra ta of 
£ / by the local prescriptions given in Figure 19.1, and give a Vassiliev-
type prescription for the extension of invariants of framed knots (links 
or tangles), to singular framed knots (links or tangles) as in Figure 19.2. 

+ 

+ 

Figure 19.1: Coorienting the Finite Codimensional S t ra ta 

V V = V 

V V 

Figure 19.2: Vassiliev-type Extension Formulae 
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Definit ion 19.2 An R-valued Vassiliev invariant of framed links (resp. 
framed links of k components, framed tangles) is a locally constant R-
valued function on Of (resp. Oj{k)) whose extension, according to the 
prescription of Figure 19.2, vanishes on E/ , n+i (resp. S/ )n+1(fc) /) for 
some n, in which case the invariant is said to be of type < n. The 
invariant is of type N when N is the minimal such n. 

It is then clear that 

Propos i t i on 19.3 R-valued Vassiliev invariants of framed links (resp. 
of framed links of k components) form an R-module V (resp. V(k)) 
under pointwise addition and scalar multiplication. Similarly, the R-
valued Vassiliev invariants of type < n form an R-module Vn (resp. 
Vn(k)) under the same operations, and the natural inclusions V„_i '-> 
Vn (resp. Vn-i(k) w- Vn{k)) make V (resp. V(k)) into a filtered R-
module. 

Observe also that as we have defined them, the possibly singular 
framed tangles form a stratified category Ctf, whose underlying ordinary 
category has a monoidal structure, which is, in fact, given by stratified 
functors. The infinite codimension part of the hom-stratified-spaces 
should be discarded to obtain a stratified category fifn whose hom-
stratified-spaces are Qj(A,Bfn. Observe that 

Xfin ^ yfin = ( X <g) Yfn . 

Definit ion 19.4 A Vassiliev invariant of framed tangles over R is a 
monoidal functor V from the underlying category of ilfn to the under
lying category of an R-linear monoidal category, satisfying: 

1. V is locally constant on each stratum Tif(A,B)i. 

2. IfT e Hf(A,B)i+i andT+,T_ € Ef(A,B)t are related to T by the 
removal of one degeneracy as in Figure 19.1, with the sign indicat
ing which side of the i + l s i stratum relative to the coorientation 
they lie on, then V{T) = V(T+) - V(T_) . 
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3. There exists an n such that for all A, B and all T € T,f(A,B)m 

form > n, V(T) = 0. 

We say V is of type < n in this case, and of type N where N is the 

minimal such n. 

The connection of Vassiliev theory to the deformation theory of 
braided monoidal categories is quite direct. In fact, we have: 

T h e o r e m 19.5 Let C be any K-linear rigid symmetric monoidal cate
gory, and letC be any nth order tortile deformation of C. For any object 
X ofC, let Vx denote the functor from TT to C induced by Shum's Co
herence Theorem. Then Vx restricted to End(I), regarded as the set of 
framed links, is a K[e]/ < e " + 1 >-valued Vassiliev invariant of type < n, 
and is, moreover, multiplicative under disjoint union. 

From this will follow, almost as a corollary, 

T h e o r e m 19.6 Let C be any K-linear rigid symmetric monoidal cate
gory, and let C be any nth order tortile deformation of C (resp. formal 
series deformation of C). For any object X of C, let Vx denote the 
functor from TT to C induced by Shum's Coherence Theorem, and let 
Vx,k denote the K-valued framed link invariant which assigns to any 
link the coefficient of ek, for k = 0, ...n, (resp. for k G M). Then Vx,k is 
a Vassiliev invariant of type < k. 

The proof of Theorem 19.5 is quite simple and similar to previous 
proofs of similar results: 

proof of T h e o r e m 19.5: The key is to observe that the bilinearity of 
composition in C allows us to use the Vassiliev prescription to extend 
thefunctor Vx from TT to a larger category of singular framed tangles, 
TT, whose maps are isotopy classes of framed tangles with finitely many 
degeneracies of either of the two basic types. 

Consider a singular framed link with n + 1 degeneracies (of either 
type). Now, we can represent the framed link as a composition of singu
lar framed tangles, each of which has at most one degeneracy, crossing, 
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framing twist, or extremum. The value of the extended functor on such 
a tangle with a degeneracy of the first type (framing degeneracy) is a 
monoidal product of identity maps with Ox — 0x

l (or its dual), while 
the value on such a tangle with a degeneracy of the second type is a 
monoidal product of identity maps with ax,x — axlx-

Now, observe that 

Ox - O^1 e Home(X:X)®<e> 

and 

<?x,x -ox)x
 e Homc{X ® X,X ® X)® < e > . 

It follows from the bilinearity of composition in C tha t the composite 
representing the singular framed link as an element of Endg(I) lies in 
Endc{I)® < e n + 1 > = 0, thus showing Vx to be Vassiliev of type < n. 
Multiplicativity follows from functoriality. • 

Theorem 19.6 follows from the Theorem 19.5 and the following 
lemma, the proof of which is a trivial exercise: 

L e m m a 19.7 Let A and B be abelian groups. If V is an A-valued 
Vassiliev invariant, and f : A —>• B is a linear map, then f(V) is a 
B-valued Vassiliev invariant. 

The connection between Vassiliev theory and deformation theory 
is even more intimate, as we will see upon further examination. We 
will not pursue Vassiliev's original cohomological approach (cf. [55]) 
to the construction of such invariants, although our observations above 
and Definition 19.4 show tha t it is possible to pursue this approach in 
the tangle-theoretic setting. Rather, we will follow the combinatorial 
approach taken by such authors as Birman and Lin [8], Bar-Natan [6, 5, 
7], and the related constructions involving iterated integrals proposed 
by Kontsevich [37] on the basis of the constructions originally given by 
Drinfel'd [18, 19]. 
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The key to the combinatorial approach is the observation tha t the 
Vassiliev extension prescription and the vanishing condition almost re
duce the description of type n Vassiliev invariants to the description of 
their values on E/,n- "Almost", because there is an ambiguity of a type 
n — 1 invariant. More precisely, 

L e m m a 19.8 IfVi, V2 are Vassiliev invariants of type n (that is, van
ishing on all (singular framed) knots, links or tangles with more than n 
degeneracies) and for any T £ E ^ n we have V\(T) = V^T) (in the case 
of tangles, for all S / (A, B)n), then V\ — V2 is a Vassiliev invariant of 
type n — 1. Conversely, if two Vassiliev invariants of type n differ by a 
Vassiliev invariant of type n—1, then they have the same values on all 
knots, links, or tangles with n degeneracies. 

The proof is a trivial exercise. (Observe tha t in the tangle case, 
there is an implied universal quantification over pairs of objects, and 
the equality implies tha t the two functors agree on objects.) 

It is thus important to have a convenient description for the values of 
type n invariants on knots, links and tangles with n degeneracies. The 
usual one, used in, for example, Birman and Lins [8] and Bar-Natan [6], 
depends upon the following: 

L e m m a 19.9 IfV is a Vassiliev invariant of type n, and T\ and T2 are 
two (singular framed) knots, links, or tangles with n degeneracies, and 
differing only by a sequence of crossing changes, then V(T\) = V ^ ) -

Again, the proof is a trivial exercise. 
We may consider two (singular framed) knots, links, or tangles with 

n degeneracies to be n-equivalent if they are related by a sequence of 
ambient isotopies rel boundary and crossing changes - including changes 
to the framing by an even number of twists. 

To specify an n-equivalence class, it thus suffices to specify the n 
degeneracies. This is usually done diagrammatically by indicating the 
pair of points to be identified by joining them with chords (usually 
drawn as dashed lines to distinguish them from arcs of the knot, link, 
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or tangle, cf. Birman and Lins [8] and Bar-Natan [6]). We will specify 
framing degeneracies by placing a large dot or "bead" on the arc of the 
tangle to indicate the location of the degeneracy. 

Thus, an n-equivalence class of singular framed knots, links, or tan
gles with n degeneracies can be specified by a "chord-and-bead" dia
gram. (In the unframed case, one uses only chords, thus obtaining 
the chord diagrams of Birman-Lins [8] and Bar-Natan [6].) The value 
of a type n Vassiliev invariant on singular knots, links, or tangles is 
thus a function on the set of n-equivalence classes (or of n-chord-and-
bead diagrams). However, because of the fact tha t it arose from an 
ambient isotopy invariant by the Vassiliev extension prescription at de
generacies, it cannot be an arbitrary function. Rather, it must satisfy 
identities which are the reflection of the Reidemeister moves (or equiv-
alently, of the relations in the category of framed tangles) under the 
extension prescription: 

Def in i t ion 19.10 A framed weight system of degree n for framed knots 
(resp. links of c components) is a function on the set of one- (resp. c-) 
loop chord-and-bead diagrams to R (for some abelian group R, usually 
taken to be the additive group of a commutative ring) so that the values 
satisfy the 4T, side change, bead and bead-slide relations of Figure 19.3. 

Here, as always, the standard convention of skein theory is followed: 
imposing a relation on parts of diagrams means imposing it on all ex
tensions to complete diagrams identical outside the region depicted. 

Thus, the dual of the module of framed weight systems of degree n 
is the quotient of the i?-module obtained from the free i?-module on the 
basis of all n-chord-and-bead diagrams by quotienting by all instances 
of the relations of Figure 19.3. 

In Figure 19.4 we show a basis for the dual module to degree 3 
framed weight systems. 

To deal with tangles, we consider the symmetric compact closed 
category of oriented immersed planar diagrams equipped with beads 
and chords, subject to the relations of Figure 19.3 and Figure 19.5, 
which we denote by F r V a s T a n g R . In Figure 19.5 each relation should 
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• ' i " v , 1 , , V \ 

Figure 19.3: Relations on Chord and Bead Diagrams 
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Figure 19.4: A Dual Basis for Degree 3 Framed Weight Systems for 

Knots 
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be taken with all possible orientations on the strands. The unframed 
analog VasTang^ is the quotient obtained by setting the bead equal to 
0. 

The appropriate analog of weight systems for tangles is then a mon-
oidal functor from FrVasTang^ or VasTang^ to i?-mod. 

Now, observe that by Kelly and Laplaza's coherence theorem [34] 
(the proof of which may be extracted by simplifying Shum's proof which 
it inspired) a category monoidally equivalent to the free symmetric com
pact closed category Fscc(l) is monoidally included in FrVasTang R 

(resp. VasTangjj) as the subcategory of diagrams with neither chords 
nor beads. Isomorphism classes of objects may be identified with words 
of l ' s and l*'s (or + l ' s and - l ' s ) . 

It is then possible to consider the structure of the extrinsic defor
mations of R[FSCC(1)] in FrVasTang^ or VasTang^. In the case of 
R — K for Q C -ft" C C, this structure turns out to have been exten
sively investigated by Kontsevich [37], Bar-Natan [6, 5, 7] and others 
building on the work of Drinfel'd [18, 19]. 

FrVasTang^ is equipped with natural transformations derived from 
the chord and bead: 

Propos i t i on 19.11 The family of maps given by letting KA,B be the 
sum of all 1-chord diagrams with a horizontal chord beginning on a 
strand of A and ending on a strand of B is a natural endormorphism of 
®. The family of maps given by letting T4 be the linear combination of 
all 1-chord-or-bead diagrams with either a bead on a single strand of A 
or a chord joining a pair of strands of A, with each summand involving a 
bead having coefficient of 1 and each summand involving a chord having 
coefficient —2, is a natural endomorphism o//^FrVasTangp • 

sketch of proof: We leave the complete check to the reader after ob
serving that for categories described by generators under composition 
(and relations), it suffices to check naturality at each generating map. 
Thus, in the present context it suffices to check for all monoidal prolon
gations of the crossing (twist), cup, cap, chord and bead. For example, 
the naturality of KA,B at a map consisting of a chord joining two strands 
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Figure 19.5: Relations on Bead-and-Chord Tangle Diagrams 
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of A (resp. B) follows immediately from the 4T relation (and the func-
toriality properties of <g> which allow chords not on the same strand to 
be commuted). In both cases naturality with respect to prolongations 
of the crossing and the bead are quite easy. For the cup and cap, one 
must use the fourth property of Figure 19.3. • 

Observe that this natural transformation for each fixed B (resp. 
fixed A) satisfies a property analogous to principal-ness of elements in 
a coalgebra: 

Definit ion 19.12 A paracoherent natural transformation JAi,...,An be
tween structural functors of a symmetric monoidal category is multi-
principal if it satisfies 

\fA1,...,Ak®Al,...,An] = \fAu...,Ak,-,An®Al] + \Ak ® JA-, ,...,A,,...,An] • 

It is then easy to prove: 

Propos i t i on 19 .13 K, as defined above, is multiprincipal. 

Of course, this gives a large family of natural endomorphisms of the 
various iterates of ® by composing various monoidal prolongations of 
the two just given. 

We can now restate the main result of [18] as a deformation theoretic 
statement: 

T h e o r e m 19.14 Let K with Q C K C C be a field. The natural trans
formations cjM^ = [1 <g) KA,BtwA,B <S> l l and c^1 ' = 0 :3 ® =*• ®i give the 
first order term of a braided deformation o/VasTang^-. Moreover, all 
obstructions vanish and the higher terms may be chosen so that 

4n) = —^\l®K\BtwA,B®l]. 

The uniqueness up-to-equivalence in the main theorem of [18], turns 
out to be an immediate consequence of this deformation theoretic state
ment: if two different cocycles have the same coboundary (in this con
text, a particular obstruction cocycle whose vanishing both cocycles 
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witness), they are necessarily cohomologous, and the cocycle which 
cobounds their difference is then the next term in the equivalence be
tween the deformations. Likewise, by the same reasoning, it follows 
that the higher terms need not be chosen to be the exponential terms 
suggested by Drinfel'd [18], though any choice will be cohomologous to 
these. 

This result, however, is very much dependent upon the fact tha t 
the coefficients lie in a field of characteristic 0. In the next chapter we 
examine the special case of characteristic 2. 

This formulation of the universal Vassiliev invariant in the context 
of categorical deformation theory makes clear tha t Vassiliev theory lives 
quite comfortably within the bounds of functorial knot theory. Thus, the 
limitations on the topological power of the knot polynomials of Jones, 
HOMFLY, and Kauffman [29, 42, 32] (e.g. the inability to distinguish 
fiypes) are either not endemic to functorial invariants per se or are 
shared by Vassiliev invariants. 

Another consequence of this result is the existence of a non-trivial 
deformation of V a s T a n g x as a monoidal category. Calculating the 
second order term of the deformation of Theorem 19.14, we find that 

1 1 
a<A^B,c = -J[KA,B ® C][A <g> KB,C] - 2 iA ® KB,C][KA,B ® C}. 

Since the first order term in Drinfel'd's construction was zero, this 
natural transformation is itself a 3-cocycle, but 

Propos i t i on 19.15 c r 2 ' , as given above, represents a non-trival coho-
mology class. 

proof: The hom-spaces of VasTang j^ are naturally graded by the num
ber of chords in a summand. It thus suffices to show that cr2) is not 
the coboundary of a natural transformation with two chords. 

A moment 's thought shows that all such natural transformations 
from <S> to itself are scalar multiples of K 2 . It thus suffices to show that 
cr 2 ' is not a multiple of 5(K2). 

Computing, we find tha t 
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HK2)A,B,C = 

-\[KA,C ® B][A® KB,C\] 

-\[A®KBtC][KAtc®B]] 

+ \[KAtc®B][nAtB®C]] 

+ \[KA,B®C][KA,C®B]]. 

Using the naturality and multiprincipal properties of K (the 4T re
lation and definition), we can rewrite this as 

${K2)A,B,C = 

A ( 2 ) 

-2\[A®KBJC][KA,C®B]] 

+2\[KA,B®C\[KAIC®B]\. 

Now, the only relations on natural transformations represented by 
linear combinations of 2-chord diagrams are instances of the 4T relation. 
It thus follows tha t 

{\[A ® KB,C][KA,C <8> B]\, \[KAIB ® C\[KA,C ® B]], 

[«A,B ® C][A ® KB,C], [A ® KB,C][KA,B ® C]} 

forms a basis for the subspace of X 3 (VasTangK) of natural transfor
mations represented by linear combinations of 2-chord diagrams. Thus, 
a ' 2 ' is not a coboundary. • 

Since our deformation theoretic degree need not correspond to the 
number of chords, we can take «(2) as the first order term in a defor
mation of the monoidal structure, thus also giving our first example of 
a non-trivial deformation of a monoidal category as such. 

This deformation-theoretic approach also gives a more satisfactory 
explanation to the "fudge factor" needed to get invariance of the uni
versal Vassiliev invariant under moves of type A.7T.1. Observe tha t the 
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defining condition for dual objects involves equations containing the as-
sociator. Once the category has been deformed, the old structure maps 
for the dual no longer satisfy the required equation with respect to the 
new associator. One can choose either e or 77 to remain unchanged, 
but the other must be changed to restore the dual structure. A sim
ple calculation shows that if e is unchanged, 77 must be replaced with 
r}[X*<g>Y~1], where T is the map p_1[X <gir]]a~1[e®X]\, in order for the 
first of the defining relations to hold. The second follows by symmetry. 

Now, observe that in the presence of a "graphical Schur's Lemma" 
this correction to each occurence of r\ becomes precisely the identity 
map on X divided by the trace of T . Thus, the correction given in Bar-
Natan [6] of dividing by a power of the Kontsevich integral of the unknot 
with no crossings and two maxima (and two minima) is seen to actually 
arise from Schur's Lemma, the preservation of a tortile structure and 
the resulting functorial invariant. 

Schur's Lemma is, of course, a consequence of the simplicity of the 
object of the category corresponding to the downward strand, and thus, 
in the case of the standard construction from representations of a Lie 
algebra, of the semi-simplicity of the Lie algebra. Vogel [56] has recently 
constructed Vassiliev invariants of knots which do not arise from any 
semi-simple Lie algebra. 

Thus, the construction of the universal functorial Vassiliev link in
variant must be done in the absence of Schur's Lemma, and the "cor
rection" which arises from the need to modify r\ (or e) to preserve the 
tortile structure under deformation must be made by replacing 77, that 
is simple minima in the diagram, by a linear combination of terms which 
are given precisely by the map of which Bar-Natan's correction factor 
is the categorical trace. 

Now, all categories corresponding to the weight systems constructed 
from semisimple Lie algebras are semisimple categories, and therefore 
satisfy Schur's lemma. Thus, the corresponding Vassiliev invariants are 
specializations of Bar-Natan's corrected Kontevich integral, while the 
invariants of Vogel [56] will not arise from Bar-Natan 's correction, but 
only from the inclusion of corrections at each minimum of the link. 



Chapter 20 

Vassiliev Theory in 
Characteristic 2 

The following suffices to establish the different character of deformation 
theory over fields of characteristic 2, and also provides us with our first 
example of a non-vanishing obstruction. 

T h e o r e m 20.1 Let k be a field of characteristic 2. Then the natural 
transformations <j>^ = \l®KA,Bt'u>A,B®]-'\ and cvl> = 0 : 38> =>• <g>3 give 
the first order term of a braided deformation of VasTang f c for which 
the second order obstruction does not vanish. 

proof: We proceed by contradiction. Assume the contrary. Now, ob
serve tha t the homspaces and space of natural tranformations are natu
rally graded by the number of chords. Observe also that the coboundary 
operator preserves the number of chords. The obstruction is easily seen 
to be a linear combination of diagrams with two chords. Now, by The
orem 12.13, any multiplication is equivalent to a multiplication of the 
form [1 <S> o (g) 1] for a braiding o. We may thus assume without loss 
of generality that the hypothesized deformation term which cobounds 
the obstruction has first coordinate (deforming the structure map of the 
multiplication) of the form a [ l ^ ® K g QtuiB,c<S>^-D] f ° r some a £ k, with 
the associated braiding given by OB,C — [IdB®c +KB,ce + aKB c]twB,c-

201 
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Now, the second coordinate (deforming the associator) is necessarily 
of the form 

« ( 2 ) = b\KA,s} + C\KA,B] \*A,C] + d\nAtB] \KB,C] + e\n2
AC] 

+I\KA,C]\KA,B] +9\KB,C]\KA,C] + MKl,cl-

Observe that by the 4T relation, the two remaining 2-chord diagrams 
are linear combinations of those represented in this expression. 

The deformed associator a = cr 0 ' + alpha*-2'e2 and the deformed 
braiding a = [Id+K+an2]tw must satisfy the two hexagons of Definition 
5.1. 

Calculating, we find that 

[aA,B <8> C]aB,A,c[B <g> crAiC\ = LA,B,ctwA,B®c^ + lower order terms 

and 

aA,B,cVA,B®caB,c,A = RA,B,ctwAtB®c£2 + lower order terms, 

where 

LA,B,C = 

aKA,B ® C + bK%B ® C + CKA,BKB,C + dKA,BKA,C 

+eA <g> K | ) C + fnA,c^B,c + g^A,C^A,B 

+h\B <g> K ^ c ] + a\B ® K ^ I C ] + KA}BKA,C, 

and 

RA,B,C = 

bn2
AB ® C + C K ^ B K U . C + d,KA,BKB,C + e\B® K%C] 

+fKB,CKA,C + 9KB,CKA,C + hA ® 4 , C + «K i ,B ® C 

+aKJ4,C«/l1S + CLKA,BKA,C + aKA,BKB,C + a\B <g> KA^C] 

+bA ® K | C + CKB IC«;A,C + dnB,cKA,c + e a K i , B ® C 

+fKA,CKB,C + gKA,CKA,B + h\B® K2
Afi] . 
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In the expression for LA,B,C the last term is the composition of the 
first order terms from the two braidings. 

Since the lower order terms agree, this hexagon reduces to LA,B,C = 
RA,B,C- Cancelling like terms, rewriting KA,C^A,B using the 4T relation, 
and equating like terms, this reduces to 

e 

a + c + d 

c + d 

b + h 

a + c + f 
d + g 

= 0 
= 0 

= 1 

= 0 

= 0 

= 0. 

Now, since we are in characteristic 2 and e = 0, it follows that a = 
a. Thus, by symmetry, the other hexagon reduces to the equations 

e = 0 

a+f+g = 0 

f + 9 = 1 
b+h = 0 

a+d+g - 0 

c+f = 0. 

Now, from the last equation in the first set and the next to last in 
the second, we conclude that a = 0. The second and third equations of 
either set then yield a contradiction, since c + d and f + g must be both 
0 and 1. 

Thus we see that the second obstruction does not vanish. D 

In a way, this result is hardly surprising: Drinfel'd's construction 
of a deformed braiding and associator involved exponentiating the first 
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order deformation of the braiding, and the resulting second order term 
for the deformed associator also involved a denominator of 2. 

It turns out tha t it is better to regard this last deformation as an ex
ternal deformation of .F( l ) , the free symmetric compact closed category 
on one object generator. When we do this, we find tha t the situation 
is even more rigid than this theorem indicates: we cannot even adjoin 
a natural endomorphism © of <g> which will serve as a second order de
formation term unless either additional equations are imposed on K, or 
a deformation term for the associator which satisfies certain equations 
relating it to K and © is formally adjoined. More precisely, we have: 

T h e o r e m 20.2 If j : FiA) —> C is the canonical inclusion of symmetric 
compact closed categories given by mapping, and C is generated as a 
monoidal category by the monoidal subcategory VasTang^ and a natural 
endomorphism ®A,B of <g>, then the second obstruction to extending the 
first order deformation of T{\) does not vanish in C for any deformation 
with braiding of the form [MA,B + KA,BC + &A,B]twA,B^2 • 

sketch of proof: The proof is a very unedifying calculation: we con
sider a second order deformation term for the associator that is a generic 
linear combination of prolongations of 0 and composites of two pro
longations of K, and consider generic relations expressing @A®B,C and 
@A,B®C as linear combinations of prolongations of 0 for pairs of single 
objects and composites of two prolongations of K, expressing Qtw as a 
linear combination of 0 and n2. 

Calculating the two hexagons gives inconsistent equations on the 
coefficients. • 

On the other hand, we have: 

T h e o r e m 20.3 Let j : !F{1) —±Cbe the canonical map of T{1) to 
the monoidal category C which is generated by the monoidal subcategory 
VasTang f c , a multiprincipal natural transformation 

$A,B,C • A®B®C ->• A®B®C, 
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and a natural transformation @A,B '• A <g) B —>• A® B, subject to the 

equations 

®A®B,C* = 

\A ® KB>CB <g> K ^ ^ I + A ® e s , c + [5 ® OA,C1 

+^A,B,C + [$A,C,Bl + \$C,A,B] 

®A,B®C = 

\KA,B ® C*KAIC <g> B] + QA,B ® C + [©4,c <8> 5 ] 

&I,A = 0 

eA,/ = o 

<U©>M* = 0 

© A - . ^ A + ^A\AVA + [A* (g) TA]r]A = 0 

[A ® €A][&A,A ® A* + A <g> TA][iw;AiA <g> A*][A ® T?A.] = 0 

[A* <g) 6A]$A>,A,A*[VA ® A*] + T^ = 0 

0 A , B ^ = twQB,A + i^^A,B, 

w/iere T A = [eA <g> A ] $ A I A . I A [ A <g> 7?^], and 
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\[A ® eB <g> B][$A>BIB' ® #][A ® 5 ® 775]] 

+ [[eB ® A <g> 5 ] [ $ B , B M ® 5 ] 

[ * W B ® B M <8> S][A <g> 5 <g> r?B]] 

+ [[A <g> eB ® 5][i«M„B ® 5 * <g> 5 ] 

[$B„4,fl* ® B][tWB,A <8> »7B]1 

+ [[A <g> e^. ® 5][A <g> $A«,4,B][??A- ® A <g> £ ] ] 

+ \[A ® 5 ® e^.^A ® *B,x»,yi] 

[A <g> £W£,A*®A][?L4* <g> A ® £] ] 

+ [[A ® B ® 6,4.][A <g) *«;B,^» <8> B] 

[A <g> ^ . . B ^ ] ^ * ® twA, B]]. 

Then 

a = [Id+ Ke + ee2]tw 

a- Id+$e2 

defines a second order extinsic deformation of J-(l). 

In this theorem and in the following the [ ] operator includes the 
coherence maps for the symmetric monoidal structure, so that inputs 
can be permuted to match sources and targets. (Observe that all natural 
transformations are paracoherent, so this introduces no ambiguities.) 

proof: The proof consists of two parts: first verifying the hexagons, 
pentagon and triangles; and second checking that the equations given 
do not collapse the image of ^"(1). 

In the first part it suffices to check the terms of degree 2 in e. 
The pentagon follows immediately from the condition that $ be 

multiprincipal. The hexagons and triangles can be readily verified by 
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direct calculation (indeed computing, the degree 2 terms of the hexagons 
taking the last relation as an Ansatz yields the first two relations, while 
computing the triangles yields the third and fourth.). The fifth through 
seventh relations are imposed to give unframed knot invariants - and 
correspond, more or less, to the possible instances of a Reidemeister 
move of type Q.l. The theorem will hold without them, though a few 
details of the following will change. Indeed, these too can be read off 
the categorical versions of fi.l in the presence of the last relation. The 
eighth relation is imposed so that both duality conditions will hold. 

The second part of the proof consists of observing that if we define 
the degree of a map in C so tha t the degree of maps in T(l) is 0, the 
degree of an instance of K is 1, the degree of an instance of 0 or $ 
is 2, and degree is additive with respect to both composition and ®, 
then degree is well defined, and all relations imposed by the structure 
of VasTang f c and the statement of the theorem are on maps of degree 
1 or 2. Thus no new relations are imposed on the image of T{1). • 

Observe tha t the eighth relation and the presence of T ^ in the other 
relations arise from the need to replace TJA with 

VA = f]A + [A* <g> TAIVA*? 

to preserve the duality. (The analogous relation to the eighth relation 
in Drinfel'd's characteristic 0 construction holds as a result of the sym
metry properties of the second order term in the associator.) 





Chapter 21 

Categorical Deformations 
as Proper Generalizations 
of Classical Notions 

If, by abuse of notation, we denote the lax monoidal functor defining 
(or defined by) A as A:! —>• i?-mod, we then have 

T h e o r e m 21.1 X'(A) is isomorphic to C'(A, A) as differential graded 
R-algebras with respect to U, and, moreover, the isomorphism is an 
isomorphism of pre-Lie structures. That is, it preserves the indexed 
products (—, —),• of the pre-Lie structure. 

proof: Now, Xn(A) = Nat(n<g>(An), A(® n ) ) , but since the source cat
egory has only one object and one map, this reduces to 

HomR_mod(®(An), A) = Cn(A, A). 

For the rest of the preservation properties, it suffices to observe tha t 
the formula for the structure on X'(F) specializes to an element-free 
description of the corresponding structure on the Hochschild complex. 

For the coboundary we have 

209 
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n 

<W)!o,..,!n = r^®^i , . . . , !„ l+E(- 1 ) , ' ^ !o , . . . , ! i - i®! i , . . . , !n l 
i=l 

where the subscripts on the !'s merely distinguish different copies. We 
must now consider the effects of the operator [] on each term. Since 
each term consists of ["/] for a single map / , |~] represents pre- and 
post-composition by coherence maps for R — mod or the lax monoidal 
functor A or images under A of coherence maps for !. This last is trivial 
since the only map in ! is an identity map. For the first (resp. last 
terms), it is easy to see that the required composite is precomposition 
by the identity map and postcomposition by A = m, the multiplication 
on A (resp. precomposition by the complete right reassociation coher
ence map in fi-mod and postcomposition by A = m) , and thus these 
terms equal the corresponding terms of the Hochschild coboundary. For 
all other terms, there is no postcomposition, only precomposition by the 
appropriate coherence map in R-mod followed by a prolongation of A, 
with A applied to the i — 1 s t and ith tensorands. A moment 's reflec
tion shows tha t these are precisely the other terms of the Hochschild 
coboundary. 

Similar considerations show that the cup product and each of the 
pre-Lie products are also preserved. • 

A similar result holds for oplax monoidal functors and counital coas-
sociative coalgebras. 

Thus, we see that our theory is a proper generalization of the defor
mation theory of Gerstenhaber for rings and algebras [23], in the sense 
that the classical theory is included as a special case. 

More than this, with the present theory, we are able to give a coho-
mological account of deformations of a unital associative algebra (resp. 
counital coassociative coalgebra) that give rise to "quasi-associative" 
algebras (resp. "quasi-coassociative" coalgebras): we can consider the 
total deformation complex of the lax (resp. oplax) monoidal functor. If 
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one wishes to consider the most general possible "quasi-algebras" one 
must consider deformations of a monoidal subcategory of the ambient 
category of modules which contains the algebra, its multiplication, and 
its unit map. Plainly, cutting down to only the objects generated mon-
oidally by the algebra itself allows for more deformations. On the other 
hand, when considering which maps lie in the subcategory, there is a 
trade-off between losing maps which might serve as deformation terms 
and losing restrictions imposed by the naturality condition. 

The theory also includes group cohomology with trivial coefficients 
as a special case. Consider the following example: 

Fix a group G and a field K. Let CQ,K D e the category of G graded 
A'-vectorspaces. Objects are of the form ©5eG<M3, where Mg is the K-
vectorspace of degree g elements, and the dimension of the direct sum 
is finite, with degree preserving A'-linear maps as maps. The category 
is equipped with a monoidal product 

[®gEGMg} <g> [®h€GNh] = 

with unit Ke, and structural natural transformations induced by the 
structural transformations for ® and © on K — v.s.. 

Observe tha t CG,K ls equipped with a monoidal forgetful functor U 
to K - v.s. 

Now, CG,K is easily seen to be semisimple with generating objects 
Kg g G G. Thus, it is easy to see, using the properties of finite di
rect sums (as iterated biproducts, cf. Mac Lane [40]) tha t to specify 
a natural transformation between two functors from CGK to CQ,K o r 

K — v.s., it suffices to specify the components at each object of the 
form [Kgi,..., Kgn\. Moreover, in the case of functors both of which 
are composites of prolonged monoidal products and forgetful functors, 
the image of any such object will be a simple object (isomorphic to ei
ther Kgi...gn in CG,K or K in K — v.s.). Thus, to specify the component 
of the natural transformation is simply to specify a scalar. 

By identifying [Kgi,..., K9n] with [gx,..., gn\), we see that 

Xn{CG,K) = Cn(G, K) £ Xn{U). 
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It is easy to verify that this is, in fact, a chain map. Thus, we have 
as a corollary to our main results: 

Corollary 21.2 The semigroupal deformations of CG,K are classified 
byH3(G,K). 

and 

Corollary 21.3 The deformations of the strong monoidal functor 

U : CG,K —>• K - v.s. 

are classified by H2(G,K). 



Chapter 22 

Open Questions 

22.1 Functorial Knot Theory 

The chief problem surrounding functorial knot theory is to give a gen
eral and satisfactory relationship between the rich families of knot and 
link invariants it provides and the more geometric problems of knot 
theory as classically studied. Some success has been had in scattered 
instances (for example, Kirby and Melvin [36]), while some functorial 
knot invariants have been deliberately constructed using homotopy the
oretic constructions so tha t an immediate homotopic interpretation is 
given along with the invariant (cf. Yetter [62]). On the whole, though, 
the da ta about knots and links encoded by functorial knot invariants 
remains tantalizingly ungeometric. 

A second problem that has remained open since the discovery of the 
HOMFLY and Kauffman polynomials is to give a satisfactory explana
tion for the existence of the values not corresponding to the represen
tations of quantum groups. For example, in the case of the HOMFLY 
polyomial, the special values associated to the fundamental represen
tations of Uq(sln), and the fact that skein theory in the manner of 
Kauffman and Lins [31] can be used to reconstruct (for generic q) the 
complete categories of finite dimensional representations of Uq(sln) sug
gest that if we write the HOMFLY polynomial with the normalization 
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x = q**, z = q? — q~2, for a complex parameter £, we might regard 
the entire invariant as arising from the "fundamental representation of 
Uq{sl^y\ The difficulty is to make sense of this. 

There is precedent for making the leap from a parameter which con
stitutes a dimension to a complex parameter: the "dimensional regular-
ization" schemes used by physicists to remove the divergences prevalent 
in the Feynmanological approach to Q F T . 

22.2 Deformation Theory 

There are perhaps too many open questions regarding the deformation 
theory of monoidal categories and monoidal functors. This is hardly 
surprising given on the one hand its recent advent, and on the other the 
fact that the theory is at least as rich as Gerstenhaber 's deformation 
theory for associative algebras. 

The questions which occur to the author in this regard may be clas
sified into three types: those dealing with the theory itself, those seeking 
clarification of the relationship of the theory to the deformation theories 
of Gerstenhaber [23, 24] and of Gerstenhaber and Schack [25], and those 
dealing with the theory's relationship to Vassiliev theory. 

Of questions about the theory itself, two seem most important: the 
question of functoriality properties for the deformation complexes, and 
the problem of effective computation. 

No naive functoriality properties for the deformation complexes (even 
considered as objects in a derived category) present themselves beyond 
those of Theorems 13.6 and 13.7. Rather, to any monoidal functor, one 
has a cospan of cochain complexes formed by the maps introduced in 
Chapter 14, and a distinguished triangle formed by the direct sum of 
the deformation complexes for the source and target, the deformation 
complex for the functor, and the cone (whose third cohomology classi
fies total deformations). This distinguished triangle, together with the 
projections, gives rise to a span (of maps of degree + 1 ) . It is unclear 
whether the composition of monoidal functors carries over to the compo
sition of cospans (via pushouts), to composition of spans (via pullback), 
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to both, or to neither. One might hope tha t one of these conditions 
holds on the nose, but it might be necessary to pass to the derived 
category. 

It is not even clear whether there are simple functoriality properties 
for any class of monoidal functors more general than monoidal equiva
lences. 

The lack of naive functoriality is not surprising. The deformation 
complexes of algebras lack good functoriality properties with respect 
to maps of algebras. In the algebra case, one can pass to Hochschild 
cohomology with coefficients in a module to obtain a construction with 
good functoriality properties in each of two variables. An analogous 
construction has been developed by the author in unpublished work 
[58], but at present is not well-understood. 

The second problem is tha t of effective calculation. It would be 
highly desirable to have a construction which, given a monoidal cate
gory or monoidal functor, provides a simplicial complex whose simplicial 
cochain complex is isomorphic, or at least chain homotopic or quasi-
isomorphic to the deformation complex. This, however, would not be 
the complete solution to computation, since it would not determine the 
pre-Lie structure needed to compute obstructions. 

The need to model the pre-Lie structure suggests another approach: 
find a construction which, given a monoidal category or functor, con
structs an associative algebra whose Hochschild complex is isomorphic 
to the deformation complex of the category or functor by an isomor
phism which preserves the pre-Lie structure. 

Finding such a construction is only the first open question regard
ing the relationship between categorical deformation theory and classi
cal algebraic deformation theory. It would also be highly desirable to 
understand the relationship between the deformations of a bialgebra in 
the sense of Gerstenhaber and Schack [25] and ihe deformations of its 
category of modules, or of the underlying functor U : R-mod —> it'-v.s.. 
Likewise, the same relationship should be investigated in the dual setting 
for categories of comodules. This latter is almost more important since 
reconstruction theorems allow any A'-linear monoidal category fibered 
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over A'-v.s . (and satisfying certain exactness properties) to be realized 
as a category of comodules over a bialgebra. 

A third approach would be to construct in the context of monoidal 
categories and monoidal functors analogues of the standard machinery 
of homological algebra: resolutions in terms of some nice class of acyclic 
objects, ideally projectives in some suitable category. Some progress on 
this approach has been made by the author in unpublished work [58], in 
which it is shown that under suitable exactness hypotheses, including 
the abelianness of the target category, analogues of modules for lax mon
oidal functors more general than those corresponding to algebras form 
an abelian category. The deformation cohomology defined herein can 
then be extended to a notion of the cohomology of a monoidal functor 
F with coefficients in an F-bimodule, while the apparent problem of the 
cochain groups being defined in terms of functors from various Deligne-
powers of the source category can be removed by the use of left Kan-
extensions (cf. [40, 58]). 

Finally, the intimate relationship between categorical deformation 
theory and Vassiliev theory suggests a number of possible lines of de
velopment. The realization of the Kontsevich integral as a deformation 
in the category VasTangR has already provided a satisfactory expla
nation for the need to adjust the direct formulation to obtain isotopy 
invariance — the need to preserve duality once the associator has been 
deformed — and has suggested the correct way to make the adjustment 
in light of the result of Vogel [56] that semi-simple categories will not 
suffice to generate all Vassiliev invariants. One program which should 
be undertaken is the use of cohomological and deformation theoretic 
techniques to study Vassiliev invariants, and particularly the question 
of integrability of weight systems in a systematic way. A second pro
gram, already begun in a small in Chapter 20, is to use deformation 
theory to undertake the study of Vassiliev invariants valued in finite 
fields, where the transcendental methods of Drinfel'd and Kontsevich 
cannot be applied. 

Only time will tell whether the specific issues and questions raised 
in this monograph will be of any enduring importance. Wha t cannot 
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be doubted is that the direct conversion of geometric da ta into algebra, 
as exemplified by functorial knot theory, has established the theory of 
categories with structure as an important branch of algebra and opened 
new mathematical vistas which will occupy topologists, algebraists, and 
others for many years to come. 
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